diff --git a/.gitattributes b/.gitattributes index 1ef325f1b111266a6b26e0196871bd78baa8c2f3..a6344aac8c09253b3b630fb776ae94478aa0275b 100644 --- a/.gitattributes +++ b/.gitattributes @@ -8,8 +8,6 @@ *.h5 filter=lfs diff=lfs merge=lfs -text *.joblib filter=lfs diff=lfs merge=lfs -text *.lfs.* filter=lfs diff=lfs merge=lfs -text -*.lz4 filter=lfs diff=lfs merge=lfs -text -*.mds filter=lfs diff=lfs merge=lfs -text *.mlmodel filter=lfs diff=lfs merge=lfs -text *.model filter=lfs diff=lfs merge=lfs -text *.msgpack filter=lfs diff=lfs merge=lfs -text @@ -35,25 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text -# Audio files - uncompressed -*.pcm filter=lfs diff=lfs merge=lfs -text -*.sam filter=lfs diff=lfs merge=lfs -text -*.raw filter=lfs diff=lfs merge=lfs -text -# Audio files - compressed -*.aac filter=lfs diff=lfs merge=lfs -text -*.flac filter=lfs diff=lfs merge=lfs -text -*.mp3 filter=lfs diff=lfs merge=lfs -text -*.ogg filter=lfs diff=lfs merge=lfs -text -*.wav filter=lfs diff=lfs merge=lfs -text -# Image files - uncompressed -*.bmp filter=lfs diff=lfs merge=lfs -text -*.gif filter=lfs diff=lfs merge=lfs -text -*.png filter=lfs diff=lfs merge=lfs -text -*.tiff filter=lfs diff=lfs merge=lfs -text -# Image files - compressed -*.jpg filter=lfs diff=lfs merge=lfs -text -*.jpeg filter=lfs diff=lfs merge=lfs -text -*.webp filter=lfs diff=lfs merge=lfs -text -# Video files - compressed -*.mp4 filter=lfs diff=lfs merge=lfs -text -*.webm filter=lfs diff=lfs merge=lfs -text diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..17888174f4729125345723f3083988f3ac089b85 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +*.wandb diff --git a/Dockerfile b/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..dc78de639312f3b6da1997e9e9c3b3b279e1f1aa --- /dev/null +++ b/Dockerfile @@ -0,0 +1,19 @@ +# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker +# you will also find guides on how best to write your Dockerfile + +FROM python:3.9 + +RUN useradd -m -u 1000 user +USER user +ENV PATH="/home/user/.local/bin:$PATH" + +WORKDIR /app + +COPY --chown=user ./requirements.txt requirements.txt +RUN pip install --no-cache-dir --upgrade -r requirements.txt +RUN git clone https://github.com/huggingface/pytorch-image-models.git && cd pytorch-image-models && pip install --no-cache-dir --upgrade -r requirements.txt +COPY --chown=user train.sh pytorch-image-models +RUN chmod +x pytorch-image-models/train.sh + +COPY --chown=user . /app +CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"] diff --git a/README.md b/README.md index 08b7b119baee6e9980f73234d9dba7607570b42e..2e5e252d59b1bfc6ca7f0a8eb722c81c9b215014 100644 --- a/README.md +++ b/README.md @@ -1,19 +1,13 @@ --- -dataset_info: - features: - - name: image - dtype: image - - name: label - dtype: int64 - splits: - - name: train - num_bytes: 1517202256.75 - num_examples: 20018 - download_size: 1516985870 - dataset_size: 1517202256.75 -configs: -- config_name: default - data_files: - - split: train - path: data/train-* +title: imagenet-1k-random-20.0-frac-1over64 +emoji: 😻 +colorFrom: yellow +colorTo: blue +sdk: docker +pinned: false +license: cc +startup_duration_timeout: 5h +hf_oauth_expiration_minutes: 1440 --- + +Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/__pycache__/app.cpython-39.pyc b/__pycache__/app.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8aabc4e46884beac7cbaba47138a3822833953c6 Binary files /dev/null and b/__pycache__/app.cpython-39.pyc differ diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..c48edcef651b30d214de8445f828699e7cfc1c1a --- /dev/null +++ b/app.py @@ -0,0 +1,36 @@ +import os +from fastapi import FastAPI +import subprocess +import wandb +from huggingface_hub import HfApi + +TOKEN = os.environ.get("DATACOMP_TOKEN") +API = HfApi(token=TOKEN) +wandb_api_key = os.environ.get('wandb_api_key') +wandb.login(key=wandb_api_key) + +REPO_ID = f"datacomp/imagenet-1k-random-20.0-frac-1over64" +app = FastAPI() + +@app.get("/") +def start_train(): + os.system("echo pwd") + subprocess.call("pwd") + os.system("echo ls") + subprocess.call("ls") + os.system("ls") + space_variables = API.get_space_variables(repo_id=REPO_ID) + if 'STATUS' not in space_variables or space_variables['STATUS'] != 'COMPUTING': + os.system("echo 'Beginning processing.'") + API.add_space_variable(repo_id=REPO_ID, key='STATUS', value='COMPUTING') + # Handles CUDA OOM errors. + os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True") + print("Okay, trying training.") + os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/{REPO_ID} --log-wandb --experiment {REPO_ID} --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4") + os.system("echo ls") + os.system("ls") + os.system("echo trying to upload...") + API.upload_folder(folder_path="/app", repo_id=f"{REPO_ID}", repo_type="dataset",) + API.add_space_variable(repo_id=REPO_ID, key='STATUS', value='NOT_COMPUTING') + API.pause_space(f"{REPO_ID}") + return {"Completed": "!"} diff --git a/pytorch-image-models/.gitattributes b/pytorch-image-models/.gitattributes new file mode 100644 index 0000000000000000000000000000000000000000..2f77e919cdc5d76d29bfc56dbc96e814aee0dc9a --- /dev/null +++ b/pytorch-image-models/.gitattributes @@ -0,0 +1 @@ +*.ipynb linguist-documentation diff --git a/pytorch-image-models/.github/FUNDING.yml b/pytorch-image-models/.github/FUNDING.yml new file mode 100644 index 0000000000000000000000000000000000000000..ab0474f2976cdbdc5bcc2de381a8d8cef57c88d5 --- /dev/null +++ b/pytorch-image-models/.github/FUNDING.yml @@ -0,0 +1,2 @@ +# These are supported funding model platforms +github: rwightman diff --git a/pytorch-image-models/.github/ISSUE_TEMPLATE/bug_report.md b/pytorch-image-models/.github/ISSUE_TEMPLATE/bug_report.md new file mode 100644 index 0000000000000000000000000000000000000000..bced110f65d7bfe0bcd23717db010995707d7d25 --- /dev/null +++ b/pytorch-image-models/.github/ISSUE_TEMPLATE/bug_report.md @@ -0,0 +1,32 @@ +--- +name: Bug report +about: Create a bug report to help us improve. Issues are for reporting bugs or requesting + features, the discussion forum is available for asking questions or seeking help + from the community. +title: "[BUG] Issue title..." +labels: bug +assignees: rwightman + +--- + +**Describe the bug** +A clear and concise description of what the bug is. + +**To Reproduce** +Steps to reproduce the behavior: +1. +2. + +**Expected behavior** +A clear and concise description of what you expected to happen. + +**Screenshots** +If applicable, add screenshots to help explain your problem. + +**Desktop (please complete the following information):** + - OS: [e.g. Windows 10, Ubuntu 18.04] + - This repository version [e.g. pip 0.3.1 or commit ref] + - PyTorch version w/ CUDA/cuDNN [e.g. from `conda list`, 1.7.0 py3.8_cuda11.0.221_cudnn8.0.3_0] + +**Additional context** +Add any other context about the problem here. diff --git a/pytorch-image-models/.github/ISSUE_TEMPLATE/config.yml b/pytorch-image-models/.github/ISSUE_TEMPLATE/config.yml new file mode 100644 index 0000000000000000000000000000000000000000..a178cd62ed11b07468e714ab82a3618bf17104e8 --- /dev/null +++ b/pytorch-image-models/.github/ISSUE_TEMPLATE/config.yml @@ -0,0 +1,5 @@ +blank_issues_enabled: false +contact_links: + - name: Community Discussions + url: https://github.com/rwightman/pytorch-image-models/discussions + about: Hparam request in issues will be ignored! Issues are for features and bugs. Questions can be asked in Discussions. diff --git a/pytorch-image-models/.github/ISSUE_TEMPLATE/feature_request.md b/pytorch-image-models/.github/ISSUE_TEMPLATE/feature_request.md new file mode 100644 index 0000000000000000000000000000000000000000..ea51beb76a1c9940f0db596a6b0ae1d28f33c244 --- /dev/null +++ b/pytorch-image-models/.github/ISSUE_TEMPLATE/feature_request.md @@ -0,0 +1,21 @@ +--- +name: Feature request +about: Suggest an idea for this project. Hparam requests, training help are not feature requests. + The discussion forum is available for asking questions or seeking help from the community. +title: "[FEATURE] Feature title..." +labels: enhancement +assignees: '' + +--- + +**Is your feature request related to a problem? Please describe.** +A clear and concise description of what the problem is. + +**Describe the solution you'd like** +A clear and concise description of what you want to happen. + +**Describe alternatives you've considered** +A clear and concise description of any alternative solutions or features you've considered. + +**Additional context** +Add any other context or screenshots about the feature request here. diff --git a/pytorch-image-models/.github/workflows/build_documentation.yml b/pytorch-image-models/.github/workflows/build_documentation.yml new file mode 100644 index 0000000000000000000000000000000000000000..6cbf1da6fc408d58e87a314f90c323fe1a329cdb --- /dev/null +++ b/pytorch-image-models/.github/workflows/build_documentation.yml @@ -0,0 +1,20 @@ +name: Build documentation + +on: + push: + branches: + - main + - doc-builder* + - v*-release + +jobs: + build: + uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main + with: + commit_sha: ${{ github.sha }} + package: pytorch-image-models + package_name: timm + path_to_docs: pytorch-image-models/hfdocs/source + version_tag_suffix: "" + secrets: + hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }} diff --git a/pytorch-image-models/.github/workflows/build_pr_documentation.yml b/pytorch-image-models/.github/workflows/build_pr_documentation.yml new file mode 100644 index 0000000000000000000000000000000000000000..058d06141f301f4938dff5292ac0fee69d456825 --- /dev/null +++ b/pytorch-image-models/.github/workflows/build_pr_documentation.yml @@ -0,0 +1,19 @@ +name: Build PR Documentation + +on: + pull_request: + +concurrency: + group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }} + cancel-in-progress: true + +jobs: + build: + uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main + with: + commit_sha: ${{ github.event.pull_request.head.sha }} + pr_number: ${{ github.event.number }} + package: pytorch-image-models + package_name: timm + path_to_docs: pytorch-image-models/hfdocs/source + version_tag_suffix: "" diff --git a/pytorch-image-models/.github/workflows/tests.yml b/pytorch-image-models/.github/workflows/tests.yml new file mode 100644 index 0000000000000000000000000000000000000000..0dd62aaf663b0625c62f9dc1d0f6efed718b9b37 --- /dev/null +++ b/pytorch-image-models/.github/workflows/tests.yml @@ -0,0 +1,65 @@ +name: Python tests + +on: + push: + branches: [ main ] + pull_request: + branches: [ main ] + +env: + OMP_NUM_THREADS: 2 + MKL_NUM_THREADS: 2 + +jobs: + test: + name: Run tests on ${{ matrix.os }} with Python ${{ matrix.python }} + strategy: + matrix: + os: [ubuntu-latest] + python: ['3.10', '3.12'] + torch: [{base: '1.13.0', vision: '0.14.0'}, {base: '2.4.1', vision: '0.19.1'}] + testmarker: ['-k "not test_models"', '-m base', '-m cfg', '-m torchscript', '-m features', '-m fxforward', '-m fxbackward'] + exclude: + - python: '3.12' + torch: {base: '1.13.0', vision: '0.14.0'} + runs-on: ${{ matrix.os }} + + steps: + - uses: actions/checkout@v2 + - name: Set up Python ${{ matrix.python }} + uses: actions/setup-python@v1 + with: + python-version: ${{ matrix.python }} + - name: Install testing dependencies + run: | + python -m pip install --upgrade pip + pip install -r requirements-dev.txt + - name: Install torch on mac + if: startsWith(matrix.os, 'macOS') + run: pip install --no-cache-dir torch==${{ matrix.torch.base }} torchvision==${{ matrix.torch.vision }} + - name: Install torch on Windows + if: startsWith(matrix.os, 'windows') + run: pip install --no-cache-dir torch==${{ matrix.torch.base }} torchvision==${{ matrix.torch.vision }} + - name: Install torch on ubuntu + if: startsWith(matrix.os, 'ubuntu') + run: | + sudo sed -i 's/azure\.//' /etc/apt/sources.list + sudo apt update + sudo apt install -y google-perftools + pip install --no-cache-dir torch==${{ matrix.torch.base }}+cpu torchvision==${{ matrix.torch.vision }}+cpu --index-url https://download.pytorch.org/whl/cpu + - name: Install requirements + run: | + pip install -r requirements.txt + - name: Run tests on Windows + if: startsWith(matrix.os, 'windows') + env: + PYTHONDONTWRITEBYTECODE: 1 + run: | + pytest -vv tests + - name: Run '${{ matrix.testmarker }}' tests on Linux / Mac + if: ${{ !startsWith(matrix.os, 'windows') }} + env: + LD_PRELOAD: /usr/lib/x86_64-linux-gnu/libtcmalloc.so.4 + PYTHONDONTWRITEBYTECODE: 1 + run: | + pytest -vv --forked --durations=0 ${{ matrix.testmarker }} tests diff --git a/pytorch-image-models/.github/workflows/trufflehog.yml b/pytorch-image-models/.github/workflows/trufflehog.yml new file mode 100644 index 0000000000000000000000000000000000000000..9cbbf6803724dacc4759b69d7002bb34831e5937 --- /dev/null +++ b/pytorch-image-models/.github/workflows/trufflehog.yml @@ -0,0 +1,15 @@ +on: + push: + +name: Secret Leaks + +jobs: + trufflehog: + runs-on: ubuntu-latest + steps: + - name: Checkout code + uses: actions/checkout@v4 + with: + fetch-depth: 0 + - name: Secret Scanning + uses: trufflesecurity/trufflehog@main diff --git a/pytorch-image-models/.github/workflows/upload_pr_documentation.yml b/pytorch-image-models/.github/workflows/upload_pr_documentation.yml new file mode 100644 index 0000000000000000000000000000000000000000..237ae8eae452b5d41377a2eed478daf4522146e1 --- /dev/null +++ b/pytorch-image-models/.github/workflows/upload_pr_documentation.yml @@ -0,0 +1,16 @@ +name: Upload PR Documentation + +on: + workflow_run: + workflows: ["Build PR Documentation"] + types: + - completed + +jobs: + build: + uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main + with: + package_name: timm + secrets: + hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }} + comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }} \ No newline at end of file diff --git a/pytorch-image-models/.gitignore b/pytorch-image-models/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..9f8f33d92b1921f1109e0f0d74a5c9a617def699 --- /dev/null +++ b/pytorch-image-models/.gitignore @@ -0,0 +1,121 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ +.pytest_cache/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# PyCharm +.idea + +output/ + +# PyTorch weights +*.tar +*.pth +*.pt +*.torch +*.gz +Untitled.ipynb +Testing notebook.ipynb + +# Root dir exclusions +/*.csv +/*.yaml +/*.json +/*.jpg +/*.png +/*.zip +/*.tar.* \ No newline at end of file diff --git a/pytorch-image-models/CITATION.cff b/pytorch-image-models/CITATION.cff new file mode 100644 index 0000000000000000000000000000000000000000..5976cfefe0c24becec069b685b897fae807a0a97 --- /dev/null +++ b/pytorch-image-models/CITATION.cff @@ -0,0 +1,11 @@ +message: "If you use this software, please cite it as below." +title: "PyTorch Image Models" +version: "1.2.2" +doi: "10.5281/zenodo.4414861" +authors: + - family-names: Wightman + given-names: Ross +version: 1.0.11 +year: "2019" +url: "https://github.com/huggingface/pytorch-image-models" +license: "Apache 2.0" \ No newline at end of file diff --git a/pytorch-image-models/CODE_OF_CONDUCT.md b/pytorch-image-models/CODE_OF_CONDUCT.md new file mode 100644 index 0000000000000000000000000000000000000000..cef2cb4dbb6cfdbcdcc790e5dfeb1502825ee24a --- /dev/null +++ b/pytorch-image-models/CODE_OF_CONDUCT.md @@ -0,0 +1,132 @@ +# Contributor Covenant Code of Conduct + +## Our Pledge + +We as members, contributors, and leaders pledge to participate in our +community a harassment-free experience for everyone, regardless of age, body +size, visible or invisible disability, ethnicity, sex characteristics, gender +identity and expression, level of experience, education, socio-economic status, +nationality, personal appearance, race, caste, color, religion, or sexual +identity and orientation. + +We pledge to act and interact in ways that contribute to an open, welcoming, +diverse, inclusive, and healthy community. + +## Our Standards + +Examples of behavior that contributes to a positive environment for our +community includes: + +* Demonstrating empathy and kindness toward other people +* Being respectful of differing opinions, viewpoints, and experiences +* Giving and gracefully accepting constructive feedback +* Accepting responsibility and apologizing to those affected by our mistakes, + and learning from the experience +* Focusing on what is best not just for us as individuals, but for the overall + community + +Examples of unacceptable behavior include: + +* The use of sexualized language or imagery, and sexual attention or advances of + any kind +* Trolling, insulting or derogatory comments, and personal or political attacks +* Public or private harassment +* Publishing others' private information, such as a physical or email address, + without their explicit permission +* Other conduct that could reasonably be considered inappropriate in a + professional setting + +## Enforcement Responsibilities + +Community leaders are responsible for clarifying and enforcing our standards of +acceptable behavior and will take appropriate and fair corrective action in +response to any behavior that they deem inappropriate, threatening, offensive, +or harmful. + +Community leaders have the right and responsibility to remove, edit, or reject +comments, commits, code, wiki edits, issues, and other contributions that are +not aligned to this Code of Conduct, and will communicate reasons for moderation +decisions when appropriate. + +## Scope + +This Code of Conduct applies within all community spaces, and also applies when +an individual is officially representing the community in public spaces. +Examples of representing our community include using an official e-mail address, +posting via an official social media account, or acting as an appointed +representative at an online or offline event. + +## Enforcement + +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported to the community leaders responsible for enforcement at +feedback@huggingface.co. +All complaints will be reviewed and investigated promptly and fairly. + +All community leaders are obligated to respect the privacy and security of the +reporter of any incident. + +## Enforcement Guidelines + +Community leaders will follow these Community Impact Guidelines in determining +the consequences for any action they deem in violation of this Code of Conduct: + +### 1. Correction + +**Community Impact**: Use of inappropriate language or other behavior deemed +unprofessional or unwelcome in the community. + +**Consequence**: A private, written warning from community leaders, providing +clarity around the nature of the violation and an explanation of why the +behavior was inappropriate. A public apology may be requested. + +### 2. Warning + +**Community Impact**: A violation through a single incident or series of +actions. + +**Consequence**: A warning with consequences for continued behavior. No +interaction with the people involved, including unsolicited interaction with +those enforcing the Code of Conduct, for a specified period. This +includes avoiding interactions in community spaces and external channels +like social media. Violating these terms may lead to a temporary or permanent +ban. + +### 3. Temporary Ban + +**Community Impact**: A serious violation of community standards, including +sustained inappropriate behavior. + +**Consequence**: A temporary ban from any sort of interaction or public +communication with the community for a specified period of time. No public or +private interaction with the people involved, including unsolicited interaction +with those enforcing the Code of Conduct, is allowed during this period. +Violating these terms may lead to a permanent ban. + +### 4. Permanent Ban + +**Community Impact**: Demonstrating a pattern of violation of community +standards, including sustained inappropriate behavior, harassment of an +individual, or aggression toward or disparagement of classes of individuals. + +**Consequence**: A permanent ban from any public interaction within the +community. + +## Attribution + +This Code of Conduct is adapted from the [Contributor Covenant][homepage], +version 2.1, available at +[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1]. + +Community Impact Guidelines were inspired by +[Mozilla's code of conduct enforcement ladder][Mozilla CoC]. + +For answers to common questions about this code of conduct, see the FAQ at +[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at +[https://www.contributor-covenant.org/translations][translations]. + +[homepage]: https://www.contributor-covenant.org +[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html +[Mozilla CoC]: https://github.com/mozilla/diversity +[FAQ]: https://www.contributor-covenant.org/faq +[translations]: https://www.contributor-covenant.org/translations diff --git a/pytorch-image-models/CONTRIBUTING.md b/pytorch-image-models/CONTRIBUTING.md new file mode 100644 index 0000000000000000000000000000000000000000..cb972f21f5efb977db7a5d709ffbc3e40fbaec00 --- /dev/null +++ b/pytorch-image-models/CONTRIBUTING.md @@ -0,0 +1,106 @@ +*This guideline is very much a work-in-progress.* + +Contributions to `timm` for code, documentation, tests are more than welcome! + +There haven't been any formal guidelines to date so please bear with me, and feel free to add to this guide. + +# Coding style + +Code linting and auto-format (black) are not currently in place but open to consideration. In the meantime, the style to follow is (mostly) aligned with Google's guide: https://google.github.io/styleguide/pyguide.html. + +A few specific differences from Google style (or black) +1. Line length is 120 char. Going over is okay in some cases (e.g. I prefer not to break URL across lines). +2. Hanging indents are always prefered, please avoid aligning arguments with closing brackets or braces. + +Example, from Google guide, but this is a NO here: +``` + # Aligned with opening delimiter. + foo = long_function_name(var_one, var_two, + var_three, var_four) + meal = (spam, + beans) + + # Aligned with opening delimiter in a dictionary. + foo = { + 'long_dictionary_key': value1 + + value2, + ... + } +``` +This is YES: + +``` + # 4-space hanging indent; nothing on first line, + # closing parenthesis on a new line. + foo = long_function_name( + var_one, var_two, var_three, + var_four + ) + meal = ( + spam, + beans, + ) + + # 4-space hanging indent in a dictionary. + foo = { + 'long_dictionary_key': + long_dictionary_value, + ... + } +``` + +When there is discrepancy in a given source file (there are many origins for various bits of code and not all have been updated to what I consider current goal), please follow the style in a given file. + +In general, if you add new code, formatting it with black using the following options should result in a style that is compatible with the rest of the code base: + +``` +black --skip-string-normalization --line-length 120 +``` + +Avoid formatting code that is unrelated to your PR though. + +PR with pure formatting / style fixes will be accepted but only in isolation from functional changes, best to ask before starting such a change. + +# Documentation + +As with code style, docstrings style based on the Google guide: guide: https://google.github.io/styleguide/pyguide.html + +The goal for the code is to eventually move to have all major functions and `__init__` methods use PEP484 type annotations. + +When type annotations are used for a function, as per the Google pyguide, they should **NOT** be duplicated in the docstrings, please leave annotations as the one source of truth re typing. + +There are a LOT of gaps in current documentation relative to the functionality in timm, please, document away! + +# Installation + +Create a Python virtual environment using Python 3.10. Inside the environment, install torch` and `torchvision` using the instructions matching your system as listed on the [PyTorch website](https://pytorch.org/). + +Then install the remaining dependencies: + +``` +python -m pip install -r requirements.txt +python -m pip install -r requirements-dev.txt # for testing +python -m pip install -e . +``` + +## Unit tests + +Run the tests using: + +``` +pytest tests/ +``` + +Since the whole test suite takes a lot of time to run locally (a few hours), you may want to select a subset of tests relating to the changes you made by using the `-k` option of [`pytest`](https://docs.pytest.org/en/7.1.x/example/markers.html#using-k-expr-to-select-tests-based-on-their-name). Moreover, running tests in parallel (in this example 4 processes) with the `-n` option may help: + +``` +pytest -k "substring-to-match" -n 4 tests/ +``` + +## Building documentation + +Please refer to [this document](https://github.com/huggingface/pytorch-image-models/tree/main/hfdocs). + +# Questions + +If you have any questions about contribution, where / how to contribute, please ask in the [Discussions](https://github.com/huggingface/pytorch-image-models/discussions/categories/contributing) (there is a `Contributing` topic). diff --git a/pytorch-image-models/LICENSE b/pytorch-image-models/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..4336819097f8777b9ca64ebe49bc0bc77ae3c5f5 --- /dev/null +++ b/pytorch-image-models/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "{}" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2019 Ross Wightman + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/pytorch-image-models/MANIFEST.in b/pytorch-image-models/MANIFEST.in new file mode 100644 index 0000000000000000000000000000000000000000..25b1ab7dd11eb3d6ea1f02e1e31aeb5f6dcc42d9 --- /dev/null +++ b/pytorch-image-models/MANIFEST.in @@ -0,0 +1,3 @@ +include timm/models/_pruned/*.txt +include timm/data/_info/*.txt +include timm/data/_info/*.json diff --git a/pytorch-image-models/README.md b/pytorch-image-models/README.md new file mode 100644 index 0000000000000000000000000000000000000000..53166456a33202ffb5a3ab78d40ff357d3756be3 --- /dev/null +++ b/pytorch-image-models/README.md @@ -0,0 +1,626 @@ +# PyTorch Image Models +- [What's New](#whats-new) +- [Introduction](#introduction) +- [Models](#models) +- [Features](#features) +- [Results](#results) +- [Getting Started (Documentation)](#getting-started-documentation) +- [Train, Validation, Inference Scripts](#train-validation-inference-scripts) +- [Awesome PyTorch Resources](#awesome-pytorch-resources) +- [Licenses](#licenses) +- [Citing](#citing) + +## What's New + +## Nov 28, 2024 +* More optimizers + * Add MARS optimizer (https://arxiv.org/abs/2411.10438, https://github.com/AGI-Arena/MARS) + * Add LaProp optimizer (https://arxiv.org/abs/2002.04839, https://github.com/Z-T-WANG/LaProp-Optimizer) + * Add masking from 'Cautious Optimizers' (https://arxiv.org/abs/2411.16085, https://github.com/kyleliang919/C-Optim) to Adafactor, Adafactor Big Vision, AdamW (legacy), Adopt, Lamb, LaProp, Lion, NadamW, RMSPropTF, SGDW + * Cleanup some docstrings and type annotations re optimizers and factory +* Add MobileNet-V4 Conv Medium models pretrained on in12k and fine-tuned in1k @ 384x384 + * https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k_ft_in1k + * https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k + * https://huggingface.co/timm/mobilenetv4_conv_medium.e180_ad_r384_in12k + * https://huggingface.co/timm/mobilenetv4_conv_medium.e180_r384_in12k +* Add small cs3darknet, quite good for the speed + * https://huggingface.co/timm/cs3darknet_focus_s.ra4_e3600_r256_in1k + +## Nov 12, 2024 +* Optimizer factory refactor + * New factory works by registering optimizers using an OptimInfo dataclass w/ some key traits + * Add `list_optimizers`, `get_optimizer_class`, `get_optimizer_info` to reworked `create_optimizer_v2` fn to explore optimizers, get info or class + * deprecate `optim.optim_factory`, move fns to `optim/_optim_factory.py` and `optim/_param_groups.py` and encourage import via `timm.optim` +* Add Adopt (https://github.com/iShohei220/adopt) optimizer +* Add 'Big Vision' variant of Adafactor (https://github.com/google-research/big_vision/blob/main/big_vision/optax.py) optimizer +* Fix original Adafactor to pick better factorization dims for convolutions +* Tweak LAMB optimizer with some improvements in torch.where functionality since original, refactor clipping a bit +* dynamic img size support in vit, deit, eva improved to support resize from non-square patch grids, thanks https://github.com/wojtke +* +## Oct 31, 2024 +Add a set of new very well trained ResNet & ResNet-V2 18/34 (basic block) weights. See https://huggingface.co/blog/rwightman/resnet-trick-or-treat + +## Oct 19, 2024 +* Cleanup torch amp usage to avoid cuda specific calls, merge support for Ascend (NPU) devices from [MengqingCao](https://github.com/MengqingCao) that should work now in PyTorch 2.5 w/ new device extension autoloading feature. Tested Intel Arc (XPU) in Pytorch 2.5 too and it (mostly) worked. + +## Oct 16, 2024 +* Fix error on importing from deprecated path `timm.models.registry`, increased priority of existing deprecation warnings to be visible +* Port weights of InternViT-300M (https://huggingface.co/OpenGVLab/InternViT-300M-448px) to `timm` as `vit_intern300m_patch14_448` + +### Oct 14, 2024 +* Pre-activation (ResNetV2) version of 18/18d/34/34d ResNet model defs added by request (weights pending) +* Release 1.0.10 + +### Oct 11, 2024 +* MambaOut (https://github.com/yuweihao/MambaOut) model & weights added. A cheeky take on SSM vision models w/o the SSM (essentially ConvNeXt w/ gating). A mix of original weights + custom variations & weights. + +|model |img_size|top1 |top5 |param_count| +|---------------------------------------------------------------------------------------------------------------------|--------|------|------|-----------| +|[mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k)|384 |87.506|98.428|101.66 | +|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|288 |86.912|98.236|101.66 | +|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|224 |86.632|98.156|101.66 | +|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k) |288 |84.974|97.332|86.48 | +|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k) |288 |84.962|97.208|94.45 | +|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k) |288 |84.832|97.27 |88.83 | +|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k) |288 |84.72 |96.93 |84.81 | +|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k) |288 |84.598|97.098|48.5 | +|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k) |288 |84.5 |96.974|48.49 | +|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k) |224 |84.454|96.864|94.45 | +|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k) |224 |84.434|96.958|86.48 | +|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k) |224 |84.362|96.952|88.83 | +|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k) |224 |84.168|96.68 |84.81 | +|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k) |224 |84.086|96.63 |48.49 | +|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k) |224 |84.024|96.752|48.5 | +|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k) |288 |83.448|96.538|26.55 | +|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k) |224 |82.736|96.1 |26.55 | +|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k) |288 |81.054|95.718|9.14 | +|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k) |224 |79.986|94.986|9.14 | +|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k) |288 |79.848|95.14 |7.3 | +|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k) |224 |78.87 |94.408|7.3 | + +* SigLIP SO400M ViT fine-tunes on ImageNet-1k @ 378x378, added 378x378 option for existing SigLIP 384x384 models + * [vit_so400m_patch14_siglip_378.webli_ft_in1k](https://huggingface.co/timm/vit_so400m_patch14_siglip_378.webli_ft_in1k) - 89.42 top-1 + * [vit_so400m_patch14_siglip_gap_378.webli_ft_in1k](https://huggingface.co/timm/vit_so400m_patch14_siglip_gap_378.webli_ft_in1k) - 89.03 +* SigLIP SO400M ViT encoder from recent multi-lingual (i18n) variant, patch16 @ 256x256 (https://huggingface.co/timm/ViT-SO400M-16-SigLIP-i18n-256). OpenCLIP update pending. +* Add two ConvNeXt 'Zepto' models & weights (one w/ overlapped stem and one w/ patch stem). Uses RMSNorm, smaller than previous 'Atto', 2.2M params. + * [convnext_zepto_rms_ols.ra4_e3600_r224_in1k](https://huggingface.co/timm/convnext_zepto_rms_ols.ra4_e3600_r224_in1k) - 73.20 top-1 @ 224 + * [convnext_zepto_rms.ra4_e3600_r224_in1k](https://huggingface.co/timm/convnext_zepto_rms.ra4_e3600_r224_in1k) - 72.81 @ 224 + +### Sept 2024 +* Add a suite of tiny test models for improved unit tests and niche low-resource applications (https://huggingface.co/blog/rwightman/timm-tiny-test) +* Add MobileNetV4-Conv-Small (0.5x) model (https://huggingface.co/posts/rwightman/793053396198664) + * [mobilenetv4_conv_small_050.e3000_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small_050.e3000_r224_in1k) - 65.81 top-1 @ 256, 64.76 @ 224 +* Add MobileNetV3-Large variants trained with MNV4 Small recipe + * [mobilenetv3_large_150d.ra4_e3600_r256_in1k](http://hf.co/timm/mobilenetv3_large_150d.ra4_e3600_r256_in1k) - 81.81 @ 320, 80.94 @ 256 + * [mobilenetv3_large_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv3_large_100.ra4_e3600_r224_in1k) - 77.16 @ 256, 76.31 @ 224 + + +### Aug 21, 2024 +* Updated SBB ViT models trained on ImageNet-12k and fine-tuned on ImageNet-1k, challenging quite a number of much larger, slower models + +| model | top1 | top5 | param_count | img_size | +| -------------------------------------------------- | ------ | ------ | ----------- | -------- | +| [vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k) | 87.438 | 98.256 | 64.11 | 384 | +| [vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k) | 86.608 | 97.934 | 64.11 | 256 | +| [vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k) | 86.594 | 98.02 | 60.4 | 384 | +| [vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k) | 85.734 | 97.61 | 60.4 | 256 | +* MobileNet-V1 1.25, EfficientNet-B1, & ResNet50-D weights w/ MNV4 baseline challenge recipe + +| model | top1 | top5 | param_count | img_size | +|--------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|----------| +| [resnet50d.ra4_e3600_r224_in1k](http://hf.co/timm/resnet50d.ra4_e3600_r224_in1k) | 81.838 | 95.922 | 25.58 | 288 | +| [efficientnet_b1.ra4_e3600_r240_in1k](http://hf.co/timm/efficientnet_b1.ra4_e3600_r240_in1k) | 81.440 | 95.700 | 7.79 | 288 | +| [resnet50d.ra4_e3600_r224_in1k](http://hf.co/timm/resnet50d.ra4_e3600_r224_in1k) | 80.952 | 95.384 | 25.58 | 224 | +| [efficientnet_b1.ra4_e3600_r240_in1k](http://hf.co/timm/efficientnet_b1.ra4_e3600_r240_in1k) | 80.406 | 95.152 | 7.79 | 240 | +| [mobilenetv1_125.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_125.ra4_e3600_r224_in1k) | 77.600 | 93.804 | 6.27 | 256 | +| [mobilenetv1_125.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_125.ra4_e3600_r224_in1k) | 76.924 | 93.234 | 6.27 | 224 | + +* Add SAM2 (HieraDet) backbone arch & weight loading support +* Add Hiera Small weights trained w/ abswin pos embed on in12k & fine-tuned on 1k + +|model |top1 |top5 |param_count| +|---------------------------------|------|------|-----------| +|hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k |84.912|97.260|35.01 | +|hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k |84.560|97.106|35.01 | + +### Aug 8, 2024 +* Add RDNet ('DenseNets Reloaded', https://arxiv.org/abs/2403.19588), thanks [Donghyun Kim](https://github.com/dhkim0225) + +### July 28, 2024 +* Add `mobilenet_edgetpu_v2_m` weights w/ `ra4` mnv4-small based recipe. 80.1% top-1 @ 224 and 80.7 @ 256. +* Release 1.0.8 + +### July 26, 2024 +* More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models + +| model |top1 |top1_err|top5 |top5_err|param_count|img_size| +|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| +| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.99 |15.01 |97.294|2.706 |32.59 |544 | +| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.772|15.228 |97.344|2.656 |32.59 |480 | +| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.64 |15.36 |97.114|2.886 |32.59 |448 | +| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.314|15.686 |97.102|2.898 |32.59 |384 | +| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.824|16.176 |96.734|3.266 |32.59 |480 | +| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.244|16.756 |96.392|3.608 |32.59 |384 | +| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.99 |17.01 |96.67 |3.33 |11.07 |320 | +| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.364|17.636 |96.256|3.744 |11.07 |256 | + +* Impressive MobileNet-V1 and EfficientNet-B0 baseline challenges (https://huggingface.co/blog/rwightman/mobilenet-baselines) + +| model |top1 |top1_err|top5 |top5_err|param_count|img_size| +|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| +| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |79.364|20.636 |94.754|5.246 |5.29 |256 | +| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |78.584|21.416 |94.338|5.662 |5.29 |224 | +| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |76.596|23.404 |93.272|6.728 |5.28 |256 | +| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |76.094|23.906 |93.004|6.996 |4.23 |256 | +| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |75.662|24.338 |92.504|7.496 |5.28 |224 | +| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |75.382|24.618 |92.312|7.688 |4.23 |224 | + +* Prototype of `set_input_size()` added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation. +* Improved support in swin for different size handling, in addition to `set_input_size`, `always_partition` and `strict_img_size` args have been added to `__init__` to allow more flexible input size constraints +* Fix out of order indices info for intermediate 'Getter' feature wrapper, check out or range indices for same. +* Add several `tiny` < .5M param models for testing that are actually trained on ImageNet-1k + +|model |top1 |top1_err|top5 |top5_err|param_count|img_size|crop_pct| +|----------------------------|------|--------|------|--------|-----------|--------|--------| +|test_efficientnet.r160_in1k |47.156|52.844 |71.726|28.274 |0.36 |192 |1.0 | +|test_byobnet.r160_in1k |46.698|53.302 |71.674|28.326 |0.46 |192 |1.0 | +|test_efficientnet.r160_in1k |46.426|53.574 |70.928|29.072 |0.36 |160 |0.875 | +|test_byobnet.r160_in1k |45.378|54.622 |70.572|29.428 |0.46 |160 |0.875 | +|test_vit.r160_in1k|42.0 |58.0 |68.664|31.336 |0.37 |192 |1.0 | +|test_vit.r160_in1k|40.822|59.178 |67.212|32.788 |0.37 |160 |0.875 | + +* Fix vit reg token init, thanks [Promisery](https://github.com/Promisery) +* Other misc fixes + +### June 24, 2024 +* 3 more MobileNetV4 hyrid weights with different MQA weight init scheme + +| model |top1 |top1_err|top5 |top5_err|param_count|img_size| +|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| +| [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |84.356|15.644 |96.892 |3.108 |37.76 |448 | +| [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |83.990|16.010 |96.702 |3.298 |37.76 |384 | +| [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k) |83.394|16.606 |96.760|3.240 |11.07 |448 | +| [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k) |82.968|17.032 |96.474|3.526 |11.07 |384 | +| [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k) |82.492|17.508 |96.278|3.722 |11.07 |320 | +| [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k) |81.446|18.554 |95.704|4.296 |11.07 |256 | +* florence2 weight loading in DaViT model + +### June 12, 2024 +* MobileNetV4 models and initial set of `timm` trained weights added: + +| model |top1 |top1_err|top5 |top5_err|param_count|img_size| +|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| +| [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |84.266|15.734 |96.936 |3.064 |37.76 |448 | +| [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |83.800|16.200 |96.770 |3.230 |37.76 |384 | +| [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |83.392|16.608 |96.622 |3.378 |32.59 |448 | +| [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |82.952|17.048 |96.266 |3.734 |32.59 |384 | +| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |82.674|17.326 |96.31 |3.69 |32.59 |320 | +| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |81.862|18.138 |95.69 |4.31 |32.59 |256 | +| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |81.276|18.724 |95.742|4.258 |11.07 |256 | +| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |80.858|19.142 |95.768|4.232 |9.72 |320 | +| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |80.442|19.558 |95.38 |4.62 |11.07 |224 | +| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |80.142|19.858 |95.298|4.702 |9.72 |256 | +| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |79.928|20.072 |95.184|4.816 |9.72 |256 | +| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.808|20.192 |95.186|4.814 |9.72 |256 | +| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |79.438|20.562 |94.932|5.068 |9.72 |224 | +| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.094|20.906 |94.77 |5.23 |9.72 |224 | +| [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k) |74.616|25.384 |92.072|7.928 |3.77 |256 | +| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |74.292|25.708 |92.116|7.884 |3.77 |256 | +| [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k) |73.756|26.244 |91.422|8.578 |3.77 |224 | +| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |73.454|26.546 |91.34 |8.66 |3.77 |224 | + +* Apple MobileCLIP (https://arxiv.org/pdf/2311.17049, FastViT and ViT-B) image tower model support & weights added (part of OpenCLIP support). +* ViTamin (https://arxiv.org/abs/2404.02132) CLIP image tower model & weights added (part of OpenCLIP support). +* OpenAI CLIP Modified ResNet image tower modelling & weight support (via ByobNet). Refactor AttentionPool2d. + +### May 14, 2024 +* Support loading PaliGemma jax weights into SigLIP ViT models with average pooling. +* Add Hiera models from Meta (https://github.com/facebookresearch/hiera). +* Add `normalize=` flag for transorms, return non-normalized torch.Tensor with original dytpe (for `chug`) +* Version 1.0.3 release + +### May 11, 2024 +* `Searching for Better ViT Baselines (For the GPU Poor)` weights and vit variants released. Exploring model shapes between Tiny and Base. + +| model | top1 | top5 | param_count | img_size | +| -------------------------------------------------- | ------ | ------ | ----------- | -------- | +| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 86.202 | 97.874 | 64.11 | 256 | +| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 85.418 | 97.48 | 60.4 | 256 | +| [vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k) | 84.322 | 96.812 | 63.95 | 256 | +| [vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k) | 83.906 | 96.684 | 60.23 | 256 | +| [vit_base_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_base_patch16_rope_reg1_gap_256.sbb_in1k) | 83.866 | 96.67 | 86.43 | 256 | +| [vit_medium_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_rope_reg1_gap_256.sbb_in1k) | 83.81 | 96.824 | 38.74 | 256 | +| [vit_betwixt_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in1k) | 83.706 | 96.616 | 60.4 | 256 | +| [vit_betwixt_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg1_gap_256.sbb_in1k) | 83.628 | 96.544 | 60.4 | 256 | +| [vit_medium_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg4_gap_256.sbb_in1k) | 83.47 | 96.622 | 38.88 | 256 | +| [vit_medium_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg1_gap_256.sbb_in1k) | 83.462 | 96.548 | 38.88 | 256 | +| [vit_little_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_little_patch16_reg4_gap_256.sbb_in1k) | 82.514 | 96.262 | 22.52 | 256 | +| [vit_wee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_wee_patch16_reg1_gap_256.sbb_in1k) | 80.256 | 95.360 | 13.42 | 256 | +| [vit_pwee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_pwee_patch16_reg1_gap_256.sbb_in1k) | 80.072 | 95.136 | 15.25 | 256 | +| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 64.11 | 256 | +| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 60.4 | 256 | + +* AttentionExtract helper added to extract attention maps from `timm` models. See example in https://github.com/huggingface/pytorch-image-models/discussions/1232#discussioncomment-9320949 +* `forward_intermediates()` API refined and added to more models including some ConvNets that have other extraction methods. +* 1017 of 1047 model architectures support `features_only=True` feature extraction. Remaining 34 architectures can be supported but based on priority requests. +* Remove torch.jit.script annotated functions including old JIT activations. Conflict with dynamo and dynamo does a much better job when used. + +### April 11, 2024 +* Prepping for a long overdue 1.0 release, things have been stable for a while now. +* Significant feature that's been missing for a while, `features_only=True` support for ViT models with flat hidden states or non-std module layouts (so far covering `'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*'`) +* Above feature support achieved through a new `forward_intermediates()` API that can be used with a feature wrapping module or direclty. +```python +model = timm.create_model('vit_base_patch16_224') +final_feat, intermediates = model.forward_intermediates(input) +output = model.forward_head(final_feat) # pooling + classifier head + +print(final_feat.shape) +torch.Size([2, 197, 768]) + +for f in intermediates: + print(f.shape) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) + +print(output.shape) +torch.Size([2, 1000]) +``` + +```python +model = timm.create_model('eva02_base_patch16_clip_224', pretrained=True, img_size=512, features_only=True, out_indices=(-3, -2,)) +output = model(torch.randn(2, 3, 512, 512)) + +for o in output: + print(o.shape) +torch.Size([2, 768, 32, 32]) +torch.Size([2, 768, 32, 32]) +``` +* TinyCLIP vision tower weights added, thx [Thien Tran](https://github.com/gau-nernst) + +### Feb 19, 2024 +* Next-ViT models added. Adapted from https://github.com/bytedance/Next-ViT +* HGNet and PP-HGNetV2 models added. Adapted from https://github.com/PaddlePaddle/PaddleClas by [SeeFun](https://github.com/seefun) +* Removed setup.py, moved to pyproject.toml based build supported by PDM +* Add updated model EMA impl using _for_each for less overhead +* Support device args in train script for non GPU devices +* Other misc fixes and small additions +* Min supported Python version increased to 3.8 +* Release 0.9.16 + +### Jan 8, 2024 +Datasets & transform refactoring +* HuggingFace streaming (iterable) dataset support (`--dataset hfids:org/dataset`) +* Webdataset wrapper tweaks for improved split info fetching, can auto fetch splits from supported HF hub webdataset +* Tested HF `datasets` and webdataset wrapper streaming from HF hub with recent `timm` ImageNet uploads to https://huggingface.co/timm +* Make input & target column/field keys consistent across datasets and pass via args +* Full monochrome support when using e:g: `--input-size 1 224 224` or `--in-chans 1`, sets PIL image conversion appropriately in dataset +* Improved several alternate crop & resize transforms (ResizeKeepRatio, RandomCropOrPad, etc) for use in PixParse document AI project +* Add SimCLR style color jitter prob along with grayscale and gaussian blur options to augmentations and args +* Allow train without validation set (`--val-split ''`) in train script +* Add `--bce-sum` (sum over class dim) and `--bce-pos-weight` (positive weighting) args for training as they're common BCE loss tweaks I was often hard coding + +### Nov 23, 2023 +* Added EfficientViT-Large models, thanks [SeeFun](https://github.com/seefun) +* Fix Python 3.7 compat, will be dropping support for it soon +* Other misc fixes +* Release 0.9.12 + +### Nov 20, 2023 +* Added significant flexibility for Hugging Face Hub based timm models via `model_args` config entry. `model_args` will be passed as kwargs through to models on creation. + * See example at https://huggingface.co/gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k/blob/main/config.json + * Usage: https://github.com/huggingface/pytorch-image-models/discussions/2035 +* Updated imagenet eval and test set csv files with latest models +* `vision_transformer.py` typing and doc cleanup by [Laureηt](https://github.com/Laurent2916) +* 0.9.11 release + +### Nov 3, 2023 +* [DFN (Data Filtering Networks)](https://huggingface.co/papers/2309.17425) and [MetaCLIP](https://huggingface.co/papers/2309.16671) ViT weights added +* DINOv2 'register' ViT model weights added (https://huggingface.co/papers/2309.16588, https://huggingface.co/papers/2304.07193) +* Add `quickgelu` ViT variants for OpenAI, DFN, MetaCLIP weights that use it (less efficient) +* Improved typing added to ResNet, MobileNet-v3 thanks to [Aryan](https://github.com/a-r-r-o-w) +* ImageNet-12k fine-tuned (from LAION-2B CLIP) `convnext_xxlarge` +* 0.9.9 release + +### Oct 20, 2023 +* [SigLIP](https://huggingface.co/papers/2303.15343) image tower weights supported in `vision_transformer.py`. + * Great potential for fine-tune and downstream feature use. +* Experimental 'register' support in vit models as per [Vision Transformers Need Registers](https://huggingface.co/papers/2309.16588) +* Updated RepViT with new weight release. Thanks [wangao](https://github.com/jameslahm) +* Add patch resizing support (on pretrained weight load) to Swin models +* 0.9.8 release pending + +### Sep 1, 2023 +* TinyViT added by [SeeFun](https://github.com/seefun) +* Fix EfficientViT (MIT) to use torch.autocast so it works back to PT 1.10 +* 0.9.7 release + +## Introduction + +Py**T**orch **Im**age **M**odels (`timm`) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results. + +The work of many others is present here. I've tried to make sure all source material is acknowledged via links to github, arxiv papers, etc in the README, documentation, and code docstrings. Please let me know if I missed anything. + +## Features + +### Models + +All model architecture families include variants with pretrained weights. There are specific model variants without any weights, it is NOT a bug. Help training new or better weights is always appreciated. + +* Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723 +* BEiT - https://arxiv.org/abs/2106.08254 +* Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370 +* Bottleneck Transformers - https://arxiv.org/abs/2101.11605 +* CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239 +* CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399 +* CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803 +* ConvNeXt - https://arxiv.org/abs/2201.03545 +* ConvNeXt-V2 - http://arxiv.org/abs/2301.00808 +* ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697 +* CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929 +* DeiT - https://arxiv.org/abs/2012.12877 +* DeiT-III - https://arxiv.org/pdf/2204.07118.pdf +* DenseNet - https://arxiv.org/abs/1608.06993 +* DLA - https://arxiv.org/abs/1707.06484 +* DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629 +* EdgeNeXt - https://arxiv.org/abs/2206.10589 +* EfficientFormer - https://arxiv.org/abs/2206.01191 +* EfficientNet (MBConvNet Family) + * EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252 + * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 + * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946 + * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html + * EfficientNet V2 - https://arxiv.org/abs/2104.00298 + * FBNet-C - https://arxiv.org/abs/1812.03443 + * MixNet - https://arxiv.org/abs/1907.09595 + * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 + * MobileNet-V2 - https://arxiv.org/abs/1801.04381 + * Single-Path NAS - https://arxiv.org/abs/1904.02877 + * TinyNet - https://arxiv.org/abs/2010.14819 +* EfficientViT (MIT) - https://arxiv.org/abs/2205.14756 +* EfficientViT (MSRA) - https://arxiv.org/abs/2305.07027 +* EVA - https://arxiv.org/abs/2211.07636 +* EVA-02 - https://arxiv.org/abs/2303.11331 +* FastViT - https://arxiv.org/abs/2303.14189 +* FlexiViT - https://arxiv.org/abs/2212.08013 +* FocalNet (Focal Modulation Networks) - https://arxiv.org/abs/2203.11926 +* GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959 +* GhostNet - https://arxiv.org/abs/1911.11907 +* GhostNet-V2 - https://arxiv.org/abs/2211.12905 +* gMLP - https://arxiv.org/abs/2105.08050 +* GPU-Efficient Networks - https://arxiv.org/abs/2006.14090 +* Halo Nets - https://arxiv.org/abs/2103.12731 +* HGNet / HGNet-V2 - TBD +* HRNet - https://arxiv.org/abs/1908.07919 +* InceptionNeXt - https://arxiv.org/abs/2303.16900 +* Inception-V3 - https://arxiv.org/abs/1512.00567 +* Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261 +* Lambda Networks - https://arxiv.org/abs/2102.08602 +* LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136 +* MambaOut - https://arxiv.org/abs/2405.07992 +* MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697 +* MetaFormer (PoolFormer-v2, ConvFormer, CAFormer) - https://arxiv.org/abs/2210.13452 +* MLP-Mixer - https://arxiv.org/abs/2105.01601 +* MobileCLIP - https://arxiv.org/abs/2311.17049 +* MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244 + * FBNet-V3 - https://arxiv.org/abs/2006.02049 + * HardCoRe-NAS - https://arxiv.org/abs/2102.11646 + * LCNet - https://arxiv.org/abs/2109.15099 +* MobileNetV4 - https://arxiv.org/abs/2404.10518 +* MobileOne - https://arxiv.org/abs/2206.04040 +* MobileViT - https://arxiv.org/abs/2110.02178 +* MobileViT-V2 - https://arxiv.org/abs/2206.02680 +* MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526 +* NASNet-A - https://arxiv.org/abs/1707.07012 +* NesT - https://arxiv.org/abs/2105.12723 +* Next-ViT - https://arxiv.org/abs/2207.05501 +* NFNet-F - https://arxiv.org/abs/2102.06171 +* NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692 +* PNasNet - https://arxiv.org/abs/1712.00559 +* PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418 +* Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302 +* PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797 +* RDNet (DenseNets Reloaded) - https://arxiv.org/abs/2403.19588 +* RegNet - https://arxiv.org/abs/2003.13678 +* RegNetZ - https://arxiv.org/abs/2103.06877 +* RepVGG - https://arxiv.org/abs/2101.03697 +* RepGhostNet - https://arxiv.org/abs/2211.06088 +* RepViT - https://arxiv.org/abs/2307.09283 +* ResMLP - https://arxiv.org/abs/2105.03404 +* ResNet/ResNeXt + * ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385 + * ResNeXt - https://arxiv.org/abs/1611.05431 + * 'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187 + * Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932 + * Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546 + * ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4 + * Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507 + * ResNet-RS - https://arxiv.org/abs/2103.07579 +* Res2Net - https://arxiv.org/abs/1904.01169 +* ResNeSt - https://arxiv.org/abs/2004.08955 +* ReXNet - https://arxiv.org/abs/2007.00992 +* SelecSLS - https://arxiv.org/abs/1907.00837 +* Selective Kernel Networks - https://arxiv.org/abs/1903.06586 +* Sequencer2D - https://arxiv.org/abs/2205.01972 +* Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725 +* Swin Transformer - https://arxiv.org/abs/2103.14030 +* Swin Transformer V2 - https://arxiv.org/abs/2111.09883 +* Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112 +* TResNet - https://arxiv.org/abs/2003.13630 +* Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf +* Visformer - https://arxiv.org/abs/2104.12533 +* Vision Transformer - https://arxiv.org/abs/2010.11929 +* ViTamin - https://arxiv.org/abs/2404.02132 +* VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112 +* VovNet V2 and V1 - https://arxiv.org/abs/1911.06667 +* Xception - https://arxiv.org/abs/1610.02357 +* Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611 +* Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611 +* XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681 + +### Optimizers +To see full list of optimizers w/ descriptions: `timm.optim.list_optimizers(with_description=True)` + +Included optimizers available via `timm.optim.create_optimizer_v2` factory method: +* `adabelief` an implementation of AdaBelief adapted from https://github.com/juntang-zhuang/Adabelief-Optimizer - https://arxiv.org/abs/2010.07468 +* `adafactor` adapted from [FAIRSeq impl](https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py) - https://arxiv.org/abs/1804.04235 +* `adafactorbv` adapted from [Big Vision](https://github.com/google-research/big_vision/blob/main/big_vision/optax.py) - https://arxiv.org/abs/2106.04560 +* `adahessian` by [David Samuel](https://github.com/davda54/ada-hessian) - https://arxiv.org/abs/2006.00719 +* `adamp` and `sgdp` by [Naver ClovAI](https://github.com/clovaai) - https://arxiv.org/abs/2006.08217 +* `adan` an implementation of Adan adapted from https://github.com/sail-sg/Adan - https://arxiv.org/abs/2208.06677 +* `adopt` ADOPT adapted from https://github.com/iShohei220/adopt - https://arxiv.org/abs/2411.02853 +* `lamb` an implementation of Lamb and LambC (w/ trust-clipping) cleaned up and modified to support use with XLA - https://arxiv.org/abs/1904.00962 +* `laprop` optimizer from https://github.com/Z-T-WANG/LaProp-Optimizer - https://arxiv.org/abs/2002.04839 +* `lars` an implementation of LARS and LARC (w/ trust-clipping) - https://arxiv.org/abs/1708.03888 +* `lion` and implementation of Lion adapted from https://github.com/google/automl/tree/master/lion - https://arxiv.org/abs/2302.06675 +* `lookahead` adapted from impl by [Liam](https://github.com/alphadl/lookahead.pytorch) - https://arxiv.org/abs/1907.08610 +* `madgrad` an implementation of MADGRAD adapted from https://github.com/facebookresearch/madgrad - https://arxiv.org/abs/2101.11075 +* `mars` MARS optimizer from https://github.com/AGI-Arena/MARS - https://arxiv.org/abs/2411.10438 +* `nadam` an implementation of Adam w/ Nesterov momentum +* `nadamw` an impementation of AdamW (Adam w/ decoupled weight-decay) w/ Nesterov momentum. A simplified impl based on https://github.com/mlcommons/algorithmic-efficiency +* `novograd` by [Masashi Kimura](https://github.com/convergence-lab/novograd) - https://arxiv.org/abs/1905.11286 +* `radam` by [Liyuan Liu](https://github.com/LiyuanLucasLiu/RAdam) - https://arxiv.org/abs/1908.03265 +* `rmsprop_tf` adapted from PyTorch RMSProp by myself. Reproduces much improved Tensorflow RMSProp behaviour +* `sgdw` and implementation of SGD w/ decoupled weight-decay +* `fused` optimizers by name with [NVIDIA Apex](https://github.com/NVIDIA/apex/tree/master/apex/optimizers) installed +* `bnb` optimizers by name with [BitsAndBytes](https://github.com/TimDettmers/bitsandbytes) installed +* `cadamw`, `clion`, and more 'Cautious' optimizers from https://github.com/kyleliang919/C-Optim - https://arxiv.org/abs/2411.16085 +* `adam`, `adamw`, `rmsprop`, `adadelta`, `adagrad`, and `sgd` pass through to `torch.optim` implementations + +### Augmentations +* Random Erasing from [Zhun Zhong](https://github.com/zhunzhong07/Random-Erasing/blob/master/transforms.py) - https://arxiv.org/abs/1708.04896) +* Mixup - https://arxiv.org/abs/1710.09412 +* CutMix - https://arxiv.org/abs/1905.04899 +* AutoAugment (https://arxiv.org/abs/1805.09501) and RandAugment (https://arxiv.org/abs/1909.13719) ImageNet configurations modeled after impl for EfficientNet training (https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py) +* AugMix w/ JSD loss, JSD w/ clean + augmented mixing support works with AutoAugment and RandAugment as well - https://arxiv.org/abs/1912.02781 +* SplitBachNorm - allows splitting batch norm layers between clean and augmented (auxiliary batch norm) data + +### Regularization +* DropPath aka "Stochastic Depth" - https://arxiv.org/abs/1603.09382 +* DropBlock - https://arxiv.org/abs/1810.12890 +* Blur Pooling - https://arxiv.org/abs/1904.11486 + +### Other + +Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP: + +* All models have a common default configuration interface and API for + * accessing/changing the classifier - `get_classifier` and `reset_classifier` + * doing a forward pass on just the features - `forward_features` (see [documentation](https://huggingface.co/docs/timm/feature_extraction)) + * these makes it easy to write consistent network wrappers that work with any of the models +* All models support multi-scale feature map extraction (feature pyramids) via create_model (see [documentation](https://huggingface.co/docs/timm/feature_extraction)) + * `create_model(name, features_only=True, out_indices=..., output_stride=...)` + * `out_indices` creation arg specifies which feature maps to return, these indices are 0 based and generally correspond to the `C(i + 1)` feature level. + * `output_stride` creation arg controls output stride of the network by using dilated convolutions. Most networks are stride 32 by default. Not all networks support this. + * feature map channel counts, reduction level (stride) can be queried AFTER model creation via the `.feature_info` member +* All models have a consistent pretrained weight loader that adapts last linear if necessary, and from 3 to 1 channel input if desired +* High performance [reference training, validation, and inference scripts](https://huggingface.co/docs/timm/training_script) that work in several process/GPU modes: + * NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional) + * PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled) + * PyTorch w/ single GPU single process (AMP optional) +* A dynamic global pool implementation that allows selecting from average pooling, max pooling, average + max, or concat([average, max]) at model creation. All global pooling is adaptive average by default and compatible with pretrained weights. +* A 'Test Time Pool' wrapper that can wrap any of the included models and usually provides improved performance doing inference with input images larger than the training size. Idea adapted from original DPN implementation when I ported (https://github.com/cypw/DPNs) +* Learning rate schedulers + * Ideas adopted from + * [AllenNLP schedulers](https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers) + * [FAIRseq lr_scheduler](https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler) + * SGDR: Stochastic Gradient Descent with Warm Restarts (https://arxiv.org/abs/1608.03983) + * Schedulers include `step`, `cosine` w/ restarts, `tanh` w/ restarts, `plateau` +* Space-to-Depth by [mrT23](https://github.com/mrT23/TResNet/blob/master/src/models/tresnet/layers/space_to_depth.py) (https://arxiv.org/abs/1801.04590) -- original paper? +* Adaptive Gradient Clipping (https://arxiv.org/abs/2102.06171, https://github.com/deepmind/deepmind-research/tree/master/nfnets) +* An extensive selection of channel and/or spatial attention modules: + * Bottleneck Transformer - https://arxiv.org/abs/2101.11605 + * CBAM - https://arxiv.org/abs/1807.06521 + * Effective Squeeze-Excitation (ESE) - https://arxiv.org/abs/1911.06667 + * Efficient Channel Attention (ECA) - https://arxiv.org/abs/1910.03151 + * Gather-Excite (GE) - https://arxiv.org/abs/1810.12348 + * Global Context (GC) - https://arxiv.org/abs/1904.11492 + * Halo - https://arxiv.org/abs/2103.12731 + * Involution - https://arxiv.org/abs/2103.06255 + * Lambda Layer - https://arxiv.org/abs/2102.08602 + * Non-Local (NL) - https://arxiv.org/abs/1711.07971 + * Squeeze-and-Excitation (SE) - https://arxiv.org/abs/1709.01507 + * Selective Kernel (SK) - (https://arxiv.org/abs/1903.06586 + * Split (SPLAT) - https://arxiv.org/abs/2004.08955 + * Shifted Window (SWIN) - https://arxiv.org/abs/2103.14030 + +## Results + +Model validation results can be found in the [results tables](results/README.md) + +## Getting Started (Documentation) + +The official documentation can be found at https://huggingface.co/docs/hub/timm. Documentation contributions are welcome. + +[Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) by [Chris Hughes](https://github.com/Chris-hughes10) is an extensive blog post covering many aspects of `timm` in detail. + +[timmdocs](http://timm.fast.ai/) is an alternate set of documentation for `timm`. A big thanks to [Aman Arora](https://github.com/amaarora) for his efforts creating timmdocs. + +[paperswithcode](https://paperswithcode.com/lib/timm) is a good resource for browsing the models within `timm`. + +## Train, Validation, Inference Scripts + +The root folder of the repository contains reference train, validation, and inference scripts that work with the included models and other features of this repository. They are adaptable for other datasets and use cases with a little hacking. See [documentation](https://huggingface.co/docs/timm/training_script). + +## Awesome PyTorch Resources + +One of the greatest assets of PyTorch is the community and their contributions. A few of my favourite resources that pair well with the models and components here are listed below. + +### Object Detection, Instance and Semantic Segmentation +* Detectron2 - https://github.com/facebookresearch/detectron2 +* Segmentation Models (Semantic) - https://github.com/qubvel/segmentation_models.pytorch +* EfficientDet (Obj Det, Semantic soon) - https://github.com/rwightman/efficientdet-pytorch + +### Computer Vision / Image Augmentation +* Albumentations - https://github.com/albumentations-team/albumentations +* Kornia - https://github.com/kornia/kornia + +### Knowledge Distillation +* RepDistiller - https://github.com/HobbitLong/RepDistiller +* torchdistill - https://github.com/yoshitomo-matsubara/torchdistill + +### Metric Learning +* PyTorch Metric Learning - https://github.com/KevinMusgrave/pytorch-metric-learning + +### Training / Frameworks +* fastai - https://github.com/fastai/fastai + +## Licenses + +### Code +The code here is licensed Apache 2.0. I've taken care to make sure any third party code included or adapted has compatible (permissive) licenses such as MIT, BSD, etc. I've made an effort to avoid any GPL / LGPL conflicts. That said, it is your responsibility to ensure you comply with licenses here and conditions of any dependent licenses. Where applicable, I've linked the sources/references for various components in docstrings. If you think I've missed anything please create an issue. + +### Pretrained Weights +So far all of the pretrained weights available here are pretrained on ImageNet with a select few that have some additional pretraining (see extra note below). ImageNet was released for non-commercial research purposes only (https://image-net.org/download). It's not clear what the implications of that are for the use of pretrained weights from that dataset. Any models I have trained with ImageNet are done for research purposes and one should assume that the original dataset license applies to the weights. It's best to seek legal advice if you intend to use the pretrained weights in a commercial product. + +#### Pretrained on more than ImageNet +Several weights included or references here were pretrained with proprietary datasets that I do not have access to. These include the Facebook WSL, SSL, SWSL ResNe(Xt) and the Google Noisy Student EfficientNet models. The Facebook models have an explicit non-commercial license (CC-BY-NC 4.0, https://github.com/facebookresearch/semi-supervised-ImageNet1K-models, https://github.com/facebookresearch/WSL-Images). The Google models do not appear to have any restriction beyond the Apache 2.0 license (and ImageNet concerns). In either case, you should contact Facebook or Google with any questions. + +## Citing + +### BibTeX + +```bibtex +@misc{rw2019timm, + author = {Ross Wightman}, + title = {PyTorch Image Models}, + year = {2019}, + publisher = {GitHub}, + journal = {GitHub repository}, + doi = {10.5281/zenodo.4414861}, + howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} +} +``` + +### Latest DOI + +[![DOI](https://zenodo.org/badge/168799526.svg)](https://zenodo.org/badge/latestdoi/168799526) diff --git a/pytorch-image-models/UPGRADING.md b/pytorch-image-models/UPGRADING.md new file mode 100644 index 0000000000000000000000000000000000000000..e177c7c9b3356cf798583891f8cbe19d682f25a0 --- /dev/null +++ b/pytorch-image-models/UPGRADING.md @@ -0,0 +1,24 @@ +# Upgrading from previous versions + +I generally try to maintain code interface and especially model weight compability across many `timm` versions. Sometimes there are exceptions. + +## Checkpoint remapping + +Pretrained weight remapping is handled by `checkpoint_filter_fn` in a model implementation module. This remaps old pretrained checkpoints to new, and also 3rd party (original) checkpoints to `timm` format if the model was modified when brough into `timm`. + +The `checkpoint_filter_fn` is automatically called when loading pretrained weights via `pretrained=True`, but they can be called manually if you call the fn directly with the current model instance and old state dict. + +## Upgrading from 0.6 and earlier + +Many changes were made since the 0.6.x stable releases. They were previewed in 0.8.x dev releases but not everyone transitioned. +* `timm.models.layers` moved to `timm.layers`: + * `from timm.models.layers import name` will still work via deprecation mapping (but please transition to `timm.layers`). + * `import timm.models.layers.module` or `from timm.models.layers.module import name` needs to be changed now. +* Builder, helper, non-model modules in `timm.models` have a `_` prefix added, ie `timm.models.helpers` -> `timm.models._helpers`, there are temporary deprecation mapping files but those will be removed. +* All models now support `architecture.pretrained_tag` naming (ex `resnet50.rsb_a1`). + * The pretrained_tag is the specific weight variant (different head) for the architecture. + * Using only `architecture` defaults to the first weights in the default_cfgs for that model architecture. + * In adding pretrained tags, many model names that existed to differentiate were renamed to use the tag (ex: `vit_base_patch16_224_in21k` -> `vit_base_patch16_224.augreg_in21k`). There are deprecation mappings for these. +* A number of models had their checkpoints remaped to match architecture changes needed to better support `features_only=True`, there are `checkpoint_filter_fn` methods in any model module that was remapped. These can be passed to `timm.models.load_checkpoint(..., filter_fn=timm.models.swin_transformer_v2.checkpoint_filter_fn)` to remap your existing checkpoint. +* The Hugging Face Hub (https://huggingface.co/timm) is now the primary source for `timm` weights. Model cards include link to papers, original source, license. +* Previous 0.6.x can be cloned from [0.6.x](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) branch or installed via pip with version. diff --git a/pytorch-image-models/avg_checkpoints.py b/pytorch-image-models/avg_checkpoints.py new file mode 100644 index 0000000000000000000000000000000000000000..6cedcb7da590edcf48aba8dc263abfc8a161545e --- /dev/null +++ b/pytorch-image-models/avg_checkpoints.py @@ -0,0 +1,152 @@ +#!/usr/bin/env python3 +""" Checkpoint Averaging Script + +This script averages all model weights for checkpoints in specified path that match +the specified filter wildcard. All checkpoints must be from the exact same model. + +For any hope of decent results, the checkpoints should be from the same or child +(via resumes) training session. This can be viewed as similar to maintaining running +EMA (exponential moving average) of the model weights or performing SWA (stochastic +weight averaging), but post-training. + +Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) +""" +import torch +import argparse +import os +import glob +import hashlib +from timm.models import load_state_dict +try: + import safetensors.torch + _has_safetensors = True +except ImportError: + _has_safetensors = False + +DEFAULT_OUTPUT = "./averaged.pth" +DEFAULT_SAFE_OUTPUT = "./averaged.safetensors" + +parser = argparse.ArgumentParser(description='PyTorch Checkpoint Averager') +parser.add_argument('--input', default='', type=str, metavar='PATH', + help='path to base input folder containing checkpoints') +parser.add_argument('--filter', default='*.pth.tar', type=str, metavar='WILDCARD', + help='checkpoint filter (path wildcard)') +parser.add_argument('--output', default=DEFAULT_OUTPUT, type=str, metavar='PATH', + help=f'Output filename. Defaults to {DEFAULT_SAFE_OUTPUT} when passing --safetensors.') +parser.add_argument('--no-use-ema', dest='no_use_ema', action='store_true', + help='Force not using ema version of weights (if present)') +parser.add_argument('--no-sort', dest='no_sort', action='store_true', + help='Do not sort and select by checkpoint metric, also makes "n" argument irrelevant') +parser.add_argument('-n', type=int, default=10, metavar='N', + help='Number of checkpoints to average') +parser.add_argument('--safetensors', action='store_true', + help='Save weights using safetensors instead of the default torch way (pickle).') + + +def checkpoint_metric(checkpoint_path): + if not checkpoint_path or not os.path.isfile(checkpoint_path): + return {} + print("=> Extracting metric from checkpoint '{}'".format(checkpoint_path)) + checkpoint = torch.load(checkpoint_path, map_location='cpu') + metric = None + if 'metric' in checkpoint: + metric = checkpoint['metric'] + elif 'metrics' in checkpoint and 'metric_name' in checkpoint: + metrics = checkpoint['metrics'] + print(metrics) + metric = metrics[checkpoint['metric_name']] + return metric + + +def main(): + args = parser.parse_args() + # by default use the EMA weights (if present) + args.use_ema = not args.no_use_ema + # by default sort by checkpoint metric (if present) and avg top n checkpoints + args.sort = not args.no_sort + + if args.safetensors and args.output == DEFAULT_OUTPUT: + # Default path changes if using safetensors + args.output = DEFAULT_SAFE_OUTPUT + + output, output_ext = os.path.splitext(args.output) + if not output_ext: + output_ext = ('.safetensors' if args.safetensors else '.pth') + output = output + output_ext + + if args.safetensors and not output_ext == ".safetensors": + print( + "Warning: saving weights as safetensors but output file extension is not " + f"set to '.safetensors': {args.output}" + ) + + if os.path.exists(output): + print("Error: Output filename ({}) already exists.".format(output)) + exit(1) + + pattern = args.input + if not args.input.endswith(os.path.sep) and not args.filter.startswith(os.path.sep): + pattern += os.path.sep + pattern += args.filter + checkpoints = glob.glob(pattern, recursive=True) + + if args.sort: + checkpoint_metrics = [] + for c in checkpoints: + metric = checkpoint_metric(c) + if metric is not None: + checkpoint_metrics.append((metric, c)) + checkpoint_metrics = list(sorted(checkpoint_metrics)) + checkpoint_metrics = checkpoint_metrics[-args.n:] + if checkpoint_metrics: + print("Selected checkpoints:") + [print(m, c) for m, c in checkpoint_metrics] + avg_checkpoints = [c for m, c in checkpoint_metrics] + else: + avg_checkpoints = checkpoints + if avg_checkpoints: + print("Selected checkpoints:") + [print(c) for c in checkpoints] + + if not avg_checkpoints: + print('Error: No checkpoints found to average.') + exit(1) + + avg_state_dict = {} + avg_counts = {} + for c in avg_checkpoints: + new_state_dict = load_state_dict(c, args.use_ema) + if not new_state_dict: + print(f"Error: Checkpoint ({c}) doesn't exist") + continue + for k, v in new_state_dict.items(): + if k not in avg_state_dict: + avg_state_dict[k] = v.clone().to(dtype=torch.float64) + avg_counts[k] = 1 + else: + avg_state_dict[k] += v.to(dtype=torch.float64) + avg_counts[k] += 1 + + for k, v in avg_state_dict.items(): + v.div_(avg_counts[k]) + + # float32 overflow seems unlikely based on weights seen to date, but who knows + float32_info = torch.finfo(torch.float32) + final_state_dict = {} + for k, v in avg_state_dict.items(): + v = v.clamp(float32_info.min, float32_info.max) + final_state_dict[k] = v.to(dtype=torch.float32) + + if args.safetensors: + assert _has_safetensors, "`pip install safetensors` to use .safetensors" + safetensors.torch.save_file(final_state_dict, output) + else: + torch.save(final_state_dict, output) + + with open(output, 'rb') as f: + sha_hash = hashlib.sha256(f.read()).hexdigest() + print(f"=> Saved state_dict to '{output}, SHA256: {sha_hash}'") + + +if __name__ == '__main__': + main() diff --git a/pytorch-image-models/benchmark.py b/pytorch-image-models/benchmark.py new file mode 100644 index 0000000000000000000000000000000000000000..d31395b83e6b0917c5c6e05041d9169e672bd86e --- /dev/null +++ b/pytorch-image-models/benchmark.py @@ -0,0 +1,699 @@ +#!/usr/bin/env python3 +""" Model Benchmark Script + +An inference and train step benchmark script for timm models. + +Hacked together by Ross Wightman (https://github.com/rwightman) +""" +import argparse +import csv +import json +import logging +import time +from collections import OrderedDict +from contextlib import suppress +from functools import partial + +import torch +import torch.nn as nn +import torch.nn.parallel + +from timm.data import resolve_data_config +from timm.layers import set_fast_norm +from timm.models import create_model, is_model, list_models +from timm.optim import create_optimizer_v2 +from timm.utils import setup_default_logging, set_jit_fuser, decay_batch_step, check_batch_size_retry, ParseKwargs,\ + reparameterize_model + +has_apex = False +try: + from apex import amp + has_apex = True +except ImportError: + pass + +try: + from deepspeed.profiling.flops_profiler import get_model_profile + has_deepspeed_profiling = True +except ImportError as e: + has_deepspeed_profiling = False + +try: + from fvcore.nn import FlopCountAnalysis, flop_count_str, ActivationCountAnalysis + has_fvcore_profiling = True +except ImportError as e: + FlopCountAnalysis = None + has_fvcore_profiling = False + +try: + from functorch.compile import memory_efficient_fusion + has_functorch = True +except ImportError as e: + has_functorch = False + +has_compile = hasattr(torch, 'compile') + +if torch.cuda.is_available(): + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.benchmark = True +_logger = logging.getLogger('validate') + + +parser = argparse.ArgumentParser(description='PyTorch Benchmark') + +# benchmark specific args +parser.add_argument('--model-list', metavar='NAME', default='', + help='txt file based list of model names to benchmark') +parser.add_argument('--bench', default='both', type=str, + help="Benchmark mode. One of 'inference', 'train', 'both'. Defaults to 'both'") +parser.add_argument('--detail', action='store_true', default=False, + help='Provide train fwd/bwd/opt breakdown detail if True. Defaults to False') +parser.add_argument('--no-retry', action='store_true', default=False, + help='Do not decay batch size and retry on error.') +parser.add_argument('--results-file', default='', type=str, + help='Output csv file for validation results (summary)') +parser.add_argument('--results-format', default='csv', type=str, + help='Format for results file one of (csv, json) (default: csv).') +parser.add_argument('--num-warm-iter', default=10, type=int, + help='Number of warmup iterations (default: 10)') +parser.add_argument('--num-bench-iter', default=40, type=int, + help='Number of benchmark iterations (default: 40)') +parser.add_argument('--device', default='cuda', type=str, + help="device to run benchmark on") + +# common inference / train args +parser.add_argument('--model', '-m', metavar='NAME', default='resnet50', + help='model architecture (default: resnet50)') +parser.add_argument('-b', '--batch-size', default=256, type=int, + metavar='N', help='mini-batch size (default: 256)') +parser.add_argument('--img-size', default=None, type=int, + metavar='N', help='Input image dimension, uses model default if empty') +parser.add_argument('--input-size', default=None, nargs=3, type=int, + metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') +parser.add_argument('--use-train-size', action='store_true', default=False, + help='Run inference at train size, not test-input-size if it exists.') +parser.add_argument('--num-classes', type=int, default=None, + help='Number classes in dataset') +parser.add_argument('--gp', default=None, type=str, metavar='POOL', + help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') +parser.add_argument('--channels-last', action='store_true', default=False, + help='Use channels_last memory layout') +parser.add_argument('--grad-checkpointing', action='store_true', default=False, + help='Enable gradient checkpointing through model blocks/stages') +parser.add_argument('--amp', action='store_true', default=False, + help='use PyTorch Native AMP for mixed precision training. Overrides --precision arg.') +parser.add_argument('--amp-dtype', default='float16', type=str, + help='lower precision AMP dtype (default: float16). Overrides --precision arg if args.amp True.') +parser.add_argument('--precision', default='float32', type=str, + help='Numeric precision. One of (amp, float32, float16, bfloat16, tf32)') +parser.add_argument('--fuser', default='', type=str, + help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") +parser.add_argument('--fast-norm', default=False, action='store_true', + help='enable experimental fast-norm') +parser.add_argument('--reparam', default=False, action='store_true', + help='Reparameterize model') +parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) +parser.add_argument('--torchcompile-mode', type=str, default=None, + help="torch.compile mode (default: None).") + +# codegen (model compilation) options +scripting_group = parser.add_mutually_exclusive_group() +scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true', + help='convert model torchscript for inference') +scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', + help="Enable compilation w/ specified backend (default: inductor).") +scripting_group.add_argument('--aot-autograd', default=False, action='store_true', + help="Enable AOT Autograd optimization.") + +# train optimizer parameters +parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', + help='Optimizer (default: "sgd"') +parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', + help='Optimizer Epsilon (default: None, use opt default)') +parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', + help='Optimizer Betas (default: None, use opt default)') +parser.add_argument('--momentum', type=float, default=0.9, metavar='M', + help='Optimizer momentum (default: 0.9)') +parser.add_argument('--weight-decay', type=float, default=0.0001, + help='weight decay (default: 0.0001)') +parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', + help='Clip gradient norm (default: None, no clipping)') +parser.add_argument('--clip-mode', type=str, default='norm', + help='Gradient clipping mode. One of ("norm", "value", "agc")') + + +# model regularization / loss params that impact model or loss fn +parser.add_argument('--smoothing', type=float, default=0.1, + help='Label smoothing (default: 0.1)') +parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', + help='Dropout rate (default: 0.)') +parser.add_argument('--drop-path', type=float, default=None, metavar='PCT', + help='Drop path rate (default: None)') +parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', + help='Drop block rate (default: None)') + + +def timestamp(sync=False): + return time.perf_counter() + + +def cuda_timestamp(sync=False, device=None): + if sync: + torch.cuda.synchronize(device=device) + return time.perf_counter() + + +def count_params(model: nn.Module): + return sum([m.numel() for m in model.parameters()]) + + +def resolve_precision(precision: str): + assert precision in ('amp', 'amp_bfloat16', 'float16', 'bfloat16', 'float32') + amp_dtype = None # amp disabled + model_dtype = torch.float32 + data_dtype = torch.float32 + if precision == 'amp': + amp_dtype = torch.float16 + elif precision == 'amp_bfloat16': + amp_dtype = torch.bfloat16 + elif precision == 'float16': + model_dtype = torch.float16 + data_dtype = torch.float16 + elif precision == 'bfloat16': + model_dtype = torch.bfloat16 + data_dtype = torch.bfloat16 + return amp_dtype, model_dtype, data_dtype + + +def profile_deepspeed(model, input_size=(3, 224, 224), batch_size=1, detailed=False): + _, macs, _ = get_model_profile( + model=model, + input_shape=(batch_size,) + input_size, # input shape/resolution + print_profile=detailed, # prints the model graph with the measured profile attached to each module + detailed=detailed, # print the detailed profile + warm_up=10, # the number of warm-ups before measuring the time of each module + as_string=False, # print raw numbers (e.g. 1000) or as human-readable strings (e.g. 1k) + output_file=None, # path to the output file. If None, the profiler prints to stdout. + ignore_modules=None) # the list of modules to ignore in the profiling + return macs, 0 # no activation count in DS + + +def profile_fvcore(model, input_size=(3, 224, 224), batch_size=1, detailed=False, force_cpu=False): + if force_cpu: + model = model.to('cpu') + device, dtype = next(model.parameters()).device, next(model.parameters()).dtype + example_input = torch.ones((batch_size,) + input_size, device=device, dtype=dtype) + fca = FlopCountAnalysis(model, example_input) + aca = ActivationCountAnalysis(model, example_input) + if detailed: + fcs = flop_count_str(fca) + print(fcs) + return fca.total(), aca.total() + + +class BenchmarkRunner: + def __init__( + self, + model_name, + detail=False, + device='cuda', + torchscript=False, + torchcompile=None, + torchcompile_mode=None, + aot_autograd=False, + reparam=False, + precision='float32', + fuser='', + num_warm_iter=10, + num_bench_iter=50, + use_train_size=False, + **kwargs + ): + self.model_name = model_name + self.detail = detail + self.device = device + self.amp_dtype, self.model_dtype, self.data_dtype = resolve_precision(precision) + self.channels_last = kwargs.pop('channels_last', False) + if self.amp_dtype is not None: + self.amp_autocast = partial(torch.amp.autocast, device_type=device, dtype=self.amp_dtype) + else: + self.amp_autocast = suppress + + if fuser: + set_jit_fuser(fuser) + self.model = create_model( + model_name, + num_classes=kwargs.pop('num_classes', None), + in_chans=3, + global_pool=kwargs.pop('gp', 'fast'), + scriptable=torchscript, + drop_rate=kwargs.pop('drop', 0.), + drop_path_rate=kwargs.pop('drop_path', None), + drop_block_rate=kwargs.pop('drop_block', None), + **kwargs.pop('model_kwargs', {}), + ) + if reparam: + self.model = reparameterize_model(self.model) + self.model.to( + device=self.device, + dtype=self.model_dtype, + memory_format=torch.channels_last if self.channels_last else None, + ) + self.num_classes = self.model.num_classes + self.param_count = count_params(self.model) + _logger.info('Model %s created, param count: %d' % (model_name, self.param_count)) + + data_config = resolve_data_config(kwargs, model=self.model, use_test_size=not use_train_size) + self.input_size = data_config['input_size'] + self.batch_size = kwargs.pop('batch_size', 256) + + self.compiled = False + if torchscript: + self.model = torch.jit.script(self.model) + self.compiled = True + elif torchcompile: + assert has_compile, 'A version of torch w/ torch.compile() is required, possibly a nightly.' + torch._dynamo.reset() + self.model = torch.compile(self.model, backend=torchcompile, mode=torchcompile_mode) + self.compiled = True + elif aot_autograd: + assert has_functorch, "functorch is needed for --aot-autograd" + self.model = memory_efficient_fusion(self.model) + self.compiled = True + + self.example_inputs = None + self.num_warm_iter = num_warm_iter + self.num_bench_iter = num_bench_iter + self.log_freq = num_bench_iter // 5 + if 'cuda' in self.device: + self.time_fn = partial(cuda_timestamp, device=self.device) + else: + self.time_fn = timestamp + + def _init_input(self): + self.example_inputs = torch.randn( + (self.batch_size,) + self.input_size, device=self.device, dtype=self.data_dtype) + if self.channels_last: + self.example_inputs = self.example_inputs.contiguous(memory_format=torch.channels_last) + + +class InferenceBenchmarkRunner(BenchmarkRunner): + + def __init__( + self, + model_name, + device='cuda', + torchscript=False, + **kwargs + ): + super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) + self.model.eval() + + def run(self): + def _step(): + t_step_start = self.time_fn() + with self.amp_autocast(): + output = self.model(self.example_inputs) + t_step_end = self.time_fn(True) + return t_step_end - t_step_start + + _logger.info( + f'Running inference benchmark on {self.model_name} for {self.num_bench_iter} steps w/ ' + f'input size {self.input_size} and batch size {self.batch_size}.') + + with torch.no_grad(): + self._init_input() + + for _ in range(self.num_warm_iter): + _step() + + total_step = 0. + num_samples = 0 + t_run_start = self.time_fn() + for i in range(self.num_bench_iter): + delta_fwd = _step() + total_step += delta_fwd + num_samples += self.batch_size + num_steps = i + 1 + if num_steps % self.log_freq == 0: + _logger.info( + f"Infer [{num_steps}/{self.num_bench_iter}]." + f" {num_samples / total_step:0.2f} samples/sec." + f" {1000 * total_step / num_steps:0.3f} ms/step.") + t_run_end = self.time_fn(True) + t_run_elapsed = t_run_end - t_run_start + + results = dict( + samples_per_sec=round(num_samples / t_run_elapsed, 2), + step_time=round(1000 * total_step / self.num_bench_iter, 3), + batch_size=self.batch_size, + img_size=self.input_size[-1], + param_count=round(self.param_count / 1e6, 2), + ) + + retries = 0 if self.compiled else 2 # skip profiling if model is scripted + while retries: + retries -= 1 + try: + if has_deepspeed_profiling: + macs, _ = profile_deepspeed(self.model, self.input_size) + results['gmacs'] = round(macs / 1e9, 2) + elif has_fvcore_profiling: + macs, activations = profile_fvcore(self.model, self.input_size, force_cpu=not retries) + results['gmacs'] = round(macs / 1e9, 2) + results['macts'] = round(activations / 1e6, 2) + except RuntimeError as e: + pass + + _logger.info( + f"Inference benchmark of {self.model_name} done. " + f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/step") + + return results + + +class TrainBenchmarkRunner(BenchmarkRunner): + + def __init__( + self, + model_name, + device='cuda', + torchscript=False, + **kwargs + ): + super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) + self.model.train() + + self.loss = nn.CrossEntropyLoss().to(self.device) + self.target_shape = tuple() + + self.optimizer = create_optimizer_v2( + self.model, + opt=kwargs.pop('opt', 'sgd'), + lr=kwargs.pop('lr', 1e-4)) + + if kwargs.pop('grad_checkpointing', False): + self.model.set_grad_checkpointing() + + def _gen_target(self, batch_size): + return torch.empty( + (batch_size,) + self.target_shape, device=self.device, dtype=torch.long).random_(self.num_classes) + + def run(self): + def _step(detail=False): + self.optimizer.zero_grad() # can this be ignored? + t_start = self.time_fn() + t_fwd_end = t_start + t_bwd_end = t_start + with self.amp_autocast(): + output = self.model(self.example_inputs) + if isinstance(output, tuple): + output = output[0] + if detail: + t_fwd_end = self.time_fn(True) + target = self._gen_target(output.shape[0]) + self.loss(output, target).backward() + if detail: + t_bwd_end = self.time_fn(True) + self.optimizer.step() + t_end = self.time_fn(True) + if detail: + delta_fwd = t_fwd_end - t_start + delta_bwd = t_bwd_end - t_fwd_end + delta_opt = t_end - t_bwd_end + return delta_fwd, delta_bwd, delta_opt + else: + delta_step = t_end - t_start + return delta_step + + _logger.info( + f'Running train benchmark on {self.model_name} for {self.num_bench_iter} steps w/ ' + f'input size {self.input_size} and batch size {self.batch_size}.') + + self._init_input() + + for _ in range(self.num_warm_iter): + _step() + + t_run_start = self.time_fn() + if self.detail: + total_fwd = 0. + total_bwd = 0. + total_opt = 0. + num_samples = 0 + for i in range(self.num_bench_iter): + delta_fwd, delta_bwd, delta_opt = _step(True) + num_samples += self.batch_size + total_fwd += delta_fwd + total_bwd += delta_bwd + total_opt += delta_opt + num_steps = (i + 1) + if num_steps % self.log_freq == 0: + total_step = total_fwd + total_bwd + total_opt + _logger.info( + f"Train [{num_steps}/{self.num_bench_iter}]." + f" {num_samples / total_step:0.2f} samples/sec." + f" {1000 * total_fwd / num_steps:0.3f} ms/step fwd," + f" {1000 * total_bwd / num_steps:0.3f} ms/step bwd," + f" {1000 * total_opt / num_steps:0.3f} ms/step opt." + ) + total_step = total_fwd + total_bwd + total_opt + t_run_elapsed = self.time_fn() - t_run_start + results = dict( + samples_per_sec=round(num_samples / t_run_elapsed, 2), + step_time=round(1000 * total_step / self.num_bench_iter, 3), + fwd_time=round(1000 * total_fwd / self.num_bench_iter, 3), + bwd_time=round(1000 * total_bwd / self.num_bench_iter, 3), + opt_time=round(1000 * total_opt / self.num_bench_iter, 3), + batch_size=self.batch_size, + img_size=self.input_size[-1], + param_count=round(self.param_count / 1e6, 2), + ) + else: + total_step = 0. + num_samples = 0 + for i in range(self.num_bench_iter): + delta_step = _step(False) + num_samples += self.batch_size + total_step += delta_step + num_steps = (i + 1) + if num_steps % self.log_freq == 0: + _logger.info( + f"Train [{num_steps}/{self.num_bench_iter}]." + f" {num_samples / total_step:0.2f} samples/sec." + f" {1000 * total_step / num_steps:0.3f} ms/step.") + t_run_elapsed = self.time_fn() - t_run_start + results = dict( + samples_per_sec=round(num_samples / t_run_elapsed, 2), + step_time=round(1000 * total_step / self.num_bench_iter, 3), + batch_size=self.batch_size, + img_size=self.input_size[-1], + param_count=round(self.param_count / 1e6, 2), + ) + + _logger.info( + f"Train benchmark of {self.model_name} done. " + f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample") + + return results + + +class ProfileRunner(BenchmarkRunner): + + def __init__(self, model_name, device='cuda', profiler='', **kwargs): + super().__init__(model_name=model_name, device=device, **kwargs) + if not profiler: + if has_deepspeed_profiling: + profiler = 'deepspeed' + elif has_fvcore_profiling: + profiler = 'fvcore' + assert profiler, "One of deepspeed or fvcore needs to be installed for profiling to work." + self.profiler = profiler + self.model.eval() + + def run(self): + _logger.info( + f'Running profiler on {self.model_name} w/ ' + f'input size {self.input_size} and batch size {self.batch_size}.') + + macs = 0 + activations = 0 + if self.profiler == 'deepspeed': + macs, _ = profile_deepspeed(self.model, self.input_size, batch_size=self.batch_size, detailed=True) + elif self.profiler == 'fvcore': + macs, activations = profile_fvcore(self.model, self.input_size, batch_size=self.batch_size, detailed=True) + + results = dict( + gmacs=round(macs / 1e9, 2), + macts=round(activations / 1e6, 2), + batch_size=self.batch_size, + img_size=self.input_size[-1], + param_count=round(self.param_count / 1e6, 2), + ) + + _logger.info( + f"Profile of {self.model_name} done. " + f"{results['gmacs']:.2f} GMACs, {results['param_count']:.2f} M params.") + + return results + + +def _try_run( + model_name, + bench_fn, + bench_kwargs, + initial_batch_size, + no_batch_size_retry=False +): + batch_size = initial_batch_size + results = dict() + error_str = 'Unknown' + while batch_size: + try: + torch.cuda.empty_cache() + bench = bench_fn(model_name=model_name, batch_size=batch_size, **bench_kwargs) + results = bench.run() + return results + except RuntimeError as e: + error_str = str(e) + _logger.error(f'"{error_str}" while running benchmark.') + if not check_batch_size_retry(error_str): + _logger.error(f'Unrecoverable error encountered while benchmarking {model_name}, skipping.') + break + if no_batch_size_retry: + break + batch_size = decay_batch_step(batch_size) + _logger.warning(f'Reducing batch size to {batch_size} for retry.') + results['error'] = error_str + return results + + +def benchmark(args): + if args.amp: + _logger.warning("Overriding precision to 'amp' since --amp flag set.") + args.precision = 'amp' if args.amp_dtype == 'float16' else '_'.join(['amp', args.amp_dtype]) + _logger.info(f'Benchmarking in {args.precision} precision. ' + f'{"NHWC" if args.channels_last else "NCHW"} layout. ' + f'torchscript {"enabled" if args.torchscript else "disabled"}') + + bench_kwargs = vars(args).copy() + bench_kwargs.pop('amp') + model = bench_kwargs.pop('model') + batch_size = bench_kwargs.pop('batch_size') + + bench_fns = (InferenceBenchmarkRunner,) + prefixes = ('infer',) + if args.bench == 'both': + bench_fns = ( + InferenceBenchmarkRunner, + TrainBenchmarkRunner + ) + prefixes = ('infer', 'train') + elif args.bench == 'train': + bench_fns = TrainBenchmarkRunner, + prefixes = 'train', + elif args.bench.startswith('profile'): + # specific profiler used if included in bench mode string, otherwise default to deepspeed, fallback to fvcore + if 'deepspeed' in args.bench: + assert has_deepspeed_profiling, "deepspeed must be installed to use deepspeed flop counter" + bench_kwargs['profiler'] = 'deepspeed' + elif 'fvcore' in args.bench: + assert has_fvcore_profiling, "fvcore must be installed to use fvcore flop counter" + bench_kwargs['profiler'] = 'fvcore' + bench_fns = ProfileRunner, + batch_size = 1 + + model_results = OrderedDict(model=model) + for prefix, bench_fn in zip(prefixes, bench_fns): + run_results = _try_run( + model, + bench_fn, + bench_kwargs=bench_kwargs, + initial_batch_size=batch_size, + no_batch_size_retry=args.no_retry, + ) + if prefix and 'error' not in run_results: + run_results = {'_'.join([prefix, k]): v for k, v in run_results.items()} + model_results.update(run_results) + if 'error' in run_results: + break + if 'error' not in model_results: + param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0)) + model_results.setdefault('param_count', param_count) + model_results.pop('train_param_count', 0) + return model_results + + +def main(): + setup_default_logging() + args = parser.parse_args() + model_cfgs = [] + model_names = [] + + if args.fast_norm: + set_fast_norm() + + if args.model_list: + args.model = '' + with open(args.model_list) as f: + model_names = [line.rstrip() for line in f] + model_cfgs = [(n, None) for n in model_names] + elif args.model == 'all': + # validate all models in a list of names with pretrained checkpoints + args.pretrained = True + model_names = list_models(pretrained=True, exclude_filters=['*in21k']) + model_cfgs = [(n, None) for n in model_names] + elif not is_model(args.model): + # model name doesn't exist, try as wildcard filter + model_names = list_models(args.model) + model_cfgs = [(n, None) for n in model_names] + + if len(model_cfgs): + _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) + results = [] + try: + for m, _ in model_cfgs: + if not m: + continue + args.model = m + r = benchmark(args) + if r: + results.append(r) + time.sleep(10) + except KeyboardInterrupt as e: + pass + sort_key = 'infer_samples_per_sec' + if 'train' in args.bench: + sort_key = 'train_samples_per_sec' + elif 'profile' in args.bench: + sort_key = 'infer_gmacs' + results = filter(lambda x: sort_key in x, results) + results = sorted(results, key=lambda x: x[sort_key], reverse=True) + else: + results = benchmark(args) + + if args.results_file: + write_results(args.results_file, results, format=args.results_format) + + # output results in JSON to stdout w/ delimiter for runner script + print(f'--result\n{json.dumps(results, indent=4)}') + + +def write_results(results_file, results, format='csv'): + with open(results_file, mode='w') as cf: + if format == 'json': + json.dump(results, cf, indent=4) + else: + if not isinstance(results, (list, tuple)): + results = [results] + if not results: + return + dw = csv.DictWriter(cf, fieldnames=results[0].keys()) + dw.writeheader() + for r in results: + dw.writerow(r) + cf.flush() + + +if __name__ == '__main__': + main() diff --git a/pytorch-image-models/bulk_runner.py b/pytorch-image-models/bulk_runner.py new file mode 100644 index 0000000000000000000000000000000000000000..cb8bc7d1f3a42710402f782cd0f9d5799d08360d --- /dev/null +++ b/pytorch-image-models/bulk_runner.py @@ -0,0 +1,244 @@ +#!/usr/bin/env python3 +""" Bulk Model Script Runner + +Run validation or benchmark script in separate process for each model + +Benchmark all 'vit*' models: +python bulk_runner.py --model-list 'vit*' --results-file vit_bench.csv benchmark.py --amp -b 512 + +Validate all models: +python bulk_runner.py --model-list all --results-file val.csv --pretrained validate.py --data-dir /imagenet/validation/ --amp -b 512 --retry + +Hacked together by Ross Wightman (https://github.com/rwightman) +""" +import argparse +import os +import sys +import csv +import json +import subprocess +import time +from typing import Callable, List, Tuple, Union + + +from timm.models import is_model, list_models, get_pretrained_cfg, get_arch_pretrained_cfgs + + +parser = argparse.ArgumentParser(description='Per-model process launcher') + +# model and results args +parser.add_argument( + '--model-list', metavar='NAME', default='', + help='txt file based list of model names to benchmark') +parser.add_argument( + '--results-file', default='', type=str, metavar='FILENAME', + help='Output csv file for validation results (summary)') +parser.add_argument( + '--sort-key', default='', type=str, metavar='COL', + help='Specify sort key for results csv') +parser.add_argument( + "--pretrained", action='store_true', + help="only run models with pretrained weights") + +parser.add_argument( + "--delay", + type=float, + default=0, + help="Interval, in seconds, to delay between model invocations.", +) +parser.add_argument( + "--start_method", type=str, default="spawn", choices=["spawn", "fork", "forkserver"], + help="Multiprocessing start method to use when creating workers.", +) +parser.add_argument( + "--no_python", + help="Skip prepending the script with 'python' - just execute it directly. Useful " + "when the script is not a Python script.", +) +parser.add_argument( + "-m", + "--module", + help="Change each process to interpret the launch script as a Python module, executing " + "with the same behavior as 'python -m'.", +) + +# positional +parser.add_argument( + "script", type=str, + help="Full path to the program/script to be launched for each model config.", +) +parser.add_argument("script_args", nargs=argparse.REMAINDER) + + +def cmd_from_args(args) -> Tuple[Union[Callable, str], List[str]]: + # If ``args`` not passed, defaults to ``sys.argv[:1]`` + with_python = not args.no_python + cmd: Union[Callable, str] + cmd_args = [] + if with_python: + cmd = os.getenv("PYTHON_EXEC", sys.executable) + cmd_args.append("-u") + if args.module: + cmd_args.append("-m") + cmd_args.append(args.script) + else: + if args.module: + raise ValueError( + "Don't use both the '--no_python' flag" + " and the '--module' flag at the same time." + ) + cmd = args.script + cmd_args.extend(args.script_args) + + return cmd, cmd_args + + +def _get_model_cfgs( + model_names, + num_classes=None, + expand_train_test=False, + include_crop=True, + expand_arch=False, +): + model_cfgs = set() + + for name in model_names: + if expand_arch: + pt_cfgs = get_arch_pretrained_cfgs(name).values() + else: + pt_cfg = get_pretrained_cfg(name) + pt_cfgs = [pt_cfg] if pt_cfg is not None else [] + + for cfg in pt_cfgs: + if cfg.input_size is None: + continue + if num_classes is not None and getattr(cfg, 'num_classes', 0) != num_classes: + continue + + # Add main configuration + size = cfg.input_size[-1] + if include_crop: + model_cfgs.add((name, size, cfg.crop_pct)) + else: + model_cfgs.add((name, size)) + + # Add test configuration if required + if expand_train_test and cfg.test_input_size is not None: + test_size = cfg.test_input_size[-1] + if include_crop: + test_crop = cfg.test_crop_pct or cfg.crop_pct + model_cfgs.add((name, test_size, test_crop)) + else: + model_cfgs.add((name, test_size)) + + # Format the output + if include_crop: + return [(n, {'img-size': r, 'crop-pct': cp}) for n, r, cp in sorted(model_cfgs)] + else: + return [(n, {'img-size': r}) for n, r in sorted(model_cfgs)] + + +def main(): + args = parser.parse_args() + cmd, cmd_args = cmd_from_args(args) + + model_cfgs = [] + if args.model_list == 'all': + model_names = list_models( + pretrained=args.pretrained, # only include models w/ pretrained checkpoints if set + ) + model_cfgs = [(n, None) for n in model_names] + elif args.model_list == 'all_in1k': + model_names = list_models(pretrained=True) + model_cfgs = _get_model_cfgs(model_names, num_classes=1000, expand_train_test=True) + elif args.model_list == 'all_res': + model_names = list_models() + model_cfgs = _get_model_cfgs(model_names, expand_train_test=True, include_crop=False, expand_arch=True) + elif not is_model(args.model_list): + # model name doesn't exist, try as wildcard filter + model_names = list_models(args.model_list) + model_cfgs = [(n, None) for n in model_names] + + if not model_cfgs and os.path.exists(args.model_list): + with open(args.model_list) as f: + model_names = [line.rstrip() for line in f] + model_cfgs = _get_model_cfgs( + model_names, + #num_classes=1000, + expand_train_test=True, + #include_crop=False, + ) + + if len(model_cfgs): + results_file = args.results_file or './results.csv' + results = [] + errors = [] + model_strings = '\n'.join([f'{x[0]}, {x[1]}' for x in model_cfgs]) + print(f"Running script on these models:\n {model_strings}") + if not args.sort_key: + if 'benchmark' in args.script: + if any(['train' in a for a in args.script_args]): + sort_key = 'train_samples_per_sec' + else: + sort_key = 'infer_samples_per_sec' + else: + sort_key = 'top1' + else: + sort_key = args.sort_key + print(f'Script: {args.script}, Args: {args.script_args}, Sort key: {sort_key}') + + try: + for m, ax in model_cfgs: + if not m: + continue + args_str = (cmd, *[str(e) for e in cmd_args], '--model', m) + if ax is not None: + extra_args = [(f'--{k}', str(v)) for k, v in ax.items()] + extra_args = [i for t in extra_args for i in t] + args_str += tuple(extra_args) + try: + o = subprocess.check_output(args=args_str).decode('utf-8').split('--result')[-1] + r = json.loads(o) + results.append(r) + except Exception as e: + # FIXME batch_size retry loop is currently done in either validation.py or benchmark.py + # for further robustness (but more overhead), we may want to manage that by looping here... + errors.append(dict(model=m, error=str(e))) + if args.delay: + time.sleep(args.delay) + except KeyboardInterrupt as e: + pass + + errors.extend(list(filter(lambda x: 'error' in x, results))) + if errors: + print(f'{len(errors)} models had errors during run.') + for e in errors: + if 'model' in e: + print(f"\t {e['model']} ({e.get('error', 'Unknown')})") + else: + print(e) + + results = list(filter(lambda x: 'error' not in x, results)) + + no_sortkey = list(filter(lambda x: sort_key not in x, results)) + if no_sortkey: + print(f'{len(no_sortkey)} results missing sort key, skipping sort.') + else: + results = sorted(results, key=lambda x: x[sort_key], reverse=True) + + if len(results): + print(f'{len(results)} models run successfully. Saving results to {results_file}.') + write_results(results_file, results) + + +def write_results(results_file, results): + with open(results_file, mode='w') as cf: + dw = csv.DictWriter(cf, fieldnames=results[0].keys()) + dw.writeheader() + for r in results: + dw.writerow(r) + cf.flush() + + +if __name__ == '__main__': + main() diff --git a/pytorch-image-models/clean_checkpoint.py b/pytorch-image-models/clean_checkpoint.py new file mode 100644 index 0000000000000000000000000000000000000000..c2da0642f13bce1abca920aa0544449304c2768e --- /dev/null +++ b/pytorch-image-models/clean_checkpoint.py @@ -0,0 +1,115 @@ +#!/usr/bin/env python3 +""" Checkpoint Cleaning Script + +Takes training checkpoints with GPU tensors, optimizer state, extra dict keys, etc. +and outputs a CPU tensor checkpoint with only the `state_dict` along with SHA256 +calculation for model zoo compatibility. + +Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) +""" +import torch +import argparse +import os +import hashlib +import shutil +import tempfile +from timm.models import load_state_dict +try: + import safetensors.torch + _has_safetensors = True +except ImportError: + _has_safetensors = False + +parser = argparse.ArgumentParser(description='PyTorch Checkpoint Cleaner') +parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', + help='path to latest checkpoint (default: none)') +parser.add_argument('--output', default='', type=str, metavar='PATH', + help='output path') +parser.add_argument('--no-use-ema', dest='no_use_ema', action='store_true', + help='use ema version of weights if present') +parser.add_argument('--no-hash', dest='no_hash', action='store_true', + help='no hash in output filename') +parser.add_argument('--clean-aux-bn', dest='clean_aux_bn', action='store_true', + help='remove auxiliary batch norm layers (from SplitBN training) from checkpoint') +parser.add_argument('--safetensors', action='store_true', + help='Save weights using safetensors instead of the default torch way (pickle).') + + +def main(): + args = parser.parse_args() + + if os.path.exists(args.output): + print("Error: Output filename ({}) already exists.".format(args.output)) + exit(1) + + clean_checkpoint( + args.checkpoint, + args.output, + not args.no_use_ema, + args.no_hash, + args.clean_aux_bn, + safe_serialization=args.safetensors, + ) + + +def clean_checkpoint( + checkpoint, + output, + use_ema=True, + no_hash=False, + clean_aux_bn=False, + safe_serialization: bool=False, +): + # Load an existing checkpoint to CPU, strip everything but the state_dict and re-save + if checkpoint and os.path.isfile(checkpoint): + print("=> Loading checkpoint '{}'".format(checkpoint)) + state_dict = load_state_dict(checkpoint, use_ema=use_ema) + new_state_dict = {} + for k, v in state_dict.items(): + if clean_aux_bn and 'aux_bn' in k: + # If all aux_bn keys are removed, the SplitBN layers will end up as normal and + # load with the unmodified model using BatchNorm2d. + continue + name = k[7:] if k.startswith('module.') else k + new_state_dict[name] = v + print("=> Loaded state_dict from '{}'".format(checkpoint)) + + ext = '' + if output: + checkpoint_root, checkpoint_base = os.path.split(output) + checkpoint_base, ext = os.path.splitext(checkpoint_base) + else: + checkpoint_root = '' + checkpoint_base = os.path.split(checkpoint)[1] + checkpoint_base = os.path.splitext(checkpoint_base)[0] + + temp_filename = '__' + checkpoint_base + if safe_serialization: + assert _has_safetensors, "`pip install safetensors` to use .safetensors" + safetensors.torch.save_file(new_state_dict, temp_filename) + else: + torch.save(new_state_dict, temp_filename) + + with open(temp_filename, 'rb') as f: + sha_hash = hashlib.sha256(f.read()).hexdigest() + + if ext: + final_ext = ext + else: + final_ext = ('.safetensors' if safe_serialization else '.pth') + + if no_hash: + final_filename = checkpoint_base + final_ext + else: + final_filename = '-'.join([checkpoint_base, sha_hash[:8]]) + final_ext + + shutil.move(temp_filename, os.path.join(checkpoint_root, final_filename)) + print("=> Saved state_dict to '{}, SHA256: {}'".format(final_filename, sha_hash)) + return final_filename + else: + print("Error: Checkpoint ({}) doesn't exist".format(checkpoint)) + return '' + + +if __name__ == '__main__': + main() diff --git a/pytorch-image-models/convert/convert_from_mxnet.py b/pytorch-image-models/convert/convert_from_mxnet.py new file mode 100644 index 0000000000000000000000000000000000000000..f2c64c2560377b89dbd787280f343e6259409708 --- /dev/null +++ b/pytorch-image-models/convert/convert_from_mxnet.py @@ -0,0 +1,107 @@ +import argparse +import hashlib +import os + +import mxnet as mx +import gluoncv +import torch +from timm import create_model + +parser = argparse.ArgumentParser(description='Convert from MXNet') +parser.add_argument('--model', default='all', type=str, metavar='MODEL', + help='Name of model to train (default: "all"') + + +def convert(mxnet_name, torch_name): + # download and load the pre-trained model + net = gluoncv.model_zoo.get_model(mxnet_name, pretrained=True) + + # create corresponding torch model + torch_net = create_model(torch_name) + + mxp = [(k, v) for k, v in net.collect_params().items() if 'running' not in k] + torchp = list(torch_net.named_parameters()) + torch_params = {} + + # convert parameters + # NOTE: we are relying on the fact that the order of parameters + # are usually exactly the same between these models, thus no key name mapping + # is necessary. Asserts will trip if this is not the case. + for (tn, tv), (mn, mv) in zip(torchp, mxp): + m_split = mn.split('_') + t_split = tn.split('.') + print(t_split, m_split) + print(tv.shape, mv.shape) + + # ensure ordering of BN params match since their sizes are not specific + if m_split[-1] == 'gamma': + assert t_split[-1] == 'weight' + if m_split[-1] == 'beta': + assert t_split[-1] == 'bias' + + # ensure shapes match + assert all(t == m for t, m in zip(tv.shape, mv.shape)) + + torch_tensor = torch.from_numpy(mv.data().asnumpy()) + torch_params[tn] = torch_tensor + + # convert buffers (batch norm running stats) + mxb = [(k, v) for k, v in net.collect_params().items() if any(x in k for x in ['running_mean', 'running_var'])] + torchb = [(k, v) for k, v in torch_net.named_buffers() if 'num_batches' not in k] + for (tn, tv), (mn, mv) in zip(torchb, mxb): + print(tn, mn) + print(tv.shape, mv.shape) + + # ensure ordering of BN params match since their sizes are not specific + if 'running_var' in tn: + assert 'running_var' in mn + if 'running_mean' in tn: + assert 'running_mean' in mn + + torch_tensor = torch.from_numpy(mv.data().asnumpy()) + torch_params[tn] = torch_tensor + + torch_net.load_state_dict(torch_params) + torch_filename = './%s.pth' % torch_name + torch.save(torch_net.state_dict(), torch_filename) + with open(torch_filename, 'rb') as f: + sha_hash = hashlib.sha256(f.read()).hexdigest() + final_filename = os.path.splitext(torch_filename)[0] + '-' + sha_hash[:8] + '.pth' + os.rename(torch_filename, final_filename) + print("=> Saved converted model to '{}, SHA256: {}'".format(final_filename, sha_hash)) + + +def map_mx_to_torch_model(mx_name): + torch_name = mx_name.lower() + if torch_name.startswith('se_'): + torch_name = torch_name.replace('se_', 'se') + elif torch_name.startswith('senet_'): + torch_name = torch_name.replace('senet_', 'senet') + elif torch_name.startswith('inceptionv3'): + torch_name = torch_name.replace('inceptionv3', 'inception_v3') + torch_name = 'gluon_' + torch_name + return torch_name + + +ALL = ['resnet18_v1b', 'resnet34_v1b', 'resnet50_v1b', 'resnet101_v1b', 'resnet152_v1b', + 'resnet50_v1c', 'resnet101_v1c', 'resnet152_v1c', 'resnet50_v1d', 'resnet101_v1d', 'resnet152_v1d', + #'resnet50_v1e', 'resnet101_v1e', 'resnet152_v1e', + 'resnet50_v1s', 'resnet101_v1s', 'resnet152_v1s', 'resnext50_32x4d', 'resnext101_32x4d', 'resnext101_64x4d', + 'se_resnext50_32x4d', 'se_resnext101_32x4d', 'se_resnext101_64x4d', 'senet_154', 'inceptionv3'] + + +def main(): + args = parser.parse_args() + + if not args.model or args.model == 'all': + for mx_model in ALL: + torch_model = map_mx_to_torch_model(mx_model) + convert(mx_model, torch_model) + else: + mx_model = args.model + torch_model = map_mx_to_torch_model(mx_model) + convert(mx_model, torch_model) + + +if __name__ == '__main__': + main() diff --git a/pytorch-image-models/convert/convert_nest_flax.py b/pytorch-image-models/convert/convert_nest_flax.py new file mode 100644 index 0000000000000000000000000000000000000000..cda4d34f9b11bddd793f8d39e245f6b1cf52ec74 --- /dev/null +++ b/pytorch-image-models/convert/convert_nest_flax.py @@ -0,0 +1,109 @@ +""" +Convert weights from https://github.com/google-research/nested-transformer +NOTE: You'll need https://github.com/google/CommonLoopUtils, not included in requirements.txt +""" + +import sys + +import numpy as np +import torch + +from clu import checkpoint + + +arch_depths = { + 'nest_base': [2, 2, 20], + 'nest_small': [2, 2, 20], + 'nest_tiny': [2, 2, 8], +} + + +def convert_nest(checkpoint_path, arch): + """ + Expects path to checkpoint which is a dir containing 4 files like in each of these folders + - https://console.cloud.google.com/storage/browser/gresearch/nest-checkpoints + `arch` is needed to + Returns a state dict that can be used with `torch.nn.Module.load_state_dict` + Hint: Follow timm.models.nest.Nest.__init__ and + https://github.com/google-research/nested-transformer/blob/main/models/nest_net.py + """ + assert arch in ['nest_base', 'nest_small', 'nest_tiny'], "Your `arch` is not supported" + + flax_dict = checkpoint.load_state_dict(checkpoint_path)['optimizer']['target'] + state_dict = {} + + # Patch embedding + state_dict['patch_embed.proj.weight'] = torch.tensor( + flax_dict['PatchEmbedding_0']['Conv_0']['kernel']).permute(3, 2, 0, 1) + state_dict['patch_embed.proj.bias'] = torch.tensor(flax_dict['PatchEmbedding_0']['Conv_0']['bias']) + + # Positional embeddings + posemb_keys = [k for k in flax_dict.keys() if k.startswith('PositionEmbedding')] + for i, k in enumerate(posemb_keys): + state_dict[f'levels.{i}.pos_embed'] = torch.tensor(flax_dict[k]['pos_embedding']) + + # Transformer encoders + depths = arch_depths[arch] + for level in range(len(depths)): + for layer in range(depths[level]): + global_layer_ix = sum(depths[:level]) + layer + # Norms + for i in range(2): + state_dict[f'levels.{level}.transformer_encoder.{layer}.norm{i+1}.weight'] = torch.tensor( + flax_dict[f'EncoderNDBlock_{global_layer_ix}'][f'LayerNorm_{i}']['scale']) + state_dict[f'levels.{level}.transformer_encoder.{layer}.norm{i+1}.bias'] = torch.tensor( + flax_dict[f'EncoderNDBlock_{global_layer_ix}'][f'LayerNorm_{i}']['bias']) + # Attention qkv + w_q = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_0']['kernel'] + w_kv = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_1']['kernel'] + # Pay attention to dims here (maybe get pen and paper) + w_kv = np.concatenate(np.split(w_kv, 2, -1), 1) + w_qkv = np.concatenate([w_q, w_kv], 1) + state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.qkv.weight'] = torch.tensor(w_qkv).flatten(1).permute(1,0) + b_q = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_0']['bias'] + b_kv = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_1']['bias'] + # Pay attention to dims here (maybe get pen and paper) + b_kv = np.concatenate(np.split(b_kv, 2, -1), 0) + b_qkv = np.concatenate([b_q, b_kv], 0) + state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.qkv.bias'] = torch.tensor(b_qkv).reshape(-1) + # Attention proj + w_proj = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['proj_kernel'] + w_proj = torch.tensor(w_proj).permute(2, 1, 0).flatten(1) + state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.proj.weight'] = w_proj + state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.proj.bias'] = torch.tensor( + flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['bias']) + # MLP + for i in range(2): + state_dict[f'levels.{level}.transformer_encoder.{layer}.mlp.fc{i+1}.weight'] = torch.tensor( + flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MlpBlock_0'][f'Dense_{i}']['kernel']).permute(1, 0) + state_dict[f'levels.{level}.transformer_encoder.{layer}.mlp.fc{i+1}.bias'] = torch.tensor( + flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MlpBlock_0'][f'Dense_{i}']['bias']) + + # Block aggregations (ConvPool) + for level in range(1, len(depths)): + # Convs + state_dict[f'levels.{level}.pool.conv.weight'] = torch.tensor( + flax_dict[f'ConvPool_{level-1}']['Conv_0']['kernel']).permute(3, 2, 0, 1) + state_dict[f'levels.{level}.pool.conv.bias'] = torch.tensor( + flax_dict[f'ConvPool_{level-1}']['Conv_0']['bias']) + # Norms + state_dict[f'levels.{level}.pool.norm.weight'] = torch.tensor( + flax_dict[f'ConvPool_{level-1}']['LayerNorm_0']['scale']) + state_dict[f'levels.{level}.pool.norm.bias'] = torch.tensor( + flax_dict[f'ConvPool_{level-1}']['LayerNorm_0']['bias']) + + # Final norm + state_dict[f'norm.weight'] = torch.tensor(flax_dict['LayerNorm_0']['scale']) + state_dict[f'norm.bias'] = torch.tensor(flax_dict['LayerNorm_0']['bias']) + + # Classifier + state_dict['head.weight'] = torch.tensor(flax_dict['Dense_0']['kernel']).permute(1, 0) + state_dict['head.bias'] = torch.tensor(flax_dict['Dense_0']['bias']) + + return state_dict + + +if __name__ == '__main__': + variant = sys.argv[1] # base, small, or tiny + state_dict = convert_nest(f'./nest-{variant[0]}_imagenet', f'nest_{variant}') + torch.save(state_dict, f'./jx_nest_{variant}.pth') \ No newline at end of file diff --git a/pytorch-image-models/distributed_train.sh b/pytorch-image-models/distributed_train.sh new file mode 100644 index 0000000000000000000000000000000000000000..fdd65d00e19cc6a15b47552ccbeb2ff1ee454b44 --- /dev/null +++ b/pytorch-image-models/distributed_train.sh @@ -0,0 +1,5 @@ +#!/bin/bash +NUM_PROC=$1 +shift +torchrun --nproc_per_node=$NUM_PROC train.py "$@" + diff --git a/pytorch-image-models/hfdocs/README.md b/pytorch-image-models/hfdocs/README.md new file mode 100644 index 0000000000000000000000000000000000000000..a0178812d4b5aab6d9ceaaaac2f819919aa96129 --- /dev/null +++ b/pytorch-image-models/hfdocs/README.md @@ -0,0 +1,14 @@ +# Hugging Face Timm Docs + +## Getting Started + +``` +pip install git+https://github.com/huggingface/doc-builder.git@main#egg=hf-doc-builder +pip install watchdog black +``` + +## Preview the Docs Locally + +``` +doc-builder preview timm hfdocs/source +``` diff --git a/pytorch-image-models/hfdocs/source/_toctree.yml b/pytorch-image-models/hfdocs/source/_toctree.yml new file mode 100644 index 0000000000000000000000000000000000000000..1ac8d102f60bacab4c46ac9b8a0d415cf1f0a862 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/_toctree.yml @@ -0,0 +1,162 @@ +- sections: + - local: index + title: Home + - local: quickstart + title: Quickstart + - local: installation + title: Installation + - local: changes + title: Changelog + title: Get started +- sections: + - local: feature_extraction + title: Using Pretrained Models as Feature Extractors + - local: training_script + title: Training With The Official Training Script + - local: hf_hub + title: Share and Load Models from the 🤗 Hugging Face Hub + title: Tutorials +- sections: + - local: models + title: Model Summaries + - local: results + title: Results + - local: models/adversarial-inception-v3 + title: Adversarial Inception v3 + - local: models/advprop + title: AdvProp (EfficientNet) + - local: models/big-transfer + title: Big Transfer (BiT) + - local: models/csp-darknet + title: CSP-DarkNet + - local: models/csp-resnet + title: CSP-ResNet + - local: models/csp-resnext + title: CSP-ResNeXt + - local: models/densenet + title: DenseNet + - local: models/dla + title: Deep Layer Aggregation + - local: models/dpn + title: Dual Path Network (DPN) + - local: models/ecaresnet + title: ECA-ResNet + - local: models/efficientnet + title: EfficientNet + - local: models/efficientnet-pruned + title: EfficientNet (Knapsack Pruned) + - local: models/ensemble-adversarial + title: Ensemble Adversarial Inception ResNet v2 + - local: models/ese-vovnet + title: ESE-VoVNet + - local: models/fbnet + title: FBNet + - local: models/gloun-inception-v3 + title: (Gluon) Inception v3 + - local: models/gloun-resnet + title: (Gluon) ResNet + - local: models/gloun-resnext + title: (Gluon) ResNeXt + - local: models/gloun-senet + title: (Gluon) SENet + - local: models/gloun-seresnext + title: (Gluon) SE-ResNeXt + - local: models/gloun-xception + title: (Gluon) Xception + - local: models/hrnet + title: HRNet + - local: models/ig-resnext + title: Instagram ResNeXt WSL + - local: models/inception-resnet-v2 + title: Inception ResNet v2 + - local: models/inception-v3 + title: Inception v3 + - local: models/inception-v4 + title: Inception v4 + - local: models/legacy-se-resnet + title: (Legacy) SE-ResNet + - local: models/legacy-se-resnext + title: (Legacy) SE-ResNeXt + - local: models/legacy-senet + title: (Legacy) SENet + - local: models/mixnet + title: MixNet + - local: models/mnasnet + title: MnasNet + - local: models/mobilenet-v2 + title: MobileNet v2 + - local: models/mobilenet-v3 + title: MobileNet v3 + - local: models/nasnet + title: NASNet + - local: models/noisy-student + title: Noisy Student (EfficientNet) + - local: models/pnasnet + title: PNASNet + - local: models/regnetx + title: RegNetX + - local: models/regnety + title: RegNetY + - local: models/res2net + title: Res2Net + - local: models/res2next + title: Res2NeXt + - local: models/resnest + title: ResNeSt + - local: models/resnet + title: ResNet + - local: models/resnet-d + title: ResNet-D + - local: models/resnext + title: ResNeXt + - local: models/rexnet + title: RexNet + - local: models/se-resnet + title: SE-ResNet + - local: models/selecsls + title: SelecSLS + - local: models/seresnext + title: SE-ResNeXt + - local: models/skresnet + title: SK-ResNet + - local: models/skresnext + title: SK-ResNeXt + - local: models/spnasnet + title: SPNASNet + - local: models/ssl-resnet + title: SSL ResNet + - local: models/swsl-resnet + title: SWSL ResNet + - local: models/swsl-resnext + title: SWSL ResNeXt + - local: models/tf-efficientnet + title: (Tensorflow) EfficientNet + - local: models/tf-efficientnet-condconv + title: (Tensorflow) EfficientNet CondConv + - local: models/tf-efficientnet-lite + title: (Tensorflow) EfficientNet Lite + - local: models/tf-inception-v3 + title: (Tensorflow) Inception v3 + - local: models/tf-mixnet + title: (Tensorflow) MixNet + - local: models/tf-mobilenet-v3 + title: (Tensorflow) MobileNet v3 + - local: models/tresnet + title: TResNet + - local: models/wide-resnet + title: Wide ResNet + - local: models/xception + title: Xception + title: Model Pages + isExpanded: false +- sections: + - local: reference/models + title: Models + - local: reference/data + title: Data + - local: reference/optimizers + title: Optimizers + - local: reference/schedulers + title: Learning Rate Schedulers + title: Reference + diff --git a/pytorch-image-models/hfdocs/source/changes.mdx b/pytorch-image-models/hfdocs/source/changes.mdx new file mode 100644 index 0000000000000000000000000000000000000000..014fa0da1b27feff1df465e7a4e3185456972906 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/changes.mdx @@ -0,0 +1,1080 @@ +# Changelog + +### Aug 8, 2024 +* Add RDNet ('DenseNets Reloaded', https://arxiv.org/abs/2403.19588), thanks [Donghyun Kim](https://github.com/dhkim0225) + +### July 28, 2024 +* Add `mobilenet_edgetpu_v2_m` weights w/ `ra4` mnv4-small based recipe. 80.1% top-1 @ 224 and 80.7 @ 256. +* Release 1.0.8 + +### July 26, 2024 +* More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models + +| model |top1 |top1_err|top5 |top5_err|param_count|img_size| +|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| +| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.99 |15.01 |97.294|2.706 |32.59 |544 | +| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.772|15.228 |97.344|2.656 |32.59 |480 | +| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.64 |15.36 |97.114|2.886 |32.59 |448 | +| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.314|15.686 |97.102|2.898 |32.59 |384 | +| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.824|16.176 |96.734|3.266 |32.59 |480 | +| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.244|16.756 |96.392|3.608 |32.59 |384 | +| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.99 |17.01 |96.67 |3.33 |11.07 |320 | +| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.364|17.636 |96.256|3.744 |11.07 |256 | + +* Impressive MobileNet-V1 and EfficientNet-B0 baseline challenges (https://huggingface.co/blog/rwightman/mobilenet-baselines) + +| model |top1 |top1_err|top5 |top5_err|param_count|img_size| +|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| +| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |79.364|20.636 |94.754|5.246 |5.29 |256 | +| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |78.584|21.416 |94.338|5.662 |5.29 |224 | +| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |76.596|23.404 |93.272|6.728 |5.28 |256 | +| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |76.094|23.906 |93.004|6.996 |4.23 |256 | +| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |75.662|24.338 |92.504|7.496 |5.28 |224 | +| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |75.382|24.618 |92.312|7.688 |4.23 |224 | + +* Prototype of `set_input_size()` added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation. +* Improved support in swin for different size handling, in addition to `set_input_size`, `always_partition` and `strict_img_size` args have been added to `__init__` to allow more flexible input size constraints +* Fix out of order indices info for intermediate 'Getter' feature wrapper, check out or range indices for same. +* Add several `tiny` < .5M param models for testing that are actually trained on ImageNet-1k + +|model |top1 |top1_err|top5 |top5_err|param_count|img_size|crop_pct| +|----------------------------|------|--------|------|--------|-----------|--------|--------| +|test_efficientnet.r160_in1k |47.156|52.844 |71.726|28.274 |0.36 |192 |1.0 | +|test_byobnet.r160_in1k |46.698|53.302 |71.674|28.326 |0.46 |192 |1.0 | +|test_efficientnet.r160_in1k |46.426|53.574 |70.928|29.072 |0.36 |160 |0.875 | +|test_byobnet.r160_in1k |45.378|54.622 |70.572|29.428 |0.46 |160 |0.875 | +|test_vit.r160_in1k|42.0 |58.0 |68.664|31.336 |0.37 |192 |1.0 | +|test_vit.r160_in1k|40.822|59.178 |67.212|32.788 |0.37 |160 |0.875 | + +* Fix vit reg token init, thanks [Promisery](https://github.com/Promisery) +* Other misc fixes + +### June 24, 2024 +* 3 more MobileNetV4 hyrid weights with different MQA weight init scheme + +| model |top1 |top1_err|top5 |top5_err|param_count|img_size| +|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| +| [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |84.356|15.644 |96.892 |3.108 |37.76 |448 | +| [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |83.990|16.010 |96.702 |3.298 |37.76 |384 | +| [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k) |83.394|16.606 |96.760|3.240 |11.07 |448 | +| [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k) |82.968|17.032 |96.474|3.526 |11.07 |384 | +| [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k) |82.492|17.508 |96.278|3.722 |11.07 |320 | +| [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k) |81.446|18.554 |95.704|4.296 |11.07 |256 | +* florence2 weight loading in DaViT model + +### June 12, 2024 +* MobileNetV4 models and initial set of `timm` trained weights added: + +| model |top1 |top1_err|top5 |top5_err|param_count|img_size| +|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| +| [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |84.266|15.734 |96.936 |3.064 |37.76 |448 | +| [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |83.800|16.200 |96.770 |3.230 |37.76 |384 | +| [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |83.392|16.608 |96.622 |3.378 |32.59 |448 | +| [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |82.952|17.048 |96.266 |3.734 |32.59 |384 | +| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |82.674|17.326 |96.31 |3.69 |32.59 |320 | +| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |81.862|18.138 |95.69 |4.31 |32.59 |256 | +| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |81.276|18.724 |95.742|4.258 |11.07 |256 | +| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |80.858|19.142 |95.768|4.232 |9.72 |320 | +| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |80.442|19.558 |95.38 |4.62 |11.07 |224 | +| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |80.142|19.858 |95.298|4.702 |9.72 |256 | +| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |79.928|20.072 |95.184|4.816 |9.72 |256 | +| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.808|20.192 |95.186|4.814 |9.72 |256 | +| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |79.438|20.562 |94.932|5.068 |9.72 |224 | +| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.094|20.906 |94.77 |5.23 |9.72 |224 | +| [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k) |74.616|25.384 |92.072|7.928 |3.77 |256 | +| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |74.292|25.708 |92.116|7.884 |3.77 |256 | +| [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k) |73.756|26.244 |91.422|8.578 |3.77 |224 | +| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |73.454|26.546 |91.34 |8.66 |3.77 |224 | + +* Apple MobileCLIP (https://arxiv.org/pdf/2311.17049, FastViT and ViT-B) image tower model support & weights added (part of OpenCLIP support). +* ViTamin (https://arxiv.org/abs/2404.02132) CLIP image tower model & weights added (part of OpenCLIP support). +* OpenAI CLIP Modified ResNet image tower modelling & weight support (via ByobNet). Refactor AttentionPool2d. + +### May 14, 2024 +* Support loading PaliGemma jax weights into SigLIP ViT models with average pooling. +* Add Hiera models from Meta (https://github.com/facebookresearch/hiera). +* Add `normalize=` flag for transorms, return non-normalized torch.Tensor with original dytpe (for `chug`) +* Version 1.0.3 release + +### May 11, 2024 +* `Searching for Better ViT Baselines (For the GPU Poor)` weights and vit variants released. Exploring model shapes between Tiny and Base. + +| model | top1 | top5 | param_count | img_size | +| -------------------------------------------------- | ------ | ------ | ----------- | -------- | +| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 86.202 | 97.874 | 64.11 | 256 | +| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 85.418 | 97.48 | 60.4 | 256 | +| [vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k) | 84.322 | 96.812 | 63.95 | 256 | +| [vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k) | 83.906 | 96.684 | 60.23 | 256 | +| [vit_base_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_base_patch16_rope_reg1_gap_256.sbb_in1k) | 83.866 | 96.67 | 86.43 | 256 | +| [vit_medium_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_rope_reg1_gap_256.sbb_in1k) | 83.81 | 96.824 | 38.74 | 256 | +| [vit_betwixt_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in1k) | 83.706 | 96.616 | 60.4 | 256 | +| [vit_betwixt_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg1_gap_256.sbb_in1k) | 83.628 | 96.544 | 60.4 | 256 | +| [vit_medium_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg4_gap_256.sbb_in1k) | 83.47 | 96.622 | 38.88 | 256 | +| [vit_medium_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg1_gap_256.sbb_in1k) | 83.462 | 96.548 | 38.88 | 256 | +| [vit_little_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_little_patch16_reg4_gap_256.sbb_in1k) | 82.514 | 96.262 | 22.52 | 256 | +| [vit_wee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_wee_patch16_reg1_gap_256.sbb_in1k) | 80.256 | 95.360 | 13.42 | 256 | +| [vit_pwee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_pwee_patch16_reg1_gap_256.sbb_in1k) | 80.072 | 95.136 | 15.25 | 256 | +| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 64.11 | 256 | +| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 60.4 | 256 | + +* AttentionExtract helper added to extract attention maps from `timm` models. See example in https://github.com/huggingface/pytorch-image-models/discussions/1232#discussioncomment-9320949 +* `forward_intermediates()` API refined and added to more models including some ConvNets that have other extraction methods. +* 1017 of 1047 model architectures support `features_only=True` feature extraction. Remaining 34 architectures can be supported but based on priority requests. +* Remove torch.jit.script annotated functions including old JIT activations. Conflict with dynamo and dynamo does a much better job when used. + +### April 11, 2024 +* Prepping for a long overdue 1.0 release, things have been stable for a while now. +* Significant feature that's been missing for a while, `features_only=True` support for ViT models with flat hidden states or non-std module layouts (so far covering `'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*'`) +* Above feature support achieved through a new `forward_intermediates()` API that can be used with a feature wrapping module or direclty. +```python +model = timm.create_model('vit_base_patch16_224') +final_feat, intermediates = model.forward_intermediates(input) +output = model.forward_head(final_feat) # pooling + classifier head + +print(final_feat.shape) +torch.Size([2, 197, 768]) + +for f in intermediates: + print(f.shape) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) +torch.Size([2, 768, 14, 14]) + +print(output.shape) +torch.Size([2, 1000]) +``` + +```python +model = timm.create_model('eva02_base_patch16_clip_224', pretrained=True, img_size=512, features_only=True, out_indices=(-3, -2,)) +output = model(torch.randn(2, 3, 512, 512)) + +for o in output: + print(o.shape) +torch.Size([2, 768, 32, 32]) +torch.Size([2, 768, 32, 32]) +``` +* TinyCLIP vision tower weights added, thx [Thien Tran](https://github.com/gau-nernst) + +### Feb 19, 2024 +* Next-ViT models added. Adapted from https://github.com/bytedance/Next-ViT +* HGNet and PP-HGNetV2 models added. Adapted from https://github.com/PaddlePaddle/PaddleClas by [SeeFun](https://github.com/seefun) +* Removed setup.py, moved to pyproject.toml based build supported by PDM +* Add updated model EMA impl using _for_each for less overhead +* Support device args in train script for non GPU devices +* Other misc fixes and small additions +* Min supported Python version increased to 3.8 +* Release 0.9.16 + +### Jan 8, 2024 +Datasets & transform refactoring +* HuggingFace streaming (iterable) dataset support (`--dataset hfids:org/dataset`) +* Webdataset wrapper tweaks for improved split info fetching, can auto fetch splits from supported HF hub webdataset +* Tested HF `datasets` and webdataset wrapper streaming from HF hub with recent `timm` ImageNet uploads to https://huggingface.co/timm +* Make input & target column/field keys consistent across datasets and pass via args +* Full monochrome support when using e:g: `--input-size 1 224 224` or `--in-chans 1`, sets PIL image conversion appropriately in dataset +* Improved several alternate crop & resize transforms (ResizeKeepRatio, RandomCropOrPad, etc) for use in PixParse document AI project +* Add SimCLR style color jitter prob along with grayscale and gaussian blur options to augmentations and args +* Allow train without validation set (`--val-split ''`) in train script +* Add `--bce-sum` (sum over class dim) and `--bce-pos-weight` (positive weighting) args for training as they're common BCE loss tweaks I was often hard coding + +### Nov 23, 2023 +* Added EfficientViT-Large models, thanks [SeeFun](https://github.com/seefun) +* Fix Python 3.7 compat, will be dropping support for it soon +* Other misc fixes +* Release 0.9.12 + +### Nov 20, 2023 +* Added significant flexibility for Hugging Face Hub based timm models via `model_args` config entry. `model_args` will be passed as kwargs through to models on creation. + * See example at https://huggingface.co/gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k/blob/main/config.json + * Usage: https://github.com/huggingface/pytorch-image-models/discussions/2035 +* Updated imagenet eval and test set csv files with latest models +* `vision_transformer.py` typing and doc cleanup by [Laureηt](https://github.com/Laurent2916) +* 0.9.11 release + +### Nov 3, 2023 +* [DFN (Data Filtering Networks)](https://huggingface.co/papers/2309.17425) and [MetaCLIP](https://huggingface.co/papers/2309.16671) ViT weights added +* DINOv2 'register' ViT model weights added (https://huggingface.co/papers/2309.16588, https://huggingface.co/papers/2304.07193) +* Add `quickgelu` ViT variants for OpenAI, DFN, MetaCLIP weights that use it (less efficient) +* Improved typing added to ResNet, MobileNet-v3 thanks to [Aryan](https://github.com/a-r-r-o-w) +* ImageNet-12k fine-tuned (from LAION-2B CLIP) `convnext_xxlarge` +* 0.9.9 release + +### Oct 20, 2023 +* [SigLIP](https://huggingface.co/papers/2303.15343) image tower weights supported in `vision_transformer.py`. + * Great potential for fine-tune and downstream feature use. +* Experimental 'register' support in vit models as per [Vision Transformers Need Registers](https://huggingface.co/papers/2309.16588) +* Updated RepViT with new weight release. Thanks [wangao](https://github.com/jameslahm) +* Add patch resizing support (on pretrained weight load) to Swin models +* 0.9.8 release pending + +### Sep 1, 2023 +* TinyViT added by [SeeFun](https://github.com/seefun) +* Fix EfficientViT (MIT) to use torch.autocast so it works back to PT 1.10 +* 0.9.7 release + +### Aug 28, 2023 +* Add dynamic img size support to models in `vision_transformer.py`, `vision_transformer_hybrid.py`, `deit.py`, and `eva.py` w/o breaking backward compat. + * Add `dynamic_img_size=True` to args at model creation time to allow changing the grid size (interpolate abs and/or ROPE pos embed each forward pass). + * Add `dynamic_img_pad=True` to allow image sizes that aren't divisible by patch size (pad bottom right to patch size each forward pass). + * Enabling either dynamic mode will break FX tracing unless PatchEmbed module added as leaf. + * Existing method of resizing position embedding by passing different `img_size` (interpolate pretrained embed weights once) on creation still works. + * Existing method of changing `patch_size` (resize pretrained patch_embed weights once) on creation still works. + * Example validation cmd `python validate.py --data-dir /imagenet --model vit_base_patch16_224 --amp --amp-dtype bfloat16 --img-size 255 --crop-pct 1.0 --model-kwargs dynamic_img_size=True dyamic_img_pad=True` + +### Aug 25, 2023 +* Many new models since last release + * FastViT - https://arxiv.org/abs/2303.14189 + * MobileOne - https://arxiv.org/abs/2206.04040 + * InceptionNeXt - https://arxiv.org/abs/2303.16900 + * RepGhostNet - https://arxiv.org/abs/2211.06088 (thanks https://github.com/ChengpengChen) + * GhostNetV2 - https://arxiv.org/abs/2211.12905 (thanks https://github.com/yehuitang) + * EfficientViT (MSRA) - https://arxiv.org/abs/2305.07027 (thanks https://github.com/seefun) + * EfficientViT (MIT) - https://arxiv.org/abs/2205.14756 (thanks https://github.com/seefun) +* Add `--reparam` arg to `benchmark.py`, `onnx_export.py`, and `validate.py` to trigger layer reparameterization / fusion for models with any one of `reparameterize()`, `switch_to_deploy()` or `fuse()` + * Including FastViT, MobileOne, RepGhostNet, EfficientViT (MSRA), RepViT, RepVGG, and LeViT +* Preparing 0.9.6 'back to school' release + +### Aug 11, 2023 +* Swin, MaxViT, CoAtNet, and BEiT models support resizing of image/window size on creation with adaptation of pretrained weights +* Example validation cmd to test w/ non-square resize `python validate.py --data-dir /imagenet --model swin_base_patch4_window7_224.ms_in22k_ft_in1k --amp --amp-dtype bfloat16 --input-size 3 256 320 --model-kwargs window_size=8,10 img_size=256,320` + +### Aug 3, 2023 +* Add GluonCV weights for HRNet w18_small and w18_small_v2. Converted by [SeeFun](https://github.com/seefun) +* Fix `selecsls*` model naming regression +* Patch and position embedding for ViT/EVA works for bfloat16/float16 weights on load (or activations for on-the-fly resize) +* v0.9.5 release prep + +### July 27, 2023 +* Added timm trained `seresnextaa201d_32x8d.sw_in12k_ft_in1k_384` weights (and `.sw_in12k` pretrain) with 87.3% top-1 on ImageNet-1k, best ImageNet ResNet family model I'm aware of. +* RepViT model and weights (https://arxiv.org/abs/2307.09283) added by [wangao](https://github.com/jameslahm) +* I-JEPA ViT feature weights (no classifier) added by [SeeFun](https://github.com/seefun) +* SAM-ViT (segment anything) feature weights (no classifier) added by [SeeFun](https://github.com/seefun) +* Add support for alternative feat extraction methods and -ve indices to EfficientNet +* Add NAdamW optimizer +* Misc fixes + +### May 11, 2023 +* `timm` 0.9 released, transition from 0.8.xdev releases + +### May 10, 2023 +* Hugging Face Hub downloading is now default, 1132 models on https://huggingface.co/timm, 1163 weights in `timm` +* DINOv2 vit feature backbone weights added thanks to [Leng Yue](https://github.com/leng-yue) +* FB MAE vit feature backbone weights added +* OpenCLIP DataComp-XL L/14 feat backbone weights added +* MetaFormer (poolformer-v2, caformer, convformer, updated poolformer (v1)) w/ weights added by [Fredo Guan](https://github.com/fffffgggg54) +* Experimental `get_intermediate_layers` function on vit/deit models for grabbing hidden states (inspired by DINO impl). This is WIP and may change significantly... feedback welcome. +* Model creation throws error if `pretrained=True` and no weights exist (instead of continuing with random initialization) +* Fix regression with inception / nasnet TF sourced weights with 1001 classes in original classifiers +* bitsandbytes (https://github.com/TimDettmers/bitsandbytes) optimizers added to factory, use `bnb` prefix, ie `bnbadam8bit` +* Misc cleanup and fixes +* Final testing before switching to a 0.9 and bringing `timm` out of pre-release state + +### April 27, 2023 +* 97% of `timm` models uploaded to HF Hub and almost all updated to support multi-weight pretrained configs +* Minor cleanup and refactoring of another batch of models as multi-weight added. More fused_attn (F.sdpa) and features_only support, and torchscript fixes. + +### April 21, 2023 +* Gradient accumulation support added to train script and tested (`--grad-accum-steps`), thanks [Taeksang Kim](https://github.com/voidbag) +* More weights on HF Hub (cspnet, cait, volo, xcit, tresnet, hardcorenas, densenet, dpn, vovnet, xception_aligned) +* Added `--head-init-scale` and `--head-init-bias` to train.py to scale classiifer head and set fixed bias for fine-tune +* Remove all InplaceABN (`inplace_abn`) use, replaced use in tresnet with standard BatchNorm (modified weights accordingly). + +### April 12, 2023 +* Add ONNX export script, validate script, helpers that I've had kicking around for along time. Tweak 'same' padding for better export w/ recent ONNX + pytorch. +* Refactor dropout args for vit and vit-like models, separate drop_rate into `drop_rate` (classifier dropout), `proj_drop_rate` (block mlp / out projections), `pos_drop_rate` (position embedding drop), `attn_drop_rate` (attention dropout). Also add patch dropout (FLIP) to vit and eva models. +* fused F.scaled_dot_product_attention support to more vit models, add env var (TIMM_FUSED_ATTN) to control, and config interface to enable/disable +* Add EVA-CLIP backbones w/ image tower weights, all the way up to 4B param 'enormous' model, and 336x336 OpenAI ViT mode that was missed. + +### April 5, 2023 +* ALL ResNet models pushed to Hugging Face Hub with multi-weight support + * All past `timm` trained weights added with recipe based tags to differentiate + * All ResNet strikes back A1/A2/A3 (seed 0) and R50 example B/C1/C2/D weights available + * Add torchvision v2 recipe weights to existing torchvision originals + * See comparison table in https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288#model-comparison +* New ImageNet-12k + ImageNet-1k fine-tunes available for a few anti-aliased ResNet models + * `resnetaa50d.sw_in12k_ft_in1k` - 81.7 @ 224, 82.6 @ 288 + * `resnetaa101d.sw_in12k_ft_in1k` - 83.5 @ 224, 84.1 @ 288 + * `seresnextaa101d_32x8d.sw_in12k_ft_in1k` - 86.0 @ 224, 86.5 @ 288 + * `seresnextaa101d_32x8d.sw_in12k_ft_in1k_288` - 86.5 @ 288, 86.7 @ 320 + +### March 31, 2023 +* Add first ConvNext-XXLarge CLIP -> IN-1k fine-tune and IN-12k intermediate fine-tunes for convnext-base/large CLIP models. + +| model |top1 |top5 |img_size|param_count|gmacs |macts | +|----------------------------------------------------------------------------------------------------------------------|------|------|--------|-----------|------|------| +| [convnext_xxlarge.clip_laion2b_soup_ft_in1k](https://huggingface.co/timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k) |88.612|98.704|256 |846.47 |198.09|124.45| +| convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384 |88.312|98.578|384 |200.13 |101.11|126.74| +| convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 |87.968|98.47 |320 |200.13 |70.21 |88.02 | +| convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384 |87.138|98.212|384 |88.59 |45.21 |84.49 | +| convnext_base.clip_laion2b_augreg_ft_in12k_in1k |86.344|97.97 |256 |88.59 |20.09 |37.55 | + +* Add EVA-02 MIM pretrained and fine-tuned weights, push to HF hub and update model cards for all EVA models. First model over 90% top-1 (99% top-5)! Check out the original code & weights at https://github.com/baaivision/EVA for more details on their work blending MIM, CLIP w/ many model, dataset, and train recipe tweaks. + +| model |top1 |top5 |param_count|img_size| +|----------------------------------------------------|------|------|-----------|--------| +| [eva02_large_patch14_448.mim_m38m_ft_in22k_in1k](https://huggingface.co/timm/eva02_large_patch14_448.mim_m38m_ft_in1k) |90.054|99.042|305.08 |448 | +| eva02_large_patch14_448.mim_in22k_ft_in22k_in1k |89.946|99.01 |305.08 |448 | +| eva_giant_patch14_560.m30m_ft_in22k_in1k |89.792|98.992|1014.45 |560 | +| eva02_large_patch14_448.mim_in22k_ft_in1k |89.626|98.954|305.08 |448 | +| eva02_large_patch14_448.mim_m38m_ft_in1k |89.57 |98.918|305.08 |448 | +| eva_giant_patch14_336.m30m_ft_in22k_in1k |89.56 |98.956|1013.01 |336 | +| eva_giant_patch14_336.clip_ft_in1k |89.466|98.82 |1013.01 |336 | +| eva_large_patch14_336.in22k_ft_in22k_in1k |89.214|98.854|304.53 |336 | +| eva_giant_patch14_224.clip_ft_in1k |88.882|98.678|1012.56 |224 | +| eva02_base_patch14_448.mim_in22k_ft_in22k_in1k |88.692|98.722|87.12 |448 | +| eva_large_patch14_336.in22k_ft_in1k |88.652|98.722|304.53 |336 | +| eva_large_patch14_196.in22k_ft_in22k_in1k |88.592|98.656|304.14 |196 | +| eva02_base_patch14_448.mim_in22k_ft_in1k |88.23 |98.564|87.12 |448 | +| eva_large_patch14_196.in22k_ft_in1k |87.934|98.504|304.14 |196 | +| eva02_small_patch14_336.mim_in22k_ft_in1k |85.74 |97.614|22.13 |336 | +| eva02_tiny_patch14_336.mim_in22k_ft_in1k |80.658|95.524|5.76 |336 | + +* Multi-weight and HF hub for DeiT and MLP-Mixer based models + +### March 22, 2023 +* More weights pushed to HF hub along with multi-weight support, including: `regnet.py`, `rexnet.py`, `byobnet.py`, `resnetv2.py`, `swin_transformer.py`, `swin_transformer_v2.py`, `swin_transformer_v2_cr.py` +* Swin Transformer models support feature extraction (NCHW feat maps for `swinv2_cr_*`, and NHWC for all others) and spatial embedding outputs. +* FocalNet (from https://github.com/microsoft/FocalNet) models and weights added with significant refactoring, feature extraction, no fixed resolution / sizing constraint +* RegNet weights increased with HF hub push, SWAG, SEER, and torchvision v2 weights. SEER is pretty poor wrt to performance for model size, but possibly useful. +* More ImageNet-12k pretrained and 1k fine-tuned `timm` weights: + * `rexnetr_200.sw_in12k_ft_in1k` - 82.6 @ 224, 83.2 @ 288 + * `rexnetr_300.sw_in12k_ft_in1k` - 84.0 @ 224, 84.5 @ 288 + * `regnety_120.sw_in12k_ft_in1k` - 85.0 @ 224, 85.4 @ 288 + * `regnety_160.lion_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288 + * `regnety_160.sw_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288 (compare to SWAG PT + 1k FT this is same BUT much lower res, blows SEER FT away) +* Model name deprecation + remapping functionality added (a milestone for bringing 0.8.x out of pre-release). Mappings being added... +* Minor bug fixes and improvements. + +### Feb 26, 2023 +* Add ConvNeXt-XXLarge CLIP pretrained image tower weights for fine-tune & features (fine-tuning TBD) -- see [model card](https://huggingface.co/laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup) +* Update `convnext_xxlarge` default LayerNorm eps to 1e-5 (for CLIP weights, improved stability) +* 0.8.15dev0 + +### Feb 20, 2023 +* Add 320x320 `convnext_large_mlp.clip_laion2b_ft_320` and `convnext_lage_mlp.clip_laion2b_ft_soup_320` CLIP image tower weights for features & fine-tune +* 0.8.13dev0 pypi release for latest changes w/ move to huggingface org + +### Feb 16, 2023 +* `safetensor` checkpoint support added +* Add ideas from 'Scaling Vision Transformers to 22 B. Params' (https://arxiv.org/abs/2302.05442) -- qk norm, RmsNorm, parallel block +* Add F.scaled_dot_product_attention support (PyTorch 2.0 only) to `vit_*`, `vit_relpos*`, `coatnet` / `maxxvit` (to start) +* Lion optimizer (w/ multi-tensor option) added (https://arxiv.org/abs/2302.06675) +* gradient checkpointing works with `features_only=True` + +### Feb 7, 2023 +* New inference benchmark numbers added in [results](results/) folder. +* Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes + * `convnext_base.clip_laion2b_augreg_ft_in1k` - 86.2% @ 256x256 + * `convnext_base.clip_laiona_augreg_ft_in1k_384` - 86.5% @ 384x384 + * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k` - 87.3% @ 256x256 + * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384` - 87.9% @ 384x384 +* Add DaViT models. Supports `features_only=True`. Adapted from https://github.com/dingmyu/davit by [Fredo](https://github.com/fffffgggg54). +* Use a common NormMlpClassifierHead across MaxViT, ConvNeXt, DaViT +* Add EfficientFormer-V2 model, update EfficientFormer, and refactor LeViT (closely related architectures). Weights on HF hub. + * New EfficientFormer-V2 arch, significant refactor from original at (https://github.com/snap-research/EfficientFormer). Supports `features_only=True`. + * Minor updates to EfficientFormer. + * Refactor LeViT models to stages, add `features_only=True` support to new `conv` variants, weight remap required. +* Move ImageNet meta-data (synsets, indices) from `/results` to [`timm/data/_info`](timm/data/_info/). +* Add ImageNetInfo / DatasetInfo classes to provide labelling for various ImageNet classifier layouts in `timm` + * Update `inference.py` to use, try: `python inference.py --data-dir /folder/to/images --model convnext_small.in12k --label-type detail --topk 5` +* Ready for 0.8.10 pypi pre-release (final testing). + +### Jan 20, 2023 +* Add two convnext 12k -> 1k fine-tunes at 384x384 + * `convnext_tiny.in12k_ft_in1k_384` - 85.1 @ 384 + * `convnext_small.in12k_ft_in1k_384` - 86.2 @ 384 + +* Push all MaxxViT weights to HF hub, and add new ImageNet-12k -> 1k fine-tunes for `rw` base MaxViT and CoAtNet 1/2 models + +|model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)| +|------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:| +|[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22| +|[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76| +|[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99| +|[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15| +|[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84| +|[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90| +|[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95| +|[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74| +|[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43| +|[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64| +|[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77| +|[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99| +|[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22| +|[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15| +|[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78| +|[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90| +|[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84| +|[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77| +|[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59| +|[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65| +|[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42| +|[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35| +|[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13| +|[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01| +|[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38| +|[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78| +|[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30| +|[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17| +|[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92| +|[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60| +|[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11| +|[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78| +|[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47| +|[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05| +|[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05| +|[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92| +|[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28| +|[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04| +|[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73| +|[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34| +|[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80| +|[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41| +|[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86| + +### Jan 11, 2023 +* Update ConvNeXt ImageNet-12k pretrain series w/ two new fine-tuned weights (and pre FT `.in12k` tags) + * `convnext_nano.in12k_ft_in1k` - 82.3 @ 224, 82.9 @ 288 (previously released) + * `convnext_tiny.in12k_ft_in1k` - 84.2 @ 224, 84.5 @ 288 + * `convnext_small.in12k_ft_in1k` - 85.2 @ 224, 85.3 @ 288 + +### Jan 6, 2023 +* Finally got around to adding `--model-kwargs` and `--opt-kwargs` to scripts to pass through rare args directly to model classes from cmd line + * `train.py --data-dir /imagenet --model resnet50 --amp --model-kwargs output_stride=16 act_layer=silu` + * `train.py --data-dir /imagenet --model vit_base_patch16_clip_224 --img-size 240 --amp --model-kwargs img_size=240 patch_size=12` +* Cleanup some popular models to better support arg passthrough / merge with model configs, more to go. + +### Jan 5, 2023 +* ConvNeXt-V2 models and weights added to existing `convnext.py` + * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808) + * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC) +@dataclass +### Dec 23, 2022 🎄☃ +* Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013) + * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP +* Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit) +* More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use) +* More ImageNet-12k (subset of 22k) pretrain models popping up: + * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448 + * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384 + * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256 + * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288 + +### Dec 8, 2022 +* Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some) + * original source: https://github.com/baaivision/EVA + +| model | top1 | param_count | gmac | macts | hub | +|:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------| +| eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | +| eva_large_patch14_336.in22k_ft_in1k | 88.7 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | +| eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | +| eva_large_patch14_196.in22k_ft_in1k | 87.9 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | + +### Dec 6, 2022 +* Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`. + * original source: https://github.com/baaivision/EVA + * paper: https://arxiv.org/abs/2211.07636 + +| model | top1 | param_count | gmac | macts | hub | +|:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------| +| eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.8 | 1014.4 | 1906.8 | 2577.2 | [link](https://huggingface.co/BAAI/EVA) | +| eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.6 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | +| eva_giant_patch14_336.clip_ft_in1k | 89.4 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | +| eva_giant_patch14_224.clip_ft_in1k | 89.1 | 1012.6 | 267.2 | 192.6 | [link](https://huggingface.co/BAAI/EVA) | + +### Dec 5, 2022 + +* Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm` + * vision_transformer, maxvit, convnext are the first three model impl w/ support + * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling + * bugs are likely, but I need feedback so please try it out + * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) +* Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument +* Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output +* Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models + +| model | top1 | param_count | gmac | macts | hub | +|:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------| +| vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k | 88.6 | 632.5 | 391 | 407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k) | +| vit_large_patch14_clip_336.openai_ft_in12k_in1k | 88.3 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k) | +| vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k | 88.2 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k) | +| vit_large_patch14_clip_336.laion2b_ft_in12k_in1k | 88.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) | +| vit_large_patch14_clip_224.openai_ft_in12k_in1k | 88.2 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k) | +| vit_large_patch14_clip_224.laion2b_ft_in12k_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) | +| vit_large_patch14_clip_224.openai_ft_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k) | +| vit_large_patch14_clip_336.laion2b_ft_in1k | 87.9 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k) | +| vit_huge_patch14_clip_224.laion2b_ft_in1k | 87.6 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k) | +| vit_large_patch14_clip_224.laion2b_ft_in1k | 87.3 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k) | +| vit_base_patch16_clip_384.laion2b_ft_in12k_in1k | 87.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k) | +| vit_base_patch16_clip_384.openai_ft_in12k_in1k | 87 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k) | +| vit_base_patch16_clip_384.laion2b_ft_in1k | 86.6 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k) | +| vit_base_patch16_clip_384.openai_ft_in1k | 86.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k) | +| vit_base_patch16_clip_224.laion2b_ft_in12k_in1k | 86.2 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k) | +| vit_base_patch16_clip_224.openai_ft_in12k_in1k | 85.9 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k) | +| vit_base_patch32_clip_448.laion2b_ft_in12k_in1k | 85.8 | 88.3 | 17.9 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k) | +| vit_base_patch16_clip_224.laion2b_ft_in1k | 85.5 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k) | +| vit_base_patch32_clip_384.laion2b_ft_in12k_in1k | 85.4 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k) | +| vit_base_patch16_clip_224.openai_ft_in1k | 85.3 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k) | +| vit_base_patch32_clip_384.openai_ft_in12k_in1k | 85.2 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k) | +| vit_base_patch32_clip_224.laion2b_ft_in12k_in1k | 83.3 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k) | +| vit_base_patch32_clip_224.laion2b_ft_in1k | 82.6 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k) | +| vit_base_patch32_clip_224.openai_ft_in1k | 81.9 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k) | + +* Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit + * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing + +| model | top1 | param_count | gmac | macts | hub | +|:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------| +| maxvit_xlarge_tf_512.in21k_ft_in1k | 88.5 | 475.8 | 534.1 | 1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) | +| maxvit_xlarge_tf_384.in21k_ft_in1k | 88.3 | 475.3 | 292.8 | 668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) | +| maxvit_base_tf_512.in21k_ft_in1k | 88.2 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) | +| maxvit_large_tf_512.in21k_ft_in1k | 88 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) | +| maxvit_large_tf_384.in21k_ft_in1k | 88 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) | +| maxvit_base_tf_384.in21k_ft_in1k | 87.9 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) | +| maxvit_base_tf_512.in1k | 86.6 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k) | +| maxvit_large_tf_512.in1k | 86.5 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k) | +| maxvit_base_tf_384.in1k | 86.3 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k) | +| maxvit_large_tf_384.in1k | 86.2 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k) | +| maxvit_small_tf_512.in1k | 86.1 | 69.1 | 67.3 | 383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k) | +| maxvit_tiny_tf_512.in1k | 85.7 | 31 | 33.5 | 257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) | +| maxvit_small_tf_384.in1k | 85.5 | 69 | 35.9 | 183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k) | +| maxvit_tiny_tf_384.in1k | 85.1 | 31 | 17.5 | 123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) | +| maxvit_large_tf_224.in1k | 84.9 | 211.8 | 43.7 | 127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k) | +| maxvit_base_tf_224.in1k | 84.9 | 119.5 | 24 | 95 | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k) | +| maxvit_small_tf_224.in1k | 84.4 | 68.9 | 11.7 | 53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k) | +| maxvit_tiny_tf_224.in1k | 83.4 | 30.9 | 5.6 | 35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) | + +### Oct 15, 2022 +* Train and validation script enhancements +* Non-GPU (ie CPU) device support +* SLURM compatibility for train script +* HF datasets support (via ReaderHfds) +* TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate) +* in_chans !=3 support for scripts / loader +* Adan optimizer +* Can enable per-step LR scheduling via args +* Dataset 'parsers' renamed to 'readers', more descriptive of purpose +* AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16` +* main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds +* master -> main branch rename + +### Oct 10, 2022 +* More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments: + * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm) + * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320 (G) (uses ConvNeXt conv block, no BN) + * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G) + * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN) + * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320 (T) + * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun. + +### Sept 23, 2022 +* LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier) + * vit_base_patch32_224_clip_laion2b + * vit_large_patch14_224_clip_laion2b + * vit_huge_patch14_224_clip_laion2b + * vit_giant_patch14_224_clip_laion2b + +### Sept 7, 2022 +* Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future +* Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2 +* Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants: + * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320 (T) + * `maxvit_tiny_rw_224` - 83.5 @ 224 (G) + * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T) + +### Aug 29, 2022 +* MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this: + * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320 (T) + +### Aug 26, 2022 +* CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models + * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers + * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit +* Initial CoAtNet and MaxVit timm pretrained weights (working on more): + * `coatnet_nano_rw_224` - 81.7 @ 224 (T) + * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T) + * `coatnet_0_rw_224` - 82.4 (T) -- NOTE timm '0' coatnets have 2 more 3rd stage blocks + * `coatnet_bn_0_rw_224` - 82.4 (T) + * `maxvit_nano_rw_256` - 82.9 @ 256 (T) + * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320 (T) + * `coatnet_1_rw_224` - 83.6 @ 224 (G) + * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained +* GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes) +* MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit) +* EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer) +* PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT) +* 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost) + +### Aug 15, 2022 +* ConvNeXt atto weights added + * `convnext_atto` - 75.7 @ 224, 77.0 @ 288 + * `convnext_atto_ols` - 75.9 @ 224, 77.2 @ 288 + +### Aug 5, 2022 +* More custom ConvNeXt smaller model defs with weights + * `convnext_femto` - 77.5 @ 224, 78.7 @ 288 + * `convnext_femto_ols` - 77.9 @ 224, 78.9 @ 288 + * `convnext_pico` - 79.5 @ 224, 80.4 @ 288 + * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288 + * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288 +* Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt) + +### July 28, 2022 +* Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)! + +### July 27, 2022 +* All runtime benchmark and validation result csv files are finally up-to-date! +* A few more weights & model defs added: + * `darknetaa53` - 79.8 @ 256, 80.5 @ 288 + * `convnext_nano` - 80.8 @ 224, 81.5 @ 288 + * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288 + * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288 + * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288 + * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288 + * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320 +* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program! +* Add output_stride=8 and 16 support to ConvNeXt (dilation) +* deit3 models not being able to resize pos_emb fixed +* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5) + +### July 8, 2022 +More models, more fixes +* Official research models (w/ weights) added: + * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt) + * MobileViT-V2 from (https://github.com/apple/ml-cvnets) + * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit) +* My own models: + * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14) + * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs. + * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token. + * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights. +* My own model weight results (all ImageNet-1k training) + * `resnet10t` - 66.5 @ 176, 68.3 @ 224 + * `resnet14t` - 71.3 @ 176, 72.3 @ 224 + * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288 + * `darknet53` - 80.0 @ 256, 80.5 @ 288 + * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288 + * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288 + * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288 + * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288 + * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320 + * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320 + * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320 + * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320 +* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs. +* Hugging Face Hub support fixes verified, demo notebook TBA +* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation. +* Add support to change image extensions scanned by `timm` datasets/readers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103) +* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. + * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. + * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py` +* Numerous bug fixes +* Currently testing for imminent PyPi 0.6.x release +* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)? +* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ... + +### May 13, 2022 +* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript. +* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects. +* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program) + * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool + * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool + * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool + * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake) +* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020) +* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials +* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg) + +### May 2, 2022 +* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`) + * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool + * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool + * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool +* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`) +* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae). + +### April 22, 2022 +* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/). +* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress. + * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288 + * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288 + +### March 23, 2022 +* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795) +* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs. + +### March 21, 2022 +* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required. +* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights) + * `regnety_040` - 82.3 @ 224, 82.96 @ 288 + * `regnety_064` - 83.0 @ 224, 83.65 @ 288 + * `regnety_080` - 83.17 @ 224, 83.86 @ 288 + * `regnetv_040` - 82.44 @ 224, 83.18 @ 288 (timm pre-act) + * `regnetv_064` - 83.1 @ 224, 83.71 @ 288 (timm pre-act) + * `regnetz_040` - 83.67 @ 256, 84.25 @ 320 + * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head) + * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm) + * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS) + * `regnetz_c16_evos` - 81.9 @ 256, 82.64 @ 320 (EvoNormS) + * `regnetz_d8_evos` - 83.42 @ 256, 84.04 @ 320 (EvoNormS) + * `xception41p` - 82 @ 299 (timm pre-act) + * `xception65` - 83.17 @ 299 + * `xception65p` - 83.14 @ 299 (timm pre-act) + * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288 + * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288 + * `resnetrs200` - 83.85 @ 256, 84.44 @ 320 +* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon) +* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks. +* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2 +* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets +* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer +* VOLO models w/ weights adapted from https://github.com/sail-sg/volo +* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc +* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception +* Grouped conv support added to EfficientNet family +* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler +* Gradient checkpointing support added to many models +* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head` +* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head` + +### Feb 2, 2022 +* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) +* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so. + * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs! + * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable. + +### Jan 14, 2022 +* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon.... +* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features +* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way... + * `mnasnet_small` - 65.6 top-1 + * `mobilenetv2_050` - 65.9 + * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1 + * `semnasnet_075` - 73 + * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0 +* TinyNet models added by [rsomani95](https://github.com/rsomani95) +* LCNet added via MobileNetV3 architecture + +### Jan 5, 2023 +* ConvNeXt-V2 models and weights added to existing `convnext.py` + * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808) + * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC) + +### Dec 23, 2022 🎄☃ +* Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013) + * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP +* Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit) +* More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use) +* More ImageNet-12k (subset of 22k) pretrain models popping up: + * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448 + * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384 + * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256 + * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288 + +### Dec 8, 2022 +* Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some) + * original source: https://github.com/baaivision/EVA + +| model | top1 | param_count | gmac | macts | hub | +|:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------| +| eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | +| eva_large_patch14_336.in22k_ft_in1k | 88.7 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | +| eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | +| eva_large_patch14_196.in22k_ft_in1k | 87.9 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | + +### Dec 6, 2022 +* Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`. + * original source: https://github.com/baaivision/EVA + * paper: https://arxiv.org/abs/2211.07636 + +| model | top1 | param_count | gmac | macts | hub | +|:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------| +| eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.8 | 1014.4 | 1906.8 | 2577.2 | [link](https://huggingface.co/BAAI/EVA) | +| eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.6 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | +| eva_giant_patch14_336.clip_ft_in1k | 89.4 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | +| eva_giant_patch14_224.clip_ft_in1k | 89.1 | 1012.6 | 267.2 | 192.6 | [link](https://huggingface.co/BAAI/EVA) | + +### Dec 5, 2022 + +* Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm` + * vision_transformer, maxvit, convnext are the first three model impl w/ support + * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling + * bugs are likely, but I need feedback so please try it out + * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) +* Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument +* Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output +* Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models + +| model | top1 | param_count | gmac | macts | hub | +|:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------| +| vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k | 88.6 | 632.5 | 391 | 407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k) | +| vit_large_patch14_clip_336.openai_ft_in12k_in1k | 88.3 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k) | +| vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k | 88.2 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k) | +| vit_large_patch14_clip_336.laion2b_ft_in12k_in1k | 88.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) | +| vit_large_patch14_clip_224.openai_ft_in12k_in1k | 88.2 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k) | +| vit_large_patch14_clip_224.laion2b_ft_in12k_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) | +| vit_large_patch14_clip_224.openai_ft_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k) | +| vit_large_patch14_clip_336.laion2b_ft_in1k | 87.9 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k) | +| vit_huge_patch14_clip_224.laion2b_ft_in1k | 87.6 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k) | +| vit_large_patch14_clip_224.laion2b_ft_in1k | 87.3 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k) | +| vit_base_patch16_clip_384.laion2b_ft_in12k_in1k | 87.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k) | +| vit_base_patch16_clip_384.openai_ft_in12k_in1k | 87 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k) | +| vit_base_patch16_clip_384.laion2b_ft_in1k | 86.6 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k) | +| vit_base_patch16_clip_384.openai_ft_in1k | 86.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k) | +| vit_base_patch16_clip_224.laion2b_ft_in12k_in1k | 86.2 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k) | +| vit_base_patch16_clip_224.openai_ft_in12k_in1k | 85.9 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k) | +| vit_base_patch32_clip_448.laion2b_ft_in12k_in1k | 85.8 | 88.3 | 17.9 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k) | +| vit_base_patch16_clip_224.laion2b_ft_in1k | 85.5 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k) | +| vit_base_patch32_clip_384.laion2b_ft_in12k_in1k | 85.4 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k) | +| vit_base_patch16_clip_224.openai_ft_in1k | 85.3 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k) | +| vit_base_patch32_clip_384.openai_ft_in12k_in1k | 85.2 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k) | +| vit_base_patch32_clip_224.laion2b_ft_in12k_in1k | 83.3 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k) | +| vit_base_patch32_clip_224.laion2b_ft_in1k | 82.6 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k) | +| vit_base_patch32_clip_224.openai_ft_in1k | 81.9 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k) | + +* Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit + * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing + +| model | top1 | param_count | gmac | macts | hub | +|:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------| +| maxvit_xlarge_tf_512.in21k_ft_in1k | 88.5 | 475.8 | 534.1 | 1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) | +| maxvit_xlarge_tf_384.in21k_ft_in1k | 88.3 | 475.3 | 292.8 | 668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) | +| maxvit_base_tf_512.in21k_ft_in1k | 88.2 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) | +| maxvit_large_tf_512.in21k_ft_in1k | 88 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) | +| maxvit_large_tf_384.in21k_ft_in1k | 88 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) | +| maxvit_base_tf_384.in21k_ft_in1k | 87.9 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) | +| maxvit_base_tf_512.in1k | 86.6 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k) | +| maxvit_large_tf_512.in1k | 86.5 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k) | +| maxvit_base_tf_384.in1k | 86.3 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k) | +| maxvit_large_tf_384.in1k | 86.2 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k) | +| maxvit_small_tf_512.in1k | 86.1 | 69.1 | 67.3 | 383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k) | +| maxvit_tiny_tf_512.in1k | 85.7 | 31 | 33.5 | 257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) | +| maxvit_small_tf_384.in1k | 85.5 | 69 | 35.9 | 183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k) | +| maxvit_tiny_tf_384.in1k | 85.1 | 31 | 17.5 | 123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) | +| maxvit_large_tf_224.in1k | 84.9 | 211.8 | 43.7 | 127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k) | +| maxvit_base_tf_224.in1k | 84.9 | 119.5 | 24 | 95 | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k) | +| maxvit_small_tf_224.in1k | 84.4 | 68.9 | 11.7 | 53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k) | +| maxvit_tiny_tf_224.in1k | 83.4 | 30.9 | 5.6 | 35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) | + +### Oct 15, 2022 +* Train and validation script enhancements +* Non-GPU (ie CPU) device support +* SLURM compatibility for train script +* HF datasets support (via ReaderHfds) +* TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate) +* in_chans !=3 support for scripts / loader +* Adan optimizer +* Can enable per-step LR scheduling via args +* Dataset 'parsers' renamed to 'readers', more descriptive of purpose +* AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16` +* main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds +* master -> main branch rename + +### Oct 10, 2022 +* More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments: + * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm) + * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320 (G) (uses ConvNeXt conv block, no BN) + * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G) + * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN) + * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320 (T) + * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun. + +### Sept 23, 2022 +* LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier) + * vit_base_patch32_224_clip_laion2b + * vit_large_patch14_224_clip_laion2b + * vit_huge_patch14_224_clip_laion2b + * vit_giant_patch14_224_clip_laion2b + +### Sept 7, 2022 +* Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future +* Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2 +* Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants: + * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320 (T) + * `maxvit_tiny_rw_224` - 83.5 @ 224 (G) + * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T) + +### Aug 29, 2022 +* MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this: + * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320 (T) + +### Aug 26, 2022 +* CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models + * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers + * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit +* Initial CoAtNet and MaxVit timm pretrained weights (working on more): + * `coatnet_nano_rw_224` - 81.7 @ 224 (T) + * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T) + * `coatnet_0_rw_224` - 82.4 (T) -- NOTE timm '0' coatnets have 2 more 3rd stage blocks + * `coatnet_bn_0_rw_224` - 82.4 (T) + * `maxvit_nano_rw_256` - 82.9 @ 256 (T) + * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320 (T) + * `coatnet_1_rw_224` - 83.6 @ 224 (G) + * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained +* GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes) +* MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit) +* EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer) +* PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT) +* 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost) + + +### Aug 15, 2022 +* ConvNeXt atto weights added + * `convnext_atto` - 75.7 @ 224, 77.0 @ 288 + * `convnext_atto_ols` - 75.9 @ 224, 77.2 @ 288 + +### Aug 5, 2022 +* More custom ConvNeXt smaller model defs with weights + * `convnext_femto` - 77.5 @ 224, 78.7 @ 288 + * `convnext_femto_ols` - 77.9 @ 224, 78.9 @ 288 + * `convnext_pico` - 79.5 @ 224, 80.4 @ 288 + * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288 + * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288 +* Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt) + +### July 28, 2022 +* Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)! + +### July 27, 2022 +* All runtime benchmark and validation result csv files are up-to-date! +* A few more weights & model defs added: + * `darknetaa53` - 79.8 @ 256, 80.5 @ 288 + * `convnext_nano` - 80.8 @ 224, 81.5 @ 288 + * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288 + * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288 + * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288 + * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288 + * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320 +* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program! +* Add output_stride=8 and 16 support to ConvNeXt (dilation) +* deit3 models not being able to resize pos_emb fixed +* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5) + +### July 8, 2022 +More models, more fixes +* Official research models (w/ weights) added: + * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt) + * MobileViT-V2 from (https://github.com/apple/ml-cvnets) + * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit) +* My own models: + * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14) + * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs. + * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token. + * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights. +* My own model weight results (all ImageNet-1k training) + * `resnet10t` - 66.5 @ 176, 68.3 @ 224 + * `resnet14t` - 71.3 @ 176, 72.3 @ 224 + * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288 + * `darknet53` - 80.0 @ 256, 80.5 @ 288 + * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288 + * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288 + * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288 + * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288 + * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320 + * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320 + * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320 + * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320 +* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs. +* Hugging Face Hub support fixes verified, demo notebook TBA +* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation. +* Add support to change image extensions scanned by `timm` datasets/parsers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103) +* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. + * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. + * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py` +* Numerous bug fixes +* Currently testing for imminent PyPi 0.6.x release +* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)? +* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ... + +### May 13, 2022 +* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript. +* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects. +* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program) + * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool + * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool + * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool + * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake) +* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020) +* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials +* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg) + +### May 2, 2022 +* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`) + * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool + * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool + * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool +* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`) +* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae). + +### April 22, 2022 +* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/). +* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress. + * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288 + * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288 + +### March 23, 2022 +* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795) +* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs. + +### March 21, 2022 +* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required. +* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights) + * `regnety_040` - 82.3 @ 224, 82.96 @ 288 + * `regnety_064` - 83.0 @ 224, 83.65 @ 288 + * `regnety_080` - 83.17 @ 224, 83.86 @ 288 + * `regnetv_040` - 82.44 @ 224, 83.18 @ 288 (timm pre-act) + * `regnetv_064` - 83.1 @ 224, 83.71 @ 288 (timm pre-act) + * `regnetz_040` - 83.67 @ 256, 84.25 @ 320 + * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head) + * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm) + * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS) + * `regnetz_c16_evos` - 81.9 @ 256, 82.64 @ 320 (EvoNormS) + * `regnetz_d8_evos` - 83.42 @ 256, 84.04 @ 320 (EvoNormS) + * `xception41p` - 82 @ 299 (timm pre-act) + * `xception65` - 83.17 @ 299 + * `xception65p` - 83.14 @ 299 (timm pre-act) + * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288 + * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288 + * `resnetrs200` - 83.85 @ 256, 84.44 @ 320 +* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon) +* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks. +* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2 +* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets +* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer +* VOLO models w/ weights adapted from https://github.com/sail-sg/volo +* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc +* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception +* Grouped conv support added to EfficientNet family +* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler +* Gradient checkpointing support added to many models +* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head` +* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head` + +### Feb 2, 2022 +* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) +* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so. + * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs! + * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable. + +### Jan 14, 2022 +* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon.... +* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features +* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way... + * `mnasnet_small` - 65.6 top-1 + * `mobilenetv2_050` - 65.9 + * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1 + * `semnasnet_075` - 73 + * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0 +* TinyNet models added by [rsomani95](https://github.com/rsomani95) +* LCNet added via MobileNetV3 architecture + diff --git a/pytorch-image-models/hfdocs/source/feature_extraction.mdx b/pytorch-image-models/hfdocs/source/feature_extraction.mdx new file mode 100644 index 0000000000000000000000000000000000000000..f443d4a99aa12802e4536fb9fc4d3f78123b7e84 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/feature_extraction.mdx @@ -0,0 +1,273 @@ +# Feature Extraction + +All of the models in `timm` have consistent mechanisms for obtaining various types of features from the model for tasks besides classification. + +## Penultimate Layer Features (Pre-Classifier Features) + +The features from the penultimate model layer can be obtained in several ways without requiring model surgery (although feel free to do surgery). One must first decide if they want pooled or un-pooled features. + +### Unpooled + +There are three ways to obtain unpooled features. The final, unpooled features are sometimes referred to as the last hidden state. In `timm` this is up to and including the final normalization layer (in e.g. ViT style models) but does not include pooling / class token selection and final post-pooling layers. + +Without modifying the network, one can call `model.forward_features(input)` on any model instead of the usual `model(input)`. This will bypass the head classifier and global pooling for networks. + +If one wants to explicitly modify the network to return unpooled features, they can either create the model without a classifier and pooling, or remove it later. Both paths remove the parameters associated with the classifier from the network. + +#### forward_features() + +```py +>>> import torch +>>> import timm +>>> m = timm.create_model('xception41', pretrained=True) +>>> o = m(torch.randn(2, 3, 299, 299)) +>>> print(f'Original shape: {o.shape}') +>>> o = m.forward_features(torch.randn(2, 3, 299, 299)) +>>> print(f'Unpooled shape: {o.shape}') +``` + +Output: + +```text +Original shape: torch.Size([2, 1000]) +Unpooled shape: torch.Size([2, 2048, 10, 10]) +``` + +#### Create with no classifier and pooling + +```py +>>> import torch +>>> import timm +>>> m = timm.create_model('resnet50', pretrained=True, num_classes=0, global_pool='') +>>> o = m(torch.randn(2, 3, 224, 224)) +>>> print(f'Unpooled shape: {o.shape}') +``` + +Output: + +```text +Unpooled shape: torch.Size([2, 2048, 7, 7]) +``` + +#### Remove it later + +```py +>>> import torch +>>> import timm +>>> m = timm.create_model('densenet121', pretrained=True) +>>> o = m(torch.randn(2, 3, 224, 224)) +>>> print(f'Original shape: {o.shape}') +>>> m.reset_classifier(0, '') +>>> o = m(torch.randn(2, 3, 224, 224)) +>>> print(f'Unpooled shape: {o.shape}') +``` + +Output: + +```text +Original shape: torch.Size([2, 1000]) +Unpooled shape: torch.Size([2, 1024, 7, 7]) +``` + +#### Chaining unpooled output to classifier + +The last hidden state can be fed back into the head of the model using the `forward_head()` function. + +```py +>>> model = timm.create_model('vit_medium_patch16_reg1_gap_256', pretrained=True) +>>> output = model.forward_features(torch.randn(2,3,256,256)) +>>> print('Unpooled output shape:', output.shape) +>>> classified = model.forward_head(output) +>>> print('Classification output shape:', classified.shape) +``` + +Output: + +```text +Unpooled output shape: torch.Size([2, 257, 512]) +Classification output shape: torch.Size([2, 1000]) +``` + +### Pooled + +To modify the network to return pooled features, one can use `forward_features()` and pool/flatten the result themselves, or modify the network like above but keep pooling intact. + +#### Create with no classifier + +```py +>>> import torch +>>> import timm +>>> m = timm.create_model('resnet50', pretrained=True, num_classes=0) +>>> o = m(torch.randn(2, 3, 224, 224)) +>>> print(f'Pooled shape: {o.shape}') +``` + +Output: + +```text +Pooled shape: torch.Size([2, 2048]) +``` + +#### Remove it later + +```py +>>> import torch +>>> import timm +>>> m = timm.create_model('ese_vovnet19b_dw', pretrained=True) +>>> o = m(torch.randn(2, 3, 224, 224)) +>>> print(f'Original shape: {o.shape}') +>>> m.reset_classifier(0) +>>> o = m(torch.randn(2, 3, 224, 224)) +>>> print(f'Pooled shape: {o.shape}') +``` + +Output: + +```text +Original shape: torch.Size([2, 1000]) +Pooled shape: torch.Size([2, 1024]) +``` + + +## Multi-scale Feature Maps (Feature Pyramid) + +Object detection, segmentation, keypoint, and a variety of dense pixel tasks require access to feature maps from the backbone network at multiple scales. This is often done by modifying the original classification network. Since each network varies quite a bit in structure, it's not uncommon to see only a few backbones supported in any given obj detection or segmentation library. + +`timm` allows a consistent interface for creating any of the included models as feature backbones that output feature maps for selected levels. + +A feature backbone can be created by adding the argument `features_only=True` to any `create_model` call. By default most models with a feature hierarchy will output up to 5 features up to a reduction of 32. However this varies per model, some models have fewer hierarchy levels, and some (like ViT) have a larger number of non-hierarchical feature maps and they default to outputting the last 3. The `out_indices` arg can be passed to `create_model` to specify which features you want. + +### Create a feature map extraction model + +```py +>>> import torch +>>> import timm +>>> m = timm.create_model('resnest26d', features_only=True, pretrained=True) +>>> o = m(torch.randn(2, 3, 224, 224)) +>>> for x in o: +... print(x.shape) +``` + +Output: + +```text +torch.Size([2, 64, 112, 112]) +torch.Size([2, 256, 56, 56]) +torch.Size([2, 512, 28, 28]) +torch.Size([2, 1024, 14, 14]) +torch.Size([2, 2048, 7, 7]) +``` + +### Query the feature information + +After a feature backbone has been created, it can be queried to provide channel or resolution reduction information to the downstream heads without requiring static config or hardcoded constants. The `.feature_info` attribute is a class encapsulating the information about the feature extraction points. + +```py +>>> import torch +>>> import timm +>>> m = timm.create_model('regnety_032', features_only=True, pretrained=True) +>>> print(f'Feature channels: {m.feature_info.channels()}') +>>> o = m(torch.randn(2, 3, 224, 224)) +>>> for x in o: +... print(x.shape) +``` + +Output: + +```text +Feature channels: [32, 72, 216, 576, 1512] +torch.Size([2, 32, 112, 112]) +torch.Size([2, 72, 56, 56]) +torch.Size([2, 216, 28, 28]) +torch.Size([2, 576, 14, 14]) +torch.Size([2, 1512, 7, 7]) +``` + +### Select specific feature levels or limit the stride + +There are two additional creation arguments impacting the output features. + +* `out_indices` selects which indices to output +* `output_stride` limits the feature output stride of the network (also works in classification mode BTW) + +#### Output index selection + +The `out_indices` argument is supported by all models, but not all models have the same index to feature stride mapping. Look at the code or check feature_info to compare. The out indices generally correspond to the `C(i+1)th` feature level (a `2^(i+1)` reduction). For most convnet models, index 0 is the stride 2 features, and index 4 is stride 32. For many ViT or ViT-Conv hybrids there may be many to all features maps of the same shape, or a combination of hierarchical and non-hierarchical feature maps. It is best to look at the `feature_info` attribute to see the number of features, their corresponding channel count and reduction level. + +`out_indices` supports negative indexing, this makes it easy to get the last, penultimate, etc feature map. `out_indices=(-2,)` would return the penultimate feature map for any model. + +#### Output stride (feature map dilation) + +`output_stride` is achieved by converting layers to use dilated convolutions. Doing so is not always straightforward, some networks only support `output_stride=32`. + +```py +>>> import torch +>>> import timm +>>> m = timm.create_model('ecaresnet101d', features_only=True, output_stride=8, out_indices=(2, 4), pretrained=True) +>>> print(f'Feature channels: {m.feature_info.channels()}') +>>> print(f'Feature reduction: {m.feature_info.reduction()}') +>>> o = m(torch.randn(2, 3, 320, 320)) +>>> for x in o: +... print(x.shape) +``` + +Output: + +```text +Feature channels: [512, 2048] +Feature reduction: [8, 8] +torch.Size([2, 512, 40, 40]) +torch.Size([2, 2048, 40, 40]) +``` + +## Flexible intermediate feature map extraction + +In addition to using `features_only` with the model factory, many models support a `forward_intermediates()` method which provides a flexible mechanism for extracting both the intermediate feature maps and the last hidden state (which can be chained to the head). Additionally this method supports some model specific features such as returning class or distill prefix tokens for some models. + +Accompanying the `forward_intermediates` function is a `prune_intermediate_layers` function that allows one to prune layers from the model, including both the head, final norm, and/or trailing blocks/stages that are not needed. + +An `indices` argument is used for both `forward_intermediates()` and `prune_intermediate_layers()` to select the features to return or layers to remove. As with the `out_indices` for `features_only` API, `indices` is model specific and selects which intermediates are returned. + +In non-hierarchical block based models such as ViT the indices correspond to the blocks, in models with hierarchical stages they usually correspond to the output of the stem + each hierarchical stage. Both positive (from the start), and negative (relative to the end) indexing works, and `None` is used to return all intermediates. + +The `prune_intermediate_layers()` call returns an indices variable, as negative indices must be converted to absolute (positive) indices when the model is trimmed. + +```py +model = timm.create_model('vit_medium_patch16_reg1_gap_256', pretrained=True) +output, intermediates = model.forward_intermediates(torch.randn(2,3,256,256)) +for i, o in enumerate(intermediates): + print(f'Feat index: {i}, shape: {o.shape}') +``` + +```text +Feat index: 0, shape: torch.Size([2, 512, 16, 16]) +Feat index: 1, shape: torch.Size([2, 512, 16, 16]) +Feat index: 2, shape: torch.Size([2, 512, 16, 16]) +Feat index: 3, shape: torch.Size([2, 512, 16, 16]) +Feat index: 4, shape: torch.Size([2, 512, 16, 16]) +Feat index: 5, shape: torch.Size([2, 512, 16, 16]) +Feat index: 6, shape: torch.Size([2, 512, 16, 16]) +Feat index: 7, shape: torch.Size([2, 512, 16, 16]) +Feat index: 8, shape: torch.Size([2, 512, 16, 16]) +Feat index: 9, shape: torch.Size([2, 512, 16, 16]) +Feat index: 10, shape: torch.Size([2, 512, 16, 16]) +Feat index: 11, shape: torch.Size([2, 512, 16, 16]) +``` + +```py +model = timm.create_model('vit_medium_patch16_reg1_gap_256', pretrained=True) +print('Original params:', sum([p.numel() for p in model.parameters()])) + +indices = model.prune_intermediate_layers(indices=(-2,), prune_head=True, prune_norm=True) # prune head, norm, last block +print('Pruned params:', sum([p.numel() for p in model.parameters()])) + +intermediates = model.forward_intermediates(torch.randn(2,3,256,256), indices=indices, intermediates_only=True) # return penultimate intermediate +for o in intermediates: + print(f'Feat shape: {o.shape}') +``` + +```text +Original params: 38880232 +Pruned params: 35212800 +Feat shape: torch.Size([2, 512, 16, 16]) +``` diff --git a/pytorch-image-models/hfdocs/source/hf_hub.mdx b/pytorch-image-models/hfdocs/source/hf_hub.mdx new file mode 100644 index 0000000000000000000000000000000000000000..9e3ed9dfab774568a734b70adec1c0f8b7f88117 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/hf_hub.mdx @@ -0,0 +1,54 @@ +# Sharing and Loading Models From the Hugging Face Hub + +The `timm` library has a built-in integration with the Hugging Face Hub, making it easy to share and load models from the 🤗 Hub. + +In this short guide, we'll see how to: + 1. Share a `timm` model on the Hub + 2. How to load that model back from the Hub + +## Authenticating + +First, you'll need to make sure you have the `huggingface_hub` package installed. + +```bash +pip install huggingface_hub +``` + +Then, you'll need to authenticate yourself. You can do this by running the following command: + +```bash +huggingface-cli login +``` + +Or, if you're using a notebook, you can use the `notebook_login` helper: + +```py +>>> from huggingface_hub import notebook_login +>>> notebook_login() +``` + +## Sharing a Model + +```py +>>> import timm +>>> model = timm.create_model('resnet18', pretrained=True, num_classes=4) +``` + +Here is where you would normally train or fine-tune the model. We'll skip that for the sake of this tutorial. + +Let's pretend we've now fine-tuned the model. The next step would be to push it to the Hub! We can do this with the `timm.models.hub.push_to_hf_hub` function. + +```py +>>> model_cfg = dict(label_names=['a', 'b', 'c', 'd']) +>>> timm.models.push_to_hf_hub(model, 'resnet18-random', model_config=model_cfg) +``` + +Running the above would push the model to `/resnet18-random` on the Hub. You can now share this model with your friends, or use it in your own code! + +## Loading a Model + +Loading a model from the Hub is as simple as calling `timm.create_model` with the `pretrained` argument set to the name of the model you want to load. In this case, we'll use [`nateraw/resnet18-random`](https://huggingface.co/nateraw/resnet18-random), which is the model we just pushed to the Hub. + +```py +>>> model_reloaded = timm.create_model('hf_hub:nateraw/resnet18-random', pretrained=True) +``` diff --git a/pytorch-image-models/hfdocs/source/index.mdx b/pytorch-image-models/hfdocs/source/index.mdx new file mode 100644 index 0000000000000000000000000000000000000000..cffa5693990b0e9acaa1d1b3200c3a9b83ccc279 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/index.mdx @@ -0,0 +1,22 @@ +# timm + + + +`timm` is a library containing SOTA computer vision models, layers, utilities, optimizers, schedulers, data-loaders, augmentations, and training/evaluation scripts. + +It comes packaged with >700 pretrained models, and is designed to be flexible and easy to use. + +Read the [quick start guide](quickstart) to get up and running with the `timm` library. You will learn how to load, discover, and use pretrained models included in the library. + + diff --git a/pytorch-image-models/hfdocs/source/installation.mdx b/pytorch-image-models/hfdocs/source/installation.mdx new file mode 100644 index 0000000000000000000000000000000000000000..86566d30e3de3dc729fd7843c6c6b4709c843a5f --- /dev/null +++ b/pytorch-image-models/hfdocs/source/installation.mdx @@ -0,0 +1,74 @@ +# Installation + +Before you start, you'll need to setup your environment and install the appropriate packages. `timm` is tested on **Python 3+**. + +## Virtual Environment + +You should install `timm` in a [virtual environment](https://docs.python.org/3/library/venv.html) to keep things tidy and avoid dependency conflicts. + +1. Create and navigate to your project directory: + + ```bash + mkdir ~/my-project + cd ~/my-project + ``` + +2. Start a virtual environment inside your directory: + + ```bash + python -m venv .env + ``` + +3. Activate and deactivate the virtual environment with the following commands: + + ```bash + # Activate the virtual environment + source .env/bin/activate + + # Deactivate the virtual environment + source .env/bin/deactivate + ``` + +Once you've created your virtual environment, you can install `timm` in it. + +## Using pip + +The most straightforward way to install `timm` is with pip: + +```bash +pip install timm +``` + +Alternatively, you can install `timm` from GitHub directly to get the latest, bleeding-edge version: + +```bash +pip install git+https://github.com/rwightman/pytorch-image-models.git +``` + +Run the following command to check if `timm` has been properly installed: + +```bash +python -c "from timm import list_models; print(list_models(pretrained=True)[:5])" +``` + +This command lists the first five pretrained models available in `timm` (which are sorted alphebetically). You should see the following output: + +```python +['adv_inception_v3', 'bat_resnext26ts', 'beit_base_patch16_224', 'beit_base_patch16_224_in22k', 'beit_base_patch16_384'] +``` + +## From Source + +Building `timm` from source lets you make changes to the code base. To install from the source, clone the repository and install with the following commands: + +```bash +git clone https://github.com/rwightman/pytorch-image-models.git +cd pytorch-image-models +pip install -e . +``` + +Again, you can check if `timm` was properly installed with the following command: + +```bash +python -c "from timm import list_models; print(list_models(pretrained=True)[:5])" +``` diff --git a/pytorch-image-models/hfdocs/source/models.mdx b/pytorch-image-models/hfdocs/source/models.mdx new file mode 100644 index 0000000000000000000000000000000000000000..c993f887e20547e538f264c24710878ff357359d --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models.mdx @@ -0,0 +1,230 @@ +# Model Summaries + +The model architectures included come from a wide variety of sources. Sources, including papers, original impl ("reference code") that I rewrote / adapted, and PyTorch impl that I leveraged directly ("code") are listed below. + +Most included models have pretrained weights. The weights are either: + +1. from their original sources +2. ported by myself from their original impl in a different framework (e.g. Tensorflow models) +3. trained from scratch using the included training script + +The validation results for the pretrained weights are [here](results) + +A more exciting view (with pretty pictures) of the models within `timm` can be found at [paperswithcode](https://paperswithcode.com/lib/timm). + +## Big Transfer ResNetV2 (BiT) + +* Implementation: [resnetv2.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnetv2.py) +* Paper: `Big Transfer (BiT): General Visual Representation Learning` - https://arxiv.org/abs/1912.11370 +* Reference code: https://github.com/google-research/big_transfer + +## Cross-Stage Partial Networks + +* Implementation: [cspnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/cspnet.py) +* Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 +* Reference impl: https://github.com/WongKinYiu/CrossStagePartialNetworks + +## DenseNet + +* Implementation: [densenet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/densenet.py) +* Paper: `Densely Connected Convolutional Networks` - https://arxiv.org/abs/1608.06993 +* Code: https://github.com/pytorch/vision/tree/master/torchvision/models + +## DLA + +* Implementation: [dla.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/dla.py) +* Paper: https://arxiv.org/abs/1707.06484 +* Code: https://github.com/ucbdrive/dla + +## Dual-Path Networks + +* Implementation: [dpn.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/dpn.py) +* Paper: `Dual Path Networks` - https://arxiv.org/abs/1707.01629 +* My PyTorch code: https://github.com/rwightman/pytorch-dpn-pretrained +* Reference code: https://github.com/cypw/DPNs + +## GPU-Efficient Networks + +* Implementation: [byobnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/byobnet.py) +* Paper: `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 +* Reference code: https://github.com/idstcv/GPU-Efficient-Networks + +## HRNet + +* Implementation: [hrnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/hrnet.py) +* Paper: `Deep High-Resolution Representation Learning for Visual Recognition` - https://arxiv.org/abs/1908.07919 +* Code: https://github.com/HRNet/HRNet-Image-Classification + +## Inception-V3 + +* Implementation: [inception_v3.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_v3.py) +* Paper: `Rethinking the Inception Architecture for Computer Vision` - https://arxiv.org/abs/1512.00567 +* Code: https://github.com/pytorch/vision/tree/master/torchvision/models + +## Inception-V4 + +* Implementation: [inception_v4.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_v4.py) +* Paper: `Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning` - https://arxiv.org/abs/1602.07261 +* Code: https://github.com/Cadene/pretrained-models.pytorch +* Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets + +## Inception-ResNet-V2 + +* Implementation: [inception_resnet_v2.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_resnet_v2.py) +* Paper: `Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning` - https://arxiv.org/abs/1602.07261 +* Code: https://github.com/Cadene/pretrained-models.pytorch +* Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets + +## NASNet-A + +* Implementation: [nasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/nasnet.py) +* Papers: `Learning Transferable Architectures for Scalable Image Recognition` - https://arxiv.org/abs/1707.07012 +* Code: https://github.com/Cadene/pretrained-models.pytorch +* Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet + +## PNasNet-5 + +* Implementation: [pnasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/pnasnet.py) +* Papers: `Progressive Neural Architecture Search` - https://arxiv.org/abs/1712.00559 +* Code: https://github.com/Cadene/pretrained-models.pytorch +* Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet + +## EfficientNet + +* Implementation: [efficientnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/efficientnet.py) +* Papers: + * EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252 + * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 + * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946 + * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html + * MixNet - https://arxiv.org/abs/1907.09595 + * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 + * MobileNet-V2 - https://arxiv.org/abs/1801.04381 + * FBNet-C - https://arxiv.org/abs/1812.03443 + * Single-Path NAS - https://arxiv.org/abs/1904.02877 +* My PyTorch code: https://github.com/rwightman/gen-efficientnet-pytorch +* Reference code: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet + +## MobileNet-V3 + +* Implementation: [mobilenetv3.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/mobilenetv3.py) +* Paper: `Searching for MobileNetV3` - https://arxiv.org/abs/1905.02244 +* Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet + +## RegNet + +* Implementation: [regnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/regnet.py) +* Paper: `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678 +* Reference code: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py + +## RepVGG + +* Implementation: [byobnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/byobnet.py) +* Paper: `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 +* Reference code: https://github.com/DingXiaoH/RepVGG + +## ResNet, ResNeXt + +* Implementation: [resnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnet.py) + +* ResNet (V1B) + * Paper: `Deep Residual Learning for Image Recognition` - https://arxiv.org/abs/1512.03385 + * Code: https://github.com/pytorch/vision/tree/master/torchvision/models +* ResNeXt + * Paper: `Aggregated Residual Transformations for Deep Neural Networks` - https://arxiv.org/abs/1611.05431 + * Code: https://github.com/pytorch/vision/tree/master/torchvision/models +* 'Bag of Tricks' / Gluon C, D, E, S ResNet variants + * Paper: `Bag of Tricks for Image Classification with CNNs` - https://arxiv.org/abs/1812.01187 + * Code: https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnetv1b.py +* Instagram pretrained / ImageNet tuned ResNeXt101 + * Paper: `Exploring the Limits of Weakly Supervised Pretraining` - https://arxiv.org/abs/1805.00932 + * Weights: https://pytorch.org/hub/facebookresearch_WSL-Images_resnext (NOTE: CC BY-NC 4.0 License, NOT commercial friendly) +* Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet and ResNeXts + * Paper: `Billion-scale semi-supervised learning for image classification` - https://arxiv.org/abs/1905.00546 + * Weights: https://github.com/facebookresearch/semi-supervised-ImageNet1K-models (NOTE: CC BY-NC 4.0 License, NOT commercial friendly) +* Squeeze-and-Excitation Networks + * Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507 + * Code: Added to ResNet base, this is current version going forward, old `senet.py` is being deprecated +* ECAResNet (ECA-Net) + * Paper: `ECA-Net: Efficient Channel Attention for Deep CNN` - https://arxiv.org/abs/1910.03151v4 + * Code: Added to ResNet base, ECA module contributed by @VRandme, reference https://github.com/BangguWu/ECANet + +## Res2Net + +* Implementation: [res2net.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/res2net.py) +* Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169 +* Code: https://github.com/gasvn/Res2Net + +## ResNeSt + +* Implementation: [resnest.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnest.py) +* Paper: `ResNeSt: Split-Attention Networks` - https://arxiv.org/abs/2004.08955 +* Code: https://github.com/zhanghang1989/ResNeSt + +## ReXNet + +* Implementation: [rexnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/rexnet.py) +* Paper: `ReXNet: Diminishing Representational Bottleneck on CNN` - https://arxiv.org/abs/2007.00992 +* Code: https://github.com/clovaai/rexnet + +## Selective-Kernel Networks + +* Implementation: [sknet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/sknet.py) +* Paper: `Selective-Kernel Networks` - https://arxiv.org/abs/1903.06586 +* Code: https://github.com/implus/SKNet, https://github.com/clovaai/assembled-cnn + +## SelecSLS + +* Implementation: [selecsls.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/selecsls.py) +* Paper: `XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera` - https://arxiv.org/abs/1907.00837 +* Code: https://github.com/mehtadushy/SelecSLS-Pytorch + +## Squeeze-and-Excitation Networks + +* Implementation: [senet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/senet.py) +NOTE: I am deprecating this version of the networks, the new ones are part of `resnet.py` + +* Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507 +* Code: https://github.com/Cadene/pretrained-models.pytorch + +## TResNet + +* Implementation: [tresnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/tresnet.py) +* Paper: `TResNet: High Performance GPU-Dedicated Architecture` - https://arxiv.org/abs/2003.13630 +* Code: https://github.com/mrT23/TResNet + +## VGG + +* Implementation: [vgg.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vgg.py) +* Paper: `Very Deep Convolutional Networks For Large-Scale Image Recognition` - https://arxiv.org/pdf/1409.1556.pdf +* Reference code: https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py + +## Vision Transformer + +* Implementation: [vision_transformer.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py) +* Paper: `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 +* Reference code and pretrained weights: https://github.com/google-research/vision_transformer + +## VovNet V2 and V1 + +* Implementation: [vovnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vovnet.py) +* Paper: `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 +* Reference code: https://github.com/youngwanLEE/vovnet-detectron2 + +## Xception + +* Implementation: [xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/xception.py) +* Paper: `Xception: Deep Learning with Depthwise Separable Convolutions` - https://arxiv.org/abs/1610.02357 +* Code: https://github.com/Cadene/pretrained-models.pytorch + +## Xception (Modified Aligned, Gluon) + +* Implementation: [gluon_xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/gluon_xception.py) +* Paper: `Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation` - https://arxiv.org/abs/1802.02611 +* Reference code: https://github.com/dmlc/gluon-cv/tree/master/gluoncv/model_zoo, https://github.com/jfzhang95/pytorch-deeplab-xception/ + +## Xception (Modified Aligned, TF) + +* Implementation: [aligned_xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/aligned_xception.py) +* Paper: `Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation` - https://arxiv.org/abs/1802.02611 +* Reference code: https://github.com/tensorflow/models/tree/master/research/deeplab diff --git a/pytorch-image-models/hfdocs/source/models/adversarial-inception-v3.mdx b/pytorch-image-models/hfdocs/source/models/adversarial-inception-v3.mdx new file mode 100644 index 0000000000000000000000000000000000000000..fd7fce479817b78a3db9ce59ab4a050ad3e3e4af --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/adversarial-inception-v3.mdx @@ -0,0 +1,165 @@ +# Adversarial Inception v3 + +**Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). + +This particular model was trained for study of adversarial examples (adversarial training). + +The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('adv_inception_v3', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `adv_inception_v3`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('adv_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/abs-1804-00097, + author = {Alexey Kurakin and + Ian J. Goodfellow and + Samy Bengio and + Yinpeng Dong and + Fangzhou Liao and + Ming Liang and + Tianyu Pang and + Jun Zhu and + Xiaolin Hu and + Cihang Xie and + Jianyu Wang and + Zhishuai Zhang and + Zhou Ren and + Alan L. Yuille and + Sangxia Huang and + Yao Zhao and + Yuzhe Zhao and + Zhonglin Han and + Junjiajia Long and + Yerkebulan Berdibekov and + Takuya Akiba and + Seiya Tokui and + Motoki Abe}, + title = {Adversarial Attacks and Defences Competition}, + journal = {CoRR}, + volume = {abs/1804.00097}, + year = {2018}, + url = {http://arxiv.org/abs/1804.00097}, + archivePrefix = {arXiv}, + eprint = {1804.00097}, + timestamp = {Thu, 31 Oct 2019 16:31:22 +0100}, + biburl = {https://dblp.org/rec/journals/corr/abs-1804-00097.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/advprop.mdx b/pytorch-image-models/hfdocs/source/models/advprop.mdx new file mode 100644 index 0000000000000000000000000000000000000000..0743a1e413da2a7561db7625ef3da2137dce9cb5 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/advprop.mdx @@ -0,0 +1,524 @@ +# AdvProp (EfficientNet) + +**AdvProp** is an adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to the method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. + +The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0_ap`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{xie2020adversarial, + title={Adversarial Examples Improve Image Recognition}, + author={Cihang Xie and Mingxing Tan and Boqing Gong and Jiang Wang and Alan Yuille and Quoc V. Le}, + year={2020}, + eprint={1911.09665}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/big-transfer.mdx b/pytorch-image-models/hfdocs/source/models/big-transfer.mdx new file mode 100644 index 0000000000000000000000000000000000000000..05255c356a7d2c86a5209c38867e37ac719dc48d --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/big-transfer.mdx @@ -0,0 +1,362 @@ +# Big Transfer (BiT) + +**Big Transfer (BiT)** is a type of pretraining recipe that pre-trains on a large supervised source dataset, and fine-tunes the weights on the target task. Models are trained on the JFT-300M dataset. The finetuned models contained in this collection are finetuned on ImageNet. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('resnetv2_101x1_bitm', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `resnetv2_101x1_bitm`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('resnetv2_101x1_bitm', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{kolesnikov2020big, + title={Big Transfer (BiT): General Visual Representation Learning}, + author={Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Joan Puigcerver and Jessica Yung and Sylvain Gelly and Neil Houlsby}, + year={2020}, + eprint={1912.11370}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/csp-darknet.mdx b/pytorch-image-models/hfdocs/source/models/csp-darknet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..7accdbaefb4c2fbc39e2a26a79aa88037a370b51 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/csp-darknet.mdx @@ -0,0 +1,148 @@ +# CSP-DarkNet + +**CSPDarknet53** is a convolutional neural network and backbone for object detection that uses [DarkNet-53](https://paperswithcode.com/method/darknet-53). It employs a CSPNet strategy to partition the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. + +This CNN is used as the backbone for [YOLOv4](https://paperswithcode.com/method/yolov4). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('cspdarknet53', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `cspdarknet53`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('cspdarknet53', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{bochkovskiy2020yolov4, + title={YOLOv4: Optimal Speed and Accuracy of Object Detection}, + author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao}, + year={2020}, + eprint={2004.10934}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/csp-resnet.mdx b/pytorch-image-models/hfdocs/source/models/csp-resnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..66971057f307a714cf28a8d56e4a8d2c1e4b8520 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/csp-resnet.mdx @@ -0,0 +1,143 @@ +# CSP-ResNet + +**CSPResNet** is a convolutional neural network where we apply the Cross Stage Partial Network (CSPNet) approach to [ResNet](https://paperswithcode.com/method/resnet). The CSPNet partitions the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('cspresnet50', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `cspresnet50`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('cspresnet50', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{wang2019cspnet, + title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN}, + author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh}, + year={2019}, + eprint={1911.11929}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/csp-resnext.mdx b/pytorch-image-models/hfdocs/source/models/csp-resnext.mdx new file mode 100644 index 0000000000000000000000000000000000000000..d9eb8383760cbb6440231abe3f43259a1d2d009b --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/csp-resnext.mdx @@ -0,0 +1,144 @@ +# CSP-ResNeXt + +**CSPResNeXt** is a convolutional neural network where we apply the Cross Stage Partial Network (CSPNet) approach to [ResNeXt](https://paperswithcode.com/method/resnext). The CSPNet partitions the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('cspresnext50', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `cspresnext50`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('cspresnext50', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{wang2019cspnet, + title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN}, + author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh}, + year={2019}, + eprint={1911.11929}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/densenet.mdx b/pytorch-image-models/hfdocs/source/models/densenet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..cec9ba171c32560a6da4ddf94e12cb4be96d6468 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/densenet.mdx @@ -0,0 +1,372 @@ +# DenseNet + +**DenseNet** is a type of convolutional neural network that utilises dense connections between layers, through [Dense Blocks](http://www.paperswithcode.com/method/dense-block), where we connect *all layers* (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers. + +The **DenseNet Blur** variant in this collection by Ross Wightman employs [Blur Pooling](http://www.paperswithcode.com/method/blur-pooling) + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('densenet121', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `densenet121`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('densenet121', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/HuangLW16a, + author = {Gao Huang and + Zhuang Liu and + Kilian Q. Weinberger}, + title = {Densely Connected Convolutional Networks}, + journal = {CoRR}, + volume = {abs/1608.06993}, + year = {2016}, + url = {http://arxiv.org/abs/1608.06993}, + archivePrefix = {arXiv}, + eprint = {1608.06993}, + timestamp = {Mon, 10 Sep 2018 15:49:32 +0200}, + biburl = {https://dblp.org/rec/journals/corr/HuangLW16a.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + +``` +@misc{rw2019timm, + author = {Ross Wightman}, + title = {PyTorch Image Models}, + year = {2019}, + publisher = {GitHub}, + journal = {GitHub repository}, + doi = {10.5281/zenodo.4414861}, + howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/dla.mdx b/pytorch-image-models/hfdocs/source/models/dla.mdx new file mode 100644 index 0000000000000000000000000000000000000000..ab38d62677563ff225f204a95598eba3ac9c2f37 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/dla.mdx @@ -0,0 +1,612 @@ +# Deep Layer Aggregation + +Extending “shallow” skip connections, **Dense Layer Aggregation (DLA)** incorporates more depth and sharing. The authors introduce two structures for deep layer aggregation (DLA): iterative deep aggregation (IDA) and hierarchical deep aggregation (HDA). These structures are expressed through an architectural framework, independent of the choice of backbone, for compatibility with current and future networks. + +IDA focuses on fusing resolutions and scales while HDA focuses on merging features from all modules and channels. IDA follows the base hierarchy to refine resolution and aggregate scale stage-bystage. HDA assembles its own hierarchy of tree-structured connections that cross and merge stages to aggregate different levels of representation. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('dla102', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `dla102`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('dla102', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{yu2019deep, + title={Deep Layer Aggregation}, + author={Fisher Yu and Dequan Wang and Evan Shelhamer and Trevor Darrell}, + year={2019}, + eprint={1707.06484}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/dpn.mdx b/pytorch-image-models/hfdocs/source/models/dpn.mdx new file mode 100644 index 0000000000000000000000000000000000000000..26d8a4a7b7db52024f4e63d13350f250044984c1 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/dpn.mdx @@ -0,0 +1,323 @@ +# Dual Path Network (DPN) + +A **Dual Path Network (DPN)** is a convolutional neural network which presents a new topology of connection paths internally. The intuition is that [ResNets](https://paperswithcode.com/method/resnet) enables feature re-usage while DenseNet enables new feature exploration, and both are important for learning good representations. To enjoy the benefits from both path topologies, Dual Path Networks share common features while maintaining the flexibility to explore new features through dual path architectures. + +The principal building block is an [DPN Block](https://paperswithcode.com/method/dpn-block). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('dpn107', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `dpn107`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('dpn107', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{chen2017dual, + title={Dual Path Networks}, + author={Yunpeng Chen and Jianan Li and Huaxin Xiao and Xiaojie Jin and Shuicheng Yan and Jiashi Feng}, + year={2017}, + eprint={1707.01629}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/ecaresnet.mdx b/pytorch-image-models/hfdocs/source/models/ecaresnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..c5c1619ea31d9100274c1dbd0fd2e1022a4c4524 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/ecaresnet.mdx @@ -0,0 +1,303 @@ +# ECA-ResNet + +An **ECA ResNet** is a variant on a [ResNet](https://paperswithcode.com/method/resnet) that utilises an [Efficient Channel Attention module](https://paperswithcode.com/method/efficient-channel-attention). Efficient Channel Attention is an architectural unit based on [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) that reduces model complexity without dimensionality reduction. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('ecaresnet101d', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `ecaresnet101d`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('ecaresnet101d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{wang2020ecanet, + title={ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks}, + author={Qilong Wang and Banggu Wu and Pengfei Zhu and Peihua Li and Wangmeng Zuo and Qinghua Hu}, + year={2020}, + eprint={1910.03151}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/efficientnet-pruned.mdx b/pytorch-image-models/hfdocs/source/models/efficientnet-pruned.mdx new file mode 100644 index 0000000000000000000000000000000000000000..444f6d521d4560e012c514bba65623e15d1634b9 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/efficientnet-pruned.mdx @@ -0,0 +1,212 @@ +# EfficientNet (Knapsack Pruned) + +**EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way. + +The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. + +The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). + +This collection consists of pruned EfficientNet models. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('efficientnet_b1_pruned', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `efficientnet_b1_pruned`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('efficientnet_b1_pruned', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{tan2020efficientnet, + title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, + author={Mingxing Tan and Quoc V. Le}, + year={2020}, + eprint={1905.11946}, + archivePrefix={arXiv}, + primaryClass={cs.LG} +} +``` + +``` +@misc{aflalo2020knapsack, + title={Knapsack Pruning with Inner Distillation}, + author={Yonathan Aflalo and Asaf Noy and Ming Lin and Itamar Friedman and Lihi Zelnik}, + year={2020}, + eprint={2002.08258}, + archivePrefix={arXiv}, + primaryClass={cs.LG} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/efficientnet.mdx b/pytorch-image-models/hfdocs/source/models/efficientnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..4bcaba622c6eb9105860bfe8875b400f95735eeb --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/efficientnet.mdx @@ -0,0 +1,392 @@ +# EfficientNet + +**EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way. + +The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. + +The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('efficientnet_b0', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `efficientnet_b0`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('efficientnet_b0', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{tan2020efficientnet, + title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, + author={Mingxing Tan and Quoc V. Le}, + year={2020}, + eprint={1905.11946}, + archivePrefix={arXiv}, + primaryClass={cs.LG} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/ensemble-adversarial.mdx b/pytorch-image-models/hfdocs/source/models/ensemble-adversarial.mdx new file mode 100644 index 0000000000000000000000000000000000000000..4781aa1f1884525a316cff689b3db18b9f38d85d --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/ensemble-adversarial.mdx @@ -0,0 +1,165 @@ +# # Ensemble Adversarial Inception ResNet v2 + +**Inception-ResNet-v2** is a convolutional neural architecture that builds on the Inception family of architectures but incorporates [residual connections](https://paperswithcode.com/method/residual-connection) (replacing the filter concatenation stage of the Inception architecture). + +This particular model was trained for study of adversarial examples (adversarial training). + +The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('ens_adv_inception_resnet_v2', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `ens_adv_inception_resnet_v2`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('ens_adv_inception_resnet_v2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/abs-1804-00097, + author = {Alexey Kurakin and + Ian J. Goodfellow and + Samy Bengio and + Yinpeng Dong and + Fangzhou Liao and + Ming Liang and + Tianyu Pang and + Jun Zhu and + Xiaolin Hu and + Cihang Xie and + Jianyu Wang and + Zhishuai Zhang and + Zhou Ren and + Alan L. Yuille and + Sangxia Huang and + Yao Zhao and + Yuzhe Zhao and + Zhonglin Han and + Junjiajia Long and + Yerkebulan Berdibekov and + Takuya Akiba and + Seiya Tokui and + Motoki Abe}, + title = {Adversarial Attacks and Defences Competition}, + journal = {CoRR}, + volume = {abs/1804.00097}, + year = {2018}, + url = {http://arxiv.org/abs/1804.00097}, + archivePrefix = {arXiv}, + eprint = {1804.00097}, + timestamp = {Thu, 31 Oct 2019 16:31:22 +0100}, + biburl = {https://dblp.org/rec/journals/corr/abs-1804-00097.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/ese-vovnet.mdx b/pytorch-image-models/hfdocs/source/models/ese-vovnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..d92a603440502ac7808cd132696ab7ad5d15d428 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/ese-vovnet.mdx @@ -0,0 +1,159 @@ +# ESE-VoVNet + +**VoVNet** is a convolutional neural network that seeks to make [DenseNet](https://paperswithcode.com/method/densenet) more efficient by concatenating all features only once in the last feature map, which makes input size constant and enables enlarging new output channel. + +Read about [one-shot aggregation here](https://paperswithcode.com/method/one-shot-aggregation). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('ese_vovnet19b_dw', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `ese_vovnet19b_dw`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('ese_vovnet19b_dw', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{lee2019energy, + title={An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection}, + author={Youngwan Lee and Joong-won Hwang and Sangrok Lee and Yuseok Bae and Jongyoul Park}, + year={2019}, + eprint={1904.09730}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/fbnet.mdx b/pytorch-image-models/hfdocs/source/models/fbnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..cdb3ba610c358c31418baeb0dac4482925b879c5 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/fbnet.mdx @@ -0,0 +1,143 @@ +# FBNet + +**FBNet** is a type of convolutional neural architectures discovered through [DNAS](https://paperswithcode.com/method/dnas) neural architecture search. It utilises a basic type of image model block inspired by [MobileNetv2](https://paperswithcode.com/method/mobilenetv2) that utilises depthwise convolutions and an inverted residual structure (see components). + +The principal building block is the [FBNet Block](https://paperswithcode.com/method/fbnet-block). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('fbnetc_100', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `fbnetc_100`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('fbnetc_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{wu2019fbnet, + title={FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search}, + author={Bichen Wu and Xiaoliang Dai and Peizhao Zhang and Yanghan Wang and Fei Sun and Yiming Wu and Yuandong Tian and Peter Vajda and Yangqing Jia and Kurt Keutzer}, + year={2019}, + eprint={1812.03443}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/gloun-inception-v3.mdx b/pytorch-image-models/hfdocs/source/models/gloun-inception-v3.mdx new file mode 100644 index 0000000000000000000000000000000000000000..edf3d87075ff16e072eacf55aaaff48d5deba47e --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/gloun-inception-v3.mdx @@ -0,0 +1,145 @@ +# (Gluon) Inception v3 + +**Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). + +The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('gluon_inception_v3', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `gluon_inception_v3`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('gluon_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/SzegedyVISW15, + author = {Christian Szegedy and + Vincent Vanhoucke and + Sergey Ioffe and + Jonathon Shlens and + Zbigniew Wojna}, + title = {Rethinking the Inception Architecture for Computer Vision}, + journal = {CoRR}, + volume = {abs/1512.00567}, + year = {2015}, + url = {http://arxiv.org/abs/1512.00567}, + archivePrefix = {arXiv}, + eprint = {1512.00567}, + timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, + biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/gloun-resnet.mdx b/pytorch-image-models/hfdocs/source/models/gloun-resnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..8cd9705690d675ad51a63bebeda34a41bf278cb8 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/gloun-resnet.mdx @@ -0,0 +1,571 @@ +# (Gluon) ResNet + +**Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. + +The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('gluon_resnet101_v1b', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `gluon_resnet101_v1b`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('gluon_resnet101_v1b', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/HeZRS15, + author = {Kaiming He and + Xiangyu Zhang and + Shaoqing Ren and + Jian Sun}, + title = {Deep Residual Learning for Image Recognition}, + journal = {CoRR}, + volume = {abs/1512.03385}, + year = {2015}, + url = {http://arxiv.org/abs/1512.03385}, + archivePrefix = {arXiv}, + eprint = {1512.03385}, + timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, + biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/gloun-resnext.mdx b/pytorch-image-models/hfdocs/source/models/gloun-resnext.mdx new file mode 100644 index 0000000000000000000000000000000000000000..dd4cd03364b8c4a78ccc7f4b59352002283b7277 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/gloun-resnext.mdx @@ -0,0 +1,209 @@ +# (Gluon) ResNeXt + +A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) \\( C \\), as an essential factor in addition to the dimensions of depth and width. + +The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('gluon_resnext101_32x4d', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `gluon_resnext101_32x4d`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('gluon_resnext101_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/XieGDTH16, + author = {Saining Xie and + Ross B. Girshick and + Piotr Doll{\'{a}}r and + Zhuowen Tu and + Kaiming He}, + title = {Aggregated Residual Transformations for Deep Neural Networks}, + journal = {CoRR}, + volume = {abs/1611.05431}, + year = {2016}, + url = {http://arxiv.org/abs/1611.05431}, + archivePrefix = {arXiv}, + eprint = {1611.05431}, + timestamp = {Mon, 13 Aug 2018 16:45:58 +0200}, + biburl = {https://dblp.org/rec/journals/corr/XieGDTH16.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/gloun-senet.mdx b/pytorch-image-models/hfdocs/source/models/gloun-senet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..ee28d7c81f656518a85b13e27efb29fc7864af2b --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/gloun-senet.mdx @@ -0,0 +1,130 @@ +# (Gluon) SENet + +A **SENet** is a convolutional neural network architecture that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. + +The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('gluon_senet154', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `gluon_senet154`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('gluon_senet154', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{hu2019squeezeandexcitation, + title={Squeeze-and-Excitation Networks}, + author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, + year={2019}, + eprint={1709.01507}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/gloun-seresnext.mdx b/pytorch-image-models/hfdocs/source/models/gloun-seresnext.mdx new file mode 100644 index 0000000000000000000000000000000000000000..bb43215549cd20ce3391ad912b122a4830e81b39 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/gloun-seresnext.mdx @@ -0,0 +1,203 @@ +# (Gluon) SE-ResNeXt + +**SE ResNeXt** is a variant of a [ResNext](https://www.paperswithcode.com/method/resnext) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. + +The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('gluon_seresnext101_32x4d', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `gluon_seresnext101_32x4d`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('gluon_seresnext101_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{hu2019squeezeandexcitation, + title={Squeeze-and-Excitation Networks}, + author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, + year={2019}, + eprint={1709.01507}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/gloun-xception.mdx b/pytorch-image-models/hfdocs/source/models/gloun-xception.mdx new file mode 100644 index 0000000000000000000000000000000000000000..0dee376e7cd57d0d9f2a5a8d17e9ef0f1176948d --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/gloun-xception.mdx @@ -0,0 +1,133 @@ +# (Gluon) Xception + +**Xception** is a convolutional neural network architecture that relies solely on [depthwise separable convolution](https://paperswithcode.com/method/depthwise-separable-convolution) layers. + +The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('gluon_xception65', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `gluon_xception65`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('gluon_xception65', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{chollet2017xception, + title={Xception: Deep Learning with Depthwise Separable Convolutions}, + author={François Chollet}, + year={2017}, + eprint={1610.02357}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/hrnet.mdx b/pytorch-image-models/hfdocs/source/models/hrnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..3437b96b79bb84b4e27b3857778950d3000af0e4 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/hrnet.mdx @@ -0,0 +1,425 @@ +# HRNet + +**HRNet**, or **High-Resolution Net**, is a general purpose convolutional neural network for tasks like semantic segmentation, object detection and image classification. It is able to maintain high resolution representations through the whole process. We start from a high-resolution convolution stream, gradually add high-to-low resolution convolution streams one by one, and connect the multi-resolution streams in parallel. The resulting network consists of several (\\( 4 \\) in the paper) stages and the \\( n \\)th stage contains \\( n \\) streams corresponding to \\( n \\) resolutions. The authors conduct repeated multi-resolution fusions by exchanging the information across the parallel streams over and over. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('hrnet_w18', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `hrnet_w18`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('hrnet_w18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{sun2019highresolution, + title={High-Resolution Representations for Labeling Pixels and Regions}, + author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang}, + year={2019}, + eprint={1904.04514}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/ig-resnext.mdx b/pytorch-image-models/hfdocs/source/models/ig-resnext.mdx new file mode 100644 index 0000000000000000000000000000000000000000..d5a035ba63f29bfa1ba729f418df4c5cd035e85e --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/ig-resnext.mdx @@ -0,0 +1,276 @@ +# Instagram ResNeXt WSL + +A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) \\( C \\), as an essential factor in addition to the dimensions of depth and width. + +This model was trained on billions of Instagram images using thousands of distinct hashtags as labels exhibit excellent transfer learning performance. + +Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('ig_resnext101_32x16d', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `ig_resnext101_32x16d`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('ig_resnext101_32x16d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{mahajan2018exploring, + title={Exploring the Limits of Weakly Supervised Pretraining}, + author={Dhruv Mahajan and Ross Girshick and Vignesh Ramanathan and Kaiming He and Manohar Paluri and Yixuan Li and Ashwin Bharambe and Laurens van der Maaten}, + year={2018}, + eprint={1805.00932}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/inception-resnet-v2.mdx b/pytorch-image-models/hfdocs/source/models/inception-resnet-v2.mdx new file mode 100644 index 0000000000000000000000000000000000000000..c4eb15869d8526ba67c60c0f707c1b81cd7f143f --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/inception-resnet-v2.mdx @@ -0,0 +1,139 @@ +# Inception ResNet v2 + +**Inception-ResNet-v2** is a convolutional neural architecture that builds on the Inception family of architectures but incorporates [residual connections](https://paperswithcode.com/method/residual-connection) (replacing the filter concatenation stage of the Inception architecture). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('inception_resnet_v2', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `inception_resnet_v2`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('inception_resnet_v2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{szegedy2016inceptionv4, + title={Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning}, + author={Christian Szegedy and Sergey Ioffe and Vincent Vanhoucke and Alex Alemi}, + year={2016}, + eprint={1602.07261}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/inception-v3.mdx b/pytorch-image-models/hfdocs/source/models/inception-v3.mdx new file mode 100644 index 0000000000000000000000000000000000000000..cd21e5de0f319c70891e1e22ce1180868013113b --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/inception-v3.mdx @@ -0,0 +1,152 @@ +# Inception v3 + +**Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('inception_v3', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `inception_v3`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/SzegedyVISW15, + author = {Christian Szegedy and + Vincent Vanhoucke and + Sergey Ioffe and + Jonathon Shlens and + Zbigniew Wojna}, + title = {Rethinking the Inception Architecture for Computer Vision}, + journal = {CoRR}, + volume = {abs/1512.00567}, + year = {2015}, + url = {http://arxiv.org/abs/1512.00567}, + archivePrefix = {arXiv}, + eprint = {1512.00567}, + timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, + biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/inception-v4.mdx b/pytorch-image-models/hfdocs/source/models/inception-v4.mdx new file mode 100644 index 0000000000000000000000000000000000000000..f9b4adf05157b2c87b6630fe932a89338e1ee41a --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/inception-v4.mdx @@ -0,0 +1,138 @@ +# Inception v4 + +**Inception-v4** is a convolutional neural network architecture that builds on previous iterations of the Inception family by simplifying the architecture and using more inception modules than [Inception-v3](https://paperswithcode.com/method/inception-v3). +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('inception_v4', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `inception_v4`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('inception_v4', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{szegedy2016inceptionv4, + title={Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning}, + author={Christian Szegedy and Sergey Ioffe and Vincent Vanhoucke and Alex Alemi}, + year={2016}, + eprint={1602.07261}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/legacy-se-resnet.mdx b/pytorch-image-models/hfdocs/source/models/legacy-se-resnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..68ed5a30b9bf3ce8255b6e0d2a47d9a83dd731f3 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/legacy-se-resnet.mdx @@ -0,0 +1,324 @@ +# (Legacy) SE-ResNet + +**SE ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('legacy_seresnet101', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `legacy_seresnet101`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('legacy_seresnet101', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{hu2019squeezeandexcitation, + title={Squeeze-and-Excitation Networks}, + author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, + year={2019}, + eprint={1709.01507}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/legacy-se-resnext.mdx b/pytorch-image-models/hfdocs/source/models/legacy-se-resnext.mdx new file mode 100644 index 0000000000000000000000000000000000000000..8ff527f3dabb4f3a28b9cd87de02475ab989ad60 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/legacy-se-resnext.mdx @@ -0,0 +1,234 @@ +# (Legacy) SE-ResNeXt + +**SE ResNeXt** is a variant of a [ResNeXt](https://www.paperswithcode.com/method/resnext) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('legacy_seresnext101_32x4d', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `legacy_seresnext101_32x4d`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('legacy_seresnext101_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{hu2019squeezeandexcitation, + title={Squeeze-and-Excitation Networks}, + author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, + year={2019}, + eprint={1709.01507}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/legacy-senet.mdx b/pytorch-image-models/hfdocs/source/models/legacy-senet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..9768d868e07710b55bbdc174cdb766458c6985c9 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/legacy-senet.mdx @@ -0,0 +1,141 @@ +# (Legacy) SENet + +A **SENet** is a convolutional neural network architecture that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. + +The weights from this model were ported from Gluon. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('legacy_senet154', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `legacy_senet154`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('legacy_senet154', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{hu2019squeezeandexcitation, + title={Squeeze-and-Excitation Networks}, + author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, + year={2019}, + eprint={1709.01507}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/mixnet.mdx b/pytorch-image-models/hfdocs/source/models/mixnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..2e058027eaabd2095c80ac6ad2a430d2072bf36e --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/mixnet.mdx @@ -0,0 +1,231 @@ +# MixNet + +**MixNet** is a type of convolutional neural network discovered via AutoML that utilises [MixConvs](https://paperswithcode.com/method/mixconv) instead of regular [depthwise convolutions](https://paperswithcode.com/method/depthwise-convolution). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('mixnet_l', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `mixnet_l`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('mixnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{tan2019mixconv, + title={MixConv: Mixed Depthwise Convolutional Kernels}, + author={Mingxing Tan and Quoc V. Le}, + year={2019}, + eprint={1907.09595}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/mnasnet.mdx b/pytorch-image-models/hfdocs/source/models/mnasnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..e49c06cc73da9d14a9d3b34896aff6a011c3b14d --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/mnasnet.mdx @@ -0,0 +1,176 @@ +# MnasNet + +**MnasNet** is a type of convolutional neural network optimized for mobile devices that is discovered through mobile neural architecture search, which explicitly incorporates model latency into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. The main building block is an [inverted residual block](https://paperswithcode.com/method/inverted-residual-block) (from [MobileNetV2](https://paperswithcode.com/method/mobilenetv2)). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('mnasnet_100', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `mnasnet_100`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('mnasnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{tan2019mnasnet, + title={MnasNet: Platform-Aware Neural Architecture Search for Mobile}, + author={Mingxing Tan and Bo Chen and Ruoming Pang and Vijay Vasudevan and Mark Sandler and Andrew Howard and Quoc V. Le}, + year={2019}, + eprint={1807.11626}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/mobilenet-v2.mdx b/pytorch-image-models/hfdocs/source/models/mobilenet-v2.mdx new file mode 100644 index 0000000000000000000000000000000000000000..507ec99dd22f55998f5002c45ff929efc414781f --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/mobilenet-v2.mdx @@ -0,0 +1,277 @@ +# MobileNet v2 + +**MobileNetV2** is a convolutional neural network architecture that seeks to perform well on mobile devices. It is based on an [inverted residual structure](https://paperswithcode.com/method/inverted-residual-block) where the residual connections are between the bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. As a whole, the architecture of MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by 19 residual bottleneck layers. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('mobilenetv2_100', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `mobilenetv2_100`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('mobilenetv2_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/abs-1801-04381, + author = {Mark Sandler and + Andrew G. Howard and + Menglong Zhu and + Andrey Zhmoginov and + Liang{-}Chieh Chen}, + title = {Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, + Detection and Segmentation}, + journal = {CoRR}, + volume = {abs/1801.04381}, + year = {2018}, + url = {http://arxiv.org/abs/1801.04381}, + archivePrefix = {arXiv}, + eprint = {1801.04381}, + timestamp = {Tue, 12 Jan 2021 15:30:06 +0100}, + biburl = {https://dblp.org/rec/journals/corr/abs-1801-04381.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/mobilenet-v3.mdx b/pytorch-image-models/hfdocs/source/models/mobilenet-v3.mdx new file mode 100644 index 0000000000000000000000000000000000000000..e1ff317ba2500f30ac46b6e9b265e9f1ace4e28e --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/mobilenet-v3.mdx @@ -0,0 +1,205 @@ +# MobileNet v3 + +**MobileNetV3** is a convolutional neural network that is designed for mobile phone CPUs. The network design includes the use of a [hard swish activation](https://paperswithcode.com/method/hard-swish) and [squeeze-and-excitation](https://paperswithcode.com/method/squeeze-and-excitation-block) modules in the [MBConv blocks](https://paperswithcode.com/method/inverted-residual-block). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('mobilenetv3_large_100', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `mobilenetv3_large_100`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('mobilenetv3_large_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/abs-1905-02244, + author = {Andrew Howard and + Mark Sandler and + Grace Chu and + Liang{-}Chieh Chen and + Bo Chen and + Mingxing Tan and + Weijun Wang and + Yukun Zhu and + Ruoming Pang and + Vijay Vasudevan and + Quoc V. Le and + Hartwig Adam}, + title = {Searching for MobileNetV3}, + journal = {CoRR}, + volume = {abs/1905.02244}, + year = {2019}, + url = {http://arxiv.org/abs/1905.02244}, + archivePrefix = {arXiv}, + eprint = {1905.02244}, + timestamp = {Tue, 12 Jan 2021 15:30:06 +0100}, + biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/nasnet.mdx b/pytorch-image-models/hfdocs/source/models/nasnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..2cde9d2d61cca8deb82a093defa9c8dd02c43e7f --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/nasnet.mdx @@ -0,0 +1,137 @@ +# NASNet + +**NASNet** is a type of convolutional neural network discovered through neural architecture search. The building blocks consist of normal and reduction cells. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('nasnetalarge', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `nasnetalarge`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('nasnetalarge', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{zoph2018learning, + title={Learning Transferable Architectures for Scalable Image Recognition}, + author={Barret Zoph and Vijay Vasudevan and Jonathon Shlens and Quoc V. Le}, + year={2018}, + eprint={1707.07012}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/noisy-student.mdx b/pytorch-image-models/hfdocs/source/models/noisy-student.mdx new file mode 100644 index 0000000000000000000000000000000000000000..2d12e8c870cdcd434a50ba4999251a54d9105f60 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/noisy-student.mdx @@ -0,0 +1,577 @@ +# Noisy Student (EfficientNet) + +**Noisy Student Training** is a semi-supervised learning approach. It extends the idea of self-training +and distillation with the use of equal-or-larger student models and noise added to the student during learning. It has three main steps: + +1. train a teacher model on labeled images +2. use the teacher to generate pseudo labels on unlabeled images +3. train a student model on the combination of labeled images and pseudo labeled images. + +The algorithm is iterated a few times by treating the student as a teacher to relabel the unlabeled data and training a new student. + +Noisy Student Training seeks to improve on self-training and distillation in two ways. First, it makes the student larger than, or at least equal to, the teacher so the student can better learn from a larger dataset. Second, it adds noise to the student so the noised student is forced to learn harder from the pseudo labels. To noise the student, it uses input noise such as RandAugment data augmentation, and model noise such as dropout and stochastic depth during training. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0_ns`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{xie2020selftraining, + title={Self-training with Noisy Student improves ImageNet classification}, + author={Qizhe Xie and Minh-Thang Luong and Eduard Hovy and Quoc V. Le}, + year={2020}, + eprint={1911.04252}, + archivePrefix={arXiv}, + primaryClass={cs.LG} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/pnasnet.mdx b/pytorch-image-models/hfdocs/source/models/pnasnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..fff5851cdcb5e64b403dcc7ab463616902c52b35 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/pnasnet.mdx @@ -0,0 +1,138 @@ +# PNASNet + +**Progressive Neural Architecture Search**, or **PNAS**, is a method for learning the structure of convolutional neural networks (CNNs). It uses a sequential model-based optimization (SMBO) strategy, where we search the space of cell structures, starting with simple (shallow) models and progressing to complex ones, pruning out unpromising structures as we go. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('pnasnet5large', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `pnasnet5large`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('pnasnet5large', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{liu2018progressive, + title={Progressive Neural Architecture Search}, + author={Chenxi Liu and Barret Zoph and Maxim Neumann and Jonathon Shlens and Wei Hua and Li-Jia Li and Li Fei-Fei and Alan Yuille and Jonathan Huang and Kevin Murphy}, + year={2018}, + eprint={1712.00559}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/regnetx.mdx b/pytorch-image-models/hfdocs/source/models/regnetx.mdx new file mode 100644 index 0000000000000000000000000000000000000000..0a9f8e4b2c1724f2702ff77c9784141597f3ccb9 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/regnetx.mdx @@ -0,0 +1,559 @@ +# RegNetX + +**RegNetX** is a convolutional network design space with simple, regular models with parameters: depth \\( d \\), initial width \\( w\_{0} > 0 \\), and slope \\( w\_{a} > 0 \\), and generates a different block width \\( u\_{j} \\) for each block \\( j < d \\). The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure): + +\\( \\) u\_{j} = w\_{0} + w\_{a}\cdot{j} \\( \\) + +For **RegNetX** we have additional restrictions: we set \\( b = 1 \\) (the bottleneck ratio), \\( 12 \leq d \leq 28 \\), and \\( w\_{m} \geq 2 \\) (the width multiplier). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('regnetx_002', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `regnetx_002`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('regnetx_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{radosavovic2020designing, + title={Designing Network Design Spaces}, + author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár}, + year={2020}, + eprint={2003.13678}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/regnety.mdx b/pytorch-image-models/hfdocs/source/models/regnety.mdx new file mode 100644 index 0000000000000000000000000000000000000000..be1a5c1c7507e4d99cf6ef00920751b1c304117c --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/regnety.mdx @@ -0,0 +1,573 @@ +# RegNetY + +**RegNetY** is a convolutional network design space with simple, regular models with parameters: depth \\( d \\), initial width \\( w\_{0} > 0 \\), and slope \\( w\_{a} > 0 \\), and generates a different block width \\( u\_{j} \\) for each block \\( j < d \\). The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure): + +\\( \\) u\_{j} = w\_{0} + w\_{a}\cdot{j} \\( \\) + +For **RegNetX** authors have additional restrictions: we set \\( b = 1 \\) (the bottleneck ratio), \\( 12 \leq d \leq 28 \\), and \\( w\_{m} \geq 2 \\) (the width multiplier). + +For **RegNetY** authors make one change, which is to include [Squeeze-and-Excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('regnety_002', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `regnety_002`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('regnety_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{radosavovic2020designing, + title={Designing Network Design Spaces}, + author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár}, + year={2020}, + eprint={2003.13678}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/res2net.mdx b/pytorch-image-models/hfdocs/source/models/res2net.mdx new file mode 100644 index 0000000000000000000000000000000000000000..751cf35d42fc6c7a67d9b3ca9e126c26f7779f27 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/res2net.mdx @@ -0,0 +1,327 @@ +# Res2Net + +**Res2Net** is an image model that employs a variation on bottleneck residual blocks, [Res2Net Blocks](https://paperswithcode.com/method/res2net-block). The motivation is to be able to represent features at multiple scales. This is achieved through a novel building block for CNNs that constructs hierarchical residual-like connections within one single residual block. This represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('res2net101_26w_4s', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `res2net101_26w_4s`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('res2net101_26w_4s', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{Gao_2021, + title={Res2Net: A New Multi-Scale Backbone Architecture}, + volume={43}, + ISSN={1939-3539}, + url={http://dx.doi.org/10.1109/TPAMI.2019.2938758}, + DOI={10.1109/tpami.2019.2938758}, + number={2}, + journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, + publisher={Institute of Electrical and Electronics Engineers (IEEE)}, + author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip}, + year={2021}, + month={Feb}, + pages={652–662} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/res2next.mdx b/pytorch-image-models/hfdocs/source/models/res2next.mdx new file mode 100644 index 0000000000000000000000000000000000000000..8c883dff7a67eb068a79e942984ffa06c698d62a --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/res2next.mdx @@ -0,0 +1,142 @@ +# Res2NeXt + +**Res2NeXt** is an image model that employs a variation on [ResNeXt](https://paperswithcode.com/method/resnext) bottleneck residual blocks. The motivation is to be able to represent features at multiple scales. This is achieved through a novel building block for CNNs that constructs hierarchical residual-like connections within one single residual block. This represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('res2next50', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `res2next50`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('res2next50', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{Gao_2021, + title={Res2Net: A New Multi-Scale Backbone Architecture}, + volume={43}, + ISSN={1939-3539}, + url={http://dx.doi.org/10.1109/TPAMI.2019.2938758}, + DOI={10.1109/tpami.2019.2938758}, + number={2}, + journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, + publisher={Institute of Electrical and Electronics Engineers (IEEE)}, + author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip}, + year={2021}, + month={Feb}, + pages={652–662} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/resnest.mdx b/pytorch-image-models/hfdocs/source/models/resnest.mdx new file mode 100644 index 0000000000000000000000000000000000000000..59ac6c6156125debd8734e3a5b4418cddd8bed32 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/resnest.mdx @@ -0,0 +1,475 @@ +# ResNeSt + +A **ResNeSt** is a variant on a [ResNet](https://paperswithcode.com/method/resnet), which instead stacks [Split-Attention blocks](https://paperswithcode.com/method/split-attention). The cardinal group representations are then concatenated along the channel dimension: \\( V = \text{Concat} \\){\\( V^{1},V^{2},\cdots{V}^{K} \\)}. As in standard residual blocks, the final output \\( Y \\) of otheur Split-Attention block is produced using a shortcut connection: \\( Y=V+X \\), if the input and output feature-map share the same shape. For blocks with a stride, an appropriate transformation \\( \mathcal{T} \\) is applied to the shortcut connection to align the output shapes: \\( Y=V+\mathcal{T}(X) \\). For example, \\( \mathcal{T} \\) can be strided convolution or combined convolution-with-pooling. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('resnest101e', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `resnest101e`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('resnest101e', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{zhang2020resnest, + title={ResNeSt: Split-Attention Networks}, + author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola}, + year={2020}, + eprint={2004.08955}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/resnet-d.mdx b/pytorch-image-models/hfdocs/source/models/resnet-d.mdx new file mode 100644 index 0000000000000000000000000000000000000000..1f6b47b02a8dc65a704d8ffb69bcced37a43a3b9 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/resnet-d.mdx @@ -0,0 +1,330 @@ +# ResNet-D + +**ResNet-D** is a modification on the [ResNet](https://paperswithcode.com/method/resnet) architecture that utilises an [average pooling](https://paperswithcode.com/method/average-pooling) tweak for downsampling. The motivation is that in the unmodified ResNet, the [1×1 convolution](https://paperswithcode.com/method/1x1-convolution) for the downsampling block ignores 3/4 of input feature maps, so this is modified so no information will be ignored + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('resnet101d', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `resnet101d`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('resnet101d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{he2018bag, + title={Bag of Tricks for Image Classification with Convolutional Neural Networks}, + author={Tong He and Zhi Zhang and Hang Zhang and Zhongyue Zhang and Junyuan Xie and Mu Li}, + year={2018}, + eprint={1812.01187}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/resnet.mdx b/pytorch-image-models/hfdocs/source/models/resnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..3f3641f785f5236ba095095c18632b6efc4d4db8 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/resnet.mdx @@ -0,0 +1,445 @@ +# ResNet + +**Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('resnet18', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `resnet18`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/HeZRS15, + author = {Kaiming He and + Xiangyu Zhang and + Shaoqing Ren and + Jian Sun}, + title = {Deep Residual Learning for Image Recognition}, + journal = {CoRR}, + volume = {abs/1512.03385}, + year = {2015}, + url = {http://arxiv.org/abs/1512.03385}, + archivePrefix = {arXiv}, + eprint = {1512.03385}, + timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, + biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/resnext.mdx b/pytorch-image-models/hfdocs/source/models/resnext.mdx new file mode 100644 index 0000000000000000000000000000000000000000..7c5eb166e18d07188e00e276a3e2b4ea4023466f --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/resnext.mdx @@ -0,0 +1,250 @@ +# ResNeXt + +A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) \\( C \\), as an essential factor in addition to the dimensions of depth and width. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('resnext101_32x8d', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `resnext101_32x8d`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('resnext101_32x8d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/XieGDTH16, + author = {Saining Xie and + Ross B. Girshick and + Piotr Doll{\'{a}}r and + Zhuowen Tu and + Kaiming He}, + title = {Aggregated Residual Transformations for Deep Neural Networks}, + journal = {CoRR}, + volume = {abs/1611.05431}, + year = {2016}, + url = {http://arxiv.org/abs/1611.05431}, + archivePrefix = {arXiv}, + eprint = {1611.05431}, + timestamp = {Mon, 13 Aug 2018 16:45:58 +0200}, + biburl = {https://dblp.org/rec/journals/corr/XieGDTH16.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/rexnet.mdx b/pytorch-image-models/hfdocs/source/models/rexnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..09fb2144b54dad93bea6965e55b82dc70fa95e54 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/rexnet.mdx @@ -0,0 +1,264 @@ +# RexNet + +**Rank Expansion Networks** (ReXNets) follow a set of new design principles for designing bottlenecks in image classification models. Authors refine each layer by 1) expanding the input channel size of the convolution layer and 2) replacing the [ReLU6s](https://www.paperswithcode.com/method/relu6). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('rexnet_100', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `rexnet_100`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('rexnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{han2020rexnet, + title={ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, + author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo}, + year={2020}, + eprint={2007.00992}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/se-resnet.mdx b/pytorch-image-models/hfdocs/source/models/se-resnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..ba884bde95599de81b2235a5dc387de659b794eb --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/se-resnet.mdx @@ -0,0 +1,189 @@ +# SE-ResNet + +**SE ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('seresnet152d', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `seresnet152d`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('seresnet152d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{hu2019squeezeandexcitation, + title={Squeeze-and-Excitation Networks}, + author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, + year={2019}, + eprint={1709.01507}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/selecsls.mdx b/pytorch-image-models/hfdocs/source/models/selecsls.mdx new file mode 100644 index 0000000000000000000000000000000000000000..12813ba864d3a8ae8056c26ec8ff83c49d8206c5 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/selecsls.mdx @@ -0,0 +1,203 @@ +# SelecSLS + +**SelecSLS** uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('selecsls42b', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `selecsls42b`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('selecsls42b', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{Mehta_2020, + title={XNect}, + volume={39}, + ISSN={1557-7368}, + url={http://dx.doi.org/10.1145/3386569.3392410}, + DOI={10.1145/3386569.3392410}, + number={4}, + journal={ACM Transactions on Graphics}, + publisher={Association for Computing Machinery (ACM)}, + author={Mehta, Dushyant and Sotnychenko, Oleksandr and Mueller, Franziska and Xu, Weipeng and Elgharib, Mohamed and Fua, Pascal and Seidel, Hans-Peter and Rhodin, Helge and Pons-Moll, Gerard and Theobalt, Christian}, + year={2020}, + month={Jul} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/seresnext.mdx b/pytorch-image-models/hfdocs/source/models/seresnext.mdx new file mode 100644 index 0000000000000000000000000000000000000000..1f4534966753165318dcb71bc09254e3a0ed1774 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/seresnext.mdx @@ -0,0 +1,234 @@ +# SE-ResNeXt + +**SE ResNeXt** is a variant of a [ResNext](https://www.paperswithcode.com/method/resneXt) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('seresnext26d_32x4d', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `seresnext26d_32x4d`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('seresnext26d_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{hu2019squeezeandexcitation, + title={Squeeze-and-Excitation Networks}, + author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, + year={2019}, + eprint={1709.01507}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/skresnet.mdx b/pytorch-image-models/hfdocs/source/models/skresnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..643a6cbcd86f466939f1cf4881bd4b4851695697 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/skresnet.mdx @@ -0,0 +1,179 @@ +# SK-ResNet + +**SK ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs a [Selective Kernel](https://paperswithcode.com/method/selective-kernel) unit. In general, all the large kernel convolutions in the original bottleneck blocks in ResNet are replaced by the proposed [SK convolutions](https://paperswithcode.com/method/selective-kernel-convolution), enabling the network to choose appropriate receptive field sizes in an adaptive manner. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('skresnet18', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `skresnet18`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('skresnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{li2019selective, + title={Selective Kernel Networks}, + author={Xiang Li and Wenhai Wang and Xiaolin Hu and Jian Yang}, + year={2019}, + eprint={1903.06586}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/skresnext.mdx b/pytorch-image-models/hfdocs/source/models/skresnext.mdx new file mode 100644 index 0000000000000000000000000000000000000000..ae499b34dad41baa4cdf69fd541279a0c6a82eb6 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/skresnext.mdx @@ -0,0 +1,137 @@ +# SK-ResNeXt + +**SK ResNeXt** is a variant of a [ResNeXt](https://www.paperswithcode.com/method/resnext) that employs a [Selective Kernel](https://paperswithcode.com/method/selective-kernel) unit. In general, all the large kernel convolutions in the original bottleneck blocks in ResNext are replaced by the proposed [SK convolutions](https://paperswithcode.com/method/selective-kernel-convolution), enabling the network to choose appropriate receptive field sizes in an adaptive manner. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('skresnext50_32x4d', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `skresnext50_32x4d`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('skresnext50_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{li2019selective, + title={Selective Kernel Networks}, + author={Xiang Li and Wenhai Wang and Xiaolin Hu and Jian Yang}, + year={2019}, + eprint={1903.06586}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/spnasnet.mdx b/pytorch-image-models/hfdocs/source/models/spnasnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..a589b0fcdd94ee3b20bc5786f54f9812bec462a5 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/spnasnet.mdx @@ -0,0 +1,129 @@ +# SPNASNet + +**Single-Path NAS** is a novel differentiable NAS method for designing hardware-efficient ConvNets in less than 4 hours. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('spnasnet_100', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `spnasnet_100`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('spnasnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{stamoulis2019singlepath, + title={Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours}, + author={Dimitrios Stamoulis and Ruizhou Ding and Di Wang and Dimitrios Lymberopoulos and Bodhi Priyantha and Jie Liu and Diana Marculescu}, + year={2019}, + eprint={1904.02877}, + archivePrefix={arXiv}, + primaryClass={cs.LG} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/ssl-resnet.mdx b/pytorch-image-models/hfdocs/source/models/ssl-resnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..2e1d0a7a3d0f78ccc1b04a31b56317984714f75a --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/ssl-resnet.mdx @@ -0,0 +1,198 @@ +# SSL ResNet + +**Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. + +The model in this collection utilises semi-supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. + +Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('ssl_resnet18', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `ssl_resnet18`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('ssl_resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/abs-1905-00546, + author = {I. Zeki Yalniz and + Herv{\'{e}} J{\'{e}}gou and + Kan Chen and + Manohar Paluri and + Dhruv Mahajan}, + title = {Billion-scale semi-supervised learning for image classification}, + journal = {CoRR}, + volume = {abs/1905.00546}, + year = {2019}, + url = {http://arxiv.org/abs/1905.00546}, + archivePrefix = {arXiv}, + eprint = {1905.00546}, + timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, + biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/swsl-resnet.mdx b/pytorch-image-models/hfdocs/source/models/swsl-resnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..2def3c868e06025ebde566b206fd42243a2ec7b1 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/swsl-resnet.mdx @@ -0,0 +1,198 @@ +# SWSL ResNet + +**Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. + +The models in this collection utilise semi-weakly supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. + +Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('swsl_resnet18', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `swsl_resnet18`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('swsl_resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/abs-1905-00546, + author = {I. Zeki Yalniz and + Herv{\'{e}} J{\'{e}}gou and + Kan Chen and + Manohar Paluri and + Dhruv Mahajan}, + title = {Billion-scale semi-supervised learning for image classification}, + journal = {CoRR}, + volume = {abs/1905.00546}, + year = {2019}, + url = {http://arxiv.org/abs/1905.00546}, + archivePrefix = {arXiv}, + eprint = {1905.00546}, + timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, + biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/swsl-resnext.mdx b/pytorch-image-models/hfdocs/source/models/swsl-resnext.mdx new file mode 100644 index 0000000000000000000000000000000000000000..66297082f0a1b4b8fc46f8cf33fb46a8ecda94a7 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/swsl-resnext.mdx @@ -0,0 +1,284 @@ +# SWSL ResNeXt + +A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) \\( C \\), as an essential factor in addition to the dimensions of depth and width. + +The models in this collection utilise semi-weakly supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. + +Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('swsl_resnext101_32x16d', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `swsl_resnext101_32x16d`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('swsl_resnext101_32x16d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/abs-1905-00546, + author = {I. Zeki Yalniz and + Herv{\'{e}} J{\'{e}}gou and + Kan Chen and + Manohar Paluri and + Dhruv Mahajan}, + title = {Billion-scale semi-supervised learning for image classification}, + journal = {CoRR}, + volume = {abs/1905.00546}, + year = {2019}, + url = {http://arxiv.org/abs/1905.00546}, + archivePrefix = {arXiv}, + eprint = {1905.00546}, + timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, + biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/tf-efficientnet-condconv.mdx b/pytorch-image-models/hfdocs/source/models/tf-efficientnet-condconv.mdx new file mode 100644 index 0000000000000000000000000000000000000000..eb3bcc9b539d8f06efab90d280fb5a0a3d1d9f25 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/tf-efficientnet-condconv.mdx @@ -0,0 +1,256 @@ +# (Tensorflow) EfficientNet CondConv + +**EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way. + +The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. + +The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to squeeze-and-excitation blocks. + +This collection of models amends EfficientNet by adding [CondConv](https://paperswithcode.com/method/condconv) convolutions. + +The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('tf_efficientnet_cc_b0_4e', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `tf_efficientnet_cc_b0_4e`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('tf_efficientnet_cc_b0_4e', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/abs-1904-04971, + author = {Brandon Yang and + Gabriel Bender and + Quoc V. Le and + Jiquan Ngiam}, + title = {Soft Conditional Computation}, + journal = {CoRR}, + volume = {abs/1904.04971}, + year = {2019}, + url = {http://arxiv.org/abs/1904.04971}, + archivePrefix = {arXiv}, + eprint = {1904.04971}, + timestamp = {Thu, 25 Apr 2019 13:55:01 +0200}, + biburl = {https://dblp.org/rec/journals/corr/abs-1904-04971.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/tf-efficientnet-lite.mdx b/pytorch-image-models/hfdocs/source/models/tf-efficientnet-lite.mdx new file mode 100644 index 0000000000000000000000000000000000000000..f72eaf0c383c151989362bc04853eb91575cd715 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/tf-efficientnet-lite.mdx @@ -0,0 +1,262 @@ +# (Tensorflow) EfficientNet Lite + +**EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way. + +The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. + +The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2). + +EfficientNet-Lite makes EfficientNet more suitable for mobile devices by introducing [ReLU6](https://paperswithcode.com/method/relu6) activation functions and removing [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation). + +The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('tf_efficientnet_lite0', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `tf_efficientnet_lite0`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('tf_efficientnet_lite0', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{tan2020efficientnet, + title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, + author={Mingxing Tan and Quoc V. Le}, + year={2020}, + eprint={1905.11946}, + archivePrefix={arXiv}, + primaryClass={cs.LG} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/tf-efficientnet.mdx b/pytorch-image-models/hfdocs/source/models/tf-efficientnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..16be0a71b69be62bf8a18273feee14c32d30931f --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/tf-efficientnet.mdx @@ -0,0 +1,669 @@ +# (Tensorflow) EfficientNet + +**EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way. + +The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. + +The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). + +The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('tf_efficientnet_b0', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('tf_efficientnet_b0', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{tan2020efficientnet, + title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, + author={Mingxing Tan and Quoc V. Le}, + year={2020}, + eprint={1905.11946}, + archivePrefix={arXiv}, + primaryClass={cs.LG} +} +``` + + diff --git a/pytorch-image-models/hfdocs/source/models/tf-inception-v3.mdx b/pytorch-image-models/hfdocs/source/models/tf-inception-v3.mdx new file mode 100644 index 0000000000000000000000000000000000000000..a5f402a904b2fc8ef01d3915cf87ed8b14911918 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/tf-inception-v3.mdx @@ -0,0 +1,154 @@ +# (Tensorflow) Inception v3 + +**Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). + +The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('tf_inception_v3', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `tf_inception_v3`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('tf_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/SzegedyVISW15, + author = {Christian Szegedy and + Vincent Vanhoucke and + Sergey Ioffe and + Jonathon Shlens and + Zbigniew Wojna}, + title = {Rethinking the Inception Architecture for Computer Vision}, + journal = {CoRR}, + volume = {abs/1512.00567}, + year = {2015}, + url = {http://arxiv.org/abs/1512.00567}, + archivePrefix = {arXiv}, + eprint = {1512.00567}, + timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, + biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/tf-mixnet.mdx b/pytorch-image-models/hfdocs/source/models/tf-mixnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..d1ddda09fbab9dea98bc946ec358522691dc5e4d --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/tf-mixnet.mdx @@ -0,0 +1,200 @@ +# (Tensorflow) MixNet + +**MixNet** is a type of convolutional neural network discovered via AutoML that utilises [MixConvs](https://paperswithcode.com/method/mixconv) instead of regular [depthwise convolutions](https://paperswithcode.com/method/depthwise-convolution). + +The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('tf_mixnet_l', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `tf_mixnet_l`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('tf_mixnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{tan2019mixconv, + title={MixConv: Mixed Depthwise Convolutional Kernels}, + author={Mingxing Tan and Quoc V. Le}, + year={2019}, + eprint={1907.09595}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/tf-mobilenet-v3.mdx b/pytorch-image-models/hfdocs/source/models/tf-mobilenet-v3.mdx new file mode 100644 index 0000000000000000000000000000000000000000..3e8c6cba3022102122b4c6788fb1f66e56d660c4 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/tf-mobilenet-v3.mdx @@ -0,0 +1,387 @@ +# (Tensorflow) MobileNet v3 + +**MobileNetV3** is a convolutional neural network that is designed for mobile phone CPUs. The network design includes the use of a [hard swish activation](https://paperswithcode.com/method/hard-swish) and [squeeze-and-excitation](https://paperswithcode.com/method/squeeze-and-excitation-block) modules in the [MBConv blocks](https://paperswithcode.com/method/inverted-residual-block). + +The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('tf_mobilenetv3_large_075', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `tf_mobilenetv3_large_075`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('tf_mobilenetv3_large_075', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/abs-1905-02244, + author = {Andrew Howard and + Mark Sandler and + Grace Chu and + Liang{-}Chieh Chen and + Bo Chen and + Mingxing Tan and + Weijun Wang and + Yukun Zhu and + Ruoming Pang and + Vijay Vasudevan and + Quoc V. Le and + Hartwig Adam}, + title = {Searching for MobileNetV3}, + journal = {CoRR}, + volume = {abs/1905.02244}, + year = {2019}, + url = {http://arxiv.org/abs/1905.02244}, + archivePrefix = {arXiv}, + eprint = {1905.02244}, + timestamp = {Tue, 12 Jan 2021 15:30:06 +0100}, + biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/tresnet.mdx b/pytorch-image-models/hfdocs/source/models/tresnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..f2d5729d3a9e629d7dea5f0e400d28b4844703bd --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/tresnet.mdx @@ -0,0 +1,358 @@ +# TResNet + +A **TResNet** is a variant on a [ResNet](https://paperswithcode.com/method/resnet) that aim to boost accuracy while maintaining GPU training and inference efficiency. They contain several design tricks including a SpaceToDepth stem, [Anti-Alias downsampling](https://paperswithcode.com/method/anti-alias-downsampling), In-Place Activated BatchNorm, Blocks selection and [squeeze-and-excitation layers](https://paperswithcode.com/method/squeeze-and-excitation-block). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('tresnet_l', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `tresnet_l`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('tresnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@misc{ridnik2020tresnet, + title={TResNet: High Performance GPU-Dedicated Architecture}, + author={Tal Ridnik and Hussam Lawen and Asaf Noy and Emanuel Ben Baruch and Gilad Sharir and Itamar Friedman}, + year={2020}, + eprint={2003.13630}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/wide-resnet.mdx b/pytorch-image-models/hfdocs/source/models/wide-resnet.mdx new file mode 100644 index 0000000000000000000000000000000000000000..47969325a46ed7c0df233613f7344887f01615a6 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/wide-resnet.mdx @@ -0,0 +1,169 @@ +# Wide ResNet + +**Wide Residual Networks** are a variant on [ResNets](https://paperswithcode.com/method/resnet) where we decrease depth and increase the width of residual networks. This is achieved through the use of [wide residual blocks](https://paperswithcode.com/method/wide-residual-block). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('wide_resnet101_2', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `wide_resnet101_2`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('wide_resnet101_2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/ZagoruykoK16, + author = {Sergey Zagoruyko and + Nikos Komodakis}, + title = {Wide Residual Networks}, + journal = {CoRR}, + volume = {abs/1605.07146}, + year = {2016}, + url = {http://arxiv.org/abs/1605.07146}, + archivePrefix = {arXiv}, + eprint = {1605.07146}, + timestamp = {Mon, 13 Aug 2018 16:46:42 +0200}, + biburl = {https://dblp.org/rec/journals/corr/ZagoruykoK16.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/models/xception.mdx b/pytorch-image-models/hfdocs/source/models/xception.mdx new file mode 100644 index 0000000000000000000000000000000000000000..f67e482c20d0a7f43a8205415bb77a2a071ac372 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/models/xception.mdx @@ -0,0 +1,230 @@ +# Xception + +**Xception** is a convolutional neural network architecture that relies solely on [depthwise separable convolution layers](https://paperswithcode.com/method/depthwise-separable-convolution). + +The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). + +## How do I use this model on an image? + +To load a pretrained model: + +```py +>>> import timm +>>> model = timm.create_model('xception', pretrained=True) +>>> model.eval() +``` + +To load and preprocess the image: + +```py +>>> import urllib +>>> from PIL import Image +>>> from timm.data import resolve_data_config +>>> from timm.data.transforms_factory import create_transform + +>>> config = resolve_data_config({}, model=model) +>>> transform = create_transform(**config) + +>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") +>>> urllib.request.urlretrieve(url, filename) +>>> img = Image.open(filename).convert('RGB') +>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension +``` + +To get the model predictions: + +```py +>>> import torch +>>> with torch.no_grad(): +... out = model(tensor) +>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) +>>> print(probabilities.shape) +>>> # prints: torch.Size([1000]) +``` + +To get the top-5 predictions class names: + +```py +>>> # Get imagenet class mappings +>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") +>>> urllib.request.urlretrieve(url, filename) +>>> with open("imagenet_classes.txt", "r") as f: +... categories = [s.strip() for s in f.readlines()] + +>>> # Print top categories per image +>>> top5_prob, top5_catid = torch.topk(probabilities, 5) +>>> for i in range(top5_prob.size(0)): +... print(categories[top5_catid[i]], top5_prob[i].item()) +>>> # prints class names and probabilities like: +>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] +``` + +Replace the model name with the variant you want to use, e.g. `xception`. You can find the IDs in the model summaries at the top of this page. + +To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. + +## How do I finetune this model? + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('xception', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` +To finetune on your own dataset, you have to write a training loop or adapt [timm's training +script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. + +## How do I train this model? + +You can follow the [timm recipe scripts](../scripts) for training a new model afresh. + +## Citation + +```BibTeX +@article{DBLP:journals/corr/ZagoruykoK16, +@misc{chollet2017xception, + title={Xception: Deep Learning with Depthwise Separable Convolutions}, + author={François Chollet}, + year={2017}, + eprint={1610.02357}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + + \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/quickstart.mdx b/pytorch-image-models/hfdocs/source/quickstart.mdx new file mode 100644 index 0000000000000000000000000000000000000000..207710242ca4e5cbbe8e620d8feaea234094fd95 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/quickstart.mdx @@ -0,0 +1,228 @@ +# Quickstart + +This quickstart is intended for developers who are ready to dive into the code and see an example of how to integrate `timm` into their model training workflow. + +First, you'll need to install `timm`. For more information on installation, see [Installation](installation). + +```bash +pip install timm +``` + +## Load a Pretrained Model + +Pretrained models can be loaded using [`create_model`]. + +Here, we load the pretrained `mobilenetv3_large_100` model. + +```py +>>> import timm + +>>> m = timm.create_model('mobilenetv3_large_100', pretrained=True) +>>> m.eval() +``` + + + Note: The returned PyTorch model is set to train mode by default, so you must call .eval() on it if you plan to use it for inference. + + +## List Models with Pretrained Weights + +To list models packaged with `timm`, you can use [`list_models`]. If you specify `pretrained=True`, this function will only return model names that have associated pretrained weights available. + +```py +>>> import timm +>>> from pprint import pprint +>>> model_names = timm.list_models(pretrained=True) +>>> pprint(model_names) +[ + 'adv_inception_v3', + 'cspdarknet53', + 'cspresnext50', + 'densenet121', + 'densenet161', + 'densenet169', + 'densenet201', + 'densenetblur121d', + 'dla34', + 'dla46_c', +] +``` + +You can also list models with a specific pattern in their name. + +```py +>>> import timm +>>> from pprint import pprint +>>> model_names = timm.list_models('*resne*t*') +>>> pprint(model_names) +[ + 'cspresnet50', + 'cspresnet50d', + 'cspresnet50w', + 'cspresnext50', + ... +] +``` + +## Fine-Tune a Pretrained Model + +You can finetune any of the pre-trained models just by changing the classifier (the last layer). + +```py +>>> model = timm.create_model('mobilenetv3_large_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) +``` + +To fine-tune on your own dataset, you have to write a PyTorch training loop or adapt `timm`'s [training script](training_script) to use your dataset. + +## Use a Pretrained Model for Feature Extraction + +Without modifying the network, one can call model.forward_features(input) on any model instead of the usual model(input). This will bypass the head classifier and global pooling for networks. + +For a more in depth guide to using `timm` for feature extraction, see [Feature Extraction](feature_extraction). + +```py +>>> import timm +>>> import torch +>>> x = torch.randn(1, 3, 224, 224) +>>> model = timm.create_model('mobilenetv3_large_100', pretrained=True) +>>> features = model.forward_features(x) +>>> print(features.shape) +torch.Size([1, 960, 7, 7]) +``` + +## Image Augmentation + +To transform images into valid inputs for a model, you can use [`timm.data.create_transform`], providing the desired `input_size` that the model expects. + +This will return a generic transform that uses reasonable defaults. + +```py +>>> timm.data.create_transform((3, 224, 224)) +Compose( + Resize(size=256, interpolation=bilinear, max_size=None, antialias=None) + CenterCrop(size=(224, 224)) + ToTensor() + Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250])) +) +``` + +Pretrained models have specific transforms that were applied to images fed into them while training. If you use the wrong transform on your image, the model won't understand what it's seeing! + +To figure out which transformations were used for a given pretrained model, we can start by taking a look at its `pretrained_cfg` + +```py +>>> model.pretrained_cfg +{'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth', + 'num_classes': 1000, + 'input_size': (3, 224, 224), + 'pool_size': (7, 7), + 'crop_pct': 0.875, + 'interpolation': 'bicubic', + 'mean': (0.485, 0.456, 0.406), + 'std': (0.229, 0.224, 0.225), + 'first_conv': 'conv_stem', + 'classifier': 'classifier', + 'architecture': 'mobilenetv3_large_100'} +``` + +We can then resolve only the data related configuration by using [`timm.data.resolve_data_config`]. + +```py +>>> timm.data.resolve_data_config(model.pretrained_cfg) +{'input_size': (3, 224, 224), + 'interpolation': 'bicubic', + 'mean': (0.485, 0.456, 0.406), + 'std': (0.229, 0.224, 0.225), + 'crop_pct': 0.875} +``` + +We can pass this data config to [`timm.data.create_transform`] to initialize the model's associated transform. + +```py +>>> data_cfg = timm.data.resolve_data_config(model.pretrained_cfg) +>>> transform = timm.data.create_transform(**data_cfg) +>>> transform +Compose( + Resize(size=256, interpolation=bicubic, max_size=None, antialias=None) + CenterCrop(size=(224, 224)) + ToTensor() + Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250])) +) +``` + + + Note: Here, the pretrained model's config happens to be the same as the generic config we made earlier. This is not always the case. So, it's safer to use the data config to create the transform as we did here instead of using the generic transform. + + +## Using Pretrained Models for Inference + +Here, we will put together the above sections and use a pretrained model for inference. + +First we'll need an image to do inference on. Here we load a picture of a leaf from the web: + +```py +>>> import requests +>>> from PIL import Image +>>> from io import BytesIO +>>> url = 'https://datasets-server.huggingface.co/assets/imagenet-1k/--/default/test/12/image/image.jpg' +>>> image = Image.open(requests.get(url, stream=True).raw) +>>> image +``` + +Here's the image we loaded: + +An Image from a link + +Now, we'll create our model and transforms again. This time, we make sure to set our model in evaluation mode. + +```py +>>> model = timm.create_model('mobilenetv3_large_100', pretrained=True).eval() +>>> transform = timm.data.create_transform( + **timm.data.resolve_data_config(model.pretrained_cfg) +) +``` + +We can prepare this image for the model by passing it to the transform. + +```py +>>> image_tensor = transform(image) +>>> image_tensor.shape +torch.Size([3, 224, 224]) +``` + +Now we can pass that image to the model to get the predictions. We use `unsqueeze(0)` in this case, as the model is expecting a batch dimension. + +```py +>>> output = model(image_tensor.unsqueeze(0)) +>>> output.shape +torch.Size([1, 1000]) +``` + +To get the predicted probabilities, we apply softmax to the output. This leaves us with a tensor of shape `(num_classes,)`. + +```py +>>> probabilities = torch.nn.functional.softmax(output[0], dim=0) +>>> probabilities.shape +torch.Size([1000]) +``` + +Now we'll find the top 5 predicted class indexes and values using `torch.topk`. + +```py +>>> values, indices = torch.topk(probabilities, 5) +>>> indices +tensor([162, 166, 161, 164, 167]) +``` + +If we check the imagenet labels for the top index, we can see what the model predicted... + +```py +>>> IMAGENET_1k_URL = 'https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt' +>>> IMAGENET_1k_LABELS = requests.get(IMAGENET_1k_URL).text.strip().split('\n') +>>> [{'label': IMAGENET_1k_LABELS[idx], 'value': val.item()} for val, idx in zip(values, indices)] +[{'label': 'beagle', 'value': 0.8486220836639404}, + {'label': 'Walker_hound, Walker_foxhound', 'value': 0.03753996267914772}, + {'label': 'basset, basset_hound', 'value': 0.024628572165966034}, + {'label': 'bluetick', 'value': 0.010317106731235981}, + {'label': 'English_foxhound', 'value': 0.006958036217838526}] +``` \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/reference/data.mdx b/pytorch-image-models/hfdocs/source/reference/data.mdx new file mode 100644 index 0000000000000000000000000000000000000000..b50487391e2b3049dfc5386b7deed42c1173c974 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/reference/data.mdx @@ -0,0 +1,9 @@ +# Data + +[[autodoc]] timm.data.create_dataset + +[[autodoc]] timm.data.create_loader + +[[autodoc]] timm.data.create_transform + +[[autodoc]] timm.data.resolve_data_config \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/reference/models.mdx b/pytorch-image-models/hfdocs/source/reference/models.mdx new file mode 100644 index 0000000000000000000000000000000000000000..31bb3c27134f507bf987080b55da33630ba82dbe --- /dev/null +++ b/pytorch-image-models/hfdocs/source/reference/models.mdx @@ -0,0 +1,5 @@ +# Models + +[[autodoc]] timm.create_model + +[[autodoc]] timm.list_models diff --git a/pytorch-image-models/hfdocs/source/reference/optimizers.mdx b/pytorch-image-models/hfdocs/source/reference/optimizers.mdx new file mode 100644 index 0000000000000000000000000000000000000000..4957f54f0c17b62fdb8fd57f3e9050f81c5a299b --- /dev/null +++ b/pytorch-image-models/hfdocs/source/reference/optimizers.mdx @@ -0,0 +1,33 @@ +# Optimization + +This page contains the API reference documentation for learning rate optimizers included in `timm`. + +## Optimizers + +### Factory functions + +[[autodoc]] timm.optim.create_optimizer_v2 +[[autodoc]] timm.optim.list_optimizers +[[autodoc]] timm.optim.get_optimizer_class + +### Optimizer Classes + +[[autodoc]] timm.optim.adabelief.AdaBelief +[[autodoc]] timm.optim.adafactor.Adafactor +[[autodoc]] timm.optim.adafactor_bv.AdafactorBigVision +[[autodoc]] timm.optim.adahessian.Adahessian +[[autodoc]] timm.optim.adamp.AdamP +[[autodoc]] timm.optim.adan.Adan +[[autodoc]] timm.optim.adopt.Adopt +[[autodoc]] timm.optim.lamb.Lamb +[[autodoc]] timm.optim.laprop.LaProp +[[autodoc]] timm.optim.lars.Lars +[[autodoc]] timm.optim.lion.Lion +[[autodoc]] timm.optim.lookahead.Lookahead +[[autodoc]] timm.optim.madgrad.MADGRAD +[[autodoc]] timm.optim.mars.Mars +[[autodoc]] timm.optim.nadamw.NAdamW +[[autodoc]] timm.optim.nvnovograd.NvNovoGrad +[[autodoc]] timm.optim.rmsprop_tf.RMSpropTF +[[autodoc]] timm.optim.sgdp.SGDP +[[autodoc]] timm.optim.sgdw.SGDW \ No newline at end of file diff --git a/pytorch-image-models/hfdocs/source/reference/schedulers.mdx b/pytorch-image-models/hfdocs/source/reference/schedulers.mdx new file mode 100644 index 0000000000000000000000000000000000000000..c44577d6a7dc5d09144a865e62b698b8e2413cb1 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/reference/schedulers.mdx @@ -0,0 +1,19 @@ +# Learning Rate Schedulers + +This page contains the API reference documentation for learning rate schedulers included in `timm`. + +## Schedulers + +### Factory functions + +[[autodoc]] timm.scheduler.scheduler_factory.create_scheduler +[[autodoc]] timm.scheduler.scheduler_factory.create_scheduler_v2 + +### Scheduler Classes + +[[autodoc]] timm.scheduler.cosine_lr.CosineLRScheduler +[[autodoc]] timm.scheduler.multistep_lr.MultiStepLRScheduler +[[autodoc]] timm.scheduler.plateau_lr.PlateauLRScheduler +[[autodoc]] timm.scheduler.poly_lr.PolyLRScheduler +[[autodoc]] timm.scheduler.step_lr.StepLRScheduler +[[autodoc]] timm.scheduler.tanh_lr.TanhLRScheduler diff --git a/pytorch-image-models/hfdocs/source/results.mdx b/pytorch-image-models/hfdocs/source/results.mdx new file mode 100644 index 0000000000000000000000000000000000000000..a06ff33278af3b8d1e42000834859fa880e5e50c --- /dev/null +++ b/pytorch-image-models/hfdocs/source/results.mdx @@ -0,0 +1,67 @@ +# Results + +CSV files containing an ImageNet-1K and out-of-distribution (OOD) test set validation results for all models with pretrained weights is located in the repository [results folder](https://github.com/rwightman/pytorch-image-models/tree/master/results). + +## Self-trained Weights + +The table below includes ImageNet-1k validation results of model weights that I've trained myself. It is not updated as frequently as the csv results outputs linked above. + +|Model | Acc@1 (Err) | Acc@5 (Err) | Param # (M) | Interpolation | Image Size | +|---|---|---|---|---|---| +| efficientnet_b3a | 82.242 (17.758) | 96.114 (3.886) | 12.23 | bicubic | 320 (1.0 crop) | +| efficientnet_b3 | 82.076 (17.924) | 96.020 (3.980) | 12.23 | bicubic | 300 | +| regnet_32 | 82.002 (17.998) | 95.906 (4.094) | 19.44 | bicubic | 224 | +| skresnext50d_32x4d | 81.278 (18.722) | 95.366 (4.634) | 27.5 | bicubic | 288 (1.0 crop) | +| seresnext50d_32x4d | 81.266 (18.734) | 95.620 (4.380) | 27.6 | bicubic | 224 | +| efficientnet_b2a | 80.608 (19.392) | 95.310 (4.690) | 9.11 | bicubic | 288 (1.0 crop) | +| resnet50d | 80.530 (19.470) | 95.160 (4.840) | 25.6 | bicubic | 224 | +| mixnet_xl | 80.478 (19.522) | 94.932 (5.068) | 11.90 | bicubic | 224 | +| efficientnet_b2 | 80.402 (19.598) | 95.076 (4.924) | 9.11 | bicubic | 260 | +| seresnet50 | 80.274 (19.726) | 95.070 (4.930) | 28.1 | bicubic | 224 | +| skresnext50d_32x4d | 80.156 (19.844) | 94.642 (5.358) | 27.5 | bicubic | 224 | +| cspdarknet53 | 80.058 (19.942) | 95.084 (4.916) | 27.6 | bicubic | 256 | +| cspresnext50 | 80.040 (19.960) | 94.944 (5.056) | 20.6 | bicubic | 224 | +| resnext50_32x4d | 79.762 (20.238) | 94.600 (5.400) | 25 | bicubic | 224 | +| resnext50d_32x4d | 79.674 (20.326) | 94.868 (5.132) | 25.1 | bicubic | 224 | +| cspresnet50 | 79.574 (20.426) | 94.712 (5.288) | 21.6 | bicubic | 256 | +| ese_vovnet39b | 79.320 (20.680) | 94.710 (5.290) | 24.6 | bicubic | 224 | +| resnetblur50 | 79.290 (20.710) | 94.632 (5.368) | 25.6 | bicubic | 224 | +| dpn68b | 79.216 (20.784) | 94.414 (5.586) | 12.6 | bicubic | 224 | +| resnet50 | 79.038 (20.962) | 94.390 (5.610) | 25.6 | bicubic | 224 | +| mixnet_l | 78.976 (21.024 | 94.184 (5.816) | 7.33 | bicubic | 224 | +| efficientnet_b1 | 78.692 (21.308) | 94.086 (5.914) | 7.79 | bicubic | 240 | +| efficientnet_es | 78.066 (21.934) | 93.926 (6.074) | 5.44 | bicubic | 224 | +| seresnext26t_32x4d | 77.998 (22.002) | 93.708 (6.292) | 16.8 | bicubic | 224 | +| seresnext26tn_32x4d | 77.986 (22.014) | 93.746 (6.254) | 16.8 | bicubic | 224 | +| efficientnet_b0 | 77.698 (22.302) | 93.532 (6.468) | 5.29 | bicubic | 224 | +| seresnext26d_32x4d | 77.602 (22.398) | 93.608 (6.392) | 16.8 | bicubic | 224 | +| mobilenetv2_120d | 77.294 (22.706 | 93.502 (6.498) | 5.8 | bicubic | 224 | +| mixnet_m | 77.256 (22.744) | 93.418 (6.582) | 5.01 | bicubic | 224 | +| resnet34d | 77.116 (22.884) | 93.382 (6.618) | 21.8 | bicubic | 224 | +| seresnext26_32x4d | 77.104 (22.896) | 93.316 (6.684) | 16.8 | bicubic | 224 | +| skresnet34 | 76.912 (23.088) | 93.322 (6.678) | 22.2 | bicubic | 224 | +| ese_vovnet19b_dw | 76.798 (23.202) | 93.268 (6.732) | 6.5 | bicubic | 224 | +| resnet26d | 76.68 (23.32) | 93.166 (6.834) | 16 | bicubic | 224 | +| densenetblur121d | 76.576 (23.424) | 93.190 (6.810) | 8.0 | bicubic | 224 | +| mobilenetv2_140 | 76.524 (23.476) | 92.990 (7.010) | 6.1 | bicubic | 224 | +| mixnet_s | 75.988 (24.012) | 92.794 (7.206) | 4.13 | bicubic | 224 | +| mobilenetv3_large_100 | 75.766 (24.234) | 92.542 (7.458) | 5.5 | bicubic | 224 | +| mobilenetv3_rw | 75.634 (24.366) | 92.708 (7.292) | 5.5 | bicubic | 224 | +| mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.89 | bicubic | 224 | +| resnet26 | 75.292 (24.708) | 92.57 (7.43) | 16 | bicubic | 224 | +| fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6 | bilinear | 224 | +| resnet34 | 75.110 (24.890) | 92.284 (7.716) | 22 | bilinear | 224 | +| mobilenetv2_110d | 75.052 (24.948) | 92.180 (7.820) | 4.5 | bicubic | 224 | +| seresnet34 | 74.808 (25.192) | 92.124 (7.876) | 22 | bilinear | 224 | +| mnasnet_b1 | 74.658 (25.342) | 92.114 (7.886) | 4.38 | bicubic | 224 | +| spnasnet_100 | 74.084 (25.916) | 91.818 (8.182) | 4.42 | bilinear | 224 | +| skresnet18 | 73.038 (26.962) | 91.168 (8.832) | 11.9 | bicubic | 224 | +| mobilenetv2_100 | 72.978 (27.022) | 91.016 (8.984) | 3.5 | bicubic | 224 | +| resnet18d | 72.260 (27.740) | 90.696 (9.304) | 11.7 | bicubic | 224 | +| seresnet18 | 71.742 (28.258) | 90.334 (9.666) | 11.8 | bicubic | 224 | + +## Ported and Other Weights + +For weights ported from other deep learning frameworks (Tensorflow, MXNet GluonCV) or copied from other PyTorch sources, please see the full results tables for ImageNet and various OOD test sets at in the [results tables](https://github.com/rwightman/pytorch-image-models/tree/master/results). + +Model code .py files contain links to original sources of models and weights. diff --git a/pytorch-image-models/hfdocs/source/training_script.mdx b/pytorch-image-models/hfdocs/source/training_script.mdx new file mode 100644 index 0000000000000000000000000000000000000000..a36410338621e6c7bf875e41573d164301e7d7b0 --- /dev/null +++ b/pytorch-image-models/hfdocs/source/training_script.mdx @@ -0,0 +1,101 @@ +# Scripts + +A train, validation, inference, and checkpoint cleaning script included in the github root folder. Scripts are not currently packaged in the pip release. + +The training and validation scripts evolved from early versions of the [PyTorch Imagenet Examples](https://github.com/pytorch/examples). I have added significant functionality over time, including CUDA specific performance enhancements based on +[NVIDIA's APEX Examples](https://github.com/NVIDIA/apex/tree/master/examples). + +## Training Script + +The variety of training args is large and not all combinations of options (or even options) have been fully tested. For the training dataset folder, specify the folder to the base that contains a `train` and `validation` folder. + +To train an SE-ResNet34 on ImageNet, locally distributed, 4 GPUs, one process per GPU w/ cosine schedule, random-erasing prob of 50% and per-pixel random value: + +```bash +./distributed_train.sh 4 --data-dir /data/imagenet --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4 +``` + + + It is recommended to use PyTorch 1.9+ w/ PyTorch native AMP and DDP instead of APEX AMP. --amp defaults to native AMP as of timm ver 0.4.3. --apex-amp will force use of APEX components if they are installed. + + + +## Validation / Inference Scripts + +Validation and inference scripts are similar in usage. One outputs metrics on a validation set and the other outputs topk class ids in a csv. Specify the folder containing validation images, not the base as in training script. + +To validate with the model's pretrained weights (if they exist): + +```bash +python validate.py --data-dir /imagenet/validation/ --model seresnext26_32x4d --pretrained +``` + +To run inference from a checkpoint: + +```bash +python inference.py --data-dir /imagenet/validation/ --model mobilenetv3_large_100 --checkpoint ./output/train/model_best.pth.tar +``` + +## Training Examples + +### EfficientNet-B2 with RandAugment - 80.4 top-1, 95.1 top-5 + +These params are for dual Titan RTX cards with NVIDIA Apex installed: + +```bash +./distributed_train.sh 2 --data-dir /imagenet/ --model efficientnet_b2 -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .016 +``` + +### MixNet-XL with RandAugment - 80.5 top-1, 94.9 top-5 + +This params are for dual Titan RTX cards with NVIDIA Apex installed: + +```bash +./distributed_train.sh 2 --data-dir /imagenet/ --model mixnet_xl -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .969 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.3 --amp --lr .016 --dist-bn reduce +``` + +### SE-ResNeXt-26-D and SE-ResNeXt-26-T + +These hparams (or similar) work well for a wide range of ResNet architecture, generally a good idea to increase the epoch # as the model size increases... ie approx 180-200 for ResNe(X)t50, and 220+ for larger. Increase batch size and LR proportionally for better GPUs or with AMP enabled. These params were for 2 1080Ti cards: + +```bash +./distributed_train.sh 2 --data-dir /imagenet/ --model seresnext26t_32x4d --lr 0.1 --warmup-epochs 5 --epochs 160 --weight-decay 1e-4 --sched cosine --reprob 0.4 --remode pixel -b 112 +``` +### EfficientNet-B3 with RandAugment - 81.5 top-1, 95.7 top-5 + +The training of this model started with the same command line as EfficientNet-B2 w/ RA above. After almost three weeks of training the process crashed. The results weren't looking amazing so I resumed the training several times with tweaks to a few params (increase RE prob, decrease rand-aug, increase ema-decay). Nothing looked great. I ended up averaging the best checkpoints from all restarts. The result is mediocre at default res/crop but oddly performs much better with a full image test crop of 1.0. + +### EfficientNet-B0 with RandAugment - 77.7 top-1, 95.3 top-5 + +[Michael Klachko](https://github.com/michaelklachko) achieved these results with the command line for B2 adapted for larger batch size, with the recommended B0 dropout rate of 0.2. + +```bash +./distributed_train.sh 2 --data-dir /imagenet/ --model efficientnet_b0 -b 384 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .048 +``` +### ResNet50 with JSD loss and RandAugment (clean + 2x RA augs) - 79.04 top-1, 94.39 top-5 + +Trained on two older 1080Ti cards, this took a while. Only slightly, non statistically better ImageNet validation result than my first good AugMix training of 78.99. However, these weights are more robust on tests with ImageNetV2, ImageNet-Sketch, etc. Unlike my first AugMix runs, I've enabled SplitBatchNorm, disabled random erasing on the clean split, and cranked up random erasing prob on the 2 augmented paths. + +```bash +./distributed_train.sh 2 --data-dir /imagenet -b 64 --model resnet50 --sched cosine --epochs 200 --lr 0.05 --amp --remode pixel --reprob 0.6 --aug-splits 3 --aa rand-m9-mstd0.5-inc1 --resplit --split-bn --jsd --dist-bn reduce +``` +### EfficientNet-ES (EdgeTPU-Small) with RandAugment - 78.066 top-1, 93.926 top-5 + +Trained by [Andrew Lavin](https://github.com/andravin) with 8 V100 cards. Model EMA was not used, final checkpoint is the average of 8 best checkpoints during training. + +```bash +./distributed_train.sh 8 --data-dir /imagenet --model efficientnet_es -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064 +``` +### MobileNetV3-Large-100 - 75.766 top-1, 92,542 top-5 + +```bash +./distributed_train.sh 2 /--data-dir imagenet/ --model mobilenetv3_large_100 -b 512 --sched step --epochs 600 --decay-epochs 2.4 --decay-rate .973 --opt rmsproptf --opt-eps .001 -j 7 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064 --lr-noise 0.42 0.9 +``` + +### ResNeXt-50 32x4d w/ RandAugment - 79.762 top-1, 94.60 top-5 +These params will also work well for SE-ResNeXt-50 and SK-ResNeXt-50 and likely 101. I used them for the SK-ResNeXt-50 32x4d that I trained with 2 GPU using a slightly higher LR per effective batch size (lr=0.18, b=192 per GPU). The cmd line below are tuned for 8 GPU training. + + +```bash +./distributed_train.sh 8 --data-dir /imagenet --model resnext50_32x4d --lr 0.6 --warmup-epochs 5 --epochs 240 --weight-decay 1e-4 --sched cosine --reprob 0.4 --recount 3 --remode pixel --aa rand-m7-mstd0.5-inc1 -b 192 -j 6 --amp --dist-bn reduce +``` diff --git a/pytorch-image-models/hubconf.py b/pytorch-image-models/hubconf.py new file mode 100644 index 0000000000000000000000000000000000000000..6b2061ea7540501fd577bf15d92067ea7b35b4d4 --- /dev/null +++ b/pytorch-image-models/hubconf.py @@ -0,0 +1,3 @@ +dependencies = ['torch'] +import timm +globals().update(timm.models._registry._model_entrypoints) diff --git a/pytorch-image-models/inference.py b/pytorch-image-models/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..60581978b7de892e5738e9fe89f143555349aba2 --- /dev/null +++ b/pytorch-image-models/inference.py @@ -0,0 +1,360 @@ +#!/usr/bin/env python3 +"""PyTorch Inference Script + +An example inference script that outputs top-k class ids for images in a folder into a csv. + +Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) +""" +import argparse +import json +import logging +import os +import time +from contextlib import suppress +from functools import partial + +import numpy as np +import pandas as pd +import torch + +from timm.data import create_dataset, create_loader, resolve_data_config, ImageNetInfo, infer_imagenet_subset +from timm.layers import apply_test_time_pool +from timm.models import create_model +from timm.utils import AverageMeter, setup_default_logging, set_jit_fuser, ParseKwargs + +try: + from apex import amp + has_apex = True +except ImportError: + has_apex = False + +try: + from functorch.compile import memory_efficient_fusion + has_functorch = True +except ImportError as e: + has_functorch = False + +has_compile = hasattr(torch, 'compile') + + +_FMT_EXT = { + 'json': '.json', + 'json-record': '.json', + 'json-split': '.json', + 'parquet': '.parquet', + 'csv': '.csv', +} + +torch.backends.cudnn.benchmark = True +_logger = logging.getLogger('inference') + + +parser = argparse.ArgumentParser(description='PyTorch ImageNet Inference') +parser.add_argument('data', nargs='?', metavar='DIR', const=None, + help='path to dataset (*deprecated*, use --data-dir)') +parser.add_argument('--data-dir', metavar='DIR', + help='path to dataset (root dir)') +parser.add_argument('--dataset', metavar='NAME', default='', + help='dataset type + name ("/") (default: ImageFolder or ImageTar if empty)') +parser.add_argument('--split', metavar='NAME', default='validation', + help='dataset split (default: validation)') +parser.add_argument('--model', '-m', metavar='MODEL', default='resnet50', + help='model architecture (default: resnet50)') +parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', + help='number of data loading workers (default: 2)') +parser.add_argument('-b', '--batch-size', default=256, type=int, + metavar='N', help='mini-batch size (default: 256)') +parser.add_argument('--img-size', default=None, type=int, + metavar='N', help='Input image dimension, uses model default if empty') +parser.add_argument('--in-chans', type=int, default=None, metavar='N', + help='Image input channels (default: None => 3)') +parser.add_argument('--input-size', default=None, nargs=3, type=int, + metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') +parser.add_argument('--use-train-size', action='store_true', default=False, + help='force use of train input size, even when test size is specified in pretrained cfg') +parser.add_argument('--crop-pct', default=None, type=float, + metavar='N', help='Input image center crop pct') +parser.add_argument('--crop-mode', default=None, type=str, + metavar='N', help='Input image crop mode (squash, border, center). Model default if None.') +parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', + help='Override mean pixel value of dataset') +parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', + help='Override std deviation of of dataset') +parser.add_argument('--interpolation', default='', type=str, metavar='NAME', + help='Image resize interpolation type (overrides model)') +parser.add_argument('--num-classes', type=int, default=None, + help='Number classes in dataset') +parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', + help='path to class to idx mapping file (default: "")') +parser.add_argument('--log-freq', default=10, type=int, + metavar='N', help='batch logging frequency (default: 10)') +parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', + help='path to latest checkpoint (default: none)') +parser.add_argument('--pretrained', dest='pretrained', action='store_true', + help='use pre-trained model') +parser.add_argument('--num-gpu', type=int, default=1, + help='Number of GPUS to use') +parser.add_argument('--test-pool', dest='test_pool', action='store_true', + help='enable test time pool') +parser.add_argument('--channels-last', action='store_true', default=False, + help='Use channels_last memory layout') +parser.add_argument('--device', default='cuda', type=str, + help="Device (accelerator) to use.") +parser.add_argument('--amp', action='store_true', default=False, + help='use Native AMP for mixed precision training') +parser.add_argument('--amp-dtype', default='float16', type=str, + help='lower precision AMP dtype (default: float16)') +parser.add_argument('--fuser', default='', type=str, + help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") +parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) +parser.add_argument('--torchcompile-mode', type=str, default=None, + help="torch.compile mode (default: None).") + +scripting_group = parser.add_mutually_exclusive_group() +scripting_group.add_argument('--torchscript', default=False, action='store_true', + help='torch.jit.script the full model') +scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', + help="Enable compilation w/ specified backend (default: inductor).") +scripting_group.add_argument('--aot-autograd', default=False, action='store_true', + help="Enable AOT Autograd support.") + +parser.add_argument('--results-dir', type=str, default=None, + help='folder for output results') +parser.add_argument('--results-file', type=str, default=None, + help='results filename (relative to results-dir)') +parser.add_argument('--results-format', type=str, nargs='+', default=['csv'], + help='results format (one of "csv", "json", "json-split", "parquet")') +parser.add_argument('--results-separate-col', action='store_true', default=False, + help='separate output columns per result index.') +parser.add_argument('--topk', default=1, type=int, + metavar='N', help='Top-k to output to CSV') +parser.add_argument('--fullname', action='store_true', default=False, + help='use full sample name in output (not just basename).') +parser.add_argument('--filename-col', type=str, default='filename', + help='name for filename / sample name column') +parser.add_argument('--index-col', type=str, default='index', + help='name for output indices column(s)') +parser.add_argument('--label-col', type=str, default='label', + help='name for output indices column(s)') +parser.add_argument('--output-col', type=str, default=None, + help='name for logit/probs output column(s)') +parser.add_argument('--output-type', type=str, default='prob', + help='output type colum ("prob" for probabilities, "logit" for raw logits)') +parser.add_argument('--label-type', type=str, default='description', + help='type of label to output, one of "none", "name", "description", "detailed"') +parser.add_argument('--include-index', action='store_true', default=False, + help='include the class index in results') +parser.add_argument('--exclude-output', action='store_true', default=False, + help='exclude logits/probs from results, just indices. topk must be set !=0.') + + +def main(): + setup_default_logging() + args = parser.parse_args() + # might as well try to do something useful... + args.pretrained = args.pretrained or not args.checkpoint + + if torch.cuda.is_available(): + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.benchmark = True + + device = torch.device(args.device) + + # resolve AMP arguments based on PyTorch / Apex availability + amp_autocast = suppress + if args.amp: + assert args.amp_dtype in ('float16', 'bfloat16') + amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16 + amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) + _logger.info('Running inference in mixed precision with native PyTorch AMP.') + else: + _logger.info('Running inference in float32. AMP not enabled.') + + if args.fuser: + set_jit_fuser(args.fuser) + + # create model + in_chans = 3 + if args.in_chans is not None: + in_chans = args.in_chans + elif args.input_size is not None: + in_chans = args.input_size[0] + + model = create_model( + args.model, + num_classes=args.num_classes, + in_chans=in_chans, + pretrained=args.pretrained, + checkpoint_path=args.checkpoint, + **args.model_kwargs, + ) + if args.num_classes is None: + assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' + args.num_classes = model.num_classes + + _logger.info( + f'Model {args.model} created, param count: {sum([m.numel() for m in model.parameters()])}') + + data_config = resolve_data_config(vars(args), model=model) + test_time_pool = False + if args.test_pool: + model, test_time_pool = apply_test_time_pool(model, data_config) + + model = model.to(device) + model.eval() + if args.channels_last: + model = model.to(memory_format=torch.channels_last) + + if args.torchscript: + model = torch.jit.script(model) + elif args.torchcompile: + assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' + torch._dynamo.reset() + model = torch.compile(model, backend=args.torchcompile, mode=args.torchcompile_mode) + elif args.aot_autograd: + assert has_functorch, "functorch is needed for --aot-autograd" + model = memory_efficient_fusion(model) + + if args.num_gpu > 1: + model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))) + + root_dir = args.data or args.data_dir + dataset = create_dataset( + root=root_dir, + name=args.dataset, + split=args.split, + class_map=args.class_map, + ) + + if test_time_pool: + data_config['crop_pct'] = 1.0 + + workers = 1 if 'tfds' in args.dataset or 'wds' in args.dataset else args.workers + loader = create_loader( + dataset, + batch_size=args.batch_size, + use_prefetcher=True, + num_workers=workers, + device=device, + **data_config, + ) + + to_label = None + if args.label_type in ('name', 'description', 'detail'): + imagenet_subset = infer_imagenet_subset(model) + if imagenet_subset is not None: + dataset_info = ImageNetInfo(imagenet_subset) + if args.label_type == 'name': + to_label = lambda x: dataset_info.index_to_label_name(x) + elif args.label_type == 'detail': + to_label = lambda x: dataset_info.index_to_description(x, detailed=True) + else: + to_label = lambda x: dataset_info.index_to_description(x) + to_label = np.vectorize(to_label) + else: + _logger.error("Cannot deduce ImageNet subset from model, no labelling will be performed.") + + top_k = min(args.topk, args.num_classes) + batch_time = AverageMeter() + end = time.time() + all_indices = [] + all_labels = [] + all_outputs = [] + use_probs = args.output_type == 'prob' + with torch.no_grad(): + for batch_idx, (input, _) in enumerate(loader): + + with amp_autocast(): + output = model(input) + + if use_probs: + output = output.softmax(-1) + + if top_k: + output, indices = output.topk(top_k) + np_indices = indices.cpu().numpy() + if args.include_index: + all_indices.append(np_indices) + if to_label is not None: + np_labels = to_label(np_indices) + all_labels.append(np_labels) + + all_outputs.append(output.cpu().numpy()) + + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if batch_idx % args.log_freq == 0: + _logger.info('Predict: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format( + batch_idx, len(loader), batch_time=batch_time)) + + all_indices = np.concatenate(all_indices, axis=0) if all_indices else None + all_labels = np.concatenate(all_labels, axis=0) if all_labels else None + all_outputs = np.concatenate(all_outputs, axis=0).astype(np.float32) + filenames = loader.dataset.filenames(basename=not args.fullname) + + output_col = args.output_col or ('prob' if use_probs else 'logit') + data_dict = {args.filename_col: filenames} + if args.results_separate_col and all_outputs.shape[-1] > 1: + if all_indices is not None: + for i in range(all_indices.shape[-1]): + data_dict[f'{args.index_col}_{i}'] = all_indices[:, i] + if all_labels is not None: + for i in range(all_labels.shape[-1]): + data_dict[f'{args.label_col}_{i}'] = all_labels[:, i] + for i in range(all_outputs.shape[-1]): + data_dict[f'{output_col}_{i}'] = all_outputs[:, i] + else: + if all_indices is not None: + if all_indices.shape[-1] == 1: + all_indices = all_indices.squeeze(-1) + data_dict[args.index_col] = list(all_indices) + if all_labels is not None: + if all_labels.shape[-1] == 1: + all_labels = all_labels.squeeze(-1) + data_dict[args.label_col] = list(all_labels) + if all_outputs.shape[-1] == 1: + all_outputs = all_outputs.squeeze(-1) + data_dict[output_col] = list(all_outputs) + + df = pd.DataFrame(data=data_dict) + + results_filename = args.results_file + if results_filename: + filename_no_ext, ext = os.path.splitext(results_filename) + if ext and ext in _FMT_EXT.values(): + # if filename provided with one of expected ext, + # remove it as it will be added back + results_filename = filename_no_ext + else: + # base default filename on model name + img-size + img_size = data_config["input_size"][1] + results_filename = f'{args.model}-{img_size}' + + if args.results_dir: + results_filename = os.path.join(args.results_dir, results_filename) + + for fmt in args.results_format: + save_results(df, results_filename, fmt) + + print(f'--result') + print(df.set_index(args.filename_col).to_json(orient='index', indent=4)) + + +def save_results(df, results_filename, results_format='csv', filename_col='filename'): + results_filename += _FMT_EXT[results_format] + if results_format == 'parquet': + df.set_index(filename_col).to_parquet(results_filename) + elif results_format == 'json': + df.set_index(filename_col).to_json(results_filename, indent=4, orient='index') + elif results_format == 'json-records': + df.to_json(results_filename, lines=True, orient='records') + elif results_format == 'json-split': + df.to_json(results_filename, indent=4, orient='split', index=False) + else: + df.to_csv(results_filename, index=False) + + +if __name__ == '__main__': + main() diff --git a/pytorch-image-models/onnx_export.py b/pytorch-image-models/onnx_export.py new file mode 100644 index 0000000000000000000000000000000000000000..7b951b63061a3e8bfaa41f74ed779b4a5211f836 --- /dev/null +++ b/pytorch-image-models/onnx_export.py @@ -0,0 +1,102 @@ +""" ONNX export script + +Export PyTorch models as ONNX graphs. + +This export script originally started as an adaptation of code snippets found at +https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html + +The default parameters work with PyTorch 1.6 and ONNX 1.7 and produce an optimal ONNX graph +for hosting in the ONNX runtime (see onnx_validate.py). To export an ONNX model compatible +with caffe2 (see caffe2_benchmark.py and caffe2_validate.py), the --keep-init and --aten-fallback +flags are currently required. + +Older versions of PyTorch/ONNX (tested PyTorch 1.4, ONNX 1.5) do not need extra flags for +caffe2 compatibility, but they produce a model that isn't as fast running on ONNX runtime. + +Most new release of PyTorch and ONNX cause some sort of breakage in the export / usage of ONNX models. +Please do your research and search ONNX and PyTorch issue tracker before asking me. Thanks. + +Copyright 2020 Ross Wightman +""" +import argparse + +import timm +from timm.utils.model import reparameterize_model +from timm.utils.onnx import onnx_export + +parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') +parser.add_argument('output', metavar='ONNX_FILE', + help='output model filename') +parser.add_argument('--model', '-m', metavar='MODEL', default='mobilenetv3_large_100', + help='model architecture (default: mobilenetv3_large_100)') +parser.add_argument('--opset', type=int, default=None, + help='ONNX opset to use (default: 10)') +parser.add_argument('--keep-init', action='store_true', default=False, + help='Keep initializers as input. Needed for Caffe2 compatible export in newer PyTorch/ONNX.') +parser.add_argument('--aten-fallback', action='store_true', default=False, + help='Fallback to ATEN ops. Helps fix AdaptiveAvgPool issue with Caffe2 in newer PyTorch/ONNX.') +parser.add_argument('--dynamic-size', action='store_true', default=False, + help='Export model width dynamic width/height. Not recommended for "tf" models with SAME padding.') +parser.add_argument('--check-forward', action='store_true', default=False, + help='Do a full check of torch vs onnx forward after export.') +parser.add_argument('-b', '--batch-size', default=1, type=int, + metavar='N', help='mini-batch size (default: 1)') +parser.add_argument('--img-size', default=None, type=int, + metavar='N', help='Input image dimension, uses model default if empty') +parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', + help='Override mean pixel value of dataset') +parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', + help='Override std deviation of of dataset') +parser.add_argument('--num-classes', type=int, default=1000, + help='Number classes in dataset') +parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', + help='path to checkpoint (default: none)') +parser.add_argument('--reparam', default=False, action='store_true', + help='Reparameterize model') +parser.add_argument('--training', default=False, action='store_true', + help='Export in training mode (default is eval)') +parser.add_argument('--verbose', default=False, action='store_true', + help='Extra stdout output') +parser.add_argument('--dynamo', default=False, action='store_true', + help='Use torch dynamo export.') + +def main(): + args = parser.parse_args() + + args.pretrained = True + if args.checkpoint: + args.pretrained = False + + print("==> Creating PyTorch {} model".format(args.model)) + # NOTE exportable=True flag disables autofn/jit scripted activations and uses Conv2dSameExport layers + # for models using SAME padding + model = timm.create_model( + args.model, + num_classes=args.num_classes, + in_chans=3, + pretrained=args.pretrained, + checkpoint_path=args.checkpoint, + exportable=True, + ) + + if args.reparam: + model = reparameterize_model(model) + + onnx_export( + model, + args.output, + opset=args.opset, + dynamic_size=args.dynamic_size, + aten_fallback=args.aten_fallback, + keep_initializers=args.keep_init, + check_forward=args.check_forward, + training=args.training, + verbose=args.verbose, + use_dynamo=args.dynamo, + input_size=(3, args.img_size, args.img_size), + batch_size=args.batch_size, + ) + + +if __name__ == '__main__': + main() diff --git a/pytorch-image-models/onnx_validate.py b/pytorch-image-models/onnx_validate.py new file mode 100644 index 0000000000000000000000000000000000000000..acd1c1892fd99bcdda1d548dbaebec5dd8c8db5b --- /dev/null +++ b/pytorch-image-models/onnx_validate.py @@ -0,0 +1,110 @@ +""" ONNX-runtime validation script + +This script was created to verify accuracy and performance of exported ONNX +models running with the onnxruntime. It utilizes the PyTorch dataloader/processing +pipeline for a fair comparison against the originals. + +Copyright 2020 Ross Wightman +""" +import argparse +import numpy as np +import onnxruntime +from timm.data import create_loader, resolve_data_config, create_dataset +from timm.utils import AverageMeter +import time + +parser = argparse.ArgumentParser(description='ONNX Validation') +parser.add_argument('data', metavar='DIR', + help='path to dataset') +parser.add_argument('--onnx-input', default='', type=str, metavar='PATH', + help='path to onnx model/weights file') +parser.add_argument('--onnx-output-opt', default='', type=str, metavar='PATH', + help='path to output optimized onnx graph') +parser.add_argument('--profile', action='store_true', default=False, + help='Enable profiler output.') +parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', + help='number of data loading workers (default: 2)') +parser.add_argument('-b', '--batch-size', default=256, type=int, + metavar='N', help='mini-batch size (default: 256)') +parser.add_argument('--img-size', default=None, type=int, + metavar='N', help='Input image dimension, uses model default if empty') +parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', + help='Override mean pixel value of dataset') +parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', + help='Override std deviation of of dataset') +parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT', + help='Override default crop pct of 0.875') +parser.add_argument('--interpolation', default='', type=str, metavar='NAME', + help='Image resize interpolation type (overrides model)') +parser.add_argument('--print-freq', '-p', default=10, type=int, + metavar='N', help='print frequency (default: 10)') + + +def main(): + args = parser.parse_args() + args.gpu_id = 0 + + # Set graph optimization level + sess_options = onnxruntime.SessionOptions() + sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL + if args.profile: + sess_options.enable_profiling = True + if args.onnx_output_opt: + sess_options.optimized_model_filepath = args.onnx_output_opt + + session = onnxruntime.InferenceSession(args.onnx_input, sess_options) + + data_config = resolve_data_config(vars(args)) + loader = create_loader( + create_dataset('', args.data), + input_size=data_config['input_size'], + batch_size=args.batch_size, + use_prefetcher=False, + interpolation=data_config['interpolation'], + mean=data_config['mean'], + std=data_config['std'], + num_workers=args.workers, + crop_pct=data_config['crop_pct'] + ) + + input_name = session.get_inputs()[0].name + + batch_time = AverageMeter() + top1 = AverageMeter() + top5 = AverageMeter() + end = time.time() + for i, (input, target) in enumerate(loader): + # run the net and return prediction + output = session.run([], {input_name: input.data.numpy()}) + output = output[0] + + # measure accuracy and record loss + prec1, prec5 = accuracy_np(output, target.numpy()) + top1.update(prec1.item(), input.size(0)) + top5.update(prec5.item(), input.size(0)) + + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print( + f'Test: [{i}/{len(loader)}]\t' + f'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {input.size(0) / batch_time.avg:.3f}/s, ' + f'{100 * batch_time.avg / input.size(0):.3f} ms/sample) \t' + f'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' + f'Prec@5 {top5.val:.3f} ({top5.avg:.3f})' + ) + + print(f' * Prec@1 {top1.avg:.3f} ({100-top1.avg:.3f}) Prec@5 {top5.avg:.3f} ({100.-top5.avg:.3f})') + + +def accuracy_np(output, target): + max_indices = np.argsort(output, axis=1)[:, ::-1] + top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean() + top1 = 100 * np.equal(max_indices[:, 0], target).mean() + return top1, top5 + + +if __name__ == '__main__': + main() diff --git a/pytorch-image-models/pyproject.toml b/pytorch-image-models/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..a4df93e3b3ced7a3da22d482645401a9e5a6e736 --- /dev/null +++ b/pytorch-image-models/pyproject.toml @@ -0,0 +1,67 @@ +[build-system] +requires = ["pdm-backend"] +build-backend = "pdm.backend" + +[project] +name = "timm" +authors = [ + {name = "Ross Wightman", email = "ross@huggingface.co"}, +] +description = "PyTorch Image Models" +readme = "README.md" +requires-python = ">=3.8" +keywords = ["pytorch", "image-classification"] +license = {text = "Apache-2.0"} +classifiers = [ + 'Development Status :: 5 - Production/Stable', + 'Intended Audience :: Education', + 'Intended Audience :: Science/Research', + 'License :: OSI Approved :: Apache Software License', + 'Programming Language :: Python :: 3.8', + 'Programming Language :: Python :: 3.9', + 'Programming Language :: Python :: 3.10', + 'Programming Language :: Python :: 3.11', + 'Programming Language :: Python :: 3.12', + 'Topic :: Scientific/Engineering', + 'Topic :: Scientific/Engineering :: Artificial Intelligence', + 'Topic :: Software Development', + 'Topic :: Software Development :: Libraries', + 'Topic :: Software Development :: Libraries :: Python Modules', +] +dependencies = [ + 'torch', + 'torchvision', + 'pyyaml', + 'huggingface_hub', + 'safetensors', +] +dynamic = ["version"] + +[project.urls] +homepage = "https://github.com/huggingface/pytorch-image-models" +documentation = "https://huggingface.co/docs/timm/en/index" +repository = "https://github.com/huggingface/pytorch-image-models" + +[tool.pdm.dev-dependencies] +test = [ + 'pytest', + 'pytest-timeout', + 'pytest-xdist', + 'pytest-forked', + 'expecttest', +] + +[tool.pdm.version] +source = "file" +path = "timm/version.py" + +[tool.pytest.ini_options] +testpaths = ['tests'] +markers = [ + "base: marker for model tests using the basic setup", + "cfg: marker for model tests checking the config", + "torchscript: marker for model tests using torchscript", + "features: marker for model tests checking feature extraction", + "fxforward: marker for model tests using torch fx (only forward)", + "fxbackward: marker for model tests using torch fx (only backward)", +] \ No newline at end of file diff --git a/pytorch-image-models/requirements-dev.txt b/pytorch-image-models/requirements-dev.txt new file mode 100644 index 0000000000000000000000000000000000000000..5bc4dfaab72046625f300d397f1fdf835d9b57a6 --- /dev/null +++ b/pytorch-image-models/requirements-dev.txt @@ -0,0 +1,5 @@ +pytest +pytest-timeout +pytest-xdist +pytest-forked +expecttest diff --git a/pytorch-image-models/requirements.txt b/pytorch-image-models/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..918fda0ec4300e90f63c6732102b0b16f6e28f4d --- /dev/null +++ b/pytorch-image-models/requirements.txt @@ -0,0 +1,6 @@ +torch>=1.7 +torchvision +pyyaml +huggingface_hub +safetensors>=0.2 +numpy<2.0 diff --git a/pytorch-image-models/results/README.md b/pytorch-image-models/results/README.md new file mode 100644 index 0000000000000000000000000000000000000000..81f30061c3e78aa0c40671aff3b32526e65e710a --- /dev/null +++ b/pytorch-image-models/results/README.md @@ -0,0 +1,67 @@ +# Validation and Benchmark Results + +This folder contains validation and benchmark results for the models in this collection. Validation scores are currently only run for models with pretrained weights and ImageNet-1k heads, benchmark numbers are run for all. + +## Datasets + +There are currently results for the ImageNet validation set and 5 additional test / label sets. + +The test set results include rank and top-1/top-5 differences from clean validation. For the "Real Labels", ImageNetV2, and Sketch test sets, the differences were calculated against the full 1000 class ImageNet-1k validation set. For both the Adversarial and Rendition sets, the differences were calculated against 'clean' runs on the ImageNet-1k validation set with the same 200 classes used in each test set respectively. + +### ImageNet Validation - [`results-imagenet.csv`](results-imagenet.csv) + +The standard 50,000 image ImageNet-1k validation set. Model selection during training utilizes this validation set, so it is not a true test set. Question: Does anyone have the official ImageNet-1k test set classification labels now that challenges are done? + +* Source: http://image-net.org/challenges/LSVRC/2012/index +* Paper: "ImageNet Large Scale Visual Recognition Challenge" - https://arxiv.org/abs/1409.0575 + +### ImageNet-"Real Labels" - [`results-imagenet-real.csv`](results-imagenet-real.csv) + +The usual ImageNet-1k validation set with a fresh new set of labels intended to improve on mistakes in the original annotation process. + +* Source: https://github.com/google-research/reassessed-imagenet +* Paper: "Are we done with ImageNet?" - https://arxiv.org/abs/2006.07159 + +### ImageNetV2 Matched Frequency - [`results-imagenetv2-matched-frequency.csv`](results-imagenetv2-matched-frequency.csv) + +An ImageNet test set of 10,000 images sampled from new images roughly 10 years after the original. Care was taken to replicate the original ImageNet curation/sampling process. + +* Source: https://github.com/modestyachts/ImageNetV2 +* Paper: "Do ImageNet Classifiers Generalize to ImageNet?" - https://arxiv.org/abs/1902.10811 + +### ImageNet-Sketch - [`results-sketch.csv`](results-sketch.csv) + +50,000 non photographic (or photos of such) images (sketches, doodles, mostly monochromatic) covering all 1000 ImageNet classes. + +* Source: https://github.com/HaohanWang/ImageNet-Sketch +* Paper: "Learning Robust Global Representations by Penalizing Local Predictive Power" - https://arxiv.org/abs/1905.13549 + +### ImageNet-Adversarial - [`results-imagenet-a.csv`](results-imagenet-a.csv) + +A collection of 7500 images covering 200 of the 1000 ImageNet classes. Images are naturally occurring adversarial examples that confuse typical ImageNet classifiers. This is a challenging dataset, your typical ResNet-50 will score 0% top-1. + +For clean validation with same 200 classes, see [`results-imagenet-a-clean.csv`](results-imagenet-a-clean.csv) + +* Source: https://github.com/hendrycks/natural-adv-examples +* Paper: "Natural Adversarial Examples" - https://arxiv.org/abs/1907.07174 + +### ImageNet-Rendition - [`results-imagenet-r.csv`](results-imagenet-r.csv) + +Renditions of 200 ImageNet classes resulting in 30,000 images for testing robustness. + +For clean validation with same 200 classes, see [`results-imagenet-r-clean.csv`](results-imagenet-r-clean.csv) + +* Source: https://github.com/hendrycks/imagenet-r +* Paper: "The Many Faces of Robustness" - https://arxiv.org/abs/2006.16241 + +### TODO +* Explore adding a reduced version of ImageNet-C (Corruptions) and ImageNet-P (Perturbations) from https://github.com/hendrycks/robustness. The originals are huge and image size specific. + + +## Benchmark + +CSV files with a `model_benchmark` prefix include benchmark numbers for models on various accelerators with different precision. Currently only run on RTX 3090 w/ AMP for inference, I intend to add more in the future. + +## Metadata + +CSV files with `model_metadata` prefix contain extra information about the source training, currently the pretraining dataset and technique (ie distillation, SSL, WSL, etc). Eventually I'd like to have metadata about augmentation, regularization, etc. but that will be a challenge to source consistently. diff --git a/pytorch-image-models/results/benchmark-infer-amp-nchw-pt113-cu117-rtx3090.csv b/pytorch-image-models/results/benchmark-infer-amp-nchw-pt113-cu117-rtx3090.csv new file mode 100644 index 0000000000000000000000000000000000000000..f72204ee1d29b766eef552efe01b4fdab6eba0d0 --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-amp-nchw-pt113-cu117-rtx3090.csv @@ -0,0 +1,933 @@ +model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count +tinynet_e,49277.65,20.77,1024,106,0.03,0.69,2.04 +mobilenetv3_small_050,45562.75,22.464,1024,224,0.03,0.92,1.59 +lcnet_035,41026.68,24.949,1024,224,0.03,1.04,1.64 +lcnet_050,37575.13,27.242,1024,224,0.05,1.26,1.88 +mobilenetv3_small_075,33062.39,30.961,1024,224,0.05,1.3,2.04 +mobilenetv3_small_100,30012.26,34.109,1024,224,0.06,1.42,2.54 +tf_mobilenetv3_small_minimal_100,28698.14,35.672,1024,224,0.06,1.41,2.04 +tf_mobilenetv3_small_075,27407.51,37.352,1024,224,0.05,1.3,2.04 +tinynet_d,27236.47,37.585,1024,152,0.05,1.42,2.34 +tf_mobilenetv3_small_100,25103.65,40.781,1024,224,0.06,1.42,2.54 +lcnet_075,24140.95,42.406,1024,224,0.1,1.99,2.36 +mnasnet_small,20706.43,49.443,1024,224,0.07,2.16,2.03 +levit_128s,20595.72,49.709,1024,224,0.31,1.88,7.78 +lcnet_100,19684.75,52.01,1024,224,0.16,2.52,2.95 +mobilenetv2_035,18358.82,55.767,1024,224,0.07,2.86,1.68 +regnetx_002,18244.04,56.117,1024,224,0.2,2.16,2.68 +ghostnet_050,17564.96,58.287,1024,224,0.05,1.77,2.59 +regnety_002,17006.07,60.202,1024,224,0.2,2.17,3.16 +mnasnet_050,15925.32,64.29,1024,224,0.11,3.07,2.22 +vit_tiny_r_s16_p8_224,15068.38,67.946,1024,224,0.44,2.06,6.34 +mobilenetv2_050,14843.74,68.974,1024,224,0.1,3.64,1.97 +tinynet_c,14634.69,69.959,1024,184,0.11,2.87,2.46 +semnasnet_050,14248.78,71.855,1024,224,0.11,3.44,2.08 +levit_128,14164.26,72.284,1024,224,0.41,2.71,9.21 +vit_small_patch32_224,13811.36,74.131,1024,224,1.15,2.5,22.88 +mixer_s32_224,13352.85,76.677,1024,224,1.0,2.28,19.1 +cs3darknet_focus_s,12798.44,79.999,1024,256,0.69,2.7,3.27 +lcnet_150,12783.12,80.094,1024,224,0.34,3.79,4.5 +cs3darknet_s,12395.11,82.602,1024,256,0.72,2.97,3.28 +regnetx_004,12366.39,82.791,1024,224,0.4,3.14,5.16 +mobilenetv3_large_075,12001.32,85.313,1024,224,0.16,4.0,3.99 +levit_192,11882.81,86.163,1024,224,0.66,3.2,10.95 +resnet10t,11615.84,88.145,1024,224,1.1,2.43,5.44 +ese_vovnet19b_slim_dw,11539.4,88.729,1024,224,0.4,5.28,1.9 +gernet_s,11496.77,89.058,1024,224,0.75,2.65,8.17 +mobilenetv3_rw,10873.77,94.16,1024,224,0.23,4.41,5.48 +mobilenetv3_large_100,10705.06,95.645,1024,224,0.23,4.41,5.48 +hardcorenas_a,10554.34,97.012,1024,224,0.23,4.38,5.26 +tf_mobilenetv3_large_075,10511.12,97.41,1024,224,0.16,4.0,3.99 +tf_mobilenetv3_large_minimal_100,10371.16,98.725,1024,224,0.22,4.4,3.92 +mnasnet_075,10345.17,98.972,1024,224,0.23,4.77,3.17 +hardcorenas_b,9695.74,105.601,1024,224,0.26,5.09,5.18 +regnety_004,9655.22,106.046,1024,224,0.41,3.89,4.34 +ghostnet_100,9483.99,107.96,1024,224,0.15,3.55,5.18 +hardcorenas_c,9481.05,107.994,1024,224,0.28,5.01,5.52 +tf_mobilenetv3_large_100,9456.79,108.271,1024,224,0.23,4.41,5.48 +regnetx_006,9408.22,108.83,1024,224,0.61,3.98,6.2 +mobilenetv2_075,9313.88,109.932,1024,224,0.22,5.86,2.64 +tinynet_b,9291.99,110.191,1024,188,0.21,4.44,3.73 +mnasnet_b1,9286.4,110.258,1024,224,0.33,5.46,4.38 +mnasnet_100,9263.52,110.53,1024,224,0.33,5.46,4.38 +gluon_resnet18_v1b,9078.31,112.785,1024,224,1.82,2.48,11.69 +semnasnet_075,9069.42,112.895,1024,224,0.23,5.54,2.91 +resnet18,9045.63,113.192,1024,224,1.82,2.48,11.69 +ssl_resnet18,9045.4,113.196,1024,224,1.82,2.48,11.69 +swsl_resnet18,9040.4,113.258,1024,224,1.82,2.48,11.69 +levit_256,8921.47,114.768,1024,224,1.13,4.23,18.89 +hardcorenas_d,8879.46,115.311,1024,224,0.3,4.93,7.5 +regnety_006,8666.48,118.144,1024,224,0.61,4.33,6.06 +seresnet18,8542.99,119.851,1024,224,1.82,2.49,11.78 +mobilenetv2_100,8507.29,120.356,1024,224,0.31,6.68,3.5 +spnasnet_100,8342.04,122.741,1024,224,0.35,6.03,4.42 +legacy_seresnet18,8310.8,123.202,1024,224,1.82,2.49,11.78 +semnasnet_100,8284.16,123.599,1024,224,0.32,6.23,3.89 +mnasnet_a1,8283.57,123.607,1024,224,0.32,6.23,3.89 +regnetx_008,7852.75,130.39,1024,224,0.81,5.15,7.26 +hardcorenas_f,7809.07,131.117,1024,224,0.35,5.57,8.2 +hardcorenas_e,7730.97,132.444,1024,224,0.35,5.65,8.07 +efficientnet_lite0,7722.75,132.584,1024,224,0.4,6.74,4.65 +levit_256d,7689.03,133.165,1024,224,1.4,4.93,26.21 +xcit_nano_12_p16_224_dist,7674.8,133.413,1024,224,0.56,4.17,3.05 +xcit_nano_12_p16_224,7670.11,133.492,1024,224,0.56,4.17,3.05 +resnet18d,7636.48,134.082,1024,224,2.06,3.29,11.71 +ghostnet_130,7625.58,134.274,1024,224,0.24,4.6,7.36 +tf_efficientnetv2_b0,7614.25,134.473,1024,224,0.73,4.77,7.14 +ese_vovnet19b_slim,7588.4,134.932,1024,224,1.69,3.52,3.17 +deit_tiny_distilled_patch16_224,7449.3,137.451,1024,224,1.27,6.01,5.91 +deit_tiny_patch16_224,7398.73,138.391,1024,224,1.26,5.97,5.72 +vit_tiny_patch16_224,7390.78,138.538,1024,224,1.26,5.97,5.72 +regnety_008,7366.88,138.989,1024,224,0.81,5.25,6.26 +tinynet_a,7358.6,139.145,1024,192,0.35,5.41,6.19 +dla46_c,7311.64,140.038,1024,224,0.58,4.5,1.3 +fbnetc_100,7303.94,140.187,1024,224,0.4,6.51,5.57 +mobilevitv2_050,7248.37,141.262,1024,256,0.48,8.04,1.37 +tf_efficientnet_lite0,6816.26,150.218,1024,224,0.4,6.74,4.65 +pit_ti_distilled_224,6788.49,150.832,1024,224,0.71,6.23,5.1 +pit_ti_224,6762.99,151.401,1024,224,0.7,6.19,4.85 +efficientnet_b0,6687.26,153.115,1024,224,0.4,6.75,5.29 +visformer_tiny,6618.81,154.698,1024,224,1.27,5.72,10.32 +rexnet_100,6608.65,154.937,1024,224,0.41,7.44,4.8 +mnasnet_140,6580.58,155.597,1024,224,0.6,7.71,7.12 +efficientnet_b1_pruned,6513.48,157.201,1024,240,0.4,6.21,6.33 +rexnetr_100,6491.35,157.737,1024,224,0.43,7.72,4.88 +mobilenetv2_110d,6395.98,160.089,1024,224,0.45,8.71,4.52 +resnet14t,6341.58,161.462,1024,224,1.69,5.8,10.08 +regnetz_005,6208.75,164.916,1024,224,0.52,5.86,7.12 +dla46x_c,6145.64,166.61,1024,224,0.54,5.66,1.07 +nf_regnet_b0,6055.0,169.104,1024,256,0.64,5.58,8.76 +tf_efficientnet_b0,5992.76,170.862,1024,224,0.4,6.75,5.29 +hrnet_w18_small,5908.15,173.308,1024,224,1.61,5.72,13.19 +edgenext_xx_small,5886.07,173.957,1024,288,0.33,4.21,1.33 +semnasnet_140,5856.63,174.833,1024,224,0.6,8.87,6.11 +resnetblur18,5839.81,175.336,1024,224,2.34,3.39,11.69 +ese_vovnet19b_dw,5825.11,175.779,1024,224,1.34,8.25,6.54 +dla60x_c,5790.89,176.817,1024,224,0.59,6.01,1.32 +mobilenetv2_140,5780.41,177.139,1024,224,0.6,9.57,6.11 +skresnet18,5648.81,181.265,1024,224,1.82,3.24,11.96 +mobilevit_xxs,5528.18,185.22,1024,256,0.42,8.34,1.27 +efficientnet_b0_gn,5401.88,189.551,1024,224,0.42,6.75,5.29 +convnext_atto,5364.13,190.886,1024,288,0.91,6.3,3.7 +gluon_resnet34_v1b,5344.34,191.593,1024,224,3.67,3.74,21.8 +resnet34,5335.05,191.926,1024,224,3.67,3.74,21.8 +efficientnet_lite1,5334.12,191.959,1024,240,0.62,10.14,5.42 +tv_resnet34,5332.7,192.011,1024,224,3.67,3.74,21.8 +vit_base_patch32_224,5287.0,193.67,1024,224,4.41,5.01,88.22 +vit_base_patch32_clip_224,5281.4,193.877,1024,224,4.41,5.01,88.22 +levit_384,5276.74,194.047,1024,224,2.36,6.26,39.13 +pit_xs_distilled_224,5241.4,195.357,1024,224,1.41,7.76,11.0 +pit_xs_224,5237.09,195.517,1024,224,1.4,7.71,10.62 +selecsls42,5225.99,195.932,1024,224,2.94,4.62,30.35 +selecsls42b,5201.55,196.853,1024,224,2.98,4.62,32.46 +gernet_m,5124.67,199.807,1024,224,3.02,5.24,21.14 +pvt_v2_b0,5122.72,199.882,1024,224,0.57,7.99,3.67 +tf_efficientnetv2_b1,5122.21,199.903,1024,240,1.21,7.34,8.14 +mixnet_s,5079.84,201.57,1024,224,0.25,6.25,4.13 +convnext_atto_ols,5062.64,202.255,1024,288,0.96,6.8,3.7 +seresnet34,5028.88,203.611,1024,224,3.67,3.74,21.96 +rexnetr_130,5003.96,204.626,1024,224,0.68,9.81,7.61 +fbnetv3_b,5003.0,204.666,1024,256,0.55,9.1,8.6 +mixer_b32_224,4982.51,205.508,1024,224,3.24,6.29,60.29 +xcit_tiny_12_p16_224_dist,4879.26,209.853,1024,224,1.24,6.29,6.72 +legacy_seresnet34,4875.12,210.034,1024,224,3.67,3.74,21.96 +xcit_tiny_12_p16_224,4870.16,210.244,1024,224,1.24,6.29,6.72 +resnet34d,4834.78,211.786,1024,224,3.91,4.54,21.82 +tf_efficientnet_lite1,4822.03,212.348,1024,240,0.62,10.14,5.42 +resnet26,4794.98,213.545,1024,224,2.36,7.35,16.0 +mobilenetv2_120d,4786.27,213.934,1024,224,0.69,11.97,5.83 +rexnet_130,4770.1,214.659,1024,224,0.68,9.71,7.56 +efficientnet_b0_g16_evos,4743.69,215.854,1024,224,1.01,7.42,8.11 +efficientnet_es,4736.89,216.163,1024,224,1.81,8.73,5.44 +efficientnet_es_pruned,4735.25,216.239,1024,224,1.81,8.73,5.44 +tf_mixnet_s,4735.17,216.242,1024,224,0.25,6.25,4.13 +gmlp_ti16_224,4709.0,217.445,1024,224,1.34,7.55,5.87 +convnext_femto,4672.08,219.162,1024,288,1.3,7.56,5.22 +mobilevitv2_075,4638.17,220.764,1024,256,1.05,12.06,2.87 +resmlp_12_224,4601.92,222.504,1024,224,3.01,5.5,15.35 +resmlp_12_distilled_224,4597.97,222.695,1024,224,3.01,5.5,15.35 +gmixer_12_224,4543.02,225.388,1024,224,2.67,7.26,12.7 +fbnetv3_d,4532.2,225.927,1024,256,0.68,11.1,10.31 +tf_efficientnet_es,4518.93,226.591,1024,224,1.81,8.73,5.44 +selecsls60,4510.1,227.034,1024,224,3.59,5.52,30.67 +mixer_s16_224,4509.29,227.075,1024,224,3.79,5.97,18.53 +regnetx_016,4507.02,227.189,1024,224,1.62,7.93,9.19 +selecsls60b,4490.35,228.033,1024,224,3.63,5.52,32.77 +cs3darknet_focus_m,4487.64,228.171,1024,288,2.51,6.19,9.3 +dla34,4481.03,228.505,1024,224,3.07,5.02,15.74 +crossvit_tiny_240,4476.83,228.722,1024,240,1.57,9.08,7.01 +convnext_femto_ols,4473.25,228.904,1024,288,1.35,8.06,5.23 +vit_tiny_r_s16_p8_384,4463.13,229.423,1024,384,1.34,6.49,6.36 +cs3darknet_m,4452.94,229.949,1024,288,2.63,6.69,9.31 +repvgg_b0,4433.11,230.978,1024,224,3.41,6.15,15.82 +resnet26d,4354.59,235.143,1024,224,2.6,8.15,16.01 +rexnetr_150,4349.97,235.392,1024,224,0.89,11.13,9.78 +resnetaa34d,4309.77,237.588,1024,224,4.43,5.07,21.82 +efficientnet_b2_pruned,4309.58,237.598,1024,260,0.73,9.13,8.31 +darknet17,4296.61,238.316,1024,256,3.26,7.18,14.3 +vit_small_patch32_384,4250.58,240.897,1024,384,3.45,8.25,22.92 +crossvit_9_240,4201.98,243.683,1024,240,1.85,9.52,8.55 +nf_resnet26,4197.39,243.949,1024,224,2.41,7.35,16.0 +efficientnet_b0_g8_gn,4190.39,244.357,1024,224,0.66,6.75,6.56 +rexnet_150,4186.31,244.594,1024,224,0.9,11.21,9.73 +ecaresnet50d_pruned,4182.62,244.81,1024,224,2.53,6.43,19.94 +efficientformer_l1,4075.83,251.225,1024,224,1.3,5.53,12.29 +poolformer_s12,4050.19,252.815,1024,224,1.82,5.53,11.92 +regnety_016,4035.9,253.712,1024,224,1.63,8.04,11.2 +efficientnet_lite2,4013.48,255.128,1024,260,0.89,12.9,6.09 +crossvit_9_dagger_240,3992.98,256.437,1024,240,1.99,9.97,8.78 +efficientnet_cc_b0_8e,3929.29,260.595,1024,224,0.42,9.42,24.01 +efficientnet_cc_b0_4e,3918.01,261.346,1024,224,0.41,9.42,13.31 +darknet21,3914.26,261.596,1024,256,3.93,7.47,20.86 +efficientnet_b1,3876.9,264.116,1024,256,0.77,12.22,7.79 +tf_efficientnet_b1,3834.3,267.052,1024,240,0.71,10.88,7.79 +resnest14d,3793.21,269.944,1024,224,2.76,7.33,10.61 +sedarknet21,3784.73,270.549,1024,256,3.93,7.47,20.95 +resnext26ts,3775.5,271.211,1024,256,2.43,10.52,10.3 +tf_efficientnetv2_b2,3727.06,274.735,1024,260,1.72,9.84,10.1 +convnext_pico,3702.78,276.537,1024,288,2.27,10.08,9.05 +edgenext_x_small,3692.42,277.311,1024,288,0.68,7.5,2.34 +tf_efficientnet_cc_b0_8e,3691.33,277.395,1024,224,0.42,9.42,24.01 +dpn48b,3689.99,277.494,1024,224,1.69,8.92,9.13 +eca_resnext26ts,3675.59,278.583,1024,256,2.43,10.52,10.3 +seresnext26ts,3670.33,278.98,1024,256,2.43,10.52,10.39 +tf_efficientnet_cc_b0_4e,3665.41,279.357,1024,224,0.41,9.42,13.31 +tf_efficientnet_lite2,3662.0,279.618,1024,260,0.89,12.9,6.09 +nf_ecaresnet26,3619.99,282.862,1024,224,2.41,7.36,16.0 +nf_seresnet26,3618.8,282.955,1024,224,2.41,7.36,17.4 +gcresnext26ts,3594.7,284.852,1024,256,2.43,10.53,10.48 +mobilevitv2_100,3589.19,213.964,768,256,1.84,16.08,4.9 +gernet_l,3556.24,287.933,1024,256,4.57,8.0,31.08 +legacy_seresnext26_32x4d,3545.88,288.774,1024,224,2.49,9.39,16.79 +convnext_pico_ols,3532.27,289.886,1024,288,2.37,10.74,9.06 +resnet26t,3503.33,292.28,1024,256,3.35,10.52,16.01 +repvgg_a2,3454.82,296.386,1024,224,5.7,6.26,28.21 +mixnet_m,3418.52,299.526,1024,224,0.36,8.19,5.01 +efficientnet_b3_pruned,3356.7,305.049,1024,300,1.04,11.86,9.86 +nf_regnet_b1,3352.23,305.456,1024,288,1.02,9.2,10.22 +ecaresnext50t_32x4d,3339.2,306.649,1024,224,2.7,10.09,15.41 +ecaresnext26t_32x4d,3337.18,306.833,1024,224,2.7,10.09,15.41 +seresnext26tn_32x4d,3327.66,307.711,1024,224,2.7,10.09,16.81 +seresnext26t_32x4d,3327.23,307.751,1024,224,2.7,10.09,16.81 +seresnext26d_32x4d,3303.57,309.954,1024,224,2.73,10.19,16.81 +tf_mixnet_m,3301.19,310.17,1024,224,0.36,8.19,5.01 +convit_tiny,3286.62,311.554,1024,224,1.26,7.94,5.71 +mobilevit_xs,3278.19,234.265,768,256,1.05,16.33,2.32 +pit_s_224,3268.88,313.245,1024,224,2.88,11.56,23.46 +pit_s_distilled_224,3266.72,313.452,1024,224,2.9,11.64,24.04 +skresnet34,3242.45,315.8,1024,224,3.67,5.13,22.28 +eca_botnext26ts_256,3224.24,317.583,1024,256,2.46,11.6,10.59 +ecaresnet101d_pruned,3223.88,317.616,1024,224,3.48,7.69,24.88 +deit_small_distilled_patch16_224,3220.79,317.922,1024,224,4.63,12.02,22.44 +ecaresnetlight,3215.57,318.439,1024,224,4.11,8.42,30.16 +deit_small_patch16_224,3209.05,319.085,1024,224,4.61,11.95,22.05 +vit_small_patch16_224,3199.98,319.99,1024,224,4.61,11.95,22.05 +eca_halonext26ts,3173.71,322.639,1024,256,2.44,11.46,10.76 +convnextv2_atto,3162.98,323.733,1024,288,0.91,6.3,3.71 +resnetv2_50,3158.28,324.214,1024,224,4.11,11.11,25.55 +nf_regnet_b2,3133.63,326.765,1024,272,1.22,9.27,14.31 +rexnetr_200,3133.12,245.111,768,224,1.59,15.11,16.52 +botnet26t_256,3123.98,327.772,1024,256,3.32,11.98,12.49 +coat_lite_tiny,3113.54,328.874,1024,224,1.6,11.65,5.72 +vit_small_r26_s32_224,3112.34,329.001,1024,224,3.56,9.85,36.43 +bat_resnext26ts,3103.95,329.89,1024,256,2.53,12.51,10.73 +halonet26t,3103.39,329.95,1024,256,3.19,11.69,12.48 +pvt_v2_b1,3095.14,330.828,1024,224,2.12,15.39,14.01 +cspresnet50,3063.22,334.278,1024,256,4.54,11.5,21.62 +resnet32ts,3055.79,335.09,1024,256,4.63,11.58,17.96 +rexnet_200,3051.5,251.668,768,224,1.56,14.91,16.37 +lambda_resnet26t,3046.2,336.144,1024,256,3.02,11.87,10.96 +ssl_resnet50,3030.48,337.887,1024,224,4.11,11.11,25.56 +gluon_resnet50_v1b,3027.43,338.23,1024,224,4.11,11.11,25.56 +tv_resnet50,3027.39,338.232,1024,224,4.11,11.11,25.56 +swsl_resnet50,3027.07,338.268,1024,224,4.11,11.11,25.56 +resnet50,3025.4,338.455,1024,224,4.11,11.11,25.56 +deit3_small_patch16_224_in21ft1k,3023.02,338.721,1024,224,4.61,11.95,22.06 +deit3_small_patch16_224,3017.77,339.312,1024,224,4.61,11.95,22.06 +tresnet_m,3006.54,340.578,1024,224,5.74,7.31,31.39 +resnet33ts,3005.78,340.665,1024,256,4.76,11.66,19.68 +vit_small_resnet26d_224,2994.08,341.995,1024,224,5.07,11.12,63.61 +resnetv2_50t,2989.06,342.569,1024,224,4.32,11.82,25.57 +regnetx_032,2988.15,342.675,1024,224,3.2,11.37,15.3 +dpn68b,2981.13,343.481,1024,224,2.35,10.47,12.61 +hrnet_w18_small_v2,2978.67,343.765,1024,224,2.62,9.65,15.6 +dpn68,2975.29,344.155,1024,224,2.35,10.47,12.61 +resnetv2_50d,2971.15,344.633,1024,224,4.35,11.92,25.57 +efficientnet_em,2938.12,348.51,1024,240,3.04,14.34,6.9 +vit_base_patch32_plus_256,2934.64,348.925,1024,256,7.79,7.76,119.48 +coat_lite_mini,2921.75,350.462,1024,224,2.0,12.25,11.01 +tf_efficientnet_b2,2919.63,350.718,1024,260,1.02,13.83,9.11 +seresnet33ts,2919.51,350.732,1024,256,4.76,11.66,19.78 +eca_resnet33ts,2917.21,351.008,1024,256,4.76,11.66,19.68 +haloregnetz_b,2890.29,354.276,1024,224,1.97,11.94,11.68 +coatnet_pico_rw_224,2884.58,354.98,1024,224,2.05,14.62,10.85 +dla60,2883.99,355.049,1024,224,4.26,10.16,22.04 +gluon_resnet50_v1c,2872.58,356.463,1024,224,4.35,11.92,25.58 +resnet50t,2869.49,356.844,1024,224,4.32,11.82,25.57 +gcresnet33ts,2863.36,357.609,1024,256,4.76,11.68,19.88 +gluon_resnet50_v1d,2853.24,358.879,1024,224,4.35,11.92,25.58 +cspresnet50d,2852.98,358.911,1024,256,4.86,12.55,21.64 +resnet50d,2850.55,359.218,1024,224,4.35,11.92,25.58 +vovnet39a,2845.31,359.878,1024,224,7.09,6.73,22.6 +cspresnet50w,2835.31,361.148,1024,256,5.04,12.19,28.12 +vgg11,2827.53,362.143,1024,224,7.61,7.44,132.86 +tf_efficientnet_em,2826.28,362.303,1024,240,3.04,14.34,6.9 +visformer_small,2818.88,363.251,1024,224,4.88,11.43,40.22 +vit_relpos_small_patch16_224,2792.87,366.637,1024,224,4.59,13.05,21.98 +vit_relpos_base_patch32_plus_rpn_256,2784.26,367.771,1024,256,7.68,8.01,119.42 +vit_srelpos_small_patch16_224,2781.72,368.106,1024,224,4.59,12.16,21.97 +resnest26d,2772.97,369.267,1024,224,3.64,9.97,17.07 +cs3darknet_focus_l,2770.5,369.596,1024,288,5.9,10.16,21.15 +efficientnet_b2a,2767.64,369.979,1024,288,1.12,16.2,9.11 +efficientnet_b2,2766.98,370.065,1024,288,1.12,16.2,9.11 +ese_vovnet39b,2760.12,370.986,1024,224,7.09,6.74,24.57 +legacy_seresnet50,2753.49,371.881,1024,224,3.88,10.6,28.09 +densenet121,2749.79,372.378,1024,224,2.87,6.9,7.98 +tv_densenet121,2747.16,372.735,1024,224,2.87,6.9,7.98 +eca_vovnet39b,2736.53,374.185,1024,224,7.09,6.74,22.6 +coatnet_nano_cc_224,2716.19,376.986,1024,224,2.24,15.02,13.76 +convnextv2_femto,2710.95,377.714,1024,288,1.3,7.56,5.23 +resnetv2_50x1_bit_distilled,2704.93,378.554,1024,224,4.23,11.11,25.55 +selecsls84,2697.2,379.64,1024,224,5.9,7.57,50.95 +flexivit_small,2693.55,380.153,1024,240,5.35,14.18,22.06 +twins_svt_small,2691.25,380.48,1024,224,2.94,13.75,24.06 +mixnet_l,2678.25,382.327,1024,224,0.58,10.84,7.33 +seresnet50,2674.61,382.848,1024,224,4.11,11.13,28.09 +xcit_nano_12_p16_384_dist,2668.39,383.74,1024,384,1.64,12.15,3.05 +cs3darknet_l,2649.93,386.412,1024,288,6.16,10.83,21.16 +coatnet_nano_rw_224,2633.36,388.844,1024,224,2.41,15.41,15.14 +coatnext_nano_rw_224,2627.24,389.75,1024,224,2.47,12.8,14.7 +xcit_tiny_24_p16_224_dist,2617.14,391.253,1024,224,2.34,11.82,12.12 +densenet121d,2616.98,391.278,1024,224,3.11,7.7,8.0 +xcit_tiny_24_p16_224,2614.91,391.584,1024,224,2.34,11.82,12.12 +resnet50_gn,2599.07,393.975,1024,224,4.14,11.11,25.56 +vit_relpos_small_patch16_rpn_224,2596.73,394.33,1024,224,4.59,13.05,21.97 +res2net50_48w_2s,2593.21,394.865,1024,224,4.18,11.72,25.29 +mobilevit_s,2587.93,296.749,768,256,2.03,19.94,5.58 +convnext_nano,2579.36,396.983,1024,288,4.06,13.84,15.59 +tf_mixnet_l,2577.4,397.288,1024,224,0.58,10.84,7.33 +resnetaa50d,2573.35,397.912,1024,224,5.39,12.44,25.58 +vgg11_bn,2556.04,400.607,1024,224,7.62,7.44,132.87 +seresnet50t,2550.33,401.504,1024,224,4.32,11.83,28.1 +ecaresnet50d,2544.16,402.478,1024,224,4.35,11.93,25.58 +gcvit_xxtiny,2518.13,406.639,1024,224,2.14,15.36,12.0 +cs3sedarknet_l,2502.51,409.176,1024,288,6.16,10.83,21.91 +resnetrs50,2497.73,409.96,1024,224,4.48,12.14,35.69 +mobilevitv2_125,2489.87,308.438,768,256,2.86,20.1,7.48 +resnetblur50,2484.87,412.08,1024,224,5.16,12.02,25.56 +cspresnext50,2483.24,412.352,1024,256,4.05,15.86,20.57 +gluon_resnet50_v1s,2459.02,416.413,1024,224,5.47,13.52,25.68 +efficientnet_cc_b1_8e,2458.85,416.443,1024,240,0.75,15.44,39.72 +vit_base_resnet26d_224,2458.01,416.584,1024,224,6.97,13.16,101.4 +densenetblur121d,2444.58,418.873,1024,224,3.11,7.9,8.0 +tv_resnext50_32x4d,2431.41,421.143,1024,224,4.26,14.4,25.03 +ssl_resnext50_32x4d,2431.35,421.155,1024,224,4.26,14.4,25.03 +swsl_resnext50_32x4d,2430.87,421.236,1024,224,4.26,14.4,25.03 +resnext50_32x4d,2429.56,421.462,1024,224,4.26,14.4,25.03 +gluon_resnext50_32x4d,2428.35,421.674,1024,224,4.26,14.4,25.03 +dla60x,2414.82,424.035,1024,224,3.54,13.8,17.35 +efficientnet_lite3,2407.43,212.664,512,300,1.65,21.85,8.2 +regnetx_040,2406.98,425.416,1024,224,3.99,12.2,22.12 +semobilevit_s,2404.63,319.371,768,256,2.03,19.95,5.74 +gcresnext50ts,2402.57,426.196,1024,256,3.75,15.46,15.67 +regnety_040s_gn,2385.11,429.317,1024,224,4.03,12.29,20.65 +resnetblur50d,2367.52,432.507,1024,224,5.4,12.82,25.58 +vovnet57a,2360.79,433.737,1024,224,8.95,7.52,36.64 +tf_efficientnet_cc_b1_8e,2357.71,434.307,1024,240,0.75,15.44,39.72 +resmlp_24_distilled_224,2351.85,435.39,1024,224,5.96,10.91,30.02 +resmlp_24_224,2345.81,436.509,1024,224,5.96,10.91,30.02 +res2net50_14w_8s,2341.48,437.317,1024,224,4.21,13.28,25.06 +coatnet_rmlp_nano_rw_224,2340.53,437.494,1024,224,2.62,20.34,15.15 +sehalonet33ts,2339.44,328.271,768,256,3.55,14.7,13.69 +res2net50_26w_4s,2338.49,437.876,1024,224,4.28,12.61,25.7 +convnext_nano_ols,2328.37,439.779,1024,288,4.38,15.5,15.65 +lambda_resnet26rpt_256,2324.88,165.158,384,256,3.16,11.87,10.99 +gmixer_24_224,2324.82,440.451,1024,224,5.28,14.45,24.72 +gcresnet50t,2321.78,441.028,1024,256,5.42,14.67,25.9 +resnext50d_32x4d,2317.05,441.929,1024,224,4.5,15.2,25.05 +resnest50d_1s4x24d,2309.9,443.296,1024,224,4.43,13.57,25.68 +seresnetaa50d,2309.78,443.319,1024,224,5.4,12.46,28.11 +dla60_res2net,2301.91,444.834,1024,224,4.15,12.34,20.85 +vit_base_r26_s32_224,2301.77,444.864,1024,224,6.81,12.36,101.38 +twins_pcpvt_small,2290.09,447.132,1024,224,3.83,18.08,24.11 +regnetz_b16,2286.62,447.81,1024,288,2.39,16.43,9.72 +ese_vovnet57b,2267.23,451.64,1024,224,8.95,7.52,38.61 +gluon_inception_v3,2265.31,452.024,1024,299,5.73,8.97,23.83 +inception_v3,2260.97,452.888,1024,299,5.73,8.97,23.83 +adv_inception_v3,2258.89,453.305,1024,299,5.73,8.97,23.83 +tf_inception_v3,2255.73,453.943,1024,299,5.73,8.97,23.83 +densenet169,2232.91,458.582,1024,224,3.4,7.3,14.15 +tf_efficientnetv2_b3,2223.64,460.493,1024,300,3.04,15.74,14.36 +nf_ecaresnet50,2211.52,463.019,1024,224,4.21,11.13,25.56 +nf_seresnet50,2207.21,463.921,1024,224,4.21,11.13,28.09 +skresnet50,2206.75,464.017,1024,224,4.11,12.5,25.8 +edgenext_small,2206.31,464.109,1024,320,1.97,14.16,5.59 +seresnext50_32x4d,2197.09,466.058,1024,224,4.26,14.42,27.56 +gluon_seresnext50_32x4d,2196.94,466.091,1024,224,4.26,14.42,27.56 +xcit_small_12_p16_224_dist,2195.81,466.33,1024,224,4.82,12.58,26.25 +legacy_seresnext50_32x4d,2193.34,466.856,1024,224,4.26,14.42,27.56 +xcit_small_12_p16_224,2190.16,467.534,1024,224,4.82,12.58,26.25 +repvgg_b1g4,2188.83,467.817,1024,224,8.15,10.64,39.97 +tf_efficientnet_lite3,2188.37,233.953,512,300,1.65,21.85,8.2 +efficientnetv2_rw_t,2170.03,471.87,1024,288,3.19,16.42,13.65 +gmlp_s16_224,2164.56,473.061,1024,224,4.42,15.1,19.42 +dla60_res2next,2126.26,481.583,1024,224,3.49,13.17,17.03 +gc_efficientnetv2_rw_t,2126.09,481.621,1024,288,3.2,16.45,13.68 +skresnet50d,2112.57,484.703,1024,224,4.36,13.31,25.82 +mobilevitv2_150,2105.0,243.219,512,256,4.09,24.11,10.59 +mobilevitv2_150_in22ft1k,2104.51,243.274,512,256,4.09,24.11,10.59 +convnextv2_pico,2092.16,489.434,1024,288,2.27,10.08,9.07 +poolformer_s24,2090.38,489.851,1024,224,3.41,10.68,21.39 +cs3sedarknet_xdw,2090.04,489.929,1024,256,5.97,17.18,21.6 +res2next50,2085.23,491.055,1024,224,4.2,13.71,24.67 +cspdarknet53,2084.51,491.231,1024,256,6.57,16.81,27.64 +fbnetv3_g,2084.48,491.238,1024,288,1.77,21.09,16.62 +crossvit_small_240,2074.04,493.709,1024,240,5.63,18.17,26.86 +deit3_medium_patch16_224_in21ft1k,2064.27,496.046,1024,224,8.0,15.93,38.85 +deit3_medium_patch16_224,2063.34,496.268,1024,224,8.0,15.93,38.85 +xcit_nano_12_p8_224_dist,2049.01,499.742,1024,224,2.16,15.71,3.05 +xcit_nano_12_p8_224,2044.48,500.848,1024,224,2.16,15.71,3.05 +nf_regnet_b3,2035.39,503.085,1024,320,2.05,14.61,18.59 +cs3darknet_focus_x,2017.73,507.488,1024,256,8.03,10.69,35.02 +vit_relpos_medium_patch16_cls_224,2000.38,511.89,1024,224,8.03,18.24,38.76 +lambda_resnet50ts,1991.21,514.246,1024,256,5.07,17.48,21.54 +swin_tiny_patch4_window7_224,1978.72,517.495,1024,224,4.51,17.06,28.29 +sebotnet33ts_256,1959.75,195.932,384,256,3.89,17.46,13.7 +coatnet_0_rw_224,1957.32,523.148,1024,224,4.43,18.73,27.44 +ecaresnet26t,1953.32,524.224,1024,320,5.24,16.44,16.01 +regnetx_080,1942.5,527.144,1024,224,8.02,14.06,39.57 +gcvit_xtiny,1941.57,527.393,1024,224,2.93,20.26,19.98 +resnetv2_101,1925.46,531.806,1024,224,7.83,16.23,44.54 +regnetx_064,1920.06,533.303,1024,224,6.49,16.37,26.21 +mixnet_xl,1918.85,533.64,1024,224,0.93,14.57,11.9 +edgenext_small_rw,1912.9,535.3,1024,320,2.46,14.85,7.83 +vit_relpos_medium_patch16_224,1907.96,536.687,1024,224,7.97,17.02,38.75 +vit_srelpos_medium_patch16_224,1900.57,538.773,1024,224,7.96,16.21,38.74 +resnest50d,1896.74,539.858,1024,224,5.4,14.36,27.48 +crossvit_15_240,1894.86,540.397,1024,240,5.81,19.77,27.53 +vit_base_resnet50d_224,1892.78,540.989,1024,224,8.73,16.92,110.97 +gluon_resnet101_v1b,1879.26,544.883,1024,224,7.83,16.23,44.55 +tv_resnet101,1878.26,545.172,1024,224,7.83,16.23,44.55 +resnet101,1875.25,546.047,1024,224,7.83,16.23,44.55 +dla102,1873.79,546.472,1024,224,7.19,14.18,33.27 +efficientformer_l3,1868.08,548.142,1024,224,3.93,12.01,31.41 +maxvit_rmlp_pico_rw_256,1866.73,411.402,768,256,1.85,24.86,7.52 +resnetv2_101d,1855.94,551.727,1024,224,8.07,17.04,44.56 +pvt_v2_b2,1835.92,557.745,1024,224,4.05,27.53,25.36 +maxvit_pico_rw_256,1829.44,419.787,768,256,1.83,22.3,7.46 +vgg13,1820.36,562.512,1024,224,11.31,12.25,133.05 +lamhalobotnet50ts_256,1818.57,563.067,1024,256,5.02,18.44,22.57 +crossvit_15_dagger_240,1817.96,563.255,1024,240,6.13,20.43,28.21 +gluon_resnet101_v1c,1816.14,563.82,1024,224,8.08,17.04,44.57 +res2net50_26w_6s,1811.81,565.168,1024,224,6.33,15.28,37.05 +gluon_resnet101_v1d,1808.21,566.295,1024,224,8.08,17.04,44.57 +swin_s3_tiny_224,1803.67,567.72,1024,224,4.64,19.13,28.33 +coatnet_rmlp_0_rw_224,1803.63,567.733,1024,224,4.72,24.89,27.45 +vit_relpos_medium_patch16_rpn_224,1770.72,578.284,1024,224,7.97,17.02,38.73 +halonet50ts,1765.73,579.917,1024,256,5.3,19.2,22.73 +repvgg_b1,1760.92,581.5,1024,224,13.16,10.64,57.42 +coatnet_bn_0_rw_224,1753.99,583.799,1024,224,4.67,22.04,27.44 +wide_resnet50_2,1747.87,585.844,1024,224,11.43,14.4,68.88 +efficientnet_b3,1741.21,294.036,512,320,2.01,26.52,12.23 +efficientnet_b3a,1740.84,294.1,512,320,2.01,26.52,12.23 +densenet201,1738.22,589.096,1024,224,4.34,7.85,20.01 +coatnet_0_224,1727.45,296.376,512,224,4.58,24.01,25.04 +darknetaa53,1721.33,594.876,1024,288,10.08,15.68,36.02 +tf_efficientnet_b3,1720.61,297.558,512,300,1.87,23.83,12.23 +cait_xxs24_224,1720.1,595.301,1024,224,2.53,20.29,11.96 +vit_large_patch32_224,1718.53,595.845,1024,224,15.41,13.32,327.9 +mobilevitv2_175,1697.71,301.572,512,256,5.54,28.13,14.25 +mobilevitv2_175_in22ft1k,1697.51,301.606,512,256,5.54,28.13,14.25 +xcit_tiny_12_p16_384_dist,1694.92,604.145,1024,384,3.64,18.26,6.72 +pvt_v2_b2_li,1694.45,604.311,1024,224,3.91,27.6,22.55 +coat_lite_small,1694.41,604.328,1024,224,3.96,22.09,19.84 +resnetaa101d,1692.59,604.976,1024,224,9.12,17.56,44.57 +legacy_seresnet101,1686.93,607.005,1024,224,7.61,15.74,49.33 +tresnet_v2_l,1685.52,607.515,1024,224,8.81,16.34,46.17 +hrnet_w18,1679.12,609.832,1024,224,4.32,16.31,21.3 +vit_medium_patch16_gap_240,1667.0,614.264,1024,240,9.22,18.81,44.4 +vit_tiny_patch16_384,1660.88,616.528,1024,384,4.7,25.39,5.79 +regnetv_040,1659.81,616.926,1024,288,6.6,20.3,20.64 +convnext_tiny_hnf,1659.73,616.951,1024,288,7.39,22.21,28.59 +seresnet101,1655.13,618.666,1024,224,7.84,16.27,49.33 +vit_base_patch32_384,1651.29,620.109,1024,384,13.06,16.5,88.3 +vit_base_patch32_clip_384,1649.72,620.7,1024,384,13.06,16.5,88.3 +regnety_040,1647.66,621.47,1024,288,6.61,20.3,20.65 +regnety_032,1645.25,622.383,1024,288,5.29,18.61,19.44 +gluon_resnet101_v1s,1642.29,623.505,1024,224,9.19,18.64,44.67 +vgg13_bn,1634.19,626.596,1024,224,11.33,12.25,133.05 +resnetaa50,1631.05,627.803,1024,288,8.52,19.24,25.56 +mixer_b16_224_miil,1628.71,628.706,1024,224,12.62,14.53,59.88 +mixer_b16_224,1627.79,629.061,1024,224,12.62,14.53,59.88 +convnext_tiny,1626.95,629.384,1024,288,7.39,22.21,28.59 +nf_resnet101,1620.77,631.785,1024,224,8.01,16.23,44.55 +swinv2_cr_tiny_224,1618.15,632.807,1024,224,4.66,28.45,28.33 +ecaresnet101d,1609.33,636.276,1024,224,8.08,17.07,44.57 +twins_pcpvt_base,1605.41,637.831,1024,224,6.68,25.25,43.83 +dla102x,1601.78,639.274,1024,224,5.89,19.42,26.31 +ese_vovnet39b_evos,1601.47,639.4,1024,224,7.07,6.74,24.58 +darknet53,1597.03,641.177,1024,288,11.78,15.68,41.61 +resnetblur101d,1596.24,641.494,1024,224,9.12,17.94,44.57 +resnet51q,1592.08,643.172,1024,288,8.07,20.94,35.7 +swinv2_cr_tiny_ns_224,1591.39,643.448,1024,224,4.66,28.45,28.33 +mixer_l32_224,1583.03,646.85,1024,224,11.27,19.86,206.94 +resmlp_36_distilled_224,1577.86,648.967,1024,224,8.91,16.33,44.69 +resmlp_36_224,1577.4,649.158,1024,224,8.91,16.33,44.69 +resnetv2_50d_gn,1561.87,655.61,1024,288,7.24,19.7,25.57 +botnet50ts_256,1556.81,246.643,384,256,5.54,22.23,22.74 +nf_resnet50,1548.83,661.132,1024,288,6.88,18.37,25.56 +resnetv2_50d_frn,1547.35,661.764,1024,224,4.33,11.92,25.59 +halo2botnet50ts_256,1546.64,496.545,768,256,5.02,21.78,22.64 +mvitv2_tiny,1534.63,667.247,1024,224,4.7,21.16,24.17 +gluon_resnext101_32x4d,1505.04,680.366,1024,224,8.01,21.23,44.18 +swsl_resnext101_32x4d,1504.46,680.63,1024,224,8.01,21.23,44.18 +cs3darknet_x,1504.38,680.665,1024,288,10.6,14.36,35.05 +ssl_resnext101_32x4d,1503.93,680.869,1024,224,8.01,21.23,44.18 +resnext101_32x4d,1503.63,681.005,1024,224,8.01,21.23,44.18 +resnest50d_4s2x40d,1497.58,683.755,1024,224,4.4,17.94,30.42 +convnextv2_nano,1488.75,515.858,768,288,4.06,13.84,15.62 +skresnext50_32x4d,1478.83,692.427,1024,224,4.5,17.18,27.48 +mobilevitv2_200,1478.44,519.454,768,256,7.22,32.15,18.45 +tresnet_l,1477.44,693.076,1024,224,10.88,11.9,55.99 +mobilevitv2_200_in22ft1k,1477.37,519.83,768,256,7.22,32.15,18.45 +vgg16,1475.59,693.946,1024,224,15.47,13.56,138.36 +regnetz_c16,1475.58,693.953,1024,320,3.92,25.88,13.46 +resnetv2_50d_evob,1468.61,697.244,1024,224,4.33,11.92,25.59 +vit_medium_patch16_gap_256,1467.03,697.996,1024,256,10.59,22.15,38.86 +res2net50_26w_8s,1466.52,698.239,1024,224,8.37,17.95,48.4 +sequencer2d_s,1465.84,698.562,1024,224,4.96,11.31,27.65 +eca_nfnet_l0,1461.61,700.586,1024,288,7.12,17.29,24.14 +nfnet_l0,1460.27,701.228,1024,288,7.13,17.29,35.07 +cs3sedarknet_x,1435.72,713.217,1024,288,10.6,14.37,35.4 +resnet61q,1434.01,714.068,1024,288,9.87,21.52,36.85 +res2net101_26w_4s,1424.71,718.728,1024,224,8.1,18.45,45.21 +repvgg_b2g4,1415.15,723.581,1024,224,12.63,12.9,61.76 +nest_tiny,1413.2,543.434,768,224,5.83,25.48,17.06 +poolformer_s36,1408.65,726.922,1024,224,5.0,15.82,30.86 +maxvit_rmlp_nano_rw_256,1404.06,546.971,768,256,4.47,31.92,15.5 +convit_small,1397.72,732.608,1024,224,5.76,17.87,27.78 +jx_nest_tiny,1387.89,553.347,768,224,5.83,25.48,17.06 +maxvit_nano_rw_256,1378.18,557.246,768,256,4.46,30.28,15.45 +nf_ecaresnet101,1373.28,745.649,1024,224,8.01,16.27,44.55 +nf_seresnet101,1369.04,747.958,1024,224,8.02,16.27,49.33 +gluon_seresnext101_32x4d,1358.35,753.84,1024,224,8.02,21.26,48.96 +legacy_seresnext101_32x4d,1357.27,754.442,1024,224,8.02,21.26,48.96 +efficientnet_b3_gn,1357.0,282.964,384,320,2.14,28.83,11.73 +nfnet_f0,1356.65,754.786,1024,256,12.62,18.05,71.49 +seresnext101_32x4d,1356.0,755.148,1024,224,8.02,21.26,48.96 +resnetv2_152,1353.28,756.668,1024,224,11.55,22.56,60.19 +xception,1353.17,567.542,768,299,8.4,35.83,22.86 +twins_svt_base,1350.54,758.199,1024,224,8.59,26.33,56.07 +crossvit_18_240,1343.82,761.996,1024,240,9.05,26.26,43.27 +ese_vovnet99b_iabn,1343.72,762.049,1024,224,16.49,11.27,63.2 +maxxvit_rmlp_nano_rw_256,1341.45,763.341,1024,256,4.37,26.05,16.78 +regnetx_120,1339.05,764.708,1024,224,12.13,21.37,46.11 +vgg16_bn,1336.79,765.998,1024,224,15.5,13.56,138.37 +dpn92,1330.6,769.562,1024,224,6.54,18.21,37.67 +tv_resnet152,1329.75,770.054,1024,224,11.56,22.56,60.19 +gcvit_tiny,1328.61,770.718,1024,224,4.79,29.82,28.22 +gluon_resnet152_v1b,1328.2,770.954,1024,224,11.56,22.56,60.19 +resnet152,1327.13,771.578,1024,224,11.56,22.56,60.19 +ese_vovnet99b,1316.93,777.554,1024,224,16.51,11.27,63.2 +pvt_v2_b3,1316.31,777.917,1024,224,6.92,37.7,45.24 +xcit_tiny_12_p8_224_dist,1300.55,787.348,1024,224,4.81,23.6,6.71 +xcit_tiny_12_p8_224,1299.96,787.704,1024,224,4.81,23.6,6.71 +crossvit_18_dagger_240,1298.96,788.312,1024,240,9.5,27.03,44.27 +hrnet_w32,1297.82,789.002,1024,224,8.97,22.02,41.23 +gluon_resnet152_v1c,1296.47,789.825,1024,224,11.8,23.36,60.21 +resnetv2_152d,1296.37,789.881,1024,224,11.8,23.36,60.2 +gluon_resnet152_v1d,1293.21,791.811,1024,224,11.8,23.36,60.21 +vit_small_resnet50d_s16_224,1288.35,794.801,1024,224,13.48,24.82,57.53 +cs3edgenet_x,1281.15,799.266,1024,288,14.59,16.36,47.82 +edgenext_base,1272.74,804.548,1024,320,6.01,24.32,18.51 +regnety_120,1268.38,807.318,1024,224,12.14,21.38,51.82 +dla169,1258.34,813.753,1024,224,11.6,20.2,53.39 +hrnet_w30,1252.2,817.74,1024,224,8.15,21.21,37.71 +xception41p,1249.06,409.896,512,299,9.25,39.86,26.91 +maxxvitv2_nano_rw_256,1248.81,819.967,1024,256,6.26,23.05,23.7 +ecaresnet50t,1243.91,823.198,1024,320,8.82,24.13,25.57 +vgg19,1237.03,827.774,1024,224,19.63,14.86,143.67 +swin_small_patch4_window7_224,1228.67,833.406,1024,224,8.77,27.47,49.61 +efficientnet_el_pruned,1220.93,838.69,1024,300,8.0,30.7,10.59 +densenet161,1220.41,839.05,1024,224,7.79,11.06,28.68 +efficientnet_el,1218.76,840.187,1024,300,8.0,30.7,10.59 +deit_base_distilled_patch16_224,1211.4,845.292,1024,224,17.68,24.05,87.34 +vit_base_patch16_224,1209.0,846.969,1024,224,17.58,23.9,86.57 +vit_base_patch16_224_miil,1208.72,847.163,1024,224,17.59,23.91,94.4 +deit_base_patch16_224,1208.56,847.275,1024,224,17.58,23.9,86.57 +vit_base_patch16_clip_224,1205.77,849.236,1024,224,17.58,23.9,86.57 +gluon_resnet152_v1s,1205.41,849.488,1024,224,12.92,24.96,60.32 +coatnet_rmlp_1_rw_224,1201.89,851.979,1024,224,7.85,35.47,41.69 +maxvit_tiny_rw_224,1200.3,853.107,1024,224,5.11,33.11,29.06 +mixnet_xxl,1193.04,643.721,768,224,2.04,23.43,23.96 +tf_efficientnet_el,1192.11,858.967,1024,300,8.0,30.7,10.59 +swinv2_tiny_window8_256,1191.01,859.761,1024,256,5.96,24.57,28.35 +volo_d1_224,1190.57,860.079,1024,224,6.94,24.43,26.63 +repvgg_b2,1183.91,864.916,1024,224,20.45,12.9,89.02 +legacy_seresnet152,1181.09,866.978,1024,224,11.33,22.08,66.82 +xcit_small_24_p16_224_dist,1175.31,871.245,1024,224,9.1,23.64,47.67 +xcit_small_24_p16_224,1174.76,871.656,1024,224,9.1,23.64,47.67 +inception_v4,1168.76,876.127,1024,299,12.28,15.09,42.68 +seresnet152,1166.02,878.19,1024,224,11.57,22.61,66.82 +twins_pcpvt_large,1163.18,880.331,1024,224,9.84,35.82,60.99 +deit3_base_patch16_224,1159.4,883.201,1024,224,17.58,23.9,86.59 +deit3_base_patch16_224_in21ft1k,1159.14,883.404,1024,224,17.58,23.9,86.59 +cait_xxs36_224,1156.4,885.493,1024,224,3.77,30.34,17.3 +vit_base_patch32_clip_448,1154.9,886.645,1024,448,17.93,23.9,88.34 +regnetx_160,1153.07,888.048,1024,224,15.99,25.52,54.28 +dm_nfnet_f0,1152.75,888.293,1024,256,12.62,18.05,71.49 +sequencer2d_m,1147.71,892.201,1024,224,6.55,14.26,38.31 +repvgg_b3g4,1145.87,893.631,1024,224,17.89,15.1,83.83 +mvitv2_small_cls,1144.7,894.542,1024,224,7.04,28.17,34.87 +mvitv2_small,1143.83,895.224,1024,224,7.0,28.08,34.87 +efficientnet_lite4,1139.64,336.935,384,380,4.04,45.66,13.01 +tnt_s_patch16_224,1135.12,902.091,1024,224,5.24,24.37,23.76 +convmixer_1024_20_ks9_p14,1130.85,905.497,1024,224,5.55,5.51,24.38 +vgg19_bn,1127.16,908.464,1024,224,19.66,14.86,143.68 +vit_relpos_base_patch16_clsgap_224,1124.58,910.547,1024,224,17.6,25.12,86.43 +vit_relpos_base_patch16_cls_224,1122.76,912.026,1024,224,17.6,25.12,86.43 +coatnet_rmlp_1_rw2_224,1119.61,914.591,1024,224,8.11,40.13,41.72 +beit_base_patch16_224,1109.32,923.073,1024,224,17.58,23.9,86.53 +xception41,1107.6,462.251,512,299,9.28,39.86,26.97 +tresnet_xl,1106.51,925.423,1024,224,15.17,15.34,78.44 +beitv2_base_patch16_224,1106.05,925.798,1024,224,17.58,23.9,86.53 +coat_tiny,1099.16,931.604,1024,224,4.35,27.2,5.5 +vit_base_patch16_gap_224,1085.51,943.323,1024,224,17.49,25.59,86.57 +maxvit_tiny_tf_224,1081.57,710.062,768,224,5.6,35.78,30.92 +vit_relpos_base_patch16_224,1078.21,949.713,1024,224,17.51,24.97,86.43 +nf_regnet_b4,1075.82,951.823,1024,384,4.7,28.61,30.21 +coatnet_1_rw_224,1074.48,953.005,1024,224,8.04,34.6,41.72 +dla102x2,1070.83,956.252,1024,224,9.34,29.91,41.28 +pit_b_224,1066.8,479.928,512,224,12.42,32.94,73.76 +pit_b_distilled_224,1063.31,481.504,512,224,12.5,33.07,74.79 +tf_efficientnet_lite4,1058.68,362.703,384,380,4.04,45.66,13.01 +efficientnetv2_s,1057.28,968.508,1024,384,8.44,35.77,21.46 +vit_large_r50_s32_224,1034.79,989.556,1024,224,19.58,24.41,328.99 +vit_small_patch16_36x1_224,1032.1,992.142,1024,224,13.71,35.69,64.67 +efficientnet_b3_g8_gn,1031.26,496.465,512,320,3.2,28.83,14.25 +tf_efficientnetv2_s,1029.13,995.002,1024,384,8.44,35.77,21.46 +flexivit_base,1028.55,995.558,1024,240,20.29,28.36,86.59 +vit_base_patch16_rpn_224,1016.66,1007.208,1024,224,17.49,23.75,86.54 +vit_small_r26_s32_384,1011.11,1012.73,1024,384,10.43,29.85,36.47 +vit_small_patch16_18x2_224,1005.34,1018.547,1024,224,13.71,35.69,64.67 +swinv2_cr_small_224,1000.71,1023.259,1024,224,9.07,50.27,49.7 +efficientnetv2_rw_s,995.91,1028.19,1024,384,8.72,38.03,23.94 +wide_resnet101_2,995.32,1028.801,1024,224,22.8,21.23,126.89 +swinv2_cr_small_ns_224,989.25,1035.114,1024,224,9.08,50.27,49.7 +vit_relpos_base_patch16_rpn_224,986.84,1037.641,1024,224,17.51,24.97,86.41 +coatnet_1_224,984.69,519.944,512,224,8.7,39.0,42.23 +resnet200,983.36,1041.314,1024,224,15.07,32.19,64.67 +dpn98,982.09,1042.657,1024,224,11.73,25.2,61.57 +convnext_small,981.97,1042.782,1024,288,14.39,35.65,50.22 +cs3se_edgenet_x,975.89,1049.279,1024,320,18.01,20.21,50.72 +regnety_080,969.67,1056.01,1024,288,13.22,29.69,39.18 +poolformer_m36,966.97,1058.965,1024,224,8.8,22.02,56.17 +resnest101e,963.69,1062.57,1024,256,13.38,28.66,48.28 +regnetz_b16_evos,955.65,803.632,768,288,2.36,16.43,9.74 +twins_svt_large,954.95,1072.291,1024,224,15.15,35.1,99.27 +pvt_v2_b4,952.02,1075.594,1024,224,10.14,53.74,62.56 +gluon_resnext101_64x4d,944.48,1084.183,1024,224,15.52,31.21,83.46 +regnetv_064,944.32,1084.367,1024,288,10.55,27.11,30.58 +regnety_064,944.18,1084.526,1024,288,10.56,27.11,30.58 +maxvit_rmlp_tiny_rw_256,941.64,815.588,768,256,6.77,46.92,29.15 +regnetz_d8,936.16,1093.814,1024,320,6.19,37.08,23.37 +resnetrs101,936.12,1093.858,1024,288,13.56,28.53,63.62 +regnetz_d32,933.58,1096.833,1024,320,9.33,37.08,27.58 +ig_resnext101_32x8d,930.9,1099.997,1024,224,16.48,31.21,88.79 +swsl_resnext101_32x8d,930.28,1100.725,1024,224,16.48,31.21,88.79 +resnext101_32x8d,929.98,1101.084,1024,224,16.48,31.21,88.79 +ssl_resnext101_32x8d,929.0,1102.24,1024,224,16.48,31.21,88.79 +convnextv2_tiny,925.13,553.423,512,288,7.39,22.21,28.64 +convnextv2_small,924.53,1107.57,1024,224,8.71,21.56,50.32 +maxvit_tiny_rw_256,921.72,833.209,768,256,6.74,44.35,29.07 +inception_resnet_v2,917.69,1115.834,1024,299,13.18,25.06,55.84 +ens_adv_inception_resnet_v2,917.66,1115.871,1024,299,13.18,25.06,55.84 +maxxvit_rmlp_tiny_rw_256,914.74,1119.428,1024,256,6.66,39.76,29.64 +xcit_tiny_24_p16_384_dist,912.61,1122.045,1024,384,6.87,34.29,12.12 +cait_s24_224,908.65,1126.929,1024,224,9.35,40.58,46.92 +pvt_v2_b5,904.89,1131.615,1024,224,11.76,50.92,81.96 +nest_small,902.63,850.834,768,224,10.35,40.04,38.35 +repvgg_b3,901.73,1135.583,1024,224,29.16,15.1,123.09 +maxvit_tiny_pm_256,896.67,1141.994,1024,256,6.61,47.9,30.09 +xception65p,896.53,571.079,512,299,13.91,52.48,39.82 +swin_s3_small_224,896.35,856.792,768,224,9.43,37.84,49.74 +jx_nest_small,892.32,860.663,768,224,10.35,40.04,38.35 +efficientnet_b4,890.89,431.018,384,384,4.51,50.04,19.34 +gmlp_b16_224,885.75,1156.072,1024,224,15.78,30.21,73.08 +gluon_seresnext101_64x4d,885.23,1156.747,1024,224,15.53,31.25,88.23 +hrnet_w40,881.9,1161.12,1024,224,12.75,25.29,57.56 +efficientformer_l7,877.43,1167.027,1024,224,10.17,24.45,82.23 +coat_mini,874.29,1171.227,1024,224,6.82,33.68,10.34 +resnet101d,871.81,1174.559,1024,320,16.48,34.77,44.57 +swin_base_patch4_window7_224,870.1,1176.867,1024,224,15.47,36.63,87.77 +regnetz_040,868.17,884.605,768,320,6.35,37.78,27.12 +regnetz_040h,862.76,890.151,768,320,6.43,37.94,28.94 +mobilevitv2_150_384_in22ft1k,848.7,301.627,256,384,9.2,54.25,10.59 +resnetv2_50d_evos,844.34,909.573,768,288,7.15,19.7,25.59 +tf_efficientnet_b4,838.16,458.136,384,380,4.49,49.49,19.34 +crossvit_base_240,835.31,919.411,768,240,21.22,36.33,105.03 +vit_base_r50_s16_224,821.15,1247.01,1024,224,21.67,35.31,114.69 +xcit_medium_24_p16_224_dist,819.59,1249.397,1024,224,16.13,31.71,84.4 +xcit_medium_24_p16_224,818.73,1250.697,1024,224,16.13,31.71,84.4 +gcvit_small,807.46,1268.151,1024,224,8.57,41.61,51.09 +gluon_xception65,806.21,635.055,512,299,13.96,52.48,39.92 +xception65,800.01,639.983,512,299,13.96,52.48,39.92 +mvitv2_base,799.31,1281.092,1024,224,10.16,40.5,51.47 +hrnet_w44,789.29,1297.348,1024,224,14.94,26.92,67.06 +vit_base_patch16_plus_240,780.68,1311.665,1024,240,27.41,33.08,117.56 +hrnet_w48,780.39,1312.147,1024,224,17.34,28.56,77.47 +swinv2_tiny_window16_256,778.19,657.926,512,256,6.68,39.02,28.35 +tresnet_m_448,775.99,1319.596,1024,448,22.94,29.21,31.39 +xcit_small_12_p16_384_dist,760.88,1345.804,1024,384,14.14,36.51,26.25 +vit_small_patch16_384,750.95,1022.685,768,384,15.52,50.78,22.2 +maxvit_rmlp_small_rw_224,745.49,1373.585,1024,224,10.75,49.3,64.9 +sequencer2d_l,742.48,1379.149,1024,224,9.74,22.12,54.3 +swinv2_small_window8_256,738.39,1386.788,1024,256,11.58,40.14,49.73 +swin_s3_base_224,730.45,1401.854,1024,224,13.69,48.26,71.13 +poolformer_m48,729.44,1403.808,1024,224,11.59,29.17,73.47 +densenet264d_iabn,727.43,1407.671,1024,224,13.47,14.0,72.74 +vit_relpos_base_patch16_plus_240,723.43,1415.468,1024,240,27.3,34.33,117.38 +dpn131,722.72,1416.854,1024,224,16.09,32.97,79.25 +tnt_b_patch16_224,722.12,1418.026,1024,224,14.09,39.01,65.41 +deit3_small_patch16_384,717.36,1070.572,768,384,15.52,50.78,22.21 +deit3_small_patch16_384_in21ft1k,716.76,1071.477,768,384,15.52,50.78,22.21 +swinv2_cr_base_224,715.64,1430.874,1024,224,15.86,59.66,87.88 +eca_nfnet_l1,713.15,1435.867,1024,320,14.92,34.42,41.41 +coatnet_2_rw_224,709.88,721.237,512,224,15.09,49.22,73.87 +swinv2_cr_base_ns_224,709.69,1442.871,1024,224,15.86,59.66,87.88 +coatnet_rmlp_2_rw_224,708.85,722.285,512,224,15.18,54.78,73.88 +convit_base,706.65,1449.076,1024,224,17.52,31.77,86.54 +mobilevitv2_175_384_in22ft1k,703.41,363.928,256,384,12.47,63.29,14.25 +maxvit_small_tf_224,701.58,729.767,512,224,11.66,53.17,68.93 +densenet264,701.03,1460.686,1024,224,12.95,12.8,72.69 +ecaresnet200d,694.19,1475.094,1024,256,20.0,43.15,64.69 +resnetv2_50x1_bitm,691.29,740.624,512,448,16.62,44.46,25.55 +seresnet200d,691.25,1481.355,1024,256,20.01,43.15,71.86 +xcit_tiny_24_p8_224,684.73,1495.467,1024,224,9.21,45.39,12.11 +xcit_tiny_24_p8_224_dist,684.22,1496.573,1024,224,9.21,45.39,12.11 +convnext_base,682.42,1500.518,1024,288,25.43,47.53,88.59 +volo_d2_224,663.51,1543.3,1024,224,14.34,41.34,58.68 +coatnet_2_224,660.84,581.062,384,224,16.5,52.67,74.68 +legacy_senet154,654.15,1565.387,1024,224,20.77,38.69,115.09 +gluon_senet154,654.04,1565.641,1024,224,20.77,38.69,115.09 +senet154,653.94,1565.866,1024,224,20.77,38.69,115.09 +xcit_nano_12_p8_384_dist,646.53,1583.823,1024,384,6.34,46.08,3.05 +dpn107,646.38,1584.202,1024,224,18.38,33.46,86.92 +nest_base,640.55,799.298,512,224,17.96,53.39,67.72 +jx_nest_base,633.53,808.151,512,224,17.96,53.39,67.72 +mobilevitv2_200_384_in22ft1k,626.31,408.731,256,384,16.24,72.34,18.45 +xception71,619.72,826.163,512,299,18.09,69.92,42.34 +hrnet_w64,618.15,1656.539,1024,224,28.97,35.09,128.06 +resnet152d,618.09,1656.699,1024,320,24.08,47.67,60.21 +regnetz_c16_evos,604.19,847.399,512,320,3.86,25.88,13.49 +gcvit_base,594.61,1722.135,1024,224,14.87,55.48,90.32 +regnety_160,594.3,1292.258,768,288,26.37,38.07,83.59 +maxxvit_rmlp_small_rw_256,588.15,1741.023,1024,256,14.67,58.38,66.01 +xcit_small_12_p8_224,582.04,1759.324,1024,224,18.69,47.21,26.21 +xcit_small_12_p8_224_dist,581.74,1760.224,1024,224,18.69,47.21,26.21 +maxvit_rmlp_small_rw_256,575.72,1333.976,768,256,14.15,66.09,64.9 +regnetx_320,551.07,1393.631,768,224,31.81,36.3,107.81 +seresnet152d,547.51,1870.27,1024,320,24.09,47.72,66.84 +resnetrs152,544.33,1881.196,1024,320,24.34,48.14,86.62 +vit_large_patch32_384,543.23,1884.997,1024,384,45.31,43.86,306.63 +halonet_h1,540.47,473.65,256,256,3.0,51.17,8.1 +seresnet269d,540.42,1894.818,1024,256,26.59,53.6,113.67 +swinv2_base_window8_256,529.22,1451.182,768,256,20.37,52.59,87.92 +maxxvitv2_rmlp_base_rw_224,523.43,1956.308,1024,224,24.2,62.77,116.09 +resnext101_64x4d,521.77,1962.525,1024,288,25.66,51.59,83.46 +regnetz_e8,521.5,1472.647,768,320,15.46,63.94,57.7 +mixer_l16_224,518.26,1975.807,1024,224,44.6,41.69,208.2 +vit_medium_patch16_gap_384,508.63,1006.611,512,384,26.08,67.54,39.03 +swin_large_patch4_window7_224,501.11,1532.586,768,224,34.53,54.94,196.53 +regnety_320,490.98,2085.591,1024,224,32.34,30.26,145.05 +swinv2_small_window16_256,487.64,1049.932,512,256,12.82,66.29,49.73 +seresnext101_32x8d,483.23,2119.074,1024,288,27.24,51.63,93.57 +vit_small_patch8_224,478.05,1071.009,512,224,22.44,80.84,21.67 +ig_resnext101_32x16d,477.64,2143.862,1024,224,36.27,51.18,194.03 +swsl_resnext101_32x16d,476.69,2148.145,1024,224,36.27,51.18,194.03 +ssl_resnext101_32x16d,476.06,2150.954,1024,224,36.27,51.18,194.03 +seresnext101d_32x8d,475.05,2155.547,1024,288,27.64,52.95,93.59 +nf_regnet_b5,470.14,1089.029,512,456,11.7,61.95,49.74 +xcit_large_24_p16_224_dist,468.86,2184.017,1024,224,35.86,47.27,189.1 +xcit_large_24_p16_224,468.75,2184.529,1024,224,35.86,47.27,189.1 +volo_d3_224,463.72,2208.199,1024,224,20.78,60.09,86.33 +nfnet_f1,463.52,2209.163,1024,320,35.97,46.77,132.63 +efficientnet_b5,460.91,555.412,256,448,9.59,93.56,30.39 +resnet200d,453.15,2259.739,1024,320,31.25,67.33,64.69 +efficientnetv2_m,451.89,2266.018,1024,416,18.6,67.5,54.14 +seresnextaa101d_32x8d,447.26,2289.498,1024,288,28.51,56.44,93.59 +efficientnetv2_rw_m,437.1,1757.005,768,416,21.49,79.62,53.24 +swinv2_cr_large_224,422.08,1819.551,768,224,35.1,78.42,196.68 +coatnet_rmlp_3_rw_224,421.87,910.226,384,224,33.56,79.47,165.15 +xcit_tiny_12_p8_384_dist,421.04,2432.044,1024,384,14.13,69.14,6.71 +swinv2_cr_tiny_384,419.77,609.847,256,384,15.34,161.01,28.33 +maxvit_rmlp_base_rw_224,419.03,1832.808,768,224,23.15,92.64,116.14 +resnetv2_152x2_bit_teacher,418.89,2444.553,1024,224,46.95,45.11,236.34 +resnetv2_101x1_bitm,418.36,1223.813,512,448,31.65,64.93,44.54 +dm_nfnet_f1,409.02,1877.643,768,320,35.97,46.77,132.63 +xcit_small_24_p16_384_dist,407.47,2513.062,1024,384,26.72,68.58,47.67 +coatnet_3_rw_224,404.39,633.033,256,224,33.44,73.83,181.81 +tf_efficientnet_b5,403.59,634.298,256,456,10.46,98.86,30.39 +convnextv2_base,402.92,1270.715,512,288,25.43,47.53,88.72 +resnetrs200,396.11,2585.123,1024,320,31.51,67.81,93.21 +tresnet_l_448,395.6,2588.481,1024,448,43.5,47.56,55.99 +eva_large_patch14_196,391.22,2617.408,1024,196,61.57,63.52,304.14 +vit_large_patch16_224,389.92,2626.132,1024,224,61.6,63.52,304.33 +regnetz_d8_evos,389.86,1969.937,768,320,7.03,38.92,23.46 +maxvit_base_tf_224,387.71,1320.545,512,224,24.04,95.01,119.47 +coatnet_3_224,387.35,660.882,256,224,36.56,79.01,166.97 +crossvit_15_dagger_408,386.57,662.227,256,408,21.45,95.05,28.5 +vit_base_patch16_18x2_224,384.3,2664.545,1024,224,52.51,71.38,256.73 +deit3_large_patch16_224,376.93,2716.643,1024,224,61.6,63.52,304.37 +deit3_large_patch16_224_in21ft1k,376.54,2719.504,1024,224,61.6,63.52,304.37 +tf_efficientnetv2_m,374.38,2051.373,768,480,24.76,89.84,54.14 +convnext_large,371.39,1378.579,512,288,56.87,71.29,197.77 +beitv2_large_patch16_224,360.12,2843.465,1024,224,61.6,63.52,304.43 +beit_large_patch16_224,359.86,2845.558,1024,224,61.6,63.52,304.43 +swinv2_base_window12to16_192to256_22kft1k,359.31,1068.705,384,256,22.02,84.71,87.92 +swinv2_base_window16_256,359.09,1069.342,384,256,22.02,84.71,87.92 +eca_nfnet_l2,347.1,2212.621,768,384,30.05,68.28,56.72 +flexivit_large,333.31,3072.173,1024,240,70.99,75.39,304.36 +vit_large_r50_s32_384,332.86,3076.333,1024,384,57.43,76.52,329.09 +maxxvitv2_rmlp_large_rw_224,330.79,3095.576,1024,224,44.14,87.15,215.42 +resnest200e,317.25,3227.754,1024,320,35.69,82.78,70.2 +maxvit_tiny_tf_384,317.22,807.002,256,384,17.53,123.42,30.98 +convmixer_768_32,309.28,3310.892,1024,224,19.55,25.95,21.11 +deit_base_patch16_384,306.13,1254.335,384,384,55.54,101.56,86.86 +vit_base_patch16_384,306.13,1254.349,384,384,55.54,101.56,86.86 +vit_base_patch16_clip_384,305.56,1256.673,384,384,55.54,101.56,86.86 +xcit_small_24_p8_224_dist,305.18,3355.41,1024,224,35.81,90.78,47.63 +deit_base_distilled_patch16_384,304.96,1259.16,384,384,55.65,101.82,87.63 +xcit_small_24_p8_224,304.86,3358.887,1024,224,35.81,90.78,47.63 +nasnetalarge,300.31,1278.679,384,331,23.89,90.56,88.75 +volo_d1_384,299.05,1712.072,512,384,22.75,108.55,26.78 +volo_d4_224,295.86,3461.069,1024,224,44.34,80.22,192.96 +deit3_base_patch16_384,294.03,1305.985,384,384,55.54,101.56,86.88 +deit3_base_patch16_384_in21ft1k,293.78,1307.085,384,384,55.54,101.56,86.88 +tresnet_xl_448,292.43,2626.294,768,448,60.65,61.31,78.44 +pnasnet5large,285.95,1342.894,384,331,25.04,92.89,86.06 +vit_large_patch14_224,285.66,3584.705,1024,224,81.08,88.79,304.2 +vit_large_patch14_clip_224,285.43,3587.599,1024,224,81.08,88.79,304.2 +crossvit_18_dagger_408,283.82,901.967,256,408,32.47,124.87,44.61 +xcit_medium_24_p16_384_dist,282.22,3628.317,1024,384,47.39,91.64,84.4 +cait_xxs24_384,275.38,3718.492,1024,384,9.63,122.66,12.03 +regnety_640,271.79,2825.663,768,224,64.16,42.5,281.38 +maxvit_large_tf_224,268.97,1427.67,384,224,43.68,127.35,211.79 +nfnet_f2,263.0,3893.59,1024,352,63.22,79.06,193.78 +beit_base_patch16_384,260.66,1473.146,384,384,55.54,101.56,86.74 +swinv2_cr_small_384,258.79,989.214,256,384,29.7,298.03,49.7 +ecaresnet269d,257.79,3972.16,1024,352,50.25,101.25,102.09 +resnetrs270,249.11,4110.633,1024,352,51.13,105.48,129.86 +mvitv2_large,248.64,2059.181,512,224,43.87,112.02,217.99 +efficientnet_b6,246.42,519.432,128,528,19.4,167.39,43.04 +convnext_xlarge,241.35,2121.412,512,288,100.8,95.05,350.2 +convnextv2_large,238.64,1072.708,256,288,56.87,71.29,197.96 +tf_efficientnet_b6,236.4,541.434,128,528,19.4,167.39,43.04 +swin_base_patch4_window12_384,235.04,816.885,192,384,47.19,134.78,87.9 +dm_nfnet_f2,234.34,3277.279,768,352,63.22,79.06,193.78 +coatnet_4_224,228.52,1120.23,256,224,62.48,129.26,275.43 +vit_base_r50_s16_384,227.31,1689.303,384,384,67.43,135.03,98.95 +efficientnetv2_l,221.97,2306.653,512,480,56.4,157.99,118.52 +xcit_tiny_24_p8_384_dist,221.23,4628.611,1024,384,27.05,132.95,12.11 +ig_resnext101_32x32d,220.61,2320.857,512,224,87.29,91.12,468.53 +swinv2_large_window12to16_192to256_22kft1k,219.46,1166.485,256,256,47.81,121.53,196.74 +tf_efficientnetv2_l,219.35,2334.183,512,480,56.4,157.99,118.52 +resmlp_big_24_224,214.31,4778.166,1024,224,100.23,87.31,129.14 +resmlp_big_24_224_in22ft1k,214.13,4782.043,1024,224,100.23,87.31,129.14 +resmlp_big_24_distilled_224,214.04,4784.169,1024,224,100.23,87.31,129.14 +xcit_medium_24_p8_224_dist,210.1,4873.763,1024,224,63.53,121.23,84.32 +xcit_medium_24_p8_224,210.01,4875.864,1024,224,63.53,121.23,84.32 +maxvit_small_tf_384,208.79,919.556,192,384,35.87,183.65,69.02 +vit_base_patch8_224,199.59,1282.637,256,224,78.22,161.69,86.58 +eca_nfnet_l3,199.58,2565.434,512,448,52.55,118.4,72.04 +volo_d5_224,196.25,5217.924,1024,224,72.4,118.11,295.46 +xcit_small_12_p8_384_dist,194.27,2635.521,512,384,54.92,138.29,26.21 +cait_xs24_384,192.73,3984.863,768,384,19.28,183.98,26.67 +swinv2_cr_base_384,184.92,1384.392,256,384,50.57,333.68,87.88 +cait_xxs36_384,184.35,5554.56,1024,384,14.35,183.7,17.37 +swinv2_cr_huge_224,183.61,2091.395,384,224,115.97,121.08,657.83 +convnext_xxlarge,183.01,2098.268,384,224,151.66,95.29,846.47 +coatnet_rmlp_2_rw_384,178.88,715.532,128,384,47.69,209.43,73.88 +convmixer_1536_20,173.51,5901.752,1024,224,48.68,33.03,51.63 +volo_d2_384,168.46,1519.603,256,384,46.17,184.51,58.87 +resnetrs350,168.28,6085.136,1024,384,77.59,154.74,163.96 +xcit_large_24_p16_384_dist,160.71,4778.847,768,384,105.35,137.17,189.1 +resnetv2_152x2_bit_teacher_384,159.55,1604.488,256,384,136.16,132.56,236.34 +maxvit_xlarge_tf_224,155.79,1643.178,256,224,97.49,191.02,474.95 +maxvit_tiny_tf_512,155.64,822.373,128,512,33.49,257.59,31.05 +regnety_1280,155.18,2474.502,384,224,127.66,71.58,644.81 +vit_huge_patch14_224,154.03,6647.897,1024,224,167.43,139.43,658.75 +vit_huge_patch14_clip_224,153.92,6652.944,1024,224,167.4,139.41,632.05 +maxxvitv2_rmlp_base_rw_384,153.34,1669.502,256,384,72.98,213.74,116.09 +efficientnetv2_xl,152.49,3357.61,512,512,93.85,247.32,208.12 +tf_efficientnetv2_xl,151.4,2536.254,384,512,93.85,247.32,208.12 +deit3_huge_patch14_224_in21ft1k,149.08,6868.834,1024,224,167.4,139.41,632.13 +deit3_huge_patch14_224,149.01,6871.974,1024,224,167.4,139.41,632.13 +cait_s24_384,148.46,3448.684,512,384,32.17,245.31,47.06 +resnest269e,147.61,3468.584,512,416,77.69,171.98,110.93 +nfnet_f3,147.43,3472.717,512,416,115.58,141.78,254.92 +efficientnet_b7,142.41,674.084,96,600,38.33,289.94,66.35 +resnetv2_50x3_bitm,138.27,1388.564,192,448,145.7,133.37,217.32 +tf_efficientnet_b7,137.89,696.181,96,600,38.33,289.94,66.35 +swin_large_patch4_window12_384,137.6,930.229,128,384,104.08,202.16,196.74 +ig_resnext101_32x48d,132.29,2902.628,384,224,153.57,131.06,828.41 +dm_nfnet_f3,127.59,4012.898,512,416,115.58,141.78,254.92 +coatnet_5_224,125.18,1022.512,128,224,145.49,194.24,687.47 +maxvit_rmlp_base_rw_384,121.26,2111.079,256,384,70.97,318.95,116.14 +xcit_large_24_p8_224,119.97,6401.598,768,224,141.23,181.56,188.93 +xcit_large_24_p8_224_dist,119.94,6403.17,768,224,141.23,181.56,188.93 +resnetrs420,119.93,6403.598,768,416,108.45,213.79,191.89 +resnetv2_152x2_bitm,117.33,2181.801,256,448,184.99,180.43,236.34 +maxvit_base_tf_384,113.69,1688.826,192,384,73.8,332.9,119.65 +swinv2_cr_large_384,113.07,1132.03,128,384,108.95,404.96,196.68 +eva_large_patch14_336,102.65,2493.904,256,336,191.1,270.24,304.53 +vit_large_patch14_clip_336,102.47,2498.286,256,336,191.11,270.24,304.53 +vit_large_patch16_384,102.37,2500.639,256,384,191.21,270.24,304.72 +xcit_small_24_p8_384_dist,102.36,5001.728,512,384,105.24,265.91,47.63 +eva_giant_patch14_224,101.75,10063.521,1024,224,267.18,192.64,1012.56 +vit_giant_patch14_224,100.42,7648.057,768,224,267.18,192.64,1012.61 +vit_giant_patch14_clip_224,100.32,7655.265,768,224,267.18,192.64,1012.65 +cait_s36_384,99.37,5152.338,512,384,47.99,367.4,68.37 +deit3_large_patch16_384,99.34,2577.037,256,384,191.21,270.24,304.76 +deit3_large_patch16_384_in21ft1k,99.27,2578.907,256,384,191.21,270.24,304.76 +regnety_2560,97.99,2612.623,256,224,257.07,87.48,826.14 +maxvit_small_tf_512,97.85,981.11,96,512,67.26,383.77,69.13 +swinv2_base_window12to24_192to384_22kft1k,95.95,666.98,64,384,55.25,280.36,87.92 +efficientnet_b8,95.3,1007.298,96,672,63.48,442.89,87.41 +tf_efficientnet_b8,92.65,1036.1,96,672,63.48,442.89,87.41 +beit_large_patch16_384,88.55,2890.891,256,384,191.21,270.24,305.0 +resnetv2_101x3_bitm,83.1,2310.491,192,448,280.33,194.78,387.93 +maxvit_large_tf_384,80.34,1593.284,128,384,132.55,445.84,212.03 +nfnet_f4,79.54,4827.723,384,512,216.26,262.26,316.07 +volo_d3_448,73.5,2612.274,192,448,96.33,446.83,86.63 +dm_nfnet_f4,71.41,3584.699,256,512,216.26,262.26,316.07 +xcit_medium_24_p8_384_dist,70.91,5415.294,384,384,186.67,354.73,84.32 +swinv2_large_window12to24_192to384_22kft1k,60.84,788.97,48,384,116.15,407.83,196.74 +vit_gigantic_patch14_clip_224,60.15,8511.823,512,224,483.96,275.37,1844.91 +vit_gigantic_patch14_224,60.11,8517.291,512,224,483.95,275.37,1844.44 +nfnet_f5,58.02,4412.387,256,544,290.97,349.71,377.21 +vit_huge_patch14_clip_336,57.29,4468.831,256,336,390.97,407.54,632.46 +convnextv2_huge,56.06,1712.576,96,384,337.96,232.35,660.29 +volo_d4_448,54.47,2349.801,128,448,197.13,527.35,193.41 +tf_efficientnet_l2,54.12,1182.593,64,475,172.11,609.89,480.31 +maxvit_base_tf_512,52.65,1823.292,96,512,138.02,703.99,119.88 +swinv2_cr_giant_224,52.12,2455.882,128,224,483.85,309.15,2598.76 +dm_nfnet_f5,50.7,5049.339,256,544,290.97,349.71,377.21 +swinv2_cr_huge_384,48.86,1309.971,64,384,352.04,583.18,657.94 +maxvit_xlarge_tf_384,46.24,2076.289,96,384,292.78,668.76,475.32 +nfnet_f6,44.3,5778.548,256,576,378.69,452.2,438.36 +xcit_large_24_p8_384_dist,40.2,6368.127,256,384,415.0,531.82,188.93 +eva_giant_patch14_336,39.77,6436.237,256,336,620.64,550.67,1013.01 +dm_nfnet_f6,39.62,6461.626,256,576,378.69,452.2,438.36 +maxvit_large_tf_512,38.67,1654.908,64,512,244.75,942.15,212.33 +volo_d5_448,37.56,3408.043,128,448,315.06,737.92,295.91 +beit_large_patch16_512,35.36,2715.28,96,512,362.24,656.39,305.67 +nfnet_f7,34.74,7370.0,256,608,480.39,570.85,499.5 +cait_m36_384,32.36,7912.123,256,384,173.11,734.81,271.22 +resnetv2_152x4_bitm,30.0,4266.89,128,480,844.84,414.26,936.53 +volo_d5_512,26.35,4857.602,128,512,425.09,1105.37,296.09 +maxvit_xlarge_tf_512,23.12,2076.455,48,512,534.14,1413.22,475.77 +efficientnet_l2,21.26,1505.032,32,800,479.12,1707.39,480.31 +swinv2_cr_giant_384,15.03,2129.6,32,384,1450.71,1394.86,2598.76 +cait_m48_448,13.69,9353.048,128,448,329.41,1708.23,356.46 +eva_giant_patch14_560,10.36,4631.037,48,560,1906.76,2577.17,1014.45 diff --git a/pytorch-image-models/results/benchmark-infer-amp-nchw-pt210-cu121-rtx3090.csv b/pytorch-image-models/results/benchmark-infer-amp-nchw-pt210-cu121-rtx3090.csv new file mode 100644 index 0000000000000000000000000000000000000000..9980b79d8ed492c5e1fdc05ea13392449994b750 --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-amp-nchw-pt210-cu121-rtx3090.csv @@ -0,0 +1,1294 @@ +model,infer_img_size,infer_batch_size,infer_samples_per_sec,infer_step_time,infer_gmacs,infer_macts,param_count +tinynet_e,106,1024.0,50604.03,20.225,0.03,0.69,2.04 +mobilenetv3_small_050,224,1024.0,46069.42,22.217,0.03,0.92,1.59 +lcnet_035,224,1024.0,41190.64,24.85,0.03,1.04,1.64 +lcnet_050,224,1024.0,37663.82,27.178,0.05,1.26,1.88 +mobilenetv3_small_075,224,1024.0,33398.64,30.649,0.05,1.3,2.04 +efficientvit_m0,224,1024.0,32179.13,31.812,0.08,0.91,2.35 +mobilenetv3_small_100,224,1024.0,29653.41,34.522,0.06,1.42,2.54 +tf_mobilenetv3_small_minimal_100,224,1024.0,28352.57,36.106,0.06,1.41,2.04 +tinynet_d,152,1024.0,27612.87,37.074,0.05,1.42,2.34 +tf_mobilenetv3_small_075,224,1024.0,27505.95,37.218,0.05,1.3,2.04 +tf_mobilenetv3_small_100,224,1024.0,24859.95,41.18,0.06,1.42,2.54 +efficientvit_m1,224,1024.0,24836.87,41.219,0.17,1.33,2.98 +lcnet_075,224,1024.0,24184.78,42.33,0.1,1.99,2.36 +efficientvit_m2,224,1024.0,21907.95,46.731,0.2,1.47,4.19 +mnasnet_small,224,1024.0,20764.95,49.303,0.07,2.16,2.03 +levit_128s,224,1024.0,20669.44,49.531,0.31,1.88,7.78 +lcnet_100,224,1024.0,19774.93,51.772,0.16,2.52,2.95 +regnetx_002,224,1024.0,18945.55,54.04,0.2,2.16,2.68 +resnet10t,176,1024.0,18840.28,54.342,0.7,1.51,5.44 +efficientvit_m3,224,1024.0,18627.14,54.963,0.27,1.62,6.9 +mobilenetv2_035,224,1024.0,18464.78,55.447,0.07,2.86,1.68 +ghostnet_050,224,1024.0,17741.46,57.707,0.05,1.77,2.59 +resnet18,160,1024.0,17592.15,58.198,0.93,1.27,11.69 +regnety_002,224,1024.0,17571.32,58.267,0.2,2.17,3.16 +levit_conv_128s,224,1024.0,17529.9,58.404,0.31,1.88,7.78 +efficientvit_m4,224,1024.0,17446.52,58.683,0.3,1.7,8.8 +repghostnet_050,224,1024.0,17090.91,59.904,0.05,2.02,2.31 +efficientvit_b0,224,1024.0,16784.26,60.999,0.1,2.87,3.41 +vit_tiny_r_s16_p8_224,224,1024.0,16479.31,62.128,0.43,1.85,6.34 +vit_small_patch32_224,224,1024.0,15974.78,64.091,1.12,2.09,22.88 +mnasnet_050,224,1024.0,15859.35,64.557,0.11,3.07,2.22 +mobilenetv2_050,224,1024.0,14885.11,68.783,0.1,3.64,1.97 +tinynet_c,184,1024.0,14726.2,69.525,0.11,2.87,2.46 +pit_ti_224,224,1024.0,14628.51,69.989,0.5,2.75,4.85 +pit_ti_distilled_224,224,1024.0,14546.3,70.385,0.51,2.77,5.1 +semnasnet_050,224,1024.0,14351.42,71.341,0.11,3.44,2.08 +levit_128,224,1024.0,14192.78,72.139,0.41,2.71,9.21 +repghostnet_058,224,1024.0,13482.93,75.937,0.07,2.59,2.55 +mixer_s32_224,224,1024.0,13082.53,78.262,1.0,2.28,19.1 +cs3darknet_focus_s,256,1024.0,12838.86,79.748,0.69,2.7,3.27 +regnetx_004,224,1024.0,12620.59,81.127,0.4,3.14,5.16 +levit_conv_128,224,1024.0,12584.5,81.359,0.41,2.71,9.21 +cs3darknet_s,256,1024.0,12531.56,81.703,0.72,2.97,3.28 +lcnet_150,224,1024.0,12510.06,81.844,0.34,3.79,4.5 +regnetx_004_tv,224,1024.0,12294.91,83.276,0.42,3.17,5.5 +efficientvit_m5,224,1024.0,12067.16,84.847,0.53,2.41,12.47 +mobilenetv3_large_075,224,1024.0,12041.45,85.029,0.16,4.0,3.99 +levit_192,224,1024.0,11986.94,85.416,0.66,3.2,10.95 +resnet10t,224,1024.0,11963.05,85.587,1.1,2.43,5.44 +gernet_s,224,1024.0,11809.29,86.701,0.75,2.65,8.17 +ese_vovnet19b_slim_dw,224,1024.0,11618.32,88.126,0.4,5.28,1.9 +vit_tiny_patch16_224,224,1024.0,11270.42,90.846,1.08,4.12,5.72 +deit_tiny_patch16_224,224,1024.0,11259.37,90.936,1.08,4.12,5.72 +deit_tiny_distilled_patch16_224,224,1024.0,11217.54,91.275,1.09,4.15,5.91 +repghostnet_080,224,1024.0,11079.58,92.412,0.1,3.22,3.28 +mobilenetv3_rw,224,1024.0,10908.78,93.859,0.23,4.41,5.48 +levit_conv_192,224,1024.0,10768.96,95.077,0.66,3.2,10.95 +mobilenetv3_large_100,224,1024.0,10731.24,95.412,0.23,4.41,5.48 +hardcorenas_a,224,1024.0,10620.31,96.408,0.23,4.38,5.26 +tf_mobilenetv3_large_075,224,1024.0,10495.83,97.552,0.16,4.0,3.99 +resnet14t,176,1024.0,10451.45,97.965,1.07,3.61,10.08 +mnasnet_075,224,1024.0,10423.24,98.231,0.23,4.77,3.17 +tf_mobilenetv3_large_minimal_100,224,1024.0,10369.07,98.745,0.22,4.4,3.92 +resnet34,160,1024.0,10330.89,99.109,1.87,1.91,21.8 +regnety_004,224,1024.0,9931.33,103.097,0.41,3.89,4.34 +nf_regnet_b0,192,1024.0,9884.05,103.59,0.37,3.15,8.76 +regnetx_006,224,1024.0,9823.29,104.232,0.61,3.98,6.2 +hardcorenas_b,224,1024.0,9755.67,104.953,0.26,5.09,5.18 +hardcorenas_c,224,1024.0,9572.88,106.958,0.28,5.01,5.52 +ghostnet_100,224,1024.0,9528.83,107.453,0.15,3.55,5.18 +tf_mobilenetv3_large_100,224,1024.0,9484.05,107.96,0.23,4.41,5.48 +tinynet_b,188,1024.0,9358.37,109.409,0.21,4.44,3.73 +mnasnet_100,224,1024.0,9357.9,109.416,0.33,5.46,4.38 +tf_efficientnetv2_b0,192,1024.0,9316.15,109.906,0.54,3.51,7.14 +repghostnet_100,224,1024.0,9303.14,110.06,0.15,3.98,4.07 +mobilenetv2_075,224,1024.0,9280.78,110.325,0.22,5.86,2.64 +resnet18,224,1024.0,9222.44,111.023,1.82,2.48,11.69 +pit_xs_distilled_224,224,1024.0,9172.76,111.624,1.11,4.15,11.0 +semnasnet_075,224,1024.0,9145.4,111.959,0.23,5.54,2.91 +pit_xs_224,224,1024.0,9134.12,112.096,1.1,4.12,10.62 +regnety_006,224,1024.0,9106.78,112.433,0.61,4.33,6.06 +convnext_atto,224,1024.0,8993.29,113.851,0.55,3.81,3.7 +hardcorenas_d,224,1024.0,8915.53,114.845,0.3,4.93,7.5 +levit_256,224,1024.0,8893.96,115.124,1.13,4.23,18.89 +seresnet18,224,1024.0,8718.39,117.442,1.82,2.49,11.78 +convnext_atto_ols,224,1024.0,8549.03,119.769,0.58,4.11,3.7 +mobilenetv2_100,224,1024.0,8479.08,120.757,0.31,6.68,3.5 +legacy_seresnet18,224,1024.0,8452.0,121.144,1.82,2.49,11.78 +spnasnet_100,224,1024.0,8438.72,121.334,0.35,6.03,4.42 +repghostnet_111,224,1024.0,8382.7,122.146,0.18,4.38,4.54 +semnasnet_100,224,1024.0,8351.88,122.597,0.32,6.23,3.89 +dla46_c,224,1024.0,8209.51,124.721,0.58,4.5,1.3 +repvgg_a0,224,1024.0,8124.8,126.024,1.52,3.59,9.11 +levit_conv_256,224,1024.0,7997.32,128.032,1.13,4.23,18.89 +edgenext_xx_small,256,1024.0,7955.06,128.711,0.26,3.33,1.33 +regnetx_008,224,1024.0,7889.15,129.787,0.81,5.15,7.26 +resnet18d,224,1024.0,7873.83,130.041,2.06,3.29,11.71 +convnext_femto,224,1024.0,7867.13,130.151,0.79,4.57,5.22 +ese_vovnet19b_slim,224,1024.0,7834.56,130.693,1.69,3.52,3.17 +mobilevit_xxs,256,1024.0,7818.95,130.953,0.34,5.74,1.27 +hardcorenas_f,224,1024.0,7811.68,131.075,0.35,5.57,8.2 +hardcorenas_e,224,1024.0,7751.65,132.09,0.35,5.65,8.07 +efficientnet_lite0,224,1024.0,7716.09,132.699,0.4,6.74,4.65 +xcit_nano_12_p16_224,224,1024.0,7711.63,132.776,0.56,4.17,3.05 +ghostnet_130,224,1024.0,7680.26,133.318,0.24,4.6,7.36 +levit_256d,224,1024.0,7643.23,133.964,1.4,4.93,26.21 +tf_efficientnetv2_b0,224,1024.0,7637.19,134.07,0.73,4.77,7.14 +repghostnet_130,224,1024.0,7550.55,135.609,0.25,5.24,5.48 +convnext_femto_ols,224,1024.0,7514.81,136.254,0.82,4.87,5.23 +regnety_008,224,1024.0,7508.88,136.361,0.81,5.25,6.26 +tinynet_a,192,1024.0,7458.0,137.291,0.35,5.41,6.19 +fbnetc_100,224,1024.0,7362.02,139.082,0.4,6.51,5.57 +tf_efficientnetv2_b1,192,1024.0,7241.64,141.394,0.76,4.59,8.14 +crossvit_tiny_240,240,1024.0,7093.57,144.345,1.3,5.67,7.01 +regnety_008_tv,224,1024.0,7067.28,144.882,0.84,5.42,6.43 +mobilevitv2_050,256,1024.0,7057.9,145.075,0.48,8.04,1.37 +crossvit_9_240,240,1024.0,6964.15,147.028,1.55,5.59,8.55 +dla46x_c,224,1024.0,6837.04,149.761,0.54,5.66,1.07 +tf_efficientnet_lite0,224,1024.0,6819.73,150.142,0.4,6.74,4.65 +efficientnet_b0,224,1024.0,6721.47,152.337,0.4,6.75,5.29 +rexnet_100,224,1024.0,6689.15,153.073,0.41,7.44,4.8 +rexnetr_100,224,1024.0,6646.85,154.047,0.43,7.72,4.88 +levit_conv_256d,224,1024.0,6618.0,154.719,1.4,4.93,26.21 +repvit_m1,224,1024.0,6591.52,155.339,0.83,7.45,5.49 +efficientnet_b1_pruned,240,1024.0,6583.2,155.537,0.4,6.21,6.33 +repghostnet_150,224,1024.0,6564.41,155.982,0.32,6.0,6.58 +mnasnet_140,224,1024.0,6559.1,156.108,0.6,7.71,7.12 +efficientvit_b1,224,1024.0,6458.82,158.532,0.53,7.25,9.1 +visformer_tiny,224,1024.0,6456.3,158.594,1.27,5.72,10.32 +crossvit_9_dagger_240,240,1024.0,6436.13,159.091,1.68,6.03,8.78 +resnet14t,224,1024.0,6404.13,159.886,1.69,5.8,10.08 +dla60x_c,224,1024.0,6404.11,159.885,0.59,6.01,1.32 +mobilenetv2_110d,224,1024.0,6387.15,160.311,0.45,8.71,4.52 +ghostnetv2_100,224,1024.0,6375.73,160.599,0.18,4.55,6.16 +regnetz_005,224,1024.0,6372.66,160.676,0.52,5.86,7.12 +repvit_m0_9,224,1024.0,6295.33,162.649,0.83,7.45,5.49 +edgenext_xx_small,288,1024.0,6241.41,164.053,0.33,4.21,1.33 +fbnetv3_b,224,1024.0,6166.1,166.058,0.42,6.97,8.6 +convnext_pico,224,1024.0,6145.95,166.603,1.37,6.1,9.05 +cs3darknet_focus_m,256,1024.0,6145.46,166.616,1.98,4.89,9.3 +pvt_v2_b0,224,1024.0,6126.38,167.135,0.53,7.01,3.67 +tf_efficientnet_b0,224,1024.0,6026.91,169.894,0.4,6.75,5.29 +nf_regnet_b0,256,1024.0,5970.36,171.503,0.64,5.58,8.76 +resnetblur18,224,1024.0,5963.74,171.694,2.34,3.39,11.69 +ese_vovnet19b_dw,224,1024.0,5956.2,171.911,1.34,8.25,6.54 +hrnet_w18_small,224,1024.0,5950.21,172.083,1.61,5.72,13.19 +resnet50,160,1024.0,5943.32,172.284,2.1,5.67,25.56 +repvgg_a1,224,1024.0,5891.09,173.812,2.64,4.74,14.09 +cs3darknet_m,256,1024.0,5871.36,174.395,2.08,5.28,9.31 +convnext_pico_ols,224,1024.0,5852.38,174.961,1.43,6.5,9.06 +vit_base_patch32_clip_224,224,1024.0,5768.1,177.517,4.37,4.19,88.22 +tf_efficientnetv2_b2,208,1024.0,5753.76,177.96,1.06,6.0,10.1 +vit_base_patch32_224,224,1024.0,5748.7,178.117,4.37,4.19,88.22 +semnasnet_140,224,1024.0,5744.77,178.239,0.6,8.87,6.11 +skresnet18,224,1024.0,5740.29,178.378,1.82,3.24,11.96 +vit_tiny_r_s16_p8_384,384,1024.0,5663.72,180.79,1.25,5.39,6.36 +resnet50d,160,1024.0,5651.35,181.185,2.22,6.08,25.58 +resnet18,288,1024.0,5636.85,181.651,3.01,4.11,11.69 +mobilenetv2_140,224,1024.0,5629.57,181.886,0.6,9.57,6.11 +vit_small_patch32_384,384,1024.0,5499.31,186.195,3.26,6.07,22.92 +convnext_atto,288,1024.0,5487.38,186.599,0.91,6.3,3.7 +efficientnet_b0_gn,224,1024.0,5481.83,186.788,0.42,6.75,5.29 +selecsls42,224,1024.0,5458.22,187.596,2.94,4.62,30.35 +efficientnet_lite1,240,1024.0,5452.84,187.782,0.62,10.14,5.42 +fbnetv3_d,224,1024.0,5449.6,187.893,0.52,8.5,10.31 +pit_s_224,224,1024.0,5438.08,188.291,2.42,6.18,23.46 +selecsls42b,224,1024.0,5414.81,189.1,2.98,4.62,32.46 +resnet34,224,1024.0,5413.46,189.147,3.67,3.74,21.8 +pit_s_distilled_224,224,1024.0,5407.14,189.368,2.45,6.22,24.04 +efficientvit_b1,256,1024.0,5391.26,189.926,0.69,9.46,9.1 +seresnet18,288,1024.0,5348.84,191.432,3.01,4.11,11.78 +tf_efficientnetv2_b1,240,1024.0,5293.37,193.439,1.21,7.34,8.14 +levit_384,224,1024.0,5286.23,193.7,2.36,6.26,39.13 +convnextv2_atto,224,1024.0,5265.85,194.45,0.55,3.81,3.71 +repvit_m1_0,224,1024.0,5259.32,194.683,1.13,8.69,7.3 +seresnet50,160,1024.0,5236.4,195.543,2.1,5.69,28.09 +convnext_atto_ols,288,1024.0,5201.4,196.86,0.96,6.8,3.7 +gernet_m,224,1024.0,5195.05,197.1,3.02,5.24,21.14 +fbnetv3_b,256,1024.0,5178.49,197.729,0.55,9.1,8.6 +mixnet_s,224,1024.0,5129.76,199.608,0.25,6.25,4.13 +repghostnet_200,224,1024.0,5125.91,199.759,0.54,7.96,9.8 +vit_base_patch32_clip_quickgelu_224,224,1024.0,5125.16,199.787,4.37,4.19,87.85 +seresnet34,224,1024.0,5104.13,200.612,3.67,3.74,21.96 +repvit_m2,224,1024.0,5098.16,200.845,1.36,9.43,8.8 +rexnetr_130,224,1024.0,5082.35,201.471,0.68,9.81,7.61 +efficientnet_b0_g16_evos,224,1024.0,5016.04,204.134,1.01,7.42,8.11 +ghostnetv2_130,224,1024.0,5011.79,204.307,0.28,5.9,8.96 +edgenext_x_small,256,1024.0,4992.08,205.112,0.54,5.93,2.34 +ecaresnet50t,160,1024.0,4989.39,205.225,2.21,6.04,25.57 +tiny_vit_5m_224,224,1024.0,4963.53,206.293,1.18,9.32,12.08 +rexnet_130,224,1024.0,4939.41,207.301,0.68,9.71,7.56 +legacy_seresnet34,224,1024.0,4938.49,207.34,3.67,3.74,21.96 +eva02_tiny_patch14_224,224,1024.0,4931.19,207.646,1.4,6.17,5.5 +resnet34d,224,1024.0,4924.89,207.912,3.91,4.54,21.82 +tf_efficientnet_lite1,240,1024.0,4918.8,208.17,0.62,10.14,5.42 +mixer_b32_224,224,1024.0,4917.45,208.227,3.24,6.29,60.29 +resnet50,176,1024.0,4914.58,208.348,2.62,6.92,25.56 +resnetrs50,160,1024.0,4904.24,208.788,2.29,6.2,35.69 +xcit_tiny_12_p16_224,224,1024.0,4900.19,208.961,1.24,6.29,6.72 +repvit_m1_1,224,1024.0,4858.32,210.759,1.36,9.43,8.8 +levit_conv_384,224,1024.0,4851.29,211.066,2.36,6.26,39.13 +efficientnet_es_pruned,224,1024.0,4832.02,211.909,1.81,8.73,5.44 +efficientnet_es,224,1024.0,4828.47,212.065,1.81,8.73,5.44 +dla34,224,1024.0,4823.61,212.277,3.07,5.02,15.74 +resnet26,224,1024.0,4806.46,213.036,2.36,7.35,16.0 +resnet18d,288,1024.0,4806.17,213.049,3.41,5.43,11.71 +resnext50_32x4d,160,1024.0,4797.48,213.435,2.17,7.35,25.03 +tf_mixnet_s,224,1024.0,4783.68,214.05,0.25,6.25,4.13 +convnext_femto,288,1024.0,4774.19,214.475,1.3,7.56,5.22 +efficientnet_b1,224,1024.0,4707.45,217.516,0.59,9.36,7.79 +gmlp_ti16_224,224,1024.0,4694.71,218.108,1.34,7.55,5.87 +cs3darknet_focus_m,288,1024.0,4686.36,218.495,2.51,6.19,9.3 +mobilenetv2_120d,224,1024.0,4673.25,219.108,0.69,11.97,5.83 +selecsls60,224,1024.0,4656.74,219.885,3.59,5.52,30.67 +selecsls60b,224,1024.0,4628.67,221.219,3.63,5.52,32.77 +tf_efficientnet_es,224,1024.0,4617.85,221.737,1.81,8.73,5.44 +resmlp_12_224,224,1024.0,4607.73,222.224,3.01,5.5,15.35 +vit_small_patch16_224,224,1024.0,4586.65,223.246,4.25,8.25,22.05 +deit_small_patch16_224,224,1024.0,4584.29,223.359,4.25,8.25,22.05 +fbnetv3_d,256,1024.0,4567.33,224.19,0.68,11.1,10.31 +gmixer_12_224,224,1024.0,4565.4,224.285,2.67,7.26,12.7 +deit_small_distilled_patch16_224,224,1024.0,4564.97,224.306,4.27,8.29,22.44 +convnext_femto_ols,288,1024.0,4561.96,224.454,1.35,8.06,5.23 +efficientnet_b0_g8_gn,224,1024.0,4561.27,224.488,0.66,6.75,6.56 +efficientnet_cc_b0_8e,224,1024.0,4542.29,225.426,0.42,9.42,24.01 +efficientnet_cc_b0_4e,224,1024.0,4540.5,225.515,0.41,9.42,13.31 +repvgg_b0,224,1024.0,4526.99,226.188,3.41,6.15,15.82 +mixer_s16_224,224,1024.0,4518.8,226.598,3.79,5.97,18.53 +cs3darknet_m,288,1024.0,4513.42,226.868,2.63,6.69,9.31 +convnextv2_femto,224,1024.0,4509.16,227.082,0.79,4.57,5.23 +regnetx_016,224,1024.0,4476.6,228.734,1.62,7.93,9.19 +nf_regnet_b1,256,1024.0,4444.68,230.377,0.82,7.27,10.22 +vit_base_patch32_clip_256,256,1024.0,4442.76,230.476,5.68,5.44,87.86 +mobilevitv2_075,256,1024.0,4419.22,231.704,1.05,12.06,2.87 +rexnetr_150,224,1024.0,4415.72,231.888,0.89,11.13,9.78 +darknet17,256,1024.0,4402.14,232.603,3.26,7.18,14.3 +resnet26d,224,1024.0,4396.77,232.887,2.6,8.15,16.01 +resnetaa34d,224,1024.0,4381.9,233.677,4.43,5.07,21.82 +efficientnet_b2_pruned,260,1024.0,4356.91,235.018,0.73,9.13,8.31 +convnext_nano,224,1024.0,4340.39,235.913,2.46,8.37,15.59 +ecaresnet50d_pruned,224,1024.0,4337.48,236.07,2.53,6.43,19.94 +efficientformer_l1,224,1024.0,4271.29,239.728,1.3,5.53,12.29 +nf_resnet26,224,1024.0,4216.31,242.856,2.41,7.35,16.0 +deit3_small_patch16_224,224,1024.0,4203.29,243.607,4.25,8.25,22.06 +nf_regnet_b2,240,1024.0,4197.9,243.92,0.97,7.23,14.31 +tf_efficientnet_cc_b0_4e,224,1024.0,4196.5,244.002,0.41,9.42,13.31 +tf_efficientnet_cc_b0_8e,224,1024.0,4190.23,244.367,0.42,9.42,24.01 +regnety_016,224,1024.0,4161.97,246.026,1.63,8.04,11.2 +rexnet_150,224,1024.0,4147.2,246.903,0.9,11.21,9.73 +ghostnetv2_160,224,1024.0,4116.92,248.718,0.42,7.23,12.39 +tiny_vit_11m_224,224,1024.0,4086.56,250.566,1.9,10.73,20.35 +poolformer_s12,224,1024.0,4071.24,251.51,1.82,5.53,11.92 +regnetz_005,288,1024.0,4056.8,252.404,0.86,9.68,7.12 +efficientnet_lite2,260,1024.0,4046.71,253.034,0.89,12.9,6.09 +darknet21,256,1024.0,4001.6,255.887,3.93,7.47,20.86 +efficientvit_b1,288,1024.0,3997.55,256.145,0.87,11.96,9.1 +resnext50_32x4d,176,1024.0,3992.51,256.47,2.71,8.97,25.03 +edgenext_x_small,288,1024.0,3965.96,258.184,0.68,7.5,2.34 +efficientnet_b1,256,1024.0,3961.36,258.486,0.77,12.22,7.79 +convnext_nano_ols,224,1024.0,3944.64,259.582,2.65,9.38,15.65 +resnest14d,224,1024.0,3932.19,260.404,2.76,7.33,10.61 +tf_efficientnet_b1,240,1024.0,3922.37,261.055,0.71,10.88,7.79 +flexivit_small,240,1024.0,3913.54,261.645,4.88,9.46,22.06 +mobilevit_xs,256,768.0,3904.8,196.672,0.93,13.62,2.32 +regnetz_b16,224,1024.0,3893.58,262.986,1.45,9.95,9.72 +sedarknet21,256,1024.0,3874.2,264.302,3.93,7.47,20.95 +resnext26ts,256,1024.0,3832.52,267.176,2.43,10.52,10.3 +mobileone_s1,224,1024.0,3826.99,267.562,0.86,9.67,4.83 +tf_efficientnetv2_b2,260,1024.0,3817.93,268.197,1.72,9.84,10.1 +edgenext_small,256,1024.0,3770.23,271.588,1.26,9.07,5.59 +convnext_pico,288,1024.0,3731.48,274.411,2.27,10.08,9.05 +gernet_l,256,1024.0,3727.69,274.69,4.57,8.0,31.08 +seresnext26ts,256,1024.0,3724.62,274.916,2.43,10.52,10.39 +eca_resnext26ts,256,1024.0,3723.07,275.031,2.43,10.52,10.3 +dpn48b,224,1024.0,3716.75,275.497,1.69,8.92,9.13 +tf_efficientnet_lite2,260,1024.0,3695.32,277.096,0.89,12.9,6.09 +gcresnext26ts,256,1024.0,3691.17,277.409,2.43,10.53,10.48 +efficientnet_b2,256,1024.0,3671.26,278.912,0.89,12.81,9.11 +nf_ecaresnet26,224,1024.0,3640.87,281.24,2.41,7.36,16.0 +resnetblur18,288,1024.0,3639.91,281.314,3.87,5.6,11.69 +nf_seresnet26,224,1024.0,3637.43,281.506,2.41,7.36,17.4 +resnet101,160,1024.0,3616.15,283.164,4.0,8.28,44.55 +vit_relpos_small_patch16_224,224,1024.0,3590.52,285.183,4.24,9.38,21.98 +resnet26t,256,1024.0,3578.9,286.111,3.35,10.52,16.01 +vit_srelpos_small_patch16_224,224,1024.0,3572.97,286.585,4.23,8.49,21.97 +convnext_pico_ols,288,1024.0,3558.03,287.789,2.37,10.74,9.06 +cs3darknet_focus_l,256,1024.0,3544.69,288.872,4.66,8.03,21.15 +tf_efficientnetv2_b3,240,1024.0,3543.38,288.978,1.93,9.95,14.36 +legacy_seresnext26_32x4d,224,1024.0,3516.72,291.169,2.49,9.39,16.79 +pvt_v2_b1,224,1024.0,3507.87,291.903,2.04,14.01,14.01 +repvit_m3,224,1024.0,3501.61,292.425,1.89,13.94,10.68 +repvgg_a2,224,1024.0,3495.75,292.916,5.7,6.26,28.21 +efficientnetv2_rw_t,224,1024.0,3486.59,293.686,1.93,9.94,13.65 +ecaresnet101d_pruned,224,1024.0,3483.13,293.977,3.48,7.69,24.88 +ese_vovnet19b_dw,288,1024.0,3478.51,294.369,2.22,13.63,6.54 +mixnet_m,224,1024.0,3474.22,294.731,0.36,8.19,5.01 +edgenext_small_rw,256,1024.0,3458.08,296.106,1.58,9.51,7.83 +convnextv2_pico,224,1024.0,3458.0,296.113,1.37,6.1,9.07 +gc_efficientnetv2_rw_t,224,1024.0,3445.15,297.218,1.94,9.97,13.68 +cs3darknet_l,256,1024.0,3414.99,299.845,4.86,8.55,21.16 +efficientnet_b3_pruned,300,1024.0,3412.19,300.09,1.04,11.86,9.86 +nf_regnet_b1,288,1024.0,3373.08,303.57,1.02,9.2,10.22 +tf_mixnet_m,224,1024.0,3353.29,305.361,0.36,8.19,5.01 +convit_tiny,224,1024.0,3342.83,306.316,1.26,7.94,5.71 +eca_botnext26ts_256,256,1024.0,3341.38,306.449,2.46,11.6,10.59 +ecaresnext50t_32x4d,224,1024.0,3327.77,307.703,2.7,10.09,15.41 +ecaresnext26t_32x4d,224,1024.0,3321.66,308.269,2.7,10.09,15.41 +resnet34,288,1024.0,3320.08,308.416,6.07,6.18,21.8 +seresnext26t_32x4d,224,1024.0,3319.26,308.491,2.7,10.09,16.81 +vit_tiny_patch16_384,384,1024.0,3311.59,309.206,3.16,12.08,5.79 +vit_base_patch32_plus_256,256,1024.0,3301.22,310.177,7.7,6.35,119.48 +seresnext26d_32x4d,224,1024.0,3300.83,310.214,2.73,10.19,16.81 +skresnet34,224,1024.0,3294.57,310.803,3.67,5.13,22.28 +mobilevitv2_100,256,768.0,3290.58,233.384,1.84,16.08,4.9 +vit_relpos_small_patch16_rpn_224,224,1024.0,3279.29,312.245,4.24,9.38,21.97 +eca_halonext26ts,256,1024.0,3270.39,313.1,2.44,11.46,10.76 +coatnet_pico_rw_224,224,1024.0,3250.74,314.993,1.96,12.91,10.85 +rexnetr_200,224,768.0,3238.38,237.146,1.59,15.11,16.52 +ecaresnet26t,256,1024.0,3228.23,317.19,3.35,10.53,16.01 +ecaresnetlight,224,1024.0,3222.96,317.708,4.11,8.42,30.16 +coatnext_nano_rw_224,224,1024.0,3218.47,318.153,2.36,10.68,14.7 +cs3sedarknet_l,256,1024.0,3218.11,318.188,4.86,8.56,21.91 +coat_lite_tiny,224,1024.0,3216.35,318.362,1.6,11.65,5.72 +nf_regnet_b2,272,1024.0,3205.43,319.447,1.22,9.27,14.31 +convnextv2_atto,288,1024.0,3199.9,319.999,0.91,6.3,3.71 +vit_small_r26_s32_224,224,1024.0,3174.89,322.52,3.54,9.44,36.43 +botnet26t_256,256,1024.0,3173.81,322.63,3.32,11.98,12.49 +resnetv2_50,224,1024.0,3170.95,322.919,4.11,11.11,25.55 +fastvit_t8,256,1024.0,3164.9,323.538,0.7,8.63,4.03 +crossvit_small_240,240,1024.0,3164.86,323.541,5.09,11.34,26.86 +bat_resnext26ts,256,1024.0,3139.26,326.18,2.53,12.51,10.73 +seresnet34,288,1024.0,3136.77,326.439,6.07,6.18,21.96 +halonet26t,256,1024.0,3132.55,326.879,3.19,11.69,12.48 +lambda_resnet26t,256,1024.0,3123.88,327.786,3.02,11.87,10.96 +rexnet_200,224,768.0,3120.89,246.073,1.56,14.91,16.37 +vit_small_resnet26d_224,224,1024.0,3106.26,329.645,5.04,10.65,63.61 +hrnet_w18_small_v2,224,1024.0,3095.42,330.8,2.62,9.65,15.6 +mobileone_s2,224,1024.0,3085.91,331.82,1.34,11.55,7.88 +vit_relpos_base_patch32_plus_rpn_256,256,1024.0,3081.88,332.247,7.59,6.63,119.42 +tresnet_m,224,1024.0,3073.78,333.129,5.75,7.31,31.39 +resnet32ts,256,1024.0,3072.91,333.224,4.63,11.58,17.96 +coatnet_nano_cc_224,224,1024.0,3066.72,333.896,2.13,13.1,13.76 +resnet101,176,1024.0,3047.24,336.031,4.92,10.08,44.55 +resnet33ts,256,1024.0,3032.6,337.653,4.76,11.66,19.68 +efficientvit_b2,224,1024.0,3030.14,337.927,1.6,14.62,24.33 +resnet50,224,1024.0,3021.24,338.922,4.11,11.11,25.56 +coat_lite_mini,224,1024.0,3021.22,338.925,2.0,12.25,11.01 +resnet34d,288,1024.0,3013.98,339.739,6.47,7.51,21.82 +cspresnet50,256,1024.0,3012.57,339.898,4.54,11.5,21.62 +resnetv2_50t,224,1024.0,3011.73,339.991,4.32,11.82,25.57 +dpn68b,224,1024.0,3008.58,340.347,2.35,10.47,12.61 +coatnet_nano_rw_224,224,1024.0,3001.39,341.165,2.29,13.29,15.14 +dpn68,224,1024.0,3001.33,341.17,2.35,10.47,12.61 +resnetv2_50d,224,1024.0,2992.98,342.12,4.35,11.92,25.57 +convnext_tiny,224,1024.0,2986.71,342.841,4.47,13.44,28.59 +levit_512,224,1024.0,2974.0,344.305,5.64,10.22,95.17 +dla60,224,1024.0,2959.44,345.999,4.26,10.16,22.04 +fbnetv3_g,240,1024.0,2957.87,346.184,1.28,14.87,16.62 +tf_efficientnet_b2,260,1024.0,2957.04,346.28,1.02,13.83,9.11 +efficientnet_em,240,1024.0,2948.76,347.254,3.04,14.34,6.9 +crossvit_15_240,240,1024.0,2948.65,347.266,5.17,12.01,27.53 +eca_resnet33ts,256,1024.0,2945.18,347.676,4.76,11.66,19.68 +seresnet33ts,256,1024.0,2940.4,348.24,4.76,11.66,19.78 +regnetx_032,224,1024.0,2932.49,349.18,3.2,11.37,15.3 +gcresnet33ts,256,1024.0,2919.42,350.744,4.76,11.68,19.88 +mobileone_s0,224,1024.0,2911.68,351.675,1.09,15.48,5.29 +resnet50t,224,1024.0,2893.61,353.872,4.32,11.82,25.57 +resnet50c,224,1024.0,2893.38,353.9,4.35,11.92,25.58 +repvit_m1_5,224,1024.0,2891.53,354.126,2.31,15.7,14.64 +selecsls84,224,1024.0,2891.52,354.128,5.9,7.57,50.95 +efficientnet_cc_b1_8e,240,1024.0,2883.89,355.064,0.75,15.44,39.72 +haloregnetz_b,224,1024.0,2883.33,355.134,1.97,11.94,11.68 +vgg11,224,1024.0,2881.16,355.4,7.61,7.44,132.86 +resnet50d,224,1024.0,2872.03,356.53,4.35,11.92,25.58 +resnest26d,224,1024.0,2863.53,357.59,3.64,9.97,17.07 +tf_efficientnet_em,240,1024.0,2860.98,357.908,3.04,14.34,6.9 +visformer_small,224,1024.0,2837.73,360.841,4.88,11.43,40.22 +cspresnet50w,256,1024.0,2834.78,361.216,5.04,12.19,28.12 +vovnet39a,224,1024.0,2834.5,361.252,7.09,6.73,22.6 +wide_resnet50_2,176,1024.0,2833.12,361.428,7.29,8.97,68.88 +cspresnet50d,256,1024.0,2828.94,361.963,4.86,12.55,21.64 +resnet26,288,1024.0,2826.83,362.233,3.9,12.15,16.0 +resnext26ts,288,1024.0,2826.2,362.312,3.07,13.31,10.3 +efficientnet_b2,288,1024.0,2822.88,362.739,1.12,16.2,9.11 +regnetv_040,224,1024.0,2785.35,367.627,4.0,12.29,20.64 +levit_512d,224,1024.0,2784.75,367.707,5.85,11.3,92.5 +levit_conv_512,224,1024.0,2781.3,368.162,5.64,10.22,95.17 +deit3_medium_patch16_224,224,1024.0,2780.75,368.235,7.53,10.99,38.85 +crossvit_15_dagger_240,240,1024.0,2776.34,368.82,5.5,12.68,28.21 +regnety_040,224,1024.0,2768.62,369.849,4.0,12.29,20.65 +legacy_seresnet50,224,1024.0,2766.98,370.066,3.88,10.6,28.09 +eca_resnext26ts,288,1024.0,2756.51,371.473,3.07,13.32,10.3 +seresnext26ts,288,1024.0,2751.54,372.144,3.07,13.32,10.39 +regnety_032,224,1024.0,2744.75,373.065,3.2,11.26,19.44 +convnext_tiny_hnf,224,1024.0,2744.61,373.082,4.47,13.44,28.59 +convnextv2_femto,288,1024.0,2744.25,373.131,1.3,7.56,5.23 +eca_vovnet39b,224,1024.0,2742.23,373.408,7.09,6.74,22.6 +resnetv2_50x1_bit,224,1024.0,2741.57,373.497,4.23,11.11,25.55 +gcresnext26ts,288,1024.0,2728.39,375.302,3.07,13.33,10.48 +resnetaa50,224,1024.0,2728.16,375.334,5.15,11.64,25.56 +densenet121,224,1024.0,2725.3,375.726,2.87,6.9,7.98 +ese_vovnet39b,224,1024.0,2723.97,375.912,7.09,6.74,24.57 +mixnet_l,224,1024.0,2712.93,377.44,0.58,10.84,7.33 +tf_efficientnet_cc_b1_8e,240,1024.0,2710.75,377.745,0.75,15.44,39.72 +mobilevit_s,256,768.0,2698.84,284.557,1.86,17.03,5.58 +cs3darknet_focus_l,288,1024.0,2695.52,379.878,5.9,10.16,21.15 +seresnet50,224,1024.0,2693.22,380.203,4.11,11.13,28.09 +xcit_nano_12_p16_384,384,1024.0,2679.82,382.104,1.64,12.14,3.05 +resnetaa34d,288,1024.0,2675.02,382.79,7.33,8.38,21.82 +twins_svt_small,224,1024.0,2670.35,383.458,2.82,10.7,24.06 +ecaresnet50d_pruned,288,1024.0,2662.19,384.634,4.19,10.61,19.94 +convnext_nano,288,1024.0,2634.79,388.635,4.06,13.84,15.59 +resnet50_gn,224,1024.0,2631.91,389.06,4.14,11.11,25.56 +resnetv2_50d_gn,224,1024.0,2623.43,390.317,4.38,11.92,25.57 +xcit_tiny_24_p16_224,224,1024.0,2616.39,391.368,2.34,11.82,12.12 +tf_mixnet_l,224,1024.0,2615.89,391.443,0.58,10.84,7.33 +res2net50_48w_2s,224,1024.0,2611.06,392.166,4.18,11.72,25.29 +gcvit_xxtiny,224,1024.0,2608.34,392.574,2.14,15.36,12.0 +cs3darknet_l,288,1024.0,2607.33,392.728,6.16,10.83,21.16 +resnetaa50d,224,1024.0,2596.72,394.332,5.39,12.44,25.58 +vgg11_bn,224,1024.0,2590.27,395.315,7.62,7.44,132.87 +vit_base_resnet26d_224,224,1024.0,2580.41,396.822,6.93,12.34,101.4 +vit_relpos_medium_patch16_cls_224,224,1024.0,2579.62,396.946,7.55,13.3,38.76 +ecaresnet50t,224,1024.0,2579.62,396.946,4.32,11.83,25.57 +coatnet_rmlp_nano_rw_224,224,1024.0,2579.38,396.984,2.51,18.21,15.15 +davit_tiny,224,1024.0,2578.68,397.091,4.47,17.08,28.36 +seresnet50t,224,1024.0,2574.91,397.672,4.32,11.83,28.1 +resnet26d,288,1024.0,2569.96,398.438,4.29,13.48,16.01 +mobilevitv2_125,256,768.0,2568.23,299.03,2.86,20.1,7.48 +nf_regnet_b3,288,1024.0,2563.17,399.494,1.67,11.84,18.59 +ecaresnet50d,224,1024.0,2560.76,399.87,4.35,11.93,25.58 +levit_conv_512d,224,1024.0,2557.63,400.359,5.85,11.3,92.5 +resnet152,160,1024.0,2531.48,404.495,5.9,11.51,60.19 +efficientvit_b2,256,1024.0,2531.18,404.544,2.09,19.03,24.33 +mobileone_s3,224,1024.0,2513.71,407.355,1.94,13.85,10.17 +resnetrs50,224,1024.0,2512.05,407.624,4.48,12.14,35.69 +twins_pcpvt_small,224,1024.0,2506.77,408.482,3.68,15.51,24.11 +resnetblur50,224,1024.0,2495.43,410.338,5.16,12.02,25.56 +poolformerv2_s12,224,1024.0,2489.38,411.337,1.83,5.53,11.89 +convnextv2_nano,224,1024.0,2480.83,412.755,2.46,8.37,15.62 +regnetx_040,224,1024.0,2478.03,413.222,3.99,12.2,22.12 +eca_nfnet_l0,224,1024.0,2476.91,413.407,4.35,10.47,24.14 +gcresnext50ts,256,1024.0,2473.39,413.995,3.75,15.46,15.67 +nfnet_l0,224,1024.0,2472.84,414.088,4.36,10.47,35.07 +tiny_vit_21m_224,224,1024.0,2468.7,414.781,4.08,15.96,33.22 +cs3sedarknet_l,288,1024.0,2463.79,415.609,6.16,10.83,21.91 +resnet50s,224,1024.0,2456.52,416.838,5.47,13.52,25.68 +dla60x,224,1024.0,2437.95,420.012,3.54,13.8,17.35 +densenetblur121d,224,1024.0,2433.6,420.765,3.11,7.9,8.0 +edgenext_small,320,1024.0,2424.08,422.414,1.97,14.16,5.59 +resnext50_32x4d,224,1024.0,2410.12,424.862,4.26,14.4,25.03 +inception_next_tiny,224,1024.0,2404.04,425.937,4.19,11.98,28.06 +convnext_nano_ols,288,1024.0,2397.01,427.188,4.38,15.5,15.65 +vit_relpos_medium_patch16_224,224,1024.0,2394.54,427.629,7.5,12.13,38.75 +efficientnet_lite3,300,512.0,2392.78,213.967,1.65,21.85,8.2 +vit_srelpos_medium_patch16_224,224,1024.0,2386.54,429.062,7.49,11.32,38.74 +regnetz_c16,256,1024.0,2383.36,429.635,2.51,16.57,13.46 +resnetblur50d,224,1024.0,2382.64,429.765,5.4,12.82,25.58 +vit_base_r26_s32_224,224,1024.0,2381.88,429.901,6.76,11.54,101.38 +gcresnet50t,256,1024.0,2372.96,431.518,5.42,14.67,25.9 +regnety_040_sgn,224,1024.0,2371.57,431.77,4.03,12.29,20.65 +res2net50_26w_4s,224,1024.0,2359.62,433.957,4.28,12.61,25.7 +vovnet57a,224,1024.0,2357.12,434.416,8.95,7.52,36.64 +resmlp_24_224,224,1024.0,2350.19,435.697,5.96,10.91,30.02 +maxvit_pico_rw_256,256,768.0,2346.84,327.238,1.68,18.77,7.46 +inception_v3,299,1024.0,2346.46,436.391,5.73,8.97,23.83 +maxvit_rmlp_pico_rw_256,256,768.0,2343.0,327.774,1.69,21.32,7.52 +seresnetaa50d,224,1024.0,2333.21,438.87,5.4,12.46,28.11 +focalnet_tiny_srf,224,1024.0,2331.81,439.132,4.42,16.32,28.43 +cspresnext50,256,1024.0,2330.62,439.358,4.05,15.86,20.57 +res2net50_14w_8s,224,1024.0,2327.89,439.871,4.21,13.28,25.06 +dla60_res2net,224,1024.0,2327.26,439.99,4.15,12.34,20.85 +coatnet_0_rw_224,224,1024.0,2319.62,441.438,4.23,15.1,27.44 +regnetz_b16,288,1024.0,2318.51,441.651,2.39,16.43,9.72 +gmixer_24_224,224,1024.0,2315.73,442.182,5.28,14.45,24.72 +resnext50d_32x4d,224,1024.0,2305.65,444.116,4.5,15.2,25.05 +lambda_resnet26rpt_256,256,768.0,2282.36,336.484,3.16,11.87,10.99 +ese_vovnet57b,224,1024.0,2279.9,449.132,8.95,7.52,38.61 +resnest50d_1s4x24d,224,1024.0,2278.75,449.357,4.43,13.57,25.68 +dla60_res2next,224,1024.0,2268.77,451.333,3.49,13.17,17.03 +sehalonet33ts,256,1024.0,2262.52,452.582,3.55,14.7,13.69 +res2net50d,224,1024.0,2256.17,453.855,4.52,13.41,25.72 +vit_medium_patch16_gap_240,240,1024.0,2253.27,454.439,8.6,12.57,44.4 +res2next50,224,1024.0,2251.4,454.817,4.2,13.71,24.67 +resnet32ts,288,1024.0,2244.87,456.139,5.86,14.65,17.96 +edgenext_base,256,1024.0,2239.63,457.204,3.85,15.58,18.51 +efficientvit_l1,224,1024.0,2235.54,458.043,5.27,15.85,52.65 +skresnet50,224,1024.0,2226.66,459.87,4.11,12.5,25.8 +nfnet_f0,192,1024.0,2226.44,459.916,7.21,10.16,71.49 +tf_efficientnetv2_b3,300,1024.0,2226.35,459.935,3.04,15.74,14.36 +efficientnetv2_rw_t,288,1024.0,2225.5,460.11,3.19,16.42,13.65 +nf_ecaresnet50,224,1024.0,2219.3,461.395,4.21,11.13,25.56 +darknetaa53,256,1024.0,2219.0,461.459,7.97,12.39,36.02 +densenet169,224,1024.0,2218.3,461.604,3.4,7.3,14.15 +nf_seresnet50,224,1024.0,2217.49,461.772,4.21,11.13,28.09 +edgenext_small_rw,320,1024.0,2214.15,462.468,2.46,14.85,7.83 +resnet33ts,288,1024.0,2214.09,462.482,6.02,14.75,19.68 +xcit_small_12_p16_224,224,1024.0,2207.67,463.826,4.82,12.57,26.25 +focalnet_tiny_lrf,224,1024.0,2205.41,464.301,4.49,17.76,28.65 +resnet51q,256,1024.0,2195.84,466.325,6.38,16.55,35.7 +repvgg_b1g4,224,1024.0,2195.75,466.344,8.15,10.64,39.97 +seresnext50_32x4d,224,1024.0,2188.04,467.986,4.26,14.42,27.56 +vit_relpos_medium_patch16_rpn_224,224,1024.0,2187.29,468.147,7.5,12.13,38.73 +cs3darknet_focus_x,256,1024.0,2185.7,468.489,8.03,10.69,35.02 +legacy_seresnext50_32x4d,224,1024.0,2184.4,468.766,4.26,14.42,27.56 +tf_efficientnet_lite3,300,512.0,2178.27,235.039,1.65,21.85,8.2 +resnet26t,320,1024.0,2173.03,471.22,5.24,16.44,16.01 +gc_efficientnetv2_rw_t,288,1024.0,2170.84,471.696,3.2,16.45,13.68 +gmlp_s16_224,224,1024.0,2161.42,473.752,4.42,15.1,19.42 +seresnet33ts,288,1024.0,2156.33,474.868,6.02,14.76,19.78 +eca_resnet33ts,288,1024.0,2152.27,475.765,6.02,14.76,19.68 +fastvit_t12,256,1024.0,2151.9,475.846,1.42,12.42,7.55 +nf_regnet_b3,320,1024.0,2148.66,476.564,2.05,14.61,18.59 +eva02_small_patch14_224,224,1024.0,2144.78,477.426,5.53,12.34,21.62 +resnet152,176,1024.0,2139.0,478.716,7.22,13.99,60.19 +vit_medium_patch16_reg4_gap_256,256,1024.0,2137.51,479.051,9.93,14.51,38.87 +gcresnet33ts,288,1024.0,2134.49,479.728,6.02,14.78,19.88 +skresnet50d,224,1024.0,2133.34,479.986,4.36,13.31,25.82 +ecaresnet101d_pruned,288,1024.0,2128.45,481.09,5.75,12.71,24.88 +fbnetv3_g,288,1024.0,2127.74,481.25,1.77,21.09,16.62 +vit_medium_patch16_reg4_256,256,1024.0,2119.83,483.047,9.97,14.56,38.87 +eva02_tiny_patch14_336,336,1024.0,2106.54,486.094,3.14,13.85,5.76 +convnextv2_pico,288,1024.0,2101.04,487.367,2.27,10.08,9.07 +nf_resnet50,256,1024.0,2100.31,487.536,5.46,14.52,25.56 +resnetrs101,192,1024.0,2100.21,487.558,6.04,12.7,63.62 +poolformer_s24,224,1024.0,2099.97,487.615,3.41,10.68,21.39 +pvt_v2_b2,224,1024.0,2099.92,487.626,3.9,24.96,25.36 +efficientnet_b3,288,512.0,2089.91,244.977,1.63,21.49,12.23 +cs3sedarknet_xdw,256,1024.0,2078.01,492.768,5.97,17.18,21.6 +darknet53,256,1024.0,2077.03,493.0,9.31,12.39,41.61 +ecaresnet50t,256,1024.0,2076.41,493.149,5.64,15.45,25.57 +cs3darknet_x,256,1024.0,2060.02,497.071,8.38,11.35,35.05 +xcit_nano_12_p8_224,224,1024.0,2059.06,497.302,2.16,15.71,3.05 +mobilevitv2_150,256,512.0,2058.61,248.702,4.09,24.11,10.59 +rexnetr_300,224,1024.0,2042.01,501.455,3.39,22.16,34.81 +lambda_resnet50ts,256,1024.0,2041.61,501.552,5.07,17.48,21.54 +fastvit_s12,256,1024.0,2028.81,504.718,1.82,13.67,9.47 +coatnet_rmlp_0_rw_224,224,1024.0,2024.25,505.855,4.52,21.26,27.45 +gcvit_xtiny,224,1024.0,2023.42,506.063,2.93,20.26,19.98 +fastvit_sa12,256,1024.0,2022.28,506.347,1.96,13.83,11.58 +crossvit_18_240,240,1024.0,2014.44,508.318,8.21,16.14,43.27 +vit_medium_patch16_gap_256,256,1024.0,1996.45,512.899,9.78,14.29,38.86 +resnet61q,256,1024.0,1996.22,512.958,7.8,17.01,36.85 +coatnet_bn_0_rw_224,224,1024.0,1985.64,515.69,4.48,18.41,27.44 +vit_base_patch32_384,384,1024.0,1984.44,516.005,12.67,12.14,88.3 +vit_base_patch32_clip_384,384,1024.0,1981.44,516.784,12.67,12.14,88.3 +cspdarknet53,256,1024.0,1981.04,516.888,6.57,16.81,27.64 +sebotnet33ts_256,256,512.0,1977.98,258.841,3.89,17.46,13.7 +ecaresnet26t,320,1024.0,1973.79,518.786,5.24,16.44,16.01 +vit_base_resnet50d_224,224,1024.0,1971.35,519.428,8.68,16.1,110.97 +cs3sedarknet_x,256,1024.0,1962.3,521.825,8.38,11.35,35.4 +regnetx_080,224,1024.0,1962.04,521.894,8.02,14.06,39.57 +seresnext26t_32x4d,288,1024.0,1950.77,524.91,4.46,16.68,16.81 +mixnet_xl,224,1024.0,1948.29,525.576,0.93,14.57,11.9 +resnest50d,224,1024.0,1945.36,526.368,5.4,14.36,27.48 +seresnext26d_32x4d,288,1024.0,1940.04,527.813,4.51,16.85,16.81 +coatnet_0_224,224,512.0,1939.29,264.004,4.43,21.14,25.04 +swin_tiny_patch4_window7_224,224,1024.0,1938.74,528.165,4.51,17.06,28.29 +resnetv2_101,224,1024.0,1935.15,529.146,7.83,16.23,44.54 +regnetx_064,224,1024.0,1933.12,529.703,6.49,16.37,26.21 +dla102,224,1024.0,1924.77,531.998,7.19,14.18,33.27 +crossvit_18_dagger_240,240,1024.0,1921.19,532.991,8.65,16.91,44.27 +rexnetr_200,288,512.0,1914.7,267.396,2.62,24.96,16.52 +rexnet_300,224,1024.0,1911.46,535.706,3.44,22.4,34.71 +nest_tiny,224,1024.0,1908.27,536.601,5.24,14.75,17.06 +dm_nfnet_f0,192,1024.0,1907.3,536.873,7.21,10.16,71.49 +ecaresnetlight,288,1024.0,1897.75,539.574,6.79,13.91,30.16 +maxxvit_rmlp_nano_rw_256,256,768.0,1897.05,404.83,4.17,21.53,16.78 +resnet101,224,1024.0,1885.15,543.183,7.83,16.23,44.55 +nest_tiny_jx,224,1024.0,1884.26,543.437,5.24,14.75,17.06 +pvt_v2_b2_li,224,1024.0,1882.78,543.863,3.77,25.04,22.55 +vit_large_patch32_224,224,1024.0,1869.82,547.632,15.27,11.11,305.51 +vgg13,224,1024.0,1868.34,548.068,11.31,12.25,133.05 +resnetv2_101d,224,1024.0,1865.75,548.827,8.07,17.04,44.56 +efficientformer_l3,224,1024.0,1865.63,548.865,3.93,12.01,31.41 +resnetv2_50,288,1024.0,1863.99,549.347,6.79,18.37,25.55 +mobileone_s4,224,1024.0,1856.33,551.615,3.04,17.74,14.95 +res2net50_26w_6s,224,1024.0,1853.01,552.603,6.33,15.28,37.05 +efficientvit_b2,288,1024.0,1851.14,553.16,2.64,24.03,24.33 +lamhalobotnet50ts_256,256,1024.0,1841.89,555.938,5.02,18.44,22.57 +maxvit_nano_rw_256,256,768.0,1833.65,418.827,4.26,25.76,15.45 +maxvit_rmlp_nano_rw_256,256,768.0,1832.13,419.175,4.28,27.4,15.5 +convnext_small,224,1024.0,1829.72,559.636,8.71,21.56,50.22 +resnet101c,224,1024.0,1824.57,561.217,8.08,17.04,44.57 +convnext_tiny,288,1024.0,1817.02,563.549,7.39,22.21,28.59 +resnet101d,224,1024.0,1816.61,563.677,8.08,17.04,44.57 +gcresnext50ts,288,1024.0,1802.21,568.181,4.75,19.57,15.67 +efficientnetv2_s,288,1024.0,1800.9,568.595,4.75,20.13,21.46 +pit_b_distilled_224,224,1024.0,1798.47,569.363,10.63,16.67,74.79 +resnet50,288,1024.0,1790.94,571.757,6.8,18.37,25.56 +twins_pcpvt_base,224,1024.0,1774.55,577.037,6.46,21.35,43.83 +halonet50ts,256,1024.0,1772.89,577.576,5.3,19.2,22.73 +dpn68b,288,1024.0,1770.85,578.24,3.89,17.3,12.61 +pit_b_224,224,1024.0,1769.93,578.542,10.56,16.6,73.76 +hrnet_w18_ssld,224,1024.0,1769.77,578.594,4.32,16.31,21.3 +swin_s3_tiny_224,224,1024.0,1768.18,579.114,4.64,19.13,28.33 +efficientvit_l2,224,1024.0,1765.89,579.866,6.97,19.58,63.71 +hrnet_w18,224,1024.0,1763.75,580.57,4.32,16.31,21.3 +coat_lite_small,224,1024.0,1746.27,586.38,3.96,22.09,19.84 +repvgg_b1,224,1024.0,1745.5,586.64,13.16,10.64,57.42 +wide_resnet50_2,224,1024.0,1744.59,586.947,11.43,14.4,68.88 +efficientnet_b3,320,512.0,1740.17,294.213,2.01,26.52,12.23 +gcresnet50t,288,1024.0,1734.6,590.328,6.86,18.57,25.9 +densenet201,224,1024.0,1731.46,591.397,4.34,7.85,20.01 +tresnet_v2_l,224,1024.0,1730.52,591.717,8.85,16.34,46.17 +tf_efficientnet_b3,300,512.0,1724.68,296.856,1.87,23.83,12.23 +efficientnetv2_rw_s,288,1024.0,1722.48,594.481,4.91,21.41,23.94 +darknetaa53,288,1024.0,1719.51,595.509,10.08,15.68,36.02 +maxxvitv2_nano_rw_256,256,768.0,1706.28,450.091,6.12,19.66,23.7 +resnetaa101d,224,1024.0,1701.55,601.792,9.12,17.56,44.57 +xcit_tiny_12_p16_384,384,1024.0,1700.55,602.144,3.64,18.25,6.72 +cait_xxs24_224,224,1024.0,1698.66,602.815,2.53,20.29,11.96 +resnet50t,288,1024.0,1694.77,604.2,7.14,19.53,25.57 +legacy_seresnet101,224,1024.0,1693.62,604.611,7.61,15.74,49.33 +cs3edgenet_x,256,1024.0,1692.79,604.907,11.53,12.92,47.82 +resnet50d,288,1024.0,1684.01,608.061,7.19,19.7,25.58 +mobilevitv2_175,256,512.0,1675.38,305.592,5.54,28.13,14.25 +regnetv_064,224,1024.0,1674.09,611.663,6.39,16.41,30.58 +resnetv2_101x1_bit,224,1024.0,1672.61,612.204,8.04,16.23,44.54 +efficientnet_b3_gn,288,512.0,1669.75,306.623,1.74,23.35,11.73 +ese_vovnet39b,288,768.0,1667.87,460.459,11.71,11.13,24.57 +regnety_032,288,1024.0,1666.89,614.307,5.29,18.61,19.44 +seresnet101,224,1024.0,1666.33,614.509,7.84,16.27,49.33 +regnety_064,224,1024.0,1666.11,614.593,6.39,16.41,30.58 +convnext_tiny_hnf,288,1024.0,1663.94,615.393,7.39,22.21,28.59 +regnetv_040,288,1024.0,1658.56,617.391,6.6,20.3,20.64 +regnety_040,288,1024.0,1648.75,621.064,6.61,20.3,20.65 +regnety_080,224,1024.0,1645.74,622.202,8.0,17.97,39.18 +resnet101s,224,1024.0,1640.53,624.176,9.19,18.64,44.67 +mixer_b16_224,224,1024.0,1627.76,629.075,12.62,14.53,59.88 +dla102x,224,1024.0,1623.56,630.698,5.89,19.42,26.31 +nf_resnet101,224,1024.0,1622.48,631.12,8.01,16.23,44.55 +swinv2_cr_tiny_224,224,1024.0,1621.28,631.59,4.66,28.45,28.33 +ecaresnet101d,224,1024.0,1619.0,632.477,8.08,17.07,44.57 +convnextv2_tiny,224,1024.0,1618.49,632.676,4.47,13.44,28.64 +darknet53,288,1024.0,1615.64,633.795,11.78,15.68,41.61 +wide_resnet101_2,176,1024.0,1615.25,633.945,14.31,13.18,126.89 +repvit_m2_3,224,1024.0,1614.73,634.149,4.57,26.21,23.69 +resnetaa50,288,1024.0,1610.23,635.923,8.52,19.24,25.56 +resnetblur101d,224,1024.0,1609.76,636.109,9.12,17.94,44.57 +efficientvit_b3,224,1024.0,1609.54,636.196,3.99,26.9,48.65 +regnetz_d32,256,1024.0,1603.03,638.779,5.98,23.74,27.58 +regnetz_b16_evos,224,1024.0,1602.47,639.001,1.43,9.95,9.74 +ese_vovnet39b_evos,224,1024.0,1599.88,640.036,7.07,6.74,24.58 +davit_small,224,1024.0,1599.81,640.066,8.69,27.54,49.75 +seresnet50,288,1024.0,1595.89,641.637,6.8,18.39,28.09 +cs3se_edgenet_x,256,1024.0,1593.53,642.587,11.53,12.94,50.72 +nf_regnet_b4,320,1024.0,1592.57,642.975,3.29,19.88,30.21 +swinv2_cr_tiny_ns_224,224,1024.0,1590.7,643.731,4.66,28.45,28.33 +sequencer2d_s,224,1024.0,1586.65,645.372,4.96,11.31,27.65 +tf_efficientnetv2_s,300,1024.0,1583.75,646.555,5.35,22.73,21.46 +densenet121,288,1024.0,1581.16,647.615,4.74,11.41,7.98 +resnet51q,288,1024.0,1581.05,647.659,8.07,20.94,35.7 +regnetz_d8,256,1024.0,1580.57,647.855,3.97,23.74,23.37 +resmlp_36_224,224,1024.0,1577.5,649.116,8.91,16.33,44.69 +mixer_l32_224,224,1024.0,1577.26,649.215,11.27,19.86,206.94 +regnetz_040,256,1024.0,1574.58,650.32,4.06,24.19,27.12 +vit_base_patch16_224_miil,224,1024.0,1574.06,650.535,16.88,16.5,94.4 +botnet50ts_256,256,512.0,1573.5,325.38,5.54,22.23,22.74 +resnet50_gn,288,1024.0,1570.23,652.122,6.85,18.37,25.56 +vit_base_patch16_clip_224,224,1024.0,1569.93,652.248,16.87,16.49,86.57 +cs3darknet_x,288,1024.0,1569.68,652.352,10.6,14.36,35.05 +deit_base_distilled_patch16_224,224,1024.0,1568.26,652.942,16.95,16.58,87.34 +vit_base_patch16_224,224,1024.0,1568.03,653.038,16.87,16.49,86.57 +deit_base_patch16_224,224,1024.0,1567.8,653.131,16.87,16.49,86.57 +regnetz_040_h,256,1024.0,1564.2,654.638,4.12,24.29,28.94 +resnetv2_50d_gn,288,1024.0,1555.81,658.164,7.24,19.7,25.57 +resnetv2_50d_frn,224,1024.0,1553.07,659.326,4.33,11.92,25.59 +tresnet_l,224,1024.0,1528.92,669.739,10.9,11.9,55.99 +regnety_080_tv,224,1024.0,1528.54,669.91,8.51,19.73,39.38 +resnetaa50d,288,1024.0,1524.48,671.692,8.92,20.57,25.58 +nf_resnet50,288,1024.0,1524.41,671.724,6.88,18.37,25.56 +caformer_s18,224,1024.0,1522.76,672.449,3.9,15.18,26.34 +resnext101_32x8d,176,1024.0,1521.82,672.868,10.33,19.37,88.79 +seresnet50t,288,1024.0,1518.59,674.299,7.14,19.55,28.1 +ecaresnet50t,288,1024.0,1518.21,674.465,7.14,19.55,25.57 +mvitv2_tiny,224,1024.0,1518.01,674.556,4.7,21.16,24.17 +resnet101d,256,1024.0,1517.18,674.926,10.55,22.25,44.57 +pvt_v2_b3,224,1024.0,1516.27,675.326,6.71,33.8,45.24 +maxvit_tiny_rw_224,224,768.0,1513.7,507.357,4.93,28.54,29.06 +ecaresnet50d,288,1024.0,1510.36,677.975,7.19,19.72,25.58 +convnextv2_nano,288,768.0,1503.98,510.637,4.06,13.84,15.62 +halo2botnet50ts_256,256,1024.0,1499.3,682.975,5.02,21.78,22.64 +cs3sedarknet_x,288,1024.0,1498.9,683.158,10.6,14.37,35.4 +res2net50_26w_8s,224,1024.0,1498.8,683.201,8.37,17.95,48.4 +resnext101_32x4d,224,1024.0,1496.35,684.32,8.01,21.23,44.18 +deit3_base_patch16_224,224,1024.0,1488.08,688.122,16.87,16.49,86.59 +regnetz_c16,320,1024.0,1478.43,692.615,3.92,25.88,13.46 +resnest50d_4s2x40d,224,1024.0,1478.06,692.785,4.4,17.94,30.42 +resnetblur50,288,1024.0,1477.0,693.285,8.52,19.87,25.56 +skresnext50_32x4d,224,1024.0,1470.18,696.502,4.5,17.18,27.48 +efficientvit_l2,256,1024.0,1466.16,698.41,9.09,25.49,63.71 +eca_nfnet_l0,288,1024.0,1463.28,699.787,7.12,17.29,24.14 +mobilevitv2_200,256,768.0,1462.66,525.062,7.22,32.15,18.45 +nfnet_l0,288,1024.0,1461.21,700.775,7.13,17.29,35.07 +resnet61q,288,1024.0,1460.17,701.277,9.87,21.52,36.85 +vit_base_patch32_clip_448,448,1024.0,1456.81,702.892,17.21,16.49,88.34 +vit_small_patch16_36x1_224,224,1024.0,1454.45,704.036,12.63,24.59,64.67 +vit_small_resnet50d_s16_224,224,1024.0,1451.55,705.439,13.0,21.12,57.53 +beit_base_patch16_224,224,1024.0,1443.54,709.354,16.87,16.49,86.53 +res2net101_26w_4s,224,1024.0,1442.54,709.848,8.1,18.45,45.21 +vit_base_patch16_siglip_224,224,1024.0,1439.5,711.343,17.02,16.71,92.88 +vit_base_patch16_gap_224,224,1024.0,1436.45,712.857,16.78,16.41,86.57 +regnety_040_sgn,288,1024.0,1436.16,712.999,6.67,20.3,20.65 +beitv2_base_patch16_224,224,1024.0,1436.01,713.075,16.87,16.49,86.53 +convit_small,224,1024.0,1431.38,715.383,5.76,17.87,27.78 +edgenext_base,320,1024.0,1423.6,719.289,6.01,24.32,18.51 +convformer_s18,224,1024.0,1421.81,720.197,3.96,15.82,26.77 +focalnet_small_srf,224,1024.0,1419.82,721.204,8.62,26.26,49.89 +densenetblur121d,288,1024.0,1416.47,722.914,5.14,13.06,8.0 +poolformer_s36,224,1024.0,1415.39,723.463,5.0,15.82,30.86 +resnetv2_50d_evos,224,1024.0,1415.09,723.614,4.33,11.92,25.59 +coatnet_rmlp_1_rw_224,224,1024.0,1413.05,724.664,7.44,28.08,41.69 +res2net101d,224,1024.0,1406.68,727.943,8.35,19.25,45.23 +legacy_xception,299,1024.0,1405.99,728.302,8.4,35.83,22.86 +vit_small_patch16_18x2_224,224,1024.0,1405.24,728.689,12.63,24.59,64.67 +resnetblur50d,288,1024.0,1403.3,729.695,8.92,21.19,25.58 +resnext50_32x4d,288,1024.0,1402.5,730.115,7.04,23.81,25.03 +inception_next_small,224,1024.0,1397.1,732.931,8.36,19.27,49.37 +repvgg_b2g4,224,1024.0,1392.83,735.183,12.63,12.9,61.76 +gcvit_tiny,224,1024.0,1390.57,736.376,4.79,29.82,28.22 +vit_relpos_base_patch16_clsgap_224,224,1024.0,1386.7,738.433,16.88,17.72,86.43 +vit_base_patch16_clip_quickgelu_224,224,1024.0,1384.47,739.621,16.87,16.49,86.19 +vit_relpos_base_patch16_cls_224,224,1024.0,1384.18,739.775,16.88,17.72,86.43 +dpn92,224,1024.0,1380.04,741.995,6.54,18.21,37.67 +seresnetaa50d,288,1024.0,1379.8,742.125,8.92,20.59,28.11 +vit_small_patch16_384,384,1024.0,1379.23,742.429,12.45,24.15,22.2 +nf_ecaresnet101,224,1024.0,1375.27,744.569,8.01,16.27,44.55 +nf_seresnet101,224,1024.0,1370.83,746.983,8.02,16.27,49.33 +efficientnet_b3_gn,320,384.0,1366.12,281.077,2.14,28.83,11.73 +vgg16_bn,224,1024.0,1361.56,752.067,15.5,13.56,138.37 +flexivit_base,240,1024.0,1360.19,752.822,19.35,18.92,86.59 +efficientformerv2_s0,224,1024.0,1357.83,754.133,0.41,5.3,3.6 +resnetv2_152,224,1024.0,1356.74,754.735,11.55,22.56,60.19 +seresnext101_32x4d,224,1024.0,1356.08,755.105,8.02,21.26,48.96 +legacy_seresnext101_32x4d,224,1024.0,1355.29,755.543,8.02,21.26,48.96 +efficientnet_b3_g8_gn,288,768.0,1342.01,572.264,2.59,23.35,14.25 +efficientvit_b3,256,768.0,1340.35,572.972,5.2,35.01,48.65 +efficientnet_b4,320,512.0,1338.46,382.52,3.13,34.76,19.34 +nfnet_f0,256,1024.0,1336.25,766.311,12.62,18.05,71.49 +resnext50d_32x4d,288,1024.0,1335.71,766.62,7.44,25.13,25.05 +focalnet_small_lrf,224,1024.0,1333.55,767.863,8.74,28.61,50.34 +resnet152,224,1024.0,1331.42,769.094,11.56,22.56,60.19 +ese_vovnet99b,224,1024.0,1328.91,770.544,16.51,11.27,63.2 +resnetv2_152d,224,1024.0,1322.45,774.307,11.8,23.36,60.2 +regnetx_120,224,1024.0,1317.68,777.11,12.13,21.37,46.11 +hrnet_w32,224,1024.0,1308.75,782.414,8.97,22.02,41.23 +xception41p,299,512.0,1308.08,391.403,9.25,39.86,26.91 +vit_relpos_base_patch16_224,224,1024.0,1306.59,783.71,16.8,17.63,86.43 +xcit_tiny_12_p8_224,224,1024.0,1306.3,783.883,4.81,23.6,6.71 +coatnet_1_rw_224,224,1024.0,1303.02,785.857,7.63,27.22,41.72 +resnet152c,224,1024.0,1301.97,786.489,11.8,23.36,60.21 +coatnet_rmlp_1_rw2_224,224,1024.0,1300.63,787.299,7.71,32.74,41.72 +twins_pcpvt_large,224,1024.0,1297.56,789.162,9.53,30.21,60.99 +maxvit_tiny_tf_224,224,768.0,1297.26,592.007,5.42,31.21,30.92 +resnet152d,224,1024.0,1296.94,789.538,11.8,23.36,60.21 +cs3edgenet_x,288,1024.0,1296.8,789.626,14.59,16.36,47.82 +vit_base_patch16_xp_224,224,1024.0,1295.7,790.295,16.85,16.49,86.51 +poolformerv2_s24,224,1024.0,1287.82,795.129,3.42,10.68,21.34 +dla169,224,1024.0,1280.41,799.732,11.6,20.2,53.39 +efficientnet_el_pruned,300,1024.0,1280.32,799.789,8.0,30.7,10.59 +efficientnet_el,300,1024.0,1279.02,800.603,8.0,30.7,10.59 +seresnext50_32x4d,288,1024.0,1276.82,801.978,7.04,23.82,27.56 +hrnet_w30,224,1024.0,1276.63,802.098,8.15,21.21,37.71 +deit3_small_patch16_384,384,1024.0,1274.41,803.494,12.45,24.15,22.21 +ecaresnet50t,320,1024.0,1274.01,803.751,8.82,24.13,25.57 +maxxvit_rmlp_tiny_rw_256,256,768.0,1269.37,605.011,6.36,32.69,29.64 +volo_d1_224,224,1024.0,1269.05,806.894,6.94,24.43,26.63 +vgg19,224,1024.0,1264.63,809.714,19.63,14.86,143.67 +convnext_base,224,1024.0,1259.04,813.306,15.38,28.75,88.59 +rexnetr_300,288,512.0,1257.05,407.293,5.59,36.61,34.81 +vit_base_patch16_rpn_224,224,1024.0,1255.24,815.771,16.78,16.41,86.54 +densenet161,224,1024.0,1254.96,815.95,7.79,11.06,28.68 +efficientformerv2_s1,224,1024.0,1251.09,818.477,0.67,7.66,6.19 +regnety_120,224,1024.0,1250.69,818.739,12.14,21.38,51.82 +twins_svt_base,224,1024.0,1249.89,819.258,8.36,20.42,56.07 +tf_efficientnet_el,300,1024.0,1249.79,819.323,8.0,30.7,10.59 +sequencer2d_m,224,1024.0,1238.3,826.927,6.55,14.26,38.31 +nest_small,224,1024.0,1229.99,832.512,9.41,22.88,38.35 +maxvit_tiny_rw_256,256,768.0,1229.06,624.855,6.44,37.27,29.07 +maxvit_rmlp_tiny_rw_256,256,768.0,1228.3,625.245,6.47,39.84,29.15 +repvgg_b2,224,1024.0,1219.54,839.651,20.45,12.9,89.02 +nest_small_jx,224,1024.0,1219.36,839.775,9.41,22.88,38.35 +mixnet_xxl,224,768.0,1211.88,633.716,2.04,23.43,23.96 +resnet152s,224,1024.0,1205.05,849.747,12.92,24.96,60.32 +swin_small_patch4_window7_224,224,1024.0,1202.25,851.724,8.77,27.47,49.61 +inception_v4,299,1024.0,1191.21,859.617,12.28,15.09,42.68 +swinv2_tiny_window8_256,256,1024.0,1191.2,859.622,5.96,24.57,28.35 +legacy_seresnet152,224,1024.0,1187.19,862.527,11.33,22.08,66.82 +coatnet_1_224,224,512.0,1184.08,432.392,8.28,31.3,42.23 +xcit_small_24_p16_224,224,1024.0,1178.16,869.138,9.1,23.63,47.67 +vit_relpos_base_patch16_rpn_224,224,1024.0,1177.44,869.665,16.8,17.63,86.41 +eca_nfnet_l1,256,1024.0,1175.13,871.38,9.62,22.04,41.41 +seresnet152,224,1024.0,1173.43,872.64,11.57,22.61,66.82 +maxvit_tiny_pm_256,256,768.0,1169.83,656.496,6.31,40.82,30.09 +crossvit_base_240,240,1024.0,1165.77,878.374,20.13,22.67,105.03 +efficientnet_lite4,380,384.0,1155.38,332.349,4.04,45.66,13.01 +xception41,299,512.0,1153.48,443.864,9.28,39.86,26.97 +regnetx_160,224,1024.0,1153.37,887.82,15.99,25.52,54.28 +vgg19_bn,224,1024.0,1151.34,889.391,19.66,14.86,143.68 +cait_xxs36_224,224,1024.0,1139.1,898.942,3.77,30.34,17.3 +tresnet_xl,224,1024.0,1138.98,899.04,15.2,15.34,78.44 +tnt_s_patch16_224,224,1024.0,1134.46,902.62,5.24,24.37,23.76 +davit_base,224,1024.0,1133.31,903.534,15.36,36.72,87.95 +dm_nfnet_f0,256,1024.0,1132.28,904.361,12.62,18.05,71.49 +resnetv2_101,288,1024.0,1131.44,905.029,12.94,26.83,44.54 +mvitv2_small_cls,224,1024.0,1129.19,906.833,7.04,28.17,34.87 +mvitv2_small,224,1024.0,1128.19,907.64,7.0,28.08,34.87 +coat_tiny,224,1024.0,1126.07,909.345,4.35,27.2,5.5 +convmixer_1024_20_ks9_p14,224,1024.0,1123.31,911.577,5.55,5.51,24.38 +vit_base_patch16_reg8_gap_256,256,1024.0,1115.77,917.744,22.6,22.09,86.62 +fastvit_sa24,256,1024.0,1114.43,918.841,3.79,23.92,21.55 +repvgg_b3g4,224,1024.0,1113.37,919.717,17.89,15.1,83.83 +convnext_small,288,1024.0,1110.94,921.731,14.39,35.65,50.22 +vit_base_patch16_siglip_256,256,1024.0,1108.01,924.168,22.23,21.83,92.93 +resnet101,288,1024.0,1104.31,927.267,12.95,26.83,44.55 +dla102x2,224,1024.0,1104.21,927.342,9.34,29.91,41.28 +pvt_v2_b4,224,1024.0,1101.67,929.481,9.83,48.14,62.56 +vit_large_r50_s32_224,224,1024.0,1091.33,938.289,19.45,22.22,328.99 +eva02_base_patch16_clip_224,224,1024.0,1090.31,939.167,16.9,18.91,86.26 +vgg13_bn,224,1024.0,1090.15,939.306,11.33,12.25,133.05 +resnet152d,256,1024.0,1089.57,939.806,15.41,30.51,60.21 +nf_regnet_b4,384,1024.0,1089.51,939.86,4.7,28.61,30.21 +efficientnet_b3_g8_gn,320,768.0,1085.43,707.541,3.2,28.83,14.25 +vit_small_r26_s32_384,384,1024.0,1083.82,944.797,10.24,27.67,36.47 +efficientvit_l2,288,1024.0,1083.69,944.906,11.51,32.19,63.71 +efficientnetv2_s,384,1024.0,1081.44,946.869,8.44,35.77,21.46 +tf_efficientnet_lite4,380,384.0,1073.72,357.628,4.04,45.66,13.01 +pvt_v2_b5,224,1024.0,1068.28,958.536,11.39,44.23,81.96 +hrnet_w18_ssld,288,1024.0,1066.01,960.575,7.14,26.96,21.3 +tf_efficientnetv2_s,384,1024.0,1054.1,971.431,8.44,35.77,21.46 +regnety_160,224,1024.0,1046.76,978.242,15.96,23.04,83.59 +samvit_base_patch16_224,224,1024.0,1027.37,996.713,16.83,17.2,86.46 +convnext_tiny,384,768.0,1026.31,748.299,13.14,39.48,28.59 +wide_resnet50_2,288,1024.0,1025.91,998.129,18.89,23.81,68.88 +efficientnetv2_rw_s,384,1024.0,1024.66,999.343,8.72,38.03,23.94 +vgg16,224,1024.0,1020.44,1003.475,15.47,13.56,138.36 +cs3se_edgenet_x,320,1024.0,1009.45,1014.397,18.01,20.21,50.72 +vit_base_patch16_plus_240,240,1024.0,1002.7,1021.234,26.31,22.07,117.56 +swinv2_cr_small_224,224,1024.0,1001.72,1022.232,9.07,50.27,49.7 +dpn98,224,1024.0,998.61,1025.406,11.73,25.2,61.57 +efficientvit_b3,288,768.0,996.43,770.744,6.58,44.2,48.65 +resnetaa101d,288,1024.0,996.18,1027.911,15.07,29.03,44.57 +wide_resnet101_2,224,1024.0,994.0,1030.164,22.8,21.23,126.89 +regnetz_d32,320,1024.0,994.0,1030.165,9.33,37.08,27.58 +swinv2_cr_small_ns_224,224,1024.0,991.13,1033.149,9.08,50.27,49.7 +focalnet_base_srf,224,1024.0,990.91,1033.385,15.28,35.01,88.15 +convnextv2_small,224,1024.0,989.67,1034.674,8.71,21.56,50.32 +resnet200,224,1024.0,987.28,1037.18,15.07,32.19,64.67 +convnextv2_tiny,288,768.0,983.87,780.578,7.39,22.21,28.64 +seresnet101,288,1024.0,983.64,1041.016,12.95,26.87,49.33 +vit_small_patch8_224,224,1024.0,981.8,1042.968,16.76,32.86,21.67 +regnetz_d8,320,1024.0,980.9,1043.922,6.19,37.08,23.37 +regnety_080,288,1024.0,977.86,1047.177,13.22,29.69,39.18 +inception_next_base,224,1024.0,977.1,1047.988,14.85,25.69,86.67 +vit_base_r50_s16_224,224,1024.0,974.47,1050.816,20.94,27.88,97.89 +resnest101e,256,1024.0,968.0,1057.838,13.38,28.66,48.28 +convnext_base,256,1024.0,965.93,1060.101,20.09,37.55,88.59 +regnetz_c16_evos,256,768.0,965.5,795.429,2.48,16.57,13.49 +regnetz_040,320,512.0,964.02,531.096,6.35,37.78,27.12 +poolformer_m36,224,1024.0,963.9,1062.337,8.8,22.02,56.17 +regnetz_b16_evos,288,768.0,961.28,798.923,2.36,16.43,9.74 +inception_resnet_v2,299,1024.0,958.82,1067.962,13.18,25.06,55.84 +regnetz_040_h,320,512.0,958.46,534.182,6.43,37.94,28.94 +seresnet152d,256,1024.0,956.44,1070.629,15.42,30.56,66.84 +ecaresnet101d,288,1024.0,951.62,1076.05,13.35,28.19,44.57 +regnety_064,288,1024.0,949.24,1078.741,10.56,27.11,30.58 +resnetrs152,256,1024.0,948.32,1079.798,15.59,30.83,86.62 +resnext101_64x4d,224,1024.0,947.79,1080.397,15.52,31.21,83.46 +regnetv_064,288,1024.0,947.23,1081.038,10.55,27.11,30.58 +xception65p,299,512.0,944.43,542.118,13.91,52.48,39.82 +resnetblur101d,288,1024.0,942.52,1086.438,15.07,29.65,44.57 +resnetrs101,288,1024.0,941.79,1087.277,13.56,28.53,63.62 +focalnet_base_lrf,224,1024.0,941.31,1087.831,15.43,38.13,88.75 +resnext101_32x8d,224,1024.0,939.44,1090.002,16.48,31.21,88.79 +repvgg_b3,224,1024.0,933.91,1096.448,29.16,15.1,123.09 +hrnet_w40,224,1024.0,931.96,1098.75,12.75,25.29,57.56 +nfnet_f1,224,1024.0,924.88,1107.159,17.87,22.94,132.63 +eva02_small_patch14_336,336,1024.0,923.99,1108.223,12.41,27.7,22.13 +resnet101d,320,1024.0,923.18,1109.193,16.48,34.77,44.57 +xcit_tiny_24_p16_384,384,1024.0,910.96,1124.082,6.87,34.29,12.12 +efficientnet_b4,384,384.0,908.88,422.486,4.51,50.04,19.34 +cait_s24_224,224,1024.0,904.24,1132.424,9.35,40.58,46.92 +mobilevitv2_150,384,256.0,899.17,284.697,9.2,54.25,10.59 +maxvit_rmlp_small_rw_224,224,768.0,898.81,854.449,10.48,42.44,64.9 +coat_mini,224,1024.0,894.78,1144.406,6.82,33.68,10.34 +coat_lite_medium,224,1024.0,892.4,1147.459,9.81,40.06,44.57 +efficientnetv2_m,320,1024.0,889.26,1151.505,11.01,39.97,54.14 +seresnext101_64x4d,224,1024.0,888.73,1152.196,15.53,31.25,88.23 +gmlp_b16_224,224,1024.0,884.5,1157.706,15.78,30.21,73.08 +seresnext101_32x8d,224,1024.0,883.56,1158.934,16.48,31.25,93.57 +swin_s3_small_224,224,768.0,879.87,872.841,9.43,37.84,49.74 +vit_relpos_base_patch16_plus_240,240,1024.0,875.04,1170.215,26.21,23.41,117.38 +efficientformer_l7,224,1024.0,873.11,1172.808,10.17,24.45,82.23 +nest_base,224,1024.0,870.02,1176.974,16.71,30.51,67.72 +poolformerv2_s36,224,1024.0,869.16,1178.141,5.01,15.82,30.79 +maxvit_small_tf_224,224,512.0,868.0,589.85,11.39,46.31,68.93 +seresnext101d_32x8d,224,1024.0,866.35,1181.949,16.72,32.05,93.59 +nest_base_jx,224,1024.0,862.67,1187.001,16.71,30.51,67.72 +levit_384_s8,224,512.0,854.68,599.045,9.98,35.86,39.12 +regnetz_e8,256,1024.0,853.36,1199.952,9.91,40.94,57.7 +swin_base_patch4_window7_224,224,1024.0,852.78,1200.762,15.47,36.63,87.77 +coatnet_2_rw_224,224,512.0,852.23,600.767,14.55,39.37,73.87 +tf_efficientnet_b4,380,384.0,851.5,450.956,4.49,49.49,19.34 +gcvit_small,224,1024.0,841.82,1216.401,8.57,41.61,51.09 +convnextv2_nano,384,512.0,841.68,608.3,7.22,24.61,15.62 +resnetv2_50d_evos,288,1024.0,840.21,1218.735,7.15,19.7,25.59 +levit_conv_384_s8,224,512.0,839.77,609.68,9.98,35.86,39.12 +xception65,299,512.0,839.39,609.953,13.96,52.48,39.92 +hrnet_w44,224,1024.0,835.38,1225.779,14.94,26.92,67.06 +crossvit_15_dagger_408,408,1024.0,833.7,1228.252,16.07,37.0,28.5 +tiny_vit_21m_384,384,512.0,827.46,618.747,11.94,46.84,21.23 +twins_svt_large,224,1024.0,824.23,1242.353,14.84,27.23,99.27 +seresnextaa101d_32x8d,224,1024.0,820.77,1247.602,17.25,34.16,93.59 +xcit_medium_24_p16_224,224,1024.0,820.51,1247.988,16.13,31.71,84.4 +eva02_base_patch14_224,224,1024.0,819.51,1249.51,22.0,24.67,85.76 +coatnet_rmlp_2_rw_224,224,512.0,814.13,628.885,14.64,44.94,73.88 +hrnet_w48_ssld,224,1024.0,812.33,1260.551,17.34,28.56,77.47 +hrnet_w48,224,1024.0,811.26,1262.228,17.34,28.56,77.47 +caformer_s36,224,1024.0,810.13,1263.986,7.55,29.29,39.3 +tresnet_m,448,1024.0,809.9,1264.343,22.99,29.21,31.39 +resnet200d,256,1024.0,803.17,1274.938,20.0,43.09,64.69 +sequencer2d_l,224,1024.0,802.78,1275.557,9.74,22.12,54.3 +maxxvit_rmlp_small_rw_256,256,768.0,801.57,958.106,14.21,47.76,66.01 +swinv2_base_window12_192,192,1024.0,799.54,1280.724,11.9,39.72,109.28 +dm_nfnet_f1,224,1024.0,798.67,1282.118,17.87,22.94,132.63 +coatnet_2_224,224,512.0,796.89,642.486,15.94,42.41,74.68 +vit_medium_patch16_gap_384,384,1024.0,795.07,1287.922,22.01,32.15,39.03 +mvitv2_base_cls,224,1024.0,791.15,1294.298,10.23,40.65,65.44 +mvitv2_base,224,1024.0,785.87,1303.007,10.16,40.5,51.47 +efficientnetv2_rw_m,320,1024.0,785.27,1303.997,12.72,47.14,53.24 +resnet152,288,1024.0,781.77,1309.827,19.11,37.28,60.19 +swinv2_tiny_window16_256,256,512.0,775.64,660.087,6.68,39.02,28.35 +fastvit_sa36,256,1024.0,768.44,1332.545,5.62,34.02,31.53 +xcit_small_12_p16_384,384,1024.0,764.7,1339.074,14.14,36.5,26.25 +convnext_base,288,1024.0,763.36,1341.427,25.43,47.53,88.59 +convformer_s36,224,1024.0,754.92,1356.424,7.67,30.5,40.01 +regnety_120,288,768.0,738.36,1040.13,20.06,35.34,51.82 +swinv2_small_window8_256,256,1024.0,737.99,1387.548,11.58,40.14,49.73 +dpn131,224,1024.0,732.6,1397.744,16.09,32.97,79.25 +swinv2_cr_small_ns_256,256,1024.0,731.79,1399.291,12.07,76.21,49.7 +mobilevitv2_175,384,256.0,731.75,349.838,12.47,63.29,14.25 +convit_base,224,1024.0,730.43,1401.91,17.52,31.77,86.54 +resnetv2_50x1_bit,448,512.0,729.61,701.734,16.62,44.46,25.55 +poolformer_m48,224,1024.0,727.01,1408.491,11.59,29.17,73.47 +maxvit_rmlp_small_rw_256,256,768.0,724.69,1059.745,13.69,55.48,64.9 +tnt_b_patch16_224,224,1024.0,721.67,1418.912,14.09,39.01,65.41 +eca_nfnet_l1,320,1024.0,720.22,1421.77,14.92,34.42,41.41 +swinv2_cr_base_224,224,1024.0,716.89,1428.383,15.86,59.66,87.88 +swin_s3_base_224,224,1024.0,715.81,1430.534,13.69,48.26,71.13 +volo_d2_224,224,1024.0,711.4,1439.408,14.34,41.34,58.68 +swinv2_cr_base_ns_224,224,1024.0,711.07,1440.068,15.86,59.66,87.88 +convnextv2_base,224,768.0,708.71,1083.64,15.38,28.75,88.72 +densenet264d,224,1024.0,697.85,1467.348,13.57,14.0,72.74 +ecaresnet200d,256,1024.0,697.3,1468.506,20.0,43.15,64.69 +seresnet200d,256,1024.0,696.92,1469.301,20.01,43.15,71.86 +nf_regnet_b5,384,1024.0,694.76,1473.879,7.95,42.9,49.74 +seresnet152,288,1024.0,693.47,1476.616,19.11,37.34,66.82 +resnetrs200,256,1024.0,693.26,1477.057,20.18,43.42,93.21 +coat_small,224,1024.0,689.68,1484.732,12.61,44.25,21.69 +convnext_large,224,1024.0,686.69,1491.207,34.4,43.13,197.77 +xcit_tiny_24_p8_224,224,1024.0,684.2,1496.615,9.21,45.38,12.11 +efficientvit_l3,224,1024.0,667.4,1534.307,27.62,39.16,246.04 +dpn107,224,1024.0,666.43,1536.527,18.38,33.46,86.92 +resnet152d,320,1024.0,664.6,1540.768,24.08,47.67,60.21 +senet154,224,1024.0,664.59,1540.791,20.77,38.69,115.09 +legacy_senet154,224,1024.0,663.62,1543.045,20.77,38.69,115.09 +efficientformerv2_s2,224,1024.0,658.11,1555.962,1.27,11.77,12.71 +maxxvitv2_rmlp_base_rw_224,224,768.0,650.48,1180.654,23.88,54.39,116.09 +xcit_nano_12_p8_384,384,1024.0,649.92,1575.56,6.34,46.06,3.05 +xception71,299,512.0,649.47,788.325,18.09,69.92,42.34 +vit_large_patch32_384,384,1024.0,643.51,1591.268,44.28,32.22,306.63 +mobilevitv2_200,384,256.0,640.82,399.48,16.24,72.34,18.45 +davit_large,224,1024.0,630.01,1625.361,34.37,55.08,196.81 +hrnet_w64,224,1024.0,629.26,1627.299,28.97,35.09,128.06 +convnext_small,384,768.0,628.81,1221.341,25.58,63.37,50.22 +regnetz_d8_evos,256,1024.0,626.83,1633.604,4.5,24.92,23.46 +regnety_160,288,768.0,626.54,1225.759,26.37,38.07,83.59 +convnext_base,320,768.0,617.04,1244.641,31.39,58.68,88.59 +fastvit_ma36,256,1024.0,615.75,1662.995,7.85,40.39,44.07 +tf_efficientnetv2_m,384,1024.0,614.24,1667.09,15.85,57.52,54.14 +gcvit_base,224,1024.0,612.92,1670.669,14.87,55.48,90.32 +regnety_320,224,1024.0,612.34,1672.272,32.34,30.26,145.05 +efficientvit_l2,384,768.0,610.03,1258.949,20.45,57.01,63.71 +poolformerv2_m36,224,1024.0,609.2,1680.886,8.81,22.02,56.08 +regnetz_c16_evos,320,512.0,608.23,841.78,3.86,25.88,13.49 +resnetv2_50x3_bit,224,768.0,585.49,1311.719,37.06,33.34,217.32 +seresnet152d,320,1024.0,585.32,1749.453,24.09,47.72,66.84 +xcit_small_12_p8_224,224,1024.0,584.75,1751.159,18.69,47.19,26.21 +resnet200,288,1024.0,584.49,1751.952,24.91,53.21,64.67 +resnetrs152,320,1024.0,580.71,1763.336,24.34,48.14,86.62 +caformer_m36,224,1024.0,580.7,1763.373,12.75,40.61,56.2 +resnext101_64x4d,288,1024.0,579.65,1766.578,25.66,51.59,83.46 +levit_conv_512_s8,224,256.0,579.33,441.879,21.82,52.28,74.05 +crossvit_18_dagger_408,408,1024.0,578.67,1769.56,25.31,49.38,44.61 +levit_512_s8,224,256.0,564.15,453.77,21.82,52.28,74.05 +convnextv2_tiny,384,384.0,553.95,693.189,13.14,39.48,28.64 +convformer_m36,224,1024.0,546.86,1872.507,12.89,42.05,57.05 +efficientnet_b5,416,256.0,546.68,468.268,8.27,80.68,30.39 +seresnet269d,256,1024.0,545.35,1877.679,26.59,53.6,113.67 +efficientvit_l3,256,768.0,542.99,1414.373,36.06,50.98,246.04 +seresnext101_32x8d,288,1024.0,537.9,1903.669,27.24,51.63,93.57 +efficientnetv2_m,416,1024.0,531.24,1927.549,18.6,67.5,54.14 +resnetrs270,256,1024.0,529.33,1934.515,27.06,55.84,129.86 +maxvit_rmlp_base_rw_224,224,768.0,529.1,1451.502,22.63,79.3,116.14 +swinv2_base_window8_256,256,1024.0,528.71,1936.775,20.37,52.59,87.92 +regnetz_e8,320,768.0,528.46,1453.264,15.46,63.94,57.7 +seresnext101d_32x8d,288,1024.0,527.36,1941.726,27.64,52.95,93.59 +convnext_large_mlp,256,768.0,525.72,1460.834,44.94,56.33,200.13 +nfnet_f2,256,1024.0,524.14,1953.657,33.76,41.85,193.78 +halonet_h1,256,256.0,522.84,489.621,3.0,51.17,8.1 +regnetx_320,224,1024.0,522.6,1959.408,31.81,36.3,107.81 +mixer_l16_224,224,1024.0,520.22,1968.376,44.6,41.69,208.2 +resnext101_32x16d,224,1024.0,519.8,1969.975,36.27,51.18,194.03 +eca_nfnet_l2,320,1024.0,509.51,2009.758,20.95,47.43,56.72 +ecaresnet200d,288,1024.0,503.74,2032.793,25.31,54.59,64.69 +seresnet200d,288,1024.0,503.36,2034.329,25.32,54.6,71.86 +caformer_s18,384,512.0,501.38,1021.162,11.45,44.61,26.34 +volo_d3_224,224,1024.0,497.87,2056.757,20.78,60.09,86.33 +resnet200d,320,1024.0,493.82,2073.621,31.25,67.33,64.69 +swin_large_patch4_window7_224,224,768.0,492.35,1559.852,34.53,54.94,196.53 +vit_base_patch16_18x2_224,224,1024.0,492.32,2079.918,50.37,49.17,256.73 +deit_base_patch16_384,384,1024.0,491.82,2082.046,49.4,48.3,86.86 +vit_base_patch16_clip_384,384,1024.0,491.74,2082.405,49.41,48.3,86.86 +vit_base_patch16_384,384,1024.0,491.42,2083.727,49.4,48.3,86.86 +deit_base_distilled_patch16_384,384,1024.0,491.32,2084.164,49.49,48.39,87.63 +hrnet_w48_ssld,288,1024.0,490.92,2085.876,28.66,47.21,77.47 +eva_large_patch14_196,196,1024.0,490.45,2087.863,59.66,43.77,304.14 +maxvit_base_tf_224,224,512.0,488.88,1047.285,23.52,81.67,119.47 +efficientnet_b5,448,256.0,488.83,523.691,9.59,93.56,30.39 +vit_large_patch16_224,224,1024.0,488.5,2096.219,59.7,43.77,304.33 +swinv2_small_window16_256,256,512.0,486.59,1052.215,12.82,66.29,49.73 +swinv2_large_window12_192,192,768.0,485.58,1581.6,26.17,56.53,228.77 +convformer_s18,384,512.0,484.08,1057.663,11.63,46.49,26.77 +seresnextaa101d_32x8d,288,1024.0,479.96,2133.497,28.51,56.44,93.59 +coatnet_3_rw_224,224,256.0,478.44,535.067,32.63,59.07,181.81 +coatnet_rmlp_3_rw_224,224,256.0,477.75,535.833,32.75,64.7,165.15 +xcit_large_24_p16_224,224,1024.0,472.07,2169.166,35.86,47.26,189.1 +vit_small_patch14_dinov2,518,1024.0,469.29,2181.987,29.46,57.34,22.06 +deit3_base_patch16_384,384,1024.0,466.88,2193.286,49.4,48.3,86.88 +deit3_large_patch16_224,224,1024.0,466.56,2194.777,59.7,43.77,304.37 +efficientnetv2_rw_m,416,768.0,466.5,1646.281,21.49,79.62,53.24 +nfnet_f1,320,1024.0,466.35,2195.774,35.97,46.77,132.63 +nf_regnet_b5,456,768.0,464.5,1653.385,11.7,61.95,49.74 +coatnet_3_224,224,256.0,464.1,551.594,35.72,63.61,166.97 +vit_small_patch14_reg4_dinov2,518,1024.0,460.4,2224.119,29.55,57.51,22.06 +poolformerv2_m48,224,1024.0,459.37,2229.113,11.59,29.17,73.35 +beitv2_large_patch16_224,224,1024.0,452.16,2264.697,59.7,43.77,304.43 +beit_large_patch16_224,224,1024.0,452.15,2264.716,59.7,43.77,304.43 +resnetv2_101x1_bit,448,512.0,451.35,1134.365,31.65,64.93,44.54 +dm_nfnet_f2,256,1024.0,451.22,2269.395,33.76,41.85,193.78 +vit_base_patch16_siglip_384,384,1024.0,448.34,2283.991,50.0,49.11,93.18 +resnetv2_152x2_bit,224,1024.0,441.5,2319.35,46.95,45.11,236.34 +convnext_xlarge,224,768.0,435.62,1762.988,60.98,57.5,350.2 +maxvit_tiny_tf_384,384,256.0,434.99,588.503,16.0,94.22,30.98 +efficientformerv2_l,224,1024.0,431.02,2375.769,2.59,18.54,26.32 +convnext_base,384,512.0,430.72,1188.698,45.21,84.49,88.59 +convnextv2_base,288,512.0,429.59,1191.832,25.43,47.53,88.72 +resnetrs200,320,1024.0,428.05,2392.217,31.51,67.81,93.21 +flexivit_large,240,1024.0,424.67,2411.279,68.48,50.22,304.36 +convnextv2_large,224,512.0,423.49,1208.977,34.4,43.13,197.96 +xcit_tiny_12_p8_384,384,1024.0,423.2,2419.661,14.12,69.12,6.71 +swinv2_cr_large_224,224,768.0,422.05,1819.675,35.1,78.42,196.68 +caformer_b36,224,768.0,419.19,1832.111,22.5,54.14,98.75 +swinv2_cr_tiny_384,384,256.0,419.04,610.909,15.34,161.01,28.33 +tf_efficientnet_b5,456,256.0,418.1,612.278,10.46,98.86,30.39 +convnext_large,288,512.0,415.42,1232.482,56.87,71.29,197.77 +davit_huge,224,512.0,410.45,1247.402,60.93,73.44,348.92 +maxxvitv2_rmlp_large_rw_224,224,768.0,409.41,1875.861,43.69,75.4,215.42 +tiny_vit_21m_512,512,384.0,408.26,940.575,21.23,83.26,21.27 +xcit_small_24_p16_384,384,1024.0,408.08,2509.308,26.72,68.57,47.67 +tf_efficientnetv2_m,480,768.0,405.02,1896.185,24.76,89.84,54.14 +tresnet_l,448,1024.0,403.56,2537.407,43.59,47.56,55.99 +beit_base_patch16_384,384,1024.0,401.76,2548.786,49.4,48.3,86.74 +convformer_b36,224,768.0,396.81,1935.431,22.69,56.06,99.88 +regnetz_d8_evos,320,768.0,395.82,1940.285,7.03,38.92,23.46 +seresnextaa101d_32x8d,320,1024.0,395.0,2592.386,35.19,69.67,93.59 +seresnet269d,288,1024.0,393.84,2600.059,33.65,67.81,113.67 +dm_nfnet_f1,320,1024.0,393.6,2601.642,35.97,46.77,132.63 +regnety_160,384,384.0,378.47,1014.589,46.87,67.67,83.59 +vit_large_r50_s32_384,384,1024.0,372.96,2745.589,56.4,64.88,329.09 +regnety_640,224,768.0,362.45,2118.906,64.16,42.5,281.38 +eca_nfnet_l2,384,768.0,361.66,2123.504,30.05,68.28,56.72 +vit_large_patch14_224,224,1024.0,359.79,2846.069,77.83,57.11,304.2 +vit_large_patch14_clip_224,224,1024.0,359.08,2851.744,77.83,57.11,304.2 +swinv2_base_window12to16_192to256,256,384.0,358.35,1071.569,22.02,84.71,87.92 +swinv2_base_window16_256,256,384.0,358.25,1071.869,22.02,84.71,87.92 +vit_large_patch16_siglip_256,256,1024.0,351.53,2912.942,78.12,57.42,315.96 +vit_base_patch8_224,224,1024.0,350.95,2917.813,66.87,65.71,86.58 +efficientvit_l3,320,512.0,346.1,1479.341,56.32,79.34,246.04 +efficientnetv2_l,384,1024.0,342.83,2986.92,36.1,101.16,118.52 +tf_efficientnetv2_l,384,1024.0,338.97,3020.897,36.1,101.16,118.52 +ecaresnet269d,320,1024.0,337.13,3037.39,41.53,83.69,102.09 +resnest200e,320,1024.0,336.33,3044.627,35.69,82.78,70.2 +maxvit_large_tf_224,224,384.0,336.26,1141.954,42.99,109.57,211.79 +convnext_large_mlp,320,512.0,336.03,1523.669,70.21,88.02,200.13 +inception_next_base,384,512.0,335.9,1524.27,43.64,75.48,86.67 +resnetv2_101x3_bit,224,768.0,334.56,2295.509,71.23,48.7,387.93 +eca_nfnet_l3,352,768.0,328.62,2337.043,32.57,73.12,72.04 +vit_large_patch14_clip_quickgelu_224,224,1024.0,324.15,3159.023,77.83,57.11,303.97 +repvgg_d2se,320,1024.0,320.2,3197.943,74.57,46.82,133.33 +vit_base_r50_s16_384,384,1024.0,317.01,3230.175,61.29,81.77,98.95 +volo_d4_224,224,1024.0,317.0,3230.22,44.34,80.22,192.96 +volo_d1_384,384,512.0,314.1,1630.023,22.75,108.55,26.78 +vit_large_patch14_xp_224,224,1024.0,309.84,3304.92,77.77,57.11,304.06 +convmixer_768_32,224,1024.0,308.6,3318.227,19.55,25.95,21.11 +xcit_small_24_p8_224,224,1024.0,305.72,3349.464,35.81,90.77,47.63 +resnetrs350,288,1024.0,304.48,3363.098,43.67,87.09,163.96 +nasnetalarge,331,384.0,300.79,1276.642,23.89,90.56,88.75 +coat_lite_medium_384,384,512.0,299.62,1708.831,28.73,116.7,44.57 +tresnet_xl,448,768.0,296.15,2593.304,60.77,61.31,78.44 +maxvit_small_tf_384,384,192.0,288.16,666.295,33.58,139.86,69.02 +pnasnet5large,331,384.0,287.26,1336.778,25.04,92.89,86.06 +xcit_medium_24_p16_384,384,1024.0,282.76,3621.451,47.39,91.63,84.4 +ecaresnet269d,352,1024.0,281.17,3641.867,50.25,101.25,102.09 +coatnet_4_224,224,256.0,280.04,914.128,60.81,98.85,275.43 +cait_xxs24_384,384,1024.0,277.04,3696.16,9.63,122.65,12.03 +coatnet_rmlp_2_rw_384,384,192.0,273.87,701.059,43.04,132.57,73.88 +resnetrs270,352,1024.0,271.91,3765.914,51.13,105.48,129.86 +nfnet_f2,352,768.0,270.88,2835.244,63.22,79.06,193.78 +caformer_s36,384,512.0,266.29,1922.686,22.2,86.08,39.3 +convnext_xlarge,288,512.0,263.75,1941.25,100.8,95.05,350.2 +swinv2_cr_small_384,384,256.0,258.42,990.618,29.7,298.03,49.7 +efficientnet_b6,528,128.0,257.57,496.944,19.4,167.39,43.04 +convformer_s36,384,512.0,257.36,1989.401,22.54,89.62,40.01 +convnextv2_large,288,256.0,256.91,996.448,56.87,71.29,197.96 +eva02_large_patch14_224,224,1024.0,256.79,3987.739,77.9,65.52,303.27 +eva02_large_patch14_clip_224,224,1024.0,253.51,4039.312,77.93,65.52,304.11 +resnext101_32x32d,224,512.0,253.0,2023.672,87.29,91.12,468.53 +maxvit_tiny_tf_512,512,192.0,249.39,769.864,28.66,172.66,31.05 +tf_efficientnet_b6,528,128.0,247.44,517.29,19.4,167.39,43.04 +nfnet_f3,320,1024.0,247.37,4139.575,68.77,83.93,254.92 +mvitv2_large_cls,224,768.0,246.55,3114.926,42.17,111.69,234.58 +vit_so400m_patch14_siglip_224,224,1024.0,246.49,4154.292,106.18,70.45,427.68 +efficientnetv2_xl,384,1024.0,244.46,4188.739,52.81,139.2,208.12 +mvitv2_large,224,512.0,242.6,2110.485,43.87,112.02,217.99 +convnextv2_base,384,256.0,242.26,1056.699,45.21,84.49,88.72 +vit_base_patch16_siglip_512,512,512.0,241.2,2122.705,88.89,87.3,93.52 +convnext_large,384,384.0,234.69,1636.209,101.1,126.74,197.77 +convnext_large_mlp,384,384.0,234.65,1636.476,101.11,126.74,200.13 +dm_nfnet_f2,352,768.0,234.38,3276.685,63.22,79.06,193.78 +tf_efficientnetv2_xl,384,1024.0,230.18,4448.679,52.81,139.2,208.12 +efficientnetv2_l,480,512.0,229.94,2226.68,56.4,157.99,118.52 +tf_efficientnetv2_l,480,512.0,227.38,2251.742,56.4,157.99,118.52 +swin_base_patch4_window12_384,384,256.0,226.65,1129.483,47.19,134.78,87.9 +regnety_320,384,384.0,225.95,1699.504,95.0,88.87,145.05 +resnetrs420,320,1024.0,221.8,4616.729,64.2,126.56,191.89 +xcit_tiny_24_p8_384,384,1024.0,221.03,4632.753,27.05,132.94,12.11 +efficientvit_l3,384,384.0,220.15,1744.25,81.08,114.02,246.04 +swinv2_large_window12to16_192to256,256,256.0,218.91,1169.41,47.81,121.53,196.74 +maxxvitv2_rmlp_base_rw_384,384,384.0,215.87,1778.825,70.18,160.22,116.09 +resmlp_big_24_224,224,1024.0,214.65,4770.604,100.23,87.31,129.14 +dm_nfnet_f3,320,1024.0,212.33,4822.62,68.77,83.93,254.92 +volo_d5_224,224,1024.0,212.3,4823.349,72.4,118.11,295.46 +xcit_medium_24_p8_224,224,1024.0,210.35,4868.038,63.52,121.22,84.32 +seresnextaa201d_32x8d,320,1024.0,207.05,4945.752,70.22,138.71,149.39 +eca_nfnet_l3,448,512.0,204.74,2500.737,52.55,118.4,72.04 +xcit_small_12_p8_384,384,512.0,195.78,2615.134,54.92,138.25,26.21 +cait_xs24_384,384,768.0,193.45,3970.037,19.28,183.98,26.67 +caformer_m36,384,256.0,191.51,1336.728,37.45,119.33,56.2 +focalnet_huge_fl3,224,384.0,190.45,2016.221,118.26,104.8,745.28 +eva02_base_patch14_448,448,512.0,189.13,2707.053,87.74,98.4,87.12 +maxvit_xlarge_tf_224,224,256.0,188.97,1354.682,96.49,164.37,506.99 +convformer_m36,384,384.0,186.96,2053.847,37.87,123.56,57.05 +cait_xxs36_384,384,1024.0,185.14,5531.038,14.35,183.7,17.37 +swinv2_cr_base_384,384,256.0,184.66,1386.338,50.57,333.68,87.88 +resnetrs350,384,1024.0,184.39,5553.562,77.59,154.74,163.96 +regnety_1280,224,512.0,182.89,2799.45,127.66,71.58,644.81 +swinv2_cr_huge_224,224,384.0,181.27,2118.357,115.97,121.08,657.83 +vit_huge_patch14_clip_224,224,1024.0,179.25,5712.71,161.99,95.07,632.05 +vit_huge_patch14_224,224,1024.0,179.24,5713.082,161.99,95.07,630.76 +volo_d2_384,384,384.0,177.67,2161.247,46.17,184.51,58.87 +maxvit_rmlp_base_rw_384,384,384.0,177.21,2166.875,66.51,233.79,116.14 +vit_base_patch14_dinov2,518,512.0,175.93,2910.275,117.11,114.68,86.58 +vit_huge_patch14_gap_224,224,1024.0,175.35,5839.715,161.36,94.7,630.76 +vit_base_patch14_reg4_dinov2,518,512.0,175.34,2920.066,117.45,115.02,86.58 +convnextv2_huge,224,256.0,174.19,1469.676,115.0,79.07,660.29 +deit3_huge_patch14_224,224,1024.0,172.49,5936.531,161.99,95.07,632.13 +convmixer_1536_20,224,1024.0,172.27,5944.074,48.68,33.03,51.63 +vit_huge_patch14_clip_quickgelu_224,224,1024.0,165.12,6201.386,161.99,95.07,632.08 +maxvit_small_tf_512,512,96.0,163.95,585.546,60.02,256.36,69.13 +maxvit_base_tf_384,384,192.0,162.75,1179.72,69.34,247.75,119.65 +xcit_large_24_p16_384,384,1024.0,162.01,6320.659,105.34,137.15,189.1 +resnetv2_152x2_bit,384,384.0,160.06,2399.153,136.16,132.56,236.34 +vit_huge_patch14_xp_224,224,1024.0,159.21,6431.544,161.88,95.07,631.8 +resnest269e,416,512.0,159.04,3219.278,77.69,171.98,110.93 +eva_large_patch14_336,336,768.0,155.41,4941.906,174.74,128.21,304.53 +vit_large_patch14_clip_336,336,768.0,155.09,4951.819,174.74,128.21,304.53 +vit_large_patch16_384,384,768.0,154.94,4956.737,174.85,128.21,304.72 +convnext_xxlarge,256,384.0,152.35,2520.42,198.09,124.45,846.47 +davit_giant,224,384.0,151.56,2533.626,192.34,138.2,1406.47 +resnetv2_50x3_bit,448,192.0,150.44,1276.251,145.7,133.37,217.32 +coatnet_5_224,224,192.0,149.61,1283.336,142.72,143.69,687.47 +efficientnetv2_xl,512,512.0,149.15,3432.877,93.85,247.32,208.12 +cait_s24_384,384,512.0,148.91,3438.219,32.17,245.3,47.06 +convnext_xlarge,384,256.0,148.61,1722.573,179.2,168.99,350.2 +tf_efficientnetv2_xl,512,512.0,148.0,3459.525,93.85,247.32,208.12 +efficientnet_b7,600,96.0,147.91,649.053,38.33,289.94,66.35 +deit3_large_patch16_384,384,1024.0,147.79,6928.856,174.85,128.21,304.76 +seresnextaa201d_32x8d,384,768.0,147.05,5222.537,101.11,199.72,149.39 +nfnet_f3,416,512.0,146.71,3489.974,115.58,141.78,254.92 +vit_giant_patch16_gap_224,224,1024.0,145.38,7043.632,198.14,103.64,1011.37 +convnextv2_large,384,192.0,144.92,1324.86,101.1,126.74,197.96 +resnetv2_152x4_bit,224,512.0,144.91,3533.266,186.9,90.22,936.53 +vit_large_patch16_siglip_384,384,768.0,144.23,5324.878,175.76,129.18,316.28 +tf_efficientnet_b7,600,96.0,143.48,669.058,38.33,289.94,66.35 +nfnet_f4,384,768.0,142.67,5383.101,122.14,147.57,316.07 +vit_large_patch14_clip_quickgelu_336,336,768.0,140.95,5448.604,174.74,128.21,304.29 +caformer_b36,384,256.0,138.42,1849.458,66.12,159.11,98.75 +swin_large_patch4_window12_384,384,128.0,135.49,944.717,104.08,202.16,196.74 +convformer_b36,384,256.0,135.29,1892.221,66.67,164.75,99.88 +resnetrs420,416,1024.0,130.11,7870.213,108.45,213.79,191.89 +beit_large_patch16_384,384,768.0,129.31,5939.365,174.84,128.21,305.0 +dm_nfnet_f3,416,512.0,127.57,4013.328,115.58,141.78,254.92 +regnety_640,384,256.0,126.8,2018.836,188.47,124.83,281.38 +dm_nfnet_f4,384,768.0,123.05,6241.189,122.14,147.57,316.07 +focalnet_huge_fl4,224,512.0,122.81,4169.023,118.9,113.34,686.46 +xcit_large_24_p8_224,224,512.0,120.1,4263.036,141.22,181.53,188.93 +resnetv2_152x2_bit,448,256.0,117.91,2171.109,184.99,180.43,236.34 +eva_giant_patch14_224,224,1024.0,116.71,8773.739,259.74,135.89,1012.56 +eva_giant_patch14_clip_224,224,1024.0,116.64,8779.464,259.74,135.89,1012.59 +vit_giant_patch14_224,224,1024.0,114.18,8968.21,259.74,135.89,1012.61 +vit_giant_patch14_clip_224,224,1024.0,114.09,8975.383,259.74,135.89,1012.65 +swinv2_cr_large_384,384,128.0,112.81,1134.666,108.96,404.96,196.68 +maxvit_large_tf_384,384,128.0,111.17,1151.411,126.61,332.3,212.03 +eva02_large_patch14_clip_336,336,1024.0,110.28,9285.405,174.97,147.1,304.43 +mvitv2_huge_cls,224,384.0,107.61,3568.518,120.67,243.63,694.8 +convnextv2_huge,288,128.0,105.35,1214.957,190.1,130.7,660.29 +xcit_small_24_p8_384,384,512.0,102.73,4983.926,105.23,265.87,47.63 +nfnet_f5,416,512.0,100.11,5114.164,170.71,204.56,377.21 +cait_s36_384,384,512.0,99.61,5140.29,47.99,367.39,68.37 +swinv2_base_window12to24_192to384,384,96.0,96.35,996.364,55.25,280.36,87.92 +efficientnet_b8,672,96.0,95.78,1002.248,63.48,442.89,87.41 +focalnet_large_fl3,384,384.0,94.47,4064.948,105.06,168.04,239.13 +tf_efficientnet_b8,672,96.0,93.18,1030.252,63.48,442.89,87.41 +maxvit_base_tf_512,512,96.0,92.2,1041.169,123.93,456.26,119.88 +focalnet_large_fl4,384,256.0,90.17,2839.222,105.2,181.78,239.32 +resnetv2_101x3_bit,448,192.0,87.88,2184.819,280.33,194.78,387.93 +dm_nfnet_f5,416,512.0,86.64,5909.833,170.71,204.56,377.21 +nfnet_f4,512,384.0,81.51,4711.211,216.26,262.26,316.07 +volo_d3_448,448,192.0,76.74,2501.831,96.33,446.83,86.63 +vit_so400m_patch14_siglip_384,384,512.0,75.92,6743.556,302.34,200.62,428.23 +nfnet_f6,448,512.0,75.59,6773.482,229.7,273.62,438.36 +vit_huge_patch14_clip_336,336,768.0,75.49,10173.683,363.7,213.44,632.46 +xcit_medium_24_p8_384,384,384.0,71.15,5396.903,186.67,354.69,84.32 +dm_nfnet_f4,512,384.0,69.56,5520.408,216.26,262.26,316.07 +vit_gigantic_patch14_224,224,512.0,66.18,7736.423,473.4,204.12,1844.44 +vit_gigantic_patch14_clip_224,224,512.0,66.18,7735.92,473.41,204.12,1844.91 +focalnet_xlarge_fl3,384,256.0,66.07,3874.786,185.61,223.99,408.79 +dm_nfnet_f6,448,512.0,65.28,7842.994,229.7,273.62,438.36 +maxvit_large_tf_512,512,64.0,63.68,1005.087,225.96,611.85,212.33 +focalnet_xlarge_fl4,384,192.0,63.39,3028.979,185.79,242.31,409.03 +maxvit_xlarge_tf_384,384,96.0,63.2,1518.995,283.86,498.45,475.32 +regnety_1280,384,128.0,62.14,2059.919,374.99,210.2,644.81 +beit_large_patch16_512,512,256.0,61.47,4164.41,310.6,227.76,305.67 +convnextv2_huge,384,96.0,60.73,1580.79,337.96,232.35,660.29 +swinv2_large_window12to24_192to384,384,48.0,60.6,792.119,116.15,407.83,196.74 +eva02_large_patch14_448,448,512.0,59.6,8591.147,310.69,261.32,305.08 +tf_efficientnet_l2,475,128.0,59.14,2164.439,172.11,609.89,480.31 +nfnet_f5,544,384.0,58.55,6558.595,290.97,349.71,377.21 +vit_huge_patch14_clip_378,378,512.0,58.17,8801.788,460.13,270.04,632.68 +volo_d4_448,448,192.0,57.2,3356.883,197.13,527.35,193.41 +nfnet_f7,480,384.0,57.05,6730.663,300.08,355.86,499.5 +vit_large_patch14_dinov2,518,384.0,56.81,6759.458,414.89,304.42,304.37 +vit_large_patch14_reg4_dinov2,518,384.0,56.51,6795.142,416.1,305.31,304.37 +vit_huge_patch14_clip_quickgelu_378,378,384.0,53.9,7123.722,460.13,270.04,632.68 +swinv2_cr_giant_224,224,192.0,52.42,3662.593,483.85,309.15,2598.76 +dm_nfnet_f5,544,384.0,50.82,7555.977,290.97,349.71,377.21 +eva_giant_patch14_336,336,512.0,49.6,10322.486,583.14,305.1,1013.01 +swinv2_cr_huge_384,384,64.0,48.85,1310.056,352.04,583.18,657.94 +nfnet_f6,576,256.0,45.99,5566.397,378.69,452.2,438.36 +xcit_large_24_p8_384,384,256.0,40.54,6315.135,415.0,531.74,188.93 +volo_d5_448,448,192.0,39.97,4803.918,315.06,737.92,295.91 +dm_nfnet_f6,576,256.0,39.68,6452.4,378.69,452.2,438.36 +nfnet_f7,608,256.0,35.92,7127.91,480.39,570.85,499.5 +maxvit_xlarge_tf_512,512,48.0,35.73,1343.449,505.95,917.77,475.77 +regnety_2560,384,96.0,35.19,2728.299,747.83,296.49,1282.6 +convnextv2_huge,512,48.0,34.07,1408.989,600.81,413.07,660.29 +cait_m36_384,384,256.0,32.53,7868.895,173.11,734.79,271.22 +resnetv2_152x4_bit,480,128.0,32.31,3961.512,844.84,414.26,936.53 +volo_d5_512,512,96.0,27.94,3435.72,425.09,1105.37,296.09 +samvit_base_patch16,1024,12.0,23.01,521.487,371.55,403.08,89.67 +efficientnet_l2,800,32.0,22.53,1420.616,479.12,1707.39,480.31 +tf_efficientnet_l2,800,32.0,22.12,1446.454,479.12,1707.39,480.31 +vit_giant_patch14_dinov2,518,192.0,17.14,11200.639,1553.56,871.89,1136.48 +vit_giant_patch14_reg4_dinov2,518,128.0,17.05,7505.847,1558.09,874.43,1136.48 +swinv2_cr_giant_384,384,32.0,15.01,2131.256,1450.71,1394.86,2598.76 +eva_giant_patch14_560,560,192.0,15.01,12792.976,1618.04,846.56,1014.45 +cait_m48_448,448,128.0,13.76,9299.464,329.4,1708.21,356.46 +samvit_large_patch16,1024,8.0,10.25,780.237,1317.08,1055.58,308.28 +samvit_huge_patch16,1024,6.0,6.31,950.475,2741.59,1727.57,637.03 +eva02_enormous_patch14_clip_224,224,,,,1132.46,497.58,4350.56 +vit_huge_patch16_gap_448,448,,,,544.7,636.83,631.67 diff --git a/pytorch-image-models/results/benchmark-infer-amp-nchw-pt240-cu124-rtx3090.csv b/pytorch-image-models/results/benchmark-infer-amp-nchw-pt240-cu124-rtx3090.csv new file mode 100644 index 0000000000000000000000000000000000000000..ed619f8fbcd571e198b2e21cbdc7c3cd8a327707 --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-amp-nchw-pt240-cu124-rtx3090.csv @@ -0,0 +1,1444 @@ +model,infer_img_size,infer_samples_per_sec,infer_step_time,infer_batch_size,param_count,infer_gmacs,infer_macts +test_vit,160,109337.21,9.356,1024,0.37,0.04,0.48 +test_byobnet,160,82185.02,12.45,1024,0.46,0.03,0.43 +test_efficientnet,160,76411.59,13.392,1024,0.36,0.06,0.55 +tinynet_e,106,53275.73,19.211,1024,2.04,0.03,0.69 +mobilenetv3_small_050,224,47496.52,21.55,1024,1.59,0.03,0.92 +lcnet_035,224,42719.32,23.961,1024,1.64,0.03,1.04 +lcnet_050,224,38393.43,26.662,1024,1.88,0.05,1.26 +mobilenetv3_small_075,224,34935.91,29.301,1024,2.04,0.05,1.3 +efficientvit_m0,224,32556.1,31.443,1024,2.35,0.08,0.91 +mobilenetv3_small_100,224,31410.96,32.59,1024,2.54,0.06,1.42 +tf_mobilenetv3_small_minimal_100,224,29476.16,34.73,1024,2.04,0.06,1.41 +tinynet_d,152,29431.12,34.783,1024,2.34,0.05,1.42 +tf_mobilenetv3_small_075,224,28685.83,35.688,1024,2.04,0.05,1.3 +tf_mobilenetv3_small_100,224,26229.43,39.03,1024,2.54,0.06,1.42 +efficientvit_m1,224,25342.72,40.397,1024,2.98,0.17,1.33 +lcnet_075,224,24815.53,41.255,1024,2.36,0.1,1.99 +efficientvit_m2,224,22234.8,46.044,1024,4.19,0.2,1.47 +mobilenetv4_conv_small,224,21980.64,46.577,1024,3.77,0.19,1.97 +mnasnet_small,224,21439.71,47.752,1024,2.03,0.07,2.16 +levit_128s,224,21017.47,48.711,1024,7.78,0.31,1.88 +lcnet_100,224,20320.08,50.384,1024,2.95,0.16,2.52 +mobilenetv4_conv_small,256,19758.75,51.816,1024,3.77,0.25,2.57 +regnetx_002,224,19130.47,53.516,1024,2.68,0.2,2.16 +efficientvit_m3,224,19121.62,53.542,1024,6.9,0.27,1.62 +mobilenetv2_035,224,19047.74,53.75,1024,1.68,0.07,2.86 +resnet10t,176,19017.0,53.837,1024,5.44,0.7,1.51 +ghostnet_050,224,18326.71,55.865,1024,2.59,0.05,1.77 +levit_conv_128s,224,17825.2,57.436,1024,7.78,0.31,1.88 +regnety_002,224,17806.29,57.495,1024,3.16,0.2,2.17 +efficientvit_m4,224,17783.18,57.573,1024,8.8,0.3,1.7 +resnet18,160,17690.73,57.874,1024,11.69,0.93,1.27 +repghostnet_050,224,17490.98,58.535,1024,2.31,0.05,2.02 +efficientvit_b0,224,16914.4,60.53,1024,3.41,0.1,2.87 +mnasnet_050,224,16594.59,61.697,1024,2.22,0.11,3.07 +vit_tiny_r_s16_p8_224,224,16372.59,62.534,1024,6.34,0.44,2.06 +tinynet_c,184,15537.22,65.896,1024,2.46,0.11,2.87 +mobilenetv2_050,224,15294.16,66.944,1024,1.97,0.1,3.64 +pit_ti_224,224,14941.65,68.524,1024,4.85,0.7,6.19 +pit_ti_distilled_224,224,14919.02,68.627,1024,5.1,0.71,6.23 +semnasnet_050,224,14881.16,68.802,1024,2.08,0.11,3.44 +levit_128,224,14392.72,71.137,1024,9.21,0.41,2.71 +repghostnet_058,224,13974.19,73.268,1024,2.55,0.07,2.59 +vit_small_patch32_224,224,13132.7,77.963,1024,22.88,1.15,2.5 +lcnet_150,224,13019.52,78.641,1024,4.5,0.34,3.79 +cs3darknet_focus_s,256,12823.07,79.845,1024,3.27,0.69,2.7 +regnetx_004,224,12790.25,80.052,1024,5.16,0.4,3.14 +levit_conv_128,224,12771.21,80.17,1024,9.21,0.41,2.71 +mobilenetv3_large_075,224,12600.27,81.258,1024,3.99,0.16,4.0 +cs3darknet_s,256,12496.47,81.932,1024,3.28,0.72,2.97 +regnetx_004_tv,224,12440.42,82.303,1024,5.5,0.42,3.17 +efficientvit_m5,224,12202.57,83.907,1024,12.47,0.53,2.41 +levit_192,224,12163.42,84.177,1024,10.95,0.66,3.2 +resnet10t,224,12120.7,84.474,1024,5.44,1.1,2.43 +gernet_s,224,11872.38,86.241,1024,8.17,0.75,2.65 +ese_vovnet19b_slim_dw,224,11765.52,87.024,1024,1.9,0.4,5.28 +hardcorenas_a,224,11423.94,89.627,1024,5.26,0.23,4.38 +repghostnet_080,224,11343.56,90.261,1024,3.28,0.1,3.22 +mobilenetv3_rw,224,11309.87,90.531,1024,5.48,0.23,4.41 +mobilenetv3_large_100,224,11135.72,91.947,1024,5.48,0.23,4.41 +tf_mobilenetv3_large_075,224,10970.94,93.328,1024,3.99,0.16,4.0 +mixer_s32_224,224,10941.26,93.581,1024,19.1,1.0,2.28 +mnasnet_075,224,10916.2,93.796,1024,3.17,0.23,4.77 +levit_conv_192,224,10869.06,94.202,1024,10.95,0.66,3.2 +mobilenetv1_100,224,10802.87,94.78,1024,4.23,0.58,5.04 +tf_mobilenetv3_large_minimal_100,224,10586.88,96.713,1024,3.92,0.22,4.4 +resnet14t,176,10568.07,96.886,1024,10.08,1.07,3.61 +mobilenetv1_100h,224,10512.64,97.397,1024,5.28,0.63,5.09 +hardcorenas_b,224,10474.56,97.751,1024,5.18,0.26,5.09 +resnet34,160,10402.15,98.431,1024,21.8,1.87,1.91 +hardcorenas_c,224,10270.04,99.697,1024,5.52,0.28,5.01 +nf_regnet_b0,192,10246.95,99.922,1024,8.76,0.37,3.15 +deit_tiny_patch16_224,224,10236.41,100.025,1024,5.72,1.26,5.97 +vit_tiny_patch16_224,224,10231.54,100.072,1024,5.72,1.26,5.97 +regnety_004,224,10230.97,100.079,1024,4.34,0.41,3.89 +deit_tiny_distilled_patch16_224,224,10185.75,100.523,1024,5.91,1.27,6.01 +regnetx_006,224,10150.71,100.87,1024,6.2,0.61,3.98 +tinynet_b,188,9883.52,103.596,1024,3.73,0.21,4.44 +ghostnet_100,224,9881.78,103.616,1024,5.18,0.15,3.55 +tf_mobilenetv3_large_100,224,9800.29,104.477,1024,5.48,0.23,4.41 +mnasnet_100,224,9763.25,104.873,1024,4.38,0.33,5.46 +repghostnet_100,224,9586.17,106.811,1024,4.07,0.15,3.98 +hardcorenas_d,224,9568.31,107.009,1024,7.5,0.3,4.93 +tf_efficientnetv2_b0,192,9480.34,108.003,1024,7.14,0.54,3.51 +mobilenetv2_075,224,9478.95,108.018,1024,2.64,0.22,5.86 +semnasnet_075,224,9435.3,108.519,1024,2.91,0.23,5.54 +regnety_006,224,9299.07,110.103,1024,6.06,0.61,4.33 +resnet18,224,9260.29,110.57,1024,11.69,1.82,2.48 +pit_xs_224,224,9215.59,111.106,1024,10.62,1.4,7.71 +pit_xs_distilled_224,224,9179.35,111.544,1024,11.0,1.41,7.76 +mobilenet_edgetpu_v2_xs,224,9103.13,112.477,1024,4.46,0.7,4.8 +convnext_atto,224,9094.81,112.582,1024,3.7,0.55,3.81 +vit_xsmall_patch16_clip_224,224,9084.06,112.715,1024,8.28,1.79,6.65 +levit_256,224,9041.44,113.246,1024,18.89,1.13,4.23 +vit_medium_patch32_clip_224,224,9037.75,113.292,1024,39.69,2.0,3.34 +mobilenetv1_100,256,8925.01,114.724,1024,4.23,0.76,6.59 +spnasnet_100,224,8850.63,115.688,1024,4.42,0.35,6.03 +seresnet18,224,8755.08,116.951,1024,11.78,1.82,2.49 +mobilenetv1_100h,256,8716.6,117.468,1024,5.28,0.82,6.65 +repghostnet_111,224,8703.6,117.642,1024,4.54,0.18,4.38 +convnext_atto_ols,224,8634.04,118.591,1024,3.7,0.58,4.11 +mobilenetv2_100,224,8629.73,118.65,1024,3.5,0.31,6.68 +semnasnet_100,224,8576.31,119.389,1024,3.89,0.32,6.23 +legacy_seresnet18,224,8496.1,120.516,1024,11.78,1.82,2.49 +hgnetv2_b0,224,8489.19,120.614,1024,6.0,0.33,2.12 +hardcorenas_f,224,8388.5,122.062,1024,8.2,0.35,5.57 +hardcorenas_e,224,8316.4,123.12,1024,8.07,0.35,5.65 +edgenext_xx_small,256,8267.32,123.851,1024,1.33,0.26,3.33 +repvgg_a0,224,8195.29,124.938,1024,9.11,1.52,3.59 +regnetx_008,224,8145.67,125.701,1024,7.26,0.81,5.15 +levit_conv_256,224,8113.72,126.196,1024,18.89,1.13,4.23 +dla46_c,224,8109.77,126.257,1024,1.3,0.58,4.5 +mobilenetv1_125,224,8097.26,126.453,1024,6.27,0.89,6.3 +efficientnet_lite0,224,7979.97,128.311,1024,4.65,0.4,6.74 +convnext_femto,224,7952.03,128.762,1024,5.22,0.79,4.57 +resnet18d,224,7915.36,129.359,1024,11.71,2.06,3.29 +ghostnet_130,224,7893.46,129.718,1024,7.36,0.24,4.6 +mobilevit_xxs,256,7881.37,129.917,1024,1.27,0.42,8.34 +ese_vovnet19b_slim,224,7874.63,130.029,1024,3.17,1.69,3.52 +levit_256d,224,7779.0,131.627,1024,26.21,1.4,4.93 +mobilenetv4_conv_medium,224,7776.66,131.666,1024,9.72,0.84,5.8 +mobilenet_edgetpu_100,224,7770.98,131.763,1024,4.09,1.0,5.75 +xcit_nano_12_p16_224,224,7759.26,131.961,1024,3.05,0.56,4.17 +repghostnet_130,224,7749.8,132.123,1024,5.48,0.25,5.24 +tinynet_a,192,7745.18,132.201,1024,6.19,0.35,5.41 +regnety_008,224,7721.37,132.605,1024,6.26,0.81,5.25 +tf_efficientnetv2_b0,224,7710.08,132.803,1024,7.14,0.73,4.77 +fbnetc_100,224,7646.21,133.909,1024,5.57,0.4,6.51 +convnext_femto_ols,224,7577.53,135.127,1024,5.23,0.82,4.87 +mobilenetv4_hybrid_medium_075,224,7514.13,136.267,1024,7.31,0.66,5.65 +mobilevitv2_050,256,7395.66,138.45,1024,1.37,0.48,8.04 +tf_efficientnetv2_b1,192,7389.78,138.56,1024,8.14,0.76,4.59 +regnety_008_tv,224,7307.18,140.123,1024,6.43,0.84,5.42 +tf_efficientnet_lite0,224,7042.0,145.403,1024,4.65,0.4,6.74 +efficientnet_b0,224,6924.93,147.857,1024,5.29,0.4,6.75 +mobilenetv4_conv_medium,256,6920.92,147.948,1024,9.72,1.1,7.58 +dla46x_c,224,6863.64,149.181,1024,1.07,0.54,5.66 +mnasnet_140,224,6835.02,149.805,1024,7.12,0.6,7.71 +resnet14t,224,6822.56,150.08,1024,10.08,1.69,5.8 +repghostnet_150,224,6798.46,150.612,1024,6.58,0.32,6.0 +rexnet_100,224,6759.37,151.483,1024,4.8,0.41,7.44 +rexnetr_100,224,6733.45,152.067,1024,4.88,0.43,7.72 +efficientnet_b1_pruned,240,6731.65,152.107,1024,6.33,0.4,6.21 +mobilenetv1_125,256,6707.02,152.666,1024,6.27,1.16,8.23 +visformer_tiny,224,6688.07,153.098,1024,10.32,1.27,5.72 +levit_conv_256d,224,6662.02,153.697,1024,26.21,1.4,4.93 +pvt_v2_b0,224,6589.46,155.389,1024,3.67,0.57,7.99 +efficientvit_b1,224,6579.31,155.629,1024,9.1,0.53,7.25 +fbnetv3_b,224,6563.03,156.015,1024,8.6,0.42,6.97 +repvit_m1,224,6541.47,156.523,1024,5.49,0.83,7.45 +edgenext_xx_small,288,6532.74,156.738,1024,1.33,0.33,4.21 +mobilenet_edgetpu_v2_s,224,6516.09,157.14,1024,5.99,1.21,6.6 +mobilenetv2_110d,224,6504.09,157.429,1024,4.52,0.45,8.71 +vit_betwixt_patch32_clip_224,224,6503.93,157.433,1024,61.41,3.09,4.17 +regnetz_005,224,6484.34,157.909,1024,7.12,0.52,5.86 +ese_vovnet19b_dw,224,6451.87,158.704,1024,6.54,1.34,8.25 +dla60x_c,224,6417.77,159.546,1024,1.32,0.59,6.01 +hgnetv2_b1,224,6310.48,162.26,1024,6.34,0.49,2.73 +repvit_m0_9,224,6253.66,163.733,1024,5.49,0.83,7.45 +crossvit_tiny_240,240,6253.35,163.742,1024,7.01,1.57,9.08 +cs3darknet_focus_m,256,6210.25,164.879,1024,9.3,1.98,4.89 +tf_efficientnet_b0,224,6210.04,164.879,1024,5.29,0.4,6.75 +convnext_pico,224,6200.96,165.126,1024,9.05,1.37,6.1 +nf_regnet_b0,256,6157.62,166.288,1024,8.76,0.64,5.58 +semnasnet_140,224,6069.35,168.703,1024,6.11,0.6,8.87 +crossvit_9_dagger_240,240,6067.95,168.745,1024,8.78,1.99,9.97 +resnet50,160,6033.87,169.699,1024,25.56,2.1,5.67 +repvgg_a1,224,5998.64,170.696,1024,14.09,2.64,4.74 +resnetblur18,224,5978.13,171.282,1024,11.69,2.34,3.39 +cs3darknet_m,256,5943.51,172.279,1024,9.31,2.08,5.28 +mobilenetv2_140,224,5943.08,172.292,1024,6.11,0.6,9.57 +convnext_pico_ols,224,5910.37,173.245,1024,9.06,1.43,6.5 +mobilenetv4_hybrid_medium,224,5890.59,173.827,1024,11.07,0.98,6.84 +efficientnet_b0,256,5798.8,176.577,1024,5.29,0.52,8.81 +tf_efficientnetv2_b2,208,5794.22,176.717,1024,10.1,1.06,6.0 +hrnet_w18_small,224,5781.49,177.103,1024,13.19,1.61,5.72 +crossvit_9_240,240,5771.83,177.403,1024,8.55,1.85,9.52 +skresnet18,224,5765.67,177.593,1024,11.96,1.82,3.24 +resnet50d,160,5707.52,179.403,1024,25.58,2.22,6.08 +resnet18,288,5648.23,181.286,1024,11.69,3.01,4.11 +vit_tiny_r_s16_p8_384,384,5625.7,182.012,1024,6.36,1.34,6.49 +efficientnet_b0_gn,224,5621.97,182.132,1024,5.29,0.42,6.75 +efficientnet_lite1,240,5579.58,183.516,1024,5.42,0.62,10.14 +ghostnetv2_100,224,5564.84,184.002,1024,6.16,0.18,4.55 +fbnetv3_d,224,5563.09,184.06,1024,10.31,0.52,8.5 +convnext_atto,288,5527.85,185.234,1024,3.7,0.91,6.3 +fbnetv3_b,256,5497.24,186.265,1024,8.6,0.55,9.1 +selecsls42,224,5467.25,187.287,1024,30.35,2.94,4.62 +efficientnet_blur_b0,224,5455.02,187.706,1024,5.29,0.43,8.72 +resnet34,224,5454.89,187.712,1024,21.8,3.67,3.74 +efficientvit_b1,256,5439.39,188.246,1024,9.1,0.69,9.46 +tiny_vit_5m_224,224,5432.07,188.5,1024,12.08,1.28,11.25 +selecsls42b,224,5418.51,188.972,1024,32.46,2.98,4.62 +levit_384,224,5395.45,189.779,1024,39.13,2.36,6.26 +tf_efficientnetv2_b1,240,5369.96,190.68,1024,8.14,1.21,7.34 +seresnet18,288,5366.44,190.805,1024,11.78,3.01,4.11 +repvit_m1_0,224,5361.91,190.966,1024,7.3,1.13,8.69 +convnextv2_atto,224,5357.95,191.108,1024,3.71,0.55,3.81 +mixnet_s,224,5315.69,192.627,1024,4.13,0.25,6.25 +repghostnet_200,224,5315.68,192.627,1024,9.8,0.54,7.96 +seresnet50,160,5298.11,193.266,1024,28.09,2.1,5.69 +edgenext_x_small,256,5274.46,194.132,1024,2.34,0.54,5.93 +rexnetr_130,224,5269.16,194.329,1024,7.61,0.68,9.81 +convnext_atto_ols,288,5250.22,195.03,1024,3.7,0.96,6.8 +repvit_m2,224,5242.24,195.319,1024,8.8,1.36,9.43 +gernet_m,224,5225.82,195.94,1024,21.14,3.02,5.24 +hgnetv2_b0,288,5205.77,196.695,1024,6.0,0.54,3.51 +seresnet34,224,5135.96,199.368,1024,21.96,3.67,3.74 +mobilenetv4_hybrid_medium,256,5134.61,199.421,1024,11.07,1.29,9.01 +resnet26,224,5121.5,199.932,1024,16.0,2.36,7.35 +vit_base_patch32_224,224,5098.65,200.828,1024,88.22,4.41,5.01 +mobilenetv3_large_150d,224,5094.2,201.003,1024,14.62,, +vit_base_patch32_clip_224,224,5090.11,201.165,1024,88.22,4.41,5.01 +ecaresnet50t,160,5084.11,201.402,1024,25.57,2.21,6.04 +mobilenetv4_conv_blur_medium,224,5057.66,202.456,1024,9.72,1.22,8.58 +mobilenet_edgetpu_v2_m,224,5045.14,202.956,1024,8.46,1.85,8.15 +tf_efficientnet_lite1,240,5038.81,203.213,1024,5.42,0.62,10.14 +resnet50,176,5019.75,203.984,1024,25.56,2.62,6.92 +repvit_m1_1,224,5014.8,204.185,1024,8.8,1.36,9.43 +legacy_seresnet34,224,4973.36,205.887,1024,21.96,3.67,3.74 +resnet34d,224,4971.07,205.982,1024,21.82,3.91,4.54 +tf_mixnet_s,224,4958.21,206.516,1024,4.13,0.25,6.25 +resnetrs50,160,4955.95,206.604,1024,35.69,2.29,6.2 +xcit_tiny_12_p16_224,224,4922.03,208.034,1024,6.72,1.24,6.29 +eva02_tiny_patch14_224,224,4913.38,208.399,1024,5.5,1.7,9.14 +mobilevitv2_075,256,4906.85,208.678,1024,2.87,1.05,12.06 +pit_s_224,224,4895.76,209.15,1024,23.46,2.88,11.56 +pit_s_distilled_224,224,4881.41,209.765,1024,24.04,2.9,11.64 +efficientnet_es_pruned,224,4880.76,209.792,1024,5.44,1.81,8.73 +efficientnet_es,224,4880.24,209.815,1024,5.44,1.81,8.73 +mobilenetv2_120d,224,4862.72,210.571,1024,5.83,0.69,11.97 +resnet18d,288,4851.45,211.06,1024,11.71,3.41,5.43 +resnext50_32x4d,160,4849.69,211.137,1024,25.03,2.17,7.35 +efficientnet_b1,224,4846.84,211.261,1024,7.79,0.59,9.36 +levit_conv_384,224,4839.13,211.598,1024,39.13,2.36,6.26 +rexnet_130,224,4831.59,211.926,1024,7.56,0.68,9.71 +cs3darknet_focus_m,288,4831.24,211.944,1024,9.3,2.51,6.19 +convnext_femto,288,4824.54,212.238,1024,5.22,1.3,7.56 +dla34,224,4805.9,213.06,1024,15.74,3.07,5.02 +efficientnet_b0_g16_evos,224,4800.56,213.298,1024,8.11,1.01,7.42 +resnet26d,224,4679.82,218.802,1024,16.01,2.6,8.15 +tf_efficientnet_es,224,4673.69,219.089,1024,5.44,1.81,8.73 +resmlp_12_224,224,4653.37,220.046,1024,15.35,3.01,5.5 +cs3darknet_m,288,4646.1,220.39,1024,9.31,2.63,6.69 +fbnetv3_d,256,4637.02,220.821,1024,10.31,0.68,11.1 +mobilenetv4_conv_aa_medium,256,4630.5,221.132,1024,9.72,1.58,10.3 +selecsls60,224,4624.54,221.418,1024,30.67,3.59,5.52 +rexnetr_150,224,4617.37,221.761,1024,9.78,0.89,11.13 +convnext_femto_ols,288,4613.88,221.929,1024,5.23,1.35,8.06 +nf_regnet_b1,256,4603.23,222.442,1024,10.22,0.82,7.27 +vit_base_patch32_clip_quickgelu_224,224,4601.51,222.526,1024,87.85,4.41,5.01 +selecsls60b,224,4600.54,222.572,1024,32.77,3.63,5.52 +convnextv2_femto,224,4593.84,222.896,1024,5.23,0.79,4.57 +regnetx_016,224,4589.73,223.096,1024,9.19,1.62,7.93 +deit_small_patch16_224,224,4586.09,223.273,1024,22.05,4.61,11.95 +vit_small_patch16_224,224,4584.86,223.334,1024,22.05,4.61,11.95 +gmixer_12_224,224,4571.76,223.974,1024,12.7,2.67,7.26 +gmlp_ti16_224,224,4565.24,224.293,1024,5.87,1.34,7.55 +repvgg_b0,224,4553.06,224.894,1024,15.82,3.41,6.15 +deit_small_distilled_patch16_224,224,4543.3,225.376,1024,22.44,4.63,12.02 +mixer_s16_224,224,4530.96,225.99,1024,18.53,3.79,5.97 +vit_small_patch32_384,384,4513.63,226.858,1024,22.92,3.45,8.25 +efficientnet_cc_b0_4e,224,4507.68,227.158,1024,13.31,0.41,9.42 +efficientnet_cc_b0_8e,224,4491.22,227.99,1024,24.01,0.42,9.42 +mixer_b32_224,224,4485.82,228.265,1024,60.29,3.24,6.29 +tiny_vit_11m_224,224,4481.54,228.483,1024,20.35,2.04,13.49 +mobilenetv4_conv_medium,320,4477.38,228.695,1024,9.72,1.71,11.84 +nf_resnet26,224,4466.75,229.24,1024,16.0,2.41,7.35 +mobilenet_edgetpu_v2_l,224,4462.15,229.476,1024,10.92,2.55,9.05 +efficientnet_b2_pruned,260,4421.73,231.573,1024,8.31,0.73,9.13 +efficientformer_l1,224,4415.57,231.896,1024,12.29,1.3,5.53 +resnetaa34d,224,4392.45,233.118,1024,21.82,4.43,5.07 +darknet17,256,4386.8,233.416,1024,14.3,3.26,7.18 +ghostnetv2_130,224,4382.43,233.65,1024,8.96,0.28,5.9 +rexnet_150,224,4375.57,234.017,1024,9.73,0.9,11.21 +convnext_nano,224,4355.17,235.113,1024,15.59,2.46,8.37 +ecaresnet50d_pruned,224,4352.57,235.254,1024,19.94,2.53,6.43 +efficientnet_b1,240,4341.0,235.879,1024,7.79,0.71,10.88 +nf_regnet_b2,240,4323.87,236.815,1024,14.31,0.97,7.23 +poolformer_s12,224,4258.87,240.428,1024,11.92,1.82,5.53 +regnety_016,224,4256.18,240.571,1024,11.2,1.63,8.04 +mobilenetv4_conv_blur_medium,256,4255.16,180.477,768,9.72,1.59,11.2 +vit_wee_patch16_reg1_gap_256,256,4234.72,241.8,1024,13.42,3.83,13.9 +mobilenet_edgetpu_v2_m,256,4230.57,242.038,1024,8.46,2.42,10.65 +vit_pwee_patch16_reg1_gap_256,256,4211.58,243.129,1024,15.25,4.37,15.87 +deit3_small_patch16_224,224,4202.98,243.625,1024,22.06,4.61,11.95 +hgnetv2_b2,224,4202.72,243.64,1024,11.22,1.15,4.12 +edgenext_x_small,288,4195.02,244.088,1024,2.34,0.68,7.5 +tf_efficientnet_cc_b0_4e,224,4189.01,244.439,1024,13.31,0.41,9.42 +efficientnet_lite2,260,4184.61,244.696,1024,6.09,0.89,12.9 +tf_efficientnet_cc_b0_8e,224,4158.98,246.204,1024,24.01,0.42,9.42 +regnetz_005,288,4139.21,247.38,1024,7.12,0.86,9.68 +hgnetv2_b4,224,4136.11,247.566,1024,19.8,2.75,6.7 +efficientvit_b1,288,4112.03,249.015,1024,9.1,0.87,11.96 +resnest14d,224,4103.54,249.531,1024,10.61,2.76,7.33 +resnext26ts,256,4101.49,249.654,1024,10.3,2.43,10.52 +efficientnet_b0_g8_gn,224,4095.29,250.033,1024,6.56,0.66,6.75 +efficientnet_b1,256,4062.7,252.039,1024,7.79,0.77,12.22 +tf_efficientnet_b1,240,4009.73,255.369,1024,7.79,0.71,10.88 +edgenext_small,256,3998.75,256.069,1024,5.59,1.26,9.07 +eca_resnext26ts,256,3985.65,256.911,1024,10.3,2.43,10.52 +darknet21,256,3985.31,256.933,1024,20.86,3.93,7.47 +seresnext26ts,256,3983.57,257.043,1024,10.39,2.43,10.52 +regnetz_b16,224,3982.17,257.134,1024,9.72,1.45,9.95 +resnext50_32x4d,176,3977.56,257.434,1024,25.03,2.71,8.97 +convnext_nano_ols,224,3963.35,258.357,1024,15.65,2.65,9.38 +vit_base_patch32_clip_256,256,3950.74,259.181,1024,87.86,5.76,6.65 +flexivit_small,240,3949.57,259.258,1024,22.06,5.35,14.18 +gcresnext26ts,256,3942.19,259.744,1024,10.48,2.43,10.53 +mobileone_s1,224,3939.35,259.93,1024,4.83,0.86,9.67 +hgnetv2_b1,288,3863.09,265.063,1024,6.34,0.82,4.51 +sedarknet21,256,3855.83,265.558,1024,20.95,3.93,7.47 +tf_efficientnetv2_b2,260,3852.83,265.768,1024,10.1,1.72,9.84 +nf_ecaresnet26,224,3841.08,266.581,1024,16.0,2.41,7.36 +efficientnet_b2,256,3835.68,266.957,1024,9.11,0.89,12.81 +nf_seresnet26,224,3835.46,266.972,1024,17.4,2.41,7.36 +mobilevit_xs,256,3825.9,200.727,768,2.32,1.05,16.33 +dpn48b,224,3821.05,267.978,1024,9.13,1.69,8.92 +mobilenetv4_conv_large,256,3819.0,268.122,1024,32.59,2.86,12.14 +vit_relpos_small_patch16_224,224,3815.41,268.375,1024,21.98,4.59,13.05 +tf_efficientnet_lite2,260,3814.92,268.409,1024,6.09,0.89,12.9 +pvt_v2_b1,224,3812.97,268.546,1024,14.01,2.12,15.39 +resnet26t,256,3801.26,269.374,1024,16.01,3.35,10.52 +vit_srelpos_small_patch16_224,224,3792.64,269.986,1024,21.97,4.59,12.16 +legacy_seresnext26_32x4d,224,3774.18,271.304,1024,16.79,2.49,9.39 +ese_vovnet19b_dw,288,3768.37,271.725,1024,6.54,2.22,13.63 +convnext_pico,288,3762.1,272.178,1024,9.05,2.27,10.08 +gernet_l,256,3741.79,273.656,1024,31.08,4.57,8.0 +mobilenetv4_hybrid_large_075,256,3731.28,274.426,1024,22.75,2.06,11.64 +resnet101,160,3660.13,279.761,1024,44.55,4.0,8.28 +edgenext_small_rw,256,3647.4,280.737,1024,7.83,1.58,9.51 +resnetblur18,288,3644.87,280.933,1024,11.69,3.87,5.6 +tf_efficientnetv2_b3,240,3640.22,281.291,1024,14.36,1.93,9.95 +cs3darknet_focus_l,256,3628.94,282.166,1024,21.15,4.66,8.03 +efficientnetv2_rw_t,224,3628.38,282.209,1024,13.65,1.93,9.94 +repvit_m3,224,3609.67,283.663,1024,10.68,1.89,13.94 +mixnet_m,224,3606.44,283.926,1024,5.01,0.36,8.19 +coatnet_pico_rw_224,224,3590.64,285.176,1024,10.85,2.05,14.62 +ghostnetv2_160,224,3589.83,285.24,1024,12.39,0.42,7.23 +gc_efficientnetv2_rw_t,224,3589.63,285.255,1024,13.68,1.94,9.97 +convnext_pico_ols,288,3587.72,285.408,1024,9.06,2.37,10.74 +ecaresnext50t_32x4d,224,3560.67,287.576,1024,15.41,2.7,10.09 +ecaresnext26t_32x4d,224,3560.44,287.594,1024,15.41,2.7,10.09 +seresnext26t_32x4d,224,3558.26,287.767,1024,16.81,2.7,10.09 +eca_botnext26ts_256,256,3542.14,289.08,1024,10.59,2.46,11.6 +efficientnet_b3_pruned,300,3528.65,290.185,1024,9.86,1.04,11.86 +seresnext26d_32x4d,224,3528.55,290.194,1024,16.81,2.73,10.19 +nf_regnet_b1,288,3527.3,290.296,1024,10.22,1.02,9.2 +coat_lite_tiny,224,3515.07,291.307,1024,5.72,1.6,11.65 +convnextv2_pico,224,3514.61,291.344,1024,9.07,1.37,6.1 +cs3darknet_l,256,3497.24,292.792,1024,21.16,4.86,8.55 +repvgg_a2,224,3492.05,293.227,1024,28.21,5.7,6.26 +tf_mixnet_m,224,3485.45,293.782,1024,5.01,0.36,8.19 +vit_relpos_small_patch16_rpn_224,224,3481.46,294.119,1024,21.97,4.59,13.05 +hgnet_tiny,224,3480.86,294.17,1024,14.74,4.54,6.36 +eca_halonext26ts,256,3471.15,294.993,1024,10.76,2.44,11.46 +mobilevitv2_100,256,3470.14,221.307,768,4.9,1.84,16.08 +ecaresnet101d_pruned,224,3466.94,295.35,1024,24.88,3.48,7.69 +ecaresnet26t,256,3417.04,299.664,1024,16.01,3.35,10.53 +hgnetv2_b3,224,3369.26,303.913,1024,16.29,1.78,5.07 +resnetv2_50,224,3355.79,305.133,1024,25.55,4.11,11.11 +botnet26t_256,256,3355.2,305.187,1024,12.49,3.32,11.98 +nf_regnet_b2,272,3353.24,305.366,1024,14.31,1.22,9.27 +bat_resnext26ts,256,3346.65,305.963,1024,10.73,2.53,12.51 +coatnext_nano_rw_224,224,3342.84,306.315,1024,14.7,2.47,12.8 +ecaresnetlight,224,3334.95,307.041,1024,30.16,4.11,8.42 +resnet34,288,3329.62,307.532,1024,21.8,6.07,6.18 +rexnetr_200,224,3328.94,230.694,768,16.52,1.59,15.11 +skresnet34,224,3313.88,308.994,1024,22.28,3.67,5.13 +fastvit_t8,256,3313.63,309.016,1024,4.03,0.7,8.63 +halonet26t,256,3312.1,309.159,1024,12.48,3.19,11.69 +vit_small_r26_s32_224,224,3304.01,309.916,1024,36.43,3.56,9.85 +cs3sedarknet_l,256,3303.09,310.003,1024,21.91,4.86,8.56 +coatnet_nano_cc_224,224,3289.43,311.29,1024,13.76,2.24,15.02 +coat_lite_mini,224,3284.89,311.72,1024,11.01,2.0,12.25 +lambda_resnet26t,256,3270.07,313.133,1024,10.96,3.02,11.87 +mobilenetv4_hybrid_medium,320,3262.62,313.848,1024,11.07,2.05,14.36 +convnextv2_atto,288,3253.42,314.736,1024,3.71,0.91,6.3 +vit_small_resnet26d_224,224,3246.31,315.424,1024,63.61,5.07,11.12 +resnet32ts,256,3243.82,315.666,1024,17.96,4.63,11.58 +vit_tiny_patch16_384,384,3237.39,316.294,1024,5.79,4.7,25.39 +convit_tiny,224,3231.06,316.913,1024,5.71,1.26,7.94 +resnet50,224,3219.06,318.095,1024,25.56,4.11,11.11 +coatnet_nano_rw_224,224,3215.75,318.422,1024,15.14,2.41,15.41 +rexnet_200,224,3200.93,239.92,768,16.37,1.56,14.91 +resnet33ts,256,3195.24,320.467,1024,19.68,4.76,11.66 +resnetv2_50t,224,3185.32,321.463,1024,25.57,4.32,11.82 +mobileone_s2,224,3179.36,322.067,1024,7.88,1.34,11.55 +sam2_hiera_tiny,224,3178.9,322.114,1024,26.85,4.91,17.12 +resnetv2_50d,224,3167.44,323.278,1024,25.57,4.35,11.92 +cspresnet50,256,3155.9,324.462,1024,21.62,4.54,11.5 +seresnet34,288,3147.55,325.319,1024,21.96,6.07,6.18 +efficientvit_b2,224,3143.3,325.761,1024,24.33,1.6,14.62 +resnext26ts,288,3127.83,327.374,1024,10.3,3.07,13.31 +fbnetv3_g,240,3119.5,328.234,1024,16.62,1.28,14.87 +hrnet_w18_small_v2,224,3113.69,328.86,1024,15.6,2.62,9.65 +efficientnet_b1,288,3113.4,328.891,1024,7.79,0.97,15.46 +resnet26,288,3110.68,329.178,1024,16.0,3.9,12.15 +tresnet_m,224,3098.68,330.452,1024,31.39,5.75,7.31 +resnet101,176,3098.41,330.482,1024,44.55,4.92,10.08 +seresnet33ts,256,3096.38,330.698,1024,19.78,4.76,11.66 +eca_resnet33ts,256,3095.76,330.765,1024,19.68,4.76,11.66 +convnext_tiny,224,3090.39,331.339,1024,28.59,4.47,13.44 +dpn68b,224,3087.27,331.673,1024,12.61,2.35,10.47 +dpn68,224,3074.12,333.092,1024,12.61,2.35,10.47 +gcresnet33ts,256,3071.03,333.428,1024,19.88,4.76,11.68 +resnet50t,224,3051.2,335.595,1024,25.57,4.32,11.82 +resnet50c,224,3048.9,335.849,1024,25.58,4.35,11.92 +seresnext26ts,288,3040.9,336.731,1024,10.39,3.07,13.32 +eca_resnext26ts,288,3040.18,336.812,1024,10.3,3.07,13.32 +tf_efficientnet_b2,260,3038.71,336.975,1024,9.11,1.02,13.83 +resnet34d,288,3032.3,337.687,1024,21.82,6.47,7.51 +regnetx_032,224,3027.88,338.176,1024,15.3,3.2,11.37 +resnet50d,224,3025.46,338.448,1024,25.58,4.35,11.92 +dla60,224,3019.09,339.163,1024,22.04,4.26,10.16 +gcresnext26ts,288,3012.63,339.891,1024,10.48,3.07,13.33 +efficientnet_em,240,3000.85,341.226,1024,6.9,3.04,14.34 +vit_medium_patch16_clip_224,224,2993.15,342.104,1024,38.59,8.0,15.93 +levit_512,224,2990.53,342.404,1024,95.17,5.64,10.22 +resnest26d,224,2990.32,342.428,1024,17.07,3.64,9.97 +vit_base_patch32_plus_256,256,2981.28,343.466,1024,119.48,7.79,7.76 +crossvit_small_240,240,2972.85,344.44,1024,26.86,5.63,18.17 +repvit_m1_5,224,2972.23,344.512,1024,14.64,2.31,15.7 +mobileone_s0,224,2964.67,345.389,1024,5.29,1.09,15.48 +cspresnet50d,256,2953.53,346.693,1024,21.64,4.86,12.55 +efficientnet_b2,288,2950.49,347.05,1024,9.11,1.12,16.2 +haloregnetz_b,224,2936.32,348.725,1024,11.68,1.97,11.94 +mobilevit_s,256,2931.67,261.956,768,5.58,2.03,19.94 +cspresnet50w,256,2926.16,349.933,1024,28.12,5.04,12.19 +legacy_seresnet50,224,2915.2,351.251,1024,28.09,3.88,10.6 +tf_efficientnet_em,240,2908.61,352.048,1024,6.9,3.04,14.34 +vgg11,224,2887.76,354.59,1024,132.86,7.61,7.44 +resnetv2_50x1_bit,224,2880.89,355.434,1024,25.55,4.23,11.11 +vit_little_patch16_reg1_gap_256,256,2872.75,356.442,1024,22.52,6.27,18.06 +hiera_tiny_224,224,2872.44,356.48,1024,27.91,4.91,17.13 +resnetaa50,224,2865.28,357.372,1024,25.56,5.15,11.64 +regnetv_040,224,2864.51,357.468,1024,20.64,4.0,12.29 +efficientnet_cc_b1_8e,240,2860.03,358.028,1024,39.72,0.75,15.44 +selecsls84,224,2852.61,358.96,1024,50.95,5.9,7.57 +regnety_032,224,2852.43,358.981,1024,19.44,3.2,11.26 +vit_little_patch16_reg4_gap_256,256,2849.96,359.293,1024,22.52,6.35,18.33 +regnety_040,224,2844.62,359.967,1024,20.65,4.0,12.29 +vovnet39a,224,2844.48,359.985,1024,22.6,7.09,6.73 +coatnet_rmlp_nano_rw_224,224,2836.87,360.951,1024,15.15,2.62,20.34 +seresnet50,224,2831.5,361.636,1024,28.09,4.11,11.13 +resnet26d,288,2828.9,361.967,1024,16.01,4.29,13.48 +wide_resnet50_2,176,2817.33,363.453,1024,68.88,7.29,8.97 +vit_relpos_base_patch32_plus_rpn_256,256,2816.85,363.51,1024,119.42,7.68,8.01 +mixnet_l,224,2808.18,364.638,1024,7.33,0.58,10.84 +cs3darknet_focus_l,288,2803.64,365.228,1024,21.15,5.9,10.16 +levit_512d,224,2803.3,365.271,1024,92.5,5.85,11.3 +convnextv2_femto,288,2792.8,366.646,1024,5.23,1.3,7.56 +deit3_medium_patch16_224,224,2781.17,368.18,1024,38.85,8.0,15.93 +crossvit_15_240,240,2780.78,368.231,1024,27.53,5.81,19.77 +res2net50_48w_2s,224,2776.63,368.782,1024,25.29,4.18,11.72 +resnet50_gn,224,2765.5,370.266,1024,25.56,4.14,11.11 +convnext_tiny_hnf,224,2765.22,370.304,1024,28.59,4.47,13.44 +densenet121,224,2764.41,370.412,1024,7.98,2.87,6.9 +levit_conv_512,224,2753.82,371.836,1024,95.17,5.64,10.22 +resnetv2_50d_gn,224,2752.94,371.954,1024,25.57,4.38,11.92 +visformer_small,224,2752.56,372.007,1024,40.22,4.88,11.43 +ese_vovnet39b,224,2750.44,372.293,1024,24.57,7.09,6.74 +mobilevitv2_125,256,2748.02,279.464,768,7.48,2.86,20.1 +vit_relpos_medium_patch16_cls_224,224,2744.95,373.038,1024,38.76,8.03,18.24 +eca_vovnet39b,224,2742.08,373.43,1024,22.6,7.09,6.74 +tiny_vit_21m_224,224,2740.23,373.681,1024,33.22,4.29,20.08 +twins_svt_small,224,2734.38,374.479,1024,24.06,2.94,13.75 +gcvit_xxtiny,224,2725.34,375.722,1024,12.0,2.14,15.36 +twins_pcpvt_small,224,2723.83,375.93,1024,24.11,3.83,18.08 +resnet50_clip_gap,224,2722.78,376.075,1024,23.53,5.39,12.44 +resnetaa50d,224,2721.94,376.192,1024,25.58,5.39,12.44 +tf_mixnet_l,224,2713.4,377.376,1024,7.33,0.58,10.84 +crossvit_15_dagger_240,240,2708.78,378.02,1024,28.21,6.13,20.43 +ecaresnet50t,224,2707.73,378.166,1024,25.57,4.32,11.83 +seresnet50t,224,2705.39,378.493,1024,28.1,4.32,11.83 +cs3darknet_l,288,2703.4,378.772,1024,21.16,6.16,10.83 +tf_efficientnet_cc_b1_8e,240,2701.66,379.016,1024,39.72,0.75,15.44 +davit_tiny,224,2698.07,284.638,768,28.36,4.54,18.89 +xcit_nano_12_p16_384,384,2693.55,380.156,1024,3.05,1.64,12.15 +resnetaa34d,288,2691.25,380.482,1024,21.82,7.33,8.38 +ecaresnet50d,224,2687.82,380.967,1024,25.58,4.35,11.93 +ecaresnet50d_pruned,288,2675.98,382.653,1024,19.94,4.19,10.61 +vit_base_resnet26d_224,224,2655.81,385.559,1024,101.4,6.97,13.16 +convnext_nano,288,2652.03,386.11,1024,15.59,4.06,13.84 +resnetrs50,224,2651.0,386.252,1024,35.69,4.48,12.14 +nf_regnet_b3,288,2644.82,387.161,1024,18.59,1.67,11.84 +xcit_tiny_24_p16_224,224,2635.92,388.469,1024,12.12,2.34,11.82 +gcresnext50ts,256,2630.41,389.282,1024,15.67,3.75,15.46 +efficientvit_b2,256,2610.75,392.214,1024,24.33,2.09,19.03 +resnetblur50,224,2609.83,392.352,1024,25.56,5.16,12.02 +vgg11_bn,224,2600.05,393.829,1024,132.87,7.62,7.44 +resnet50s,224,2592.0,395.051,1024,25.68,5.47,13.52 +mobileone_s3,224,2581.04,396.729,1024,10.17,1.94,13.85 +resnext50_32x4d,224,2577.31,397.304,1024,25.03,4.26,14.4 +resnet152,160,2576.63,397.407,1024,60.19,5.9,11.51 +hgnetv2_b2,288,2574.93,397.67,1024,11.22,1.89,6.8 +inception_next_tiny,224,2572.75,398.008,1024,28.06,4.19,11.98 +eca_nfnet_l0,224,2572.54,398.04,1024,24.14,4.35,10.47 +poolformerv2_s12,224,2568.37,398.686,1024,11.89,1.83,5.53 +edgenext_small,320,2567.9,398.756,1024,5.59,1.97,14.16 +nfnet_l0,224,2566.01,399.053,1024,35.07,4.36,10.47 +cs3sedarknet_l,288,2552.9,401.1,1024,21.91,6.16,10.83 +cspresnext50,256,2550.51,401.475,1024,20.57,4.05,15.86 +hgnetv2_b4,288,2544.67,402.4,1024,19.8,4.54,11.08 +vit_relpos_medium_patch16_224,224,2533.85,404.118,1024,38.75,7.97,17.02 +resnet50_clip,224,2532.71,404.3,1024,38.32,6.14,12.98 +levit_conv_512d,224,2532.59,404.319,1024,92.5,5.85,11.3 +efficientnet_lite3,300,2522.45,202.967,512,8.2,1.65,21.85 +convnextv2_nano,224,2515.35,407.09,1024,15.62,2.46,8.37 +res2net50_26w_4s,224,2515.04,407.14,1024,25.7,4.28,12.61 +vit_srelpos_medium_patch16_224,224,2513.47,407.394,1024,38.74,7.96,16.21 +gcresnet50t,256,2508.19,408.251,1024,25.9,5.42,14.67 +dla60x,224,2506.41,408.541,1024,17.35,3.54,13.8 +coatnet_0_rw_224,224,2498.58,409.821,1024,27.44,4.43,18.73 +resnetblur50d,224,2484.69,412.114,1024,25.58,5.4,12.82 +resnest50d_1s4x24d,224,2468.01,414.899,1024,25.68,4.43,13.57 +regnetx_040,224,2467.33,415.012,1024,22.12,3.99,12.2 +densenetblur121d,224,2464.18,415.544,1024,8.0,3.11,7.9 +maxvit_pico_rw_256,256,2458.1,312.426,768,7.46,1.83,22.3 +resnext50d_32x4d,224,2457.94,416.598,1024,25.05,4.5,15.2 +res2net50_14w_8s,224,2455.12,417.077,1024,25.06,4.21,13.28 +maxvit_rmlp_pico_rw_256,256,2451.7,313.241,768,7.52,1.85,24.86 +vit_base_r26_s32_224,224,2446.42,418.56,1024,101.38,6.81,12.36 +regnetz_c16,256,2443.63,419.039,1024,13.46,2.51,16.57 +seresnetaa50d,224,2442.34,419.253,1024,28.11,5.4,12.46 +dla60_res2net,224,2435.63,420.413,1024,20.85,4.15,12.34 +mobilenetv4_conv_large,320,2431.25,421.172,1024,32.59,4.47,18.97 +regnety_040_sgn,224,2430.55,421.294,1024,20.65,4.03,12.29 +resnet32ts,288,2428.67,421.62,1024,17.96,5.86,14.65 +regnetz_b16,288,2414.87,424.028,1024,9.72,2.39,16.43 +convnext_nano_ols,288,2407.94,425.249,1024,15.65,4.38,15.5 +res2net50d,224,2403.99,425.948,1024,25.72,4.52,13.41 +res2next50,224,2396.84,427.213,1024,24.67,4.2,13.71 +resnet33ts,288,2391.23,428.221,1024,19.68,6.02,14.75 +resnet26t,320,2387.91,428.817,1024,16.01,5.24,16.44 +focalnet_tiny_srf,224,2383.46,429.616,1024,28.43,4.42,16.32 +lambda_resnet26rpt_256,256,2377.83,322.974,768,10.99,3.16,11.87 +resmlp_24_224,224,2376.96,430.792,1024,30.02,5.96,10.91 +efficientnetv2_rw_t,288,2366.54,432.688,1024,13.65,3.19,16.42 +sehalonet33ts,256,2360.24,433.843,1024,13.69,3.55,14.7 +vovnet57a,224,2356.05,434.611,1024,36.64,8.95,7.52 +inception_v3,299,2349.22,435.874,1024,23.83,5.73,8.97 +edgenext_base,256,2342.04,437.215,1024,18.51,3.85,15.58 +gmixer_24_224,224,2339.36,437.716,1024,24.72,5.28,14.45 +tf_efficientnetv2_b3,300,2333.45,438.824,1024,14.36,3.04,15.74 +dla60_res2next,224,2330.49,439.381,1024,17.03,3.49,13.17 +hiera_small_224,224,2327.86,439.879,1024,35.01,6.42,20.75 +seresnext50_32x4d,224,2326.69,440.099,1024,27.56,4.26,14.42 +nf_ecaresnet50,224,2326.39,440.157,1024,25.56,4.21,11.13 +nf_seresnet50,224,2322.81,440.835,1024,28.09,4.21,11.13 +seresnet33ts,288,2321.27,441.126,1024,19.78,6.02,14.76 +eca_resnet33ts,288,2320.92,441.194,1024,19.68,6.02,14.76 +skresnet50,224,2319.56,441.453,1024,25.8,4.11,12.5 +legacy_seresnext50_32x4d,224,2319.29,441.503,1024,27.56,4.26,14.42 +gc_efficientnetv2_rw_t,288,2314.22,442.471,1024,13.68,3.2,16.45 +vit_relpos_medium_patch16_rpn_224,224,2310.7,443.143,1024,38.73,7.97,17.02 +hgnetv2_b5,224,2308.27,443.612,1024,39.57,6.56,11.19 +nfnet_f0,192,2304.96,444.248,1024,71.49,7.21,10.16 +gcresnet33ts,288,2301.68,444.881,1024,19.88,6.02,14.78 +resnet51q,256,2298.43,445.511,1024,35.7,6.38,16.55 +tf_efficientnet_lite3,300,2290.61,223.511,512,8.2,1.65,21.85 +fbnetv3_g,288,2283.27,448.453,1024,16.62,1.77,21.09 +ese_vovnet57b,224,2280.74,448.967,1024,38.61,8.95,7.52 +vit_medium_patch16_gap_240,240,2270.51,450.989,1024,44.4,9.22,18.81 +hgnet_small,224,2266.61,451.766,1024,24.36,8.53,8.79 +fastvit_t12,256,2264.32,452.222,1024,7.55,1.42,12.42 +pvt_v2_b2,224,2256.22,453.841,1024,25.36,4.05,27.53 +edgenext_small_rw,320,2251.75,454.745,1024,7.83,2.46,14.85 +rdnet_tiny,224,2248.51,455.402,1024,23.86,5.06,15.98 +densenet169,224,2245.68,455.974,1024,14.15,3.4,7.3 +cs3darknet_focus_x,256,2244.78,456.159,1024,35.02,8.03,10.69 +coatnet_rmlp_0_rw_224,224,2240.35,457.061,1024,27.45,4.72,24.89 +darknetaa53,256,2230.29,459.123,1024,36.02,7.97,12.39 +focalnet_tiny_lrf,224,2229.47,459.291,1024,28.65,4.49,17.76 +repvgg_b1g4,224,2228.31,459.531,1024,39.97,8.15,10.64 +efficientvit_l1,224,2227.63,459.67,1024,52.65,5.27,15.85 +skresnet50d,224,2225.51,460.109,1024,25.82,4.36,13.31 +xcit_small_12_p16_224,224,2223.72,460.479,1024,26.25,4.82,12.58 +nf_resnet50,256,2213.33,462.642,1024,25.56,5.46,14.52 +nextvit_small,224,2207.92,463.775,1024,31.76,5.81,18.44 +mobilenetv4_hybrid_medium,384,2197.46,465.981,1024,11.07,3.01,21.18 +poolformer_s24,224,2197.0,466.076,1024,21.39,3.41,10.68 +coatnet_bn_0_rw_224,224,2195.15,466.473,1024,27.44,4.67,22.04 +resnet152,176,2193.45,466.834,1024,60.19,7.22,13.99 +resnet50_mlp,256,2191.94,467.155,1024,26.65,7.05,16.25 +ecaresnet50t,256,2191.4,467.27,1024,25.57,5.64,15.45 +nf_regnet_b3,320,2189.28,467.722,1024,18.59,2.05,14.61 +efficientnet_b3,288,2184.31,234.387,512,12.23,1.63,21.49 +seresnext26t_32x4d,288,2172.28,471.381,1024,16.81,4.46,16.68 +fastvit_s12,256,2167.43,472.438,1024,9.47,1.82,13.67 +resnetrs101,192,2164.92,472.987,1024,63.62,6.04,12.7 +cs3darknet_x,256,2164.39,473.101,1024,35.05,8.38,11.35 +fastvit_sa12,256,2158.11,474.477,1024,11.58,1.96,14.03 +eva02_small_patch14_224,224,2155.47,475.059,1024,21.62,6.14,18.28 +cs3sedarknet_xdw,256,2153.33,475.532,1024,21.6,5.97,17.18 +seresnext26d_32x4d,288,2151.74,475.88,1024,16.81,4.51,16.85 +ecaresnet26t,320,2151.68,475.897,1024,16.01,5.24,16.44 +rexnetr_300,224,2147.85,476.744,1024,34.81,3.39,22.16 +eva02_tiny_patch14_336,336,2147.15,476.899,1024,5.76,4.68,27.16 +convnextv2_pico,288,2134.41,479.746,1024,9.07,2.27,10.08 +ecaresnet101d_pruned,288,2128.71,481.03,1024,24.88,5.75,12.71 +gcvit_xtiny,224,2125.89,481.67,1024,19.98,2.93,20.26 +gmlp_s16_224,224,2125.3,481.803,1024,19.42,4.42,15.1 +lambda_resnet50ts,256,2124.77,481.923,1024,21.54,5.07,17.48 +mobilevitv2_150,256,2105.23,243.194,512,10.59,4.09,24.11 +coatnet_0_224,224,2091.24,244.821,512,25.04,4.58,24.01 +xcit_nano_12_p8_224,224,2072.91,493.98,1024,3.05,2.16,15.71 +darknet53,256,2072.88,493.984,1024,41.61,9.31,12.39 +cs3sedarknet_x,256,2064.75,495.935,1024,35.4,8.38,11.35 +hgnet_tiny,288,2057.8,497.609,1024,14.74,7.51,10.51 +hieradet_small,256,2057.47,373.263,768,34.72,8.51,27.76 +vit_medium_patch16_reg1_gap_256,256,2056.16,498.005,1024,38.88,10.63,22.26 +hgnetv2_b3,288,2054.95,498.299,1024,16.29,2.94,8.38 +rexnetr_200,288,2048.59,249.918,512,16.52,2.62,24.96 +vit_medium_patch16_reg4_gap_256,256,2044.7,500.797,1024,38.88,10.76,22.6 +resnet61q,256,2040.64,501.793,1024,36.85,7.8,17.01 +vit_base_resnet50d_224,224,2033.13,503.646,1024,110.97,8.73,16.92 +resnest50d,224,2025.99,505.42,1024,27.48,5.4,14.36 +regnetx_080,224,2024.58,505.775,1024,39.57,8.02,14.06 +rexnet_300,224,2023.97,505.926,1024,34.71,3.44,22.4 +mixnet_xl,224,2021.99,506.421,1024,11.9,0.93,14.57 +resnetv2_50,288,2021.6,506.519,1024,25.55,6.79,18.37 +vit_medium_patch16_gap_256,256,2021.46,506.555,1024,38.86,10.59,22.15 +pvt_v2_b2_li,224,2015.57,508.034,1024,22.55,3.91,27.6 +resnetv2_101,224,2011.15,509.149,1024,44.54,7.83,16.23 +ecaresnetlight,288,2010.28,509.37,1024,30.16,6.79,13.91 +sebotnet33ts_256,256,2002.67,255.649,512,13.7,3.89,17.46 +swin_tiny_patch4_window7_224,224,1994.25,513.466,1024,28.29,4.51,17.06 +cspdarknet53,256,1989.31,514.74,1024,27.64,6.57,16.81 +maxvit_nano_rw_256,256,1987.74,386.357,768,15.45,4.46,30.28 +maxvit_rmlp_nano_rw_256,256,1983.0,387.281,768,15.5,4.47,31.92 +maxxvit_rmlp_nano_rw_256,256,1975.69,388.707,768,16.78,4.37,26.05 +dm_nfnet_f0,192,1969.57,519.898,1024,71.49,7.21,10.16 +gcresnext50ts,288,1969.42,519.94,1024,15.67,4.75,19.57 +nest_tiny,224,1965.87,520.878,1024,17.06,5.83,25.48 +dla102,224,1956.25,523.44,1024,33.27,7.19,14.18 +resnet101,224,1956.19,523.457,1024,44.55,7.83,16.23 +efficientvit_b2,288,1950.05,525.102,1024,24.33,2.64,24.03 +nest_tiny_jx,224,1941.61,527.385,1024,17.06,5.83,25.48 +efficientformer_l3,224,1940.81,527.604,1024,31.41,3.93,12.01 +resnet50,288,1939.79,527.881,1024,25.56,6.8,18.37 +resnetv2_101d,224,1936.61,528.747,1024,44.56,8.07,17.04 +crossvit_18_240,240,1935.28,529.112,1024,43.27,9.05,26.26 +lamhalobotnet50ts_256,256,1924.13,532.179,1024,22.57,5.02,18.44 +convnext_tiny,288,1920.23,533.259,1024,28.59,7.39,22.21 +res2net50_26w_6s,224,1912.13,535.518,1024,37.05,6.33,15.28 +resnet101c,224,1894.68,540.45,1024,44.57,8.08,17.04 +mobileone_s4,224,1894.21,540.586,1024,14.95,3.04,17.74 +crossvit_18_dagger_240,240,1889.12,542.039,1024,44.27,9.5,27.03 +resnet101d,224,1886.88,542.683,1024,44.57,8.08,17.04 +coat_lite_small,224,1882.69,543.892,1024,19.84,3.96,22.09 +gcresnet50t,288,1876.91,545.567,1024,25.9,6.86,18.57 +twins_pcpvt_base,224,1875.57,545.957,1024,43.83,6.68,25.25 +vgg13,224,1872.83,546.756,1024,133.05,11.31,12.25 +convnext_small,224,1866.18,548.704,1024,50.22,8.71,21.56 +dpn68b,288,1861.61,550.049,1024,12.61,3.89,17.3 +regnetx_064,224,1854.58,552.136,1024,26.21,6.49,16.37 +mobilevitv2_175,256,1853.4,276.238,512,14.25,5.54,28.13 +halonet50ts,256,1851.66,553.006,1024,22.73,5.3,19.2 +efficientnet_b3,320,1851.55,276.514,512,12.23,2.01,26.52 +resnet50t,288,1843.63,555.416,1024,25.57,7.14,19.53 +efficientnetv2_s,288,1830.25,559.474,1024,21.46,4.75,20.13 +resnet50d,288,1828.73,559.94,1024,25.58,7.19,19.7 +wide_resnet50_2,224,1825.62,560.893,1024,68.88,11.43,14.4 +swin_s3_tiny_224,224,1817.27,563.471,1024,28.33,4.64,19.13 +tf_efficientnet_b3,300,1797.7,284.798,512,12.23,1.87,23.83 +hrnet_w18_ssld,224,1790.44,571.914,1024,21.3,4.32,16.31 +tresnet_v2_l,224,1789.04,572.364,1024,46.17,8.85,16.34 +hrnet_w18,224,1781.62,574.732,1024,21.3,4.32,16.31 +repvgg_b1,224,1778.73,575.68,1024,57.42,13.16,10.64 +maxxvitv2_nano_rw_256,256,1768.07,434.362,768,23.7,6.26,23.05 +cs3edgenet_x,256,1767.31,579.4,1024,47.82,11.53,12.92 +resnetaa101d,224,1761.72,581.24,1024,44.57,9.12,17.56 +resnet101_clip_gap,224,1761.35,581.36,1024,42.52,9.11,17.56 +efficientvit_l2,224,1761.03,581.466,1024,63.71,6.97,19.58 +vit_large_patch32_224,224,1759.2,582.072,1024,305.51,15.39,13.3 +legacy_seresnet101,224,1752.85,584.182,1024,49.33,7.61,15.74 +vit_base_patch32_clip_384,384,1750.87,584.842,1024,88.3,13.06,16.5 +densenet201,224,1750.03,585.121,1024,20.01,4.34,7.85 +vit_base_patch32_384,384,1749.95,585.149,1024,88.3,13.06,16.5 +efficientnetv2_rw_s,288,1749.21,585.397,1024,23.94,4.91,21.41 +pit_b_distilled_224,224,1743.25,587.399,1024,74.79,12.5,33.07 +darknetaa53,288,1734.96,590.204,1024,36.02,10.08,15.68 +efficientnet_b3_gn,288,1734.87,295.112,512,11.73,1.74,23.35 +resnetv2_101x1_bit,224,1730.79,591.627,1024,44.54,8.04,16.23 +resnetaa50,288,1729.69,592.003,1024,25.56,8.52,19.24 +seresnet101,224,1724.67,593.727,1024,49.33,7.84,16.27 +regnety_032,288,1721.01,594.988,1024,19.44,5.29,18.61 +seresnet50,288,1715.52,596.892,1024,28.09,6.8,18.39 +regnetv_040,288,1714.23,597.341,1024,20.64,6.6,20.3 +pit_b_224,224,1713.92,597.451,1024,73.76,12.42,32.94 +xcit_tiny_12_p16_384,384,1713.1,597.736,1024,6.72,3.64,18.26 +resnet101s,224,1707.16,599.813,1024,44.67,9.19,18.64 +regnety_040,288,1706.68,599.986,1024,20.65,6.61,20.3 +maxvit_tiny_rw_224,224,1699.84,451.796,768,29.06,5.11,33.11 +regnetv_064,224,1694.43,604.321,1024,30.58,6.39,16.41 +cait_xxs24_224,224,1694.07,604.451,1024,11.96,2.53,20.29 +regnety_064,224,1688.52,606.436,1024,30.58,6.39,16.41 +densenet121,288,1688.36,606.494,1024,7.98,4.74,11.41 +resnet50_gn,288,1685.84,607.404,1024,25.56,6.85,18.37 +resnet51q,288,1684.11,608.026,1024,35.7,8.07,20.94 +resnet101_clip,224,1683.83,608.126,1024,56.26,9.81,18.08 +nf_resnet101,224,1683.1,608.389,1024,44.55,8.01,16.23 +convnext_tiny_hnf,288,1681.41,608.997,1024,28.59,7.39,22.21 +ese_vovnet39b,288,1678.63,457.506,768,24.57,11.71,11.13 +repvit_m2_3,224,1677.4,610.445,1024,23.69,4.57,26.21 +resnetv2_50d_gn,288,1676.39,610.823,1024,25.57,7.24,19.7 +ecaresnet101d,224,1674.43,611.54,1024,44.57,8.08,17.07 +cs3darknet_x,288,1672.69,612.175,1024,35.05,10.6,14.36 +vitamin_small_224,224,1669.96,613.177,1024,22.03,5.92,26.38 +convnextv2_tiny,224,1666.61,614.408,1024,28.64,4.47,13.44 +cs3se_edgenet_x,256,1659.92,616.886,1024,50.72,11.53,12.94 +resnetblur101d,224,1659.81,616.926,1024,44.57,9.12,17.94 +dla102x,224,1657.53,617.775,1024,26.31,5.89,19.42 +regnetz_d32,256,1655.18,618.654,1024,27.58,5.98,23.74 +nf_resnet50,288,1650.24,620.505,1024,25.56,6.88,18.37 +efficientvit_b3,224,1649.16,620.91,1024,48.65,3.99,26.9 +mobilenetv4_conv_large,384,1643.43,623.074,1024,32.59,6.43,27.31 +resnetaa50d,288,1643.41,623.082,1024,25.58,8.92,20.57 +regnetz_d8,256,1642.29,623.507,1024,23.37,3.97,23.74 +hiera_small_abswin_256,256,1642.12,623.574,1024,34.36,8.29,26.38 +ecaresnet50t,288,1641.73,623.721,1024,25.57,7.14,19.55 +seresnet50t,288,1641.04,623.984,1024,28.1,7.14,19.55 +regnetz_b16_evos,224,1637.18,625.455,1024,9.74,1.43,9.95 +nextvit_base,224,1636.37,625.762,1024,44.82,8.29,23.71 +davit_small,224,1634.36,469.897,768,49.75,8.8,30.49 +mixer_b16_224,224,1632.43,627.274,1024,59.88,12.62,14.53 +ecaresnet50d,288,1630.52,628.009,1024,25.58,7.19,19.72 +swinv2_cr_tiny_224,224,1629.93,628.235,1024,28.33,4.66,28.45 +mobilenetv4_hybrid_medium,448,1629.05,471.43,768,11.07,4.2,29.64 +regnety_080,224,1624.53,630.326,1024,39.18,8.0,17.97 +nf_regnet_b4,320,1623.35,630.784,1024,30.21,3.29,19.88 +regnetz_040,256,1621.31,631.576,1024,27.12,4.06,24.19 +volo_d1_224,224,1620.03,632.078,1024,26.63,6.94,24.43 +ese_vovnet39b_evos,224,1614.15,634.378,1024,24.58,7.07,6.74 +darknet53,288,1612.47,635.036,1024,41.61,11.78,15.68 +regnetz_040_h,256,1612.19,635.152,1024,28.94,4.12,24.29 +resnetv2_50d_frn,224,1608.23,636.713,1024,25.59,4.33,11.92 +tf_efficientnetv2_s,300,1604.9,638.035,1024,21.46,5.35,22.73 +swinv2_cr_tiny_ns_224,224,1602.17,639.123,1024,28.33,4.66,28.45 +botnet50ts_256,256,1595.84,320.823,512,22.74,5.54,22.23 +resmlp_36_224,224,1595.2,641.917,1024,44.69,8.91,16.33 +cs3sedarknet_x,288,1594.16,642.334,1024,35.4,10.6,14.37 +pvt_v2_b3,224,1594.09,642.356,1024,45.24,6.92,37.7 +wide_resnet101_2,176,1589.86,644.071,1024,126.89,14.31,13.18 +hiera_base_224,224,1588.68,644.549,1024,51.52,9.4,30.42 +mvitv2_tiny,224,1580.5,647.884,1024,24.17,4.7,21.16 +sequencer2d_s,224,1577.41,649.155,1024,27.65,4.96,11.31 +resnetblur50,288,1577.39,649.165,1024,25.56,8.52,19.87 +resnet101d,256,1576.21,649.647,1024,44.57,10.55,22.25 +mobilevitv2_200,256,1575.87,324.89,512,18.45,7.22,32.15 +resnest50d_4s2x40d,224,1573.08,650.942,1024,30.42,4.4,17.94 +vit_base_patch16_224_miil,224,1571.45,651.616,1024,94.4,17.59,23.91 +vit_base_patch16_224,224,1570.66,651.945,1024,86.57,17.58,23.9 +resnext50_32x4d,288,1565.78,653.979,1024,25.03,7.04,23.81 +deit_base_patch16_224,224,1564.98,654.312,1024,86.57,17.58,23.9 +vit_base_patch16_clip_224,224,1564.55,654.489,1024,86.57,17.58,23.9 +deit_base_distilled_patch16_224,224,1562.81,655.219,1024,87.34,17.68,24.05 +resnext101_32x4d,224,1562.81,655.22,1024,44.18,8.01,21.23 +halo2botnet50ts_256,256,1560.7,656.107,1024,22.64,5.02,21.78 +skresnext50_32x4d,224,1546.56,662.103,1024,27.48,4.5,17.18 +caformer_s18,224,1545.75,662.45,1024,26.34,4.13,19.39 +vit_base_mci_224,224,1545.28,662.65,1024,86.35,17.73,24.65 +eca_nfnet_l0,288,1542.25,663.956,1024,24.14,7.12,17.29 +tresnet_l,224,1541.09,664.452,1024,55.99,10.9,11.9 +nfnet_l0,288,1540.89,664.54,1024,35.07,7.13,17.29 +regnetz_c16,320,1536.02,666.649,1024,13.46,3.92,25.88 +vit_medium_patch16_rope_reg1_gap_256,256,1527.11,670.537,1024,38.74,10.63,22.26 +rdnet_small,224,1526.64,670.743,1024,50.44,8.74,22.55 +convnextv2_nano,288,1526.13,503.224,768,15.62,4.06,13.84 +beit_base_patch16_224,224,1524.53,671.669,1024,86.53,17.58,23.9 +coatnet_rmlp_1_rw_224,224,1520.15,673.605,1024,41.69,7.85,35.47 +mixer_l32_224,224,1519.29,673.986,1024,206.94,11.27,19.86 +res2net50_26w_8s,224,1519.14,674.046,1024,48.4,8.37,17.95 +vit_small_resnet50d_s16_224,224,1515.04,675.876,1024,57.53,13.48,24.82 +regnety_080_tv,224,1514.62,676.066,1024,39.38,8.51,19.73 +res2net101_26w_4s,224,1512.48,677.014,1024,45.21,8.1,18.45 +beitv2_base_patch16_224,224,1510.67,677.835,1024,86.53,17.58,23.9 +resnet61q,288,1508.28,678.909,1024,36.85,9.87,21.52 +resnetblur50d,288,1502.22,681.649,1024,25.58,8.92,21.19 +densenetblur121d,288,1501.15,682.13,1024,8.0,5.14,13.06 +resnext101_32x8d,176,1496.15,684.414,1024,88.79,10.33,19.37 +edgenext_base,320,1496.01,684.475,1024,18.51,6.01,24.32 +resnext50d_32x4d,288,1492.98,685.867,1024,25.05,7.44,25.13 +repvgg_b2g4,224,1487.15,688.554,1024,61.76,12.63,12.9 +deit3_base_patch16_224,224,1485.67,689.239,1024,86.59,17.58,23.9 +fastvit_mci0,256,1480.55,691.623,1024,11.41,2.42,18.29 +poolformer_s36,224,1480.43,691.678,1024,30.86,5.0,15.82 +regnety_040_sgn,288,1480.21,691.781,1024,20.65,6.67,20.3 +seresnetaa50d,288,1478.73,692.475,1024,28.11,8.92,20.59 +res2net101d,224,1471.66,695.8,1024,45.23,8.35,19.25 +resnetv2_50d_evos,224,1466.16,698.411,1024,25.59,4.33,11.92 +vit_relpos_base_patch16_clsgap_224,224,1464.16,699.363,1024,86.43,17.6,25.12 +vit_relpos_base_patch16_cls_224,224,1462.1,700.351,1024,86.43,17.6,25.12 +vit_small_patch16_36x1_224,224,1460.83,700.959,1024,64.67,13.71,35.69 +vit_small_patch16_384,384,1459.09,701.796,1024,22.2,15.52,50.78 +efficientnet_b3_gn,320,1457.71,263.416,384,11.73,2.14,28.83 +inception_next_small,224,1454.59,703.968,1024,49.37,8.36,19.27 +efficientvit_l2,256,1451.75,705.344,1024,63.71,9.09,25.49 +convformer_s18,224,1450.71,705.851,1024,26.77,3.96,15.82 +vit_base_patch16_siglip_gap_224,224,1449.9,706.247,1024,85.8,17.49,23.75 +dpn92,224,1447.04,707.638,1024,37.67,6.54,18.21 +gcvit_tiny,224,1443.56,709.345,1024,28.22,4.79,29.82 +convit_small,224,1442.31,709.962,1024,27.78,5.76,17.87 +focalnet_small_srf,224,1440.19,711.006,1024,49.89,8.62,26.26 +vit_betwixt_patch16_reg1_gap_256,256,1438.93,711.629,1024,60.4,16.32,27.83 +vit_base_patch16_siglip_224,224,1434.62,713.769,1024,92.88,17.73,24.06 +vit_betwixt_patch16_reg4_gap_256,256,1427.38,717.384,1024,60.4,16.52,28.24 +vit_base_patch16_gap_224,224,1426.06,718.052,1024,86.57,17.49,25.59 +maxvit_tiny_tf_224,224,1425.39,538.79,768,30.92,5.6,35.78 +nf_ecaresnet101,224,1424.0,719.089,1024,44.55,8.01,16.27 +coatnet_1_rw_224,224,1423.83,719.174,1024,41.72,8.04,34.6 +nf_seresnet101,224,1422.7,719.746,1024,49.33,8.02,16.27 +coatnet_rmlp_1_rw2_224,224,1422.67,719.763,1024,41.72,8.11,40.13 +seresnext50_32x4d,288,1414.64,723.843,1024,27.56,7.04,23.82 +seresnext101_32x4d,224,1413.69,724.336,1024,48.96,8.02,21.26 +legacy_xception,299,1413.65,543.263,768,22.86,8.4,35.83 +legacy_seresnext101_32x4d,224,1412.48,724.957,1024,48.96,8.02,21.26 +hgnetv2_b5,288,1407.43,727.559,1024,39.57,10.84,18.5 +vit_small_patch16_18x2_224,224,1406.97,727.793,1024,64.67,13.71,35.69 +resnetv2_152,224,1397.01,732.984,1024,60.19,11.55,22.56 +efficientnet_b4,320,1389.63,368.432,512,19.34,3.13,34.76 +vit_base_patch16_clip_quickgelu_224,224,1387.46,738.029,1024,86.19,17.58,23.9 +nfnet_f0,256,1379.83,742.109,1024,71.49,12.62,18.05 +resnet152,224,1373.51,745.522,1024,60.19,11.56,22.56 +flexivit_base,240,1371.79,746.461,1024,86.59,20.29,28.36 +ecaresnet50t,320,1370.27,747.287,1024,25.57,8.82,24.13 +efficientvit_b3,256,1369.93,560.6,768,48.65,5.2,35.01 +vit_relpos_base_patch16_224,224,1369.33,747.799,1024,86.43,17.51,24.97 +cs3edgenet_x,288,1368.22,748.405,1024,47.82,14.59,16.36 +vgg16_bn,224,1364.4,750.503,1024,138.37,15.5,13.56 +resnetv2_152d,224,1363.32,751.094,1024,60.2,11.8,23.36 +mobilenetv4_conv_aa_large,384,1359.23,753.356,1024,32.59,7.07,32.29 +efficientformerv2_s0,224,1356.88,754.66,1024,3.6,0.41,5.3 +regnetx_120,224,1352.8,756.936,1024,46.11,12.13,21.37 +focalnet_small_lrf,224,1350.27,758.334,1024,50.34,8.74,28.61 +twins_pcpvt_large,224,1348.04,759.609,1024,60.99,9.84,35.82 +deit3_small_patch16_384,384,1344.15,761.807,1024,22.21,15.52,50.78 +resnet152c,224,1340.85,763.681,1024,60.21,11.8,23.36 +rexnetr_300,288,1339.94,382.097,512,34.81,5.59,36.61 +maxxvit_rmlp_tiny_rw_256,256,1339.27,573.433,768,29.64,6.66,39.76 +maxvit_tiny_rw_256,256,1338.26,573.871,768,29.07,6.74,44.35 +resnet152d,224,1336.77,766.012,1024,60.21,11.8,23.36 +maxvit_rmlp_tiny_rw_256,256,1336.57,574.593,768,29.15,6.77,46.92 +ese_vovnet99b,224,1332.86,768.26,1024,63.2,16.51,11.27 +poolformerv2_s24,224,1332.11,768.696,1024,21.34,3.42,10.68 +xcit_tiny_12_p8_224,224,1314.83,778.795,1024,6.71,4.81,23.6 +xception41p,299,1314.22,389.574,512,26.91,9.25,39.86 +vit_base_patch32_clip_448,448,1306.81,783.576,1024,88.34,17.93,23.9 +convnext_base,224,1301.11,787.008,1024,88.59,15.38,28.75 +efficientnet_el,300,1300.79,787.203,1024,10.59,8.0,30.7 +nextvit_large,224,1299.51,787.975,1024,57.87,10.78,28.99 +efficientnet_el_pruned,300,1297.09,789.448,1024,10.59,8.0,30.7 +vit_base_patch16_xp_224,224,1295.73,790.276,1024,86.51,17.56,23.9 +dla169,224,1285.68,796.451,1024,53.39,11.6,20.2 +regnety_120,224,1281.03,799.347,1024,51.82,12.14,21.38 +hrnet_w32,224,1280.36,799.766,1024,41.23,8.97,22.02 +coatnet_1_224,224,1275.86,401.286,512,42.23,8.7,39.0 +tf_efficientnet_el,300,1270.05,806.254,1024,10.59,8.0,30.7 +hrnet_w30,224,1268.85,807.019,1024,37.71,8.15,21.21 +vgg19,224,1266.93,808.24,1024,143.67,19.63,14.86 +mixnet_xxl,224,1264.71,607.242,768,23.96,2.04,23.43 +maxvit_tiny_pm_256,256,1264.25,607.461,768,30.09,6.61,47.9 +hiera_base_plus_224,224,1260.02,812.675,1024,69.9,12.67,37.98 +mobilenetv4_conv_large,448,1258.67,610.158,768,32.59,8.75,37.17 +twins_svt_base,224,1256.07,815.231,1024,56.07,8.59,26.33 +vit_base_patch16_rpn_224,224,1255.52,815.59,1024,86.54,17.49,23.75 +nest_small,224,1253.67,816.789,1024,38.35,10.35,40.04 +hgnet_small,288,1251.61,613.599,768,24.36,14.09,14.53 +efficientformerv2_s1,224,1251.14,818.442,1024,6.19,0.67,7.66 +densenet161,224,1249.24,819.689,1024,28.68,7.79,11.06 +resnet152s,224,1245.59,822.091,1024,60.32,12.92,24.96 +vit_mediumd_patch16_reg4_gap_256,256,1243.97,823.162,1024,64.11,17.87,37.57 +nest_small_jx,224,1243.46,823.5,1024,38.35,10.35,40.04 +sequencer2d_m,224,1232.89,830.559,1024,38.31,6.55,14.26 +vit_relpos_base_patch16_rpn_224,224,1232.22,831.004,1024,86.41,17.51,24.97 +repvgg_b2,224,1228.43,833.576,1024,89.02,20.45,12.9 +swin_small_patch4_window7_224,224,1226.82,834.669,1024,49.61,8.77,27.47 +legacy_seresnet152,224,1220.81,838.774,1024,66.82,11.33,22.08 +efficientnet_b3_g8_gn,288,1217.35,630.868,768,14.25,2.59,23.35 +eca_nfnet_l1,256,1214.94,842.831,1024,41.41,9.62,22.04 +mobilenetv4_hybrid_large,384,1210.73,845.759,1024,37.76,7.77,34.52 +swinv2_tiny_window8_256,256,1208.62,847.237,1024,28.35,5.96,24.57 +seresnet152,224,1205.5,849.426,1024,66.82,11.57,22.61 +inception_v4,299,1197.2,855.32,1024,42.68,12.28,15.09 +repvgg_b3g4,224,1194.99,856.9,1024,83.83,17.89,15.1 +fastvit_sa24,256,1192.29,858.839,1024,21.55,3.8,24.32 +resnetv2_101,288,1191.07,859.716,1024,44.54,12.94,26.83 +efficientnet_lite4,380,1188.14,323.185,384,13.01,4.04,45.66 +xcit_small_24_p16_224,224,1187.59,862.241,1024,47.67,9.1,23.64 +mvitv2_small_cls,224,1178.05,869.223,1024,34.87,7.04,28.17 +dm_nfnet_f0,256,1174.19,872.081,1024,71.49,12.62,18.05 +tnt_s_patch16_224,224,1171.01,874.446,1024,23.76,5.24,24.37 +regnetx_160,224,1167.74,876.901,1024,54.28,15.99,25.52 +mvitv2_small,224,1166.57,877.775,1024,34.87,7.0,28.08 +resnet101,288,1162.74,880.669,1024,44.55,12.95,26.83 +xception41,299,1160.72,441.096,512,26.97,9.28,39.86 +davit_base,224,1158.29,663.034,768,87.95,15.51,40.66 +vgg19_bn,224,1153.27,887.9,1024,143.68,19.66,14.86 +convnext_small,288,1152.13,888.774,1024,50.22,14.39,35.65 +vit_base_patch16_reg4_gap_256,256,1148.57,891.534,1024,86.62,23.5,33.89 +coat_tiny,224,1146.04,893.499,1024,5.5,4.35,27.2 +pvt_v2_b4,224,1144.8,894.466,1024,62.56,10.14,53.74 +cait_xxs36_224,224,1141.88,896.758,1024,17.3,3.77,30.34 +nf_regnet_b4,384,1139.48,898.646,1024,30.21,4.7,28.61 +tresnet_xl,224,1139.37,898.735,1024,78.44,15.2,15.34 +crossvit_base_240,240,1129.38,906.68,1024,105.03,21.22,36.33 +vit_small_r26_s32_384,384,1128.5,907.387,1024,36.47,10.43,29.85 +vit_base_patch16_siglip_gap_256,256,1126.79,908.765,1024,85.84,23.13,33.23 +dla102x2,224,1125.59,909.733,1024,41.28,9.34,29.91 +resnet152d,256,1122.78,912.013,1024,60.21,15.41,30.51 +vit_base_patch16_siglip_256,256,1115.06,918.328,1024,92.93,23.44,33.63 +hiera_base_abswin_256,256,1108.56,923.708,1024,51.27,12.46,40.7 +wide_resnet50_2,288,1108.54,923.726,1024,68.88,18.89,23.81 +eva02_base_patch16_clip_224,224,1105.74,926.062,1024,86.26,17.62,26.32 +tf_efficientnet_lite4,380,1103.18,348.074,384,13.01,4.04,45.66 +vit_large_r50_s32_224,224,1102.83,928.511,1024,328.99,19.58,24.41 +efficientnetv2_s,384,1096.79,933.624,1024,21.46,8.44,35.77 +vit_betwixt_patch16_rope_reg4_gap_256,256,1096.33,934.014,1024,60.23,16.52,28.24 +vgg13_bn,224,1093.1,936.772,1024,133.05,11.33,12.25 +efficientvit_l2,288,1092.38,937.387,1024,63.71,11.51,32.19 +hrnet_w18_ssld,288,1090.28,939.198,1024,21.3,7.14,26.96 +convnext_tiny,384,1087.48,706.209,768,28.59,13.14,39.48 +pvt_v2_b5,224,1085.62,943.223,1024,81.96,11.76,50.92 +samvit_base_patch16_224,224,1070.47,956.58,1024,86.46,17.54,24.54 +regnety_160,224,1070.01,956.986,1024,83.59,15.96,23.04 +tf_efficientnetv2_s,384,1069.37,957.558,1024,21.46,8.44,35.77 +cs3se_edgenet_x,320,1057.79,968.048,1024,50.72,18.01,20.21 +resnetaa101d,288,1046.05,978.908,1024,44.57,15.07,29.03 +regnetz_d32,320,1039.68,984.905,1024,27.58,9.33,37.08 +efficientnetv2_rw_s,384,1037.06,987.392,1024,23.94,8.72,38.03 +mobilenetv4_conv_aa_large,448,1034.18,742.609,768,32.59,9.63,43.94 +regnetz_d8,320,1031.64,992.584,1024,23.37,6.19,37.08 +seresnet101,288,1031.63,992.588,1024,49.33,12.95,26.87 +vit_small_patch8_224,224,1031.53,992.686,1024,21.67,22.44,80.84 +efficientvit_b3,288,1028.85,746.455,768,48.65,6.58,44.2 +regnetv_064,288,1024.98,999.029,1024,30.58,10.55,27.11 +regnety_064,288,1024.29,999.702,1024,30.58,10.56,27.11 +poolformer_m36,224,1023.88,1000.107,1024,56.17,8.8,22.02 +vgg16,224,1021.7,1002.242,1024,138.36,15.47,13.56 +wide_resnet101_2,224,1020.62,1003.3,1024,126.89,22.8,21.23 +rdnet_base,224,1017.24,754.976,768,87.45,15.4,31.14 +dpn98,224,1014.12,1009.734,1024,61.57,11.73,25.2 +resnet200,224,1013.79,1010.054,1024,64.67,15.07,32.19 +convnextv2_small,224,1013.29,1010.559,1024,50.32,8.71,21.56 +convnextv2_tiny,288,1011.72,759.092,768,28.64,7.39,22.21 +regnetz_040,320,1006.41,508.726,512,27.12,6.35,37.78 +convmixer_1024_20_ks9_p14,224,1004.68,1019.218,1024,24.38,5.55,5.51 +vit_base_patch16_plus_240,240,1004.42,1019.485,1024,117.56,27.41,33.08 +hgnetv2_b6,224,1002.06,1021.881,1024,75.26,16.88,21.23 +regnety_080,288,1001.83,1022.121,1024,39.18,13.22,29.69 +ecaresnet101d,288,1000.75,1023.221,1024,44.57,13.35,28.19 +swinv2_cr_small_224,224,1000.55,1023.43,1024,49.7,9.07,50.27 +regnetz_040_h,320,1000.36,511.803,512,28.94,6.43,37.94 +resnest101e,256,997.21,1026.848,1024,48.28,13.38,28.66 +convnext_base,256,996.66,1027.418,1024,88.59,20.09,37.55 +vit_base_r50_s16_224,224,993.23,1030.967,1024,97.89,21.66,35.28 +resnetrs101,288,992.71,1031.506,1024,63.62,13.56,28.53 +resnetblur101d,288,992.25,1031.989,1024,44.57,15.07,29.65 +efficientnet_b3_g8_gn,320,990.46,775.388,768,14.25,3.2,28.83 +focalnet_base_srf,224,989.98,1034.35,1024,88.15,15.28,35.01 +swinv2_cr_small_ns_224,224,989.16,1035.213,1024,49.7,9.08,50.27 +regnetz_b16_evos,288,988.59,776.854,768,9.74,2.36,16.43 +regnetz_c16_evos,256,986.94,778.15,768,13.49,2.48,16.57 +maxvit_rmlp_small_rw_224,224,986.14,778.781,768,64.9,10.75,49.3 +inception_next_base,224,985.08,1039.5,1024,86.67,14.85,25.69 +seresnet152d,256,984.13,1040.502,1024,66.84,15.42,30.56 +resnetrs152,256,977.43,1047.637,1024,86.62,15.59,30.83 +resnet101d,320,975.08,1050.156,1024,44.57,16.48,34.77 +inception_resnet_v2,299,965.48,1060.586,1024,55.84,13.18,25.06 +mobilevitv2_150,384,965.44,265.153,256,10.59,9.2,54.25 +resnext101_64x4d,224,959.27,1067.461,1024,83.46,15.52,31.21 +resnext101_32x8d,224,954.55,1072.743,1024,88.79,16.48,31.21 +nfnet_f1,224,951.44,1076.249,1024,132.63,17.87,22.94 +xception65p,299,950.53,538.627,512,39.82,13.91,52.48 +eva02_small_patch14_336,336,946.95,1081.358,1024,22.13,15.48,54.33 +resnext101_32x4d,288,940.09,1089.251,1024,44.18,13.24,35.09 +efficientnet_b4,384,937.43,409.62,384,19.34,4.51,50.04 +coat_lite_medium,224,936.83,1093.037,1024,44.57,9.81,40.06 +focalnet_base_lrf,224,931.65,1099.111,1024,88.75,15.43,38.13 +vit_mediumd_patch16_rope_reg1_gap_256,256,927.19,1104.398,1024,63.95,17.65,37.02 +repvgg_b3,224,927.07,1104.549,1024,123.09,29.16,15.1 +vit_relpos_base_patch16_plus_240,240,923.53,1108.778,1024,117.38,27.3,34.33 +efficientformer_l7,224,921.36,1111.391,1024,82.23,10.17,24.45 +xcit_tiny_24_p16_384,384,918.06,1115.38,1024,12.12,6.87,34.29 +coatnet_2_rw_224,224,914.51,559.852,512,73.87,15.09,49.22 +hrnet_w40,224,911.04,1123.981,1024,57.56,12.75,25.29 +efficientnetv2_m,320,906.73,1129.323,1024,54.14,11.01,39.97 +cait_s24_224,224,906.1,1130.105,1024,46.92,9.35,40.58 +maxvit_small_tf_224,224,903.75,566.52,512,68.93,11.66,53.17 +coat_mini,224,901.59,1135.767,1024,10.34,6.82,33.68 +swin_s3_small_224,224,900.95,852.422,768,49.74,9.43,37.84 +seresnext101_64x4d,224,899.36,1138.577,1024,88.23,15.53,31.25 +poolformerv2_s36,224,899.23,1138.739,1024,30.79,5.01,15.82 +volo_d2_224,224,898.78,1139.307,1024,58.68,14.34,41.34 +seresnext101_32x8d,224,896.76,1141.857,1024,93.57,16.48,31.25 +mobilenetv4_conv_aa_large,480,895.59,857.521,768,32.59,11.05,50.45 +gmlp_b16_224,224,892.77,1146.973,1024,73.08,15.78,30.21 +mobilenetv4_hybrid_large,448,892.61,860.386,768,37.76,10.74,48.61 +nest_base,224,891.48,1148.639,1024,67.72,17.96,53.39 +regnetz_e8,256,885.16,1156.837,1024,57.7,9.91,40.94 +nest_base_jx,224,884.72,1157.412,1024,67.72,17.96,53.39 +resnetv2_50d_evos,288,884.63,1157.531,1024,25.59,7.15,19.7 +seresnext101d_32x8d,224,880.67,1162.73,1024,93.59,16.72,32.05 +swin_base_patch4_window7_224,224,877.35,1167.139,1024,87.77,15.47,36.63 +coatnet_rmlp_2_rw_224,224,872.68,586.689,512,73.88,15.18,54.78 +tf_efficientnet_b4,380,871.25,440.737,384,19.34,4.49,49.49 +levit_384_s8,224,867.41,590.255,512,39.12,9.98,35.86 +vit_base_patch16_rope_reg1_gap_256,256,867.28,1180.694,1024,86.43,23.22,33.39 +tiny_vit_21m_384,384,864.15,592.481,512,21.23,13.77,77.83 +gcvit_small,224,861.28,1188.917,1024,51.09,8.57,41.61 +convnextv2_nano,384,858.36,596.473,512,15.62,7.22,24.61 +crossvit_15_dagger_408,408,856.8,1195.136,1024,28.5,21.45,95.05 +seresnext101_32x4d,288,853.89,1199.198,1024,48.96,13.25,35.12 +coatnet_2_224,224,853.24,600.055,512,74.68,16.5,52.67 +xception65,299,843.97,606.646,512,39.92,13.96,52.48 +maxxvit_rmlp_small_rw_256,256,836.98,917.574,768,66.01,14.67,58.38 +twins_svt_large,224,833.5,1228.541,1024,99.27,15.15,35.1 +resnet50x4_clip_gap,288,832.97,1229.323,1024,65.62,19.57,34.11 +levit_conv_384_s8,224,832.4,615.075,512,39.12,9.98,35.86 +seresnextaa101d_32x8d,224,831.45,1231.569,1024,93.59,17.25,34.16 +mvitv2_base_cls,224,829.71,1234.159,1024,65.44,10.23,40.65 +hgnet_base,224,828.09,927.42,768,71.58,25.14,15.47 +hrnet_w44,224,826.04,1239.642,1024,67.06,14.94,26.92 +xcit_medium_24_p16_224,224,825.94,1239.785,1024,84.4,16.13,31.71 +resnet200d,256,824.85,1241.424,1024,64.69,20.0,43.09 +eva02_base_patch14_224,224,824.57,1241.85,1024,85.76,23.22,36.55 +vit_medium_patch16_gap_384,384,824.05,1242.632,1024,39.03,26.08,67.54 +fastvit_sa36,256,823.61,1243.29,1024,31.53,5.64,34.61 +dm_nfnet_f1,224,823.18,1243.945,1024,132.63,17.87,22.94 +caformer_s36,224,822.12,1245.551,1024,39.3,8.0,37.53 +tresnet_m,448,818.79,1250.62,1024,31.39,22.99,29.21 +mvitv2_base,224,817.05,1253.276,1024,51.47,10.16,40.5 +resnet152,288,811.97,1261.117,1024,60.19,19.11,37.28 +swinv2_base_window12_192,192,804.65,1272.585,1024,109.28,11.9,39.72 +mobilevitv2_175,384,803.11,318.749,256,14.25,12.47,63.29 +sequencer2d_l,224,800.9,1278.551,1024,54.3,9.74,22.12 +efficientnetv2_rw_m,320,796.23,1286.05,1024,53.24,12.72,47.14 +hrnet_w48_ssld,224,792.32,1292.387,1024,77.47,17.34,28.56 +fastvit_mci1,256,791.46,1293.799,1024,21.54,4.72,32.84 +hrnet_w48,224,790.96,1294.607,1024,77.47,17.34,28.56 +resnet50x4_clip,288,789.83,1296.468,1024,87.14,21.35,35.27 +convnext_base,288,788.08,1299.342,1024,88.59,25.43,47.53 +swinv2_tiny_window16_256,256,783.75,653.259,512,28.35,6.68,39.02 +regnety_120,288,782.19,981.843,768,51.82,20.06,35.34 +poolformer_m48,224,772.39,1325.737,1024,73.47,11.59,29.17 +convformer_s36,224,771.32,1327.576,1024,40.01,7.67,30.5 +maxvit_rmlp_small_rw_256,256,770.25,997.069,768,64.9,14.15,66.09 +xcit_small_12_p16_384,384,769.74,1330.306,1024,26.25,14.14,36.51 +resnetv2_50x1_bit,448,763.06,670.968,512,25.55,16.62,44.46 +tnt_b_patch16_224,224,751.21,1363.12,1024,65.41,14.09,39.01 +nextvit_small,384,743.78,1376.73,1024,31.76,17.26,57.14 +dpn131,224,742.22,1379.624,1024,79.25,16.09,32.97 +swinv2_small_window8_256,256,741.58,1380.817,1024,49.73,11.58,40.14 +eca_nfnet_l1,320,737.99,1387.537,1024,41.41,14.92,34.42 +convit_base,224,737.69,1388.094,1024,86.54,17.52,31.77 +swinv2_cr_small_ns_256,256,735.25,1392.717,1024,49.7,12.07,76.21 +nf_regnet_b5,384,732.21,1398.493,1024,49.74,7.95,42.9 +convnextv2_base,224,728.97,1053.529,768,88.72,15.38,28.75 +swin_s3_base_224,224,726.96,1408.586,1024,71.13,13.69,48.26 +vit_so150m_patch16_reg4_gap_256,256,726.07,1410.317,1024,134.13,36.75,53.21 +swinv2_cr_base_224,224,719.8,1422.605,1024,87.88,15.86,59.66 +seresnet152,288,718.93,1424.325,1024,66.82,19.11,37.34 +vit_so150m_patch16_reg4_map_256,256,718.36,1425.463,1024,141.48,37.18,53.68 +vitamin_base_224,224,715.12,715.949,512,87.72,22.68,52.77 +ecaresnet200d,256,715.01,1432.144,1024,64.69,20.0,43.15 +seresnet200d,256,714.8,1432.561,1024,71.86,20.01,43.15 +swinv2_cr_base_ns_224,224,714.1,1433.953,1024,87.88,15.86,59.66 +resnetrs200,256,710.99,1440.207,1024,93.21,20.18,43.42 +xcit_nano_12_p8_384,384,706.26,1449.87,1024,3.05,6.34,46.08 +convnext_large,224,700.67,1461.443,1024,197.77,34.4,43.13 +densenet264d,224,698.28,1466.454,1024,72.74,13.57,14.0 +mobilenetv4_conv_aa_large,544,697.25,550.726,384,32.59,14.19,64.79 +resnet152d,320,692.74,1478.183,1024,60.21,24.08,47.67 +coat_small,224,688.09,1488.162,1024,21.69,12.61,44.25 +xcit_tiny_24_p8_224,224,688.06,1488.225,1024,12.11,9.21,45.39 +senet154,224,671.82,1524.195,1024,115.09,20.77,38.69 +maxxvitv2_rmlp_base_rw_224,224,671.73,1143.308,768,116.09,24.2,62.77 +legacy_senet154,224,671.25,1525.511,1024,115.09,20.77,38.69 +efficientvit_l3,224,665.72,1538.173,1024,246.04,27.62,39.16 +mobilevitv2_200,384,664.44,385.277,256,18.45,16.24,72.34 +dpn107,224,662.3,1546.122,1024,86.92,18.38,33.46 +efficientformerv2_s2,224,659.15,1553.507,1024,12.71,1.27,11.77 +xception71,299,656.41,779.991,512,42.34,18.09,69.92 +regnety_160,288,653.9,1174.472,768,83.59,26.37,38.07 +convnext_small,384,651.61,1178.605,768,50.22,25.58,63.37 +regnety_320,224,650.19,1574.91,1024,145.05,32.34,30.26 +volo_d3_224,224,645.72,1585.818,1024,86.33,20.78,60.09 +fastvit_ma36,256,645.47,1586.419,1024,44.07,7.88,41.09 +regnetz_d8_evos,256,644.05,1589.928,1024,23.46,4.5,24.92 +convnext_base,320,637.05,1205.552,768,88.59,31.39,58.68 +poolformerv2_m36,224,635.87,1610.368,1024,56.08,8.81,22.02 +davit_large,224,635.02,1209.401,768,196.81,34.6,60.99 +gcvit_base,224,632.31,1619.451,1024,90.32,14.87,55.48 +vit_betwixt_patch16_reg4_gap_384,384,627.16,1632.736,1024,60.6,39.71,85.28 +tf_efficientnetv2_m,384,625.53,1636.99,1024,54.14,15.85,57.52 +regnetz_c16_evos,320,625.03,819.15,512,13.49,3.86,25.88 +hgnetv2_b6,288,616.55,1245.628,768,75.26,27.9,35.09 +hrnet_w64,224,612.17,1672.733,1024,128.06,28.97,35.09 +seresnet152d,320,607.38,1685.905,1024,66.84,24.09,47.72 +vit_large_patch32_384,384,604.74,1693.288,1024,306.63,45.31,43.86 +resnetrs152,320,603.9,1695.633,1024,86.62,24.34,48.14 +resnet200,288,603.31,1697.296,1024,64.67,24.91,53.21 +efficientvit_l2,384,599.94,1280.123,768,63.71,20.45,57.01 +crossvit_18_dagger_408,408,597.37,1714.173,1024,44.61,32.47,124.87 +caformer_m36,224,590.66,1733.627,1024,56.2,13.29,50.48 +regnetx_320,224,589.67,1736.551,1024,107.81,31.81,36.3 +xcit_small_12_p8_224,224,588.09,1741.223,1024,26.21,18.69,47.21 +resnext101_64x4d,288,587.4,1743.275,1024,83.46,25.66,51.59 +fastvit_mci2,256,583.9,1753.716,1024,35.82,7.91,43.34 +resnetv2_50x3_bit,224,582.22,1319.082,768,217.32,37.06,33.34 +levit_conv_512_s8,224,573.27,669.829,384,74.05,21.82,52.28 +rdnet_large,224,571.45,895.96,512,186.27,34.74,46.67 +levit_512_s8,224,570.5,448.717,256,74.05,21.82,52.28 +convnextv2_tiny,384,570.14,673.511,384,28.64,13.14,39.48 +efficientnet_b5,416,567.51,451.086,256,30.39,8.27,80.68 +maxvit_rmlp_base_rw_224,224,564.83,1359.676,768,116.14,23.15,92.64 +nextvit_base,384,564.24,1814.832,1024,44.82,24.64,73.95 +seresnet269d,256,557.61,1836.401,1024,113.67,26.59,53.6 +convformer_m36,224,556.43,1840.292,1024,57.05,12.89,42.05 +seresnext101_32x8d,288,545.61,1876.8,1024,93.57,27.24,51.63 +vit_mediumd_patch16_reg4_gap_384,384,545.01,1878.868,1024,64.27,43.67,113.51 +resnetrs270,256,542.54,1887.403,1024,129.86,27.06,55.84 +efficientnetv2_m,416,542.39,1887.938,1024,54.14,18.6,67.5 +efficientvit_l3,256,537.65,1428.432,768,246.04,36.06,50.98 +nfnet_f2,256,537.3,1905.805,1024,193.78,33.76,41.85 +seresnext101d_32x8d,288,536.93,1907.142,1024,93.59,27.64,52.95 +convnext_large_mlp,256,535.86,1433.184,768,200.13,44.94,56.33 +volo_d1_384,384,534.71,1915.039,1024,26.78,22.75,108.55 +swinv2_base_window8_256,256,531.77,1925.628,1024,87.92,20.37,52.59 +halonet_h1,256,529.72,483.267,256,8.1,3.0,51.17 +resnext101_32x16d,224,523.52,1955.962,1024,194.03,36.27,51.18 +eca_nfnet_l2,320,520.54,1967.185,1024,56.72,20.95,47.43 +ecaresnet200d,288,520.38,1967.761,1024,64.69,25.31,54.59 +seresnet200d,288,520.31,1968.044,1024,71.86,25.32,54.6 +mixer_l16_224,224,519.58,1970.82,1024,208.2,44.6,41.69 +caformer_s18,384,518.39,987.656,512,26.34,13.42,77.34 +regnetz_e8,320,511.76,2000.937,1024,57.7,15.46,63.94 +resnet200d,320,510.27,2006.761,1024,64.69,31.25,67.33 +vit_base_patch16_384,384,509.98,2007.91,1024,86.86,55.54,101.56 +deit_base_patch16_384,384,508.8,2012.559,1024,86.86,55.54,101.56 +vit_base_patch16_clip_384,384,508.48,2013.827,1024,86.86,55.54,101.56 +deit_base_distilled_patch16_384,384,508.27,2014.657,1024,87.63,55.65,101.82 +maxvit_base_tf_224,224,507.09,1009.673,512,119.47,24.04,95.01 +efficientnet_b5,448,506.95,504.97,256,30.39,9.59,93.56 +hgnet_base,288,502.62,1018.647,512,71.58,41.55,25.57 +swin_large_patch4_window7_224,224,500.32,1535.009,768,196.53,34.53,54.94 +seresnextaa101d_32x8d,288,496.57,2062.142,1024,93.59,28.51,56.44 +convformer_s18,384,496.26,1031.706,512,26.77,11.63,46.49 +vit_base_patch16_18x2_224,224,493.7,2074.102,1024,256.73,52.51,71.38 +coatnet_3_rw_224,224,492.8,519.468,256,181.81,33.44,73.83 +coatnet_rmlp_3_rw_224,224,492.67,519.608,256,165.15,33.56,79.47 +swinv2_small_window16_256,256,489.28,1046.418,512,49.73,12.82,66.29 +vit_small_patch14_dinov2,518,488.22,1573.045,768,22.06,46.76,198.79 +vit_large_patch16_224,224,486.7,2103.941,1024,304.33,61.6,63.52 +deit3_base_patch16_384,384,483.16,2119.352,1024,86.88,55.54,101.56 +eva_large_patch14_196,196,482.51,2122.231,1024,304.14,61.57,63.52 +hrnet_w48_ssld,288,481.65,2125.993,1024,77.47,28.66,47.21 +swinv2_large_window12_192,192,480.44,1065.672,512,228.77,26.17,56.53 +poolformerv2_m48,224,479.37,2136.125,1024,73.35,11.59,29.17 +vit_small_patch14_reg4_dinov2,518,477.58,2144.131,1024,22.06,46.95,199.77 +nf_regnet_b5,456,475.93,1613.682,768,49.74,11.7,61.95 +xcit_large_24_p16_224,224,474.28,2159.06,1024,189.1,35.86,47.27 +nfnet_f1,320,473.95,2160.551,1024,132.63,35.97,46.77 +hiera_large_224,224,472.69,2166.325,1024,213.74,40.34,83.37 +coatnet_3_224,224,472.05,542.3,256,166.97,36.56,79.01 +beit_large_patch16_224,224,471.9,2169.953,1024,304.43,61.6,63.52 +beitv2_large_patch16_224,224,471.02,2173.984,1024,304.43,61.6,63.52 +efficientnetv2_rw_m,416,467.89,1641.398,768,53.24,21.49,79.62 +beit_base_patch16_384,384,466.33,2195.871,1024,86.74,55.54,101.56 +deit3_large_patch16_224,224,466.0,2197.402,1024,304.37,61.6,63.52 +resnetv2_101x1_bit,448,465.55,1099.773,512,44.54,31.65,64.93 +vit_base_patch16_siglip_gap_384,384,464.63,2203.912,1024,86.09,55.43,101.3 +dm_nfnet_f2,256,462.44,2214.346,1024,193.78,33.76,41.85 +maxvit_tiny_tf_384,384,461.19,555.072,256,30.98,17.53,123.42 +vit_base_patch16_siglip_384,384,459.33,2229.343,1024,93.18,56.12,102.2 +nextvit_large,384,453.31,2258.917,1024,57.87,32.03,90.76 +xcit_tiny_12_p8_384,384,445.81,2296.929,1024,6.71,14.13,69.14 +convnext_base,384,444.68,1151.37,512,88.59,45.21,84.49 +resnetv2_152x2_bit,224,443.47,2309.045,1024,236.34,46.95,45.11 +convnext_xlarge,224,442.0,1737.54,768,350.2,60.98,57.5 +convnextv2_base,288,441.99,1158.384,512,88.72,25.43,47.53 +resnetrs200,320,441.67,2318.444,1024,93.21,31.51,67.81 +efficientformerv2_l,224,430.68,2377.646,1024,26.32,2.59,18.54 +tiny_vit_21m_512,512,429.7,893.628,384,21.27,27.02,177.93 +convnextv2_large,224,427.59,1197.409,512,197.96,34.4,43.13 +swinv2_cr_tiny_384,384,426.11,600.773,256,28.33,15.34,161.01 +tf_efficientnet_b5,456,425.94,601.015,256,30.39,10.46,98.86 +flexivit_large,240,425.42,2407.038,1024,304.36,70.99,75.39 +caformer_b36,224,424.34,1809.846,768,98.75,23.22,67.3 +convnext_large,288,423.15,1209.95,512,197.77,56.87,71.29 +maxxvitv2_rmlp_large_rw_224,224,421.82,1820.649,768,215.42,44.14,87.15 +swinv2_cr_large_224,224,421.57,1821.761,768,196.68,35.1,78.42 +seresnextaa101d_32x8d,320,419.27,1831.76,768,93.59,35.19,69.67 +tf_efficientnetv2_m,480,411.3,1867.24,768,54.14,24.76,89.84 +xcit_small_24_p16_384,384,410.23,2496.154,1024,47.67,26.72,68.58 +davit_huge,224,408.33,1253.884,512,348.92,61.23,81.32 +regnetz_d8_evos,320,408.1,1881.86,768,23.46,7.03,38.92 +tresnet_l,448,406.59,2518.499,1024,55.99,43.59,47.56 +seresnet269d,288,404.46,2531.781,1024,113.67,33.65,67.81 +dm_nfnet_f1,320,403.9,2535.248,1024,132.63,35.97,46.77 +convformer_b36,224,402.48,1908.173,768,99.88,22.69,56.06 +regnety_160,384,385.7,995.583,384,83.59,46.87,67.67 +vit_large_r50_s32_384,384,380.77,2689.262,1024,329.09,57.43,76.52 +volo_d4_224,224,377.23,2714.52,1024,192.96,44.34,80.22 +eca_nfnet_l2,384,365.9,2098.95,768,56.72,30.05,68.28 +regnety_640,224,364.69,2105.867,768,281.38,64.16,42.5 +vit_base_patch8_224,224,364.14,2812.13,1024,86.58,78.22,161.69 +vit_large_patch14_224,224,359.91,2845.139,1024,304.2,81.08,88.79 +vit_large_patch14_clip_224,224,359.73,2846.6,1024,304.2,81.08,88.79 +swinv2_base_window16_256,256,357.24,1074.897,384,87.92,22.02,84.71 +swinv2_base_window12to16_192to256,256,357.13,1075.233,384,87.92,22.02,84.71 +vit_large_patch16_siglip_gap_256,256,354.73,2886.676,1024,303.36,80.8,88.34 +vit_large_patch16_siglip_256,256,352.45,2905.34,1024,315.96,81.34,88.88 +maxvit_large_tf_224,224,347.37,1105.422,384,211.79,43.68,127.35 +resnest200e,320,346.52,2955.04,1024,70.2,35.69,82.78 +ecaresnet269d,320,346.03,2959.242,1024,102.09,41.53,83.69 +efficientnetv2_l,384,345.28,2965.659,1024,118.52,36.1,101.16 +convnext_large_mlp,320,342.48,1494.96,512,200.13,70.21,88.02 +tf_efficientnetv2_l,384,341.98,2994.345,1024,118.52,36.1,101.16 +efficientvit_l3,320,341.33,1500.013,512,246.04,56.32,79.34 +convmixer_768_32,224,341.12,3001.86,1024,21.11,19.55,25.95 +inception_next_base,384,340.77,1502.454,512,86.67,43.64,75.48 +eca_nfnet_l3,352,334.48,3061.425,1024,72.04,32.57,73.12 +resnetv2_101x3_bit,224,334.42,2296.52,768,387.93,71.23,48.7 +vit_base_r50_s16_384,384,334.22,2297.893,768,98.95,67.43,135.03 +vit_large_patch14_clip_quickgelu_224,224,325.86,3142.415,1024,303.97,81.08,88.79 +repvgg_d2se,320,322.97,3170.518,1024,133.33,74.57,46.82 +coat_lite_medium_384,384,313.99,1630.619,512,44.57,28.73,116.7 +resnetrs350,288,312.34,3278.479,1024,163.96,43.67,87.09 +vit_large_patch14_xp_224,224,310.38,3299.14,1024,304.06,81.01,88.79 +nasnetalarge,331,307.5,1248.755,384,88.75,23.89,90.56 +xcit_small_24_p8_224,224,306.97,3335.811,1024,47.63,35.81,90.78 +tresnet_xl,448,297.76,2579.254,768,78.44,60.77,61.31 +pnasnet5large,331,297.12,1292.401,384,86.06,25.04,92.89 +volo_d2_384,384,296.76,3450.594,1024,58.87,46.17,184.51 +maxvit_small_tf_384,384,291.09,659.588,192,69.02,35.87,183.65 +vitamin_large2_224,224,290.22,1764.162,512,333.58,75.05,112.83 +vitamin_large_224,224,290.09,1764.937,512,333.32,75.05,112.83 +ecaresnet269d,352,288.69,3547.034,1024,102.09,50.25,101.25 +coatnet_4_224,224,287.2,891.364,256,275.43,62.48,129.26 +xcit_medium_24_p16_384,384,284.24,3602.53,1024,84.4,47.39,91.64 +coatnet_rmlp_2_rw_384,384,282.99,678.457,192,73.88,47.69,209.43 +cait_xxs24_384,384,280.88,3645.694,1024,12.03,9.63,122.66 +resnetrs270,352,280.56,3649.828,1024,129.86,51.13,105.48 +caformer_s36,384,275.88,1855.885,512,39.3,26.08,150.33 +resnet50x16_clip_gap,384,269.91,1896.893,512,136.2,70.32,100.64 +nfnet_f2,352,268.71,3810.855,1024,193.78,63.22,79.06 +convnext_xlarge,288,267.69,1912.637,512,350.2,100.8,95.05 +efficientnet_b6,528,265.01,482.998,128,43.04,19.4,167.39 +convformer_s36,384,263.97,1939.565,512,40.01,22.54,89.62 +eva02_large_patch14_224,224,260.65,3928.659,1024,303.27,81.15,97.2 +swinv2_cr_small_384,384,260.05,984.414,256,49.7,29.7,298.03 +maxvit_tiny_tf_512,512,259.65,739.436,192,31.05,33.49,257.59 +convnextv2_large,288,259.46,986.639,256,197.96,56.87,71.29 +resnet50x16_clip,384,258.3,1982.153,512,167.33,74.9,103.54 +eva02_large_patch14_clip_224,224,256.99,3984.533,1024,304.11,81.18,97.2 +mvitv2_large_cls,224,256.7,2991.779,768,234.58,42.17,111.69 +tf_efficientnet_b6,528,254.23,503.468,128,43.04,19.4,167.39 +vit_so400m_patch14_siglip_gap_224,224,251.8,4066.704,1024,412.44,109.57,106.13 +resnext101_32x32d,224,251.59,2035.02,512,468.53,87.29,91.12 +nfnet_f3,320,250.99,4079.757,1024,254.92,68.77,83.93 +vit_so400m_patch14_siglip_224,224,250.86,4082.015,1024,427.68,110.26,106.73 +vit_base_patch16_siglip_gap_512,512,250.3,2045.523,512,86.43,107.0,246.15 +convnextv2_base,384,249.33,1026.75,256,88.72,45.21,84.49 +mvitv2_large,224,249.02,2056.082,512,217.99,43.87,112.02 +vit_base_patch16_siglip_512,512,247.63,2067.618,512,93.52,108.22,247.74 +volo_d5_224,224,246.42,4155.464,1024,295.46,72.4,118.11 +efficientnetv2_xl,384,242.5,4222.705,1024,208.12,52.81,139.2 +convnext_large,384,238.93,1607.182,384,197.77,101.1,126.74 +convnext_large_mlp,384,238.86,1607.59,384,200.13,101.11,126.74 +dm_nfnet_f2,352,235.33,3263.538,768,193.78,63.22,79.06 +xcit_tiny_24_p8_384,384,233.44,4386.633,1024,12.11,27.05,132.95 +swin_base_patch4_window12_384,384,232.72,1100.045,256,87.9,47.19,134.78 +efficientnetv2_l,480,231.29,2213.666,512,118.52,56.4,157.99 +tf_efficientnetv2_xl,384,229.94,4453.261,1024,208.12,52.81,139.2 +tf_efficientnetv2_l,480,229.17,2234.12,512,118.52,56.4,157.99 +resnetrs420,320,226.89,4513.089,1024,191.89,64.2,126.56 +vitamin_large_256,256,224.62,1709.558,384,333.38,99.0,154.99 +vitamin_large2_256,256,224.19,1712.805,384,333.64,99.0,154.99 +maxxvitv2_rmlp_base_rw_384,384,219.77,1747.277,384,116.09,72.98,213.74 +swinv2_large_window12to16_192to256,256,218.3,1172.672,256,196.74,47.81,121.53 +regnety_320,384,216.75,1771.603,384,145.05,95.0,88.87 +dm_nfnet_f3,320,216.6,4727.524,1024,254.92,68.77,83.93 +resmlp_big_24_224,224,215.29,4756.307,1024,129.14,100.23,87.31 +efficientvit_l3,384,214.99,1786.092,384,246.04,81.08,114.02 +seresnextaa201d_32x8d,320,214.12,4782.305,1024,149.39,70.22,138.71 +xcit_medium_24_p8_224,224,211.66,4837.959,1024,84.32,63.53,121.23 +hiera_huge_224,224,211.18,2424.411,512,672.78,124.85,150.95 +eca_nfnet_l3,448,206.31,2481.677,512,72.04,52.55,118.4 +caformer_m36,384,198.38,1290.465,256,56.2,42.11,196.35 +xcit_small_12_p8_384,384,196.63,2603.882,512,26.21,54.92,138.29 +cait_xs24_384,384,196.17,3914.895,768,26.67,19.28,183.98 +rdnet_large,384,195.11,984.048,192,186.27,102.09,137.13 +eva02_base_patch14_448,448,193.77,2642.327,512,87.12,107.11,259.14 +maxvit_xlarge_tf_224,224,190.88,1341.125,256,506.99,97.52,191.04 +focalnet_huge_fl3,224,190.8,2683.391,512,745.28,118.26,104.8 +convformer_m36,384,189.9,1348.049,256,57.05,37.87,123.56 +resnetrs350,384,188.33,5437.373,1024,163.96,77.59,154.74 +cait_xxs36_384,384,188.29,5438.504,1024,17.37,14.35,183.7 +swinv2_cr_base_384,384,185.69,1378.646,256,87.88,50.57,333.68 +vit_huge_patch14_224,224,183.94,5567.143,1024,630.76,167.4,139.41 +vit_huge_patch14_clip_224,224,183.87,5569.209,1024,632.05,167.4,139.41 +vit_base_patch14_dinov2,518,181.94,2814.035,512,86.58,151.71,397.58 +regnety_1280,224,181.49,2821.098,512,644.81,127.66,71.58 +maxvit_rmlp_base_rw_384,384,181.15,2119.803,384,116.14,70.97,318.95 +vit_base_patch14_reg4_dinov2,518,180.64,2834.287,512,86.58,152.25,399.53 +vitamin_xlarge_256,256,180.27,1420.118,256,436.06,130.13,177.37 +swinv2_cr_huge_224,224,179.14,2143.597,384,657.83,115.97,121.08 +vit_huge_patch14_gap_224,224,178.21,5745.966,1024,630.76,166.73,138.74 +deit3_huge_patch14_224,224,176.76,5793.252,1024,632.13,167.4,139.41 +convnextv2_huge,224,175.22,1461.021,256,660.29,115.0,79.07 +sam2_hiera_tiny,896,173.99,367.818,64,26.85,99.86,384.63 +vit_huge_patch14_clip_quickgelu_224,224,169.48,6042.139,1024,632.08,167.4,139.41 +maxvit_base_tf_384,384,163.19,1176.531,192,119.65,73.8,332.9 +vit_huge_patch14_xp_224,224,162.96,6283.755,1024,631.8,167.3,139.41 +maxvit_small_tf_512,512,162.91,589.27,96,69.13,67.26,383.77 +xcit_large_24_p16_384,384,162.76,6291.334,1024,189.1,105.35,137.17 +resnest269e,416,162.7,3146.963,512,110.93,77.69,171.98 +vit_large_patch16_384,384,159.33,4820.268,768,304.72,191.21,270.24 +resnetv2_152x2_bit,384,158.13,2428.302,384,236.34,136.16,132.56 +eva_large_patch14_336,336,157.87,4864.597,768,304.53,191.1,270.24 +vit_large_patch14_clip_336,336,157.73,4868.972,768,304.53,191.11,270.24 +efficientnet_b7,600,155.34,618.001,96,66.35,38.33,289.94 +convmixer_1536_20,224,153.83,6656.648,1024,51.63,48.68,33.03 +coatnet_5_224,224,152.87,1255.992,192,687.47,145.49,194.24 +seresnextaa201d_32x8d,384,152.07,5050.135,768,149.39,101.11,199.72 +convnext_xxlarge,256,152.04,2525.627,384,846.47,198.09,124.45 +deit3_large_patch16_384,384,151.9,6741.438,1024,304.76,191.21,270.24 +cait_s24_384,384,150.93,3392.288,512,47.06,32.17,245.31 +convnext_xlarge,384,150.77,1697.89,256,350.2,179.2,168.99 +davit_giant,224,150.39,2553.341,384,1406.47,192.92,153.06 +tf_efficientnet_b7,600,150.32,638.606,96,66.35,38.33,289.94 +volo_d3_448,448,150.3,3406.615,512,86.63,96.33,446.83 +nfnet_f3,416,148.76,3441.715,512,254.92,115.58,141.78 +vit_large_patch16_siglip_gap_384,384,148.02,5188.469,768,303.69,190.85,269.55 +vit_giant_patch16_gap_224,224,147.29,6952.477,1024,1011.37,202.46,139.26 +vit_large_patch16_siglip_384,384,147.15,5219.006,768,316.28,192.07,270.75 +sam2_hiera_small,896,147.12,435.006,64,33.95,123.99,442.63 +resnetv2_50x3_bit,448,147.08,1305.439,192,217.32,145.7,133.37 +beit_large_patch16_384,384,146.92,6969.565,1024,305.0,191.21,270.24 +convnextv2_large,384,146.46,1310.909,192,197.96,101.1,126.74 +resnetv2_152x4_bit,224,144.26,3549.137,512,936.53,186.9,90.22 +efficientnetv2_xl,512,144.24,3549.736,512,208.12,93.85,247.32 +vit_large_patch14_clip_quickgelu_336,336,143.45,5353.757,768,304.29,191.11,270.24 +nfnet_f4,384,143.08,3578.376,512,316.07,122.14,147.57 +tf_efficientnetv2_xl,512,143.04,3579.486,512,208.12,93.85,247.32 +caformer_b36,384,142.66,1794.459,256,98.75,72.33,261.79 +convformer_b36,384,137.39,1863.311,256,99.88,66.67,164.75 +swin_large_patch4_window12_384,384,136.15,940.102,128,196.74,104.08,202.16 +resnetrs420,416,133.29,7682.756,1024,191.89,108.45,213.79 +dm_nfnet_f3,416,128.51,3984.046,512,254.92,115.58,141.78 +regnety_640,384,127.6,2006.234,256,281.38,188.47,124.83 +vitamin_large2_336,336,125.13,1534.357,192,333.83,175.72,307.47 +vitamin_large_336,336,125.0,1536.041,192,333.57,175.72,307.47 +dm_nfnet_f4,384,124.43,4114.62,512,316.07,122.14,147.57 +focalnet_huge_fl4,224,122.1,4193.181,512,686.46,118.9,113.34 +xcit_large_24_p8_224,224,120.47,4249.905,512,188.93,141.23,181.56 +eva_giant_patch14_224,224,119.09,8598.315,1024,1012.56,267.18,192.64 +eva_giant_patch14_clip_224,224,118.98,8606.661,1024,1012.59,267.18,192.64 +vit_giant_patch14_clip_224,224,116.63,8780.15,1024,1012.65,267.18,192.64 +vit_giant_patch14_224,224,116.59,8782.578,1024,1012.61,267.18,192.64 +resnetv2_152x2_bit,448,115.47,2217.012,256,236.34,184.99,180.43 +maxvit_large_tf_384,384,114.31,1119.749,128,212.03,132.55,445.84 +eva02_large_patch14_clip_336,336,113.18,6785.716,768,304.43,191.34,289.13 +swinv2_cr_large_384,384,111.86,1144.308,128,196.68,108.96,404.96 +mvitv2_huge_cls,224,111.11,3456.171,384,694.8,120.67,243.63 +convnextv2_huge,288,106.25,1204.727,128,660.29,190.1,130.7 +xcit_small_24_p8_384,384,103.14,4964.351,512,47.63,105.24,265.91 +nfnet_f5,416,101.36,5051.238,512,377.21,170.71,204.56 +vitamin_xlarge_336,336,101.3,1895.3,192,436.06,230.18,347.33 +efficientnet_b8,672,101.16,948.953,96,87.41,63.48,442.89 +cait_s36_384,384,100.96,5071.452,512,68.37,47.99,367.4 +tf_efficientnet_b8,672,98.41,975.542,96,87.41,63.48,442.89 +davit_base_fl,768,97.7,1310.076,128,90.37,190.32,530.15 +swinv2_base_window12to24_192to384,384,96.33,664.374,64,87.92,55.25,280.36 +focalnet_large_fl3,384,94.31,4071.8,384,239.13,105.06,168.04 +resnet50x64_clip_gap,448,93.27,2744.574,256,365.03,253.96,233.22 +maxvit_base_tf_512,512,91.79,1045.908,96,119.88,138.02,703.99 +focalnet_large_fl4,384,91.43,4199.805,384,239.32,105.2,181.78 +resnet50x64_clip,448,90.11,2840.862,256,420.38,265.02,239.13 +vitamin_large2_384,384,88.05,2180.459,192,333.97,234.44,440.16 +vitamin_large_384,384,87.97,2182.658,192,333.71,234.44,440.16 +dm_nfnet_f5,416,87.96,5820.621,512,377.21,170.71,204.56 +volo_d4_448,448,86.81,5898.056,512,193.41,197.13,527.35 +resnetv2_101x3_bit,448,85.75,2239.106,192,387.93,280.33,194.78 +nfnet_f4,512,81.27,4725.064,384,316.07,216.26,262.26 +vit_so400m_patch14_siglip_gap_384,384,81.27,6299.962,512,412.99,333.46,451.19 +vit_so400m_patch14_siglip_384,384,80.82,6335.238,512,428.23,335.4,452.89 +vit_huge_patch14_clip_336,336,79.74,6420.825,512,632.46,390.97,407.54 +sam2_hiera_base_plus,896,77.26,828.314,64,68.68,227.48,828.88 +nfnet_f6,448,75.59,6773.363,512,438.36,229.7,273.62 +beit_large_patch16_512,512,75.53,6779.013,512,305.67,362.24,656.39 +vitamin_xlarge_384,384,75.14,1703.48,128,436.06,306.38,493.46 +xcit_medium_24_p8_384,384,71.62,5361.499,384,84.32,186.67,354.73 +dm_nfnet_f4,512,70.24,5466.713,384,316.07,216.26,262.26 +vit_gigantic_patch14_224,224,66.99,7643.451,512,1844.44,483.95,275.37 +vit_gigantic_patch14_clip_224,224,66.83,7661.682,512,1844.91,483.96,275.37 +dm_nfnet_f6,448,66.08,5811.539,384,438.36,229.7,273.62 +focalnet_xlarge_fl3,384,65.69,3897.182,256,408.79,185.61,223.99 +regnety_1280,384,64.85,2960.449,192,644.81,374.99,210.2 +maxvit_large_tf_512,512,64.1,998.492,64,212.33,244.75,942.15 +maxvit_xlarge_tf_384,384,63.88,1502.728,96,475.32,292.78,668.76 +focalnet_xlarge_fl4,384,63.84,4009.787,256,409.03,185.79,242.31 +vit_huge_patch14_clip_378,378,62.23,8227.954,512,632.68,503.79,572.79 +eva02_large_patch14_448,448,61.3,8351.964,512,305.08,362.33,689.95 +convnextv2_huge,384,61.13,1570.42,96,660.29,337.96,232.35 +swinv2_large_window12to24_192to384,384,61.02,786.614,48,196.74,116.15,407.83 +tf_efficientnet_l2,475,60.44,1588.24,96,480.31,172.11,609.89 +nfnet_f5,544,58.88,6521.51,384,377.21,290.97,349.71 +vit_large_patch14_dinov2,518,58.84,6526.064,384,304.37,507.15,1058.82 +vit_large_patch14_reg4_dinov2,518,58.65,6547.461,384,304.37,508.9,1064.02 +nfnet_f7,480,57.75,6649.626,384,499.5,300.08,355.86 +volo_d5_448,448,57.67,4439.066,256,295.91,315.06,737.92 +vit_so400m_patch14_siglip_gap_448,448,57.55,6672.399,384,413.33,487.18,764.26 +vit_huge_patch14_clip_quickgelu_378,378,57.44,8913.629,512,632.68,503.79,572.79 +vit_huge_patch16_gap_448,448,53.54,7172.285,384,631.67,544.7,636.83 +eva_giant_patch14_336,336,51.78,9887.539,512,1013.01,620.64,550.67 +swinv2_cr_giant_224,224,51.7,3713.689,192,2598.76,483.85,309.15 +dm_nfnet_f5,544,51.67,4954.931,256,377.21,290.97,349.71 +swinv2_cr_huge_384,384,48.44,1321.195,64,657.94,352.04,583.18 +nfnet_f6,576,45.98,5567.566,256,438.36,378.69,452.2 +volo_d5_512,512,44.13,5800.796,256,296.09,425.09,1105.37 +xcit_large_24_p8_384,384,40.73,6285.389,256,188.93,415.0,531.82 +dm_nfnet_f6,576,39.87,6420.075,256,438.36,378.69,452.2 +nfnet_f7,608,36.14,7083.228,256,499.5,480.39,570.85 +maxvit_xlarge_tf_512,512,35.64,1346.799,48,475.77,534.14,1413.22 +regnety_2560,384,34.99,2743.264,96,1282.6,747.83,296.49 +convnextv2_huge,512,34.27,1400.46,48,660.29,600.81,413.07 +davit_huge_fl,768,34.25,1868.539,64,360.64,744.84,1060.3 +cait_m36_384,384,33.17,7717.041,256,271.22,173.11,734.81 +resnetv2_152x4_bit,480,32.37,3954.731,128,936.53,844.84,414.26 +sam2_hiera_large,1024,23.78,2018.069,48,212.15,907.48,2190.34 +efficientnet_l2,800,22.94,1394.635,32,480.31,479.12,1707.39 +samvit_base_patch16,1024,22.72,528.058,12,89.67,486.43,1343.27 +tf_efficientnet_l2,800,22.52,1420.719,32,480.31,479.12,1707.39 +vit_giant_patch14_dinov2,518,17.71,7227.529,128,1136.48,1784.2,2757.89 +vit_giant_patch14_reg4_dinov2,518,17.61,7266.646,128,1136.48,1790.08,2771.21 +eva_giant_patch14_560,560,16.99,7533.399,128,1014.45,1906.76,2577.17 +swinv2_cr_giant_384,384,14.93,2142.906,32,2598.76,1450.71,1394.86 +cait_m48_448,448,14.06,9102.618,128,356.46,329.41,1708.23 +samvit_large_patch16,1024,10.4,769.501,8,308.28,1493.86,2553.78 +vit_so400m_patch14_siglip_gap_896,896,10.27,9344.729,96,416.87,2731.49,8492.88 +samvit_huge_patch16,1024,6.35,944.29,6,637.03,2982.23,3428.16 diff --git a/pytorch-image-models/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090-dynamo.csv b/pytorch-image-models/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090-dynamo.csv new file mode 100644 index 0000000000000000000000000000000000000000..a0ab261ea686758135f168d7c05392eab2194c02 --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090-dynamo.csv @@ -0,0 +1,1444 @@ +model,infer_img_size,infer_samples_per_sec,infer_step_time,infer_batch_size,param_count,infer_gmacs,infer_macts +test_efficientnet,160,188911.31,1.347,256,0.36,0.06,0.55 +test_byobnet,160,178532.03,1.426,256,0.46,0.03,0.43 +test_vit,160,155871.09,1.635,256,0.37,0.04,0.48 +lcnet_035,224,97850.77,2.608,256,1.64,0.03,1.04 +tf_mobilenetv3_small_minimal_100,224,93614.74,2.726,256,2.04,0.06,1.41 +lcnet_050,224,86660.68,2.946,256,1.88,0.05,1.26 +mobilenetv3_small_050,224,83744.91,3.049,256,1.59,0.03,0.92 +tinynet_e,106,83059.88,3.074,256,2.04,0.03,0.69 +mobilenetv3_small_075,224,82620.81,3.091,256,2.04,0.05,1.3 +mobilenetv3_small_100,224,79752.52,3.202,256,2.54,0.06,1.42 +mobilenetv4_conv_small,224,74963.65,3.407,256,3.77,0.19,1.97 +tf_mobilenetv3_small_075,224,68793.66,3.712,256,2.04,0.05,1.3 +tf_mobilenetv3_small_100,224,63377.08,4.031,256,2.54,0.06,1.42 +tinynet_d,152,62921.33,4.061,256,2.34,0.05,1.42 +lcnet_075,224,59549.33,4.29,256,2.36,0.1,1.99 +mnasnet_small,224,58424.52,4.373,256,2.03,0.07,2.16 +levit_conv_128s,224,58296.58,4.383,256,7.78,0.31,1.88 +mobilenetv4_conv_small,256,54925.26,4.652,256,3.77,0.25,2.57 +levit_128s,224,53157.92,4.807,256,7.78,0.31,1.88 +resnet10t,176,52732.02,4.846,256,5.44,0.7,1.51 +ghostnet_050,224,52648.58,4.854,256,2.59,0.05,1.77 +regnetx_002,224,50885.47,5.023,256,2.68,0.2,2.16 +repghostnet_050,224,49844.85,5.127,256,2.31,0.05,2.02 +resnet18,160,49720.41,5.14,256,11.69,0.93,1.27 +mobilenetv2_035,224,47284.89,5.404,256,1.68,0.07,2.86 +regnety_002,224,47175.78,5.418,256,3.16,0.2,2.17 +lcnet_100,224,46545.58,5.491,256,2.95,0.16,2.52 +mnasnet_050,224,45318.19,5.64,256,2.22,0.11,3.07 +repghostnet_058,224,44344.16,5.764,256,2.55,0.07,2.59 +levit_conv_128,224,43034.18,5.94,256,9.21,0.41,2.71 +vit_tiny_r_s16_p8_224,224,40905.75,6.25,256,6.34,0.44,2.06 +efficientvit_b0,224,40487.21,6.315,256,3.41,0.1,2.87 +regnetx_004,224,40146.51,6.368,256,5.16,0.4,3.14 +levit_128,224,39948.51,6.4,256,9.21,0.41,2.71 +regnetx_004_tv,224,38547.28,6.633,256,5.5,0.42,3.17 +repghostnet_080,224,37919.74,6.742,256,3.28,0.1,3.22 +levit_conv_192,224,37779.54,6.768,256,10.95,0.66,3.2 +semnasnet_050,224,37506.25,6.817,256,2.08,0.11,3.44 +hgnetv2_b0,224,37356.26,6.845,256,6.0,0.33,2.12 +mobilenetv2_050,224,37215.01,6.87,256,1.97,0.1,3.64 +gernet_s,224,36311.59,7.041,256,8.17,0.75,2.65 +efficientvit_m2,224,36122.02,7.079,256,4.19,0.2,1.47 +pit_ti_224,224,36065.64,7.089,256,4.85,0.7,6.19 +pit_ti_distilled_224,224,35852.04,7.132,256,5.1,0.71,6.23 +efficientvit_m1,224,34221.22,7.472,256,2.98,0.17,1.33 +resnet10t,224,33377.1,7.661,256,5.44,1.1,2.43 +vit_small_patch32_224,224,32872.0,7.779,256,22.88,1.15,2.5 +efficientvit_m3,224,32739.6,7.81,256,6.9,0.27,1.62 +mixer_s32_224,224,32505.37,7.867,256,19.1,1.0,2.28 +levit_192,224,31250.48,8.183,256,10.95,0.66,3.2 +edgenext_xx_small,256,31029.41,8.242,256,1.33,0.26,3.33 +xcit_nano_12_p16_224,224,30599.92,8.357,256,3.05,0.56,4.17 +tinynet_c,184,30555.73,8.369,256,2.46,0.11,2.87 +nf_regnet_b0,192,30346.81,8.427,256,8.76,0.37,3.15 +efficientvit_m0,224,30313.3,8.437,256,2.35,0.08,0.91 +lcnet_150,224,30064.96,8.506,256,4.5,0.34,3.79 +resnet34,160,29702.78,8.608,256,21.8,1.87,1.91 +repghostnet_100,224,29445.74,8.685,256,4.07,0.15,3.98 +efficientvit_m4,224,29026.74,8.81,256,8.8,0.3,1.7 +cs3darknet_focus_s,256,28372.65,9.014,256,3.27,0.69,2.7 +regnety_004,224,27981.57,9.139,256,4.34,0.41,3.89 +tf_mobilenetv3_large_minimal_100,224,27961.28,9.147,256,3.92,0.22,4.4 +mobilenetv3_large_075,224,27774.4,9.208,256,3.99,0.16,4.0 +resnet14t,176,27760.24,9.213,256,10.08,1.07,3.61 +mnasnet_075,224,27169.47,9.414,256,3.17,0.23,4.77 +convnext_atto,224,27156.87,9.418,256,3.7,0.55,3.81 +hgnetv2_b1,224,27032.22,9.462,256,6.34,0.49,2.73 +cs3darknet_s,256,26830.41,9.533,256,3.28,0.72,2.97 +regnety_006,224,26488.55,9.656,256,6.06,0.61,4.33 +efficientvit_m5,224,26226.6,9.753,256,12.47,0.53,2.41 +resnet18,224,25948.79,9.857,256,11.69,1.82,2.48 +tf_efficientnetv2_b0,192,25767.89,9.926,256,7.14,0.54,3.51 +tf_mobilenetv3_large_075,224,25675.44,9.962,256,3.99,0.16,4.0 +ghostnet_100,224,25628.25,9.98,256,5.18,0.15,3.55 +levit_conv_256,224,25595.46,9.993,256,18.89,1.13,4.23 +convnextv2_atto,224,25550.99,10.011,256,3.71,0.55,3.81 +convnext_atto_ols,224,25437.32,10.056,256,3.7,0.58,4.11 +repghostnet_111,224,25146.64,10.171,256,4.54,0.18,4.38 +mobilenetv3_rw,224,24721.37,10.347,256,5.48,0.23,4.41 +mobilenetv3_large_100,224,24474.85,10.451,256,5.48,0.23,4.41 +deit_tiny_patch16_224,224,24312.15,10.521,256,5.72,1.26,5.97 +vit_tiny_patch16_224,224,24266.11,10.54,256,5.72,1.26,5.97 +repvgg_a0,224,24061.2,10.63,256,9.11,1.52,3.59 +seresnet18,224,24041.64,10.639,256,11.78,1.82,2.49 +legacy_seresnet18,224,24022.17,10.648,256,11.78,1.82,2.49 +hardcorenas_b,224,23830.5,10.734,256,5.18,0.26,5.09 +deit_tiny_distilled_patch16_224,224,23769.88,10.761,256,5.91,1.27,6.01 +mnasnet_100,224,23629.36,10.825,256,4.38,0.33,5.46 +edgenext_xx_small,288,23592.08,10.842,256,1.33,0.33,4.21 +regnetx_008,224,23475.66,10.896,256,7.26,0.81,5.15 +hardcorenas_c,224,23258.07,10.998,256,5.52,0.28,5.01 +mobilenetv1_100,224,22998.4,11.123,256,4.23,0.58,5.04 +mobilenet_edgetpu_v2_xs,224,22908.62,11.166,256,4.46,0.7,4.8 +semnasnet_075,224,22722.94,11.257,256,2.91,0.23,5.54 +levit_256,224,22644.71,11.296,256,18.89,1.13,4.23 +mobilenetv1_100h,224,22625.21,11.306,256,5.28,0.63,5.09 +tf_mobilenetv3_large_100,224,22476.69,11.381,256,5.48,0.23,4.41 +convnext_femto,224,22282.51,11.48,256,5.22,0.79,4.57 +resnet18d,224,22111.11,11.569,256,11.71,2.06,3.29 +levit_conv_256d,224,22077.96,11.586,256,26.21,1.4,4.93 +spnasnet_100,224,22077.72,11.586,256,4.42,0.35,6.03 +mobilenetv4_hybrid_medium_075,224,22065.84,11.593,256,7.31,0.66,5.65 +dla46_c,224,21982.6,11.636,256,1.3,0.58,4.5 +vit_medium_patch32_clip_224,224,21846.57,11.709,256,39.69,2.0,3.34 +mobilenetv2_075,224,21759.16,11.757,256,2.64,0.22,5.86 +hardcorenas_a,224,21729.5,11.773,256,5.26,0.23,4.38 +mobilenetv4_conv_medium,224,21722.12,11.776,256,9.72,0.84,5.8 +hgnetv2_b0,288,21721.77,11.777,256,6.0,0.54,3.51 +regnety_008,224,21671.84,11.803,256,6.26,0.81,5.25 +hardcorenas_d,224,21580.66,11.853,256,7.5,0.3,4.93 +convnextv2_femto,224,21531.01,11.881,256,5.23,0.79,4.57 +convnext_femto_ols,224,21072.2,12.14,256,5.23,0.82,4.87 +repghostnet_130,224,21064.38,12.144,256,5.48,0.25,5.24 +mobilenet_edgetpu_100,224,21052.52,12.151,256,4.09,1.0,5.75 +pit_xs_224,224,20835.05,12.278,256,10.62,1.4,7.71 +efficientformerv2_s0,224,20726.97,12.342,256,3.6,0.41,5.3 +ese_vovnet19b_slim_dw,224,20707.54,12.354,256,1.9,0.4,5.28 +pit_xs_distilled_224,224,20528.33,12.461,256,11.0,1.41,7.76 +regnety_008_tv,224,20329.15,12.583,256,6.43,0.84,5.42 +fbnetc_100,224,20140.52,12.702,256,5.57,0.4,6.51 +vit_xsmall_patch16_clip_224,224,19971.81,12.809,256,8.28,1.79,6.65 +tf_efficientnetv2_b1,192,19947.06,12.825,256,8.14,0.76,4.59 +levit_256d,224,19733.29,12.964,256,26.21,1.4,4.93 +semnasnet_100,224,19697.19,12.988,256,3.89,0.32,6.23 +ese_vovnet19b_slim,224,19687.27,12.994,256,3.17,1.69,3.52 +ghostnet_130,224,19375.99,13.203,256,7.36,0.24,4.6 +regnetx_006,224,19266.74,13.277,256,6.2,0.61,3.98 +mobilenetv2_100,224,18995.91,13.468,256,3.5,0.31,6.68 +tinynet_b,188,18989.86,13.472,256,3.73,0.21,4.44 +hrnet_w18_small,224,18828.83,13.587,256,13.19,1.61,5.72 +repghostnet_150,224,18415.28,13.892,256,6.58,0.32,6.0 +efficientnet_lite0,224,17985.67,14.225,256,4.65,0.4,6.74 +skresnet18,224,17812.46,14.363,256,11.96,1.82,3.24 +resnetblur18,224,17704.62,14.451,256,11.69,2.34,3.39 +tf_efficientnet_lite0,224,17685.01,14.466,256,4.65,0.4,6.74 +gmlp_ti16_224,224,17642.28,14.501,256,5.87,1.34,7.55 +mobilevit_xxs,256,17607.31,14.53,256,1.27,0.42,8.34 +edgenext_x_small,256,17443.49,14.667,256,2.34,0.54,5.93 +resnet14t,224,17428.63,14.68,256,10.08,1.69,5.8 +hardcorenas_e,224,17401.15,14.702,256,8.07,0.35,5.65 +tf_efficientnetv2_b0,224,17323.92,14.768,256,7.14,0.73,4.77 +mobilenetv4_hybrid_medium,224,17322.11,14.769,256,11.07,0.98,6.84 +repvit_m1,224,17266.08,14.817,256,5.49,0.83,7.45 +pvt_v2_b0,224,17238.77,14.841,256,3.67,0.57,7.99 +xcit_tiny_12_p16_224,224,17236.25,14.843,256,6.72,1.24,6.29 +mobilenetv1_125,224,17195.51,14.879,256,6.27,0.89,6.3 +hardcorenas_f,224,17171.48,14.9,256,8.2,0.35,5.57 +hgnetv2_b2,224,17062.45,14.995,256,11.22,1.15,4.12 +repvgg_a1,224,17061.07,14.996,256,14.09,2.64,4.74 +nf_regnet_b0,256,16940.55,15.102,256,8.76,0.64,5.58 +mobilenetv1_100,256,16680.51,15.338,256,4.23,0.76,6.59 +mobilenetv1_100h,256,16453.67,15.55,256,5.28,0.82,6.65 +resnet50,160,16423.72,15.578,256,25.56,2.1,5.67 +repvit_m0_9,224,16304.29,15.692,256,5.49,0.83,7.45 +hgnetv2_b1,288,16122.96,15.869,256,6.34,0.82,4.51 +mobilenetv4_conv_medium,256,16108.18,15.883,256,9.72,1.1,7.58 +crossvit_tiny_240,240,16046.42,15.945,256,7.01,1.57,9.08 +convnext_pico,224,16034.63,15.957,256,9.05,1.37,6.1 +convnext_atto,288,15915.6,16.076,256,3.7,0.91,6.3 +gernet_m,224,15764.43,16.23,256,21.14,3.02,5.24 +vit_betwixt_patch32_clip_224,224,15727.09,16.268,256,61.41,3.09,4.17 +efficientvit_b1,224,15699.71,16.296,256,9.1,0.53,7.25 +resnet18,288,15598.12,16.402,256,11.69,3.01,4.11 +crossvit_9_240,240,15301.84,16.72,256,8.55,1.85,9.52 +resnet50d,160,15291.83,16.732,256,25.58,2.22,6.08 +resnet34,224,15291.59,16.732,256,21.8,3.67,3.74 +convnext_pico_ols,224,15194.28,16.84,256,9.06,1.43,6.5 +tinynet_a,192,15162.99,16.873,256,6.19,0.35,5.41 +mobilenet_edgetpu_v2_s,224,15100.58,16.944,256,5.99,1.21,6.6 +mnasnet_140,224,15010.98,17.045,256,7.12,0.6,7.71 +convnextv2_pico,224,14927.0,17.141,256,9.07,1.37,6.1 +levit_conv_384,224,14906.88,17.164,256,39.13,2.36,6.26 +convnext_atto_ols,288,14901.48,17.17,256,3.7,0.96,6.8 +fbnetv3_b,224,14619.25,17.502,256,8.6,0.42,6.97 +convnextv2_atto,288,14583.28,17.546,256,3.71,0.91,6.3 +regnetz_005,224,14395.17,17.774,256,7.12,0.52,5.86 +mobilenetv4_conv_blur_medium,224,14300.06,17.893,256,9.72,1.22,8.58 +seresnet18,288,14286.39,17.91,256,11.78,3.01,4.11 +efficientformerv2_s1,224,14252.25,17.953,256,6.19,0.67,7.66 +seresnet34,224,14239.31,17.969,256,21.96,3.67,3.74 +mobilevitv2_050,256,14216.39,17.998,256,1.37,0.48,8.04 +legacy_seresnet34,224,14186.47,18.036,256,21.96,3.67,3.74 +mobilenetv2_110d,224,14184.27,18.039,256,4.52,0.45,8.71 +crossvit_9_dagger_240,240,14117.97,18.123,256,8.78,1.99,9.97 +efficientformer_l1,224,14110.06,18.133,256,12.29,1.3,5.53 +rexnetr_100,224,14090.03,18.159,256,4.88,0.43,7.72 +cs3darknet_focus_m,256,14044.33,18.219,256,9.3,1.98,4.89 +resnet34d,224,13891.67,18.42,256,21.82,3.91,4.54 +eva02_tiny_patch14_224,224,13809.61,18.529,256,5.5,1.7,9.14 +tf_efficientnetv2_b2,208,13703.38,18.673,256,10.1,1.06,6.0 +resnext50_32x4d,160,13655.32,18.739,256,25.03,2.17,7.35 +vit_tiny_r_s16_p8_384,384,13521.23,18.924,256,6.36,1.34,6.49 +dla34,224,13514.0,18.934,256,15.74,3.07,5.02 +cs3darknet_m,256,13508.36,18.942,256,9.31,2.08,5.28 +repghostnet_200,224,13466.37,19.001,256,9.8,0.54,7.96 +selecsls42,224,13463.14,19.006,256,30.35,2.94,4.62 +rexnet_100,224,13432.99,19.048,256,4.8,0.41,7.44 +ghostnetv2_100,224,13426.18,19.057,256,6.16,0.18,4.55 +selecsls42b,224,13399.31,19.096,256,32.46,2.98,4.62 +resnet18d,288,13378.17,19.127,256,11.71,3.41,5.43 +seresnet50,160,13373.47,19.133,256,28.09,2.1,5.69 +repvgg_b0,224,13287.11,19.257,256,15.82,3.41,6.15 +hgnetv2_b3,224,13275.88,19.274,256,16.29,1.78,5.07 +resnet26,224,13255.66,19.304,256,16.0,2.36,7.35 +convnext_femto,288,13199.45,19.386,256,5.22,1.3,7.56 +edgenext_x_small,288,13195.3,19.392,256,2.34,0.68,7.5 +resnet50,176,13189.38,19.401,256,25.56,2.62,6.92 +nf_regnet_b2,240,13112.1,19.515,256,14.31,0.97,7.23 +repvit_m1_0,224,13097.62,19.537,256,7.3,1.13,8.69 +levit_384,224,13010.17,19.668,256,39.13,2.36,6.26 +mobilenetv4_hybrid_medium,256,12899.45,19.837,256,11.07,1.29,9.01 +mobilenetv1_125,256,12862.06,19.894,256,6.27,1.16,8.23 +ecaresnet50t,160,12731.21,20.1,256,25.57,2.21,6.04 +semnasnet_140,224,12618.94,20.277,256,6.11,0.6,8.87 +nf_regnet_b1,256,12525.77,20.429,256,10.22,0.82,7.27 +repvit_m2,224,12475.42,20.511,256,8.8,1.36,9.43 +resnetrs50,160,12428.45,20.588,256,35.69,2.29,6.2 +convnext_femto_ols,288,12403.21,20.631,256,5.23,1.35,8.06 +gmixer_12_224,224,12369.96,20.686,256,12.7,2.67,7.26 +mobilenetv2_140,224,12263.51,20.865,256,6.11,0.6,9.57 +pit_s_distilled_224,224,12210.42,20.957,256,24.04,2.9,11.64 +resnetaa34d,224,12190.8,20.991,256,21.82,4.43,5.07 +convnextv2_femto,288,12161.51,21.041,256,5.23,1.3,7.56 +fbnetv3_d,224,12090.69,21.164,256,10.31,0.52,8.5 +nf_resnet26,224,12044.22,21.246,256,16.0,2.41,7.35 +visformer_tiny,224,11983.41,21.354,256,10.32,1.27,5.72 +poolformerv2_s12,224,11968.43,21.381,256,11.89,1.83,5.53 +pit_s_224,224,11936.79,21.437,256,23.46,2.88,11.56 +efficientnet_es_pruned,224,11927.45,21.454,256,5.44,1.81,8.73 +vit_base_patch32_224,224,11925.14,21.458,256,88.22,4.41,5.01 +efficientnet_es,224,11898.4,21.507,256,5.44,1.81,8.73 +vit_base_patch32_clip_224,224,11887.61,21.526,256,88.22,4.41,5.01 +vit_base_patch32_clip_quickgelu_224,224,11884.79,21.532,256,87.85,4.41,5.01 +efficientnet_lite1,240,11883.98,21.533,256,5.42,0.62,10.14 +tiny_vit_5m_224,224,11858.98,21.578,256,12.08,1.28,11.25 +selecsls60,224,11842.43,21.608,256,30.67,3.59,5.52 +tf_efficientnet_es,224,11819.88,21.649,256,5.44,1.81,8.73 +ese_vovnet19b_dw,224,11813.91,21.66,256,6.54,1.34,8.25 +repvit_m1_1,224,11786.2,21.711,256,8.8,1.36,9.43 +selecsls60b,224,11784.48,21.714,256,32.77,3.63,5.52 +resnet26d,224,11759.24,21.761,256,16.01,2.6,8.15 +tf_efficientnet_lite1,240,11696.2,21.877,256,5.42,0.62,10.14 +efficientnet_b0,224,11670.69,21.926,256,5.29,0.4,6.75 +efficientvit_b1,256,11622.24,22.018,256,9.1,0.69,9.46 +mobilenet_edgetpu_v2_m,224,11435.95,22.377,256,8.46,1.85,8.15 +hgnetv2_b4,224,11396.46,22.454,256,19.8,2.75,6.7 +resmlp_12_224,224,11392.33,22.463,256,15.35,3.01,5.5 +darknet17,256,11376.06,22.495,256,14.3,3.26,7.18 +nf_ecaresnet26,224,11300.75,22.644,256,16.0,2.41,7.36 +nf_seresnet26,224,11261.33,22.724,256,17.4,2.41,7.36 +convnext_nano,224,11259.0,22.727,256,15.59,2.46,8.37 +vit_small_patch32_384,384,11156.92,22.936,256,22.92,3.45,8.25 +efficientnet_b1_pruned,240,11085.12,23.084,256,6.33,0.4,6.21 +resnext50_32x4d,176,11026.93,23.206,256,25.03,2.71,8.97 +tf_efficientnetv2_b1,240,11002.33,23.259,256,8.14,1.21,7.34 +dla46x_c,224,10979.44,23.307,256,1.07,0.54,5.66 +mobilenetv4_conv_aa_medium,256,10961.85,23.344,256,9.72,1.58,10.3 +cs3darknet_focus_m,288,10880.75,23.519,256,9.3,2.51,6.19 +mixer_s16_224,224,10874.1,23.533,256,18.53,3.79,5.97 +edgenext_small,256,10831.26,23.626,256,5.59,1.26,9.07 +dla60x_c,224,10780.61,23.737,256,1.32,0.59,6.01 +mobilenetv4_conv_blur_medium,256,10753.26,23.797,256,9.72,1.59,11.2 +mixer_b32_224,224,10749.19,23.807,256,60.29,3.24,6.29 +resnetblur18,288,10709.95,23.894,256,11.69,3.87,5.6 +rexnetr_130,224,10680.75,23.959,256,7.61,0.68,9.81 +poolformer_s12,224,10614.31,24.108,256,11.92,1.82,5.53 +cs3darknet_m,288,10519.8,24.326,256,9.31,2.63,6.69 +fbnetv3_b,256,10482.22,24.413,256,8.6,0.55,9.1 +resnet101,160,10466.64,24.45,256,44.55,4.0,8.28 +skresnet34,224,10457.92,24.469,256,22.28,3.67,5.13 +convnextv2_nano,224,10414.74,24.572,256,15.62,2.46,8.37 +darknet21,256,10326.92,24.78,256,20.86,3.93,7.47 +ghostnetv2_130,224,10285.16,24.881,256,8.96,0.28,5.9 +gernet_l,256,10282.94,24.887,256,31.08,4.57,8.0 +hgnetv2_b2,288,10247.93,24.971,256,11.22,1.89,6.8 +mobilenetv2_120d,224,10245.9,24.977,256,5.83,0.69,11.97 +convnext_nano_ols,224,10137.55,25.244,256,15.65,2.65,9.38 +dpn48b,224,10002.5,25.584,256,9.13,1.69,8.92 +nf_regnet_b2,272,9981.6,25.638,256,14.31,1.22,9.27 +ecaresnet50d_pruned,224,9963.17,25.685,256,19.94,2.53,6.43 +mobilenetv4_conv_medium,320,9962.23,25.687,256,9.72,1.71,11.84 +mobileone_s1,224,9945.03,25.732,256,4.83,0.86,9.67 +mobilenet_edgetpu_v2_l,224,9929.94,25.772,256,10.92,2.55,9.05 +efficientnet_b0_gn,224,9920.37,25.796,256,5.29,0.42,6.75 +tiny_vit_11m_224,224,9911.24,25.819,256,20.35,2.04,13.49 +convnext_pico,288,9741.71,26.27,256,9.05,2.27,10.08 +resnext26ts,256,9713.54,26.346,256,10.3,2.43,10.52 +nf_regnet_b1,288,9675.15,26.45,256,10.22,1.02,9.2 +vit_small_patch16_224,224,9665.97,26.475,256,22.05,4.61,11.95 +repvgg_a2,224,9665.68,26.476,256,28.21,5.7,6.26 +deit_small_patch16_224,224,9661.41,26.487,256,22.05,4.61,11.95 +deit3_small_patch16_224,224,9645.46,26.532,256,22.06,4.61,11.95 +tf_efficientnet_b0,224,9637.3,26.554,256,5.29,0.4,6.75 +tf_mixnet_s,224,9581.92,26.707,256,4.13,0.25,6.25 +rexnet_130,224,9568.98,26.744,256,7.56,0.68,9.71 +deit_small_distilled_patch16_224,224,9556.61,26.778,256,22.44,4.63,12.02 +vit_wee_patch16_reg1_gap_256,256,9553.41,26.788,256,13.42,3.83,13.9 +xcit_tiny_24_p16_224,224,9465.47,27.036,256,12.12,2.34,11.82 +mixnet_s,224,9398.83,27.228,256,4.13,0.25,6.25 +vit_relpos_small_patch16_224,224,9365.71,27.325,256,21.98,4.59,13.05 +vit_srelpos_small_patch16_224,224,9347.26,27.377,256,21.97,4.59,12.16 +gc_efficientnetv2_rw_t,224,9344.17,27.386,256,13.68,1.94,9.97 +vit_pwee_patch16_reg1_gap_256,256,9263.81,27.625,256,15.25,4.37,15.87 +rexnetr_150,224,9243.8,27.684,256,9.78,0.89,11.13 +hrnet_w18_small_v2,224,9242.43,27.688,256,15.6,2.62,9.65 +vit_base_patch32_clip_256,256,9241.91,27.69,256,87.86,5.76,6.65 +convnext_pico_ols,288,9219.94,27.757,256,9.06,2.37,10.74 +mobilevitv2_075,256,9169.72,27.908,256,2.87,1.05,12.06 +resnet26t,256,9168.78,27.912,256,16.01,3.35,10.52 +resnet34,288,9144.8,27.985,256,21.8,6.07,6.18 +gcresnext26ts,256,9136.94,28.009,256,10.48,2.43,10.53 +legacy_seresnext26_32x4d,224,9127.31,28.037,256,16.79,2.49,9.39 +efficientformerv2_s2,224,9079.95,28.184,256,12.71,1.27,11.77 +regnetx_016,224,9048.99,28.281,256,9.19,1.62,7.93 +sedarknet21,256,9044.06,28.297,256,20.95,3.93,7.47 +mobilenetv4_hybrid_large_075,256,9021.75,28.366,256,22.75,2.06,11.64 +convnextv2_pico,288,8940.75,28.624,256,9.07,2.27,10.08 +mobilenetv4_conv_large,256,8935.42,28.64,256,32.59,2.86,12.14 +efficientnet_lite2,260,8893.65,28.775,256,6.09,0.89,12.9 +efficientvit_b1,288,8878.52,28.825,256,9.1,0.87,11.96 +dpn68,224,8840.27,28.949,256,12.61,2.35,10.47 +regnety_016,224,8805.36,29.063,256,11.2,1.63,8.04 +tf_efficientnet_lite2,260,8796.92,29.092,256,6.09,0.89,12.9 +hgnet_tiny,224,8776.27,29.161,256,14.74,4.54,6.36 +seresnext26ts,256,8763.95,29.202,256,10.39,2.43,10.52 +eca_resnext26ts,256,8762.16,29.207,256,10.3,2.43,10.52 +vit_relpos_small_patch16_rpn_224,224,8724.84,29.332,256,21.97,4.59,13.05 +fbnetv3_d,256,8723.73,29.335,256,10.31,0.68,11.1 +vit_small_r26_s32_224,224,8684.28,29.469,256,36.43,3.56,9.85 +efficientnet_b0,256,8654.63,29.57,256,5.29,0.52,8.81 +mobilenet_edgetpu_v2_m,256,8614.85,29.707,256,8.46,2.42,10.65 +botnet26t_256,256,8607.7,29.728,256,12.49,3.32,11.98 +halonet26t,256,8583.89,29.814,256,12.48,3.19,11.69 +efficientnet_blur_b0,224,8559.05,29.9,256,5.29,0.43,8.72 +resnest14d,224,8557.7,29.905,256,10.61,2.76,7.33 +edgenext_small_rw,256,8555.55,29.913,256,7.83,1.58,9.51 +flexivit_small,240,8505.35,30.09,256,22.06,5.35,14.18 +ecaresnext50t_32x4d,224,8481.39,30.175,256,15.41,2.7,10.09 +ecaresnext26t_32x4d,224,8479.72,30.18,256,15.41,2.7,10.09 +seresnext26t_32x4d,224,8460.91,30.245,256,16.81,2.7,10.09 +dpn68b,224,8448.18,30.292,256,12.61,2.35,10.47 +seresnet34,288,8419.97,30.395,256,21.96,6.07,6.18 +efficientnet_b0_g16_evos,224,8418.52,30.399,256,8.11,1.01,7.42 +ecaresnet101d_pruned,224,8411.86,30.422,256,24.88,3.48,7.69 +resnet101,176,8404.43,30.451,256,44.55,4.92,10.08 +seresnext26d_32x4d,224,8398.85,30.471,256,16.81,2.73,10.19 +resnet34d,288,8385.33,30.521,256,21.82,6.47,7.51 +rexnet_150,224,8361.13,30.608,256,9.73,0.9,11.21 +efficientnetv2_rw_t,224,8343.87,30.671,256,13.65,1.93,9.94 +repvit_m3,224,8338.0,30.693,256,10.68,1.89,13.94 +pvt_v2_b1,224,8309.51,30.799,256,14.01,2.12,15.39 +convit_tiny,224,8301.19,30.83,256,5.71,1.26,7.94 +ecaresnetlight,224,8286.53,30.885,256,30.16,4.11,8.42 +eca_nfnet_l0,224,8268.29,30.953,256,24.14,4.35,10.47 +xcit_nano_12_p16_384,384,8253.59,31.007,256,3.05,1.64,12.15 +resnet50,224,8237.46,31.069,256,25.56,4.11,11.11 +nfnet_l0,224,8226.21,31.11,256,35.07,4.36,10.47 +cs3darknet_focus_l,256,8211.8,31.166,256,21.15,4.66,8.03 +tresnet_m,224,8210.79,31.169,256,31.39,5.75,7.31 +mobileone_s2,224,8190.43,31.246,256,7.88,1.34,11.55 +coatnext_nano_rw_224,224,8142.29,31.431,256,14.7,2.47,12.8 +regnetz_005,288,8113.29,31.543,256,7.12,0.86,9.68 +efficientnet_b1,224,8096.89,31.607,256,7.79,0.59,9.36 +eca_botnext26ts_256,256,8088.97,31.637,256,10.59,2.46,11.6 +mobileone_s0,224,8070.39,31.71,256,5.29,1.09,15.48 +dla60,224,8036.02,31.847,256,22.04,4.26,10.16 +ghostnetv2_160,224,8032.91,31.859,256,12.39,0.42,7.23 +resnet26,288,8028.16,31.879,256,16.0,3.9,12.15 +hgnetv2_b3,288,7993.28,32.017,256,16.29,2.94,8.38 +resnet32ts,256,7987.07,32.043,256,17.96,4.63,11.58 +eca_halonext26ts,256,7959.44,32.153,256,10.76,2.44,11.46 +cs3darknet_l,256,7898.11,32.403,256,21.16,4.86,8.55 +resnet33ts,256,7888.41,32.444,256,19.68,4.76,11.66 +resnet50c,224,7858.28,32.567,256,25.58,4.35,11.92 +fastvit_t8,256,7845.11,32.622,256,4.03,0.7,8.63 +mobilenetv3_large_150d,256,7830.3,32.683,256,14.62,1.03,12.35 +efficientnet_b0_g8_gn,224,7820.23,32.725,256,6.56,0.66,6.75 +vit_small_resnet26d_224,224,7754.96,33.002,256,63.61,5.07,11.12 +lambda_resnet26t,256,7725.02,33.129,256,10.96,3.02,11.87 +coat_lite_tiny,224,7696.35,33.252,256,5.72,1.6,11.65 +resnet50t,224,7687.2,33.293,256,25.57,4.32,11.82 +levit_conv_512,224,7679.59,33.326,256,95.17,5.64,10.22 +mobilevit_xs,256,7674.3,33.348,256,2.32,1.05,16.33 +resnext26ts,288,7671.02,33.363,256,10.3,3.07,13.31 +tf_efficientnetv2_b2,260,7642.74,33.487,256,10.1,1.72,9.84 +resnet50d,224,7639.23,33.502,256,25.58,4.35,11.92 +mobilenetv4_hybrid_medium,320,7554.53,33.877,256,11.07,2.05,14.36 +ecaresnet26t,256,7544.42,33.923,256,16.01,3.35,10.53 +efficientnet_cc_b0_8e,224,7516.53,34.049,256,24.01,0.42,9.42 +nf_regnet_b3,288,7509.89,34.079,256,18.59,1.67,11.84 +efficientnet_cc_b0_4e,224,7508.02,34.087,256,13.31,0.41,9.42 +gmlp_s16_224,224,7502.53,34.112,256,19.42,4.42,15.1 +resnetv2_50,224,7495.78,34.144,256,25.55,4.11,11.11 +vit_tiny_patch16_384,384,7452.45,34.342,256,5.79,4.7,25.39 +vovnet39a,224,7432.2,34.436,256,22.6,7.09,6.73 +gcresnet33ts,256,7420.0,34.491,256,19.88,4.76,11.68 +tf_efficientnetv2_b3,240,7371.52,34.718,256,14.36,1.93,9.95 +wide_resnet50_2,176,7362.71,34.761,256,68.88,7.29,8.97 +resnet152,160,7349.12,34.825,256,60.19,5.9,11.51 +resnetaa34d,288,7340.2,34.867,256,21.82,7.33,8.38 +selecsls84,224,7334.1,34.895,256,50.95,5.9,7.57 +resnetaa50,224,7291.3,35.101,256,25.56,5.15,11.64 +efficientnet_em,240,7258.93,35.257,256,6.9,3.04,14.34 +levit_conv_512d,224,7214.89,35.472,256,92.5,5.85,11.3 +tf_efficientnet_em,240,7200.67,35.543,256,6.9,3.04,14.34 +gcresnext26ts,288,7186.05,35.614,256,10.48,3.07,13.33 +vit_base_patch32_plus_256,256,7183.84,35.627,256,119.48,7.79,7.76 +res2net50_48w_2s,224,7183.73,35.627,256,25.29,4.18,11.72 +coat_lite_mini,224,7158.54,35.75,256,11.01,2.0,12.25 +resnet26d,288,7151.59,35.787,256,16.01,4.29,13.48 +efficientvit_b2,224,7108.81,36.002,256,24.33,1.6,14.62 +repvit_m1_5,224,7103.0,36.031,256,14.64,2.31,15.7 +ese_vovnet19b_dw,288,7097.11,36.062,256,6.54,2.22,13.63 +resnet50_gn,224,7077.2,36.163,256,25.56,4.14,11.11 +eca_resnet33ts,256,7061.62,36.243,256,19.68,4.76,11.66 +resnetv2_50t,224,7051.5,36.295,256,25.57,4.32,11.82 +seresnet33ts,256,7046.47,36.321,256,19.78,4.76,11.66 +eca_vovnet39b,224,7017.69,36.47,256,22.6,7.09,6.74 +resnetv2_50d,224,7006.58,36.528,256,25.57,4.35,11.92 +crossvit_small_240,240,6948.36,36.834,256,26.86,5.63,18.17 +inception_v3,299,6933.82,36.911,256,23.83,5.73,8.97 +levit_512,224,6931.73,36.922,256,95.17,5.64,10.22 +seresnext26ts,288,6920.44,36.982,256,10.39,3.07,13.32 +eca_resnext26ts,288,6919.11,36.989,256,10.3,3.07,13.32 +nf_ecaresnet50,224,6916.89,37.001,256,25.56,4.21,11.13 +resnetblur50,224,6906.06,37.06,256,25.56,5.16,12.02 +ese_vovnet39b,224,6897.07,37.107,256,24.57,7.09,6.74 +hgnetv2_b4,288,6892.16,37.134,256,19.8,4.54,11.08 +nf_seresnet50,224,6872.82,37.239,256,28.09,4.21,11.13 +vgg11_bn,224,6872.74,37.239,256,132.87,7.62,7.44 +vgg11,224,6868.96,37.26,256,132.86,7.61,7.44 +resnext50_32x4d,224,6858.21,37.319,256,25.03,4.26,14.4 +resnetaa50d,224,6834.01,37.45,256,25.58,5.39,12.44 +sam2_hiera_tiny,224,6819.52,37.53,256,26.85,4.91,17.12 +legacy_seresnet50,224,6808.13,37.592,256,28.09,3.88,10.6 +resnet50_clip_gap,224,6805.83,37.606,256,23.53,5.39,12.44 +convnext_nano,288,6796.73,37.655,256,15.59,4.06,13.84 +dla60x,224,6789.78,37.695,256,17.35,3.54,13.8 +efficientnet_b1,240,6787.57,37.706,256,7.79,0.71,10.88 +mobileone_s3,224,6778.3,37.757,256,10.17,1.94,13.85 +edgenext_small,320,6777.59,37.762,256,5.59,1.97,14.16 +mobilevitv2_100,256,6775.09,37.776,256,4.9,1.84,16.08 +convnext_tiny_hnf,224,6762.18,37.848,256,28.59,4.47,13.44 +xcit_small_12_p16_224,224,6719.89,38.086,256,26.25,4.82,12.58 +inception_next_tiny,224,6716.71,38.104,256,28.06,4.19,11.98 +convnext_tiny,224,6713.74,38.121,256,28.59,4.47,13.44 +twins_svt_small,224,6712.42,38.129,256,24.06,2.94,13.75 +resnet50s,224,6700.52,38.196,256,25.68,5.47,13.52 +vit_little_patch16_reg1_gap_256,256,6683.54,38.293,256,22.52,6.27,18.06 +vit_relpos_base_patch32_plus_rpn_256,256,6635.1,38.573,256,119.42,7.68,8.01 +ese_vovnet39b_evos,224,6627.24,38.618,256,24.58,7.07,6.74 +vit_little_patch16_reg4_gap_256,256,6624.29,38.636,256,22.52,6.35,18.33 +skresnet50,224,6610.42,38.716,256,25.8,4.11,12.5 +rexnetr_200,224,6609.18,38.725,256,16.52,1.59,15.11 +cs3sedarknet_l,256,6604.77,38.75,256,21.91,4.86,8.56 +regnetz_b16_evos,224,6598.52,38.787,256,9.74,1.43,9.95 +efficientnet_b2_pruned,260,6597.68,38.791,256,8.31,0.73,9.13 +levit_512d,224,6590.97,38.832,256,92.5,5.85,11.3 +crossvit_15_240,240,6583.92,38.873,256,27.53,5.81,19.77 +densenet121,224,6580.95,38.89,256,7.98,2.87,6.9 +tf_efficientnet_cc_b0_4e,224,6574.97,38.926,256,13.31,0.41,9.42 +tf_efficientnet_cc_b0_8e,224,6564.08,38.99,256,24.01,0.42,9.42 +seresnet50,224,6510.44,39.312,256,28.09,4.11,11.13 +regnetz_b16,224,6497.98,39.386,256,9.72,1.45,9.95 +resnetblur50d,224,6469.2,39.563,256,25.58,5.4,12.82 +regnetx_032,224,6433.96,39.779,256,15.3,3.2,11.37 +resnext50d_32x4d,224,6433.36,39.782,256,25.05,4.5,15.2 +cspresnet50,256,6423.77,39.843,256,21.62,4.54,11.5 +haloregnetz_b,224,6420.84,39.86,256,11.68,1.97,11.94 +convformer_s18,224,6401.93,39.977,256,26.77,3.96,15.82 +gmixer_24_224,224,6397.38,40.007,256,24.72,5.28,14.45 +resnest26d,224,6382.9,40.098,256,17.07,3.64,9.97 +caformer_s18,224,6357.61,40.255,256,26.34,4.13,19.39 +resnet50_clip,224,6340.6,40.365,256,38.32,6.14,12.98 +hgnetv2_b5,224,6336.07,40.393,256,39.57,6.56,11.19 +tf_mixnet_m,224,6323.56,40.473,256,5.01,0.36,8.19 +cs3darknet_focus_l,288,6307.83,40.575,256,21.15,5.9,10.16 +repvgg_b1g4,224,6303.26,40.604,256,39.97,8.15,10.64 +vit_medium_patch16_clip_224,224,6298.39,40.635,256,38.59,8.0,15.93 +resnet32ts,288,6297.13,40.644,256,17.96,5.86,14.65 +deit3_medium_patch16_224,224,6292.44,40.675,256,38.85,8.0,15.93 +mixnet_m,224,6274.65,40.789,256,5.01,0.36,8.19 +convnextv2_tiny,224,6265.42,40.849,256,28.64,4.47,13.44 +convnextv2_nano,288,6252.04,40.936,256,15.62,4.06,13.84 +efficientformer_l3,224,6248.87,40.958,256,31.41,3.93,12.01 +coatnet_pico_rw_224,224,6223.54,41.125,256,10.85,2.05,14.62 +resnet33ts,288,6212.45,41.198,256,19.68,6.02,14.75 +vit_base_resnet26d_224,224,6210.89,41.208,256,101.4,6.97,13.16 +skresnet50d,224,6206.47,41.238,256,25.82,4.36,13.31 +tiny_vit_21m_224,224,6202.51,41.264,256,33.22,4.29,20.08 +ecaresnet50t,224,6182.25,41.4,256,25.57,4.32,11.83 +rexnet_200,224,6181.08,41.407,256,16.37,1.56,14.91 +vit_relpos_medium_patch16_224,224,6168.22,41.493,256,38.75,7.97,17.02 +poolformerv2_s24,224,6162.46,41.532,256,21.34,3.42,10.68 +seresnet50t,224,6161.79,41.537,256,28.1,4.32,11.83 +sehalonet33ts,256,6154.72,41.584,256,13.69,3.55,14.7 +ecaresnet50d,224,6146.92,41.638,256,25.58,4.35,11.93 +vit_srelpos_medium_patch16_224,224,6143.0,41.665,256,38.74,7.96,16.21 +cs3darknet_l,288,6142.02,41.67,256,21.16,6.16,10.83 +crossvit_15_dagger_240,240,6130.99,41.745,256,28.21,6.13,20.43 +vovnet57a,224,6130.59,41.749,256,36.64,8.95,7.52 +cspresnet50d,256,6120.99,41.814,256,21.64,4.86,12.55 +convnext_nano_ols,288,6113.65,41.864,256,15.65,4.38,15.5 +cspresnet50w,256,6107.36,41.907,256,28.12,5.04,12.19 +vit_relpos_medium_patch16_cls_224,224,6098.64,41.967,256,38.76,8.03,18.24 +resnetrs50,224,6086.47,42.05,256,35.69,4.48,12.14 +xcit_nano_12_p8_224,224,6075.31,42.129,256,3.05,2.16,15.71 +gcresnext50ts,256,6060.87,42.228,256,15.67,3.75,15.46 +fbnetv3_g,240,6057.83,42.25,256,16.62,1.28,14.87 +densenetblur121d,224,6056.82,42.256,256,8.0,3.11,7.9 +gcvit_xxtiny,224,6049.45,42.308,256,12.0,2.14,15.36 +vit_base_r26_s32_224,224,6038.4,42.386,256,101.38,6.81,12.36 +nf_regnet_b3,320,6032.74,42.424,256,18.59,2.05,14.61 +efficientnet_b1,256,6002.08,42.642,256,7.79,0.77,12.22 +mobilevit_s,256,5976.11,42.827,256,5.58,2.03,19.94 +resnet152,176,5947.93,43.031,256,60.19,7.22,13.99 +tf_efficientnet_b1,240,5946.3,43.042,256,7.79,0.71,10.88 +res2next50,224,5944.69,43.054,256,24.67,4.2,13.71 +res2net50_26w_4s,224,5895.46,43.412,256,25.7,4.28,12.61 +resnet26t,320,5888.07,43.468,256,16.01,5.24,16.44 +res2net50_14w_8s,224,5885.45,43.487,256,25.06,4.21,13.28 +dla60_res2next,224,5850.87,43.744,256,17.03,3.49,13.17 +resmlp_24_224,224,5846.3,43.778,256,30.02,5.96,10.91 +twins_pcpvt_small,224,5845.62,43.784,256,24.11,3.83,18.08 +dla60_res2net,224,5837.47,43.845,256,20.85,4.15,12.34 +edgenext_base,256,5822.01,43.961,256,18.51,3.85,15.58 +gcresnet33ts,288,5797.71,44.145,256,19.88,6.02,14.78 +regnety_040,224,5793.29,44.179,256,20.65,4.0,12.29 +eva02_tiny_patch14_336,336,5792.23,44.186,256,5.76,4.68,27.16 +resnetv2_50x1_bit,224,5786.08,44.234,256,25.55,4.23,11.11 +regnetv_040,224,5783.78,44.252,256,20.64,4.0,12.29 +ecaresnet50d_pruned,288,5762.03,44.418,256,19.94,4.19,10.61 +efficientvit_l1,224,5756.46,44.461,256,52.65,5.27,15.85 +visformer_small,224,5750.7,44.507,256,40.22,4.88,11.43 +eva02_small_patch14_224,224,5748.38,44.524,256,21.62,6.14,18.28 +ese_vovnet57b,224,5743.03,44.566,256,38.61,8.95,7.52 +hgnet_small,224,5739.36,44.595,256,24.36,8.53,8.79 +gcresnet50t,256,5724.09,44.713,256,25.9,5.42,14.67 +nf_resnet50,256,5711.71,44.81,256,25.56,5.46,14.52 +resnet51q,256,5706.87,44.849,256,35.7,6.38,16.55 +hiera_tiny_224,224,5685.03,45.021,256,27.91,4.91,17.13 +efficientnet_b2,256,5683.07,45.037,256,9.11,0.89,12.81 +seresnext50_32x4d,224,5625.84,45.495,256,27.56,4.26,14.42 +legacy_seresnext50_32x4d,224,5623.19,45.516,256,27.56,4.26,14.42 +sebotnet33ts_256,256,5614.57,45.585,256,13.7,3.89,17.46 +seresnetaa50d,224,5601.18,45.695,256,28.11,5.4,12.46 +res2net50d,224,5592.35,45.768,256,25.72,4.52,13.41 +regnety_032,224,5575.12,45.908,256,19.44,3.2,11.26 +eca_resnet33ts,288,5547.26,46.139,256,19.68,6.02,14.76 +seresnet33ts,288,5546.78,46.143,256,19.78,6.02,14.76 +mobilenetv4_conv_large,320,5543.63,46.169,256,32.59,4.47,18.97 +focalnet_tiny_srf,224,5540.33,46.197,256,28.43,4.42,16.32 +resnetv2_50d_frn,224,5526.17,46.316,256,25.59,4.33,11.92 +coatnet_0_rw_224,224,5518.99,46.375,256,27.44,4.43,18.73 +davit_tiny,224,5515.29,46.407,256,28.36,4.54,18.89 +fastvit_t12,256,5513.86,46.418,256,7.55,1.42,12.42 +vit_relpos_medium_patch16_rpn_224,224,5513.6,46.421,256,38.73,7.97,17.02 +resnetrs101,192,5499.51,46.54,256,63.62,6.04,12.7 +vit_medium_patch16_gap_240,240,5483.44,46.677,256,44.4,9.22,18.81 +efficientformerv2_l,224,5466.54,46.819,256,26.32,2.59,18.54 +regnetx_040,224,5462.75,46.854,256,22.12,3.99,12.2 +resnetv2_50d_gn,224,5452.78,46.939,256,25.57,4.38,11.92 +coatnet_nano_rw_224,224,5433.12,47.109,256,15.14,2.41,15.41 +edgenext_small_rw,320,5425.79,47.173,256,7.83,2.46,14.85 +resnetv2_50d_evos,224,5402.37,47.378,256,25.59,4.33,11.92 +efficientvit_b2,256,5396.4,47.427,256,24.33,2.09,19.03 +dla102,224,5369.84,47.664,256,33.27,7.19,14.18 +cspresnext50,256,5358.14,47.768,256,20.57,4.05,15.86 +hrnet_w18_ssld,224,5312.43,48.178,256,21.3,4.32,16.31 +mobilevitv2_125,256,5304.51,48.251,256,7.48,2.86,20.1 +gc_efficientnetv2_rw_t,288,5303.02,48.263,256,13.68,3.2,16.45 +resnest50d_1s4x24d,224,5302.55,48.268,256,25.68,4.43,13.57 +coatnet_nano_cc_224,224,5300.81,48.285,256,13.76,2.24,15.02 +densenet169,224,5293.85,48.347,256,14.15,3.4,7.3 +resnet61q,256,5274.43,48.526,256,36.85,7.8,17.01 +darknet53,256,5272.3,48.545,256,41.61,9.31,12.39 +hgnet_tiny,288,5268.94,48.578,256,14.74,7.51,10.51 +lambda_resnet26rpt_256,256,5256.58,48.689,256,10.99,3.16,11.87 +resnet50_mlp,256,5238.43,48.86,256,26.65,7.05,16.25 +rdnet_tiny,224,5230.54,48.933,256,23.86,5.06,15.98 +nextvit_small,224,5230.17,48.937,256,31.76,5.81,18.44 +nfnet_f0,192,5229.68,48.94,256,71.49,7.21,10.16 +efficientnet_b3_pruned,300,5219.72,49.033,256,9.86,1.04,11.86 +cs3darknet_focus_x,256,5215.35,49.076,256,35.02,8.03,10.69 +resnet101,224,5204.99,49.174,256,44.55,7.83,16.23 +poolformer_s24,224,5178.8,49.423,256,21.39,3.41,10.68 +dm_nfnet_f0,192,5176.64,49.442,256,71.49,7.21,10.16 +fastvit_s12,256,5169.44,49.511,256,9.47,1.82,13.67 +xcit_tiny_12_p16_384,384,5122.18,49.969,256,6.72,3.64,18.26 +efficientnet_lite3,300,5121.62,49.975,256,8.2,1.65,21.85 +fastvit_sa12,256,5118.51,50.004,256,11.58,1.96,14.03 +focalnet_tiny_lrf,224,5112.56,50.063,256,28.65,4.49,17.76 +seresnext26t_32x4d,288,5093.87,50.247,256,16.81,4.46,16.68 +darknetaa53,256,5089.88,50.286,256,36.02,7.97,12.39 +cs3sedarknet_l,288,5080.41,50.38,256,21.91,6.16,10.83 +tf_efficientnet_lite3,300,5063.4,50.55,256,8.2,1.65,21.85 +hrnet_w18,224,5061.86,50.564,256,21.3,4.32,16.31 +seresnext26d_32x4d,288,5057.03,50.614,256,16.81,4.51,16.85 +cs3darknet_x,256,5045.79,50.726,256,35.05,8.38,11.35 +resnet101c,224,5044.49,50.739,256,44.57,8.08,17.04 +swin_tiny_patch4_window7_224,224,5039.45,50.789,256,28.29,4.51,17.06 +maxvit_pico_rw_256,256,4998.32,51.207,256,7.46,1.83,22.3 +ecaresnetlight,288,4963.55,51.567,256,30.16,6.79,13.91 +maxvit_rmlp_pico_rw_256,256,4963.22,51.568,256,7.52,1.85,24.86 +eca_nfnet_l0,288,4962.52,51.577,256,24.14,7.12,17.29 +resnet50,288,4962.25,51.58,256,25.56,6.8,18.37 +resnet101d,224,4941.95,51.792,256,44.57,8.08,17.04 +mobilenetv4_hybrid_medium,384,4939.03,51.822,256,11.07,3.01,21.18 +mobileone_s4,224,4931.74,51.899,256,14.95,3.04,17.74 +nfnet_l0,288,4931.09,51.906,256,35.07,7.13,17.29 +skresnext50_32x4d,224,4919.18,52.031,256,27.48,4.5,17.18 +vit_medium_patch16_gap_256,256,4903.6,52.197,256,38.86,10.59,22.15 +coatnet_bn_0_rw_224,224,4887.13,52.371,256,27.44,4.67,22.04 +dpn68b,288,4849.7,52.777,256,12.61,3.89,17.3 +mobilenetv3_large_150d,320,4830.54,52.987,256,14.62,1.61,19.29 +vit_base_resnet50d_224,224,4826.53,53.03,256,110.97,8.73,16.92 +ecaresnet26t,320,4809.11,53.223,256,16.01,5.24,16.44 +vgg13,224,4804.86,53.27,256,133.05,11.31,12.25 +vgg13_bn,224,4801.12,53.312,256,133.05,11.33,12.25 +repvgg_b1,224,4794.12,53.389,256,57.42,13.16,10.64 +halonet50ts,256,4780.36,53.542,256,22.73,5.3,19.2 +coatnet_rmlp_nano_rw_224,224,4765.2,53.712,256,15.15,2.62,20.34 +gcresnext50ts,288,4747.63,53.91,256,15.67,4.75,19.57 +lambda_resnet50ts,256,4746.66,53.923,256,21.54,5.07,17.48 +swinv2_cr_tiny_224,224,4745.98,53.93,256,28.33,4.66,28.45 +efficientnet_cc_b1_8e,240,4739.38,54.005,256,39.72,0.75,15.44 +ecaresnet50t,256,4722.81,54.195,256,25.57,5.64,15.45 +ecaresnet101d_pruned,288,4706.4,54.383,256,24.88,5.75,12.71 +pvt_v2_b2,224,4697.71,54.485,256,25.36,4.05,27.53 +efficientnetv2_rw_t,288,4690.17,54.572,256,13.65,3.19,16.42 +efficientnet_b1,288,4690.13,54.573,256,7.79,0.97,15.46 +swinv2_cr_tiny_ns_224,224,4689.94,54.575,256,28.33,4.66,28.45 +vit_medium_patch16_reg1_gap_256,256,4686.95,54.609,256,38.88,10.63,22.26 +gcvit_xtiny,224,4677.16,54.722,256,19.98,2.93,20.26 +nf_resnet101,224,4669.02,54.819,256,44.55,8.01,16.23 +regnety_040_sgn,224,4665.34,54.863,256,20.65,4.03,12.29 +lamhalobotnet50ts_256,256,4659.1,54.936,256,22.57,5.02,18.44 +vit_medium_patch16_reg4_gap_256,256,4651.05,55.032,256,38.88,10.76,22.6 +resnet50t,288,4649.07,55.055,256,25.57,7.14,19.53 +dla102x,224,4635.33,55.219,256,26.31,5.89,19.42 +hiera_small_224,224,4619.55,55.408,256,35.01,6.42,20.75 +resnet50d,288,4619.02,55.413,256,25.58,7.19,19.7 +wide_resnet50_2,224,4612.63,55.49,256,68.88,11.43,14.4 +resnetv2_101,224,4600.01,55.642,256,44.54,7.83,16.23 +resnet101_clip_gap,224,4595.55,55.696,256,42.52,9.11,17.56 +tf_efficientnet_b2,260,4594.48,55.709,256,9.11,1.02,13.83 +resnetaa101d,224,4591.39,55.747,256,44.57,9.12,17.56 +tf_mixnet_l,224,4570.85,55.997,256,7.33,0.58,10.84 +efficientvit_l2,224,4564.31,56.076,256,63.71,6.97,19.58 +tf_efficientnetv2_b3,300,4554.51,56.198,256,14.36,3.04,15.74 +resnetv2_50,288,4548.51,56.273,256,25.55,6.79,18.37 +mixnet_l,224,4545.22,56.312,256,7.33,0.58,10.84 +resnet101s,224,4541.57,56.358,256,44.67,9.19,18.64 +gcresnet50t,288,4540.87,56.364,256,25.9,6.86,18.57 +mvitv2_tiny,224,4518.92,56.64,256,24.17,4.7,21.16 +cait_xxs24_224,224,4502.7,56.839,256,11.96,2.53,20.29 +resnet51q,288,4496.23,56.927,256,35.7,8.07,20.94 +nf_resnet50,288,4484.43,57.077,256,25.56,6.88,18.37 +resnest50d,224,4484.41,57.077,256,27.48,5.4,14.36 +nf_regnet_b4,320,4455.95,57.441,256,30.21,3.29,19.88 +crossvit_18_240,240,4445.99,57.569,256,43.27,9.05,26.26 +resnetblur101d,224,4442.61,57.614,256,44.57,9.12,17.94 +efficientnet_b2,288,4434.83,57.715,256,9.11,1.12,16.2 +resnext101_32x4d,224,4430.11,57.776,256,44.18,8.01,21.23 +halo2botnet50ts_256,256,4424.96,57.843,256,22.64,5.02,21.78 +botnet50ts_256,256,4416.09,57.959,256,22.74,5.54,22.23 +vitamin_small_224,224,4405.81,58.094,256,22.03,5.92,26.38 +resnetv2_101d,224,4395.97,58.225,256,44.56,8.07,17.04 +resnetaa50,288,4392.86,58.267,256,25.56,8.52,19.24 +nf_ecaresnet101,224,4388.13,58.329,256,44.55,8.01,16.27 +resnet101_clip,224,4373.65,58.522,256,56.26,9.81,18.08 +nf_seresnet101,224,4356.81,58.747,256,49.33,8.02,16.27 +hieradet_small,256,4349.43,58.848,256,34.72,8.51,27.76 +mobilevitv2_150,256,4334.6,59.05,256,10.59,4.09,24.11 +rexnetr_300,224,4324.73,59.184,256,34.81,3.39,22.16 +tf_efficientnet_cc_b1_8e,240,4322.38,59.217,256,39.72,0.75,15.44 +tresnet_v2_l,224,4301.4,59.505,256,46.17,8.85,16.34 +swin_s3_tiny_224,224,4290.26,59.66,256,28.33,4.64,19.13 +resnext101_32x8d,176,4284.27,59.743,256,88.79,10.33,19.37 +res2net50_26w_6s,224,4277.02,59.844,256,37.05,6.33,15.28 +ese_vovnet39b,288,4248.82,60.241,256,24.57,11.71,11.13 +legacy_seresnet101,224,4227.93,60.54,256,49.33,7.61,15.74 +resnet50_gn,288,4222.36,60.62,256,25.56,6.85,18.37 +cs3sedarknet_x,256,4215.77,60.715,256,35.4,8.38,11.35 +wide_resnet101_2,176,4209.79,60.801,256,126.89,14.31,13.18 +fbnetv3_g,288,4208.81,60.814,256,16.62,1.77,21.09 +crossvit_18_dagger_240,240,4205.84,60.858,256,44.27,9.5,27.03 +maxxvit_rmlp_nano_rw_256,256,4202.69,60.903,256,16.78,4.37,26.05 +vit_base_patch32_384,384,4178.56,61.256,256,88.3,13.06,16.5 +vit_base_patch32_clip_384,384,4178.4,61.258,256,88.3,13.06,16.5 +twins_pcpvt_base,224,4172.72,61.341,256,43.83,6.68,25.25 +resnetblur50,288,4164.2,61.467,256,25.56,8.52,19.87 +efficientvit_b2,288,4145.81,61.737,256,24.33,2.64,24.03 +resnet61q,288,4130.49,61.968,256,36.85,9.87,21.52 +darknet53,288,4124.09,62.065,256,41.61,11.78,15.68 +resnext50_32x4d,288,4120.75,62.115,256,25.03,7.04,23.81 +coatnet_rmlp_0_rw_224,224,4120.51,62.117,256,27.45,4.72,24.89 +poolformerv2_s36,224,4120.18,62.123,256,30.79,5.01,15.82 +resnetaa50d,288,4119.71,62.13,256,25.58,8.92,20.57 +seresnet101,224,4119.53,62.132,256,49.33,7.84,16.27 +cs3edgenet_x,256,4107.9,62.309,256,47.82,11.53,12.92 +cspdarknet53,256,4106.02,62.337,256,27.64,6.57,16.81 +volo_d1_224,224,4101.98,62.399,256,26.63,6.94,24.43 +convnext_tiny_hnf,288,4094.49,62.513,256,28.59,7.39,22.21 +convnext_tiny,288,4073.96,62.828,256,28.59,7.39,22.21 +hrnet_w32,224,4056.25,63.101,256,41.23,8.97,22.02 +regnetx_080,224,4050.3,63.196,256,39.57,8.02,14.06 +nextvit_base,224,4038.08,63.385,256,44.82,8.29,23.71 +pit_b_distilled_224,224,4034.42,63.444,256,74.79,12.5,33.07 +pit_b_224,224,4022.18,63.637,256,73.76,12.42,32.94 +fastvit_mci0,256,4004.83,63.911,256,11.41,2.42,18.29 +convnext_small,224,3998.3,64.017,256,50.22,8.71,21.56 +darknetaa53,288,3994.45,64.079,256,36.02,10.08,15.68 +inception_next_small,224,3986.65,64.204,256,49.37,8.36,19.27 +ecaresnet101d,224,3983.05,64.261,256,44.57,8.08,17.07 +coat_lite_small,224,3969.68,64.477,256,19.84,3.96,22.09 +regnetz_c16,256,3947.47,64.841,256,13.46,2.51,16.57 +regnetx_064,224,3944.55,64.89,256,26.21,6.49,16.37 +cs3sedarknet_xdw,256,3941.85,64.932,256,21.6,5.97,17.18 +cs3darknet_x,288,3934.32,65.058,256,35.05,10.6,14.36 +regnetz_b16,288,3931.2,65.11,256,9.72,2.39,16.43 +rexnetr_200,288,3927.78,65.166,256,16.52,2.62,24.96 +resnetblur50d,288,3921.99,65.263,256,25.58,8.92,21.19 +resmlp_36_224,224,3921.81,65.266,256,44.69,8.91,16.33 +pvt_v2_b2_li,224,3910.42,65.455,256,22.55,3.91,27.6 +maxxvitv2_nano_rw_256,256,3888.05,65.832,256,23.7,6.26,23.05 +resnext50d_32x4d,288,3885.38,65.879,256,25.05,7.44,25.13 +vit_large_patch32_224,224,3882.7,65.923,256,305.51,15.39,13.3 +seresnet50,288,3880.91,65.955,256,28.09,6.8,18.39 +res2net101_26w_4s,224,3875.61,66.043,256,45.21,8.1,18.45 +regnetz_c16_evos,256,3866.46,66.2,256,13.49,2.48,16.57 +repvit_m2_3,224,3852.0,66.448,256,23.69,4.57,26.21 +xcit_tiny_12_p8_224,224,3851.28,66.461,256,6.71,4.81,23.6 +densenet121,288,3850.05,66.481,256,7.98,4.74,11.41 +vgg16_bn,224,3843.29,66.6,256,138.37,15.5,13.56 +resnet101d,256,3841.99,66.622,256,44.57,10.55,22.25 +mixer_b16_224,224,3841.01,66.64,256,59.88,12.62,14.53 +regnetz_b16_evos,288,3840.11,66.654,256,9.74,2.36,16.43 +vgg16,224,3839.88,66.659,256,138.36,15.47,13.56 +vit_medium_patch16_rope_reg1_gap_256,256,3839.28,66.669,256,38.74,10.63,22.26 +mobilenetv4_conv_large,384,3820.17,67.003,256,32.59,6.43,27.31 +convnextv2_tiny,288,3792.59,67.49,256,28.64,7.39,22.21 +rexnet_300,224,3771.96,67.859,256,34.71,3.44,22.4 +convnextv2_small,224,3766.94,67.949,256,50.32,8.71,21.56 +densenet201,224,3748.64,68.28,256,20.01,4.34,7.85 +res2net101d,224,3734.18,68.545,256,45.23,8.35,19.25 +hgnetv2_b5,288,3726.11,68.693,256,39.57,10.84,18.5 +nest_tiny,224,3705.24,69.082,256,17.06,5.83,25.48 +efficientnetv2_s,288,3702.94,69.124,256,21.46,4.75,20.13 +ecaresnet50t,288,3690.88,69.35,256,25.57,7.14,19.55 +seresnet50t,288,3690.42,69.359,256,28.1,7.14,19.55 +edgenext_base,320,3685.34,69.455,256,18.51,6.01,24.32 +coatnet_0_224,224,3684.19,69.475,256,25.04,4.58,24.01 +convit_small,224,3679.62,69.563,256,27.78,5.76,17.87 +ecaresnet50d,288,3676.55,69.621,256,25.58,7.19,19.72 +swinv2_tiny_window8_256,256,3670.64,69.733,256,28.35,5.96,24.57 +nest_tiny_jx,224,3669.11,69.761,256,17.06,5.83,25.48 +eca_nfnet_l1,256,3668.26,69.777,256,41.41,9.62,22.04 +efficientvit_b3,224,3667.52,69.791,256,48.65,3.99,26.9 +mobilevitv2_175,256,3660.41,69.927,256,14.25,5.54,28.13 +resnet152,224,3646.55,70.193,256,60.19,11.56,22.56 +seresnext101_32x4d,224,3626.8,70.575,256,48.96,8.02,21.26 +legacy_seresnext101_32x4d,224,3621.17,70.685,256,48.96,8.02,21.26 +inception_v4,299,3620.42,70.7,256,42.68,12.28,15.09 +xcit_small_24_p16_224,224,3616.94,70.768,256,47.67,9.1,23.64 +tresnet_l,224,3593.17,71.235,256,55.99,10.9,11.9 +resnet152c,224,3589.3,71.313,256,60.21,11.8,23.36 +dla169,224,3570.86,71.681,256,53.39,11.6,20.2 +densenetblur121d,288,3562.85,71.841,256,8.0,5.14,13.06 +tnt_s_patch16_224,224,3559.68,71.906,256,23.76,5.24,24.37 +resnetv2_101x1_bit,224,3551.18,72.078,256,44.54,8.04,16.23 +convnextv2_nano,384,3546.15,72.18,256,15.62,7.22,24.61 +rdnet_small,224,3539.46,72.314,256,50.44,8.74,22.55 +resnet152d,224,3528.53,72.542,256,60.21,11.8,23.36 +regnetv_040,288,3523.74,72.639,256,20.64,6.6,20.3 +efficientvit_l2,256,3518.25,72.753,256,63.71,9.09,25.49 +efficientnetv2_rw_s,288,3505.36,73.02,256,23.94,4.91,21.41 +vit_small_resnet50d_s16_224,224,3504.26,73.043,256,57.53,13.48,24.82 +maxvit_nano_rw_256,256,3501.58,73.099,256,15.45,4.46,30.28 +vit_small_patch16_18x2_224,224,3500.73,73.117,256,64.67,13.71,35.69 +maxvit_rmlp_nano_rw_256,256,3494.64,73.244,256,15.5,4.47,31.92 +res2net50_26w_8s,224,3491.2,73.317,256,48.4,8.37,17.95 +hgnet_small,288,3466.9,73.83,256,24.36,14.09,14.53 +coatnet_rmlp_1_rw_224,224,3457.73,74.026,256,41.69,7.85,35.47 +mobilenetv4_hybrid_medium,448,3448.71,74.22,256,11.07,4.2,29.64 +resnest50d_4s2x40d,224,3439.65,74.416,256,30.42,4.4,17.94 +focalnet_small_srf,224,3422.65,74.785,256,49.89,8.62,26.26 +regnety_040,288,3396.57,75.36,256,20.65,6.61,20.3 +poolformer_s36,224,3394.32,75.41,256,30.86,5.0,15.82 +mvitv2_small,224,3388.47,75.541,256,34.87,7.0,28.08 +davit_small,224,3382.96,75.663,256,49.75,8.8,30.49 +ese_vovnet99b,224,3373.76,75.869,256,63.2,16.51,11.27 +mixer_l32_224,224,3364.3,76.082,256,206.94,11.27,19.86 +vit_base_patch16_siglip_gap_224,224,3352.55,76.35,256,85.8,17.49,23.75 +vit_base_patch16_xp_224,224,3348.63,76.439,256,86.51,17.56,23.9 +vit_base_patch16_224_miil,224,3348.42,76.443,256,94.4,17.59,23.91 +seresnext50_32x4d,288,3348.33,76.445,256,27.56,7.04,23.82 +seresnetaa50d,288,3347.65,76.461,256,28.11,8.92,20.59 +vit_betwixt_patch16_reg1_gap_256,256,3346.86,76.479,256,60.4,16.32,27.83 +vit_base_patch16_224,224,3345.67,76.508,256,86.57,17.58,23.9 +convformer_s36,224,3344.88,76.523,256,40.01,7.67,30.5 +deit_base_patch16_224,224,3344.81,76.527,256,86.57,17.58,23.9 +vit_base_patch16_clip_quickgelu_224,224,3343.2,76.564,256,86.19,17.58,23.9 +deit3_base_patch16_224,224,3342.68,76.576,256,86.59,17.58,23.9 +vit_base_patch16_clip_224,224,3342.03,76.591,256,86.57,17.58,23.9 +pvt_v2_b3,224,3337.39,76.696,256,45.24,6.92,37.7 +hiera_small_abswin_256,256,3333.92,76.777,256,34.36,8.29,26.38 +caformer_s36,224,3329.65,76.872,256,39.3,8.0,37.53 +efficientnet_b3,288,3326.65,76.944,256,12.23,1.63,21.49 +vit_base_patch16_siglip_224,224,3320.61,77.085,256,92.88,17.73,24.06 +vit_betwixt_patch16_reg4_gap_256,256,3319.25,77.116,256,60.4,16.52,28.24 +resnet152s,224,3317.78,77.15,256,60.32,12.92,24.96 +cs3se_edgenet_x,256,3309.24,77.349,256,50.72,11.53,12.94 +vit_base_patch16_gap_224,224,3303.26,77.489,256,86.57,17.49,25.59 +vit_small_patch16_36x1_224,224,3302.19,77.513,256,64.67,13.71,35.69 +deit_base_distilled_patch16_224,224,3300.25,77.56,256,87.34,17.68,24.05 +cs3sedarknet_x,288,3293.75,77.714,256,35.4,10.6,14.37 +vit_relpos_base_patch16_224,224,3288.47,77.838,256,86.43,17.51,24.97 +nextvit_large,224,3287.18,77.867,256,57.87,10.78,28.99 +vit_base_mci_224,224,3282.25,77.986,256,86.35,17.73,24.65 +regnetv_064,224,3266.81,78.353,256,30.58,6.39,16.41 +resnetv2_50d_gn,288,3266.39,78.364,256,25.57,7.24,19.7 +vit_relpos_base_patch16_clsgap_224,224,3264.17,78.417,256,86.43,17.6,25.12 +repvgg_b2,224,3260.0,78.517,256,89.02,20.45,12.9 +beit_base_patch16_224,224,3259.83,78.519,256,86.53,17.58,23.9 +vit_relpos_base_patch16_cls_224,224,3259.47,78.529,256,86.43,17.6,25.12 +repvgg_b2g4,224,3254.26,78.656,256,61.76,12.63,12.9 +resnetv2_50d_evos,288,3251.16,78.731,256,25.59,7.15,19.7 +regnety_080,224,3246.07,78.854,256,39.18,8.0,17.97 +beitv2_base_patch16_224,224,3245.71,78.862,256,86.53,17.58,23.9 +regnety_064,224,3237.99,79.05,256,30.58,6.39,16.41 +sequencer2d_s,224,3229.54,79.258,256,27.65,4.96,11.31 +cs3edgenet_x,288,3219.84,79.497,256,47.82,14.59,16.36 +maxvit_tiny_rw_224,224,3218.36,79.532,256,29.06,5.11,33.11 +coatnet_1_rw_224,224,3216.02,79.59,256,41.72,8.04,34.6 +efficientnet_el_pruned,300,3211.46,79.704,256,10.59,8.0,30.7 +efficientnet_el,300,3210.88,79.719,256,10.59,8.0,30.7 +mixnet_xl,224,3208.22,79.783,256,11.9,0.93,14.57 +vgg19,224,3200.7,79.971,256,143.67,19.63,14.86 +vgg19_bn,224,3198.64,80.025,256,143.68,19.66,14.86 +fastvit_sa24,256,3196.7,80.071,256,21.55,3.8,24.32 +legacy_xception,299,3195.72,80.097,256,22.86,8.4,35.83 +tf_efficientnet_el,300,3194.92,80.117,256,10.59,8.0,30.7 +regnety_032,288,3185.8,80.346,256,19.44,5.29,18.61 +vit_small_patch16_384,384,3183.86,80.395,256,22.2,15.52,50.78 +resnetv2_152,224,3179.36,80.509,256,60.19,11.55,22.56 +deit3_small_patch16_384,384,3174.6,80.63,256,22.21,15.52,50.78 +hrnet_w30,224,3172.72,80.677,256,37.71,8.15,21.21 +focalnet_small_lrf,224,3161.39,80.966,256,50.34,8.74,28.61 +swin_small_patch4_window7_224,224,3153.83,81.161,256,49.61,8.77,27.47 +tf_efficientnetv2_s,300,3151.03,81.233,256,21.46,5.35,22.73 +mobilevitv2_200,256,3150.51,81.247,256,18.45,7.22,32.15 +resnet101,288,3147.94,81.312,256,44.55,12.95,26.83 +vit_base_patch32_clip_448,448,3138.59,81.555,256,88.34,17.93,23.9 +dpn92,224,3109.73,82.312,256,37.67,6.54,18.21 +hiera_base_224,224,3102.53,82.503,256,51.52,9.4,30.42 +nfnet_f0,256,3101.19,82.539,256,71.49,12.62,18.05 +mobilenetv4_conv_aa_large,384,3093.53,82.743,256,32.59,7.07,32.29 +dm_nfnet_f0,256,3083.56,83.011,256,71.49,12.62,18.05 +resnetv2_152d,224,3076.59,83.198,256,60.2,11.8,23.36 +hrnet_w18_ssld,288,3064.15,83.535,256,21.3,7.14,26.96 +dla102x2,224,3061.68,83.603,256,41.28,9.34,29.91 +nf_regnet_b4,384,3049.71,83.932,256,30.21,4.7,28.61 +gcvit_tiny,224,3042.25,84.138,256,28.22,4.79,29.82 +cait_xxs36_224,224,3031.38,84.438,256,17.3,3.77,30.34 +xception41p,299,3019.53,84.771,256,26.91,9.25,39.86 +densenet161,224,3006.8,85.129,256,28.68,7.79,11.06 +ecaresnet50t,320,2995.44,85.452,256,25.57,8.82,24.13 +regnety_080_tv,224,2993.18,85.516,256,39.38,8.51,19.73 +vit_base_patch16_rpn_224,224,2978.25,85.944,256,86.54,17.49,23.75 +twins_pcpvt_large,224,2977.85,85.958,256,60.99,9.84,35.82 +regnetz_040,256,2959.14,86.499,256,27.12,4.06,24.19 +vit_small_r26_s32_384,384,2948.63,86.81,256,36.47,10.43,29.85 +gmlp_b16_224,224,2948.58,86.812,256,73.08,15.78,30.21 +legacy_seresnet152,224,2940.44,87.052,256,66.82,11.33,22.08 +regnetz_040_h,256,2937.29,87.143,256,28.94,4.12,24.29 +twins_svt_base,224,2935.09,87.21,256,56.07,8.59,26.33 +regnetz_d8,256,2918.46,87.707,256,23.37,3.97,23.74 +flexivit_base,240,2911.53,87.916,256,86.59,20.29,28.36 +vit_relpos_base_patch16_rpn_224,224,2909.18,87.987,256,86.41,17.51,24.97 +efficientformer_l7,224,2896.41,88.374,256,82.23,10.17,24.45 +regnetz_d8_evos,256,2895.78,88.394,256,23.46,4.5,24.92 +seresnet152,224,2888.03,88.63,256,66.82,11.57,22.61 +mvitv2_small_cls,224,2869.23,89.212,256,34.87,7.04,28.17 +swinv2_cr_small_224,224,2869.18,89.213,256,49.7,9.07,50.27 +dpn98,224,2866.56,89.294,256,61.57,11.73,25.2 +swinv2_cr_small_ns_224,224,2851.92,89.753,256,49.7,9.08,50.27 +inception_resnet_v2,299,2841.25,90.09,256,55.84,13.18,25.06 +hrnet_w40,224,2841.0,90.097,256,57.56,12.75,25.29 +vit_mediumd_patch16_reg4_gap_256,256,2831.24,90.41,256,64.11,17.87,37.57 +maxxvit_rmlp_tiny_rw_256,256,2818.8,90.808,256,29.64,6.66,39.76 +regnety_040_sgn,288,2814.17,90.956,256,20.65,6.67,20.3 +eva02_base_patch16_clip_224,224,2810.17,91.088,256,86.26,17.62,26.32 +wide_resnet50_2,288,2801.8,91.36,256,68.88,18.89,23.81 +efficientvit_b3,256,2799.72,91.426,256,48.65,5.2,35.01 +poolformerv2_m36,224,2797.01,91.515,256,56.08,8.81,22.02 +resnetv2_101,288,2796.77,91.523,256,44.54,12.94,26.83 +vit_betwixt_patch16_rope_reg4_gap_256,256,2794.77,91.589,256,60.23,16.52,28.24 +resnetaa101d,288,2788.15,91.807,256,44.57,15.07,29.03 +hgnetv2_b6,224,2778.72,92.115,256,75.26,16.88,21.23 +xcit_tiny_24_p16_384,384,2775.49,92.225,256,12.12,6.87,34.29 +mobilenetv4_hybrid_large,384,2771.92,92.344,256,37.76,7.77,34.52 +efficientvit_l2,288,2770.71,92.385,256,63.71,11.51,32.19 +levit_conv_384_s8,224,2749.96,93.083,256,39.12,9.98,35.86 +resnet152d,256,2742.49,93.336,256,60.21,15.41,30.51 +mobilenetv4_conv_large,448,2739.84,93.426,256,32.59,8.75,37.17 +coatnet_rmlp_1_rw2_224,224,2704.02,94.662,256,41.72,8.11,40.13 +resnetblur101d,288,2697.04,94.909,256,44.57,15.07,29.65 +repvgg_b3g4,224,2696.88,94.914,256,83.83,17.89,15.1 +efficientnet_b3,320,2696.04,94.944,256,12.23,2.01,26.52 +convnext_base,224,2678.52,95.564,256,88.59,15.38,28.75 +regnetx_120,224,2677.22,95.611,256,46.11,12.13,21.37 +resnext101_64x4d,224,2667.58,95.957,256,83.46,15.52,31.21 +levit_384_s8,224,2646.86,96.708,256,39.12,9.98,35.86 +resnext101_32x8d,224,2646.71,96.714,256,88.79,16.48,31.21 +wide_resnet101_2,224,2643.91,96.816,256,126.89,22.8,21.23 +inception_next_base,224,2636.33,97.093,256,86.67,14.85,25.69 +tf_efficientnet_b3,300,2632.25,97.244,256,12.23,1.87,23.83 +resnet200,224,2631.56,97.27,256,64.67,15.07,32.19 +resnext101_32x4d,288,2614.05,97.922,256,44.18,13.24,35.09 +rexnetr_300,288,2612.58,97.977,256,34.81,5.59,36.61 +vit_base_patch16_siglip_gap_256,256,2590.2,98.824,256,85.84,23.13,33.23 +vit_large_r50_s32_224,224,2566.89,99.721,256,328.99,19.58,24.41 +vit_base_patch16_siglip_256,256,2564.67,99.808,256,92.93,23.44,33.63 +maxvit_tiny_tf_224,224,2550.75,100.351,256,30.92,5.6,35.78 +efficientnet_b3_gn,288,2546.16,100.533,256,11.73,1.74,23.35 +regnetz_d32,256,2543.95,100.62,256,27.58,5.98,23.74 +samvit_base_patch16_224,224,2528.02,101.254,256,86.46,17.54,24.54 +eva02_small_patch14_336,336,2526.33,101.323,256,22.13,15.48,54.33 +crossvit_base_240,240,2521.38,101.521,256,105.03,21.22,36.33 +convnextv2_base,224,2520.76,101.546,256,88.72,15.38,28.75 +sequencer2d_m,224,2518.88,101.621,256,38.31,6.55,14.26 +regnety_120,224,2511.21,101.932,256,51.82,12.14,21.38 +regnetz_c16,320,2510.69,101.954,256,13.46,3.92,25.88 +coat_tiny,224,2491.49,102.738,256,5.5,4.35,27.2 +vit_base_patch16_reg4_gap_256,256,2482.98,103.091,256,86.62,23.5,33.89 +seresnet101,288,2460.54,104.032,256,49.33,12.95,26.87 +repvgg_b3,224,2459.38,104.081,256,123.09,29.16,15.1 +swinv2_tiny_window16_256,256,2451.11,104.433,256,28.35,6.68,39.02 +resnet101d,320,2444.46,104.716,256,44.57,16.48,34.77 +regnetz_c16_evos,320,2443.36,104.763,256,13.49,3.86,25.88 +xception41,299,2423.55,105.62,256,26.97,9.28,39.86 +tresnet_xl,224,2413.65,106.052,256,78.44,15.2,15.34 +efficientnet_lite4,380,2412.2,106.117,256,13.01,4.04,45.66 +convnext_small,288,2411.61,106.142,256,50.22,14.39,35.65 +coatnet_1_224,224,2409.54,106.233,256,42.23,8.7,39.0 +hrnet_w48_ssld,224,2404.14,106.471,256,77.47,17.34,28.56 +hrnet_w48,224,2403.21,106.513,256,77.47,17.34,28.56 +tf_efficientnet_lite4,380,2401.87,106.574,256,13.01,4.04,45.66 +caformer_m36,224,2378.95,107.598,256,56.2,13.29,50.48 +ecaresnet101d,288,2377.02,107.688,256,44.57,13.35,28.19 +hiera_base_plus_224,224,2375.75,107.745,256,69.9,12.67,37.98 +fastvit_mci1,256,2370.49,107.983,256,21.54,4.72,32.84 +rdnet_base,224,2367.82,108.105,256,87.45,15.4,31.14 +maxvit_tiny_rw_256,256,2365.28,108.22,256,29.07,6.74,44.35 +resnetrs101,288,2361.51,108.395,256,63.62,13.56,28.53 +convformer_m36,224,2358.97,108.511,256,57.05,12.89,42.05 +pvt_v2_b5,224,2356.7,108.615,256,81.96,11.76,50.92 +pvt_v2_b4,224,2355.66,108.663,256,62.56,10.14,53.74 +maxvit_rmlp_tiny_rw_256,256,2354.21,108.731,256,29.15,6.77,46.92 +seresnext101_64x4d,224,2353.54,108.76,256,88.23,15.53,31.25 +xcit_medium_24_p16_224,224,2347.78,109.028,256,84.4,16.13,31.71 +seresnext101_32x8d,224,2341.18,109.335,256,93.57,16.48,31.25 +vit_mediumd_patch16_rope_reg1_gap_256,256,2336.5,109.556,256,63.95,17.65,37.02 +regnetx_160,224,2330.93,109.816,256,54.28,15.99,25.52 +fastvit_sa36,256,2327.07,109.998,256,31.53,5.64,34.61 +volo_d2_224,224,2323.74,110.155,256,58.68,14.34,41.34 +nest_small,224,2322.48,110.217,256,38.35,10.35,40.04 +convnext_tiny,384,2310.31,110.798,256,28.59,13.14,39.48 +vit_base_r50_s16_224,224,2309.82,110.82,256,97.89,21.66,35.28 +nest_small_jx,224,2306.72,110.97,256,38.35,10.35,40.04 +eca_nfnet_l1,320,2302.23,111.183,256,41.41,14.92,34.42 +hgnet_base,224,2292.28,111.669,256,71.58,25.14,15.47 +davit_base,224,2283.75,112.086,256,87.95,15.51,40.66 +mvitv2_base,224,2283.18,112.113,256,51.47,10.16,40.5 +seresnext101d_32x8d,224,2279.47,112.295,256,93.59,16.72,32.05 +vit_base_patch16_plus_240,240,2273.79,112.577,256,117.56,27.41,33.08 +poolformer_m36,224,2266.85,112.921,256,56.17,8.8,22.02 +vit_small_patch8_224,224,2262.19,113.154,256,21.67,22.44,80.84 +focalnet_base_srf,224,2247.74,113.88,256,88.15,15.28,35.01 +hiera_base_abswin_256,256,2242.95,114.124,256,51.27,12.46,40.7 +vit_relpos_base_patch16_plus_240,240,2237.99,114.378,256,117.38,27.3,34.33 +resnest101e,256,2234.57,114.552,256,48.28,13.38,28.66 +mobilenetv4_conv_aa_large,448,2229.25,114.827,256,32.59,9.63,43.94 +xcit_small_12_p16_384,384,2221.32,115.235,256,26.25,14.14,36.51 +xception65p,299,2220.07,115.3,256,39.82,13.91,52.48 +cait_s24_224,224,2217.42,115.437,256,46.92,9.35,40.58 +resnet152,288,2213.91,115.622,256,60.19,19.11,37.28 +swinv2_small_window8_256,256,2213.69,115.633,256,49.73,11.58,40.14 +efficientnet_b3_g8_gn,288,2210.95,115.777,256,14.25,2.59,23.35 +convformer_s18,384,2192.78,116.736,256,26.77,11.63,46.49 +swinv2_cr_small_ns_256,256,2188.78,116.95,256,49.7,12.07,76.21 +swin_base_patch4_window7_224,224,2187.06,117.041,256,87.77,15.47,36.63 +efficientvit_b3,288,2171.71,117.869,256,48.65,6.58,44.2 +seresnextaa101d_32x8d,224,2165.9,118.185,256,93.59,17.25,34.16 +convnextv2_tiny,384,2148.79,119.127,256,28.64,13.14,39.48 +seresnet152d,256,2148.49,119.143,256,66.84,15.42,30.56 +resnet50x4_clip_gap,288,2144.6,119.359,256,65.62,19.57,34.11 +caformer_s18,384,2141.55,119.527,256,26.34,13.42,77.34 +resnetrs152,256,2135.82,119.85,256,86.62,15.59,30.83 +vit_base_patch16_rope_reg1_gap_256,256,2133.64,119.972,256,86.43,23.22,33.39 +swinv2_base_window12_192,192,2130.04,120.175,256,109.28,11.9,39.72 +seresnext101_32x4d,288,2120.08,120.739,256,48.96,13.25,35.12 +eva02_base_patch14_224,224,2117.73,120.874,256,85.76,23.22,36.55 +poolformerv2_m48,224,2116.33,120.954,256,73.35,11.59,29.17 +focalnet_base_lrf,224,2108.01,121.429,256,88.75,15.43,38.13 +dm_nfnet_f1,224,2107.34,121.469,256,132.63,17.87,22.94 +cs3se_edgenet_x,320,2106.36,121.525,256,50.72,18.01,20.21 +regnety_160,224,2105.14,121.597,256,83.59,15.96,23.04 +nfnet_f1,224,2090.25,122.462,256,132.63,17.87,22.94 +vit_medium_patch16_gap_384,384,2078.7,123.143,256,39.03,26.08,67.54 +dpn131,224,2074.97,123.363,256,79.25,16.09,32.97 +efficientnetv2_s,384,2071.25,123.585,256,21.46,8.44,35.77 +swin_s3_small_224,224,2068.44,123.754,256,49.74,9.43,37.84 +hrnet_w44,224,2065.62,123.922,256,67.06,14.94,26.92 +convnext_base,256,2065.1,123.954,256,88.59,20.09,37.55 +coat_lite_medium,224,2064.62,123.979,256,44.57,9.81,40.06 +efficientnet_b3_gn,320,2056.56,124.469,256,11.73,2.14,28.83 +mixnet_xxl,224,2051.52,124.774,256,23.96,2.04,23.43 +nf_regnet_b5,384,2048.92,124.932,256,49.74,7.95,42.9 +resnet50x4_clip,288,2033.61,125.874,256,87.14,21.35,35.27 +maxvit_rmlp_small_rw_224,224,2024.79,126.421,256,64.9,10.75,49.3 +efficientnet_b4,320,2021.3,126.64,256,19.34,3.13,34.76 +xcit_tiny_24_p8_224,224,2021.23,126.644,256,12.11,9.21,45.39 +swinv2_cr_base_224,224,2018.07,126.843,256,87.88,15.86,59.66 +swinv2_cr_base_ns_224,224,2005.7,127.625,256,87.88,15.86,59.66 +tf_efficientnetv2_s,384,1994.9,128.316,256,21.46,8.44,35.77 +regnetv_064,288,1990.64,128.591,256,30.58,10.55,27.11 +tresnet_m,448,1981.93,129.156,256,31.39,22.99,29.21 +xcit_nano_12_p8_384,384,1964.01,130.335,256,3.05,6.34,46.08 +efficientnetv2_rw_s,384,1962.9,130.408,256,23.94,8.72,38.03 +resnet200d,256,1962.4,130.442,256,64.69,20.0,43.09 +twins_svt_large,224,1960.0,130.601,256,99.27,15.15,35.1 +crossvit_15_dagger_408,408,1958.74,130.685,256,28.5,21.45,95.05 +mvitv2_base_cls,224,1952.99,131.07,256,65.44,10.23,40.65 +mobilenetv4_hybrid_large,448,1943.33,131.721,256,37.76,10.74,48.61 +tnt_b_patch16_224,224,1941.85,131.823,256,65.41,14.09,39.01 +mobilenetv4_conv_aa_large,480,1934.33,132.335,256,32.59,11.05,50.45 +gcvit_small,224,1930.43,132.601,256,51.09,8.57,41.61 +regnety_064,288,1927.43,132.808,256,30.58,10.56,27.11 +halonet_h1,256,1922.3,133.164,256,8.1,3.0,51.17 +regnety_080,288,1921.98,133.184,256,39.18,13.22,29.69 +convit_base,224,1918.39,133.435,256,86.54,17.52,31.77 +maxvit_tiny_pm_256,256,1916.11,133.593,256,30.09,6.61,47.9 +coat_mini,224,1897.57,134.897,256,10.34,6.82,33.68 +fastvit_ma36,256,1894.76,135.098,256,44.07,7.88,41.09 +regnetz_040,320,1893.7,135.174,256,27.12,6.35,37.78 +regnetz_040_h,320,1880.89,136.095,256,28.94,6.43,37.94 +mobilevitv2_150,384,1864.53,137.289,256,10.59,9.2,54.25 +regnetz_d8,320,1863.04,137.398,256,23.37,6.19,37.08 +regnetz_d8_evos,320,1832.93,139.657,256,23.46,7.03,38.92 +dpn107,224,1826.37,140.156,256,86.92,18.38,33.46 +vitamin_base_224,224,1815.08,141.031,256,87.72,22.68,52.77 +efficientnet_b3_g8_gn,320,1805.58,141.771,256,14.25,3.2,28.83 +hrnet_w64,224,1800.18,142.196,256,128.06,28.97,35.09 +coatnet_2_rw_224,224,1781.07,143.723,256,73.87,15.09,49.22 +xception65,299,1774.28,144.273,256,39.92,13.96,52.48 +fastvit_mci2,256,1766.58,144.901,256,35.82,7.91,43.34 +maxxvit_rmlp_small_rw_256,256,1763.23,145.178,256,66.01,14.67,58.38 +nextvit_small,384,1756.58,145.726,256,31.76,17.26,57.14 +efficientnetv2_m,320,1752.86,146.036,256,54.14,11.01,39.97 +coatnet_rmlp_2_rw_224,224,1741.02,147.029,256,73.88,15.18,54.78 +resnet152d,320,1737.66,147.314,256,60.21,24.08,47.67 +efficientvit_l3,224,1715.62,149.206,256,246.04,27.62,39.16 +tiny_vit_21m_384,384,1715.38,149.227,256,21.23,13.77,77.83 +seresnet152,288,1715.22,149.241,256,66.82,19.11,37.34 +levit_conv_512_s8,224,1706.1,150.039,256,74.05,21.82,52.28 +xcit_small_12_p8_224,224,1700.59,150.524,256,26.21,18.69,47.21 +poolformer_m48,224,1686.87,151.749,256,73.47,11.59,29.17 +volo_d3_224,224,1676.56,152.682,256,86.33,20.78,60.09 +levit_512_s8,224,1666.95,153.563,256,74.05,21.82,52.28 +caformer_b36,224,1666.61,153.592,256,98.75,23.22,67.3 +coatnet_2_224,224,1651.34,155.015,256,74.68,16.5,52.67 +convformer_b36,224,1649.96,155.143,256,99.88,22.69,56.06 +maxvit_small_tf_224,224,1638.94,156.187,256,68.93,11.66,53.17 +sequencer2d_l,224,1635.78,156.489,256,54.3,9.74,22.12 +swin_s3_base_224,224,1634.71,156.59,256,71.13,13.69,48.26 +regnetz_e8,256,1630.84,156.963,256,57.7,9.91,40.94 +nest_base,224,1627.71,157.266,256,67.72,17.96,53.39 +hgnetv2_b6,288,1622.05,157.812,256,75.26,27.9,35.09 +convnext_base,288,1617.77,158.232,256,88.59,25.43,47.53 +eca_nfnet_l2,320,1615.7,158.43,256,56.72,20.95,47.43 +nest_base_jx,224,1615.45,158.458,256,67.72,17.96,53.39 +convmixer_768_32,224,1615.29,158.475,256,21.11,19.55,25.95 +resnext101_64x4d,288,1613.61,158.64,256,83.46,25.66,51.59 +regnetz_d32,320,1612.01,158.797,256,27.58,9.33,37.08 +vit_so150m_patch16_reg4_gap_256,256,1607.89,159.204,256,134.13,36.75,53.21 +vit_so150m_patch16_reg4_map_256,256,1592.32,160.761,256,141.48,37.18,53.68 +densenet264d,224,1591.16,160.877,256,72.74,13.57,14.0 +mobilevitv2_175,384,1573.85,162.648,256,14.25,12.47,63.29 +resnet200,288,1570.42,163.003,256,64.67,24.91,53.21 +efficientvit_l2,384,1551.96,164.941,256,63.71,20.45,57.01 +regnety_120,288,1541.43,166.07,256,51.82,20.06,35.34 +swinv2_base_window8_256,256,1538.74,166.358,256,87.92,20.37,52.59 +convnextv2_base,288,1528.58,167.465,256,88.72,25.43,47.53 +ecaresnet200d,256,1516.5,168.798,256,64.69,20.0,43.15 +efficientnetv2_rw_m,320,1516.44,168.804,256,53.24,12.72,47.14 +seresnet200d,256,1510.21,169.5,256,71.86,20.01,43.15 +resnetrs200,256,1506.62,169.905,256,93.21,20.18,43.42 +maxvit_rmlp_small_rw_256,256,1505.28,170.056,256,64.9,14.15,66.09 +mobilenetv4_conv_aa_large,544,1502.9,170.324,256,32.59,14.19,64.79 +maxxvitv2_rmlp_base_rw_224,224,1492.62,171.499,256,116.09,24.2,62.77 +coat_small,224,1479.25,173.047,256,21.69,12.61,44.25 +convnext_large,224,1474.99,173.55,256,197.77,34.4,43.13 +vit_betwixt_patch16_reg4_gap_384,384,1474.89,173.562,256,60.6,39.71,85.28 +hrnet_w48_ssld,288,1457.57,175.623,256,77.47,28.66,47.21 +resnext101_32x16d,224,1452.32,176.26,256,194.03,36.27,51.18 +swinv2_small_window16_256,256,1451.76,176.326,256,49.73,12.82,66.29 +senet154,224,1443.54,177.331,256,115.09,20.77,38.69 +legacy_senet154,224,1435.62,178.308,256,115.09,20.77,38.69 +resnetv2_50x1_bit,448,1429.57,179.064,256,25.55,16.62,44.46 +nf_regnet_b5,456,1421.4,180.093,256,49.74,11.7,61.95 +seresnext101_32x8d,288,1405.19,182.171,256,93.57,27.24,51.63 +convnextv2_large,224,1398.77,183.007,256,197.96,34.4,43.13 +efficientnet_b4,384,1396.87,183.256,256,19.34,4.51,50.04 +gcvit_base,224,1394.71,183.536,256,90.32,14.87,55.48 +volo_d1_384,384,1386.95,184.567,256,26.78,22.75,108.55 +hgnet_base,288,1385.67,184.737,256,71.58,41.55,25.57 +seresnext101d_32x8d,288,1371.24,186.68,256,93.59,27.64,52.95 +convnext_small,384,1370.68,186.757,256,50.22,25.58,63.37 +xception71,299,1367.4,187.205,256,42.34,18.09,69.92 +vit_large_patch32_384,384,1360.57,188.147,256,306.63,45.31,43.86 +seresnet152d,320,1353.12,189.182,256,66.84,24.09,47.72 +crossvit_18_dagger_408,408,1350.07,189.608,256,44.61,32.47,124.87 +resnetrs152,320,1348.43,189.84,256,86.62,24.34,48.14 +nextvit_base,384,1347.63,189.95,256,44.82,24.64,73.95 +rdnet_large,224,1330.13,192.452,256,186.27,34.74,46.67 +efficientvit_l3,256,1327.54,192.828,256,246.04,36.06,50.98 +convnext_base,320,1319.96,193.934,256,88.59,31.39,58.68 +resnetv2_50x3_bit,224,1315.05,194.657,256,217.32,37.06,33.34 +xcit_tiny_12_p8_384,384,1309.52,195.481,256,6.71,14.13,69.14 +seresnextaa101d_32x8d,288,1303.25,196.419,256,93.59,28.51,56.44 +regnety_160,288,1303.15,196.436,256,83.59,26.37,38.07 +davit_large,224,1281.18,199.804,256,196.81,34.6,60.99 +tf_efficientnet_b4,380,1278.54,200.216,256,19.34,4.49,49.49 +xcit_large_24_p16_224,224,1277.51,200.379,256,189.1,35.86,47.27 +regnety_320,224,1269.25,201.683,256,145.05,32.34,30.26 +swinv2_large_window12_192,192,1267.31,201.991,256,228.77,26.17,56.53 +vit_mediumd_patch16_reg4_gap_384,384,1254.95,203.981,256,64.27,43.67,113.51 +regnetx_320,224,1253.43,204.228,256,107.81,31.81,36.3 +swin_large_patch4_window7_224,224,1249.84,204.814,256,196.53,34.53,54.94 +swinv2_cr_tiny_384,384,1248.53,205.031,256,28.33,15.34,161.01 +resnet200d,320,1245.29,205.564,256,64.69,31.25,67.33 +dm_nfnet_f2,256,1211.63,211.274,256,193.78,33.76,41.85 +nfnet_f2,256,1207.12,212.064,256,193.78,33.76,41.85 +mixer_l16_224,224,1198.62,213.568,256,208.2,44.6,41.69 +xcit_small_24_p16_384,384,1191.61,214.823,256,47.67,26.72,68.58 +tf_efficientnetv2_m,384,1187.13,215.635,256,54.14,15.85,57.52 +ecaresnet200d,288,1180.84,216.784,256,64.69,25.31,54.59 +seresnet200d,288,1176.89,217.511,256,71.86,25.32,54.6 +vit_small_patch14_dinov2,518,1176.63,217.56,256,22.06,46.76,198.79 +seresnet269d,256,1174.38,217.976,256,113.67,26.59,53.6 +vit_base_patch16_18x2_224,224,1171.44,218.522,256,256.73,52.51,71.38 +vit_small_patch14_reg4_dinov2,518,1167.53,219.256,256,22.06,46.95,199.77 +swinv2_cr_large_224,224,1159.63,220.749,256,196.68,35.1,78.42 +resnetrs270,256,1150.07,222.584,256,129.86,27.06,55.84 +convformer_s36,384,1147.41,223.099,256,40.01,22.54,89.62 +convnext_large_mlp,256,1136.31,225.279,256,200.13,44.94,56.33 +eca_nfnet_l2,384,1126.24,227.293,256,56.72,30.05,68.28 +maxvit_rmlp_base_rw_224,224,1122.54,228.041,256,116.14,23.15,92.64 +caformer_s36,384,1120.64,228.427,256,39.3,26.08,150.33 +vit_base_patch16_siglip_gap_384,384,1108.75,230.879,256,86.09,55.43,101.3 +vit_base_patch16_384,384,1108.32,230.969,256,86.86,55.54,101.56 +deit_base_patch16_384,384,1106.79,231.289,256,86.86,55.54,101.56 +deit3_base_patch16_384,384,1106.51,231.346,256,86.88,55.54,101.56 +vit_base_patch16_clip_384,384,1104.66,231.734,256,86.86,55.54,101.56 +deit_base_distilled_patch16_384,384,1099.37,232.85,256,87.63,55.65,101.82 +vit_base_patch16_siglip_384,384,1099.06,232.916,256,93.18,56.12,102.2 +nextvit_large,384,1093.53,234.092,256,57.87,32.03,90.76 +dm_nfnet_f1,320,1086.93,235.515,256,132.63,35.97,46.77 +nfnet_f1,320,1081.87,236.614,256,132.63,35.97,46.77 +seresnextaa101d_32x8d,320,1057.25,242.126,256,93.59,35.19,69.67 +convmixer_1024_20_ks9_p14,224,1053.87,242.903,256,24.38,5.55,5.51 +regnetz_e8,320,1043.8,245.246,256,57.7,15.46,63.94 +vit_large_patch16_224,224,1041.62,245.761,256,304.33,61.6,63.52 +eva_large_patch14_196,196,1041.47,245.796,256,304.14,61.57,63.52 +beit_base_patch16_384,384,1041.45,245.799,256,86.74,55.54,101.56 +swinv2_base_window16_256,256,1041.34,245.827,256,87.92,22.02,84.71 +deit3_large_patch16_224,224,1040.35,246.06,256,304.37,61.6,63.52 +swinv2_base_window12to16_192to256,256,1035.65,247.176,256,87.92,22.02,84.71 +efficientnetv2_m,416,1034.88,247.361,256,54.14,18.6,67.5 +eca_nfnet_l3,352,1034.06,247.553,256,72.04,32.57,73.12 +beit_large_patch16_224,224,1021.33,250.639,256,304.43,61.6,63.52 +mobilevitv2_200,384,1019.97,250.974,256,18.45,16.24,72.34 +beitv2_large_patch16_224,224,1019.31,251.137,256,304.43,61.6,63.52 +volo_d4_224,224,972.56,263.212,256,192.96,44.34,80.22 +maxvit_base_tf_224,224,971.51,263.496,256,119.47,24.04,95.01 +hiera_large_224,224,954.9,268.081,256,213.74,40.34,83.37 +maxxvitv2_rmlp_large_rw_224,224,954.34,268.236,256,215.42,44.14,87.15 +resnetrs200,320,950.29,269.381,256,93.21,31.51,67.81 +resnetv2_152x2_bit,224,931.12,274.926,256,236.34,46.95,45.11 +convnext_xlarge,224,930.04,275.246,256,350.2,60.98,57.5 +seresnet269d,288,924.08,277.021,256,113.67,33.65,67.81 +convnext_base,384,920.56,278.081,256,88.59,45.21,84.49 +nasnetalarge,331,914.25,279.998,256,88.75,23.89,90.56 +flexivit_large,240,911.71,280.781,256,304.36,70.99,75.39 +inception_next_base,384,899.71,284.524,256,86.67,43.64,75.48 +efficientnetv2_rw_m,416,897.78,285.137,256,53.24,21.49,79.62 +convnext_large,288,891.34,287.196,256,197.77,56.87,71.29 +xcit_small_24_p8_224,224,885.98,288.934,256,47.63,35.81,90.78 +vit_large_r50_s32_384,384,883.45,289.761,256,329.09,57.43,76.52 +tresnet_l,448,883.01,289.904,256,55.99,43.59,47.56 +convnextv2_base,384,870.69,294.006,256,88.72,45.21,84.49 +resnetv2_101x1_bit,448,859.26,297.921,256,44.54,31.65,64.93 +pnasnet5large,331,852.39,300.32,256,86.06,25.04,92.89 +efficientnet_b5,416,849.66,301.286,256,30.39,8.27,80.68 +convnextv2_large,288,847.65,301.999,256,197.96,56.87,71.29 +efficientvit_l3,320,845.04,302.933,256,246.04,56.32,79.34 +davit_huge,224,829.13,308.745,256,348.92,61.23,81.32 +convformer_m36,384,815.63,313.855,256,57.05,37.87,123.56 +coatnet_rmlp_3_rw_224,224,808.28,316.71,256,165.15,33.56,79.47 +coatnet_3_rw_224,224,807.9,316.858,256,181.81,33.44,73.83 +xcit_medium_24_p16_384,384,806.79,317.297,256,84.4,47.39,91.64 +vit_large_patch16_siglip_gap_256,256,806.47,317.422,256,303.36,80.8,88.34 +caformer_m36,384,804.97,318.01,256,56.2,42.11,196.35 +vit_large_patch16_siglip_256,256,801.91,319.228,256,315.96,81.34,88.88 +repvgg_d2se,320,798.65,320.531,256,133.33,74.57,46.82 +vit_base_patch8_224,224,795.31,321.875,256,86.58,78.22,161.69 +volo_d2_384,384,789.01,324.444,256,58.87,46.17,184.51 +vit_large_patch14_clip_quickgelu_224,224,782.99,326.939,256,303.97,81.08,88.79 +vit_large_patch14_xp_224,224,782.94,326.962,256,304.06,81.01,88.79 +vit_large_patch14_224,224,781.86,327.414,256,304.2,81.08,88.79 +vit_large_patch14_clip_224,224,781.23,327.678,256,304.2,81.08,88.79 +coatnet_3_224,224,772.28,331.477,256,166.97,36.56,79.01 +resnest200e,320,765.73,334.308,256,70.2,35.69,82.78 +regnety_160,384,765.62,334.358,256,83.59,46.87,67.67 +vit_base_r50_s16_384,384,764.44,334.876,256,98.95,67.43,135.03 +swinv2_cr_small_384,384,761.16,336.319,256,49.7,29.7,298.03 +tf_efficientnetv2_m,480,760.12,336.778,256,54.14,24.76,89.84 +regnety_640,224,754.37,339.342,256,281.38,64.16,42.5 +ecaresnet269d,320,742.7,344.674,256,102.09,41.53,83.69 +resnetv2_101x3_bit,224,740.89,345.52,256,387.93,71.23,48.7 +efficientnet_b5,448,731.74,349.841,256,30.39,9.59,93.56 +convnext_large_mlp,320,724.03,353.565,256,200.13,70.21,88.02 +vitamin_large2_224,224,716.86,357.1,256,333.58,75.05,112.83 +vitamin_large_224,224,716.07,357.492,256,333.32,75.05,112.83 +resnetrs350,288,710.31,360.394,256,163.96,43.67,87.09 +mvitv2_large,224,709.52,360.797,256,217.99,43.87,112.02 +cait_xxs24_384,384,704.92,363.148,256,12.03,9.63,122.66 +xcit_tiny_24_p8_384,384,690.01,370.998,256,12.11,27.05,132.95 +resnet50x16_clip_gap,384,680.63,376.11,256,136.2,70.32,100.64 +maxvit_large_tf_224,224,679.37,376.81,256,211.79,43.68,127.35 +coat_lite_medium_384,384,679.13,376.941,256,44.57,28.73,116.7 +efficientnetv2_l,384,676.62,378.337,256,118.52,36.1,101.16 +tiny_vit_21m_512,512,663.92,385.573,256,21.27,27.02,177.93 +tf_efficientnetv2_l,384,663.26,385.959,256,118.52,36.1,101.16 +maxvit_tiny_tf_384,384,662.03,386.678,256,30.98,17.53,123.42 +resnet50x16_clip,384,652.97,392.041,256,167.33,74.9,103.54 +tf_efficientnet_b5,456,640.6,399.612,256,30.39,10.46,98.86 +eca_nfnet_l3,448,638.11,401.174,256,72.04,52.55,118.4 +nfnet_f2,352,631.24,405.539,256,193.78,63.22,79.06 +swinv2_large_window12to16_192to256,256,628.73,407.156,256,196.74,47.81,121.53 +dm_nfnet_f2,352,628.21,407.495,256,193.78,63.22,79.06 +volo_d5_224,224,617.89,414.298,256,295.46,72.4,118.11 +mvitv2_large_cls,224,615.19,416.117,256,234.58,42.17,111.69 +ecaresnet269d,352,613.97,416.948,256,102.09,50.25,101.25 +eva02_large_patch14_clip_224,224,605.15,423.025,256,304.11,81.18,97.2 +eva02_large_patch14_224,224,605.1,423.058,256,303.27,81.15,97.2 +vit_so400m_patch14_siglip_gap_224,224,597.92,428.139,256,412.44,109.57,106.13 +xcit_medium_24_p8_224,224,597.46,428.468,256,84.32,63.53,121.23 +vit_so400m_patch14_siglip_224,224,596.3,429.305,256,427.68,110.26,106.73 +vit_base_patch16_siglip_gap_512,512,595.41,429.941,256,86.43,107.0,246.15 +resnetrs270,352,593.7,431.181,256,129.86,51.13,105.48 +vit_base_patch16_siglip_512,512,592.23,432.25,256,93.52,108.22,247.74 +tresnet_xl,448,585.25,437.403,256,78.44,60.77,61.31 +nfnet_f3,320,580.98,440.622,256,254.92,68.77,83.93 +dm_nfnet_f3,320,578.4,442.591,256,254.92,68.77,83.93 +xcit_small_12_p8_384,384,575.87,444.537,256,26.21,54.92,138.29 +convformer_b36,384,571.54,447.902,256,99.88,66.67,164.75 +convnext_xlarge,288,564.23,453.705,256,350.2,100.8,95.05 +caformer_b36,384,564.02,453.867,256,98.75,72.33,261.79 +efficientvit_l3,384,540.41,473.7,256,246.04,81.08,114.02 +swinv2_cr_base_384,384,538.78,475.138,256,87.88,50.57,333.68 +resmlp_big_24_224,224,534.87,478.611,256,129.14,100.23,87.31 +seresnextaa201d_32x8d,320,530.48,482.573,256,149.39,70.22,138.71 +swin_base_patch4_window12_384,384,526.43,486.278,256,87.9,47.19,134.78 +convnextv2_huge,224,522.5,489.937,256,660.29,115.0,79.07 +coatnet_4_224,224,516.83,495.312,256,275.43,62.48,129.26 +cait_xs24_384,384,514.59,497.468,256,26.67,19.28,183.98 +resnext101_32x32d,224,508.29,503.635,256,468.53,87.29,91.12 +convnext_large,384,505.8,506.117,256,197.77,101.1,126.74 +convnext_large_mlp,384,505.51,506.405,256,200.13,101.11,126.74 +eva02_base_patch14_448,448,495.86,516.266,256,87.12,107.11,259.14 +resnetrs420,320,490.22,522.204,256,191.89,64.2,126.56 +convnextv2_large,384,480.94,532.276,256,197.96,101.1,126.74 +vitamin_large_256,256,476.63,537.095,256,333.38,99.0,154.99 +vitamin_large2_256,256,476.34,537.415,256,333.64,99.0,154.99 +efficientnetv2_xl,384,473.56,540.575,256,208.12,52.81,139.2 +cait_xxs36_384,384,472.1,542.238,256,17.37,14.35,183.7 +regnety_320,384,471.4,543.046,256,145.05,95.0,88.87 +tf_efficientnetv2_xl,384,467.46,547.633,256,208.12,52.81,139.2 +swinv2_cr_huge_224,224,461.55,554.638,256,657.83,115.97,121.08 +maxxvitv2_rmlp_base_rw_384,384,460.8,555.548,256,116.09,72.98,213.74 +rdnet_large,384,454.9,562.743,256,186.27,102.09,137.13 +focalnet_huge_fl3,224,451.28,567.265,256,745.28,118.26,104.8 +xcit_large_24_p16_384,384,445.92,574.081,256,189.1,105.35,137.17 +efficientnetv2_l,480,432.31,592.158,256,118.52,56.4,157.99 +maxvit_small_tf_384,384,430.69,445.784,192,69.02,35.87,183.65 +tf_efficientnetv2_l,480,425.62,601.47,256,118.52,56.4,157.99 +vit_base_patch14_dinov2,518,422.75,605.542,256,86.58,151.71,397.58 +vit_base_patch14_reg4_dinov2,518,420.52,608.763,256,86.58,152.25,399.53 +hiera_huge_224,224,415.21,616.545,256,672.78,124.85,150.95 +vit_huge_patch14_gap_224,224,405.72,630.968,256,630.76,166.73,138.74 +coatnet_rmlp_2_rw_384,384,405.05,474.001,192,73.88,47.69,209.43 +volo_d3_448,448,402.31,636.318,256,86.63,96.33,446.83 +resnetrs350,384,400.15,639.744,256,163.96,77.59,154.74 +cait_s24_384,384,399.34,641.043,256,47.06,32.17,245.31 +deit3_huge_patch14_224,224,397.79,643.537,256,632.13,167.4,139.41 +vit_huge_patch14_224,224,397.77,643.573,256,630.76,167.4,139.41 +vit_huge_patch14_clip_quickgelu_224,224,397.73,643.637,256,632.08,167.4,139.41 +vit_huge_patch14_clip_224,224,397.45,644.094,256,632.05,167.4,139.41 +vit_huge_patch14_xp_224,224,395.98,646.484,256,631.8,167.3,139.41 +sam2_hiera_tiny,896,388.8,164.6,64,26.85,99.86,384.63 +vitamin_xlarge_256,256,386.93,661.605,256,436.06,130.13,177.37 +regnety_1280,224,379.67,674.264,256,644.81,127.66,71.58 +seresnextaa201d_32x8d,384,366.37,698.744,256,149.39,101.11,199.72 +maxvit_xlarge_tf_224,224,358.95,713.18,256,506.99,97.52,191.04 +resnest269e,416,358.78,713.517,256,110.93,77.69,171.98 +maxvit_tiny_tf_512,512,354.93,360.623,128,31.05,33.49,257.59 +efficientnet_b6,528,354.3,722.545,256,43.04,19.4,167.39 +vit_large_patch14_clip_quickgelu_336,336,344.63,742.82,256,304.29,191.11,270.24 +vit_large_patch16_siglip_gap_384,384,344.54,743.009,256,303.69,190.85,269.55 +vit_large_patch14_clip_336,336,343.67,744.879,256,304.53,191.11,270.24 +vit_large_patch16_384,384,343.49,745.276,256,304.72,191.21,270.24 +eva_large_patch14_336,336,343.16,745.991,256,304.53,191.1,270.24 +deit3_large_patch16_384,384,342.55,747.334,256,304.76,191.21,270.24 +vit_large_patch16_siglip_384,384,342.3,747.871,256,316.28,192.07,270.75 +nfnet_f3,416,340.62,751.561,256,254.92,115.58,141.78 +dm_nfnet_f3,416,339.53,753.969,256,254.92,115.58,141.78 +vit_giant_patch16_gap_224,224,338.53,756.187,256,1011.37,202.46,139.26 +nfnet_f4,384,335.52,762.977,256,316.07,122.14,147.57 +dm_nfnet_f4,384,332.75,769.343,256,316.07,122.14,147.57 +xcit_large_24_p8_224,224,331.23,772.865,256,188.93,141.23,181.56 +tf_efficientnet_b6,528,330.56,580.814,192,43.04,19.4,167.39 +beit_large_patch16_384,384,327.97,780.534,256,305.0,191.21,270.24 +sam2_hiera_small,896,325.93,196.351,64,33.95,123.99,442.63 +convnext_xxlarge,256,322.53,793.713,256,846.47,198.09,124.45 +swinv2_cr_large_384,384,319.63,600.684,192,196.68,108.96,404.96 +convnext_xlarge,384,319.57,801.065,256,350.2,179.2,168.99 +maxvit_rmlp_base_rw_384,384,319.22,801.939,256,116.14,70.97,318.95 +convnextv2_huge,288,317.37,806.616,256,660.29,190.1,130.7 +swin_large_patch4_window12_384,384,316.67,606.299,192,196.74,104.08,202.16 +resnetv2_152x4_bit,224,316.17,809.666,256,936.53,186.9,90.22 +resnetv2_152x2_bit,384,314.26,814.59,256,236.34,136.16,132.56 +davit_giant,224,312.39,819.474,256,1406.47,192.92,153.06 +xcit_small_24_p8_384,384,302.44,846.436,256,47.63,105.24,265.91 +maxvit_base_tf_384,384,300.57,425.842,128,119.65,73.8,332.9 +swinv2_base_window12to24_192to384,384,298.98,321.077,96,87.92,55.25,280.36 +coatnet_5_224,224,295.77,865.513,256,687.47,145.49,194.24 +eva02_large_patch14_clip_336,336,288.34,887.823,256,304.43,191.34,289.13 +resnetrs420,416,284.53,899.724,256,191.89,108.45,213.79 +resnetv2_50x3_bit,448,281.44,682.202,192,217.32,145.7,133.37 +regnety_640,384,272.07,940.925,256,281.38,188.47,124.83 +focalnet_huge_fl4,224,270.92,944.907,256,686.46,118.9,113.34 +vitamin_large_336,336,270.63,709.44,192,333.57,175.72,307.47 +vitamin_large2_336,336,270.54,709.67,192,333.83,175.72,307.47 +mvitv2_huge_cls,224,270.48,946.469,256,694.8,120.67,243.63 +cait_s36_384,384,267.14,958.275,256,68.37,47.99,367.4 +efficientnetv2_xl,512,266.88,959.22,256,208.12,93.85,247.32 +tf_efficientnetv2_xl,512,263.31,972.209,256,208.12,93.85,247.32 +vit_giant_patch14_224,224,257.22,995.234,256,1012.61,267.18,192.64 +vit_giant_patch14_clip_224,224,256.33,998.705,256,1012.65,267.18,192.64 +eva_giant_patch14_224,224,256.2,999.216,256,1012.56,267.18,192.64 +eva_giant_patch14_clip_224,224,254.62,1005.406,256,1012.59,267.18,192.64 +resnet50x64_clip_gap,448,235.46,1087.208,256,365.03,253.96,233.22 +nfnet_f5,416,232.61,1100.541,256,377.21,170.71,204.56 +maxvit_small_tf_512,512,232.28,413.275,96,69.13,67.26,383.77 +dm_nfnet_f5,416,231.56,1105.537,256,377.21,170.71,204.56 +volo_d4_448,448,231.52,1105.726,256,193.41,197.13,527.35 +resnet50x64_clip,448,228.54,1120.162,256,420.38,265.02,239.13 +resnetv2_152x2_bit,448,225.56,1134.941,256,236.34,184.99,180.43 +vitamin_xlarge_336,336,219.99,872.741,192,436.06,230.18,347.33 +efficientnet_b7,600,209.53,1221.782,256,66.35,38.33,289.94 +vitamin_large_384,384,205.2,623.762,128,333.71,234.44,440.16 +vitamin_large2_384,384,205.17,623.858,128,333.97,234.44,440.16 +focalnet_large_fl3,384,204.28,1253.192,256,239.13,105.06,168.04 +xcit_medium_24_p8_384,384,203.5,1257.962,256,84.32,186.67,354.73 +tf_efficientnet_b7,600,198.11,646.087,128,66.35,38.33,289.94 +vit_so400m_patch14_siglip_gap_384,384,195.82,1307.314,256,412.99,333.46,451.19 +focalnet_large_fl4,384,195.3,1310.76,256,239.32,105.2,181.78 +vit_so400m_patch14_siglip_384,384,195.2,1311.466,256,428.23,335.4,452.89 +davit_base_fl,768,192.39,665.305,128,90.37,190.32,530.15 +maxvit_large_tf_384,384,190.72,671.13,128,212.03,132.55,445.84 +nfnet_f4,512,190.38,1344.673,256,316.07,216.26,262.26 +dm_nfnet_f4,512,189.19,1353.158,256,316.07,216.26,262.26 +swinv2_large_window12to24_192to384,384,186.98,342.268,64,196.74,116.15,407.83 +convnextv2_huge,384,178.56,1433.694,256,660.29,337.96,232.35 +nfnet_f6,448,177.22,1444.522,256,438.36,229.7,273.62 +dm_nfnet_f6,448,175.57,1458.065,256,438.36,229.7,273.62 +vit_huge_patch14_clip_336,336,173.02,1479.562,256,632.46,390.97,407.54 +sam2_hiera_base_plus,896,170.31,375.779,64,68.68,227.48,828.88 +beit_large_patch16_512,512,169.73,1508.229,256,305.67,362.24,656.39 +resnetv2_101x3_bit,448,167.54,1145.984,192,387.93,280.33,194.78 +vitamin_xlarge_384,384,165.63,772.812,128,436.06,306.38,493.46 +convmixer_1536_20,224,153.79,1664.601,256,51.63,48.68,33.03 +eva02_large_patch14_448,448,153.5,1667.723,256,305.08,362.33,689.95 +volo_d5_448,448,148.89,1719.408,256,295.91,315.06,737.92 +vit_gigantic_patch14_224,224,146.07,1752.63,256,1844.44,483.95,275.37 +vit_gigantic_patch14_clip_224,224,145.81,1755.702,256,1844.91,483.96,275.37 +maxvit_base_tf_512,512,144.2,665.741,96,119.88,138.02,703.99 +regnety_1280,384,138.04,1390.849,192,644.81,374.99,210.2 +nfnet_f5,544,137.1,1867.295,256,377.21,290.97,349.71 +efficientnet_b8,672,136.75,935.971,128,87.41,63.48,442.89 +dm_nfnet_f5,544,136.7,1872.679,256,377.21,290.97,349.71 +focalnet_xlarge_fl3,384,136.68,1873.042,256,408.79,185.61,223.99 +focalnet_xlarge_fl4,384,135.52,1888.958,256,409.03,185.79,242.31 +vit_huge_patch14_clip_quickgelu_378,378,135.21,1893.33,256,632.68,503.79,572.79 +vit_so400m_patch14_siglip_gap_448,448,135.13,1894.403,256,413.33,487.18,764.26 +vit_huge_patch14_clip_378,378,134.97,1896.634,256,632.68,503.79,572.79 +nfnet_f7,480,133.4,1919.099,256,499.5,300.08,355.86 +vit_large_patch14_dinov2,518,133.12,1923.026,256,304.37,507.15,1058.82 +vit_large_patch14_reg4_dinov2,518,132.04,1938.813,256,304.37,508.9,1064.02 +tf_efficientnet_b8,672,130.88,977.99,128,87.41,63.48,442.89 +swinv2_cr_huge_384,384,130.75,489.486,64,657.94,352.04,583.18 +swinv2_cr_giant_224,224,125.01,1023.872,128,2598.76,483.85,309.15 +maxvit_xlarge_tf_384,384,123.97,516.244,64,475.32,292.78,668.76 +vit_huge_patch16_gap_448,448,123.46,2073.454,256,631.67,544.7,636.83 +cait_m36_384,384,120.83,2118.7,256,271.22,173.11,734.81 +volo_d5_512,512,113.48,2255.978,256,296.09,425.09,1105.37 +xcit_large_24_p8_384,384,112.54,2274.795,256,188.93,415.0,531.82 +eva_giant_patch14_336,336,111.59,2294.19,256,1013.01,620.64,550.67 +nfnet_f6,576,107.92,2372.106,256,438.36,378.69,452.2 +dm_nfnet_f6,576,107.35,2384.806,256,438.36,378.69,452.2 +maxvit_large_tf_512,512,101.74,629.046,64,212.33,244.75,942.15 +convnextv2_huge,512,100.55,1273.014,128,660.29,600.81,413.07 +tf_efficientnet_l2,475,90.19,1064.381,96,480.31,172.11,609.89 +nfnet_f7,608,84.41,3032.802,256,499.5,480.39,570.85 +regnety_2560,384,76.59,1671.223,128,1282.6,747.83,296.49 +davit_huge_fl,768,69.12,925.974,64,360.64,744.84,1060.3 +resnetv2_152x4_bit,480,66.53,1442.988,96,936.53,844.84,414.26 +eva02_enormous_patch14_clip_224,224,63.84,4009.924,256,4350.56,1132.46,497.58 +samvit_base_patch16,1024,61.83,258.784,16,89.67,486.43,1343.27 +maxvit_xlarge_tf_512,512,61.08,785.831,48,475.77,534.14,1413.22 +sam2_hiera_large,1024,53.33,900.092,48,212.15,907.48,2190.34 +vit_giant_patch14_dinov2,518,40.02,4797.862,192,1136.48,1784.2,2757.89 +vit_giant_patch14_reg4_dinov2,518,39.61,4847.503,192,1136.48,1790.08,2771.21 +swinv2_cr_giant_384,384,36.91,866.946,32,2598.76,1450.71,1394.86 +eva_giant_patch14_560,560,35.98,7115.889,256,1014.45,1906.76,2577.17 +efficientnet_l2,800,32.95,1942.195,64,480.31,479.12,1707.39 +tf_efficientnet_l2,800,31.83,1005.239,32,480.31,479.12,1707.39 +samvit_large_patch16,1024,26.29,304.233,8,308.28,1493.86,2553.78 +vit_so400m_patch14_siglip_gap_896,896,23.37,5478.218,128,416.87,2731.49,8492.88 +samvit_huge_patch16,1024,15.57,770.869,12,637.03,2982.23,3428.16 diff --git a/pytorch-image-models/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090.csv b/pytorch-image-models/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090.csv new file mode 100644 index 0000000000000000000000000000000000000000..1ea87d62f23d8c241b6a0f2abf7954703c316d5a --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090.csv @@ -0,0 +1,1445 @@ +model,infer_img_size,infer_samples_per_sec,infer_step_time,infer_batch_size,param_count,infer_gmacs,infer_macts +test_vit,160,188343.61,5.426,1024,0.37,0.04,0.48 +test_byobnet,160,114439.82,8.933,1024,0.46,0.03,0.43 +test_efficientnet,160,101055.26,10.121,1024,0.36,0.06,0.55 +tinynet_e,106,76644.06,13.346,1024,2.04,0.03,0.69 +mobilenetv3_small_050,224,70186.63,14.579,1024,1.59,0.03,0.92 +lcnet_035,224,64212.36,15.936,1024,1.64,0.03,1.04 +efficientvit_m0,224,54771.53,18.686,1024,2.35,0.08,0.91 +lcnet_050,224,53644.11,19.078,1024,1.88,0.05,1.26 +mobilenetv3_small_075,224,49475.98,20.686,1024,2.04,0.05,1.3 +mobilenetv3_small_100,224,43953.49,23.286,1024,2.54,0.06,1.42 +tinynet_d,152,40047.08,25.554,1024,2.34,0.05,1.42 +efficientvit_m1,224,38637.78,26.491,1024,2.98,0.17,1.33 +tf_mobilenetv3_small_075,224,37336.46,27.408,1024,2.04,0.05,1.3 +tf_mobilenetv3_small_minimal_100,224,37294.33,27.442,1024,2.04,0.06,1.41 +efficientvit_m2,224,34551.89,29.625,1024,4.19,0.2,1.47 +tf_mobilenetv3_small_100,224,34059.68,30.049,1024,2.54,0.06,1.42 +lcnet_075,224,33742.36,30.337,1024,2.36,0.1,1.99 +mobilenetv4_conv_small,224,32546.3,31.45,1024,3.77,0.19,1.97 +efficientvit_m3,224,29796.09,34.355,1024,6.9,0.27,1.62 +mnasnet_small,224,29488.73,34.713,1024,2.03,0.07,2.16 +levit_128s,224,28915.97,35.397,1024,7.78,0.31,1.88 +ghostnet_050,224,27810.93,36.808,1024,2.59,0.05,1.77 +efficientvit_m4,224,27584.68,37.111,1024,8.8,0.3,1.7 +vit_small_patch32_224,224,27011.35,37.895,1024,22.88,1.15,2.5 +lcnet_100,224,26901.09,38.053,1024,2.95,0.16,2.52 +regnetx_002,224,26857.85,38.105,1024,2.68,0.2,2.16 +resnet18,160,26266.23,38.966,1024,11.69,0.93,1.27 +resnet10t,176,25959.28,39.426,1024,5.44,0.7,1.51 +mobilenetv4_conv_small,256,25751.02,39.753,1024,3.77,0.25,2.57 +repghostnet_050,224,25423.49,40.26,1024,2.31,0.05,2.02 +levit_conv_128s,224,25136.44,40.725,1024,7.78,0.31,1.88 +regnety_002,224,25031.98,40.889,1024,3.16,0.2,2.17 +mobilenetv2_035,224,25024.38,40.909,1024,1.68,0.07,2.86 +vit_tiny_r_s16_p8_224,224,24696.86,41.446,1024,6.34,0.44,2.06 +efficientvit_b0,224,22706.84,45.084,1024,3.41,0.1,2.87 +mnasnet_050,224,22309.73,45.888,1024,2.22,0.11,3.07 +pit_ti_224,224,21640.68,47.298,1024,4.85,0.7,6.19 +pit_ti_distilled_224,224,21496.66,47.616,1024,5.1,0.71,6.23 +tinynet_c,184,20204.93,50.66,1024,2.46,0.11,2.87 +repghostnet_058,224,19802.21,51.689,1024,2.55,0.07,2.59 +mixer_s32_224,224,19527.38,52.427,1024,19.1,1.0,2.28 +mobilenetv2_050,224,19456.73,52.616,1024,1.97,0.1,3.64 +semnasnet_050,224,19111.19,53.559,1024,2.08,0.11,3.44 +levit_128,224,19082.4,53.651,1024,9.21,0.41,2.71 +efficientvit_m5,224,18614.46,54.998,1024,12.47,0.53,2.41 +vit_medium_patch32_clip_224,224,18383.79,55.687,1024,39.69,2.0,3.34 +regnetx_004,224,18131.35,56.448,1024,5.16,0.4,3.14 +gernet_s,224,17973.35,56.961,1024,8.17,0.75,2.65 +lcnet_150,224,17737.51,57.717,1024,4.5,0.34,3.79 +deit_tiny_patch16_224,224,17673.84,57.926,1024,5.72,1.26,5.97 +vit_tiny_patch16_224,224,17666.09,57.952,1024,5.72,1.26,5.97 +cs3darknet_focus_s,256,17602.37,58.161,1024,3.27,0.69,2.7 +deit_tiny_distilled_patch16_224,224,17560.74,58.299,1024,5.91,1.27,6.01 +levit_conv_128,224,17447.46,58.676,1024,9.21,0.41,2.71 +regnetx_004_tv,224,17439.64,58.689,1024,5.5,0.42,3.17 +levit_192,224,16980.83,60.29,1024,10.95,0.66,3.2 +cs3darknet_s,256,16965.42,60.345,1024,3.28,0.72,2.97 +resnet10t,224,16340.38,62.643,1024,5.44,1.1,2.43 +resnet34,160,16119.94,63.502,1024,21.8,1.87,1.91 +repghostnet_080,224,15726.41,65.091,1024,3.28,0.1,3.22 +levit_conv_192,224,15726.05,65.102,1024,10.95,0.66,3.2 +mobilenetv3_large_075,224,15518.95,65.962,1024,3.99,0.16,4.0 +vit_xsmall_patch16_clip_224,224,15266.09,67.063,1024,8.28,1.79,6.65 +hardcorenas_a,224,14844.77,68.969,1024,5.26,0.23,4.38 +mnasnet_075,224,14443.19,70.885,1024,3.17,0.23,4.77 +ese_vovnet19b_slim_dw,224,14337.06,71.41,1024,1.9,0.4,5.28 +nf_regnet_b0,192,14314.09,71.525,1024,8.76,0.37,3.15 +mobilenetv3_rw,224,14298.34,71.594,1024,5.48,0.23,4.41 +resnet14t,176,14213.29,72.022,1024,10.08,1.07,3.61 +mobilenetv3_large_100,224,14191.17,72.134,1024,5.48,0.23,4.41 +pit_xs_224,224,14164.01,72.272,1024,10.62,1.4,7.71 +pit_xs_distilled_224,224,14041.03,72.903,1024,11.0,1.41,7.76 +ghostnet_100,224,13948.64,73.4,1024,5.18,0.15,3.55 +regnetx_006,224,13813.98,74.091,1024,6.2,0.61,3.98 +mobilenetv1_100,224,13760.09,74.406,1024,4.23,0.58,5.04 +tf_mobilenetv3_large_075,224,13614.3,75.186,1024,3.99,0.16,4.0 +hardcorenas_b,224,13584.5,75.367,1024,5.18,0.26,5.09 +resnet18,224,13537.15,75.62,1024,11.69,1.82,2.48 +hardcorenas_c,224,13512.54,75.768,1024,5.52,0.28,5.01 +mobilenetv1_100h,224,13446.31,76.143,1024,5.28,0.63,5.09 +regnety_004,224,13238.44,77.296,1024,4.34,0.41,3.89 +tf_efficientnetv2_b0,192,13104.66,78.117,1024,7.14,0.54,3.51 +tf_mobilenetv3_large_minimal_100,224,13074.99,78.292,1024,3.92,0.22,4.4 +tinynet_b,188,13009.4,78.686,1024,3.73,0.21,4.44 +mobilenet_edgetpu_v2_xs,224,12965.31,78.967,1024,4.46,0.7,4.8 +vit_betwixt_patch32_clip_224,224,12906.63,79.313,1024,61.41,3.09,4.17 +convnext_atto,224,12819.99,79.862,1024,3.7,0.55,3.81 +repghostnet_100,224,12769.67,80.164,1024,4.07,0.15,3.98 +mnasnet_100,224,12674.12,80.779,1024,4.38,0.33,5.46 +seresnet18,224,12647.44,80.94,1024,11.78,1.82,2.49 +hardcorenas_d,224,12555.09,81.548,1024,7.5,0.3,4.93 +levit_256,224,12506.52,81.863,1024,18.89,1.13,4.23 +legacy_seresnet18,224,12443.24,82.276,1024,11.78,1.82,2.49 +tf_mobilenetv3_large_100,224,12230.56,83.698,1024,5.48,0.23,4.41 +convnext_atto_ols,224,12208.81,83.859,1024,3.7,0.58,4.11 +mobilenetv2_075,224,12206.99,83.872,1024,2.64,0.22,5.86 +edgenext_xx_small,256,12172.17,84.111,1024,1.33,0.26,3.33 +semnasnet_075,224,12007.14,85.256,1024,2.91,0.23,5.54 +regnety_006,224,11941.12,85.707,1024,6.06,0.61,4.33 +levit_conv_256,224,11783.71,86.886,1024,18.89,1.13,4.23 +repghostnet_111,224,11492.86,89.073,1024,4.54,0.18,4.38 +spnasnet_100,224,11256.71,90.94,1024,4.42,0.35,6.03 +levit_256d,224,11118.19,92.088,1024,26.21,1.4,4.93 +hardcorenas_f,224,11102.22,92.22,1024,8.2,0.35,5.57 +convnext_femto,224,11040.93,92.732,1024,5.22,0.79,4.57 +resnet18d,224,11008.69,92.989,1024,11.71,2.06,3.29 +repvgg_a0,224,10985.0,93.181,1024,9.11,1.52,3.59 +dla46_c,224,10958.84,93.426,1024,1.3,0.58,4.5 +mobilenetv1_100,256,10920.28,93.756,1024,4.23,0.76,6.59 +hardcorenas_e,224,10912.94,93.82,1024,8.07,0.35,5.65 +mobilenetv4_conv_medium,224,10887.04,94.044,1024,9.72,0.84,5.8 +ghostnet_130,224,10826.86,94.566,1024,7.36,0.24,4.6 +ese_vovnet19b_slim,224,10822.95,94.602,1024,3.17,1.69,3.52 +mobilenetv2_100,224,10810.08,94.71,1024,3.5,0.31,6.68 +mobilenetv1_100h,256,10741.59,95.317,1024,5.28,0.82,6.65 +semnasnet_100,224,10684.42,95.813,1024,3.89,0.32,6.23 +regnetx_008,224,10649.58,96.116,1024,7.26,0.81,5.15 +convnext_femto_ols,224,10568.01,96.88,1024,5.23,0.82,4.87 +crossvit_tiny_240,240,10467.46,97.811,1024,7.01,1.57,9.08 +mobilenet_edgetpu_100,224,10392.92,98.516,1024,4.09,1.0,5.75 +efficientnet_lite0,224,10376.87,98.665,1024,4.65,0.4,6.74 +mobilenetv1_125,224,10367.58,98.748,1024,6.27,0.89,6.3 +mobilevit_xxs,256,10336.7,99.048,1024,1.27,0.42,8.34 +fbnetc_100,224,10321.13,99.198,1024,5.57,0.4,6.51 +tinynet_a,192,10287.99,99.507,1024,6.19,0.35,5.41 +tf_efficientnetv2_b0,224,10217.13,100.198,1024,7.14,0.73,4.77 +mobilenetv4_hybrid_medium_075,224,10204.4,100.333,1024,7.31,0.66,5.65 +hgnetv2_b0,224,10169.22,100.683,1024,6.0,0.33,2.12 +vit_base_patch32_clip_224,224,10127.52,101.084,1024,88.22,4.41,5.01 +vit_base_patch32_224,224,10112.91,101.231,1024,88.22,4.41,5.01 +tf_efficientnetv2_b1,192,10100.97,101.35,1024,8.14,0.76,4.59 +regnety_008,224,9957.68,102.806,1024,6.26,0.81,5.25 +levit_conv_256d,224,9877.75,103.652,1024,26.21,1.4,4.93 +crossvit_9_240,240,9867.74,103.759,1024,8.55,1.85,9.52 +repghostnet_130,224,9782.41,104.652,1024,5.48,0.25,5.24 +regnety_008_tv,224,9578.99,106.856,1024,6.43,0.84,5.42 +edgenext_xx_small,288,9574.3,106.938,1024,1.33,0.33,4.21 +resnetblur18,224,9357.08,109.406,1024,11.69,2.34,3.39 +vit_small_patch32_384,384,9286.73,110.252,1024,22.92,3.45,8.25 +xcit_nano_12_p16_224,224,9284.43,110.262,1024,3.05,0.56,4.17 +mobilenet_edgetpu_v2_s,224,9204.18,111.24,1024,5.99,1.21,6.6 +visformer_tiny,224,9194.72,111.341,1024,10.32,1.27,5.72 +dla46x_c,224,9155.27,111.834,1024,1.07,0.54,5.66 +crossvit_9_dagger_240,240,9081.92,112.735,1024,8.78,1.99,9.97 +mobilenetv4_conv_medium,256,9068.95,112.899,1024,9.72,1.1,7.58 +pvt_v2_b0,224,8956.42,114.305,1024,3.67,0.57,7.99 +resnet14t,224,8930.87,114.632,1024,10.08,1.69,5.8 +efficientnet_b0,224,8926.12,114.703,1024,5.29,0.4,6.75 +mnasnet_140,224,8908.91,114.927,1024,7.12,0.6,7.71 +fbnetv3_b,224,8904.43,114.985,1024,8.6,0.42,6.97 +pit_s_224,224,8898.37,115.049,1024,23.46,2.88,11.56 +pit_s_distilled_224,224,8880.77,115.275,1024,24.04,2.9,11.64 +mobilevitv2_050,256,8864.77,115.498,1024,1.37,0.48,8.04 +cs3darknet_focus_m,256,8810.63,116.207,1024,9.3,1.98,4.89 +tf_efficientnet_lite0,224,8709.74,117.542,1024,4.65,0.4,6.74 +dla60x_c,224,8644.34,118.444,1024,1.32,0.59,6.01 +efficientnet_b1_pruned,240,8640.04,118.503,1024,6.33,0.4,6.21 +efficientvit_b1,224,8637.15,118.543,1024,9.1,0.53,7.25 +convnext_pico,224,8576.11,119.388,1024,9.05,1.37,6.1 +regnetz_005,224,8537.29,119.917,1024,7.12,0.52,5.86 +rexnet_100,224,8512.86,120.248,1024,4.8,0.41,7.44 +repghostnet_150,224,8511.4,120.282,1024,6.58,0.32,6.0 +mobilenetv1_125,256,8425.89,121.511,1024,6.27,1.16,8.23 +repvit_m1,224,8403.37,121.801,1024,5.49,0.83,7.45 +vit_base_patch32_clip_quickgelu_224,224,8389.12,122.035,1024,87.85,4.41,5.01 +ese_vovnet19b_dw,224,8324.1,123.002,1024,6.54,1.34,8.25 +resnet18,288,8261.03,123.927,1024,11.69,3.01,4.11 +repvgg_a1,224,8255.57,124.011,1024,14.09,2.64,4.74 +rexnetr_100,224,8248.96,124.109,1024,4.88,0.43,7.72 +convnext_pico_ols,224,8234.27,124.344,1024,9.06,1.43,6.5 +cs3darknet_m,256,8195.28,124.934,1024,9.31,2.08,5.28 +resnet34,224,8192.41,124.968,1024,21.8,3.67,3.74 +resnet50,160,8139.65,125.774,1024,25.56,2.1,5.67 +mobilenetv4_hybrid_medium,224,8135.37,125.856,1024,11.07,0.98,6.84 +vit_tiny_r_s16_p8_384,384,8129.06,125.953,1024,6.36,1.34,6.49 +selecsls42,224,8099.05,126.406,1024,30.35,2.94,4.62 +mobilenetv2_110d,224,8095.22,126.469,1024,4.52,0.45,8.71 +nf_regnet_b0,256,8083.32,126.666,1024,8.76,0.64,5.58 +selecsls42b,224,8049.57,127.183,1024,32.46,2.98,4.62 +repvit_m0_9,224,7983.61,128.234,1024,5.49,0.83,7.45 +tf_efficientnetv2_b2,208,7955.98,128.679,1024,10.1,1.06,6.0 +vit_base_patch32_clip_256,256,7846.08,130.484,1024,87.86,5.76,6.65 +hrnet_w18_small,224,7772.99,131.724,1024,13.19,1.61,5.72 +convnext_atto,288,7751.5,132.09,1024,3.7,0.91,6.3 +efficientnet_b0_gn,224,7748.62,132.137,1024,5.29,0.42,6.75 +levit_384,224,7713.47,132.738,1024,39.13,2.36,6.26 +seresnet18,288,7713.21,132.732,1024,11.78,3.01,4.11 +gernet_m,224,7709.22,132.814,1024,21.14,3.02,5.24 +vit_small_patch16_224,224,7693.38,133.087,1024,22.05,4.61,11.95 +deit_small_patch16_224,224,7687.89,133.182,1024,22.05,4.61,11.95 +resnet50d,160,7681.19,133.288,1024,25.58,2.22,6.08 +tf_efficientnet_b0,224,7640.8,133.985,1024,5.29,0.4,6.75 +deit_small_distilled_patch16_224,224,7620.92,134.352,1024,22.44,4.63,12.02 +edgenext_x_small,256,7580.19,135.075,1024,2.34,0.54,5.93 +seresnet34,224,7569.0,135.26,1024,21.96,3.67,3.74 +ghostnetv2_100,224,7562.78,135.385,1024,6.16,0.18,4.55 +skresnet18,224,7543.01,135.725,1024,11.96,1.82,3.24 +mobilenetv2_140,224,7486.19,136.767,1024,6.11,0.6,9.57 +semnasnet_140,224,7485.31,136.75,1024,6.11,0.6,8.87 +legacy_seresnet34,224,7446.07,137.508,1024,21.96,3.67,3.74 +fbnetv3_d,224,7426.0,137.878,1024,10.31,0.52,8.5 +hgnetv2_b1,224,7416.62,138.054,1024,6.34,0.49,2.73 +convnext_atto_ols,288,7379.61,138.745,1024,3.7,0.96,6.8 +mixer_b32_224,224,7373.37,138.863,1024,60.29,3.24,6.29 +vit_pwee_patch16_reg1_gap_256,256,7329.65,139.691,1024,15.25,4.37,15.87 +resnet34d,224,7202.58,142.142,1024,21.82,3.91,4.54 +levit_conv_384,224,7171.07,142.782,1024,39.13,2.36,6.26 +efficientnet_lite1,240,7085.22,144.508,1024,5.42,0.62,10.14 +efficientnet_b0,256,7082.56,144.564,1024,5.29,0.52,8.81 +dla34,224,7078.3,144.651,1024,15.74,3.07,5.02 +mobilenet_edgetpu_v2_m,224,7064.66,144.928,1024,8.46,1.85,8.15 +mixnet_s,224,7052.75,145.177,1024,4.13,0.25,6.25 +fbnetv3_b,256,7022.87,145.793,1024,8.6,0.55,9.1 +seresnet50,160,6986.99,146.503,1024,28.09,2.1,5.69 +cs3darknet_focus_m,288,6969.39,146.91,1024,9.3,2.51,6.19 +eva02_tiny_patch14_224,224,6896.46,148.467,1024,5.5,1.7,9.14 +ecaresnet50t,160,6885.36,148.705,1024,25.57,2.21,6.04 +tf_efficientnetv2_b1,240,6876.19,148.891,1024,8.14,1.21,7.34 +efficientvit_b1,256,6866.64,149.111,1024,9.1,0.69,9.46 +selecsls60b,224,6862.29,149.193,1024,32.77,3.63,5.52 +selecsls60,224,6832.72,149.84,1024,30.67,3.59,5.52 +vit_wee_patch16_reg1_gap_256,256,6818.08,150.174,1024,13.42,3.83,13.9 +mobilenetv4_conv_blur_medium,224,6816.69,150.205,1024,9.72,1.22,8.58 +deit3_small_patch16_224,224,6812.85,150.286,1024,22.06,4.61,11.95 +efficientnet_es,224,6810.09,150.348,1024,5.44,1.81,8.73 +mixer_s16_224,224,6808.46,150.387,1024,18.53,3.79,5.97 +efficientnet_blur_b0,224,6806.84,150.42,1024,5.29,0.43,8.72 +tiny_vit_5m_224,224,6795.79,150.652,1024,12.08,1.28,11.25 +repvit_m1_0,224,6784.56,150.903,1024,7.3,1.13,8.69 +regnetx_016,224,6766.08,151.313,1024,9.19,1.62,7.93 +resnet50,176,6703.95,152.718,1024,25.56,2.62,6.92 +convnext_femto,288,6687.36,153.109,1024,5.22,1.3,7.56 +flexivit_small,240,6660.66,153.724,1024,22.06,5.35,14.18 +efficientnet_b0_g16_evos,224,6654.19,153.871,1024,8.11,1.01,7.42 +resmlp_12_224,224,6650.72,153.939,1024,15.35,3.01,5.5 +resnet26,224,6639.65,154.197,1024,16.0,2.36,7.35 +resnet18d,288,6633.67,154.335,1024,11.71,3.41,5.43 +repvit_m2,224,6610.13,154.886,1024,8.8,1.36,9.43 +mobilenetv4_hybrid_medium,256,6587.07,155.438,1024,11.07,1.29,9.01 +convnextv2_atto,224,6572.88,155.773,1024,3.71,0.55,3.81 +resnetrs50,160,6568.89,155.826,1024,35.69,2.29,6.2 +resnext50_32x4d,160,6540.25,156.542,1024,25.03,2.17,7.35 +cs3darknet_m,288,6499.55,157.533,1024,9.31,2.63,6.69 +rexnetr_130,224,6489.24,157.769,1024,7.61,0.68,9.81 +rexnet_130,224,6476.24,158.089,1024,7.56,0.68,9.71 +resnetaa34d,224,6464.72,158.371,1024,21.82,4.43,5.07 +repghostnet_200,224,6438.16,159.023,1024,9.8,0.54,7.96 +convnext_femto_ols,288,6405.94,159.835,1024,5.23,1.35,8.06 +xcit_tiny_12_p16_224,224,6316.09,162.101,1024,6.72,1.24,6.29 +gmixer_12_224,224,6305.79,162.375,1024,12.7,2.67,7.26 +tf_mixnet_s,224,6303.08,162.43,1024,4.13,0.25,6.25 +mobilenetv4_conv_aa_medium,256,6295.03,162.653,1024,9.72,1.58,10.3 +repvit_m1_1,224,6283.35,162.917,1024,8.8,1.36,9.43 +tf_efficientnet_es,224,6275.13,163.154,1024,5.44,1.81,8.73 +efficientnet_b1,224,6258.96,163.587,1024,7.79,0.59,9.36 +efficientnet_es_pruned,224,6256.91,163.63,1024,5.44,1.81,8.73 +efficientnet_b0_g8_gn,224,6255.71,163.672,1024,6.56,0.66,6.75 +convnext_nano,224,6249.99,163.825,1024,15.59,2.46,8.37 +repvgg_b0,224,6210.44,164.855,1024,15.82,3.41,6.15 +hgnetv2_b0,288,6150.46,166.477,1024,6.0,0.54,3.51 +ecaresnet50d_pruned,224,6136.73,166.846,1024,19.94,2.53,6.43 +hgnetv2_b4,224,6125.62,167.15,1024,19.8,2.75,6.7 +tf_efficientnet_lite1,240,6121.06,167.26,1024,5.42,0.62,10.14 +resnet26d,224,6072.87,168.59,1024,16.01,2.6,8.15 +efficientnet_cc_b0_4e,224,6016.7,170.181,1024,13.31,0.41,9.42 +efficientnet_cc_b0_8e,224,6014.04,170.256,1024,24.01,0.42,9.42 +nf_regnet_b1,256,6005.41,170.494,1024,10.22,0.82,7.27 +mobilenetv4_conv_medium,320,5999.7,170.66,1024,9.72,1.71,11.84 +mobilenet_edgetpu_v2_l,224,5960.09,171.794,1024,10.92,2.55,9.05 +vit_relpos_small_patch16_224,224,5956.13,171.907,1024,21.98,4.59,13.05 +edgenext_x_small,288,5955.77,171.92,1024,2.34,0.68,7.5 +regnety_016,224,5939.38,172.381,1024,11.2,1.63,8.04 +darknet17,256,5937.82,172.434,1024,14.3,3.26,7.18 +fbnetv3_d,256,5909.96,173.251,1024,10.31,0.68,11.1 +vit_srelpos_small_patch16_224,224,5903.24,173.446,1024,21.97,4.59,12.16 +nf_resnet26,224,5897.16,173.627,1024,16.0,2.41,7.35 +mobilevitv2_075,256,5875.41,174.271,1024,2.87,1.05,12.06 +nf_regnet_b2,240,5860.87,174.704,1024,14.31,0.97,7.23 +ghostnetv2_130,224,5854.47,174.894,1024,8.96,0.28,5.9 +efficientnet_b2_pruned,260,5817.56,176.002,1024,8.31,0.73,9.13 +vit_base_patch32_plus_256,256,5803.45,176.415,1024,119.48,7.79,7.76 +tiny_vit_11m_224,224,5800.65,176.504,1024,20.35,2.04,13.49 +vit_tiny_patch16_384,384,5746.17,178.189,1024,5.79,4.7,25.39 +gmlp_ti16_224,224,5736.13,178.502,1024,5.87,1.34,7.55 +mobilenet_edgetpu_v2_m,256,5727.79,178.761,1024,8.46,2.42,10.65 +mobilenetv2_120d,224,5720.65,178.972,1024,5.83,0.69,11.97 +vit_relpos_small_patch16_rpn_224,224,5707.01,179.411,1024,21.97,4.59,13.05 +resnetblur18,288,5705.18,179.458,1024,11.69,3.87,5.6 +rexnetr_150,224,5686.03,180.063,1024,9.78,0.89,11.13 +convnext_nano_ols,224,5675.19,180.417,1024,15.65,2.65,9.38 +poolformer_s12,224,5647.45,181.292,1024,11.92,1.82,5.53 +efficientformer_l1,224,5641.9,181.48,1024,12.29,1.3,5.53 +convnextv2_femto,224,5629.97,181.868,1024,5.23,0.79,4.57 +rexnet_150,224,5597.8,182.901,1024,9.73,0.9,11.21 +efficientnet_lite2,260,5526.09,185.282,1024,6.09,0.89,12.9 +efficientnet_b1,240,5515.48,185.64,1024,7.79,0.71,10.88 +darknet21,256,5507.84,185.899,1024,20.86,3.93,7.47 +edgenext_small,256,5504.6,186.01,1024,5.59,1.26,9.07 +mobilenetv4_conv_blur_medium,256,5452.15,140.844,768,9.72,1.59,11.2 +resnext50_32x4d,176,5448.72,187.904,1024,25.03,2.71,8.97 +tf_efficientnet_cc_b0_8e,224,5378.31,190.379,1024,24.01,0.42,9.42 +tf_efficientnet_cc_b0_4e,224,5350.74,191.362,1024,13.31,0.41,9.42 +resnet101,160,5347.38,191.468,1024,44.55,4.0,8.28 +gernet_l,256,5345.88,191.534,1024,31.08,4.57,8.0 +efficientvit_b1,288,5336.48,191.869,1024,9.1,0.87,11.96 +regnetz_005,288,5324.94,192.275,1024,7.12,0.86,9.68 +hgnet_tiny,224,5289.94,193.552,1024,14.74,4.54,6.36 +repvgg_a2,224,5234.66,195.589,1024,28.21,5.7,6.26 +mobilenetv4_conv_large,256,5210.97,196.493,1024,32.59,2.86,12.14 +convnext_pico,288,5203.54,196.772,1024,9.05,2.27,10.08 +cs3darknet_focus_l,256,5201.05,196.865,1024,21.15,4.66,8.03 +vit_relpos_base_patch32_plus_rpn_256,256,5200.74,196.879,1024,119.42,7.68,8.01 +mobilenetv3_large_150d,256,5199.32,196.924,1024,14.62,1.03,12.35 +resnest14d,224,5198.83,196.94,1024,10.61,2.76,7.33 +vit_medium_patch16_clip_224,224,5170.05,198.043,1024,38.59,8.0,15.93 +sedarknet21,256,5136.28,199.326,1024,20.95,3.93,7.47 +tf_efficientnetv2_b2,260,5112.53,200.262,1024,10.1,1.72,9.84 +regnetz_b16,224,5111.47,200.306,1024,9.72,1.45,9.95 +efficientnetv2_rw_t,224,5105.62,200.547,1024,13.65,1.93,9.94 +hgnetv2_b2,224,5071.32,201.903,1024,11.22,1.15,4.12 +edgenext_small_rw,256,5063.53,202.213,1024,7.83,1.58,9.51 +legacy_seresnext26_32x4d,224,5035.51,203.34,1024,16.79,2.49,9.39 +mobilenetv4_hybrid_large_075,256,5015.06,204.168,1024,22.75,2.06,11.64 +ecaresnet101d_pruned,224,5009.62,204.385,1024,24.88,3.48,7.69 +tf_efficientnetv2_b3,240,5006.45,204.508,1024,14.36,1.93,9.95 +crossvit_small_240,240,5004.67,204.591,1024,26.86,5.63,18.17 +convnext_pico_ols,288,4990.08,205.192,1024,9.06,2.37,10.74 +resnext26ts,256,4989.4,205.207,1024,10.3,2.43,10.52 +resnet34,288,4989.09,205.219,1024,21.8,6.07,6.18 +efficientnet_b1,256,4979.81,205.61,1024,7.79,0.77,12.22 +pvt_v2_b1,224,4972.11,205.919,1024,14.01,2.12,15.39 +mixnet_m,224,4961.12,206.387,1024,5.01,0.36,8.19 +dpn48b,224,4946.37,207.002,1024,9.13,1.69,8.92 +sam2_hiera_tiny,224,4939.34,207.285,1024,26.85,4.91,17.12 +nf_ecaresnet26,224,4936.32,207.425,1024,16.0,2.41,7.36 +eca_resnext26ts,256,4936.16,207.428,1024,10.3,2.43,10.52 +mobilevit_xs,256,4915.37,156.229,768,2.32,1.05,16.33 +cs3darknet_l,256,4898.39,209.032,1024,21.16,4.86,8.55 +tf_efficientnet_b1,240,4891.58,209.309,1024,7.79,0.71,10.88 +nf_seresnet26,224,4877.41,209.923,1024,17.4,2.41,7.36 +gcresnext26ts,256,4873.11,210.116,1024,10.48,2.43,10.53 +ecaresnetlight,224,4830.89,211.948,1024,30.16,4.11,8.42 +seresnext26ts,256,4825.46,212.166,1024,10.39,2.43,10.52 +tf_efficientnet_lite2,260,4812.46,212.754,1024,6.09,0.89,12.9 +resnet26t,256,4797.54,213.414,1024,16.01,3.35,10.52 +convnext_tiny,224,4796.99,213.45,1024,28.59,4.47,13.44 +coatnext_nano_rw_224,224,4780.38,214.189,1024,14.7,2.47,12.8 +ecaresnext50t_32x4d,224,4760.92,215.063,1024,15.41,2.7,10.09 +ecaresnext26t_32x4d,224,4760.44,215.086,1024,15.41,2.7,10.09 +ghostnetv2_160,224,4741.68,215.94,1024,12.39,0.42,7.23 +mobileone_s1,224,4716.61,217.083,1024,4.83,0.86,9.67 +efficientnet_b2,256,4713.06,217.249,1024,9.11,0.89,12.81 +ese_vovnet19b_dw,288,4711.0,217.348,1024,6.54,2.22,13.63 +vit_little_patch16_reg1_gap_256,256,4683.45,218.614,1024,22.52,6.27,18.06 +gc_efficientnetv2_rw_t,224,4667.78,219.357,1024,13.68,1.94,9.97 +nf_regnet_b1,288,4666.05,219.44,1024,10.22,1.02,9.2 +vit_small_resnet26d_224,224,4663.1,219.577,1024,63.61,5.07,11.12 +vit_little_patch16_reg4_gap_256,256,4660.7,219.682,1024,22.52,6.35,18.33 +efficientnet_b3_pruned,300,4660.19,219.714,1024,9.86,1.04,11.86 +seresnext26t_32x4d,224,4649.25,220.222,1024,16.81,2.7,10.09 +tf_mixnet_m,224,4635.47,220.876,1024,5.01,0.36,8.19 +crossvit_15_240,240,4634.12,220.945,1024,27.53,5.81,19.77 +vit_small_r26_s32_224,224,4628.86,221.202,1024,36.43,3.56,9.85 +seresnet34,288,4622.08,221.495,1024,21.96,6.07,6.18 +vit_relpos_medium_patch16_cls_224,224,4616.98,221.77,1024,38.76,8.03,18.24 +tresnet_m,224,4615.66,221.824,1024,31.39,5.75,7.31 +deit3_medium_patch16_224,224,4613.13,221.958,1024,38.85,8.0,15.93 +seresnext26d_32x4d,224,4594.08,222.859,1024,16.81,2.73,10.19 +hgnetv2_b1,288,4576.22,223.749,1024,6.34,0.82,4.51 +cs3sedarknet_l,256,4561.19,224.486,1024,21.91,4.86,8.56 +levit_512,224,4507.01,227.185,1024,95.17,5.64,10.22 +nf_regnet_b2,272,4499.96,227.541,1024,14.31,1.22,9.27 +repvit_m3,224,4488.27,228.109,1024,10.68,1.89,13.94 +selecsls84,224,4485.13,228.28,1024,50.95,5.9,7.57 +coatnet_pico_rw_224,224,4472.02,228.953,1024,10.85,2.05,14.62 +resnetv2_50,224,4451.45,230.006,1024,25.55,4.11,11.11 +mobilevitv2_100,256,4424.26,173.574,768,4.9,1.84,16.08 +wide_resnet50_2,176,4418.37,231.739,1024,68.88,7.29,8.97 +hiera_tiny_224,224,4417.32,231.797,1024,27.91,4.91,17.13 +coat_lite_tiny,224,4413.07,232.018,1024,5.72,1.6,11.65 +resnet101,176,4401.33,232.627,1024,44.55,4.92,10.08 +crossvit_15_dagger_240,240,4395.44,232.947,1024,28.21,6.13,20.43 +vgg11,224,4384.0,233.545,1024,132.86,7.61,7.44 +resnet34d,288,4379.98,233.76,1024,21.82,6.47,7.51 +eca_botnext26ts_256,256,4372.52,234.17,1024,10.59,2.46,11.6 +ecaresnet26t,256,4365.68,234.537,1024,16.01,3.35,10.53 +convit_tiny,224,4364.79,234.585,1024,5.71,1.26,7.94 +skresnet34,224,4357.69,234.957,1024,22.28,3.67,5.13 +vovnet39a,224,4329.41,236.505,1024,22.6,7.09,6.73 +convnextv2_pico,224,4303.27,237.943,1024,9.07,1.37,6.1 +eca_halonext26ts,256,4303.05,237.954,1024,10.76,2.44,11.46 +cspresnet50,256,4286.58,238.859,1024,21.62,4.54,11.5 +fbnetv3_g,240,4271.76,239.698,1024,16.62,1.28,14.87 +fastvit_t8,256,4268.46,239.88,1024,4.03,0.7,8.63 +dla60,224,4267.0,239.958,1024,22.04,4.26,10.16 +resnetv2_50t,224,4244.14,241.24,1024,25.57,4.32,11.82 +regnetx_032,224,4235.6,241.712,1024,15.3,3.2,11.37 +hrnet_w18_small_v2,224,4233.72,241.85,1024,15.6,2.62,9.65 +levit_512d,224,4224.89,242.354,1024,92.5,5.85,11.3 +resnet32ts,256,4223.86,242.395,1024,17.96,4.63,11.58 +mobilenetv4_hybrid_medium,320,4223.22,242.451,1024,11.07,2.05,14.36 +resnet50,224,4217.6,242.763,1024,25.56,4.11,11.11 +levit_conv_512,224,4205.6,243.467,1024,95.17,5.64,10.22 +resnetv2_50d,224,4198.97,243.837,1024,25.57,4.35,11.92 +efficientvit_b2,224,4196.18,244.014,1024,24.33,1.6,14.62 +lambda_resnet26t,256,4192.89,244.204,1024,10.96,3.02,11.87 +coat_lite_mini,224,4171.78,245.439,1024,11.01,2.0,12.25 +resnet33ts,256,4170.49,245.507,1024,19.68,4.76,11.66 +regnety_032,224,4166.74,245.728,1024,19.44,3.2,11.26 +botnet26t_256,256,4164.92,245.843,1024,12.49,3.32,11.98 +halonet26t,256,4157.99,246.255,1024,12.48,3.19,11.69 +ese_vovnet39b,224,4150.95,246.672,1024,24.57,7.09,6.74 +eca_vovnet39b,224,4144.28,247.067,1024,22.6,7.09,6.74 +dpn68,224,4139.9,247.329,1024,12.61,2.35,10.47 +hgnetv2_b3,224,4136.91,247.511,1024,16.29,1.78,5.07 +coatnet_nano_cc_224,224,4135.45,247.589,1024,13.76,2.24,15.02 +rexnetr_200,224,4135.03,185.7,768,16.52,1.59,15.11 +rexnet_200,224,4128.12,186.013,768,16.37,1.56,14.91 +vit_relpos_medium_patch16_224,224,4120.0,248.525,1024,38.75,7.97,17.02 +eca_resnet33ts,256,4101.91,249.618,1024,19.68,4.76,11.66 +vit_srelpos_medium_patch16_224,224,4077.53,251.113,1024,38.74,7.96,16.21 +gcresnet33ts,256,4074.93,251.273,1024,19.88,4.76,11.68 +dpn68b,224,4071.04,251.513,1024,12.61,2.35,10.47 +cs3darknet_focus_l,288,4065.11,251.879,1024,21.15,5.9,10.16 +resnet26,288,4059.09,252.243,1024,16.0,3.9,12.15 +seresnet33ts,256,4037.86,253.571,1024,19.78,4.76,11.66 +resnet50t,224,4031.22,253.987,1024,25.57,4.32,11.82 +visformer_small,224,4021.8,254.581,1024,40.22,4.88,11.43 +resnet50d,224,3994.33,256.335,1024,25.58,4.35,11.92 +davit_tiny,224,3979.92,192.952,768,28.36,4.54,18.89 +cspresnet50w,256,3979.02,257.332,1024,28.12,5.04,12.19 +resnetaa34d,288,3962.03,258.426,1024,21.82,7.33,8.38 +resnet50c,224,3951.72,259.096,1024,25.58,4.35,11.92 +resnetv2_50x1_bit,224,3946.63,259.432,1024,25.55,4.23,11.11 +cspresnet50d,256,3928.57,260.626,1024,21.64,4.86,12.55 +efficientnet_b1,288,3916.7,261.423,1024,7.79,0.97,15.46 +resnext26ts,288,3914.08,261.582,1024,10.3,3.07,13.31 +convnext_tiny_hnf,224,3907.17,262.058,1024,28.59,4.47,13.44 +vit_base_resnet26d_224,224,3907.09,262.061,1024,101.4,6.97,13.16 +bat_resnext26ts,256,3900.03,262.512,1024,10.73,2.53,12.51 +resnetaa50,224,3892.01,263.074,1024,25.56,5.15,11.64 +coatnet_nano_rw_224,224,3890.95,263.144,1024,15.14,2.41,15.41 +regnetv_040,224,3888.77,263.292,1024,20.64,4.0,12.29 +vit_relpos_medium_patch16_rpn_224,224,3883.35,263.671,1024,38.73,7.97,17.02 +twins_svt_small,224,3875.45,264.197,1024,24.06,2.94,13.75 +eca_resnext26ts,288,3875.29,264.216,1024,10.3,3.07,13.32 +mobileone_s2,224,3859.75,265.286,1024,7.88,1.34,11.55 +hgnetv2_b4,288,3849.96,265.959,1024,19.8,4.54,11.08 +haloregnetz_b,224,3847.23,266.147,1024,11.68,1.97,11.94 +legacy_seresnet50,224,3845.77,266.241,1024,28.09,3.88,10.6 +cs3darknet_l,288,3845.41,266.274,1024,21.16,6.16,10.83 +efficientnet_cc_b1_8e,240,3844.11,266.369,1024,39.72,0.75,15.44 +tf_efficientnet_em,240,3839.63,266.664,1024,6.9,3.04,14.34 +mobilevit_s,256,3835.87,200.199,768,5.58,2.03,19.94 +levit_conv_512d,224,3830.33,267.323,1024,92.5,5.85,11.3 +vgg11_bn,224,3829.44,267.372,1024,132.87,7.62,7.44 +tf_efficientnet_b2,260,3827.63,267.5,1024,9.11,1.02,13.83 +gcresnext26ts,288,3824.01,267.764,1024,10.48,3.07,13.33 +regnety_040,224,3819.46,268.036,1024,20.65,4.0,12.29 +resnet152,160,3816.3,268.292,1024,60.19,5.9,11.51 +resnetv2_50d_gn,224,3798.52,269.547,1024,25.57,4.38,11.92 +convnext_nano,288,3784.13,270.586,1024,15.59,4.06,13.84 +mixnet_l,224,3783.23,270.648,1024,7.33,0.58,10.84 +ecaresnet50d_pruned,288,3782.37,270.708,1024,19.94,4.19,10.61 +seresnext26ts,288,3781.76,270.745,1024,10.39,3.07,13.32 +resnet50_gn,224,3769.97,271.59,1024,25.56,4.14,11.11 +res2net50_48w_2s,224,3744.75,273.407,1024,25.29,4.18,11.72 +repvit_m1_5,224,3729.62,274.53,1024,14.64,2.31,15.7 +tiny_vit_21m_224,224,3725.54,274.83,1024,33.22,4.29,20.08 +resnest26d,224,3723.36,274.993,1024,17.07,3.64,9.97 +resnet26d,288,3717.52,275.422,1024,16.01,4.29,13.48 +efficientnet_b2,288,3712.61,275.797,1024,9.11,1.12,16.2 +efficientnet_em,240,3709.85,275.987,1024,6.9,3.04,14.34 +vovnet57a,224,3706.22,276.265,1024,36.64,8.95,7.52 +resnetaa50d,224,3694.51,277.138,1024,25.58,5.39,12.44 +resnet50_clip_gap,224,3684.19,277.913,1024,23.53,5.39,12.44 +regnetx_040,224,3677.93,278.37,1024,22.12,3.99,12.2 +convnextv2_atto,288,3666.13,279.278,1024,3.71,0.91,6.3 +inception_v3,299,3663.18,279.511,1024,23.83,5.73,8.97 +hiera_small_224,224,3657.67,279.941,1024,35.01,6.42,20.75 +gcvit_xxtiny,224,3656.12,280.058,1024,12.0,2.14,15.36 +twins_pcpvt_small,224,3652.03,280.363,1024,24.11,3.83,18.08 +seresnet50,224,3649.19,280.58,1024,28.09,4.11,11.13 +resnetblur50,224,3629.01,282.14,1024,25.56,5.16,12.02 +densenet121,224,3614.99,283.247,1024,7.98,2.87,6.9 +vit_medium_patch16_gap_240,240,3607.76,283.806,1024,44.4,9.22,18.81 +ecaresnet50t,224,3581.41,285.899,1024,25.57,4.32,11.83 +cs3sedarknet_l,288,3578.3,286.15,1024,21.91,6.16,10.83 +vit_base_r26_s32_224,224,3567.73,286.987,1024,101.38,6.81,12.36 +mobilenetv4_conv_large,320,3558.21,287.765,1024,32.59,4.47,18.97 +inception_next_tiny,224,3555.09,288.019,1024,28.06,4.19,11.98 +ecaresnet50d,224,3553.36,288.157,1024,25.58,4.35,11.93 +mobileone_s0,224,3552.46,288.227,1024,5.29,1.09,15.48 +coatnet_rmlp_nano_rw_224,224,3537.96,289.405,1024,15.15,2.62,20.34 +tf_mixnet_l,224,3536.96,289.484,1024,7.33,0.58,10.84 +dla60x,224,3535.6,289.605,1024,17.35,3.54,13.8 +ese_vovnet57b,224,3532.21,289.885,1024,38.61,8.95,7.52 +edgenext_small,320,3521.78,290.744,1024,5.59,1.97,14.16 +mobilevitv2_125,256,3514.09,218.532,768,7.48,2.86,20.1 +resnet50_clip,224,3513.39,291.426,1024,38.32,6.14,12.98 +vit_base_patch32_384,384,3507.62,291.907,1024,88.3,13.06,16.5 +nf_regnet_b3,288,3505.93,292.061,1024,18.59,1.67,11.84 +vit_base_patch32_clip_384,384,3505.16,292.11,1024,88.3,13.06,16.5 +hgnetv2_b5,224,3503.99,292.219,1024,39.57,6.56,11.19 +tf_efficientnet_cc_b1_8e,240,3502.1,292.382,1024,39.72,0.75,15.44 +seresnet50t,224,3492.13,293.202,1024,28.1,4.32,11.83 +vit_large_patch32_224,224,3482.36,294.033,1024,305.51,15.39,13.3 +vit_medium_patch16_reg1_gap_256,256,3459.44,295.982,1024,38.88,10.63,22.26 +vit_medium_patch16_reg4_gap_256,256,3450.76,296.726,1024,38.88,10.76,22.6 +resnetblur50d,224,3438.8,297.748,1024,25.58,5.4,12.82 +cs3darknet_focus_x,256,3437.61,297.861,1024,35.02,8.03,10.69 +eca_nfnet_l0,224,3436.69,297.944,1024,24.14,4.35,10.47 +convnext_nano_ols,288,3435.64,298.035,1024,15.65,4.38,15.5 +resnetrs50,224,3434.24,298.144,1024,35.69,4.48,12.14 +resnext50_32x4d,224,3427.06,298.772,1024,25.03,4.26,14.4 +coatnet_0_rw_224,224,3425.88,298.879,1024,27.44,4.43,18.73 +hgnet_small,224,3416.04,299.744,1024,24.36,8.53,8.79 +cspresnext50,256,3409.98,300.268,1024,20.57,4.05,15.86 +dla60_res2net,224,3403.55,300.841,1024,20.85,4.15,12.34 +res2net50_26w_4s,224,3401.73,300.973,1024,25.7,4.28,12.61 +maxvit_pico_rw_256,256,3401.1,225.792,768,7.46,1.83,22.3 +resmlp_24_224,224,3399.81,301.162,1024,30.02,5.96,10.91 +res2net50_14w_8s,224,3398.1,301.29,1024,25.06,4.21,13.28 +maxvit_rmlp_pico_rw_256,256,3396.4,226.105,768,7.52,1.85,24.86 +resnet50s,224,3396.16,301.49,1024,25.68,5.47,13.52 +convnextv2_femto,288,3395.92,301.516,1024,5.23,1.3,7.56 +regnety_040_sgn,224,3390.72,301.971,1024,20.65,4.03,12.29 +xcit_tiny_24_p16_224,224,3375.55,303.331,1024,12.12,2.34,11.82 +efficientvit_b2,256,3369.65,303.868,1024,24.33,2.09,19.03 +nfnet_f0,192,3349.0,305.741,1024,71.49,7.21,10.16 +nfnet_l0,224,3341.81,306.39,1024,35.07,4.36,10.47 +hieradet_small,256,3335.5,230.232,768,34.72,8.51,27.76 +edgenext_base,256,3315.68,308.815,1024,18.51,3.85,15.58 +resnest50d_1s4x24d,224,3309.67,309.367,1024,25.68,4.43,13.57 +efficientnet_lite3,300,3296.2,155.31,512,8.2,1.65,21.85 +dla60_res2next,224,3295.03,310.75,1024,17.03,3.49,13.17 +mobilenetv3_large_150d,320,3287.23,233.606,768,14.62,1.61,19.29 +cs3darknet_x,256,3280.58,312.118,1024,35.05,8.38,11.35 +crossvit_18_240,240,3276.68,312.485,1024,43.27,9.05,26.26 +lambda_resnet26rpt_256,256,3275.72,234.435,768,10.99,3.16,11.87 +resnet32ts,288,3273.65,312.761,1024,17.96,5.86,14.65 +resnext50d_32x4d,224,3267.01,313.407,1024,25.05,4.5,15.2 +densenetblur121d,224,3260.14,314.077,1024,8.0,3.11,7.9 +res2net50d,224,3253.03,314.728,1024,25.72,4.52,13.41 +darknetaa53,256,3249.03,315.15,1024,36.02,7.97,12.39 +edgenext_small_rw,320,3242.29,315.807,1024,7.83,2.46,14.85 +resnet33ts,288,3239.71,316.048,1024,19.68,6.02,14.75 +seresnetaa50d,224,3235.08,316.472,1024,28.11,5.4,12.46 +tf_efficientnetv2_b3,300,3232.69,316.734,1024,14.36,3.04,15.74 +focalnet_tiny_srf,224,3226.46,317.357,1024,28.43,4.42,16.32 +efficientnetv2_rw_t,288,3225.91,317.41,1024,13.65,3.19,16.42 +eva02_small_patch14_224,224,3225.8,317.422,1024,21.62,6.14,18.28 +gcresnext50ts,256,3223.82,317.616,1024,15.67,3.75,15.46 +res2next50,224,3218.65,318.1,1024,24.67,4.2,13.71 +gcresnet50t,256,3218.31,318.16,1024,25.9,5.42,14.67 +gmixer_24_224,224,3213.22,318.663,1024,24.72,5.28,14.45 +eca_resnet33ts,288,3197.58,320.22,1024,19.68,6.02,14.76 +efficientvit_l1,224,3180.29,321.964,1024,52.65,5.27,15.85 +mobileone_s3,224,3179.46,322.047,1024,10.17,1.94,13.85 +repvgg_b1g4,224,3167.88,323.216,1024,39.97,8.15,10.64 +gcresnet33ts,288,3167.19,323.296,1024,19.88,6.02,14.78 +crossvit_18_dagger_240,240,3155.34,324.503,1024,44.27,9.5,27.03 +vit_medium_patch16_gap_256,256,3146.86,325.379,1024,38.86,10.59,22.15 +resnet152,176,3145.18,325.546,1024,60.19,7.22,13.99 +hgnetv2_b2,288,3131.53,326.979,1024,11.22,1.89,6.8 +seresnet33ts,288,3123.88,327.768,1024,19.78,6.02,14.76 +regnetz_b16,288,3121.28,328.043,1024,9.72,2.39,16.43 +legacy_seresnext50_32x4d,224,3106.31,329.614,1024,27.56,4.26,14.42 +nextvit_small,224,3105.38,329.731,1024,31.76,5.81,18.44 +convnextv2_nano,224,3104.37,329.834,1024,15.62,2.46,8.37 +xcit_nano_12_p16_384,384,3100.3,330.26,1024,3.05,1.64,12.15 +regnetz_c16,256,3087.39,331.642,1024,13.46,2.51,16.57 +resnet26t,320,3086.83,331.703,1024,16.01,5.24,16.44 +pit_b_distilled_224,224,3072.82,333.214,1024,74.79,12.5,33.07 +poolformerv2_s12,224,3071.46,333.361,1024,11.89,1.83,5.53 +cs3sedarknet_x,256,3067.22,333.833,1024,35.4,8.38,11.35 +ecaresnet101d_pruned,288,3064.98,334.074,1024,24.88,5.75,12.71 +pit_b_224,224,3054.02,335.268,1024,73.76,12.42,32.94 +eva02_tiny_patch14_336,336,3050.79,335.63,1024,5.76,4.68,27.16 +gc_efficientnetv2_rw_t,288,3042.11,336.591,1024,13.68,3.2,16.45 +resnetrs101,192,3039.94,336.818,1024,63.62,6.04,12.7 +fbnetv3_g,288,3035.76,337.294,1024,16.62,1.77,21.09 +resnet51q,256,3034.29,337.446,1024,35.7,6.38,16.55 +seresnext50_32x4d,224,3033.27,337.56,1024,27.56,4.26,14.42 +rdnet_tiny,224,3025.51,338.425,1024,23.86,5.06,15.98 +darknet53,256,2995.64,341.801,1024,41.61,9.31,12.39 +ecaresnetlight,288,2980.87,343.501,1024,30.16,6.79,13.91 +xcit_small_12_p16_224,224,2979.57,343.65,1024,26.25,4.82,12.58 +nf_ecaresnet50,224,2969.89,344.775,1024,25.56,4.21,11.13 +convnext_small,224,2968.52,344.929,1024,50.22,8.71,21.56 +coatnet_bn_0_rw_224,224,2961.32,345.762,1024,27.44,4.67,22.04 +densenet169,224,2960.88,345.825,1024,14.15,3.4,7.3 +focalnet_tiny_lrf,224,2958.28,346.126,1024,28.65,4.49,17.76 +pvt_v2_b2,224,2957.1,346.245,1024,25.36,4.05,27.53 +nf_seresnet50,224,2955.47,346.454,1024,28.09,4.21,11.13 +fastvit_t12,256,2935.13,348.86,1024,7.55,1.42,12.42 +hgnet_tiny,288,2932.95,349.114,1024,14.74,7.51,10.51 +regnetx_080,224,2928.56,349.629,1024,39.57,8.02,14.06 +vit_base_resnet50d_224,224,2926.61,349.865,1024,110.97,8.73,16.92 +convnext_tiny,288,2917.07,351.019,1024,28.59,7.39,22.21 +mobilevitv2_150,256,2915.63,175.59,512,10.59,4.09,24.11 +coatnet_rmlp_0_rw_224,224,2907.73,352.136,1024,27.45,4.72,24.89 +skresnet50,224,2900.52,353.008,1024,25.8,4.11,12.5 +poolformer_s24,224,2899.97,353.076,1024,21.39,3.41,10.68 +mobilenetv4_hybrid_medium,384,2891.5,354.122,1024,11.07,3.01,21.18 +nf_regnet_b3,320,2880.71,355.451,1024,18.59,2.05,14.61 +tf_efficientnet_lite3,300,2879.81,177.761,512,8.2,1.65,21.85 +resnet50_mlp,256,2876.92,355.906,1024,26.65,7.05,16.25 +sehalonet33ts,256,2863.49,357.576,1024,13.69,3.55,14.7 +gcvit_xtiny,224,2857.49,358.335,1024,19.98,2.93,20.26 +cs3sedarknet_xdw,256,2854.33,358.703,1024,21.6,5.97,17.18 +seresnext26t_32x4d,288,2852.69,358.931,1024,16.81,4.46,16.68 +gmlp_s16_224,224,2850.78,359.18,1024,19.42,4.42,15.1 +deit_base_patch16_224,224,2847.84,359.551,1024,86.57,17.58,23.9 +resnetv2_101,224,2835.29,361.131,1024,44.54,7.83,16.23 +deit_base_distilled_patch16_224,224,2834.0,361.303,1024,87.34,17.68,24.05 +seresnext26d_32x4d,288,2821.4,362.912,1024,16.81,4.51,16.85 +nf_resnet50,256,2816.37,363.566,1024,25.56,5.46,14.52 +regnetx_064,224,2813.74,363.901,1024,26.21,6.49,16.37 +ecaresnet26t,320,2807.22,364.749,1024,16.01,5.24,16.44 +dla102,224,2806.5,364.845,1024,33.27,7.19,14.18 +nest_tiny,224,2805.62,364.963,1024,17.06,5.83,25.48 +ecaresnet50t,256,2802.02,365.426,1024,25.57,5.64,15.45 +efficientnet_b3,288,2792.77,183.313,512,12.23,1.63,21.49 +wide_resnet50_2,224,2792.33,366.693,1024,68.88,11.43,14.4 +vit_base_patch16_224_miil,224,2791.53,366.793,1024,94.4,17.59,23.91 +skresnet50d,224,2791.4,366.81,1024,25.82,4.36,13.31 +vit_base_patch16_224,224,2787.15,367.372,1024,86.57,17.58,23.9 +vit_base_patch16_clip_224,224,2783.55,367.849,1024,86.57,17.58,23.9 +fastvit_sa12,256,2781.99,368.06,1024,11.58,1.96,14.03 +vgg13,224,2780.3,368.277,1024,133.05,11.31,12.25 +resnet61q,256,2779.68,368.358,1024,36.85,7.8,17.01 +fastvit_s12,256,2776.35,368.806,1024,9.47,1.82,13.67 +maxxvit_rmlp_nano_rw_256,256,2775.33,276.707,768,16.78,4.37,26.05 +cs3edgenet_x,256,2763.68,370.501,1024,47.82,11.53,12.92 +lambda_resnet50ts,256,2759.83,371.018,1024,21.54,5.07,17.48 +dm_nfnet_f0,192,2757.16,371.375,1024,71.49,7.21,10.16 +nest_tiny_jx,224,2755.91,371.543,1024,17.06,5.83,25.48 +rexnetr_300,224,2754.02,278.836,768,34.81,3.39,22.16 +cspdarknet53,256,2752.11,372.057,1024,27.64,6.57,16.81 +mixnet_xl,224,2741.75,373.463,1024,11.9,0.93,14.57 +resnet101,224,2736.75,374.138,1024,44.55,7.83,16.23 +resnetv2_50,288,2733.41,374.59,1024,25.55,6.79,18.37 +repvgg_b1,224,2730.49,374.994,1024,57.42,13.16,10.64 +coatnet_0_224,224,2722.37,188.051,512,25.04,4.58,24.01 +resnetv2_101d,224,2718.59,376.633,1024,44.56,8.07,17.04 +wide_resnet101_2,176,2695.47,379.875,1024,126.89,14.31,13.18 +vit_base_mci_224,224,2690.01,380.639,1024,86.35,17.73,24.65 +beitv2_base_patch16_224,224,2684.73,381.393,1024,86.53,17.58,23.9 +res2net50_26w_6s,224,2681.29,381.848,1024,37.05,6.33,15.28 +rexnet_300,224,2677.08,286.849,768,34.71,3.44,22.4 +swin_tiny_patch4_window7_224,224,2659.27,385.037,1024,28.29,4.51,17.06 +maxxvitv2_nano_rw_256,256,2649.05,289.896,768,23.7,6.26,23.05 +beit_base_patch16_224,224,2644.21,387.233,1024,86.53,17.58,23.9 +resnet101d,224,2638.05,388.135,1024,44.57,8.08,17.04 +vit_base_patch32_clip_448,448,2613.19,391.83,1024,88.34,17.93,23.9 +resnet101c,224,2612.47,391.937,1024,44.57,8.08,17.04 +mixer_b16_224,224,2607.54,392.687,1024,59.88,12.62,14.53 +vit_relpos_base_patch16_clsgap_224,224,2605.09,393.051,1024,86.43,17.6,25.12 +efficientnetv2_s,288,2604.83,393.096,1024,21.46,4.75,20.13 +twins_pcpvt_base,224,2604.17,393.184,1024,43.83,6.68,25.25 +efficientvit_b2,288,2600.38,393.768,1024,24.33,2.64,24.03 +convnextv2_pico,288,2600.23,393.79,1024,9.07,2.27,10.08 +vit_relpos_base_patch16_cls_224,224,2599.77,393.861,1024,86.43,17.6,25.12 +efficientformer_l3,224,2594.92,394.593,1024,31.41,3.93,12.01 +resnet50,288,2592.09,395.018,1024,25.56,6.8,18.37 +maxvit_nano_rw_256,256,2589.91,296.516,768,15.45,4.46,30.28 +maxvit_rmlp_nano_rw_256,256,2586.52,296.905,768,15.5,4.47,31.92 +deit3_base_patch16_224,224,2583.38,396.36,1024,86.59,17.58,23.9 +pvt_v2_b2_li,224,2575.01,397.638,1024,22.55,3.91,27.6 +regnety_032,288,2560.26,399.931,1024,19.44,5.29,18.61 +efficientvit_l2,224,2558.08,400.28,1024,63.71,6.97,19.58 +rexnetr_200,288,2556.5,200.242,512,16.52,2.62,24.96 +cs3darknet_x,288,2555.27,400.72,1024,35.05,10.6,14.36 +darknetaa53,288,2551.71,401.279,1024,36.02,10.08,15.68 +tresnet_v2_l,224,2548.5,401.775,1024,46.17,8.85,16.34 +hgnetv2_b3,288,2548.29,401.817,1024,16.29,2.94,8.38 +cs3se_edgenet_x,256,2541.11,402.95,1024,50.72,11.53,12.94 +resnest50d,224,2525.71,405.398,1024,27.48,5.4,14.36 +gcresnext50ts,288,2518.28,406.608,1024,15.67,4.75,19.57 +gcresnet50t,288,2515.86,406.998,1024,25.9,6.86,18.57 +xcit_nano_12_p8_224,224,2506.42,408.525,1024,3.05,2.16,15.71 +vit_small_patch16_384,384,2502.77,409.123,1024,22.2,15.52,50.78 +resnet101_clip_gap,224,2494.59,410.455,1024,42.52,9.11,17.56 +hiera_base_224,224,2493.69,410.614,1024,51.52,9.4,30.42 +resnetaa101d,224,2493.54,410.631,1024,44.57,9.12,17.56 +resnetv2_101x1_bit,224,2493.42,410.646,1024,44.54,8.04,16.23 +davit_small,224,2490.93,308.299,768,49.75,8.8,30.49 +dpn68b,288,2486.84,411.746,1024,12.61,3.89,17.3 +efficientnetv2_rw_s,288,2485.89,411.904,1024,23.94,4.91,21.41 +hrnet_w18_ssld,224,2477.35,413.328,1024,21.3,4.32,16.31 +mobilenetv4_conv_large,384,2476.57,413.456,1024,32.59,6.43,27.31 +cait_xxs24_224,224,2472.37,414.153,1024,11.96,2.53,20.29 +mobilevitv2_175,256,2468.71,207.376,512,14.25,5.54,28.13 +resnet50t,288,2467.58,414.952,1024,25.57,7.14,19.53 +vit_betwixt_patch16_reg1_gap_256,256,2466.98,415.052,1024,60.4,16.32,27.83 +lamhalobotnet50ts_256,256,2464.83,415.423,1024,22.57,5.02,18.44 +hrnet_w18,224,2463.39,415.645,1024,21.3,4.32,16.31 +vit_base_patch16_siglip_gap_224,224,2459.11,416.38,1024,85.8,17.49,23.75 +flexivit_base,240,2458.77,416.449,1024,86.59,20.29,28.36 +vit_betwixt_patch16_reg4_gap_256,256,2454.92,417.093,1024,60.4,16.52,28.24 +legacy_seresnet101,224,2446.63,418.514,1024,49.33,7.61,15.74 +resnet50d,288,2439.85,419.669,1024,25.58,7.19,19.7 +vit_base_patch16_siglip_224,224,2438.72,419.861,1024,92.88,17.73,24.06 +resnet101_clip,224,2414.07,424.148,1024,56.26,9.81,18.08 +tresnet_l,224,2412.56,424.417,1024,55.99,10.9,11.9 +ese_vovnet39b,288,2409.2,318.758,768,24.57,11.71,11.13 +darknet53,288,2407.72,425.266,1024,41.61,11.78,15.68 +cs3sedarknet_x,288,2391.52,428.157,1024,35.4,10.6,14.37 +mixer_l32_224,224,2388.54,428.693,1024,206.94,11.27,19.86 +resnetblur101d,224,2387.51,428.868,1024,44.57,9.12,17.94 +coat_lite_small,224,2386.34,429.081,1024,19.84,3.96,22.09 +regnetv_040,288,2386.15,429.115,1024,20.64,6.6,20.3 +swin_s3_tiny_224,224,2384.47,429.416,1024,28.33,4.64,19.13 +regnety_080,224,2379.83,430.251,1024,39.18,8.0,17.97 +resnetaa50,288,2379.68,430.28,1024,25.56,8.52,19.24 +nextvit_base,224,2376.93,430.787,1024,44.82,8.29,23.71 +vit_base_patch16_gap_224,224,2375.57,431.026,1024,86.57,17.49,25.59 +sebotnet33ts_256,256,2374.22,161.709,384,13.7,3.89,17.46 +resnet101s,224,2366.29,432.714,1024,44.67,9.19,18.64 +convnext_tiny_hnf,288,2365.38,432.876,1024,28.59,7.39,22.21 +mobileone_s4,224,2361.85,433.537,1024,14.95,3.04,17.74 +regnety_040,288,2353.01,435.158,1024,20.65,6.61,20.3 +vit_small_patch16_36x1_224,224,2352.87,435.189,1024,64.67,13.71,35.69 +regnetv_064,224,2352.23,435.302,1024,30.58,6.39,16.41 +vit_relpos_base_patch16_224,224,2344.88,436.673,1024,86.43,17.51,24.97 +seresnet101,224,2343.32,436.959,1024,49.33,7.84,16.27 +dla102x,224,2342.65,437.086,1024,26.31,5.89,19.42 +vit_small_resnet50d_s16_224,224,2336.25,438.285,1024,57.53,13.48,24.82 +ecaresnet101d,224,2325.28,440.352,1024,44.57,8.08,17.07 +regnety_064,224,2324.93,440.376,1024,30.58,6.39,16.41 +volo_d1_224,224,2323.65,440.668,1024,26.63,6.94,24.43 +resnetv2_50d_gn,288,2323.37,440.707,1024,25.57,7.24,19.7 +hiera_small_abswin_256,256,2323.14,440.761,1024,34.36,8.29,26.38 +densenet201,224,2317.12,441.908,1024,20.01,4.34,7.85 +resnet51q,288,2316.81,441.957,1024,35.7,8.07,20.94 +efficientnet_b3,320,2307.8,221.837,512,12.23,2.01,26.52 +resnet50_gn,288,2303.59,444.495,1024,25.56,6.85,18.37 +halonet50ts,256,2300.62,445.077,1024,22.73,5.3,19.2 +nf_resnet101,224,2293.33,446.489,1024,44.55,8.01,16.23 +resnext101_32x8d,176,2291.04,446.931,1024,88.79,10.33,19.37 +maxvit_tiny_rw_224,224,2283.98,336.235,768,29.06,5.11,33.11 +resmlp_36_224,224,2277.0,449.683,1024,44.69,8.91,16.33 +efficientnet_b3_gn,288,2272.8,225.253,512,11.73,1.74,23.35 +vit_base_patch16_clip_quickgelu_224,224,2269.68,451.136,1024,86.19,17.58,23.9 +legacy_xception,299,2267.92,338.617,768,22.86,8.4,35.83 +tf_efficientnet_b3,300,2265.14,226.006,512,12.23,1.87,23.83 +resnetaa50d,288,2259.31,453.205,1024,25.58,8.92,20.57 +vitamin_small_224,224,2252.3,454.619,1024,22.03,5.92,26.38 +vit_medium_patch16_rope_reg1_gap_256,256,2246.04,455.888,1024,38.74,10.63,22.26 +vgg13_bn,224,2243.6,456.38,1024,133.05,11.33,12.25 +sequencer2d_s,224,2241.43,456.822,1024,27.65,4.96,11.31 +seresnet50,288,2233.67,458.373,1024,28.09,6.8,18.39 +efficientvit_b3,224,2229.48,459.279,1024,48.65,3.99,26.9 +repvgg_b2g4,224,2226.86,459.812,1024,61.76,12.63,12.9 +vit_small_patch16_18x2_224,224,2225.09,460.18,1024,64.67,13.71,35.69 +tf_efficientnetv2_s,300,2217.63,461.725,1024,21.46,5.35,22.73 +deit3_small_patch16_384,384,2216.36,461.997,1024,22.21,15.52,50.78 +resnetblur50,288,2215.39,462.19,1024,25.56,8.52,19.87 +res2net101_26w_4s,224,2210.59,463.166,1024,45.21,8.1,18.45 +regnety_080_tv,224,2199.69,465.492,1024,39.38,8.51,19.73 +xcit_tiny_12_p16_384,384,2198.84,465.672,1024,6.72,3.64,18.26 +hgnetv2_b5,288,2192.99,466.916,1024,39.57,10.84,18.5 +resnext101_32x4d,224,2191.44,467.242,1024,44.18,8.01,21.23 +res2net50_26w_8s,224,2190.96,467.347,1024,48.4,8.37,17.95 +ecaresnet50t,288,2189.92,467.571,1024,25.57,7.14,19.55 +vit_relpos_base_patch16_rpn_224,224,2183.57,468.919,1024,86.41,17.51,24.97 +densenet121,288,2181.11,469.465,1024,7.98,4.74,11.41 +ecaresnet50d,288,2174.22,470.95,1024,25.58,7.19,19.72 +pvt_v2_b3,224,2173.14,471.171,1024,45.24,6.92,37.7 +vgg16,224,2165.35,472.876,1024,138.36,15.47,13.56 +vit_base_patch16_xp_224,224,2165.22,472.901,1024,86.51,17.56,23.9 +vit_base_patch16_rpn_224,224,2161.0,473.826,1024,86.54,17.49,23.75 +repvit_m2_3,224,2157.85,474.494,1024,23.69,4.57,26.21 +cs3edgenet_x,288,2155.75,474.984,1024,47.82,14.59,16.36 +mvitv2_tiny,224,2155.16,475.117,1024,24.17,4.7,21.16 +swinv2_cr_tiny_224,224,2153.94,475.376,1024,28.33,4.66,28.45 +nf_resnet50,288,2147.63,476.776,1024,25.56,6.88,18.37 +ese_vovnet99b,224,2146.96,476.932,1024,63.2,16.51,11.27 +mobilevitv2_200,256,2143.14,358.33,768,18.45,7.22,32.15 +res2net101d,224,2140.6,478.302,1024,45.23,8.35,19.25 +seresnet50t,288,2138.78,478.747,1024,28.1,7.14,19.55 +edgenext_base,320,2134.2,479.781,1024,18.51,6.01,24.32 +resnet61q,288,2130.61,480.584,1024,36.85,9.87,21.52 +swinv2_cr_tiny_ns_224,224,2127.09,481.38,1024,28.33,4.66,28.45 +inception_next_small,224,2115.6,484.002,1024,49.37,8.36,19.27 +vit_mediumd_patch16_reg4_gap_256,256,2113.09,484.575,1024,64.11,17.87,37.57 +ese_vovnet39b_evos,224,2111.78,484.876,1024,24.58,7.07,6.74 +rdnet_small,224,2110.32,485.203,1024,50.44,8.74,22.55 +resnext50_32x4d,288,2108.45,485.637,1024,25.03,7.04,23.81 +eca_nfnet_l0,288,2099.14,487.794,1024,24.14,7.12,17.29 +mobilenetv4_hybrid_medium,448,2097.44,366.139,768,11.07,4.2,29.64 +convnext_base,224,2095.37,488.672,1024,88.59,15.38,28.75 +resnetblur50d,288,2095.33,488.675,1024,25.58,8.92,21.19 +regnety_040_sgn,288,2093.1,489.199,1024,20.65,6.67,20.3 +resnet101d,256,2091.32,489.613,1024,44.57,10.55,22.25 +coatnet_rmlp_1_rw_224,224,2085.77,490.917,1024,41.69,7.85,35.47 +xception41p,299,2084.2,245.637,512,26.91,9.25,39.86 +regnetz_040,256,2068.8,494.89,1024,27.12,4.06,24.19 +nf_regnet_b4,320,2065.2,495.816,1024,30.21,3.29,19.88 +regnetz_040_h,256,2063.38,496.243,1024,28.94,4.12,24.29 +efficientvit_l2,256,2060.07,497.046,1024,63.71,9.09,25.49 +resnest50d_4s2x40d,224,2047.78,500.025,1024,30.42,4.4,17.94 +nfnet_l0,288,2047.5,500.093,1024,35.07,7.13,17.29 +vit_base_patch16_reg4_gap_256,256,2044.87,500.737,1024,86.62,23.5,33.89 +regnetz_d32,256,2033.99,503.413,1024,27.58,5.98,23.74 +dpn92,224,2027.88,504.934,1024,37.67,6.54,18.21 +regnetz_d8,256,2018.69,507.232,1024,23.37,3.97,23.74 +resnext50d_32x4d,288,2012.24,508.858,1024,25.05,7.44,25.13 +focalnet_small_srf,224,1995.65,513.095,1024,49.89,8.62,26.26 +hgnet_small,288,1995.54,384.841,768,24.36,14.09,14.53 +vgg19,224,1994.6,513.358,1024,143.67,19.63,14.86 +crossvit_base_240,240,1994.0,513.516,1024,105.03,21.22,36.33 +regnetz_c16,320,1992.12,513.999,1024,13.46,3.92,25.88 +resnetv2_152,224,1991.8,514.076,1024,60.19,11.55,22.56 +mobilenetv4_conv_aa_large,384,1988.94,514.825,1024,32.59,7.07,32.29 +hiera_base_plus_224,224,1983.12,516.333,1024,69.9,12.67,37.98 +regnetx_120,224,1982.95,516.372,1024,46.11,12.13,21.37 +convnextv2_tiny,224,1982.1,516.59,1024,28.64,4.47,13.44 +seresnetaa50d,288,1977.18,517.879,1024,28.11,8.92,20.59 +repvgg_b2,224,1974.36,518.618,1024,89.02,20.45,12.9 +legacy_seresnext101_32x4d,224,1971.37,519.379,1024,48.96,8.02,21.26 +densenetblur121d,288,1970.87,519.545,1024,8.0,5.14,13.06 +convit_small,224,1970.28,519.698,1024,27.78,5.76,17.87 +coatnet_1_rw_224,224,1960.67,522.246,1024,41.72,8.04,34.6 +nfnet_f0,256,1953.19,524.243,1024,71.49,12.62,18.05 +botnet50ts_256,256,1951.79,262.305,512,22.74,5.54,22.23 +poolformer_s36,224,1948.45,525.506,1024,30.86,5.0,15.82 +convmixer_1024_20_ks9_p14,224,1942.47,527.139,1024,24.38,5.55,5.51 +resnet152,224,1941.85,527.301,1024,60.19,11.56,22.56 +skresnext50_32x4d,224,1938.97,528.085,1024,27.48,4.5,17.18 +resnetv2_152d,224,1938.05,528.334,1024,60.2,11.8,23.36 +fastvit_mci0,256,1935.03,529.168,1024,11.41,2.42,18.29 +inception_v4,299,1934.57,529.276,1024,42.68,12.28,15.09 +seresnext101_32x4d,224,1925.49,531.724,1024,48.96,8.02,21.26 +nextvit_large,224,1924.7,532.009,1024,57.87,10.78,28.99 +halo2botnet50ts_256,256,1915.33,534.611,1024,22.64,5.02,21.78 +coatnet_rmlp_1_rw2_224,224,1914.3,534.892,1024,41.72,8.11,40.13 +vgg16_bn,224,1909.7,536.182,1024,138.37,15.5,13.56 +resnetv2_50d_frn,224,1907.53,536.788,1024,25.59,4.33,11.92 +twins_svt_base,224,1904.0,537.783,1024,56.07,8.59,26.33 +gcvit_tiny,224,1903.79,537.854,1024,28.22,4.79,29.82 +vit_base_patch16_siglip_gap_256,256,1894.78,540.402,1024,85.84,23.13,33.23 +dla169,224,1893.96,540.641,1024,53.39,11.6,20.2 +convnextv2_nano,288,1893.91,405.49,768,15.62,4.06,13.84 +resnet152d,224,1891.46,541.352,1024,60.21,11.8,23.36 +efficientnet_el,300,1884.76,543.277,1024,10.59,8.0,30.7 +resnet152c,224,1882.54,543.916,1024,60.21,11.8,23.36 +twins_pcpvt_large,224,1881.08,544.338,1024,60.99,9.84,35.82 +nf_ecaresnet101,224,1877.87,545.282,1024,44.55,8.01,16.27 +vit_base_patch16_siglip_256,256,1875.34,546.002,1024,92.93,23.44,33.63 +maxvit_tiny_tf_224,224,1873.59,409.888,768,30.92,5.6,35.78 +maxxvit_rmlp_tiny_rw_256,256,1870.47,410.571,768,29.64,6.66,39.76 +efficientnet_el_pruned,300,1867.55,548.285,1024,10.59,8.0,30.7 +efficientnet_b3_gn,320,1866.95,205.663,384,11.73,2.14,28.83 +seresnext50_32x4d,288,1856.61,551.512,1024,27.56,7.04,23.82 +regnetz_b16_evos,224,1854.56,552.123,1024,9.74,1.43,9.95 +nf_seresnet101,224,1848.05,554.073,1024,49.33,8.02,16.27 +repvgg_b3g4,224,1843.59,555.409,1024,83.83,17.89,15.1 +regnety_120,224,1840.57,556.321,1024,51.82,12.14,21.38 +mobilenetv4_conv_large,448,1830.25,419.592,768,32.59,8.75,37.17 +focalnet_small_lrf,224,1830.02,559.535,1024,50.34,8.74,28.61 +caformer_s18,224,1825.4,560.94,1024,26.34,4.13,19.39 +nest_small,224,1821.81,562.055,1024,38.35,10.35,40.04 +efficientnet_b3_g8_gn,288,1817.33,422.578,768,14.25,2.59,23.35 +densenet161,224,1806.94,566.679,1024,28.68,7.79,11.06 +tresnet_xl,224,1805.47,567.135,1024,78.44,15.2,15.34 +convnext_small,288,1801.22,568.48,1024,50.22,14.39,35.65 +nest_small_jx,224,1800.35,568.755,1024,38.35,10.35,40.04 +ecaresnet50t,320,1797.24,569.733,1024,25.57,8.82,24.13 +vit_small_patch8_224,224,1790.17,571.984,1024,21.67,22.44,80.84 +vit_large_r50_s32_224,224,1790.0,572.042,1024,328.99,19.58,24.41 +efficientvit_b3,256,1789.45,429.156,768,48.65,5.2,35.01 +davit_base,224,1784.6,430.324,768,87.95,15.51,40.66 +tf_efficientnet_el,300,1777.69,576.0,1024,10.59,8.0,30.7 +vit_base_patch16_plus_240,240,1770.19,578.441,1024,117.56,27.41,33.08 +maxvit_tiny_rw_256,256,1767.83,434.406,768,29.07,6.74,44.35 +maxvit_rmlp_tiny_rw_256,256,1764.91,435.129,768,29.15,6.77,46.92 +sequencer2d_m,224,1760.97,581.467,1024,38.31,6.55,14.26 +xception41,299,1760.86,290.748,512,26.97,9.28,39.86 +resnet152s,224,1745.67,586.565,1024,60.32,12.92,24.96 +efficientnet_b4,320,1740.06,294.222,512,19.34,3.13,34.76 +coatnet_1_224,224,1739.09,294.386,512,42.23,8.7,39.0 +resnetv2_101,288,1737.4,589.353,1024,44.54,12.94,26.83 +hrnet_w30,224,1723.75,593.993,1024,37.71,8.15,21.21 +mixnet_xxl,224,1723.5,445.584,768,23.96,2.04,23.43 +convformer_s18,224,1723.21,594.213,1024,26.77,3.96,15.82 +legacy_seresnet152,224,1717.65,596.143,1024,66.82,11.33,22.08 +regnetx_160,224,1711.44,598.295,1024,54.28,15.99,25.52 +resnetv2_50d_evos,224,1709.91,598.829,1024,25.59,4.33,11.92 +rexnetr_300,288,1708.11,299.718,512,34.81,5.59,36.61 +mobilenetv4_hybrid_large,384,1707.76,599.592,1024,37.76,7.77,34.52 +eva02_base_patch16_clip_224,224,1707.16,599.804,1024,86.26,17.62,26.32 +wide_resnet50_2,288,1707.11,599.82,1024,68.88,18.89,23.81 +mvitv2_small_cls,224,1705.56,600.369,1024,34.87,7.04,28.17 +hrnet_w32,224,1694.43,604.278,1024,41.23,8.97,22.02 +xcit_tiny_12_p8_224,224,1681.45,608.969,1024,6.71,4.81,23.6 +resnet101,288,1679.51,609.673,1024,44.55,12.95,26.83 +tnt_s_patch16_224,224,1675.64,611.078,1024,23.76,5.24,24.37 +wide_resnet101_2,224,1674.87,611.366,1024,126.89,22.8,21.23 +vgg19_bn,224,1663.12,615.681,1024,143.68,19.66,14.86 +cait_xxs36_224,224,1660.72,616.58,1024,17.3,3.77,30.34 +swin_small_patch4_window7_224,224,1658.9,617.245,1024,49.61,8.77,27.47 +seresnet152,224,1654.98,618.709,1024,66.82,11.57,22.61 +vit_betwixt_patch16_rope_reg4_gap_256,256,1646.55,621.878,1024,60.23,16.52,28.24 +convnext_tiny,384,1644.05,311.408,512,28.59,13.14,39.48 +efficientformerv2_s0,224,1630.94,627.828,1024,3.6,0.41,5.3 +cs3se_edgenet_x,320,1622.94,630.928,1024,50.72,18.01,20.21 +mvitv2_small,224,1621.36,631.548,1024,34.87,7.0,28.08 +vit_relpos_base_patch16_plus_240,240,1621.32,631.559,1024,117.38,27.3,34.33 +efficientvit_l2,288,1608.39,636.638,1024,63.71,11.51,32.19 +convnext_base,256,1605.42,637.811,1024,88.59,20.09,37.55 +dm_nfnet_f0,256,1604.65,638.122,1024,71.49,12.62,18.05 +dla102x2,224,1600.16,639.91,1024,41.28,9.34,29.91 +maxvit_tiny_pm_256,256,1598.65,480.383,768,30.09,6.61,47.9 +efficientnet_lite4,380,1596.86,240.45,384,13.01,4.04,45.66 +xcit_small_24_p16_224,224,1593.77,642.475,1024,47.67,9.1,23.64 +samvit_base_patch16_224,224,1591.15,643.539,1024,86.46,17.54,24.54 +vit_small_r26_s32_384,384,1589.79,644.083,1024,36.47,10.43,29.85 +regnety_160,224,1584.47,646.244,1024,83.59,15.96,23.04 +hiera_base_abswin_256,256,1579.74,648.184,1024,51.27,12.46,40.7 +hgnetv2_b6,224,1577.08,649.276,1024,75.26,16.88,21.23 +vit_base_r50_s16_224,224,1574.79,650.212,1024,97.89,21.66,35.28 +poolformerv2_s24,224,1572.19,651.293,1024,21.34,3.42,10.68 +coat_tiny,224,1561.91,655.584,1024,5.5,4.35,27.2 +pvt_v2_b4,224,1560.91,655.996,1024,62.56,10.14,53.74 +pvt_v2_b5,224,1557.23,657.547,1024,81.96,11.76,50.92 +eca_nfnet_l1,256,1553.7,659.05,1024,41.41,9.62,22.04 +repvgg_b3,224,1551.91,659.803,1024,123.09,29.16,15.1 +xception65p,299,1551.33,329.999,512,39.82,13.91,52.48 +swinv2_tiny_window8_256,256,1547.17,661.823,1024,28.35,5.96,24.57 +resnetaa101d,288,1535.29,666.945,1024,44.57,15.07,29.03 +fastvit_sa24,256,1525.62,671.177,1024,21.55,3.8,24.32 +efficientnetv2_s,384,1507.35,679.311,1024,21.46,8.44,35.77 +efficientformerv2_s1,224,1505.34,680.214,1024,6.19,0.67,7.66 +resnet152d,256,1501.71,681.861,1024,60.21,15.41,30.51 +inception_next_base,224,1485.4,689.354,1024,86.67,14.85,25.69 +efficientnet_b3_g8_gn,320,1480.62,518.679,768,14.25,3.2,28.83 +regnety_080,288,1476.82,693.353,1024,39.18,13.22,29.69 +dpn98,224,1476.36,693.573,1024,61.57,11.73,25.2 +mobilenetv4_conv_aa_large,448,1470.08,522.395,768,32.59,9.63,43.94 +hrnet_w18_ssld,288,1462.78,700.012,1024,21.3,7.14,26.96 +resnetblur101d,288,1462.58,700.1,1024,44.57,15.07,29.65 +rdnet_base,224,1460.56,525.796,768,87.45,15.4,31.14 +hgnet_base,224,1454.32,528.06,768,71.58,25.14,15.47 +efficientnetv2_rw_s,384,1440.54,710.82,1024,23.94,8.72,38.03 +nf_regnet_b4,384,1439.96,711.11,1024,30.21,4.7,28.61 +seresnet101,288,1437.85,712.145,1024,49.33,12.95,26.87 +regnetv_064,288,1435.74,713.191,1024,30.58,10.55,27.11 +focalnet_base_srf,224,1425.69,718.219,1024,88.15,15.28,35.01 +eva02_small_patch14_336,336,1424.13,719.007,1024,22.13,15.48,54.33 +ecaresnet101d,288,1423.42,719.366,1024,44.57,13.35,28.19 +regnety_064,288,1420.12,720.99,1024,30.58,10.56,27.11 +tf_efficientnetv2_s,384,1419.64,721.279,1024,21.46,8.44,35.77 +tf_efficientnet_lite4,380,1419.26,270.533,384,13.01,4.04,45.66 +inception_resnet_v2,299,1412.75,724.752,1024,55.84,13.18,25.06 +resnext101_64x4d,224,1412.06,725.153,1024,83.46,15.52,31.21 +crossvit_15_dagger_408,408,1397.53,732.691,1024,28.5,21.45,95.05 +resnext101_32x8d,224,1396.99,732.978,1024,88.79,16.48,31.21 +resnet200,224,1396.79,733.081,1024,64.67,15.07,32.19 +efficientvit_b3,288,1387.6,553.447,768,48.65,6.58,44.2 +resnetrs101,288,1381.07,741.426,1024,63.62,13.56,28.53 +poolformer_m36,224,1377.13,743.544,1024,56.17,8.8,22.02 +maxvit_rmlp_small_rw_224,224,1365.13,562.563,768,64.9,10.75,49.3 +vit_mediumd_patch16_rope_reg1_gap_256,256,1360.17,752.819,1024,63.95,17.65,37.02 +resnext101_32x4d,288,1355.28,755.535,1024,44.18,13.24,35.09 +vit_so150m_patch16_reg4_gap_256,256,1352.83,756.904,1024,134.13,36.75,53.21 +vit_medium_patch16_gap_384,384,1340.12,764.084,1024,39.03,26.08,67.54 +vit_so150m_patch16_reg4_map_256,256,1340.1,764.094,1024,141.48,37.18,53.68 +swinv2_cr_small_224,224,1339.46,764.46,1024,49.7,9.07,50.27 +resnet101d,320,1328.63,770.69,1024,44.57,16.48,34.77 +regnetz_040,320,1328.31,385.424,512,27.12,6.35,37.78 +swinv2_cr_small_ns_224,224,1326.17,772.119,1024,49.7,9.08,50.27 +regnetz_040_h,320,1323.75,386.752,512,28.94,6.43,37.94 +focalnet_base_lrf,224,1318.02,776.898,1024,88.75,15.43,38.13 +eva02_base_patch14_224,224,1315.36,778.472,1024,85.76,23.22,36.55 +xception65,299,1311.64,390.314,512,39.92,13.96,52.48 +vit_base_patch16_rope_reg1_gap_256,256,1310.51,781.347,1024,86.43,23.22,33.39 +nest_base,224,1310.17,781.549,1024,67.72,17.96,53.39 +convnextv2_small,224,1310.01,781.645,1024,50.32,8.71,21.56 +nfnet_f1,224,1306.81,783.562,1024,132.63,17.87,22.94 +efficientnetv2_m,320,1304.81,784.765,1024,54.14,11.01,39.97 +volo_d2_224,224,1303.25,785.708,1024,58.68,14.34,41.34 +coatnet_2_rw_224,224,1301.67,393.319,512,73.87,15.09,49.22 +regnetz_d32,320,1300.21,787.532,1024,27.58,9.33,37.08 +seresnext101_64x4d,224,1298.53,788.558,1024,88.23,15.53,31.25 +nest_base_jx,224,1295.76,790.243,1024,67.72,17.96,53.39 +gmlp_b16_224,224,1289.85,793.862,1024,73.08,15.78,30.21 +mobilevitv2_150,384,1286.35,198.995,256,10.59,9.2,54.25 +hrnet_w40,224,1285.98,796.256,1024,57.56,12.75,25.29 +regnetz_d8,320,1285.82,796.348,1024,23.37,6.19,37.08 +seresnext101_32x8d,224,1284.38,797.243,1024,93.57,16.48,31.25 +seresnet152d,256,1276.56,802.126,1024,66.84,15.42,30.56 +resnetrs152,256,1273.91,803.74,1024,86.62,15.59,30.83 +mobilenetv4_conv_aa_large,480,1272.27,603.62,768,32.59,11.05,50.45 +convnextv2_tiny,288,1271.26,604.097,768,28.64,7.39,22.21 +cait_s24_224,224,1270.01,806.265,1024,46.92,9.35,40.58 +convnext_base,288,1266.87,808.261,1024,88.59,25.43,47.53 +seresnext101d_32x8d,224,1264.56,809.737,1024,93.59,16.72,32.05 +resnest101e,256,1259.59,812.93,1024,48.28,13.38,28.66 +efficientformer_l7,224,1257.98,813.975,1024,82.23,10.17,24.45 +twins_svt_large,224,1250.2,819.039,1024,99.27,15.15,35.1 +maxvit_small_tf_224,224,1245.42,411.087,512,68.93,11.66,53.17 +maxxvit_rmlp_small_rw_256,256,1239.49,619.588,768,66.01,14.67,58.38 +mobilenetv4_hybrid_large,448,1233.31,622.691,768,37.76,10.74,48.61 +resnet50x4_clip_gap,288,1228.45,833.533,1024,65.62,19.57,34.11 +coatnet_rmlp_2_rw_224,224,1227.94,416.935,512,73.88,15.18,54.78 +coat_mini,224,1224.8,836.033,1024,10.34,6.82,33.68 +coatnet_2_224,224,1217.65,420.455,512,74.68,16.5,52.67 +coat_lite_medium,224,1217.51,841.038,1024,44.57,9.81,40.06 +efficientnet_b4,384,1211.17,317.024,384,19.34,4.51,50.04 +swin_base_patch4_window7_224,224,1207.02,848.341,1024,87.77,15.47,36.63 +convnext_large,224,1206.16,848.95,1024,197.77,34.4,43.13 +tresnet_m,448,1204.65,850.01,1024,31.39,22.99,29.21 +mvitv2_base_cls,224,1201.41,852.308,1024,65.44,10.23,40.65 +vit_large_patch32_384,384,1196.88,855.533,1024,306.63,45.31,43.86 +resnet152,288,1192.43,858.72,1024,60.19,19.11,37.28 +seresnext101_32x4d,288,1192.03,859.008,1024,48.96,13.25,35.12 +tiny_vit_21m_384,384,1188.05,646.409,768,21.23,13.77,77.83 +seresnextaa101d_32x8d,224,1183.29,865.35,1024,93.59,17.25,34.16 +resnet50x4_clip,288,1179.84,867.878,1024,87.14,21.35,35.27 +xcit_tiny_24_p16_384,384,1171.17,874.311,1024,12.12,6.87,34.29 +levit_conv_384_s8,224,1166.16,439.026,512,39.12,9.98,35.86 +dm_nfnet_f1,224,1150.17,890.285,1024,132.63,17.87,22.94 +regnetz_e8,256,1147.85,892.072,1024,57.7,9.91,40.94 +swin_s3_small_224,224,1145.1,670.656,768,49.74,9.43,37.84 +mvitv2_base,224,1138.44,899.454,1024,51.47,10.16,40.5 +sequencer2d_l,224,1135.5,901.779,1024,54.3,9.74,22.12 +efficientnetv2_rw_m,320,1134.41,902.651,1024,53.24,12.72,47.14 +gcvit_small,224,1132.43,904.224,1024,51.09,8.57,41.61 +regnety_120,288,1127.97,680.842,768,51.82,20.06,35.34 +hrnet_w44,224,1125.91,909.412,1024,67.06,14.94,26.92 +levit_384_s8,224,1123.29,455.784,512,39.12,9.98,35.86 +regnetz_b16_evos,288,1122.27,684.3,768,9.74,2.36,16.43 +hrnet_w48_ssld,224,1116.96,916.749,1024,77.47,17.34,28.56 +hrnet_w48,224,1113.97,919.215,1024,77.47,17.34,28.56 +regnetz_c16_evos,256,1112.53,690.289,768,13.49,2.48,16.57 +tf_efficientnet_b4,380,1110.38,345.798,384,19.34,4.49,49.49 +xcit_medium_24_p16_224,224,1105.25,926.46,1024,84.4,16.13,31.71 +tnt_b_patch16_224,224,1094.56,935.51,1024,65.41,14.09,39.01 +mobilevitv2_175,384,1091.31,234.563,256,14.25,12.47,63.29 +dpn131,224,1083.25,945.269,1024,79.25,16.09,32.97 +nextvit_small,384,1081.98,946.382,1024,31.76,17.26,57.14 +resnet200d,256,1077.87,949.987,1024,64.69,20.0,43.09 +vit_betwixt_patch16_reg4_gap_384,384,1077.83,950.026,1024,60.6,39.71,85.28 +efficientvit_l3,224,1066.9,719.814,768,246.04,27.62,39.16 +convnextv2_nano,384,1066.76,359.947,384,15.62,7.22,24.61 +maxvit_rmlp_small_rw_256,256,1061.31,723.613,768,64.9,14.15,66.09 +poolformerv2_s36,224,1054.78,970.792,1024,30.79,5.01,15.82 +fastvit_sa36,256,1050.89,974.39,1024,31.53,5.64,34.61 +davit_large,224,1043.66,735.848,768,196.81,34.6,60.99 +convit_base,224,1041.2,983.452,1024,86.54,17.52,31.77 +legacy_senet154,224,1041.02,983.633,1024,115.09,20.77,38.69 +resnetv2_50d_evos,288,1038.94,985.591,1024,25.59,7.15,19.7 +poolformer_m48,224,1037.67,986.794,1024,73.47,11.59,29.17 +vitamin_base_224,224,1035.95,494.209,512,87.72,22.68,52.77 +crossvit_18_dagger_408,408,1032.79,991.461,1024,44.61,32.47,124.87 +fastvit_mci1,256,1032.41,991.824,1024,21.54,4.72,32.84 +maxxvitv2_rmlp_base_rw_224,224,1032.37,743.892,768,116.09,24.2,62.77 +swinv2_base_window12_192,192,1028.07,996.011,1024,109.28,11.9,39.72 +convnext_base,320,1024.52,749.592,768,88.59,31.39,58.68 +xcit_small_12_p16_384,384,1021.49,1002.43,1024,26.25,14.14,36.51 +resnetv2_50x1_bit,448,1019.03,502.406,512,25.55,16.62,44.46 +senet154,224,1016.88,1006.903,1024,115.09,20.77,38.69 +densenet264d,224,1016.07,1007.782,1024,72.74,13.57,14.0 +convnext_small,384,1015.93,755.929,768,50.22,25.58,63.37 +seresnet152,288,1013.71,1010.121,1024,66.82,19.11,37.34 +regnety_320,224,1007.78,1016.066,1024,145.05,32.34,30.26 +dpn107,224,1005.01,1018.86,1024,86.92,18.38,33.46 +xception71,299,1004.0,509.938,512,42.34,18.09,69.92 +hgnetv2_b6,288,981.26,782.643,768,75.26,27.9,35.09 +swinv2_cr_base_224,224,978.09,1046.904,1024,87.88,15.86,59.66 +eca_nfnet_l1,320,976.83,1048.265,1024,41.41,14.92,34.42 +regnety_160,288,976.51,524.284,512,83.59,26.37,38.07 +caformer_s36,224,971.41,1054.103,1024,39.3,8.0,37.53 +swinv2_cr_base_ns_224,224,970.9,1054.655,1024,87.88,15.86,59.66 +mobilenetv4_conv_aa_large,544,968.9,528.415,512,32.59,14.19,64.79 +swinv2_small_window8_256,256,964.83,1061.297,1024,49.73,11.58,40.14 +resnetv2_50x3_bit,224,964.09,796.571,768,217.32,37.06,33.34 +regnetx_320,224,962.49,1063.881,1024,107.81,31.81,36.3 +swinv2_cr_small_ns_256,256,961.42,1065.06,1024,49.7,12.07,76.21 +nf_regnet_b5,384,955.45,803.79,768,49.74,7.95,42.9 +swin_s3_base_224,224,954.89,1072.349,1024,71.13,13.69,48.26 +resnet152d,320,952.68,1074.832,1024,60.21,24.08,47.67 +swinv2_tiny_window16_256,256,949.54,404.378,384,28.35,6.68,39.02 +mobilevitv2_200,384,949.03,269.729,256,18.45,16.24,72.34 +efficientvit_l2,384,946.77,540.762,512,63.71,20.45,57.01 +coat_small,224,946.54,1081.808,1024,21.69,12.61,44.25 +convnextv2_base,224,943.15,814.261,768,88.72,15.38,28.75 +volo_d3_224,224,938.88,1090.634,1024,86.33,20.78,60.09 +ecaresnet200d,256,930.32,1100.668,1024,64.69,20.0,43.15 +vit_mediumd_patch16_reg4_gap_384,384,927.5,1104.011,1024,64.27,43.67,113.51 +deit_base_patch16_384,384,924.35,1107.782,1024,86.86,55.54,101.56 +deit_base_distilled_patch16_384,384,923.14,1109.233,1024,87.63,55.65,101.82 +convnext_large_mlp,256,921.21,833.66,768,200.13,44.94,56.33 +vit_base_patch16_384,384,915.77,1118.154,1024,86.86,55.54,101.56 +convformer_s36,224,915.39,1118.618,1024,40.01,7.67,30.5 +vit_base_patch16_clip_384,384,912.89,1121.683,1024,86.86,55.54,101.56 +vit_large_patch16_224,224,912.7,1121.913,1024,304.33,61.6,63.52 +eva_large_patch14_196,196,906.88,1129.113,1024,304.14,61.57,63.52 +seresnet200d,256,906.73,1129.3,1024,71.86,20.01,43.15 +resnetrs200,256,903.32,1133.498,1024,93.21,20.18,43.42 +hgnet_base,288,882.61,580.058,512,71.58,41.55,25.57 +xcit_tiny_24_p8_224,224,882.26,1160.631,1024,12.11,9.21,45.39 +rdnet_large,224,880.89,581.2,512,186.27,34.74,46.67 +resnext101_64x4d,288,874.91,1170.378,1024,83.46,25.66,51.59 +fastvit_ma36,256,873.15,1172.691,1024,44.07,7.88,41.09 +tf_efficientnetv2_m,384,871.16,1175.422,1024,54.14,15.85,57.52 +beit_large_patch16_224,224,866.7,1181.465,1024,304.43,61.6,63.52 +hrnet_w64,224,866.3,1181.977,1024,128.06,28.97,35.09 +efficientvit_l3,256,859.51,893.502,768,246.04,36.06,50.98 +mixer_l16_224,224,858.48,1192.773,1024,208.2,44.6,41.69 +vit_small_patch14_dinov2,518,855.54,1196.86,1024,22.06,46.76,198.79 +beitv2_large_patch16_224,224,855.13,1197.449,1024,304.43,61.6,63.52 +resnet200,288,849.17,1205.852,1024,64.67,24.91,53.21 +xcit_nano_12_p8_384,384,849.15,1205.887,1024,3.05,6.34,46.08 +nextvit_base,384,845.41,1211.22,1024,44.82,24.64,73.95 +deit3_base_patch16_384,384,844.28,1212.833,1024,86.88,55.54,101.56 +deit3_large_patch16_224,224,842.04,1216.066,1024,304.37,61.6,63.52 +gcvit_base,224,837.14,1223.178,1024,90.32,14.87,55.48 +vit_base_patch16_18x2_224,224,836.78,1223.713,1024,256.73,52.51,71.38 +beit_base_patch16_384,384,834.75,1226.684,1024,86.74,55.54,101.56 +hiera_large_224,224,833.73,1228.187,1024,213.74,40.34,83.37 +maxvit_rmlp_base_rw_224,224,831.5,923.612,768,116.14,23.15,92.64 +vit_small_patch14_reg4_dinov2,518,820.76,1247.592,1024,22.06,46.95,199.77 +seresnet152d,320,810.78,1262.948,1024,66.84,24.09,47.72 +resnetrs152,320,806.91,1269.013,1024,86.62,24.34,48.14 +vit_base_patch16_siglip_gap_384,384,803.81,1273.896,1024,86.09,55.43,101.3 +resnext101_32x16d,224,802.86,1275.414,1024,194.03,36.27,51.18 +volo_d1_384,384,801.94,1276.869,1024,26.78,22.75,108.55 +levit_conv_512_s8,224,796.51,321.385,256,74.05,21.82,52.28 +vit_base_patch16_siglip_384,384,796.23,1286.031,1024,93.18,56.12,102.2 +efficientformerv2_s2,224,793.27,1290.823,1024,12.71,1.27,11.77 +flexivit_large,240,792.48,1292.113,1024,304.36,70.99,75.39 +seresnext101_32x8d,288,790.85,1294.776,1024,93.57,27.24,51.63 +convnext_xlarge,224,789.11,973.216,768,350.2,60.98,57.5 +seresnext101d_32x8d,288,779.13,1314.209,1024,93.59,27.64,52.95 +fastvit_mci2,256,770.69,1328.66,1024,35.82,7.91,43.34 +xcit_small_12_p8_224,224,768.93,1331.684,1024,26.21,18.69,47.21 +efficientnetv2_m,416,757.66,1351.509,1024,54.14,18.6,67.5 +levit_512_s8,224,756.91,338.197,256,74.05,21.82,52.28 +nfnet_f2,256,754.41,1357.331,1024,193.78,33.76,41.85 +poolformerv2_m36,224,753.91,1358.223,1024,56.08,8.81,22.02 +coatnet_rmlp_3_rw_224,224,747.12,342.626,256,165.15,33.56,79.47 +swin_large_patch4_window7_224,224,734.47,1045.628,768,196.53,34.53,54.94 +coatnet_3_rw_224,224,734.18,348.657,256,181.81,33.44,73.83 +coatnet_3_224,224,734.12,348.691,256,166.97,36.56,79.01 +efficientnet_b5,416,732.18,349.614,256,30.39,8.27,80.68 +maxvit_base_tf_224,224,727.37,703.885,512,119.47,24.04,95.01 +seresnextaa101d_32x8d,288,726.54,1409.397,1024,93.59,28.51,56.44 +regnetz_e8,320,726.44,1057.182,768,57.7,15.46,63.94 +convnext_large,288,724.73,706.442,512,197.77,56.87,71.29 +convnextv2_tiny,384,722.62,531.372,384,28.64,13.14,39.48 +ecaresnet200d,288,722.05,1418.16,1024,64.69,25.31,54.59 +regnetz_d8_evos,256,720.34,1421.53,1024,23.46,4.5,24.92 +resnetv2_152x2_bit,224,716.98,1428.18,1024,236.34,46.95,45.11 +seresnet269d,256,714.47,1433.198,1024,113.67,26.59,53.6 +convnext_base,384,714.31,716.749,512,88.59,45.21,84.49 +regnetz_c16_evos,320,711.04,720.042,512,13.49,3.86,25.88 +seresnet200d,288,706.46,1449.448,1024,71.86,25.32,54.6 +caformer_m36,224,705.55,1451.316,1024,56.2,13.29,50.48 +swinv2_base_window8_256,256,704.56,1090.005,768,87.92,20.37,52.59 +davit_huge,224,697.25,734.284,512,348.92,61.23,81.32 +xcit_large_24_p16_224,224,695.71,1471.847,1024,189.1,35.86,47.27 +nextvit_large,384,694.8,1473.781,1024,57.87,32.03,90.76 +nfnet_f1,320,694.64,1474.11,1024,132.63,35.97,46.77 +resnetrs270,256,693.43,1476.685,1024,129.86,27.06,55.84 +maxxvitv2_rmlp_large_rw_224,224,685.54,1120.26,768,215.42,44.14,87.15 +resnet200d,320,684.31,1496.359,1024,64.69,31.25,67.33 +eca_nfnet_l2,320,677.83,1510.682,1024,56.72,20.95,47.43 +hrnet_w48_ssld,288,674.81,1517.452,1024,77.47,28.66,47.21 +convformer_m36,224,673.4,1520.613,1024,57.05,12.89,42.05 +vit_large_patch14_224,224,671.42,1525.099,1024,304.2,81.08,88.79 +efficientnetv2_rw_m,416,660.69,1162.389,768,53.24,21.49,79.62 +vit_base_patch8_224,224,659.1,1165.195,768,86.58,78.22,161.69 +vit_large_patch14_clip_224,224,658.44,1555.16,1024,304.2,81.08,88.79 +resnetv2_101x1_bit,448,655.55,780.987,512,44.54,31.65,64.93 +swinv2_large_window12_192,192,647.21,791.055,512,228.77,26.17,56.53 +nf_regnet_b5,456,647.09,791.219,512,49.74,11.7,61.95 +efficientnet_b5,448,640.21,399.84,256,30.39,9.59,93.56 +tiny_vit_21m_512,512,639.87,600.092,384,21.27,27.02,177.93 +dm_nfnet_f2,256,635.02,1612.538,1024,193.78,33.76,41.85 +tresnet_l,448,634.37,1614.169,1024,55.99,43.59,47.56 +halonet_h1,256,633.74,403.931,256,8.1,3.0,51.17 +caformer_s18,384,629.68,813.073,512,26.34,13.42,77.34 +vit_large_patch16_siglip_gap_256,256,628.22,1629.977,1024,303.36,80.8,88.34 +maxvit_tiny_tf_384,384,626.52,408.586,256,30.98,17.53,123.42 +vit_large_patch16_siglip_256,256,625.66,1636.644,1024,315.96,81.34,88.88 +vit_large_r50_s32_384,384,615.76,1662.953,1024,329.09,57.43,76.52 +regnety_640,224,613.16,1252.507,768,281.38,64.16,42.5 +swinv2_cr_large_224,224,606.35,1266.568,768,196.68,35.1,78.42 +swinv2_small_window16_256,256,601.52,638.354,384,49.73,12.82,66.29 +seresnextaa101d_32x8d,320,597.68,1284.933,768,93.59,35.19,69.67 +convnextv2_large,224,595.67,859.51,512,197.96,34.4,43.13 +convmixer_768_32,224,587.98,1741.521,1024,21.11,19.55,25.95 +convnext_large_mlp,320,587.82,870.986,512,200.13,70.21,88.02 +convformer_s18,384,584.32,876.206,512,26.77,11.63,46.49 +volo_d4_224,224,581.51,1760.899,1024,192.96,44.34,80.22 +convnextv2_base,288,576.25,888.468,512,88.72,25.43,47.53 +resnetrs200,320,573.92,1784.186,1024,93.21,31.51,67.81 +dm_nfnet_f1,320,570.82,1793.897,1024,132.63,35.97,46.77 +resnetv2_101x3_bit,224,568.43,1351.065,768,387.93,71.23,48.7 +poolformerv2_m48,224,567.13,1805.556,1024,73.35,11.59,29.17 +vit_large_patch14_clip_quickgelu_224,224,566.47,1807.657,1024,303.97,81.08,88.79 +xcit_tiny_12_p8_384,384,566.0,1809.156,1024,6.71,14.13,69.14 +regnety_160,384,565.42,679.108,384,83.59,46.87,67.67 +seresnet269d,288,556.07,1841.481,1024,113.67,33.65,67.81 +vit_large_patch14_xp_224,224,555.64,1842.897,1024,304.06,81.01,88.79 +tf_efficientnet_b5,456,553.22,462.718,256,30.39,10.46,98.86 +tf_efficientnetv2_m,480,552.28,1390.555,768,54.14,24.76,89.84 +xcit_small_24_p16_384,384,550.05,1861.633,1024,47.67,26.72,68.58 +efficientvit_l3,320,548.76,932.978,512,246.04,56.32,79.34 +vit_base_r50_s16_384,384,528.19,1938.65,1024,98.95,67.43,135.03 +swinv2_cr_tiny_384,384,527.59,485.193,256,28.33,15.34,161.01 +inception_next_base,384,523.15,978.654,512,86.67,43.64,75.48 +caformer_b36,224,522.73,1469.167,768,98.75,23.22,67.3 +efficientformerv2_l,224,520.87,1965.917,1024,26.32,2.59,18.54 +maxvit_large_tf_224,224,511.9,750.122,384,211.79,43.68,127.35 +efficientnetv2_l,384,505.24,2026.716,1024,118.52,36.1,101.16 +convformer_b36,224,493.89,1554.99,768,99.88,22.69,56.06 +nasnetalarge,331,490.88,782.249,384,88.75,23.89,90.56 +vitamin_large2_224,224,490.43,1043.963,512,333.58,75.05,112.83 +vitamin_large_224,224,490.33,1044.155,512,333.32,75.05,112.83 +tf_efficientnetv2_l,384,486.38,2105.328,1024,118.52,36.1,101.16 +eca_nfnet_l2,384,481.18,1596.052,768,56.72,30.05,68.28 +convnext_xlarge,288,474.06,809.995,384,350.2,100.8,95.05 +tresnet_xl,448,468.78,1638.268,768,78.44,60.77,61.31 +ecaresnet269d,320,467.07,2192.338,1024,102.09,41.53,83.69 +vit_so400m_patch14_siglip_gap_224,224,464.21,2205.889,1024,412.44,109.57,106.13 +vit_so400m_patch14_siglip_224,224,463.58,2208.874,1024,427.68,110.26,106.73 +regnetz_d8_evos,320,459.77,1670.385,768,23.46,7.03,38.92 +pnasnet5large,331,451.71,850.077,384,86.06,25.04,92.89 +coatnet_4_224,224,448.81,570.366,256,275.43,62.48,129.26 +volo_d2_384,384,446.3,1720.798,768,58.87,46.17,184.51 +swinv2_base_window16_256,256,443.63,865.555,384,87.92,22.02,84.71 +swinv2_base_window12to16_192to256,256,443.19,866.406,384,87.92,22.02,84.71 +eca_nfnet_l3,352,438.82,2333.492,1024,72.04,32.57,73.12 +vit_base_patch16_siglip_gap_512,512,436.48,1172.98,512,86.43,107.0,246.15 +resnest200e,320,433.87,2360.1,1024,70.2,35.69,82.78 +repvgg_d2se,320,433.46,2362.343,1024,133.33,74.57,46.82 +vit_base_patch16_siglip_512,512,432.68,1183.28,512,93.52,108.22,247.74 +resnetrs350,288,431.8,2371.351,1024,163.96,43.67,87.09 +eva02_large_patch14_224,224,427.61,2394.657,1024,303.27,81.15,97.2 +eva02_large_patch14_clip_224,224,422.17,2425.529,1024,304.11,81.18,97.2 +maxvit_small_tf_384,384,417.56,459.79,192,69.02,35.87,183.65 +xcit_small_24_p8_224,224,413.85,2474.292,1024,47.63,35.81,90.78 +coat_lite_medium_384,384,412.65,1240.736,512,44.57,28.73,116.7 +cait_xxs24_384,384,409.04,2503.383,1024,12.03,9.63,122.66 +convnext_large,384,408.43,626.768,256,197.77,101.1,126.74 +convnext_large_mlp,384,408.43,626.758,256,200.13,101.11,126.74 +resnet50x16_clip_gap,384,408.06,1254.695,512,136.2,70.32,100.64 +coatnet_rmlp_2_rw_384,384,407.99,470.57,192,73.88,47.69,209.43 +resnext101_32x32d,224,402.22,1272.909,512,468.53,87.29,91.12 +nfnet_f2,352,397.35,1932.786,768,193.78,63.22,79.06 +mvitv2_large_cls,224,396.76,1935.67,768,234.58,42.17,111.69 +resnet50x16_clip,384,396.57,1291.043,512,167.33,74.9,103.54 +ecaresnet269d,352,387.68,2641.296,1024,102.09,50.25,101.25 +volo_d5_224,224,384.55,2662.854,1024,295.46,72.4,118.11 +xcit_medium_24_p16_384,384,381.47,2684.348,1024,84.4,47.39,91.64 +mvitv2_large,224,376.52,1359.807,512,217.99,43.87,112.02 +vitamin_large2_256,256,375.97,1021.316,384,333.64,99.0,154.99 +vitamin_large_256,256,375.75,1021.913,384,333.38,99.0,154.99 +hiera_huge_224,224,370.3,1382.641,512,672.78,124.85,150.95 +nfnet_f3,320,368.66,2777.571,1024,254.92,68.77,83.93 +efficientvit_l3,384,368.28,1042.649,384,246.04,81.08,114.02 +resnetrs270,352,365.8,2799.336,1024,129.86,51.13,105.48 +efficientnetv2_xl,384,365.74,2799.773,1024,208.12,52.81,139.2 +convnextv2_large,288,360.11,710.871,256,197.96,56.87,71.29 +regnety_320,384,355.95,1078.775,384,145.05,95.0,88.87 +tf_efficientnetv2_xl,384,352.9,2901.677,1024,208.12,52.81,139.2 +maxvit_tiny_tf_512,512,350.4,365.274,128,31.05,33.49,257.59 +efficientnet_b6,528,348.25,367.527,128,43.04,19.4,167.39 +vit_huge_patch14_224,224,346.11,2958.6,1024,630.76,167.4,139.41 +resmlp_big_24_224,224,346.09,2958.721,1024,129.14,100.23,87.31 +vit_huge_patch14_clip_224,224,345.85,2960.828,1024,632.05,167.4,139.41 +maxxvitv2_rmlp_base_rw_384,384,338.23,1135.306,384,116.09,72.98,213.74 +dm_nfnet_f2,352,333.3,2304.205,768,193.78,63.22,79.06 +caformer_s36,384,330.56,1548.873,512,39.3,26.08,150.33 +vit_base_patch14_dinov2,518,330.07,1551.146,512,86.58,151.71,397.58 +deit3_huge_patch14_224,224,328.48,3117.396,1024,632.13,167.4,139.41 +vit_base_patch14_reg4_dinov2,518,326.8,1566.682,512,86.58,152.25,399.53 +swinv2_cr_small_384,384,326.37,784.356,256,49.7,29.7,298.03 +convnextv2_base,384,326.0,785.254,256,88.72,45.21,84.49 +efficientnetv2_l,480,324.02,1580.122,512,118.52,56.4,157.99 +tf_efficientnet_b6,528,322.38,397.021,128,43.04,19.4,167.39 +vit_huge_patch14_gap_224,224,320.65,3193.485,1024,630.76,166.73,138.74 +eva02_base_patch14_448,448,313.01,1635.692,512,87.12,107.11,259.14 +convformer_s36,384,312.77,1636.965,512,40.01,22.54,89.62 +tf_efficientnetv2_l,480,311.92,1641.431,512,118.52,56.4,157.99 +regnety_1280,224,311.67,1642.714,512,644.81,127.66,71.58 +dm_nfnet_f3,320,308.4,3320.307,1024,254.92,68.77,83.93 +focalnet_huge_fl3,224,308.26,1660.931,512,745.28,118.26,104.8 +maxvit_xlarge_tf_224,224,304.7,840.149,256,506.99,97.52,191.04 +convmixer_1536_20,224,304.65,3361.196,1024,51.63,48.68,33.03 +vit_huge_patch14_clip_quickgelu_224,224,301.93,3391.487,1024,632.08,167.4,139.41 +xcit_tiny_24_p8_384,384,301.9,3391.864,1024,12.11,27.05,132.95 +seresnextaa201d_32x8d,320,301.18,3399.969,1024,149.39,70.22,138.71 +rdnet_large,384,300.8,638.262,192,186.27,102.09,137.13 +vitamin_xlarge_256,256,299.66,854.266,256,436.06,130.13,177.37 +resnetrs420,320,299.37,3420.532,1024,191.89,64.2,126.56 +swin_base_patch4_window12_384,384,298.5,857.581,256,87.9,47.19,134.78 +vit_large_patch16_384,384,297.48,2581.665,768,304.72,191.21,270.24 +vit_huge_patch14_xp_224,224,293.38,3490.267,1024,631.8,167.3,139.41 +eva_large_patch14_336,336,293.21,2619.236,768,304.53,191.1,270.24 +vit_large_patch14_clip_336,336,291.64,2633.322,768,304.53,191.11,270.24 +swinv2_cr_huge_224,224,289.13,1328.114,384,657.83,115.97,121.08 +cait_xs24_384,384,285.75,2687.593,768,26.67,19.28,183.98 +xcit_medium_24_p8_224,224,285.74,3583.627,1024,84.32,63.53,121.23 +sam2_hiera_tiny,896,284.13,225.218,64,26.85,99.86,384.63 +swinv2_large_window12to16_192to256,256,282.09,680.616,192,196.74,47.81,121.53 +convnext_xxlarge,256,281.32,909.972,256,846.47,198.09,124.45 +maxvit_rmlp_base_rw_384,384,277.19,1385.303,384,116.14,70.97,318.95 +davit_giant,224,275.78,1392.401,384,1406.47,192.92,153.06 +beit_large_patch16_384,384,274.3,3733.061,1024,305.0,191.21,270.24 +convnextv2_huge,224,273.48,936.071,256,660.29,115.0,79.07 +cait_xxs36_384,384,273.32,3746.438,1024,17.37,14.35,183.7 +deit3_large_patch16_384,384,271.88,3766.274,1024,304.76,191.21,270.24 +vit_giant_patch16_gap_224,224,271.62,3769.888,1024,1011.37,202.46,139.26 +eca_nfnet_l3,448,271.28,1887.306,512,72.04,52.55,118.4 +convnext_xlarge,384,266.61,960.183,256,350.2,179.2,168.99 +vit_large_patch16_siglip_gap_384,384,265.41,2893.649,768,303.69,190.85,269.55 +xcit_small_12_p8_384,384,264.43,1452.163,384,26.21,54.92,138.29 +vit_large_patch16_siglip_384,384,264.41,2904.586,768,316.28,192.07,270.75 +resnetv2_152x2_bit,384,257.56,1490.858,384,236.34,136.16,132.56 +coatnet_5_224,224,255.18,752.374,192,687.47,145.49,194.24 +vit_large_patch14_clip_quickgelu_336,336,250.08,3071.031,768,304.29,191.11,270.24 +resnetv2_152x4_bit,224,249.77,2049.841,512,936.53,186.9,90.22 +resnetv2_50x3_bit,448,246.98,777.372,192,217.32,145.7,133.37 +maxvit_base_tf_384,384,242.99,790.147,192,119.65,73.8,332.9 +sam2_hiera_small,896,242.55,263.836,64,33.95,123.99,442.63 +swinv2_cr_base_384,384,240.19,1065.812,256,87.88,50.57,333.68 +caformer_m36,384,240.01,1066.57,256,56.2,42.11,196.35 +xcit_large_24_p16_384,384,237.61,3232.218,768,189.1,105.35,137.17 +resnetrs350,384,236.9,4322.505,1024,163.96,77.59,154.74 +maxvit_small_tf_512,512,235.03,408.44,96,69.13,67.26,383.77 +volo_d3_448,448,231.1,2215.491,512,86.63,96.33,446.83 +eva_giant_patch14_224,224,229.92,4453.698,1024,1012.56,267.18,192.64 +eva_giant_patch14_clip_224,224,229.31,4465.497,1024,1012.59,267.18,192.64 +convformer_m36,384,228.98,1117.982,256,57.05,37.87,123.56 +vit_giant_patch14_224,224,225.31,4544.745,1024,1012.61,267.18,192.64 +vit_giant_patch14_clip_224,224,224.09,4569.511,1024,1012.65,267.18,192.64 +regnety_640,384,219.6,1165.748,256,281.38,188.47,124.83 +cait_s24_384,384,215.82,2372.283,512,47.06,32.17,245.31 +vitamin_large_336,336,214.38,895.584,192,333.57,175.72,307.47 +vitamin_large2_336,336,214.36,895.665,192,333.83,175.72,307.47 +seresnextaa201d_32x8d,384,212.89,2405.003,512,149.39,101.11,199.72 +nfnet_f3,416,210.03,2437.746,512,254.92,115.58,141.78 +efficientnetv2_xl,512,209.86,2439.71,512,208.12,93.85,247.32 +focalnet_huge_fl4,224,209.11,2448.416,512,686.46,118.9,113.34 +resnest269e,416,205.52,2491.203,512,110.93,77.69,171.98 +nfnet_f4,384,204.25,3760.055,768,316.07,122.14,147.57 +efficientnet_b7,600,202.28,474.573,96,66.35,38.33,289.94 +tf_efficientnetv2_xl,512,202.25,2531.445,512,208.12,93.85,247.32 +convnextv2_large,384,201.98,950.553,192,197.96,101.1,126.74 +tf_efficientnet_b7,600,189.69,506.052,96,66.35,38.33,289.94 +resnetv2_152x2_bit,448,187.23,1367.275,256,236.34,184.99,180.43 +eva02_large_patch14_clip_336,336,186.43,4119.531,768,304.43,191.34,289.13 +swin_large_patch4_window12_384,384,185.91,688.483,128,196.74,104.08,202.16 +dm_nfnet_f3,416,181.39,2822.569,512,254.92,115.58,141.78 +caformer_b36,384,177.61,1441.35,256,98.75,72.33,261.79 +resnetrs420,416,176.81,4343.655,768,191.89,108.45,213.79 +dm_nfnet_f4,384,176.15,2906.576,512,316.07,122.14,147.57 +xcit_large_24_p8_224,224,176.14,2906.744,512,188.93,141.23,181.56 +maxvit_large_tf_384,384,171.73,745.342,128,212.03,132.55,445.84 +vitamin_xlarge_336,336,171.61,1118.79,192,436.06,230.18,347.33 +mvitv2_huge_cls,224,171.54,2238.569,384,694.8,120.67,243.63 +convformer_b36,384,169.76,1508.019,256,99.88,66.67,164.75 +convnextv2_huge,288,165.43,773.711,128,660.29,190.1,130.7 +vit_so400m_patch14_siglip_gap_384,384,154.69,3309.867,512,412.99,333.46,451.19 +vitamin_large_384,384,154.64,1241.528,192,333.71,234.44,440.16 +vitamin_large2_384,384,154.6,1241.879,192,333.97,234.44,440.16 +vit_so400m_patch14_siglip_384,384,153.85,3327.91,512,428.23,335.4,452.89 +focalnet_large_fl3,384,153.05,1672.622,256,239.13,105.06,168.04 +swinv2_cr_large_384,384,151.56,844.525,128,196.68,108.96,404.96 +resnet50x64_clip_gap,448,151.54,1689.315,256,365.03,253.96,233.22 +davit_base_fl,768,150.78,848.881,128,90.37,190.32,530.15 +vit_huge_patch14_clip_336,336,150.49,3402.128,512,632.46,390.97,407.54 +resnetv2_101x3_bit,448,148.24,1295.156,192,387.93,280.33,194.78 +resnet50x64_clip,448,147.7,1733.217,256,420.38,265.02,239.13 +focalnet_large_fl4,384,145.84,1755.371,256,239.32,105.2,181.78 +nfnet_f5,416,144.21,3550.232,512,377.21,170.71,204.56 +cait_s36_384,384,143.55,3566.739,512,68.37,47.99,367.4 +beit_large_patch16_512,512,142.33,3597.213,512,305.67,362.24,656.39 +volo_d4_448,448,141.31,2717.358,384,193.41,197.13,527.35 +xcit_small_24_p8_384,384,138.77,2767.038,384,47.63,105.24,265.91 +maxvit_base_tf_512,512,136.61,702.73,96,119.88,138.02,703.99 +vit_gigantic_patch14_clip_224,224,131.25,3900.97,512,1844.91,483.96,275.37 +vit_gigantic_patch14_224,224,131.1,3905.342,512,1844.44,483.95,275.37 +efficientnet_b8,672,130.9,733.374,96,87.41,63.48,442.89 +sam2_hiera_base_plus,896,129.71,493.389,64,68.68,227.48,828.88 +vitamin_xlarge_384,384,129.66,987.169,128,436.06,306.38,493.46 +dm_nfnet_f5,416,123.97,4129.905,512,377.21,170.71,204.56 +tf_efficientnet_b8,672,123.56,776.89,96,87.41,63.48,442.89 +swinv2_base_window12to24_192to384,384,116.6,548.838,64,87.92,55.25,280.36 +nfnet_f4,512,116.51,3295.94,384,316.07,216.26,262.26 +vit_huge_patch14_clip_378,378,115.85,4419.399,512,632.68,503.79,572.79 +regnety_1280,384,113.91,1123.629,128,644.81,374.99,210.2 +nfnet_f6,448,108.83,4704.573,512,438.36,229.7,273.62 +vit_large_patch14_reg4_dinov2,518,108.71,3532.214,384,304.37,508.9,1064.02 +focalnet_xlarge_fl3,384,108.53,1769.039,192,408.79,185.61,223.99 +vit_large_patch14_dinov2,518,108.27,3546.558,384,304.37,507.15,1058.82 +vit_so400m_patch14_siglip_gap_448,448,107.18,3582.703,384,413.33,487.18,764.26 +focalnet_xlarge_fl4,384,103.7,1851.388,192,409.03,185.79,242.31 +vit_huge_patch14_clip_quickgelu_378,378,103.32,3716.757,384,632.68,503.79,572.79 +maxvit_xlarge_tf_384,384,102.58,935.85,96,475.32,292.78,668.76 +eva02_large_patch14_448,448,102.5,4995.169,512,305.08,362.33,689.95 +eva_giant_patch14_336,336,100.67,5085.918,512,1013.01,620.64,550.67 +dm_nfnet_f4,512,98.99,3879.344,384,316.07,216.26,262.26 +vit_huge_patch16_gap_448,448,98.47,3899.461,384,631.67,544.7,636.83 +xcit_medium_24_p8_384,384,95.83,2671.483,256,84.32,186.67,354.73 +maxvit_large_tf_512,512,95.8,668.018,64,212.33,244.75,942.15 +volo_d5_448,448,94.17,2718.505,256,295.91,315.06,737.92 +dm_nfnet_f6,448,93.55,4104.519,384,438.36,229.7,273.62 +convnextv2_huge,384,93.18,1030.237,96,660.29,337.96,232.35 +swinv2_cr_giant_224,224,86.22,1484.541,128,2598.76,483.85,309.15 +nfnet_f5,544,84.48,3030.209,256,377.21,290.97,349.71 +nfnet_f7,480,82.66,4645.539,384,499.5,300.08,355.86 +tf_efficientnet_l2,475,82.5,1163.656,96,480.31,172.11,609.89 +swinv2_large_window12to24_192to384,384,74.51,644.202,48,196.74,116.15,407.83 +dm_nfnet_f5,544,72.96,3508.675,256,377.21,290.97,349.71 +volo_d5_512,512,72.05,3553.134,256,296.09,425.09,1105.37 +swinv2_cr_huge_384,384,71.81,891.159,64,657.94,352.04,583.18 +nfnet_f6,576,66.27,3862.681,256,438.36,378.69,452.2 +regnety_2560,384,62.8,1528.693,96,1282.6,747.83,296.49 +cait_m36_384,384,62.36,4105.492,256,271.22,173.11,734.81 +davit_huge_fl,768,58.91,1086.419,64,360.64,744.84,1060.3 +xcit_large_24_p8_384,384,58.6,3276.243,192,188.93,415.0,531.82 +maxvit_xlarge_tf_512,512,57.35,836.875,48,475.77,534.14,1413.22 +dm_nfnet_f6,576,56.67,4517.07,256,438.36,378.69,452.2 +resnetv2_152x4_bit,480,56.51,2265.038,128,936.53,844.84,414.26 +convnextv2_huge,512,52.45,915.15,48,660.29,600.81,413.07 +nfnet_f7,608,52.01,4921.813,256,499.5,480.39,570.85 +sam2_hiera_large,1024,42.98,1116.814,48,212.15,907.48,2190.34 +eva_giant_patch14_560,560,33.62,3807.521,128,1014.45,1906.76,2577.17 +vit_giant_patch14_dinov2,518,33.11,3866.111,128,1136.48,1784.2,2757.89 +vit_giant_patch14_reg4_dinov2,518,32.88,3893.06,128,1136.48,1790.08,2771.21 +samvit_base_patch16,1024,31.14,385.374,12,89.67,486.43,1343.27 +efficientnet_l2,800,30.89,1035.976,32,480.31,479.12,1707.39 +tf_efficientnet_l2,800,30.04,1065.17,32,480.31,479.12,1707.39 +cait_m48_448,448,27.15,4715.382,128,356.46,329.41,1708.23 +swinv2_cr_giant_384,384,23.32,1372.464,32,2598.76,1450.71,1394.86 +vit_so400m_patch14_siglip_gap_896,896,19.9,4824.742,96,416.87,2731.49,8492.88 +samvit_large_patch16,1024,14.97,534.402,8,308.28,1493.86,2553.78 +samvit_huge_patch16,1024,9.99,600.87,6,637.03,2982.23,3428.16 diff --git a/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt113-cu117-rtx3090.csv b/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt113-cu117-rtx3090.csv new file mode 100644 index 0000000000000000000000000000000000000000..07b651d18bec42a74381bebb2bbd70b17559a3c7 --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt113-cu117-rtx3090.csv @@ -0,0 +1,930 @@ +model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count +tinynet_e,72737.62,14.068,1024,106,0.03,0.69,2.04 +mobilenetv3_small_050,54822.3,18.668,1024,224,0.03,0.92,1.59 +lcnet_035,53629.35,19.084,1024,224,0.03,1.04,1.64 +lcnet_050,45492.41,22.499,1024,224,0.05,1.26,1.88 +mobilenetv3_small_075,39215.51,26.102,1024,224,0.05,1.3,2.04 +tinynet_d,37346.61,27.409,1024,152,0.05,1.42,2.34 +mobilenetv3_small_100,36280.34,28.214,1024,224,0.06,1.42,2.54 +tf_mobilenetv3_small_minimal_100,31726.33,32.265,1024,224,0.06,1.41,2.04 +tf_mobilenetv3_small_075,31503.43,32.494,1024,224,0.05,1.3,2.04 +lcnet_075,29817.69,34.332,1024,224,0.1,1.99,2.36 +tf_mobilenetv3_small_100,29444.91,34.767,1024,224,0.06,1.42,2.54 +mnasnet_small,25354.86,40.376,1024,224,0.07,2.16,2.03 +lcnet_100,24134.76,42.417,1024,224,0.16,2.52,2.95 +regnetx_002,23983.4,42.686,1024,224,0.2,2.16,2.68 +levit_128s,22675.73,45.148,1024,224,0.31,1.88,7.78 +regnety_002,21709.37,47.158,1024,224,0.2,2.17,3.16 +mobilenetv2_035,21673.44,47.236,1024,224,0.07,2.86,1.68 +mnasnet_050,20010.27,51.163,1024,224,0.11,3.07,2.22 +ghostnet_050,18932.82,54.075,1024,224,0.05,1.77,2.59 +tinynet_c,18428.42,55.556,1024,184,0.11,2.87,2.46 +semnasnet_050,17215.18,59.471,1024,224,0.11,3.44,2.08 +mobilenetv2_050,17194.94,59.542,1024,224,0.1,3.64,1.97 +cs3darknet_focus_s,16189.76,63.24,1024,256,0.69,2.7,3.27 +lcnet_150,15557.15,65.811,1024,224,0.34,3.79,4.5 +cs3darknet_s,15369.47,66.615,1024,256,0.72,2.97,3.28 +levit_128,15337.67,66.754,1024,224,0.41,2.71,9.21 +gernet_s,15288.68,66.966,1024,224,0.75,2.65,8.17 +mobilenetv3_large_075,14216.3,72.019,1024,224,0.16,4.0,3.99 +mixer_s32_224,14182.92,72.188,1024,224,1.0,2.28,19.1 +vit_tiny_r_s16_p8_224,14125.39,72.482,1024,224,0.44,2.06,6.34 +resnet10t,14112.07,72.551,1024,224,1.1,2.43,5.44 +vit_small_patch32_224,13799.47,74.195,1024,224,1.15,2.5,22.88 +regnetx_004,13610.2,75.225,1024,224,0.4,3.14,5.16 +levit_192,13524.14,75.706,1024,224,0.66,3.2,10.95 +mobilenetv3_rw,12956.58,79.021,1024,224,0.23,4.41,5.48 +hardcorenas_a,12803.61,79.966,1024,224,0.23,4.38,5.26 +mobilenetv3_large_100,12749.93,80.304,1024,224,0.23,4.41,5.48 +mnasnet_075,12532.36,81.697,1024,224,0.23,4.77,3.17 +tf_mobilenetv3_large_075,12186.51,84.017,1024,224,0.16,4.0,3.99 +tinynet_b,12083.18,84.735,1024,188,0.21,4.44,3.73 +regnety_004,11918.36,85.906,1024,224,0.41,3.89,4.34 +tf_mobilenetv3_large_minimal_100,11715.94,87.392,1024,224,0.22,4.4,3.92 +hardcorenas_c,11548.05,88.662,1024,224,0.28,5.01,5.52 +hardcorenas_b,11510.71,88.949,1024,224,0.26,5.09,5.18 +ese_vovnet19b_slim_dw,11501.95,89.018,1024,224,0.4,5.28,1.9 +ghostnet_100,11332.61,90.348,1024,224,0.15,3.55,5.18 +mnasnet_100,11138.43,91.923,1024,224,0.33,5.46,4.38 +gluon_resnet18_v1b,11098.78,92.252,1024,224,1.82,2.48,11.69 +resnet18,11083.1,92.383,1024,224,1.82,2.48,11.69 +swsl_resnet18,11062.48,92.555,1024,224,1.82,2.48,11.69 +ssl_resnet18,11061.11,92.565,1024,224,1.82,2.48,11.69 +tf_mobilenetv3_large_100,11018.56,92.922,1024,224,0.23,4.41,5.48 +mnasnet_b1,10993.58,93.135,1024,224,0.33,5.46,4.38 +hardcorenas_d,10910.47,93.843,1024,224,0.3,4.93,7.5 +semnasnet_075,10898.09,93.951,1024,224,0.23,5.54,2.91 +mobilenetv2_075,10893.76,93.988,1024,224,0.22,5.86,2.64 +seresnet18,10385.56,98.588,1024,224,1.82,2.49,11.78 +legacy_seresnet18,10064.41,101.734,1024,224,1.82,2.49,11.78 +spnasnet_100,10009.21,102.296,1024,224,0.35,6.03,4.42 +tf_efficientnetv2_b0,9930.95,103.1,1024,224,0.73,4.77,7.14 +levit_256,9858.1,103.863,1024,224,1.13,4.23,18.89 +tinynet_a,9720.11,105.337,1024,192,0.35,5.41,6.19 +hardcorenas_f,9714.91,105.393,1024,224,0.35,5.57,8.2 +semnasnet_100,9623.78,106.393,1024,224,0.32,6.23,3.89 +mnasnet_a1,9623.77,106.393,1024,224,0.32,6.23,3.89 +mobilenetv2_100,9598.91,106.667,1024,224,0.31,6.68,3.5 +hardcorenas_e,9571.87,106.966,1024,224,0.35,5.65,8.07 +dla46_c,9568.4,107.007,1024,224,0.58,4.5,1.3 +efficientnet_lite0,9361.14,109.377,1024,224,0.4,6.74,4.65 +fbnetc_100,9352.03,109.484,1024,224,0.4,6.51,5.57 +resnet18d,9334.83,109.687,1024,224,2.06,3.29,11.71 +ese_vovnet19b_slim,9109.47,112.4,1024,224,1.69,3.52,3.17 +regnety_006,9097.63,112.542,1024,224,0.61,4.33,6.06 +regnetz_005,8607.49,118.955,1024,224,0.52,5.86,7.12 +xcit_nano_12_p16_224_dist,8577.2,119.375,1024,224,0.56,4.17,3.05 +xcit_nano_12_p16_224,8554.61,119.689,1024,224,0.56,4.17,3.05 +levit_256d,8382.88,122.143,1024,224,1.4,4.93,26.21 +regnetx_006,8379.52,122.192,1024,224,0.61,3.98,6.2 +ghostnet_130,8278.59,123.681,1024,224,0.24,4.6,7.36 +tf_efficientnet_lite0,8080.51,126.714,1024,224,0.4,6.74,4.65 +efficientnet_b0,7965.17,128.548,1024,224,0.4,6.75,5.29 +mnasnet_140,7779.42,131.618,1024,224,0.6,7.71,7.12 +deit_tiny_distilled_patch16_224,7467.68,137.113,1024,224,1.27,6.01,5.91 +rexnetr_100,7464.12,137.179,1024,224,0.43,7.72,4.88 +deit_tiny_patch16_224,7430.15,137.806,1024,224,1.26,5.97,5.72 +resnet14t,7429.68,137.815,1024,224,1.69,5.8,10.08 +vit_tiny_patch16_224,7424.93,137.902,1024,224,1.26,5.97,5.72 +regnetx_008,7394.88,138.463,1024,224,0.81,5.15,7.26 +mobilenetv2_110d,7247.12,141.287,1024,224,0.45,8.71,4.52 +hrnet_w18_small,7232.93,141.561,1024,224,1.61,5.72,13.19 +tf_efficientnet_b0,7016.18,145.938,1024,224,0.4,6.75,5.29 +regnety_008,6938.46,147.571,1024,224,0.81,5.25,6.26 +mobilevitv2_050,6848.87,149.503,1024,256,0.48,8.04,1.37 +pit_ti_distilled_224,6811.68,150.317,1024,224,0.71,6.23,5.1 +pit_ti_224,6784.24,150.927,1024,224,0.7,6.19,4.85 +gernet_m,6679.85,153.286,1024,224,3.02,5.24,21.14 +efficientnet_b1_pruned,6642.37,154.15,1024,240,0.4,6.21,6.33 +resnet34,6496.42,157.614,1024,224,3.67,3.74,21.8 +gluon_resnet34_v1b,6494.61,157.658,1024,224,3.67,3.74,21.8 +tv_resnet34,6481.01,157.989,1024,224,3.67,3.74,21.8 +tf_efficientnetv2_b1,6476.52,158.098,1024,240,1.21,7.34,8.14 +semnasnet_140,6454.5,158.637,1024,224,0.6,8.87,6.11 +nf_regnet_b0,6452.24,158.693,1024,256,0.64,5.58,8.76 +ese_vovnet19b_dw,6335.13,161.627,1024,224,1.34,8.25,6.54 +mobilenetv2_140,6271.56,163.266,1024,224,0.6,9.57,6.11 +rexnet_100,6226.48,164.447,1024,224,0.41,7.44,4.8 +efficientnet_lite1,6187.91,165.472,1024,240,0.62,10.14,5.42 +efficientnet_es_pruned,6115.4,167.434,1024,224,1.81,8.73,5.44 +efficientnet_es,6115.12,167.443,1024,224,1.81,8.73,5.44 +visformer_tiny,6103.09,167.772,1024,224,1.27,5.72,10.32 +seresnet34,6058.13,169.019,1024,224,3.67,3.74,21.96 +fbnetv3_b,6018.76,170.124,1024,256,0.55,9.1,8.6 +selecsls42,5953.76,171.98,1024,224,2.94,4.62,30.35 +selecsls42b,5921.2,172.924,1024,224,2.98,4.62,32.46 +resnet26,5895.21,173.69,1024,224,2.36,7.35,16.0 +edgenext_xx_small,5893.72,173.732,1024,288,0.33,4.21,1.33 +levit_384,5880.4,174.126,1024,224,2.36,6.26,39.13 +resnet34d,5865.98,174.555,1024,224,3.91,4.54,21.82 +legacy_seresnet34,5850.24,175.025,1024,224,3.67,3.74,21.96 +dla34,5827.3,175.712,1024,224,3.07,5.02,15.74 +tf_efficientnet_es,5781.29,177.112,1024,224,1.81,8.73,5.44 +cs3darknet_focus_m,5721.39,178.967,1024,288,2.51,6.19,9.3 +resnetblur18,5636.65,181.657,1024,224,2.34,3.39,11.69 +rexnetr_130,5590.0,183.173,1024,224,0.68,9.81,7.61 +mobilevit_xxs,5524.87,185.333,1024,256,0.42,8.34,1.27 +tf_efficientnet_lite1,5524.68,185.339,1024,240,0.62,10.14,5.42 +cs3darknet_m,5478.07,186.916,1024,288,2.63,6.69,9.31 +convnext_atto,5460.54,187.516,1024,288,0.91,6.3,3.7 +xcit_tiny_12_p16_224_dist,5457.72,187.611,1024,224,1.24,6.29,6.72 +xcit_tiny_12_p16_224,5456.63,187.649,1024,224,1.24,6.29,6.72 +skresnet18,5413.1,189.159,1024,224,1.82,3.24,11.96 +darknet17,5401.37,189.571,1024,256,3.26,7.18,14.3 +mixnet_s,5392.58,189.878,1024,224,0.25,6.25,4.13 +resmlp_12_224,5366.15,190.814,1024,224,3.01,5.5,15.35 +resmlp_12_distilled_224,5364.91,190.857,1024,224,3.01,5.5,15.35 +convnext_atto_ols,5288.94,193.6,1024,288,0.96,6.8,3.7 +vit_base_patch32_clip_224,5280.68,193.903,1024,224,4.41,5.01,88.22 +vit_base_patch32_224,5280.52,193.908,1024,224,4.41,5.01,88.22 +pit_xs_distilled_224,5272.13,194.218,1024,224,1.41,7.76,11.0 +pit_xs_224,5271.0,194.259,1024,224,1.4,7.71,10.62 +repvgg_b0,5252.66,194.939,1024,224,3.41,6.15,15.82 +mixer_b32_224,5221.71,196.094,1024,224,3.24,6.29,60.29 +pvt_v2_b0,5210.31,196.521,1024,224,0.57,7.99,3.67 +resnetaa34d,5171.78,197.986,1024,224,4.43,5.07,21.82 +selecsls60,5160.83,198.407,1024,224,3.59,5.52,30.67 +selecsls60b,5119.51,200.008,1024,224,3.63,5.52,32.77 +mobilenetv2_120d,5111.95,200.304,1024,224,0.69,11.97,5.83 +resnet26d,5108.26,200.449,1024,224,2.6,8.15,16.01 +gmixer_12_224,5064.97,202.162,1024,224,2.67,7.26,12.7 +gmlp_ti16_224,5007.93,204.464,1024,224,1.34,7.55,5.87 +mixer_s16_224,4998.69,204.842,1024,224,3.79,5.97,18.53 +tf_mixnet_s,4989.18,205.231,1024,224,0.25,6.25,4.13 +efficientnet_b0_g16_evos,4930.67,207.667,1024,224,1.01,7.42,8.11 +rexnetr_150,4900.22,208.959,1024,224,0.89,11.13,9.78 +fbnetv3_d,4881.14,209.776,1024,256,0.68,11.1,10.31 +darknet21,4850.41,211.105,1024,256,3.93,7.47,20.86 +nf_resnet26,4816.48,212.591,1024,224,2.41,7.35,16.0 +efficientnet_lite2,4781.65,214.14,1024,260,0.89,12.9,6.09 +convnext_femto,4749.12,215.607,1024,288,1.3,7.56,5.22 +tf_efficientnetv2_b2,4718.26,217.018,1024,260,1.72,9.84,10.1 +sedarknet21,4656.51,219.895,1024,256,3.93,7.47,20.95 +dla46x_c,4636.77,220.831,1024,224,0.54,5.66,1.07 +convnext_femto_ols,4618.33,221.714,1024,288,1.35,8.06,5.23 +resnext26ts,4603.25,222.441,1024,256,2.43,10.52,10.3 +efficientformer_l1,4566.14,224.248,1024,224,1.3,5.53,12.29 +dpn48b,4506.78,227.201,1024,224,1.69,8.92,9.13 +crossvit_tiny_240,4481.69,228.473,1024,240,1.57,9.08,7.01 +dla60x_c,4459.27,229.622,1024,224,0.59,6.01,1.32 +eca_resnext26ts,4456.63,229.759,1024,256,2.43,10.52,10.3 +seresnext26ts,4453.99,229.896,1024,256,2.43,10.52,10.39 +legacy_seresnext26_32x4d,4441.15,230.558,1024,224,2.49,9.39,16.79 +gernet_l,4396.56,232.898,1024,256,4.57,8.0,31.08 +mobilevitv2_075,4393.87,233.041,1024,256,1.05,12.06,2.87 +gcresnext26ts,4384.92,233.516,1024,256,2.43,10.53,10.48 +tf_efficientnet_b1,4370.6,234.282,1024,240,0.71,10.88,7.79 +tf_efficientnet_lite2,4293.9,238.467,1024,260,0.89,12.9,6.09 +rexnet_130,4262.16,240.243,1024,224,0.68,9.71,7.56 +efficientnet_b1,4239.44,241.53,1024,256,0.77,12.22,7.79 +vit_small_patch32_384,4239.1,241.55,1024,384,3.45,8.25,22.92 +crossvit_9_240,4212.37,243.082,1024,240,1.85,9.52,8.55 +crossvit_9_dagger_240,4095.03,250.049,1024,240,1.99,9.97,8.78 +nf_ecaresnet26,4091.86,250.24,1024,224,2.41,7.36,16.0 +nf_seresnet26,4088.47,250.449,1024,224,2.41,7.36,17.4 +efficientnet_cc_b0_8e,4076.51,251.183,1024,224,0.42,9.42,24.01 +efficientnet_cc_b0_4e,4073.3,251.382,1024,224,0.41,9.42,13.31 +ecaresnet50d_pruned,4055.39,252.492,1024,224,2.53,6.43,19.94 +efficientnet_b2_pruned,4030.92,254.025,1024,260,0.73,9.13,8.31 +ecaresnext50t_32x4d,4018.73,254.796,1024,224,2.7,10.09,15.41 +ecaresnext26t_32x4d,4017.09,254.9,1024,224,2.7,10.09,15.41 +seresnext26t_32x4d,4014.43,255.069,1024,224,2.7,10.09,16.81 +seresnext26tn_32x4d,4014.36,255.074,1024,224,2.7,10.09,16.81 +repvgg_a2,3987.84,256.77,1024,224,5.7,6.26,28.21 +poolformer_s12,3982.67,257.103,1024,224,1.82,5.53,11.92 +seresnext26d_32x4d,3979.57,257.303,1024,224,2.73,10.19,16.81 +vit_tiny_r_s16_p8_384,3963.05,258.374,1024,384,1.34,6.49,6.36 +resnet26t,3939.46,259.923,1024,256,3.35,10.52,16.01 +nf_regnet_b1,3911.64,261.772,1024,288,1.02,9.2,10.22 +rexnet_150,3881.93,263.775,1024,224,0.9,11.21,9.73 +nf_regnet_b2,3879.78,263.921,1024,272,1.22,9.27,14.31 +resnetv2_50,3865.49,264.896,1024,224,4.11,11.11,25.55 +regnetx_016,3852.41,265.794,1024,224,1.62,7.93,9.19 +tf_efficientnet_cc_b0_4e,3812.08,268.608,1024,224,0.41,9.42,13.31 +tf_efficientnet_cc_b0_8e,3803.67,269.202,1024,224,0.42,9.42,24.01 +convnext_pico,3747.49,273.239,1024,288,2.27,10.08,9.05 +ecaresnetlight,3744.45,273.459,1024,224,4.11,8.42,30.16 +dpn68,3724.59,274.917,1024,224,2.35,10.47,12.61 +edgenext_x_small,3714.71,275.646,1024,288,0.68,7.5,2.34 +gluon_resnet50_v1b,3672.76,278.798,1024,224,4.11,11.11,25.56 +ssl_resnet50,3671.85,278.866,1024,224,4.11,11.11,25.56 +efficientnet_em,3671.25,278.913,1024,240,3.04,14.34,6.9 +resnet50,3668.58,279.116,1024,224,4.11,11.11,25.56 +swsl_resnet50,3668.32,279.136,1024,224,4.11,11.11,25.56 +tv_resnet50,3667.14,279.225,1024,224,4.11,11.11,25.56 +dpn68b,3667.07,279.229,1024,224,2.35,10.47,12.61 +rexnetr_200,3659.45,279.811,1024,224,1.59,15.11,16.52 +convnext_pico_ols,3651.34,280.434,1024,288,2.37,10.74,9.06 +botnet26t_256,3594.28,284.883,1024,256,3.32,11.98,12.49 +bat_resnext26ts,3569.91,286.828,1024,256,2.53,12.51,10.73 +resnetv2_50t,3547.32,288.657,1024,224,4.32,11.82,25.57 +mixnet_m,3537.26,289.477,1024,224,0.36,8.19,5.01 +regnety_016,3531.88,289.919,1024,224,1.63,8.04,11.2 +tf_efficientnet_em,3529.62,290.106,1024,240,3.04,14.34,6.9 +resnetv2_50d,3525.02,290.482,1024,224,4.35,11.92,25.57 +halonet26t,3515.15,291.299,1024,256,3.19,11.69,12.48 +resnet32ts,3492.62,293.179,1024,256,4.63,11.58,17.96 +hrnet_w18_small_v2,3482.81,294.001,1024,224,2.62,9.65,15.6 +gluon_resnet50_v1c,3481.59,294.107,1024,224,4.35,11.92,25.58 +dla60,3466.91,295.351,1024,224,4.26,10.16,22.04 +resnet33ts,3460.78,295.875,1024,256,4.76,11.66,19.68 +tf_efficientnet_b2,3402.3,300.962,1024,260,1.02,13.83,9.11 +convit_tiny,3399.61,301.199,1024,224,1.26,7.94,5.71 +resnet50t,3373.72,303.51,1024,224,4.32,11.82,25.57 +tf_mixnet_m,3366.38,304.167,1024,224,0.36,8.19,5.01 +efficientnet_b3_pruned,3360.1,304.74,1024,300,1.04,11.86,9.86 +seresnet33ts,3354.27,305.27,1024,256,4.76,11.66,19.78 +resnet50d,3351.47,305.527,1024,224,4.35,11.92,25.58 +eca_resnet33ts,3350.95,305.574,1024,256,4.76,11.66,19.68 +vit_small_resnet26d_224,3346.77,305.954,1024,224,5.07,11.12,63.61 +cs3darknet_focus_l,3335.18,307.018,1024,288,5.9,10.16,21.15 +gluon_resnet50_v1d,3334.65,307.068,1024,224,4.35,11.92,25.58 +mobilevitv2_100,3324.63,307.994,1024,256,1.84,16.08,4.9 +vovnet39a,3320.12,308.408,1024,224,7.09,6.73,22.6 +legacy_seresnet50,3312.33,309.135,1024,224,3.88,10.6,28.09 +efficientnet_b0_gn,3307.86,309.554,1024,224,0.42,6.75,5.29 +gcresnet33ts,3307.01,309.633,1024,256,4.76,11.68,19.88 +pit_s_distilled_224,3301.25,310.173,1024,224,2.9,11.64,24.04 +pit_s_224,3299.97,310.295,1024,224,2.88,11.56,23.46 +mobilevit_xs,3252.28,314.844,1024,256,1.05,16.33,2.32 +deit_small_distilled_patch16_224,3233.6,316.663,1024,224,4.63,12.02,22.44 +efficientnet_b2a,3223.97,317.608,1024,288,1.12,16.2,9.11 +efficientnet_b2,3223.9,317.615,1024,288,1.12,16.2,9.11 +deit_small_patch16_224,3218.99,318.1,1024,224,4.61,11.95,22.05 +vit_small_patch16_224,3218.38,318.16,1024,224,4.61,11.95,22.05 +cs3darknet_l,3210.26,318.965,1024,288,6.16,10.83,21.16 +ese_vovnet39b,3206.21,319.369,1024,224,7.09,6.74,24.57 +eca_vovnet39b,3203.77,319.612,1024,224,7.09,6.74,22.6 +convnextv2_atto,3196.73,320.315,1024,288,0.91,6.3,3.71 +coatnet_pico_rw_224,3189.82,321.008,1024,224,2.05,14.62,10.85 +seresnet50,3181.57,321.841,1024,224,4.11,11.13,28.09 +pvt_v2_b1,3147.37,325.339,1024,224,2.12,15.39,14.01 +coat_lite_tiny,3146.41,325.439,1024,224,1.6,11.65,5.72 +res2net50_48w_2s,3127.52,327.404,1024,224,4.18,11.72,25.29 +eca_botnext26ts_256,3112.32,329.003,1024,256,2.46,11.6,10.59 +ecaresnet101d_pruned,3103.16,329.973,1024,224,3.48,7.69,24.88 +efficientnet_b0_g8_gn,3073.2,333.192,1024,224,0.66,6.75,6.56 +ssl_resnext50_32x4d,3071.68,333.356,1024,224,4.26,14.4,25.03 +dla60x,3071.64,333.359,1024,224,3.54,13.8,17.35 +swsl_resnext50_32x4d,3070.7,333.464,1024,224,4.26,14.4,25.03 +tv_resnext50_32x4d,3069.81,333.56,1024,224,4.26,14.4,25.03 +resnext50_32x4d,3069.72,333.57,1024,224,4.26,14.4,25.03 +gluon_resnext50_32x4d,3068.47,333.704,1024,224,4.26,14.4,25.03 +vit_small_r26_s32_224,3061.92,334.417,1024,224,3.56,9.85,36.43 +skresnet34,3055.95,335.073,1024,224,3.67,5.13,22.28 +deit3_small_patch16_224_in21ft1k,3048.82,335.855,1024,224,4.61,11.95,22.06 +deit3_small_patch16_224,3047.23,336.031,1024,224,4.61,11.95,22.06 +eca_halonext26ts,3035.71,337.305,1024,256,2.44,11.46,10.76 +haloregnetz_b,3032.47,337.665,1024,224,1.97,11.94,11.68 +vit_relpos_base_patch32_plus_rpn_256,3026.45,338.338,1024,256,7.68,8.01,119.42 +vit_relpos_small_patch16_rpn_224,3019.95,339.067,1024,224,4.59,13.05,21.97 +vit_relpos_small_patch16_224,3008.26,340.383,1024,224,4.59,13.05,21.98 +vit_srelpos_small_patch16_224,3000.96,341.213,1024,224,4.59,12.16,21.97 +xcit_nano_12_p16_384_dist,3000.48,341.266,1024,384,1.64,12.15,3.05 +cs3sedarknet_l,2995.41,341.845,1024,288,6.16,10.83,21.91 +resnetaa50d,2993.03,342.116,1024,224,5.39,12.44,25.58 +vgg11,2983.47,85.796,256,224,7.61,7.44,132.86 +selecsls84,2973.16,344.402,1024,224,5.9,7.57,50.95 +resnetrs50,2963.42,345.535,1024,224,4.48,12.14,35.69 +seresnet50t,2957.12,346.271,1024,224,4.32,11.83,28.1 +resnest14d,2954.69,346.556,1024,224,2.76,7.33,10.61 +gluon_resnet50_v1s,2953.65,346.677,1024,224,5.47,13.52,25.68 +coat_lite_mini,2952.61,346.799,1024,224,2.0,12.25,11.01 +ecaresnet50d,2945.96,347.583,1024,224,4.35,11.93,25.58 +densenet121,2933.45,349.064,1024,224,2.87,6.9,7.98 +tv_densenet121,2929.69,349.514,1024,224,2.87,6.9,7.98 +vit_base_patch32_plus_256,2929.65,349.519,1024,256,7.79,7.76,119.48 +rexnet_200,2927.94,349.723,1024,224,1.56,14.91,16.37 +xcit_tiny_24_p16_224_dist,2927.0,349.834,1024,224,2.34,11.82,12.12 +xcit_tiny_24_p16_224,2921.97,350.436,1024,224,2.34,11.82,12.12 +coatnet_nano_cc_224,2867.38,357.108,1024,224,2.24,15.02,13.76 +gcresnext50ts,2857.34,358.363,1024,256,3.75,15.46,15.67 +lambda_resnet26rpt_256,2853.55,358.839,1024,256,3.16,11.87,10.99 +resnext50d_32x4d,2845.08,359.908,1024,224,4.5,15.2,25.05 +mixnet_l,2828.6,361.996,1024,224,0.58,10.84,7.33 +densenet121d,2824.08,362.584,1024,224,3.11,7.7,8.0 +efficientnet_lite3,2821.84,362.87,1024,300,1.65,21.85,8.2 +cspresnet50,2793.65,366.534,1024,256,4.54,11.5,21.62 +coatnet_nano_rw_224,2781.93,368.077,1024,224,2.41,15.41,15.14 +vgg11_bn,2760.38,370.949,1024,224,7.62,7.44,132.87 +vovnet57a,2755.77,371.572,1024,224,8.95,7.52,36.64 +resmlp_24_224,2750.33,372.306,1024,224,5.96,10.91,30.02 +resmlp_24_distilled_224,2740.33,373.665,1024,224,5.96,10.91,30.02 +convnextv2_femto,2735.91,374.269,1024,288,1.3,7.56,5.23 +flexivit_small,2735.78,374.287,1024,240,5.35,14.18,22.06 +gcresnet50t,2732.04,374.8,1024,256,5.42,14.67,25.9 +legacy_seresnext50_32x4d,2722.84,376.065,1024,224,4.26,14.42,27.56 +seresnext50_32x4d,2721.47,376.256,1024,224,4.26,14.42,27.56 +gluon_seresnext50_32x4d,2720.58,376.379,1024,224,4.26,14.42,27.56 +visformer_small,2719.93,376.468,1024,224,4.88,11.43,40.22 +twins_svt_small,2713.39,377.374,1024,224,2.94,13.75,24.06 +resnetv2_50x1_bit_distilled,2708.81,378.014,1024,224,4.23,11.11,25.55 +res2net50_14w_8s,2692.9,380.248,1024,224,4.21,13.28,25.06 +resnetblur50,2685.97,381.228,1024,224,5.16,12.02,25.56 +vit_base_resnet26d_224,2684.6,381.421,1024,224,6.97,13.16,101.4 +tf_mixnet_l,2680.8,381.958,1024,224,0.58,10.84,7.33 +seresnetaa50d,2658.93,385.106,1024,224,5.4,12.46,28.11 +dla60_res2net,2656.16,385.506,1024,224,4.15,12.34,20.85 +cspresnet50d,2655.05,385.668,1024,256,4.86,12.55,21.64 +coatnext_nano_rw_224,2655.0,385.674,1024,224,2.47,12.8,14.7 +ese_vovnet57b,2654.33,385.773,1024,224,8.95,7.52,38.61 +tf_efficientnetv2_b3,2654.14,385.8,1024,300,3.04,15.74,14.36 +cspresnet50w,2641.68,387.621,1024,256,5.04,12.19,28.12 +res2net50_26w_4s,2629.64,389.395,1024,224,4.28,12.61,25.7 +regnetz_b16,2626.71,389.828,1024,288,2.39,16.43,9.72 +convnext_nano,2611.78,392.059,1024,288,4.06,13.84,15.59 +efficientnetv2_rw_t,2601.49,393.609,1024,288,3.19,16.42,13.65 +fbnetv3_g,2595.29,394.549,1024,288,1.77,21.09,16.62 +gmixer_24_224,2595.15,394.571,1024,224,5.28,14.45,24.72 +mobilevit_s,2586.09,395.952,1024,256,2.03,19.94,5.58 +coatnet_rmlp_nano_rw_224,2569.7,398.478,1024,224,2.62,20.34,15.15 +gcvit_xxtiny,2561.41,399.768,1024,224,2.14,15.36,12.0 +tf_efficientnet_lite3,2530.94,404.582,1024,300,1.65,21.85,8.2 +efficientnet_cc_b1_8e,2530.65,404.628,1024,240,0.75,15.44,39.72 +densenetblur121d,2522.66,405.908,1024,224,3.11,7.9,8.0 +resnetblur50d,2509.45,408.045,1024,224,5.4,12.82,25.58 +nf_ecaresnet50,2490.39,411.168,1024,224,4.21,11.13,25.56 +inception_v3,2485.21,412.025,1024,299,5.73,8.97,23.83 +nf_seresnet50,2482.66,412.449,1024,224,4.21,11.13,28.09 +tf_inception_v3,2481.38,412.658,1024,299,5.73,8.97,23.83 +gc_efficientnetv2_rw_t,2480.59,412.793,1024,288,3.2,16.45,13.68 +adv_inception_v3,2479.41,412.983,1024,299,5.73,8.97,23.83 +repvgg_b1g4,2473.34,414.003,1024,224,8.15,10.64,39.97 +mobilevitv2_125,2472.28,414.18,1024,256,2.86,20.1,7.48 +gluon_inception_v3,2468.42,414.827,1024,299,5.73,8.97,23.83 +nf_regnet_b3,2461.52,415.991,1024,320,2.05,14.61,18.59 +xcit_small_12_p16_224_dist,2446.89,418.478,1024,224,4.82,12.58,26.25 +xcit_small_12_p16_224,2446.42,418.558,1024,224,4.82,12.58,26.25 +cspresnext50,2438.96,419.836,1024,256,4.05,15.86,20.57 +convnext_nano_ols,2435.0,420.521,1024,288,4.38,15.5,15.65 +regnetx_032,2429.42,421.489,1024,224,3.2,11.37,15.3 +densenet169,2426.29,422.031,1024,224,3.4,7.3,14.15 +sehalonet33ts,2419.4,423.234,1024,256,3.55,14.7,13.69 +tf_efficientnet_cc_b1_8e,2406.19,425.557,1024,240,0.75,15.44,39.72 +semobilevit_s,2402.02,426.294,1024,256,2.03,19.95,5.74 +resnetv2_101,2330.6,439.36,1024,224,7.83,16.23,44.54 +twins_pcpvt_small,2312.72,442.754,1024,224,3.83,18.08,24.11 +xcit_nano_12_p8_224_dist,2295.5,446.077,1024,224,2.16,15.71,3.05 +xcit_nano_12_p8_224,2292.87,446.587,1024,224,2.16,15.71,3.05 +gmlp_s16_224,2290.73,447.007,1024,224,4.42,15.1,19.42 +cs3darknet_focus_x,2287.2,447.697,1024,256,8.03,10.69,35.02 +vit_base_r26_s32_224,2275.25,450.047,1024,224,6.81,12.36,101.38 +gluon_resnet101_v1b,2260.37,453.01,1024,224,7.83,16.23,44.55 +tv_resnet101,2258.59,453.368,1024,224,7.83,16.23,44.55 +resnet101,2258.28,453.43,1024,224,7.83,16.23,44.55 +skresnet50,2234.62,458.23,1024,224,4.11,12.5,25.8 +ecaresnet26t,2232.29,458.709,1024,320,5.24,16.44,16.01 +edgenext_small,2226.69,459.86,1024,320,1.97,14.16,5.59 +dla102,2219.96,461.255,1024,224,7.19,14.18,33.27 +res2next50,2214.71,462.347,1024,224,4.2,13.71,24.67 +dla60_res2next,2210.67,463.194,1024,224,3.49,13.17,17.03 +resnetv2_101d,2203.82,464.633,1024,224,8.07,17.04,44.56 +gluon_resnet101_v1c,2194.65,466.578,1024,224,8.08,17.04,44.57 +resnest26d,2170.04,471.869,1024,224,3.64,9.97,17.07 +vgg13,2149.71,476.331,1024,224,11.31,12.25,133.05 +gluon_resnet101_v1d,2137.49,479.053,1024,224,8.08,17.04,44.57 +skresnet50d,2115.22,484.098,1024,224,4.36,13.31,25.82 +convnextv2_pico,2108.5,485.64,1024,288,2.27,10.08,9.07 +vit_base_resnet50d_224,2101.17,487.333,1024,224,8.73,16.92,110.97 +coatnet_0_rw_224,2082.49,491.706,1024,224,4.43,18.73,27.44 +crossvit_small_240,2081.5,491.94,1024,240,5.63,18.17,26.86 +deit3_medium_patch16_224_in21ft1k,2076.53,493.118,1024,224,8.0,15.93,38.85 +deit3_medium_patch16_224,2072.34,494.116,1024,224,8.0,15.93,38.85 +mobilevitv2_150,2071.36,494.349,1024,256,4.09,24.11,10.59 +mobilevitv2_150_in22ft1k,2070.3,494.603,1024,256,4.09,24.11,10.59 +sebotnet33ts_256,2067.91,247.581,512,256,3.89,17.46,13.7 +wide_resnet50_2,2057.08,497.78,1024,224,11.43,14.4,68.88 +vit_relpos_medium_patch16_rpn_224,2044.85,500.757,1024,224,7.97,17.02,38.73 +efficientformer_l3,2041.79,501.507,1024,224,3.93,12.01,31.41 +poolformer_s24,2040.35,501.863,1024,224,3.41,10.68,21.39 +vit_relpos_medium_patch16_224,2037.47,502.572,1024,224,7.97,17.02,38.75 +cspdarknet53,2035.94,502.949,1024,256,6.57,16.81,27.64 +resnet51q,2034.41,503.329,1024,288,8.07,20.94,35.7 +vit_srelpos_medium_patch16_224,2033.15,503.638,1024,224,7.96,16.21,38.74 +maxvit_rmlp_pico_rw_256,2008.78,509.748,1024,256,1.85,24.86,7.52 +vit_relpos_medium_patch16_cls_224,2007.24,510.141,1024,224,8.03,18.24,38.76 +dla102x,2006.55,510.315,1024,224,5.89,19.42,26.31 +legacy_seresnet101,2003.12,511.188,1024,224,7.61,15.74,49.33 +swin_tiny_patch4_window7_224,1995.14,513.235,1024,224,4.51,17.06,28.29 +repvgg_b1,1985.42,515.747,1024,224,13.16,10.64,57.42 +resnetaa101d,1982.98,516.381,1024,224,9.12,17.56,44.57 +coatnet_rmlp_0_rw_224,1981.75,516.703,1024,224,4.72,24.89,27.45 +tf_efficientnet_b3,1975.92,518.226,1024,300,1.87,23.83,12.23 +gcvit_xtiny,1969.68,519.869,1024,224,2.93,20.26,19.98 +hrnet_w18,1967.17,520.531,1024,224,4.32,16.31,21.3 +gluon_resnet101_v1s,1965.68,520.926,1024,224,9.19,18.64,44.67 +maxvit_pico_rw_256,1965.38,521.006,1024,256,1.83,22.3,7.46 +resnetaa50,1958.15,522.93,1024,288,8.52,19.24,25.56 +seresnet101,1954.63,523.871,1024,224,7.84,16.27,49.33 +efficientnet_b3,1949.54,525.239,1024,320,2.01,26.52,12.23 +efficientnet_b3a,1949.11,525.356,1024,320,2.01,26.52,12.23 +edgenext_small_rw,1932.68,529.816,1024,320,2.46,14.85,7.83 +regnetx_040,1932.62,529.839,1024,224,3.99,12.2,22.12 +cs3sedarknet_xdw,1925.4,531.825,1024,256,5.97,17.18,21.6 +coatnet_bn_0_rw_224,1920.71,533.123,1024,224,4.67,22.04,27.44 +xcit_tiny_12_p16_384_dist,1911.65,535.652,1024,384,3.64,18.26,6.72 +ssl_resnext101_32x4d,1910.73,535.909,1024,224,8.01,21.23,44.18 +swsl_resnext101_32x4d,1910.43,535.993,1024,224,8.01,21.23,44.18 +resnext101_32x4d,1909.99,536.115,1024,224,8.01,21.23,44.18 +gluon_resnext101_32x4d,1909.34,536.298,1024,224,8.01,21.23,44.18 +darknet53,1903.77,537.866,1024,288,11.78,15.68,41.61 +darknetaa53,1898.12,539.468,1024,288,10.08,15.68,36.02 +crossvit_15_240,1892.46,541.083,1024,240,5.81,19.77,27.53 +halonet50ts,1881.53,544.226,1024,256,5.3,19.2,22.73 +vgg13_bn,1879.72,544.749,1024,224,11.33,12.25,133.05 +mixnet_xl,1872.46,546.86,1024,224,0.93,14.57,11.9 +res2net50_26w_6s,1870.88,547.321,1024,224,6.33,15.28,37.05 +ecaresnet101d,1869.88,547.616,1024,224,8.08,17.07,44.57 +densenet201,1869.57,547.706,1024,224,4.34,7.85,20.01 +nf_resnet101,1858.48,550.976,1024,224,8.01,16.23,44.55 +coatnet_0_224,1857.28,275.661,512,224,4.58,24.01,25.04 +pvt_v2_b2,1854.85,552.053,1024,224,4.05,27.53,25.36 +crossvit_15_dagger_240,1850.69,553.295,1024,240,6.13,20.43,28.21 +resmlp_36_224,1846.41,554.574,1024,224,8.91,16.33,44.69 +resmlp_36_distilled_224,1845.04,554.99,1024,224,8.91,16.33,44.69 +resnet61q,1841.84,555.954,1024,288,9.87,21.52,36.85 +swin_s3_tiny_224,1817.5,563.398,1024,224,4.64,19.13,28.33 +cait_xxs24_224,1796.55,569.968,1024,224,2.53,20.29,11.96 +cs3darknet_x,1789.33,572.268,1024,288,10.6,14.36,35.05 +vit_medium_patch16_gap_240,1785.54,573.481,1024,240,9.22,18.81,44.4 +nf_resnet50,1784.84,573.708,1024,288,6.88,18.37,25.56 +resnet50_gn,1764.31,580.385,1024,224,4.14,11.11,25.56 +mixer_b16_224_miil,1761.45,581.327,1024,224,12.62,14.53,59.88 +mixer_b16_224,1759.76,581.885,1024,224,12.62,14.53,59.88 +resnetblur101d,1757.96,582.482,1024,224,9.12,17.94,44.57 +eca_nfnet_l0,1726.58,593.068,1024,288,7.12,17.29,24.14 +nfnet_l0,1721.83,594.705,1024,288,7.13,17.29,35.07 +vit_large_patch32_224,1717.59,596.169,1024,224,15.41,13.32,327.9 +vgg16,1717.44,596.224,1024,224,15.47,13.56,138.36 +regnetz_c16,1710.89,598.505,1024,320,3.92,25.88,13.46 +pvt_v2_b2_li,1709.89,598.855,1024,224,3.91,27.6,22.55 +resnest50d_1s4x24d,1705.52,600.391,1024,224,4.43,13.57,25.68 +coat_lite_small,1704.55,600.733,1024,224,3.96,22.09,19.84 +resnetv2_50d_frn,1697.1,603.368,1024,224,4.33,11.92,25.59 +cs3sedarknet_x,1689.8,605.975,1024,288,10.6,14.37,35.4 +seresnext101_32x4d,1687.65,606.747,1024,224,8.02,21.26,48.96 +gluon_seresnext101_32x4d,1687.1,606.945,1024,224,8.02,21.26,48.96 +legacy_seresnext101_32x4d,1684.69,607.813,1024,224,8.02,21.26,48.96 +regnetv_040,1682.92,608.454,1024,288,6.6,20.3,20.64 +mobilevitv2_175,1677.66,457.769,768,256,5.54,28.13,14.25 +regnety_040,1677.03,610.59,1024,288,6.61,20.3,20.65 +mobilevitv2_175_in22ft1k,1677.0,457.949,768,256,5.54,28.13,14.25 +convnext_tiny_hnf,1676.16,610.908,1024,288,7.39,22.21,28.59 +res2net101_26w_4s,1675.37,611.195,1024,224,8.1,18.45,45.21 +vit_tiny_patch16_384,1665.76,614.72,1024,384,4.7,25.39,5.79 +sequencer2d_s,1661.32,616.362,1024,224,4.96,11.31,27.65 +ese_vovnet39b_evos,1661.21,616.404,1024,224,7.07,6.74,24.58 +vit_base_patch32_384,1649.27,620.868,1024,384,13.06,16.5,88.3 +vit_base_patch32_clip_384,1648.64,621.105,1024,384,13.06,16.5,88.3 +mixer_l32_224,1645.23,622.393,1024,224,11.27,19.86,206.94 +convnext_tiny,1642.14,623.562,1024,288,7.39,22.21,28.59 +botnet50ts_256,1639.64,312.25,512,256,5.54,22.23,22.74 +swinv2_cr_tiny_224,1630.02,628.199,1024,224,4.66,28.45,28.33 +resnetv2_50d_evob,1627.44,629.196,1024,224,4.33,11.92,25.59 +twins_pcpvt_base,1615.12,633.996,1024,224,6.68,25.25,43.83 +resnetv2_152,1614.43,634.268,1024,224,11.55,22.56,60.19 +hrnet_w32,1605.06,637.96,1024,224,8.97,22.02,41.23 +swinv2_cr_tiny_ns_224,1600.43,639.811,1024,224,4.66,28.45,28.33 +xception41p,1598.79,480.351,768,299,9.25,39.86,26.91 +tv_resnet152,1582.54,647.049,1024,224,11.56,22.56,60.19 +gluon_resnet152_v1b,1581.57,647.444,1024,224,11.56,22.56,60.19 +resnet152,1581.02,647.671,1024,224,11.56,22.56,60.19 +xception,1579.88,648.138,1024,299,8.4,35.83,22.86 +halo2botnet50ts_256,1572.75,651.076,1024,256,5.02,21.78,22.64 +res2net50_26w_8s,1568.85,652.695,1024,224,8.37,17.95,48.4 +vit_medium_patch16_gap_256,1564.22,654.626,1024,256,10.59,22.15,38.86 +resnetv2_152d,1557.03,657.648,1024,224,11.8,23.36,60.2 +efficientnet_el_pruned,1555.14,658.449,1024,300,8.0,30.7,10.59 +maxvit_rmlp_nano_rw_256,1551.85,659.845,1024,256,4.47,31.92,15.5 +regnetx_064,1550.52,660.413,1024,224,6.49,16.37,26.21 +efficientnet_el,1549.97,660.646,1024,300,8.0,30.7,10.59 +gluon_resnet152_v1c,1548.96,661.078,1024,224,11.8,23.36,60.21 +nf_ecaresnet101,1546.58,662.091,1024,224,8.01,16.27,44.55 +nf_seresnet101,1539.38,665.191,1024,224,8.02,16.27,49.33 +mvitv2_tiny,1537.54,665.985,1024,224,4.7,21.16,24.17 +nfnet_f0,1525.01,671.456,1024,256,12.62,18.05,71.49 +vgg16_bn,1523.86,671.963,1024,224,15.5,13.56,138.37 +cs3edgenet_x,1521.21,673.136,1024,288,14.59,16.36,47.82 +gluon_resnet152_v1d,1520.11,673.621,1024,224,11.8,23.36,60.21 +maxvit_nano_rw_256,1517.43,674.812,1024,256,4.46,30.28,15.45 +tf_efficientnet_el,1506.16,679.862,1024,300,8.0,30.7,10.59 +convnextv2_nano,1500.71,511.746,768,288,4.06,13.84,15.62 +resnest50d,1492.63,686.022,1024,224,5.4,14.36,27.48 +ese_vovnet99b,1489.17,687.617,1024,224,16.51,11.27,63.2 +dla169,1471.11,696.059,1024,224,11.6,20.2,53.39 +regnety_032,1467.85,697.604,1024,288,5.29,18.61,19.44 +skresnext50_32x4d,1463.28,699.785,1024,224,4.5,17.18,27.48 +xcit_tiny_12_p8_224_dist,1458.7,701.981,1024,224,4.81,23.6,6.71 +xcit_tiny_12_p8_224,1458.23,702.211,1024,224,4.81,23.6,6.71 +convit_small,1457.54,702.541,1024,224,5.76,17.87,27.78 +mobilevitv2_200_in22ft1k,1456.59,527.247,768,256,7.22,32.15,18.45 +mobilevitv2_200,1456.02,527.451,768,256,7.22,32.15,18.45 +ecaresnet50t,1438.32,711.929,1024,320,8.82,24.13,25.57 +gluon_resnet152_v1s,1432.22,714.961,1024,224,12.92,24.96,60.32 +nest_tiny,1415.33,542.618,768,224,5.83,25.48,17.06 +regnety_040s_gn,1412.65,724.867,1024,224,4.03,12.29,20.65 +vgg19,1393.71,183.67,256,224,19.63,14.86,143.67 +jx_nest_tiny,1389.62,552.657,768,224,5.83,25.48,17.06 +legacy_seresnet152,1383.83,739.96,1024,224,11.33,22.08,66.82 +densenet161,1376.52,743.891,1024,224,7.79,11.06,28.68 +poolformer_s36,1370.67,747.069,1024,224,5.0,15.82,30.86 +vit_small_resnet50d_s16_224,1367.59,748.748,1024,224,13.48,24.82,57.53 +twins_svt_base,1362.65,751.463,1024,224,8.59,26.33,56.07 +seresnet152,1361.7,751.99,1024,224,11.57,22.61,66.82 +xception41,1356.44,566.173,768,299,9.28,39.86,26.97 +maxvit_tiny_rw_224,1350.45,758.254,1024,224,5.11,33.11,29.06 +crossvit_18_240,1348.85,759.154,1024,240,9.05,26.26,43.27 +maxxvit_rmlp_nano_rw_256,1347.73,759.767,1024,256,4.37,26.05,16.78 +efficientnet_lite4,1343.74,571.528,768,380,4.04,45.66,13.01 +gcvit_tiny,1339.65,764.364,1024,224,4.79,29.82,28.22 +pvt_v2_b3,1325.92,772.282,1024,224,6.92,37.7,45.24 +crossvit_18_dagger_240,1313.78,779.419,1024,240,9.5,27.03,44.27 +volo_d1_224,1312.37,780.255,1024,224,6.94,24.43,26.63 +xcit_small_24_p16_224_dist,1307.3,783.278,1024,224,9.1,23.64,47.67 +tresnet_m,1305.71,784.234,1024,224,5.74,7.31,31.39 +inception_v4,1305.41,784.412,1024,299,12.28,15.09,42.68 +repvgg_b2,1305.22,784.529,1024,224,20.45,12.9,89.02 +xcit_small_24_p16_224,1303.71,785.433,1024,224,9.1,23.64,47.67 +sequencer2d_m,1295.72,790.281,1024,224,6.55,14.26,38.31 +edgenext_base,1283.77,797.633,1024,320,6.01,24.32,18.51 +hrnet_w30,1280.53,799.653,1024,224,8.15,21.21,37.71 +dm_nfnet_f0,1275.46,802.834,1024,256,12.62,18.05,71.49 +coatnet_rmlp_1_rw_224,1268.37,807.322,1024,224,7.85,35.47,41.69 +maxxvitv2_nano_rw_256,1259.7,812.877,1024,256,6.26,23.05,23.7 +efficientnetv2_s,1254.49,816.255,1024,384,8.44,35.77,21.46 +vgg19_bn,1246.52,205.36,256,224,19.66,14.86,143.68 +nf_regnet_b4,1235.79,828.604,1024,384,4.7,28.61,30.21 +swin_small_patch4_window7_224,1235.74,828.641,1024,224,8.77,27.47,49.61 +tf_efficientnet_lite4,1232.22,623.25,768,380,4.04,45.66,13.01 +regnetz_d32,1223.51,836.919,1024,320,9.33,37.08,27.58 +mixnet_xxl,1219.27,629.871,768,224,2.04,23.43,23.96 +tf_efficientnetv2_s,1219.16,839.906,1024,384,8.44,35.77,21.46 +deit_base_patch16_224,1213.08,844.121,1024,224,17.58,23.9,86.57 +deit_base_distilled_patch16_224,1212.98,844.19,1024,224,17.68,24.05,87.34 +vit_base_patch16_clip_224,1211.82,844.996,1024,224,17.58,23.9,86.57 +vit_base_patch16_224_miil,1211.26,845.389,1024,224,17.59,23.91,94.4 +dpn92,1210.45,845.948,1024,224,6.54,18.21,37.67 +vit_base_patch16_224,1210.28,846.074,1024,224,17.58,23.9,86.57 +coatnet_rmlp_1_rw2_224,1208.65,847.215,1024,224,8.11,40.13,41.72 +cait_xxs36_224,1205.51,849.419,1024,224,3.77,30.34,17.3 +maxvit_tiny_tf_224,1200.3,639.828,768,224,5.6,35.78,30.92 +swinv2_tiny_window8_256,1200.06,853.274,1024,256,5.96,24.57,28.35 +efficientnetv2_rw_s,1199.87,853.413,1024,384,8.72,38.03,23.94 +dla102x2,1198.52,854.374,1024,224,9.34,29.91,41.28 +regnetx_160,1195.08,856.833,1024,224,15.99,25.52,54.28 +dpn98,1183.92,864.908,1024,224,11.73,25.2,61.57 +vit_base_patch16_rpn_224,1180.39,867.498,1024,224,17.49,23.75,86.54 +twins_pcpvt_large,1168.64,876.22,1024,224,9.84,35.82,60.99 +deit3_base_patch16_224,1164.77,879.134,1024,224,17.58,23.9,86.59 +deit3_base_patch16_224_in21ft1k,1164.5,879.334,1024,224,17.58,23.9,86.59 +regnetz_d8,1163.64,879.982,1024,320,6.19,37.08,23.37 +swsl_resnext101_32x8d,1158.15,884.156,1024,224,16.48,31.21,88.79 +resnext101_32x8d,1158.05,884.232,1024,224,16.48,31.21,88.79 +ssl_resnext101_32x8d,1158.02,884.255,1024,224,16.48,31.21,88.79 +wide_resnet101_2,1157.66,884.531,1024,224,22.8,21.23,126.89 +ig_resnext101_32x8d,1157.3,884.8,1024,224,16.48,31.21,88.79 +coatnet_1_rw_224,1155.72,886.014,1024,224,8.04,34.6,41.72 +vit_base_patch16_gap_224,1154.73,886.777,1024,224,17.49,25.59,86.57 +vit_base_patch32_clip_448,1154.21,887.173,1024,448,17.93,23.9,88.34 +resnet200,1149.71,890.646,1024,224,15.07,32.19,64.67 +mvitv2_small,1146.92,892.812,1024,224,7.0,28.08,34.87 +xception65p,1145.07,670.686,768,299,13.91,52.48,39.82 +cs3se_edgenet_x,1143.17,895.738,1024,320,18.01,20.21,50.72 +vit_relpos_base_patch16_rpn_224,1143.15,895.76,1024,224,17.51,24.97,86.41 +vit_relpos_base_patch16_224,1141.31,897.204,1024,224,17.51,24.97,86.43 +tnt_s_patch16_224,1135.32,901.935,1024,224,5.24,24.37,23.76 +resnetrs101,1134.67,902.454,1024,288,13.56,28.53,63.62 +vit_relpos_base_patch16_clsgap_224,1128.94,907.03,1024,224,17.6,25.12,86.43 +vit_relpos_base_patch16_cls_224,1126.78,908.771,1024,224,17.6,25.12,86.43 +inception_resnet_v2,1126.73,908.809,1024,299,13.18,25.06,55.84 +ens_adv_inception_resnet_v2,1125.41,909.877,1024,299,13.18,25.06,55.84 +beit_base_patch16_224,1112.26,920.631,1024,224,17.58,23.9,86.53 +coat_tiny,1108.72,923.572,1024,224,4.35,27.2,5.5 +beitv2_base_patch16_224,1108.55,923.711,1024,224,17.58,23.9,86.53 +mvitv2_small_cls,1101.66,929.491,1024,224,7.04,28.17,34.87 +resnetv2_50d_gn,1092.35,937.413,1024,288,7.24,19.7,25.57 +pit_b_distilled_224,1078.48,474.731,512,224,12.5,33.07,74.79 +pit_b_224,1075.34,476.117,512,224,12.42,32.94,73.76 +hrnet_w40,1059.78,966.217,1024,224,12.75,25.29,57.56 +coatnet_1_224,1045.17,489.859,512,224,8.7,39.0,42.23 +resnet101d,1039.88,984.712,1024,320,16.48,34.77,44.57 +flexivit_base,1037.21,987.248,1024,240,20.29,28.36,86.59 +gluon_resnext101_64x4d,1034.86,989.491,1024,224,15.52,31.21,83.46 +vit_small_patch16_36x1_224,1033.13,991.146,1024,224,13.71,35.69,64.67 +vit_large_r50_s32_224,1030.67,993.517,1024,224,19.58,24.41,328.99 +maxvit_rmlp_tiny_rw_256,1029.25,746.162,768,256,6.77,46.92,29.15 +xcit_tiny_24_p16_384_dist,1027.64,996.444,1024,384,6.87,34.29,12.12 +efficientnet_b4,1014.08,504.879,512,384,4.51,50.04,19.34 +maxvit_tiny_rw_256,1008.0,1015.861,1024,256,6.74,44.35,29.07 +vit_small_patch16_18x2_224,1006.7,1017.169,1024,224,13.71,35.69,64.67 +swinv2_cr_small_224,1005.28,1018.603,1024,224,9.07,50.27,49.7 +regnetx_080,1004.51,1019.384,1024,224,8.02,14.06,39.57 +repvgg_b3,994.23,1029.925,1024,224,29.16,15.1,123.09 +swinv2_cr_small_ns_224,993.75,1030.424,1024,224,9.08,50.27,49.7 +repvgg_b2g4,988.97,1035.405,1024,224,12.63,12.9,61.76 +convnext_small,988.3,1036.113,1024,288,14.39,35.65,50.22 +gluon_xception65,987.82,777.458,768,299,13.96,52.48,39.92 +vit_small_r26_s32_384,982.68,1042.031,1024,384,10.43,29.85,36.47 +xception65,978.83,784.597,768,299,13.96,52.48,39.92 +regnetz_040,975.77,787.056,768,320,6.35,37.78,27.12 +regnetz_040h,971.51,790.512,768,320,6.43,37.94,28.94 +gluon_seresnext101_64x4d,965.3,1060.794,1024,224,15.53,31.25,88.23 +maxvit_tiny_pm_256,964.03,1062.189,1024,256,6.61,47.9,30.09 +efficientformer_l7,962.55,1063.825,1024,224,10.17,24.45,82.23 +twins_svt_large,962.19,1064.229,1024,224,15.15,35.1,99.27 +tf_efficientnet_b4,957.62,534.646,512,380,4.49,49.49,19.34 +pvt_v2_b4,957.38,1069.569,1024,224,10.14,53.74,62.56 +poolformer_m36,954.91,1072.334,1024,224,8.8,22.02,56.17 +cait_s24_224,954.44,1072.866,1024,224,9.35,40.58,46.92 +regnetz_b16_evos,950.47,808.013,768,288,2.36,16.43,9.74 +resnest50d_4s2x40d,938.07,1091.586,1024,224,4.4,17.94,30.42 +hrnet_w48,936.07,1093.917,1024,224,17.34,28.56,77.47 +gmlp_b16_224,930.95,1099.935,1024,224,15.78,30.21,73.08 +convnextv2_tiny,930.82,550.041,512,288,7.39,22.21,28.64 +convnextv2_small,928.68,1102.629,1024,224,8.71,21.56,50.32 +maxxvit_rmlp_tiny_rw_256,918.72,1114.583,1024,256,6.66,39.76,29.64 +mobilevitv2_150_384_in22ft1k,915.49,419.435,384,384,9.2,54.25,10.59 +pvt_v2_b5,909.79,1125.516,1024,224,11.76,50.92,81.96 +nest_small,903.21,850.284,768,224,10.35,40.04,38.35 +swin_s3_small_224,899.98,853.339,768,224,9.43,37.84,49.74 +xcit_medium_24_p16_224_dist,898.61,1139.525,1024,224,16.13,31.71,84.4 +xcit_medium_24_p16_224,898.6,1139.542,1024,224,16.13,31.71,84.4 +jx_nest_small,892.03,860.939,768,224,10.35,40.04,38.35 +coat_mini,880.8,1162.569,1024,224,6.82,33.68,10.34 +swin_base_patch4_window7_224,875.38,1169.764,1024,224,15.47,36.63,87.77 +dpn131,865.2,1183.527,1024,224,16.09,32.97,79.25 +resnetv2_50d_evos,854.82,1197.895,1024,288,7.15,19.7,25.59 +xcit_small_12_p16_384_dist,853.54,1199.694,1024,384,14.14,36.51,26.25 +sequencer2d_l,839.78,1219.347,1024,224,9.74,22.12,54.3 +crossvit_base_240,839.43,914.892,768,240,21.22,36.33,105.03 +hrnet_w44,821.37,1246.671,1024,224,14.94,26.92,67.06 +eca_nfnet_l1,818.87,1250.489,1024,320,14.92,34.42,41.41 +vit_base_r50_s16_224,817.55,1252.502,1024,224,21.67,35.31,114.69 +maxvit_rmlp_small_rw_224,816.34,1254.368,1024,224,10.75,49.3,64.9 +gcvit_small,815.24,1256.055,1024,224,8.57,41.61,51.09 +regnety_080,811.28,1262.191,1024,288,13.22,29.69,39.18 +densenet264,804.85,1272.268,1024,224,12.95,12.8,72.69 +mvitv2_base,804.14,1273.395,1024,224,10.16,40.5,51.47 +repvgg_b3g4,802.85,1275.443,1024,224,17.89,15.1,83.83 +vit_base_patch16_plus_240,782.25,1309.022,1024,240,27.41,33.08,117.56 +swinv2_tiny_window16_256,781.61,655.045,512,256,6.68,39.02,28.35 +maxvit_small_tf_224,777.04,658.899,512,224,11.66,53.17,68.93 +xcit_tiny_24_p8_224,771.1,1327.958,1024,224,9.21,45.39,12.11 +xcit_tiny_24_p8_224_dist,770.21,1329.496,1024,224,9.21,45.39,12.11 +coatnet_2_rw_224,763.52,670.562,512,224,15.09,49.22,73.87 +vit_relpos_base_patch16_plus_240,763.4,1341.361,1024,240,27.3,34.33,117.38 +efficientnet_b3_gn,763.0,671.023,512,320,2.14,28.83,11.73 +coatnet_rmlp_2_rw_224,759.73,673.906,512,224,15.18,54.78,73.88 +vit_small_patch16_384,753.82,1018.79,768,384,15.52,50.78,22.2 +hrnet_w64,750.36,1364.663,1024,224,28.97,35.09,128.06 +xception71,749.7,1024.396,768,299,18.09,69.92,42.34 +resnet152d,742.37,1379.356,1024,320,24.08,47.67,60.21 +swinv2_small_window8_256,741.95,1380.134,1024,256,11.58,40.14,49.73 +mobilevitv2_175_384_in22ft1k,739.09,519.544,384,384,12.47,63.29,14.25 +ecaresnet200d,736.17,1390.959,1024,256,20.0,43.15,64.69 +seresnet200d,733.28,1396.444,1024,256,20.01,43.15,71.86 +swin_s3_base_224,733.27,1396.459,1024,224,13.69,48.26,71.13 +convit_base,731.09,1400.636,1024,224,17.52,31.77,86.54 +resnest101e,726.65,1409.184,1024,256,13.38,28.66,48.28 +deit3_small_patch16_384,726.49,1057.125,768,384,15.52,50.78,22.21 +deit3_small_patch16_384_in21ft1k,726.32,1057.368,768,384,15.52,50.78,22.21 +volo_d2_224,722.61,1417.079,1024,224,14.34,41.34,58.68 +tnt_b_patch16_224,721.24,1419.762,1024,224,14.09,39.01,65.41 +xcit_nano_12_p8_384_dist,720.41,1421.4,1024,384,6.34,46.08,3.05 +swinv2_cr_base_224,719.23,1423.721,1024,224,15.86,59.66,87.88 +poolformer_m48,719.07,1424.046,1024,224,11.59,29.17,73.47 +coatnet_2_224,715.36,715.711,512,224,16.5,52.67,74.68 +swinv2_cr_base_ns_224,712.96,1436.239,1024,224,15.86,59.66,87.88 +dpn107,691.0,1481.897,1024,224,18.38,33.46,86.92 +convnext_base,687.14,1490.219,1024,288,25.43,47.53,88.59 +resnetv2_50x1_bitm,684.31,374.087,256,448,16.62,44.46,25.55 +efficientnet_b3_g8_gn,664.63,770.341,512,320,3.2,28.83,14.25 +regnety_064,657.71,1556.911,1024,288,10.56,27.11,30.58 +regnetv_064,652.6,1569.096,1024,288,10.55,27.11,30.58 +xcit_small_12_p8_224,651.3,1572.214,1024,224,18.69,47.21,26.21 +xcit_small_12_p8_224_dist,651.08,1572.755,1024,224,18.69,47.21,26.21 +resnetrs152,649.95,1575.501,1024,320,24.34,48.14,86.62 +mobilevitv2_200_384_in22ft1k,647.42,395.4,256,384,16.24,72.34,18.45 +seresnet152d,645.69,1585.88,1024,320,24.09,47.72,66.84 +tresnet_l,644.38,1589.105,1024,224,10.88,11.9,55.99 +tresnet_v2_l,642.3,1594.246,1024,224,8.81,16.34,46.17 +nest_base,640.98,798.76,512,224,17.96,53.39,67.72 +regnetx_120,640.37,1599.07,1024,224,12.13,21.37,46.11 +seresnext101_32x8d,639.53,1601.159,1024,288,27.24,51.63,93.57 +regnetz_e8,639.43,1601.423,1024,320,15.46,63.94,57.7 +ese_vovnet99b_iabn,636.1,1609.798,1024,224,16.49,11.27,63.2 +jx_nest_base,634.61,806.787,512,224,17.96,53.39,67.72 +regnety_120,625.75,1636.422,1024,224,12.14,21.38,51.82 +efficientnetv2_m,624.53,1639.618,1024,416,18.6,67.5,54.14 +seresnext101d_32x8d,621.55,1647.466,1024,288,27.64,52.95,93.59 +resnext101_64x4d,619.77,1652.21,1024,288,25.66,51.59,83.46 +swsl_resnext101_32x16d,612.21,1672.624,1024,224,36.27,51.18,194.03 +ig_resnext101_32x16d,611.98,1673.243,1024,224,36.27,51.18,194.03 +maxvit_rmlp_small_rw_256,611.67,1255.571,768,256,14.15,66.09,64.9 +ssl_resnext101_32x16d,611.31,1675.063,1024,224,36.27,51.18,194.03 +regnety_320,605.31,1691.684,1024,224,32.34,30.26,145.05 +gcvit_base,602.42,1699.782,1024,224,14.87,55.48,90.32 +regnetz_c16_evos,596.93,857.706,512,320,3.86,25.88,13.49 +maxxvit_rmlp_small_rw_256,590.18,1735.046,1024,256,14.67,58.38,66.01 +legacy_senet154,585.86,1747.854,1024,224,20.77,38.69,115.09 +senet154,585.53,1748.836,1024,224,20.77,38.69,115.09 +seresnextaa101d_32x8d,585.08,1750.175,1024,288,28.51,56.44,93.59 +gluon_senet154,584.86,1750.843,1024,224,20.77,38.69,115.09 +convmixer_768_32,581.95,1759.577,1024,224,19.55,25.95,21.11 +seresnet269d,574.5,1782.4,1024,256,26.59,53.6,113.67 +nf_regnet_b5,565.36,905.602,512,456,11.7,61.95,49.74 +mixer_l16_224,553.66,1849.49,1024,224,44.6,41.69,208.2 +resnet200d,545.14,1878.401,1024,320,31.25,67.33,64.69 +nfnet_f1,544.28,1881.353,1024,320,35.97,46.77,132.63 +vit_large_patch32_384,543.45,1884.237,1024,384,45.31,43.86,306.63 +efficientnetv2_rw_m,543.37,1884.512,1024,416,21.49,79.62,53.24 +vit_medium_patch16_gap_384,539.24,949.475,512,384,26.08,67.54,39.03 +efficientnet_b5,533.21,960.212,512,448,9.59,93.56,30.39 +swinv2_base_window8_256,531.81,1925.495,1024,256,20.37,52.59,87.92 +maxxvitv2_rmlp_base_rw_224,525.72,1947.791,1024,224,24.2,62.77,116.09 +xcit_large_24_p16_224_dist,509.19,2011.039,1024,224,35.86,47.27,189.1 +xcit_large_24_p16_224,509.15,2011.169,1024,224,35.86,47.27,189.1 +swin_large_patch4_window7_224,504.4,1522.593,768,224,34.53,54.94,196.53 +halonet_h1,503.39,508.543,256,256,3.0,51.17,8.1 +volo_d3_224,502.58,2037.467,1024,224,20.78,60.09,86.33 +swinv2_small_window16_256,488.97,1047.084,512,256,12.82,66.29,49.73 +tresnet_xl,481.58,2126.301,1024,224,15.17,15.34,78.44 +vit_small_patch8_224,479.11,1068.641,512,224,22.44,80.84,21.67 +tf_efficientnet_b5,476.47,805.919,384,456,10.46,98.86,30.39 +maxvit_rmlp_base_rw_224,472.06,2169.196,1024,224,23.15,92.64,116.14 +resnetrs200,471.68,2170.964,1024,320,31.51,67.81,93.21 +xcit_tiny_12_p8_384_dist,471.45,2172.002,1024,384,14.13,69.14,6.71 +dm_nfnet_f1,461.24,2220.087,1024,320,35.97,46.77,132.63 +tf_efficientnetv2_m,458.93,1673.426,768,480,24.76,89.84,54.14 +xcit_small_24_p16_384_dist,457.16,2239.891,1024,384,26.72,68.58,47.67 +coatnet_rmlp_3_rw_224,439.5,582.463,256,224,33.56,79.47,165.15 +maxvit_base_tf_224,430.05,1190.542,512,224,24.04,95.01,119.47 +swinv2_cr_large_224,423.86,1811.887,768,224,35.1,78.42,196.68 +resnetv2_152x2_bit_teacher,423.36,2418.743,1024,224,46.95,45.11,236.34 +swinv2_cr_tiny_384,423.1,907.565,384,384,15.34,161.01,28.33 +coatnet_3_rw_224,421.95,606.701,256,224,33.44,73.83,181.81 +resnetv2_101x1_bitm,419.35,610.453,256,448,31.65,64.93,44.54 +coatnet_3_224,405.07,631.982,256,224,36.56,79.01,166.97 +convnextv2_base,403.59,1268.593,512,288,25.43,47.53,88.72 +eca_nfnet_l2,401.73,2548.946,1024,384,30.05,68.28,56.72 +regnetz_d8_evos,394.39,1947.294,768,320,7.03,38.92,23.46 +convmixer_1024_20_ks9_p14,393.5,2602.254,1024,224,5.55,5.51,24.38 +eva_large_patch14_196,392.3,2610.234,1024,196,61.57,63.52,304.14 +crossvit_15_dagger_408,390.72,655.182,256,408,21.45,95.05,28.5 +vit_large_patch16_224,390.66,2621.182,1024,224,61.6,63.52,304.33 +vit_base_patch16_18x2_224,384.38,2663.987,1024,224,52.51,71.38,256.73 +deit3_large_patch16_224_in21ft1k,377.58,2711.976,1024,224,61.6,63.52,304.37 +deit3_large_patch16_224,377.53,2712.348,1024,224,61.6,63.52,304.37 +convnext_large,373.02,2058.836,768,288,56.87,71.29,197.77 +beit_large_patch16_224,360.62,2839.572,1024,224,61.6,63.52,304.43 +beitv2_large_patch16_224,360.58,2839.86,1024,224,61.6,63.52,304.43 +swinv2_base_window12to16_192to256_22kft1k,360.56,1065.006,384,256,22.02,84.71,87.92 +swinv2_base_window16_256,360.23,1065.959,384,256,22.02,84.71,87.92 +regnety_160,353.5,2172.566,768,288,26.37,38.07,83.59 +nasnetalarge,345.63,1111.004,384,331,23.89,90.56,88.75 +maxvit_tiny_tf_384,344.01,744.157,256,384,17.53,123.42,30.98 +xcit_small_24_p8_224,342.37,2990.915,1024,224,35.81,90.78,47.63 +xcit_small_24_p8_224_dist,342.26,2991.817,1024,224,35.81,90.78,47.63 +flexivit_large,335.35,3053.52,1024,240,70.99,75.39,304.36 +maxxvitv2_rmlp_large_rw_224,332.33,3081.271,1024,224,44.14,87.15,215.42 +vit_large_r50_s32_384,329.8,3104.921,1024,384,57.43,76.52,329.09 +pnasnet5large,328.89,1167.534,384,331,25.04,92.89,86.06 +tresnet_m_448,325.8,3143.01,1024,448,22.94,29.21,31.39 +volo_d1_384,323.04,1584.906,512,384,22.75,108.55,26.78 +volo_d4_224,318.96,3210.439,1024,224,44.34,80.22,192.96 +xcit_medium_24_p16_384_dist,312.74,3274.268,1024,384,47.39,91.64,84.4 +nfnet_f2,310.6,3296.869,1024,352,63.22,79.06,193.78 +vit_base_patch16_384,307.09,1250.42,384,384,55.54,101.56,86.86 +deit_base_patch16_384,306.8,1251.599,384,384,55.54,101.56,86.86 +vit_base_patch16_clip_384,306.29,1253.685,384,384,55.54,101.56,86.86 +deit_base_distilled_patch16_384,305.48,1257.017,384,384,55.65,101.82,87.63 +ecaresnet269d,305.06,3356.684,1024,352,50.25,101.25,102.09 +maxvit_large_tf_224,301.43,1273.908,384,224,43.68,127.35,211.79 +deit3_base_patch16_384_in21ft1k,298.01,1288.526,384,384,55.54,101.56,86.88 +deit3_base_patch16_384,297.88,1289.093,384,384,55.54,101.56,86.88 +resnetrs270,296.97,3448.186,1024,352,51.13,105.48,129.86 +regnetx_320,289.44,2653.413,768,224,31.81,36.3,107.81 +efficientnet_b6,287.31,890.997,256,528,19.4,167.39,43.04 +vit_large_patch14_224,286.23,3577.501,1024,224,81.08,88.79,304.2 +vit_large_patch14_clip_224,285.99,3580.5,1024,224,81.08,88.79,304.2 +crossvit_18_dagger_408,285.18,673.248,192,408,32.47,124.87,44.61 +cait_xxs24_384,281.48,3637.936,1024,384,9.63,122.66,12.03 +ig_resnext101_32x32d,275.12,1860.956,512,224,87.29,91.12,468.53 +tf_efficientnet_b6,274.07,700.545,192,528,19.4,167.39,43.04 +dm_nfnet_f2,264.79,2900.408,768,352,63.22,79.06,193.78 +beit_base_patch16_384,261.27,1469.733,384,384,55.54,101.56,86.74 +efficientnetv2_l,260.33,1966.694,512,480,56.4,157.99,118.52 +swinv2_cr_small_384,259.75,985.56,256,384,29.7,298.03,49.7 +tf_efficientnetv2_l,257.29,1989.923,512,480,56.4,157.99,118.52 +resnest200e,254.36,1006.453,256,320,35.69,82.78,70.2 +mvitv2_large,249.99,2048.061,512,224,43.87,112.02,217.99 +xcit_tiny_24_p8_384_dist,248.25,4124.916,1024,384,27.05,132.95,12.11 +convnext_xlarge,242.63,2110.182,512,288,100.8,95.05,350.2 +resmlp_big_24_224_in22ft1k,241.9,4233.056,1024,224,100.23,87.31,129.14 +resmlp_big_24_224,241.74,4235.988,1024,224,100.23,87.31,129.14 +resmlp_big_24_distilled_224,241.44,4241.249,1024,224,100.23,87.31,129.14 +convnextv2_large,239.52,1068.782,256,288,56.87,71.29,197.96 +coatnet_4_224,238.62,1072.827,256,224,62.48,129.26,275.43 +swin_base_patch4_window12_384,236.12,813.144,192,384,47.19,134.78,87.9 +xcit_medium_24_p8_224_dist,233.5,3289.007,768,224,63.53,121.23,84.32 +xcit_medium_24_p8_224,233.5,3289.104,768,224,63.53,121.23,84.32 +eca_nfnet_l3,229.87,2227.284,512,448,52.55,118.4,72.04 +vit_base_r50_s16_384,226.32,1696.687,384,384,67.43,135.03,98.95 +maxvit_small_tf_384,224.01,857.105,192,384,35.87,183.65,69.02 +xcit_small_12_p8_384_dist,221.54,1733.28,384,384,54.92,138.29,26.21 +swinv2_large_window12to16_192to256_22kft1k,220.1,1163.101,256,256,47.81,121.53,196.74 +volo_d5_224,210.88,4855.76,1024,224,72.4,118.11,295.46 +vit_base_patch8_224,199.67,1282.079,256,224,78.22,161.69,86.58 +cait_xs24_384,197.64,3885.811,768,384,19.28,183.98,26.67 +resnetrs350,196.19,5219.377,1024,384,77.59,154.74,163.96 +cait_xxs36_384,188.27,5439.03,1024,384,14.35,183.7,17.37 +swinv2_cr_base_384,185.68,1378.725,256,384,50.57,333.68,87.88 +coatnet_rmlp_2_rw_384,184.84,1038.746,192,384,47.69,209.43,73.88 +swinv2_cr_huge_224,184.09,2085.934,384,224,115.97,121.08,657.83 +convnext_xxlarge,183.68,2787.486,512,224,151.66,95.29,846.47 +volo_d2_384,180.56,2126.753,384,384,46.17,184.51,58.87 +xcit_large_24_p16_384_dist,176.39,5805.281,1024,384,105.35,137.17,189.1 +regnety_640,174.81,4393.396,768,224,64.16,42.5,281.38 +maxvit_xlarge_tf_224,171.63,1491.6,256,224,97.49,191.02,474.95 +nfnet_f3,170.11,4514.791,768,416,115.58,141.78,254.92 +densenet264d_iabn,167.13,6126.84,1024,224,13.47,14.0,72.74 +efficientnet_b7,166.38,1153.975,192,600,38.33,289.94,66.35 +maxvit_tiny_tf_512,163.72,781.809,128,512,33.49,257.59,31.05 +efficientnetv2_xl,162.7,3146.865,512,512,93.85,247.32,208.12 +tf_efficientnetv2_xl,161.32,3173.821,512,512,93.85,247.32,208.12 +tf_efficientnet_b7,160.43,1196.798,192,600,38.33,289.94,66.35 +resnetv2_152x2_bit_teacher_384,159.54,1604.579,256,384,136.16,132.56,236.34 +tresnet_l_448,154.66,6620.743,1024,448,43.5,47.56,55.99 +vit_huge_patch14_224,154.27,6637.58,1024,224,167.43,139.43,658.75 +vit_huge_patch14_clip_224,154.17,6642.017,1024,224,167.4,139.41,632.05 +maxxvitv2_rmlp_base_rw_384,153.9,1663.429,256,384,72.98,213.74,116.09 +cait_s24_384,152.41,3359.254,512,384,32.17,245.31,47.06 +deit3_huge_patch14_224_in21ft1k,150.05,6824.53,1024,224,167.4,139.41,632.13 +deit3_huge_patch14_224,149.59,6845.356,1024,224,167.4,139.41,632.13 +dm_nfnet_f3,145.48,3519.403,512,416,115.58,141.78,254.92 +resnetrs420,142.37,5394.528,768,416,108.45,213.79,191.89 +swin_large_patch4_window12_384,138.37,925.016,128,384,104.08,202.16,196.74 +resnetv2_50x3_bitm,133.5,1438.189,192,448,145.7,133.37,217.32 +maxvit_rmlp_base_rw_384,131.6,1945.285,256,384,70.97,318.95,116.14 +xcit_large_24_p8_224_dist,131.32,3898.808,512,224,141.23,181.56,188.93 +xcit_large_24_p8_224,131.27,3900.391,512,224,141.23,181.56,188.93 +coatnet_5_224,130.48,1471.508,192,224,145.49,194.24,687.47 +maxvit_base_tf_384,122.48,1567.652,192,384,73.8,332.9,119.65 +resnest269e,119.17,2148.198,256,416,77.69,171.98,110.93 +resnetv2_152x2_bitm,117.29,2182.534,256,448,184.99,180.43,236.34 +xcit_small_24_p8_384_dist,116.59,3293.649,384,384,105.24,265.91,47.63 +tresnet_xl_448,115.63,8855.938,1024,448,60.65,61.31,78.44 +swinv2_cr_large_384,113.43,1128.479,128,384,108.95,404.96,196.68 +maxvit_small_tf_512,106.82,1198.298,128,512,67.26,383.77,69.13 +efficientnet_b8,106.21,1205.18,128,672,63.48,442.89,87.41 +tf_efficientnet_b8,102.86,1244.358,128,672,63.48,442.89,87.41 +eva_large_patch14_336,102.71,2492.371,256,336,191.1,270.24,304.53 +vit_large_patch14_clip_336,102.52,2496.99,256,336,191.11,270.24,304.53 +vit_large_patch16_384,102.5,2497.593,256,384,191.21,270.24,304.72 +cait_s36_384,101.88,5025.316,512,384,47.99,367.4,68.37 +eva_giant_patch14_224,101.84,10055.112,1024,224,267.18,192.64,1012.56 +vit_giant_patch14_224,100.71,7625.752,768,224,267.18,192.64,1012.61 +vit_giant_patch14_clip_224,100.43,7646.856,768,224,267.18,192.64,1012.65 +deit3_large_patch16_384_in21ft1k,99.81,2564.809,256,384,191.21,270.24,304.76 +deit3_large_patch16_384,99.8,2564.994,256,384,191.21,270.24,304.76 +swinv2_base_window12to24_192to384_22kft1k,96.12,665.832,64,384,55.25,280.36,87.92 +nfnet_f4,89.33,5731.574,512,512,216.26,262.26,316.07 +beit_large_patch16_384,88.56,2890.58,256,384,191.21,270.24,305.0 +maxvit_large_tf_384,86.44,1480.84,128,384,132.55,445.84,212.03 +regnety_1280,82.49,4654.845,384,224,127.66,71.58,644.81 +xcit_medium_24_p8_384_dist,79.96,3201.705,256,384,186.67,354.73,84.32 +resnetv2_101x3_bitm,79.41,2417.67,192,448,280.33,194.78,387.93 +volo_d3_448,77.64,2473.021,192,448,96.33,446.83,86.63 +dm_nfnet_f4,77.54,4952.036,384,512,216.26,262.26,316.07 +nfnet_f5,67.46,5691.915,384,544,290.97,349.71,377.21 +tf_efficientnet_l2,63.66,1507.989,96,475,172.11,609.89,480.31 +swinv2_large_window12to24_192to384_22kft1k,60.94,787.651,48,384,116.15,407.83,196.74 +vit_gigantic_patch14_224,60.18,8507.121,512,224,483.95,275.37,1844.44 +vit_gigantic_patch14_clip_224,60.11,8517.85,512,224,483.96,275.37,1844.91 +volo_d4_448,57.87,3317.675,192,448,197.13,527.35,193.41 +maxvit_base_tf_512,57.86,2212.256,128,512,138.02,703.99,119.88 +dm_nfnet_f5,57.78,6645.368,384,544,290.97,349.71,377.21 +vit_huge_patch14_clip_336,57.4,4460.085,256,336,390.97,407.54,632.46 +ig_resnext101_32x48d,56.43,6804.709,384,224,153.57,131.06,828.41 +convnextv2_huge,56.31,1704.92,96,384,337.96,232.35,660.29 +convmixer_1536_20,55.47,18461.426,1024,224,48.68,33.03,51.63 +swinv2_cr_giant_224,52.39,3665.046,192,224,483.85,309.15,2598.76 +nfnet_f6,51.81,7411.574,384,576,378.69,452.2,438.36 +maxvit_xlarge_tf_384,50.76,1891.335,96,384,292.78,668.76,475.32 +swinv2_cr_huge_384,49.01,1305.73,64,384,352.04,583.18,657.94 +regnety_2560,47.69,8051.463,384,224,257.07,87.48,826.14 +xcit_large_24_p8_384_dist,44.91,4275.004,192,384,415.0,531.82,188.93 +dm_nfnet_f6,44.62,5737.462,256,576,378.69,452.2,438.36 +nfnet_f7,41.13,6224.782,256,608,480.39,570.85,499.5 +maxvit_large_tf_512,41.04,1559.597,64,512,244.75,942.15,212.33 +eva_giant_patch14_336,39.89,6418.269,256,336,620.64,550.67,1013.01 +volo_d5_448,39.88,3209.812,128,448,315.06,737.92,295.91 +beit_large_patch16_512,35.33,2716.953,96,512,362.24,656.39,305.67 +cait_m36_384,32.89,7783.487,256,384,173.11,734.81,271.22 +resnetv2_152x4_bitm,30.46,3151.929,96,480,844.84,414.26,936.53 +volo_d5_512,27.89,4590.0,128,512,425.09,1105.37,296.09 +maxvit_xlarge_tf_512,24.38,1968.424,48,512,534.14,1413.22,475.77 +efficientnet_l2,23.13,1383.428,32,800,479.12,1707.39,480.31 +swinv2_cr_giant_384,15.06,2124.735,32,384,1450.71,1394.86,2598.76 +cait_m48_448,13.86,9235.876,128,448,329.41,1708.23,356.46 +eva_giant_patch14_560,10.52,3043.009,32,560,1906.76,2577.17,1014.45 diff --git a/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt210-cu121-rtx3090.csv b/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt210-cu121-rtx3090.csv new file mode 100644 index 0000000000000000000000000000000000000000..de1fe6a71f9888eace03f5c00ebde940a70433e0 --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt210-cu121-rtx3090.csv @@ -0,0 +1,1205 @@ +model,infer_img_size,infer_batch_size,infer_samples_per_sec,infer_step_time,infer_gmacs,infer_macts,param_count +tinynet_e,106,1024.0,75290.96,13.591,0.03,0.69,2.04 +mobilenetv3_small_050,224,1024.0,56785.93,18.023,0.03,0.92,1.59 +efficientvit_m0,224,1024.0,50656.23,20.205,0.08,0.91,2.35 +lcnet_035,224,1024.0,48853.22,20.951,0.03,1.04,1.64 +lcnet_050,224,1024.0,42147.98,24.285,0.05,1.26,1.88 +mobilenetv3_small_075,224,1024.0,42002.46,24.369,0.05,1.3,2.04 +mobilenetv3_small_100,224,1024.0,38516.23,26.573,0.06,1.42,2.54 +tinynet_d,152,1024.0,37989.71,26.944,0.05,1.42,2.34 +efficientvit_m1,224,1024.0,37486.44,27.306,0.17,1.33,2.98 +tf_mobilenetv3_small_minimal_100,224,1024.0,33948.13,30.153,0.06,1.41,2.04 +efficientvit_m2,224,1024.0,33551.67,30.51,0.2,1.47,4.19 +tf_mobilenetv3_small_075,224,1024.0,33262.15,30.775,0.05,1.3,2.04 +tf_mobilenetv3_small_100,224,1024.0,31002.71,33.019,0.06,1.42,2.54 +lcnet_075,224,1024.0,30664.19,33.384,0.1,1.99,2.36 +efficientvit_m3,224,1024.0,29423.78,34.792,0.27,1.62,6.9 +efficientvit_m4,224,1024.0,27882.1,36.716,0.3,1.7,8.8 +mnasnet_small,224,1024.0,25015.02,40.925,0.07,2.16,2.03 +regnetx_002,224,1024.0,24564.71,41.67,0.2,2.16,2.68 +lcnet_100,224,1024.0,24268.72,42.183,0.16,2.52,2.95 +levit_128s,224,1024.0,22705.11,45.089,0.31,1.88,7.78 +regnety_002,224,1024.0,22248.91,46.012,0.2,2.17,3.16 +resnet10t,176,1024.0,22236.3,46.04,0.7,1.51,5.44 +mobilenetv2_035,224,1024.0,22055.42,46.418,0.07,2.86,1.68 +levit_conv_128s,224,1024.0,21863.15,46.826,0.31,1.88,7.78 +ghostnet_050,224,1024.0,20782.95,49.261,0.05,1.77,2.59 +mnasnet_050,224,1024.0,20672.17,49.525,0.11,3.07,2.22 +repghostnet_050,224,1024.0,20617.05,49.657,0.05,2.02,2.31 +efficientvit_m5,224,1024.0,19010.14,53.856,0.53,2.41,12.47 +tinynet_c,184,1024.0,18737.07,54.641,0.11,2.87,2.46 +efficientvit_b0,224,1024.0,18023.56,56.804,0.1,2.87,3.41 +semnasnet_050,224,1024.0,17573.38,58.26,0.11,3.44,2.08 +mobilenetv2_050,224,1024.0,17491.5,58.532,0.1,3.64,1.97 +regnetx_004,224,1024.0,17164.74,59.647,0.4,3.14,5.16 +repghostnet_058,224,1024.0,16947.81,60.41,0.07,2.59,2.55 +regnetx_004_tv,224,1024.0,16485.73,62.101,0.42,3.17,5.5 +vit_small_patch32_224,224,1024.0,16428.86,62.319,1.12,2.09,22.88 +cs3darknet_focus_s,256,1024.0,16333.25,62.684,0.69,2.7,3.27 +lcnet_150,224,1024.0,15841.02,64.632,0.34,3.79,4.5 +gernet_s,224,1024.0,15617.62,65.556,0.75,2.65,8.17 +cs3darknet_s,256,1024.0,15597.89,65.64,0.72,2.97,3.28 +levit_128,224,1024.0,15372.6,66.601,0.41,2.71,9.21 +vit_tiny_r_s16_p8_224,224,1024.0,15191.19,67.397,0.43,1.85,6.34 +levit_conv_128,224,1024.0,14904.31,68.695,0.41,2.71,9.21 +mobilenetv3_large_075,224,1024.0,14843.63,68.964,0.16,4.0,3.99 +pit_ti_distilled_224,224,1024.0,14746.15,69.432,0.51,2.77,5.1 +pit_ti_224,224,1024.0,14700.08,69.649,0.5,2.75,4.85 +mixer_s32_224,224,1024.0,14362.24,71.288,1.0,2.28,19.1 +resnet10t,224,1024.0,14254.88,71.825,1.1,2.43,5.44 +repghostnet_080,224,1024.0,13967.84,73.293,0.1,3.22,3.28 +tf_efficientnetv2_b0,192,1024.0,13629.52,75.121,0.54,3.51,7.14 +mobilenetv3_rw,224,1024.0,13582.75,75.38,0.23,4.41,5.48 +levit_192,224,1024.0,13511.34,75.778,0.66,3.2,10.95 +mnasnet_075,224,1024.0,13417.36,76.309,0.23,4.77,3.17 +mobilenetv3_large_100,224,1024.0,13322.79,76.851,0.23,4.41,5.48 +hardcorenas_a,224,1024.0,13314.34,76.899,0.23,4.38,5.26 +levit_conv_192,224,1024.0,12952.02,79.05,0.66,3.2,10.95 +regnety_004,224,1024.0,12651.55,80.929,0.41,3.89,4.34 +tf_mobilenetv3_large_075,224,1024.0,12636.69,81.023,0.16,4.0,3.99 +nf_regnet_b0,192,1024.0,12264.41,83.481,0.37,3.15,8.76 +tinynet_b,188,1024.0,12262.56,83.495,0.21,4.44,3.73 +tf_mobilenetv3_large_minimal_100,224,1024.0,12182.74,84.043,0.22,4.4,3.92 +hardcorenas_b,224,1024.0,12118.5,84.488,0.26,5.09,5.18 +hardcorenas_c,224,1024.0,12088.28,84.699,0.28,5.01,5.52 +resnet14t,176,1024.0,11843.82,86.448,1.07,3.61,10.08 +mnasnet_100,224,1024.0,11686.43,87.612,0.33,5.46,4.38 +regnety_006,224,1024.0,11675.48,87.69,0.61,4.33,6.06 +ese_vovnet19b_slim_dw,224,1024.0,11663.91,87.781,0.4,5.28,1.9 +repghostnet_100,224,1024.0,11508.79,88.956,0.15,3.98,4.07 +tf_mobilenetv3_large_100,224,1024.0,11443.62,89.472,0.23,4.41,5.48 +vit_tiny_patch16_224,224,1024.0,11342.82,90.267,1.08,4.12,5.72 +hardcorenas_d,224,1024.0,11329.99,90.369,0.3,4.93,7.5 +deit_tiny_distilled_patch16_224,224,1024.0,11311.9,90.514,1.09,4.15,5.91 +deit_tiny_patch16_224,224,1024.0,11286.31,90.719,1.08,4.12,5.72 +semnasnet_075,224,1024.0,11132.28,91.974,0.23,5.54,2.91 +resnet18,224,1024.0,11101.69,92.228,1.82,2.48,11.69 +ghostnet_100,224,1024.0,11039.87,92.744,0.15,3.55,5.18 +mobilenetv2_075,224,1024.0,10984.87,93.208,0.22,5.86,2.64 +spnasnet_100,224,1024.0,10557.11,96.986,0.35,6.03,4.42 +tf_efficientnetv2_b1,192,1024.0,10473.04,97.765,0.76,4.59,8.14 +regnetx_008,224,1024.0,10422.45,98.23,0.81,5.15,7.26 +seresnet18,224,1024.0,10416.31,98.297,1.82,2.49,11.78 +tf_efficientnetv2_b0,224,1024.0,10174.51,100.633,0.73,4.77,7.14 +legacy_seresnet18,224,1024.0,10133.12,101.044,1.82,2.49,11.78 +repghostnet_111,224,1024.0,10094.28,101.428,0.18,4.38,4.54 +hardcorenas_f,224,1024.0,10012.95,102.257,0.35,5.57,8.2 +tinynet_a,192,1024.0,9946.05,102.945,0.35,5.41,6.19 +dla46_c,224,1024.0,9943.77,102.967,0.58,4.5,1.3 +hardcorenas_e,224,1024.0,9851.75,103.931,0.35,5.65,8.07 +semnasnet_100,224,1024.0,9823.16,104.233,0.32,6.23,3.89 +levit_256,224,1024.0,9811.76,104.354,1.13,4.23,18.89 +repvgg_a0,224,1024.0,9709.7,105.449,1.52,3.59,9.11 +mobilenetv2_100,224,1024.0,9654.78,106.051,0.31,6.68,3.5 +regnety_008,224,1024.0,9643.2,106.178,0.81,5.25,6.26 +fbnetc_100,224,1024.0,9552.51,107.186,0.4,6.51,5.57 +efficientnet_lite0,224,1024.0,9466.4,108.161,0.4,6.74,4.65 +levit_conv_256,224,1024.0,9461.49,108.218,1.13,4.23,18.89 +resnet18d,224,1024.0,9458.4,108.253,2.06,3.29,11.71 +pit_xs_224,224,1024.0,9332.33,109.714,1.1,4.12,10.62 +ese_vovnet19b_slim,224,1024.0,9277.16,110.369,1.69,3.52,3.17 +regnety_008_tv,224,1024.0,9213.78,111.127,0.84,5.42,6.43 +pit_xs_distilled_224,224,1024.0,9203.86,111.241,1.11,4.15,11.0 +convnext_atto,224,1024.0,9104.06,112.467,0.55,3.81,3.7 +repghostnet_130,224,1024.0,8873.05,115.395,0.25,5.24,5.48 +ghostnet_130,224,1024.0,8870.81,115.424,0.24,4.6,7.36 +convnext_atto_ols,224,1024.0,8829.55,115.964,0.58,4.11,3.7 +regnetz_005,224,1024.0,8796.44,116.392,0.52,5.86,7.12 +xcit_nano_12_p16_224,224,1024.0,8604.96,118.991,0.56,4.17,3.05 +levit_256d,224,1024.0,8322.97,123.022,1.4,4.93,26.21 +regnetx_006,224,1024.0,8320.1,123.064,0.61,3.98,6.2 +tf_efficientnet_lite0,224,1024.0,8163.21,125.431,0.4,6.74,4.65 +fbnetv3_b,224,1024.0,8152.31,125.598,0.42,6.97,8.6 +efficientnet_b0,224,1024.0,8085.72,126.633,0.4,6.75,5.29 +levit_conv_256d,224,1024.0,8055.13,127.113,1.4,4.93,26.21 +edgenext_xx_small,256,1024.0,8014.51,127.757,0.26,3.33,1.33 +mnasnet_140,224,1024.0,7984.3,128.241,0.6,7.71,7.12 +convnext_femto,224,1024.0,7977.79,128.346,0.79,4.57,5.22 +tf_efficientnetv2_b2,208,1024.0,7861.13,130.251,1.06,6.0,10.1 +mobilevit_xxs,256,1024.0,7827.79,130.801,0.34,5.74,1.27 +repghostnet_150,224,1024.0,7766.69,131.835,0.32,6.0,6.58 +convnext_femto_ols,224,1024.0,7757.32,131.994,0.82,4.87,5.23 +rexnetr_100,224,1024.0,7545.9,135.692,0.43,7.72,4.88 +repvit_m1,224,1024.0,7543.44,135.728,0.83,7.45,5.49 +resnet14t,224,1024.0,7466.4,137.137,1.69,5.8,10.08 +mobilenetv2_110d,224,1024.0,7331.32,139.66,0.45,8.71,4.52 +hrnet_w18_small,224,1024.0,7298.3,140.296,1.61,5.72,13.19 +cs3darknet_focus_m,256,1024.0,7202.61,142.16,1.98,4.89,9.3 +repvit_m0_9,224,1024.0,7165.5,142.888,0.83,7.45,5.49 +crossvit_tiny_240,240,1024.0,7123.68,143.735,1.3,5.67,7.01 +efficientvit_b1,224,1024.0,7109.59,144.02,0.53,7.25,9.1 +tf_efficientnet_b0,224,1024.0,7104.21,144.129,0.4,6.75,5.29 +crossvit_9_240,240,1024.0,7025.32,145.747,1.55,5.59,8.55 +nf_regnet_b0,256,1024.0,6992.1,146.441,0.64,5.58,8.76 +repvgg_a1,224,1024.0,6942.64,147.483,2.64,4.74,14.09 +mobilevitv2_050,256,1024.0,6935.55,147.628,0.48,8.04,1.37 +cs3darknet_m,256,1024.0,6929.59,147.762,2.08,5.28,9.31 +efficientnet_b1_pruned,240,1024.0,6922.7,147.909,0.4,6.21,6.33 +gernet_m,224,1024.0,6840.64,149.682,3.02,5.24,21.14 +fbnetv3_d,224,1024.0,6784.35,150.925,0.52,8.5,10.31 +semnasnet_140,224,1024.0,6771.35,151.215,0.6,8.87,6.11 +crossvit_9_dagger_240,240,1024.0,6704.51,152.722,1.68,6.03,8.78 +tf_efficientnetv2_b1,240,1024.0,6611.54,154.87,1.21,7.34,8.14 +mobilenetv2_140,224,1024.0,6588.7,155.407,0.6,9.57,6.11 +resnet34,224,1024.0,6504.25,157.425,3.67,3.74,21.8 +ese_vovnet19b_dw,224,1024.0,6406.95,159.816,1.34,8.25,6.54 +selecsls42,224,1024.0,6366.41,160.834,2.94,4.62,30.35 +resnet18,288,1024.0,6354.7,161.13,3.01,4.11,11.69 +selecsls42b,224,1024.0,6344.62,161.386,2.98,4.62,32.46 +efficientnet_b0_g16_evos,224,1024.0,6342.4,161.442,1.01,7.42,8.11 +edgenext_xx_small,288,1024.0,6334.97,161.631,0.33,4.21,1.33 +efficientnet_lite1,240,1024.0,6268.15,163.355,0.62,10.14,5.42 +pvt_v2_b0,224,1024.0,6254.52,163.711,0.53,7.01,3.67 +visformer_tiny,224,1024.0,6218.29,164.665,1.27,5.72,10.32 +convnext_pico,224,1024.0,6208.02,164.938,1.37,6.1,9.05 +fbnetv3_b,256,1024.0,6192.25,165.357,0.55,9.1,8.6 +efficientnet_es_pruned,224,1024.0,6175.39,165.809,1.81,8.73,5.44 +efficientnet_es,224,1024.0,6170.12,165.95,1.81,8.73,5.44 +rexnet_100,224,1024.0,6170.05,165.953,0.41,7.44,4.8 +ghostnetv2_100,224,1024.0,6155.62,166.342,0.18,4.55,6.16 +seresnet34,224,1024.0,6069.09,168.714,3.67,3.74,21.96 +convnext_pico_ols,224,1024.0,6043.01,169.442,1.43,6.5,9.06 +seresnet18,288,1024.0,5998.94,170.686,3.01,4.11,11.78 +dla46x_c,224,1024.0,5992.19,170.877,0.54,5.66,1.07 +dla34,224,1024.0,5954.72,171.952,3.07,5.02,15.74 +repghostnet_200,224,1024.0,5934.75,172.524,0.54,7.96,9.8 +resnet26,224,1024.0,5916.33,173.07,2.36,7.35,16.0 +levit_384,224,1024.0,5897.4,173.625,2.36,6.26,39.13 +resnet34d,224,1024.0,5884.13,174.017,3.91,4.54,21.82 +cs3darknet_focus_m,288,1024.0,5878.89,174.173,2.51,6.19,9.3 +legacy_seresnet34,224,1024.0,5873.4,174.335,3.67,3.74,21.96 +repvit_m2,224,1024.0,5866.53,174.53,1.36,9.43,8.8 +vit_base_patch32_224,224,1024.0,5866.04,174.553,4.37,4.19,88.22 +vit_base_patch32_clip_224,224,1024.0,5864.79,174.59,4.37,4.19,88.22 +repvit_m1_0,224,1024.0,5862.26,174.66,1.13,8.69,7.3 +tf_efficientnet_es,224,1024.0,5831.76,175.58,1.81,8.73,5.44 +rexnetr_130,224,1024.0,5827.09,175.72,0.68,9.81,7.61 +resnetrs50,160,1024.0,5819.33,175.954,2.29,6.2,35.69 +dla60x_c,224,1024.0,5709.85,179.326,0.59,6.01,1.32 +vit_small_patch32_384,384,1024.0,5700.23,179.631,3.26,6.07,22.92 +levit_conv_384,224,1024.0,5694.64,179.807,2.36,6.26,39.13 +tiny_vit_5m_224,224,1024.0,5681.84,180.212,1.18,9.32,12.08 +efficientnet_b1,224,1024.0,5671.54,180.54,0.59,9.36,7.79 +cs3darknet_m,288,1024.0,5670.5,180.573,2.63,6.69,9.31 +resnetblur18,224,1024.0,5631.98,181.808,2.34,3.39,11.69 +tf_efficientnet_lite1,240,1024.0,5588.09,183.236,0.62,10.14,5.42 +repvit_m1_1,224,1024.0,5584.25,183.355,1.36,9.43,8.8 +mixnet_s,224,1024.0,5566.85,183.931,0.25,6.25,4.13 +convnext_atto,288,1024.0,5556.64,184.274,0.91,6.3,3.7 +darknet17,256,1024.0,5525.94,185.298,3.26,7.18,14.3 +pit_s_224,224,1024.0,5520.06,185.491,2.42,6.18,23.46 +resnet18d,288,1024.0,5497.35,186.262,3.41,5.43,11.71 +selecsls60,224,1024.0,5496.69,186.283,3.59,5.52,30.67 +pit_s_distilled_224,224,1024.0,5494.69,186.349,2.45,6.22,24.04 +xcit_tiny_12_p16_224,224,1024.0,5472.11,187.12,1.24,6.29,6.72 +selecsls60b,224,1024.0,5466.97,187.296,3.63,5.52,32.77 +skresnet18,224,1024.0,5432.07,188.499,1.82,3.24,11.96 +convnext_atto_ols,288,1024.0,5378.78,190.367,0.96,6.8,3.7 +resmlp_12_224,224,1024.0,5371.14,190.637,3.01,5.5,15.35 +regnetz_005,288,1024.0,5353.96,191.249,0.86,9.68,7.12 +mobilenetv2_120d,224,1024.0,5347.39,191.484,0.69,11.97,5.83 +convnextv2_atto,224,1024.0,5293.77,193.425,0.55,3.81,3.71 +repvgg_b0,224,1024.0,5265.8,194.451,3.41,6.15,15.82 +mixer_b32_224,224,1024.0,5245.72,195.191,3.24,6.29,60.29 +vit_tiny_r_s16_p8_384,384,1024.0,5235.72,195.568,1.25,5.39,6.36 +nf_regnet_b1,256,1024.0,5226.46,195.915,0.82,7.27,10.22 +nf_regnet_b2,240,1024.0,5223.53,196.02,0.97,7.23,14.31 +vit_base_patch32_clip_quickgelu_224,224,1024.0,5220.87,196.124,4.37,4.19,87.85 +resnetaa34d,224,1024.0,5205.31,196.711,4.43,5.07,21.82 +resnet26d,224,1024.0,5169.81,198.062,2.6,8.15,16.01 +tf_mixnet_s,224,1024.0,5128.65,199.652,0.25,6.25,4.13 +rexnetr_150,224,1024.0,5105.32,200.564,0.89,11.13,9.78 +gmixer_12_224,224,1024.0,5083.79,201.414,2.67,7.26,12.7 +fbnetv3_d,256,1024.0,5047.63,202.856,0.68,11.1,10.31 +edgenext_x_small,256,1024.0,5018.94,204.014,0.54,5.93,2.34 +mixer_s16_224,224,1024.0,5009.58,204.393,3.79,5.97,18.53 +regnetz_b16,224,1024.0,5008.24,204.437,1.45,9.95,9.72 +gmlp_ti16_224,224,1024.0,4999.44,204.811,1.34,7.55,5.87 +darknet21,256,1024.0,4956.17,206.601,3.93,7.47,20.86 +eva02_tiny_patch14_224,224,1024.0,4940.45,207.258,1.4,6.17,5.5 +ghostnetv2_130,224,1024.0,4896.55,209.116,0.28,5.9,8.96 +convnext_femto,288,1024.0,4844.52,211.362,1.3,7.56,5.22 +nf_resnet26,224,1024.0,4822.21,212.339,2.41,7.35,16.0 +efficientnet_lite2,260,1024.0,4817.66,212.541,0.89,12.9,6.09 +tf_efficientnetv2_b2,260,1024.0,4797.27,213.444,1.72,9.84,10.1 +efficientnet_cc_b0_8e,224,1024.0,4749.51,215.591,0.42,9.42,24.01 +sedarknet21,256,1024.0,4747.46,215.684,3.93,7.47,20.95 +efficientnet_cc_b0_4e,224,1024.0,4720.11,216.933,0.41,9.42,13.31 +efficientnet_b2_pruned,260,1024.0,4716.64,217.093,0.73,9.13,8.31 +convnext_femto_ols,288,1024.0,4709.5,217.422,1.35,8.06,5.23 +resnext26ts,256,1024.0,4668.94,219.311,2.43,10.52,10.3 +tiny_vit_11m_224,224,1024.0,4649.32,220.237,1.9,10.73,20.35 +ecaresnet50d_pruned,224,1024.0,4636.78,220.832,2.53,6.43,19.94 +deit_small_patch16_224,224,1024.0,4620.93,221.59,4.25,8.25,22.05 +efficientformer_l1,224,1024.0,4616.64,221.795,1.3,5.53,12.29 +vit_small_patch16_224,224,1024.0,4614.32,221.907,4.25,8.25,22.05 +dpn48b,224,1024.0,4588.67,223.146,1.69,8.92,9.13 +deit_small_distilled_patch16_224,224,1024.0,4587.3,223.214,4.27,8.29,22.44 +vit_base_patch32_clip_256,256,1024.0,4547.51,225.168,5.68,5.44,87.86 +convnextv2_femto,224,1024.0,4545.73,225.256,0.79,4.57,5.23 +mobilevitv2_075,256,1024.0,4537.95,225.638,1.05,12.06,2.87 +eca_resnext26ts,256,1024.0,4521.18,226.479,2.43,10.52,10.3 +seresnext26ts,256,1024.0,4517.43,226.666,2.43,10.52,10.39 +efficientnetv2_rw_t,224,1024.0,4511.98,226.94,1.93,9.94,13.65 +legacy_seresnext26_32x4d,224,1024.0,4489.21,228.092,2.49,9.39,16.79 +gernet_l,256,1024.0,4474.96,228.817,4.57,8.0,31.08 +gcresnext26ts,256,1024.0,4472.11,228.964,2.43,10.53,10.48 +rexnet_130,224,1024.0,4453.51,229.92,0.68,9.71,7.56 +tf_efficientnet_b1,240,1024.0,4442.45,230.492,0.71,10.88,7.79 +tf_efficientnet_cc_b0_8e,224,1024.0,4391.83,233.15,0.42,9.42,24.01 +convnext_nano,224,1024.0,4389.78,233.258,2.46,8.37,15.59 +gc_efficientnetv2_rw_t,224,1024.0,4373.41,234.132,1.94,9.97,13.68 +tf_efficientnet_cc_b0_4e,224,1024.0,4373.37,234.134,0.41,9.42,13.31 +tf_efficientnetv2_b3,240,1024.0,4372.06,234.204,1.93,9.95,14.36 +tf_efficientnet_lite2,260,1024.0,4324.79,236.764,0.89,12.9,6.09 +efficientnet_b1,256,1024.0,4298.75,238.198,0.77,12.22,7.79 +deit3_small_patch16_224,224,1024.0,4270.38,239.779,4.25,8.25,22.06 +cs3darknet_focus_l,256,1024.0,4230.07,242.066,4.66,8.03,21.15 +nf_regnet_b1,288,1024.0,4135.98,247.568,1.02,9.2,10.22 +convnext_nano_ols,224,1024.0,4118.16,248.644,2.65,9.38,15.65 +nf_seresnet26,224,1024.0,4112.79,248.966,2.41,7.36,17.4 +nf_ecaresnet26,224,1024.0,4107.39,249.292,2.41,7.36,16.0 +efficientnet_b2,256,1024.0,4105.27,249.424,0.89,12.81,9.11 +cs3darknet_l,256,1024.0,4101.41,249.66,4.86,8.55,21.16 +nf_regnet_b2,272,1024.0,4097.18,249.913,1.22,9.27,14.31 +ecaresnext50t_32x4d,224,1024.0,4074.12,251.332,2.7,10.09,15.41 +ecaresnext26t_32x4d,224,1024.0,4072.14,251.454,2.7,10.09,15.41 +seresnext26t_32x4d,224,1024.0,4061.05,252.141,2.7,10.09,16.81 +repvgg_a2,224,1024.0,4049.32,252.867,5.7,6.26,28.21 +poolformer_s12,224,1024.0,4047.55,252.981,1.82,5.53,11.92 +seresnext26d_32x4d,224,1024.0,4037.54,253.609,2.73,10.19,16.81 +regnetx_016,224,1024.0,4025.84,254.342,1.62,7.93,9.19 +resnet26t,256,1024.0,4021.85,254.598,3.35,10.52,16.01 +flexivit_small,240,1024.0,4011.8,255.236,4.88,9.46,22.06 +edgenext_x_small,288,1024.0,3990.87,256.573,0.68,7.5,2.34 +rexnet_150,224,1024.0,3983.48,257.051,0.9,11.21,9.73 +vit_relpos_small_patch16_rpn_224,224,1024.0,3975.32,257.575,4.24,9.38,21.97 +repvit_m3,224,1024.0,3966.18,258.164,1.89,13.94,10.68 +vit_relpos_small_patch16_224,224,1024.0,3948.05,259.358,4.24,9.38,21.98 +vit_srelpos_small_patch16_224,224,1024.0,3937.22,260.07,4.23,8.49,21.97 +mobileone_s1,224,1024.0,3931.71,260.434,0.86,9.67,4.83 +resnetv2_50,224,1024.0,3890.29,263.208,4.11,11.11,25.55 +eca_botnext26ts_256,256,1024.0,3883.93,263.639,2.46,11.6,10.59 +cs3sedarknet_l,256,1024.0,3835.91,266.94,4.86,8.56,21.91 +ghostnetv2_160,224,1024.0,3826.79,267.576,0.42,7.23,12.39 +resnet34,288,1024.0,3820.15,268.041,6.07,6.18,21.8 +edgenext_small,256,1024.0,3794.31,269.865,1.26,9.07,5.59 +dpn68,224,1024.0,3788.79,270.258,2.35,10.47,12.61 +ese_vovnet19b_dw,288,1024.0,3782.88,270.682,2.22,13.63,6.54 +fbnetv3_g,240,1024.0,3779.41,270.931,1.28,14.87,16.62 +convnext_pico,288,1024.0,3777.8,271.046,2.27,10.08,9.05 +ecaresnetlight,224,1024.0,3759.77,272.346,4.11,8.42,30.16 +eca_halonext26ts,256,1024.0,3745.07,273.414,2.44,11.46,10.76 +dpn68b,224,1024.0,3719.51,275.293,2.35,10.47,12.61 +mixnet_m,224,1024.0,3687.37,277.689,0.36,8.19,5.01 +resnet50,224,1024.0,3687.18,277.708,4.11,11.11,25.56 +efficientnet_em,240,1024.0,3685.78,277.814,3.04,14.34,6.9 +convnext_pico_ols,288,1024.0,3673.49,278.743,2.37,10.74,9.06 +resnet32ts,256,1024.0,3641.96,281.156,4.63,11.58,17.96 +bat_resnext26ts,256,1024.0,3638.35,281.435,2.53,12.51,10.73 +efficientnet_b3_pruned,300,1024.0,3633.29,281.827,1.04,11.86,9.86 +botnet26t_256,256,1024.0,3632.31,281.904,3.32,11.98,12.49 +hrnet_w18_small_v2,224,1024.0,3631.33,281.979,2.62,9.65,15.6 +ecaresnet101d_pruned,224,1024.0,3611.37,283.538,3.48,7.69,24.88 +ecaresnet26t,256,1024.0,3599.02,284.511,3.35,10.53,16.01 +regnetv_040,224,1024.0,3598.04,284.583,4.0,12.29,20.64 +seresnet34,288,1024.0,3583.61,285.735,6.07,6.18,21.96 +resnetv2_50t,224,1024.0,3573.26,286.561,4.32,11.82,25.57 +pvt_v2_b1,224,1024.0,3571.19,286.726,2.04,14.01,14.01 +regnety_016,224,1024.0,3567.37,287.031,1.63,8.04,11.2 +resnext26ts,288,1024.0,3565.74,287.167,3.07,13.31,10.3 +regnety_040,224,1024.0,3565.62,287.173,4.0,12.29,20.65 +resnet33ts,256,1024.0,3563.66,287.335,4.76,11.66,19.68 +resnetv2_50d,224,1024.0,3553.44,288.159,4.35,11.92,25.57 +tf_efficientnet_em,240,1024.0,3544.42,288.894,3.04,14.34,6.9 +halonet26t,256,1024.0,3541.55,289.129,3.19,11.69,12.48 +dla60,224,1024.0,3527.55,290.275,4.26,10.16,22.04 +tf_mixnet_m,224,1024.0,3524.0,290.567,0.36,8.19,5.01 +resnet50c,224,1024.0,3521.04,290.812,4.35,11.92,25.58 +edgenext_small_rw,256,1024.0,3501.76,292.411,1.58,9.51,7.83 +resnet34d,288,1024.0,3491.3,293.29,6.47,7.51,21.82 +convnextv2_pico,224,1024.0,3480.58,294.194,1.37,6.1,9.07 +vit_small_resnet26d_224,224,1024.0,3476.26,294.557,5.04,10.65,63.61 +convit_tiny,224,1024.0,3460.49,295.901,1.26,7.94,5.71 +tresnet_m,224,1024.0,3457.69,296.14,5.75,7.31,31.39 +resnet26,288,1024.0,3457.48,296.158,3.9,12.15,16.0 +seresnext26ts,288,1024.0,3455.43,296.333,3.07,13.32,10.39 +vit_relpos_base_patch32_plus_rpn_256,256,1024.0,3447.98,296.974,7.59,6.63,119.42 +seresnet33ts,256,1024.0,3444.98,297.233,4.76,11.66,19.78 +eca_resnext26ts,288,1024.0,3443.01,297.404,3.07,13.32,10.3 +eca_resnet33ts,256,1024.0,3442.23,297.471,4.76,11.66,19.68 +tf_efficientnet_b2,260,1024.0,3440.99,297.578,1.02,13.83,9.11 +gcresnet33ts,256,1024.0,3424.64,298.998,4.76,11.68,19.88 +gcresnext26ts,288,1024.0,3414.23,299.91,3.07,13.33,10.48 +resnet50t,224,1024.0,3401.57,301.026,4.32,11.82,25.57 +vovnet39a,224,1024.0,3395.56,301.56,7.09,6.73,22.6 +resnet50d,224,1024.0,3380.59,302.894,4.35,11.92,25.58 +efficientvit_b2,224,1024.0,3359.89,304.76,1.6,14.62,24.33 +resnest14d,224,1024.0,3357.89,304.943,2.76,7.33,10.61 +vit_base_patch32_plus_256,256,1024.0,3354.04,305.293,7.7,6.35,119.48 +efficientnet_b0_gn,224,1024.0,3353.74,305.319,0.42,6.75,5.29 +cs3darknet_focus_l,288,1024.0,3340.22,306.556,5.9,10.16,21.15 +selecsls84,224,1024.0,3335.07,307.029,5.9,7.57,50.95 +vit_tiny_patch16_384,384,1024.0,3332.37,307.277,3.16,12.08,5.79 +legacy_seresnet50,224,1024.0,3325.14,307.946,3.88,10.6,28.09 +coatnet_nano_cc_224,224,1024.0,3301.24,310.176,2.13,13.1,13.76 +fastvit_t8,256,1024.0,3298.88,310.398,0.7,8.63,4.03 +resnetblur18,288,1024.0,3292.39,311.01,3.87,5.6,11.69 +repvit_m1_5,224,1024.0,3281.4,312.05,2.31,15.7,14.64 +ese_vovnet39b,224,1024.0,3276.58,312.51,7.09,6.74,24.57 +levit_512,224,1024.0,3274.29,312.728,5.64,10.22,95.17 +haloregnetz_b,224,1024.0,3272.82,312.869,1.97,11.94,11.68 +mobilevit_xs,256,1024.0,3272.76,312.87,0.93,13.62,2.32 +coat_lite_tiny,224,1024.0,3257.39,314.352,1.6,11.65,5.72 +coatnext_nano_rw_224,224,1024.0,3256.31,314.455,2.36,10.68,14.7 +eca_vovnet39b,224,1024.0,3252.14,314.859,7.09,6.74,22.6 +efficientnet_b2,288,1024.0,3249.31,315.132,1.12,16.2,9.11 +resnetaa50,224,1024.0,3245.58,315.495,5.15,11.64,25.56 +coatnet_nano_rw_224,224,1024.0,3238.25,316.209,2.29,13.29,15.14 +cs3darknet_l,288,1024.0,3236.81,316.35,6.16,10.83,21.16 +convnextv2_atto,288,1024.0,3226.1,317.401,0.91,6.3,3.71 +mobileone_s2,224,1024.0,3211.19,318.869,1.34,11.55,7.88 +seresnet50,224,1024.0,3200.07,319.981,4.11,11.13,28.09 +nf_regnet_b3,288,1024.0,3185.16,321.477,1.67,11.84,18.59 +crossvit_small_240,240,1024.0,3184.9,321.506,5.09,11.34,26.86 +res2net50_48w_2s,224,1024.0,3168.87,323.132,4.18,11.72,25.29 +resnetaa34d,288,1024.0,3155.87,324.463,7.33,8.38,21.82 +vit_small_r26_s32_224,224,1024.0,3124.44,327.727,3.54,9.44,36.43 +dla60x,224,1024.0,3106.99,329.567,3.54,13.8,17.35 +efficientnet_b0_g8_gn,224,1024.0,3104.31,329.853,0.66,6.75,6.56 +resnext50_32x4d,224,1024.0,3099.2,330.397,4.26,14.4,25.03 +levit_conv_512,224,1024.0,3078.02,332.67,5.64,10.22,95.17 +skresnet34,224,1024.0,3073.03,333.21,3.67,5.13,22.28 +coat_lite_mini,224,1024.0,3058.66,334.777,2.0,12.25,11.01 +resnet26d,288,1024.0,3053.73,335.317,4.29,13.48,16.01 +mobileone_s0,224,1024.0,3053.01,335.391,1.09,15.48,5.29 +levit_512d,224,1024.0,3045.04,336.274,5.85,11.3,92.5 +cs3sedarknet_l,288,1024.0,3026.08,338.38,6.16,10.83,21.91 +resnetaa50d,224,1024.0,3022.22,338.813,5.39,12.44,25.58 +convnext_tiny,224,1024.0,3015.62,339.555,4.47,13.44,28.59 +eca_nfnet_l0,224,1024.0,3011.21,340.052,4.35,10.47,24.14 +xcit_nano_12_p16_384,384,1024.0,3011.18,340.055,1.64,12.14,3.05 +nfnet_l0,224,1024.0,3000.78,341.23,4.36,10.47,35.07 +resnetrs50,224,1024.0,2989.89,342.477,4.48,12.14,35.69 +efficientnet_cc_b1_8e,240,1024.0,2988.69,342.615,0.75,15.44,39.72 +regnetz_b16,288,1024.0,2987.05,342.79,2.39,16.43,9.72 +seresnet50t,224,1024.0,2984.21,343.128,4.32,11.83,28.1 +ecaresnet50d,224,1024.0,2975.54,344.128,4.35,11.93,25.58 +regnetz_c16,256,1024.0,2971.35,344.607,2.51,16.57,13.46 +densenet121,224,1024.0,2967.84,345.021,2.87,6.9,7.98 +crossvit_15_240,240,1024.0,2967.06,345.11,5.17,12.01,27.53 +resnet50s,224,1024.0,2958.0,346.169,5.47,13.52,25.68 +rexnetr_200,224,1024.0,2955.32,346.483,1.59,15.11,16.52 +mixnet_l,224,1024.0,2926.26,349.918,0.58,10.84,7.33 +xcit_tiny_24_p16_224,224,1024.0,2925.33,350.035,2.34,11.82,12.12 +levit_conv_512d,224,1024.0,2899.99,353.091,5.85,11.3,92.5 +gcresnext50ts,256,1024.0,2897.54,353.393,3.75,15.46,15.67 +lambda_resnet26rpt_256,256,1024.0,2887.51,354.621,3.16,11.87,10.99 +resnext50d_32x4d,224,1024.0,2876.86,355.933,4.5,15.2,25.05 +resnet32ts,288,1024.0,2868.64,356.953,5.86,14.65,17.96 +crossvit_15_dagger_240,240,1024.0,2848.99,359.413,5.5,12.68,28.21 +tiny_vit_21m_224,224,1024.0,2842.09,360.287,4.08,15.96,33.22 +vit_base_resnet26d_224,224,1024.0,2837.87,360.821,6.93,12.34,101.4 +tf_efficientnet_cc_b1_8e,240,1024.0,2835.77,361.09,0.75,15.44,39.72 +cspresnet50,256,1024.0,2834.55,361.245,4.54,11.5,21.62 +mobilevitv2_100,256,1024.0,2833.62,361.358,1.84,16.08,4.9 +resnet33ts,288,1024.0,2829.43,361.9,6.02,14.75,19.68 +vovnet57a,224,1024.0,2821.83,362.874,8.95,7.52,36.64 +deit3_medium_patch16_224,224,1024.0,2805.09,365.038,7.53,10.99,38.85 +inception_next_tiny,224,1024.0,2798.9,365.847,4.19,11.98,28.06 +tf_mixnet_l,224,1024.0,2798.14,365.947,0.58,10.84,7.33 +res2next50,224,1024.0,2797.04,366.091,4.2,13.71,24.67 +dla60_res2next,224,1024.0,2795.54,366.285,3.49,13.17,17.03 +coatnet_pico_rw_224,224,1024.0,2793.27,366.584,1.96,12.91,10.85 +convnext_tiny_hnf,224,1024.0,2770.64,369.577,4.47,13.44,28.59 +gcresnet50t,256,1024.0,2767.9,369.943,5.42,14.67,25.9 +convnextv2_femto,288,1024.0,2762.62,370.652,1.3,7.56,5.23 +tf_efficientnetv2_b3,300,1024.0,2757.15,371.387,3.04,15.74,14.36 +legacy_seresnext50_32x4d,224,1024.0,2750.41,372.297,4.26,14.42,27.56 +ecaresnet50d_pruned,288,1024.0,2749.78,372.383,4.19,10.61,19.94 +res2net50_26w_4s,224,1024.0,2749.69,372.394,4.28,12.61,25.7 +seresnext50_32x4d,224,1024.0,2749.17,372.464,4.26,14.42,27.56 +vgg11_bn,224,1024.0,2746.28,372.857,7.62,7.44,132.87 +resmlp_24_224,224,1024.0,2745.97,372.9,5.96,10.91,30.02 +resnetv2_50x1_bit,224,1024.0,2742.41,373.383,4.23,11.11,25.55 +eca_resnet33ts,288,1024.0,2737.24,374.089,6.02,14.76,19.68 +efficientnetv2_rw_t,288,1024.0,2736.91,374.133,3.19,16.42,13.65 +seresnet33ts,288,1024.0,2734.83,374.417,6.02,14.76,19.78 +nfnet_f0,192,1024.0,2731.03,374.934,7.21,10.16,71.49 +res2net50_14w_8s,224,1024.0,2724.75,375.804,4.21,13.28,25.06 +visformer_small,224,1024.0,2720.95,376.328,4.88,11.43,40.22 +ese_vovnet57b,224,1024.0,2711.8,377.598,8.95,7.52,38.61 +gcresnet33ts,288,1024.0,2705.39,378.493,6.02,14.78,19.88 +cspresnet50d,256,1024.0,2702.61,378.881,4.86,12.55,21.64 +twins_svt_small,224,1024.0,2696.15,379.788,2.82,10.7,24.06 +efficientvit_l1,224,1024.0,2692.51,380.303,5.27,15.85,52.65 +resnetblur50,224,1024.0,2689.65,380.707,5.16,12.02,25.56 +seresnetaa50d,224,1024.0,2682.26,381.757,5.4,12.46,28.11 +fbnetv3_g,288,1024.0,2673.23,383.046,1.77,21.09,16.62 +cspresnet50w,256,1024.0,2671.97,383.228,5.04,12.19,28.12 +dla60_res2net,224,1024.0,2669.84,383.53,4.15,12.34,20.85 +convnext_nano,288,1024.0,2669.05,383.645,4.06,13.84,15.59 +gc_efficientnetv2_rw_t,288,1024.0,2659.37,385.042,3.2,16.45,13.68 +gcvit_xxtiny,224,1024.0,2658.4,385.182,2.14,15.36,12.0 +poolformerv2_s12,224,1024.0,2624.04,390.223,1.83,5.53,11.89 +vit_relpos_medium_patch16_rpn_224,224,1024.0,2618.88,390.989,7.5,12.13,38.73 +mobileone_s3,224,1024.0,2616.83,391.296,1.94,13.85,10.17 +davit_tiny,224,1024.0,2612.7,391.92,4.47,17.08,28.36 +vit_relpos_medium_patch16_224,224,1024.0,2603.89,393.246,7.5,12.13,38.75 +resnet51q,256,1024.0,2602.52,393.454,6.38,16.55,35.7 +gmixer_24_224,224,1024.0,2594.59,394.657,5.28,14.45,24.72 +maxvit_pico_rw_256,256,768.0,2593.58,296.105,1.68,18.77,7.46 +vit_srelpos_medium_patch16_224,224,1024.0,2591.17,395.176,7.49,11.32,38.74 +vit_relpos_medium_patch16_cls_224,224,1024.0,2587.16,395.789,7.55,13.3,38.76 +maxvit_rmlp_pico_rw_256,256,768.0,2587.02,296.857,1.69,21.32,7.52 +nf_regnet_b3,320,1024.0,2582.41,396.514,2.05,14.61,18.59 +res2net50d,224,1024.0,2577.65,397.25,4.52,13.41,25.72 +cs3darknet_focus_x,256,1024.0,2569.33,398.536,8.03,10.69,35.02 +densenetblur121d,224,1024.0,2559.52,400.063,3.11,7.9,8.0 +inception_v3,299,1024.0,2546.29,402.143,5.73,8.97,23.83 +coatnet_0_rw_224,224,1024.0,2545.57,402.256,4.23,15.1,27.44 +repvgg_b1g4,224,1024.0,2545.06,402.332,8.15,10.64,39.97 +regnetx_032,224,1024.0,2534.07,404.077,3.2,11.37,15.3 +twins_pcpvt_small,224,1024.0,2533.92,404.104,3.68,15.51,24.11 +resnetblur50d,224,1024.0,2528.9,404.909,5.4,12.82,25.58 +rexnet_200,224,1024.0,2519.88,406.358,1.56,14.91,16.37 +resnetrs101,192,1024.0,2505.12,408.751,6.04,12.7,63.62 +resnet26t,320,1024.0,2502.87,409.119,5.24,16.44,16.01 +nf_ecaresnet50,224,1024.0,2502.03,409.253,4.21,11.13,25.56 +convnext_nano_ols,288,1024.0,2497.73,409.961,4.38,15.5,15.65 +convnextv2_nano,224,1024.0,2497.72,409.963,2.46,8.37,15.62 +nf_seresnet50,224,1024.0,2494.79,410.425,4.21,11.13,28.09 +regnety_032,224,1024.0,2483.68,412.275,3.2,11.26,19.44 +vit_medium_patch16_gap_240,240,1024.0,2477.36,413.332,8.6,12.57,44.4 +cs3darknet_x,256,1024.0,2475.51,413.641,8.38,11.35,35.05 +densenet169,224,1024.0,2463.83,415.603,3.4,7.3,14.15 +xcit_small_12_p16_224,224,1024.0,2460.07,416.237,4.82,12.57,26.25 +cspresnext50,256,1024.0,2452.36,417.546,4.05,15.86,20.57 +mobilevit_s,256,1024.0,2447.35,418.395,1.86,17.03,5.58 +darknet53,256,1024.0,2439.82,419.693,9.31,12.39,41.61 +darknetaa53,256,1024.0,2432.07,421.03,7.97,12.39,36.02 +edgenext_small,320,1024.0,2429.25,421.516,1.97,14.16,5.59 +seresnext26t_32x4d,288,1024.0,2412.74,424.404,4.46,16.68,16.81 +sehalonet33ts,256,1024.0,2403.77,425.986,3.55,14.7,13.69 +seresnext26d_32x4d,288,1024.0,2391.16,428.231,4.51,16.85,16.81 +resnet61q,256,1024.0,2368.17,432.39,7.8,17.01,36.85 +fastvit_t12,256,1024.0,2356.34,434.562,1.42,12.42,7.55 +vit_base_r26_s32_224,224,1024.0,2354.84,434.838,6.76,11.54,101.38 +focalnet_tiny_srf,224,1024.0,2353.35,435.113,4.42,16.32,28.43 +resnetv2_101,224,1024.0,2342.24,437.176,7.83,16.23,44.54 +cs3sedarknet_x,256,1024.0,2329.01,439.66,8.38,11.35,35.4 +nf_resnet50,256,1024.0,2318.52,441.645,5.46,14.52,25.56 +xcit_nano_12_p8_224,224,1024.0,2310.67,443.15,2.16,15.71,3.05 +resnest26d,224,1024.0,2309.28,443.418,3.64,9.97,17.07 +coatnet_rmlp_nano_rw_224,224,1024.0,2308.34,443.598,2.51,18.21,15.15 +resnetv2_50,288,1024.0,2302.9,444.644,6.79,18.37,25.55 +ecaresnet50t,256,1024.0,2299.59,445.285,5.64,15.45,25.57 +gmlp_s16_224,224,1024.0,2291.16,446.925,4.42,15.1,19.42 +efficientnet_lite3,300,1024.0,2290.17,447.117,1.65,21.85,8.2 +dm_nfnet_f0,192,1024.0,2271.28,450.836,7.21,10.16,71.49 +resnet101,224,1024.0,2263.99,452.287,7.83,16.23,44.55 +ecaresnet26t,320,1024.0,2258.47,453.393,5.24,16.44,16.01 +edgenext_base,256,1024.0,2256.96,453.695,3.85,15.58,18.51 +efficientnetv2_s,288,1024.0,2251.36,454.825,4.75,20.13,21.46 +skresnet50,224,1024.0,2250.82,454.933,4.11,12.5,25.8 +dla102,224,1024.0,2248.24,455.455,7.19,14.18,33.27 +edgenext_small_rw,320,1024.0,2240.98,456.929,2.46,14.85,7.83 +ecaresnetlight,288,1024.0,2235.21,458.11,6.79,13.91,30.16 +dpn68b,288,1024.0,2234.13,458.331,3.89,17.3,12.61 +gcresnext50ts,288,1024.0,2232.45,458.676,4.75,19.57,15.67 +fastvit_s12,256,1024.0,2229.72,459.239,1.82,13.67,9.47 +fastvit_sa12,256,1024.0,2225.03,460.206,1.96,13.83,11.58 +focalnet_tiny_lrf,224,1024.0,2222.33,460.766,4.49,17.76,28.65 +resnetv2_101d,224,1024.0,2216.51,461.976,8.07,17.04,44.56 +resnet101c,224,1024.0,2202.12,464.995,8.08,17.04,44.57 +vit_base_resnet50d_224,224,1024.0,2199.36,465.578,8.68,16.1,110.97 +regnetv_040,288,1024.0,2190.89,467.375,6.6,20.3,20.64 +vit_medium_patch16_gap_256,256,1024.0,2190.03,467.563,9.78,14.29,38.86 +resnet50,288,1024.0,2185.5,468.532,6.8,18.37,25.56 +gcresnet50t,288,1024.0,2180.99,469.5,6.86,18.57,25.9 +regnety_040,288,1024.0,2169.28,472.031,6.61,20.3,20.65 +vgg13,224,1024.0,2159.6,474.15,11.31,12.25,133.05 +eva02_small_patch14_224,224,1024.0,2151.59,475.915,5.53,12.34,21.62 +vit_medium_patch16_reg4_gap_256,256,1024.0,2149.02,476.485,9.93,14.51,38.87 +efficientnetv2_rw_s,288,1024.0,2146.83,476.971,4.91,21.41,23.94 +ecaresnet101d_pruned,288,1024.0,2141.83,478.084,5.75,12.71,24.88 +mobilevitv2_125,256,1024.0,2139.71,478.555,2.86,20.1,7.48 +vit_medium_patch16_reg4_256,256,1024.0,2136.17,479.352,9.97,14.56,38.87 +skresnet50d,224,1024.0,2134.1,479.815,4.36,13.31,25.82 +pvt_v2_b2,224,1024.0,2119.72,483.066,3.9,24.96,25.36 +hrnet_w18_ssld,224,1024.0,2114.47,484.27,4.32,16.31,21.3 +convnextv2_pico,288,1024.0,2113.62,484.464,2.27,10.08,9.07 +eva02_tiny_patch14_336,336,1024.0,2113.11,484.582,3.14,13.85,5.76 +efficientvit_l2,224,1024.0,2109.14,485.494,6.97,19.58,63.71 +hrnet_w18,224,1024.0,2100.77,487.428,4.32,16.31,21.3 +regnetx_040,224,1024.0,2099.85,487.636,3.99,12.2,22.12 +tf_efficientnet_lite3,300,1024.0,2090.5,489.823,1.65,21.85,8.2 +wide_resnet50_2,224,1024.0,2081.66,491.904,11.43,14.4,68.88 +resnet51q,288,1024.0,2069.71,494.744,8.07,20.94,35.7 +poolformer_s24,224,1024.0,2067.46,495.278,3.41,10.68,21.39 +sebotnet33ts_256,256,512.0,2066.45,247.758,3.89,17.46,13.7 +efficientformer_l3,224,1024.0,2064.62,495.963,3.93,12.01,31.41 +resnest50d_1s4x24d,224,1024.0,2057.55,497.667,4.43,13.57,25.68 +gcvit_xtiny,224,1024.0,2053.45,498.662,2.93,20.26,19.98 +cspdarknet53,256,1024.0,2048.51,499.863,6.57,16.81,27.64 +crossvit_18_240,240,1024.0,2029.53,504.539,8.21,16.14,43.27 +mixnet_xl,224,1024.0,2029.05,504.653,0.93,14.57,11.9 +vit_base_patch32_384,384,1024.0,2028.15,504.881,12.67,12.14,88.3 +efficientnet_b3,288,1024.0,2027.72,504.989,1.63,21.49,12.23 +vit_base_patch32_clip_384,384,1024.0,2026.31,505.34,12.67,12.14,88.3 +resnet50t,288,1024.0,2024.16,505.879,7.14,19.53,25.57 +dla102x,224,1024.0,2023.35,506.08,5.89,19.42,26.31 +legacy_seresnet101,224,1024.0,2012.58,508.788,7.61,15.74,49.33 +resnet50d,288,1024.0,2012.14,508.9,7.19,19.7,25.58 +cs3edgenet_x,256,1024.0,2002.36,511.384,11.53,12.92,47.82 +resnetaa101d,224,1024.0,1994.67,513.346,9.12,17.56,44.57 +repvgg_b1,224,1024.0,1994.42,513.418,13.16,10.64,57.42 +res2net50_26w_6s,224,1024.0,1979.48,517.295,6.33,15.28,37.05 +regnetz_d32,256,1024.0,1978.14,517.642,5.98,23.74,27.58 +cs3sedarknet_xdw,256,1024.0,1970.5,519.653,5.97,17.18,21.6 +resnetaa50,288,1024.0,1968.61,520.152,8.52,19.24,25.56 +seresnet101,224,1024.0,1966.15,520.803,7.84,16.27,49.33 +resnet101s,224,1024.0,1964.56,521.226,9.19,18.64,44.67 +cs3darknet_x,288,1024.0,1958.87,522.739,10.6,14.36,35.05 +crossvit_18_dagger_240,240,1024.0,1955.55,523.625,8.65,16.91,44.27 +swin_tiny_patch4_window7_224,224,1024.0,1951.67,524.668,4.51,17.06,28.29 +tresnet_v2_l,224,1024.0,1947.69,525.738,8.85,16.34,46.17 +ese_vovnet39b,288,1024.0,1941.03,527.543,11.71,11.13,24.57 +regnetz_d8,256,1024.0,1940.13,527.785,3.97,23.74,23.37 +tf_efficientnetv2_s,300,1024.0,1939.51,527.958,5.35,22.73,21.46 +regnetz_c16,320,1024.0,1933.29,529.65,3.92,25.88,13.46 +coatnet_bn_0_rw_224,224,1024.0,1926.49,531.525,4.48,18.41,27.44 +darknet53,288,1024.0,1924.44,532.092,11.78,15.68,41.61 +resnext101_32x4d,224,1024.0,1923.83,532.261,8.01,21.23,44.18 +coatnet_rmlp_0_rw_224,224,1024.0,1920.22,533.259,4.52,21.26,27.45 +xcit_tiny_12_p16_384,384,1024.0,1917.57,533.997,3.64,18.25,6.72 +darknetaa53,288,1024.0,1915.93,534.454,10.08,15.68,36.02 +mobileone_s4,224,1024.0,1915.84,534.474,3.04,17.74,14.95 +maxxvit_rmlp_nano_rw_256,256,768.0,1913.61,401.326,4.17,21.53,16.78 +nest_tiny,224,1024.0,1909.31,536.303,5.24,14.75,17.06 +regnetz_040,256,1024.0,1906.99,536.946,4.06,24.19,27.12 +nf_regnet_b4,320,1024.0,1906.99,536.957,3.29,19.88,30.21 +seresnet50,288,1024.0,1902.22,538.306,6.8,18.39,28.09 +pvt_v2_b2_li,224,1024.0,1897.86,539.539,3.77,25.04,22.55 +regnetz_040_h,256,1024.0,1896.27,539.981,4.12,24.29,28.94 +densenet201,224,1024.0,1895.14,540.319,4.34,7.85,20.01 +halonet50ts,256,1024.0,1887.53,542.495,5.3,19.2,22.73 +nest_tiny_jx,224,1024.0,1885.06,543.199,5.24,14.75,17.06 +vgg13_bn,224,1024.0,1884.94,543.241,11.33,12.25,133.05 +regnetx_080,224,1024.0,1883.47,543.661,8.02,14.06,39.57 +vit_large_patch32_224,224,1024.0,1882.39,543.977,15.27,11.11,305.51 +ecaresnet101d,224,1024.0,1880.92,544.404,8.08,17.07,44.57 +resnet61q,288,1024.0,1874.14,546.373,9.87,21.52,36.85 +nf_resnet101,224,1024.0,1864.42,549.218,8.01,16.23,44.55 +cs3se_edgenet_x,256,1024.0,1859.86,550.568,11.53,12.94,50.72 +repvit_m2_3,224,1024.0,1852.95,552.61,4.57,26.21,23.69 +resmlp_36_224,224,1024.0,1843.66,555.406,8.91,16.33,44.69 +cs3sedarknet_x,288,1024.0,1843.16,555.556,10.6,14.37,35.4 +resnext50_32x4d,288,1024.0,1841.23,556.139,7.04,23.81,25.03 +convnext_small,224,1024.0,1838.66,556.915,8.71,21.56,50.22 +convnext_tiny,288,1024.0,1835.18,557.972,7.39,22.21,28.59 +resnetv2_50d_gn,224,1024.0,1829.29,559.767,4.38,11.92,25.57 +resnetaa50d,288,1024.0,1827.2,560.408,8.92,20.57,25.58 +pit_b_224,224,1024.0,1823.77,561.458,10.56,16.6,73.76 +eca_nfnet_l0,288,1024.0,1822.69,561.796,7.12,17.29,24.14 +nfnet_l0,288,1024.0,1817.7,563.332,7.13,17.29,35.07 +sequencer2d_s,224,1024.0,1816.41,563.738,4.96,11.31,27.65 +pit_b_distilled_224,224,1024.0,1810.4,565.6,10.63,16.67,74.79 +nf_resnet50,288,1024.0,1794.38,570.655,6.88,18.37,25.56 +twins_pcpvt_base,224,1024.0,1790.37,571.935,6.46,21.35,43.83 +rexnetr_200,288,768.0,1782.92,430.745,2.62,24.96,16.52 +seresnet50t,288,1024.0,1780.59,575.079,7.14,19.55,28.1 +cait_xxs24_224,224,1024.0,1779.24,575.513,2.53,20.29,11.96 +swin_s3_tiny_224,224,1024.0,1777.31,576.139,4.64,19.13,28.33 +resnet50_gn,224,1024.0,1776.88,576.279,4.14,11.11,25.56 +ecaresnet50d,288,1024.0,1775.84,576.616,7.19,19.72,25.58 +resnetblur101d,224,1024.0,1765.86,579.878,9.12,17.94,44.57 +densenet121,288,1024.0,1761.12,581.437,4.74,11.41,7.98 +coat_lite_small,224,1024.0,1760.12,581.767,3.96,22.09,19.84 +mixer_b16_224,224,1024.0,1758.48,582.299,12.62,14.53,59.88 +mobilevitv2_150,256,768.0,1748.31,439.266,4.09,24.11,10.59 +efficientvit_b3,224,1024.0,1742.56,587.628,3.99,26.9,48.65 +rexnetr_300,224,1024.0,1736.82,589.571,3.39,22.16,34.81 +vgg16,224,1024.0,1730.88,591.595,15.47,13.56,138.36 +maxxvitv2_nano_rw_256,256,768.0,1724.32,445.384,6.12,19.66,23.7 +res2net101_26w_4s,224,1024.0,1723.01,594.296,8.1,18.45,45.21 +resnext50d_32x4d,288,1024.0,1717.01,596.374,7.44,25.13,25.05 +maxvit_nano_rw_256,256,768.0,1709.05,449.363,4.26,25.76,15.45 +legacy_seresnext101_32x4d,224,1024.0,1707.02,599.865,8.02,21.26,48.96 +seresnext101_32x4d,224,1024.0,1706.74,599.963,8.02,21.26,48.96 +maxvit_rmlp_nano_rw_256,256,768.0,1705.93,450.183,4.28,27.4,15.5 +resnetv2_50d_frn,224,1024.0,1703.71,601.028,4.33,11.92,25.59 +mobilevitv2_175,256,512.0,1701.95,300.817,5.54,28.13,14.25 +tf_efficientnet_b3,300,1024.0,1694.25,604.385,1.87,23.83,12.23 +convnext_tiny_hnf,288,1024.0,1681.52,608.96,7.39,22.21,28.59 +ese_vovnet39b_evos,224,1024.0,1671.22,612.716,7.07,6.74,24.58 +res2net50_26w_8s,224,1024.0,1656.9,618.009,8.37,17.95,48.4 +resnet101d,256,1024.0,1654.59,618.871,10.55,22.25,44.57 +tresnet_l,224,1024.0,1652.13,619.794,10.9,11.9,55.99 +res2net101d,224,1024.0,1652.09,619.808,8.35,19.25,45.23 +mixer_l32_224,224,1024.0,1651.22,620.129,11.27,19.86,206.94 +regnetz_b16_evos,224,1024.0,1648.87,621.016,1.43,9.95,9.74 +botnet50ts_256,256,512.0,1645.51,311.14,5.54,22.23,22.74 +efficientnet_b3,320,1024.0,1641.76,623.708,2.01,26.52,12.23 +seresnext50_32x4d,288,1024.0,1638.34,625.012,7.04,23.82,27.56 +coatnet_0_224,224,512.0,1634.58,313.22,4.43,21.14,25.04 +swinv2_cr_tiny_224,224,1024.0,1629.27,628.491,4.66,28.45,28.33 +inception_next_small,224,1024.0,1628.58,628.755,8.36,19.27,49.37 +resnetv2_152,224,1024.0,1628.46,628.801,11.55,22.56,60.19 +regnetx_064,224,1024.0,1628.2,628.898,6.49,16.37,26.21 +hrnet_w32,224,1024.0,1627.55,629.157,8.97,22.02,41.23 +convnextv2_tiny,224,1024.0,1627.26,629.266,4.47,13.44,28.64 +seresnetaa50d,288,1024.0,1622.33,631.178,8.92,20.59,28.11 +davit_small,224,1024.0,1614.32,634.313,8.69,27.54,49.75 +regnety_040_sgn,224,1024.0,1612.57,634.996,4.03,12.29,20.65 +legacy_xception,299,768.0,1604.43,478.663,8.4,35.83,22.86 +swinv2_cr_tiny_ns_224,224,1024.0,1600.49,639.793,4.66,28.45,28.33 +resnetblur50,288,1024.0,1598.7,640.511,8.52,19.87,25.56 +efficientnet_el,300,1024.0,1595.26,641.889,8.0,30.7,10.59 +efficientnet_el_pruned,300,1024.0,1592.53,642.988,8.0,30.7,10.59 +resnet152,224,1024.0,1589.58,644.183,11.56,22.56,60.19 +deit_base_patch16_224,224,1024.0,1581.19,647.603,16.87,16.49,86.57 +cs3edgenet_x,288,1024.0,1577.26,649.216,14.59,16.36,47.82 +deit_base_distilled_patch16_224,224,1024.0,1575.74,649.842,16.95,16.58,87.34 +vit_base_patch16_224,224,1024.0,1574.94,650.173,16.87,16.49,86.57 +vit_base_patch16_224_miil,224,1024.0,1574.63,650.301,16.88,16.5,94.4 +vit_base_patch16_clip_224,224,1024.0,1574.46,650.371,16.87,16.49,86.57 +vit_base_patch16_siglip_224,224,1024.0,1571.54,651.577,17.02,16.71,92.88 +resnetv2_152d,224,1024.0,1564.52,654.501,11.8,23.36,60.2 +vit_base_patch16_gap_224,224,1024.0,1563.13,655.085,16.78,16.41,86.57 +halo2botnet50ts_256,256,1024.0,1562.09,655.52,5.02,21.78,22.64 +resnet152c,224,1024.0,1558.11,657.195,11.8,23.36,60.21 +ese_vovnet99b,224,1024.0,1554.99,658.512,16.51,11.27,63.2 +vit_small_resnet50d_s16_224,224,1024.0,1551.97,659.792,13.0,21.12,57.53 +nf_seresnet101,224,1024.0,1549.92,660.662,8.02,16.27,49.33 +nf_ecaresnet101,224,1024.0,1549.88,660.683,8.01,16.27,44.55 +tf_efficientnet_el,300,1024.0,1543.58,663.384,8.0,30.7,10.59 +coatnet_rmlp_1_rw_224,224,1024.0,1542.97,663.643,7.44,28.08,41.69 +nfnet_f0,256,1024.0,1541.8,664.144,12.62,18.05,71.49 +vgg16_bn,224,1024.0,1533.25,667.85,15.5,13.56,138.37 +resnest50d,224,1024.0,1530.42,669.084,5.4,14.36,27.48 +caformer_s18,224,1024.0,1528.28,670.023,3.9,15.18,26.34 +pvt_v2_b3,224,1024.0,1527.57,670.328,6.71,33.8,45.24 +densenetblur121d,288,1024.0,1521.38,673.062,5.14,13.06,8.0 +maxvit_tiny_rw_224,224,768.0,1520.98,504.928,4.93,28.54,29.06 +mvitv2_tiny,224,1024.0,1518.09,674.509,4.7,21.16,24.17 +vit_base_patch16_rpn_224,224,1024.0,1516.7,675.134,16.78,16.41,86.54 +convnextv2_nano,288,768.0,1514.74,507.006,4.06,13.84,15.62 +regnety_032,288,1024.0,1514.59,676.077,5.29,18.61,19.44 +rexnet_300,224,1024.0,1508.74,678.701,3.44,22.4,34.71 +resnetblur50d,288,1024.0,1506.45,679.732,8.92,21.19,25.58 +deit3_base_patch16_224,224,1024.0,1497.14,683.959,16.87,16.49,86.59 +convit_small,224,1024.0,1494.54,685.148,5.76,17.87,27.78 +vit_base_patch32_clip_448,448,1024.0,1493.83,685.476,17.21,16.49,88.34 +dla169,224,1024.0,1487.25,688.504,11.6,20.2,53.39 +skresnext50_32x4d,224,1024.0,1470.99,696.12,4.5,17.18,27.48 +xcit_tiny_12_p8_224,224,1024.0,1465.13,698.903,4.81,23.6,6.71 +vit_small_patch16_36x1_224,224,1024.0,1460.65,701.044,12.63,24.59,64.67 +ecaresnet50t,320,1024.0,1451.46,705.484,8.82,24.13,25.57 +beitv2_base_patch16_224,224,1024.0,1448.02,707.161,16.87,16.49,86.53 +vgg19,224,1024.0,1441.93,710.149,19.63,14.86,143.67 +beit_base_patch16_224,224,1024.0,1440.48,710.862,16.87,16.49,86.53 +hrnet_w30,224,1024.0,1436.17,712.996,8.15,21.21,37.71 +edgenext_base,320,1024.0,1435.98,713.087,6.01,24.32,18.51 +resnet152s,224,1024.0,1434.4,713.876,12.92,24.96,60.32 +convformer_s18,224,1024.0,1427.19,717.481,3.96,15.82,26.77 +resnetv2_50d_evos,224,1024.0,1426.57,717.793,4.33,11.92,25.59 +focalnet_small_srf,224,1024.0,1426.35,717.904,8.62,26.26,49.89 +sequencer2d_m,224,1024.0,1413.9,724.228,6.55,14.26,38.31 +vit_relpos_base_patch16_rpn_224,224,1024.0,1408.36,727.069,16.8,17.63,86.41 +volo_d1_224,224,1024.0,1407.83,727.348,6.94,24.43,26.63 +regnety_080,224,1024.0,1407.5,727.512,8.0,17.97,39.18 +vit_small_patch16_18x2_224,224,1024.0,1407.09,727.729,12.63,24.59,64.67 +gcvit_tiny,224,1024.0,1405.32,728.65,4.79,29.82,28.22 +dpn92,224,1024.0,1404.08,729.292,6.54,18.21,37.67 +vit_relpos_base_patch16_224,224,1024.0,1402.98,729.864,16.8,17.63,86.43 +resnetv2_101,288,1024.0,1402.28,730.227,12.94,26.83,44.54 +regnetx_160,224,1024.0,1400.84,730.974,15.99,25.52,54.28 +dla102x2,224,1024.0,1395.12,733.975,9.34,29.91,41.28 +legacy_seresnet152,224,1024.0,1394.86,734.109,11.33,22.08,66.82 +vit_relpos_base_patch16_clsgap_224,224,1024.0,1394.83,734.131,16.88,17.72,86.43 +vit_relpos_base_patch16_cls_224,224,1024.0,1392.12,735.556,16.88,17.72,86.43 +vit_small_patch16_384,384,1024.0,1390.73,736.291,12.45,24.15,22.2 +poolformer_s36,224,1024.0,1388.46,737.493,5.0,15.82,30.86 +vit_base_patch16_clip_quickgelu_224,224,1024.0,1388.13,737.672,16.87,16.49,86.19 +densenet161,224,1024.0,1384.23,739.75,7.79,11.06,28.68 +flexivit_base,240,1024.0,1380.45,741.777,19.35,18.92,86.59 +efficientformerv2_s0,224,1024.0,1377.72,743.244,0.41,5.3,3.6 +seresnet152,224,1024.0,1371.27,746.737,11.57,22.61,66.82 +poolformerv2_s24,224,1024.0,1356.43,754.905,3.42,10.68,21.34 +resnet101,288,1024.0,1354.29,756.102,12.95,26.83,44.55 +focalnet_small_lrf,224,1024.0,1339.63,764.378,8.74,28.61,50.34 +inception_v4,299,1024.0,1338.22,765.183,12.28,15.09,42.68 +repvgg_b2,224,1024.0,1336.97,765.895,20.45,12.9,89.02 +nf_regnet_b4,384,1024.0,1327.28,771.488,4.7,28.61,30.21 +repvgg_b2g4,224,1024.0,1323.55,773.658,12.63,12.9,61.76 +eca_nfnet_l1,256,1024.0,1319.97,775.763,9.62,22.04,41.41 +fastvit_sa24,256,1024.0,1310.4,781.428,3.79,23.92,21.55 +xcit_small_24_p16_224,224,1024.0,1307.21,783.335,9.1,23.63,47.67 +twins_pcpvt_large,224,1024.0,1303.57,785.524,9.53,30.21,60.99 +vit_base_patch16_xp_224,224,1024.0,1302.82,785.975,16.85,16.49,86.51 +maxvit_tiny_tf_224,224,768.0,1301.05,590.28,5.42,31.21,30.92 +deit3_small_patch16_384,384,1024.0,1298.34,788.686,12.45,24.15,22.21 +coatnet_rmlp_1_rw2_224,224,1024.0,1296.36,789.892,7.71,32.74,41.72 +coatnet_1_rw_224,224,1024.0,1295.8,790.234,7.63,27.22,41.72 +regnety_080_tv,224,1024.0,1291.63,792.778,8.51,19.73,39.38 +vgg19_bn,224,1024.0,1290.82,793.286,19.66,14.86,143.68 +mixnet_xxl,224,768.0,1286.88,596.774,2.04,23.43,23.96 +dm_nfnet_f0,256,1024.0,1286.75,795.79,12.62,18.05,71.49 +efficientnet_b4,320,768.0,1280.17,599.91,3.13,34.76,19.34 +hrnet_w18_ssld,288,1024.0,1279.49,800.308,7.14,26.96,21.3 +maxxvit_rmlp_tiny_rw_256,256,768.0,1274.84,602.417,6.36,32.69,29.64 +efficientformerv2_s1,224,1024.0,1271.59,805.28,0.67,7.66,6.19 +convnext_base,224,1024.0,1268.86,807.011,15.38,28.75,88.59 +mobilevitv2_200,256,512.0,1268.57,403.59,7.22,32.15,18.45 +regnetz_d32,320,1024.0,1265.97,808.844,9.33,37.08,27.58 +efficientnetv2_s,384,1024.0,1265.12,809.401,8.44,35.77,21.46 +twins_svt_base,224,1024.0,1261.93,811.442,8.36,20.42,56.07 +wide_resnet50_2,288,1024.0,1242.89,823.878,18.89,23.81,68.88 +regnetz_d8,320,1024.0,1242.36,824.221,6.19,37.08,23.37 +regnetz_040,320,512.0,1238.82,413.274,6.35,37.78,27.12 +regnetz_040_h,320,512.0,1231.07,415.879,6.43,37.94,28.94 +nest_small,224,1024.0,1230.37,832.252,9.41,22.88,38.35 +tf_efficientnetv2_s,384,1024.0,1224.58,836.191,8.44,35.77,21.46 +nest_small_jx,224,1024.0,1220.76,838.798,9.41,22.88,38.35 +maxvit_tiny_rw_256,256,768.0,1213.37,632.937,6.44,37.27,29.07 +maxvit_rmlp_tiny_rw_256,256,768.0,1210.44,634.468,6.47,39.84,29.15 +vit_base_patch16_siglip_256,256,1024.0,1208.23,847.511,22.23,21.83,92.93 +efficientnetv2_rw_s,384,1024.0,1208.22,847.514,8.72,38.03,23.94 +resnetaa101d,288,1024.0,1207.75,847.844,15.07,29.03,44.57 +swin_small_patch4_window7_224,224,1024.0,1206.81,848.507,8.77,27.47,49.61 +dpn98,224,1024.0,1206.02,849.061,11.73,25.2,61.57 +swinv2_tiny_window8_256,256,1024.0,1197.34,855.217,5.96,24.57,28.35 +cs3se_edgenet_x,320,1024.0,1196.49,855.827,18.01,20.21,50.72 +resnext101_64x4d,224,1024.0,1196.17,856.053,15.52,31.21,83.46 +cait_xxs36_224,224,1024.0,1193.04,858.302,3.77,30.34,17.3 +resnext101_32x8d,224,1024.0,1188.06,861.896,16.48,31.21,88.79 +seresnet101,288,1024.0,1178.9,868.597,12.95,26.87,49.33 +resnet152d,256,1024.0,1177.58,869.569,15.41,30.51,60.21 +wide_resnet101_2,224,1024.0,1172.43,873.387,22.8,21.23,126.89 +crossvit_base_240,240,1024.0,1171.25,874.269,20.13,22.67,105.03 +resnet200,224,1024.0,1159.72,882.961,15.07,32.19,64.67 +inception_resnet_v2,299,1024.0,1156.1,885.722,13.18,25.06,55.84 +rexnetr_300,288,512.0,1153.3,443.932,5.59,36.61,34.81 +resnetrs101,288,1024.0,1142.76,896.066,13.56,28.53,63.62 +davit_base,224,1024.0,1141.57,896.996,15.36,36.72,87.95 +tresnet_xl,224,1024.0,1136.08,901.333,15.2,15.34,78.44 +coat_tiny,224,1024.0,1135.01,902.184,4.35,27.2,5.5 +tnt_s_patch16_224,224,1024.0,1134.91,902.262,5.24,24.37,23.76 +mvitv2_small,224,1024.0,1131.08,905.308,7.0,28.08,34.87 +ecaresnet101d,288,1024.0,1130.54,905.749,13.35,28.19,44.57 +vit_base_patch16_reg8_gap_256,256,1024.0,1124.62,910.517,22.6,22.09,86.62 +maxvit_tiny_pm_256,256,768.0,1121.86,684.565,6.31,40.82,30.09 +hrnet_w40,224,1024.0,1119.9,914.356,12.75,25.29,57.56 +convnext_small,288,1024.0,1119.4,914.761,14.39,35.65,50.22 +nfnet_f1,224,1024.0,1117.42,916.384,17.87,22.94,132.63 +efficientnet_lite4,380,768.0,1117.23,687.403,4.04,45.66,13.01 +pvt_v2_b4,224,1024.0,1107.81,924.328,9.83,48.14,62.56 +seresnext101_64x4d,224,1024.0,1107.71,924.416,15.53,31.25,88.23 +seresnext101_32x8d,224,1024.0,1101.53,929.602,16.48,31.25,93.57 +resnetv2_50d_gn,288,1024.0,1100.54,930.437,7.24,19.7,25.57 +coatnet_1_224,224,512.0,1098.68,466.003,8.28,31.3,42.23 +repvgg_b3g4,224,1024.0,1097.61,932.923,17.89,15.1,83.83 +samvit_base_patch16_224,224,1024.0,1097.38,933.118,16.83,17.2,86.46 +eva02_base_patch16_clip_224,224,1024.0,1094.75,935.361,16.9,18.91,86.26 +mvitv2_small_cls,224,1024.0,1086.56,942.407,7.04,28.17,34.87 +vit_large_r50_s32_224,224,1024.0,1082.13,946.268,19.45,22.22,328.99 +inception_next_base,224,1024.0,1079.66,948.435,14.85,25.69,86.67 +resnet50_gn,288,1024.0,1076.3,951.4,6.85,18.37,25.56 +pvt_v2_b5,224,1024.0,1073.94,953.474,11.39,44.23,81.96 +seresnext101d_32x8d,224,1024.0,1071.41,955.74,16.72,32.05,93.59 +efficientnetv2_m,320,1024.0,1070.2,956.818,11.01,39.97,54.14 +vit_small_r26_s32_384,384,1024.0,1066.07,960.526,10.24,27.67,36.47 +resnetblur101d,288,1024.0,1059.66,966.334,15.07,29.65,44.57 +resnet101d,320,1024.0,1045.1,979.801,16.48,34.77,44.57 +regnetz_e8,256,1024.0,1042.94,981.82,9.91,40.94,57.7 +tf_efficientnet_lite4,380,768.0,1038.99,739.169,4.04,45.66,13.01 +xception41p,299,768.0,1034.81,742.157,9.25,39.86,26.91 +repvgg_b3,224,1024.0,1031.23,992.974,29.16,15.1,123.09 +xcit_tiny_24_p16_384,384,1024.0,1026.84,997.227,6.87,34.29,12.12 +resnetrs152,256,1024.0,1024.28,999.711,15.59,30.83,86.62 +seresnet152d,256,1024.0,1022.13,1001.814,15.42,30.56,66.84 +swinv2_cr_small_224,224,1024.0,1005.65,1018.232,9.07,50.27,49.7 +vit_base_patch16_plus_240,240,1024.0,1004.91,1018.982,26.31,22.07,117.56 +regnetz_b16_evos,288,768.0,997.65,769.796,2.36,16.43,9.74 +focalnet_base_srf,224,1024.0,995.12,1029.007,15.28,35.01,88.15 +swinv2_cr_small_ns_224,224,1024.0,993.65,1030.528,9.08,50.27,49.7 +convnextv2_small,224,1024.0,992.07,1032.17,8.71,21.56,50.32 +convnextv2_tiny,288,768.0,989.58,776.074,7.39,22.21,28.64 +vit_small_patch8_224,224,1024.0,985.02,1039.56,16.76,32.86,21.67 +regnety_040_sgn,288,1024.0,979.5,1045.407,6.67,20.3,20.65 +regnetz_c16_evos,256,768.0,978.11,785.174,2.48,16.57,13.49 +vit_base_r50_s16_224,224,1024.0,971.42,1054.108,20.94,27.88,97.89 +hrnet_w44,224,1024.0,967.41,1058.48,14.94,26.92,67.06 +efficientformer_l7,224,1024.0,966.26,1059.742,10.17,24.45,82.23 +hrnet_w48_ssld,224,1024.0,963.59,1062.678,17.34,28.56,77.47 +hrnet_w48,224,1024.0,962.72,1063.645,17.34,28.56,77.47 +poolformer_m36,224,1024.0,959.97,1066.674,8.8,22.02,56.17 +resnet152,288,1024.0,955.06,1072.17,19.11,37.28,60.19 +cait_s24_224,224,1024.0,951.69,1075.97,9.35,40.58,46.92 +tiny_vit_21m_384,384,512.0,946.04,541.193,11.94,46.84,21.23 +focalnet_base_lrf,224,1024.0,946.02,1082.418,15.43,38.13,88.75 +dm_nfnet_f1,224,1024.0,943.8,1084.958,17.87,22.94,132.63 +efficientnet_b3_gn,288,512.0,943.58,542.602,1.74,23.35,11.73 +efficientnetv2_rw_m,320,1024.0,934.42,1095.856,12.72,47.14,53.24 +vit_relpos_base_patch16_plus_240,240,1024.0,933.99,1096.357,26.21,23.41,117.38 +gmlp_b16_224,224,1024.0,931.13,1099.724,15.78,30.21,73.08 +fastvit_sa36,256,1024.0,928.53,1102.809,5.62,34.02,31.53 +xception41,299,768.0,927.7,827.842,9.28,39.86,26.97 +eva02_small_patch14_336,336,1024.0,926.94,1104.696,12.41,27.7,22.13 +maxvit_rmlp_small_rw_224,224,768.0,923.72,831.408,10.48,42.44,64.9 +sequencer2d_l,224,1024.0,917.56,1115.991,9.74,22.12,54.3 +poolformerv2_s36,224,1024.0,914.51,1119.704,5.01,15.82,30.79 +xcit_medium_24_p16_224,224,1024.0,901.57,1135.786,16.13,31.71,84.4 +coat_mini,224,1024.0,900.78,1136.787,6.82,33.68,10.34 +coat_lite_medium,224,1024.0,898.48,1139.693,9.81,40.06,44.57 +swin_s3_small_224,224,768.0,882.63,870.118,9.43,37.84,49.74 +efficientnet_b3_g8_gn,288,512.0,882.63,580.072,2.59,23.35,14.25 +dpn131,224,1024.0,878.67,1165.389,16.09,32.97,79.25 +levit_384_s8,224,512.0,874.93,585.181,9.98,35.86,39.12 +efficientnet_b4,384,512.0,874.47,585.489,4.51,50.04,19.34 +vit_medium_patch16_gap_384,384,1024.0,873.17,1172.722,22.01,32.15,39.03 +nest_base,224,1024.0,871.22,1175.339,16.71,30.51,67.72 +nf_regnet_b5,384,1024.0,867.94,1179.793,7.95,42.9,49.74 +resnet200d,256,1024.0,866.43,1181.848,20.0,43.09,64.69 +maxvit_small_tf_224,224,512.0,864.97,591.915,11.39,46.31,68.93 +nest_base_jx,224,1024.0,863.51,1185.835,16.71,30.51,67.72 +xcit_small_12_p16_384,384,1024.0,860.6,1189.852,14.14,36.5,26.25 +resnetv2_50d_evos,288,1024.0,857.98,1193.488,7.15,19.7,25.59 +swin_base_patch4_window7_224,224,1024.0,857.23,1194.527,15.47,36.63,87.77 +gcvit_small,224,1024.0,850.2,1204.416,8.57,41.61,51.09 +crossvit_15_dagger_408,408,1024.0,849.94,1204.779,16.07,37.0,28.5 +eca_nfnet_l1,320,1024.0,845.79,1210.693,14.92,34.42,41.41 +tf_efficientnet_b4,380,512.0,836.31,612.204,4.49,49.49,19.34 +regnety_080,288,1024.0,834.08,1227.682,13.22,29.69,39.18 +levit_conv_384_s8,224,512.0,831.47,615.767,9.98,35.86,39.12 +twins_svt_large,224,1024.0,829.67,1234.208,14.84,27.23,99.27 +seresnet152,288,1024.0,826.68,1238.676,19.11,37.34,66.82 +xception65p,299,768.0,826.46,929.251,13.91,52.48,39.82 +eva02_base_patch14_224,224,1024.0,822.18,1245.459,22.0,24.67,85.76 +caformer_s36,224,1024.0,811.28,1262.182,7.55,29.29,39.3 +maxxvit_rmlp_small_rw_256,256,768.0,805.75,953.134,14.21,47.76,66.01 +coatnet_2_rw_224,224,512.0,802.77,637.783,14.55,39.37,73.87 +swinv2_base_window12_192,192,1024.0,801.77,1277.157,11.9,39.72,109.28 +mvitv2_base,224,1024.0,789.29,1297.348,10.16,40.5,51.47 +densenet264d,224,1024.0,784.72,1304.914,13.57,14.0,72.74 +resnest50d_4s2x40d,224,1024.0,782.94,1307.879,4.4,17.94,30.42 +swinv2_tiny_window16_256,256,512.0,779.51,656.811,6.68,39.02,28.35 +volo_d2_224,224,1024.0,778.59,1315.191,14.34,41.34,58.68 +dpn107,224,1024.0,773.9,1323.149,18.38,33.46,86.92 +xcit_tiny_24_p8_224,224,1024.0,770.47,1329.042,9.21,45.38,12.11 +convnext_base,288,1024.0,769.28,1331.103,25.43,47.53,88.59 +coatnet_rmlp_2_rw_224,224,512.0,762.93,671.09,14.64,44.94,73.88 +mvitv2_base_cls,224,1024.0,760.58,1346.32,10.23,40.65,65.44 +convit_base,224,1024.0,757.3,1352.149,17.52,31.77,86.54 +convformer_s36,224,1024.0,757.3,1352.161,7.67,30.5,40.01 +coatnet_2_224,224,384.0,753.79,509.418,15.94,42.41,74.68 +hrnet_w64,224,1024.0,748.82,1367.478,28.97,35.09,128.06 +resnet152d,320,1024.0,747.67,1369.57,24.08,47.67,60.21 +ecaresnet200d,256,1024.0,744.16,1376.037,20.0,43.15,64.69 +seresnet200d,256,1024.0,743.64,1376.992,20.01,43.15,71.86 +resnetrs200,256,1024.0,743.56,1377.137,20.18,43.42,93.21 +swinv2_small_window8_256,256,1024.0,740.78,1382.313,11.58,40.14,49.73 +xception65,299,768.0,738.05,1040.572,13.96,52.48,39.92 +fastvit_ma36,256,1024.0,734.46,1394.207,7.85,40.39,44.07 +swinv2_cr_small_ns_256,256,1024.0,733.6,1395.843,12.07,76.21,49.7 +senet154,224,1024.0,731.81,1399.262,20.77,38.69,115.09 +maxvit_rmlp_small_rw_256,256,768.0,731.54,1049.835,13.69,55.48,64.9 +legacy_senet154,224,1024.0,730.99,1400.828,20.77,38.69,115.09 +tf_efficientnetv2_m,384,1024.0,728.54,1405.529,15.85,57.52,54.14 +xcit_nano_12_p8_384,384,1024.0,723.54,1415.249,6.34,46.06,3.05 +poolformer_m48,224,1024.0,722.45,1417.374,11.59,29.17,73.47 +tnt_b_patch16_224,224,1024.0,722.04,1418.187,14.09,39.01,65.41 +efficientvit_l3,224,1024.0,720.55,1421.127,27.62,39.16,246.04 +swinv2_cr_base_224,224,1024.0,719.69,1422.825,15.86,59.66,87.88 +efficientnet_b3_g8_gn,320,512.0,718.69,712.395,3.2,28.83,14.25 +resnest101e,256,1024.0,718.12,1425.925,13.38,28.66,48.28 +swin_s3_base_224,224,1024.0,717.57,1427.034,13.69,48.26,71.13 +resnext101_64x4d,288,1024.0,717.4,1427.37,25.66,51.59,83.46 +swinv2_cr_base_ns_224,224,1024.0,713.5,1435.162,15.86,59.66,87.88 +convnextv2_base,224,768.0,711.23,1079.807,15.38,28.75,88.72 +resnet200,288,1024.0,697.53,1468.023,24.91,53.21,64.67 +efficientnet_b3_gn,320,512.0,695.5,736.148,2.14,28.83,11.73 +coat_small,224,1024.0,694.03,1475.431,12.61,44.25,21.69 +convnext_large,224,1024.0,690.43,1483.117,34.4,43.13,197.77 +regnetz_e8,320,1024.0,670.8,1526.503,15.46,63.94,57.7 +efficientformerv2_s2,224,1024.0,670.26,1527.748,1.27,11.77,12.71 +seresnext101_32x8d,288,1024.0,656.14,1560.626,27.24,51.63,93.57 +resnetrs152,320,1024.0,655.8,1561.431,24.34,48.14,86.62 +xcit_small_12_p8_224,224,1024.0,655.5,1562.148,18.69,47.19,26.21 +maxxvitv2_rmlp_base_rw_224,224,768.0,651.85,1178.173,23.88,54.39,116.09 +seresnet152d,320,1024.0,649.85,1575.74,24.09,47.72,66.84 +vit_large_patch32_384,384,1024.0,647.57,1581.281,44.28,32.22,306.63 +poolformerv2_m36,224,1024.0,646.73,1583.338,8.81,22.02,56.08 +resnext101_32x16d,224,1024.0,641.29,1596.767,36.27,51.18,194.03 +seresnext101d_32x8d,288,1024.0,639.61,1600.97,27.64,52.95,93.59 +regnetz_d8_evos,256,1024.0,638.02,1604.938,4.5,24.92,23.46 +davit_large,224,1024.0,634.07,1614.963,34.37,55.08,196.81 +efficientnetv2_m,416,1024.0,633.12,1617.367,18.6,67.5,54.14 +regnety_064,224,1024.0,632.1,1619.968,6.39,16.41,30.58 +regnetv_064,224,1024.0,629.87,1625.704,6.39,16.41,30.58 +regnetz_c16_evos,320,512.0,622.61,822.333,3.86,25.88,13.49 +gcvit_base,224,1024.0,620.94,1649.111,14.87,55.48,90.32 +nf_regnet_b5,456,512.0,602.97,849.111,11.7,61.95,49.74 +seresnextaa101d_32x8d,288,1024.0,601.98,1701.035,28.51,56.44,93.59 +xception71,299,768.0,600.76,1278.366,18.09,69.92,42.34 +eca_nfnet_l2,320,1024.0,593.89,1724.216,20.95,47.43,56.72 +nfnet_f2,256,1024.0,593.31,1725.904,33.76,41.85,193.78 +crossvit_18_dagger_408,408,1024.0,585.92,1747.666,25.31,49.38,44.61 +hrnet_w48_ssld,288,1024.0,585.32,1749.444,28.66,47.21,77.47 +ecaresnet200d,288,1024.0,584.36,1752.321,25.31,54.59,64.69 +seresnet200d,288,1024.0,583.25,1755.672,25.32,54.6,71.86 +caformer_m36,224,1024.0,582.88,1756.773,12.75,40.61,56.2 +levit_512_s8,224,256.0,582.77,439.271,21.82,52.28,74.05 +maxvit_rmlp_base_rw_224,224,768.0,582.44,1318.589,22.63,79.3,116.14 +seresnet269d,256,1024.0,581.62,1760.578,26.59,53.6,113.67 +convmixer_768_32,224,1024.0,580.09,1765.235,19.55,25.95,21.11 +resnetrs270,256,1024.0,565.62,1810.398,27.06,55.84,129.86 +mixer_l16_224,224,1024.0,553.36,1850.484,44.6,41.69,208.2 +levit_conv_512_s8,224,256.0,552.47,463.363,21.82,52.28,74.05 +efficientnetv2_rw_m,416,1024.0,552.47,1853.491,21.49,79.62,53.24 +resnet200d,320,1024.0,551.74,1855.93,31.25,67.33,64.69 +nfnet_f1,320,1024.0,548.82,1865.795,35.97,46.77,132.63 +convformer_m36,224,1024.0,548.78,1865.947,12.89,42.05,57.05 +volo_d3_224,224,1024.0,541.9,1889.619,20.78,60.09,86.33 +swinv2_base_window8_256,256,1024.0,530.42,1930.519,20.37,52.59,87.92 +maxvit_base_tf_224,224,512.0,517.72,988.937,23.52,81.67,119.47 +xcit_large_24_p16_224,224,1024.0,511.16,2003.26,35.86,47.26,189.1 +convmixer_1024_20_ks9_p14,224,1024.0,510.74,2004.929,5.55,5.51,24.38 +dm_nfnet_f2,256,1024.0,503.11,2035.325,33.76,41.85,193.78 +swin_large_patch4_window7_224,224,768.0,494.53,1552.967,34.53,54.94,196.53 +vit_base_patch16_18x2_224,224,1024.0,494.1,2072.443,50.37,49.17,256.73 +deit_base_patch16_384,384,1024.0,493.77,2073.808,49.4,48.3,86.86 +vit_base_patch16_384,384,1024.0,493.5,2074.946,49.4,48.3,86.86 +deit_base_distilled_patch16_384,384,1024.0,493.31,2075.754,49.49,48.39,87.63 +vit_base_patch16_clip_384,384,1024.0,492.52,2079.081,49.41,48.3,86.86 +eva_large_patch14_196,196,1024.0,491.4,2083.813,59.66,43.77,304.14 +vit_base_patch16_siglip_384,384,1024.0,490.82,2086.272,50.0,49.11,93.18 +vit_large_patch16_224,224,1024.0,489.19,2093.231,59.7,43.77,304.33 +halonet_h1,256,256.0,487.96,524.621,3.0,51.17,8.1 +tiny_vit_21m_512,512,256.0,487.73,524.868,21.23,83.26,21.27 +seresnextaa101d_32x8d,320,768.0,487.6,1575.053,35.19,69.67,93.59 +swinv2_large_window12_192,192,768.0,487.6,1575.036,26.17,56.53,228.77 +swinv2_small_window16_256,256,512.0,487.58,1050.071,12.82,66.29,49.73 +poolformerv2_m48,224,1024.0,487.33,2101.208,11.59,29.17,73.35 +resnetrs200,320,1024.0,476.69,2148.152,31.51,67.81,93.21 +xcit_tiny_12_p8_384,384,1024.0,472.87,2165.479,14.12,69.12,6.71 +vit_small_patch14_dinov2,518,1024.0,470.72,2175.374,29.46,57.34,22.06 +deit3_base_patch16_384,384,1024.0,469.96,2178.883,49.4,48.3,86.88 +vit_small_patch14_reg4_dinov2,518,1024.0,469.28,2182.048,29.55,57.51,22.06 +deit3_large_patch16_224,224,1024.0,468.18,2187.162,59.7,43.77,304.37 +tf_efficientnetv2_m,480,1024.0,466.8,2193.627,24.76,89.84,54.14 +dm_nfnet_f1,320,1024.0,463.74,2208.099,35.97,46.77,132.63 +xcit_small_24_p16_384,384,1024.0,458.11,2235.247,26.72,68.57,47.67 +seresnet269d,288,1024.0,457.25,2239.451,33.65,67.81,113.67 +beit_large_patch16_224,224,1024.0,453.95,2255.726,59.7,43.77,304.43 +beitv2_large_patch16_224,224,1024.0,453.79,2256.515,59.7,43.77,304.43 +regnetx_120,224,1024.0,452.56,2262.648,12.13,21.37,46.11 +efficientnet_b5,448,512.0,444.06,1152.996,9.59,93.56,30.39 +regnety_120,224,1024.0,444.03,2306.127,12.14,21.38,51.82 +efficientformerv2_l,224,1024.0,441.81,2317.703,2.59,18.54,26.32 +coatnet_3_rw_224,224,384.0,441.21,870.327,32.63,59.07,181.81 +resnetv2_152x2_bit,224,1024.0,439.95,2327.532,46.95,45.11,236.34 +convnext_xlarge,224,768.0,438.91,1749.766,60.98,57.5,350.2 +coatnet_rmlp_3_rw_224,224,256.0,438.69,583.549,32.75,64.7,165.15 +coatnet_3_224,224,256.0,431.52,593.24,35.72,63.61,166.97 +convnextv2_base,288,512.0,430.66,1188.858,25.43,47.53,88.72 +flexivit_large,240,1024.0,427.93,2392.897,68.48,50.22,304.36 +convnextv2_large,224,512.0,424.61,1205.798,34.4,43.13,197.96 +swinv2_cr_large_224,224,768.0,424.12,1810.813,35.1,78.42,196.68 +swinv2_cr_tiny_384,384,256.0,420.98,608.099,15.34,161.01,28.33 +caformer_b36,224,768.0,420.2,1827.698,22.5,54.14,98.75 +maxvit_tiny_tf_384,384,256.0,419.78,609.84,16.0,94.22,30.98 +convnext_large,288,768.0,417.93,1837.619,56.87,71.29,197.77 +regnety_160,224,1024.0,417.09,2455.096,15.96,23.04,83.59 +eca_nfnet_l2,384,1024.0,412.81,2480.539,30.05,68.28,56.72 +maxxvitv2_rmlp_large_rw_224,224,768.0,411.22,1867.582,43.69,75.4,215.42 +efficientnetv2_l,384,1024.0,409.83,2498.611,36.1,101.16,118.52 +davit_huge,224,768.0,407.6,1884.205,60.93,73.44,348.92 +tf_efficientnetv2_l,384,1024.0,405.08,2527.906,36.1,101.16,118.52 +regnety_320,224,1024.0,403.27,2539.241,32.34,30.26,145.05 +regnetz_d8_evos,320,768.0,403.13,1905.094,7.03,38.92,23.46 +beit_base_patch16_384,384,1024.0,402.61,2543.386,49.4,48.3,86.74 +convformer_b36,224,768.0,397.77,1930.749,22.69,56.06,99.88 +tf_efficientnet_b5,456,384.0,394.74,972.77,10.46,98.86,30.39 +eca_nfnet_l3,352,1024.0,378.23,2707.314,32.57,73.12,72.04 +vit_large_patch16_siglip_256,256,1024.0,375.52,2726.866,78.12,57.42,315.96 +ecaresnet269d,320,1024.0,372.48,2749.133,41.53,83.69,102.09 +vit_large_r50_s32_384,384,1024.0,369.32,2772.633,56.4,64.88,329.09 +maxvit_large_tf_224,224,384.0,359.98,1066.726,42.99,109.57,211.79 +vit_large_patch14_224,224,1024.0,359.62,2847.449,77.83,57.11,304.2 +vit_large_patch14_clip_224,224,1024.0,359.62,2847.409,77.83,57.11,304.2 +swinv2_base_window16_256,256,384.0,359.2,1069.042,22.02,84.71,87.92 +swinv2_base_window12to16_192to256,256,384.0,359.01,1069.609,22.02,84.71,87.92 +nasnetalarge,331,384.0,356.97,1075.708,23.89,90.56,88.75 +resnetrs350,288,1024.0,356.46,2872.642,43.67,87.09,163.96 +vit_base_patch8_224,224,1024.0,351.76,2911.045,66.87,65.71,86.58 +volo_d4_224,224,1024.0,343.2,2983.708,44.34,80.22,192.96 +xcit_small_24_p8_224,224,1024.0,342.74,2987.714,35.81,90.77,47.63 +volo_d1_384,384,512.0,340.3,1504.541,22.75,108.55,26.78 +convnext_large_mlp,320,512.0,338.23,1513.736,70.21,88.02,200.13 +repvgg_d2se,320,1024.0,335.87,3048.766,74.57,46.82,133.33 +vit_large_patch14_clip_quickgelu_224,224,1024.0,324.37,3156.896,77.83,57.11,303.97 +vit_base_r50_s16_384,384,1024.0,315.28,3247.919,61.29,81.77,98.95 +nfnet_f2,352,1024.0,313.79,3263.314,63.22,79.06,193.78 +xcit_medium_24_p16_384,384,1024.0,313.38,3267.626,47.39,91.63,84.4 +vit_large_patch14_xp_224,224,1024.0,311.53,3287.018,77.77,57.11,304.06 +ecaresnet269d,352,1024.0,307.84,3326.422,50.25,101.25,102.09 +coat_lite_medium_384,384,512.0,301.48,1698.273,28.73,116.7,44.57 +regnety_064,288,1024.0,298.91,3425.709,10.56,27.11,30.58 +resnetrs270,352,1024.0,298.81,3426.892,51.13,105.48,129.86 +regnetv_064,288,1024.0,298.12,3434.809,10.55,27.11,30.58 +resnext101_32x32d,224,512.0,296.06,1729.362,87.29,91.12,468.53 +nfnet_f3,320,1024.0,290.3,3527.352,68.77,83.93,254.92 +efficientnetv2_xl,384,1024.0,290.02,3530.821,52.81,139.2,208.12 +tf_efficientnetv2_xl,384,1024.0,287.47,3562.138,52.81,139.2,208.12 +cait_xxs24_384,384,1024.0,284.02,3605.396,9.63,122.65,12.03 +maxvit_small_tf_384,384,192.0,274.58,699.228,33.58,139.86,69.02 +coatnet_4_224,224,256.0,274.31,933.246,60.81,98.85,275.43 +convnext_xlarge,288,512.0,265.38,1929.279,100.8,95.05,350.2 +dm_nfnet_f2,352,1024.0,265.36,3858.944,63.22,79.06,193.78 +vit_base_patch16_siglip_512,512,512.0,263.16,1945.545,88.89,87.3,93.52 +vit_so400m_patch14_siglip_224,224,1024.0,262.63,3898.968,106.18,70.45,427.68 +efficientnetv2_l,480,512.0,261.08,1961.059,56.4,157.99,118.52 +swinv2_cr_small_384,384,256.0,258.97,988.525,29.7,298.03,49.7 +convnextv2_large,288,384.0,257.89,1488.981,56.87,71.29,197.96 +tf_efficientnetv2_l,480,512.0,257.78,1986.206,56.4,157.99,118.52 +eva02_large_patch14_224,224,1024.0,256.9,3985.935,77.9,65.52,303.27 +eva02_large_patch14_clip_224,224,1024.0,253.93,4032.531,77.93,65.52,304.11 +regnety_120,288,768.0,253.81,3025.924,20.06,35.34,51.82 +xcit_tiny_24_p8_384,384,1024.0,248.2,4125.63,27.05,132.94,12.11 +coatnet_rmlp_2_rw_384,384,192.0,247.61,775.41,43.04,132.57,73.88 +dm_nfnet_f3,320,1024.0,247.07,4144.617,68.77,83.93,254.92 +resnetrs420,320,1024.0,244.54,4187.355,64.2,126.56,191.89 +mvitv2_large,224,512.0,243.6,2101.832,43.87,112.02,217.99 +mvitv2_large_cls,224,512.0,241.75,2117.866,42.17,111.69,234.58 +resmlp_big_24_224,224,1024.0,241.59,4238.519,100.23,87.31,129.14 +regnety_160,288,768.0,237.71,3230.76,26.37,38.07,83.59 +xcit_medium_24_p8_224,224,768.0,234.01,3281.941,63.52,121.22,84.32 +eca_nfnet_l3,448,512.0,233.43,2193.322,52.55,118.4,72.04 +volo_d5_224,224,1024.0,228.8,4475.542,72.4,118.11,295.46 +swin_base_patch4_window12_384,384,256.0,227.46,1125.454,47.19,134.78,87.9 +xcit_small_12_p8_384,384,384.0,223.23,1720.206,54.92,138.25,26.21 +swinv2_large_window12to16_192to256,256,256.0,219.08,1168.537,47.81,121.53,196.74 +maxxvitv2_rmlp_base_rw_384,384,384.0,217.17,1768.16,70.18,160.22,116.09 +efficientnet_b6,528,256.0,205.22,1247.45,19.4,167.39,43.04 +regnetx_320,224,768.0,200.5,3830.333,31.81,36.3,107.81 +resnetrs350,384,1024.0,199.92,5122.143,77.59,154.74,163.96 +cait_xs24_384,384,768.0,198.76,3863.971,19.28,183.98,26.67 +maxvit_xlarge_tf_224,224,256.0,198.54,1289.412,96.49,164.37,506.99 +tf_efficientnet_b6,528,192.0,198.54,967.028,19.4,167.39,43.04 +focalnet_huge_fl3,224,512.0,191.39,2675.182,118.26,104.8,745.28 +volo_d2_384,384,384.0,190.85,2012.066,46.17,184.51,58.87 +cait_xxs36_384,384,1024.0,189.78,5395.721,14.35,183.7,17.37 +eva02_base_patch14_448,448,512.0,189.58,2700.759,87.74,98.4,87.12 +vit_huge_patch14_gap_224,224,1024.0,186.27,5497.294,161.36,94.7,630.76 +swinv2_cr_base_384,384,256.0,185.05,1383.395,50.57,333.68,87.88 +swinv2_cr_huge_224,224,384.0,182.04,2109.357,115.97,121.08,657.83 +maxvit_rmlp_base_rw_384,384,384.0,179.65,2137.52,66.51,233.79,116.14 +vit_huge_patch14_224,224,1024.0,179.6,5701.574,161.99,95.07,630.76 +vit_huge_patch14_clip_224,224,1024.0,179.43,5706.842,161.99,95.07,632.05 +xcit_large_24_p16_384,384,1024.0,177.48,5769.692,105.34,137.15,189.1 +vit_base_patch14_dinov2,518,512.0,176.68,2897.828,117.11,114.68,86.58 +vit_base_patch14_reg4_dinov2,518,512.0,175.98,2909.337,117.45,115.02,86.58 +deit3_huge_patch14_224,224,1024.0,173.53,5900.889,161.99,95.07,632.13 +nfnet_f3,416,768.0,171.77,4471.127,115.58,141.78,254.92 +maxvit_tiny_tf_512,512,128.0,170.91,748.92,28.66,172.66,31.05 +seresnextaa201d_32x8d,384,512.0,170.35,3005.583,101.11,199.72,149.39 +maxvit_base_tf_384,384,192.0,166.63,1152.259,69.34,247.75,119.65 +vit_huge_patch14_clip_quickgelu_224,224,1024.0,165.5,6187.275,161.99,95.07,632.08 +efficientnetv2_xl,512,512.0,163.45,3132.529,93.85,247.32,208.12 +nfnet_f4,384,768.0,163.26,4704.17,122.14,147.57,316.07 +tf_efficientnetv2_xl,512,512.0,161.63,3167.699,93.85,247.32,208.12 +vit_huge_patch14_xp_224,224,1024.0,159.72,6411.21,161.88,95.07,631.8 +eva_large_patch14_336,336,768.0,155.72,4931.845,174.74,128.21,304.53 +vit_large_patch14_clip_336,336,768.0,155.28,4945.947,174.74,128.21,304.53 +vit_large_patch16_384,384,768.0,155.12,4950.906,174.85,128.21,304.72 +vit_large_patch16_siglip_384,384,768.0,154.94,4956.619,175.76,129.18,316.28 +convnext_xxlarge,256,384.0,153.59,2500.071,198.09,124.45,846.47 +vit_giant_patch16_gap_224,224,1024.0,153.47,6672.363,198.14,103.64,1011.37 +cait_s24_384,384,512.0,153.12,3343.821,32.17,245.3,47.06 +davit_giant,224,384.0,152.05,2525.491,192.34,138.2,1406.47 +deit3_large_patch16_384,384,1024.0,148.73,6884.872,174.85,128.21,304.76 +coatnet_5_224,224,192.0,147.83,1298.762,142.72,143.69,687.47 +dm_nfnet_f3,416,512.0,146.0,3506.787,115.58,141.78,254.92 +resnetrs420,416,768.0,144.59,5311.727,108.45,213.79,191.89 +vit_large_patch14_clip_quickgelu_336,336,768.0,141.12,5441.998,174.74,128.21,304.29 +dm_nfnet_f4,384,768.0,139.13,5519.969,122.14,147.57,316.07 +swin_large_patch4_window12_384,384,128.0,135.95,941.498,104.08,202.16,196.74 +xcit_large_24_p8_224,224,512.0,131.73,3886.696,141.22,181.53,188.93 +beit_large_patch16_384,384,768.0,129.79,5917.023,174.84,128.21,305.0 +efficientnet_b7,600,192.0,128.05,1499.407,38.33,289.94,66.35 +tf_efficientnet_b7,600,192.0,124.56,1541.433,38.33,289.94,66.35 +focalnet_huge_fl4,224,512.0,123.26,4153.862,118.9,113.34,686.46 +eva_giant_patch14_clip_224,224,1024.0,116.99,8753.07,259.74,135.89,1012.59 +eva_giant_patch14_224,224,1024.0,116.91,8758.747,259.74,135.89,1012.56 +nfnet_f5,416,768.0,116.91,6569.029,170.71,204.56,377.21 +xcit_small_24_p8_384,384,384.0,116.73,3289.571,105.23,265.87,47.63 +maxvit_large_tf_384,384,128.0,116.56,1098.144,126.61,332.3,212.03 +vit_giant_patch14_224,224,1024.0,114.32,8957.604,259.74,135.89,1012.61 +vit_giant_patch14_clip_224,224,1024.0,114.12,8973.257,259.74,135.89,1012.65 +swinv2_cr_large_384,384,192.0,113.51,1691.47,108.96,404.96,196.68 +eva02_large_patch14_clip_336,336,768.0,110.42,6955.361,174.97,147.1,304.43 +mvitv2_huge_cls,224,384.0,105.54,3638.368,120.67,243.63,694.8 +maxvit_small_tf_512,512,96.0,104.89,915.238,60.02,256.36,69.13 +cait_s36_384,384,512.0,102.28,5005.663,47.99,367.39,68.37 +dm_nfnet_f5,416,512.0,99.59,5141.209,170.71,204.56,377.21 +swinv2_base_window12to24_192to384,384,96.0,96.5,994.841,55.25,280.36,87.92 +focalnet_large_fl3,384,256.0,93.78,2729.925,105.06,168.04,239.13 +nfnet_f4,512,512.0,91.69,5583.92,216.26,262.26,316.07 +focalnet_large_fl4,384,256.0,90.64,2824.324,105.2,181.78,239.32 +nfnet_f6,448,512.0,86.88,5893.345,229.7,273.62,438.36 +efficientnet_b8,672,128.0,85.75,1492.768,63.48,442.89,87.41 +tf_efficientnet_b8,672,128.0,83.71,1529.068,63.48,442.89,87.41 +volo_d3_448,448,128.0,81.1,1578.235,96.33,446.83,86.63 +vit_so400m_patch14_siglip_384,384,512.0,80.75,6340.618,302.34,200.62,428.23 +xcit_medium_24_p8_384,384,256.0,80.25,3189.919,186.67,354.69,84.32 +dm_nfnet_f4,512,384.0,78.23,4908.575,216.26,262.26,316.07 +vit_huge_patch14_clip_336,336,512.0,75.44,6786.84,363.7,213.44,632.46 +dm_nfnet_f6,448,512.0,74.17,6903.248,229.7,273.62,438.36 +maxvit_base_tf_512,512,96.0,72.37,1326.47,123.93,456.26,119.88 +nfnet_f5,544,384.0,68.39,5614.643,290.97,349.71,377.21 +nfnet_f7,480,512.0,66.61,7686.561,300.08,355.86,499.5 +vit_gigantic_patch14_224,224,512.0,66.24,7729.406,473.4,204.12,1844.44 +vit_gigantic_patch14_clip_224,224,512.0,66.15,7739.524,473.41,204.12,1844.91 +focalnet_xlarge_fl3,384,192.0,65.92,2912.463,185.61,223.99,408.79 +maxvit_xlarge_tf_384,384,96.0,64.9,1479.208,283.86,498.45,475.32 +focalnet_xlarge_fl4,384,192.0,63.63,3017.361,185.79,242.31,409.03 +beit_large_patch16_512,512,256.0,61.48,4163.85,310.6,227.76,305.67 +volo_d4_448,448,192.0,60.99,3147.895,197.13,527.35,193.41 +regnety_640,384,192.0,60.97,3149.012,188.47,124.83,281.38 +convnextv2_huge,384,96.0,60.92,1575.922,337.96,232.35,660.29 +swinv2_large_window12to24_192to384,384,48.0,60.75,790.151,116.15,407.83,196.74 +eva02_large_patch14_448,448,512.0,59.67,8581.221,310.69,261.32,305.08 +dm_nfnet_f5,544,384.0,58.35,6580.773,290.97,349.71,377.21 +vit_huge_patch14_clip_378,378,512.0,58.14,8806.389,460.13,270.04,632.68 +convmixer_1536_20,224,1024.0,56.99,17967.01,48.68,33.03,51.63 +vit_large_patch14_dinov2,518,384.0,56.83,6757.154,414.89,304.42,304.37 +vit_large_patch14_reg4_dinov2,518,384.0,56.64,6779.944,416.1,305.31,304.37 +maxvit_large_tf_512,512,64.0,54.68,1170.494,225.96,611.85,212.33 +tf_efficientnet_l2,475,96.0,54.05,1776.14,172.11,609.89,480.31 +vit_huge_patch14_clip_quickgelu_378,378,384.0,53.95,7117.573,460.13,270.04,632.68 +vit_huge_patch16_gap_448,448,512.0,52.86,9685.108,494.35,290.02,631.67 +nfnet_f6,576,384.0,52.55,7307.184,378.69,452.2,438.36 +swinv2_cr_giant_224,224,192.0,52.45,3660.551,483.85,309.15,2598.76 +eva_giant_patch14_336,336,512.0,49.65,10312.606,583.14,305.1,1013.01 +swinv2_cr_huge_384,384,96.0,49.62,1934.539,352.04,583.18,657.94 +xcit_large_24_p8_384,384,192.0,45.19,4249.177,415.0,531.74,188.93 +dm_nfnet_f6,576,256.0,44.83,5710.109,378.69,452.2,438.36 +volo_d5_448,448,192.0,42.49,4518.905,315.06,737.92,295.91 +nfnet_f7,608,256.0,41.52,6165.283,480.39,570.85,499.5 +cait_m36_384,384,256.0,33.1,7733.448,173.11,734.79,271.22 +resnetv2_152x4_bit,480,96.0,32.12,2989.13,844.84,414.26,936.53 +maxvit_xlarge_tf_512,512,48.0,30.41,1578.222,505.95,917.77,475.77 +regnety_2560,384,128.0,30.25,4231.43,747.83,296.49,1282.6 +volo_d5_512,512,128.0,29.54,4332.489,425.09,1105.37,296.09 +samvit_base_patch16,1024,16.0,23.81,671.88,371.55,403.08,89.67 +regnety_1280,384,128.0,22.93,5583.053,374.99,210.2,644.81 +efficientnet_l2,800,48.0,19.03,2521.932,479.12,1707.39,480.31 +vit_giant_patch14_dinov2,518,192.0,17.15,11193.542,1553.56,871.89,1136.48 +vit_giant_patch14_reg4_dinov2,518,192.0,17.12,11212.072,1558.09,874.43,1136.48 +swinv2_cr_giant_384,384,32.0,15.04,2127.877,1450.71,1394.86,2598.76 +eva_giant_patch14_560,560,192.0,15.03,12771.913,1618.04,846.56,1014.45 +cait_m48_448,448,128.0,13.96,9172.063,329.4,1708.21,356.46 +samvit_large_patch16,1024,12.0,10.64,1127.934,1317.08,1055.58,308.28 +samvit_huge_patch16,1024,8.0,6.61,1210.638,2741.59,1727.57,637.03 diff --git a/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx3090.csv b/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx3090.csv new file mode 100644 index 0000000000000000000000000000000000000000..82f713e609739135ce639da5b444b0c94dc5f591 --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx3090.csv @@ -0,0 +1,1431 @@ +model,infer_img_size,infer_samples_per_sec,infer_step_time,infer_batch_size,param_count,infer_gmacs,infer_macts +test_efficientnet,160,103646.76,9.87,1024,0.36,0.06,0.55 +test_vit,160,103244.27,9.909,1024,0.37,0.04,0.48 +test_byobnet,160,95063.35,10.761,1024,0.46,0.03,0.43 +tinynet_e,106,76700.93,13.341,1024,2.04,0.03,0.69 +mobilenetv3_small_050,224,57072.67,17.933,1024,1.59,0.03,0.92 +lcnet_035,224,55976.14,18.284,1024,1.64,0.03,1.04 +efficientvit_m0,224,48377.06,21.157,1024,2.35,0.08,0.91 +lcnet_050,224,47344.86,21.619,1024,1.88,0.05,1.26 +mobilenetv3_small_075,224,42488.72,24.091,1024,2.04,0.05,1.3 +mobilenetv3_small_100,224,39045.83,26.216,1024,2.54,0.06,1.42 +tinynet_d,152,38744.45,26.42,1024,2.34,0.05,1.42 +efficientvit_m1,224,37693.15,27.157,1024,2.98,0.17,1.33 +tf_mobilenetv3_small_minimal_100,224,34512.3,29.661,1024,2.04,0.06,1.41 +efficientvit_m2,224,33886.66,30.209,1024,4.19,0.2,1.47 +tf_mobilenetv3_small_075,224,33704.54,30.372,1024,2.04,0.05,1.3 +tf_mobilenetv3_small_100,224,31434.86,32.566,1024,2.54,0.06,1.42 +lcnet_075,224,31075.1,32.942,1024,2.36,0.1,1.99 +mobilenetv4_conv_small,224,30965.44,33.059,1024,3.77,0.19,1.97 +efficientvit_m3,224,29709.67,34.458,1024,6.9,0.27,1.62 +efficientvit_m4,224,28086.43,36.449,1024,8.8,0.3,1.7 +mnasnet_small,224,26858.45,38.112,1024,2.03,0.07,2.16 +regnetx_002,224,24932.59,41.06,1024,2.68,0.2,2.16 +lcnet_100,224,24627.72,41.57,1024,2.95,0.16,2.52 +mobilenetv4_conv_small,256,23522.69,43.523,1024,3.77,0.25,2.57 +regnety_002,224,23069.71,44.375,1024,3.16,0.2,2.17 +levit_128s,224,23026.39,44.461,1024,7.78,0.31,1.88 +repghostnet_050,224,22877.69,44.75,1024,2.31,0.05,2.02 +ghostnet_050,224,22787.91,44.926,1024,2.59,0.05,1.77 +mobilenetv2_035,224,22588.52,45.323,1024,1.68,0.07,2.86 +resnet10t,176,22365.03,45.776,1024,5.44,0.7,1.51 +levit_conv_128s,224,22115.28,46.293,1024,7.78,0.31,1.88 +mnasnet_050,224,21012.53,48.723,1024,2.22,0.11,3.07 +resnet18,160,20850.92,49.101,1024,11.69,0.93,1.27 +tinynet_c,184,19198.02,53.329,1024,2.46,0.11,2.87 +efficientvit_m5,224,19162.34,53.428,1024,12.47,0.53,2.41 +efficientvit_b0,224,19036.4,53.782,1024,3.41,0.1,2.87 +repghostnet_058,224,18156.61,56.388,1024,2.55,0.07,2.59 +semnasnet_050,224,17891.8,57.223,1024,2.08,0.11,3.44 +mobilenetv2_050,224,17837.51,57.397,1024,1.97,0.1,3.64 +regnetx_004,224,17491.27,58.531,1024,5.16,0.4,3.14 +regnetx_004_tv,224,16931.52,60.467,1024,5.5,0.42,3.17 +cs3darknet_focus_s,256,16535.27,61.918,1024,3.27,0.69,2.7 +lcnet_150,224,16211.53,63.155,1024,4.5,0.34,3.79 +gernet_s,224,15890.89,64.43,1024,8.17,0.75,2.65 +cs3darknet_s,256,15705.73,65.189,1024,3.28,0.72,2.97 +levit_128,224,15600.03,65.631,1024,9.21,0.41,2.71 +mobilenetv3_large_075,224,15141.94,67.617,1024,3.99,0.16,4.0 +vit_tiny_r_s16_p8_224,224,15074.81,67.918,1024,6.34,0.44,2.06 +levit_conv_128,224,15050.96,68.026,1024,9.21,0.41,2.71 +repghostnet_080,224,14725.52,69.529,1024,3.28,0.1,3.22 +resnet10t,224,14365.94,71.27,1024,5.44,1.1,2.43 +pit_ti_224,224,14330.5,71.446,1024,4.85,0.7,6.19 +pit_ti_distilled_224,224,14304.16,71.577,1024,5.1,0.71,6.23 +mobilenetv3_rw,224,13802.85,74.178,1024,5.48,0.23,4.41 +tf_efficientnetv2_b0,192,13802.18,74.181,1024,7.14,0.54,3.51 +levit_192,224,13743.1,74.5,1024,10.95,0.66,3.2 +mnasnet_075,224,13653.81,74.988,1024,3.17,0.23,4.77 +hardcorenas_a,224,13581.17,75.389,1024,5.26,0.23,4.38 +mobilenetv3_large_100,224,13556.89,75.524,1024,5.48,0.23,4.41 +vit_small_patch32_224,224,13379.42,76.525,1024,22.88,1.15,2.5 +levit_conv_192,224,13084.23,78.252,1024,10.95,0.66,3.2 +tf_mobilenetv3_large_075,224,12872.36,79.54,1024,3.99,0.16,4.0 +regnety_004,224,12765.55,80.202,1024,4.34,0.41,3.89 +tinynet_b,188,12493.02,81.956,1024,3.73,0.21,4.44 +tf_mobilenetv3_large_minimal_100,224,12397.28,82.589,1024,3.92,0.22,4.4 +nf_regnet_b0,192,12394.96,82.604,1024,8.76,0.37,3.15 +resnet34,160,12381.04,82.698,1024,21.8,1.87,1.91 +hardcorenas_b,224,12362.7,82.82,1024,5.18,0.26,5.09 +hardcorenas_c,224,12318.59,83.117,1024,5.52,0.28,5.01 +mobilenetv1_100,224,12074.33,84.798,1024,4.23,0.58,5.04 +repghostnet_100,224,12055.17,84.933,1024,4.07,0.15,3.98 +resnet14t,176,11947.82,85.696,1024,10.08,1.07,3.61 +mnasnet_100,224,11914.93,85.933,1024,4.38,0.33,5.46 +regnety_006,224,11850.66,86.395,1024,6.06,0.61,4.33 +mobilenetv1_100h,224,11818.6,86.634,1024,5.28,0.63,5.09 +ghostnet_100,224,11799.55,86.773,1024,5.18,0.15,3.55 +ese_vovnet19b_slim_dw,224,11783.68,86.891,1024,1.9,0.4,5.28 +mixer_s32_224,224,11733.67,87.26,1024,19.1,1.0,2.28 +tf_mobilenetv3_large_100,224,11642.43,87.945,1024,5.48,0.23,4.41 +hardcorenas_d,224,11549.38,88.653,1024,7.5,0.3,4.93 +semnasnet_075,224,11368.35,90.064,1024,2.91,0.23,5.54 +mobilenetv2_075,224,11254.61,90.975,1024,2.64,0.22,5.86 +mobilenet_edgetpu_v2_xs,224,11215.06,91.296,1024,4.46,0.7,4.8 +resnet18,224,11188.75,91.511,1024,11.69,1.82,2.48 +spnasnet_100,224,10760.35,95.154,1024,4.42,0.35,6.03 +regnetx_008,224,10657.43,96.071,1024,7.26,0.81,5.15 +tf_efficientnetv2_b1,192,10601.92,96.577,1024,8.14,0.76,4.59 +mobilenetv4_conv_medium,224,10533.33,97.206,1024,9.72,0.84,5.8 +seresnet18,224,10519.36,97.335,1024,11.78,1.82,2.49 +repghostnet_111,224,10479.86,97.701,1024,4.54,0.18,4.38 +deit_tiny_patch16_224,224,10451.69,97.965,1024,5.72,1.26,5.97 +deit_tiny_distilled_patch16_224,224,10407.6,98.38,1024,5.91,1.27,6.01 +vit_tiny_patch16_224,224,10405.73,98.398,1024,5.72,1.26,5.97 +tf_efficientnetv2_b0,224,10314.64,99.267,1024,7.14,0.73,4.77 +hardcorenas_f,224,10206.96,100.314,1024,8.2,0.35,5.57 +legacy_seresnet18,224,10179.01,100.588,1024,11.78,1.82,2.49 +tinynet_a,192,10107.12,101.305,1024,6.19,0.35,5.41 +hardcorenas_e,224,10040.98,101.972,1024,8.07,0.35,5.65 +semnasnet_100,224,10029.01,102.094,1024,3.89,0.32,6.23 +mobilenet_edgetpu_100,224,10018.91,102.197,1024,4.09,1.0,5.75 +levit_256,224,9996.37,102.427,1024,18.89,1.13,4.23 +dla46_c,224,9963.65,102.763,1024,1.3,0.58,4.5 +mobilenetv2_100,224,9887.57,103.554,1024,3.5,0.31,6.68 +repvgg_a0,224,9797.14,104.51,1024,9.11,1.52,3.59 +regnety_008,224,9778.52,104.708,1024,6.26,0.81,5.25 +fbnetc_100,224,9724.0,105.297,1024,5.57,0.4,6.51 +efficientnet_lite0,224,9657.18,106.025,1024,4.65,0.4,6.74 +regnetx_006,224,9637.51,106.242,1024,6.2,0.61,3.98 +levit_conv_256,224,9529.69,107.444,1024,18.89,1.13,4.23 +resnet18d,224,9508.04,107.689,1024,11.71,2.06,3.29 +hgnetv2_b0,224,9407.15,108.843,1024,6.0,0.33,2.12 +pit_xs_224,224,9387.39,109.073,1024,10.62,1.4,7.71 +regnety_008_tv,224,9370.17,109.273,1024,6.43,0.84,5.42 +mobilenetv4_hybrid_medium_075,224,9355.37,109.446,1024,7.31,0.66,5.65 +pit_xs_distilled_224,224,9342.89,109.592,1024,11.0,1.41,7.76 +mobilenetv1_100,256,9270.71,110.445,1024,4.23,0.76,6.59 +ese_vovnet19b_slim,224,9264.21,110.524,1024,3.17,1.69,3.52 +mobilenetv1_125,224,9214.57,111.118,1024,6.27,0.89,6.3 +vit_xsmall_patch16_clip_224,224,9204.49,111.24,1024,8.28,1.79,6.65 +convnext_atto,224,9196.49,111.337,1024,3.7,0.55,3.81 +vit_medium_patch32_clip_224,224,9164.71,111.723,1024,39.69,2.0,3.34 +mobilenetv1_100h,256,9072.78,112.855,1024,5.28,0.82,6.65 +repghostnet_130,224,8966.92,114.188,1024,5.48,0.25,5.24 +ghostnet_130,224,8941.94,114.507,1024,7.36,0.24,4.6 +convnext_atto_ols,224,8902.58,115.013,1024,3.7,0.58,4.11 +regnetz_005,224,8898.94,115.06,1024,7.12,0.52,5.86 +xcit_nano_12_p16_224,224,8661.49,118.214,1024,3.05,0.56,4.17 +levit_256d,224,8476.14,120.799,1024,26.21,1.4,4.93 +edgenext_xx_small,256,8329.49,122.926,1024,1.33,0.26,3.33 +tf_efficientnet_lite0,224,8319.74,123.071,1024,4.65,0.4,6.74 +fbnetv3_b,224,8315.87,123.128,1024,8.6,0.42,6.97 +efficientnet_b0,224,8241.4,124.241,1024,5.29,0.4,6.75 +levit_conv_256d,224,8143.78,125.73,1024,26.21,1.4,4.93 +mnasnet_140,224,8104.58,126.338,1024,7.12,0.6,7.71 +mobilenetv4_conv_medium,256,8092.13,126.533,1024,9.72,1.1,7.58 +convnext_femto,224,8051.49,127.171,1024,5.22,0.79,4.57 +tf_efficientnetv2_b2,208,7901.34,129.588,1024,10.1,1.06,6.0 +mobilevit_xxs,256,7885.22,129.853,1024,1.27,0.42,8.34 +repghostnet_150,224,7853.84,130.372,1024,6.58,0.32,6.0 +convnext_femto_ols,224,7832.99,130.719,1024,5.23,0.82,4.87 +mobilenet_edgetpu_v2_s,224,7762.61,131.904,1024,5.99,1.21,6.6 +rexnetr_100,224,7696.45,133.034,1024,4.88,0.43,7.72 +repvit_m1,224,7673.77,133.431,1024,5.49,0.83,7.45 +resnet14t,224,7579.52,135.091,1024,10.08,1.69,5.8 +mobilenetv4_hybrid_medium,224,7493.91,136.634,1024,11.07,0.98,6.84 +mobilenetv2_110d,224,7490.18,136.702,1024,4.52,0.45,8.71 +cs3darknet_focus_m,256,7460.64,137.244,1024,9.3,1.98,4.89 +repvit_m0_9,224,7284.39,140.555,1024,5.49,0.83,7.45 +rexnet_100,224,7243.9,141.351,1024,4.8,0.41,7.44 +tf_efficientnet_b0,224,7243.0,141.368,1024,5.29,0.4,6.75 +efficientnet_b1_pruned,240,7240.43,141.418,1024,6.33,0.4,6.21 +efficientvit_b1,224,7214.92,141.918,1024,9.1,0.53,7.25 +resnet50,160,7190.62,142.398,1024,25.56,2.1,5.67 +cs3darknet_m,256,7120.83,143.794,1024,9.31,2.08,5.28 +mobilevitv2_050,256,7087.19,144.476,1024,1.37,0.48,8.04 +nf_regnet_b0,256,7083.25,144.556,1024,8.76,0.64,5.58 +hrnet_w18_small,224,7050.65,145.221,1024,13.19,1.61,5.72 +mobilenetv1_125,256,7010.8,146.05,1024,6.27,1.16,8.23 +repvgg_a1,224,6986.39,146.561,1024,14.09,2.64,4.74 +hgnetv2_b1,224,6916.93,148.033,1024,6.34,0.49,2.73 +fbnetv3_d,224,6914.78,148.079,1024,10.31,0.52,8.5 +gernet_m,224,6873.04,148.978,1024,21.14,3.02,5.24 +visformer_tiny,224,6836.16,149.782,1024,10.32,1.27,5.72 +pvt_v2_b0,224,6743.86,151.832,1024,3.67,0.57,7.99 +tf_efficientnetv2_b1,240,6694.16,152.959,1024,8.14,1.21,7.34 +resnet50d,160,6637.34,154.269,1024,25.58,2.22,6.08 +edgenext_xx_small,288,6577.06,155.681,1024,1.33,0.33,4.21 +vit_betwixt_patch32_clip_224,224,6547.37,156.388,1024,61.41,3.09,4.17 +resnet34,224,6529.57,156.815,1024,21.8,3.67,3.74 +ese_vovnet19b_dw,224,6511.74,157.245,1024,6.54,1.34,8.25 +efficientnet_lite1,240,6378.58,160.527,1024,5.42,0.62,10.14 +resnet18,288,6375.26,160.611,1024,11.69,3.01,4.11 +fbnetv3_b,256,6364.95,160.871,1024,8.6,0.55,9.1 +selecsls42,224,6333.78,161.663,1024,30.35,2.94,4.62 +selecsls42b,224,6319.75,162.02,1024,32.46,2.98,4.62 +crossvit_tiny_240,240,6299.42,162.544,1024,7.01,1.57,9.08 +convnext_pico,224,6259.06,163.593,1024,9.05,1.37,6.1 +efficientnet_es_pruned,224,6253.5,163.738,1024,5.44,1.81,8.73 +crossvit_9_dagger_240,240,6253.37,163.741,1024,8.78,1.99,9.97 +seresnet50,160,6246.72,163.91,1024,28.09,2.1,5.69 +efficientnet_b0,256,6246.01,163.934,1024,5.29,0.52,8.81 +efficientnet_es,224,6238.02,164.145,1024,5.44,1.81,8.73 +efficientnet_blur_b0,224,6201.55,165.11,1024,5.29,0.43,8.72 +mobilenetv3_large_150d,224,6128.32,167.083,1024,14.62,, +repvit_m1_0,224,6105.54,167.706,1024,7.3,1.13,8.69 +seresnet34,224,6098.18,167.906,1024,21.96,3.67,3.74 +convnext_pico_ols,224,6085.56,168.258,1024,9.06,1.43,6.5 +resnext50_32x4d,160,6056.31,169.069,1024,25.03,2.17,7.35 +repghostnet_200,224,6053.09,169.16,1024,9.8,0.54,7.96 +mobilenet_edgetpu_v2_m,224,6048.59,169.285,1024,8.46,1.85,8.15 +tiny_vit_5m_224,224,6035.01,169.666,1024,12.08,1.28,11.25 +seresnet18,288,6022.58,170.017,1024,11.78,3.01,4.11 +levit_384,224,6010.01,170.372,1024,39.13,2.36,6.26 +cs3darknet_focus_m,288,5993.42,170.844,1024,9.3,2.51,6.19 +resnet26,224,5987.24,171.021,1024,16.0,2.36,7.35 +dla34,224,5969.98,171.514,1024,15.74,3.07,5.02 +repvit_m2,224,5966.06,171.627,1024,8.8,1.36,9.43 +resnet34d,224,5928.79,172.706,1024,21.82,3.91,4.54 +tf_efficientnet_es,224,5915.64,173.09,1024,5.44,1.81,8.73 +legacy_seresnet34,224,5895.55,173.68,1024,21.96,3.67,3.74 +resnetrs50,160,5890.41,173.832,1024,35.69,2.29,6.2 +crossvit_9_240,240,5878.46,174.185,1024,8.55,1.85,9.52 +efficientnet_b0_g16_evos,224,5867.79,174.502,1024,8.11,1.01,7.42 +ecaresnet50t,160,5866.78,174.532,1024,25.57,2.21,6.04 +resnet50,176,5862.03,174.673,1024,25.56,2.62,6.92 +efficientnet_b1,224,5792.59,176.768,1024,7.79,0.59,9.36 +cs3darknet_m,288,5761.99,177.707,1024,9.31,2.63,6.69 +mobilenetv4_hybrid_medium,256,5760.47,177.753,1024,11.07,1.29,9.01 +levit_conv_384,224,5757.96,177.831,1024,39.13,2.36,6.26 +ghostnetv2_100,224,5689.23,179.979,1024,6.16,0.18,4.55 +tf_efficientnet_lite1,240,5688.37,180.007,1024,5.42,0.62,10.14 +mixnet_s,224,5667.55,180.667,1024,4.13,0.25,6.25 +repvit_m1_1,224,5665.98,180.718,1024,8.8,1.36,9.43 +resnetblur18,224,5629.69,181.883,1024,11.69,2.34,3.39 +efficientvit_b1,256,5607.85,182.591,1024,9.1,0.69,9.46 +convnext_atto,288,5598.29,182.904,1024,3.7,0.91,6.3 +hgnetv2_b0,288,5561.84,184.102,1024,6.0,0.54,3.51 +selecsls60,224,5536.37,184.949,1024,30.67,3.59,5.52 +resnet18d,288,5520.36,185.486,1024,11.71,3.41,5.43 +xcit_tiny_12_p16_224,224,5519.98,185.498,1024,6.72,1.24,6.29 +dla46x_c,224,5516.82,185.602,1024,1.07,0.54,5.66 +selecsls60b,224,5514.38,185.687,1024,32.77,3.63,5.52 +darknet17,256,5477.03,186.952,1024,14.3,3.26,7.18 +skresnet18,224,5436.76,188.337,1024,11.96,1.82,3.24 +regnetz_005,288,5429.12,188.602,1024,7.12,0.86,9.68 +convnext_atto_ols,288,5423.39,188.802,1024,3.7,0.96,6.8 +resmlp_12_224,224,5417.84,188.996,1024,15.35,3.01,5.5 +convnextv2_atto,224,5393.05,189.864,1024,3.71,0.55,3.81 +mobilenet_edgetpu_v2_l,224,5392.86,189.871,1024,10.92,2.55,9.05 +nf_regnet_b2,240,5319.96,192.472,1024,14.31,0.97,7.23 +nf_regnet_b1,256,5313.59,192.704,1024,10.22,0.82,7.27 +repvgg_b0,224,5312.16,192.755,1024,15.82,3.41,6.15 +edgenext_x_small,256,5311.8,192.768,1024,2.34,0.54,5.93 +dla60x_c,224,5286.77,193.68,1024,1.32,0.59,6.01 +tf_mixnet_s,224,5242.96,195.299,1024,4.13,0.25,6.25 +resnet26d,224,5233.24,195.662,1024,16.01,2.6,8.15 +resnetaa34d,224,5231.1,195.743,1024,21.82,4.43,5.07 +vit_tiny_r_s16_p8_384,384,5200.71,196.885,1024,6.36,1.34,6.49 +mobilenetv4_conv_medium,320,5184.61,197.498,1024,9.72,1.71,11.84 +semnasnet_140,224,5180.64,197.649,1024,6.11,0.6,8.87 +fbnetv3_d,256,5175.76,197.836,1024,10.31,0.68,11.1 +vit_base_patch32_clip_224,224,5121.46,199.933,1024,88.22,4.41,5.01 +vit_base_patch32_224,224,5114.3,200.213,1024,88.22,4.41,5.01 +mobilenetv4_conv_aa_medium,256,5106.4,200.523,1024,9.72,1.58,10.3 +gmixer_12_224,224,5100.86,200.741,1024,12.7,2.67,7.26 +regnetz_b16,224,5067.77,202.051,1024,9.72,1.45,9.95 +mobilenetv2_140,224,5065.51,202.141,1024,6.11,0.6,9.57 +mobilenetv4_conv_blur_medium,224,5036.62,203.302,1024,9.72,1.22,8.58 +mixer_s16_224,224,5021.22,203.925,1024,18.53,3.79,5.97 +tiny_vit_11m_224,224,5013.61,204.233,1024,20.35,2.04,13.49 +hgnetv2_b4,224,4999.81,204.797,1024,19.8,2.75,6.7 +eva02_tiny_patch14_224,224,4958.89,206.487,1024,5.5,1.7,9.14 +efficientnet_b1,240,4954.82,206.656,1024,7.79,0.71,10.88 +pit_s_224,224,4950.08,206.854,1024,23.46,2.88,11.56 +resnext50_32x4d,176,4946.85,206.99,1024,25.03,2.71,8.97 +pit_s_distilled_224,224,4922.56,208.011,1024,24.04,2.9,11.64 +darknet21,256,4915.34,208.316,1024,20.86,3.93,7.47 +nf_resnet26,224,4912.43,208.441,1024,16.0,2.41,7.35 +convnext_femto,288,4895.87,209.146,1024,5.22,1.3,7.56 +efficientnet_lite2,260,4895.77,209.15,1024,6.09,0.89,12.9 +gmlp_ti16_224,224,4887.42,209.508,1024,5.87,1.34,7.55 +tf_efficientnetv2_b2,260,4842.96,211.431,1024,10.1,1.72,9.84 +convnext_femto_ols,288,4762.02,215.024,1024,5.23,1.35,8.06 +efficientnet_b2_pruned,260,4761.44,215.051,1024,8.31,0.73,9.13 +efficientnetv2_rw_t,224,4734.23,216.287,1024,13.65,1.93,9.94 +resnext26ts,256,4729.62,216.496,1024,10.3,2.43,10.52 +ecaresnet50d_pruned,224,4721.76,216.858,1024,19.94,2.53,6.43 +mixer_b32_224,224,4721.22,216.883,1024,60.29,3.24,6.29 +sedarknet21,256,4717.55,217.052,1024,20.95,3.93,7.47 +efficientnet_cc_b0_4e,224,4699.43,217.889,1024,13.31,0.41,9.42 +efficientformer_l1,224,4692.55,218.208,1024,12.29,1.3,5.53 +hgnetv2_b2,224,4665.47,219.475,1024,11.22,1.15,4.12 +efficientnet_cc_b0_8e,224,4649.86,220.212,1024,24.01,0.42,9.42 +deit_small_patch16_224,224,4640.58,220.651,1024,22.05,4.61,11.95 +dpn48b,224,4632.75,221.023,1024,9.13,1.69,8.92 +vit_base_patch32_clip_quickgelu_224,224,4629.11,221.199,1024,87.85,4.41,5.01 +vit_small_patch32_384,384,4623.55,221.464,1024,22.92,3.45,8.25 +convnextv2_femto,224,4619.54,221.657,1024,5.23,0.79,4.57 +vit_small_patch16_224,224,4616.6,221.798,1024,22.05,4.61,11.95 +mobilenet_edgetpu_v2_m,256,4603.21,222.443,1024,8.46,2.42,10.65 +mobilevitv2_075,256,4603.11,222.448,1024,2.87,1.05,12.06 +rexnetr_130,224,4600.81,222.56,1024,7.61,0.68,9.81 +deit_small_distilled_patch16_224,224,4599.62,222.617,1024,22.44,4.63,12.02 +gc_efficientnetv2_rw_t,224,4586.63,223.247,1024,13.68,1.94,9.97 +eca_resnext26ts,256,4583.46,223.402,1024,10.3,2.43,10.52 +seresnext26ts,256,4576.49,223.742,1024,10.39,2.43,10.52 +tf_efficientnetv2_b3,240,4549.81,225.054,1024,14.36,1.93,9.95 +legacy_seresnext26_32x4d,224,4538.76,225.601,1024,16.79,2.49,9.39 +gcresnext26ts,256,4524.04,226.336,1024,10.48,2.43,10.53 +tf_efficientnet_b1,240,4521.51,226.463,1024,7.79,0.71,10.88 +gernet_l,256,4517.69,226.654,1024,31.08,4.57,8.0 +resnet101,160,4424.84,231.411,1024,44.55,4.0,8.28 +convnext_nano,224,4416.52,231.847,1024,15.59,2.46,8.37 +tf_efficientnet_lite2,260,4392.9,233.093,1024,6.09,0.89,12.9 +efficientnet_b1,256,4384.99,233.513,1024,7.79,0.77,12.22 +rexnet_130,224,4380.06,233.776,1024,7.56,0.68,9.71 +efficientvit_b1,288,4359.22,234.894,1024,9.1,0.87,11.96 +ghostnetv2_130,224,4355.29,235.105,1024,8.96,0.28,5.9 +mobilenetv4_conv_large,256,4341.06,235.877,1024,32.59,2.86,12.14 +tf_efficientnet_cc_b0_4e,224,4338.57,236.012,1024,13.31,0.41,9.42 +mobilenetv2_120d,224,4324.07,236.803,1024,5.83,0.69,11.97 +tf_efficientnet_cc_b0_8e,224,4315.19,237.291,1024,24.01,0.42,9.42 +deit3_small_patch16_224,224,4283.7,239.035,1024,22.06,4.61,11.95 +vit_relpos_small_patch16_rpn_224,224,4272.39,239.667,1024,21.97,4.59,13.05 +vit_wee_patch16_reg1_gap_256,256,4262.7,240.213,1024,13.42,3.83,13.9 +cs3darknet_focus_l,256,4254.84,240.657,1024,21.15,4.66,8.03 +vit_relpos_small_patch16_224,224,4248.63,241.008,1024,21.98,4.59,13.05 +vit_pwee_patch16_reg1_gap_256,256,4244.05,241.269,1024,15.25,4.37,15.87 +regnetx_016,224,4239.24,241.54,1024,9.19,1.62,7.93 +edgenext_x_small,288,4233.57,241.864,1024,2.34,0.68,7.5 +vit_srelpos_small_patch16_224,224,4224.03,242.412,1024,21.97,4.59,12.16 +nf_regnet_b1,288,4209.65,243.24,1024,10.22,1.02,9.2 +nf_ecaresnet26,224,4182.26,244.834,1024,16.0,2.41,7.36 +efficientnet_b2,256,4174.44,245.292,1024,9.11,0.89,12.81 +nf_seresnet26,224,4174.23,245.305,1024,17.4,2.41,7.36 +mobilenetv4_hybrid_large_075,256,4171.98,245.436,1024,22.75,2.06,11.64 +nf_regnet_b2,272,4148.23,246.842,1024,14.31,1.22,9.27 +cs3darknet_l,256,4138.17,247.442,1024,21.16,4.86,8.55 +convnext_nano_ols,224,4136.46,247.544,1024,15.65,2.65,9.38 +rexnetr_150,224,4135.64,247.594,1024,9.78,0.89,11.13 +ecaresnext50t_32x4d,224,4123.94,248.296,1024,15.41,2.7,10.09 +ecaresnext26t_32x4d,224,4122.74,248.367,1024,15.41,2.7,10.09 +seresnext26t_32x4d,224,4117.08,248.709,1024,16.81,2.7,10.09 +poolformer_s12,224,4088.18,250.468,1024,11.92,1.82,5.53 +repvgg_a2,224,4084.78,250.676,1024,28.21,5.7,6.26 +seresnext26d_32x4d,224,4078.22,251.079,1024,16.81,2.73,10.19 +resnet26t,256,4062.55,252.048,1024,16.01,3.35,10.52 +hgnet_tiny,224,4057.65,252.352,1024,14.74,4.54,6.36 +hgnetv2_b1,288,4056.18,252.444,1024,6.34,0.82,4.51 +flexivit_small,240,4044.24,253.19,1024,22.06,5.35,14.18 +repvit_m3,224,4026.3,254.31,1024,10.68,1.89,13.94 +edgenext_small,256,4025.36,254.377,1024,5.59,1.26,9.07 +mobileone_s1,224,4001.06,255.921,1024,4.83,0.86,9.67 +vit_base_patch32_clip_256,256,3985.68,256.91,1024,87.86,5.76,6.65 +resnetv2_50,224,3927.67,260.703,1024,25.55,4.11,11.11 +eca_botnext26ts_256,256,3922.63,261.039,1024,10.59,2.46,11.6 +regnety_016,224,3879.4,263.947,1024,11.2,1.63,8.04 +pvt_v2_b1,224,3876.64,264.136,1024,14.01,2.12,15.39 +cs3sedarknet_l,256,3859.41,265.314,1024,21.91,4.86,8.56 +mobilenetv4_conv_blur_medium,256,3857.99,265.413,1024,9.72,1.59,11.2 +dpn68,224,3853.11,265.748,1024,12.61,2.35,10.47 +ese_vovnet19b_dw,288,3852.02,265.825,1024,6.54,2.22,13.63 +fbnetv3_g,240,3837.93,266.791,1024,16.62,1.28,14.87 +resnet34,288,3825.08,267.697,1024,21.8,6.07,6.18 +convnext_pico,288,3802.68,269.273,1024,9.05,2.27,10.08 +eca_halonext26ts,256,3798.67,269.558,1024,10.76,2.44,11.46 +ecaresnetlight,224,3794.95,269.822,1024,30.16,4.11,8.42 +dpn68b,224,3764.97,271.97,1024,12.61,2.35,10.47 +efficientnet_em,240,3750.15,273.045,1024,6.9,3.04,14.34 +mixnet_m,224,3745.46,273.387,1024,5.01,0.36,8.19 +hgnetv2_b3,224,3744.03,273.492,1024,16.29,1.78,5.07 +resnet50,224,3729.86,274.531,1024,25.56,4.11,11.11 +efficientnet_b3_pruned,300,3729.22,274.578,1024,9.86,1.04,11.86 +bat_resnext26ts,256,3705.73,276.319,1024,10.73,2.53,12.51 +convnext_pico_ols,288,3702.45,276.564,1024,9.06,2.37,10.74 +rexnet_150,224,3700.42,276.715,1024,9.73,0.9,11.21 +botnet26t_256,256,3668.77,279.103,1024,12.49,3.32,11.98 +hrnet_w18_small_v2,224,3662.73,279.553,1024,15.6,2.62,9.65 +resnest14d,224,3658.62,279.877,1024,10.61,2.76,7.33 +resnet32ts,256,3655.47,280.118,1024,17.96,4.63,11.58 +ecaresnet26t,256,3636.71,281.563,1024,16.01,3.35,10.53 +resnet101,176,3629.67,282.109,1024,44.55,4.92,10.08 +mobilenetv4_hybrid_medium,320,3627.2,282.301,1024,11.07,2.05,14.36 +resnext26ts,288,3614.6,283.286,1024,10.3,3.07,13.31 +resnetv2_50t,224,3605.27,284.018,1024,25.57,4.32,11.82 +resnet33ts,256,3596.87,284.683,1024,19.68,4.76,11.66 +tf_efficientnet_em,240,3593.09,284.981,1024,6.9,3.04,14.34 +resnetv2_50d,224,3590.41,285.193,1024,25.57,4.35,11.92 +seresnet34,288,3587.79,285.399,1024,21.96,6.07,6.18 +regnetv_040,224,3583.87,285.714,1024,20.64,4.0,12.29 +tf_mixnet_m,224,3580.97,285.946,1024,5.01,0.36,8.19 +halonet26t,256,3578.92,286.11,1024,12.48,3.19,11.69 +edgenext_small_rw,256,3571.34,286.716,1024,7.83,1.58,9.51 +ecaresnet101d_pruned,224,3571.05,286.74,1024,24.88,3.48,7.69 +dla60,224,3563.95,287.311,1024,22.04,4.26,10.16 +coat_lite_tiny,224,3562.29,287.445,1024,5.72,1.6,11.65 +regnety_040,224,3558.64,287.74,1024,20.65,4.0,12.29 +resnet50c,224,3552.9,288.205,1024,25.58,4.35,11.92 +convnextv2_pico,224,3531.58,289.945,1024,9.07,1.37,6.1 +vit_small_resnet26d_224,224,3508.49,291.853,1024,63.61,5.07,11.12 +resnet26,288,3505.0,292.144,1024,16.0,3.9,12.15 +eca_resnext26ts,288,3503.71,292.25,1024,10.3,3.07,13.32 +seresnext26ts,288,3501.42,292.44,1024,10.39,3.07,13.32 +tf_efficientnet_b2,260,3496.2,292.88,1024,9.11,1.02,13.83 +resnet34d,288,3493.39,293.114,1024,21.82,6.47,7.51 +eca_resnet33ts,256,3492.62,293.179,1024,19.68,4.76,11.66 +efficientnet_b1,288,3488.73,293.505,1024,7.79,0.97,15.46 +seresnet33ts,256,3486.45,293.698,1024,19.78,4.76,11.66 +gcresnext26ts,288,3458.99,296.03,1024,10.48,3.07,13.33 +tresnet_m,224,3453.12,296.532,1024,31.39,5.75,7.31 +gcresnet33ts,256,3446.19,297.129,1024,19.88,4.76,11.68 +coatnet_nano_cc_224,224,3441.88,297.501,1024,13.76,2.24,15.02 +resnet50t,224,3439.67,297.693,1024,25.57,4.32,11.82 +ghostnetv2_160,224,3435.57,298.048,1024,12.39,0.42,7.23 +resnet50d,224,3420.07,299.4,1024,25.58,4.35,11.92 +efficientvit_b2,224,3405.99,300.636,1024,24.33,1.6,14.62 +vovnet39a,224,3393.85,301.712,1024,22.6,7.09,6.73 +coatnext_nano_rw_224,224,3385.52,302.454,1024,14.7,2.47,12.8 +coatnet_nano_rw_224,224,3380.48,302.905,1024,15.14,2.41,15.41 +legacy_seresnet50,224,3371.1,303.744,1024,28.09,3.88,10.6 +efficientnet_b0_gn,224,3367.52,304.072,1024,5.29,0.42,6.75 +cs3darknet_focus_l,288,3358.65,304.874,1024,21.15,5.9,10.16 +fastvit_t8,256,3353.24,305.366,1024,4.03,0.7,8.63 +convit_tiny,224,3349.24,305.73,1024,5.71,1.26,7.94 +repvit_m1_5,224,3348.79,305.769,1024,14.64,2.31,15.7 +coat_lite_mini,224,3328.7,307.616,1024,11.01,2.0,12.25 +selecsls84,224,3309.96,309.357,1024,50.95,5.9,7.57 +efficientnet_b2,288,3305.5,309.776,1024,9.11,1.12,16.2 +sam2_hiera_tiny,224,3299.25,310.362,1024,26.85,4.91,17.12 +haloregnetz_b,224,3297.58,310.52,1024,11.68,1.97,11.94 +resnetblur18,288,3296.17,310.652,1024,11.69,3.87,5.6 +resnetaa50,224,3294.4,310.82,1024,25.56,5.15,11.64 +levit_512,224,3286.88,311.53,1024,95.17,5.64,10.22 +vit_tiny_patch16_384,384,3281.68,312.024,1024,5.79,4.7,25.39 +ese_vovnet39b,224,3281.48,312.043,1024,24.57,7.09,6.74 +mobilevit_xs,256,3279.06,312.274,1024,2.32,1.05,16.33 +wide_resnet50_2,176,3279.04,312.276,1024,68.88,7.29,8.97 +eca_vovnet39b,224,3274.47,312.712,1024,22.6,7.09,6.74 +convnextv2_atto,288,3271.31,313.015,1024,3.71,0.91,6.3 +mobileone_s2,224,3268.79,313.256,1024,7.88,1.34,11.55 +cs3darknet_l,288,3263.27,313.785,1024,21.16,6.16,10.83 +seresnet50,224,3243.29,315.718,1024,28.09,4.11,11.13 +vit_small_r26_s32_224,224,3242.11,315.833,1024,36.43,3.56,9.85 +regnetx_032,224,3239.67,316.071,1024,15.3,3.2,11.37 +nf_regnet_b3,288,3220.95,317.909,1024,18.59,1.67,11.84 +res2net50_48w_2s,224,3208.95,319.097,1024,25.29,4.18,11.72 +resnetaa34d,288,3173.49,322.664,1024,21.82,7.33,8.38 +dla60x,224,3140.94,326.005,1024,17.35,3.54,13.8 +resnext50_32x4d,224,3135.91,326.53,1024,25.03,4.26,14.4 +mobileone_s0,224,3126.59,327.503,1024,5.29,1.09,15.48 +convnext_tiny,224,3120.16,328.178,1024,28.59,4.47,13.44 +visformer_small,224,3116.52,328.562,1024,40.22,4.88,11.43 +resnet152,160,3116.12,328.603,1024,60.19,5.9,11.51 +levit_conv_512,224,3097.94,330.532,1024,95.17,5.64,10.22 +vit_relpos_base_patch32_plus_rpn_256,256,3096.69,330.659,1024,119.42,7.68,8.01 +resnet26d,288,3085.16,331.901,1024,16.01,4.29,13.48 +skresnet34,224,3069.81,333.561,1024,22.28,3.67,5.13 +levit_512d,224,3062.18,334.39,1024,92.5,5.85,11.3 +resnet50_clip_gap,224,3051.19,335.595,1024,23.53,5.39,12.44 +eca_nfnet_l0,224,3050.64,335.658,1024,24.14,4.35,10.47 +resnetaa50d,224,3048.06,335.941,1024,25.58,5.39,12.44 +regnetz_c16,256,3040.22,336.807,1024,13.46,2.51,16.57 +cs3sedarknet_l,288,3038.16,337.035,1024,21.91,6.16,10.83 +xcit_nano_12_p16_384,384,3035.13,337.372,1024,3.05,1.64,12.15 +tiny_vit_21m_224,224,3034.37,337.457,1024,33.22,4.29,20.08 +densenet121,224,3031.71,337.752,1024,7.98,2.87,6.9 +nfnet_l0,224,3030.88,337.845,1024,35.07,4.36,10.47 +resnetrs50,224,3023.9,338.625,1024,35.69,4.48,12.14 +ecaresnet50t,224,3023.88,338.627,1024,25.57,4.32,11.83 +regnetz_b16,288,3023.06,338.719,1024,9.72,2.39,16.43 +seresnet50t,224,3021.11,338.934,1024,28.1,4.32,11.83 +ecaresnet50d,224,3008.25,340.387,1024,25.58,4.35,11.93 +vit_base_patch32_plus_256,256,3003.41,340.935,1024,119.48,7.79,7.76 +vit_medium_patch16_clip_224,224,3002.97,340.985,1024,38.59,8.0,15.93 +hgnetv2_b4,288,3001.56,341.146,1024,19.8,4.54,11.08 +crossvit_small_240,240,2994.9,341.904,1024,26.86,5.63,18.17 +resnet50s,224,2990.06,342.458,1024,25.68,5.47,13.52 +rexnetr_200,224,2981.52,343.438,1024,16.52,1.59,15.11 +mixnet_l,224,2960.5,345.878,1024,7.33,0.58,10.84 +efficientnet_cc_b1_8e,240,2957.88,346.183,1024,39.72,0.75,15.44 +xcit_tiny_24_p16_224,224,2951.65,346.913,1024,12.12,2.34,11.82 +gcresnext50ts,256,2949.61,347.155,1024,15.67,3.75,15.46 +lambda_resnet26rpt_256,256,2920.38,350.629,1024,10.99,3.16,11.87 +hiera_tiny_224,224,2913.8,351.42,1024,27.91,4.91,17.13 +resnext50d_32x4d,224,2906.09,352.354,1024,25.05,4.5,15.2 +resnet32ts,288,2900.64,353.016,1024,17.96,5.86,14.65 +vit_little_patch16_reg1_gap_256,256,2900.54,353.027,1024,22.52,6.27,18.06 +levit_conv_512d,224,2894.37,353.779,1024,92.5,5.85,11.3 +res2net50_26w_4s,224,2886.15,354.784,1024,25.7,4.28,12.61 +resnetv2_50x1_bit,224,2881.41,355.371,1024,25.55,4.23,11.11 +mobilenetv4_conv_large,320,2873.61,356.335,1024,32.59,4.47,18.97 +tf_efficientnetv2_b3,300,2870.86,356.676,1024,14.36,3.04,15.74 +vit_little_patch16_reg4_gap_256,256,2870.27,356.75,1024,22.52,6.35,18.33 +mobilevitv2_100,256,2869.22,356.881,1024,4.9,1.84,16.08 +coatnet_pico_rw_224,224,2867.77,357.061,1024,10.85,2.05,14.62 +efficientnetv2_rw_t,288,2863.9,357.543,1024,13.65,3.19,16.42 +resnet33ts,288,2854.58,358.712,1024,19.68,6.02,14.75 +cspresnet50,256,2853.48,358.849,1024,21.62,4.54,11.5 +inception_next_tiny,224,2844.01,360.044,1024,28.06,4.19,11.98 +resnet50_clip,224,2836.87,360.947,1024,38.32,6.14,12.98 +res2next50,224,2827.45,362.148,1024,24.67,4.2,13.71 +tf_mixnet_l,224,2826.43,362.284,1024,7.33,0.58,10.84 +dla60_res2next,224,2826.22,362.31,1024,17.03,3.49,13.17 +vit_base_resnet26d_224,224,2826.06,362.331,1024,101.4,6.97,13.16 +hgnetv2_b5,224,2824.85,362.487,1024,39.57,6.56,11.19 +vovnet57a,224,2824.04,362.591,1024,36.64,8.95,7.52 +deit3_medium_patch16_224,224,2819.68,363.151,1024,38.85,8.0,15.93 +convnextv2_femto,288,2809.3,364.492,1024,5.23,1.3,7.56 +res2net50_14w_8s,224,2809.15,364.506,1024,25.06,4.21,13.28 +gcresnet50t,256,2800.68,365.615,1024,25.9,5.42,14.67 +crossvit_15_240,240,2793.66,366.534,1024,27.53,5.81,19.77 +vit_relpos_medium_patch16_rpn_224,224,2791.96,366.75,1024,38.73,7.97,17.02 +seresnext50_32x4d,224,2785.57,367.599,1024,27.56,4.26,14.42 +dla60_res2net,224,2784.11,367.789,1024,20.85,4.15,12.34 +convnext_tiny_hnf,224,2781.72,368.1,1024,28.59,4.47,13.44 +gc_efficientnetv2_rw_t,288,2780.71,368.241,1024,13.68,3.2,16.45 +gcvit_xxtiny,224,2779.24,368.435,1024,12.0,2.14,15.36 +vgg11_bn,224,2779.08,368.458,1024,132.87,7.62,7.44 +legacy_seresnext50_32x4d,224,2778.41,368.545,1024,27.56,4.26,14.42 +tf_efficientnet_cc_b1_8e,240,2776.91,368.745,1024,39.72,0.75,15.44 +vit_relpos_medium_patch16_224,224,2773.12,369.248,1024,38.75,7.97,17.02 +resmlp_24_224,224,2769.63,369.714,1024,30.02,5.96,10.91 +crossvit_15_dagger_240,240,2769.4,369.745,1024,28.21,6.13,20.43 +hgnetv2_b2,288,2767.58,369.987,1024,11.22,1.89,6.8 +eca_resnet33ts,288,2765.99,370.2,1024,19.68,6.02,14.76 +vit_srelpos_medium_patch16_224,224,2763.71,370.506,1024,38.74,7.96,16.21 +seresnet33ts,288,2762.81,370.627,1024,19.78,6.02,14.76 +twins_svt_small,224,2759.48,371.074,1024,24.06,2.94,13.75 +vit_relpos_medium_patch16_cls_224,224,2754.95,371.684,1024,38.76,8.03,18.24 +twins_pcpvt_small,224,2745.95,372.902,1024,24.11,3.83,18.08 +nextvit_small,224,2739.59,373.768,1024,31.76,5.81,18.44 +davit_tiny,224,2738.13,280.473,768,28.36,4.54,18.89 +gcresnet33ts,288,2730.01,375.08,1024,19.88,6.02,14.78 +cspresnet50d,256,2722.26,376.147,1024,21.64,4.86,12.55 +fbnetv3_g,288,2718.22,376.707,1024,16.62,1.77,21.09 +seresnetaa50d,224,2716.73,376.913,1024,28.11,5.4,12.46 +ese_vovnet57b,224,2715.38,377.101,1024,38.61,8.95,7.52 +rexnet_200,224,2713.9,377.301,1024,16.37,1.56,14.91 +resnetblur50,224,2713.18,377.406,1024,25.56,5.16,12.02 +ecaresnet50d_pruned,288,2709.71,377.889,1024,19.94,4.19,10.61 +nfnet_f0,192,2708.66,378.036,1024,71.49,7.21,10.16 +efficientvit_l1,224,2706.35,378.359,1024,52.65,5.27,15.85 +convnext_nano,288,2696.47,379.744,1024,15.59,4.06,13.84 +hgnet_small,224,2694.73,379.99,1024,24.36,8.53,8.79 +res2net50d,224,2694.69,379.989,1024,25.72,4.52,13.41 +cspresnet50w,256,2694.09,380.081,1024,28.12,5.04,12.19 +coatnet_0_rw_224,224,2684.42,381.451,1024,27.44,4.43,18.73 +poolformerv2_s12,224,2665.71,384.127,1024,11.89,1.83,5.53 +mobileone_s3,224,2662.7,384.561,1024,10.17,1.94,13.85 +resnest26d,224,2658.83,385.121,1024,17.07,3.64,9.97 +efficientvit_b2,256,2647.05,386.835,1024,24.33,2.09,19.03 +regnetx_040,224,2643.92,387.289,1024,22.12,3.99,12.2 +regnety_032,224,2640.33,387.82,1024,19.44,3.2,11.26 +resnet51q,256,2620.47,390.76,1024,35.7,6.38,16.55 +repvgg_b1g4,224,2615.17,391.55,1024,39.97,8.15,10.64 +nf_regnet_b3,320,2615.09,391.563,1024,18.59,2.05,14.61 +gmixer_24_224,224,2609.82,392.354,1024,24.72,5.28,14.45 +densenetblur121d,224,2595.94,394.451,1024,8.0,3.11,7.9 +edgenext_small,320,2590.64,395.256,1024,5.59,1.97,14.16 +mobilevit_s,256,2588.55,395.577,1024,5.58,2.03,19.94 +cs3darknet_focus_x,256,2586.12,395.949,1024,35.02,8.03,10.69 +inception_v3,299,2561.31,399.784,1024,23.83,5.73,8.97 +resnet152,176,2560.74,399.874,1024,60.19,7.22,13.99 +nf_ecaresnet50,224,2541.49,402.904,1024,25.56,4.21,11.13 +resnetblur50d,224,2541.42,402.913,1024,25.58,5.4,12.82 +resnet26t,320,2540.06,403.129,1024,16.01,5.24,16.44 +nf_seresnet50,224,2535.8,403.807,1024,28.09,4.21,11.13 +convnextv2_nano,224,2534.59,403.998,1024,15.62,2.46,8.37 +efficientnet_b0_g8_gn,224,2533.38,404.193,1024,6.56,0.66,6.75 +resnetrs101,192,2519.45,406.427,1024,63.62,6.04,12.7 +convnext_nano_ols,288,2512.2,407.6,1024,15.65,4.38,15.5 +vit_medium_patch16_gap_240,240,2499.59,409.656,1024,44.4,9.22,18.81 +densenet169,224,2499.14,409.729,1024,14.15,3.4,7.3 +mobilenetv4_hybrid_medium,384,2489.91,411.248,1024,11.07,3.01,21.18 +xcit_small_12_p16_224,224,2480.75,412.767,1024,26.25,4.82,12.58 +cs3darknet_x,256,2478.79,413.095,1024,35.05,8.38,11.35 +cspresnext50,256,2475.13,413.705,1024,20.57,4.05,15.86 +darknetaa53,256,2444.37,418.912,1024,36.02,7.97,12.39 +darknet53,256,2438.24,419.962,1024,41.61,9.31,12.39 +seresnext26t_32x4d,288,2437.82,420.035,1024,16.81,4.46,16.68 +maxvit_pico_rw_256,256,2433.04,315.645,768,7.46,1.83,22.3 +sehalonet33ts,256,2426.84,421.938,1024,13.69,3.55,14.7 +maxvit_rmlp_pico_rw_256,256,2425.78,316.588,768,7.52,1.85,24.86 +seresnext26d_32x4d,288,2422.58,422.677,1024,16.81,4.51,16.85 +vit_base_r26_s32_224,224,2414.03,424.176,1024,101.38,6.81,12.36 +hgnet_tiny,288,2409.6,424.956,1024,14.74,7.51,10.51 +focalnet_tiny_srf,224,2408.09,425.223,1024,28.43,4.42,16.32 +fastvit_t12,256,2389.89,428.462,1024,7.55,1.42,12.42 +coatnet_rmlp_nano_rw_224,224,2375.1,431.128,1024,15.15,2.62,20.34 +resnet61q,256,2368.57,432.318,1024,36.85,7.8,17.01 +edgenext_base,256,2365.56,432.866,1024,18.51,3.85,15.58 +resnetv2_101,224,2358.08,434.239,1024,44.54,7.83,16.23 +hiera_small_224,224,2356.28,434.571,1024,35.01,6.42,20.75 +nf_resnet50,256,2351.74,435.412,1024,25.56,5.46,14.52 +cs3sedarknet_x,256,2344.23,436.807,1024,35.4,8.38,11.35 +resnet50_mlp,256,2333.79,438.762,1024,26.65,7.05,16.25 +ecaresnet50t,256,2331.13,439.262,1024,25.57,5.64,15.45 +resnetv2_50,288,2330.51,439.377,1024,25.55,6.79,18.37 +xcit_nano_12_p8_224,224,2328.05,439.842,1024,3.05,2.16,15.71 +efficientnet_lite3,300,2314.24,442.468,1024,8.2,1.65,21.85 +resnest50d_1s4x24d,224,2310.08,443.264,1024,25.68,4.43,13.57 +resnet101,224,2287.55,447.629,1024,44.55,7.83,16.23 +dm_nfnet_f0,192,2284.54,448.22,1024,71.49,7.21,10.16 +efficientnetv2_s,288,2283.97,448.33,1024,21.46,4.75,20.13 +ecaresnet26t,320,2283.24,448.474,1024,16.01,5.24,16.44 +pvt_v2_b2,224,2282.41,448.635,1024,25.36,4.05,27.53 +gcresnext50ts,288,2276.49,449.804,1024,15.67,4.75,19.57 +dla102,224,2270.79,450.932,1024,33.27,7.19,14.18 +dpn68b,288,2266.47,451.792,1024,12.61,3.89,17.3 +fastvit_s12,256,2263.12,452.46,1024,9.47,1.82,13.67 +gmlp_s16_224,224,2262.28,452.629,1024,19.42,4.42,15.1 +skresnet50,224,2261.97,452.692,1024,25.8,4.11,12.5 +ecaresnetlight,288,2258.94,453.299,1024,30.16,6.79,13.91 +rdnet_tiny,224,2257.25,453.639,1024,23.86,5.06,15.98 +fastvit_sa12,256,2256.89,453.711,1024,11.58,1.96,14.03 +focalnet_tiny_lrf,224,2250.45,455.008,1024,28.65,4.49,17.76 +regnetx_080,224,2241.1,456.908,1024,39.57,8.02,14.06 +resnetv2_101d,224,2230.6,459.058,1024,44.56,8.07,17.04 +hgnetv2_b3,288,2229.64,459.256,1024,16.29,2.94,8.38 +resnet101c,224,2225.59,460.093,1024,44.57,8.08,17.04 +vit_medium_patch16_gap_256,256,2220.07,461.236,1024,38.86,10.59,22.15 +resnet50,288,2211.87,462.946,1024,25.56,6.8,18.37 +edgenext_small_rw,320,2206.45,464.081,1024,7.83,2.46,14.85 +gcresnet50t,288,2205.25,464.336,1024,25.9,6.86,18.57 +vit_base_resnet50d_224,224,2196.36,466.215,1024,110.97,8.73,16.92 +regnetv_040,288,2184.78,468.687,1024,20.64,6.6,20.3 +eva02_tiny_patch14_336,336,2169.41,472.008,1024,5.76,4.68,27.16 +regnety_040,288,2169.12,472.071,1024,20.65,6.61,20.3 +efficientnetv2_rw_s,288,2168.46,472.214,1024,23.94,4.91,21.41 +eva02_small_patch14_224,224,2168.12,472.287,1024,21.62,6.14,18.28 +resnet101d,224,2168.0,472.315,1024,44.57,8.08,17.04 +vgg13,224,2160.71,473.907,1024,133.05,11.31,12.25 +gcvit_xtiny,224,2157.88,474.529,1024,19.98,2.93,20.26 +mobilevitv2_125,256,2156.6,474.811,1024,7.48,2.86,20.1 +convnextv2_pico,288,2147.68,476.783,1024,9.07,2.27,10.08 +skresnet50d,224,2140.48,478.386,1024,25.82,4.36,13.31 +res2net50_26w_6s,224,2137.67,479.014,1024,37.05,6.33,15.28 +ecaresnet101d_pruned,288,2127.79,481.24,1024,24.88,5.75,12.71 +hrnet_w18_ssld,224,2127.32,481.346,1024,21.3,4.32,16.31 +efficientvit_l2,224,2122.96,482.334,1024,63.71,6.97,19.58 +hieradet_small,256,2119.77,362.292,768,34.72,8.51,27.76 +tf_efficientnet_lite3,300,2115.57,484.019,1024,8.2,1.65,21.85 +hrnet_w18,224,2115.21,484.101,1024,21.3,4.32,16.31 +efficientformer_l3,224,2095.8,488.585,1024,31.41,3.93,12.01 +efficientvit_b2,288,2095.12,488.743,1024,24.33,2.64,24.03 +wide_resnet50_2,224,2093.41,489.145,1024,68.88,11.43,14.4 +sebotnet33ts_256,256,2091.61,244.778,512,13.7,3.89,17.46 +poolformer_s24,224,2090.86,489.741,1024,21.39,3.41,10.68 +resnet51q,288,2086.73,490.708,1024,35.7,8.07,20.94 +vit_medium_patch16_reg1_gap_256,256,2074.81,493.527,1024,38.88,10.63,22.26 +cspdarknet53,256,2060.68,496.914,1024,27.64,6.57,16.81 +nextvit_base,224,2056.15,498.007,1024,44.82,8.29,23.71 +vit_medium_patch16_reg4_gap_256,256,2054.73,498.351,1024,38.88,10.76,22.6 +efficientnet_b3,288,2053.58,498.63,1024,12.23,1.63,21.49 +resnet50t,288,2045.49,500.603,1024,25.57,7.14,19.53 +dla102x,224,2042.36,501.368,1024,26.31,5.89,19.42 +pvt_v2_b2_li,224,2034.87,503.215,1024,22.55,3.91,27.6 +legacy_seresnet101,224,2032.63,503.771,1024,49.33,7.61,15.74 +resnet50d,288,2031.97,503.934,1024,25.58,7.19,19.7 +mixnet_xl,224,2030.61,504.271,1024,11.9,0.93,14.57 +resnet101_clip_gap,224,2015.07,508.159,1024,42.52,9.11,17.56 +resnetaa101d,224,2013.22,508.627,1024,44.57,9.12,17.56 +swin_tiny_patch4_window7_224,224,2008.94,509.712,1024,28.29,4.51,17.06 +repvgg_b1,224,2004.0,510.966,1024,57.42,13.16,10.64 +coatnet_bn_0_rw_224,224,2002.05,511.465,1024,27.44,4.67,22.04 +cs3edgenet_x,256,1996.96,512.768,1024,47.82,11.53,12.92 +coatnet_rmlp_0_rw_224,224,1995.05,513.261,1024,27.45,4.72,24.89 +maxxvit_rmlp_nano_rw_256,256,1993.93,385.157,768,16.78,4.37,26.05 +cs3sedarknet_xdw,256,1988.81,514.859,1024,21.6,5.97,17.18 +seresnet101,224,1987.57,515.192,1024,49.33,7.84,16.27 +resnetaa50,288,1985.73,515.67,1024,25.56,8.52,19.24 +resnet101s,224,1984.65,515.949,1024,44.67,9.19,18.64 +mobilenetv4_conv_large,384,1984.05,516.104,1024,32.59,6.43,27.31 +regnetx_064,224,1979.8,517.214,1024,26.21,6.49,16.37 +regnetz_d32,256,1973.2,518.943,1024,27.58,5.98,23.74 +nest_tiny,224,1968.18,520.267,1024,17.06,5.83,25.48 +tf_efficientnetv2_s,300,1966.15,520.804,1024,21.46,5.35,22.73 +regnetz_d8,256,1964.69,521.191,1024,23.37,3.97,23.74 +regnetz_c16,320,1962.44,521.788,1024,13.46,3.92,25.88 +tresnet_v2_l,224,1957.54,523.094,1024,46.17,8.85,16.34 +cs3darknet_x,288,1954.84,523.818,1024,35.05,10.6,14.36 +ese_vovnet39b,288,1951.57,524.694,1024,24.57,11.71,11.13 +mobileone_s4,224,1950.42,525.005,1024,14.95,3.04,17.74 +crossvit_18_240,240,1944.91,526.492,1024,43.27,9.05,26.26 +nest_tiny_jx,224,1943.83,526.786,1024,17.06,5.83,25.48 +convnext_tiny,288,1942.31,527.195,1024,28.59,7.39,22.21 +resnext101_32x4d,224,1940.6,527.66,1024,44.18,8.01,21.23 +xcit_tiny_12_p16_384,384,1933.82,529.511,1024,6.72,3.64,18.26 +seresnet50,288,1928.14,531.071,1024,28.09,6.8,18.39 +darknetaa53,288,1927.58,531.226,1024,36.02,10.08,15.68 +densenet201,224,1923.55,532.337,1024,20.01,4.34,7.85 +regnetz_040,256,1923.5,532.341,1024,27.12,4.06,24.19 +nf_regnet_b4,320,1923.32,532.402,1024,30.21,3.29,19.88 +resnet101_clip,224,1921.47,532.914,1024,56.26,9.81,18.08 +crossvit_18_dagger_240,240,1916.57,534.275,1024,44.27,9.5,27.03 +darknet53,288,1911.52,535.684,1024,41.61,11.78,15.68 +regnetz_040_h,256,1907.32,536.868,1024,28.94,4.12,24.29 +resnext101_32x8d,176,1906.27,537.164,1024,88.79,10.33,19.37 +halonet50ts,256,1904.72,537.602,1024,22.73,5.3,19.2 +repvit_m2_3,224,1903.75,537.874,1024,23.69,4.57,26.21 +ecaresnet101d,224,1900.31,538.848,1024,44.57,8.08,17.07 +coat_lite_small,224,1894.79,540.417,1024,19.84,3.96,22.09 +vgg13_bn,224,1891.12,541.467,1024,133.05,11.33,12.25 +resnet61q,288,1890.53,541.637,1024,36.85,9.87,21.52 +nf_resnet101,224,1888.17,542.312,1024,44.55,8.01,16.23 +twins_pcpvt_base,224,1884.87,543.263,1024,43.83,6.68,25.25 +convnext_small,224,1878.13,545.211,1024,50.22,8.71,21.56 +cs3se_edgenet_x,256,1863.97,549.353,1024,50.72,11.53,12.94 +resnext50_32x4d,288,1862.16,549.888,1024,25.03,7.04,23.81 +wide_resnet101_2,176,1861.75,550.01,1024,126.89,14.31,13.18 +resmlp_36_224,224,1860.14,550.485,1024,44.69,8.91,16.33 +volo_d1_224,224,1858.16,551.072,1024,26.63,6.94,24.43 +eca_nfnet_l0,288,1849.16,553.756,1024,24.14,7.12,17.29 +nfnet_l0,288,1843.23,555.536,1024,35.07,7.13,17.29 +cs3sedarknet_x,288,1842.15,555.861,1024,35.4,10.6,14.37 +resnetaa50d,288,1841.55,556.042,1024,25.58,8.92,20.57 +resnetv2_50d_gn,224,1829.87,559.59,1024,25.57,4.38,11.92 +swin_s3_tiny_224,224,1829.63,559.665,1024,28.33,4.64,19.13 +sequencer2d_s,224,1819.49,562.785,1024,27.65,4.96,11.31 +nf_resnet50,288,1819.2,562.875,1024,25.56,6.88,18.37 +ecaresnet50t,288,1803.63,567.733,1024,25.57,7.14,19.55 +resnest50d,224,1801.69,568.346,1024,27.48,5.4,14.36 +seresnet50t,288,1799.96,568.892,1024,28.1,7.14,19.55 +densenet121,288,1797.45,569.685,1024,7.98,4.74,11.41 +rexnetr_200,288,1796.89,427.395,768,16.52,2.62,24.96 +ecaresnet50d,288,1794.35,570.669,1024,25.58,7.19,19.72 +res2net101_26w_4s,224,1792.61,571.216,1024,45.21,8.1,18.45 +maxxvitv2_nano_rw_256,256,1787.4,429.664,768,23.7,6.26,23.05 +resnetblur101d,224,1777.64,576.032,1024,44.57,9.12,17.94 +resnet50_gn,224,1775.58,576.701,1024,25.56,4.14,11.11 +cait_xxs24_224,224,1772.36,577.749,1024,11.96,2.53,20.29 +maxvit_nano_rw_256,256,1770.91,433.665,768,15.45,4.46,30.28 +mixer_b16_224,224,1768.46,579.024,1024,59.88,12.62,14.53 +maxvit_rmlp_nano_rw_256,256,1766.45,434.761,768,15.5,4.47,31.92 +vit_large_patch32_224,224,1766.19,579.765,1024,305.51,15.39,13.3 +vit_base_patch32_clip_384,384,1763.15,580.767,1024,88.3,13.06,16.5 +pit_b_224,224,1762.75,580.9,1024,73.76,12.42,32.94 +vit_base_patch32_384,384,1762.38,581.02,1024,88.3,13.06,16.5 +mobilevitv2_150,256,1758.79,436.653,768,10.59,4.09,24.11 +regnety_064,224,1758.25,582.385,1024,30.58,6.39,16.41 +res2net50_26w_8s,224,1757.77,582.547,1024,48.4,8.37,17.95 +pit_b_distilled_224,224,1754.34,583.684,1024,74.79,12.5,33.07 +rexnetr_300,224,1740.52,588.318,1024,34.81,3.39,22.16 +regnetv_064,224,1737.51,589.338,1024,30.58,6.39,16.41 +tresnet_l,224,1735.02,590.182,1024,55.99,10.9,11.9 +resnext50d_32x4d,288,1734.0,590.533,1024,25.05,7.44,25.13 +resnetv2_101x1_bit,224,1730.09,591.866,1024,44.54,8.04,16.23 +resnetv2_50d_frn,224,1729.39,592.103,1024,25.59,4.33,11.92 +vgg16,224,1729.39,592.106,1024,138.36,15.47,13.56 +seresnext101_32x4d,224,1725.09,593.58,1024,48.96,8.02,21.26 +legacy_seresnext101_32x4d,224,1721.49,594.81,1024,48.96,8.02,21.26 +res2net101d,224,1716.39,596.589,1024,45.23,8.35,19.25 +tf_efficientnet_b3,300,1715.74,596.818,1024,12.23,1.87,23.83 +hgnetv2_b5,288,1704.12,600.886,1024,39.57,10.84,18.5 +convnext_tiny_hnf,288,1697.32,603.29,1024,28.59,7.39,22.21 +vitamin_small_224,224,1687.84,606.683,1024,22.03,5.92,26.38 +ese_vovnet39b_evos,224,1686.51,607.159,1024,24.58,7.07,6.74 +regnety_080,224,1686.26,607.249,1024,39.18,8.0,17.97 +coatnet_0_224,224,1678.81,304.968,512,25.04,4.58,24.01 +convnextv2_tiny,224,1674.96,611.347,1024,28.64,4.47,13.44 +regnetz_b16_evos,224,1670.61,612.94,1024,9.74,1.43,9.95 +resnet101d,256,1668.7,613.64,1024,44.57,10.55,22.25 +botnet50ts_256,256,1666.23,307.27,512,22.74,5.54,22.23 +fastvit_mci0,256,1665.78,614.716,1024,11.41,2.42,18.29 +efficientnet_b3,320,1664.16,615.315,1024,12.23,2.01,26.52 +maxvit_tiny_rw_224,224,1656.79,463.537,768,29.06,5.11,33.11 +seresnext50_32x4d,288,1655.64,618.482,1024,27.56,7.04,23.82 +hiera_small_abswin_256,256,1653.07,619.442,1024,34.36,8.29,26.38 +davit_small,224,1646.59,466.407,768,49.75,8.8,30.49 +inception_next_small,224,1645.81,622.174,1024,49.37,8.36,19.27 +nextvit_large,224,1645.06,622.459,1024,57.87,10.78,28.99 +coatnet_rmlp_1_rw_224,224,1642.36,623.482,1024,41.69,7.85,35.47 +seresnetaa50d,288,1641.68,623.736,1024,28.11,8.92,20.59 +swinv2_cr_tiny_224,224,1640.6,624.15,1024,28.33,4.66,28.45 +efficientvit_b3,224,1640.13,624.331,1024,48.65,3.99,26.9 +resnetv2_152,224,1638.56,624.928,1024,60.19,11.55,22.56 +legacy_xception,299,1625.38,472.494,768,22.86,8.4,35.83 +efficientnet_el,300,1618.59,632.638,1024,10.59,8.0,30.7 +resnetblur50,288,1611.97,635.236,1024,25.56,8.52,19.87 +swinv2_cr_tiny_ns_224,224,1611.34,635.485,1024,28.33,4.66,28.45 +efficientnet_el_pruned,300,1610.86,635.676,1024,10.59,8.0,30.7 +pvt_v2_b3,224,1608.94,636.429,1024,45.24,6.92,37.7 +resnet152,224,1606.24,637.501,1024,60.19,11.56,22.56 +regnety_040_sgn,224,1600.6,639.748,1024,20.65,4.03,12.29 +hiera_base_224,224,1599.47,640.202,1024,51.52,9.4,30.42 +hgnet_small,288,1591.36,482.595,768,24.36,14.09,14.53 +vit_small_resnet50d_s16_224,224,1590.51,643.806,1024,57.53,13.48,24.82 +cs3edgenet_x,288,1584.3,646.332,1024,47.82,14.59,16.36 +vit_base_patch16_siglip_gap_224,224,1583.21,646.778,1024,85.8,17.49,23.75 +mvitv2_tiny,224,1582.77,646.956,1024,24.17,4.7,21.16 +mixer_l32_224,224,1581.12,647.634,1024,206.94,11.27,19.86 +deit_base_patch16_224,224,1579.88,648.139,1024,86.57,17.58,23.9 +halo2botnet50ts_256,256,1579.41,648.334,1024,22.64,5.02,21.78 +deit_base_distilled_patch16_224,224,1578.79,648.588,1024,87.34,17.68,24.05 +resnetv2_152d,224,1578.66,648.638,1024,60.2,11.8,23.36 +regnety_032,288,1575.76,649.833,1024,19.44,5.29,18.61 +vit_base_patch16_224_miil,224,1573.4,650.81,1024,94.4,17.59,23.91 +vit_base_patch16_224,224,1572.08,651.357,1024,86.57,17.58,23.9 +resnet152c,224,1571.84,651.453,1024,60.21,11.8,23.36 +regnety_080_tv,224,1571.53,651.584,1024,39.38,8.51,19.73 +nf_seresnet101,224,1570.7,651.927,1024,49.33,8.02,16.27 +vit_base_patch16_clip_224,224,1570.62,651.96,1024,86.57,17.58,23.9 +nf_ecaresnet101,224,1570.49,652.017,1024,44.55,8.01,16.27 +tf_efficientnet_el,300,1566.79,653.554,1024,10.59,8.0,30.7 +vit_base_patch16_siglip_224,224,1566.04,653.867,1024,92.88,17.73,24.06 +mobilenetv4_conv_aa_large,384,1562.44,655.376,1024,32.59,7.07,32.29 +vit_base_mci_224,224,1562.31,655.429,1024,86.35,17.73,24.65 +ese_vovnet99b,224,1559.84,656.466,1024,63.2,16.51,11.27 +vit_base_patch16_gap_224,224,1554.04,658.919,1024,86.57,17.49,25.59 +caformer_s18,224,1550.47,660.434,1024,26.34,4.13,19.39 +rexnet_300,224,1550.16,660.567,1024,34.71,3.44,22.4 +hrnet_w32,224,1547.9,661.528,1024,41.23,8.97,22.02 +efficientvit_l2,256,1547.32,661.778,1024,63.71,9.09,25.49 +repvgg_b2g4,224,1545.72,662.466,1024,61.76,12.63,12.9 +densenetblur121d,288,1544.46,663.005,1024,8.0,5.14,13.06 +resnet152d,224,1541.31,664.361,1024,60.21,11.8,23.36 +convnextv2_nano,288,1537.16,499.612,768,15.62,4.06,13.84 +beit_base_patch16_224,224,1536.2,666.568,1024,86.53,17.58,23.9 +vgg16_bn,224,1534.81,667.174,1024,138.37,15.5,13.56 +rdnet_small,224,1534.32,667.385,1024,50.44,8.74,22.55 +nfnet_f0,256,1532.99,667.963,1024,71.49,12.62,18.05 +vit_medium_patch16_rope_reg1_gap_256,256,1531.11,668.785,1024,38.74,10.63,22.26 +beitv2_base_patch16_224,224,1520.92,673.265,1024,86.53,17.58,23.9 +resnetblur50d,288,1515.28,675.773,1024,25.58,8.92,21.19 +vit_base_patch16_rpn_224,224,1513.98,676.348,1024,86.54,17.49,23.75 +edgenext_base,320,1511.01,677.677,1024,18.51,6.01,24.32 +convit_small,224,1505.94,679.963,1024,27.78,5.76,17.87 +dla169,224,1503.13,681.233,1024,53.39,11.6,20.2 +deit3_base_patch16_224,224,1496.23,684.377,1024,86.59,17.58,23.9 +vit_relpos_base_patch16_rpn_224,224,1482.24,690.829,1024,86.41,17.51,24.97 +vit_relpos_base_patch16_224,224,1477.58,693.015,1024,86.43,17.51,24.97 +xcit_tiny_12_p8_224,224,1475.49,693.994,1024,6.71,4.81,23.6 +skresnext50_32x4d,224,1475.1,694.179,1024,27.48,4.5,17.18 +vit_relpos_base_patch16_clsgap_224,224,1468.63,697.236,1024,86.43,17.6,25.12 +vit_small_patch16_384,384,1467.92,697.574,1024,22.2,15.52,50.78 +ecaresnet50t,320,1467.5,697.775,1024,25.57,8.82,24.13 +vit_relpos_base_patch16_cls_224,224,1467.04,697.995,1024,86.43,17.6,25.12 +mobilevitv2_175,256,1465.89,349.264,512,14.25,5.54,28.13 +vit_small_patch16_36x1_224,224,1461.67,700.555,1024,64.67,13.71,35.69 +gcvit_tiny,224,1457.43,702.592,1024,28.22,4.79,29.82 +convformer_s18,224,1455.15,703.698,1024,26.77,3.96,15.82 +vit_betwixt_patch16_reg1_gap_256,256,1449.59,706.394,1024,60.4,16.32,27.83 +resnetv2_50d_evos,224,1447.75,707.29,1024,25.59,4.33,11.92 +focalnet_small_srf,224,1446.06,708.111,1024,49.89,8.62,26.26 +resnet152s,224,1444.93,708.675,1024,60.32,12.92,24.96 +vgg19,224,1441.62,710.3,1024,143.67,19.63,14.86 +vit_betwixt_patch16_reg4_gap_256,256,1434.73,713.713,1024,60.4,16.52,28.24 +dpn92,224,1422.77,719.712,1024,37.67,6.54,18.21 +regnetx_120,224,1419.34,721.451,1024,46.11,12.13,21.37 +sequencer2d_m,224,1415.18,723.57,1024,38.31,6.55,14.26 +resnetv2_101,288,1410.42,726.012,1024,44.54,12.94,26.83 +vit_small_patch16_18x2_224,224,1410.32,726.067,1024,64.67,13.71,35.69 +dla102x2,224,1408.31,727.1,1024,41.28,9.34,29.91 +legacy_seresnet152,224,1405.68,728.463,1024,66.82,11.33,22.08 +poolformer_s36,224,1403.92,729.375,1024,30.86,5.0,15.82 +densenet161,224,1400.64,731.082,1024,28.68,7.79,11.06 +mobilenetv4_hybrid_large,384,1400.4,731.209,1024,37.76,7.77,34.52 +maxvit_tiny_tf_224,224,1398.62,549.103,768,30.92,5.6,35.78 +vit_base_patch16_clip_quickgelu_224,224,1393.62,734.768,1024,86.19,17.58,23.9 +flexivit_base,240,1387.12,738.211,1024,86.59,20.29,28.36 +seresnet152,224,1385.77,738.93,1024,66.82,11.57,22.61 +mobilenetv4_hybrid_medium,448,1381.87,741.016,1024,11.07,4.2,29.64 +poolformerv2_s24,224,1380.23,741.894,1024,21.34,3.42,10.68 +efficientformerv2_s0,224,1376.45,743.934,1024,3.6,0.41,5.3 +deit3_small_patch16_384,384,1372.21,746.232,1024,22.21,15.52,50.78 +repvgg_b2,224,1368.31,748.357,1024,89.02,20.45,12.9 +resnet101,288,1367.0,749.076,1024,44.55,12.95,26.83 +coatnet_1_rw_224,224,1362.79,751.389,1024,41.72,8.04,34.6 +coatnet_rmlp_1_rw2_224,224,1362.11,751.762,1024,41.72,8.11,40.13 +focalnet_small_lrf,224,1356.15,755.049,1024,50.34,8.74,28.61 +twins_pcpvt_large,224,1355.77,755.28,1024,60.99,9.84,35.82 +inception_v4,299,1352.8,756.936,1024,42.68,12.28,15.09 +maxxvit_rmlp_tiny_rw_256,256,1347.99,569.726,768,29.64,6.66,39.76 +regnetx_160,224,1347.67,759.82,1024,54.28,15.99,25.52 +regnety_120,224,1342.31,762.851,1024,51.82,12.14,21.38 +eca_nfnet_l1,256,1339.38,764.526,1024,41.41,9.62,22.04 +nf_regnet_b4,384,1338.66,764.931,1024,30.21,4.7,28.61 +fastvit_sa24,256,1331.86,768.836,1024,21.55,3.8,24.32 +xcit_small_24_p16_224,224,1319.85,775.833,1024,47.67,9.1,23.64 +vit_base_patch32_clip_448,448,1316.78,777.646,1024,88.34,17.93,23.9 +convnext_base,224,1309.55,781.937,1024,88.59,15.38,28.75 +hrnet_w30,224,1307.0,783.46,1024,37.71,8.15,21.21 +vit_base_patch16_xp_224,224,1302.22,786.337,1024,86.51,17.56,23.9 +mixnet_xxl,224,1300.49,590.535,768,23.96,2.04,23.43 +efficientnet_b4,320,1298.17,591.59,768,19.34,3.13,34.76 +vgg19_bn,224,1292.29,792.382,1024,143.68,19.66,14.86 +dm_nfnet_f0,256,1291.37,792.948,1024,71.49,12.62,18.05 +hrnet_w18_ssld,288,1289.07,794.359,1024,21.3,7.14,26.96 +efficientnetv2_s,384,1287.98,795.031,1024,21.46,8.44,35.77 +efficientvit_b3,256,1282.51,798.417,1024,48.65,5.2,35.01 +mobilevitv2_200,256,1277.35,400.82,512,18.45,7.22,32.15 +maxvit_tiny_rw_256,256,1275.72,601.999,768,29.07,6.74,44.35 +maxvit_rmlp_tiny_rw_256,256,1275.02,602.33,768,29.15,6.77,46.92 +efficientformerv2_s1,224,1269.21,806.789,1024,6.19,0.67,7.66 +hiera_base_plus_224,224,1266.71,808.384,1024,69.9,12.67,37.98 +twins_svt_base,224,1264.21,809.978,1024,56.07,8.59,26.33 +regnetz_d32,320,1259.82,812.801,1024,27.58,9.33,37.08 +regnetz_d8,320,1256.35,815.05,1024,23.37,6.19,37.08 +nest_small,224,1255.15,815.828,1024,38.35,10.35,40.04 +wide_resnet50_2,288,1252.17,817.768,1024,68.88,18.89,23.81 +repvgg_b3g4,224,1248.83,819.957,1024,83.83,17.89,15.1 +vit_mediumd_patch16_reg4_gap_256,256,1247.91,820.557,1024,64.11,17.87,37.57 +tf_efficientnetv2_s,384,1246.18,821.699,1024,21.46,8.44,35.77 +regnetz_040,320,1245.23,411.16,512,27.12,6.35,37.78 +nest_small_jx,224,1245.09,822.421,1024,38.35,10.35,40.04 +hgnetv2_b6,224,1242.11,824.392,1024,75.26,16.88,21.23 +regnetz_040_h,320,1240.62,412.685,512,28.94,6.43,37.94 +swin_small_patch4_window7_224,224,1233.81,829.94,1024,49.61,8.77,27.47 +vit_base_patch16_siglip_gap_256,256,1230.86,831.929,1024,85.84,23.13,33.23 +efficientnetv2_rw_s,384,1225.62,835.482,1024,23.94,8.72,38.03 +efficientvit_l2,288,1223.9,836.657,1024,63.71,11.51,32.19 +resnetaa101d,288,1218.62,840.281,1024,44.57,15.07,29.03 +vit_base_patch16_siglip_256,256,1217.35,841.156,1024,92.93,23.44,33.63 +swinv2_tiny_window8_256,256,1216.18,841.967,1024,28.35,5.96,24.57 +dpn98,224,1216.04,842.062,1024,61.57,11.73,25.2 +resnext101_64x4d,224,1205.34,849.54,1024,83.46,15.52,31.21 +resnest50d_4s2x40d,224,1202.36,851.648,1024,30.42,4.4,17.94 +cs3se_edgenet_x,320,1198.22,854.587,1024,50.72,18.01,20.21 +cait_xxs36_224,224,1195.59,856.47,1024,17.3,3.77,30.34 +resnext101_32x8d,224,1193.92,857.665,1024,88.79,16.48,31.21 +seresnet101,288,1192.86,858.428,1024,49.33,12.95,26.87 +resnet152d,256,1185.38,863.846,1024,60.21,15.41,30.51 +mobilenetv4_conv_large,448,1178.81,868.664,1024,32.59,8.75,37.17 +wide_resnet101_2,224,1175.48,871.125,1024,126.89,22.8,21.23 +mvitv2_small,224,1171.19,874.316,1024,34.87,7.0,28.08 +resnet200,224,1170.95,874.489,1024,64.67,15.07,32.19 +tnt_s_patch16_224,224,1170.11,875.118,1024,23.76,5.24,24.37 +inception_resnet_v2,299,1170.1,875.124,1024,55.84,13.18,25.06 +davit_base,224,1167.76,657.658,768,87.95,15.51,40.66 +resnext101_32x4d,288,1162.51,880.842,1024,44.18,13.24,35.09 +maxvit_tiny_pm_256,256,1161.84,661.01,768,30.09,6.61,47.9 +convnext_small,288,1159.49,883.132,1024,50.22,14.39,35.65 +rexnetr_300,288,1159.12,441.698,512,34.81,5.59,36.61 +coat_tiny,224,1155.52,886.171,1024,5.5,4.35,27.2 +vit_base_patch16_reg4_gap_256,256,1154.66,886.829,1024,86.62,23.5,33.89 +resnetrs101,288,1154.54,886.919,1024,63.62,13.56,28.53 +samvit_base_patch16_224,224,1151.9,888.955,1024,86.46,17.54,24.54 +pvt_v2_b4,224,1149.9,890.501,1024,62.56,10.14,53.74 +mobilenetv4_conv_aa_large,448,1147.75,669.124,768,32.59,9.63,43.94 +coatnet_1_224,224,1146.63,446.514,512,42.23,8.7,39.0 +ecaresnet101d,288,1141.31,897.207,1024,44.57,13.35,28.19 +tresnet_xl,224,1138.85,899.141,1024,78.44,15.2,15.34 +regnety_160,224,1136.53,900.98,1024,83.59,15.96,23.04 +crossvit_base_240,240,1135.75,901.594,1024,105.03,21.22,36.33 +mvitv2_small_cls,224,1134.19,902.839,1024,34.87,7.04,28.17 +efficientnet_lite4,380,1132.94,677.871,768,13.01,4.04,45.66 +seresnext101_64x4d,224,1117.32,916.471,1024,88.23,15.53,31.25 +hiera_base_abswin_256,256,1113.82,919.348,1024,51.27,12.46,40.7 +vit_small_r26_s32_384,384,1112.62,920.336,1024,36.47,10.43,29.85 +eva02_base_patch16_clip_224,224,1111.45,921.303,1024,86.26,17.62,26.32 +seresnext101_32x8d,224,1107.29,924.747,1024,93.57,16.48,31.25 +nfnet_f1,224,1107.23,924.822,1024,132.63,17.87,22.94 +resnetv2_50d_gn,288,1101.48,929.642,1024,25.57,7.24,19.7 +convnext_tiny,384,1100.29,697.987,768,28.59,13.14,39.48 +vit_betwixt_patch16_rope_reg4_gap_256,256,1097.57,932.963,1024,60.23,16.52,28.24 +vit_large_r50_s32_224,224,1097.32,933.175,1024,328.99,19.58,24.41 +pvt_v2_b5,224,1091.19,938.413,1024,81.96,11.76,50.92 +inception_next_base,224,1084.8,943.94,1024,86.67,14.85,25.69 +efficientnetv2_m,320,1081.64,946.698,1024,54.14,11.01,39.97 +seresnext101d_32x8d,224,1078.94,949.057,1024,93.59,16.72,32.05 +resnet50_gn,288,1076.3,951.392,1024,25.56,6.85,18.37 +hrnet_w40,224,1068.64,958.191,1024,57.56,12.75,25.29 +resnetblur101d,288,1065.75,960.81,1024,44.57,15.07,29.65 +regnety_064,288,1059.2,966.744,1024,30.58,10.56,27.11 +hgnet_base,224,1056.26,727.083,768,71.58,25.14,15.47 +resnet101d,320,1056.02,969.668,1024,44.57,16.48,34.77 +tf_efficientnet_lite4,380,1054.8,728.091,768,13.01,4.04,45.66 +regnetz_e8,256,1047.73,977.344,1024,57.7,9.91,40.94 +regnetv_064,288,1046.59,978.402,1024,30.58,10.55,27.11 +xception41p,299,1040.78,737.896,768,26.91,9.25,39.86 +xcit_tiny_24_p16_384,384,1037.06,987.399,1024,12.12,6.87,34.29 +seresnext101_32x4d,288,1034.95,989.41,1024,48.96,13.25,35.12 +vit_small_patch8_224,224,1034.54,989.803,1024,21.67,22.44,80.84 +resnetrs152,256,1034.09,990.227,1024,86.62,15.59,30.83 +repvgg_b3,224,1033.07,991.212,1024,123.09,29.16,15.1 +seresnet152d,256,1030.66,993.53,1024,66.84,15.42,30.56 +rdnet_base,224,1021.45,751.859,768,87.45,15.4,31.14 +convnextv2_tiny,288,1017.72,754.62,768,28.64,7.39,22.21 +convnextv2_small,224,1015.43,1008.427,1024,50.32,8.71,21.56 +volo_d2_224,224,1012.98,1010.867,1024,58.68,14.34,41.34 +regnety_080,288,1011.46,1012.381,1024,39.18,13.22,29.69 +seresnextaa101d_32x8d,224,1009.83,1014.006,1024,93.59,17.25,34.16 +regnetz_b16_evos,288,1009.35,760.872,768,9.74,2.36,16.43 +vit_base_patch16_plus_240,240,1008.65,1015.202,1024,117.56,27.41,33.08 +efficientvit_b3,288,1004.87,1019.022,1024,48.65,6.58,44.2 +swinv2_cr_small_224,224,1004.71,1019.185,1024,49.7,9.07,50.27 +convnext_base,256,1004.59,1019.308,1024,88.59,20.09,37.55 +mobilenetv4_conv_aa_large,480,1000.68,767.464,768,32.59,11.05,50.45 +mobilenetv4_hybrid_large,448,998.89,768.844,768,37.76,10.74,48.61 +focalnet_base_srf,224,997.56,1026.494,1024,88.15,15.28,35.01 +swinv2_cr_small_ns_224,224,993.8,1030.379,1024,49.7,9.08,50.27 +vit_relpos_base_patch16_plus_240,240,992.65,1031.568,1024,117.38,27.3,34.33 +maxvit_rmlp_small_rw_224,224,992.28,773.964,768,64.9,10.75,49.3 +regnetz_c16_evos,256,990.18,775.606,768,13.49,2.48,16.57 +vit_base_r50_s16_224,224,987.34,1037.117,1024,97.89,21.66,35.28 +efficientformer_l7,224,979.35,1045.575,1024,82.23,10.17,24.45 +regnety_040_sgn,288,975.23,1050.001,1024,20.65,6.67,20.3 +poolformer_m36,224,970.83,1054.753,1024,56.17,8.8,22.02 +resnet152,288,962.0,1064.442,1024,60.19,19.11,37.28 +hrnet_w44,224,953.42,1073.994,1024,67.06,14.94,26.92 +tiny_vit_21m_384,384,953.33,537.052,512,21.23,13.77,77.83 +cait_s24_224,224,953.06,1074.42,1024,46.92,9.35,40.58 +eva02_small_patch14_336,336,952.08,1075.525,1024,22.13,15.48,54.33 +efficientnetv2_rw_m,320,945.61,1082.891,1024,53.24,12.72,47.14 +dm_nfnet_f1,224,944.0,1084.735,1024,132.63,17.87,22.94 +fastvit_sa36,256,943.99,1084.735,1024,31.53,5.64,34.61 +coat_lite_medium,224,942.72,1086.203,1024,44.57,9.81,40.06 +fastvit_mci1,256,940.13,1089.203,1024,21.54,4.72,32.84 +gmlp_b16_224,224,938.67,1090.888,1024,73.08,15.78,30.21 +resnet50x4_clip_gap,288,935.82,1094.209,1024,65.62,19.57,34.11 +focalnet_base_lrf,224,935.6,1094.47,1024,88.75,15.43,38.13 +xception41,299,934.86,821.502,768,26.97,9.28,39.86 +hrnet_w48_ssld,224,933.73,1096.663,1024,77.47,17.34,28.56 +hrnet_w48,224,931.73,1098.99,1024,77.47,17.34,28.56 +poolformerv2_s36,224,930.29,1100.715,1024,30.79,5.01,15.82 +nextvit_small,384,927.23,1104.355,1024,31.76,17.26,57.14 +vit_mediumd_patch16_rope_reg1_gap_256,256,926.86,1104.797,1024,63.95,17.65,37.02 +sequencer2d_l,224,919.78,1113.292,1024,54.3,9.74,22.12 +vit_medium_patch16_gap_384,384,912.37,1122.341,1024,39.03,26.08,67.54 +xcit_medium_24_p16_224,224,909.28,1126.152,1024,84.4,16.13,31.71 +coat_mini,224,907.22,1128.715,1024,10.34,6.82,33.68 +swin_s3_small_224,224,903.85,849.69,768,49.74,9.43,37.84 +nest_base,224,893.55,1145.979,1024,67.72,17.96,53.39 +levit_384_s8,224,892.81,573.461,512,39.12,9.98,35.86 +resnet50x4_clip,288,889.34,1151.399,1024,87.14,21.35,35.27 +efficientnet_b4,384,888.84,576.021,512,19.34,4.51,50.04 +maxvit_small_tf_224,224,888.54,576.215,512,68.93,11.66,53.17 +dpn131,224,887.08,1154.334,1024,79.25,16.09,32.97 +nest_base_jx,224,886.64,1154.915,1024,67.72,17.96,53.39 +swin_base_patch4_window7_224,224,882.78,1159.955,1024,87.77,15.47,36.63 +nf_regnet_b5,384,882.37,1160.502,1024,49.74,7.95,42.9 +crossvit_15_dagger_408,408,874.39,1171.086,1024,28.5,21.45,95.05 +resnet200d,256,873.65,1172.086,1024,64.69,20.0,43.09 +gcvit_small,224,870.49,1176.332,1024,51.09,8.57,41.61 +vit_base_patch16_rope_reg1_gap_256,256,869.32,1177.92,1024,86.43,23.22,33.39 +xcit_small_12_p16_384,384,868.03,1179.666,1024,26.25,14.14,36.51 +resnetv2_50d_evos,288,866.61,1181.605,1024,25.59,7.15,19.7 +convnextv2_nano,384,866.13,591.121,512,15.62,7.22,24.61 +resnest101e,256,860.16,1190.459,1024,48.28,13.38,28.66 +eca_nfnet_l1,320,858.93,1192.174,1024,41.41,14.92,34.42 +efficientnet_b3_gn,288,854.4,599.243,512,11.73,1.74,23.35 +tf_efficientnet_b4,380,850.07,602.294,512,19.34,4.49,49.49 +levit_conv_384_s8,224,845.53,605.525,512,39.12,9.98,35.86 +maxxvit_rmlp_small_rw_256,256,843.15,910.843,768,66.01,14.67,58.38 +twins_svt_large,224,838.5,1221.219,1024,99.27,15.15,35.1 +tresnet_m,448,836.12,1224.695,1024,31.39,22.99,29.21 +coatnet_2_rw_224,224,834.11,613.819,512,73.87,15.09,49.22 +seresnet152,288,833.68,1228.27,1024,66.82,19.11,37.34 +xception65p,299,833.2,921.738,768,39.82,13.91,52.48 +eva02_base_patch14_224,224,826.02,1239.671,1024,85.76,23.22,36.55 +caformer_s36,224,824.15,1242.486,1024,39.3,8.0,37.53 +mvitv2_base,224,821.61,1246.318,1024,51.47,10.16,40.5 +swinv2_base_window12_192,192,807.64,1267.884,1024,109.28,11.9,39.72 +regnety_120,288,807.16,951.468,768,51.82,20.06,35.34 +densenet264d,224,799.46,1280.857,1024,72.74,13.57,14.0 +mvitv2_base_cls,224,796.2,1286.102,1024,65.44,10.23,40.65 +xcit_nano_12_p8_384,384,796.01,1286.403,1024,3.05,6.34,46.08 +convnext_base,288,793.66,1290.212,1024,88.59,25.43,47.53 +dpn107,224,793.14,1291.05,1024,86.92,18.38,33.46 +coatnet_rmlp_2_rw_224,224,791.99,646.464,512,73.88,15.18,54.78 +swinv2_tiny_window16_256,256,787.77,649.922,512,28.35,6.68,39.02 +coatnet_2_224,224,782.4,490.788,384,74.68,16.5,52.67 +xcit_tiny_24_p8_224,224,775.98,1319.614,1024,12.11,9.21,45.39 +mobilenetv4_conv_aa_large,544,775.96,659.818,512,32.59,14.19,64.79 +convformer_s36,224,772.54,1325.489,1024,40.01,7.67,30.5 +mobilevitv2_150,384,765.57,668.772,512,10.59,9.2,54.25 +convit_base,224,764.45,1339.509,1024,86.54,17.52,31.77 +maxvit_rmlp_small_rw_256,256,758.54,1012.461,768,64.9,14.15,66.09 +seresnet200d,256,754.06,1357.971,1024,71.86,20.01,43.15 +ecaresnet200d,256,752.58,1360.633,1024,64.69,20.0,43.15 +resnet152d,320,751.68,1362.271,1024,60.21,24.08,47.67 +resnetrs200,256,751.62,1362.376,1024,93.21,20.18,43.42 +tnt_b_patch16_224,224,750.18,1364.987,1024,65.41,14.09,39.01 +hgnetv2_b6,288,749.26,1366.662,1024,75.26,27.9,35.09 +swinv2_small_window8_256,256,744.35,1375.689,1024,49.73,11.58,40.14 +xception65,299,743.1,1033.5,768,39.92,13.96,52.48 +fastvit_ma36,256,742.03,1379.991,1024,44.07,7.88,41.09 +swinv2_cr_small_ns_256,256,739.27,1385.138,1024,49.7,12.07,76.21 +senet154,224,737.86,1387.783,1024,115.09,20.77,38.69 +tf_efficientnetv2_m,384,737.21,1389.018,1024,54.14,15.85,57.52 +legacy_senet154,224,736.68,1390.006,1024,115.09,20.77,38.69 +convnextv2_base,224,731.86,1049.374,768,88.72,15.38,28.75 +poolformer_m48,224,730.8,1401.19,1024,73.47,11.59,29.17 +swin_s3_base_224,224,729.12,1404.418,1024,71.13,13.69,48.26 +vit_so150m_patch16_reg4_gap_256,256,727.23,1408.073,1024,134.13,36.75,53.21 +vitamin_base_224,224,725.26,705.946,512,87.72,22.68,52.77 +swinv2_cr_base_224,224,723.86,1414.624,1024,87.88,15.86,59.66 +volo_d3_224,224,723.01,1416.293,1024,86.33,20.78,60.09 +resnext101_64x4d,288,722.92,1416.456,1024,83.46,25.66,51.59 +hrnet_w64,224,719.74,1422.726,1024,128.06,28.97,35.09 +vit_so150m_patch16_reg4_map_256,256,718.73,1424.714,1024,141.48,37.18,53.68 +efficientvit_l3,224,718.02,1426.124,1024,246.04,27.62,39.16 +swinv2_cr_base_ns_224,224,717.54,1427.086,1024,87.88,15.86,59.66 +convnext_large,224,705.3,1451.859,1024,197.77,34.4,43.13 +efficientnet_b3_g8_gn,288,703.78,727.494,512,14.25,2.59,23.35 +resnet200,288,703.42,1455.726,1024,64.67,24.91,53.21 +efficientvit_l2,384,702.19,729.139,512,63.71,20.45,57.01 +nextvit_base,384,698.47,1466.053,1024,44.82,24.64,73.95 +regnety_320,224,695.21,1472.933,1024,145.05,32.34,30.26 +efficientnet_b3_gn,320,695.09,736.585,512,11.73,2.14,28.83 +coat_small,224,692.64,1478.393,1024,21.69,12.61,44.25 +fastvit_mci2,256,685.53,1493.712,1024,35.82,7.91,43.34 +regnety_160,288,685.03,1121.108,768,83.59,26.37,38.07 +maxxvitv2_rmlp_base_rw_224,224,675.7,1136.584,768,116.09,24.2,62.77 +regnetz_e8,320,668.22,1149.315,768,57.7,15.46,63.94 +efficientformerv2_s2,224,667.74,1533.519,1024,12.71,1.27,11.77 +resnetrs152,320,662.28,1546.154,1024,86.62,24.34,48.14 +xcit_small_12_p8_224,224,660.86,1549.491,1024,26.21,18.69,47.21 +seresnext101_32x8d,288,658.56,1554.9,1024,93.57,27.24,51.63 +seresnet152d,320,657.78,1556.745,1024,66.84,24.09,47.72 +poolformerv2_m36,224,657.37,1557.708,1024,56.08,8.81,22.02 +convnext_small,384,656.34,1170.108,768,50.22,25.58,63.37 +regnetz_d8_evos,256,642.61,1593.488,1024,23.46,4.5,24.92 +resnext101_32x16d,224,642.37,1594.085,1024,194.03,36.27,51.18 +convnext_base,320,641.94,1196.37,768,88.59,31.39,58.68 +seresnext101d_32x8d,288,641.63,1595.896,1024,93.59,27.64,52.95 +regnetx_320,224,641.61,1196.979,768,107.81,31.81,36.3 +efficientnetv2_m,416,641.2,1596.999,1024,54.14,18.6,67.5 +gcvit_base,224,640.97,1597.568,1024,90.32,14.87,55.48 +davit_large,224,640.04,1199.916,768,196.81,34.6,60.99 +vit_betwixt_patch16_reg4_gap_384,384,630.92,1623.018,1024,60.6,39.71,85.28 +regnetz_c16_evos,320,628.83,814.205,512,13.49,3.86,25.88 +mobilevitv2_175,384,624.08,615.295,384,14.25,12.47,63.29 +volo_d1_384,384,619.82,1652.09,1024,26.78,22.75,108.55 +maxvit_rmlp_base_rw_224,224,618.76,1241.17,768,116.14,23.15,92.64 +nf_regnet_b5,456,610.35,838.851,512,49.74,11.7,61.95 +vit_large_patch32_384,384,606.96,1687.093,1024,306.63,45.31,43.86 +xception71,299,606.18,1266.939,768,42.34,18.09,69.92 +crossvit_18_dagger_408,408,605.96,1689.854,1024,44.61,32.47,124.87 +seresnextaa101d_32x8d,288,604.03,1695.268,1024,93.59,28.51,56.44 +eca_nfnet_l2,320,603.44,1696.93,1024,56.72,20.95,47.43 +caformer_m36,224,592.51,1728.235,1024,56.2,13.29,50.48 +levit_512_s8,224,591.37,432.884,256,74.05,21.82,52.28 +ecaresnet200d,288,590.0,1735.592,1024,64.69,25.31,54.59 +seresnet200d,288,589.38,1737.392,1024,71.86,25.32,54.6 +seresnet269d,256,588.18,1740.943,1024,113.67,26.59,53.6 +nfnet_f2,256,586.41,1746.208,1024,193.78,33.76,41.85 +convmixer_768_32,224,584.59,1751.632,1024,21.11,19.55,25.95 +efficientnet_b3_g8_gn,320,582.54,878.901,512,14.25,3.2,28.83 +resnetv2_50x3_bit,224,579.63,1324.974,768,217.32,37.06,33.34 +rdnet_large,224,573.58,892.627,512,186.27,34.74,46.67 +convnextv2_tiny,384,573.01,670.132,384,28.64,13.14,39.48 +hrnet_w48_ssld,288,572.81,1787.672,1024,77.47,28.66,47.21 +resnetrs270,256,572.18,1789.62,1024,129.86,27.06,55.84 +nextvit_large,384,560.44,1827.129,1024,57.87,32.03,90.76 +efficientnetv2_rw_m,416,559.01,1831.797,1024,53.24,21.49,79.62 +convformer_m36,224,558.16,1834.58,1024,57.05,12.89,42.05 +levit_conv_512_s8,224,557.74,458.984,256,74.05,21.82,52.28 +efficientvit_l3,256,556.67,1379.617,768,246.04,36.06,50.98 +mixer_l16_224,224,555.85,1842.224,1024,208.2,44.6,41.69 +resnet200d,320,554.61,1846.322,1024,64.69,31.25,67.33 +efficientnet_b5,416,550.64,929.82,512,30.39,8.27,80.68 +mobilevitv2_200,384,550.58,697.44,384,18.45,16.24,72.34 +vit_mediumd_patch16_reg4_gap_384,384,547.09,1871.701,1024,64.27,43.67,113.51 +nfnet_f1,320,543.04,1885.679,1024,132.63,35.97,46.77 +convnext_large_mlp,256,539.44,1898.249,1024,200.13,44.94,56.33 +maxvit_base_tf_224,224,535.21,956.621,512,119.47,24.04,95.01 +swinv2_base_window8_256,256,534.01,1917.55,1024,87.92,20.37,52.59 +caformer_s18,384,520.36,983.918,512,26.34,13.42,77.34 +xcit_large_24_p16_224,224,515.87,1985.0,1024,189.1,35.86,47.27 +deit_base_patch16_384,384,513.77,1993.08,1024,86.86,55.54,101.56 +deit_base_distilled_patch16_384,384,512.49,1998.091,1024,87.63,55.65,101.82 +vit_base_patch16_siglip_gap_384,384,511.96,2000.146,1024,86.09,55.43,101.3 +vit_base_patch16_384,384,511.64,2001.39,1024,86.86,55.54,101.56 +vit_base_patch16_clip_384,384,510.4,2006.249,1024,86.86,55.54,101.56 +vit_base_patch16_siglip_384,384,506.36,2022.279,1024,93.18,56.12,102.2 +convmixer_1024_20_ks9_p14,224,504.12,2031.237,1024,24.38,5.55,5.51 +xcit_tiny_12_p8_384,384,502.99,2035.797,1024,6.71,14.13,69.14 +swin_large_patch4_window7_224,224,502.65,1527.895,768,196.53,34.53,54.94 +dm_nfnet_f2,256,502.27,2038.737,1024,193.78,33.76,41.85 +convformer_s18,384,497.92,1028.262,512,26.77,11.63,46.49 +poolformerv2_m48,224,495.47,2066.696,1024,73.35,11.59,29.17 +halonet_h1,256,493.49,518.745,256,8.1,3.0,51.17 +vit_base_patch16_18x2_224,224,493.39,2075.428,1024,256.73,52.51,71.38 +tiny_vit_21m_512,512,491.13,521.239,256,21.27,27.02,177.93 +swinv2_small_window16_256,256,490.52,1043.783,512,49.73,12.82,66.29 +vit_small_patch14_dinov2,518,490.33,2088.369,1024,22.06,46.76,198.79 +seresnextaa101d_32x8d,320,490.0,1567.336,768,93.59,35.19,69.67 +vit_small_patch14_reg4_dinov2,518,488.81,2094.862,1024,22.06,46.95,199.77 +vit_large_patch16_224,224,487.63,2099.948,1024,304.33,61.6,63.52 +deit3_base_patch16_384,384,487.08,2102.295,1024,86.88,55.54,101.56 +eva_large_patch14_196,196,485.18,2110.546,1024,304.14,61.57,63.52 +swinv2_large_window12_192,192,481.88,1062.49,512,228.77,26.17,56.53 +resnetrs200,320,480.76,2129.948,1024,93.21,31.51,67.81 +hiera_large_224,224,474.3,2158.945,1024,213.74,40.34,83.37 +beit_large_patch16_224,224,473.61,2162.105,1024,304.43,61.6,63.52 +tf_efficientnetv2_m,480,473.26,2163.712,1024,54.14,24.76,89.84 +beitv2_large_patch16_224,224,473.13,2164.308,1024,304.43,61.6,63.52 +beit_base_patch16_384,384,468.5,2185.674,1024,86.74,55.54,101.56 +deit3_large_patch16_224,224,466.41,2195.494,1024,304.37,61.6,63.52 +dm_nfnet_f1,320,463.2,2210.697,1024,132.63,35.97,46.77 +xcit_small_24_p16_384,384,462.31,2214.961,1024,47.67,26.72,68.58 +seresnet269d,288,461.93,2216.787,1024,113.67,33.65,67.81 +coatnet_3_rw_224,224,456.35,841.443,384,181.81,33.44,73.83 +coatnet_rmlp_3_rw_224,224,453.17,564.897,256,165.15,33.56,79.47 +efficientnet_b5,448,452.46,1131.585,512,30.39,9.59,93.56 +convnext_base,384,448.09,1142.619,512,88.59,45.21,84.49 +convnext_xlarge,224,446.11,1721.526,768,350.2,60.98,57.5 +coatnet_3_224,224,445.37,574.791,256,166.97,36.56,79.01 +convnextv2_base,288,443.59,1154.194,512,88.72,25.43,47.53 +resnetv2_152x2_bit,224,442.44,2314.432,1024,236.34,46.95,45.11 +efficientformerv2_l,224,442.41,2314.602,1024,26.32,2.59,18.54 +maxvit_tiny_tf_384,384,436.14,586.955,256,30.98,17.53,123.42 +convnextv2_large,224,429.25,1192.776,512,197.96,34.4,43.13 +flexivit_large,240,428.81,2387.973,1024,304.36,70.99,75.39 +swinv2_cr_tiny_384,384,428.08,598.01,256,28.33,15.34,161.01 +convnext_large,288,426.07,1802.496,768,197.77,56.87,71.29 +caformer_b36,224,425.78,1803.715,768,98.75,23.22,67.3 +maxxvitv2_rmlp_large_rw_224,224,424.59,1808.787,768,215.42,44.14,87.15 +swinv2_cr_large_224,224,423.38,1813.956,768,196.68,35.1,78.42 +eca_nfnet_l2,384,418.47,2446.978,1024,56.72,30.05,68.28 +volo_d4_224,224,416.41,2459.078,1024,192.96,44.34,80.22 +tresnet_l,448,415.17,2466.431,1024,55.99,43.59,47.56 +efficientnetv2_l,384,414.62,2469.714,1024,118.52,36.1,101.16 +davit_huge,224,411.12,1245.376,512,348.92,61.23,81.32 +tf_efficientnetv2_l,384,407.96,1882.523,768,118.52,36.1,101.16 +regnetz_d8_evos,320,406.94,1887.237,768,23.46,7.03,38.92 +convformer_b36,224,403.51,1903.287,768,99.88,22.69,56.06 +tf_efficientnet_b5,456,402.73,953.473,384,30.39,10.46,98.86 +regnety_640,224,386.45,1987.327,768,281.38,64.16,42.5 +regnety_160,384,386.34,993.924,384,83.59,46.87,67.67 +eca_nfnet_l3,352,384.03,2666.457,1024,72.04,32.57,73.12 +vit_large_patch16_siglip_gap_256,256,379.1,2701.121,1024,303.36,80.8,88.34 +vit_large_patch16_siglip_256,256,376.67,2718.518,1024,315.96,81.34,88.88 +ecaresnet269d,320,375.5,2726.992,1024,102.09,41.53,83.69 +vit_large_r50_s32_384,384,375.05,2730.266,1024,329.09,57.43,76.52 +efficientvit_l3,320,370.4,1036.706,384,246.04,56.32,79.34 +maxvit_large_tf_224,224,370.36,1036.83,384,211.79,43.68,127.35 +inception_next_base,384,365.73,1399.913,512,86.67,43.64,75.48 +vit_base_patch8_224,224,363.97,2110.05,768,86.58,78.22,161.69 +nasnetalarge,331,362.83,1058.339,384,88.75,23.89,90.56 +resnetrs350,288,359.88,2845.389,1024,163.96,43.67,87.09 +vit_large_patch14_224,224,358.73,2854.473,1024,304.2,81.08,88.79 +swinv2_base_window16_256,256,358.47,1071.215,384,87.92,22.02,84.71 +swinv2_base_window12to16_192to256,256,358.3,1071.718,384,87.92,22.02,84.71 +vit_large_patch14_clip_224,224,358.26,2858.236,1024,304.2,81.08,88.79 +xcit_small_24_p8_224,224,346.37,2956.368,1024,47.63,35.81,90.78 +repvgg_d2se,320,345.41,2964.608,1024,133.33,74.57,46.82 +convnext_large_mlp,320,344.64,1485.577,512,200.13,70.21,88.02 +volo_d2_384,384,336.68,3041.406,1024,58.87,46.17,184.51 +resnetv2_101x3_bit,224,333.65,2301.786,768,387.93,71.23,48.7 +vit_base_r50_s16_384,384,328.62,3116.05,1024,98.95,67.43,135.03 +vit_large_patch14_clip_quickgelu_224,224,325.79,3143.121,1024,303.97,81.08,88.79 +xcit_medium_24_p16_384,384,316.51,3235.266,1024,84.4,47.39,91.64 +coat_lite_medium_384,384,316.02,1620.128,512,44.57,28.73,116.7 +nfnet_f2,352,310.8,3294.734,1024,193.78,63.22,79.06 +vit_large_patch14_xp_224,224,310.69,3295.839,1024,304.06,81.01,88.79 +ecaresnet269d,352,310.52,3297.627,1024,102.09,50.25,101.25 +resnext101_32x32d,224,302.59,1692.067,512,468.53,87.29,91.12 +resnetrs270,352,302.17,3388.822,1024,129.86,51.13,105.48 +resnet50x16_clip_gap,384,298.84,1713.264,512,136.2,70.32,100.64 +efficientnetv2_xl,384,293.04,3494.359,1024,208.12,52.81,139.2 +vitamin_large2_224,224,292.42,1750.92,512,333.58,75.05,112.83 +vitamin_large_224,224,291.87,1754.211,512,333.32,75.05,112.83 +tf_efficientnetv2_xl,384,290.01,3530.88,1024,208.12,52.81,139.2 +cait_xxs24_384,384,288.21,3553.005,1024,12.03,9.63,122.66 +nfnet_f3,320,287.11,3566.606,1024,254.92,68.77,83.93 +resnet50x16_clip,384,286.91,1784.524,512,167.33,74.9,103.54 +coatnet_4_224,224,285.69,896.079,256,275.43,62.48,129.26 +caformer_s36,384,276.44,1852.088,512,39.3,26.08,150.33 +maxvit_small_tf_384,384,276.03,695.573,192,69.02,35.87,183.65 +vit_base_patch16_siglip_gap_512,512,275.47,1858.601,512,86.43,107.0,246.15 +tresnet_xl,448,273.68,2806.19,768,78.44,60.77,61.31 +vit_base_patch16_siglip_512,512,272.77,1877.039,512,93.52,108.22,247.74 +volo_d5_224,224,270.51,3785.389,1024,295.46,72.4,118.11 +convnext_xlarge,288,269.09,1902.689,512,350.2,100.8,95.05 +vit_so400m_patch14_siglip_gap_224,224,268.96,3807.3,1024,412.44,109.57,106.13 +vit_so400m_patch14_siglip_224,224,267.66,3825.774,1024,427.68,110.26,106.73 +dm_nfnet_f2,352,265.61,2891.431,768,193.78,63.22,79.06 +xcit_tiny_24_p8_384,384,264.93,3865.202,1024,12.11,27.05,132.95 +convformer_s36,384,264.39,1936.533,512,40.01,22.54,89.62 +efficientnetv2_l,480,263.76,1941.117,512,118.52,56.4,157.99 +eva02_large_patch14_224,224,261.32,3918.509,1024,303.27,81.15,97.2 +convnextv2_large,288,261.02,1471.122,384,197.96,56.87,71.29 +swinv2_cr_small_384,384,260.72,981.882,256,49.7,29.7,298.03 +efficientvit_l3,384,260.43,982.964,256,246.04,81.08,114.02 +tf_efficientnetv2_l,480,260.17,1967.914,512,118.52,56.4,157.99 +eva02_large_patch14_clip_224,224,258.03,3968.464,1024,304.11,81.18,97.2 +convnextv2_base,384,250.4,1022.344,256,88.72,45.21,84.49 +mvitv2_large,224,250.34,2045.21,512,217.99,43.87,112.02 +mvitv2_large_cls,224,249.73,2050.191,512,234.58,42.17,111.69 +coatnet_rmlp_2_rw_384,384,248.98,771.136,192,73.88,47.69,209.43 +seresnextaa201d_32x8d,320,247.3,3105.549,768,149.39,70.22,138.71 +resnetrs420,320,246.64,4151.712,1024,191.89,64.2,126.56 +dm_nfnet_f3,320,246.57,4153.037,1024,254.92,68.77,83.93 +resmlp_big_24_224,224,242.5,4222.699,1024,129.14,100.23,87.31 +convnext_large_mlp,384,240.32,1597.863,384,200.13,101.11,126.74 +convnext_large,384,240.31,1597.914,384,197.77,101.1,126.74 +eca_nfnet_l3,448,237.13,2159.158,512,72.04,52.55,118.4 +xcit_medium_24_p8_224,224,236.47,3247.69,768,84.32,63.53,121.23 +regnety_320,384,235.74,1628.925,384,145.05,95.0,88.87 +swin_base_patch4_window12_384,384,233.69,1095.46,256,87.9,47.19,134.78 +vitamin_large2_256,256,225.68,1701.529,384,333.64,99.0,154.99 +vitamin_large_256,256,225.58,1702.259,384,333.38,99.0,154.99 +xcit_small_12_p8_384,384,224.77,1708.428,384,26.21,54.92,138.29 +maxxvitv2_rmlp_base_rw_384,384,220.85,1738.714,384,116.09,72.98,213.74 +swinv2_large_window12to16_192to256,256,218.82,1169.912,256,196.74,47.81,121.53 +hiera_huge_224,224,211.71,2418.344,512,672.78,124.85,150.95 +efficientnet_b6,528,207.93,1231.18,256,43.04,19.4,167.39 +maxvit_xlarge_tf_224,224,203.01,1261.038,256,506.99,97.52,191.04 +resnetrs350,384,201.49,5082.03,1024,163.96,77.59,154.74 +cait_xs24_384,384,201.32,3814.854,768,26.67,19.28,183.98 +tf_efficientnet_b6,528,201.04,955.016,192,43.04,19.4,167.39 +caformer_m36,384,199.07,1928.91,384,56.2,42.11,196.35 +regnety_1280,224,196.19,2609.667,512,644.81,127.66,71.58 +rdnet_large,384,195.92,979.983,192,186.27,102.09,137.13 +eva02_base_patch14_448,448,194.43,2633.353,512,87.12,107.11,259.14 +maxvit_rmlp_base_rw_384,384,193.23,1324.858,256,116.14,70.97,318.95 +cait_xxs36_384,384,193.04,5304.502,1024,17.37,14.35,183.7 +focalnet_huge_fl3,224,191.24,2007.947,384,745.28,118.26,104.8 +maxvit_tiny_tf_512,512,190.87,670.587,128,31.05,33.49,257.59 +convformer_m36,384,190.78,2012.789,384,57.05,37.87,123.56 +vit_huge_patch14_gap_224,224,189.67,5398.887,1024,630.76,166.73,138.74 +swinv2_cr_base_384,384,186.38,1373.532,256,87.88,50.57,333.68 +vit_huge_patch14_224,224,183.75,5572.762,1024,630.76,167.4,139.41 +vit_huge_patch14_clip_224,224,183.71,5574.109,1024,632.05,167.4,139.41 +sam2_hiera_tiny,896,182.75,350.196,64,26.85,99.86,384.63 +vit_base_patch14_dinov2,518,182.34,2807.893,512,86.58,151.71,397.58 +vit_base_patch14_reg4_dinov2,518,181.77,2816.806,512,86.58,152.25,399.53 +vitamin_xlarge_256,256,181.48,1410.575,256,436.06,130.13,177.37 +swinv2_cr_huge_224,224,179.7,2136.905,384,657.83,115.97,121.08 +xcit_large_24_p16_384,384,179.28,5711.606,1024,189.1,105.35,137.17 +deit3_huge_patch14_224,224,177.3,5775.592,1024,632.13,167.4,139.41 +convnextv2_huge,224,176.11,1453.663,256,660.29,115.0,79.07 +seresnextaa201d_32x8d,384,170.89,2996.033,512,149.39,101.11,199.72 +volo_d3_448,448,169.67,4526.299,768,86.63,96.33,446.83 +vit_huge_patch14_clip_quickgelu_224,224,169.19,6052.476,1024,632.08,167.4,139.41 +maxvit_base_tf_384,384,167.18,1148.458,192,119.65,73.8,332.9 +efficientnetv2_xl,512,165.5,3093.649,512,208.12,93.85,247.32 +tf_efficientnetv2_xl,512,163.76,3126.446,512,208.12,93.85,247.32 +vit_huge_patch14_xp_224,224,163.24,6273.085,1024,631.8,167.3,139.41 +nfnet_f3,416,162.65,4721.794,768,254.92,115.58,141.78 +vit_large_patch16_siglip_gap_384,384,159.79,4806.343,768,303.69,190.85,269.55 +vit_large_patch16_384,384,159.11,4826.795,768,304.72,191.21,270.24 +vit_large_patch16_siglip_384,384,158.55,4843.885,768,316.28,192.07,270.75 +eva_large_patch14_336,336,158.23,4853.789,768,304.53,191.1,270.24 +vit_large_patch14_clip_336,336,157.81,4866.487,768,304.53,191.11,270.24 +vit_giant_patch16_gap_224,224,155.53,6583.864,1024,1011.37,202.46,139.26 +cait_s24_384,384,155.15,3299.991,512,47.06,32.17,245.31 +nfnet_f4,384,154.55,4969.28,768,316.07,122.14,147.57 +coatnet_5_224,224,153.97,1246.972,192,687.47,145.49,194.24 +sam2_hiera_small,896,153.37,417.27,64,33.95,123.99,442.63 +convnext_xxlarge,256,153.06,2508.801,384,846.47,198.09,124.45 +deit3_large_patch16_384,384,152.95,6694.836,1024,304.76,191.21,270.24 +convnext_xlarge,384,151.94,1684.898,256,350.2,179.2,168.99 +davit_giant,224,151.13,2540.897,384,1406.47,192.92,153.06 +beit_large_patch16_384,384,147.11,6960.871,1024,305.0,191.21,270.24 +convnextv2_large,384,147.09,1305.273,192,197.96,101.1,126.74 +resnetv2_50x3_bit,448,146.43,1311.231,192,217.32,145.7,133.37 +resnetrs420,416,145.54,5277.024,768,191.89,108.45,213.79 +resnetv2_152x4_bit,224,143.9,3558.113,512,936.53,186.9,90.22 +vit_large_patch14_clip_quickgelu_336,336,143.52,5351.207,768,304.29,191.11,270.24 +caformer_b36,384,142.98,1790.384,256,98.75,72.33,261.79 +dm_nfnet_f3,416,140.7,3638.998,512,254.92,115.58,141.78 +convformer_b36,384,137.79,1857.845,256,99.88,66.67,164.75 +swin_large_patch4_window12_384,384,136.8,935.679,128,196.74,104.08,202.16 +dm_nfnet_f4,384,133.79,5740.467,768,316.07,122.14,147.57 +xcit_large_24_p8_224,224,132.99,3849.902,512,188.93,141.23,181.56 +regnety_640,384,131.5,1946.681,256,281.38,188.47,124.83 +efficientnet_b7,600,129.75,1479.733,192,66.35,38.33,289.94 +tf_efficientnet_b7,600,126.11,1522.49,192,66.35,38.33,289.94 +vitamin_large2_336,336,125.61,1528.5,192,333.83,175.72,307.47 +vitamin_large_336,336,125.56,1529.162,192,333.57,175.72,307.47 +focalnet_huge_fl4,224,122.25,3141.078,384,686.46,118.9,113.34 +eva_giant_patch14_224,224,119.44,8572.982,1024,1012.56,267.18,192.64 +eva_giant_patch14_clip_224,224,119.17,8592.945,1024,1012.59,267.18,192.64 +xcit_small_24_p8_384,384,117.9,3256.878,384,47.63,105.24,265.91 +vit_giant_patch14_224,224,116.48,8790.872,1024,1012.61,267.18,192.64 +maxvit_large_tf_384,384,116.47,1098.959,128,212.03,132.55,445.84 +vit_giant_patch14_clip_224,224,116.42,8795.95,1024,1012.65,267.18,192.64 +eva02_large_patch14_clip_336,336,113.52,9020.764,1024,304.43,191.34,289.13 +maxvit_small_tf_512,512,112.98,849.727,96,69.13,67.26,383.77 +swinv2_cr_large_384,384,112.26,1140.169,128,196.68,108.96,404.96 +nfnet_f5,416,110.43,6954.526,768,377.21,170.71,204.56 +mvitv2_huge_cls,224,108.91,3525.951,384,694.8,120.67,243.63 +convnextv2_huge,288,108.51,1769.473,192,660.29,190.1,130.7 +cait_s36_384,384,103.84,4930.739,512,68.37,47.99,367.4 +resnet50x64_clip_gap,448,101.87,3769.426,384,365.03,253.96,233.22 +vitamin_xlarge_336,336,101.39,1262.381,128,436.06,230.18,347.33 +resnet50x64_clip,448,98.61,3894.121,384,420.38,265.02,239.13 +davit_base_fl,768,98.42,1300.504,128,90.37,190.32,530.15 +volo_d4_448,448,96.66,5296.823,512,193.41,197.13,527.35 +swinv2_base_window12to24_192to384,384,96.52,663.07,64,87.92,55.25,280.36 +dm_nfnet_f5,416,95.55,5358.646,512,377.21,170.71,204.56 +focalnet_large_fl3,384,93.71,2731.882,256,239.13,105.06,168.04 +focalnet_large_fl4,384,91.08,2810.743,256,239.32,105.2,181.78 +vitamin_large_384,384,88.59,2167.247,192,333.71,234.44,440.16 +vitamin_large2_384,384,88.51,2169.148,192,333.97,234.44,440.16 +vit_so400m_patch14_siglip_gap_384,384,87.19,5872.468,512,412.99,333.46,451.19 +nfnet_f4,512,86.87,5893.611,512,316.07,216.26,262.26 +vit_so400m_patch14_siglip_384,384,86.75,5902.326,512,428.23,335.4,452.89 +efficientnet_b8,672,86.55,1478.838,128,87.41,63.48,442.89 +tf_efficientnet_b8,672,84.44,1515.913,128,87.41,63.48,442.89 +nfnet_f6,448,82.01,6243.159,512,438.36,229.7,273.62 +sam2_hiera_base_plus,896,81.14,788.789,64,68.68,227.48,828.88 +xcit_medium_24_p8_384,384,80.95,3162.43,256,84.32,186.67,354.73 +vit_huge_patch14_clip_336,336,79.58,6433.526,512,632.46,390.97,407.54 +convmixer_1536_20,224,76.93,13310.571,1024,51.63,48.68,33.03 +maxvit_base_tf_512,512,76.16,1260.446,96,119.88,138.02,703.99 +beit_large_patch16_512,512,75.77,6757.452,512,305.67,362.24,656.39 +vitamin_xlarge_384,384,75.69,1691.101,128,436.06,306.38,493.46 +dm_nfnet_f4,512,75.3,5099.335,384,316.07,216.26,262.26 +dm_nfnet_f6,448,71.01,7210.621,512,438.36,229.7,273.62 +vit_gigantic_patch14_224,224,66.82,7662.227,512,1844.44,483.95,275.37 +regnety_1280,384,66.8,1916.204,128,644.81,374.99,210.2 +vit_gigantic_patch14_clip_224,224,66.79,7665.981,512,1844.91,483.96,275.37 +focalnet_xlarge_fl3,384,66.17,2901.53,192,408.79,185.61,223.99 +maxvit_xlarge_tf_384,384,64.84,1480.483,96,475.32,292.78,668.76 +nfnet_f5,544,64.64,5940.195,384,377.21,290.97,349.71 +focalnet_xlarge_fl4,384,63.87,3005.958,192,409.03,185.79,242.31 +volo_d5_448,448,63.63,6034.748,384,295.91,315.06,737.92 +nfnet_f7,480,62.7,8166.338,512,499.5,300.08,355.86 +vit_huge_patch14_clip_378,378,62.12,8241.55,512,632.68,503.79,572.79 +vit_so400m_patch14_siglip_gap_448,448,61.76,6217.473,384,413.33,487.18,764.26 +eva02_large_patch14_448,448,61.54,8319.155,512,305.08,362.33,689.95 +convnextv2_huge,384,61.34,1565.099,96,660.29,337.96,232.35 +swinv2_large_window12to24_192to384,384,61.15,785.007,48,196.74,116.15,407.83 +vit_large_patch14_dinov2,518,58.81,6529.805,384,304.37,507.15,1058.82 +vit_large_patch14_reg4_dinov2,518,58.63,6549.274,384,304.37,508.9,1064.02 +vit_huge_patch14_clip_quickgelu_378,378,57.38,6692.182,384,632.68,503.79,572.79 +vit_huge_patch16_gap_448,448,57.22,8947.785,512,631.67,544.7,636.83 +dm_nfnet_f5,544,55.97,6861.132,384,377.21,290.97,349.71 +tf_efficientnet_l2,475,54.83,1750.848,96,480.31,172.11,609.89 +maxvit_large_tf_512,512,52.22,1225.553,64,212.33,244.75,942.15 +eva_giant_patch14_336,336,51.89,9866.498,512,1013.01,620.64,550.67 +swinv2_cr_giant_224,224,51.82,3705.327,192,2598.76,483.85,309.15 +nfnet_f6,576,49.54,7751.499,384,438.36,378.69,452.2 +volo_d5_512,512,48.79,5246.809,256,296.09,425.09,1105.37 +swinv2_cr_huge_384,384,48.61,1316.667,64,657.94,352.04,583.18 +xcit_large_24_p8_384,384,45.65,4205.892,192,188.93,415.0,531.82 +dm_nfnet_f6,576,42.93,5962.777,256,438.36,378.69,452.2 +nfnet_f7,608,39.93,6411.695,256,499.5,480.39,570.85 +davit_huge_fl,768,34.49,1391.493,48,360.64,744.84,1060.3 +convnextv2_huge,512,34.39,1395.744,48,660.29,600.81,413.07 +cait_m36_384,384,33.77,7580.428,256,271.22,173.11,734.81 +resnetv2_152x4_bit,480,32.13,2987.397,96,936.53,844.84,414.26 +regnety_2560,384,30.14,3185.104,96,1282.6,747.83,296.49 +maxvit_xlarge_tf_512,512,29.4,1632.708,48,475.77,534.14,1413.22 +sam2_hiera_large,1024,24.86,1930.745,48,212.15,907.48,2190.34 +samvit_base_patch16,1024,23.82,671.744,16,89.67,486.43,1343.27 +efficientnet_l2,800,19.37,2478.227,48,480.31,479.12,1707.39 +tf_efficientnet_l2,800,19.15,2506.394,48,480.31,479.12,1707.39 +vit_giant_patch14_dinov2,518,17.69,7234.942,128,1136.48,1784.2,2757.89 +vit_giant_patch14_reg4_dinov2,518,17.67,10868.501,192,1136.48,1790.08,2771.21 +eva_giant_patch14_560,560,16.99,11301.565,192,1014.45,1906.76,2577.17 +swinv2_cr_giant_384,384,14.96,2138.945,32,2598.76,1450.71,1394.86 +cait_m48_448,448,14.26,8978.396,128,356.46,329.41,1708.23 +samvit_large_patch16,1024,10.89,1101.662,12,308.28,1493.86,2553.78 +vit_so400m_patch14_siglip_gap_896,896,10.82,8873.224,96,416.87,2731.49,8492.88 +samvit_huge_patch16,1024,6.7,1194.478,8,637.03,2982.23,3428.16 diff --git a/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx4090.csv b/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx4090.csv new file mode 100644 index 0000000000000000000000000000000000000000..d592a8c8a596736d53f4e01b8df1e3eab3ce6130 --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx4090.csv @@ -0,0 +1,1442 @@ +model,infer_img_size,infer_samples_per_sec,infer_step_time,infer_batch_size,param_count,infer_gmacs,infer_macts +test_vit,160,193591.5,2.637,512,0.37,0.04,0.48 +test_efficientnet,160,140505.88,3.636,512,0.36,0.06,0.55 +test_byobnet,160,139342.81,3.665,512,0.46,0.03,0.43 +tinynet_e,106,114149.3,4.476,512,2.04,0.03,0.69 +mobilenetv3_small_050,224,91713.66,5.573,512,1.59,0.03,0.92 +lcnet_035,224,74617.77,6.852,512,1.64,0.03,1.04 +mobilenetv3_small_075,224,64474.01,7.933,512,2.04,0.05,1.3 +lcnet_050,224,64449.16,7.935,512,1.88,0.05,1.26 +mobilenetv3_small_100,224,58931.45,8.678,512,2.54,0.06,1.42 +tinynet_d,152,53815.67,9.505,512,2.34,0.05,1.42 +tf_mobilenetv3_small_minimal_100,224,46935.54,10.899,512,2.04,0.06,1.41 +tf_mobilenetv3_small_075,224,46386.54,11.028,512,2.04,0.05,1.3 +mobilenetv4_conv_small,224,45334.09,11.283,512,3.77,0.19,1.97 +tf_mobilenetv3_small_100,224,43574.18,11.741,512,2.54,0.06,1.42 +efficientvit_m2,224,43163.92,11.852,512,4.19,0.2,1.47 +efficientvit_m1,224,41710.72,12.265,512,2.98,0.17,1.33 +lcnet_075,224,41149.58,12.43,512,2.36,0.1,1.99 +mnasnet_small,224,38517.24,13.282,512,2.03,0.07,2.16 +efficientvit_m0,224,37262.79,13.731,512,2.35,0.08,0.91 +efficientvit_m3,224,37259.36,13.732,512,6.9,0.27,1.62 +efficientvit_m4,224,36637.28,13.966,512,8.8,0.3,1.7 +resnet18,160,35956.09,14.229,512,11.69,0.93,1.27 +regnetx_002,224,35359.25,14.471,512,2.68,0.2,2.16 +resnet10t,176,35271.27,14.507,512,5.44,0.7,1.51 +ghostnet_050,224,33294.15,15.367,512,2.59,0.05,1.77 +mobilenetv4_conv_small,256,32870.69,15.566,512,3.77,0.25,2.57 +repghostnet_050,224,32631.77,15.681,512,2.31,0.05,2.02 +regnety_002,224,32330.37,15.824,512,3.16,0.2,2.17 +levit_128s,224,31791.92,16.095,512,7.78,0.31,1.88 +lcnet_100,224,31652.74,16.165,512,2.95,0.16,2.52 +vit_small_patch32_224,224,31104.08,16.451,512,22.88,1.15,2.5 +levit_conv_128s,224,30791.34,16.618,512,7.78,0.31,1.88 +mobilenetv2_035,224,30231.75,16.927,512,1.68,0.07,2.86 +efficientvit_m5,224,29243.03,17.498,512,12.47,0.53,2.41 +mnasnet_050,224,28381.86,18.03,512,2.22,0.11,3.07 +regnetx_004,224,26873.8,19.042,512,5.16,0.4,3.14 +regnetx_004_tv,224,26191.12,19.533,512,5.5,0.42,3.17 +tinynet_c,184,25374.27,20.162,512,2.46,0.11,2.87 +efficientvit_b0,224,24958.93,20.504,512,3.41,0.1,2.87 +repghostnet_058,224,24922.84,20.532,512,2.55,0.07,2.59 +pit_ti_224,224,24011.49,21.313,512,4.85,0.7,6.19 +pit_ti_distilled_224,224,23895.35,21.415,512,5.1,0.71,6.23 +semnasnet_050,224,23613.68,21.672,512,2.08,0.11,3.44 +mobilenetv2_050,224,23276.13,21.987,512,1.97,0.1,3.64 +mixer_s32_224,224,23222.09,22.038,512,19.1,1.0,2.28 +resnet34,160,22893.41,22.355,512,21.8,1.87,1.91 +gernet_s,224,22652.42,22.589,512,8.17,0.75,2.65 +cs3darknet_focus_s,256,22633.17,22.607,512,3.27,0.69,2.7 +resnet10t,224,21939.38,23.327,512,5.44,1.1,2.43 +levit_128,224,21210.51,24.129,512,9.21,0.41,2.71 +cs3darknet_s,256,21180.55,24.162,512,3.28,0.72,2.97 +levit_conv_128,224,20601.31,24.843,512,9.21,0.41,2.71 +vit_tiny_r_s16_p8_224,224,20597.39,24.845,512,6.34,0.44,2.06 +repghostnet_080,224,19998.72,25.59,512,3.28,0.1,3.22 +lcnet_150,224,19930.25,25.679,512,4.5,0.34,3.79 +tf_efficientnetv2_b0,192,19533.13,26.202,512,7.14,0.54,3.51 +levit_192,224,19368.21,26.425,512,10.95,0.66,3.2 +vit_medium_patch32_clip_224,224,19242.5,26.596,512,39.69,2.0,3.34 +mobilenetv3_large_075,224,19001.45,26.934,512,3.99,0.16,4.0 +levit_conv_192,224,18406.17,27.806,512,10.95,0.66,3.2 +resnet18,224,18247.43,28.048,512,11.69,1.82,2.48 +nf_regnet_b0,192,18063.21,28.334,512,8.76,0.37,3.15 +deit_tiny_patch16_224,224,17596.84,29.086,512,5.72,1.26,5.97 +vit_tiny_patch16_224,224,17589.76,29.098,512,5.72,1.26,5.97 +deit_tiny_distilled_patch16_224,224,17490.74,29.262,512,5.91,1.27,6.01 +regnety_004,224,17337.89,29.52,512,4.34,0.41,3.89 +mobilenetv3_rw,224,17271.2,29.634,512,5.48,0.23,4.41 +mnasnet_075,224,17012.7,30.083,512,3.17,0.23,4.77 +resnet14t,176,16949.17,30.199,512,10.08,1.07,3.61 +mobilenetv3_large_100,224,16891.88,30.3,512,5.48,0.23,4.41 +seresnet18,224,16704.11,30.636,512,11.78,1.82,2.49 +hardcorenas_a,224,16102.68,31.784,512,5.26,0.23,4.38 +legacy_seresnet18,224,16060.08,31.87,512,11.78,1.82,2.49 +tf_mobilenetv3_large_075,224,15808.54,32.378,512,3.99,0.16,4.0 +regnety_006,224,15808.03,32.374,512,6.06,0.61,4.33 +repghostnet_100,224,15795.72,32.403,512,4.07,0.15,3.98 +tinynet_b,188,15674.11,32.653,512,3.73,0.21,4.44 +hardcorenas_b,224,15581.81,32.845,512,5.18,0.26,5.09 +ghostnet_100,224,15502.44,33.013,512,5.18,0.15,3.55 +hardcorenas_c,224,15395.61,33.244,512,5.52,0.28,5.01 +resnet18d,224,15221.89,33.625,512,11.71,2.06,3.29 +vit_xsmall_patch16_clip_224,224,15198.95,33.676,512,8.28,1.79,6.65 +pit_xs_224,224,15188.8,33.697,512,10.62,1.4,7.71 +pit_xs_distilled_224,224,15115.79,33.86,512,11.0,1.41,7.76 +tf_efficientnetv2_b1,192,14975.34,34.18,512,8.14,0.76,4.59 +tf_mobilenetv3_large_minimal_100,224,14968.23,34.196,512,3.92,0.22,4.4 +hardcorenas_d,224,14805.72,34.57,512,7.5,0.3,4.93 +mobilenet_edgetpu_v2_xs,224,14739.85,34.726,512,4.46,0.7,4.8 +mobilenetv1_100,224,14689.46,34.843,512,4.23,0.58,5.04 +mobilenetv1_100h,224,14526.94,35.232,512,5.28,0.63,5.09 +mnasnet_100,224,14430.36,35.465,512,4.38,0.33,5.46 +repvgg_a0,224,14326.74,35.726,512,9.11,1.52,3.59 +ese_vovnet19b_slim_dw,224,14264.24,35.883,512,1.9,0.4,5.28 +mobilenetv4_conv_medium,224,14221.81,35.988,512,9.72,0.84,5.8 +tf_mobilenetv3_large_100,224,14215.1,36.006,512,5.48,0.23,4.41 +regnetx_008,224,14152.21,36.165,512,7.26,0.81,5.15 +levit_256,224,14076.58,36.361,512,18.89,1.13,4.23 +semnasnet_075,224,13892.08,36.844,512,2.91,0.23,5.54 +dla46_c,224,13792.44,37.109,512,1.3,0.58,4.5 +repghostnet_111,224,13783.41,37.136,512,4.54,0.18,4.38 +ese_vovnet19b_slim,224,13770.62,37.17,512,3.17,1.69,3.52 +tf_efficientnetv2_b0,224,13704.01,37.351,512,7.14,0.73,4.77 +vit_betwixt_patch32_clip_224,224,13660.67,37.47,512,61.41,3.09,4.17 +regnetx_006,224,13627.19,37.56,512,6.2,0.61,3.98 +mobilenetv2_075,224,13591.14,37.659,512,2.64,0.22,5.86 +spnasnet_100,224,13506.55,37.897,512,4.42,0.35,6.03 +levit_conv_256,224,13449.58,38.057,512,18.89,1.13,4.23 +mobilenet_edgetpu_100,224,13226.44,38.699,512,4.09,1.0,5.75 +xcit_nano_12_p16_224,224,13143.36,38.944,512,3.05,0.56,4.17 +convnext_atto,224,13136.13,38.966,512,3.7,0.55,3.81 +mobilenetv4_hybrid_medium_075,224,12839.02,39.865,512,7.31,0.66,5.65 +edgenext_xx_small,256,12753.52,40.134,512,1.33,0.26,3.33 +convnext_atto_ols,224,12710.59,40.269,512,3.7,0.58,4.11 +regnety_008,224,12684.45,40.35,512,6.26,0.81,5.25 +tinynet_a,192,12643.44,40.482,512,6.19,0.35,5.41 +levit_256d,224,12538.4,40.823,512,26.21,1.4,4.93 +hardcorenas_f,224,12519.6,40.883,512,8.2,0.35,5.57 +mobilenetv3_large_100,256,12500.8,40.947,512,5.48,0.29,5.75 +hardcorenas_e,224,12262.77,41.738,512,8.07,0.35,5.65 +regnety_008_tv,224,12155.65,42.107,512,6.43,0.84,5.42 +semnasnet_100,224,12053.2,42.467,512,3.89,0.32,6.23 +levit_conv_256d,224,12032.84,42.54,512,26.21,1.4,4.93 +fbnetc_100,224,12028.82,42.553,512,5.57,0.4,6.51 +ghostnet_130,224,11996.72,42.666,512,7.36,0.24,4.6 +regnetz_005,224,11901.9,43.006,512,7.12,0.52,5.86 +mobilenetv2_100,224,11768.03,43.497,512,3.5,0.31,6.68 +repghostnet_130,224,11593.04,44.15,512,5.48,0.25,5.24 +mobilenetv1_125,224,11535.69,44.372,512,6.27,0.89,6.3 +efficientnet_lite0,224,11509.61,44.474,512,4.65,0.4,6.74 +resnet34,224,11246.05,45.512,512,21.8,3.67,3.74 +convnext_femto,224,11240.65,45.537,512,5.22,0.79,4.57 +mobilenetv1_100,256,11102.16,46.107,512,4.23,0.76,6.59 +mobilenetv1_100h,256,10962.04,46.696,512,5.28,0.82,6.65 +hgnetv2_b0,224,10947.51,46.757,512,6.0,0.33,2.12 +convnext_femto_ols,224,10906.04,46.936,512,5.23,0.82,4.87 +fbnetv3_b,224,10838.47,47.224,512,8.6,0.42,6.97 +tf_efficientnetv2_b2,208,10821.76,47.3,512,10.1,1.06,6.0 +cs3darknet_focus_m,256,10820.8,47.302,512,9.3,1.98,4.89 +mobilevit_xxs,256,10784.37,47.464,512,1.27,0.42,8.34 +resnet14t,224,10567.1,48.439,512,10.08,1.69,5.8 +mobilenetv4_conv_medium,256,10509.42,48.704,512,9.72,1.1,7.58 +gernet_m,224,10469.98,48.882,512,21.14,3.02,5.24 +vit_base_patch32_224,224,10426.38,49.097,512,88.22,4.41,5.01 +vit_base_patch32_clip_224,224,10419.24,49.129,512,88.22,4.41,5.01 +resnet18,288,10402.09,49.21,512,11.69,3.01,4.11 +hrnet_w18_small,224,10372.58,49.345,512,13.19,1.61,5.72 +crossvit_tiny_240,240,10274.57,49.816,512,7.01,1.57,9.08 +selecsls42,224,10259.59,49.889,512,30.35,2.94,4.62 +cs3darknet_m,256,10254.13,49.918,512,9.31,2.08,5.28 +selecsls42b,224,10223.02,50.071,512,32.46,2.98,4.62 +seresnet34,224,10212.95,50.12,512,21.96,3.67,3.74 +mobilenetv4_hybrid_medium,224,10180.15,50.283,512,11.07,0.98,6.84 +repvgg_a1,224,10156.41,50.4,512,14.09,2.64,4.74 +resnet50,160,10141.36,50.475,512,25.56,2.1,5.67 +resnet34d,224,10045.08,50.956,512,21.82,3.91,4.54 +repghostnet_150,224,10019.26,51.092,512,6.58,0.32,6.0 +mobilenet_edgetpu_v2_s,224,9959.13,51.393,512,5.99,1.21,6.6 +efficientnet_b0,224,9831.68,52.064,512,5.29,0.4,6.75 +edgenext_xx_small,288,9824.91,52.1,512,1.33,0.33,4.21 +legacy_seresnet34,224,9801.32,52.225,512,21.96,3.67,3.74 +tf_efficientnet_lite0,224,9765.44,52.418,512,4.65,0.4,6.74 +repvit_m1,224,9725.15,52.635,512,5.49,0.83,7.45 +crossvit_9_240,240,9657.56,53.001,512,8.55,1.85,9.52 +seresnet18,288,9580.24,53.432,512,11.78,3.01,4.11 +efficientnet_b1_pruned,240,9566.61,53.501,512,6.33,0.4,6.21 +vit_small_patch32_384,384,9550.92,53.596,512,22.92,3.45,8.25 +pvt_v2_b0,224,9469.13,54.056,512,3.67,0.57,7.99 +resnet50d,160,9423.52,54.321,512,25.58,2.22,6.08 +repvit_m0_9,224,9420.77,54.337,512,5.49,0.83,7.45 +dla34,224,9394.03,54.492,512,15.74,3.07,5.02 +pit_s_224,224,9385.23,54.542,512,23.46,2.88,11.56 +pit_s_distilled_224,224,9330.9,54.86,512,24.04,2.9,11.64 +mnasnet_140,224,9285.01,55.122,512,7.12,0.6,7.71 +crossvit_9_dagger_240,240,9245.69,55.364,512,8.78,1.99,9.97 +nf_regnet_b0,256,9175.43,55.788,512,8.76,0.64,5.58 +efficientvit_b1,224,9080.99,56.37,512,9.1,0.53,7.25 +rexnetr_100,224,9036.3,56.647,512,4.88,0.43,7.72 +visformer_tiny,224,9033.8,56.663,512,10.32,1.27,5.72 +selecsls60,224,8984.73,56.974,512,30.67,3.59,5.52 +rexnet_100,224,8980.27,57.002,512,4.8,0.41,7.44 +resnetaa34d,224,8953.98,57.169,512,21.82,4.43,5.07 +selecsls60b,224,8928.94,57.33,512,32.77,3.63,5.52 +mobilenetv2_110d,224,8887.12,57.601,512,4.52,0.45,8.71 +fbnetv3_d,224,8866.65,57.732,512,10.31,0.52,8.5 +levit_384,224,8827.05,57.993,512,39.13,2.36,6.26 +resnet18d,288,8808.21,58.116,512,11.71,3.41,5.43 +mobilevitv2_050,256,8703.38,58.817,512,1.37,0.48,8.04 +convnext_pico,224,8685.06,58.939,512,9.05,1.37,6.1 +mobilenetv1_125,256,8629.12,59.32,512,6.27,1.16,8.23 +vit_base_patch32_clip_quickgelu_224,224,8623.33,59.362,512,87.85,4.41,5.01 +tf_efficientnetv2_b1,240,8620.85,59.379,512,8.14,1.21,7.34 +cs3darknet_focus_m,288,8566.21,59.756,512,9.3,2.51,6.19 +tf_efficientnet_b0,224,8541.64,59.93,512,5.29,0.4,6.75 +seresnet50,160,8474.8,60.402,512,28.09,2.1,5.69 +resnetblur18,224,8463.51,60.482,512,11.69,2.34,3.39 +resnext50_32x4d,160,8436.12,60.679,512,25.03,2.17,7.35 +convnext_pico_ols,224,8425.05,60.76,512,9.06,1.43,6.5 +levit_conv_384,224,8372.39,61.141,512,39.13,2.36,6.26 +efficientnet_es_pruned,224,8329.12,61.458,512,5.44,1.81,8.73 +efficientnet_es,224,8327.35,61.471,512,5.44,1.81,8.73 +efficientnet_b0_g16_evos,224,8292.21,61.731,512,8.11,1.01,7.42 +semnasnet_140,224,8275.66,61.856,512,6.11,0.6,8.87 +mobilenetv4_conv_blur_medium,224,8246.17,62.078,512,9.72,1.22,8.58 +ese_vovnet19b_dw,224,8222.83,62.253,512,6.54,1.34,8.25 +resnet50,176,8183.47,62.553,512,25.56,2.62,6.92 +dla46x_c,224,8172.45,62.637,512,1.07,0.54,5.66 +cs3darknet_m,288,8120.14,63.039,512,9.31,2.63,6.69 +mobilenet_edgetpu_v2_m,224,8111.09,63.111,512,8.46,1.85,8.15 +hgnetv2_b1,224,8089.51,63.278,512,6.34,0.49,2.73 +resnet26,224,8074.23,63.401,512,16.0,2.36,7.35 +ecaresnet50t,160,8063.67,63.484,512,25.57,2.21,6.04 +vit_base_patch32_clip_256,256,8042.41,63.651,512,87.86,5.76,6.65 +resnetrs50,160,8011.18,63.898,512,35.69,2.29,6.2 +mobilenetv2_140,224,7973.79,64.198,512,6.11,0.6,9.57 +xcit_tiny_12_p16_224,224,7972.61,64.209,512,6.72,1.24,6.29 +mixer_b32_224,224,7946.63,64.415,512,60.29,3.24,6.29 +dla60x_c,224,7932.08,64.535,512,1.32,0.59,6.01 +fbnetv3_b,256,7894.93,64.838,512,8.6,0.55,9.1 +tiny_vit_5m_224,224,7865.63,65.083,512,12.08,1.28,11.25 +resmlp_12_224,224,7865.04,65.084,512,15.35,3.01,5.5 +convnext_atto,288,7834.17,65.338,512,3.7,0.91,6.3 +mixer_s16_224,224,7827.39,65.399,512,18.53,3.79,5.97 +edgenext_x_small,256,7821.76,65.447,512,2.34,0.54,5.93 +repvit_m1_0,224,7763.02,65.941,512,7.3,1.13,8.69 +tf_efficientnet_es,224,7753.47,66.024,512,5.44,1.81,8.73 +ghostnetv2_100,224,7711.41,66.38,512,6.16,0.18,4.55 +vit_small_patch16_224,224,7695.68,66.52,512,22.05,4.61,11.95 +deit_small_patch16_224,224,7692.21,66.546,512,22.05,4.61,11.95 +repvgg_b0,224,7686.96,66.595,512,15.82,3.41,6.15 +deit_small_distilled_patch16_224,224,7646.43,66.946,512,22.44,4.63,12.02 +skresnet18,224,7641.81,66.984,512,11.96,1.82,3.24 +darknet17,256,7605.93,67.302,512,14.3,3.26,7.18 +convnext_atto_ols,288,7572.12,67.606,512,3.7,0.96,6.8 +efficientnet_lite1,240,7533.54,67.95,512,5.42,0.62,10.14 +mobilenetv4_hybrid_medium,256,7461.42,68.608,512,11.07,1.29,9.01 +repvit_m2,224,7412.42,69.062,512,8.8,1.36,9.43 +mixnet_s,224,7370.06,69.451,512,4.13,0.25,6.25 +repghostnet_200,224,7359.51,69.557,512,9.8,0.54,7.96 +vit_pwee_patch16_reg1_gap_256,256,7350.46,69.642,512,15.25,4.37,15.87 +efficientnet_b0,256,7334.29,69.797,512,5.29,0.52,8.81 +efficientnet_blur_b0,224,7255.8,70.553,512,5.29,0.43,8.72 +gmixer_12_224,224,7249.78,70.61,512,12.7,2.67,7.26 +resnet26d,224,7173.64,71.361,512,16.01,2.6,8.15 +mobilenet_edgetpu_v2_l,224,7155.34,71.543,512,10.92,2.55,9.05 +repvit_m1_1,224,7120.93,71.88,512,8.8,1.36,9.43 +hgnetv2_b4,224,7066.56,72.433,512,19.8,2.75,6.7 +nf_regnet_b2,240,7056.07,72.547,512,14.31,0.97,7.23 +rexnetr_130,224,7042.44,72.689,512,7.61,0.68,9.81 +darknet21,256,7025.74,72.86,512,20.86,3.93,7.47 +eva02_tiny_patch14_224,224,7011.67,73.009,512,5.5,1.7,9.14 +gernet_l,256,7010.05,73.027,512,31.08,4.57,8.0 +mobilenetv4_conv_aa_medium,256,6992.95,73.204,512,9.72,1.58,10.3 +vit_tiny_r_s16_p8_384,384,6908.22,74.103,512,6.36,1.34,6.49 +efficientnet_b1,224,6906.68,74.116,512,7.79,0.59,9.36 +nf_regnet_b1,256,6856.88,74.654,512,10.22,0.82,7.27 +sedarknet21,256,6844.16,74.796,512,20.95,3.93,7.47 +deit3_small_patch16_224,224,6842.04,74.819,512,22.06,4.61,11.95 +vit_wee_patch16_reg1_gap_256,256,6834.55,74.901,512,13.42,3.83,13.9 +ecaresnet50d_pruned,224,6821.51,75.045,512,19.94,2.53,6.43 +vit_relpos_small_patch16_rpn_224,224,6816.29,75.1,512,21.97,4.59,13.05 +resnext50_32x4d,176,6815.65,75.11,512,25.03,2.71,8.97 +efficientvit_b1,256,6805.35,75.222,512,9.1,0.69,9.46 +vit_relpos_small_patch16_224,224,6794.12,75.345,512,21.98,4.59,13.05 +tf_mixnet_s,224,6784.77,75.452,512,4.13,0.25,6.25 +vit_srelpos_small_patch16_224,224,6772.14,75.593,512,21.97,4.59,12.16 +convnextv2_atto,224,6744.98,75.897,512,3.71,0.55,3.81 +convnext_femto,288,6744.7,75.901,512,5.22,1.3,7.56 +regnetz_005,288,6732.16,76.038,512,7.12,0.86,9.68 +flexivit_small,240,6705.34,76.346,512,22.06,5.35,14.18 +tiny_vit_11m_224,224,6677.76,76.659,512,20.35,2.04,13.49 +resnet101,160,6654.99,76.921,512,44.55,4.0,8.28 +tf_efficientnet_lite1,240,6635.79,77.145,512,5.42,0.62,10.14 +mobilenetv4_conv_medium,320,6583.91,77.754,512,9.72,1.71,11.84 +efficientnetv2_rw_t,224,6565.65,77.969,512,13.65,1.93,9.94 +convnext_femto_ols,288,6547.48,78.187,512,5.23,1.35,8.06 +rexnet_130,224,6526.53,78.43,512,7.56,0.68,9.71 +resnet34,288,6472.85,79.088,512,21.8,6.07,6.18 +hgnet_tiny,224,6467.95,79.144,512,14.74,4.54,6.36 +hgnetv2_b0,288,6455.26,79.302,512,6.0,0.54,3.51 +regnetz_b16,224,6447.12,79.403,512,9.72,1.45,9.95 +mobilenetv2_120d,224,6441.08,79.477,512,5.83,0.69,11.97 +regnetx_016,224,6438.32,79.508,512,9.19,1.62,7.93 +fbnetv3_d,256,6406.47,79.904,512,10.31,0.68,11.1 +nf_resnet26,224,6382.33,80.21,512,16.0,2.41,7.35 +repvgg_a2,224,6357.34,80.526,512,28.21,5.7,6.26 +convnext_nano,224,6328.61,80.891,512,15.59,2.46,8.37 +gmlp_ti16_224,224,6311.2,81.105,512,5.87,1.34,7.55 +cs3darknet_focus_l,256,6269.67,81.648,512,21.15,4.66,8.03 +efficientnet_cc_b0_4e,224,6251.35,81.891,512,13.31,0.41,9.42 +efficientnet_cc_b0_8e,224,6215.22,82.367,512,24.01,0.42,9.42 +tf_efficientnetv2_b2,260,6193.92,82.64,512,10.1,1.72,9.84 +gc_efficientnetv2_rw_t,224,6186.72,82.746,512,13.68,1.94,9.97 +rexnetr_150,224,6134.63,83.448,512,9.78,0.89,11.13 +tf_efficientnetv2_b3,240,6104.76,83.857,512,14.36,1.93,9.95 +mobilenet_edgetpu_v2_m,256,6098.85,83.937,512,8.46,2.42,10.65 +vit_relpos_base_patch32_plus_rpn_256,256,6094.72,83.988,512,119.42,7.68,8.01 +edgenext_x_small,288,6092.28,84.029,512,2.34,0.68,7.5 +mobilenetv4_conv_large,256,6067.97,84.365,512,32.59,2.86,12.14 +efficientformer_l1,224,6062.02,84.445,512,12.29,1.3,5.53 +resnext26ts,256,6061.47,84.453,512,10.3,2.43,10.52 +cs3darknet_l,256,6032.27,84.863,512,21.16,4.86,8.55 +vit_base_patch32_plus_256,256,5971.26,85.733,512,119.48,7.79,7.76 +convnext_nano_ols,224,5948.71,86.056,512,15.65,2.65,9.38 +ghostnetv2_130,224,5943.44,86.13,512,8.96,0.28,5.9 +mobilenetv4_conv_blur_medium,256,5900.5,86.749,512,9.72,1.59,11.2 +legacy_seresnext26_32x4d,224,5892.27,86.881,512,16.79,2.49,9.39 +dpn48b,224,5891.72,86.887,512,9.13,1.69,8.92 +seresnet34,288,5881.41,87.035,512,21.96,6.07,6.18 +seresnext26ts,256,5849.56,87.514,512,10.39,2.43,10.52 +efficientnet_b1,240,5837.99,87.69,512,7.79,0.71,10.88 +resnet34d,288,5818.74,87.977,512,21.82,6.47,7.51 +efficientnet_lite2,260,5818.57,87.978,512,6.09,0.89,12.9 +eca_resnext26ts,256,5802.09,88.223,512,10.3,2.43,10.52 +regnety_016,224,5793.48,88.359,512,11.2,1.63,8.04 +gcresnext26ts,256,5763.43,88.824,512,10.48,2.43,10.53 +vit_tiny_patch16_384,384,5757.61,88.914,512,5.79,4.7,25.39 +efficientnet_b2_pruned,260,5702.14,89.779,512,8.31,0.73,9.13 +vovnet39a,224,5696.62,89.864,512,22.6,7.09,6.73 +convnextv2_femto,224,5691.98,89.939,512,5.23,0.79,4.57 +selecsls84,224,5690.74,89.959,512,50.95,5.9,7.57 +rexnet_150,224,5687.06,90.016,512,9.73,0.9,11.21 +tf_efficientnet_cc_b0_8e,224,5682.69,90.088,512,24.01,0.42,9.42 +ecaresnet101d_pruned,224,5665.08,90.365,512,24.88,3.48,7.69 +tf_efficientnet_cc_b0_4e,224,5643.92,90.706,512,13.31,0.41,9.42 +edgenext_small,256,5629.75,90.933,512,5.59,1.26,9.07 +hgnetv2_b2,224,5618.6,91.112,512,11.22,1.15,4.12 +cs3sedarknet_l,256,5560.82,92.057,512,21.91,4.86,8.56 +mobilevitv2_075,256,5556.74,92.127,512,2.87,1.05,12.06 +mobilenetv3_large_150d,256,5555.16,92.154,512,14.62,1.03,12.35 +resnet26t,256,5542.61,92.362,512,16.01,3.35,10.52 +ecaresnetlight,224,5507.77,92.947,512,30.16,4.11,8.42 +mobilenetv4_hybrid_large_075,256,5460.28,93.755,512,22.75,2.06,11.64 +ecaresnext26t_32x4d,224,5449.2,93.946,512,15.41,2.7,10.09 +seresnext26t_32x4d,224,5447.15,93.982,512,16.81,2.7,10.09 +ecaresnext50t_32x4d,224,5446.35,93.994,512,15.41,2.7,10.09 +tresnet_m,224,5412.07,94.592,512,31.39,5.75,7.31 +resnetv2_50,224,5404.87,94.714,512,25.55,4.11,11.11 +seresnext26d_32x4d,224,5399.24,94.813,512,16.81,2.73,10.19 +resnet101,176,5394.96,94.89,512,44.55,4.92,10.08 +ese_vovnet39b,224,5390.43,94.971,512,24.57,7.09,6.74 +eca_vovnet39b,224,5385.97,95.049,512,22.6,7.09,6.74 +hrnet_w18_small_v2,224,5368.46,95.35,512,15.6,2.62,9.65 +resnetaa34d,288,5316.61,96.29,512,21.82,7.33,8.38 +nf_regnet_b2,272,5315.32,96.311,512,14.31,1.22,9.27 +nf_regnet_b1,288,5308.87,96.43,512,10.22,1.02,9.2 +tf_efficientnet_b1,240,5299.34,96.602,512,7.79,0.71,10.88 +nf_ecaresnet26,224,5277.07,97.012,512,16.0,2.41,7.36 +nf_seresnet26,224,5268.95,97.161,512,17.4,2.41,7.36 +sam2_hiera_tiny,224,5256.88,97.382,512,26.85,4.91,17.12 +convnext_pico,288,5236.48,97.762,512,9.05,2.27,10.08 +wide_resnet50_2,176,5230.3,97.88,512,68.88,7.29,8.97 +efficientvit_b1,288,5209.57,98.268,512,9.1,0.87,11.96 +poolformer_s12,224,5207.23,98.311,512,11.92,1.82,5.53 +pvt_v2_b1,224,5204.63,98.361,512,14.01,2.12,15.39 +vit_small_resnet26d_224,224,5184.59,98.741,512,63.61,5.07,11.12 +vit_medium_patch16_clip_224,224,5164.35,99.127,512,38.59,8.0,15.93 +tf_efficientnet_lite2,260,5161.3,99.182,512,6.09,0.89,12.9 +efficientnet_b1,256,5151.08,99.381,512,7.79,0.77,12.22 +edgenext_small_rw,256,5138.37,99.63,512,7.83,1.58,9.51 +resnet50,224,5088.39,100.61,512,25.56,4.11,11.11 +convnext_pico_ols,288,5080.05,100.773,512,9.06,2.37,10.74 +dpn68,224,5063.18,101.109,512,12.61,2.35,10.47 +resnet32ts,256,5060.8,101.156,512,17.96,4.63,11.58 +dla60,224,5050.11,101.367,512,22.04,4.26,10.16 +efficientnet_em,240,5043.39,101.506,512,6.9,3.04,14.34 +levit_512,224,5027.38,101.83,512,95.17,5.64,10.22 +resnetv2_50t,224,5027.34,101.829,512,25.57,4.32,11.82 +resnet33ts,256,5009.72,102.19,512,19.68,4.76,11.66 +resnetv2_50d,224,4991.23,102.566,512,25.57,4.35,11.92 +mixnet_m,224,4990.08,102.58,512,5.01,0.36,8.19 +vgg11,224,4978.9,102.821,512,132.86,7.61,7.44 +mobilevit_xs,256,4974.99,102.897,512,2.32,1.05,16.33 +eca_botnext26ts_256,256,4972.2,102.961,512,10.59,2.46,11.6 +resnetblur18,288,4952.71,103.365,512,11.69,3.87,5.6 +repvit_m3,224,4952.4,103.372,512,10.68,1.89,13.94 +vit_little_patch16_reg1_gap_256,256,4899.59,104.486,512,22.52,6.27,18.06 +crossvit_small_240,240,4895.55,104.569,512,26.86,5.63,18.17 +regnetv_040,224,4894.19,104.6,512,20.64,4.0,12.29 +efficientnet_b2,256,4887.72,104.739,512,9.11,0.89,12.81 +dpn68b,224,4887.43,104.743,512,12.61,2.35,10.47 +resnest14d,224,4875.39,105.004,512,10.61,2.76,7.33 +cs3darknet_focus_l,288,4864.5,105.235,512,21.15,5.9,10.16 +coatnext_nano_rw_224,224,4863.57,105.26,512,14.7,2.47,12.8 +resnet50c,224,4858.01,105.38,512,25.58,4.35,11.92 +vovnet57a,224,4855.98,105.421,512,36.64,8.95,7.52 +vit_little_patch16_reg4_gap_256,256,4854.62,105.455,512,22.52,6.35,18.33 +ecaresnet26t,256,4847.81,105.603,512,16.01,3.35,10.53 +convnext_tiny,224,4844.53,105.672,512,28.59,4.47,13.44 +coatnet_pico_rw_224,224,4838.76,105.799,512,10.85,2.05,14.62 +regnety_040,224,4833.84,105.901,512,20.65,4.0,12.29 +ese_vovnet19b_dw,288,4833.57,105.914,512,6.54,2.22,13.63 +eca_resnet33ts,256,4814.31,106.335,512,19.68,4.76,11.66 +seresnet33ts,256,4808.69,106.463,512,19.78,4.76,11.66 +tf_mixnet_m,224,4798.12,106.693,512,5.01,0.36,8.19 +eca_halonext26ts,256,4798.11,106.697,512,10.76,2.44,11.46 +tf_efficientnet_em,240,4792.58,106.819,512,6.9,3.04,14.34 +resnet26,288,4751.95,107.731,512,16.0,3.9,12.15 +botnet26t_256,256,4750.9,107.757,512,12.49,3.32,11.98 +resnet50t,224,4740.57,107.989,512,25.57,4.32,11.82 +hgnetv2_b1,288,4740.36,107.996,512,6.34,0.82,4.51 +gcresnet33ts,256,4729.63,108.241,512,19.88,4.76,11.68 +resnet152,160,4727.44,108.291,512,60.19,5.9,11.51 +resnet50d,224,4716.19,108.549,512,25.58,4.35,11.92 +levit_512d,224,4713.6,108.608,512,92.5,5.85,11.3 +fbnetv3_g,240,4705.48,108.797,512,16.62,1.28,14.87 +cs3darknet_l,288,4693.2,109.078,512,21.16,6.16,10.83 +resnext26ts,288,4684.61,109.274,512,10.3,3.07,13.31 +bat_resnext26ts,256,4683.78,109.296,512,10.73,2.53,12.51 +ghostnetv2_160,224,4679.39,109.403,512,12.39,0.42,7.23 +levit_conv_512,224,4673.9,109.533,512,95.17,5.64,10.22 +resnetaa50,224,4670.85,109.603,512,25.56,5.15,11.64 +vit_relpos_medium_patch16_rpn_224,224,4656.87,109.924,512,38.73,7.97,17.02 +deit3_medium_patch16_224,224,4656.19,109.948,512,38.85,8.0,15.93 +vit_relpos_medium_patch16_224,224,4644.51,110.223,512,38.75,7.97,17.02 +vit_srelpos_medium_patch16_224,224,4622.27,110.755,512,38.74,7.96,16.21 +halonet26t,256,4618.99,110.833,512,12.48,3.19,11.69 +mobileone_s1,224,4610.41,111.041,512,4.83,0.86,9.67 +vit_relpos_medium_patch16_cls_224,224,4602.22,111.238,512,38.76,8.03,18.24 +hgnetv2_b3,224,4595.96,111.389,512,16.29,1.78,5.07 +ese_vovnet57b,224,4572.59,111.957,512,38.61,8.95,7.52 +crossvit_15_240,240,4566.76,112.099,512,27.53,5.81,19.77 +efficientnet_b3_pruned,300,4556.39,112.357,512,9.86,1.04,11.86 +convit_tiny,224,4550.29,112.508,512,5.71,1.26,7.94 +vit_small_r26_s32_224,224,4547.12,112.585,512,36.43,3.56,9.85 +coat_lite_tiny,224,4545.49,112.628,512,5.72,1.6,11.65 +seresnext26ts,288,4515.14,113.381,512,10.39,3.07,13.32 +rexnetr_200,224,4479.28,114.291,512,16.52,1.59,15.11 +eca_resnext26ts,288,4469.0,114.55,512,10.3,3.07,13.32 +hiera_tiny_224,224,4466.63,114.616,512,27.91,4.91,17.13 +gcresnext26ts,288,4454.09,114.939,512,10.48,3.07,13.33 +mobilenetv4_hybrid_medium,320,4442.05,115.247,512,11.07,2.05,14.36 +legacy_seresnet50,224,4439.83,115.307,512,28.09,3.88,10.6 +coatnet_nano_cc_224,224,4438.79,115.334,512,13.76,2.24,15.02 +coatnet_nano_rw_224,224,4405.71,116.2,512,15.14,2.41,15.41 +res2net50_48w_2s,224,4402.09,116.289,512,25.29,4.18,11.72 +levit_conv_512d,224,4399.04,116.376,512,92.5,5.85,11.3 +skresnet34,224,4398.47,116.391,512,22.28,3.67,5.13 +hgnet_small,224,4394.42,116.497,512,24.36,8.53,8.79 +crossvit_15_dagger_240,240,4382.25,116.812,512,28.21,6.13,20.43 +regnetx_032,224,4377.92,116.931,512,15.3,3.2,11.37 +vit_base_resnet26d_224,224,4364.66,117.293,512,101.4,6.97,13.16 +inception_v3,299,4356.9,117.497,512,23.83,5.73,8.97 +resnetaa50d,224,4354.22,117.574,512,25.58,5.39,12.44 +resnet50_clip_gap,224,4352.18,117.625,512,23.53,5.39,12.44 +cs3sedarknet_l,288,4319.09,118.528,512,21.91,6.16,10.83 +visformer_small,224,4314.89,118.648,512,40.22,4.88,11.43 +tiny_vit_21m_224,224,4303.48,118.951,512,33.22,4.29,20.08 +xcit_tiny_24_p16_224,224,4297.86,119.115,512,12.12,2.34,11.82 +coat_lite_mini,224,4294.71,119.204,512,11.01,2.0,12.25 +rexnet_200,224,4286.19,119.439,512,16.37,1.56,14.91 +seresnet50,224,4275.51,119.739,512,28.09,4.11,11.13 +vgg11_bn,224,4269.7,119.903,512,132.87,7.62,7.44 +resnet26d,288,4243.79,120.634,512,16.01,4.29,13.48 +repvit_m1_5,224,4236.5,120.842,512,14.64,2.31,15.7 +hgnetv2_b5,224,4234.4,120.895,512,39.57,6.56,11.19 +resnext50_32x4d,224,4219.51,121.328,512,25.03,4.26,14.4 +hgnetv2_b4,288,4217.35,121.378,512,19.8,4.54,11.08 +dla60x,224,4205.32,121.737,512,17.35,3.54,13.8 +convnextv2_pico,224,4204.11,121.769,512,9.07,1.37,6.1 +efficientvit_b2,224,4171.44,122.725,512,24.33,1.6,14.62 +resnet50s,224,4166.01,122.887,512,25.68,5.47,13.52 +haloregnetz_b,224,4138.03,123.716,512,11.68,1.97,11.94 +resnet50_clip,224,4125.54,124.093,512,38.32,6.14,12.98 +vit_medium_patch16_gap_240,240,4100.63,124.847,512,44.4,9.22,18.81 +tf_efficientnet_b2,260,4099.99,124.866,512,9.11,1.02,13.83 +fastvit_t8,256,4096.16,124.98,512,4.03,0.7,8.63 +mobilevitv2_100,256,4094.56,125.029,512,4.9,1.84,16.08 +cs3darknet_focus_x,256,4093.78,125.053,512,35.02,8.03,10.69 +twins_svt_small,224,4054.15,126.278,512,24.06,2.94,13.75 +davit_tiny,224,4047.96,126.469,512,28.36,4.54,18.89 +convnextv2_atto,288,4046.67,126.51,512,3.71,0.91,6.3 +nf_regnet_b3,288,4045.22,126.557,512,18.59,1.67,11.84 +ecaresnet50t,224,4041.51,126.672,512,25.57,4.32,11.83 +ecaresnet50d_pruned,288,4041.28,126.68,512,19.94,4.19,10.61 +efficientnet_b0_gn,224,4037.71,126.792,512,5.29,0.42,6.75 +resnetrs50,224,4033.27,126.931,512,35.69,4.48,12.14 +seresnet50t,224,4031.57,126.983,512,28.1,4.32,11.83 +efficientnet_b1,288,4029.31,127.056,512,7.79,0.97,15.46 +resnetv2_50x1_bit,224,4026.74,127.136,512,25.55,4.23,11.11 +resmlp_24_224,224,4020.57,127.334,512,30.02,5.96,10.91 +ecaresnet50d,224,4020.32,127.34,512,25.58,4.35,11.93 +nfnet_f0,192,4017.91,127.416,512,71.49,7.21,10.16 +eca_nfnet_l0,224,4007.54,127.747,512,24.14,4.35,10.47 +nfnet_l0,224,3992.6,128.226,512,35.07,4.36,10.47 +resnet32ts,288,3982.87,128.533,512,17.96,5.86,14.65 +cspresnet50,256,3967.99,129.011,512,21.62,4.54,11.5 +resnext50d_32x4d,224,3958.52,129.328,512,25.05,4.5,15.2 +efficientnet_cc_b1_8e,240,3942.69,129.849,512,39.72,0.75,15.44 +resnet33ts,288,3941.35,129.892,512,19.68,6.02,14.75 +convnext_tiny_hnf,224,3937.17,130.024,512,28.59,4.47,13.44 +cs3darknet_x,256,3921.43,130.548,512,35.05,8.38,11.35 +densenet121,224,3896.08,131.4,512,7.98,2.87,6.9 +regnety_032,224,3890.61,131.586,512,19.44,3.2,11.26 +efficientnet_b0_g8_gn,224,3878.78,131.986,512,6.56,0.66,6.75 +res2net50_26w_4s,224,3870.41,132.27,512,25.7,4.28,12.61 +repvgg_b1g4,224,3868.8,132.327,512,39.97,8.15,10.64 +res2next50,224,3866.11,132.415,512,24.67,4.2,13.71 +dla60_res2net,224,3861.83,132.566,512,20.85,4.15,12.34 +efficientnet_b2,288,3845.58,133.127,512,9.11,1.12,16.2 +dla60_res2next,224,3838.79,133.361,512,17.03,3.49,13.17 +cspresnet50w,256,3836.45,133.436,512,28.12,5.04,12.19 +mobilevit_s,256,3831.13,133.628,512,5.58,2.03,19.94 +resnet152,176,3829.91,133.671,512,60.19,7.22,13.99 +convnext_nano,288,3829.8,133.676,512,15.59,4.06,13.84 +regnetz_b16,288,3824.0,133.877,512,9.72,2.39,16.43 +nextvit_small,224,3822.2,133.942,512,31.76,5.81,18.44 +mobileone_s2,224,3813.62,134.241,512,7.88,1.34,11.55 +twins_pcpvt_small,224,3810.76,134.343,512,24.11,3.83,18.08 +lambda_resnet26rpt_256,256,3805.0,134.547,512,10.99,3.16,11.87 +cspresnet50d,256,3804.58,134.553,512,21.64,4.86,12.55 +res2net50_14w_8s,224,3794.91,134.892,512,25.06,4.21,13.28 +efficientvit_l1,224,3793.97,134.935,512,52.65,5.27,15.85 +maxvit_pico_rw_256,256,3785.35,135.245,512,7.46,1.83,22.3 +regnetz_c16,256,3784.6,135.273,512,13.46,2.51,16.57 +efficientnetv2_rw_t,288,3781.16,135.396,512,13.65,3.19,16.42 +seresnet33ts,288,3779.91,135.437,512,19.78,6.02,14.76 +coatnet_rmlp_nano_rw_224,224,3777.49,135.526,512,15.15,2.62,20.34 +maxvit_rmlp_pico_rw_256,256,3774.75,135.625,512,7.52,1.85,24.86 +regnetx_040,224,3770.28,135.785,512,22.12,3.99,12.2 +resnetblur50,224,3766.24,135.931,512,25.56,5.16,12.02 +hgnet_tiny,288,3750.33,136.507,512,14.74,7.51,10.51 +seresnetaa50d,224,3749.26,136.547,512,28.11,5.4,12.46 +gcresnext50ts,256,3748.73,136.567,512,15.67,3.75,15.46 +gcresnet50t,256,3737.26,136.986,512,25.9,5.42,14.67 +tf_efficientnetv2_b3,300,3732.39,137.164,512,14.36,3.04,15.74 +gcresnet33ts,288,3730.72,137.226,512,19.88,6.02,14.78 +mobilenetv4_conv_large,320,3729.46,137.261,512,32.59,4.47,18.97 +gcvit_xxtiny,224,3724.74,137.446,512,12.0,2.14,15.36 +xcit_nano_12_p16_384,384,3719.39,137.643,512,3.05,1.64,12.15 +mixnet_l,224,3706.35,138.118,512,7.33,0.58,10.84 +gmixer_24_224,224,3700.37,138.35,512,24.72,5.28,14.45 +tf_efficientnet_cc_b1_8e,240,3698.23,138.433,512,39.72,0.75,15.44 +mobileone_s0,224,3695.13,138.546,512,5.29,1.09,15.48 +hiera_small_224,224,3688.01,138.815,512,35.01,6.42,20.75 +inception_next_tiny,224,3669.77,139.505,512,28.06,4.19,11.98 +darknet53,256,3656.81,139.987,512,41.61,9.31,12.39 +eca_resnet33ts,288,3656.44,140.002,512,19.68,6.02,14.76 +resnet51q,256,3652.14,140.176,512,35.7,6.38,16.55 +coatnet_0_rw_224,224,3650.72,140.225,512,27.44,4.43,18.73 +legacy_seresnext50_32x4d,224,3646.33,140.404,512,27.56,4.26,14.42 +res2net50d,224,3644.05,140.488,512,25.72,4.52,13.41 +seresnext50_32x4d,224,3641.64,140.579,512,27.56,4.26,14.42 +vit_medium_patch16_gap_256,256,3640.49,140.628,512,38.86,10.59,22.15 +gc_efficientnetv2_rw_t,288,3639.71,140.657,512,13.68,3.2,16.45 +vit_base_patch32_384,384,3635.68,140.814,512,88.3,13.06,16.5 +vit_base_patch32_clip_384,384,3633.18,140.91,512,88.3,13.06,16.5 +resnetrs101,192,3609.77,141.824,512,63.62,6.04,12.7 +darknetaa53,256,3608.53,141.868,512,36.02,7.97,12.39 +cs3sedarknet_x,256,3607.12,141.918,512,35.4,8.38,11.35 +tf_mixnet_l,224,3591.49,142.547,512,7.33,0.58,10.84 +edgenext_small,320,3557.62,143.904,512,5.59,1.97,14.16 +resnetblur50d,224,3555.32,143.996,512,25.58,5.4,12.82 +vit_base_r26_s32_224,224,3550.43,144.195,512,101.38,6.81,12.36 +convnext_nano_ols,288,3546.6,144.351,512,15.65,4.38,15.5 +mobilenetv3_large_150d,320,3539.35,144.647,512,14.62,1.61,19.29 +vit_medium_patch16_reg1_gap_256,256,3508.51,145.916,512,38.88,10.63,22.26 +vgg13,224,3498.85,146.321,512,133.05,11.31,12.25 +resnet26t,320,3498.14,146.349,512,16.01,5.24,16.44 +resnest26d,224,3480.3,147.101,512,17.07,3.64,9.97 +vit_medium_patch16_reg4_gap_256,256,3477.69,147.213,512,38.88,10.76,22.6 +vit_large_patch32_224,224,3463.8,147.8,512,305.51,15.39,13.3 +resnetv2_101,224,3460.77,147.93,512,44.54,7.83,16.23 +xcit_small_12_p16_224,224,3440.46,148.803,512,26.25,4.82,12.58 +hieradet_small,256,3437.33,148.94,512,34.72,8.51,27.76 +convnextv2_femto,288,3432.62,149.144,512,5.23,1.3,7.56 +resnet61q,256,3430.48,149.237,512,36.85,7.8,17.01 +efficientnet_lite3,300,3422.52,149.581,512,8.2,1.65,21.85 +densenetblur121d,224,3387.08,151.149,512,8.0,3.11,7.9 +edgenext_base,256,3353.12,152.68,512,18.51,3.85,15.58 +resnet101,224,3320.94,154.16,512,44.55,7.83,16.23 +vit_base_resnet50d_224,224,3313.04,154.527,512,110.97,8.73,16.92 +cspresnext50,256,3309.23,154.7,512,20.57,4.05,15.86 +resnet50_mlp,256,3304.29,154.934,512,26.65,7.05,16.25 +crossvit_18_240,240,3297.72,155.242,512,43.27,9.05,26.26 +resnetv2_101d,224,3282.49,155.964,512,44.56,8.07,17.04 +wide_resnet50_2,224,3280.9,156.042,512,68.88,11.43,14.4 +hgnetv2_b2,288,3279.23,156.12,512,11.22,1.89,6.8 +edgenext_small_rw,320,3277.42,156.207,512,7.83,2.46,14.85 +dla102,224,3273.77,156.379,512,33.27,7.19,14.18 +regnetx_080,224,3273.2,156.408,512,39.57,8.02,14.06 +focalnet_tiny_srf,224,3262.86,156.903,512,28.43,4.42,16.32 +cs3edgenet_x,256,3259.76,157.05,512,47.82,11.53,12.92 +densenet169,224,3257.61,157.156,512,14.15,3.4,7.3 +repvgg_b1,224,3252.46,157.405,512,57.42,13.16,10.64 +ecaresnetlight,288,3245.31,157.753,512,30.16,6.79,13.91 +coatnet_bn_0_rw_224,224,3244.97,157.769,512,27.44,4.67,22.04 +hrnet_w18_ssld,224,3243.03,157.865,512,21.3,4.32,16.31 +fbnetv3_g,288,3240.2,158.003,512,16.62,1.77,21.09 +nf_regnet_b3,320,3237.1,158.154,512,18.59,2.05,14.61 +seresnext26t_32x4d,288,3235.31,158.238,512,16.81,4.46,16.68 +coatnet_rmlp_0_rw_224,224,3235.0,158.255,512,27.45,4.72,24.89 +mobilevitv2_125,256,3226.23,158.687,512,7.48,2.86,20.1 +hrnet_w18,224,3222.49,158.851,512,21.3,4.32,16.31 +resnet101c,224,3220.87,158.948,512,44.57,8.08,17.04 +eva02_small_patch14_224,224,3219.95,158.996,512,21.62,6.14,18.28 +dm_nfnet_f0,192,3211.06,159.436,512,71.49,7.21,10.16 +seresnext26d_32x4d,288,3205.61,159.698,512,16.81,4.51,16.85 +pit_b_224,224,3203.54,159.809,512,73.76,12.42,32.94 +ese_vovnet39b,288,3197.44,160.116,512,24.57,11.71,11.13 +resnetv2_50,288,3191.29,160.421,512,25.55,6.79,18.37 +pit_b_distilled_224,224,3189.97,160.488,512,74.79,12.5,33.07 +nf_seresnet50,224,3183.77,160.801,512,28.09,4.21,11.13 +nf_ecaresnet50,224,3182.04,160.888,512,25.56,4.21,11.13 +poolformerv2_s12,224,3173.35,161.331,512,11.89,1.83,5.53 +crossvit_18_dagger_240,240,3169.03,161.547,512,44.27,9.5,27.03 +efficientvit_b2,256,3168.98,161.551,512,24.33,2.09,19.03 +ecaresnet101d_pruned,288,3165.16,161.747,512,24.88,5.75,12.71 +wide_resnet101_2,176,3159.16,162.057,512,126.89,14.31,13.18 +resnet101d,224,3154.71,162.283,512,44.57,8.08,17.04 +mobileone_s3,224,3137.93,163.149,512,10.17,1.94,13.85 +rdnet_tiny,224,3116.85,164.255,512,23.86,5.06,15.98 +ecaresnet50t,256,3090.6,165.649,512,25.57,5.64,15.45 +cs3darknet_x,288,3089.12,165.725,512,35.05,10.6,14.36 +pvt_v2_b2,224,3075.64,166.454,512,25.36,4.05,27.53 +ecaresnet26t,320,3068.22,166.857,512,16.01,5.24,16.44 +convnextv2_nano,224,3060.53,167.274,512,15.62,2.46,8.37 +gmlp_s16_224,224,3054.3,167.617,512,19.42,4.42,15.1 +eva02_tiny_patch14_336,336,3045.61,168.099,512,5.76,4.68,27.16 +tf_efficientnet_lite3,300,3034.72,168.698,512,8.2,1.65,21.85 +nf_resnet50,256,3032.36,168.828,512,25.56,5.46,14.52 +resnest50d_1s4x24d,224,3022.48,169.381,512,25.68,4.43,13.57 +efficientnetv2_s,288,3014.62,169.825,512,21.46,4.75,20.13 +efficientvit_l2,224,3006.41,170.285,512,63.71,6.97,19.58 +sehalonet33ts,256,3003.76,170.438,512,13.69,3.55,14.7 +resnet50,288,3001.95,170.541,512,25.56,6.8,18.37 +rexnetr_300,224,2999.93,170.656,512,34.81,3.39,22.16 +resnetaa101d,224,2990.5,171.195,512,44.57,9.12,17.56 +resnet101_clip_gap,224,2990.13,171.215,512,42.52,9.11,17.56 +focalnet_tiny_lrf,224,2989.28,171.265,512,28.65,4.49,17.76 +mobilenetv4_hybrid_medium,384,2986.24,171.437,512,11.07,3.01,21.18 +convnext_small,224,2979.27,171.842,512,50.22,8.71,21.56 +skresnet50,224,2972.51,172.23,512,25.8,4.11,12.5 +nextvit_base,224,2953.28,173.349,512,44.82,8.29,23.71 +res2net50_26w_6s,224,2950.38,173.519,512,37.05,6.33,15.28 +convnext_tiny,288,2942.29,174.001,512,28.59,7.39,22.21 +vgg13_bn,224,2930.98,174.674,512,133.05,11.33,12.25 +gcresnet50t,288,2928.81,174.801,512,25.9,6.86,18.57 +regnetv_040,288,2924.99,175.029,512,20.64,6.6,20.3 +cs3se_edgenet_x,256,2921.53,175.231,512,50.72,11.53,12.94 +gcresnext50ts,288,2907.55,176.079,512,15.67,4.75,19.57 +vgg16,224,2904.86,176.241,512,138.36,15.47,13.56 +gcvit_xtiny,224,2901.49,176.449,512,19.98,2.93,20.26 +resnet101s,224,2898.69,176.618,512,44.67,9.19,18.64 +dpn68b,288,2892.89,176.97,512,12.61,3.89,17.3 +resnext101_32x8d,176,2887.72,177.288,512,88.79,10.33,19.37 +efficientnet_b3,288,2886.07,177.389,512,12.23,1.63,21.49 +resnet101_clip,224,2884.25,177.502,512,56.26,9.81,18.08 +resnet51q,288,2880.39,177.741,512,35.7,8.07,20.94 +tresnet_v2_l,224,2874.87,178.082,512,46.17,8.85,16.34 +regnety_040,288,2873.78,178.146,512,20.65,6.61,20.3 +darknet53,288,2865.69,178.639,512,41.61,11.78,15.68 +efficientnetv2_rw_s,288,2865.52,178.661,512,23.94,4.91,21.41 +vit_base_patch16_siglip_gap_224,224,2859.98,179.01,512,85.8,17.49,23.75 +fastvit_t12,256,2859.48,179.037,512,7.55,1.42,12.42 +vit_base_patch16_224_miil,224,2846.99,179.826,512,94.4,17.59,23.91 +deit_base_patch16_224,224,2846.84,179.834,512,86.57,17.58,23.9 +skresnet50d,224,2843.8,180.027,512,25.82,4.36,13.31 +vit_base_patch16_224,224,2843.0,180.077,512,86.57,17.58,23.9 +vit_base_patch16_clip_224,224,2840.98,180.206,512,86.57,17.58,23.9 +xcit_nano_12_p8_224,224,2838.89,180.339,512,3.05,2.16,15.71 +mixer_b16_224,224,2837.28,180.433,512,59.88,12.62,14.53 +vitamin_small_224,224,2831.28,180.823,512,22.03,5.92,26.38 +vit_base_patch16_siglip_224,224,2830.29,180.883,512,92.88,17.73,24.06 +darknetaa53,288,2829.22,180.948,512,36.02,10.08,15.68 +deit_base_distilled_patch16_224,224,2828.65,180.986,512,87.34,17.68,24.05 +legacy_seresnet101,224,2827.17,181.086,512,49.33,7.61,15.74 +regnetx_064,224,2812.17,182.051,512,26.21,6.49,16.37 +resnet50t,288,2809.9,182.199,512,25.57,7.14,19.53 +vit_base_mci_224,224,2809.18,182.246,512,86.35,17.73,24.65 +cs3sedarknet_x,288,2809.03,182.251,512,35.4,10.6,14.37 +nest_tiny,224,2808.71,182.275,512,17.06,5.83,25.48 +resnet50d,288,2794.35,183.212,512,25.58,7.19,19.7 +volo_d1_224,224,2792.28,183.348,512,26.63,6.94,24.43 +resnetaa50,288,2787.79,183.642,512,25.56,8.52,19.24 +maxxvit_rmlp_nano_rw_256,256,2787.18,183.665,512,16.78,4.37,26.05 +dla102x,224,2778.92,184.23,512,26.31,5.89,19.42 +vit_base_patch16_gap_224,224,2767.32,185.003,512,86.57,17.49,25.59 +sequencer2d_s,224,2764.98,185.16,512,27.65,4.96,11.31 +nest_tiny_jx,224,2762.24,185.343,512,17.06,5.83,25.48 +seresnet101,224,2762.13,185.343,512,49.33,7.84,16.27 +efficientformer_l3,224,2749.8,186.18,512,31.41,3.93,12.01 +resnext101_32x4d,224,2746.89,186.38,512,44.18,8.01,21.23 +swin_tiny_patch4_window7_224,224,2744.11,186.57,512,28.29,4.51,17.06 +cs3sedarknet_xdw,256,2728.51,187.612,512,21.6,5.97,17.18 +fastvit_sa12,256,2725.03,187.874,512,11.58,1.96,14.03 +ese_vovnet99b,224,2723.96,187.941,512,63.2,16.51,11.27 +fastvit_s12,256,2721.82,188.087,512,9.47,1.82,13.67 +resnet61q,288,2721.04,188.149,512,36.85,9.87,21.52 +twins_pcpvt_base,224,2714.36,188.612,512,43.83,6.68,25.25 +beit_base_patch16_224,224,2706.18,189.182,512,86.53,17.58,23.9 +vit_base_patch32_clip_448,448,2701.0,189.546,512,88.34,17.93,23.9 +resmlp_36_224,224,2696.43,189.864,512,44.69,8.91,16.33 +tresnet_l,224,2694.34,190.016,512,55.99,10.9,11.9 +beitv2_base_patch16_224,224,2693.77,190.055,512,86.53,17.58,23.9 +rexnetr_200,288,2689.11,190.383,512,16.52,2.62,24.96 +rexnet_300,224,2684.56,190.707,512,34.71,3.44,22.4 +pvt_v2_b2_li,224,2681.31,190.936,512,22.55,3.91,27.6 +maxxvitv2_nano_rw_256,256,2667.75,191.907,512,23.7,6.26,23.05 +mobilevitv2_150,256,2662.33,192.301,512,10.59,4.09,24.11 +ecaresnet101d,224,2660.63,192.423,512,44.57,8.08,17.07 +cspdarknet53,256,2655.45,192.786,512,27.64,6.57,16.81 +poolformer_s24,224,2646.59,193.442,512,21.39,3.41,10.68 +vit_base_patch16_rpn_224,224,2645.68,193.504,512,86.54,17.49,23.75 +cait_xxs24_224,224,2634.11,194.359,512,11.96,2.53,20.29 +mobilenetv4_conv_large,384,2634.1,194.358,512,32.59,6.43,27.31 +mixnet_xl,224,2620.78,195.34,512,11.9,0.93,14.57 +deit3_base_patch16_224,224,2617.49,195.593,512,86.59,17.58,23.9 +maxvit_tiny_rw_224,224,2616.24,195.687,512,29.06,5.11,33.11 +vit_relpos_base_patch16_rpn_224,224,2614.87,195.79,512,86.41,17.51,24.97 +vit_relpos_base_patch16_224,224,2608.2,196.291,512,86.43,17.51,24.97 +resnetaa50d,288,2606.94,196.383,512,25.58,8.92,20.57 +vit_relpos_base_patch16_clsgap_224,224,2596.29,197.191,512,86.43,17.6,25.12 +res2net101_26w_4s,224,2594.73,197.298,512,45.21,8.1,18.45 +resnetblur101d,224,2592.77,197.455,512,44.57,9.12,17.94 +vit_relpos_base_patch16_cls_224,224,2592.66,197.467,512,86.43,17.6,25.12 +hgnet_small,288,2591.82,197.53,512,24.36,14.09,14.53 +tf_efficientnetv2_s,300,2589.86,197.681,512,21.46,5.35,22.73 +resnetv2_101x1_bit,224,2583.09,198.195,512,44.54,8.04,16.23 +regnetz_d32,256,2582.87,198.213,512,27.58,5.98,23.74 +hgnetv2_b3,288,2571.48,199.079,512,16.29,2.94,8.38 +vit_betwixt_patch16_reg1_gap_256,256,2567.82,199.378,512,60.4,16.32,27.83 +nf_resnet101,224,2567.19,199.426,512,44.55,8.01,16.23 +regnetz_d8,256,2566.72,199.463,512,23.37,3.97,23.74 +sebotnet33ts_256,256,2559.67,200.012,512,13.7,3.89,17.46 +convnextv2_pico,288,2545.21,201.143,512,9.07,2.27,10.08 +vit_betwixt_patch16_reg4_gap_256,256,2540.19,201.546,512,60.4,16.52,28.24 +seresnet50,288,2537.63,201.746,512,28.09,6.8,18.39 +hgnetv2_b5,288,2531.16,202.26,512,39.57,10.84,18.5 +mixer_l32_224,224,2528.06,202.513,512,206.94,11.27,19.86 +cs3edgenet_x,288,2527.64,202.544,512,47.82,14.59,16.36 +davit_small,224,2525.76,202.697,512,49.75,8.8,30.49 +regnetz_040,256,2513.52,203.672,512,27.12,4.06,24.19 +vit_small_patch16_384,384,2513.48,203.688,512,22.2,15.52,50.78 +regnetz_040_h,256,2511.58,203.823,512,28.94,4.12,24.29 +xcit_tiny_12_p16_384,384,2508.59,204.083,512,6.72,3.64,18.26 +efficientvit_b2,288,2500.66,204.73,512,24.33,2.64,24.03 +densenet201,224,2499.62,204.817,512,20.01,4.34,7.85 +resnext50_32x4d,288,2498.32,204.925,512,25.03,7.04,23.81 +res2net101d,224,2492.38,205.404,512,45.23,8.35,19.25 +flexivit_base,240,2489.7,205.633,512,86.59,20.29,28.36 +vgg19,224,2485.75,205.96,512,143.67,19.63,14.86 +vit_small_resnet50d_s16_224,224,2485.28,206.0,512,57.53,13.48,24.82 +vgg16_bn,224,2469.22,207.339,512,138.37,15.5,13.56 +coat_lite_small,224,2466.91,207.531,512,19.84,3.96,22.09 +hiera_base_224,224,2456.41,208.411,512,51.52,9.4,30.42 +swin_s3_tiny_224,224,2454.84,208.551,512,28.33,4.64,19.13 +res2net50_26w_8s,224,2448.88,209.049,512,48.4,8.37,17.95 +regnetz_c16,320,2432.34,210.483,512,13.46,3.92,25.88 +eca_nfnet_l0,288,2420.75,211.492,512,24.14,7.12,17.29 +resnetv2_152,224,2415.11,211.982,512,60.19,11.55,22.56 +nfnet_l0,288,2412.74,212.191,512,35.07,7.13,17.29 +nextvit_large,224,2408.12,212.596,512,57.87,10.78,28.99 +repvit_m2_3,224,2406.51,212.743,512,23.69,4.57,26.21 +regnety_064,224,2405.63,212.821,512,30.58,6.39,16.41 +ecaresnet50t,288,2404.89,212.887,512,25.57,7.14,19.55 +regnetv_064,224,2402.43,213.102,512,30.58,6.39,16.41 +resnet101d,256,2401.57,213.179,512,44.57,10.55,22.25 +seresnet50t,288,2398.87,213.42,512,28.1,7.14,19.55 +halonet50ts,256,2395.15,213.751,512,22.73,5.3,19.2 +nf_regnet_b4,320,2392.51,213.987,512,30.21,3.29,19.88 +ecaresnet50d,288,2392.47,213.991,512,25.58,7.19,19.72 +convnext_tiny_hnf,288,2383.27,214.808,512,28.59,7.39,22.21 +regnety_080,224,2362.59,216.697,512,39.18,8.0,17.97 +nf_resnet50,288,2360.57,216.882,512,25.56,6.88,18.37 +tf_efficientnet_b3,300,2360.52,216.883,512,12.23,1.87,23.83 +seresnext101_32x4d,224,2356.8,217.226,512,48.96,8.02,21.26 +resnext50d_32x4d,288,2354.66,217.422,512,25.05,7.44,25.13 +legacy_seresnext101_32x4d,224,2353.24,217.559,512,48.96,8.02,21.26 +resnet152,224,2347.77,218.062,512,60.19,11.56,22.56 +vit_small_patch16_36x1_224,224,2346.24,218.206,512,64.67,13.71,35.69 +resnest50d,224,2340.99,218.697,512,27.48,5.4,14.36 +mobileone_s4,224,2340.57,218.737,512,14.95,3.04,17.74 +repvgg_b2,224,2337.11,219.056,512,89.02,20.45,12.9 +hiera_small_abswin_256,256,2334.48,219.308,512,34.36,8.29,26.38 +hrnet_w32,224,2333.41,219.405,512,41.23,8.97,22.02 +efficientnet_b3,320,2331.82,219.556,512,12.23,2.01,26.52 +vit_base_patch16_clip_quickgelu_224,224,2329.86,219.738,512,86.19,17.58,23.9 +resnetv2_152d,224,2328.25,219.891,512,60.2,11.8,23.36 +efficientvit_l2,256,2320.46,220.631,512,63.71,9.09,25.49 +resnetv2_50d_gn,224,2319.35,220.732,512,25.57,4.38,11.92 +inception_v4,299,2318.78,220.781,512,42.68,12.28,15.09 +regnety_032,288,2316.01,221.053,512,19.44,5.29,18.61 +resnet152c,224,2297.8,222.806,512,60.21,11.8,23.36 +repvgg_b2g4,224,2294.12,223.163,512,61.76,12.63,12.9 +densenet121,288,2267.9,225.743,512,7.98,4.74,11.41 +vit_base_patch16_xp_224,224,2265.93,225.941,512,86.51,17.56,23.9 +legacy_xception,299,2265.86,225.947,512,22.86,8.4,35.83 +nfnet_f0,256,2265.35,225.998,512,71.49,12.62,18.05 +resnet152d,224,2264.89,226.044,512,60.21,11.8,23.36 +coatnet_rmlp_1_rw_224,224,2261.48,226.371,512,41.69,7.85,35.47 +mobilevitv2_175,256,2260.07,226.526,512,14.25,5.54,28.13 +pvt_v2_b3,224,2255.37,227.0,512,45.24,6.92,37.7 +deit3_small_patch16_384,384,2253.41,227.196,512,22.21,15.52,50.78 +xception41p,299,2252.41,227.29,512,26.91,9.25,39.86 +seresnetaa50d,288,2250.46,227.494,512,28.11,8.92,20.59 +efficientnet_el,300,2247.58,227.785,512,10.59,8.0,30.7 +vit_medium_patch16_rope_reg1_gap_256,256,2246.95,227.851,512,38.74,10.63,22.26 +efficientnet_el_pruned,300,2246.64,227.882,512,10.59,8.0,30.7 +ese_vovnet39b_evos,224,2241.07,228.448,512,24.58,7.07,6.74 +resnetblur50,288,2230.72,229.506,512,25.56,8.52,19.87 +inception_next_small,224,2228.86,229.7,512,49.37,8.36,19.27 +swinv2_cr_tiny_224,224,2222.44,230.365,512,28.33,4.66,28.45 +vit_small_patch16_18x2_224,224,2220.98,230.512,512,64.67,13.71,35.69 +maxvit_nano_rw_256,256,2207.5,231.919,512,15.45,4.46,30.28 +dla169,224,2206.1,232.067,512,53.39,11.6,20.2 +maxvit_rmlp_nano_rw_256,256,2204.07,232.283,512,15.5,4.47,31.92 +vit_base_patch16_siglip_gap_256,256,2196.58,233.076,512,85.84,23.13,33.23 +regnetx_160,224,2194.16,233.329,512,54.28,15.99,25.52 +swinv2_cr_tiny_ns_224,224,2192.78,233.479,512,28.33,4.66,28.45 +regnety_080_tv,224,2184.79,234.333,512,39.38,8.51,19.73 +efficientvit_b3,224,2179.4,234.913,512,48.65,3.99,26.9 +resnet50_gn,224,2179.17,234.937,512,25.56,4.14,11.11 +vit_base_patch16_siglip_256,256,2176.19,235.258,512,92.93,23.44,33.63 +seresnext50_32x4d,288,2170.0,235.928,512,27.56,7.04,23.82 +rdnet_small,224,2169.02,236.035,512,50.44,8.74,22.55 +sequencer2d_m,224,2166.41,236.323,512,38.31,6.55,14.26 +tf_efficientnet_el,300,2156.43,237.414,512,10.59,8.0,30.7 +mobilenetv4_hybrid_medium,448,2154.42,237.637,512,11.07,4.2,29.64 +coatnet_1_rw_224,224,2142.22,238.989,512,41.72,8.04,34.6 +edgenext_base,320,2141.55,239.066,512,18.51,6.01,24.32 +vgg19_bn,224,2133.62,239.953,512,143.68,19.66,14.86 +resnet152s,224,2129.43,240.425,512,60.32,12.92,24.96 +mvitv2_tiny,224,2125.43,240.877,512,24.17,4.7,21.16 +vit_base_patch16_reg4_gap_256,256,2118.83,241.627,512,86.62,23.5,33.89 +resnetblur50d,288,2115.44,242.017,512,25.58,8.92,21.19 +vit_mediumd_patch16_reg4_gap_256,256,2111.48,242.47,512,64.11,17.87,37.57 +convnextv2_tiny,224,2107.29,242.943,512,28.64,4.47,13.44 +mobilenetv4_conv_aa_large,384,2105.52,243.157,512,32.59,7.07,32.29 +maxvit_tiny_tf_224,224,2103.05,243.442,512,30.92,5.6,35.78 +convnext_base,224,2096.16,244.241,512,88.59,15.38,28.75 +resnetv2_50d_frn,224,2077.9,246.382,512,25.59,4.33,11.92 +botnet50ts_256,256,2077.88,246.39,512,22.74,5.54,22.23 +regnetx_120,224,2069.68,247.365,512,46.11,12.13,21.37 +coatnet_rmlp_1_rw2_224,224,2068.04,247.549,512,41.72,8.11,40.13 +convit_small,224,2065.19,247.902,512,27.78,5.76,17.87 +hrnet_w30,224,2062.37,248.224,512,37.71,8.15,21.21 +nf_ecaresnet101,224,2050.3,249.705,512,44.55,8.01,16.27 +nf_seresnet101,224,2045.44,250.297,512,49.33,8.02,16.27 +coatnet_0_224,224,2040.72,250.864,512,25.04,4.58,24.01 +resnetv2_101,288,2033.05,251.823,512,44.54,12.94,26.83 +dpn92,224,2023.11,253.058,512,37.67,6.54,18.21 +focalnet_small_srf,224,2004.67,255.387,512,49.89,8.62,26.26 +crossvit_base_240,240,1979.19,258.671,512,105.03,21.22,36.33 +densenetblur121d,288,1978.97,258.705,512,8.0,5.14,13.06 +fastvit_mci0,256,1974.2,259.33,512,11.41,2.42,18.29 +twins_svt_base,224,1973.81,259.382,512,56.07,8.59,26.33 +hgnetv2_b6,224,1973.41,259.428,512,75.26,16.88,21.23 +legacy_seresnet152,224,1972.16,259.595,512,66.82,11.33,22.08 +hiera_base_plus_224,224,1970.81,259.766,512,69.9,12.67,37.98 +ecaresnet50t,320,1958.88,261.354,512,25.57,8.82,24.13 +regnety_040_sgn,224,1956.43,261.685,512,20.65,4.03,12.29 +wide_resnet50_2,288,1954.98,261.88,512,68.88,18.89,23.81 +resnet101,288,1954.77,261.909,512,44.55,12.95,26.83 +twins_pcpvt_large,224,1953.99,262.014,512,60.99,9.84,35.82 +wide_resnet101_2,224,1953.76,262.043,512,126.89,22.8,21.23 +densenet161,224,1946.37,263.038,512,28.68,7.79,11.06 +dla102x2,224,1944.36,263.309,512,41.28,9.34,29.91 +seresnet152,224,1938.57,264.096,512,66.82,11.57,22.61 +halo2botnet50ts_256,256,1933.79,264.747,512,22.64,5.02,21.78 +regnety_120,224,1926.91,265.695,512,51.82,12.14,21.38 +gcvit_tiny,224,1921.55,266.438,512,28.22,4.79,29.82 +mobilenetv4_conv_large,448,1919.71,266.685,512,32.59,8.75,37.17 +repvgg_b3g4,224,1914.94,267.358,512,83.83,17.89,15.1 +skresnext50_32x4d,224,1910.2,268.02,512,27.48,4.5,17.18 +xcit_tiny_12_p8_224,224,1904.82,268.773,512,6.71,4.81,23.6 +caformer_s18,224,1897.73,269.774,512,26.34,4.13,19.39 +regnetz_b16_evos,224,1888.78,271.059,512,9.74,1.43,9.95 +hgnet_base,224,1879.47,272.399,512,71.58,25.14,15.47 +maxxvit_rmlp_tiny_rw_256,256,1876.98,272.766,512,29.64,6.66,39.76 +xception41,299,1871.32,273.587,512,26.97,9.28,39.86 +cs3se_edgenet_x,320,1859.22,275.361,512,50.72,18.01,20.21 +hrnet_w18_ssld,288,1859.2,275.374,512,21.3,7.14,26.96 +tresnet_xl,224,1856.4,275.789,512,78.44,15.2,15.34 +convnextv2_nano,288,1850.39,276.675,512,15.62,4.06,13.84 +focalnet_small_lrf,224,1837.71,278.592,512,50.34,8.74,28.61 +xcit_small_24_p16_224,224,1834.87,279.023,512,47.67,9.1,23.64 +efficientvit_l2,288,1824.85,280.553,512,63.71,11.51,32.19 +nest_small,224,1822.19,280.962,512,38.35,10.35,40.04 +convnext_small,288,1809.03,283.01,512,50.22,14.39,35.65 +repvgg_b3,224,1809.03,283.005,512,123.09,29.16,15.1 +resnext101_64x4d,224,1807.89,283.188,512,83.46,15.52,31.21 +vit_base_patch16_plus_240,240,1806.76,283.363,512,117.56,27.41,33.08 +vit_relpos_base_patch16_plus_240,240,1802.12,284.093,512,117.38,27.3,34.33 +nest_small_jx,224,1801.11,284.248,512,38.35,10.35,40.04 +samvit_base_patch16_224,224,1797.25,284.868,512,86.46,17.54,24.54 +vit_small_patch8_224,224,1797.1,284.885,512,21.67,22.44,80.84 +resnext101_32x8d,224,1792.69,285.588,512,88.79,16.48,31.21 +resnetaa101d,288,1777.27,288.066,512,44.57,15.07,29.03 +poolformer_s36,224,1773.95,288.607,512,30.86,5.0,15.82 +vit_large_r50_s32_224,224,1771.48,289.009,512,328.99,19.58,24.41 +cait_xxs36_224,224,1769.48,289.336,512,17.3,3.77,30.34 +efficientnet_b4,320,1763.52,290.311,512,19.34,3.13,34.76 +convformer_s18,224,1757.98,291.227,512,26.77,3.96,15.82 +davit_base,224,1755.64,291.611,512,87.95,15.51,40.66 +dpn98,224,1751.0,292.387,512,61.57,11.73,25.2 +dm_nfnet_f0,256,1740.31,294.174,512,71.49,12.62,18.05 +mobilenetv4_hybrid_large,384,1735.11,295.061,512,37.76,7.77,34.52 +eca_nfnet_l1,256,1730.61,295.834,512,41.41,9.62,22.04 +resnetv2_50d_evos,224,1724.23,296.927,512,25.59,4.33,11.92 +hrnet_w40,224,1723.16,297.088,512,57.56,12.75,25.29 +resnet152d,256,1717.79,298.038,512,60.21,15.41,30.51 +tnt_s_patch16_224,224,1716.84,298.207,512,23.76,5.24,24.37 +eva02_base_patch16_clip_224,224,1710.74,299.27,512,86.26,17.62,26.32 +swin_small_patch4_window7_224,224,1706.58,299.999,512,49.61,8.77,27.47 +inception_resnet_v2,299,1690.61,302.813,512,55.84,13.18,25.06 +vit_betwixt_patch16_rope_reg4_gap_256,256,1681.28,304.517,512,60.23,16.52,28.24 +efficientvit_b3,256,1678.52,305.014,512,48.65,5.2,35.01 +regnety_160,224,1676.75,305.336,512,83.59,15.96,23.04 +convnext_tiny,384,1663.32,307.803,512,28.59,13.14,39.48 +xception65p,299,1663.22,307.807,512,39.82,13.91,52.48 +regnetz_d32,320,1656.99,308.976,512,27.58,9.33,37.08 +efficientformerv2_s0,224,1656.06,309.153,512,3.6,0.41,5.3 +efficientnetv2_s,384,1651.63,309.97,512,21.46,8.44,35.77 +resnet200,224,1649.35,310.41,512,64.67,15.07,32.19 +nf_regnet_b4,384,1647.49,310.762,512,30.21,4.7,28.61 +regnetz_d8,320,1642.91,311.627,512,23.37,6.19,37.08 +nfnet_f1,224,1642.07,311.777,512,132.63,17.87,22.94 +seresnet101,288,1638.36,312.492,512,49.33,12.95,26.87 +tf_efficientnetv2_s,384,1634.05,313.314,512,21.46,8.44,35.77 +regnetz_040,320,1629.96,314.078,512,27.12,6.35,37.78 +resnext101_32x4d,288,1628.74,314.339,512,44.18,13.24,35.09 +seresnext101_64x4d,224,1627.86,314.507,512,88.23,15.53,31.25 +maxvit_tiny_rw_256,256,1627.49,314.58,512,29.07,6.74,44.35 +maxvit_rmlp_tiny_rw_256,256,1624.07,315.242,512,29.15,6.77,46.92 +regnetz_040_h,320,1623.42,315.367,512,28.94,6.43,37.94 +poolformerv2_s24,224,1621.47,315.747,512,21.34,3.42,10.68 +pvt_v2_b5,224,1619.65,316.103,512,81.96,11.76,50.92 +seresnext101_32x8d,224,1619.59,316.115,512,93.57,16.48,31.25 +resnest50d_4s2x40d,224,1617.32,316.558,512,30.42,4.4,17.94 +efficientnetv2_rw_s,384,1616.73,316.671,512,23.94,8.72,38.03 +pvt_v2_b4,224,1616.7,316.679,512,62.56,10.14,53.74 +convnext_base,256,1615.94,316.827,512,88.59,20.09,37.55 +mvitv2_small,224,1605.45,318.899,512,34.87,7.0,28.08 +coat_tiny,224,1603.76,319.236,512,5.5,4.35,27.2 +mobilevitv2_200,256,1595.83,320.821,512,18.45,7.22,32.15 +swinv2_tiny_window8_256,256,1595.55,320.875,512,28.35,5.96,24.57 +fastvit_sa24,256,1588.77,322.245,512,21.55,3.8,24.32 +resnetrs101,288,1587.5,322.503,512,63.62,13.56,28.53 +vit_base_r50_s16_224,224,1585.43,322.924,512,97.89,21.66,35.28 +seresnext101d_32x8d,224,1581.7,323.686,512,93.59,16.72,32.05 +mvitv2_small_cls,224,1581.51,323.728,512,34.87,7.04,28.17 +ecaresnet101d,288,1578.08,324.428,512,44.57,13.35,28.19 +inception_next_base,224,1571.68,325.752,512,86.67,14.85,25.69 +mixnet_xxl,224,1570.27,326.029,512,23.96,2.04,23.43 +vit_medium_patch16_gap_384,384,1558.61,328.483,512,39.03,26.08,67.54 +mobilenetv4_conv_aa_large,448,1557.91,328.629,512,32.59,9.63,43.94 +vit_small_r26_s32_384,384,1549.48,330.418,512,36.47,10.43,29.85 +efficientformerv2_s1,224,1538.12,332.859,512,6.19,0.67,7.66 +volo_d2_224,224,1537.61,332.969,512,58.68,14.34,41.34 +resnetblur101d,288,1534.28,333.687,512,44.57,15.07,29.65 +resnet101d,320,1514.34,338.086,512,44.57,16.48,34.77 +rdnet_base,224,1513.06,338.372,512,87.45,15.4,31.14 +hiera_base_abswin_256,256,1498.55,341.631,512,51.27,12.46,40.7 +maxvit_rmlp_small_rw_224,224,1496.71,342.069,512,64.9,10.75,49.3 +seresnextaa101d_32x8d,224,1495.01,342.457,512,93.59,17.25,34.16 +coatnet_1_224,224,1490.49,343.476,512,42.23,8.7,39.0 +hrnet_w48_ssld,224,1486.26,344.473,512,77.47,17.34,28.56 +hrnet_w48,224,1482.42,345.349,512,77.47,17.34,28.56 +efficientnetv2_m,320,1471.33,347.961,512,54.14,11.01,39.97 +regnetz_e8,256,1443.64,354.642,512,57.7,9.91,40.94 +resnetrs152,256,1435.38,356.681,512,86.62,15.59,30.83 +seresnet152d,256,1433.76,357.085,512,66.84,15.42,30.56 +focalnet_base_srf,224,1432.2,357.455,512,88.15,15.28,35.01 +eva02_small_patch14_336,336,1426.95,358.791,512,22.13,15.48,54.33 +regnety_064,288,1425.13,359.247,512,30.58,10.56,27.11 +maxvit_tiny_pm_256,256,1425.01,359.276,512,30.09,6.61,47.9 +regnetv_064,288,1424.51,359.406,512,30.58,10.55,27.11 +regnety_080,288,1420.63,360.386,512,39.18,13.22,29.69 +resnet50x4_clip_gap,288,1412.45,362.468,512,65.62,19.57,34.11 +tiny_vit_21m_384,384,1405.09,364.373,512,21.23,13.77,77.83 +seresnext101_32x4d,288,1404.5,364.525,512,48.96,13.25,35.12 +crossvit_15_dagger_408,408,1400.47,365.57,512,28.5,21.45,95.05 +sequencer2d_l,224,1398.42,366.113,512,54.3,9.74,22.12 +xception65,299,1384.96,369.654,512,39.92,13.96,52.48 +resnet152,288,1381.72,370.537,512,60.19,19.11,37.28 +resnetv2_50d_gn,288,1381.53,370.586,512,25.57,7.24,19.7 +rexnetr_300,288,1381.25,370.662,512,34.81,5.59,36.61 +swinv2_cr_small_224,224,1376.99,371.809,512,49.7,9.07,50.27 +gmlp_b16_224,224,1375.86,372.108,512,73.08,15.78,30.21 +twins_svt_large,224,1368.81,374.033,512,99.27,15.15,35.1 +swinv2_cr_small_ns_224,224,1365.84,374.842,512,49.7,9.08,50.27 +mobilenetv4_conv_aa_large,480,1358.03,377.001,512,32.59,11.05,50.45 +resnet50x4_clip,288,1357.9,377.035,512,87.14,21.35,35.27 +vit_mediumd_patch16_rope_reg1_gap_256,256,1357.84,377.052,512,63.95,17.65,37.02 +vit_so150m_patch16_reg4_gap_256,256,1351.9,378.708,512,134.13,36.75,53.21 +hrnet_w44,224,1349.33,379.407,512,67.06,14.94,26.92 +cait_s24_224,224,1347.27,380.003,512,46.92,9.35,40.58 +xcit_tiny_24_p16_384,384,1345.07,380.635,512,12.12,6.87,34.29 +vit_so150m_patch16_reg4_map_256,256,1342.76,381.288,512,141.48,37.18,53.68 +vit_base_patch16_rope_reg1_gap_256,256,1339.91,382.096,512,86.43,23.22,33.39 +dm_nfnet_f1,224,1329.53,385.08,512,132.63,17.87,22.94 +tresnet_m,448,1324.12,386.655,512,31.39,22.99,29.21 +efficientnet_lite4,380,1322.67,387.08,512,13.01,4.04,45.66 +focalnet_base_lrf,224,1320.54,387.704,512,88.75,15.43,38.13 +efficientvit_b3,288,1314.64,389.442,512,48.65,6.58,44.2 +eva02_base_patch14_224,224,1312.14,390.184,512,85.76,23.22,36.55 +efficientformer_l7,224,1309.92,390.849,512,82.23,10.17,24.45 +nest_base,224,1307.57,391.551,512,67.72,17.96,53.39 +resnet50_gn,288,1305.16,392.272,512,25.56,6.85,18.37 +nest_base_jx,224,1294.67,395.451,512,67.72,17.96,53.39 +nextvit_small,384,1284.43,398.604,512,31.76,17.26,57.14 +convnextv2_small,224,1282.44,399.217,512,50.32,8.71,21.56 +xcit_medium_24_p16_224,224,1280.1,399.955,512,84.4,16.13,31.71 +efficientnetv2_rw_m,320,1275.83,401.294,512,53.24,12.72,47.14 +convnextv2_tiny,288,1271.87,402.531,512,28.64,7.39,22.21 +convnext_base,288,1268.11,403.734,512,88.59,25.43,47.53 +mobilenetv4_hybrid_large,448,1265.42,404.591,512,37.76,10.74,48.61 +coat_lite_medium,224,1251.87,408.976,512,44.57,9.81,40.06 +coat_mini,224,1250.83,409.311,512,10.34,6.82,33.68 +maxxvit_rmlp_small_rw_256,256,1243.18,411.831,512,66.01,14.67,58.38 +dpn131,224,1241.67,412.321,512,79.25,16.09,32.97 +poolformer_m36,224,1239.54,413.041,512,56.17,8.8,22.02 +efficientvit_l3,224,1238.99,413.221,512,246.04,27.62,39.16 +swin_base_patch4_window7_224,224,1237.04,413.872,512,87.77,15.47,36.63 +tf_efficientnet_lite4,380,1223.65,418.405,512,13.01,4.04,45.66 +resnet200d,256,1220.57,419.459,512,64.69,20.0,43.09 +convnext_large,224,1210.69,422.882,512,197.77,34.4,43.13 +vit_large_patch32_384,384,1200.4,426.508,512,306.63,45.31,43.86 +maxvit_small_tf_224,224,1189.65,430.365,512,68.93,11.66,53.17 +swin_s3_small_224,224,1180.79,433.592,512,49.74,9.43,37.84 +xcit_small_12_p16_384,384,1174.92,435.759,512,26.25,14.14,36.51 +hgnetv2_b6,288,1173.05,436.453,512,75.26,27.9,35.09 +regnety_040_sgn,288,1170.65,437.346,512,20.65,6.67,20.3 +levit_384_s8,224,1165.28,329.517,384,39.12,9.98,35.86 +regnety_120,288,1157.95,442.145,512,51.82,20.06,35.34 +seresnet152,288,1150.95,444.835,512,66.82,19.11,37.34 +resnest101e,256,1145.83,446.818,512,48.28,13.38,28.66 +gcvit_small,224,1144.63,447.289,512,51.09,8.57,41.61 +regnetz_b16_evos,288,1135.7,450.806,512,9.74,2.36,16.43 +coatnet_2_rw_224,224,1135.63,450.831,512,73.87,15.09,49.22 +hrnet_w64,224,1135.29,450.949,512,128.06,28.97,35.09 +mvitv2_base,224,1134.0,451.484,512,51.47,10.16,40.5 +vit_betwixt_patch16_reg4_gap_384,384,1127.26,454.181,512,60.6,39.71,85.28 +fastvit_sa36,256,1120.28,457.014,512,31.53,5.64,34.61 +levit_conv_384_s8,224,1119.98,342.844,384,39.12,9.98,35.86 +tnt_b_patch16_224,224,1117.46,458.164,512,65.41,14.09,39.01 +regnety_320,224,1117.25,458.249,512,145.05,32.34,30.26 +mvitv2_base_cls,224,1116.06,458.742,512,65.44,10.23,40.65 +dpn107,224,1115.38,459.002,512,86.92,18.38,33.46 +densenet264d,224,1113.18,459.927,512,72.74,13.57,14.0 +efficientnet_b3_gn,288,1108.62,461.817,512,11.73,1.74,23.35 +regnetz_c16_evos,256,1107.52,462.279,512,13.49,2.48,16.57 +eca_nfnet_l1,320,1106.04,462.894,512,41.41,14.92,34.42 +volo_d3_224,224,1105.28,463.214,512,86.33,20.78,60.09 +hgnet_base,288,1104.26,463.623,512,71.58,41.55,25.57 +fastvit_mci1,256,1101.38,464.855,512,21.54,4.72,32.84 +convit_base,224,1094.41,467.818,512,86.54,17.52,31.77 +nf_regnet_b5,384,1094.33,467.849,512,49.74,7.95,42.9 +poolformerv2_s36,224,1088.71,470.265,512,30.79,5.01,15.82 +resnet152d,320,1084.29,472.178,512,60.21,24.08,47.67 +resnext101_64x4d,288,1081.56,473.371,512,83.46,25.66,51.59 +efficientnet_b3_g8_gn,288,1073.57,476.896,512,14.25,2.59,23.35 +coatnet_2_224,224,1069.58,359.001,384,74.68,16.5,52.67 +xception71,299,1060.08,482.964,512,42.34,18.09,69.92 +swinv2_base_window12_192,192,1057.24,484.264,512,109.28,11.9,39.72 +vitamin_base_224,224,1057.15,484.302,512,87.72,22.68,52.77 +davit_large,224,1055.3,485.153,512,196.81,34.6,60.99 +legacy_senet154,224,1054.93,485.323,512,115.09,20.77,38.69 +senet154,224,1054.21,485.652,512,115.09,20.77,38.69 +mobilenetv4_conv_aa_large,544,1053.47,485.995,512,32.59,14.19,64.79 +convnextv2_nano,384,1044.07,490.365,512,15.62,7.22,24.61 +resnext101_32x16d,224,1041.98,491.351,512,194.03,36.27,51.18 +efficientnet_b4,384,1041.96,491.357,512,19.34,4.51,50.04 +coatnet_rmlp_2_rw_224,224,1039.54,492.496,512,73.88,15.18,54.78 +regnetx_320,224,1036.62,493.887,512,107.81,31.81,36.3 +convnext_base,320,1033.25,495.508,512,88.59,31.39,58.68 +resnetv2_50x1_bit,448,1033.24,495.51,512,25.55,16.62,44.46 +maxxvitv2_rmlp_base_rw_224,224,1030.26,496.942,512,116.09,24.2,62.77 +resnetv2_50d_evos,288,1024.95,499.517,512,25.59,7.15,19.7 +convnext_small,384,1023.25,500.352,512,50.22,25.58,63.37 +crossvit_18_dagger_408,408,1022.68,500.623,512,44.61,32.47,124.87 +ecaresnet200d,256,1012.11,505.857,512,64.69,20.0,43.15 +maxvit_rmlp_small_rw_256,256,1011.88,505.971,512,64.9,14.15,66.09 +resnetrs200,256,1010.68,506.576,512,93.21,20.18,43.42 +seresnet200d,256,1009.34,507.25,512,71.86,20.01,43.15 +regnety_160,288,1007.2,508.318,512,83.59,26.37,38.07 +xcit_tiny_24_p8_224,224,1006.77,508.541,512,12.11,9.21,45.39 +swinv2_cr_base_224,224,1003.7,510.098,512,87.88,15.86,59.66 +resnetv2_50x3_bit,224,999.54,512.217,512,217.32,37.06,33.34 +mobilevitv2_175,384,997.46,256.635,256,14.25,12.47,63.29 +swinv2_cr_base_ns_224,224,996.85,513.602,512,87.88,15.86,59.66 +tf_efficientnetv2_m,384,995.99,514.039,512,54.14,15.85,57.52 +nextvit_base,384,991.15,516.552,512,44.82,24.64,73.95 +swinv2_small_window8_256,256,991.15,516.555,512,49.73,11.58,40.14 +swinv2_cr_small_ns_256,256,989.97,517.174,512,49.7,12.07,76.21 +tf_efficientnet_b4,380,989.8,517.261,512,19.34,4.49,49.49 +caformer_s36,224,984.99,519.776,512,39.3,8.0,37.53 +maxvit_rmlp_base_rw_224,224,982.44,521.136,512,116.14,23.15,92.64 +swin_s3_base_224,224,980.38,522.23,512,71.13,13.69,48.26 +swinv2_tiny_window16_256,256,979.79,522.545,512,28.35,6.68,39.02 +resnet200,288,975.16,525.017,512,64.67,24.91,53.21 +seresnext101_32x8d,288,971.5,527.002,512,93.57,27.24,51.63 +xcit_nano_12_p8_384,384,969.96,527.836,512,3.05,6.34,46.08 +efficientvit_l2,384,967.67,529.083,512,63.71,20.45,57.01 +volo_d1_384,384,963.34,531.465,512,26.78,22.75,108.55 +coat_small,224,963.19,531.55,512,21.69,12.61,44.25 +convnextv2_base,224,961.57,532.445,512,88.72,15.38,28.75 +mobilevitv2_150,384,958.44,400.634,384,10.59,9.2,54.25 +seresnext101d_32x8d,288,949.26,539.328,512,93.59,27.64,52.95 +mixer_l16_224,224,944.93,541.817,512,208.2,44.6,41.69 +vit_base_patch16_siglip_gap_384,384,944.73,541.939,512,86.09,55.43,101.3 +vit_base_patch16_384,384,941.77,543.639,512,86.86,55.54,101.56 +deit_base_patch16_384,384,941.44,543.829,512,86.86,55.54,101.56 +deit_base_distilled_patch16_384,384,940.85,544.169,512,87.63,55.65,101.82 +vit_base_patch16_clip_384,384,939.44,544.987,512,86.86,55.54,101.56 +vit_mediumd_patch16_reg4_gap_384,384,937.89,545.887,512,64.27,43.67,113.51 +vit_base_patch16_siglip_384,384,935.86,547.069,512,93.18,56.12,102.2 +poolformer_m48,224,931.73,549.496,512,73.47,11.59,29.17 +regnetz_e8,320,928.33,551.508,512,57.7,15.46,63.94 +convnext_large_mlp,256,924.56,553.757,512,200.13,44.94,56.33 +fastvit_ma36,256,923.01,554.689,512,44.07,7.88,41.09 +efficientvit_l3,256,921.63,555.515,512,246.04,36.06,50.98 +convformer_s36,224,921.06,555.861,512,40.01,7.67,30.5 +convmixer_1024_20_ks9_p14,224,918.33,557.51,512,24.38,5.55,5.51 +resnetrs152,320,913.9,560.222,512,86.62,24.34,48.14 +seresnet152d,320,908.95,563.261,512,66.84,24.09,47.72 +rdnet_large,224,908.27,563.694,512,186.27,34.74,46.67 +eva_large_patch14_196,196,906.91,564.536,512,304.14,61.57,63.52 +vit_large_patch16_224,224,903.87,566.434,512,304.33,61.6,63.52 +seresnextaa101d_32x8d,288,901.06,568.175,512,93.59,28.51,56.44 +xcit_small_12_p8_224,224,893.66,572.906,512,26.21,18.69,47.21 +hrnet_w48_ssld,288,876.92,583.844,512,77.47,28.66,47.21 +nfnet_f2,256,871.75,587.309,512,193.78,33.76,41.85 +beit_large_patch16_224,224,871.03,587.791,512,304.43,61.6,63.52 +efficientnetv2_m,416,869.46,588.822,512,54.14,18.6,67.5 +deit3_base_patch16_384,384,868.27,589.658,512,86.88,55.54,101.56 +beit_base_patch16_384,384,868.09,589.786,512,86.74,55.54,101.56 +efficientnet_b3_g8_gn,320,867.72,590.034,512,14.25,3.2,28.83 +beitv2_large_patch16_224,224,866.84,590.635,512,304.43,61.6,63.52 +vit_small_patch14_dinov2,518,864.18,592.448,512,22.06,46.76,198.79 +vit_small_patch14_reg4_dinov2,518,861.06,594.598,512,22.06,46.95,199.77 +gcvit_base,224,849.54,602.663,512,90.32,14.87,55.48 +vit_base_patch16_18x2_224,224,848.77,603.204,512,256.73,52.51,71.38 +deit3_large_patch16_224,224,848.18,603.626,512,304.37,61.6,63.52 +convmixer_768_32,224,834.5,613.517,512,21.11,19.55,25.95 +fastvit_mci2,256,821.37,623.336,512,35.82,7.91,43.34 +hiera_large_224,224,815.26,627.987,512,213.74,40.34,83.37 +efficientformerv2_s2,224,808.52,633.235,512,12.71,1.27,11.77 +nextvit_large,384,808.08,633.581,512,57.87,32.03,90.76 +nfnet_f1,320,807.56,633.987,512,132.63,35.97,46.77 +efficientnet_b3_gn,320,800.5,639.584,512,11.73,2.14,28.83 +seresnet269d,256,798.35,641.309,512,113.67,26.59,53.6 +flexivit_large,240,798.21,641.41,512,304.36,70.99,75.39 +ecaresnet200d,288,791.65,646.732,512,64.69,25.31,54.59 +convnext_xlarge,224,791.55,646.814,512,350.2,60.98,57.5 +seresnet200d,288,789.81,648.243,512,71.86,25.32,54.6 +levit_512_s8,224,781.17,327.699,256,74.05,21.82,52.28 +poolformerv2_m36,224,774.93,660.677,512,56.08,8.81,22.02 +resnetrs270,256,774.23,661.28,512,129.86,27.06,55.84 +resnet200d,320,772.4,662.852,512,64.69,31.25,67.33 +xcit_large_24_p16_224,224,771.52,663.604,512,189.1,35.86,47.27 +eca_nfnet_l2,320,767.25,667.296,512,56.72,20.95,47.43 +maxvit_base_tf_224,224,759.21,674.372,512,119.47,24.04,95.01 +nf_regnet_b5,456,757.72,675.698,512,49.74,11.7,61.95 +swin_large_patch4_window7_224,224,755.87,677.341,512,196.53,34.53,54.94 +efficientnetv2_rw_m,416,752.57,680.317,512,53.24,21.49,79.62 +tiny_vit_21m_512,512,749.83,341.394,256,21.27,27.02,177.93 +levit_conv_512_s8,224,734.53,348.504,256,74.05,21.82,52.28 +seresnextaa101d_32x8d,320,732.84,698.625,512,93.59,35.19,69.67 +resnetv2_152x2_bit,224,732.09,699.349,512,236.34,46.95,45.11 +regnetz_d8_evos,256,731.37,700.043,512,23.46,4.5,24.92 +convnext_large,288,725.92,705.289,512,197.77,56.87,71.29 +caformer_m36,224,725.68,705.522,512,56.2,13.29,50.48 +swinv2_base_window8_256,256,724.64,706.543,512,87.92,20.37,52.59 +convnext_base,384,720.01,711.078,512,88.59,45.21,84.49 +convnextv2_tiny,384,713.41,538.235,384,28.64,13.14,39.48 +dm_nfnet_f2,256,710.75,720.35,512,193.78,33.76,41.85 +mobilevitv2_200,384,710.26,540.624,384,18.45,16.24,72.34 +regnetz_c16_evos,320,708.89,722.237,512,13.49,3.86,25.88 +vit_large_patch16_siglip_gap_256,256,700.2,731.198,512,303.36,80.8,88.34 +vit_large_patch16_siglip_256,256,695.67,735.956,512,315.96,81.34,88.88 +maxxvitv2_rmlp_large_rw_224,224,685.6,746.776,512,215.42,44.14,87.15 +davit_huge,224,685.53,746.84,512,348.92,61.23,81.32 +vit_large_patch14_clip_224,224,677.32,755.901,512,304.2,81.08,88.79 +vit_large_patch14_224,224,676.33,757.004,512,304.2,81.08,88.79 +vit_base_patch8_224,224,676.06,757.301,512,86.58,78.22,161.69 +convformer_m36,224,674.99,758.507,512,57.05,12.89,42.05 +regnety_640,224,667.49,767.034,512,281.38,64.16,42.5 +resnetv2_101x1_bit,448,667.21,767.353,512,44.54,31.65,64.93 +efficientnet_b5,416,666.49,768.178,512,30.39,8.27,80.68 +swinv2_large_window12_192,192,666.31,768.391,512,228.77,26.17,56.53 +volo_d4_224,224,665.55,769.269,512,192.96,44.34,80.22 +tresnet_l,448,657.82,778.304,512,55.99,43.59,47.56 +coatnet_3_224,224,655.14,390.726,256,166.97,36.56,79.01 +xcit_tiny_12_p8_384,384,653.44,783.523,512,6.71,14.13,69.14 +coatnet_rmlp_3_rw_224,224,653.36,391.8,256,165.15,33.56,79.47 +coatnet_3_rw_224,224,652.95,392.05,256,181.81,33.44,73.83 +dm_nfnet_f1,320,651.19,786.234,512,132.63,35.97,46.77 +resnetrs200,320,643.1,796.128,512,93.21,31.51,67.81 +tf_efficientnetv2_m,480,636.24,804.713,512,54.14,24.76,89.84 +caformer_s18,384,632.12,809.945,512,26.34,13.42,77.34 +xcit_small_24_p16_384,384,627.98,815.288,512,47.67,26.72,68.58 +seresnet269d,288,624.99,819.196,512,113.67,33.65,67.81 +swinv2_cr_large_224,224,623.13,821.641,512,196.68,35.1,78.42 +swinv2_small_window16_256,256,618.81,827.379,512,49.73,12.82,66.29 +vit_large_r50_s32_384,384,616.49,830.49,512,329.09,57.43,76.52 +convformer_s18,384,599.08,854.625,512,26.77,11.63,46.49 +maxvit_tiny_tf_384,384,591.24,432.978,256,30.98,17.53,123.42 +convnext_large_mlp,320,590.57,866.941,512,200.13,70.21,88.02 +resnetv2_101x3_bit,224,585.41,874.58,512,387.93,71.23,48.7 +poolformerv2_m48,224,582.9,878.354,512,73.35,11.59,29.17 +convnextv2_base,288,582.44,879.035,512,88.72,25.43,47.53 +efficientvit_l3,320,582.15,659.603,384,246.04,56.32,79.34 +vit_large_patch14_clip_quickgelu_224,224,580.69,881.691,512,303.97,81.08,88.79 +halonet_h1,256,577.45,443.308,256,8.1,3.0,51.17 +efficientnet_b5,448,574.83,890.666,512,30.39,9.59,93.56 +repvgg_d2se,320,572.21,894.755,512,133.33,74.57,46.82 +efficientnetv2_l,384,566.11,904.4,512,118.52,36.1,101.16 +regnety_160,384,564.72,679.967,384,83.59,46.87,67.67 +convnextv2_large,224,563.29,908.915,512,197.96,34.4,43.13 +vit_large_patch14_xp_224,224,561.94,911.104,512,304.06,81.01,88.79 +tf_efficientnetv2_l,384,557.98,917.578,512,118.52,36.1,101.16 +swinv2_cr_tiny_384,384,544.55,470.091,256,28.33,15.34,161.01 +eca_nfnet_l2,384,537.88,951.861,512,56.72,30.05,68.28 +maxvit_large_tf_224,224,537.76,714.064,384,211.79,43.68,127.35 +caformer_b36,224,536.71,953.938,512,98.75,23.22,67.3 +vit_base_r50_s16_384,384,536.14,954.948,512,98.95,67.43,135.03 +inception_next_base,384,531.25,963.743,512,86.67,43.64,75.48 +efficientformerv2_l,224,530.93,964.32,512,26.32,2.59,18.54 +volo_d2_384,384,526.74,971.989,512,58.87,46.17,184.51 +resnext101_32x32d,224,520.8,983.086,512,468.53,87.29,91.12 +tf_efficientnet_b5,456,517.6,741.872,384,30.39,10.46,98.86 +vit_so400m_patch14_siglip_224,224,517.53,989.289,512,427.68,110.26,106.73 +vit_so400m_patch14_siglip_gap_224,224,514.47,995.172,512,412.44,109.57,106.13 +nasnetalarge,331,510.54,752.056,384,88.75,23.89,90.56 +ecaresnet269d,320,508.74,1006.384,512,102.09,41.53,83.69 +vit_base_patch16_siglip_gap_512,512,505.39,1013.062,512,86.43,107.0,246.15 +vit_base_patch16_siglip_512,512,501.31,1021.3,512,93.52,108.22,247.74 +convformer_b36,224,500.2,1023.579,512,99.88,22.69,56.06 +vitamin_large2_224,224,493.33,778.367,384,333.58,75.05,112.83 +vitamin_large_224,224,493.04,778.82,384,333.32,75.05,112.83 +eca_nfnet_l3,352,491.65,1041.375,512,72.04,32.57,73.12 +resnetrs350,288,487.42,1050.403,512,163.96,43.67,87.09 +convnext_xlarge,288,480.37,1065.812,512,350.2,100.8,95.05 +xcit_small_24_p8_224,224,469.3,1090.967,512,47.63,35.81,90.78 +regnetz_d8_evos,320,467.45,1095.292,512,23.46,7.03,38.92 +pnasnet5large,331,464.29,827.046,384,86.06,25.04,92.89 +nfnet_f2,352,462.28,1107.536,512,193.78,63.22,79.06 +swinv2_base_window12to16_192to256,256,456.3,841.538,384,87.92,22.02,84.71 +swinv2_base_window16_256,256,456.2,841.714,384,87.92,22.02,84.71 +tresnet_xl,448,455.93,1122.965,512,78.44,60.77,61.31 +resnet50x16_clip_gap,384,454.8,1125.735,512,136.2,70.32,100.64 +xcit_medium_24_p16_384,384,445.5,1149.237,512,84.4,47.39,91.64 +resnet50x16_clip,384,441.37,1160.0,512,167.33,74.9,103.54 +volo_d5_224,224,435.53,1175.574,512,295.46,72.4,118.11 +coatnet_4_224,224,431.48,593.293,256,275.43,62.48,129.26 +eva02_large_patch14_224,224,426.82,1199.548,512,303.27,81.15,97.2 +nfnet_f3,320,426.82,1199.559,512,254.92,68.77,83.93 +eva02_large_patch14_clip_224,224,421.33,1215.175,512,304.11,81.18,97.2 +cait_xxs24_384,384,421.2,1215.542,512,12.03,9.63,122.66 +ecaresnet269d,352,418.83,1222.426,512,102.09,50.25,101.25 +coat_lite_medium_384,384,416.13,1230.38,512,44.57,28.73,116.7 +convnext_large_mlp,384,412.9,929.978,384,200.13,101.11,126.74 +convnext_large,384,407.18,943.038,384,197.77,101.1,126.74 +resnetrs270,352,405.86,1261.514,512,129.86,51.13,105.48 +efficientnetv2_xl,384,403.28,1269.563,512,208.12,52.81,139.2 +efficientvit_l3,384,402.54,635.936,256,246.04,81.08,114.02 +tf_efficientnetv2_xl,384,399.68,1281.01,512,208.12,52.81,139.2 +maxvit_small_tf_384,384,396.22,484.566,192,69.02,35.87,183.65 +resmlp_big_24_224,224,396.07,1292.67,512,129.14,100.23,87.31 +resnest200e,320,383.61,1334.668,512,70.2,35.69,82.78 +vitamin_large2_256,256,379.06,1013.01,384,333.64,99.0,154.99 +vitamin_large_256,256,378.79,1013.723,384,333.38,99.0,154.99 +mvitv2_large_cls,224,378.22,1353.698,512,234.58,42.17,111.69 +regnety_320,384,378.11,1015.542,384,145.05,95.0,88.87 +mvitv2_large,224,376.01,1361.654,512,217.99,43.87,112.02 +dm_nfnet_f2,352,373.26,1371.694,512,193.78,63.22,79.06 +hiera_huge_224,224,368.13,1390.782,512,672.78,124.85,150.95 +seresnextaa201d_32x8d,320,367.34,1393.779,512,149.39,70.22,138.71 +efficientnetv2_l,480,363.62,1408.035,512,118.52,56.4,157.99 +tf_efficientnetv2_l,480,357.78,1430.984,512,118.52,56.4,157.99 +convnextv2_large,288,352.91,1088.061,384,197.96,56.87,71.29 +vit_huge_patch14_gap_224,224,352.6,1452.04,512,630.76,166.73,138.74 +vit_huge_patch14_224,224,348.57,1468.819,512,630.76,167.4,139.41 +vit_huge_patch14_clip_224,224,347.99,1471.296,512,632.05,167.4,139.41 +xcit_tiny_24_p8_384,384,345.08,1483.71,512,12.11,27.05,132.95 +dm_nfnet_f3,320,344.87,1484.575,512,254.92,68.77,83.93 +regnety_1280,224,341.69,1498.349,512,644.81,127.66,71.58 +maxxvitv2_rmlp_base_rw_384,384,339.16,1132.191,384,116.09,72.98,213.74 +vit_base_patch14_dinov2,518,337.26,1518.099,512,86.58,151.71,397.58 +swinv2_cr_small_384,384,336.39,761.011,256,49.7,29.7,298.03 +caformer_s36,384,336.09,1523.371,512,39.3,26.08,150.33 +resnetrs420,320,333.88,1533.484,512,191.89,64.2,126.56 +deit3_huge_patch14_224,224,333.48,1535.294,512,632.13,167.4,139.41 +xcit_medium_24_p8_224,224,332.48,1539.899,512,84.32,63.53,121.23 +vit_base_patch14_reg4_dinov2,518,332.24,1541.02,512,86.58,152.25,399.53 +maxvit_tiny_tf_512,512,331.23,386.422,128,31.05,33.49,257.59 +convnextv2_base,384,329.1,777.859,256,88.72,45.21,84.49 +coatnet_rmlp_2_rw_384,384,328.74,584.014,192,73.88,47.69,209.43 +maxvit_xlarge_tf_224,224,320.25,799.344,256,506.99,97.52,191.04 +efficientnet_b6,528,317.5,806.282,256,43.04,19.4,167.39 +convformer_s36,384,314.4,1628.489,512,40.01,22.54,89.62 +eva02_base_patch14_448,448,313.81,1631.515,512,87.12,107.11,259.14 +focalnet_huge_fl3,224,310.01,1651.515,512,745.28,118.26,104.8 +rdnet_large,384,309.02,621.304,192,186.27,102.09,137.13 +swin_base_patch4_window12_384,384,307.05,833.708,256,87.9,47.19,134.78 +vit_huge_patch14_clip_quickgelu_224,224,306.8,1668.804,512,632.08,167.4,139.41 +xcit_small_12_p8_384,384,304.54,1260.903,384,26.21,54.92,138.29 +tf_efficientnet_b6,528,302.7,845.699,256,43.04,19.4,167.39 +sam2_hiera_tiny,896,302.68,211.431,64,26.85,99.86,384.63 +vitamin_xlarge_256,256,302.06,847.497,256,436.06,130.13,177.37 +eca_nfnet_l3,448,301.57,1697.734,512,72.04,52.55,118.4 +vit_giant_patch16_gap_224,224,298.97,1712.537,512,1011.37,202.46,139.26 +maxvit_rmlp_base_rw_384,384,297.7,859.92,256,116.14,70.97,318.95 +cait_xs24_384,384,297.51,1720.911,512,26.67,19.28,183.98 +swinv2_cr_huge_224,224,296.61,1294.596,384,657.83,115.97,121.08 +eva_large_patch14_336,336,295.4,1733.205,512,304.53,191.1,270.24 +vit_large_patch16_siglip_gap_384,384,294.75,1737.034,512,303.69,190.85,269.55 +vit_large_patch14_clip_336,336,294.46,1738.769,512,304.53,191.11,270.24 +vit_large_patch16_384,384,293.26,1745.838,512,304.72,191.21,270.24 +vit_huge_patch14_xp_224,224,293.14,1746.554,512,631.8,167.3,139.41 +vit_large_patch16_siglip_384,384,292.81,1748.518,512,316.28,192.07,270.75 +swinv2_large_window12to16_192to256,256,290.75,880.463,256,196.74,47.81,121.53 +convnext_xxlarge,256,282.43,1359.586,384,846.47,198.09,124.45 +cait_xxs36_384,384,281.8,1816.89,512,17.37,14.35,183.7 +beit_large_patch16_384,384,279.47,1832.019,512,305.0,191.21,270.24 +deit3_large_patch16_384,384,278.63,1837.554,512,304.76,191.21,270.24 +convnextv2_huge,224,275.27,929.965,256,660.29,115.0,79.07 +davit_giant,224,272.18,1410.782,384,1406.47,192.92,153.06 +volo_d3_448,448,271.58,1885.21,512,86.63,96.33,446.83 +resnetrs350,384,270.92,1889.827,512,163.96,77.59,154.74 +convnext_xlarge,384,270.45,946.534,256,350.2,179.2,168.99 +xcit_large_24_p16_384,384,265.95,1925.177,512,189.1,105.35,137.17 +resnetv2_152x2_bit,384,261.67,1467.48,384,236.34,136.16,132.56 +sam2_hiera_small,896,256.83,249.174,64,33.95,123.99,442.63 +vit_large_patch14_clip_quickgelu_336,336,255.19,2006.359,512,304.29,191.11,270.24 +resnetv2_152x4_bit,224,254.45,2012.187,512,936.53,186.9,90.22 +nfnet_f3,416,253.47,2019.94,512,254.92,115.58,141.78 +seresnextaa201d_32x8d,384,252.66,2026.392,512,149.39,101.11,199.72 +maxvit_base_tf_384,384,251.04,764.813,192,119.65,73.8,332.9 +coatnet_5_224,224,249.66,769.027,192,687.47,145.49,194.24 +resnetv2_50x3_bit,448,249.4,769.836,192,217.32,145.7,133.37 +swinv2_cr_base_384,384,247.1,1035.999,256,87.88,50.57,333.68 +caformer_m36,384,246.12,1040.112,256,56.2,42.11,196.35 +nfnet_f4,384,240.45,2129.281,512,316.07,122.14,147.57 +eva_giant_patch14_224,224,234.57,2182.672,512,1012.56,267.18,192.64 +eva_giant_patch14_clip_224,224,231.09,2215.577,512,1012.59,267.18,192.64 +convformer_m36,384,230.39,1111.149,256,57.05,37.87,123.56 +vit_giant_patch14_224,224,228.92,2236.573,512,1012.61,267.18,192.64 +efficientnetv2_xl,512,228.83,2237.451,512,208.12,93.85,247.32 +regnety_640,384,228.31,1121.234,256,281.38,188.47,124.83 +vit_giant_patch14_clip_224,224,226.83,2257.165,512,1012.65,267.18,192.64 +tf_efficientnetv2_xl,512,226.19,2263.608,512,208.12,93.85,247.32 +maxvit_small_tf_512,512,222.44,431.561,96,69.13,67.26,383.77 +cait_s24_384,384,219.04,2337.407,512,47.06,32.17,245.31 +vitamin_large_336,336,215.67,890.242,192,333.57,175.72,307.47 +vitamin_large2_336,336,215.39,891.377,192,333.83,175.72,307.47 +focalnet_huge_fl4,224,209.76,2440.802,512,686.46,118.9,113.34 +dm_nfnet_f3,416,206.43,2480.193,512,254.92,115.58,141.78 +xcit_large_24_p8_224,224,198.9,2574.096,512,188.93,141.23,181.56 +convnextv2_large,384,198.73,966.094,192,197.96,101.1,126.74 +resnetrs420,416,196.85,2601.004,512,191.89,108.45,213.79 +dm_nfnet_f4,384,196.6,2604.26,512,316.07,122.14,147.57 +swin_large_patch4_window12_384,384,191.14,669.643,128,196.74,104.08,202.16 +efficientnet_b7,600,188.83,1016.782,192,66.35,38.33,289.94 +eva02_large_patch14_clip_336,336,186.74,2741.767,512,304.43,191.34,289.13 +resnetv2_152x2_bit,448,184.7,2079.012,384,236.34,184.99,180.43 +caformer_b36,384,181.9,1407.351,256,98.75,72.33,261.79 +tf_efficientnet_b7,600,181.61,1057.177,192,66.35,38.33,289.94 +maxvit_large_tf_384,384,178.2,718.272,128,212.03,132.55,445.84 +nfnet_f5,416,172.22,2972.911,512,377.21,170.71,204.56 +vitamin_xlarge_336,336,171.84,744.851,128,436.06,230.18,347.33 +convformer_b36,384,170.69,1499.731,256,99.88,66.67,164.75 +vit_so400m_patch14_siglip_384,384,169.04,3028.862,512,428.23,335.4,452.89 +resnet50x64_clip_gap,448,168.37,2280.66,384,365.03,253.96,233.22 +vit_so400m_patch14_siglip_gap_384,384,168.28,3042.431,512,412.99,333.46,451.19 +convnextv2_huge,288,166.55,1152.798,192,660.29,190.1,130.7 +mvitv2_huge_cls,224,166.12,2311.572,384,694.8,120.67,243.63 +resnet50x64_clip,448,163.96,1561.362,256,420.38,265.02,239.13 +vitamin_large2_384,384,163.86,781.139,128,333.97,234.44,440.16 +vitamin_large_384,384,163.84,781.221,128,333.71,234.44,440.16 +volo_d4_448,448,162.45,3151.648,512,193.41,197.13,527.35 +xcit_small_24_p8_384,384,160.35,2394.77,384,47.63,105.24,265.91 +swinv2_cr_large_384,384,155.84,821.327,128,196.68,108.96,404.96 +focalnet_large_fl3,384,153.3,1669.857,256,239.13,105.06,168.04 +cait_s36_384,384,150.49,3402.164,512,68.37,47.99,367.4 +resnetv2_101x3_bit,448,150.3,1277.431,192,387.93,280.33,194.78 +davit_base_fl,768,149.95,853.596,128,90.37,190.32,530.15 +vit_huge_patch14_clip_336,336,148.98,3436.652,512,632.46,390.97,407.54 +focalnet_large_fl4,384,146.26,1750.32,256,239.32,105.2,181.78 +beit_large_patch16_512,512,143.19,3575.759,512,305.67,362.24,656.39 +dm_nfnet_f5,416,140.91,3633.497,512,377.21,170.71,204.56 +maxvit_base_tf_512,512,140.65,682.546,96,119.88,138.02,703.99 +sam2_hiera_base_plus,896,138.32,462.665,64,68.68,227.48,828.88 +nfnet_f4,512,135.39,2836.163,384,316.07,216.26,262.26 +convmixer_1536_20,224,135.19,3787.319,512,51.63,48.68,33.03 +vitamin_xlarge_384,384,130.77,978.777,128,436.06,306.38,493.46 +vit_gigantic_patch14_224,224,130.62,3919.717,512,1844.44,483.95,275.37 +vit_gigantic_patch14_clip_224,224,130.29,3929.635,512,1844.91,483.96,275.37 +nfnet_f6,448,127.99,4000.364,512,438.36,229.7,273.62 +efficientnet_b8,672,123.17,1039.173,128,87.41,63.48,442.89 +swinv2_base_window12to24_192to384,384,119.99,533.358,64,87.92,55.25,280.36 +tf_efficientnet_b8,672,119.33,1072.656,128,87.41,63.48,442.89 +vit_so400m_patch14_siglip_gap_448,448,116.66,3291.487,384,413.33,487.18,764.26 +vit_huge_patch14_clip_378,378,116.09,4410.348,512,632.68,503.79,572.79 +regnety_1280,384,115.79,1105.427,128,644.81,374.99,210.2 +xcit_medium_24_p8_384,384,113.78,2250.01,256,84.32,186.67,354.73 +dm_nfnet_f4,512,110.56,3473.149,384,316.07,216.26,262.26 +focalnet_xlarge_fl3,384,108.72,1765.946,192,408.79,185.61,223.99 +vit_huge_patch16_gap_448,448,107.19,3582.45,384,631.67,544.7,636.83 +vit_large_patch14_dinov2,518,106.66,3600.098,384,304.37,507.15,1058.82 +volo_d5_448,448,106.54,3604.236,384,295.91,315.06,737.92 +vit_large_patch14_reg4_dinov2,518,106.3,3612.324,384,304.37,508.9,1064.02 +dm_nfnet_f6,448,104.84,4883.385,512,438.36,229.7,273.62 +maxvit_xlarge_tf_384,384,104.53,918.413,96,475.32,292.78,668.76 +focalnet_xlarge_fl4,384,103.87,1848.501,192,409.03,185.79,242.31 +vit_huge_patch14_clip_quickgelu_378,378,103.58,3707.381,384,632.68,503.79,572.79 +eva02_large_patch14_448,448,102.65,3740.795,384,305.08,362.33,689.95 +nfnet_f5,544,100.78,3810.204,384,377.21,290.97,349.71 +eva_giant_patch14_336,336,100.31,5104.356,512,1013.01,620.64,550.67 +maxvit_large_tf_512,512,99.37,644.068,64,212.33,244.75,942.15 +nfnet_f7,480,97.93,3921.33,384,499.5,300.08,355.86 +convnextv2_huge,384,93.62,1025.37,96,660.29,337.96,232.35 +swinv2_cr_giant_224,224,88.64,2165.946,192,2598.76,483.85,309.15 +dm_nfnet_f5,544,82.3,4666.041,384,377.21,290.97,349.71 +tf_efficientnet_l2,475,82.12,1558.754,128,480.31,172.11,609.89 +volo_d5_512,512,81.71,3133.006,256,296.09,425.09,1105.37 +nfnet_f6,576,77.44,4958.912,384,438.36,378.69,452.2 +swinv2_large_window12to24_192to384,384,76.53,627.149,48,196.74,116.15,407.83 +swinv2_cr_huge_384,384,73.82,866.901,64,657.94,352.04,583.18 +xcit_large_24_p8_384,384,68.02,2822.791,192,188.93,415.0,531.82 +cait_m36_384,384,64.68,3958.009,256,271.22,173.11,734.81 +dm_nfnet_f6,576,63.38,4039.147,256,438.36,378.69,452.2 +nfnet_f7,608,61.1,4189.78,256,499.5,480.39,570.85 +regnety_2560,384,60.04,1598.871,96,1282.6,747.83,296.49 +davit_huge_fl,768,58.91,1086.416,64,360.64,744.84,1060.3 +maxvit_xlarge_tf_512,512,58.65,818.415,48,475.77,534.14,1413.22 +resnetv2_152x4_bit,480,57.16,1679.394,96,936.53,844.84,414.26 +convnextv2_huge,512,52.17,920.112,48,660.29,600.81,413.07 +sam2_hiera_large,1024,45.19,1062.166,48,212.15,907.48,2190.34 +samvit_base_patch16,1024,33.25,481.156,16,89.67,486.43,1343.27 +eva_giant_patch14_560,560,33.13,5795.849,192,1014.45,1906.76,2577.17 +vit_giant_patch14_dinov2,518,32.93,3886.558,128,1136.48,1784.2,2757.89 +vit_giant_patch14_reg4_dinov2,518,32.91,3889.85,128,1136.48,1790.08,2771.21 +efficientnet_l2,800,29.86,1607.312,48,480.31,479.12,1707.39 +tf_efficientnet_l2,800,29.23,1642.279,48,480.31,479.12,1707.39 +cait_m48_448,448,27.4,4671.94,128,356.46,329.41,1708.23 +swinv2_cr_giant_384,384,23.87,1340.314,32,2598.76,1450.71,1394.86 +vit_so400m_patch14_siglip_gap_896,896,21.24,4519.479,96,416.87,2731.49,8492.88 +samvit_large_patch16,1024,16.18,741.849,12,308.28,1493.86,2553.78 +samvit_huge_patch16,1024,10.84,737.698,8,637.03,2982.23,3428.16 diff --git a/pytorch-image-models/results/benchmark-infer-fp32-nchw-pt221-cpu-i9_10940x-dynamo.csv b/pytorch-image-models/results/benchmark-infer-fp32-nchw-pt221-cpu-i9_10940x-dynamo.csv new file mode 100644 index 0000000000000000000000000000000000000000..b93ee9e14f03c548bd89df0fb0550f4b3484b171 --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-fp32-nchw-pt221-cpu-i9_10940x-dynamo.csv @@ -0,0 +1,1322 @@ +model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,param_count +tf_mobilenetv3_small_minimal_100,309.77,3.161,1,224,2.04 +lcnet_035,308.98,3.161,1,224,1.64 +resnet10t,300.12,3.231,1,176,5.44 +lcnet_050,295.81,3.311,1,224,1.88 +tinynet_e,273.01,3.592,1,106,2.04 +mobilenetv3_small_050,270.37,3.63,1,224,1.59 +lcnet_075,266.53,3.674,1,224,2.36 +mobilenetv2_035,249.23,3.942,1,224,1.68 +lcnet_100,244.53,3.999,1,224,2.95 +mobilenetv3_small_100,225.97,4.345,1,224,2.54 +mobilenetv3_small_075,220.29,4.46,1,224,2.04 +tf_mobilenetv3_small_100,219.41,4.475,1,224,2.54 +lcnet_150,219.1,4.466,1,224,4.5 +mobilenetv2_050,214.82,4.575,1,224,1.97 +tf_mobilenetv3_small_075,208.46,4.716,1,224,2.04 +mnasnet_050,205.77,4.783,1,224,2.22 +regnetx_002,198.21,4.962,1,224,2.68 +ese_vovnet19b_slim,192.31,5.101,1,224,3.17 +tinynet_d,191.92,5.128,1,152,2.34 +resnet18,187.86,5.216,1,160,11.69 +mobilenetv2_075,187.52,5.242,1,224,2.64 +mnasnet_small,187.12,5.265,1,224,2.03 +efficientvit_b0,184.09,5.346,1,224,3.41 +ese_vovnet19b_slim_dw,184.05,5.341,1,224,1.9 +mobilenetv2_100,182.7,5.378,1,224,3.5 +hgnetv2_b0,180.83,5.43,1,224,6.0 +mnasnet_075,180.52,5.443,1,224,3.17 +hardcorenas_a,179.9,5.461,1,224,5.26 +mobilenetv3_large_075,176.23,5.58,1,224,3.99 +efficientnet_lite0,174.03,5.647,1,224,4.65 +levit_128s,173.36,5.665,1,224,7.78 +mnasnet_100,173.17,5.679,1,224,4.38 +semnasnet_050,171.62,5.745,1,224,2.08 +gernet_s,167.59,5.865,1,224,8.17 +mobilenetv3_large_100,165.26,5.952,1,224,5.48 +cs3darknet_s,164.21,5.995,1,256,3.28 +mobilenetv3_rw,162.02,6.071,1,224,5.48 +cs3darknet_focus_s,161.22,6.111,1,256,3.27 +mobilenetv2_140,159.18,6.179,1,224,6.11 +tf_mobilenetv3_large_minimal_100,159.13,6.186,1,224,3.92 +resnet10t,155.59,6.322,1,224,5.44 +regnety_002,154.79,6.375,1,224,3.16 +tf_mobilenetv3_large_075,150.25,6.551,1,224,3.99 +resnet14t,149.95,6.563,1,176,10.08 +hardcorenas_b,146.58,6.72,1,224,5.18 +hardcorenas_c,146.24,6.738,1,224,5.52 +fbnetc_100,143.95,6.847,1,224,5.57 +regnetx_004_tv,143.93,6.85,1,224,5.5 +levit_conv_128s,142.89,6.888,1,224,7.78 +tf_mobilenetv3_large_100,142.19,6.933,1,224,5.48 +semnasnet_075,141.97,6.949,1,224,2.91 +semnasnet_100,141.36,6.977,1,224,3.89 +hgnetv2_b0,141.33,6.974,1,288,6.0 +mobilenetv2_110d,139.05,7.092,1,224,4.52 +spnasnet_100,138.75,7.11,1,224,4.42 +dla46_c,138.38,7.137,1,224,1.3 +hgnetv2_b1,138.06,7.135,1,224,6.34 +efficientnet_es,137.5,7.174,1,224,5.44 +efficientnet_es_pruned,137.05,7.197,1,224,5.44 +tf_efficientnet_es,135.86,7.256,1,224,5.44 +resnet14t,135.07,7.296,1,224,10.08 +dla46x_c,134.66,7.334,1,224,1.07 +efficientnet_lite1,134.08,7.36,1,240,5.42 +regnetx_004,134.07,7.361,1,224,5.16 +regnetx_006,133.51,7.39,1,224,6.2 +semnasnet_140,133.03,7.417,1,224,6.11 +vit_tiny_r_s16_p8_224,132.94,7.419,1,224,6.34 +mnasnet_140,132.56,7.439,1,224,7.12 +regnetx_008,131.77,7.489,1,224,7.26 +mixer_s32_224,130.18,7.575,1,224,19.1 +tf_efficientnet_lite0,129.71,7.61,1,224,4.65 +tinynet_c,129.52,7.631,1,184,2.46 +levit_192,128.69,7.669,1,224,10.95 +mobilevitv2_050,127.38,7.758,1,256,1.37 +resnext26ts,126.34,7.809,1,256,10.3 +repghostnet_058,125.0,7.916,1,224,2.55 +efficientvit_m1,124.63,7.943,1,224,2.98 +mobileone_s1,123.39,8.002,1,224,4.83 +levit_conv_128,122.84,8.041,1,224,9.21 +vit_tiny_patch16_224,122.27,8.075,1,224,5.72 +repghostnet_080,121.61,8.134,1,224,3.28 +efficientvit_m2,120.55,8.204,1,224,4.19 +repghostnet_050,120.14,8.244,1,224,2.31 +gmixer_12_224,119.61,8.256,1,224,12.7 +efficientnet_lite2,118.78,8.318,1,260,6.09 +edgenext_xx_small,118.74,8.34,1,288,1.33 +convnext_atto,118.59,8.331,1,224,3.7 +levit_conv_192,117.23,8.428,1,224,10.95 +resnet18,117.15,8.431,1,224,11.69 +ese_vovnet19b_dw,116.09,8.507,1,224,6.54 +poolformer_s12,116.09,8.504,1,224,11.92 +hgnetv2_b1,115.23,8.574,1,288,6.34 +repghostnet_100,115.12,8.593,1,224,4.07 +mobileone_s2,115.04,8.591,1,224,7.88 +efficientformer_l1,114.17,8.656,1,224,12.29 +regnety_008,114.08,8.665,1,224,6.26 +pit_ti_distilled_224,113.8,8.689,1,224,5.1 +eca_resnext26ts,113.67,8.691,1,256,10.3 +resnext26ts,113.57,8.698,1,288,10.3 +convnextv2_atto,113.43,8.717,1,224,3.71 +hardcorenas_e,112.85,8.76,1,224,8.07 +pit_ti_224,112.61,8.783,1,224,4.85 +regnety_008_tv,112.43,8.792,1,224,6.43 +hardcorenas_f,111.54,8.864,1,224,8.2 +mobilenetv2_120d,111.47,8.87,1,224,5.83 +tf_efficientnet_lite1,110.97,8.904,1,240,5.42 +rexnetr_100,110.89,8.92,1,224,4.88 +repghostnet_111,110.87,8.924,1,224,4.54 +resnet34,110.55,8.941,1,160,21.8 +regnetx_016,110.01,8.986,1,224,9.19 +tinynet_b,109.25,9.056,1,188,3.73 +vit_small_patch32_224,109.13,9.057,1,224,22.88 +convnext_atto_ols,109.08,9.061,1,224,3.7 +resnet18d,108.71,9.091,1,224,11.71 +repghostnet_130,108.47,9.122,1,224,5.48 +poolformerv2_s12,107.65,9.183,1,224,11.89 +seresnext26ts,107.11,9.232,1,256,10.39 +convnext_femto_ols,106.07,9.323,1,224,5.23 +mobilevitv2_075,106.07,9.326,1,256,2.87 +hardcorenas_d,105.79,9.356,1,224,7.5 +dla60x_c,105.71,9.368,1,224,1.32 +ecaresnext26t_32x4d,105.69,9.351,1,224,15.41 +regnety_004,105.63,9.369,1,224,4.34 +legacy_seresnext26_32x4d,104.98,9.42,1,224,16.79 +rexnetr_130,104.91,9.431,1,224,7.61 +resnest14d,104.32,9.477,1,224,10.61 +gernet_m,104.16,9.496,1,224,21.14 +deit_tiny_distilled_patch16_224,103.75,9.535,1,224,5.91 +ecaresnext50t_32x4d,103.7,9.532,1,224,15.41 +gmlp_ti16_224,103.63,9.549,1,224,5.87 +mobileone_s3,103.43,9.566,1,224,10.17 +regnety_006,103.41,9.567,1,224,6.06 +fastvit_t8,102.84,9.625,1,256,4.03 +edgenext_x_small,102.14,9.7,1,256,2.34 +legacy_seresnet18,101.61,9.742,1,224,11.78 +visformer_tiny,101.0,9.794,1,224,10.32 +convnext_femto,100.98,9.799,1,224,5.22 +eca_resnext26ts,100.84,9.809,1,288,10.3 +repghostnet_150,100.56,9.847,1,224,6.58 +resnet26,100.24,9.873,1,224,16.0 +rexnet_130,100.02,9.897,1,224,7.56 +ghostnet_050,99.95,9.921,1,224,2.59 +repvgg_a0,99.88,9.911,1,224,9.11 +tf_efficientnet_lite2,99.83,9.913,1,260,6.09 +resmlp_12_224,99.81,9.912,1,224,15.35 +efficientnet_b0,99.79,9.92,1,224,5.29 +levit_128,99.57,9.926,1,224,9.21 +seresnet18,99.43,9.958,1,224,11.78 +edgenext_xx_small,99.11,10.004,1,256,1.33 +hgnetv2_b2,99.01,9.995,1,224,11.22 +pit_xs_224,98.69,10.031,1,224,10.62 +efficientvit_m3,98.64,10.045,1,224,6.9 +rexnet_100,98.61,10.039,1,224,4.8 +seresnet18,98.27,10.075,1,288,11.78 +seresnext26d_32x4d,98.23,10.069,1,224,16.81 +rexnetr_150,98.17,10.081,1,224,9.78 +botnet26t_256,97.98,10.099,1,256,12.49 +seresnext26t_32x4d,97.89,10.103,1,224,16.81 +eca_botnext26ts_256,97.8,10.118,1,256,10.59 +resnetblur18,97.7,10.13,1,224,11.69 +resnet18d,96.95,10.212,1,288,11.71 +tf_efficientnetv2_b0,96.59,10.256,1,192,7.14 +levit_256,96.35,10.273,1,224,18.89 +efficientnet_em,96.25,10.288,1,240,6.9 +rexnet_150,95.9,10.322,1,224,9.73 +halonet26t,95.84,10.328,1,256,12.48 +mixer_s16_224,95.44,10.369,1,224,18.53 +seresnext26ts,94.94,10.43,1,288,10.39 +levit_conv_256,94.65,10.461,1,224,18.89 +efficientvit_b1,94.33,10.5,1,256,9.1 +cs3darknet_focus_m,94.26,10.506,1,288,9.3 +eca_halonext26ts,94.18,10.514,1,256,10.76 +cs3darknet_focus_m,93.99,10.537,1,256,9.3 +hgnet_tiny,93.7,10.567,1,224,14.74 +gcresnext26ts,93.68,10.57,1,256,10.48 +resnet26d,93.37,10.604,1,224,16.01 +repghostnet_200,93.05,10.645,1,224,9.8 +edgenext_x_small,92.43,10.725,1,288,2.34 +cs3darknet_m,92.2,10.746,1,288,9.31 +mobilevitv2_100,91.89,10.775,1,256,4.9 +efficientvit_b1,91.28,10.851,1,224,9.1 +ese_vovnet19b_dw,91.06,10.875,1,288,6.54 +efficientnet_lite3,90.69,10.918,1,300,8.2 +efficientvit_m4,90.48,10.956,1,224,8.8 +cs3darknet_m,90.33,10.969,1,256,9.31 +convnext_pico_ols,90.01,11.004,1,224,9.06 +tf_efficientnetv2_b0,89.68,11.051,1,224,7.14 +convnext_atto,89.44,11.077,1,288,3.7 +resnetblur18,89.14,11.115,1,288,11.69 +lambda_resnet26t,89.02,11.126,1,256,10.96 +convnextv2_femto,88.99,11.135,1,288,5.23 +resnext50_32x4d,88.42,11.202,1,160,25.03 +fastvit_t12,88.28,11.221,1,256,7.55 +efficientnet_b0_g16_evos,88.06,11.258,1,224,8.11 +ghostnet_100,87.95,11.268,1,224,5.18 +convnextv2_atto,87.77,11.29,1,288,3.71 +lambda_resnet26rpt_256,87.55,11.317,1,256,10.99 +resnet26t,87.18,11.365,1,256,16.01 +resnext50_32x4d,86.94,11.395,1,176,25.03 +tf_efficientnet_em,86.66,11.438,1,240,6.9 +tf_efficientnet_lite3,86.35,11.474,1,300,8.2 +efficientvit_b1,86.24,11.493,1,288,9.1 +efficientvit_m0,85.82,11.565,1,224,2.35 +repvgg_a1,85.61,11.575,1,224,14.09 +pit_xs_distilled_224,85.6,11.564,1,224,11.0 +tf_efficientnet_b0,85.5,11.591,1,224,5.29 +convnextv2_femto,84.79,11.69,1,224,5.23 +mobilevitv2_125,84.78,11.688,1,256,7.48 +gcresnext26ts,84.57,11.723,1,288,10.48 +ghostnet_130,84.43,11.743,1,224,7.36 +resnet26,84.24,11.764,1,288,16.0 +efficientnet_cc_b0_4e,84.1,11.789,1,224,13.31 +mobilevit_xxs,83.93,11.822,1,256,1.27 +edgenext_small,83.4,11.884,1,256,5.59 +convnext_atto_ols,82.48,12.023,1,288,3.7 +resnet18,82.07,12.078,1,288,11.69 +rexnet_200,81.94,12.099,1,224,16.37 +resnet33ts,81.85,12.111,1,256,19.68 +rexnetr_200,81.41,12.177,1,224,16.52 +seresnext26d_32x4d,81.39,12.178,1,288,16.81 +hgnetv2_b2,81.32,12.191,1,288,11.22 +deit_tiny_patch16_224,81.06,12.197,1,224,5.72 +dla34,80.92,12.257,1,224,15.74 +vit_tiny_r_s16_p8_384,80.91,12.256,1,384,6.36 +resnet34,80.89,12.257,1,224,21.8 +efficientformerv2_s0,80.24,12.365,1,224,3.6 +hgnetv2_b3,80.24,12.357,1,224,16.29 +regnetx_032,80.0,12.395,1,224,15.3 +ecaresnet26t,79.04,12.546,1,256,16.01 +resnet26d,78.81,12.583,1,288,16.01 +tf_efficientnetv2_b1,78.59,12.626,1,192,8.14 +mobileone_s4,78.54,12.626,1,224,14.95 +darknet17,78.53,12.631,1,256,14.3 +resnet32ts,78.49,12.634,1,288,17.96 +efficientnet_cc_b0_8e,78.27,12.671,1,224,24.01 +fastvit_sa12,78.11,12.697,1,256,11.58 +regnetz_005,78.08,12.705,1,224,7.12 +tf_efficientnetv2_b2,77.95,12.727,1,208,10.1 +seresnext26t_32x4d,77.84,12.74,1,288,16.81 +xcit_nano_12_p16_224,76.77,12.935,1,224,3.05 +convnext_pico,76.48,12.968,1,224,9.05 +resnext50_32x4d,76.13,13.026,1,224,25.03 +edgenext_small_rw,76.06,13.038,1,256,7.83 +tf_efficientnetv2_b1,75.93,13.072,1,240,8.14 +efficientnet_b1_pruned,75.54,13.138,1,240,6.33 +tf_efficientnet_cc_b0_4e,75.53,13.139,1,224,13.31 +resnet34d,75.17,13.196,1,224,21.82 +skresnet18,74.63,13.294,1,224,11.96 +tinynet_a,74.63,13.286,1,192,6.19 +resnet33ts,74.49,13.318,1,288,19.68 +efficientvit_m5,73.98,13.416,1,224,12.47 +fbnetv3_b,73.94,13.426,1,224,8.6 +resnest26d,73.62,13.478,1,224,17.07 +eca_resnet33ts,73.59,13.48,1,256,19.68 +resnext50d_32x4d,73.4,13.513,1,224,25.05 +regnetz_b16,73.29,13.544,1,224,9.72 +convnext_pico_ols,73.18,13.56,1,288,9.06 +fastvit_s12,73.13,13.565,1,256,9.47 +nf_regnet_b0,73.1,13.577,1,192,8.76 +repvgg_b0,73.06,13.582,1,224,15.82 +resnet50d,72.99,13.592,1,160,25.58 +resnet26t,72.97,13.595,1,320,16.01 +gernet_l,72.73,13.644,1,256,31.08 +resnet50,72.62,13.661,1,160,25.56 +resnetaa34d,72.41,13.706,1,224,21.82 +regnetz_005,71.79,13.827,1,288,7.12 +dla60x,71.78,13.825,1,224,17.35 +resnet32ts,71.73,13.835,1,256,17.96 +vit_tiny_patch16_384,71.63,13.85,1,384,5.79 +tf_efficientnet_cc_b0_8e,71.62,13.862,1,224,24.01 +edgenext_small,71.48,13.881,1,320,5.59 +levit_256d,71.24,13.93,1,224,26.21 +pvt_v2_b0,71.09,13.963,1,224,3.67 +levit_384,70.96,13.987,1,224,39.13 +convnext_femto,70.73,14.033,1,288,5.22 +cspresnext50,70.51,14.072,1,256,20.57 +resnet50,70.29,14.117,1,176,25.56 +efficientnet_b1,70.28,14.123,1,224,7.79 +nf_regnet_b0,70.25,14.133,1,256,8.76 +efficientnet_b1,70.19,14.139,1,256,7.79 +rexnetr_200,70.18,14.142,1,288,16.52 +efficientnet_b2_pruned,70.05,14.176,1,260,8.31 +regnetx_040,69.8,14.216,1,224,22.12 +levit_conv_256d,69.66,14.25,1,224,26.21 +repvit_m1,69.25,14.34,1,224,5.49 +pit_s_224,68.96,14.396,1,224,23.46 +tf_efficientnetv2_b2,68.65,14.465,1,260,10.1 +convit_tiny,68.61,14.477,1,224,5.71 +hgnetv2_b4,68.28,14.537,1,224,19.8 +fbnetv3_b,68.27,14.548,1,256,8.6 +repvit_m1_1,68.27,14.547,1,224,8.8 +pit_s_distilled_224,68.06,14.584,1,224,24.04 +convnext_nano_ols,68.05,14.592,1,224,15.65 +mobilevitv2_150,67.96,14.608,1,256,10.59 +hgnet_tiny,67.68,14.668,1,288,14.74 +convnextv2_nano,67.59,14.691,1,224,15.62 +fbnetv3_d,67.58,14.695,1,224,10.31 +repvit_m2,67.43,14.729,1,224,8.8 +mobilevit_xs,67.34,14.746,1,256,2.32 +efficientnet_b2,67.32,14.752,1,256,9.11 +eca_resnet33ts,67.3,14.753,1,288,19.68 +dpn68,67.16,14.781,1,224,12.61 +repvit_m1_0,67.13,14.798,1,224,7.3 +seresnet34,67.11,14.799,1,224,21.96 +darknet21,67.05,14.81,1,256,20.86 +crossvit_tiny_240,66.95,14.831,1,240,7.01 +resnet34,66.86,14.855,1,288,21.8 +res2net50_48w_2s,66.42,14.951,1,224,25.29 +deit_small_patch16_224,66.3,14.97,1,224,22.05 +edgenext_small_rw,66.23,14.99,1,320,7.83 +convnext_femto_ols,66.17,15.011,1,288,5.23 +xcit_nano_12_p16_384,66.05,15.042,1,384,3.05 +xcit_tiny_12_p16_224,65.97,15.061,1,224,6.72 +eca_vovnet39b,65.95,15.057,1,224,22.6 +hgnetv2_b3,65.91,15.062,1,288,16.29 +nf_ecaresnet26,65.82,15.089,1,224,16.0 +dpn48b,65.5,15.164,1,224,9.13 +nf_resnet26,65.5,15.158,1,224,16.0 +tiny_vit_5m_224,65.5,15.16,1,224,12.08 +repvit_m0_9,65.43,15.189,1,224,5.49 +resnet34d,65.35,15.193,1,288,21.82 +crossvit_9_240,65.34,15.205,1,240,8.55 +vit_small_patch16_224,65.24,15.219,1,224,22.05 +vit_small_patch32_384,65.21,15.227,1,384,22.92 +legacy_seresnet34,65.08,15.266,1,224,21.96 +ecaresnet26t,64.74,15.341,1,320,16.01 +efficientformerv2_s1,64.64,15.371,1,224,6.19 +levit_conv_384,64.63,15.366,1,224,39.13 +deit_small_distilled_patch16_224,64.61,15.372,1,224,22.44 +resnet50,64.51,15.39,1,224,25.56 +fbnetv3_d,64.45,15.413,1,256,10.31 +gcresnet33ts,64.41,15.421,1,256,19.88 +xcit_nano_12_p8_224,64.37,15.435,1,224,3.05 +mixer_b32_224,64.25,15.457,1,224,60.29 +ecaresnet50t,64.06,15.502,1,160,25.57 +deit3_small_patch16_224,64.01,15.52,1,224,22.06 +rexnetr_300,63.86,15.548,1,224,34.81 +resnetaa50,63.85,15.555,1,224,25.56 +resnet50c,63.76,15.578,1,224,25.58 +dla60,63.69,15.594,1,224,22.04 +eva02_tiny_patch14_336,63.67,15.6,1,336,5.76 +resnet50d,63.52,15.634,1,224,25.58 +resnetaa34d,63.47,15.648,1,288,21.82 +sehalonet33ts,63.29,15.693,1,256,13.69 +tf_efficientnet_b1,63.15,15.73,1,240,7.79 +eva02_tiny_patch14_224,63.08,15.756,1,224,5.5 +convnext_nano,63.02,15.761,1,224,15.59 +crossvit_9_dagger_240,63.01,15.768,1,240,8.78 +resnet50t,62.97,15.772,1,224,25.57 +regnetz_b16,62.94,15.784,1,288,9.72 +mobilevitv2_175,62.88,15.796,1,256,14.25 +gmixer_24_224,62.87,15.797,1,224,24.72 +ese_vovnet39b,62.86,15.8,1,224,24.57 +resnetv2_50,62.7,15.843,1,224,25.55 +convnextv2_pico,62.49,15.9,1,224,9.07 +regnety_016,62.47,15.905,1,224,11.2 +convmixer_1024_20_ks9_p14,62.44,15.912,1,224,24.38 +regnety_032,62.22,15.964,1,224,19.44 +poolformerv2_s24,62.2,15.972,1,224,21.34 +sebotnet33ts_256,62.0,16.018,1,256,13.7 +resnext50_32x4d,61.88,16.049,1,288,25.03 +resnetv2_50t,61.87,16.056,1,224,25.57 +sedarknet21,61.82,16.069,1,256,20.95 +poolformer_s24,61.78,16.078,1,224,21.39 +legacy_seresnext50_32x4d,61.71,16.1,1,224,27.56 +seresnet50,61.4,16.177,1,160,28.09 +ecaresnet50d_pruned,61.19,16.232,1,288,19.94 +seresnet33ts,61.19,16.237,1,288,19.78 +regnetx_064,61.04,16.277,1,224,26.21 +regnetz_c16,60.87,16.326,1,256,13.46 +cs3darknet_focus_l,60.81,16.338,1,256,21.15 +resnetv2_50d,60.71,16.364,1,224,25.57 +rexnet_300,60.64,16.383,1,224,34.71 +hgnetv2_b4,60.48,16.423,1,288,19.8 +dpn68b,60.42,16.449,1,224,12.61 +resnetaa50d,60.42,16.443,1,224,25.58 +tf_efficientnetv2_b3,60.41,16.451,1,240,14.36 +efficientnet_b2,60.08,16.541,1,288,9.11 +resnext50d_32x4d,60.02,16.55,1,288,25.05 +flexivit_small,59.88,16.587,1,240,22.06 +gmlp_s16_224,59.87,16.6,1,224,19.42 +resnet50s,59.72,16.639,1,224,25.68 +cspresnet50,59.68,16.646,1,256,21.62 +tf_efficientnet_b2,59.68,16.655,1,260,9.11 +resnet51q,59.45,16.712,1,256,35.7 +tf_mixnet_s,59.43,16.728,1,224,4.13 +efficientformer_l3,59.35,16.753,1,224,31.41 +hgnet_small,59.1,16.812,1,224,24.36 +bat_resnext26ts,59.07,16.823,1,256,10.73 +ecaresnet50d_pruned,59.0,16.833,1,224,19.94 +convnext_tiny,58.9,16.87,1,224,28.59 +efficientnet_lite4,58.86,16.881,1,380,13.01 +gcresnet33ts,58.84,16.884,1,288,19.88 +seresnet33ts,58.51,16.988,1,256,19.78 +efficientvit_b2,58.48,16.994,1,224,24.33 +seresnet34,58.46,17.003,1,288,21.96 +visformer_small,58.42,17.01,1,224,40.22 +cspresnet50d,58.36,17.027,1,256,21.64 +resnetrs50,58.34,17.031,1,160,35.69 +coat_lite_tiny,58.24,17.063,1,224,5.72 +nf_regnet_b1,58.24,17.068,1,256,10.22 +resnetblur50,58.22,17.07,1,224,25.56 +efficientvit_b2,58.16,17.085,1,288,24.33 +efficientnet_el_pruned,57.87,17.175,1,300,10.59 +tf_efficientnet_el,57.67,17.232,1,300,10.59 +nf_seresnet26,57.65,17.239,1,224,17.4 +cs3darknet_l,57.64,17.242,1,256,21.16 +repvgg_a2,57.52,17.278,1,224,28.21 +inception_next_tiny,57.48,17.288,1,224,28.06 +coatnet_pico_rw_224,57.46,17.295,1,224,10.85 +efficientnet_el,57.41,17.313,1,300,10.59 +nf_regnet_b1,57.28,17.357,1,288,10.22 +ecaresnetlight,56.96,17.449,1,224,30.16 +hrnet_w18_small,56.78,17.506,1,224,13.19 +xcit_tiny_12_p16_384,56.22,17.686,1,384,6.72 +resnetblur50d,56.13,17.711,1,224,25.58 +ecaresnet50t,56.01,17.75,1,224,25.57 +convnext_pico,55.92,17.778,1,288,9.05 +efficientnet_cc_b1_8e,55.92,17.777,1,240,39.72 +ghostnetv2_100,55.86,17.804,1,224,6.16 +regnetv_040,55.71,17.841,1,224,20.64 +tf_efficientnet_lite4,55.69,17.848,1,380,13.01 +cs3darknet_focus_l,55.54,17.901,1,288,21.15 +resnet50,55.49,17.917,1,288,25.56 +efficientnet_b3_pruned,55.48,17.922,1,300,9.86 +ghostnetv2_160,55.39,17.953,1,224,12.39 +haloregnetz_b,55.34,17.964,1,224,11.68 +ecaresnet50d,55.26,17.988,1,224,25.58 +nf_regnet_b2,55.2,18.012,1,272,14.31 +tf_efficientnet_cc_b1_8e,55.14,18.033,1,240,39.72 +ghostnetv2_130,55.06,18.063,1,224,8.96 +tiny_vit_11m_224,54.89,18.114,1,224,20.35 +resnest50d_1s4x24d,54.69,18.175,1,224,25.68 +vit_srelpos_small_patch16_224,54.55,18.224,1,224,21.97 +cs3darknet_l,54.51,18.243,1,288,21.16 +mixnet_s,54.48,18.254,1,224,4.13 +convnextv2_pico,54.46,18.255,1,288,9.07 +coat_lite_mini,54.28,18.316,1,224,11.01 +regnetz_b16_evos,54.27,18.323,1,224,9.74 +seresnet50,54.11,18.374,1,224,28.09 +legacy_seresnet50,54.04,18.401,1,224,28.09 +resnetv2_50d_frn,53.81,18.476,1,224,25.59 +gcresnext50ts,53.8,18.481,1,256,15.67 +convnext_tiny_hnf,53.73,18.504,1,224,28.59 +efficientvit_b2,53.38,18.629,1,256,24.33 +resnet50t,53.07,18.736,1,288,25.57 +convnextv2_nano,52.9,18.794,1,288,15.62 +seresnext50_32x4d,52.77,18.838,1,224,27.56 +resnet50d,52.69,18.872,1,288,25.58 +resnet51q,52.69,18.872,1,288,35.7 +regnety_040,52.62,18.895,1,224,20.65 +tf_efficientnetv2_b3,52.42,18.971,1,300,14.36 +eva02_small_patch14_224,52.38,18.988,1,224,21.62 +resmlp_24_224,52.29,19.017,1,224,30.02 +nf_regnet_b2,52.27,19.021,1,240,14.31 +efficientnet_b3,52.2,19.054,1,288,12.23 +ecaresnet50t,52.11,19.079,1,288,25.57 +convnextv2_tiny,52.1,19.083,1,224,28.64 +mobilevitv2_200,51.97,19.13,1,256,18.45 +regnetz_c16,51.96,19.141,1,320,13.46 +fbnetv3_g,51.93,19.15,1,240,16.62 +seresnet50t,51.84,19.184,1,224,28.1 +resnest50d_4s2x40d,51.75,19.211,1,224,30.42 +vit_relpos_small_patch16_rpn_224,51.59,19.279,1,224,21.97 +twins_pcpvt_small,51.53,19.299,1,224,24.11 +ecaresnet50t,51.5,19.31,1,256,25.57 +nest_tiny,51.49,19.315,1,224,17.06 +resnet61q,51.38,19.356,1,256,36.85 +xcit_tiny_12_p8_224,51.12,19.456,1,224,6.71 +resnetaa50,51.04,19.488,1,288,25.56 +efficientnetv2_rw_t,50.79,19.588,1,224,13.65 +vit_small_resnet26d_224,50.39,19.736,1,224,63.61 +fbnetv3_g,50.35,19.756,1,288,16.62 +vit_relpos_small_patch16_224,50.18,19.818,1,224,21.98 +nest_tiny_jx,50.12,19.842,1,224,17.06 +seresnext50_32x4d,50.07,19.866,1,288,27.56 +resnetrs50,50.06,19.868,1,224,35.69 +seresnetaa50d,49.92,19.926,1,224,28.11 +gcresnext50ts,49.84,19.958,1,288,15.67 +regnety_032,49.4,20.136,1,288,19.44 +resnest50d,49.3,20.178,1,224,27.48 +coatnet_bn_0_rw_224,49.25,20.193,1,224,27.44 +regnetx_080,49.22,20.207,1,224,39.57 +regnety_040,49.22,20.213,1,288,20.65 +vovnet39a,49.21,20.212,1,224,22.6 +ecaresnetlight,49.2,20.22,1,288,30.16 +repvit_m3,48.97,20.319,1,224,10.68 +deit3_medium_patch16_224,48.76,20.407,1,224,38.85 +vovnet57a,48.68,20.434,1,224,36.64 +ese_vovnet39b,48.64,20.447,1,288,24.57 +edgenext_base,48.62,20.459,1,320,18.51 +rexnetr_300,48.55,20.49,1,288,34.81 +resnetaa50d,48.42,20.545,1,288,25.58 +regnetz_b16_evos,48.25,20.622,1,288,9.74 +twins_svt_small,48.23,20.629,1,224,24.06 +cspdarknet53,48.09,20.684,1,256,27.64 +lambda_resnet50ts,47.99,20.727,1,256,21.54 +tf_efficientnet_b3,47.96,20.744,1,300,12.23 +dla102x,47.88,20.779,1,224,26.31 +resnetblur50,47.82,20.806,1,288,25.56 +efficientnet_b3,47.81,20.812,1,320,12.23 +nf_regnet_b3,47.8,20.816,1,288,18.59 +dpn68b,47.67,20.87,1,288,12.61 +nextvit_small,47.64,20.884,1,224,31.76 +regnetv_040,47.57,20.914,1,288,20.64 +ecaresnet50d,47.14,21.106,1,288,25.58 +res2net50_26w_4s,47.12,21.115,1,224,25.7 +resnetv2_50,47.07,21.139,1,288,25.55 +vit_base_patch32_224,47.01,21.161,1,224,88.22 +resnetblur50d,46.99,21.17,1,288,25.58 +cs3sedarknet_l,46.91,21.21,1,256,21.91 +botnet50ts_256,46.78,21.266,1,256,22.74 +res2next50,46.65,21.326,1,224,24.67 +resnet61q,46.55,21.374,1,288,36.85 +convnext_nano,46.5,21.397,1,288,15.59 +mobilevit_s,46.41,21.44,1,256,5.58 +tiny_vit_21m_224,46.36,21.465,1,224,33.22 +ese_vovnet57b,46.33,21.472,1,224,38.61 +coatnet_0_rw_224,46.3,21.486,1,224,27.44 +res2net50d,46.29,21.499,1,224,25.72 +vit_base_patch32_clip_quickgelu_224,46.24,21.52,1,224,87.85 +convnext_nano_ols,46.22,21.535,1,288,15.65 +regnety_080,46.14,21.566,1,224,39.18 +vit_base_patch32_clip_224,46.06,21.604,1,224,88.22 +coatnet_0_224,46.05,21.609,1,224,25.04 +coatnet_nano_cc_224,46.01,21.631,1,224,13.76 +eca_nfnet_l0,45.97,21.644,1,224,24.14 +fastvit_sa24,45.96,21.652,1,256,21.55 +regnety_080_tv,45.96,21.647,1,224,39.38 +mobileone_s0,45.88,21.695,1,224,5.29 +pvt_v2_b1,45.54,21.85,1,224,14.01 +pvt_v2_b2_li,45.54,21.854,1,224,22.55 +legacy_xception,45.5,21.868,1,299,22.86 +dla60_res2next,45.49,21.875,1,224,17.03 +efficientnetv2_rw_t,45.15,22.048,1,288,13.65 +convnext_tiny,45.14,22.046,1,288,28.59 +crossvit_15_240,45.08,22.079,1,240,27.53 +regnetz_c16_evos,45.08,22.077,1,256,13.49 +vit_base_patch32_clip_256,44.73,22.25,1,256,87.86 +dla60_res2net,44.68,22.274,1,224,20.85 +regnety_064,44.51,22.357,1,224,30.58 +resnet101,44.47,22.382,1,160,44.55 +tresnet_m,44.45,22.384,1,224,31.39 +convit_small,44.44,22.401,1,224,27.78 +hgnet_small,44.41,22.409,1,288,24.36 +swin_s3_tiny_224,44.37,22.427,1,224,28.33 +poolformerv2_s36,44.28,22.475,1,224,30.79 +edgenext_base,44.14,22.539,1,256,18.51 +skresnet34,44.12,22.561,1,224,22.28 +skresnet50d,44.09,22.573,1,224,25.82 +seresnet50t,44.06,22.589,1,288,28.1 +vit_medium_patch16_gap_240,44.06,22.584,1,240,44.4 +mvitv2_tiny,44.03,22.604,1,224,24.17 +seresnet50,43.99,22.623,1,288,28.09 +dla102,43.92,22.659,1,224,33.27 +volo_d1_224,43.89,22.678,1,224,26.63 +crossvit_small_240,43.82,22.717,1,240,26.86 +nf_regnet_b3,43.8,22.729,1,320,18.59 +regnetv_064,43.75,22.747,1,224,30.58 +gc_efficientnetv2_rw_t,43.67,22.802,1,224,13.68 +skresnet50,43.6,22.83,1,224,25.8 +davit_tiny,43.54,22.855,1,224,28.36 +coatnet_nano_rw_224,43.41,22.927,1,224,15.14 +halonet50ts,43.38,22.944,1,256,22.73 +gcvit_xxtiny,43.37,22.961,1,224,12.0 +nfnet_l0,43.29,22.99,1,224,35.07 +tnt_s_patch16_224,43.16,23.057,1,224,23.76 +poolformer_s36,43.12,23.089,1,224,30.86 +cs3sedarknet_l,42.91,23.198,1,288,21.91 +focalnet_tiny_srf,42.82,23.243,1,224,28.43 +vit_srelpos_medium_patch16_224,42.76,23.275,1,224,38.74 +darknetaa53,42.55,23.393,1,256,36.02 +seresnetaa50d,42.5,23.422,1,288,28.11 +vit_medium_patch16_gap_256,42.42,23.467,1,256,38.86 +resnet101,42.27,23.552,1,176,44.55 +coatnet_rmlp_nano_rw_224,42.23,23.574,1,224,15.15 +resnext101_32x4d,42.11,23.639,1,224,44.18 +mixnet_m,42.06,23.673,1,224,5.01 +tf_mixnet_m,41.96,23.726,1,224,5.01 +cs3darknet_focus_x,41.88,23.77,1,256,35.02 +mobilevitv2_150,41.85,23.785,1,384,10.59 +cs3sedarknet_xdw,41.8,23.817,1,256,21.6 +regnetx_120,41.78,23.827,1,224,46.11 +nf_seresnet50,41.51,23.981,1,224,28.09 +ecaresnet50t,41.38,24.05,1,320,25.57 +mixer_b16_224,41.38,24.054,1,224,59.88 +crossvit_15_dagger_240,41.36,24.075,1,240,28.21 +vit_relpos_medium_patch16_rpn_224,41.3,24.105,1,224,38.73 +swinv2_cr_tiny_ns_224,41.2,24.165,1,224,28.33 +maxvit_pico_rw_256,41.14,24.206,1,256,7.46 +regnetz_040,41.13,24.202,1,256,27.12 +swinv2_cr_tiny_224,41.08,24.228,1,224,28.33 +regnety_040_sgn,41.06,24.249,1,224,20.65 +caformer_s18,41.01,24.277,1,224,26.34 +xception41p,40.98,24.291,1,299,26.91 +coatnet_rmlp_0_rw_224,40.92,24.326,1,224,27.45 +nf_resnet50,40.88,24.358,1,256,25.56 +vit_base_patch32_plus_256,40.85,24.373,1,256,119.48 +cs3darknet_x,40.8,24.4,1,256,35.05 +xception41,40.78,24.416,1,299,26.97 +efficientvit_l1,40.76,24.423,1,224,52.65 +lamhalobotnet50ts_256,40.65,24.492,1,256,22.57 +nf_ecaresnet50,40.52,24.572,1,224,25.56 +cait_xxs24_224,40.5,24.591,1,224,11.96 +regnetz_040_h,40.36,24.669,1,256,28.94 +efficientformerv2_s2,40.22,24.759,1,224,12.71 +darknetaa53,40.2,24.77,1,288,36.02 +densenetblur121d,40.15,24.804,1,224,8.0 +gcresnet50t,40.12,24.822,1,256,25.9 +swin_tiny_patch4_window7_224,40.06,24.855,1,224,28.29 +inception_v3,39.82,25.009,1,299,23.83 +eca_nfnet_l0,39.61,25.137,1,288,24.14 +convnextv2_tiny,39.59,25.153,1,288,28.64 +efficientnet_b0_gn,39.48,25.225,1,224,5.29 +repvit_m1_5,39.48,25.224,1,224,14.64 +cspresnet50w,39.38,25.285,1,256,28.12 +regnetz_d8,38.99,25.538,1,256,23.37 +ecaresnet101d_pruned,38.92,25.592,1,224,24.88 +darknet53,38.87,25.617,1,256,41.61 +halo2botnet50ts_256,38.72,25.719,1,256,22.64 +nf_resnet50,38.46,25.896,1,288,25.56 +efficientnet_b4,38.45,25.9,1,320,19.34 +efficientnet_b0_g8_gn,38.42,25.922,1,224,6.56 +vit_relpos_medium_patch16_cls_224,38.33,25.983,1,224,38.76 +tf_mixnet_l,38.28,26.022,1,224,7.33 +regnetz_c16_evos,38.24,26.043,1,320,13.49 +skresnext50_32x4d,38.13,26.115,1,224,27.48 +resnet101,38.06,26.169,1,224,44.55 +resnet101c,37.88,26.292,1,224,44.57 +nfnet_l0,37.8,26.352,1,288,35.07 +resnet101d,37.73,26.399,1,224,44.57 +mixnet_l,37.53,26.547,1,224,7.33 +regnetz_d32,37.49,26.567,1,256,27.58 +crossvit_18_240,37.48,26.576,1,240,43.27 +efficientnetv2_s,37.46,26.592,1,288,21.46 +maxxvitv2_nano_rw_256,37.26,26.731,1,256,23.7 +cs3darknet_x,37.22,26.755,1,288,35.05 +ecaresnet101d_pruned,37.16,26.807,1,288,24.88 +coatnext_nano_rw_224,37.09,26.854,1,224,14.7 +ese_vovnet39b_evos,37.08,26.863,1,224,24.58 +xcit_small_12_p16_224,36.97,26.945,1,224,26.25 +regnety_120,36.94,26.957,1,224,51.82 +gcresnet50t,36.9,26.992,1,288,25.9 +resnetv2_101,36.81,27.061,1,224,44.54 +levit_512,36.8,27.068,1,224,95.17 +resnetv2_101d,36.79,27.075,1,224,44.56 +regnety_080,36.56,27.243,1,288,39.18 +regnetz_d8_evos,36.49,27.305,1,256,23.46 +maxvit_rmlp_pico_rw_256,36.46,27.332,1,256,7.52 +dla102x2,36.45,27.33,1,224,41.28 +resnetaa101d,36.43,27.345,1,224,44.57 +densenet121,36.42,27.35,1,224,7.98 +resnet101s,36.35,27.401,1,224,44.67 +levit_conv_512,36.19,27.525,1,224,95.17 +regnety_064,36.1,27.593,1,288,30.58 +vit_relpos_medium_patch16_224,36.08,27.607,1,224,38.75 +selecsls60,35.99,27.68,1,224,30.67 +convnext_tiny_hnf,35.91,27.736,1,288,28.59 +xcit_nano_12_p8_384,35.86,27.782,1,384,3.05 +xcit_tiny_24_p16_224,35.79,27.846,1,224,12.12 +tf_efficientnetv2_s,35.77,27.849,1,300,21.46 +resnet50_gn,35.65,27.945,1,224,25.56 +vit_base_resnet26d_224,35.65,27.939,1,224,101.4 +resnetv2_50d_evos,35.51,28.052,1,224,25.59 +resnetv2_50d_gn,35.48,28.077,1,224,25.57 +convnext_tiny,35.4,28.138,1,384,28.59 +levit_conv_512d,35.36,28.174,1,224,92.5 +efficientnetv2_rw_s,35.35,28.184,1,288,23.94 +seresnext101_32x4d,35.28,28.24,1,224,48.96 +regnetx_160,35.27,28.238,1,224,54.28 +crossvit_18_dagger_240,35.24,28.275,1,240,44.27 +resmlp_36_224,35.24,28.273,1,224,44.69 +levit_512d,35.22,28.283,1,224,92.5 +legacy_seresnext101_32x4d,35.18,28.313,1,224,48.96 +resnetblur101d,35.12,28.366,1,224,44.57 +maxvit_nano_rw_256,35.11,28.365,1,256,15.45 +nf_regnet_b4,35.02,28.45,1,320,30.21 +hgnetv2_b5,34.92,28.527,1,224,39.57 +darknet53,34.91,28.539,1,288,41.61 +vit_relpos_base_patch32_plus_rpn_256,34.86,28.579,1,256,119.42 +resnet101d,34.76,28.665,1,256,44.57 +mobilevitv2_175,34.66,28.741,1,384,14.25 +regnetv_064,34.6,28.79,1,288,30.58 +vit_medium_patch16_reg4_256,34.54,28.846,1,256,38.87 +vit_medium_patch16_reg4_gap_256,34.51,28.871,1,256,38.87 +efficientvit_b3,34.48,28.893,1,256,48.65 +vit_small_r26_s32_224,34.26,29.081,1,224,36.43 +hrnet_w18_small_v2,34.09,29.227,1,224,15.6 +gcvit_xtiny,34.04,29.274,1,224,19.98 +repvgg_b1g4,33.94,29.354,1,224,39.97 +nextvit_base,33.92,29.369,1,224,44.82 +convformer_s18,33.87,29.421,1,224,26.77 +twins_pcpvt_base,33.77,29.509,1,224,43.83 +regnetz_040,33.51,29.736,1,320,27.12 +res2net50_26w_6s,33.51,29.737,1,224,37.05 +regnety_040_sgn,33.5,29.739,1,288,20.65 +dpn92,33.38,29.853,1,224,37.67 +regnetz_040_h,33.37,29.86,1,320,28.94 +efficientvit_l2,33.35,29.874,1,256,63.71 +ecaresnet101d,33.18,30.033,1,224,44.57 +resnetrs101,33.16,30.049,1,192,63.62 +vit_small_resnet50d_s16_224,33.15,30.054,1,224,57.53 +selecsls42,32.94,30.251,1,224,30.35 +vit_small_patch16_384,32.89,30.299,1,384,22.2 +efficientvit_b3,32.71,30.465,1,288,48.65 +seresnet101,32.53,30.638,1,224,49.33 +legacy_seresnet101,32.5,30.668,1,224,49.33 +resnet101,32.39,30.768,1,288,44.55 +resnet152,32.27,30.879,1,160,60.19 +inception_next_small,32.25,30.901,1,224,49.37 +efficientvit_b3,32.15,30.999,1,224,48.65 +coat_lite_small,32.05,31.097,1,224,19.84 +cs3sedarknet_x,32.04,31.1,1,256,35.4 +efficientnet_b3_gn,32.01,31.134,1,288,11.73 +poolformerv2_m36,32.0,31.141,1,224,56.08 +vit_base_patch32_384,31.93,31.21,1,384,88.3 +nf_regnet_b4,31.88,31.263,1,384,30.21 +fastvit_sa36,31.82,31.317,1,256,31.53 +efficientnet_b4,31.76,31.379,1,384,19.34 +densenetblur121d,31.68,31.462,1,288,8.0 +cs3edgenet_x,31.66,31.478,1,256,47.82 +resnet152,31.62,31.519,1,176,60.19 +repvit_m2_3,31.61,31.53,1,224,23.69 +poolformer_m36,31.49,31.647,1,224,56.17 +selecsls60b,31.42,31.719,1,224,32.77 +vit_base_patch16_rpn_224,31.41,31.734,1,224,86.54 +deit3_small_patch16_384,31.29,31.856,1,384,22.21 +focalnet_tiny_lrf,31.28,31.863,1,224,28.65 +tf_efficientnet_b4,31.26,31.884,1,380,19.34 +res2net50_14w_8s,31.21,31.935,1,224,25.06 +convnext_small,31.19,31.95,1,224,50.22 +hgnetv2_b5,31.15,31.995,1,288,39.57 +maxvit_rmlp_nano_rw_256,31.14,31.993,1,256,15.5 +xcit_tiny_24_p16_384,31.09,32.069,1,384,12.12 +efficientvit_l2,31.04,32.103,1,224,63.71 +resnet50_gn,30.96,32.194,1,288,25.56 +efficientvit_l2,30.9,32.252,1,288,63.71 +selecsls42b,30.8,32.368,1,224,32.46 +vit_base_patch32_clip_384,30.63,32.537,1,384,88.3 +resnetv2_50x1_bit,30.6,32.565,1,224,25.55 +nest_small,30.32,32.867,1,224,38.35 +vit_base_patch16_gap_224,30.08,33.14,1,224,86.57 +deit3_base_patch16_224,30.04,33.181,1,224,86.59 +vit_base_patch16_clip_quickgelu_224,30.04,33.179,1,224,86.19 +mixnet_xl,30.03,33.189,1,224,11.9 +efficientnetv2_s,29.98,33.254,1,384,21.46 +vit_base_patch16_224_miil,29.95,33.282,1,224,94.4 +efficientformer_l7,29.93,33.307,1,224,82.23 +nfnet_f0,29.92,33.319,1,192,71.49 +vit_base_patch16_224,29.92,33.31,1,224,86.57 +dm_nfnet_f0,29.79,33.469,1,192,71.49 +deit_base_patch16_224,29.77,33.481,1,224,86.57 +gc_efficientnetv2_rw_t,29.75,33.501,1,288,13.68 +eva02_small_patch14_336,29.68,33.591,1,336,22.13 +resnetaa101d,29.64,33.631,1,288,44.57 +nest_small_jx,29.62,33.655,1,224,38.35 +cs3sedarknet_x,29.53,33.76,1,288,35.4 +convnextv2_tiny,29.51,33.772,1,384,28.64 +tf_efficientnetv2_s,29.51,33.78,1,384,21.46 +mvitv2_small,29.48,33.811,1,224,34.87 +resnext101_32x8d,29.47,33.824,1,176,88.79 +pit_b_224,29.44,33.855,1,224,73.76 +repvgg_b1,29.33,33.984,1,224,57.42 +maxxvit_rmlp_nano_rw_256,29.32,33.998,1,256,16.78 +efficientnet_b3_g8_gn,29.31,34.011,1,288,14.25 +pit_b_distilled_224,29.26,34.069,1,224,74.79 +deit_base_distilled_patch16_224,29.13,34.224,1,224,87.34 +xcit_small_12_p16_384,29.13,34.224,1,384,26.25 +convnextv2_small,29.09,34.269,1,224,50.32 +tresnet_v2_l,29.06,34.305,1,224,46.17 +resnetblur101d,29.04,34.324,1,288,44.57 +regnetz_d8,29.03,34.34,1,320,23.37 +vit_base_patch16_clip_224,29.03,34.345,1,224,86.57 +nextvit_small,28.84,34.564,1,384,31.76 +vit_base_patch16_siglip_224,28.82,34.585,1,224,92.88 +swinv2_tiny_window8_256,28.77,34.644,1,256,28.35 +levit_conv_384_s8,28.66,34.782,1,224,39.12 +tresnet_l,28.61,34.843,1,224,55.99 +efficientformerv2_l,28.56,34.904,1,224,26.32 +xception65,28.52,34.957,1,299,39.92 +resnetv2_50d_evos,28.46,35.027,1,288,25.59 +resnetv2_50d_gn,28.46,35.032,1,288,25.57 +resnetv2_101,28.42,35.084,1,288,44.54 +resnet152c,28.31,35.214,1,224,60.21 +resnet101d,28.25,35.287,1,320,44.57 +regnetz_d32,28.23,35.315,1,320,27.58 +fastvit_ma36,28.2,35.351,1,256,44.07 +vit_base_resnet50d_224,28.2,35.357,1,224,110.97 +xcit_tiny_24_p8_224,28.17,35.389,1,224,12.11 +densenet169,28.15,35.419,1,224,14.15 +efficientnet_b3_gn,28.07,35.515,1,320,11.73 +vit_base_patch16_xp_224,28.0,35.611,1,224,86.51 +ecaresnet101d,27.96,35.651,1,288,44.57 +vit_base_patch32_clip_448,27.84,35.815,1,448,88.34 +efficientnetv2_rw_s,27.78,35.893,1,384,23.94 +resnet152s,27.77,35.899,1,224,60.32 +cs3edgenet_x,27.67,36.025,1,288,47.82 +xception65p,27.58,36.151,1,299,39.82 +resnest101e,27.47,36.301,1,256,48.28 +densenet121,27.43,36.356,1,288,7.98 +convnextv2_nano,27.42,36.364,1,384,15.62 +regnety_120,27.36,36.442,1,288,51.82 +regnetz_d8_evos,27.33,36.481,1,320,23.46 +cait_xxs36_224,27.32,36.503,1,224,17.3 +tnt_b_patch16_224,27.31,36.501,1,224,65.41 +dla169,27.28,36.548,1,224,53.39 +coatnet_1_rw_224,27.21,36.649,1,224,41.72 +flexivit_base,27.18,36.682,1,240,86.59 +ese_vovnet99b,27.13,36.754,1,224,63.2 +resnet152,26.95,36.992,1,224,60.19 +resnet152d,26.94,37.016,1,224,60.21 +seresnet101,26.8,37.206,1,288,49.33 +beitv2_base_patch16_224,26.72,37.316,1,224,86.53 +nf_resnet101,26.64,37.432,1,224,44.55 +beit_base_patch16_224,26.63,37.447,1,224,86.53 +twins_svt_base,26.61,37.465,1,224,56.07 +maxvit_tiny_rw_224,26.58,37.51,1,224,29.06 +resnetv2_152,26.55,37.553,1,224,60.19 +regnety_160,26.51,37.61,1,224,83.59 +vit_relpos_base_patch16_rpn_224,26.45,37.7,1,224,86.41 +resnetv2_152d,26.15,38.137,1,224,60.2 +coatnet_rmlp_1_rw_224,26.13,38.166,1,224,41.69 +cs3se_edgenet_x,26.07,38.25,1,256,50.72 +regnetz_e8,26.06,38.268,1,256,57.7 +nextvit_large,26.03,38.313,1,224,57.87 +samvit_base_patch16_224,25.96,38.411,1,224,86.46 +resnext101_64x4d,25.92,38.47,1,224,83.46 +vit_relpos_base_patch16_224,25.89,38.52,1,224,86.43 +nf_ecaresnet101,25.87,38.542,1,224,44.55 +resnetrs101,25.82,38.619,1,288,63.62 +pvt_v2_b2,25.81,38.645,1,224,25.36 +res2net50_26w_8s,25.76,38.713,1,224,48.4 +eca_nfnet_l1,25.7,38.803,1,256,41.41 +caformer_s36,25.66,38.862,1,224,39.3 +res2net101d,25.65,38.872,1,224,45.23 +efficientnet_b3_g8_gn,25.52,39.078,1,320,14.25 +res2net101_26w_4s,25.5,39.108,1,224,45.21 +inception_v4,25.41,39.25,1,299,42.68 +coatnet_1_224,25.35,39.33,1,224,42.23 +convmixer_768_32,25.35,39.337,1,224,21.11 +xcit_small_24_p16_224,25.29,39.432,1,224,47.67 +coatnet_rmlp_1_rw2_224,25.19,39.588,1,224,41.72 +resnet152d,25.12,39.699,1,256,60.21 +nfnet_f0,25.1,39.741,1,256,71.49 +poolformerv2_m48,25.05,39.803,1,224,73.35 +vit_base_r26_s32_224,25.05,39.807,1,224,101.38 +maxvit_tiny_rw_256,25.04,39.834,1,256,29.07 +tresnet_m,24.96,39.959,1,448,31.39 +vit_relpos_base_patch16_cls_224,24.94,39.997,1,224,86.43 +resnext101_32x8d,24.91,40.03,1,224,88.79 +vit_relpos_base_patch16_clsgap_224,24.86,40.115,1,224,86.43 +xcit_tiny_12_p8_384,24.76,40.28,1,384,6.71 +dm_nfnet_f0,24.74,40.318,1,256,71.49 +vit_base_patch16_reg4_gap_256,24.62,40.507,1,256,86.62 +dpn98,24.48,40.74,1,224,61.57 +wide_resnet50_2,24.46,40.774,1,176,68.88 +gmlp_b16_224,24.07,41.431,1,224,73.08 +vit_base_patch16_siglip_256,24.05,41.476,1,256,92.93 +gcvit_tiny,23.98,41.603,1,224,28.22 +levit_384_s8,23.87,41.794,1,224,39.12 +davit_small,23.68,42.124,1,224,49.75 +mixnet_xxl,23.56,42.341,1,224,23.96 +poolformer_m48,23.53,42.396,1,224,73.47 +twins_pcpvt_large,23.52,42.407,1,224,60.99 +eva02_base_patch16_clip_224,23.47,42.505,1,224,86.26 +resnet200,23.46,42.51,1,224,64.67 +nf_seresnet101,23.38,42.658,1,224,49.33 +maxvit_tiny_pm_256,23.24,42.933,1,256,30.09 +efficientvit_l2,23.17,43.043,1,384,63.71 +xcit_small_12_p8_224,23.13,43.134,1,224,26.21 +resnet152,23.07,43.239,1,288,60.19 +seresnext101_64x4d,23.04,43.291,1,224,88.23 +convformer_s36,22.99,43.386,1,224,40.01 +inception_next_base,22.95,43.455,1,224,86.67 +repvgg_b2g4,22.93,43.506,1,224,61.76 +volo_d2_224,22.88,43.599,1,224,58.68 +tresnet_xl,22.85,43.645,1,224,78.44 +maxxvit_rmlp_tiny_rw_256,22.79,43.777,1,256,29.64 +hgnet_base,22.77,43.808,1,224,71.58 +focalnet_small_srf,22.7,43.939,1,224,49.89 +seresnet152,22.65,44.045,1,224,66.82 +convnext_base,22.56,44.224,1,224,88.59 +convnext_small,22.45,44.442,1,288,50.22 +maxvit_tiny_tf_224,22.41,44.515,1,224,30.92 +xception71,22.39,44.561,1,299,42.34 +mobilevitv2_200,22.37,44.598,1,384,18.45 +mvitv2_small_cls,22.22,44.891,1,224,34.87 +cait_s24_224,22.13,45.067,1,224,46.92 +legacy_seresnet152,22.1,45.142,1,224,66.82 +swinv2_cr_small_224,22.07,45.196,1,224,49.7 +selecsls84,22.06,45.23,1,224,50.95 +cs3se_edgenet_x,21.96,45.423,1,320,50.72 +seresnext101_32x8d,21.85,45.669,1,224,93.57 +seresnext101d_32x8d,21.84,45.683,1,224,93.59 +swinv2_cr_small_ns_224,21.8,45.762,1,224,49.7 +vit_small_patch8_224,21.78,45.8,1,224,21.67 +caformer_s18,21.72,45.93,1,384,26.34 +nf_regnet_b5,21.71,45.963,1,384,49.74 +vit_small_r26_s32_384,21.54,46.309,1,384,36.47 +crossvit_base_240,21.5,46.397,1,240,105.03 +inception_resnet_v2,21.5,46.408,1,299,55.84 +swin_small_patch4_window7_224,21.43,46.55,1,224,49.61 +densenet201,21.3,46.854,1,224,20.01 +swinv2_tiny_window16_256,21.3,46.85,1,256,28.35 +wide_resnet50_2,21.3,46.84,1,224,68.88 +volo_d1_384,21.29,46.867,1,384,26.78 +vit_medium_patch16_gap_384,21.25,46.957,1,384,39.03 +convit_base,21.22,47.014,1,224,86.54 +pvt_v2_b3,21.2,47.06,1,224,45.24 +seresnextaa101d_32x8d,21.16,47.142,1,224,93.59 +hgnetv2_b6,21.15,47.171,1,224,75.26 +vit_small_patch16_18x2_224,21.11,47.258,1,224,64.67 +nest_base_jx,21.09,47.301,1,224,67.72 +resnet200d,21.09,47.302,1,256,64.69 +eca_nfnet_l1,21.05,47.388,1,320,41.41 +densenet161,21.02,47.463,1,224,28.68 +nest_base,20.8,47.968,1,224,67.72 +focalnet_small_lrf,20.74,48.098,1,224,50.34 +gcvit_small,20.74,48.118,1,224,51.09 +maxvit_rmlp_tiny_rw_256,20.72,48.148,1,256,29.15 +seresnet152d,20.72,48.153,1,256,66.84 +resnet152d,20.71,48.179,1,320,60.21 +nextvit_base,20.66,48.299,1,384,44.82 +vit_small_patch16_36x1_224,20.65,48.32,1,224,64.67 +efficientnet_b5,20.64,48.335,1,416,30.39 +maxvit_rmlp_small_rw_224,20.49,48.705,1,224,64.9 +resnetrs152,20.48,48.724,1,256,86.62 +resnext101_64x4d,20.46,48.756,1,288,83.46 +mvitv2_base,20.41,48.893,1,224,51.47 +convnextv2_base,20.33,49.071,1,224,88.72 +regnety_160,20.32,49.106,1,288,83.59 +hrnet_w18_ssld,20.05,49.77,1,224,21.3 +hrnet_w18,19.54,51.074,1,224,21.3 +crossvit_15_dagger_408,19.4,51.437,1,408,28.5 +mixer_l32_224,19.37,51.507,1,224,206.94 +maxvit_small_tf_224,19.35,51.563,1,224,68.93 +regnetz_e8,19.29,51.743,1,320,57.7 +efficientnetv2_m,19.18,52.035,1,320,54.14 +tiny_vit_21m_384,19.1,52.268,1,384,21.23 +convformer_s18,19.06,52.354,1,384,26.77 +resnet200,19.04,52.414,1,288,64.67 +eva02_base_patch14_224,18.97,52.61,1,224,85.76 +convnext_base,18.94,52.694,1,256,88.59 +caformer_m36,18.93,52.724,1,224,56.2 +halonet_h1,18.91,52.787,1,256,8.1 +efficientnet_b5,18.89,52.829,1,448,30.39 +seresnet152,18.79,53.123,1,288,66.82 +twins_svt_large,18.76,53.204,1,224,99.27 +wide_resnet50_2,18.74,53.249,1,288,68.88 +dpn131,18.71,53.352,1,224,79.25 +swin_s3_small_224,18.71,53.329,1,224,49.74 +vit_base_patch16_plus_240,18.67,53.459,1,240,117.56 +convnext_small,18.55,53.795,1,384,50.22 +nf_regnet_b5,18.54,53.841,1,456,49.74 +ecaresnet200d,18.27,54.62,1,256,64.69 +xcit_medium_24_p16_224,18.21,54.821,1,224,84.4 +hrnet_w32,18.13,55.048,1,224,41.23 +regnetx_320,18.12,55.073,1,224,107.81 +repvgg_b2,17.92,55.687,1,224,89.02 +efficientnetv2_rw_m,17.89,55.798,1,320,53.24 +focalnet_base_srf,17.67,56.484,1,224,88.15 +swinv2_cr_small_ns_256,17.64,56.598,1,256,49.7 +coat_tiny,17.45,57.214,1,224,5.5 +levit_conv_512_s8,17.38,57.446,1,224,74.05 +levit_512_s8,17.36,57.485,1,224,74.05 +dpn107,17.34,57.575,1,224,86.92 +seresnext101_32x8d,17.3,57.703,1,288,93.57 +coatnet_2_rw_224,17.27,57.778,1,224,73.87 +convformer_m36,17.23,57.93,1,224,57.05 +swin_s3_base_224,17.18,58.095,1,224,71.13 +davit_base,17.13,58.254,1,224,87.95 +swinv2_cr_base_224,16.91,59.034,1,224,87.88 +seresnet152d,16.86,59.213,1,320,66.84 +hgnetv2_b6,16.82,59.354,1,288,75.26 +seresnext101d_32x8d,16.8,59.399,1,288,93.59 +resnet200d,16.63,60.036,1,320,64.69 +swinv2_cr_base_ns_224,16.59,60.178,1,224,87.88 +coat_lite_medium,16.58,60.196,1,224,44.57 +resnetrs200,16.57,60.229,1,256,93.21 +hgnet_base,16.53,60.378,1,288,71.58 +cait_xxs24_384,16.5,60.52,1,384,12.03 +seresnextaa101d_32x8d,16.44,60.712,1,288,93.59 +focalnet_base_lrf,16.42,60.799,1,224,88.75 +volo_d3_224,16.39,60.905,1,224,86.33 +vit_relpos_base_patch16_plus_240,16.38,60.949,1,240,117.38 +wide_resnet101_2,16.37,60.994,1,176,126.89 +repvgg_b3g4,16.31,61.206,1,224,83.83 +hrnet_w40,16.28,61.301,1,224,57.56 +tf_efficientnet_b5,16.28,61.33,1,456,30.39 +ecaresnet200d,16.21,61.594,1,288,64.69 +vit_base_r50_s16_224,16.2,61.605,1,224,97.89 +hrnet_w18_ssld,16.19,61.65,1,288,21.3 +seresnet200d,16.19,61.664,1,256,71.86 +dm_nfnet_f1,16.17,61.746,1,224,132.63 +maxvit_rmlp_small_rw_256,16.12,61.934,1,256,64.9 +coatnet_2_224,16.05,62.19,1,224,74.68 +coatnet_rmlp_2_rw_224,16.05,62.216,1,224,73.88 +hrnet_w30,15.98,62.476,1,224,37.71 +swin_base_patch4_window7_224,15.92,62.688,1,224,87.77 +hrnet_w48,15.8,63.193,1,224,77.47 +xcit_small_24_p16_384,15.73,63.481,1,384,47.67 +mvitv2_base_cls,15.67,63.721,1,224,65.44 +hrnet_w48_ssld,15.62,63.92,1,224,77.47 +resnetv2_101x1_bit,15.5,64.422,1,224,44.54 +vit_large_patch32_224,15.38,64.898,1,224,305.51 +nfnet_f1,15.31,65.221,1,224,132.63 +tf_efficientnetv2_m,15.27,65.378,1,384,54.14 +pvt_v2_b4,15.22,65.611,1,224,62.56 +eca_nfnet_l2,15.2,65.695,1,320,56.72 +crossvit_18_dagger_408,15.18,65.761,1,408,44.61 +resnetrs152,15.16,65.876,1,320,86.62 +sequencer2d_s,15.13,65.982,1,224,27.65 +swinv2_small_window8_256,15.12,66.049,1,256,49.73 +caformer_b36,14.81,67.42,1,224,98.75 +vit_so150m_patch16_reg4_gap_256,14.79,67.533,1,256,134.13 +hrnet_w44,14.76,67.633,1,224,67.06 +pvt_v2_b5,14.76,67.666,1,224,81.96 +swinv2_base_window12_192,14.64,68.185,1,192,109.28 +seresnet200d,14.49,68.9,1,288,71.86 +nextvit_large,14.45,69.101,1,384,57.87 +seresnextaa101d_32x8d,14.44,69.13,1,320,93.59 +coat_mini,14.39,69.372,1,224,10.34 +efficientnetv2_m,14.33,69.663,1,416,54.14 +wide_resnet101_2,14.31,69.771,1,224,126.89 +tresnet_l,14.3,69.826,1,448,55.99 +regnety_160,14.2,70.322,1,384,83.59 +vit_so150m_patch16_reg4_map_256,14.19,70.354,1,256,141.48 +convnext_base,14.1,70.818,1,288,88.59 +resnetv2_50x1_bit,13.95,71.57,1,448,25.55 +convnext_large,13.92,71.749,1,224,197.77 +regnety_320,13.91,71.795,1,224,145.05 +resnetrs200,13.77,72.49,1,320,93.21 +coat_small,13.71,72.826,1,224,21.69 +maxxvit_rmlp_small_rw_256,13.61,73.351,1,256,66.01 +xcit_tiny_24_p8_384,13.54,73.776,1,384,12.11 +gcvit_base,13.34,74.838,1,224,90.32 +hrnet_w48_ssld,13.24,75.442,1,288,77.47 +swinv2_base_window8_256,13.0,76.791,1,256,87.92 +inception_next_base,12.99,76.866,1,384,86.67 +xcit_small_24_p8_224,12.99,76.888,1,224,47.63 +convformer_s36,12.84,77.75,1,384,40.01 +convnextv2_base,12.83,77.812,1,288,88.72 +efficientnetv2_rw_m,12.83,77.808,1,416,53.24 +legacy_senet154,12.83,77.84,1,224,115.09 +convnextv2_large,12.71,78.563,1,224,197.96 +convformer_b36,12.64,79.028,1,224,99.88 +resnetrs270,12.54,79.637,1,256,129.86 +senet154,12.54,79.615,1,224,115.09 +resnest200e,12.5,79.914,1,320,70.2 +repvgg_b3,12.24,81.603,1,224,123.09 +swinv2_small_window16_256,12.22,81.758,1,256,49.73 +dm_nfnet_f1,12.19,81.897,1,320,132.63 +vit_small_patch14_reg4_dinov2,12.18,81.993,1,518,22.06 +eca_nfnet_l2,12.14,82.304,1,384,56.72 +vit_small_patch14_dinov2,12.0,83.198,1,518,22.06 +xcit_large_24_p16_224,12.0,83.236,1,224,189.1 +efficientvit_l3,11.82,84.485,1,224,246.04 +caformer_s36,11.81,84.544,1,384,39.3 +tf_efficientnetv2_m,11.71,85.301,1,480,54.14 +convnext_base,11.68,85.493,1,320,88.59 +seresnet269d,11.66,85.618,1,256,113.67 +nfnet_f1,11.65,85.748,1,320,132.63 +convnext_large_mlp,11.64,85.831,1,256,200.13 +hrnet_w64,11.56,86.429,1,224,128.06 +convnext_base,11.52,86.708,1,384,88.59 +convmixer_1536_20,11.44,87.282,1,224,51.63 +sequencer2d_m,11.44,87.314,1,224,38.31 +cait_xxs36_384,11.3,88.39,1,384,17.37 +vit_base_patch16_clip_384,11.28,88.553,1,384,86.86 +deit_base_patch16_384,11.24,88.868,1,384,86.86 +deit3_base_patch16_384,11.21,89.062,1,384,86.88 +deit_base_distilled_patch16_384,11.2,89.193,1,384,87.63 +davit_large,11.12,89.816,1,224,196.81 +vit_base_patch16_siglip_384,11.11,89.91,1,384,93.18 +vit_base_patch16_384,11.1,89.979,1,384,86.86 +tresnet_xl,10.86,91.955,1,448,78.44 +densenet264d,10.85,92.074,1,224,72.74 +eca_nfnet_l3,10.82,92.336,1,352,72.04 +maxxvitv2_rmlp_base_rw_224,10.75,92.904,1,224,116.09 +pnasnet5large,10.75,92.913,1,331,86.06 +nasnetalarge,10.68,93.528,1,331,88.75 +efficientvit_l3,10.66,93.703,1,256,246.04 +swinv2_cr_tiny_384,10.62,94.018,1,384,28.33 +swinv2_cr_large_224,10.6,94.24,1,224,196.68 +ecaresnet269d,10.55,94.713,1,320,102.09 +swin_large_patch4_window7_224,10.5,95.17,1,224,196.53 +cait_xs24_384,10.48,95.27,1,384,26.67 +resnext101_32x16d,10.42,95.861,1,224,194.03 +volo_d4_224,10.3,96.948,1,224,192.96 +vit_large_r50_s32_224,10.24,97.519,1,224,328.99 +mixer_l16_224,10.19,98.039,1,224,208.2 +seresnet269d,10.18,98.097,1,288,113.67 +swinv2_large_window12_192,10.15,98.416,1,192,228.77 +tf_efficientnet_b6,10.13,98.587,1,528,43.04 +dm_nfnet_f2,10.06,99.26,1,256,193.78 +maxvit_tiny_tf_384,10.04,99.454,1,384,30.98 +nfnet_f2,10.03,99.603,1,256,193.78 +volo_d2_384,10.03,99.551,1,384,58.87 +convnextv2_base,10.01,99.781,1,384,88.72 +convnext_large,9.99,99.979,1,288,197.77 +xcit_small_12_p8_384,9.95,100.392,1,384,26.21 +xcit_medium_24_p16_384,9.8,101.966,1,384,84.4 +maxvit_base_tf_224,9.72,102.786,1,224,119.47 +ecaresnet269d,9.69,103.106,1,352,102.09 +vgg11,9.64,103.628,1,224,132.86 +vit_base_patch16_18x2_224,9.64,103.632,1,224,256.73 +vgg11_bn,9.5,105.194,1,224,132.87 +efficientnetv2_l,9.39,106.364,1,384,118.52 +tf_efficientnetv2_l,9.31,107.306,1,384,118.52 +swinv2_base_window12to16_192to256,9.3,107.471,1,256,87.92 +convformer_m36,9.27,107.717,1,384,57.05 +vgg13_bn,9.26,107.879,1,224,133.05 +convnextv2_large,9.22,108.292,1,288,197.96 +maxvit_rmlp_base_rw_224,9.22,108.408,1,224,116.14 +swinv2_base_window16_256,9.21,108.436,1,256,87.92 +efficientnet_b6,9.2,108.582,1,528,43.04 +resnetrs270,9.19,108.694,1,352,129.86 +vgg13,9.01,110.918,1,224,133.05 +caformer_m36,8.96,111.546,1,384,56.2 +resnetrs350,8.94,111.782,1,288,163.96 +coatnet_rmlp_3_rw_224,8.77,113.984,1,224,165.15 +coatnet_3_rw_224,8.74,114.329,1,224,181.81 +coatnet_3_224,8.71,114.748,1,224,166.97 +beit_base_patch16_384,8.65,115.469,1,384,86.74 +vgg16,8.61,116.0,1,224,138.36 +efficientvit_l3,8.58,116.47,1,320,246.04 +coat_lite_medium_384,8.54,116.926,1,384,44.57 +vgg19_bn,8.53,117.153,1,224,143.68 +vgg16_bn,8.52,117.29,1,224,138.37 +resnetv2_101x1_bit,8.46,118.13,1,448,44.54 +vgg19,8.39,119.033,1,224,143.67 +vit_base_patch8_224,8.39,119.029,1,224,86.58 +eca_nfnet_l3,7.98,125.225,1,448,72.04 +xcit_medium_24_p8_224,7.98,125.271,1,224,84.32 +maxxvitv2_rmlp_large_rw_224,7.72,129.399,1,224,215.42 +convnext_large_mlp,7.67,130.275,1,320,200.13 +nfnet_f2,7.66,130.475,1,352,193.78 +dm_nfnet_f2,7.6,131.419,1,352,193.78 +vit_large_patch32_384,7.57,131.935,1,384,306.63 +repvgg_d2se,7.54,132.439,1,320,133.33 +seresnextaa201d_32x8d,7.52,132.81,1,320,149.39 +vit_base_r50_s16_384,7.46,133.951,1,384,98.95 +sequencer2d_l,7.43,134.481,1,224,54.3 +maxvit_small_tf_384,7.23,138.115,1,384,69.02 +resmlp_big_24_224,7.21,138.531,1,224,129.14 +efficientvit_l3,7.1,140.815,1,384,246.04 +efficientnetv2_l,7.02,142.385,1,480,118.52 +cait_s24_384,6.98,143.242,1,384,47.06 +vit_large_patch16_224,6.96,143.598,1,224,304.33 +deit3_large_patch16_224,6.92,144.377,1,224,304.37 +mvitv2_large,6.92,144.482,1,224,217.99 +resnest269e,6.89,145.117,1,416,110.93 +volo_d5_224,6.88,145.294,1,224,295.46 +convnext_xlarge,6.87,145.419,1,224,350.2 +eva_large_patch14_196,6.87,145.357,1,196,304.14 +resnetrs420,6.84,146.047,1,320,191.89 +tf_efficientnetv2_l,6.79,147.238,1,480,118.52 +regnety_640,6.77,147.685,1,224,281.38 +efficientnetv2_xl,6.76,147.902,1,384,208.12 +tf_efficientnetv2_xl,6.73,148.547,1,384,208.12 +resnetrs350,6.65,150.31,1,384,163.96 +flexivit_large,6.63,150.711,1,240,304.36 +nfnet_f3,6.59,151.709,1,320,254.92 +tiny_vit_21m_512,6.55,152.682,1,512,21.27 +regnety_320,6.4,156.191,1,384,145.05 +dm_nfnet_f3,6.39,156.391,1,320,254.92 +vit_base_patch16_siglip_512,6.25,159.877,1,512,93.52 +beit_large_patch16_224,6.22,160.576,1,224,304.43 +beitv2_large_patch16_224,6.22,160.717,1,224,304.43 +maxvit_large_tf_224,6.2,161.197,1,224,211.79 +swinv2_large_window12to16_192to256,6.12,163.37,1,256,196.74 +convnext_large,6.04,165.574,1,384,197.77 +convnext_large_mlp,6.01,166.316,1,384,200.13 +vit_so400m_patch14_siglip_224,5.97,167.337,1,224,427.68 +tf_efficientnet_b7,5.96,167.661,1,600,66.35 +swinv2_cr_small_384,5.93,168.406,1,384,49.7 +vit_large_patch16_siglip_256,5.86,170.441,1,256,315.96 +vit_large_patch14_224,5.84,171.067,1,224,304.2 +vit_large_patch14_clip_quickgelu_224,5.84,171.235,1,224,303.97 +vit_large_patch14_clip_224,5.82,171.768,1,224,304.2 +coatnet_rmlp_2_rw_384,5.75,173.867,1,384,73.88 +mvitv2_large_cls,5.73,174.501,1,224,234.58 +convformer_b36,5.71,174.868,1,384,99.88 +seresnextaa201d_32x8d,5.71,174.871,1,384,149.39 +eva02_base_patch14_448,5.68,175.869,1,448,87.12 +davit_huge,5.66,176.53,1,224,348.92 +vit_large_patch14_xp_224,5.58,179.001,1,224,304.06 +maxvit_tiny_tf_512,5.54,180.385,1,512,31.05 +efficientnet_b7,5.48,182.298,1,600,66.35 +xcit_large_24_p16_384,5.46,183.021,1,384,189.1 +coatnet_4_224,5.41,184.721,1,224,275.43 +volo_d3_448,5.38,185.659,1,448,86.63 +caformer_b36,5.37,186.081,1,384,98.75 +convnextv2_large,5.36,186.287,1,384,197.96 +eva02_large_patch14_clip_224,5.35,186.928,1,224,304.11 +eva02_large_patch14_224,5.34,187.155,1,224,303.27 +convnext_xlarge,5.27,189.818,1,288,350.2 +xcit_small_24_p8_384,5.25,190.508,1,384,47.63 +focalnet_large_fl3,5.2,192.302,1,384,239.13 +resnetrs420,5.16,193.791,1,416,191.89 +resnetv2_152x2_bit,5.06,197.516,1,224,236.34 +vit_large_r50_s32_384,4.97,201.254,1,384,329.09 +focalnet_large_fl4,4.95,201.96,1,384,239.32 +nfnet_f3,4.77,209.555,1,416,254.92 +cait_s36_384,4.73,211.462,1,384,68.37 +dm_nfnet_f3,4.73,211.21,1,416,254.92 +vit_base_patch14_dinov2,4.67,214.237,1,518,86.58 +swinv2_cr_base_384,4.62,216.189,1,384,87.88 +vit_base_patch14_reg4_dinov2,4.61,216.991,1,518,86.58 +efficientnetv2_xl,4.49,222.467,1,512,208.12 +tf_efficientnetv2_xl,4.48,223.158,1,512,208.12 +resnetv2_50x3_bit,4.45,224.393,1,224,217.32 +xcit_large_24_p8_224,4.41,226.888,1,224,188.93 +dm_nfnet_f4,4.4,227.093,1,384,316.07 +nfnet_f4,4.32,231.615,1,384,316.07 +maxxvitv2_rmlp_base_rw_384,4.28,233.473,1,384,116.09 +swin_base_patch4_window12_384,4.25,235.251,1,384,87.9 +maxvit_base_tf_384,4.01,249.254,1,384,119.65 +maxvit_rmlp_base_rw_384,3.97,252.089,1,384,116.14 +maxvit_xlarge_tf_224,3.84,260.169,1,224,506.99 +swinv2_cr_huge_224,3.73,267.645,1,224,657.83 +resnext101_32x32d,3.7,269.902,1,224,468.53 +convnextv2_huge,3.65,274.084,1,224,660.29 +regnety_640,3.47,288.16,1,384,281.38 +efficientnet_b8,3.46,289.292,1,672,87.41 +nfnet_f5,3.32,300.922,1,416,377.21 +maxvit_small_tf_512,3.3,303.006,1,512,69.13 +tf_efficientnet_b8,3.3,302.574,1,672,87.41 +xcit_medium_24_p8_384,3.3,303.237,1,384,84.32 +convnext_xlarge,3.28,305.125,1,384,350.2 +dm_nfnet_f5,3.28,304.623,1,416,377.21 +vit_large_patch16_siglip_384,3.09,323.863,1,384,316.28 +volo_d4_448,3.08,324.261,1,448,193.41 +vit_large_patch14_clip_quickgelu_336,3.06,326.699,1,336,304.29 +deit3_large_patch16_384,3.05,327.468,1,384,304.76 +eva_large_patch14_336,3.03,330.35,1,336,304.53 +swin_large_patch4_window12_384,3.02,330.733,1,384,196.74 +vit_large_patch14_clip_336,3.02,330.571,1,336,304.53 +vit_large_patch16_384,3.02,330.83,1,384,304.72 +swinv2_cr_large_384,3.0,333.347,1,384,196.68 +resnetv2_152x2_bit,2.88,346.891,1,384,236.34 +vit_huge_patch14_gap_224,2.88,347.103,1,224,630.76 +resnetv2_101x3_bit,2.86,349.835,1,224,387.93 +nfnet_f4,2.83,353.869,1,512,316.07 +convnextv2_huge,2.8,357.503,1,288,660.29 +eva02_large_patch14_clip_336,2.8,357.279,1,336,304.43 +vit_huge_patch14_224,2.8,356.629,1,224,630.76 +vit_huge_patch14_clip_224,2.8,356.916,1,224,632.05 +deit3_huge_patch14_224,2.79,358.708,1,224,632.13 +vit_huge_patch14_xp_224,2.79,358.77,1,224,631.8 +vit_huge_patch14_clip_quickgelu_224,2.78,360.058,1,224,632.08 +swinv2_base_window12to24_192to384,2.77,361.199,1,384,87.92 +mvitv2_huge_cls,2.76,362.599,1,224,694.8 +dm_nfnet_f4,2.75,363.412,1,512,316.07 +focalnet_huge_fl3,2.74,365.417,1,224,745.28 +focalnet_xlarge_fl3,2.68,372.855,1,384,408.79 +maxvit_large_tf_384,2.66,375.595,1,384,212.03 +regnety_1280,2.66,376.44,1,224,644.81 +focalnet_huge_fl4,2.65,376.997,1,224,686.46 +focalnet_xlarge_fl4,2.63,379.808,1,384,409.03 +nfnet_f6,2.53,394.377,1,448,438.36 +vit_giant_patch16_gap_224,2.52,397.009,1,224,1011.37 +dm_nfnet_f6,2.5,399.61,1,448,438.36 +convnext_xxlarge,2.49,402.224,1,256,846.47 +coatnet_5_224,2.46,406.549,1,224,687.47 +beit_large_patch16_384,2.43,411.343,1,384,305.0 +resnetv2_152x2_bit,2.36,422.825,1,448,236.34 +resnetv2_50x3_bit,2.34,426.363,1,448,217.32 +dm_nfnet_f5,2.14,466.965,1,544,377.21 +eva_giant_patch14_224,2.12,471.488,1,224,1012.56 +nfnet_f5,2.11,474.766,1,544,377.21 +eva_giant_patch14_clip_224,2.1,476.74,1,224,1012.59 +vit_giant_patch14_224,2.1,476.373,1,224,1012.61 +vit_giant_patch14_clip_224,2.07,482.288,1,224,1012.65 +nfnet_f7,2.01,496.295,1,480,499.5 +vit_so400m_patch14_siglip_384,2.01,496.268,1,384,428.23 +volo_d5_448,1.97,507.454,1,448,295.91 +maxvit_base_tf_512,1.88,531.931,1,512,119.88 +davit_giant,1.86,536.86,1,224,1406.47 +convnextv2_huge,1.75,572.127,1,384,660.29 +eva02_large_patch14_448,1.71,586.058,1,448,305.08 +tf_efficientnet_l2,1.71,584.697,1,475,480.31 +cait_m36_384,1.7,588.838,1,384,271.22 +dm_nfnet_f6,1.7,587.555,1,576,438.36 +nfnet_f6,1.7,589.297,1,576,438.36 +swinv2_large_window12to24_192to384,1.7,587.644,1,384,196.74 +xcit_large_24_p8_384,1.68,596.178,1,384,188.93 +vit_huge_patch14_clip_336,1.64,609.779,1,336,632.46 +regnety_1280,1.59,628.931,1,384,644.81 +maxvit_xlarge_tf_384,1.53,652.708,1,384,475.32 +vit_large_patch14_dinov2,1.5,664.399,1,518,304.37 +vit_large_patch14_reg4_dinov2,1.49,673.215,1,518,304.37 +volo_d5_512,1.47,680.639,1,512,296.09 +resnetv2_101x3_bit,1.45,690.923,1,448,387.93 +vit_huge_patch14_clip_378,1.34,746.759,1,378,632.68 +vit_huge_patch14_clip_quickgelu_378,1.33,751.148,1,378,632.68 +nfnet_f7,1.32,756.231,1,608,499.5 +maxvit_large_tf_512,1.28,779.969,1,512,212.33 +swinv2_cr_huge_384,1.26,792.156,1,384,657.94 +vit_huge_patch16_gap_448,1.24,806.627,1,448,631.67 +swinv2_cr_giant_224,1.22,817.72,1,224,2598.76 +vit_gigantic_patch14_224,1.2,831.652,1,224,1844.44 +vit_gigantic_patch14_clip_224,1.2,830.217,1,224,1844.91 +beit_large_patch16_512,1.15,869.779,1,512,305.67 +convnextv2_huge,1.11,904.605,1,512,660.29 +resnetv2_152x4_bit,1.07,931.333,1,224,936.53 +eva_giant_patch14_336,1.06,945.007,1,336,1013.01 +maxvit_xlarge_tf_512,0.74,1353.032,1,512,475.77 +regnety_2560,0.71,1404.762,1,384,1282.6 +cait_m48_448,0.64,1574.651,1,448,356.46 +samvit_base_patch16,0.61,1639.865,1,1024,89.67 +tf_efficientnet_l2,0.6,1664.515,1,800,480.31 +efficientnet_l2,0.58,1732.697,1,800,480.31 +resnetv2_152x4_bit,0.54,1835.495,1,480,936.53 +eva_giant_patch14_560,0.46,2166.883,1,560,1014.45 +vit_giant_patch14_dinov2,0.46,2154.504,1,518,1136.48 +vit_giant_patch14_reg4_dinov2,0.46,2171.619,1,518,1136.48 +eva02_enormous_patch14_clip_224,0.44,2252.224,1,224,4350.56 +swinv2_cr_giant_384,0.37,2697.442,1,384,2598.76 +samvit_large_patch16,0.28,3628.054,1,1024,308.28 +samvit_huge_patch16,0.19,5153.132,1,1024,637.03 diff --git a/pytorch-image-models/results/benchmark-infer-fp32-nchw-pt240-cpu-i7_12700h-dynamo.csv b/pytorch-image-models/results/benchmark-infer-fp32-nchw-pt240-cpu-i7_12700h-dynamo.csv new file mode 100644 index 0000000000000000000000000000000000000000..f8f52c7bcb0a29b91110ee5ec8de2c6282ce4147 --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-fp32-nchw-pt240-cpu-i7_12700h-dynamo.csv @@ -0,0 +1,1441 @@ +model,infer_img_size,infer_samples_per_sec,infer_step_time,infer_batch_size,param_count,infer_gmacs,infer_macts +test_byobnet,160,930.48,1.062,1,0.46,0.03,0.43 +test_vit,160,752.11,1.315,1,0.37,0.04,0.48 +test_efficientnet,160,647.07,1.53,1,0.36,0.06,0.55 +mobilenetv3_small_075,224,393.5,2.524,1,2.04,0.05,1.3 +mobilenetv3_small_050,224,384.04,2.586,1,1.59,0.03,0.92 +tf_mobilenetv3_small_minimal_100,224,379.32,2.616,1,2.04,0.06,1.41 +lcnet_035,224,378.45,2.618,1,1.64,0.03,1.04 +tinynet_e,106,376.63,2.636,1,2.04,0.03,0.69 +mobilenetv3_small_100,224,374.07,2.654,1,2.54,0.06,1.42 +lcnet_075,224,373.7,2.656,1,2.36,0.1,1.99 +lcnet_050,224,364.66,2.725,1,1.88,0.05,1.26 +mobilenetv2_035,224,323.01,3.076,1,1.68,0.07,2.86 +tf_mobilenetv3_small_100,224,322.73,3.079,1,2.54,0.06,1.42 +tf_mobilenetv3_small_075,224,298.55,3.327,1,2.04,0.05,1.3 +lcnet_100,224,291.87,3.406,1,2.95,0.16,2.52 +mnasnet_small,224,265.95,3.739,1,2.03,0.07,2.16 +mnasnet_050,224,252.54,3.939,1,2.22,0.11,3.07 +mobilenetv4_conv_small,224,248.97,3.996,1,3.77,0.19,1.97 +regnetx_002,224,237.37,4.191,1,2.68,0.2,2.16 +tinynet_d,152,232.83,4.272,1,2.34,0.05,1.42 +semnasnet_050,224,224.05,4.443,1,2.08,0.11,3.44 +mobilenetv2_050,224,221.33,4.499,1,1.97,0.1,3.64 +efficientvit_b0,224,210.09,4.735,1,3.41,0.1,2.87 +regnety_002,224,209.64,4.749,1,3.16,0.2,2.17 +mobilenetv4_conv_small,256,199.91,4.979,1,3.77,0.25,2.57 +mobilenetv2_075,224,196.78,5.061,1,2.64,0.22,5.86 +lcnet_150,224,194.96,5.108,1,4.5,0.34,3.79 +ghostnet_050,224,185.37,5.373,1,2.59,0.05,1.77 +efficientvit_m0,224,184.92,5.39,1,2.35,0.08,0.91 +repghostnet_050,224,182.79,5.45,1,2.31,0.05,2.02 +repghostnet_058,224,180.93,5.504,1,2.55,0.07,2.59 +tinynet_c,184,177.3,5.621,1,2.46,0.11,2.87 +levit_128s,224,173.25,5.748,1,7.78,0.31,1.88 +mobilenetv3_large_075,224,172.84,5.763,1,3.99,0.16,4.0 +mnasnet_075,224,169.28,5.884,1,3.17,0.23,4.77 +hardcorenas_a,224,159.47,6.247,1,5.26,0.23,4.38 +resnet10t,176,158.58,6.28,1,5.44,0.7,1.51 +efficientvit_m2,224,156.16,6.382,1,4.19,0.2,1.47 +mobilenetv1_100,224,155.99,6.388,1,4.23,0.58,5.04 +hgnetv2_b0,224,154.02,6.468,1,6.0,0.33,2.12 +semnasnet_075,224,153.91,6.473,1,2.91,0.23,5.54 +ese_vovnet19b_slim_dw,224,153.26,6.504,1,1.9,0.4,5.28 +levit_conv_128s,224,151.31,6.583,1,7.78,0.31,1.88 +mobilenetv2_100,224,151.16,6.591,1,3.5,0.31,6.68 +repghostnet_080,224,150.68,6.615,1,3.28,0.1,3.22 +efficientvit_m1,224,149.13,6.685,1,2.98,0.17,1.33 +mobilenetv3_rw,224,148.89,6.692,1,5.48,0.23,4.41 +semnasnet_100,224,147.79,6.744,1,3.89,0.32,6.23 +mnasnet_100,224,147.07,6.774,1,4.38,0.33,5.46 +edgenext_xx_small,288,145.77,6.838,1,1.33,0.33,4.21 +edgenext_xx_small,256,142.76,6.983,1,1.33,0.26,3.33 +mobilenetv3_large_100,256,141.04,7.067,1,5.48,0.29,5.75 +hardcorenas_b,224,139.46,7.146,1,5.18,0.26,5.09 +mobilenetv1_100h,224,137.02,7.269,1,5.28,0.63,5.09 +repghostnet_100,224,136.7,7.291,1,4.07,0.15,3.98 +tf_mobilenetv3_large_minimal_100,224,135.13,7.374,1,3.92,0.22,4.4 +mobilenetv3_large_100,224,135.11,7.377,1,5.48,0.23,4.41 +tf_mobilenetv3_large_075,224,133.04,7.493,1,3.99,0.16,4.0 +levit_128,224,128.82,7.736,1,9.21,0.41,2.71 +tinynet_b,188,128.04,7.786,1,3.73,0.21,4.44 +regnetx_004,224,128.0,7.786,1,5.16,0.4,3.14 +hardcorenas_c,224,126.13,7.902,1,5.52,0.28,5.01 +efficientnet_lite0,224,124.77,7.99,1,4.65,0.4,6.74 +regnetx_006,224,124.69,7.995,1,6.2,0.61,3.98 +regnetx_004_tv,224,123.65,8.061,1,5.5,0.42,3.17 +spnasnet_100,224,121.97,8.171,1,4.42,0.35,6.03 +mobilenet_edgetpu_v2_xs,224,119.74,8.329,1,4.46,0.7,4.8 +tf_mobilenetv3_large_100,224,118.57,8.408,1,5.48,0.23,4.41 +hardcorenas_d,224,117.16,8.511,1,7.5,0.3,4.93 +mobilenetv1_125,224,116.05,8.591,1,6.27,0.89,6.3 +fbnetc_100,224,115.63,8.626,1,5.57,0.4,6.51 +hardcorenas_f,224,115.25,8.654,1,8.2,0.35,5.57 +mobilenetv2_110d,224,114.18,8.735,1,4.52,0.45,8.71 +levit_conv_128,224,113.39,8.793,1,9.21,0.41,2.71 +dla46_c,224,113.23,8.806,1,1.3,0.58,4.5 +regnety_004,224,111.71,8.931,1,4.34,0.41,3.89 +vit_tiny_r_s16_p8_224,224,110.52,9.023,1,6.34,0.44,2.06 +mobilevitv2_050,256,110.49,9.03,1,1.37,0.48,8.04 +mobilenetv2_140,224,109.44,9.115,1,6.11,0.6,9.57 +repghostnet_111,224,109.01,9.149,1,4.54,0.18,4.38 +mobilenetv1_100,256,108.9,9.161,1,4.23,0.76,6.59 +dla46x_c,224,108.69,9.178,1,1.07,0.54,5.66 +efficientvit_m4,224,108.18,9.222,1,8.8,0.3,1.7 +hardcorenas_e,224,108.15,9.221,1,8.07,0.35,5.65 +convnext_atto,224,107.95,9.243,1,3.7,0.55,3.81 +cs3darknet_s,256,107.58,9.272,1,3.28,0.72,2.97 +efficientvit_m3,224,107.18,9.305,1,6.9,0.27,1.62 +edgenext_x_small,256,107.01,9.325,1,2.34,0.54,5.93 +regnety_006,224,105.83,9.425,1,6.06,0.61,4.33 +gernet_s,224,104.32,9.558,1,8.17,0.75,2.65 +mnasnet_140,224,103.97,9.594,1,7.12,0.6,7.71 +resnet18,160,103.24,9.66,1,11.69,0.93,1.27 +mobilenetv1_100h,256,103.01,9.684,1,5.28,0.82,6.65 +tf_efficientnetv2_b0,192,102.23,9.758,1,7.14,0.54,3.51 +hgnetv2_b1,224,101.5,9.823,1,6.34,0.49,2.73 +ghostnet_100,224,101.36,9.84,1,5.18,0.15,3.55 +resnet10t,224,101.08,9.869,1,5.44,1.1,2.43 +levit_conv_192,224,100.88,9.888,1,10.95,0.66,3.2 +levit_192,224,100.87,9.887,1,10.95,0.66,3.2 +ghostnet_130,224,100.75,9.898,1,7.36,0.24,4.6 +regnetx_008,224,100.17,9.958,1,7.26,0.81,5.15 +cs3darknet_focus_s,256,99.25,10.051,1,3.27,0.69,2.7 +tinynet_a,192,99.06,10.071,1,6.19,0.35,5.41 +repghostnet_130,224,99.05,10.068,1,5.48,0.25,5.24 +pit_ti_distilled_224,224,98.66,10.111,1,5.1,0.71,6.23 +rexnetr_100,224,98.26,10.151,1,4.88,0.43,7.72 +tf_efficientnet_lite0,224,97.3,10.249,1,4.65,0.4,6.74 +pit_ti_224,224,97.19,10.264,1,4.85,0.7,6.19 +regnety_008,224,97.13,10.269,1,6.26,0.81,5.25 +convnext_atto_ols,224,96.79,10.31,1,3.7,0.58,4.11 +hgnetv2_b0,288,96.75,10.308,1,6.0,0.54,3.51 +mobilenet_edgetpu_100,224,95.97,10.397,1,4.09,1.0,5.75 +regnety_008_tv,224,94.42,10.567,1,6.43,0.84,5.42 +repghostnet_150,224,93.96,10.617,1,6.58,0.32,6.0 +efficientnet_lite1,240,93.82,10.637,1,5.42,0.62,10.14 +efficientnet_b0,224,93.58,10.662,1,5.29,0.4,6.75 +efficientvit_b1,224,91.69,10.879,1,9.1,0.53,7.25 +semnasnet_140,224,91.48,10.907,1,6.11,0.6,8.87 +rexnet_100,224,91.29,10.929,1,4.8,0.41,7.44 +mobilevit_xxs,256,90.65,11.011,1,1.27,0.42,8.34 +edgenext_x_small,288,90.43,11.036,1,2.34,0.68,7.5 +convnext_femto_ols,224,89.2,11.187,1,5.23,0.82,4.87 +mobilenetv1_125,256,88.85,11.231,1,6.27,1.16,8.23 +mixer_s32_224,224,88.28,11.299,1,19.1,1.0,2.28 +xcit_nano_12_p16_224,224,87.78,11.371,1,3.05,0.56,4.17 +ese_vovnet19b_slim,224,87.17,11.445,1,3.17,1.69,3.52 +efficientformerv2_s0,224,86.81,11.497,1,3.6,0.41,5.3 +convnextv2_atto,224,86.78,11.501,1,3.71,0.55,3.81 +mobilenet_edgetpu_v2_s,224,85.54,11.666,1,5.99,1.21,6.6 +mobilenetv4_conv_medium,224,84.5,11.808,1,9.72,0.84,5.8 +dla60x_c,224,84.24,11.846,1,1.32,0.59,6.01 +tf_efficientnetv2_b1,192,83.74,11.917,1,8.14,0.76,4.59 +efficientnet_b0,256,82.19,12.142,1,5.29,0.52,8.81 +resnet14t,176,81.88,12.186,1,10.08,1.07,3.61 +hgnetv2_b1,288,81.46,12.251,1,6.34,0.82,4.51 +mobileone_s1,224,81.13,12.302,1,4.83,0.86,9.67 +efficientvit_b1,256,80.92,12.336,1,9.1,0.69,9.46 +mobilenetv2_120d,224,80.63,12.378,1,5.83,0.69,11.97 +ese_vovnet19b_dw,224,80.55,12.39,1,6.54,1.34,8.25 +fbnetv3_b,224,80.54,12.391,1,8.6,0.42,6.97 +repghostnet_200,224,80.43,12.406,1,9.8,0.54,7.96 +deit_tiny_distilled_patch16_224,224,80.18,12.448,1,5.91,1.27,6.01 +mobilenetv4_hybrid_medium_075,224,80.03,12.47,1,7.31,0.66,5.65 +tf_efficientnetv2_b0,224,79.79,12.509,1,7.14,0.73,4.77 +nf_regnet_b0,192,79.28,12.59,1,8.76,0.37,3.15 +levit_256,224,77.98,12.799,1,18.89,1.13,4.23 +ghostnetv2_100,224,77.73,12.839,1,6.16,0.18,4.55 +vit_small_patch32_224,224,77.57,12.865,1,22.88,1.15,2.5 +vit_tiny_patch16_224,224,77.57,12.868,1,5.72,1.26,5.97 +deit_tiny_patch16_224,224,77.2,12.931,1,5.72,1.26,5.97 +efficientnet_b1_pruned,240,77.19,12.932,1,6.33,0.4,6.21 +tf_efficientnet_b0,224,77.17,12.933,1,5.29,0.4,6.75 +convnext_femto,224,77.08,12.948,1,5.22,0.79,4.57 +fbnetv3_b,256,77.03,12.958,1,8.6,0.55,9.1 +fbnetv3_d,224,76.95,12.97,1,10.31,0.52,8.5 +rexnetr_130,224,76.89,12.979,1,7.61,0.68,9.81 +convnext_atto_ols,288,75.39,13.242,1,3.7,0.96,6.8 +tf_efficientnet_lite1,240,74.97,13.315,1,5.42,0.62,10.14 +efficientnet_cc_b0_4e,224,74.51,13.396,1,13.31,0.41,9.42 +efficientvit_b1,288,73.91,13.508,1,9.1,0.87,11.96 +efficientnet_lite2,260,73.69,13.546,1,6.09,0.89,12.9 +efficientvit_m5,224,72.44,13.781,1,12.47,0.53,2.41 +efficientnet_b0_gn,224,72.25,13.817,1,5.29,0.42,6.75 +hgnetv2_b2,224,72.08,13.849,1,11.22,1.15,4.12 +mobilenetv4_conv_medium,256,71.94,13.876,1,9.72,1.1,7.58 +convnextv2_femto,224,71.93,13.879,1,5.23,0.79,4.57 +efficientnet_b0_g16_evos,224,71.28,14.004,1,8.11,1.01,7.42 +rexnet_130,224,71.2,14.022,1,7.56,0.68,9.71 +gmlp_ti16_224,224,70.31,14.2,1,5.87,1.34,7.55 +efficientnet_blur_b0,224,68.95,14.477,1,5.29,0.43,8.72 +fbnetv3_d,256,68.8,14.512,1,10.31,0.68,11.1 +mobilevitv2_075,256,68.69,14.534,1,2.87,1.05,12.06 +tf_mixnet_s,224,68.57,14.56,1,4.13,0.25,6.25 +pit_xs_224,224,68.23,14.63,1,10.62,1.4,7.71 +levit_conv_256,224,67.71,14.745,1,18.89,1.13,4.23 +edgenext_small,256,67.66,14.754,1,5.59,1.26,9.07 +ghostnetv2_130,224,67.59,14.768,1,8.96,0.28,5.9 +visformer_tiny,224,67.48,14.795,1,10.32,1.27,5.72 +rexnetr_150,224,67.41,14.81,1,9.78,0.89,11.13 +repvit_m1,224,67.3,14.835,1,5.49,0.83,7.45 +pit_xs_distilled_224,224,66.69,14.963,1,11.0,1.41,7.76 +efficientnet_es_pruned,224,66.45,15.026,1,5.44,1.81,8.73 +tf_efficientnet_es,224,66.43,15.029,1,5.44,1.81,8.73 +efficientnet_cc_b0_8e,224,66.29,15.061,1,24.01,0.42,9.42 +convnext_atto,288,66.24,15.073,1,3.7,0.91,6.3 +efficientnet_b0_g8_gn,224,66.06,15.111,1,6.56,0.66,6.75 +efficientnet_es,224,65.44,15.255,1,5.44,1.81,8.73 +mobilenet_edgetpu_v2_m,224,65.39,15.267,1,8.46,1.85,8.15 +vit_tiny_r_s16_p8_384,384,65.32,15.284,1,6.36,1.34,6.49 +repvit_m0_9,224,64.74,15.423,1,5.49,0.83,7.45 +tf_efficientnet_cc_b0_4e,224,64.52,15.451,1,13.31,0.41,9.42 +regnetz_005,224,64.47,15.487,1,7.12,0.52,5.86 +fastvit_t8,256,64.37,15.515,1,4.03,0.7,8.63 +seresnet18,224,64.3,15.526,1,11.78,1.82,2.49 +rexnet_150,224,64.23,15.544,1,9.73,0.9,11.21 +tf_efficientnetv2_b2,208,64.06,15.584,1,10.1,1.06,6.0 +mobilenetv3_large_150d,256,63.96,15.61,1,14.62,1.03,12.35 +pvt_v2_b0,224,63.86,15.634,1,3.67,0.57,7.99 +regnetx_016,224,63.8,15.648,1,9.19,1.62,7.93 +efficientnet_b1,224,63.79,15.651,1,7.79,0.59,9.36 +mixnet_s,224,63.75,15.663,1,4.13,0.25,6.25 +efficientformerv2_s1,224,63.46,15.736,1,6.19,0.67,7.66 +mobileone_s2,224,63.39,15.751,1,7.88,1.34,11.55 +mobilenetv4_hybrid_medium,224,62.29,16.028,1,11.07,0.98,6.84 +resnet18,224,62.22,16.046,1,11.69,1.82,2.48 +resnet14t,224,62.13,16.072,1,10.08,1.69,5.8 +vit_xsmall_patch16_clip_224,224,62.07,16.087,1,8.28,1.79,6.65 +repvgg_a0,224,62.04,16.092,1,9.11,1.52,3.59 +tf_efficientnet_cc_b0_8e,224,61.37,16.269,1,24.01,0.42,9.42 +nf_regnet_b0,256,61.3,16.286,1,8.76,0.64,5.58 +efficientformer_l1,224,61.29,16.291,1,12.29,1.3,5.53 +repvit_m1_0,224,60.89,16.399,1,7.3,1.13,8.69 +legacy_seresnet18,224,60.78,16.425,1,11.78,1.82,2.49 +convnextv2_atto,288,60.59,16.476,1,3.71,0.91,6.3 +poolformerv2_s12,224,60.47,16.512,1,11.89,1.83,5.53 +tf_efficientnet_lite2,260,59.99,16.647,1,6.09,0.89,12.9 +resnet34,160,59.58,16.758,1,21.8,1.87,1.91 +efficientnet_b1,240,59.08,16.902,1,7.79,0.71,10.88 +eva02_tiny_patch14_224,224,58.77,16.992,1,5.5,1.7,9.14 +xcit_tiny_12_p16_224,224,58.69,17.015,1,6.72,1.24,6.29 +convnext_pico,224,58.47,17.082,1,9.05,1.37,6.1 +convnext_femto_ols,288,58.37,17.107,1,5.23,1.35,8.06 +skresnet18,224,57.26,17.438,1,11.96,1.82,3.24 +resnetblur18,224,56.99,17.521,1,11.69,2.34,3.39 +repvit_m2,224,56.93,17.54,1,8.8,1.36,9.43 +convnext_femto,288,56.87,17.561,1,5.22,1.3,7.56 +edgenext_small_rw,256,56.39,17.709,1,7.83,1.58,9.51 +mobilenetv4_conv_blur_medium,224,56.36,17.718,1,9.72,1.22,8.58 +levit_256d,224,56.23,17.762,1,26.21,1.4,4.93 +repvit_m1_1,224,56.14,17.789,1,8.8,1.36,9.43 +efficientnet_b2_pruned,260,56.09,17.802,1,8.31,0.73,9.13 +resnet18d,224,55.94,17.85,1,11.71,2.06,3.29 +mobilenetv4_conv_medium,320,55.63,17.951,1,9.72,1.71,11.84 +ese_vovnet19b_dw,288,55.61,17.955,1,6.54,2.22,13.63 +tf_efficientnetv2_b1,240,55.54,17.979,1,8.14,1.21,7.34 +mobilenetv4_hybrid_medium,256,55.47,18.002,1,11.07,1.29,9.01 +crossvit_tiny_240,240,55.35,18.041,1,7.01,1.57,9.08 +hgnetv2_b2,288,55.22,18.084,1,11.22,1.89,6.8 +poolformer_s12,224,55.05,18.138,1,11.92,1.82,5.53 +mobilenetv4_conv_aa_medium,256,54.57,18.299,1,9.72,1.58,10.3 +convnext_pico_ols,224,54.47,18.335,1,9.06,1.43,6.5 +tf_efficientnet_b1,240,54.39,18.361,1,7.79,0.71,10.88 +efficientnet_b1,256,53.72,18.59,1,7.79,0.77,12.22 +mobilevit_xs,256,53.72,18.59,1,2.32,1.05,16.33 +xcit_nano_12_p16_384,384,53.61,18.629,1,3.05,1.64,12.15 +ghostnetv2_160,224,53.14,18.791,1,12.39,0.42,7.23 +resnet26,224,52.94,18.865,1,16.0,2.36,7.35 +hgnetv2_b3,224,52.84,18.9,1,16.29,1.78,5.07 +crossvit_9_240,240,52.78,18.922,1,8.55,1.85,9.52 +levit_conv_256d,224,52.46,19.035,1,26.21,1.4,4.93 +cs3darknet_m,256,51.91,19.236,1,9.31,2.08,5.28 +cs3darknet_focus_m,256,51.44,19.417,1,9.3,1.98,4.89 +mixnet_m,224,51.43,19.421,1,5.01,0.36,8.19 +regnetz_b16,224,51.32,19.464,1,9.72,1.45,9.95 +crossvit_9_dagger_240,240,51.29,19.474,1,8.78,1.99,9.97 +dpn48b,224,51.25,19.489,1,9.13,1.69,8.92 +mobilenet_edgetpu_v2_m,256,51.21,19.504,1,8.46,2.42,10.65 +regnety_016,224,51.17,19.52,1,11.2,1.63,8.04 +convnextv2_pico,224,50.82,19.657,1,9.07,1.37,6.1 +efficientnet_b2,256,50.61,19.735,1,9.11,0.89,12.81 +mobilenetv3_large_150d,320,50.08,19.941,1,14.62,1.61,19.29 +nf_regnet_b1,256,49.7,20.096,1,10.22,0.82,7.27 +legacy_seresnext26_32x4d,224,49.5,20.177,1,16.79,2.49,9.39 +mobilenetv4_conv_blur_medium,256,49.26,20.275,1,9.72,1.59,11.2 +mobileone_s3,224,49.26,20.277,1,10.17,1.94,13.85 +mobileone_s0,224,49.2,20.304,1,5.29,1.09,15.48 +tf_mixnet_m,224,49.19,20.305,1,5.01,0.36,8.19 +vit_medium_patch32_clip_224,224,49.16,20.313,1,39.69,2.0,3.34 +convnextv2_femto,288,48.87,20.44,1,5.23,1.3,7.56 +mobilevitv2_100,256,48.56,20.567,1,4.9,1.84,16.08 +repvgg_a1,224,48.34,20.655,1,14.09,2.64,4.74 +gmixer_12_224,224,48.05,20.786,1,12.7,2.67,7.26 +regnetz_005,288,47.79,20.902,1,7.12,0.86,9.68 +edgenext_small,320,47.75,20.917,1,5.59,1.97,14.16 +efficientnet_lite3,300,47.75,20.918,1,8.2,1.65,21.85 +efficientnet_b1,288,47.52,21.022,1,7.79,0.97,15.46 +tiny_vit_5m_224,224,47.52,21.012,1,12.08,1.28,11.25 +regnetz_b16_evos,224,47.13,21.193,1,9.74,1.43,9.95 +ecaresnext50t_32x4d,224,46.88,21.304,1,15.41,2.7,10.09 +resnext50_32x4d,160,46.79,21.347,1,25.03,2.17,7.35 +coat_lite_tiny,224,46.76,21.36,1,5.72,1.6,11.65 +mobilenet_edgetpu_v2_l,224,46.43,21.512,1,10.92,2.55,9.05 +tf_efficientnetv2_b2,260,46.31,21.567,1,10.1,1.72,9.84 +cs3darknet_focus_m,288,46.19,21.624,1,9.3,2.51,6.19 +fbnetv3_g,240,46.17,21.632,1,16.62,1.28,14.87 +xcit_nano_12_p8_224,224,45.93,21.749,1,3.05,2.16,15.71 +ecaresnext26t_32x4d,224,45.83,21.795,1,15.41,2.7,10.09 +efficientnet_b3_pruned,300,45.83,21.793,1,9.86,1.04,11.86 +seresnext26t_32x4d,224,45.82,21.799,1,16.81,2.7,10.09 +resnest14d,224,45.77,21.821,1,10.61,2.76,7.33 +dla34,224,45.69,21.857,1,15.74,3.07,5.02 +rexnet_200,224,45.02,22.186,1,16.37,1.56,14.91 +resnet18,288,44.98,22.209,1,11.69,3.01,4.11 +seresnext26d_32x4d,224,44.67,22.357,1,16.81,2.73,10.19 +eca_resnext26ts,256,44.62,22.384,1,10.3,2.43,10.52 +seresnext26ts,256,44.62,22.387,1,10.39,2.43,10.52 +nf_regnet_b1,288,44.25,22.573,1,10.22,1.02,9.2 +cs3darknet_m,288,44.05,22.676,1,9.31,2.63,6.69 +resnext26ts,256,43.89,22.755,1,10.3,2.43,10.52 +hrnet_w18_small,224,43.65,22.885,1,13.19,1.61,5.72 +resnet50,160,43.63,22.892,1,25.56,2.1,5.67 +gernet_m,224,43.54,22.945,1,21.14,3.02,5.24 +resmlp_12_224,224,43.38,23.027,1,15.35,3.01,5.5 +mobilenetv4_hybrid_medium,320,43.17,23.141,1,11.07,2.05,14.36 +efficientvit_b2,224,43.16,23.139,1,24.33,1.6,14.62 +resnext50_32x4d,176,42.92,23.271,1,25.03,2.71,8.97 +efficientnet_b2,288,42.86,23.307,1,9.11,1.12,16.2 +lambda_resnet26rpt_256,256,42.84,23.317,1,10.99,3.16,11.87 +lambda_resnet26t,256,42.48,23.514,1,10.96,3.02,11.87 +gcresnext26ts,256,42.38,23.57,1,10.48,2.43,10.53 +levit_384,224,42.25,23.643,1,39.13,2.36,6.26 +rexnetr_200,224,42.22,23.653,1,16.52,1.59,15.11 +seresnet18,288,42.19,23.675,1,11.78,3.01,4.11 +efficientnet_cc_b1_8e,240,42.18,23.68,1,39.72,0.75,15.44 +coat_lite_mini,224,42.12,23.714,1,11.01,2.0,12.25 +dpn68,224,42.01,23.778,1,12.61,2.35,10.47 +tf_mixnet_l,224,41.91,23.833,1,7.33,0.58,10.84 +efficientformerv2_s2,224,41.63,23.997,1,12.71,1.27,11.77 +tf_efficientnet_b2,260,41.61,24.005,1,9.11,1.02,13.83 +fastvit_t12,256,41.56,24.039,1,7.55,1.42,12.42 +resnet26d,224,41.27,24.203,1,16.01,2.6,8.15 +nf_regnet_b2,240,41.2,24.245,1,14.31,0.97,7.23 +resnet50d,160,40.99,24.37,1,25.58,2.22,6.08 +eca_botnext26ts_256,256,40.97,24.379,1,10.59,2.46,11.6 +tf_efficientnet_em,240,40.71,24.537,1,6.9,3.04,14.34 +resnet18d,288,40.62,24.592,1,11.71,3.41,5.43 +tf_efficientnetv2_b3,240,40.22,24.835,1,14.36,1.93,9.95 +efficientnetv2_rw_t,224,40.18,24.866,1,13.65,1.93,9.94 +efficientnet_em,240,40.1,24.91,1,6.9,3.04,14.34 +tf_efficientnet_cc_b1_8e,240,40.1,24.913,1,39.72,0.75,15.44 +mixnet_l,224,39.9,25.04,1,7.33,0.58,10.84 +seresnet50,160,39.88,25.05,1,28.09,2.1,5.69 +resnet50,176,39.81,25.095,1,25.56,2.62,6.92 +tf_efficientnet_lite3,300,39.76,25.126,1,8.2,1.65,21.85 +repvgg_b0,224,39.75,25.127,1,15.82,3.41,6.15 +botnet26t_256,256,39.7,25.167,1,12.49,3.32,11.98 +eca_halonext26ts,256,39.59,25.233,1,10.76,2.44,11.46 +levit_conv_384,224,39.52,25.276,1,39.13,2.36,6.26 +mobilevit_s,256,39.42,25.343,1,5.58,2.03,19.94 +hgnetv2_b3,288,39.28,25.432,1,16.29,2.94,8.38 +resnet26t,256,39.22,25.471,1,16.01,3.35,10.52 +dpn68b,224,39.08,25.566,1,12.61,2.35,10.47 +regnetx_032,224,39.08,25.564,1,15.3,3.2,11.37 +ecaresnet50t,160,39.07,25.569,1,25.57,2.21,6.04 +haloregnetz_b,224,38.92,25.668,1,11.68,1.97,11.94 +repvit_m3,224,38.91,25.671,1,10.68,1.89,13.94 +halonet26t,256,38.81,25.741,1,12.48,3.19,11.69 +ecaresnet50d_pruned,224,38.75,25.779,1,19.94,2.53,6.43 +edgenext_small_rw,320,38.68,25.829,1,7.83,2.46,14.85 +fbnetv3_g,288,38.42,26.003,1,16.62,1.77,21.09 +hgnetv2_b4,224,38.42,26.001,1,19.8,2.75,6.7 +coatnet_pico_rw_224,224,38.15,26.193,1,10.85,2.05,14.62 +convit_tiny,224,38.05,26.261,1,5.71,1.26,7.94 +efficientvit_b2,256,38.01,26.282,1,24.33,2.09,19.03 +nf_regnet_b2,272,37.81,26.422,1,14.31,1.22,9.27 +pit_s_224,224,37.65,26.533,1,23.46,2.88,11.56 +seresnext26ts,288,37.55,26.602,1,10.39,3.07,13.32 +resnext26ts,288,37.5,26.641,1,10.3,3.07,13.31 +mobilevitv2_125,256,37.19,26.863,1,7.48,2.86,20.1 +resnet34,224,37.02,26.985,1,21.8,3.67,3.74 +vit_small_patch32_384,384,36.96,27.025,1,22.92,3.45,8.25 +convnext_pico_ols,288,36.86,27.111,1,9.06,2.37,10.74 +pit_s_distilled_224,224,36.78,27.158,1,24.04,2.9,11.64 +tiny_vit_11m_224,224,36.53,27.347,1,20.35,2.04,13.49 +resnetblur18,288,36.4,27.445,1,11.69,3.87,5.6 +resnetrs50,160,36.37,27.467,1,35.69,2.29,6.2 +regnetz_b16,288,36.11,27.668,1,9.72,2.39,16.43 +darknet17,256,36.08,27.687,1,14.3,3.26,7.18 +regnety_032,224,36.05,27.711,1,19.44,3.2,11.26 +gc_efficientnetv2_rw_t,224,35.95,27.794,1,13.68,1.94,9.97 +fastvit_s12,256,35.89,27.845,1,9.47,1.82,13.67 +maxvit_pico_rw_256,256,35.82,27.894,1,7.46,1.83,22.3 +ecaresnet26t,256,35.72,27.972,1,16.01,3.35,10.53 +legacy_seresnet34,224,35.62,28.047,1,21.96,3.67,3.74 +mixer_s16_224,224,35.4,28.223,1,18.53,3.79,5.97 +dla60x,224,35.39,28.232,1,17.35,3.54,13.8 +eca_resnext26ts,288,35.16,28.416,1,10.3,3.07,13.32 +mobileone_s4,224,34.97,28.571,1,14.95,3.04,17.74 +resnet34d,224,34.93,28.602,1,21.82,3.91,4.54 +maxvit_rmlp_pico_rw_256,256,34.8,28.705,1,7.52,1.85,24.86 +convnext_nano,224,34.79,28.717,1,15.59,2.46,8.37 +seresnet34,224,34.75,28.749,1,21.96,3.67,3.74 +regnetz_c16,256,34.57,28.903,1,13.46,2.51,16.57 +resnest26d,224,34.46,28.994,1,17.07,3.64,9.97 +vit_betwixt_patch32_clip_224,224,34.42,29.026,1,61.41,3.09,4.17 +convnext_nano_ols,224,34.3,29.131,1,15.65,2.65,9.38 +gcresnext26ts,288,34.18,29.228,1,10.48,3.07,13.33 +convnextv2_nano,224,33.96,29.419,1,15.62,2.46,8.37 +vit_wee_patch16_reg1_gap_256,256,33.86,29.51,1,13.42,3.83,13.9 +repvit_m1_5,224,33.68,29.667,1,14.64,2.31,15.7 +fastvit_sa12,256,33.64,29.7,1,11.58,1.96,14.03 +regnetz_b16_evos,288,33.34,29.968,1,9.74,2.36,16.43 +xcit_tiny_12_p16_384,384,33.27,30.033,1,6.72,3.64,18.26 +poolformerv2_s24,224,33.25,30.052,1,21.34,3.42,10.68 +hgnet_tiny,224,33.19,30.106,1,14.74,4.54,6.36 +twins_svt_small,224,33.19,30.101,1,24.06,2.94,13.75 +mobilenetv4_hybrid_large_075,256,33.17,30.117,1,22.75,2.06,11.64 +xcit_tiny_24_p16_224,224,33.16,30.134,1,12.12,2.34,11.82 +efficientnet_b3,288,33.12,30.163,1,12.23,1.63,21.49 +resnet26,288,32.71,30.542,1,16.0,3.9,12.15 +nf_regnet_b3,288,32.68,30.576,1,18.59,1.67,11.84 +efficientvit_b2,288,32.57,30.68,1,24.33,2.64,24.03 +gcvit_xxtiny,224,32.5,30.743,1,12.0,2.14,15.36 +cait_xxs24_224,224,32.44,30.799,1,11.96,2.53,20.29 +convnextv2_pico,288,32.09,31.137,1,9.07,2.27,10.08 +skresnet34,224,31.94,31.278,1,22.28,3.67,5.13 +coatnet_nano_cc_224,224,31.9,31.328,1,13.76,2.24,15.02 +mobilenetv4_hybrid_medium,384,31.84,31.377,1,11.07,3.01,21.18 +mixer_b32_224,224,31.83,31.392,1,60.29,3.24,6.29 +hrnet_w18_small_v2,224,31.76,31.451,1,15.6,2.62,9.65 +regnetz_c16_evos,256,31.48,31.744,1,13.49,2.48,16.57 +nf_seresnet26,224,31.29,31.929,1,17.4,2.41,7.36 +rexnetr_200,288,31.29,31.935,1,16.52,2.62,24.96 +regnetx_040,224,31.24,31.982,1,22.12,3.99,12.2 +coatnet_nano_rw_224,224,31.2,32.033,1,15.14,2.41,15.41 +cspresnext50,256,31.19,32.036,1,20.57,4.05,15.86 +dla60_res2next,224,31.19,32.04,1,17.03,3.49,13.17 +nf_resnet26,224,31.16,32.071,1,16.0,2.41,7.35 +coatnext_nano_rw_224,224,31.15,32.082,1,14.7,2.47,12.8 +resnext50_32x4d,224,30.91,32.332,1,25.03,4.26,14.4 +convnext_pico,288,30.83,32.41,1,9.05,2.27,10.08 +vit_pwee_patch16_reg1_gap_256,256,30.75,32.497,1,15.25,4.37,15.87 +regnety_040,224,30.56,32.694,1,20.65,4.0,12.29 +mixnet_xl,224,30.5,32.766,1,11.9,0.93,14.57 +resnet50,224,30.48,32.78,1,25.56,4.11,11.11 +poolformer_s24,224,30.46,32.804,1,21.39,3.41,10.68 +dla60,224,30.28,32.993,1,22.04,4.26,10.16 +seresnext26t_32x4d,288,30.14,33.149,1,16.81,4.46,16.68 +resnetaa34d,224,29.99,33.316,1,21.82,4.43,5.07 +darknet21,256,29.98,33.327,1,20.86,3.93,7.47 +gernet_l,256,29.97,33.343,1,31.08,4.57,8.0 +tf_efficientnetv2_b3,300,29.89,33.434,1,14.36,3.04,15.74 +resnet50t,224,29.81,33.516,1,25.57,4.32,11.82 +resnet26d,288,29.49,33.889,1,16.01,4.29,13.48 +nf_ecaresnet26,224,29.45,33.93,1,16.0,2.41,7.36 +tf_efficientnet_b3,300,29.39,33.995,1,12.23,1.87,23.83 +deit_small_patch16_224,224,29.36,34.032,1,22.05,4.61,11.95 +resnext50d_32x4d,224,29.31,34.096,1,25.05,4.5,15.2 +resnet50d,224,29.3,34.102,1,25.58,4.35,11.92 +resnet50c,224,28.94,34.531,1,25.58,4.35,11.92 +edgenext_base,256,28.92,34.545,1,18.51,3.85,15.58 +skresnet50,224,28.92,34.553,1,25.8,4.11,12.5 +deit_small_distilled_patch16_224,224,28.75,34.757,1,22.44,4.63,12.02 +densenet121,224,28.75,34.76,1,7.98,2.87,6.9 +ecaresnetlight,224,28.74,34.769,1,30.16,4.11,8.42 +nf_regnet_b3,320,28.72,34.794,1,18.59,2.05,14.61 +seresnext50_32x4d,224,28.7,34.812,1,27.56,4.26,14.42 +ecaresnet50d_pruned,288,28.61,34.922,1,19.94,4.19,10.61 +twins_pcpvt_small,224,28.57,34.969,1,24.11,3.83,18.08 +efficientnetv2_rw_t,288,28.56,34.992,1,13.65,3.19,16.42 +legacy_seresnet50,224,28.54,35.008,1,28.09,3.88,10.6 +coatnet_rmlp_nano_rw_224,224,28.35,35.248,1,15.15,2.62,20.34 +deit3_small_patch16_224,224,28.3,35.317,1,22.06,4.61,11.95 +resnet32ts,256,28.3,35.316,1,17.96,4.63,11.58 +seresnext26d_32x4d,288,28.24,35.385,1,16.81,4.51,16.85 +seresnet50,224,28.23,35.388,1,28.09,4.11,11.13 +mobilevitv2_150,256,28.2,35.435,1,10.59,4.09,24.11 +legacy_seresnext50_32x4d,224,28.16,35.481,1,27.56,4.26,14.42 +cs3darknet_l,256,28.08,35.587,1,21.16,4.86,8.55 +resnet50_gn,224,27.93,35.772,1,25.56,4.14,11.11 +ecaresnet101d_pruned,224,27.91,35.796,1,24.88,3.48,7.69 +gcresnext50ts,256,27.84,35.895,1,15.67,3.75,15.46 +hgnetv2_b4,288,27.83,35.909,1,19.8,4.54,11.08 +efficientnet_b3,320,27.78,35.977,1,12.23,2.01,26.52 +caformer_s18,224,27.71,36.057,1,26.34,4.13,19.39 +pvt_v2_b1,224,27.63,36.165,1,14.01,2.12,15.39 +cs3darknet_focus_l,256,27.57,36.242,1,21.15,4.66,8.03 +cspresnet50,256,27.54,36.281,1,21.62,4.54,11.5 +resnet26t,320,27.51,36.326,1,16.01,5.24,16.44 +densenetblur121d,224,27.46,36.385,1,8.0,3.11,7.9 +skresnet50d,224,27.46,36.393,1,25.82,4.36,13.31 +resnetv2_50,224,27.39,36.486,1,25.55,4.11,11.11 +cspresnet50d,256,27.36,36.525,1,21.64,4.86,12.55 +ecaresnet50t,224,27.34,36.544,1,25.57,4.32,11.83 +dpn68b,288,27.22,36.717,1,12.61,3.89,17.3 +efficientnet_b3_gn,288,27.22,36.708,1,11.73,1.74,23.35 +resnetv2_50d,224,27.21,36.721,1,25.57,4.35,11.92 +efficientformer_l3,224,27.2,36.738,1,31.41,3.93,12.01 +gc_efficientnetv2_rw_t,288,27.05,36.95,1,13.68,3.2,16.45 +res2next50,224,27.0,37.006,1,24.67,4.2,13.71 +ecaresnet50d,224,26.97,37.048,1,25.58,4.35,11.93 +fastvit_mci0,256,26.96,37.067,1,11.41,2.42,18.29 +gmlp_s16_224,224,26.92,37.128,1,19.42,4.42,15.1 +res2net50_26w_4s,224,26.87,37.194,1,25.7,4.28,12.61 +vit_tiny_patch16_384,384,26.83,37.249,1,5.79,4.7,25.39 +vit_small_patch16_224,224,26.71,37.412,1,22.05,4.61,11.95 +convnext_tiny,224,26.62,37.534,1,28.59,4.47,13.44 +eca_resnet33ts,256,26.56,37.626,1,19.68,4.76,11.66 +regnetv_040,224,26.53,37.665,1,20.64,4.0,12.29 +skresnext50_32x4d,224,26.51,37.688,1,27.48,4.5,17.18 +vit_relpos_small_patch16_rpn_224,224,26.5,37.708,1,21.97,4.59,13.05 +seresnet50t,224,26.45,37.776,1,28.1,4.32,11.83 +eva02_tiny_patch14_336,336,26.39,37.866,1,5.76,4.68,27.16 +mobilenetv4_hybrid_medium,448,26.36,37.913,1,11.07,4.2,29.64 +vit_small_r26_s32_224,224,26.29,38.004,1,36.43,3.56,9.85 +gcvit_xtiny,224,26.28,38.018,1,19.98,2.93,20.26 +vit_relpos_small_patch16_224,224,26.23,38.099,1,21.98,4.59,13.05 +rexnetr_300,224,26.17,38.18,1,34.81,3.39,22.16 +regnety_040_sgn,224,26.08,38.315,1,20.65,4.03,12.29 +mobilenetv4_conv_large,256,26.05,38.363,1,32.59,2.86,12.14 +res2net50_48w_2s,224,26.05,38.36,1,25.29,4.18,11.72 +resnet33ts,256,26.05,38.358,1,19.68,4.76,11.66 +inception_next_tiny,224,25.94,38.523,1,28.06,4.19,11.98 +resnetblur50,224,25.93,38.542,1,25.56,5.16,12.02 +dla60_res2net,224,25.89,38.592,1,20.85,4.15,12.34 +sedarknet21,256,25.87,38.621,1,20.95,3.93,7.47 +xcit_tiny_12_p8_224,224,25.82,38.703,1,6.71,4.81,23.6 +gcresnet33ts,256,25.8,38.728,1,19.88,4.76,11.68 +resnetv2_50t,224,25.78,38.759,1,25.57,4.32,11.82 +mobilenetv4_conv_large,320,25.68,38.912,1,32.59,4.47,18.97 +resnetrs50,224,25.6,39.031,1,35.69,4.48,12.14 +resnetaa50,224,25.59,39.051,1,25.56,5.15,11.64 +cs3sedarknet_l,256,25.57,39.083,1,21.91,4.86,8.56 +seresnet33ts,256,25.55,39.113,1,19.78,4.76,11.66 +vit_base_patch32_clip_quickgelu_224,224,25.52,39.162,1,87.85,4.41,5.01 +res2net50d,224,25.41,39.319,1,25.72,4.52,13.41 +resnet50_clip_gap,224,25.33,39.444,1,23.53,5.39,12.44 +gmixer_24_224,224,25.32,39.467,1,24.72,5.28,14.45 +resnet101,160,25.18,39.69,1,44.55,4.0,8.28 +rexnet_300,224,25.16,39.723,1,34.71,3.44,22.4 +resnetaa50d,224,25.13,39.772,1,25.58,5.39,12.44 +resnetblur50d,224,25.03,39.922,1,25.58,5.4,12.82 +efficientformerv2_l,224,24.99,39.986,1,26.32,2.59,18.54 +resnet34,288,24.98,40.004,1,21.8,6.07,6.18 +vit_srelpos_small_patch16_224,224,24.97,40.028,1,21.97,4.59,12.16 +hiera_tiny_224,224,24.89,40.14,1,27.91,4.91,17.13 +res2net50_14w_8s,224,24.78,40.33,1,25.06,4.21,13.28 +regnety_032,288,24.68,40.5,1,19.44,5.29,18.61 +resnetv2_50d_frn,224,24.63,40.576,1,25.59,4.33,11.92 +densenet169,224,24.61,40.608,1,14.15,3.4,7.3 +resnet33ts,288,24.57,40.672,1,19.68,6.02,14.75 +efficientnet_b3_g8_gn,288,24.55,40.716,1,14.25,2.59,23.35 +convnextv2_tiny,224,24.54,40.715,1,28.64,4.47,13.44 +sehalonet33ts,256,24.53,40.735,1,13.69,3.55,14.7 +resnetv2_50d_gn,224,24.52,40.755,1,25.57,4.38,11.92 +vit_base_patch32_clip_224,224,24.37,41.007,1,88.22,4.41,5.01 +davit_tiny,224,24.36,41.026,1,28.36,4.54,18.89 +convnext_nano,288,24.35,41.038,1,15.59,4.06,13.84 +coat_lite_small,224,24.34,41.057,1,19.84,3.96,22.09 +convnextv2_nano,288,24.34,41.052,1,15.62,4.06,13.84 +ecaresnet26t,320,24.25,41.216,1,16.01,5.24,16.44 +pvt_v2_b2_li,224,24.06,41.533,1,22.55,3.91,27.6 +regnetz_c16,320,24.0,41.635,1,13.46,3.92,25.88 +resnest50d_4s2x40d,224,23.98,41.674,1,30.42,4.4,17.94 +resnet34d,288,23.92,41.785,1,21.82,6.47,7.51 +vit_base_patch32_224,224,23.74,42.092,1,88.22,4.41,5.01 +gcresnext50ts,288,23.72,42.132,1,15.67,4.75,19.57 +efficientnet_b3_gn,320,23.7,42.166,1,11.73,2.14,28.83 +seresnet34,288,23.69,42.184,1,21.96,6.07,6.18 +resnet50s,224,23.56,42.42,1,25.68,5.47,13.52 +repvgg_a2,224,23.52,42.486,1,28.21,5.7,6.26 +seresnetaa50d,224,23.38,42.748,1,28.11,5.4,12.46 +convformer_s18,224,23.35,42.802,1,26.77,3.96,15.82 +vit_small_resnet26d_224,224,23.28,42.926,1,63.61,5.07,11.12 +sam2_hiera_tiny,224,23.24,42.996,1,26.85,4.91,17.12 +flexivit_small,240,23.15,43.162,1,22.06,5.35,14.18 +poolformerv2_s36,224,23.1,43.266,1,30.79,5.01,15.82 +resnetv2_50d_evos,224,23.02,43.404,1,25.59,4.33,11.92 +xcit_small_12_p16_224,224,23.02,43.419,1,26.25,4.82,12.58 +cait_xxs36_224,224,22.89,43.667,1,17.3,3.77,30.34 +convnext_tiny_hnf,224,22.84,43.758,1,28.59,4.47,13.44 +tiny_vit_21m_224,224,22.73,43.971,1,33.22,4.29,20.08 +resnet101,176,22.71,44.012,1,44.55,4.92,10.08 +tf_efficientnet_lite4,380,22.62,44.185,1,13.01,4.04,45.66 +coatnet_bn_0_rw_224,224,22.61,44.203,1,27.44,4.67,22.04 +resnet32ts,288,22.61,44.196,1,17.96,5.86,14.65 +maxvit_nano_rw_256,256,22.59,44.245,1,15.45,4.46,30.28 +convnext_nano_ols,288,22.45,44.517,1,15.65,4.38,15.5 +resnest50d,224,22.45,44.512,1,27.48,5.4,14.36 +regnetz_c16_evos,320,22.44,44.548,1,13.49,3.86,25.88 +visformer_small,224,22.38,44.663,1,40.22,4.88,11.43 +ese_vovnet39b,224,22.3,44.813,1,24.57,7.09,6.74 +maxvit_rmlp_nano_rw_256,256,22.28,44.85,1,15.5,4.47,31.92 +cs3darknet_focus_l,288,22.27,44.874,1,21.15,5.9,10.16 +resmlp_24_224,224,22.22,44.978,1,30.02,5.96,10.91 +regnetx_064,224,22.15,45.129,1,26.21,6.49,16.37 +convmixer_1024_20_ks9_p14,224,22.09,45.242,1,24.38,5.55,5.51 +selecsls60,224,22.09,45.246,1,30.67,3.59,5.52 +tresnet_m,224,22.09,45.236,1,31.39,5.75,7.31 +nextvit_small,224,22.04,45.35,1,31.76,5.81,18.44 +ecaresnet50t,256,21.83,45.776,1,25.57,5.64,15.45 +lambda_resnet50ts,256,21.8,45.839,1,21.54,5.07,17.48 +resnet50_clip,224,21.77,45.907,1,38.32,6.14,12.98 +mobilevitv2_175,256,21.73,45.985,1,14.25,5.54,28.13 +seresnet33ts,288,21.65,46.163,1,19.78,6.02,14.76 +vit_little_patch16_reg1_gap_256,256,21.63,46.198,1,22.52,6.27,18.06 +cs3darknet_l,288,21.62,46.225,1,21.16,6.16,10.83 +poolformer_s36,224,21.62,46.237,1,30.86,5.0,15.82 +selecsls42,224,21.54,46.391,1,30.35,2.94,4.62 +gcresnet50t,256,21.51,46.467,1,25.9,5.42,14.67 +vit_little_patch16_reg4_gap_256,256,21.51,46.462,1,22.52,6.35,18.33 +inception_v3,299,21.48,46.52,1,23.83,5.73,8.97 +efficientnetv2_s,288,21.43,46.639,1,21.46,4.75,20.13 +dla102x,224,21.31,46.899,1,26.31,5.89,19.42 +hgnet_tiny,288,21.24,47.063,1,14.74,7.51,10.51 +regnetz_040_h,256,21.23,47.076,1,28.94,4.12,24.29 +selecsls60b,224,21.23,47.084,1,32.77,3.63,5.52 +sebotnet33ts_256,256,21.22,47.09,1,13.7,3.89,17.46 +coatnet_0_rw_224,224,21.11,47.346,1,27.44,4.43,18.73 +gcresnet33ts,288,21.11,47.353,1,19.88,6.02,14.78 +edgenext_base,320,21.02,47.535,1,18.51,6.01,24.32 +resnetv2_50x1_bit,224,20.97,47.659,1,25.55,4.23,11.11 +resnest50d_1s4x24d,224,20.96,47.676,1,25.68,4.43,13.57 +densenet121,288,20.94,47.724,1,7.98,4.74,11.41 +mvitv2_tiny,224,20.94,47.716,1,24.17,4.7,21.16 +levit_512,224,20.93,47.75,1,95.17,5.64,10.22 +vit_base_patch32_clip_256,256,20.88,47.863,1,87.86,5.76,6.65 +eca_resnet33ts,288,20.85,47.947,1,19.68,6.02,14.76 +efficientvit_b3,224,20.85,47.936,1,48.65,3.99,26.9 +regnetz_040,256,20.81,48.025,1,27.12,4.06,24.19 +regnetz_d8,256,20.72,48.241,1,23.37,3.97,23.74 +resnetaa34d,288,20.68,48.319,1,21.82,7.33,8.38 +regnety_064,224,20.66,48.367,1,30.58,6.39,16.41 +eca_vovnet39b,224,20.63,48.456,1,22.6,7.09,6.74 +fastvit_sa24,256,20.6,48.531,1,21.55,3.8,24.32 +regnety_040,288,20.57,48.586,1,20.65,6.61,20.3 +eva02_small_patch14_224,224,20.51,48.731,1,21.62,6.14,18.28 +coatnet_rmlp_0_rw_224,224,20.41,48.965,1,27.45,4.72,24.89 +regnetz_d8_evos,256,20.41,48.979,1,23.46,4.5,24.92 +resnet50_mlp,256,20.4,48.996,1,26.65,7.05,16.25 +cspresnet50w,256,20.38,49.046,1,28.12,5.04,12.19 +cs3sedarknet_l,288,20.36,49.078,1,21.91,6.16,10.83 +resnet50,288,20.27,49.302,1,25.56,6.8,18.37 +tnt_s_patch16_224,224,20.22,49.434,1,23.76,5.24,24.37 +selecsls42b,224,20.21,49.453,1,32.46,2.98,4.62 +crossvit_15_240,240,20.18,49.54,1,27.53,5.81,19.77 +efficientnetv2_rw_s,288,20.17,49.545,1,23.94,4.91,21.41 +nf_regnet_b4,320,20.15,49.614,1,30.21,3.29,19.88 +levit_512d,224,20.1,49.719,1,92.5,5.85,11.3 +densenetblur121d,288,20.05,49.842,1,8.0,5.14,13.06 +coatnet_0_224,224,20.03,49.905,1,25.04,4.58,24.01 +maxxvit_rmlp_nano_rw_256,256,20.03,49.896,1,16.78,4.37,26.05 +efficientnet_b3_g8_gn,320,19.99,49.99,1,14.25,3.2,28.83 +lamhalobotnet50ts_256,256,19.98,50.023,1,22.57,5.02,18.44 +nest_tiny,224,19.98,50.035,1,17.06,5.83,25.48 +repvit_m2_3,224,19.97,50.049,1,23.69,4.57,26.21 +mobilenetv4_conv_large,384,19.92,50.188,1,32.59,6.43,27.31 +mixnet_xxl,224,19.9,50.236,1,23.96,2.04,23.43 +efficientnet_b4,320,19.87,50.313,1,19.34,3.13,34.76 +cs3sedarknet_xdw,256,19.74,50.637,1,21.6,5.97,17.18 +focalnet_tiny_srf,224,19.63,50.908,1,28.43,4.42,16.32 +vovnet39a,224,19.45,51.376,1,22.6,7.09,6.73 +nest_tiny_jx,224,19.42,51.473,1,17.06,5.83,25.48 +tf_efficientnetv2_s,300,19.41,51.505,1,21.46,5.35,22.73 +cspdarknet53,256,19.38,51.573,1,27.64,6.57,16.81 +crossvit_15_dagger_240,240,19.31,51.749,1,28.21,6.13,20.43 +crossvit_small_240,240,19.31,51.758,1,26.86,5.63,18.17 +ese_vovnet39b_evos,224,19.31,51.751,1,24.58,7.07,6.74 +halonet50ts,256,19.29,51.811,1,22.73,5.3,19.2 +resnet50t,288,19.24,51.951,1,25.57,7.14,19.53 +efficientvit_l1,224,19.21,52.041,1,52.65,5.27,15.85 +resnext50_32x4d,288,19.14,52.223,1,25.03,7.04,23.81 +ecaresnet101d_pruned,288,19.12,52.28,1,24.88,5.75,12.71 +resnet50d,288,19.02,52.56,1,25.58,7.19,19.7 +dla102,224,19.0,52.604,1,33.27,7.19,14.18 +hrnet_w18,224,18.91,52.842,1,21.3,4.32,16.31 +eca_nfnet_l0,224,18.9,52.886,1,24.14,4.35,10.47 +deit3_medium_patch16_224,224,18.81,53.125,1,38.85,8.0,15.93 +regnetv_064,224,18.81,53.15,1,30.58,6.39,16.41 +resnet51q,256,18.74,53.325,1,35.7,6.38,16.55 +levit_conv_512,224,18.66,53.577,1,95.17,5.64,10.22 +seresnet50,288,18.63,53.661,1,28.09,6.8,18.39 +nf_ecaresnet50,224,18.58,53.793,1,25.56,4.21,11.13 +resnext50d_32x4d,288,18.58,53.804,1,25.05,7.44,25.13 +regnetx_080,224,18.54,53.896,1,39.57,8.02,14.06 +xcit_tiny_24_p16_384,384,18.53,53.945,1,12.12,6.87,34.29 +ecaresnetlight,288,18.49,54.067,1,30.16,6.79,13.91 +efficientnet_lite4,380,18.46,54.139,1,13.01,4.04,45.66 +res2net50_26w_6s,224,18.45,54.179,1,37.05,6.33,15.28 +hiera_small_224,224,18.4,54.311,1,35.01,6.42,20.75 +nf_seresnet50,224,18.35,54.466,1,28.09,4.21,11.13 +efficientnet_el_pruned,300,18.29,54.65,1,10.59,8.0,30.7 +mobilenetv4_conv_aa_large,384,18.24,54.793,1,32.59,7.07,32.29 +hgnet_small,224,18.18,54.971,1,24.36,8.53,8.79 +seresnext50_32x4d,288,18.17,55.012,1,27.56,7.04,23.82 +regnetv_040,288,18.16,55.041,1,20.64,6.6,20.3 +nfnet_l0,224,18.13,55.121,1,35.07,4.36,10.47 +resnet152,160,18.13,55.135,1,60.19,5.9,11.51 +tf_efficientnet_el,300,18.09,55.246,1,10.59,8.0,30.7 +maxvit_tiny_rw_224,224,18.08,55.285,1,29.06,5.11,33.11 +levit_conv_512d,224,18.04,55.4,1,92.5,5.85,11.3 +regnetz_d32,256,18.03,55.442,1,27.58,5.98,23.74 +efficientnet_el,300,18.01,55.489,1,10.59,8.0,30.7 +botnet50ts_256,256,17.92,55.786,1,22.74,5.54,22.23 +coat_tiny,224,17.9,55.83,1,5.5,4.35,27.2 +convit_small,224,17.82,56.107,1,27.78,5.76,17.87 +hgnetv2_b5,224,17.81,56.119,1,39.57,6.56,11.19 +focalnet_tiny_lrf,224,17.77,56.251,1,28.65,4.49,17.76 +densenet201,224,17.74,56.353,1,20.01,4.34,7.85 +gcresnet50t,288,17.53,57.015,1,25.9,6.86,18.57 +ecaresnet50d,288,17.4,57.445,1,25.58,7.19,19.72 +ecaresnet50t,288,17.4,57.452,1,25.57,7.14,19.55 +rexnetr_300,288,17.39,57.482,1,34.81,5.59,36.61 +seresnet50t,288,17.39,57.487,1,28.1,7.14,19.55 +maxxvitv2_nano_rw_256,256,17.38,57.518,1,23.7,6.26,23.05 +rdnet_tiny,224,17.34,57.657,1,23.86,5.06,15.98 +resnet101,224,17.34,57.657,1,44.55,7.83,16.23 +vit_relpos_medium_patch16_rpn_224,224,17.33,57.668,1,38.73,7.97,17.02 +resnet50_gn,288,17.29,57.794,1,25.56,6.85,18.37 +resnetrs101,192,17.26,57.911,1,63.62,6.04,12.7 +mobilevitv2_200,256,17.22,58.054,1,18.45,7.22,32.15 +dpn92,224,17.19,58.161,1,37.67,6.54,18.21 +regnety_040_sgn,288,17.19,58.137,1,20.65,6.67,20.3 +regnety_080,224,17.19,58.131,1,39.18,8.0,17.97 +vit_relpos_medium_patch16_224,224,17.17,58.219,1,38.75,7.97,17.02 +vit_medium_patch16_clip_224,224,17.15,58.278,1,38.59,8.0,15.93 +resnetv2_101,224,17.14,58.329,1,44.54,7.83,16.23 +resnetv2_50,288,17.09,58.478,1,25.55,6.79,18.37 +cs3darknet_focus_x,256,17.05,58.614,1,35.02,8.03,10.69 +xcit_nano_12_p8_384,384,16.99,58.831,1,3.05,6.34,46.08 +fastvit_mci1,256,16.98,58.858,1,21.54,4.72,32.84 +convnext_tiny,288,16.97,58.884,1,28.59,7.39,22.21 +resnet101c,224,16.95,58.961,1,44.57,8.08,17.04 +vit_relpos_medium_patch16_cls_224,224,16.95,58.979,1,38.76,8.03,18.24 +resnetv2_101d,224,16.89,59.16,1,44.56,8.07,17.04 +darknetaa53,256,16.8,59.481,1,36.02,7.97,12.39 +halo2botnet50ts_256,256,16.78,59.557,1,22.64,5.02,21.78 +volo_d1_224,224,16.72,59.796,1,26.63,6.94,24.43 +resnetaa50,288,16.69,59.883,1,25.56,8.52,19.24 +efficientvit_b3,256,16.66,60.01,1,48.65,5.2,35.01 +twins_pcpvt_base,224,16.65,60.03,1,43.83,6.68,25.25 +resnet61q,256,16.62,60.14,1,36.85,7.8,17.01 +resnetblur50,288,16.61,60.191,1,25.56,8.52,19.87 +vit_base_resnet26d_224,224,16.58,60.287,1,101.4,6.97,13.16 +gcvit_tiny,224,16.52,60.518,1,28.22,4.79,29.82 +resnet101d,224,16.51,60.551,1,44.57,8.08,17.04 +pvt_v2_b2,224,16.5,60.588,1,25.36,4.05,27.53 +cs3darknet_x,256,16.43,60.827,1,35.05,8.38,11.35 +ese_vovnet57b,224,16.42,60.873,1,38.61,8.95,7.52 +legacy_xception,299,16.38,61.034,1,22.86,8.4,35.83 +caformer_s36,224,16.37,61.082,1,39.3,8.0,37.53 +resnet152,176,16.36,61.094,1,60.19,7.22,13.99 +vit_base_patch32_plus_256,256,16.32,61.244,1,119.48,7.79,7.76 +regnety_080_tv,224,16.31,61.303,1,39.38,8.51,19.73 +nf_regnet_b4,384,16.3,61.318,1,30.21,4.7,28.61 +resnetblur50d,288,16.16,61.857,1,25.58,8.92,21.19 +nf_resnet50,256,16.12,62.022,1,25.56,5.46,14.52 +resnetaa50d,288,16.12,62.011,1,25.58,8.92,20.57 +legacy_seresnet101,224,16.09,62.122,1,49.33,7.61,15.74 +vit_relpos_base_patch32_plus_rpn_256,256,16.08,62.159,1,119.42,7.68,8.01 +vitamin_small_224,224,16.02,62.397,1,22.03,5.92,26.38 +convnextv2_tiny,288,16.0,62.486,1,28.64,7.39,22.21 +swin_s3_tiny_224,224,15.94,62.698,1,28.33,4.64,19.13 +resnet101_clip_gap,224,15.8,63.277,1,42.52,9.11,17.56 +resnext101_32x4d,224,15.77,63.375,1,44.18,8.01,21.23 +legacy_seresnext101_32x4d,224,15.62,63.985,1,48.96,8.02,21.26 +ecaresnet50t,320,15.61,64.017,1,25.57,8.82,24.13 +seresnext101_32x4d,224,15.61,64.046,1,48.96,8.02,21.26 +cs3sedarknet_x,256,15.58,64.167,1,35.4,8.38,11.35 +seresnetaa50d,288,15.52,64.403,1,28.11,8.92,20.59 +resnet51q,288,15.5,64.477,1,35.7,8.07,20.94 +nextvit_base,224,15.45,64.681,1,44.82,8.29,23.71 +vit_srelpos_medium_patch16_224,224,15.43,64.774,1,38.74,7.96,16.21 +vovnet57a,224,15.4,64.912,1,36.64,8.95,7.52 +resnet101s,224,15.39,64.967,1,44.67,9.19,18.64 +seresnet101,224,15.38,64.992,1,49.33,7.84,16.27 +resnetaa101d,224,15.21,65.73,1,44.57,9.12,17.56 +ecaresnet101d,224,15.14,66.034,1,44.57,8.08,17.07 +mvitv2_small,224,15.14,66.027,1,34.87,7.0,28.08 +repvgg_b1g4,224,15.08,66.265,1,39.97,8.15,10.64 +resnetblur101d,224,15.07,66.319,1,44.57,9.12,17.94 +resmlp_36_224,224,15.04,66.459,1,44.69,8.91,16.33 +efficientvit_l2,224,15.01,66.578,1,63.71,6.97,19.58 +hrnet_w18_ssld,224,15.01,66.595,1,21.3,4.32,16.31 +hieradet_small,256,15.0,66.639,1,34.72,8.51,27.76 +regnetz_040_h,320,15.0,66.65,1,28.94,6.43,37.94 +hiera_small_abswin_256,256,14.93,66.937,1,34.36,8.29,26.38 +regnetz_d8,320,14.89,67.145,1,23.37,6.19,37.08 +vit_medium_patch16_gap_240,240,14.88,67.192,1,44.4,9.22,18.81 +maxvit_tiny_tf_224,224,14.78,67.612,1,30.92,5.6,35.78 +tresnet_v2_l,224,14.74,67.805,1,46.17,8.85,16.34 +vit_base_r26_s32_224,224,14.74,67.808,1,101.38,6.81,12.36 +fastvit_sa36,256,14.73,67.874,1,31.53,5.64,34.61 +res2net101_26w_4s,224,14.73,67.84,1,45.21,8.1,18.45 +ese_vovnet39b,288,14.65,68.251,1,24.57,11.71,11.13 +tf_efficientnet_b4,380,14.63,68.312,1,19.34,4.49,49.49 +efficientnet_b4,384,14.42,69.335,1,19.34,4.51,50.04 +res2net101d,224,14.35,69.65,1,45.23,8.35,19.25 +dla102x2,224,14.29,69.96,1,41.28,9.34,29.91 +regnetz_040,320,14.25,70.144,1,27.12,6.35,37.78 +darknet53,256,14.22,70.293,1,41.61,9.31,12.39 +resnet101_clip,224,14.2,70.412,1,56.26,9.81,18.08 +xcit_tiny_24_p8_224,224,14.19,70.43,1,12.11,9.21,45.39 +regnetz_d8_evos,320,14.17,70.558,1,23.46,7.03,38.92 +resnetv2_50d_gn,288,14.15,70.641,1,25.57,7.24,19.7 +mobilenetv4_hybrid_large,384,14.13,70.77,1,37.76,7.77,34.52 +efficientvit_b3,288,14.11,70.869,1,48.65,6.58,44.2 +convnextv2_nano,384,14.05,71.163,1,15.62,7.22,24.61 +res2net50_26w_8s,224,14.04,71.2,1,48.4,8.37,17.95 +darknetaa53,288,14.0,71.413,1,36.02,10.08,15.68 +xception41p,299,14.0,71.38,1,26.91,9.25,39.86 +selecsls84,224,13.98,71.492,1,50.95,5.9,7.57 +crossvit_18_240,240,13.96,71.63,1,43.27,9.05,26.26 +nf_resnet50,288,13.95,71.667,1,25.56,6.88,18.37 +hrnet_w18_ssld,288,13.94,71.685,1,21.3,7.14,26.96 +vit_base_resnet50d_224,224,13.9,71.926,1,110.97,8.73,16.92 +resnet101d,256,13.83,72.262,1,44.57,10.55,22.25 +convformer_s36,224,13.8,72.438,1,40.01,7.67,30.5 +eca_nfnet_l0,288,13.77,72.613,1,24.14,7.12,17.29 +crossvit_18_dagger_240,240,13.74,72.779,1,44.27,9.5,27.03 +regnety_064,288,13.72,72.855,1,30.58,10.56,27.11 +convnext_small,224,13.67,73.118,1,50.22,8.71,21.56 +inception_next_small,224,13.67,73.105,1,49.37,8.36,19.27 +mvitv2_small_cls,224,13.66,73.202,1,34.87,7.04,28.17 +poolformerv2_m36,224,13.66,73.166,1,56.08,8.81,22.02 +densenet161,224,13.58,73.622,1,28.68,7.79,11.06 +efficientnetv2_s,384,13.56,73.714,1,21.46,8.44,35.77 +tf_efficientnetv2_s,384,13.52,73.932,1,21.46,8.44,35.77 +nfnet_l0,288,13.49,74.084,1,35.07,7.13,17.29 +mobilevitv2_150,384,13.48,74.141,1,10.59,9.2,54.25 +coat_mini,224,13.45,74.346,1,10.34,6.82,33.68 +convnext_tiny_hnf,288,13.42,74.494,1,28.59,7.39,22.21 +vit_medium_patch16_gap_256,256,13.41,74.536,1,38.86,10.59,22.15 +swinv2_cr_tiny_224,224,13.37,74.759,1,28.33,4.66,28.45 +resnet61q,288,13.36,74.793,1,36.85,9.87,21.52 +resnetv2_50d_evos,288,13.35,74.854,1,25.59,7.15,19.7 +vit_medium_patch16_reg1_gap_256,256,13.34,74.917,1,38.88,10.63,22.26 +hiera_base_224,224,13.32,75.074,1,51.52,9.4,30.42 +maxxvit_rmlp_tiny_rw_256,256,13.31,75.078,1,29.64,6.66,39.76 +vit_medium_patch16_rope_reg1_gap_256,256,13.29,75.192,1,38.74,10.63,22.26 +xception41,299,13.25,75.445,1,26.97,9.28,39.86 +efficientnetv2_rw_s,384,13.21,75.671,1,23.94,8.72,38.03 +swinv2_cr_tiny_ns_224,224,13.19,75.808,1,28.33,4.66,28.45 +cs3darknet_x,288,13.16,75.972,1,35.05,10.6,14.36 +vit_medium_patch16_reg4_gap_256,256,13.11,76.222,1,38.88,10.76,22.6 +resnetv2_101x1_bit,224,13.02,76.755,1,44.54,8.04,16.23 +twins_svt_base,224,12.99,76.97,1,56.07,8.59,26.33 +coatnet_rmlp_1_rw_224,224,12.93,77.316,1,41.69,7.85,35.47 +convnextv2_small,224,12.84,77.862,1,50.32,8.71,21.56 +mobilenetv4_conv_large,448,12.81,78.014,1,32.59,8.75,37.17 +cs3sedarknet_x,288,12.68,78.865,1,35.4,10.6,14.37 +regnetx_120,224,12.63,79.151,1,46.11,12.13,21.37 +xcit_small_24_p16_224,224,12.59,79.418,1,47.67,9.1,23.64 +davit_small,224,12.56,79.582,1,49.75,8.8,30.49 +poolformer_m36,224,12.5,79.957,1,56.17,8.8,22.02 +coatnet_1_rw_224,224,12.42,80.466,1,41.72,8.04,34.6 +swin_tiny_patch4_window7_224,224,12.42,80.508,1,28.29,4.51,17.06 +coatnet_rmlp_1_rw2_224,224,12.39,80.67,1,41.72,8.11,40.13 +hrnet_w30,224,12.38,80.735,1,37.71,8.15,21.21 +hrnet_w32,224,12.34,81.003,1,41.23,8.97,22.02 +tresnet_l,224,12.28,81.411,1,55.99,10.9,11.9 +wide_resnet50_2,176,12.22,81.798,1,68.88,7.29,8.97 +resnet152,224,12.12,82.493,1,60.19,11.56,22.56 +resnext101_32x8d,176,12.11,82.522,1,88.79,10.33,19.37 +regnetv_064,288,12.09,82.675,1,30.58,10.55,27.11 +resnet152d,224,12.09,82.714,1,60.21,11.8,23.36 +resnet152c,224,12.08,82.742,1,60.21,11.8,23.36 +regnety_120,224,12.07,82.847,1,51.82,12.14,21.38 +pvt_v2_b3,224,12.06,82.917,1,45.24,6.92,37.7 +vit_small_r26_s32_384,384,12.05,82.953,1,36.47,10.43,29.85 +darknet53,288,12.01,83.223,1,41.61,11.78,15.68 +dla169,224,12.0,83.33,1,53.39,11.6,20.2 +nextvit_large,224,11.87,84.205,1,57.87,10.78,28.99 +cait_s24_224,224,11.85,84.345,1,46.92,9.35,40.58 +efficientvit_l2,256,11.85,84.387,1,63.71,9.09,25.49 +hgnet_small,288,11.83,84.498,1,24.36,14.09,14.53 +cs3edgenet_x,256,11.82,84.601,1,47.82,11.53,12.92 +fastvit_mci2,256,11.77,84.931,1,35.82,7.91,43.34 +twins_pcpvt_large,224,11.75,85.04,1,60.99,9.84,35.82 +mobilenetv4_conv_aa_large,448,11.69,85.545,1,32.59,9.63,43.94 +vit_small_resnet50d_s16_224,224,11.61,86.102,1,57.53,13.48,24.82 +fastvit_ma36,256,11.6,86.188,1,44.07,7.88,41.09 +efficientformer_l7,224,11.59,86.272,1,82.23,10.17,24.45 +regnetz_d32,320,11.54,86.648,1,27.58,9.33,37.08 +rdnet_small,224,11.51,86.884,1,50.44,8.74,22.55 +legacy_seresnet152,224,11.4,87.709,1,66.82,11.33,22.08 +hgnetv2_b5,288,11.33,88.251,1,39.57,10.84,18.5 +coatnet_1_224,224,11.32,88.289,1,42.23,8.7,39.0 +resnetv2_152d,224,11.31,88.39,1,60.2,11.8,23.36 +regnety_080,288,11.26,88.798,1,39.18,13.22,29.69 +nest_small_jx,224,11.24,88.941,1,38.35,10.35,40.04 +mixer_b16_224,224,11.22,89.103,1,59.88,12.62,14.53 +levit_384_s8,224,11.2,89.297,1,39.12,9.98,35.86 +resnetv2_152,224,11.2,89.225,1,60.19,11.55,22.56 +nf_resnet101,224,11.16,89.569,1,44.55,8.01,16.23 +inception_v4,299,11.15,89.619,1,42.68,12.28,15.09 +resnet152s,224,11.13,89.808,1,60.32,12.92,24.96 +nest_small,224,11.12,89.891,1,38.35,10.35,40.04 +resnet101,288,11.12,89.884,1,44.55,12.95,26.83 +cs3se_edgenet_x,256,11.11,89.994,1,50.72,11.53,12.94 +dpn98,224,11.06,90.407,1,61.57,11.73,25.2 +coat_lite_medium,224,11.05,90.497,1,44.57,9.81,40.06 +deit3_small_patch16_384,384,11.04,90.541,1,22.21,15.52,50.78 +nf_ecaresnet101,224,10.88,91.856,1,44.55,8.01,16.27 +nf_seresnet101,224,10.88,91.896,1,49.33,8.02,16.27 +seresnet152,224,10.79,92.672,1,66.82,11.57,22.61 +convnext_tiny,384,10.74,93.109,1,28.59,13.14,39.48 +repvgg_b1,224,10.73,93.194,1,57.42,13.16,10.64 +dm_nfnet_f0,192,10.69,93.498,1,71.49,7.21,10.16 +sequencer2d_s,224,10.66,93.751,1,27.65,4.96,11.31 +nfnet_f0,192,10.56,94.636,1,71.49,7.21,10.16 +poolformerv2_m48,224,10.56,94.635,1,73.35,11.59,29.17 +levit_conv_384_s8,224,10.52,95.033,1,39.12,9.98,35.86 +resnetv2_101,288,10.51,95.101,1,44.54,12.94,26.83 +regnetz_e8,256,10.45,95.666,1,57.7,9.91,40.94 +nf_regnet_b5,384,10.42,95.969,1,49.74,7.95,42.9 +resnest101e,256,10.42,95.966,1,48.28,13.38,28.66 +pit_b_distilled_224,224,10.41,95.993,1,74.79,12.5,33.07 +mobilevitv2_175,384,10.35,96.588,1,14.25,12.47,63.29 +xcit_small_12_p16_384,384,10.35,96.636,1,26.25,14.14,36.51 +focalnet_small_srf,224,10.34,96.692,1,49.89,8.62,26.26 +inception_resnet_v2,299,10.33,96.814,1,55.84,13.18,25.06 +pit_b_224,224,10.33,96.761,1,73.76,12.42,32.94 +swinv2_tiny_window8_256,256,10.3,97.01,1,28.35,5.96,24.57 +resnext101_32x4d,288,10.25,97.558,1,44.18,13.24,35.09 +maxvit_rmlp_small_rw_224,224,10.24,97.618,1,64.9,10.75,49.3 +seresnext101_32x4d,288,10.23,97.701,1,48.96,13.25,35.12 +gcvit_small,224,10.19,98.115,1,51.09,8.57,41.61 +vit_base_patch32_384,384,10.18,98.198,1,88.3,13.06,16.5 +mvitv2_base,224,10.16,98.419,1,51.47,10.16,40.5 +mobilenetv4_conv_aa_large,480,10.13,98.667,1,32.59,11.05,50.45 +hiera_base_plus_224,224,10.1,99.002,1,69.9,12.67,37.98 +hiera_base_abswin_256,256,10.09,99.038,1,51.27,12.46,40.7 +seresnet101,288,10.09,99.045,1,49.33,12.95,26.87 +tnt_b_patch16_224,224,10.09,99.034,1,65.41,14.09,39.01 +cs3edgenet_x,288,10.08,99.208,1,47.82,14.59,16.36 +vit_base_patch32_clip_384,384,10.07,99.249,1,88.3,13.06,16.5 +focalnet_small_lrf,224,9.99,100.025,1,50.34,8.74,28.61 +vit_small_patch16_384,384,9.98,100.186,1,22.2,15.52,50.78 +mixer_l32_224,224,9.95,100.463,1,206.94,11.27,19.86 +convformer_s18,384,9.85,101.499,1,26.77,11.63,46.49 +ese_vovnet99b,224,9.85,101.454,1,63.2,16.51,11.27 +resnetrs101,288,9.84,101.582,1,63.62,13.56,28.53 +convnextv2_tiny,384,9.83,101.749,1,28.64,13.14,39.48 +ecaresnet101d,288,9.83,101.717,1,44.57,13.35,28.19 +resnet152d,256,9.83,101.661,1,60.21,15.41,30.51 +vit_betwixt_patch16_reg1_gap_256,256,9.83,101.705,1,60.4,16.32,27.83 +resnet101d,320,9.82,101.832,1,44.57,16.48,34.77 +efficientvit_l2,288,9.81,101.948,1,63.71,11.51,32.19 +efficientnetv2_m,320,9.79,102.161,1,54.14,11.01,39.97 +poolformer_m48,224,9.78,102.197,1,73.47,11.59,29.17 +regnetx_160,224,9.78,102.176,1,54.28,15.99,25.52 +hrnet_w40,224,9.75,102.563,1,57.56,12.75,25.29 +vit_betwixt_patch16_reg4_gap_256,256,9.75,102.537,1,60.4,16.52,28.24 +resnetblur101d,288,9.74,102.665,1,44.57,15.07,29.65 +vit_betwixt_patch16_rope_reg4_gap_256,256,9.68,103.258,1,60.23,16.52,28.24 +resnetaa101d,288,9.65,103.608,1,44.57,15.07,29.03 +xception65p,299,9.65,103.549,1,39.82,13.91,52.48 +resnet200,224,9.56,104.56,1,64.67,15.07,32.19 +deit_base_patch16_224,224,9.46,105.633,1,86.57,17.58,23.9 +caformer_s18,384,9.44,105.951,1,26.34,13.42,77.34 +beit_base_patch16_224,224,9.41,106.266,1,86.53,17.58,23.9 +eca_nfnet_l1,256,9.35,106.973,1,41.41,9.62,22.04 +wide_resnet50_2,224,9.35,106.889,1,68.88,11.43,14.4 +deit3_base_patch16_224,224,9.3,107.552,1,86.59,17.58,23.9 +repvgg_b2g4,224,9.25,108.051,1,61.76,12.63,12.9 +beitv2_base_patch16_224,224,9.24,108.256,1,86.53,17.58,23.9 +deit_base_distilled_patch16_224,224,9.21,108.526,1,87.34,17.68,24.05 +xception65,299,9.21,108.536,1,39.92,13.96,52.48 +eva02_small_patch14_336,336,9.11,109.777,1,22.13,15.48,54.33 +xcit_tiny_12_p8_384,384,9.1,109.816,1,6.71,14.13,69.14 +convnext_base,224,9.09,110.021,1,88.59,15.38,28.75 +vit_small_patch16_36x1_224,224,9.09,110.009,1,64.67,13.71,35.69 +resnext101_64x4d,224,9.01,110.983,1,83.46,15.52,31.21 +vit_small_patch16_18x2_224,224,9.0,111.03,1,64.67,13.71,35.69 +coat_small,224,8.98,111.393,1,21.69,12.61,44.25 +seresnext101_64x4d,224,8.97,111.422,1,88.23,15.53,31.25 +convformer_m36,224,8.95,111.669,1,57.05,12.89,42.05 +mobilenetv4_hybrid_large,448,8.95,111.682,1,37.76,10.74,48.61 +volo_d2_224,224,8.92,112.137,1,58.68,14.34,41.34 +mvitv2_base_cls,224,8.91,112.248,1,65.44,10.23,40.65 +tresnet_xl,224,8.91,112.222,1,78.44,15.2,15.34 +seresnet152d,256,8.88,112.573,1,66.84,15.42,30.56 +pvt_v2_b5,224,8.87,112.77,1,81.96,11.76,50.92 +gmlp_b16_224,224,8.85,113.004,1,73.08,15.78,30.21 +efficientnetv2_rw_m,320,8.83,113.284,1,53.24,12.72,47.14 +maxvit_small_tf_224,224,8.75,114.28,1,68.93,11.66,53.17 +convnext_small,288,8.71,114.788,1,50.22,14.39,35.65 +mobilenetv4_conv_aa_large,544,8.63,115.877,1,32.59,14.19,64.79 +nextvit_small,384,8.63,115.898,1,31.76,17.26,57.14 +cait_xxs24_384,384,8.62,115.993,1,12.03,9.63,122.66 +seresnext101_32x8d,224,8.62,116.043,1,93.57,16.48,31.25 +eva02_base_patch16_clip_224,224,8.6,116.214,1,86.26,17.62,26.32 +vit_base_patch16_rpn_224,224,8.56,116.754,1,86.54,17.49,23.75 +resnetrs152,256,8.55,116.946,1,86.62,15.59,30.83 +vit_base_patch16_xp_224,224,8.52,117.358,1,86.51,17.56,23.9 +seresnext101d_32x8d,224,8.51,117.483,1,93.59,16.72,32.05 +resnext101_32x8d,224,8.5,117.633,1,88.79,16.48,31.21 +efficientnet_b5,416,8.49,117.752,1,30.39,8.27,80.68 +vit_base_mci_224,224,8.47,118.081,1,86.35,17.73,24.65 +caformer_m36,224,8.45,118.319,1,56.2,13.29,50.48 +seresnextaa101d_32x8d,224,8.35,119.799,1,93.59,17.25,34.16 +vit_relpos_base_patch16_224,224,8.34,119.824,1,86.43,17.51,24.97 +vit_base_patch16_224,224,8.33,120.013,1,86.57,17.58,23.9 +vit_base_patch16_siglip_224,224,8.33,120.05,1,92.88,17.73,24.06 +vit_base_patch16_siglip_gap_224,224,8.33,120.095,1,85.8,17.49,23.75 +vit_base_patch16_clip_quickgelu_224,224,8.32,120.215,1,86.19,17.58,23.9 +vit_base_patch16_224_miil,224,8.31,120.296,1,94.4,17.59,23.91 +vit_base_patch16_gap_224,224,8.29,120.54,1,86.57,17.49,25.59 +regnety_160,224,8.28,120.713,1,83.59,15.96,23.04 +vit_base_patch16_clip_224,224,8.28,120.79,1,86.57,17.58,23.9 +vit_relpos_base_patch16_rpn_224,224,8.28,120.749,1,86.41,17.51,24.97 +vit_mediumd_patch16_reg4_gap_256,256,8.27,120.819,1,64.11,17.87,37.57 +halonet_h1,256,8.25,121.167,1,8.1,3.0,51.17 +vit_mediumd_patch16_rope_reg1_gap_256,256,8.24,121.316,1,63.95,17.65,37.02 +maxvit_rmlp_small_rw_256,256,8.16,122.576,1,64.9,14.15,66.09 +vit_relpos_base_patch16_cls_224,224,8.14,122.798,1,86.43,17.6,25.12 +vit_base_patch32_clip_448,448,8.12,123.199,1,88.34,17.93,23.9 +pvt_v2_b4,224,8.09,123.551,1,62.56,10.14,53.74 +vit_relpos_base_patch16_clsgap_224,224,8.08,123.687,1,86.43,17.6,25.12 +cs3se_edgenet_x,320,8.05,124.251,1,50.72,18.01,20.21 +davit_base,224,8.04,124.352,1,87.95,15.51,40.66 +sequencer2d_m,224,8.04,124.384,1,38.31,6.55,14.26 +swinv2_tiny_window16_256,256,8.03,124.542,1,28.35,6.68,39.02 +hrnet_w44,224,8.02,124.58,1,67.06,14.94,26.92 +resnet152,288,8.01,124.879,1,60.19,19.11,37.28 +twins_svt_large,224,7.98,125.271,1,99.27,15.15,35.1 +dm_nfnet_f0,256,7.95,125.785,1,71.49,12.62,18.05 +xcit_small_12_p8_224,224,7.94,125.872,1,26.21,18.69,47.21 +convmixer_768_32,224,7.92,126.272,1,21.11,19.55,25.95 +hrnet_w48_ssld,224,7.9,126.53,1,77.47,17.34,28.56 +nfnet_f0,256,7.86,127.261,1,71.49,12.62,18.05 +mobilevitv2_200,384,7.84,127.58,1,18.45,16.24,72.34 +regnety_120,288,7.81,128.044,1,51.82,20.06,35.34 +hgnetv2_b6,224,7.79,128.275,1,75.26,16.88,21.23 +dpn131,224,7.77,128.613,1,79.25,16.09,32.97 +nf_regnet_b5,456,7.75,129.064,1,49.74,11.7,61.95 +hrnet_w48,224,7.7,129.858,1,77.47,17.34,28.56 +xception71,299,7.68,130.193,1,42.34,18.09,69.92 +resnet200d,256,7.67,130.432,1,64.69,20.0,43.09 +flexivit_base,240,7.58,131.82,1,86.59,20.29,28.36 +efficientnet_b5,448,7.54,132.62,1,30.39,9.59,93.56 +xcit_medium_24_p16_224,224,7.5,133.298,1,84.4,16.13,31.71 +resnet50x4_clip_gap,288,7.49,133.398,1,65.62,19.57,34.11 +densenet264d,224,7.46,134.027,1,72.74,13.57,14.0 +convnextv2_base,224,7.45,134.283,1,88.72,15.38,28.75 +nest_base,224,7.42,134.753,1,67.72,17.96,53.39 +maxxvit_rmlp_small_rw_256,256,7.37,135.578,1,66.01,14.67,58.38 +convnext_base,256,7.35,135.957,1,88.59,20.09,37.55 +gcvit_base,224,7.34,136.128,1,90.32,14.87,55.48 +nest_base_jx,224,7.31,136.815,1,67.72,17.96,53.39 +tf_efficientnetv2_m,384,7.3,136.891,1,54.14,15.85,57.52 +regnetz_e8,320,7.24,138.164,1,57.7,15.46,63.94 +rdnet_base,224,7.19,139.147,1,87.45,15.4,31.14 +eva02_base_patch14_224,224,7.12,140.454,1,85.76,23.22,36.55 +swin_s3_small_224,224,7.11,140.533,1,49.74,9.43,37.84 +vit_large_patch32_224,224,7.1,140.777,1,305.51,15.39,13.3 +eca_nfnet_l1,320,7.09,141.072,1,41.41,14.92,34.42 +seresnet152,288,7.09,140.934,1,66.82,19.11,37.34 +samvit_base_patch16_224,224,7.04,141.973,1,86.46,17.54,24.54 +convit_base,224,7.0,142.918,1,86.54,17.52,31.77 +inception_next_base,224,6.95,143.896,1,86.67,14.85,25.69 +tf_efficientnet_b5,456,6.95,143.755,1,30.39,10.46,98.86 +tiny_vit_21m_384,384,6.93,144.336,1,21.23,13.77,77.83 +coatnet_2_rw_224,224,6.91,144.724,1,73.87,15.09,49.22 +resnetv2_50x1_bit,448,6.91,144.669,1,25.55,16.62,44.46 +seresnet200d,256,6.88,145.349,1,71.86,20.01,43.15 +crossvit_15_dagger_408,408,6.87,145.643,1,28.5,21.45,95.05 +resnet152d,320,6.83,146.477,1,60.21,24.08,47.67 +swin_s3_base_224,224,6.79,147.184,1,71.13,13.69,48.26 +tresnet_m,448,6.77,147.771,1,31.39,22.99,29.21 +dpn107,224,6.76,147.81,1,86.92,18.38,33.46 +resnet50x4_clip,288,6.73,148.587,1,87.14,21.35,35.27 +resnetrs200,256,6.73,148.585,1,93.21,20.18,43.42 +swinv2_base_window12_192,192,6.73,148.54,1,109.28,11.9,39.72 +vit_base_r50_s16_224,224,6.73,148.472,1,97.89,21.66,35.28 +ecaresnet200d,256,6.71,148.953,1,64.69,20.0,43.15 +wide_resnet101_2,176,6.66,150.227,1,126.89,14.31,13.18 +coatnet_rmlp_2_rw_224,224,6.64,150.497,1,73.88,15.18,54.78 +repvgg_b3g4,224,6.64,150.669,1,83.83,17.89,15.1 +swinv2_cr_small_ns_224,224,6.64,150.577,1,49.7,9.08,50.27 +hgnet_base,224,6.62,150.974,1,71.58,25.14,15.47 +vit_base_patch16_siglip_256,256,6.61,151.197,1,92.93,23.44,33.63 +wide_resnet50_2,288,6.61,151.365,1,68.88,18.89,23.81 +vgg11,224,6.59,151.695,1,132.86,7.61,7.44 +vit_base_patch16_rope_reg1_gap_256,256,6.59,151.642,1,86.43,23.22,33.39 +vgg11_bn,224,6.56,152.446,1,132.87,7.62,7.44 +swinv2_cr_small_224,224,6.53,153.224,1,49.7,9.07,50.27 +vit_base_patch16_siglip_gap_256,256,6.52,153.278,1,85.84,23.13,33.23 +vit_base_patch16_reg4_gap_256,256,6.5,153.776,1,86.62,23.5,33.89 +vit_small_patch8_224,224,6.49,153.965,1,21.67,22.44,80.84 +repvgg_b2,224,6.48,154.38,1,89.02,20.45,12.9 +focalnet_base_srf,224,6.46,154.81,1,88.15,15.28,35.01 +efficientvit_l2,384,6.45,155.065,1,63.71,20.45,57.01 +resnet200,288,6.45,155.123,1,64.67,24.91,53.21 +crossvit_base_240,240,6.4,156.314,1,105.03,21.22,36.33 +volo_d3_224,224,6.31,158.554,1,86.33,20.78,60.09 +levit_512_s8,224,6.23,160.379,1,74.05,21.82,52.28 +seresnet152d,320,6.23,160.608,1,66.84,24.09,47.72 +coatnet_2_224,224,6.2,161.346,1,74.68,16.5,52.67 +convnext_base,288,6.15,162.453,1,88.59,25.43,47.53 +efficientnetv2_m,416,6.15,162.448,1,54.14,18.6,67.5 +volo_d1_384,384,6.12,163.334,1,26.78,22.75,108.55 +resnetrs152,320,6.1,163.792,1,86.62,24.34,48.14 +swin_small_patch4_window7_224,224,6.07,164.677,1,49.61,8.77,27.47 +nextvit_base,384,6.06,164.953,1,44.82,24.64,73.95 +focalnet_base_lrf,224,5.99,167.024,1,88.75,15.43,38.13 +caformer_b36,224,5.93,168.58,1,98.75,23.22,67.3 +resnext101_64x4d,288,5.86,170.685,1,83.46,25.66,51.59 +cait_xxs36_384,384,5.85,171.01,1,17.37,14.35,183.7 +vit_medium_patch16_gap_384,384,5.79,172.541,1,39.03,26.08,67.54 +levit_conv_512_s8,224,5.76,173.7,1,74.05,21.82,52.28 +vgg13_bn,224,5.76,173.557,1,133.05,11.33,12.25 +vitamin_base_224,224,5.76,173.46,1,87.72,22.68,52.77 +seresnext101_32x8d,288,5.75,173.901,1,93.57,27.24,51.63 +vgg13,224,5.75,173.979,1,133.05,11.31,12.25 +convnext_small,384,5.72,174.665,1,50.22,25.58,63.37 +legacy_senet154,224,5.72,174.756,1,115.09,20.77,38.69 +convformer_s36,384,5.69,175.734,1,40.01,22.54,89.62 +efficientnetv2_rw_m,416,5.66,176.792,1,53.24,21.49,79.62 +vit_base_patch16_plus_240,240,5.64,177.413,1,117.56,27.41,33.08 +xcit_small_24_p16_384,384,5.63,177.511,1,47.67,26.72,68.58 +seresnext101d_32x8d,288,5.6,178.577,1,93.59,27.64,52.95 +seresnet200d,288,5.59,178.979,1,71.86,25.32,54.6 +vit_large_r50_s32_224,224,5.59,178.873,1,328.99,19.58,24.41 +senet154,224,5.58,179.08,1,115.09,20.77,38.69 +seresnextaa101d_32x8d,288,5.58,179.137,1,93.59,28.51,56.44 +vit_relpos_base_patch16_plus_240,240,5.55,180.097,1,117.38,27.3,34.33 +ecaresnet200d,288,5.53,180.897,1,64.69,25.31,54.59 +regnety_160,288,5.52,180.975,1,83.59,26.37,38.07 +sequencer2d_l,224,5.49,182.132,1,54.3,9.74,22.12 +caformer_s36,384,5.43,184.228,1,39.3,26.08,150.33 +hrnet_w48_ssld,288,5.38,186.017,1,77.47,28.66,47.21 +hgnetv2_b6,288,5.37,186.229,1,75.26,27.9,35.09 +resnet200d,320,5.33,187.619,1,64.69,31.25,67.33 +wide_resnet101_2,224,5.22,191.557,1,126.89,22.8,21.23 +xcit_tiny_24_p8_384,384,5.16,193.796,1,12.11,27.05,132.95 +eca_nfnet_l2,320,5.15,194.064,1,56.72,20.95,47.43 +maxvit_tiny_tf_384,384,5.1,196.11,1,30.98,17.53,123.42 +swinv2_small_window16_256,256,5.1,196.241,1,49.73,12.82,66.29 +vgg16,224,5.08,196.881,1,138.36,15.47,13.56 +vgg16_bn,224,5.05,198.104,1,138.37,15.5,13.56 +swinv2_small_window8_256,256,5.04,198.246,1,49.73,11.58,40.14 +nfnet_f1,224,5.02,199.032,1,132.63,17.87,22.94 +seresnet269d,256,5.02,199.306,1,113.67,26.59,53.6 +regnetx_320,224,5.0,199.835,1,107.81,31.81,36.3 +resnetrs270,256,4.99,200.478,1,129.86,27.06,55.84 +convnextv2_base,288,4.98,200.977,1,88.72,25.43,47.53 +swinv2_cr_small_ns_256,256,4.98,200.886,1,49.7,12.07,76.21 +dm_nfnet_f1,224,4.96,201.546,1,132.63,17.87,22.94 +convformer_b36,224,4.95,201.817,1,99.88,22.69,56.06 +convnext_base,320,4.95,201.819,1,88.59,31.39,58.68 +tf_efficientnetv2_m,480,4.89,204.622,1,54.14,24.76,89.84 +hrnet_w64,224,4.87,205.177,1,128.06,28.97,35.09 +cait_xs24_384,384,4.86,205.554,1,26.67,19.28,183.98 +nextvit_large,384,4.84,206.508,1,57.87,32.03,90.76 +resnetrs200,320,4.81,207.813,1,93.21,31.51,67.81 +maxvit_rmlp_base_rw_224,224,4.76,210.09,1,116.14,23.15,92.64 +crossvit_18_dagger_408,408,4.66,214.577,1,44.61,32.47,124.87 +nasnetalarge,331,4.66,214.708,1,88.75,23.89,90.56 +swinv2_cr_base_224,224,4.64,215.595,1,87.88,15.86,59.66 +swinv2_cr_base_ns_224,224,4.62,216.593,1,87.88,15.86,59.66 +maxxvitv2_rmlp_base_rw_224,224,4.57,218.631,1,116.09,24.2,62.77 +vgg19,224,4.57,218.781,1,143.67,19.63,14.86 +vit_so150m_patch16_reg4_gap_256,256,4.54,220.434,1,134.13,36.75,53.21 +maxvit_base_tf_224,224,4.51,221.617,1,119.47,24.04,95.01 +vgg19_bn,224,4.51,221.568,1,143.68,19.66,14.86 +seresnextaa101d_32x8d,320,4.48,222.957,1,93.59,35.19,69.67 +resnest200e,320,4.45,224.812,1,70.2,35.69,82.78 +vit_so150m_patch16_reg4_map_256,256,4.44,225.038,1,141.48,37.18,53.68 +convnext_large,224,4.34,230.221,1,197.77,34.4,43.13 +pnasnet5large,331,4.33,231.035,1,86.06,25.04,92.89 +repvgg_b3,224,4.33,230.866,1,123.09,29.16,15.1 +xcit_small_24_p8_224,224,4.32,231.329,1,47.63,35.81,90.78 +resnetv2_101x1_bit,448,4.3,232.409,1,44.54,31.65,64.93 +coat_lite_medium_384,384,4.23,236.111,1,44.57,28.73,116.7 +convnextv2_large,224,4.19,238.786,1,197.96,34.4,43.13 +vit_betwixt_patch16_reg4_gap_384,384,4.19,238.533,1,60.6,39.71,85.28 +seresnet269d,288,4.18,239.28,1,113.67,33.65,67.81 +hgnet_base,288,4.16,240.305,1,71.58,41.55,25.57 +swin_base_patch4_window7_224,224,4.15,240.831,1,87.77,15.47,36.63 +davit_large,224,4.13,241.977,1,196.81,34.6,60.99 +efficientvit_l3,224,3.98,251.253,1,246.04,27.62,39.16 +regnety_320,224,3.93,254.497,1,145.05,32.34,30.26 +xcit_large_24_p16_224,224,3.92,254.84,1,189.1,35.86,47.27 +tf_efficientnet_b6,528,3.91,255.971,1,43.04,19.4,167.39 +efficientnet_b6,528,3.87,258.445,1,43.04,19.4,167.39 +eca_nfnet_l2,384,3.83,260.863,1,56.72,30.05,68.28 +swinv2_base_window12to16_192to256,256,3.83,260.995,1,87.92,22.02,84.71 +tresnet_l,448,3.79,263.846,1,55.99,43.59,47.56 +swinv2_large_window12_192,192,3.75,266.366,1,228.77,26.17,56.53 +swinv2_base_window16_256,256,3.74,267.172,1,87.92,22.02,84.71 +tf_efficientnetv2_l,384,3.57,279.821,1,118.52,36.1,101.16 +convnext_base,384,3.56,280.744,1,88.59,45.21,84.49 +ecaresnet269d,320,3.55,281.653,1,102.09,41.53,83.69 +swinv2_cr_tiny_384,384,3.54,282.629,1,28.33,15.34,161.01 +inception_next_base,384,3.52,284.303,1,86.67,43.64,75.48 +vit_mediumd_patch16_reg4_gap_384,384,3.51,284.717,1,64.27,43.67,113.51 +swinv2_base_window8_256,256,3.5,285.642,1,87.92,20.37,52.59 +efficientnetv2_l,384,3.49,286.334,1,118.52,36.1,101.16 +hiera_large_224,224,3.47,288.334,1,213.74,40.34,83.37 +convformer_m36,384,3.46,289.231,1,57.05,37.87,123.56 +eca_nfnet_l3,352,3.46,289.136,1,72.04,32.57,73.12 +deit3_base_patch16_384,384,3.43,291.108,1,86.88,55.54,101.56 +deit_base_patch16_384,384,3.41,293.52,1,86.86,55.54,101.56 +deit_base_distilled_patch16_384,384,3.38,295.425,1,87.63,55.65,101.82 +cait_s24_384,384,3.35,298.48,1,47.06,32.17,245.31 +mixer_l16_224,224,3.34,299.523,1,208.2,44.6,41.69 +coatnet_rmlp_3_rw_224,224,3.31,302.243,1,165.15,33.56,79.47 +convnext_large_mlp,256,3.29,304.086,1,200.13,44.94,56.33 +regnety_160,384,3.29,303.803,1,83.59,46.87,67.67 +coatnet_3_rw_224,224,3.27,305.713,1,181.81,33.44,73.83 +resnetrs350,288,3.27,306.236,1,163.96,43.67,87.09 +dm_nfnet_f1,320,3.26,307.082,1,132.63,35.97,46.77 +efficientvit_l3,256,3.26,306.891,1,246.04,36.06,50.98 +convmixer_1536_20,224,3.25,307.72,1,51.63,48.68,33.03 +volo_d4_224,224,3.25,307.319,1,192.96,44.34,80.22 +rdnet_large,224,3.22,310.919,1,186.27,34.74,46.67 +vit_small_patch14_dinov2,518,3.21,311.039,1,22.06,46.76,198.79 +nfnet_f1,320,3.19,313.353,1,132.63,35.97,46.77 +beit_base_patch16_384,384,3.18,314.371,1,86.74,55.54,101.56 +vit_small_patch14_reg4_dinov2,518,3.15,316.948,1,22.06,46.95,199.77 +coatnet_3_224,224,3.12,320.7,1,166.97,36.56,79.01 +xcit_medium_24_p16_384,384,3.09,324.036,1,84.4,47.39,91.64 +caformer_m36,384,3.08,324.221,1,56.2,42.11,196.35 +resnetrs270,352,3.03,329.649,1,129.86,51.13,105.48 +maxvit_small_tf_384,384,3.0,332.88,1,69.02,35.87,183.65 +volo_d2_384,384,3.0,333.546,1,58.87,46.17,184.51 +resnext101_32x16d,224,2.99,334.318,1,194.03,36.27,51.18 +dm_nfnet_f2,256,2.97,336.324,1,193.78,33.76,41.85 +vit_base_patch16_384,384,2.97,337.009,1,86.86,55.54,101.56 +mvitv2_large,224,2.95,338.418,1,217.99,43.87,112.02 +vit_base_patch16_siglip_gap_384,384,2.95,339.098,1,86.09,55.43,101.3 +nfnet_f2,256,2.94,340.191,1,193.78,33.76,41.85 +vit_base_patch16_siglip_384,384,2.94,339.662,1,93.18,56.12,102.2 +vit_base_patch16_clip_384,384,2.92,342.185,1,86.86,55.54,101.56 +maxxvitv2_rmlp_large_rw_224,224,2.91,344.02,1,215.42,44.14,87.15 +tiny_vit_21m_512,512,2.91,343.403,1,21.27,27.02,177.93 +ecaresnet269d,352,2.87,347.846,1,102.09,50.25,101.25 +convnextv2_base,384,2.86,349.626,1,88.72,45.21,84.49 +xcit_small_12_p8_384,384,2.81,356.188,1,26.21,54.92,138.29 +convnext_large,288,2.8,357.134,1,197.77,56.87,71.29 +convnextv2_large,288,2.79,358.749,1,197.96,56.87,71.29 +vit_base_patch16_18x2_224,224,2.78,359.751,1,256.73,52.51,71.38 +mvitv2_large_cls,224,2.76,362.694,1,234.58,42.17,111.69 +beit_large_patch16_224,224,2.75,364.218,1,304.43,61.6,63.52 +tresnet_xl,448,2.73,366.436,1,78.44,60.77,61.31 +deit3_large_patch16_224,224,2.7,370.995,1,304.37,61.6,63.52 +vit_large_patch32_384,384,2.7,369.742,1,306.63,45.31,43.86 +beitv2_large_patch16_224,224,2.69,372.287,1,304.43,61.6,63.52 +coatnet_rmlp_2_rw_384,384,2.64,379.078,1,73.88,47.69,209.43 +maxvit_tiny_tf_512,512,2.59,386.591,1,31.05,33.49,257.59 +efficientvit_l3,320,2.57,389.302,1,246.04,56.32,79.34 +maxvit_large_tf_224,224,2.56,390.951,1,211.79,43.68,127.35 +swinv2_cr_large_224,224,2.52,397.562,1,196.68,35.1,78.42 +swin_large_patch4_window7_224,224,2.47,404.245,1,196.53,34.53,54.94 +resnetrs420,320,2.41,415.274,1,191.89,64.2,126.56 +xcit_medium_24_p8_224,224,2.4,417.212,1,84.32,63.53,121.23 +vit_base_r50_s16_384,384,2.39,417.549,1,98.95,67.43,135.03 +resnet50x16_clip_gap,384,2.37,422.331,1,136.2,70.32,100.64 +tf_efficientnetv2_l,480,2.37,421.363,1,118.52,56.4,157.99 +convnext_xlarge,224,2.35,425.759,1,350.2,60.98,57.5 +efficientnetv2_xl,384,2.35,425.352,1,208.12,52.81,139.2 +davit_huge,224,2.34,426.69,1,348.92,61.23,81.32 +tf_efficientnetv2_xl,384,2.34,427.212,1,208.12,52.81,139.2 +efficientnetv2_l,480,2.31,432.762,1,118.52,56.4,157.99 +resnetv2_50x3_bit,224,2.31,433.391,1,217.32,37.06,33.34 +cait_s36_384,384,2.3,433.947,1,68.37,47.99,367.4 +eca_nfnet_l3,448,2.29,436.231,1,72.04,52.55,118.4 +seresnextaa201d_32x8d,320,2.28,437.688,1,149.39,70.22,138.71 +vit_large_patch16_224,224,2.26,441.632,1,304.33,61.6,63.52 +eva_large_patch14_196,196,2.23,448.812,1,304.14,61.57,63.52 +convnext_large_mlp,320,2.19,456.263,1,200.13,70.21,88.02 +repvgg_d2se,320,2.17,461.059,1,133.33,74.57,46.82 +resnet50x16_clip,384,2.17,461.201,1,167.33,74.9,103.54 +vit_large_r50_s32_384,384,2.17,461.7,1,329.09,57.43,76.52 +convformer_b36,384,2.16,462.452,1,99.88,66.67,164.75 +flexivit_large,240,2.15,465.028,1,304.36,70.99,75.39 +tf_efficientnet_b7,600,2.15,465.8,1,66.35,38.33,289.94 +swinv2_large_window12to16_192to256,256,2.12,471.827,1,196.74,47.81,121.53 +vit_base_patch8_224,224,2.11,475.013,1,86.58,78.22,161.69 +efficientnet_b7,600,2.09,478.281,1,66.35,38.33,289.94 +caformer_b36,384,2.05,488.404,1,98.75,72.33,261.79 +resnest269e,416,2.03,492.91,1,110.93,77.69,171.98 +resnetrs350,384,2.03,492.902,1,163.96,77.59,154.74 +resnetv2_152x2_bit,224,2.01,496.395,1,236.34,46.95,45.11 +regnety_640,224,2.0,500.583,1,281.38,64.16,42.5 +volo_d5_224,224,1.96,508.876,1,295.46,72.4,118.11 +nfnet_f2,352,1.94,514.863,1,193.78,63.22,79.06 +dm_nfnet_f2,352,1.92,521.607,1,193.78,63.22,79.06 +efficientvit_l3,384,1.9,526.613,1,246.04,81.08,114.02 +coatnet_4_224,224,1.84,544.382,1,275.43,62.48,129.26 +resmlp_big_24_224,224,1.83,545.885,1,129.14,100.23,87.31 +vit_large_patch14_xp_224,224,1.82,549.68,1,304.06,81.01,88.79 +vit_large_patch14_clip_224,224,1.8,556.186,1,304.2,81.08,88.79 +vit_large_patch14_clip_quickgelu_224,224,1.8,555.306,1,303.97,81.08,88.79 +vit_large_patch16_siglip_gap_256,256,1.78,560.426,1,303.36,80.8,88.34 +vit_large_patch14_224,224,1.77,564.22,1,304.2,81.08,88.79 +vit_large_patch16_siglip_256,256,1.76,569.531,1,315.96,81.34,88.88 +maxxvitv2_rmlp_base_rw_384,384,1.75,571.868,1,116.09,72.98,213.74 +swinv2_cr_small_384,384,1.74,576.224,1,49.7,29.7,298.03 +eva02_large_patch14_clip_224,224,1.73,579.213,1,304.11,81.18,97.2 +vitamin_large2_224,224,1.72,580.708,1,333.58,75.05,112.83 +eva02_large_patch14_224,224,1.71,585.819,1,303.27,81.15,97.2 +nfnet_f3,320,1.71,584.444,1,254.92,68.77,83.93 +dm_nfnet_f3,320,1.69,592.094,1,254.92,68.77,83.93 +vitamin_large_224,224,1.67,597.716,1,333.32,75.05,112.83 +convnext_large,384,1.64,610.931,1,197.77,101.1,126.74 +regnety_320,384,1.62,615.677,1,145.05,95.0,88.87 +convnextv2_large,384,1.61,621.538,1,197.96,101.1,126.74 +eva02_base_patch14_448,448,1.61,622.76,1,87.12,107.11,259.14 +seresnextaa201d_32x8d,384,1.59,626.967,1,149.39,101.11,199.72 +convnext_large_mlp,384,1.56,642.339,1,200.13,101.11,126.74 +xcit_large_24_p16_384,384,1.55,645.297,1,189.1,105.35,137.17 +maxvit_base_tf_384,384,1.52,656.799,1,119.65,73.8,332.9 +maxvit_small_tf_512,512,1.52,658.029,1,69.13,67.26,383.77 +vit_so400m_patch14_siglip_224,224,1.52,656.824,1,427.68,110.26,106.73 +convnext_xlarge,288,1.51,662.437,1,350.2,100.8,95.05 +swin_base_patch4_window12_384,384,1.5,667.292,1,87.9,47.19,134.78 +vit_base_patch16_siglip_512,512,1.5,667.76,1,93.52,108.22,247.74 +vit_base_patch16_siglip_gap_512,512,1.48,674.572,1,86.43,107.0,246.15 +xcit_small_24_p8_384,384,1.48,673.402,1,47.63,105.24,265.91 +resnetrs420,416,1.45,689.205,1,191.89,108.45,213.79 +vit_so400m_patch14_siglip_gap_224,224,1.45,688.541,1,412.44,109.57,106.13 +volo_d3_448,448,1.43,697.962,1,86.63,96.33,446.83 +sam2_hiera_tiny,896,1.37,731.987,1,26.85,99.86,384.63 +tf_efficientnetv2_xl,512,1.37,730.895,1,208.12,93.85,247.32 +efficientnetv2_xl,512,1.35,739.886,1,208.12,93.85,247.32 +swinv2_cr_base_384,384,1.35,738.658,1,87.88,50.57,333.68 +vitamin_large2_256,256,1.34,744.299,1,333.64,99.0,154.99 +maxvit_rmlp_base_rw_384,384,1.33,749.061,1,116.14,70.97,318.95 +vitamin_large_256,256,1.33,751.941,1,333.38,99.0,154.99 +swinv2_base_window12to24_192to384,384,1.3,766.277,1,87.92,55.25,280.36 +efficientnet_b8,672,1.27,785.04,1,87.41,63.48,442.89 +tf_efficientnet_b8,672,1.27,790.305,1,87.41,63.48,442.89 +convnextv2_huge,224,1.26,791.531,1,660.29,115.0,79.07 +rdnet_large,384,1.25,800.743,1,186.27,102.09,137.13 +resnetv2_101x3_bit,224,1.25,800.082,1,387.93,71.23,48.7 +maxvit_xlarge_tf_224,224,1.24,808.144,1,506.99,97.52,191.04 +resnext101_32x32d,224,1.19,839.906,1,468.53,87.29,91.12 +xcit_large_24_p8_224,224,1.16,863.559,1,188.93,141.23,181.56 +focalnet_large_fl3,384,1.15,865.874,1,239.13,105.06,168.04 +focalnet_large_fl4,384,1.14,875.284,1,239.32,105.2,181.78 +deit3_huge_patch14_224,224,1.13,882.197,1,632.13,167.4,139.41 +hiera_huge_224,224,1.12,894.408,1,672.78,124.85,150.95 +vitamin_xlarge_256,256,1.11,900.056,1,436.06,130.13,177.37 +dm_nfnet_f3,416,1.1,905.365,1,254.92,115.58,141.78 +nfnet_f3,416,1.1,906.772,1,254.92,115.58,141.78 +sam2_hiera_small,896,1.09,917.068,1,33.95,123.99,442.63 +vit_base_patch14_dinov2,518,1.05,950.436,1,86.58,151.71,397.58 +mvitv2_huge_cls,224,1.04,961.324,1,694.8,120.67,243.63 +swinv2_cr_huge_224,224,1.03,974.869,1,657.83,115.97,121.08 +vit_base_patch14_reg4_dinov2,518,1.03,974.729,1,86.58,152.25,399.53 +dm_nfnet_f4,384,1.02,983.149,1,316.07,122.14,147.57 +nfnet_f4,384,1.02,980.681,1,316.07,122.14,147.57 +deit3_large_patch16_384,384,0.99,1013.815,1,304.76,191.21,270.24 +regnety_1280,224,0.99,1007.166,1,644.81,127.66,71.58 +resnetv2_152x2_bit,384,0.97,1026.846,1,236.34,136.16,132.56 +beit_large_patch16_384,384,0.96,1039.846,1,305.0,191.21,270.24 +focalnet_huge_fl3,224,0.95,1048.054,1,745.28,118.26,104.8 +focalnet_huge_fl4,224,0.93,1073.843,1,686.46,118.9,113.34 +vit_huge_patch14_clip_quickgelu_224,224,0.93,1078.292,1,632.08,167.4,139.41 +vit_huge_patch14_gap_224,224,0.93,1077.981,1,630.76,166.73,138.74 +vit_huge_patch14_xp_224,224,0.93,1077.577,1,631.8,167.3,139.41 +vit_huge_patch14_224,224,0.92,1088.516,1,630.76,167.4,139.41 +vit_huge_patch14_clip_224,224,0.92,1086.013,1,632.05,167.4,139.41 +maxvit_large_tf_384,384,0.88,1132.022,1,212.03,132.55,445.84 +resnetv2_50x3_bit,448,0.87,1144.567,1,217.32,145.7,133.37 +swin_large_patch4_window12_384,384,0.87,1149.611,1,196.74,104.08,202.16 +davit_giant,224,0.85,1172.447,1,1406.47,192.92,153.06 +convnext_xlarge,384,0.83,1200.268,1,350.2,179.2,168.99 +regnety_640,384,0.82,1218.504,1,281.38,188.47,124.83 +davit_base_fl,768,0.81,1231.237,1,90.37,190.32,530.15 +eva02_large_patch14_clip_336,336,0.81,1234.141,1,304.43,191.34,289.13 +swinv2_cr_large_384,384,0.81,1234.754,1,196.68,108.96,404.96 +vit_large_patch14_clip_quickgelu_336,336,0.81,1231.07,1,304.29,191.11,270.24 +vit_large_patch16_384,384,0.81,1238.91,1,304.72,191.21,270.24 +vitamin_large2_336,336,0.81,1231.074,1,333.83,175.72,307.47 +xcit_medium_24_p8_384,384,0.81,1235.266,1,84.32,186.67,354.73 +vit_large_patch16_siglip_gap_384,384,0.8,1247.934,1,303.69,190.85,269.55 +vitamin_large_336,336,0.8,1247.895,1,333.57,175.72,307.47 +coatnet_5_224,224,0.79,1268.134,1,687.47,145.49,194.24 +eva_large_patch14_336,336,0.79,1259.34,1,304.53,191.1,270.24 +vit_large_patch14_clip_336,336,0.79,1262.838,1,304.53,191.11,270.24 +vit_large_patch16_siglip_384,384,0.79,1261.685,1,316.28,192.07,270.75 +convnextv2_huge,288,0.78,1279.004,1,660.29,190.1,130.7 +maxvit_base_tf_512,512,0.78,1281.906,1,119.88,138.02,703.99 +cait_m36_384,384,0.77,1299.355,1,271.22,173.11,734.81 +nfnet_f5,416,0.77,1305.878,1,377.21,170.71,204.56 +vit_giant_patch16_gap_224,224,0.76,1314.372,1,1011.37,202.46,139.26 +volo_d4_448,448,0.76,1308.242,1,193.41,197.13,527.35 +convnext_xxlarge,256,0.75,1335.83,1,846.47,198.09,124.45 +dm_nfnet_f5,416,0.75,1338.347,1,377.21,170.71,204.56 +swinv2_large_window12to24_192to384,384,0.72,1379.956,1,196.74,116.15,407.83 +resnetv2_152x2_bit,448,0.71,1412.665,1,236.34,184.99,180.43 +focalnet_xlarge_fl3,384,0.67,1482.114,1,408.79,185.61,223.99 +focalnet_xlarge_fl4,384,0.65,1538.866,1,409.03,185.79,242.31 +vitamin_xlarge_336,336,0.65,1535.951,1,436.06,230.18,347.33 +dm_nfnet_f4,512,0.63,1582.68,1,316.07,216.26,262.26 +nfnet_f4,512,0.63,1585.327,1,316.07,216.26,262.26 +sam2_hiera_base_plus,896,0.63,1575.739,1,68.68,227.48,828.88 +vit_giant_patch14_224,224,0.62,1617.497,1,1012.61,267.18,192.64 +vitamin_large_384,384,0.61,1650.577,1,333.71,234.44,440.16 +eva_giant_patch14_224,224,0.6,1653.439,1,1012.56,267.18,192.64 +tf_efficientnet_l2,475,0.6,1656.514,1,480.31,172.11,609.89 +vit_giant_patch14_clip_224,224,0.6,1656.244,1,1012.65,267.18,192.64 +vitamin_large2_384,384,0.6,1661.817,1,333.97,234.44,440.16 +resnet50x64_clip_gap,448,0.59,1697.2,1,365.03,253.96,233.22 +eva_giant_patch14_clip_224,224,0.58,1723.985,1,1012.59,267.18,192.64 +resnet50x64_clip,448,0.58,1738.21,1,420.38,265.02,239.13 +nfnet_f6,448,0.56,1772.805,1,438.36,229.7,273.62 +dm_nfnet_f6,448,0.55,1813.744,1,438.36,229.7,273.62 +vit_so400m_patch14_siglip_384,384,0.5,2008.52,1,428.23,335.4,452.89 +vit_so400m_patch14_siglip_gap_384,384,0.49,2032.811,1,412.99,333.46,451.19 +beit_large_patch16_512,512,0.48,2069.069,1,305.67,362.24,656.39 +dm_nfnet_f5,544,0.48,2090.56,1,377.21,290.97,349.71 +nfnet_f5,544,0.48,2077.094,1,377.21,290.97,349.71 +volo_d5_448,448,0.48,2089.076,1,295.91,315.06,737.92 +resnetv2_101x3_bit,448,0.47,2137.522,1,387.93,280.33,194.78 +convnextv2_huge,384,0.45,2200.78,1,660.29,337.96,232.35 +nfnet_f7,480,0.45,2235.058,1,499.5,300.08,355.86 +maxvit_xlarge_tf_384,384,0.44,2276.68,1,475.32,292.78,668.76 +resnetv2_152x4_bit,224,0.44,2264.656,1,936.53,186.9,90.22 +eva02_large_patch14_448,448,0.42,2395.984,1,305.08,362.33,689.95 +regnety_1280,384,0.41,2419.045,1,644.81,374.99,210.2 +vit_huge_patch14_clip_336,336,0.41,2463.126,1,632.46,390.97,407.54 +xcit_large_24_p8_384,384,0.38,2625.871,1,188.93,415.0,531.82 +nfnet_f6,576,0.37,2705.399,1,438.36,378.69,452.2 +dm_nfnet_f6,576,0.36,2764.673,1,438.36,378.69,452.2 +volo_d5_512,512,0.35,2888.125,1,296.09,425.09,1105.37 +vit_gigantic_patch14_224,224,0.33,3043.914,1,1844.44,483.95,275.37 +vit_gigantic_patch14_clip_224,224,0.33,3054.145,1,1844.91,483.96,275.37 +vit_so400m_patch14_siglip_gap_448,448,0.33,3055.238,1,413.33,487.18,764.26 +swinv2_cr_huge_384,384,0.32,3112.935,1,657.94,352.04,583.18 +vit_huge_patch14_clip_quickgelu_378,378,0.32,3153.715,1,632.68,503.79,572.79 +cait_m48_448,448,0.31,3237.951,1,356.46,329.41,1708.23 +convnextv2_huge,512,0.31,3235.039,1,660.29,600.81,413.07 +vit_huge_patch14_clip_378,378,0.31,3192.651,1,632.68,503.79,572.79 +vit_large_patch14_dinov2,518,0.3,3283.515,1,304.37,507.15,1058.82 +vit_large_patch14_reg4_dinov2,518,0.3,3302.339,1,304.37,508.9,1064.02 +nfnet_f7,608,0.29,3432.385,1,499.5,480.39,570.85 +vit_huge_patch16_gap_448,448,0.29,3444.702,1,631.67,544.7,636.83 +swinv2_cr_giant_224,224,0.28,3558.238,1,2598.76,483.85,309.15 +eva_giant_patch14_336,336,0.25,3940.881,1,1013.01,620.64,550.67 +samvit_base_patch16,1024,0.24,4123.097,1,89.67,486.43,1343.27 +davit_huge_fl,768,0.23,4324.634,1,360.64,744.84,1060.3 +maxvit_xlarge_tf_512,512,0.22,4520.247,1,475.77,534.14,1413.22 +efficientnet_l2,800,0.21,4705.895,1,480.31,479.12,1707.39 +regnety_2560,384,0.21,4775.125,1,1282.6,747.83,296.49 +tf_efficientnet_l2,800,0.21,4750.597,1,480.31,479.12,1707.39 +resnetv2_152x4_bit,480,0.17,5875.601,1,936.53,844.84,414.26 +sam2_hiera_large,1024,0.16,6214.186,1,212.15,907.48,2190.34 +eva02_enormous_patch14_clip_224,224,0.14,6939.876,1,4350.56,1132.46,497.58 +vit_giant_patch14_dinov2,518,0.1,10207.402,1,1136.48,1784.2,2757.89 +vit_giant_patch14_reg4_dinov2,518,0.1,10361.576,1,1136.48,1790.08,2771.21 +eva_giant_patch14_560,560,0.09,10775.568,1,1014.45,1906.76,2577.17 +samvit_large_patch16,1024,0.09,11652.888,1,308.28,1493.86,2553.78 +swinv2_cr_giant_384,384,0.09,11052.423,1,2598.76,1450.71,1394.86 +vit_so400m_patch14_siglip_gap_896,896,0.06,16814.851,1,416.87,2731.49,8492.88 +samvit_huge_patch16,1024,0.05,21270.331,1,637.03,2982.23,3428.16 diff --git a/pytorch-image-models/results/benchmark-infer-fp32-nchw-pt240-cpu-i9_10940x-dynamo.csv b/pytorch-image-models/results/benchmark-infer-fp32-nchw-pt240-cpu-i9_10940x-dynamo.csv new file mode 100644 index 0000000000000000000000000000000000000000..08cb260231b8cdb87b3cb3a261b4e0cde15ae59d --- /dev/null +++ b/pytorch-image-models/results/benchmark-infer-fp32-nchw-pt240-cpu-i9_10940x-dynamo.csv @@ -0,0 +1,1436 @@ +model,infer_img_size,infer_samples_per_sec,infer_step_time,infer_batch_size,param_count,infer_gmacs,infer_macts +test_vit,160,707.29,1.405,1,0.37,0.04,0.48 +test_byobnet,160,682.63,1.456,1,0.46,0.03,0.43 +test_efficientnet,160,642.73,1.547,1,0.36,0.06,0.55 +lcnet_035,224,382.51,2.604,1,1.64,0.03,1.04 +resnet10t,176,353.93,2.811,1,5.44,0.7,1.51 +tf_mobilenetv3_small_minimal_100,224,353.74,2.817,1,2.04,0.06,1.41 +lcnet_050,224,342.17,2.912,1,1.88,0.05,1.26 +mobilenetv3_small_050,224,310.68,3.207,1,1.59,0.03,0.92 +tinynet_e,106,298.2,3.341,1,2.04,0.03,0.69 +lcnet_075,224,288.24,3.457,1,2.36,0.1,1.99 +lcnet_150,224,281.14,3.544,1,4.5,0.34,3.79 +lcnet_100,224,263.86,3.777,1,2.95,0.16,2.52 +mobilenetv2_035,224,263.63,3.783,1,1.68,0.07,2.86 +mobilenetv3_small_075,224,253.25,3.937,1,2.04,0.05,1.3 +levit_128s,224,252.75,3.943,1,7.78,0.31,1.88 +mobilenetv3_small_100,224,249.8,3.991,1,2.54,0.06,1.42 +mobilenetv1_100,224,248.33,4.013,1,4.23,0.58,5.04 +mobilenetv4_conv_small,224,246.85,4.038,1,3.77,0.19,1.97 +regnetx_002,224,246.41,4.047,1,2.68,0.2,2.16 +tf_mobilenetv3_small_100,224,242.79,4.106,1,2.54,0.06,1.42 +tf_mobilenetv3_small_075,224,239.83,4.157,1,2.04,0.05,1.3 +mobilenetv2_050,224,237.22,4.205,1,1.97,0.1,3.64 +mobilenetv1_125,224,236.41,4.215,1,6.27,0.89,6.3 +mobilenetv1_100h,224,232.23,4.292,1,5.28,0.63,5.09 +mnasnet_050,224,220.94,4.515,1,2.22,0.11,3.07 +resnet18,160,218.15,4.568,1,11.69,0.93,1.27 +ese_vovnet19b_slim,224,217.47,4.584,1,3.17,1.69,3.52 +mobilenetv4_conv_small,256,215.85,4.62,1,3.77,0.25,2.57 +efficientvit_b0,224,210.08,4.748,1,3.41,0.1,2.87 +mobilenetv1_125,256,206.54,4.827,1,6.27,1.16,8.23 +mnasnet_small,224,204.46,4.879,1,2.03,0.07,2.16 +tinynet_d,152,200.46,4.976,1,2.34,0.05,1.42 +mobilenetv2_075,224,198.9,5.015,1,2.64,0.22,5.86 +mobilenetv1_100h,256,196.41,5.077,1,5.28,0.82,6.65 +mnasnet_075,224,196.4,5.078,1,3.17,0.23,4.77 +levit_conv_128s,224,195.14,5.111,1,7.78,0.31,1.88 +mobilenetv1_100,256,193.77,5.146,1,4.23,0.76,6.59 +hardcorenas_a,224,192.83,5.172,1,5.26,0.23,4.38 +mobilenetv3_large_075,224,190.56,5.234,1,3.99,0.16,4.0 +levit_192,224,190.44,5.237,1,10.95,0.66,3.2 +ese_vovnet19b_slim_dw,224,190.32,5.24,1,1.9,0.4,5.28 +levit_128,224,188.71,5.285,1,9.21,0.41,2.71 +mobilenetv2_100,224,188.22,5.299,1,3.5,0.31,6.68 +mnasnet_100,224,184.21,5.415,1,4.38,0.33,5.46 +pit_ti_distilled_224,224,182.36,5.47,1,5.1,0.71,6.23 +deit_tiny_patch16_224,224,181.9,5.484,1,5.72,1.26,5.97 +vit_tiny_patch16_224,224,181.68,5.49,1,5.72,1.26,5.97 +semnasnet_050,224,181.4,5.5,1,2.08,0.11,3.44 +efficientnet_lite0,224,181.39,5.499,1,4.65,0.4,6.74 +gernet_s,224,180.68,5.52,1,8.17,0.75,2.65 +vit_tiny_r_s16_p8_224,224,180.34,5.53,1,6.34,0.44,2.06 +resnet10t,224,179.52,5.555,1,5.44,1.1,2.43 +deit_tiny_distilled_patch16_224,224,178.78,5.579,1,5.91,1.27,6.01 +hgnetv2_b0,224,178.19,5.598,1,6.0,0.33,2.12 +mobilenet_edgetpu_v2_xs,224,176.26,5.66,1,4.46,0.7,4.8 +mobilenetv3_large_100,224,176.25,5.659,1,5.48,0.23,4.41 +mobilenetv3_rw,224,175.76,5.676,1,5.48,0.23,4.41 +tf_mobilenetv3_large_minimal_100,224,174.07,5.73,1,3.92,0.22,4.4 +mixer_s32_224,224,170.9,5.836,1,19.1,1.0,2.28 +cs3darknet_focus_s,256,167.84,5.944,1,3.27,0.69,2.7 +pit_ti_224,224,167.47,5.957,1,4.85,0.7,6.19 +mobilenetv2_140,224,163.23,6.112,1,6.11,0.6,9.57 +mobilenet_edgetpu_100,224,160.55,6.215,1,4.09,1.0,5.75 +tf_mobilenetv3_large_075,224,159.49,6.256,1,3.99,0.16,4.0 +cs3darknet_s,256,158.87,6.28,1,3.28,0.72,2.97 +hardcorenas_b,224,158.23,6.306,1,5.18,0.26,5.09 +vit_small_patch32_224,224,158.12,6.31,1,22.88,1.15,2.5 +ese_vovnet19b_dw,224,157.95,6.316,1,6.54,1.34,8.25 +regnety_002,224,157.24,6.345,1,3.16,0.2,2.17 +edgenext_xx_small,256,156.86,6.364,1,1.33,0.26,3.33 +dla46_c,224,155.31,6.425,1,1.3,0.58,4.5 +resnet14t,176,155.29,6.425,1,10.08,1.07,3.61 +hardcorenas_c,224,153.28,6.51,1,5.52,0.28,5.01 +regnetx_004_tv,224,150.43,6.634,1,5.5,0.42,3.17 +dla46x_c,224,150.23,6.643,1,1.07,0.54,5.66 +spnasnet_100,224,150.13,6.647,1,4.42,0.35,6.03 +tf_mobilenetv3_large_100,224,149.59,6.67,1,5.48,0.23,4.41 +mobilenet_edgetpu_v2_s,224,147.34,6.773,1,5.99,1.21,6.6 +fbnetc_100,224,147.19,6.78,1,5.57,0.4,6.51 +semnasnet_075,224,147.11,6.784,1,2.91,0.23,5.54 +mnasnet_140,224,146.87,6.794,1,7.12,0.6,7.71 +semnasnet_100,224,146.31,6.821,1,3.89,0.32,6.23 +gmixer_12_224,224,146.18,6.826,1,12.7,2.67,7.26 +gmlp_ti16_224,224,146.06,6.832,1,5.87,1.34,7.55 +efficientvit_m1,224,144.48,6.91,1,2.98,0.17,1.33 +tf_efficientnet_lite0,224,143.01,6.978,1,4.65,0.4,6.74 +efficientnet_es,224,143.0,6.979,1,5.44,1.81,8.73 +pit_xs_224,224,141.88,7.033,1,10.62,1.4,7.71 +tf_efficientnet_es,224,141.88,7.034,1,5.44,1.81,8.73 +efficientnet_es_pruned,224,141.73,7.041,1,5.44,1.81,8.73 +resnet14t,224,141.53,7.051,1,10.08,1.69,5.8 +mobilenetv2_110d,224,141.41,7.057,1,4.52,0.45,8.71 +levit_conv_128,224,141.12,7.072,1,9.21,0.41,2.71 +pit_xs_distilled_224,224,141.01,7.077,1,11.0,1.41,7.76 +mobilevitv2_050,256,140.89,7.084,1,1.37,0.48,8.04 +efficientnet_lite1,240,140.13,7.122,1,5.42,0.62,10.14 +regnetx_004,224,139.23,7.169,1,5.16,0.4,3.14 +levit_conv_192,224,138.83,7.189,1,10.95,0.66,3.2 +levit_256,224,137.56,7.255,1,18.89,1.13,4.23 +efficientvit_m2,224,137.23,7.274,1,4.19,0.2,1.47 +regnetx_006,224,135.97,7.341,1,6.2,0.61,3.98 +repghostnet_058,224,135.13,7.387,1,2.55,0.07,2.59 +efficientvit_m0,224,135.04,7.393,1,2.35,0.08,0.91 +semnasnet_140,224,134.8,7.404,1,6.11,0.6,8.87 +ghostnet_050,224,134.36,7.43,1,2.59,0.05,1.77 +regnetx_008,224,133.61,7.47,1,7.26,0.81,5.15 +tinynet_c,184,131.97,7.564,1,2.46,0.11,2.87 +ese_vovnet19b_dw,288,131.11,7.612,1,6.54,2.22,13.63 +hgnetv2_b1,224,130.75,7.633,1,6.34,0.49,2.73 +edgenext_xx_small,288,130.47,7.652,1,1.33,0.33,4.21 +repghostnet_050,224,130.45,7.653,1,2.31,0.05,2.02 +mobilenet_edgetpu_v2_m,224,129.27,7.721,1,8.46,1.85,8.15 +convnext_atto,224,129.03,7.736,1,3.7,0.55,3.81 +repghostnet_080,224,128.98,7.74,1,3.28,0.1,3.22 +mobileone_s1,224,128.61,7.761,1,4.83,0.86,9.67 +edgenext_x_small,256,126.77,7.875,1,2.34,0.54,5.93 +resnet18,224,126.23,7.907,1,11.69,1.82,2.48 +resnext26ts,256,126.06,7.918,1,10.3,2.43,10.52 +dla60x_c,224,123.16,8.107,1,1.32,0.59,6.01 +ghostnet_100,224,122.98,8.117,1,5.18,0.15,3.55 +convnextv2_atto,224,122.08,8.178,1,3.71,0.55,3.81 +repghostnet_100,224,122.06,8.18,1,4.07,0.15,3.98 +hgnetv2_b0,288,121.94,8.186,1,6.0,0.54,3.51 +efficientnet_lite2,260,120.94,8.254,1,6.09,0.89,12.9 +resnet34,160,120.62,8.275,1,21.8,1.87,1.91 +hardcorenas_f,224,120.04,8.317,1,8.2,0.35,5.57 +convnext_atto_ols,224,119.07,8.384,1,3.7,0.58,4.11 +convnext_femto_ols,224,118.75,8.407,1,5.23,0.82,4.87 +resnet18d,224,118.43,8.429,1,11.71,2.06,3.29 +edgenext_x_small,288,118.24,8.444,1,2.34,0.68,7.5 +repghostnet_111,224,118.2,8.447,1,4.54,0.18,4.38 +resnetblur18,224,117.55,8.492,1,11.69,2.34,3.39 +mobilenet_edgetpu_v2_m,256,117.43,8.501,1,8.46,2.42,10.65 +hardcorenas_e,224,117.2,8.518,1,8.07,0.35,5.65 +vit_xsmall_patch16_clip_224,224,116.75,8.551,1,8.28,1.79,6.65 +eca_resnext26ts,256,115.44,8.647,1,10.3,2.43,10.52 +mobilenet_edgetpu_v2_l,224,115.23,8.663,1,10.92,2.55,9.05 +regnety_008,224,115.15,8.67,1,6.26,0.81,5.25 +mobilenetv2_120d,224,115.14,8.67,1,5.83,0.69,11.97 +mobilenetv4_conv_medium,224,115.13,8.671,1,9.72,0.84,5.8 +visformer_tiny,224,115.0,8.681,1,10.32,1.27,5.72 +efficientvit_m3,224,114.86,8.693,1,6.9,0.27,1.62 +mobileone_s2,224,113.76,8.776,1,7.88,1.34,11.55 +tf_efficientnet_lite1,240,112.67,8.86,1,5.42,0.62,10.14 +convnext_femto,224,112.57,8.869,1,5.22,0.79,4.57 +mobilevitv2_075,256,112.53,8.872,1,2.87,1.05,12.06 +ecaresnext50t_32x4d,224,112.38,8.883,1,15.41,2.7,10.09 +resmlp_12_224,224,112.17,8.9,1,15.35,3.01,5.5 +repghostnet_130,224,111.65,8.942,1,5.48,0.25,5.24 +lambda_resnet26t,256,111.48,8.955,1,10.96,3.02,11.87 +ecaresnext26t_32x4d,224,111.45,8.957,1,15.41,2.7,10.09 +regnety_008_tv,224,111.42,8.961,1,6.43,0.84,5.42 +resnext26ts,288,111.36,8.965,1,10.3,3.07,13.31 +resnet18,288,111.26,8.973,1,11.69,3.01,4.11 +rexnetr_100,224,110.23,9.058,1,4.88,0.43,7.72 +poolformerv2_s12,224,110.08,9.069,1,11.89,1.83,5.53 +hardcorenas_d,224,109.61,9.11,1,7.5,0.3,4.93 +mobilenetv4_conv_medium,256,109.52,9.116,1,9.72,1.1,7.58 +edgenext_small,256,109.41,9.125,1,5.59,1.26,9.07 +levit_conv_256,224,109.21,9.143,1,18.89,1.13,4.23 +seresnet18,224,109.21,9.142,1,11.78,1.82,2.49 +tinynet_b,188,108.98,9.162,1,3.73,0.21,4.44 +regnety_004,224,108.81,9.177,1,4.34,0.41,3.89 +seresnext26ts,256,108.64,9.19,1,10.39,2.43,10.52 +poolformer_s12,224,108.39,9.211,1,11.92,1.82,5.53 +rexnet_100,224,108.28,9.221,1,4.8,0.41,7.44 +resnest14d,224,107.97,9.247,1,10.61,2.76,7.33 +botnet26t_256,256,107.88,9.254,1,12.49,3.32,11.98 +legacy_seresnet18,224,107.78,9.264,1,11.78,1.82,2.49 +ghostnet_130,224,107.61,9.278,1,7.36,0.24,4.6 +eva02_tiny_patch14_224,224,107.45,9.293,1,5.5,1.7,9.14 +legacy_seresnext26_32x4d,224,107.29,9.305,1,16.79,2.49,9.39 +gernet_m,224,106.38,9.385,1,21.14,3.02,5.24 +efficientvit_b1,256,106.12,9.409,1,9.1,0.69,9.46 +convnext_atto,288,106.05,9.416,1,3.7,0.91,6.3 +eca_botnext26ts_256,256,105.99,9.42,1,10.59,2.46,11.6 +efficientvit_m4,224,105.66,9.45,1,8.8,0.3,1.7 +rexnetr_130,224,105.52,9.462,1,7.61,0.68,9.81 +hgnetv2_b2,224,105.37,9.475,1,11.22,1.15,4.12 +efficientvit_b1,224,104.82,9.526,1,9.1,0.53,7.25 +repghostnet_150,224,104.8,9.528,1,6.58,0.32,6.0 +mixer_s16_224,224,104.38,9.565,1,18.53,3.79,5.97 +fastvit_t8,256,104.04,9.598,1,4.03,0.7,8.63 +resnet18d,288,104.01,9.6,1,11.71,3.41,5.43 +efficientformer_l1,224,103.55,9.642,1,12.29,1.3,5.53 +mobileone_s3,224,103.38,9.659,1,10.17,1.94,13.85 +regnetx_016,224,103.31,9.664,1,9.19,1.62,7.93 +mobilenetv4_conv_aa_medium,256,102.95,9.698,1,9.72,1.58,10.3 +regnety_006,224,102.78,9.716,1,6.06,0.61,4.33 +seresnext26d_32x4d,224,102.22,9.767,1,16.81,2.73,10.19 +mobilenetv4_conv_blur_medium,224,101.88,9.801,1,9.72,1.22,8.58 +eca_resnext26ts,288,101.54,9.834,1,10.3,3.07,13.32 +efficientnet_b0,256,101.51,9.837,1,5.29,0.52,8.81 +hgnet_tiny,224,101.32,9.854,1,14.74,4.54,6.36 +seresnext26t_32x4d,224,100.84,9.901,1,16.81,2.7,10.09 +pit_s_224,224,100.54,9.931,1,23.46,2.88,11.56 +resnet26,224,100.47,9.938,1,16.0,2.36,7.35 +tf_efficientnet_lite2,260,100.42,9.943,1,6.09,0.89,12.9 +efficientnet_b0,224,100.41,9.945,1,5.29,0.4,6.75 +halonet26t,256,100.03,9.982,1,12.48,3.19,11.69 +resnetblur18,288,99.96,9.989,1,11.69,3.87,5.6 +repvgg_a0,224,99.9,9.995,1,9.11,1.52,3.59 +vit_medium_patch32_clip_224,224,99.8,10.005,1,39.69,2.0,3.34 +mobilevit_xxs,256,99.69,10.017,1,1.27,0.42,8.34 +convnext_femto,288,99.64,10.021,1,5.22,1.3,7.56 +convnext_femto_ols,288,99.29,10.057,1,5.23,1.35,8.06 +efficientnet_em,240,99.13,10.073,1,6.9,3.04,14.34 +rexnetr_150,224,98.92,10.095,1,9.78,0.89,11.13 +mobilenetv4_conv_medium,320,98.53,10.135,1,9.72,1.71,11.84 +seresnet18,288,98.53,10.135,1,11.78,3.01,4.11 +hgnetv2_b1,288,98.34,10.154,1,6.34,0.82,4.51 +edgenext_small_rw,256,98.33,10.155,1,7.83,1.58,9.51 +eca_halonext26ts,256,98.17,10.172,1,10.76,2.44,11.46 +tf_efficientnetv2_b0,192,97.93,10.197,1,7.14,0.54,3.51 +rexnet_130,224,97.92,10.198,1,7.56,0.68,9.71 +lambda_resnet26rpt_256,256,97.62,10.229,1,10.99,3.16,11.87 +levit_256d,224,97.59,10.232,1,26.21,1.4,4.93 +tf_efficientnet_em,240,97.41,10.252,1,6.9,3.04,14.34 +vit_tiny_r_s16_p8_384,384,96.81,10.314,1,6.36,1.34,6.49 +efficientvit_b1,288,96.74,10.323,1,9.1,0.87,11.96 +rexnet_150,224,96.5,10.348,1,9.73,0.9,11.21 +gcresnext26ts,256,96.09,10.392,1,10.48,2.43,10.53 +resnet26d,224,96.02,10.399,1,16.01,2.6,8.15 +convnext_pico,224,95.9,10.413,1,9.05,1.37,6.1 +mobilenetv4_conv_blur_medium,256,95.82,10.421,1,9.72,1.59,11.2 +repghostnet_200,224,95.57,10.449,1,9.8,0.54,7.96 +vit_wee_patch16_reg1_gap_256,256,95.45,10.462,1,13.42,3.83,13.9 +convit_tiny,224,95.05,10.506,1,5.71,1.26,7.94 +xcit_nano_12_p16_224,224,94.66,10.551,1,3.05,0.56,4.17 +seresnext26ts,288,94.65,10.55,1,10.39,3.07,13.32 +tinynet_a,192,94.03,10.62,1,6.19,0.35,5.41 +mobilevitv2_100,256,93.64,10.665,1,4.9,1.84,16.08 +pit_s_distilled_224,224,93.54,10.676,1,24.04,2.9,11.64 +pvt_v2_b0,224,93.24,10.71,1,3.67,0.57,7.99 +mobilenetv3_large_150d,224,92.84,10.756,1,14.62,, +convnextv2_atto,288,92.51,10.795,1,3.71,0.91,6.3 +efficientnet_lite3,300,92.29,10.82,1,8.2,1.65,21.85 +convnext_pico_ols,224,91.85,10.873,1,9.06,1.43,6.5 +efficientnet_b0_g16_evos,224,91.32,10.937,1,8.11,1.01,7.42 +cs3darknet_focus_m,288,90.7,11.01,1,9.3,2.51,6.19 +resnext50_32x4d,160,90.34,11.055,1,25.03,2.17,7.35 +convnext_atto_ols,288,89.86,11.114,1,3.7,0.96,6.8 +cs3darknet_m,256,89.72,11.13,1,9.31,2.08,5.28 +levit_384,224,89.69,11.134,1,39.13,2.36,6.26 +mobilenetv4_hybrid_medium_075,224,89.67,11.138,1,7.31,0.66,5.65 +cs3darknet_focus_m,256,89.19,11.197,1,9.3,1.98,4.89 +efficientformerv2_s0,224,89.05,11.216,1,3.6,0.41,5.3 +convnextv2_femto,224,88.91,11.232,1,5.23,0.79,4.57 +resnext50_32x4d,176,88.9,11.233,1,25.03,2.71,8.97 +tf_efficientnetv2_b0,224,88.9,11.234,1,7.14,0.73,4.77 +efficientnet_cc_b0_4e,224,88.85,11.24,1,13.31,0.41,9.42 +resnet26t,256,88.38,11.3,1,16.01,3.35,10.52 +tf_efficientnet_b0,224,88.14,11.33,1,5.29,0.4,6.75 +fastvit_t12,256,88.12,11.333,1,7.55,1.42,12.42 +edgenext_small,320,88.04,11.343,1,5.59,1.97,14.16 +dla34,224,87.87,11.366,1,15.74,3.07,5.02 +cs3darknet_m,288,87.77,11.378,1,9.31,2.63,6.69 +resnet26,288,87.72,11.384,1,16.0,3.9,12.15 +efficientvit_m5,224,87.3,11.441,1,12.47,0.53,2.41 +vit_tiny_patch16_384,384,87.07,11.47,1,5.79,4.7,25.39 +skresnet18,224,87.06,11.471,1,11.96,1.82,3.24 +gcresnext26ts,288,86.9,11.493,1,10.48,3.07,13.33 +hgnetv2_b2,288,86.5,11.546,1,11.22,1.89,6.8 +mobilevitv2_125,256,85.3,11.709,1,7.48,2.86,20.1 +repvgg_a1,224,85.15,11.728,1,14.09,2.64,4.74 +rexnetr_200,224,84.71,11.79,1,16.52,1.59,15.11 +hgnetv2_b3,224,84.48,11.822,1,16.29,1.78,5.07 +darknet17,256,84.06,11.881,1,14.3,3.26,7.18 +vit_betwixt_patch32_clip_224,224,83.79,11.919,1,61.41,3.09,4.17 +efficientnet_blur_b0,224,83.71,11.932,1,5.29,0.43,8.72 +resnet33ts,256,83.15,12.01,1,19.68,4.76,11.66 +resnet26d,288,82.94,12.042,1,16.01,4.29,13.48 +efficientnet_cc_b0_8e,224,82.88,12.051,1,24.01,0.42,9.42 +rexnet_200,224,82.7,12.077,1,16.37,1.56,14.91 +crossvit_tiny_240,240,82.5,12.107,1,7.01,1.57,9.08 +seresnext26t_32x4d,288,82.5,12.105,1,16.81,4.46,16.68 +vit_pwee_patch16_reg1_gap_256,256,82.09,12.167,1,15.25,4.37,15.87 +fastvit_s12,256,81.63,12.236,1,9.47,1.82,13.67 +vit_small_patch32_384,384,81.63,12.236,1,22.92,3.45,8.25 +edgenext_small_rw,320,81.46,12.261,1,7.83,2.46,14.85 +ecaresnet26t,256,81.44,12.263,1,16.01,3.35,10.53 +crossvit_9_240,240,81.43,12.267,1,8.55,1.85,9.52 +mobilevit_xs,256,80.96,12.337,1,2.32,1.05,16.33 +mobilenetv4_hybrid_medium,224,80.75,12.369,1,11.07,0.98,6.84 +resnet34,224,80.61,12.391,1,21.8,3.67,3.74 +regnetx_032,224,80.6,12.392,1,15.3,3.2,11.37 +xcit_tiny_12_p16_224,224,80.35,12.432,1,6.72,1.24,6.29 +mobilenetv4_hybrid_medium,256,79.87,12.506,1,11.07,1.29,9.01 +tf_efficientnetv2_b2,208,79.66,12.539,1,10.1,1.06,6.0 +tf_efficientnet_cc_b0_4e,224,79.65,12.541,1,13.31,0.41,9.42 +gmixer_24_224,224,79.39,12.581,1,24.72,5.28,14.45 +eca_resnet33ts,256,79.24,12.604,1,19.68,4.76,11.66 +xcit_nano_12_p16_384,384,79.2,12.612,1,3.05,1.64,12.15 +mobileone_s4,224,79.16,12.618,1,14.95,3.04,17.74 +levit_conv_256d,224,79.12,12.625,1,26.21,1.4,4.93 +dla60x,224,78.71,12.691,1,17.35,3.54,13.8 +resnet32ts,288,78.66,12.697,1,17.96,5.86,14.65 +fastvit_sa12,256,78.18,12.776,1,11.58,1.96,14.03 +resnet34d,224,78.17,12.777,1,21.82,3.91,4.54 +regnetz_005,224,78.07,12.795,1,7.12,0.52,5.86 +tf_efficientnetv2_b1,192,77.79,12.842,1,8.14,0.76,4.59 +crossvit_9_dagger_240,240,77.65,12.864,1,8.78,1.99,9.97 +resnest26d,224,77.61,12.869,1,17.07,3.64,9.97 +vit_srelpos_small_patch16_224,224,77.26,12.928,1,21.97,4.59,12.16 +resnet50,160,77.2,12.938,1,25.56,2.1,5.67 +seresnext26d_32x4d,288,77.0,12.973,1,16.81,4.51,16.85 +resnext50_32x4d,224,76.91,12.987,1,25.03,4.26,14.4 +ecaresnet50d_pruned,224,76.62,13.036,1,19.94,2.53,6.43 +vit_small_patch16_224,224,76.49,13.058,1,22.05,4.61,11.95 +deit3_small_patch16_224,224,76.48,13.06,1,22.06,4.61,11.95 +deit_small_patch16_224,224,76.41,13.072,1,22.05,4.61,11.95 +tf_efficientnetv2_b1,240,76.41,13.073,1,8.14,1.21,7.34 +deit_small_distilled_patch16_224,224,76.14,13.119,1,22.44,4.63,12.02 +convnextv2_pico,224,76.02,13.14,1,9.07,1.37,6.1 +resnet26t,320,75.79,13.179,1,16.01,5.24,16.44 +coat_lite_mini,224,75.62,13.208,1,11.01,2.0,12.25 +nf_regnet_b0,192,75.34,13.258,1,8.76,0.37,3.15 +resnetaa34d,224,75.18,13.287,1,21.82,4.43,5.07 +xcit_nano_12_p8_224,224,75.15,13.293,1,3.05,2.16,15.71 +resnet50d,160,75.14,13.293,1,25.58,2.22,6.08 +tf_efficientnet_cc_b0_8e,224,74.92,13.333,1,24.01,0.42,9.42 +resnext50d_32x4d,224,74.78,13.358,1,25.05,4.5,15.2 +resnet50,176,74.75,13.362,1,25.56,2.62,6.92 +fbnetv3_b,224,74.72,13.368,1,8.6,0.42,6.97 +resnet33ts,288,74.42,13.421,1,19.68,6.02,14.75 +tiny_vit_5m_224,224,74.28,13.448,1,12.08,1.28,11.25 +mixer_b32_224,224,74.14,13.472,1,60.29,3.24,6.29 +vit_little_patch16_reg1_gap_256,256,74.1,13.481,1,22.52,6.27,18.06 +gernet_l,256,74.0,13.498,1,31.08,4.57,8.0 +dpn48b,224,73.68,13.557,1,9.13,1.69,8.92 +hgnet_tiny,288,73.65,13.563,1,14.74,7.51,10.51 +efficientnet_b1_pruned,240,73.55,13.583,1,6.33,0.4,6.21 +vit_little_patch16_reg4_gap_256,256,73.51,13.589,1,22.52,6.35,18.33 +efficientnet_b1,240,73.32,13.625,1,7.79,0.71,10.88 +cspresnext50,256,73.13,13.66,1,20.57,4.05,15.86 +vovnet39a,224,73.1,13.665,1,22.6,7.09,6.73 +gmlp_s16_224,224,73.08,13.668,1,19.42,4.42,15.1 +mobilevitv2_150,256,72.89,13.705,1,10.59,4.09,24.11 +regnetz_b16,224,72.69,13.743,1,9.72,1.45,9.95 +edgenext_base,256,72.61,13.756,1,18.51,3.85,15.58 +resnet32ts,256,72.54,13.77,1,17.96,4.63,11.58 +coat_lite_tiny,224,72.5,13.777,1,5.72,1.6,11.65 +regnetz_005,288,72.4,13.799,1,7.12,0.86,9.68 +repvgg_b0,224,72.16,13.843,1,15.82,3.41,6.15 +hgnetv2_b4,224,71.76,13.92,1,19.8,2.75,6.7 +dla60,224,71.69,13.933,1,22.04,4.26,10.16 +efficientnet_b1,224,71.49,13.974,1,7.79,0.59,9.36 +levit_conv_384,224,70.82,14.105,1,39.13,2.36,6.26 +efficientnet_b1,256,70.76,14.119,1,7.79,0.77,12.22 +regnetx_040,224,70.59,14.151,1,22.12,3.99,12.2 +tf_efficientnet_lite3,300,70.56,14.156,1,8.2,1.65,21.85 +eca_vovnet39b,224,70.47,14.174,1,22.6,7.09,6.74 +efficientnet_b2_pruned,260,70.35,14.199,1,8.31,0.73,9.13 +tf_efficientnetv2_b2,260,70.25,14.221,1,10.1,1.72,9.84 +hgnetv2_b3,288,70.06,14.259,1,16.29,2.94,8.38 +fbnetv3_d,224,70.0,14.271,1,10.31,0.52,8.5 +convnext_nano_ols,224,69.98,14.274,1,15.65,2.65,9.38 +fbnetv3_b,256,69.83,14.307,1,8.6,0.55,9.1 +repvit_m0_9,224,69.8,14.313,1,5.49,0.83,7.45 +efficientformerv2_s1,224,69.57,14.36,1,6.19,0.67,7.66 +darknet21,256,69.5,14.374,1,20.86,3.93,7.47 +ese_vovnet39b,224,69.4,14.394,1,24.57,7.09,6.74 +eca_resnet33ts,288,69.39,14.395,1,19.68,6.02,14.76 +nf_regnet_b0,256,69.34,14.407,1,8.76,0.64,5.58 +ecaresnet50t,160,69.28,14.419,1,25.57,2.21,6.04 +repvit_m1,224,69.18,14.442,1,5.49,0.83,7.45 +rexnetr_200,288,69.08,14.46,1,16.52,2.62,24.96 +res2net50_48w_2s,224,69.0,14.478,1,25.29,4.18,11.72 +resnet34,288,68.86,14.507,1,21.8,6.07,6.18 +flexivit_small,240,68.81,14.517,1,22.06,5.35,14.18 +legacy_seresnet34,224,68.78,14.524,1,21.96,3.67,3.74 +convnext_tiny,224,68.68,14.544,1,28.59,4.47,13.44 +ecaresnet26t,320,68.52,14.579,1,16.01,5.24,16.44 +regnetz_b16_evos,224,68.42,14.6,1,9.74,1.43,9.95 +repvit_m1_1,224,68.38,14.61,1,8.8,1.36,9.43 +efficientnet_b2,256,68.17,14.655,1,9.11,0.89,12.81 +efficientvit_b2,224,68.17,14.655,1,24.33,1.6,14.62 +repvit_m2,224,67.69,14.76,1,8.8,1.36,9.43 +seresnet34,224,67.32,14.839,1,21.96,3.67,3.74 +resnet50,224,67.2,14.865,1,25.56,4.11,11.11 +vit_relpos_small_patch16_rpn_224,224,67.18,14.869,1,21.97,4.59,13.05 +convnextv2_femto,288,66.86,14.941,1,5.23,1.3,7.56 +resnet34d,288,66.79,14.958,1,21.82,6.47,7.51 +gcresnet33ts,256,66.39,15.047,1,19.88,4.76,11.68 +tf_efficientnet_b1,240,66.1,15.114,1,7.79,0.71,10.88 +fbnetv3_d,256,66.05,15.125,1,10.31,0.68,11.1 +xcit_tiny_12_p16_384,384,65.58,15.233,1,6.72,3.64,18.26 +vit_relpos_small_patch16_224,224,65.51,15.25,1,21.98,4.59,13.05 +resnet50c,224,65.48,15.257,1,25.58,4.35,11.92 +dpn68,224,65.46,15.261,1,12.61,2.35,10.47 +ecaresnet50d_pruned,288,65.44,15.265,1,19.94,4.19,10.61 +efficientnet_b1,288,65.21,15.322,1,7.79,0.97,15.46 +repvit_m1_0,224,65.07,15.356,1,7.3,1.13,8.69 +twins_pcpvt_small,224,65.06,15.355,1,24.11,3.83,18.08 +mobilenetv4_hybrid_medium,320,65.04,15.36,1,11.07,2.05,14.36 +sedarknet21,256,64.98,15.373,1,20.95,3.93,7.47 +resnet50d,224,64.83,15.41,1,25.58,4.35,11.92 +resnetaa34d,288,64.72,15.435,1,21.82,7.33,8.38 +hiera_tiny_224,224,64.52,15.483,1,27.91,4.91,17.13 +poolformerv2_s24,224,64.33,15.529,1,21.34,3.42,10.68 +dpn68b,224,64.26,15.545,1,12.61,2.35,10.47 +ghostnetv2_100,224,64.11,15.585,1,6.16,0.18,4.55 +resnet50t,224,63.72,15.678,1,25.57,4.32,11.82 +resnetv2_50,224,63.72,15.68,1,25.55,4.11,11.11 +ghostnetv2_130,224,63.65,15.697,1,8.96,0.28,5.9 +resnetaa50,224,63.65,15.694,1,25.56,5.15,11.64 +seresnet50,160,63.58,15.713,1,28.09,2.1,5.69 +regnetz_b16,288,63.55,15.72,1,9.72,2.39,16.43 +convmixer_1024_20_ks9_p14,224,63.5,15.734,1,24.38,5.55,5.51 +efficientnet_b2,288,63.48,15.739,1,9.11,1.12,16.2 +resnext50_32x4d,288,63.36,15.767,1,25.03,7.04,23.81 +coatnet_pico_rw_224,224,63.31,15.781,1,10.85,2.05,14.62 +regnetx_064,224,63.21,15.805,1,26.21,6.49,16.37 +regnety_016,224,62.98,15.864,1,11.2,1.63,8.04 +poolformer_s24,224,62.88,15.889,1,21.39,3.41,10.68 +rexnetr_300,224,62.86,15.891,1,34.81,3.39,22.16 +nf_resnet26,224,62.76,15.919,1,16.0,2.41,7.35 +sam2_hiera_tiny,224,62.71,15.931,1,26.85,4.91,17.12 +hgnet_small,224,62.6,15.958,1,24.36,8.53,8.79 +mobilevitv2_175,256,62.59,15.963,1,14.25,5.54,28.13 +efficientvit_b2,288,62.24,16.05,1,24.33,2.64,24.03 +seresnext50_32x4d,224,62.23,16.053,1,27.56,4.26,14.42 +resnext50d_32x4d,288,62.18,16.068,1,25.05,7.44,25.13 +convnext_nano,224,62.15,16.076,1,15.59,2.46,8.37 +regnety_032,224,61.92,16.135,1,19.44,3.2,11.26 +resnet50_clip_gap,224,61.9,16.138,1,23.53,5.39,12.44 +resnetaa50d,224,61.9,16.139,1,25.58,5.39,12.44 +resnetv2_50d,224,61.83,16.157,1,25.57,4.35,11.92 +resnetblur50,224,61.61,16.216,1,25.56,5.16,12.02 +tiny_vit_11m_224,224,61.55,16.233,1,20.35,2.04,13.49 +resnet50s,224,61.42,16.265,1,25.68,5.47,13.52 +visformer_small,224,61.4,16.271,1,40.22,4.88,11.43 +gcresnet33ts,288,61.33,16.29,1,19.88,6.02,14.78 +convnextv2_tiny,224,61.3,16.298,1,28.64,4.47,13.44 +regnetz_c16,256,61.07,16.36,1,13.46,2.51,16.57 +cs3darknet_l,256,61.04,16.366,1,21.16,4.86,8.55 +tf_efficientnetv2_b3,240,61.03,16.372,1,14.36,1.93,9.95 +resnet51q,256,61.0,16.378,1,35.7,6.38,16.55 +legacy_seresnext50_32x4d,224,60.86,16.415,1,27.56,4.26,14.42 +vit_base_patch32_224,224,60.58,16.492,1,88.22,4.41,5.01 +resnetv2_50t,224,60.55,16.501,1,25.57,4.32,11.82 +mobilevit_s,256,60.52,16.509,1,5.58,2.03,19.94 +xcit_tiny_12_p8_224,224,60.28,16.576,1,6.71,4.81,23.6 +efficientvit_b2,256,60.14,16.612,1,24.33,2.09,19.03 +resnetrs50,160,60.13,16.615,1,35.69,2.29,6.2 +tf_efficientnet_b2,260,60.06,16.636,1,9.11,1.02,13.83 +hgnetv2_b4,288,59.96,16.662,1,19.8,4.54,11.08 +twins_svt_small,224,59.94,16.668,1,24.06,2.94,13.75 +efficientnet_el_pruned,300,59.77,16.716,1,10.59,8.0,30.7 +seresnet34,288,59.66,16.747,1,21.96,6.07,6.18 +vit_base_patch32_clip_quickgelu_224,224,59.58,16.77,1,87.85,4.41,5.01 +efficientnet_cc_b1_8e,240,59.51,16.79,1,39.72,0.75,15.44 +hrnet_w18_small,224,59.47,16.799,1,13.19,1.61,5.72 +efficientformer_l3,224,59.4,16.82,1,31.41,3.93,12.01 +tf_mixnet_s,224,59.38,16.826,1,4.13,0.25,6.25 +efficientnet_el,300,59.35,16.834,1,10.59,8.0,30.7 +ecaresnetlight,224,59.32,16.843,1,30.16,4.11,8.42 +rexnet_300,224,59.29,16.85,1,34.71,3.44,22.4 +volo_d1_224,224,59.28,16.853,1,26.63,6.94,24.43 +resnetblur50d,224,59.19,16.88,1,25.58,5.4,12.82 +vit_base_patch32_clip_224,224,59.16,16.887,1,88.22,4.41,5.01 +tf_efficientnet_el,300,59.06,16.916,1,10.59,8.0,30.7 +seresnet33ts,256,59.02,16.928,1,19.78,4.76,11.66 +efficientnet_lite4,380,59.0,16.933,1,13.01,4.04,45.66 +ecaresnet50t,224,58.9,16.963,1,25.57,4.32,11.83 +resmlp_24_224,224,58.64,17.039,1,30.02,5.96,10.91 +ghostnetv2_160,224,58.59,17.053,1,12.39,0.42,7.23 +nf_ecaresnet26,224,58.55,17.063,1,16.0,2.41,7.36 +ecaresnet50d,224,58.5,17.08,1,25.58,4.35,11.93 +mobilenetv4_conv_large,256,58.28,17.144,1,32.59,2.86,12.14 +mixnet_s,224,58.26,17.15,1,4.13,0.25,6.25 +mobilenetv4_hybrid_medium,384,57.89,17.259,1,11.07,3.01,21.18 +maxvit_pico_rw_256,256,57.53,17.368,1,7.46,1.83,22.3 +eva02_tiny_patch14_336,336,57.45,17.391,1,5.76,4.68,27.16 +resnetv2_50d_frn,224,57.35,17.421,1,25.59,4.33,11.92 +cs3darknet_focus_l,256,57.29,17.438,1,21.15,4.66,8.03 +repvgg_a2,224,57.04,17.514,1,28.21,5.7,6.26 +regnety_040,224,56.92,17.552,1,20.65,4.0,12.29 +edgenext_base,320,56.81,17.588,1,18.51,6.01,24.32 +convit_small,224,56.77,17.601,1,27.78,5.76,17.87 +crossvit_15_240,240,56.47,17.694,1,27.53,5.81,19.77 +gcresnext50ts,256,56.33,17.737,1,15.67,3.75,15.46 +nf_seresnet26,224,56.21,17.774,1,17.4,2.41,7.36 +nf_regnet_b1,256,56.15,17.796,1,10.22,0.82,7.27 +legacy_seresnet50,224,55.97,17.851,1,28.09,3.88,10.6 +dpn68b,288,55.95,17.857,1,12.61,3.89,17.3 +inception_next_tiny,224,55.95,17.858,1,28.06,4.19,11.98 +resnet50,288,55.91,17.869,1,25.56,6.8,18.37 +efficientnet_b3_pruned,300,55.81,17.904,1,9.86,1.04,11.86 +cait_xxs24_224,224,55.71,17.936,1,11.96,2.53,20.29 +hiera_small_224,224,55.7,17.938,1,35.01,6.42,20.75 +lambda_resnet50ts,256,55.57,17.981,1,21.54,5.07,17.48 +tf_efficientnet_lite4,380,55.5,18.002,1,13.01,4.04,45.66 +resnet50d,288,55.43,18.027,1,25.58,7.19,19.7 +haloregnetz_b,224,55.38,18.043,1,11.68,1.97,11.94 +resnet50_mlp,256,55.38,18.042,1,26.65,7.05,16.25 +fbnetv3_g,240,55.16,18.115,1,16.62,1.28,14.87 +vit_base_patch32_clip_256,256,54.94,18.186,1,87.86,5.76,6.65 +seresnet33ts,288,54.78,18.24,1,19.78,6.02,14.76 +resnet50t,288,54.68,18.272,1,25.57,7.14,19.53 +resnet51q,288,54.6,18.301,1,35.7,8.07,20.94 +sehalonet33ts,256,54.54,18.322,1,13.69,3.55,14.7 +caformer_s18,224,54.34,18.388,1,26.34,4.13,19.39 +ecaresnet50t,256,54.3,18.402,1,25.57,5.64,15.45 +regnetv_040,224,54.21,18.43,1,20.64,4.0,12.29 +seresnet50,224,54.16,18.45,1,28.09,4.11,11.13 +swin_s3_tiny_224,224,54.08,18.477,1,28.33,4.64,19.13 +tnt_s_patch16_224,224,53.96,18.516,1,23.76,5.24,24.37 +nf_regnet_b1,288,53.92,18.531,1,10.22,1.02,9.2 +tf_efficientnet_cc_b1_8e,240,53.91,18.536,1,39.72,0.75,15.44 +efficientnetv2_rw_t,224,53.9,18.539,1,13.65,1.93,9.94 +vit_srelpos_medium_patch16_224,224,53.78,18.578,1,38.74,7.96,16.21 +deit3_medium_patch16_224,224,53.65,18.623,1,38.85,8.0,15.93 +vit_small_resnet26d_224,224,53.52,18.668,1,63.61,5.07,11.12 +nest_tiny,224,53.5,18.675,1,17.06,5.83,25.48 +xcit_small_12_p16_224,224,53.49,18.68,1,26.25,4.82,12.58 +cs3darknet_l,288,53.41,18.707,1,21.16,6.16,10.83 +crossvit_15_dagger_240,240,53.29,18.75,1,28.21,6.13,20.43 +seresnet50t,224,53.29,18.749,1,28.1,4.32,11.83 +regnetz_b16_evos,288,53.13,18.805,1,9.74,2.36,16.43 +mobilenetv4_conv_large,320,52.96,18.867,1,32.59,4.47,18.97 +pvt_v2_b2_li,224,52.85,18.908,1,22.55,3.91,27.6 +skresnet50,224,52.83,18.915,1,25.8,4.11,12.5 +mobilevitv2_200,256,52.49,19.037,1,18.45,7.22,32.15 +resnetaa50,288,52.3,19.104,1,25.56,8.52,19.24 +ese_vovnet39b,288,52.13,19.169,1,24.57,11.71,11.13 +efficientnet_b3,288,51.98,19.224,1,12.23,1.63,21.49 +resnet50_clip,224,51.98,19.223,1,38.32,6.14,12.98 +tf_efficientnetv2_b3,300,51.94,19.237,1,14.36,3.04,15.74 +resnet61q,256,51.91,19.248,1,36.85,7.8,17.01 +coatnet_bn_0_rw_224,224,51.84,19.274,1,27.44,4.67,22.04 +crossvit_small_240,240,51.78,19.299,1,26.86,5.63,18.17 +cs3darknet_focus_l,288,51.73,19.315,1,21.15,5.9,10.16 +regnety_032,288,51.72,19.319,1,19.44,5.29,18.61 +skresnet50d,224,51.66,19.343,1,25.82,4.36,13.31 +resnetrs50,224,51.65,19.346,1,35.69,4.48,12.14 +nest_tiny_jx,224,51.64,19.349,1,17.06,5.83,25.48 +regnetz_c16,320,51.62,19.359,1,13.46,3.92,25.88 +mobilenetv4_hybrid_medium,448,51.57,19.376,1,11.07,4.2,29.64 +vovnet57a,224,51.53,19.39,1,36.64,8.95,7.52 +seresnetaa50d,224,51.35,19.459,1,28.11,5.4,12.46 +gcresnext50ts,288,51.14,19.538,1,15.67,4.75,19.57 +resnetblur50,288,51.1,19.555,1,25.56,8.52,19.87 +convnext_pico,288,51.06,19.57,1,9.05,2.27,10.08 +regnetz_c16_evos,256,51.06,19.57,1,13.49,2.48,16.57 +res2net50_26w_4s,224,50.93,19.621,1,25.7,4.28,12.61 +dla102x,224,50.88,19.637,1,26.31,5.89,19.42 +nf_regnet_b2,240,50.85,19.653,1,14.31,0.97,7.23 +convnextv2_nano,224,50.84,19.655,1,15.62,2.46,8.37 +tiny_vit_21m_224,224,50.8,19.67,1,33.22,4.29,20.08 +resnetaa50d,288,50.77,19.683,1,25.58,8.92,20.57 +nf_regnet_b2,272,50.75,19.691,1,14.31,1.22,9.27 +skresnet34,224,50.69,19.712,1,22.28,3.67,5.13 +eva02_small_patch14_224,224,50.62,19.74,1,21.62,6.14,18.28 +pvt_v2_b1,224,50.59,19.752,1,14.01,2.12,15.39 +mobilenetv4_hybrid_large_075,256,50.54,19.772,1,22.75,2.06,11.64 +vit_relpos_base_patch32_plus_rpn_256,256,50.44,19.809,1,119.42,7.68,8.01 +fbnetv3_g,288,50.35,19.845,1,16.62,1.77,21.09 +dla60_res2next,224,50.32,19.857,1,17.03,3.49,13.17 +convnext_pico_ols,288,50.27,19.879,1,9.06,2.37,10.74 +sebotnet33ts_256,256,50.06,19.961,1,13.7,3.89,17.46 +res2net50d,224,50.05,19.963,1,25.72,4.52,13.41 +ese_vovnet57b,224,49.97,19.996,1,38.61,8.95,7.52 +ecaresnetlight,288,49.96,20.0,1,30.16,6.79,13.91 +fastvit_mci0,256,49.92,20.017,1,11.41,2.42,18.29 +vit_relpos_medium_patch16_rpn_224,224,49.84,20.05,1,38.73,7.97,17.02 +regnetx_080,224,49.83,20.051,1,39.57,8.02,14.06 +maxvit_rmlp_pico_rw_256,256,49.77,20.08,1,7.52,1.85,24.86 +seresnext50_32x4d,288,49.63,20.133,1,27.56,7.04,23.82 +resnest50d,224,49.59,20.15,1,27.48,5.4,14.36 +dla60_res2net,224,49.54,20.171,1,20.85,4.15,12.34 +skresnext50_32x4d,224,49.52,20.179,1,27.48,4.5,17.18 +regnety_040,288,49.44,20.21,1,20.65,6.61,20.3 +convnext_tiny,288,49.43,20.215,1,28.59,7.39,22.21 +nextvit_small,224,49.39,20.232,1,31.76,5.81,18.44 +repvit_m3,224,49.37,20.243,1,10.68,1.89,13.94 +vit_medium_patch16_gap_240,240,49.3,20.268,1,44.4,9.22,18.81 +coatnet_nano_cc_224,224,49.22,20.303,1,13.76,2.24,15.02 +res2next50,224,49.07,20.363,1,24.67,4.2,13.71 +vit_base_patch32_plus_256,256,49.04,20.376,1,119.48,7.79,7.76 +mobilenetv4_conv_large,384,48.88,20.443,1,32.59,6.43,27.31 +resnetblur50d,288,48.87,20.447,1,25.58,8.92,21.19 +ecaresnet50d,288,48.86,20.451,1,25.58,7.19,19.72 +resnest50d_1s4x24d,224,48.8,20.474,1,25.68,4.43,13.57 +poolformerv2_s36,224,48.68,20.527,1,30.79,5.01,15.82 +vit_medium_patch16_clip_224,224,48.65,20.539,1,38.59,8.0,15.93 +vit_relpos_medium_patch16_224,224,48.6,20.561,1,38.75,7.97,17.02 +rexnetr_300,288,48.34,20.671,1,34.81,5.59,36.61 +cs3sedarknet_l,256,48.22,20.723,1,21.91,4.86,8.56 +gcvit_xxtiny,224,48.16,20.748,1,12.0,2.14,15.36 +davit_tiny,224,48.09,20.778,1,28.36,4.54,18.89 +lamhalobotnet50ts_256,256,48.01,20.812,1,22.57,5.02,18.44 +convnext_nano_ols,288,47.75,20.929,1,15.65,4.38,15.5 +convnextv2_pico,288,47.57,21.008,1,9.07,2.27,10.08 +gc_efficientnetv2_rw_t,224,47.43,21.07,1,13.68,1.94,9.97 +coatnet_0_rw_224,224,47.41,21.079,1,27.44,4.43,18.73 +hgnet_small,288,47.4,21.08,1,24.36,14.09,14.53 +regnety_040_sgn,224,47.27,21.142,1,20.65,4.03,12.29 +coatnet_0_224,224,47.25,21.147,1,25.04,4.58,24.01 +efficientnet_b3,320,47.25,21.147,1,12.23,2.01,26.52 +regnetv_040,288,47.25,21.15,1,20.64,6.6,20.3 +swinv2_cr_tiny_ns_224,224,47.24,21.152,1,28.33,4.66,28.45 +resnest50d_4s2x40d,224,47.16,21.189,1,30.42,4.4,17.94 +maxvit_nano_rw_256,256,47.1,21.214,1,15.45,4.46,30.28 +resnetv2_50,288,47.07,21.228,1,25.55,6.79,18.37 +cspresnet50d,256,46.79,21.355,1,21.64,4.86,12.55 +resnet61q,288,46.75,21.373,1,36.85,9.87,21.52 +swinv2_cr_tiny_224,224,46.75,21.377,1,28.33,4.66,28.45 +coatnet_nano_rw_224,224,46.73,21.383,1,15.14,2.41,15.41 +regnety_080_tv,224,46.7,21.397,1,39.38,8.51,19.73 +cspresnet50,256,46.68,21.408,1,21.62,4.54,11.5 +regnety_080,224,46.66,21.415,1,39.18,8.0,17.97 +crossvit_18_240,240,46.59,21.449,1,43.27,9.05,26.26 +efficientnetv2_rw_t,288,46.49,21.496,1,13.65,3.19,16.42 +ecaresnet50t,288,46.37,21.552,1,25.57,7.14,19.55 +resnet101,160,46.35,21.558,1,44.55,4.0,8.28 +tf_efficientnet_b3,300,46.18,21.641,1,12.23,1.87,23.83 +legacy_xception,299,46.16,21.647,1,22.86,8.4,35.83 +mobilenetv4_conv_aa_large,384,46.14,21.66,1,32.59,7.07,32.29 +swin_tiny_patch4_window7_224,224,46.12,21.667,1,28.29,4.51,17.06 +coatnet_rmlp_nano_rw_224,224,45.97,21.738,1,15.15,2.62,20.34 +vit_medium_patch16_gap_256,256,45.76,21.84,1,38.86,10.59,22.15 +seresnet50,288,45.63,21.898,1,28.09,6.8,18.39 +regnety_064,224,45.62,21.905,1,30.58,6.39,16.41 +fastvit_sa24,256,45.57,21.931,1,21.55,3.8,24.32 +mobileone_s0,224,45.48,21.974,1,5.29,1.09,15.48 +seresnet50t,288,45.48,21.971,1,28.1,7.14,19.55 +efficientvit_l1,224,45.46,21.98,1,52.65,5.27,15.85 +dla102,224,45.32,22.05,1,33.27,7.19,14.18 +mixer_b16_224,224,44.95,22.231,1,59.88,12.62,14.53 +tresnet_m,224,44.93,22.24,1,31.39,5.75,7.31 +convnext_nano,288,44.91,22.252,1,15.59,4.06,13.84 +levit_512d,224,44.82,22.297,1,92.5,5.85,11.3 +tf_mixnet_m,224,44.67,22.372,1,5.01,0.36,8.19 +poolformer_s36,224,44.56,22.427,1,30.86,5.0,15.82 +resnet101,176,44.51,22.453,1,44.55,4.92,10.08 +hiera_small_abswin_256,256,44.37,22.521,1,34.36,8.29,26.38 +efficientformerv2_s2,224,44.2,22.612,1,12.71,1.27,11.77 +levit_512,224,44.15,22.633,1,95.17,5.64,10.22 +ecaresnet50t,320,44.14,22.639,1,25.57,8.82,24.13 +coatnet_rmlp_0_rw_224,224,44.13,22.643,1,27.45,4.72,24.89 +regnetv_064,224,44.1,22.658,1,30.58,6.39,16.41 +nf_regnet_b3,288,44.02,22.703,1,18.59,1.67,11.84 +ese_vovnet39b_evos,224,43.96,22.734,1,24.58,7.07,6.74 +regnetz_d8,256,43.94,22.743,1,23.37,3.97,23.74 +mixnet_m,224,43.88,22.776,1,5.01,0.36,8.19 +maxxvitv2_nano_rw_256,256,43.77,22.829,1,23.7,6.26,23.05 +xcit_tiny_24_p16_224,224,43.51,22.97,1,12.12,2.34,11.82 +inception_v3,299,43.48,22.986,1,23.83,5.73,8.97 +mobilenetv4_conv_large,448,43.42,23.016,1,32.59,8.75,37.17 +cs3sedarknet_l,288,43.36,23.047,1,21.91,6.16,10.83 +mvitv2_tiny,224,43.15,23.162,1,24.17,4.7,21.16 +mobilevitv2_150,384,43.14,23.163,1,10.59,9.2,54.25 +gcresnet50t,256,43.13,23.17,1,25.9,5.42,14.67 +halonet50ts,256,43.09,23.191,1,22.73,5.3,19.2 +convnextv2_tiny,288,42.95,23.27,1,28.64,7.39,22.21 +hieradet_small,256,42.83,23.331,1,34.72,8.51,27.76 +resnext101_32x4d,224,42.71,23.4,1,44.18,8.01,21.23 +darknetaa53,256,42.69,23.407,1,36.02,7.97,12.39 +regnetx_120,224,42.68,23.416,1,46.11,12.13,21.37 +xception41p,299,42.58,23.471,1,26.91,9.25,39.86 +crossvit_18_dagger_240,240,42.54,23.491,1,44.27,9.5,27.03 +densenetblur121d,224,42.38,23.584,1,8.0,3.11,7.9 +cs3sedarknet_xdw,256,42.26,23.645,1,21.6,5.97,17.18 +regnetz_c16_evos,320,41.93,23.833,1,13.49,3.86,25.88 +maxxvit_rmlp_nano_rw_256,256,41.91,23.848,1,16.78,4.37,26.05 +vit_small_r26_s32_224,224,41.84,23.884,1,36.43,3.56,9.85 +nf_regnet_b3,320,41.83,23.893,1,18.59,2.05,14.61 +tf_mixnet_l,224,41.77,23.924,1,7.33,0.58,10.84 +xcit_nano_12_p8_384,384,41.57,24.039,1,3.05,6.34,46.08 +densenet121,224,41.48,24.095,1,7.98,2.87,6.9 +gc_efficientnetv2_rw_t,288,41.42,24.127,1,13.68,3.2,16.45 +dpn92,224,41.37,24.158,1,37.67,6.54,18.21 +coat_lite_small,224,41.08,24.326,1,19.84,3.96,22.09 +efficientnetv2_s,288,41.07,24.333,1,21.46,4.75,20.13 +mobilenetv4_conv_aa_large,448,40.96,24.396,1,32.59,9.63,43.94 +regnetz_040,256,40.92,24.423,1,27.12,4.06,24.19 +ecaresnet101d_pruned,224,40.84,24.468,1,24.88,3.48,7.69 +maxvit_rmlp_nano_rw_256,256,40.78,24.507,1,15.5,4.47,31.92 +regnetz_d8_evos,256,40.78,24.507,1,23.46,4.5,24.92 +efficientnet_b0_gn,224,40.77,24.511,1,5.29,0.42,6.75 +botnet50ts_256,256,40.7,24.554,1,22.74,5.54,22.23 +seresnetaa50d,288,40.59,24.622,1,28.11,8.92,20.59 +regnetz_040_h,256,40.56,24.64,1,28.94,4.12,24.29 +convformer_s18,224,40.53,24.655,1,26.77,3.96,15.82 +cspresnet50w,256,40.48,24.69,1,28.12,5.04,12.19 +convnext_tiny_hnf,224,40.44,24.711,1,28.59,4.47,13.44 +xception41,299,40.35,24.765,1,26.97,9.28,39.86 +gcresnet50t,288,40.34,24.775,1,25.9,6.86,18.57 +focalnet_tiny_srf,224,40.29,24.806,1,28.43,4.42,16.32 +coatnext_nano_rw_224,224,40.21,24.856,1,14.7,2.47,12.8 +gcvit_xtiny,224,40.09,24.927,1,19.98,2.93,20.26 +efficientnet_b3_gn,288,39.94,25.025,1,11.73,1.74,23.35 +mixnet_l,224,39.77,25.13,1,7.33,0.58,10.84 +twins_pcpvt_base,224,39.74,25.15,1,43.83,6.68,25.25 +cs3darknet_x,256,39.65,25.205,1,35.05,8.38,11.35 +darknetaa53,288,39.58,25.247,1,36.02,10.08,15.68 +resmlp_36_224,224,39.56,25.262,1,44.69,8.91,16.33 +efficientnet_b0_g8_gn,224,39.45,25.332,1,6.56,0.66,6.75 +res2net50_14w_8s,224,39.38,25.381,1,25.06,4.21,13.28 +cs3darknet_focus_x,256,39.3,25.428,1,35.02,8.03,10.69 +vit_base_resnet26d_224,224,39.28,25.441,1,101.4,6.97,13.16 +tf_efficientnetv2_s,300,39.24,25.472,1,21.46,5.35,22.73 +resnet50_gn,224,39.23,25.474,1,25.56,4.14,11.11 +levit_conv_512,224,39.13,25.542,1,95.17,5.64,10.22 +hrnet_w18_small_v2,224,39.05,25.592,1,15.6,2.62,9.65 +hiera_base_224,224,38.8,25.755,1,51.52,9.4,30.42 +regnetz_d32,256,38.77,25.776,1,27.58,5.98,23.74 +repvit_m1_5,224,38.77,25.781,1,14.64,2.31,15.7 +ecaresnet101d_pruned,288,38.73,25.803,1,24.88,5.75,12.71 +efficientnetv2_rw_s,288,38.61,25.887,1,23.94,4.91,21.41 +eca_nfnet_l0,224,38.59,25.896,1,24.14,4.35,10.47 +regnety_040_sgn,288,38.56,25.92,1,20.65,6.67,20.3 +convnext_tiny,384,38.48,25.972,1,28.59,13.14,39.48 +darknet53,256,38.45,25.996,1,41.61,9.31,12.39 +resnet101c,224,38.43,26.009,1,44.57,8.08,17.04 +resnet101d,224,38.39,26.031,1,44.57,8.08,17.04 +levit_conv_512d,224,38.29,26.101,1,92.5,5.85,11.3 +efficientnet_b4,320,38.25,26.128,1,19.34,3.13,34.76 +vit_medium_patch16_reg1_gap_256,256,38.21,26.156,1,38.88,10.63,22.26 +cait_xxs36_224,224,38.09,26.236,1,17.3,3.77,30.34 +resnetv2_101,224,37.98,26.313,1,44.54,7.83,16.23 +resnet101,224,37.96,26.325,1,44.55,7.83,16.23 +vit_medium_patch16_reg4_gap_256,256,37.91,26.362,1,38.88,10.76,22.6 +mobilenetv4_conv_aa_large,480,37.86,26.401,1,32.59,11.05,50.45 +vit_base_patch32_384,384,37.85,26.406,1,88.3,13.06,16.5 +resnetv2_50d_gn,224,37.84,26.412,1,25.57,4.38,11.92 +dla102x2,224,37.76,26.469,1,41.28,9.34,29.91 +nf_ecaresnet50,224,37.64,26.55,1,25.56,4.21,11.13 +resnetv2_101d,224,37.5,26.654,1,44.56,8.07,17.04 +regnety_080,288,37.29,26.802,1,39.18,13.22,29.69 +vit_betwixt_patch16_reg4_gap_256,256,37.28,26.811,1,60.4,16.52,28.24 +xcit_tiny_24_p16_384,384,37.27,26.819,1,12.12,6.87,34.29 +resnet101s,224,37.22,26.85,1,44.67,9.19,18.64 +resnet101_clip_gap,224,37.2,26.866,1,42.52,9.11,17.56 +vit_betwixt_patch16_reg1_gap_256,256,37.17,26.887,1,60.4,16.32,27.83 +regnety_120,224,37.07,26.958,1,51.82,12.14,21.38 +resnetaa101d,224,37.03,26.988,1,44.57,9.12,17.56 +vit_base_patch32_clip_384,384,36.96,27.038,1,88.3,13.06,16.5 +focalnet_tiny_lrf,224,36.82,27.146,1,28.65,4.49,17.76 +regnety_064,288,36.7,27.234,1,30.58,10.56,27.11 +resnetblur101d,224,36.7,27.233,1,44.57,9.12,17.94 +swinv2_tiny_window8_256,256,36.67,27.255,1,28.35,5.96,24.57 +efficientvit_b3,256,36.65,27.272,1,48.65,5.2,35.01 +vit_small_resnet50d_s16_224,224,36.62,27.293,1,57.53,13.48,24.82 +convnextv2_nano,288,36.54,27.35,1,15.62,4.06,13.84 +hgnetv2_b5,224,36.31,27.528,1,39.57,6.56,11.19 +nfnet_l0,224,36.3,27.529,1,35.07,4.36,10.47 +efficientnet_b3_g8_gn,288,36.2,27.606,1,14.25,2.59,23.35 +res2net50_26w_6s,224,36.18,27.623,1,37.05,6.33,15.28 +efficientvit_b3,224,36.11,27.679,1,48.65,3.99,26.9 +resnet50_gn,288,36.07,27.705,1,25.56,6.85,18.37 +mobilevitv2_175,384,36.06,27.718,1,14.25,12.47,63.29 +resnetv2_50d_evos,224,36.01,27.757,1,25.59,4.33,11.92 +vit_medium_patch16_rope_reg1_gap_256,256,35.85,27.875,1,38.74,10.63,22.26 +selecsls60,224,35.65,28.033,1,30.67,3.59,5.52 +darknet53,288,35.59,28.085,1,41.61,11.78,15.68 +vit_betwixt_patch16_rope_reg4_gap_256,256,35.51,28.145,1,60.23,16.52,28.24 +nf_seresnet50,224,35.24,28.358,1,28.09,4.21,11.13 +resnet101d,256,35.24,28.36,1,44.57,10.55,22.25 +regnetx_160,224,35.17,28.416,1,54.28,15.99,25.52 +efficientnet_b3_gn,320,35.01,28.544,1,11.73,2.14,28.83 +vit_base_patch16_xp_224,224,34.85,28.679,1,86.51,17.56,23.9 +cs3darknet_x,288,34.83,28.698,1,35.05,10.6,14.36 +efficientvit_l2,224,34.79,28.728,1,63.71,6.97,19.58 +resnext101_32x4d,288,34.76,28.749,1,44.18,13.24,35.09 +efficientvit_l2,256,34.74,28.768,1,63.71,9.09,25.49 +convnext_small,224,34.73,28.78,1,50.22,8.71,21.56 +ecaresnet101d,224,34.73,28.782,1,44.57,8.08,17.07 +nextvit_base,224,34.7,28.806,1,44.82,8.29,23.71 +densenet121,288,34.67,28.829,1,7.98,4.74,11.41 +regnetv_064,288,34.58,28.905,1,30.58,10.55,27.11 +seresnext101_32x4d,224,34.52,28.956,1,48.96,8.02,21.26 +nf_resnet50,256,34.49,28.98,1,25.56,5.46,14.52 +resnetrs101,192,34.47,28.999,1,63.62,6.04,12.7 +legacy_seresnext101_32x4d,224,34.44,29.022,1,48.96,8.02,21.26 +maxvit_tiny_rw_224,224,34.35,29.1,1,29.06,5.11,33.11 +repvgg_b1g4,224,34.32,29.124,1,39.97,8.15,10.64 +vit_base_patch16_gap_224,224,34.16,29.258,1,86.57,17.49,25.59 +efficientvit_b3,288,34.1,29.309,1,48.65,6.58,44.2 +halo2botnet50ts_256,256,34.05,29.351,1,22.64,5.02,21.78 +selecsls42,224,33.89,29.496,1,30.35,2.94,4.62 +eca_nfnet_l0,288,33.8,29.569,1,24.14,7.12,17.29 +vit_base_patch16_siglip_gap_224,224,33.75,29.618,1,85.8,17.49,23.75 +resnet101_clip,224,33.7,29.656,1,56.26,9.81,18.08 +resnet152,160,33.49,29.847,1,60.19,5.9,11.51 +deit3_small_patch16_384,384,33.42,29.906,1,22.21,15.52,50.78 +mobilenetv4_hybrid_large,384,33.38,29.94,1,37.76,7.77,34.52 +regnetz_040_h,320,33.3,30.017,1,28.94,6.43,37.94 +xcit_tiny_24_p8_224,224,33.26,30.048,1,12.11,9.21,45.39 +densenetblur121d,288,33.25,30.063,1,8.0,5.14,13.06 +densenet169,224,33.23,30.075,1,14.15,3.4,7.3 +resnet101,288,33.13,30.169,1,44.55,12.95,26.83 +twins_svt_base,224,33.13,30.173,1,56.07,8.59,26.33 +deit3_base_patch16_224,224,33.11,30.189,1,86.59,17.58,23.9 +legacy_seresnet101,224,33.08,30.217,1,49.33,7.61,15.74 +regnetz_040,320,32.88,30.4,1,27.12,6.35,37.78 +resnetv2_50x1_bit,224,32.87,30.406,1,25.55,4.23,11.11 +vit_base_resnet50d_224,224,32.87,30.408,1,110.97,8.73,16.92 +vit_base_patch16_rpn_224,224,32.84,30.438,1,86.54,17.49,23.75 +poolformerv2_m36,224,32.8,30.47,1,56.08,8.81,22.02 +tf_efficientnetv2_s,384,32.72,30.552,1,21.46,8.44,35.77 +mobilenetv4_conv_aa_large,544,32.67,30.598,1,32.59,14.19,64.79 +vit_base_patch16_siglip_224,224,32.65,30.616,1,92.88,17.73,24.06 +mixnet_xl,224,32.6,30.656,1,11.9,0.93,14.57 +selecsls60b,224,32.6,30.659,1,32.77,3.63,5.52 +mvitv2_small,224,32.58,30.68,1,34.87,7.0,28.08 +vit_small_patch16_384,384,32.55,30.711,1,22.2,15.52,50.78 +caformer_s36,224,32.53,30.726,1,39.3,8.0,37.53 +tnt_b_patch16_224,224,32.53,30.728,1,65.41,14.09,39.01 +vitamin_small_224,224,32.51,30.744,1,22.03,5.92,26.38 +nf_resnet50,288,32.5,30.752,1,25.56,6.88,18.37 +hgnetv2_b5,288,32.49,30.76,1,39.57,10.84,18.5 +deit_base_distilled_patch16_224,224,32.46,30.788,1,87.34,17.68,24.05 +vit_base_patch16_clip_quickgelu_224,224,32.46,30.79,1,86.19,17.58,23.9 +vit_base_patch16_224,224,32.37,30.879,1,86.57,17.58,23.9 +convnextv2_tiny,384,32.27,30.975,1,28.64,13.14,39.48 +cs3sedarknet_x,256,32.26,30.981,1,35.4,8.38,11.35 +hiera_base_plus_224,224,32.24,31.003,1,69.9,12.67,37.98 +seresnet101,224,32.23,31.014,1,49.33,7.84,16.27 +poolformer_m36,224,32.19,31.046,1,56.17,8.8,22.02 +nest_small,224,32.07,31.17,1,38.35,10.35,40.04 +vit_base_patch16_clip_224,224,32.07,31.165,1,86.57,17.58,23.9 +convnextv2_small,224,32.06,31.176,1,50.32,8.71,21.56 +efficientnetv2_s,384,32.05,31.19,1,21.46,8.44,35.77 +beitv2_base_patch16_224,224,31.94,31.292,1,86.53,17.58,23.9 +pit_b_224,224,31.91,31.326,1,73.76,12.42,32.94 +resnet152,176,31.85,31.385,1,60.19,7.22,13.99 +deit_base_patch16_224,224,31.84,31.396,1,86.57,17.58,23.9 +xcit_small_12_p16_384,384,31.81,31.426,1,26.25,14.14,36.51 +vit_base_patch16_224_miil,224,31.79,31.443,1,94.4,17.59,23.91 +efficientvit_l2,288,31.76,31.475,1,63.71,11.51,32.19 +cspdarknet53,256,31.74,31.496,1,27.64,6.57,16.81 +fastvit_sa36,256,31.72,31.513,1,31.53,5.64,34.61 +efficientformerv2_l,224,31.66,31.575,1,26.32,2.59,18.54 +cs3edgenet_x,256,31.65,31.583,1,47.82,11.53,12.92 +vit_base_mci_224,224,31.6,31.632,1,86.35,17.73,24.65 +efficientnet_b4,384,31.56,31.668,1,19.34,4.51,50.04 +nest_small_jx,224,31.45,31.779,1,38.35,10.35,40.04 +vit_base_patch32_clip_448,448,31.42,31.814,1,88.34,17.93,23.9 +beit_base_patch16_224,224,31.4,31.831,1,86.53,17.58,23.9 +nf_regnet_b4,320,31.39,31.841,1,30.21,3.29,19.88 +efficientnet_b3_g8_gn,320,31.38,31.853,1,14.25,3.2,28.83 +dpn98,224,31.36,31.872,1,61.57,11.73,25.2 +nfnet_l0,288,31.34,31.893,1,35.07,7.13,17.29 +selecsls42b,224,31.3,31.933,1,32.46,2.98,4.62 +vit_relpos_base_patch16_224,224,31.26,31.976,1,86.43,17.51,24.97 +efficientformer_l7,224,31.23,32.009,1,82.23,10.17,24.45 +vit_relpos_base_patch16_rpn_224,224,31.19,32.049,1,86.41,17.51,24.97 +efficientnetv2_rw_s,384,31.17,32.062,1,23.94,8.72,38.03 +regnetz_d8,320,31.14,32.1,1,23.37,6.19,37.08 +resnetaa101d,288,31.04,32.202,1,44.57,15.07,29.03 +repvit_m2_3,224,30.84,32.413,1,23.69,4.57,26.21 +hiera_base_abswin_256,256,30.8,32.449,1,51.27,12.46,40.7 +pit_b_distilled_224,224,30.65,32.611,1,74.79,12.5,33.07 +regnetz_d8_evos,320,30.64,32.621,1,23.46,7.03,38.92 +resnetv2_50d_gn,288,30.59,32.672,1,25.57,7.24,19.7 +tf_efficientnet_b4,380,30.51,32.765,1,19.34,4.49,49.49 +inception_next_small,224,30.42,32.862,1,49.37,8.36,19.27 +pvt_v2_b2,224,30.36,32.925,1,25.36,4.05,27.53 +eva02_small_patch14_336,336,30.29,33.0,1,22.13,15.48,54.33 +resnetblur101d,288,30.04,33.271,1,44.57,15.07,29.65 +vit_base_r26_s32_224,224,30.0,33.321,1,101.38,6.81,12.36 +resnext101_32x8d,176,29.83,33.513,1,88.79,10.33,19.37 +repvgg_b1,224,29.67,33.688,1,57.42,13.16,10.64 +resnetv2_50d_evos,288,29.65,33.713,1,25.59,7.15,19.7 +tresnet_v2_l,224,29.6,33.773,1,46.17,8.85,16.34 +gcvit_tiny,224,29.49,33.891,1,28.22,4.79,29.82 +resnet101d,320,29.39,34.011,1,44.57,16.48,34.77 +flexivit_base,240,29.33,34.08,1,86.59,20.29,28.36 +regnetz_d32,320,29.32,34.088,1,27.58,9.33,37.08 +resnetv2_101,288,29.31,34.106,1,44.54,12.94,26.83 +mobilenetv4_hybrid_large,448,29.27,34.151,1,37.76,10.74,48.61 +ecaresnet101d,288,29.15,34.285,1,44.57,13.35,28.19 +samvit_base_patch16_224,224,29.14,34.296,1,86.46,17.54,24.54 +res2net50_26w_8s,224,29.07,34.384,1,48.4,8.37,17.95 +seresnext101_32x4d,288,29.02,34.449,1,48.96,13.25,35.12 +resnet152c,224,29.01,34.452,1,60.21,11.8,23.36 +coatnet_1_rw_224,224,28.9,34.585,1,41.72,8.04,34.6 +fastvit_ma36,256,28.73,34.79,1,44.07,7.88,41.09 +res2net101_26w_4s,224,28.72,34.8,1,45.21,8.1,18.45 +xcit_small_24_p16_224,224,28.72,34.804,1,47.67,9.1,23.64 +tresnet_l,224,28.63,34.917,1,55.99,10.9,11.9 +fastvit_mci1,256,28.61,34.943,1,21.54,4.72,32.84 +nf_regnet_b4,384,28.57,34.992,1,30.21,4.7,28.61 +mvitv2_small_cls,224,28.51,35.066,1,34.87,7.04,28.17 +dla169,224,28.48,35.101,1,53.39,11.6,20.2 +ese_vovnet99b,224,28.47,35.103,1,63.2,16.51,11.27 +cs3sedarknet_x,288,28.29,35.337,1,35.4,10.6,14.37 +xception65p,299,28.23,35.414,1,39.82,13.91,52.48 +cs3edgenet_x,288,28.14,35.519,1,47.82,14.59,16.36 +res2net101d,224,28.14,35.527,1,45.23,8.35,19.25 +xception65,299,28.1,35.573,1,39.92,13.96,52.48 +twins_pcpvt_large,224,28.07,35.609,1,60.99,9.84,35.82 +resnet152,224,27.96,35.749,1,60.19,11.56,22.56 +vit_base_patch16_siglip_gap_256,256,27.94,35.78,1,85.84,23.13,33.23 +regnety_120,288,27.92,35.806,1,51.82,20.06,35.34 +volo_d2_224,224,27.78,35.98,1,58.68,14.34,41.34 +cait_s24_224,224,27.64,36.167,1,46.92,9.35,40.58 +regnetz_e8,256,27.54,36.301,1,57.7,9.91,40.94 +coatnet_rmlp_1_rw_224,224,27.53,36.312,1,41.69,7.85,35.47 +resnet152d,224,27.31,36.603,1,60.21,11.8,23.36 +resnetv2_152,224,27.25,36.685,1,60.19,11.55,22.56 +cs3se_edgenet_x,256,27.22,36.716,1,50.72,11.53,12.94 +regnety_160,224,27.12,36.857,1,83.59,15.96,23.04 +resnet152d,256,27.11,36.874,1,60.21,15.41,30.51 +seresnet101,288,27.02,36.999,1,49.33,12.95,26.87 +resnet152s,224,26.88,37.185,1,60.32,12.92,24.96 +vit_small_patch16_36x1_224,224,26.68,37.464,1,64.67,13.71,35.69 +resnetv2_152d,224,26.66,37.494,1,60.2,11.8,23.36 +resnest101e,256,26.65,37.508,1,48.28,13.38,28.66 +vit_base_patch16_siglip_256,256,26.57,37.619,1,92.93,23.44,33.63 +coatnet_rmlp_1_rw2_224,224,26.54,37.661,1,41.72,8.11,40.13 +resnext101_64x4d,224,26.53,37.681,1,83.46,15.52,31.21 +davit_small,224,26.46,37.776,1,49.75,8.8,30.49 +eva02_base_patch16_clip_224,224,26.43,37.819,1,86.26,17.62,26.32 +convnext_tiny_hnf,288,26.37,37.908,1,28.59,7.39,22.21 +vit_small_patch16_18x2_224,224,26.34,37.946,1,64.67,13.71,35.69 +xcit_tiny_12_p8_384,384,26.34,37.947,1,6.71,14.13,69.14 +swinv2_cr_small_224,224,26.28,38.042,1,49.7,9.07,50.27 +levit_384_s8,224,26.26,38.061,1,39.12,9.98,35.86 +convmixer_768_32,224,26.25,38.075,1,21.11,19.55,25.95 +nextvit_large,224,26.22,38.123,1,57.87,10.78,28.99 +coatnet_1_224,224,26.15,38.229,1,42.23,8.7,39.0 +fastvit_mci2,256,26.12,38.263,1,35.82,7.91,43.34 +tresnet_m,448,26.11,38.285,1,31.39,22.99,29.21 +resnetrs101,288,25.92,38.57,1,63.62,13.56,28.53 +gmlp_b16_224,224,25.89,38.602,1,73.08,15.78,30.21 +vit_base_patch16_rope_reg1_gap_256,256,25.73,38.851,1,86.43,23.22,33.39 +vit_small_r26_s32_384,384,25.73,38.852,1,36.47,10.43,29.85 +maxxvit_rmlp_tiny_rw_256,256,25.67,38.943,1,29.64,6.66,39.76 +poolformerv2_m48,224,25.65,38.971,1,73.35,11.59,29.17 +swinv2_tiny_window16_256,256,25.64,38.993,1,28.35,6.68,39.02 +mixnet_xxl,224,25.63,38.998,1,23.96,2.04,23.43 +vit_base_patch16_reg4_gap_256,256,25.52,39.177,1,86.62,23.5,33.89 +densenet201,224,25.51,39.186,1,20.01,4.34,7.85 +inception_v4,299,25.47,39.242,1,42.68,12.28,15.09 +swinv2_cr_small_ns_224,224,25.44,39.297,1,49.7,9.08,50.27 +xception71,299,25.35,39.425,1,42.34,18.09,69.92 +maxvit_tiny_tf_224,224,25.19,39.689,1,30.92,5.6,35.78 +levit_conv_384_s8,224,25.15,39.74,1,39.12,9.98,35.86 +resnext101_32x8d,224,25.15,39.747,1,88.79,16.48,31.21 +nextvit_small,384,25.13,39.772,1,31.76,17.26,57.14 +focalnet_small_srf,224,25.12,39.79,1,49.89,8.62,26.26 +poolformer_m48,224,25.05,39.907,1,73.47,11.59,29.17 +xcit_small_12_p8_224,224,24.99,40.001,1,26.21,18.69,47.21 +wide_resnet50_2,176,24.68,40.508,1,68.88,7.29,8.97 +rdnet_tiny,224,24.6,40.632,1,23.86,5.06,15.98 +swin_small_patch4_window7_224,224,24.27,41.189,1,49.61,8.77,27.47 +convnext_small,288,24.23,41.261,1,50.22,14.39,35.65 +gcvit_small,224,24.2,41.299,1,51.09,8.57,41.61 +convnext_base,224,24.1,41.474,1,88.59,15.38,28.75 +convit_base,224,24.07,41.536,1,86.54,17.52,31.77 +hrnet_w18,224,24.04,41.579,1,21.3,4.32,16.31 +hrnet_w18_ssld,224,24.02,41.615,1,21.3,4.32,16.31 +densenet161,224,23.86,41.894,1,28.68,7.79,11.06 +crossvit_base_240,240,23.75,42.099,1,105.03,21.22,36.33 +hgnet_base,224,23.7,42.176,1,71.58,25.14,15.47 +coat_tiny,224,23.67,42.24,1,5.5,4.35,27.2 +resnet200,224,23.64,42.283,1,64.67,15.07,32.19 +resnet50x4_clip_gap,288,23.59,42.37,1,65.62,19.57,34.11 +efficientvit_l2,384,23.51,42.516,1,63.71,20.45,57.01 +mobilevitv2_200,384,23.51,42.518,1,18.45,16.24,72.34 +dpn131,224,23.43,42.662,1,79.25,16.09,32.97 +resnet152,288,23.31,42.887,1,60.19,19.11,37.28 +repvgg_b2g4,224,23.16,43.162,1,61.76,12.63,12.9 +legacy_seresnet152,224,23.14,43.193,1,66.82,11.33,22.08 +convnextv2_nano,384,23.13,43.219,1,15.62,7.22,24.61 +seresnext101_64x4d,224,23.11,43.257,1,88.23,15.53,31.25 +inception_next_base,224,23.05,43.362,1,86.67,14.85,25.69 +tresnet_xl,224,23.05,43.371,1,78.44,15.2,15.34 +vit_mediumd_patch16_reg4_gap_256,256,23.05,43.371,1,64.11,17.87,37.57 +pvt_v2_b3,224,22.89,43.665,1,45.24,6.92,37.7 +efficientnetv2_m,320,22.82,43.798,1,54.14,11.01,39.97 +mixer_l32_224,224,22.8,43.842,1,206.94,11.27,19.86 +mvitv2_base,224,22.79,43.856,1,51.47,10.16,40.5 +seresnet152,224,22.72,43.995,1,66.82,11.57,22.61 +vit_mediumd_patch16_rope_reg1_gap_256,256,22.72,43.992,1,63.95,17.65,37.02 +rdnet_small,224,22.58,44.268,1,50.44,8.74,22.55 +coat_lite_medium,224,22.54,44.36,1,44.57,9.81,40.06 +selecsls84,224,22.48,44.46,1,50.95,5.9,7.57 +maxvit_rmlp_small_rw_224,224,22.47,44.485,1,64.9,10.75,49.3 +vit_small_patch8_224,224,22.43,44.574,1,21.67,22.44,80.84 +nest_base,224,22.41,44.608,1,67.72,17.96,53.39 +resnet50x4_clip,288,22.35,44.73,1,87.14,21.35,35.27 +hgnetv2_b6,224,22.21,45.009,1,75.26,16.88,21.23 +seresnext101d_32x8d,224,22.21,45.016,1,93.59,16.72,32.05 +dm_nfnet_f0,192,22.11,45.211,1,71.49,7.21,10.16 +convformer_s18,384,22.05,45.339,1,26.77,11.63,46.49 +seresnext101_32x8d,224,21.96,45.513,1,93.57,16.48,31.25 +nest_base_jx,224,21.93,45.587,1,67.72,17.96,53.39 +efficientnetv2_rw_m,320,21.92,45.609,1,53.24,12.72,47.14 +volo_d1_384,384,21.86,45.726,1,26.78,22.75,108.55 +nfnet_f0,192,21.82,45.824,1,71.49,7.21,10.16 +convnextv2_base,224,21.75,45.952,1,88.72,15.38,28.75 +seresnextaa101d_32x8d,224,21.72,46.028,1,93.59,17.25,34.16 +crossvit_15_dagger_408,408,21.61,46.27,1,28.5,21.45,95.05 +cs3se_edgenet_x,320,21.55,46.387,1,50.72,18.01,20.21 +convformer_s36,224,21.53,46.433,1,40.01,7.67,30.5 +resnet200d,256,21.53,46.442,1,64.69,20.0,43.09 +eva02_base_patch14_224,224,21.38,46.75,1,85.76,23.22,36.55 +wide_resnet50_2,224,21.37,46.783,1,68.88,11.43,14.4 +nextvit_base,384,21.3,46.935,1,44.82,24.64,73.95 +vit_medium_patch16_gap_384,384,21.14,47.294,1,39.03,26.08,67.54 +inception_resnet_v2,299,21.05,47.499,1,55.84,13.18,25.06 +resnet152d,320,21.02,47.565,1,60.21,24.08,47.67 +coat_mini,224,20.92,47.779,1,10.34,6.82,33.68 +maxvit_small_tf_224,224,20.92,47.786,1,68.93,11.66,53.17 +dpn107,224,20.79,48.078,1,86.92,18.38,33.46 +seresnet152d,256,20.73,48.221,1,66.84,15.42,30.56 +nf_resnet101,224,20.65,48.421,1,44.55,8.01,16.23 +resnext101_64x4d,288,20.65,48.413,1,83.46,25.66,51.59 +efficientnet_b5,416,20.64,48.433,1,30.39,8.27,80.68 +regnety_160,288,20.58,48.586,1,83.59,26.37,38.07 +swin_s3_base_224,224,20.58,48.567,1,71.13,13.69,48.26 +twins_svt_large,224,20.54,48.661,1,99.27,15.15,35.1 +resnetrs152,256,20.5,48.776,1,86.62,15.59,30.83 +convnext_small,384,20.38,49.064,1,50.22,25.58,63.37 +maxvit_rmlp_small_rw_256,256,20.27,49.32,1,64.9,14.15,66.09 +caformer_m36,224,20.18,49.536,1,56.2,13.29,50.48 +convnext_base,256,20.18,49.55,1,88.59,20.09,37.55 +vit_base_patch16_plus_240,240,20.07,49.813,1,117.56,27.41,33.08 +eca_nfnet_l1,256,20.0,49.994,1,41.41,9.62,22.04 +swin_s3_small_224,224,19.89,50.262,1,49.74,9.43,37.84 +nf_ecaresnet101,224,19.82,50.439,1,44.55,8.01,16.27 +caformer_s18,384,19.77,50.571,1,26.34,13.42,77.34 +focalnet_small_lrf,224,19.76,50.604,1,50.34,8.74,28.61 +maxxvit_rmlp_small_rw_256,256,19.75,50.614,1,66.01,14.67,58.38 +xcit_medium_24_p16_224,224,19.72,50.699,1,84.4,16.13,31.71 +swinv2_cr_small_ns_256,256,19.71,50.722,1,49.7,12.07,76.21 +mvitv2_base_cls,224,19.64,50.895,1,65.44,10.23,40.65 +hrnet_w30,224,19.56,51.098,1,37.71,8.15,21.21 +coatnet_2_rw_224,224,19.47,51.344,1,73.87,15.09,49.22 +hrnet_w18_ssld,288,19.41,51.495,1,21.3,7.14,26.96 +tf_efficientnetv2_m,384,19.31,51.774,1,54.14,15.85,57.52 +regnetz_e8,320,19.3,51.793,1,57.7,15.46,63.94 +nf_regnet_b5,384,19.23,51.987,1,49.74,7.95,42.9 +swinv2_base_window12_192,192,19.21,52.03,1,109.28,11.9,39.72 +nf_seresnet101,224,19.19,52.086,1,49.33,8.02,16.27 +regnetx_320,224,19.18,52.125,1,107.81,31.81,36.3 +nfnet_f0,256,19.11,52.324,1,71.49,12.62,18.05 +seresnet152,288,19.11,52.306,1,66.82,19.11,37.34 +davit_base,224,19.02,52.571,1,87.95,15.51,40.66 +swinv2_small_window8_256,256,18.89,52.909,1,49.73,11.58,40.14 +dm_nfnet_f0,256,18.8,53.19,1,71.49,12.62,18.05 +efficientnet_b5,448,18.77,53.255,1,30.39,9.59,93.56 +coatnet_rmlp_2_rw_224,224,18.74,53.333,1,73.88,15.18,54.78 +volo_d3_224,224,18.72,53.399,1,86.33,20.78,60.09 +resnet200,288,18.7,53.473,1,64.67,24.91,53.21 +wide_resnet50_2,288,18.69,53.49,1,68.88,18.89,23.81 +vit_base_r50_s16_224,224,18.49,54.07,1,97.89,21.66,35.28 +coatnet_2_224,224,18.28,54.691,1,74.68,16.5,52.67 +hrnet_w32,224,18.26,54.761,1,41.23,8.97,22.02 +swinv2_cr_base_ns_224,224,18.25,54.78,1,87.88,15.86,59.66 +vit_relpos_base_patch16_plus_240,240,18.21,54.9,1,117.38,27.3,34.33 +swinv2_cr_base_224,224,18.2,54.931,1,87.88,15.86,59.66 +focalnet_base_srf,224,18.18,54.982,1,88.15,15.28,35.01 +ecaresnet200d,256,18.17,55.035,1,64.69,20.0,43.15 +repvgg_b2,224,18.08,55.29,1,89.02,20.45,12.9 +tiny_vit_21m_384,384,17.98,55.611,1,21.23,13.77,77.83 +efficientnetv2_m,416,17.86,55.989,1,54.14,18.6,67.5 +hrnet_w40,224,17.79,56.196,1,57.56,12.75,25.29 +coat_small,224,17.62,56.75,1,21.69,12.61,44.25 +vit_large_patch32_224,224,17.61,56.779,1,305.51,15.39,13.3 +hgnetv2_b6,288,17.56,56.947,1,75.26,27.9,35.09 +seresnext101_32x8d,288,17.5,57.125,1,93.57,27.24,51.63 +tf_efficientnet_b5,456,17.4,57.469,1,30.39,10.46,98.86 +seresnet152d,320,17.32,57.723,1,66.84,24.09,47.72 +vitamin_base_224,224,17.29,57.813,1,87.72,22.68,52.77 +convformer_m36,224,17.26,57.916,1,57.05,12.89,42.05 +hgnet_base,288,17.24,58.0,1,71.58,41.55,25.57 +seresnext101d_32x8d,288,17.24,57.996,1,93.59,27.64,52.95 +swin_base_patch4_window7_224,224,17.24,57.978,1,87.77,15.47,36.63 +resnet200d,320,17.21,58.078,1,64.69,31.25,67.33 +hrnet_w44,224,17.11,58.441,1,67.06,14.94,26.92 +focalnet_base_lrf,224,17.04,58.67,1,88.75,15.43,38.13 +resnetrs200,256,16.99,58.853,1,93.21,20.18,43.42 +eca_nfnet_l1,320,16.96,58.934,1,41.41,14.92,34.42 +hrnet_w48,224,16.96,58.95,1,77.47,17.34,28.56 +xcit_small_24_p16_384,384,16.95,58.995,1,47.67,26.72,68.58 +resnetv2_101x1_bit,224,16.93,59.048,1,44.54,8.04,16.23 +resnetrs152,320,16.89,59.196,1,86.62,24.34,48.14 +efficientnetv2_rw_m,416,16.83,59.388,1,53.24,21.49,79.62 +nf_regnet_b5,456,16.76,59.666,1,49.74,11.7,61.95 +seresnextaa101d_32x8d,288,16.71,59.837,1,93.59,28.51,56.44 +rdnet_base,224,16.64,60.076,1,87.45,15.4,31.14 +repvgg_b3g4,224,16.63,60.126,1,83.83,17.89,15.1 +caformer_b36,224,16.58,60.287,1,98.75,23.22,67.3 +pvt_v2_b5,224,16.49,60.633,1,81.96,11.76,50.92 +cait_xxs24_384,384,16.46,60.75,1,12.03,9.63,122.66 +levit_512_s8,224,16.29,61.358,1,74.05,21.82,52.28 +seresnet200d,256,16.26,61.47,1,71.86,20.01,43.15 +wide_resnet101_2,176,16.11,62.057,1,126.89,14.31,13.18 +ecaresnet200d,288,16.1,62.085,1,64.69,25.31,54.59 +crossvit_18_dagger_408,408,16.07,62.198,1,44.61,32.47,124.87 +hrnet_w48_ssld,224,15.98,62.552,1,77.47,17.34,28.56 +levit_conv_512_s8,224,15.95,62.68,1,74.05,21.82,52.28 +pvt_v2_b4,224,15.87,63.01,1,62.56,10.14,53.74 +sequencer2d_s,224,15.87,63.013,1,27.65,4.96,11.31 +swinv2_small_window16_256,256,15.65,63.865,1,49.73,12.82,66.29 +tf_efficientnetv2_m,480,15.22,65.703,1,54.14,24.76,89.84 +vit_so150m_patch16_reg4_gap_256,256,15.19,65.83,1,134.13,36.75,53.21 +xcit_tiny_24_p8_384,384,15.06,66.387,1,12.11,27.05,132.95 +gcvit_base,224,15.03,66.505,1,90.32,14.87,55.48 +nextvit_large,384,14.94,66.911,1,57.87,32.03,90.76 +resnetv2_50x1_bit,448,14.94,66.918,1,25.55,16.62,44.46 +convnext_base,288,14.89,67.143,1,88.59,25.43,47.53 +convnext_large,224,14.84,67.358,1,197.77,34.4,43.13 +vit_so150m_patch16_reg4_map_256,256,14.81,67.502,1,141.48,37.18,53.68 +tresnet_l,448,14.68,68.089,1,55.99,43.59,47.56 +swinv2_base_window8_256,256,14.67,68.146,1,87.92,20.37,52.59 +seresnet200d,288,14.54,68.758,1,71.86,25.32,54.6 +wide_resnet101_2,224,14.36,69.613,1,126.89,22.8,21.23 +regnety_160,384,14.21,70.348,1,83.59,46.87,67.67 +resnetrs200,320,13.94,71.74,1,93.21,31.51,67.81 +xcit_small_24_p8_224,224,13.94,71.707,1,47.63,35.81,90.78 +seresnextaa101d_32x8d,320,13.92,71.842,1,93.59,35.19,69.67 +halonet_h1,256,13.84,72.256,1,8.1,3.0,51.17 +maxxvitv2_rmlp_base_rw_224,224,13.8,72.456,1,116.09,24.2,62.77 +convnextv2_large,224,13.73,72.793,1,197.96,34.4,43.13 +convmixer_1536_20,224,13.52,73.944,1,51.63,48.68,33.03 +convnextv2_base,288,13.48,74.189,1,88.72,25.43,47.53 +xcit_large_24_p16_224,224,13.4,74.599,1,189.1,35.86,47.27 +regnety_320,224,13.37,74.754,1,145.05,32.34,30.26 +convformer_s36,384,13.27,75.368,1,40.01,22.54,89.62 +hrnet_w48_ssld,288,13.15,76.002,1,77.47,28.66,47.21 +vit_mediumd_patch16_reg4_gap_384,384,13.02,76.816,1,64.27,43.67,113.51 +densenet264d,224,12.85,77.785,1,72.74,13.57,14.0 +convformer_b36,224,12.72,78.579,1,99.88,22.69,56.06 +resnetrs270,256,12.68,78.863,1,129.86,27.06,55.84 +swinv2_large_window12_192,192,12.58,79.45,1,228.77,26.17,56.53 +senet154,224,12.54,79.75,1,115.09,20.77,38.69 +convnext_large_mlp,256,12.5,80.005,1,200.13,44.94,56.33 +legacy_senet154,224,12.46,80.273,1,115.09,20.77,38.69 +sequencer2d_m,224,12.45,80.32,1,38.31,6.55,14.26 +caformer_s36,384,12.33,81.111,1,39.3,26.08,150.33 +repvgg_b3,224,12.3,81.31,1,123.09,29.16,15.1 +convnext_base,320,12.28,81.433,1,88.59,31.39,58.68 +vit_betwixt_patch16_reg4_gap_384,384,12.26,81.549,1,60.6,39.71,85.28 +resnest200e,320,12.23,81.771,1,70.2,35.69,82.78 +vit_large_r50_s32_224,224,12.2,81.984,1,328.99,19.58,24.41 +davit_large,224,12.17,82.125,1,196.81,34.6,60.99 +eca_nfnet_l2,320,12.15,82.312,1,56.72,20.95,47.43 +hiera_large_224,224,12.15,82.309,1,213.74,40.34,83.37 +inception_next_base,384,12.09,82.668,1,86.67,43.64,75.48 +efficientvit_l3,224,12.04,83.006,1,246.04,27.62,39.16 +hrnet_w64,224,11.98,83.453,1,128.06,28.97,35.09 +swinv2_cr_large_224,224,11.95,83.698,1,196.68,35.1,78.42 +convnext_base,384,11.93,83.813,1,88.59,45.21,84.49 +vit_small_patch14_dinov2,518,11.91,83.943,1,22.06,46.76,198.79 +seresnet269d,256,11.85,84.4,1,113.67,26.59,53.6 +vit_small_patch14_reg4_dinov2,518,11.8,84.751,1,22.06,46.95,199.77 +volo_d4_224,224,11.77,84.966,1,192.96,44.34,80.22 +swin_large_patch4_window7_224,224,11.62,86.078,1,196.53,34.53,54.94 +dm_nfnet_f1,224,11.52,86.756,1,132.63,17.87,22.94 +maxvit_rmlp_base_rw_224,224,11.49,87.018,1,116.14,23.15,92.64 +vit_base_patch16_18x2_224,224,11.46,87.257,1,256.73,52.51,71.38 +nfnet_f1,224,11.39,87.745,1,132.63,17.87,22.94 +vit_base_patch16_siglip_gap_384,384,11.37,87.936,1,86.09,55.43,101.3 +deit_base_distilled_patch16_384,384,11.35,88.072,1,87.63,55.65,101.82 +swinv2_base_window12to16_192to256,256,11.33,88.242,1,87.92,22.02,84.71 +tf_efficientnetv2_l,384,11.33,88.232,1,118.52,36.1,101.16 +efficientnetv2_l,384,11.31,88.404,1,118.52,36.1,101.16 +swinv2_base_window16_256,256,11.31,88.41,1,87.92,22.02,84.71 +cait_xxs36_384,384,11.29,88.568,1,17.37,14.35,183.7 +efficientvit_l3,256,11.28,88.634,1,246.04,36.06,50.98 +deit3_base_patch16_384,384,11.27,88.711,1,86.88,55.54,101.56 +pnasnet5large,331,11.25,88.888,1,86.06,25.04,92.89 +vit_base_patch16_siglip_384,384,11.24,88.971,1,93.18,56.12,102.2 +swinv2_cr_tiny_384,384,11.16,89.625,1,28.33,15.34,161.01 +deit_base_patch16_384,384,11.12,89.907,1,86.86,55.54,101.56 +maxvit_base_tf_224,224,11.03,90.659,1,119.47,24.04,95.01 +vit_base_patch16_384,384,11.0,90.869,1,86.86,55.54,101.56 +vit_base_patch16_clip_384,384,10.99,90.939,1,86.86,55.54,101.56 +ecaresnet269d,320,10.97,91.108,1,102.09,41.53,83.69 +cait_xs24_384,384,10.89,91.815,1,26.67,19.28,183.98 +seresnet269d,288,10.88,91.91,1,113.67,33.65,67.81 +coat_lite_medium_384,384,10.81,92.453,1,44.57,28.73,116.7 +convnext_large,288,10.6,94.326,1,197.77,56.87,71.29 +mixer_l16_224,224,10.5,95.198,1,208.2,44.6,41.69 +maxvit_tiny_tf_384,384,10.45,95.712,1,30.98,17.53,123.42 +volo_d2_384,384,10.43,95.885,1,58.87,46.17,184.51 +tresnet_xl,448,10.39,96.26,1,78.44,60.77,61.31 +convnextv2_base,384,10.38,96.284,1,88.72,45.21,84.49 +resnext101_32x16d,224,10.37,96.373,1,194.03,36.27,51.18 +xcit_medium_24_p16_384,384,10.37,96.422,1,84.4,47.39,91.64 +eca_nfnet_l2,384,10.31,96.967,1,56.72,30.05,68.28 +xcit_small_12_p8_384,384,10.12,98.757,1,26.21,54.92,138.29 +tf_efficientnet_b6,528,10.1,99.042,1,43.04,19.4,167.39 +ecaresnet269d,352,10.06,99.39,1,102.09,50.25,101.25 +coatnet_3_rw_224,224,10.0,100.017,1,181.81,33.44,73.83 +resnetv2_101x1_bit,448,9.96,100.363,1,44.54,31.65,64.93 +beit_base_patch16_384,384,9.75,102.524,1,86.74,55.54,101.56 +convnextv2_large,288,9.74,102.618,1,197.96,56.87,71.29 +coatnet_3_224,224,9.56,104.565,1,166.97,36.56,79.01 +coatnet_rmlp_3_rw_224,224,9.42,106.158,1,165.15,33.56,79.47 +dm_nfnet_f1,320,9.37,106.668,1,132.63,35.97,46.77 +resnetrs270,352,9.37,106.68,1,129.86,51.13,105.48 +efficientnet_b6,528,9.3,107.544,1,43.04,19.4,167.39 +nfnet_f1,320,9.3,107.465,1,132.63,35.97,46.77 +vgg11,224,9.29,107.646,1,132.86,7.61,7.44 +vgg11_bn,224,9.23,108.31,1,132.87,7.62,7.44 +resnetrs350,288,9.0,111.133,1,163.96,43.67,87.09 +maxxvitv2_rmlp_large_rw_224,224,8.97,111.495,1,215.42,44.14,87.15 +eca_nfnet_l3,352,8.9,112.389,1,72.04,32.57,73.12 +vgg13_bn,224,8.86,112.806,1,133.05,11.33,12.25 +vgg13,224,8.83,113.264,1,133.05,11.31,12.25 +efficientvit_l3,320,8.79,113.701,1,246.04,56.32,79.34 +resnet50x16_clip_gap,384,8.68,115.129,1,136.2,70.32,100.64 +tf_efficientnetv2_l,480,8.62,115.963,1,118.52,56.4,157.99 +efficientnetv2_l,480,8.57,116.617,1,118.52,56.4,157.99 +caformer_m36,384,8.52,117.372,1,56.2,42.11,196.35 +vgg16,224,8.48,117.85,1,138.36,15.47,13.56 +vgg16_bn,224,8.46,118.228,1,138.37,15.5,13.56 +xcit_medium_24_p8_224,224,8.45,118.342,1,84.32,63.53,121.23 +rdnet_large,224,8.33,120.029,1,186.27,34.74,46.67 +resnet50x16_clip,384,8.33,120.08,1,167.33,74.9,103.54 +nasnetalarge,331,8.32,120.143,1,88.75,23.89,90.56 +convformer_m36,384,8.26,121.005,1,57.05,37.87,123.56 +vgg19,224,8.22,121.627,1,143.67,19.63,14.86 +vgg19_bn,224,8.17,122.35,1,143.68,19.66,14.86 +vit_base_patch8_224,224,8.12,123.15,1,86.58,78.22,161.69 +convnext_large_mlp,320,7.99,125.216,1,200.13,70.21,88.02 +vit_base_r50_s16_384,384,7.91,126.378,1,98.95,67.43,135.03 +volo_d5_224,224,7.87,127.129,1,295.46,72.4,118.11 +vit_large_patch32_384,384,7.85,127.363,1,306.63,45.31,43.86 +sequencer2d_l,224,7.84,127.533,1,54.3,9.74,22.12 +mvitv2_large,224,7.81,128.04,1,217.99,43.87,112.02 +tf_efficientnetv2_xl,384,7.8,128.223,1,208.12,52.81,139.2 +efficientnetv2_xl,384,7.76,128.885,1,208.12,52.81,139.2 +seresnextaa201d_32x8d,320,7.61,131.424,1,149.39,70.22,138.71 +repvgg_d2se,320,7.53,132.811,1,133.33,74.57,46.82 +resmlp_big_24_224,224,7.43,134.501,1,129.14,100.23,87.31 +maxvit_small_tf_384,384,7.42,134.741,1,69.02,35.87,183.65 +regnety_320,384,7.4,135.151,1,145.05,95.0,88.87 +nfnet_f2,256,7.39,135.253,1,193.78,33.76,41.85 +dm_nfnet_f2,256,7.38,135.503,1,193.78,33.76,41.85 +swinv2_large_window12to16_192to256,256,7.38,135.529,1,196.74,47.81,121.53 +cait_s24_384,384,7.33,136.424,1,47.06,32.17,245.31 +mvitv2_large_cls,224,7.22,138.516,1,234.58,42.17,111.69 +maxvit_large_tf_224,224,7.17,139.391,1,211.79,43.68,127.35 +resnest269e,416,7.14,140.099,1,110.93,77.69,171.98 +deit3_large_patch16_224,224,7.1,140.766,1,304.37,61.6,63.52 +convnext_xlarge,224,7.09,140.941,1,350.2,60.98,57.5 +eca_nfnet_l3,448,7.06,141.587,1,72.04,52.55,118.4 +eva_large_patch14_196,196,7.05,141.766,1,304.14,61.57,63.52 +vit_large_patch16_224,224,7.04,141.995,1,304.33,61.6,63.52 +vit_so400m_patch14_siglip_gap_224,224,7.02,142.493,1,412.44,109.57,106.13 +efficientvit_l3,384,7.0,142.789,1,246.04,81.08,114.02 +vit_so400m_patch14_siglip_224,224,6.92,144.563,1,427.68,110.26,106.73 +beit_large_patch16_224,224,6.89,145.132,1,304.43,61.6,63.52 +resnetrs420,320,6.89,145.155,1,191.89,64.2,126.56 +coatnet_rmlp_2_rw_384,384,6.88,145.305,1,73.88,47.69,209.43 +beitv2_large_patch16_224,224,6.81,146.829,1,304.43,61.6,63.52 +flexivit_large,240,6.75,148.061,1,304.36,70.99,75.39 +resnetrs350,384,6.72,148.693,1,163.96,77.59,154.74 +tiny_vit_21m_512,512,6.69,149.476,1,21.27,27.02,177.93 +regnety_640,224,6.62,151.153,1,281.38,64.16,42.5 +convnext_large_mlp,384,6.22,160.853,1,200.13,101.11,126.74 +convnext_large,384,6.18,161.678,1,197.77,101.1,126.74 +maxvit_tiny_tf_512,512,6.18,161.718,1,31.05,33.49,257.59 +vit_base_patch16_siglip_gap_512,512,6.16,162.429,1,86.43,107.0,246.15 +vit_base_patch16_siglip_512,512,6.07,164.62,1,93.52,108.22,247.74 +swinv2_cr_small_384,384,6.06,165.106,1,49.7,29.7,298.03 +vit_large_patch16_siglip_256,256,6.05,165.378,1,315.96,81.34,88.88 +vit_large_patch16_siglip_gap_256,256,6.05,165.228,1,303.36,80.8,88.34 +caformer_b36,384,6.03,165.848,1,98.75,72.33,261.79 +convformer_b36,384,6.02,166.077,1,99.88,66.67,164.75 +tf_efficientnet_b7,600,5.99,166.816,1,66.35,38.33,289.94 +nfnet_f2,352,5.93,168.761,1,193.78,63.22,79.06 +vit_large_patch14_224,224,5.93,168.491,1,304.2,81.08,88.79 +vit_large_patch14_clip_224,224,5.91,169.122,1,304.2,81.08,88.79 +vit_large_patch14_clip_quickgelu_224,224,5.9,169.496,1,303.97,81.08,88.79 +dm_nfnet_f2,352,5.88,170.031,1,193.78,63.22,79.06 +davit_huge,224,5.84,171.147,1,348.92,61.23,81.32 +eva02_base_patch14_448,448,5.73,174.651,1,87.12,107.11,259.14 +volo_d3_448,448,5.72,174.72,1,86.63,96.33,446.83 +vit_large_patch14_xp_224,224,5.68,175.996,1,304.06,81.01,88.79 +resnetv2_152x2_bit,224,5.66,176.636,1,236.34,46.95,45.11 +maxxvitv2_rmlp_base_rw_384,384,5.61,178.328,1,116.09,72.98,213.74 +eva02_large_patch14_224,224,5.59,178.843,1,303.27,81.15,97.2 +xcit_large_24_p16_384,384,5.58,179.303,1,189.1,105.35,137.17 +eva02_large_patch14_clip_224,224,5.57,179.623,1,304.11,81.18,97.2 +convnextv2_large,384,5.56,179.883,1,197.96,101.1,126.74 +efficientnet_b7,600,5.52,181.092,1,66.35,38.33,289.94 +seresnextaa201d_32x8d,384,5.43,183.998,1,149.39,101.11,199.72 +xcit_small_24_p8_384,384,5.41,184.801,1,47.63,105.24,265.91 +coatnet_4_224,224,5.4,185.083,1,275.43,62.48,129.26 +convnext_xlarge,288,5.4,185.103,1,350.2,100.8,95.05 +focalnet_large_fl3,384,5.39,185.552,1,239.13,105.06,168.04 +efficientnetv2_xl,512,5.36,186.546,1,208.12,93.85,247.32 +tf_efficientnetv2_xl,512,5.33,187.548,1,208.12,93.85,247.32 +vit_large_r50_s32_384,384,5.33,187.657,1,329.09,57.43,76.52 +resnetrs420,416,5.1,195.875,1,191.89,108.45,213.79 +maxvit_rmlp_base_rw_384,384,5.06,197.69,1,116.14,70.97,318.95 +cait_s36_384,384,4.97,201.009,1,68.37,47.99,367.4 +dm_nfnet_f3,320,4.95,201.925,1,254.92,68.77,83.93 +nfnet_f3,320,4.91,203.587,1,254.92,68.77,83.93 +sam2_hiera_tiny,896,4.84,206.772,1,26.85,99.86,384.63 +focalnet_large_fl4,384,4.83,206.841,1,239.32,105.2,181.78 +resnetv2_50x3_bit,224,4.67,214.048,1,217.32,37.06,33.34 +swinv2_cr_base_384,384,4.65,215.074,1,87.88,50.57,333.68 +swin_base_patch4_window12_384,384,4.64,215.585,1,87.9,47.19,134.78 +vit_base_patch14_dinov2,518,4.52,221.304,1,86.58,151.71,397.58 +xcit_large_24_p8_224,224,4.51,221.497,1,188.93,141.23,181.56 +vit_base_patch14_reg4_dinov2,518,4.47,223.826,1,86.58,152.25,399.53 +vitamin_large2_224,224,4.35,230.086,1,333.58,75.05,112.83 +vitamin_large_224,224,4.31,232.245,1,333.32,75.05,112.83 +maxvit_base_tf_384,384,4.15,240.709,1,119.65,73.8,332.9 +maxvit_xlarge_tf_224,224,4.13,242.143,1,506.99,97.52,191.04 +sam2_hiera_small,896,4.05,246.841,1,33.95,123.99,442.63 +swinv2_cr_huge_224,224,4.04,247.411,1,657.83,115.97,121.08 +dm_nfnet_f3,416,3.93,254.65,1,254.92,115.58,141.78 +nfnet_f3,416,3.9,256.503,1,254.92,115.58,141.78 +resnext101_32x32d,224,3.88,257.499,1,468.53,87.29,91.12 +convnextv2_huge,224,3.79,263.535,1,660.29,115.0,79.07 +maxvit_small_tf_512,512,3.77,265.289,1,69.13,67.26,383.77 +regnety_640,384,3.5,285.87,1,281.38,188.47,124.83 +hiera_huge_224,224,3.46,288.977,1,672.78,124.85,150.95 +dm_nfnet_f4,384,3.43,291.492,1,316.07,122.14,147.57 +nfnet_f4,384,3.41,293.188,1,316.07,122.14,147.57 +xcit_medium_24_p8_384,384,3.41,293.093,1,84.32,186.67,354.73 +efficientnet_b8,672,3.4,294.249,1,87.41,63.48,442.89 +convnext_xlarge,384,3.35,298.31,1,350.2,179.2,168.99 +tf_efficientnet_b8,672,3.25,307.835,1,87.41,63.48,442.89 +volo_d4_448,448,3.24,308.298,1,193.41,197.13,527.35 +mvitv2_huge_cls,224,3.22,310.451,1,694.8,120.67,243.63 +swinv2_base_window12to24_192to384,384,3.2,312.151,1,87.92,55.25,280.36 +vit_large_patch16_siglip_gap_384,384,3.12,320.663,1,303.69,190.85,269.55 +resnetv2_152x2_bit,384,3.09,323.865,1,236.34,136.16,132.56 +vit_large_patch16_siglip_384,384,3.09,323.531,1,316.28,192.07,270.75 +swinv2_cr_large_384,384,3.08,324.559,1,196.68,108.96,404.96 +vit_large_patch14_clip_quickgelu_336,336,3.08,324.978,1,304.29,191.11,270.24 +deit3_large_patch16_384,384,3.07,325.832,1,304.76,191.21,270.24 +swin_large_patch4_window12_384,384,3.07,326.135,1,196.74,104.08,202.16 +vit_large_patch14_clip_336,336,3.06,326.627,1,304.53,191.11,270.24 +vit_large_patch16_384,384,3.06,327.075,1,304.72,191.21,270.24 +eva_large_patch14_336,336,3.05,327.44,1,304.53,191.1,270.24 +resnetv2_101x3_bit,224,3.05,327.405,1,387.93,71.23,48.7 +vitamin_large_256,256,2.97,336.409,1,333.38,99.0,154.99 +eva02_large_patch14_clip_336,336,2.96,338.131,1,304.43,191.34,289.13 +vitamin_large2_256,256,2.95,339.37,1,333.64,99.0,154.99 +vit_huge_patch14_gap_224,224,2.91,344.196,1,630.76,166.73,138.74 +vitamin_xlarge_256,256,2.89,346.39,1,436.06,130.13,177.37 +deit3_huge_patch14_224,224,2.86,350.235,1,632.13,167.4,139.41 +vit_huge_patch14_clip_quickgelu_224,224,2.86,349.77,1,632.08,167.4,139.41 +vit_huge_patch14_xp_224,224,2.85,350.634,1,631.8,167.3,139.41 +convnextv2_huge,288,2.84,351.627,1,660.29,190.1,130.7 +vit_huge_patch14_224,224,2.82,354.377,1,630.76,167.4,139.41 +vit_huge_patch14_clip_224,224,2.82,354.323,1,632.05,167.4,139.41 +focalnet_xlarge_fl3,384,2.74,365.312,1,408.79,185.61,223.99 +rdnet_large,384,2.73,366.431,1,186.27,102.09,137.13 +focalnet_xlarge_fl4,384,2.71,368.544,1,409.03,185.79,242.31 +beit_large_patch16_384,384,2.68,372.56,1,305.0,191.21,270.24 +vit_giant_patch16_gap_224,224,2.67,374.898,1,1011.37,202.46,139.26 +focalnet_huge_fl3,224,2.66,376.461,1,745.28,118.26,104.8 +focalnet_huge_fl4,224,2.66,375.445,1,686.46,118.9,113.34 +maxvit_large_tf_384,384,2.66,375.382,1,212.03,132.55,445.84 +nfnet_f5,416,2.65,376.958,1,377.21,170.71,204.56 +dm_nfnet_f5,416,2.61,382.719,1,377.21,170.71,204.56 +regnety_1280,224,2.59,386.67,1,644.81,127.66,71.58 +resnetv2_152x2_bit,448,2.59,386.55,1,236.34,184.99,180.43 +davit_base_fl,768,2.54,394.288,1,90.37,190.32,530.15 +resnet50x64_clip_gap,448,2.54,393.711,1,365.03,253.96,233.22 +coatnet_5_224,224,2.53,395.688,1,687.47,145.49,194.24 +resnetv2_50x3_bit,448,2.52,397.155,1,217.32,145.7,133.37 +convnext_xxlarge,256,2.51,397.633,1,846.47,198.09,124.45 +dm_nfnet_f4,512,2.47,405.436,1,316.07,216.26,262.26 +nfnet_f4,512,2.46,405.746,1,316.07,216.26,262.26 +resnet50x64_clip,448,2.45,407.97,1,420.38,265.02,239.13 +sam2_hiera_base_plus,896,2.28,437.683,1,68.68,227.48,828.88 +vit_giant_patch14_224,224,2.23,448.178,1,1012.61,267.18,192.64 +vit_giant_patch14_clip_224,224,2.23,448.488,1,1012.65,267.18,192.64 +eva_giant_patch14_224,224,2.22,450.784,1,1012.56,267.18,192.64 +eva_giant_patch14_clip_224,224,2.22,449.564,1,1012.59,267.18,192.64 +maxvit_base_tf_512,512,2.22,449.687,1,119.88,138.02,703.99 +swinv2_large_window12to24_192to384,384,2.09,478.133,1,196.74,116.15,407.83 +nfnet_f6,448,2.08,481.295,1,438.36,229.7,273.62 +dm_nfnet_f6,448,2.07,484.134,1,438.36,229.7,273.62 +volo_d5_448,448,2.05,486.854,1,295.91,315.06,737.92 +vit_so400m_patch14_siglip_gap_384,384,2.04,490.133,1,412.99,333.46,451.19 +vit_so400m_patch14_siglip_384,384,2.03,492.881,1,428.23,335.4,452.89 +vitamin_large2_336,336,1.99,502.882,1,333.83,175.72,307.47 +vitamin_large_336,336,1.97,507.694,1,333.57,175.72,307.47 +davit_giant,224,1.93,517.662,1,1406.47,192.92,153.06 +dm_nfnet_f5,544,1.87,535.5,1,377.21,290.97,349.71 +nfnet_f5,544,1.84,542.033,1,377.21,290.97,349.71 +eva02_large_patch14_448,448,1.79,559.708,1,305.08,362.33,689.95 +cait_m36_384,384,1.77,566.081,1,271.22,173.11,734.81 +convnextv2_huge,384,1.77,565.32,1,660.29,337.96,232.35 +nfnet_f7,480,1.73,577.613,1,499.5,300.08,355.86 +xcit_large_24_p8_384,384,1.73,579.168,1,188.93,415.0,531.82 +tf_efficientnet_l2,475,1.68,594.956,1,480.31,172.11,609.89 +vitamin_xlarge_336,336,1.67,597.981,1,436.06,230.18,347.33 +vit_huge_patch14_clip_336,336,1.65,604.321,1,632.46,390.97,407.54 +vitamin_large2_384,384,1.6,626.786,1,333.97,234.44,440.16 +maxvit_xlarge_tf_384,384,1.59,627.883,1,475.32,292.78,668.76 +vitamin_large_384,384,1.59,629.157,1,333.71,234.44,440.16 +regnety_1280,384,1.58,633.28,1,644.81,374.99,210.2 +resnetv2_101x3_bit,448,1.57,635.087,1,387.93,280.33,194.78 +vit_so400m_patch14_siglip_gap_448,448,1.52,659.739,1,413.33,487.18,764.26 +volo_d5_512,512,1.52,658.657,1,296.09,425.09,1105.37 +vit_large_patch14_dinov2,518,1.5,668.176,1,304.37,507.15,1058.82 +dm_nfnet_f6,576,1.49,670.137,1,438.36,378.69,452.2 +nfnet_f6,576,1.48,676.503,1,438.36,378.69,452.2 +vit_large_patch14_reg4_dinov2,518,1.48,674.657,1,304.37,508.9,1064.02 +beit_large_patch16_512,512,1.43,700.682,1,305.67,362.24,656.39 +vit_huge_patch14_clip_378,378,1.34,745.367,1,632.68,503.79,572.79 +vit_huge_patch14_clip_quickgelu_378,378,1.34,744.209,1,632.68,503.79,572.79 +vit_gigantic_patch14_clip_224,224,1.26,792.869,1,1844.91,483.96,275.37 +vit_huge_patch16_gap_448,448,1.26,792.181,1,631.67,544.7,636.83 +swinv2_cr_giant_224,224,1.25,799.001,1,2598.76,483.85,309.15 +swinv2_cr_huge_384,384,1.25,802.044,1,657.94,352.04,583.18 +vit_gigantic_patch14_224,224,1.25,797.556,1,1844.44,483.95,275.37 +nfnet_f7,608,1.21,825.686,1,499.5,480.39,570.85 +resnetv2_152x4_bit,224,1.15,870.095,1,936.53,186.9,90.22 +convnextv2_huge,512,1.11,898.321,1,660.29,600.81,413.07 +eva_giant_patch14_336,336,1.07,931.905,1,1013.01,620.64,550.67 +davit_huge_fl,768,0.82,1222.73,1,360.64,744.84,1060.3 +maxvit_xlarge_tf_512,512,0.82,1224.526,1,475.77,534.14,1413.22 +samvit_base_patch16,1024,0.8,1252.765,1,89.67,486.43,1343.27 +regnety_2560,384,0.72,1397.042,1,1282.6,747.83,296.49 +cait_m48_448,448,0.7,1431.241,1,356.46,329.41,1708.23 +sam2_hiera_large,1024,0.7,1429.016,1,212.15,907.48,2190.34 +efficientnet_l2,800,0.59,1701.073,1,480.31,479.12,1707.39 +tf_efficientnet_l2,800,0.59,1687.246,1,480.31,479.12,1707.39 +resnetv2_152x4_bit,480,0.56,1780.62,1,936.53,844.84,414.26 +eva_giant_patch14_560,560,0.47,2137.135,1,1014.45,1906.76,2577.17 +vit_giant_patch14_dinov2,518,0.46,2152.578,1,1136.48,1784.2,2757.89 +vit_giant_patch14_reg4_dinov2,518,0.46,2172.897,1,1136.48,1790.08,2771.21 +eva02_enormous_patch14_clip_224,224,0.45,2211.904,1,4350.56,1132.46,497.58 +swinv2_cr_giant_384,384,0.37,2667.378,1,2598.76,1450.71,1394.86 +samvit_large_patch16,1024,0.33,3039.952,1,308.28,1493.86,2553.78 +vit_so400m_patch14_siglip_gap_896,896,0.28,3633.38,1,416.87,2731.49,8492.88 +samvit_huge_patch16,1024,0.22,4556.317,1,637.03,2982.23,3428.16 diff --git a/pytorch-image-models/results/benchmark-train-amp-nchw-pt112-cu113-rtx3090.csv b/pytorch-image-models/results/benchmark-train-amp-nchw-pt112-cu113-rtx3090.csv new file mode 100644 index 0000000000000000000000000000000000000000..de3025b15c6f36acbc140a4b3ca0e28851e3afb0 --- /dev/null +++ b/pytorch-image-models/results/benchmark-train-amp-nchw-pt112-cu113-rtx3090.csv @@ -0,0 +1,839 @@ +model,train_samples_per_sec,train_step_time,train_batch_size,train_img_size,param_count +tinynet_e,10001.12,50.423,512,106,2.04 +mobilenetv3_small_050,7406.47,68.392,512,224,1.59 +tf_mobilenetv3_small_minimal_100,6438.14,78.983,512,224,2.04 +mobilenetv3_small_075,6186.83,82.006,512,224,2.04 +tf_mobilenetv3_small_075,5783.46,87.782,512,224,2.04 +mobilenetv3_small_100,5749.13,88.315,512,224,2.54 +lcnet_035,5673.53,89.75,512,224,1.64 +tf_mobilenetv3_small_100,5383.9,94.36,512,224,2.54 +levit_128s,5298.88,95.701,512,224,7.78 +lcnet_050,5280.37,96.452,512,224,1.88 +tinynet_d,5161.83,98.416,512,152,2.34 +mixer_s32_224,4696.33,108.475,512,224,19.1 +resnet10t,4669.46,109.393,512,176,5.44 +vit_small_patch32_224,4447.28,114.289,512,224,22.88 +lcnet_075,4278.23,119.175,512,224,2.36 +vit_tiny_r_s16_p8_224,4137.87,122.895,512,224,6.34 +levit_128,3895.0,130.318,512,224,9.21 +regnetx_002,3718.05,137.026,512,224,2.68 +lcnet_100,3569.0,142.969,512,224,2.95 +mnasnet_small,3450.28,147.453,512,224,2.03 +regnety_002,3414.18,149.006,512,224,3.16 +cs3darknet_focus_s,3251.91,156.949,512,256,3.27 +mobilenetv2_035,3160.04,161.202,512,224,1.68 +levit_192,3046.5,166.9,512,224,10.95 +gernet_s,3034.31,168.028,512,224,8.17 +tinynet_c,2919.98,174.314,512,184,2.46 +mnasnet_050,2847.14,179.025,512,224,2.22 +cs3darknet_s,2821.27,180.951,512,256,3.28 +resnet18,2764.22,184.877,512,224,11.69 +ssl_resnet18,2760.71,185.109,512,224,11.69 +mobilenetv2_050,2751.58,185.257,512,224,1.97 +swsl_resnet18,2742.47,186.338,512,224,11.69 +semnasnet_050,2741.67,185.816,512,224,2.08 +gluon_resnet18_v1b,2741.53,186.395,512,224,11.69 +lcnet_150,2713.5,188.193,512,224,4.5 +regnetx_004,2695.23,188.875,512,224,5.16 +ese_vovnet19b_slim_dw,2588.37,197.313,512,224,1.9 +seresnet18,2562.51,199.293,512,224,11.78 +nf_regnet_b0,2561.76,198.646,512,192,8.76 +legacy_seresnet18,2500.8,204.207,512,224,11.78 +tf_efficientnetv2_b0,2483.22,204.949,512,192,7.14 +levit_256,2482.39,205.091,512,224,18.89 +mobilenetv3_large_075,2392.41,213.119,512,224,3.99 +resnet14t,2385.69,214.281,512,176,10.08 +tf_mobilenetv3_large_minimal_100,2347.68,217.368,512,224,3.92 +vit_tiny_patch16_224,2293.54,222.408,512,224,5.72 +regnetx_006,2293.09,222.433,512,224,6.2 +deit_tiny_patch16_224,2290.53,222.68,512,224,5.72 +tf_mobilenetv3_large_075,2259.6,225.688,512,224,3.99 +deit_tiny_distilled_patch16_224,2253.36,226.358,512,224,5.91 +edgenext_xx_small,2231.33,228.598,512,256,1.33 +ghostnet_050,2189.91,232.414,512,224,2.59 +mobilenetv3_rw,2184.31,233.512,512,224,5.48 +mnasnet_075,2176.02,234.492,512,224,3.17 +mobilenetv3_large_100,2167.29,235.344,512,224,5.48 +mobilenetv3_large_100_miil,2165.63,235.504,512,224,5.48 +levit_256d,2159.5,235.516,512,224,26.21 +resnet18d,2129.12,240.084,512,224,11.71 +hardcorenas_a,2118.32,240.968,512,224,5.26 +regnety_004,2100.99,242.536,512,224,4.34 +pit_ti_distilled_224,2086.5,244.504,512,224,5.1 +pit_ti_224,2079.54,245.311,512,224,4.85 +ese_vovnet19b_slim,2066.1,247.446,512,224,3.17 +mnasnet_100,2053.84,248.477,512,224,4.38 +tf_mobilenetv3_large_100,2053.63,248.437,512,224,5.48 +mnasnet_b1,2053.54,248.485,512,224,4.38 +semnasnet_075,2008.51,253.986,512,224,2.91 +hardcorenas_b,2008.46,253.96,512,224,5.18 +mobilenetv2_075,1983.69,257.32,512,224,2.64 +hardcorenas_c,1977.37,257.94,512,224,5.52 +xcit_nano_12_p16_224_dist,1970.62,258.036,512,224,3.05 +xcit_nano_12_p16_224,1969.78,258.084,512,224,3.05 +tinynet_b,1965.95,259.368,512,188,3.73 +hardcorenas_d,1880.3,271.085,512,224,7.5 +tf_efficientnetv2_b1,1876.23,271.395,512,192,8.14 +resnetblur18,1872.21,273.11,512,224,11.69 +spnasnet_100,1862.13,273.955,512,224,4.42 +mnasnet_a1,1859.21,274.476,512,224,3.89 +semnasnet_100,1857.75,274.693,512,224,3.89 +mobilenetv2_100,1832.14,278.633,512,224,3.5 +regnety_006,1809.24,281.912,512,224,6.06 +visformer_tiny,1802.41,283.384,512,224,10.32 +mixer_b32_224,1784.58,286.101,512,224,60.29 +skresnet18,1730.13,295.275,512,224,11.96 +tinynet_a,1710.13,298.117,512,192,6.19 +vit_base_patch32_224_sam,1703.64,299.668,512,224,88.22 +vit_base_patch32_224,1703.57,299.695,512,224,88.22 +efficientnet_lite0,1674.68,304.971,512,224,4.65 +cs3darknet_focus_m,1668.48,306.209,512,256,9.3 +hardcorenas_e,1650.74,309.021,512,224,8.07 +hardcorenas_f,1646.88,309.777,512,224,8.2 +gluon_resnet34_v1b,1634.03,312.731,512,224,21.8 +regnetx_008,1632.2,312.851,512,224,7.26 +tv_resnet34,1630.02,313.513,512,224,21.8 +resnet34,1622.41,314.992,512,224,21.8 +ghostnet_100,1601.5,318.319,512,224,5.18 +tf_efficientnet_lite0,1591.79,320.884,512,224,4.65 +fbnetc_100,1567.77,325.605,512,224,5.57 +pit_xs_distilled_224,1551.83,329.02,512,224,11.0 +pit_xs_224,1549.02,329.642,512,224,10.62 +mixer_s16_224,1543.23,331.197,512,224,18.53 +dla46_c,1532.94,333.18,512,224,1.3 +mnasnet_140,1525.17,334.879,512,224,7.12 +seresnet34,1505.77,339.147,512,224,21.96 +cs3darknet_m,1499.82,340.716,512,256,9.31 +regnety_008,1498.63,340.596,512,224,6.26 +levit_384,1491.26,342.207,512,224,39.13 +edgenext_x_small,1481.71,344.446,512,256,2.34 +ese_vovnet19b_dw,1466.46,348.623,512,224,6.54 +legacy_seresnet34,1465.81,348.38,512,224,21.96 +efficientnet_b0,1459.11,262.1,384,224,5.29 +gernet_m,1456.76,350.74,512,224,21.14 +vit_small_patch32_384,1448.56,352.604,512,384,22.92 +regnetz_005,1448.06,352.165,512,224,7.12 +rexnet_100,1447.81,264.049,384,224,4.8 +rexnetr_100,1441.71,265.216,384,224,4.88 +nf_resnet26,1422.76,359.346,512,224,16.0 +hrnet_w18_small,1410.43,361.614,512,224,13.19 +selecsls42,1405.04,363.736,512,224,30.35 +selecsls42b,1401.22,364.735,512,224,32.46 +mobilenetv2_110d,1400.15,273.199,384,224,4.52 +tf_efficientnet_b0_ap,1398.67,273.43,384,224,5.29 +mobilevitv2_050,1396.45,365.664,512,256,1.37 +tf_efficientnet_b0_ns,1395.54,274.064,384,224,5.29 +tf_efficientnet_b0,1395.32,274.114,384,224,5.29 +tf_efficientnetv2_b2,1392.9,365.948,512,208,10.1 +vit_tiny_r_s16_p8_384,1392.75,274.873,384,384,6.36 +resnet34d,1379.64,370.514,512,224,21.82 +ghostnet_130,1364.55,373.824,512,224,7.36 +gmixer_12_224,1352.72,377.701,512,224,12.7 +crossvit_tiny_240,1349.19,377.902,512,240,7.01 +gmlp_ti16_224,1340.6,284.894,384,224,5.87 +semnasnet_140,1340.57,380.992,512,224,6.11 +dla46x_c,1338.33,381.81,512,224,1.07 +xcit_tiny_12_p16_224,1323.84,384.926,512,224,6.72 +xcit_tiny_12_p16_224_dist,1317.19,386.895,512,224,6.72 +resnetrs50,1317.01,387.565,512,160,35.69 +mobilevit_xxs,1316.84,290.489,384,256,1.27 +resnet26,1312.7,389.566,512,224,16.0 +efficientnet_b1_pruned,1301.95,391.798,512,240,6.33 +mobilenetv2_140,1267.4,302.189,384,224,6.11 +dla60x_c,1262.98,404.404,512,224,1.32 +crossvit_9_240,1260.08,303.33,384,240,8.55 +convnext_nano_hnf,1235.34,413.703,512,224,15.59 +convnext_nano_ols,1234.94,413.902,512,224,15.6 +poolformer_s12,1234.11,414.201,512,224,11.92 +convnext_nano,1233.61,414.261,512,224,15.59 +resmlp_12_distilled_224,1232.37,414.645,512,224,15.35 +resmlp_12_224,1232.04,414.762,512,224,15.35 +fbnetv3_b,1226.89,415.617,512,224,8.6 +nf_regnet_b2,1219.45,418.235,512,240,14.31 +repvgg_b0,1217.24,419.512,512,224,15.82 +selecsls60b,1214.07,420.825,512,224,32.77 +selecsls60,1211.7,421.663,512,224,30.67 +nf_regnet_b1,1209.03,421.975,512,256,10.22 +crossvit_9_dagger_240,1206.16,316.906,384,240,8.78 +nf_seresnet26,1198.39,426.558,512,224,17.4 +mixnet_s,1181.75,431.958,512,224,4.13 +nf_ecaresnet26,1174.85,435.233,512,224,16.0 +efficientnet_lite1,1171.46,217.556,256,240,5.42 +darknet17,1164.06,439.537,512,256,14.3 +efficientnet_es_pruned,1160.76,440.317,512,224,5.44 +efficientnet_es,1160.37,440.47,512,224,5.44 +regnetx_016,1139.3,448.473,512,224,9.19 +fbnetv3_d,1138.14,335.598,384,224,10.31 +tf_efficientnet_es,1136.29,449.83,512,224,5.44 +rexnetr_130,1133.04,224.76,256,224,7.61 +dla34,1132.96,451.315,512,224,15.74 +resnet26d,1119.56,456.822,512,224,16.01 +tf_mixnet_s,1118.11,456.605,512,224,4.13 +tf_efficientnet_lite1,1110.94,229.444,256,240,5.42 +edgenext_small,1109.37,460.388,512,256,5.59 +convit_tiny,1095.04,466.531,512,224,5.71 +rexnet_130,1094.78,232.699,256,224,7.56 +mobilenetv2_120d,1078.49,236.158,256,224,5.83 +darknet21,1073.87,476.43,512,256,20.86 +ecaresnet50d_pruned,1067.01,478.899,512,224,19.94 +deit_small_patch16_224,1053.64,363.563,384,224,22.05 +vit_small_patch16_224,1052.92,363.872,384,224,22.05 +deit_small_distilled_patch16_224,1032.61,370.971,384,224,22.44 +sedarknet21,1031.46,495.893,512,256,20.95 +gernet_l,1030.31,496.058,512,256,31.08 +efficientnet_b1,1030.3,246.963,256,224,7.79 +rexnetr_150,1022.06,249.288,256,224,9.78 +repvgg_a2,1010.18,506.008,512,224,28.21 +edgenext_small_rw,1009.52,506.183,512,256,7.83 +skresnet34,1008.96,506.323,512,224,22.28 +resnest14d,979.06,522.497,512,224,10.61 +cs3darknet_focus_l,977.57,391.957,384,256,21.15 +deit3_small_patch16_224,977.26,391.961,384,224,22.06 +deit3_small_patch16_224_in21ft1k,976.5,392.276,384,224,22.06 +rexnet_150,965.2,264.04,256,224,9.73 +regnety_016,954.26,534.657,512,224,11.2 +vit_base_patch32_plus_256,951.64,537.091,512,256,119.48 +mobilevitv2_075,947.54,269.157,256,256,2.87 +legacy_seresnext26_32x4d,946.21,405.17,384,224,16.79 +pit_s_224,942.8,270.615,256,224,23.46 +pit_s_distilled_224,939.97,271.455,256,224,24.04 +vit_srelpos_small_patch16_224,922.29,415.451,384,224,21.97 +vit_relpos_small_patch16_224,921.7,415.439,384,224,21.98 +efficientnet_b0_g16_evos,909.42,421.149,384,224,8.11 +resnext26ts,905.09,423.733,384,256,10.3 +cs3darknet_l,902.18,282.891,256,256,21.16 +coat_lite_tiny,893.97,428.624,384,224,5.72 +resnet26t,890.89,574.188,512,256,16.01 +efficientnet_b0_gn,881.54,289.263,256,224,5.29 +resnetv2_50,880.1,580.976,512,224,25.55 +efficientnet_b2_pruned,874.13,291.317,256,260,8.31 +seresnext26ts,867.62,294.407,256,256,10.39 +eca_resnext26ts,867.54,294.527,256,256,10.3 +tf_efficientnet_b1,863.78,294.816,256,240,7.79 +tf_efficientnet_b1_ap,863.54,294.906,256,240,7.79 +tf_efficientnet_b1_ns,863.39,294.941,256,240,7.79 +cs3sedarknet_l,861.38,444.523,384,256,21.91 +tf_efficientnetv2_b3,855.0,297.539,256,240,14.36 +efficientnet_lite2,852.1,299.402,256,260,6.09 +twins_svt_small,851.73,449.18,384,224,24.06 +gcresnext26ts,850.58,300.113,256,256,10.48 +efficientnetv2_rw_t,850.16,298.981,256,224,13.65 +botnet26t_256,849.43,451.465,384,256,12.49 +ecaresnetlight,846.78,603.683,512,224,30.16 +seresnext26t_32x4d,845.6,453.458,384,224,16.81 +seresnext26tn_32x4d,845.31,453.612,384,224,16.81 +seresnext26d_32x4d,844.96,453.775,384,224,16.81 +coat_lite_mini,842.06,455.115,384,224,11.01 +tf_efficientnet_cc_b0_8e,837.03,457.594,384,224,24.01 +ecaresnet101d_pruned,837.02,609.921,512,224,24.88 +ecaresnext26t_32x4d,835.25,459.196,384,224,15.41 +ecaresnext50t_32x4d,834.39,459.653,384,224,15.41 +cspresnet50,830.57,461.498,384,256,21.62 +swsl_resnet50,829.79,616.192,512,224,25.56 +ssl_resnet50,829.64,616.294,512,224,25.56 +gluon_resnet50_v1b,829.63,616.32,512,224,25.56 +visformer_small,828.8,462.625,384,224,40.22 +tv_resnet50,826.55,618.618,512,224,25.56 +resnet50,826.06,618.983,512,224,25.56 +vgg11,825.98,619.706,512,224,132.86 +halonet26t,824.96,464.902,384,256,12.48 +vovnet39a,817.65,625.544,512,224,22.6 +tf_efficientnet_lite2,816.76,312.458,256,260,6.09 +convnext_tiny_hnf,815.48,312.97,256,224,28.59 +convnext_tiny_hnfd,815.19,313.078,256,224,28.59 +vit_small_resnet26d_224,813.66,470.891,384,224,63.61 +convnext_tiny,813.16,313.859,256,224,28.59 +efficientnet_cc_b0_8e,812.96,471.165,384,224,24.01 +vit_relpos_base_patch32_plus_rpn_256,811.26,630.0,512,256,119.42 +mixnet_m,810.2,630.361,512,224,5.01 +efficientnet_cc_b0_4e,808.8,473.577,384,224,13.31 +convnext_tiny_in22ft1k,808.5,315.666,256,224,28.59 +efficientnet_b2a,800.27,318.401,256,256,9.11 +efficientnet_b2,799.96,318.544,256,256,9.11 +regnetz_b16,796.72,319.811,256,224,9.72 +tresnet_m,792.8,643.233,512,224,31.39 +mobilevit_xs,792.23,321.979,256,256,2.32 +ecaresnet26t,791.55,484.557,384,256,16.01 +gc_efficientnetv2_rw_t,791.43,320.691,256,224,13.68 +resnetv2_50t,790.83,646.602,512,224,25.57 +resnetv2_50d,790.11,647.216,512,224,25.57 +regnetx_032,787.5,486.368,384,224,15.3 +ese_vovnet39b,786.37,650.429,512,224,24.57 +tf_efficientnet_cc_b0_4e,784.54,488.254,384,224,13.31 +eca_botnext26ts_256,781.43,326.976,256,256,10.59 +resnet32ts,781.02,327.191,256,256,17.96 +tf_mixnet_m,777.93,492.059,384,224,5.01 +resnet33ts,767.78,332.812,256,256,19.68 +gluon_resnet50_v1c,763.32,502.196,384,224,25.58 +eca_halonext26ts,763.09,334.836,256,256,10.76 +rexnetr_200,762.4,250.686,192,224,16.52 +dpn68b,756.57,506.252,384,224,12.61 +lambda_resnet26t,751.39,510.429,384,256,10.96 +vit_relpos_small_patch16_rpn_224,751.37,510.029,384,224,21.97 +resnet50t,748.03,512.487,384,224,25.57 +cspresnet50d,746.91,341.842,256,256,21.64 +gluon_resnet50_v1d,746.5,513.543,384,224,25.58 +resnet50d,744.99,514.575,384,224,25.58 +legacy_seresnet50,744.88,514.356,384,224,28.09 +cspresnet50w,744.04,343.166,256,256,28.12 +eca_resnet33ts,743.27,343.735,256,256,19.68 +efficientnet_b0_g8_gn,743.27,343.315,256,224,6.56 +seresnet33ts,742.4,344.003,256,256,19.78 +resnetaa50,741.95,516.711,384,224,25.56 +selecsls84,740.99,689.736,512,224,50.95 +dpn68,739.97,517.747,384,224,12.61 +res2net50_48w_2s,738.06,519.427,384,224,25.29 +vit_small_r26_s32_224,737.22,345.982,256,224,36.43 +eca_vovnet39b,735.59,695.354,512,224,22.6 +lambda_resnet26rpt_256,735.09,260.579,192,256,10.99 +nf_regnet_b3,732.33,522.471,384,288,18.59 +rexnet_200,731.68,261.239,192,224,16.37 +densenet121,730.11,348.758,256,224,7.98 +resnest26d,728.94,526.039,384,224,17.07 +bat_resnext26ts,728.42,350.197,256,256,10.73 +mobilevitv2_100,727.72,262.852,192,256,4.9 +tv_densenet121,727.58,350.07,256,224,7.98 +nf_seresnet50,727.17,526.884,384,224,28.09 +gcresnet33ts,725.89,351.666,256,256,19.88 +eca_nfnet_l0,723.69,706.434,512,224,24.14 +nfnet_l0,719.96,532.162,384,224,35.07 +seresnet50,714.65,536.208,384,224,28.09 +twins_pcpvt_small,714.45,356.63,256,224,24.11 +nf_ecaresnet50,713.69,537.063,384,224,25.56 +dla60,709.61,540.13,384,224,22.04 +efficientnet_em,708.33,360.423,256,240,6.9 +hrnet_w18_small_v2,705.02,723.712,512,224,15.6 +resnetblur50d,704.94,362.275,256,224,25.58 +vgg11_bn,703.05,545.962,384,224,132.87 +resnetblur50,698.61,548.824,384,224,25.56 +regnety_032,696.58,549.77,384,224,19.44 +nf_resnet50,696.17,550.716,384,256,25.56 +efficientnet_b3_pruned,694.05,367.106,256,300,9.86 +tf_efficientnet_em,690.66,369.697,256,240,6.9 +skresnet50,685.67,371.92,256,224,25.8 +xcit_tiny_24_p16_224,683.44,371.201,256,224,12.12 +poolformer_s24,681.93,374.176,256,224,21.39 +xcit_tiny_24_p16_224_dist,681.85,371.937,256,224,12.12 +vit_base_resnet26d_224,680.96,562.594,384,224,101.4 +vovnet57a,678.75,564.837,384,224,36.64 +densenet121d,678.22,375.614,256,224,8.0 +resnetaa50d,673.73,569.117,384,224,25.58 +gluon_resnet50_v1s,669.16,573.001,384,224,25.68 +gmixer_24_224,666.22,382.715,256,224,24.72 +swsl_resnext50_32x4d,663.66,577.766,384,224,25.03 +resnext50_32x4d,663.39,577.966,384,224,25.03 +ssl_resnext50_32x4d,663.18,578.185,384,224,25.03 +tv_resnext50_32x4d,662.37,578.888,384,224,25.03 +gluon_resnext50_32x4d,662.06,579.185,384,224,25.03 +haloregnetz_b,660.09,386.296,256,224,11.68 +ese_vovnet57b,656.27,584.17,384,224,38.61 +cspresnext50,656.07,389.365,256,256,20.57 +seresnet50t,655.71,584.407,384,224,28.1 +vit_relpos_medium_patch16_cls_224,654.69,389.857,256,224,38.76 +seresnetaa50d,654.11,390.147,256,224,28.11 +densenetblur121d,649.47,392.249,256,224,8.0 +res2net50_26w_4s,648.76,590.62,384,224,25.7 +fbnetv3_g,647.3,294.603,192,240,16.62 +swin_tiny_patch4_window7_224,646.76,394.841,256,224,28.29 +ecaresnet50d,643.9,595.437,384,224,25.58 +regnety_040,640.15,598.298,384,224,20.65 +gmlp_s16_224,638.67,299.017,192,224,19.42 +crossvit_small_240,637.47,399.952,256,240,26.86 +resnext50d_32x4d,635.21,402.121,256,224,25.05 +nfnet_f0,634.03,806.334,512,192,71.49 +vit_srelpos_medium_patch16_224,629.85,405.54,256,224,38.74 +mobilevit_s,629.67,303.779,192,256,5.58 +skresnet50d,628.92,405.574,256,224,25.82 +vit_relpos_medium_patch16_224,628.2,406.369,256,224,38.75 +resnest50d_1s4x24d,628.12,406.263,256,224,25.68 +mixnet_l,627.47,406.445,256,224,7.33 +tf_efficientnet_b2_ns,627.11,304.591,192,260,9.11 +tf_efficientnet_b2_ap,626.79,304.757,192,260,9.11 +tf_efficientnet_b2,626.11,305.153,192,260,9.11 +regnetx_040,624.89,613.356,384,224,22.12 +regnetv_040,622.71,409.581,256,224,20.64 +darknetaa53,614.47,415.819,256,256,36.02 +seresnext50_32x4d,613.62,416.021,256,224,27.56 +gluon_seresnext50_32x4d,613.35,416.206,256,224,27.56 +sehalonet33ts,613.13,416.664,256,256,13.69 +legacy_seresnext50_32x4d,612.89,416.52,256,224,27.56 +dla60x,612.79,416.731,256,224,17.35 +gcresnet50t,611.79,626.12,384,256,25.9 +xcit_nano_12_p16_384_dist,611.55,416.81,256,384,3.05 +resmlp_24_224,609.69,418.351,256,224,30.02 +resmlp_24_distilled_224,609.51,418.474,256,224,30.02 +gcresnext50ts,606.82,314.923,192,256,15.67 +tf_inception_v3,603.29,635.057,384,299,23.83 +gluon_inception_v3,603.22,635.143,384,299,23.83 +adv_inception_v3,603.01,635.347,384,299,23.83 +inception_v3,602.27,636.205,384,299,23.83 +tf_mixnet_l,600.24,424.956,256,224,7.33 +dm_nfnet_f0,600.1,638.573,384,192,71.49 +xcit_small_12_p16_224,598.44,425.955,256,224,26.25 +xcit_small_12_p16_224_dist,598.22,426.013,256,224,26.25 +semobilevit_s,597.07,320.258,192,256,5.74 +densenet169,592.78,429.221,256,224,14.15 +res2next50,591.98,431.144,256,224,24.67 +resnetv2_101,590.74,431.806,256,224,44.54 +darknet53,590.64,432.606,256,256,41.61 +resnetv2_50x1_bit_distilled,587.0,326.262,192,224,25.55 +res2net50_14w_8s,586.94,433.992,256,224,25.06 +swin_s3_tiny_224,586.39,435.576,256,224,28.33 +repvgg_b1g4,584.26,875.234,512,224,39.97 +dla60_res2net,583.07,437.618,256,224,20.85 +crossvit_15_240,576.62,331.16,192,240,27.53 +cait_xxs24_224,576.52,441.46,256,224,11.96 +cs3darknet_focus_x,569.86,448.292,256,256,35.02 +resnet101,568.98,448.321,256,224,44.55 +gluon_resnet101_v1b,568.4,448.834,256,224,44.55 +tv_resnet101,566.24,450.547,256,224,44.55 +resnetrs101,564.72,451.1,256,192,63.62 +efficientnet_cc_b1_8e,564.18,452.061,256,240,39.72 +crossvit_15_dagger_240,558.23,342.033,192,240,28.21 +vit_base_resnet50d_224,557.61,457.501,256,224,110.97 +mobilevitv2_125,557.38,343.473,192,256,7.48 +xcit_nano_12_p8_224_dist,555.43,459.069,256,224,3.05 +xcit_nano_12_p8_224,555.18,459.311,256,224,3.05 +sebotnet33ts_256,554.49,230.012,128,256,13.7 +resnet51q,551.31,463.504,256,256,35.7 +resnetv2_101d,548.02,465.6,256,224,44.56 +tf_efficientnet_cc_b1_8e,547.16,466.173,256,240,39.72 +resnetv2_50d_gn,546.54,350.469,192,224,25.57 +nf_resnet101,543.9,704.337,384,224,44.55 +vit_base_patch32_384,542.76,470.804,256,384,88.3 +gluon_resnet101_v1c,537.15,475.0,256,224,44.57 +cspdarknet53,537.1,475.617,256,256,27.64 +cs3darknet_x,534.86,477.64,256,256,35.05 +vit_base_r26_s32_224,534.67,357.767,192,224,101.38 +resnest50d,534.66,477.434,256,224,27.48 +resnet50_gn,531.78,360.235,192,224,25.56 +regnetz_c16,530.35,360.552,192,256,13.46 +gluon_resnet101_v1d,528.59,482.76,256,224,44.57 +mixer_b16_224,528.02,484.004,256,224,59.88 +mixer_l32_224,527.33,362.504,192,224,206.94 +mixer_b16_224_miil,526.58,485.347,256,224,59.88 +vit_large_patch32_224,521.73,489.021,256,224,306.54 +dla60_res2next,520.31,490.572,256,224,17.03 +ecaresnet50t,516.29,494.896,256,256,25.57 +cs3sedarknet_xdw,516.24,246.008,128,256,21.6 +lambda_resnet50ts,515.16,371.658,192,256,21.54 +vit_tiny_patch16_384,512.2,249.072,128,384,5.79 +resnet61q,510.55,375.027,192,256,36.85 +swinv2_cr_tiny_224,505.83,504.823,256,224,28.33 +halonet50ts,503.76,380.122,192,256,22.73 +repvgg_b1,503.57,1015.623,512,224,57.42 +swinv2_cr_tiny_ns_224,502.5,508.144,256,224,28.33 +cs3sedarknet_x,501.96,508.547,256,256,35.4 +dla102,497.28,513.14,256,224,33.27 +wide_resnet50_2,495.68,773.85,384,224,68.88 +res2net50_26w_6s,493.57,516.914,256,224,37.05 +resnetaa101d,490.51,520.338,256,224,44.57 +convnext_small,489.81,390.224,192,224,50.22 +convnext_small_in22ft1k,489.45,390.576,192,224,50.22 +legacy_seresnet101,487.73,522.616,256,224,49.33 +vit_relpos_medium_patch16_rpn_224,485.5,526.221,256,224,38.73 +efficientnet_lite3,484.47,263.098,128,300,8.2 +gluon_resnet101_v1s,483.47,527.891,256,224,44.67 +seresnet101,480.65,530.38,256,224,49.33 +cs3edgenet_x,477.59,535.019,256,256,47.82 +nest_tiny,476.68,267.593,128,224,17.06 +nf_seresnet101,474.46,537.213,256,224,49.33 +mobilevitv2_150_in22ft1k,473.86,269.132,128,256,10.59 +mobilevitv2_150,473.84,269.144,128,256,10.59 +resnetblur101d,472.23,540.497,256,224,44.57 +jx_nest_tiny,472.22,270.163,128,224,17.06 +nf_ecaresnet101,469.53,543.375,256,224,44.55 +vgg13_bn,468.37,546.3,256,224,133.05 +twins_pcpvt_base,466.47,408.848,192,224,43.83 +tf_efficientnet_lite3,465.4,273.895,128,300,8.2 +vgg16,465.36,824.954,384,224,138.36 +sequencer2d_s,462.43,412.819,192,224,27.65 +mixnet_xl,460.21,554.308,256,224,11.9 +coat_lite_small,457.06,418.568,192,224,19.84 +efficientnet_b3a,456.95,278.403,128,288,12.23 +efficientnet_b3,456.81,278.448,128,288,12.23 +regnetx_080,454.56,843.629,384,224,39.57 +regnetx_064,452.43,564.953,256,224,26.21 +halo2botnet50ts_256,451.35,424.392,192,256,22.64 +ecaresnet101d,447.44,570.33,256,224,44.57 +densenet201,447.44,425.987,192,224,20.01 +nf_regnet_b4,445.8,428.533,192,320,30.21 +convit_small,443.63,431.737,192,224,27.78 +efficientnetv2_s,433.27,293.157,128,288,21.46 +skresnext50_32x4d,432.3,590.802,256,224,27.48 +cs3se_edgenet_x,431.68,443.324,192,256,50.72 +botnet50ts_256,428.8,297.529,128,256,22.74 +ssl_resnext101_32x4d,427.28,447.74,192,224,44.18 +resnext101_32x4d,427.18,447.921,192,224,44.18 +swsl_resnext101_32x4d,427.16,447.915,192,224,44.18 +gluon_resnext101_32x4d,427.13,447.97,192,224,44.18 +poolformer_s36,425.0,449.906,192,224,30.86 +ese_vovnet39b_evos,421.31,302.862,128,224,24.58 +resnet101d,418.0,457.739,192,256,44.57 +dla102x,417.16,458.658,192,224,26.31 +res2net101_26w_4s,416.51,612.121,256,224,45.21 +lamhalobotnet50ts_256,413.09,463.774,192,256,22.57 +twins_svt_base,411.8,464.138,192,224,56.07 +crossvit_18_240,406.79,312.611,128,240,43.27 +tresnet_l,404.84,1261.389,512,224,55.99 +efficientnetv2_rw_s,402.34,315.806,128,288,23.94 +volo_d1_224,401.47,476.8,192,224,26.63 +resmlp_36_224,401.06,476.505,192,224,44.69 +res2net50_26w_8s,400.52,636.999,256,224,48.4 +resmlp_36_distilled_224,400.14,477.557,192,224,44.69 +swin_small_patch4_window7_224,399.67,478.499,192,224,49.61 +resnest50d_4s2x40d,396.0,645.092,256,224,30.42 +vit_base_patch16_224_miil,395.78,484.311,192,224,86.54 +crossvit_18_dagger_240,394.08,322.72,128,240,44.27 +deit_base_patch16_224,390.88,490.307,192,224,86.57 +vit_base_patch16_224,390.86,490.391,192,224,86.57 +vit_base_patch16_224_sam,390.67,490.608,192,224,86.57 +mobilevitv2_175_in22ft1k,389.97,327.241,128,256,14.25 +mobilevitv2_175,389.95,327.23,128,256,14.25 +tf_efficientnetv2_s_in21ft1k,389.66,326.288,128,300,21.46 +tf_efficientnetv2_s,389.1,326.713,128,300,21.46 +vgg16_bn,388.69,658.276,256,224,138.37 +regnety_064,388.46,657.256,256,224,30.58 +regnety_080,385.84,662.273,256,224,39.18 +deit_base_distilled_patch16_224,385.62,497.03,192,224,87.34 +xception,385.56,331.194,128,299,22.86 +regnety_040s_gn,384.97,330.927,128,224,20.65 +repvgg_b2g4,379.42,1348.329,512,224,61.76 +resnetv2_152,379.4,503.868,192,224,60.19 +regnetz_d8,378.76,336.282,128,256,23.37 +hrnet_w18,378.26,671.883,256,224,21.3 +ese_vovnet99b,377.27,677.036,256,224,63.2 +vit_small_resnet50d_s16_224,376.52,508.654,192,224,57.53 +cait_xxs36_224,375.8,507.032,192,224,17.3 +gluon_seresnext101_32x4d,375.02,509.78,192,224,48.96 +regnetz_040,374.91,339.544,128,256,27.12 +seresnext101_32x4d,374.73,510.176,192,224,48.96 +regnetv_064,372.69,513.522,192,224,30.58 +regnetz_040h,372.64,341.593,128,256,28.94 +legacy_seresnext101_32x4d,372.06,513.705,192,224,48.96 +deit3_base_patch16_224_in21ft1k,371.79,515.431,192,224,86.59 +deit3_base_patch16_224,371.73,515.464,192,224,86.59 +tf_efficientnet_b3,370.15,344.089,128,300,12.23 +tf_efficientnet_b3_ap,370.14,344.111,128,300,12.23 +tf_efficientnet_b3_ns,370.1,344.134,128,300,12.23 +resnet152,370.08,516.516,192,224,60.19 +vit_relpos_base_patch16_clsgap_224,369.76,518.105,192,224,86.43 +vit_relpos_base_patch16_cls_224,369.34,518.67,192,224,86.43 +resnetv2_50d_frn,369.16,345.594,128,224,25.59 +gluon_resnet152_v1b,369.02,517.998,192,224,60.19 +tv_resnet152,369.0,518.088,192,224,60.19 +regnetz_b16_evos,365.3,348.518,128,224,9.74 +sequencer2d_m,363.12,525.505,192,224,38.31 +ese_vovnet99b_iabn,362.9,1055.043,384,224,63.2 +resnetv2_152d,360.99,529.48,192,224,60.2 +beit_base_patch16_224,358.29,534.776,192,224,86.53 +xcit_tiny_12_p16_384_dist,357.91,534.55,192,384,6.72 +vit_relpos_base_patch16_224,355.33,539.194,192,224,86.43 +gluon_resnet152_v1c,354.77,538.797,192,224,60.21 +regnetz_d32,354.52,359.397,128,256,27.58 +swinv2_tiny_window8_256,354.35,540.569,192,256,28.35 +resnetv2_50d_evos,353.36,270.506,96,224,25.59 +dpn92,353.0,723.617,256,224,37.67 +vgg19,352.0,1090.655,384,224,143.67 +gluon_resnet152_v1d,351.06,544.563,192,224,60.21 +densenet161,346.02,367.416,128,224,28.68 +xception41p,344.85,370.318,128,299,26.91 +gluon_resnet152_v1s,344.7,368.96,128,224,60.32 +mobilevitv2_200,342.4,372.843,128,256,18.45 +tnt_s_patch16_224,342.25,559.037,192,224,23.76 +mobilevitv2_200_in22ft1k,342.08,373.147,128,256,18.45 +eca_nfnet_l1,341.07,561.084,192,256,41.41 +hrnet_w32,340.54,747.043,256,224,41.23 +dla169,338.11,565.259,192,224,53.39 +convnext_base_in22ft1k,337.76,377.102,128,224,88.59 +convnext_base,336.98,378.091,128,224,88.59 +repvgg_b2,335.01,1527.215,512,224,89.02 +repvgg_b3g4,334.01,1148.557,384,224,83.83 +vgg13,331.37,1544.923,512,224,133.05 +pit_b_224,331.17,385.577,128,224,73.76 +vgg19_bn,330.96,773.109,256,224,143.68 +pit_b_distilled_224,329.46,387.568,128,224,74.79 +regnetx_120,327.41,780.952,256,224,46.11 +twins_pcpvt_large,322.96,392.17,128,224,60.99 +hrnet_w30,321.86,790.607,256,224,37.71 +legacy_seresnet152,319.56,397.245,128,224,66.82 +inception_v4,316.87,603.734,192,299,42.68 +seresnet152,313.75,608.677,192,224,66.82 +vit_small_patch16_36x1_224,310.56,409.448,128,224,64.67 +dla102x2,309.09,412.537,128,224,41.28 +xcit_small_24_p16_224_dist,307.83,412.466,128,224,47.67 +convmixer_1024_20_ks9_p14,307.81,830.813,256,224,24.38 +vit_small_patch16_18x2_224,307.61,413.3,128,224,64.67 +xcit_small_24_p16_224,307.46,412.867,128,224,47.67 +regnety_120,307.05,623.971,192,224,51.82 +poolformer_m36,303.34,420.132,128,224,56.17 +efficientnet_el_pruned,301.49,423.464,128,300,10.59 +efficientnet_el,301.45,423.5,128,300,10.59 +swinv2_cr_small_ns_224,300.41,423.619,128,224,49.7 +swinv2_cr_small_224,297.65,427.521,128,224,49.7 +mixnet_xxl,297.33,428.503,128,224,23.96 +cait_s24_224,296.96,428.341,128,224,46.92 +nest_small,296.72,321.888,96,224,38.35 +coat_tiny,296.44,429.708,128,224,5.5 +tf_efficientnet_el,295.51,432.07,128,300,10.59 +jx_nest_small,294.83,323.932,96,224,38.35 +efficientnet_b4,293.1,325.442,96,320,19.34 +xception41,293.07,435.505,128,299,26.97 +xcit_tiny_12_p8_224_dist,291.52,437.287,128,224,6.71 +tresnet_xl,291.4,875.028,256,224,78.44 +resnext101_64x4d,291.33,437.816,128,224,83.46 +gluon_resnext101_64x4d,291.25,437.881,128,224,83.46 +swin_s3_small_224,289.76,439.818,128,224,49.74 +wide_resnet101_2,289.62,661.356,192,224,126.89 +xcit_tiny_12_p8_224,289.33,440.549,128,224,6.71 +twins_svt_large,289.11,440.647,128,224,99.27 +resnet152d,281.47,452.46,128,256,60.21 +swin_base_patch4_window7_224,279.66,455.817,128,224,87.77 +convnext_tiny_384_in22ft1k,278.8,343.389,96,384,28.59 +resnet200,276.62,459.688,128,224,64.67 +ssl_resnext101_32x8d,276.52,461.341,128,224,88.79 +ig_resnext101_32x8d,276.39,461.582,128,224,88.79 +resnext101_32x8d,276.22,461.854,128,224,88.79 +swsl_resnext101_32x8d,276.22,461.764,128,224,88.79 +repvgg_b3,271.93,1411.039,384,224,123.09 +nfnet_f1,271.43,705.161,192,224,132.63 +resnetv2_50d_evob,268.92,355.729,96,224,25.59 +gmlp_b16_224,268.22,356.298,96,224,73.08 +dpn98,267.62,476.602,128,224,61.57 +regnetx_160,266.55,719.244,192,224,54.28 +regnety_160,264.44,724.758,192,224,83.59 +gluon_seresnext101_64x4d,264.12,482.344,128,224,88.23 +ens_adv_inception_resnet_v2,261.47,730.952,192,299,55.84 +inception_resnet_v2,261.44,730.919,192,299,55.84 +xception65p,259.32,492.32,128,299,39.82 +efficientnet_lite4,255.23,249.374,64,380,13.01 +vit_base_patch16_rpn_224,254.51,753.593,192,224,86.54 +resnest101e,253.9,501.575,128,256,48.28 +crossvit_base_240,253.73,376.737,96,240,105.03 +seresnext101_32x8d,251.44,506.792,128,224,93.57 +vit_relpos_base_patch16_rpn_224,250.62,765.002,192,224,86.41 +vit_base_patch16_plus_240,248.4,514.352,128,240,117.56 +tf_efficientnet_lite4,247.32,257.437,64,380,13.01 +efficientnet_b3_gn,245.44,258.998,64,288,11.73 +dm_nfnet_f1,244.51,521.138,128,224,132.63 +seresnext101d_32x8d,242.49,525.503,128,224,93.59 +seresnet152d,242.25,392.75,96,256,66.84 +xcit_tiny_24_p16_384_dist,241.62,526.318,128,384,12.12 +vit_small_patch16_384,239.05,266.865,64,384,22.2 +vit_relpos_base_patch16_plus_240,238.57,535.322,128,240,117.38 +vit_large_r50_s32_224,237.94,401.033,96,224,328.99 +resnetrs152,237.63,535.199,128,256,86.62 +swinv2_tiny_window16_256,237.41,403.072,96,256,28.35 +seresnextaa101d_32x8d,228.0,559.15,128,224,93.59 +xcit_medium_24_p16_224_dist,227.91,558.239,128,224,84.4 +deit3_small_patch16_384_in21ft1k,227.77,280.008,64,384,22.21 +deit3_small_patch16_384,227.76,280.015,64,384,22.21 +xcit_medium_24_p16_224,227.75,558.491,128,224,84.4 +vit_small_r26_s32_384,227.25,280.302,64,384,36.47 +convit_base,224.86,568.198,128,224,86.54 +gluon_xception65,224.1,426.474,96,299,39.92 +swin_s3_base_224,223.36,426.944,96,224,71.13 +tnt_b_patch16_224,222.94,572.213,128,224,65.41 +xception65,222.93,428.728,96,299,39.92 +coat_mini,222.88,572.209,128,224,10.34 +volo_d2_224,222.28,430.111,96,224,58.68 +xcit_small_12_p16_384_dist,221.79,430.984,96,384,26.25 +poolformer_m48,220.53,432.741,96,224,73.47 +hrnet_w40,219.45,869.959,192,224,57.56 +vit_base_r50_s16_224,215.41,443.988,96,224,98.66 +swinv2_cr_base_ns_224,213.88,446.428,96,224,87.88 +sequencer2d_l,213.86,444.098,96,224,54.3 +swinv2_small_window8_256,212.59,449.01,96,256,49.73 +swinv2_cr_base_224,211.39,451.682,96,224,87.88 +mobilevitv2_150_384_in22ft1k,210.38,303.23,64,384,10.59 +nest_base,210.2,302.774,64,224,67.72 +tresnet_m_448,209.55,913.447,192,448,31.39 +efficientnetv2_m,207.96,304.545,64,320,54.14 +jx_nest_base,207.78,306.371,64,224,67.72 +regnetz_c16_evos,207.35,306.824,64,256,13.49 +hrnet_w44,206.45,925.026,192,224,67.06 +resnet200d,204.47,623.017,128,256,64.69 +efficientnet_b3_g8_gn,203.44,312.836,64,288,14.25 +hrnet_w48,202.15,628.427,128,224,77.47 +densenet264,202.1,470.789,96,224,72.69 +dpn131,198.25,643.486,128,224,79.25 +tf_efficientnet_b4,194.83,326.399,64,380,19.34 +tf_efficientnet_b4_ap,194.65,326.738,64,380,19.34 +tf_efficientnet_b4_ns,194.23,327.375,64,380,19.34 +xcit_nano_12_p8_384_dist,187.76,338.965,64,384,3.05 +efficientnetv2_rw_m,187.31,338.14,64,320,53.24 +dpn107,187.14,682.151,128,224,86.92 +convnext_large_in22ft1k,187.05,511.402,96,224,197.77 +convnext_large,187.01,511.523,96,224,197.77 +nf_regnet_b5,186.49,512.09,96,384,49.74 +xcit_tiny_24_p8_224_dist,183.21,520.533,96,224,12.11 +xcit_tiny_24_p8_224,183.21,520.609,96,224,12.11 +halonet_h1,177.48,359.151,64,256,8.1 +hrnet_w64,176.04,722.362,128,224,128.06 +mobilevitv2_175_384_in22ft1k,175.76,363.135,64,384,14.25 +senet154,174.83,545.792,96,224,115.09 +regnety_320,174.41,732.528,128,224,145.05 +gluon_senet154,174.03,548.162,96,224,115.09 +regnetz_e8,173.89,365.999,64,256,57.7 +legacy_senet154,170.27,560.493,96,224,115.09 +xception71,168.81,376.911,64,299,42.34 +xcit_small_12_p8_224,168.52,377.961,64,224,26.21 +xcit_small_12_p8_224_dist,168.32,378.375,64,224,26.21 +vit_large_patch32_384,168.05,569.595,96,384,306.63 +convnext_small_384_in22ft1k,164.94,386.292,64,384,50.22 +mixer_l16_224,164.43,582.335,96,224,208.2 +ecaresnet200d,161.74,392.334,64,256,64.69 +seresnet200d,161.56,391.892,64,256,71.86 +resnetrs200,160.52,394.222,64,256,93.21 +densenet264d_iabn,158.12,804.924,128,224,72.74 +regnetx_320,155.94,819.702,128,224,107.81 +swin_large_patch4_window7_224,153.79,414.255,64,224,196.53 +volo_d3_224,152.73,416.584,64,224,86.33 +mobilevitv2_200_384_in22ft1k,150.68,317.559,48,384,18.45 +swinv2_base_window8_256,150.28,423.39,64,256,87.92 +resnetv2_50x1_bitm,149.04,321.21,48,448,25.55 +nfnet_f2,148.92,641.446,96,256,193.78 +swinv2_small_window16_256,142.83,445.591,64,256,49.73 +tf_efficientnetv2_m,142.41,333.833,48,384,54.14 +eca_nfnet_l2,142.2,672.291,96,320,56.72 +tf_efficientnetv2_m_in21ft1k,141.35,336.246,48,384,54.14 +regnetz_d8_evos,132.2,360.995,48,256,23.46 +swinv2_cr_tiny_384,131.5,485.388,64,384,28.33 +ig_resnext101_32x16d,130.47,734.203,96,224,194.03 +ssl_resnext101_32x16d,130.4,734.63,96,224,194.03 +swsl_resnext101_32x16d,130.37,734.771,96,224,194.03 +xcit_large_24_p16_224,126.98,500.577,64,224,189.1 +xcit_large_24_p16_224_dist,126.97,500.662,64,224,189.1 +seresnet269d,125.7,503.318,64,256,113.67 +dm_nfnet_f2,125.2,507.681,64,256,193.78 +swinv2_cr_large_224,124.7,510.736,64,224,196.68 +xcit_tiny_12_p8_384_dist,122.38,390.412,48,384,6.71 +resnetrs270,121.5,520.761,64,256,129.86 +crossvit_15_dagger_408,117.57,270.29,32,408,28.5 +vit_large_patch16_224,117.08,544.981,64,224,304.33 +vit_base_patch16_18x2_224,116.55,546.378,64,224,256.73 +convnext_base_384_in22ft1k,115.97,412.084,48,384,88.59 +convnext_xlarge_in22ft1k,115.91,550.445,64,224,350.2 +deit3_large_patch16_224_in21ft1k,113.19,563.501,64,224,304.37 +deit3_large_patch16_224,113.17,563.634,64,224,304.37 +xcit_small_24_p16_384_dist,112.88,421.839,48,384,47.67 +beit_large_patch16_224,107.8,591.544,64,224,304.43 +swinv2_base_window16_256,103.68,460.461,48,256,87.92 +swinv2_base_window12to16_192to256_22kft1k,103.56,461.021,48,256,87.92 +tresnet_l_448,103.2,1236.839,128,448,55.99 +volo_d1_384,99.39,320.613,32,384,26.78 +cait_xxs24_384,97.83,488.033,48,384,12.03 +vit_base_patch16_384,96.96,329.192,32,384,86.86 +deit_base_patch16_384,96.37,331.171,32,384,86.86 +volo_d4_224,95.75,498.748,48,224,192.96 +deit_base_distilled_patch16_384,94.83,336.556,32,384,87.63 +efficientnet_b5,93.71,338.901,32,456,30.39 +deit3_base_patch16_384,93.22,342.328,32,384,86.88 +deit3_base_patch16_384_in21ft1k,92.68,344.327,32,384,86.88 +tf_efficientnet_b5,92.16,344.785,32,456,30.39 +tf_efficientnet_b5_ns,92.11,344.939,32,456,30.39 +tf_efficientnet_b5_ap,91.98,345.405,32,456,30.39 +resnetv2_152x2_bit_teacher,89.37,355.711,32,224,236.34 +crossvit_18_dagger_408,88.76,358.492,32,408,44.61 +xcit_small_24_p8_224,87.25,546.829,48,224,47.63 +xcit_small_24_p8_224_dist,86.87,549.24,48,224,47.63 +convmixer_768_32,85.53,1121.025,96,224,21.11 +vit_large_patch14_224,85.27,561.239,48,224,304.2 +eca_nfnet_l3,84.61,563.702,48,352,72.04 +resnetv2_101x1_bitm,84.61,187.399,16,448,44.54 +beit_base_patch16_384,83.67,381.291,32,384,86.74 +resnest200e,83.33,570.802,48,320,70.2 +tf_efficientnetv2_l_in21ft1k,83.27,379.678,32,384,118.52 +efficientnetv2_l,83.27,379.867,32,384,118.52 +tf_efficientnetv2_l,82.74,382.367,32,384,118.52 +ecaresnet269d,82.15,579.477,48,320,102.09 +tresnet_xl_448,78.31,1222.487,96,448,78.44 +xcit_medium_24_p16_384_dist,77.9,407.346,32,384,84.4 +vit_large_r50_s32_384,77.49,410.426,32,384,329.09 +swinv2_cr_small_384,76.31,416.793,32,384,49.7 +swin_base_patch4_window12_384,74.03,430.327,32,384,87.9 +pnasnet5large,68.77,461.392,32,331,86.06 +resnetrs350,68.24,460.967,32,288,163.96 +nfnet_f3,67.87,703.087,48,320,254.92 +nasnetalarge,67.38,469.785,32,331,88.75 +resmlp_big_24_distilled_224,67.03,475.867,32,224,129.14 +resmlp_big_24_224_in22ft1k,67.03,475.857,32,224,129.14 +resmlp_big_24_224,67.02,475.97,32,224,129.14 +cait_xs24_384,65.59,485.229,32,384,26.67 +convnext_large_384_in22ft1k,63.62,501.159,32,384,197.77 +vit_base_patch8_224,63.42,377.591,24,224,86.58 +cait_xxs36_384,63.23,502.345,32,384,17.37 +ig_resnext101_32x32d,62.72,508.666,32,224,468.53 +xcit_tiny_24_p8_384_dist,62.14,511.676,32,384,12.11 +volo_d5_224,61.58,516.467,32,224,295.46 +vit_base_resnet50_384,61.06,391.43,24,384,98.95 +vit_base_r50_s16_384,61.0,391.773,24,384,98.95 +swinv2_large_window12to16_192to256_22kft1k,60.93,391.352,24,256,196.74 +xcit_medium_24_p8_224,60.43,526.111,32,224,84.32 +xcit_medium_24_p8_224_dist,60.03,529.652,32,224,84.32 +xcit_small_12_p8_384_dist,57.75,413.763,24,384,26.21 +dm_nfnet_f3,57.26,554.375,32,320,254.92 +volo_d2_384,55.56,286.247,16,384,58.87 +efficientnet_b6,54.98,288.003,16,528,43.04 +swinv2_cr_base_384,54.71,436.265,24,384,87.88 +tf_efficientnet_b6,54.38,291.338,16,528,43.04 +tf_efficientnet_b6_ns,54.21,292.241,16,528,43.04 +tf_efficientnet_b6_ap,54.17,292.479,16,528,43.04 +efficientnetv2_xl,53.77,291.666,16,384,208.12 +tf_efficientnetv2_xl_in21ft1k,53.07,295.611,16,384,208.12 +convmixer_1536_20,50.1,957.271,48,224,51.63 +swinv2_cr_huge_224,49.51,482.114,24,224,657.83 +cait_s24_384,49.37,483.331,24,384,47.06 +resnetrs420,48.12,489.4,24,320,191.89 +xcit_large_24_p16_384_dist,45.6,522.909,24,384,189.1 +swin_large_patch4_window12_384,41.65,382.145,16,384,196.74 +convnext_xlarge_384_in22ft1k,40.18,595.51,24,384,350.2 +vit_huge_patch14_224,39.94,398.436,16,224,632.05 +deit3_huge_patch14_224_in21ft1k,38.36,414.578,16,224,632.13 +deit3_huge_patch14_224,38.33,414.855,16,224,632.13 +nfnet_f4,36.85,646.047,24,384,316.07 +resnest269e,35.75,664.499,24,416,110.93 +resnetv2_50x3_bitm,34.88,457.822,16,448,217.32 +xcit_large_24_p8_224_dist,33.7,471.344,16,224,188.93 +xcit_large_24_p8_224,33.68,471.512,16,224,188.93 +resnetv2_152x2_bit_teacher_384,32.69,487.138,16,384,236.34 +ig_resnext101_32x48d,32.39,492.417,16,224,828.41 +swinv2_cr_large_384,32.36,491.839,16,384,196.68 +cait_s36_384,31.92,497.404,16,384,68.37 +efficientnet_b7,31.74,248.492,8,600,66.35 +dm_nfnet_f4,31.4,758.349,24,384,316.07 +tf_efficientnet_b7,31.4,251.12,8,600,66.35 +tf_efficientnet_b7_ns,31.37,251.394,8,600,66.35 +tf_efficientnet_b7_ap,31.35,251.548,8,600,66.35 +xcit_small_24_p8_384_dist,29.2,544.65,16,384,47.63 +vit_large_patch16_384,29.07,411.127,12,384,304.72 +deit3_large_patch16_384,28.22,423.365,12,384,304.76 +deit3_large_patch16_384_in21ft1k,28.19,423.825,12,384,304.76 +swinv2_base_window12to24_192to384_22kft1k,28.14,423.938,12,384,87.92 +beit_large_patch16_384,25.12,475.56,12,384,305.0 +volo_d3_448,23.79,333.686,8,448,86.63 +nfnet_f5,22.84,694.067,16,416,377.21 +resnetv2_152x2_bitm,22.69,350.236,8,448,236.34 +vit_giant_patch14_224,22.29,356.113,8,224,1012.61 +dm_nfnet_f5,20.95,756.72,16,416,377.21 +xcit_medium_24_p8_384_dist,19.97,397.272,8,384,84.32 +efficientnet_b8,19.9,297.659,6,672,87.41 +tf_efficientnet_b8_ap,19.66,301.198,6,672,87.41 +tf_efficientnet_b8,19.65,301.246,6,672,87.41 +nfnet_f6,18.5,641.193,12,448,438.36 +resnetv2_101x3_bitm,18.0,442.742,8,448,387.93 +volo_d4_448,16.87,353.154,6,448,193.41 +swinv2_large_window12to24_192to384_22kft1k,16.59,359.187,6,384,196.74 +dm_nfnet_f6,15.07,522.261,8,448,438.36 +swinv2_cr_huge_384,12.92,461.964,6,384,657.94 +nfnet_f7,12.67,622.861,8,480,499.5 +cait_m36_384,11.76,506.439,6,384,271.22 +xcit_large_24_p8_384_dist,11.53,516.755,6,384,188.93 +volo_d5_448,11.08,357.783,4,448,295.91 +tf_efficientnet_l2_ns_475,10.91,360.832,4,475,480.31 +beit_large_patch16_512,9.42,422.333,4,512,305.67 +volo_d5_512,7.72,385.462,3,512,296.09 +resnetv2_152x4_bitm,4.91,404.529,2,480,936.53 +cait_m48_448,4.71,419.69,2,448,356.46 +efficientnet_l2,3.43,285.826,1,800,480.31 +tf_efficientnet_l2_ns,3.42,287.247,1,800,480.31 diff --git a/pytorch-image-models/results/benchmark-train-amp-nhwc-pt112-cu113-rtx3090.csv b/pytorch-image-models/results/benchmark-train-amp-nhwc-pt112-cu113-rtx3090.csv new file mode 100644 index 0000000000000000000000000000000000000000..3c0025c8025b8763ba72c1dc40868718dc000821 --- /dev/null +++ b/pytorch-image-models/results/benchmark-train-amp-nhwc-pt112-cu113-rtx3090.csv @@ -0,0 +1,835 @@ +model,train_samples_per_sec,train_step_time,train_batch_size,train_img_size,param_count +tinynet_e,11915.85,41.681,512,106,2.04 +mobilenetv3_small_050,11290.99,44.293,512,224,1.59 +lcnet_035,10015.98,50.125,512,224,1.64 +lcnet_050,9286.37,54.37,512,224,1.88 +tf_mobilenetv3_small_minimal_100,9042.22,55.986,512,224,2.04 +mobilenetv3_small_075,8679.98,58.254,512,224,2.04 +mobilenetv3_small_100,8035.08,62.981,512,224,2.54 +tinynet_d,7990.69,63.223,512,152,2.34 +tf_mobilenetv3_small_075,7930.1,63.8,512,224,2.04 +tf_mobilenetv3_small_100,7330.24,69.047,512,224,2.54 +lcnet_075,6950.91,73.156,512,224,2.36 +levit_128s,6539.16,77.346,512,224,7.78 +resnet10t,6318.63,80.774,512,176,5.44 +mnasnet_small,5607.09,90.422,512,224,2.03 +lcnet_100,5354.67,95.126,512,224,2.95 +mixer_s32_224,4943.04,103.013,512,224,19.1 +mobilenetv2_035,4789.43,106.101,512,224,1.68 +mnasnet_050,4680.08,108.62,512,224,2.22 +levit_128,4558.28,111.213,512,224,9.21 +cs3darknet_focus_s,4469.48,114.041,512,256,3.27 +vit_small_patch32_224,4445.76,114.324,512,224,22.88 +tinynet_c,4167.16,121.826,512,184,2.46 +gernet_s,4165.03,122.198,512,224,8.17 +cs3darknet_s,4110.51,124.007,512,256,3.28 +regnetx_002,4105.04,124.027,512,224,2.68 +mobilenetv2_050,4051.14,125.606,512,224,1.97 +vit_tiny_r_s16_p8_224,4025.23,126.328,512,224,6.34 +semnasnet_050,3904.91,130.185,512,224,2.08 +regnety_002,3777.81,134.562,512,224,3.16 +levit_192,3727.29,136.213,512,224,10.95 +ghostnet_050,3670.99,138.144,512,224,2.59 +ese_vovnet19b_slim_dw,3629.92,140.575,512,224,1.9 +lcnet_150,3576.28,142.665,512,224,4.5 +gluon_resnet18_v1b,3482.17,146.691,512,224,11.69 +resnet18,3481.78,146.713,512,224,11.69 +swsl_resnet18,3480.5,146.765,512,224,11.69 +ssl_resnet18,3477.04,146.904,512,224,11.69 +resnet14t,3472.37,147.102,512,176,10.08 +tf_efficientnetv2_b0,3428.08,148.143,512,192,7.14 +tf_mobilenetv3_large_minimal_100,3366.45,151.356,512,224,3.92 +mnasnet_075,3238.88,157.273,512,224,3.17 +tf_mobilenetv3_large_075,3189.08,159.67,512,224,3.99 +seresnet18,3138.91,162.608,512,224,11.78 +mobilenetv3_large_075,3095.0,164.56,512,224,3.99 +legacy_seresnet18,3076.04,165.928,512,224,11.78 +hardcorenas_a,2971.63,171.576,512,224,5.26 +levit_256,2956.43,172.043,512,224,18.89 +mnasnet_b1,2930.02,173.933,512,224,4.38 +mnasnet_100,2929.31,173.976,512,224,4.38 +tf_mobilenetv3_large_100,2907.93,175.204,512,224,5.48 +resnet18d,2875.3,177.69,512,224,11.71 +tinynet_b,2851.82,178.435,512,188,3.73 +hardcorenas_b,2772.42,183.73,512,224,5.18 +hardcorenas_c,2763.94,184.272,512,224,5.52 +mobilenetv3_rw,2754.46,184.981,512,224,5.48 +nf_regnet_b0,2740.89,185.595,512,192,8.76 +mobilenetv3_large_100_miil,2733.62,186.4,512,224,5.48 +mobilenetv3_large_100,2732.43,186.472,512,224,5.48 +ese_vovnet19b_slim,2684.58,190.344,512,224,3.17 +spnasnet_100,2610.47,195.171,512,224,4.42 +mobilenetv2_075,2609.91,195.379,512,224,2.64 +semnasnet_075,2603.1,195.762,512,224,2.91 +hardcorenas_d,2566.48,198.271,512,224,7.5 +tf_efficientnetv2_b1,2548.95,199.349,512,192,8.14 +levit_256d,2522.09,201.424,512,224,26.21 +fbnetc_100,2397.58,212.548,512,224,5.57 +tinynet_a,2334.41,218.035,512,192,6.19 +mobilenetv2_100,2313.1,220.563,512,224,3.5 +vit_tiny_patch16_224,2299.56,221.804,512,224,5.72 +mnasnet_a1,2291.94,222.453,512,224,3.89 +deit_tiny_patch16_224,2290.33,222.697,512,224,5.72 +semnasnet_100,2279.15,223.737,512,224,3.89 +edgenext_xx_small,2271.04,224.572,512,256,1.33 +dla46_c,2266.89,225.115,512,224,1.3 +hardcorenas_f,2252.64,226.141,512,224,8.2 +deit_tiny_distilled_patch16_224,2248.67,226.799,512,224,5.91 +hardcorenas_e,2245.94,226.861,512,224,8.07 +xcit_nano_12_p16_224_dist,2177.52,233.052,512,224,3.05 +xcit_nano_12_p16_224,2170.17,234.054,512,224,3.05 +tf_efficientnet_lite0,2134.89,239.057,512,224,4.65 +ghostnet_100,2129.82,239.0,512,224,5.18 +hrnet_w18_small,2121.96,239.906,512,224,13.19 +regnety_004,2085.76,244.311,512,224,4.34 +efficientnet_lite0,2079.28,245.485,512,224,4.65 +cs3darknet_focus_m,2062.98,247.547,512,256,9.3 +pit_ti_distilled_224,2061.94,247.414,512,224,5.1 +mnasnet_140,2060.59,247.645,512,224,7.12 +pit_ti_224,2057.02,247.989,512,224,4.85 +gluon_resnet34_v1b,2039.68,250.446,512,224,21.8 +tv_resnet34,2038.39,250.573,512,224,21.8 +resnet34,2036.51,250.813,512,224,21.8 +ese_vovnet19b_dw,1999.58,255.562,512,224,6.54 +resnet26,1962.0,260.488,512,224,16.0 +tf_efficientnetv2_b2,1951.52,260.748,512,208,10.1 +skresnet18,1943.81,262.753,512,224,11.96 +cs3darknet_m,1940.79,263.122,512,256,9.31 +regnetz_005,1916.17,265.765,512,224,7.12 +resnetblur18,1897.99,269.406,512,224,11.69 +rexnetr_100,1893.12,201.724,384,224,4.88 +nf_resnet26,1869.64,273.344,512,224,16.0 +mobilenetv2_110d,1868.27,204.505,384,224,4.52 +visformer_tiny,1861.63,274.356,512,224,10.32 +mixer_b32_224,1856.75,274.965,512,224,60.29 +seresnet34,1837.21,277.783,512,224,21.96 +fbnetv3_b,1825.5,278.744,512,224,8.6 +mobilevitv2_050,1824.87,279.552,512,256,1.37 +gernet_m,1822.12,280.293,512,224,21.14 +resnet34d,1813.16,281.758,512,224,21.82 +levit_384,1801.0,283.153,512,224,39.13 +legacy_seresnet34,1781.32,286.529,512,224,21.96 +regnetx_004,1780.61,286.47,512,224,5.16 +tf_efficientnet_b0_ns,1779.24,214.77,384,224,5.29 +tf_efficientnet_b0,1779.02,214.765,384,224,5.29 +tf_efficientnet_b0_ap,1777.73,214.898,384,224,5.29 +efficientnet_b0,1751.72,291.183,512,224,5.29 +selecsls42,1718.76,297.231,512,224,30.35 +selecsls42b,1710.18,298.726,512,224,32.46 +vit_base_patch32_224,1708.63,298.818,512,224,88.22 +vit_base_patch32_224_sam,1707.5,298.997,512,224,88.22 +efficientnet_es_pruned,1687.32,302.688,512,224,5.44 +resnetrs50,1686.45,302.42,512,160,35.69 +efficientnet_es,1686.11,302.906,512,224,5.44 +mixer_s16_224,1660.76,307.737,512,224,18.53 +darknet17,1654.01,309.253,512,256,14.3 +mobilenetv2_140,1637.57,233.691,384,224,6.11 +fbnetv3_d,1634.54,233.136,384,224,10.31 +tf_efficientnet_es,1623.9,314.542,512,224,5.44 +resnet26d,1623.31,314.899,512,224,16.01 +mobilevit_xxs,1602.81,238.427,384,256,1.27 +resmlp_12_distilled_224,1577.54,323.769,512,224,15.35 +resmlp_12_224,1577.31,323.803,512,224,15.35 +pit_xs_224,1555.66,328.198,512,224,10.62 +pit_xs_distilled_224,1555.48,328.255,512,224,11.0 +semnasnet_140,1546.19,330.184,512,224,6.11 +ghostnet_130,1542.47,330.535,512,224,7.36 +repvgg_b0,1538.07,331.828,512,224,15.82 +efficientnet_lite1,1530.99,166.26,256,240,5.42 +dla34,1524.02,335.337,512,224,15.74 +edgenext_x_small,1512.48,337.399,512,256,2.34 +darknet21,1486.14,344.159,512,256,20.86 +selecsls60,1482.76,344.397,512,224,30.67 +selecsls60b,1478.62,345.378,512,224,32.77 +nf_seresnet26,1473.71,346.754,512,224,17.4 +vit_small_patch32_384,1455.89,350.818,512,384,22.92 +gmixer_12_224,1448.32,352.721,512,224,12.7 +efficientnet_b1_pruned,1446.82,352.35,512,240,6.33 +tf_efficientnet_lite1,1443.47,176.394,256,240,5.42 +nf_ecaresnet26,1440.41,354.896,512,224,16.0 +xcit_tiny_12_p16_224_dist,1426.36,357.157,512,224,6.72 +xcit_tiny_12_p16_224,1426.18,357.168,512,224,6.72 +sedarknet21,1401.98,364.696,512,256,20.95 +rexnetr_130,1388.84,183.199,256,224,7.61 +dla46x_c,1388.59,367.953,512,224,1.07 +gmlp_ti16_224,1381.11,276.449,384,224,5.87 +mixnet_s,1365.54,373.667,512,224,4.13 +rexnet_100,1364.31,280.319,384,224,4.8 +regnety_006,1361.43,374.963,512,224,6.06 +mobilenetv2_120d,1352.9,188.013,256,224,5.83 +legacy_seresnext26_32x4d,1349.26,378.798,512,224,16.79 +crossvit_tiny_240,1348.01,378.219,512,240,7.01 +vit_tiny_r_s16_p8_384,1345.31,284.562,384,384,6.36 +poolformer_s12,1342.54,380.659,512,224,11.92 +dla60x_c,1341.77,380.621,512,224,1.32 +efficientnet_b1,1325.85,191.544,256,224,7.79 +resnetv2_50,1288.61,396.553,512,224,25.55 +regnetx_006,1286.44,397.176,512,224,6.2 +crossvit_9_240,1258.73,303.637,384,240,8.55 +convnext_nano_ols,1252.33,408.151,512,224,15.6 +convnext_nano,1249.89,408.864,512,224,15.59 +convnext_nano_hnf,1249.05,409.138,512,224,15.59 +resnet26t,1237.34,413.275,512,256,16.01 +tf_mixnet_s,1236.15,412.905,512,224,4.13 +nf_regnet_b2,1229.56,414.759,512,240,14.31 +rexnetr_150,1224.57,207.878,256,224,9.78 +gluon_resnet50_v1b,1219.23,419.12,512,224,25.56 +tv_resnet50,1218.99,419.17,512,224,25.56 +crossvit_9_dagger_240,1218.38,313.701,384,240,8.78 +resnet50,1218.01,419.528,512,224,25.56 +swsl_resnet50,1217.39,419.737,512,224,25.56 +ssl_resnet50,1217.38,419.757,512,224,25.56 +cs3darknet_focus_l,1216.61,314.788,384,256,21.15 +repvgg_a2,1214.87,420.579,512,224,28.21 +cs3darknet_l,1203.14,318.267,384,256,21.16 +gernet_l,1201.09,425.379,512,256,31.08 +efficientnet_lite2,1191.67,213.855,256,260,6.09 +nf_regnet_b1,1181.15,431.966,512,256,10.22 +seresnext26d_32x4d,1178.86,325.051,384,224,16.81 +botnet26t_256,1178.34,325.281,384,256,12.49 +seresnext26tn_32x4d,1177.85,325.355,384,224,16.81 +seresnext26t_32x4d,1176.65,325.669,384,224,16.81 +mobilevitv2_075,1174.29,217.001,256,256,2.87 +ecaresnext50t_32x4d,1159.52,330.605,384,224,15.41 +ecaresnext26t_32x4d,1158.26,330.961,384,224,15.41 +gluon_resnet50_v1c,1147.86,333.697,384,224,25.58 +halonet26t,1136.15,337.402,384,256,12.48 +resnetv2_50d,1134.86,450.316,512,224,25.57 +resnetv2_50t,1132.89,451.133,512,224,25.57 +edgenext_small,1127.71,452.849,512,256,5.59 +tf_efficientnet_lite2,1121.02,227.403,256,260,6.09 +convit_tiny,1118.98,456.53,512,224,5.71 +skresnet34,1113.08,458.799,512,224,22.28 +tf_efficientnet_b1,1099.77,231.299,256,240,7.79 +tf_efficientnet_b1_ap,1099.37,231.402,256,240,7.79 +efficientnetv2_rw_t,1098.86,230.78,256,224,13.65 +tf_efficientnet_b1_ns,1098.29,231.567,256,240,7.79 +ecaresnetlight,1091.16,468.275,512,224,30.16 +gluon_resnet50_v1d,1084.38,353.226,384,224,25.58 +dpn68b,1083.77,353.123,384,224,12.61 +cs3sedarknet_l,1083.42,353.12,384,256,21.91 +resnet50d,1078.0,355.348,384,224,25.58 +resnet50t,1076.81,355.721,384,224,25.57 +resnet32ts,1075.86,237.337,256,256,17.96 +resnet33ts,1061.36,240.599,256,256,19.68 +vit_small_patch16_224,1057.92,362.157,384,224,22.05 +resnetaa50,1057.73,362.204,384,224,25.56 +vit_small_resnet26d_224,1057.57,362.04,384,224,63.61 +deit_small_patch16_224,1050.7,364.638,384,224,22.05 +cspresnet50,1042.19,367.617,384,256,21.62 +tf_efficientnetv2_b3,1041.71,243.94,256,240,14.36 +regnetx_008,1034.73,493.971,512,224,7.26 +ecaresnet26t,1033.34,371.048,384,256,16.01 +deit_small_distilled_patch16_224,1028.8,372.398,384,224,22.44 +vit_relpos_base_patch32_plus_rpn_256,1021.86,499.989,512,256,119.42 +dla60,1020.05,375.488,384,224,22.04 +res2net50_48w_2s,1018.83,376.079,384,224,25.29 +gc_efficientnetv2_rw_t,1014.65,249.524,256,224,13.68 +vit_relpos_small_patch16_rpn_224,1013.69,377.786,384,224,21.97 +edgenext_small_rw,1011.18,505.339,512,256,7.83 +pit_s_224,1010.83,378.943,384,224,23.46 +seresnet33ts,1007.26,253.362,256,256,19.78 +efficientnet_em,1007.19,253.179,256,240,6.9 +vovnet39a,1006.62,507.995,512,224,22.6 +legacy_seresnet50,1003.5,381.52,384,224,28.09 +gluon_resnext50_32x4d,1001.3,382.689,384,224,25.03 +tv_resnext50_32x4d,1001.18,382.711,384,224,25.03 +resnext50_32x4d,1001.03,382.776,384,224,25.03 +ssl_resnext50_32x4d,1000.68,382.908,384,224,25.03 +eca_resnet33ts,999.77,255.368,256,256,19.68 +swsl_resnext50_32x4d,997.37,384.186,384,224,25.03 +regnety_008,993.3,514.408,512,224,6.26 +dpn68,992.27,385.859,384,224,12.61 +deit3_small_patch16_224,987.86,387.777,384,224,22.06 +deit3_small_patch16_224_in21ft1k,987.15,388.058,384,224,22.06 +gcresnet33ts,985.12,258.855,256,256,19.88 +efficientnet_b2a,980.29,259.63,256,256,9.11 +tf_efficientnet_em,980.0,260.253,256,240,6.9 +efficientnet_b2,978.68,260.092,256,256,9.11 +seresnet50,971.79,394.011,384,224,28.09 +gluon_resnet50_v1s,970.71,394.714,384,224,25.68 +vit_srelpos_small_patch16_224,969.18,395.281,384,224,21.97 +vit_relpos_small_patch16_224,965.13,396.742,384,224,21.98 +ecaresnet50d_pruned,964.18,530.07,512,224,19.94 +cspresnet50d,956.82,266.672,256,256,21.64 +vgg11,954.03,536.508,512,224,132.86 +cspresnet50w,952.27,267.927,256,256,28.12 +ese_vovnet39b,951.93,537.173,512,224,24.57 +vit_base_patch32_plus_256,951.5,537.138,512,256,119.48 +resnetaa50d,950.79,403.026,384,224,25.58 +eca_vovnet39b,948.4,539.184,512,224,22.6 +lambda_resnet26rpt_256,942.15,203.17,192,256,10.99 +pit_s_distilled_224,934.29,273.079,256,224,24.04 +mobilevit_xs,924.5,275.792,256,256,2.32 +tv_densenet121,917.93,277.067,256,224,7.98 +densenet121,913.65,278.353,256,224,7.98 +resnetblur50,911.91,420.254,384,224,25.56 +hrnet_w18_small_v2,910.26,559.998,512,224,15.6 +coat_lite_tiny,909.29,421.406,384,224,5.72 +mobilevitv2_100,907.45,281.094,256,256,4.9 +nf_resnet50,900.11,425.722,384,256,25.56 +resnext50d_32x4d,894.57,285.293,256,224,25.05 +nf_seresnet50,892.73,428.967,384,224,28.09 +rexnetr_200,890.57,214.407,192,224,16.52 +efficientnet_cc_b0_4e,890.34,430.073,384,224,13.31 +efficientnet_cc_b0_8e,889.37,430.553,384,224,24.01 +dla60x,886.5,287.775,256,224,17.35 +twins_svt_small,885.48,432.048,384,224,24.06 +seresnet50t,879.71,435.29,384,224,28.1 +mixnet_m,878.04,581.529,512,224,5.01 +nf_ecaresnet50,875.38,437.674,384,224,25.56 +efficientnet_b2_pruned,873.9,291.355,256,260,8.31 +densenet121d,873.44,291.238,256,224,8.0 +cspresnext50,868.23,294.006,256,256,20.57 +rexnet_150,866.26,294.391,256,224,9.73 +ecaresnet50d,862.65,444.205,384,224,25.58 +fbnetv3_g,862.32,220.642,192,240,16.62 +regnetz_b16,862.05,295.457,256,224,9.72 +tf_efficientnet_cc_b0_4e,861.1,444.691,384,224,13.31 +tf_efficientnet_cc_b0_8e,857.16,446.822,384,224,24.01 +gcresnet50t,854.99,447.633,384,256,25.9 +res2net50_26w_4s,851.03,449.921,384,224,25.7 +coat_lite_mini,849.82,450.985,384,224,11.01 +tf_efficientnet_b2_ap,849.52,224.466,192,260,9.11 +tf_efficientnet_b2,848.58,224.736,192,260,9.11 +tf_efficientnet_b2_ns,847.86,224.983,192,260,9.11 +vit_base_resnet26d_224,844.62,453.315,384,224,101.4 +vgg11_bn,832.74,460.889,384,224,132.87 +vovnet57a,832.06,614.449,512,224,36.64 +selecsls84,830.17,615.492,512,224,50.95 +resnetblur50d,826.31,308.964,256,224,25.58 +convnext_tiny_hnfd,820.9,310.941,256,224,28.59 +convnext_tiny_hnf,819.46,311.471,256,224,28.59 +convnext_tiny,819.24,311.536,256,224,28.59 +convnext_tiny_in22ft1k,818.81,311.724,256,224,28.59 +rexnet_130,816.78,312.226,256,224,7.56 +seresnext50_32x4d,814.69,313.102,256,224,27.56 +legacy_seresnext50_32x4d,813.61,313.477,256,224,27.56 +gluon_seresnext50_32x4d,813.13,313.678,256,224,27.56 +skresnet50,808.8,473.357,384,224,25.8 +visformer_small,806.27,475.588,384,224,40.22 +res2net50_14w_8s,794.56,319.93,256,224,25.06 +densenetblur121d,789.33,322.521,256,224,8.0 +seresnetaa50d,785.32,324.779,256,224,28.11 +gluon_inception_v3,782.59,489.263,384,299,23.83 +inception_v3,782.35,489.427,384,299,23.83 +adv_inception_v3,778.18,491.976,384,299,23.83 +resmlp_24_distilled_224,777.24,327.895,256,224,30.02 +resmlp_24_224,776.95,327.972,256,224,30.02 +tf_inception_v3,775.41,493.776,384,299,23.83 +ese_vovnet57b,774.18,495.058,384,224,38.61 +tf_mixnet_m,773.08,495.127,384,224,5.01 +resnetv2_101,772.45,329.834,256,224,44.54 +dla60_res2net,767.35,332.099,256,224,20.85 +nf_regnet_b3,766.23,499.321,384,288,18.59 +sehalonet33ts,763.66,334.4,256,256,13.69 +ecaresnet101d_pruned,754.9,676.449,512,224,24.88 +darknet53,753.16,339.081,256,256,41.61 +densenet169,752.52,337.551,256,224,14.15 +resnet101,747.89,340.74,256,224,44.55 +gluon_resnet101_v1b,747.04,341.055,256,224,44.55 +tv_resnet101,746.84,341.219,256,224,44.55 +skresnet50d,739.17,344.891,256,224,25.82 +twins_pcpvt_small,738.11,345.194,256,224,24.11 +vit_small_r26_s32_224,733.9,347.477,256,224,36.43 +mobilevit_s,733.0,260.821,192,256,5.58 +darknetaa53,732.7,348.577,256,256,36.02 +xcit_tiny_24_p16_224_dist,727.98,348.335,256,224,12.12 +xcit_tiny_24_p16_224,727.1,348.63,256,224,12.12 +efficientnet_b0_gn,724.56,352.174,256,224,5.29 +efficientnet_b3_pruned,722.23,352.701,256,300,9.86 +gluon_resnet101_v1c,717.66,355.143,256,224,44.57 +resnext26ts,717.15,534.946,384,256,10.3 +resnetv2_101d,715.45,356.238,256,224,44.56 +gmixer_24_224,714.67,356.582,256,224,24.72 +resnetrs101,714.37,356.071,256,192,63.62 +nf_resnet101,712.1,537.603,384,224,44.55 +efficientnet_lite3,702.44,181.104,128,300,8.2 +mixnet_l,702.18,545.327,384,224,7.33 +eca_resnext26ts,694.05,368.289,256,256,10.3 +semobilevit_s,692.92,368.16,256,256,5.74 +seresnext26ts,691.18,369.699,256,256,10.39 +poolformer_s24,689.84,369.792,256,224,21.39 +gluon_resnet101_v1d,688.26,370.323,256,224,44.57 +dla102,688.03,370.524,256,224,33.27 +vit_relpos_medium_patch16_rpn_224,687.13,371.514,256,224,38.73 +sebotnet33ts_256,686.07,279.058,192,256,13.7 +gcresnext26ts,683.09,373.929,256,256,10.48 +regnetx_016,682.73,749.012,512,224,9.19 +haloregnetz_b,680.78,374.495,256,224,11.68 +cspdarknet53,679.01,375.961,256,256,27.64 +vgg13,677.45,566.653,384,224,133.05 +xcit_nano_12_p16_384_dist,671.72,379.231,256,384,3.05 +wide_resnet50_2,668.78,573.358,384,224,68.88 +tf_efficientnet_lite3,665.78,191.165,128,300,8.2 +vit_relpos_medium_patch16_cls_224,661.77,385.665,256,224,38.76 +vit_srelpos_medium_patch16_224,659.88,386.996,256,224,38.74 +rexnet_200,659.06,290.146,192,224,16.37 +vit_base_resnet50d_224,658.84,386.945,256,224,110.97 +ecaresnet50t,657.78,388.237,256,256,25.57 +gmlp_s16_224,657.63,290.408,192,224,19.42 +vit_relpos_medium_patch16_224,657.05,388.484,256,224,38.75 +tf_efficientnet_cc_b1_8e,654.82,389.25,256,240,39.72 +regnety_016,650.07,785.757,512,224,11.2 +swin_tiny_patch4_window7_224,648.69,393.641,256,224,28.29 +xcit_small_12_p16_224,640.82,397.688,256,224,26.25 +gluon_resnet101_v1s,640.79,397.908,256,224,44.67 +xcit_small_12_p16_224_dist,639.99,398.193,256,224,26.25 +crossvit_small_240,638.8,399.076,256,240,26.86 +efficientnet_cc_b1_8e,637.42,399.94,256,240,39.72 +resnetaa101d,634.86,401.619,256,224,44.57 +cs3sedarknet_xdw,630.82,302.41,192,256,21.6 +repvgg_b1,623.55,820.034,512,224,57.42 +mobilevitv2_125,620.51,308.406,192,256,7.48 +bat_resnext26ts,613.61,415.954,256,256,10.73 +gluon_resnext101_32x4d,609.67,418.333,256,224,44.18 +swsl_resnext101_32x4d,609.02,418.731,256,224,44.18 +resnext101_32x4d,609.01,418.74,256,224,44.18 +tf_mixnet_l,606.88,420.297,256,224,7.33 +ssl_resnext101_32x4d,606.28,420.718,256,224,44.18 +legacy_seresnet101,601.55,423.316,256,224,49.33 +cs3darknet_focus_x,600.02,425.715,256,256,35.02 +dla102x,598.42,319.231,192,224,26.31 +halonet50ts,597.8,320.205,192,256,22.73 +xcit_nano_12_p8_224,595.07,428.358,256,224,3.05 +xcit_nano_12_p8_224_dist,593.27,429.695,256,224,3.05 +cait_xxs24_224,593.22,428.92,256,224,11.96 +seresnet101,590.42,431.41,256,224,49.33 +swin_s3_tiny_224,588.57,433.98,256,224,28.33 +resnetv2_50x1_bit_distilled,585.83,326.889,192,224,25.55 +efficientnet_b0_g8_gn,582.67,438.264,256,224,6.56 +crossvit_15_240,580.46,328.975,192,240,27.53 +resnetblur101d,576.87,442.155,256,224,44.57 +res2net50_26w_6s,573.8,444.339,256,224,37.05 +vgg13_bn,573.47,446.125,256,224,133.05 +efficientnet_b3a,572.29,221.925,128,288,12.23 +efficientnet_b3,572.18,221.941,128,288,12.23 +cs3darknet_x,571.12,447.259,256,256,35.05 +densenet201,562.52,338.221,192,224,20.01 +crossvit_15_dagger_240,562.49,339.489,192,240,28.21 +efficientnetv2_s,559.15,226.702,128,288,21.46 +eca_botnext26ts_256,558.6,457.666,256,256,10.59 +mixer_b16_224,556.6,459.152,256,224,59.88 +mixer_b16_224_miil,556.5,459.202,256,224,59.88 +eca_halonext26ts,547.96,466.574,256,256,10.76 +ecaresnet101d,546.58,466.555,256,224,44.57 +vgg16,546.06,702.994,384,224,138.36 +mixer_l32_224,543.38,351.819,192,224,206.94 +vit_base_patch32_384,543.37,470.294,256,384,88.3 +nf_seresnet101,540.53,471.014,256,224,49.33 +resnetv2_152,536.63,474.697,256,224,60.19 +botnet50ts_256,534.71,238.412,128,256,22.74 +mobilevitv2_150,533.38,238.97,128,256,10.59 +vit_base_r26_s32_224,533.28,358.697,192,224,101.38 +mobilevitv2_150_in22ft1k,532.99,239.183,128,256,10.59 +cs3sedarknet_x,531.85,479.872,256,256,35.4 +nf_ecaresnet101,531.3,479.947,256,224,44.55 +cs3edgenet_x,529.37,482.632,256,256,47.82 +res2next50,528.59,483.023,256,224,24.67 +res2net101_26w_4s,527.01,483.179,256,224,45.21 +vit_large_patch32_224,524.74,486.172,256,224,306.54 +resnet101d,523.85,364.964,192,256,44.57 +efficientnetv2_rw_s,520.77,243.564,128,288,23.94 +halo2botnet50ts_256,517.51,369.975,192,256,22.64 +resmlp_36_distilled_224,513.23,371.84,192,224,44.69 +vit_tiny_patch16_384,510.99,249.657,128,384,5.79 +resmlp_36_224,509.53,374.55,192,224,44.69 +swinv2_cr_tiny_224,506.82,503.861,256,224,28.33 +mixnet_xl,505.67,504.387,256,224,11.9 +resnetv2_50d_gn,505.25,379.149,192,224,25.57 +swinv2_cr_tiny_ns_224,504.1,506.527,256,224,28.33 +gluon_resnet152_v1b,502.02,380.204,192,224,60.19 +regnetz_d8,501.8,253.463,128,256,23.37 +resnet152,501.44,380.547,192,224,60.19 +tv_resnet152,501.12,380.811,192,224,60.19 +xception,497.64,256.367,128,299,22.86 +regnety_032,496.85,771.405,384,224,19.44 +tf_efficientnet_b3_ap,496.0,256.348,128,300,12.23 +tf_efficientnet_b3,494.58,257.101,128,300,12.23 +tf_efficientnet_b3_ns,492.45,258.213,128,300,12.23 +convnext_small_in22ft1k,490.79,389.411,192,224,50.22 +res2net50_26w_8s,489.22,520.921,256,224,48.4 +tf_efficientnetv2_s_in21ft1k,488.77,259.622,128,300,21.46 +tf_efficientnetv2_s,488.25,259.918,128,300,21.46 +gluon_resnet152_v1c,488.2,390.894,192,224,60.21 +convnext_small,487.15,392.394,192,224,50.22 +twins_pcpvt_base,487.13,391.314,192,224,43.83 +resnetv2_152d,486.82,392.059,192,224,60.2 +legacy_seresnext101_32x4d,484.7,393.829,192,224,48.96 +resnet50_gn,482.45,397.141,192,224,25.56 +gluon_seresnext101_32x4d,480.63,397.197,192,224,48.96 +hrnet_w32,480.24,528.215,256,224,41.23 +sequencer2d_s,480.16,264.213,128,224,27.65 +seresnext101_32x4d,479.03,398.526,192,224,48.96 +nest_tiny,477.97,266.889,128,224,17.06 +dla60_res2next,477.74,534.408,256,224,17.03 +gluon_resnet152_v1d,476.32,400.788,192,224,60.21 +regnetz_c16,475.79,402.061,192,256,13.46 +hrnet_w18,473.42,535.867,256,224,21.3 +jx_nest_tiny,472.84,269.807,128,224,17.06 +regnetz_d32,471.85,269.596,128,256,27.58 +regnetz_040,471.81,269.412,128,256,27.12 +xception41p,471.79,270.424,128,299,26.91 +vgg16_bn,470.3,543.999,256,224,138.37 +regnetz_040h,469.27,270.846,128,256,28.94 +poolformer_s36,467.39,408.832,192,224,30.86 +resnet51q,463.81,551.102,256,256,35.7 +efficientnet_el_pruned,461.98,275.957,128,300,10.59 +efficientnet_el,461.97,275.94,128,300,10.59 +coat_lite_small,461.36,414.606,192,224,19.84 +nf_regnet_b4,457.97,417.049,192,320,30.21 +vgg19,457.37,839.347,384,224,143.67 +cs3se_edgenet_x,457.05,418.615,192,256,50.72 +dla169,455.51,419.044,192,224,53.39 +convit_small,454.72,421.197,192,224,27.78 +gluon_resnet152_v1s,452.53,421.917,192,224,60.32 +tf_efficientnet_el,449.8,283.446,128,300,10.59 +gcresnext50ts,445.12,429.834,192,256,15.67 +regnetx_040,442.35,866.937,384,224,22.12 +vit_small_resnet50d_s16_224,437.26,437.826,192,224,57.53 +volo_d1_224,437.04,437.842,192,224,26.63 +mobilevitv2_175_in22ft1k,434.9,293.339,128,256,14.25 +mobilevitv2_175,434.88,293.341,128,256,14.25 +resnet61q,433.95,441.405,192,256,36.85 +ese_vovnet99b,433.24,589.371,256,224,63.2 +ese_vovnet39b_evos,430.54,296.328,128,224,24.58 +twins_svt_base,425.02,449.64,192,224,56.07 +resnest14d,411.87,1242.634,512,224,10.61 +dla102x2,405.87,313.766,128,224,41.28 +mobilevitv2_200_in22ft1k,405.83,314.414,128,256,18.45 +mobilevitv2_200,405.76,314.447,128,256,18.45 +inception_v4,405.43,471.399,192,299,42.68 +crossvit_18_240,404.58,314.332,128,240,43.27 +swin_small_patch4_window7_224,400.37,477.632,192,224,49.61 +densenet161,399.17,318.189,128,224,28.68 +vgg19_bn,398.5,642.012,256,224,143.68 +legacy_seresnet152,398.4,478.588,192,224,66.82 +vit_base_patch16_224_miil,397.86,481.79,192,224,86.54 +sequencer2d_m,396.83,480.626,192,224,38.31 +crossvit_18_dagger_240,396.31,320.926,128,240,44.27 +resnetv2_50d_frn,394.18,323.553,128,224,25.59 +vit_base_patch16_224,392.99,487.729,192,224,86.57 +vit_base_patch16_224_sam,392.92,487.774,192,224,86.57 +vit_base_patch16_rpn_224,391.32,489.846,192,224,86.54 +xception41,391.05,326.045,128,299,26.97 +deit_base_patch16_224,390.04,491.437,192,224,86.57 +cait_xxs36_224,387.24,492.066,192,224,17.3 +efficientnet_b0_g16_evos,386.23,993.13,384,224,8.11 +deit_base_distilled_patch16_224,384.06,499.086,192,224,87.34 +xcit_tiny_12_p16_384_dist,383.09,499.371,192,384,6.72 +vit_relpos_base_patch16_rpn_224,382.95,500.328,192,224,86.41 +seresnet152,379.38,334.127,128,224,66.82 +resnetv2_50d_evos,374.27,340.812,128,224,25.59 +deit3_base_patch16_224,374.05,512.341,192,224,86.59 +deit3_base_patch16_224_in21ft1k,373.84,512.639,192,224,86.59 +vit_relpos_base_patch16_clsgap_224,370.76,516.704,192,224,86.43 +vit_relpos_base_patch16_cls_224,370.22,517.437,192,224,86.43 +hrnet_w30,369.35,688.202,256,224,37.71 +vit_relpos_base_patch16_224,368.93,519.279,192,224,86.43 +gluon_resnext101_64x4d,363.93,350.084,128,224,83.46 +resnext101_64x4d,363.79,350.21,128,224,83.46 +beit_base_patch16_224,358.77,534.02,192,224,86.53 +ens_adv_inception_resnet_v2,358.6,532.08,192,299,55.84 +wide_resnet101_2,358.56,533.868,192,224,126.89 +inception_resnet_v2,358.54,532.143,192,299,55.84 +resnet200,357.55,355.04,128,224,64.67 +resnet152d,357.54,355.729,128,256,60.21 +swinv2_tiny_window8_256,357.0,536.56,192,256,28.35 +efficientnet_b4,354.99,268.381,96,320,19.34 +dpn92,353.0,723.721,256,224,37.67 +repvgg_b2,352.05,1453.222,512,224,89.02 +resnest50d_1s4x24d,349.97,730.142,256,224,25.68 +regnetz_b16_evos,347.19,366.83,128,224,9.74 +tnt_s_patch16_224,342.71,558.25,192,224,23.76 +xception65p,341.43,373.588,128,299,39.82 +convnext_base_in22ft1k,339.67,374.996,128,224,88.59 +convnext_base,338.68,376.119,128,224,88.59 +efficientnet_lite4,338.39,187.783,64,380,13.01 +twins_pcpvt_large,333.52,379.633,128,224,60.99 +pit_b_224,331.08,385.636,128,224,73.76 +pit_b_distilled_224,328.87,388.208,128,224,74.79 +xcit_small_24_p16_224_dist,326.41,388.817,128,224,47.67 +xcit_small_24_p16_224,326.38,388.806,128,224,47.67 +tf_efficientnet_lite4,324.6,195.748,64,380,13.01 +eca_nfnet_l0,319.84,1599.745,512,224,24.14 +nfnet_l0,319.69,1600.317,512,224,35.07 +gluon_seresnext101_64x4d,319.51,398.398,128,224,88.23 +repvgg_b3,316.57,1211.922,384,224,123.09 +skresnext50_32x4d,315.84,809.121,256,224,27.48 +poolformer_m36,315.69,403.496,128,224,56.17 +ssl_resnext101_32x8d,313.35,406.924,128,224,88.79 +resnext101_32x8d,312.8,407.622,128,224,88.79 +swsl_resnext101_32x8d,312.76,407.724,128,224,88.79 +ig_resnext101_32x8d,311.13,409.865,128,224,88.79 +vit_small_patch16_36x1_224,309.04,411.365,128,224,64.67 +regnetx_032,308.88,1241.936,384,224,15.3 +vit_small_patch16_18x2_224,306.57,414.654,128,224,64.67 +xcit_tiny_12_p8_224,306.37,415.93,128,224,6.71 +cait_s24_224,305.74,415.965,128,224,46.92 +xcit_tiny_12_p8_224_dist,304.23,418.886,128,224,6.71 +swinv2_cr_small_ns_224,300.99,422.86,128,224,49.7 +twins_svt_large,300.69,423.548,128,224,99.27 +swinv2_cr_small_224,299.81,424.482,128,224,49.7 +coat_tiny,298.83,426.275,128,224,5.5 +resnest26d,298.23,1286.829,384,224,17.07 +nest_small,296.79,321.765,96,224,38.35 +jx_nest_small,293.75,325.094,96,224,38.35 +swin_s3_small_224,290.56,438.612,128,224,49.74 +dpn98,290.11,439.591,128,224,61.57 +resnetv2_50d_evob,289.65,330.197,96,224,25.59 +seresnet152d,283.9,447.414,128,256,66.84 +gluon_xception65,283.18,337.068,96,299,39.92 +convnext_tiny_384_in22ft1k,282.39,338.982,96,384,28.59 +resnetrs152,282.26,450.046,128,256,86.62 +xception65,281.11,339.548,96,299,39.92 +swin_base_patch4_window7_224,281.0,453.662,128,224,87.77 +hrnet_w48,279.44,682.135,192,224,77.47 +mixnet_xxl,278.4,457.833,128,224,23.96 +seresnext101_32x8d,278.13,458.033,128,224,93.57 +gmlp_b16_224,275.97,346.253,96,224,73.08 +seresnext101d_32x8d,270.35,471.144,128,224,93.59 +resnet200d,267.1,476.272,128,256,64.69 +nfnet_f0,265.61,1926.394,512,192,71.49 +regnetz_e8,256.51,247.489,64,256,57.7 +xcit_tiny_24_p16_384_dist,255.73,371.975,96,384,12.12 +crossvit_base_240,254.6,375.374,96,240,105.03 +dm_nfnet_f0,251.38,1526.301,384,192,71.49 +hrnet_w40,249.23,765.525,192,224,57.56 +vit_base_patch16_plus_240,246.96,517.368,128,240,117.56 +efficientnetv2_m,246.55,256.379,64,320,54.14 +vit_relpos_base_patch16_plus_240,244.88,521.493,128,240,117.38 +seresnextaa101d_32x8d,243.89,522.629,128,224,93.59 +tf_efficientnet_b4_ap,242.14,262.218,64,380,19.34 +tf_efficientnet_b4,241.83,262.52,64,380,19.34 +tf_efficientnet_b4_ns,241.46,263.01,64,380,19.34 +xcit_medium_24_p16_224,241.39,526.926,128,224,84.4 +xcit_medium_24_p16_224_dist,241.08,527.466,128,224,84.4 +xcit_small_12_p16_384_dist,240.61,397.192,96,384,26.25 +vit_small_patch16_384,239.06,266.856,64,384,22.2 +volo_d2_224,238.89,400.019,96,224,58.68 +swinv2_tiny_window16_256,238.79,400.76,96,256,28.35 +mobilevitv2_150_384_in22ft1k,238.1,267.77,64,384,10.59 +vit_large_r50_s32_224,236.27,403.797,96,224,328.99 +tresnet_m,233.24,2192.365,512,224,31.39 +hrnet_w44,232.48,820.975,192,224,67.06 +poolformer_m48,232.43,410.471,96,224,73.47 +densenet264,231.27,411.12,96,224,72.69 +convit_base,231.06,552.947,128,224,86.54 +nf_regnet_b5,228.54,417.354,96,384,49.74 +deit3_small_patch16_384,226.74,281.318,64,384,22.21 +deit3_small_patch16_384_in21ft1k,226.44,281.652,64,384,22.21 +vit_small_r26_s32_384,226.15,281.726,64,384,36.47 +coat_mini,225.14,566.497,128,224,10.34 +efficientnetv2_rw_m,224.46,281.565,64,320,53.24 +swin_s3_base_224,224.0,425.728,96,224,71.13 +tnt_b_patch16_224,223.52,570.669,128,224,65.41 +hrnet_w64,223.29,568.417,128,224,128.06 +sequencer2d_l,220.03,286.022,64,224,54.3 +dpn131,216.53,588.962,128,224,79.25 +vit_base_r50_s16_224,215.49,443.851,96,224,98.66 +swinv2_cr_base_ns_224,214.73,444.647,96,224,87.88 +xception71,214.09,296.77,64,299,42.34 +swinv2_cr_base_224,213.21,447.81,96,224,87.88 +swinv2_small_window8_256,213.06,448.048,96,256,49.73 +nest_base,210.25,302.717,64,224,67.72 +jx_nest_base,209.06,304.441,64,224,67.72 +seresnet200d,203.53,467.209,96,256,71.86 +resnetrs200,201.84,471.293,96,256,93.21 +resnest50d,201.6,1268.493,256,224,27.48 +ecaresnet200d,201.55,472.938,96,256,64.69 +xcit_nano_12_p8_384_dist,201.45,315.854,64,384,3.05 +efficientnet_b3_gn,197.65,322.123,64,288,11.73 +xcit_tiny_24_p8_224_dist,195.37,488.075,96,224,12.11 +xcit_tiny_24_p8_224,195.11,488.622,96,224,12.11 +dpn107,194.08,492.913,96,224,86.92 +regnetz_c16_evos,193.89,328.188,64,256,13.49 +regnety_040,190.14,2017.916,384,224,20.65 +mobilevitv2_175_384_in22ft1k,189.6,336.534,64,384,14.25 +regnetv_040,188.29,1358.084,256,224,20.64 +convnext_large,187.93,509.087,96,224,197.77 +convnext_large_in22ft1k,187.83,509.365,96,224,197.77 +convmixer_768_32,187.17,511.603,96,224,21.11 +regnetx_080,181.41,1409.979,256,224,39.57 +resnest50d_4s2x40d,180.44,1417.38,256,224,30.42 +xcit_small_12_p8_224,179.5,354.768,64,224,26.21 +xcit_small_12_p8_224_dist,179.34,355.047,64,224,26.21 +halonet_h1,176.7,360.706,64,256,8.1 +tf_efficientnetv2_m_in21ft1k,175.14,270.794,48,384,54.14 +mobilevitv2_200_384_in22ft1k,175.13,273.08,48,384,18.45 +tf_efficientnetv2_m,173.37,273.617,48,384,54.14 +mixer_l16_224,171.41,558.471,96,224,208.2 +efficientnet_b3_g8_gn,168.79,377.376,64,288,14.25 +repvgg_b1g4,167.59,3053.943,512,224,39.97 +vit_large_patch32_384,167.04,573.058,96,384,306.63 +convnext_small_384_in22ft1k,165.65,384.557,64,384,50.22 +volo_d3_224,162.19,392.021,64,224,86.33 +regnetz_d8_evos,155.31,307.002,48,256,23.46 +swin_large_patch4_window7_224,153.79,414.289,64,224,196.53 +swinv2_base_window8_256,151.21,420.663,64,256,87.92 +convmixer_1024_20_ks9_p14,149.3,1713.726,256,224,24.38 +resnetv2_50x1_bitm,147.75,215.764,32,448,25.55 +seresnet269d,145.59,433.61,64,256,113.67 +resnetrs270,144.14,437.83,64,256,129.86 +swinv2_small_window16_256,143.52,443.487,64,256,49.73 +regnety_040s_gn,142.58,896.132,128,224,20.65 +repvgg_b2g4,133.72,3827.892,512,224,61.76 +eca_nfnet_l1,133.59,1435.413,192,256,41.41 +xcit_large_24_p16_224,132.6,479.222,64,224,189.1 +swinv2_cr_tiny_384,131.94,483.86,64,384,28.33 +xcit_large_24_p16_224_dist,131.66,482.65,64,224,189.1 +xcit_tiny_12_p8_384_dist,131.64,362.75,48,384,6.71 +regnetx_064,129.82,1970.916,256,224,26.21 +swinv2_cr_large_224,124.15,513.018,64,224,196.68 +xcit_small_24_p16_384_dist,120.64,394.328,48,384,47.67 +regnety_064,119.44,2141.523,256,224,30.58 +regnety_080,117.88,2170.37,256,224,39.18 +crossvit_15_dagger_408,117.86,269.618,32,408,28.5 +vit_large_patch16_224,117.2,544.512,64,224,304.33 +regnetv_064,117.03,1638.944,192,224,30.58 +ese_vovnet99b_iabn,117.02,3278.167,384,224,63.2 +convnext_xlarge_in22ft1k,116.37,548.167,64,224,350.2 +vit_base_patch16_18x2_224,116.0,548.972,64,224,256.73 +convnext_base_384_in22ft1k,115.58,413.454,48,384,88.59 +efficientnet_b5,113.63,279.129,32,456,30.39 +deit3_large_patch16_224_in21ft1k,112.51,567.041,64,224,304.37 +deit3_large_patch16_224,112.48,567.139,64,224,304.37 +tf_efficientnet_b5,111.42,284.665,32,456,30.39 +tf_efficientnet_b5_ap,111.14,285.451,32,456,30.39 +tf_efficientnet_b5_ns,111.14,285.33,32,456,30.39 +legacy_senet154,110.98,861.567,96,224,115.09 +senet154,110.82,862.828,96,224,115.09 +gluon_senet154,110.77,863.12,96,224,115.09 +beit_large_patch16_224,109.02,584.818,64,224,304.43 +repvgg_b3g4,108.77,3529.239,384,224,83.83 +regnetx_160,107.6,1783.261,192,224,54.28 +nfnet_f1,107.01,1791.907,192,224,132.63 +volo_d1_384,105.69,301.347,32,384,26.78 +swinv2_base_window16_256,103.88,459.56,48,256,87.92 +swinv2_base_window12to16_192to256_22kft1k,103.79,460.002,48,256,87.92 +tresnet_l,102.82,4975.916,512,224,55.99 +dm_nfnet_f1,101.59,1257.525,128,224,132.63 +volo_d4_224,101.08,472.359,48,224,192.96 +cait_xxs24_384,99.39,480.268,48,384,12.03 +ecaresnet269d,99.06,479.988,48,320,102.09 +efficientnetv2_l,98.76,319.521,32,384,118.52 +tf_efficientnetv2_l_in21ft1k,98.35,320.759,32,384,118.52 +tf_efficientnetv2_l,97.56,323.47,32,384,118.52 +deit_base_patch16_384,97.3,328.042,32,384,86.86 +vit_base_patch16_384,97.1,328.712,32,384,86.86 +resnest101e,96.09,1329.413,128,256,48.28 +deit_base_distilled_patch16_384,94.63,337.315,32,384,87.63 +regnetx_120,94.03,2721.558,256,224,46.11 +deit3_base_patch16_384,93.5,341.294,32,384,86.88 +deit3_base_patch16_384_in21ft1k,93.49,341.309,32,384,86.88 +xcit_small_24_p8_224_dist,92.61,514.968,48,224,47.63 +xcit_small_24_p8_224,92.51,515.466,48,224,47.63 +regnety_120,92.07,2083.952,192,224,51.82 +tresnet_xl,91.15,4209.119,384,224,78.44 +crossvit_18_dagger_408,89.17,356.787,32,408,44.61 +resnetv2_152x2_bit_teacher,89.16,356.538,32,224,236.34 +vit_large_patch14_224,85.06,562.673,48,224,304.2 +resnetv2_101x1_bitm,84.72,187.286,16,448,44.54 +resnetrs350,84.14,372.211,32,288,163.96 +beit_base_patch16_384,83.87,380.424,32,384,86.74 +regnety_160,83.24,2305.144,192,224,83.59 +pnasnet5large,83.16,380.801,32,331,86.06 +xcit_medium_24_p16_384_dist,82.74,383.266,32,384,84.4 +vit_large_r50_s32_384,77.34,411.186,32,384,329.09 +nasnetalarge,77.32,408.633,32,331,88.75 +swinv2_cr_small_384,76.42,416.277,32,384,49.7 +swin_base_patch4_window12_384,74.73,426.327,32,384,87.9 +resmlp_big_24_distilled_224,70.88,449.95,32,224,129.14 +resmlp_big_24_224_in22ft1k,70.88,449.933,32,224,129.14 +resmlp_big_24_224,70.41,452.99,32,224,129.14 +regnety_320,66.33,1928.357,128,224,145.05 +xcit_tiny_24_p8_384_dist,66.29,479.361,32,384,12.11 +cait_xs24_384,66.24,480.525,32,384,26.67 +ig_resnext101_32x16d,65.9,1455.165,96,224,194.03 +ssl_resnext101_32x16d,65.74,1458.688,96,224,194.03 +swsl_resnext101_32x16d,65.74,1458.738,96,224,194.03 +volo_d5_224,64.41,493.535,32,224,295.46 +cait_xxs36_384,64.34,493.602,32,384,17.37 +efficientnet_b6,64.08,246.77,16,528,43.04 +xcit_medium_24_p8_224,63.96,496.86,32,224,84.32 +xcit_medium_24_p8_224_dist,63.93,497.194,32,224,84.32 +convnext_large_384_in22ft1k,63.85,499.388,32,384,197.77 +vit_base_patch8_224,63.45,377.425,24,224,86.58 +tf_efficientnet_b6_ns,63.1,250.577,16,528,43.04 +tf_efficientnet_b6,62.84,251.669,16,528,43.04 +tf_efficientnet_b6_ap,62.76,252.073,16,528,43.04 +efficientnetv2_xl,62.18,251.438,16,384,208.12 +tf_efficientnetv2_xl_in21ft1k,62.14,251.721,16,384,208.12 +xcit_small_12_p8_384_dist,61.84,386.224,24,384,26.21 +vit_base_r50_s16_384,61.01,391.67,24,384,98.95 +vit_base_resnet50_384,60.98,391.903,24,384,98.95 +swinv2_large_window12to16_192to256_22kft1k,60.98,391.098,24,256,196.74 +eca_nfnet_l2,58.72,1632.112,96,320,56.72 +volo_d2_384,58.5,271.766,16,384,58.87 +resnetrs420,56.49,415.629,24,320,191.89 +swinv2_cr_base_384,55.08,433.269,24,384,87.88 +nfnet_f2,54.73,1750.573,96,256,193.78 +tresnet_m_448,53.52,3584.333,192,448,31.39 +dm_nfnet_f2,51.26,1245.084,64,256,193.78 +cait_s24_384,50.14,476.064,24,384,47.06 +swinv2_cr_huge_224,49.63,481.092,24,224,657.83 +regnetx_320,48.06,2662.024,128,224,107.81 +xcit_large_24_p16_384_dist,48.02,496.416,24,384,189.1 +swin_large_patch4_window12_384,41.75,381.31,16,384,196.74 +convnext_xlarge_384_in22ft1k,40.45,591.485,24,384,350.2 +deit3_huge_patch14_224_in21ft1k,38.41,414.036,16,224,632.13 +deit3_huge_patch14_224,38.4,414.103,16,224,632.13 +efficientnet_b7,37.97,207.232,8,600,66.35 +tf_efficientnet_b7_ap,37.27,210.986,8,600,66.35 +tf_efficientnet_b7_ns,37.25,211.249,8,600,66.35 +tf_efficientnet_b7,37.22,211.329,8,600,66.35 +eca_nfnet_l3,35.61,1344.526,48,352,72.04 +xcit_large_24_p8_224_dist,35.32,449.68,16,224,188.93 +xcit_large_24_p8_224,35.06,452.952,16,224,188.93 +resnetv2_50x3_bitm,34.68,460.605,16,448,217.32 +swinv2_cr_large_384,32.56,488.949,16,384,196.68 +cait_s36_384,32.3,491.641,16,384,68.37 +densenet264d_iabn,32.11,3982.48,128,224,72.74 +resnetv2_152x2_bit_teacher_384,31.17,382.508,12,384,236.34 +xcit_small_24_p8_384_dist,31.12,510.761,16,384,47.63 +resnest200e,30.3,1579.149,48,320,70.2 +vit_large_patch16_384,29.14,410.147,12,384,304.72 +deit3_large_patch16_384,28.26,422.768,12,384,304.76 +deit3_large_patch16_384_in21ft1k,28.25,422.94,12,384,304.76 +swinv2_base_window12to24_192to384_22kft1k,28.19,423.281,12,384,87.92 +nfnet_f3,26.1,1834.868,48,320,254.92 +beit_large_patch16_384,25.3,472.219,12,384,305.0 +tresnet_l_448,25.28,5060.321,128,448,55.99 +volo_d3_448,24.7,321.403,8,448,86.63 +dm_nfnet_f3,24.56,1297.967,32,320,254.92 +tresnet_xl_448,23.27,4122.323,96,448,78.44 +efficientnet_b8,22.93,257.589,6,672,87.41 +tf_efficientnet_b8,22.71,260.18,6,672,87.41 +tf_efficientnet_b8_ap,22.69,260.555,6,672,87.41 +resnetv2_152x2_bitm,22.58,351.774,8,448,236.34 +vit_giant_patch14_224,22.32,355.766,8,224,1012.61 +ig_resnext101_32x32d,21.03,1519.993,32,224,468.53 +xcit_medium_24_p8_384_dist,21.03,376.997,8,384,84.32 +convmixer_1536_20,20.83,2303.059,48,224,51.63 +resnetv2_101x3_bitm,18.05,441.706,8,448,387.93 +volo_d4_448,17.57,338.789,6,448,193.41 +swinv2_large_window12to24_192to384_22kft1k,16.62,358.548,6,384,196.74 +resnest269e,16.0,1493.085,24,416,110.93 +nfnet_f4,14.17,1687.74,24,384,316.07 +swinv2_cr_huge_384,13.13,454.627,6,384,657.94 +dm_nfnet_f4,12.96,1229.019,16,384,316.07 +xcit_large_24_p8_384_dist,12.19,488.758,6,384,188.93 +cait_m36_384,11.91,500.148,6,384,271.22 +volo_d5_448,11.43,346.654,4,448,295.91 +ig_resnext101_32x48d,11.2,1427.437,16,224,828.41 +tf_efficientnet_l2_ns_475,10.96,267.912,3,475,480.31 +dm_nfnet_f5,9.76,1222.345,12,416,377.21 +beit_large_patch16_512,9.42,422.548,4,512,305.67 +volo_d5_512,8.0,371.847,3,512,296.09 +nfnet_f5,8.0,1992.337,16,416,377.21 +dm_nfnet_f6,7.45,1065.231,8,448,438.36 +nfnet_f6,5.82,2052.248,12,448,438.36 +nfnet_f7,5.73,1387.07,8,480,499.5 +resnetv2_152x4_bitm,4.89,406.668,2,480,936.53 +cait_m48_448,4.76,414.936,2,448,356.46 +efficientnet_l2,3.95,247.515,1,800,480.31 +tf_efficientnet_l2_ns,3.93,248.975,1,800,480.31 diff --git a/pytorch-image-models/results/generate_csv_results.py b/pytorch-image-models/results/generate_csv_results.py new file mode 100644 index 0000000000000000000000000000000000000000..1a532819017d2c316efd5928a04d32b2c4dfde19 --- /dev/null +++ b/pytorch-image-models/results/generate_csv_results.py @@ -0,0 +1,79 @@ +import numpy as np +import pandas as pd + + +results = { + 'results-imagenet.csv': [ + 'results-imagenet-real.csv', + 'results-imagenetv2-matched-frequency.csv', + 'results-sketch.csv' + ], + 'results-imagenet-a-clean.csv': [ + 'results-imagenet-a.csv', + ], + 'results-imagenet-r-clean.csv': [ + 'results-imagenet-r.csv', + ], +} + + +def diff(base_df, test_csv): + base_df['mi'] = base_df.model + '-' + base_df.img_size.astype('str') + base_models = base_df['mi'].values + test_df = pd.read_csv(test_csv) + test_df['mi'] = test_df.model + '-' + test_df.img_size.astype('str') + test_models = test_df['mi'].values + + rank_diff = np.zeros_like(test_models, dtype='object') + top1_diff = np.zeros_like(test_models, dtype='object') + top5_diff = np.zeros_like(test_models, dtype='object') + + for rank, model in enumerate(test_models): + if model in base_models: + base_rank = int(np.where(base_models == model)[0]) + top1_d = test_df['top1'][rank] - base_df['top1'][base_rank] + top5_d = test_df['top5'][rank] - base_df['top5'][base_rank] + + # rank_diff + if rank == base_rank: + rank_diff[rank] = f'0' + elif rank > base_rank: + rank_diff[rank] = f'-{rank - base_rank}' + else: + rank_diff[rank] = f'+{base_rank - rank}' + + # top1_diff + if top1_d >= .0: + top1_diff[rank] = f'+{top1_d:.3f}' + else: + top1_diff[rank] = f'-{abs(top1_d):.3f}' + + # top5_diff + if top5_d >= .0: + top5_diff[rank] = f'+{top5_d:.3f}' + else: + top5_diff[rank] = f'-{abs(top5_d):.3f}' + + else: + rank_diff[rank] = '' + top1_diff[rank] = '' + top5_diff[rank] = '' + + test_df['top1_diff'] = top1_diff + test_df['top5_diff'] = top5_diff + test_df['rank_diff'] = rank_diff + + test_df.drop('mi', axis=1, inplace=True) + base_df.drop('mi', axis=1, inplace=True) + test_df['param_count'] = test_df['param_count'].map('{:,.2f}'.format) + test_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True) + test_df.to_csv(test_csv, index=False, float_format='%.3f') + + +for base_results, test_results in results.items(): + base_df = pd.read_csv(base_results) + base_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True) + for test_csv in test_results: + diff(base_df, test_csv) + base_df['param_count'] = base_df['param_count'].map('{:,.2f}'.format) + base_df.to_csv(base_results, index=False, float_format='%.3f') diff --git a/pytorch-image-models/results/model_metadata-in1k.csv b/pytorch-image-models/results/model_metadata-in1k.csv new file mode 100644 index 0000000000000000000000000000000000000000..7647ea5a9b332e60699e98750a9459bd60833e81 --- /dev/null +++ b/pytorch-image-models/results/model_metadata-in1k.csv @@ -0,0 +1,522 @@ +model,pretrain +adv_inception_v3,in1k-adv +bat_resnext26ts,in1k +beit_base_patch16_224,in21k-selfsl +beit_base_patch16_384,in21k-selfsl +beit_large_patch16_224,in21k-selfsl +beit_large_patch16_384,in21k-selfsl +beit_large_patch16_512,in21k-selfsl +botnet26t_256,in1k +cait_m36_384,in1k-dist +cait_m48_448,in1k-dist +cait_s24_224,in1k-dist +cait_s24_384,in1k-dist +cait_s36_384,in1k-dist +cait_xs24_384,in1k-dist +cait_xxs24_224,in1k-dist +cait_xxs24_384,in1k-dist +cait_xxs36_224,in1k-dist +cait_xxs36_384,in1k-dist +coat_lite_mini,in1k +coat_lite_small,in1k +coat_lite_tiny,in1k +coat_mini,in1k +coat_tiny,in1k +convit_base,in1k +convit_small,in1k +convit_tiny,in1k +convmixer_1024_20_ks9_p14,in1k +convmixer_1536_20,in1k +convmixer_768_32,in1k +crossvit_15_240,in1k +crossvit_15_dagger_240,in1k +crossvit_15_dagger_408,in1k +crossvit_18_240,in1k +crossvit_18_dagger_240,in1k +crossvit_18_dagger_408,in1k +crossvit_9_240,in1k +crossvit_9_dagger_240,in1k +crossvit_base_240,in1k +crossvit_small_240,in1k +crossvit_tiny_240,in1k +cspdarknet53,in1k +cspresnet50,in1k +cspresnext50,in1k +deit_base_distilled_patch16_224,in1k-dist +deit_base_distilled_patch16_384,in1k-dist +deit_base_patch16_224,in1k +deit_base_patch16_384,in1k +deit_small_distilled_patch16_224,in1k-dist +deit_small_patch16_224,in1k +deit_tiny_distilled_patch16_224,in1k-dist +deit_tiny_patch16_224,in1k +densenet121,in1k +densenet161,in1k +densenet169,in1k +densenet201,in1k +densenetblur121d,in1k +dla102,in1k +dla102x,in1k +dla102x2,in1k +dla169,in1k +dla34,in1k +dla46_c,in1k +dla46x_c,in1k +dla60,in1k +dla60_res2net,in1k +dla60_res2next,in1k +dla60x,in1k +dla60x_c,in1k +dm_nfnet_f0,in1k +dm_nfnet_f1,in1k +dm_nfnet_f2,in1k +dm_nfnet_f3,in1k +dm_nfnet_f4,in1k +dm_nfnet_f5,in1k +dm_nfnet_f6,in1k +dpn107,in1k +dpn131,in1k +dpn68,in1k +dpn68b,in1k +dpn92,in1k +dpn98,in1k +eca_botnext26ts_256,in1k +eca_halonext26ts,in1k +eca_nfnet_l0,in1k +eca_nfnet_l1,in1k +eca_nfnet_l2,in1k +eca_resnet33ts,in1k +eca_resnext26ts,in1k +ecaresnet101d,in1k +ecaresnet101d_pruned,in1k +ecaresnet269d,in1k +ecaresnet26t,in1k +ecaresnet50d,in1k +ecaresnet50d_pruned,in1k +ecaresnet50t,in1k +ecaresnetlight,in1k +efficientnet_b0,in1k +efficientnet_b1,in1k +efficientnet_b1_pruned,in1k +efficientnet_b2,in1k +efficientnet_b2_pruned,in1k +efficientnet_b3,in1k +efficientnet_b3_pruned,in1k +efficientnet_b4,in1k +efficientnet_el,in1k +efficientnet_el_pruned,in1k +efficientnet_em,in1k +efficientnet_es,in1k +efficientnet_es_pruned,in1k +efficientnet_lite0,in1k +efficientnetv2_rw_m,in1k +efficientnetv2_rw_s,in1k +efficientnetv2_rw_t,in1k +ens_adv_inception_resnet_v2,in1k-adv +ese_vovnet19b_dw,in1k +ese_vovnet39b,in1k +fbnetc_100,in1k +gc_efficientnetv2_rw_t,in1k +gcresnet33ts,in1k +gcresnet50t,in1k +gcresnext26ts,in1k +gcresnext50ts,in1k +gernet_l,in1k +gernet_m,in1k +gernet_s,in1k +ghostnet_100,in1k +gluon_inception_v3,in1k +gluon_resnet101_v1b,in1k +gluon_resnet101_v1c,in1k +gluon_resnet101_v1d,in1k +gluon_resnet101_v1s,in1k +gluon_resnet152_v1b,in1k +gluon_resnet152_v1c,in1k +gluon_resnet152_v1d,in1k +gluon_resnet152_v1s,in1k +gluon_resnet18_v1b,in1k +gluon_resnet34_v1b,in1k +gluon_resnet50_v1b,in1k +gluon_resnet50_v1c,in1k +gluon_resnet50_v1d,in1k +gluon_resnet50_v1s,in1k +gluon_resnext101_32x4d,in1k +gluon_resnext101_64x4d,in1k +gluon_resnext50_32x4d,in1k +gluon_senet154,in1k +gluon_seresnext101_32x4d,in1k +gluon_seresnext101_64x4d,in1k +gluon_seresnext50_32x4d,in1k +gluon_xception65,in1k +gmixer_24_224,in1k +gmlp_s16_224,in1k +halo2botnet50ts_256,in1k +halonet26t,in1k +halonet50ts,in1k +haloregnetz_b,in1k +hardcorenas_a,in1k +hardcorenas_b,in1k +hardcorenas_c,in1k +hardcorenas_d,in1k +hardcorenas_e,in1k +hardcorenas_f,in1k +hrnet_w18,in1k +hrnet_w18_small,in1k +hrnet_w18_small_v2,in1k +hrnet_w30,in1k +hrnet_w32,in1k +hrnet_w40,in1k +hrnet_w44,in1k +hrnet_w48,in1k +hrnet_w64,in1k +ig_resnext101_32x16d,ig1b-wsl +ig_resnext101_32x32d,ig1b-wsl +ig_resnext101_32x48d,ig1b-wsl +ig_resnext101_32x8d,ig1b-wsl +inception_resnet_v2,in1k +inception_v3,in1k +inception_v4,in1k +jx_nest_base,in1k +jx_nest_small,in1k +jx_nest_tiny,in1k +lambda_resnet26rpt_256,in1k +lambda_resnet26t,in1k +lambda_resnet50ts,in1k +lamhalobotnet50ts_256,in1k +legacy_senet154,in1k +legacy_seresnet101,in1k +legacy_seresnet152,in1k +legacy_seresnet18,in1k +legacy_seresnet34,in1k +legacy_seresnet50,in1k +legacy_seresnext101_32x4d,in1k +legacy_seresnext26_32x4d,in1k +legacy_seresnext50_32x4d,in1k +levit_128,in1k-dist +levit_128s,in1k-dist +levit_192,in1k-dist +levit_256,in1k-dist +levit_384,in1k-dist +mixer_b16_224,in1k +mixer_b16_224_miil,in21k +mixer_l16_224,in1k +mixnet_l,in1k +mixnet_m,in1k +mixnet_s,in1k +mixnet_xl,in1k +mnasnet_100,in1k +mobilenetv2_100,in1k +mobilenetv2_110d,in1k +mobilenetv2_120d,in1k +mobilenetv2_140,in1k +mobilenetv3_large_100,in1k +mobilenetv3_large_100_miil,in21k +mobilenetv3_rw,in1k +nasnetalarge,in1k +nf_regnet_b1,in1k +nf_resnet50,in1k +nfnet_l0,in1k +pit_b_224,in1k +pit_b_distilled_224,in1k-dist +pit_s_224,in1k +pit_s_distilled_224,in1k-dist +pit_ti_224,in1k +pit_ti_distilled_224,in1k-dist +pit_xs_224,in1k +pit_xs_distilled_224,in1k-dist +pnasnet5large,in1k +regnetx_002,in1k +regnetx_004,in1k +regnetx_006,in1k +regnetx_008,in1k +regnetx_016,in1k +regnetx_032,in1k +regnetx_040,in1k +regnetx_064,in1k +regnetx_080,in1k +regnetx_120,in1k +regnetx_160,in1k +regnetx_320,in1k +regnety_002,in1k +regnety_004,in1k +regnety_006,in1k +regnety_008,in1k +regnety_016,in1k +regnety_032,in1k +regnety_040,in1k +regnety_064,in1k +regnety_080,in1k +regnety_120,in1k +regnety_160,in1k +regnety_320,in1k +regnetz_b,in1k +regnetz_c,in1k +regnetz_d,in1k +repvgg_a2,in1k +repvgg_b0,in1k +repvgg_b1,in1k +repvgg_b1g4,in1k +repvgg_b2,in1k +repvgg_b2g4,in1k +repvgg_b3,in1k +repvgg_b3g4,in1k +res2net101_26w_4s,in1k +res2net50_14w_8s,in1k +res2net50_26w_4s,in1k +res2net50_26w_6s,in1k +res2net50_26w_8s,in1k +res2net50_48w_2s,in1k +res2next50,in1k +resmlp_12_224,in1k +resmlp_12_distilled_224,in1k-dist +resmlp_24_224,in1k +resmlp_24_distilled_224,in1k-dist +resmlp_36_224,in1k +resmlp_36_distilled_224,in1k-dist +resmlp_big_24_224,in1k +resmlp_big_24_224_in22ft1k,in21k +resmlp_big_24_distilled_224,in1k-dist +resnest101e,in1k +resnest14d,in1k +resnest200e,in1k +resnest269e,in1k +resnest26d,in1k +resnest50d,in1k +resnest50d_1s4x24d,in1k +resnest50d_4s2x40d,in1k +resnet101d,in1k +resnet152d,in1k +resnet18,in1k +resnet18d,in1k +resnet200d,in1k +resnet26,in1k +resnet26d,in1k +resnet26t,in1k +resnet32ts,in1k +resnet33ts,in1k +resnet34,in1k +resnet34d,in1k +resnet50,in1k +resnet50d,in1k +resnet51q,in1k +resnet61q,in1k +resnetblur50,in1k +resnetrs101,in1k +resnetrs152,in1k +resnetrs200,in1k +resnetrs270,in1k +resnetrs350,in1k +resnetrs420,in1k +resnetrs50,in1k +resnetv2_101,in1k +resnetv2_101x1_bitm,in21k +resnetv2_101x3_bitm,in21k +resnetv2_152x2_bit_teacher,in21k +resnetv2_152x2_bit_teacher_384,in21k +resnetv2_152x2_bitm,in21k +resnetv2_152x4_bitm,in21k +resnetv2_50,in1k +resnetv2_50x1_bit_distilled,in1k-dist +resnetv2_50x1_bitm,in21k +resnetv2_50x3_bitm,in21k +resnext101_32x8d,in1k +resnext26ts,in1k +resnext50_32x4d,in1k +resnext50d_32x4d,in1k +rexnet_100,in1k +rexnet_130,in1k +rexnet_150,in1k +rexnet_200,in1k +sehalonet33ts,in1k +selecsls42b,in1k +selecsls60,in1k +selecsls60b,in1k +semnasnet_100,in1k +seresnet152d,in1k +seresnet33ts,in1k +seresnet50,in1k +seresnext26d_32x4d,in1k +seresnext26t_32x4d,in1k +seresnext26ts,in1k +seresnext50_32x4d,in1k +skresnet18,in1k +skresnet34,in1k +skresnext50_32x4d,in1k +spnasnet_100,in1k +ssl_resnet18,yfc-semisl +ssl_resnet50,yfc-semisl +ssl_resnext101_32x16d,yfc-semisl +ssl_resnext101_32x4d,yfc-semisl +ssl_resnext101_32x8d,yfc-semisl +ssl_resnext50_32x4d,yfc-semisl +swin_base_patch4_window12_384,in21k +swin_base_patch4_window7_224,in21k +swin_large_patch4_window12_384,in21k +swin_large_patch4_window7_224,in21k +swin_small_patch4_window7_224,in1k +swin_tiny_patch4_window7_224,in1k +swsl_resnet18,ig1b-swsl +swsl_resnet50,ig1b-swsl +swsl_resnext101_32x16d,ig1b-swsl +swsl_resnext101_32x4d,ig1b-swsl +swsl_resnext101_32x8d,ig1b-swsl +swsl_resnext50_32x4d,ig1b-swsl +tf_efficientnet_b0,in1k +tf_efficientnet_b0_ap,in1k-ap +tf_efficientnet_b0_ns,jft300m-ns +tf_efficientnet_b1,in1k +tf_efficientnet_b1_ap,in1k-ap +tf_efficientnet_b1_ns,jft300m-ns +tf_efficientnet_b2,in1k +tf_efficientnet_b2_ap,in1k-ap +tf_efficientnet_b2_ns,jft300m-ns +tf_efficientnet_b3,in1k +tf_efficientnet_b3_ap,in1k-ap +tf_efficientnet_b3_ns,jft300m-ns +tf_efficientnet_b4,in1k +tf_efficientnet_b4_ap,in1k-ap +tf_efficientnet_b4_ns,jft300m-ns +tf_efficientnet_b5,in1k +tf_efficientnet_b5_ap,in1k-ap +tf_efficientnet_b5_ns,jft300m-ns +tf_efficientnet_b6,in1k +tf_efficientnet_b6_ap,in1k-ap +tf_efficientnet_b6_ns,jft300m-ns +tf_efficientnet_b7,in1k +tf_efficientnet_b7_ap,in1k-ap +tf_efficientnet_b7_ns,jft300m-ns +tf_efficientnet_b8,in1k +tf_efficientnet_b8_ap,in1k-ap +tf_efficientnet_cc_b0_4e,in1k +tf_efficientnet_cc_b0_8e,in1k +tf_efficientnet_cc_b1_8e,in1k +tf_efficientnet_el,in1k +tf_efficientnet_em,in1k +tf_efficientnet_es,in1k +tf_efficientnet_l2_ns,jft300m-ns +tf_efficientnet_l2_ns_475,jft300m-ns +tf_efficientnet_lite0,in1k +tf_efficientnet_lite1,in1k +tf_efficientnet_lite2,in1k +tf_efficientnet_lite3,in1k +tf_efficientnet_lite4,in1k +tf_efficientnetv2_b0,in1k +tf_efficientnetv2_b1,in1k +tf_efficientnetv2_b2,in1k +tf_efficientnetv2_b3,in1k +tf_efficientnetv2_l,in1k +tf_efficientnetv2_l_in21ft1k,in21k +tf_efficientnetv2_m,in1k +tf_efficientnetv2_m_in21ft1k,in21k +tf_efficientnetv2_s,in1k +tf_efficientnetv2_s_in21ft1k,in21k +tf_efficientnetv2_xl_in21ft1k,in21k +tf_inception_v3,in1k +tf_mixnet_l,in1k +tf_mixnet_m,in1k +tf_mixnet_s,in1k +tf_mobilenetv3_large_075,in1k +tf_mobilenetv3_large_100,in1k +tf_mobilenetv3_large_minimal_100,in1k +tf_mobilenetv3_small_075,in1k +tf_mobilenetv3_small_100,in1k +tf_mobilenetv3_small_minimal_100,in1k +tnt_s_patch16_224,in1k +tresnet_l,in1k +tresnet_l_448,in1k +tresnet_m,in21k +tresnet_m_448,in1k +tresnet_xl,in1k +tresnet_xl_448,in1k +tv_densenet121,in1k +tv_resnet101,in1k +tv_resnet152,in1k +tv_resnet34,in1k +tv_resnet50,in1k +tv_resnext50_32x4d,in1k +twins_pcpvt_base,in1k +twins_pcpvt_large,in1k +twins_pcpvt_small,in1k +twins_svt_base,in1k +twins_svt_large,in1k +twins_svt_small,in1k +vgg11,in1k +vgg11_bn,in1k +vgg13,in1k +vgg13_bn,in1k +vgg16,in1k +vgg16_bn,in1k +vgg19,in1k +vgg19_bn,in1k +visformer_small,in1k +vit_base_patch16_224,in21k +vit_base_patch16_224_miil,in21k +vit_base_patch16_384,in21k +vit_base_patch16_224_sam,in1k +vit_base_patch32_224,in21k +vit_base_patch32_384,in21k +vit_base_patch32_224_sam,in1k +vit_base_r50_s16_384,in21k +vit_large_patch16_224,in21k +vit_large_patch16_384,in21k +vit_large_patch32_384,in21k +vit_large_r50_s32_224,in21k +vit_large_r50_s32_384,in21k +vit_small_patch16_224,in21k +vit_small_patch16_384,in21k +vit_small_patch32_224,in21k +vit_small_patch32_384,in21k +vit_small_r26_s32_224,in21k +vit_small_r26_s32_384,in21k +vit_tiny_patch16_224,in21k +vit_tiny_patch16_384,in21k +vit_tiny_r_s16_p8_224,in21k +vit_tiny_r_s16_p8_384,in21k +wide_resnet101_2,in1k +wide_resnet50_2,in1k +xception,in1k +xception41,in1k +xception65,in1k +xception71,in1k +xcit_large_24_p16_224,in1k +xcit_large_24_p16_224_dist,in1k-dist +xcit_large_24_p16_384_dist,in1k-dist +xcit_large_24_p8_224,in1k +xcit_large_24_p8_224_dist,in1k-dist +xcit_large_24_p8_384_dist,in1k-dist +xcit_medium_24_p16_224,in1k +xcit_medium_24_p16_224_dist,in1k-dist +xcit_medium_24_p16_384_dist,in1k-dist +xcit_medium_24_p8_224,in1k +xcit_medium_24_p8_224_dist,in1k-dist +xcit_medium_24_p8_384_dist,in1k-dist +xcit_nano_12_p16_224,in1k +xcit_nano_12_p16_224_dist,in1k-dist +xcit_nano_12_p16_384_dist,in1k-dist +xcit_nano_12_p8_224,in1k +xcit_nano_12_p8_224_dist,in1k-dist +xcit_nano_12_p8_384_dist,in1k-dist +xcit_small_12_p16_224,in1k +xcit_small_12_p16_224_dist,in1k-dist +xcit_small_12_p16_384_dist,in1k-dist +xcit_small_12_p8_224,in1k +xcit_small_12_p8_224_dist,in1k-dist +xcit_small_12_p8_384_dist,in1k-dist +xcit_small_24_p16_224,in1k +xcit_small_24_p16_224_dist,in1k-dist +xcit_small_24_p16_384_dist,in1k-dist +xcit_small_24_p8_224,in1k +xcit_small_24_p8_224_dist,in1k-dist +xcit_small_24_p8_384_dist,in1k-dist +xcit_tiny_12_p16_224,in1k +xcit_tiny_12_p16_224_dist,in1k-dist +xcit_tiny_12_p16_384_dist,in1k-dist +xcit_tiny_12_p8_224,in1k +xcit_tiny_12_p8_224_dist,in1k-dist +xcit_tiny_12_p8_384_dist,in1k-dist +xcit_tiny_24_p16_224,in1k +xcit_tiny_24_p16_224_dist,in1k-dist +xcit_tiny_24_p16_384_dist,in1k-dist +xcit_tiny_24_p8_224,in1k +xcit_tiny_24_p8_224_dist,in1k-dist +xcit_tiny_24_p8_384_dist,in1k-dist diff --git a/pytorch-image-models/results/results-imagenet-a-clean.csv b/pytorch-image-models/results/results-imagenet-a-clean.csv new file mode 100644 index 0000000000000000000000000000000000000000..0d0172daaad6088543bb6e8bb26843e7c56a12dd --- /dev/null +++ b/pytorch-image-models/results/results-imagenet-a-clean.csv @@ -0,0 +1,1446 @@ +model,img_size,top1,top1_err,top5,top5_err,param_count,crop_pct,interpolation +eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,448,98.940,1.060,99.910,0.090,305.08,1.000,bicubic +eva02_large_patch14_448.mim_in22k_ft_in1k,448,98.850,1.150,99.840,0.160,305.08,1.000,bicubic +eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,448,98.830,1.170,99.880,0.120,305.08,1.000,bicubic +eva_giant_patch14_560.m30m_ft_in22k_in1k,560,98.820,1.180,99.900,0.100,"1,014.45",1.000,bicubic +eva_giant_patch14_336.m30m_ft_in22k_in1k,336,98.810,1.190,99.900,0.100,"1,013.01",1.000,bicubic +eva_giant_patch14_336.clip_ft_in1k,336,98.810,1.190,99.820,0.180,"1,013.01",1.000,bicubic +eva_large_patch14_336.in22k_ft_in22k_in1k,336,98.750,1.250,99.810,0.190,304.53,1.000,bicubic +eva02_large_patch14_448.mim_m38m_ft_in1k,448,98.730,1.270,99.790,0.210,305.08,1.000,bicubic +eva_large_patch14_336.in22k_ft_in1k,336,98.720,1.280,99.870,0.130,304.53,1.000,bicubic +convnextv2_huge.fcmae_ft_in22k_in1k_384,384,98.670,1.330,99.860,0.140,660.29,1.000,bicubic +maxvit_base_tf_512.in21k_ft_in1k,512,98.640,1.360,99.800,0.200,119.88,1.000,bicubic +eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,448,98.630,1.370,99.800,0.200,87.12,1.000,bicubic +maxvit_xlarge_tf_512.in21k_ft_in1k,512,98.620,1.380,99.800,0.200,475.77,1.000,bicubic +maxvit_large_tf_512.in21k_ft_in1k,512,98.610,1.390,99.790,0.210,212.33,1.000,bicubic +convnextv2_huge.fcmae_ft_in22k_in1k_512,512,98.590,1.410,99.870,0.130,660.29,1.000,bicubic +beit_large_patch16_512.in22k_ft_in22k_in1k,512,98.560,1.440,99.830,0.170,305.67,1.000,bicubic +beitv2_large_patch16_224.in1k_ft_in22k_in1k,224,98.550,1.450,99.760,0.240,304.43,0.950,bicubic +tf_efficientnet_l2.ns_jft_in1k,800,98.540,1.460,99.820,0.180,480.31,0.960,bicubic +maxvit_base_tf_384.in21k_ft_in1k,384,98.520,1.480,99.750,0.250,119.65,1.000,bicubic +tf_efficientnet_l2.ns_jft_in1k_475,475,98.500,1.500,99.840,0.160,480.31,0.936,bicubic +beit_large_patch16_384.in22k_ft_in22k_in1k,384,98.500,1.500,99.820,0.180,305.00,1.000,bicubic +maxvit_xlarge_tf_384.in21k_ft_in1k,384,98.500,1.500,99.780,0.220,475.32,1.000,bicubic +maxvit_large_tf_384.in21k_ft_in1k,384,98.490,1.510,99.750,0.250,212.03,1.000,bicubic +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,384,98.480,1.520,99.750,0.250,200.13,1.000,bicubic +deit3_large_patch16_384.fb_in22k_ft_in1k,384,98.460,1.540,99.750,0.250,304.76,1.000,bicubic +eva_giant_patch14_224.clip_ft_in1k,224,98.460,1.540,99.750,0.250,"1,012.56",0.900,bicubic +regnety_1280.swag_ft_in1k,384,98.450,1.550,99.880,0.120,644.81,1.000,bicubic +caformer_b36.sail_in22k_ft_in1k_384,384,98.440,1.560,99.820,0.180,98.75,1.000,bicubic +convnext_xxlarge.clip_laion2b_soup_ft_in1k,256,98.440,1.560,99.820,0.180,846.47,1.000,bicubic +eva02_base_patch14_448.mim_in22k_ft_in1k,448,98.440,1.560,99.820,0.180,87.12,1.000,bicubic +vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,336,98.430,1.570,99.820,0.180,632.46,1.000,bicubic +eva_large_patch14_196.in22k_ft_in22k_in1k,196,98.430,1.570,99.770,0.230,304.14,1.000,bicubic +convnext_xlarge.fb_in22k_ft_in1k_384,384,98.420,1.580,99.810,0.190,350.20,1.000,bicubic +convnextv2_large.fcmae_ft_in22k_in1k_384,384,98.380,1.620,99.760,0.240,197.96,1.000,bicubic +eva_large_patch14_196.in22k_ft_in1k,196,98.360,1.640,99.830,0.170,304.14,1.000,bicubic +convnextv2_base.fcmae_ft_in22k_in1k_384,384,98.360,1.640,99.780,0.220,88.72,1.000,bicubic +vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,336,98.330,1.670,99.760,0.240,304.53,1.000,bicubic +vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,224,98.290,1.710,99.780,0.220,632.05,1.000,bicubic +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,320,98.280,1.720,99.770,0.230,200.13,1.000,bicubic +vit_large_patch14_clip_336.openai_ft_in12k_in1k,336,98.270,1.730,99.770,0.230,304.53,1.000,bicubic +convformer_b36.sail_in22k_ft_in1k_384,384,98.260,1.740,99.830,0.170,99.88,1.000,bicubic +maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,384,98.260,1.740,99.770,0.230,116.09,1.000,bicubic +convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,384,98.260,1.740,99.760,0.240,200.13,1.000,bicubic +convnext_large.fb_in22k_ft_in1k_384,384,98.260,1.740,99.750,0.250,197.77,1.000,bicubic +vit_large_patch16_384.augreg_in21k_ft_in1k,384,98.250,1.750,99.800,0.200,304.72,1.000,bicubic +vit_large_patch14_clip_224.openai_ft_in12k_in1k,224,98.230,1.770,99.720,0.280,304.20,1.000,bicubic +vit_large_patch14_clip_336.laion2b_ft_in1k,336,98.230,1.770,99.720,0.280,304.53,1.000,bicubic +seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,384,98.200,1.800,99.780,0.220,149.39,1.000,bicubic +vit_base_patch16_clip_384.openai_ft_in12k_in1k,384,98.190,1.810,99.660,0.340,86.86,0.950,bicubic +maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,384,98.180,1.820,99.770,0.230,116.14,1.000,bicubic +caformer_b36.sail_in22k_ft_in1k,224,98.170,1.830,99.770,0.230,98.75,1.000,bicubic +beit_large_patch16_224.in22k_ft_in22k_in1k,224,98.170,1.830,99.760,0.240,304.43,0.900,bicubic +deit3_large_patch16_224.fb_in22k_ft_in1k,224,98.170,1.830,99.750,0.250,304.37,1.000,bicubic +deit3_huge_patch14_224.fb_in22k_ft_in1k,224,98.170,1.830,99.730,0.270,632.13,1.000,bicubic +vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,98.160,1.840,99.730,0.270,64.27,1.000,bicubic +swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,384,98.160,1.840,99.710,0.290,196.74,1.000,bicubic +vit_large_patch14_clip_224.openai_ft_in1k,224,98.160,1.840,99.670,0.330,304.20,1.000,bicubic +caformer_m36.sail_in22k_ft_in1k_384,384,98.150,1.850,99.750,0.250,56.20,1.000,bicubic +swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,384,98.140,1.860,99.780,0.220,87.92,1.000,bicubic +convnext_large.fb_in22k_ft_in1k,288,98.130,1.870,99.750,0.250,197.77,1.000,bicubic +convnext_xlarge.fb_in22k_ft_in1k,288,98.120,1.880,99.770,0.230,350.20,1.000,bicubic +convnextv2_large.fcmae_ft_in22k_in1k,288,98.110,1.890,99.780,0.220,197.96,1.000,bicubic +convnext_base.fb_in22k_ft_in1k_384,384,98.100,1.900,99.650,0.350,88.59,1.000,bicubic +vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,224,98.080,1.920,99.760,0.240,304.20,1.000,bicubic +coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,384,98.070,1.930,99.690,0.310,73.88,1.000,bicubic +regnety_320.swag_ft_in1k,384,98.060,1.940,99.860,0.140,145.05,1.000,bicubic +convnextv2_base.fcmae_ft_in22k_in1k,288,98.060,1.940,99.750,0.250,88.72,1.000,bicubic +convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,384,98.050,1.950,99.750,0.250,88.59,1.000,bicubic +vit_huge_patch14_clip_224.laion2b_ft_in1k,224,98.030,1.970,99.730,0.270,632.05,1.000,bicubic +convformer_m36.sail_in22k_ft_in1k_384,384,98.020,1.980,99.690,0.310,57.05,1.000,bicubic +swin_large_patch4_window12_384.ms_in22k_ft_in1k,384,98.020,1.980,99.690,0.310,196.74,1.000,bicubic +vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,384,98.010,1.990,99.660,0.340,86.86,1.000,bicubic +caformer_s36.sail_in22k_ft_in1k_384,384,98.000,2.000,99.720,0.280,39.30,1.000,bicubic +convnext_large_mlp.clip_laion2b_augreg_ft_in1k,256,97.980,2.020,99.700,0.300,200.13,1.000,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,320,97.960,2.040,99.700,0.300,93.59,1.000,bicubic +convformer_b36.sail_in22k_ft_in1k,224,97.950,2.050,99.760,0.240,99.88,1.000,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,288,97.950,2.050,99.730,0.270,93.59,0.950,bicubic +hiera_huge_224.mae_in1k_ft_in1k,224,97.950,2.050,99.620,0.380,672.78,0.900,bicubic +nextvit_large.bd_ssld_6m_in1k_384,384,97.940,2.060,99.790,0.210,57.87,1.000,bicubic +convnextv2_large.fcmae_ft_in22k_in1k,224,97.930,2.070,99.770,0.230,197.96,0.875,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k,288,97.930,2.070,99.680,0.320,93.59,1.000,bicubic +convnext_xlarge.fb_in22k_ft_in1k,224,97.920,2.080,99.680,0.320,350.20,0.875,bicubic +beitv2_large_patch16_224.in1k_ft_in1k,224,97.920,2.080,99.660,0.340,304.43,0.950,bicubic +convnextv2_base.fcmae_ft_in22k_in1k,224,97.910,2.090,99.690,0.310,88.72,0.875,bicubic +vit_large_patch14_clip_224.laion2b_ft_in1k,224,97.910,2.090,99.650,0.350,304.20,1.000,bicubic +convnextv2_huge.fcmae_ft_in1k,288,97.900,2.100,99.690,0.310,660.29,1.000,bicubic +tiny_vit_21m_512.dist_in22k_ft_in1k,512,97.900,2.100,99.630,0.370,21.27,1.000,bicubic +tf_efficientnetv2_xl.in21k_ft_in1k,512,97.900,2.100,99.570,0.430,208.12,1.000,bicubic +tf_efficientnet_b7.ns_jft_in1k,600,97.890,2.110,99.720,0.280,66.35,0.949,bicubic +nextvit_base.bd_ssld_6m_in1k_384,384,97.870,2.130,99.760,0.240,44.82,1.000,bicubic +swin_base_patch4_window12_384.ms_in22k_ft_in1k,384,97.870,2.130,99.710,0.290,87.90,1.000,bicubic +convnext_large.fb_in22k_ft_in1k,224,97.850,2.150,99.690,0.310,197.77,0.875,bicubic +convnext_base.fb_in22k_ft_in1k,288,97.850,2.150,99.680,0.320,88.59,1.000,bicubic +vit_large_r50_s32_384.augreg_in21k_ft_in1k,384,97.850,2.150,99.670,0.330,329.09,1.000,bicubic +convformer_s36.sail_in22k_ft_in1k_384,384,97.850,2.150,99.640,0.360,40.01,1.000,bicubic +deit3_base_patch16_384.fb_in22k_ft_in1k,384,97.840,2.160,99.680,0.320,86.88,1.000,bicubic +caformer_m36.sail_in22k_ft_in1k,224,97.840,2.160,99.670,0.330,56.20,1.000,bicubic +swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,256,97.840,2.160,99.660,0.340,196.74,0.900,bicubic +tf_efficientnetv2_l.in21k_ft_in1k,480,97.830,2.170,99.760,0.240,118.52,1.000,bicubic +beit_base_patch16_384.in22k_ft_in22k_in1k,384,97.830,2.170,99.700,0.300,86.74,1.000,bicubic +vit_base_patch16_384.augreg_in21k_ft_in1k,384,97.830,2.170,99.670,0.330,86.86,1.000,bicubic +maxvit_large_tf_512.in1k,512,97.830,2.170,99.560,0.440,212.33,1.000,bicubic +hgnetv2_b6.ssld_stage1_in22k_in1k,288,97.810,2.190,99.690,0.310,75.26,1.000,bicubic +tf_efficientnetv2_m.in21k_ft_in1k,480,97.810,2.190,99.610,0.390,54.14,1.000,bicubic +hgnetv2_b6.ssld_stage2_ft_in1k,288,97.800,2.200,99.690,0.310,75.26,1.000,bicubic +convnext_small.in12k_ft_in1k_384,384,97.800,2.200,99.650,0.350,50.22,1.000,bicubic +maxvit_base_tf_512.in1k,512,97.800,2.200,99.610,0.390,119.88,1.000,bicubic +regnety_160.swag_ft_in1k,384,97.790,2.210,99.760,0.240,83.59,1.000,bicubic +volo_d5_512.sail_in1k,512,97.790,2.210,99.670,0.330,296.09,1.150,bicubic +dm_nfnet_f6.dm_in1k,576,97.780,2.220,99.660,0.340,438.36,0.956,bicubic +maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,224,97.780,2.220,99.640,0.360,116.14,0.950,bicubic +dm_nfnet_f5.dm_in1k,544,97.780,2.220,99.590,0.410,377.21,0.954,bicubic +nextvit_small.bd_ssld_6m_in1k_384,384,97.770,2.230,99.710,0.290,31.76,1.000,bicubic +vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,97.770,2.230,99.600,0.400,60.60,1.000,bicubic +maxvit_small_tf_512.in1k,512,97.760,2.240,99.550,0.450,69.13,1.000,bicubic +maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,224,97.750,2.250,99.700,0.300,116.09,0.950,bicubic +vit_base_patch16_clip_384.laion2b_ft_in1k,384,97.750,2.250,99.630,0.370,86.86,1.000,bicubic +volo_d5_448.sail_in1k,448,97.750,2.250,99.620,0.380,295.91,1.150,bicubic +vit_base_patch8_224.augreg2_in21k_ft_in1k,224,97.740,2.260,99.640,0.360,86.58,0.900,bicubic +vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,97.710,2.290,99.640,0.360,64.11,0.950,bicubic +dm_nfnet_f6.dm_in1k,448,97.710,2.290,99.610,0.390,438.36,0.956,bicubic +beitv2_base_patch16_224.in1k_ft_in22k_in1k,224,97.700,2.300,99.680,0.320,86.53,0.900,bicubic +swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,256,97.680,2.320,99.720,0.280,87.92,0.900,bicubic +volo_d4_448.sail_in1k,448,97.680,2.320,99.610,0.390,193.41,1.150,bicubic +rdnet_large.nv_in1k_ft_in1k_384,384,97.670,2.330,99.550,0.450,186.27,1.000,bicubic +regnety_1280.swag_lc_in1k,224,97.660,2.340,99.640,0.360,644.81,0.965,bicubic +convnextv2_large.fcmae_ft_in1k,288,97.660,2.340,99.600,0.400,197.96,1.000,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k,224,97.650,2.350,99.690,0.310,93.59,0.875,bicubic +convnextv2_huge.fcmae_ft_in1k,224,97.650,2.350,99.620,0.380,660.29,0.875,bicubic +swin_large_patch4_window7_224.ms_in22k_ft_in1k,224,97.650,2.350,99.570,0.430,196.53,0.900,bicubic +vit_large_patch16_224.augreg_in21k_ft_in1k,224,97.640,2.360,99.590,0.410,304.33,0.900,bicubic +coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,224,97.640,2.360,99.570,0.430,73.88,0.950,bicubic +vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,97.630,2.370,99.620,0.380,64.11,0.950,bicubic +dm_nfnet_f4.dm_in1k,512,97.630,2.370,99.540,0.460,316.07,0.951,bicubic +convnext_small.fb_in22k_ft_in1k_384,384,97.620,2.380,99.600,0.400,50.22,1.000,bicubic +tf_efficientnet_b6.ns_jft_in1k,528,97.620,2.380,99.590,0.410,43.04,0.942,bicubic +caformer_s36.sail_in22k_ft_in1k,224,97.610,2.390,99.610,0.390,39.30,1.000,bicubic +hgnetv2_b6.ssld_stage1_in22k_in1k,224,97.610,2.390,99.600,0.400,75.26,0.965,bicubic +tiny_vit_21m_384.dist_in22k_ft_in1k,384,97.610,2.390,99.590,0.410,21.23,1.000,bicubic +convnext_base.clip_laiona_augreg_ft_in1k_384,384,97.610,2.390,99.550,0.450,88.59,1.000,bicubic +convnext_base.clip_laion2b_augreg_ft_in12k_in1k,256,97.600,2.400,99.720,0.280,88.59,1.000,bicubic +vit_base_patch8_224.augreg_in21k_ft_in1k,224,97.590,2.410,99.670,0.330,86.58,0.900,bicubic +convformer_m36.sail_in22k_ft_in1k,224,97.590,2.410,99.620,0.380,57.05,1.000,bicubic +maxvit_base_tf_384.in1k,384,97.590,2.410,99.580,0.420,119.65,1.000,bicubic +efficientvit_l3.r384_in1k,384,97.590,2.410,99.520,0.480,246.04,1.000,bicubic +maxvit_large_tf_384.in1k,384,97.590,2.410,99.520,0.480,212.03,1.000,bicubic +maxvit_tiny_tf_512.in1k,512,97.580,2.420,99.560,0.440,31.05,1.000,bicubic +vit_base_patch16_clip_384.openai_ft_in1k,384,97.550,2.450,99.660,0.340,86.86,1.000,bicubic +volo_d3_448.sail_in1k,448,97.550,2.450,99.550,0.450,86.63,1.000,bicubic +convformer_b36.sail_in1k_384,384,97.540,2.460,99.520,0.480,99.88,1.000,bicubic +vit_base_patch16_clip_224.openai_ft_in12k_in1k,224,97.540,2.460,99.510,0.490,86.57,0.950,bicubic +xcit_large_24_p16_384.fb_dist_in1k,384,97.540,2.460,99.480,0.520,189.10,1.000,bicubic +coatnet_2_rw_224.sw_in12k_ft_in1k,224,97.530,2.470,99.600,0.400,73.87,0.950,bicubic +xcit_large_24_p8_384.fb_dist_in1k,384,97.530,2.470,99.540,0.460,188.93,1.000,bicubic +caformer_b36.sail_in1k_384,384,97.510,2.490,99.580,0.420,98.75,1.000,bicubic +tf_efficientnetv2_l.in1k,480,97.510,2.490,99.550,0.450,118.52,1.000,bicubic +tf_efficientnet_b5.ns_jft_in1k,456,97.500,2.500,99.640,0.360,30.39,0.934,bicubic +convnext_base.fb_in22k_ft_in1k,224,97.500,2.500,99.610,0.390,88.59,0.875,bicubic +regnety_160.sw_in12k_ft_in1k,288,97.500,2.500,99.600,0.400,83.59,1.000,bicubic +deit3_base_patch16_224.fb_in22k_ft_in1k,224,97.490,2.510,99.620,0.380,86.59,1.000,bicubic +cait_m48_448.fb_dist_in1k,448,97.490,2.510,99.600,0.400,356.46,1.000,bicubic +resnetv2_152x4_bit.goog_in21k_ft_in1k,480,97.480,2.520,99.640,0.360,936.53,1.000,bilinear +dm_nfnet_f3.dm_in1k,416,97.480,2.520,99.560,0.440,254.92,0.940,bicubic +dm_nfnet_f5.dm_in1k,416,97.470,2.530,99.520,0.480,377.21,0.954,bicubic +tf_efficientnetv2_l.in21k_ft_in1k,384,97.460,2.540,99.640,0.360,118.52,1.000,bicubic +vit_medium_patch16_gap_384.sw_in12k_ft_in1k,384,97.450,2.550,99.640,0.360,39.03,0.950,bicubic +caformer_m36.sail_in1k_384,384,97.450,2.550,99.600,0.400,56.20,1.000,bicubic +hgnetv2_b6.ssld_stage2_ft_in1k,224,97.450,2.550,99.600,0.400,75.26,0.965,bicubic +regnety_160.lion_in12k_ft_in1k,288,97.450,2.550,99.600,0.400,83.59,1.000,bicubic +vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,224,97.450,2.550,99.540,0.460,86.57,0.950,bicubic +deit3_large_patch16_384.fb_in1k,384,97.440,2.560,99.630,0.370,304.76,1.000,bicubic +caformer_s18.sail_in22k_ft_in1k_384,384,97.440,2.560,99.590,0.410,26.34,1.000,bicubic +hiera_large_224.mae_in1k_ft_in1k,224,97.440,2.560,99.460,0.540,213.74,0.900,bicubic +hgnet_base.ssld_in1k,288,97.430,2.570,99.620,0.380,71.58,1.000,bicubic +flexivit_large.1200ep_in1k,240,97.420,2.580,99.600,0.400,304.36,0.950,bicubic +efficientvit_l3.r320_in1k,320,97.410,2.590,99.390,0.610,246.04,1.000,bicubic +caformer_s36.sail_in1k_384,384,97.400,2.600,99.540,0.460,39.30,1.000,bicubic +cait_m36_384.fb_dist_in1k,384,97.400,2.600,99.510,0.490,271.22,1.000,bicubic +maxvit_small_tf_384.in1k,384,97.400,2.600,99.500,0.500,69.02,1.000,bicubic +convformer_m36.sail_in1k_384,384,97.400,2.600,99.470,0.530,57.05,1.000,bicubic +efficientvit_l2.r384_in1k,384,97.400,2.600,99.420,0.580,63.71,1.000,bicubic +efficientnet_b5.sw_in12k_ft_in1k,448,97.390,2.610,99.550,0.450,30.39,1.000,bicubic +tf_efficientnetv2_xl.in21k_ft_in1k,384,97.390,2.610,99.380,0.620,208.12,1.000,bicubic +resnext101_32x32d.fb_wsl_ig1b_ft_in1k,224,97.380,2.620,99.680,0.320,468.53,0.875,bilinear +nextvit_large.bd_ssld_6m_in1k,224,97.380,2.620,99.670,0.330,57.87,0.950,bicubic +volo_d5_224.sail_in1k,224,97.380,2.620,99.570,0.430,295.46,0.960,bicubic +hgnetv2_b5.ssld_stage2_ft_in1k,288,97.370,2.630,99.670,0.330,39.57,1.000,bicubic +vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,384,97.370,2.630,99.520,0.480,88.30,1.000,bicubic +convnextv2_large.fcmae_ft_in1k,224,97.350,2.650,99.550,0.450,197.96,0.875,bicubic +cait_s36_384.fb_dist_in1k,384,97.350,2.650,99.530,0.470,68.37,1.000,bicubic +convnext_small.fb_in22k_ft_in1k,288,97.350,2.650,99.530,0.470,50.22,1.000,bicubic +dm_nfnet_f4.dm_in1k,384,97.350,2.650,99.480,0.520,316.07,0.951,bicubic +convnext_small.in12k_ft_in1k,288,97.340,2.660,99.580,0.420,50.22,1.000,bicubic +convnext_tiny.in12k_ft_in1k_384,384,97.330,2.670,99.600,0.400,28.59,1.000,bicubic +vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,448,97.330,2.670,99.480,0.520,88.34,1.000,bicubic +vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,97.330,2.670,99.480,0.520,60.40,0.950,bicubic +volo_d2_384.sail_in1k,384,97.320,2.680,99.590,0.410,58.87,1.000,bicubic +maxvit_tiny_tf_384.in1k,384,97.310,2.690,99.500,0.500,30.98,1.000,bicubic +xcit_medium_24_p16_384.fb_dist_in1k,384,97.310,2.690,99.460,0.540,84.40,1.000,bicubic +volo_d4_224.sail_in1k,224,97.300,2.700,99.530,0.470,192.96,0.960,bicubic +xcit_medium_24_p8_384.fb_dist_in1k,384,97.300,2.700,99.510,0.490,84.32,1.000,bicubic +xcit_small_24_p8_384.fb_dist_in1k,384,97.280,2.720,99.600,0.400,47.63,1.000,bicubic +flexivit_large.600ep_in1k,240,97.280,2.720,99.590,0.410,304.36,0.950,bicubic +convformer_s18.sail_in22k_ft_in1k_384,384,97.280,2.720,99.560,0.440,26.77,1.000,bicubic +swin_base_patch4_window7_224.ms_in22k_ft_in1k,224,97.280,2.720,99.520,0.480,87.77,0.900,bicubic +convformer_s36.sail_in1k_384,384,97.280,2.720,99.430,0.570,40.01,1.000,bicubic +hgnetv2_b5.ssld_stage1_in22k_in1k,288,97.270,2.730,99.660,0.340,39.57,1.000,bicubic +nextvit_base.bd_ssld_6m_in1k,224,97.270,2.730,99.660,0.340,44.82,0.950,bicubic +convnext_base.clip_laion2b_augreg_ft_in1k,256,97.270,2.730,99.560,0.440,88.59,1.000,bicubic +regnety_120.sw_in12k_ft_in1k,288,97.270,2.730,99.540,0.460,51.82,1.000,bicubic +inception_next_base.sail_in1k_384,384,97.270,2.730,99.520,0.480,86.67,1.000,bicubic +tf_efficientnetv2_l.in1k,384,97.270,2.730,99.500,0.500,118.52,1.000,bicubic +regnety_160.lion_in12k_ft_in1k,224,97.250,2.750,99.540,0.460,83.59,0.950,bicubic +flexivit_large.300ep_in1k,240,97.250,2.750,99.490,0.510,304.36,0.950,bicubic +convnextv2_base.fcmae_ft_in1k,288,97.240,2.760,99.550,0.450,88.72,1.000,bicubic +convnextv2_tiny.fcmae_ft_in22k_in1k_384,384,97.240,2.760,99.540,0.460,28.64,1.000,bicubic +regnety_2560.seer_ft_in1k,384,97.240,2.760,99.510,0.490,"1,282.60",1.000,bicubic +vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,97.230,2.770,99.590,0.410,60.40,0.950,bicubic +tf_efficientnetv2_m.in1k,480,97.230,2.770,99.530,0.470,54.14,1.000,bicubic +xcit_small_12_p8_384.fb_dist_in1k,384,97.230,2.770,99.470,0.530,26.21,1.000,bicubic +resnext101_32x8d.fb_swsl_ig1b_ft_in1k,224,97.220,2.780,99.590,0.410,88.79,0.875,bilinear +regnety_160.sw_in12k_ft_in1k,224,97.220,2.780,99.580,0.420,83.59,0.950,bicubic +convnext_small.in12k_ft_in1k,224,97.210,2.790,99.600,0.400,50.22,0.950,bicubic +tf_efficientnet_b7.ap_in1k,600,97.210,2.790,99.540,0.460,66.35,0.949,bicubic +regnetz_e8.ra3_in1k,320,97.210,2.790,99.500,0.500,57.70,1.000,bicubic +tf_efficientnet_b8.ra_in1k,672,97.210,2.790,99.500,0.500,87.41,0.954,bicubic +tf_efficientnetv2_m.in21k_ft_in1k,384,97.210,2.790,99.470,0.530,54.14,1.000,bicubic +tiny_vit_21m_224.dist_in22k_ft_in1k,224,97.200,2.800,99.490,0.510,21.20,0.950,bicubic +dm_nfnet_f3.dm_in1k,320,97.190,2.810,99.540,0.460,254.92,0.940,bicubic +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,480,97.180,2.820,99.560,0.440,32.59,1.000,bicubic +vit_base_r50_s16_384.orig_in21k_ft_in1k,384,97.180,2.820,99.560,0.440,98.95,1.000,bicubic +hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k,256,97.180,2.820,99.430,0.570,34.36,0.950,bicubic +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,544,97.170,2.830,99.580,0.420,32.59,1.000,bicubic +regnety_120.sw_in12k_ft_in1k,224,97.170,2.830,99.520,0.480,51.82,0.950,bicubic +beitv2_base_patch16_224.in1k_ft_in1k,224,97.170,2.830,99.460,0.540,86.53,0.900,bicubic +vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,97.170,2.830,99.390,0.610,38.88,0.950,bicubic +regnety_320.swag_lc_in1k,224,97.160,2.840,99.670,0.330,145.05,0.965,bicubic +vit_base_patch16_224.augreg2_in21k_ft_in1k,224,97.160,2.840,99.540,0.460,86.57,0.900,bicubic +eva02_small_patch14_336.mim_in22k_ft_in1k,336,97.150,2.850,99.470,0.530,22.13,1.000,bicubic +coat_lite_medium_384.in1k,384,97.150,2.850,99.450,0.550,44.57,1.000,bicubic +deit3_small_patch16_384.fb_in22k_ft_in1k,384,97.130,2.870,99.500,0.500,22.21,1.000,bicubic +xcit_small_24_p16_384.fb_dist_in1k,384,97.130,2.870,99.440,0.560,47.67,1.000,bicubic +tf_efficientnet_b8.ap_in1k,672,97.120,2.880,99.660,0.340,87.41,0.954,bicubic +hgnetv2_b5.ssld_stage2_ft_in1k,224,97.120,2.880,99.610,0.390,39.57,0.965,bicubic +tf_efficientnet_b6.ap_in1k,528,97.120,2.880,99.600,0.400,43.04,0.942,bicubic +vit_base_patch16_clip_224.laion2b_ft_in1k,224,97.120,2.880,99.460,0.540,86.57,1.000,bicubic +dm_nfnet_f2.dm_in1k,352,97.110,2.890,99.510,0.490,193.78,0.920,bicubic +convnext_tiny.fb_in22k_ft_in1k_384,384,97.110,2.890,99.500,0.500,28.59,1.000,bicubic +volo_d3_224.sail_in1k,224,97.110,2.890,99.460,0.540,86.33,0.960,bicubic +ecaresnet269d.ra2_in1k,320,97.110,2.890,99.400,0.600,102.09,0.950,bicubic +convnext_tiny.in12k_ft_in1k,288,97.100,2.900,99.520,0.480,28.59,1.000,bicubic +vit_base_patch32_clip_384.openai_ft_in12k_in1k,384,97.100,2.900,99.520,0.480,88.30,0.950,bicubic +vit_base_patch16_clip_224.openai_ft_in1k,224,97.090,2.910,99.480,0.520,86.57,0.900,bicubic +ecaresnet269d.ra2_in1k,352,97.090,2.910,99.460,0.540,102.09,1.000,bicubic +convnext_large.fb_in1k,288,97.090,2.910,99.450,0.550,197.77,1.000,bicubic +hgnet_base.ssld_in1k,224,97.080,2.920,99.610,0.390,71.58,0.965,bicubic +convformer_s36.sail_in22k_ft_in1k,224,97.080,2.920,99.550,0.450,40.01,1.000,bicubic +eca_nfnet_l2.ra3_in1k,384,97.080,2.920,99.510,0.490,56.72,1.000,bicubic +caformer_s18.sail_in1k_384,384,97.070,2.930,99.420,0.580,26.34,1.000,bicubic +cait_s24_384.fb_dist_in1k,384,97.070,2.930,99.420,0.580,47.06,1.000,bicubic +beit_base_patch16_224.in22k_ft_in22k_in1k,224,97.060,2.940,99.610,0.390,86.53,0.900,bicubic +dm_nfnet_f1.dm_in1k,320,97.060,2.940,99.390,0.610,132.63,0.910,bicubic +efficientvit_l2.r288_in1k,288,97.060,2.940,99.370,0.630,63.71,1.000,bicubic +xcit_large_24_p8_224.fb_dist_in1k,224,97.050,2.950,99.420,0.580,188.93,1.000,bicubic +hrnet_w48_ssld.paddle_in1k,288,97.040,2.960,99.640,0.360,77.47,1.000,bilinear +convformer_s18.sail_in1k_384,384,97.040,2.960,99.370,0.630,26.77,1.000,bicubic +hgnetv2_b5.ssld_stage1_in22k_in1k,224,97.030,2.970,99.570,0.430,39.57,0.965,bicubic +efficientvit_l3.r256_in1k,256,97.030,2.970,99.230,0.770,246.04,1.000,bicubic +resnetv2_152x2_bit.goog_in21k_ft_in1k,448,97.020,2.980,99.590,0.410,236.34,1.000,bilinear +maxvit_large_tf_224.in1k,224,97.020,2.980,99.240,0.760,211.79,0.950,bicubic +nextvit_large.bd_in1k_384,384,97.010,2.990,99.510,0.490,57.87,1.000,bicubic +resnetv2_101x3_bit.goog_in21k_ft_in1k,448,97.010,2.990,99.500,0.500,387.93,1.000,bilinear +deit3_base_patch16_384.fb_in1k,384,97.010,2.990,99.360,0.640,86.88,1.000,bicubic +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,448,97.010,2.990,99.310,0.690,32.59,0.950,bicubic +efficientvit_l3.r224_in1k,224,97.010,2.990,99.240,0.760,246.04,1.000,bicubic +efficientnetv2_rw_m.agc_in1k,416,97.000,3.000,99.530,0.470,53.24,1.000,bicubic +tf_efficientnet_b7.ra_in1k,600,97.000,3.000,99.520,0.480,66.35,0.949,bicubic +deit_base_distilled_patch16_384.fb_in1k,384,97.000,3.000,99.490,0.510,87.63,1.000,bicubic +caformer_b36.sail_in1k,224,97.000,3.000,99.350,0.650,98.75,1.000,bicubic +deit3_medium_patch16_224.fb_in22k_ft_in1k,224,96.990,3.010,99.430,0.570,38.85,1.000,bicubic +volo_d2_224.sail_in1k,224,96.990,3.010,99.390,0.610,58.68,0.960,bicubic +deit3_large_patch16_224.fb_in1k,224,96.980,3.020,99.330,0.670,304.37,0.900,bicubic +maxvit_base_tf_224.in1k,224,96.980,3.020,99.270,0.730,119.47,0.950,bicubic +tf_efficientnet_b4.ns_jft_in1k,380,96.970,3.030,99.580,0.420,19.34,0.922,bicubic +convnext_small.fb_in22k_ft_in1k,224,96.970,3.030,99.410,0.590,50.22,0.875,bicubic +nextvit_small.bd_ssld_6m_in1k,224,96.960,3.040,99.480,0.520,31.76,0.950,bicubic +xcit_small_12_p16_384.fb_dist_in1k,384,96.950,3.050,99.400,0.600,26.25,1.000,bicubic +mvitv2_large.fb_in1k,224,96.940,3.060,99.400,0.600,217.99,0.900,bicubic +seresnextaa101d_32x8d.ah_in1k,288,96.940,3.060,99.390,0.610,93.59,1.000,bicubic +hiera_base_plus_224.mae_in1k_ft_in1k,224,96.940,3.060,99.340,0.660,69.90,0.900,bicubic +hgnet_small.ssld_in1k,288,96.930,3.070,99.560,0.440,24.36,1.000,bicubic +volo_d1_384.sail_in1k,384,96.930,3.070,99.520,0.480,26.78,1.000,bicubic +xcit_medium_24_p8_224.fb_dist_in1k,224,96.930,3.070,99.380,0.620,84.32,1.000,bicubic +davit_base.msft_in1k,224,96.930,3.070,99.250,0.750,87.95,0.950,bicubic +resnext101_32x16d.fb_wsl_ig1b_ft_in1k,224,96.920,3.080,99.590,0.410,194.03,0.875,bilinear +resnetrs420.tf_in1k,416,96.910,3.090,99.460,0.540,191.89,1.000,bicubic +nextvit_base.bd_in1k_384,384,96.910,3.090,99.400,0.600,44.82,1.000,bicubic +rdnet_large.nv_in1k,224,96.910,3.090,99.400,0.600,186.27,0.900,bicubic +convformer_b36.sail_in1k,224,96.910,3.090,99.230,0.770,99.88,1.000,bicubic +convnextv2_base.fcmae_ft_in1k,224,96.900,3.100,99.420,0.580,88.72,0.875,bicubic +deit3_huge_patch14_224.fb_in1k,224,96.890,3.110,99.480,0.520,632.13,0.900,bicubic +xcit_small_24_p8_224.fb_dist_in1k,224,96.890,3.110,99.470,0.530,47.63,1.000,bicubic +caformer_m36.sail_in1k,224,96.890,3.110,99.440,0.560,56.20,1.000,bicubic +vit_base_patch16_224.augreg_in21k_ft_in1k,224,96.880,3.120,99.530,0.470,86.57,0.900,bicubic +regnety_1280.seer_ft_in1k,384,96.880,3.120,99.390,0.610,644.81,1.000,bicubic +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,384,96.870,3.130,99.360,0.640,32.59,0.950,bicubic +rexnetr_300.sw_in12k_ft_in1k,288,96.850,3.150,99.520,0.480,34.81,1.000,bicubic +efficientvit_l2.r256_in1k,256,96.850,3.150,99.300,0.700,63.71,1.000,bicubic +convnextv2_tiny.fcmae_ft_in22k_in1k,288,96.840,3.160,99.450,0.550,28.64,1.000,bicubic +efficientvit_l2.r224_in1k,224,96.840,3.160,99.250,0.750,63.71,1.000,bicubic +regnety_160.swag_lc_in1k,224,96.830,3.170,99.660,0.340,83.59,0.965,bicubic +hgnetv2_b4.ssld_stage2_ft_in1k,288,96.830,3.170,99.530,0.470,19.80,1.000,bicubic +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,384,96.830,3.170,99.450,0.550,236.34,1.000,bicubic +regnety_640.seer_ft_in1k,384,96.830,3.170,99.400,0.600,281.38,1.000,bicubic +convnext_base.fb_in1k,288,96.820,3.180,99.420,0.580,88.59,1.000,bicubic +xcit_large_24_p16_224.fb_dist_in1k,224,96.820,3.180,99.370,0.630,189.10,1.000,bicubic +nextvit_small.bd_in1k_384,384,96.820,3.180,99.300,0.700,31.76,1.000,bicubic +seresnet152d.ra2_in1k,320,96.800,3.200,99.450,0.550,66.84,1.000,bicubic +tf_efficientnetv2_m.in1k,384,96.800,3.200,99.410,0.590,54.14,1.000,bicubic +fastvit_ma36.apple_dist_in1k,256,96.800,3.200,99.330,0.670,44.07,0.950,bicubic +maxxvit_rmlp_small_rw_256.sw_in1k,256,96.790,3.210,99.370,0.630,66.01,0.950,bicubic +vit_large_r50_s32_224.augreg_in21k_ft_in1k,224,96.790,3.210,99.330,0.670,328.99,0.900,bicubic +seresnext101_32x8d.ah_in1k,288,96.780,3.220,99.350,0.650,93.57,1.000,bicubic +resnetrs350.tf_in1k,384,96.770,3.230,99.340,0.660,163.96,1.000,bicubic +swinv2_base_window16_256.ms_in1k,256,96.770,3.230,99.330,0.670,87.92,0.900,bicubic +mvitv2_base.fb_in1k,224,96.770,3.230,99.250,0.750,51.47,0.900,bicubic +flexivit_base.1200ep_in1k,240,96.760,3.240,99.360,0.640,86.59,0.950,bicubic +tf_efficientnetv2_s.in21k_ft_in1k,384,96.750,3.250,99.420,0.580,21.46,1.000,bicubic +xcit_small_12_p8_224.fb_dist_in1k,224,96.750,3.250,99.370,0.630,26.21,1.000,bicubic +convnext_large.fb_in1k,224,96.750,3.250,99.300,0.700,197.77,0.875,bicubic +eca_nfnet_l1.ra2_in1k,320,96.750,3.250,99.290,0.710,41.41,1.000,bicubic +convnext_tiny.in12k_ft_in1k,224,96.740,3.260,99.460,0.540,28.59,0.950,bicubic +edgenext_base.in21k_ft_in1k,320,96.740,3.260,99.420,0.580,18.51,1.000,bicubic +resnetv2_50x3_bit.goog_in21k_ft_in1k,448,96.730,3.270,99.540,0.460,217.32,1.000,bilinear +caformer_s36.sail_in1k,224,96.730,3.270,99.370,0.630,39.30,1.000,bicubic +seresnext101d_32x8d.ah_in1k,288,96.730,3.270,99.360,0.640,93.59,1.000,bicubic +resnet200d.ra2_in1k,320,96.730,3.270,99.340,0.660,64.69,1.000,bicubic +dm_nfnet_f2.dm_in1k,256,96.730,3.270,99.300,0.700,193.78,0.920,bicubic +hgnetv2_b4.ssld_stage1_in22k_in1k,288,96.720,3.280,99.520,0.480,19.80,1.000,bicubic +regnetz_040_h.ra3_in1k,320,96.720,3.280,99.500,0.500,28.94,1.000,bicubic +edgenext_base.usi_in1k,320,96.720,3.280,99.430,0.570,18.51,1.000,bicubic +resnetrs200.tf_in1k,320,96.720,3.280,99.360,0.640,93.21,1.000,bicubic +vit_base_patch16_384.orig_in21k_ft_in1k,384,96.710,3.290,99.510,0.490,86.86,1.000,bicubic +caformer_s18.sail_in22k_ft_in1k,224,96.710,3.290,99.480,0.520,26.34,1.000,bicubic +regnetz_040.ra3_in1k,320,96.710,3.290,99.480,0.520,27.12,1.000,bicubic +tf_efficientnet_b5.ap_in1k,456,96.710,3.290,99.450,0.550,30.39,0.934,bicubic +vit_small_patch16_384.augreg_in21k_ft_in1k,384,96.700,3.300,99.480,0.520,22.20,1.000,bicubic +mobilenetv4_hybrid_large.e600_r384_in1k,448,96.700,3.300,99.390,0.610,37.76,1.000,bicubic +resnetrs270.tf_in1k,352,96.700,3.300,99.350,0.650,129.86,1.000,bicubic +hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k,256,96.700,3.300,99.240,0.760,34.36,0.950,bicubic +maxvit_small_tf_224.in1k,224,96.690,3.310,99.370,0.630,68.93,0.950,bicubic +regnetz_e8.ra3_in1k,256,96.690,3.310,99.350,0.650,57.70,0.940,bicubic +rdnet_base.nv_in1k,224,96.690,3.310,99.240,0.760,87.45,0.900,bicubic +convformer_m36.sail_in1k,224,96.690,3.310,99.070,0.930,57.05,1.000,bicubic +vit_small_r26_s32_384.augreg_in21k_ft_in1k,384,96.680,3.320,99.590,0.410,36.47,1.000,bicubic +repvgg_d2se.rvgg_in1k,320,96.680,3.320,99.370,0.630,133.33,1.000,bilinear +tf_efficientnet_b6.aa_in1k,528,96.680,3.320,99.370,0.630,43.04,0.942,bicubic +resnetrs350.tf_in1k,288,96.680,3.320,99.290,0.710,163.96,1.000,bicubic +vit_medium_patch16_gap_256.sw_in12k_ft_in1k,256,96.670,3.330,99.500,0.500,38.86,0.950,bicubic +resnetaa101d.sw_in12k_ft_in1k,288,96.670,3.330,99.360,0.640,44.57,1.000,bicubic +deit3_small_patch16_224.fb_in22k_ft_in1k,224,96.670,3.330,99.330,0.670,22.06,1.000,bicubic +coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,224,96.670,3.330,99.160,0.840,41.72,0.950,bicubic +flexivit_base.600ep_in1k,240,96.650,3.350,99.330,0.670,86.59,0.950,bicubic +davit_small.msft_in1k,224,96.640,3.360,99.370,0.630,49.75,0.950,bicubic +rexnetr_300.sw_in12k_ft_in1k,224,96.640,3.360,99.360,0.640,34.81,0.950,bicubic +regnetz_d8.ra3_in1k,320,96.630,3.370,99.460,0.540,23.37,1.000,bicubic +hgnet_small.ssld_in1k,224,96.630,3.370,99.420,0.580,24.36,0.965,bicubic +efficientvit_b3.r288_in1k,288,96.630,3.370,99.220,0.780,48.65,1.000,bicubic +xcit_medium_24_p16_224.fb_dist_in1k,224,96.620,3.380,99.280,0.720,84.40,1.000,bicubic +vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k,256,96.620,3.380,99.220,0.780,63.95,0.950,bicubic +resnest200e.in1k,320,96.610,3.390,99.350,0.650,70.20,0.909,bicubic +convformer_s18.sail_in22k_ft_in1k,224,96.610,3.390,99.340,0.660,26.77,1.000,bicubic +resnetrs420.tf_in1k,320,96.610,3.390,99.300,0.700,191.89,1.000,bicubic +flexivit_base.300ep_in1k,240,96.610,3.390,99.270,0.730,86.59,0.950,bicubic +resnext101_32x16d.fb_swsl_ig1b_ft_in1k,224,96.600,3.400,99.540,0.460,194.03,0.875,bilinear +resmlp_big_24_224.fb_in22k_ft_in1k,224,96.600,3.400,99.500,0.500,129.14,0.875,bicubic +regnetz_d32.ra3_in1k,320,96.600,3.400,99.380,0.620,27.58,0.950,bicubic +mobilenetv4_hybrid_large.ix_e600_r384_in1k,448,96.600,3.400,99.290,0.710,37.76,1.000,bicubic +efficientnetv2_rw_m.agc_in1k,320,96.590,3.410,99.430,0.570,53.24,1.000,bicubic +eca_nfnet_l2.ra3_in1k,320,96.590,3.410,99.410,0.590,56.72,0.900,bicubic +hiera_base_224.mae_in1k_ft_in1k,224,96.590,3.410,99.310,0.690,51.52,0.900,bicubic +focalnet_base_srf.ms_in1k,224,96.590,3.410,99.160,0.840,88.15,0.900,bicubic +xcit_tiny_24_p8_384.fb_dist_in1k,384,96.580,3.420,99.320,0.680,12.11,1.000,bicubic +swin_base_patch4_window12_384.ms_in1k,384,96.580,3.420,99.240,0.760,87.90,1.000,bicubic +convformer_s36.sail_in1k,224,96.580,3.420,99.160,0.840,40.01,1.000,bicubic +regnetz_d8_evos.ch_in1k,320,96.570,3.430,99.460,0.540,23.46,1.000,bicubic +cait_xs24_384.fb_dist_in1k,384,96.570,3.430,99.420,0.580,26.67,1.000,bicubic +resnetrs152.tf_in1k,320,96.570,3.430,99.240,0.760,86.62,1.000,bicubic +convnext_small.fb_in1k,288,96.560,3.440,99.340,0.660,50.22,1.000,bicubic +gcvit_base.in1k,224,96.560,3.440,99.230,0.770,90.32,0.875,bicubic +maxvit_rmlp_small_rw_224.sw_in1k,224,96.560,3.440,99.130,0.870,64.90,0.900,bicubic +swin_small_patch4_window7_224.ms_in22k_ft_in1k,224,96.550,3.450,99.410,0.590,49.61,0.900,bicubic +swinv2_base_window8_256.ms_in1k,256,96.550,3.450,99.280,0.720,87.92,0.900,bicubic +inception_next_base.sail_in1k,224,96.550,3.450,99.090,0.910,86.67,0.950,bicubic +efficientnetv2_rw_s.ra2_in1k,384,96.540,3.460,99.360,0.640,23.94,1.000,bicubic +tf_efficientnet_b7.aa_in1k,600,96.540,3.460,99.310,0.690,66.35,0.949,bicubic +crossvit_18_dagger_408.in1k,408,96.530,3.470,99.260,0.740,44.61,1.000,bicubic +coatnet_rmlp_2_rw_224.sw_in1k,224,96.530,3.470,99.080,0.920,73.88,0.950,bicubic +resnest269e.in1k,416,96.520,3.480,99.370,0.630,110.93,0.928,bicubic +regnety_080.ra3_in1k,288,96.520,3.480,99.330,0.670,39.18,1.000,bicubic +hgnetv2_b4.ssld_stage2_ft_in1k,224,96.510,3.490,99.380,0.620,19.80,0.965,bicubic +vit_base_patch32_384.augreg_in21k_ft_in1k,384,96.500,3.500,99.410,0.590,88.30,1.000,bicubic +fastvit_ma36.apple_in1k,256,96.490,3.510,99.300,0.700,44.07,0.950,bicubic +regnetz_040.ra3_in1k,256,96.480,3.520,99.410,0.590,27.12,1.000,bicubic +tf_efficientnet_b5.aa_in1k,456,96.480,3.520,99.230,0.770,30.39,0.934,bicubic +focalnet_base_lrf.ms_in1k,224,96.480,3.520,99.130,0.870,88.75,0.900,bicubic +convnextv2_tiny.fcmae_ft_in22k_in1k,224,96.470,3.530,99.400,0.600,28.64,0.875,bicubic +hgnetv2_b4.ssld_stage1_in22k_in1k,224,96.470,3.530,99.360,0.640,19.80,0.965,bicubic +vit_base_patch16_224_miil.in21k_ft_in1k,224,96.470,3.530,99.300,0.700,86.54,0.875,bilinear +swinv2_small_window16_256.ms_in1k,256,96.470,3.530,99.210,0.790,49.73,0.900,bicubic +coat_lite_medium.in1k,224,96.470,3.530,99.160,0.840,44.57,0.900,bicubic +resmlp_big_24_224.fb_distilled_in1k,224,96.460,3.540,99.320,0.680,129.14,0.875,bicubic +mobilenetv4_conv_aa_large.e600_r384_in1k,480,96.460,3.540,99.300,0.700,32.59,1.000,bicubic +seresnext101d_32x8d.ah_in1k,224,96.460,3.540,99.200,0.800,93.59,0.950,bicubic +mobilenetv4_hybrid_large.ix_e600_r384_in1k,384,96.460,3.540,99.190,0.810,37.76,0.950,bicubic +regnetv_064.ra3_in1k,288,96.450,3.550,99.360,0.640,30.58,1.000,bicubic +resnext101_32x4d.fb_swsl_ig1b_ft_in1k,224,96.440,3.560,99.480,0.520,44.18,0.875,bilinear +cs3se_edgenet_x.c2ns_in1k,320,96.440,3.560,99.410,0.590,50.72,1.000,bicubic +vit_base_patch16_rope_reg1_gap_256.sbb_in1k,256,96.440,3.560,99.130,0.870,86.43,0.950,bicubic +seresnet152d.ra2_in1k,256,96.430,3.570,99.390,0.610,66.84,0.950,bicubic +convnext_base.fb_in1k,224,96.430,3.570,99.230,0.770,88.59,0.875,bicubic +mobilenetv4_hybrid_large.e600_r384_in1k,384,96.430,3.570,99.170,0.830,37.76,0.950,bicubic +xcit_small_24_p8_224.fb_in1k,224,96.430,3.570,99.130,0.870,47.63,1.000,bicubic +maxvit_rmlp_tiny_rw_256.sw_in1k,256,96.420,3.580,99.390,0.610,29.15,0.950,bicubic +vit_medium_patch16_rope_reg1_gap_256.sbb_in1k,256,96.420,3.580,99.250,0.750,38.74,0.950,bicubic +crossvit_15_dagger_408.in1k,408,96.420,3.580,99.160,0.840,28.50,1.000,bicubic +edgenext_base.usi_in1k,256,96.400,3.600,99.380,0.620,18.51,0.950,bicubic +resnetrs270.tf_in1k,256,96.400,3.600,99.250,0.750,129.86,1.000,bicubic +regnetz_d8.ra3_in1k,256,96.400,3.600,99.240,0.760,23.37,0.940,bicubic +cait_s24_224.fb_dist_in1k,224,96.400,3.600,99.150,0.850,46.92,1.000,bicubic +xcit_large_24_p8_224.fb_in1k,224,96.400,3.600,98.980,1.020,188.93,1.000,bicubic +hrnet_w48_ssld.paddle_in1k,224,96.390,3.610,99.410,0.590,77.47,0.950,bilinear +tf_efficientnet_b5.ra_in1k,456,96.390,3.610,99.330,0.670,30.39,0.934,bicubic +seresnext101_32x8d.ah_in1k,224,96.390,3.610,99.230,0.770,93.57,0.950,bicubic +vit_medium_patch16_reg4_gap_256.sbb_in1k,256,96.390,3.610,99.210,0.790,38.88,0.950,bicubic +resnet152d.ra2_in1k,320,96.380,3.620,99.390,0.610,60.21,1.000,bicubic +tf_efficientnet_b3.ns_jft_in1k,300,96.380,3.620,99.350,0.650,12.23,0.904,bicubic +pvt_v2_b4.in1k,224,96.380,3.620,99.180,0.820,62.56,0.900,bicubic +nextvit_large.bd_in1k,224,96.370,3.630,99.340,0.660,57.87,0.950,bicubic +edgenext_base.in21k_ft_in1k,256,96.360,3.640,99.380,0.620,18.51,0.950,bicubic +regnety_160.deit_in1k,288,96.360,3.640,99.330,0.670,83.59,1.000,bicubic +xception65.ra3_in1k,299,96.360,3.640,99.240,0.760,39.92,0.940,bicubic +regnety_064.ra3_in1k,288,96.360,3.640,99.220,0.780,30.58,1.000,bicubic +vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k,256,96.360,3.640,99.170,0.830,60.23,0.950,bicubic +hgnetv2_b3.ssld_stage2_ft_in1k,288,96.350,3.650,99.470,0.530,16.29,1.000,bicubic +convnextv2_nano.fcmae_ft_in22k_in1k_384,384,96.350,3.650,99.400,0.600,15.62,1.000,bicubic +repvit_m2_3.dist_450e_in1k,224,96.350,3.650,99.390,0.610,23.69,0.950,bicubic +dm_nfnet_f0.dm_in1k,256,96.350,3.650,99.340,0.660,71.49,0.900,bicubic +regnety_320.seer_ft_in1k,384,96.350,3.650,99.330,0.670,145.05,1.000,bicubic +fastvit_sa36.apple_dist_in1k,256,96.350,3.650,99.250,0.750,31.53,0.900,bicubic +dm_nfnet_f1.dm_in1k,224,96.350,3.650,99.220,0.780,132.63,0.910,bicubic +mvitv2_small.fb_in1k,224,96.350,3.650,99.220,0.780,34.87,0.900,bicubic +vit_medium_patch16_reg1_gap_256.sbb_in1k,256,96.350,3.650,99.220,0.780,38.88,0.950,bicubic +tf_efficientnetv2_s.in1k,384,96.350,3.650,99.200,0.800,21.46,1.000,bicubic +pvt_v2_b5.in1k,224,96.350,3.650,99.170,0.830,81.96,0.900,bicubic +efficientvit_b3.r256_in1k,256,96.350,3.650,99.110,0.890,48.65,1.000,bicubic +vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k,256,96.340,3.660,99.320,0.680,22.52,0.950,bicubic +resnetaa101d.sw_in12k_ft_in1k,224,96.340,3.660,99.260,0.740,44.57,0.950,bicubic +seresnextaa101d_32x8d.ah_in1k,224,96.330,3.670,99.230,0.770,93.59,0.950,bicubic +rdnet_small.nv_in1k,224,96.330,3.670,99.200,0.800,50.44,0.900,bicubic +hiera_small_224.mae_in1k_ft_in1k,224,96.330,3.670,99.170,0.830,35.01,0.900,bicubic +efficientvit_l1.r224_in1k,224,96.330,3.670,99.050,0.950,52.65,1.000,bicubic +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,448,96.320,3.680,99.330,0.670,11.07,1.000,bicubic +volo_d1_224.sail_in1k,224,96.320,3.680,99.310,0.690,26.63,0.960,bicubic +regnetz_040_h.ra3_in1k,256,96.320,3.680,99.300,0.700,28.94,1.000,bicubic +tf_efficientnetv2_s.in21k_ft_in1k,300,96.320,3.680,99.240,0.760,21.46,1.000,bicubic +swinv2_small_window8_256.ms_in1k,256,96.320,3.680,99.200,0.800,49.73,0.900,bicubic +resnet200d.ra2_in1k,256,96.310,3.690,99.250,0.750,64.69,0.950,bicubic +resnext101_32x8d.fb_wsl_ig1b_ft_in1k,224,96.300,3.700,99.420,0.580,88.79,0.875,bilinear +resnet101d.ra2_in1k,320,96.300,3.700,99.230,0.770,44.57,1.000,bicubic +deit3_base_patch16_224.fb_in1k,224,96.290,3.710,99.190,0.810,86.59,0.900,bicubic +tiny_vit_11m_224.dist_in22k_ft_in1k,224,96.290,3.710,99.190,0.810,11.00,0.950,bicubic +hgnetv2_b3.ssld_stage1_in22k_in1k,288,96.270,3.730,99.480,0.520,16.29,1.000,bicubic +regnetz_d8_evos.ch_in1k,256,96.270,3.730,99.340,0.660,23.46,0.950,bicubic +swin_s3_base_224.ms_in1k,224,96.270,3.730,99.160,0.840,71.13,0.900,bicubic +gcvit_small.in1k,224,96.270,3.730,99.150,0.850,51.09,0.875,bicubic +twins_svt_large.in1k,224,96.260,3.740,99.170,0.830,99.27,0.900,bicubic +inception_next_small.sail_in1k,224,96.250,3.750,99.230,0.770,49.37,0.875,bicubic +nextvit_base.bd_in1k,224,96.250,3.750,99.230,0.770,44.82,0.950,bicubic +eca_nfnet_l1.ra2_in1k,256,96.250,3.750,99.220,0.780,41.41,0.900,bicubic +nest_base_jx.goog_in1k,224,96.250,3.750,99.220,0.780,67.72,0.875,bicubic +pit_b_distilled_224.in1k,224,96.250,3.750,99.130,0.870,74.79,0.900,bicubic +convnext_tiny.fb_in22k_ft_in1k,224,96.240,3.760,99.340,0.660,28.59,0.875,bicubic +mobilenetv4_conv_large.e600_r384_in1k,448,96.240,3.760,99.310,0.690,32.59,1.000,bicubic +fastvit_sa36.apple_in1k,256,96.240,3.760,99.170,0.830,31.53,0.900,bicubic +maxvit_tiny_rw_224.sw_in1k,224,96.240,3.760,99.120,0.880,29.06,0.950,bicubic +swin_s3_small_224.ms_in1k,224,96.240,3.760,99.070,0.930,49.74,0.900,bicubic +hgnet_tiny.ssld_in1k,288,96.230,3.770,99.420,0.580,14.74,1.000,bicubic +regnetv_040.ra3_in1k,288,96.230,3.770,99.300,0.700,20.64,1.000,bicubic +vit_betwixt_patch16_reg1_gap_256.sbb_in1k,256,96.230,3.770,99.110,0.890,60.40,0.950,bicubic +ecaresnet101d.miil_in1k,288,96.220,3.780,99.310,0.690,44.57,0.950,bicubic +deit3_small_patch16_384.fb_in1k,384,96.220,3.780,99.280,0.720,22.21,1.000,bicubic +rexnetr_200.sw_in12k_ft_in1k,288,96.220,3.780,99.250,0.750,16.52,1.000,bicubic +tf_efficientnetv2_b3.in21k_ft_in1k,300,96.220,3.780,99.240,0.760,14.36,0.900,bicubic +resnet152.a1h_in1k,288,96.220,3.780,99.230,0.770,60.19,1.000,bicubic +xcit_small_24_p16_224.fb_dist_in1k,224,96.220,3.780,99.210,0.790,47.67,1.000,bicubic +swinv2_cr_small_ns_224.sw_in1k,224,96.220,3.780,99.130,0.870,49.70,0.900,bicubic +hgnetv2_b2.ssld_stage2_ft_in1k,288,96.210,3.790,99.420,0.580,11.22,1.000,bicubic +convnextv2_tiny.fcmae_ft_in1k,288,96.210,3.790,99.240,0.760,28.64,1.000,bicubic +xception65p.ra3_in1k,299,96.210,3.790,99.180,0.820,39.82,0.940,bicubic +regnetz_d32.ra3_in1k,256,96.200,3.800,99.280,0.720,27.58,0.950,bicubic +resnetrs200.tf_in1k,256,96.200,3.800,99.270,0.730,93.21,1.000,bicubic +mobilevitv2_175.cvnets_in22k_ft_in1k_384,384,96.200,3.800,99.130,0.870,14.25,1.000,bicubic +tiny_vit_21m_224.in1k,224,96.200,3.800,99.130,0.870,21.20,0.950,bicubic +convnext_small.fb_in1k,224,96.200,3.800,99.110,0.890,50.22,0.875,bicubic +gcvit_tiny.in1k,224,96.190,3.810,99.230,0.770,28.22,0.875,bicubic +focalnet_small_lrf.ms_in1k,224,96.190,3.810,99.190,0.810,50.34,0.900,bicubic +caformer_s18.sail_in1k,224,96.190,3.810,99.000,1.000,26.34,1.000,bicubic +repvit_m2_3.dist_300e_in1k,224,96.180,3.820,99.340,0.660,23.69,0.950,bicubic +twins_svt_base.in1k,224,96.180,3.820,99.050,0.950,56.07,0.900,bicubic +tf_efficientnet_b4.ap_in1k,380,96.170,3.830,99.280,0.720,19.34,0.922,bicubic +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,320,96.170,3.830,99.200,0.800,11.07,1.000,bicubic +deit_base_patch16_384.fb_in1k,384,96.170,3.830,99.150,0.850,86.86,1.000,bicubic +tresnet_v2_l.miil_in21k_ft_in1k,224,96.160,3.840,99.250,0.750,46.17,0.875,bilinear +fastvit_sa24.apple_dist_in1k,256,96.160,3.840,99.210,0.790,21.55,0.900,bicubic +efficientnet_b4.ra2_in1k,384,96.160,3.840,99.190,0.810,19.34,1.000,bicubic +twins_pcpvt_large.in1k,224,96.160,3.840,99.190,0.810,60.99,0.900,bicubic +efficientnetv2_rw_s.ra2_in1k,288,96.160,3.840,99.150,0.850,23.94,1.000,bicubic +regnetz_c16_evos.ch_in1k,320,96.150,3.850,99.380,0.620,13.49,0.950,bicubic +resnetv2_101.a1h_in1k,288,96.150,3.850,99.160,0.840,44.54,1.000,bicubic +mobilenetv4_conv_aa_large.e600_r384_in1k,384,96.150,3.850,99.110,0.890,32.59,0.950,bicubic +tf_efficientnetv2_s.in1k,300,96.150,3.850,99.090,0.910,21.46,1.000,bicubic +maxvit_tiny_tf_224.in1k,224,96.140,3.860,99.250,0.750,30.92,0.950,bicubic +sequencer2d_l.in1k,224,96.140,3.860,99.160,0.840,54.30,0.875,bicubic +nfnet_l0.ra2_in1k,288,96.130,3.870,99.240,0.760,35.07,1.000,bicubic +resnext101_64x4d.c1_in1k,288,96.130,3.870,99.230,0.770,83.46,1.000,bicubic +vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,224,96.120,3.880,99.200,0.800,88.22,0.900,bicubic +xcit_medium_24_p8_224.fb_in1k,224,96.120,3.880,98.890,1.110,84.32,1.000,bicubic +efficientformer_l7.snap_dist_in1k,224,96.110,3.890,99.270,0.730,82.23,0.950,bicubic +xcit_small_12_p8_224.fb_in1k,224,96.110,3.890,99.170,0.830,26.21,1.000,bicubic +resnetv2_101x1_bit.goog_in21k_ft_in1k,448,96.100,3.900,99.280,0.720,44.54,1.000,bilinear +resnetv2_50x1_bit.goog_distilled_in1k,224,96.100,3.900,99.270,0.730,25.55,0.875,bicubic +deit_base_distilled_patch16_224.fb_in1k,224,96.100,3.900,99.190,0.810,87.34,0.900,bicubic +regnetv_064.ra3_in1k,224,96.090,3.910,99.310,0.690,30.58,0.950,bicubic +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,224,96.090,3.910,99.310,0.690,236.34,0.875,bicubic +regnety_320.tv2_in1k,224,96.090,3.910,99.230,0.770,145.05,0.965,bicubic +deit3_medium_patch16_224.fb_in1k,224,96.090,3.910,99.190,0.810,38.85,0.900,bicubic +focalnet_small_srf.ms_in1k,224,96.090,3.910,99.160,0.840,49.89,0.900,bicubic +vit_betwixt_patch16_reg4_gap_256.sbb_in1k,256,96.090,3.910,99.150,0.850,60.40,0.950,bicubic +swin_base_patch4_window7_224.ms_in1k,224,96.090,3.910,99.040,0.960,87.77,0.900,bicubic +swinv2_cr_small_224.sw_in1k,224,96.090,3.910,98.870,1.130,49.70,0.900,bicubic +tf_efficientnet_b5.in1k,456,96.080,3.920,99.300,0.700,30.39,0.934,bicubic +resnet152d.ra2_in1k,256,96.070,3.930,99.300,0.700,60.21,0.950,bicubic +efficientformerv2_l.snap_dist_in1k,224,96.060,3.940,99.200,0.800,26.32,0.950,bicubic +cs3edgenet_x.c2_in1k,288,96.060,3.940,99.130,0.870,47.82,1.000,bicubic +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,384,96.050,3.950,99.240,0.760,11.07,0.950,bicubic +convnextv2_nano.fcmae_ft_in22k_in1k,288,96.050,3.950,99.220,0.780,15.62,1.000,bicubic +regnety_160.deit_in1k,224,96.050,3.950,99.210,0.790,83.59,0.950,bicubic +xcit_tiny_12_p8_384.fb_dist_in1k,384,96.050,3.950,99.130,0.870,6.71,1.000,bicubic +resnet101.a1h_in1k,288,96.040,3.960,99.140,0.860,44.55,1.000,bicubic +cs3sedarknet_x.c2ns_in1k,288,96.040,3.960,99.110,0.890,35.40,1.000,bicubic +maxxvit_rmlp_nano_rw_256.sw_in1k,256,96.030,3.970,99.260,0.740,16.78,0.950,bicubic +resnext101_64x4d.tv_in1k,224,96.030,3.970,99.160,0.840,83.46,0.875,bilinear +regnety_080.ra3_in1k,224,96.030,3.970,99.110,0.890,39.18,0.950,bicubic +resnetrs152.tf_in1k,256,96.030,3.970,99.100,0.900,86.62,1.000,bicubic +mobilevitv2_200.cvnets_in22k_ft_in1k_384,384,96.030,3.970,99.090,0.910,18.45,1.000,bicubic +coatnet_1_rw_224.sw_in1k,224,96.030,3.970,99.050,0.950,41.72,0.950,bicubic +xcit_small_12_p16_224.fb_dist_in1k,224,96.020,3.980,99.150,0.850,26.25,1.000,bicubic +efficientvit_b3.r224_in1k,224,96.020,3.980,98.920,1.080,48.65,0.950,bicubic +convnext_tiny_hnf.a2h_in1k,288,96.010,3.990,99.080,0.920,28.59,1.000,bicubic +regnety_040.ra3_in1k,288,96.000,4.000,99.200,0.800,20.65,1.000,bicubic +pvt_v2_b3.in1k,224,96.000,4.000,99.190,0.810,45.24,0.900,bicubic +maxvit_rmlp_nano_rw_256.sw_in1k,256,96.000,4.000,98.960,1.040,15.50,0.950,bicubic +convnext_nano.in12k_ft_in1k,288,95.990,4.010,99.310,0.690,15.59,1.000,bicubic +xcit_tiny_24_p16_384.fb_dist_in1k,384,95.990,4.010,99.230,0.770,12.12,1.000,bicubic +regnety_032.ra_in1k,288,95.990,4.010,99.190,0.810,19.44,1.000,bicubic +regnetx_320.tv2_in1k,224,95.990,4.010,99.100,0.900,107.81,0.965,bicubic +resnext101_32x8d.tv2_in1k,224,95.990,4.010,99.090,0.910,88.79,0.965,bilinear +sequencer2d_s.in1k,224,95.990,4.010,99.050,0.950,27.65,0.875,bicubic +hrnet_w18_ssld.paddle_in1k,288,95.980,4.020,99.290,0.710,21.30,1.000,bilinear +hgnetv2_b3.ssld_stage1_in22k_in1k,224,95.980,4.020,99.280,0.720,16.29,0.965,bicubic +efficientvit_b2.r288_in1k,288,95.980,4.020,99.200,0.800,24.33,1.000,bicubic +regnety_160.tv2_in1k,224,95.980,4.020,99.160,0.840,83.59,0.965,bicubic +swinv2_tiny_window16_256.ms_in1k,256,95.980,4.020,99.150,0.850,28.35,0.900,bicubic +regnetz_c16.ra3_in1k,320,95.980,4.020,99.100,0.900,13.46,1.000,bicubic +eca_nfnet_l0.ra2_in1k,288,95.970,4.030,99.210,0.790,24.14,1.000,bicubic +tresnet_xl.miil_in1k_448,448,95.970,4.030,99.120,0.880,78.44,0.875,bilinear +nest_small_jx.goog_in1k,224,95.970,4.030,99.040,0.960,38.35,0.875,bicubic +tf_efficientnet_b4.aa_in1k,380,95.950,4.050,99.170,0.830,19.34,0.922,bicubic +coatnet_rmlp_1_rw_224.sw_in1k,224,95.950,4.050,99.160,0.840,41.69,0.950,bicubic +cs3se_edgenet_x.c2ns_in1k,256,95.950,4.050,99.120,0.880,50.72,0.950,bicubic +convformer_s18.sail_in1k,224,95.950,4.050,98.890,1.110,26.77,1.000,bicubic +repvit_m1_5.dist_450e_in1k,224,95.930,4.070,99.160,0.840,14.64,0.950,bicubic +maxvit_nano_rw_256.sw_in1k,256,95.930,4.070,99.000,1.000,15.45,0.950,bicubic +hgnetv2_b3.ssld_stage2_ft_in1k,224,95.920,4.080,99.280,0.720,16.29,0.965,bicubic +coat_small.in1k,224,95.920,4.080,99.160,0.840,21.69,0.900,bicubic +fastvit_sa24.apple_in1k,256,95.910,4.090,99.160,0.840,21.55,0.900,bicubic +resnet101d.ra2_in1k,256,95.900,4.100,99.150,0.850,44.57,0.950,bicubic +convnextv2_nano.fcmae_ft_in1k,288,95.900,4.100,99.110,0.890,15.62,1.000,bicubic +regnety_080_tv.tv2_in1k,224,95.900,4.100,99.110,0.890,39.38,0.965,bicubic +regnetx_160.tv2_in1k,224,95.900,4.100,99.080,0.920,54.28,0.965,bicubic +mobilenetv4_conv_large.e500_r256_in1k,320,95.890,4.110,99.120,0.880,32.59,1.000,bicubic +tresnet_l.miil_in1k_448,448,95.890,4.110,99.110,0.890,55.99,0.875,bilinear +resnet152.a1h_in1k,224,95.890,4.110,99.080,0.920,60.19,0.950,bicubic +maxxvitv2_nano_rw_256.sw_in1k,256,95.890,4.110,99.040,0.960,23.70,0.950,bicubic +resnext50_32x4d.fb_swsl_ig1b_ft_in1k,224,95.880,4.120,99.250,0.750,25.03,0.875,bilinear +resnet51q.ra2_in1k,288,95.880,4.120,99.110,0.890,35.70,1.000,bilinear +mvitv2_tiny.fb_in1k,224,95.880,4.120,99.090,0.910,24.17,0.900,bicubic +swin_small_patch4_window7_224.ms_in1k,224,95.880,4.120,99.020,0.980,49.61,0.900,bicubic +cs3darknet_x.c2ns_in1k,288,95.870,4.130,99.190,0.810,35.05,1.000,bicubic +regnety_064.ra3_in1k,224,95.870,4.130,99.140,0.860,30.58,0.950,bicubic +cait_xxs36_384.fb_dist_in1k,384,95.870,4.130,99.090,0.910,17.37,1.000,bicubic +nextvit_small.bd_in1k,224,95.870,4.130,99.080,0.920,31.76,0.950,bicubic +resnest101e.in1k,256,95.850,4.150,99.210,0.790,48.28,0.875,bilinear +resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,224,95.850,4.150,99.170,0.830,194.03,0.875,bilinear +vit_large_patch32_384.orig_in21k_ft_in1k,384,95.840,4.160,99.160,0.840,306.63,1.000,bicubic +rexnet_300.nav_in1k,224,95.830,4.170,99.130,0.870,34.71,0.875,bicubic +sequencer2d_m.in1k,224,95.820,4.180,99.110,0.890,38.31,0.875,bicubic +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,256,95.820,4.180,99.100,0.900,11.07,0.950,bicubic +tf_efficientnet_b4.in1k,380,95.820,4.180,99.060,0.940,19.34,0.922,bicubic +hgnetv2_b2.ssld_stage1_in22k_in1k,288,95.810,4.190,99.270,0.730,11.22,1.000,bicubic +resnetaa50d.sw_in12k_ft_in1k,288,95.810,4.190,99.180,0.820,25.58,1.000,bicubic +rexnetr_200.sw_in12k_ft_in1k,224,95.810,4.190,99.170,0.830,16.52,0.950,bicubic +xcit_tiny_24_p8_224.fb_dist_in1k,224,95.800,4.200,99.210,0.790,12.11,1.000,bicubic +mobilenetv4_conv_large.e600_r384_in1k,384,95.800,4.200,99.060,0.940,32.59,0.950,bicubic +resnet61q.ra2_in1k,288,95.800,4.200,99.000,1.000,36.85,1.000,bicubic +twins_pcpvt_base.in1k,224,95.790,4.210,99.130,0.870,43.83,0.900,bicubic +convnext_tiny.fb_in1k,288,95.780,4.220,99.150,0.850,28.59,1.000,bicubic +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,320,95.770,4.230,99.150,0.850,11.07,1.000,bicubic +vit_relpos_base_patch16_clsgap_224.sw_in1k,224,95.770,4.230,99.040,0.960,86.43,0.900,bicubic +efficientnet_b4.ra2_in1k,320,95.760,4.240,99.160,0.840,19.34,0.875,bicubic +regnetv_040.ra3_in1k,224,95.750,4.250,99.220,0.780,20.64,0.950,bicubic +tf_efficientnet_b2.ns_jft_in1k,260,95.750,4.250,99.120,0.880,9.11,0.890,bicubic +poolformerv2_m48.sail_in1k,224,95.750,4.250,98.980,1.020,73.35,1.000,bicubic +ecaresnet101d_pruned.miil_in1k,288,95.740,4.260,99.180,0.820,24.88,0.950,bicubic +vit_little_patch16_reg4_gap_256.sbb_in1k,256,95.740,4.260,99.120,0.880,22.52,0.950,bicubic +gc_efficientnetv2_rw_t.agc_in1k,288,95.740,4.260,99.020,0.980,13.68,1.000,bicubic +tresnet_m.miil_in21k_ft_in1k,224,95.730,4.270,99.030,0.970,31.39,0.875,bilinear +seresnext50_32x4d.racm_in1k,288,95.720,4.280,99.190,0.810,27.56,0.950,bicubic +efficientnet_b3.ra2_in1k,320,95.720,4.280,99.040,0.960,12.23,1.000,bicubic +pnasnet5large.tf_in1k,331,95.720,4.280,98.920,1.080,86.06,0.911,bicubic +hgnet_tiny.ssld_in1k,224,95.710,4.290,99.260,0.740,14.74,0.965,bicubic +convnext_nano.in12k_ft_in1k,224,95.710,4.290,99.250,0.750,15.59,0.950,bicubic +resnext101_64x4d.c1_in1k,224,95.710,4.290,99.030,0.970,83.46,0.950,bicubic +regnetz_c16_evos.ch_in1k,256,95.700,4.300,99.230,0.770,13.49,0.950,bicubic +mobilevitv2_150.cvnets_in22k_ft_in1k_384,384,95.700,4.300,99.150,0.850,10.59,1.000,bicubic +coatnet_bn_0_rw_224.sw_in1k,224,95.700,4.300,99.060,0.940,27.44,0.950,bicubic +repvit_m1_5.dist_300e_in1k,224,95.700,4.300,98.990,1.010,14.64,0.950,bicubic +nasnetalarge.tf_in1k,331,95.700,4.300,98.910,1.090,88.75,0.911,bicubic +flexivit_small.600ep_in1k,240,95.690,4.310,99.080,0.920,22.06,0.950,bicubic +convnextv2_tiny.fcmae_ft_in1k,224,95.680,4.320,99.150,0.850,28.64,0.875,bicubic +xcit_tiny_24_p8_224.fb_in1k,224,95.680,4.320,99.060,0.940,12.11,1.000,bicubic +resnetv2_101.a1h_in1k,224,95.680,4.320,99.010,0.990,44.54,0.950,bicubic +efficientvit_b2.r256_in1k,256,95.670,4.330,99.060,0.940,24.33,1.000,bicubic +crossvit_15_dagger_240.in1k,240,95.670,4.330,98.810,1.190,28.21,0.875,bicubic +wide_resnet50_2.racm_in1k,288,95.660,4.340,99.230,0.770,68.88,0.950,bicubic +davit_tiny.msft_in1k,224,95.660,4.340,99.030,0.970,28.36,0.950,bicubic +hgnet_small.paddle_in1k,288,95.650,4.350,99.150,0.850,24.36,1.000,bicubic +resnetv2_50d_evos.ah_in1k,288,95.650,4.350,99.110,0.890,25.59,1.000,bicubic +vit_small_r26_s32_224.augreg_in21k_ft_in1k,224,95.640,4.360,99.190,0.810,36.43,0.900,bicubic +rdnet_tiny.nv_in1k,224,95.640,4.360,99.030,0.970,23.86,0.900,bicubic +poolformer_m48.sail_in1k,224,95.640,4.360,98.950,1.050,73.47,0.950,bicubic +cs3sedarknet_x.c2ns_in1k,256,95.630,4.370,98.980,1.020,35.40,0.887,bicubic +pit_b_224.in1k,224,95.630,4.370,98.670,1.330,73.76,0.900,bicubic +crossvit_18_dagger_240.in1k,240,95.620,4.380,99.050,0.950,44.27,0.875,bicubic +efficientformer_l3.snap_dist_in1k,224,95.610,4.390,99.180,0.820,31.41,0.950,bicubic +efficientnetv2_rw_t.ra2_in1k,288,95.610,4.390,99.070,0.930,13.65,1.000,bicubic +hiera_tiny_224.mae_in1k_ft_in1k,224,95.600,4.400,98.870,1.130,27.91,0.900,bicubic +gcvit_xtiny.in1k,224,95.590,4.410,99.030,0.970,19.98,0.875,bicubic +vit_relpos_base_patch16_224.sw_in1k,224,95.590,4.410,99.030,0.970,86.43,0.900,bicubic +pvt_v2_b2_li.in1k,224,95.590,4.410,98.990,1.010,22.55,0.900,bicubic +flexivit_small.1200ep_in1k,240,95.560,4.440,99.120,0.880,22.06,0.950,bicubic +regnety_040.ra3_in1k,224,95.560,4.440,99.050,0.950,20.65,0.950,bicubic +xception41p.ra3_in1k,299,95.560,4.440,98.930,1.070,26.91,0.940,bicubic +coat_lite_small.in1k,224,95.560,4.440,98.880,1.120,19.84,0.900,bicubic +wide_resnet101_2.tv2_in1k,224,95.550,4.450,99.090,0.910,126.89,0.965,bilinear +tiny_vit_11m_224.in1k,224,95.550,4.450,98.990,1.010,11.00,0.950,bicubic +convit_base.fb_in1k,224,95.550,4.450,98.890,1.110,86.54,0.875,bicubic +vit_base_patch32_clip_224.laion2b_ft_in1k,224,95.550,4.450,98.870,1.130,88.22,0.900,bicubic +hgnetv2_b2.ssld_stage2_ft_in1k,224,95.540,4.460,99.180,0.820,11.22,0.965,bicubic +ecaresnet101d.miil_in1k,224,95.540,4.460,99.140,0.860,44.57,0.875,bicubic +levit_384.fb_dist_in1k,224,95.540,4.460,99.050,0.950,39.13,0.900,bicubic +levit_conv_384.fb_dist_in1k,224,95.540,4.460,99.050,0.950,39.13,0.900,bicubic +convnext_tiny.fb_in1k,224,95.540,4.460,99.000,1.000,28.59,0.875,bicubic +xcit_small_24_p16_224.fb_in1k,224,95.540,4.460,98.760,1.240,47.67,1.000,bicubic +convnextv2_nano.fcmae_ft_in22k_in1k,224,95.530,4.470,99.120,0.880,15.62,0.875,bicubic +resnet152.tv2_in1k,224,95.530,4.470,98.960,1.040,60.19,0.965,bilinear +ecaresnet50t.ra2_in1k,320,95.520,4.480,99.120,0.880,25.57,0.950,bicubic +vit_relpos_medium_patch16_rpn_224.sw_in1k,224,95.520,4.480,99.080,0.920,38.73,0.900,bicubic +convnext_tiny_hnf.a2h_in1k,224,95.520,4.480,99.010,0.990,28.59,0.950,bicubic +regnetz_c16.ra3_in1k,256,95.520,4.480,98.970,1.030,13.46,0.940,bicubic +flexivit_small.300ep_in1k,240,95.520,4.480,98.960,1.040,22.06,0.950,bicubic +xcit_medium_24_p16_224.fb_in1k,224,95.520,4.480,98.760,1.240,84.40,1.000,bicubic +cs3edgenet_x.c2_in1k,256,95.510,4.490,99.030,0.970,47.82,0.887,bicubic +swinv2_tiny_window8_256.ms_in1k,256,95.500,4.500,99.120,0.880,28.35,0.900,bicubic +fbnetv3_g.ra2_in1k,288,95.500,4.500,98.990,1.010,16.62,0.950,bilinear +pvt_v2_b2.in1k,224,95.500,4.500,98.990,1.010,25.36,0.900,bicubic +resnetv2_50d_gn.ah_in1k,288,95.500,4.500,98.980,1.020,25.57,1.000,bicubic +visformer_small.in1k,224,95.500,4.500,98.900,1.100,40.22,0.900,bicubic +crossvit_base_240.in1k,240,95.500,4.500,98.820,1.180,105.03,0.875,bicubic +swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,224,95.490,4.510,99.220,0.780,28.29,0.900,bicubic +focalnet_tiny_srf.ms_in1k,224,95.490,4.510,99.140,0.860,28.43,0.900,bicubic +resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,224,95.490,4.510,99.110,0.890,88.79,0.875,bilinear +ecaresnet50d.miil_in1k,288,95.490,4.510,99.090,0.910,25.58,0.950,bicubic +resnet51q.ra2_in1k,256,95.490,4.510,98.990,1.010,35.70,0.875,bilinear +vit_relpos_medium_patch16_cls_224.sw_in1k,224,95.490,4.510,98.950,1.050,38.76,0.900,bicubic +resnet101.a1_in1k,288,95.490,4.510,98.850,1.150,44.55,1.000,bicubic +crossvit_18_240.in1k,240,95.490,4.510,98.800,1.200,43.27,0.875,bicubic +resnet152.a2_in1k,288,95.490,4.510,98.790,1.210,60.19,1.000,bicubic +resnet152.a1_in1k,288,95.490,4.510,98.770,1.230,60.19,1.000,bicubic +resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,224,95.480,4.520,99.100,0.900,44.18,0.875,bilinear +focalnet_tiny_lrf.ms_in1k,224,95.480,4.520,98.940,1.060,28.65,0.900,bicubic +resnet50.fb_swsl_ig1b_ft_in1k,224,95.470,4.530,99.330,0.670,25.56,0.875,bilinear +inception_next_tiny.sail_in1k,224,95.470,4.530,99.010,0.990,28.06,0.875,bicubic +vit_relpos_medium_patch16_224.sw_in1k,224,95.470,4.530,98.960,1.040,38.75,0.900,bicubic +mobilenetv4_hybrid_medium.e500_r224_in1k,256,95.470,4.530,98.880,1.120,11.07,1.000,bicubic +ecaresnet50t.a1_in1k,288,95.460,4.540,99.020,0.980,25.57,1.000,bicubic +coatnet_0_rw_224.sw_in1k,224,95.460,4.540,98.720,1.280,27.44,0.950,bicubic +xcit_large_24_p16_224.fb_in1k,224,95.460,4.540,98.630,1.370,189.10,1.000,bicubic +tresnet_xl.miil_in1k,224,95.440,4.560,99.060,0.940,78.44,0.875,bilinear +coatnet_rmlp_nano_rw_224.sw_in1k,224,95.440,4.560,98.990,1.010,15.15,0.900,bicubic +deit_base_patch16_224.fb_in1k,224,95.440,4.560,98.840,1.160,86.57,0.900,bicubic +resnext50_32x4d.a1h_in1k,288,95.440,4.560,98.840,1.160,25.03,1.000,bicubic +nfnet_l0.ra2_in1k,224,95.430,4.570,99.090,0.910,35.07,0.900,bicubic +convnextv2_nano.fcmae_ft_in1k,224,95.430,4.570,98.980,1.020,15.62,0.875,bicubic +poolformerv2_m36.sail_in1k,224,95.430,4.570,98.880,1.120,56.08,1.000,bicubic +xcit_small_12_p16_224.fb_in1k,224,95.430,4.570,98.840,1.160,26.25,1.000,bicubic +edgenext_small.usi_in1k,320,95.420,4.580,99.100,0.900,5.59,1.000,bicubic +resnetrs101.tf_in1k,288,95.420,4.580,99.030,0.970,63.62,0.940,bicubic +halo2botnet50ts_256.a1h_in1k,256,95.420,4.580,99.020,0.980,22.64,0.950,bicubic +resnet101.a2_in1k,288,95.420,4.580,98.930,1.070,44.55,1.000,bicubic +vit_small_patch16_224.augreg_in21k_ft_in1k,224,95.410,4.590,99.130,0.870,22.05,0.900,bicubic +cs3darknet_x.c2ns_in1k,256,95.410,4.590,99.020,0.980,35.05,0.950,bicubic +coatnext_nano_rw_224.sw_in1k,224,95.410,4.590,99.000,1.000,14.70,0.900,bicubic +poolformer_m36.sail_in1k,224,95.410,4.590,98.840,1.160,56.17,0.950,bicubic +regnety_032.ra_in1k,224,95.400,4.600,99.080,0.920,19.44,0.950,bicubic +vit_base_patch16_rpn_224.sw_in1k,224,95.390,4.610,98.950,1.050,86.54,0.900,bicubic +efficientformerv2_s2.snap_dist_in1k,224,95.380,4.620,98.950,1.050,12.71,0.950,bicubic +dm_nfnet_f0.dm_in1k,192,95.380,4.620,98.920,1.080,71.49,0.900,bicubic +resnet101.a1h_in1k,224,95.370,4.630,98.860,1.140,44.55,0.950,bicubic +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,256,95.370,4.630,98.810,1.190,11.07,0.950,bicubic +hrnet_w18_ssld.paddle_in1k,224,95.360,4.640,99.070,0.930,21.30,0.950,bilinear +resnext101_32x8d.tv2_in1k,176,95.360,4.640,99.050,0.950,88.79,0.875,bilinear +resnetaa50d.sw_in12k_ft_in1k,224,95.360,4.640,98.980,1.020,25.58,0.950,bicubic +mixer_b16_224.miil_in21k_ft_in1k,224,95.360,4.640,98.870,1.130,59.88,0.875,bilinear +ecaresnet50t.a2_in1k,288,95.350,4.650,98.930,1.070,25.57,1.000,bicubic +tf_efficientnet_b3.ap_in1k,300,95.350,4.650,98.900,1.100,12.23,0.904,bicubic +convnext_nano.d1h_in1k,288,95.350,4.650,98.850,1.150,15.59,1.000,bicubic +vit_base_patch16_224.orig_in21k_ft_in1k,224,95.340,4.660,99.010,0.990,86.57,0.900,bicubic +tf_efficientnetv2_b3.in21k_ft_in1k,240,95.340,4.660,98.970,1.030,14.36,0.900,bicubic +resnet61q.ra2_in1k,256,95.340,4.660,98.900,1.100,36.85,0.900,bicubic +seresnet50.ra2_in1k,288,95.330,4.670,99.010,0.990,28.09,0.950,bicubic +swinv2_cr_tiny_ns_224.sw_in1k,224,95.330,4.670,98.940,1.060,28.33,0.900,bicubic +poolformerv2_s36.sail_in1k,224,95.330,4.670,98.900,1.100,30.79,1.000,bicubic +cs3sedarknet_l.c2ns_in1k,288,95.320,4.680,99.140,0.860,21.91,0.950,bicubic +resnet50d.ra4_e3600_r224_in1k,288,95.320,4.680,98.970,1.030,25.58,1.000,bicubic +efficientnet_b1.ra4_e3600_r240_in1k,288,95.320,4.680,98.820,1.180,7.79,1.000,bicubic +efficientvit_b2.r224_in1k,224,95.310,4.690,98.790,1.210,24.33,0.950,bicubic +regnety_032.tv2_in1k,224,95.300,4.700,98.930,1.070,19.44,0.965,bicubic +eca_nfnet_l0.ra2_in1k,224,95.290,4.710,99.100,0.900,24.14,0.900,bicubic +ecaresnetlight.miil_in1k,288,95.290,4.710,99.040,0.960,30.16,0.950,bicubic +vit_small_patch16_384.augreg_in1k,384,95.290,4.710,99.010,0.990,22.20,1.000,bicubic +resnet101.tv2_in1k,224,95.290,4.710,98.930,1.070,44.55,0.965,bilinear +resnet50_gn.a1h_in1k,288,95.280,4.720,99.000,1.000,25.56,0.950,bicubic +gcresnet50t.ra2_in1k,288,95.280,4.720,98.910,1.090,25.90,1.000,bicubic +tresnet_l.miil_in1k,224,95.270,4.730,99.010,0.990,55.99,0.875,bilinear +nest_tiny_jx.goog_in1k,224,95.260,4.740,98.970,1.030,17.06,0.875,bicubic +cait_xxs24_384.fb_dist_in1k,384,95.260,4.740,98.960,1.040,12.03,1.000,bicubic +convnextv2_pico.fcmae_ft_in1k,288,95.250,4.750,98.930,1.070,9.07,0.950,bicubic +mobilevitv2_175.cvnets_in22k_ft_in1k,256,95.250,4.750,98.800,1.200,14.25,0.888,bicubic +repvit_m3.dist_in1k,224,95.240,4.760,99.060,0.940,10.68,0.950,bicubic +vit_srelpos_medium_patch16_224.sw_in1k,224,95.240,4.760,98.980,1.020,38.74,0.900,bicubic +resnetaa50.a1h_in1k,288,95.240,4.760,98.910,1.090,25.56,1.000,bicubic +coatnet_nano_rw_224.sw_in1k,224,95.240,4.760,98.870,1.130,15.14,0.900,bicubic +twins_pcpvt_small.in1k,224,95.230,4.770,98.880,1.120,24.11,0.900,bicubic +hgnetv2_b2.ssld_stage1_in22k_in1k,224,95.220,4.780,99.080,0.920,11.22,0.965,bicubic +twins_svt_small.in1k,224,95.220,4.780,98.880,1.120,24.06,0.900,bicubic +efficientnet_b3.ra2_in1k,288,95.190,4.810,99.040,0.960,12.23,0.875,bicubic +swin_s3_tiny_224.ms_in1k,224,95.190,4.810,98.960,1.040,28.33,0.900,bicubic +vit_relpos_small_patch16_224.sw_in1k,224,95.190,4.810,98.950,1.050,21.98,0.900,bicubic +convit_small.fb_in1k,224,95.190,4.810,98.930,1.070,27.78,0.875,bicubic +pit_s_distilled_224.in1k,224,95.180,4.820,98.880,1.120,24.04,0.900,bicubic +tf_efficientnetv2_b3.in1k,300,95.180,4.820,98.830,1.170,14.36,0.904,bicubic +regnetz_b16.ra3_in1k,288,95.170,4.830,99.080,0.920,9.72,1.000,bicubic +mobilevitv2_200.cvnets_in22k_ft_in1k,256,95.170,4.830,98.920,1.080,18.45,0.888,bicubic +swin_tiny_patch4_window7_224.ms_in1k,224,95.170,4.830,98.860,1.140,28.29,0.900,bicubic +xcit_tiny_12_p16_384.fb_dist_in1k,384,95.160,4.840,99.000,1.000,6.72,1.000,bicubic +cs3darknet_focus_l.c2ns_in1k,288,95.160,4.840,98.960,1.040,21.15,0.950,bicubic +lamhalobotnet50ts_256.a1h_in1k,256,95.160,4.840,98.850,1.150,22.57,0.950,bicubic +tf_efficientnet_b1.ns_jft_in1k,240,95.150,4.850,99.090,0.910,7.79,0.882,bicubic +mobilevitv2_150.cvnets_in22k_ft_in1k,256,95.150,4.850,98.830,1.170,10.59,0.888,bicubic +cs3darknet_l.c2ns_in1k,288,95.140,4.860,98.990,1.010,21.16,0.950,bicubic +halonet50ts.a1h_in1k,256,95.140,4.860,98.780,1.220,22.73,0.940,bicubic +resnet152.a1_in1k,224,95.140,4.860,98.410,1.590,60.19,0.950,bicubic +crossvit_15_240.in1k,240,95.130,4.870,98.940,1.060,27.53,0.875,bicubic +fastvit_sa12.apple_dist_in1k,256,95.130,4.870,98.810,1.190,11.58,0.900,bicubic +efficientnet_el.ra_in1k,300,95.120,4.880,98.990,1.010,10.59,0.904,bicubic +vit_base_patch32_clip_224.openai_ft_in1k,224,95.120,4.880,98.990,1.010,88.22,0.900,bicubic +hgnet_small.paddle_in1k,224,95.110,4.890,99.030,0.970,24.36,0.965,bicubic +ecaresnet50d_pruned.miil_in1k,288,95.110,4.890,98.930,1.070,19.94,0.950,bicubic +gernet_l.idstcv_in1k,256,95.110,4.890,98.910,1.090,31.08,0.875,bilinear +poolformer_s36.sail_in1k,224,95.110,4.890,98.900,1.100,30.86,0.900,bicubic +regnetx_080.tv2_in1k,224,95.110,4.890,98.810,1.190,39.57,0.965,bicubic +convnext_nano_ols.d1h_in1k,288,95.110,4.890,98.710,1.290,15.65,1.000,bicubic +legacy_senet154.in1k,224,95.100,4.900,98.830,1.170,115.09,0.875,bilinear +mobilenetv4_conv_large.e500_r256_in1k,256,95.090,4.910,98.950,1.050,32.59,0.950,bicubic +xcit_tiny_12_p8_224.fb_dist_in1k,224,95.090,4.910,98.930,1.070,6.71,1.000,bicubic +convmixer_1536_20.in1k,224,95.080,4.920,99.030,0.970,51.63,0.960,bicubic +wide_resnet50_2.racm_in1k,224,95.080,4.920,98.970,1.030,68.88,0.875,bicubic +ecaresnet101d_pruned.miil_in1k,224,95.070,4.930,98.990,1.010,24.88,0.875,bicubic +vit_small_patch32_384.augreg_in21k_ft_in1k,384,95.070,4.930,98.980,1.020,22.92,1.000,bicubic +vit_srelpos_small_patch16_224.sw_in1k,224,95.070,4.930,98.950,1.050,21.97,0.900,bicubic +resnet152s.gluon_in1k,224,95.060,4.940,98.930,1.070,60.32,0.875,bicubic +tnt_s_patch16_224,224,95.060,4.940,98.840,1.160,23.76,0.900,bicubic +tiny_vit_5m_224.dist_in22k_ft_in1k,224,95.050,4.950,98.980,1.020,5.39,0.950,bicubic +seresnet33ts.ra2_in1k,288,95.040,4.960,98.900,1.100,19.78,1.000,bicubic +gc_efficientnetv2_rw_t.agc_in1k,224,95.040,4.960,98.840,1.160,13.68,1.000,bicubic +resnetv2_50x1_bit.goog_in21k_ft_in1k,448,95.030,4.970,99.060,0.940,25.55,1.000,bilinear +seresnext50_32x4d.racm_in1k,224,95.030,4.970,98.890,1.110,27.56,0.875,bicubic +levit_256.fb_dist_in1k,224,95.030,4.970,98.870,1.130,18.89,0.900,bicubic +levit_conv_256.fb_dist_in1k,224,95.030,4.970,98.870,1.130,18.89,0.900,bicubic +fbnetv3_g.ra2_in1k,240,95.030,4.970,98.800,1.200,16.62,0.950,bilinear +vit_base_patch32_224.augreg_in21k_ft_in1k,224,95.010,4.990,99.020,0.980,88.22,0.900,bicubic +resnet50d.ra2_in1k,288,95.010,4.990,98.970,1.030,25.58,0.950,bicubic +tf_efficientnet_b3.aa_in1k,300,95.010,4.990,98.910,1.090,12.23,0.904,bicubic +mobilenetv4_conv_medium.e500_r256_in1k,320,95.000,5.000,98.900,1.100,9.72,1.000,bicubic +coat_mini.in1k,224,95.000,5.000,98.780,1.220,10.34,0.900,bicubic +deit3_small_patch16_224.fb_in1k,224,95.000,5.000,98.460,1.540,22.06,0.900,bicubic +tresnet_m.miil_in1k_448,448,94.980,5.020,98.980,1.020,31.39,0.875,bilinear +efficientnetv2_rw_t.ra2_in1k,224,94.980,5.020,98.750,1.250,13.65,1.000,bicubic +rexnet_200.nav_in1k,224,94.970,5.030,98.990,1.010,16.37,0.875,bicubic +resnetv2_50d_evos.ah_in1k,224,94.970,5.030,98.750,1.250,25.59,0.950,bicubic +resnest50d_4s2x40d.in1k,224,94.960,5.040,99.070,0.930,30.42,0.875,bicubic +hgnet_tiny.paddle_in1k,288,94.960,5.040,99.060,0.940,14.74,1.000,bicubic +vit_base_patch16_384.augreg_in1k,384,94.960,5.040,98.910,1.090,86.86,1.000,bicubic +eva02_tiny_patch14_336.mim_in22k_ft_in1k,336,94.960,5.040,98.870,1.130,5.76,1.000,bicubic +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,256,94.960,5.040,98.820,1.180,8.46,0.950,bicubic +resnet50.d_in1k,288,94.960,5.040,98.820,1.180,25.56,1.000,bicubic +mobilenet_edgetpu_v2_m,256,94.960,5.040,98.810,1.190,8.46,0.950,bicubic +edgenext_small.usi_in1k,256,94.950,5.050,98.960,1.040,5.59,0.950,bicubic +resnet152.a2_in1k,224,94.950,5.050,98.570,1.430,60.19,0.950,bicubic +seresnext101_64x4d.gluon_in1k,224,94.940,5.060,98.800,1.200,88.23,0.875,bicubic +senet154.gluon_in1k,224,94.930,5.070,98.770,1.230,115.09,0.875,bicubic +convnext_nano.d1h_in1k,224,94.930,5.070,98.670,1.330,15.59,0.950,bicubic +gcresnet33ts.ra2_in1k,288,94.920,5.080,98.880,1.120,19.88,1.000,bicubic +seresnext101_32x4d.gluon_in1k,224,94.920,5.080,98.780,1.220,48.96,0.875,bicubic +tf_efficientnet_lite4.in1k,380,94.890,5.110,99.020,0.980,13.01,0.920,bilinear +repvit_m1_1.dist_450e_in1k,224,94.890,5.110,98.920,1.080,8.80,0.950,bicubic +ese_vovnet39b.ra_in1k,288,94.890,5.110,98.910,1.090,24.57,0.950,bicubic +fastvit_sa12.apple_in1k,256,94.890,5.110,98.860,1.140,11.58,0.900,bicubic +resnet50.c2_in1k,288,94.890,5.110,98.810,1.190,25.56,1.000,bicubic +resmlp_36_224.fb_distilled_in1k,224,94.880,5.120,98.870,1.130,44.69,0.875,bicubic +wide_resnet50_2.tv2_in1k,224,94.870,5.130,98.960,1.040,68.88,0.965,bilinear +cs3sedarknet_l.c2ns_in1k,256,94.870,5.130,98.900,1.100,21.91,0.887,bicubic +mobilevitv2_175.cvnets_in1k,256,94.870,5.130,98.870,1.130,14.25,0.888,bicubic +mobilenetv4_conv_blur_medium.e500_r224_in1k,256,94.870,5.130,98.810,1.190,9.72,1.000,bicubic +fastvit_s12.apple_dist_in1k,256,94.870,5.130,98.770,1.230,9.47,0.900,bicubic +convnext_tiny.fb_in22k_ft_in1k,288,94.870,5.130,98.550,1.450,28.59,1.000,bicubic +gcresnext50ts.ch_in1k,288,94.860,5.140,98.850,1.150,15.67,1.000,bicubic +seresnet33ts.ra2_in1k,256,94.860,5.140,98.810,1.190,19.78,0.900,bicubic +resnet50.b1k_in1k,288,94.860,5.140,98.800,1.200,25.56,1.000,bicubic +gcresnet50t.ra2_in1k,256,94.860,5.140,98.790,1.210,25.90,0.900,bicubic +mobilevitv2_200.cvnets_in1k,256,94.860,5.140,98.720,1.280,18.45,0.888,bicubic +mobilenetv4_hybrid_medium.e500_r224_in1k,224,94.860,5.140,98.680,1.320,11.07,0.950,bicubic +crossvit_small_240.in1k,240,94.850,5.150,99.020,0.980,26.86,0.875,bicubic +resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,224,94.850,5.150,98.880,1.120,25.03,0.875,bilinear +res2net101d.in1k,224,94.840,5.160,98.780,1.220,45.23,0.875,bilinear +efficientnet_b1.ra4_e3600_r240_in1k,240,94.840,5.160,98.710,1.290,7.79,0.900,bicubic +resnext50_32x4d.a1_in1k,288,94.840,5.160,98.620,1.380,25.03,1.000,bicubic +lambda_resnet50ts.a1h_in1k,256,94.840,5.160,98.470,1.530,21.54,0.950,bicubic +ecaresnet50t.ra2_in1k,256,94.830,5.170,98.910,1.090,25.57,0.875,bicubic +resnest50d.in1k,224,94.830,5.170,98.870,1.130,27.48,0.875,bilinear +resnetv2_50.a1h_in1k,288,94.830,5.170,98.870,1.130,25.55,1.000,bicubic +cspresnext50.ra_in1k,256,94.830,5.170,98.730,1.270,20.57,0.887,bilinear +resnet152d.gluon_in1k,224,94.820,5.180,98.760,1.240,60.21,0.875,bicubic +resnet50.a1_in1k,288,94.800,5.200,98.750,1.250,25.56,1.000,bicubic +vit_wee_patch16_reg1_gap_256.sbb_in1k,256,94.790,5.210,98.940,1.060,13.42,0.950,bicubic +resnet50.c1_in1k,288,94.790,5.210,98.920,1.080,25.56,1.000,bicubic +sehalonet33ts.ra2_in1k,256,94.790,5.210,98.570,1.430,13.69,0.940,bicubic +resnet50.a1h_in1k,224,94.770,5.230,98.680,1.320,25.56,1.000,bicubic +resnest50d_1s4x24d.in1k,224,94.760,5.240,98.980,1.020,25.68,0.875,bicubic +repvit_m1_1.dist_300e_in1k,224,94.760,5.240,98.930,1.070,8.80,0.950,bicubic +mobilenetv4_conv_medium.e500_r224_in1k,256,94.760,5.240,98.860,1.140,9.72,1.000,bicubic +ecaresnetlight.miil_in1k,224,94.760,5.240,98.800,1.200,30.16,0.875,bicubic +convnext_pico.d1_in1k,288,94.750,5.250,98.700,1.300,9.05,0.950,bicubic +resnetv2_50d_gn.ah_in1k,224,94.750,5.250,98.680,1.320,25.57,0.950,bicubic +repvit_m2.dist_in1k,224,94.750,5.250,98.670,1.330,8.80,0.950,bicubic +resnet50d.a1_in1k,288,94.750,5.250,98.470,1.530,25.58,1.000,bicubic +resnet101s.gluon_in1k,224,94.740,5.260,98.820,1.180,44.67,0.875,bicubic +haloregnetz_b.ra3_in1k,224,94.740,5.260,98.680,1.320,11.68,0.940,bicubic +convnext_nano_ols.d1h_in1k,224,94.740,5.260,98.620,1.380,15.65,0.950,bicubic +resnet152.a3_in1k,224,94.720,5.280,98.690,1.310,60.19,0.950,bicubic +deit_small_distilled_patch16_224.fb_in1k,224,94.710,5.290,99.020,0.980,22.44,0.900,bicubic +resnet50.b2k_in1k,288,94.710,5.290,98.820,1.180,25.56,1.000,bicubic +resnext50_32x4d.ra_in1k,288,94.700,5.300,98.760,1.240,25.03,0.950,bicubic +resnetrs101.tf_in1k,192,94.700,5.300,98.710,1.290,63.62,0.940,bicubic +resnet101.a2_in1k,224,94.700,5.300,98.640,1.360,44.55,0.950,bicubic +maxvit_rmlp_pico_rw_256.sw_in1k,256,94.690,5.310,98.800,1.200,7.52,0.950,bicubic +xcit_tiny_12_p8_224.fb_in1k,224,94.680,5.320,98.840,1.160,6.71,1.000,bicubic +edgenext_small_rw.sw_in1k,320,94.680,5.320,98.820,1.180,7.83,1.000,bicubic +seresnet50.a2_in1k,288,94.680,5.320,98.780,1.220,28.09,1.000,bicubic +ecaresnet50t.a1_in1k,224,94.680,5.320,98.580,1.420,25.57,0.950,bicubic +cspdarknet53.ra_in1k,256,94.670,5.330,98.800,1.200,27.64,0.887,bilinear +seresnet50.a1_in1k,288,94.670,5.330,98.720,1.280,28.09,1.000,bicubic +resnext101_64x4d.gluon_in1k,224,94.670,5.330,98.650,1.350,83.46,0.875,bicubic +regnetx_032.tv2_in1k,224,94.660,5.340,98.840,1.160,15.30,0.965,bicubic +cs3darknet_focus_l.c2ns_in1k,256,94.660,5.340,98.810,1.190,21.15,0.887,bicubic +resnet50.tv2_in1k,224,94.660,5.340,98.780,1.220,25.56,0.965,bilinear +pit_s_224.in1k,224,94.660,5.340,98.720,1.280,23.46,0.900,bicubic +eca_resnet33ts.ra2_in1k,288,94.650,5.350,98.890,1.110,19.68,1.000,bicubic +gernet_m.idstcv_in1k,224,94.650,5.350,98.860,1.140,21.14,0.875,bilinear +poolformerv2_s24.sail_in1k,224,94.650,5.350,98.830,1.170,21.34,1.000,bicubic +resnet50.a2_in1k,288,94.650,5.350,98.660,1.340,25.56,1.000,bicubic +resmlp_big_24_224.fb_in1k,224,94.650,5.350,98.510,1.490,129.14,0.875,bicubic +sebotnet33ts_256.a1h_in1k,256,94.650,5.350,98.490,1.510,13.70,0.940,bicubic +vit_pwee_patch16_reg1_gap_256.sbb_in1k,256,94.640,5.360,98.780,1.220,15.25,0.950,bicubic +convnext_pico_ols.d1_in1k,288,94.640,5.360,98.770,1.230,9.06,1.000,bicubic +tf_efficientnet_b3.in1k,300,94.640,5.360,98.770,1.230,12.23,0.904,bicubic +ecaresnet50d.miil_in1k,224,94.630,5.370,98.880,1.120,25.58,0.875,bicubic +resnet50d.ra4_e3600_r224_in1k,224,94.630,5.370,98.700,1.300,25.58,0.950,bicubic +resnetaa50.a1h_in1k,224,94.630,5.370,98.580,1.420,25.56,0.950,bicubic +darknet53.c2ns_in1k,288,94.620,5.380,98.900,1.100,41.61,1.000,bicubic +nf_resnet50.ra2_in1k,288,94.620,5.380,98.810,1.190,25.56,0.940,bicubic +fastvit_t12.apple_dist_in1k,256,94.620,5.380,98.800,1.200,7.55,0.900,bicubic +resnext50_32x4d.tv2_in1k,224,94.620,5.380,98.780,1.220,25.03,0.965,bilinear +efficientnet_b3_pruned.in1k,300,94.620,5.380,98.750,1.250,9.86,0.904,bicubic +efficientnet_b2.ra_in1k,288,94.620,5.380,98.710,1.290,9.11,1.000,bicubic +tresnet_m.miil_in1k,224,94.620,5.380,98.560,1.440,31.39,0.875,bilinear +regnety_320.pycls_in1k,224,94.590,5.410,98.850,1.150,145.05,0.875,bicubic +resnet50d.a2_in1k,288,94.590,5.410,98.670,1.330,25.58,1.000,bicubic +poolformer_s24.sail_in1k,224,94.580,5.420,98.900,1.100,21.39,0.900,bicubic +hgnetv2_b1.ssld_stage1_in22k_in1k,288,94.580,5.420,98.880,1.120,6.34,1.000,bicubic +regnety_016.tv2_in1k,224,94.580,5.420,98.840,1.160,11.20,0.965,bicubic +tf_efficientnetv2_b3.in1k,240,94.580,5.420,98.660,1.340,14.36,0.904,bicubic +hgnetv2_b1.ssld_stage2_ft_in1k,288,94.570,5.430,98.960,1.040,6.34,1.000,bicubic +inception_resnet_v2.tf_in1k,299,94.570,5.430,98.800,1.200,55.84,0.897,bicubic +seresnet50.ra2_in1k,224,94.570,5.430,98.760,1.240,28.09,0.875,bicubic +regnetz_b16.ra3_in1k,224,94.560,5.440,98.880,1.120,9.72,0.940,bicubic +resnext50_32x4d.a2_in1k,288,94.560,5.440,98.640,1.360,25.03,1.000,bicubic +cs3darknet_l.c2ns_in1k,256,94.550,5.450,98.910,1.090,21.16,0.887,bicubic +repvgg_b3.rvgg_in1k,224,94.550,5.450,98.780,1.220,123.09,0.875,bilinear +repvit_m1_0.dist_450e_in1k,224,94.540,5.460,98.880,1.120,7.30,0.950,bicubic +resnext50d_32x4d.bt_in1k,288,94.540,5.460,98.690,1.310,25.05,0.950,bicubic +resnext50_32x4d.a1h_in1k,224,94.540,5.460,98.600,1.400,25.03,0.950,bicubic +xcit_tiny_24_p16_224.fb_dist_in1k,224,94.530,5.470,98.800,1.200,12.12,1.000,bicubic +mobilevitv2_150.cvnets_in1k,256,94.530,5.470,98.720,1.280,10.59,0.888,bicubic +gcresnext50ts.ch_in1k,256,94.530,5.470,98.700,1.300,15.67,0.900,bicubic +resnext101_32x4d.gluon_in1k,224,94.530,5.470,98.630,1.370,44.18,0.875,bicubic +resnet101.a1_in1k,224,94.530,5.470,98.520,1.480,44.55,0.950,bicubic +repvgg_b3g4.rvgg_in1k,224,94.520,5.480,98.960,1.040,83.83,0.875,bilinear +regnety_120.pycls_in1k,224,94.520,5.480,98.820,1.180,51.82,0.875,bicubic +darknetaa53.c2ns_in1k,288,94.520,5.480,98.760,1.240,36.02,1.000,bilinear +resnet50.ram_in1k,288,94.520,5.480,98.670,1.330,25.56,0.950,bicubic +convmixer_768_32.in1k,224,94.500,5.500,98.850,1.150,21.11,0.960,bicubic +efficientformer_l1.snap_dist_in1k,224,94.500,5.500,98.820,1.180,12.29,0.950,bicubic +gcresnet33ts.ra2_in1k,256,94.500,5.500,98.780,1.220,19.88,0.900,bicubic +ecaresnet50t.a2_in1k,224,94.500,5.500,98.640,1.360,25.57,0.950,bicubic +tf_efficientnet_b2.ap_in1k,260,94.500,5.500,98.640,1.360,9.11,0.890,bicubic +resnet50.fb_ssl_yfcc100m_ft_in1k,224,94.490,5.510,98.920,1.080,25.56,0.875,bilinear +rexnet_150.nav_in1k,224,94.480,5.520,98.790,1.210,9.73,0.875,bicubic +efficientvit_b1.r288_in1k,288,94.480,5.520,98.550,1.450,9.10,1.000,bicubic +resnetblur50.bt_in1k,288,94.470,5.530,98.780,1.220,25.56,0.950,bicubic +wide_resnet101_2.tv2_in1k,176,94.470,5.530,98.680,1.320,126.89,0.875,bilinear +convnextv2_pico.fcmae_ft_in1k,224,94.460,5.540,98.620,1.380,9.07,0.875,bicubic +resmlp_24_224.fb_distilled_in1k,224,94.450,5.550,98.770,1.230,30.02,0.875,bicubic +resnetv2_50.a1h_in1k,224,94.450,5.550,98.710,1.290,25.55,0.950,bicubic +regnetx_320.pycls_in1k,224,94.440,5.560,98.730,1.270,107.81,0.875,bicubic +deit_small_patch16_224.fb_in1k,224,94.430,5.570,98.700,1.300,22.05,0.900,bicubic +tf_efficientnetv2_b2.in1k,260,94.430,5.570,98.590,1.410,10.10,0.890,bicubic +resnet50.a1_in1k,224,94.410,5.590,98.430,1.570,25.56,0.950,bicubic +tf_efficientnet_el.in1k,300,94.400,5.600,98.710,1.290,10.59,0.904,bicubic +ecaresnet50t.a3_in1k,224,94.400,5.600,98.670,1.330,25.57,0.950,bicubic +tf_efficientnet_b2.aa_in1k,260,94.400,5.600,98.600,1.400,9.11,0.890,bicubic +gcvit_xxtiny.in1k,224,94.380,5.620,98.890,1.110,12.00,0.875,bicubic +regnety_160.pycls_in1k,224,94.380,5.620,98.830,1.170,83.59,0.875,bicubic +efficientnet_el_pruned.in1k,300,94.380,5.620,98.750,1.250,10.59,0.904,bicubic +inception_v4.tf_in1k,299,94.380,5.620,98.560,1.440,42.68,0.875,bicubic +legacy_seresnext101_32x4d.in1k,224,94.370,5.630,98.640,1.360,48.96,0.875,bilinear +dpn107.mx_in1k,224,94.370,5.630,98.480,1.520,86.92,0.875,bicubic +seresnext50_32x4d.gluon_in1k,224,94.360,5.640,98.620,1.380,27.56,0.875,bicubic +repvit_m1_0.dist_300e_in1k,224,94.330,5.670,98.850,1.150,7.30,0.950,bicubic +resnet50_gn.a1h_in1k,224,94.330,5.670,98.700,1.300,25.56,0.940,bicubic +xception71.tf_in1k,299,94.330,5.670,98.640,1.360,42.34,0.903,bicubic +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,224,94.320,5.680,98.580,1.420,8.46,0.900,bicubic +darknet53.c2ns_in1k,256,94.310,5.690,98.860,1.140,41.61,0.887,bicubic +resnet50.bt_in1k,288,94.310,5.690,98.640,1.360,25.56,0.950,bicubic +mobilenetv4_conv_medium.e500_r256_in1k,256,94.300,5.700,98.780,1.220,9.72,0.950,bicubic +resnet50d.ra2_in1k,224,94.300,5.700,98.740,1.260,25.58,0.875,bicubic +ecaresnet26t.ra2_in1k,320,94.300,5.700,98.720,1.280,16.01,0.950,bicubic +mobilenet_edgetpu_v2_m,224,94.300,5.700,98.590,1.410,8.46,0.900,bicubic +res2net50d.in1k,224,94.300,5.700,98.530,1.470,25.72,0.875,bilinear +resnet50d.a1_in1k,224,94.300,5.700,98.360,1.640,25.58,0.950,bicubic +hgnet_tiny.paddle_in1k,224,94.290,5.710,98.800,1.200,14.74,0.965,bicubic +mobilenetv4_conv_blur_medium.e500_r224_in1k,224,94.290,5.710,98.750,1.250,9.72,0.950,bicubic +resnetrs50.tf_in1k,224,94.290,5.710,98.640,1.360,35.69,0.910,bicubic +dpn92.mx_in1k,224,94.280,5.720,98.750,1.250,37.67,0.875,bicubic +tiny_vit_5m_224.in1k,224,94.280,5.720,98.660,1.340,5.39,0.950,bicubic +resnet50.c2_in1k,224,94.280,5.720,98.540,1.460,25.56,0.950,bicubic +ecaresnet50d_pruned.miil_in1k,224,94.260,5.740,98.700,1.300,19.94,0.875,bicubic +skresnext50_32x4d.ra_in1k,224,94.260,5.740,98.470,1.530,27.48,0.875,bicubic +resnet101d.gluon_in1k,224,94.250,5.750,98.550,1.450,44.57,0.875,bicubic +cait_xxs36_224.fb_dist_in1k,224,94.240,5.760,98.710,1.290,17.30,1.000,bicubic +regnetx_120.pycls_in1k,224,94.240,5.760,98.650,1.350,46.11,0.875,bicubic +resnet50.ra_in1k,288,94.220,5.780,98.640,1.360,25.56,0.950,bicubic +resnext50d_32x4d.bt_in1k,224,94.220,5.780,98.600,1.400,25.05,0.875,bicubic +inception_resnet_v2.tf_ens_adv_in1k,299,94.220,5.780,98.590,1.410,55.84,0.897,bicubic +fastvit_s12.apple_in1k,256,94.220,5.780,98.570,1.430,9.47,0.900,bicubic +mobilenetv4_conv_medium.e500_r224_in1k,224,94.210,5.790,98.700,1.300,9.72,0.950,bicubic +eca_resnet33ts.ra2_in1k,256,94.200,5.800,98.770,1.230,19.68,0.900,bicubic +wide_resnet50_2.tv2_in1k,176,94.200,5.800,98.680,1.320,68.88,0.875,bilinear +resmlp_36_224.fb_in1k,224,94.200,5.800,98.660,1.340,44.69,0.875,bicubic +convnextv2_femto.fcmae_ft_in1k,288,94.200,5.800,98.640,1.360,5.23,0.950,bicubic +tf_efficientnet_lite3.in1k,300,94.200,5.800,98.640,1.360,8.20,0.904,bilinear +mixnet_xl.ra_in1k,224,94.200,5.800,98.340,1.660,11.90,0.875,bicubic +regnety_080.pycls_in1k,224,94.180,5.820,98.680,1.320,39.18,0.875,bicubic +levit_192.fb_dist_in1k,224,94.180,5.820,98.540,1.460,10.95,0.900,bicubic +levit_conv_192.fb_dist_in1k,224,94.180,5.820,98.540,1.460,10.95,0.900,bicubic +regnetx_016.tv2_in1k,224,94.170,5.830,98.740,1.260,9.19,0.965,bicubic +regnetx_160.pycls_in1k,224,94.160,5.840,98.740,1.260,54.28,0.875,bicubic +regnety_064.pycls_in1k,224,94.160,5.840,98.720,1.280,30.58,0.875,bicubic +resnet152c.gluon_in1k,224,94.160,5.840,98.630,1.370,60.21,0.875,bicubic +resnet33ts.ra2_in1k,288,94.160,5.840,98.610,1.390,19.68,1.000,bicubic +dpn98.mx_in1k,224,94.160,5.840,98.590,1.410,61.57,0.875,bicubic +gmlp_s16_224.ra3_in1k,224,94.160,5.840,98.500,1.500,19.42,0.875,bicubic +resnet152.gluon_in1k,224,94.160,5.840,98.460,1.540,60.19,0.875,bicubic +nf_resnet50.ra2_in1k,256,94.150,5.850,98.740,1.260,25.56,0.940,bicubic +vit_base_patch16_224.sam_in1k,224,94.150,5.850,98.690,1.310,86.57,0.900,bicubic +nf_regnet_b1.ra2_in1k,288,94.150,5.850,98.630,1.370,10.22,0.900,bicubic +efficientnet_b2_pruned.in1k,260,94.140,5.860,98.510,1.490,8.31,0.890,bicubic +tf_efficientnet_b2.in1k,260,94.130,5.870,98.450,1.550,9.11,0.890,bicubic +resnext50_32x4d.ra_in1k,224,94.110,5.890,98.330,1.670,25.03,0.875,bicubic +efficientformerv2_s1.snap_dist_in1k,224,94.100,5.900,98.680,1.320,6.19,0.950,bicubic +ese_vovnet39b.ra_in1k,224,94.100,5.900,98.670,1.330,24.57,0.875,bicubic +resnet50d.a2_in1k,224,94.100,5.900,98.480,1.520,25.58,0.950,bicubic +resnet152.tv2_in1k,176,94.090,5.910,98.540,1.460,60.19,0.875,bilinear +resnet50.b2k_in1k,224,94.090,5.910,98.450,1.550,25.56,0.950,bicubic +xcit_tiny_24_p16_224.fb_in1k,224,94.080,5.920,98.510,1.490,12.12,1.000,bicubic +resnext50_32x4d.a1_in1k,224,94.070,5.930,98.200,1.800,25.03,0.950,bicubic +convnext_pico.d1_in1k,224,94.060,5.940,98.490,1.510,9.05,0.875,bicubic +resnet50.d_in1k,224,94.060,5.940,98.430,1.570,25.56,0.950,bicubic +resnet101.a3_in1k,224,94.050,5.950,98.650,1.350,44.55,0.950,bicubic +coat_lite_mini.in1k,224,94.050,5.950,98.530,1.470,11.01,0.900,bicubic +eca_halonext26ts.c1_in1k,256,94.050,5.950,98.500,1.500,10.76,0.940,bicubic +halonet26t.a1h_in1k,256,94.050,5.950,98.470,1.530,12.48,0.950,bicubic +resnext50_32x4d.a2_in1k,224,94.050,5.950,98.240,1.760,25.03,0.950,bicubic +convnext_pico_ols.d1_in1k,224,94.040,5.960,98.540,1.460,9.06,0.950,bicubic +efficientvit_b1.r256_in1k,256,94.040,5.960,98.370,1.630,9.10,1.000,bicubic +dpn131.mx_in1k,224,94.030,5.970,98.710,1.290,79.25,0.875,bicubic +resnet50.c1_in1k,224,94.030,5.970,98.620,1.380,25.56,0.950,bicubic +resnet50.b1k_in1k,224,94.030,5.970,98.520,1.480,25.56,0.950,bicubic +seresnet50.a1_in1k,224,94.030,5.970,98.420,1.580,28.09,0.950,bicubic +hrnet_w64.ms_in1k,224,94.020,5.980,98.610,1.390,128.06,0.875,bilinear +resmlp_24_224.fb_in1k,224,94.020,5.980,98.330,1.670,30.02,0.875,bicubic +dla102x2.in1k,224,94.010,5.990,98.480,1.520,41.28,0.875,bilinear +efficientnet_b2.ra_in1k,256,94.010,5.990,98.460,1.540,9.11,0.875,bicubic +fbnetv3_b.ra2_in1k,256,94.000,6.000,98.630,1.370,8.60,0.950,bilinear +fastvit_t12.apple_in1k,256,93.990,6.010,98.580,1.420,7.55,0.900,bicubic +mobilevitv2_125.cvnets_in1k,256,93.990,6.010,98.560,1.440,7.48,0.888,bicubic +resnet50.am_in1k,224,93.990,6.010,98.520,1.480,25.56,0.875,bicubic +resnetblur50.bt_in1k,224,93.980,6.020,98.540,1.460,25.56,0.875,bicubic +dpn68b.ra_in1k,288,93.980,6.020,98.350,1.650,12.61,1.000,bicubic +tf_efficientnetv2_b1.in1k,240,93.960,6.040,98.630,1.370,8.14,0.882,bicubic +seresnet50.a2_in1k,224,93.960,6.040,98.390,1.610,28.09,0.950,bicubic +hrnet_w48.ms_in1k,224,93.940,6.060,98.600,1.400,77.47,0.875,bilinear +edgenext_small_rw.sw_in1k,256,93.930,6.070,98.550,1.450,7.83,0.900,bicubic +convnext_femto.d1_in1k,288,93.920,6.080,98.530,1.470,5.22,0.950,bicubic +rexnet_130.nav_in1k,224,93.920,6.080,98.400,1.600,7.56,0.875,bicubic +tf_efficientnet_cc_b1_8e.in1k,240,93.920,6.080,98.270,1.730,39.72,0.882,bicubic +fbnetv3_d.ra2_in1k,256,93.910,6.090,98.740,1.260,10.31,0.950,bilinear +convnext_femto_ols.d1_in1k,288,93.900,6.100,98.630,1.370,5.23,0.950,bicubic +darknetaa53.c2ns_in1k,256,93.900,6.100,98.630,1.370,36.02,0.887,bilinear +regnetx_064.pycls_in1k,224,93.900,6.100,98.630,1.370,26.21,0.875,bicubic +vit_small_patch16_224.augreg_in1k,224,93.900,6.100,98.460,1.540,22.05,0.900,bicubic +hgnetv2_b1.ssld_stage2_ft_in1k,224,93.880,6.120,98.710,1.290,6.34,0.965,bicubic +regnety_040.pycls_in1k,224,93.880,6.120,98.650,1.350,20.65,0.875,bicubic +repvgg_b2g4.rvgg_in1k,224,93.870,6.130,98.610,1.390,61.76,0.875,bilinear +lambda_resnet26t.c1_in1k,256,93.870,6.130,98.600,1.400,10.96,0.940,bicubic +efficientnet_b0.ra4_e3600_r224_in1k,256,93.870,6.130,98.390,1.610,5.29,1.000,bicubic +regnetx_080.pycls_in1k,224,93.850,6.150,98.520,1.480,39.57,0.875,bicubic +resnet50.a2_in1k,224,93.850,6.150,98.340,1.660,25.56,0.950,bicubic +efficientnet_em.ra2_in1k,240,93.840,6.160,98.810,1.190,6.90,0.882,bicubic +ecaresnet26t.ra2_in1k,256,93.840,6.160,98.650,1.350,16.01,0.875,bicubic +resnet32ts.ra2_in1k,288,93.830,6.170,98.660,1.340,17.96,1.000,bicubic +resnext50_32x4d.gluon_in1k,224,93.830,6.170,98.410,1.590,25.03,0.875,bicubic +hgnetv2_b0.ssld_stage2_ft_in1k,288,93.820,6.180,98.760,1.240,6.00,1.000,bicubic +pvt_v2_b1.in1k,224,93.820,6.180,98.660,1.340,14.01,0.900,bicubic +tf_efficientnetv2_b2.in1k,208,93.820,6.180,98.360,1.640,10.10,0.890,bicubic +resnext101_32x8d.tv_in1k,224,93.810,6.190,98.580,1.420,88.79,0.875,bilinear +eca_botnext26ts_256.c1_in1k,256,93.810,6.190,98.500,1.500,10.59,0.950,bicubic +resnet50.ram_in1k,224,93.810,6.190,98.400,1.600,25.56,0.875,bicubic +cspresnet50.ra_in1k,256,93.800,6.200,98.620,1.380,21.62,0.887,bilinear +resnet50.tv2_in1k,176,93.790,6.210,98.500,1.500,25.56,0.875,bilinear +resnet101.tv2_in1k,176,93.790,6.210,98.450,1.550,44.55,0.875,bilinear +resnet50d.gluon_in1k,224,93.790,6.210,98.390,1.610,25.58,0.875,bicubic +pit_xs_distilled_224.in1k,224,93.770,6.230,98.620,1.380,11.00,0.900,bicubic +xception65.tf_in1k,299,93.770,6.230,98.420,1.580,39.92,0.903,bicubic +mobileone_s4.apple_in1k,224,93.770,6.230,98.250,1.750,14.95,0.900,bilinear +wide_resnet101_2.tv_in1k,224,93.760,6.240,98.520,1.480,126.89,0.875,bilinear +res2net101_26w_4s.in1k,224,93.750,6.250,98.360,1.640,45.21,0.875,bilinear +vit_relpos_base_patch32_plus_rpn_256.sw_in1k,256,93.750,6.250,98.100,1.900,119.42,0.900,bicubic +legacy_seresnext50_32x4d.in1k,224,93.730,6.270,98.590,1.410,27.56,0.875,bilinear +lambda_resnet26rpt_256.c1_in1k,256,93.730,6.270,98.490,1.510,10.99,0.940,bicubic +resnet101.gluon_in1k,224,93.730,6.270,98.400,1.600,44.55,0.875,bicubic +tf_efficientnet_b1.ap_in1k,240,93.720,6.280,98.360,1.640,7.79,0.882,bicubic +tf_efficientnet_b0.ns_jft_in1k,224,93.690,6.310,98.630,1.370,5.29,0.875,bicubic +regnety_008_tv.tv2_in1k,224,93.690,6.310,98.490,1.510,6.43,0.965,bicubic +resnet101c.gluon_in1k,224,93.680,6.320,98.440,1.560,44.57,0.875,bicubic +resnet50s.gluon_in1k,224,93.670,6.330,98.460,1.540,25.68,0.875,bicubic +resnet34d.ra2_in1k,288,93.650,6.350,98.570,1.430,21.82,0.950,bicubic +resnext50_32x4d.a3_in1k,224,93.650,6.350,98.510,1.490,25.03,0.950,bicubic +hgnetv2_b1.ssld_stage1_in22k_in1k,224,93.640,6.360,98.670,1.330,6.34,0.965,bicubic +vit_base_patch32_384.augreg_in1k,384,93.640,6.360,98.390,1.610,88.30,1.000,bicubic +vit_tiny_patch16_384.augreg_in21k_ft_in1k,384,93.630,6.370,98.600,1.400,5.79,1.000,bicubic +vit_base_patch16_224.augreg_in1k,224,93.630,6.370,98.240,1.760,86.57,0.900,bicubic +resnet152.a3_in1k,160,93.630,6.370,98.230,1.770,60.19,0.950,bicubic +resnext50_32x4d.tv2_in1k,176,93.620,6.380,98.300,1.700,25.03,0.875,bilinear +resnet33ts.ra2_in1k,256,93.610,6.390,98.520,1.480,19.68,0.900,bicubic +repvit_m0_9.dist_450e_in1k,224,93.610,6.390,98.510,1.490,5.49,0.950,bicubic +hgnetv2_b0.ssld_stage1_in22k_in1k,288,93.590,6.410,98.700,1.300,6.00,1.000,bicubic +hrnet_w44.ms_in1k,224,93.590,6.410,98.700,1.300,67.06,0.875,bilinear +visformer_tiny.in1k,224,93.590,6.410,98.510,1.490,10.32,0.900,bicubic +cait_xxs24_224.fb_dist_in1k,224,93.580,6.420,98.440,1.560,11.96,1.000,bicubic +coat_tiny.in1k,224,93.580,6.420,98.420,1.580,5.50,0.900,bicubic +resnet50.a1h_in1k,176,93.570,6.430,98.510,1.490,25.56,0.900,bicubic +seresnext26t_32x4d.bt_in1k,288,93.570,6.430,98.400,1.600,16.81,0.950,bicubic +regnetx_040.pycls_in1k,224,93.550,6.450,98.570,1.430,22.12,0.875,bicubic +resnet50d.a3_in1k,224,93.520,6.480,98.460,1.540,25.58,0.950,bicubic +hrnet_w32.ms_in1k,224,93.520,6.480,98.430,1.570,41.23,0.875,bilinear +efficientvit_b1.r224_in1k,224,93.520,6.480,98.330,1.670,9.10,0.950,bicubic +botnet26t_256.c1_in1k,256,93.520,6.480,98.320,1.680,12.49,0.950,bicubic +hrnet_w18.ms_aug_in1k,224,93.510,6.490,98.600,1.400,21.30,0.950,bilinear +hrnet_w40.ms_in1k,224,93.510,6.490,98.560,1.440,57.56,0.875,bilinear +repghostnet_200.in1k,224,93.510,6.490,98.530,1.470,9.80,0.875,bicubic +resnet32ts.ra2_in1k,256,93.510,6.490,98.500,1.500,17.96,0.900,bicubic +tf_efficientnet_b1.aa_in1k,240,93.510,6.490,98.360,1.640,7.79,0.882,bicubic +repvgg_b2.rvgg_in1k,224,93.500,6.500,98.740,1.260,89.02,0.875,bilinear +dla102x.in1k,224,93.500,6.500,98.500,1.500,26.31,0.875,bilinear +inception_v3.gluon_in1k,299,93.490,6.510,98.540,1.460,23.83,0.875,bicubic +legacy_xception.tf_in1k,299,93.470,6.530,98.530,1.470,22.86,0.897,bicubic +xcit_nano_12_p8_384.fb_dist_in1k,384,93.470,6.530,98.510,1.490,3.05,1.000,bicubic +regnety_032.pycls_in1k,224,93.440,6.560,98.630,1.370,19.44,0.875,bicubic +fbnetv3_d.ra2_in1k,224,93.440,6.560,98.440,1.560,10.31,0.950,bilinear +legacy_seresnet152.in1k,224,93.440,6.560,98.360,1.640,66.82,0.875,bilinear +seresnext26d_32x4d.bt_in1k,288,93.440,6.560,98.350,1.650,16.81,0.950,bicubic +repvit_m0_9.dist_300e_in1k,224,93.430,6.570,98.730,1.270,5.49,0.950,bicubic +nf_regnet_b1.ra2_in1k,256,93.420,6.580,98.600,1.400,10.22,0.900,bicubic +xception41.tf_in1k,299,93.420,6.580,98.410,1.590,26.97,0.903,bicubic +res2net50_26w_6s.in1k,224,93.420,6.580,98.260,1.740,37.05,0.875,bilinear +mixnet_l.ft_in1k,224,93.420,6.580,98.220,1.780,7.33,0.875,bicubic +xcit_tiny_12_p16_224.fb_dist_in1k,224,93.400,6.600,98.500,1.500,6.72,1.000,bicubic +dpn68b.ra_in1k,224,93.400,6.600,98.210,1.790,12.61,0.950,bicubic +res2net50_26w_8s.in1k,224,93.400,6.600,98.180,1.820,48.40,0.875,bilinear +resnest26d.gluon_in1k,224,93.390,6.610,98.610,1.390,17.07,0.875,bilinear +convnextv2_femto.fcmae_ft_in1k,224,93.390,6.610,98.490,1.510,5.23,0.875,bicubic +levit_128.fb_dist_in1k,224,93.390,6.610,98.380,1.620,9.21,0.900,bicubic +levit_conv_128.fb_dist_in1k,224,93.370,6.630,98.380,1.620,9.21,0.900,bicubic +cs3darknet_m.c2ns_in1k,288,93.350,6.650,98.620,1.380,9.31,0.950,bicubic +resnet50.ra_in1k,224,93.350,6.650,98.550,1.450,25.56,0.875,bicubic +inception_v3.tf_in1k,299,93.350,6.650,98.060,1.940,23.83,0.875,bicubic +dla169.in1k,224,93.330,6.670,98.600,1.400,53.39,0.875,bilinear +repvgg_b1.rvgg_in1k,224,93.330,6.670,98.510,1.490,57.42,0.875,bilinear +resnet152.tv_in1k,224,93.330,6.670,98.380,1.620,60.19,0.875,bilinear +selecsls60b.in1k,224,93.330,6.670,98.270,1.730,32.77,0.875,bicubic +repvit_m1.dist_in1k,224,93.320,6.680,98.420,1.580,5.49,0.950,bicubic +bat_resnext26ts.ch_in1k,256,93.320,6.680,98.350,1.650,10.73,0.900,bicubic +legacy_seresnet101.in1k,224,93.310,6.690,98.480,1.520,49.33,0.875,bilinear +fbnetv3_b.ra2_in1k,224,93.300,6.700,98.430,1.570,8.60,0.950,bilinear +mobilevitv2_100.cvnets_in1k,256,93.290,6.710,98.250,1.750,4.90,0.888,bicubic +tf_mixnet_l.in1k,224,93.290,6.710,98.030,1.970,7.33,0.875,bicubic +efficientnet_b1.ft_in1k,256,93.280,6.720,98.240,1.760,7.79,1.000,bicubic +resnet50.bt_in1k,224,93.260,6.740,98.390,1.610,25.56,0.875,bicubic +coat_lite_tiny.in1k,224,93.260,6.740,98.270,1.730,5.72,0.900,bicubic +efficientnet_b0.ra4_e3600_r224_in1k,224,93.240,6.760,98.370,1.630,5.29,0.900,bicubic +mobilevit_s.cvnets_in1k,256,93.210,6.790,98.470,1.530,5.58,0.900,bicubic +wide_resnet50_2.tv_in1k,224,93.210,6.790,98.320,1.680,68.88,0.875,bilinear +efficientnet_es.ra_in1k,224,93.200,6.800,98.410,1.590,5.44,0.875,bicubic +hrnet_w30.ms_in1k,224,93.200,6.800,98.410,1.590,37.71,0.875,bilinear +gcresnext26ts.ch_in1k,288,93.190,6.810,98.290,1.710,10.48,1.000,bicubic +resnet26t.ra2_in1k,320,93.180,6.820,98.500,1.500,16.01,1.000,bicubic +dla60_res2next.in1k,224,93.180,6.820,98.410,1.590,17.03,0.875,bilinear +ese_vovnet19b_dw.ra_in1k,288,93.170,6.830,98.270,1.730,6.54,0.950,bicubic +dla60_res2net.in1k,224,93.150,6.850,98.410,1.590,20.85,0.875,bilinear +regnetx_032.pycls_in1k,224,93.140,6.860,98.390,1.610,15.30,0.875,bicubic +regnety_016.pycls_in1k,224,93.140,6.860,98.340,1.660,11.20,0.875,bicubic +tf_efficientnetv2_b1.in1k,192,93.140,6.860,98.100,1.900,8.14,0.882,bicubic +tf_efficientnetv2_b0.in1k,224,93.130,6.870,98.360,1.640,7.14,0.875,bicubic +pit_xs_224.in1k,224,93.120,6.880,98.310,1.690,10.62,0.900,bicubic +dla60x.in1k,224,93.100,6.900,98.490,1.510,17.35,0.875,bilinear +eca_resnext26ts.ch_in1k,288,93.100,6.900,98.430,1.570,10.30,1.000,bicubic +resnet34.a1_in1k,288,93.100,6.900,98.300,1.700,21.80,1.000,bicubic +convnext_atto_ols.a2_in1k,288,93.090,6.910,98.470,1.530,3.70,0.950,bicubic +tf_efficientnet_b1.in1k,240,93.090,6.910,98.290,1.710,7.79,0.882,bicubic +dla102.in1k,224,93.080,6.920,98.540,1.460,33.27,0.875,bilinear +convnext_femto_ols.d1_in1k,224,93.070,6.930,98.400,1.600,5.23,0.875,bicubic +ecaresnet50t.a3_in1k,160,93.070,6.930,98.280,1.720,25.57,0.950,bicubic +resnet101.a3_in1k,160,93.040,6.960,98.150,1.850,44.55,0.950,bicubic +selecsls60.in1k,224,93.030,6.970,98.310,1.690,30.67,0.875,bicubic +rexnet_100.nav_in1k,224,93.030,6.970,98.190,1.810,4.80,0.875,bicubic +resnet50c.gluon_in1k,224,93.020,6.980,98.360,1.640,25.58,0.875,bicubic +repvgg_b1g4.rvgg_in1k,224,93.010,6.990,98.410,1.590,39.97,0.875,bilinear +ghostnetv2_160.in1k,224,93.010,6.990,98.230,1.770,12.39,0.875,bicubic +cs3darknet_focus_m.c2ns_in1k,288,92.990,7.010,98.360,1.640,9.30,0.950,bicubic +seresnext26ts.ch_in1k,288,92.980,7.020,98.410,1.590,10.39,1.000,bicubic +legacy_seresnet50.in1k,224,92.980,7.020,98.200,1.800,28.09,0.875,bilinear +hardcorenas_f.miil_green_in1k,224,92.970,7.030,98.140,1.860,8.20,0.875,bilinear +convnextv2_atto.fcmae_ft_in1k,288,92.970,7.030,98.060,1.940,3.71,0.950,bicubic +poolformerv2_s12.sail_in1k,224,92.960,7.040,98.360,1.640,11.89,1.000,bicubic +tf_efficientnet_em.in1k,240,92.950,7.050,98.210,1.790,6.90,0.882,bicubic +crossvit_9_dagger_240.in1k,240,92.940,7.060,98.210,1.790,8.78,0.875,bicubic +convnext_femto.d1_in1k,224,92.930,7.070,98.260,1.740,5.22,0.875,bicubic +resnetrs50.tf_in1k,160,92.930,7.070,98.250,1.750,35.69,0.910,bicubic +mobileone_s3.apple_in1k,224,92.910,7.090,98.180,1.820,10.17,0.900,bilinear +res2next50.in1k,224,92.900,7.100,98.210,1.790,24.67,0.875,bilinear +inception_v3.tf_adv_in1k,299,92.900,7.100,98.140,1.860,23.83,0.875,bicubic +gmixer_24_224.ra3_in1k,224,92.870,7.130,97.890,2.110,24.72,0.875,bicubic +seresnext26t_32x4d.bt_in1k,224,92.840,7.160,98.350,1.650,16.81,0.875,bicubic +mobileone_s2.apple_in1k,224,92.830,7.170,98.250,1.750,7.88,0.900,bilinear +tf_efficientnet_cc_b0_8e.in1k,224,92.830,7.170,98.170,1.830,24.01,0.875,bicubic +hgnetv2_b0.ssld_stage2_ft_in1k,224,92.820,7.180,98.440,1.560,6.00,0.965,bicubic +dpn68b.mx_in1k,224,92.820,7.180,98.150,1.850,12.61,0.875,bicubic +resmlp_12_224.fb_distilled_in1k,224,92.820,7.180,98.130,1.870,15.35,0.875,bicubic +resnet101.tv_in1k,224,92.810,7.190,98.230,1.770,44.55,0.875,bilinear +efficientnet_b1_pruned.in1k,240,92.790,7.210,98.050,1.950,6.33,0.882,bicubic +inception_v3.tv_in1k,299,92.780,7.220,97.950,2.050,23.83,0.875,bicubic +hrnet_w18_small_v2.gluon_in1k,224,92.770,7.230,98.410,1.590,15.60,0.875,bicubic +resnet50.a3_in1k,224,92.770,7.230,98.170,1.830,25.56,0.950,bicubic +convnext_atto.d2_in1k,288,92.770,7.230,98.050,1.950,3.70,0.950,bicubic +gcresnext26ts.ch_in1k,256,92.760,7.240,98.280,1.720,10.48,0.900,bicubic +densenet201.tv_in1k,224,92.760,7.240,98.230,1.770,20.01,0.875,bicubic +resnext50_32x4d.tv_in1k,224,92.750,7.250,98.260,1.740,25.03,0.875,bilinear +resnet26t.ra2_in1k,256,92.750,7.250,98.250,1.750,16.01,0.940,bicubic +resnet34.a2_in1k,288,92.750,7.250,97.990,2.010,21.80,1.000,bicubic +resnet34d.ra2_in1k,224,92.730,7.270,98.260,1.740,21.82,0.875,bicubic +seresnext26d_32x4d.bt_in1k,224,92.730,7.270,98.170,1.830,16.81,0.875,bicubic +seresnext26ts.ch_in1k,256,92.720,7.280,98.300,1.700,10.39,0.900,bicubic +res2net50_14w_8s.in1k,224,92.720,7.280,98.180,1.820,25.06,0.875,bilinear +resnext50_32x4d.a3_in1k,160,92.690,7.310,97.990,2.010,25.03,0.950,bicubic +tf_efficientnet_lite2.in1k,260,92.680,7.320,98.240,1.760,6.09,0.890,bicubic +mobilenetv1_125.ra4_e3600_r224_in1k,256,92.680,7.320,98.220,1.780,6.27,1.000,bicubic +cs3darknet_m.c2ns_in1k,256,92.670,7.330,98.480,1.520,9.31,0.887,bicubic +efficientnet_b0.ra_in1k,224,92.670,7.330,98.080,1.920,5.29,0.875,bicubic +poolformer_s12.sail_in1k,224,92.650,7.350,98.180,1.820,11.92,0.900,bicubic +legacy_seresnext26_32x4d.in1k,224,92.640,7.360,98.110,1.890,16.79,0.875,bicubic +eca_resnext26ts.ch_in1k,256,92.630,7.370,98.260,1.740,10.30,0.900,bicubic +densenetblur121d.ra_in1k,288,92.630,7.370,98.240,1.760,8.00,0.950,bicubic +tf_efficientnet_cc_b0_4e.in1k,224,92.630,7.370,98.090,1.910,13.31,0.875,bicubic +tf_efficientnet_lite1.in1k,240,92.600,7.400,98.040,1.960,5.42,0.882,bicubic +regnetx_008.tv2_in1k,224,92.590,7.410,98.180,1.820,7.26,0.965,bicubic +densenet161.tv_in1k,224,92.580,7.420,98.290,1.710,28.68,0.875,bicubic +xcit_tiny_12_p16_224.fb_in1k,224,92.580,7.420,98.250,1.750,6.72,1.000,bicubic +hardcorenas_e.miil_green_in1k,224,92.570,7.430,98.130,1.870,8.07,0.875,bilinear +res2net50_48w_2s.in1k,224,92.560,7.440,98.070,1.930,25.29,0.875,bilinear +densenet121.ra_in1k,288,92.550,7.450,98.210,1.790,7.98,0.950,bicubic +resnet50.gluon_in1k,224,92.550,7.450,98.190,1.810,25.56,0.875,bicubic +fastvit_t8.apple_dist_in1k,256,92.540,7.460,98.030,1.970,4.03,0.900,bicubic +res2net50_26w_4s.in1k,224,92.530,7.470,98.070,1.930,25.70,0.875,bilinear +resnet26d.bt_in1k,288,92.490,7.510,98.220,1.780,16.01,0.950,bicubic +tinynet_a.in1k,192,92.480,7.520,98.080,1.920,6.19,0.875,bicubic +mobilenetv2_120d.ra_in1k,224,92.480,7.520,98.040,1.960,5.83,0.875,bicubic +hgnetv2_b0.ssld_stage1_in22k_in1k,224,92.470,7.530,98.420,1.580,6.00,0.965,bicubic +hardcorenas_d.miil_green_in1k,224,92.460,7.540,98.030,1.970,7.50,0.875,bilinear +resnet50d.a3_in1k,160,92.440,7.560,98.050,1.950,25.58,0.950,bicubic +efficientvit_m5.r224_in1k,224,92.440,7.560,97.990,2.010,12.47,0.875,bicubic +convmixer_1024_20_ks9_p14.in1k,224,92.430,7.570,98.280,1.720,24.38,0.960,bicubic +efficientnet_b1.ft_in1k,224,92.430,7.570,97.820,2.180,7.79,0.875,bicubic +mixnet_m.ft_in1k,224,92.420,7.580,97.870,2.130,5.01,0.875,bicubic +resnet34.bt_in1k,288,92.410,7.590,98.150,1.850,21.80,0.950,bicubic +cs3darknet_focus_m.c2ns_in1k,256,92.380,7.620,98.380,1.620,9.30,0.887,bicubic +skresnet34.ra_in1k,224,92.380,7.620,98.140,1.860,22.28,0.875,bicubic +hrnet_w18.ms_in1k,224,92.370,7.630,98.310,1.690,21.30,0.875,bilinear +repghostnet_150.in1k,224,92.370,7.630,98.060,1.940,6.58,0.875,bicubic +tf_mixnet_m.in1k,224,92.340,7.660,97.880,2.120,5.01,0.875,bicubic +ghostnetv2_130.in1k,224,92.320,7.680,98.070,1.930,8.96,0.875,bicubic +selecsls42b.in1k,224,92.300,7.700,98.140,1.860,32.46,0.875,bicubic +tf_efficientnetv2_b0.in1k,192,92.290,7.710,98.200,1.800,7.14,0.875,bicubic +ese_vovnet19b_dw.ra_in1k,224,92.280,7.720,98.100,1.900,6.54,0.875,bicubic +tf_efficientnet_b0.aa_in1k,224,92.280,7.720,97.990,2.010,5.29,0.875,bicubic +tf_efficientnet_b0.ap_in1k,224,92.260,7.740,98.020,1.980,5.29,0.875,bicubic +mobilenetv3_large_100.miil_in21k_ft_in1k,224,92.250,7.750,97.650,2.350,5.48,0.875,bilinear +mobilenetv1_100h.ra4_e3600_r224_in1k,256,92.230,7.770,98.000,2.000,5.28,0.950,bicubic +resmlp_12_224.fb_in1k,224,92.210,7.790,98.150,1.850,15.35,0.875,bicubic +dla60.in1k,224,92.200,7.800,98.100,1.900,22.04,0.875,bilinear +regnetx_016.pycls_in1k,224,92.180,7.820,98.200,1.800,9.19,0.875,bicubic +resnext26ts.ra2_in1k,288,92.160,7.840,98.020,1.980,10.30,1.000,bicubic +fastvit_t8.apple_in1k,256,92.160,7.840,97.890,2.110,4.03,0.900,bicubic +gernet_s.idstcv_in1k,224,92.150,7.850,98.210,1.790,8.17,0.875,bilinear +convnextv2_atto.fcmae_ft_in1k,224,92.130,7.870,97.750,2.250,3.71,0.875,bicubic +xcit_nano_12_p8_224.fb_dist_in1k,224,92.120,7.880,98.170,1.830,3.05,1.000,bicubic +resnet34.a1_in1k,224,92.110,7.890,97.780,2.220,21.80,0.950,bicubic +seresnet50.a3_in1k,224,92.100,7.900,98.040,1.960,28.09,0.950,bicubic +tf_efficientnet_b0.in1k,224,92.090,7.910,97.920,2.080,5.29,0.875,bicubic +mobilenetv1_100.ra4_e3600_r224_in1k,256,92.090,7.910,97.820,2.180,4.23,0.950,bicubic +vit_small_patch32_224.augreg_in21k_ft_in1k,224,92.080,7.920,98.250,1.750,22.88,0.900,bicubic +vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,384,92.050,7.950,98.290,1.710,6.36,1.000,bicubic +resnet26d.bt_in1k,224,92.050,7.950,97.960,2.040,16.01,0.875,bicubic +hardcorenas_c.miil_green_in1k,224,92.040,7.960,97.840,2.160,5.52,0.875,bilinear +resnet26.bt_in1k,288,92.030,7.970,98.200,1.800,16.00,0.950,bicubic +dpn68.mx_in1k,224,91.990,8.010,98.010,1.990,12.61,0.875,bicubic +tf_efficientnet_es.in1k,224,91.980,8.020,97.860,2.140,5.44,0.875,bicubic +efficientformerv2_s0.snap_dist_in1k,224,91.970,8.030,97.890,2.110,3.60,0.950,bicubic +densenet169.tv_in1k,224,91.960,8.040,98.090,1.910,14.15,0.875,bicubic +mobilenetv1_125.ra4_e3600_r224_in1k,224,91.950,8.050,98.030,1.970,6.27,0.900,bicubic +mixnet_s.ft_in1k,224,91.950,8.050,97.680,2.320,4.13,0.875,bicubic +repvgg_a2.rvgg_in1k,224,91.940,8.060,98.130,1.870,28.21,0.875,bilinear +levit_128s.fb_dist_in1k,224,91.940,8.060,98.070,1.930,7.78,0.900,bicubic +levit_conv_128s.fb_dist_in1k,224,91.940,8.060,98.070,1.930,7.78,0.900,bicubic +densenetblur121d.ra_in1k,224,91.930,8.070,98.100,1.900,8.00,0.875,bicubic +convnext_atto_ols.a2_in1k,224,91.930,8.070,97.980,2.020,3.70,0.875,bicubic +xcit_nano_12_p16_384.fb_dist_in1k,384,91.900,8.100,98.040,1.960,3.05,1.000,bicubic +resnet50.tv_in1k,224,91.890,8.110,98.050,1.950,25.56,0.875,bilinear +repghostnet_130.in1k,224,91.880,8.120,97.930,2.070,5.48,0.875,bicubic +mixer_b16_224.goog_in21k_ft_in1k,224,91.860,8.140,97.200,2.800,59.88,0.875,bicubic +resnext26ts.ra2_in1k,256,91.840,8.160,97.930,2.070,10.30,0.900,bicubic +hardcorenas_b.miil_green_in1k,224,91.840,8.160,97.770,2.230,5.18,0.875,bilinear +mobilenetv2_140.ra_in1k,224,91.830,8.170,97.880,2.120,6.11,0.875,bicubic +vit_tiny_patch16_224.augreg_in21k_ft_in1k,224,91.770,8.230,98.040,1.960,5.72,0.900,bicubic +convnext_atto.d2_in1k,224,91.770,8.230,97.940,2.060,3.70,0.875,bicubic +mobilevitv2_075.cvnets_in1k,256,91.750,8.250,97.860,2.140,2.87,0.888,bicubic +edgenext_x_small.in1k,288,91.740,8.260,97.590,2.410,2.34,1.000,bicubic +resnet34.a2_in1k,224,91.730,8.270,97.770,2.230,21.80,0.950,bicubic +regnety_008.pycls_in1k,224,91.720,8.280,98.170,1.830,6.26,0.875,bicubic +resnest14d.gluon_in1k,224,91.720,8.280,97.870,2.130,10.61,0.875,bilinear +densenet121.ra_in1k,224,91.620,8.380,98.080,1.920,7.98,0.875,bicubic +regnety_004.tv2_in1k,224,91.620,8.380,97.910,2.090,4.34,0.965,bicubic +tf_mixnet_s.in1k,224,91.520,8.480,97.590,2.410,4.13,0.875,bicubic +regnety_006.pycls_in1k,224,91.440,8.560,97.760,2.240,6.06,0.875,bicubic +resnet50.a3_in1k,160,91.430,8.570,97.630,2.370,25.56,0.950,bicubic +repvgg_b0.rvgg_in1k,224,91.410,8.590,97.980,2.020,15.82,0.875,bilinear +mobilenetv1_100h.ra4_e3600_r224_in1k,224,91.380,8.620,97.810,2.190,5.28,0.875,bicubic +hardcorenas_a.miil_green_in1k,224,91.360,8.640,97.840,2.160,5.26,0.875,bilinear +mobileone_s1.apple_in1k,224,91.360,8.640,97.770,2.230,4.83,0.900,bilinear +semnasnet_100.rmsp_in1k,224,91.360,8.640,97.540,2.460,3.89,0.875,bicubic +mobilenetv3_large_100.ra_in1k,224,91.340,8.660,97.700,2.300,5.48,0.875,bicubic +mobilenetv3_rw.rmsp_in1k,224,91.320,8.680,97.630,2.370,5.48,0.875,bicubic +tf_mobilenetv3_large_100.in1k,224,91.220,8.780,97.660,2.340,5.48,0.875,bilinear +hrnet_w18_small_v2.ms_in1k,224,91.210,8.790,97.900,2.100,15.60,0.875,bilinear +vit_base_patch32_224.augreg_in1k,224,91.200,8.800,97.380,2.620,88.22,0.900,bicubic +efficientnet_es_pruned.in1k,224,91.190,8.810,97.740,2.260,5.44,0.875,bicubic +mobilenetv1_100.ra4_e3600_r224_in1k,224,91.180,8.820,97.800,2.200,4.23,0.875,bicubic +resnet26.bt_in1k,224,91.180,8.820,97.770,2.230,16.00,0.875,bicubic +resnet34.bt_in1k,224,91.170,8.830,97.570,2.430,21.80,0.875,bicubic +efficientnet_lite0.ra_in1k,224,91.140,8.860,97.640,2.360,4.65,0.875,bicubic +edgenext_x_small.in1k,256,91.140,8.860,97.550,2.450,2.34,0.900,bicubic +regnetx_008.pycls_in1k,224,91.100,8.900,97.710,2.290,7.26,0.875,bicubic +tf_efficientnet_lite0.in1k,224,91.100,8.900,97.540,2.460,4.65,0.875,bicubic +mobilenetv4_conv_small.e2400_r224_in1k,256,91.020,8.980,97.670,2.330,3.77,0.950,bicubic +mobilenetv2_110d.ra_in1k,224,91.000,9.000,97.560,2.440,4.52,0.875,bicubic +seresnet50.a3_in1k,160,91.000,9.000,97.410,2.590,28.09,0.950,bicubic +resnet34.gluon_in1k,224,90.970,9.030,97.650,2.350,21.80,0.875,bicubic +xcit_nano_12_p8_224.fb_in1k,224,90.960,9.040,97.760,2.240,3.05,1.000,bicubic +legacy_seresnet34.in1k,224,90.920,9.080,97.570,2.430,21.96,0.875,bilinear +tinynet_b.in1k,188,90.910,9.090,97.670,2.330,3.73,0.875,bicubic +densenet121.tv_in1k,224,90.900,9.100,97.730,2.270,7.98,0.875,bicubic +ghostnetv2_100.in1k,224,90.860,9.140,97.700,2.300,6.16,0.875,bicubic +mobilevit_xs.cvnets_in1k,256,90.850,9.150,97.940,2.060,2.32,0.900,bicubic +fbnetc_100.rmsp_in1k,224,90.780,9.220,97.220,2.780,5.57,0.875,bilinear +dla34.in1k,224,90.770,9.230,97.650,2.350,15.74,0.875,bilinear +pit_ti_distilled_224.in1k,224,90.770,9.230,97.650,2.350,5.10,0.900,bicubic +deit_tiny_distilled_patch16_224.fb_in1k,224,90.760,9.240,97.570,2.430,5.91,0.900,bicubic +repghostnet_111.in1k,224,90.750,9.250,97.460,2.540,4.54,0.875,bicubic +crossvit_9_240.in1k,240,90.660,9.340,97.740,2.260,8.55,0.875,bicubic +resnet18.fb_swsl_ig1b_ft_in1k,224,90.660,9.340,97.700,2.300,11.69,0.875,bilinear +mnasnet_100.rmsp_in1k,224,90.650,9.350,97.510,2.490,4.38,0.875,bicubic +mobilenetv4_conv_small.e1200_r224_in1k,256,90.640,9.360,97.510,2.490,3.77,0.950,bicubic +regnetx_004_tv.tv2_in1k,224,90.630,9.370,97.600,2.400,5.50,0.965,bicubic +convit_tiny.fb_in1k,224,90.620,9.380,97.740,2.260,5.71,0.875,bicubic +efficientvit_m4.r224_in1k,224,90.600,9.400,97.590,2.410,8.80,0.875,bicubic +repvgg_a1.rvgg_in1k,224,90.590,9.410,97.640,2.360,14.09,0.875,bilinear +regnety_004.pycls_in1k,224,90.510,9.490,97.580,2.420,4.34,0.875,bicubic +regnetx_006.pycls_in1k,224,90.370,9.630,97.420,2.580,6.20,0.875,bicubic +repghostnet_100.in1k,224,90.320,9.680,97.490,2.510,4.07,0.875,bicubic +spnasnet_100.rmsp_in1k,224,90.320,9.680,97.190,2.810,4.42,0.875,bilinear +resnet18d.ra2_in1k,288,90.310,9.690,97.560,2.440,11.71,0.950,bicubic +resnet18.fb_ssl_yfcc100m_ft_in1k,224,90.250,9.750,97.560,2.440,11.69,0.875,bilinear +crossvit_tiny_240.in1k,240,90.230,9.770,97.590,2.410,7.01,0.875,bicubic +ghostnet_100.in1k,224,90.200,9.800,97.250,2.750,5.18,0.875,bicubic +vgg19_bn.tv_in1k,224,90.120,9.880,97.580,2.420,143.68,0.875,bilinear +semnasnet_075.rmsp_in1k,224,90.090,9.910,97.410,2.590,2.91,0.875,bicubic +vgg16_bn.tv_in1k,224,90.090,9.910,97.370,2.630,138.37,0.875,bilinear +mobilenetv4_conv_small.e2400_r224_in1k,224,90.070,9.930,97.280,2.720,3.77,0.875,bicubic +pit_ti_224.in1k,224,89.950,10.050,97.440,2.560,4.85,0.900,bicubic +resnet34.tv_in1k,224,89.930,10.070,97.340,2.660,21.80,0.875,bilinear +mobilenetv4_conv_small.e1200_r224_in1k,224,89.920,10.080,97.240,2.760,3.77,0.875,bicubic +resnet34.a3_in1k,224,89.920,10.080,97.170,2.830,21.80,0.950,bicubic +efficientvit_m3.r224_in1k,224,89.880,10.120,97.540,2.460,6.90,0.875,bicubic +vit_base_patch32_224.sam_in1k,224,89.750,10.250,96.980,3.020,88.22,0.900,bicubic +resnet18.a1_in1k,288,89.720,10.280,97.100,2.900,11.69,1.000,bicubic +deit_tiny_patch16_224.fb_in1k,224,89.690,10.310,97.500,2.500,5.72,0.900,bicubic +skresnet18.ra_in1k,224,89.660,10.340,97.240,2.760,11.96,0.875,bicubic +tf_mobilenetv3_large_075.in1k,224,89.660,10.340,97.230,2.770,3.99,0.875,bilinear +xcit_nano_12_p16_224.fb_dist_in1k,224,89.660,10.340,97.090,2.910,3.05,1.000,bicubic +mobilenetv2_100.ra_in1k,224,89.630,10.370,97.140,2.860,3.50,0.875,bicubic +resnet18.a2_in1k,288,89.580,10.420,96.950,3.050,11.69,1.000,bicubic +hrnet_w18_small.gluon_in1k,224,89.480,10.520,97.050,2.950,13.19,0.875,bicubic +resnet18d.ra2_in1k,224,89.330,10.670,97.180,2.820,11.71,0.875,bicubic +repvgg_a0.rvgg_in1k,224,89.260,10.740,96.930,3.070,9.11,0.875,bilinear +vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,224,89.230,10.770,97.220,2.780,6.34,0.900,bicubic +vgg19.tv_in1k,224,89.060,10.940,96.900,3.100,143.67,0.875,bilinear +hrnet_w18_small.ms_in1k,224,89.050,10.950,97.080,2.920,13.19,0.875,bilinear +resnet14t.c3_in1k,224,89.000,11.000,96.700,3.300,10.08,0.950,bicubic +repghostnet_080.in1k,224,88.970,11.030,96.770,3.230,3.28,0.875,bicubic +tf_mobilenetv3_large_minimal_100.in1k,224,88.940,11.060,96.880,3.120,3.92,0.875,bilinear +regnetx_004.pycls_in1k,224,88.920,11.080,97.110,2.890,5.16,0.875,bicubic +legacy_seresnet18.in1k,224,88.890,11.110,96.970,3.030,11.78,0.875,bicubic +edgenext_xx_small.in1k,288,88.870,11.130,96.680,3.320,1.33,1.000,bicubic +vgg13_bn.tv_in1k,224,88.780,11.220,96.970,3.030,133.05,0.875,bilinear +pvt_v2_b0.in1k,224,88.780,11.220,96.870,3.130,3.67,0.900,bicubic +lcnet_100.ra2_in1k,224,88.760,11.240,96.710,3.290,2.95,0.875,bicubic +xcit_nano_12_p16_224.fb_in1k,224,88.600,11.400,96.830,3.170,3.05,1.000,bicubic +vgg16.tv_in1k,224,88.550,11.450,96.790,3.210,138.36,0.875,bilinear +efficientvit_m2.r224_in1k,224,88.460,11.540,96.910,3.090,4.19,0.875,bicubic +resnet18.a1_in1k,224,88.440,11.560,96.650,3.350,11.69,0.950,bicubic +resnet18.gluon_in1k,224,88.370,11.630,96.700,3.300,11.69,0.875,bicubic +edgenext_xx_small.in1k,256,88.370,11.630,96.530,3.470,1.33,0.900,bicubic +mobileone_s0.apple_in1k,224,88.320,11.680,96.430,3.570,5.29,0.875,bilinear +resnet14t.c3_in1k,176,88.290,11.710,96.370,3.630,10.08,0.875,bicubic +mobilevitv2_050.cvnets_in1k,256,88.250,11.750,96.970,3.030,1.37,0.888,bicubic +resnet18.a2_in1k,224,88.030,11.970,96.420,3.580,11.69,0.950,bicubic +efficientvit_b0.r224_in1k,224,87.980,12.020,96.080,3.920,3.41,0.950,bicubic +resnet34.a3_in1k,160,87.900,12.100,96.470,3.530,21.80,0.950,bicubic +tinynet_c.in1k,184,87.790,12.210,96.370,3.630,2.46,0.875,bicubic +vgg11_bn.tv_in1k,224,87.500,12.500,96.810,3.190,132.87,0.875,bilinear +resnet18.tv_in1k,224,87.380,12.620,96.260,3.740,11.69,0.875,bilinear +regnety_002.pycls_in1k,224,87.350,12.650,96.600,3.400,3.16,0.875,bicubic +mixer_l16_224.goog_in21k_ft_in1k,224,87.180,12.820,93.520,6.480,208.20,0.875,bicubic +mobilevit_xxs.cvnets_in1k,256,87.160,12.840,96.100,3.900,1.27,0.900,bicubic +vgg13.tv_in1k,224,87.020,12.980,96.310,3.690,133.05,0.875,bilinear +efficientvit_m1.r224_in1k,224,86.810,13.190,96.000,4.000,2.98,0.875,bicubic +vgg11.tv_in1k,224,86.580,13.420,96.310,3.690,132.86,0.875,bilinear +repghostnet_058.in1k,224,86.510,13.490,95.900,4.100,2.55,0.875,bicubic +resnet18.a3_in1k,224,86.430,13.570,95.900,4.100,11.69,0.950,bicubic +dla60x_c.in1k,224,86.330,13.670,96.090,3.910,1.32,0.875,bilinear +resnet10t.c3_in1k,224,86.250,13.750,95.720,4.280,5.44,0.950,bicubic +regnetx_002.pycls_in1k,224,86.200,13.800,95.970,4.030,2.68,0.875,bicubic +lcnet_075.ra2_in1k,224,86.040,13.960,95.680,4.320,2.36,0.875,bicubic +tf_mobilenetv3_small_100.in1k,224,85.220,14.780,95.770,4.230,2.54,0.875,bilinear +mobilenetv3_small_100.lamb_in1k,224,85.190,14.810,95.620,4.380,2.54,0.875,bicubic +repghostnet_050.in1k,224,85.040,14.960,95.220,4.780,2.31,0.875,bicubic +tinynet_d.in1k,152,84.830,15.170,95.220,4.780,2.34,0.875,bicubic +resnet10t.c3_in1k,176,84.780,15.220,95.010,4.990,5.44,0.875,bicubic +mnasnet_small.lamb_in1k,224,84.370,15.630,95.170,4.830,2.03,0.875,bicubic +dla46x_c.in1k,224,84.350,15.650,95.240,4.760,1.07,0.875,bilinear +resnet18.a3_in1k,160,84.270,15.730,94.630,5.370,11.69,0.950,bicubic +mobilenetv2_050.lamb_in1k,224,83.940,16.060,94.590,5.410,1.97,0.875,bicubic +dla46_c.in1k,224,83.620,16.380,94.920,5.080,1.30,0.875,bilinear +tf_mobilenetv3_small_075.in1k,224,83.520,16.480,94.860,5.140,2.04,0.875,bilinear +mobilenetv3_small_075.lamb_in1k,224,83.110,16.890,94.150,5.850,2.04,0.875,bicubic +efficientvit_m0.r224_in1k,224,82.400,17.600,94.420,5.580,2.35,0.875,bicubic +lcnet_050.ra2_in1k,224,81.720,18.280,93.730,6.270,1.88,0.875,bicubic +tf_mobilenetv3_small_minimal_100.in1k,224,81.320,18.680,93.700,6.300,2.04,0.875,bilinear +tinynet_e.in1k,106,78.990,21.010,92.560,7.440,2.04,0.875,bicubic +mobilenetv3_small_050.lamb_in1k,224,76.980,23.020,91.310,8.690,1.59,0.875,bicubic +test_efficientnet.r160_in1k,160,67.110,32.890,86.100,13.900,0.36,0.875,bicubic +test_byobnet.r160_in1k,160,65.870,34.130,86.270,13.730,0.46,0.875,bicubic +test_vit.r160_in1k,160,62.460,37.540,84.540,15.460,0.37,0.875,bicubic diff --git a/pytorch-image-models/results/results-imagenet-a.csv b/pytorch-image-models/results/results-imagenet-a.csv new file mode 100644 index 0000000000000000000000000000000000000000..2ce27ae8ffaa9ea0d3718753c00078fa105a5b68 --- /dev/null +++ b/pytorch-image-models/results/results-imagenet-a.csv @@ -0,0 +1,1446 @@ +model,img_size,top1,top1_err,top5,top5_err,param_count,crop_pct,interpolation,top1_diff,top5_diff,rank_diff +eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,448,88.640,11.360,97.360,2.640,305.08,1.000,bicubic,-10.190,-2.520,+2 +eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,448,88.413,11.587,97.040,2.960,305.08,1.000,bicubic,-10.527,-2.870,-1 +eva_giant_patch14_560.m30m_ft_in22k_in1k,560,87.320,12.680,96.800,3.200,"1,014.45",1.000,bicubic,-11.500,-3.100,+1 +eva02_large_patch14_448.mim_m38m_ft_in1k,448,87.040,12.960,96.360,3.640,305.08,1.000,bicubic,-11.690,-3.430,+4 +eva02_large_patch14_448.mim_in22k_ft_in1k,448,86.227,13.773,95.880,4.120,305.08,1.000,bicubic,-12.623,-3.960,-3 +eva_giant_patch14_336.clip_ft_in1k,336,85.120,14.880,95.667,4.333,"1,013.01",1.000,bicubic,-13.690,-4.233,0 +eva_giant_patch14_336.m30m_ft_in22k_in1k,336,85.013,14.987,96.253,3.747,"1,013.01",1.000,bicubic,-13.797,-3.567,-2 +tf_efficientnet_l2.ns_jft_in1k,800,84.680,15.320,96.040,3.960,480.31,0.960,bicubic,-13.860,-3.780,+10 +regnety_1280.swag_ft_in1k,384,83.760,16.240,96.133,3.867,644.81,1.000,bicubic,-14.690,-3.747,+18 +eva_large_patch14_336.in22k_ft_in22k_in1k,336,83.533,16.467,95.187,4.813,304.53,1.000,bicubic,-15.217,-4.623,-3 +tf_efficientnet_l2.ns_jft_in1k_475,475,83.373,16.627,95.467,4.533,480.31,0.936,bicubic,-15.127,-4.353,+9 +convnextv2_huge.fcmae_ft_in22k_in1k_512,512,83.360,16.640,95.907,4.093,660.29,1.000,bicubic,-15.230,-3.963,+3 +maxvit_xlarge_tf_512.in21k_ft_in1k,512,83.147,16.853,95.347,4.653,475.77,1.000,bicubic,-15.473,-4.453,0 +beit_large_patch16_512.in22k_ft_in22k_in1k,512,82.960,17.040,95.720,4.280,305.67,1.000,bicubic,-15.600,-4.110,+2 +eva_large_patch14_336.in22k_ft_in1k,336,82.667,17.333,95.547,4.453,304.53,1.000,bicubic,-16.053,-4.323,-6 +maxvit_large_tf_512.in21k_ft_in1k,512,81.693,18.307,94.987,5.013,212.33,1.000,bicubic,-16.917,-4.803,-2 +eva_giant_patch14_224.clip_ft_in1k,224,81.080,18.920,94.187,5.813,"1,012.56",0.900,bicubic,-17.380,-5.563,+9 +maxvit_base_tf_512.in21k_ft_in1k,512,81.053,18.947,94.320,5.680,119.88,1.000,bicubic,-17.587,-5.480,-7 +maxvit_xlarge_tf_384.in21k_ft_in1k,384,80.933,19.067,94.440,5.560,475.32,1.000,bicubic,-17.567,-5.400,+3 +beit_large_patch16_384.in22k_ft_in22k_in1k,384,80.173,19.827,94.733,5.267,305.00,1.000,bicubic,-18.327,-5.047,+1 +caformer_b36.sail_in22k_ft_in1k_384,384,79.587,20.413,94.320,5.680,98.75,1.000,bicubic,-18.853,-5.500,+7 +convnextv2_huge.fcmae_ft_in22k_in1k_384,384,79.373,20.627,94.547,5.453,660.29,1.000,bicubic,-19.297,-5.313,-12 +deit3_large_patch16_384.fb_in22k_ft_in1k,384,79.320,20.680,93.613,6.387,304.76,1.000,bicubic,-19.140,-6.137,+2 +maxvit_large_tf_384.in21k_ft_in1k,384,78.093,21.907,93.200,6.800,212.03,1.000,bicubic,-20.397,-6.550,-1 +eva02_base_patch14_448.mim_in22k_ft_in1k,448,77.813,22.187,93.213,6.787,87.12,1.000,bicubic,-20.627,-6.607,+5 +eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,448,77.587,22.413,93.080,6.920,87.12,1.000,bicubic,-21.043,-6.720,-14 +vit_large_patch14_clip_336.openai_ft_in12k_in1k,336,77.147,22.853,93.640,6.360,304.53,1.000,bicubic,-21.123,-6.130,+13 +convnext_xxlarge.clip_laion2b_soup_ft_in1k,256,76.867,23.133,94.213,5.787,846.47,1.000,bicubic,-21.573,-5.607,+1 +maxvit_base_tf_384.in21k_ft_in1k,384,76.707,23.293,92.387,7.613,119.65,1.000,bicubic,-21.813,-7.363,-10 +beitv2_large_patch16_224.in1k_ft_in22k_in1k,224,76.600,23.400,93.307,6.693,304.43,0.950,bicubic,-21.950,-6.453,-13 +eva_large_patch14_196.in22k_ft_in22k_in1k,196,75.400,24.600,91.627,8.373,304.14,1.000,bicubic,-23.030,-8.143,+1 +maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,384,74.867,25.133,91.440,8.560,116.14,1.000,bicubic,-23.313,-8.330,+18 +regnety_1280.swag_lc_in1k,224,74.547,25.453,91.627,8.373,644.81,0.965,bicubic,-23.113,-7.973,+93 +swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,384,74.347,25.653,92.360,7.640,196.74,1.000,bicubic,-23.813,-7.350,+22 +vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,336,74.227,25.773,92.307,7.693,632.46,1.000,bicubic,-24.203,-7.513,-4 +regnety_320.swag_ft_in1k,384,73.987,26.013,92.867,7.133,145.05,1.000,bicubic,-24.073,-6.993,+30 +caformer_m36.sail_in22k_ft_in1k_384,384,73.920,26.080,91.347,8.653,56.20,1.000,bicubic,-24.230,-8.403,+21 +convformer_b36.sail_in22k_ft_in1k_384,384,73.653,26.347,91.640,8.360,99.88,1.000,bicubic,-24.607,-8.130,+3 +eva_large_patch14_196.in22k_ft_in1k,196,73.040,26.960,91.347,8.653,304.14,1.000,bicubic,-25.320,-8.433,-4 +vit_large_patch14_clip_224.openai_ft_in12k_in1k,224,72.173,27.827,90.813,9.187,304.20,1.000,bicubic,-26.057,-8.907,+6 +swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,384,71.907,28.093,91.840,8.160,87.92,1.000,bicubic,-26.233,-7.940,+18 +vit_large_patch14_clip_224.openai_ft_in1k,224,71.827,28.173,91.360,8.640,304.20,1.000,bicubic,-26.333,-8.370,+15 +vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,336,71.427,28.573,89.827,10.173,304.53,1.000,bicubic,-26.903,-9.933,-6 +deit3_base_patch16_384.fb_in22k_ft_in1k,384,71.293,28.707,89.880,10.120,86.88,1.000,bicubic,-26.547,-9.780,+52 +convnext_xlarge.fb_in22k_ft_in1k_384,384,71.187,28.813,90.787,9.213,350.20,1.000,bicubic,-27.233,-9.023,-12 +coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,384,71.187,28.813,89.760,10.240,73.88,1.000,bicubic,-26.883,-9.930,+19 +vit_large_patch16_384.augreg_in21k_ft_in1k,384,71.067,28.933,89.640,10.360,304.72,1.000,bicubic,-27.183,-10.160,-2 +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,384,70.920,29.080,90.867,9.133,200.13,1.000,bicubic,-27.560,-8.883,-24 +vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,224,70.893,29.107,90.547,9.453,632.05,1.000,bicubic,-27.397,-9.233,-11 +swin_large_patch4_window12_384.ms_in22k_ft_in1k,384,70.800,29.200,90.573,9.427,196.74,1.000,bicubic,-27.220,-9.117,+21 +caformer_s36.sail_in22k_ft_in1k_384,384,70.747,29.253,90.427,9.573,39.30,1.000,bicubic,-27.253,-9.293,+22 +vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,70.627,29.373,90.613,9.387,64.27,1.000,bicubic,-27.533,-9.057,+3 +convnextv2_large.fcmae_ft_in22k_in1k_384,384,70.213,29.787,89.600,10.400,197.96,1.000,bicubic,-28.167,-10.160,-19 +deit3_huge_patch14_224.fb_in22k_ft_in1k,224,70.187,29.813,90.800,9.200,632.13,1.000,bicubic,-27.983,-8.950,0 +maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,384,70.027,29.973,90.440,9.560,116.09,1.000,bicubic,-28.233,-9.390,-13 +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,320,69.827,30.173,90.747,9.253,200.13,1.000,bicubic,-28.453,-9.023,-17 +volo_d5_512.sail_in1k,512,69.453,30.547,90.560,9.440,296.09,1.150,bicubic,-28.337,-9.110,+52 +caformer_b36.sail_in22k_ft_in1k,224,69.453,30.547,90.213,9.787,98.75,1.000,bicubic,-28.717,-9.557,-7 +beit_large_patch16_224.in22k_ft_in22k_in1k,224,69.053,30.947,89.973,10.027,304.43,0.900,bicubic,-29.117,-9.787,-7 +seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,384,68.627,31.373,88.560,11.440,149.39,1.000,bicubic,-29.573,-11.220,-12 +deit3_large_patch16_224.fb_in22k_ft_in1k,224,68.573,31.427,90.000,10.000,304.37,1.000,bicubic,-29.597,-9.730,-8 +convformer_m36.sail_in22k_ft_in1k_384,384,68.547,31.453,89.160,10.840,57.05,1.000,bicubic,-29.473,-10.530,+8 +convnext_xlarge.fb_in22k_ft_in1k,288,68.227,31.773,90.133,9.867,350.20,1.000,bicubic,-29.893,-9.637,-2 +regnety_160.swag_ft_in1k,384,68.093,31.907,90.680,9.320,83.59,1.000,bicubic,-29.697,-9.080,+43 +maxvit_base_tf_512.in1k,512,68.093,31.907,88.547,11.453,119.88,1.000,bicubic,-29.707,-11.063,+43 +volo_d5_448.sail_in1k,448,68.000,32.000,89.773,10.227,295.91,1.150,bicubic,-29.750,-9.857,+52 +maxvit_large_tf_512.in1k,512,67.667,32.333,87.693,12.307,212.33,1.000,bicubic,-30.163,-12.007,+35 +beitv2_large_patch16_224.in1k_ft_in1k,224,67.627,32.373,88.733,11.267,304.43,0.950,bicubic,-30.293,-10.947,+15 +convnext_large.fb_in22k_ft_in1k_384,384,67.413,32.587,88.893,11.107,197.77,1.000,bicubic,-30.847,-10.867,-25 +swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,256,67.373,32.627,88.507,11.493,196.74,0.900,bicubic,-30.467,-11.173,+28 +convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,384,67.267,32.733,89.960,10.040,200.13,1.000,bicubic,-30.993,-9.790,-28 +tf_efficientnet_b7.ns_jft_in1k,600,67.160,32.840,88.507,11.493,66.35,0.949,bicubic,-30.730,-11.213,+17 +tf_efficientnetv2_xl.in21k_ft_in1k,512,67.147,32.853,87.160,12.840,208.12,1.000,bicubic,-30.753,-12.410,+15 +vit_large_patch14_clip_336.laion2b_ft_in1k,336,67.067,32.933,88.920,11.080,304.53,1.000,bicubic,-31.163,-10.800,-27 +beit_base_patch16_384.in22k_ft_in22k_in1k,384,66.987,33.013,89.093,10.907,86.74,1.000,bicubic,-30.843,-10.577,+25 +convnextv2_large.fcmae_ft_in22k_in1k,288,66.880,33.120,88.880,11.120,197.96,1.000,bicubic,-31.230,-10.900,-14 +vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,224,66.840,33.160,88.160,11.840,304.20,1.000,bicubic,-31.240,-11.600,-13 +convnext_large.fb_in22k_ft_in1k,288,66.333,33.667,88.987,11.013,197.77,1.000,bicubic,-31.797,-10.763,-18 +volo_d4_448.sail_in1k,448,66.293,33.707,88.987,11.013,193.41,1.150,bicubic,-31.387,-10.733,+45 +hiera_huge_224.mae_in1k_ft_in1k,224,66.240,33.760,86.547,13.453,672.78,0.900,bicubic,-31.710,-13.213,-2 +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,320,66.013,33.987,87.813,12.187,93.59,1.000,bicubic,-31.947,-11.887,-6 +convnextv2_large.fcmae_ft_in22k_in1k,224,65.933,34.067,87.280,12.720,197.96,0.875,bicubic,-31.997,-12.490,-2 +convnextv2_base.fcmae_ft_in22k_in1k_384,384,65.813,34.187,87.840,12.160,88.72,1.000,bicubic,-32.547,-11.990,-47 +vit_huge_patch14_clip_224.laion2b_ft_in1k,224,65.667,34.333,87.840,12.160,632.05,1.000,bicubic,-32.363,-11.890,-15 +regnety_320.swag_lc_in1k,224,65.547,34.453,87.987,12.013,145.05,0.965,bicubic,-31.613,-11.553,+152 +volo_d3_448.sail_in1k,448,65.520,34.480,87.373,12.627,86.63,1.000,bicubic,-32.030,-12.287,+63 +nextvit_large.bd_ssld_6m_in1k_384,384,65.373,34.627,88.587,11.413,57.87,1.000,bicubic,-32.567,-11.203,-8 +vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,65.360,34.640,88.333,11.667,60.60,1.000,bicubic,-32.410,-11.267,+26 +swin_base_patch4_window12_384.ms_in22k_ft_in1k,384,65.280,34.720,88.587,11.413,87.90,1.000,bicubic,-32.590,-11.173,+2 +efficientvit_l3.r384_in1k,384,64.813,35.187,87.053,12.947,246.04,1.000,bicubic,-32.777,-12.567,+55 +convnextv2_huge.fcmae_ft_in1k,288,64.533,35.467,87.253,12.747,660.29,1.000,bicubic,-33.367,-12.377,-5 +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,288,64.520,35.480,87.080,12.920,93.59,0.950,bicubic,-33.430,-12.540,-16 +maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,224,64.520,35.480,85.867,14.133,116.14,0.950,bicubic,-33.260,-13.793,+19 +tf_efficientnetv2_l.in21k_ft_in1k,480,64.507,35.493,87.653,12.347,118.52,1.000,bicubic,-33.323,-12.107,+5 +convnext_xlarge.fb_in22k_ft_in1k,224,63.787,36.213,87.387,12.613,350.20,0.875,bicubic,-34.133,-12.273,-13 +swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,256,63.467,36.533,87.667,12.333,87.92,0.900,bicubic,-34.213,-11.943,+27 +maxvit_large_tf_384.in1k,384,63.400,36.600,85.187,14.813,212.03,1.000,bicubic,-34.190,-14.333,+49 +convformer_b36.sail_in22k_ft_in1k,224,63.373,36.627,86.480,13.520,99.88,1.000,bicubic,-34.577,-13.250,-22 +convnext_base.fb_in22k_ft_in1k_384,384,63.307,36.693,86.827,13.173,88.59,1.000,bicubic,-34.793,-12.823,-36 +convformer_s36.sail_in22k_ft_in1k_384,384,63.027,36.973,86.773,13.227,40.01,1.000,bicubic,-34.823,-12.917,-6 +vit_base_patch16_384.augreg_in21k_ft_in1k,384,63.027,36.973,86.080,13.920,86.86,1.000,bicubic,-34.803,-13.480,+1 +maxvit_small_tf_512.in1k,512,62.840,37.160,86.467,13.533,69.13,1.000,bicubic,-34.920,-13.083,+13 +nextvit_base.bd_ssld_6m_in1k_384,384,62.813,37.187,87.960,12.040,44.82,1.000,bicubic,-35.057,-11.750,-13 +maxvit_base_tf_384.in1k,384,62.467,37.533,85.133,14.867,119.65,1.000,bicubic,-35.123,-14.537,+40 +vit_base_patch8_224.augreg2_in21k_ft_in1k,224,62.240,37.760,85.893,14.107,86.58,0.900,bicubic,-35.500,-13.747,+14 +caformer_b36.sail_in1k_384,384,62.093,37.907,84.480,15.520,98.75,1.000,bicubic,-35.417,-15.100,+49 +cait_m48_448.fb_dist_in1k,448,62.080,37.920,86.480,13.520,356.46,1.000,bicubic,-35.410,-13.140,+54 +convnextv2_base.fcmae_ft_in22k_in1k,288,62.067,37.933,87.053,12.947,88.72,1.000,bicubic,-35.993,-12.697,-41 +tf_efficientnet_b6.ns_jft_in1k,528,61.880,38.120,85.027,14.973,43.04,0.942,bicubic,-35.740,-14.573,+27 +convnextv2_huge.fcmae_ft_in1k,224,61.867,38.133,84.680,15.320,660.29,0.875,bicubic,-35.783,-14.890,+19 +beitv2_base_patch16_224.in1k_ft_in22k_in1k,224,61.480,38.520,85.573,14.427,86.53,0.900,bicubic,-36.220,-14.107,+11 +swin_large_patch4_window7_224.ms_in22k_ft_in1k,224,61.333,38.667,86.600,13.400,196.53,0.900,bicubic,-36.317,-13.090,+18 +convnext_base.fb_in22k_ft_in1k,288,61.240,38.760,86.467,13.533,88.59,1.000,bicubic,-36.610,-13.173,-20 +vit_large_r50_s32_384.augreg_in21k_ft_in1k,384,61.187,38.813,83.787,16.213,329.09,1.000,bicubic,-36.663,-15.883,-20 +seresnextaa101d_32x8d.sw_in12k_ft_in1k,288,61.147,38.853,85.840,14.160,93.59,1.000,bicubic,-36.783,-13.840,-34 +caformer_m36.sail_in22k_ft_in1k,224,60.973,39.027,84.960,15.040,56.20,1.000,bicubic,-36.867,-14.710,-19 +vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,60.867,39.133,85.240,14.760,64.11,0.950,bicubic,-36.843,-14.370,+3 +convnext_large_mlp.clip_laion2b_augreg_ft_in1k,256,60.733,39.267,86.693,13.307,200.13,1.000,bicubic,-37.247,-13.007,-44 +coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,224,60.693,39.307,84.413,15.587,73.88,0.950,bicubic,-36.947,-15.157,+13 +regnety_160.swag_lc_in1k,224,60.520,39.480,85.880,14.120,83.59,0.965,bicubic,-36.310,-13.520,+190 +convnextv2_base.fcmae_ft_in22k_in1k,224,60.520,39.480,85.053,14.947,88.72,0.875,bicubic,-37.390,-14.637,-36 +convnext_small.in12k_ft_in1k_384,384,60.507,39.493,84.813,15.187,50.22,1.000,bicubic,-37.293,-14.877,-16 +convnext_large.fb_in22k_ft_in1k,224,60.480,39.520,85.147,14.853,197.77,0.875,bicubic,-37.370,-14.533,-31 +caformer_m36.sail_in1k_384,384,60.347,39.653,84.813,15.187,56.20,1.000,bicubic,-37.103,-14.727,+43 +deit3_large_patch16_384.fb_in1k,384,60.227,39.773,85.547,14.453,304.76,1.000,bicubic,-37.213,-14.043,+46 +coatnet_2_rw_224.sw_in12k_ft_in1k,224,60.160,39.840,84.613,15.387,73.87,0.950,bicubic,-37.370,-14.987,+27 +vit_large_patch14_clip_224.laion2b_ft_in1k,224,60.040,39.960,85.840,14.160,304.20,1.000,bicubic,-37.870,-13.810,-42 +tf_efficientnet_b5.ns_jft_in1k,456,59.933,40.067,84.280,15.720,30.39,0.934,bicubic,-37.567,-15.330,+29 +xcit_large_24_p8_384.fb_dist_in1k,384,59.880,40.120,85.387,14.613,188.93,1.000,bicubic,-37.650,-14.153,+25 +maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,224,59.867,40.133,84.973,15.027,116.09,0.950,bicubic,-37.883,-14.727,-14 +efficientvit_l3.r320_in1k,320,59.853,40.147,84.907,15.093,246.04,1.000,bicubic,-37.557,-14.483,+45 +vit_base_patch16_clip_384.openai_ft_in12k_in1k,384,59.627,40.373,84.200,15.800,86.86,0.950,bicubic,-38.563,-15.460,-83 +resnetv2_152x4_bit.goog_in21k_ft_in1k,480,59.560,40.440,83.173,16.827,936.53,1.000,bilinear,-37.920,-16.387,+29 +tf_efficientnetv2_m.in21k_ft_in1k,480,59.120,40.880,84.493,15.507,54.14,1.000,bicubic,-38.690,-15.197,-30 +convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,384,58.853,41.147,85.787,14.213,88.59,1.000,bicubic,-39.197,-13.963,-67 +maxvit_tiny_tf_512.in1k,512,58.667,41.333,84.627,15.373,31.05,1.000,bicubic,-38.913,-14.933,+11 +vit_base_patch8_224.augreg_in21k_ft_in1k,224,58.467,41.533,82.680,17.320,86.58,0.900,bicubic,-39.123,-16.900,+5 +volo_d2_384.sail_in1k,384,58.427,41.573,84.280,15.720,58.87,1.000,bicubic,-38.893,-15.310,+59 +caformer_s18.sail_in22k_ft_in1k_384,384,58.413,41.587,85.440,14.560,26.34,1.000,bicubic,-39.027,-14.020,+33 +tf_efficientnetv2_xl.in21k_ft_in1k,384,58.187,41.813,80.853,19.147,208.12,1.000,bicubic,-39.203,-18.527,+43 +nextvit_small.bd_ssld_6m_in1k_384,384,58.067,41.933,85.360,14.640,31.76,1.000,bicubic,-39.703,-14.350,-28 +vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,58.027,41.973,83.200,16.800,64.11,0.950,bicubic,-39.603,-16.420,-9 +hiera_large_224.mae_in1k_ft_in1k,224,58.000,42.000,81.680,18.320,213.74,0.900,bicubic,-39.440,-17.950,+30 +resnext101_32x32d.fb_wsl_ig1b_ft_in1k,224,57.907,42.093,80.653,19.347,468.53,0.875,bilinear,-39.473,-18.917,+40 +tiny_vit_21m_512.dist_in22k_ft_in1k,512,57.787,42.213,83.147,16.853,21.27,1.000,bicubic,-40.113,-16.543,-58 +vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,384,57.773,42.227,81.867,18.133,86.86,1.000,bicubic,-40.237,-17.793,-74 +efficientvit_l2.r384_in1k,384,57.747,42.253,83.747,16.253,63.71,1.000,bicubic,-39.653,-15.763,+34 +seresnextaa101d_32x8d.sw_in12k_ft_in1k,224,57.680,42.320,82.867,17.133,93.59,0.875,bicubic,-39.970,-16.753,-20 +cait_m36_384.fb_dist_in1k,384,57.667,42.333,84.680,15.320,271.22,1.000,bicubic,-39.733,-14.740,+29 +hgnetv2_b6.ssld_stage2_ft_in1k,288,57.547,42.453,84.173,15.827,75.26,1.000,bicubic,-40.253,-15.477,-45 +tiny_vit_21m_384.dist_in22k_ft_in1k,384,57.480,42.520,83.107,16.893,21.23,1.000,bicubic,-40.130,-16.483,-12 +tf_efficientnetv2_l.in21k_ft_in1k,384,57.387,42.613,82.293,17.707,118.52,1.000,bicubic,-40.073,-17.347,+13 +dm_nfnet_f5.dm_in1k,544,57.320,42.680,82.040,17.960,377.21,0.954,bicubic,-40.460,-17.600,-41 +convnext_base.clip_laiona_augreg_ft_in1k_384,384,57.173,42.827,84.720,15.280,88.59,1.000,bicubic,-40.437,-14.830,-14 +deit3_base_patch16_224.fb_in22k_ft_in1k,224,57.147,42.853,83.507,16.493,86.59,1.000,bicubic,-40.343,-16.093,+5 +deit3_small_patch16_384.fb_in22k_ft_in1k,384,57.133,42.867,83.013,16.987,22.21,1.000,bicubic,-39.997,-16.427,+85 +caformer_s36.sail_in1k_384,384,57.107,42.893,82.600,17.400,39.30,1.000,bicubic,-40.293,-16.900,+20 +hgnetv2_b6.ssld_stage1_in22k_in1k,288,57.093,42.907,84.240,15.760,75.26,1.000,bicubic,-40.717,-15.370,-55 +convnextv2_large.fcmae_ft_in1k,288,57.080,42.920,83.587,16.413,197.96,1.000,bicubic,-40.580,-16.053,-32 +volo_d5_224.sail_in1k,224,56.827,43.173,82.760,17.240,295.46,0.960,bicubic,-40.553,-16.920,+26 +dm_nfnet_f6.dm_in1k,576,56.747,43.253,81.520,18.480,438.36,0.956,bicubic,-41.033,-18.070,-51 +rdnet_large.nv_in1k_ft_in1k_384,384,56.720,43.280,82.987,17.013,186.27,1.000,bicubic,-40.950,-16.563,-37 +maxvit_small_tf_384.in1k,384,56.720,43.280,82.280,17.720,69.02,1.000,bicubic,-40.680,-17.190,+16 +regnety_160.lion_in12k_ft_in1k,288,56.693,43.307,83.907,16.093,83.59,1.000,bicubic,-40.757,-15.693,+4 +xcit_medium_24_p8_384.fb_dist_in1k,384,56.693,43.307,83.600,16.400,84.32,1.000,bicubic,-40.607,-15.910,+37 +convformer_m36.sail_in22k_ft_in1k,224,56.253,43.747,82.227,17.773,57.05,1.000,bicubic,-41.337,-17.293,-23 +dm_nfnet_f4.dm_in1k,512,56.240,43.760,81.307,18.693,316.07,0.951,bicubic,-41.390,-18.233,-33 +regnety_160.sw_in12k_ft_in1k,288,56.187,43.813,82.800,17.200,83.59,1.000,bicubic,-41.313,-16.840,-9 +efficientvit_l3.r256_in1k,256,56.147,43.853,81.360,18.640,246.04,1.000,bicubic,-40.883,-17.870,+99 +caformer_s36.sail_in22k_ft_in1k,224,55.547,44.453,81.880,18.120,39.30,1.000,bicubic,-42.063,-17.720,-33 +convformer_b36.sail_in1k_384,384,55.467,44.533,81.253,18.747,99.88,1.000,bicubic,-42.073,-18.257,-21 +vit_large_patch16_224.augreg_in21k_ft_in1k,224,55.293,44.707,79.680,20.320,304.33,0.900,bicubic,-42.347,-19.910,-41 +convnext_base.fb_in22k_ft_in1k,224,54.787,45.213,82.573,17.427,88.59,0.875,bicubic,-42.713,-17.027,-15 +convnextv2_large.fcmae_ft_in1k,224,54.680,45.320,81.160,18.840,197.96,0.875,bicubic,-42.670,-18.370,+15 +vit_base_patch16_clip_384.openai_ft_in1k,384,54.453,45.547,82.320,17.680,86.86,1.000,bicubic,-43.097,-17.230,-27 +xcit_small_24_p8_384.fb_dist_in1k,384,54.387,45.613,81.707,18.293,47.63,1.000,bicubic,-42.893,-17.853,+26 +vit_base_r50_s16_384.orig_in21k_ft_in1k,384,54.347,45.653,80.813,19.187,98.95,1.000,bicubic,-42.833,-18.617,+54 +cait_s36_384.fb_dist_in1k,384,54.213,45.787,81.253,18.747,68.37,1.000,bicubic,-43.137,-18.297,+12 +deit3_huge_patch14_224.fb_in1k,224,54.147,45.853,81.827,18.173,632.13,0.900,bicubic,-42.743,-17.613,+122 +volo_d1_384.sail_in1k,384,53.907,46.093,80.880,19.120,26.78,1.000,bicubic,-43.023,-18.500,+112 +vit_medium_patch16_gap_384.sw_in12k_ft_in1k,384,53.840,46.160,81.520,18.480,39.03,0.950,bicubic,-43.610,-18.080,-15 +beitv2_base_patch16_224.in1k_ft_in1k,224,53.640,46.360,81.827,18.173,86.53,0.900,bicubic,-43.530,-17.693,+53 +convformer_m36.sail_in1k_384,384,53.613,46.387,80.867,19.133,57.05,1.000,bicubic,-43.787,-18.673,-3 +dm_nfnet_f3.dm_in1k,416,53.560,46.440,79.293,20.707,254.92,0.940,bicubic,-43.920,-20.347,-21 +vit_base_patch16_clip_384.laion2b_ft_in1k,384,53.373,46.627,80.413,19.587,86.86,1.000,bicubic,-44.377,-19.207,-68 +deit3_base_patch16_384.fb_in1k,384,53.293,46.707,80.507,19.493,86.88,1.000,bicubic,-43.717,-19.003,+87 +convnext_small.fb_in22k_ft_in1k_384,384,53.160,46.840,81.467,18.533,50.22,1.000,bicubic,-44.460,-18.123,-52 +resnext101_32x16d.fb_wsl_ig1b_ft_in1k,224,53.013,46.987,76.893,23.107,194.03,0.875,bilinear,-43.907,-22.697,+107 +convnext_small.in12k_ft_in1k,288,52.987,47.013,81.307,18.693,50.22,1.000,bicubic,-44.353,-18.273,+4 +volo_d4_224.sail_in1k,224,52.867,47.133,80.547,19.453,192.96,0.960,bicubic,-44.433,-18.983,+10 +xcit_large_24_p16_384.fb_dist_in1k,384,52.827,47.173,81.733,18.267,189.10,1.000,bicubic,-44.713,-17.787,-39 +resnetv2_152x2_bit.goog_in21k_ft_in1k,448,52.800,47.200,81.133,18.867,236.34,1.000,bilinear,-44.220,-18.457,+77 +convnext_base.clip_laion2b_augreg_ft_in12k_in1k,256,52.507,47.493,82.760,17.240,88.59,1.000,bicubic,-45.093,-16.960,-52 +resnetv2_101x3_bit.goog_in21k_ft_in1k,448,52.467,47.533,79.827,20.173,387.93,1.000,bilinear,-44.543,-19.483,+78 +vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,448,52.320,47.680,80.000,20.000,88.34,1.000,bicubic,-45.010,-19.480,0 +maxvit_tiny_tf_384.in1k,384,52.040,47.960,79.893,20.107,30.98,1.000,bicubic,-45.270,-19.567,+2 +vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,52.000,48.000,80.467,19.533,60.40,0.950,bicubic,-45.230,-19.063,+21 +dm_nfnet_f5.dm_in1k,416,51.987,48.013,77.493,22.507,377.21,0.954,bicubic,-45.483,-22.027,-34 +swin_base_patch4_window7_224.ms_in22k_ft_in1k,224,51.813,48.187,80.413,19.587,87.77,0.900,bicubic,-45.467,-19.017,+6 +regnety_120.sw_in12k_ft_in1k,288,51.800,48.200,80.653,19.347,51.82,1.000,bicubic,-45.470,-18.867,+10 +efficientvit_l3.r224_in1k,224,51.720,48.280,79.080,20.920,246.04,1.000,bicubic,-45.290,-20.160,+74 +convnext_small.fb_in22k_ft_in1k,288,51.547,48.453,81.333,18.667,50.22,1.000,bicubic,-45.803,-18.197,-11 +dm_nfnet_f6.dm_in1k,448,51.533,48.467,76.533,23.467,438.36,0.956,bicubic,-46.177,-23.107,-82 +hgnetv2_b6.ssld_stage1_in22k_in1k,224,51.387,48.613,79.920,20.080,75.26,0.965,bicubic,-46.223,-19.690,-66 +efficientvit_l2.r288_in1k,288,51.347,48.653,79.973,20.027,63.71,1.000,bicubic,-45.713,-19.417,+58 +resnext101_32x8d.fb_swsl_ig1b_ft_in1k,224,51.280,48.720,78.200,21.800,88.79,0.875,bilinear,-45.940,-21.380,+15 +eva02_small_patch14_336.mim_in22k_ft_in1k,336,51.093,48.907,78.987,21.013,22.13,1.000,bicubic,-46.057,-20.463,+32 +tf_efficientnet_b4.ns_jft_in1k,380,51.013,48.987,79.053,20.947,19.34,0.922,bicubic,-45.957,-20.357,+76 +efficientnet_b5.sw_in12k_ft_in1k,448,50.987,49.013,78.667,21.333,30.39,1.000,bicubic,-46.403,-20.883,-27 +hgnetv2_b6.ssld_stage2_ft_in1k,224,50.920,49.080,79.280,20.720,75.26,0.965,bicubic,-46.530,-20.360,-42 +tf_efficientnetv2_m.in21k_ft_in1k,384,50.907,49.093,78.467,21.533,54.14,1.000,bicubic,-46.303,-21.033,+16 +flexivit_large.1200ep_in1k,240,50.840,49.160,80.547,19.453,304.36,0.950,bicubic,-46.580,-19.053,-37 +beit_base_patch16_224.in22k_ft_in22k_in1k,224,50.747,49.253,79.893,20.107,86.53,0.900,bicubic,-46.313,-19.477,+48 +mvitv2_large.fb_in1k,224,50.640,49.360,78.067,21.933,217.99,0.900,bicubic,-46.300,-21.323,+74 +xcit_small_12_p8_384.fb_dist_in1k,384,50.627,49.373,79.800,20.200,26.21,1.000,bicubic,-46.603,-19.790,+5 +dm_nfnet_f4.dm_in1k,384,50.307,49.693,76.053,23.947,316.07,0.951,bicubic,-47.043,-23.427,-24 +vit_base_patch16_clip_224.openai_ft_in12k_in1k,224,50.253,49.747,77.440,22.560,86.57,0.950,bicubic,-47.287,-22.040,-66 +vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,224,50.240,49.760,78.200,21.800,86.57,0.950,bicubic,-47.210,-21.400,-48 +convformer_s18.sail_in22k_ft_in1k_384,384,50.160,49.840,81.053,18.947,26.77,1.000,bicubic,-47.120,-18.467,-15 +convnext_tiny.in12k_ft_in1k_384,384,50.120,49.880,79.733,20.267,28.59,1.000,bicubic,-47.210,-19.747,-26 +tf_efficientnetv2_l.in1k,480,50.120,49.880,77.520,22.480,118.52,1.000,bicubic,-47.390,-22.030,-65 +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,384,50.093,49.907,77.640,22.360,236.34,1.000,bicubic,-46.737,-21.890,+91 +convformer_s36.sail_in1k_384,384,50.080,49.920,78.920,21.080,40.01,1.000,bicubic,-47.200,-20.670,-17 +vit_base_patch16_384.orig_in21k_ft_in1k,384,50.080,49.920,77.587,22.413,86.86,1.000,bicubic,-46.630,-21.863,+119 +volo_d3_224.sail_in1k,224,50.000,50.000,78.320,21.680,86.33,0.960,bicubic,-47.110,-21.080,+24 +flexivit_large.600ep_in1k,240,49.973,50.027,79.960,20.040,304.36,0.950,bicubic,-47.307,-19.640,-23 +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,544,49.853,50.147,78.560,21.440,32.59,1.000,bicubic,-47.317,-21.020,+6 +vit_base_patch16_224.augreg2_in21k_ft_in1k,224,49.733,50.267,78.733,21.267,86.57,0.900,bicubic,-47.427,-20.937,+10 +vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,49.680,50.320,78.493,21.507,60.40,0.950,bicubic,-47.650,-21.107,-33 +nextvit_large.bd_ssld_6m_in1k,224,49.547,50.453,80.813,19.187,57.87,0.950,bicubic,-47.833,-18.857,-45 +inception_next_base.sail_in1k_384,384,49.493,50.507,78.560,21.440,86.67,1.000,bicubic,-47.777,-21.100,-20 +regnety_160.lion_in12k_ft_in1k,224,49.453,50.547,78.467,21.533,83.59,0.950,bicubic,-47.797,-21.073,-19 +cait_s24_384.fb_dist_in1k,384,49.427,50.573,78.653,21.347,47.06,1.000,bicubic,-47.643,-20.767,+27 +nextvit_large.bd_in1k_384,384,49.320,50.680,78.413,21.587,57.87,1.000,bicubic,-47.690,-20.947,+37 +xcit_medium_24_p16_384.fb_dist_in1k,384,49.253,50.747,79.747,20.253,84.40,1.000,bicubic,-48.057,-19.753,-36 +hiera_base_plus_224.mae_in1k_ft_in1k,224,49.173,50.827,76.507,23.493,69.90,0.900,bicubic,-47.767,-22.893,+54 +regnety_160.sw_in12k_ft_in1k,224,49.107,50.893,77.813,22.187,83.59,0.950,bicubic,-48.113,-21.777,-15 +deit_base_distilled_patch16_384.fb_in1k,384,49.027,50.973,78.960,21.040,87.63,1.000,bicubic,-47.973,-20.570,+40 +caformer_s18.sail_in1k_384,384,48.907,51.093,78.720,21.280,26.34,1.000,bicubic,-48.163,-20.700,+20 +coat_lite_medium_384.in1k,384,48.840,51.160,78.520,21.480,44.57,1.000,bicubic,-48.310,-20.950,0 +convnext_base.clip_laion2b_augreg_ft_in1k,256,48.693,51.307,79.933,20.067,88.59,1.000,bicubic,-48.577,-19.727,-32 +caformer_b36.sail_in1k,224,48.627,51.373,75.707,24.293,98.75,1.000,bicubic,-48.373,-23.813,+37 +convnextv2_base.fcmae_ft_in1k,288,48.613,51.387,78.880,21.120,88.72,1.000,bicubic,-48.627,-20.660,-28 +efficientvit_l2.r256_in1k,256,48.587,51.413,77.907,22.093,63.71,1.000,bicubic,-48.263,-21.393,+64 +deit3_large_patch16_224.fb_in1k,224,48.573,51.427,78.027,21.973,304.37,0.900,bicubic,-48.407,-21.243,+37 +vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,384,48.493,51.507,77.400,22.600,88.30,1.000,bicubic,-48.877,-22.120,-58 +flexivit_large.300ep_in1k,240,48.453,51.547,78.627,21.373,304.36,0.950,bicubic,-48.797,-20.863,-33 +deit3_medium_patch16_224.fb_in22k_ft_in1k,224,48.200,51.800,77.080,22.920,38.85,1.000,bicubic,-48.790,-22.350,+32 +tf_efficientnetv2_s.in21k_ft_in1k,384,48.067,51.933,77.653,22.347,21.46,1.000,bicubic,-48.683,-21.637,+79 +tf_efficientnet_b8.ra_in1k,672,48.013,51.987,76.467,23.533,87.41,0.954,bicubic,-49.197,-23.073,-24 +xcit_large_24_p8_224.fb_dist_in1k,224,47.907,52.093,79.147,20.853,188.93,1.000,bicubic,-49.143,-20.273,+12 +convnext_small.in12k_ft_in1k,224,47.907,52.093,77.253,22.747,50.22,0.950,bicubic,-49.303,-22.247,-28 +regnety_2560.seer_ft_in1k,384,47.787,52.213,76.333,23.667,"1,282.60",1.000,bicubic,-49.453,-23.217,-36 +hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k,256,47.667,52.333,76.840,23.160,34.36,0.950,bicubic,-49.513,-22.720,-22 +resnest269e.in1k,416,47.640,52.360,74.080,25.920,110.93,0.928,bicubic,-48.880,-25.250,+144 +convnext_tiny.in12k_ft_in1k,288,47.533,52.467,78.973,21.027,28.59,1.000,bicubic,-49.567,-20.547,-5 +vit_base_patch16_clip_224.openai_ft_in1k,224,47.453,52.547,78.147,21.853,86.57,0.900,bicubic,-49.637,-21.313,-4 +regnetz_e8.ra3_in1k,320,47.347,52.653,75.760,24.240,57.70,1.000,bicubic,-49.863,-23.840,-33 +convformer_s36.sail_in22k_ft_in1k,224,47.307,52.693,77.307,22.693,40.01,1.000,bicubic,-49.773,-22.243,-2 +nextvit_base.bd_ssld_6m_in1k,224,47.280,52.720,78.560,21.440,44.82,0.950,bicubic,-49.990,-21.000,-52 +xcit_large_24_p8_224.fb_in1k,224,46.867,53.133,74.400,25.600,188.93,1.000,bicubic,-49.533,-24.750,+170 +xcit_small_24_p16_384.fb_dist_in1k,384,46.773,53.227,76.987,23.013,47.67,1.000,bicubic,-50.357,-22.513,-20 +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,480,46.720,53.280,77.387,22.613,32.59,1.000,bicubic,-50.460,-22.173,-33 +convnext_large.fb_in1k,288,46.667,53.333,76.733,23.267,197.77,1.000,bicubic,-50.423,-22.717,-9 +tf_efficientnet_b8.ap_in1k,672,46.493,53.507,76.187,23.813,87.41,0.954,bicubic,-50.627,-23.423,-22 +hgnet_base.ssld_in1k,288,46.480,53.520,76.213,23.787,71.58,1.000,bicubic,-50.950,-23.407,-92 +nextvit_base.bd_in1k_384,384,46.400,53.600,76.800,23.200,44.82,1.000,bicubic,-50.510,-22.600,+30 +resnetv2_50x3_bit.goog_in21k_ft_in1k,448,46.347,53.653,76.640,23.360,217.32,1.000,bilinear,-50.383,-22.700,+66 +efficientnetv2_rw_m.agc_in1k,416,46.333,53.667,75.733,24.267,53.24,1.000,bicubic,-50.667,-23.617,+7 +vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,46.133,53.867,77.000,23.000,38.88,0.950,bicubic,-51.037,-22.390,-34 +dm_nfnet_f2.dm_in1k,352,46.120,53.880,74.613,25.387,193.78,0.920,bicubic,-50.990,-24.847,-24 +hgnetv2_b5.ssld_stage2_ft_in1k,288,45.947,54.053,77.773,22.227,39.57,1.000,bicubic,-51.423,-21.897,-85 +volo_d2_224.sail_in1k,224,45.893,54.107,75.147,24.853,58.68,0.960,bicubic,-51.097,-24.243,+8 +swinv2_base_window16_256.ms_in1k,256,45.893,54.107,75.107,24.893,87.92,0.900,bicubic,-50.877,-24.233,+51 +resnext101_32x16d.fb_swsl_ig1b_ft_in1k,224,45.867,54.133,72.093,27.907,194.03,0.875,bilinear,-50.733,-27.407,+100 +caformer_m36.sail_in1k,224,45.773,54.227,74.533,25.467,56.20,1.000,bicubic,-51.117,-24.937,+27 +ecaresnet269d.ra2_in1k,352,45.747,54.253,74.947,25.053,102.09,1.000,bicubic,-51.343,-24.533,-23 +convnextv2_base.fcmae_ft_in1k,224,45.733,54.267,75.960,24.040,88.72,0.875,bicubic,-51.167,-23.460,+22 +dm_nfnet_f3.dm_in1k,320,45.440,54.560,72.360,27.640,254.92,0.940,bicubic,-51.750,-27.180,-50 +swin_base_patch4_window12_384.ms_in1k,384,45.413,54.587,74.613,25.387,87.90,1.000,bicubic,-51.167,-24.707,+104 +vit_small_patch16_384.augreg_in21k_ft_in1k,384,45.360,54.640,76.160,23.840,22.20,1.000,bicubic,-51.340,-23.080,+66 +tf_efficientnet_b7.ap_in1k,600,45.267,54.733,74.027,25.973,66.35,0.949,bicubic,-51.943,-25.443,-58 +resnext101_32x8d.fb_wsl_ig1b_ft_in1k,224,45.240,54.760,70.853,29.147,88.79,0.875,bilinear,-51.060,-28.377,+186 +xcit_medium_24_p8_224.fb_dist_in1k,224,45.227,54.773,76.760,23.240,84.32,1.000,bicubic,-51.703,-22.490,+9 +vit_small_r26_s32_384.augreg_in21k_ft_in1k,384,45.227,54.773,75.467,24.533,36.47,1.000,bicubic,-51.453,-23.903,+70 +convnext_small.fb_in22k_ft_in1k,224,45.147,54.853,77.493,22.507,50.22,0.875,bicubic,-51.823,-22.087,-1 +coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,224,45.133,54.867,73.960,26.040,41.72,0.950,bicubic,-51.537,-25.370,+75 +convnextv2_tiny.fcmae_ft_in22k_in1k_384,384,45.120,54.880,76.587,23.413,28.64,1.000,bicubic,-52.120,-22.923,-72 +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,448,44.880,55.120,74.573,25.427,32.59,0.950,bicubic,-52.130,-24.927,-15 +eca_nfnet_l2.ra3_in1k,384,44.760,55.240,75.680,24.320,56.72,1.000,bicubic,-52.320,-23.930,-32 +hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k,256,44.720,55.280,74.467,25.533,34.36,0.950,bicubic,-51.980,-24.883,+59 +maxxvit_rmlp_small_rw_256.sw_in1k,256,44.493,55.507,75.133,24.867,66.01,0.950,bicubic,-52.297,-24.197,+29 +regnety_120.sw_in12k_ft_in1k,224,44.467,55.533,74.653,25.347,51.82,0.950,bicubic,-52.703,-24.807,-59 +ecaresnet269d.ra2_in1k,320,44.347,55.653,73.947,26.053,102.09,0.950,bicubic,-52.763,-25.553,-44 +tiny_vit_21m_224.dist_in22k_ft_in1k,224,44.307,55.693,74.947,25.053,21.20,0.950,bicubic,-52.893,-24.543,-67 +tf_efficientnetv2_l.in1k,384,44.067,55.933,72.027,27.973,118.52,1.000,bicubic,-53.203,-27.473,-84 +rexnetr_300.sw_in12k_ft_in1k,288,44.053,55.947,76.693,23.307,34.81,1.000,bicubic,-52.797,-22.827,+10 +resnest200e.in1k,320,43.987,56.013,73.400,26.600,70.20,0.909,bicubic,-52.623,-25.900,+73 +crossvit_18_dagger_408.in1k,408,43.840,56.160,73.613,26.387,44.61,1.000,bicubic,-52.690,-25.647,+98 +cait_xs24_384.fb_dist_in1k,384,43.640,56.360,74.840,25.160,26.67,1.000,bicubic,-52.930,-24.400,+87 +seresnextaa101d_32x8d.ah_in1k,288,43.613,56.387,73.093,26.907,93.59,1.000,bicubic,-53.327,-26.247,-12 +resnetrs200.tf_in1k,320,43.493,56.507,72.533,27.467,93.21,1.000,bicubic,-53.227,-26.827,+40 +swin_small_patch4_window7_224.ms_in22k_ft_in1k,224,43.453,56.547,76.267,23.733,49.61,0.900,bicubic,-53.097,-23.013,+89 +caformer_s18.sail_in22k_ft_in1k,224,43.333,56.667,74.920,25.080,26.34,1.000,bicubic,-53.377,-24.560,+39 +hiera_base_224.mae_in1k_ft_in1k,224,43.333,56.667,73.160,26.840,51.52,0.900,bicubic,-53.257,-26.000,+77 +hgnetv2_b5.ssld_stage1_in22k_in1k,288,43.293,56.707,75.267,24.733,39.57,1.000,bicubic,-53.977,-24.273,-100 +mvitv2_base.fb_in1k,224,43.293,56.707,73.920,26.080,51.47,0.900,bicubic,-53.477,-25.330,+20 +xcit_small_12_p16_384.fb_dist_in1k,384,43.227,56.773,74.000,26.000,26.25,1.000,bicubic,-53.723,-25.400,-21 +tresnet_xl.miil_in1k_448,448,43.213,56.787,72.147,27.853,78.44,0.875,bilinear,-52.757,-26.973,+268 +vit_base_patch16_224.augreg_in21k_ft_in1k,224,43.120,56.880,72.573,27.427,86.57,0.900,bicubic,-53.760,-26.817,-6 +regnetz_e8.ra3_in1k,256,43.093,56.907,72.200,27.800,57.70,0.940,bicubic,-53.597,-27.170,+40 +xcit_medium_24_p8_224.fb_in1k,224,43.093,56.907,70.080,29.920,84.32,1.000,bicubic,-53.027,-28.810,+217 +rdnet_large.nv_in1k,224,42.787,57.213,73.613,26.387,186.27,0.900,bicubic,-54.123,-25.847,-15 +edgenext_base.in21k_ft_in1k,320,42.773,57.227,75.427,24.573,18.51,1.000,bicubic,-53.967,-23.993,+19 +hrnet_w48_ssld.paddle_in1k,288,42.693,57.307,72.067,27.933,77.47,1.000,bilinear,-54.347,-27.303,-50 +efficientvit_l2.r224_in1k,224,42.653,57.347,74.320,25.680,63.71,1.000,bicubic,-54.187,-24.930,-6 +vit_base_patch32_clip_384.openai_ft_in12k_in1k,384,42.573,57.427,72.640,27.360,88.30,0.950,bicubic,-54.527,-26.880,-65 +coatnet_rmlp_2_rw_224.sw_in1k,224,42.547,57.453,71.040,28.960,73.88,0.950,bicubic,-53.983,-28.040,+80 +nextvit_small.bd_ssld_6m_in1k,224,42.533,57.467,75.467,24.533,31.76,0.950,bicubic,-54.427,-24.013,-33 +gcvit_base.in1k,224,42.520,57.480,73.440,26.560,90.32,0.875,bicubic,-54.040,-25.790,+70 +resnetrs420.tf_in1k,416,42.427,57.573,70.160,29.840,191.89,1.000,bicubic,-54.483,-29.070,-25 +vit_medium_patch16_gap_256.sw_in12k_ft_in1k,256,42.413,57.587,74.240,25.760,38.86,0.950,bicubic,-54.257,-24.920,+37 +tf_efficientnetv2_m.in1k,480,42.400,57.600,72.213,27.787,54.14,1.000,bicubic,-54.830,-27.257,-104 +maxvit_large_tf_224.in1k,224,42.360,57.640,69.213,30.787,211.79,0.950,bicubic,-54.660,-30.027,-54 +dm_nfnet_f1.dm_in1k,320,42.293,57.707,71.293,28.707,132.63,0.910,bicubic,-54.767,-28.317,-63 +xcit_tiny_24_p8_384.fb_dist_in1k,384,42.267,57.733,72.773,27.227,12.11,1.000,bicubic,-54.313,-26.467,+56 +swinv2_small_window16_256.ms_in1k,256,42.267,57.733,72.747,27.253,49.73,0.900,bicubic,-54.203,-26.653,+84 +tf_efficientnet_b7.ra_in1k,600,42.253,57.747,72.547,27.453,66.35,0.949,bicubic,-54.747,-26.943,-51 +maxvit_rmlp_small_rw_224.sw_in1k,224,42.200,57.800,72.373,27.627,64.90,0.900,bicubic,-54.360,-26.757,+62 +convformer_s18.sail_in1k_384,384,42.187,57.813,74.013,25.987,26.77,1.000,bicubic,-54.853,-25.627,-64 +maxvit_base_tf_224.in1k,224,42.027,57.973,70.053,29.947,119.47,0.950,bicubic,-54.953,-29.277,-48 +convnext_tiny.fb_in22k_ft_in1k_384,384,42.013,57.987,73.533,26.467,28.59,1.000,bicubic,-55.097,-25.977,-84 +vit_base_patch16_clip_224.laion2b_ft_in1k,224,41.960,58.040,73.987,26.013,86.57,1.000,bicubic,-55.160,-25.673,-87 +convnext_base.fb_in1k,288,41.907,58.093,73.840,26.160,88.59,1.000,bicubic,-54.913,-25.580,-19 +eca_nfnet_l2.ra3_in1k,320,41.907,58.093,72.933,27.067,56.72,0.900,bicubic,-54.683,-26.477,+45 +crossvit_15_dagger_408.in1k,408,41.787,58.213,71.947,28.053,28.50,1.000,bicubic,-54.633,-27.303,+90 +nextvit_small.bd_in1k_384,384,41.747,58.253,72.747,27.253,31.76,1.000,bicubic,-55.073,-26.623,-20 +convnextv2_tiny.fcmae_ft_in22k_in1k,288,41.733,58.267,75.133,24.867,28.64,1.000,bicubic,-55.107,-24.317,-29 +xcit_small_24_p8_224.fb_in1k,224,41.653,58.347,70.867,29.133,47.63,1.000,bicubic,-54.777,-28.303,+84 +vit_large_r50_s32_224.augreg_in21k_ft_in1k,224,41.613,58.387,70.280,29.720,328.99,0.900,bicubic,-55.177,-29.090,-18 +resnext101_32x4d.fb_swsl_ig1b_ft_in1k,224,41.600,58.400,71.853,28.147,44.18,0.875,bilinear,-54.840,-27.277,+76 +xcit_small_24_p8_224.fb_dist_in1k,224,41.533,58.467,73.667,26.333,47.63,1.000,bicubic,-55.357,-25.813,-40 +resnetaa101d.sw_in12k_ft_in1k,288,41.533,58.467,72.507,27.493,44.57,1.000,bicubic,-55.137,-26.993,+17 +vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k,256,41.427,58.573,71.627,28.373,63.95,0.950,bicubic,-55.193,-27.653,+26 +convnext_large.fb_in1k,224,41.213,58.787,73.280,26.720,197.77,0.875,bicubic,-55.537,-26.090,-15 +swinv2_base_window8_256.ms_in1k,256,41.160,58.840,72.560,27.440,87.92,0.900,bicubic,-55.390,-26.850,+47 +deit3_small_patch16_224.fb_in22k_ft_in1k,224,41.080,58.920,72.000,28.000,22.06,1.000,bicubic,-55.590,-27.360,+13 +caformer_s36.sail_in1k,224,41.080,58.920,70.920,29.080,39.30,1.000,bicubic,-55.650,-28.620,-12 +seresnext101d_32x8d.ah_in1k,288,40.933,59.067,70.720,29.280,93.59,1.000,bicubic,-55.797,-28.580,-13 +davit_base.msft_in1k,224,40.787,59.213,72.587,27.413,87.95,0.950,bicubic,-56.143,-26.933,-56 +maxvit_rmlp_tiny_rw_256.sw_in1k,256,40.733,59.267,70.880,29.120,29.15,0.950,bicubic,-55.687,-28.280,+73 +hgnet_base.ssld_in1k,224,40.693,59.307,70.667,29.333,71.58,0.965,bicubic,-56.387,-28.843,-96 +regnety_1280.seer_ft_in1k,384,40.667,59.333,70.587,29.413,644.81,1.000,bicubic,-56.213,-28.943,-48 +flexivit_base.1200ep_in1k,240,40.587,59.413,72.187,27.813,86.59,0.950,bicubic,-56.173,-27.173,-27 +tf_efficientnet_b6.ap_in1k,528,40.373,59.627,71.387,28.613,43.04,0.942,bicubic,-56.747,-28.073,-110 +resmlp_big_24_224.fb_in22k_ft_in1k,224,40.333,59.667,74.560,25.440,129.14,0.875,bicubic,-56.267,-24.980,+20 +convformer_b36.sail_in1k,224,40.280,59.720,69.107,30.893,99.88,1.000,bicubic,-56.630,-30.293,-58 +deit3_small_patch16_384.fb_in1k,384,40.227,59.773,70.000,30.000,22.21,1.000,bicubic,-55.993,-29.210,+134 +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,384,40.133,59.867,72.453,27.547,32.59,0.950,bicubic,-56.737,-26.907,-53 +tresnet_l.miil_in1k_448,448,40.133,59.867,69.720,30.280,55.99,0.875,bilinear,-55.757,-29.400,+233 +hgnetv2_b5.ssld_stage2_ft_in1k,224,39.907,60.093,72.320,27.680,39.57,0.965,bicubic,-57.213,-27.280,-117 +deit_base_patch16_384.fb_in1k,384,39.880,60.120,70.373,29.627,86.86,1.000,bicubic,-56.290,-28.827,+151 +flexivit_base.600ep_in1k,240,39.800,60.200,71.680,28.320,86.59,0.950,bicubic,-56.850,-27.650,0 +convnextv2_tiny.fcmae_ft_in22k_in1k,224,39.720,60.280,72.587,27.413,28.64,0.875,bicubic,-56.750,-26.623,+43 +mobilenetv4_hybrid_large.ix_e600_r384_in1k,448,39.707,60.293,72.480,27.520,37.76,1.000,bicubic,-56.893,-26.900,+13 +regnetz_040_h.ra3_in1k,320,39.707,60.293,70.960,29.040,28.94,1.000,bicubic,-57.013,-28.540,-26 +vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k,256,39.693,60.307,71.133,28.867,22.52,0.950,bicubic,-56.647,-28.127,+90 +swin_s3_base_224.ms_in1k,224,39.627,60.373,70.613,29.387,71.13,0.900,bicubic,-56.643,-28.727,+107 +vit_base_patch16_rope_reg1_gap_256.sbb_in1k,256,39.613,60.387,70.467,29.533,86.43,0.950,bicubic,-56.827,-29.013,+50 +mobilenetv4_hybrid_large.e600_r384_in1k,448,39.600,60.400,72.880,27.120,37.76,1.000,bicubic,-57.100,-26.600,-22 +regnetz_d8.ra3_in1k,320,39.480,60.520,71.227,28.773,23.37,1.000,bicubic,-57.150,-28.193,-5 +resnetrs350.tf_in1k,384,39.400,60.600,68.293,31.707,163.96,1.000,bicubic,-57.370,-31.037,-48 +flexivit_base.300ep_in1k,240,39.320,60.680,70.733,29.267,86.59,0.950,bicubic,-57.290,-28.607,+1 +gcvit_small.in1k,224,39.253,60.747,70.520,29.480,51.09,0.875,bicubic,-57.017,-28.640,+102 +seresnext101_32x8d.ah_in1k,288,39.040,60.960,68.987,31.013,93.57,1.000,bicubic,-57.740,-30.363,-52 +deit3_base_patch16_224.fb_in1k,224,38.920,61.080,70.747,29.253,86.59,0.900,bicubic,-57.370,-28.443,+95 +mobilenetv4_conv_aa_large.e600_r384_in1k,480,38.893,61.107,70.707,29.293,32.59,1.000,bicubic,-57.567,-28.593,+36 +regnetz_d8_evos.ch_in1k,320,38.840,61.160,71.333,28.667,23.46,1.000,bicubic,-57.730,-28.127,+8 +vit_large_patch32_384.orig_in21k_ft_in1k,384,38.840,61.160,68.627,31.373,306.63,1.000,bicubic,-57.000,-30.533,+227 +volo_d1_224.sail_in1k,224,38.693,61.307,70.120,29.880,26.63,0.960,bicubic,-57.627,-29.120,+84 +mvitv2_small.fb_in1k,224,38.560,61.440,69.960,30.040,34.87,0.900,bicubic,-57.790,-29.430,+71 +coat_lite_medium.in1k,224,38.440,61.560,71.093,28.907,44.57,0.900,bicubic,-58.030,-28.267,+29 +efficientnetv2_rw_m.agc_in1k,320,38.427,61.573,70.133,29.867,53.24,1.000,bicubic,-58.163,-29.177,-5 +regnetz_040.ra3_in1k,320,38.427,61.573,70.067,29.933,27.12,1.000,bicubic,-58.283,-29.443,-38 +resnetv2_101x1_bit.goog_in21k_ft_in1k,448,38.253,61.747,70.227,29.773,44.54,1.000,bilinear,-57.847,-29.043,+146 +xcit_small_12_p8_224.fb_dist_in1k,224,38.147,61.853,71.333,28.667,26.21,1.000,bicubic,-58.603,-28.087,-57 +davit_small.msft_in1k,224,38.107,61.893,70.613,29.387,49.75,0.950,bicubic,-58.533,-28.747,-23 +convnext_tiny.in12k_ft_in1k,224,38.080,61.920,71.840,28.160,28.59,0.950,bicubic,-58.660,-27.620,-56 +rdnet_base.nv_in1k,224,38.013,61.987,70.000,30.000,87.45,0.900,bicubic,-58.677,-29.240,-36 +convformer_m36.sail_in1k,224,37.920,62.080,66.933,33.067,57.05,1.000,bicubic,-58.770,-32.417,-36 +resnet200d.ra2_in1k,320,37.893,62.107,68.333,31.667,64.69,1.000,bicubic,-58.837,-31.037,-54 +tf_efficientnet_b7.aa_in1k,600,37.760,62.240,69.427,30.573,66.35,0.949,bicubic,-58.780,-29.883,+4 +focalnet_base_srf.ms_in1k,224,37.747,62.253,69.707,30.293,88.15,0.900,bicubic,-58.843,-29.723,-11 +maxvit_small_tf_224.in1k,224,37.693,62.307,68.373,31.627,68.93,0.950,bicubic,-58.997,-30.697,-43 +swinv2_small_window8_256.ms_in1k,256,37.667,62.333,69.960,30.040,49.73,0.900,bicubic,-58.653,-29.340,+72 +vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k,256,37.627,62.373,68.867,31.133,60.23,0.950,bicubic,-58.733,-30.513,+48 +tf_efficientnetv2_s.in21k_ft_in1k,300,37.613,62.387,69.667,30.333,21.46,1.000,bicubic,-58.707,-29.663,+69 +fastvit_ma36.apple_dist_in1k,256,37.533,62.467,70.973,29.027,44.07,0.950,bicubic,-59.267,-28.357,-79 +focalnet_base_lrf.ms_in1k,224,37.533,62.467,68.600,31.400,88.75,0.900,bicubic,-58.947,-30.530,+8 +hgnetv2_b5.ssld_stage1_in22k_in1k,224,37.480,62.520,69.827,30.173,39.57,0.965,bicubic,-59.550,-29.743,-134 +seresnet152d.ra2_in1k,320,37.480,62.520,69.080,30.920,66.84,1.000,bicubic,-59.320,-30.330,-82 +efficientvit_b3.r288_in1k,288,37.347,62.653,69.653,30.347,48.65,1.000,bicubic,-59.283,-29.807,-35 +twins_svt_large.in1k,224,37.347,62.653,69.227,30.773,99.27,0.900,bicubic,-58.913,-29.943,+75 +xcit_large_24_p16_224.fb_dist_in1k,224,37.307,62.693,71.440,28.560,189.10,1.000,bicubic,-59.513,-27.860,-89 +xcit_small_12_p8_224.fb_in1k,224,37.307,62.693,68.133,31.867,26.21,1.000,bicubic,-58.803,-31.137,+126 +swin_s3_small_224.ms_in1k,224,37.053,62.947,68.147,31.853,49.74,0.900,bicubic,-59.187,-31.193,+81 +eca_nfnet_l1.ra2_in1k,320,37.027,62.973,70.573,29.427,41.41,1.000,bicubic,-59.723,-28.727,-76 +vit_medium_patch16_rope_reg1_gap_256.sbb_in1k,256,36.947,63.053,68.893,31.107,38.74,0.950,bicubic,-59.473,-30.497,+17 +regnetz_d32.ra3_in1k,320,36.813,63.187,70.080,29.920,27.58,0.950,bicubic,-59.787,-29.210,-32 +convnext_small.fb_in1k,288,36.787,63.213,70.947,29.053,50.22,1.000,bicubic,-59.773,-28.393,-21 +seresnextaa101d_32x8d.ah_in1k,224,36.760,63.240,66.347,33.653,93.59,0.950,bicubic,-59.570,-32.883,+48 +pvt_v2_b4.in1k,224,36.747,63.253,68.680,31.320,62.56,0.900,bicubic,-59.633,-30.500,+26 +convnext_base.fb_in1k,224,36.693,63.307,69.947,30.053,88.59,0.875,bicubic,-59.737,-29.443,+8 +pit_b_distilled_224.in1k,224,36.640,63.360,67.840,32.160,74.79,0.900,bicubic,-59.610,-31.290,+67 +regnety_064.ra3_in1k,288,36.640,63.360,67.560,32.440,30.58,1.000,bicubic,-59.720,-31.770,+29 +convnext_tiny.fb_in22k_ft_in1k,224,36.600,63.400,69.987,30.013,28.59,0.875,bicubic,-59.640,-29.183,+67 +efficientnetv2_rw_s.ra2_in1k,384,36.587,63.413,68.040,31.960,23.94,1.000,bicubic,-59.953,-31.320,-22 +vit_betwixt_patch16_reg4_gap_256.sbb_in1k,256,36.560,63.440,68.040,31.960,60.40,0.950,bicubic,-59.530,-30.830,+121 +vit_base_patch32_384.augreg_in21k_ft_in1k,384,36.520,63.480,69.147,30.853,88.30,1.000,bicubic,-59.980,-30.263,-17 +regnety_160.deit_in1k,288,36.480,63.520,68.813,31.187,83.59,1.000,bicubic,-59.880,-30.357,+21 +fastvit_sa36.apple_dist_in1k,256,36.413,63.587,69.573,30.427,31.53,0.900,bicubic,-59.937,-29.647,+28 +hiera_small_224.mae_in1k_ft_in1k,224,36.413,63.587,68.000,32.000,35.01,0.900,bicubic,-59.917,-31.170,+40 +resnext101_64x4d.c1_in1k,288,36.347,63.653,65.960,34.040,83.46,1.000,bicubic,-59.783,-33.270,+103 +mobilenetv4_hybrid_large.ix_e600_r384_in1k,384,36.333,63.667,69.040,30.960,37.76,0.950,bicubic,-60.127,-30.160,-9 +hgnet_small.ssld_in1k,288,36.307,63.693,70.800,29.200,24.36,1.000,bicubic,-60.623,-28.760,-134 +rexnetr_300.sw_in12k_ft_in1k,224,36.293,63.707,69.880,30.120,34.81,0.950,bicubic,-60.347,-29.490,-61 +pvt_v2_b5.in1k,224,36.280,63.720,68.400,31.600,81.96,0.900,bicubic,-60.070,-30.940,+28 +cait_xxs36_384.fb_dist_in1k,384,36.093,63.907,67.413,32.587,17.37,1.000,bicubic,-59.777,-31.727,+174 +efficientvit_l1.r224_in1k,224,35.960,64.040,68.000,32.000,52.65,1.000,bicubic,-60.370,-31.050,+33 +nest_base_jx.goog_in1k,224,35.947,64.053,66.600,33.400,67.72,0.875,bicubic,-60.303,-32.630,+51 +swin_base_patch4_window7_224.ms_in1k,224,35.773,64.227,68.213,31.787,87.77,0.900,bicubic,-60.317,-30.937,+109 +regnety_640.seer_ft_in1k,384,35.760,64.240,68.000,32.000,281.38,1.000,bicubic,-61.070,-31.660,-118 +repvgg_d2se.rvgg_in1k,320,35.720,64.280,66.667,33.333,133.33,1.000,bilinear,-60.960,-32.623,-77 +maxvit_tiny_rw_224.sw_in1k,224,35.720,64.280,65.747,34.253,29.06,0.950,bicubic,-60.520,-33.323,+52 +coatnet_1_rw_224.sw_in1k,224,35.693,64.307,66.987,33.013,41.72,0.950,bicubic,-60.337,-32.173,+122 +tf_efficientnet_b3.ns_jft_in1k,300,35.680,64.320,67.787,32.213,12.23,0.904,bicubic,-60.700,-31.603,+1 +mobilenetv4_hybrid_large.e600_r384_in1k,384,35.667,64.333,69.440,30.560,37.76,0.950,bicubic,-60.763,-29.790,-15 +edgenext_base.in21k_ft_in1k,256,35.640,64.360,69.440,30.560,18.51,0.950,bicubic,-60.720,-29.780,+2 +vit_betwixt_patch16_reg1_gap_256.sbb_in1k,256,35.640,64.360,67.040,32.960,60.40,0.950,bicubic,-60.590,-32.380,+51 +cs3se_edgenet_x.c2ns_in1k,320,35.547,64.453,67.640,32.360,50.72,1.000,bicubic,-60.893,-31.770,-22 +resnetrs200.tf_in1k,256,35.440,64.560,64.827,35.173,93.21,1.000,bicubic,-60.760,-34.453,+61 +hgnetv2_b4.ssld_stage2_ft_in1k,288,35.400,64.600,69.973,30.027,19.80,1.000,bicubic,-61.430,-29.477,-130 +tf_efficientnetv2_m.in1k,384,35.240,64.760,65.453,34.547,54.14,1.000,bicubic,-61.560,-33.997,-124 +resnetrs420.tf_in1k,320,35.160,64.840,63.627,36.373,191.89,1.000,bicubic,-61.450,-35.643,-71 +sequencer2d_l.in1k,224,35.093,64.907,67.093,32.907,54.30,0.875,bicubic,-61.047,-32.157,+79 +regnety_080.ra3_in1k,288,35.080,64.920,66.733,33.267,39.18,1.000,bicubic,-61.440,-32.637,-46 +tf_efficientnet_b6.aa_in1k,528,34.987,65.013,67.360,32.640,43.04,0.942,bicubic,-61.693,-32.230,-90 +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,448,34.947,65.053,69.187,30.813,11.07,1.000,bicubic,-61.373,-30.123,+15 +gcvit_tiny.in1k,224,34.920,65.080,66.307,33.693,28.22,0.875,bicubic,-61.270,-32.693,+57 +inception_next_base.sail_in1k,224,34.853,65.147,66.227,33.773,86.67,0.950,bicubic,-61.697,-32.863,-56 +vit_medium_patch16_reg1_gap_256.sbb_in1k,256,34.573,65.427,67.653,32.347,38.88,0.950,bicubic,-61.777,-31.567,+1 +dm_nfnet_f2.dm_in1k,256,34.573,65.427,63.920,36.080,193.78,0.920,bicubic,-62.157,-35.440,-113 +fastvit_ma36.apple_in1k,256,34.533,65.467,67.120,32.880,44.07,0.950,bicubic,-61.957,-32.180,-50 +resnetrs270.tf_in1k,352,34.520,65.480,65.120,34.880,129.86,1.000,bicubic,-62.180,-34.270,-105 +tf_efficientnet_b5.ap_in1k,456,34.387,65.613,67.173,32.827,30.39,0.934,bicubic,-62.323,-32.307,-109 +xcit_tiny_12_p8_384.fb_dist_in1k,384,34.347,65.653,66.320,33.680,6.71,1.000,bicubic,-61.703,-32.920,+93 +mobilenetv4_conv_large.e600_r384_in1k,448,34.333,65.667,67.747,32.253,32.59,1.000,bicubic,-61.907,-31.373,+27 +deit3_medium_patch16_224.fb_in1k,224,34.160,65.840,65.880,34.120,38.85,0.900,bicubic,-61.930,-33.430,+79 +coat_small.in1k,224,34.147,65.853,66.013,33.987,21.69,0.900,bicubic,-61.773,-33.147,+127 +vit_base_patch16_224_miil.in21k_ft_in1k,224,34.120,65.880,64.547,35.453,86.54,0.875,bilinear,-62.350,-34.613,-51 +vit_medium_patch16_reg4_gap_256.sbb_in1k,256,34.040,65.960,67.280,32.720,38.88,0.950,bicubic,-62.350,-32.050,-26 +xcit_medium_24_p16_224.fb_dist_in1k,224,34.000,66.000,67.640,32.360,84.40,1.000,bicubic,-62.620,-31.580,-94 +seresnext101d_32x8d.ah_in1k,224,34.000,66.000,64.320,35.680,93.59,0.950,bicubic,-62.460,-34.870,-48 +resnet152d.ra2_in1k,320,33.813,66.187,65.427,34.573,60.21,1.000,bicubic,-62.567,-33.923,-28 +resmlp_big_24_224.fb_distilled_in1k,224,33.787,66.213,69.360,30.640,129.14,0.875,bicubic,-62.673,-29.960,-55 +regnetv_064.ra3_in1k,288,33.787,66.213,67.667,32.333,30.58,1.000,bicubic,-62.663,-31.693,-49 +tresnet_m.miil_in1k_448,448,33.787,66.213,64.320,35.680,31.39,0.875,bilinear,-61.193,-34.660,+353 +coatnet_rmlp_1_rw_224.sw_in1k,224,33.653,66.347,65.280,34.720,41.69,0.950,bicubic,-62.297,-33.880,+112 +caformer_s18.sail_in1k,224,33.613,66.387,65.200,34.800,26.34,1.000,bicubic,-62.577,-33.990,+39 +pvt_v2_b3.in1k,224,33.587,66.413,67.427,32.573,45.24,0.900,bicubic,-62.413,-31.773,+92 +xcit_tiny_24_p16_384.fb_dist_in1k,384,33.573,66.427,65.280,34.720,12.12,1.000,bicubic,-62.417,-34.030,+94 +rdnet_small.nv_in1k,224,33.547,66.453,66.867,33.133,50.44,0.900,bicubic,-62.783,-32.333,-12 +focalnet_small_srf.ms_in1k,224,33.547,66.453,65.853,34.147,49.89,0.900,bicubic,-62.543,-33.307,+65 +convformer_s18.sail_in22k_ft_in1k,224,33.440,66.560,68.240,31.760,26.77,1.000,bicubic,-63.170,-31.110,-102 +inception_next_small.sail_in1k,224,33.427,66.573,65.893,34.107,49.37,0.875,bicubic,-62.823,-33.327,+3 +regnetz_d8.ra3_in1k,256,33.400,66.600,66.573,33.427,23.37,0.940,bicubic,-63.000,-32.677,-47 +tiny_vit_11m_224.dist_in22k_ft_in1k,224,33.320,66.680,65.707,34.293,11.00,0.950,bicubic,-62.970,-33.483,-5 +resnetrs350.tf_in1k,288,33.280,66.720,62.053,37.947,163.96,1.000,bicubic,-63.400,-37.317,-120 +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,320,33.253,66.747,67.787,32.213,11.07,1.000,bicubic,-62.917,-31.363,+33 +convformer_s36.sail_in1k,224,33.213,66.787,63.547,36.453,40.01,1.000,bicubic,-63.367,-35.613,-95 +twins_pcpvt_large.in1k,224,33.107,66.893,67.960,32.040,60.99,0.900,bicubic,-63.053,-31.290,+36 +twins_svt_base.in1k,224,33.107,66.893,65.587,34.413,56.07,0.900,bicubic,-63.073,-33.753,+28 +resnext50_32x4d.fb_swsl_ig1b_ft_in1k,224,33.067,66.933,65.213,34.787,25.03,0.875,bilinear,-62.813,-33.877,+113 +nextvit_large.bd_in1k,224,33.027,66.973,67.000,33.000,57.87,0.950,bicubic,-63.343,-32.340,-46 +resnet152.a1h_in1k,288,33.027,66.973,63.160,36.840,60.19,1.000,bicubic,-63.193,-36.070,+11 +hrnet_w48_ssld.paddle_in1k,224,33.013,66.987,63.493,36.507,77.47,0.950,bilinear,-63.377,-35.737,-54 +fastvit_sa36.apple_in1k,256,33.000,67.000,65.960,34.040,31.53,0.900,bicubic,-63.240,-33.350,-2 +focalnet_small_lrf.ms_in1k,224,32.947,67.053,67.160,32.840,50.34,0.900,bicubic,-63.243,-32.070,+19 +tiny_vit_21m_224.in1k,224,32.880,67.120,66.933,33.067,21.20,0.950,bicubic,-63.320,-32.337,+15 +regnetz_d8_evos.ch_in1k,256,32.867,67.133,65.387,34.613,23.46,0.950,bicubic,-63.403,-34.093,-16 +regnety_320.seer_ft_in1k,384,32.787,67.213,66.013,33.987,145.05,1.000,bicubic,-63.563,-33.457,-42 +pit_b_224.in1k,224,32.773,67.227,62.253,37.747,73.76,0.900,bicubic,-62.857,-36.417,+162 +swinv2_cr_small_ns_224.sw_in1k,224,32.747,67.253,65.720,34.280,49.70,0.900,bicubic,-63.473,-33.520,+4 +xcit_large_24_p16_224.fb_in1k,224,32.733,67.267,61.773,38.227,189.10,1.000,bicubic,-62.727,-37.247,+215 +mobilevitv2_200.cvnets_in22k_ft_in1k_384,384,32.480,67.520,64.760,35.240,18.45,1.000,bicubic,-63.550,-34.340,+61 +resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,224,32.427,67.573,63.680,36.320,194.03,0.875,bilinear,-63.423,-35.490,+109 +efficientvit_b3.r256_in1k,256,32.413,67.587,65.707,34.293,48.65,1.000,bicubic,-63.937,-33.493,-41 +eca_nfnet_l1.ra2_in1k,256,32.413,67.587,65.293,34.707,41.41,0.900,bicubic,-63.837,-33.937,-18 +ecaresnet101d.miil_in1k,288,32.400,67.600,65.813,34.187,44.57,0.950,bicubic,-63.820,-33.497,-8 +swin_small_patch4_window7_224.ms_in1k,224,32.373,67.627,65.227,34.773,49.61,0.900,bicubic,-63.507,-33.883,+99 +convnextv2_nano.fcmae_ft_in22k_in1k_384,384,32.320,67.680,66.253,33.747,15.62,1.000,bicubic,-64.030,-33.147,-55 +resnetaa101d.sw_in12k_ft_in1k,224,32.307,67.693,65.173,34.827,44.57,0.950,bicubic,-64.033,-34.147,-44 +nest_small_jx.goog_in1k,224,32.307,67.693,63.813,36.187,38.35,0.875,bicubic,-63.663,-35.227,+75 +xception65.ra3_in1k,299,32.280,67.720,62.480,37.520,39.92,0.940,bicubic,-64.080,-36.760,-62 +tf_efficientnetv2_b3.in21k_ft_in1k,300,32.093,67.907,65.773,34.227,14.36,0.900,bicubic,-64.127,-33.477,-11 +mobilevitv2_175.cvnets_in22k_ft_in1k_384,384,32.093,67.907,64.187,35.813,14.25,1.000,bicubic,-64.107,-34.943,-3 +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,224,32.027,67.973,63.573,36.427,236.34,0.875,bicubic,-64.063,-35.617,+28 +convnextv2_tiny.fcmae_ft_in1k,288,31.973,68.027,67.120,32.880,28.64,1.000,bicubic,-64.237,-32.120,-9 +regnetz_040_h.ra3_in1k,256,31.960,68.040,63.120,36.880,28.94,1.000,bicubic,-64.360,-36.080,-45 +convnext_tiny_hnf.a2h_in1k,288,31.960,68.040,62.480,37.520,28.59,1.000,bicubic,-64.050,-36.600,+51 +seresnext101_32x8d.ah_in1k,224,31.907,68.093,61.253,38.747,93.57,0.950,bicubic,-64.483,-37.957,-77 +efficientvit_b3.r224_in1k,224,31.880,68.120,64.493,35.507,48.65,0.950,bicubic,-64.140,-34.657,+47 +rexnetr_200.sw_in12k_ft_in1k,288,31.813,68.187,67.520,32.480,16.52,1.000,bicubic,-64.407,-31.610,-20 +swinv2_tiny_window16_256.ms_in1k,256,31.787,68.213,65.587,34.413,28.35,0.900,bicubic,-64.193,-33.513,+60 +resnext101_64x4d.tv_in1k,224,31.640,68.360,63.747,36.253,83.46,0.875,bilinear,-64.390,-35.343,+38 +maxvit_nano_rw_256.sw_in1k,256,31.600,68.400,63.667,36.333,15.45,0.950,bicubic,-64.330,-35.333,+68 +resnest101e.in1k,256,31.587,68.413,64.067,35.933,48.28,0.875,bilinear,-64.263,-35.143,+86 +vit_base_patch16_224.orig_in21k_ft_in1k,224,31.587,68.413,61.147,38.853,86.57,0.900,bicubic,-63.753,-37.863,+222 +regnetz_d32.ra3_in1k,256,31.507,68.493,65.013,34.987,27.58,0.950,bicubic,-64.693,-34.097,-18 +hgnetv2_b4.ssld_stage1_in22k_in1k,288,31.480,68.520,66.840,33.160,19.80,1.000,bicubic,-65.240,-32.590,-181 +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,384,31.440,68.560,65.733,34.267,11.07,0.950,bicubic,-64.610,-33.487,+25 +convnext_small.fb_in1k,224,31.373,68.627,65.987,34.013,50.22,0.875,bicubic,-64.827,-33.143,-17 +maxxvit_rmlp_nano_rw_256.sw_in1k,256,31.333,68.667,64.507,35.493,16.78,0.950,bicubic,-64.697,-34.753,+29 +fastvit_sa24.apple_dist_in1k,256,31.320,68.680,64.760,35.240,21.55,0.900,bicubic,-64.840,-34.390,-9 +convnext_nano.in12k_ft_in1k,288,31.293,68.707,67.333,32.667,15.59,1.000,bicubic,-64.697,-31.857,+39 +regnety_320.tv2_in1k,224,31.267,68.733,64.493,35.507,145.05,0.965,bicubic,-64.823,-34.817,+10 +mobilenetv4_conv_aa_large.e600_r384_in1k,384,31.253,68.747,65.267,34.733,32.59,0.950,bicubic,-64.897,-34.113,-7 +nextvit_base.bd_in1k,224,31.253,68.747,65.173,34.827,44.82,0.950,bicubic,-64.997,-34.047,-48 +cait_s24_224.fb_dist_in1k,224,31.187,68.813,64.253,35.747,46.92,1.000,bicubic,-65.213,-34.727,-99 +tf_efficientnet_b5.ra_in1k,456,31.107,68.893,64.520,35.480,30.39,0.934,bicubic,-65.283,-34.890,-97 +regnetz_c16_evos.ch_in1k,320,31.080,68.920,65.933,34.067,13.49,0.950,bicubic,-65.070,-33.157,-12 +regnetv_040.ra3_in1k,288,31.027,68.973,64.107,35.893,20.64,1.000,bicubic,-65.203,-35.193,-44 +crossvit_base_240.in1k,240,31.027,68.973,60.933,39.067,105.03,0.875,bicubic,-64.473,-37.887,+158 +maxvit_rmlp_nano_rw_256.sw_in1k,256,31.000,69.000,63.093,36.907,15.50,0.950,bicubic,-65.000,-35.867,+29 +seresnet152d.ra2_in1k,256,30.907,69.093,63.173,36.827,66.84,0.950,bicubic,-65.523,-35.957,-116 +regnetz_040.ra3_in1k,256,30.907,69.093,62.627,37.373,27.12,1.000,bicubic,-65.573,-36.783,-131 +maxvit_tiny_tf_224.in1k,224,30.880,69.120,62.933,37.067,30.92,0.950,bicubic,-65.260,-36.227,-14 +swinv2_cr_small_224.sw_in1k,224,30.773,69.227,61.853,38.147,49.70,0.900,bicubic,-65.317,-37.187,+3 +vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,224,30.720,69.280,62.333,37.667,88.22,0.900,bicubic,-65.400,-36.867,-12 +xcit_small_24_p16_224.fb_dist_in1k,224,30.600,69.400,64.533,35.467,47.67,1.000,bicubic,-65.620,-34.747,-44 +efficientnet_b4.ra2_in1k,384,30.573,69.427,64.347,35.653,19.34,1.000,bicubic,-65.587,-34.863,-25 +hiera_tiny_224.mae_in1k_ft_in1k,224,30.453,69.547,62.267,37.733,27.91,0.900,bicubic,-65.147,-36.603,+116 +crossvit_18_240.in1k,240,30.427,69.573,61.547,38.453,43.27,0.875,bicubic,-65.063,-37.443,+155 +sequencer2d_m.in1k,224,30.360,69.640,62.933,37.067,38.31,0.875,bicubic,-65.460,-36.177,+64 +repvit_m2_3.dist_450e_in1k,224,30.333,69.667,63.653,36.347,23.69,0.950,bicubic,-66.017,-35.567,-98 +maxxvitv2_nano_rw_256.sw_in1k,256,30.267,69.733,63.773,36.227,23.70,0.950,bicubic,-65.623,-35.337,+49 +regnety_040.ra3_in1k,288,30.200,69.800,63.373,36.627,20.65,1.000,bicubic,-65.800,-35.817,+14 +crossvit_18_dagger_240.in1k,240,30.200,69.800,61.613,38.387,44.27,0.875,bicubic,-65.420,-37.437,+107 +hgnet_small.ssld_in1k,224,30.133,69.867,64.467,35.533,24.36,0.965,bicubic,-66.497,-34.753,-182 +rexnet_300.nav_in1k,224,30.040,69.960,64.200,35.800,34.71,0.875,bicubic,-65.790,-34.930,+57 +xcit_medium_24_p16_224.fb_in1k,224,30.027,69.973,59.187,40.813,84.40,1.000,bicubic,-65.493,-39.773,+132 +dm_nfnet_f1.dm_in1k,224,30.000,70.000,57.947,42.053,132.63,0.910,bicubic,-66.350,-41.223,-101 +mvitv2_tiny.fb_in1k,224,29.867,70.133,63.747,36.253,24.17,0.900,bicubic,-66.013,-35.503,+45 +twins_pcpvt_base.in1k,224,29.840,70.160,64.587,35.413,43.83,0.900,bicubic,-65.950,-34.543,+63 +convnext_tiny.fb_in1k,288,29.787,70.213,64.920,35.080,28.59,1.000,bicubic,-65.993,-34.230,+63 +resnet50.fb_swsl_ig1b_ft_in1k,224,29.760,70.240,63.840,36.160,25.56,0.875,bilinear,-65.710,-35.170,+147 +convnextv2_nano.fcmae_ft_in22k_in1k,288,29.733,70.267,65.653,34.347,15.62,1.000,bicubic,-66.317,-33.557,-10 +cait_xxs24_384.fb_dist_in1k,384,29.720,70.280,63.733,36.267,12.03,1.000,bicubic,-65.540,-35.227,+200 +tf_efficientnet_b5.aa_in1k,456,29.720,70.280,62.733,37.267,30.39,0.934,bicubic,-66.760,-36.497,-154 +hgnetv2_b3.ssld_stage1_in22k_in1k,288,29.640,70.360,65.920,34.080,16.29,1.000,bicubic,-66.630,-33.230,-88 +resnet200d.ra2_in1k,256,29.640,70.360,61.387,38.613,64.69,0.950,bicubic,-66.670,-37.863,-92 +cs3sedarknet_x.c2ns_in1k,288,29.627,70.373,61.587,38.413,35.40,1.000,bicubic,-66.413,-37.523,-11 +mobilevitv2_150.cvnets_in22k_ft_in1k_384,384,29.573,70.427,61.400,38.600,10.59,1.000,bicubic,-66.127,-37.590,+73 +swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,224,29.547,70.453,66.493,33.507,28.29,0.900,bicubic,-65.943,-32.597,+127 +resnet152.a1_in1k,288,29.493,70.507,57.027,42.973,60.19,1.000,bicubic,-65.997,-41.923,+135 +deit_base_distilled_patch16_224.fb_in1k,224,29.480,70.520,64.093,35.907,87.34,0.900,bicubic,-66.620,-35.097,-33 +convnextv2_tiny.fcmae_ft_in1k,224,29.467,70.533,63.893,36.107,28.64,0.875,bicubic,-66.213,-35.117,+74 +convit_base.fb_in1k,224,29.387,70.613,61.493,38.507,86.54,0.875,bicubic,-66.163,-37.397,+100 +vit_relpos_base_patch16_clsgap_224.sw_in1k,224,29.360,70.640,62.187,37.813,86.43,0.900,bicubic,-66.410,-36.963,+51 +convnext_tiny.fb_in22k_ft_in1k,288,29.253,70.747,56.560,43.440,28.59,1.000,bicubic,-65.617,-42.340,+278 +mobilenetv4_conv_large.e600_r384_in1k,384,29.147,70.853,63.680,36.320,32.59,0.950,bicubic,-66.653,-35.380,+44 +cs3se_edgenet_x.c2ns_in1k,256,29.080,70.920,60.933,39.067,50.72,0.950,bicubic,-66.870,-37.957,+9 +tf_efficientnetv2_s.in1k,384,29.027,70.973,61.173,38.827,21.46,1.000,bicubic,-67.323,-37.937,-119 +fastvit_sa24.apple_in1k,256,29.000,71.000,62.320,37.680,21.55,0.900,bicubic,-66.910,-36.840,+13 +regnety_160.deit_in1k,224,29.000,71.000,61.467,38.533,83.59,0.950,bicubic,-67.050,-37.663,-27 +resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,224,28.960,71.040,60.787,39.213,88.79,0.875,bilinear,-66.530,-38.433,+117 +davit_tiny.msft_in1k,224,28.893,71.107,63.627,36.373,28.36,0.950,bicubic,-66.767,-35.603,+70 +hgnetv2_b4.ssld_stage2_ft_in1k,224,28.840,71.160,63.507,36.493,19.80,0.965,bicubic,-67.670,-35.873,-177 +resnet101d.ra2_in1k,320,28.813,71.187,61.920,38.080,44.57,1.000,bicubic,-67.487,-37.500,-109 +edgenext_base.usi_in1k,320,28.787,71.213,64.720,35.280,18.51,1.000,bicubic,-67.933,-34.800,-239 +vit_little_patch16_reg4_gap_256.sbb_in1k,256,28.787,71.213,62.413,37.587,22.52,0.950,bicubic,-66.953,-36.707,+45 +vit_relpos_medium_patch16_cls_224.sw_in1k,224,28.733,71.267,59.973,40.027,38.76,0.900,bicubic,-66.757,-38.797,+114 +regnety_160.tv2_in1k,224,28.707,71.293,61.280,38.720,83.59,0.965,bicubic,-67.273,-37.920,-10 +xcit_tiny_24_p8_224.fb_in1k,224,28.653,71.347,60.160,39.840,12.11,1.000,bicubic,-67.027,-38.990,+58 +resnetrs152.tf_in1k,320,28.653,71.347,60.013,39.987,86.62,1.000,bicubic,-67.917,-39.407,-197 +resnetv2_101.a1h_in1k,288,28.547,71.453,59.613,40.387,44.54,1.000,bicubic,-67.603,-39.547,-66 +xcit_tiny_24_p8_224.fb_dist_in1k,224,28.520,71.480,61.400,38.600,12.11,1.000,bicubic,-67.280,-37.810,+27 +vit_relpos_medium_patch16_224.sw_in1k,224,28.480,71.520,61.520,38.480,38.75,0.900,bicubic,-66.990,-37.440,+117 +crossvit_15_dagger_240.in1k,240,28.453,71.547,60.093,39.907,28.21,0.875,bicubic,-67.217,-38.967,+56 +hgnetv2_b3.ssld_stage2_ft_in1k,288,28.400,71.600,65.013,34.987,16.29,1.000,bicubic,-67.950,-34.317,-146 +efficientvit_b2.r288_in1k,288,28.400,71.600,63.907,36.093,24.33,1.000,bicubic,-67.580,-35.373,-18 +cs3edgenet_x.c2_in1k,288,28.360,71.640,61.040,38.960,47.82,1.000,bicubic,-67.700,-38.090,-47 +xcit_small_24_p16_224.fb_in1k,224,28.320,71.680,59.000,41.000,47.67,1.000,bicubic,-67.220,-40.000,+82 +xception65p.ra3_in1k,299,28.307,71.693,59.480,40.520,39.82,0.940,bicubic,-67.903,-39.940,-94 +pvt_v2_b2_li.in1k,224,28.267,71.733,61.560,38.440,22.55,0.900,bicubic,-67.323,-37.470,+66 +regnety_080.ra3_in1k,224,28.240,71.760,59.693,40.307,39.18,0.950,bicubic,-67.790,-39.417,-42 +repvit_m2_3.dist_300e_in1k,224,28.227,71.773,61.453,38.547,23.69,0.950,bicubic,-67.953,-37.597,-88 +regnety_064.ra3_in1k,224,28.227,71.773,59.507,40.493,30.58,0.950,bicubic,-67.643,-39.573,+3 +efficientnet_b4.ra2_in1k,320,28.187,71.813,61.907,38.093,19.34,0.875,bicubic,-67.573,-37.253,+22 +resnet101.a1h_in1k,288,28.120,71.880,59.640,40.360,44.55,1.000,bicubic,-67.920,-39.500,-50 +cs3sedarknet_x.c2ns_in1k,256,28.027,71.973,60.333,39.667,35.40,0.887,bicubic,-67.603,-38.647,+52 +efficientnetv2_rw_s.ra2_in1k,288,27.973,72.027,60.373,39.627,23.94,1.000,bicubic,-68.187,-38.817,-84 +rdnet_tiny.nv_in1k,224,27.760,72.240,62.000,38.000,23.86,0.900,bicubic,-67.880,-36.950,+48 +efficientformerv2_l.snap_dist_in1k,224,27.707,72.293,61.347,38.653,26.32,0.950,bicubic,-68.353,-37.853,-60 +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,256,27.693,72.307,62.773,37.227,11.07,0.950,bicubic,-68.127,-36.327,+4 +coat_lite_small.in1k,224,27.667,72.333,58.547,41.453,19.84,0.900,bicubic,-67.893,-40.333,+59 +efficientformer_l7.snap_dist_in1k,224,27.653,72.347,62.640,37.360,82.23,0.950,bicubic,-68.457,-36.530,-78 +flexivit_small.1200ep_in1k,240,27.587,72.413,58.240,41.760,22.06,0.950,bicubic,-67.973,-40.810,+54 +resnetaa50d.sw_in12k_ft_in1k,288,27.520,72.480,62.067,37.933,25.58,1.000,bicubic,-68.290,-37.203,+3 +regnetv_064.ra3_in1k,224,27.347,72.653,61.093,38.907,30.58,0.950,bicubic,-68.743,-38.137,-76 +pvt_v2_b2.in1k,224,27.307,72.693,60.587,39.413,25.36,0.900,bicubic,-68.193,-38.533,+76 +vit_base_patch16_384.augreg_in1k,384,27.293,72.707,56.507,43.493,86.86,1.000,bicubic,-67.667,-42.313,+213 +resnext101_32x8d.tv2_in1k,224,27.240,72.760,59.347,40.653,88.79,0.965,bilinear,-68.750,-39.883,-45 +deit_base_patch16_224.fb_in1k,224,27.173,72.827,58.640,41.360,86.57,0.900,bicubic,-68.267,-40.200,+98 +convnextv2_nano.fcmae_ft_in22k_in1k,224,27.147,72.853,62.293,37.707,15.62,0.875,bicubic,-68.383,-36.827,+60 +regnetz_c16.ra3_in1k,320,27.147,72.853,62.267,37.733,13.46,1.000,bicubic,-68.833,-36.883,-40 +regnety_080_tv.tv2_in1k,224,27.133,72.867,61.360,38.640,39.38,0.965,bicubic,-68.767,-37.790,-27 +resnetv2_50x1_bit.goog_in21k_ft_in1k,448,27.107,72.893,62.627,37.373,25.55,1.000,bilinear,-67.923,-36.263,+190 +coatnet_bn_0_rw_224.sw_in1k,224,27.013,72.987,60.840,39.160,27.44,0.950,bicubic,-68.687,-38.390,+18 +xcit_small_12_p16_224.fb_dist_in1k,224,27.000,73.000,59.813,40.187,26.25,1.000,bicubic,-69.020,-39.107,-62 +coatnet_0_rw_224.sw_in1k,224,26.973,73.027,59.107,40.893,27.44,0.950,bicubic,-68.487,-39.523,+87 +flexivit_small.600ep_in1k,240,26.827,73.173,57.013,42.987,22.06,0.950,bicubic,-68.863,-42.067,+18 +vit_small_patch16_224.augreg_in21k_ft_in1k,224,26.813,73.187,58.840,41.160,22.05,0.900,bicubic,-68.597,-40.290,+99 +vit_relpos_base_patch16_224.sw_in1k,224,26.787,73.213,60.467,39.533,86.43,0.900,bicubic,-68.803,-38.523,+36 +dm_nfnet_f0.dm_in1k,256,26.773,73.227,58.067,41.933,71.49,0.900,bicubic,-69.577,-41.183,-177 +gcvit_xtiny.in1k,224,26.720,73.280,60.587,39.413,19.98,0.875,bicubic,-68.870,-38.443,+33 +swin_s3_tiny_224.ms_in1k,224,26.680,73.320,60.293,39.707,28.33,0.900,bicubic,-68.510,-38.657,+142 +nextvit_small.bd_in1k,224,26.640,73.360,61.227,38.773,31.76,0.950,bicubic,-69.230,-37.963,-25 +mobilenetv4_conv_large.e500_r256_in1k,320,26.587,73.413,61.080,38.920,32.59,1.000,bicubic,-69.303,-37.960,-37 +sequencer2d_s.in1k,224,26.373,73.627,60.267,39.733,27.65,0.875,bicubic,-69.617,-38.823,-61 +tresnet_v2_l.miil_in21k_ft_in1k,224,26.293,73.707,59.493,40.507,46.17,0.875,bilinear,-69.867,-39.697,-117 +cs3edgenet_x.c2_in1k,256,26.267,73.733,59.067,40.933,47.82,0.887,bicubic,-69.243,-39.963,+52 +mobilevitv2_200.cvnets_in22k_ft_in1k,256,26.227,73.773,58.707,41.293,18.45,0.888,bicubic,-68.943,-40.153,+142 +hgnet_small.paddle_in1k,288,26.187,73.813,60.040,39.960,24.36,1.000,bicubic,-69.463,-39.070,+14 +swinv2_tiny_window8_256.ms_in1k,256,26.173,73.827,60.480,39.520,28.35,0.900,bicubic,-69.327,-38.510,+49 +regnetx_320.tv2_in1k,224,26.173,73.827,57.747,42.253,107.81,0.965,bicubic,-69.817,-41.303,-68 +nfnet_l0.ra2_in1k,288,26.080,73.920,61.547,38.453,35.07,1.000,bicubic,-70.050,-37.693,-113 +coatnet_rmlp_nano_rw_224.sw_in1k,224,26.080,73.920,60.400,39.600,15.15,0.900,bicubic,-69.360,-38.440,+74 +resnext101_64x4d.c1_in1k,224,26.067,73.933,56.227,43.773,83.46,0.950,bicubic,-69.643,-42.803,-5 +regnety_032.ra_in1k,288,26.040,73.960,60.867,39.133,19.44,1.000,bicubic,-69.950,-38.233,-74 +resnet152d.ra2_in1k,256,26.000,74.000,58.040,41.960,60.21,0.950,bicubic,-70.070,-41.260,-98 +deit3_small_patch16_224.fb_in1k,224,26.000,74.000,54.293,45.707,22.06,0.900,bicubic,-69.000,-44.607,+176 +tf_efficientnet_b4.aa_in1k,380,25.960,74.040,59.960,40.040,19.34,0.922,bicubic,-69.990,-39.160,-64 +fbnetv3_g.ra2_in1k,288,25.920,74.080,60.907,39.093,16.62,0.950,bilinear,-69.580,-38.073,+42 +coatnext_nano_rw_224.sw_in1k,224,25.907,74.093,59.147,40.853,14.70,0.900,bicubic,-69.503,-39.853,+79 +tf_efficientnet_b4.ap_in1k,380,25.827,74.173,59.573,40.427,19.34,0.922,bicubic,-70.343,-39.707,-135 +flexivit_small.300ep_in1k,240,25.773,74.227,56.813,43.187,22.06,0.950,bicubic,-69.747,-41.947,+35 +ecaresnet101d.miil_in1k,224,25.760,74.240,58.680,41.320,44.57,0.875,bicubic,-69.780,-40.500,+23 +coat_mini.in1k,224,25.720,74.280,57.680,42.320,10.34,0.900,bicubic,-69.280,-41.100,+168 +inception_next_tiny.sail_in1k,224,25.693,74.307,59.480,40.520,28.06,0.875,bicubic,-69.777,-39.400,+54 +ecaresnet50t.ra2_in1k,320,25.680,74.320,59.707,40.293,25.57,0.950,bicubic,-69.840,-39.303,+26 +mobilevitv2_175.cvnets_in22k_ft_in1k,256,25.680,74.320,58.027,41.973,14.25,0.888,bicubic,-69.570,-40.903,+109 +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,320,25.667,74.333,60.080,39.920,11.07,1.000,bicubic,-70.103,-38.960,-34 +visformer_small.in1k,224,25.640,74.360,58.573,41.427,40.22,0.900,bicubic,-69.860,-40.417,+35 +rexnetr_200.sw_in12k_ft_in1k,224,25.507,74.493,60.427,39.573,16.52,0.950,bicubic,-70.303,-38.743,-42 +crossvit_15_240.in1k,240,25.440,74.560,57.320,42.680,27.53,0.875,bicubic,-69.690,-41.620,+129 +vit_small_patch16_384.augreg_in1k,384,25.413,74.587,57.147,42.853,22.20,1.000,bicubic,-69.877,-41.863,+95 +convformer_s18.sail_in1k,224,25.387,74.613,57.600,42.400,26.77,1.000,bicubic,-70.563,-41.570,-76 +vit_relpos_medium_patch16_rpn_224.sw_in1k,224,25.267,74.733,58.267,41.733,38.73,0.900,bicubic,-70.253,-40.853,+20 +halo2botnet50ts_256.a1h_in1k,256,25.173,74.827,56.280,43.720,22.64,0.950,bicubic,-70.247,-42.650,+60 +resnetv2_50x1_bit.goog_distilled_in1k,224,25.133,74.867,59.387,40.613,25.55,0.875,bicubic,-70.967,-39.893,-129 +xcit_small_12_p16_224.fb_in1k,224,25.040,74.960,55.707,44.293,26.25,1.000,bicubic,-70.390,-43.273,+54 +resnetrs270.tf_in1k,256,25.040,74.960,54.307,45.693,129.86,1.000,bicubic,-71.360,-44.933,-234 +edgenext_base.usi_in1k,256,25.027,74.973,60.667,39.333,18.51,0.950,bicubic,-71.373,-38.713,-237 +vit_srelpos_medium_patch16_224.sw_in1k,224,24.987,75.013,58.147,41.853,38.74,0.900,bicubic,-70.253,-40.913,+97 +hgnet_tiny.ssld_in1k,288,24.947,75.053,61.440,38.560,14.74,1.000,bicubic,-71.283,-37.670,-178 +resnet101.a1_in1k,288,24.947,75.053,54.973,45.027,44.55,1.000,bicubic,-70.543,-43.817,+30 +convit_small.fb_in1k,224,24.813,75.187,56.880,43.120,27.78,0.875,bicubic,-70.377,-42.080,+103 +resnet152.a2_in1k,288,24.800,75.200,53.893,46.107,60.19,1.000,bicubic,-70.690,-45.217,+30 +regnetz_c16_evos.ch_in1k,256,24.733,75.267,59.653,40.347,13.49,0.950,bicubic,-70.967,-39.257,-36 +vit_base_patch16_rpn_224.sw_in1k,224,24.733,75.267,57.987,42.013,86.54,0.900,bicubic,-70.657,-40.963,+57 +gc_efficientnetv2_rw_t.agc_in1k,288,24.587,75.413,57.533,42.467,13.68,1.000,bicubic,-71.153,-41.647,-45 +tnt_s_patch16_224,224,24.573,75.427,57.773,42.227,23.76,0.900,bicubic,-70.487,-41.067,+131 +efficientvit_b2.r256_in1k,256,24.533,75.467,59.120,40.880,24.33,1.000,bicubic,-71.137,-39.690,-30 +hgnetv2_b4.ssld_stage1_in22k_in1k,224,24.507,75.493,60.387,39.613,19.80,0.965,bicubic,-71.963,-38.913,-267 +eca_nfnet_l0.ra2_in1k,288,24.480,75.520,59.587,40.413,24.14,1.000,bicubic,-71.490,-39.623,-100 +regnetv_040.ra3_in1k,224,24.387,75.613,57.600,42.400,20.64,0.950,bicubic,-71.363,-41.520,-55 +swinv2_cr_tiny_ns_224.sw_in1k,224,24.280,75.720,58.347,41.653,28.33,0.900,bicubic,-71.050,-40.593,+65 +tf_efficientnet_b2.ns_jft_in1k,260,24.253,75.747,57.573,42.427,9.11,0.890,bicubic,-71.497,-41.647,-56 +efficientnetv2_rw_t.ra2_in1k,288,24.240,75.760,57.147,42.853,13.65,1.000,bicubic,-71.370,-41.923,-24 +xception41p.ra3_in1k,299,24.240,75.760,54.560,45.440,26.91,0.940,bicubic,-71.320,-44.370,-16 +tf_efficientnetv2_b3.in21k_ft_in1k,240,24.213,75.787,55.840,44.160,14.36,0.900,bicubic,-71.127,-43.060,+58 +xcit_tiny_12_p16_384.fb_dist_in1k,384,24.120,75.880,56.920,43.080,6.72,1.000,bicubic,-71.040,-41.930,+94 +convnext_tiny.fb_in1k,224,24.107,75.893,59.107,40.893,28.59,0.875,bicubic,-71.433,-39.943,-10 +convnext_nano.in12k_ft_in1k,224,24.067,75.933,60.373,39.627,15.59,0.950,bicubic,-71.643,-38.887,-52 +cs3darknet_x.c2ns_in1k,288,24.000,76.000,57.573,42.427,35.05,1.000,bicubic,-71.870,-41.517,-86 +eva02_tiny_patch14_336.mim_in22k_ft_in1k,336,23.987,76.013,55.507,44.493,5.76,1.000,bicubic,-70.973,-43.403,+139 +convnext_nano_ols.d1h_in1k,288,23.973,76.027,56.493,43.507,15.65,1.000,bicubic,-71.137,-42.407,+106 +vit_small_r26_s32_224.augreg_in21k_ft_in1k,224,23.933,76.067,55.947,44.053,36.43,0.900,bicubic,-71.707,-43.243,-39 +twins_svt_small.in1k,224,23.920,76.080,57.400,42.600,24.06,0.900,bicubic,-71.300,-41.680,+77 +vit_relpos_small_patch16_224.sw_in1k,224,23.907,76.093,57.733,42.267,21.98,0.900,bicubic,-71.283,-41.307,+79 +resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,224,23.800,76.200,57.227,42.773,44.18,0.875,bilinear,-71.680,-41.713,+9 +ecaresnet50d.miil_in1k,288,23.773,76.227,58.547,41.453,25.58,0.950,bicubic,-71.717,-40.593,+1 +cs3sedarknet_l.c2ns_in1k,288,23.747,76.253,58.280,41.720,21.91,0.950,bicubic,-71.573,-40.860,+51 +coatnet_nano_rw_224.sw_in1k,224,23.720,76.280,56.693,43.307,15.14,0.900,bicubic,-71.520,-42.217,+69 +poolformer_m48.sail_in1k,224,23.680,76.320,56.853,43.147,73.47,0.950,bicubic,-71.960,-42.177,-44 +convnext_nano.d1h_in1k,288,23.653,76.347,55.707,44.293,15.59,1.000,bicubic,-71.697,-43.193,+41 +vit_small_patch32_384.augreg_in21k_ft_in1k,384,23.560,76.440,56.907,43.093,22.92,1.000,bicubic,-71.510,-42.083,+103 +resnet152.a1h_in1k,224,23.533,76.467,53.093,46.907,60.19,0.950,bicubic,-72.357,-45.987,-105 +tiny_vit_11m_224.in1k,224,23.520,76.480,58.627,41.373,11.00,0.950,bicubic,-72.030,-40.463,-33 +mobilevitv2_150.cvnets_in22k_ft_in1k,256,23.507,76.493,55.187,44.813,10.59,0.888,bicubic,-71.643,-43.903,+80 +tf_efficientnet_b5.in1k,456,23.440,76.560,57.480,42.520,30.39,0.934,bicubic,-72.640,-41.820,-160 +crossvit_small_240.in1k,240,23.413,76.587,56.387,43.613,26.86,0.875,bicubic,-71.437,-42.633,+152 +nest_tiny_jx.goog_in1k,224,23.253,76.747,56.133,43.867,17.06,0.875,bicubic,-72.007,-42.837,+53 +seresnext50_32x4d.racm_in1k,288,23.240,76.760,57.347,42.653,27.56,0.950,bicubic,-72.480,-41.693,-77 +hrnet_w18_ssld.paddle_in1k,288,23.240,76.760,55.067,44.933,21.30,1.000,bilinear,-72.740,-44.093,-135 +focalnet_tiny_srf.ms_in1k,224,23.227,76.773,58.160,41.840,28.43,0.900,bicubic,-72.263,-40.640,-15 +efficientnet_b3.ra2_in1k,320,23.200,76.800,55.933,44.067,12.23,1.000,bicubic,-72.520,-43.257,-78 +regnety_040.ra3_in1k,224,23.187,76.813,55.333,44.667,20.65,0.950,bicubic,-72.373,-43.787,-46 +levit_384.fb_dist_in1k,224,23.173,76.827,55.747,44.253,39.13,0.900,bicubic,-72.367,-43.393,-38 +levit_conv_384.fb_dist_in1k,224,23.173,76.827,55.747,44.253,39.13,0.900,bicubic,-72.367,-43.303,-38 +convnext_tiny_hnf.a2h_in1k,224,23.160,76.840,54.933,45.067,28.59,0.950,bicubic,-72.360,-44.037,-32 +lamhalobotnet50ts_256.a1h_in1k,256,23.133,76.867,54.880,45.120,22.57,0.950,bicubic,-72.027,-44.120,+66 +regnetz_c16.ra3_in1k,256,23.107,76.893,57.733,42.267,13.46,0.940,bicubic,-72.413,-41.347,-34 +pnasnet5large.tf_in1k,331,23.107,76.893,53.293,46.707,86.06,0.911,bicubic,-72.613,-45.627,-83 +nasnetalarge.tf_in1k,331,23.080,76.920,54.533,45.467,88.75,0.911,bicubic,-72.620,-44.527,-77 +vit_base_patch32_clip_224.laion2b_ft_in1k,224,23.067,76.933,55.347,44.653,88.22,0.900,bicubic,-72.483,-43.523,-48 +efficientformer_l3.snap_dist_in1k,224,23.040,76.960,56.787,43.213,31.41,0.950,bicubic,-72.570,-42.393,-62 +pit_s_distilled_224.in1k,224,22.973,77.027,56.880,43.120,24.04,0.900,bicubic,-72.207,-42.000,+53 +wide_resnet50_2.racm_in1k,288,22.960,77.040,55.600,44.400,68.88,0.950,bicubic,-72.700,-43.430,-74 +focalnet_tiny_lrf.ms_in1k,224,22.920,77.080,58.133,41.867,28.65,0.900,bicubic,-72.560,-40.967,-19 +hgnetv2_b3.ssld_stage1_in22k_in1k,224,22.827,77.173,58.760,41.240,16.29,0.965,bicubic,-73.153,-40.530,-151 +convnextv2_nano.fcmae_ft_in1k,288,22.813,77.187,58.747,41.253,15.62,1.000,bicubic,-73.087,-40.363,-134 +regnetx_160.tv2_in1k,224,22.787,77.213,56.200,43.800,54.28,0.965,bicubic,-73.113,-42.910,-133 +resnet61q.ra2_in1k,288,22.773,77.227,55.480,44.520,36.85,1.000,bicubic,-73.027,-43.520,-109 +vit_base_patch32_clip_224.openai_ft_in1k,224,22.747,77.253,55.840,44.160,88.22,0.900,bicubic,-72.373,-43.150,+61 +halonet50ts.a1h_in1k,256,22.747,77.253,54.360,45.640,22.73,0.940,bicubic,-72.393,-44.630,+57 +tiny_vit_5m_224.dist_in22k_ft_in1k,224,22.720,77.280,55.893,44.107,5.39,0.950,bicubic,-72.330,-43.087,+76 +resnetv2_50d_evos.ah_in1k,288,22.720,77.280,55.013,44.987,25.59,1.000,bicubic,-72.930,-44.137,-79 +efficientnet_b3.ra2_in1k,288,22.693,77.307,55.133,44.867,12.23,0.875,bicubic,-72.497,-43.797,+38 +tf_efficientnet_b4.in1k,380,22.653,77.347,56.267,43.733,19.34,0.922,bicubic,-73.167,-42.793,-121 +twins_pcpvt_small.in1k,224,22.627,77.373,56.600,43.400,24.11,0.900,bicubic,-72.603,-42.280,+32 +resmlp_big_24_224.fb_in1k,224,22.627,77.373,54.013,45.987,129.14,0.875,bicubic,-72.023,-44.647,+172 +hgnetv2_b2.ssld_stage2_ft_in1k,288,22.560,77.440,59.227,40.773,11.22,1.000,bicubic,-73.650,-39.953,-236 +poolformerv2_m48.sail_in1k,224,22.520,77.480,55.533,44.467,73.35,1.000,bicubic,-73.230,-43.447,-111 +repvit_m1_5.dist_450e_in1k,224,22.373,77.627,55.493,44.507,14.64,0.950,bicubic,-73.557,-43.667,-153 +vit_srelpos_small_patch16_224.sw_in1k,224,22.360,77.640,55.293,44.707,21.97,0.900,bicubic,-72.710,-43.657,+65 +ecaresnet101d_pruned.miil_in1k,288,22.293,77.707,56.427,43.573,24.88,0.950,bicubic,-73.447,-42.593,-113 +poolformer_m36.sail_in1k,224,22.267,77.733,55.147,44.853,56.17,0.950,bicubic,-73.143,-43.873,-14 +hgnetv2_b3.ssld_stage2_ft_in1k,224,22.253,77.747,57.893,42.107,16.29,0.965,bicubic,-73.667,-41.387,-155 +vit_base_patch32_224.augreg_in21k_ft_in1k,224,22.240,77.760,53.707,46.293,88.22,0.900,bicubic,-72.770,-45.313,+72 +xcit_tiny_12_p8_224.fb_dist_in1k,224,22.080,77.920,53.880,46.120,6.71,1.000,bicubic,-73.010,-45.050,+55 +resnetv2_50d_gn.ah_in1k,288,22.040,77.960,54.880,45.120,25.57,1.000,bicubic,-73.460,-44.020,-55 +wide_resnet101_2.tv2_in1k,224,22.013,77.987,54.560,45.440,126.89,0.965,bilinear,-73.537,-44.430,-78 +ecaresnet50t.a1_in1k,288,21.840,78.160,53.560,46.440,25.57,1.000,bicubic,-73.620,-45.160,-38 +resnext50_32x4d.a1h_in1k,288,21.813,78.187,54.200,45.800,25.03,1.000,bicubic,-73.627,-44.790,-33 +tf_efficientnetv2_s.in1k,300,21.760,78.240,53.293,46.707,21.46,1.000,bicubic,-74.390,-45.817,-225 +resnet101d.ra2_in1k,256,21.693,78.307,54.360,45.640,44.57,0.950,bicubic,-74.207,-44.720,-160 +res2net101d.in1k,224,21.613,78.387,51.147,48.853,45.23,0.875,bilinear,-73.227,-47.563,+108 +resnetrs152.tf_in1k,256,21.587,78.413,51.360,48.640,86.62,1.000,bicubic,-74.443,-47.690,-195 +efficientvit_b2.r224_in1k,224,21.573,78.427,55.253,44.747,24.33,0.950,bicubic,-73.737,-43.537,-3 +convnextv2_nano.fcmae_ft_in1k,224,21.547,78.453,55.427,44.573,15.62,0.875,bicubic,-73.883,-43.453,-37 +efficientformerv2_s2.snap_dist_in1k,224,21.547,78.453,54.040,45.960,12.71,0.950,bicubic,-73.833,-44.910,-25 +cs3sedarknet_l.c2ns_in1k,256,21.427,78.573,55.653,44.347,21.91,0.887,bicubic,-73.443,-43.157,+90 +vit_wee_patch16_reg1_gap_256.sbb_in1k,256,21.413,78.587,54.507,45.493,13.42,0.950,bicubic,-73.377,-44.063,+112 +tresnet_m.miil_in21k_ft_in1k,224,21.387,78.613,53.520,46.480,31.39,0.875,bilinear,-74.343,-45.510,-128 +fastvit_sa12.apple_dist_in1k,256,21.307,78.693,54.600,45.400,11.58,0.900,bicubic,-73.823,-44.210,+29 +ecaresnet50t.ra2_in1k,256,21.253,78.747,52.960,47.040,25.57,0.875,bicubic,-73.577,-45.770,+103 +resnet50_gn.a1h_in1k,288,21.160,78.840,54.200,45.800,25.56,0.950,bicubic,-74.120,-44.710,-6 +maxvit_rmlp_pico_rw_256.sw_in1k,256,21.160,78.840,51.787,48.213,7.52,0.950,bicubic,-73.530,-47.013,+129 +swin_tiny_patch4_window7_224.ms_in1k,224,21.120,78.880,55.640,44.360,28.29,0.900,bicubic,-74.050,-43.280,+15 +repvit_m1_5.dist_300e_in1k,224,21.107,78.893,54.307,45.693,14.64,0.950,bicubic,-74.593,-44.843,-124 +pit_s_224.in1k,224,21.080,78.920,53.547,46.453,23.46,0.900,bicubic,-73.580,-45.173,+136 +convmixer_1536_20.in1k,224,20.973,79.027,55.307,44.693,51.63,0.960,bicubic,-74.107,-43.723,+34 +cs3darknet_x.c2ns_in1k,256,20.893,79.107,53.467,46.533,35.05,0.950,bicubic,-74.517,-45.373,-42 +resnet101.a2_in1k,288,20.880,79.120,51.853,48.147,44.55,1.000,bicubic,-74.540,-47.177,-45 +xcit_tiny_12_p8_224.fb_in1k,224,20.827,79.173,51.987,48.013,6.71,1.000,bicubic,-73.853,-46.853,+122 +nfnet_l0.ra2_in1k,224,20.760,79.240,55.507,44.493,35.07,0.900,bicubic,-74.670,-43.333,-54 +deit_small_distilled_patch16_224.fb_in1k,224,20.733,79.267,54.853,45.147,22.44,0.900,bicubic,-73.977,-43.967,+114 +poolformerv2_m36.sail_in1k,224,20.667,79.333,52.987,47.013,56.08,1.000,bicubic,-74.763,-46.103,-54 +resnet61q.ra2_in1k,256,20.653,79.347,52.947,47.053,36.85,0.900,bicubic,-74.687,-46.023,-30 +resnet51q.ra2_in1k,288,20.600,79.400,55.173,44.827,35.70,1.000,bilinear,-75.280,-43.847,-175 +vit_pwee_patch16_reg1_gap_256.sbb_in1k,256,20.560,79.440,53.173,46.827,15.25,0.950,bicubic,-74.080,-45.607,+133 +regnety_032.tv2_in1k,224,20.547,79.453,54.347,45.653,19.44,0.965,bicubic,-74.753,-44.583,-25 +resnet152.a1_in1k,224,20.493,79.507,48.853,51.147,60.19,0.950,bicubic,-74.647,-49.927,+9 +resnet152.tv2_in1k,224,20.453,79.547,52.427,47.573,60.19,0.965,bilinear,-75.077,-46.533,-99 +ecaresnetlight.miil_in1k,288,20.440,79.560,53.360,46.640,30.16,0.950,bicubic,-74.850,-45.680,-26 +sebotnet33ts_256.a1h_in1k,256,20.333,79.667,48.693,51.307,13.70,0.940,bicubic,-74.317,-49.817,+127 +resnetrs101.tf_in1k,288,20.307,79.693,52.573,47.427,63.62,0.940,bicubic,-75.113,-46.447,-60 +regnety_032.ra_in1k,224,20.173,79.827,52.933,47.067,19.44,0.950,bicubic,-75.227,-46.147,-54 +resnest50d_4s2x40d.in1k,224,20.093,79.907,52.800,47.200,30.42,0.875,bicubic,-74.867,-46.020,+42 +hgnet_small.paddle_in1k,224,20.040,79.960,52.627,47.373,24.36,0.965,bicubic,-75.070,-46.303,+7 +resnetaa50d.sw_in12k_ft_in1k,224,20.027,79.973,54.720,45.280,25.58,0.950,bicubic,-75.333,-44.350,-49 +resnetaa50.a1h_in1k,288,20.013,79.987,51.733,48.267,25.56,1.000,bicubic,-75.227,-47.137,-21 +hgnet_tiny.ssld_in1k,224,19.987,80.013,54.773,45.227,14.74,0.965,bicubic,-75.723,-44.477,-153 +fbnetv3_g.ra2_in1k,240,19.947,80.053,53.720,46.280,16.62,0.950,bilinear,-75.083,-45.340,+26 +mobilenetv4_conv_large.e500_r256_in1k,256,19.920,80.080,53.493,46.507,32.59,0.950,bicubic,-75.170,-45.457,+9 +xcit_nano_12_p8_384.fb_dist_in1k,384,19.760,80.240,50.560,49.440,3.05,1.000,bicubic,-73.710,-47.950,+342 +resnext50_32x4d.a1_in1k,288,19.747,80.253,50.227,49.773,25.03,1.000,bicubic,-75.093,-48.553,+70 +hgnetv2_b2.ssld_stage1_in22k_in1k,288,19.693,80.307,55.360,44.640,11.22,1.000,bicubic,-76.117,-43.820,-180 +resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,224,19.693,80.307,53.253,46.747,25.03,0.875,bilinear,-75.157,-45.627,+66 +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,256,19.600,80.400,53.227,46.773,11.07,0.950,bicubic,-75.770,-45.633,-62 +haloregnetz_b.ra3_in1k,224,19.600,80.400,49.720,50.280,11.68,0.940,bicubic,-75.140,-48.960,+88 +regnetz_b16.ra3_in1k,288,19.573,80.427,52.400,47.600,9.72,1.000,bicubic,-75.597,-46.680,-20 +resnet51q.ra2_in1k,256,19.560,80.440,53.533,46.467,35.70,0.875,bilinear,-75.930,-45.317,-100 +mobilenetv4_conv_medium.e500_r256_in1k,320,19.480,80.520,53.053,46.947,9.72,1.000,bicubic,-75.520,-45.407,+20 +resnext101_32x8d.tv2_in1k,176,19.440,80.560,51.893,48.107,88.79,0.875,bilinear,-75.920,-47.157,-64 +tresnet_xl.miil_in1k,224,19.347,80.653,52.827,47.173,78.44,0.875,bilinear,-76.093,-46.233,-88 +resnetv2_101.a1h_in1k,224,19.320,80.680,48.853,51.147,44.54,0.950,bicubic,-76.360,-50.207,-156 +resnet101.a1h_in1k,224,19.280,80.720,49.787,50.213,44.55,0.950,bicubic,-76.090,-49.023,-70 +senet154.gluon_in1k,224,19.133,80.867,47.320,52.680,115.09,0.875,bicubic,-75.797,-51.450,+32 +rexnet_200.nav_in1k,224,19.040,80.960,52.573,47.427,16.37,0.875,bicubic,-75.930,-46.177,+19 +lambda_resnet50ts.a1h_in1k,256,19.027,80.973,48.907,51.093,21.54,0.950,bicubic,-75.813,-49.563,+57 +resnet50d.a1_in1k,288,19.027,80.973,48.707,51.293,25.58,1.000,bicubic,-75.723,-49.763,+74 +seresnext101_64x4d.gluon_in1k,224,19.013,80.987,48.920,51.080,88.23,0.875,bicubic,-75.927,-49.880,+27 +levit_256.fb_dist_in1k,224,19.000,81.000,49.707,50.293,18.89,0.900,bicubic,-76.030,-49.163,+3 +levit_conv_256.fb_dist_in1k,224,19.000,81.000,49.707,50.293,18.89,0.900,bicubic,-76.030,-49.163,+5 +legacy_senet154.in1k,224,18.947,81.053,47.640,52.360,115.09,0.875,bilinear,-76.153,-51.190,-13 +tf_efficientnet_b1.ns_jft_in1k,240,18.920,81.080,51.707,48.293,7.79,0.882,bicubic,-76.230,-47.123,-29 +repvgg_b3.rvgg_in1k,224,18.867,81.133,49.840,50.160,123.09,0.875,bilinear,-75.683,-49.070,+121 +gcvit_xxtiny.in1k,224,18.800,81.200,53.107,46.893,12.00,0.875,bicubic,-75.580,-45.643,+153 +eca_nfnet_l0.ra2_in1k,224,18.760,81.240,53.320,46.680,24.14,0.900,bicubic,-76.530,-45.780,-62 +deit_small_patch16_224.fb_in1k,224,18.720,81.280,51.093,48.907,22.05,0.900,bicubic,-75.710,-47.497,+145 +mobilevitv2_200.cvnets_in1k,256,18.587,81.413,50.080,49.920,18.45,0.888,bicubic,-76.273,-48.710,+39 +edgenext_small.usi_in1k,320,18.547,81.453,53.560,46.440,5.59,1.000,bicubic,-76.873,-45.540,-98 +mixer_b16_224.miil_in21k_ft_in1k,224,18.547,81.453,51.213,48.787,59.88,0.875,bilinear,-76.813,-47.767,-80 +ecaresnet50t.a2_in1k,288,18.440,81.560,48.760,51.240,25.57,1.000,bicubic,-76.910,-50.090,-81 +regnetx_080.tv2_in1k,224,18.413,81.587,50.133,49.867,39.57,0.965,bicubic,-76.697,-48.577,-25 +seresnet50.ra2_in1k,288,18.360,81.640,51.067,48.933,28.09,0.950,bicubic,-76.970,-47.833,-77 +poolformer_s36.sail_in1k,224,18.293,81.707,52.027,47.973,30.86,0.900,bicubic,-76.817,-46.783,-28 +repvit_m3.dist_in1k,224,18.293,81.707,51.680,48.320,10.68,0.950,bicubic,-76.947,-47.300,-60 +seresnext50_32x4d.racm_in1k,224,18.240,81.760,50.893,49.107,27.56,0.875,bicubic,-76.790,-47.907,-13 +wide_resnet50_2.tv2_in1k,224,18.133,81.867,52.267,47.733,68.88,0.965,bilinear,-76.737,-46.503,+20 +ese_vovnet39b.ra_in1k,288,18.080,81.920,49.613,50.387,24.57,0.950,bicubic,-76.810,-49.297,+14 +cait_xxs36_224.fb_dist_in1k,224,18.080,81.920,49.267,50.733,17.30,1.000,bicubic,-76.160,-49.443,+168 +sehalonet33ts.ra2_in1k,256,18.040,81.960,47.613,52.387,13.69,0.940,bicubic,-76.750,-51.327,+43 +mobilenetv4_hybrid_medium.e500_r224_in1k,256,18.013,81.987,51.613,48.387,11.07,1.000,bicubic,-77.457,-47.717,-121 +ecaresnet50d.miil_in1k,224,18.000,82.000,51.507,48.493,25.58,0.875,bicubic,-76.630,-47.193,+81 +gcresnet50t.ra2_in1k,288,17.947,82.053,49.373,50.627,25.90,1.000,bicubic,-77.333,-49.627,-74 +tf_efficientnet_lite4.in1k,380,17.907,82.093,50.307,49.693,13.01,0.920,bilinear,-76.983,-48.713,+7 +cs3darknet_l.c2ns_in1k,288,17.853,82.147,51.453,48.547,21.16,0.950,bicubic,-77.287,-46.957,-49 +resnet101.a1_in1k,224,17.853,82.147,45.573,54.427,44.55,0.950,bicubic,-76.677,-53.057,+107 +resnest50d_1s4x24d.in1k,224,17.627,82.373,49.627,50.373,25.68,0.875,bicubic,-77.133,-49.173,+38 +mobilevitv2_175.cvnets_in1k,256,17.600,82.400,49.227,50.773,14.25,0.888,bicubic,-77.270,-49.323,+11 +resnet50d.ra2_in1k,288,17.547,82.453,49.880,50.120,25.58,0.950,bicubic,-77.463,-49.090,-22 +vit_tiny_patch16_384.augreg_in21k_ft_in1k,384,17.547,82.453,49.747,50.253,5.79,1.000,bicubic,-76.083,-48.483,+268 +resnetv2_50.a1h_in1k,288,17.533,82.467,49.880,50.120,25.55,1.000,bicubic,-77.297,-48.990,+26 +tiny_vit_5m_224.in1k,224,17.520,82.480,49.960,50.040,5.39,0.950,bicubic,-76.760,-48.580,+149 +hgnet_tiny.paddle_in1k,288,17.480,82.520,50.853,49.147,14.74,1.000,bicubic,-77.480,-48.207,-15 +seresnext101_32x4d.gluon_in1k,224,17.400,82.600,46.493,53.507,48.96,0.875,bicubic,-77.520,-52.387,-4 +resnest50d.in1k,224,17.347,82.653,50.547,49.453,27.48,0.875,bilinear,-77.483,-48.323,+21 +resnet152.a2_in1k,224,17.347,82.653,45.600,54.400,60.19,0.950,bicubic,-77.603,-53.360,-11 +hgnetv2_b2.ssld_stage2_ft_in1k,224,17.293,82.707,51.787,48.213,11.22,0.965,bicubic,-78.247,-46.973,-175 +resnet50.c2_in1k,288,17.293,82.707,49.387,50.613,25.56,1.000,bicubic,-77.597,-49.473,-2 +inception_v4.tf_in1k,299,17.293,82.707,45.373,54.627,42.68,0.875,bicubic,-77.087,-53.517,+123 +dm_nfnet_f0.dm_in1k,192,17.200,82.800,45.027,54.973,71.49,0.900,bicubic,-78.180,-53.893,-117 +convnext_pico.d1_in1k,288,17.133,82.867,49.707,50.293,9.05,0.950,bicubic,-77.617,-48.973,+28 +tf_efficientnet_b3.ap_in1k,300,17.120,82.880,49.560,50.440,12.23,0.904,bicubic,-78.230,-49.370,-111 +efficientnet_el.ra_in1k,300,17.093,82.907,49.893,50.107,10.59,0.904,bicubic,-78.027,-49.097,-62 +xcit_tiny_24_p16_224.fb_dist_in1k,224,17.093,82.907,47.427,52.573,12.12,1.000,bicubic,-77.437,-51.373,+85 +regnetx_032.tv2_in1k,224,17.000,83.000,48.120,51.880,15.30,0.965,bicubic,-77.660,-50.720,+45 +fastvit_s12.apple_dist_in1k,256,16.987,83.013,49.333,50.667,9.47,0.900,bicubic,-77.883,-49.537,-5 +gcresnext50ts.ch_in1k,288,16.973,83.027,47.987,52.013,15.67,1.000,bicubic,-77.887,-50.823,-4 +xception71.tf_in1k,299,16.893,83.107,45.613,54.387,42.34,0.903,bicubic,-77.437,-53.237,+119 +cs3darknet_focus_l.c2ns_in1k,288,16.853,83.147,50.053,49.947,21.15,0.950,bicubic,-78.307,-48.907,-77 +hrnet_w18_ssld.paddle_in1k,224,16.827,83.173,46.867,53.133,21.30,0.950,bilinear,-78.533,-52.003,-124 +regnety_016.tv2_in1k,224,16.787,83.213,49.840,50.160,11.20,0.965,bicubic,-77.793,-49.060,+65 +tf_efficientnet_b3.aa_in1k,300,16.787,83.213,49.187,50.813,12.23,0.904,bicubic,-78.223,-49.723,-42 +gc_efficientnetv2_rw_t.agc_in1k,224,16.733,83.267,46.653,53.347,13.68,1.000,bicubic,-78.307,-52.247,-52 +resnext101_64x4d.gluon_in1k,224,16.720,83.280,44.027,55.973,83.46,0.875,bicubic,-77.950,-54.623,+35 +resmlp_36_224.fb_distilled_in1k,224,16.707,83.293,51.093,48.907,44.69,0.875,bicubic,-78.173,-47.777,-19 +convnextv2_pico.fcmae_ft_in1k,288,16.707,83.293,50.000,50.000,9.07,0.950,bicubic,-78.543,-48.800,-104 +efficientnetv2_rw_t.ra2_in1k,224,16.707,83.293,47.067,52.933,13.65,1.000,bicubic,-78.273,-51.683,-42 +poolformerv2_s36.sail_in1k,224,16.680,83.320,49.267,50.733,30.79,1.000,bicubic,-78.650,-49.743,-120 +tf_efficientnetv2_b3.in1k,300,16.587,83.413,48.480,51.520,14.36,0.904,bicubic,-78.593,-50.350,-92 +ecaresnet50t.a1_in1k,224,16.520,83.480,47.147,52.853,25.57,0.950,bicubic,-78.160,-51.673,+26 +resnet50d.ra4_e3600_r224_in1k,288,16.453,83.547,49.013,50.987,25.58,1.000,bicubic,-78.867,-49.807,-122 +inception_resnet_v2.tf_in1k,299,16.453,83.547,44.720,55.280,55.84,0.897,bicubic,-78.117,-54.240,+59 +tresnet_l.miil_in1k,224,16.440,83.560,49.573,50.427,55.99,0.875,bilinear,-78.830,-49.437,-114 +resnet152s.gluon_in1k,224,16.440,83.560,44.347,55.653,60.32,0.875,bicubic,-78.620,-54.583,-66 +convnext_pico_ols.d1_in1k,288,16.347,83.653,49.267,50.733,9.06,1.000,bicubic,-78.293,-49.503,+36 +resnet101.tv2_in1k,224,16.333,83.667,48.333,51.667,44.55,0.965,bilinear,-78.957,-50.597,-119 +gcresnet50t.ra2_in1k,256,16.320,83.680,48.320,51.680,25.90,0.900,bicubic,-78.540,-50.530,-22 +resnet152d.gluon_in1k,224,16.320,83.680,44.080,55.920,60.21,0.875,bicubic,-78.500,-54.680,-8 +fastvit_sa12.apple_in1k,256,16.307,83.693,49.387,50.613,11.58,0.900,bicubic,-78.583,-49.423,-35 +convnext_nano.d1h_in1k,224,16.293,83.707,47.440,52.560,15.59,0.950,bicubic,-78.637,-51.230,-42 +gernet_l.idstcv_in1k,256,16.253,83.747,46.773,53.227,31.08,0.875,bilinear,-78.857,-52.257,-86 +resmlp_24_224.fb_distilled_in1k,224,16.227,83.773,49.947,50.053,30.02,0.875,bicubic,-78.223,-48.823,+77 +mobilevitv2_150.cvnets_in1k,256,16.227,83.773,47.960,52.040,10.59,0.888,bicubic,-78.303,-50.740,+57 +convnext_nano_ols.d1h_in1k,224,16.200,83.800,47.893,52.107,15.65,0.950,bicubic,-78.540,-50.727,+1 +seresnet50.a1_in1k,288,16.173,83.827,46.853,53.147,28.09,1.000,bicubic,-78.497,-51.867,+13 +wide_resnet50_2.racm_in1k,224,16.133,83.867,48.093,51.907,68.88,0.875,bicubic,-78.947,-50.877,-83 +inception_resnet_v2.tf_ens_adv_in1k,299,16.120,83.880,43.333,56.667,55.84,0.897,bicubic,-78.100,-55.267,+113 +resnetv2_50d_evos.ah_in1k,224,16.107,83.893,46.467,53.533,25.59,0.950,bicubic,-78.863,-52.523,-62 +repvgg_b3g4.rvgg_in1k,224,16.067,83.933,47.480,52.520,83.83,0.875,bilinear,-78.453,-51.340,+55 +gmlp_s16_224.ra3_in1k,224,16.067,83.933,44.707,55.293,19.42,0.875,bicubic,-78.093,-53.793,+128 +gcresnext50ts.ch_in1k,256,16.053,83.947,46.160,53.840,15.67,0.900,bicubic,-78.477,-52.560,+49 +resnetv2_50d_gn.ah_in1k,224,16.053,83.947,46.133,53.867,25.57,0.950,bicubic,-78.697,-52.537,-13 +xcit_tiny_24_p16_224.fb_in1k,224,16.053,83.947,45.267,54.733,12.12,1.000,bicubic,-78.027,-53.243,+140 +repvit_m1_1.dist_450e_in1k,224,16.040,83.960,49.120,50.880,8.80,0.950,bicubic,-78.850,-49.800,-52 +ecaresnet101d_pruned.miil_in1k,224,15.907,84.093,48.573,51.427,24.88,0.875,bicubic,-79.163,-50.407,-91 +mobilenetv4_hybrid_medium.e500_r224_in1k,224,15.893,84.107,47.973,52.027,11.07,0.950,bicubic,-78.967,-50.827,-38 +ecaresnet50d_pruned.miil_in1k,288,15.880,84.120,49.653,50.347,19.94,0.950,bicubic,-79.230,-49.257,-104 +efficientnet_b1.ra4_e3600_r240_in1k,288,15.880,84.120,48.693,51.307,7.79,1.000,bicubic,-79.440,-50.277,-148 +xception65.tf_in1k,299,15.880,84.120,43.480,56.520,39.92,0.903,bicubic,-77.890,-55.140,+193 +resnet50.a1_in1k,288,15.853,84.147,45.627,54.373,25.56,1.000,bicubic,-78.947,-53.123,-30 +resnet50.fb_ssl_yfcc100m_ft_in1k,224,15.840,84.160,49.333,50.667,25.56,0.875,bilinear,-78.650,-49.587,+52 +edgenext_small_rw.sw_in1k,320,15.800,84.200,49.520,50.480,7.83,1.000,bicubic,-78.880,-49.060,-8 +resnext50_32x4d.ra_in1k,288,15.733,84.267,46.920,53.080,25.03,0.950,bicubic,-78.967,-51.720,-14 +fastvit_t12.apple_dist_in1k,256,15.627,84.373,47.640,52.360,7.55,0.900,bicubic,-78.993,-50.920,+14 +resnet50.c1_in1k,288,15.613,84.387,47.107,52.893,25.56,1.000,bicubic,-79.177,-51.813,-33 +ecaresnet26t.ra2_in1k,320,15.520,84.480,47.947,52.053,16.01,0.950,bicubic,-78.780,-50.833,+77 +regnety_320.pycls_in1k,224,15.493,84.507,44.587,55.413,145.05,0.875,bicubic,-79.097,-54.083,+15 +vit_base_patch32_384.augreg_in1k,384,15.493,84.507,43.733,56.267,88.30,1.000,bicubic,-78.147,-54.937,+199 +coat_tiny.in1k,224,15.467,84.533,45.600,54.400,5.50,0.900,bicubic,-78.113,-52.820,+208 +mobilenetv4_conv_blur_medium.e500_r224_in1k,256,15.440,84.560,47.960,52.040,9.72,1.000,bicubic,-79.430,-51.000,-60 +convmixer_768_32.in1k,224,15.387,84.613,47.613,52.387,21.11,0.960,bicubic,-79.113,-51.237,+37 +edgenext_small.usi_in1k,256,15.320,84.680,48.360,51.640,5.59,0.950,bicubic,-79.630,-50.210,-79 +resnet50d.a2_in1k,288,15.320,84.680,44.547,55.453,25.58,1.000,bicubic,-79.270,-54.303,+10 +resnet50.d_in1k,288,15.320,84.680,44.493,55.507,25.56,1.000,bicubic,-79.640,-54.377,-80 +ecaresnetlight.miil_in1k,224,15.227,84.773,45.600,54.400,30.16,0.875,bicubic,-79.533,-53.260,-37 +cs3darknet_l.c2ns_in1k,256,15.213,84.787,48.640,51.360,21.16,0.887,bicubic,-79.337,-50.140,+18 +resnext50d_32x4d.bt_in1k,288,15.213,84.787,45.933,54.067,25.05,0.950,bicubic,-79.327,-52.757,+20 +skresnext50_32x4d.ra_in1k,224,15.187,84.813,44.560,55.440,27.48,0.875,bicubic,-79.073,-53.910,+76 +repvit_m1_0.dist_450e_in1k,224,15.027,84.973,46.653,53.347,7.30,0.950,bicubic,-79.513,-52.227,+16 +fastvit_s12.apple_in1k,256,15.027,84.973,45.000,55.000,9.47,0.900,bicubic,-79.193,-53.640,+82 +vit_relpos_base_patch32_plus_rpn_256.sw_in1k,256,15.027,84.973,42.333,57.667,119.42,0.900,bicubic,-78.723,-55.767,+173 +seresnet33ts.ra2_in1k,288,15.013,84.987,47.067,52.933,19.78,1.000,bicubic,-80.027,-51.773,-113 +resnext50_32x4d.a2_in1k,288,15.013,84.987,45.080,54.920,25.03,1.000,bicubic,-79.547,-53.560,+11 +efficientvit_b1.r288_in1k,288,15.000,85.000,46.333,53.667,9.10,1.000,bicubic,-79.480,-52.457,+31 +eca_resnet33ts.ra2_in1k,288,14.987,85.013,48.600,51.400,19.68,1.000,bicubic,-79.663,-50.260,-21 +hgnetv2_b2.ssld_stage1_in22k_in1k,224,14.947,85.053,48.347,51.653,11.22,0.965,bicubic,-80.273,-50.533,-156 +vit_base_patch16_224.augreg_in1k,224,14.907,85.093,41.893,58.107,86.57,0.900,bicubic,-78.723,-56.347,+181 +cait_xxs24_224.fb_dist_in1k,224,14.880,85.120,44.533,55.467,11.96,1.000,bicubic,-78.700,-53.907,+188 +regnetz_b16.ra3_in1k,224,14.827,85.173,45.800,54.200,9.72,0.940,bicubic,-79.733,-53.080,+3 +levit_192.fb_dist_in1k,224,14.693,85.307,44.640,55.360,10.95,0.900,bicubic,-79.487,-53.900,+80 +levit_conv_192.fb_dist_in1k,224,14.680,85.320,44.653,55.347,10.95,0.900,bicubic,-79.500,-53.887,+80 +res2net50d.in1k,224,14.653,85.347,44.400,55.600,25.72,0.875,bilinear,-79.647,-53.960,+53 +seresnet50.a2_in1k,288,14.653,85.347,44.147,55.853,28.09,1.000,bicubic,-80.027,-54.633,-38 +poolformerv2_s24.sail_in1k,224,14.640,85.360,45.973,54.027,21.34,1.000,bicubic,-80.010,-52.857,-28 +convnextv2_pico.fcmae_ft_in1k,224,14.627,85.373,45.840,54.160,9.07,0.875,bicubic,-79.833,-52.780,+23 +gcresnet33ts.ra2_in1k,288,14.573,85.427,46.013,53.987,19.88,1.000,bicubic,-80.347,-52.767,-97 +repvit_m1_1.dist_300e_in1k,224,14.547,85.453,46.800,53.200,8.80,0.950,bicubic,-80.213,-52.180,-61 +cs3darknet_focus_l.c2ns_in1k,256,14.480,85.520,46.507,53.493,21.15,0.887,bicubic,-80.180,-52.303,-37 +darknet53.c2ns_in1k,288,14.440,85.560,46.813,53.187,41.61,1.000,bicubic,-80.180,-51.967,-23 +efficientnet_el_pruned.in1k,300,14.413,85.587,45.827,54.173,10.59,0.904,bicubic,-79.967,-52.733,+30 +coat_lite_mini.in1k,224,14.400,85.600,44.533,55.467,11.01,0.900,bicubic,-79.650,-53.707,+95 +rexnet_150.nav_in1k,224,14.373,85.627,46.440,53.560,9.73,0.875,bicubic,-80.107,-52.110,+12 +resnet50.tv2_in1k,224,14.333,85.667,46.747,53.253,25.56,0.965,bilinear,-80.327,-52.033,-41 +resnext50_32x4d.a1h_in1k,224,14.320,85.680,44.000,56.000,25.03,0.950,bicubic,-80.220,-54.600,-6 +efficientnet_b2.ra_in1k,288,14.307,85.693,45.827,54.173,9.11,1.000,bicubic,-80.313,-52.973,-24 +seresnet33ts.ra2_in1k,256,14.280,85.720,45.840,54.160,19.78,0.900,bicubic,-80.580,-52.880,-92 +darknetaa53.c2ns_in1k,288,14.120,85.880,44.880,55.120,36.02,1.000,bilinear,-80.400,-53.790,-1 +poolformer_s24.sail_in1k,224,14.107,85.893,47.040,52.960,21.39,0.900,bicubic,-80.473,-51.620,-23 +repvit_m2.dist_in1k,224,14.053,85.947,46.320,53.680,8.80,0.950,bicubic,-80.697,-52.380,-68 +seresnet50.ra2_in1k,224,14.053,85.947,45.413,54.587,28.09,0.875,bicubic,-80.517,-53.387,-19 +pvt_v2_b1.in1k,224,14.027,85.973,47.360,52.640,14.01,0.900,bicubic,-79.793,-51.300,+129 +mobilevitv2_125.cvnets_in1k,256,14.000,86.000,44.280,55.720,7.48,0.888,bicubic,-79.990,-54.300,+100 +eca_resnet33ts.ra2_in1k,256,13.987,86.013,47.027,52.973,19.68,0.900,bicubic,-80.213,-51.313,+50 +gernet_m.idstcv_in1k,224,13.973,86.027,45.893,54.107,21.14,0.875,bilinear,-80.677,-52.597,-49 +fbnetv3_d.ra2_in1k,256,13.920,86.080,46.040,53.960,10.31,0.950,bilinear,-79.990,-52.700,+108 +resnet101.a2_in1k,224,13.907,86.093,42.960,57.040,44.55,0.950,bicubic,-80.793,-55.800,-65 +legacy_seresnext101_32x4d.in1k,224,13.867,86.133,42.587,57.413,48.96,0.875,bilinear,-80.503,-55.893,+15 +resnext101_32x4d.gluon_in1k,224,13.667,86.333,41.467,58.533,44.18,0.875,bicubic,-80.863,-57.053,-16 +gcresnet33ts.ra2_in1k,256,13.640,86.360,44.813,55.187,19.88,0.900,bicubic,-80.860,-53.967,-9 +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,256,13.627,86.373,45.427,54.573,8.46,0.950,bicubic,-81.333,-53.643,-129 +edgenext_small_rw.sw_in1k,256,13.600,86.400,45.907,54.093,7.83,0.900,bicubic,-80.330,-52.643,+98 +mobilenetv4_conv_medium.e500_r256_in1k,256,13.600,86.400,44.893,55.107,9.72,0.950,bicubic,-80.700,-53.637,+19 +dpn68b.ra_in1k,288,13.600,86.400,39.867,60.133,12.61,1.000,bicubic,-80.380,-58.673,+92 +mobilenet_edgetpu_v2_m,256,13.587,86.413,45.427,54.573,8.46,0.950,bicubic,-81.373,-53.383,-132 +efficientnet_b2.ra_in1k,256,13.587,86.413,44.200,55.800,9.11,0.875,bicubic,-80.423,-54.280,+83 +fastvit_t12.apple_in1k,256,13.587,86.413,43.253,56.747,7.55,0.900,bicubic,-80.403,-55.307,+87 +hgnet_tiny.paddle_in1k,224,13.573,86.427,44.000,56.000,14.74,0.965,bicubic,-80.717,-54.750,+20 +pit_xs_distilled_224.in1k,224,13.507,86.493,45.107,54.893,11.00,0.900,bicubic,-80.263,-53.313,+121 +wide_resnet101_2.tv2_in1k,176,13.453,86.547,40.907,59.093,126.89,0.875,bilinear,-81.017,-57.873,-12 +darknet53.c2ns_in1k,256,13.440,86.560,44.720,55.280,41.61,0.887,bicubic,-80.870,-54.140,+9 +seresnext50_32x4d.gluon_in1k,224,13.440,86.560,43.440,56.560,27.56,0.875,bicubic,-80.920,-55.180,+3 +resmlp_36_224.fb_in1k,224,13.427,86.573,46.253,53.747,44.69,0.875,bicubic,-80.773,-52.407,+33 +ecaresnet50t.a2_in1k,224,13.400,86.600,42.493,57.507,25.57,0.950,bicubic,-81.100,-56.147,-22 +mobilenetv4_conv_medium.e500_r224_in1k,256,13.373,86.627,45.067,54.933,9.72,1.000,bicubic,-81.387,-53.863,-97 +eca_botnext26ts_256.c1_in1k,256,13.360,86.640,42.267,57.733,10.59,0.950,bicubic,-80.450,-56.233,+108 +resnet50_gn.a1h_in1k,224,13.333,86.667,42.773,57.227,25.56,0.940,bicubic,-80.997,-55.927,0 +repvgg_b2g4.rvgg_in1k,224,13.240,86.760,43.440,56.560,61.76,0.875,bilinear,-80.630,-54.950,+93 +resnet152.a3_in1k,224,13.240,86.760,42.773,57.227,60.19,0.950,bicubic,-81.480,-55.917,-92 +regnetx_320.pycls_in1k,224,13.173,86.827,40.280,59.720,107.81,0.875,bicubic,-81.267,-58.450,-18 +resnet50.b1k_in1k,288,13.147,86.853,43.773,56.227,25.56,1.000,bicubic,-81.713,-54.907,-125 +ese_vovnet39b.ra_in1k,224,13.133,86.867,43.733,56.267,24.57,0.875,bicubic,-80.967,-54.947,+46 +visformer_tiny.in1k,224,13.133,86.867,43.573,56.427,10.32,0.900,bicubic,-80.457,-55.127,+133 +resnet50d.a1_in1k,224,13.133,86.867,41.227,58.773,25.58,0.950,bicubic,-81.167,-57.513,+3 +vit_small_patch16_224.augreg_in1k,224,13.067,86.933,40.987,59.013,22.05,0.900,bicubic,-80.833,-57.643,+83 +cspresnext50.ra_in1k,256,13.040,86.960,45.053,54.947,20.57,0.887,bilinear,-81.790,-53.857,-117 +efficientnet_b3_pruned.in1k,300,13.027,86.973,44.893,55.107,9.86,0.904,bicubic,-81.593,-54.007,-66 +mobilevit_s.cvnets_in1k,256,13.013,86.987,40.827,59.173,5.58,0.900,bicubic,-80.197,-57.643,+181 +mixnet_xl.ra_in1k,224,12.973,87.027,43.133,56.867,11.90,0.875,bicubic,-81.227,-55.507,+20 +efficientformerv2_s1.snap_dist_in1k,224,12.960,87.040,42.400,57.600,6.19,0.950,bicubic,-81.140,-56.270,+37 +nf_regnet_b1.ra2_in1k,288,12.907,87.093,43.907,56.093,10.22,0.900,bicubic,-81.243,-54.833,+32 +efficientformer_l1.snap_dist_in1k,224,12.893,87.107,45.147,54.853,12.29,0.950,bicubic,-81.607,-53.673,-42 +eca_halonext26ts.c1_in1k,256,12.893,87.107,42.200,57.800,10.76,0.940,bicubic,-81.157,-56.300,+45 +resnext50_32x4d.a1_in1k,224,12.893,87.107,40.813,59.187,25.03,0.950,bicubic,-81.177,-57.387,+39 +resnet101d.gluon_in1k,224,12.773,87.227,41.333,58.667,44.57,0.875,bicubic,-81.477,-57.217,+1 +regnetx_016.tv2_in1k,224,12.720,87.280,45.173,54.827,9.19,0.965,bicubic,-81.450,-53.567,+17 +repvit_m1_0.dist_300e_in1k,224,12.720,87.280,44.187,55.813,7.30,0.950,bicubic,-81.610,-54.453,-21 +pit_xs_224.in1k,224,12.707,87.293,42.600,57.400,10.62,0.900,bicubic,-80.413,-55.710,+184 +hgnetv2_b1.ssld_stage2_ft_in1k,288,12.600,87.400,46.733,53.267,6.34,1.000,bicubic,-81.970,-52.027,-69 +resnetblur50.bt_in1k,288,12.573,87.427,44.280,55.720,25.56,0.950,bicubic,-81.897,-54.400,-43 +resnet50.b2k_in1k,288,12.560,87.440,43.760,56.240,25.56,1.000,bicubic,-82.150,-55.260,-113 +tf_efficientnet_b3.in1k,300,12.560,87.440,43.213,56.787,12.23,0.904,bicubic,-82.080,-55.557,-88 +crossvit_9_dagger_240.in1k,240,12.560,87.440,41.387,58.613,8.78,0.875,bicubic,-80.380,-56.823,+201 +resnext50_32x4d.tv2_in1k,224,12.533,87.467,42.853,57.147,25.03,0.965,bilinear,-82.087,-55.857,-84 +inception_v3.gluon_in1k,299,12.533,87.467,40.213,59.787,23.83,0.875,bicubic,-80.957,-58.327,+128 +resmlp_24_224.fb_in1k,224,12.467,87.533,43.413,56.587,30.02,0.875,bicubic,-81.553,-55.197,+41 +tresnet_m.miil_in1k,224,12.467,87.533,41.707,58.293,31.39,0.875,bilinear,-82.153,-57.043,-83 +wide_resnet50_2.tv2_in1k,176,12.453,87.547,43.467,56.533,68.88,0.875,bilinear,-81.747,-55.173,-3 +efficientnet_b1.ra4_e3600_r240_in1k,240,12.427,87.573,43.933,56.067,7.79,0.900,bicubic,-82.413,-54.687,-147 +efficientvit_b1.r256_in1k,256,12.427,87.573,41.840,58.160,9.10,1.000,bicubic,-81.613,-56.700,+33 +darknetaa53.c2ns_in1k,256,12.413,87.587,42.760,57.240,36.02,0.887,bilinear,-81.487,-55.870,+55 +regnety_120.pycls_in1k,224,12.387,87.613,41.840,58.160,51.82,0.875,bicubic,-82.133,-57.120,-66 +ecaresnet26t.ra2_in1k,256,12.253,87.747,42.640,57.360,16.01,0.875,bicubic,-81.587,-56.010,+64 +coat_lite_tiny.in1k,224,12.253,87.747,41.080,58.920,5.72,0.900,bicubic,-81.007,-57.310,+153 +resnet50.a1h_in1k,224,12.240,87.760,43.707,56.293,25.56,1.000,bicubic,-82.530,-54.973,-140 +convnext_femto_ols.d1_in1k,288,12.240,87.760,43.507,56.493,5.23,0.950,bicubic,-81.660,-54.953,+49 +mobilenetv4_conv_blur_medium.e500_r224_in1k,224,12.227,87.773,42.987,57.013,9.72,0.950,bicubic,-82.063,-55.813,-28 +resnetaa50.a1h_in1k,224,12.213,87.787,42.360,57.640,25.56,0.950,bicubic,-82.417,-56.520,-102 +regnety_160.pycls_in1k,224,12.187,87.813,41.133,58.867,83.59,0.875,bicubic,-82.193,-57.697,-49 +resnet50.a2_in1k,288,12.053,87.947,40.093,59.907,25.56,1.000,bicubic,-82.597,-58.797,-112 +efficientnet_em.ra2_in1k,240,11.987,88.013,43.640,56.360,6.90,0.882,bicubic,-81.853,-55.170,+54 +resnet101s.gluon_in1k,224,11.987,88.013,40.800,59.200,44.67,0.875,bicubic,-82.753,-58.020,-137 +hgnetv2_b1.ssld_stage1_in22k_in1k,288,11.960,88.040,45.333,54.667,6.34,1.000,bicubic,-82.620,-53.547,-96 +convnext_pico.d1_in1k,224,11.947,88.053,43.453,56.547,9.05,0.875,bicubic,-82.113,-55.037,+10 +hrnet_w64.ms_in1k,224,11.920,88.080,40.773,59.227,128.06,0.875,bilinear,-82.100,-57.557,+22 +resnetrs101.tf_in1k,192,11.920,88.080,38.707,61.293,63.62,0.940,bicubic,-82.780,-60.003,-135 +resnet101.a3_in1k,224,11.787,88.213,40.280,59.720,44.55,0.950,bicubic,-82.263,-58.190,+9 +xcit_tiny_12_p16_224.fb_dist_in1k,224,11.747,88.253,39.853,60.147,6.72,1.000,bicubic,-81.653,-58.357,+117 +resnet50d.ra2_in1k,224,11.733,88.267,42.200,57.800,25.58,0.875,bicubic,-82.567,-56.520,-46 +xception41.tf_in1k,299,11.707,88.293,38.707,61.293,26.97,0.903,bicubic,-81.713,-59.703,+112 +nf_resnet50.ra2_in1k,288,11.693,88.307,45.347,54.653,25.56,0.940,bicubic,-82.927,-53.463,-114 +cspdarknet53.ra_in1k,256,11.693,88.307,43.240,56.760,27.64,0.887,bilinear,-82.977,-55.560,-135 +ecaresnet50t.a3_in1k,224,11.693,88.307,40.907,59.093,25.57,0.950,bicubic,-82.707,-57.763,-64 +efficientnet_b0.ra4_e3600_r224_in1k,256,11.640,88.360,40.907,59.093,5.29,1.000,bicubic,-82.230,-57.693,+39 +gmixer_24_224.ra3_in1k,224,11.627,88.373,37.267,62.733,24.72,0.875,bicubic,-81.243,-60.623,+175 +convnextv2_femto.fcmae_ft_in1k,288,11.600,88.400,40.600,59.400,5.23,0.950,bicubic,-82.600,-58.170,-29 +vit_small_patch32_224.augreg_in21k_ft_in1k,224,11.587,88.413,39.533,60.467,22.88,0.900,bicubic,-80.493,-58.717,+251 +fbnetv3_b.ra2_in1k,256,11.560,88.440,44.067,55.933,8.60,0.950,bilinear,-82.440,-54.563,+13 +botnet26t_256.c1_in1k,256,11.507,88.493,39.760,60.240,12.49,0.950,bicubic,-82.013,-58.670,+86 +dla102x2.in1k,224,11.453,88.547,41.133,58.867,41.28,0.875,bilinear,-82.557,-57.327,+9 +resnet50.ra_in1k,288,11.440,88.560,41.147,58.853,25.56,0.950,bicubic,-82.780,-57.423,-42 +seresnet50.a1_in1k,224,11.400,88.600,39.107,60.893,28.09,0.950,bicubic,-82.630,-59.313,+4 +xcit_nano_12_p16_384.fb_dist_in1k,384,11.387,88.613,39.573,60.427,3.05,1.000,bicubic,-80.513,-58.467,+261 +regnety_080.pycls_in1k,224,11.373,88.627,40.733,59.267,39.18,0.875,bicubic,-82.807,-57.947,-35 +efficientvit_b1.r224_in1k,224,11.373,88.627,39.973,60.027,9.10,0.950,bicubic,-82.147,-58.357,+80 +levit_128.fb_dist_in1k,224,11.360,88.640,39.747,60.253,9.21,0.900,bicubic,-82.030,-58.863,+104 +mobilenet_edgetpu_v2_m,224,11.347,88.653,42.013,57.987,8.46,0.900,bicubic,-82.953,-56.577,-62 +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,224,11.320,88.680,42.120,57.880,8.46,0.900,bicubic,-83.000,-56.460,-69 +resnet152.tv2_in1k,176,11.320,88.680,38.067,61.933,60.19,0.875,bilinear,-82.770,-60.473,-19 +fbnetv3_d.ra2_in1k,224,11.307,88.693,41.053,58.947,10.31,0.950,bilinear,-82.133,-57.577,+87 +levit_conv_128.fb_dist_in1k,224,11.293,88.707,39.720,60.280,9.21,0.900,bicubic,-82.077,-58.660,+100 +efficientnet_b2_pruned.in1k,260,11.280,88.720,41.840,58.160,8.31,0.890,bicubic,-82.860,-56.670,-29 +lambda_resnet26t.c1_in1k,256,11.280,88.720,39.973,60.027,10.96,0.940,bicubic,-82.590,-58.637,+20 +tf_efficientnet_el.in1k,300,11.253,88.747,41.440,58.560,10.59,0.904,bicubic,-83.147,-57.160,-88 +seresnext26t_32x4d.bt_in1k,288,11.187,88.813,40.747,59.253,16.81,0.950,bicubic,-82.383,-57.653,+65 +tf_efficientnetv2_b3.in1k,240,11.187,88.813,39.160,60.840,14.36,0.904,bicubic,-83.393,-59.680,-127 +dpn92.mx_in1k,224,11.120,88.880,39.440,60.560,37.67,0.875,bicubic,-83.160,-59.310,-66 +convnext_femto.d1_in1k,288,11.107,88.893,42.560,57.440,5.22,0.950,bicubic,-82.813,-55.710,+3 +tf_efficientnet_b0.ns_jft_in1k,224,11.093,88.907,39.907,60.093,5.29,0.875,bicubic,-82.597,-58.723,+41 +mobilenetv4_conv_medium.e500_r224_in1k,224,11.067,88.933,40.480,59.520,9.72,0.950,bicubic,-83.143,-58.220,-57 +resnet152c.gluon_in1k,224,11.053,88.947,36.787,63.213,60.21,0.875,bicubic,-83.107,-61.843,-45 +ecaresnet50d_pruned.miil_in1k,224,11.027,88.973,42.053,57.947,19.94,0.875,bicubic,-83.233,-56.647,-69 +mobilevitv2_100.cvnets_in1k,256,11.027,88.973,40.133,59.867,4.90,0.888,bicubic,-82.263,-58.117,+101 +xcit_tiny_12_p16_224.fb_in1k,224,10.947,89.053,36.893,63.107,6.72,1.000,bicubic,-81.633,-61.357,+181 +vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,384,10.933,89.067,39.427,60.573,6.36,1.000,bicubic,-81.117,-58.863,+224 +inception_v3.tf_adv_in1k,299,10.933,89.067,36.760,63.240,23.83,0.875,bicubic,-81.967,-61.450,+143 +resnet50d.ra4_e3600_r224_in1k,224,10.893,89.107,40.387,59.613,25.58,0.950,bicubic,-83.737,-58.193,-152 +hrnet_w48.ms_in1k,224,10.893,89.107,39.973,60.027,77.47,0.875,bilinear,-83.047,-58.627,-9 +tf_efficientnetv2_b2.in1k,260,10.840,89.160,39.413,60.587,10.10,0.890,bicubic,-83.590,-59.287,-105 +halonet26t.a1h_in1k,256,10.840,89.160,38.627,61.373,12.48,0.950,bicubic,-83.210,-59.903,-31 +regnety_008_tv.tv2_in1k,224,10.827,89.173,40.613,59.387,6.43,0.965,bicubic,-82.863,-57.877,+29 +inception_v3.tf_in1k,299,10.827,89.173,36.507,63.493,23.83,0.875,bicubic,-82.523,-62.043,+83 +nf_regnet_b1.ra2_in1k,256,10.813,89.187,40.413,59.587,10.22,0.900,bicubic,-82.607,-57.807,+68 +mobileone_s4.apple_in1k,224,10.787,89.213,38.453,61.547,14.95,0.900,bilinear,-82.983,-59.797,+18 +dpn107.mx_in1k,224,10.747,89.253,38.040,61.960,86.92,0.875,bicubic,-83.623,-60.600,-101 +resnet50.c2_in1k,224,10.733,89.267,39.000,61.000,25.56,0.950,bicubic,-83.547,-59.660,-83 +resnetv2_50.a1h_in1k,224,10.720,89.280,39.267,60.733,25.55,0.950,bicubic,-83.730,-59.443,-116 +resnet34d.ra2_in1k,288,10.707,89.293,38.987,61.013,21.82,0.950,bicubic,-82.943,-59.523,+26 +convnext_pico_ols.d1_in1k,224,10.693,89.307,40.560,59.440,9.06,0.950,bicubic,-83.347,-57.810,-38 +resnext50_32x4d.ra_in1k,224,10.667,89.333,40.227,59.773,25.03,0.875,bicubic,-83.443,-58.103,-54 +xcit_nano_12_p8_224.fb_dist_in1k,224,10.640,89.360,37.987,62.013,3.05,1.000,bicubic,-81.480,-60.183,+202 +seresnext26d_32x4d.bt_in1k,288,10.627,89.373,40.960,59.040,16.81,0.950,bicubic,-82.813,-57.480,+57 +resnext50d_32x4d.bt_in1k,224,10.533,89.467,39.373,60.627,25.05,0.875,bicubic,-83.687,-59.217,-83 +tf_efficientnet_b2.ap_in1k,260,10.427,89.573,39.720,60.280,9.11,0.890,bicubic,-84.073,-58.920,-131 +repvit_m0_9.dist_450e_in1k,224,10.347,89.653,40.027,59.973,5.49,0.950,bicubic,-83.263,-58.483,+27 +dpn131.mx_in1k,224,10.347,89.653,36.653,63.347,79.25,0.875,bicubic,-83.683,-61.867,-42 +hrnet_w44.ms_in1k,224,10.320,89.680,39.320,60.680,67.06,0.875,bilinear,-83.270,-59.380,+28 +densenetblur121d.ra_in1k,288,10.307,89.693,39.520,60.480,8.00,0.950,bicubic,-82.323,-58.740,+152 +rexnet_130.nav_in1k,224,10.293,89.707,41.467,58.533,7.56,0.875,bicubic,-83.627,-56.933,-27 +convnextv2_femto.fcmae_ft_in1k,224,10.293,89.707,38.533,61.467,5.23,0.875,bicubic,-83.097,-59.957,+59 +xcit_nano_12_p8_224.fb_in1k,224,10.213,89.787,37.173,62.827,3.05,1.000,bicubic,-80.747,-60.587,+254 +resnext101_32x8d.tv_in1k,224,10.133,89.867,37.733,62.267,88.79,0.875,bilinear,-83.677,-60.667,-9 +seresnet50.a2_in1k,224,10.107,89.893,38.413,61.587,28.09,0.950,bicubic,-83.853,-60.217,-35 +resnet101.tv2_in1k,176,10.093,89.907,37.253,62.747,44.55,0.875,bilinear,-83.697,-61.197,-6 +resnetrs50.tf_in1k,224,10.080,89.920,37.267,62.733,35.69,0.910,bicubic,-84.210,-61.373,-105 +regnetx_160.pycls_in1k,224,10.040,89.960,37.773,62.227,54.28,0.875,bicubic,-84.120,-60.967,-82 +regnety_064.pycls_in1k,224,10.027,89.973,38.960,61.040,30.58,0.875,bicubic,-84.133,-59.630,-82 +lambda_resnet26rpt_256.c1_in1k,256,10.027,89.973,37.560,62.440,10.99,0.940,bicubic,-83.703,-60.930,-1 +dpn98.mx_in1k,224,9.987,90.013,35.973,64.027,61.57,0.875,bicubic,-84.173,-62.747,-81 +resnet50.a1_in1k,224,9.973,90.027,38.000,62.000,25.56,0.950,bicubic,-84.437,-60.430,-135 +resnet33ts.ra2_in1k,288,9.960,90.040,39.293,60.707,19.68,1.000,bicubic,-84.200,-59.167,-84 +efficientnet_b1.ft_in1k,256,9.947,90.053,37.307,62.693,7.79,1.000,bicubic,-83.333,-60.933,+63 +legacy_xception.tf_in1k,299,9.933,90.067,37.880,62.120,22.86,0.897,bicubic,-83.537,-60.650,+31 +resnext50_32x4d.a3_in1k,224,9.907,90.093,37.613,62.387,25.03,0.950,bicubic,-83.743,-60.957,+1 +legacy_seresnext50_32x4d.in1k,224,9.893,90.107,38.960,61.040,27.56,0.875,bilinear,-83.837,-59.630,-9 +inception_v3.tv_in1k,299,9.893,90.107,35.040,64.960,23.83,0.875,bicubic,-82.887,-62.910,+113 +efficientnet_b0.ra4_e3600_r224_in1k,224,9.880,90.120,38.120,61.880,5.29,0.900,bicubic,-83.360,-60.250,+61 +resnext50_32x4d.a2_in1k,224,9.840,90.160,37.067,62.933,25.03,0.950,bicubic,-84.210,-61.583,-68 +resnet152.gluon_in1k,224,9.747,90.253,35.920,64.080,60.19,0.875,bicubic,-84.413,-62.690,-89 +tf_efficientnet_b2.aa_in1k,260,9.680,90.320,38.880,61.120,9.11,0.890,bicubic,-84.720,-59.830,-142 +resnet50.c1_in1k,224,9.640,90.360,37.547,62.453,25.56,0.950,bicubic,-84.390,-61.163,-67 +tf_efficientnet_cc_b1_8e.in1k,240,9.613,90.387,36.960,63.040,39.72,0.882,bicubic,-84.307,-61.570,-49 +tf_efficientnet_lite3.in1k,300,9.587,90.413,39.147,60.853,8.20,0.904,bilinear,-84.613,-59.533,-105 +resnet50d.a2_in1k,224,9.560,90.440,37.680,62.320,25.58,0.950,bicubic,-84.540,-60.800,-85 +hgnetv2_b1.ssld_stage2_ft_in1k,224,9.547,90.453,39.613,60.387,6.34,0.965,bicubic,-84.333,-59.037,-46 +fbnetv3_b.ra2_in1k,224,9.493,90.507,38.840,61.160,8.60,0.950,bilinear,-83.807,-59.590,+46 +res2net101_26w_4s.in1k,224,9.427,90.573,34.427,65.573,45.21,0.875,bilinear,-84.323,-63.933,-23 +resnet50.ram_in1k,288,9.413,90.587,35.373,64.627,25.56,0.950,bicubic,-85.107,-63.387,-170 +cspresnet50.ra_in1k,256,9.360,90.640,39.667,60.333,21.62,0.887,bilinear,-84.440,-58.953,-33 +nf_resnet50.ra2_in1k,256,9.320,90.680,40.347,59.653,25.56,0.940,bicubic,-84.830,-58.343,-99 +resnet50.tv2_in1k,176,9.320,90.680,38.787,61.213,25.56,0.875,bilinear,-84.470,-59.603,-34 +resnet50.d_in1k,224,9.280,90.720,35.533,64.467,25.56,0.950,bicubic,-84.780,-62.897,-87 +legacy_seresnet152.in1k,224,9.253,90.747,37.040,62.960,66.82,0.875,bilinear,-84.187,-61.320,+15 +resnet34.a1_in1k,288,9.253,90.747,34.533,65.467,21.80,1.000,bicubic,-83.847,-63.957,+61 +hrnet_w40.ms_in1k,224,9.187,90.813,36.600,63.400,57.56,0.875,bilinear,-84.323,-61.760,+2 +repvit_m0_9.dist_300e_in1k,224,9.173,90.827,38.347,61.653,5.49,0.950,bicubic,-84.257,-60.383,+14 +regnetx_120.pycls_in1k,224,9.093,90.907,36.907,63.093,46.11,0.875,bicubic,-85.147,-61.743,-129 +dpn68b.ra_in1k,224,9.080,90.920,33.707,66.293,12.61,0.950,bicubic,-84.320,-64.793,+18 +vit_tiny_patch16_224.augreg_in21k_ft_in1k,224,9.053,90.947,34.160,65.840,5.72,0.900,bicubic,-82.717,-63.780,+182 +resnet32ts.ra2_in1k,288,9.040,90.960,38.107,61.893,17.96,1.000,bicubic,-84.790,-60.553,-53 +resnext50_32x4d.gluon_in1k,224,9.040,90.960,36.213,63.787,25.03,0.875,bicubic,-84.790,-62.197,-51 +regnety_040.pycls_in1k,224,9.013,90.987,37.147,62.853,20.65,0.875,bicubic,-84.867,-61.563,-62 +vit_base_patch16_224.sam_in1k,224,9.013,90.987,36.053,63.947,86.57,0.900,bicubic,-85.137,-62.577,-111 +resnest26d.gluon_in1k,224,9.000,91.000,37.533,62.467,17.07,0.875,bilinear,-84.390,-60.847,+14 +resnet33ts.ra2_in1k,256,8.973,91.027,38.227,61.773,19.68,0.900,bicubic,-84.637,-60.293,-23 +crossvit_tiny_240.in1k,240,8.960,91.040,34.333,65.667,7.01,0.875,bicubic,-81.270,-63.257,+234 +bat_resnext26ts.ch_in1k,256,8.920,91.080,36.000,64.000,10.73,0.900,bicubic,-84.400,-62.350,+23 +mixnet_l.ft_in1k,224,8.867,91.133,36.253,63.747,7.33,0.875,bicubic,-84.553,-62.007,+6 +seresnext26d_32x4d.bt_in1k,224,8.840,91.160,36.467,63.533,16.81,0.875,bicubic,-83.890,-61.793,+90 +gcresnext26ts.ch_in1k,288,8.813,91.187,36.733,63.267,10.48,1.000,bicubic,-84.377,-61.557,+33 +hgnetv2_b0.ssld_stage1_in22k_in1k,288,8.800,91.200,39.160,60.840,6.00,1.000,bicubic,-84.790,-59.350,-27 +efficientvit_m5.r224_in1k,224,8.800,91.200,34.440,65.560,12.47,0.875,bicubic,-83.640,-63.550,+116 +seresnext26t_32x4d.bt_in1k,224,8.787,91.213,36.560,63.440,16.81,0.875,bicubic,-84.053,-61.790,+68 +rexnet_100.nav_in1k,224,8.787,91.213,36.227,63.773,4.80,0.875,bicubic,-84.243,-62.083,+49 +hgnetv2_b1.ssld_stage1_in22k_in1k,224,8.773,91.227,38.293,61.707,6.34,0.965,bicubic,-84.867,-60.097,-39 +resnet50d.a3_in1k,224,8.773,91.227,36.600,63.400,25.58,0.950,bicubic,-84.747,-61.720,-24 +hrnet_w18.ms_aug_in1k,224,8.707,91.293,38.987,61.013,21.30,0.950,bilinear,-84.803,-59.513,-21 +convit_tiny.fb_in1k,224,8.693,91.307,34.080,65.920,5.71,0.875,bicubic,-81.927,-63.660,+213 +mobilenetv3_large_100.miil_in21k_ft_in1k,224,8.693,91.307,32.467,67.533,5.48,0.875,bilinear,-83.557,-65.183,+125 +hrnet_w30.ms_in1k,224,8.667,91.333,37.027,62.973,37.71,0.875,bilinear,-84.533,-61.383,+22 +resnet50.bt_in1k,288,8.640,91.360,38.413,61.587,25.56,0.950,bicubic,-85.670,-60.227,-170 +levit_128s.fb_dist_in1k,224,8.627,91.373,32.827,67.173,7.78,0.900,bicubic,-83.313,-65.303,+147 +levit_conv_128s.fb_dist_in1k,224,8.627,91.373,32.827,67.173,7.78,0.900,bicubic,-83.313,-65.243,+149 +resnet50.a1h_in1k,176,8.613,91.387,35.533,64.467,25.56,0.900,bicubic,-84.957,-62.977,-35 +ghostnetv2_160.in1k,224,8.587,91.413,36.533,63.467,12.39,0.875,bicubic,-84.423,-61.697,+41 +gcresnext26ts.ch_in1k,256,8.587,91.413,35.533,64.467,10.48,0.900,bicubic,-84.173,-62.697,+67 +hgnetv2_b0.ssld_stage2_ft_in1k,288,8.573,91.427,39.133,60.867,6.00,1.000,bicubic,-85.247,-59.227,-77 +repvit_m1.dist_in1k,224,8.547,91.453,36.800,63.200,5.49,0.950,bicubic,-84.773,-61.620,-1 +eca_resnext26ts.ch_in1k,288,8.547,91.453,36.427,63.573,10.30,1.000,bicubic,-84.553,-61.873,+25 +efficientnet_b1.ft_in1k,224,8.547,91.453,34.147,65.853,7.79,0.875,bicubic,-83.883,-64.133,+102 +resnet32ts.ra2_in1k,256,8.480,91.520,36.933,63.067,17.96,0.900,bicubic,-85.030,-61.667,-32 +dla169.in1k,224,8.453,91.547,35.960,64.040,53.39,0.875,bilinear,-84.877,-62.550,-7 +mixer_b16_224.goog_in21k_ft_in1k,224,8.427,91.573,29.267,70.733,59.88,0.875,bicubic,-83.433,-67.933,+144 +tf_efficientnet_b2.in1k,260,8.413,91.587,36.320,63.680,9.11,0.890,bicubic,-85.717,-62.130,-139 +convnext_atto_ols.a2_in1k,288,8.400,91.600,34.787,65.213,3.70,0.950,bicubic,-84.690,-63.503,+21 +tf_efficientnet_b1.ap_in1k,240,8.387,91.613,35.147,64.853,7.79,0.882,bicubic,-85.333,-63.213,-67 +resnetblur50.bt_in1k,224,8.360,91.640,37.440,62.560,25.56,0.875,bicubic,-85.620,-60.910,-112 +repvgg_b2.rvgg_in1k,224,8.280,91.720,36.027,63.973,89.02,0.875,bilinear,-85.220,-62.473,-37 +legacy_seresnet101.in1k,224,8.240,91.760,35.707,64.293,49.33,0.875,bilinear,-85.070,-62.773,-8 +crossvit_9_240.in1k,240,8.240,91.760,34.120,65.880,8.55,0.875,bicubic,-82.420,-63.580,+186 +ese_vovnet19b_dw.ra_in1k,288,8.213,91.787,37.160,62.840,6.54,0.950,bicubic,-84.957,-61.110,+4 +resnet50.b1k_in1k,224,8.213,91.787,35.133,64.867,25.56,0.950,bicubic,-85.817,-63.487,-126 +dla102x.in1k,224,8.173,91.827,36.760,63.240,26.31,0.875,bilinear,-85.327,-61.980,-41 +eca_resnext26ts.ch_in1k,256,8.120,91.880,35.733,64.267,10.30,0.900,bicubic,-84.510,-62.507,+65 +resmlp_12_224.fb_distilled_in1k,224,8.107,91.893,36.627,63.373,15.35,0.875,bicubic,-84.713,-61.503,+41 +cs3darknet_m.c2ns_in1k,288,7.947,92.053,36.240,63.760,9.31,0.950,bicubic,-85.403,-61.820,-24 +hrnet_w32.ms_in1k,224,7.933,92.067,37.253,62.747,41.23,0.875,bilinear,-85.587,-61.207,-54 +seresnext26ts.ch_in1k,288,7.920,92.080,35.973,64.027,10.39,1.000,bicubic,-85.060,-62.227,+20 +resnet50.b2k_in1k,224,7.907,92.093,35.320,64.680,25.56,0.950,bicubic,-86.183,-63.130,-148 +poolformerv2_s12.sail_in1k,224,7.893,92.107,34.467,65.533,11.89,1.000,bicubic,-85.067,-63.893,+22 +resnet101c.gluon_in1k,224,7.880,92.120,32.920,67.080,44.57,0.875,bicubic,-85.800,-65.520,-79 +repghostnet_200.in1k,224,7.853,92.147,36.747,63.253,9.80,0.875,bicubic,-85.657,-61.813,-54 +resnet26t.ra2_in1k,320,7.853,92.147,36.320,63.680,16.01,1.000,bicubic,-85.327,-62.180,-9 +vit_base_patch32_224.augreg_in1k,224,7.840,92.160,30.293,69.707,88.22,0.900,bicubic,-83.360,-67.087,+148 +resnet50d.gluon_in1k,224,7.813,92.187,34.760,65.240,25.58,0.875,bicubic,-85.977,-63.740,-97 +res2net50_26w_8s.in1k,224,7.813,92.187,33.053,66.947,48.40,0.875,bilinear,-85.587,-65.127,-38 +efficientformerv2_s0.snap_dist_in1k,224,7.800,92.200,32.947,67.053,3.60,0.950,bicubic,-84.170,-64.943,+108 +dla60_res2next.in1k,224,7.787,92.213,34.667,65.333,17.03,0.875,bilinear,-85.393,-63.743,-13 +mobilevitv2_075.cvnets_in1k,256,7.773,92.227,33.400,66.600,2.87,0.888,bicubic,-83.977,-64.460,+124 +convnext_femto_ols.d1_in1k,224,7.747,92.253,36.453,63.547,5.23,0.875,bicubic,-85.323,-61.827,-2 +fastvit_t8.apple_dist_in1k,256,7.747,92.253,34.427,65.573,4.03,0.900,bicubic,-84.793,-63.603,+60 +tf_efficientnetv2_b1.in1k,240,7.733,92.267,34.333,65.667,8.14,0.882,bicubic,-86.227,-64.057,-135 +deit_tiny_distilled_patch16_224.fb_in1k,224,7.720,92.280,33.507,66.493,5.91,0.900,bicubic,-83.040,-64.063,+161 +regnety_032.pycls_in1k,224,7.693,92.307,34.040,65.960,19.44,0.875,bicubic,-85.747,-64.310,-58 +mobilevit_xs.cvnets_in1k,256,7.667,92.333,32.440,67.560,2.32,0.900,bicubic,-83.183,-65.500,+155 +densenetblur121d.ra_in1k,224,7.653,92.347,34.347,65.653,8.00,0.875,bicubic,-84.277,-63.633,+106 +convnextv2_atto.fcmae_ft_in1k,288,7.640,92.360,32.680,67.320,3.71,0.950,bicubic,-85.330,-65.460,+4 +convnext_atto.d2_in1k,288,7.547,92.453,34.773,65.227,3.70,0.950,bicubic,-85.223,-63.277,+24 +tf_efficientnetv2_b2.in1k,208,7.547,92.453,32.973,67.027,10.10,0.890,bicubic,-86.273,-65.787,-117 +resnext50_32x4d.tv2_in1k,176,7.533,92.467,33.680,66.320,25.03,0.875,bilinear,-86.087,-64.620,-89 +dla60_res2net.in1k,224,7.507,92.493,34.587,65.413,20.85,0.875,bilinear,-85.643,-63.823,-24 +resnet50.a2_in1k,224,7.507,92.493,33.240,66.760,25.56,0.950,bicubic,-86.343,-65.100,-127 +resnet152.a3_in1k,160,7.400,92.600,31.573,68.427,60.19,0.950,bicubic,-86.230,-67.027,-93 +regnetx_064.pycls_in1k,224,7.387,92.613,34.320,65.680,26.21,0.875,bicubic,-86.513,-64.310,-137 +hardcorenas_e.miil_green_in1k,224,7.373,92.627,33.360,66.640,8.07,0.875,bilinear,-85.197,-64.770,+41 +resnet50.ra_in1k,224,7.320,92.680,34.867,65.133,25.56,0.875,bicubic,-86.030,-63.753,-54 +wide_resnet101_2.tv_in1k,224,7.320,92.680,33.733,66.267,126.89,0.875,bilinear,-86.440,-64.787,-115 +resnet34.a2_in1k,288,7.320,92.680,31.800,68.200,21.80,1.000,bicubic,-85.430,-66.450,+21 +efficientnet_b1_pruned.in1k,240,7.267,92.733,34.373,65.627,6.33,0.882,bicubic,-85.523,-63.677,+9 +regnetx_008.tv2_in1k,224,7.227,92.773,34.173,65.827,7.26,0.965,bicubic,-85.363,-64.007,+32 +efficientnet_b0.ra_in1k,224,7.227,92.773,33.933,66.067,5.29,0.875,bicubic,-85.443,-64.547,+26 +resnet101.gluon_in1k,224,7.213,92.787,32.720,67.280,44.55,0.875,bicubic,-86.517,-65.680,-114 +deit_tiny_patch16_224.fb_in1k,224,7.213,92.787,30.627,69.373,5.72,0.900,bicubic,-82.477,-66.873,+170 +densenet121.ra_in1k,288,7.200,92.800,35.307,64.693,7.98,0.950,bicubic,-85.350,-62.883,+34 +tf_efficientnet_cc_b0_8e.in1k,224,7.187,92.813,31.973,68.027,24.01,0.875,bicubic,-85.643,-66.277,-2 +tf_efficientnet_b1.aa_in1k,240,7.160,92.840,33.027,66.973,7.79,0.882,bicubic,-86.350,-65.503,-86 +resnet50s.gluon_in1k,224,7.120,92.880,33.133,66.867,25.68,0.875,bicubic,-86.550,-65.327,-114 +edgenext_x_small.in1k,288,7.107,92.893,30.587,69.413,2.34,1.000,bicubic,-84.633,-67.003,+96 +tf_mixnet_l.in1k,224,7.080,92.920,31.573,68.427,7.33,0.875,bicubic,-86.210,-66.457,-55 +resmlp_12_224.fb_in1k,224,7.067,92.933,33.867,66.133,15.35,0.875,bicubic,-85.143,-64.283,+56 +convmixer_1024_20_ks9_p14.in1k,224,7.013,92.987,32.720,67.280,24.38,0.960,bicubic,-85.417,-65.100,+38 +seresnext26ts.ch_in1k,256,6.987,93.013,34.693,65.307,10.39,0.900,bicubic,-85.733,-63.487,+8 +hardcorenas_f.miil_green_in1k,224,6.973,93.027,33.947,66.053,8.20,0.875,bilinear,-85.997,-64.113,-23 +cs3darknet_focus_m.c2ns_in1k,288,6.960,93.040,34.387,65.613,9.30,0.950,bicubic,-86.030,-63.973,-27 +pit_ti_distilled_224.in1k,224,6.933,93.067,30.800,69.200,5.10,0.900,bicubic,-83.837,-66.850,+128 +hgnetv2_b0.ssld_stage1_in22k_in1k,224,6.827,93.173,33.587,66.413,6.00,0.965,bicubic,-85.643,-64.833,+29 +fastvit_t8.apple_in1k,256,6.800,93.200,33.453,66.547,4.03,0.900,bicubic,-85.360,-64.567,+53 +convnext_femto.d1_in1k,224,6.787,93.213,35.093,64.907,5.22,0.875,bicubic,-86.143,-63.157,-23 +convnextv2_atto.fcmae_ft_in1k,224,6.773,93.227,30.827,69.173,3.71,0.875,bicubic,-85.357,-66.923,+53 +mixnet_m.ft_in1k,224,6.707,93.293,32.040,67.960,5.01,0.875,bicubic,-85.713,-65.830,+31 +selecsls60b.in1k,224,6.653,93.347,33.053,66.947,32.77,0.875,bicubic,-86.677,-65.327,-76 +tinynet_a.in1k,192,6.653,93.347,32.707,67.293,6.19,0.875,bicubic,-85.827,-65.333,+22 +dpn68b.mx_in1k,224,6.653,93.347,32.600,67.400,12.61,0.875,bicubic,-86.167,-65.840,-18 +ghostnetv2_130.in1k,224,6.653,93.347,32.600,67.400,8.96,0.875,bicubic,-85.667,-65.470,+36 +efficientnet_es.ra_in1k,224,6.627,93.373,34.333,65.667,5.44,0.875,bicubic,-86.573,-64.077,-64 +ese_vovnet19b_dw.ra_in1k,224,6.613,93.387,33.173,66.827,6.54,0.875,bicubic,-85.667,-64.817,+35 +mobileone_s3.apple_in1k,224,6.600,93.400,32.000,68.000,10.17,0.900,bilinear,-86.310,-66.180,-30 +poolformer_s12.sail_in1k,224,6.560,93.440,34.227,65.773,11.92,0.900,bicubic,-86.090,-63.953,-1 +res2net50_26w_6s.in1k,224,6.547,93.453,31.493,68.507,37.05,0.875,bilinear,-86.873,-67.107,-96 +hardcorenas_d.miil_green_in1k,224,6.533,93.467,32.133,67.867,7.50,0.875,bilinear,-85.927,-65.897,+16 +legacy_seresnext26_32x4d.in1k,224,6.520,93.480,33.027,66.973,16.79,0.875,bicubic,-86.120,-65.083,-3 +dla60x.in1k,224,6.453,93.547,33.973,66.027,17.35,0.875,bilinear,-86.647,-64.457,-59 +tf_efficientnet_b1.in1k,240,6.440,93.560,32.133,67.867,7.79,0.882,bicubic,-86.650,-66.337,-56 +cs3darknet_m.c2ns_in1k,256,6.427,93.573,33.467,66.533,9.31,0.887,bicubic,-86.243,-64.613,-10 +repghostnet_150.in1k,224,6.427,93.573,32.133,67.867,6.58,0.875,bicubic,-85.943,-66.177,+22 +skresnet34.ra_in1k,224,6.413,93.587,31.493,68.507,22.28,0.875,bicubic,-85.967,-66.647,+18 +regnetx_080.pycls_in1k,224,6.400,93.600,32.307,67.693,39.57,0.875,bicubic,-87.450,-66.213,-173 +resnet34d.ra2_in1k,224,6.373,93.627,31.640,68.360,21.82,0.875,bicubic,-86.357,-66.530,-20 +hgnetv2_b0.ssld_stage2_ft_in1k,224,6.360,93.640,33.253,66.747,6.00,0.965,bicubic,-86.460,-64.897,-35 +regnety_004.tv2_in1k,224,6.347,93.653,30.413,69.587,4.34,0.965,bicubic,-85.273,-67.667,+69 +resnet50.a3_in1k,224,6.333,93.667,31.547,68.453,25.56,0.950,bicubic,-86.437,-66.623,-30 +repvgg_b1.rvgg_in1k,224,6.320,93.680,33.613,66.387,57.42,0.875,bilinear,-87.010,-64.657,-96 +ecaresnet50t.a3_in1k,160,6.280,93.720,30.360,69.640,25.57,0.950,bicubic,-86.790,-68.040,-63 +resnet18.fb_swsl_ig1b_ft_in1k,224,6.227,93.773,31.280,68.720,11.69,0.875,bilinear,-84.433,-66.460,+103 +resnet101.a3_in1k,160,6.200,93.800,28.880,71.120,44.55,0.950,bicubic,-86.840,-69.270,-64 +edgenext_x_small.in1k,256,6.160,93.840,29.627,70.373,2.34,0.900,bicubic,-84.980,-67.923,+82 +resnet26d.bt_in1k,288,6.147,93.853,32.853,67.147,16.01,0.950,bicubic,-86.343,-65.367,-5 +pit_ti_224.in1k,224,6.093,93.907,30.040,69.960,4.85,0.900,bicubic,-83.857,-67.400,+118 +legacy_seresnet50.in1k,224,6.067,93.933,32.387,67.613,28.09,0.875,bilinear,-86.913,-66.023,-60 +resnet152.tv_in1k,224,6.053,93.947,31.467,68.533,60.19,0.875,bilinear,-87.277,-67.133,-103 +tf_efficientnet_cc_b0_4e.in1k,224,6.013,93.987,29.520,70.480,13.31,0.875,bicubic,-86.617,-68.570,-20 +resnet26t.ra2_in1k,256,5.960,94.040,31.720,68.280,16.01,0.940,bicubic,-86.790,-66.270,-37 +mobilenetv1_125.ra4_e3600_r224_in1k,256,5.960,94.040,30.400,69.600,6.27,1.000,bicubic,-86.720,-67.820,-28 +mixer_l16_224.goog_in21k_ft_in1k,224,5.920,94.080,18.200,81.800,208.20,0.875,bicubic,-81.260,-75.320,+156 +tf_efficientnetv2_b0.in1k,224,5.907,94.093,30.787,69.213,7.14,0.875,bicubic,-87.223,-67.573,-84 +wide_resnet50_2.tv_in1k,224,5.880,94.120,31.867,68.133,68.88,0.875,bilinear,-87.330,-66.453,-96 +dla102.in1k,224,5.853,94.147,32.733,67.267,33.27,0.875,bilinear,-87.227,-65.807,-79 +resnet50.ram_in1k,224,5.800,94.200,29.080,70.920,25.56,0.875,bicubic,-88.010,-69.500,-183 +regnetx_040.pycls_in1k,224,5.787,94.213,31.213,68.787,22.12,0.875,bicubic,-87.763,-67.357,-149 +resnetrs50.tf_in1k,160,5.787,94.213,27.653,72.347,35.69,0.910,bicubic,-87.143,-70.607,-63 +convnext_atto_ols.a2_in1k,224,5.760,94.240,29.453,70.547,3.70,0.875,bicubic,-86.170,-68.647,+32 +selecsls60.in1k,224,5.747,94.253,32.347,67.653,30.67,0.875,bicubic,-87.283,-65.843,-80 +resnet50.bt_in1k,224,5.680,94.320,31.893,68.107,25.56,0.875,bicubic,-87.580,-66.377,-107 +regnety_016.pycls_in1k,224,5.600,94.400,30.493,69.507,11.20,0.875,bicubic,-87.540,-67.847,-95 +hardcorenas_c.miil_green_in1k,224,5.600,94.400,30.133,69.867,5.52,0.875,bilinear,-86.440,-67.707,+16 +hrnet_w18_small_v2.gluon_in1k,224,5.587,94.413,31.853,68.147,15.60,0.875,bicubic,-87.183,-66.557,-56 +res2next50.in1k,224,5.533,94.467,30.640,69.360,24.67,0.875,bilinear,-87.367,-67.500,-69 +resnext50_32x4d.a3_in1k,160,5.520,94.480,27.853,72.147,25.03,0.950,bicubic,-87.170,-70.137,-46 +seresnet50.a3_in1k,224,5.507,94.493,30.213,69.787,28.09,0.950,bicubic,-86.593,-67.827,+6 +cs3darknet_focus_m.c2ns_in1k,256,5.467,94.533,31.867,68.133,9.30,0.887,bicubic,-86.913,-66.513,-17 +resnet34.a1_in1k,224,5.467,94.533,27.600,72.400,21.80,0.950,bicubic,-86.643,-70.180,+3 +ghostnetv2_100.in1k,224,5.453,94.547,28.827,71.173,6.16,0.875,bicubic,-85.407,-68.873,+67 +hrnet_w18.ms_in1k,224,5.427,94.573,30.827,69.173,21.30,0.875,bilinear,-86.943,-67.233,-18 +tf_efficientnet_lite2.in1k,260,5.373,94.627,30.987,69.013,6.09,0.890,bicubic,-87.307,-67.253,-51 +resnest14d.gluon_in1k,224,5.333,94.667,28.560,71.440,10.61,0.875,bilinear,-86.387,-69.610,+32 +tf_efficientnet_b0.ap_in1k,224,5.307,94.693,28.853,71.147,5.29,0.875,bicubic,-86.953,-69.167,-13 +resnext26ts.ra2_in1k,288,5.293,94.707,29.400,70.600,10.30,1.000,bicubic,-86.867,-68.490,-8 +efficientvit_m4.r224_in1k,224,5.280,94.720,27.773,72.227,8.80,0.875,bicubic,-85.320,-69.817,+74 +tf_efficientnetv2_b1.in1k,192,5.267,94.733,28.320,71.680,8.14,0.882,bicubic,-87.873,-70.070,-109 +gernet_s.idstcv_in1k,224,5.253,94.747,30.013,69.987,8.17,0.875,bilinear,-86.897,-68.197,-9 +tf_efficientnet_em.in1k,240,5.213,94.787,30.653,69.347,6.90,0.882,bicubic,-87.737,-67.557,-88 +resnet34.bt_in1k,288,5.200,94.800,29.307,70.693,21.80,0.950,bicubic,-87.210,-68.843,-31 +xcit_nano_12_p16_224.fb_dist_in1k,224,5.200,94.800,26.693,73.307,3.05,1.000,bicubic,-84.460,-70.397,+94 +tf_efficientnet_b0.aa_in1k,224,5.187,94.813,29.053,70.947,5.29,0.875,bicubic,-87.093,-69.047,-22 +efficientvit_m3.r224_in1k,224,5.187,94.813,27.453,72.547,6.90,0.875,bicubic,-84.693,-70.087,+85 +densenet121.ra_in1k,224,5.173,94.827,29.533,70.467,7.98,0.875,bicubic,-86.447,-68.377,+22 +repvgg_b1g4.rvgg_in1k,224,5.147,94.853,30.467,69.533,39.97,0.875,bilinear,-87.863,-67.943,-102 +convnext_atto.d2_in1k,224,5.120,94.880,28.880,71.120,3.70,0.875,bicubic,-86.650,-69.160,+14 +mobilenetv1_100h.ra4_e3600_r224_in1k,256,5.093,94.907,28.480,71.520,5.28,0.950,bicubic,-87.137,-69.520,-24 +res2net50_26w_4s.in1k,224,5.067,94.933,29.040,70.960,25.70,0.875,bilinear,-87.463,-69.030,-50 +mobilenetv3_large_100.ra_in1k,224,5.067,94.933,28.053,71.947,5.48,0.875,bicubic,-86.273,-69.647,+28 +tf_mixnet_m.in1k,224,5.040,94.960,28.320,71.680,5.01,0.875,bicubic,-87.300,-69.560,-35 +vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,224,4.973,95.027,26.813,73.187,6.34,0.900,bicubic,-84.257,-70.407,+89 +hardcorenas_a.miil_green_in1k,224,4.960,95.040,27.947,72.053,5.26,0.875,bilinear,-86.400,-69.893,+21 +mixnet_s.ft_in1k,224,4.920,95.080,28.840,71.160,4.13,0.875,bicubic,-87.030,-68.840,-8 +mobilenetv1_125.ra4_e3600_r224_in1k,224,4.920,95.080,28.053,71.947,6.27,0.900,bicubic,-87.030,-69.977,-10 +regnetx_004_tv.tv2_in1k,224,4.920,95.080,27.467,72.533,5.50,0.965,bicubic,-85.710,-70.133,+55 +res2net50_14w_8s.in1k,224,4.893,95.107,28.347,71.653,25.06,0.875,bilinear,-87.827,-69.953,-77 +regnetx_032.pycls_in1k,224,4.880,95.120,29.907,70.093,15.30,0.875,bicubic,-88.260,-68.193,-131 +repghostnet_130.in1k,224,4.840,95.160,29.480,70.520,5.48,0.875,bicubic,-87.040,-68.450,-4 +tf_efficientnetv2_b0.in1k,192,4.827,95.173,26.613,73.387,7.14,0.875,bicubic,-87.463,-71.587,-41 +mobilenetv3_rw.rmsp_in1k,224,4.813,95.187,29.520,70.480,5.48,0.875,bicubic,-86.507,-68.110,+17 +hardcorenas_b.miil_green_in1k,224,4.813,95.187,27.760,72.240,5.18,0.875,bilinear,-87.027,-70.170,-4 +resnet50c.gluon_in1k,224,4.800,95.200,27.760,72.240,25.58,0.875,bicubic,-88.220,-70.600,-120 +xcit_nano_12_p16_224.fb_in1k,224,4.800,95.200,25.253,74.747,3.05,1.000,bicubic,-83.800,-71.577,+89 +resnext26ts.ra2_in1k,256,4.693,95.307,28.800,71.200,10.30,0.900,bicubic,-87.147,-68.970,-9 +mobilenetv4_conv_small.e2400_r224_in1k,256,4.693,95.307,26.987,73.013,3.77,0.950,bicubic,-86.327,-70.683,+25 +resnext50_32x4d.tv_in1k,224,4.680,95.320,29.840,70.160,25.03,0.875,bilinear,-88.070,-68.420,-93 +selecsls42b.in1k,224,4.667,95.333,28.373,71.627,32.46,0.875,bicubic,-87.633,-69.767,-50 +densenet161.tv_in1k,224,4.627,95.373,29.453,70.547,28.68,0.875,bicubic,-87.953,-68.837,-76 +mobilenetv1_100.ra4_e3600_r224_in1k,256,4.600,95.400,27.067,72.933,4.23,0.950,bicubic,-87.490,-70.753,-34 +resnet101.tv_in1k,224,4.560,95.440,29.013,70.987,44.55,0.875,bilinear,-88.250,-69.217,-105 +mobileone_s2.apple_in1k,224,4.480,95.520,28.867,71.133,7.88,0.900,bilinear,-88.350,-69.303,-112 +tf_efficientnet_lite1.in1k,240,4.480,95.520,28.320,71.680,5.42,0.882,bicubic,-88.120,-69.720,-81 +mobilenetv2_120d.ra_in1k,224,4.467,95.533,29.107,70.893,5.83,0.875,bicubic,-88.013,-68.973,-71 +tf_efficientnet_b0.in1k,224,4.413,95.587,26.760,73.240,5.29,0.875,bicubic,-87.677,-71.160,-40 +resnet34.a2_in1k,224,4.387,95.613,24.400,75.600,21.80,0.950,bicubic,-87.343,-73.370,-12 +resnet50d.a3_in1k,160,4.373,95.627,26.160,73.840,25.58,0.950,bicubic,-88.067,-71.890,-71 +pvt_v2_b0.in1k,224,4.347,95.653,25.707,74.293,3.67,0.900,bicubic,-84.433,-71.163,+73 +vit_base_patch32_224.sam_in1k,224,4.307,95.693,24.307,75.693,88.22,0.900,bicubic,-85.443,-72.673,+51 +tinynet_b.in1k,188,4.253,95.747,26.800,73.200,3.73,0.875,bicubic,-86.657,-70.870,+16 +mobilenetv4_conv_small.e1200_r224_in1k,256,4.240,95.760,26.133,73.867,3.77,0.950,bicubic,-86.400,-71.377,+27 +mobilenetv1_100h.ra4_e3600_r224_in1k,224,4.227,95.773,25.760,74.240,5.28,0.875,bicubic,-87.153,-72.050,-9 +repghostnet_111.in1k,224,4.213,95.787,26.307,73.693,4.54,0.875,bicubic,-86.537,-71.153,+21 +fbnetc_100.rmsp_in1k,224,4.213,95.787,25.880,74.120,5.57,0.875,bilinear,-86.567,-71.340,+16 +edgenext_xx_small.in1k,288,4.187,95.813,23.880,76.120,1.33,1.000,bicubic,-84.683,-72.800,+64 +mobilenetv1_100.ra4_e3600_r224_in1k,224,4.173,95.827,25.160,74.840,4.23,0.875,bicubic,-87.007,-72.610,-3 +resnet50.am_in1k,224,4.133,95.867,28.360,71.640,25.56,0.875,bicubic,-89.857,-70.160,-284 +efficientnet_es_pruned.in1k,224,4.120,95.880,26.800,73.200,5.44,0.875,bicubic,-87.070,-70.940,-6 +resnet50.gluon_in1k,224,4.053,95.947,26.800,73.200,25.56,0.875,bicubic,-88.497,-71.410,-91 +resnet26d.bt_in1k,224,4.040,95.960,28.360,71.640,16.01,0.875,bicubic,-88.010,-69.600,-51 +densenet201.tv_in1k,224,3.987,96.013,27.267,72.733,20.01,0.875,bicubic,-88.773,-71.013,-118 +tf_mixnet_s.in1k,224,3.947,96.053,25.280,74.720,4.13,0.875,bicubic,-87.573,-72.310,-23 +semnasnet_100.rmsp_in1k,224,3.933,96.067,26.880,73.120,3.89,0.875,bicubic,-87.427,-70.660,-18 +mobilevitv2_050.cvnets_in1k,256,3.933,96.067,23.667,76.333,1.37,0.888,bicubic,-84.317,-73.303,+68 +resnet26.bt_in1k,288,3.907,96.093,28.133,71.867,16.00,0.950,bicubic,-88.123,-70.067,-55 +dpn68.mx_in1k,224,3.907,96.093,25.587,74.413,12.61,0.875,bicubic,-88.083,-72.423,-53 +repvgg_a2.rvgg_in1k,224,3.853,96.147,27.307,72.693,28.21,0.875,bilinear,-88.087,-70.763,-49 +tf_efficientnet_es.in1k,224,3.840,96.160,26.093,73.907,5.44,0.875,bicubic,-88.140,-71.767,-55 +semnasnet_075.rmsp_in1k,224,3.813,96.187,26.600,73.400,2.91,0.875,bicubic,-86.277,-70.810,+22 +resnet18.a1_in1k,288,3.813,96.187,23.000,77.000,11.69,1.000,bicubic,-85.907,-74.100,+32 +mobilevit_xxs.cvnets_in1k,256,3.800,96.200,22.133,77.867,1.27,0.900,bicubic,-83.360,-73.967,+69 +edgenext_xx_small.in1k,256,3.760,96.240,23.480,76.520,1.33,0.900,bicubic,-84.610,-73.220,+56 +regnety_008.pycls_in1k,224,3.747,96.253,26.867,73.133,6.26,0.875,bicubic,-87.973,-71.003,-40 +resnet18d.ra2_in1k,288,3.747,96.253,25.760,74.240,11.71,0.950,bicubic,-86.563,-71.800,+14 +resnet18.fb_ssl_yfcc100m_ft_in1k,224,3.747,96.253,25.293,74.707,11.69,0.875,bilinear,-86.503,-72.267,+14 +densenet169.tv_in1k,224,3.720,96.280,25.573,74.427,14.15,0.875,bicubic,-88.240,-72.517,-62 +mobilenetv4_conv_small.e1200_r224_in1k,224,3.720,96.280,24.467,75.533,3.77,0.875,bicubic,-86.200,-72.703,+21 +mobilenetv2_140.ra_in1k,224,3.653,96.347,26.467,73.533,6.11,0.875,bicubic,-88.177,-71.413,-51 +tf_mobilenetv3_large_100.in1k,224,3.653,96.347,24.987,75.013,5.48,0.875,bilinear,-87.567,-72.673,-30 +mobilenetv4_conv_small.e2400_r224_in1k,224,3.653,96.347,24.413,75.587,3.77,0.875,bicubic,-86.417,-72.867,+16 +dla60.in1k,224,3.640,96.360,28.013,71.987,22.04,0.875,bilinear,-88.560,-70.087,-85 +res2net50_48w_2s.in1k,224,3.600,96.400,26.187,73.813,25.29,0.875,bilinear,-88.960,-71.883,-116 +efficientvit_m2.r224_in1k,224,3.560,96.440,21.627,78.373,4.19,0.875,bicubic,-84.900,-75.283,+42 +efficientnet_lite0.ra_in1k,224,3.547,96.453,26.320,73.680,4.65,0.875,bicubic,-87.593,-71.320,-29 +repghostnet_100.in1k,224,3.547,96.453,24.293,75.707,4.07,0.875,bicubic,-86.773,-73.197,+1 +regnetx_016.pycls_in1k,224,3.533,96.467,26.347,73.653,9.19,0.875,bicubic,-88.647,-71.853,-92 +regnety_006.pycls_in1k,224,3.533,96.467,25.107,74.893,6.06,0.875,bicubic,-87.907,-72.653,-48 +spnasnet_100.rmsp_in1k,224,3.533,96.467,24.387,75.613,4.42,0.875,bilinear,-86.787,-72.803,0 +seresnet50.a3_in1k,160,3.533,96.467,22.627,77.373,28.09,0.950,bicubic,-87.467,-74.933,-25 +ghostnet_100.in1k,224,3.400,96.600,25.187,74.813,5.18,0.875,bicubic,-86.800,-72.063,-1 +resnet34.a3_in1k,224,3.400,96.600,23.240,76.760,21.80,0.950,bicubic,-86.520,-74.000,+8 +resnet50.a3_in1k,160,3.373,96.627,23.600,76.400,25.56,0.950,bicubic,-88.057,-74.030,-51 +legacy_seresnet34.in1k,224,3.320,96.680,23.707,76.293,21.96,0.875,bilinear,-87.600,-73.863,-28 +resnet18.a2_in1k,288,3.307,96.693,22.253,77.747,11.69,1.000,bicubic,-86.273,-74.697,+13 +resnet34.bt_in1k,224,3.253,96.747,24.413,75.587,21.80,0.875,bicubic,-87.917,-73.157,-40 +dla34.in1k,224,3.240,96.760,23.667,76.333,15.74,0.875,bilinear,-87.530,-73.983,-25 +efficientvit_b0.r224_in1k,224,3.227,96.773,19.427,80.573,3.41,0.950,bicubic,-84.753,-76.653,+36 +tinynet_c.in1k,184,3.213,96.787,21.413,78.587,2.46,0.875,bicubic,-84.577,-74.957,+37 +mobilenetv2_110d.ra_in1k,224,3.133,96.867,24.787,75.213,4.52,0.875,bicubic,-87.867,-72.623,-38 +mnasnet_100.rmsp_in1k,224,3.133,96.867,24.307,75.693,4.38,0.875,bicubic,-87.517,-73.203,-23 +regnety_004.pycls_in1k,224,3.080,96.920,22.573,77.427,4.34,0.875,bicubic,-87.430,-75.007,-18 +tf_efficientnet_lite0.in1k,224,3.067,96.933,22.733,77.267,4.65,0.875,bicubic,-88.033,-74.977,-43 +mobileone_s1.apple_in1k,224,3.040,96.960,25.027,74.973,4.83,0.900,bilinear,-88.320,-72.743,-58 +skresnet18.ra_in1k,224,3.027,96.973,22.680,77.320,11.96,0.875,bicubic,-86.633,-74.550,-2 +repghostnet_080.in1k,224,3.027,96.973,22.627,77.373,3.28,0.875,bicubic,-85.943,-74.143,+11 +efficientvit_m1.r224_in1k,224,2.907,97.093,19.573,80.427,2.98,0.875,bicubic,-83.903,-76.427,+36 +tf_mobilenetv3_large_075.in1k,224,2.893,97.107,21.707,78.293,3.99,0.875,bilinear,-86.767,-75.533,-3 +vgg19_bn.tv_in1k,224,2.840,97.160,23.467,76.533,143.68,0.875,bilinear,-87.280,-74.113,-17 +tinynet_d.in1k,152,2.787,97.213,17.773,82.227,2.34,0.875,bicubic,-82.043,-77.447,+44 +regnetx_008.pycls_in1k,224,2.733,97.267,22.387,77.613,7.26,0.875,bicubic,-88.367,-75.153,-52 +resnet14t.c3_in1k,224,2.720,97.280,19.827,80.173,10.08,0.950,bicubic,-86.280,-76.873,+3 +lcnet_100.ra2_in1k,224,2.653,97.347,20.467,79.533,2.95,0.875,bicubic,-86.107,-76.243,+10 +resnet34.gluon_in1k,224,2.640,97.360,21.533,78.467,21.80,0.875,bicubic,-88.330,-76.117,-50 +hrnet_w18_small_v2.ms_in1k,224,2.627,97.373,23.533,76.467,15.60,0.875,bilinear,-88.583,-74.367,-64 +repvgg_b0.rvgg_in1k,224,2.600,97.400,23.907,76.093,15.82,0.875,bilinear,-88.810,-74.073,-74 +hrnet_w18_small.gluon_in1k,224,2.600,97.400,20.520,79.480,13.19,0.875,bicubic,-86.880,-76.530,-7 +vgg16.tv_in1k,224,2.573,97.427,19.960,80.040,138.36,0.875,bilinear,-85.977,-76.830,+7 +vgg16_bn.tv_in1k,224,2.560,97.440,23.587,76.413,138.37,0.875,bilinear,-87.530,-73.783,-25 +resnet18d.ra2_in1k,224,2.480,97.520,21.547,78.453,11.71,0.875,bicubic,-86.850,-75.633,-10 +densenet121.tv_in1k,224,2.467,97.533,22.533,77.467,7.98,0.875,bicubic,-88.433,-75.197,-55 +regnetx_006.pycls_in1k,224,2.467,97.533,20.640,79.360,6.20,0.875,bicubic,-87.903,-76.780,-36 +legacy_seresnet18.in1k,224,2.467,97.533,19.880,80.120,11.78,0.875,bicubic,-86.423,-77.090,-3 +resnet18.a1_in1k,224,2.440,97.560,18.467,81.533,11.69,0.950,bicubic,-86.000,-78.183,+3 +resnet26.bt_in1k,224,2.400,97.600,22.840,77.160,16.00,0.875,bicubic,-88.780,-74.960,-70 +lcnet_075.ra2_in1k,224,2.280,97.720,17.133,82.867,2.36,0.875,bicubic,-83.760,-78.547,+24 +efficientvit_m0.r224_in1k,224,2.267,97.733,16.453,83.547,2.35,0.875,bicubic,-80.133,-77.967,+36 +repghostnet_058.in1k,224,2.253,97.747,18.427,81.573,2.55,0.875,bicubic,-84.257,-77.473,+15 +resnet34.a3_in1k,160,2.253,97.747,18.280,81.720,21.80,0.950,bicubic,-85.647,-78.190,+7 +resnet18.a3_in1k,224,2.253,97.747,17.507,82.493,11.69,0.950,bicubic,-84.177,-78.393,+17 +mobilenetv3_small_075.lamb_in1k,224,2.227,97.773,15.707,84.293,2.04,0.875,bicubic,-80.883,-78.443,+30 +test_vit.r160_in1k,160,2.227,97.773,12.733,87.267,0.37,0.875,bicubic,-60.233,-71.807,+39 +mobilenetv2_100.ra_in1k,224,2.187,97.813,19.733,80.267,3.50,0.875,bicubic,-87.443,-77.407,-26 +test_efficientnet.r160_in1k,160,2.173,97.827,11.200,88.800,0.36,0.875,bicubic,-64.937,-74.900,+34 +repvgg_a1.rvgg_in1k,224,2.147,97.853,21.227,78.773,14.09,0.875,bilinear,-88.443,-76.413,-53 +tf_mobilenetv3_small_100.in1k,224,2.147,97.853,16.773,83.227,2.54,0.875,bilinear,-83.073,-78.997,+16 +regnety_002.pycls_in1k,224,2.133,97.867,18.640,81.360,3.16,0.875,bicubic,-85.217,-77.960,+2 +resnet14t.c3_in1k,176,2.133,97.867,16.960,83.040,10.08,0.875,bicubic,-86.157,-79.410,-7 +vgg19.tv_in1k,224,2.107,97.893,20.480,79.520,143.67,0.875,bilinear,-86.953,-76.420,-26 +mobileone_s0.apple_in1k,224,2.107,97.893,17.360,82.640,5.29,0.875,bilinear,-86.213,-79.070,-10 +vgg13_bn.tv_in1k,224,2.080,97.920,20.040,79.960,133.05,0.875,bilinear,-86.700,-76.930,-20 +test_byobnet.r160_in1k,160,2.053,97.947,11.547,88.453,0.46,0.875,bicubic,-63.817,-74.723,+27 +regnetx_004.pycls_in1k,224,1.973,98.027,19.080,80.920,5.16,0.875,bicubic,-86.947,-78.030,-25 +resnet18.a2_in1k,224,1.973,98.027,17.467,82.533,11.69,0.950,bicubic,-86.057,-78.953,-11 +tf_mobilenetv3_small_075.in1k,224,1.973,98.027,14.840,85.160,2.04,0.875,bilinear,-81.547,-80.020,+16 +mobilenetv3_small_100.lamb_in1k,224,1.933,98.067,16.893,83.107,2.54,0.875,bicubic,-83.257,-78.727,+6 +tinynet_e.in1k,106,1.933,98.067,13.973,86.027,2.04,0.875,bicubic,-77.057,-78.587,+19 +repghostnet_050.in1k,224,1.920,98.080,16.347,83.653,2.31,0.875,bicubic,-83.120,-78.873,+5 +vgg13.tv_in1k,224,1.853,98.147,17.947,82.053,133.05,0.875,bilinear,-85.167,-78.363,-7 +resnet34.tv_in1k,224,1.840,98.160,19.813,80.187,21.80,0.875,bilinear,-88.090,-77.527,-53 +lcnet_050.ra2_in1k,224,1.787,98.213,13.813,86.187,1.88,0.875,bicubic,-79.933,-79.917,+13 +mobilenetv3_small_050.lamb_in1k,224,1.773,98.227,12.547,87.453,1.59,0.875,bicubic,-75.207,-78.763,+15 +mnasnet_small.lamb_in1k,224,1.760,98.240,15.040,84.960,2.03,0.875,bicubic,-82.610,-80.130,+3 +vgg11_bn.tv_in1k,224,1.733,98.267,18.107,81.893,132.87,0.875,bilinear,-85.767,-78.703,-17 +dla46x_c.in1k,224,1.707,98.293,16.333,83.667,1.07,0.875,bilinear,-82.643,-78.907,+2 +tf_mobilenetv3_large_minimal_100.in1k,224,1.653,98.347,17.347,82.653,3.92,0.875,bilinear,-87.287,-79.533,-39 +resnet10t.c3_in1k,224,1.640,98.360,15.907,84.093,5.44,0.950,bicubic,-84.610,-79.813,-9 +mobilenetv2_050.lamb_in1k,224,1.640,98.360,14.053,85.947,1.97,0.875,bicubic,-82.300,-80.537,+1 +vgg11.tv_in1k,224,1.613,98.387,15.907,84.093,132.86,0.875,bilinear,-84.967,-80.403,-15 +resnet18.gluon_in1k,224,1.600,98.400,16.773,83.227,11.69,0.875,bicubic,-86.770,-79.757,-32 +dla60x_c.in1k,224,1.587,98.413,17.773,82.227,1.32,0.875,bilinear,-84.743,-78.317,-14 +hrnet_w18_small.ms_in1k,224,1.520,98.480,18.147,81.853,13.19,0.875,bilinear,-87.530,-78.933,-48 +repvgg_a0.rvgg_in1k,224,1.493,98.507,17.453,82.547,9.11,0.875,bilinear,-87.767,-79.477,-53 +dla46_c.in1k,224,1.493,98.507,15.120,84.880,1.30,0.875,bilinear,-82.127,-79.800,-3 +resnet10t.c3_in1k,176,1.413,98.587,14.147,85.853,5.44,0.875,bicubic,-83.367,-80.863,-10 +resnet18.a3_in1k,160,1.387,98.613,13.707,86.293,11.69,0.950,bicubic,-82.883,-80.923,-8 +regnetx_002.pycls_in1k,224,1.293,98.707,14.907,85.093,2.68,0.875,bicubic,-84.907,-81.063,-18 +tf_mobilenetv3_small_minimal_100.in1k,224,1.133,98.867,11.413,88.587,2.04,0.875,bilinear,-80.187,-82.287,-3 +resnet18.tv_in1k,224,1.120,98.880,16.200,83.800,11.69,0.875,bilinear,-86.260,-80.060,-31 +resnet50.tv_in1k,224,0.040,99.960,14.360,85.640,25.56,0.875,bilinear,-91.850,-83.690,-145 diff --git a/pytorch-image-models/results/results-imagenet-r-clean.csv b/pytorch-image-models/results/results-imagenet-r-clean.csv new file mode 100644 index 0000000000000000000000000000000000000000..e626e1d812e19c8cfff23c2135abac8b5f83b84e --- /dev/null +++ b/pytorch-image-models/results/results-imagenet-r-clean.csv @@ -0,0 +1,1446 @@ +model,img_size,top1,top1_err,top5,top5_err,param_count,crop_pct,interpolation +eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,448,98.160,1.840,99.880,0.120,305.08,1.000,bicubic +eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,448,98.030,1.970,99.890,0.110,305.08,1.000,bicubic +eva_giant_patch14_336.m30m_ft_in22k_in1k,336,98.020,1.980,99.900,0.100,"1,013.01",1.000,bicubic +eva_giant_patch14_560.m30m_ft_in22k_in1k,560,97.990,2.010,99.860,0.140,"1,014.45",1.000,bicubic +eva_large_patch14_336.in22k_ft_in22k_in1k,336,97.900,2.100,99.880,0.120,304.53,1.000,bicubic +convnextv2_huge.fcmae_ft_in22k_in1k_384,384,97.860,2.140,99.910,0.090,660.29,1.000,bicubic +eva02_large_patch14_448.mim_in22k_ft_in1k,448,97.860,2.140,99.800,0.200,305.08,1.000,bicubic +eva_giant_patch14_336.clip_ft_in1k,336,97.860,2.140,99.790,0.210,"1,013.01",1.000,bicubic +eva_large_patch14_336.in22k_ft_in1k,336,97.820,2.180,99.850,0.150,304.53,1.000,bicubic +eva02_large_patch14_448.mim_m38m_ft_in1k,448,97.820,2.180,99.830,0.170,305.08,1.000,bicubic +beit_large_patch16_384.in22k_ft_in22k_in1k,384,97.820,2.180,99.790,0.210,305.00,1.000,bicubic +convnextv2_huge.fcmae_ft_in22k_in1k_512,512,97.810,2.190,99.860,0.140,660.29,1.000,bicubic +tf_efficientnet_l2.ns_jft_in1k,800,97.770,2.230,99.890,0.110,480.31,0.960,bicubic +maxvit_base_tf_512.in21k_ft_in1k,512,97.770,2.230,99.850,0.150,119.88,1.000,bicubic +beit_large_patch16_512.in22k_ft_in22k_in1k,512,97.770,2.230,99.810,0.190,305.67,1.000,bicubic +convnext_xxlarge.clip_laion2b_soup_ft_in1k,256,97.770,2.230,99.810,0.190,846.47,1.000,bicubic +tf_efficientnet_l2.ns_jft_in1k_475,475,97.770,2.230,99.810,0.190,480.31,0.936,bicubic +regnety_1280.swag_ft_in1k,384,97.760,2.240,99.860,0.140,644.81,1.000,bicubic +maxvit_xlarge_tf_384.in21k_ft_in1k,384,97.760,2.240,99.850,0.150,475.32,1.000,bicubic +maxvit_xlarge_tf_512.in21k_ft_in1k,512,97.760,2.240,99.820,0.180,475.77,1.000,bicubic +beitv2_large_patch16_224.in1k_ft_in22k_in1k,224,97.760,2.240,99.790,0.210,304.43,0.950,bicubic +eva02_base_patch14_448.mim_in22k_ft_in1k,448,97.710,2.290,99.760,0.240,87.12,1.000,bicubic +maxvit_large_tf_384.in21k_ft_in1k,384,97.670,2.330,99.820,0.180,212.03,1.000,bicubic +maxvit_large_tf_512.in21k_ft_in1k,512,97.660,2.340,99.730,0.270,212.33,1.000,bicubic +caformer_b36.sail_in22k_ft_in1k_384,384,97.650,2.350,99.860,0.140,98.75,1.000,bicubic +convnextv2_large.fcmae_ft_in22k_in1k_384,384,97.650,2.350,99.800,0.200,197.96,1.000,bicubic +vit_large_patch14_clip_224.openai_ft_in12k_in1k,224,97.640,2.360,99.730,0.270,304.20,1.000,bicubic +eva_large_patch14_196.in22k_ft_in22k_in1k,196,97.620,2.380,99.810,0.190,304.14,1.000,bicubic +vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,336,97.620,2.380,99.760,0.240,632.46,1.000,bicubic +vit_large_patch14_clip_336.openai_ft_in12k_in1k,336,97.620,2.380,99.730,0.270,304.53,1.000,bicubic +eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,448,97.600,2.400,99.820,0.180,87.12,1.000,bicubic +convnext_xlarge.fb_in22k_ft_in1k_384,384,97.580,2.420,99.780,0.220,350.20,1.000,bicubic +deit3_large_patch16_384.fb_in22k_ft_in1k,384,97.580,2.420,99.710,0.290,304.76,1.000,bicubic +maxvit_base_tf_384.in21k_ft_in1k,384,97.570,2.430,99.770,0.230,119.65,1.000,bicubic +eva_giant_patch14_224.clip_ft_in1k,224,97.570,2.430,99.710,0.290,"1,012.56",0.900,bicubic +eva_large_patch14_196.in22k_ft_in1k,196,97.530,2.470,99.790,0.210,304.14,1.000,bicubic +beit_large_patch16_224.in22k_ft_in22k_in1k,224,97.500,2.500,99.680,0.320,304.43,0.900,bicubic +convnext_xlarge.fb_in22k_ft_in1k,288,97.480,2.520,99.820,0.180,350.20,1.000,bicubic +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,384,97.470,2.530,99.760,0.240,200.13,1.000,bicubic +maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,384,97.470,2.530,99.760,0.240,116.09,1.000,bicubic +vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,336,97.460,2.540,99.780,0.220,304.53,1.000,bicubic +convformer_b36.sail_in22k_ft_in1k_384,384,97.450,2.550,99.750,0.250,99.88,1.000,bicubic +vit_large_patch14_clip_224.openai_ft_in1k,224,97.450,2.550,99.690,0.310,304.20,1.000,bicubic +vit_large_patch16_384.augreg_in21k_ft_in1k,384,97.430,2.570,99.780,0.220,304.72,1.000,bicubic +regnety_1280.swag_lc_in1k,224,97.420,2.580,99.740,0.260,644.81,0.965,bicubic +vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,97.410,2.590,99.770,0.230,64.27,1.000,bicubic +regnety_320.swag_ft_in1k,384,97.400,2.600,99.760,0.240,145.05,1.000,bicubic +vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,224,97.390,2.610,99.740,0.260,304.20,1.000,bicubic +convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,384,97.390,2.610,99.730,0.270,200.13,1.000,bicubic +caformer_b36.sail_in22k_ft_in1k,224,97.380,2.620,99.830,0.170,98.75,1.000,bicubic +convnextv2_base.fcmae_ft_in22k_in1k_384,384,97.370,2.630,99.720,0.280,88.72,1.000,bicubic +coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,384,97.370,2.630,99.700,0.300,73.88,1.000,bicubic +caformer_m36.sail_in22k_ft_in1k_384,384,97.360,2.640,99.780,0.220,56.20,1.000,bicubic +seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,384,97.360,2.640,99.730,0.270,149.39,1.000,bicubic +convformer_m36.sail_in22k_ft_in1k_384,384,97.360,2.640,99.680,0.320,57.05,1.000,bicubic +vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,224,97.350,2.650,99.800,0.200,632.05,1.000,bicubic +convnextv2_large.fcmae_ft_in22k_in1k,288,97.340,2.660,99.760,0.240,197.96,1.000,bicubic +beit_base_patch16_384.in22k_ft_in22k_in1k,384,97.340,2.660,99.710,0.290,86.74,1.000,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,288,97.330,2.670,99.760,0.240,93.59,0.950,bicubic +convnext_large.fb_in22k_ft_in1k_384,384,97.330,2.670,99.750,0.250,197.77,1.000,bicubic +maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,384,97.320,2.680,99.720,0.280,116.14,1.000,bicubic +deit3_large_patch16_224.fb_in22k_ft_in1k,224,97.320,2.680,99.680,0.320,304.37,1.000,bicubic +tf_efficientnetv2_l.in21k_ft_in1k,480,97.320,2.680,99.640,0.360,118.52,1.000,bicubic +tf_efficientnetv2_xl.in21k_ft_in1k,512,97.320,2.680,99.590,0.410,208.12,1.000,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,320,97.300,2.700,99.780,0.220,93.59,1.000,bicubic +swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,384,97.300,2.700,99.780,0.220,196.74,1.000,bicubic +volo_d5_512.sail_in1k,512,97.300,2.700,99.770,0.230,296.09,1.150,bicubic +beitv2_large_patch16_224.in1k_ft_in1k,224,97.290,2.710,99.740,0.260,304.43,0.950,bicubic +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,320,97.290,2.710,99.740,0.260,200.13,1.000,bicubic +caformer_s36.sail_in22k_ft_in1k_384,384,97.280,2.720,99.720,0.280,39.30,1.000,bicubic +convnextv2_large.fcmae_ft_in22k_in1k,224,97.270,2.730,99.720,0.280,197.96,0.875,bicubic +convnextv2_huge.fcmae_ft_in1k,288,97.270,2.730,99.710,0.290,660.29,1.000,bicubic +swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,384,97.260,2.740,99.800,0.200,87.92,1.000,bicubic +convnext_xlarge.fb_in22k_ft_in1k,224,97.260,2.740,99.740,0.260,350.20,0.875,bicubic +deit3_huge_patch14_224.fb_in22k_ft_in1k,224,97.250,2.750,99.720,0.280,632.13,1.000,bicubic +convnext_base.fb_in22k_ft_in1k,288,97.240,2.760,99.760,0.240,88.59,1.000,bicubic +volo_d5_448.sail_in1k,448,97.240,2.760,99.740,0.260,295.91,1.150,bicubic +convnext_base.fb_in22k_ft_in1k_384,384,97.240,2.760,99.720,0.280,88.59,1.000,bicubic +convnext_large.fb_in22k_ft_in1k,288,97.240,2.760,99.720,0.280,197.77,1.000,bicubic +vit_large_patch14_clip_336.laion2b_ft_in1k,336,97.240,2.760,99.720,0.280,304.53,1.000,bicubic +deit3_base_patch16_384.fb_in22k_ft_in1k,384,97.240,2.760,99.680,0.320,86.88,1.000,bicubic +convformer_b36.sail_in22k_ft_in1k,224,97.230,2.770,99.760,0.240,99.88,1.000,bicubic +vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,384,97.230,2.770,99.700,0.300,86.86,1.000,bicubic +convnext_large.fb_in22k_ft_in1k,224,97.230,2.770,99.660,0.340,197.77,0.875,bicubic +nextvit_base.bd_ssld_6m_in1k_384,384,97.220,2.780,99.720,0.280,44.82,1.000,bicubic +swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,256,97.220,2.780,99.710,0.290,196.74,0.900,bicubic +convnextv2_base.fcmae_ft_in22k_in1k,288,97.210,2.790,99.760,0.240,88.72,1.000,bicubic +hiera_huge_224.mae_in1k_ft_in1k,224,97.210,2.790,99.640,0.360,672.78,0.900,bicubic +tf_efficientnet_b7.ns_jft_in1k,600,97.200,2.800,99.700,0.300,66.35,0.949,bicubic +maxvit_base_tf_512.in1k,512,97.200,2.800,99.640,0.360,119.88,1.000,bicubic +coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,224,97.190,2.810,99.650,0.350,73.88,0.950,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k,288,97.180,2.820,99.760,0.240,93.59,1.000,bicubic +nextvit_large.bd_ssld_6m_in1k_384,384,97.180,2.820,99.740,0.260,57.87,1.000,bicubic +swin_large_patch4_window12_384.ms_in22k_ft_in1k,384,97.180,2.820,99.690,0.310,196.74,1.000,bicubic +maxvit_small_tf_512.in1k,512,97.180,2.820,99.620,0.380,69.13,1.000,bicubic +regnety_160.swag_ft_in1k,384,97.170,2.830,99.780,0.220,83.59,1.000,bicubic +convnextv2_base.fcmae_ft_in22k_in1k,224,97.160,2.840,99.660,0.340,88.72,0.875,bicubic +caformer_b36.sail_in1k_384,384,97.160,2.840,99.610,0.390,98.75,1.000,bicubic +convnext_small.fb_in22k_ft_in1k_384,384,97.140,2.860,99.640,0.360,50.22,1.000,bicubic +maxvit_base_tf_384.in1k,384,97.140,2.860,99.580,0.420,119.65,1.000,bicubic +convnext_large_mlp.clip_laion2b_augreg_ft_in1k,256,97.130,2.870,99.720,0.280,200.13,1.000,bicubic +vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,97.130,2.870,99.720,0.280,60.60,1.000,bicubic +vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,97.130,2.870,99.680,0.320,64.11,0.950,bicubic +vit_base_patch16_clip_384.openai_ft_in12k_in1k,384,97.130,2.870,99.650,0.350,86.86,0.950,bicubic +vit_huge_patch14_clip_224.laion2b_ft_in1k,224,97.110,2.890,99.700,0.300,632.05,1.000,bicubic +hgnetv2_b6.ssld_stage2_ft_in1k,288,97.100,2.900,99.740,0.260,75.26,1.000,bicubic +maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,224,97.090,2.910,99.610,0.390,116.14,0.950,bicubic +vit_base_patch8_224.augreg_in21k_ft_in1k,224,97.090,2.910,99.610,0.390,86.58,0.900,bicubic +hgnetv2_b6.ssld_stage1_in22k_in1k,288,97.080,2.920,99.710,0.290,75.26,1.000,bicubic +maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,224,97.080,2.920,99.680,0.320,116.09,0.950,bicubic +swin_base_patch4_window12_384.ms_in22k_ft_in1k,384,97.070,2.930,99.770,0.230,87.90,1.000,bicubic +volo_d4_448.sail_in1k,448,97.070,2.930,99.760,0.240,193.41,1.150,bicubic +nextvit_small.bd_ssld_6m_in1k_384,384,97.070,2.930,99.710,0.290,31.76,1.000,bicubic +convformer_m36.sail_in22k_ft_in1k,224,97.070,2.930,99.630,0.370,57.05,1.000,bicubic +convformer_s36.sail_in22k_ft_in1k_384,384,97.060,2.940,99.700,0.300,40.01,1.000,bicubic +tf_efficientnet_b6.ns_jft_in1k,528,97.060,2.940,99.700,0.300,43.04,0.942,bicubic +convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,384,97.060,2.940,99.690,0.310,88.59,1.000,bicubic +swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,256,97.060,2.940,99.670,0.330,87.92,0.900,bicubic +maxvit_large_tf_512.in1k,512,97.060,2.940,99.590,0.410,212.33,1.000,bicubic +rdnet_large.nv_in1k_ft_in1k_384,384,97.040,2.960,99.680,0.320,186.27,1.000,bicubic +volo_d3_448.sail_in1k,448,97.040,2.960,99.680,0.320,86.63,1.000,bicubic +caformer_m36.sail_in22k_ft_in1k,224,97.030,2.970,99.730,0.270,56.20,1.000,bicubic +vit_large_patch14_clip_224.laion2b_ft_in1k,224,97.030,2.970,99.670,0.330,304.20,1.000,bicubic +hgnetv2_b6.ssld_stage1_in22k_in1k,224,97.030,2.970,99.610,0.390,75.26,0.965,bicubic +caformer_m36.sail_in1k_384,384,97.020,2.980,99.710,0.290,56.20,1.000,bicubic +vit_base_patch16_384.augreg_in21k_ft_in1k,384,97.020,2.980,99.700,0.300,86.86,1.000,bicubic +tf_efficientnetv2_m.in21k_ft_in1k,480,97.020,2.980,99.620,0.380,54.14,1.000,bicubic +dm_nfnet_f5.dm_in1k,544,97.010,2.990,99.670,0.330,377.21,0.954,bicubic +coatnet_2_rw_224.sw_in12k_ft_in1k,224,97.000,3.000,99.640,0.360,73.87,0.950,bicubic +convnext_small.in12k_ft_in1k_384,384,96.990,3.010,99.660,0.340,50.22,1.000,bicubic +dm_nfnet_f6.dm_in1k,576,96.980,3.020,99.760,0.240,438.36,0.956,bicubic +maxvit_tiny_tf_512.in1k,512,96.970,3.030,99.670,0.330,31.05,1.000,bicubic +swin_large_patch4_window7_224.ms_in22k_ft_in1k,224,96.970,3.030,99.660,0.340,196.53,0.900,bicubic +beitv2_base_patch16_224.in1k_ft_in22k_in1k,224,96.960,3.040,99.720,0.280,86.53,0.900,bicubic +vit_large_r50_s32_384.augreg_in21k_ft_in1k,384,96.960,3.040,99.720,0.280,329.09,1.000,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k,224,96.960,3.040,99.640,0.360,93.59,0.875,bicubic +maxvit_large_tf_384.in1k,384,96.960,3.040,99.560,0.440,212.03,1.000,bicubic +dm_nfnet_f4.dm_in1k,512,96.950,3.050,99.630,0.370,316.07,0.951,bicubic +tiny_vit_21m_384.dist_in22k_ft_in1k,384,96.950,3.050,99.620,0.380,21.23,1.000,bicubic +vit_base_patch8_224.augreg2_in21k_ft_in1k,224,96.940,3.060,99.650,0.350,86.58,0.900,bicubic +convnextv2_huge.fcmae_ft_in1k,224,96.940,3.060,99.640,0.360,660.29,0.875,bicubic +dm_nfnet_f6.dm_in1k,448,96.930,3.070,99.720,0.280,438.36,0.956,bicubic +xcit_large_24_p16_384.fb_dist_in1k,384,96.930,3.070,99.510,0.490,189.10,1.000,bicubic +vit_base_patch16_clip_384.laion2b_ft_in1k,384,96.920,3.080,99.670,0.330,86.86,1.000,bicubic +volo_d5_224.sail_in1k,224,96.910,3.090,99.660,0.340,295.46,0.960,bicubic +nextvit_large.bd_ssld_6m_in1k,224,96.910,3.090,99.640,0.360,57.87,0.950,bicubic +tf_efficientnet_b5.ns_jft_in1k,456,96.900,3.100,99.640,0.360,30.39,0.934,bicubic +tf_efficientnetv2_xl.in21k_ft_in1k,384,96.900,3.100,99.460,0.540,208.12,1.000,bicubic +tiny_vit_21m_512.dist_in22k_ft_in1k,512,96.890,3.110,99.710,0.290,21.27,1.000,bicubic +cait_m48_448.fb_dist_in1k,448,96.890,3.110,99.620,0.380,356.46,1.000,bicubic +deit3_base_patch16_224.fb_in22k_ft_in1k,224,96.890,3.110,99.620,0.380,86.59,1.000,bicubic +nextvit_base.bd_ssld_6m_in1k,224,96.880,3.120,99.680,0.320,44.82,0.950,bicubic +caformer_s36.sail_in1k_384,384,96.880,3.120,99.660,0.340,39.30,1.000,bicubic +convformer_b36.sail_in1k_384,384,96.870,3.130,99.650,0.350,99.88,1.000,bicubic +hgnetv2_b6.ssld_stage2_ft_in1k,224,96.870,3.130,99.650,0.350,75.26,0.965,bicubic +deit3_large_patch16_384.fb_in1k,384,96.870,3.130,99.620,0.380,304.76,1.000,bicubic +tf_efficientnetv2_l.in21k_ft_in1k,384,96.870,3.130,99.590,0.410,118.52,1.000,bicubic +convnext_small.fb_in22k_ft_in1k,288,96.870,3.130,99.510,0.490,50.22,1.000,bicubic +regnety_320.swag_lc_in1k,224,96.860,3.140,99.720,0.280,145.05,0.965,bicubic +convnext_base.clip_laiona_augreg_ft_in1k_384,384,96.860,3.140,99.690,0.310,88.59,1.000,bicubic +resnetv2_152x4_bit.goog_in21k_ft_in1k,480,96.860,3.140,99.670,0.330,936.53,1.000,bilinear +convnext_base.fb_in22k_ft_in1k,224,96.860,3.140,99.660,0.340,88.59,0.875,bicubic +convnextv2_large.fcmae_ft_in1k,288,96.850,3.150,99.770,0.230,197.96,1.000,bicubic +convnextv2_large.fcmae_ft_in1k,224,96.850,3.150,99.680,0.320,197.96,0.875,bicubic +caformer_s36.sail_in22k_ft_in1k,224,96.830,3.170,99.620,0.380,39.30,1.000,bicubic +regnety_160.sw_in12k_ft_in1k,288,96.820,3.180,99.700,0.300,83.59,1.000,bicubic +cait_m36_384.fb_dist_in1k,384,96.820,3.180,99.660,0.340,271.22,1.000,bicubic +vit_base_patch16_clip_384.openai_ft_in1k,384,96.820,3.180,99.660,0.340,86.86,1.000,bicubic +xcit_small_24_p8_384.fb_dist_in1k,384,96.820,3.180,99.630,0.370,47.63,1.000,bicubic +efficientnet_b5.sw_in12k_ft_in1k,448,96.820,3.180,99.590,0.410,30.39,1.000,bicubic +dm_nfnet_f5.dm_in1k,416,96.810,3.190,99.600,0.400,377.21,0.954,bicubic +regnety_160.lion_in12k_ft_in1k,288,96.800,3.200,99.710,0.290,83.59,1.000,bicubic +hgnet_base.ssld_in1k,288,96.800,3.200,99.680,0.320,71.58,1.000,bicubic +convnext_base.clip_laion2b_augreg_ft_in12k_in1k,256,96.800,3.200,99.670,0.330,88.59,1.000,bicubic +vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,96.800,3.200,99.640,0.360,64.11,0.950,bicubic +flexivit_large.1200ep_in1k,240,96.800,3.200,99.610,0.390,304.36,0.950,bicubic +convformer_s18.sail_in22k_ft_in1k_384,384,96.790,3.210,99.710,0.290,26.77,1.000,bicubic +xcit_large_24_p8_384.fb_dist_in1k,384,96.790,3.210,99.550,0.450,188.93,1.000,bicubic +resnext101_32x32d.fb_wsl_ig1b_ft_in1k,224,96.790,3.210,99.530,0.470,468.53,0.875,bilinear +volo_d4_224.sail_in1k,224,96.780,3.220,99.670,0.330,192.96,0.960,bicubic +xcit_medium_24_p8_384.fb_dist_in1k,384,96.780,3.220,99.620,0.380,84.32,1.000,bicubic +convformer_m36.sail_in1k_384,384,96.770,3.230,99.610,0.390,57.05,1.000,bicubic +beitv2_base_patch16_224.in1k_ft_in1k,224,96.770,3.230,99.550,0.450,86.53,0.900,bicubic +hiera_large_224.mae_in1k_ft_in1k,224,96.750,3.250,99.590,0.410,213.74,0.900,bicubic +flexivit_large.600ep_in1k,240,96.750,3.250,99.550,0.450,304.36,0.950,bicubic +efficientvit_l3.r320_in1k,320,96.750,3.250,99.410,0.590,246.04,1.000,bicubic +hgnetv2_b5.ssld_stage2_ft_in1k,288,96.740,3.260,99.710,0.290,39.57,1.000,bicubic +dm_nfnet_f4.dm_in1k,384,96.740,3.260,99.620,0.380,316.07,0.951,bicubic +volo_d2_384.sail_in1k,384,96.740,3.260,99.600,0.400,58.87,1.000,bicubic +maxvit_small_tf_384.in1k,384,96.740,3.260,99.580,0.420,69.02,1.000,bicubic +efficientvit_l3.r384_in1k,384,96.740,3.260,99.450,0.550,246.04,1.000,bicubic +inception_next_base.sail_in1k_384,384,96.730,3.270,99.620,0.380,86.67,1.000,bicubic +tf_efficientnetv2_l.in1k,480,96.730,3.270,99.550,0.450,118.52,1.000,bicubic +vit_large_patch16_224.augreg_in21k_ft_in1k,224,96.720,3.280,99.640,0.360,304.33,0.900,bicubic +tf_efficientnet_b4.ns_jft_in1k,380,96.710,3.290,99.640,0.360,19.34,0.922,bicubic +convformer_s36.sail_in1k_384,384,96.700,3.300,99.580,0.420,40.01,1.000,bicubic +tf_efficientnet_b8.ra_in1k,672,96.700,3.300,99.550,0.450,87.41,0.954,bicubic +eva02_small_patch14_336.mim_in22k_ft_in1k,336,96.690,3.310,99.610,0.390,22.13,1.000,bicubic +xcit_medium_24_p16_384.fb_dist_in1k,384,96.690,3.310,99.600,0.400,84.40,1.000,bicubic +flexivit_large.300ep_in1k,240,96.690,3.310,99.580,0.420,304.36,0.950,bicubic +efficientvit_l2.r384_in1k,384,96.690,3.310,99.470,0.530,63.71,1.000,bicubic +deit3_small_patch16_384.fb_in22k_ft_in1k,384,96.680,3.320,99.640,0.360,22.21,1.000,bicubic +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,544,96.680,3.320,99.580,0.420,32.59,1.000,bicubic +efficientvit_l2.r288_in1k,288,96.680,3.320,99.530,0.470,63.71,1.000,bicubic +swin_base_patch4_window7_224.ms_in22k_ft_in1k,224,96.670,3.330,99.660,0.340,87.77,0.900,bicubic +beit_base_patch16_224.in22k_ft_in22k_in1k,224,96.660,3.340,99.660,0.340,86.53,0.900,bicubic +hgnet_base.ssld_in1k,224,96.650,3.350,99.560,0.440,71.58,0.965,bicubic +cait_s36_384.fb_dist_in1k,384,96.640,3.360,99.600,0.400,68.37,1.000,bicubic +efficientvit_l3.r256_in1k,256,96.640,3.360,99.290,0.710,246.04,1.000,bicubic +convnextv2_tiny.fcmae_ft_in22k_in1k_384,384,96.630,3.370,99.590,0.410,28.64,1.000,bicubic +vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,224,96.630,3.370,99.560,0.440,86.57,0.950,bicubic +xcit_large_24_p8_224.fb_dist_in1k,224,96.630,3.370,99.480,0.520,188.93,1.000,bicubic +regnetz_e8.ra3_in1k,320,96.620,3.380,99.610,0.390,57.70,1.000,bicubic +coat_lite_medium_384.in1k,384,96.620,3.380,99.450,0.550,44.57,1.000,bicubic +hgnetv2_b5.ssld_stage1_in22k_in1k,288,96.610,3.390,99.700,0.300,39.57,1.000,bicubic +dm_nfnet_f3.dm_in1k,416,96.610,3.390,99.630,0.370,254.92,0.940,bicubic +vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,96.610,3.390,99.590,0.410,60.40,0.950,bicubic +nextvit_small.bd_ssld_6m_in1k,224,96.610,3.390,99.580,0.420,31.76,0.950,bicubic +tf_efficientnet_b7.ra_in1k,600,96.610,3.390,99.510,0.490,66.35,0.949,bicubic +vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,384,96.610,3.390,99.470,0.530,88.30,1.000,bicubic +regnety_160.sw_in12k_ft_in1k,224,96.590,3.410,99.690,0.310,83.59,0.950,bicubic +convnext_small.in12k_ft_in1k,288,96.590,3.410,99.580,0.420,50.22,1.000,bicubic +maxvit_tiny_tf_384.in1k,384,96.590,3.410,99.570,0.430,30.98,1.000,bicubic +deit3_huge_patch14_224.fb_in1k,224,96.590,3.410,99.520,0.480,632.13,0.900,bicubic +convnext_tiny.in12k_ft_in1k_384,384,96.580,3.420,99.660,0.340,28.59,1.000,bicubic +convnext_base.clip_laion2b_augreg_ft_in1k,256,96.580,3.420,99.640,0.360,88.59,1.000,bicubic +cait_s24_384.fb_dist_in1k,384,96.580,3.420,99.550,0.450,47.06,1.000,bicubic +convnext_small.in12k_ft_in1k,224,96.570,3.430,99.580,0.420,50.22,0.950,bicubic +vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,448,96.570,3.430,99.530,0.470,88.34,1.000,bicubic +regnety_120.sw_in12k_ft_in1k,288,96.560,3.440,99.680,0.320,51.82,1.000,bicubic +tf_efficientnet_b8.ap_in1k,672,96.560,3.440,99.550,0.450,87.41,0.954,bicubic +tf_efficientnetv2_l.in1k,384,96.560,3.440,99.480,0.520,118.52,1.000,bicubic +hrnet_w48_ssld.paddle_in1k,288,96.550,3.450,99.640,0.360,77.47,1.000,bilinear +convformer_s36.sail_in22k_ft_in1k,224,96.550,3.450,99.600,0.400,40.01,1.000,bicubic +xcit_small_24_p8_224.fb_dist_in1k,224,96.550,3.450,99.560,0.440,47.63,1.000,bicubic +regnety_2560.seer_ft_in1k,384,96.550,3.450,99.510,0.490,"1,282.60",1.000,bicubic +vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,96.550,3.450,99.470,0.530,60.40,0.950,bicubic +hgnetv2_b5.ssld_stage2_ft_in1k,224,96.540,3.460,99.660,0.340,39.57,0.965,bicubic +xcit_medium_24_p8_224.fb_dist_in1k,224,96.540,3.460,99.470,0.530,84.32,1.000,bicubic +caformer_b36.sail_in1k,224,96.540,3.460,99.460,0.540,98.75,1.000,bicubic +hgnetv2_b5.ssld_stage1_in22k_in1k,224,96.530,3.470,99.620,0.380,39.57,0.965,bicubic +resnetv2_152x2_bit.goog_in21k_ft_in1k,448,96.530,3.470,99.590,0.410,236.34,1.000,bilinear +dm_nfnet_f2.dm_in1k,352,96.530,3.470,99.570,0.430,193.78,0.920,bicubic +vit_base_patch16_clip_224.openai_ft_in12k_in1k,224,96.530,3.470,99.550,0.450,86.57,0.950,bicubic +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,480,96.530,3.470,99.540,0.460,32.59,1.000,bicubic +caformer_s18.sail_in22k_ft_in1k_384,384,96.520,3.480,99.590,0.410,26.34,1.000,bicubic +regnety_160.lion_in12k_ft_in1k,224,96.510,3.490,99.690,0.310,83.59,0.950,bicubic +tf_efficientnetv2_m.in21k_ft_in1k,384,96.510,3.490,99.520,0.480,54.14,1.000,bicubic +convnext_small.fb_in22k_ft_in1k,224,96.510,3.490,99.490,0.510,50.22,0.875,bicubic +vit_medium_patch16_gap_384.sw_in12k_ft_in1k,384,96.500,3.500,99.630,0.370,39.03,0.950,bicubic +deit_base_distilled_patch16_384.fb_in1k,384,96.500,3.500,99.590,0.410,87.63,1.000,bicubic +vit_base_patch16_224.augreg2_in21k_ft_in1k,224,96.500,3.500,99.590,0.410,86.57,0.900,bicubic +convnextv2_base.fcmae_ft_in1k,288,96.500,3.500,99.520,0.480,88.72,1.000,bicubic +efficientvit_l3.r224_in1k,224,96.500,3.500,99.340,0.660,246.04,1.000,bicubic +volo_d1_384.sail_in1k,384,96.490,3.510,99.550,0.450,26.78,1.000,bicubic +vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,96.490,3.510,99.540,0.460,38.88,0.950,bicubic +vit_base_r50_s16_384.orig_in21k_ft_in1k,384,96.480,3.520,99.660,0.340,98.95,1.000,bicubic +tf_efficientnetv2_m.in1k,480,96.480,3.520,99.610,0.390,54.14,1.000,bicubic +resnext101_32x16d.fb_wsl_ig1b_ft_in1k,224,96.480,3.520,99.540,0.460,194.03,0.875,bilinear +xcit_small_12_p8_384.fb_dist_in1k,384,96.480,3.520,99.480,0.520,26.21,1.000,bicubic +efficientvit_l2.r256_in1k,256,96.480,3.520,99.390,0.610,63.71,1.000,bicubic +nextvit_large.bd_in1k_384,384,96.470,3.530,99.550,0.450,57.87,1.000,bicubic +convnextv2_base.fcmae_ft_in1k,224,96.470,3.530,99.430,0.570,88.72,0.875,bicubic +eca_nfnet_l2.ra3_in1k,384,96.460,3.540,99.610,0.390,56.72,1.000,bicubic +volo_d3_224.sail_in1k,224,96.460,3.540,99.610,0.390,86.33,0.960,bicubic +hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k,256,96.460,3.540,99.570,0.430,34.36,0.950,bicubic +tf_efficientnetv2_s.in21k_ft_in1k,384,96.460,3.540,99.570,0.430,21.46,1.000,bicubic +ecaresnet269d.ra2_in1k,352,96.450,3.550,99.610,0.390,102.09,1.000,bicubic +caformer_s18.sail_in1k_384,384,96.450,3.550,99.560,0.440,26.34,1.000,bicubic +resnetrs420.tf_in1k,416,96.450,3.550,99.540,0.460,191.89,1.000,bicubic +regnety_160.swag_lc_in1k,224,96.430,3.570,99.760,0.240,83.59,0.965,bicubic +regnetz_e8.ra3_in1k,256,96.430,3.570,99.470,0.530,57.70,0.940,bicubic +mvitv2_large.fb_in1k,224,96.430,3.570,99.440,0.560,217.99,0.900,bicubic +ecaresnet269d.ra2_in1k,320,96.420,3.580,99.520,0.480,102.09,0.950,bicubic +seresnextaa101d_32x8d.ah_in1k,288,96.420,3.580,99.520,0.480,93.59,1.000,bicubic +volo_d2_224.sail_in1k,224,96.420,3.580,99.510,0.490,58.68,0.960,bicubic +hgnet_small.ssld_in1k,288,96.400,3.600,99.620,0.380,24.36,1.000,bicubic +caformer_m36.sail_in1k,224,96.400,3.600,99.530,0.470,56.20,1.000,bicubic +tiny_vit_21m_224.dist_in22k_ft_in1k,224,96.400,3.600,99.500,0.500,21.20,0.950,bicubic +vit_base_patch32_clip_384.openai_ft_in12k_in1k,384,96.400,3.600,99.460,0.540,88.30,0.950,bicubic +convnext_large.fb_in1k,288,96.390,3.610,99.530,0.470,197.77,1.000,bicubic +swin_base_patch4_window12_384.ms_in1k,384,96.390,3.610,99.420,0.580,87.90,1.000,bicubic +xcit_small_24_p16_384.fb_dist_in1k,384,96.380,3.620,99.580,0.420,47.67,1.000,bicubic +rdnet_large.nv_in1k,224,96.380,3.620,99.520,0.480,186.27,0.900,bicubic +xcit_small_12_p16_384.fb_dist_in1k,384,96.380,3.620,99.470,0.530,26.25,1.000,bicubic +hiera_base_plus_224.mae_in1k_ft_in1k,224,96.380,3.620,99.420,0.580,69.90,0.900,bicubic +dm_nfnet_f3.dm_in1k,320,96.370,3.630,99.590,0.410,254.92,0.940,bicubic +resnetaa101d.sw_in12k_ft_in1k,288,96.370,3.630,99.470,0.530,44.57,1.000,bicubic +seresnext101d_32x8d.ah_in1k,288,96.370,3.630,99.470,0.530,93.59,1.000,bicubic +vit_base_patch16_clip_224.openai_ft_in1k,224,96.360,3.640,99.570,0.430,86.57,0.900,bicubic +tf_efficientnet_b6.ap_in1k,528,96.360,3.640,99.550,0.450,43.04,0.942,bicubic +resmlp_big_24_224.fb_in22k_ft_in1k,224,96.360,3.640,99.510,0.490,129.14,0.875,bicubic +maxvit_large_tf_224.in1k,224,96.350,3.650,99.400,0.600,211.79,0.950,bicubic +maxvit_base_tf_224.in1k,224,96.350,3.650,99.380,0.620,119.47,0.950,bicubic +hiera_base_224.mae_in1k_ft_in1k,224,96.350,3.650,99.360,0.640,51.52,0.900,bicubic +tf_efficientnet_b7.ap_in1k,600,96.340,3.660,99.600,0.400,66.35,0.949,bicubic +nextvit_base.bd_in1k_384,384,96.340,3.660,99.580,0.420,44.82,1.000,bicubic +convnextv2_tiny.fcmae_ft_in22k_in1k,288,96.340,3.660,99.550,0.450,28.64,1.000,bicubic +regnetz_040_h.ra3_in1k,320,96.340,3.660,99.510,0.490,28.94,1.000,bicubic +vit_base_patch16_clip_224.laion2b_ft_in1k,224,96.330,3.670,99.550,0.450,86.57,1.000,bicubic +dm_nfnet_f1.dm_in1k,320,96.330,3.670,99.530,0.470,132.63,0.910,bicubic +convnext_base.fb_in1k,288,96.330,3.670,99.480,0.520,88.59,1.000,bicubic +regnety_1280.seer_ft_in1k,384,96.330,3.670,99.410,0.590,644.81,1.000,bicubic +resnetrs200.tf_in1k,320,96.320,3.680,99.540,0.460,93.21,1.000,bicubic +seresnet152d.ra2_in1k,320,96.320,3.680,99.510,0.490,66.84,1.000,bicubic +xcit_large_24_p16_224.fb_dist_in1k,224,96.310,3.690,99.480,0.520,189.10,1.000,bicubic +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,384,96.310,3.690,99.410,0.590,32.59,0.950,bicubic +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,448,96.310,3.690,99.380,0.620,32.59,0.950,bicubic +hgnetv2_b4.ssld_stage2_ft_in1k,288,96.300,3.700,99.620,0.380,19.80,1.000,bicubic +resnetv2_101x3_bit.goog_in21k_ft_in1k,448,96.300,3.700,99.590,0.410,387.93,1.000,bilinear +vit_base_patch16_224.augreg_in21k_ft_in1k,224,96.300,3.700,99.570,0.430,86.57,0.900,bicubic +fastvit_ma36.apple_dist_in1k,256,96.300,3.700,99.490,0.510,44.07,0.950,bicubic +resnetv2_50x3_bit.goog_in21k_ft_in1k,448,96.290,3.710,99.630,0.370,217.32,1.000,bilinear +tf_efficientnet_b6.aa_in1k,528,96.290,3.710,99.530,0.470,43.04,0.942,bicubic +efficientnetv2_rw_m.agc_in1k,416,96.280,3.720,99.560,0.440,53.24,1.000,bicubic +resnext101_32x8d.fb_swsl_ig1b_ft_in1k,224,96.270,3.730,99.590,0.410,88.79,0.875,bilinear +resnext101_32x16d.fb_swsl_ig1b_ft_in1k,224,96.270,3.730,99.500,0.500,194.03,0.875,bilinear +maxvit_small_tf_224.in1k,224,96.270,3.730,99.490,0.510,68.93,0.950,bicubic +hgnetv2_b4.ssld_stage1_in22k_in1k,288,96.260,3.740,99.610,0.390,19.80,1.000,bicubic +resnetrs350.tf_in1k,384,96.260,3.740,99.480,0.520,163.96,1.000,bicubic +xcit_medium_24_p16_224.fb_dist_in1k,224,96.260,3.740,99.400,0.600,84.40,1.000,bicubic +efficientvit_l2.r224_in1k,224,96.260,3.740,99.330,0.670,63.71,1.000,bicubic +convformer_s18.sail_in1k_384,384,96.250,3.750,99.540,0.460,26.77,1.000,bicubic +xcit_tiny_24_p8_384.fb_dist_in1k,384,96.250,3.750,99.440,0.560,12.11,1.000,bicubic +convformer_b36.sail_in1k,224,96.250,3.750,99.310,0.690,99.88,1.000,bicubic +convnext_tiny.in12k_ft_in1k,288,96.240,3.760,99.650,0.350,28.59,1.000,bicubic +davit_base.msft_in1k,224,96.240,3.760,99.390,0.610,87.95,0.950,bicubic +coatnet_rmlp_2_rw_224.sw_in1k,224,96.240,3.760,99.280,0.720,73.88,0.950,bicubic +maxxvit_rmlp_small_rw_256.sw_in1k,256,96.230,3.770,99.490,0.510,66.01,0.950,bicubic +deit3_base_patch16_384.fb_in1k,384,96.230,3.770,99.410,0.590,86.88,1.000,bicubic +vit_large_r50_s32_224.augreg_in21k_ft_in1k,224,96.220,3.780,99.530,0.470,328.99,0.900,bicubic +hrnet_w48_ssld.paddle_in1k,224,96.220,3.780,99.510,0.490,77.47,0.950,bilinear +resnetrs350.tf_in1k,288,96.220,3.780,99.400,0.600,163.96,1.000,bicubic +deit3_large_patch16_224.fb_in1k,224,96.220,3.780,99.300,0.700,304.37,0.900,bicubic +regnety_120.sw_in12k_ft_in1k,224,96.200,3.800,99.530,0.470,51.82,0.950,bicubic +regnetz_040.ra3_in1k,320,96.200,3.800,99.510,0.490,27.12,1.000,bicubic +regnetz_d8_evos.ch_in1k,320,96.200,3.800,99.490,0.510,23.46,1.000,bicubic +convnext_tiny.in12k_ft_in1k,224,96.190,3.810,99.580,0.420,28.59,0.950,bicubic +edgenext_base.in21k_ft_in1k,320,96.190,3.810,99.470,0.530,18.51,1.000,bicubic +efficientnetv2_rw_m.agc_in1k,320,96.190,3.810,99.460,0.540,53.24,1.000,bicubic +vit_base_patch16_384.orig_in21k_ft_in1k,384,96.180,3.820,99.520,0.480,86.86,1.000,bicubic +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,384,96.170,3.830,99.500,0.500,236.34,1.000,bicubic +swinv2_base_window16_256.ms_in1k,256,96.170,3.830,99.400,0.600,87.92,0.900,bicubic +hgnet_small.ssld_in1k,224,96.160,3.840,99.550,0.450,24.36,0.965,bicubic +deit3_medium_patch16_224.fb_in22k_ft_in1k,224,96.160,3.840,99.490,0.510,38.85,1.000,bicubic +convnext_tiny.fb_in22k_ft_in1k_384,384,96.160,3.840,99.480,0.520,28.59,1.000,bicubic +coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,224,96.160,3.840,99.340,0.660,41.72,0.950,bicubic +crossvit_18_dagger_408.in1k,408,96.130,3.870,99.460,0.540,44.61,1.000,bicubic +flexivit_base.1200ep_in1k,240,96.130,3.870,99.400,0.600,86.59,0.950,bicubic +nextvit_small.bd_in1k_384,384,96.130,3.870,99.380,0.620,31.76,1.000,bicubic +vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k,256,96.130,3.870,99.380,0.620,63.95,0.950,bicubic +seresnext101_32x8d.ah_in1k,288,96.130,3.870,99.360,0.640,93.57,1.000,bicubic +rexnetr_300.sw_in12k_ft_in1k,288,96.120,3.880,99.530,0.470,34.81,1.000,bicubic +resnest269e.in1k,416,96.120,3.880,99.520,0.480,110.93,0.928,bicubic +resnet200d.ra2_in1k,320,96.120,3.880,99.460,0.540,64.69,1.000,bicubic +efficientvit_b3.r288_in1k,288,96.120,3.880,99.310,0.690,48.65,1.000,bicubic +hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k,256,96.120,3.880,99.310,0.690,34.36,0.950,bicubic +convformer_s36.sail_in1k,224,96.120,3.880,99.300,0.700,40.01,1.000,bicubic +resnest200e.in1k,320,96.110,3.890,99.480,0.520,70.20,0.909,bicubic +tf_efficientnet_b3.ns_jft_in1k,300,96.110,3.890,99.470,0.530,12.23,0.904,bicubic +hgnetv2_b4.ssld_stage2_ft_in1k,224,96.100,3.900,99.520,0.480,19.80,0.965,bicubic +convformer_s18.sail_in22k_ft_in1k,224,96.100,3.900,99.500,0.500,26.77,1.000,bicubic +resnetrs420.tf_in1k,320,96.100,3.900,99.470,0.530,191.89,1.000,bicubic +mobilenetv4_hybrid_large.ix_e600_r384_in1k,448,96.100,3.900,99.410,0.590,37.76,1.000,bicubic +seresnext101d_32x8d.ah_in1k,224,96.100,3.900,99.300,0.700,93.59,0.950,bicubic +tf_efficientnet_b5.ap_in1k,456,96.090,3.910,99.540,0.460,30.39,0.934,bicubic +caformer_s36.sail_in1k,224,96.090,3.910,99.510,0.490,39.30,1.000,bicubic +rdnet_base.nv_in1k,224,96.090,3.910,99.320,0.680,87.45,0.900,bicubic +xcit_large_24_p8_224.fb_in1k,224,96.090,3.910,99.150,0.850,188.93,1.000,bicubic +vit_small_r26_s32_384.augreg_in21k_ft_in1k,384,96.080,3.920,99.550,0.450,36.47,1.000,bicubic +resnext101_32x4d.fb_swsl_ig1b_ft_in1k,224,96.080,3.920,99.520,0.480,44.18,0.875,bilinear +tf_efficientnet_b7.aa_in1k,600,96.080,3.920,99.450,0.550,66.35,0.949,bicubic +convformer_m36.sail_in1k,224,96.080,3.920,99.240,0.760,57.05,1.000,bicubic +seresnet152d.ra2_in1k,256,96.070,3.930,99.410,0.590,66.84,0.950,bicubic +swin_s3_base_224.ms_in1k,224,96.070,3.930,99.350,0.650,71.13,0.900,bicubic +resnetrs270.tf_in1k,352,96.060,3.940,99.480,0.520,129.86,1.000,bicubic +gcvit_base.in1k,224,96.060,3.940,99.390,0.610,90.32,0.875,bicubic +convnextv2_tiny.fcmae_ft_in22k_in1k,224,96.060,3.940,99.380,0.620,28.64,0.875,bicubic +swinv2_small_window16_256.ms_in1k,256,96.060,3.940,99.340,0.660,49.73,0.900,bicubic +cs3se_edgenet_x.c2ns_in1k,320,96.050,3.950,99.450,0.550,50.72,1.000,bicubic +maxvit_rmlp_tiny_rw_256.sw_in1k,256,96.050,3.950,99.400,0.600,29.15,0.950,bicubic +swinv2_base_window8_256.ms_in1k,256,96.050,3.950,99.400,0.600,87.92,0.900,bicubic +davit_small.msft_in1k,224,96.050,3.950,99.390,0.610,49.75,0.950,bicubic +vit_base_patch16_224_miil.in21k_ft_in1k,224,96.050,3.950,99.350,0.650,86.54,0.875,bilinear +vit_base_patch16_rope_reg1_gap_256.sbb_in1k,256,96.050,3.950,99.260,0.740,86.43,0.950,bicubic +hgnetv2_b3.ssld_stage2_ft_in1k,288,96.040,3.960,99.590,0.410,16.29,1.000,bicubic +convnext_large.fb_in1k,224,96.040,3.960,99.470,0.530,197.77,0.875,bicubic +eca_nfnet_l2.ra3_in1k,320,96.030,3.970,99.560,0.440,56.72,0.900,bicubic +caformer_s18.sail_in22k_ft_in1k,224,96.030,3.970,99.550,0.450,26.34,1.000,bicubic +mobilenetv4_conv_aa_large.e600_r384_in1k,480,96.030,3.970,99.530,0.470,32.59,1.000,bicubic +swin_small_patch4_window7_224.ms_in22k_ft_in1k,224,96.030,3.970,99.510,0.490,49.61,0.900,bicubic +regnety_640.seer_ft_in1k,384,96.030,3.970,99.490,0.510,281.38,1.000,bicubic +volo_d1_224.sail_in1k,224,96.030,3.970,99.400,0.600,26.63,0.960,bicubic +dm_nfnet_f2.dm_in1k,256,96.030,3.970,99.340,0.660,193.78,0.920,bicubic +regnetz_d8.ra3_in1k,320,96.020,3.980,99.520,0.480,23.37,1.000,bicubic +tf_efficientnetv2_m.in1k,384,96.020,3.980,99.500,0.500,54.14,1.000,bicubic +hgnetv2_b4.ssld_stage1_in22k_in1k,224,96.020,3.980,99.490,0.510,19.80,0.965,bicubic +mvitv2_base.fb_in1k,224,96.020,3.980,99.350,0.650,51.47,0.900,bicubic +cait_xs24_384.fb_dist_in1k,384,96.010,3.990,99.420,0.580,26.67,1.000,bicubic +fastvit_ma36.apple_in1k,256,96.010,3.990,99.360,0.640,44.07,0.950,bicubic +vit_small_patch16_384.augreg_in21k_ft_in1k,384,96.000,4.000,99.600,0.400,22.20,1.000,bicubic +rexnetr_300.sw_in12k_ft_in1k,224,96.000,4.000,99.490,0.510,34.81,0.950,bicubic +vit_medium_patch16_gap_256.sw_in12k_ft_in1k,256,96.000,4.000,99.490,0.510,38.86,0.950,bicubic +repvit_m2_3.dist_450e_in1k,224,96.000,4.000,99.400,0.600,23.69,0.950,bicubic +coat_lite_medium.in1k,224,96.000,4.000,99.350,0.650,44.57,0.900,bicubic +seresnextaa101d_32x8d.ah_in1k,224,96.000,4.000,99.350,0.650,93.59,0.950,bicubic +tf_efficientnet_b5.ra_in1k,456,95.990,4.010,99.460,0.540,30.39,0.934,bicubic +convnext_small.fb_in1k,288,95.990,4.010,99.430,0.570,50.22,1.000,bicubic +regnetz_040_h.ra3_in1k,256,95.990,4.010,99.390,0.610,28.94,1.000,bicubic +mobilenetv4_hybrid_large.e600_r384_in1k,384,95.990,4.010,99.340,0.660,37.76,0.950,bicubic +hgnetv2_b3.ssld_stage1_in22k_in1k,288,95.980,4.020,99.600,0.400,16.29,1.000,bicubic +flexivit_base.600ep_in1k,240,95.980,4.020,99.420,0.580,86.59,0.950,bicubic +maxvit_rmlp_small_rw_224.sw_in1k,224,95.980,4.020,99.340,0.660,64.90,0.900,bicubic +efficientvit_l1.r224_in1k,224,95.970,4.030,99.120,0.880,52.65,1.000,bicubic +xcit_small_12_p8_224.fb_dist_in1k,224,95.960,4.040,99.420,0.580,26.21,1.000,bicubic +resnetrs152.tf_in1k,320,95.960,4.040,99.380,0.620,86.62,1.000,bicubic +xcit_small_24_p8_224.fb_in1k,224,95.960,4.040,99.180,0.820,47.63,1.000,bicubic +pvt_v2_b5.in1k,224,95.950,4.050,99.390,0.610,81.96,0.900,bicubic +resnext101_32x8d.fb_wsl_ig1b_ft_in1k,224,95.950,4.050,99.390,0.610,88.79,0.875,bilinear +fastvit_sa36.apple_dist_in1k,256,95.950,4.050,99.370,0.630,31.53,0.900,bicubic +flexivit_base.300ep_in1k,240,95.950,4.050,99.360,0.640,86.59,0.950,bicubic +pvt_v2_b4.in1k,224,95.950,4.050,99.350,0.650,62.56,0.900,bicubic +eca_nfnet_l1.ra2_in1k,320,95.940,4.060,99.490,0.510,41.41,1.000,bicubic +convnext_base.fb_in1k,224,95.940,4.060,99.380,0.620,88.59,0.875,bicubic +repvgg_d2se.rvgg_in1k,320,95.920,4.080,99.490,0.510,133.33,1.000,bilinear +gcvit_small.in1k,224,95.920,4.080,99.270,0.730,51.09,0.875,bicubic +vit_base_patch32_384.augreg_in21k_ft_in1k,384,95.910,4.090,99.440,0.560,88.30,1.000,bicubic +tf_efficientnetv2_s.in21k_ft_in1k,300,95.910,4.090,99.360,0.640,21.46,1.000,bicubic +vit_medium_patch16_reg1_gap_256.sbb_in1k,256,95.910,4.090,99.360,0.640,38.88,0.950,bicubic +inception_next_base.sail_in1k,224,95.910,4.090,99.230,0.770,86.67,0.950,bicubic +regnety_160.deit_in1k,288,95.900,4.100,99.550,0.450,83.59,1.000,bicubic +mobilenetv4_hybrid_large.e600_r384_in1k,448,95.900,4.100,99.470,0.530,37.76,1.000,bicubic +swin_base_patch4_window7_224.ms_in1k,224,95.900,4.100,99.300,0.700,87.77,0.900,bicubic +mobilenetv4_hybrid_large.ix_e600_r384_in1k,384,95.900,4.100,99.250,0.750,37.76,0.950,bicubic +mvitv2_small.fb_in1k,224,95.890,4.110,99.420,0.580,34.87,0.900,bicubic +focalnet_base_srf.ms_in1k,224,95.890,4.110,99.360,0.640,88.15,0.900,bicubic +tf_efficientnet_b5.aa_in1k,456,95.890,4.110,99.360,0.640,30.39,0.934,bicubic +vit_medium_patch16_rope_reg1_gap_256.sbb_in1k,256,95.890,4.110,99.340,0.660,38.74,0.950,bicubic +xcit_medium_24_p8_224.fb_in1k,224,95.890,4.110,99.090,0.910,84.32,1.000,bicubic +edgenext_base.in21k_ft_in1k,256,95.880,4.120,99.410,0.590,18.51,0.950,bicubic +nextvit_large.bd_in1k,224,95.880,4.120,99.410,0.590,57.87,0.950,bicubic +regnetz_d32.ra3_in1k,320,95.870,4.130,99.440,0.560,27.58,0.950,bicubic +sequencer2d_l.in1k,224,95.860,4.140,99.470,0.530,54.30,0.875,bicubic +regnety_080.ra3_in1k,288,95.860,4.140,99.460,0.540,39.18,1.000,bicubic +resmlp_big_24_224.fb_distilled_in1k,224,95.860,4.140,99.440,0.560,129.14,0.875,bicubic +resnet152d.ra2_in1k,320,95.860,4.140,99.430,0.570,60.21,1.000,bicubic +pit_b_distilled_224.in1k,224,95.860,4.140,99.200,0.800,74.79,0.900,bicubic +vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k,256,95.850,4.150,99.410,0.590,22.52,0.950,bicubic +tf_efficientnet_b5.in1k,456,95.850,4.150,99.400,0.600,30.39,0.934,bicubic +swin_s3_small_224.ms_in1k,224,95.850,4.150,99.190,0.810,49.74,0.900,bicubic +resnext101_64x4d.tv_in1k,224,95.840,4.160,99.320,0.680,83.46,0.875,bilinear +tresnet_v2_l.miil_in21k_ft_in1k,224,95.840,4.160,99.290,0.710,46.17,0.875,bilinear +focalnet_base_lrf.ms_in1k,224,95.840,4.160,99.170,0.830,88.75,0.900,bicubic +resnetrs270.tf_in1k,256,95.830,4.170,99.410,0.590,129.86,1.000,bicubic +regnetz_d8.ra3_in1k,256,95.830,4.170,99.310,0.690,23.37,0.940,bicubic +crossvit_15_dagger_408.in1k,408,95.830,4.170,99.300,0.700,28.50,1.000,bicubic +resnetaa101d.sw_in12k_ft_in1k,224,95.830,4.170,99.290,0.710,44.57,0.950,bicubic +maxvit_tiny_tf_224.in1k,224,95.830,4.170,99.250,0.750,30.92,0.950,bicubic +efficientvit_b3.r256_in1k,256,95.830,4.170,99.190,0.810,48.65,1.000,bicubic +rdnet_small.nv_in1k,224,95.820,4.180,99.420,0.580,50.44,0.900,bicubic +deit3_small_patch16_224.fb_in22k_ft_in1k,224,95.820,4.180,99.400,0.600,22.06,1.000,bicubic +resnetrs200.tf_in1k,256,95.820,4.180,99.350,0.650,93.21,1.000,bicubic +convnextv2_tiny.fcmae_ft_in1k,288,95.820,4.180,99.330,0.670,28.64,1.000,bicubic +hiera_small_224.mae_in1k_ft_in1k,224,95.820,4.180,99.190,0.810,35.01,0.900,bicubic +regnety_064.ra3_in1k,288,95.810,4.190,99.290,0.710,30.58,1.000,bicubic +regnetv_064.ra3_in1k,288,95.800,4.200,99.420,0.580,30.58,1.000,bicubic +regnetz_d8_evos.ch_in1k,256,95.800,4.200,99.400,0.600,23.46,0.950,bicubic +regnety_320.seer_ft_in1k,384,95.800,4.200,99.390,0.610,145.05,1.000,bicubic +xcit_small_24_p16_224.fb_dist_in1k,224,95.800,4.200,99.350,0.650,47.67,1.000,bicubic +vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k,256,95.800,4.200,99.270,0.730,60.23,0.950,bicubic +seresnext101_32x8d.ah_in1k,224,95.800,4.200,99.260,0.740,93.57,0.950,bicubic +edgenext_base.usi_in1k,320,95.790,4.210,99.580,0.420,18.51,1.000,bicubic +hgnetv2_b3.ssld_stage2_ft_in1k,224,95.790,4.210,99.390,0.610,16.29,0.965,bicubic +vit_medium_patch16_reg4_gap_256.sbb_in1k,256,95.790,4.210,99.280,0.720,38.88,0.950,bicubic +deit3_base_patch16_224.fb_in1k,224,95.790,4.210,99.260,0.740,86.59,0.900,bicubic +resnet152.a1h_in1k,288,95.780,4.220,99.440,0.560,60.19,1.000,bicubic +convnextv2_nano.fcmae_ft_in22k_in1k_384,384,95.780,4.220,99.300,0.700,15.62,1.000,bicubic +deit_base_distilled_patch16_224.fb_in1k,224,95.780,4.220,99.280,0.720,87.34,0.900,bicubic +edgenext_base.usi_in1k,256,95.770,4.230,99.420,0.580,18.51,0.950,bicubic +regnetv_040.ra3_in1k,288,95.770,4.230,99.390,0.610,20.64,1.000,bicubic +swinv2_small_window8_256.ms_in1k,256,95.770,4.230,99.360,0.640,49.73,0.900,bicubic +xcit_small_12_p16_224.fb_dist_in1k,224,95.770,4.230,99.300,0.700,26.25,1.000,bicubic +regnetz_040.ra3_in1k,256,95.760,4.240,99.410,0.590,27.12,1.000,bicubic +tf_efficientnetv2_s.in1k,384,95.760,4.240,99.410,0.590,21.46,1.000,bicubic +hrnet_w18_ssld.paddle_in1k,288,95.760,4.240,99.330,0.670,21.30,1.000,bilinear +hgnetv2_b2.ssld_stage2_ft_in1k,288,95.750,4.250,99.470,0.530,11.22,1.000,bicubic +hgnetv2_b3.ssld_stage1_in22k_in1k,224,95.750,4.250,99.440,0.560,16.29,0.965,bicubic +resnet101d.ra2_in1k,320,95.750,4.250,99.440,0.560,44.57,1.000,bicubic +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,224,95.750,4.250,99.430,0.570,236.34,0.875,bicubic +efficientnetv2_rw_s.ra2_in1k,384,95.750,4.250,99.360,0.640,23.94,1.000,bicubic +twins_pcpvt_large.in1k,224,95.740,4.260,99.480,0.520,60.99,0.900,bicubic +efficientformerv2_l.snap_dist_in1k,224,95.740,4.260,99.370,0.630,26.32,0.950,bicubic +convnext_tiny.fb_in22k_ft_in1k,224,95.740,4.260,99.360,0.640,28.59,0.875,bicubic +dm_nfnet_f0.dm_in1k,256,95.730,4.270,99.370,0.630,71.49,0.900,bicubic +caformer_s18.sail_in1k,224,95.730,4.270,99.290,0.710,26.34,1.000,bicubic +swin_small_patch4_window7_224.ms_in1k,224,95.730,4.270,99.290,0.710,49.61,0.900,bicubic +focalnet_small_lrf.ms_in1k,224,95.730,4.270,99.210,0.790,50.34,0.900,bicubic +maxvit_tiny_rw_224.sw_in1k,224,95.730,4.270,99.170,0.830,29.06,0.950,bicubic +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,448,95.720,4.280,99.440,0.560,11.07,1.000,bicubic +swinv2_cr_small_ns_224.sw_in1k,224,95.720,4.280,99.300,0.700,49.70,0.900,bicubic +tiny_vit_11m_224.dist_in22k_ft_in1k,224,95.720,4.280,99.280,0.720,11.00,0.950,bicubic +mobilenetv4_conv_aa_large.e600_r384_in1k,384,95.710,4.290,99.340,0.660,32.59,0.950,bicubic +twins_svt_large.in1k,224,95.700,4.300,99.370,0.630,99.27,0.900,bicubic +gcvit_tiny.in1k,224,95.700,4.300,99.340,0.660,28.22,0.875,bicubic +nextvit_base.bd_in1k,224,95.690,4.310,99.380,0.620,44.82,0.950,bicubic +inception_next_small.sail_in1k,224,95.690,4.310,99.270,0.730,49.37,0.875,bicubic +tiny_vit_21m_224.in1k,224,95.690,4.310,99.240,0.760,21.20,0.950,bicubic +mobilenetv4_conv_large.e600_r384_in1k,448,95.680,4.320,99.450,0.550,32.59,1.000,bicubic +xception65.ra3_in1k,299,95.680,4.320,99.310,0.690,39.92,0.940,bicubic +repvit_m2_3.dist_300e_in1k,224,95.670,4.330,99.400,0.600,23.69,0.950,bicubic +vit_betwixt_patch16_reg1_gap_256.sbb_in1k,256,95.670,4.330,99.280,0.720,60.40,0.950,bicubic +xception65p.ra3_in1k,299,95.670,4.330,99.270,0.730,39.82,0.940,bicubic +resnext50_32x4d.fb_swsl_ig1b_ft_in1k,224,95.660,4.340,99.450,0.550,25.03,0.875,bilinear +regnetz_c16_evos.ch_in1k,320,95.660,4.340,99.420,0.580,13.49,0.950,bicubic +deit3_small_patch16_384.fb_in1k,384,95.660,4.340,99.390,0.610,22.21,1.000,bicubic +deit_base_patch16_384.fb_in1k,384,95.660,4.340,99.240,0.760,86.86,1.000,bicubic +cait_s24_224.fb_dist_in1k,224,95.650,4.350,99.380,0.620,46.92,1.000,bicubic +resnet200d.ra2_in1k,256,95.650,4.350,99.310,0.690,64.69,0.950,bicubic +ecaresnet101d.miil_in1k,288,95.640,4.360,99.360,0.640,44.57,0.950,bicubic +resnetv2_101.a1h_in1k,288,95.630,4.370,99.370,0.630,44.54,1.000,bicubic +focalnet_small_srf.ms_in1k,224,95.630,4.370,99.300,0.700,49.89,0.900,bicubic +efficientformer_l7.snap_dist_in1k,224,95.620,4.380,99.450,0.550,82.23,0.950,bicubic +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,384,95.620,4.380,99.400,0.600,11.07,0.950,bicubic +fastvit_sa36.apple_in1k,256,95.620,4.380,99.320,0.680,31.53,0.900,bicubic +coatnet_1_rw_224.sw_in1k,224,95.620,4.380,99.220,0.780,41.72,0.950,bicubic +dm_nfnet_f1.dm_in1k,224,95.610,4.390,99.380,0.620,132.63,0.910,bicubic +cs3se_edgenet_x.c2ns_in1k,256,95.610,4.390,99.300,0.700,50.72,0.950,bicubic +eca_nfnet_l1.ra2_in1k,256,95.610,4.390,99.300,0.700,41.41,0.900,bicubic +sequencer2d_m.in1k,224,95.610,4.390,99.290,0.710,38.31,0.875,bicubic +resnest101e.in1k,256,95.610,4.390,99.280,0.720,48.28,0.875,bilinear +tf_efficientnetv2_b3.in21k_ft_in1k,300,95.610,4.390,99.280,0.720,14.36,0.900,bicubic +convnext_small.fb_in1k,224,95.610,4.390,99.260,0.740,50.22,0.875,bicubic +efficientvit_b2.r288_in1k,288,95.610,4.390,99.240,0.760,24.33,1.000,bicubic +hgnet_tiny.ssld_in1k,288,95.590,4.410,99.470,0.530,14.74,1.000,bicubic +regnety_320.tv2_in1k,224,95.590,4.410,99.400,0.600,145.05,0.965,bicubic +tf_efficientnet_b4.aa_in1k,380,95.590,4.410,99.320,0.680,19.34,0.922,bicubic +regnety_064.ra3_in1k,224,95.590,4.410,99.160,0.840,30.58,0.950,bicubic +fastvit_sa24.apple_dist_in1k,256,95.580,4.420,99.310,0.690,21.55,0.900,bicubic +resnet152.a1h_in1k,224,95.580,4.420,99.260,0.740,60.19,0.950,bicubic +resnet101.a1h_in1k,288,95.580,4.420,99.250,0.750,44.55,1.000,bicubic +nest_small_jx.goog_in1k,224,95.580,4.420,99.220,0.780,38.35,0.875,bicubic +resnext101_64x4d.c1_in1k,288,95.570,4.430,99.290,0.710,83.46,1.000,bicubic +vit_betwixt_patch16_reg4_gap_256.sbb_in1k,256,95.570,4.430,99.270,0.730,60.40,0.950,bicubic +regnety_080.ra3_in1k,224,95.570,4.430,99.260,0.740,39.18,0.950,bicubic +twins_svt_base.in1k,224,95.570,4.430,99.230,0.770,56.07,0.900,bicubic +hgnetv2_b2.ssld_stage1_in22k_in1k,288,95.560,4.440,99.440,0.560,11.22,1.000,bicubic +rexnet_300.nav_in1k,224,95.560,4.440,99.300,0.700,34.71,0.875,bicubic +tresnet_xl.miil_in1k_448,448,95.550,4.450,99.330,0.670,78.44,0.875,bilinear +efficientvit_b3.r224_in1k,224,95.550,4.450,99.200,0.800,48.65,0.950,bicubic +regnety_160.deit_in1k,224,95.530,4.470,99.390,0.610,83.59,0.950,bicubic +tf_efficientnet_b2.ns_jft_in1k,260,95.530,4.470,99.340,0.660,9.11,0.890,bicubic +nest_base_jx.goog_in1k,224,95.530,4.470,99.300,0.700,67.72,0.875,bicubic +efficientnet_b4.ra2_in1k,384,95.520,4.480,99.400,0.600,19.34,1.000,bicubic +coatnet_rmlp_1_rw_224.sw_in1k,224,95.510,4.490,99.260,0.740,41.69,0.950,bicubic +tf_efficientnet_b4.ap_in1k,380,95.500,4.500,99.380,0.620,19.34,0.922,bicubic +tf_efficientnet_b4.in1k,380,95.500,4.500,99.280,0.720,19.34,0.922,bicubic +regnetv_064.ra3_in1k,224,95.490,4.510,99.350,0.650,30.58,0.950,bicubic +twins_pcpvt_base.in1k,224,95.480,4.520,99.370,0.630,43.83,0.900,bicubic +pvt_v2_b3.in1k,224,95.480,4.520,99.330,0.670,45.24,0.900,bicubic +xcit_tiny_24_p8_224.fb_dist_in1k,224,95.480,4.520,99.310,0.690,12.11,1.000,bicubic +cs3edgenet_x.c2_in1k,288,95.480,4.520,99.290,0.710,47.82,1.000,bicubic +maxvit_nano_rw_256.sw_in1k,256,95.480,4.520,99.130,0.870,15.45,0.950,bicubic +xcit_tiny_24_p16_384.fb_dist_in1k,384,95.470,4.530,99.350,0.650,12.12,1.000,bicubic +regnety_032.ra_in1k,288,95.470,4.530,99.330,0.670,19.44,1.000,bicubic +regnety_040.ra3_in1k,288,95.450,4.550,99.410,0.590,20.65,1.000,bicubic +eca_nfnet_l0.ra2_in1k,288,95.450,4.550,99.390,0.610,24.14,1.000,bicubic +xcit_tiny_12_p8_384.fb_dist_in1k,384,95.450,4.550,99.340,0.660,6.71,1.000,bicubic +xcit_small_12_p8_224.fb_in1k,224,95.450,4.550,99.190,0.810,26.21,1.000,bicubic +maxxvitv2_nano_rw_256.sw_in1k,256,95.440,4.560,99.210,0.790,23.70,0.950,bicubic +efficientnetv2_rw_s.ra2_in1k,288,95.440,4.560,99.190,0.810,23.94,1.000,bicubic +nfnet_l0.ra2_in1k,288,95.430,4.570,99.430,0.570,35.07,1.000,bicubic +sequencer2d_s.in1k,224,95.430,4.570,99.260,0.740,27.65,0.875,bicubic +resnet101d.ra2_in1k,256,95.430,4.570,99.200,0.800,44.57,0.950,bicubic +maxvit_rmlp_nano_rw_256.sw_in1k,256,95.430,4.570,99.080,0.920,15.50,0.950,bicubic +resnet152d.ra2_in1k,256,95.420,4.580,99.310,0.690,60.21,0.950,bicubic +cs3sedarknet_x.c2ns_in1k,288,95.420,4.580,99.300,0.700,35.40,1.000,bicubic +efficientnet_b4.ra2_in1k,320,95.420,4.580,99.290,0.710,19.34,0.875,bicubic +mobilevitv2_200.cvnets_in22k_ft_in1k_384,384,95.420,4.580,99.280,0.720,18.45,1.000,bicubic +tresnet_m.miil_in21k_ft_in1k,224,95.420,4.580,99.160,0.840,31.39,0.875,bilinear +swinv2_cr_small_224.sw_in1k,224,95.420,4.580,99.060,0.940,49.70,0.900,bicubic +resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,224,95.410,4.590,99.400,0.600,194.03,0.875,bilinear +tresnet_l.miil_in1k_448,448,95.410,4.590,99.280,0.720,55.99,0.875,bilinear +tf_efficientnetv2_s.in1k,300,95.400,4.600,99.320,0.680,21.46,1.000,bicubic +mvitv2_tiny.fb_in1k,224,95.400,4.600,99.160,0.840,24.17,0.900,bicubic +convnext_nano.in12k_ft_in1k,288,95.390,4.610,99.480,0.520,15.59,1.000,bicubic +resnetv2_50x1_bit.goog_distilled_in1k,224,95.390,4.610,99.420,0.580,25.55,0.875,bicubic +regnetz_c16.ra3_in1k,320,95.390,4.610,99.340,0.660,13.46,1.000,bicubic +regnetz_d32.ra3_in1k,256,95.390,4.610,99.340,0.660,27.58,0.950,bicubic +mobilenetv4_conv_large.e600_r384_in1k,384,95.390,4.610,99.240,0.760,32.59,0.950,bicubic +deit3_medium_patch16_224.fb_in1k,224,95.390,4.610,99.170,0.830,38.85,0.900,bicubic +convnextv2_nano.fcmae_ft_in22k_in1k,288,95.380,4.620,99.320,0.680,15.62,1.000,bicubic +resnetrs152.tf_in1k,256,95.380,4.620,99.230,0.770,86.62,1.000,bicubic +convnextv2_nano.fcmae_ft_in22k_in1k,224,95.380,4.620,99.180,0.820,15.62,0.875,bicubic +swinv2_tiny_window16_256.ms_in1k,256,95.370,4.630,99.300,0.700,28.35,0.900,bicubic +pnasnet5large.tf_in1k,331,95.370,4.630,99.130,0.870,86.06,0.911,bicubic +hgnet_tiny.ssld_in1k,224,95.360,4.640,99.400,0.600,14.74,0.965,bicubic +maxxvit_rmlp_nano_rw_256.sw_in1k,256,95.360,4.640,99.330,0.670,16.78,0.950,bicubic +regnetz_c16_evos.ch_in1k,256,95.360,4.640,99.300,0.700,13.49,0.950,bicubic +regnetv_040.ra3_in1k,224,95.360,4.640,99.240,0.760,20.64,0.950,bicubic +resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,224,95.340,4.660,99.330,0.670,88.79,0.875,bilinear +mobilevitv2_150.cvnets_in22k_ft_in1k_384,384,95.340,4.660,99.130,0.870,10.59,1.000,bicubic +resnetv2_101x1_bit.goog_in21k_ft_in1k,448,95.330,4.670,99.380,0.620,44.54,1.000,bilinear +regnetx_320.tv2_in1k,224,95.330,4.670,99.300,0.700,107.81,0.965,bicubic +vit_little_patch16_reg4_gap_256.sbb_in1k,256,95.330,4.670,99.290,0.710,22.52,0.950,bicubic +convformer_s18.sail_in1k,224,95.330,4.670,99.150,0.850,26.77,1.000,bicubic +rexnetr_200.sw_in12k_ft_in1k,288,95.320,4.680,99.450,0.550,16.52,1.000,bicubic +rdnet_tiny.nv_in1k,224,95.320,4.680,99.260,0.740,23.86,0.900,bicubic +repvit_m1_5.dist_450e_in1k,224,95.320,4.680,99.260,0.740,14.64,0.950,bicubic +regnety_080_tv.tv2_in1k,224,95.320,4.680,99.220,0.780,39.38,0.965,bicubic +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,320,95.310,4.690,99.430,0.570,11.07,1.000,bicubic +resnext101_32x8d.tv2_in1k,224,95.310,4.690,99.350,0.650,88.79,0.965,bilinear +fastvit_sa24.apple_in1k,256,95.310,4.690,99.310,0.690,21.55,0.900,bicubic +convnextv2_tiny.fcmae_ft_in1k,224,95.300,4.700,99.240,0.760,28.64,0.875,bicubic +gc_efficientnetv2_rw_t.agc_in1k,288,95.300,4.700,99.230,0.770,13.68,1.000,bicubic +resnetaa50d.sw_in12k_ft_in1k,288,95.290,4.710,99.390,0.610,25.58,1.000,bicubic +rexnetr_200.sw_in12k_ft_in1k,224,95.290,4.710,99.210,0.790,16.52,0.950,bicubic +flexivit_small.600ep_in1k,240,95.290,4.710,99.190,0.810,22.06,0.950,bicubic +efficientvit_b2.r256_in1k,256,95.290,4.710,99.110,0.890,24.33,1.000,bicubic +resnet50d.ra4_e3600_r224_in1k,288,95.280,4.720,99.260,0.740,25.58,1.000,bicubic +vit_relpos_medium_patch16_cls_224.sw_in1k,224,95.280,4.720,99.120,0.880,38.76,0.900,bicubic +cs3darknet_x.c2ns_in1k,288,95.270,4.730,99.290,0.710,35.05,1.000,bicubic +pvt_v2_b2_li.in1k,224,95.270,4.730,99.280,0.720,22.55,0.900,bicubic +convnext_tiny_hnf.a2h_in1k,288,95.270,4.730,98.970,1.030,28.59,1.000,bicubic +mobilevitv2_175.cvnets_in22k_ft_in1k_384,384,95.260,4.740,99.380,0.620,14.25,1.000,bicubic +regnetx_160.tv2_in1k,224,95.260,4.740,99.260,0.740,54.28,0.965,bicubic +vit_relpos_base_patch16_clsgap_224.sw_in1k,224,95.260,4.740,99.200,0.800,86.43,0.900,bicubic +flexivit_small.1200ep_in1k,240,95.260,4.740,99.170,0.830,22.06,0.950,bicubic +resnet50.fb_swsl_ig1b_ft_in1k,224,95.250,4.750,99.400,0.600,25.56,0.875,bilinear +vit_large_patch32_384.orig_in21k_ft_in1k,384,95.250,4.750,99.320,0.680,306.63,1.000,bicubic +cait_xxs36_384.fb_dist_in1k,384,95.250,4.750,99.310,0.690,17.37,1.000,bicubic +vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,224,95.250,4.750,99.250,0.750,88.22,0.900,bicubic +wide_resnet101_2.tv2_in1k,224,95.250,4.750,99.200,0.800,126.89,0.965,bilinear +hiera_tiny_224.mae_in1k_ft_in1k,224,95.250,4.750,99.090,0.910,27.91,0.900,bicubic +resnetv2_50d_gn.ah_in1k,288,95.240,4.760,99.030,0.970,25.57,1.000,bicubic +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,320,95.230,4.770,99.400,0.600,11.07,1.000,bicubic +nextvit_small.bd_in1k,224,95.230,4.770,99.220,0.780,31.76,0.950,bicubic +resnetrs101.tf_in1k,288,95.230,4.770,99.210,0.790,63.62,0.940,bicubic +resnext101_64x4d.c1_in1k,224,95.230,4.770,99.130,0.870,83.46,0.950,bicubic +efficientformer_l3.snap_dist_in1k,224,95.220,4.780,99.320,0.680,31.41,0.950,bicubic +convnext_nano.in12k_ft_in1k,224,95.220,4.780,99.260,0.740,15.59,0.950,bicubic +vit_base_patch16_224.orig_in21k_ft_in1k,224,95.220,4.780,99.240,0.760,86.57,0.900,bicubic +focalnet_tiny_lrf.ms_in1k,224,95.220,4.780,99.220,0.780,28.65,0.900,bicubic +tiny_vit_11m_224.in1k,224,95.220,4.780,99.200,0.800,11.00,0.950,bicubic +levit_384.fb_dist_in1k,224,95.220,4.780,99.170,0.830,39.13,0.900,bicubic +levit_conv_384.fb_dist_in1k,224,95.220,4.780,99.170,0.830,39.13,0.900,bicubic +convnext_tiny.fb_in1k,288,95.210,4.790,99.320,0.680,28.59,1.000,bicubic +coat_small.in1k,224,95.210,4.790,99.290,0.710,21.69,0.900,bicubic +resnet51q.ra2_in1k,288,95.210,4.790,99.260,0.740,35.70,1.000,bilinear +hgnetv2_b2.ssld_stage2_ft_in1k,224,95.210,4.790,99.240,0.760,11.22,0.965,bicubic +ecaresnet101d.miil_in1k,224,95.200,4.800,99.250,0.750,44.57,0.875,bicubic +vit_relpos_medium_patch16_224.sw_in1k,224,95.200,4.800,99.230,0.770,38.75,0.900,bicubic +poolformerv2_m48.sail_in1k,224,95.200,4.800,99.150,0.850,73.35,1.000,bicubic +crossvit_18_dagger_240.in1k,240,95.190,4.810,99.120,0.880,44.27,0.875,bicubic +vit_relpos_base_patch16_224.sw_in1k,224,95.180,4.820,99.280,0.720,86.43,0.900,bicubic +nasnetalarge.tf_in1k,331,95.180,4.820,99.130,0.870,88.75,0.911,bicubic +mobilenetv4_conv_large.e500_r256_in1k,320,95.160,4.840,99.340,0.660,32.59,1.000,bicubic +resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,224,95.160,4.840,99.330,0.670,44.18,0.875,bilinear +convnextv2_nano.fcmae_ft_in1k,288,95.160,4.840,99.250,0.750,15.62,1.000,bicubic +regnety_160.tv2_in1k,224,95.160,4.840,99.250,0.750,83.59,0.965,bicubic +regnetz_c16.ra3_in1k,256,95.160,4.840,99.190,0.810,13.46,0.940,bicubic +efficientnet_b3.ra2_in1k,320,95.150,4.850,99.210,0.790,12.23,1.000,bicubic +hrnet_w18_ssld.paddle_in1k,224,95.150,4.850,99.210,0.790,21.30,0.950,bilinear +flexivit_small.300ep_in1k,240,95.150,4.850,99.150,0.850,22.06,0.950,bicubic +repvit_m1_5.dist_300e_in1k,224,95.140,4.860,99.280,0.720,14.64,0.950,bicubic +cs3edgenet_x.c2_in1k,256,95.140,4.860,99.240,0.760,47.82,0.887,bicubic +vit_small_r26_s32_224.augreg_in21k_ft_in1k,224,95.140,4.860,99.220,0.780,36.43,0.900,bicubic +tf_efficientnetv2_b3.in1k,300,95.140,4.860,99.210,0.790,14.36,0.904,bicubic +resnet61q.ra2_in1k,288,95.140,4.860,99.070,0.930,36.85,1.000,bicubic +resnet152.a1_in1k,288,95.140,4.860,99.010,0.990,60.19,1.000,bicubic +xcit_medium_24_p16_224.fb_in1k,224,95.140,4.860,98.920,1.080,84.40,1.000,bicubic +wide_resnet50_2.racm_in1k,288,95.130,4.870,99.260,0.740,68.88,0.950,bicubic +fbnetv3_g.ra2_in1k,288,95.130,4.870,99.190,0.810,16.62,0.950,bilinear +inception_next_tiny.sail_in1k,224,95.120,4.880,99.140,0.860,28.06,0.875,bicubic +convit_base.fb_in1k,224,95.120,4.880,99.120,0.880,86.54,0.875,bicubic +ecaresnet50t.ra2_in1k,320,95.110,4.890,99.290,0.710,25.57,0.950,bicubic +efficientformerv2_s2.snap_dist_in1k,224,95.110,4.890,99.120,0.880,12.71,0.950,bicubic +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,256,95.100,4.900,99.250,0.750,11.07,0.950,bicubic +cs3sedarknet_l.c2ns_in1k,288,95.100,4.900,99.220,0.780,21.91,0.950,bicubic +davit_tiny.msft_in1k,224,95.100,4.900,99.140,0.860,28.36,0.950,bicubic +mobilevitv2_200.cvnets_in22k_ft_in1k,256,95.100,4.900,99.090,0.910,18.45,0.888,bicubic +coat_lite_small.in1k,224,95.100,4.900,99.020,0.980,19.84,0.900,bicubic +hgnet_small.paddle_in1k,288,95.090,4.910,99.320,0.680,24.36,1.000,bicubic +efficientnetv2_rw_t.ra2_in1k,288,95.090,4.910,99.210,0.790,13.65,1.000,bicubic +vit_relpos_medium_patch16_rpn_224.sw_in1k,224,95.090,4.910,99.210,0.790,38.73,0.900,bicubic +poolformer_m48.sail_in1k,224,95.090,4.910,99.100,0.900,73.47,0.950,bicubic +tresnet_xl.miil_in1k,224,95.080,4.920,99.250,0.750,78.44,0.875,bilinear +xception41p.ra3_in1k,299,95.080,4.920,99.190,0.810,26.91,0.940,bicubic +resnet152.tv2_in1k,224,95.080,4.920,99.180,0.820,60.19,0.965,bilinear +xcit_small_24_p16_224.fb_in1k,224,95.080,4.920,99.070,0.930,47.67,1.000,bicubic +ecaresnet101d_pruned.miil_in1k,288,95.060,4.940,99.240,0.760,24.88,0.950,bicubic +cs3sedarknet_x.c2ns_in1k,256,95.060,4.940,99.200,0.800,35.40,0.887,bicubic +swinv2_tiny_window8_256.ms_in1k,256,95.060,4.940,99.180,0.820,28.35,0.900,bicubic +coatnet_rmlp_nano_rw_224.sw_in1k,224,95.060,4.940,99.160,0.840,15.15,0.900,bicubic +crossvit_18_240.in1k,240,95.060,4.940,99.120,0.880,43.27,0.875,bicubic +poolformer_m36.sail_in1k,224,95.060,4.940,99.100,0.900,56.17,0.950,bicubic +cs3sedarknet_l.c2ns_in1k,256,95.050,4.950,99.140,0.860,21.91,0.887,bicubic +gcvit_xtiny.in1k,224,95.040,4.960,99.200,0.800,19.98,0.875,bicubic +poolformerv2_m36.sail_in1k,224,95.040,4.960,99.150,0.850,56.08,1.000,bicubic +deit_base_patch16_224.fb_in1k,224,95.040,4.960,98.960,1.040,86.57,0.900,bicubic +resnet61q.ra2_in1k,256,95.040,4.960,98.940,1.060,36.85,0.900,bicubic +cs3darknet_x.c2ns_in1k,256,95.030,4.970,99.190,0.810,35.05,0.950,bicubic +resnet51q.ra2_in1k,256,95.030,4.970,99.190,0.810,35.70,0.875,bilinear +hgnetv2_b2.ssld_stage1_in22k_in1k,224,95.030,4.970,99.180,0.820,11.22,0.965,bicubic +coatnet_nano_rw_224.sw_in1k,224,95.030,4.970,99.150,0.850,15.14,0.900,bicubic +focalnet_tiny_srf.ms_in1k,224,95.020,4.980,99.280,0.720,28.43,0.900,bicubic +halo2botnet50ts_256.a1h_in1k,256,95.020,4.980,99.050,0.950,22.64,0.950,bicubic +crossvit_base_240.in1k,240,95.020,4.980,98.990,1.010,105.03,0.875,bicubic +seresnext50_32x4d.racm_in1k,288,95.010,4.990,99.200,0.800,27.56,0.950,bicubic +tf_efficientnet_b3.ap_in1k,300,95.010,4.990,99.090,0.910,12.23,0.904,bicubic +regnety_040.ra3_in1k,224,95.000,5.000,99.220,0.780,20.65,0.950,bicubic +resnext50_32x4d.a1h_in1k,288,95.000,5.000,99.190,0.810,25.03,1.000,bicubic +pvt_v2_b2.in1k,224,95.000,5.000,99.140,0.860,25.36,0.900,bicubic +resnet152.a2_in1k,288,95.000,5.000,99.060,0.940,60.19,1.000,bicubic +resnet101.a1h_in1k,224,94.990,5.010,99.090,0.910,44.55,0.950,bicubic +coatnet_bn_0_rw_224.sw_in1k,224,94.980,5.020,99.230,0.770,27.44,0.950,bicubic +cait_xxs24_384.fb_dist_in1k,384,94.980,5.020,99.150,0.850,12.03,1.000,bicubic +crossvit_15_dagger_240.in1k,240,94.980,5.020,99.150,0.850,28.21,0.875,bicubic +convnext_tiny.fb_in1k,224,94.970,5.030,99.210,0.790,28.59,0.875,bicubic +visformer_small.in1k,224,94.970,5.030,99.210,0.790,40.22,0.900,bicubic +convmixer_1536_20.in1k,224,94.970,5.030,99.170,0.830,51.63,0.960,bicubic +swin_s3_tiny_224.ms_in1k,224,94.960,5.040,99.160,0.840,28.33,0.900,bicubic +eca_nfnet_l0.ra2_in1k,224,94.960,5.040,99.150,0.850,24.14,0.900,bicubic +resnetaa50d.sw_in12k_ft_in1k,224,94.950,5.050,99.270,0.730,25.58,0.950,bicubic +vit_srelpos_medium_patch16_224.sw_in1k,224,94.950,5.050,99.200,0.800,38.74,0.900,bicubic +xcit_large_24_p16_224.fb_in1k,224,94.950,5.050,98.830,1.170,189.10,1.000,bicubic +gernet_l.idstcv_in1k,256,94.940,5.060,99.200,0.800,31.08,0.875,bilinear +efficientnet_b3.ra2_in1k,288,94.940,5.060,99.170,0.830,12.23,0.875,bicubic +resnetv2_101.a1h_in1k,224,94.940,5.060,99.150,0.850,44.54,0.950,bicubic +nest_tiny_jx.goog_in1k,224,94.940,5.060,99.100,0.900,17.06,0.875,bicubic +coatnet_0_rw_224.sw_in1k,224,94.930,5.070,99.020,0.980,27.44,0.950,bicubic +regnety_032.ra_in1k,224,94.920,5.080,99.180,0.820,19.44,0.950,bicubic +tf_efficientnet_b3.aa_in1k,300,94.920,5.080,99.090,0.910,12.23,0.904,bicubic +vit_small_patch16_224.augreg_in21k_ft_in1k,224,94.910,5.090,99.270,0.730,22.05,0.900,bicubic +resnext101_32x8d.tv2_in1k,176,94.910,5.090,99.220,0.780,88.79,0.875,bilinear +convit_small.fb_in1k,224,94.910,5.090,99.120,0.880,27.78,0.875,bicubic +convnextv2_nano.fcmae_ft_in1k,224,94.910,5.090,99.000,1.000,15.62,0.875,bicubic +ecaresnet50t.a1_in1k,288,94.900,5.100,99.080,0.920,25.57,1.000,bicubic +mixer_b16_224.miil_in21k_ft_in1k,224,94.900,5.100,99.080,0.920,59.88,0.875,bilinear +resnet101.a1_in1k,288,94.900,5.100,99.030,0.970,44.55,1.000,bicubic +nfnet_l0.ra2_in1k,224,94.890,5.110,99.260,0.740,35.07,0.900,bicubic +regnety_032.tv2_in1k,224,94.890,5.110,99.250,0.750,19.44,0.965,bicubic +resnetv2_50d_evos.ah_in1k,288,94.890,5.110,99.200,0.800,25.59,1.000,bicubic +convnext_nano.d1h_in1k,288,94.890,5.110,99.130,0.870,15.59,1.000,bicubic +resnet101.a2_in1k,288,94.890,5.110,99.090,0.910,44.55,1.000,bicubic +resnet101.tv2_in1k,224,94.890,5.110,99.030,0.970,44.55,0.965,bilinear +efficientvit_b2.r224_in1k,224,94.890,5.110,99.000,1.000,24.33,0.950,bicubic +tf_efficientnet_b1.ns_jft_in1k,240,94.880,5.120,99.250,0.750,7.79,0.882,bicubic +xcit_tiny_24_p8_224.fb_in1k,224,94.880,5.120,99.190,0.810,12.11,1.000,bicubic +seresnext50_32x4d.racm_in1k,224,94.880,5.120,99.130,0.870,27.56,0.875,bicubic +tf_efficientnet_lite4.in1k,380,94.880,5.120,99.120,0.880,13.01,0.920,bilinear +xcit_small_12_p16_224.fb_in1k,224,94.870,5.130,99.040,0.960,26.25,1.000,bicubic +tf_efficientnetv2_b3.in21k_ft_in1k,240,94.870,5.130,99.020,0.980,14.36,0.900,bicubic +mobilenetv4_hybrid_medium.e500_r224_in1k,256,94.860,5.140,99.210,0.790,11.07,1.000,bicubic +coatnext_nano_rw_224.sw_in1k,224,94.860,5.140,99.200,0.800,14.70,0.900,bicubic +hgnet_small.paddle_in1k,224,94.860,5.140,99.200,0.800,24.36,0.965,bicubic +resnetaa50.a1h_in1k,288,94.860,5.140,99.140,0.860,25.56,1.000,bicubic +tresnet_l.miil_in1k,224,94.860,5.140,99.030,0.970,55.99,0.875,bilinear +edgenext_small.usi_in1k,320,94.850,5.150,99.410,0.590,5.59,1.000,bicubic +swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,224,94.840,5.160,99.280,0.720,28.29,0.900,bicubic +resnet50d.ra2_in1k,288,94.840,5.160,99.240,0.760,25.58,0.950,bicubic +vit_base_patch16_rpn_224.sw_in1k,224,94.830,5.170,99.090,0.910,86.54,0.900,bicubic +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,256,94.820,5.180,99.110,0.890,11.07,0.950,bicubic +resnet50d.ra4_e3600_r224_in1k,224,94.820,5.180,99.050,0.950,25.58,0.950,bicubic +pit_b_224.in1k,224,94.820,5.180,98.820,1.180,73.76,0.900,bicubic +wide_resnet50_2.tv2_in1k,224,94.810,5.190,99.280,0.720,68.88,0.965,bilinear +cs3darknet_focus_l.c2ns_in1k,288,94.810,5.190,99.180,0.820,21.15,0.950,bicubic +swinv2_cr_tiny_ns_224.sw_in1k,224,94.780,5.220,99.130,0.870,28.33,0.900,bicubic +vit_base_patch32_clip_224.laion2b_ft_in1k,224,94.780,5.220,99.050,0.950,88.22,0.900,bicubic +seresnet50.ra2_in1k,288,94.770,5.230,99.130,0.870,28.09,0.950,bicubic +mobilevitv2_175.cvnets_in22k_ft_in1k,256,94.770,5.230,99.100,0.900,14.25,0.888,bicubic +twins_svt_small.in1k,224,94.770,5.230,99.080,0.920,24.06,0.900,bicubic +convnext_tiny_hnf.a2h_in1k,224,94.760,5.240,99.170,0.830,28.59,0.950,bicubic +gcresnet50t.ra2_in1k,288,94.760,5.240,99.120,0.880,25.90,1.000,bicubic +resnetv2_50x1_bit.goog_in21k_ft_in1k,448,94.750,5.250,99.180,0.820,25.55,1.000,bilinear +regnetx_080.tv2_in1k,224,94.750,5.250,99.050,0.950,39.57,0.965,bicubic +resnet152s.gluon_in1k,224,94.750,5.250,99.050,0.950,60.32,0.875,bicubic +lamhalobotnet50ts_256.a1h_in1k,256,94.750,5.250,98.990,1.010,22.57,0.950,bicubic +coat_mini.in1k,224,94.750,5.250,98.950,1.050,10.34,0.900,bicubic +resnet152.a2_in1k,224,94.750,5.250,98.810,1.190,60.19,0.950,bicubic +legacy_senet154.in1k,224,94.740,5.260,99.100,0.900,115.09,0.875,bilinear +mobilevitv2_150.cvnets_in22k_ft_in1k,256,94.740,5.260,98.920,1.080,10.59,0.888,bicubic +ecaresnet50t.ra2_in1k,256,94.730,5.270,99.080,0.920,25.57,0.875,bicubic +repvit_m3.dist_in1k,224,94.730,5.270,99.070,0.930,10.68,0.950,bicubic +xcit_tiny_12_p8_224.fb_dist_in1k,224,94.720,5.280,99.170,0.830,6.71,1.000,bicubic +resnest50d_4s2x40d.in1k,224,94.720,5.280,99.130,0.870,30.42,0.875,bicubic +poolformerv2_s36.sail_in1k,224,94.710,5.290,99.240,0.760,30.79,1.000,bicubic +resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,224,94.710,5.290,99.240,0.760,25.03,0.875,bilinear +resnetv2_50.a1h_in1k,288,94.710,5.290,99.110,0.890,25.55,1.000,bicubic +deit3_small_patch16_224.fb_in1k,224,94.710,5.290,98.730,1.270,22.06,0.900,bicubic +cs3darknet_l.c2ns_in1k,288,94.700,5.300,99.220,0.780,21.16,0.950,bicubic +pit_s_distilled_224.in1k,224,94.700,5.300,99.130,0.870,24.04,0.900,bicubic +regnetz_b16.ra3_in1k,288,94.700,5.300,99.120,0.880,9.72,1.000,bicubic +fastvit_sa12.apple_dist_in1k,256,94.700,5.300,99.070,0.930,11.58,0.900,bicubic +halonet50ts.a1h_in1k,256,94.700,5.300,98.840,1.160,22.73,0.940,bicubic +swin_tiny_patch4_window7_224.ms_in1k,224,94.690,5.310,99.100,0.900,28.29,0.900,bicubic +dm_nfnet_f0.dm_in1k,192,94.690,5.310,99.070,0.930,71.49,0.900,bicubic +senet154.gluon_in1k,224,94.690,5.310,98.970,1.030,115.09,0.875,bicubic +resnet152.a1_in1k,224,94.690,5.310,98.790,1.210,60.19,0.950,bicubic +ecaresnet50d.miil_in1k,288,94.680,5.320,99.230,0.770,25.58,0.950,bicubic +tresnet_m.miil_in1k_448,448,94.680,5.320,99.140,0.860,31.39,0.875,bilinear +crossvit_15_240.in1k,240,94.680,5.320,99.100,0.900,27.53,0.875,bicubic +vit_relpos_small_patch16_224.sw_in1k,224,94.680,5.320,99.100,0.900,21.98,0.900,bicubic +efficientnet_el.ra_in1k,300,94.670,5.330,99.130,0.870,10.59,0.904,bicubic +rexnet_200.nav_in1k,224,94.670,5.330,99.090,0.910,16.37,0.875,bicubic +efficientnetv2_rw_t.ra2_in1k,224,94.660,5.340,99.100,0.900,13.65,1.000,bicubic +wide_resnet50_2.racm_in1k,224,94.660,5.340,99.060,0.940,68.88,0.875,bicubic +seresnext101_64x4d.gluon_in1k,224,94.660,5.340,98.980,1.020,88.23,0.875,bicubic +vit_small_patch16_384.augreg_in1k,384,94.650,5.350,99.140,0.860,22.20,1.000,bicubic +tiny_vit_5m_224.dist_in22k_ft_in1k,224,94.630,5.370,99.140,0.860,5.39,0.950,bicubic +poolformer_s36.sail_in1k,224,94.630,5.370,99.060,0.940,30.86,0.900,bicubic +resnest50d.in1k,224,94.630,5.370,99.030,0.970,27.48,0.875,bilinear +resnet50_gn.a1h_in1k,288,94.620,5.380,99.150,0.850,25.56,0.950,bicubic +efficientnet_b3_pruned.in1k,300,94.620,5.380,99.040,0.960,9.86,0.904,bicubic +twins_pcpvt_small.in1k,224,94.610,5.390,99.140,0.860,24.11,0.900,bicubic +gcresnet50t.ra2_in1k,256,94.610,5.390,98.990,1.010,25.90,0.900,bicubic +repvgg_b3.rvgg_in1k,224,94.610,5.390,98.920,1.080,123.09,0.875,bilinear +fbnetv3_g.ra2_in1k,240,94.600,5.400,99.100,0.900,16.62,0.950,bilinear +pit_s_224.in1k,224,94.600,5.400,98.930,1.070,23.46,0.900,bicubic +crossvit_small_240.in1k,240,94.590,5.410,99.110,0.890,26.86,0.875,bicubic +resnet50.tv2_in1k,224,94.590,5.410,99.070,0.930,25.56,0.965,bilinear +convnext_nano_ols.d1h_in1k,288,94.590,5.410,99.040,0.960,15.65,1.000,bicubic +vit_srelpos_small_patch16_224.sw_in1k,224,94.580,5.420,99.140,0.860,21.97,0.900,bicubic +deit_small_distilled_patch16_224.fb_in1k,224,94.580,5.420,99.090,0.910,22.44,0.900,bicubic +ecaresnet50t.a2_in1k,288,94.580,5.420,99.050,0.950,25.57,1.000,bicubic +tnt_s_patch16_224,224,94.570,5.430,99.180,0.820,23.76,0.900,bicubic +resmlp_36_224.fb_distilled_in1k,224,94.570,5.430,99.170,0.830,44.69,0.875,bicubic +convnextv2_pico.fcmae_ft_in1k,288,94.570,5.430,99.150,0.850,9.07,0.950,bicubic +vit_small_patch32_384.augreg_in21k_ft_in1k,384,94.570,5.430,99.140,0.860,22.92,1.000,bicubic +mobilenet_edgetpu_v2_m,256,94.560,5.440,99.010,0.990,8.46,0.950,bicubic +mobilevitv2_200.cvnets_in1k,256,94.560,5.440,98.980,1.020,18.45,0.888,bicubic +gernet_m.idstcv_in1k,224,94.560,5.440,98.910,1.090,21.14,0.875,bilinear +regnetx_032.tv2_in1k,224,94.560,5.440,98.890,1.110,15.30,0.965,bicubic +resnext50_32x4d.a1h_in1k,224,94.560,5.440,98.820,1.180,25.03,0.950,bicubic +lambda_resnet50ts.a1h_in1k,256,94.560,5.440,98.690,1.310,21.54,0.950,bicubic +ecaresnetlight.miil_in1k,288,94.550,5.450,99.190,0.810,30.16,0.950,bicubic +xcit_tiny_12_p16_384.fb_dist_in1k,384,94.550,5.450,99.170,0.830,6.72,1.000,bicubic +repvit_m1_1.dist_450e_in1k,224,94.550,5.450,99.080,0.920,8.80,0.950,bicubic +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,256,94.550,5.450,99.010,0.990,8.46,0.950,bicubic +res2net101d.in1k,224,94.550,5.450,98.990,1.010,45.23,0.875,bilinear +resnet101.a2_in1k,224,94.550,5.450,98.900,1.100,44.55,0.950,bicubic +gc_efficientnetv2_rw_t.agc_in1k,224,94.540,5.460,99.060,0.940,13.68,1.000,bicubic +haloregnetz_b.ra3_in1k,224,94.520,5.480,98.960,1.040,11.68,0.940,bicubic +sehalonet33ts.ra2_in1k,256,94.520,5.480,98.780,1.220,13.69,0.940,bicubic +resnet50.c1_in1k,288,94.510,5.490,99.070,0.930,25.56,1.000,bicubic +regnety_320.pycls_in1k,224,94.500,5.500,99.170,0.830,145.05,0.875,bicubic +ese_vovnet39b.ra_in1k,288,94.500,5.500,99.090,0.910,24.57,0.950,bicubic +seresnext101_32x4d.gluon_in1k,224,94.500,5.500,99.090,0.910,48.96,0.875,bicubic +repvgg_b3g4.rvgg_in1k,224,94.500,5.500,99.020,0.980,83.83,0.875,bilinear +gcresnext50ts.ch_in1k,288,94.500,5.500,99.000,1.000,15.67,1.000,bicubic +resnext50_32x4d.tv2_in1k,224,94.490,5.510,99.020,0.980,25.03,0.965,bilinear +resnet50.b1k_in1k,288,94.490,5.510,98.990,1.010,25.56,1.000,bicubic +resnet50d.a2_in1k,288,94.480,5.520,98.910,1.090,25.58,1.000,bicubic +resnet101.a1_in1k,224,94.480,5.520,98.760,1.240,44.55,0.950,bicubic +vit_base_patch16_384.augreg_in1k,384,94.470,5.530,99.020,0.980,86.86,1.000,bicubic +resnet50.d_in1k,288,94.470,5.530,98.990,1.010,25.56,1.000,bicubic +vit_wee_patch16_reg1_gap_256.sbb_in1k,256,94.460,5.540,99.130,0.870,13.42,0.950,bicubic +eva02_tiny_patch14_336.mim_in22k_ft_in1k,336,94.460,5.540,99.090,0.910,5.76,1.000,bicubic +fastvit_sa12.apple_in1k,256,94.460,5.540,99.080,0.920,11.58,0.900,bicubic +repvit_m2.dist_in1k,224,94.460,5.540,99.070,0.930,8.80,0.950,bicubic +resnetaa50.a1h_in1k,224,94.460,5.540,98.900,1.100,25.56,0.950,bicubic +resnet152.a3_in1k,224,94.460,5.540,98.880,1.120,60.19,0.950,bicubic +regnety_016.tv2_in1k,224,94.450,5.550,99.030,0.970,11.20,0.965,bicubic +poolformerv2_s24.sail_in1k,224,94.450,5.550,99.010,0.990,21.34,1.000,bicubic +resnet152d.gluon_in1k,224,94.450,5.550,98.980,1.020,60.21,0.875,bicubic +seresnet50.a2_in1k,288,94.450,5.550,98.910,1.090,28.09,1.000,bicubic +efficientnet_b1.ra4_e3600_r240_in1k,288,94.440,5.560,99.230,0.770,7.79,1.000,bicubic +vit_base_patch32_clip_224.openai_ft_in1k,224,94.440,5.560,99.180,0.820,88.22,0.900,bicubic +ecaresnet101d_pruned.miil_in1k,224,94.440,5.560,99.090,0.910,24.88,0.875,bicubic +resnext50d_32x4d.bt_in1k,288,94.440,5.560,99.040,0.960,25.05,0.950,bicubic +poolformer_s24.sail_in1k,224,94.430,5.570,99.060,0.940,21.39,0.900,bicubic +levit_256.fb_dist_in1k,224,94.420,5.580,99.060,0.940,18.89,0.900,bicubic +gcresnext50ts.ch_in1k,256,94.420,5.580,98.980,1.020,15.67,0.900,bicubic +resnetv2_50d_gn.ah_in1k,224,94.420,5.580,98.880,1.120,25.57,0.950,bicubic +convmixer_768_32.in1k,224,94.410,5.590,99.110,0.890,21.11,0.960,bicubic +levit_conv_256.fb_dist_in1k,224,94.410,5.590,99.060,0.940,18.89,0.900,bicubic +edgenext_small.usi_in1k,256,94.400,5.600,99.180,0.820,5.59,0.950,bicubic +mobilenetv4_conv_large.e500_r256_in1k,256,94.400,5.600,99.120,0.880,32.59,0.950,bicubic +vit_base_patch32_224.augreg_in21k_ft_in1k,224,94.400,5.600,99.060,0.940,88.22,0.900,bicubic +resnetrs101.tf_in1k,192,94.400,5.600,98.920,1.080,63.62,0.940,bicubic +vit_pwee_patch16_reg1_gap_256.sbb_in1k,256,94.390,5.610,99.040,0.960,15.25,0.950,bicubic +resnext50_32x4d.a1_in1k,288,94.390,5.610,98.770,1.230,25.03,1.000,bicubic +resnest50d_1s4x24d.in1k,224,94.380,5.620,99.030,0.970,25.68,0.875,bicubic +tf_efficientnet_el.in1k,300,94.370,5.630,99.090,0.910,10.59,0.904,bicubic +darknet53.c2ns_in1k,288,94.370,5.630,99.060,0.940,41.61,1.000,bicubic +nf_resnet50.ra2_in1k,288,94.370,5.630,99.060,0.940,25.56,0.940,bicubic +efficientnet_b2.ra_in1k,288,94.370,5.630,99.050,0.950,9.11,1.000,bicubic +edgenext_small_rw.sw_in1k,320,94.370,5.630,99.040,0.960,7.83,1.000,bicubic +inception_v4.tf_in1k,299,94.370,5.630,98.830,1.170,42.68,0.875,bicubic +mobilenetv4_conv_medium.e500_r256_in1k,320,94.360,5.640,99.160,0.840,9.72,1.000,bicubic +resnet50d.a1_in1k,288,94.360,5.640,98.790,1.210,25.58,1.000,bicubic +resmlp_24_224.fb_distilled_in1k,224,94.350,5.650,99.090,0.910,30.02,0.875,bicubic +xcit_tiny_12_p8_224.fb_in1k,224,94.350,5.650,99.050,0.950,6.71,1.000,bicubic +gcresnet33ts.ra2_in1k,288,94.350,5.650,98.960,1.040,19.88,1.000,bicubic +resnext101_64x4d.gluon_in1k,224,94.350,5.650,98.910,1.090,83.46,0.875,bicubic +inception_resnet_v2.tf_in1k,299,94.340,5.660,98.800,1.200,55.84,0.897,bicubic +sebotnet33ts_256.a1h_in1k,256,94.340,5.660,98.540,1.460,13.70,0.940,bicubic +resnet50.fb_ssl_yfcc100m_ft_in1k,224,94.330,5.670,99.140,0.860,25.56,0.875,bilinear +resnext50_32x4d.ra_in1k,288,94.310,5.690,99.040,0.960,25.03,0.950,bicubic +convnext_nano.d1h_in1k,224,94.310,5.690,98.960,1.040,15.59,0.950,bicubic +resnetv2_50.a1h_in1k,224,94.310,5.690,98.930,1.070,25.55,0.950,bicubic +resnet50.a1_in1k,288,94.310,5.690,98.920,1.080,25.56,1.000,bicubic +ecaresnet50d_pruned.miil_in1k,288,94.300,5.700,99.200,0.800,19.94,0.950,bicubic +regnetx_120.pycls_in1k,224,94.300,5.700,99.200,0.800,46.11,0.875,bicubic +hgnet_tiny.paddle_in1k,288,94.300,5.700,99.160,0.840,14.74,1.000,bicubic +resnet50.b2k_in1k,288,94.300,5.700,98.910,1.090,25.56,1.000,bicubic +mobilevitv2_175.cvnets_in1k,256,94.300,5.700,98.900,1.100,14.25,0.888,bicubic +rexnet_150.nav_in1k,224,94.290,5.710,99.090,0.910,9.73,0.875,bicubic +resnetv2_50d_evos.ah_in1k,224,94.290,5.710,98.980,1.020,25.59,0.950,bicubic +tf_efficientnet_b3.in1k,300,94.280,5.720,99.120,0.880,12.23,0.904,bicubic +cs3darknet_l.c2ns_in1k,256,94.280,5.720,99.110,0.890,21.16,0.887,bicubic +repvit_m1_0.dist_450e_in1k,224,94.280,5.720,99.030,0.970,7.30,0.950,bicubic +fastvit_s12.apple_dist_in1k,256,94.280,5.720,98.990,1.010,9.47,0.900,bicubic +resnet50.c2_in1k,288,94.270,5.730,99.040,0.960,25.56,1.000,bicubic +tf_efficientnet_b2.ap_in1k,260,94.270,5.730,98.960,1.040,9.11,0.890,bicubic +res2net50d.in1k,224,94.270,5.730,98.880,1.120,25.72,0.875,bilinear +resmlp_big_24_224.fb_in1k,224,94.270,5.730,98.820,1.180,129.14,0.875,bicubic +eca_resnet33ts.ra2_in1k,288,94.260,5.740,99.040,0.960,19.68,1.000,bicubic +seresnet33ts.ra2_in1k,288,94.260,5.740,99.010,0.990,19.78,1.000,bicubic +maxvit_rmlp_pico_rw_256.sw_in1k,256,94.260,5.740,99.000,1.000,7.52,0.950,bicubic +ecaresnet50t.a2_in1k,224,94.260,5.740,98.950,1.050,25.57,0.950,bicubic +cs3darknet_focus_l.c2ns_in1k,256,94.250,5.750,99.070,0.930,21.15,0.887,bicubic +cspresnext50.ra_in1k,256,94.250,5.750,99.040,0.960,20.57,0.887,bilinear +legacy_seresnext101_32x4d.in1k,224,94.250,5.750,98.970,1.030,48.96,0.875,bilinear +xcit_tiny_24_p16_224.fb_dist_in1k,224,94.250,5.750,98.950,1.050,12.12,1.000,bicubic +darknetaa53.c2ns_in1k,288,94.250,5.750,98.940,1.060,36.02,1.000,bilinear +mixnet_xl.ra_in1k,224,94.250,5.750,98.840,1.160,11.90,0.875,bicubic +seresnet33ts.ra2_in1k,256,94.250,5.750,98.770,1.230,19.78,0.900,bicubic +ecaresnet50d.miil_in1k,224,94.230,5.770,98.990,1.010,25.58,0.875,bicubic +tf_efficientnetv2_b3.in1k,240,94.230,5.770,98.860,1.140,14.36,0.904,bicubic +efficientnet_b1.ra4_e3600_r240_in1k,240,94.220,5.780,99.090,0.910,7.79,0.900,bicubic +regnetx_320.pycls_in1k,224,94.210,5.790,99.050,0.950,107.81,0.875,bicubic +tf_efficientnet_b2.aa_in1k,260,94.210,5.790,99.020,0.980,9.11,0.890,bicubic +resnet50.a1h_in1k,224,94.210,5.790,98.910,1.090,25.56,1.000,bicubic +seresnet50.a1_in1k,288,94.210,5.790,98.840,1.160,28.09,1.000,bicubic +resnet101s.gluon_in1k,224,94.200,5.800,99.020,0.980,44.67,0.875,bicubic +ecaresnet50t.a1_in1k,224,94.200,5.800,98.840,1.160,25.57,0.950,bicubic +mobilenetv4_hybrid_medium.e500_r224_in1k,224,94.200,5.800,98.840,1.160,11.07,0.950,bicubic +repvit_m1_1.dist_300e_in1k,224,94.190,5.810,99.090,0.910,8.80,0.950,bicubic +resnext50_32x4d.a2_in1k,288,94.190,5.810,98.740,1.260,25.03,1.000,bicubic +hgnetv2_b1.ssld_stage2_ft_in1k,288,94.180,5.820,99.030,0.970,6.34,1.000,bicubic +resnet101d.gluon_in1k,224,94.180,5.820,98.970,1.030,44.57,0.875,bicubic +resnet50_gn.a1h_in1k,224,94.180,5.820,98.920,1.080,25.56,0.940,bicubic +resnetblur50.bt_in1k,288,94.170,5.830,99.010,0.990,25.56,0.950,bicubic +efficientvit_b1.r288_in1k,288,94.170,5.830,98.940,1.060,9.10,1.000,bicubic +seresnext50_32x4d.gluon_in1k,224,94.170,5.830,98.920,1.080,27.56,0.875,bicubic +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,224,94.170,5.830,98.870,1.130,8.46,0.900,bicubic +resnet50.ra_in1k,288,94.170,5.830,98.860,1.140,25.56,0.950,bicubic +mobilenet_edgetpu_v2_m,224,94.170,5.830,98.850,1.150,8.46,0.900,bicubic +tf_efficientnet_lite3.in1k,300,94.160,5.840,98.960,1.040,8.20,0.904,bilinear +regnetz_b16.ra3_in1k,224,94.150,5.850,99.000,1.000,9.72,0.940,bicubic +ecaresnetlight.miil_in1k,224,94.150,5.850,98.950,1.050,30.16,0.875,bicubic +dpn92.mx_in1k,224,94.150,5.850,98.940,1.060,37.67,0.875,bicubic +convnext_nano_ols.d1h_in1k,224,94.150,5.850,98.830,1.170,15.65,0.950,bicubic +cspdarknet53.ra_in1k,256,94.140,5.860,98.990,1.010,27.64,0.887,bilinear +nf_resnet50.ra2_in1k,256,94.140,5.860,98.950,1.050,25.56,0.940,bicubic +wide_resnet101_2.tv2_in1k,176,94.140,5.860,98.850,1.150,126.89,0.875,bilinear +mobilenetv4_conv_blur_medium.e500_r224_in1k,256,94.130,5.870,99.150,0.850,9.72,1.000,bicubic +regnety_160.pycls_in1k,224,94.130,5.870,99.000,1.000,83.59,0.875,bicubic +resnet50.a2_in1k,288,94.130,5.870,98.860,1.140,25.56,1.000,bicubic +inception_resnet_v2.tf_ens_adv_in1k,299,94.130,5.870,98.780,1.220,55.84,0.897,bicubic +hgnetv2_b1.ssld_stage1_in22k_in1k,288,94.120,5.880,99.060,0.940,6.34,1.000,bicubic +regnety_064.pycls_in1k,224,94.120,5.880,99.030,0.970,30.58,0.875,bicubic +seresnet50.ra2_in1k,224,94.120,5.880,98.960,1.040,28.09,0.875,bicubic +resnext101_32x4d.gluon_in1k,224,94.120,5.880,98.910,1.090,44.18,0.875,bicubic +fastvit_t12.apple_dist_in1k,256,94.100,5.900,99.030,0.970,7.55,0.900,bicubic +convnextv2_pico.fcmae_ft_in1k,224,94.100,5.900,99.020,0.980,9.07,0.875,bicubic +tresnet_m.miil_in1k,224,94.100,5.900,98.830,1.170,31.39,0.875,bilinear +gcvit_xxtiny.in1k,224,94.090,5.910,99.090,0.910,12.00,0.875,bicubic +efficientnet_b2.ra_in1k,256,94.090,5.910,99.010,0.990,9.11,0.875,bicubic +mobilenetv4_conv_medium.e500_r224_in1k,256,94.090,5.910,98.980,1.020,9.72,1.000,bicubic +mobilevitv2_150.cvnets_in1k,256,94.080,5.920,98.910,1.090,10.59,0.888,bicubic +regnety_120.pycls_in1k,224,94.070,5.930,99.020,0.980,51.82,0.875,bicubic +efficientnet_el_pruned.in1k,300,94.070,5.930,99.010,0.990,10.59,0.904,bicubic +darknet53.c2ns_in1k,256,94.070,5.930,98.980,1.020,41.61,0.887,bicubic +tf_efficientnetv2_b2.in1k,260,94.070,5.930,98.930,1.070,10.10,0.890,bicubic +convnext_pico_ols.d1_in1k,288,94.060,5.940,98.930,1.070,9.06,1.000,bicubic +resnet50d.ra2_in1k,224,94.060,5.940,98.920,1.080,25.58,0.875,bicubic +hrnet_w48.ms_in1k,224,94.040,5.960,99.020,0.980,77.47,0.875,bilinear +resnet152.gluon_in1k,224,94.040,5.960,98.730,1.270,60.19,0.875,bicubic +dla102x2.in1k,224,94.030,5.970,99.010,0.990,41.28,0.875,bilinear +resnetrs50.tf_in1k,224,94.030,5.970,98.830,1.170,35.69,0.910,bicubic +wide_resnet50_2.tv2_in1k,176,94.020,5.980,99.100,0.900,68.88,0.875,bilinear +convnext_pico.d1_in1k,288,94.020,5.980,99.010,0.990,9.05,0.950,bicubic +regnetx_016.tv2_in1k,224,94.020,5.980,98.920,1.080,9.19,0.965,bicubic +resnet152.tv2_in1k,176,94.020,5.980,98.710,1.290,60.19,0.875,bilinear +resnet50.bt_in1k,288,94.010,5.990,98.890,1.110,25.56,0.950,bicubic +dpn107.mx_in1k,224,94.010,5.990,98.820,1.180,86.92,0.875,bicubic +deit_small_patch16_224.fb_in1k,224,94.000,6.000,98.950,1.050,22.05,0.900,bicubic +resnet50.ram_in1k,288,94.000,6.000,98.880,1.120,25.56,0.950,bicubic +resnet50d.a2_in1k,224,94.000,6.000,98.680,1.320,25.58,0.950,bicubic +efficientformer_l1.snap_dist_in1k,224,93.990,6.010,99.060,0.940,12.29,0.950,bicubic +skresnext50_32x4d.ra_in1k,224,93.980,6.020,98.820,1.180,27.48,0.875,bicubic +ecaresnet26t.ra2_in1k,320,93.960,6.040,98.950,1.050,16.01,0.950,bicubic +dpn98.mx_in1k,224,93.960,6.040,98.920,1.080,61.57,0.875,bicubic +resnet50.c1_in1k,224,93.960,6.040,98.840,1.160,25.56,0.950,bicubic +resnet50.a1_in1k,224,93.960,6.040,98.520,1.480,25.56,0.950,bicubic +resnet33ts.ra2_in1k,288,93.950,6.050,98.870,1.130,19.68,1.000,bicubic +cait_xxs36_224.fb_dist_in1k,224,93.940,6.060,98.890,1.110,17.30,1.000,bicubic +resnet50d.a1_in1k,224,93.940,6.060,98.630,1.370,25.58,0.950,bicubic +resnet101.tv2_in1k,176,93.930,6.070,98.750,1.250,44.55,0.875,bilinear +regnetx_160.pycls_in1k,224,93.920,6.080,99.080,0.920,54.28,0.875,bicubic +xception71.tf_in1k,299,93.920,6.080,98.920,1.080,42.34,0.903,bicubic +cspresnet50.ra_in1k,256,93.910,6.090,98.850,1.150,21.62,0.887,bilinear +nf_regnet_b1.ra2_in1k,288,93.910,6.090,98.780,1.220,10.22,0.900,bicubic +regnety_080.pycls_in1k,224,93.900,6.100,98.990,1.010,39.18,0.875,bicubic +resnet50.c2_in1k,224,93.900,6.100,98.790,1.210,25.56,0.950,bicubic +vit_base_patch16_224.sam_in1k,224,93.890,6.110,98.890,1.110,86.57,0.900,bicubic +resnet152c.gluon_in1k,224,93.890,6.110,98.800,1.200,60.21,0.875,bicubic +eca_resnet33ts.ra2_in1k,256,93.880,6.120,98.890,1.110,19.68,0.900,bicubic +hgnet_tiny.paddle_in1k,224,93.870,6.130,99.000,1.000,14.74,0.965,bicubic +gcresnet33ts.ra2_in1k,256,93.870,6.130,98.930,1.070,19.88,0.900,bicubic +resnet101.a3_in1k,224,93.870,6.130,98.760,1.240,44.55,0.950,bicubic +mobilenetv4_conv_blur_medium.e500_r224_in1k,224,93.860,6.140,99.110,0.890,9.72,0.950,bicubic +ecaresnet50t.a3_in1k,224,93.860,6.140,98.860,1.140,25.57,0.950,bicubic +ecaresnet50d_pruned.miil_in1k,224,93.850,6.150,98.960,1.040,19.94,0.875,bicubic +repvgg_b2g4.rvgg_in1k,224,93.850,6.150,98.930,1.070,61.76,0.875,bilinear +ese_vovnet39b.ra_in1k,224,93.850,6.150,98.900,1.100,24.57,0.875,bicubic +mobilenetv4_conv_medium.e500_r256_in1k,256,93.850,6.150,98.870,1.130,9.72,0.950,bicubic +xcit_tiny_24_p16_224.fb_in1k,224,93.850,6.150,98.750,1.250,12.12,1.000,bicubic +hgnetv2_b0.ssld_stage2_ft_in1k,288,93.840,6.160,99.030,0.970,6.00,1.000,bicubic +hrnet_w64.ms_in1k,224,93.840,6.160,98.920,1.080,128.06,0.875,bilinear +resnext50_32x4d.ra_in1k,224,93.840,6.160,98.820,1.180,25.03,0.875,bicubic +resnext50d_32x4d.bt_in1k,224,93.840,6.160,98.730,1.270,25.05,0.875,bicubic +edgenext_small_rw.sw_in1k,256,93.830,6.170,98.720,1.280,7.83,0.900,bicubic +fbnetv3_d.ra2_in1k,256,93.820,6.180,98.900,1.100,10.31,0.950,bilinear +resnet101.gluon_in1k,224,93.820,6.180,98.710,1.290,44.55,0.875,bicubic +efficientnet_b2_pruned.in1k,260,93.810,6.190,98.910,1.090,8.31,0.890,bicubic +tiny_vit_5m_224.in1k,224,93.800,6.200,98.940,1.060,5.39,0.950,bicubic +xception65.tf_in1k,299,93.800,6.200,98.910,1.090,39.92,0.903,bicubic +resnet50.b2k_in1k,224,93.800,6.200,98.680,1.320,25.56,0.950,bicubic +resnet50.d_in1k,224,93.800,6.200,98.630,1.370,25.56,0.950,bicubic +resnext50_32x4d.a1_in1k,224,93.800,6.200,98.440,1.560,25.03,0.950,bicubic +darknetaa53.c2ns_in1k,256,93.790,6.210,98.940,1.060,36.02,0.887,bilinear +regnetx_080.pycls_in1k,224,93.790,6.210,98.910,1.090,39.57,0.875,bicubic +dpn131.mx_in1k,224,93.790,6.210,98.860,1.140,79.25,0.875,bicubic +resnext101_32x8d.tv_in1k,224,93.780,6.220,98.950,1.050,88.79,0.875,bilinear +dla169.in1k,224,93.780,6.220,98.860,1.140,53.39,0.875,bilinear +tf_efficientnet_b0.ns_jft_in1k,224,93.770,6.230,98.970,1.030,5.29,0.875,bicubic +repvit_m1_0.dist_300e_in1k,224,93.770,6.230,98.920,1.080,7.30,0.950,bicubic +wide_resnet101_2.tv_in1k,224,93.770,6.230,98.830,1.170,126.89,0.875,bilinear +resnext50_32x4d.a2_in1k,224,93.770,6.230,98.670,1.330,25.03,0.950,bicubic +convnextv2_femto.fcmae_ft_in1k,288,93.760,6.240,98.950,1.050,5.23,0.950,bicubic +efficientnet_em.ra2_in1k,240,93.760,6.240,98.910,1.090,6.90,0.882,bicubic +dpn68b.ra_in1k,288,93.760,6.240,98.520,1.480,12.61,1.000,bicubic +hrnet_w40.ms_in1k,224,93.750,6.250,98.830,1.170,57.56,0.875,bilinear +resnet50.tv2_in1k,176,93.750,6.250,98.750,1.250,25.56,0.875,bilinear +tf_efficientnet_b2.in1k,260,93.740,6.260,98.940,1.060,9.11,0.890,bicubic +tf_efficientnet_b1.aa_in1k,240,93.740,6.260,98.800,1.200,7.79,0.882,bicubic +mobileone_s4.apple_in1k,224,93.740,6.260,98.670,1.330,14.95,0.900,bilinear +tf_efficientnetv2_b1.in1k,240,93.730,6.270,98.850,1.150,8.14,0.882,bicubic +resnet101c.gluon_in1k,224,93.730,6.270,98.760,1.240,44.57,0.875,bicubic +resnet50.a2_in1k,224,93.730,6.270,98.720,1.280,25.56,0.950,bicubic +convnext_pico_ols.d1_in1k,224,93.720,6.280,98.860,1.140,9.06,0.950,bicubic +resnetblur50.bt_in1k,224,93.710,6.290,98.800,1.200,25.56,0.875,bicubic +levit_192.fb_dist_in1k,224,93.710,6.290,98.780,1.220,10.95,0.900,bicubic +levit_conv_192.fb_dist_in1k,224,93.710,6.290,98.780,1.220,10.95,0.900,bicubic +fastvit_s12.apple_in1k,256,93.710,6.290,98.720,1.280,9.47,0.900,bicubic +resnet50.b1k_in1k,224,93.700,6.300,98.800,1.200,25.56,0.950,bicubic +resnext50_32x4d.gluon_in1k,224,93.700,6.300,98.670,1.330,25.03,0.875,bicubic +regnetx_040.pycls_in1k,224,93.690,6.310,98.950,1.050,22.12,0.875,bicubic +seresnet50.a2_in1k,224,93.690,6.310,98.650,1.350,28.09,0.950,bicubic +resmlp_36_224.fb_in1k,224,93.670,6.330,98.920,1.080,44.69,0.875,bicubic +mobilenetv4_conv_medium.e500_r224_in1k,224,93.670,6.330,98.800,1.200,9.72,0.950,bicubic +rexnet_130.nav_in1k,224,93.670,6.330,98.700,1.300,7.56,0.875,bicubic +regnetx_064.pycls_in1k,224,93.660,6.340,99.050,0.950,26.21,0.875,bicubic +efficientvit_b1.r256_in1k,256,93.660,6.340,98.830,1.170,9.10,1.000,bicubic +legacy_xception.tf_in1k,299,93.660,6.340,98.760,1.240,22.86,0.897,bicubic +hrnet_w44.ms_in1k,224,93.650,6.350,98.960,1.040,67.06,0.875,bilinear +fbnetv3_b.ra2_in1k,256,93.650,6.350,98.900,1.100,8.60,0.950,bilinear +tf_efficientnet_b1.ap_in1k,240,93.640,6.360,98.780,1.220,7.79,0.882,bicubic +resnet33ts.ra2_in1k,256,93.640,6.360,98.760,1.240,19.68,0.900,bicubic +resnet34d.ra2_in1k,288,93.640,6.360,98.750,1.250,21.82,0.950,bicubic +regnety_040.pycls_in1k,224,93.630,6.370,98.960,1.040,20.65,0.875,bicubic +resnet50.am_in1k,224,93.630,6.370,98.860,1.140,25.56,0.875,bicubic +efficientformerv2_s1.snap_dist_in1k,224,93.620,6.380,98.960,1.040,6.19,0.950,bicubic +hgnetv2_b1.ssld_stage1_in22k_in1k,224,93.620,6.380,98.770,1.230,6.34,0.965,bicubic +hgnetv2_b1.ssld_stage2_ft_in1k,224,93.620,6.380,98.750,1.250,6.34,0.965,bicubic +dla60_res2next.in1k,224,93.610,6.390,98.810,1.190,17.03,0.875,bilinear +tf_efficientnetv2_b2.in1k,208,93.610,6.390,98.690,1.310,10.10,0.890,bicubic +halonet26t.a1h_in1k,256,93.610,6.390,98.640,1.360,12.48,0.950,bicubic +inception_v3.gluon_in1k,299,93.600,6.400,98.860,1.140,23.83,0.875,bicubic +resnet32ts.ra2_in1k,288,93.600,6.400,98.740,1.260,17.96,1.000,bicubic +hgnetv2_b0.ssld_stage1_in22k_in1k,288,93.590,6.410,98.980,1.020,6.00,1.000,bicubic +tf_efficientnet_cc_b1_8e.in1k,240,93.590,6.410,98.710,1.290,39.72,0.882,bicubic +resnet50s.gluon_in1k,224,93.580,6.420,98.850,1.150,25.68,0.875,bicubic +res2net50_26w_6s.in1k,224,93.580,6.420,98.760,1.240,37.05,0.875,bilinear +resnet32ts.ra2_in1k,256,93.580,6.420,98.730,1.270,17.96,0.900,bicubic +repvgg_b2.rvgg_in1k,224,93.570,6.430,99.070,0.930,89.02,0.875,bilinear +dla102x.in1k,224,93.570,6.430,98.860,1.140,26.31,0.875,bilinear +resnet50d.gluon_in1k,224,93.570,6.430,98.710,1.290,25.58,0.875,bicubic +eca_halonext26ts.c1_in1k,256,93.560,6.440,98.690,1.310,10.76,0.940,bicubic +resnext50_32x4d.a3_in1k,224,93.550,6.450,98.770,1.230,25.03,0.950,bicubic +convnext_tiny.fb_in22k_ft_in1k,288,93.550,6.450,98.620,1.380,28.59,1.000,bicubic +seresnet50.a1_in1k,224,93.550,6.450,98.570,1.430,28.09,0.950,bicubic +gmlp_s16_224.ra3_in1k,224,93.540,6.460,98.780,1.220,19.42,0.875,bicubic +repghostnet_200.in1k,224,93.540,6.460,98.600,1.400,9.80,0.875,bicubic +res2net101_26w_4s.in1k,224,93.530,6.470,98.620,1.380,45.21,0.875,bilinear +coat_lite_mini.in1k,224,93.520,6.480,98.800,1.200,11.01,0.900,bicubic +resnet50.ram_in1k,224,93.520,6.480,98.600,1.400,25.56,0.875,bicubic +pvt_v2_b1.in1k,224,93.510,6.490,98.880,1.120,14.01,0.900,bicubic +vit_tiny_patch16_384.augreg_in21k_ft_in1k,384,93.500,6.500,98.840,1.160,5.79,1.000,bicubic +efficientnet_b0.ra4_e3600_r224_in1k,256,93.500,6.500,98.830,1.170,5.29,1.000,bicubic +cait_xxs24_224.fb_dist_in1k,224,93.500,6.500,98.770,1.230,11.96,1.000,bicubic +coat_tiny.in1k,224,93.500,6.500,98.680,1.320,5.50,0.900,bicubic +fastvit_t12.apple_in1k,256,93.500,6.500,98.670,1.330,7.55,0.900,bicubic +regnety_032.pycls_in1k,224,93.490,6.510,98.960,1.040,19.44,0.875,bicubic +convnext_pico.d1_in1k,224,93.480,6.520,98.840,1.160,9.05,0.875,bicubic +mobilevitv2_125.cvnets_in1k,256,93.480,6.520,98.840,1.160,7.48,0.888,bicubic +selecsls60b.in1k,224,93.480,6.520,98.840,1.160,32.77,0.875,bicubic +xception41.tf_in1k,299,93.480,6.520,98.740,1.260,26.97,0.903,bicubic +hrnet_w18.ms_aug_in1k,224,93.470,6.530,99.000,1.000,21.30,0.950,bilinear +wide_resnet50_2.tv_in1k,224,93.470,6.530,98.970,1.030,68.88,0.875,bilinear +repvit_m0_9.dist_450e_in1k,224,93.470,6.530,98.880,1.120,5.49,0.950,bicubic +resnext50_32x4d.tv2_in1k,176,93.470,6.530,98.670,1.330,25.03,0.875,bilinear +convnext_femto.d1_in1k,288,93.460,6.540,98.830,1.170,5.22,0.950,bicubic +vit_small_patch16_224.augreg_in1k,224,93.460,6.540,98.770,1.230,22.05,0.900,bicubic +nf_regnet_b1.ra2_in1k,256,93.450,6.550,98.850,1.150,10.22,0.900,bicubic +repvit_m0_9.dist_300e_in1k,224,93.450,6.550,98.830,1.170,5.49,0.950,bicubic +legacy_seresnet152.in1k,224,93.440,6.560,98.850,1.150,66.82,0.875,bilinear +lambda_resnet26t.c1_in1k,256,93.440,6.560,98.760,1.240,10.96,0.940,bicubic +resmlp_24_224.fb_in1k,224,93.430,6.570,98.820,1.180,30.02,0.875,bicubic +resnet50.ra_in1k,224,93.430,6.570,98.820,1.180,25.56,0.875,bicubic +lambda_resnet26rpt_256.c1_in1k,256,93.420,6.580,98.880,1.120,10.99,0.940,bicubic +dla60_res2net.in1k,224,93.420,6.580,98.840,1.160,20.85,0.875,bilinear +res2net50_26w_8s.in1k,224,93.420,6.580,98.680,1.320,48.40,0.875,bilinear +ecaresnet26t.ra2_in1k,256,93.420,6.580,98.670,1.330,16.01,0.875,bicubic +legacy_seresnext50_32x4d.in1k,224,93.410,6.590,98.810,1.190,27.56,0.875,bilinear +repvgg_b1.rvgg_in1k,224,93.410,6.590,98.770,1.230,57.42,0.875,bilinear +botnet26t_256.c1_in1k,256,93.410,6.590,98.660,1.340,12.49,0.950,bicubic +hrnet_w30.ms_in1k,224,93.400,6.600,98.830,1.170,37.71,0.875,bilinear +resnet50d.a3_in1k,224,93.400,6.600,98.750,1.250,25.58,0.950,bicubic +eca_botnext26ts_256.c1_in1k,256,93.400,6.600,98.700,1.300,10.59,0.950,bicubic +convnext_femto_ols.d1_in1k,288,93.390,6.610,98.890,1.110,5.23,0.950,bicubic +resnet50.a1h_in1k,176,93.390,6.610,98.760,1.240,25.56,0.900,bicubic +xcit_nano_12_p8_384.fb_dist_in1k,384,93.380,6.620,98.880,1.120,3.05,1.000,bicubic +resnet152.a3_in1k,160,93.370,6.630,98.580,1.420,60.19,0.950,bicubic +xcit_tiny_12_p16_224.fb_dist_in1k,224,93.340,6.660,98.770,1.230,6.72,1.000,bicubic +seresnext26t_32x4d.bt_in1k,288,93.340,6.660,98.700,1.300,16.81,0.950,bicubic +repvit_m1.dist_in1k,224,93.340,6.660,98.660,1.340,5.49,0.950,bicubic +vit_base_patch16_224.augreg_in1k,224,93.340,6.660,98.640,1.360,86.57,0.900,bicubic +efficientvit_b1.r224_in1k,224,93.320,6.680,98.620,1.380,9.10,0.950,bicubic +regnetx_032.pycls_in1k,224,93.300,6.700,98.700,1.300,15.30,0.875,bicubic +legacy_seresnet101.in1k,224,93.290,6.710,98.750,1.250,49.33,0.875,bilinear +resnest26d.gluon_in1k,224,93.280,6.720,98.870,1.130,17.07,0.875,bilinear +dla102.in1k,224,93.280,6.720,98.790,1.210,33.27,0.875,bilinear +dpn68b.ra_in1k,224,93.280,6.720,98.530,1.470,12.61,0.950,bicubic +pit_xs_distilled_224.in1k,224,93.270,6.730,98.790,1.210,11.00,0.900,bicubic +resnet152.tv_in1k,224,93.270,6.730,98.750,1.250,60.19,0.875,bilinear +mixnet_l.ft_in1k,224,93.270,6.730,98.680,1.320,7.33,0.875,bicubic +cs3darknet_m.c2ns_in1k,288,93.240,6.760,98.710,1.290,9.31,0.950,bicubic +fbnetv3_d.ra2_in1k,224,93.230,6.770,98.670,1.330,10.31,0.950,bilinear +tf_efficientnetv2_b1.in1k,192,93.230,6.770,98.540,1.460,8.14,0.882,bicubic +dla60x.in1k,224,93.220,6.780,98.720,1.280,17.35,0.875,bilinear +tf_efficientnet_em.in1k,240,93.200,6.800,98.680,1.320,6.90,0.882,bicubic +inception_v3.tf_in1k,299,93.200,6.800,98.480,1.520,23.83,0.875,bicubic +convnextv2_femto.fcmae_ft_in1k,224,93.190,6.810,98.870,1.130,5.23,0.875,bicubic +res2net50_26w_4s.in1k,224,93.190,6.810,98.660,1.340,25.70,0.875,bilinear +mobilevit_s.cvnets_in1k,256,93.180,6.820,98.800,1.200,5.58,0.900,bicubic +vit_base_patch32_384.augreg_in1k,384,93.180,6.820,98.620,1.380,88.30,1.000,bicubic +regnety_008_tv.tv2_in1k,224,93.170,6.830,98.680,1.320,6.43,0.965,bicubic +vit_relpos_base_patch32_plus_rpn_256.sw_in1k,256,93.170,6.830,98.320,1.680,119.42,0.900,bicubic +res2next50.in1k,224,93.140,6.860,98.650,1.350,24.67,0.875,bilinear +ghostnetv2_160.in1k,224,93.130,6.870,98.710,1.290,12.39,0.875,bicubic +efficientnet_b0.ra4_e3600_r224_in1k,224,93.130,6.870,98.660,1.340,5.29,0.900,bicubic +cs3darknet_focus_m.c2ns_in1k,288,93.120,6.880,98.750,1.250,9.30,0.950,bicubic +bat_resnext26ts.ch_in1k,256,93.120,6.880,98.720,1.280,10.73,0.900,bicubic +mobilevitv2_100.cvnets_in1k,256,93.110,6.890,98.760,1.240,4.90,0.888,bicubic +resnet50.bt_in1k,224,93.110,6.890,98.600,1.400,25.56,0.875,bicubic +repvgg_b1g4.rvgg_in1k,224,93.060,6.940,98.820,1.180,39.97,0.875,bilinear +levit_128.fb_dist_in1k,224,93.060,6.940,98.670,1.330,9.21,0.900,bicubic +regnety_016.pycls_in1k,224,93.060,6.940,98.660,1.340,11.20,0.875,bicubic +efficientnet_b1_pruned.in1k,240,93.060,6.940,98.560,1.440,6.33,0.882,bicubic +seresnext26d_32x4d.bt_in1k,288,93.050,6.950,98.710,1.290,16.81,0.950,bicubic +levit_conv_128.fb_dist_in1k,224,93.050,6.950,98.690,1.310,9.21,0.900,bicubic +tf_mixnet_l.in1k,224,93.050,6.950,98.550,1.450,7.33,0.875,bicubic +tf_efficientnetv2_b0.in1k,224,93.040,6.960,98.700,1.300,7.14,0.875,bicubic +efficientnet_b1.ft_in1k,256,93.020,6.980,98.710,1.290,7.79,1.000,bicubic +res2net50_14w_8s.in1k,224,93.020,6.980,98.700,1.300,25.06,0.875,bilinear +hardcorenas_f.miil_green_in1k,224,93.020,6.980,98.650,1.350,8.20,0.875,bilinear +resnet34.a1_in1k,288,93.020,6.980,98.590,1.410,21.80,1.000,bicubic +densenetblur121d.ra_in1k,288,93.010,6.990,98.600,1.400,8.00,0.950,bicubic +mobileone_s3.apple_in1k,224,93.000,7.000,98.610,1.390,10.17,0.900,bilinear +selecsls60.in1k,224,92.990,7.010,98.830,1.170,30.67,0.875,bicubic +hrnet_w32.ms_in1k,224,92.970,7.030,98.830,1.170,41.23,0.875,bilinear +hrnet_w18_small_v2.gluon_in1k,224,92.970,7.030,98.780,1.220,15.60,0.875,bicubic +visformer_tiny.in1k,224,92.970,7.030,98.740,1.260,10.32,0.900,bicubic +seresnext26ts.ch_in1k,288,92.970,7.030,98.710,1.290,10.39,1.000,bicubic +resnet50.a3_in1k,224,92.970,7.030,98.550,1.450,25.56,0.950,bicubic +dpn68b.mx_in1k,224,92.970,7.030,98.500,1.500,12.61,0.875,bicubic +inception_v3.tf_adv_in1k,299,92.970,7.030,98.490,1.510,23.83,0.875,bicubic +efficientnet_es.ra_in1k,224,92.960,7.040,98.690,1.310,5.44,0.875,bicubic +resnet26t.ra2_in1k,320,92.960,7.040,98.680,1.320,16.01,1.000,bicubic +densenet161.tv_in1k,224,92.950,7.050,98.800,1.200,28.68,0.875,bicubic +convnext_atto_ols.a2_in1k,288,92.950,7.050,98.660,1.340,3.70,0.950,bicubic +hardcorenas_e.miil_green_in1k,224,92.950,7.050,98.580,1.420,8.07,0.875,bilinear +tf_efficientnet_b1.in1k,240,92.940,7.060,98.660,1.340,7.79,0.882,bicubic +resnet50c.gluon_in1k,224,92.930,7.070,98.710,1.290,25.58,0.875,bicubic +fbnetv3_b.ra2_in1k,224,92.920,7.080,98.760,1.240,8.60,0.950,bilinear +convnextv2_atto.fcmae_ft_in1k,288,92.910,7.090,98.560,1.440,3.71,0.950,bicubic +poolformerv2_s12.sail_in1k,224,92.910,7.090,98.530,1.470,11.89,1.000,bicubic +pit_xs_224.in1k,224,92.900,7.100,98.790,1.210,10.62,0.900,bicubic +resnext50_32x4d.tv_in1k,224,92.900,7.100,98.730,1.270,25.03,0.875,bilinear +resnetrs50.tf_in1k,160,92.900,7.100,98.600,1.400,35.69,0.910,bicubic +inception_v3.tv_in1k,299,92.900,7.100,98.320,1.680,23.83,0.875,bicubic +resnet101.tv_in1k,224,92.890,7.110,98.650,1.350,44.55,0.875,bilinear +convnext_femto_ols.d1_in1k,224,92.880,7.120,98.690,1.310,5.23,0.875,bicubic +resmlp_12_224.fb_distilled_in1k,224,92.880,7.120,98.660,1.340,15.35,0.875,bicubic +coat_lite_tiny.in1k,224,92.880,7.120,98.650,1.350,5.72,0.900,bicubic +convnext_femto.d1_in1k,224,92.880,7.120,98.600,1.400,5.22,0.875,bicubic +resnet101.a3_in1k,160,92.880,7.120,98.520,1.480,44.55,0.950,bicubic +tf_efficientnet_cc_b0_8e.in1k,224,92.880,7.120,98.510,1.490,24.01,0.875,bicubic +tf_efficientnet_cc_b0_4e.in1k,224,92.860,7.140,98.440,1.560,13.31,0.875,bicubic +hgnetv2_b0.ssld_stage2_ft_in1k,224,92.840,7.160,98.690,1.310,6.00,0.965,bicubic +rexnet_100.nav_in1k,224,92.840,7.160,98.640,1.360,4.80,0.875,bicubic +tinynet_a.in1k,192,92.820,7.180,98.570,1.430,6.19,0.875,bicubic +gcresnext26ts.ch_in1k,288,92.810,7.190,98.610,1.390,10.48,1.000,bicubic +seresnext26ts.ch_in1k,256,92.810,7.190,98.600,1.400,10.39,0.900,bicubic +res2net50_48w_2s.in1k,224,92.810,7.190,98.450,1.550,25.29,0.875,bilinear +cs3darknet_focus_m.c2ns_in1k,256,92.800,7.200,98.600,1.400,9.30,0.887,bicubic +seresnext26t_32x4d.bt_in1k,224,92.800,7.200,98.540,1.460,16.81,0.875,bicubic +convnext_atto.d2_in1k,288,92.780,7.220,98.600,1.400,3.70,0.950,bicubic +crossvit_9_dagger_240.in1k,240,92.780,7.220,98.500,1.500,8.78,0.875,bicubic +eca_resnext26ts.ch_in1k,288,92.770,7.230,98.710,1.290,10.30,1.000,bicubic +hrnet_w18.ms_in1k,224,92.750,7.250,98.650,1.350,21.30,0.875,bilinear +densenet121.ra_in1k,288,92.750,7.250,98.630,1.370,7.98,0.950,bicubic +densenet201.tv_in1k,224,92.740,7.260,98.680,1.320,20.01,0.875,bicubic +ese_vovnet19b_dw.ra_in1k,288,92.740,7.260,98.650,1.350,6.54,0.950,bicubic +dla60.in1k,224,92.710,7.290,98.620,1.380,22.04,0.875,bilinear +tf_efficientnet_lite2.in1k,260,92.710,7.290,98.550,1.450,6.09,0.890,bicubic +cs3darknet_m.c2ns_in1k,256,92.700,7.300,98.680,1.320,9.31,0.887,bicubic +resnet34d.ra2_in1k,224,92.680,7.320,98.450,1.550,21.82,0.875,bicubic +hgnetv2_b0.ssld_stage1_in22k_in1k,224,92.670,7.330,98.690,1.310,6.00,0.965,bicubic +legacy_seresnet50.in1k,224,92.670,7.330,98.660,1.340,28.09,0.875,bilinear +resnet26t.ra2_in1k,256,92.670,7.330,98.600,1.400,16.01,0.940,bicubic +gmixer_24_224.ra3_in1k,224,92.670,7.330,98.240,1.760,24.72,0.875,bicubic +mobilenetv2_120d.ra_in1k,224,92.660,7.340,98.560,1.440,5.83,0.875,bicubic +repvgg_a2.rvgg_in1k,224,92.660,7.340,98.530,1.470,28.21,0.875,bilinear +mobileone_s2.apple_in1k,224,92.630,7.370,98.680,1.320,7.88,0.900,bilinear +hardcorenas_d.miil_green_in1k,224,92.620,7.380,98.480,1.520,7.50,0.875,bilinear +tf_efficientnet_b0.ap_in1k,224,92.620,7.380,98.410,1.590,5.29,0.875,bicubic +ecaresnet50t.a3_in1k,160,92.600,7.400,98.600,1.400,25.57,0.950,bicubic +regnetx_016.pycls_in1k,224,92.600,7.400,98.570,1.430,9.19,0.875,bicubic +resnet26d.bt_in1k,288,92.590,7.410,98.640,1.360,16.01,0.950,bicubic +resnet34.a2_in1k,288,92.590,7.410,98.600,1.400,21.80,1.000,bicubic +legacy_seresnext26_32x4d.in1k,224,92.590,7.410,98.450,1.550,16.79,0.875,bicubic +fastvit_t8.apple_dist_in1k,256,92.590,7.410,98.430,1.570,4.03,0.900,bicubic +resnet50.gluon_in1k,224,92.570,7.430,98.540,1.460,25.56,0.875,bicubic +skresnet34.ra_in1k,224,92.570,7.430,98.510,1.490,22.28,0.875,bicubic +xcit_tiny_12_p16_224.fb_in1k,224,92.540,7.460,98.650,1.350,6.72,1.000,bicubic +poolformer_s12.sail_in1k,224,92.510,7.490,98.390,1.610,11.92,0.900,bicubic +selecsls42b.in1k,224,92.480,7.520,98.440,1.560,32.46,0.875,bicubic +mobilenetv1_125.ra4_e3600_r224_in1k,256,92.470,7.530,98.580,1.420,6.27,1.000,bicubic +efficientnet_b0.ra_in1k,224,92.460,7.540,98.680,1.320,5.29,0.875,bicubic +seresnext26d_32x4d.bt_in1k,224,92.460,7.540,98.540,1.460,16.81,0.875,bicubic +gcresnext26ts.ch_in1k,256,92.460,7.540,98.510,1.490,10.48,0.900,bicubic +regnetx_008.tv2_in1k,224,92.460,7.540,98.450,1.550,7.26,0.965,bicubic +eca_resnext26ts.ch_in1k,256,92.450,7.550,98.610,1.390,10.30,0.900,bicubic +gernet_s.idstcv_in1k,224,92.440,7.560,98.500,1.500,8.17,0.875,bilinear +resnext26ts.ra2_in1k,288,92.430,7.570,98.390,1.610,10.30,1.000,bicubic +repghostnet_150.in1k,224,92.400,7.600,98.540,1.460,6.58,0.875,bicubic +xcit_nano_12_p8_224.fb_dist_in1k,224,92.400,7.600,98.520,1.480,3.05,1.000,bicubic +densenetblur121d.ra_in1k,224,92.400,7.600,98.410,1.590,8.00,0.875,bicubic +tf_efficientnet_b0.aa_in1k,224,92.390,7.610,98.480,1.520,5.29,0.875,bicubic +seresnet50.a3_in1k,224,92.380,7.620,98.330,1.670,28.09,0.950,bicubic +resnext50_32x4d.a3_in1k,160,92.350,7.650,98.360,1.640,25.03,0.950,bicubic +mobilenetv1_100h.ra4_e3600_r224_in1k,256,92.350,7.650,98.260,1.740,5.28,0.950,bicubic +densenet169.tv_in1k,224,92.340,7.660,98.570,1.430,14.15,0.875,bicubic +efficientnet_b1.ft_in1k,224,92.340,7.660,98.360,1.640,7.79,0.875,bicubic +convmixer_1024_20_ks9_p14.in1k,224,92.330,7.670,98.410,1.590,24.38,0.960,bicubic +resnet34.bt_in1k,288,92.320,7.680,98.640,1.360,21.80,0.950,bicubic +hardcorenas_c.miil_green_in1k,224,92.320,7.680,98.330,1.670,5.52,0.875,bilinear +tf_efficientnet_lite1.in1k,240,92.310,7.690,98.520,1.480,5.42,0.882,bicubic +dpn68.mx_in1k,224,92.290,7.710,98.600,1.400,12.61,0.875,bicubic +resnet50d.a3_in1k,160,92.280,7.720,98.330,1.670,25.58,0.950,bicubic +tf_efficientnet_b0.in1k,224,92.270,7.730,98.560,1.440,5.29,0.875,bicubic +ghostnetv2_130.in1k,224,92.270,7.730,98.370,1.630,8.96,0.875,bicubic +mixnet_m.ft_in1k,224,92.270,7.730,98.370,1.630,5.01,0.875,bicubic +tf_efficientnetv2_b0.in1k,192,92.260,7.740,98.370,1.630,7.14,0.875,bicubic +resnext26ts.ra2_in1k,256,92.260,7.740,98.270,1.730,10.30,0.900,bicubic +vit_small_patch32_224.augreg_in21k_ft_in1k,224,92.250,7.750,98.480,1.520,22.88,0.900,bicubic +resnet26d.bt_in1k,224,92.230,7.770,98.470,1.530,16.01,0.875,bicubic +mobilenetv3_large_100.miil_in21k_ft_in1k,224,92.230,7.770,98.230,1.770,5.48,0.875,bilinear +convnext_atto.d2_in1k,224,92.220,7.780,98.310,1.690,3.70,0.875,bicubic +tf_mixnet_m.in1k,224,92.200,7.800,98.420,1.580,5.01,0.875,bicubic +convnextv2_atto.fcmae_ft_in1k,224,92.190,7.810,98.360,1.640,3.71,0.875,bicubic +resnet26.bt_in1k,288,92.160,7.840,98.550,1.450,16.00,0.950,bicubic +resnet50.tv_in1k,224,92.150,7.850,98.390,1.610,25.56,0.875,bilinear +resmlp_12_224.fb_in1k,224,92.130,7.870,98.570,1.430,15.35,0.875,bicubic +xcit_nano_12_p16_384.fb_dist_in1k,384,92.130,7.870,98.520,1.480,3.05,1.000,bicubic +efficientvit_m5.r224_in1k,224,92.130,7.870,98.510,1.490,12.47,0.875,bicubic +tf_efficientnet_es.in1k,224,92.100,7.900,98.430,1.570,5.44,0.875,bicubic +convnext_atto_ols.a2_in1k,224,92.100,7.900,98.380,1.620,3.70,0.875,bicubic +mobilenetv1_100.ra4_e3600_r224_in1k,256,92.080,7.920,98.350,1.650,4.23,0.950,bicubic +mobilenetv1_125.ra4_e3600_r224_in1k,224,92.080,7.920,98.350,1.650,6.27,0.900,bicubic +mobilenetv2_140.ra_in1k,224,92.080,7.920,98.270,1.730,6.11,0.875,bicubic +ese_vovnet19b_dw.ra_in1k,224,92.010,7.990,98.520,1.480,6.54,0.875,bicubic +mobilevitv2_075.cvnets_in1k,256,92.010,7.990,98.320,1.680,2.87,0.888,bicubic +hardcorenas_b.miil_green_in1k,224,91.960,8.040,98.420,1.580,5.18,0.875,bilinear +vit_tiny_patch16_224.augreg_in21k_ft_in1k,224,91.950,8.050,98.330,1.670,5.72,0.900,bicubic +fastvit_t8.apple_in1k,256,91.940,8.060,98.410,1.590,4.03,0.900,bicubic +densenet121.ra_in1k,224,91.940,8.060,98.280,1.720,7.98,0.875,bicubic +resnet34.a1_in1k,224,91.930,8.070,98.390,1.610,21.80,0.950,bicubic +repghostnet_130.in1k,224,91.930,8.070,98.360,1.640,5.48,0.875,bicubic +regnety_008.pycls_in1k,224,91.880,8.120,98.420,1.580,6.26,0.875,bicubic +efficientformerv2_s0.snap_dist_in1k,224,91.860,8.140,98.370,1.630,3.60,0.950,bicubic +mixnet_s.ft_in1k,224,91.820,8.180,98.340,1.660,4.13,0.875,bicubic +mobileone_s1.apple_in1k,224,91.780,8.220,98.470,1.530,4.83,0.900,bilinear +resnet34.a2_in1k,224,91.770,8.230,98.260,1.740,21.80,0.950,bicubic +repvgg_b0.rvgg_in1k,224,91.710,8.290,98.460,1.540,15.82,0.875,bilinear +vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,384,91.710,8.290,98.420,1.580,6.36,1.000,bicubic +efficientnet_es_pruned.in1k,224,91.710,8.290,98.400,1.600,5.44,0.875,bicubic +tf_mixnet_s.in1k,224,91.710,8.290,98.230,1.770,4.13,0.875,bicubic +hardcorenas_a.miil_green_in1k,224,91.680,8.320,98.140,1.860,5.26,0.875,bilinear +semnasnet_100.rmsp_in1k,224,91.660,8.340,98.260,1.740,3.89,0.875,bicubic +resnet50.a3_in1k,160,91.660,8.340,98.060,1.940,25.56,0.950,bicubic +mobilenetv1_100h.ra4_e3600_r224_in1k,224,91.650,8.350,98.060,1.940,5.28,0.875,bicubic +ghostnetv2_100.in1k,224,91.630,8.370,98.280,1.720,6.16,0.875,bicubic +regnety_006.pycls_in1k,224,91.600,8.400,98.420,1.580,6.06,0.875,bicubic +regnety_004.tv2_in1k,224,91.590,8.410,98.300,1.700,4.34,0.965,bicubic +edgenext_x_small.in1k,288,91.590,8.410,98.190,1.810,2.34,1.000,bicubic +levit_128s.fb_dist_in1k,224,91.580,8.420,98.420,1.580,7.78,0.900,bicubic +mobilenetv3_rw.rmsp_in1k,224,91.550,8.450,98.270,1.730,5.48,0.875,bicubic +levit_conv_128s.fb_dist_in1k,224,91.540,8.460,98.430,1.570,7.78,0.900,bicubic +legacy_seresnet34.in1k,224,91.480,8.520,98.220,1.780,21.96,0.875,bilinear +mobilenetv3_large_100.ra_in1k,224,91.470,8.530,98.320,1.680,5.48,0.875,bicubic +resnet26.bt_in1k,224,91.460,8.540,98.270,1.730,16.00,0.875,bicubic +densenet121.tv_in1k,224,91.440,8.560,98.240,1.760,7.98,0.875,bicubic +edgenext_x_small.in1k,256,91.430,8.570,98.160,1.840,2.34,0.900,bicubic +tf_mobilenetv3_large_100.in1k,224,91.410,8.590,98.240,1.760,5.48,0.875,bilinear +tf_efficientnet_lite0.in1k,224,91.360,8.640,98.090,1.910,4.65,0.875,bicubic +mobilenetv1_100.ra4_e3600_r224_in1k,224,91.350,8.650,98.140,1.860,4.23,0.875,bicubic +mobilenetv2_110d.ra_in1k,224,91.320,8.680,98.150,1.850,4.52,0.875,bicubic +efficientnet_lite0.ra_in1k,224,91.270,8.730,98.230,1.770,4.65,0.875,bicubic +mobilevit_xs.cvnets_in1k,256,91.270,8.730,98.220,1.780,2.32,0.900,bicubic +seresnet50.a3_in1k,160,91.270,8.730,97.950,2.050,28.09,0.950,bicubic +dla34.in1k,224,91.260,8.740,98.160,1.840,15.74,0.875,bilinear +mnasnet_100.rmsp_in1k,224,91.260,8.740,98.030,1.970,4.38,0.875,bicubic +fbnetc_100.rmsp_in1k,224,91.250,8.750,97.830,2.170,5.57,0.875,bilinear +regnetx_008.pycls_in1k,224,91.220,8.780,98.380,1.620,7.26,0.875,bicubic +resnet34.bt_in1k,224,91.200,8.800,98.200,1.800,21.80,0.875,bicubic +hrnet_w18_small_v2.ms_in1k,224,91.190,8.810,98.350,1.650,15.60,0.875,bilinear +xcit_nano_12_p8_224.fb_in1k,224,91.190,8.810,98.280,1.720,3.05,1.000,bicubic +repvgg_a1.rvgg_in1k,224,91.160,8.840,98.190,1.810,14.09,0.875,bilinear +regnetx_004_tv.tv2_in1k,224,91.160,8.840,98.100,1.900,5.50,0.965,bicubic +resnest14d.gluon_in1k,224,91.140,8.860,98.350,1.650,10.61,0.875,bilinear +deit_tiny_distilled_patch16_224.fb_in1k,224,91.130,8.870,98.270,1.730,5.91,0.900,bicubic +tinynet_b.in1k,188,91.130,8.870,98.070,1.930,3.73,0.875,bicubic +mixer_b16_224.goog_in21k_ft_in1k,224,91.120,8.880,97.410,2.590,59.88,0.875,bicubic +resnet34.gluon_in1k,224,91.110,8.890,98.180,1.820,21.80,0.875,bicubic +repghostnet_111.in1k,224,91.110,8.890,98.050,1.950,4.54,0.875,bicubic +mobilenetv4_conv_small.e2400_r224_in1k,256,91.100,8.900,98.080,1.920,3.77,0.950,bicubic +crossvit_9_240.in1k,240,91.070,8.930,98.310,1.690,8.55,0.875,bicubic +resnet18.fb_swsl_ig1b_ft_in1k,224,91.060,8.940,98.200,1.800,11.69,0.875,bilinear +vgg19_bn.tv_in1k,224,90.980,9.020,98.120,1.880,143.68,0.875,bilinear +resnet18d.ra2_in1k,288,90.770,9.230,98.150,1.850,11.71,0.950,bicubic +regnety_004.pycls_in1k,224,90.760,9.240,98.070,1.930,4.34,0.875,bicubic +efficientvit_m4.r224_in1k,224,90.760,9.240,98.040,1.960,8.80,0.875,bicubic +pit_ti_distilled_224.in1k,224,90.750,9.250,98.250,1.750,5.10,0.900,bicubic +regnetx_006.pycls_in1k,224,90.750,9.250,98.090,1.910,6.20,0.875,bicubic +resnet18.fb_ssl_yfcc100m_ft_in1k,224,90.690,9.310,98.040,1.960,11.69,0.875,bilinear +spnasnet_100.rmsp_in1k,224,90.670,9.330,97.960,2.040,4.42,0.875,bilinear +repghostnet_100.in1k,224,90.660,9.340,98.110,1.890,4.07,0.875,bicubic +convit_tiny.fb_in1k,224,90.580,9.420,98.200,1.800,5.71,0.875,bicubic +vit_base_patch32_224.augreg_in1k,224,90.580,9.420,97.740,2.260,88.22,0.900,bicubic +crossvit_tiny_240.in1k,240,90.540,9.460,97.960,2.040,7.01,0.875,bicubic +mobilenetv4_conv_small.e2400_r224_in1k,224,90.540,9.460,97.820,2.180,3.77,0.875,bicubic +vgg16_bn.tv_in1k,224,90.520,9.480,97.990,2.010,138.37,0.875,bilinear +ghostnet_100.in1k,224,90.470,9.530,97.930,2.070,5.18,0.875,bicubic +pit_ti_224.in1k,224,90.450,9.550,98.010,1.990,4.85,0.900,bicubic +tf_mobilenetv3_large_075.in1k,224,90.330,9.670,97.860,2.140,3.99,0.875,bilinear +hrnet_w18_small.gluon_in1k,224,90.310,9.690,97.760,2.240,13.19,0.875,bicubic +resnet34.a3_in1k,224,90.300,9.700,97.890,2.110,21.80,0.950,bicubic +resnet34.tv_in1k,224,90.290,9.710,97.970,2.030,21.80,0.875,bilinear +semnasnet_075.rmsp_in1k,224,90.280,9.720,97.930,2.070,2.91,0.875,bicubic +mobilenetv4_conv_small.e1200_r224_in1k,256,90.260,9.740,98.090,1.910,3.77,0.950,bicubic +xcit_nano_12_p16_224.fb_dist_in1k,224,90.210,9.790,97.760,2.240,3.05,1.000,bicubic +resnet18.a1_in1k,288,90.190,9.810,97.780,2.220,11.69,1.000,bicubic +skresnet18.ra_in1k,224,90.170,9.830,97.780,2.220,11.96,0.875,bicubic +mobilenetv4_conv_small.e1200_r224_in1k,224,90.130,9.870,97.980,2.020,3.77,0.875,bicubic +efficientvit_m3.r224_in1k,224,90.060,9.940,97.830,2.170,6.90,0.875,bicubic +resnet18d.ra2_in1k,224,90.020,9.980,97.840,2.160,11.71,0.875,bicubic +hrnet_w18_small.ms_in1k,224,89.880,10.120,97.890,2.110,13.19,0.875,bilinear +mobilenetv2_100.ra_in1k,224,89.880,10.120,97.820,2.180,3.50,0.875,bicubic +vit_base_patch32_224.sam_in1k,224,89.880,10.120,97.600,2.400,88.22,0.900,bicubic +repvgg_a0.rvgg_in1k,224,89.810,10.190,97.790,2.210,9.11,0.875,bilinear +edgenext_xx_small.in1k,288,89.810,10.190,97.500,2.500,1.33,1.000,bicubic +vgg19.tv_in1k,224,89.700,10.300,97.530,2.470,143.67,0.875,bilinear +deit_tiny_patch16_224.fb_in1k,224,89.640,10.360,97.960,2.040,5.72,0.900,bicubic +resnet18.a2_in1k,288,89.540,10.460,97.660,2.340,11.69,1.000,bicubic +regnetx_004.pycls_in1k,224,89.490,10.510,97.820,2.180,5.16,0.875,bicubic +repghostnet_080.in1k,224,89.470,10.530,97.440,2.560,3.28,0.875,bicubic +vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,224,89.410,10.590,97.700,2.300,6.34,0.900,bicubic +vgg16.tv_in1k,224,89.400,10.600,97.500,2.500,138.36,0.875,bilinear +legacy_seresnet18.in1k,224,89.290,10.710,97.710,2.290,11.78,0.875,bicubic +edgenext_xx_small.in1k,256,89.260,10.740,97.250,2.750,1.33,0.900,bicubic +resnet14t.c3_in1k,224,89.240,10.760,97.450,2.550,10.08,0.950,bicubic +vgg13_bn.tv_in1k,224,89.230,10.770,97.520,2.480,133.05,0.875,bilinear +tf_mobilenetv3_large_minimal_100.in1k,224,89.200,10.800,97.290,2.710,3.92,0.875,bilinear +resnet18.a1_in1k,224,89.150,10.850,97.330,2.670,11.69,0.950,bicubic +mobilevitv2_050.cvnets_in1k,256,89.060,10.940,97.590,2.410,1.37,0.888,bicubic +pvt_v2_b0.in1k,224,88.990,11.010,97.680,2.320,3.67,0.900,bicubic +efficientvit_m2.r224_in1k,224,88.940,11.060,97.350,2.650,4.19,0.875,bicubic +lcnet_100.ra2_in1k,224,88.920,11.080,97.370,2.630,2.95,0.875,bicubic +xcit_nano_12_p16_224.fb_in1k,224,88.900,11.100,97.440,2.560,3.05,1.000,bicubic +mobileone_s0.apple_in1k,224,88.780,11.220,97.230,2.770,5.29,0.875,bilinear +resnet18.gluon_in1k,224,88.690,11.310,97.110,2.890,11.69,0.875,bicubic +resnet34.a3_in1k,160,88.650,11.350,97.370,2.630,21.80,0.950,bicubic +resnet14t.c3_in1k,176,88.470,11.530,96.950,3.050,10.08,0.875,bicubic +tinynet_c.in1k,184,88.420,11.580,97.270,2.730,2.46,0.875,bicubic +vgg11_bn.tv_in1k,224,88.410,11.590,97.280,2.720,132.87,0.875,bilinear +efficientvit_b0.r224_in1k,224,88.270,11.730,96.880,3.120,3.41,0.950,bicubic +regnety_002.pycls_in1k,224,88.210,11.790,97.430,2.570,3.16,0.875,bicubic +resnet18.a2_in1k,224,88.210,11.790,97.180,2.820,11.69,0.950,bicubic +resnet18.tv_in1k,224,88.200,11.800,97.110,2.890,11.69,0.875,bilinear +mobilevit_xxs.cvnets_in1k,256,87.970,12.030,97.190,2.810,1.27,0.900,bicubic +vgg13.tv_in1k,224,87.550,12.450,97.120,2.880,133.05,0.875,bilinear +vgg11.tv_in1k,224,87.340,12.660,97.130,2.870,132.86,0.875,bilinear +regnetx_002.pycls_in1k,224,87.340,12.660,96.980,3.020,2.68,0.875,bicubic +efficientvit_m1.r224_in1k,224,87.190,12.810,97.000,3.000,2.98,0.875,bicubic +repghostnet_058.in1k,224,87.190,12.810,96.710,3.290,2.55,0.875,bicubic +dla60x_c.in1k,224,87.110,12.890,97.150,2.850,1.32,0.875,bilinear +resnet18.a3_in1k,224,87.020,12.980,96.670,3.330,11.69,0.950,bicubic +lcnet_075.ra2_in1k,224,87.010,12.990,96.550,3.450,2.36,0.875,bicubic +mixer_l16_224.goog_in21k_ft_in1k,224,87.000,13.000,94.020,5.980,208.20,0.875,bicubic +resnet10t.c3_in1k,224,86.710,13.290,96.730,3.270,5.44,0.950,bicubic +mobilenetv3_small_100.lamb_in1k,224,86.200,13.800,96.470,3.530,2.54,0.875,bicubic +tf_mobilenetv3_small_100.in1k,224,86.010,13.990,96.390,3.610,2.54,0.875,bilinear +repghostnet_050.in1k,224,85.560,14.440,96.110,3.890,2.31,0.875,bicubic +resnet10t.c3_in1k,176,85.490,14.510,96.290,3.710,5.44,0.875,bicubic +mnasnet_small.lamb_in1k,224,85.490,14.510,95.970,4.030,2.03,0.875,bicubic +tinynet_d.in1k,152,85.480,14.520,96.020,3.980,2.34,0.875,bicubic +dla46x_c.in1k,224,85.450,14.550,96.450,3.550,1.07,0.875,bilinear +resnet18.a3_in1k,160,85.040,14.960,95.940,4.060,11.69,0.950,bicubic +mobilenetv2_050.lamb_in1k,224,84.990,15.010,95.640,4.360,1.97,0.875,bicubic +dla46_c.in1k,224,84.720,15.280,96.210,3.790,1.30,0.875,bilinear +tf_mobilenetv3_small_075.in1k,224,84.520,15.480,95.790,4.210,2.04,0.875,bilinear +mobilenetv3_small_075.lamb_in1k,224,84.140,15.860,95.500,4.500,2.04,0.875,bicubic +efficientvit_m0.r224_in1k,224,83.340,16.660,95.630,4.370,2.35,0.875,bicubic +lcnet_050.ra2_in1k,224,83.130,16.870,94.950,5.050,1.88,0.875,bicubic +tf_mobilenetv3_small_minimal_100.in1k,224,82.640,17.360,94.990,5.010,2.04,0.875,bilinear +tinynet_e.in1k,106,79.840,20.160,94.000,6.000,2.04,0.875,bicubic +mobilenetv3_small_050.lamb_in1k,224,78.090,21.910,93.040,6.960,1.59,0.875,bicubic +test_efficientnet.r160_in1k,160,67.700,32.300,88.400,11.600,0.36,0.875,bicubic +test_byobnet.r160_in1k,160,67.360,32.640,88.390,11.610,0.46,0.875,bicubic +test_vit.r160_in1k,160,63.990,36.010,87.680,12.320,0.37,0.875,bicubic diff --git a/pytorch-image-models/results/results-imagenet-r.csv b/pytorch-image-models/results/results-imagenet-r.csv new file mode 100644 index 0000000000000000000000000000000000000000..c29d3ae70493dc83e2bf3f752b316062eed16a7d --- /dev/null +++ b/pytorch-image-models/results/results-imagenet-r.csv @@ -0,0 +1,1446 @@ +model,img_size,top1,top1_err,top5,top5_err,param_count,crop_pct,interpolation,top1_diff,top5_diff,rank_diff +convnext_xxlarge.clip_laion2b_soup_ft_in1k,256,90.617,9.383,97.913,2.087,846.47,1.000,bicubic,-7.153,-1.897,+15 +eva_giant_patch14_336.clip_ft_in1k,336,90.517,9.483,97.213,2.787,"1,013.01",1.000,bicubic,-7.343,-2.577,+6 +eva02_large_patch14_448.mim_m38m_ft_in1k,448,90.477,9.523,97.277,2.723,305.08,1.000,bicubic,-7.343,-2.573,+7 +eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,448,90.247,9.753,97.177,2.823,305.08,1.000,bicubic,-7.783,-2.713,-2 +eva_giant_patch14_224.clip_ft_in1k,224,89.837,10.163,97.023,2.977,"1,012.56",0.900,bicubic,-7.733,-2.687,+30 +eva_giant_patch14_336.m30m_ft_in22k_in1k,336,88.620,11.380,95.947,4.053,"1,013.01",1.000,bicubic,-9.400,-3.953,-3 +eva_giant_patch14_560.m30m_ft_in22k_in1k,560,88.413,11.587,95.630,4.370,"1,014.45",1.000,bicubic,-9.577,-4.230,-3 +regnety_1280.swag_ft_in1k,384,88.313,11.687,96.490,3.510,644.81,1.000,bicubic,-9.447,-3.300,+10 +eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,448,87.833,12.167,95.503,4.497,305.08,1.000,bicubic,-10.327,-4.377,-8 +eva02_large_patch14_448.mim_in22k_ft_in1k,448,87.530,12.470,95.757,4.243,305.08,1.000,bicubic,-10.330,-4.043,-3 +regnety_1280.swag_lc_in1k,224,86.943,13.057,95.730,4.270,644.81,0.965,bicubic,-10.477,-4.010,+34 +convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,384,84.577,15.423,94.400,5.600,200.13,1.000,bicubic,-12.813,-5.340,+37 +vit_large_patch14_clip_336.openai_ft_in12k_in1k,336,83.973,16.027,93.903,6.097,304.53,1.000,bicubic,-13.647,-5.907,+17 +vit_large_patch14_clip_336.laion2b_ft_in1k,336,83.650,16.350,93.487,6.513,304.53,1.000,bicubic,-13.590,-6.233,+66 +eva_large_patch14_336.in22k_ft_in1k,336,83.527,16.473,93.143,6.857,304.53,1.000,bicubic,-14.293,-6.687,-6 +vit_huge_patch14_clip_224.laion2b_ft_in1k,224,83.273,16.727,93.123,6.877,632.05,1.000,bicubic,-13.837,-6.577,+89 +vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,336,83.063,16.937,92.867,7.133,632.46,1.000,bicubic,-14.557,-6.893,+12 +vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,224,82.963,17.037,92.657,7.343,632.05,1.000,bicubic,-14.387,-7.143,+38 +vit_large_patch14_clip_224.openai_ft_in1k,224,82.397,17.603,92.967,7.033,304.20,1.000,bicubic,-15.053,-6.783,+24 +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,384,82.273,17.727,92.437,7.563,200.13,1.000,bicubic,-15.197,-7.323,+19 +vit_large_patch14_clip_224.laion2b_ft_in1k,224,81.697,18.303,92.240,7.760,304.20,1.000,bicubic,-15.333,-7.370,+102 +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,320,81.467,18.533,92.060,7.940,200.13,1.000,bicubic,-15.823,-7.680,+47 +regnety_320.swag_lc_in1k,224,81.460,18.540,93.313,6.687,145.05,0.965,bicubic,-15.400,-6.347,+136 +eva_large_patch14_196.in22k_ft_in1k,196,81.297,18.703,91.553,8.447,304.14,1.000,bicubic,-16.233,-8.237,+12 +regnety_320.swag_ft_in1k,384,81.263,18.737,92.720,7.280,145.05,1.000,bicubic,-16.137,-7.040,+22 +convnext_large_mlp.clip_laion2b_augreg_ft_in1k,256,80.990,19.010,91.943,8.057,200.13,1.000,bicubic,-16.140,-7.737,+75 +eva_large_patch14_336.in22k_ft_in22k_in1k,336,80.093,19.907,89.333,10.667,304.53,1.000,bicubic,-17.807,-10.547,-22 +resnext101_32x32d.fb_wsl_ig1b_ft_in1k,224,79.520,20.480,89.243,10.757,468.53,0.875,bilinear,-17.270,-10.287,+151 +resnext101_32x16d.fb_wsl_ig1b_ft_in1k,224,78.897,21.103,88.460,11.540,194.03,0.875,bilinear,-17.583,-11.020,+230 +vit_large_patch14_clip_224.openai_ft_in12k_in1k,224,78.730,21.270,89.010,10.990,304.20,1.000,bicubic,-18.910,-10.720,-3 +eva_large_patch14_196.in22k_ft_in22k_in1k,196,78.510,21.490,88.323,11.677,304.14,1.000,bicubic,-19.110,-11.407,-3 +vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,336,78.497,21.503,88.580,11.420,304.53,1.000,bicubic,-18.963,-11.200,+9 +vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,224,78.293,21.707,88.787,11.213,304.20,1.000,bicubic,-19.097,-10.943,+15 +regnety_160.swag_lc_in1k,224,78.223,21.777,91.697,8.303,83.59,0.965,bicubic,-18.207,-8.063,+237 +regnety_160.swag_ft_in1k,384,77.717,22.283,90.713,9.287,83.59,1.000,bicubic,-19.453,-9.067,+61 +eva02_base_patch14_448.mim_in22k_ft_in1k,448,77.533,22.467,89.323,10.677,87.12,1.000,bicubic,-20.177,-10.437,-14 +eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,448,77.430,22.570,88.423,11.577,87.12,1.000,bicubic,-20.170,-11.397,-6 +tf_efficientnet_l2.ns_jft_in1k_475,475,76.350,23.650,88.520,11.480,480.31,0.936,bicubic,-21.420,-11.370,-21 +beitv2_large_patch16_224.in1k_ft_in22k_in1k,224,76.303,23.697,87.063,12.937,304.43,0.950,bicubic,-21.457,-12.787,-18 +resnext101_32x16d.fb_swsl_ig1b_ft_in1k,224,76.220,23.780,87.740,12.260,194.03,0.875,bilinear,-20.050,-11.750,+277 +convnextv2_huge.fcmae_ft_in22k_in1k_384,384,75.970,24.030,86.617,13.383,660.29,1.000,bicubic,-21.890,-13.293,-35 +resnext101_32x8d.fb_wsl_ig1b_ft_in1k,224,75.873,24.127,86.257,13.743,88.79,0.875,bilinear,-20.077,-13.113,+377 +convnextv2_huge.fcmae_ft_in22k_in1k_512,512,75.837,24.163,86.933,13.067,660.29,1.000,bicubic,-21.973,-12.927,-31 +resnext101_32x8d.fb_swsl_ig1b_ft_in1k,224,75.590,24.410,87.037,12.963,88.79,0.875,bilinear,-20.680,-12.553,+272 +convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,384,75.207,24.793,88.483,11.517,88.59,1.000,bicubic,-21.853,-11.107,+72 +convnext_base.clip_laiona_augreg_ft_in1k_384,384,75.163,24.837,88.520,11.480,88.59,1.000,bicubic,-21.697,-11.170,+114 +tf_efficientnet_l2.ns_jft_in1k,800,74.590,25.410,87.487,12.513,480.31,0.960,bicubic,-23.180,-12.323,-34 +convnext_base.clip_laion2b_augreg_ft_in12k_in1k,256,73.703,26.297,87.303,12.697,88.59,1.000,bicubic,-23.097,-12.337,+126 +convnext_base.clip_laion2b_augreg_ft_in1k,256,73.447,26.553,87.200,12.800,88.59,1.000,bicubic,-23.133,-12.440,+177 +beit_large_patch16_384.in22k_ft_in22k_in1k,384,73.187,26.813,84.807,15.193,305.00,1.000,bicubic,-24.633,-14.983,-39 +beit_large_patch16_512.in22k_ft_in22k_in1k,512,73.047,26.953,84.940,15.060,305.67,1.000,bicubic,-24.723,-14.910,-36 +resnext101_32x4d.fb_swsl_ig1b_ft_in1k,224,72.703,27.297,85.193,14.807,44.18,0.875,bilinear,-23.377,-14.327,+319 +maxvit_xlarge_tf_512.in21k_ft_in1k,512,71.903,28.097,83.030,16.970,475.77,1.000,bicubic,-25.857,-16.830,-33 +maxvit_xlarge_tf_384.in21k_ft_in1k,384,71.777,28.223,82.813,17.187,475.32,1.000,bicubic,-25.983,-17.007,-35 +beit_large_patch16_224.in22k_ft_in22k_in1k,224,71.033,28.967,83.313,16.687,304.43,0.900,bicubic,-26.467,-16.367,-18 +deit3_huge_patch14_224.fb_in22k_ft_in1k,224,70.843,29.157,82.207,17.793,632.13,1.000,bicubic,-26.407,-17.513,+19 +deit3_large_patch16_384.fb_in22k_ft_in1k,384,70.620,29.380,82.403,17.597,304.76,1.000,bicubic,-26.960,-17.377,-24 +vit_base_patch16_clip_384.laion2b_ft_in1k,384,70.597,29.403,83.703,16.297,86.86,1.000,bicubic,-26.323,-15.967,+86 +beitv2_large_patch16_224.in1k_ft_in1k,224,70.437,29.563,83.407,16.593,304.43,0.950,bicubic,-26.853,-16.333,+9 +caformer_b36.sail_in22k_ft_in1k_384,384,70.433,29.567,82.413,17.587,98.75,1.000,bicubic,-27.217,-17.447,-35 +maxvit_base_tf_512.in21k_ft_in1k,512,70.433,29.567,81.620,18.380,119.88,1.000,bicubic,-27.337,-18.190,-47 +maxvit_large_tf_512.in21k_ft_in1k,512,70.357,29.643,81.660,18.340,212.33,1.000,bicubic,-27.303,-18.070,-38 +maxvit_large_tf_384.in21k_ft_in1k,384,70.013,29.987,80.990,19.010,212.03,1.000,bicubic,-27.657,-18.830,-40 +deit3_large_patch16_224.fb_in22k_ft_in1k,224,69.720,30.280,81.187,18.813,304.37,1.000,bicubic,-27.600,-18.453,-2 +maxvit_base_tf_384.in21k_ft_in1k,384,69.597,30.403,80.713,19.287,119.65,1.000,bicubic,-27.973,-19.057,-31 +resnext50_32x4d.fb_swsl_ig1b_ft_in1k,224,69.107,30.893,82.877,17.123,25.03,0.875,bilinear,-26.553,-16.543,+447 +maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,384,68.963,31.037,79.890,20.110,116.14,1.000,bicubic,-28.357,-19.700,-6 +vit_base_patch16_clip_224.laion2b_ft_in1k,224,68.703,31.297,82.397,17.603,86.57,1.000,bicubic,-27.627,-17.153,+232 +convnextv2_large.fcmae_ft_in22k_in1k_384,384,68.530,31.470,80.987,19.013,197.96,1.000,bicubic,-29.120,-18.813,-43 +resnet50.fb_swsl_ig1b_ft_in1k,224,68.380,31.620,83.387,16.613,25.56,0.875,bilinear,-26.870,-15.923,+558 +caformer_b36.sail_in22k_ft_in1k,224,68.323,31.677,80.650,19.350,98.75,1.000,bicubic,-29.057,-19.180,-21 +hgnetv2_b6.ssld_stage1_in22k_in1k,224,68.060,31.940,81.833,18.167,75.26,0.965,bicubic,-28.970,-17.837,+52 +maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,384,68.010,31.990,80.620,19.380,116.09,1.000,bicubic,-29.460,-19.140,-33 +convnext_xlarge.fb_in22k_ft_in1k_384,384,67.780,32.220,80.127,19.873,350.20,1.000,bicubic,-29.800,-19.583,-42 +hgnetv2_b6.ssld_stage2_ft_in1k,224,67.727,32.273,81.730,18.270,75.26,0.965,bicubic,-29.143,-17.920,+80 +hgnetv2_b5.ssld_stage2_ft_in1k,224,67.593,32.407,81.000,19.000,39.57,0.965,bicubic,-28.947,-18.470,+162 +swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,384,67.517,32.483,80.143,19.857,196.74,1.000,bicubic,-29.783,-19.637,-11 +vit_base_patch16_clip_384.openai_ft_in1k,384,67.260,32.740,81.823,18.177,86.86,1.000,bicubic,-29.560,-17.837,+90 +hgnetv2_b5.ssld_stage1_in22k_in1k,224,67.213,32.787,80.533,19.467,39.57,0.965,bicubic,-29.317,-19.017,+162 +vit_large_patch16_384.augreg_in21k_ft_in1k,384,67.123,32.877,78.720,21.280,304.72,1.000,bicubic,-30.307,-21.060,-36 +tf_efficientnet_b7.ns_jft_in1k,600,67.017,32.983,81.080,18.920,66.35,0.949,bicubic,-30.183,-18.560,+8 +convnextv2_base.fcmae_ft_in22k_in1k_384,384,67.003,32.997,79.723,20.277,88.72,1.000,bicubic,-30.367,-19.997,-31 +coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,384,66.520,33.480,78.267,21.733,73.88,1.000,bicubic,-30.850,-21.433,-31 +convnext_large.fb_in22k_ft_in1k_384,384,66.510,33.490,79.427,20.573,197.77,1.000,bicubic,-30.820,-20.333,-24 +convformer_b36.sail_in22k_ft_in1k_384,384,66.463,33.537,78.993,21.007,99.88,1.000,bicubic,-30.987,-20.697,-43 +maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,224,66.353,33.647,77.863,22.137,116.14,0.950,bicubic,-30.737,-21.747,+21 +hgnetv2_b6.ssld_stage2_ft_in1k,288,66.313,33.687,80.460,19.540,75.26,1.000,bicubic,-30.787,-19.280,+19 +hgnetv2_b6.ssld_stage1_in22k_in1k,288,66.250,33.750,80.500,19.500,75.26,1.000,bicubic,-30.830,-19.210,+21 +convnextv2_large.fcmae_ft_in22k_in1k,224,66.010,33.990,78.967,21.033,197.96,0.875,bicubic,-31.260,-20.743,-18 +swin_large_patch4_window12_384.ms_in22k_ft_in1k,384,65.950,34.050,79.240,20.760,196.74,1.000,bicubic,-31.230,-20.450,+4 +vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,384,65.927,34.073,78.683,21.317,86.86,1.000,bicubic,-31.303,-20.977,-8 +vit_base_patch16_clip_224.openai_ft_in1k,224,65.883,34.117,80.870,19.130,86.57,0.900,bicubic,-30.477,-18.680,+198 +beitv2_base_patch16_224.in1k_ft_in22k_in1k,224,65.740,34.260,78.847,21.153,86.53,0.900,bicubic,-31.220,-20.873,+41 +swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,384,65.517,34.483,78.860,21.140,87.92,1.000,bicubic,-31.743,-20.880,-21 +swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,256,65.507,34.493,78.437,21.563,196.74,0.900,bicubic,-31.713,-21.273,-9 +tf_efficientnet_b6.ns_jft_in1k,528,65.447,34.553,79.443,20.557,43.04,0.942,bicubic,-31.613,-20.247,+20 +caformer_m36.sail_in22k_ft_in1k_384,384,65.350,34.650,78.413,21.587,56.20,1.000,bicubic,-32.010,-21.317,-44 +convformer_b36.sail_in22k_ft_in1k,224,65.273,34.727,77.950,22.050,99.88,1.000,bicubic,-31.957,-21.810,-16 +vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,65.250,34.750,78.420,21.580,64.27,1.000,bicubic,-32.160,-21.350,-53 +vit_base_patch16_clip_384.openai_ft_in12k_in1k,384,65.207,34.793,78.883,21.117,86.86,0.950,bicubic,-31.923,-20.837,+4 +convnext_xlarge.fb_in22k_ft_in1k,224,65.077,34.923,77.700,22.300,350.20,0.875,bicubic,-32.183,-22.100,-27 +hiera_huge_224.mae_in1k_ft_in1k,224,64.973,35.027,77.720,22.280,672.78,0.900,bicubic,-32.237,-21.920,-14 +nextvit_large.bd_ssld_6m_in1k_384,384,64.827,35.173,79.227,20.773,57.87,1.000,bicubic,-32.353,-20.533,-10 +convnext_xlarge.fb_in22k_ft_in1k,288,64.767,35.233,77.843,22.157,350.20,1.000,bicubic,-32.713,-21.977,-66 +convnext_base.fb_in22k_ft_in1k_384,384,64.740,35.260,78.177,21.823,88.59,1.000,bicubic,-32.500,-21.583,-27 +vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,224,64.733,35.267,77.697,22.303,86.57,0.950,bicubic,-31.897,-21.783,+105 +convnextv2_large.fcmae_ft_in22k_in1k,288,64.670,35.330,78.170,21.830,197.96,1.000,bicubic,-32.670,-21.590,-50 +convnextv2_base.fcmae_ft_in22k_in1k,224,64.610,35.390,78.250,21.750,88.72,0.875,bicubic,-32.550,-21.410,-11 +hgnetv2_b5.ssld_stage2_ft_in1k,288,64.570,35.430,78.997,21.003,39.57,1.000,bicubic,-32.170,-20.603,+78 +vit_large_patch16_224.augreg_in21k_ft_in1k,224,64.367,35.633,76.273,23.727,304.33,0.900,bicubic,-32.353,-23.367,+84 +hgnetv2_b5.ssld_stage1_in22k_in1k,288,64.267,35.733,78.343,21.657,39.57,1.000,bicubic,-32.343,-21.127,+104 +vit_large_r50_s32_384.augreg_in21k_ft_in1k,384,64.180,35.820,75.910,24.090,329.09,1.000,bicubic,-32.780,-23.730,+23 +maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,224,63.940,36.060,77.457,22.543,116.09,0.950,bicubic,-33.140,-22.223,-3 +convnext_large.fb_in22k_ft_in1k,288,63.940,36.060,77.323,22.677,197.77,1.000,bicubic,-33.300,-22.397,-35 +hgnet_base.ssld_in1k,224,63.937,36.063,76.793,23.207,71.58,0.965,bicubic,-32.713,-22.767,+92 +convnext_large.fb_in22k_ft_in1k,224,63.837,36.163,77.273,22.727,197.77,0.875,bicubic,-33.393,-22.427,-32 +swin_large_patch4_window7_224.ms_in22k_ft_in1k,224,63.737,36.263,78.063,21.937,196.53,0.900,bicubic,-33.233,-21.607,+16 +nextvit_base.bd_ssld_6m_in1k_384,384,63.617,36.383,78.487,21.513,44.82,1.000,bicubic,-33.603,-21.233,-33 +seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,384,63.557,36.443,76.537,23.463,149.39,1.000,bicubic,-33.803,-23.143,-65 +hrnet_w48_ssld.paddle_in1k,224,63.483,36.517,76.577,23.423,77.47,0.950,bilinear,-32.737,-22.823,+212 +beit_base_patch16_384.in22k_ft_in22k_in1k,384,63.403,36.597,77.837,22.163,86.74,1.000,bicubic,-33.937,-21.873,-63 +caformer_m36.sail_in22k_ft_in1k,224,63.367,36.633,76.723,23.277,56.20,1.000,bicubic,-33.663,-23.007,0 +vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,63.297,36.703,76.817,23.183,64.11,0.950,bicubic,-33.833,-22.903,-20 +convnextv2_base.fcmae_ft_in22k_in1k,288,63.157,36.843,77.070,22.930,88.72,1.000,bicubic,-34.053,-22.690,-37 +convnextv2_huge.fcmae_ft_in1k,224,63.083,36.917,76.237,23.763,660.29,0.875,bicubic,-33.857,-23.413,+16 +caformer_s36.sail_in22k_ft_in1k_384,384,63.047,36.953,77.220,22.780,39.30,1.000,bicubic,-34.233,-22.500,-56 +swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,256,63.020,36.980,76.770,23.230,87.92,0.900,bicubic,-34.040,-22.900,-9 +swin_base_patch4_window12_384.ms_in22k_ft_in1k,384,63.010,36.990,77.733,22.267,87.90,1.000,bicubic,-34.060,-21.897,-17 +vit_base_patch16_clip_224.openai_ft_in12k_in1k,224,63.010,36.990,76.693,23.307,86.57,0.950,bicubic,-33.520,-22.897,+115 +tf_efficientnet_b5.ns_jft_in1k,456,62.877,37.123,77.727,22.273,30.39,0.934,bicubic,-34.023,-21.913,+17 +deit3_base_patch16_384.fb_in22k_ft_in1k,384,62.680,37.320,75.593,24.407,86.88,1.000,bicubic,-34.560,-24.147,-50 +tf_efficientnetv2_l.in21k_ft_in1k,384,62.420,37.580,76.640,23.360,118.52,1.000,bicubic,-34.450,-22.980,+25 +vit_base_patch8_224.augreg2_in21k_ft_in1k,224,62.417,37.583,76.617,23.383,86.58,0.900,bicubic,-34.523,-23.023,+7 +tf_efficientnetv2_l.in21k_ft_in1k,480,62.403,37.597,76.737,23.263,118.52,1.000,bicubic,-34.917,-22.943,-71 +coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,224,62.353,37.647,75.000,25.000,73.88,0.950,bicubic,-34.837,-24.650,-44 +convnext_base.fb_in22k_ft_in1k,288,62.243,37.757,76.173,23.827,88.59,1.000,bicubic,-34.997,-23.507,-61 +vit_base_patch8_224.augreg_in21k_ft_in1k,224,62.243,37.757,75.677,24.323,86.58,0.900,bicubic,-34.847,-23.933,-28 +tf_efficientnetv2_xl.in21k_ft_in1k,384,62.177,37.823,75.450,24.550,208.12,1.000,bicubic,-34.723,-24.010,+10 +hgnet_base.ssld_in1k,288,62.153,37.847,75.257,24.743,71.58,1.000,bicubic,-34.647,-24.453,+34 +tf_efficientnetv2_xl.in21k_ft_in1k,512,62.127,37.873,75.607,24.393,208.12,1.000,bicubic,-35.193,-24.113,-76 +hrnet_w48_ssld.paddle_in1k,288,62.037,37.963,75.290,24.710,77.47,1.000,bilinear,-34.513,-24.350,+92 +nextvit_large.bd_ssld_6m_in1k,224,61.930,38.070,76.800,23.200,57.87,0.950,bicubic,-34.980,-22.840,+4 +deit3_base_patch16_224.fb_in22k_ft_in1k,224,61.920,38.080,74.723,25.277,86.59,1.000,bicubic,-34.970,-24.897,+8 +convnext_base.fb_in22k_ft_in1k,224,61.783,38.217,75.820,24.180,88.59,0.875,bicubic,-35.077,-23.900,+18 +convformer_m36.sail_in22k_ft_in1k_384,384,61.773,38.227,75.250,24.750,57.05,1.000,bicubic,-35.587,-24.530,-90 +beitv2_base_patch16_224.in1k_ft_in1k,224,61.487,38.513,76.003,23.997,86.53,0.900,bicubic,-35.283,-23.607,+37 +vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,61.487,38.513,74.580,25.420,64.11,0.950,bicubic,-35.313,-25.100,+28 +convnextv2_huge.fcmae_ft_in1k,288,61.260,38.740,74.420,25.580,660.29,1.000,bicubic,-36.010,-25.300,-76 +coatnet_2_rw_224.sw_in12k_ft_in1k,224,61.200,38.800,73.927,26.073,73.87,0.950,bicubic,-35.800,-25.713,-20 +vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,61.183,38.817,74.697,25.303,60.60,1.000,bicubic,-35.947,-24.953,-48 +tf_efficientnet_b4.ns_jft_in1k,380,61.110,38.890,76.053,23.947,19.34,0.922,bicubic,-35.600,-23.587,+44 +maxvit_base_tf_512.in1k,512,61.027,38.973,73.977,26.023,119.88,1.000,bicubic,-36.173,-25.723,-62 +convformer_m36.sail_in22k_ft_in1k,224,60.910,39.090,74.460,25.540,57.05,1.000,bicubic,-36.160,-25.310,-39 +nextvit_base.bd_ssld_6m_in1k,224,60.793,39.207,76.337,23.663,44.82,0.950,bicubic,-36.087,-23.323,-2 +caformer_s36.sail_in22k_ft_in1k,224,60.697,39.303,75.083,24.917,39.30,1.000,bicubic,-36.133,-24.537,+10 +nextvit_small.bd_ssld_6m_in1k_384,384,60.393,39.607,75.703,24.297,31.76,1.000,bicubic,-36.677,-24.057,-43 +vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,384,60.300,39.700,73.740,26.260,88.30,1.000,bicubic,-36.310,-25.850,+63 +hiera_large_224.mae_in1k_ft_in1k,224,60.300,39.700,73.197,26.803,213.74,0.900,bicubic,-36.450,-26.393,+26 +tf_efficientnetv2_m.in21k_ft_in1k,480,60.257,39.743,75.120,24.880,54.14,1.000,bicubic,-36.763,-24.500,-32 +tf_efficientnetv2_m.in21k_ft_in1k,384,60.193,39.807,74.990,25.010,54.14,1.000,bicubic,-36.317,-24.700,+88 +vit_base_patch16_384.augreg_in21k_ft_in1k,384,60.187,39.813,73.847,26.153,86.86,1.000,bicubic,-36.833,-25.863,-35 +beit_base_patch16_224.in22k_ft_in22k_in1k,224,60.163,39.837,75.380,24.620,86.53,0.900,bicubic,-36.497,-24.280,+44 +vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,448,60.120,39.880,73.317,26.683,88.34,1.000,bicubic,-36.450,-26.263,+66 +hgnet_small.ssld_in1k,224,60.010,39.990,75.160,24.840,24.36,0.965,bicubic,-36.150,-24.180,+180 +convnext_small.fb_in22k_ft_in1k_384,384,59.927,40.073,74.257,25.743,50.22,1.000,bicubic,-37.213,-25.383,-66 +maxvit_large_tf_512.in1k,512,59.880,40.120,72.797,27.203,212.33,1.000,bicubic,-37.180,-26.903,-47 +convformer_s36.sail_in22k_ft_in1k_384,384,59.867,40.133,73.860,26.140,40.01,1.000,bicubic,-37.193,-25.840,-52 +tiny_vit_21m_512.dist_in22k_ft_in1k,512,59.560,40.440,74.657,25.343,21.27,1.000,bicubic,-37.330,-25.053,-19 +hgnetv2_b4.ssld_stage2_ft_in1k,224,59.517,40.483,74.893,25.107,19.80,0.965,bicubic,-36.583,-24.577,+192 +convnextv2_large.fcmae_ft_in1k,224,59.463,40.537,74.003,25.997,197.96,0.875,bicubic,-37.387,-25.767,-6 +swin_base_patch4_window7_224.ms_in22k_ft_in1k,224,59.307,40.693,73.907,26.093,87.77,0.900,bicubic,-37.363,-25.753,+34 +vit_base_patch16_224.augreg2_in21k_ft_in1k,224,59.207,40.793,73.663,26.337,86.57,0.900,bicubic,-37.293,-25.857,+80 +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,288,59.200,40.800,72.953,27.047,93.59,0.950,bicubic,-38.130,-26.797,-114 +maxvit_base_tf_384.in1k,384,59.170,40.830,71.707,28.293,119.65,1.000,bicubic,-37.970,-27.873,-74 +vit_base_patch32_clip_224.laion2b_ft_in1k,224,59.017,40.983,73.863,26.137,88.22,0.900,bicubic,-35.763,-25.187,+593 +vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,58.977,41.023,72.723,27.277,60.40,0.950,bicubic,-37.633,-26.857,+41 +tiny_vit_21m_384.dist_in22k_ft_in1k,384,58.957,41.043,73.950,26.050,21.23,1.000,bicubic,-37.993,-25.680,-38 +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,320,58.953,41.047,72.727,27.273,93.59,1.000,bicubic,-38.347,-27.053,-113 +convformer_s36.sail_in22k_ft_in1k,224,58.890,41.110,72.837,27.163,40.01,1.000,bicubic,-37.660,-26.763,+55 +volo_d5_512.sail_in1k,512,58.773,41.227,73.130,26.870,296.09,1.150,bicubic,-38.527,-26.640,-113 +volo_d5_448.sail_in1k,448,58.693,41.307,72.983,27.017,295.91,1.150,bicubic,-38.547,-26.737,-104 +vit_large_r50_s32_224.augreg_in21k_ft_in1k,224,58.693,41.307,71.857,28.143,328.99,0.900,bicubic,-37.527,-27.673,+149 +convnext_small.in12k_ft_in1k_384,384,58.640,41.360,72.643,27.357,50.22,1.000,bicubic,-38.350,-27.017,-53 +nextvit_small.bd_ssld_6m_in1k,224,58.580,41.420,74.237,25.763,31.76,0.950,bicubic,-38.030,-25.273,+34 +vit_base_patch32_clip_384.openai_ft_in12k_in1k,384,58.570,41.430,73.197,26.803,88.30,0.950,bicubic,-37.830,-26.423,+95 +eva02_small_patch14_336.mim_in22k_ft_in1k,336,58.443,41.557,73.027,26.973,22.13,1.000,bicubic,-38.247,-26.443,+12 +maxvit_large_tf_384.in1k,384,58.420,41.580,71.127,28.873,212.03,1.000,bicubic,-38.540,-28.593,-50 +efficientvit_l3.r384_in1k,384,58.360,41.640,72.663,27.337,246.04,1.000,bicubic,-38.380,-26.957,+3 +deit3_large_patch16_384.fb_in1k,384,58.327,41.673,72.947,27.053,304.76,1.000,bicubic,-38.543,-26.643,-33 +hgnet_small.ssld_in1k,288,58.230,41.770,73.760,26.240,24.36,1.000,bicubic,-38.170,-25.770,+87 +deit3_huge_patch14_224.fb_in1k,224,58.113,41.887,72.093,27.907,632.13,0.900,bicubic,-38.477,-27.427,+33 +convnextv2_large.fcmae_ft_in1k,288,58.063,41.937,72.560,27.440,197.96,1.000,bicubic,-38.787,-27.120,-29 +seresnextaa101d_32x8d.sw_in12k_ft_in1k,224,57.970,42.030,71.617,28.383,93.59,0.875,bicubic,-38.990,-27.943,-57 +tf_efficientnet_b8.ap_in1k,672,57.877,42.123,72.933,27.067,87.41,0.954,bicubic,-38.683,-26.617,+37 +rdnet_large.nv_in1k_ft_in1k_384,384,57.850,42.150,71.740,28.260,186.27,1.000,bicubic,-39.190,-27.940,-75 +seresnextaa101d_32x8d.sw_in12k_ft_in1k,288,57.677,42.323,71.377,28.623,93.59,1.000,bicubic,-39.503,-28.363,-104 +efficientvit_l3.r320_in1k,320,57.607,42.393,71.553,28.447,246.04,1.000,bicubic,-39.143,-27.857,-11 +convnext_small.fb_in22k_ft_in1k,288,57.603,42.397,72.497,27.503,50.22,1.000,bicubic,-39.267,-27.013,-40 +hgnetv2_b4.ssld_stage1_in22k_in1k,224,57.550,42.450,72.913,27.087,19.80,0.965,bicubic,-38.470,-26.437,+198 +efficientvit_l3.r224_in1k,224,57.533,42.467,71.353,28.647,246.04,1.000,bicubic,-38.967,-28.237,+54 +vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,57.500,42.500,71.597,28.403,60.40,0.950,bicubic,-39.050,-27.963,+36 +mvitv2_large.fb_in1k,224,57.497,42.503,70.760,29.240,217.99,0.900,bicubic,-38.933,-28.710,+71 +cait_m48_448.fb_dist_in1k,448,57.430,42.570,71.797,28.203,356.46,1.000,bicubic,-39.460,-27.823,-53 +tf_efficientnet_b3.ns_jft_in1k,300,57.410,42.590,72.447,27.553,12.23,0.904,bicubic,-38.700,-27.023,+156 +cait_m36_384.fb_dist_in1k,384,57.407,42.593,72.310,27.690,271.22,1.000,bicubic,-39.413,-27.320,-38 +hgnetv2_b3.ssld_stage2_ft_in1k,224,57.390,42.610,73.290,26.710,16.29,0.965,bicubic,-38.400,-25.990,+267 +hgnetv2_b4.ssld_stage2_ft_in1k,288,57.340,42.660,72.960,27.040,19.80,1.000,bicubic,-38.960,-26.610,+102 +convnext_small.fb_in22k_ft_in1k,224,57.303,42.697,72.497,27.503,50.22,0.875,bicubic,-39.207,-26.993,+41 +volo_d4_448.sail_in1k,448,57.273,42.727,71.427,28.573,193.41,1.150,bicubic,-39.797,-28.283,-97 +tiny_vit_21m_224.dist_in22k_ft_in1k,224,57.160,42.840,72.553,27.447,21.20,0.950,bicubic,-39.240,-26.947,+69 +vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,224,57.030,42.970,71.330,28.670,88.22,0.900,bicubic,-38.220,-27.760,+420 +efficientvit_l3.r256_in1k,256,56.990,43.010,70.777,29.223,246.04,1.000,bicubic,-39.650,-28.823,-3 +hgnetv2_b3.ssld_stage1_in22k_in1k,224,56.967,43.033,72.927,27.073,16.29,0.965,bicubic,-38.783,-26.503,+274 +maxvit_small_tf_512.in1k,512,56.947,43.053,70.953,29.047,69.13,1.000,bicubic,-40.233,-28.667,-119 +vit_base_patch16_224.augreg_in21k_ft_in1k,224,56.860,43.140,70.680,29.320,86.57,0.900,bicubic,-39.440,-28.940,+96 +convnext_small.in12k_ft_in1k,224,56.750,43.250,71.060,28.940,50.22,0.950,bicubic,-39.820,-28.470,+12 +deit3_medium_patch16_224.fb_in22k_ft_in1k,224,56.677,43.323,69.747,30.253,38.85,1.000,bicubic,-39.483,-29.733,+128 +efficientvit_l2.r288_in1k,288,56.530,43.470,70.143,29.857,63.71,1.000,bicubic,-40.150,-29.497,-14 +deit3_large_patch16_224.fb_in1k,224,56.483,43.517,70.467,29.533,304.37,0.900,bicubic,-39.737,-28.833,+115 +rdnet_large.nv_in1k,224,56.413,43.587,70.027,29.973,186.27,0.900,bicubic,-39.967,-29.393,+64 +volo_d5_224.sail_in1k,224,56.383,43.617,70.690,29.310,295.46,0.960,bicubic,-40.527,-28.970,-76 +xcit_large_24_p8_384.fb_dist_in1k,384,56.373,43.627,71.247,28.753,188.93,1.000,bicubic,-40.417,-28.303,-44 +hgnet_tiny.ssld_in1k,224,56.340,43.660,71.977,28.023,14.74,0.965,bicubic,-39.020,-27.353,+373 +flexivit_large.1200ep_in1k,240,56.263,43.737,71.567,28.433,304.36,0.950,bicubic,-40.537,-28.043,-48 +dm_nfnet_f5.dm_in1k,416,56.250,43.750,70.100,29.900,377.21,0.954,bicubic,-40.560,-29.500,-54 +convnextv2_tiny.fcmae_ft_in22k_in1k_384,384,56.063,43.937,71.803,28.197,28.64,1.000,bicubic,-40.567,-27.757,-16 +flexivit_large.600ep_in1k,240,56.060,43.940,71.213,28.787,304.36,0.950,bicubic,-40.690,-28.337,-42 +xcit_large_24_p8_224.fb_dist_in1k,224,55.997,44.003,70.683,29.317,188.93,1.000,bicubic,-40.633,-28.907,-16 +vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,55.970,44.030,70.337,29.663,38.88,0.950,bicubic,-40.520,-29.203,+27 +dm_nfnet_f6.dm_in1k,448,55.900,44.100,69.860,30.140,438.36,0.956,bicubic,-41.030,-29.860,-88 +caformer_s18.sail_in22k_ft_in1k_384,384,55.857,44.143,71.273,28.727,26.34,1.000,bicubic,-40.663,-28.317,+15 +vit_base_patch32_clip_224.openai_ft_in1k,224,55.840,44.160,72.177,27.823,88.22,0.900,bicubic,-38.600,-27.003,+635 +vit_medium_patch16_gap_384.sw_in12k_ft_in1k,384,55.730,44.270,70.987,29.013,39.03,0.950,bicubic,-40.770,-28.603,+17 +efficientvit_l2.r384_in1k,384,55.723,44.277,69.907,30.093,63.71,1.000,bicubic,-40.967,-29.693,-33 +flexivit_large.300ep_in1k,240,55.697,44.303,70.690,29.310,304.36,0.950,bicubic,-40.993,-28.890,-35 +regnety_160.sw_in12k_ft_in1k,224,55.657,44.343,69.967,30.033,83.59,0.950,bicubic,-40.933,-29.723,-15 +convnext_small.in12k_ft_in1k,288,55.643,44.357,70.597,29.403,50.22,1.000,bicubic,-40.947,-28.973,-15 +regnety_160.lion_in12k_ft_in1k,224,55.587,44.413,69.723,30.277,83.59,0.950,bicubic,-40.923,-29.797,+9 +hiera_base_plus_224.mae_in1k_ft_in1k,224,55.560,44.440,68.980,31.020,69.90,0.900,bicubic,-40.820,-30.490,+47 +hgnetv2_b4.ssld_stage1_in22k_in1k,288,55.390,44.610,71.037,28.963,19.80,1.000,bicubic,-40.870,-28.363,+79 +hrnet_w18_ssld.paddle_in1k,224,55.287,44.713,69.797,30.203,21.30,0.950,bilinear,-39.863,-29.353,+421 +hgnetv2_b3.ssld_stage2_ft_in1k,288,55.100,44.900,71.247,28.753,16.29,1.000,bicubic,-40.940,-28.223,+144 +caformer_b36.sail_in1k_384,384,55.040,44.960,68.007,31.993,98.75,1.000,bicubic,-42.120,-31.603,-145 +convformer_s18.sail_in22k_ft_in1k_384,384,54.987,45.013,70.000,30.000,26.77,1.000,bicubic,-41.803,-29.710,-67 +caformer_m36.sail_in1k_384,384,54.947,45.053,68.360,31.640,56.20,1.000,bicubic,-42.073,-31.340,-120 +xcit_large_24_p16_384.fb_dist_in1k,384,54.870,45.130,69.923,30.077,189.10,1.000,bicubic,-42.060,-29.587,-103 +swin_small_patch4_window7_224.ms_in22k_ft_in1k,224,54.843,45.157,70.830,29.170,49.61,0.900,bicubic,-41.187,-28.700,+144 +volo_d4_224.sail_in1k,224,54.713,45.287,68.827,31.173,192.96,0.960,bicubic,-42.067,-30.843,-68 +dm_nfnet_f4.dm_in1k,384,54.697,45.303,68.933,31.067,316.07,0.951,bicubic,-42.043,-30.647,-61 +maxvit_tiny_tf_512.in1k,512,54.647,45.353,68.887,31.113,31.05,1.000,bicubic,-42.323,-30.773,-118 +deit3_small_patch16_384.fb_in22k_ft_in1k,384,54.590,45.410,68.377,31.623,22.21,1.000,bicubic,-42.090,-31.203,-49 +hgnetv2_b2.ssld_stage1_in22k_in1k,224,54.580,45.420,70.597,29.403,11.22,0.965,bicubic,-40.450,-28.583,+451 +efficientvit_l2.r224_in1k,224,54.580,45.420,67.947,32.053,63.71,1.000,bicubic,-41.680,-31.383,+69 +hgnet_tiny.ssld_in1k,288,54.557,45.443,70.517,29.483,14.74,1.000,bicubic,-41.033,-28.803,+280 +caformer_s36.sail_in1k_384,384,54.540,45.460,68.650,31.350,39.30,1.000,bicubic,-42.340,-31.030,-102 +convnextv2_base.fcmae_ft_in1k,224,54.527,45.473,68.913,31.087,88.72,0.875,bicubic,-41.943,-30.637,+6 +regnetz_e8.ra3_in1k,256,54.527,45.473,68.447,31.553,57.70,0.940,bicubic,-41.903,-30.993,+16 +hgnetv2_b3.ssld_stage1_in22k_in1k,288,54.480,45.520,70.923,29.077,16.29,1.000,bicubic,-41.500,-28.417,+153 +tf_efficientnetv2_l.in1k,384,54.453,45.547,68.557,31.443,118.52,1.000,bicubic,-42.107,-30.923,-27 +vit_base_r50_s16_384.orig_in21k_ft_in1k,384,54.387,45.613,69.503,30.497,98.95,1.000,bicubic,-42.093,-30.037,-4 +dm_nfnet_f5.dm_in1k,544,54.387,45.613,68.570,31.430,377.21,0.954,bicubic,-42.623,-31.100,-132 +dm_nfnet_f3.dm_in1k,320,54.363,45.637,68.477,31.523,254.92,0.940,bicubic,-42.007,-30.993,+25 +maxvit_small_tf_384.in1k,384,54.327,45.673,68.160,31.840,69.02,1.000,bicubic,-42.413,-31.290,-73 +xcit_large_24_p16_224.fb_dist_in1k,224,54.297,45.703,68.963,31.037,189.10,1.000,bicubic,-42.013,-30.517,+42 +efficientnet_b5.sw_in12k_ft_in1k,448,54.290,45.710,69.820,30.180,30.39,1.000,bicubic,-42.530,-29.770,-96 +efficientvit_l2.r256_in1k,256,54.290,45.710,67.873,32.127,63.71,1.000,bicubic,-42.190,-31.737,-4 +inception_next_base.sail_in1k_384,384,54.243,45.757,68.493,31.507,86.67,1.000,bicubic,-42.487,-31.127,-75 +resnetv2_152x4_bit.goog_in21k_ft_in1k,480,54.200,45.800,70.277,29.723,936.53,1.000,bilinear,-42.660,-29.393,-107 +efficientnetv2_rw_m.agc_in1k,320,54.197,45.803,69.037,30.963,53.24,1.000,bicubic,-41.993,-30.543,+71 +regnety_160.sw_in12k_ft_in1k,288,54.163,45.837,68.857,31.143,83.59,1.000,bicubic,-42.657,-30.843,-104 +caformer_s18.sail_in22k_ft_in1k,224,54.117,45.883,69.670,30.330,26.34,1.000,bicubic,-41.913,-29.730,+118 +vit_small_r26_s32_384.augreg_in21k_ft_in1k,384,54.097,45.903,68.783,31.217,36.47,1.000,bicubic,-41.983,-30.457,+98 +regnety_160.lion_in12k_ft_in1k,288,54.090,45.910,68.863,31.137,83.59,1.000,bicubic,-42.710,-30.807,-101 +tf_efficientnet_b5.ap_in1k,456,53.937,46.063,69.213,30.787,30.39,0.934,bicubic,-42.153,-30.327,+90 +regnety_120.sw_in12k_ft_in1k,224,53.937,46.063,68.873,31.127,51.82,0.950,bicubic,-42.263,-30.657,+60 +volo_d3_448.sail_in1k,448,53.937,46.063,67.953,32.047,86.63,1.000,bicubic,-43.103,-31.727,-153 +caformer_b36.sail_in1k,224,53.927,46.073,66.607,33.393,98.75,1.000,bicubic,-42.613,-32.853,-37 +dm_nfnet_f6.dm_in1k,576,53.660,46.340,68.183,31.817,438.36,0.956,bicubic,-43.320,-31.577,-147 +xcit_medium_24_p8_224.fb_dist_in1k,224,53.657,46.343,68.307,31.693,84.32,1.000,bicubic,-42.883,-31.353,-40 +vit_medium_patch16_gap_256.sw_in12k_ft_in1k,256,53.597,46.403,69.173,30.827,38.86,0.950,bicubic,-42.403,-30.177,+123 +tf_efficientnet_b6.ap_in1k,528,53.593,46.407,68.550,31.450,43.04,0.942,bicubic,-42.767,-30.960,+10 +hgnetv2_b2.ssld_stage2_ft_in1k,224,53.527,46.473,69.827,30.173,11.22,0.965,bicubic,-41.683,-29.463,+367 +cait_s36_384.fb_dist_in1k,384,53.520,46.480,68.010,31.990,68.37,1.000,bicubic,-43.120,-31.280,-75 +tf_efficientnet_b2.ns_jft_in1k,260,53.500,46.500,70.357,29.643,9.11,0.890,bicubic,-42.030,-29.033,+267 +hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k,256,53.487,46.513,68.267,31.733,34.36,0.950,bicubic,-42.973,-31.303,-19 +dm_nfnet_f3.dm_in1k,416,53.437,46.563,67.580,32.420,254.92,0.940,bicubic,-43.173,-32.050,-70 +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,384,53.430,46.570,68.560,31.440,32.59,0.950,bicubic,-42.880,-30.850,+19 +deit3_base_patch16_224.fb_in1k,224,53.430,46.570,67.577,32.423,86.59,0.900,bicubic,-42.360,-32.003,+188 +deit3_base_patch16_384.fb_in1k,384,53.417,46.583,67.593,32.407,86.88,1.000,bicubic,-42.813,-31.817,+41 +convnext_large.fb_in1k,224,53.407,46.593,68.070,31.930,197.77,0.875,bicubic,-42.633,-31.520,+97 +vit_base_patch32_384.augreg_in21k_ft_in1k,384,53.403,46.597,68.150,31.850,88.30,1.000,bicubic,-42.507,-31.080,+136 +convformer_s18.sail_in22k_ft_in1k,224,53.393,46.607,68.627,31.373,26.77,1.000,bicubic,-42.707,-30.873,+70 +convnextv2_base.fcmae_ft_in1k,288,53.387,46.613,67.783,32.217,88.72,1.000,bicubic,-43.113,-31.847,-40 +xcit_medium_24_p8_384.fb_dist_in1k,384,53.360,46.640,68.117,31.883,84.32,1.000,bicubic,-43.420,-31.503,-113 +tf_efficientnet_b7.ap_in1k,600,53.320,46.680,68.900,31.100,66.35,0.949,bicubic,-43.020,-30.650,+1 +hrnet_w18_ssld.paddle_in1k,288,53.280,46.720,68.143,31.857,21.30,1.000,bilinear,-42.480,-31.267,+189 +convnextv2_tiny.fcmae_ft_in22k_in1k,224,53.273,46.727,69.313,30.687,28.64,0.875,bicubic,-42.787,-30.027,+81 +tf_efficientnetv2_s.in21k_ft_in1k,300,53.273,46.727,69.130,30.870,21.46,1.000,bicubic,-42.637,-30.230,+130 +maxvit_base_tf_224.in1k,224,53.257,46.743,66.213,33.787,119.47,0.950,bicubic,-43.093,-33.167,-5 +tf_efficientnetv2_s.in21k_ft_in1k,384,53.253,46.747,69.073,30.927,21.46,1.000,bicubic,-43.207,-30.537,-33 +xcit_medium_24_p16_384.fb_dist_in1k,384,53.237,46.763,68.103,31.897,84.40,1.000,bicubic,-43.453,-31.507,-102 +tf_efficientnetv2_l.in1k,480,53.183,46.817,67.873,32.127,118.52,1.000,bicubic,-43.547,-31.677,-109 +tf_efficientnet_b8.ra_in1k,672,53.173,46.827,68.947,31.053,87.41,0.954,bicubic,-43.527,-30.603,-106 +hiera_base_224.mae_in1k_ft_in1k,224,53.163,46.837,67.490,32.510,51.52,0.900,bicubic,-43.187,-31.910,-9 +convnext_large.fb_in1k,288,53.143,46.857,67.817,32.183,197.77,1.000,bicubic,-43.247,-31.603,-24 +tf_efficientnet_b4.ap_in1k,380,53.123,46.877,68.290,31.710,19.34,0.922,bicubic,-42.377,-31.090,+249 +regnetz_e8.ra3_in1k,320,53.060,46.940,67.183,32.817,57.70,1.000,bicubic,-43.560,-32.267,-94 +maxvit_large_tf_224.in1k,224,53.010,46.990,65.433,34.567,211.79,0.950,bicubic,-43.340,-33.927,-15 +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,480,52.943,47.057,68.250,31.750,32.59,1.000,bicubic,-43.587,-31.320,-64 +convnext_tiny.in12k_ft_in1k_384,384,52.890,47.110,68.363,31.637,28.59,1.000,bicubic,-43.690,-31.297,-85 +rexnetr_300.sw_in12k_ft_in1k,224,52.880,47.120,69.177,30.823,34.81,0.950,bicubic,-43.120,-30.313,+91 +coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,224,52.783,47.217,66.423,33.577,41.72,0.950,bicubic,-43.377,-33.127,+35 +deit3_small_patch16_224.fb_in22k_ft_in1k,224,52.770,47.230,66.850,33.150,22.06,1.000,bicubic,-43.050,-32.340,+148 +rdnet_small.nv_in1k,224,52.747,47.253,67.437,32.563,50.44,0.900,bicubic,-43.073,-31.913,+146 +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,448,52.677,47.323,67.773,32.227,32.59,0.950,bicubic,-43.633,-31.607,-7 +volo_d3_224.sail_in1k,224,52.677,47.323,66.293,33.707,86.33,0.960,bicubic,-43.783,-33.317,-51 +rdnet_base.nv_in1k,224,52.657,47.343,66.860,33.140,87.45,0.900,bicubic,-43.433,-32.460,+51 +maxvit_tiny_tf_384.in1k,384,52.607,47.393,66.737,33.263,30.98,1.000,bicubic,-43.983,-32.843,-95 +efficientvit_l1.r224_in1k,224,52.547,47.453,65.690,34.310,52.65,1.000,bicubic,-43.423,-33.430,+95 +regnety_120.sw_in12k_ft_in1k,288,52.477,47.523,67.500,32.500,51.82,1.000,bicubic,-44.083,-32.180,-90 +dm_nfnet_f4.dm_in1k,512,52.403,47.597,66.927,33.073,316.07,0.951,bicubic,-44.547,-32.693,-183 +tf_efficientnet_b7.ra_in1k,600,52.373,47.627,68.197,31.803,66.35,0.949,bicubic,-44.237,-31.503,-103 +efficientnetv2_rw_m.agc_in1k,416,52.360,47.640,67.237,32.763,53.24,1.000,bicubic,-43.920,-32.323,-8 +vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k,256,52.330,47.670,66.197,33.803,63.95,0.950,bicubic,-43.800,-33.163,+27 +tf_efficientnetv2_m.in1k,384,52.320,47.680,67.097,32.903,54.14,1.000,bicubic,-43.700,-32.403,+71 +xcit_small_24_p8_384.fb_dist_in1k,384,52.313,47.687,66.847,33.153,47.63,1.000,bicubic,-44.507,-32.813,-157 +inception_next_base.sail_in1k,224,52.293,47.707,65.843,34.157,86.67,0.950,bicubic,-43.617,-33.517,+103 +resnet18.fb_swsl_ig1b_ft_in1k,224,52.260,47.740,70.470,29.530,11.69,0.875,bilinear,-38.800,-27.730,+1025 +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,544,52.230,47.770,67.123,32.877,32.59,1.000,bicubic,-44.450,-32.407,-126 +xcit_medium_24_p16_224.fb_dist_in1k,224,52.223,47.777,66.883,33.117,84.40,1.000,bicubic,-44.037,-32.597,-9 +convformer_b36.sail_in1k_384,384,52.207,47.793,66.353,33.647,99.88,1.000,bicubic,-44.663,-33.297,-177 +hgnetv2_b2.ssld_stage1_in22k_in1k,288,52.200,47.800,68.813,31.187,11.22,1.000,bicubic,-43.360,-30.487,+213 +deit_base_distilled_patch16_384.fb_in1k,384,52.200,47.800,67.720,32.280,87.63,1.000,bicubic,-44.300,-31.620,-81 +convformer_m36.sail_in1k_384,384,52.167,47.833,65.930,34.070,57.05,1.000,bicubic,-44.603,-33.620,-152 +xcit_small_24_p8_224.fb_dist_in1k,224,52.163,47.837,66.730,33.270,47.63,1.000,bicubic,-44.387,-32.780,-100 +nextvit_large.bd_in1k_384,384,52.143,47.857,67.460,32.540,57.87,1.000,bicubic,-44.327,-31.970,-74 +convnext_tiny.fb_in22k_ft_in1k_384,384,52.077,47.923,66.877,33.123,28.59,1.000,bicubic,-44.083,-32.613,+9 +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,384,52.070,47.930,68.833,31.167,236.34,1.000,bicubic,-44.100,-30.567,+4 +ecaresnet269d.ra2_in1k,320,52.047,47.953,66.523,33.477,102.09,0.950,bicubic,-44.373,-32.987,-65 +resmlp_big_24_224.fb_in22k_ft_in1k,224,51.913,48.087,68.427,31.573,129.14,0.875,bicubic,-44.447,-31.143,-48 +convformer_s36.sail_in1k_384,384,51.890,48.110,66.103,33.897,40.01,1.000,bicubic,-44.810,-33.477,-145 +fastvit_ma36.apple_dist_in1k,256,51.887,48.113,67.027,32.973,44.07,0.950,bicubic,-44.413,-32.463,-30 +xcit_small_24_p16_384.fb_dist_in1k,384,51.870,48.130,66.317,33.683,47.67,1.000,bicubic,-44.510,-33.263,-60 +resnetv2_152x2_bit.goog_in21k_ft_in1k,448,51.820,48.180,69.360,30.640,236.34,1.000,bilinear,-44.710,-30.260,-102 +convnextv2_tiny.fcmae_ft_in22k_in1k,288,51.757,48.243,67.730,32.270,28.64,1.000,bicubic,-44.583,-31.870,-47 +vit_base_patch16_rope_reg1_gap_256.sbb_in1k,256,51.743,48.257,65.850,34.150,86.43,0.950,bicubic,-44.307,-33.410,+39 +cait_s24_384.fb_dist_in1k,384,51.727,48.273,66.307,33.693,47.06,1.000,bicubic,-44.853,-33.243,-120 +caformer_m36.sail_in1k,224,51.673,48.327,64.480,35.520,56.20,1.000,bicubic,-44.727,-34.980,-70 +caformer_s36.sail_in1k,224,51.660,48.340,64.887,35.113,39.30,1.000,bicubic,-44.430,-34.263,+18 +convnext_tiny.in12k_ft_in1k,224,51.640,48.360,67.717,32.283,28.59,0.950,bicubic,-44.550,-31.753,-12 +regnety_2560.seer_ft_in1k,384,51.620,48.380,68.107,31.893,"1,282.60",1.000,bicubic,-44.930,-31.363,-115 +ecaresnet269d.ra2_in1k,352,51.593,48.407,66.070,33.930,102.09,1.000,bicubic,-44.857,-33.470,-84 +rexnetr_300.sw_in12k_ft_in1k,288,51.590,48.410,67.823,32.177,34.81,1.000,bicubic,-44.530,-31.697,0 +regnetz_040_h.ra3_in1k,256,51.573,48.427,66.557,33.443,28.94,1.000,bicubic,-44.417,-32.783,+55 +vit_base_patch16_224_miil.in21k_ft_in1k,224,51.557,48.443,65.230,34.770,86.54,0.875,bilinear,-44.493,-34.220,+29 +tf_efficientnetv2_m.in1k,480,51.513,48.487,66.630,33.370,54.14,1.000,bicubic,-44.967,-33.030,-98 +mvitv2_base.fb_in1k,224,51.507,48.493,65.617,34.383,51.47,0.900,bicubic,-44.513,-33.903,+41 +davit_small.msft_in1k,224,51.443,48.557,66.433,33.567,49.75,0.950,bicubic,-44.607,-32.967,+25 +repvit_m2_3.dist_450e_in1k,224,51.433,48.567,66.833,33.167,23.69,0.950,bicubic,-44.567,-32.657,+45 +coat_lite_medium_384.in1k,384,51.407,48.593,65.677,34.323,44.57,1.000,bicubic,-45.213,-33.933,-146 +mobilenetv4_hybrid_large.e600_r384_in1k,384,51.403,48.597,65.943,34.057,37.76,0.950,bicubic,-44.587,-33.487,+49 +mobilenetv4_hybrid_large.ix_e600_r384_in1k,384,51.397,48.603,65.693,34.307,37.76,0.950,bicubic,-44.503,-33.607,+72 +vit_medium_patch16_rope_reg1_gap_256.sbb_in1k,256,51.353,48.647,65.713,34.287,38.74,0.950,bicubic,-44.537,-33.377,+75 +edgenext_base.in21k_ft_in1k,320,51.340,48.660,65.757,34.243,18.51,1.000,bicubic,-44.850,-33.703,-25 +hgnetv2_b2.ssld_stage2_ft_in1k,288,51.330,48.670,68.053,31.947,11.22,1.000,bicubic,-44.420,-31.387,+121 +caformer_s18.sail_in1k_384,384,51.303,48.697,65.680,34.320,26.34,1.000,bicubic,-45.147,-33.930,-97 +maxvit_rmlp_small_rw_224.sw_in1k,224,51.283,48.717,65.017,34.983,64.90,0.900,bicubic,-44.697,-34.583,+46 +maxvit_small_tf_224.in1k,224,51.280,48.720,65.380,34.620,68.93,0.950,bicubic,-44.990,-34.120,-50 +davit_base.msft_in1k,224,51.273,48.727,65.200,34.800,87.95,0.950,bicubic,-44.967,-34.080,-42 +convnext_tiny.in12k_ft_in1k,288,51.263,48.737,66.947,33.053,28.59,1.000,bicubic,-44.977,-32.443,-44 +convnext_base.fb_in1k,224,51.250,48.750,66.120,33.880,88.59,0.875,bicubic,-44.690,-33.370,+53 +xcit_small_12_p8_384.fb_dist_in1k,384,51.147,48.853,65.887,34.113,26.21,1.000,bicubic,-45.333,-33.503,-112 +convformer_b36.sail_in1k,224,51.110,48.890,64.293,35.707,99.88,1.000,bicubic,-45.140,-35.247,-48 +vit_base_patch16_384.orig_in21k_ft_in1k,384,51.050,48.950,65.383,34.617,86.86,1.000,bicubic,-45.130,-34.137,-33 +convnext_base.fb_in1k,288,51.030,48.970,65.817,34.183,88.59,1.000,bicubic,-45.300,-33.663,-73 +vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k,256,51.013,48.987,64.750,35.250,60.23,0.950,bicubic,-44.787,-34.520,+94 +convformer_m36.sail_in1k,224,51.003,48.997,63.637,36.363,57.05,1.000,bicubic,-45.077,-35.813,-4 +convnext_tiny.fb_in22k_ft_in1k,224,50.963,49.037,66.417,33.583,28.59,0.875,bicubic,-44.777,-33.063,+115 +seresnextaa101d_32x8d.ah_in1k,224,50.937,49.063,65.167,34.833,93.59,0.950,bicubic,-45.063,-34.183,+27 +nextvit_large.bd_in1k,224,50.910,49.090,66.033,33.967,57.87,0.950,bicubic,-44.970,-33.377,+61 +mobilenetv4_hybrid_large.e600_r384_in1k,448,50.837,49.163,65.657,34.343,37.76,1.000,bicubic,-45.063,-33.593,+51 +tf_efficientnet_b1.ns_jft_in1k,240,50.800,49.200,67.887,32.113,7.79,0.882,bicubic,-44.080,-31.363,+364 +volo_d2_384.sail_in1k,384,50.800,49.200,65.570,34.430,58.87,1.000,bicubic,-45.940,-34.140,-193 +convformer_s36.sail_in1k,224,50.793,49.207,64.060,35.940,40.01,1.000,bicubic,-45.327,-35.470,-26 +xcit_small_24_p16_224.fb_dist_in1k,224,50.743,49.257,65.047,34.953,47.67,1.000,bicubic,-45.057,-34.343,+84 +flexivit_base.1200ep_in1k,240,50.737,49.263,65.127,34.873,86.59,0.950,bicubic,-45.393,-34.333,-37 +eca_nfnet_l2.ra3_in1k,320,50.727,49.273,65.833,34.167,56.72,0.900,bicubic,-45.303,-33.727,+1 +mobilenetv4_hybrid_large.ix_e600_r384_in1k,448,50.710,49.290,65.410,34.590,37.76,1.000,bicubic,-45.390,-34.110,-24 +tiny_vit_11m_224.dist_in22k_ft_in1k,224,50.707,49.293,66.893,33.107,11.00,0.950,bicubic,-45.013,-32.387,+112 +vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k,256,50.700,49.300,65.217,34.783,22.52,0.950,bicubic,-45.150,-34.183,+58 +efficientnet_b4.ra2_in1k,320,50.673,49.327,65.983,34.017,19.34,0.875,bicubic,-44.747,-33.297,+186 +convformer_s18.sail_in1k_384,384,50.670,49.330,65.640,34.360,26.77,1.000,bicubic,-45.580,-33.800,-69 +repvit_m2_3.dist_300e_in1k,224,50.657,49.343,66.677,33.323,23.69,0.950,bicubic,-45.013,-32.603,+117 +regnetz_040.ra3_in1k,256,50.640,49.360,65.223,34.777,27.12,1.000,bicubic,-45.120,-34.107,+89 +edgenext_base.in21k_ft_in1k,256,50.603,49.397,65.007,34.993,18.51,0.950,bicubic,-45.277,-34.403,+45 +resnetrs420.tf_in1k,320,50.603,49.397,64.883,35.117,191.89,1.000,bicubic,-45.497,-34.527,-33 +dm_nfnet_f2.dm_in1k,256,50.600,49.400,65.020,34.980,193.78,0.920,bicubic,-45.430,-34.470,-3 +efficientnetv2_rw_s.ra2_in1k,288,50.590,49.410,65.553,34.447,23.94,1.000,bicubic,-44.850,-33.657,+172 +efficientvit_b3.r256_in1k,256,50.567,49.433,64.200,35.800,48.65,1.000,bicubic,-45.263,-35.110,+60 +resnetv2_101x3_bit.goog_in21k_ft_in1k,448,50.550,49.450,67.950,32.050,387.93,1.000,bilinear,-45.750,-31.640,-90 +coatnet_rmlp_2_rw_224.sw_in1k,224,50.550,49.450,63.383,36.617,73.88,0.950,bicubic,-45.690,-36.267,-73 +efficientnet_b4.ra2_in1k,384,50.533,49.467,65.803,34.197,19.34,1.000,bicubic,-44.987,-33.597,+151 +edgenext_base.usi_in1k,256,50.507,49.493,66.190,33.810,18.51,0.950,bicubic,-45.263,-33.200,+76 +xcit_small_12_p8_224.fb_dist_in1k,224,50.463,49.537,65.507,34.493,26.21,1.000,bicubic,-45.497,-33.673,+11 +hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k,256,50.457,49.543,65.433,34.567,34.36,0.950,bicubic,-45.663,-33.877,-48 +regnetz_d32.ra3_in1k,256,50.440,49.560,66.807,33.193,27.58,0.950,bicubic,-44.950,-32.363,+180 +xcit_small_12_p16_384.fb_dist_in1k,384,50.440,49.560,65.290,34.710,26.25,1.000,bicubic,-45.940,-34.230,-121 +volo_d1_384.sail_in1k,384,50.440,49.560,64.830,35.170,26.78,1.000,bicubic,-46.050,-34.720,-152 +efficientvit_b3.r288_in1k,288,50.387,49.613,64.077,35.923,48.65,1.000,bicubic,-45.733,-35.233,-53 +vit_betwixt_patch16_reg4_gap_256.sbb_in1k,256,50.380,49.620,64.967,35.033,60.40,0.950,bicubic,-45.190,-34.263,+132 +flexivit_base.600ep_in1k,240,50.380,49.620,64.677,35.323,86.59,0.950,bicubic,-45.600,-34.743,+2 +seresnet152d.ra2_in1k,256,50.340,49.660,65.043,34.957,66.84,0.950,bicubic,-45.730,-34.307,-39 +resnetrs350.tf_in1k,288,50.340,49.660,64.553,35.447,163.96,1.000,bicubic,-45.880,-34.957,-79 +fastvit_sa36.apple_dist_in1k,256,50.327,49.673,65.720,34.280,31.53,0.900,bicubic,-45.623,-33.670,+6 +regnetz_040_h.ra3_in1k,320,50.320,49.680,65.617,34.383,28.94,1.000,bicubic,-46.020,-33.893,-116 +inception_next_small.sail_in1k,224,50.293,49.707,65.130,34.870,49.37,0.875,bicubic,-45.397,-34.140,+90 +resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,224,50.287,49.713,66.150,33.850,194.03,0.875,bilinear,-45.123,-33.130,+164 +pit_b_distilled_224.in1k,224,50.253,49.747,64.953,35.047,74.79,0.900,bicubic,-45.607,-34.247,+29 +cait_s24_224.fb_dist_in1k,224,50.250,49.750,65.003,34.997,46.92,1.000,bicubic,-45.400,-34.377,+98 +eca_nfnet_l2.ra3_in1k,384,50.213,49.787,65.463,34.537,56.72,1.000,bicubic,-46.247,-34.107,-156 +pvt_v2_b5.in1k,224,50.180,49.820,65.063,34.937,81.96,0.900,bicubic,-45.770,-34.297,-3 +mvitv2_small.fb_in1k,224,50.163,49.837,64.893,35.107,34.87,0.900,bicubic,-45.727,-34.527,+13 +vit_small_patch16_384.augreg_in21k_ft_in1k,384,50.160,49.840,65.887,34.113,22.20,1.000,bicubic,-45.840,-33.713,-22 +resnest269e.in1k,416,50.140,49.860,64.663,35.337,110.93,0.928,bicubic,-45.980,-34.637,-70 +tresnet_v2_l.miil_in21k_ft_in1k,224,50.120,49.880,65.177,34.823,46.17,0.875,bilinear,-45.720,-34.113,+27 +tf_efficientnet_b3.ap_in1k,300,50.110,49.890,65.313,34.687,12.23,0.904,bicubic,-44.900,-33.887,+283 +deit3_medium_patch16_224.fb_in1k,224,50.090,49.910,64.693,35.307,38.85,0.900,bicubic,-45.300,-34.647,+163 +deit_base_distilled_patch16_224.fb_in1k,224,50.067,49.933,66.250,33.750,87.34,0.900,bicubic,-45.713,-33.050,+50 +vit_medium_patch16_reg4_gap_256.sbb_in1k,256,50.057,49.943,64.943,35.057,38.88,0.950,bicubic,-45.733,-34.447,+45 +pvt_v2_b4.in1k,224,50.050,49.950,65.097,34.903,62.56,0.900,bicubic,-45.900,-34.253,-8 +vit_betwixt_patch16_reg1_gap_256.sbb_in1k,256,50.017,49.983,64.617,35.383,60.40,0.950,bicubic,-45.653,-34.653,+80 +flexivit_base.300ep_in1k,240,49.993,50.007,64.150,35.850,86.59,0.950,bicubic,-45.957,-35.240,-11 +coat_lite_medium.in1k,224,49.977,50.023,64.800,35.200,44.57,0.900,bicubic,-46.023,-34.600,-28 +nextvit_base.bd_in1k_384,384,49.967,50.033,65.603,34.397,44.82,1.000,bicubic,-46.373,-33.977,-137 +seresnext101d_32x8d.ah_in1k,224,49.963,50.037,63.560,36.440,93.59,0.950,bicubic,-46.137,-35.740,-70 +efficientformer_l7.snap_dist_in1k,224,49.850,50.150,66.030,33.970,82.23,0.950,bicubic,-45.770,-33.370,+86 +resnet152d.ra2_in1k,256,49.837,50.163,64.857,35.143,60.21,0.950,bicubic,-45.583,-34.433,+138 +resnest200e.in1k,320,49.813,50.187,64.783,35.217,70.20,0.909,bicubic,-46.297,-34.697,-79 +volo_d2_224.sail_in1k,224,49.777,50.223,64.563,35.437,58.68,0.960,bicubic,-46.643,-34.957,-163 +seresnextaa101d_32x8d.ah_in1k,288,49.763,50.237,64.487,35.513,93.59,1.000,bicubic,-46.657,-35.033,-165 +resnet200d.ra2_in1k,256,49.750,50.250,64.910,35.090,64.69,0.950,bicubic,-45.900,-34.400,+76 +xception65.ra3_in1k,299,49.750,50.250,63.470,36.530,39.92,0.940,bicubic,-45.930,-35.980,+68 +mobilenetv4_conv_large.e600_r384_in1k,448,49.747,50.253,64.667,35.333,32.59,1.000,bicubic,-45.933,-34.643,+65 +resnetaa101d.sw_in12k_ft_in1k,224,49.723,50.277,64.583,35.417,44.57,0.950,bicubic,-46.107,-34.607,+13 +mobilenetv4_conv_large.e600_r384_in1k,384,49.673,50.327,65.140,34.860,32.59,0.950,bicubic,-45.717,-34.340,+144 +swinv2_base_window16_256.ms_in1k,256,49.597,50.403,63.717,36.283,87.92,0.900,bicubic,-46.573,-35.783,-103 +convnextv2_nano.fcmae_ft_in22k_in1k_384,384,49.567,50.433,65.567,34.433,15.62,1.000,bicubic,-46.213,-33.713,+30 +nextvit_base.bd_in1k,224,49.560,50.440,64.893,35.107,44.82,0.950,bicubic,-46.130,-34.347,+57 +maxvit_rmlp_tiny_rw_256.sw_in1k,256,49.557,50.443,63.733,36.267,29.15,0.950,bicubic,-46.493,-35.617,-68 +efficientformerv2_l.snap_dist_in1k,224,49.550,50.450,65.107,34.893,26.32,0.950,bicubic,-46.190,-34.253,+42 +pvt_v2_b3.in1k,224,49.547,50.453,64.737,35.263,45.24,0.900,bicubic,-45.933,-34.393,+108 +convnext_small.fb_in1k,224,49.540,50.460,64.930,35.070,50.22,0.875,bicubic,-46.070,-34.350,+80 +fastvit_ma36.apple_in1k,256,49.523,50.477,63.457,36.543,44.07,0.950,bicubic,-46.487,-35.903,-53 +cait_xs24_384.fb_dist_in1k,384,49.503,50.497,64.837,35.163,26.67,1.000,bicubic,-46.507,-34.583,-55 +tf_efficientnet_b5.ra_in1k,456,49.483,50.517,65.607,34.393,30.39,0.934,bicubic,-46.507,-33.853,-48 +resnet200d.ra2_in1k,320,49.427,50.573,64.303,35.697,64.69,1.000,bicubic,-46.693,-35.157,-101 +xcit_small_12_p16_224.fb_dist_in1k,224,49.410,50.590,63.903,36.097,26.25,1.000,bicubic,-46.360,-35.517,+25 +mobilenetv4_conv_aa_large.e600_r384_in1k,384,49.390,50.610,64.317,35.683,32.59,0.950,bicubic,-46.320,-35.023,+44 +hiera_small_224.mae_in1k_ft_in1k,224,49.377,50.623,64.433,35.567,35.01,0.900,bicubic,-46.443,-34.967,+5 +resnest101e.in1k,256,49.373,50.627,65.513,34.487,48.28,0.875,bilinear,-46.237,-33.867,+70 +vit_base_patch32_224.augreg_in21k_ft_in1k,224,49.370,50.630,64.453,35.547,88.22,0.900,bicubic,-45.030,-34.607,+417 +regnetz_d8.ra3_in1k,256,49.310,50.690,65.443,34.557,23.37,0.940,bicubic,-46.520,-33.807,-7 +dm_nfnet_f2.dm_in1k,352,49.303,50.697,63.923,36.077,193.78,0.920,bicubic,-47.227,-35.617,-220 +rdnet_tiny.nv_in1k,224,49.300,50.700,63.573,36.427,23.86,0.900,bicubic,-46.020,-35.877,+143 +resnet152d.ra2_in1k,320,49.280,50.720,64.433,35.567,60.21,1.000,bicubic,-46.580,-34.997,-19 +tiny_vit_21m_224.in1k,224,49.247,50.753,64.283,35.717,21.20,0.950,bicubic,-46.443,-35.097,+41 +seresnet152d.ra2_in1k,320,49.207,50.793,64.270,35.730,66.84,1.000,bicubic,-47.113,-35.240,-162 +dm_nfnet_f1.dm_in1k,224,49.183,50.817,63.513,36.487,132.63,0.910,bicubic,-46.427,-35.727,+58 +regnetz_040.ra3_in1k,320,49.180,50.820,64.043,35.957,27.12,1.000,bicubic,-47.020,-35.467,-133 +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,224,49.170,50.830,65.447,34.553,236.34,0.875,bicubic,-46.580,-33.913,+19 +xcit_large_24_p8_224.fb_in1k,224,49.157,50.843,62.720,37.280,188.93,1.000,bicubic,-46.933,-36.790,-102 +resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,224,49.153,50.847,65.493,34.507,88.79,0.875,bilinear,-46.187,-33.837,+128 +resnetrs270.tf_in1k,256,49.140,50.860,63.827,36.173,129.86,1.000,bicubic,-46.690,-35.583,-19 +convnext_small.fb_in1k,288,49.043,50.957,64.770,35.230,50.22,1.000,bicubic,-46.947,-34.620,-66 +repvgg_b3.rvgg_in1k,224,49.020,50.980,64.893,35.107,123.09,0.875,bilinear,-45.590,-34.247,+341 +gcvit_base.in1k,224,49.000,51.000,63.957,36.043,90.32,0.875,bicubic,-47.060,-35.433,-99 +resmlp_big_24_224.fb_distilled_in1k,224,48.997,51.003,65.427,34.573,129.14,0.875,bicubic,-46.863,-34.013,-32 +maxxvit_rmlp_small_rw_256.sw_in1k,256,48.997,51.003,63.100,36.900,66.01,0.950,bicubic,-47.233,-36.390,-149 +volo_d1_224.sail_in1k,224,48.983,51.017,63.170,36.830,26.63,0.960,bicubic,-47.047,-36.340,-86 +resnext101_64x4d.tv_in1k,224,48.970,51.030,63.533,36.467,83.46,0.875,bilinear,-46.870,-35.787,-29 +efficientvit_b3.r224_in1k,224,48.963,51.037,62.997,37.003,48.65,0.950,bicubic,-46.587,-36.203,+68 +resnetaa101d.sw_in12k_ft_in1k,288,48.953,51.047,64.137,35.863,44.57,1.000,bicubic,-47.417,-35.453,-194 +vit_medium_patch16_reg1_gap_256.sbb_in1k,256,48.953,51.047,64.033,35.967,38.88,0.950,bicubic,-46.957,-35.407,-54 +mobilenetv4_conv_aa_large.e600_r384_in1k,480,48.880,51.120,63.520,36.480,32.59,1.000,bicubic,-47.150,-36.030,-94 +resnetrs420.tf_in1k,416,48.817,51.183,63.480,36.520,191.89,1.000,bicubic,-47.633,-36.080,-215 +maxvit_tiny_tf_224.in1k,224,48.803,51.197,62.953,37.047,30.92,0.950,bicubic,-47.027,-36.347,-28 +seresnext101_32x8d.ah_in1k,224,48.750,51.250,62.243,37.757,93.57,0.950,bicubic,-47.050,-37.157,-16 +convformer_s18.sail_in1k,224,48.740,51.260,62.977,37.023,26.77,1.000,bicubic,-46.590,-36.403,+117 +caformer_s18.sail_in1k,224,48.733,51.267,62.943,37.057,26.34,1.000,bicubic,-46.997,-36.227,+6 +regnetz_d8_evos.ch_in1k,256,48.730,51.270,64.333,35.667,23.46,0.950,bicubic,-47.070,-34.927,-23 +hgnetv2_b1.ssld_stage1_in22k_in1k,224,48.700,51.300,66.030,33.970,6.34,0.965,bicubic,-44.920,-32.930,+585 +efficientnetv2_rw_s.ra2_in1k,384,48.690,51.310,63.850,36.150,23.94,1.000,bicubic,-47.060,-35.620,-2 +regnetz_d32.ra3_in1k,320,48.627,51.373,65.233,34.767,27.58,0.950,bicubic,-47.243,-34.207,-51 +deit3_small_patch16_384.fb_in1k,384,48.607,51.393,62.750,37.250,22.21,1.000,bicubic,-47.053,-36.700,+21 +efficientnet_b3.ra2_in1k,320,48.600,51.400,64.340,35.660,12.23,1.000,bicubic,-46.550,-34.870,+166 +edgenext_base.usi_in1k,320,48.580,51.420,64.410,35.590,18.51,1.000,bicubic,-47.210,-34.850,-24 +swinv2_small_window16_256.ms_in1k,256,48.550,51.450,62.653,37.347,49.73,0.900,bicubic,-47.510,-36.727,-118 +seresnext101d_32x8d.ah_in1k,288,48.517,51.483,62.977,37.023,93.59,1.000,bicubic,-47.853,-36.493,-209 +ecaresnet101d.miil_in1k,224,48.510,51.490,64.117,35.883,44.57,0.875,bicubic,-46.690,-35.133,+151 +focalnet_base_lrf.ms_in1k,224,48.433,51.567,62.997,37.003,88.75,0.900,bicubic,-47.407,-36.173,-47 +vit_small_r26_s32_224.augreg_in21k_ft_in1k,224,48.423,51.577,63.933,36.067,36.43,0.900,bicubic,-46.717,-35.287,+165 +vit_large_patch32_384.orig_in21k_ft_in1k,384,48.363,51.637,61.900,38.100,306.63,1.000,bicubic,-46.887,-37.500,+127 +focalnet_base_srf.ms_in1k,224,48.323,51.677,63.020,36.980,88.15,0.900,bicubic,-47.567,-36.340,-67 +swinv2_base_window8_256.ms_in1k,256,48.293,51.707,63.410,36.590,87.92,0.900,bicubic,-47.757,-35.980,-122 +rexnetr_200.sw_in12k_ft_in1k,224,48.277,51.723,65.303,34.697,16.52,0.950,bicubic,-47.013,-34.087,+111 +repvgg_b3g4.rvgg_in1k,224,48.253,51.747,64.817,35.183,83.83,0.875,bilinear,-46.247,-34.273,+342 +convit_base.fb_in1k,224,48.217,51.783,63.003,36.997,86.54,0.875,bicubic,-46.903,-36.137,+167 +fastvit_sa36.apple_in1k,256,48.200,51.800,62.753,37.247,31.53,0.900,bicubic,-47.420,-36.697,+16 +swin_s3_base_224.ms_in1k,224,48.163,51.837,62.290,37.710,71.13,0.900,bicubic,-47.907,-37.120,-134 +resnext101_32x8d.tv2_in1k,224,48.133,51.867,62.700,37.300,88.79,0.965,bilinear,-47.177,-36.650,+101 +sequencer2d_l.in1k,224,48.130,51.870,62.283,37.717,54.30,0.875,bicubic,-47.730,-37.187,-68 +nextvit_small.bd_in1k_384,384,48.123,51.877,64.127,35.873,31.76,1.000,bicubic,-48.007,-35.273,-162 +gcvit_small.in1k,224,48.097,51.903,62.777,37.223,51.09,0.875,bicubic,-47.823,-36.713,-87 +regnety_160.deit_in1k,224,48.053,51.947,63.587,36.413,83.59,0.950,bicubic,-47.477,-35.713,+36 +tf_efficientnetv2_b3.in21k_ft_in1k,300,48.050,51.950,64.817,35.183,14.36,0.900,bicubic,-47.560,-34.483,+16 +regnetz_d8.ra3_in1k,320,48.027,51.973,64.323,35.677,23.37,1.000,bicubic,-47.993,-35.167,-121 +focalnet_small_lrf.ms_in1k,224,48.013,51.987,63.093,36.907,50.34,0.900,bicubic,-47.717,-36.277,-20 +resnetrs350.tf_in1k,384,47.987,52.013,62.597,37.403,163.96,1.000,bicubic,-48.273,-37.013,-198 +fastvit_sa24.apple_dist_in1k,256,47.980,52.020,62.843,37.157,21.55,0.900,bicubic,-47.600,-36.407,+19 +repvit_m1_5.dist_450e_in1k,224,47.973,52.027,63.670,36.330,14.64,0.950,bicubic,-47.347,-35.590,+88 +efficientnet_b3.ra2_in1k,288,47.970,52.030,63.930,36.070,12.23,0.875,bicubic,-46.970,-35.170,+206 +eca_nfnet_l1.ra2_in1k,256,47.967,52.033,63.090,36.910,41.41,0.900,bicubic,-47.643,-36.170,+6 +twins_svt_large.in1k,224,47.940,52.060,62.810,37.190,99.27,0.900,bicubic,-47.760,-36.530,-20 +convnextv2_tiny.fcmae_ft_in1k,224,47.927,52.073,63.297,36.703,28.64,0.875,bicubic,-47.373,-35.933,+89 +resnext101_32x8d.tv2_in1k,176,47.923,52.077,62.833,37.167,88.79,0.875,bilinear,-46.987,-36.387,+209 +vit_relpos_base_patch16_224.sw_in1k,224,47.893,52.107,62.847,37.153,86.43,0.900,bicubic,-47.287,-36.433,+128 +resnetrs200.tf_in1k,256,47.893,52.107,62.093,37.907,93.21,1.000,bicubic,-47.927,-37.237,-65 +convnextv2_nano.fcmae_ft_in22k_in1k,224,47.873,52.127,63.920,36.080,15.62,0.875,bicubic,-47.507,-35.400,+65 +mixer_b16_224.miil_in21k_ft_in1k,224,47.853,52.147,63.387,36.613,59.88,0.875,bilinear,-47.047,-35.693,+209 +tf_efficientnet_b5.aa_in1k,456,47.840,52.160,63.957,36.043,30.39,0.934,bicubic,-48.050,-35.383,-93 +regnetv_064.ra3_in1k,224,47.797,52.203,63.407,36.593,30.58,0.950,bicubic,-47.693,-35.943,+26 +repvit_m1_5.dist_300e_in1k,224,47.783,52.217,63.713,36.287,14.64,0.950,bicubic,-47.357,-35.527,+132 +repvgg_b2g4.rvgg_in1k,224,47.777,52.223,64.417,35.583,61.76,0.875,bilinear,-46.073,-34.333,+483 +regnety_1280.seer_ft_in1k,384,47.763,52.237,64.133,35.867,644.81,1.000,bicubic,-48.567,-35.277,-231 +resnetv2_50x3_bit.goog_in21k_ft_in1k,448,47.757,52.243,65.663,34.337,217.32,1.000,bilinear,-48.533,-33.867,-222 +vit_little_patch16_reg4_gap_256.sbb_in1k,256,47.743,52.257,62.407,37.593,22.52,0.950,bicubic,-47.587,-36.743,+68 +vit_relpos_base_patch16_clsgap_224.sw_in1k,224,47.733,52.267,62.400,37.600,86.43,0.900,bicubic,-47.527,-36.770,+89 +repvgg_d2se.rvgg_in1k,320,47.730,52.270,62.810,37.190,133.33,1.000,bilinear,-48.190,-36.460,-113 +tf_efficientnetv2_b3.in21k_ft_in1k,240,47.713,52.287,64.133,35.867,14.36,0.900,bicubic,-47.157,-34.887,+213 +mvitv2_tiny.fb_in1k,224,47.703,52.297,62.697,37.303,24.17,0.900,bicubic,-47.697,-36.463,+44 +vit_relpos_medium_patch16_cls_224.sw_in1k,224,47.637,52.363,61.797,38.203,38.76,0.900,bicubic,-47.643,-37.463,+79 +eca_nfnet_l1.ra2_in1k,320,47.617,52.383,62.643,37.357,41.41,1.000,bicubic,-48.323,-36.737,-119 +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,384,47.610,52.390,63.327,36.673,11.07,0.950,bicubic,-48.010,-35.993,-20 +ecaresnet101d.miil_in1k,288,47.580,52.420,63.473,36.527,44.57,0.950,bicubic,-48.060,-35.887,-25 +seresnext101_32x8d.ah_in1k,288,47.577,52.423,61.370,38.630,93.57,1.000,bicubic,-48.553,-38.010,-193 +regnetz_d8_evos.ch_in1k,320,47.563,52.437,63.770,36.230,23.46,1.000,bicubic,-48.637,-35.720,-209 +pit_s_distilled_224.in1k,224,47.557,52.443,63.187,36.813,24.04,0.900,bicubic,-47.143,-35.653,+244 +mobilenetv4_conv_large.e500_r256_in1k,256,47.537,52.463,62.863,37.137,32.59,0.950,bicubic,-46.863,-36.057,+329 +focalnet_small_srf.ms_in1k,224,47.517,52.483,62.327,37.673,49.89,0.900,bicubic,-48.113,-37.043,-28 +resnest50d_4s2x40d.in1k,224,47.497,52.503,63.857,36.143,30.42,0.875,bicubic,-47.223,-35.313,+235 +efficientnet_b3_pruned.in1k,300,47.460,52.540,62.857,37.143,9.86,0.904,bicubic,-47.160,-36.293,+262 +davit_tiny.msft_in1k,224,47.433,52.567,63.277,36.723,28.36,0.950,bicubic,-47.667,-35.743,+127 +dm_nfnet_f1.dm_in1k,320,47.433,52.567,62.127,37.873,132.63,0.910,bicubic,-48.897,-37.403,-252 +coatnet_rmlp_1_rw_224.sw_in1k,224,47.410,52.590,61.367,38.633,41.69,0.950,bicubic,-48.100,-37.893,0 +vit_base_patch16_224.orig_in21k_ft_in1k,224,47.400,52.600,61.697,38.303,86.57,0.900,bicubic,-47.820,-37.563,+86 +xcit_small_24_p8_224.fb_in1k,224,47.357,52.643,61.113,38.887,47.63,1.000,bicubic,-48.603,-38.267,-139 +crossvit_18_dagger_408.in1k,408,47.347,52.653,60.887,39.113,44.61,1.000,bicubic,-48.783,-38.493,-209 +mobilenetv4_conv_large.e500_r256_in1k,320,47.333,52.667,62.390,37.610,32.59,1.000,bicubic,-47.827,-36.950,+98 +hgnetv2_b1.ssld_stage1_in22k_in1k,288,47.323,52.677,64.477,35.523,6.34,1.000,bicubic,-46.797,-34.483,+402 +resnet101d.ra2_in1k,256,47.307,52.693,62.957,37.043,44.57,0.950,bicubic,-48.123,-36.303,+13 +poolformerv2_m48.sail_in1k,224,47.297,52.703,63.887,36.113,73.35,1.000,bicubic,-47.903,-35.343,+91 +tresnet_m.miil_in21k_ft_in1k,224,47.297,52.703,62.047,37.953,31.39,0.875,bilinear,-48.123,-37.263,+17 +wide_resnet101_2.tv2_in1k,224,47.247,52.753,61.967,38.033,126.89,0.965,bilinear,-48.003,-37.283,+69 +efficientformer_l3.snap_dist_in1k,224,47.237,52.763,63.450,36.550,31.41,0.950,bicubic,-47.983,-35.720,+75 +repvit_m3.dist_in1k,224,47.203,52.797,63.497,36.503,10.68,0.950,bicubic,-47.527,-35.583,+218 +convnext_nano.in12k_ft_in1k,224,47.193,52.807,63.967,36.033,15.59,0.950,bicubic,-48.027,-35.203,+74 +regnety_032.ra_in1k,224,47.190,52.810,62.537,37.463,19.44,0.950,bicubic,-47.730,-36.643,+164 +resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,224,47.183,52.817,63.400,36.600,44.18,0.875,bilinear,-47.977,-35.850,+88 +efficientvit_b2.r256_in1k,256,47.183,52.817,61.670,38.330,24.33,1.000,bicubic,-48.107,-37.440,+50 +tf_efficientnet_b6.aa_in1k,528,47.160,52.840,63.040,36.960,43.04,0.942,bicubic,-49.130,-36.590,-257 +regnety_080.ra3_in1k,224,47.160,52.840,62.090,37.910,39.18,0.950,bicubic,-48.410,-37.200,-26 +convnext_tiny.fb_in1k,224,47.133,52.867,63.180,36.820,28.59,0.875,bicubic,-47.837,-36.030,+146 +resnetrs270.tf_in1k,352,47.130,52.870,62.063,37.937,129.86,1.000,bicubic,-48.930,-37.417,-197 +regnety_320.tv2_in1k,224,47.083,52.917,62.087,37.913,145.05,0.965,bicubic,-48.507,-37.073,-39 +efficientvit_b2.r288_in1k,288,47.080,52.920,61.683,38.317,24.33,1.000,bicubic,-48.530,-37.607,-43 +xcit_small_12_p8_224.fb_in1k,224,47.080,52.920,60.657,39.343,26.21,1.000,bicubic,-48.370,-38.733,-7 +tf_efficientnet_b4.aa_in1k,380,47.070,52.930,62.850,37.150,19.34,0.922,bicubic,-48.520,-36.550,-41 +inception_next_tiny.sail_in1k,224,47.037,52.963,62.957,37.043,28.06,0.875,bicubic,-48.083,-36.163,+95 +regnetz_c16.ra3_in1k,256,47.027,52.973,63.673,36.327,13.46,0.940,bicubic,-48.133,-35.577,+81 +vit_base_patch16_rpn_224.sw_in1k,224,47.027,52.973,62.427,37.573,86.54,0.900,bicubic,-47.803,-36.663,+181 +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,448,47.017,52.983,63.000,37.000,11.07,1.000,bicubic,-48.703,-36.300,-82 +swin_base_patch4_window12_384.ms_in1k,384,46.997,53.003,61.867,38.133,87.90,1.000,bicubic,-49.393,-37.663,-300 +swinv2_small_window8_256.ms_in1k,256,46.990,53.010,62.160,37.840,49.73,0.900,bicubic,-48.780,-37.140,-102 +hgnetv2_b1.ssld_stage2_ft_in1k,224,46.967,53.033,64.367,35.633,6.34,0.965,bicubic,-46.653,-34.383,+493 +convnext_tiny_hnf.a2h_in1k,224,46.957,53.043,61.160,38.840,28.59,0.950,bicubic,-47.803,-38.010,+187 +convnextv2_tiny.fcmae_ft_in1k,288,46.953,53.047,62.473,37.527,28.64,1.000,bicubic,-48.867,-36.947,-123 +rexnetr_200.sw_in12k_ft_in1k,288,46.937,53.063,63.830,36.170,16.52,1.000,bicubic,-48.383,-35.430,+19 +resnet101d.ra2_in1k,320,46.930,53.070,62.447,37.553,44.57,1.000,bicubic,-48.820,-36.993,-100 +coat_small.in1k,224,46.930,53.070,61.367,38.633,21.69,0.900,bicubic,-48.280,-37.893,+58 +xception65p.ra3_in1k,299,46.890,53.110,61.070,38.930,39.82,0.940,bicubic,-48.780,-38.330,-79 +xcit_large_24_p16_224.fb_in1k,224,46.890,53.110,60.760,39.240,189.10,1.000,bicubic,-48.060,-38.440,+135 +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,256,46.887,53.113,62.573,37.427,11.07,0.950,bicubic,-48.213,-36.567,+85 +nextvit_small.bd_in1k,224,46.857,53.143,62.813,37.187,31.76,0.950,bicubic,-48.373,-36.317,+43 +maxvit_tiny_rw_224.sw_in1k,224,46.847,53.153,60.767,39.233,29.06,0.950,bicubic,-48.883,-38.523,-96 +resnet152.a1h_in1k,224,46.847,53.153,60.590,39.410,60.19,0.950,bicubic,-48.733,-38.630,-56 +pvt_v2_b2_li.in1k,224,46.803,53.197,62.390,37.610,22.55,0.900,bicubic,-48.467,-36.900,+26 +gc_efficientnetv2_rw_t.agc_in1k,224,46.790,53.210,61.323,38.677,13.68,1.000,bicubic,-47.750,-37.737,+244 +resnet152.tv2_in1k,224,46.777,53.223,61.003,38.997,60.19,0.965,bilinear,-48.303,-38.187,+90 +efficientformerv2_s2.snap_dist_in1k,224,46.767,53.233,61.837,38.163,12.71,0.950,bicubic,-48.343,-37.283,+77 +seresnext101_64x4d.gluon_in1k,224,46.677,53.323,61.363,38.637,88.23,0.875,bicubic,-47.983,-37.737,+207 +fastvit_sa24.apple_in1k,256,46.657,53.343,61.637,38.363,21.55,0.900,bicubic,-48.653,-37.673,+11 +regnety_640.seer_ft_in1k,384,46.610,53.390,63.093,36.907,281.38,1.000,bicubic,-49.420,-36.247,-210 +fbnetv3_g.ra2_in1k,240,46.590,53.410,62.600,37.400,16.62,0.950,bilinear,-48.010,-36.500,+214 +swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,224,46.577,53.423,63.923,36.077,28.29,0.900,bicubic,-48.263,-35.317,+155 +twins_pcpvt_large.in1k,224,46.543,53.457,62.193,37.807,60.99,0.900,bicubic,-49.197,-37.177,-114 +convnext_tiny.fb_in1k,288,46.530,53.470,63.247,36.753,28.59,1.000,bicubic,-48.680,-36.073,+40 +regnetv_064.ra3_in1k,288,46.520,53.480,62.297,37.703,30.58,1.000,bicubic,-49.280,-37.123,-142 +resnet152.a1h_in1k,288,46.520,53.480,60.517,39.483,60.19,1.000,bicubic,-49.260,-38.923,-131 +swin_base_patch4_window7_224.ms_in1k,224,46.507,53.493,61.470,38.530,87.77,0.900,bicubic,-49.393,-38.080,-176 +convnextv2_nano.fcmae_ft_in22k_in1k,288,46.463,53.537,62.877,37.123,15.62,1.000,bicubic,-48.917,-36.353,-19 +efficientnetv2_rw_t.ra2_in1k,224,46.433,53.567,61.437,38.563,13.65,1.000,bicubic,-48.227,-37.623,+194 +xcit_medium_24_p8_224.fb_in1k,224,46.423,53.577,59.597,40.403,84.32,1.000,bicubic,-49.467,-39.763,-173 +coatnet_1_rw_224.sw_in1k,224,46.417,53.583,60.103,39.897,41.72,0.950,bicubic,-49.203,-39.117,-88 +gcvit_tiny.in1k,224,46.407,53.593,61.660,38.340,28.22,0.875,bicubic,-49.293,-37.710,-110 +resnetrs200.tf_in1k,320,46.393,53.607,60.970,39.030,93.21,1.000,bicubic,-49.927,-38.570,-311 +swin_s3_small_224.ms_in1k,224,46.383,53.617,60.840,39.160,49.74,0.900,bicubic,-49.467,-38.570,-167 +crossvit_15_dagger_408.in1k,408,46.383,53.617,60.533,39.467,28.50,1.000,bicubic,-49.447,-38.757,-160 +fbnetv3_g.ra2_in1k,288,46.377,53.623,62.477,37.523,16.62,0.950,bilinear,-48.753,-36.713,+54 +hgnetv2_b0.ssld_stage1_in22k_in1k,224,46.310,53.690,63.407,36.593,6.00,0.965,bicubic,-46.360,-35.193,+613 +tresnet_xl.miil_in1k,224,46.307,53.693,61.890,38.110,78.44,0.875,bilinear,-48.773,-37.290,+65 +cs3se_edgenet_x.c2ns_in1k,256,46.307,53.693,61.277,38.723,50.72,0.950,bicubic,-49.303,-38.023,-93 +hgnetv2_b0.ssld_stage2_ft_in1k,224,46.287,53.713,63.273,36.727,6.00,0.965,bicubic,-46.553,-35.417,+591 +xcit_tiny_24_p8_224.fb_dist_in1k,224,46.280,53.720,60.613,39.387,12.11,1.000,bicubic,-49.200,-38.717,-63 +rexnet_300.nav_in1k,224,46.253,53.747,62.443,37.557,34.71,0.875,bicubic,-49.307,-36.997,-77 +sequencer2d_m.in1k,224,46.247,53.753,60.817,39.183,38.31,0.875,bicubic,-49.363,-38.463,-97 +xcit_tiny_24_p8_384.fb_dist_in1k,384,46.247,53.753,60.640,39.360,12.11,1.000,bicubic,-50.003,-38.670,-301 +dm_nfnet_f0.dm_in1k,192,46.210,53.790,61.467,38.533,71.49,0.900,bicubic,-48.480,-37.323,+169 +resnest50d_1s4x24d.in1k,224,46.203,53.797,62.513,37.487,25.68,0.875,bicubic,-48.177,-36.517,+254 +resnetrs152.tf_in1k,256,46.203,53.797,60.767,39.233,86.62,1.000,bicubic,-49.177,-38.413,-37 +repvit_m1_1.dist_450e_in1k,224,46.167,53.833,63.340,36.660,8.80,0.950,bicubic,-48.383,-35.650,+206 +mobilenetv4_hybrid_medium.e500_r224_in1k,224,46.167,53.833,61.900,38.100,11.07,0.950,bicubic,-48.033,-37.120,+307 +nfnet_l0.ra2_in1k,224,46.153,53.847,62.790,37.210,35.07,0.900,bicubic,-48.737,-36.340,+108 +deit_small_distilled_patch16_224.fb_in1k,224,46.153,53.847,62.453,37.547,22.44,0.900,bicubic,-48.427,-36.637,+190 +gernet_m.idstcv_in1k,224,46.150,53.850,62.733,37.267,21.14,0.875,bilinear,-48.410,-36.247,+197 +regnety_160.deit_in1k,288,46.127,53.873,61.787,38.213,83.59,1.000,bicubic,-49.773,-37.683,-204 +crossvit_base_240.in1k,240,46.087,53.913,60.227,39.773,105.03,0.875,bicubic,-48.933,-39.053,+71 +tf_efficientnet_b0.ns_jft_in1k,224,46.060,53.940,63.280,36.720,5.29,0.875,bicubic,-47.710,-35.550,+401 +poolformerv2_m36.sail_in1k,224,46.050,53.950,62.200,37.800,56.08,1.000,bicubic,-48.990,-36.760,+60 +poolformerv2_s36.sail_in1k,224,46.030,53.970,62.300,37.700,30.79,1.000,bicubic,-48.680,-36.430,+147 +vit_small_patch16_224.augreg_in21k_ft_in1k,224,46.027,53.973,61.850,38.150,22.05,0.900,bicubic,-48.883,-37.420,+91 +resnet51q.ra2_in1k,288,46.027,53.973,60.923,39.077,35.70,1.000,bilinear,-49.183,-38.317,+8 +swinv2_cr_small_ns_224.sw_in1k,224,46.027,53.973,60.603,39.397,49.70,0.900,bicubic,-49.693,-38.837,-141 +nest_base_jx.goog_in1k,224,45.967,54.033,60.100,39.900,67.72,0.875,bicubic,-49.563,-39.240,-92 +deit3_small_patch16_224.fb_in1k,224,45.967,54.033,58.960,41.040,22.06,0.900,bicubic,-48.743,-40.150,+146 +crossvit_18_240.in1k,240,45.957,54.043,60.350,39.650,43.27,0.875,bicubic,-49.103,-38.770,+49 +vit_relpos_medium_patch16_224.sw_in1k,224,45.943,54.057,61.093,38.907,38.75,0.900,bicubic,-49.257,-38.057,+5 +regnety_080.ra3_in1k,288,45.933,54.067,60.840,39.160,39.18,1.000,bicubic,-49.927,-38.620,-203 +regnetz_c16.ra3_in1k,320,45.930,54.070,62.750,37.250,13.46,1.000,bicubic,-49.460,-36.490,-61 +mobilenetv4_hybrid_medium.e500_r224_in1k,256,45.913,54.087,61.563,38.437,11.07,1.000,bicubic,-48.947,-37.637,+104 +twins_pcpvt_base.in1k,224,45.903,54.097,61.387,38.613,43.83,0.900,bicubic,-49.577,-37.903,-92 +resnext101_64x4d.c1_in1k,224,45.887,54.113,59.310,40.690,83.46,0.950,bicubic,-49.343,-39.910,-13 +resnest50d.in1k,224,45.883,54.117,62.683,37.317,27.48,0.875,bilinear,-48.747,-36.457,+159 +twins_svt_base.in1k,224,45.880,54.120,60.913,39.087,56.07,0.900,bicubic,-49.690,-38.347,-108 +regnety_032.ra_in1k,288,45.873,54.127,61.527,38.473,19.44,1.000,bicubic,-49.597,-37.803,-90 +regnetz_c16_evos.ch_in1k,256,45.867,54.133,62.960,37.040,13.49,0.950,bicubic,-49.493,-36.280,-58 +convnext_nano.in12k_ft_in1k,288,45.867,54.133,62.610,37.390,15.59,1.000,bicubic,-49.523,-36.810,-70 +convnext_tiny_hnf.a2h_in1k,288,45.840,54.160,60.143,39.857,28.59,1.000,bicubic,-49.430,-39.137,-34 +crossvit_18_dagger_240.in1k,240,45.830,54.170,59.970,40.030,44.27,0.875,bicubic,-49.360,-39.150,-5 +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,320,45.823,54.177,61.583,38.417,11.07,1.000,bicubic,-49.487,-37.847,-49 +levit_384.fb_dist_in1k,224,45.780,54.220,61.720,38.280,39.13,0.900,bicubic,-49.440,-37.480,-16 +levit_conv_384.fb_dist_in1k,224,45.777,54.223,61.717,38.283,39.13,0.900,bicubic,-49.443,-37.603,-16 +hiera_tiny_224.mae_in1k_ft_in1k,224,45.760,54.240,61.060,38.940,27.91,0.900,bicubic,-49.490,-38.140,-29 +gc_efficientnetv2_rw_t.agc_in1k,288,45.730,54.270,60.300,39.700,13.68,1.000,bicubic,-49.570,-38.940,-49 +vit_relpos_medium_patch16_rpn_224.sw_in1k,224,45.723,54.277,60.950,39.050,38.73,0.900,bicubic,-49.367,-38.260,+20 +xcit_tiny_24_p16_384.fb_dist_in1k,384,45.700,54.300,60.527,39.473,12.12,1.000,bicubic,-49.770,-38.823,-102 +hgnetv2_b1.ssld_stage2_ft_in1k,288,45.693,54.307,62.693,37.307,6.34,1.000,bicubic,-48.487,-36.337,+273 +vit_srelpos_medium_patch16_224.sw_in1k,224,45.693,54.307,61.053,38.947,38.74,0.900,bicubic,-49.257,-38.217,+58 +convmixer_1536_20.in1k,224,45.683,54.317,61.690,38.310,51.63,0.960,bicubic,-49.287,-37.520,+52 +dm_nfnet_f0.dm_in1k,256,45.673,54.327,61.327,38.673,71.49,0.900,bicubic,-50.057,-37.963,-175 +regnetx_320.tv2_in1k,224,45.637,54.363,60.217,39.783,107.81,0.965,bicubic,-49.693,-39.073,-67 +efficientnetv2_rw_t.ra2_in1k,288,45.617,54.383,60.173,39.827,13.65,1.000,bicubic,-49.473,-38.927,+12 +crossvit_15_dagger_240.in1k,240,45.613,54.387,60.060,39.940,28.21,0.875,bicubic,-49.367,-39.090,+45 +flexivit_small.1200ep_in1k,240,45.603,54.397,59.907,40.093,22.06,0.950,bicubic,-49.657,-39.353,-46 +xcit_small_12_p16_224.fb_in1k,224,45.597,54.403,59.453,40.547,26.25,1.000,bicubic,-49.273,-39.587,+77 +xcit_medium_24_p16_224.fb_in1k,224,45.590,54.410,59.000,41.000,84.40,1.000,bicubic,-49.550,-40.010,-5 +xcit_small_24_p16_224.fb_in1k,224,45.577,54.423,58.967,41.033,47.67,1.000,bicubic,-49.503,-40.283,+13 +seresnext101_32x4d.gluon_in1k,224,45.547,54.453,61.107,38.893,48.96,0.875,bicubic,-48.953,-37.893,+170 +repvit_m1_1.dist_300e_in1k,224,45.540,54.460,62.743,37.257,8.80,0.950,bicubic,-48.650,-35.997,+260 +wide_resnet101_2.tv2_in1k,176,45.533,54.467,59.583,40.417,126.89,0.875,bilinear,-48.607,-39.267,+277 +resnet152d.gluon_in1k,224,45.460,54.540,60.070,39.930,60.21,0.875,bicubic,-48.990,-38.960,+184 +tf_efficientnet_b7.aa_in1k,600,45.457,54.543,61.763,38.237,66.35,0.949,bicubic,-50.623,-37.787,-309 +flexivit_small.600ep_in1k,240,45.433,54.567,59.627,40.373,22.06,0.950,bicubic,-49.857,-39.583,-65 +cs3se_edgenet_x.c2ns_in1k,320,45.413,54.587,60.457,39.543,50.72,1.000,bicubic,-50.637,-38.943,-303 +pvt_v2_b2.in1k,224,45.393,54.607,60.653,39.347,25.36,0.900,bicubic,-49.607,-38.407,+28 +mobilenetv4_conv_blur_medium.e500_r224_in1k,256,45.387,54.613,61.710,38.290,9.72,1.000,bicubic,-48.743,-37.070,+272 +tf_efficientnetv2_s.in1k,300,45.383,54.617,60.237,39.763,21.46,1.000,bicubic,-50.017,-39.083,-103 +resnext101_64x4d.c1_in1k,288,45.383,54.617,59.047,40.953,83.46,1.000,bicubic,-50.187,-40.223,-145 +nfnet_l0.ra2_in1k,288,45.380,54.620,62.090,37.910,35.07,1.000,bicubic,-50.050,-37.110,-117 +regnety_320.seer_ft_in1k,384,45.377,54.623,62.223,37.777,145.05,1.000,bicubic,-50.423,-37.127,-222 +convnextv2_nano.fcmae_ft_in1k,224,45.377,54.623,61.180,38.820,15.62,0.875,bicubic,-49.533,-37.820,+47 +resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,224,45.370,54.630,61.997,38.003,25.03,0.875,bilinear,-49.340,-37.243,+96 +resnetv2_50x1_bit.goog_distilled_in1k,224,45.363,54.637,62.267,37.733,25.55,0.875,bicubic,-50.027,-37.073,-106 +resnet51q.ra2_in1k,256,45.303,54.697,60.573,39.427,35.70,0.875,bilinear,-49.727,-38.617,+9 +resnet101.tv2_in1k,224,45.300,54.700,60.043,39.957,44.55,0.965,bilinear,-49.590,-38.987,+51 +cs3edgenet_x.c2_in1k,288,45.293,54.707,60.300,39.700,47.82,1.000,bicubic,-50.187,-39.070,-134 +nest_small_jx.goog_in1k,224,45.293,54.707,59.003,40.997,38.35,0.875,bicubic,-50.287,-40.307,-155 +resnet61q.ra2_in1k,288,45.273,54.727,59.333,40.667,36.85,1.000,bicubic,-49.867,-39.877,-29 +resnet101.a1h_in1k,224,45.263,54.737,59.807,40.193,44.55,0.950,bicubic,-49.727,-39.283,+16 +convit_small.fb_in1k,224,45.250,54.750,60.480,39.520,27.78,0.875,bicubic,-49.660,-38.640,+36 +mobilenetv4_conv_medium.e500_r256_in1k,256,45.233,54.767,61.863,38.137,9.72,0.950,bicubic,-48.617,-37.067,+318 +efficientvit_b2.r224_in1k,224,45.230,54.770,59.190,40.810,24.33,0.950,bicubic,-49.660,-40.010,+45 +nasnetalarge.tf_in1k,331,45.197,54.803,57.963,42.037,88.75,0.911,bicubic,-49.983,-41.167,-47 +tresnet_xl.miil_in1k_448,448,45.177,54.823,61.437,38.563,78.44,0.875,bilinear,-50.373,-37.893,-155 +focalnet_tiny_lrf.ms_in1k,224,45.163,54.837,61.253,38.747,28.65,0.900,bicubic,-50.057,-37.967,-62 +mobilenetv4_conv_blur_medium.e500_r224_in1k,224,45.150,54.850,61.673,38.327,9.72,0.950,bicubic,-48.710,-37.437,+308 +rexnet_200.nav_in1k,224,45.140,54.860,62.320,37.680,16.37,0.875,bicubic,-49.530,-36.770,+98 +hgnetv2_b0.ssld_stage1_in22k_in1k,288,45.123,54.877,62.310,37.690,6.00,1.000,bicubic,-48.467,-36.400,+376 +swin_small_patch4_window7_224.ms_in1k,224,45.113,54.887,60.280,39.720,49.61,0.900,bicubic,-50.617,-38.930,-212 +mobilenetv4_conv_medium.e500_r224_in1k,256,45.090,54.910,61.497,38.503,9.72,1.000,bicubic,-49.000,-37.513,+261 +tf_efficientnet_b3.aa_in1k,300,45.087,54.913,60.687,39.313,12.23,0.904,bicubic,-49.833,-38.403,+22 +mobilenetv4_conv_medium.e500_r256_in1k,320,45.070,54.930,61.477,38.523,9.72,1.000,bicubic,-49.290,-37.313,+178 +sequencer2d_s.in1k,224,45.030,54.970,60.033,39.967,27.65,0.875,bicubic,-50.400,-39.047,-140 +maxxvit_rmlp_nano_rw_256.sw_in1k,256,44.993,55.007,59.603,40.397,16.78,0.950,bicubic,-50.367,-39.697,-116 +resnetrs152.tf_in1k,320,44.983,55.017,59.677,40.323,86.62,1.000,bicubic,-50.977,-39.743,-298 +resnet101.a1h_in1k,288,44.957,55.043,59.337,40.663,44.55,1.000,bicubic,-50.623,-39.923,-175 +regnetv_040.ra3_in1k,224,44.947,55.053,59.953,40.047,20.64,0.950,bicubic,-50.413,-39.447,-117 +hgnetv2_b0.ssld_stage2_ft_in1k,288,44.937,55.063,62.363,37.637,6.00,1.000,bicubic,-48.903,-36.367,+303 +deit_base_patch16_224.fb_in1k,224,44.913,55.087,59.183,40.817,86.57,0.900,bicubic,-50.127,-40.017,-19 +ecaresnetlight.miil_in1k,224,44.910,55.090,60.777,39.223,30.16,0.875,bicubic,-49.240,-38.223,+232 +flexivit_small.300ep_in1k,240,44.907,55.093,59.457,40.543,22.06,0.950,bicubic,-50.243,-39.753,-57 +mobilenetv4_conv_medium.e500_r224_in1k,224,44.900,55.100,61.387,38.613,9.72,0.950,bicubic,-48.770,-37.533,+342 +resnetv2_101.a1h_in1k,224,44.837,55.163,58.867,41.133,44.54,0.950,bicubic,-50.103,-40.333,+6 +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,256,44.830,55.170,60.583,39.417,11.07,0.950,bicubic,-49.990,-38.237,+39 +tf_efficientnet_b2.ap_in1k,260,44.813,55.187,60.767,39.233,9.11,0.890,bicubic,-49.457,-38.273,+190 +coatnet_bn_0_rw_224.sw_in1k,224,44.810,55.190,60.933,39.067,27.44,0.950,bicubic,-50.170,-38.217,-10 +resmlp_24_224.fb_distilled_in1k,224,44.797,55.203,61.507,38.493,30.02,0.875,bicubic,-49.553,-37.453,+165 +focalnet_tiny_srf.ms_in1k,224,44.787,55.213,60.993,39.007,28.43,0.900,bicubic,-50.233,-38.057,-22 +repvit_m2.dist_in1k,224,44.777,55.223,61.873,38.127,8.80,0.950,bicubic,-49.683,-37.207,+131 +cait_xxs36_384.fb_dist_in1k,384,44.767,55.233,59.427,40.573,17.37,1.000,bicubic,-50.483,-39.893,-99 +edgenext_small.usi_in1k,256,44.757,55.243,60.847,39.153,5.59,0.950,bicubic,-49.643,-38.333,+146 +tiny_vit_11m_224.in1k,224,44.747,55.253,60.180,39.820,11.00,0.950,bicubic,-50.473,-39.060,-88 +resmlp_36_224.fb_distilled_in1k,224,44.730,55.270,61.157,38.843,44.69,0.875,bicubic,-49.840,-38.023,+94 +gernet_l.idstcv_in1k,256,44.717,55.283,58.993,41.007,31.08,0.875,bilinear,-50.223,-40.157,-7 +regnety_032.tv2_in1k,224,44.700,55.300,60.980,39.020,19.44,0.965,bicubic,-50.190,-38.020,+7 +xcit_tiny_24_p16_224.fb_dist_in1k,224,44.697,55.303,59.433,40.567,12.12,1.000,bicubic,-49.553,-39.607,+189 +deit_base_patch16_384.fb_in1k,384,44.667,55.333,59.570,40.430,86.86,1.000,bicubic,-50.993,-39.670,-220 +resnet61q.ra2_in1k,256,44.623,55.377,58.913,41.087,36.85,0.900,bicubic,-50.417,-40.027,-37 +ecaresnetlight.miil_in1k,288,44.603,55.397,60.430,39.570,30.16,0.950,bicubic,-49.947,-38.650,+97 +regnety_064.ra3_in1k,224,44.580,55.420,58.493,41.507,30.58,0.950,bicubic,-51.010,-40.977,-202 +vit_relpos_small_patch16_224.sw_in1k,224,44.540,55.460,60.200,39.800,21.98,0.900,bicubic,-50.140,-38.900,+62 +swinv2_tiny_window16_256.ms_in1k,256,44.503,55.497,59.467,40.533,28.35,0.900,bicubic,-50.867,-39.833,-147 +resnetv2_101.a1h_in1k,288,44.493,55.507,58.623,41.377,44.54,1.000,bicubic,-51.137,-40.677,-222 +inception_resnet_v2.tf_ens_adv_in1k,299,44.487,55.513,58.170,41.830,55.84,0.897,bicubic,-49.643,-40.690,+217 +gmlp_s16_224.ra3_in1k,224,44.480,55.520,58.653,41.347,19.42,0.875,bicubic,-49.060,-39.947,+351 +tiny_vit_5m_224.dist_in22k_ft_in1k,224,44.463,55.537,60.907,39.093,5.39,0.950,bicubic,-50.167,-38.153,+64 +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,320,44.460,55.540,60.267,39.733,11.07,1.000,bicubic,-50.770,-39.133,-111 +resnetrs101.tf_in1k,192,44.440,55.560,59.397,40.603,63.62,0.940,bicubic,-49.960,-39.723,+132 +cs3edgenet_x.c2_in1k,256,44.430,55.570,59.723,40.277,47.82,0.887,bicubic,-50.710,-39.557,-83 +repvit_m1_0.dist_300e_in1k,224,44.417,55.583,61.430,38.570,7.30,0.950,bicubic,-49.353,-37.240,+290 +regnety_160.tv2_in1k,224,44.413,55.587,59.133,40.867,83.59,0.965,bicubic,-50.747,-40.197,-91 +repvit_m1_0.dist_450e_in1k,224,44.360,55.640,61.450,38.550,7.30,0.950,bicubic,-49.920,-37.540,+160 +tresnet_l.miil_in1k,224,44.353,55.647,59.950,40.050,55.99,0.875,bilinear,-50.507,-39.250,+5 +maxxvitv2_nano_rw_256.sw_in1k,256,44.337,55.663,58.723,41.277,23.70,0.950,bicubic,-51.103,-40.467,-184 +resnext101_32x4d.gluon_in1k,224,44.330,55.670,59.110,40.890,44.18,0.875,bicubic,-49.790,-39.950,+210 +gcvit_xtiny.in1k,224,44.260,55.740,59.983,40.017,19.98,0.875,bicubic,-50.780,-39.167,-58 +eca_nfnet_l0.ra2_in1k,224,44.213,55.787,60.810,39.190,24.14,0.900,bicubic,-50.747,-38.340,-34 +poolformer_m48.sail_in1k,224,44.190,55.810,59.163,40.837,73.47,0.950,bicubic,-50.900,-40.047,-72 +wide_resnet50_2.racm_in1k,224,44.157,55.843,59.670,40.330,68.88,0.875,bicubic,-50.503,-39.310,+48 +regnety_080_tv.tv2_in1k,224,44.153,55.847,58.813,41.187,39.38,0.965,bicubic,-51.167,-40.407,-150 +vit_srelpos_small_patch16_224.sw_in1k,224,44.133,55.867,59.680,40.320,21.97,0.900,bicubic,-50.447,-39.460,+62 +crossvit_15_240.in1k,240,44.127,55.873,59.153,40.847,27.53,0.875,bicubic,-50.553,-40.077,+40 +regnetz_c16_evos.ch_in1k,320,44.120,55.880,60.963,39.037,13.49,0.950,bicubic,-51.540,-38.427,-248 +hgnet_small.paddle_in1k,224,44.117,55.883,60.527,39.473,24.36,0.965,bicubic,-50.743,-38.613,-8 +resnet152s.gluon_in1k,224,44.117,55.883,58.760,41.240,60.32,0.875,bicubic,-50.633,-40.290,+12 +fastvit_sa12.apple_dist_in1k,256,44.113,55.887,59.067,40.933,11.58,0.900,bicubic,-50.587,-40.063,+28 +convnextv2_nano.fcmae_ft_in1k,288,44.103,55.897,60.173,39.827,15.62,1.000,bicubic,-51.057,-39.017,-108 +resnetv2_101x1_bit.goog_in21k_ft_in1k,448,44.097,55.903,62.033,37.967,44.54,1.000,bilinear,-51.233,-37.267,-166 +seresnext50_32x4d.racm_in1k,224,44.097,55.903,59.373,40.627,27.56,0.875,bicubic,-50.783,-39.817,-18 +maxvit_rmlp_nano_rw_256.sw_in1k,256,44.093,55.907,58.160,41.840,15.50,0.950,bicubic,-51.337,-41.270,-195 +pit_b_224.in1k,224,44.083,55.917,58.007,41.993,73.76,0.900,bicubic,-50.737,-41.043,-6 +inception_resnet_v2.tf_in1k,299,44.070,55.930,57.923,42.077,55.84,0.897,bicubic,-50.270,-40.877,+124 +wide_resnet50_2.tv2_in1k,176,44.007,55.993,59.663,40.337,68.88,0.875,bilinear,-50.013,-39.437,+210 +pnasnet5large.tf_in1k,331,43.990,56.010,56.773,43.227,86.06,0.911,bicubic,-51.380,-42.357,-178 +ecaresnet50t.ra2_in1k,256,43.977,56.023,60.037,39.963,25.57,0.875,bicubic,-50.753,-39.033,+8 +poolformer_m36.sail_in1k,224,43.933,56.067,59.110,40.890,56.17,0.950,bicubic,-51.127,-40.050,-80 +resnetaa50d.sw_in12k_ft_in1k,224,43.920,56.080,59.530,40.470,25.58,0.950,bicubic,-51.030,-39.300,-53 +resnet50.fb_ssl_yfcc100m_ft_in1k,224,43.903,56.097,61.923,38.077,25.56,0.875,bilinear,-50.427,-37.217,+120 +vit_wee_patch16_reg1_gap_256.sbb_in1k,256,43.903,56.097,59.383,40.617,13.42,0.950,bicubic,-50.557,-39.707,+78 +pit_s_224.in1k,224,43.893,56.107,58.660,41.340,23.46,0.900,bicubic,-50.707,-40.270,+39 +resnext101_64x4d.gluon_in1k,224,43.890,56.110,58.713,41.287,83.46,0.875,bicubic,-50.460,-40.197,+114 +tf_efficientnetv2_s.in1k,384,43.873,56.127,58.727,41.273,21.46,1.000,bicubic,-51.887,-40.683,-297 +coatnext_nano_rw_224.sw_in1k,224,43.847,56.153,58.583,41.417,14.70,0.900,bicubic,-51.013,-40.447,-28 +regnety_040.ra3_in1k,224,43.843,56.157,57.870,42.130,20.65,0.950,bicubic,-51.157,-41.270,-73 +vit_pwee_patch16_reg1_gap_256.sbb_in1k,256,43.840,56.160,58.800,41.200,15.25,0.950,bicubic,-50.550,-40.240,+96 +wide_resnet50_2.tv2_in1k,224,43.813,56.187,59.637,40.363,68.88,0.965,bilinear,-50.997,-39.643,-20 +cait_xxs36_224.fb_dist_in1k,224,43.803,56.197,58.790,41.210,17.30,1.000,bicubic,-50.137,-39.840,+211 +coat_lite_small.in1k,224,43.803,56.197,57.020,42.980,19.84,0.900,bicubic,-51.297,-42.230,-105 +ecaresnet50d.miil_in1k,224,43.780,56.220,60.343,39.657,25.58,0.875,bicubic,-50.450,-38.517,+140 +convnext_nano.d1h_in1k,224,43.770,56.230,58.773,41.227,15.59,0.950,bicubic,-50.540,-40.147,+110 +ecaresnet101d_pruned.miil_in1k,224,43.767,56.233,59.653,40.347,24.88,0.875,bicubic,-50.673,-39.387,+77 +tnt_s_patch16_224,224,43.767,56.233,59.217,40.783,23.76,0.900,bicubic,-50.803,-39.953,+35 +pit_xs_distilled_224.in1k,224,43.757,56.243,60.650,39.350,11.00,0.900,bicubic,-49.513,-38.100,+355 +resnet152.tv2_in1k,176,43.757,56.243,57.643,42.357,60.19,0.875,bilinear,-50.263,-41.277,+192 +regnetv_040.ra3_in1k,288,43.753,56.247,58.520,41.480,20.64,1.000,bicubic,-52.017,-40.840,-314 +mobilevitv2_200.cvnets_in22k_ft_in1k,256,43.720,56.280,59.470,40.530,18.45,0.888,bicubic,-51.380,-39.620,-115 +cspresnext50.ra_in1k,256,43.713,56.287,60.243,39.757,20.57,0.887,bilinear,-50.537,-38.707,+126 +edgenext_small.usi_in1k,320,43.693,56.307,59.930,40.070,5.59,1.000,bicubic,-51.157,-39.480,-39 +tf_efficientnet_b5.in1k,456,43.650,56.350,60.190,39.810,30.39,0.934,bicubic,-52.200,-39.000,-349 +swinv2_cr_small_224.sw_in1k,224,43.650,56.350,57.513,42.487,49.70,0.900,bicubic,-51.770,-41.547,-219 +rexnet_150.nav_in1k,224,43.610,56.390,60.927,39.073,9.73,0.875,bicubic,-50.680,-38.053,+107 +swin_s3_tiny_224.ms_in1k,224,43.587,56.413,59.353,40.647,28.33,0.900,bicubic,-51.373,-39.807,-80 +resnet101.tv2_in1k,176,43.567,56.433,57.790,42.210,44.55,0.875,bilinear,-50.363,-40.960,+198 +xcit_tiny_12_p8_224.fb_dist_in1k,224,43.553,56.447,58.437,41.563,6.71,1.000,bicubic,-51.167,-40.693,-19 +efficientformer_l1.snap_dist_in1k,224,43.533,56.467,59.930,40.070,12.29,0.950,bicubic,-50.457,-39.130,+186 +crossvit_small_240.in1k,240,43.533,56.467,58.980,41.020,26.86,0.875,bicubic,-51.057,-40.130,+13 +cs3sedarknet_x.c2ns_in1k,288,43.533,56.467,58.810,41.190,35.40,1.000,bicubic,-51.887,-40.350,-228 +maxvit_nano_rw_256.sw_in1k,256,43.523,56.477,57.500,42.500,15.45,0.950,bicubic,-51.957,-41.810,-245 +convnextv2_pico.fcmae_ft_in1k,224,43.490,56.510,60.043,39.957,9.07,0.875,bicubic,-50.610,-38.787,+158 +regnety_016.tv2_in1k,224,43.477,56.523,59.603,40.397,11.20,0.965,bicubic,-50.973,-39.407,+53 +tf_efficientnet_b4.in1k,380,43.470,56.530,59.587,40.413,19.34,0.922,bicubic,-52.030,-39.693,-254 +wide_resnet50_2.racm_in1k,288,43.460,56.540,59.047,40.953,68.88,0.950,bicubic,-51.670,-40.213,-140 +resnet101d.gluon_in1k,224,43.443,56.557,58.643,41.357,44.57,0.875,bicubic,-50.737,-40.277,+129 +efficientvit_b1.r288_in1k,288,43.440,56.560,57.847,42.153,9.10,1.000,bicubic,-50.730,-41.163,+131 +resnet101s.gluon_in1k,224,43.423,56.577,58.703,41.297,44.67,0.875,bicubic,-50.777,-40.137,+121 +ecaresnet50t.ra2_in1k,320,43.403,56.597,59.307,40.693,25.57,0.950,bicubic,-51.707,-39.983,-140 +nf_resnet50.ra2_in1k,256,43.360,56.640,60.593,39.407,25.56,0.940,bicubic,-50.780,-38.357,+139 +cspdarknet53.ra_in1k,256,43.353,56.647,59.477,40.523,27.64,0.887,bilinear,-50.787,-39.513,+137 +coatnet_rmlp_nano_rw_224.sw_in1k,224,43.347,56.653,58.647,41.353,15.15,0.900,bicubic,-51.713,-40.533,-125 +resnet152.a1_in1k,224,43.347,56.653,56.347,43.653,60.19,0.950,bicubic,-51.343,-42.623,-21 +eca_nfnet_l0.ra2_in1k,288,43.303,56.697,59.903,40.097,24.14,1.000,bicubic,-52.147,-39.507,-254 +efficientnet_b1.ra4_e3600_r240_in1k,288,43.303,56.697,59.017,40.983,7.79,1.000,bicubic,-51.137,-40.073,+45 +convmixer_768_32.in1k,224,43.260,56.740,59.363,40.637,21.11,0.960,bicubic,-51.150,-39.747,+52 +ecaresnet101d_pruned.miil_in1k,288,43.240,56.760,58.983,41.017,24.88,0.950,bicubic,-51.820,-40.217,-133 +xcit_tiny_24_p8_224.fb_in1k,224,43.233,56.767,57.297,42.703,12.11,1.000,bicubic,-51.647,-41.823,-76 +xcit_tiny_12_p8_384.fb_dist_in1k,384,43.227,56.773,58.140,41.860,6.71,1.000,bicubic,-52.223,-41.200,-258 +cs3sedarknet_x.c2ns_in1k,256,43.220,56.780,58.733,41.267,35.40,0.887,bicubic,-51.840,-40.507,-135 +poolformerv2_s24.sail_in1k,224,43.213,56.787,60.407,39.593,21.34,1.000,bicubic,-51.237,-38.503,+36 +visformer_small.in1k,224,43.210,56.790,57.980,42.020,40.22,0.900,bicubic,-51.760,-41.190,-109 +repvit_m0_9.dist_300e_in1k,224,43.207,56.793,60.447,39.553,5.49,0.950,bicubic,-50.243,-38.403,+289 +vit_small_patch32_384.augreg_in21k_ft_in1k,384,43.187,56.813,59.287,40.713,22.92,1.000,bicubic,-51.383,-39.853,-2 +fbnetv3_d.ra2_in1k,224,43.180,56.820,59.540,40.460,10.31,0.950,bilinear,-50.050,-39.000,+320 +mobilenet_edgetpu_v2_m,224,43.170,56.830,58.280,41.720,8.46,0.900,bicubic,-51.000,-40.640,+116 +tf_efficientnetv2_b3.in1k,240,43.167,56.833,58.913,41.087,14.36,0.904,bicubic,-51.063,-40.077,+96 +regnetx_160.tv2_in1k,224,43.157,56.843,57.463,42.537,54.28,0.965,bicubic,-52.103,-41.737,-209 +cspresnet50.ra_in1k,256,43.147,56.853,59.250,40.750,21.62,0.887,bilinear,-50.763,-39.530,+168 +vit_relpos_base_patch32_plus_rpn_256.sw_in1k,256,43.147,56.853,58.433,41.567,119.42,0.900,bicubic,-50.023,-40.247,+325 +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,224,43.147,56.853,58.280,41.720,8.46,0.900,bicubic,-51.023,-40.660,+109 +regnety_064.ra3_in1k,288,43.143,56.857,57.300,42.700,30.58,1.000,bicubic,-52.667,-41.990,-373 +regnetx_080.tv2_in1k,224,43.133,56.867,57.973,42.027,39.57,0.965,bicubic,-51.617,-40.977,-64 +resnest26d.gluon_in1k,224,43.130,56.870,60.590,39.410,17.07,0.875,bilinear,-50.150,-37.940,+304 +repvit_m0_9.dist_450e_in1k,224,43.130,56.870,60.437,39.563,5.49,0.950,bicubic,-50.340,-38.563,+272 +twins_pcpvt_small.in1k,224,43.097,56.903,58.933,41.067,24.11,0.900,bicubic,-51.513,-40.057,-28 +coatnet_nano_rw_224.sw_in1k,224,43.070,56.930,57.877,42.123,15.14,0.900,bicubic,-51.960,-41.313,-139 +ecaresnet50d.miil_in1k,288,43.067,56.933,59.480,40.520,25.58,0.950,bicubic,-51.613,-39.620,-45 +efficientnet_b1.ra4_e3600_r240_in1k,240,43.057,56.943,59.263,40.737,7.79,0.900,bicubic,-51.163,-39.827,+85 +resmlp_36_224.fb_in1k,224,43.010,56.990,59.413,40.587,44.69,0.875,bicubic,-50.660,-39.287,+216 +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,256,42.973,57.027,58.017,41.983,8.46,0.950,bicubic,-51.577,-40.883,-10 +resnet152.gluon_in1k,224,42.973,57.027,57.773,42.227,60.19,0.875,bicubic,-51.067,-41.247,+132 +mobilenet_edgetpu_v2_m,256,42.957,57.043,58.010,41.990,8.46,0.950,bicubic,-51.603,-40.810,-20 +resnet50.b1k_in1k,224,42.953,57.047,58.933,41.067,25.56,0.950,bicubic,-50.747,-39.867,+208 +twins_svt_small.in1k,224,42.940,57.060,58.433,41.567,24.06,0.900,bicubic,-51.830,-40.647,-80 +fastvit_sa12.apple_in1k,256,42.923,57.077,58.873,41.127,11.58,0.900,bicubic,-51.537,-40.197,+6 +fbnetv3_d.ra2_in1k,256,42.907,57.093,59.650,40.350,10.31,0.950,bilinear,-50.913,-39.250,+172 +tf_efficientnet_b1.ap_in1k,240,42.887,57.113,58.907,41.093,7.79,0.882,bicubic,-50.753,-39.873,+216 +dpn131.mx_in1k,224,42.883,57.117,57.167,42.833,79.25,0.875,bicubic,-50.907,-41.743,+180 +tf_efficientnet_lite4.in1k,380,42.877,57.123,57.723,42.277,13.01,0.920,bilinear,-52.003,-41.407,-106 +gcresnet50t.ra2_in1k,256,42.860,57.140,59.233,40.767,25.90,0.900,bicubic,-51.750,-39.687,-42 +resnet50d.ra4_e3600_r224_in1k,224,42.857,57.143,58.163,41.837,25.58,0.950,bicubic,-51.963,-40.947,-95 +resnet152c.gluon_in1k,224,42.850,57.150,57.793,42.207,60.21,0.875,bicubic,-51.040,-41.097,+149 +resnet50.tv2_in1k,224,42.840,57.160,58.543,41.457,25.56,0.965,bilinear,-51.750,-40.527,-40 +coatnet_0_rw_224.sw_in1k,224,42.807,57.193,56.297,43.703,27.44,0.950,bicubic,-52.123,-42.723,-131 +tresnet_l.miil_in1k_448,448,42.803,57.197,58.943,41.057,55.99,0.875,bilinear,-52.607,-40.457,-280 +cs3darknet_x.c2ns_in1k,256,42.803,57.197,58.367,41.633,35.05,0.950,bicubic,-52.227,-40.783,-162 +gcresnet50t.ra2_in1k,288,42.790,57.210,59.073,40.927,25.90,1.000,bicubic,-51.970,-40.047,-91 +levit_256.fb_dist_in1k,224,42.787,57.213,57.913,42.087,18.89,0.900,bicubic,-51.633,-40.967,+6 +levit_conv_256.fb_dist_in1k,224,42.783,57.217,57.913,42.087,18.89,0.900,bicubic,-51.627,-41.147,+9 +mobilevitv2_200.cvnets_in22k_ft_in1k_384,384,42.777,57.223,58.860,41.140,18.45,1.000,bicubic,-52.643,-40.440,-289 +cs3darknet_x.c2ns_in1k,288,42.770,57.230,58.157,41.843,35.05,1.000,bicubic,-52.500,-40.813,-247 +dpn107.mx_in1k,224,42.763,57.237,57.280,42.720,86.92,0.875,bicubic,-51.247,-41.610,+118 +resnext50_32x4d.tv2_in1k,224,42.753,57.247,57.563,42.437,25.03,0.965,bilinear,-51.737,-41.457,-20 +seresnext50_32x4d.gluon_in1k,224,42.700,57.300,58.657,41.343,27.56,0.875,bicubic,-51.470,-40.213,+73 +resnet152.a3_in1k,160,42.700,57.300,56.957,43.043,60.19,0.950,bicubic,-50.670,-41.623,+265 +resnet50d.ra2_in1k,224,42.693,57.307,58.750,41.250,25.58,0.875,bicubic,-51.367,-40.180,+104 +tresnet_m.miil_in1k,224,42.693,57.307,58.193,41.807,31.39,0.875,bilinear,-51.407,-40.837,+92 +convnext_nano_ols.d1h_in1k,224,42.693,57.307,57.663,42.337,15.65,0.950,bicubic,-51.457,-41.287,+79 +resnext101_32x8d.tv_in1k,224,42.600,57.400,58.370,41.630,88.79,0.875,bilinear,-51.180,-40.580,+160 +regnety_040.ra3_in1k,288,42.597,57.403,57.003,42.997,20.65,1.000,bicubic,-52.853,-42.187,-312 +resnetv2_50d_gn.ah_in1k,224,42.583,57.417,57.753,42.247,25.57,0.950,bicubic,-51.837,-41.307,-5 +convnext_nano.d1h_in1k,288,42.580,57.420,57.537,42.463,15.59,1.000,bicubic,-52.310,-41.713,-136 +xcit_tiny_12_p16_384.fb_dist_in1k,384,42.573,57.427,58.060,41.940,6.72,1.000,bicubic,-51.977,-41.130,-44 +resnetaa50d.sw_in12k_ft_in1k,288,42.550,57.450,58.457,41.543,25.58,1.000,bicubic,-52.740,-40.733,-266 +fastvit_s12.apple_dist_in1k,256,42.547,57.453,58.160,41.840,9.47,0.900,bicubic,-51.733,-40.960,+30 +mobilevitv2_175.cvnets_in22k_ft_in1k,256,42.527,57.473,58.297,41.703,14.25,0.888,bicubic,-52.243,-40.803,-114 +efficientvit_b1.r256_in1k,256,42.527,57.473,57.487,42.513,9.10,1.000,bicubic,-51.133,-41.273,+183 +resnetv2_50d_evos.ah_in1k,224,42.517,57.483,57.147,42.853,25.59,0.950,bicubic,-51.773,-41.943,+23 +seresnet50.ra2_in1k,224,42.487,57.513,58.747,41.253,28.09,0.875,bicubic,-51.633,-40.163,+77 +nf_resnet50.ra2_in1k,288,42.483,57.517,59.607,40.393,25.56,0.940,bicubic,-51.887,-39.443,-2 +resnet50.b2k_in1k,224,42.467,57.533,58.137,41.863,25.56,0.950,bicubic,-51.333,-40.303,+141 +seresnext50_32x4d.racm_in1k,288,42.467,57.533,58.127,41.873,27.56,0.950,bicubic,-52.543,-40.963,-180 +resnetrs101.tf_in1k,288,42.460,57.540,57.290,42.710,63.62,0.940,bicubic,-52.770,-41.920,-253 +resnet50.tv2_in1k,176,42.430,57.570,58.043,41.957,25.56,0.875,bilinear,-51.320,-40.707,+155 +poolformer_s36.sail_in1k,224,42.383,57.617,58.803,41.197,30.86,0.900,bicubic,-52.247,-40.227,-82 +repvit_m1.dist_in1k,224,42.370,57.630,59.640,40.360,5.49,0.950,bicubic,-50.970,-39.020,+245 +mobileone_s4.apple_in1k,224,42.370,57.630,58.053,41.947,14.95,0.900,bilinear,-51.370,-40.887,+156 +nest_tiny_jx.goog_in1k,224,42.347,57.653,57.040,42.960,17.06,0.875,bicubic,-52.593,-42.130,-166 +legacy_senet154.in1k,224,42.340,57.660,56.647,43.353,115.09,0.875,bilinear,-52.400,-42.453,-116 +tf_efficientnetv2_b3.in1k,300,42.333,57.667,58.017,41.983,14.36,0.904,bicubic,-52.807,-40.903,-230 +mobileone_s3.apple_in1k,224,42.300,57.700,59.327,40.673,10.17,0.900,bilinear,-50.700,-39.283,+284 +hgnet_small.paddle_in1k,288,42.287,57.713,58.703,41.297,24.36,1.000,bicubic,-52.803,-40.617,-217 +xcit_tiny_24_p16_224.fb_in1k,224,42.283,57.717,56.793,43.207,12.12,1.000,bicubic,-51.567,-42.107,+119 +tf_efficientnet_cc_b1_8e.in1k,240,42.277,57.723,58.540,41.460,39.72,0.882,bicubic,-51.313,-40.440,+183 +deit_small_patch16_224.fb_in1k,224,42.270,57.730,58.007,41.993,22.05,0.900,bicubic,-51.730,-40.943,+86 +convmixer_1024_20_ks9_p14.in1k,224,42.260,57.740,59.687,40.313,24.38,0.960,bicubic,-50.070,-38.723,+366 +tf_efficientnet_b2.aa_in1k,260,42.243,57.757,58.223,41.777,9.11,0.890,bicubic,-51.967,-40.617,+28 +resnet101.a1_in1k,224,42.233,57.767,55.470,44.530,44.55,0.950,bicubic,-52.247,-43.290,-52 +resnet152.a1_in1k,288,42.233,57.767,55.470,44.530,60.19,1.000,bicubic,-52.907,-43.600,-237 +dpn68b.ra_in1k,224,42.203,57.797,56.637,43.363,12.61,0.950,bicubic,-51.077,-42.233,+239 +dpn98.mx_in1k,224,42.170,57.830,56.677,43.323,61.57,0.875,bicubic,-51.790,-41.843,+86 +resnet50d.ra4_e3600_r224_in1k,288,42.163,57.837,57.627,42.373,25.58,1.000,bicubic,-53.117,-41.493,-290 +cait_xxs24_384.fb_dist_in1k,384,42.160,57.840,57.503,42.497,12.03,1.000,bicubic,-52.820,-41.727,-194 +resnext50_32x4d.gluon_in1k,224,42.140,57.860,57.693,42.307,25.03,0.875,bicubic,-51.560,-40.977,+148 +xception41p.ra3_in1k,299,42.070,57.930,56.817,43.183,26.91,0.940,bicubic,-53.010,-42.253,-225 +hgnet_tiny.paddle_in1k,224,42.053,57.947,59.000,41.000,14.74,0.965,bicubic,-51.817,-39.760,+97 +resnet50.ram_in1k,224,42.050,57.950,56.097,43.903,25.56,0.875,bicubic,-51.470,-42.703,+185 +convnext_nano_ols.d1h_in1k,288,42.037,57.963,56.863,43.137,15.65,1.000,bicubic,-52.553,-42.177,-94 +ecaresnet50d_pruned.miil_in1k,224,42.033,57.967,58.350,41.650,19.94,0.875,bicubic,-51.817,-40.520,+99 +edgenext_small_rw.sw_in1k,256,41.997,58.003,58.697,41.303,7.83,0.900,bicubic,-51.833,-40.023,+107 +resnet50.b1k_in1k,288,41.987,58.013,58.203,41.797,25.56,1.000,bicubic,-52.503,-40.787,-67 +resnet50.b2k_in1k,288,41.980,58.020,57.680,42.320,25.56,1.000,bicubic,-52.320,-41.230,-14 +pvt_v2_b1.in1k,224,41.963,58.037,59.583,40.417,14.01,0.900,bicubic,-51.547,-39.297,+180 +efficientnet_b2.ra_in1k,288,41.947,58.053,58.300,41.700,9.11,1.000,bicubic,-52.423,-40.740,-35 +tf_efficientnet_b3.in1k,300,41.913,58.087,58.147,41.853,12.23,0.904,bicubic,-52.367,-40.963,-13 +mobilevitv2_150.cvnets_in22k_ft_in1k,256,41.883,58.117,57.897,42.103,10.59,0.888,bicubic,-52.857,-41.023,-142 +resnext50_32x4d.a1h_in1k,224,41.880,58.120,56.757,43.243,25.03,0.950,bicubic,-52.680,-42.253,-91 +xcit_tiny_12_p16_224.fb_dist_in1k,224,41.843,58.157,57.303,42.697,6.72,1.000,bicubic,-51.497,-41.337,+212 +resnet152.a2_in1k,224,41.837,58.163,55.673,44.327,60.19,0.950,bicubic,-52.913,-43.377,-147 +fastvit_t12.apple_dist_in1k,256,41.827,58.173,57.600,42.400,7.55,0.900,bicubic,-52.273,-41.420,+38 +efficientformerv2_s1.snap_dist_in1k,224,41.813,58.187,57.973,42.027,6.19,0.950,bicubic,-51.807,-40.797,+147 +resnext50_32x4d.tv2_in1k,176,41.813,58.187,56.577,43.423,25.03,0.875,bilinear,-51.657,-42.093,+185 +resnet50d.ra2_in1k,288,41.797,58.203,58.137,41.863,25.58,0.950,bicubic,-53.043,-41.143,-170 +gcvit_xxtiny.in1k,224,41.763,58.237,58.327,41.673,12.00,0.875,bicubic,-52.327,-40.653,+37 +poolformer_s24.sail_in1k,224,41.760,58.240,58.520,41.480,21.39,0.900,bicubic,-52.670,-40.540,-62 +senet154.gluon_in1k,224,41.710,58.290,56.510,43.490,115.09,0.875,bicubic,-52.980,-42.590,-137 +resnext50_32x4d.a1h_in1k,288,41.710,58.290,56.380,43.620,25.03,1.000,bicubic,-53.290,-42.810,-222 +edgenext_small_rw.sw_in1k,320,41.693,58.307,58.520,41.480,7.83,1.000,bicubic,-52.677,-40.540,-48 +mobilevitv2_150.cvnets_in22k_ft_in1k_384,384,41.683,58.317,57.807,42.193,10.59,1.000,bicubic,-53.657,-41.323,-335 +dla102x2.in1k,224,41.677,58.323,58.043,41.957,41.28,0.875,bilinear,-52.353,-40.787,+43 +inception_v4.tf_in1k,299,41.663,58.337,55.370,44.630,42.68,0.875,bicubic,-52.707,-43.720,-50 +gcresnext50ts.ch_in1k,288,41.657,58.343,57.340,42.660,15.67,1.000,bicubic,-52.843,-41.750,-90 +efficientvit_b1.r224_in1k,224,41.637,58.363,56.627,43.373,9.10,0.950,bicubic,-51.683,-41.993,+201 +cs3sedarknet_l.c2ns_in1k,256,41.627,58.373,57.350,42.650,21.91,0.887,bicubic,-53.423,-41.790,-245 +hrnet_w64.ms_in1k,224,41.623,58.377,57.193,42.807,128.06,0.875,bilinear,-52.217,-41.837,+79 +seresnet50.ra2_in1k,288,41.603,58.397,57.953,42.047,28.09,0.950,bicubic,-53.167,-41.177,-174 +haloregnetz_b.ra3_in1k,224,41.563,58.437,57.063,42.937,11.68,0.940,bicubic,-52.957,-41.717,-102 +mobilevitv2_175.cvnets_in22k_ft_in1k_384,384,41.553,58.447,57.843,42.157,14.25,1.000,bicubic,-53.707,-41.537,-323 +cs3sedarknet_l.c2ns_in1k,288,41.553,58.447,57.483,42.517,21.91,0.950,bicubic,-53.547,-41.737,-267 +resnet50.c1_in1k,224,41.553,58.447,56.733,43.267,25.56,0.950,bicubic,-52.407,-42.217,+49 +tf_efficientnet_cc_b0_8e.in1k,224,41.520,58.480,57.390,42.610,24.01,0.875,bicubic,-51.360,-41.260,+263 +tf_efficientnetv2_b2.in1k,208,41.517,58.483,57.363,42.637,10.10,0.890,bicubic,-52.093,-41.447,+130 +efficientnet_el.ra_in1k,300,41.503,58.497,58.340,41.660,10.59,0.904,bicubic,-53.167,-40.790,-147 +convnextv2_pico.fcmae_ft_in1k,288,41.503,58.497,58.050,41.950,9.07,0.950,bicubic,-53.067,-41.100,-124 +efficientnet_em.ra2_in1k,240,41.490,58.510,58.863,41.137,6.90,0.882,bicubic,-52.270,-40.047,+91 +resnetv2_50.a1h_in1k,224,41.490,58.510,56.807,43.193,25.55,0.950,bicubic,-52.820,-42.123,-53 +nf_regnet_b1.ra2_in1k,256,41.487,58.513,58.893,41.107,10.22,0.900,bicubic,-51.963,-39.937,+163 +resnet50.a1h_in1k,224,41.463,58.537,56.793,43.207,25.56,1.000,bicubic,-52.747,-42.227,-22 +resnetaa50.a1h_in1k,224,41.450,58.550,56.423,43.577,25.56,0.950,bicubic,-53.010,-42.707,-96 +halo2botnet50ts_256.a1h_in1k,256,41.443,58.557,56.267,43.733,22.64,0.950,bicubic,-53.577,-42.723,-251 +cait_xxs24_224.fb_dist_in1k,224,41.430,58.570,57.580,42.420,11.96,1.000,bicubic,-52.070,-41.260,+145 +swinv2_cr_tiny_ns_224.sw_in1k,224,41.413,58.587,57.133,42.867,28.33,0.900,bicubic,-53.367,-41.997,-193 +resnetv2_50d_evos.ah_in1k,288,41.413,58.587,56.500,43.500,25.59,1.000,bicubic,-53.477,-42.760,-217 +swin_tiny_patch4_window7_224.ms_in1k,224,41.397,58.603,57.333,42.667,28.29,0.900,bicubic,-53.293,-41.737,-166 +resnext50_32x4d.ra_in1k,224,41.363,58.637,56.940,43.060,25.03,0.875,bicubic,-52.477,-41.980,+60 +resnet101.a2_in1k,224,41.360,58.640,55.430,44.570,44.55,0.950,bicubic,-53.190,-43.580,-123 +convnext_tiny.fb_in22k_ft_in1k,288,41.353,58.647,55.377,44.623,28.59,1.000,bicubic,-52.197,-43.243,+129 +efficientnet_b2.ra_in1k,256,41.343,58.657,57.987,42.013,9.11,0.875,bicubic,-52.747,-41.103,+4 +resnet152.tv_in1k,224,41.340,58.660,57.593,42.407,60.19,0.875,bilinear,-51.930,-41.197,+182 +resnet50.ra_in1k,224,41.330,58.670,57.467,42.533,25.56,0.875,bicubic,-52.100,-41.353,+154 +resnet50.ram_in1k,288,41.330,58.670,55.073,44.927,25.56,0.950,bicubic,-52.670,-43.807,+22 +xception71.tf_in1k,299,41.327,58.673,55.977,44.023,42.34,0.903,bicubic,-52.593,-43.103,+33 +gcresnext50ts.ch_in1k,256,41.320,58.680,57.143,42.857,15.67,0.900,bicubic,-53.100,-41.837,-98 +gernet_s.idstcv_in1k,224,41.313,58.687,58.893,41.107,8.17,0.875,bilinear,-51.127,-39.607,+287 +cs3darknet_l.c2ns_in1k,288,41.313,58.687,57.380,42.620,21.16,0.950,bicubic,-53.387,-41.740,-182 +swinv2_tiny_window8_256.ms_in1k,256,41.280,58.720,56.960,43.040,28.35,0.900,bicubic,-53.780,-42.140,-281 +resnet101.a1_in1k,288,41.273,58.727,54.253,45.747,44.55,1.000,bicubic,-53.627,-44.777,-235 +cs3darknet_l.c2ns_in1k,256,41.253,58.747,57.177,42.823,21.16,0.887,bicubic,-53.027,-41.853,-65 +dpn68b.ra_in1k,288,41.253,58.747,55.043,44.957,12.61,1.000,bicubic,-52.507,-43.907,+68 +regnetz_b16.ra3_in1k,224,41.250,58.750,57.210,42.790,9.72,0.940,bicubic,-52.900,-41.620,-27 +inception_v3.tf_adv_in1k,299,41.240,58.760,56.337,43.663,23.83,0.875,bicubic,-51.730,-42.403,+212 +resnet50.a1h_in1k,176,41.210,58.790,56.637,43.363,25.56,0.900,bicubic,-52.180,-42.253,+155 +dpn92.mx_in1k,224,41.207,58.793,56.210,43.790,37.67,0.875,bicubic,-52.943,-42.730,-28 +resnet101.a3_in1k,160,41.150,58.850,55.957,44.043,44.55,0.950,bicubic,-51.730,-42.733,+229 +resnetblur50.bt_in1k,224,41.113,58.887,57.097,42.903,25.56,0.875,bicubic,-52.597,-41.683,+72 +resnetv2_50d_gn.ah_in1k,288,41.110,58.890,56.607,43.393,25.57,1.000,bicubic,-54.130,-42.423,-349 +resnet50.c1_in1k,288,41.090,58.910,56.537,43.463,25.56,1.000,bicubic,-53.420,-42.533,-140 +resnet50d.gluon_in1k,224,41.040,58.960,57.170,42.830,25.58,0.875,bicubic,-52.530,-41.690,+105 +nf_regnet_b1.ra2_in1k,288,41.033,58.967,58.190,41.810,10.22,0.900,bicubic,-52.877,-40.660,+18 +ecaresnet50d_pruned.miil_in1k,288,40.990,59.010,57.737,42.263,19.94,0.950,bicubic,-53.310,-41.463,-85 +resnetv2_50.a1h_in1k,288,40.973,59.027,56.463,43.537,25.55,1.000,bicubic,-53.737,-42.777,-200 +fbnetv3_b.ra2_in1k,256,40.917,59.083,58.657,41.343,8.60,0.950,bilinear,-52.733,-40.243,+80 +fbnetv3_b.ra2_in1k,224,40.913,59.087,58.730,41.270,8.60,0.950,bilinear,-52.007,-40.030,+208 +tf_efficientnetv2_b1.in1k,192,40.893,59.107,56.740,43.260,8.14,0.882,bicubic,-52.337,-41.930,+161 +inception_v3.gluon_in1k,299,40.887,59.113,55.693,44.307,23.83,0.875,bicubic,-52.713,-43.047,+89 +ese_vovnet39b.ra_in1k,224,40.873,59.127,56.977,43.023,24.57,0.875,bicubic,-52.977,-41.983,+24 +resnet152.a3_in1k,224,40.870,59.130,55.033,44.967,60.19,0.950,bicubic,-53.590,-43.847,-133 +cs3darknet_focus_l.c2ns_in1k,288,40.867,59.133,56.653,43.347,21.15,0.950,bicubic,-53.943,-42.527,-229 +legacy_xception.tf_in1k,299,40.863,59.137,56.573,43.427,22.86,0.897,bicubic,-52.797,-42.257,+71 +resnet34d.ra2_in1k,224,40.860,59.140,56.507,43.493,21.82,0.875,bicubic,-51.820,-41.943,+234 +cs3darknet_focus_l.c2ns_in1k,256,40.850,59.150,56.567,43.433,21.15,0.887,bicubic,-53.400,-42.203,-77 +regnety_320.pycls_in1k,224,40.847,59.153,56.197,43.803,145.05,0.875,bicubic,-53.653,-42.823,-154 +maxvit_rmlp_pico_rw_256.sw_in1k,256,40.837,59.163,55.277,44.723,7.52,0.950,bicubic,-53.423,-43.733,-81 +levit_192.fb_dist_in1k,224,40.807,59.193,56.633,43.367,10.95,0.900,bicubic,-52.903,-42.167,+54 +regnetx_032.tv2_in1k,224,40.803,59.197,56.713,43.287,15.30,0.965,bicubic,-53.757,-41.977,-170 +resnet50_gn.a1h_in1k,224,40.797,59.203,55.703,44.297,25.56,0.940,bicubic,-53.383,-43.267,-61 +resnet152.a2_in1k,288,40.793,59.207,54.353,45.647,60.19,1.000,bicubic,-54.207,-44.867,-291 +levit_conv_192.fb_dist_in1k,224,40.790,59.210,56.687,43.313,10.95,0.900,bicubic,-52.920,-42.093,+51 +resnet101.gluon_in1k,224,40.787,59.213,56.230,43.770,44.55,0.875,bicubic,-53.033,-42.480,+20 +tiny_vit_5m_224.in1k,224,40.780,59.220,57.267,42.733,5.39,0.950,bicubic,-53.020,-41.413,+21 +halonet50ts.a1h_in1k,256,40.770,59.230,55.380,44.620,22.73,0.940,bicubic,-53.930,-43.690,-214 +eva02_tiny_patch14_336.mim_in22k_ft_in1k,336,40.767,59.233,56.167,43.833,5.76,1.000,bicubic,-53.693,-42.733,-152 +hrnet_w40.ms_in1k,224,40.720,59.280,56.843,43.157,57.56,0.875,bilinear,-53.030,-41.987,+35 +vit_base_patch32_384.augreg_in1k,384,40.707,59.293,55.243,44.757,88.30,1.000,bicubic,-52.473,-43.377,+148 +resnet50.c2_in1k,224,40.697,59.303,55.720,44.280,25.56,0.950,bicubic,-53.203,-43.270,-6 +repvgg_b1.rvgg_in1k,224,40.693,59.307,57.803,42.197,57.42,0.875,bilinear,-52.717,-40.857,+115 +skresnext50_32x4d.ra_in1k,224,40.690,59.310,56.000,44.000,27.48,0.875,bicubic,-53.290,-42.820,-22 +resmlp_24_224.fb_in1k,224,40.677,59.323,56.617,43.383,30.02,0.875,bicubic,-52.753,-42.203,+106 +lamhalobotnet50ts_256.a1h_in1k,256,40.670,59.330,56.137,43.863,22.57,0.950,bicubic,-54.080,-43.043,-239 +resnetaa50.a1h_in1k,288,40.663,59.337,56.157,43.843,25.56,1.000,bicubic,-54.197,-43.053,-261 +resnet50.d_in1k,224,40.643,59.357,55.223,44.777,25.56,0.950,bicubic,-53.157,-43.687,+13 +tf_efficientnet_lite3.in1k,300,40.640,59.360,56.750,43.250,8.20,0.904,bilinear,-53.520,-42.210,-70 +ese_vovnet39b.ra_in1k,288,40.637,59.363,56.693,43.307,24.57,0.950,bicubic,-53.863,-42.477,-174 +ecaresnet50t.a1_in1k,224,40.613,59.387,55.090,44.910,25.57,0.950,bicubic,-53.587,-43.750,-85 +resnet50.am_in1k,224,40.593,59.407,57.333,42.667,25.56,0.875,bicubic,-53.037,-41.627,+51 +convnext_pico_ols.d1_in1k,224,40.593,59.407,56.757,43.243,9.06,0.950,bicubic,-53.127,-42.103,+31 +resnext50_32x4d.ra_in1k,288,40.580,59.420,56.190,43.810,25.03,0.950,bicubic,-53.730,-42.770,-126 +mobilevitv2_175.cvnets_in1k,256,40.570,59.430,56.230,43.770,14.25,0.888,bicubic,-53.730,-42.670,-119 +dla169.in1k,224,40.547,59.453,57.387,42.613,53.39,0.875,bilinear,-53.233,-41.473,+11 +repvgg_b2.rvgg_in1k,224,40.533,59.467,57.787,42.213,89.02,0.875,bilinear,-53.037,-40.923,+61 +regnetx_320.pycls_in1k,224,40.533,59.467,55.650,44.350,107.81,0.875,bicubic,-53.677,-43.400,-97 +xcit_tiny_12_p8_224.fb_in1k,224,40.527,59.473,55.560,44.440,6.71,1.000,bicubic,-53.823,-43.530,-137 +pit_xs_224.in1k,224,40.523,59.477,56.523,43.477,10.62,0.900,bicubic,-52.377,-42.077,+171 +tresnet_m.miil_in1k_448,448,40.513,59.487,56.650,43.350,31.39,0.875,bilinear,-54.167,-42.490,-231 +wide_resnet101_2.tv_in1k,224,40.510,59.490,55.987,44.013,126.89,0.875,bilinear,-53.260,-42.983,+8 +efficientnet_b2_pruned.in1k,260,40.460,59.540,56.623,43.377,8.31,0.890,bicubic,-53.350,-42.287,-6 +regnetz_b16.ra3_in1k,288,40.440,59.560,56.050,43.950,9.72,1.000,bicubic,-54.260,-43.170,-242 +vit_base_patch16_384.augreg_in1k,384,40.420,59.580,53.270,46.730,86.86,1.000,bicubic,-54.050,-45.720,-181 +resnet50.a1_in1k,224,40.417,59.583,54.670,45.330,25.56,0.950,bicubic,-53.543,-44.250,-40 +eca_resnet33ts.ra2_in1k,288,40.393,59.607,57.343,42.657,19.68,1.000,bicubic,-53.867,-41.607,-121 +tf_efficientnet_b0.ap_in1k,224,40.393,59.607,56.837,43.163,5.29,0.875,bicubic,-52.227,-41.573,+203 +skresnet34.ra_in1k,224,40.390,59.610,56.777,43.223,22.28,0.875,bicubic,-52.180,-41.733,+209 +hgnet_tiny.paddle_in1k,288,40.377,59.623,56.560,43.440,14.74,1.000,bicubic,-53.923,-42.640,-136 +regnetx_160.pycls_in1k,224,40.343,59.657,56.110,43.890,54.28,0.875,bicubic,-53.577,-42.810,-40 +legacy_seresnext101_32x4d.in1k,224,40.330,59.670,54.863,45.137,48.96,0.875,bilinear,-53.920,-44.107,-119 +coat_mini.in1k,224,40.323,59.677,55.153,44.847,10.34,0.900,bicubic,-54.427,-43.837,-265 +resnet34d.ra2_in1k,288,40.310,59.690,56.160,43.840,21.82,0.950,bicubic,-53.330,-42.590,+28 +xception65.tf_in1k,299,40.303,59.697,55.263,44.737,39.92,0.903,bicubic,-53.497,-43.677,-16 +densenet201.tv_in1k,224,40.300,59.700,56.757,43.243,20.01,0.875,bicubic,-52.440,-41.893,+179 +coat_lite_mini.in1k,224,40.300,59.700,55.657,44.343,11.01,0.900,bicubic,-53.220,-42.943,+50 +sebotnet33ts_256.a1h_in1k,256,40.300,59.700,53.157,46.843,13.70,0.940,bicubic,-54.040,-45.383,-150 +mobileone_s2.apple_in1k,224,40.287,59.713,57.993,42.007,7.88,0.900,bilinear,-52.343,-40.687,+189 +efficientnet_el_pruned.in1k,300,40.283,59.717,56.727,43.273,10.59,0.904,bicubic,-53.787,-42.253,-77 +resnet101.a2_in1k,288,40.253,59.747,54.237,45.763,44.55,1.000,bicubic,-54.637,-44.853,-307 +resnet50.ra_in1k,288,40.247,59.753,56.273,43.727,25.56,0.950,bicubic,-53.923,-42.577,-105 +resnext50_32x4d.a1_in1k,224,40.230,59.770,54.167,45.833,25.03,0.950,bicubic,-53.570,-44.463,-21 +resnet50.c2_in1k,288,40.193,59.807,55.270,44.730,25.56,1.000,bicubic,-54.077,-43.690,-141 +eca_resnet33ts.ra2_in1k,256,40.190,59.810,56.977,43.023,19.68,0.900,bicubic,-53.690,-41.913,-46 +convnext_pico.d1_in1k,224,40.177,59.823,56.040,43.960,9.05,0.875,bicubic,-53.303,-42.800,+51 +hrnet_w48.ms_in1k,224,40.163,59.837,56.603,43.397,77.47,0.875,bilinear,-53.877,-42.127,-79 +resnext50d_32x4d.bt_in1k,224,40.160,59.840,55.673,44.327,25.05,0.875,bicubic,-53.680,-43.147,-35 +poolformerv2_s12.sail_in1k,224,40.150,59.850,57.463,42.537,11.89,1.000,bicubic,-52.760,-41.097,+141 +resnetblur50.bt_in1k,288,40.147,59.853,56.230,43.770,25.56,0.950,bicubic,-54.023,-42.630,-117 +darknetaa53.c2ns_in1k,288,40.137,59.863,55.777,44.223,36.02,1.000,bilinear,-54.113,-43.163,-137 +mobilevitv2_200.cvnets_in1k,256,40.137,59.863,55.583,44.417,18.45,0.888,bicubic,-54.423,-43.307,-231 +hrnet_w30.ms_in1k,224,40.120,59.880,57.083,42.917,37.71,0.875,bilinear,-53.280,-41.617,+67 +efficientnet_b0.ra4_e3600_r224_in1k,256,40.117,59.883,56.137,43.863,5.29,1.000,bicubic,-53.383,-42.543,+38 +vit_base_patch16_224.sam_in1k,224,40.113,59.887,55.553,44.447,86.57,0.900,bicubic,-53.777,-43.247,-58 +fastvit_t12.apple_in1k,256,40.083,59.917,55.250,44.750,7.55,0.900,bicubic,-53.417,-43.580,+39 +legacy_seresnet152.in1k,224,40.073,59.927,55.887,44.113,66.82,0.875,bilinear,-53.367,-42.963,+52 +tf_efficientnet_b1.aa_in1k,240,40.047,59.953,56.177,43.823,7.79,0.882,bicubic,-53.693,-42.623,-20 +resnet50_gn.a1h_in1k,288,40.037,59.963,54.967,45.033,25.56,0.950,bicubic,-54.583,-44.073,-257 +efficientnet_b0.ra4_e3600_r224_in1k,224,40.033,59.967,55.763,44.237,5.29,0.900,bicubic,-53.097,-42.947,+94 +regnetx_080.pycls_in1k,224,39.987,60.013,56.077,43.923,39.57,0.875,bicubic,-53.803,-42.863,-37 +resnet101c.gluon_in1k,224,39.983,60.017,55.233,44.767,44.57,0.875,bicubic,-53.747,-43.527,-22 +resnet50.d_in1k,288,39.983,60.017,54.683,45.317,25.56,1.000,bicubic,-54.487,-44.337,-217 +seresnet50.a1_in1k,224,39.973,60.027,55.193,44.807,28.09,0.950,bicubic,-53.577,-43.577,+20 +seresnet33ts.ra2_in1k,288,39.927,60.073,56.343,43.657,19.78,1.000,bicubic,-54.333,-42.697,-157 +fastvit_s12.apple_in1k,256,39.917,60.083,54.760,45.240,9.47,0.900,bicubic,-53.793,-43.960,-19 +resmlp_12_224.fb_distilled_in1k,224,39.883,60.117,57.423,42.577,15.35,0.875,bicubic,-52.997,-41.097,+130 +convnext_pico_ols.d1_in1k,288,39.847,60.153,55.583,44.417,9.06,1.000,bicubic,-54.213,-43.337,-102 +resnet34.a1_in1k,224,39.820,60.180,54.677,45.323,21.80,0.950,bicubic,-52.110,-43.683,+223 +seresnet33ts.ra2_in1k,256,39.807,60.193,56.517,43.483,19.78,0.900,bicubic,-54.443,-42.323,-153 +tf_efficientnetv2_b0.in1k,192,39.800,60.200,56.257,43.743,7.14,0.875,bicubic,-52.460,-42.113,+197 +tf_efficientnetv2_b0.in1k,224,39.790,60.210,56.303,43.697,7.14,0.875,bicubic,-53.250,-42.397,+94 +ecaresnet50t.a3_in1k,160,39.773,60.227,55.537,44.463,25.57,0.950,bicubic,-52.827,-43.063,+158 +res2net50_26w_8s.in1k,224,39.767,60.233,54.933,45.067,48.40,0.875,bilinear,-53.653,-43.737,+41 +darknetaa53.c2ns_in1k,256,39.760,60.240,55.423,44.577,36.02,0.887,bilinear,-54.030,-43.437,-52 +vit_small_patch32_224.augreg_in21k_ft_in1k,224,39.757,60.243,55.290,44.710,22.88,0.900,bicubic,-52.493,-43.190,+194 +res2net101_26w_4s.in1k,224,39.747,60.253,54.603,45.397,45.21,0.875,bilinear,-53.783,-44.017,+10 +darknet53.c2ns_in1k,288,39.740,60.260,55.370,44.630,41.61,1.000,bicubic,-54.630,-43.460,-204 +regnetx_120.pycls_in1k,224,39.737,60.263,55.663,44.337,46.11,0.875,bicubic,-54.563,-43.497,-186 +resnet50d.a1_in1k,224,39.737,60.263,54.137,45.863,25.58,0.950,bicubic,-54.203,-44.753,-91 +hrnet_w44.ms_in1k,224,39.680,60.320,55.307,44.693,67.06,0.875,bilinear,-53.970,-43.653,-23 +lambda_resnet50ts.a1h_in1k,256,39.667,60.333,54.307,45.693,21.54,0.950,bicubic,-54.893,-44.603,-258 +xception41.tf_in1k,299,39.663,60.337,55.010,44.990,26.97,0.903,bicubic,-53.817,-43.830,+17 +dla102x.in1k,224,39.653,60.347,56.490,43.510,26.31,0.875,bilinear,-53.917,-42.580,-5 +tf_efficientnetv2_b1.in1k,240,39.640,60.360,55.470,44.530,8.14,0.882,bicubic,-54.090,-43.380,-45 +tf_efficientnet_b2.in1k,260,39.630,60.370,56.187,43.813,9.11,0.890,bicubic,-54.110,-42.483,-50 +densenet161.tv_in1k,224,39.630,60.370,56.163,43.837,28.68,0.875,bicubic,-53.320,-42.497,+97 +sehalonet33ts.ra2_in1k,256,39.627,60.373,53.993,46.007,13.69,0.940,bicubic,-54.893,-44.967,-255 +resmlp_big_24_224.fb_in1k,224,39.593,60.407,54.773,45.227,129.14,0.875,bicubic,-54.677,-44.047,-183 +mixnet_xl.ra_in1k,224,39.563,60.437,55.837,44.163,11.90,0.875,bicubic,-54.687,-43.233,-174 +hrnet_w32.ms_in1k,224,39.550,60.450,56.247,43.753,41.23,0.875,bilinear,-53.420,-42.253,+83 +vit_small_patch16_384.augreg_in1k,384,39.523,60.477,54.200,45.800,22.20,1.000,bicubic,-55.127,-44.940,-294 +gcresnet33ts.ra2_in1k,256,39.503,60.497,55.847,44.153,19.88,0.900,bicubic,-54.367,-43.083,-92 +xcit_tiny_12_p16_224.fb_in1k,224,39.483,60.517,55.020,44.980,6.72,1.000,bicubic,-53.057,-43.630,+145 +levit_128.fb_dist_in1k,224,39.470,60.530,55.337,44.663,9.21,0.900,bicubic,-53.590,-43.483,+65 +levit_conv_128.fb_dist_in1k,224,39.460,60.540,55.440,44.560,9.21,0.900,bicubic,-53.590,-43.270,+68 +rexnet_130.nav_in1k,224,39.447,60.553,56.613,43.387,7.56,0.875,bicubic,-54.223,-42.187,-43 +ecaresnet50t.a1_in1k,288,39.443,60.557,53.623,46.377,25.57,1.000,bicubic,-55.457,-45.457,-371 +convnext_pico.d1_in1k,288,39.433,60.567,55.370,44.630,9.05,0.950,bicubic,-54.587,-43.340,-126 +darknet53.c2ns_in1k,256,39.417,60.583,55.090,44.910,41.61,0.887,bicubic,-54.653,-43.930,-136 +resnetv2_50x1_bit.goog_in21k_ft_in1k,448,39.403,60.597,57.880,42.120,25.55,1.000,bilinear,-55.347,-40.930,-337 +convnextv2_femto.fcmae_ft_in1k,224,39.400,60.600,55.597,44.403,5.23,0.875,bicubic,-53.790,-43.063,+44 +regnety_064.pycls_in1k,224,39.397,60.603,55.817,44.183,30.58,0.875,bicubic,-54.723,-43.213,-151 +regnety_120.pycls_in1k,224,39.397,60.603,55.347,44.653,51.82,0.875,bicubic,-54.673,-43.583,-142 +inception_v3.tf_in1k,299,39.377,60.623,54.350,45.650,23.83,0.875,bicubic,-53.823,-44.330,+40 +tf_efficientnet_el.in1k,300,39.363,60.637,55.473,44.527,10.59,0.904,bicubic,-55.007,-43.587,-233 +gcresnet33ts.ra2_in1k,288,39.343,60.657,55.917,44.083,19.88,1.000,bicubic,-55.007,-43.133,-224 +densenetblur121d.ra_in1k,224,39.323,60.677,56.667,43.333,8.00,0.875,bicubic,-53.077,-41.743,+144 +resnet101.tv_in1k,224,39.297,60.703,55.857,44.143,44.55,0.875,bilinear,-53.593,-42.793,+85 +regnety_160.pycls_in1k,224,39.297,60.703,55.393,44.607,83.59,0.875,bicubic,-54.833,-43.607,-161 +resnext50_32x4d.a2_in1k,224,39.293,60.707,53.733,46.267,25.03,0.950,bicubic,-54.477,-45.187,-80 +repghostnet_200.in1k,224,39.287,60.713,56.507,43.493,9.80,0.875,bicubic,-54.253,-42.273,-26 +resnet101.a3_in1k,224,39.280,60.720,53.703,46.297,44.55,0.950,bicubic,-54.590,-45.297,-111 +resnet50s.gluon_in1k,224,39.267,60.733,55.093,44.907,25.68,0.875,bicubic,-54.313,-43.757,-39 +resnext50_32x4d.a1_in1k,288,39.267,60.733,53.370,46.630,25.03,1.000,bicubic,-55.123,-45.400,-244 +mobilevitv2_150.cvnets_in1k,256,39.260,60.740,55.193,44.807,10.59,0.888,bicubic,-54.820,-43.717,-155 +tf_efficientnetv2_b2.in1k,260,39.193,60.807,54.623,45.377,10.10,0.890,bicubic,-54.877,-44.387,-152 +densenet169.tv_in1k,224,39.190,60.810,55.857,44.143,14.15,0.875,bicubic,-53.150,-42.503,+139 +resnext50d_32x4d.bt_in1k,288,39.153,60.847,54.417,45.583,25.05,0.950,bicubic,-55.287,-44.813,-260 +legacy_seresnet101.in1k,224,39.120,60.880,55.110,44.890,49.33,0.875,bilinear,-54.170,-43.640,+12 +ecaresnet50t.a2_in1k,224,39.120,60.880,54.257,45.743,25.57,0.950,bicubic,-55.140,-44.743,-210 +efficientnet_b1_pruned.in1k,240,39.067,60.933,55.793,44.207,6.33,0.882,bicubic,-53.993,-42.767,+40 +repvgg_b1g4.rvgg_in1k,224,39.043,60.957,56.500,43.500,39.97,0.875,bilinear,-54.017,-42.170,+36 +resnet50.a1_in1k,288,38.990,61.010,53.270,46.730,25.56,1.000,bicubic,-55.320,-45.770,-233 +regnety_080.pycls_in1k,224,38.987,61.013,55.200,44.800,39.18,0.875,bicubic,-54.913,-43.590,-130 +resnext50_32x4d.a3_in1k,160,38.977,61.023,54.143,45.857,25.03,0.950,bicubic,-53.373,-44.117,+129 +inception_v3.tv_in1k,299,38.963,61.037,53.830,46.170,23.83,0.875,bicubic,-53.937,-44.490,+67 +crossvit_9_dagger_240.in1k,240,38.943,61.057,54.913,45.087,8.78,0.875,bicubic,-53.837,-43.687,+84 +seresnet50.a2_in1k,224,38.917,61.083,53.810,46.190,28.09,0.950,bicubic,-54.773,-45.140,-78 +dla102.in1k,224,38.913,61.087,55.377,44.623,33.27,0.875,bilinear,-54.367,-43.413,+4 +legacy_seresnext50_32x4d.in1k,224,38.913,61.087,54.627,45.373,27.56,0.875,bilinear,-54.497,-44.143,-13 +resnet33ts.ra2_in1k,256,38.907,61.093,55.540,44.460,19.68,0.900,bicubic,-54.733,-43.220,-71 +visformer_tiny.in1k,224,38.860,61.140,55.037,44.963,10.32,0.900,bicubic,-54.110,-43.513,+43 +regnety_040.pycls_in1k,224,38.833,61.167,55.620,44.380,20.65,0.875,bicubic,-54.797,-43.240,-71 +res2net101d.in1k,224,38.827,61.173,53.017,46.983,45.23,0.875,bilinear,-55.723,-46.153,-306 +regnetx_040.pycls_in1k,224,38.810,61.190,55.500,44.500,22.12,0.875,bicubic,-54.880,-43.150,-86 +efficientvit_m5.r224_in1k,224,38.777,61.223,55.013,44.987,12.47,0.875,bicubic,-53.353,-43.497,+143 +resnet50d.a2_in1k,224,38.770,61.230,53.583,46.417,25.58,0.950,bicubic,-55.230,-45.097,-158 +resnet32ts.ra2_in1k,256,38.760,61.240,55.847,44.153,17.96,0.900,bicubic,-54.820,-42.883,-62 +densenet121.ra_in1k,224,38.757,61.243,56.257,43.743,7.98,0.875,bicubic,-53.183,-42.023,+150 +regnetx_032.pycls_in1k,224,38.757,61.243,55.147,44.853,15.30,0.875,bicubic,-54.543,-43.553,-8 +res2net50_14w_8s.in1k,224,38.710,61.290,54.177,45.823,25.06,0.875,bilinear,-54.310,-44.523,+26 +dpn68.mx_in1k,224,38.707,61.293,54.750,45.250,12.61,0.875,bicubic,-53.583,-43.850,+120 +res2net50_26w_6s.in1k,224,38.700,61.300,53.780,46.220,37.05,0.875,bilinear,-54.880,-44.980,-68 +dla60_res2net.in1k,224,38.697,61.303,54.633,45.367,20.85,0.875,bilinear,-54.723,-44.207,-31 +densenetblur121d.ra_in1k,288,38.683,61.317,55.617,44.383,8.00,0.950,bicubic,-54.327,-42.983,+25 +wide_resnet50_2.tv_in1k,224,38.667,61.333,54.613,45.387,68.88,0.875,bilinear,-54.803,-44.357,-45 +selecsls60.in1k,224,38.653,61.347,55.710,44.290,30.67,0.875,bicubic,-54.337,-43.120,+24 +resnet33ts.ra2_in1k,288,38.653,61.347,55.223,44.777,19.68,1.000,bicubic,-55.297,-43.647,-161 +resnet50.bt_in1k,224,38.650,61.350,55.470,44.530,25.56,0.875,bicubic,-54.460,-43.290,+8 +regnetx_016.tv2_in1k,224,38.630,61.370,54.773,45.227,9.19,0.965,bicubic,-55.390,-44.237,-177 +dpn68b.mx_in1k,224,38.623,61.377,55.200,44.800,12.61,0.875,bicubic,-54.347,-43.580,+27 +dla60x.in1k,224,38.617,61.383,55.497,44.503,17.35,0.875,bilinear,-54.603,-43.223,-10 +resnet50.a2_in1k,224,38.603,61.397,53.107,46.893,25.56,0.950,bicubic,-55.127,-45.613,-112 +selecsls60b.in1k,224,38.583,61.417,55.337,44.663,32.77,0.875,bicubic,-54.897,-43.403,-56 +resnetrs50.tf_in1k,160,38.573,61.427,54.093,45.907,35.69,0.910,bicubic,-54.327,-44.697,+37 +tf_efficientnet_b0.aa_in1k,224,38.557,61.443,56.133,43.867,5.29,0.875,bicubic,-53.833,-42.347,+96 +resnet32ts.ra2_in1k,288,38.523,61.477,55.557,44.443,17.96,1.000,bicubic,-55.077,-43.303,-86 +dla60_res2next.in1k,224,38.523,61.477,55.037,44.963,17.03,0.875,bilinear,-55.087,-43.603,-91 +ecaresnet26t.ra2_in1k,256,38.520,61.480,55.373,44.627,16.01,0.875,bicubic,-54.900,-43.307,-44 +repvgg_a2.rvgg_in1k,224,38.513,61.487,55.817,44.183,28.21,0.875,bilinear,-54.147,-42.713,+65 +hardcorenas_f.miil_green_in1k,224,38.513,61.487,55.727,44.273,8.20,0.875,bilinear,-54.507,-42.983,+8 +seresnet50.a1_in1k,288,38.513,61.487,53.403,46.597,28.09,1.000,bicubic,-55.697,-45.507,-239 +hrnet_w18_small_v2.gluon_in1k,224,38.503,61.497,56.240,43.760,15.60,0.875,bicubic,-54.467,-42.590,+11 +regnetx_064.pycls_in1k,224,38.500,61.500,55.040,44.960,26.21,0.875,bicubic,-55.160,-44.010,-110 +resnet50.gluon_in1k,224,38.460,61.540,54.893,45.107,25.56,0.875,bicubic,-54.110,-43.647,+71 +resmlp_12_224.fb_in1k,224,38.450,61.550,56.363,43.637,15.35,0.875,bicubic,-53.680,-42.157,+111 +tf_efficientnet_cc_b0_4e.in1k,224,38.447,61.553,55.187,44.813,13.31,0.875,bicubic,-54.413,-43.253,+34 +resnet50d.a1_in1k,288,38.417,61.583,52.867,47.133,25.58,1.000,bicubic,-55.943,-46.293,-289 +hrnet_w18.ms_in1k,224,38.390,61.610,55.790,44.210,21.30,0.875,bilinear,-54.360,-42.840,+44 +ghostnetv2_160.in1k,224,38.373,61.627,55.637,44.363,12.39,0.875,bicubic,-54.757,-43.023,-18 +tinynet_a.in1k,192,38.347,61.653,55.497,44.503,6.19,0.875,bicubic,-54.473,-43.073,+33 +regnety_008_tv.tv2_in1k,224,38.330,61.670,54.383,45.617,6.43,0.965,bicubic,-54.840,-43.937,-23 +resnet34.a1_in1k,288,38.317,61.683,52.350,47.650,21.80,1.000,bicubic,-54.703,-46.240,-4 +densenet121.ra_in1k,288,38.237,61.763,55.203,44.797,7.98,0.950,bicubic,-54.513,-43.447,+39 +mixnet_l.ft_in1k,224,38.237,61.763,54.877,45.123,7.33,0.875,bicubic,-55.033,-43.803,-36 +convnext_femto.d1_in1k,224,38.207,61.793,54.717,45.283,5.22,0.875,bicubic,-54.673,-43.883,+22 +ecaresnet50t.a3_in1k,224,38.193,61.807,53.603,46.397,25.57,0.950,bicubic,-55.667,-45.257,-174 +regnety_032.pycls_in1k,224,38.190,61.810,54.477,45.523,19.44,0.875,bicubic,-55.300,-44.483,-83 +resnet50d.a3_in1k,160,38.187,61.813,53.827,46.173,25.58,0.950,bicubic,-54.093,-44.503,+84 +poolformer_s12.sail_in1k,224,38.180,61.820,56.390,43.610,11.92,0.900,bicubic,-54.330,-42.000,+59 +efficientnet_b1.ft_in1k,256,38.170,61.830,54.033,45.967,7.79,1.000,bicubic,-54.850,-44.617,-15 +ecaresnet50t.a2_in1k,288,38.147,61.853,53.023,46.977,25.57,1.000,bicubic,-56.433,-46.027,-369 +vit_base_patch16_224.augreg_in1k,224,38.140,61.860,50.707,49.293,86.57,0.900,bicubic,-55.200,-48.063,-54 +hardcorenas_e.miil_green_in1k,224,38.137,61.863,55.203,44.797,8.07,0.875,bilinear,-54.813,-43.377,0 +coat_lite_tiny.in1k,224,38.077,61.923,53.457,46.543,5.72,0.900,bicubic,-54.803,-45.203,+12 +gmixer_24_224.ra3_in1k,224,37.983,62.017,52.147,47.853,24.72,0.875,bicubic,-54.687,-46.543,+38 +hardcorenas_c.miil_green_in1k,224,37.980,62.020,55.700,44.300,5.52,0.875,bilinear,-54.340,-42.630,+73 +resnet50.a3_in1k,160,37.960,62.040,53.320,46.680,25.56,0.950,bicubic,-53.700,-44.940,+116 +resnext50_32x4d.a2_in1k,288,37.953,62.047,52.380,47.620,25.03,1.000,bicubic,-56.237,-46.710,-261 +resnetrs50.tf_in1k,224,37.947,62.053,53.297,46.703,35.69,0.910,bicubic,-56.083,-45.713,-220 +mobilevitv2_125.cvnets_in1k,256,37.927,62.073,54.103,45.897,7.48,0.888,bicubic,-55.553,-44.737,-94 +resnet50c.gluon_in1k,224,37.887,62.113,54.203,45.797,25.58,0.875,bicubic,-55.043,-44.507,-6 +res2net50_26w_4s.in1k,224,37.857,62.143,53.160,46.840,25.70,0.875,bilinear,-55.333,-45.710,-47 +resnest14d.gluon_in1k,224,37.840,62.160,56.617,43.383,10.61,0.875,bilinear,-53.300,-41.733,+139 +efficientnet_es.ra_in1k,224,37.840,62.160,54.977,45.023,5.44,0.875,bicubic,-55.120,-43.713,-14 +efficientformerv2_s0.snap_dist_in1k,224,37.810,62.190,54.017,45.983,3.60,0.950,bicubic,-54.050,-44.353,+98 +convnext_femto.d1_in1k,288,37.803,62.197,54.297,45.703,5.22,0.950,bicubic,-55.657,-44.473,-93 +resnext50_32x4d.tv_in1k,224,37.787,62.213,54.143,45.857,25.03,0.875,bilinear,-55.113,-44.587,-7 +mobilenetv1_125.ra4_e3600_r224_in1k,256,37.763,62.237,53.813,46.187,6.27,1.000,bicubic,-54.707,-44.767,+42 +pit_ti_distilled_224.in1k,224,37.760,62.240,55.683,44.317,5.10,0.900,bicubic,-52.990,-42.567,+147 +mobilenetv1_125.ra4_e3600_r224_in1k,224,37.753,62.247,54.160,45.840,6.27,0.900,bicubic,-54.327,-44.190,+82 +seresnet50.a2_in1k,288,37.737,62.263,52.320,47.680,28.09,1.000,bicubic,-56.713,-46.660,-348 +resnet26t.ra2_in1k,256,37.723,62.277,55.317,44.683,16.01,0.940,bicubic,-54.947,-42.923,+20 +resnet34.a2_in1k,224,37.707,62.293,52.573,47.427,21.80,0.950,bicubic,-54.063,-45.687,+93 +efficientnet_b1.ft_in1k,224,37.687,62.313,53.870,46.130,7.79,0.875,bicubic,-54.653,-44.700,+52 +seresnet50.a3_in1k,160,37.613,62.387,53.253,46.747,28.09,0.950,bicubic,-53.657,-44.697,+118 +ecaresnet26t.ra2_in1k,320,37.600,62.400,54.383,45.617,16.01,0.950,bicubic,-56.360,-44.457,-225 +hardcorenas_d.miil_green_in1k,224,37.593,62.407,54.723,45.277,7.50,0.875,bilinear,-55.027,-43.757,+20 +vit_base_patch32_224.augreg_in1k,224,37.590,62.410,51.877,48.123,88.22,0.900,bicubic,-52.990,-45.863,+144 +resnet50.bt_in1k,288,37.577,62.423,53.763,46.237,25.56,0.950,bicubic,-56.433,-45.057,-235 +convnext_femto_ols.d1_in1k,224,37.540,62.460,53.417,46.583,5.23,0.875,bicubic,-55.340,-45.093,-16 +res2next50.in1k,224,37.530,62.470,52.880,47.120,24.67,0.875,bilinear,-55.610,-45.770,-61 +fastvit_t8.apple_dist_in1k,256,37.513,62.487,53.863,46.137,4.03,0.900,bicubic,-55.077,-44.567,+22 +convnextv2_femto.fcmae_ft_in1k,288,37.487,62.513,53.620,46.380,5.23,0.950,bicubic,-56.273,-44.900,-183 +lambda_resnet26t.c1_in1k,256,37.397,62.603,53.533,46.467,10.96,0.940,bicubic,-56.043,-45.227,-106 +cs3darknet_focus_m.c2ns_in1k,256,37.380,62.620,54.130,45.870,9.30,0.887,bicubic,-55.420,-44.410,-8 +hrnet_w18.ms_aug_in1k,224,37.367,62.633,54.213,45.787,21.30,0.950,bilinear,-56.103,-44.667,-117 +convnext_femto_ols.d1_in1k,288,37.283,62.717,53.153,46.847,5.23,0.950,bicubic,-56.107,-45.607,-96 +hardcorenas_b.miil_green_in1k,224,37.280,62.720,55.010,44.990,5.18,0.875,bilinear,-54.680,-43.410,+68 +mobilenetv3_large_100.miil_in21k_ft_in1k,224,37.253,62.747,53.560,46.440,5.48,0.875,bilinear,-54.977,-44.910,+51 +resnet50d.a2_in1k,288,37.243,62.757,51.823,48.177,25.58,1.000,bicubic,-57.237,-47.087,-380 +res2net50d.in1k,224,37.220,62.780,51.303,48.697,25.72,0.875,bilinear,-57.050,-47.577,-318 +resnet50.a2_in1k,288,37.203,62.797,51.450,48.550,25.56,1.000,bicubic,-56.927,-47.700,-275 +res2net50_48w_2s.in1k,224,37.180,62.820,53.413,46.587,25.29,0.875,bilinear,-55.630,-45.187,-17 +dla60.in1k,224,37.177,62.823,54.313,45.687,22.04,0.875,bilinear,-55.533,-44.237,-8 +cs3darknet_focus_m.c2ns_in1k,288,37.157,62.843,53.963,46.037,9.30,0.950,bicubic,-55.963,-44.787,-72 +fastvit_t8.apple_in1k,256,37.153,62.847,53.160,46.840,4.03,0.900,bicubic,-54.787,-45.250,+62 +vit_small_patch16_224.augreg_in1k,224,37.130,62.870,51.603,48.397,22.05,0.900,bicubic,-56.330,-47.227,-123 +regnety_016.pycls_in1k,224,37.127,62.873,54.133,45.867,11.20,0.875,bicubic,-55.933,-44.527,-69 +lambda_resnet26rpt_256.c1_in1k,256,37.127,62.873,53.850,46.150,10.99,0.940,bicubic,-56.293,-45.030,-118 +eca_halonext26ts.c1_in1k,256,37.127,62.873,53.090,46.910,10.76,0.940,bicubic,-56.433,-45.600,-151 +convnextv2_atto.fcmae_ft_in1k,224,37.117,62.883,53.053,46.947,3.71,0.875,bicubic,-55.073,-45.307,+42 +bat_resnext26ts.ch_in1k,256,37.107,62.893,53.737,46.263,10.73,0.900,bicubic,-56.013,-44.983,-78 +tf_mixnet_l.in1k,224,37.057,62.943,52.760,47.240,7.33,0.875,bicubic,-55.993,-45.930,-70 +rexnet_100.nav_in1k,224,37.047,62.953,54.083,45.917,4.80,0.875,bicubic,-55.793,-44.557,-32 +mobileone_s1.apple_in1k,224,37.037,62.963,54.653,45.347,4.83,0.900,bilinear,-54.743,-43.817,+60 +tf_efficientnet_b1.in1k,240,37.027,62.973,53.460,46.540,7.79,0.882,bicubic,-55.913,-45.200,-52 +botnet26t_256.c1_in1k,256,36.980,63.020,53.090,46.910,12.49,0.950,bicubic,-56.430,-45.720,-120 +resnet34.a2_in1k,288,36.967,63.033,51.520,48.480,21.80,1.000,bicubic,-55.623,-46.930,-6 +resnet34.bt_in1k,224,36.927,63.073,53.617,46.383,21.80,0.875,bicubic,-54.273,-44.583,+89 +legacy_seresnet50.in1k,224,36.913,63.087,53.477,46.523,28.09,0.875,bilinear,-55.757,-45.183,-19 +tf_efficientnet_lite2.in1k,260,36.907,63.093,53.383,46.617,6.09,0.890,bicubic,-55.803,-45.237,-24 +ghostnetv2_130.in1k,224,36.870,63.130,54.220,45.780,8.96,0.875,bicubic,-55.400,-44.150,+22 +regnetx_016.pycls_in1k,224,36.863,63.137,53.423,46.577,9.19,0.875,bicubic,-55.737,-45.147,-13 +mobilenetv1_100h.ra4_e3600_r224_in1k,256,36.790,63.210,53.130,46.870,5.28,0.950,bicubic,-55.560,-45.230,+10 +halonet26t.a1h_in1k,256,36.783,63.217,52.233,47.767,12.48,0.950,bicubic,-56.827,-46.457,-177 +densenet121.tv_in1k,224,36.757,63.243,53.997,46.003,7.98,0.875,bicubic,-54.683,-44.243,+69 +mobilenetv2_120d.ra_in1k,224,36.727,63.273,53.953,46.047,5.83,0.875,bicubic,-55.933,-44.607,-23 +hardcorenas_a.miil_green_in1k,224,36.713,63.287,54.863,45.137,5.26,0.875,bilinear,-54.967,-43.277,+53 +eca_botnext26ts_256.c1_in1k,256,36.700,63.300,52.607,47.393,10.59,0.950,bicubic,-56.700,-46.143,-129 +repghostnet_150.in1k,224,36.693,63.307,54.193,45.807,6.58,0.875,bicubic,-55.707,-44.347,-2 +tf_efficientnet_lite1.in1k,240,36.687,63.313,53.733,46.267,5.42,0.882,bicubic,-55.623,-44.787,+9 +efficientnet_b0.ra_in1k,224,36.673,63.327,53.597,46.403,5.29,0.875,bicubic,-55.787,-45.083,-11 +resnext50_32x4d.a3_in1k,224,36.620,63.380,51.210,48.790,25.03,0.950,bicubic,-56.930,-47.360,-173 +vit_base_patch32_224.sam_in1k,224,36.590,63.410,53.083,46.917,88.22,0.900,bicubic,-53.290,-44.737,+118 +levit_128s.fb_dist_in1k,224,36.587,63.413,53.073,46.927,7.78,0.900,bicubic,-54.993,-45.347,+54 +cs3darknet_m.c2ns_in1k,256,36.580,63.420,53.610,46.390,9.31,0.887,bicubic,-56.120,-45.070,-38 +levit_conv_128s.fb_dist_in1k,224,36.570,63.430,53.073,46.927,7.78,0.900,bicubic,-54.970,-45.357,+54 +efficientvit_m4.r224_in1k,224,36.560,63.440,53.307,46.693,8.80,0.875,bicubic,-54.200,-44.763,+87 +xcit_nano_12_p8_224.fb_dist_in1k,224,36.530,63.470,52.887,47.113,3.05,1.000,bicubic,-55.870,-45.633,-10 +repvgg_a1.rvgg_in1k,224,36.520,63.480,53.820,46.180,14.09,0.875,bilinear,-54.640,-44.370,+71 +resnet34.a3_in1k,160,36.517,63.483,52.573,47.427,21.80,0.950,bicubic,-52.133,-44.797,+134 +tf_efficientnet_em.in1k,240,36.477,63.523,52.907,47.093,6.90,0.882,bicubic,-56.723,-45.573,-120 +mobilenetv1_100h.ra4_e3600_r224_in1k,224,36.470,63.530,52.867,47.133,5.28,0.875,bicubic,-55.180,-45.193,+41 +mobilevitv2_100.cvnets_in1k,256,36.450,63.550,53.080,46.920,4.90,0.888,bicubic,-56.660,-45.520,-109 +cs3darknet_m.c2ns_in1k,288,36.433,63.567,53.240,46.760,9.31,0.950,bicubic,-56.807,-45.470,-127 +skresnet18.ra_in1k,224,36.330,63.670,54.253,45.747,11.96,0.875,bicubic,-53.840,-43.527,+100 +repvgg_b0.rvgg_in1k,224,36.323,63.677,54.080,45.920,15.82,0.875,bilinear,-55.387,-44.320,+30 +resnet34.bt_in1k,288,36.313,63.687,52.847,47.153,21.80,0.950,bicubic,-56.007,-45.793,-10 +resnet50d.a3_in1k,224,36.310,63.690,51.330,48.670,25.58,0.950,bicubic,-57.090,-47.500,-150 +xcit_nano_12_p16_384.fb_dist_in1k,384,36.177,63.823,53.193,46.807,3.05,1.000,bicubic,-55.953,-45.377,+7 +resnet50.tv_in1k,224,36.157,63.843,52.870,47.130,25.56,0.875,bilinear,-55.993,-45.520,+3 +legacy_seresnet34.in1k,224,36.157,63.843,52.563,47.437,21.96,0.875,bilinear,-55.323,-45.657,+41 +resnet34.tv_in1k,224,36.140,63.860,53.553,46.447,21.80,0.875,bilinear,-54.150,-44.417,+88 +efficientvit_m3.r224_in1k,224,36.137,63.863,52.550,47.450,6.90,0.875,bicubic,-53.923,-45.280,+94 +deit_tiny_distilled_patch16_224.fb_in1k,224,36.120,63.880,54.293,45.707,5.91,0.900,bicubic,-55.010,-43.777,+59 +coat_tiny.in1k,224,36.097,63.903,51.083,48.917,5.50,0.900,bicubic,-57.403,-47.587,-184 +resnet50.a3_in1k,224,36.050,63.950,50.647,49.353,25.56,0.950,bicubic,-56.920,-48.063,-101 +convnext_atto.d2_in1k,224,36.040,63.960,52.943,47.057,3.70,0.875,bicubic,-56.180,-45.367,-7 +tf_efficientnet_lite0.in1k,224,36.033,63.967,53.487,46.513,4.65,0.875,bicubic,-55.327,-44.603,+39 +mobilenetv2_140.ra_in1k,224,36.010,63.990,53.977,46.023,6.11,0.875,bicubic,-56.070,-44.373,+3 +convnextv2_atto.fcmae_ft_in1k,288,36.000,64.000,51.140,48.860,3.71,0.950,bicubic,-56.910,-47.390,-94 +seresnext26ts.ch_in1k,256,35.830,64.170,53.997,46.003,10.39,0.900,bicubic,-56.980,-44.453,-77 +selecsls42b.in1k,224,35.823,64.177,52.557,47.443,32.46,0.875,bicubic,-56.657,-45.883,-45 +resnet34.gluon_in1k,224,35.823,64.177,52.363,47.637,21.80,0.875,bicubic,-55.287,-45.817,+54 +mobilenetv1_100.ra4_e3600_r224_in1k,256,35.787,64.213,52.617,47.383,4.23,0.950,bicubic,-56.293,-45.653,-4 +convnext_atto.d2_in1k,288,35.770,64.230,52.350,47.650,3.70,0.950,bicubic,-57.010,-46.150,-77 +resnet26t.ra2_in1k,320,35.753,64.247,53.583,46.417,16.01,1.000,bicubic,-57.207,-45.097,-107 +xcit_nano_12_p8_384.fb_dist_in1k,384,35.753,64.247,52.447,47.553,3.05,1.000,bicubic,-57.627,-46.433,-165 +seresnet50.a3_in1k,224,35.727,64.273,51.273,48.727,28.09,0.950,bicubic,-56.653,-47.057,-37 +seresnext26ts.ch_in1k,288,35.720,64.280,53.480,46.520,10.39,1.000,bicubic,-57.250,-45.010,-115 +mobilenetv1_100.ra4_e3600_r224_in1k,224,35.713,64.287,52.810,47.190,4.23,0.875,bicubic,-55.637,-45.330,+28 +efficientnet_lite0.ra_in1k,224,35.693,64.307,53.713,46.287,4.65,0.875,bicubic,-55.577,-44.507,+29 +mixnet_m.ft_in1k,224,35.660,64.340,52.463,47.537,5.01,0.875,bicubic,-56.610,-46.097,-28 +resnet18.fb_ssl_yfcc100m_ft_in1k,224,35.647,64.353,53.820,46.180,11.69,0.875,bilinear,-55.043,-44.220,+53 +dla34.in1k,224,35.647,64.353,52.837,47.163,15.74,0.875,bilinear,-55.613,-45.323,+30 +mobilenetv3_rw.rmsp_in1k,224,35.633,64.367,53.777,46.223,5.48,0.875,bicubic,-55.917,-44.493,+14 +regnetx_008.tv2_in1k,224,35.557,64.443,51.503,48.497,7.26,0.965,bicubic,-56.903,-46.947,-53 +convnext_atto_ols.a2_in1k,288,35.553,64.447,51.450,48.550,3.70,0.950,bicubic,-57.397,-47.350,-116 +convnext_atto_ols.a2_in1k,224,35.507,64.493,52.087,47.913,3.70,0.875,bicubic,-56.593,-46.343,-19 +efficientnet_es_pruned.in1k,224,35.397,64.603,52.883,47.117,5.44,0.875,bicubic,-56.313,-45.577,-1 +repghostnet_130.in1k,224,35.323,64.677,52.740,47.260,5.48,0.875,bicubic,-56.607,-45.650,-10 +mobilenetv2_110d.ra_in1k,224,35.300,64.700,52.807,47.193,4.52,0.875,bicubic,-56.020,-45.343,+18 +tf_mixnet_m.in1k,224,35.250,64.750,51.003,48.997,5.01,0.875,bicubic,-56.950,-47.417,-31 +hrnet_w18_small_v2.ms_in1k,224,35.233,64.767,52.547,47.453,15.60,0.875,bilinear,-55.957,-45.803,+25 +xcit_nano_12_p16_224.fb_dist_in1k,224,35.210,64.790,52.607,47.393,3.05,1.000,bicubic,-55.000,-45.153,+59 +mobilenetv4_conv_small.e2400_r224_in1k,256,35.183,64.817,53.027,46.973,3.77,0.950,bicubic,-55.917,-45.053,+33 +resnet18d.ra2_in1k,224,35.143,64.857,52.900,47.100,11.71,0.875,bicubic,-54.877,-44.940,+62 +resnext26ts.ra2_in1k,256,35.110,64.890,53.437,46.563,10.30,0.900,bicubic,-57.150,-44.833,-41 +convit_tiny.fb_in1k,224,35.093,64.907,51.840,48.160,5.71,0.875,bicubic,-55.487,-46.360,+42 +resnet34.a3_in1k,224,35.090,64.910,50.520,49.480,21.80,0.950,bicubic,-55.210,-47.370,+50 +resnet18.a1_in1k,224,35.033,64.967,50.983,49.017,11.69,0.950,bicubic,-54.117,-46.347,+76 +tinynet_b.in1k,188,35.017,64.983,52.120,47.880,3.73,0.875,bicubic,-56.113,-46.150,+23 +mobilenetv4_conv_small.e2400_r224_in1k,224,35.013,64.987,52.897,47.103,3.77,0.875,bicubic,-55.527,-45.063,+40 +gcresnext26ts.ch_in1k,288,35.013,64.987,51.460,48.540,10.48,1.000,bicubic,-57.797,-47.150,-109 +gcresnext26ts.ch_in1k,256,34.990,65.010,51.660,48.340,10.48,0.900,bicubic,-57.470,-46.880,-72 +eca_resnext26ts.ch_in1k,256,34.950,65.050,52.347,47.653,10.30,0.900,bicubic,-57.500,-46.263,-71 +regnety_004.tv2_in1k,224,34.937,65.063,51.397,48.603,4.34,0.965,bicubic,-56.653,-46.903,-10 +eca_resnext26ts.ch_in1k,288,34.933,65.067,52.367,47.633,10.30,1.000,bicubic,-57.837,-46.343,-107 +regnety_008.pycls_in1k,224,34.883,65.117,51.843,48.157,6.26,0.875,bicubic,-56.997,-46.577,-27 +ese_vovnet19b_dw.ra_in1k,224,34.830,65.170,51.993,48.007,6.54,0.875,bicubic,-57.180,-46.327,-36 +resnext26ts.ra2_in1k,288,34.780,65.220,52.823,47.177,10.30,1.000,bicubic,-57.650,-45.567,-74 +mobilenetv4_conv_small.e1200_r224_in1k,256,34.737,65.263,52.697,47.303,3.77,0.950,bicubic,-55.523,-45.393,+41 +mobilenetv3_large_100.ra_in1k,224,34.673,65.327,52.937,47.063,5.48,0.875,bicubic,-56.797,-45.383,-10 +crossvit_9_240.in1k,240,34.670,65.330,51.797,48.203,8.55,0.875,bicubic,-56.400,-46.513,+16 +tf_efficientnet_b0.in1k,224,34.670,65.330,51.157,48.843,5.29,0.875,bicubic,-57.600,-47.213,-62 +pit_ti_224.in1k,224,34.627,65.373,52.133,47.867,4.85,0.900,bicubic,-55.823,-45.877,+31 +seresnext26t_32x4d.bt_in1k,224,34.560,65.440,51.483,48.517,16.81,0.875,bicubic,-58.240,-47.117,-120 +seresnext26d_32x4d.bt_in1k,224,34.560,65.440,51.477,48.523,16.81,0.875,bicubic,-57.900,-47.033,-85 +pvt_v2_b0.in1k,224,34.410,65.590,53.093,46.907,3.67,0.900,bicubic,-54.580,-44.587,+60 +mixer_b16_224.goog_in21k_ft_in1k,224,34.373,65.627,48.057,51.943,59.88,0.875,bicubic,-56.747,-49.353,+6 +fbnetc_100.rmsp_in1k,224,34.337,65.663,51.490,48.510,5.57,0.875,bilinear,-56.913,-46.340,-5 +resnet26d.bt_in1k,224,34.330,65.670,51.837,48.163,16.01,0.875,bicubic,-57.900,-46.393,-63 +mobilenetv4_conv_small.e1200_r224_in1k,224,34.313,65.687,52.343,47.657,3.77,0.875,bicubic,-55.817,-45.637,+34 +tf_efficientnet_es.in1k,224,34.300,65.700,51.507,48.493,5.44,0.875,bicubic,-57.800,-46.873,-55 +regnety_006.pycls_in1k,224,34.283,65.717,51.423,48.577,6.06,0.875,bicubic,-57.317,-46.997,-29 +resnet18d.ra2_in1k,288,34.240,65.760,51.690,48.310,11.71,0.950,bicubic,-56.530,-46.460,+7 +ghostnetv2_100.in1k,224,34.167,65.833,52.050,47.950,6.16,0.875,bicubic,-57.463,-46.230,-32 +repvgg_a0.rvgg_in1k,224,34.090,65.910,52.000,48.000,9.11,0.875,bilinear,-55.720,-45.500,+35 +resnet18.a1_in1k,288,34.050,65.950,49.517,50.483,11.69,1.000,bicubic,-56.140,-48.263,+26 +tf_mobilenetv3_large_100.in1k,224,33.990,66.010,51.563,48.437,5.48,0.875,bilinear,-57.420,-46.677,-23 +mnasnet_100.rmsp_in1k,224,33.873,66.127,51.227,48.773,4.38,0.875,bicubic,-57.387,-46.803,-16 +regnetx_004_tv.tv2_in1k,224,33.837,66.163,49.890,50.110,5.50,0.965,bicubic,-57.323,-48.210,-10 +repghostnet_111.in1k,224,33.807,66.193,51.550,48.450,4.54,0.875,bicubic,-57.303,-46.500,-5 +mobilevit_s.cvnets_in1k,256,33.790,66.210,49.480,50.520,5.58,0.900,bicubic,-59.390,-49.320,-198 +ese_vovnet19b_dw.ra_in1k,288,33.763,66.237,50.940,49.060,6.54,0.950,bicubic,-58.977,-47.740,-130 +regnetx_008.pycls_in1k,224,33.750,66.250,50.593,49.407,7.26,0.875,bicubic,-57.470,-47.787,-19 +lcnet_100.ra2_in1k,224,33.730,66.270,52.107,47.893,2.95,0.875,bicubic,-55.190,-45.263,+44 +semnasnet_075.rmsp_in1k,224,33.707,66.293,52.433,47.567,2.91,0.875,bicubic,-56.573,-45.497,+14 +vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,384,33.667,66.333,50.760,49.240,6.36,1.000,bicubic,-58.043,-47.470,-51 +xcit_nano_12_p8_224.fb_in1k,224,33.623,66.377,50.430,49.570,3.05,1.000,bicubic,-57.567,-47.850,-20 +mixnet_s.ft_in1k,224,33.620,66.380,51.023,48.977,4.13,0.875,bicubic,-58.200,-47.317,-57 +resnet26.bt_in1k,224,33.597,66.403,51.043,48.957,16.00,0.875,bicubic,-57.863,-47.227,-38 +vit_tiny_patch16_384.augreg_in21k_ft_in1k,384,33.557,66.443,50.963,49.037,5.79,1.000,bicubic,-59.943,-47.807,-264 +semnasnet_100.rmsp_in1k,224,33.553,66.447,50.837,49.163,3.89,0.875,bicubic,-58.107,-47.223,-52 +spnasnet_100.rmsp_in1k,224,33.503,66.497,51.287,48.713,4.42,0.875,bilinear,-57.167,-46.673,-6 +crossvit_tiny_240.in1k,240,33.443,66.557,49.960,50.040,7.01,0.875,bicubic,-57.097,-47.860,-3 +mobilevitv2_075.cvnets_in1k,256,33.423,66.577,50.133,49.867,2.87,0.888,bicubic,-58.587,-48.387,-72 +vgg19_bn.tv_in1k,224,33.307,66.693,50.877,49.123,143.68,0.875,bilinear,-57.673,-47.243,-16 +regnetx_006.pycls_in1k,224,33.277,66.723,50.327,49.673,6.20,0.875,bicubic,-57.473,-47.763,-12 +resnet18.a2_in1k,224,33.267,66.733,49.520,50.480,11.69,0.950,bicubic,-54.943,-47.910,+41 +efficientvit_m2.r224_in1k,224,33.190,66.810,49.777,50.223,4.19,0.875,bicubic,-55.750,-47.573,+29 +repghostnet_100.in1k,224,33.133,66.867,50.753,49.247,4.07,0.875,bicubic,-57.527,-47.357,-12 +edgenext_x_small.in1k,288,33.130,66.870,49.043,50.957,2.34,1.000,bicubic,-58.460,-49.147,-55 +seresnext26t_32x4d.bt_in1k,288,33.073,66.927,50.247,49.753,16.81,0.950,bicubic,-60.267,-48.453,-238 +xcit_nano_12_p16_224.fb_in1k,224,33.037,66.963,50.070,49.930,3.05,1.000,bicubic,-55.863,-47.370,+27 +resnet18.tv_in1k,224,33.023,66.977,51.143,48.857,11.69,0.875,bilinear,-55.177,-45.967,+36 +seresnext26d_32x4d.bt_in1k,288,32.993,67.007,49.840,50.160,16.81,0.950,bicubic,-60.057,-48.710,-206 +mobileone_s0.apple_in1k,224,32.983,67.017,51.093,48.907,5.29,0.875,bilinear,-55.797,-46.137,+25 +hrnet_w18_small.gluon_in1k,224,32.837,67.163,50.497,49.503,13.19,0.875,bicubic,-57.473,-47.263,-10 +legacy_seresnext26_32x4d.in1k,224,32.760,67.240,49.217,50.783,16.79,0.875,bicubic,-59.830,-49.383,-137 +hrnet_w18_small.ms_in1k,224,32.737,67.263,50.637,49.363,13.19,0.875,bilinear,-57.143,-47.253,-1 +edgenext_x_small.in1k,256,32.713,67.287,48.680,51.320,2.34,0.900,bicubic,-58.717,-49.480,-56 +deit_tiny_patch16_224.fb_in1k,224,32.700,67.300,50.330,49.670,5.72,0.900,bicubic,-56.940,-47.630,+3 +legacy_seresnet18.in1k,224,32.677,67.323,50.327,49.673,11.78,0.875,bicubic,-56.613,-47.383,+8 +regnetx_004.pycls_in1k,224,32.603,67.397,49.387,50.613,5.16,0.875,bicubic,-56.887,-48.433,+3 +mobilenetv2_100.ra_in1k,224,32.597,67.403,50.870,49.130,3.50,0.875,bicubic,-57.283,-46.730,-5 +ghostnet_100.in1k,224,32.583,67.417,50.407,49.593,5.18,0.875,bicubic,-57.887,-47.523,-21 +resnet26d.bt_in1k,288,32.477,67.523,50.093,49.907,16.01,0.950,bicubic,-60.113,-48.547,-147 +resnet18.gluon_in1k,224,32.423,67.577,49.730,50.270,11.69,0.875,bicubic,-56.267,-47.380,+15 +regnety_004.pycls_in1k,224,32.393,67.607,49.460,50.540,4.34,0.875,bicubic,-58.367,-48.580,-36 +tf_mixnet_s.in1k,224,32.210,67.790,48.593,51.407,4.13,0.875,bicubic,-59.500,-49.827,-81 +resnet18.a2_in1k,288,32.183,67.817,47.907,52.093,11.69,1.000,bicubic,-57.357,-49.753,-5 +vit_tiny_patch16_224.augreg_in21k_ft_in1k,224,32.140,67.860,49.097,50.903,5.72,0.900,bicubic,-59.810,-49.233,-96 +resnet26.bt_in1k,288,32.130,67.870,49.497,50.503,16.00,0.950,bicubic,-60.030,-49.053,-110 +tf_mobilenetv3_large_075.in1k,224,31.970,68.030,49.177,50.823,3.99,0.875,bilinear,-58.360,-48.683,-27 +tf_mobilenetv3_large_minimal_100.in1k,224,31.680,68.320,49.443,50.557,3.92,0.875,bilinear,-57.520,-47.847,0 +resnet18.a3_in1k,160,31.577,68.423,48.373,51.627,11.69,0.950,bicubic,-53.463,-47.567,+34 +efficientvit_m1.r224_in1k,224,31.260,68.740,48.470,51.530,2.98,0.875,bicubic,-55.930,-48.240,+19 +repghostnet_080.in1k,224,30.973,69.027,48.837,51.163,3.28,0.875,bicubic,-58.497,-48.603,-10 +vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,224,30.870,69.130,47.680,52.320,6.34,0.900,bicubic,-58.540,-50.020,-10 +tinynet_c.in1k,184,30.537,69.463,48.543,51.457,2.46,0.875,bicubic,-57.883,-48.727,+6 +lcnet_075.ra2_in1k,224,30.383,69.617,48.763,51.237,2.36,0.875,bicubic,-56.627,-47.787,+19 +vgg16_bn.tv_in1k,224,30.380,69.620,47.317,52.683,138.37,0.875,bilinear,-60.140,-50.673,-38 +efficientvit_b0.r224_in1k,224,30.123,69.877,46.730,53.270,3.41,0.950,bicubic,-58.147,-50.150,+5 +resnet18.a3_in1k,224,30.093,69.907,46.313,53.687,11.69,0.950,bicubic,-56.927,-50.357,+15 +resnet10t.c3_in1k,176,29.783,70.217,47.810,52.190,5.44,0.875,bicubic,-55.707,-48.480,+21 +edgenext_xx_small.in1k,288,29.747,70.253,46.507,53.493,1.33,1.000,bicubic,-60.063,-51.283,-23 +mobilevit_xs.cvnets_in1k,256,29.703,70.297,46.087,53.913,2.32,0.900,bicubic,-61.567,-52.143,-76 +regnety_002.pycls_in1k,224,29.683,70.317,46.823,53.177,3.16,0.875,bicubic,-58.527,-50.357,+1 +edgenext_xx_small.in1k,256,29.447,70.553,46.373,53.627,1.33,0.900,bicubic,-59.813,-50.877,-17 +mobilenetv3_small_100.lamb_in1k,224,29.067,70.933,47.260,52.740,2.54,0.875,bicubic,-57.133,-49.210,+13 +mnasnet_small.lamb_in1k,224,28.990,71.010,47.210,52.790,2.03,0.875,bicubic,-56.500,-48.760,+16 +vgg13_bn.tv_in1k,224,28.963,71.037,46.820,53.180,133.05,0.875,bilinear,-60.267,-50.700,-18 +resnet10t.c3_in1k,224,28.907,71.093,46.967,53.033,5.44,0.950,bicubic,-57.803,-49.763,+9 +regnetx_002.pycls_in1k,224,28.867,71.133,45.607,54.393,2.68,0.875,bicubic,-58.473,-51.523,+1 +efficientvit_m0.r224_in1k,224,28.797,71.203,45.733,54.267,2.35,0.875,bicubic,-54.543,-49.897,+20 +resnet14t.c3_in1k,176,28.733,71.267,46.040,53.960,10.08,0.875,bicubic,-59.737,-50.910,-11 +mobilenetv2_050.lamb_in1k,224,28.700,71.300,46.610,53.390,1.97,0.875,bicubic,-56.290,-49.030,+13 +vgg19.tv_in1k,224,28.700,71.300,45.277,54.723,143.67,0.875,bilinear,-61.000,-52.253,-33 +mobilevitv2_050.cvnets_in1k,256,28.607,71.393,45.287,54.713,1.37,0.888,bicubic,-60.453,-52.303,-22 +dla60x_c.in1k,224,28.507,71.493,46.253,53.747,1.32,0.875,bilinear,-58.603,-50.897,-2 +repghostnet_058.in1k,224,28.497,71.503,46.607,53.393,2.55,0.875,bicubic,-58.693,-50.393,-4 +vgg11_bn.tv_in1k,224,28.447,71.553,46.480,53.520,132.87,0.875,bilinear,-59.963,-50.800,-15 +tinynet_d.in1k,152,27.997,72.003,45.893,54.107,2.34,0.875,bicubic,-57.483,-50.127,+5 +vgg16.tv_in1k,224,27.970,72.030,44.750,55.250,138.36,0.875,bilinear,-61.430,-52.750,-34 +resnet14t.c3_in1k,224,27.647,72.353,44.713,55.287,10.08,0.950,bicubic,-61.593,-52.737,-32 +tf_mobilenetv3_small_100.in1k,224,27.570,72.430,44.910,55.090,2.54,0.875,bilinear,-58.440,-51.480,-2 +repghostnet_050.in1k,224,27.140,72.860,45.050,54.950,2.31,0.875,bicubic,-58.420,-51.060,-2 +mixer_l16_224.goog_in21k_ft_in1k,224,26.777,73.223,37.857,62.143,208.20,0.875,bicubic,-60.223,-56.163,-7 +vgg11.tv_in1k,224,26.640,73.360,43.533,56.467,132.86,0.875,bilinear,-60.700,-53.447,-15 +mobilenetv3_small_075.lamb_in1k,224,26.590,73.410,43.943,56.057,2.04,0.875,bicubic,-57.550,-51.557,+4 +dla46x_c.in1k,224,26.403,73.597,43.907,56.093,1.07,0.875,bilinear,-59.047,-52.543,-2 +mobilevit_xxs.cvnets_in1k,256,26.400,73.600,43.140,56.860,1.27,0.900,bicubic,-61.570,-54.050,-20 +vgg13.tv_in1k,224,26.313,73.687,43.457,56.543,133.05,0.875,bilinear,-61.237,-53.663,-20 +tf_mobilenetv3_small_075.in1k,224,26.280,73.720,43.777,56.223,2.04,0.875,bilinear,-58.240,-52.013,-1 +lcnet_050.ra2_in1k,224,26.220,73.780,44.580,55.420,1.88,0.875,bicubic,-56.910,-50.370,+1 +tf_mobilenetv3_small_minimal_100.in1k,224,25.813,74.187,43.647,56.353,2.04,0.875,bilinear,-56.827,-51.343,+1 +dla46_c.in1k,224,25.540,74.460,43.877,56.123,1.30,0.875,bilinear,-59.180,-52.333,-5 +tinynet_e.in1k,106,23.473,76.527,41.177,58.823,2.04,0.875,bicubic,-56.367,-52.823,0 +mobilenetv3_small_050.lamb_in1k,224,21.793,78.207,38.930,61.070,1.59,0.875,bicubic,-56.297,-54.110,0 +test_byobnet.r160_in1k,160,17.107,82.893,33.970,66.030,0.46,0.875,bicubic,-50.253,-54.420,+1 +test_efficientnet.r160_in1k,160,16.507,83.493,32.900,67.100,0.36,0.875,bicubic,-51.193,-55.500,-1 +test_vit.r160_in1k,160,13.243,86.757,27.813,72.187,0.37,0.875,bicubic,-50.747,-59.867,0 diff --git a/pytorch-image-models/results/results-imagenet-real.csv b/pytorch-image-models/results/results-imagenet-real.csv new file mode 100644 index 0000000000000000000000000000000000000000..09eba4e56b913e64246756d35ed7f1ea96075af1 --- /dev/null +++ b/pytorch-image-models/results/results-imagenet-real.csv @@ -0,0 +1,1446 @@ +model,img_size,top1,top1_err,top5,top5_err,param_count,crop_pct,interpolation,top1_diff,top5_diff,rank_diff +eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,448,91.152,8.848,98.721,1.279,305.08,1.000,bicubic,+1.098,-0.335,0 +eva_giant_patch14_336.clip_ft_in1k,336,91.078,8.922,98.604,1.396,"1,013.01",1.000,bicubic,+1.616,-0.224,+5 +eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,448,91.048,8.952,98.685,1.315,305.08,1.000,bicubic,+1.082,-0.331,-1 +eva_giant_patch14_560.m30m_ft_in22k_in1k,560,90.956,9.044,98.676,1.324,"1,014.45",1.000,bicubic,+1.160,-0.314,-1 +eva02_large_patch14_448.mim_in22k_ft_in1k,448,90.930,9.070,98.678,1.322,305.08,1.000,bicubic,+1.298,-0.276,-1 +eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,448,90.920,9.080,98.819,1.181,87.12,1.000,bicubic,+2.238,+0.091,+6 +eva_large_patch14_336.in22k_ft_in1k,336,90.915,9.085,98.789,1.211,304.53,1.000,bicubic,+2.225,+0.079,+4 +eva_giant_patch14_224.clip_ft_in1k,224,90.903,9.098,98.680,1.319,"1,012.56",0.900,bicubic,+2.017,+0.000,+1 +eva_giant_patch14_336.m30m_ft_in22k_in1k,336,90.894,9.106,98.661,1.339,"1,013.01",1.000,bicubic,+1.324,-0.293,-4 +eva02_large_patch14_448.mim_m38m_ft_in1k,448,90.888,9.113,98.648,1.351,305.08,1.000,bicubic,+1.334,-0.276,-4 +eva_large_patch14_336.in22k_ft_in22k_in1k,336,90.875,9.125,98.723,1.277,304.53,1.000,bicubic,+1.625,-0.129,-3 +caformer_b36.sail_in22k_ft_in1k_384,384,90.804,9.196,98.862,1.138,98.75,1.000,bicubic,+2.738,+0.272,+22 +eva02_base_patch14_448.mim_in22k_ft_in1k,448,90.787,9.213,98.738,1.262,87.12,1.000,bicubic,+2.521,+0.168,+12 +beit_large_patch16_512.in22k_ft_in22k_in1k,512,90.715,9.285,98.770,1.230,305.67,1.000,bicubic,+2.137,+0.110,+3 +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,384,90.702,9.298,98.821,1.179,200.13,1.000,bicubic,+2.368,+0.247,+7 +regnety_1280.swag_ft_in1k,384,90.676,9.324,98.817,1.183,644.81,1.000,bicubic,+2.452,+0.119,+13 +convnext_xxlarge.clip_laion2b_soup_ft_in1k,256,90.668,9.332,98.806,1.194,846.47,1.000,bicubic,+2.046,+0.088,-2 +convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,384,90.668,9.332,98.762,1.238,200.13,1.000,bicubic,+2.778,+0.314,+22 +volo_d5_512.sail_in1k,512,90.627,9.373,98.702,1.298,296.09,1.150,bicubic,+3.561,+0.728,+51 +beit_large_patch16_384.in22k_ft_in22k_in1k,384,90.599,9.401,98.772,1.228,305.00,1.000,bicubic,+2.217,+0.164,0 +volo_d5_448.sail_in1k,448,90.587,9.414,98.689,1.311,295.91,1.150,bicubic,+3.609,+0.761,+55 +tf_efficientnet_l2.ns_jft_in1k,800,90.574,9.426,98.777,1.223,480.31,0.960,bicubic,+2.212,+0.121,-1 +maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,384,90.569,9.431,98.621,1.379,116.14,1.000,bicubic,+2.757,+0.253,+20 +maxvit_base_tf_512.in21k_ft_in1k,512,90.567,9.433,98.702,1.298,119.88,1.000,bicubic,+2.355,+0.164,+6 +eva_large_patch14_196.in22k_ft_in22k_in1k,196,90.561,9.439,98.695,1.304,304.14,1.000,bicubic,+1.965,+0.033,-9 +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,320,90.557,9.443,98.800,1.200,200.13,1.000,bicubic,+2.587,+0.326,+10 +vit_large_patch14_clip_336.openai_ft_in12k_in1k,336,90.542,9.458,98.683,1.317,304.53,1.000,bicubic,+2.278,+0.155,-1 +convnext_xlarge.fb_in22k_ft_in1k_384,384,90.537,9.463,98.770,1.230,350.20,1.000,bicubic,+2.771,+0.216,+16 +tf_efficientnet_l2.ns_jft_in1k_475,475,90.527,9.473,98.708,1.292,480.31,0.936,bicubic,+2.277,+0.152,-2 +convnextv2_huge.fcmae_ft_in22k_in1k_512,512,90.527,9.473,98.704,1.296,660.29,1.000,bicubic,+1.667,-0.036,-20 +eva_large_patch14_196.in22k_ft_in1k,196,90.522,9.477,98.775,1.226,304.14,1.000,bicubic,+2.566,+0.294,+6 +volo_d4_448.sail_in1k,448,90.512,9.488,98.595,1.405,193.41,1.150,bicubic,+3.722,+0.715,+56 +vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,336,90.501,9.499,98.634,1.366,632.46,1.000,bicubic,+1.873,-0.036,-19 +maxvit_xlarge_tf_512.in21k_ft_in1k,512,90.501,9.499,98.595,1.405,475.77,1.000,bicubic,+1.961,-0.057,-16 +convformer_b36.sail_in22k_ft_in1k_384,384,90.488,9.512,98.775,1.226,99.88,1.000,bicubic,+2.886,+0.343,+13 +convnextv2_huge.fcmae_ft_in22k_in1k_384,384,90.475,9.524,98.687,1.313,660.29,1.000,bicubic,+1.813,-0.047,-24 +caformer_m36.sail_in22k_ft_in1k_384,384,90.475,9.524,98.668,1.332,56.20,1.000,bicubic,+3.004,+0.360,+17 +swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,384,90.444,9.556,98.749,1.251,87.92,1.000,bicubic,+3.303,+0.521,+29 +vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,224,90.444,9.556,98.642,1.358,632.05,1.000,bicubic,+2.165,+0.090,-15 +caformer_b36.sail_in22k_ft_in1k,224,90.437,9.563,98.760,1.240,98.75,1.000,bicubic,+2.997,+0.428,+14 +maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,384,90.437,9.563,98.747,1.253,116.09,1.000,bicubic,+2.959,+0.373,+11 +vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,336,90.435,9.565,98.642,1.358,304.53,1.000,bicubic,+2.243,+0.072,-11 +vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,90.428,9.572,98.689,1.311,64.27,1.000,bicubic,+2.992,+0.431,+13 +beit_base_patch16_384.in22k_ft_in22k_in1k,384,90.407,9.593,98.738,1.262,86.74,1.000,bicubic,+3.591,+0.602,+42 +coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,384,90.392,9.608,98.648,1.351,73.88,1.000,bicubic,+2.990,+0.340,+13 +maxvit_large_tf_512.in21k_ft_in1k,512,90.382,9.618,98.642,1.358,212.33,1.000,bicubic,+2.145,+0.034,-18 +convnextv2_base.fcmae_ft_in22k_in1k_384,384,90.375,9.625,98.666,1.334,88.72,1.000,bicubic,+2.737,+0.250,-1 +maxvit_xlarge_tf_384.in21k_ft_in1k,384,90.369,9.631,98.582,1.418,475.32,1.000,bicubic,+2.065,+0.042,-25 +maxvit_base_tf_384.in21k_ft_in1k,384,90.362,9.638,98.683,1.317,119.65,1.000,bicubic,+2.434,+0.145,-12 +beitv2_large_patch16_224.in1k_ft_in22k_in1k,224,90.362,9.638,98.582,1.418,304.43,0.950,bicubic,+1.956,-0.020,-30 +convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,384,90.358,9.642,98.770,1.230,88.59,1.000,bicubic,+3.208,+0.542,+15 +seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,384,90.354,9.646,98.740,1.260,149.39,1.000,bicubic,+3.046,+0.406,+9 +convnextv2_large.fcmae_ft_in22k_in1k_384,384,90.352,9.648,98.646,1.354,197.96,1.000,bicubic,+2.174,+0.128,-21 +vit_large_patch14_clip_224.openai_ft_in12k_in1k,224,90.345,9.655,98.661,1.339,304.20,1.000,bicubic,+2.183,+0.121,-22 +convnext_large_mlp.clip_laion2b_augreg_ft_in1k,256,90.345,9.655,98.648,1.351,200.13,1.000,bicubic,+3.009,+0.427,+6 +convnext_base.fb_in22k_ft_in1k_384,384,90.343,9.657,98.796,1.204,88.59,1.000,bicubic,+3.517,+0.552,+29 +vit_large_patch14_clip_336.laion2b_ft_in1k,336,90.337,9.663,98.597,1.403,304.53,1.000,bicubic,+2.471,+0.243,-16 +maxvit_large_tf_384.in21k_ft_in1k,384,90.320,9.680,98.674,1.326,212.03,1.000,bicubic,+2.324,+0.106,-23 +vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,224,90.317,9.682,98.670,1.330,304.20,1.000,bicubic,+2.419,+0.262,-20 +caformer_s36.sail_in22k_ft_in1k_384,384,90.315,9.685,98.806,1.194,39.30,1.000,bicubic,+3.451,+0.585,+21 +vit_large_patch14_clip_224.openai_ft_in1k,224,90.313,9.687,98.646,1.354,304.20,1.000,bicubic,+2.453,+0.216,-19 +convnext_large.fb_in22k_ft_in1k_384,384,90.307,9.693,98.666,1.334,197.77,1.000,bicubic,+2.851,+0.286,-8 +convformer_m36.sail_in22k_ft_in1k_384,384,90.251,9.749,98.657,1.343,57.05,1.000,bicubic,+3.383,+0.531,+17 +deit3_large_patch16_384.fb_in22k_ft_in1k,384,90.249,9.751,98.627,1.373,304.76,1.000,bicubic,+2.515,+0.119,-19 +convformer_b36.sail_in22k_ft_in1k,224,90.247,9.753,98.704,1.296,99.88,1.000,bicubic,+3.263,+0.546,+10 +regnety_320.swag_ft_in1k,384,90.245,9.755,98.768,1.232,145.05,1.000,bicubic,+3.385,+0.412,+16 +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,320,90.243,9.757,98.781,1.219,93.59,1.000,bicubic,+3.521,+0.599,+25 +convnextv2_huge.fcmae_ft_in1k,288,90.236,9.764,98.550,1.450,660.29,1.000,bicubic,+3.618,+0.582,+27 +dm_nfnet_f6.dm_in1k,576,90.228,9.772,98.629,1.371,438.36,0.956,bicubic,+3.856,+0.737,+50 +nextvit_large.bd_ssld_6m_in1k_384,384,90.219,9.781,98.781,1.219,57.87,1.000,bicubic,+3.677,+0.649,+31 +vit_large_patch16_384.augreg_in21k_ft_in1k,384,90.219,9.781,98.653,1.347,304.72,1.000,bicubic,+3.125,+0.347,-1 +deit3_huge_patch14_224.fb_in22k_ft_in1k,224,90.213,9.787,98.636,1.364,632.13,1.000,bicubic,+3.033,+0.372,-7 +tf_efficientnetv2_l.in21k_ft_in1k,480,90.211,9.789,98.721,1.279,118.52,1.000,bicubic,+3.409,+0.585,+14 +vit_base_patch16_clip_384.openai_ft_in12k_in1k,384,90.207,9.793,98.651,1.349,86.86,0.950,bicubic,+3.178,+0.457,-3 +vit_base_patch16_clip_384.laion2b_ft_in1k,384,90.198,9.802,98.698,1.302,86.86,1.000,bicubic,+3.560,+0.690,+19 +swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,384,90.192,9.809,98.610,1.390,196.74,1.000,bicubic,+2.718,+0.346,-24 +nextvit_base.bd_ssld_6m_in1k_384,384,90.185,9.815,98.815,1.185,44.82,1.000,bicubic,+3.821,+0.775,+42 +vit_huge_patch14_clip_224.laion2b_ft_in1k,224,90.185,9.815,98.555,1.445,632.05,1.000,bicubic,+2.561,+0.327,-30 +cait_m48_448.fb_dist_in1k,448,90.181,9.819,98.482,1.518,356.46,1.000,bicubic,+3.699,+0.736,+31 +vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,384,90.177,9.823,98.565,1.435,86.86,1.000,bicubic,+2.965,+0.537,-16 +volo_d3_448.sail_in1k,448,90.177,9.823,98.537,1.462,86.63,1.000,bicubic,+3.665,+0.828,+26 +beit_large_patch16_224.in22k_ft_in22k_in1k,224,90.159,9.841,98.728,1.272,304.43,0.900,bicubic,+2.671,+0.412,-32 +tf_efficientnet_b7.ns_jft_in1k,600,90.151,9.849,98.604,1.396,66.35,0.949,bicubic,+3.299,+0.524,0 +dm_nfnet_f6.dm_in1k,448,90.117,9.883,98.572,1.428,438.36,0.956,bicubic,+3.963,+0.804,+54 +beitv2_large_patch16_224.in1k_ft_in1k,224,90.112,9.887,98.437,1.563,304.43,0.950,bicubic,+2.698,+0.221,-28 +vit_large_patch14_clip_224.laion2b_ft_in1k,224,90.110,9.890,98.559,1.441,304.20,1.000,bicubic,+2.812,+0.321,-24 +convnext_xlarge.fb_in22k_ft_in1k,288,90.095,9.905,98.629,1.371,350.20,1.000,bicubic,+2.721,+0.299,-28 +swin_base_patch4_window12_384.ms_in22k_ft_in1k,384,90.068,9.932,98.713,1.287,87.90,1.000,bicubic,+3.630,+0.645,+24 +caformer_b36.sail_in1k_384,384,90.068,9.932,98.501,1.499,98.75,1.000,bicubic,+3.664,+0.677,+26 +convnextv2_base.fcmae_ft_in22k_in1k,288,90.066,9.934,98.670,1.330,88.72,1.000,bicubic,+3.067,+0.506,-18 +swin_large_patch4_window12_384.ms_in22k_ft_in1k,384,90.066,9.934,98.663,1.337,196.74,1.000,bicubic,+2.927,+0.433,-22 +cait_m36_384.fb_dist_in1k,384,90.055,9.945,98.495,1.505,271.22,1.000,bicubic,+3.991,+0.763,+54 +convformer_s36.sail_in22k_ft_in1k_384,384,90.046,9.954,98.627,1.373,40.01,1.000,bicubic,+3.666,+0.651,+25 +tiny_vit_21m_512.dist_in22k_ft_in1k,512,90.031,9.969,98.482,1.518,21.27,1.000,bicubic,+3.579,+0.598,+18 +seresnextaa101d_32x8d.sw_in12k_ft_in1k,288,90.027,9.973,98.691,1.309,93.59,1.000,bicubic,+3.509,+0.655,+11 +tf_efficientnetv2_m.in21k_ft_in1k,480,90.014,9.986,98.663,1.337,54.14,1.000,bicubic,+4.000,+0.707,+57 +hgnetv2_b6.ssld_stage1_in22k_in1k,288,90.008,9.992,98.683,1.317,75.26,1.000,bicubic,+3.710,+0.595,+26 +convnextv2_large.fcmae_ft_in22k_in1k,288,90.006,9.994,98.636,1.364,197.96,1.000,bicubic,+2.512,+0.276,-49 +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,288,90.004,9.996,98.702,1.298,93.59,0.950,bicubic,+3.468,+0.608,+5 +deit3_large_patch16_224.fb_in22k_ft_in1k,224,90.004,9.996,98.661,1.339,304.37,1.000,bicubic,+3.018,+0.421,-26 +vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,89.997,10.003,98.602,1.399,64.11,0.950,bicubic,+3.393,+0.665,-4 +convnext_base.clip_laiona_augreg_ft_in1k_384,384,89.997,10.003,98.548,1.452,88.59,1.000,bicubic,+3.509,+0.586,+8 +convnextv2_large.fcmae_ft_in22k_in1k,224,89.987,10.014,98.546,1.454,197.96,0.875,bicubic,+2.723,+0.302,-40 +hiera_huge_224.mae_in1k_ft_in1k,224,89.980,10.020,98.360,1.640,672.78,0.900,bicubic,+3.146,+0.350,-20 +convnext_xlarge.fb_in22k_ft_in1k,224,89.976,10.024,98.578,1.422,350.20,0.875,bicubic,+3.006,+0.374,-28 +maxvit_base_tf_512.in1k,512,89.972,10.028,98.446,1.554,119.88,1.000,bicubic,+3.374,+0.520,-6 +vit_base_patch16_384.augreg_in21k_ft_in1k,384,89.967,10.033,98.678,1.322,86.86,1.000,bicubic,+3.961,+0.678,+48 +nextvit_small.bd_ssld_6m_in1k_384,384,89.961,10.039,98.723,1.277,31.76,1.000,bicubic,+4.005,+0.823,+50 +convnextv2_large.fcmae_ft_in1k,288,89.961,10.039,98.548,1.452,197.96,1.000,bicubic,+3.835,+0.730,+32 +maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,224,89.950,10.050,98.427,1.573,116.14,0.950,bicubic,+3.042,+0.422,-31 +caformer_m36.sail_in1k_384,384,89.944,10.056,98.444,1.556,56.20,1.000,bicubic,+3.784,+0.627,+26 +convnext_small.fb_in22k_ft_in1k_384,384,89.927,10.073,98.691,1.309,50.22,1.000,bicubic,+4.173,+0.809,+68 +regnety_160.swag_ft_in1k,384,89.925,10.075,98.638,1.362,83.59,1.000,bicubic,+3.907,+0.588,+39 +swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,256,89.920,10.080,98.505,1.494,196.74,0.900,bicubic,+2.986,+0.401,-36 +swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,256,89.899,10.101,98.657,1.343,87.92,0.900,bicubic,+3.623,+0.749,+9 +efficientnet_b5.sw_in12k_ft_in1k,448,89.899,10.101,98.574,1.426,30.39,1.000,bicubic,+4.007,+0.832,+47 +deit3_base_patch16_384.fb_in22k_ft_in1k,384,89.897,10.103,98.597,1.403,86.88,1.000,bicubic,+3.153,+0.487,-26 +xcit_large_24_p8_384.fb_dist_in1k,384,89.897,10.103,98.377,1.623,188.93,1.000,bicubic,+3.871,+0.687,+33 +convnext_large.fb_in22k_ft_in1k,288,89.891,10.110,98.608,1.392,197.77,1.000,bicubic,+2.877,+0.396,-47 +hgnet_base.ssld_in1k,288,89.888,10.112,98.544,1.456,71.58,1.000,bicubic,+4.416,+0.910,+83 +convnextv2_huge.fcmae_ft_in1k,224,89.880,10.120,98.412,1.589,660.29,0.875,bicubic,+3.620,+0.660,+5 +convnext_base.fb_in22k_ft_in1k,288,89.873,10.127,98.698,1.302,88.59,1.000,bicubic,+3.575,+0.758,-1 +volo_d5_224.sail_in1k,224,89.873,10.127,98.493,1.507,295.46,0.960,bicubic,+3.795,+0.915,+23 +caformer_m36.sail_in22k_ft_in1k,224,89.863,10.137,98.580,1.420,56.20,1.000,bicubic,+3.255,+0.542,-27 +hgnetv2_b6.ssld_stage2_ft_in1k,288,89.856,10.144,98.627,1.373,75.26,1.000,bicubic,+3.472,+0.689,-8 +tiny_vit_21m_384.dist_in22k_ft_in1k,384,89.854,10.146,98.503,1.497,21.23,1.000,bicubic,+3.760,+0.791,+18 +vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,89.852,10.148,98.484,1.516,60.60,1.000,bicubic,+3.250,+0.462,-28 +convnextv2_base.fcmae_ft_in22k_in1k,224,89.837,10.163,98.544,1.456,88.72,0.875,bicubic,+3.085,+0.524,-39 +efficientvit_l2.r384_in1k,384,89.835,10.165,98.185,1.815,63.71,1.000,bicubic,+3.853,+0.671,+27 +convnext_large.fb_in22k_ft_in1k,224,89.831,10.169,98.512,1.488,197.77,0.875,bicubic,+3.219,+0.476,-35 +cait_s36_384.fb_dist_in1k,384,89.831,10.169,98.431,1.569,68.37,1.000,bicubic,+4.373,+0.951,+74 +convformer_m36.sail_in22k_ft_in1k,224,89.826,10.174,98.561,1.439,57.05,1.000,bicubic,+3.674,+0.709,+7 +coatnet_2_rw_224.sw_in12k_ft_in1k,224,89.822,10.178,98.531,1.469,73.87,0.950,bicubic,+3.242,+0.635,-32 +maxvit_large_tf_512.in1k,512,89.809,10.191,98.347,1.653,212.33,1.000,bicubic,+3.275,+0.468,-29 +convnext_base.clip_laion2b_augreg_ft_in12k_in1k,256,89.807,10.193,98.661,1.339,88.59,1.000,bicubic,+3.421,+0.685,-20 +xcit_medium_24_p8_384.fb_dist_in1k,384,89.807,10.193,98.365,1.635,84.32,1.000,bicubic,+3.965,+0.763,+32 +hgnetv2_b6.ssld_stage1_in22k_in1k,224,89.799,10.201,98.599,1.401,75.26,0.965,bicubic,+3.747,+0.793,+11 +volo_d4_224.sail_in1k,224,89.799,10.201,98.422,1.578,192.96,0.960,bicubic,+3.927,+0.966,+25 +swin_large_patch4_window7_224.ms_in22k_ft_in1k,224,89.790,10.210,98.646,1.354,196.53,0.900,bicubic,+3.460,+0.764,-18 +vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,89.788,10.212,98.516,1.484,64.11,0.950,bicubic,+3.580,+0.634,-8 +volo_d2_384.sail_in1k,384,89.786,10.214,98.405,1.595,58.87,1.000,bicubic,+3.728,+0.821,+6 +vit_large_r50_s32_384.augreg_in21k_ft_in1k,384,89.784,10.216,98.514,1.486,329.09,1.000,bicubic,+3.600,+0.840,-7 +tf_efficientnetv2_xl.in21k_ft_in1k,512,89.782,10.218,98.294,1.706,208.12,1.000,bicubic,+3.034,+0.280,-53 +tf_efficientnet_b6.ns_jft_in1k,528,89.779,10.221,98.512,1.488,43.04,0.942,bicubic,+3.303,+0.644,-33 +coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,224,89.777,10.223,98.473,1.527,73.88,0.950,bicubic,+3.237,+0.577,-42 +beitv2_base_patch16_224.in1k_ft_in22k_in1k,224,89.758,10.242,98.593,1.407,86.53,0.900,bicubic,+3.264,+0.537,-38 +xcit_small_24_p8_384.fb_dist_in1k,384,89.754,10.246,98.420,1.580,47.63,1.000,bicubic,+4.172,+0.848,+45 +dm_nfnet_f4.dm_in1k,512,89.745,10.255,98.403,1.597,316.07,0.951,bicubic,+3.885,+0.751,+16 +maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,224,89.743,10.257,98.484,1.516,116.09,0.950,bicubic,+3.105,+0.470,-56 +caformer_s36.sail_in22k_ft_in1k,224,89.741,10.259,98.655,1.345,39.30,1.000,bicubic,+3.953,+0.827,+24 +caformer_s18.sail_in22k_ft_in1k_384,384,89.739,10.261,98.580,1.420,26.34,1.000,bicubic,+4.315,+0.998,+58 +vit_base_patch8_224.augreg2_in21k_ft_in1k,224,89.733,10.268,98.514,1.486,86.58,0.900,bicubic,+3.505,+0.674,-23 +regnety_160.lion_in12k_ft_in1k,288,89.726,10.274,98.608,1.392,83.59,1.000,bicubic,+3.716,+0.762,0 +dm_nfnet_f5.dm_in1k,544,89.726,10.274,98.431,1.569,377.21,0.954,bicubic,+3.626,+0.745,-10 +efficientvit_l3.r384_in1k,384,89.722,10.278,98.014,1.986,246.04,1.000,bicubic,+3.324,+0.380,-40 +convformer_m36.sail_in1k_384,384,89.720,10.280,98.444,1.556,57.05,1.000,bicubic,+4.140,+0.895,+37 +volo_d1_384.sail_in1k,384,89.711,10.289,98.294,1.706,26.78,1.000,bicubic,+4.445,+1.076,+66 +vit_base_patch16_clip_384.openai_ft_in1k,384,89.696,10.304,98.518,1.482,86.86,1.000,bicubic,+3.478,+0.632,-28 +caformer_s36.sail_in1k_384,384,89.694,10.306,98.318,1.682,39.30,1.000,bicubic,+3.938,+0.650,+20 +deit3_large_patch16_384.fb_in1k,384,89.690,10.310,98.399,1.601,304.76,1.000,bicubic,+3.872,+0.797,+10 +hgnetv2_b6.ssld_stage2_ft_in1k,224,89.686,10.315,98.557,1.443,75.26,0.965,bicubic,+3.480,+0.747,-28 +convnext_base.clip_laion2b_augreg_ft_in1k,256,89.677,10.323,98.476,1.524,88.59,1.000,bicubic,+3.493,+0.548,-27 +convformer_b36.sail_in1k_384,384,89.677,10.323,98.384,1.616,99.88,1.000,bicubic,+3.899,+0.864,+13 +convnext_base.fb_in22k_ft_in1k,224,89.675,10.325,98.542,1.458,88.59,0.875,bicubic,+3.859,+0.688,+7 +xcit_large_24_p16_384.fb_dist_in1k,384,89.675,10.325,98.407,1.593,189.10,1.000,bicubic,+3.899,+0.879,+11 +tf_efficientnet_b5.ns_jft_in1k,456,89.666,10.334,98.488,1.512,30.39,0.934,bicubic,+3.564,+0.738,-24 +nextvit_large.bd_ssld_6m_in1k,224,89.660,10.340,98.634,1.366,57.87,0.950,bicubic,+4.136,+0.958,+31 +hgnetv2_b5.ssld_stage2_ft_in1k,288,89.658,10.342,98.497,1.503,39.57,1.000,bicubic,+4.508,+0.897,+70 +regnety_2560.seer_ft_in1k,384,89.628,10.372,98.403,1.597,"1,282.60",1.000,bicubic,+4.482,+0.959,+70 +dm_nfnet_f3.dm_in1k,416,89.624,10.376,98.461,1.539,254.92,0.940,bicubic,+3.952,+0.883,+14 +convnext_small.in12k_ft_in1k_384,384,89.621,10.379,98.450,1.550,50.22,1.000,bicubic,+3.435,+0.530,-37 +regnety_160.sw_in12k_ft_in1k,288,89.604,10.396,98.563,1.437,83.59,1.000,bicubic,+3.572,+0.733,-23 +maxvit_base_tf_384.in1k,384,89.604,10.396,98.320,1.680,119.65,1.000,bicubic,+3.310,+0.516,-48 +volo_d3_224.sail_in1k,224,89.592,10.408,98.369,1.631,86.33,0.960,bicubic,+4.150,+1.093,+32 +tf_efficientnetv2_l.in21k_ft_in1k,384,89.587,10.413,98.503,1.497,118.52,1.000,bicubic,+3.755,+0.733,-6 +convformer_s18.sail_in22k_ft_in1k_384,384,89.585,10.415,98.535,1.465,26.77,1.000,bicubic,+4.559,+0.955,+80 +tf_efficientnet_b8.ap_in1k,672,89.583,10.417,98.300,1.700,87.41,0.954,bicubic,+4.217,+1.002,+39 +seresnextaa101d_32x8d.sw_in12k_ft_in1k,224,89.579,10.421,98.486,1.514,93.59,0.875,bicubic,+3.623,+0.662,-18 +maxvit_large_tf_384.in1k,384,89.575,10.425,98.189,1.810,212.03,1.000,bicubic,+3.338,+0.499,-52 +vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,224,89.570,10.430,98.420,1.580,86.57,0.950,bicubic,+3.360,+0.664,-49 +maxvit_tiny_tf_512.in1k,512,89.562,10.438,98.335,1.665,31.05,1.000,bicubic,+3.902,+0.743,+4 +efficientvit_l2.r288_in1k,288,89.559,10.441,98.072,1.928,63.71,1.000,bicubic,+3.945,+0.712,+6 +tf_efficientnetv2_l.in1k,480,89.553,10.447,98.339,1.661,118.52,1.000,bicubic,+3.893,+0.867,+3 +flexivit_large.1200ep_in1k,240,89.547,10.453,98.397,1.603,304.36,0.950,bicubic,+3.903,+0.851,+1 +convnextv2_large.fcmae_ft_in1k,224,89.547,10.453,98.294,1.706,197.96,0.875,bicubic,+3.785,+0.708,-8 +efficientvit_l3.r320_in1k,320,89.547,10.453,97.859,2.142,246.04,1.000,bicubic,+3.317,+0.403,-56 +hiera_large_224.mae_in1k_ft_in1k,224,89.545,10.455,98.228,1.772,213.74,0.900,bicubic,+3.501,+0.580,-38 +dm_nfnet_f4.dm_in1k,384,89.536,10.464,98.275,1.725,316.07,0.951,bicubic,+4.040,+0.785,+12 +xcit_small_12_p8_384.fb_dist_in1k,384,89.519,10.481,98.296,1.704,26.21,1.000,bicubic,+4.447,+1.034,+62 +xcit_large_24_p8_224.fb_dist_in1k,224,89.517,10.483,98.219,1.781,188.93,1.000,bicubic,+4.115,+0.801,+23 +convformer_s36.sail_in22k_ft_in1k,224,89.513,10.487,98.467,1.533,40.01,1.000,bicubic,+4.089,+0.993,+19 +cait_s24_384.fb_dist_in1k,384,89.510,10.490,98.362,1.638,47.06,1.000,bicubic,+4.468,+1.012,+61 +hgnet_base.ssld_in1k,224,89.506,10.494,98.427,1.573,71.58,0.965,bicubic,+4.594,+1.087,+77 +flexivit_large.600ep_in1k,240,89.506,10.494,98.388,1.612,304.36,0.950,bicubic,+3.976,+0.894,+3 +nextvit_base.bd_ssld_6m_in1k,224,89.504,10.496,98.591,1.409,44.82,0.950,bicubic,+4.322,+0.997,+38 +regnety_160.lion_in12k_ft_in1k,224,89.502,10.498,98.427,1.573,83.59,0.950,bicubic,+3.900,+0.758,-7 +efficientvit_l3.r256_in1k,256,89.498,10.502,97.910,2.090,246.04,1.000,bicubic,+3.544,+0.572,-36 +hgnetv2_b5.ssld_stage1_in22k_in1k,288,89.496,10.505,98.522,1.478,39.57,1.000,bicubic,+4.572,+1.008,+70 +convnextv2_tiny.fcmae_ft_in22k_in1k_384,384,89.493,10.507,98.484,1.516,28.64,1.000,bicubic,+4.387,+0.852,+44 +convnext_tiny.in12k_ft_in1k_384,384,89.491,10.509,98.510,1.490,28.59,1.000,bicubic,+4.337,+0.876,+37 +rdnet_large.nv_in1k_ft_in1k_384,384,89.487,10.513,98.347,1.653,186.27,1.000,bicubic,+3.639,+0.663,-35 +convformer_s36.sail_in1k_384,384,89.478,10.522,98.367,1.633,40.01,1.000,bicubic,+4.098,+0.897,+12 +xcit_medium_24_p16_384.fb_dist_in1k,384,89.472,10.528,98.296,1.704,84.40,1.000,bicubic,+4.038,+0.888,+4 +vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,448,89.470,10.530,98.403,1.597,88.34,1.000,bicubic,+3.670,+0.771,-31 +vit_base_patch16_clip_224.laion2b_ft_in1k,224,89.468,10.532,98.478,1.522,86.57,1.000,bicubic,+3.974,+0.906,-4 +deit3_base_patch16_224.fb_in22k_ft_in1k,224,89.466,10.534,98.555,1.445,86.59,1.000,bicubic,+3.738,+0.947,-25 +vit_base_patch8_224.augreg_in21k_ft_in1k,224,89.455,10.545,98.480,1.520,86.58,0.900,bicubic,+3.619,+0.706,-39 +vit_base_patch16_224.augreg2_in21k_ft_in1k,224,89.453,10.547,98.463,1.537,86.57,0.900,bicubic,+4.343,+0.925,+34 +inception_next_base.sail_in1k_384,384,89.446,10.554,98.352,1.648,86.67,1.000,bicubic,+4.246,+0.928,+22 +maxvit_small_tf_512.in1k,512,89.442,10.558,98.360,1.640,69.13,1.000,bicubic,+3.338,+0.602,-70 +dm_nfnet_f5.dm_in1k,416,89.442,10.558,98.305,1.695,377.21,0.954,bicubic,+3.726,+0.753,-27 +vit_base_patch16_clip_224.openai_ft_in12k_in1k,224,89.434,10.566,98.403,1.597,86.57,0.950,bicubic,+3.472,+0.685,-54 +convnextv2_base.fcmae_ft_in1k,288,89.431,10.569,98.367,1.633,88.72,1.000,bicubic,+3.941,+0.987,-11 +regnety_120.sw_in12k_ft_in1k,288,89.429,10.571,98.525,1.475,51.82,1.000,bicubic,+3.987,+0.953,-10 +deit_base_distilled_patch16_384.fb_in1k,384,89.429,10.571,98.441,1.559,87.63,1.000,bicubic,+4.001,+1.113,-8 +tf_efficientnet_b7.ap_in1k,600,89.429,10.571,98.335,1.665,66.35,0.949,bicubic,+4.297,+1.079,+27 +beit_base_patch16_224.in22k_ft_in22k_in1k,224,89.425,10.575,98.520,1.480,86.53,0.900,bicubic,+4.181,+0.868,+8 +efficientvit_l3.r224_in1k,224,89.416,10.584,97.886,2.114,246.04,1.000,bicubic,+3.605,+0.676,-46 +caformer_b36.sail_in1k,224,89.406,10.594,98.224,1.776,98.75,1.000,bicubic,+3.904,+0.908,-20 +efficientvit_l2.r256_in1k,256,89.401,10.598,98.061,1.939,63.71,1.000,bicubic,+4.034,+0.805,-5 +hrnet_w48_ssld.paddle_in1k,288,89.399,10.601,98.386,1.614,77.47,1.000,bilinear,+4.915,+1.160,+93 +regnety_160.sw_in12k_ft_in1k,224,89.395,10.605,98.384,1.616,83.59,0.950,bicubic,+3.801,+0.716,-31 +regnetz_e8.ra3_in1k,320,89.380,10.620,98.459,1.542,57.70,1.000,bicubic,+4.340,+1.177,+31 +vit_medium_patch16_gap_384.sw_in12k_ft_in1k,384,89.372,10.628,98.495,1.505,39.03,0.950,bicubic,+3.818,+0.855,-29 +deit3_small_patch16_384.fb_in22k_ft_in1k,384,89.372,10.628,98.390,1.610,22.21,1.000,bicubic,+4.530,+0.908,+53 +eva02_small_patch14_336.mim_in22k_ft_in1k,336,89.370,10.630,98.352,1.648,22.13,1.000,bicubic,+3.609,+0.742,-48 +tf_efficientnet_b4.ns_jft_in1k,380,89.363,10.637,98.375,1.625,19.34,0.922,bicubic,+4.187,+1.047,+7 +tf_efficientnetv2_m.in1k,480,89.350,10.650,98.324,1.676,54.14,1.000,bicubic,+4.140,+0.960,+1 +caformer_s18.sail_in1k_384,384,89.348,10.652,98.294,1.706,26.34,1.000,bicubic,+4.312,+0.934,+26 +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,480,89.346,10.654,98.367,1.633,32.59,1.000,bicubic,+4.566,+1.025,+54 +convnext_small.fb_in22k_ft_in1k,288,89.344,10.656,98.358,1.642,50.22,1.000,bicubic,+4.068,+0.680,-10 +hgnetv2_b5.ssld_stage2_ft_in1k,224,89.342,10.658,98.328,1.672,39.57,0.965,bicubic,+4.532,+1.028,+49 +tf_efficientnet_b6.ap_in1k,528,89.340,10.660,98.285,1.714,43.04,0.942,bicubic,+4.548,+1.151,+50 +tf_efficientnet_b8.ra_in1k,672,89.329,10.671,98.307,1.693,87.41,0.954,bicubic,+3.973,+0.919,-17 +volo_d2_224.sail_in1k,224,89.329,10.671,98.207,1.794,58.68,0.960,bicubic,+4.127,+1.020,-5 +nextvit_small.bd_ssld_6m_in1k,224,89.320,10.680,98.422,1.578,31.76,0.950,bicubic,+4.464,+1.042,+41 +vit_large_patch16_224.augreg_in21k_ft_in1k,224,89.314,10.686,98.392,1.608,304.33,0.900,bicubic,+3.464,+0.566,-72 +xcit_small_24_p16_384.fb_dist_in1k,384,89.312,10.688,98.354,1.646,47.67,1.000,bicubic,+4.210,+0.972,+7 +flexivit_large.300ep_in1k,240,89.310,10.690,98.322,1.678,304.36,0.950,bicubic,+4.028,+0.918,-19 +xcit_medium_24_p8_224.fb_dist_in1k,224,89.299,10.701,98.196,1.804,84.32,1.000,bicubic,+4.223,+0.922,+10 +nextvit_large.bd_in1k_384,384,89.297,10.703,98.307,1.693,57.87,1.000,bicubic,+4.363,+1.009,+24 +nextvit_base.bd_in1k_384,384,89.290,10.710,98.313,1.687,44.82,1.000,bicubic,+4.564,+1.089,+46 +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,544,89.288,10.712,98.258,1.742,32.59,1.000,bicubic,+4.298,+0.974,+16 +vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,89.282,10.718,98.311,1.689,60.40,0.950,bicubic,+3.554,+0.565,-62 +dm_nfnet_f3.dm_in1k,320,89.280,10.720,98.275,1.725,254.92,0.940,bicubic,+4.184,+0.889,+2 +beitv2_base_patch16_224.in1k_ft_in1k,224,89.271,10.729,98.249,1.751,86.53,0.900,bicubic,+3.675,+0.735,-56 +xcit_small_12_p16_384.fb_dist_in1k,384,89.246,10.754,98.258,1.742,26.25,1.000,bicubic,+4.510,+1.122,+40 +hgnet_small.ssld_in1k,288,89.243,10.757,98.369,1.631,24.36,1.000,bicubic,+4.865,+1.239,+91 +xcit_small_24_p8_224.fb_dist_in1k,224,89.224,10.776,98.236,1.764,47.63,1.000,bicubic,+4.348,+1.036,+25 +deit3_huge_patch14_224.fb_in1k,224,89.222,10.778,98.166,1.834,632.13,0.900,bicubic,+4.000,+0.800,-22 +vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,384,89.218,10.782,98.356,1.644,88.30,1.000,bicubic,+3.808,+0.696,-39 +coat_lite_medium_384.in1k,384,89.214,10.786,98.226,1.774,44.57,1.000,bicubic,+4.320,+0.850,+20 +swin_base_patch4_window7_224.ms_in22k_ft_in1k,224,89.199,10.801,98.435,1.565,87.77,0.900,bicubic,+3.929,+0.867,-31 +regnety_120.sw_in12k_ft_in1k,224,89.177,10.823,98.343,1.657,51.82,0.950,bicubic,+4.191,+0.921,+6 +dm_nfnet_f2.dm_in1k,352,89.175,10.825,98.232,1.768,193.78,0.920,bicubic,+3.999,+0.744,-20 +eca_nfnet_l2.ra3_in1k,384,89.165,10.835,98.311,1.689,56.72,1.000,bicubic,+4.459,+1.055,+35 +tf_efficientnetv2_m.in21k_ft_in1k,384,89.160,10.840,98.392,1.608,54.14,1.000,bicubic,+4.392,+0.952,+29 +cait_xs24_384.fb_dist_in1k,384,89.160,10.840,98.283,1.717,26.67,1.000,bicubic,+5.096,+1.401,+122 +vit_base_patch16_clip_224.openai_ft_in1k,224,89.158,10.842,98.273,1.727,86.57,0.900,bicubic,+3.872,+0.833,-40 +convnext_small.fb_in22k_ft_in1k,224,89.150,10.850,98.322,1.678,50.22,0.875,bicubic,+4.568,+0.908,+42 +maxvit_small_tf_384.in1k,384,89.126,10.874,98.153,1.847,69.02,1.000,bicubic,+3.592,+0.695,-65 +convformer_s18.sail_in1k_384,384,89.122,10.878,98.140,1.860,26.77,1.000,bicubic,+4.728,+1.028,+74 +fastvit_ma36.apple_dist_in1k,256,89.118,10.882,98.151,1.849,44.07,0.950,bicubic,+4.512,+1.145,+36 +resnext101_32x32d.fb_wsl_ig1b_ft_in1k,224,89.115,10.885,98.185,1.815,468.53,0.875,bilinear,+4.017,+0.743,-18 +maxvit_tiny_tf_384.in1k,384,89.103,10.897,98.213,1.787,30.98,1.000,bicubic,+4.001,+0.895,-21 +tiny_vit_21m_224.dist_in22k_ft_in1k,224,89.098,10.902,98.239,1.761,21.20,0.950,bicubic,+4.010,+0.883,-18 +hgnetv2_b5.ssld_stage1_in22k_in1k,224,89.096,10.904,98.296,1.704,39.57,0.965,bicubic,+4.640,+1.468,+52 +tf_efficientnet_b7.ra_in1k,600,89.090,10.910,98.192,1.808,66.35,0.949,bicubic,+4.160,+0.992,-1 +ecaresnet269d.ra2_in1k,352,89.088,10.912,98.243,1.757,102.09,1.000,bicubic,+4.116,+1.019,-8 +efficientvit_l2.r224_in1k,224,89.079,10.921,98.034,1.966,63.71,1.000,bicubic,+4.035,+0.936,-18 +tf_efficientnetv2_l.in1k,384,89.077,10.923,98.234,1.766,118.52,1.000,bicubic,+3.881,+0.958,-39 +vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,89.069,10.931,98.172,1.828,60.40,0.950,bicubic,+3.644,+0.460,-61 +vit_base_patch32_clip_384.openai_ft_in12k_in1k,384,89.060,10.940,98.283,1.717,88.30,0.950,bicubic,+3.834,+0.885,-46 +vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,89.056,10.944,98.260,1.740,38.88,0.950,bicubic,+4.112,+0.872,-12 +xcit_large_24_p16_224.fb_dist_in1k,224,89.053,10.947,98.066,1.934,189.10,1.000,bicubic,+4.117,+0.938,-11 +regnety_1280.seer_ft_in1k,384,89.049,10.951,98.151,1.849,644.81,1.000,bicubic,+4.623,+1.067,+55 +convnext_small.in12k_ft_in1k,288,89.026,10.974,98.230,1.770,50.22,1.000,bicubic,+3.702,+0.676,-59 +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,448,89.024,10.976,98.081,1.919,32.59,0.950,bicubic,+4.356,+0.973,+16 +xcit_small_12_p8_224.fb_dist_in1k,224,89.022,10.979,98.078,1.922,26.21,1.000,bicubic,+4.772,+1.204,+77 +dm_nfnet_f1.dm_in1k,320,89.019,10.981,98.260,1.740,132.63,0.910,bicubic,+4.323,+1.080,+12 +mobilenetv4_hybrid_large.e600_r384_in1k,448,89.004,10.996,98.053,1.947,37.76,1.000,bicubic,+4.730,+1.103,+70 +efficientnetv2_rw_m.agc_in1k,416,89.000,11.000,98.213,1.787,53.24,1.000,bicubic,+4.176,+1.063,-2 +caformer_m36.sail_in1k,224,88.998,11.002,98.029,1.971,56.20,1.000,bicubic,+3.758,+0.823,-57 +resmlp_big_24_224.fb_in22k_ft_in1k,224,88.994,11.006,98.236,1.764,129.14,0.875,bicubic,+4.606,+1.128,+53 +hgnetv2_b3.ssld_stage2_ft_in1k,288,88.992,11.008,98.179,1.821,16.29,1.000,bicubic,+5.412,+1.365,+177 +convnext_large.fb_in1k,288,88.990,11.011,98.044,1.956,197.77,1.000,bicubic,+4.128,+0.834,-10 +regnetz_040_h.ra3_in1k,320,88.979,11.021,98.196,1.804,28.94,1.000,bicubic,+4.469,+1.180,+25 +edgenext_base.in21k_ft_in1k,320,88.970,11.030,98.269,1.732,18.51,1.000,bicubic,+4.894,+1.061,+88 +hgnetv2_b4.ssld_stage2_ft_in1k,288,88.964,11.036,98.309,1.691,19.80,1.000,bicubic,+5.030,+1.245,+102 +caformer_s18.sail_in22k_ft_in1k,224,88.964,11.036,98.300,1.700,26.34,1.000,bicubic,+4.878,+1.112,+86 +regnetz_d8_evos.ch_in1k,320,88.957,11.043,98.177,1.823,23.46,1.000,bicubic,+4.805,+1.157,+77 +regnetz_e8.ra3_in1k,256,88.955,11.045,98.254,1.746,57.70,0.940,bicubic,+4.537,+1.267,+41 +regnety_1280.swag_lc_in1k,224,88.949,11.051,98.234,1.766,644.81,0.965,bicubic,+2.983,+0.382,-136 +tf_efficientnet_b5.ap_in1k,456,88.949,11.051,98.185,1.815,30.39,0.934,bicubic,+4.695,+1.207,+61 +mvitv2_large.fb_in1k,224,88.940,11.060,97.961,2.039,217.99,0.900,bicubic,+3.676,+0.773,-71 +convnext_small.in12k_ft_in1k,224,88.938,11.062,98.269,1.732,50.22,0.950,bicubic,+3.774,+0.767,-61 +deit3_base_patch16_384.fb_in1k,384,88.938,11.062,98.042,1.958,86.88,1.000,bicubic,+3.852,+0.794,-47 +hiera_base_plus_224.mae_in1k_ft_in1k,224,88.934,11.066,97.914,2.086,69.90,0.900,bicubic,+3.800,+0.756,-58 +deit3_medium_patch16_224.fb_in22k_ft_in1k,224,88.925,11.075,98.294,1.706,38.85,1.000,bicubic,+4.359,+1.116,+5 +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,384,88.917,11.083,98.187,1.813,32.59,0.950,bicubic,+4.603,+1.087,+45 +convnext_tiny.in12k_ft_in1k,288,88.908,11.092,98.303,1.697,28.59,1.000,bicubic,+4.460,+0.975,+22 +hgnetv2_b4.ssld_stage1_in22k_in1k,288,88.904,11.096,98.281,1.719,19.80,1.000,bicubic,+5.456,+1.359,+179 +nextvit_small.bd_in1k_384,384,88.900,11.100,98.038,1.962,31.76,1.000,bicubic,+4.858,+1.048,+80 +volo_d1_224.sail_in1k,224,88.900,11.100,98.027,1.973,26.63,0.960,bicubic,+4.748,+1.253,+65 +ecaresnet269d.ra2_in1k,320,88.895,11.104,98.215,1.785,102.09,0.950,bicubic,+4.175,+1.033,-15 +tf_efficientnetv2_s.in21k_ft_in1k,384,88.893,11.107,98.269,1.732,21.46,1.000,bicubic,+4.577,+1.001,+38 +tf_efficientnetv2_m.in1k,384,88.891,11.109,98.226,1.774,54.14,1.000,bicubic,+4.333,+1.170,-1 +tf_efficientnetv2_xl.in21k_ft_in1k,384,88.885,11.115,97.978,2.022,208.12,1.000,bicubic,+3.323,+0.528,-114 +resnetrs420.tf_in1k,416,88.874,11.126,98.019,1.981,191.89,1.000,bicubic,+3.860,+0.903,-52 +vit_base_patch16_224.augreg_in21k_ft_in1k,224,88.868,11.132,98.226,1.774,86.57,0.900,bicubic,+4.336,+0.928,0 +convnextv2_base.fcmae_ft_in1k,224,88.866,11.134,98.068,1.932,88.72,0.875,bicubic,+3.978,+0.988,-38 +convnext_tiny.fb_in22k_ft_in1k_384,384,88.864,11.136,98.290,1.710,28.59,1.000,bicubic,+4.766,+1.508,+60 +convformer_b36.sail_in1k,224,88.857,11.143,97.880,2.120,99.88,1.000,bicubic,+4.027,+0.930,-34 +coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,224,88.857,11.143,97.863,2.137,41.72,0.950,bicubic,+3.917,+0.895,-51 +regnetz_d8.ra3_in1k,320,88.849,11.151,98.187,1.813,23.37,1.000,bicubic,+4.807,+1.185,+67 +resnetrs270.tf_in1k,352,88.842,11.158,98.140,1.860,129.86,1.000,bicubic,+4.402,+1.166,+10 +vit_small_r26_s32_384.augreg_in21k_ft_in1k,384,88.834,11.166,98.343,1.657,36.47,1.000,bicubic,+4.760,+1.029,+60 +hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k,256,88.825,11.175,98.115,1.885,34.36,0.950,bicubic,+3.925,+0.861,-47 +resnext101_32x16d.fb_wsl_ig1b_ft_in1k,224,88.821,11.179,98.049,1.951,194.03,0.875,bilinear,+4.657,+0.861,+46 +swin_small_patch4_window7_224.ms_in22k_ft_in1k,224,88.817,11.184,98.335,1.665,49.61,0.900,bicubic,+5.487,+1.339,+185 +hrnet_w48_ssld.paddle_in1k,224,88.817,11.184,98.119,1.881,77.47,0.950,bilinear,+5.139,+1.271,+127 +maxxvit_rmlp_small_rw_256.sw_in1k,256,88.812,11.188,98.072,1.928,66.01,0.950,bicubic,+4.172,+1.010,-26 +mobilenetv4_hybrid_large.ix_e600_r384_in1k,448,88.810,11.190,97.959,2.041,37.76,1.000,bicubic,+4.446,+1.051,+18 +vit_base_r50_s16_384.orig_in21k_ft_in1k,384,88.806,11.194,98.243,1.757,98.95,1.000,bicubic,+3.812,+0.939,-66 +xcit_tiny_24_p8_384.fb_dist_in1k,384,88.804,11.196,98.183,1.817,12.11,1.000,bicubic,+5.020,+1.467,+99 +xcit_medium_24_p16_224.fb_dist_in1k,224,88.804,11.196,98.038,1.962,84.40,1.000,bicubic,+4.516,+1.102,+24 +seresnet152d.ra2_in1k,320,88.799,11.200,98.168,1.832,66.84,1.000,bicubic,+4.445,+1.126,+15 +rexnetr_300.sw_in12k_ft_in1k,288,88.797,11.203,98.345,1.655,34.81,1.000,bicubic,+4.211,+1.067,-27 +tf_efficientnet_b7.aa_in1k,600,88.797,11.203,98.055,1.945,66.35,0.949,bicubic,+4.361,+1.135,-1 +hgnetv2_b3.ssld_stage1_in22k_in1k,288,88.793,11.207,98.202,1.798,16.29,1.000,bicubic,+5.679,+1.490,+204 +fastvit_sa36.apple_dist_in1k,256,88.784,11.216,98.072,1.928,31.53,0.900,bicubic,+4.752,+1.222,+54 +convnext_base.fb_in1k,288,88.778,11.222,97.920,2.080,88.59,1.000,bicubic,+4.312,+0.938,-14 +deit3_large_patch16_224.fb_in1k,224,88.772,11.228,97.903,2.097,304.37,0.900,bicubic,+3.994,+0.857,-48 +tf_efficientnet_b6.aa_in1k,528,88.770,11.230,98.076,1.924,43.04,0.942,bicubic,+4.652,+1.190,+35 +convformer_m36.sail_in1k,224,88.770,11.230,97.765,2.235,57.05,1.000,bicubic,+4.284,+0.899,-21 +edgenext_base.usi_in1k,320,88.761,11.239,98.147,1.853,18.51,1.000,bicubic,+4.791,+1.377,+54 +resnext101_32x8d.fb_swsl_ig1b_ft_in1k,224,88.761,11.239,98.140,1.860,88.79,0.875,bilinear,+4.479,+0.966,+13 +hiera_base_224.mae_in1k_ft_in1k,224,88.757,11.243,98.002,1.998,51.52,0.900,bicubic,+4.231,+0.962,-27 +eca_nfnet_l2.ra3_in1k,320,88.752,11.248,98.168,1.832,56.72,0.900,bicubic,+4.596,+1.436,+27 +resnetrs200.tf_in1k,320,88.752,11.248,98.102,1.898,93.21,1.000,bicubic,+4.306,+1.030,-15 +convnextv2_tiny.fcmae_ft_in22k_in1k,288,88.750,11.250,98.198,1.802,28.64,1.000,bicubic,+4.328,+0.944,-10 +caformer_s36.sail_in1k,224,88.750,11.250,98.025,1.975,39.30,1.000,bicubic,+4.206,+1.015,-33 +hgnet_small.ssld_in1k,224,88.748,11.252,98.155,1.845,24.36,0.965,bicubic,+4.938,+1.287,+76 +resnetrs350.tf_in1k,384,88.746,11.254,98.034,1.966,163.96,1.000,bicubic,+4.024,+1.062,-55 +convformer_s18.sail_in22k_ft_in1k,224,88.744,11.256,98.209,1.791,26.77,1.000,bicubic,+4.982,+1.161,+85 +vit_base_patch16_224_miil.in21k_ft_in1k,224,88.744,11.256,98.027,1.973,86.54,0.875,bilinear,+4.472,+1.229,+7 +efficientvit_l1.r224_in1k,224,88.740,11.260,97.797,2.203,52.65,1.000,bicubic,+4.292,+0.941,-23 +rdnet_large.nv_in1k,224,88.737,11.262,97.965,2.035,186.27,0.900,bicubic,+3.944,+0.811,-66 +regnetz_040.ra3_in1k,320,88.725,11.275,98.087,1.913,27.12,1.000,bicubic,+4.469,+1.153,+5 +convnext_tiny.in12k_ft_in1k,224,88.712,11.288,98.198,1.802,28.59,0.950,bicubic,+4.520,+1.066,+13 +efficientnetv2_rw_m.agc_in1k,320,88.712,11.288,98.038,1.962,53.24,1.000,bicubic,+4.418,+1.162,-2 +resnetv2_152x2_bit.goog_in21k_ft_in1k,448,88.703,11.297,98.305,1.695,236.34,1.000,bilinear,+4.223,+0.889,-36 +davit_base.msft_in1k,224,88.703,11.297,97.869,2.131,87.95,0.950,bicubic,+4.053,+0.851,-58 +regnety_160.deit_in1k,288,88.699,11.301,98.068,1.932,83.59,1.000,bicubic,+4.999,+1.478,+86 +hgnetv2_b4.ssld_stage2_ft_in1k,224,88.693,11.307,98.140,1.860,19.80,0.965,bicubic,+4.999,+1.352,+88 +mobilenetv4_conv_aa_large.e600_r384_in1k,480,88.682,11.318,98.019,1.981,32.59,1.000,bicubic,+4.850,+1.287,+56 +flexivit_base.1200ep_in1k,240,88.667,11.333,97.957,2.043,86.59,0.950,bicubic,+3.979,+0.937,-64 +regnety_640.seer_ft_in1k,384,88.659,11.341,98.166,1.834,281.38,1.000,bicubic,+4.743,+1.246,+36 +davit_small.msft_in1k,224,88.659,11.341,97.955,2.045,49.75,0.950,bicubic,+4.392,+1.025,-6 +regnetz_d32.ra3_in1k,320,88.654,11.346,98.096,1.905,27.58,0.950,bicubic,+4.626,+1.225,+26 +mvitv2_base.fb_in1k,224,88.644,11.356,97.822,2.178,51.47,0.900,bicubic,+4.206,+0.960,-34 +vit_small_patch16_384.augreg_in21k_ft_in1k,384,88.641,11.358,98.245,1.755,22.20,1.000,bicubic,+4.837,+1.137,+60 +vit_medium_patch16_gap_256.sw_in12k_ft_in1k,256,88.635,11.365,98.185,1.815,38.86,0.950,bicubic,+4.185,+0.967,-41 +eca_nfnet_l1.ra2_in1k,320,88.629,11.371,98.136,1.864,41.41,1.000,bicubic,+4.579,+1.102,+17 +regnety_080.ra3_in1k,288,88.626,11.373,97.957,2.043,39.18,1.000,bicubic,+4.686,+1.077,+26 +mobilenetv4_hybrid_large.e600_r384_in1k,384,88.614,11.386,97.927,2.073,37.76,0.950,bicubic,+4.792,+1.159,+50 +swinv2_base_window16_256.ms_in1k,256,88.609,11.391,97.901,2.099,87.92,0.900,bicubic,+4.001,+0.837,-70 +rdnet_base.nv_in1k,224,88.609,11.391,97.884,2.116,87.45,0.900,bicubic,+4.241,+1.012,-27 +repvgg_d2se.rvgg_in1k,320,88.607,11.393,98.010,1.990,133.33,1.000,bilinear,+5.053,+1.346,+94 +convnext_large.fb_in1k,224,88.594,11.405,97.841,2.159,197.77,0.875,bicubic,+4.296,+0.950,-23 +maxvit_base_tf_224.in1k,224,88.590,11.410,97.848,2.152,119.47,0.950,bicubic,+3.720,+0.844,-96 +flexivit_base.600ep_in1k,240,88.573,11.427,97.916,2.084,86.59,0.950,bicubic,+4.013,+1.006,-67 +seresnextaa101d_32x8d.ah_in1k,288,88.569,11.431,97.995,2.005,93.59,1.000,bicubic,+3.993,+0.921,-70 +resnetv2_152x4_bit.goog_in21k_ft_in1k,480,88.567,11.433,98.192,1.808,936.53,1.000,bilinear,+3.643,+0.734,-105 +regnety_320.seer_ft_in1k,384,88.562,11.438,98.104,1.896,145.05,1.000,bicubic,+5.237,+1.392,+131 +efficientvit_b3.r288_in1k,288,88.560,11.440,97.720,2.280,48.65,1.000,bicubic,+4.404,+0.702,-9 +resnetaa101d.sw_in12k_ft_in1k,288,88.554,11.446,98.076,1.924,44.57,1.000,bicubic,+4.452,+0.958,-6 +xcit_small_24_p16_224.fb_dist_in1k,224,88.539,11.461,98.002,1.998,47.67,1.000,bicubic,+4.661,+1.268,+28 +swinv2_base_window8_256.ms_in1k,256,88.537,11.463,97.897,2.103,87.92,0.900,bicubic,+4.291,+0.995,-22 +maxvit_rmlp_small_rw_224.sw_in1k,224,88.537,11.463,97.779,2.220,64.90,0.900,bicubic,+4.053,+1.005,-64 +resnest269e.in1k,416,88.530,11.470,98.021,1.979,110.93,0.928,bicubic,+3.990,+1.031,-72 +regnetz_d8.ra3_in1k,256,88.516,11.485,97.970,2.030,23.37,0.940,bicubic,+4.968,+1.224,+81 +resnet200d.ra2_in1k,320,88.516,11.485,97.965,2.035,64.69,1.000,bicubic,+4.540,+1.145,+5 +coatnet_rmlp_2_rw_224.sw_in1k,224,88.516,11.485,97.579,2.421,73.88,0.950,bicubic,+3.913,+0.833,-82 +repvit_m2_3.dist_300e_in1k,224,88.507,11.493,97.927,2.073,23.69,0.950,bicubic,+4.983,+1.395,+83 +rexnetr_300.sw_in12k_ft_in1k,224,88.505,11.495,98.076,1.924,34.81,0.950,bicubic,+4.469,+1.076,-2 +hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k,256,88.505,11.495,98.049,1.951,34.36,0.950,bicubic,+3.951,+0.943,-80 +edgenext_base.in21k_ft_in1k,256,88.503,11.497,98.014,1.986,18.51,0.950,bicubic,+5.087,+1.218,+102 +fastvit_sa24.apple_dist_in1k,256,88.503,11.497,97.942,2.058,21.55,0.900,bicubic,+5.141,+1.366,+110 +convformer_s36.sail_in1k,224,88.498,11.502,97.775,2.225,40.01,1.000,bicubic,+4.426,+1.019,-12 +seresnext101_32x8d.ah_in1k,288,88.496,11.504,97.878,2.122,93.57,1.000,bicubic,+4.302,+1.016,-28 +dm_nfnet_f2.dm_in1k,256,88.494,11.506,97.961,2.039,193.78,0.920,bicubic,+4.402,+1.055,-19 +mobilenetv4_conv_large.e600_r384_in1k,448,88.494,11.506,97.950,2.050,32.59,1.000,bicubic,+5.076,+1.338,+97 +crossvit_18_dagger_408.in1k,408,88.492,11.508,97.882,2.118,44.61,1.000,bicubic,+4.290,+1.050,-32 +mobilenetv4_hybrid_large.ix_e600_r384_in1k,384,88.492,11.508,97.765,2.235,37.76,0.950,bicubic,+4.508,+1.057,-7 +efficientnetv2_rw_s.ra2_in1k,384,88.488,11.512,97.974,2.026,23.94,1.000,bicubic,+4.658,+1.262,+17 +gcvit_base.in1k,224,88.484,11.517,97.777,2.223,90.32,0.875,bicubic,+4.030,+0.927,-76 +efficientformerv2_l.snap_dist_in1k,224,88.481,11.519,97.927,2.073,26.32,0.950,bicubic,+4.841,+1.387,+56 +repvit_m2_3.dist_450e_in1k,224,88.479,11.521,98.053,1.947,23.69,0.950,bicubic,+4.737,+1.411,+34 +flexivit_base.300ep_in1k,240,88.475,11.525,97.841,2.159,86.59,0.950,bicubic,+4.073,+0.919,-65 +hgnet_tiny.ssld_in1k,288,88.473,11.527,98.113,1.887,14.74,1.000,bicubic,+5.949,+1.979,+218 +regnetv_064.ra3_in1k,288,88.473,11.527,98.072,1.928,30.58,1.000,bicubic,+4.725,+1.326,+31 +tf_efficientnet_b3.ns_jft_in1k,300,88.473,11.527,98.021,1.979,12.23,0.904,bicubic,+4.409,+1.121,-23 +maxvit_small_tf_224.in1k,224,88.466,11.534,97.878,2.122,68.93,0.950,bicubic,+4.010,+0.660,-84 +maxvit_large_tf_224.in1k,224,88.466,11.534,97.820,2.180,211.79,0.950,bicubic,+3.532,+0.840,-139 +nextvit_base.bd_in1k,224,88.462,11.538,97.916,2.084,44.82,0.950,bicubic,+4.966,+1.270,+66 +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,320,88.447,11.553,98.061,1.939,11.07,1.000,bicubic,+5.457,+1.391,+142 +cait_s24_224.fb_dist_in1k,224,88.445,11.555,97.950,2.050,46.92,1.000,bicubic,+4.961,+1.364,+67 +regnety_320.swag_lc_in1k,224,88.443,11.557,98.108,1.892,145.05,0.965,bicubic,+3.811,+0.624,-112 +resnetv2_101x3_bit.goog_in21k_ft_in1k,448,88.439,11.561,98.162,1.838,387.93,1.000,bilinear,+4.009,+0.782,-83 +resmlp_big_24_224.fb_distilled_in1k,224,88.439,11.561,97.933,2.067,129.14,0.875,bicubic,+4.845,+1.279,+47 +resnetrs350.tf_in1k,288,88.439,11.561,97.891,2.109,163.96,1.000,bicubic,+4.131,+0.963,-64 +inception_next_base.sail_in1k,224,88.439,11.561,97.779,2.220,86.67,0.950,bicubic,+4.341,+0.641,-38 +vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k,256,88.434,11.566,98.125,1.875,22.52,0.950,bicubic,+4.632,+1.167,+9 +seresnext101d_32x8d.ah_in1k,288,88.432,11.568,97.953,2.047,93.59,1.000,bicubic,+4.030,+1.067,-81 +vit_large_r50_s32_224.augreg_in21k_ft_in1k,224,88.428,11.572,98.076,1.924,328.99,0.900,bicubic,+3.996,+0.924,-88 +swin_base_patch4_window12_384.ms_in1k,384,88.428,11.572,97.812,2.188,87.90,1.000,bicubic,+3.952,+0.926,-99 +resnetv2_50x3_bit.goog_in21k_ft_in1k,448,88.415,11.585,98.185,1.815,217.32,1.000,bilinear,+4.423,+1.053,-33 +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,448,88.415,11.585,98.059,1.941,11.07,1.000,bicubic,+4.993,+1.327,+68 +resnest200e.in1k,320,88.415,11.585,98.046,1.954,70.20,0.909,bicubic,+4.543,+1.170,-11 +convnext_small.fb_in1k,288,88.413,11.587,98.010,1.990,50.22,1.000,bicubic,+4.709,+1.194,+18 +nextvit_large.bd_in1k,224,88.407,11.593,97.957,2.043,57.87,0.950,bicubic,+4.765,+1.273,+31 +tf_efficientnet_b5.aa_in1k,456,88.404,11.595,97.940,2.060,30.39,0.934,bicubic,+4.709,+1.226,+19 +tf_efficientnetv2_s.in1k,384,88.396,11.604,97.931,2.069,21.46,1.000,bicubic,+4.500,+1.233,-24 +vit_base_patch16_384.orig_in21k_ft_in1k,384,88.389,11.611,98.149,1.851,86.86,1.000,bicubic,+4.181,+0.929,-64 +tresnet_v2_l.miil_in21k_ft_in1k,224,88.387,11.613,97.908,2.092,46.17,0.875,bilinear,+4.485,+1.412,-28 +edgenext_base.usi_in1k,256,88.385,11.615,98.061,1.939,18.51,0.950,bicubic,+4.701,+1.361,+20 +regnetz_c16_evos.ch_in1k,320,88.385,11.615,98.036,1.964,13.49,0.950,bicubic,+5.741,+1.556,+169 +convnext_base.fb_in1k,224,88.377,11.623,97.777,2.223,88.59,0.875,bicubic,+4.543,+1.031,-18 +efficientnet_b4.ra2_in1k,384,88.368,11.632,97.942,2.058,19.34,1.000,bicubic,+4.894,+1.358,+46 +swinv2_small_window16_256.ms_in1k,256,88.368,11.632,97.848,2.152,49.73,0.900,bicubic,+4.152,+0.974,-70 +hgnetv2_b4.ssld_stage1_in22k_in1k,224,88.366,11.634,98.085,1.915,19.80,0.965,bicubic,+5.480,+1.799,+132 +resnet152d.ra2_in1k,320,88.360,11.640,97.946,2.054,60.21,1.000,bicubic,+4.676,+1.196,+12 +tf_efficientnet_b4.ap_in1k,380,88.360,11.640,97.906,2.095,19.34,0.922,bicubic,+5.110,+1.516,+79 +seresnet152d.ra2_in1k,256,88.358,11.643,98.061,1.939,66.84,0.950,bicubic,+4.663,+1.277,+8 +convnextv2_tiny.fcmae_ft_in22k_in1k,224,88.358,11.643,97.948,2.052,28.64,0.875,bicubic,+4.454,+0.984,-38 +deit3_small_patch16_224.fb_in22k_ft_in1k,224,88.353,11.647,98.130,1.870,22.06,1.000,bicubic,+5.271,+1.350,+102 +fastvit_ma36.apple_in1k,256,88.353,11.647,97.927,2.073,44.07,0.950,bicubic,+4.469,+1.165,-34 +maxvit_rmlp_tiny_rw_256.sw_in1k,256,88.349,11.651,97.824,2.176,29.15,0.950,bicubic,+4.115,+1.040,-80 +resnetrs420.tf_in1k,320,88.343,11.658,97.856,2.144,191.89,1.000,bicubic,+4.093,+0.990,-83 +crossvit_15_dagger_408.in1k,408,88.338,11.662,97.882,2.118,28.50,1.000,bicubic,+4.498,+1.102,-31 +efficientvit_b3.r256_in1k,256,88.336,11.664,97.564,2.436,48.65,1.000,bicubic,+4.522,+1.050,-25 +vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k,256,88.332,11.668,97.775,2.225,63.95,0.950,bicubic,+4.010,+0.963,-100 +regnety_064.ra3_in1k,288,88.328,11.672,97.856,2.144,30.58,1.000,bicubic,+4.616,+1.128,-9 +convnextv2_nano.fcmae_ft_in22k_in1k_384,384,88.321,11.679,97.940,2.060,15.62,1.000,bicubic,+4.959,+1.200,+53 +tf_efficientnet_b5.ra_in1k,456,88.304,11.696,97.916,2.084,30.39,0.934,bicubic,+4.476,+1.302,-33 +pvt_v2_b4.in1k,224,88.304,11.696,97.818,2.182,62.56,0.900,bicubic,+4.592,+1.148,-10 +deit3_small_patch16_384.fb_in1k,384,88.300,11.700,97.891,2.109,22.21,1.000,bicubic,+4.872,+1.255,+37 +cs3se_edgenet_x.c2ns_in1k,320,88.298,11.702,97.931,2.069,50.72,1.000,bicubic,+4.754,+1.267,+18 +hgnetv2_b3.ssld_stage2_ft_in1k,224,88.296,11.704,97.925,2.075,16.29,0.965,bicubic,+5.386,+1.563,+110 +resnetrs200.tf_in1k,256,88.291,11.709,97.938,2.062,93.21,1.000,bicubic,+4.405,+1.257,-49 +mvitv2_small.fb_in1k,224,88.289,11.711,97.707,2.293,34.87,0.900,bicubic,+4.517,+1.149,-24 +xcit_small_12_p16_224.fb_dist_in1k,224,88.283,11.717,97.854,2.146,26.25,1.000,bicubic,+4.929,+1.402,+49 +regnetz_040_h.ra3_in1k,256,88.278,11.722,97.918,2.082,28.94,1.000,bicubic,+4.510,+1.226,-26 +efficientformer_l7.snap_dist_in1k,224,88.278,11.722,97.886,2.114,82.23,0.950,bicubic,+4.892,+1.348,+42 +resnetrs270.tf_in1k,256,88.274,11.726,97.852,2.148,129.86,1.000,bicubic,+4.680,+1.236,+4 +regnetz_d8_evos.ch_in1k,256,88.270,11.730,97.961,2.039,23.46,0.950,bicubic,+4.876,+1.303,+37 +rdnet_small.nv_in1k,224,88.268,11.732,97.901,2.099,50.44,0.900,bicubic,+4.600,+1.381,-9 +inception_next_small.sail_in1k,224,88.268,11.732,97.799,2.201,49.37,0.875,bicubic,+4.684,+1.201,+2 +regnetz_040.ra3_in1k,256,88.266,11.734,97.876,2.124,27.12,1.000,bicubic,+4.606,+1.192,-9 +resnetrs152.tf_in1k,320,88.261,11.739,97.733,2.267,86.62,1.000,bicubic,+4.551,+1.123,-24 +deit3_base_patch16_224.fb_in1k,224,88.255,11.745,97.809,2.191,86.59,0.900,bicubic,+4.461,+1.227,-39 +gcvit_small.in1k,224,88.255,11.745,97.807,2.193,51.09,0.875,bicubic,+4.347,+1.147,-66 +regnetz_d32.ra3_in1k,256,88.253,11.747,97.880,2.120,27.58,0.950,bicubic,+4.825,+1.204,+22 +vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k,256,88.251,11.749,97.666,2.334,60.23,0.950,bicubic,+4.341,+0.980,-70 +regnetv_040.ra3_in1k,288,88.234,11.766,97.972,2.028,20.64,1.000,bicubic,+5.034,+1.314,+50 +resnetaa101d.sw_in12k_ft_in1k,224,88.219,11.781,97.940,2.060,44.57,0.950,bicubic,+4.675,+1.112,-1 +deit_base_distilled_patch16_224.fb_in1k,224,88.214,11.786,97.916,2.084,87.34,0.900,bicubic,+4.826,+1.426,+27 +hiera_small_224.mae_in1k_ft_in1k,224,88.210,11.790,97.658,2.342,35.01,0.900,bicubic,+4.324,+0.896,-66 +xcit_tiny_24_p16_384.fb_dist_in1k,384,88.195,11.805,97.940,2.060,12.12,1.000,bicubic,+5.615,+1.940,+144 +xception65p.ra3_in1k,299,88.195,11.805,97.792,2.208,39.82,0.940,bicubic,+5.031,+1.292,+53 +vit_medium_patch16_rope_reg1_gap_256.sbb_in1k,256,88.189,11.811,97.874,2.127,38.74,0.950,bicubic,+4.377,+1.052,-55 +swinv2_small_window8_256.ms_in1k,256,88.189,11.811,97.777,2.223,49.73,0.900,bicubic,+4.345,+1.127,-63 +cait_xxs36_384.fb_dist_in1k,384,88.174,11.826,97.906,2.095,17.37,1.000,bicubic,+5.966,+1.755,+203 +resnext101_32x8d.fb_wsl_ig1b_ft_in1k,224,88.170,11.830,97.865,2.135,88.79,0.875,bilinear,+5.450,+1.241,+110 +regnety_160.deit_in1k,224,88.165,11.835,97.818,2.182,83.59,0.950,bicubic,+5.171,+1.318,+72 +caformer_s18.sail_in1k,224,88.165,11.835,97.741,2.259,26.34,1.000,bicubic,+4.497,+1.029,-27 +tiny_vit_21m_224.in1k,224,88.163,11.837,97.841,2.159,21.20,0.950,bicubic,+4.893,+1.239,+30 +xcit_large_24_p8_224.fb_in1k,224,88.163,11.837,97.387,2.613,188.93,1.000,bicubic,+3.777,+0.721,-141 +vit_medium_patch16_reg4_gap_256.sbb_in1k,256,88.157,11.843,97.878,2.122,38.88,0.950,bicubic,+4.689,+1.256,-1 +mobilenetv4_conv_aa_large.e600_r384_in1k,384,88.153,11.848,97.726,2.274,32.59,0.950,bicubic,+4.889,+1.336,+30 +coat_lite_medium.in1k,224,88.150,11.850,97.884,2.116,44.57,0.900,bicubic,+4.548,+1.170,-24 +tf_efficientnetv2_s.in21k_ft_in1k,300,88.146,11.854,97.925,2.075,21.46,1.000,bicubic,+4.772,+1.215,+14 +hgnetv2_b2.ssld_stage2_ft_in1k,288,88.142,11.858,97.993,2.007,11.22,1.000,bicubic,+5.782,+1.589,+164 +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,384,88.140,11.860,98.046,1.954,236.34,1.000,bicubic,+4.258,+0.930,-80 +hgnetv2_b3.ssld_stage1_in22k_in1k,224,88.140,11.860,97.965,2.035,16.29,0.965,bicubic,+5.530,+1.603,+119 +dm_nfnet_f0.dm_in1k,256,88.125,11.875,97.903,2.097,71.49,0.900,bicubic,+4.655,+1.335,-9 +pvt_v2_b3.in1k,224,88.123,11.877,97.775,2.225,45.24,0.900,bicubic,+5.005,+1.321,+43 +pvt_v2_b5.in1k,224,88.123,11.877,97.694,2.306,81.96,0.900,bicubic,+4.355,+1.062,-59 +tiny_vit_11m_224.dist_in22k_ft_in1k,224,88.118,11.882,97.801,2.199,11.00,0.950,bicubic,+4.886,+1.173,+24 +pit_b_distilled_224.in1k,224,88.116,11.884,97.647,2.353,74.79,0.900,bicubic,+4.342,+1.179,-64 +vit_betwixt_patch16_reg4_gap_256.sbb_in1k,256,88.112,11.888,97.675,2.325,60.40,0.950,bicubic,+4.404,+1.057,-54 +resnext101_32x4d.fb_swsl_ig1b_ft_in1k,224,88.108,11.892,97.963,2.037,44.18,0.875,bilinear,+4.840,+1.203,+16 +xcit_tiny_12_p8_384.fb_dist_in1k,384,88.101,11.899,97.925,2.075,6.71,1.000,bicubic,+5.709,+1.711,+147 +fastvit_sa36.apple_in1k,256,88.101,11.899,97.794,2.205,31.53,0.900,bicubic,+4.597,+1.165,-24 +rexnetr_200.sw_in12k_ft_in1k,288,88.088,11.912,98.006,1.994,16.52,1.000,bicubic,+4.918,+1.356,+24 +hrnet_w18_ssld.paddle_in1k,288,88.082,11.918,97.826,2.174,21.30,1.000,bilinear,+6.034,+1.582,+200 +dm_nfnet_f1.dm_in1k,224,88.069,11.931,97.835,2.165,132.63,0.910,bicubic,+4.625,+1.201,-16 +xception65.ra3_in1k,299,88.063,11.937,97.754,2.246,39.92,0.940,bicubic,+4.879,+1.156,+18 +regnety_160.swag_lc_in1k,224,88.059,11.941,98.036,1.964,83.59,0.965,bicubic,+4.251,+1.376,-80 +seresnextaa101d_32x8d.ah_in1k,224,88.059,11.941,97.724,2.276,93.59,0.950,bicubic,+4.159,+1.076,-102 +convnextv2_tiny.fcmae_ft_in1k,288,88.056,11.944,97.863,2.137,28.64,1.000,bicubic,+4.581,+1.145,-26 +resnet152.a1h_in1k,288,88.056,11.944,97.709,2.291,60.19,1.000,bicubic,+4.562,+1.187,-30 +xcit_tiny_24_p8_224.fb_dist_in1k,224,88.054,11.946,97.850,2.150,12.11,1.000,bicubic,+5.474,+1.666,+111 +mobilenetv4_conv_large.e600_r384_in1k,384,88.054,11.946,97.705,2.295,32.59,0.950,bicubic,+5.080,+1.461,+48 +convnext_small.fb_in1k,224,88.052,11.948,97.784,2.216,50.22,0.875,bicubic,+4.908,+1.352,+20 +swin_s3_base_224.ms_in1k,224,88.052,11.948,97.649,2.351,71.13,0.900,bicubic,+4.132,+0.999,-115 +efficientvit_b3.r224_in1k,224,88.052,11.948,97.575,2.425,48.65,0.950,bicubic,+4.608,+1.237,-23 +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,384,88.037,11.963,97.794,2.205,11.07,0.950,bicubic,+5.077,+1.320,+45 +focalnet_base_srf.ms_in1k,224,88.033,11.967,97.639,2.361,88.15,0.900,bicubic,+4.225,+0.355,-89 +vit_base_patch16_rope_reg1_gap_256.sbb_in1k,256,88.031,11.969,97.617,2.383,86.43,0.950,bicubic,+4.141,+0.943,-110 +maxvit_tiny_tf_224.in1k,224,88.024,11.976,97.824,2.176,30.92,0.950,bicubic,+4.602,+1.234,-25 +regnety_080.ra3_in1k,224,88.024,11.976,97.690,2.310,39.18,0.950,bicubic,+4.862,+1.212,+12 +vit_medium_patch16_reg1_gap_256.sbb_in1k,256,88.020,11.980,97.728,2.272,38.88,0.950,bicubic,+4.562,+1.206,-34 +convnext_tiny.fb_in22k_ft_in1k,224,88.016,11.984,97.920,2.080,28.59,0.875,bicubic,+5.128,+1.592,+46 +eca_nfnet_l1.ra2_in1k,256,88.016,11.984,97.918,2.082,41.41,0.900,bicubic,+4.752,+1.244,-5 +focalnet_base_lrf.ms_in1k,224,88.012,11.988,97.621,2.378,88.75,0.900,bicubic,+4.184,+0.855,-102 +gcvit_tiny.in1k,224,88.010,11.991,97.728,2.272,28.22,0.875,bicubic,+4.609,+1.336,-26 +mobilenetv4_conv_large.e500_r256_in1k,320,88.010,11.991,97.679,2.321,32.59,1.000,bicubic,+5.335,+1.363,+72 +cs3sedarknet_x.c2ns_in1k,288,87.986,12.014,97.792,2.208,35.40,1.000,bicubic,+5.336,+1.444,+74 +resnet152d.ra2_in1k,256,87.986,12.014,97.724,2.276,60.21,0.950,bicubic,+4.830,+1.342,+5 +xcit_small_24_p8_224.fb_in1k,224,87.984,12.016,97.570,2.430,47.63,1.000,bicubic,+4.130,+0.934,-114 +tf_efficientnet_b5.in1k,456,87.975,12.025,97.923,2.077,30.39,0.934,bicubic,+4.809,+1.393,-1 +nfnet_l0.ra2_in1k,288,87.975,12.025,97.863,2.137,35.07,1.000,bicubic,+5.219,+1.369,+56 +efficientformer_l3.snap_dist_in1k,224,87.975,12.025,97.711,2.289,31.41,0.950,bicubic,+5.411,+1.469,+95 +regnetz_c16.ra3_in1k,320,87.973,12.027,97.779,2.220,13.46,1.000,bicubic,+5.313,+1.448,+66 +eca_nfnet_l0.ra2_in1k,288,87.971,12.029,97.880,2.120,24.14,1.000,bicubic,+5.375,+1.390,+83 +mobilevitv2_200.cvnets_in22k_ft_in1k_384,384,87.971,12.029,97.803,2.197,18.45,1.000,bicubic,+4.561,+1.231,-37 +tf_efficientnet_b4.aa_in1k,380,87.971,12.029,97.735,2.265,19.34,0.922,bicubic,+4.931,+1.445,+15 +regnety_032.ra_in1k,288,87.952,12.048,97.888,2.112,19.44,1.000,bicubic,+5.228,+1.464,+52 +resnet200d.ra2_in1k,256,87.952,12.048,97.814,2.186,64.69,0.950,bicubic,+4.712,+1.268,-17 +coatnet_1_rw_224.sw_in1k,224,87.948,12.052,97.463,2.537,41.72,0.950,bicubic,+4.336,+1.081,-76 +focalnet_small_lrf.ms_in1k,224,87.943,12.057,97.698,2.302,50.34,0.900,bicubic,+4.435,+1.112,-63 +resnet101d.ra2_in1k,320,87.937,12.063,97.906,2.095,44.57,1.000,bicubic,+4.919,+1.448,+10 +swinv2_cr_small_ns_224.sw_in1k,224,87.930,12.069,97.664,2.336,49.70,0.900,bicubic,+4.441,+1.178,-61 +hgnet_tiny.ssld_in1k,224,87.928,12.072,97.865,2.135,14.74,0.965,bicubic,+5.988,+1.751,+183 +resnetv2_101.a1h_in1k,288,87.918,12.082,97.660,2.340,44.54,1.000,bicubic,+4.916,+1.216,+9 +repvit_m1_5.dist_450e_in1k,224,87.915,12.085,97.707,2.293,14.64,0.950,bicubic,+5.395,+1.597,+84 +efficientvit_b2.r288_in1k,288,87.915,12.085,97.600,2.400,24.33,1.000,bicubic,+4.831,+1.298,0 +regnetv_064.ra3_in1k,224,87.911,12.089,97.754,2.246,30.58,0.950,bicubic,+4.793,+1.192,-9 +twins_svt_large.in1k,224,87.911,12.089,97.568,2.432,99.27,0.900,bicubic,+4.221,+0.960,-95 +vit_betwixt_patch16_reg1_gap_256.sbb_in1k,256,87.909,12.091,97.590,2.410,60.40,0.950,bicubic,+4.265,+1.043,-90 +sequencer2d_l.in1k,224,87.907,12.093,97.711,2.289,54.30,0.875,bicubic,+4.497,+1.207,-51 +regnety_040.ra3_in1k,288,87.903,12.097,97.886,2.114,20.65,1.000,bicubic,+4.845,+1.388,-3 +flexivit_small.1200ep_in1k,240,87.903,12.097,97.600,2.400,22.06,0.950,bicubic,+5.311,+1.450,+69 +hgnetv2_b2.ssld_stage1_in22k_in1k,288,87.901,12.099,97.891,2.109,11.22,1.000,bicubic,+6.441,+1.883,+230 +twins_pcpvt_large.in1k,224,87.898,12.101,97.863,2.137,60.99,0.900,bicubic,+4.730,+1.253,-26 +vit_base_patch32_384.augreg_in21k_ft_in1k,384,87.896,12.104,98.021,1.979,88.30,1.000,bicubic,+4.544,+1.189,-45 +tf_efficientnetv2_s.in1k,300,87.890,12.110,97.745,2.255,21.46,1.000,bicubic,+4.718,+1.409,-30 +coatnet_rmlp_1_rw_224.sw_in1k,224,87.875,12.125,97.630,2.370,41.69,0.950,bicubic,+4.521,+1.206,-49 +maxvit_tiny_rw_224.sw_in1k,224,87.871,12.129,97.649,2.351,29.06,0.950,bicubic,+4.349,+1.161,-82 +swin_base_patch4_window7_224.ms_in1k,224,87.871,12.129,97.558,2.442,87.77,0.900,bicubic,+4.261,+1.108,-95 +convnext_nano.in12k_ft_in1k,288,87.864,12.136,97.895,2.105,15.59,1.000,bicubic,+4.982,+1.333,+13 +ecaresnet101d.miil_in1k,288,87.862,12.138,97.897,2.103,44.57,0.950,bicubic,+4.864,+1.373,-7 +mobilevitv2_175.cvnets_in22k_ft_in1k_384,384,87.858,12.142,97.720,2.280,14.25,1.000,bicubic,+4.930,+1.268,+2 +deit_base_patch16_384.fb_in1k,384,87.856,12.144,97.510,2.490,86.86,1.000,bicubic,+4.740,+1.144,-23 +efficientnetv2_rw_s.ra2_in1k,288,87.854,12.146,97.743,2.257,23.94,1.000,bicubic,+4.966,+1.115,+6 +swin_s3_small_224.ms_in1k,224,87.854,12.146,97.442,2.558,49.74,0.900,bicubic,+4.076,+0.982,-132 +vit_little_patch16_reg4_gap_256.sbb_in1k,256,87.847,12.153,97.703,2.297,22.52,0.950,bicubic,+5.333,+1.443,+66 +convformer_s18.sail_in1k,224,87.839,12.161,97.545,2.455,26.77,1.000,bicubic,+4.871,+1.301,-7 +focalnet_small_srf.ms_in1k,224,87.832,12.168,97.551,2.449,49.89,0.900,bicubic,+4.402,+1.117,-77 +xcit_small_12_p8_224.fb_in1k,224,87.828,12.172,97.564,2.436,26.21,1.000,bicubic,+4.472,+1.090,-62 +seresnext101_32x8d.ah_in1k,224,87.822,12.178,97.545,2.455,93.57,0.950,bicubic,+4.204,+1.133,-108 +maxxvit_rmlp_nano_rw_256.sw_in1k,256,87.815,12.185,97.752,2.248,16.78,0.950,bicubic,+4.789,+1.408,-21 +deit3_medium_patch16_224.fb_in1k,224,87.811,12.189,97.649,2.351,38.85,0.900,bicubic,+4.725,+1.363,-28 +flexivit_small.600ep_in1k,240,87.809,12.191,97.568,2.432,22.06,0.950,bicubic,+5.417,+1.528,+76 +tresnet_xl.miil_in1k_448,448,87.807,12.193,97.466,2.534,78.44,0.875,bilinear,+4.741,+1.286,-27 +vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,224,87.805,12.195,97.760,2.240,88.22,0.900,bicubic,+4.499,+1.230,-61 +resnetv2_50x1_bit.goog_distilled_in1k,224,87.796,12.204,97.903,2.097,25.55,0.875,bicubic,+4.976,+1.377,+3 +nextvit_small.bd_in1k,224,87.796,12.204,97.677,2.323,31.76,0.950,bicubic,+5.176,+1.455,+33 +regnetz_c16_evos.ch_in1k,256,87.794,12.206,97.824,2.176,13.49,0.950,bicubic,+5.852,+1.854,+146 +tf_efficientnetv2_b3.in21k_ft_in1k,300,87.787,12.213,97.888,2.112,14.36,0.900,bicubic,+5.153,+1.258,+27 +repvit_m1_5.dist_300e_in1k,224,87.785,12.215,97.645,2.355,14.64,0.950,bicubic,+5.403,+1.619,+71 +convnext_tiny.fb_in1k,288,87.762,12.238,97.587,2.413,28.59,1.000,bicubic,+5.068,+1.443,+15 +efficientnet_b4.ra2_in1k,320,87.757,12.242,97.630,2.370,19.34,0.875,bicubic,+5.103,+1.494,+18 +regnety_064.ra3_in1k,224,87.751,12.249,97.609,2.391,30.58,0.950,bicubic,+4.745,+1.313,-31 +regnety_320.tv2_in1k,224,87.745,12.255,97.673,2.327,145.05,0.965,bicubic,+4.571,+1.257,-59 +rdnet_tiny.nv_in1k,224,87.743,12.257,97.703,2.297,23.86,0.900,bicubic,+4.923,+1.425,-4 +convnextv2_nano.fcmae_ft_in22k_in1k,288,87.738,12.262,97.891,2.109,15.62,1.000,bicubic,+5.072,+1.345,+12 +tresnet_m.miil_in21k_ft_in1k,224,87.736,12.264,97.525,2.474,31.39,0.875,bilinear,+4.646,+1.413,-44 +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,320,87.728,12.272,97.686,2.314,11.07,1.000,bicubic,+5.232,+1.406,+47 +twins_pcpvt_base.in1k,224,87.725,12.274,97.722,2.278,43.83,0.900,bicubic,+5.004,+1.374,+2 +hgnet_small.paddle_in1k,288,87.725,12.274,97.664,2.336,24.36,1.000,bicubic,+5.511,+1.440,+91 +mvitv2_tiny.fb_in1k,224,87.723,12.277,97.562,2.438,24.17,0.900,bicubic,+5.315,+1.412,+54 +gc_efficientnetv2_rw_t.agc_in1k,288,87.719,12.281,97.814,2.186,13.68,1.000,bicubic,+5.239,+1.514,+45 +seresnext101d_32x8d.ah_in1k,224,87.717,12.283,97.709,2.291,93.59,0.950,bicubic,+4.017,+0.923,-145 +resnext101_64x4d.tv_in1k,224,87.717,12.283,97.585,2.415,83.46,0.875,bilinear,+4.739,+1.333,-36 +maxvit_rmlp_nano_rw_256.sw_in1k,256,87.708,12.292,97.572,2.428,15.50,0.950,bicubic,+4.728,+1.300,-38 +resnetrs152.tf_in1k,256,87.689,12.311,97.525,2.474,86.62,1.000,bicubic,+4.803,+0.893,-24 +swin_small_patch4_window7_224.ms_in1k,224,87.685,12.315,97.568,2.432,49.61,0.900,bicubic,+4.457,+1.242,-75 +resnetv2_101x1_bit.goog_in21k_ft_in1k,448,87.681,12.319,97.946,2.054,44.54,1.000,bilinear,+5.349,+1.420,+61 +mobilevitv2_150.cvnets_in22k_ft_in1k_384,384,87.676,12.324,97.673,2.327,10.59,1.000,bicubic,+5.070,+1.363,+17 +rexnet_300.nav_in1k,224,87.674,12.326,97.611,2.389,34.71,0.875,bicubic,+4.894,+1.377,-16 +cs3edgenet_x.c2_in1k,288,87.672,12.328,97.662,2.338,47.82,1.000,bicubic,+4.926,+1.272,-13 +coat_small.in1k,224,87.664,12.336,97.538,2.462,21.69,0.900,bicubic,+5.288,+1.324,+50 +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,256,87.662,12.338,97.788,2.212,11.07,0.950,bicubic,+5.300,+1.532,+51 +efficientnetv2_rw_t.ra2_in1k,288,87.655,12.345,97.679,2.321,13.65,1.000,bicubic,+5.301,+1.501,+53 +resnetaa50d.sw_in12k_ft_in1k,288,87.653,12.347,97.805,2.195,25.58,1.000,bicubic,+5.009,+1.315,-2 +pnasnet5large.tf_in1k,331,87.653,12.347,97.487,2.513,86.06,0.911,bicubic,+4.825,+1.449,-29 +fastvit_sa24.apple_in1k,256,87.644,12.356,97.703,2.297,21.55,0.900,bicubic,+4.938,+1.425,-14 +efficientvit_b2.r256_in1k,256,87.644,12.356,97.459,2.541,24.33,1.000,bicubic,+4.932,+1.367,-14 +maxxvitv2_nano_rw_256.sw_in1k,256,87.642,12.358,97.534,2.466,23.70,0.950,bicubic,+4.538,+1.200,-67 +twins_svt_base.in1k,224,87.642,12.358,97.523,2.477,56.07,0.900,bicubic,+4.518,+1.095,-74 +resnet101.a1h_in1k,288,87.636,12.364,97.577,2.423,44.55,1.000,bicubic,+4.834,+1.257,-28 +maxvit_nano_rw_256.sw_in1k,256,87.634,12.366,97.521,2.479,15.45,0.950,bicubic,+4.692,+1.297,-49 +swinv2_tiny_window16_256.ms_in1k,256,87.625,12.375,97.549,2.451,28.35,0.900,bicubic,+4.797,+1.327,-37 +xcit_medium_24_p8_224.fb_in1k,224,87.625,12.375,97.203,2.797,84.32,1.000,bicubic,+3.883,+0.811,-173 +resnext101_32x16d.fb_swsl_ig1b_ft_in1k,224,87.615,12.386,97.824,2.176,194.03,0.875,bilinear,+4.269,+0.980,-105 +flexivit_small.300ep_in1k,240,87.615,12.386,97.607,2.393,22.06,0.950,bicubic,+5.445,+1.581,+74 +convnext_nano.in12k_ft_in1k,224,87.604,12.396,97.797,2.203,15.59,0.950,bicubic,+5.298,+1.459,+48 +regnetv_040.ra3_in1k,224,87.600,12.400,97.688,2.312,20.64,0.950,bicubic,+5.152,+1.484,+22 +convnextv2_tiny.fcmae_ft_in1k,224,87.600,12.400,97.600,2.400,28.64,0.875,bicubic,+4.652,+1.314,-56 +tf_efficientnet_b4.in1k,380,87.600,12.400,97.592,2.408,19.34,0.922,bicubic,+4.992,+1.568,-5 +nest_base_jx.goog_in1k,224,87.600,12.400,97.517,2.483,67.72,0.875,bicubic,+4.053,+1.151,-149 +cs3se_edgenet_x.c2ns_in1k,256,87.597,12.403,97.649,2.351,50.72,0.950,bicubic,+4.837,+1.343,-36 +convnextv2_nano.fcmae_ft_in1k,288,87.591,12.409,97.694,2.306,15.62,1.000,bicubic,+5.095,+1.466,+13 +regnetz_c16.ra3_in1k,256,87.578,12.422,97.617,2.383,13.46,0.940,bicubic,+5.418,+1.563,+68 +resnext50_32x4d.fb_swsl_ig1b_ft_in1k,224,87.574,12.426,97.643,2.357,25.03,0.875,bilinear,+5.412,+1.419,+65 +davit_tiny.msft_in1k,224,87.574,12.426,97.585,2.415,28.36,0.950,bicubic,+4.876,+1.301,-31 +sequencer2d_m.in1k,224,87.574,12.426,97.583,2.417,38.31,0.875,bicubic,+4.736,+1.307,-53 +tf_efficientnet_b2.ns_jft_in1k,260,87.572,12.428,97.651,2.349,9.11,0.890,bicubic,+5.160,+1.417,+16 +levit_conv_384.fb_dist_in1k,224,87.565,12.435,97.549,2.451,39.13,0.900,bicubic,+4.965,+1.529,-13 +levit_384.fb_dist_in1k,224,87.565,12.435,97.545,2.455,39.13,0.900,bicubic,+4.967,+1.529,-11 +vit_base_patch32_clip_224.laion2b_ft_in1k,224,87.563,12.437,97.553,2.447,88.22,0.900,bicubic,+4.933,+1.349,-23 +ecaresnet50t.ra2_in1k,320,87.550,12.450,97.666,2.334,25.57,0.950,bicubic,+5.180,+1.546,+21 +regnetx_320.tv2_in1k,224,87.544,12.456,97.564,2.436,107.81,0.965,bicubic,+4.720,+1.372,-55 +inception_next_tiny.sail_in1k,224,87.527,12.473,97.528,2.472,28.06,0.875,bicubic,+5.019,+1.528,-1 +vit_base_patch16_rpn_224.sw_in1k,224,87.510,12.490,97.496,2.504,86.54,0.900,bicubic,+5.294,+1.498,+45 +pvt_v2_b2_li.in1k,224,87.510,12.490,97.476,2.524,22.55,0.900,bicubic,+5.308,+1.366,+49 +efficientformerv2_s2.snap_dist_in1k,224,87.506,12.494,97.617,2.383,12.71,0.950,bicubic,+5.356,+1.705,+56 +edgenext_small.usi_in1k,320,87.501,12.499,97.590,2.410,5.59,1.000,bicubic,+5.929,+1.877,+124 +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,224,87.489,12.511,97.816,2.184,236.34,0.875,bicubic,+4.573,+1.240,-74 +nest_small_jx.goog_in1k,224,87.486,12.514,97.508,2.492,38.35,0.875,bicubic,+4.364,+1.174,-103 +coatnet_bn_0_rw_224.sw_in1k,224,87.484,12.516,97.553,2.447,27.44,0.950,bicubic,+5.090,+1.359,+5 +rexnetr_200.sw_in12k_ft_in1k,224,87.480,12.520,97.782,2.218,16.52,0.950,bicubic,+4.872,+1.656,-29 +efficientnet_b3.ra2_in1k,320,87.478,12.522,97.703,2.297,12.23,1.000,bicubic,+5.180,+1.575,+25 +vit_relpos_base_patch16_clsgap_224.sw_in1k,224,87.476,12.524,97.528,2.472,86.43,0.900,bicubic,+4.714,+1.350,-59 +vit_relpos_base_patch16_224.sw_in1k,224,87.471,12.529,97.558,2.442,86.43,0.900,bicubic,+4.995,+1.413,-7 +regnety_080_tv.tv2_in1k,224,87.463,12.537,97.634,2.366,39.38,0.965,bicubic,+4.871,+1.390,-26 +resnet152.a1h_in1k,224,87.459,12.541,97.400,2.600,60.19,0.950,bicubic,+4.641,+1.276,-65 +wide_resnet50_2.racm_in1k,288,87.454,12.546,97.562,2.438,68.88,0.950,bicubic,+5.188,+1.500,+25 +regnetx_160.tv2_in1k,224,87.454,12.546,97.427,2.573,54.28,0.965,bicubic,+4.878,+1.371,-24 +fbnetv3_g.ra2_in1k,288,87.444,12.556,97.547,2.453,16.62,0.950,bilinear,+5.404,+1.483,+56 +resnext101_64x4d.c1_in1k,288,87.437,12.563,97.438,2.562,83.46,1.000,bicubic,+4.279,+1.068,-119 +resnet61q.ra2_in1k,288,87.435,12.565,97.607,2.393,36.85,1.000,bicubic,+4.911,+1.093,-23 +convnextv2_nano.fcmae_ft_in22k_in1k,224,87.424,12.575,97.598,2.402,15.62,0.875,bicubic,+5.386,+1.424,+54 +poolformerv2_m48.sail_in1k,224,87.424,12.575,97.406,2.594,73.35,1.000,bicubic,+4.812,+1.338,-43 +hgnetv2_b2.ssld_stage2_ft_in1k,224,87.416,12.584,97.647,2.353,11.22,0.965,bicubic,+5.850,+1.749,+108 +cait_xxs24_384.fb_dist_in1k,384,87.412,12.588,97.619,2.381,12.03,1.000,bicubic,+6.450,+1.977,+195 +cs3sedarknet_l.c2ns_in1k,288,87.412,12.588,97.568,2.432,21.91,0.950,bicubic,+5.646,+1.602,+90 +tresnet_l.miil_in1k_448,448,87.403,12.597,97.487,2.513,55.99,0.875,bilinear,+5.125,+1.499,+14 +cs3darknet_x.c2ns_in1k,288,87.395,12.605,97.607,2.393,35.05,1.000,bicubic,+5.159,+1.375,+17 +resnet51q.ra2_in1k,288,87.388,12.612,97.581,2.419,35.70,1.000,bilinear,+5.032,+1.403,-4 +pvt_v2_b2.in1k,224,87.384,12.616,97.530,2.470,25.36,0.900,bicubic,+5.290,+1.574,+38 +xcit_tiny_24_p8_224.fb_in1k,224,87.382,12.618,97.636,2.364,12.11,1.000,bicubic,+5.492,+1.656,+67 +sequencer2d_s.in1k,224,87.371,12.629,97.393,2.607,27.65,0.875,bicubic,+5.035,+1.361,-5 +swinv2_cr_small_224.sw_in1k,224,87.369,12.631,97.338,2.662,49.70,0.900,bicubic,+4.243,+1.228,-129 +resnetv2_50d_gn.ah_in1k,288,87.365,12.635,97.523,2.477,25.57,1.000,bicubic,+5.403,+1.587,+54 +nfnet_l0.ra2_in1k,224,87.363,12.637,97.515,2.485,35.07,0.900,bicubic,+5.495,+1.479,+63 +vit_relpos_medium_patch16_cls_224.sw_in1k,224,87.363,12.637,97.455,2.545,38.76,0.900,bicubic,+4.791,+1.379,-40 +nasnetalarge.tf_in1k,331,87.363,12.637,97.429,2.571,88.75,0.911,bicubic,+4.727,+1.369,-62 +seresnext50_32x4d.racm_in1k,288,87.358,12.642,97.609,2.391,27.56,0.950,bicubic,+5.172,+1.461,+17 +coat_lite_small.in1k,224,87.358,12.642,97.370,2.630,19.84,0.900,bicubic,+5.056,+1.536,-3 +fastvit_sa12.apple_dist_in1k,256,87.356,12.644,97.491,2.509,11.58,0.900,bicubic,+5.514,+1.767,+67 +resnet101d.ra2_in1k,256,87.350,12.650,97.624,2.376,44.57,0.950,bicubic,+5.098,+1.556,+2 +crossvit_18_dagger_240.in1k,240,87.341,12.659,97.451,2.549,44.27,0.875,bicubic,+4.837,+1.383,-39 +hiera_tiny_224.mae_in1k_ft_in1k,224,87.337,12.663,97.385,2.615,27.91,0.900,bicubic,+4.513,+1.183,-95 +wide_resnet101_2.tv2_in1k,224,87.331,12.669,97.406,2.594,126.89,0.965,bilinear,+4.814,+1.394,-44 +regnety_040.ra3_in1k,224,87.328,12.672,97.607,2.393,20.65,0.950,bicubic,+5.012,+1.531,-15 +crossvit_18_240.in1k,240,87.328,12.672,97.478,2.522,43.27,0.875,bicubic,+4.942,+1.412,-26 +repvit_m3.dist_in1k,224,87.324,12.676,97.474,2.526,10.68,0.950,bicubic,+5.830,+1.912,+96 +resnext101_32x8d.tv2_in1k,224,87.318,12.682,97.562,2.438,88.79,0.965,bilinear,+4.486,+1.330,-104 +hrnet_w18_ssld.paddle_in1k,224,87.316,12.684,97.472,2.528,21.30,0.950,bilinear,+6.184,+1.838,+153 +convnext_tiny.fb_in1k,224,87.309,12.691,97.444,2.556,28.59,0.875,bicubic,+5.243,+1.590,+20 +focalnet_tiny_srf.ms_in1k,224,87.303,12.697,97.412,2.588,28.43,0.900,bicubic,+5.159,+1.442,+12 +resnetv2_101.a1h_in1k,224,87.301,12.699,97.329,2.671,44.54,0.950,bicubic,+5.259,+1.463,+22 +resnest101e.in1k,256,87.299,12.701,97.558,2.442,48.28,0.875,bilinear,+4.383,+1.248,-118 +swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,224,87.296,12.704,97.801,2.199,28.29,0.900,bicubic,+6.330,+1.781,+166 +ecaresnet101d.miil_in1k,224,87.296,12.704,97.560,2.440,44.57,0.875,bicubic,+5.110,+1.498,+1 +ecaresnet50d.miil_in1k,288,87.294,12.706,97.658,2.342,25.58,0.950,bicubic,+5.654,+1.772,+68 +gcvit_xtiny.in1k,224,87.292,12.708,97.478,2.522,19.98,0.875,bicubic,+5.324,+1.513,+29 +cs3sedarknet_x.c2ns_in1k,256,87.290,12.710,97.532,2.468,35.40,0.887,bicubic,+5.364,+1.510,+38 +tiny_vit_11m_224.in1k,224,87.286,12.714,97.500,2.500,11.00,0.950,bicubic,+5.748,+1.630,+77 +eca_nfnet_l0.ra2_in1k,224,87.281,12.719,97.551,2.449,24.14,0.900,bicubic,+5.517,+2.281,+56 +coatnet_rmlp_nano_rw_224.sw_in1k,224,87.277,12.723,97.442,2.558,15.15,0.900,bicubic,+5.215,+1.572,+11 +coatnext_nano_rw_224.sw_in1k,224,87.273,12.727,97.521,2.479,14.70,0.900,bicubic,+5.275,+2.227,+18 +mobilenetv4_conv_medium.e500_r256_in1k,320,87.264,12.736,97.536,2.464,9.72,1.000,bicubic,+6.384,+1.774,+172 +vit_relpos_medium_patch16_rpn_224.sw_in1k,224,87.256,12.744,97.451,2.549,38.73,0.900,bicubic,+4.948,+1.469,-31 +ecaresnet101d_pruned.miil_in1k,288,87.254,12.746,97.718,2.282,24.88,0.950,bicubic,+5.248,+1.554,+13 +regnety_032.ra_in1k,224,87.251,12.748,97.551,2.449,19.44,0.950,bicubic,+5.309,+1.401,+28 +regnety_160.tv2_in1k,224,87.243,12.757,97.472,2.528,83.59,0.965,bicubic,+4.597,+1.242,-96 +tresnet_xl.miil_in1k,224,87.234,12.765,97.395,2.605,78.44,0.875,bilinear,+5.171,+1.465,+3 +poolformer_m48.sail_in1k,224,87.232,12.768,97.308,2.692,73.47,0.950,bicubic,+4.770,+1.340,-60 +resnetrs101.tf_in1k,288,87.230,12.770,97.455,2.545,63.62,0.940,bicubic,+4.936,+1.517,-31 +xcit_tiny_12_p8_224.fb_dist_in1k,224,87.222,12.778,97.438,2.562,6.71,1.000,bicubic,+6.010,+1.822,+119 +mixer_b16_224.miil_in21k_ft_in1k,224,87.215,12.785,97.419,2.581,59.88,0.875,bilinear,+4.905,+1.705,-40 +xcit_tiny_12_p16_384.fb_dist_in1k,384,87.207,12.793,97.470,2.530,6.72,1.000,bicubic,+6.255,+2.038,+150 +tf_efficientnet_b3.ap_in1k,300,87.207,12.793,97.389,2.611,12.23,0.904,bicubic,+5.353,+1.781,+31 +convit_base.fb_in1k,224,87.205,12.795,97.293,2.707,86.54,0.875,bicubic,+4.911,+1.293,-35 +resnetv2_50d_evos.ah_in1k,288,87.202,12.798,97.421,2.579,25.59,1.000,bicubic,+5.202,+1.523,+3 +resnet152.tv2_in1k,224,87.194,12.806,97.410,2.590,60.19,0.965,bilinear,+4.900,+1.410,-39 +vit_base_patch32_clip_224.openai_ft_in1k,224,87.185,12.815,97.461,2.539,88.22,0.900,bicubic,+5.239,+1.487,+13 +cs3edgenet_x.c2_in1k,256,87.177,12.823,97.519,2.481,47.82,0.887,bicubic,+4.963,+1.623,-28 +visformer_small.in1k,224,87.175,12.825,97.325,2.675,40.22,0.900,bicubic,+5.079,+1.449,-13 +focalnet_tiny_lrf.ms_in1k,224,87.172,12.828,97.374,2.626,28.65,0.900,bicubic,+4.998,+1.426,-24 +vit_srelpos_medium_patch16_224.sw_in1k,224,87.172,12.828,97.305,2.695,38.74,0.900,bicubic,+4.922,+1.377,-38 +convnext_tiny_hnf.a2h_in1k,288,87.162,12.838,97.282,2.718,28.59,1.000,bicubic,+4.554,+0.890,-99 +crossvit_15_dagger_240.in1k,240,87.156,12.845,97.440,2.560,28.21,0.875,bicubic,+4.850,+1.472,-49 +mobilenetv4_conv_large.e500_r256_in1k,256,87.153,12.847,97.301,2.699,32.59,0.950,bicubic,+5.289,+1.605,+16 +coatnet_0_rw_224.sw_in1k,224,87.153,12.847,97.214,2.786,27.44,0.950,bicubic,+4.759,+1.370,-70 +swin_s3_tiny_224.ms_in1k,224,87.149,12.851,97.308,2.692,28.33,0.900,bicubic,+5.021,+1.350,-23 +xcit_small_24_p16_224.fb_in1k,224,87.147,12.853,97.256,2.744,47.67,1.000,bicubic,+4.567,+1.002,-95 +vit_relpos_medium_patch16_224.sw_in1k,224,87.138,12.862,97.504,2.496,38.75,0.900,bicubic,+4.672,+1.420,-81 +resnetaa50d.sw_in12k_ft_in1k,224,87.130,12.870,97.594,2.406,25.58,0.950,bicubic,+5.348,+1.558,+23 +cs3darknet_x.c2ns_in1k,256,87.119,12.881,97.455,2.545,35.05,0.950,bicubic,+5.263,+1.715,+11 +repvit_m1_1.dist_450e_in1k,224,87.109,12.892,97.412,2.588,8.80,0.950,bicubic,+5.806,+1.840,+84 +efficientvit_b2.r224_in1k,224,87.106,12.894,97.184,2.816,24.33,0.950,bicubic,+4.944,+1.474,-33 +swinv2_tiny_window8_256.ms_in1k,256,87.100,12.900,97.517,2.483,28.35,0.900,bicubic,+5.276,+1.529,+15 +resnet101.a1h_in1k,224,87.083,12.917,97.263,2.737,44.55,0.950,bicubic,+5.133,+1.503,-5 +pit_s_distilled_224.in1k,224,87.081,12.919,97.372,2.628,24.04,0.900,bicubic,+5.239,+1.672,+10 +xception41p.ra3_in1k,299,87.074,12.926,97.212,2.788,26.91,0.940,bicubic,+5.094,+1.470,-13 +ecaresnet50t.a1_in1k,288,87.072,12.928,97.120,2.880,25.57,1.000,bicubic,+4.960,+1.466,-33 +hgnetv2_b2.ssld_stage1_in22k_in1k,224,87.066,12.934,97.523,2.477,11.22,0.965,bicubic,+6.320,+2.025,+156 +resnet101.a1_in1k,288,87.066,12.934,96.932,3.068,44.55,1.000,bicubic,+4.744,+1.304,-70 +resnext50_32x4d.a1h_in1k,288,87.057,12.943,97.331,2.669,25.03,1.000,bicubic,+5.045,+1.399,-24 +mobilevitv2_200.cvnets_in22k_ft_in1k,256,87.053,12.947,97.442,2.558,18.45,0.888,bicubic,+4.731,+1.502,-73 +regnetz_b16.ra3_in1k,288,87.049,12.951,97.410,2.590,9.72,1.000,bicubic,+6.311,+1.880,+153 +poolformerv2_m36.sail_in1k,224,87.044,12.956,97.265,2.735,56.08,1.000,bicubic,+4.830,+1.327,-52 +convit_small.fb_in1k,224,87.038,12.962,97.338,2.662,27.78,0.875,bicubic,+5.624,+1.602,+58 +gcresnet50t.ra2_in1k,288,87.036,12.964,97.395,2.605,25.90,1.000,bicubic,+5.578,+1.673,+46 +swinv2_cr_tiny_ns_224.sw_in1k,224,87.036,12.964,97.286,2.714,28.33,0.900,bicubic,+5.240,+1.462,+5 +crossvit_15_240.in1k,240,87.032,12.968,97.425,2.575,27.53,0.875,bicubic,+5.514,+1.729,+30 +nest_tiny_jx.goog_in1k,224,87.023,12.977,97.397,2.603,17.06,0.875,bicubic,+5.595,+1.771,+49 +tf_efficientnetv2_b3.in1k,300,87.023,12.977,97.297,2.703,14.36,0.904,bicubic,+5.063,+1.523,-20 +resnet152.a2_in1k,288,87.017,12.983,96.913,3.087,60.19,1.000,bicubic,+4.397,+1.169,-132 +coatnet_nano_rw_224.sw_in1k,224,87.006,12.994,97.261,2.739,15.14,0.900,bicubic,+5.302,+1.611,+7 +resnet50d.ra4_e3600_r224_in1k,288,87.000,13.000,97.425,2.575,25.58,1.000,bicubic,+5.170,+1.505,-7 +resnet61q.ra2_in1k,256,87.000,13.000,97.404,2.596,36.85,0.900,bicubic,+5.034,+1.552,-29 +efficientnet_b1.ra4_e3600_r240_in1k,288,87.000,13.000,97.320,2.679,7.79,1.000,bicubic,+5.566,+1.624,+44 +deit3_small_patch16_224.fb_in1k,224,87.000,13.000,97.150,2.850,22.06,0.900,bicubic,+5.626,+1.598,+54 +xcit_small_12_p16_224.fb_in1k,224,86.995,13.005,97.252,2.748,26.25,1.000,bicubic,+5.013,+1.438,-34 +mobilevitv2_175.cvnets_in22k_ft_in1k,256,86.991,13.009,97.355,2.645,14.25,0.888,bicubic,+5.047,+1.561,-26 +deit_small_distilled_patch16_224.fb_in1k,224,86.985,13.015,97.314,2.686,22.44,0.900,bicubic,+5.769,+1.934,+70 +resmlp_36_224.fb_distilled_in1k,224,86.980,13.020,97.271,2.729,44.69,0.875,bicubic,+5.830,+1.763,+76 +hgnet_small.paddle_in1k,224,86.976,13.024,97.412,2.588,24.36,0.965,bicubic,+5.550,+1.566,+39 +regnety_032.tv2_in1k,224,86.974,13.026,97.410,2.590,19.44,0.965,bicubic,+5.176,+1.564,-12 +poolformer_m36.sail_in1k,224,86.965,13.035,97.139,2.861,56.17,0.950,bicubic,+4.861,+1.441,-57 +xcit_large_24_p16_224.fb_in1k,224,86.961,13.039,96.921,3.079,189.10,1.000,bicubic,+4.071,+1.039,-187 +mobilenetv4_hybrid_medium.e500_r224_in1k,256,86.959,13.041,97.468,2.532,11.07,1.000,bicubic,+5.675,+1.728,+53 +resnet101.a2_in1k,288,86.946,13.054,96.987,3.013,44.55,1.000,bicubic,+4.722,+1.249,-78 +edgenext_small.usi_in1k,256,86.944,13.056,97.282,2.718,5.59,0.950,bicubic,+5.880,+1.952,+84 +xcit_medium_24_p16_224.fb_in1k,224,86.942,13.058,97.094,2.906,84.40,1.000,bicubic,+4.310,+1.114,-152 +resnet51q.ra2_in1k,256,86.940,13.060,97.466,2.534,35.70,0.875,bilinear,+5.162,+1.516,-15 +resnet101.tv2_in1k,224,86.927,13.073,97.252,2.748,44.55,0.965,bilinear,+5.021,+1.484,-33 +poolformerv2_s36.sail_in1k,224,86.925,13.075,97.359,2.641,30.79,1.000,bicubic,+5.349,+1.679,-1 +cs3sedarknet_l.c2ns_in1k,256,86.921,13.079,97.417,2.583,21.91,0.887,bicubic,+5.701,+1.611,+56 +resnetv2_50.a1h_in1k,288,86.918,13.082,97.338,2.662,25.55,1.000,bicubic,+5.510,+1.626,+31 +tnt_s_patch16_224,224,86.914,13.086,97.361,2.639,23.76,0.900,bicubic,+5.386,+1.627,+3 +convnext_tiny_hnf.a2h_in1k,224,86.908,13.092,97.271,2.729,28.59,0.950,bicubic,+4.678,+1.411,-89 +convmixer_1536_20.in1k,224,86.906,13.094,97.353,2.647,51.63,0.960,bicubic,+5.536,+1.723,+34 +vit_relpos_small_patch16_224.sw_in1k,224,86.903,13.097,97.489,2.511,21.98,0.900,bicubic,+5.427,+1.665,+10 +convnextv2_nano.fcmae_ft_in1k,224,86.891,13.109,97.267,2.733,15.62,0.875,bicubic,+5.035,+1.311,-35 +resnet152.a1_in1k,288,86.886,13.114,96.802,3.198,60.19,1.000,bicubic,+4.142,+1.082,-181 +rexnet_200.nav_in1k,224,86.863,13.137,97.278,2.722,16.37,0.875,bicubic,+5.223,+1.610,-15 +ecaresnetlight.miil_in1k,288,86.861,13.139,97.489,2.511,30.16,0.950,bicubic,+5.445,+1.695,+20 +vit_small_patch16_224.augreg_in21k_ft_in1k,224,86.859,13.141,97.596,2.404,22.05,0.900,bicubic,+5.445,+1.446,+19 +vit_small_r26_s32_224.augreg_in21k_ft_in1k,224,86.859,13.141,97.536,2.464,36.43,0.900,bicubic,+5.015,+1.512,-37 +resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,224,86.852,13.148,97.519,2.481,194.03,0.875,bilinear,+4.972,+1.419,-45 +tf_efficientnet_b3.aa_in1k,300,86.848,13.152,97.297,2.703,12.23,0.904,bicubic,+5.200,+1.573,-22 +eva02_tiny_patch14_336.mim_in22k_ft_in1k,336,86.835,13.165,97.276,2.724,5.76,1.000,bicubic,+6.163,+1.750,+123 +deit_base_patch16_224.fb_in1k,224,86.827,13.173,97.062,2.938,86.57,0.900,bicubic,+4.847,+1.274,-62 +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,256,86.825,13.175,97.329,2.671,11.07,0.950,bicubic,+5.350,+1.637,+1 +efficientnet_b3.ra2_in1k,288,86.818,13.182,97.346,2.654,12.23,0.875,bicubic,+5.344,+1.676,-1 +tresnet_m.miil_in1k_448,448,86.818,13.182,97.203,2.797,31.39,0.875,bilinear,+5.108,+1.641,-32 +coat_mini.in1k,224,86.816,13.184,97.154,2.846,10.34,0.900,bicubic,+5.512,+1.766,+24 +repvit_m1_1.dist_300e_in1k,224,86.807,13.193,97.314,2.686,8.80,0.950,bicubic,+5.981,+2.140,+92 +resnet50.fb_swsl_ig1b_ft_in1k,224,86.805,13.195,97.496,2.504,25.56,0.875,bilinear,+5.659,+1.930,+45 +resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,224,86.801,13.199,97.474,2.526,88.79,0.875,bilinear,+5.181,+1.438,-28 +tf_efficientnet_lite4.in1k,380,86.801,13.199,97.254,2.746,13.01,0.920,bilinear,+5.255,+1.588,-20 +resnetaa50.a1h_in1k,288,86.799,13.201,97.359,2.641,25.56,1.000,bicubic,+5.195,+1.551,-28 +resnext101_64x4d.c1_in1k,224,86.784,13.216,97.152,2.848,83.46,0.950,bicubic,+4.338,+1.232,-145 +cs3darknet_l.c2ns_in1k,288,86.780,13.220,97.472,2.528,21.16,0.950,bicubic,+5.892,+1.810,+72 +ese_vovnet39b.ra_in1k,288,86.780,13.220,97.374,2.626,24.57,0.950,bicubic,+6.402,+1.676,+153 +cs3darknet_focus_l.c2ns_in1k,288,86.778,13.223,97.385,2.615,21.15,0.950,bicubic,+5.868,+1.707,+69 +gc_efficientnetv2_rw_t.agc_in1k,224,86.775,13.225,97.271,2.729,13.68,1.000,bicubic,+5.507,+1.645,+21 +regnetx_080.tv2_in1k,224,86.775,13.225,97.182,2.818,39.57,0.965,bicubic,+5.215,+1.640,-29 +tresnet_l.miil_in1k,224,86.773,13.227,97.273,2.727,55.99,0.875,bilinear,+5.275,+1.621,-21 +seresnet50.ra2_in1k,288,86.771,13.229,97.359,2.641,28.09,0.950,bicubic,+5.489,+1.707,+16 +twins_svt_small.in1k,224,86.769,13.231,97.173,2.827,24.06,0.900,bicubic,+5.077,+1.505,-45 +fbnetv3_g.ra2_in1k,240,86.767,13.233,97.244,2.756,16.62,0.950,bilinear,+5.515,+1.562,+19 +vit_base_patch16_224.orig_in21k_ft_in1k,224,86.756,13.244,97.453,2.547,86.57,0.900,bicubic,+4.970,+1.329,-56 +ecaresnet50t.a2_in1k,288,86.756,13.244,97.075,2.925,25.57,1.000,bicubic,+5.074,+1.543,-46 +resnet50d.ra2_in1k,288,86.752,13.248,97.374,2.626,25.58,0.950,bicubic,+5.402,+1.632,+2 +convnextv2_pico.fcmae_ft_in1k,288,86.748,13.252,97.329,2.671,9.07,0.950,bicubic,+5.692,+1.851,+42 +resnet50_gn.a1h_in1k,288,86.746,13.255,97.444,2.556,25.56,0.950,bicubic,+5.538,+1.812,+19 +vit_wee_patch16_reg1_gap_256.sbb_in1k,256,86.746,13.255,97.248,2.752,13.42,0.950,bicubic,+6.478,+1.888,+156 +tiny_vit_5m_224.dist_in22k_ft_in1k,224,86.743,13.257,97.318,2.682,5.39,0.950,bicubic,+5.881,+1.646,+66 +efficientnetv2_rw_t.ra2_in1k,224,86.741,13.259,97.229,2.771,13.65,1.000,bicubic,+5.369,+1.677,-6 +mobilevitv2_150.cvnets_in22k_ft_in1k,256,86.741,13.259,97.220,2.780,10.59,0.888,bicubic,+5.271,+1.548,-25 +crossvit_base_240.in1k,240,86.741,13.259,97.118,2.882,105.03,0.875,bicubic,+4.513,+1.304,-127 +seresnet50.a1_in1k,288,86.741,13.259,96.953,3.047,28.09,1.000,bicubic,+5.637,+1.833,+29 +fastvit_s12.apple_dist_in1k,256,86.735,13.265,97.203,2.797,9.47,0.900,bicubic,+5.661,+1.925,+32 +convnext_nano_ols.d1h_in1k,288,86.731,13.269,97.030,2.970,15.65,1.000,bicubic,+5.119,+1.404,-52 +levit_256.fb_dist_in1k,224,86.724,13.276,97.254,2.746,18.89,0.900,bicubic,+5.218,+1.788,-40 +levit_conv_256.fb_dist_in1k,224,86.724,13.276,97.254,2.746,18.89,0.900,bicubic,+5.218,+1.166,-40 +crossvit_small_240.in1k,240,86.718,13.282,97.282,2.718,26.86,0.875,bicubic,+5.678,+1.814,+33 +vit_srelpos_small_patch16_224.sw_in1k,224,86.711,13.289,97.244,2.756,21.97,0.900,bicubic,+5.603,+1.664,+22 +pit_b_224.in1k,224,86.711,13.289,96.894,3.107,73.76,0.900,bicubic,+4.251,+1.186,-174 +seresnext50_32x4d.racm_in1k,224,86.705,13.295,97.203,2.797,27.56,0.875,bicubic,+5.437,+1.629,-5 +halo2botnet50ts_256.a1h_in1k,256,86.705,13.295,97.092,2.908,22.64,0.950,bicubic,+4.621,+1.434,-116 +hgnet_tiny.paddle_in1k,288,86.699,13.301,97.305,2.695,14.74,1.000,bicubic,+6.051,+1.763,+85 +wide_resnet50_2.racm_in1k,224,86.696,13.304,97.210,2.791,68.88,0.875,bicubic,+5.208,+1.666,-43 +ecaresnet50t.ra2_in1k,256,86.692,13.308,97.335,2.665,25.57,0.875,bicubic,+5.246,+1.657,-36 +resnet50.ram_in1k,288,86.692,13.308,97.195,2.805,25.56,0.950,bicubic,+6.718,+2.154,+169 +tf_efficientnet_b1.ns_jft_in1k,240,86.688,13.312,97.393,2.607,7.79,0.882,bicubic,+5.300,+1.853,-26 +swin_tiny_patch4_window7_224.ms_in1k,224,86.677,13.323,97.201,2.799,28.29,0.900,bicubic,+5.289,+1.443,-26 +gernet_l.idstcv_in1k,256,86.675,13.325,97.203,2.797,31.08,0.875,bilinear,+5.301,+1.749,-26 +resnet50d.a1_in1k,288,86.669,13.331,96.689,3.312,25.58,1.000,bicubic,+5.225,+1.465,-39 +ecaresnet50d_pruned.miil_in1k,288,86.666,13.334,97.429,2.571,19.94,0.950,bicubic,+5.858,+1.851,+53 +resnext101_32x8d.tv2_in1k,176,86.652,13.348,97.203,2.797,88.79,0.875,bilinear,+4.662,+1.487,-114 +poolformer_s36.sail_in1k,224,86.649,13.351,97.148,2.852,30.86,0.900,bicubic,+5.217,+1.704,-39 +twins_pcpvt_small.in1k,224,86.637,13.363,97.327,2.673,24.11,0.900,bicubic,+5.515,+1.711,+6 +resmlp_24_224.fb_distilled_in1k,224,86.635,13.366,97.139,2.861,30.02,0.875,bicubic,+5.868,+1.919,+53 +efficientnet_b3_pruned.in1k,300,86.632,13.368,97.175,2.825,9.86,0.904,bicubic,+5.760,+1.903,+38 +resnet50.c2_in1k,288,86.628,13.372,97.346,2.654,25.56,1.000,bicubic,+5.772,+1.820,+39 +repvit_m2.dist_in1k,224,86.628,13.372,97.212,2.788,8.80,0.950,bicubic,+6.160,+2.040,+91 +efficientnet_el.ra_in1k,300,86.617,13.383,97.180,2.820,10.59,0.904,bicubic,+5.311,+1.640,-29 +resnest50d_4s2x40d.in1k,224,86.615,13.385,97.284,2.716,30.42,0.875,bicubic,+5.469,+1.304,-5 +gcresnext50ts.ch_in1k,288,86.605,13.395,97.177,2.823,15.67,1.000,bicubic,+5.371,+1.641,-18 +nf_resnet50.ra2_in1k,288,86.598,13.402,97.297,2.703,25.56,0.940,bicubic,+5.942,+1.957,+64 +sehalonet33ts.ra2_in1k,256,86.594,13.406,97.022,2.978,13.69,0.940,bicubic,+5.622,+1.750,+12 +repvgg_b3.rvgg_in1k,224,86.592,13.408,97.133,2.867,123.09,0.875,bilinear,+6.074,+1.879,+78 +sebotnet33ts_256.a1h_in1k,256,86.583,13.417,96.782,3.217,13.70,0.940,bicubic,+5.431,+1.623,-14 +resnet50.a1_in1k,288,86.579,13.421,96.806,3.194,25.56,1.000,bicubic,+5.339,+1.694,-24 +fastvit_sa12.apple_in1k,256,86.575,13.425,97.207,2.793,11.58,0.900,bicubic,+5.735,+1.863,+31 +wide_resnet50_2.tv2_in1k,224,86.564,13.436,97.250,2.750,68.88,0.965,bilinear,+4.966,+1.486,-83 +xcit_tiny_24_p16_224.fb_dist_in1k,224,86.545,13.455,97.214,2.786,12.12,1.000,bicubic,+6.079,+2.012,+81 +repvit_m1_0.dist_450e_in1k,224,86.534,13.466,97.103,2.897,7.30,0.950,bicubic,+6.088,+1.797,+85 +seresnet50.a2_in1k,288,86.534,13.466,96.977,3.023,28.09,1.000,bicubic,+5.442,+1.741,-6 +convnext_nano.d1h_in1k,288,86.526,13.474,97.177,2.823,15.59,1.000,bicubic,+5.052,+1.465,-66 +resnet50.c1_in1k,288,86.521,13.479,97.244,2.756,25.56,1.000,bicubic,+5.593,+1.690,+10 +resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,224,86.511,13.489,97.466,2.534,44.18,0.875,bilinear,+5.575,+1.734,+8 +maxvit_rmlp_pico_rw_256.sw_in1k,256,86.508,13.492,97.214,2.786,7.52,0.950,bicubic,+5.959,+2.028,+61 +dm_nfnet_f0.dm_in1k,192,86.506,13.494,97.293,2.707,71.49,0.900,bicubic,+5.068,+1.615,-64 +seresnet33ts.ra2_in1k,288,86.504,13.496,97.180,2.820,19.78,1.000,bicubic,+5.690,+1.834,+26 +mobilenet_edgetpu_v2_m,256,86.502,13.498,97.197,2.803,8.46,0.950,bicubic,+5.820,+1.753,+45 +vit_small_patch16_384.augreg_in1k,384,86.498,13.502,97.184,2.816,22.20,1.000,bicubic,+5.364,+1.608,-22 +mobilenetv4_conv_blur_medium.e500_r224_in1k,256,86.489,13.511,97.278,2.722,9.72,1.000,bicubic,+6.337,+2.508,+118 +halonet50ts.a1h_in1k,256,86.487,13.513,97.160,2.840,22.73,0.940,bicubic,+4.837,+1.546,-103 +haloregnetz_b.ra3_in1k,224,86.487,13.513,96.955,3.045,11.68,0.940,bicubic,+5.435,+1.755,-13 +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,256,86.483,13.517,97.197,2.803,8.46,0.950,bicubic,+5.799,+1.755,+38 +resnet152.a2_in1k,224,86.483,13.517,96.595,3.405,60.19,0.950,bicubic,+4.719,+0.597,-110 +ecaresnet50d.miil_in1k,224,86.472,13.528,97.184,2.816,25.58,0.875,bicubic,+5.854,+1.872,+45 +gcresnet50t.ra2_in1k,256,86.470,13.530,97.130,2.869,25.90,0.900,bicubic,+5.520,+1.666,-6 +resnet50.d_in1k,288,86.470,13.530,97.052,2.949,25.56,1.000,bicubic,+5.458,+1.596,-12 +resnet152s.gluon_in1k,224,86.466,13.534,97.139,2.861,60.32,0.875,bicubic,+5.418,+1.697,-18 +mobilevitv2_200.cvnets_in1k,256,86.464,13.536,96.981,3.019,18.45,0.888,bicubic,+5.316,+1.599,-36 +resnetv2_50x1_bit.goog_in21k_ft_in1k,448,86.462,13.538,97.617,2.383,25.55,1.000,bilinear,+6.084,+2.257,+76 +tf_efficientnetv2_b3.in21k_ft_in1k,240,86.459,13.541,97.421,2.579,14.36,0.900,bicubic,+5.383,+1.501,-27 +repvit_m1_0.dist_300e_in1k,224,86.459,13.541,97.047,2.953,7.30,0.950,bicubic,+6.307,+1.749,+108 +resnet50.b1k_in1k,288,86.457,13.543,97.239,2.761,25.56,1.000,bicubic,+5.751,+1.807,+26 +resnext50d_32x4d.bt_in1k,288,86.453,13.547,97.154,2.846,25.05,0.950,bicubic,+5.773,+1.726,+30 +resnet50.tv2_in1k,224,86.449,13.551,97.145,2.855,25.56,0.965,bilinear,+5.605,+1.725,+2 +resnest50d_1s4x24d.in1k,224,86.438,13.562,97.150,2.850,25.68,0.875,bicubic,+5.420,+1.814,-23 +hgnetv2_b1.ssld_stage2_ft_in1k,288,86.427,13.573,97.173,2.827,6.34,1.000,bicubic,+6.523,+2.507,+126 +regnety_016.tv2_in1k,224,86.412,13.588,97.205,2.795,11.20,0.965,bicubic,+5.716,+1.865,+23 +mobilenetv4_conv_medium.e500_r224_in1k,256,86.410,13.590,97.218,2.782,9.72,1.000,bicubic,+6.572,+2.024,+136 +mobilenetv4_hybrid_medium.e500_r224_in1k,224,86.408,13.592,97.150,2.850,11.07,0.950,bicubic,+5.970,+1.774,+58 +poolformerv2_s24.sail_in1k,224,86.395,13.605,97.126,2.874,21.34,1.000,bicubic,+5.643,+1.808,+9 +resnet50d.ra4_e3600_r224_in1k,224,86.380,13.620,97.105,2.895,25.58,0.950,bicubic,+5.424,+1.725,-23 +resnet152.a1_in1k,224,86.380,13.620,96.513,3.487,60.19,0.950,bicubic,+4.382,+0.625,-166 +fastvit_t12.apple_dist_in1k,256,86.368,13.632,97.086,2.914,7.55,0.900,bicubic,+6.004,+2.044,+65 +darknet53.c2ns_in1k,288,86.365,13.634,97.115,2.885,41.61,1.000,bicubic,+5.823,+1.689,+34 +lamhalobotnet50ts_256.a1h_in1k,256,86.365,13.634,97.052,2.949,22.57,0.950,bicubic,+4.817,+1.558,-116 +darknetaa53.c2ns_in1k,288,86.361,13.639,97.145,2.855,36.02,1.000,bilinear,+5.833,+1.817,+33 +repvgg_b3g4.rvgg_in1k,224,86.361,13.639,97.041,2.959,83.83,0.875,bilinear,+6.113,+1.939,+81 +resnetv2_50d_gn.ah_in1k,224,86.353,13.647,97.148,2.852,25.57,0.950,bicubic,+5.559,+1.792,-3 +efficientformer_l1.snap_dist_in1k,224,86.344,13.656,97.017,2.983,12.29,0.950,bicubic,+5.842,+2.025,+33 +legacy_senet154.in1k,224,86.344,13.656,96.925,3.075,115.09,0.875,bilinear,+5.018,+1.430,-82 +mobilevitv2_175.cvnets_in1k,256,86.342,13.658,96.970,3.030,14.25,0.888,bicubic,+5.468,+1.710,-19 +tf_efficientnet_b3.in1k,300,86.342,13.658,96.936,3.064,12.23,0.904,bicubic,+5.462,+1.610,-21 +cait_xxs36_224.fb_dist_in1k,224,86.340,13.660,97.126,2.874,17.30,1.000,bicubic,+6.602,+2.264,+132 +resnet101.a1_in1k,224,86.340,13.660,96.543,3.457,44.55,0.950,bicubic,+4.846,+1.379,-115 +resnext50_32x4d.a1h_in1k,224,86.338,13.662,96.970,3.030,25.03,0.950,bicubic,+5.198,+1.650,-60 +resnet50.a1h_in1k,224,86.336,13.664,97.058,2.942,25.56,1.000,bicubic,+5.684,+1.746,+10 +nf_resnet50.ra2_in1k,256,86.331,13.669,97.062,2.938,25.56,0.940,bicubic,+6.107,+1.958,+75 +resnet50d.a2_in1k,288,86.329,13.671,96.682,3.318,25.58,1.000,bicubic,+5.161,+1.582,-69 +mobilenetv4_conv_medium.e500_r256_in1k,256,86.323,13.677,97.094,2.906,9.72,0.950,bicubic,+6.401,+1.908,+95 +gernet_m.idstcv_in1k,224,86.319,13.681,97.090,2.910,21.14,0.875,bilinear,+5.593,+1.906,-6 +cs3darknet_l.c2ns_in1k,256,86.316,13.684,97.214,2.786,21.16,0.887,bicubic,+5.962,+1.910,+47 +pit_s_224.in1k,224,86.316,13.684,97.047,2.953,23.46,0.900,bicubic,+5.190,+1.719,-63 +resnet50.b2k_in1k,288,86.308,13.692,97.066,2.934,25.56,1.000,bicubic,+5.838,+1.758,+24 +vit_small_patch32_384.augreg_in21k_ft_in1k,384,86.306,13.694,97.431,2.568,22.92,1.000,bicubic,+5.824,+1.826,+21 +efficientnet_b2.ra_in1k,288,86.304,13.696,96.994,3.006,9.11,1.000,bicubic,+5.694,+1.676,+6 +senet154.gluon_in1k,224,86.304,13.696,96.938,3.062,115.09,0.875,bicubic,+5.046,+1.580,-88 +vit_pwee_patch16_reg1_gap_256.sbb_in1k,256,86.295,13.705,97.133,2.867,15.25,0.950,bicubic,+6.217,+2.147,+79 +gcresnet33ts.ra2_in1k,288,86.291,13.709,97.047,2.953,19.88,1.000,bicubic,+5.703,+1.725,+5 +resnext50_32x4d.a1_in1k,288,86.291,13.709,96.708,3.292,25.03,1.000,bicubic,+4.807,+1.546,-128 +regnetz_b16.ra3_in1k,224,86.282,13.718,96.992,3.008,9.72,0.940,bicubic,+6.408,+2.014,+97 +resnext50_32x4d.a2_in1k,288,86.274,13.726,96.697,3.303,25.03,1.000,bicubic,+4.976,+1.587,-99 +hgnetv2_b1.ssld_stage1_in22k_in1k,288,86.272,13.729,97.143,2.857,6.34,1.000,bicubic,+7.224,+2.261,+192 +resnext50_32x4d.tv2_in1k,224,86.272,13.729,97.041,2.959,25.03,0.965,bilinear,+5.096,+1.693,-85 +eca_resnet33ts.ra2_in1k,288,86.257,13.743,97.165,2.835,19.68,1.000,bicubic,+5.541,+1.783,-19 +gcvit_xxtiny.in1k,224,86.252,13.748,97.103,2.897,12.00,0.875,bicubic,+6.502,+2.043,+107 +resnetv2_50d_evos.ah_in1k,224,86.248,13.752,97.017,2.983,25.59,0.950,bicubic,+5.420,+1.747,-38 +regnetx_032.tv2_in1k,224,86.240,13.761,97.084,2.917,15.30,0.965,bicubic,+5.314,+1.816,-54 +resnest50d.in1k,224,86.220,13.780,97.062,2.938,27.48,0.875,bilinear,+5.262,+1.690,-62 +convmixer_768_32.in1k,224,86.220,13.780,97.024,2.976,21.11,0.960,bicubic,+6.062,+1.954,+56 +vit_base_patch16_384.augreg_in1k,384,86.220,13.780,96.962,3.038,86.86,1.000,bicubic,+5.124,+1.628,-76 +cspdarknet53.ra_in1k,256,86.218,13.782,96.983,3.017,27.64,0.887,bilinear,+6.112,+1.915,+61 +cs3darknet_focus_l.c2ns_in1k,256,86.212,13.788,97.124,2.876,21.15,0.887,bicubic,+5.960,+1.826,+44 +ecaresnet101d_pruned.miil_in1k,224,86.207,13.793,97.327,2.673,24.88,0.875,bicubic,+5.394,+1.707,-42 +efficientnet_b1.ra4_e3600_r240_in1k,240,86.205,13.795,96.968,3.032,7.79,0.900,bicubic,+5.801,+1.820,+17 +efficientnet_el_pruned.in1k,300,86.197,13.803,97.022,2.978,10.59,0.904,bicubic,+5.903,+1.804,+32 +tresnet_m.miil_in1k,224,86.192,13.807,96.671,3.329,31.39,0.875,bilinear,+5.376,+1.809,-46 +rexnet_150.nav_in1k,224,86.178,13.822,97.073,2.927,9.73,0.875,bicubic,+5.868,+1.905,+25 +resnet101.a2_in1k,224,86.171,13.829,96.548,3.452,44.55,0.950,bicubic,+4.827,+1.350,-121 +xcit_tiny_12_p8_224.fb_in1k,224,86.160,13.839,97.030,2.970,6.71,1.000,bicubic,+6.448,+1.976,+99 +ecaresnet50t.a1_in1k,224,86.156,13.844,96.778,3.222,25.57,0.950,bicubic,+4.872,+1.628,-116 +inception_v4.tf_in1k,299,86.150,13.850,96.923,3.077,42.68,0.875,bicubic,+6.006,+1.941,+48 +resnetrs101.tf_in1k,192,86.148,13.852,96.881,3.119,63.62,0.940,bicubic,+5.438,+1.643,-35 +res2net101d.in1k,224,86.143,13.857,96.844,3.156,45.23,0.875,bilinear,+4.889,+1.496,-114 +resnet50.a2_in1k,288,86.135,13.865,96.676,3.324,25.56,1.000,bicubic,+5.355,+1.698,-48 +efficientvit_b1.r288_in1k,288,86.133,13.867,96.932,3.068,9.10,1.000,bicubic,+5.823,+1.956,+18 +inception_resnet_v2.tf_in1k,299,86.129,13.871,97.034,2.966,55.84,0.897,bicubic,+5.683,+2.114,-2 +convnext_nano_ols.d1h_in1k,224,86.118,13.882,96.834,3.166,15.65,0.950,bicubic,+5.212,+1.580,-72 +resnetaa50.a1h_in1k,224,86.109,13.891,96.960,3.040,25.56,0.950,bicubic,+5.495,+1.748,-28 +mobilevitv2_150.cvnets_in1k,256,86.090,13.910,96.853,3.147,10.59,0.888,bicubic,+5.686,+1.811,+3 +cspresnext50.ra_in1k,256,86.079,13.921,97.101,2.899,20.57,0.887,bilinear,+5.527,+1.771,-26 +tf_efficientnet_el.in1k,300,86.073,13.927,96.960,3.040,10.59,0.904,bicubic,+5.831,+1.842,+28 +resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,224,86.071,13.929,97.205,2.795,25.03,0.875,bilinear,+5.755,+1.819,+9 +resnet101s.gluon_in1k,224,86.067,13.933,97.032,2.968,44.67,0.875,bicubic,+5.781,+1.882,+15 +ecaresnet50t.a2_in1k,224,86.064,13.936,96.725,3.275,25.57,0.950,bicubic,+5.180,+1.703,-75 +lambda_resnet50ts.a1h_in1k,256,86.060,13.940,96.742,3.258,21.54,0.950,bicubic,+4.874,+1.646,-118 +convnext_pico_ols.d1_in1k,288,86.052,13.948,97.022,2.978,9.06,1.000,bicubic,+5.594,+1.774,-15 +edgenext_small_rw.sw_in1k,320,86.052,13.948,96.943,3.057,7.83,1.000,bicubic,+5.600,+1.737,-14 +ecaresnetlight.miil_in1k,224,86.043,13.957,97.079,2.921,30.16,0.875,bicubic,+5.587,+1.831,-16 +poolformer_s24.sail_in1k,224,86.034,13.966,97.030,2.970,21.39,0.900,bicubic,+5.734,+1.970,+6 +convnext_pico.d1_in1k,288,86.022,13.978,96.938,3.062,9.05,0.950,bicubic,+5.592,+1.878,-11 +efficientformerv2_s1.snap_dist_in1k,224,86.020,13.980,96.829,3.171,6.19,0.950,bicubic,+6.336,+2.139,+80 +resnetv2_50.a1h_in1k,224,86.017,13.982,96.904,3.096,25.55,0.950,bicubic,+5.611,+1.820,-12 +convnextv2_pico.fcmae_ft_in1k,224,86.011,13.989,96.987,3.013,9.07,0.875,bicubic,+5.707,+1.905,+1 +seresnext101_32x4d.gluon_in1k,224,86.009,13.991,96.981,3.019,48.96,0.875,bicubic,+5.123,+1.673,-86 +gcresnext50ts.ch_in1k,256,86.007,13.993,96.966,3.034,15.67,0.900,bicubic,+5.399,+1.786,-43 +seresnet33ts.ra2_in1k,256,86.005,13.995,97.007,2.993,19.78,0.900,bicubic,+5.633,+1.901,-9 +ecaresnet26t.ra2_in1k,320,86.000,14.000,97.015,2.985,16.01,0.950,bicubic,+6.100,+1.945,+47 +resnet50d.ra2_in1k,224,86.000,14.000,96.990,3.010,25.58,0.875,bicubic,+5.452,+1.832,-42 +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,224,86.000,14.000,96.966,3.034,8.46,0.900,bicubic,+5.870,+1.968,+21 +mobilenet_edgetpu_v2_m,224,85.983,14.017,96.953,3.047,8.46,0.900,bicubic,+5.865,+1.959,+21 +resnet152.a3_in1k,224,85.981,14.019,96.851,3.149,60.19,0.950,bicubic,+5.433,+1.847,-44 +resnetblur50.bt_in1k,288,85.979,14.021,96.985,3.015,25.56,0.950,bicubic,+5.731,+1.785,+4 +tf_efficientnet_b2.ap_in1k,260,85.979,14.021,96.819,3.181,9.11,0.890,bicubic,+5.683,+1.787,-6 +tf_efficientnetv2_b3.in1k,240,85.968,14.032,96.832,3.168,14.36,0.904,bicubic,+5.256,+1.656,-68 +vit_base_patch32_224.augreg_in21k_ft_in1k,224,85.960,14.040,97.124,2.876,88.22,0.900,bicubic,+5.224,+1.554,-73 +resnet50d.a1_in1k,224,85.956,14.044,96.366,3.634,25.58,0.950,bicubic,+5.225,+1.688,-73 +seresnext101_64x4d.gluon_in1k,224,85.953,14.047,96.985,3.015,88.23,0.875,bicubic,+5.067,+1.717,-100 +resnext50_32x4d.ra_in1k,288,85.947,14.053,97.030,2.970,25.03,0.950,bicubic,+5.241,+1.672,-69 +convnext_nano.d1h_in1k,224,85.926,14.074,96.855,3.145,15.59,0.950,bicubic,+5.164,+1.523,-81 +tf_efficientnetv2_b2.in1k,260,85.921,14.079,96.868,3.132,10.10,0.890,bicubic,+5.695,+1.858,+1 +fbnetv3_d.ra2_in1k,256,85.909,14.091,97.037,2.963,10.31,0.950,bilinear,+6.245,+2.081,+63 +vit_large_patch32_384.orig_in21k_ft_in1k,384,85.904,14.096,97.363,2.637,306.63,1.000,bicubic,+4.398,+1.875,-198 +darknet53.c2ns_in1k,256,85.900,14.100,96.857,3.143,41.61,0.887,bicubic,+5.898,+1.815,+18 +resnet152d.gluon_in1k,224,85.896,14.104,96.817,3.183,60.21,0.875,bicubic,+5.420,+1.621,-48 +tf_efficientnet_b2.aa_in1k,260,85.889,14.111,96.847,3.154,9.11,0.890,bicubic,+5.807,+1.934,+10 +resnet50_gn.a1h_in1k,224,85.883,14.117,96.847,3.154,25.56,0.940,bicubic,+5.817,+1.893,+12 +vit_base_patch16_224.sam_in1k,224,85.877,14.123,96.704,3.296,86.57,0.900,bicubic,+5.635,+1.936,-7 +resnet101d.gluon_in1k,224,85.877,14.123,96.684,3.316,44.57,0.875,bicubic,+5.411,+1.650,-48 +repvgg_b2g4.rvgg_in1k,224,85.870,14.130,96.817,3.183,61.76,0.875,bilinear,+6.474,+2.137,+80 +efficientvit_b1.r256_in1k,256,85.866,14.134,96.787,3.213,9.10,1.000,bicubic,+6.122,+2.009,+44 +hgnet_tiny.paddle_in1k,224,85.844,14.155,97.028,2.972,14.74,0.965,bicubic,+5.956,+1.980,+24 +mobilenetv4_conv_blur_medium.e500_r224_in1k,224,85.832,14.168,96.947,3.053,9.72,0.950,bicubic,+6.386,+2.027,+75 +seresnet50.ra2_in1k,224,85.827,14.173,97.004,2.995,28.09,0.875,bicubic,+5.567,+1.936,-18 +inception_resnet_v2.tf_ens_adv_in1k,299,85.817,14.183,96.755,3.245,55.84,0.897,bicubic,+5.825,+1.799,+8 +resnet50.c2_in1k,224,85.810,14.190,96.900,3.100,25.56,0.950,bicubic,+5.942,+2.034,+23 +resnet50.ram_in1k,224,85.806,14.194,96.716,3.284,25.56,0.875,bicubic,+6.774,+2.330,+118 +mixnet_xl.ra_in1k,224,85.806,14.194,96.699,3.301,11.90,0.875,bicubic,+5.316,+1.761,-63 +gcresnet33ts.ra2_in1k,256,85.789,14.211,96.883,3.117,19.88,0.900,bicubic,+5.711,+1.753,-1 +seresnet50.a1_in1k,224,85.789,14.211,96.552,3.448,28.09,0.950,bicubic,+5.777,+1.846,+1 +legacy_seresnext101_32x4d.in1k,224,85.766,14.235,96.761,3.239,48.96,0.875,bilinear,+5.492,+1.729,-30 +res2net50d.in1k,224,85.763,14.237,96.772,3.228,25.72,0.875,bilinear,+5.493,+1.752,-30 +tf_efficientnet_lite3.in1k,300,85.759,14.241,96.881,3.119,8.20,0.904,bilinear,+5.927,+2.011,+24 +resnet50.c1_in1k,224,85.755,14.245,96.934,3.066,25.56,0.950,bicubic,+5.989,+1.976,+28 +xcit_tiny_24_p16_224.fb_in1k,224,85.744,14.256,96.938,3.062,12.12,1.000,bicubic,+6.286,+2.056,+58 +resnext101_32x4d.gluon_in1k,224,85.740,14.260,96.622,3.378,44.18,0.875,bicubic,+5.404,+1.714,-46 +resnet101.a3_in1k,224,85.740,14.260,96.494,3.506,44.55,0.950,bicubic,+5.920,+1.880,+23 +ese_vovnet39b.ra_in1k,224,85.738,14.262,96.913,3.087,24.57,0.875,bicubic,+6.422,+2.199,+75 +eca_resnet33ts.ra2_in1k,256,85.738,14.262,96.898,3.102,19.68,0.900,bicubic,+5.646,+1.918,-14 +regnety_320.pycls_in1k,224,85.734,14.267,96.721,3.280,145.05,0.875,bicubic,+4.938,+1.481,-115 +repvit_m0_9.dist_450e_in1k,224,85.729,14.271,96.823,3.177,5.49,0.950,bicubic,+6.671,+2.435,+101 +cspresnet50.ra_in1k,256,85.723,14.277,96.799,3.200,21.62,0.887,bilinear,+6.135,+2.109,+40 +xception71.tf_in1k,299,85.712,14.288,96.774,3.226,42.34,0.903,bicubic,+5.804,+1.934,-5 +resnet50.a1_in1k,224,85.712,14.288,96.486,3.514,25.56,0.950,bicubic,+5.330,+1.888,-58 +darknetaa53.c2ns_in1k,256,85.701,14.299,96.876,3.124,36.02,0.887,bilinear,+5.956,+1.974,+18 +resnext101_64x4d.gluon_in1k,224,85.701,14.299,96.644,3.356,83.46,0.875,bicubic,+5.061,+1.644,-96 +resnet50.ra_in1k,288,85.699,14.301,96.891,3.109,25.56,0.950,bicubic,+5.839,+2.089,+4 +resmlp_big_24_224.fb_in1k,224,85.697,14.303,96.419,3.580,129.14,0.875,bicubic,+4.663,+1.394,-156 +efficientnet_em.ra2_in1k,240,85.684,14.316,96.943,3.057,6.90,0.882,bicubic,+6.420,+2.147,+71 +resnet33ts.ra2_in1k,288,85.680,14.320,96.753,3.247,19.68,1.000,bicubic,+5.972,+1.939,+21 +deit_small_patch16_224.fb_in1k,224,85.674,14.326,96.911,3.089,22.05,0.900,bicubic,+5.812,+1.855,-2 +hgnetv2_b0.ssld_stage2_ft_in1k,288,85.674,14.326,96.819,3.181,6.00,1.000,bicubic,+7.076,+2.439,+131 +dpn107.mx_in1k,224,85.669,14.331,96.757,3.243,86.92,0.875,bicubic,+5.501,+1.821,-38 +ecaresnet50t.a3_in1k,224,85.667,14.333,96.736,3.264,25.57,0.950,bicubic,+6.119,+2.026,+31 +wide_resnet50_2.tv2_in1k,176,85.637,14.363,96.836,3.164,68.88,0.875,bilinear,+5.201,+1.754,-77 +efficientnet_b2_pruned.in1k,260,85.637,14.363,96.736,3.264,8.31,0.890,bicubic,+5.729,+1.826,-15 +resnet50d.a2_in1k,224,85.627,14.373,96.407,3.593,25.58,0.950,bicubic,+5.359,+1.765,-53 +resmlp_36_224.fb_in1k,224,85.623,14.377,96.795,3.205,44.69,0.875,bicubic,+5.850,+1.907,+3 +tiny_vit_5m_224.in1k,224,85.612,14.388,96.947,3.053,5.39,0.950,bicubic,+6.416,+2.145,+71 +seresnet50.a2_in1k,224,85.603,14.397,96.575,3.425,28.09,0.950,bicubic,+5.501,+1.855,-36 +resnet50.bt_in1k,288,85.601,14.399,96.812,3.188,25.56,0.950,bicubic,+5.949,+1.904,+15 +levit_192.fb_dist_in1k,224,85.601,14.399,96.742,3.258,10.95,0.900,bicubic,+5.751,+1.938,-7 +mobilevitv2_125.cvnets_in1k,256,85.597,14.403,96.669,3.331,7.48,0.888,bicubic,+5.919,+1.825,+10 +levit_conv_192.fb_dist_in1k,224,85.595,14.405,96.744,3.256,10.95,0.900,bicubic,+5.735,+1.774,-12 +ecaresnet50d_pruned.miil_in1k,224,85.586,14.414,96.934,3.066,19.94,0.875,bicubic,+5.864,+2.062,+3 +resnet152c.gluon_in1k,224,85.573,14.427,96.671,3.329,60.21,0.875,bicubic,+5.667,+2.067,-25 +pit_xs_distilled_224.in1k,224,85.569,14.431,96.689,3.312,11.00,0.900,bicubic,+6.401,+2.321,+65 +resnet32ts.ra2_in1k,288,85.565,14.435,96.866,3.134,17.96,1.000,bicubic,+6.177,+2.190,+32 +tf_efficientnetv2_b1.in1k,240,85.565,14.435,96.710,3.290,8.14,0.882,bicubic,+6.047,+2.128,+20 +regnety_120.pycls_in1k,224,85.563,14.437,96.755,3.245,51.82,0.875,bicubic,+5.181,+1.651,-86 +resnext50d_32x4d.bt_in1k,224,85.563,14.437,96.746,3.254,25.05,0.875,bicubic,+5.891,+1.868,+3 +resnext50_32x4d.a2_in1k,224,85.563,14.437,96.298,3.702,25.03,0.950,bicubic,+5.119,+1.668,-95 +nf_regnet_b1.ra2_in1k,288,85.539,14.461,96.797,3.203,10.22,0.900,bicubic,+6.171,+2.071,+32 +wide_resnet101_2.tv2_in1k,176,85.539,14.461,96.569,3.431,126.89,0.875,bilinear,+5.051,+1.589,-108 +regnetx_320.pycls_in1k,224,85.528,14.472,96.661,3.339,107.81,0.875,bicubic,+5.266,+1.649,-70 +convnextv2_femto.fcmae_ft_in1k,288,85.507,14.493,96.787,3.213,5.23,0.950,bicubic,+6.175,+2.185,+34 +fbnetv3_b.ra2_in1k,256,85.505,14.495,96.866,3.134,8.60,0.950,bilinear,+6.351,+2.134,+56 +mobilenetv4_conv_medium.e500_r224_in1k,224,85.496,14.504,96.932,3.068,9.72,0.950,bicubic,+6.404,+2.144,+59 +resnet152.gluon_in1k,224,85.496,14.504,96.565,3.435,60.19,0.875,bicubic,+5.784,+1.845,-8 +regnety_160.pycls_in1k,224,85.488,14.512,96.620,3.380,83.59,0.875,bicubic,+5.204,+1.638,-80 +dpn92.mx_in1k,224,85.484,14.516,96.661,3.339,37.67,0.875,bicubic,+5.456,+1.783,-51 +resnet152.tv2_in1k,176,85.484,14.516,96.499,3.502,60.19,0.875,bilinear,+5.272,+1.845,-68 +fastvit_s12.apple_in1k,256,85.479,14.521,96.725,3.275,9.47,0.900,bicubic,+5.559,+1.933,-48 +resnet50.b1k_in1k,224,85.479,14.521,96.721,3.280,25.56,0.950,bicubic,+5.915,+2.099,0 +resnet50.d_in1k,224,85.479,14.521,96.560,3.440,25.56,0.950,bicubic,+5.575,+1.412,-41 +resnetrs50.tf_in1k,224,85.477,14.523,96.748,3.252,35.69,0.910,bicubic,+5.561,+1.774,-48 +rexnet_130.nav_in1k,224,85.471,14.529,96.691,3.309,7.56,0.875,bicubic,+5.981,+2.007,+5 +resnet50.a2_in1k,224,85.447,14.553,96.492,3.508,25.56,0.950,bicubic,+5.619,+1.932,-30 +resnext50_32x4d.a1_in1k,224,85.443,14.557,96.144,3.856,25.03,0.950,bicubic,+4.917,+1.686,-128 +convnext_tiny.fb_in22k_ft_in1k,288,85.437,14.563,96.814,3.186,28.59,1.000,bicubic,+6.487,+2.106,+60 +dpn131.mx_in1k,224,85.437,14.563,96.633,3.367,79.25,0.875,bicubic,+5.603,+1.925,-35 +efficientnet_b0.ra4_e3600_r224_in1k,256,85.433,14.568,96.759,3.241,5.29,1.000,bicubic,+6.062,+2.007,+13 +resnet101.tv2_in1k,176,85.415,14.585,96.409,3.591,44.55,0.875,bilinear,+5.509,+1.559,-51 +tf_efficientnet_b2.in1k,260,85.392,14.608,96.597,3.403,9.11,0.890,bicubic,+5.778,+1.873,-15 +regnetx_160.pycls_in1k,224,85.385,14.614,96.646,3.354,54.28,0.875,bicubic,+5.527,+1.822,-42 +dla102x2.in1k,224,85.381,14.619,96.633,3.367,41.28,0.875,bilinear,+5.933,+1.979,+1 +resnet50.tv2_in1k,176,85.362,14.638,96.562,3.438,25.56,0.875,bilinear,+5.930,+1.930,+2 +repvit_m0_9.dist_300e_in1k,224,85.356,14.644,96.627,3.373,5.49,0.950,bicubic,+6.702,+2.513,+83 +gmlp_s16_224.ra3_in1k,224,85.353,14.646,96.644,3.356,19.42,0.875,bicubic,+5.709,+2.016,-21 +regnetx_016.tv2_in1k,224,85.351,14.649,96.823,3.177,9.19,0.965,bicubic,+5.899,+2.051,-5 +efficientnet_b2.ra_in1k,256,85.351,14.649,96.541,3.459,9.11,0.875,bicubic,+6.011,+1.965,+8 +dpn98.mx_in1k,224,85.345,14.655,96.503,3.497,61.57,0.875,bicubic,+5.689,+1.861,-27 +skresnext50_32x4d.ra_in1k,224,85.345,14.655,96.390,3.610,27.48,0.875,bicubic,+5.179,+1.746,-86 +lambda_resnet26t.c1_in1k,256,85.334,14.666,96.706,3.294,10.96,0.940,bicubic,+6.208,+2.152,+32 +seresnext50_32x4d.gluon_in1k,224,85.334,14.666,96.684,3.316,27.56,0.875,bicubic,+5.416,+1.868,-68 +botnet26t_256.c1_in1k,256,85.319,14.681,96.609,3.390,12.49,0.950,bicubic,+6.063,+2.079,+16 +xception65.tf_in1k,299,85.315,14.685,96.633,3.367,39.92,0.903,bicubic,+5.761,+1.973,-23 +resnet101c.gluon_in1k,224,85.313,14.687,96.417,3.583,44.57,0.875,bicubic,+5.771,+1.829,-21 +resnext50_32x4d.a3_in1k,224,85.313,14.687,96.336,3.664,25.03,0.950,bicubic,+6.061,+1.510,+15 +hgnetv2_b0.ssld_stage1_in22k_in1k,288,85.304,14.696,96.770,3.230,6.00,1.000,bicubic,+7.270,+2.522,+123 +convnext_pico_ols.d1_in1k,224,85.294,14.706,96.659,3.341,9.06,0.950,bicubic,+5.752,+1.953,-25 +resnetblur50.bt_in1k,224,85.289,14.711,96.528,3.472,25.56,0.875,bicubic,+5.983,+1.990,+3 +regnety_064.pycls_in1k,224,85.281,14.719,96.635,3.365,30.58,0.875,bicubic,+5.553,+1.871,-46 +resnet34d.ra2_in1k,288,85.279,14.721,96.691,3.309,21.82,0.950,bicubic,+6.839,+2.343,+88 +resmlp_24_224.fb_in1k,224,85.277,14.723,96.505,3.495,30.02,0.875,bicubic,+5.897,+1.955,-12 +coat_lite_mini.in1k,224,85.266,14.734,96.671,3.329,11.01,0.900,bicubic,+6.170,+2.079,+21 +cait_xxs24_224.fb_dist_in1k,224,85.257,14.743,96.727,3.273,11.96,1.000,bicubic,+6.865,+2.393,+89 +convnext_pico.d1_in1k,224,85.257,14.743,96.622,3.378,9.05,0.875,bicubic,+5.741,+2.068,-27 +convnext_femto_ols.d1_in1k,288,85.247,14.753,96.772,3.228,5.23,0.950,bicubic,+6.333,+2.224,+34 +regnety_080.pycls_in1k,224,85.247,14.753,96.614,3.386,39.18,0.875,bicubic,+5.365,+1.778,-73 +efficientvit_b1.r224_in1k,224,85.242,14.758,96.441,3.559,9.10,0.950,bicubic,+6.002,+2.147,+4 +resnet33ts.ra2_in1k,256,85.236,14.764,96.609,3.390,19.68,0.900,bicubic,+6.020,+2.034,+5 +resnext50_32x4d.ra_in1k,224,85.230,14.770,96.528,3.472,25.03,0.875,bicubic,+5.430,+1.920,-63 +halonet26t.a1h_in1k,256,85.217,14.783,96.475,3.525,12.48,0.950,bicubic,+6.083,+2.135,+10 +resnext101_32x8d.tv_in1k,224,85.217,14.783,96.441,3.559,88.79,0.875,bilinear,+5.903,+1.917,-10 +xcit_tiny_12_p16_224.fb_dist_in1k,224,85.215,14.785,96.603,3.397,6.72,1.000,bicubic,+6.637,+2.393,+58 +resnet50.b2k_in1k,224,85.210,14.790,96.637,3.363,25.56,0.950,bicubic,+5.830,+2.061,-25 +pvt_v2_b1.in1k,224,85.208,14.792,96.622,3.378,14.01,0.900,bicubic,+6.506,+2.130,+48 +resnet32ts.ra2_in1k,256,85.195,14.805,96.629,3.371,17.96,0.900,bicubic,+6.141,+2.261,+14 +fastvit_t12.apple_in1k,256,85.195,14.805,96.595,3.405,7.55,0.900,bicubic,+5.919,+2.025,-12 +inception_v3.gluon_in1k,299,85.180,14.819,96.535,3.465,23.83,0.875,bicubic,+6.376,+2.161,+33 +resnet50.a1h_in1k,176,85.176,14.824,96.586,3.414,25.56,0.900,bicubic,+5.916,+2.088,-11 +edgenext_small_rw.sw_in1k,256,85.170,14.830,96.432,3.568,7.83,0.900,bicubic,+5.580,+1.914,-52 +convnext_femto.d1_in1k,288,85.159,14.841,96.723,3.277,5.22,0.950,bicubic,+6.449,+2.475,+39 +hrnet_w48.ms_in1k,224,85.153,14.847,96.492,3.508,77.47,0.875,bilinear,+5.829,+1.958,-24 +hgnetv2_b1.ssld_stage1_in22k_in1k,224,85.148,14.851,96.659,3.341,6.34,0.965,bicubic,+7.070,+2.473,+93 +resnet101.gluon_in1k,224,85.148,14.851,96.381,3.619,44.55,0.875,bicubic,+5.843,+1.749,-20 +legacy_xception.tf_in1k,299,85.146,14.854,96.475,3.525,22.86,0.897,bicubic,+6.096,+2.089,+6 +resnet50.fb_ssl_yfcc100m_ft_in1k,224,85.138,14.862,96.821,3.179,25.56,0.875,bilinear,+5.886,+2.531,-16 +eca_halonext26ts.c1_in1k,256,85.136,14.864,96.586,3.414,10.76,0.940,bicubic,+5.618,+1.876,-51 +regnetx_120.pycls_in1k,224,85.136,14.864,96.479,3.521,46.11,0.875,bicubic,+5.528,+1.745,-61 +tf_efficientnet_b1.ap_in1k,240,85.133,14.867,96.409,3.591,7.79,0.882,bicubic,+5.846,+2.093,-25 +resnet50.am_in1k,224,85.131,14.869,96.562,3.438,25.56,0.875,bicubic,+6.127,+2.171,+4 +eca_botnext26ts_256.c1_in1k,256,85.129,14.871,96.509,3.491,10.59,0.950,bicubic,+5.857,+1.915,-25 +tf_efficientnetv2_b2.in1k,208,85.125,14.875,96.494,3.506,10.10,0.890,bicubic,+5.919,+1.892,-16 +repvit_m1.dist_in1k,224,85.112,14.888,96.605,3.395,5.49,0.950,bicubic,+6.570,+2.523,+42 +hrnet_w64.ms_in1k,224,85.108,14.892,96.740,3.260,128.06,0.875,bilinear,+5.650,+2.092,-53 +mobileone_s4.apple_in1k,224,85.099,14.901,96.437,3.563,14.95,0.900,bilinear,+5.649,+1.947,-52 +fbnetv3_d.ra2_in1k,224,85.097,14.903,96.686,3.314,10.31,0.950,bilinear,+6.441,+2.232,+30 +res2net101_26w_4s.in1k,224,85.093,14.907,96.375,3.625,45.21,0.875,bilinear,+5.907,+1.911,-19 +nf_regnet_b1.ra2_in1k,256,85.078,14.922,96.541,3.459,10.22,0.900,bicubic,+6.356,+2.155,+21 +lambda_resnet26rpt_256.c1_in1k,256,85.076,14.924,96.550,3.450,10.99,0.940,bicubic,+6.122,+2.128,-3 +ecaresnet26t.ra2_in1k,256,85.072,14.928,96.631,3.369,16.01,0.875,bicubic,+6.186,+2.087,+4 +dpn68b.ra_in1k,288,85.063,14.937,96.447,3.553,12.61,1.000,bicubic,+5.719,+2.021,-47 +tf_efficientnet_cc_b1_8e.in1k,240,85.063,14.937,96.428,3.572,39.72,0.882,bicubic,+5.741,+2.048,-42 +hgnetv2_b1.ssld_stage2_ft_in1k,224,85.044,14.956,96.678,3.322,6.34,0.965,bicubic,+6.148,+2.194,-2 +tf_efficientnet_b0.ns_jft_in1k,224,85.020,14.980,96.492,3.508,5.29,0.875,bicubic,+6.336,+2.122,+20 +xcit_nano_12_p8_384.fb_dist_in1k,384,85.008,14.992,96.624,3.376,3.05,1.000,bicubic,+7.188,+2.594,+98 +resnext50_32x4d.gluon_in1k,224,85.003,14.997,96.434,3.566,25.03,0.875,bicubic,+5.649,+2.010,-52 +resnest26d.gluon_in1k,224,84.997,15.003,96.635,3.365,17.07,0.875,bilinear,+6.521,+2.335,+38 +coat_tiny.in1k,224,84.971,15.029,96.407,3.593,5.50,0.900,bicubic,+6.529,+2.371,+40 +regnety_040.pycls_in1k,224,84.950,15.050,96.601,3.399,20.65,0.875,bicubic,+5.714,+1.937,-36 +resnet50d.a3_in1k,224,84.931,15.069,96.296,3.704,25.58,0.950,bicubic,+6.189,+2.060,+7 +mobilevitv2_100.cvnets_in1k,256,84.916,15.084,96.390,3.610,4.90,0.888,bicubic,+6.824,+2.222,+64 +tf_efficientnet_b1.aa_in1k,240,84.914,15.086,96.366,3.634,7.79,0.882,bicubic,+6.074,+2.166,-4 +legacy_seresnext50_32x4d.in1k,224,84.909,15.091,96.437,3.563,27.56,0.875,bilinear,+5.825,+2.005,-27 +dla169.in1k,224,84.903,15.097,96.524,3.476,53.39,0.875,bilinear,+6.197,+2.186,+8 +hrnet_w44.ms_in1k,224,84.884,15.116,96.432,3.568,67.06,0.875,bilinear,+6.002,+2.058,-10 +resnet50.ra_in1k,224,84.882,15.118,96.473,3.527,25.56,0.875,bicubic,+6.068,+2.153,-6 +regnety_008_tv.tv2_in1k,224,84.879,15.120,96.601,3.399,6.43,0.965,bicubic,+6.223,+2.219,+10 +regnetx_080.pycls_in1k,224,84.877,15.123,96.447,3.553,39.57,0.875,bicubic,+5.661,+1.899,-43 +resnet50s.gluon_in1k,224,84.867,15.133,96.441,3.559,25.68,0.875,bicubic,+6.157,+1.999,+2 +visformer_tiny.in1k,224,84.860,15.140,96.516,3.484,10.32,0.900,bicubic,+6.700,+2.274,+50 +dla60_res2net.in1k,224,84.845,15.155,96.471,3.529,20.85,0.875,bilinear,+6.365,+2.385,+22 +dla60_res2next.in1k,224,84.835,15.165,96.413,3.587,17.03,0.875,bilinear,+6.347,+2.413,+17 +vit_tiny_patch16_384.augreg_in21k_ft_in1k,384,84.828,15.172,96.710,3.290,5.79,1.000,bicubic,+6.382,+2.158,+24 +dla102x.in1k,224,84.826,15.174,96.537,3.463,26.31,0.875,bilinear,+6.326,+2.309,+11 +resnet50d.gluon_in1k,224,84.826,15.174,96.388,3.612,25.58,0.875,bicubic,+5.746,+1.930,-37 +res2net50_26w_8s.in1k,224,84.826,15.174,96.349,3.651,48.40,0.875,bilinear,+5.878,+2.069,-27 +resnet26t.ra2_in1k,320,84.820,15.180,96.422,3.578,16.01,1.000,bicubic,+6.490,+2.376,+30 +mixnet_l.ft_in1k,224,84.818,15.182,96.330,3.670,7.33,0.875,bicubic,+5.848,+2.150,-33 +resnet152.tv_in1k,224,84.815,15.185,96.219,3.781,60.19,0.875,bilinear,+6.485,+2.083,+29 +levit_conv_128.fb_dist_in1k,224,84.813,15.187,96.349,3.651,9.21,0.900,bicubic,+6.325,+2.205,+10 +levit_128.fb_dist_in1k,224,84.809,15.191,96.351,3.649,9.21,0.900,bicubic,+6.323,+2.353,+10 +repghostnet_200.in1k,224,84.807,15.193,96.413,3.587,9.80,0.875,bicubic,+6.017,+2.077,-18 +xception41.tf_in1k,299,84.800,15.200,96.413,3.587,26.97,0.903,bicubic,+6.276,+2.115,+3 +repvgg_b2.rvgg_in1k,224,84.794,15.206,96.499,3.502,89.02,0.875,bilinear,+6.000,+2.085,-21 +hrnet_w18.ms_aug_in1k,224,84.794,15.206,96.471,3.529,21.30,0.950,bilinear,+6.678,+2.409,+38 +pit_xs_224.in1k,224,84.785,15.214,96.486,3.514,10.62,0.900,bicubic,+6.573,+2.336,+30 +resnet152.a3_in1k,160,84.785,15.214,96.127,3.873,60.19,0.950,bicubic,+5.889,+2.003,-34 +efficientnet_b0.ra4_e3600_r224_in1k,224,84.783,15.217,96.451,3.549,5.29,0.900,bicubic,+6.211,+2.114,-6 +regnetx_064.pycls_in1k,224,84.781,15.219,96.499,3.502,26.21,0.875,bicubic,+5.721,+2.029,-51 +resnext50_32x4d.tv2_in1k,176,84.775,15.225,96.332,3.668,25.03,0.875,bilinear,+5.401,+2.030,-89 +gcresnext26ts.ch_in1k,288,84.771,15.229,96.306,3.694,10.48,1.000,bicubic,+6.333,+2.272,+9 +hrnet_w40.ms_in1k,224,84.756,15.244,96.562,3.438,57.56,0.875,bilinear,+5.832,+2.085,-43 +res2net50_26w_6s.in1k,224,84.747,15.253,96.285,3.715,37.05,0.875,bilinear,+6.163,+2.179,-14 +resnet34.a1_in1k,288,84.747,15.253,96.230,3.771,21.80,1.000,bicubic,+6.809,+2.481,+47 +poolformerv2_s12.sail_in1k,224,84.739,15.261,96.381,3.619,11.89,1.000,bicubic,+6.731,+2.517,+39 +resmlp_12_224.fb_distilled_in1k,224,84.724,15.276,96.227,3.773,15.35,0.875,bicubic,+6.776,+2.665,+43 +vit_base_patch32_384.augreg_in1k,384,84.719,15.281,96.332,3.668,88.30,1.000,bicubic,+5.965,+2.096,-31 +fbnetv3_b.ra2_in1k,224,84.709,15.291,96.475,3.525,8.60,0.950,bilinear,+6.549,+2.311,+21 +legacy_seresnet152.in1k,224,84.702,15.298,96.394,3.606,66.82,0.875,bilinear,+6.042,+2.022,-24 +bat_resnext26ts.ch_in1k,256,84.696,15.304,96.287,3.713,10.73,0.900,bicubic,+6.416,+2.173,+11 +cs3darknet_m.c2ns_in1k,288,84.689,15.310,96.496,3.504,9.31,0.950,bicubic,+7.061,+2.478,+63 +hrnet_w32.ms_in1k,224,84.677,15.323,96.415,3.585,41.23,0.875,bilinear,+6.221,+2.229,-6 +convnextv2_femto.fcmae_ft_in1k,224,84.672,15.328,96.434,3.566,5.23,0.875,bicubic,+6.188,+2.440,-11 +selecsls60b.in1k,224,84.655,15.345,96.296,3.704,32.77,0.875,bicubic,+6.245,+2.130,-2 +seresnext26d_32x4d.bt_in1k,288,84.647,15.353,96.274,3.726,16.81,0.950,bicubic,+5.821,+2.016,-46 +tf_efficientnetv2_b0.in1k,224,84.625,15.375,96.274,3.726,7.14,0.875,bicubic,+6.245,+2.248,-1 +regnetx_040.pycls_in1k,224,84.613,15.387,96.383,3.617,22.12,0.875,bicubic,+6.119,+2.141,-19 +efficientnet_b1.ft_in1k,256,84.611,15.389,96.334,3.666,7.79,1.000,bicubic,+5.812,+1.992,-46 +efficientnet_es.ra_in1k,224,84.604,15.396,96.313,3.687,5.44,0.875,bicubic,+6.512,+2.381,+17 +vit_relpos_base_patch32_plus_rpn_256.sw_in1k,256,84.596,15.405,96.014,3.986,119.42,0.900,bicubic,+5.100,+1.900,-122 +hrnet_w30.ms_in1k,224,84.591,15.409,96.398,3.602,37.71,0.875,bilinear,+6.377,+2.184,+4 +regnety_032.pycls_in1k,224,84.576,15.424,96.432,3.568,19.44,0.875,bicubic,+5.680,+2.004,-60 +seresnext26t_32x4d.bt_in1k,288,84.570,15.430,96.383,3.617,16.81,0.950,bicubic,+5.832,+2.067,-46 +resnet50.bt_in1k,224,84.570,15.430,96.362,3.638,25.56,0.875,bicubic,+6.138,+2.092,-12 +wide_resnet101_2.tv_in1k,224,84.559,15.441,96.349,3.651,126.89,0.875,bilinear,+5.711,+2.037,-60 +tf_mixnet_l.in1k,224,84.559,15.441,96.247,3.753,7.33,0.875,bicubic,+5.783,+2.249,-50 +hrnet_w18_small_v2.gluon_in1k,224,84.544,15.456,96.293,3.707,15.60,0.875,bicubic,+6.360,+2.381,0 +dla60x.in1k,224,84.525,15.475,96.261,3.739,17.35,0.875,bilinear,+6.295,+2.242,-4 +seresnext26ts.ch_in1k,288,84.523,15.477,96.328,3.672,10.39,1.000,bicubic,+6.231,+2.252,-9 +legacy_seresnet101.in1k,224,84.514,15.486,96.343,3.657,49.33,0.875,bilinear,+6.118,+2.085,-17 +vit_small_patch16_224.augreg_in1k,224,84.510,15.490,96.287,3.713,22.05,0.900,bicubic,+5.668,+2.009,-64 +cs3darknet_focus_m.c2ns_in1k,288,84.480,15.520,96.426,3.574,9.30,0.950,bicubic,+7.188,+2.456,+66 +resnet50.a3_in1k,224,84.480,15.520,95.986,4.014,25.56,0.950,bicubic,+6.428,+2.206,+5 +resnet26t.ra2_in1k,256,84.476,15.524,96.208,3.792,16.01,0.940,bicubic,+6.592,+2.370,+22 +coat_lite_tiny.in1k,224,84.465,15.535,96.366,3.634,5.72,0.900,bicubic,+6.917,+2.442,+46 +tf_efficientnet_b1.in1k,240,84.461,15.539,96.086,3.914,7.79,0.882,bicubic,+5.903,+1.984,-43 +tf_efficientnet_em.in1k,240,84.459,15.541,96.187,3.813,6.90,0.882,bicubic,+6.323,+2.125,-5 +dpn68b.ra_in1k,224,84.453,15.547,96.155,3.845,12.61,0.950,bicubic,+5.909,+2.177,-44 +convnext_femto_ols.d1_in1k,224,84.433,15.567,96.227,3.773,5.23,0.875,bicubic,+6.589,+2.403,+22 +repvgg_b1.rvgg_in1k,224,84.425,15.575,96.217,3.783,57.42,0.875,bilinear,+6.053,+2.109,-24 +wide_resnet50_2.tv_in1k,224,84.408,15.592,96.247,3.753,68.88,0.875,bilinear,+5.928,+2.045,-37 +efficientnet_b1_pruned.in1k,240,84.403,15.597,96.125,3.875,6.33,0.882,bicubic,+6.151,+2.305,-20 +res2net50_26w_4s.in1k,224,84.380,15.620,96.082,3.918,25.70,0.875,bilinear,+6.394,+2.220,+2 +vit_base_patch16_224.augreg_in1k,224,84.380,15.620,96.052,3.948,86.57,0.900,bicubic,+5.238,+1.962,-102 +res2net50_14w_8s.in1k,224,84.341,15.659,96.059,3.941,25.06,0.875,bilinear,+6.195,+2.209,-14 +hardcorenas_f.miil_green_in1k,224,84.324,15.676,96.016,3.984,8.20,0.875,bilinear,+6.216,+2.216,-12 +selecsls60.in1k,224,84.284,15.716,96.091,3.909,30.67,0.875,bicubic,+6.298,+2.265,0 +hgnetv2_b0.ssld_stage2_ft_in1k,224,84.279,15.720,96.287,3.713,6.00,0.965,bicubic,+6.938,+2.501,+46 +mobilevit_s.cvnets_in1k,256,84.271,15.729,96.264,3.736,5.58,0.900,bicubic,+5.969,+2.098,-30 +resnet101.a3_in1k,160,84.260,15.740,95.960,4.040,44.55,0.950,bicubic,+6.332,+2.274,+2 +ese_vovnet19b_dw.ra_in1k,288,84.241,15.759,96.253,3.747,6.54,0.950,bicubic,+6.443,+2.475,+14 +regnetx_032.pycls_in1k,224,84.237,15.763,96.253,3.747,15.30,0.875,bicubic,+6.071,+2.163,-24 +mobileone_s3.apple_in1k,224,84.233,15.767,96.118,3.881,10.17,0.900,bilinear,+6.231,+2.209,-8 +eca_resnext26ts.ch_in1k,288,84.228,15.772,96.198,3.803,10.30,1.000,bicubic,+6.212,+2.266,-11 +convnextv2_atto.fcmae_ft_in1k,288,84.226,15.774,96.056,3.943,3.71,0.950,bicubic,+6.436,+2.367,+11 +res2next50.in1k,224,84.220,15.780,96.007,3.993,24.67,0.875,bilinear,+5.984,+2.103,-33 +convnext_atto_ols.a2_in1k,288,84.209,15.791,96.236,3.764,3.70,0.950,bicubic,+6.989,+2.536,+47 +resnet50c.gluon_in1k,224,84.205,15.795,96.165,3.835,25.58,0.875,bicubic,+6.189,+2.171,-16 +mobileone_s2.apple_in1k,224,84.192,15.808,96.063,3.937,7.88,0.900,bilinear,+6.688,+2.399,+26 +dla102.in1k,224,84.190,15.810,96.202,3.798,33.27,0.875,bilinear,+6.172,+2.254,-19 +gcresnext26ts.ch_in1k,256,84.186,15.814,96.072,3.929,10.48,0.900,bicubic,+6.370,+2.249,+3 +cs3darknet_m.c2ns_in1k,256,84.162,15.838,96.242,3.758,9.31,0.887,bicubic,+7.180,+2.640,+57 +ecaresnet50t.a3_in1k,160,84.158,15.842,95.937,4.063,25.57,0.950,bicubic,+6.378,+2.325,+5 +rexnet_100.nav_in1k,224,84.149,15.851,96.255,3.745,4.80,0.875,bicubic,+6.303,+2.379,-5 +convnext_atto.d2_in1k,288,84.149,15.851,96.200,3.800,3.70,0.950,bicubic,+7.135,+2.498,+51 +fastvit_t8.apple_dist_in1k,256,84.149,15.851,96.059,3.941,4.03,0.900,bicubic,+6.977,+2.785,+43 +densenetblur121d.ra_in1k,288,84.145,15.855,96.242,3.758,8.00,0.950,bicubic,+6.835,+2.442,+29 +seresnext26ts.ch_in1k,256,84.139,15.861,96.065,3.935,10.39,0.900,bicubic,+6.283,+2.275,-10 +inception_v3.tf_in1k,299,84.136,15.864,95.913,4.087,23.83,0.875,bicubic,+6.270,+2.273,-12 +tf_efficientnetv2_b1.in1k,192,84.134,15.866,96.037,3.963,8.14,0.882,bicubic,+6.204,+2.215,-19 +convnext_femto.d1_in1k,224,84.119,15.881,96.200,3.800,5.22,0.875,bicubic,+6.611,+2.512,+13 +res2net50_48w_2s.in1k,224,84.115,15.885,95.967,4.033,25.29,0.875,bilinear,+6.579,+2.403,+11 +xcit_tiny_12_p16_224.fb_in1k,224,84.107,15.893,96.240,3.760,6.72,1.000,bicubic,+6.965,+2.510,+36 +ghostnetv2_160.in1k,224,84.104,15.896,96.204,3.796,12.39,0.875,bicubic,+6.268,+2.262,-12 +tf_efficientnet_lite2.in1k,260,84.104,15.896,96.069,3.931,6.09,0.890,bicubic,+6.632,+2.325,+12 +resnet34d.ra2_in1k,224,84.096,15.904,95.971,4.029,21.82,0.875,bicubic,+6.992,+2.595,+34 +hgnetv2_b0.ssld_stage1_in22k_in1k,224,84.070,15.930,96.234,3.766,6.00,0.965,bicubic,+7.226,+2.622,+51 +poolformer_s12.sail_in1k,224,84.060,15.940,96.174,3.826,11.92,0.900,bicubic,+6.816,+2.636,+24 +efficientnet_b0.ra_in1k,224,84.036,15.964,95.967,4.033,5.29,0.875,bicubic,+6.340,+2.427,-9 +resnet34.a2_in1k,288,84.030,15.970,95.926,4.074,21.80,1.000,bicubic,+6.882,+2.636,+28 +crossvit_9_dagger_240.in1k,240,84.028,15.972,96.067,3.933,8.78,0.875,bicubic,+7.042,+2.465,+37 +tf_efficientnet_cc_b0_8e.in1k,224,83.998,16.002,96.035,3.965,24.01,0.875,bicubic,+6.074,+2.385,-30 +regnety_016.pycls_in1k,224,83.998,16.002,96.007,3.993,11.20,0.875,bicubic,+6.090,+2.283,-27 +resnext50_32x4d.tv_in1k,224,83.989,16.011,95.960,4.040,25.03,0.875,bilinear,+6.357,+2.286,-11 +cs3darknet_focus_m.c2ns_in1k,256,83.985,16.015,96.048,3.952,9.30,0.887,bicubic,+7.211,+2.504,+45 +resnet50.gluon_in1k,224,83.981,16.019,96.027,3.973,25.56,0.875,bicubic,+6.401,+2.301,-6 +gmixer_24_224.ra3_in1k,224,83.972,16.028,95.852,4.148,24.72,0.875,bicubic,+5.924,+2.198,-48 +hardcorenas_e.miil_green_in1k,224,83.970,16.030,95.913,4.087,8.07,0.875,bilinear,+6.180,+2.181,-21 +densenet161.tv_in1k,224,83.931,16.069,96.020,3.980,28.68,0.875,bicubic,+6.582,+2.366,+4 +mobilenetv1_125.ra4_e3600_r224_in1k,256,83.912,16.088,96.095,3.905,6.27,1.000,bicubic,+6.328,+2.301,-11 +mobilenetv2_120d.ra_in1k,224,83.904,16.096,95.909,4.091,5.83,0.875,bicubic,+6.606,+2.393,+6 +seresnext26t_32x4d.bt_in1k,224,83.889,16.111,95.941,4.059,16.81,0.875,bicubic,+5.909,+2.191,-44 +inception_v3.tf_adv_in1k,299,83.882,16.118,95.941,4.059,23.83,0.875,bicubic,+6.286,+2.215,-17 +resnext50_32x4d.a3_in1k,160,83.868,16.133,95.625,4.375,25.03,0.950,bicubic,+6.134,+2.311,-25 +resnet101.tv_in1k,224,83.863,16.137,95.892,4.108,44.55,0.875,bilinear,+6.459,+2.340,-3 +tinynet_a.in1k,192,83.842,16.158,95.805,4.195,6.19,0.875,bicubic,+6.178,+2.273,-25 +resnet26d.bt_in1k,288,83.812,16.188,95.965,4.035,16.01,0.950,bicubic,+6.388,+2.335,-6 +dpn68b.mx_in1k,224,83.803,16.197,95.986,4.014,12.61,0.875,bicubic,+6.261,+2.144,-16 +hardcorenas_d.miil_green_in1k,224,83.795,16.205,95.717,4.283,7.50,0.875,bilinear,+6.345,+2.237,-10 +inception_v3.tv_in1k,299,83.793,16.207,95.898,4.101,23.83,0.875,bicubic,+6.319,+2.424,-14 +xcit_nano_12_p8_224.fb_dist_in1k,224,83.742,16.259,95.937,4.063,3.05,1.000,bicubic,+7.413,+2.867,+53 +seresnext26d_32x4d.bt_in1k,224,83.742,16.259,95.839,4.161,16.81,0.875,bicubic,+6.156,+2.229,-23 +dla60.in1k,224,83.718,16.282,95.926,4.074,22.04,0.875,bilinear,+6.672,+2.608,+12 +resnext26ts.ra2_in1k,288,83.703,16.297,95.978,4.022,10.30,1.000,bicubic,+6.521,+2.504,+2 +eca_resnext26ts.ch_in1k,256,83.695,16.305,95.924,4.076,10.30,0.900,bicubic,+6.253,+2.348,-15 +repvgg_b1g4.rvgg_in1k,224,83.692,16.308,96.027,3.973,39.97,0.875,bilinear,+6.090,+2.183,-31 +convmixer_1024_20_ks9_p14.in1k,224,83.686,16.314,95.892,4.108,24.38,0.960,bicubic,+6.742,+2.528,+15 +skresnet34.ra_in1k,224,83.680,16.320,95.920,4.080,22.28,0.875,bicubic,+6.724,+2.602,+13 +regnetx_008.tv2_in1k,224,83.675,16.325,95.986,4.014,7.26,0.965,bicubic,+6.387,+2.324,-10 +legacy_seresnet50.in1k,224,83.660,16.340,95.963,4.037,28.09,0.875,bilinear,+6.016,+2.243,-38 +tf_efficientnet_b0.ap_in1k,224,83.660,16.340,95.796,4.204,5.29,0.875,bicubic,+6.566,+2.536,+1 +resnetrs50.tf_in1k,160,83.645,16.355,95.828,4.172,35.69,0.910,bicubic,+5.795,+2.014,-55 +tf_efficientnet_cc_b0_4e.in1k,224,83.645,16.355,95.728,4.272,13.31,0.875,bicubic,+6.321,+2.396,-17 +seresnet50.a3_in1k,224,83.645,16.355,95.679,4.321,28.09,0.950,bicubic,+6.609,+2.607,+3 +repghostnet_150.in1k,224,83.639,16.361,95.916,4.084,6.58,0.875,bicubic,+6.169,+2.418,-27 +resnet50d.a3_in1k,160,83.618,16.382,95.642,4.358,25.58,0.950,bicubic,+6.396,+2.386,-13 +densenet121.ra_in1k,288,83.598,16.402,96.048,3.952,7.98,0.950,bicubic,+7.118,+2.674,+32 +efficientnet_b1.ft_in1k,224,83.584,16.416,95.773,4.227,7.79,0.875,bicubic,+5.990,+2.143,-41 +resmlp_12_224.fb_in1k,224,83.566,16.434,95.760,4.240,15.35,0.875,bicubic,+6.906,+2.590,+17 +tf_efficientnet_b0.aa_in1k,224,83.552,16.448,95.758,4.242,5.29,0.875,bicubic,+6.669,+2.488,+6 +densenet201.tv_in1k,224,83.549,16.451,95.805,4.195,20.01,0.875,bicubic,+6.265,+2.325,-21 +mobilenetv3_large_100.miil_in21k_ft_in1k,224,83.537,16.463,95.433,4.567,5.48,0.875,bilinear,+5.627,+2.549,-68 +gernet_s.idstcv_in1k,224,83.526,16.474,95.798,4.202,8.17,0.875,bilinear,+6.624,+2.662,+2 +mixnet_m.ft_in1k,224,83.519,16.481,95.698,4.302,5.01,0.875,bicubic,+6.245,+2.270,-23 +legacy_seresnext26_32x4d.in1k,224,83.513,16.487,95.738,4.262,16.79,0.875,bicubic,+6.413,+2.406,-14 +hrnet_w18.ms_in1k,224,83.509,16.491,95.903,4.097,21.30,0.875,bilinear,+6.749,+2.457,+7 +resnet34.bt_in1k,288,83.485,16.515,95.960,4.040,21.80,0.950,bicubic,+6.977,+2.617,+20 +densenetblur121d.ra_in1k,224,83.481,16.519,95.811,4.189,8.00,0.875,bicubic,+6.909,+2.625,+13 +resnext26ts.ra2_in1k,256,83.468,16.532,95.732,4.268,10.30,0.900,bicubic,+6.694,+2.594,+2 +selecsls42b.in1k,224,83.462,16.538,95.738,4.262,32.46,0.875,bicubic,+6.276,+2.346,-25 +efficientvit_m5.r224_in1k,224,83.451,16.549,95.796,4.204,12.47,0.875,bicubic,+6.369,+2.630,-17 +resnet34.a1_in1k,224,83.438,16.562,95.519,4.481,21.80,0.950,bicubic,+7.024,+2.633,+18 +efficientformerv2_s0.snap_dist_in1k,224,83.408,16.592,95.809,4.191,3.60,0.950,bicubic,+7.292,+2.955,+25 +hardcorenas_c.miil_green_in1k,224,83.379,16.622,95.702,4.298,5.52,0.875,bilinear,+6.285,+2.510,-21 +ghostnetv2_130.in1k,224,83.364,16.636,95.830,4.170,8.96,0.875,bicubic,+6.602,+2.470,-3 +tf_efficientnet_lite1.in1k,240,83.349,16.651,95.647,4.353,5.42,0.882,bicubic,+6.677,+2.415,-1 +tf_efficientnetv2_b0.in1k,192,83.285,16.715,95.636,4.364,7.14,0.875,bicubic,+6.405,+2.452,-10 +mobilenetv1_125.ra4_e3600_r224_in1k,224,83.276,16.724,95.657,4.343,6.27,0.900,bicubic,+6.348,+2.441,-15 +fastvit_t8.apple_in1k,256,83.240,16.760,95.828,4.172,4.03,0.900,bicubic,+7.056,+2.786,+17 +tf_efficientnet_es.in1k,224,83.193,16.807,95.583,4.417,5.44,0.875,bicubic,+6.585,+2.407,-1 +mobilenetv2_140.ra_in1k,224,83.191,16.809,95.668,4.332,6.11,0.875,bicubic,+6.663,+2.660,+4 +dpn68.mx_in1k,224,83.191,16.809,95.615,4.385,12.61,0.875,bicubic,+6.853,+2.625,+11 +convnextv2_atto.fcmae_ft_in1k,224,83.191,16.809,95.527,4.473,3.71,0.875,bicubic,+6.545,+2.483,-6 +tf_mixnet_m.in1k,224,83.189,16.811,95.474,4.526,5.01,0.875,bicubic,+6.225,+2.306,-24 +regnetx_016.pycls_in1k,224,83.174,16.826,95.747,4.253,9.19,0.875,bicubic,+6.250,+2.317,-21 +mobilenetv1_100h.ra4_e3600_r224_in1k,256,83.161,16.839,95.713,4.287,5.28,0.950,bicubic,+6.567,+2.447,-6 +xcit_nano_12_p16_384.fb_dist_in1k,384,83.148,16.852,95.736,4.264,3.05,1.000,bicubic,+7.680,+3.066,+34 +levit_conv_128s.fb_dist_in1k,224,83.118,16.882,95.585,4.415,7.78,0.900,bicubic,+6.584,+2.703,-4 +ese_vovnet19b_dw.ra_in1k,224,83.101,16.899,95.794,4.206,6.54,0.875,bicubic,+6.303,+2.522,-20 +levit_128s.fb_dist_in1k,224,83.078,16.922,95.574,4.426,7.78,0.900,bicubic,+6.555,+2.700,-4 +resnet26d.bt_in1k,224,83.052,16.948,95.606,4.394,16.01,0.875,bicubic,+6.354,+2.450,-17 +repvgg_a2.rvgg_in1k,224,83.011,16.989,95.600,4.400,28.21,0.875,bilinear,+6.519,+2.584,-4 +convnext_atto_ols.a2_in1k,224,83.007,16.993,95.536,4.464,3.70,0.875,bicubic,+7.105,+2.692,+13 +resnet50.tv_in1k,224,82.969,17.031,95.474,4.526,25.56,0.875,bilinear,+6.813,+2.608,+3 +convnext_atto.d2_in1k,224,82.966,17.034,95.706,4.294,3.70,0.875,bicubic,+7.298,+2.794,+15 +resnet26.bt_in1k,288,82.939,17.061,95.726,4.274,16.00,0.950,bicubic,+6.561,+2.550,-5 +mobilenetv1_100.ra4_e3600_r224_in1k,256,82.930,17.070,95.636,4.364,4.23,0.950,bicubic,+6.844,+2.624,+2 +repghostnet_130.in1k,224,82.896,17.104,95.444,4.556,5.48,0.875,bicubic,+6.530,+2.546,-6 +hardcorenas_b.miil_green_in1k,224,82.873,17.128,95.386,4.614,5.18,0.875,bilinear,+6.320,+2.620,-17 +mobileone_s1.apple_in1k,224,82.853,17.147,95.525,4.475,4.83,0.900,bilinear,+7.079,+2.737,+8 +densenet121.ra_in1k,224,82.813,17.187,95.580,4.420,7.98,0.875,bicubic,+7.237,+2.932,+15 +mobilevitv2_075.cvnets_in1k,256,82.789,17.211,95.576,4.424,2.87,0.888,bicubic,+7.185,+2.822,+12 +resnet50.a3_in1k,160,82.766,17.234,95.085,4.915,25.56,0.950,bicubic,+6.772,+2.591,-1 +vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,384,82.674,17.326,95.864,4.136,6.36,1.000,bicubic,+6.712,+2.588,-2 +densenet169.tv_in1k,224,82.674,17.326,95.568,4.432,14.15,0.875,bicubic,+6.752,+2.592,+1 +regnety_004.tv2_in1k,224,82.631,17.369,95.504,4.496,4.34,0.965,bicubic,+7.043,+2.806,+9 +tf_efficientnet_b0.in1k,224,82.582,17.418,95.422,4.578,5.29,0.875,bicubic,+6.046,+2.412,-24 +resnet34.a2_in1k,224,82.574,17.426,95.249,4.750,21.80,0.950,bicubic,+7.058,+2.793,+10 +edgenext_x_small.in1k,288,82.569,17.431,95.427,4.573,2.34,1.000,bicubic,+6.863,+2.667,0 +mixnet_s.ft_in1k,224,82.525,17.476,95.354,4.646,4.13,0.875,bicubic,+6.523,+2.554,-10 +regnety_008.pycls_in1k,224,82.507,17.493,95.489,4.511,6.26,0.875,bicubic,+6.173,+2.429,-17 +vit_small_patch32_224.augreg_in21k_ft_in1k,224,82.503,17.497,95.668,4.332,22.88,0.900,bicubic,+6.507,+2.396,-11 +mobilenetv1_100h.ra4_e3600_r224_in1k,224,82.405,17.595,95.194,4.806,5.28,0.875,bicubic,+6.747,+2.690,-2 +efficientnet_lite0.ra_in1k,224,82.379,17.621,95.279,4.721,4.65,0.875,bicubic,+6.889,+2.765,+6 +resnest14d.gluon_in1k,224,82.373,17.627,95.331,4.669,10.61,0.875,bilinear,+6.857,+2.817,+2 +hardcorenas_a.miil_green_in1k,224,82.335,17.666,95.271,4.729,5.26,0.875,bilinear,+6.409,+2.785,-12 +mobilenetv1_100.ra4_e3600_r224_in1k,224,82.296,17.704,95.055,4.945,4.23,0.875,bicubic,+6.912,+2.743,+7 +efficientnet_es_pruned.in1k,224,82.279,17.721,95.305,4.695,5.44,0.875,bicubic,+7.279,+2.857,+18 +mobilenetv3_rw.rmsp_in1k,224,82.277,17.723,95.239,4.761,5.48,0.875,bicubic,+6.663,+2.541,-6 +semnasnet_100.rmsp_in1k,224,82.266,17.734,95.232,4.768,3.89,0.875,bicubic,+6.802,+2.620,+2 +mobilenetv3_large_100.ra_in1k,224,82.159,17.841,95.198,4.802,5.48,0.875,bicubic,+6.373,+2.670,-14 +resnet34.bt_in1k,224,82.155,17.845,95.064,4.936,21.80,0.875,bicubic,+6.993,+2.644,+7 +mobilenetv2_110d.ra_in1k,224,82.068,17.932,95.059,4.941,4.52,0.875,bicubic,+7.014,+2.873,+12 +vit_tiny_patch16_224.augreg_in21k_ft_in1k,224,82.055,17.945,95.482,4.518,5.72,0.900,bicubic,+6.603,+2.628,-1 +mixer_b16_224.goog_in21k_ft_in1k,224,82.031,17.969,94.449,5.551,59.88,0.875,bicubic,+5.391,+2.221,-47 +tf_mixnet_s.in1k,224,82.021,17.979,95.117,4.883,4.13,0.875,bicubic,+6.369,+2.489,-14 +deit_tiny_distilled_patch16_224.fb_in1k,224,82.014,17.986,95.145,4.855,5.91,0.900,bicubic,+7.474,+3.251,+22 +repvgg_b0.rvgg_in1k,224,82.014,17.986,95.117,4.883,15.82,0.875,bilinear,+6.852,+2.947,0 +tf_efficientnet_lite0.in1k,224,81.957,18.043,95.162,4.838,4.65,0.875,bicubic,+7.111,+2.982,+11 +hrnet_w18_small_v2.ms_in1k,224,81.952,18.048,95.164,4.836,15.60,0.875,bilinear,+6.854,+2.746,+2 +resnet26.bt_in1k,224,81.937,18.063,95.249,4.750,16.00,0.875,bicubic,+6.645,+2.677,-6 +ghostnetv2_100.in1k,224,81.901,18.099,95.100,4.900,6.16,0.875,bicubic,+6.725,+2.766,-5 +edgenext_x_small.in1k,256,81.899,18.101,95.027,4.973,2.34,0.900,bicubic,+7.019,+2.723,+6 +seresnet50.a3_in1k,160,81.888,18.112,94.961,5.039,28.09,0.950,bicubic,+6.788,+2.865,-3 +tf_mobilenetv3_large_100.in1k,224,81.863,18.137,95.066,4.934,5.48,0.875,bilinear,+6.349,+2.464,-17 +tinynet_b.in1k,188,81.863,18.137,94.882,5.118,3.73,0.875,bicubic,+6.897,+2.686,+2 +pit_ti_distilled_224.in1k,224,81.779,18.221,95.094,4.906,5.10,0.900,bicubic,+7.501,+3.166,+16 +repghostnet_111.in1k,224,81.743,18.257,94.829,5.171,4.54,0.875,bicubic,+6.675,+2.645,-5 +densenet121.tv_in1k,224,81.722,18.278,95.015,4.985,7.98,0.875,bicubic,+6.974,+2.861,+3 +regnety_006.pycls_in1k,224,81.700,18.300,95.124,4.877,6.06,0.875,bicubic,+6.438,+2.598,-14 +regnetx_004_tv.tv2_in1k,224,81.688,18.312,95.055,4.945,5.50,0.965,bicubic,+7.104,+2.885,+6 +xcit_nano_12_p8_224.fb_in1k,224,81.675,18.325,95.256,4.744,3.05,1.000,bicubic,+7.775,+3.110,+19 +resnet18d.ra2_in1k,288,81.673,18.327,95.044,4.955,11.71,0.950,bicubic,+7.879,+3.210,+20 +mobilenetv4_conv_small.e2400_r224_in1k,256,81.668,18.332,94.991,5.009,3.77,0.950,bicubic,+7.024,+2.969,0 +dla34.in1k,224,81.649,18.351,94.867,5.133,15.74,0.875,bilinear,+7.017,+2.815,+1 +crossvit_9_240.in1k,240,81.632,18.368,94.987,5.013,8.55,0.875,bicubic,+7.656,+3.011,+12 +fbnetc_100.rmsp_in1k,224,81.549,18.451,94.951,5.049,5.57,0.875,bilinear,+6.435,+2.569,-17 +mobilevit_xs.cvnets_in1k,256,81.544,18.456,95.034,4.966,2.32,0.900,bicubic,+6.912,+2.686,-3 +legacy_seresnet34.in1k,224,81.542,18.458,94.901,5.098,21.96,0.875,bilinear,+6.754,+2.767,-8 +regnetx_008.pycls_in1k,224,81.515,18.485,95.059,4.941,7.26,0.875,bicubic,+6.453,+2.719,-16 +mnasnet_100.rmsp_in1k,224,81.481,18.520,94.904,5.096,4.38,0.875,bicubic,+6.819,+2.796,-8 +efficientvit_m4.r224_in1k,224,81.472,18.528,95.002,4.998,8.80,0.875,bicubic,+7.126,+3.018,-2 +resnet34.gluon_in1k,224,81.472,18.528,94.797,5.203,21.80,0.875,bicubic,+6.898,+2.809,-4 +vgg19_bn.tv_in1k,224,81.455,18.545,94.773,5.227,143.68,0.875,bilinear,+7.219,+2.929,0 +mobilenetv4_conv_small.e1200_r224_in1k,256,81.431,18.569,95.070,4.930,3.77,0.950,bicubic,+7.141,+2.958,-3 +repvgg_a1.rvgg_in1k,224,81.271,18.729,94.699,5.301,14.09,0.875,bilinear,+6.803,+2.859,-6 +vit_base_patch32_224.augreg_in1k,224,81.139,18.861,94.436,5.564,88.22,0.900,bicubic,+6.233,+2.666,-19 +convit_tiny.fb_in1k,224,81.122,18.878,95.049,4.951,5.71,0.875,bicubic,+7.996,+3.359,+16 +crossvit_tiny_240.in1k,240,81.088,18.912,94.985,5.015,7.01,0.875,bicubic,+7.758,+3.075,+11 +resnet18.a1_in1k,288,81.047,18.953,94.372,5.628,11.69,1.000,bicubic,+7.883,+3.318,+13 +repghostnet_100.in1k,224,80.936,19.064,94.528,5.472,4.07,0.875,bicubic,+6.736,+2.978,-6 +spnasnet_100.rmsp_in1k,224,80.866,19.134,94.524,5.476,4.42,0.875,bilinear,+6.784,+2.696,-6 +resnet34.a3_in1k,224,80.840,19.160,94.361,5.639,21.80,0.950,bicubic,+7.858,+3.245,+14 +mobilenetv4_conv_small.e2400_r224_in1k,224,80.799,19.201,94.603,5.397,3.77,0.875,bicubic,+7.069,+3.177,0 +efficientvit_m3.r224_in1k,224,80.699,19.301,94.558,5.442,6.90,0.875,bicubic,+7.291,+3.210,+3 +ghostnet_100.in1k,224,80.675,19.325,94.363,5.637,5.18,0.875,bicubic,+6.716,+2.821,-7 +regnetx_006.pycls_in1k,224,80.631,19.369,94.532,5.468,6.20,0.875,bicubic,+6.747,+2.866,-6 +skresnet18.ra_in1k,224,80.631,19.369,94.383,5.617,11.96,0.875,bicubic,+7.611,+3.209,+8 +regnety_004.pycls_in1k,224,80.624,19.376,94.697,5.303,4.34,0.875,bicubic,+6.618,+2.941,-12 +pit_ti_224.in1k,224,80.603,19.397,94.611,5.389,4.85,0.900,bicubic,+7.679,+3.199,+9 +resnet18.fb_swsl_ig1b_ft_in1k,224,80.564,19.436,94.758,5.242,11.69,0.875,bilinear,+7.276,+3.004,+1 +mobilenetv4_conv_small.e1200_r224_in1k,224,80.543,19.457,94.383,5.617,3.77,0.875,bicubic,+7.107,+3.041,-5 +vgg16_bn.tv_in1k,224,80.535,19.465,94.581,5.419,138.37,0.875,bilinear,+7.179,+3.081,-4 +semnasnet_075.rmsp_in1k,224,80.486,19.515,94.323,5.677,2.91,0.875,bicubic,+7.478,+3.197,+2 +hrnet_w18_small.gluon_in1k,224,80.411,19.589,94.018,5.982,13.19,0.875,bicubic,+6.479,+2.846,-15 +resnet34.tv_in1k,224,80.394,19.606,94.408,5.592,21.80,0.875,bilinear,+7.096,+2.986,-5 +resnet18d.ra2_in1k,224,80.392,19.608,94.229,5.771,11.71,0.875,bicubic,+8.124,+3.547,+11 +resnet18.a2_in1k,288,80.289,19.711,94.094,5.906,11.69,1.000,bicubic,+7.927,+3.478,+6 +xcit_nano_12_p16_224.fb_dist_in1k,224,80.249,19.752,94.361,5.639,3.05,1.000,bicubic,+7.931,+3.535,+7 +mobilenetv2_100.ra_in1k,224,80.240,19.760,94.195,5.805,3.50,0.875,bicubic,+7.304,+3.193,-2 +vit_base_patch32_224.sam_in1k,224,80.221,19.779,93.825,6.175,88.22,0.900,bicubic,+6.515,+2.813,-16 +resnet18.fb_ssl_yfcc100m_ft_in1k,224,80.112,19.888,94.590,5.410,11.69,0.875,bilinear,+7.476,+3.174,-2 +tf_mobilenetv3_large_075.in1k,224,80.080,19.920,94.191,5.809,3.99,0.875,bilinear,+6.632,+2.847,-17 +deit_tiny_patch16_224.fb_in1k,224,80.024,19.976,94.451,5.549,5.72,0.900,bicubic,+7.828,+3.351,+7 +hrnet_w18_small.ms_in1k,224,79.533,20.467,93.911,6.089,13.19,0.875,bilinear,+7.199,+3.225,0 +repvgg_a0.rvgg_in1k,224,79.529,20.471,93.768,6.232,9.11,0.875,bilinear,+7.105,+3.254,-4 +vgg19.tv_in1k,224,79.486,20.514,93.868,6.132,143.67,0.875,bilinear,+7.086,+2.990,-4 +regnetx_004.pycls_in1k,224,79.450,20.550,93.862,6.138,5.16,0.875,bicubic,+7.018,+3.014,-7 +resnet18.a1_in1k,224,79.450,20.550,93.655,6.345,11.69,0.950,bicubic,+7.962,+3.579,+10 +tf_mobilenetv3_large_minimal_100.in1k,224,79.251,20.749,93.734,6.266,3.92,0.875,bilinear,+6.981,+3.072,-3 +edgenext_xx_small.in1k,288,79.211,20.789,93.823,6.177,1.33,1.000,bicubic,+7.325,+3.289,+3 +legacy_seresnet18.in1k,224,79.155,20.845,93.774,6.226,11.78,0.875,bicubic,+7.413,+3.434,+4 +resnet14t.c3_in1k,224,79.126,20.875,93.599,6.401,10.08,0.950,bicubic,+6.883,+3.281,-4 +repghostnet_080.in1k,224,79.108,20.892,93.687,6.313,3.28,0.875,bicubic,+6.872,+3.197,-4 +vgg16.tv_in1k,224,79.038,20.962,93.657,6.343,138.36,0.875,bilinear,+7.438,+3.259,+2 +vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,224,79.025,20.975,93.872,6.128,6.34,0.900,bicubic,+7.205,+3.058,-1 +vgg13_bn.tv_in1k,224,78.985,21.015,93.640,6.360,133.05,0.875,bilinear,+7.429,+3.268,+1 +lcnet_100.ra2_in1k,224,78.906,21.094,93.537,6.463,2.95,0.875,bicubic,+6.778,+3.169,-6 +pvt_v2_b0.in1k,224,78.739,21.261,93.855,6.145,3.67,0.900,bicubic,+8.083,+3.643,+8 +edgenext_xx_small.in1k,256,78.694,21.306,93.505,6.495,1.33,0.900,bicubic,+7.578,+3.465,+4 +efficientvit_m2.r224_in1k,224,78.615,21.385,93.561,6.439,4.19,0.875,bicubic,+7.815,+3.401,+5 +mobileone_s0.apple_in1k,224,78.513,21.487,93.337,6.663,5.29,0.875,bilinear,+7.115,+3.472,-1 +resnet18.a2_in1k,224,78.489,21.511,93.294,6.706,11.69,0.950,bicubic,+7.855,+3.808,+5 +efficientvit_b0.r224_in1k,224,78.442,21.558,92.796,7.204,3.41,0.950,bicubic,+7.038,+3.362,-4 +tinynet_c.in1k,184,78.429,21.571,93.140,6.860,2.46,0.875,bicubic,+7.205,+3.394,-2 +resnet18.gluon_in1k,224,78.387,21.613,93.132,6.869,11.69,0.875,bicubic,+7.543,+3.382,-1 +resnet14t.c3_in1k,176,78.329,21.671,93.140,6.860,10.08,0.875,bicubic,+7.011,+3.460,-5 +resnet34.a3_in1k,160,78.291,21.709,93.208,6.792,21.80,0.950,bicubic,+7.719,+3.686,+1 +mobilevitv2_050.cvnets_in1k,256,78.128,21.872,93.580,6.420,1.37,0.888,bicubic,+7.970,+3.644,+3 +vgg11_bn.tv_in1k,224,77.951,22.049,93.232,6.768,132.87,0.875,bilinear,+7.567,+3.424,0 +xcit_nano_12_p16_224.fb_in1k,224,77.906,22.094,93.435,6.565,3.05,1.000,bicubic,+7.924,+3.653,+2 +regnety_002.pycls_in1k,224,77.415,22.585,92.909,7.090,3.16,0.875,bicubic,+7.121,+3.375,-1 +mixer_l16_224.goog_in21k_ft_in1k,224,77.319,22.681,90.542,9.458,208.20,0.875,bicubic,+5.229,+2.892,-20 +resnet18.tv_in1k,224,77.291,22.709,92.760,7.240,11.69,0.875,bilinear,+7.540,+3.680,+1 +vgg13.tv_in1k,224,77.234,22.766,92.704,7.295,133.05,0.875,bilinear,+7.294,+3.448,-1 +mobilevit_xxs.cvnets_in1k,256,76.604,23.396,92.675,7.325,1.27,0.900,bicubic,+7.676,+3.735,+2 +resnet18.a3_in1k,224,76.442,23.558,92.228,7.772,11.69,0.950,bicubic,+8.196,+4.070,+6 +efficientvit_m1.r224_in1k,224,76.405,23.595,92.551,7.449,2.98,0.875,bicubic,+8.053,+3.867,+3 +vgg11.tv_in1k,224,76.395,23.605,92.160,7.840,132.86,0.875,bilinear,+7.347,+3.528,-3 +repghostnet_058.in1k,224,76.262,23.738,92.064,7.936,2.55,0.875,bicubic,+7.328,+3.678,-3 +resnet10t.c3_in1k,224,76.164,23.836,92.207,7.793,5.44,0.950,bicubic,+7.818,+4.185,+1 +regnetx_002.pycls_in1k,224,76.124,23.876,92.196,7.804,2.68,0.875,bicubic,+7.364,+3.632,-2 +lcnet_075.ra2_in1k,224,76.053,23.947,92.083,7.917,2.36,0.875,bicubic,+7.269,+3.695,-4 +dla60x_c.in1k,224,75.671,24.329,92.164,7.836,1.32,0.875,bilinear,+7.743,+3.738,+1 +mobilenetv3_small_100.lamb_in1k,224,74.879,25.121,91.483,8.517,2.54,0.875,bicubic,+7.241,+3.833,+1 +tf_mobilenetv3_small_100.in1k,224,74.729,25.271,91.268,8.732,2.54,0.875,bilinear,+6.797,+3.584,-2 +resnet10t.c3_in1k,176,74.541,25.459,91.174,8.826,5.44,0.875,bicubic,+7.817,+4.200,+2 +tinynet_d.in1k,152,74.272,25.727,90.924,9.076,2.34,0.875,bicubic,+7.306,+3.860,0 +repghostnet_050.in1k,224,74.255,25.745,90.830,9.170,2.31,0.875,bicubic,+7.275,+3.890,-2 +mnasnet_small.lamb_in1k,224,73.805,26.195,90.713,9.287,2.03,0.875,bicubic,+7.609,+4.241,0 +dla46x_c.in1k,224,73.638,26.362,91.114,8.886,1.07,0.875,bilinear,+7.630,+4.168,0 +resnet18.a3_in1k,160,73.626,26.374,90.618,9.382,11.69,0.950,bicubic,+7.962,+4.340,+2 +mobilenetv2_050.lamb_in1k,224,73.440,26.560,90.330,9.670,1.97,0.875,bicubic,+7.510,+4.228,-1 +tf_mobilenetv3_small_075.in1k,224,72.825,27.175,90.042,9.958,2.04,0.875,bilinear,+7.093,+3.900,-1 +dla46_c.in1k,224,72.611,27.389,90.501,9.499,1.30,0.875,bilinear,+7.731,+4.171,+1 +mobilenetv3_small_075.lamb_in1k,224,72.321,27.679,89.698,10.302,2.04,0.875,bicubic,+7.055,+4.232,-1 +efficientvit_m0.r224_in1k,224,71.106,28.894,89.589,10.411,2.35,0.875,bicubic,+7.812,+4.439,0 +lcnet_050.ra2_in1k,224,70.438,29.562,88.829,11.171,1.88,0.875,bicubic,+7.308,+4.429,0 +tf_mobilenetv3_small_minimal_100.in1k,224,70.066,29.934,88.530,11.470,2.04,0.875,bilinear,+7.172,+4.246,0 +tinynet_e.in1k,106,66.836,33.164,86.259,13.741,2.04,0.875,bicubic,+6.962,+4.489,0 +mobilenetv3_small_050.lamb_in1k,224,64.705,35.295,84.835,15.165,1.59,0.875,bicubic,+6.781,+4.693,0 +test_efficientnet.r160_in1k,160,52.858,47.142,76.826,23.174,0.36,0.875,bicubic,+6.434,+5.868,0 +test_byobnet.r160_in1k,160,51.991,48.009,76.403,23.597,0.46,0.875,bicubic,+6.591,+5.793,0 +test_vit.r160_in1k,160,46.762,53.238,72.658,27.342,0.37,0.875,bicubic,+5.930,+5.452,0 diff --git a/pytorch-image-models/results/results-imagenet.csv b/pytorch-image-models/results/results-imagenet.csv new file mode 100644 index 0000000000000000000000000000000000000000..ed6c928855b82450842adf3c8e0ef8f8adab5fbc --- /dev/null +++ b/pytorch-image-models/results/results-imagenet.csv @@ -0,0 +1,1446 @@ +model,img_size,top1,top1_err,top5,top5_err,param_count,crop_pct,interpolation +eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,448,90.054,9.946,99.056,0.944,305.08,1.000,bicubic +eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,448,89.966,10.034,99.016,0.984,305.08,1.000,bicubic +eva_giant_patch14_560.m30m_ft_in22k_in1k,560,89.796,10.204,98.990,1.010,"1,014.45",1.000,bicubic +eva02_large_patch14_448.mim_in22k_ft_in1k,448,89.632,10.368,98.954,1.046,305.08,1.000,bicubic +eva_giant_patch14_336.m30m_ft_in22k_in1k,336,89.570,10.430,98.954,1.046,"1,013.01",1.000,bicubic +eva02_large_patch14_448.mim_m38m_ft_in1k,448,89.554,10.446,98.924,1.076,305.08,1.000,bicubic +eva_giant_patch14_336.clip_ft_in1k,336,89.462,10.538,98.828,1.172,"1,013.01",1.000,bicubic +eva_large_patch14_336.in22k_ft_in22k_in1k,336,89.250,10.750,98.852,1.148,304.53,1.000,bicubic +eva_giant_patch14_224.clip_ft_in1k,224,88.886,11.114,98.680,1.320,"1,012.56",0.900,bicubic +convnextv2_huge.fcmae_ft_in22k_in1k_512,512,88.860,11.140,98.740,1.260,660.29,1.000,bicubic +eva_large_patch14_336.in22k_ft_in1k,336,88.690,11.310,98.710,1.290,304.53,1.000,bicubic +eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,448,88.682,11.318,98.728,1.272,87.12,1.000,bicubic +convnextv2_huge.fcmae_ft_in22k_in1k_384,384,88.662,11.338,98.734,1.266,660.29,1.000,bicubic +vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,336,88.628,11.372,98.670,1.330,632.46,1.000,bicubic +convnext_xxlarge.clip_laion2b_soup_ft_in1k,256,88.622,11.378,98.718,1.282,846.47,1.000,bicubic +eva_large_patch14_196.in22k_ft_in22k_in1k,196,88.596,11.404,98.662,1.338,304.14,1.000,bicubic +beit_large_patch16_512.in22k_ft_in22k_in1k,512,88.578,11.422,98.660,1.340,305.67,1.000,bicubic +maxvit_xlarge_tf_512.in21k_ft_in1k,512,88.540,11.460,98.652,1.348,475.77,1.000,bicubic +beitv2_large_patch16_224.in1k_ft_in22k_in1k,224,88.406,11.594,98.602,1.398,304.43,0.950,bicubic +beit_large_patch16_384.in22k_ft_in22k_in1k,384,88.382,11.618,98.608,1.392,305.00,1.000,bicubic +tf_efficientnet_l2.ns_jft_in1k,800,88.362,11.638,98.656,1.344,480.31,0.960,bicubic +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,384,88.334,11.666,98.574,1.426,200.13,1.000,bicubic +maxvit_xlarge_tf_384.in21k_ft_in1k,384,88.304,11.696,98.540,1.460,475.32,1.000,bicubic +vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,224,88.278,11.722,98.552,1.448,632.05,1.000,bicubic +eva02_base_patch14_448.mim_in22k_ft_in1k,448,88.266,11.734,98.570,1.430,87.12,1.000,bicubic +vit_large_patch14_clip_336.openai_ft_in12k_in1k,336,88.264,11.736,98.528,1.472,304.53,1.000,bicubic +tf_efficientnet_l2.ns_jft_in1k_475,475,88.250,11.750,98.556,1.444,480.31,0.936,bicubic +maxvit_large_tf_512.in21k_ft_in1k,512,88.236,11.764,98.608,1.392,212.33,1.000,bicubic +regnety_1280.swag_ft_in1k,384,88.224,11.776,98.698,1.302,644.81,1.000,bicubic +maxvit_base_tf_512.in21k_ft_in1k,512,88.212,11.788,98.538,1.462,119.88,1.000,bicubic +vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,336,88.192,11.808,98.570,1.430,304.53,1.000,bicubic +convnextv2_large.fcmae_ft_in22k_in1k_384,384,88.178,11.822,98.518,1.482,197.96,1.000,bicubic +vit_large_patch14_clip_224.openai_ft_in12k_in1k,224,88.162,11.838,98.540,1.460,304.20,1.000,bicubic +caformer_b36.sail_in22k_ft_in1k_384,384,88.066,11.934,98.590,1.410,98.75,1.000,bicubic +maxvit_large_tf_384.in21k_ft_in1k,384,87.996,12.004,98.568,1.432,212.03,1.000,bicubic +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,320,87.970,12.030,98.474,1.526,200.13,1.000,bicubic +eva_large_patch14_196.in22k_ft_in1k,196,87.956,12.044,98.480,1.520,304.14,1.000,bicubic +maxvit_base_tf_384.in21k_ft_in1k,384,87.928,12.072,98.538,1.462,119.65,1.000,bicubic +vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,224,87.898,12.102,98.408,1.592,304.20,1.000,bicubic +convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,384,87.890,12.110,98.448,1.552,200.13,1.000,bicubic +vit_large_patch14_clip_336.laion2b_ft_in1k,336,87.866,12.134,98.354,1.646,304.53,1.000,bicubic +vit_large_patch14_clip_224.openai_ft_in1k,224,87.860,12.140,98.430,1.570,304.20,1.000,bicubic +maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,384,87.812,12.188,98.368,1.632,116.14,1.000,bicubic +convnext_xlarge.fb_in22k_ft_in1k_384,384,87.766,12.234,98.554,1.446,350.20,1.000,bicubic +deit3_large_patch16_384.fb_in22k_ft_in1k,384,87.734,12.266,98.508,1.492,304.76,1.000,bicubic +convnextv2_base.fcmae_ft_in22k_in1k_384,384,87.638,12.362,98.416,1.584,88.72,1.000,bicubic +vit_huge_patch14_clip_224.laion2b_ft_in1k,224,87.624,12.376,98.228,1.772,632.05,1.000,bicubic +convformer_b36.sail_in22k_ft_in1k_384,384,87.602,12.398,98.432,1.568,99.88,1.000,bicubic +convnextv2_large.fcmae_ft_in22k_in1k,288,87.494,12.506,98.360,1.640,197.96,1.000,bicubic +beit_large_patch16_224.in22k_ft_in22k_in1k,224,87.488,12.512,98.316,1.684,304.43,0.900,bicubic +maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,384,87.478,12.522,98.374,1.626,116.09,1.000,bicubic +swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,384,87.474,12.526,98.264,1.736,196.74,1.000,bicubic +caformer_m36.sail_in22k_ft_in1k_384,384,87.472,12.528,98.308,1.692,56.20,1.000,bicubic +convnext_large.fb_in22k_ft_in1k_384,384,87.456,12.544,98.380,1.620,197.77,1.000,bicubic +caformer_b36.sail_in22k_ft_in1k,224,87.440,12.560,98.332,1.668,98.75,1.000,bicubic +vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,87.436,12.564,98.258,1.742,64.27,1.000,bicubic +beitv2_large_patch16_224.in1k_ft_in1k,224,87.414,12.586,98.216,1.784,304.43,0.950,bicubic +coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,384,87.402,12.598,98.308,1.692,73.88,1.000,bicubic +convnext_xlarge.fb_in22k_ft_in1k,288,87.374,12.626,98.330,1.670,350.20,1.000,bicubic +convnext_large_mlp.clip_laion2b_augreg_ft_in1k,256,87.336,12.664,98.222,1.778,200.13,1.000,bicubic +seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,384,87.308,12.692,98.334,1.666,149.39,1.000,bicubic +vit_large_patch14_clip_224.laion2b_ft_in1k,224,87.298,12.702,98.238,1.762,304.20,1.000,bicubic +convnextv2_large.fcmae_ft_in22k_in1k,224,87.264,12.736,98.244,1.756,197.96,0.875,bicubic +vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,384,87.212,12.788,98.028,1.972,86.86,1.000,bicubic +deit3_huge_patch14_224.fb_in22k_ft_in1k,224,87.180,12.820,98.264,1.736,632.13,1.000,bicubic +convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,384,87.150,12.850,98.228,1.772,88.59,1.000,bicubic +swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,384,87.140,12.860,98.228,1.772,87.92,1.000,bicubic +swin_large_patch4_window12_384.ms_in22k_ft_in1k,384,87.138,12.862,98.230,1.770,196.74,1.000,bicubic +vit_large_patch16_384.augreg_in21k_ft_in1k,384,87.094,12.906,98.306,1.694,304.72,1.000,bicubic +volo_d5_512.sail_in1k,512,87.066,12.934,97.974,2.026,296.09,1.150,bicubic +vit_base_patch16_clip_384.openai_ft_in12k_in1k,384,87.028,12.972,98.194,1.806,86.86,0.950,bicubic +convnext_large.fb_in22k_ft_in1k,288,87.014,12.986,98.212,1.788,197.77,1.000,bicubic +convnextv2_base.fcmae_ft_in22k_in1k,288,86.998,13.002,98.164,1.836,88.72,1.000,bicubic +deit3_large_patch16_224.fb_in22k_ft_in1k,224,86.986,13.014,98.240,1.760,304.37,1.000,bicubic +convformer_b36.sail_in22k_ft_in1k,224,86.984,13.016,98.158,1.842,99.88,1.000,bicubic +volo_d5_448.sail_in1k,448,86.978,13.022,97.928,2.072,295.91,1.150,bicubic +convnext_xlarge.fb_in22k_ft_in1k,224,86.970,13.030,98.204,1.796,350.20,0.875,bicubic +swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,256,86.934,13.066,98.104,1.896,196.74,0.900,bicubic +maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,224,86.908,13.092,98.004,1.996,116.14,0.950,bicubic +convformer_m36.sail_in22k_ft_in1k_384,384,86.868,13.132,98.126,1.874,57.05,1.000,bicubic +caformer_s36.sail_in22k_ft_in1k_384,384,86.864,13.136,98.222,1.778,39.30,1.000,bicubic +regnety_320.swag_ft_in1k,384,86.860,13.140,98.356,1.644,145.05,1.000,bicubic +tf_efficientnet_b7.ns_jft_in1k,600,86.852,13.148,98.080,1.920,66.35,0.949,bicubic +hiera_huge_224.mae_in1k_ft_in1k,224,86.834,13.166,98.010,1.990,672.78,0.900,bicubic +convnext_base.fb_in22k_ft_in1k_384,384,86.826,13.174,98.244,1.756,88.59,1.000,bicubic +beit_base_patch16_384.in22k_ft_in22k_in1k,384,86.816,13.184,98.136,1.864,86.74,1.000,bicubic +tf_efficientnetv2_l.in21k_ft_in1k,480,86.802,13.198,98.136,1.864,118.52,1.000,bicubic +volo_d4_448.sail_in1k,448,86.790,13.210,97.880,2.120,193.41,1.150,bicubic +convnextv2_base.fcmae_ft_in22k_in1k,224,86.752,13.248,98.020,1.980,88.72,0.875,bicubic +tf_efficientnetv2_xl.in21k_ft_in1k,512,86.748,13.252,98.014,1.986,208.12,1.000,bicubic +deit3_base_patch16_384.fb_in22k_ft_in1k,384,86.744,13.256,98.110,1.890,86.88,1.000,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,320,86.722,13.278,98.182,1.818,93.59,1.000,bicubic +maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,224,86.638,13.362,98.014,1.986,116.09,0.950,bicubic +vit_base_patch16_clip_384.laion2b_ft_in1k,384,86.638,13.362,98.008,1.992,86.86,1.000,bicubic +convnextv2_huge.fcmae_ft_in1k,288,86.618,13.382,97.968,2.032,660.29,1.000,bicubic +convnext_large.fb_in22k_ft_in1k,224,86.612,13.388,98.036,1.964,197.77,0.875,bicubic +caformer_m36.sail_in22k_ft_in1k,224,86.608,13.392,98.038,1.962,56.20,1.000,bicubic +vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,86.604,13.396,97.936,2.064,64.11,0.950,bicubic +vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,86.602,13.398,98.022,1.978,60.60,1.000,bicubic +maxvit_base_tf_512.in1k,512,86.598,13.402,97.926,2.074,119.88,1.000,bicubic +coatnet_2_rw_224.sw_in12k_ft_in1k,224,86.580,13.420,97.896,2.104,73.87,0.950,bicubic +nextvit_large.bd_ssld_6m_in1k_384,384,86.542,13.458,98.132,1.868,57.87,1.000,bicubic +coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,224,86.540,13.460,97.896,2.104,73.88,0.950,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,288,86.536,13.464,98.094,1.906,93.59,0.950,bicubic +maxvit_large_tf_512.in1k,512,86.534,13.466,97.880,2.120,212.33,1.000,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k,288,86.518,13.482,98.036,1.964,93.59,1.000,bicubic +volo_d3_448.sail_in1k,448,86.512,13.488,97.710,2.290,86.63,1.000,bicubic +beitv2_base_patch16_224.in1k_ft_in22k_in1k,224,86.494,13.506,98.056,1.944,86.53,0.900,bicubic +convnext_base.clip_laiona_augreg_ft_in1k_384,384,86.488,13.512,97.962,2.038,88.59,1.000,bicubic +cait_m48_448.fb_dist_in1k,448,86.482,13.518,97.746,2.254,356.46,1.000,bicubic +tf_efficientnet_b6.ns_jft_in1k,528,86.476,13.524,97.868,2.132,43.04,0.942,bicubic +tiny_vit_21m_512.dist_in22k_ft_in1k,512,86.452,13.548,97.884,2.116,21.27,1.000,bicubic +swin_base_patch4_window12_384.ms_in22k_ft_in1k,384,86.438,13.562,98.068,1.932,87.90,1.000,bicubic +caformer_b36.sail_in1k_384,384,86.404,13.596,97.824,2.176,98.75,1.000,bicubic +efficientvit_l3.r384_in1k,384,86.398,13.602,97.634,2.366,246.04,1.000,bicubic +convnext_base.clip_laion2b_augreg_ft_in12k_in1k,256,86.386,13.614,97.976,2.024,88.59,1.000,bicubic +hgnetv2_b6.ssld_stage2_ft_in1k,288,86.384,13.616,97.938,2.062,75.26,1.000,bicubic +convformer_s36.sail_in22k_ft_in1k_384,384,86.380,13.620,97.976,2.024,40.01,1.000,bicubic +dm_nfnet_f6.dm_in1k,576,86.372,13.628,97.892,2.108,438.36,0.956,bicubic +nextvit_base.bd_ssld_6m_in1k_384,384,86.364,13.636,98.040,1.960,44.82,1.000,bicubic +swin_large_patch4_window7_224.ms_in22k_ft_in1k,224,86.330,13.670,97.882,2.118,196.53,0.900,bicubic +convnext_base.fb_in22k_ft_in1k,288,86.298,13.702,98.088,1.912,88.59,1.000,bicubic +hgnetv2_b6.ssld_stage1_in22k_in1k,288,86.298,13.702,97.940,2.060,75.26,1.000,bicubic +maxvit_base_tf_384.in1k,384,86.294,13.706,97.804,2.196,119.65,1.000,bicubic +swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,256,86.276,13.724,97.908,2.092,87.92,0.900,bicubic +convnextv2_huge.fcmae_ft_in1k,224,86.260,13.740,97.752,2.248,660.29,0.875,bicubic +maxvit_large_tf_384.in1k,384,86.236,13.764,97.690,2.310,212.03,1.000,bicubic +efficientvit_l3.r320_in1k,320,86.230,13.770,97.456,2.544,246.04,1.000,bicubic +vit_base_patch8_224.augreg2_in21k_ft_in1k,224,86.228,13.772,97.840,2.160,86.58,0.900,bicubic +vit_base_patch16_clip_384.openai_ft_in1k,384,86.218,13.782,97.886,2.114,86.86,1.000,bicubic +vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,224,86.210,13.790,97.756,2.244,86.57,0.950,bicubic +vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,86.208,13.792,97.882,2.118,64.11,0.950,bicubic +hgnetv2_b6.ssld_stage2_ft_in1k,224,86.206,13.794,97.810,2.190,75.26,0.965,bicubic +convnext_small.in12k_ft_in1k_384,384,86.186,13.814,97.920,2.080,50.22,1.000,bicubic +vit_large_r50_s32_384.augreg_in21k_ft_in1k,384,86.184,13.816,97.928,2.072,329.09,1.000,bicubic +convnext_base.clip_laion2b_augreg_ft_in1k,256,86.184,13.816,97.674,2.326,88.59,1.000,bicubic +caformer_m36.sail_in1k_384,384,86.160,13.840,97.816,2.184,56.20,1.000,bicubic +dm_nfnet_f6.dm_in1k,448,86.154,13.846,97.768,2.232,438.36,0.956,bicubic +convformer_m36.sail_in22k_ft_in1k,224,86.152,13.848,97.852,2.148,57.05,1.000,bicubic +convnextv2_large.fcmae_ft_in1k,288,86.126,13.874,97.818,2.182,197.96,1.000,bicubic +maxvit_small_tf_512.in1k,512,86.104,13.896,97.758,2.242,69.13,1.000,bicubic +tf_efficientnet_b5.ns_jft_in1k,456,86.102,13.898,97.750,2.250,30.39,0.934,bicubic +dm_nfnet_f5.dm_in1k,544,86.100,13.900,97.686,2.314,377.21,0.954,bicubic +tiny_vit_21m_384.dist_in22k_ft_in1k,384,86.094,13.906,97.712,2.288,21.23,1.000,bicubic +volo_d5_224.sail_in1k,224,86.078,13.922,97.578,2.422,295.46,0.960,bicubic +cait_m36_384.fb_dist_in1k,384,86.064,13.936,97.732,2.268,271.22,1.000,bicubic +volo_d2_384.sail_in1k,384,86.058,13.942,97.584,2.416,58.87,1.000,bicubic +hgnetv2_b6.ssld_stage1_in22k_in1k,224,86.052,13.948,97.806,2.194,75.26,0.965,bicubic +hiera_large_224.mae_in1k_ft_in1k,224,86.044,13.956,97.648,2.352,213.74,0.900,bicubic +regnety_160.sw_in12k_ft_in1k,288,86.032,13.968,97.830,2.170,83.59,1.000,bicubic +xcit_large_24_p8_384.fb_dist_in1k,384,86.026,13.974,97.690,2.310,188.93,1.000,bicubic +regnety_160.swag_ft_in1k,384,86.018,13.982,98.050,1.950,83.59,1.000,bicubic +tf_efficientnetv2_m.in21k_ft_in1k,480,86.014,13.986,97.956,2.044,54.14,1.000,bicubic +regnety_160.lion_in12k_ft_in1k,288,86.010,13.990,97.846,2.154,83.59,1.000,bicubic +vit_base_patch16_384.augreg_in21k_ft_in1k,384,86.006,13.994,98.000,2.000,86.86,1.000,bicubic +efficientvit_l2.r384_in1k,384,85.982,14.018,97.514,2.486,63.71,1.000,bicubic +regnety_1280.swag_lc_in1k,224,85.966,14.034,97.852,2.148,644.81,0.965,bicubic +vit_base_patch16_clip_224.openai_ft_in12k_in1k,224,85.962,14.038,97.718,2.282,86.57,0.950,bicubic +nextvit_small.bd_ssld_6m_in1k_384,384,85.956,14.044,97.900,2.100,31.76,1.000,bicubic +seresnextaa101d_32x8d.sw_in12k_ft_in1k,224,85.956,14.044,97.824,2.176,93.59,0.875,bicubic +efficientvit_l3.r256_in1k,256,85.954,14.046,97.338,2.662,246.04,1.000,bicubic +efficientnet_b5.sw_in12k_ft_in1k,448,85.892,14.108,97.742,2.258,30.39,1.000,bicubic +volo_d4_224.sail_in1k,224,85.872,14.128,97.456,2.544,192.96,0.960,bicubic +dm_nfnet_f4.dm_in1k,512,85.860,14.140,97.652,2.348,316.07,0.951,bicubic +vit_large_patch16_224.augreg_in21k_ft_in1k,224,85.850,14.150,97.826,2.174,304.33,0.900,bicubic +rdnet_large.nv_in1k_ft_in1k_384,384,85.848,14.152,97.684,2.316,186.27,1.000,bicubic +xcit_medium_24_p8_384.fb_dist_in1k,384,85.842,14.158,97.602,2.398,84.32,1.000,bicubic +vit_base_patch8_224.augreg_in21k_ft_in1k,224,85.836,14.164,97.774,2.226,86.58,0.900,bicubic +tf_efficientnetv2_l.in21k_ft_in1k,384,85.832,14.168,97.770,2.230,118.52,1.000,bicubic +deit3_large_patch16_384.fb_in1k,384,85.818,14.182,97.602,2.398,304.76,1.000,bicubic +convnext_base.fb_in22k_ft_in1k,224,85.816,14.184,97.854,2.146,88.59,0.875,bicubic +efficientvit_l3.r224_in1k,224,85.812,14.188,97.210,2.790,246.04,1.000,bicubic +vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,448,85.800,14.200,97.632,2.368,88.34,1.000,bicubic +caformer_s36.sail_in22k_ft_in1k,224,85.788,14.212,97.828,2.172,39.30,1.000,bicubic +convformer_b36.sail_in1k_384,384,85.778,14.222,97.520,2.480,99.88,1.000,bicubic +xcit_large_24_p16_384.fb_dist_in1k,384,85.776,14.224,97.528,2.472,189.10,1.000,bicubic +convnextv2_large.fcmae_ft_in1k,224,85.762,14.238,97.586,2.414,197.96,0.875,bicubic +eva02_small_patch14_336.mim_in22k_ft_in1k,336,85.760,14.240,97.610,2.390,22.13,1.000,bicubic +caformer_s36.sail_in1k_384,384,85.756,14.244,97.668,2.332,39.30,1.000,bicubic +convnext_small.fb_in22k_ft_in1k_384,384,85.754,14.246,97.882,2.118,50.22,1.000,bicubic +deit3_base_patch16_224.fb_in22k_ft_in1k,224,85.728,14.272,97.746,2.254,86.59,1.000,bicubic +vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,85.728,14.272,97.608,2.392,60.40,0.950,bicubic +dm_nfnet_f5.dm_in1k,416,85.716,14.284,97.552,2.448,377.21,0.954,bicubic +dm_nfnet_f3.dm_in1k,416,85.672,14.328,97.578,2.422,254.92,0.940,bicubic +maxvit_tiny_tf_512.in1k,512,85.660,14.340,97.592,2.408,31.05,1.000,bicubic +tf_efficientnetv2_l.in1k,480,85.660,14.340,97.472,2.528,118.52,1.000,bicubic +flexivit_large.1200ep_in1k,240,85.644,14.356,97.546,2.454,304.36,0.950,bicubic +efficientvit_l2.r288_in1k,288,85.614,14.386,97.360,2.640,63.71,1.000,bicubic +regnety_160.lion_in12k_ft_in1k,224,85.602,14.398,97.668,2.332,83.59,0.950,bicubic +beitv2_base_patch16_224.in1k_ft_in1k,224,85.596,14.404,97.514,2.486,86.53,0.900,bicubic +regnety_160.sw_in12k_ft_in1k,224,85.594,14.406,97.668,2.332,83.59,0.950,bicubic +xcit_small_24_p8_384.fb_dist_in1k,384,85.582,14.418,97.572,2.428,47.63,1.000,bicubic +convformer_m36.sail_in1k_384,384,85.580,14.420,97.548,2.452,57.05,1.000,bicubic +tf_efficientnetv2_xl.in21k_ft_in1k,384,85.562,14.438,97.450,2.550,208.12,1.000,bicubic +vit_medium_patch16_gap_384.sw_in12k_ft_in1k,384,85.554,14.446,97.640,2.360,39.03,0.950,bicubic +maxvit_small_tf_384.in1k,384,85.534,14.466,97.458,2.542,69.02,1.000,bicubic +flexivit_large.600ep_in1k,240,85.530,14.470,97.494,2.506,304.36,0.950,bicubic +nextvit_large.bd_ssld_6m_in1k,224,85.524,14.476,97.676,2.324,57.87,0.950,bicubic +caformer_b36.sail_in1k,224,85.502,14.498,97.316,2.684,98.75,1.000,bicubic +dm_nfnet_f4.dm_in1k,384,85.496,14.504,97.490,2.510,316.07,0.951,bicubic +vit_base_patch16_clip_224.laion2b_ft_in1k,224,85.494,14.506,97.572,2.428,86.57,1.000,bicubic +convnextv2_base.fcmae_ft_in1k,288,85.490,14.510,97.380,2.620,88.72,1.000,bicubic +hgnet_base.ssld_in1k,288,85.472,14.528,97.634,2.366,71.58,1.000,bicubic +cait_s36_384.fb_dist_in1k,384,85.458,14.542,97.480,2.520,68.37,1.000,bicubic +regnety_120.sw_in12k_ft_in1k,288,85.442,14.558,97.572,2.428,51.82,1.000,bicubic +volo_d3_224.sail_in1k,224,85.442,14.558,97.276,2.724,86.33,0.960,bicubic +xcit_medium_24_p16_384.fb_dist_in1k,384,85.434,14.566,97.408,2.592,84.40,1.000,bicubic +deit_base_distilled_patch16_384.fb_in1k,384,85.428,14.572,97.328,2.672,87.63,1.000,bicubic +caformer_s18.sail_in22k_ft_in1k_384,384,85.424,14.576,97.712,2.288,26.34,1.000,bicubic +convformer_s36.sail_in22k_ft_in1k,224,85.424,14.576,97.582,2.418,40.01,1.000,bicubic +vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,85.424,14.576,97.474,2.526,60.40,0.950,bicubic +vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,384,85.410,14.590,97.660,2.340,88.30,1.000,bicubic +xcit_large_24_p8_224.fb_dist_in1k,224,85.402,14.598,97.418,2.582,188.93,1.000,bicubic +convformer_s36.sail_in1k_384,384,85.380,14.620,97.470,2.530,40.01,1.000,bicubic +efficientvit_l2.r256_in1k,256,85.368,14.632,97.256,2.744,63.71,1.000,bicubic +tf_efficientnet_b8.ap_in1k,672,85.366,14.634,97.298,2.702,87.41,0.954,bicubic +tf_efficientnet_b8.ra_in1k,672,85.356,14.644,97.388,2.612,87.41,0.954,bicubic +convnext_small.in12k_ft_in1k,288,85.324,14.676,97.554,2.446,50.22,1.000,bicubic +vit_base_patch16_clip_224.openai_ft_in1k,224,85.286,14.714,97.440,2.560,86.57,0.900,bicubic +flexivit_large.300ep_in1k,240,85.282,14.718,97.404,2.596,304.36,0.950,bicubic +convnext_small.fb_in22k_ft_in1k,288,85.276,14.724,97.678,2.322,50.22,1.000,bicubic +swin_base_patch4_window7_224.ms_in22k_ft_in1k,224,85.270,14.730,97.568,2.432,87.77,0.900,bicubic +volo_d1_384.sail_in1k,384,85.266,14.734,97.218,2.782,26.78,1.000,bicubic +mvitv2_large.fb_in1k,224,85.264,14.736,97.188,2.812,217.99,0.900,bicubic +beit_base_patch16_224.in22k_ft_in22k_in1k,224,85.244,14.756,97.652,2.348,86.53,0.900,bicubic +caformer_m36.sail_in1k,224,85.240,14.760,97.206,2.794,56.20,1.000,bicubic +vit_base_patch32_clip_384.openai_ft_in12k_in1k,384,85.226,14.774,97.398,2.602,88.30,0.950,bicubic +deit3_huge_patch14_224.fb_in1k,224,85.222,14.778,97.366,2.634,632.13,0.900,bicubic +tf_efficientnetv2_m.in1k,480,85.210,14.790,97.364,2.636,54.14,1.000,bicubic +volo_d2_224.sail_in1k,224,85.202,14.798,97.186,2.814,58.68,0.960,bicubic +inception_next_base.sail_in1k_384,384,85.200,14.800,97.424,2.576,86.67,1.000,bicubic +tf_efficientnetv2_l.in1k,384,85.196,14.804,97.276,2.724,118.52,1.000,bicubic +nextvit_base.bd_ssld_6m_in1k,224,85.182,14.818,97.594,2.406,44.82,0.950,bicubic +tf_efficientnet_b4.ns_jft_in1k,380,85.176,14.824,97.488,2.512,19.34,0.922,bicubic +dm_nfnet_f2.dm_in1k,352,85.176,14.824,97.328,2.672,193.78,0.920,bicubic +convnext_small.in12k_ft_in1k,224,85.164,14.836,97.502,2.498,50.22,0.950,bicubic +convnext_tiny.in12k_ft_in1k_384,384,85.154,14.846,97.634,2.366,28.59,1.000,bicubic +hgnetv2_b5.ssld_stage2_ft_in1k,288,85.150,14.850,97.600,2.400,39.57,1.000,bicubic +regnety_2560.seer_ft_in1k,384,85.146,14.854,97.444,2.556,"1,282.60",1.000,bicubic +hiera_base_plus_224.mae_in1k_ft_in1k,224,85.134,14.866,97.158,2.842,69.90,0.900,bicubic +tf_efficientnet_b7.ap_in1k,600,85.132,14.868,97.256,2.744,66.35,0.949,bicubic +vit_base_patch16_224.augreg2_in21k_ft_in1k,224,85.110,14.890,97.538,2.462,86.57,0.900,bicubic +convnextv2_tiny.fcmae_ft_in22k_in1k_384,384,85.106,14.894,97.632,2.368,28.64,1.000,bicubic +maxvit_tiny_tf_384.in1k,384,85.102,14.898,97.382,2.618,30.98,1.000,bicubic +xcit_small_24_p16_384.fb_dist_in1k,384,85.102,14.898,97.318,2.682,47.67,1.000,bicubic +resnext101_32x32d.fb_wsl_ig1b_ft_in1k,224,85.098,14.902,97.442,2.558,468.53,0.875,bilinear +dm_nfnet_f3.dm_in1k,320,85.096,14.904,97.386,2.614,254.92,0.940,bicubic +tiny_vit_21m_224.dist_in22k_ft_in1k,224,85.088,14.912,97.356,2.644,21.20,0.950,bicubic +deit3_base_patch16_384.fb_in1k,384,85.086,14.914,97.248,2.752,86.88,1.000,bicubic +xcit_medium_24_p8_224.fb_dist_in1k,224,85.076,14.924,97.274,2.726,84.32,1.000,bicubic +xcit_small_12_p8_384.fb_dist_in1k,384,85.072,14.928,97.262,2.738,26.21,1.000,bicubic +efficientvit_l2.r224_in1k,224,85.044,14.956,97.098,2.902,63.71,1.000,bicubic +cait_s24_384.fb_dist_in1k,384,85.042,14.958,97.350,2.650,47.06,1.000,bicubic +regnetz_e8.ra3_in1k,320,85.040,14.960,97.282,2.718,57.70,1.000,bicubic +caformer_s18.sail_in1k_384,384,85.036,14.964,97.360,2.640,26.34,1.000,bicubic +convformer_s18.sail_in22k_ft_in1k_384,384,85.026,14.974,97.580,2.420,26.77,1.000,bicubic +resnetrs420.tf_in1k,416,85.014,14.986,97.116,2.884,191.89,1.000,bicubic +vit_base_r50_s16_384.orig_in21k_ft_in1k,384,84.994,15.006,97.304,2.696,98.95,1.000,bicubic +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,544,84.990,15.010,97.284,2.716,32.59,1.000,bicubic +regnety_120.sw_in12k_ft_in1k,224,84.986,15.014,97.422,2.578,51.82,0.950,bicubic +ecaresnet269d.ra2_in1k,352,84.972,15.028,97.224,2.776,102.09,1.000,bicubic +vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,84.944,15.056,97.388,2.612,38.88,0.950,bicubic +coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,224,84.940,15.060,96.968,3.032,41.72,0.950,bicubic +xcit_large_24_p16_224.fb_dist_in1k,224,84.936,15.064,97.128,2.872,189.10,1.000,bicubic +nextvit_large.bd_in1k_384,384,84.934,15.066,97.298,2.702,57.87,1.000,bicubic +maxvit_large_tf_224.in1k,224,84.934,15.066,96.980,3.020,211.79,0.950,bicubic +tf_efficientnet_b7.ra_in1k,600,84.930,15.070,97.200,2.800,66.35,0.949,bicubic +hgnetv2_b5.ssld_stage1_in22k_in1k,288,84.924,15.076,97.514,2.486,39.57,1.000,bicubic +resnetv2_152x4_bit.goog_in21k_ft_in1k,480,84.924,15.076,97.458,2.542,936.53,1.000,bilinear +hgnet_base.ssld_in1k,224,84.912,15.088,97.340,2.660,71.58,0.965,bicubic +hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k,256,84.900,15.100,97.254,2.746,34.36,0.950,bicubic +coat_lite_medium_384.in1k,384,84.894,15.106,97.376,2.624,44.57,1.000,bicubic +convnextv2_base.fcmae_ft_in1k,224,84.888,15.112,97.080,2.920,88.72,0.875,bicubic +xcit_small_24_p8_224.fb_dist_in1k,224,84.876,15.124,97.200,2.800,47.63,1.000,bicubic +maxvit_base_tf_224.in1k,224,84.870,15.130,97.004,2.996,119.47,0.950,bicubic +convnext_large.fb_in1k,288,84.862,15.138,97.210,2.790,197.77,1.000,bicubic +nextvit_small.bd_ssld_6m_in1k,224,84.856,15.144,97.380,2.620,31.76,0.950,bicubic +deit3_small_patch16_384.fb_in22k_ft_in1k,384,84.842,15.158,97.482,2.518,22.21,1.000,bicubic +convformer_b36.sail_in1k,224,84.830,15.170,96.950,3.050,99.88,1.000,bicubic +efficientnetv2_rw_m.agc_in1k,416,84.824,15.176,97.150,2.850,53.24,1.000,bicubic +hgnetv2_b5.ssld_stage2_ft_in1k,224,84.810,15.190,97.300,2.700,39.57,0.965,bicubic +rdnet_large.nv_in1k,224,84.794,15.206,97.154,2.846,186.27,0.900,bicubic +tf_efficientnet_b6.ap_in1k,528,84.792,15.208,97.134,2.866,43.04,0.942,bicubic +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,480,84.780,15.220,97.342,2.658,32.59,1.000,bicubic +deit3_large_patch16_224.fb_in1k,224,84.778,15.222,97.046,2.954,304.37,0.900,bicubic +tf_efficientnetv2_m.in21k_ft_in1k,384,84.768,15.232,97.440,2.560,54.14,1.000,bicubic +xcit_small_12_p16_384.fb_dist_in1k,384,84.736,15.264,97.136,2.864,26.25,1.000,bicubic +nextvit_base.bd_in1k_384,384,84.726,15.274,97.224,2.776,44.82,1.000,bicubic +resnetrs350.tf_in1k,384,84.722,15.278,96.972,3.028,163.96,1.000,bicubic +ecaresnet269d.ra2_in1k,320,84.720,15.280,97.182,2.818,102.09,0.950,bicubic +eca_nfnet_l2.ra3_in1k,384,84.706,15.294,97.256,2.744,56.72,1.000,bicubic +dm_nfnet_f1.dm_in1k,320,84.696,15.304,97.180,2.820,132.63,0.910,bicubic +flexivit_base.1200ep_in1k,240,84.688,15.312,97.020,2.980,86.59,0.950,bicubic +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,448,84.668,15.332,97.108,2.892,32.59,0.950,bicubic +davit_base.msft_in1k,224,84.650,15.350,97.018,2.982,87.95,0.950,bicubic +maxxvit_rmlp_small_rw_256.sw_in1k,256,84.640,15.360,97.062,2.938,66.01,0.950,bicubic +regnety_320.swag_lc_in1k,224,84.632,15.368,97.484,2.516,145.05,0.965,bicubic +swinv2_base_window16_256.ms_in1k,256,84.608,15.392,97.064,2.936,87.92,0.900,bicubic +fastvit_ma36.apple_dist_in1k,256,84.606,15.394,97.006,2.994,44.07,0.950,bicubic +coatnet_rmlp_2_rw_224.sw_in1k,224,84.602,15.398,96.746,3.254,73.88,0.950,bicubic +rexnetr_300.sw_in12k_ft_in1k,288,84.586,15.414,97.278,2.722,34.81,1.000,bicubic +convnext_small.fb_in22k_ft_in1k,224,84.582,15.418,97.414,2.586,50.22,0.875,bicubic +seresnextaa101d_32x8d.ah_in1k,288,84.576,15.424,97.074,2.926,93.59,1.000,bicubic +deit3_medium_patch16_224.fb_in22k_ft_in1k,224,84.566,15.434,97.178,2.822,38.85,1.000,bicubic +flexivit_base.600ep_in1k,240,84.560,15.440,96.910,3.090,86.59,0.950,bicubic +tf_efficientnetv2_m.in1k,384,84.558,15.442,97.056,2.944,54.14,1.000,bicubic +hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k,256,84.554,15.446,97.106,2.894,34.36,0.950,bicubic +caformer_s36.sail_in1k,224,84.544,15.456,97.010,2.990,39.30,1.000,bicubic +resnest269e.in1k,416,84.540,15.460,96.990,3.010,110.93,0.928,bicubic +vit_base_patch16_224.augreg_in21k_ft_in1k,224,84.532,15.468,97.298,2.702,86.57,0.900,bicubic +hiera_base_224.mae_in1k_ft_in1k,224,84.526,15.474,97.040,2.960,51.52,0.900,bicubic +regnetz_040_h.ra3_in1k,320,84.510,15.490,97.016,2.984,28.94,1.000,bicubic +convformer_m36.sail_in1k,224,84.486,15.514,96.866,3.134,57.05,1.000,bicubic +hrnet_w48_ssld.paddle_in1k,288,84.484,15.516,97.226,2.774,77.47,1.000,bilinear +maxvit_rmlp_small_rw_224.sw_in1k,224,84.484,15.516,96.774,3.226,64.90,0.900,bicubic +resnetv2_152x2_bit.goog_in21k_ft_in1k,448,84.480,15.520,97.416,2.584,236.34,1.000,bilinear +swin_base_patch4_window12_384.ms_in1k,384,84.476,15.524,96.886,3.114,87.90,1.000,bicubic +convnext_base.fb_in1k,288,84.466,15.534,96.982,3.018,88.59,1.000,bicubic +hgnetv2_b5.ssld_stage1_in22k_in1k,224,84.456,15.544,97.218,2.782,39.57,0.965,bicubic +maxvit_small_tf_224.in1k,224,84.456,15.544,96.828,3.172,68.93,0.950,bicubic +gcvit_base.in1k,224,84.454,15.546,96.850,3.150,90.32,0.875,bicubic +vit_medium_patch16_gap_256.sw_in12k_ft_in1k,256,84.450,15.550,97.218,2.782,38.86,0.950,bicubic +convnext_tiny.in12k_ft_in1k,288,84.448,15.552,97.328,2.672,28.59,1.000,bicubic +efficientvit_l1.r224_in1k,224,84.448,15.552,96.856,3.144,52.65,1.000,bicubic +resnetrs200.tf_in1k,320,84.446,15.554,97.072,2.928,93.21,1.000,bicubic +resnetrs270.tf_in1k,352,84.440,15.560,96.974,3.026,129.86,1.000,bicubic +mvitv2_base.fb_in1k,224,84.438,15.562,96.862,3.138,51.47,0.900,bicubic +tf_efficientnet_b7.aa_in1k,600,84.436,15.564,96.920,3.080,66.35,0.949,bicubic +vit_large_r50_s32_224.augreg_in21k_ft_in1k,224,84.432,15.568,97.152,2.848,328.99,0.900,bicubic +resnetv2_101x3_bit.goog_in21k_ft_in1k,448,84.430,15.570,97.380,2.620,387.93,1.000,bilinear +regnety_1280.seer_ft_in1k,384,84.426,15.574,97.084,2.916,644.81,1.000,bicubic +convnextv2_tiny.fcmae_ft_in22k_in1k,288,84.422,15.578,97.254,2.746,28.64,1.000,bicubic +regnetz_e8.ra3_in1k,256,84.418,15.582,96.986,3.014,57.70,0.940,bicubic +seresnext101d_32x8d.ah_in1k,288,84.402,15.598,96.922,3.078,93.59,1.000,bicubic +flexivit_base.300ep_in1k,240,84.402,15.598,96.886,3.114,86.59,0.950,bicubic +convformer_s18.sail_in1k_384,384,84.394,15.606,97.112,2.888,26.77,1.000,bicubic +resmlp_big_24_224.fb_in22k_ft_in1k,224,84.388,15.612,97.108,2.892,129.14,0.875,bicubic +xcit_large_24_p8_224.fb_in1k,224,84.386,15.614,96.666,3.334,188.93,1.000,bicubic +hgnet_small.ssld_in1k,288,84.378,15.622,97.130,2.870,24.36,1.000,bicubic +rdnet_base.nv_in1k,224,84.368,15.632,96.872,3.128,87.45,0.900,bicubic +mobilenetv4_hybrid_large.ix_e600_r384_in1k,448,84.364,15.636,96.908,3.092,37.76,1.000,bicubic +seresnet152d.ra2_in1k,320,84.354,15.646,97.042,2.958,66.84,1.000,bicubic +vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k,256,84.322,15.678,96.812,3.188,63.95,0.950,bicubic +tf_efficientnetv2_s.in21k_ft_in1k,384,84.316,15.684,97.268,2.732,21.46,1.000,bicubic +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,384,84.314,15.686,97.100,2.900,32.59,0.950,bicubic +resnetrs350.tf_in1k,288,84.308,15.692,96.928,3.072,163.96,1.000,bicubic +convnext_large.fb_in1k,224,84.298,15.702,96.892,3.108,197.77,0.875,bicubic +efficientnetv2_rw_m.agc_in1k,320,84.294,15.706,96.876,3.124,53.24,1.000,bicubic +xcit_medium_24_p16_224.fb_dist_in1k,224,84.288,15.712,96.936,3.064,84.40,1.000,bicubic +resnext101_32x8d.fb_swsl_ig1b_ft_in1k,224,84.282,15.718,97.174,2.826,88.79,0.875,bilinear +mobilenetv4_hybrid_large.e600_r384_in1k,448,84.274,15.726,96.950,3.050,37.76,1.000,bicubic +vit_base_patch16_224_miil.in21k_ft_in1k,224,84.272,15.728,96.798,3.202,86.54,0.875,bilinear +davit_small.msft_in1k,224,84.266,15.734,96.930,3.070,49.75,0.950,bicubic +regnetz_040.ra3_in1k,320,84.256,15.744,96.934,3.066,27.12,1.000,bicubic +tf_efficientnet_b5.ap_in1k,456,84.254,15.746,96.978,3.022,30.39,0.934,bicubic +xcit_small_12_p8_224.fb_dist_in1k,224,84.250,15.750,96.874,3.126,26.21,1.000,bicubic +resnetrs420.tf_in1k,320,84.250,15.750,96.866,3.134,191.89,1.000,bicubic +swinv2_base_window8_256.ms_in1k,256,84.246,15.754,96.902,3.098,87.92,0.900,bicubic +maxvit_rmlp_tiny_rw_256.sw_in1k,256,84.234,15.766,96.784,3.216,29.15,0.950,bicubic +swinv2_small_window16_256.ms_in1k,256,84.216,15.784,96.874,3.126,49.73,0.900,bicubic +vit_base_patch16_384.orig_in21k_ft_in1k,384,84.208,15.792,97.220,2.780,86.86,1.000,bicubic +crossvit_18_dagger_408.in1k,408,84.202,15.798,96.832,3.168,44.61,1.000,bicubic +seresnext101_32x8d.ah_in1k,288,84.194,15.806,96.862,3.138,93.57,1.000,bicubic +convnext_tiny.in12k_ft_in1k,224,84.192,15.808,97.132,2.868,28.59,0.950,bicubic +resnext101_32x16d.fb_wsl_ig1b_ft_in1k,224,84.164,15.836,97.188,2.812,194.03,0.875,bilinear +eca_nfnet_l2.ra3_in1k,320,84.156,15.844,97.018,2.982,56.72,0.900,bicubic +efficientvit_b3.r288_in1k,288,84.156,15.844,96.732,3.268,48.65,1.000,bicubic +regnetz_d8_evos.ch_in1k,320,84.152,15.848,97.020,2.980,23.46,1.000,bicubic +volo_d1_224.sail_in1k,224,84.152,15.848,96.774,3.226,26.63,0.960,bicubic +tf_efficientnet_b6.aa_in1k,528,84.118,15.882,96.886,3.114,43.04,0.942,bicubic +resnetaa101d.sw_in12k_ft_in1k,288,84.102,15.898,97.118,2.882,44.57,1.000,bicubic +convnext_tiny.fb_in22k_ft_in1k_384,384,84.098,15.902,97.138,2.862,28.59,1.000,bicubic +inception_next_base.sail_in1k,224,84.098,15.902,96.782,3.218,86.67,0.950,bicubic +dm_nfnet_f2.dm_in1k,256,84.092,15.908,96.906,3.094,193.78,0.920,bicubic +caformer_s18.sail_in22k_ft_in1k,224,84.086,15.914,97.188,2.812,26.34,1.000,bicubic +edgenext_base.in21k_ft_in1k,320,84.076,15.924,97.208,2.792,18.51,1.000,bicubic +vit_small_r26_s32_384.augreg_in21k_ft_in1k,384,84.074,15.926,97.314,2.686,36.47,1.000,bicubic +convformer_s36.sail_in1k,224,84.072,15.928,96.756,3.244,40.01,1.000,bicubic +tf_efficientnet_b3.ns_jft_in1k,300,84.064,15.936,96.900,3.100,12.23,0.904,bicubic +cait_xs24_384.fb_dist_in1k,384,84.064,15.936,96.882,3.118,26.67,1.000,bicubic +eca_nfnet_l1.ra2_in1k,320,84.050,15.950,97.034,2.966,41.41,1.000,bicubic +regnetz_d8.ra3_in1k,320,84.042,15.958,97.002,2.998,23.37,1.000,bicubic +nextvit_small.bd_in1k_384,384,84.042,15.958,96.990,3.010,31.76,1.000,bicubic +rexnetr_300.sw_in12k_ft_in1k,224,84.036,15.964,97.000,3.000,34.81,0.950,bicubic +fastvit_sa36.apple_dist_in1k,256,84.032,15.968,96.850,3.150,31.53,0.900,bicubic +regnetz_d32.ra3_in1k,320,84.028,15.972,96.870,3.130,27.58,0.950,bicubic +resnetv2_50x3_bit.goog_in21k_ft_in1k,448,83.992,16.008,97.132,2.868,217.32,1.000,bilinear +mobilenetv4_hybrid_large.ix_e600_r384_in1k,384,83.984,16.016,96.708,3.292,37.76,0.950,bicubic +resnet200d.ra2_in1k,320,83.976,16.024,96.820,3.180,64.69,1.000,bicubic +edgenext_base.usi_in1k,320,83.970,16.030,96.770,3.230,18.51,1.000,bicubic +regnety_080.ra3_in1k,288,83.940,16.060,96.880,3.120,39.18,1.000,bicubic +hgnetv2_b4.ssld_stage2_ft_in1k,288,83.934,16.066,97.064,2.936,19.80,1.000,bicubic +swin_s3_base_224.ms_in1k,224,83.920,16.080,96.650,3.350,71.13,0.900,bicubic +regnety_640.seer_ft_in1k,384,83.916,16.084,96.920,3.080,281.38,1.000,bicubic +vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k,256,83.910,16.090,96.686,3.314,60.23,0.950,bicubic +gcvit_small.in1k,224,83.908,16.092,96.660,3.340,51.09,0.875,bicubic +convnextv2_tiny.fcmae_ft_in22k_in1k,224,83.904,16.096,96.964,3.036,28.64,0.875,bicubic +tresnet_v2_l.miil_in21k_ft_in1k,224,83.902,16.098,96.496,3.504,46.17,0.875,bilinear +seresnextaa101d_32x8d.ah_in1k,224,83.900,16.100,96.648,3.352,93.59,0.950,bicubic +tf_efficientnetv2_s.in1k,384,83.896,16.104,96.698,3.302,21.46,1.000,bicubic +vit_base_patch16_rope_reg1_gap_256.sbb_in1k,256,83.890,16.110,96.674,3.326,86.43,0.950,bicubic +resnetrs200.tf_in1k,256,83.886,16.114,96.762,3.238,93.21,1.000,bicubic +hiera_small_224.mae_in1k_ft_in1k,224,83.886,16.114,96.680,3.320,35.01,0.900,bicubic +fastvit_ma36.apple_in1k,256,83.884,16.116,96.762,3.238,44.07,0.950,bicubic +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,384,83.882,16.118,97.116,2.884,236.34,1.000,bicubic +xcit_small_24_p16_224.fb_dist_in1k,224,83.878,16.122,96.734,3.266,47.67,1.000,bicubic +resnest200e.in1k,320,83.872,16.128,96.876,3.124,70.20,0.909,bicubic +xcit_small_24_p8_224.fb_in1k,224,83.854,16.146,96.636,3.364,47.63,1.000,bicubic +swinv2_small_window8_256.ms_in1k,256,83.844,16.156,96.650,3.350,49.73,0.900,bicubic +crossvit_15_dagger_408.in1k,408,83.840,16.160,96.780,3.220,28.50,1.000,bicubic +convnext_base.fb_in1k,224,83.834,16.166,96.746,3.254,88.59,0.875,bicubic +mobilenetv4_conv_aa_large.e600_r384_in1k,480,83.832,16.168,96.732,3.268,32.59,1.000,bicubic +efficientnetv2_rw_s.ra2_in1k,384,83.830,16.170,96.712,3.288,23.94,1.000,bicubic +tf_efficientnet_b5.ra_in1k,456,83.828,16.172,96.766,3.234,30.39,0.934,bicubic +focalnet_base_lrf.ms_in1k,224,83.828,16.172,96.614,3.386,88.75,0.900,bicubic +mobilenetv4_hybrid_large.e600_r384_in1k,384,83.822,16.178,96.768,3.232,37.76,0.950,bicubic +efficientvit_b3.r256_in1k,256,83.814,16.186,96.514,3.486,48.65,1.000,bicubic +vit_medium_patch16_rope_reg1_gap_256.sbb_in1k,256,83.812,16.188,96.822,3.178,38.74,0.950,bicubic +hgnet_small.ssld_in1k,224,83.810,16.190,96.868,3.132,24.36,0.965,bicubic +regnety_160.swag_lc_in1k,224,83.808,16.192,97.284,2.716,83.59,0.965,bicubic +focalnet_base_srf.ms_in1k,224,83.808,16.192,96.660,3.340,88.15,0.900,bicubic +vit_small_patch16_384.augreg_in21k_ft_in1k,384,83.804,16.196,97.108,2.892,22.20,1.000,bicubic +vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k,256,83.802,16.198,96.958,3.042,22.52,0.950,bicubic +deit3_base_patch16_224.fb_in1k,224,83.794,16.206,96.582,3.418,86.59,0.900,bicubic +xcit_tiny_24_p8_384.fb_dist_in1k,384,83.784,16.216,96.716,3.284,12.11,1.000,bicubic +swin_s3_small_224.ms_in1k,224,83.778,16.222,96.460,3.540,49.74,0.900,bicubic +pit_b_distilled_224.in1k,224,83.774,16.226,96.468,3.532,74.79,0.900,bicubic +mvitv2_small.fb_in1k,224,83.772,16.228,96.558,3.442,34.87,0.900,bicubic +regnetz_040_h.ra3_in1k,256,83.768,16.232,96.692,3.308,28.94,1.000,bicubic +pvt_v2_b5.in1k,224,83.768,16.232,96.632,3.368,81.96,0.900,bicubic +convformer_s18.sail_in22k_ft_in1k,224,83.762,16.238,97.048,2.952,26.77,1.000,bicubic +regnetv_064.ra3_in1k,288,83.748,16.252,96.746,3.254,30.58,1.000,bicubic +repvit_m2_3.dist_450e_in1k,224,83.742,16.258,96.642,3.358,23.69,0.950,bicubic +xcit_medium_24_p8_224.fb_in1k,224,83.742,16.258,96.392,3.608,84.32,1.000,bicubic +regnety_064.ra3_in1k,288,83.712,16.288,96.728,3.272,30.58,1.000,bicubic +pvt_v2_b4.in1k,224,83.712,16.288,96.670,3.330,62.56,0.900,bicubic +resnetrs152.tf_in1k,320,83.710,16.290,96.610,3.390,86.62,1.000,bicubic +vit_betwixt_patch16_reg4_gap_256.sbb_in1k,256,83.708,16.292,96.618,3.382,60.40,0.950,bicubic +convnext_small.fb_in1k,288,83.704,16.296,96.816,3.184,50.22,1.000,bicubic +regnety_160.deit_in1k,288,83.700,16.300,96.786,3.214,83.59,1.000,bicubic +seresnext101d_32x8d.ah_in1k,224,83.700,16.300,96.590,3.410,93.59,0.950,bicubic +tf_efficientnet_b5.aa_in1k,456,83.696,16.304,96.714,3.286,30.39,0.934,bicubic +hgnetv2_b4.ssld_stage2_ft_in1k,224,83.694,16.306,96.788,3.212,19.80,0.965,bicubic +seresnet152d.ra2_in1k,256,83.694,16.306,96.784,3.216,66.84,0.950,bicubic +twins_svt_large.in1k,224,83.690,16.310,96.608,3.392,99.27,0.900,bicubic +resnet152d.ra2_in1k,320,83.684,16.316,96.750,3.250,60.21,1.000,bicubic +edgenext_base.usi_in1k,256,83.684,16.316,96.700,3.300,18.51,0.950,bicubic +hrnet_w48_ssld.paddle_in1k,224,83.678,16.322,96.848,3.152,77.47,0.950,bilinear +rdnet_small.nv_in1k,224,83.668,16.332,96.712,3.288,50.44,0.900,bicubic +caformer_s18.sail_in1k,224,83.668,16.332,96.520,3.480,26.34,1.000,bicubic +regnetz_040.ra3_in1k,256,83.660,16.340,96.684,3.316,27.12,1.000,bicubic +vit_betwixt_patch16_reg1_gap_256.sbb_in1k,256,83.644,16.356,96.546,3.454,60.40,0.950,bicubic +nextvit_large.bd_in1k,224,83.642,16.358,96.684,3.316,57.87,0.950,bicubic +efficientformerv2_l.snap_dist_in1k,224,83.640,16.360,96.540,3.460,26.32,0.950,bicubic +seresnext101_32x8d.ah_in1k,224,83.618,16.382,96.412,3.588,93.57,0.950,bicubic +coatnet_1_rw_224.sw_in1k,224,83.612,16.388,96.382,3.618,41.72,0.950,bicubic +swin_base_patch4_window7_224.ms_in1k,224,83.610,16.390,96.450,3.550,87.77,0.900,bicubic +coat_lite_medium.in1k,224,83.602,16.398,96.714,3.286,44.57,0.900,bicubic +resmlp_big_24_224.fb_distilled_in1k,224,83.594,16.406,96.654,3.346,129.14,0.875,bicubic +resnetrs270.tf_in1k,256,83.594,16.406,96.616,3.384,129.86,1.000,bicubic +inception_next_small.sail_in1k,224,83.584,16.416,96.598,3.402,49.37,0.875,bicubic +hgnetv2_b3.ssld_stage2_ft_in1k,288,83.580,16.420,96.814,3.186,16.29,1.000,bicubic +repvgg_d2se.rvgg_in1k,320,83.554,16.446,96.664,3.336,133.33,1.000,bilinear +regnetz_d8.ra3_in1k,256,83.548,16.452,96.746,3.254,23.37,0.940,bicubic +nest_base_jx.goog_in1k,224,83.546,16.454,96.366,3.634,67.72,0.875,bicubic +resnetaa101d.sw_in12k_ft_in1k,224,83.544,16.456,96.828,3.172,44.57,0.950,bicubic +cs3se_edgenet_x.c2ns_in1k,320,83.544,16.456,96.664,3.336,50.72,1.000,bicubic +repvit_m2_3.dist_300e_in1k,224,83.524,16.476,96.532,3.468,23.69,0.950,bicubic +maxvit_tiny_rw_224.sw_in1k,224,83.522,16.478,96.488,3.512,29.06,0.950,bicubic +focalnet_small_lrf.ms_in1k,224,83.508,16.492,96.586,3.414,50.34,0.900,bicubic +fastvit_sa36.apple_in1k,256,83.504,16.496,96.630,3.370,31.53,0.900,bicubic +nextvit_base.bd_in1k,224,83.496,16.504,96.646,3.354,44.82,0.950,bicubic +resnet152.a1h_in1k,288,83.494,16.506,96.522,3.478,60.19,1.000,bicubic +swinv2_cr_small_ns_224.sw_in1k,224,83.490,16.510,96.486,3.514,49.70,0.900,bicubic +cait_s24_224.fb_dist_in1k,224,83.484,16.516,96.586,3.414,46.92,1.000,bicubic +convnextv2_tiny.fcmae_ft_in1k,288,83.476,16.524,96.718,3.282,28.64,1.000,bicubic +efficientnet_b4.ra2_in1k,384,83.474,16.526,96.584,3.416,19.34,1.000,bicubic +dm_nfnet_f0.dm_in1k,256,83.470,16.530,96.568,3.432,71.49,0.900,bicubic +vit_medium_patch16_reg4_gap_256.sbb_in1k,256,83.468,16.532,96.622,3.378,38.88,0.950,bicubic +vit_medium_patch16_reg1_gap_256.sbb_in1k,256,83.458,16.542,96.522,3.478,38.88,0.950,bicubic +hgnetv2_b4.ssld_stage1_in22k_in1k,288,83.448,16.552,96.922,3.078,19.80,1.000,bicubic +dm_nfnet_f1.dm_in1k,224,83.444,16.556,96.634,3.366,132.63,0.910,bicubic +efficientvit_b3.r224_in1k,224,83.444,16.556,96.338,3.662,48.65,0.950,bicubic +focalnet_small_srf.ms_in1k,224,83.430,16.570,96.434,3.566,49.89,0.900,bicubic +deit3_small_patch16_384.fb_in1k,384,83.428,16.572,96.676,3.324,22.21,1.000,bicubic +regnetz_d32.ra3_in1k,256,83.428,16.572,96.636,3.364,27.58,0.950,bicubic +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,448,83.422,16.578,96.732,3.268,11.07,1.000,bicubic +maxvit_tiny_tf_224.in1k,224,83.422,16.578,96.590,3.410,30.92,0.950,bicubic +mobilenetv4_conv_large.e600_r384_in1k,448,83.418,16.582,96.612,3.388,32.59,1.000,bicubic +edgenext_base.in21k_ft_in1k,256,83.416,16.584,96.796,3.204,18.51,0.950,bicubic +mobilevitv2_200.cvnets_in22k_ft_in1k_384,384,83.410,16.590,96.572,3.428,18.45,1.000,bicubic +sequencer2d_l.in1k,224,83.410,16.590,96.504,3.496,54.30,0.875,bicubic +gcvit_tiny.in1k,224,83.400,16.600,96.392,3.608,28.22,0.875,bicubic +regnetz_d8_evos.ch_in1k,256,83.394,16.606,96.658,3.342,23.46,0.950,bicubic +deit_base_distilled_patch16_224.fb_in1k,224,83.388,16.612,96.490,3.510,87.34,0.900,bicubic +efficientformer_l7.snap_dist_in1k,224,83.386,16.614,96.538,3.462,82.23,0.950,bicubic +tf_efficientnetv2_s.in21k_ft_in1k,300,83.374,16.626,96.710,3.290,21.46,1.000,bicubic +convnextv2_nano.fcmae_ft_in22k_in1k_384,384,83.362,16.638,96.740,3.260,15.62,1.000,bicubic +fastvit_sa24.apple_dist_in1k,256,83.362,16.638,96.576,3.424,21.55,0.900,bicubic +xcit_small_12_p8_224.fb_in1k,224,83.356,16.644,96.474,3.526,26.21,1.000,bicubic +coatnet_rmlp_1_rw_224.sw_in1k,224,83.354,16.646,96.452,3.548,41.69,0.950,bicubic +xcit_small_12_p16_224.fb_dist_in1k,224,83.354,16.646,96.424,3.576,26.25,1.000,bicubic +vit_base_patch32_384.augreg_in21k_ft_in1k,384,83.352,16.648,96.832,3.168,88.30,1.000,bicubic +resnext101_32x16d.fb_swsl_ig1b_ft_in1k,224,83.346,16.654,96.844,3.156,194.03,0.875,bilinear +swin_small_patch4_window7_224.ms_in22k_ft_in1k,224,83.330,16.670,96.996,3.004,49.61,0.900,bicubic +regnety_320.seer_ft_in1k,384,83.326,16.674,96.712,3.288,145.05,1.000,bicubic +vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,224,83.306,16.694,96.530,3.470,88.22,0.900,bicubic +tiny_vit_21m_224.in1k,224,83.270,16.730,96.602,3.398,21.20,0.950,bicubic +resnext101_32x4d.fb_swsl_ig1b_ft_in1k,224,83.268,16.732,96.760,3.240,44.18,0.875,bilinear +eca_nfnet_l1.ra2_in1k,256,83.264,16.736,96.674,3.326,41.41,0.900,bicubic +mobilenetv4_conv_aa_large.e600_r384_in1k,384,83.264,16.736,96.390,3.610,32.59,0.950,bicubic +tf_efficientnet_b4.ap_in1k,380,83.250,16.750,96.390,3.610,19.34,0.922,bicubic +resnet200d.ra2_in1k,256,83.240,16.760,96.546,3.454,64.69,0.950,bicubic +tiny_vit_11m_224.dist_in22k_ft_in1k,224,83.232,16.768,96.628,3.372,11.00,0.950,bicubic +swin_small_patch4_window7_224.ms_in1k,224,83.228,16.772,96.326,3.674,49.61,0.900,bicubic +regnetv_040.ra3_in1k,288,83.200,16.800,96.658,3.342,20.64,1.000,bicubic +xception65.ra3_in1k,299,83.184,16.816,96.598,3.402,39.92,0.940,bicubic +regnety_320.tv2_in1k,224,83.174,16.826,96.416,3.584,145.05,0.965,bicubic +tf_efficientnetv2_s.in1k,300,83.172,16.828,96.336,3.664,21.46,1.000,bicubic +rexnetr_200.sw_in12k_ft_in1k,288,83.170,16.830,96.650,3.350,16.52,1.000,bicubic +twins_pcpvt_large.in1k,224,83.168,16.832,96.610,3.390,60.99,0.900,bicubic +tf_efficientnet_b5.in1k,456,83.166,16.834,96.530,3.470,30.39,0.934,bicubic +xception65p.ra3_in1k,299,83.164,16.836,96.500,3.500,39.82,0.940,bicubic +regnety_080.ra3_in1k,224,83.162,16.838,96.478,3.522,39.18,0.950,bicubic +resnext101_64x4d.c1_in1k,288,83.158,16.842,96.370,3.630,83.46,1.000,bicubic +resnet152d.ra2_in1k,256,83.156,16.844,96.382,3.618,60.21,0.950,bicubic +convnext_small.fb_in1k,224,83.144,16.856,96.432,3.568,50.22,0.875,bicubic +swinv2_cr_small_224.sw_in1k,224,83.126,16.874,96.110,3.890,49.70,0.900,bicubic +twins_svt_base.in1k,224,83.124,16.876,96.428,3.572,56.07,0.900,bicubic +nest_small_jx.goog_in1k,224,83.122,16.878,96.334,3.666,38.35,0.875,bicubic +pvt_v2_b3.in1k,224,83.118,16.882,96.562,3.438,45.24,0.900,bicubic +regnetv_064.ra3_in1k,224,83.118,16.882,96.454,3.546,30.58,0.950,bicubic +deit_base_patch16_384.fb_in1k,384,83.116,16.884,96.366,3.634,86.86,1.000,bicubic +hgnetv2_b3.ssld_stage1_in22k_in1k,288,83.114,16.886,96.712,3.288,16.29,1.000,bicubic +maxxvitv2_nano_rw_256.sw_in1k,256,83.104,16.896,96.334,3.666,23.70,0.950,bicubic +tresnet_m.miil_in21k_ft_in1k,224,83.090,16.910,96.112,3.888,31.39,0.875,bilinear +deit3_medium_patch16_224.fb_in1k,224,83.086,16.914,96.286,3.714,38.85,0.900,bicubic +efficientvit_b2.r288_in1k,288,83.084,16.916,96.302,3.698,24.33,1.000,bicubic +deit3_small_patch16_224.fb_in22k_ft_in1k,224,83.082,16.918,96.780,3.220,22.06,1.000,bicubic +tresnet_xl.miil_in1k_448,448,83.066,16.934,96.180,3.820,78.44,0.875,bilinear +regnety_040.ra3_in1k,288,83.058,16.942,96.498,3.502,20.65,1.000,bicubic +tf_efficientnet_b4.aa_in1k,380,83.040,16.960,96.290,3.710,19.34,0.922,bicubic +maxxvit_rmlp_nano_rw_256.sw_in1k,256,83.026,16.974,96.344,3.656,16.78,0.950,bicubic +resnet101d.ra2_in1k,320,83.018,16.982,96.458,3.542,44.57,1.000,bicubic +regnety_064.ra3_in1k,224,83.006,16.994,96.296,3.704,30.58,0.950,bicubic +resnetv2_101.a1h_in1k,288,83.002,16.998,96.444,3.556,44.54,1.000,bicubic +ecaresnet101d.miil_in1k,288,82.998,17.002,96.524,3.476,44.57,0.950,bicubic +regnety_160.deit_in1k,224,82.994,17.006,96.500,3.500,83.59,0.950,bicubic +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,320,82.990,17.010,96.670,3.330,11.07,1.000,bicubic +maxvit_rmlp_nano_rw_256.sw_in1k,256,82.980,17.020,96.272,3.728,15.50,0.950,bicubic +resnext101_64x4d.tv_in1k,224,82.978,17.022,96.252,3.748,83.46,0.875,bilinear +mobilenetv4_conv_large.e600_r384_in1k,384,82.974,17.026,96.244,3.756,32.59,0.950,bicubic +convformer_s18.sail_in1k,224,82.968,17.032,96.244,3.756,26.77,1.000,bicubic +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,384,82.960,17.040,96.474,3.526,11.07,0.950,bicubic +convnextv2_tiny.fcmae_ft_in1k,224,82.948,17.052,96.286,3.714,28.64,0.875,bicubic +maxvit_nano_rw_256.sw_in1k,256,82.942,17.058,96.224,3.776,15.45,0.950,bicubic +mobilevitv2_175.cvnets_in22k_ft_in1k_384,384,82.928,17.072,96.452,3.548,14.25,1.000,bicubic +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,224,82.916,17.084,96.576,3.424,236.34,0.875,bicubic +resnest101e.in1k,256,82.916,17.084,96.310,3.690,48.28,0.875,bilinear +hgnetv2_b3.ssld_stage2_ft_in1k,224,82.910,17.090,96.362,3.638,16.29,0.965,bicubic +xcit_large_24_p16_224.fb_in1k,224,82.890,17.110,95.882,4.118,189.10,1.000,bicubic +convnext_tiny.fb_in22k_ft_in1k,224,82.888,17.112,96.628,3.372,28.59,0.875,bicubic +efficientnetv2_rw_s.ra2_in1k,288,82.888,17.112,96.328,3.672,23.94,1.000,bicubic +hgnetv2_b4.ssld_stage1_in22k_in1k,224,82.886,17.114,96.632,3.368,19.80,0.965,bicubic +resnetrs152.tf_in1k,256,82.886,17.114,96.286,3.714,86.62,1.000,bicubic +convnext_nano.in12k_ft_in1k,288,82.882,17.118,96.562,3.438,15.59,1.000,bicubic +sequencer2d_m.in1k,224,82.838,17.162,96.276,3.724,38.31,0.875,bicubic +resnext101_32x8d.tv2_in1k,224,82.832,17.168,96.232,3.768,88.79,0.965,bilinear +swinv2_tiny_window16_256.ms_in1k,256,82.828,17.172,96.222,3.778,28.35,0.900,bicubic +pnasnet5large.tf_in1k,331,82.828,17.172,96.038,3.962,86.06,0.911,bicubic +regnetx_320.tv2_in1k,224,82.824,17.176,96.202,3.798,107.81,0.965,bicubic +hiera_tiny_224.mae_in1k_ft_in1k,224,82.824,17.176,96.192,3.808,27.91,0.900,bicubic +resnetv2_50x1_bit.goog_distilled_in1k,224,82.820,17.180,96.526,3.474,25.55,0.875,bicubic +rdnet_tiny.nv_in1k,224,82.820,17.180,96.278,3.722,23.86,0.900,bicubic +resnet152.a1h_in1k,224,82.818,17.182,96.124,3.876,60.19,0.950,bicubic +resnet101.a1h_in1k,288,82.802,17.198,96.320,3.680,44.55,1.000,bicubic +rexnet_300.nav_in1k,224,82.780,17.220,96.234,3.766,34.71,0.875,bicubic +vit_relpos_base_patch16_clsgap_224.sw_in1k,224,82.762,17.238,96.178,3.822,86.43,0.900,bicubic +cs3se_edgenet_x.c2ns_in1k,256,82.760,17.240,96.306,3.694,50.72,0.950,bicubic +nfnet_l0.ra2_in1k,288,82.756,17.244,96.494,3.506,35.07,1.000,bicubic +cs3edgenet_x.c2_in1k,288,82.746,17.254,96.390,3.610,47.82,1.000,bicubic +resnet152.a1_in1k,288,82.744,17.256,95.720,4.280,60.19,1.000,bicubic +regnety_032.ra_in1k,288,82.724,17.276,96.424,3.576,19.44,1.000,bicubic +twins_pcpvt_base.in1k,224,82.722,17.278,96.348,3.652,43.83,0.900,bicubic +resnext101_32x8d.fb_wsl_ig1b_ft_in1k,224,82.720,17.280,96.624,3.376,88.79,0.875,bilinear +efficientvit_b2.r256_in1k,256,82.712,17.288,96.092,3.908,24.33,1.000,bicubic +fastvit_sa24.apple_in1k,256,82.706,17.294,96.278,3.722,21.55,0.900,bicubic +davit_tiny.msft_in1k,224,82.698,17.302,96.284,3.716,28.36,0.950,bicubic +convnext_tiny.fb_in1k,288,82.694,17.306,96.144,3.856,28.59,1.000,bicubic +mobilenetv4_conv_large.e500_r256_in1k,320,82.674,17.326,96.316,3.684,32.59,1.000,bicubic +convnextv2_nano.fcmae_ft_in22k_in1k,288,82.666,17.334,96.546,3.454,15.62,1.000,bicubic +regnetz_c16.ra3_in1k,320,82.660,17.340,96.332,3.668,13.46,1.000,bicubic +efficientnet_b4.ra2_in1k,320,82.654,17.346,96.136,3.864,19.34,0.875,bicubic +cs3sedarknet_x.c2ns_in1k,288,82.650,17.350,96.348,3.652,35.40,1.000,bicubic +regnety_160.tv2_in1k,224,82.646,17.354,96.230,3.770,83.59,0.965,bicubic +resnetaa50d.sw_in12k_ft_in1k,288,82.644,17.356,96.490,3.510,25.58,1.000,bicubic +regnetz_c16_evos.ch_in1k,320,82.644,17.356,96.480,3.520,13.49,0.950,bicubic +nasnetalarge.tf_in1k,331,82.636,17.364,96.060,3.940,88.75,0.911,bicubic +tf_efficientnetv2_b3.in21k_ft_in1k,300,82.634,17.366,96.630,3.370,14.36,0.900,bicubic +xcit_medium_24_p16_224.fb_in1k,224,82.632,17.368,95.980,4.020,84.40,1.000,bicubic +vit_base_patch32_clip_224.laion2b_ft_in1k,224,82.630,17.370,96.204,3.796,88.22,0.900,bicubic +nextvit_small.bd_in1k,224,82.620,17.380,96.222,3.778,31.76,0.950,bicubic +resnet152.a2_in1k,288,82.620,17.380,95.744,4.256,60.19,1.000,bicubic +poolformerv2_m48.sail_in1k,224,82.612,17.388,96.068,3.932,73.35,1.000,bicubic +hgnetv2_b3.ssld_stage1_in22k_in1k,224,82.610,17.390,96.362,3.638,16.29,0.965,bicubic +rexnetr_200.sw_in12k_ft_in1k,224,82.608,17.392,96.392,3.608,16.52,0.950,bicubic +tf_efficientnet_b4.in1k,380,82.608,17.392,96.126,3.874,19.34,0.922,bicubic +convnext_tiny_hnf.a2h_in1k,288,82.608,17.392,96.024,3.976,28.59,1.000,bicubic +mobilevitv2_150.cvnets_in22k_ft_in1k_384,384,82.606,17.394,96.310,3.690,10.59,1.000,bicubic +levit_conv_384.fb_dist_in1k,224,82.600,17.400,96.020,3.980,39.13,0.900,bicubic +levit_384.fb_dist_in1k,224,82.598,17.402,96.016,3.984,39.13,0.900,bicubic +eca_nfnet_l0.ra2_in1k,288,82.596,17.404,96.490,3.510,24.14,1.000,bicubic +regnety_080_tv.tv2_in1k,224,82.592,17.408,96.244,3.756,39.38,0.965,bicubic +flexivit_small.1200ep_in1k,240,82.592,17.408,96.150,3.850,22.06,0.950,bicubic +xcit_tiny_24_p16_384.fb_dist_in1k,384,82.580,17.420,96.254,3.746,12.12,1.000,bicubic +xcit_tiny_24_p8_224.fb_dist_in1k,224,82.580,17.420,96.184,3.816,12.11,1.000,bicubic +xcit_small_24_p16_224.fb_in1k,224,82.580,17.420,96.000,4.000,47.67,1.000,bicubic +regnetx_160.tv2_in1k,224,82.576,17.424,96.056,3.944,54.28,0.965,bicubic +vit_relpos_medium_patch16_cls_224.sw_in1k,224,82.572,17.428,96.076,3.924,38.76,0.900,bicubic +efficientformer_l3.snap_dist_in1k,224,82.564,17.436,96.242,3.758,31.41,0.950,bicubic +hgnet_tiny.ssld_in1k,288,82.524,17.476,96.514,3.486,14.74,1.000,bicubic +resnet61q.ra2_in1k,288,82.524,17.476,96.134,3.866,36.85,1.000,bicubic +repvit_m1_5.dist_450e_in1k,224,82.520,17.480,96.110,3.890,14.64,0.950,bicubic +wide_resnet101_2.tv2_in1k,224,82.516,17.484,96.012,3.988,126.89,0.965,bilinear +vit_little_patch16_reg4_gap_256.sbb_in1k,256,82.514,17.486,96.260,3.740,22.52,0.950,bicubic +inception_next_tiny.sail_in1k,224,82.508,17.492,96.000,4.000,28.06,0.875,bicubic +crossvit_18_dagger_240.in1k,240,82.504,17.496,96.068,3.932,44.27,0.875,bicubic +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,320,82.496,17.504,96.280,3.720,11.07,1.000,bicubic +convnextv2_nano.fcmae_ft_in1k,288,82.496,17.504,96.228,3.772,15.62,1.000,bicubic +gc_efficientnetv2_rw_t.agc_in1k,288,82.480,17.520,96.300,3.700,13.68,1.000,bicubic +vit_relpos_base_patch16_224.sw_in1k,224,82.476,17.524,96.144,3.856,86.43,0.900,bicubic +vit_relpos_medium_patch16_224.sw_in1k,224,82.466,17.534,96.084,3.916,38.75,0.900,bicubic +poolformer_m48.sail_in1k,224,82.462,17.538,95.968,4.032,73.47,0.950,bicubic +pit_b_224.in1k,224,82.460,17.540,95.708,4.292,73.76,0.900,bicubic +regnetv_040.ra3_in1k,224,82.448,17.552,96.204,3.796,20.64,0.950,bicubic +resnext101_64x4d.c1_in1k,224,82.446,17.554,95.920,4.080,83.46,0.950,bicubic +tf_efficientnet_b2.ns_jft_in1k,260,82.412,17.588,96.234,3.766,9.11,0.890,bicubic +mvitv2_tiny.fb_in1k,224,82.408,17.592,96.150,3.850,24.17,0.900,bicubic +coatnet_bn_0_rw_224.sw_in1k,224,82.394,17.606,96.194,3.806,27.44,0.950,bicubic +coatnet_0_rw_224.sw_in1k,224,82.394,17.606,95.844,4.156,27.44,0.950,bicubic +xcit_tiny_12_p8_384.fb_dist_in1k,384,82.392,17.608,96.214,3.786,6.71,1.000,bicubic +flexivit_small.600ep_in1k,240,82.392,17.608,96.040,3.960,22.06,0.950,bicubic +crossvit_18_240.in1k,240,82.386,17.614,96.066,3.934,43.27,0.875,bicubic +repvit_m1_5.dist_300e_in1k,224,82.382,17.618,96.026,3.974,14.64,0.950,bicubic +coat_small.in1k,224,82.376,17.624,96.214,3.786,21.69,0.900,bicubic +ecaresnet50t.ra2_in1k,320,82.370,17.630,96.120,3.880,25.57,0.950,bicubic +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,256,82.362,17.638,96.256,3.744,11.07,0.950,bicubic +hgnetv2_b2.ssld_stage2_ft_in1k,288,82.360,17.640,96.404,3.596,11.22,1.000,bicubic +resnet51q.ra2_in1k,288,82.356,17.644,96.178,3.822,35.70,1.000,bilinear +efficientnetv2_rw_t.ra2_in1k,288,82.354,17.646,96.178,3.822,13.65,1.000,bicubic +sequencer2d_s.in1k,224,82.336,17.664,96.032,3.968,27.65,0.875,bicubic +resnetv2_101x1_bit.goog_in21k_ft_in1k,448,82.332,17.668,96.526,3.474,44.54,1.000,bilinear +mobilevitv2_200.cvnets_in22k_ft_in1k,256,82.322,17.678,95.940,4.060,18.45,0.888,bicubic +resnet101.a1_in1k,288,82.322,17.678,95.628,4.372,44.55,1.000,bicubic +regnety_040.ra3_in1k,224,82.316,17.684,96.076,3.924,20.65,0.950,bicubic +mixer_b16_224.miil_in21k_ft_in1k,224,82.310,17.690,95.714,4.286,59.88,0.875,bilinear +vit_relpos_medium_patch16_rpn_224.sw_in1k,224,82.308,17.692,95.982,4.018,38.73,0.900,bicubic +convnext_nano.in12k_ft_in1k,224,82.306,17.694,96.338,3.662,15.59,0.950,bicubic +crossvit_15_dagger_240.in1k,240,82.306,17.694,95.968,4.032,28.21,0.875,bicubic +coat_lite_small.in1k,224,82.302,17.698,95.834,4.166,19.84,0.900,bicubic +efficientnet_b3.ra2_in1k,320,82.298,17.702,96.128,3.872,12.23,1.000,bicubic +resnet152.tv2_in1k,224,82.294,17.706,96.000,4.000,60.19,0.965,bilinear +resnetrs101.tf_in1k,288,82.294,17.706,96.000,4.000,63.62,0.940,bicubic +convit_base.fb_in1k,224,82.294,17.706,95.938,4.062,86.54,0.875,bicubic +tresnet_l.miil_in1k_448,448,82.278,17.722,95.988,4.012,55.99,0.875,bilinear +wide_resnet50_2.racm_in1k,288,82.266,17.734,96.062,3.938,68.88,0.950,bicubic +resnet101d.ra2_in1k,256,82.252,17.748,96.068,3.932,44.57,0.950,bicubic +vit_srelpos_medium_patch16_224.sw_in1k,224,82.250,17.750,95.928,4.072,38.74,0.900,bicubic +cs3darknet_x.c2ns_in1k,288,82.236,17.764,96.232,3.768,35.05,1.000,bicubic +convnext_tiny_hnf.a2h_in1k,224,82.230,17.770,95.860,4.140,28.59,0.950,bicubic +crossvit_base_240.in1k,240,82.228,17.772,95.814,4.186,105.03,0.875,bicubic +resnet101.a2_in1k,288,82.224,17.776,95.738,4.262,44.55,1.000,bicubic +vit_base_patch16_rpn_224.sw_in1k,224,82.216,17.784,95.998,4.002,86.54,0.900,bicubic +hgnet_small.paddle_in1k,288,82.214,17.786,96.224,3.776,24.36,1.000,bicubic +cs3edgenet_x.c2_in1k,256,82.214,17.786,95.938,4.062,47.82,0.887,bicubic +poolformerv2_m36.sail_in1k,224,82.214,17.786,95.896,4.104,56.08,1.000,bicubic +cait_xxs36_384.fb_dist_in1k,384,82.208,17.792,96.150,3.850,17.37,1.000,bicubic +pvt_v2_b2_li.in1k,224,82.202,17.798,96.110,3.890,22.55,0.900,bicubic +seresnext50_32x4d.racm_in1k,288,82.186,17.814,96.148,3.852,27.56,0.950,bicubic +ecaresnet101d.miil_in1k,224,82.186,17.814,96.062,3.938,44.57,0.875,bicubic +focalnet_tiny_lrf.ms_in1k,224,82.174,17.826,95.948,4.052,28.65,0.900,bicubic +flexivit_small.300ep_in1k,240,82.170,17.830,96.026,3.974,22.06,0.950,bicubic +resnext50_32x4d.fb_swsl_ig1b_ft_in1k,224,82.162,17.838,96.224,3.776,25.03,0.875,bilinear +efficientvit_b2.r224_in1k,224,82.162,17.838,95.710,4.290,24.33,0.950,bicubic +regnetz_c16.ra3_in1k,256,82.160,17.840,96.054,3.946,13.46,0.940,bicubic +efficientformerv2_s2.snap_dist_in1k,224,82.150,17.850,95.912,4.088,12.71,0.950,bicubic +focalnet_tiny_srf.ms_in1k,224,82.144,17.856,95.970,4.030,28.43,0.900,bicubic +swin_s3_tiny_224.ms_in1k,224,82.128,17.872,95.958,4.042,28.33,0.900,bicubic +ecaresnet50t.a1_in1k,288,82.112,17.888,95.654,4.346,25.57,1.000,bicubic +poolformer_m36.sail_in1k,224,82.104,17.896,95.698,4.302,56.17,0.950,bicubic +visformer_small.in1k,224,82.096,17.904,95.876,4.124,40.22,0.900,bicubic +pvt_v2_b2.in1k,224,82.094,17.906,95.956,4.044,25.36,0.900,bicubic +halo2botnet50ts_256.a1h_in1k,256,82.084,17.916,95.658,4.342,22.64,0.950,bicubic +convnext_tiny.fb_in1k,224,82.066,17.934,95.854,4.146,28.59,0.875,bicubic +tresnet_xl.miil_in1k,224,82.064,17.936,95.930,4.070,78.44,0.875,bilinear +coatnet_rmlp_nano_rw_224.sw_in1k,224,82.062,17.938,95.870,4.130,15.15,0.900,bicubic +hrnet_w18_ssld.paddle_in1k,288,82.048,17.952,96.244,3.756,21.30,1.000,bilinear +resnetv2_101.a1h_in1k,224,82.042,17.958,95.866,4.134,44.54,0.950,bicubic +fbnetv3_g.ra2_in1k,288,82.040,17.960,96.064,3.936,16.62,0.950,bilinear +convnextv2_nano.fcmae_ft_in22k_in1k,224,82.038,17.962,96.174,3.826,15.62,0.875,bicubic +resnext50_32x4d.a1h_in1k,288,82.012,17.988,95.932,4.068,25.03,1.000,bicubic +ecaresnet101d_pruned.miil_in1k,288,82.006,17.994,96.164,3.836,24.88,0.950,bicubic +resnetv2_50d_evos.ah_in1k,288,82.000,18.000,95.898,4.102,25.59,1.000,bicubic +coatnext_nano_rw_224.sw_in1k,224,81.998,18.002,95.888,4.112,14.70,0.900,bicubic +resnet152.a1_in1k,224,81.998,18.002,95.294,4.706,60.19,0.950,bicubic +resnext101_32x8d.tv2_in1k,176,81.990,18.010,95.716,4.284,88.79,0.875,bilinear +xcit_small_12_p16_224.fb_in1k,224,81.982,18.018,95.814,4.186,26.25,1.000,bicubic +xception41p.ra3_in1k,299,81.980,18.020,95.788,4.212,26.91,0.940,bicubic +deit_base_patch16_224.fb_in1k,224,81.980,18.020,95.742,4.258,86.57,0.900,bicubic +gcvit_xtiny.in1k,224,81.968,18.032,95.966,4.034,19.98,0.875,bicubic +resnet61q.ra2_in1k,256,81.966,18.034,95.852,4.148,36.85,0.900,bicubic +resnetv2_50d_gn.ah_in1k,288,81.962,18.038,95.936,4.064,25.57,1.000,bicubic +tf_efficientnetv2_b3.in1k,300,81.960,18.040,95.774,4.226,14.36,0.904,bicubic +resnet101.a1h_in1k,224,81.950,18.050,95.760,4.240,44.55,0.950,bicubic +vit_base_patch32_clip_224.openai_ft_in1k,224,81.946,18.054,95.974,4.026,88.22,0.900,bicubic +mobilevitv2_175.cvnets_in22k_ft_in1k,256,81.944,18.056,95.794,4.206,14.25,0.888,bicubic +regnetz_c16_evos.ch_in1k,256,81.942,18.058,96.150,3.850,13.49,0.950,bicubic +regnety_032.ra_in1k,224,81.942,18.058,95.970,4.030,19.44,0.950,bicubic +hgnet_tiny.ssld_in1k,224,81.940,18.060,96.114,3.886,14.74,0.965,bicubic +cs3sedarknet_x.c2ns_in1k,256,81.926,18.074,96.022,3.978,35.40,0.887,bicubic +resnet101.tv2_in1k,224,81.906,18.094,95.768,4.232,44.55,0.965,bilinear +xcit_tiny_24_p8_224.fb_in1k,224,81.890,18.110,95.980,4.020,12.11,1.000,bicubic +resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,224,81.880,18.120,96.100,3.900,194.03,0.875,bilinear +nfnet_l0.ra2_in1k,224,81.868,18.132,96.036,3.964,35.07,0.900,bicubic +mobilenetv4_conv_large.e500_r256_in1k,256,81.864,18.136,95.696,4.304,32.59,0.950,bicubic +cs3darknet_x.c2ns_in1k,256,81.856,18.144,95.956,4.044,35.05,0.950,bicubic +convnextv2_nano.fcmae_ft_in1k,224,81.856,18.144,95.740,4.260,15.62,0.875,bicubic +tf_efficientnet_b3.ap_in1k,300,81.854,18.146,95.608,4.392,12.23,0.904,bicubic +vit_small_r26_s32_224.augreg_in21k_ft_in1k,224,81.844,18.156,96.024,3.976,36.43,0.900,bicubic +pit_s_distilled_224.in1k,224,81.842,18.158,95.724,4.276,24.04,0.900,bicubic +fastvit_sa12.apple_dist_in1k,256,81.842,18.158,95.700,4.300,11.58,0.900,bicubic +resnet50d.ra4_e3600_r224_in1k,288,81.830,18.170,95.920,4.080,25.58,1.000,bicubic +swinv2_tiny_window8_256.ms_in1k,256,81.824,18.176,95.988,4.012,28.35,0.900,bicubic +regnety_032.tv2_in1k,224,81.798,18.202,95.846,4.154,19.44,0.965,bicubic +swinv2_cr_tiny_ns_224.sw_in1k,224,81.796,18.204,95.824,4.176,28.33,0.900,bicubic +vit_base_patch16_224.orig_in21k_ft_in1k,224,81.786,18.214,96.124,3.876,86.57,0.900,bicubic +resnetaa50d.sw_in12k_ft_in1k,224,81.782,18.218,96.036,3.964,25.58,0.950,bicubic +resnet51q.ra2_in1k,256,81.778,18.222,95.950,4.050,35.70,0.875,bilinear +cs3sedarknet_l.c2ns_in1k,288,81.766,18.234,95.966,4.034,21.91,0.950,bicubic +eca_nfnet_l0.ra2_in1k,224,81.764,18.236,95.998,4.002,24.14,0.900,bicubic +resnet152.a2_in1k,224,81.764,18.236,95.270,4.730,60.19,0.950,bicubic +tresnet_m.miil_in1k_448,448,81.710,18.290,95.562,4.438,31.39,0.875,bilinear +coatnet_nano_rw_224.sw_in1k,224,81.704,18.296,95.650,4.350,15.14,0.900,bicubic +twins_svt_small.in1k,224,81.692,18.308,95.668,4.332,24.06,0.900,bicubic +ecaresnet50t.a2_in1k,288,81.682,18.318,95.532,4.468,25.57,1.000,bicubic +halonet50ts.a1h_in1k,256,81.650,18.350,95.614,4.386,22.73,0.940,bicubic +tf_efficientnet_b3.aa_in1k,300,81.648,18.352,95.724,4.276,12.23,0.904,bicubic +ecaresnet50d.miil_in1k,288,81.640,18.360,95.886,4.114,25.58,0.950,bicubic +rexnet_200.nav_in1k,224,81.640,18.360,95.668,4.332,16.37,0.875,bicubic +resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,224,81.620,18.380,96.036,3.964,88.79,0.875,bilinear +convnext_nano_ols.d1h_in1k,288,81.612,18.388,95.626,4.374,15.65,1.000,bicubic +resnetaa50.a1h_in1k,288,81.604,18.396,95.808,4.192,25.56,1.000,bicubic +wide_resnet50_2.tv2_in1k,224,81.598,18.402,95.764,4.236,68.88,0.965,bilinear +poolformerv2_s36.sail_in1k,224,81.576,18.424,95.680,4.320,30.79,1.000,bicubic +edgenext_small.usi_in1k,320,81.572,18.428,95.712,4.288,5.59,1.000,bicubic +hgnetv2_b2.ssld_stage2_ft_in1k,224,81.566,18.434,95.898,4.102,11.22,0.965,bicubic +regnetx_080.tv2_in1k,224,81.560,18.440,95.542,4.458,39.57,0.965,bicubic +lamhalobotnet50ts_256.a1h_in1k,256,81.548,18.452,95.494,4.506,22.57,0.950,bicubic +tf_efficientnet_lite4.in1k,380,81.546,18.454,95.666,4.334,13.01,0.920,bilinear +tiny_vit_11m_224.in1k,224,81.538,18.462,95.870,4.130,11.00,0.950,bicubic +tnt_s_patch16_224,224,81.528,18.472,95.734,4.266,23.76,0.900,bicubic +crossvit_15_240.in1k,240,81.518,18.482,95.696,4.304,27.53,0.875,bicubic +vit_large_patch32_384.orig_in21k_ft_in1k,384,81.506,18.494,96.088,3.912,306.63,1.000,bicubic +levit_conv_256.fb_dist_in1k,224,81.506,18.494,95.488,4.512,18.89,0.900,bicubic +levit_256.fb_dist_in1k,224,81.506,18.494,95.466,4.534,18.89,0.900,bicubic +tresnet_l.miil_in1k,224,81.498,18.502,95.652,4.348,55.99,0.875,bilinear +repvit_m3.dist_in1k,224,81.494,18.506,95.562,4.438,10.68,0.950,bicubic +resnet101.a1_in1k,224,81.494,18.506,95.164,4.836,44.55,0.950,bicubic +wide_resnet50_2.racm_in1k,224,81.488,18.512,95.544,4.456,68.88,0.875,bicubic +resnext50_32x4d.a1_in1k,288,81.484,18.516,95.162,4.838,25.03,1.000,bicubic +vit_relpos_small_patch16_224.sw_in1k,224,81.476,18.524,95.824,4.176,21.98,0.900,bicubic +efficientnet_b3.ra2_in1k,288,81.474,18.526,95.712,4.288,12.23,0.875,bicubic +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,256,81.474,18.526,95.692,4.308,11.07,0.950,bicubic +convnext_nano.d1h_in1k,288,81.474,18.526,95.670,4.330,15.59,1.000,bicubic +mobilevitv2_150.cvnets_in22k_ft_in1k,256,81.470,18.530,95.672,4.328,10.59,0.888,bicubic +hgnetv2_b2.ssld_stage1_in22k_in1k,288,81.460,18.540,96.008,3.992,11.22,1.000,bicubic +gcresnet50t.ra2_in1k,288,81.458,18.542,95.722,4.278,25.90,1.000,bicubic +ecaresnet50t.ra2_in1k,256,81.446,18.554,95.678,4.322,25.57,0.875,bicubic +resnet50d.a1_in1k,288,81.444,18.556,95.224,4.776,25.58,1.000,bicubic +dm_nfnet_f0.dm_in1k,192,81.438,18.562,95.678,4.322,71.49,0.900,bicubic +efficientnet_b1.ra4_e3600_r240_in1k,288,81.434,18.566,95.696,4.304,7.79,1.000,bicubic +poolformer_s36.sail_in1k,224,81.432,18.568,95.444,4.556,30.86,0.900,bicubic +nest_tiny_jx.goog_in1k,224,81.428,18.572,95.626,4.374,17.06,0.875,bicubic +hgnet_small.paddle_in1k,224,81.426,18.574,95.846,4.154,24.36,0.965,bicubic +ecaresnetlight.miil_in1k,288,81.416,18.584,95.794,4.206,30.16,0.950,bicubic +vit_small_patch16_224.augreg_in21k_ft_in1k,224,81.414,18.586,96.150,3.850,22.05,0.900,bicubic +convit_small.fb_in1k,224,81.414,18.586,95.736,4.264,27.78,0.875,bicubic +resnetv2_50.a1h_in1k,288,81.408,18.592,95.712,4.288,25.55,1.000,bicubic +tf_efficientnet_b1.ns_jft_in1k,240,81.388,18.612,95.758,4.242,7.79,0.882,bicubic +swin_tiny_patch4_window7_224.ms_in1k,224,81.388,18.612,95.540,4.460,28.29,0.900,bicubic +gernet_l.idstcv_in1k,256,81.374,18.626,95.552,4.448,31.08,0.875,bilinear +deit3_small_patch16_224.fb_in1k,224,81.374,18.626,95.454,4.546,22.06,0.900,bicubic +efficientnetv2_rw_t.ra2_in1k,224,81.372,18.628,95.552,4.448,13.65,1.000,bicubic +convmixer_1536_20.in1k,224,81.370,18.630,95.630,4.370,51.63,0.960,bicubic +resnet50d.ra2_in1k,288,81.350,18.650,95.742,4.258,25.58,0.950,bicubic +resnet101.a2_in1k,224,81.344,18.656,95.198,4.802,44.55,0.950,bicubic +legacy_senet154.in1k,224,81.326,18.674,95.496,4.504,115.09,0.875,bilinear +efficientnet_el.ra_in1k,300,81.306,18.694,95.540,4.460,10.59,0.904,bicubic +coat_mini.in1k,224,81.304,18.696,95.388,4.612,10.34,0.900,bicubic +repvit_m1_1.dist_450e_in1k,224,81.302,18.698,95.572,4.428,8.80,0.950,bicubic +resnext50_32x4d.a2_in1k,288,81.298,18.702,95.110,4.890,25.03,1.000,bicubic +mobilenetv4_hybrid_medium.e500_r224_in1k,256,81.284,18.716,95.740,4.260,11.07,1.000,bicubic +ecaresnet50t.a1_in1k,224,81.284,18.716,95.150,4.850,25.57,0.950,bicubic +seresnet50.ra2_in1k,288,81.282,18.718,95.652,4.348,28.09,0.950,bicubic +seresnext50_32x4d.racm_in1k,224,81.268,18.732,95.626,4.374,27.56,0.875,bicubic +gc_efficientnetv2_rw_t.agc_in1k,224,81.268,18.732,95.574,4.426,13.68,1.000,bicubic +senet154.gluon_in1k,224,81.258,18.742,95.358,4.642,115.09,0.875,bicubic +res2net101d.in1k,224,81.254,18.746,95.348,4.652,45.23,0.875,bilinear +fbnetv3_g.ra2_in1k,240,81.252,18.748,95.682,4.318,16.62,0.950,bilinear +resnet50.a1_in1k,288,81.240,18.760,95.112,4.888,25.56,1.000,bicubic +gcresnext50ts.ch_in1k,288,81.234,18.766,95.536,4.464,15.67,1.000,bicubic +cs3sedarknet_l.c2ns_in1k,256,81.220,18.780,95.806,4.194,21.91,0.887,bicubic +deit_small_distilled_patch16_224.fb_in1k,224,81.216,18.784,95.380,4.620,22.44,0.900,bicubic +xcit_tiny_12_p8_224.fb_dist_in1k,224,81.212,18.788,95.616,4.384,6.71,1.000,bicubic +resnet50_gn.a1h_in1k,288,81.208,18.792,95.632,4.368,25.56,0.950,bicubic +lambda_resnet50ts.a1h_in1k,256,81.186,18.814,95.096,4.904,21.54,0.950,bicubic +resnext50_32x4d.tv2_in1k,224,81.176,18.824,95.348,4.652,25.03,0.965,bilinear +resnet50d.a2_in1k,288,81.168,18.832,95.100,4.900,25.58,1.000,bicubic +sebotnet33ts_256.a1h_in1k,256,81.152,18.848,95.160,4.840,13.70,0.940,bicubic +resmlp_36_224.fb_distilled_in1k,224,81.150,18.850,95.508,4.492,44.69,0.875,bicubic +mobilevitv2_200.cvnets_in1k,256,81.148,18.852,95.382,4.618,18.45,0.888,bicubic +resnet50.fb_swsl_ig1b_ft_in1k,224,81.146,18.854,95.980,4.020,25.56,0.875,bilinear +resnest50d_4s2x40d.in1k,224,81.146,18.854,95.566,4.434,30.42,0.875,bicubic +resnext50_32x4d.a1h_in1k,224,81.140,18.860,95.320,4.680,25.03,0.950,bicubic +vit_small_patch16_384.augreg_in1k,384,81.134,18.866,95.576,4.424,22.20,1.000,bicubic +hrnet_w18_ssld.paddle_in1k,224,81.132,18.868,95.634,4.366,21.30,0.950,bilinear +pit_s_224.in1k,224,81.126,18.874,95.328,4.672,23.46,0.900,bicubic +twins_pcpvt_small.in1k,224,81.122,18.878,95.616,4.384,24.11,0.900,bicubic +vit_srelpos_small_patch16_224.sw_in1k,224,81.108,18.892,95.580,4.420,21.97,0.900,bicubic +seresnet50.a1_in1k,288,81.104,18.896,95.120,4.880,28.09,1.000,bicubic +vit_base_patch16_384.augreg_in1k,384,81.096,18.904,95.334,4.666,86.86,1.000,bicubic +seresnet50.a2_in1k,288,81.092,18.908,95.236,4.764,28.09,1.000,bicubic +tf_efficientnetv2_b3.in21k_ft_in1k,240,81.076,18.924,95.920,4.080,14.36,0.900,bicubic +fastvit_s12.apple_dist_in1k,256,81.074,18.926,95.278,4.722,9.47,0.900,bicubic +edgenext_small.usi_in1k,256,81.064,18.936,95.330,4.670,5.59,0.950,bicubic +convnextv2_pico.fcmae_ft_in1k,288,81.056,18.944,95.478,4.522,9.07,0.950,bicubic +haloregnetz_b.ra3_in1k,224,81.052,18.948,95.200,4.800,11.68,0.940,bicubic +resnet152s.gluon_in1k,224,81.048,18.952,95.442,4.558,60.32,0.875,bicubic +crossvit_small_240.in1k,240,81.040,18.960,95.468,4.532,26.86,0.875,bicubic +resmlp_big_24_224.fb_in1k,224,81.034,18.966,95.026,4.974,129.14,0.875,bicubic +resnest50d_1s4x24d.in1k,224,81.018,18.982,95.336,4.664,25.68,0.875,bicubic +resnet50.d_in1k,288,81.012,18.988,95.456,4.544,25.56,1.000,bicubic +sehalonet33ts.ra2_in1k,256,80.972,19.028,95.272,4.728,13.69,0.940,bicubic +swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,224,80.966,19.034,96.020,3.980,28.29,0.900,bicubic +cait_xxs24_384.fb_dist_in1k,384,80.962,19.038,95.642,4.358,12.03,1.000,bicubic +resnest50d.in1k,224,80.958,19.042,95.372,4.628,27.48,0.875,bilinear +resnet50d.ra4_e3600_r224_in1k,224,80.956,19.044,95.380,4.620,25.58,0.950,bicubic +xcit_tiny_12_p16_384.fb_dist_in1k,384,80.952,19.048,95.432,4.568,6.72,1.000,bicubic +gcresnet50t.ra2_in1k,256,80.950,19.050,95.464,4.536,25.90,0.900,bicubic +resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,224,80.936,19.064,95.732,4.268,44.18,0.875,bilinear +resnet50.c1_in1k,288,80.928,19.072,95.554,4.446,25.56,1.000,bicubic +regnetx_032.tv2_in1k,224,80.926,19.074,95.268,4.732,15.30,0.965,bicubic +cs3darknet_focus_l.c2ns_in1k,288,80.910,19.090,95.678,4.322,21.15,0.950,bicubic +convnext_nano_ols.d1h_in1k,224,80.906,19.094,95.254,4.746,15.65,0.950,bicubic +cs3darknet_l.c2ns_in1k,288,80.888,19.112,95.662,4.338,21.16,0.950,bicubic +seresnext101_64x4d.gluon_in1k,224,80.886,19.114,95.308,4.692,88.23,0.875,bicubic +seresnext101_32x4d.gluon_in1k,224,80.886,19.114,95.268,4.732,48.96,0.875,bicubic +ecaresnet50t.a2_in1k,224,80.884,19.116,95.022,4.978,25.57,0.950,bicubic +mobilenetv4_conv_medium.e500_r256_in1k,320,80.880,19.120,95.762,4.238,9.72,1.000,bicubic +tf_efficientnet_b3.in1k,300,80.880,19.120,95.326,4.674,12.23,0.904,bicubic +mobilevitv2_175.cvnets_in1k,256,80.874,19.126,95.260,4.740,14.25,0.888,bicubic +efficientnet_b3_pruned.in1k,300,80.872,19.128,95.272,4.728,9.86,0.904,bicubic +tiny_vit_5m_224.dist_in22k_ft_in1k,224,80.862,19.138,95.672,4.328,5.39,0.950,bicubic +resnet50.c2_in1k,288,80.856,19.144,95.526,4.474,25.56,1.000,bicubic +resnet50.tv2_in1k,224,80.844,19.156,95.420,4.580,25.56,0.965,bilinear +fastvit_sa12.apple_in1k,256,80.840,19.160,95.344,4.656,11.58,0.900,bicubic +resnetv2_50d_evos.ah_in1k,224,80.828,19.172,95.270,4.730,25.59,0.950,bicubic +repvit_m1_1.dist_300e_in1k,224,80.826,19.174,95.174,4.826,8.80,0.950,bicubic +tresnet_m.miil_in1k,224,80.816,19.184,94.862,5.138,31.39,0.875,bilinear +ecaresnet101d_pruned.miil_in1k,224,80.814,19.186,95.620,4.380,24.88,0.875,bicubic +seresnet33ts.ra2_in1k,288,80.814,19.186,95.346,4.654,19.78,1.000,bicubic +ecaresnet50d_pruned.miil_in1k,288,80.808,19.192,95.578,4.422,19.94,0.950,bicubic +regnety_320.pycls_in1k,224,80.796,19.204,95.240,4.760,145.05,0.875,bicubic +resnetv2_50d_gn.ah_in1k,224,80.794,19.206,95.356,4.644,25.57,0.950,bicubic +resnet50.a2_in1k,288,80.780,19.220,94.978,5.022,25.56,1.000,bicubic +resmlp_24_224.fb_distilled_in1k,224,80.766,19.234,95.220,4.780,30.02,0.875,bicubic +convnext_nano.d1h_in1k,224,80.762,19.238,95.332,4.668,15.59,0.950,bicubic +poolformerv2_s24.sail_in1k,224,80.752,19.248,95.318,4.682,21.34,1.000,bicubic +hgnetv2_b2.ssld_stage1_in22k_in1k,224,80.746,19.254,95.498,4.502,11.22,0.965,bicubic +regnetz_b16.ra3_in1k,288,80.738,19.262,95.530,4.470,9.72,1.000,bicubic +vit_base_patch32_224.augreg_in21k_ft_in1k,224,80.736,19.264,95.570,4.430,88.22,0.900,bicubic +resnet50d.a1_in1k,224,80.730,19.270,94.678,5.322,25.58,0.950,bicubic +gernet_m.idstcv_in1k,224,80.726,19.274,95.184,4.816,21.14,0.875,bilinear +eca_resnet33ts.ra2_in1k,288,80.716,19.284,95.382,4.618,19.68,1.000,bicubic +tf_efficientnetv2_b3.in1k,240,80.712,19.288,95.176,4.824,14.36,0.904,bicubic +resnetrs101.tf_in1k,192,80.710,19.290,95.238,4.762,63.62,0.940,bicubic +resnet50.b1k_in1k,288,80.706,19.294,95.432,4.568,25.56,1.000,bicubic +resnext50_32x4d.ra_in1k,288,80.706,19.294,95.358,4.642,25.03,0.950,bicubic +regnety_016.tv2_in1k,224,80.696,19.304,95.340,4.660,11.20,0.965,bicubic +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,256,80.684,19.316,95.442,4.558,8.46,0.950,bicubic +mobilenet_edgetpu_v2_m,256,80.682,19.318,95.444,4.556,8.46,0.950,bicubic +resnext50d_32x4d.bt_in1k,288,80.680,19.320,95.428,4.572,25.05,0.950,bicubic +eva02_tiny_patch14_336.mim_in22k_ft_in1k,336,80.672,19.328,95.526,4.474,5.76,1.000,bicubic +nf_resnet50.ra2_in1k,288,80.656,19.344,95.340,4.660,25.56,0.940,bicubic +resnet50.a1h_in1k,224,80.652,19.348,95.312,4.688,25.56,1.000,bicubic +hgnet_tiny.paddle_in1k,288,80.648,19.352,95.542,4.458,14.74,1.000,bicubic +resnext101_64x4d.gluon_in1k,224,80.640,19.360,95.000,5.000,83.46,0.875,bicubic +ecaresnet50d.miil_in1k,224,80.618,19.382,95.312,4.688,25.58,0.875,bicubic +resnetaa50.a1h_in1k,224,80.614,19.386,95.212,4.788,25.56,0.950,bicubic +efficientnet_b2.ra_in1k,288,80.610,19.390,95.318,4.682,9.11,1.000,bicubic +gcresnext50ts.ch_in1k,256,80.608,19.392,95.180,4.820,15.67,0.900,bicubic +gcresnet33ts.ra2_in1k,288,80.588,19.412,95.322,4.678,19.88,1.000,bicubic +cspresnext50.ra_in1k,256,80.552,19.448,95.330,4.670,20.57,0.887,bilinear +maxvit_rmlp_pico_rw_256.sw_in1k,256,80.550,19.450,95.186,4.814,7.52,0.950,bicubic +resnet50d.ra2_in1k,224,80.548,19.452,95.158,4.842,25.58,0.875,bicubic +resnet152.a3_in1k,224,80.548,19.452,95.004,4.996,60.19,0.950,bicubic +darknet53.c2ns_in1k,288,80.542,19.458,95.426,4.574,41.61,1.000,bicubic +darknetaa53.c2ns_in1k,288,80.528,19.472,95.328,4.672,36.02,1.000,bilinear +resnext50_32x4d.a1_in1k,224,80.526,19.474,94.458,5.542,25.03,0.950,bicubic +repvgg_b3.rvgg_in1k,224,80.518,19.482,95.254,4.746,123.09,0.875,bilinear +efficientformer_l1.snap_dist_in1k,224,80.502,19.498,94.992,5.008,12.29,0.950,bicubic +mixnet_xl.ra_in1k,224,80.490,19.510,94.938,5.062,11.90,0.875,bicubic +wide_resnet101_2.tv2_in1k,176,80.488,19.512,94.980,5.020,126.89,0.875,bilinear +vit_small_patch32_384.augreg_in21k_ft_in1k,384,80.482,19.518,95.606,4.394,22.92,1.000,bicubic +resnet152d.gluon_in1k,224,80.476,19.524,95.196,4.804,60.21,0.875,bicubic +resnet50.b2k_in1k,288,80.470,19.530,95.308,4.692,25.56,1.000,bicubic +repvit_m2.dist_in1k,224,80.468,19.532,95.172,4.828,8.80,0.950,bicubic +xcit_tiny_24_p16_224.fb_dist_in1k,224,80.466,19.534,95.202,4.798,12.12,1.000,bicubic +resnet101d.gluon_in1k,224,80.466,19.534,95.034,4.966,44.57,0.875,bicubic +convnext_pico_ols.d1_in1k,288,80.458,19.542,95.248,4.752,9.06,1.000,bicubic +ecaresnetlight.miil_in1k,224,80.456,19.544,95.248,4.752,30.16,0.875,bicubic +edgenext_small_rw.sw_in1k,320,80.452,19.548,95.206,4.794,7.83,1.000,bicubic +inception_resnet_v2.tf_in1k,299,80.446,19.554,95.306,4.694,55.84,0.897,bicubic +repvit_m1_0.dist_450e_in1k,224,80.446,19.554,94.920,5.080,7.30,0.950,bicubic +resnext50_32x4d.a2_in1k,224,80.444,19.556,94.630,5.370,25.03,0.950,bicubic +mobilenetv4_hybrid_medium.e500_r224_in1k,224,80.438,19.562,95.376,4.624,11.07,0.950,bicubic +wide_resnet50_2.tv2_in1k,176,80.436,19.564,95.082,4.918,68.88,0.875,bilinear +convnext_pico.d1_in1k,288,80.430,19.570,95.060,4.940,9.05,0.950,bicubic +resnetv2_50.a1h_in1k,224,80.406,19.594,95.084,4.916,25.55,0.950,bicubic +efficientnet_b1.ra4_e3600_r240_in1k,240,80.404,19.596,95.148,4.852,7.79,0.900,bicubic +mobilevitv2_150.cvnets_in1k,256,80.404,19.596,95.042,4.958,10.59,0.888,bicubic +regnety_120.pycls_in1k,224,80.382,19.618,95.104,4.896,51.82,0.875,bicubic +resnet50.a1_in1k,224,80.382,19.618,94.598,5.402,25.56,0.950,bicubic +resnetv2_50x1_bit.goog_in21k_ft_in1k,448,80.378,19.622,95.698,4.302,25.55,1.000,bilinear +ese_vovnet39b.ra_in1k,288,80.378,19.622,95.360,4.640,24.57,0.950,bicubic +seresnet33ts.ra2_in1k,256,80.372,19.628,95.106,4.894,19.78,0.900,bicubic +fastvit_t12.apple_dist_in1k,256,80.364,19.636,95.042,4.958,7.55,0.900,bicubic +cs3darknet_l.c2ns_in1k,256,80.354,19.646,95.304,4.696,21.16,0.887,bicubic +resnext101_32x4d.gluon_in1k,224,80.336,19.664,94.908,5.092,44.18,0.875,bicubic +resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,224,80.316,19.684,95.386,4.614,25.03,0.875,bilinear +rexnet_150.nav_in1k,224,80.310,19.690,95.168,4.832,9.73,0.875,bicubic +efficientvit_b1.r288_in1k,288,80.310,19.690,94.976,5.024,9.10,1.000,bicubic +convnextv2_pico.fcmae_ft_in1k,224,80.304,19.696,95.082,4.918,9.07,0.875,bicubic +poolformer_s24.sail_in1k,224,80.300,19.700,95.060,4.940,21.39,0.900,bicubic +tf_efficientnet_b2.ap_in1k,260,80.296,19.704,95.032,4.968,9.11,0.890,bicubic +efficientnet_el_pruned.in1k,300,80.294,19.706,95.218,4.782,10.59,0.904,bicubic +resnet101s.gluon_in1k,224,80.286,19.714,95.150,4.850,44.67,0.875,bicubic +regnety_160.pycls_in1k,224,80.284,19.716,94.982,5.018,83.59,0.875,bicubic +legacy_seresnext101_32x4d.in1k,224,80.274,19.726,95.032,4.968,48.96,0.875,bilinear +res2net50d.in1k,224,80.270,19.730,95.020,4.980,25.72,0.875,bilinear +vit_wee_patch16_reg1_gap_256.sbb_in1k,256,80.268,19.732,95.360,4.640,13.42,0.950,bicubic +resnet50d.a2_in1k,224,80.268,19.732,94.642,5.358,25.58,0.950,bicubic +regnetx_320.pycls_in1k,224,80.262,19.738,95.012,4.988,107.81,0.875,bicubic +seresnet50.ra2_in1k,224,80.260,19.740,95.068,4.932,28.09,0.875,bicubic +cs3darknet_focus_l.c2ns_in1k,256,80.252,19.748,95.298,4.702,21.15,0.887,bicubic +resnetblur50.bt_in1k,288,80.248,19.752,95.200,4.800,25.56,0.950,bicubic +repvgg_b3g4.rvgg_in1k,224,80.248,19.752,95.102,4.898,83.83,0.875,bilinear +tf_efficientnet_el.in1k,300,80.242,19.758,95.118,4.882,10.59,0.904,bicubic +vit_base_patch16_224.sam_in1k,224,80.242,19.758,94.768,5.232,86.57,0.900,bicubic +tf_efficientnetv2_b2.in1k,260,80.226,19.774,95.010,4.990,10.10,0.890,bicubic +nf_resnet50.ra2_in1k,256,80.224,19.776,95.104,4.896,25.56,0.940,bicubic +resnet152.tv2_in1k,176,80.212,19.788,94.654,5.346,60.19,0.875,bilinear +dpn107.mx_in1k,224,80.168,19.832,94.936,5.064,86.92,0.875,bicubic +skresnext50_32x4d.ra_in1k,224,80.166,19.834,94.644,5.356,27.48,0.875,bicubic +convmixer_768_32.in1k,224,80.158,19.842,95.070,4.930,21.11,0.960,bicubic +mobilenetv4_conv_blur_medium.e500_r224_in1k,256,80.152,19.848,95.298,4.702,9.72,1.000,bicubic +repvit_m1_0.dist_300e_in1k,224,80.152,19.848,94.770,5.230,7.30,0.950,bicubic +inception_v4.tf_in1k,299,80.144,19.856,94.982,5.018,42.68,0.875,bicubic +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,224,80.130,19.870,94.998,5.002,8.46,0.900,bicubic +mobilenet_edgetpu_v2_m,224,80.118,19.882,94.994,5.006,8.46,0.900,bicubic +cspdarknet53.ra_in1k,256,80.106,19.894,95.068,4.932,27.64,0.887,bilinear +seresnet50.a2_in1k,224,80.102,19.898,94.720,5.280,28.09,0.950,bicubic +eca_resnet33ts.ra2_in1k,256,80.092,19.908,94.980,5.020,19.68,0.900,bicubic +tf_efficientnet_b2.aa_in1k,260,80.082,19.918,94.912,5.088,9.11,0.890,bicubic +vit_pwee_patch16_reg1_gap_256.sbb_in1k,256,80.078,19.922,95.130,4.870,15.25,0.950,bicubic +gcresnet33ts.ra2_in1k,256,80.078,19.922,94.986,5.014,19.88,0.900,bicubic +resnet50_gn.a1h_in1k,224,80.066,19.934,94.954,5.046,25.56,0.940,bicubic +dpn92.mx_in1k,224,80.028,19.972,94.878,5.122,37.67,0.875,bicubic +seresnet50.a1_in1k,224,80.012,19.988,94.706,5.294,28.09,0.950,bicubic +darknet53.c2ns_in1k,256,80.002,19.998,95.042,4.958,41.61,0.887,bicubic +inception_resnet_v2.tf_ens_adv_in1k,299,79.992,20.008,94.956,5.044,55.84,0.897,bicubic +resnet50.ram_in1k,288,79.974,20.026,95.040,4.960,25.56,0.950,bicubic +mobilenetv4_conv_medium.e500_r256_in1k,256,79.922,20.078,95.186,4.814,9.72,0.950,bicubic +fastvit_s12.apple_in1k,256,79.920,20.080,94.792,5.208,9.47,0.900,bicubic +seresnext50_32x4d.gluon_in1k,224,79.918,20.082,94.816,5.184,27.56,0.875,bicubic +resnetrs50.tf_in1k,224,79.916,20.084,94.974,5.026,35.69,0.910,bicubic +xception71.tf_in1k,299,79.908,20.092,94.910,5.090,42.34,0.903,bicubic +efficientnet_b2_pruned.in1k,260,79.908,20.092,94.840,5.160,8.31,0.890,bicubic +resnet152c.gluon_in1k,224,79.906,20.094,94.850,5.150,60.21,0.875,bicubic +resnet101.tv2_in1k,176,79.906,20.094,94.604,5.396,44.55,0.875,bilinear +hgnetv2_b1.ssld_stage2_ft_in1k,288,79.904,20.096,95.148,4.852,6.34,1.000,bicubic +resnet50.d_in1k,224,79.904,20.096,94.666,5.334,25.56,0.950,bicubic +ecaresnet26t.ra2_in1k,320,79.900,20.100,95.070,4.930,16.01,0.950,bicubic +hgnet_tiny.paddle_in1k,224,79.888,20.112,95.048,4.952,14.74,0.965,bicubic +regnety_080.pycls_in1k,224,79.882,20.118,94.836,5.164,39.18,0.875,bicubic +regnetz_b16.ra3_in1k,224,79.874,20.126,94.978,5.022,9.72,0.940,bicubic +resnet50.c2_in1k,224,79.868,20.132,94.866,5.134,25.56,0.950,bicubic +deit_small_patch16_224.fb_in1k,224,79.862,20.138,95.056,4.944,22.05,0.900,bicubic +resnet50.ra_in1k,288,79.860,20.140,94.970,5.030,25.56,0.950,bicubic +levit_conv_192.fb_dist_in1k,224,79.860,20.140,94.802,5.198,10.95,0.900,bicubic +regnetx_160.pycls_in1k,224,79.858,20.142,94.824,5.176,54.28,0.875,bicubic +levit_192.fb_dist_in1k,224,79.850,20.150,94.804,5.196,10.95,0.900,bicubic +mobilenetv4_conv_medium.e500_r224_in1k,256,79.838,20.162,95.194,4.806,9.72,1.000,bicubic +dpn131.mx_in1k,224,79.834,20.166,94.708,5.292,79.25,0.875,bicubic +tf_efficientnet_lite3.in1k,300,79.832,20.168,94.870,5.130,8.20,0.904,bilinear +resnet50.a2_in1k,224,79.828,20.172,94.560,5.440,25.56,0.950,bicubic +resnet101.a3_in1k,224,79.820,20.180,94.614,5.386,44.55,0.950,bicubic +resnext50_32x4d.ra_in1k,224,79.800,20.200,94.608,5.392,25.03,0.875,bicubic +resmlp_36_224.fb_in1k,224,79.772,20.228,94.888,5.112,44.69,0.875,bicubic +resnet50.c1_in1k,224,79.766,20.234,94.958,5.042,25.56,0.950,bicubic +gcvit_xxtiny.in1k,224,79.750,20.250,95.060,4.940,12.00,0.875,bicubic +darknetaa53.c2ns_in1k,256,79.746,20.254,94.902,5.098,36.02,0.887,bilinear +efficientvit_b1.r256_in1k,256,79.744,20.256,94.778,5.222,9.10,1.000,bicubic +cait_xxs36_224.fb_dist_in1k,224,79.738,20.262,94.862,5.138,17.30,1.000,bicubic +regnety_064.pycls_in1k,224,79.728,20.272,94.764,5.236,30.58,0.875,bicubic +ecaresnet50d_pruned.miil_in1k,224,79.722,20.278,94.872,5.128,19.94,0.875,bicubic +xcit_tiny_12_p8_224.fb_in1k,224,79.712,20.288,95.054,4.946,6.71,1.000,bicubic +resnet152.gluon_in1k,224,79.712,20.288,94.720,5.280,60.19,0.875,bicubic +resnet33ts.ra2_in1k,288,79.708,20.292,94.814,5.186,19.68,1.000,bicubic +efficientformerv2_s1.snap_dist_in1k,224,79.684,20.316,94.690,5.310,6.19,0.950,bicubic +mobilevitv2_125.cvnets_in1k,256,79.678,20.322,94.844,5.156,7.48,0.888,bicubic +resnext50d_32x4d.bt_in1k,224,79.672,20.328,94.878,5.122,25.05,0.875,bicubic +fbnetv3_d.ra2_in1k,256,79.664,20.336,94.956,5.044,10.31,0.950,bilinear +dpn98.mx_in1k,224,79.656,20.344,94.642,5.358,61.57,0.875,bicubic +resnet50.bt_in1k,288,79.652,20.348,94.908,5.092,25.56,0.950,bicubic +gmlp_s16_224.ra3_in1k,224,79.644,20.356,94.628,5.372,19.42,0.875,bicubic +tf_efficientnet_b2.in1k,260,79.614,20.386,94.724,5.276,9.11,0.890,bicubic +regnetx_120.pycls_in1k,224,79.608,20.392,94.734,5.266,46.11,0.875,bicubic +edgenext_small_rw.sw_in1k,256,79.590,20.410,94.518,5.482,7.83,0.900,bicubic +cspresnet50.ra_in1k,256,79.588,20.412,94.690,5.310,21.62,0.887,bilinear +resnet50.b1k_in1k,224,79.564,20.436,94.622,5.378,25.56,0.950,bicubic +xception65.tf_in1k,299,79.554,20.446,94.660,5.340,39.92,0.903,bicubic +ecaresnet50t.a3_in1k,224,79.548,20.452,94.710,5.290,25.57,0.950,bicubic +convnext_pico_ols.d1_in1k,224,79.542,20.458,94.706,5.294,9.06,0.950,bicubic +resnet101c.gluon_in1k,224,79.542,20.458,94.588,5.412,44.57,0.875,bicubic +tf_efficientnetv2_b1.in1k,240,79.518,20.482,94.710,5.290,8.14,0.882,bicubic +eca_halonext26ts.c1_in1k,256,79.518,20.482,94.582,5.418,10.76,0.940,bicubic +convnext_pico.d1_in1k,224,79.516,20.484,94.554,5.446,9.05,0.875,bicubic +vit_relpos_base_patch32_plus_rpn_256.sw_in1k,256,79.496,20.504,94.114,5.886,119.42,0.900,bicubic +rexnet_130.nav_in1k,224,79.490,20.510,94.684,5.316,7.56,0.875,bicubic +xcit_tiny_24_p16_224.fb_in1k,224,79.458,20.542,94.882,5.118,12.12,1.000,bicubic +hrnet_w64.ms_in1k,224,79.458,20.542,94.648,5.352,128.06,0.875,bilinear +regnetx_016.tv2_in1k,224,79.452,20.548,94.772,5.228,9.19,0.965,bicubic +mobileone_s4.apple_in1k,224,79.450,20.550,94.490,5.510,14.95,0.900,bilinear +dla102x2.in1k,224,79.448,20.552,94.654,5.346,41.28,0.875,bilinear +mobilenetv4_conv_blur_medium.e500_r224_in1k,224,79.446,20.554,94.920,5.080,9.72,0.950,bicubic +resnet50.tv2_in1k,176,79.432,20.568,94.632,5.368,25.56,0.875,bilinear +repvgg_b2g4.rvgg_in1k,224,79.396,20.604,94.680,5.320,61.76,0.875,bilinear +resnet32ts.ra2_in1k,288,79.388,20.612,94.676,5.324,17.96,1.000,bicubic +resnet50.b2k_in1k,224,79.380,20.620,94.576,5.424,25.56,0.950,bicubic +resmlp_24_224.fb_in1k,224,79.380,20.620,94.550,5.450,30.02,0.875,bicubic +resnext50_32x4d.tv2_in1k,176,79.374,20.626,94.302,5.698,25.03,0.875,bilinear +efficientnet_b0.ra4_e3600_r224_in1k,256,79.370,20.630,94.752,5.248,5.29,1.000,bicubic +nf_regnet_b1.ra2_in1k,288,79.368,20.632,94.726,5.274,10.22,0.900,bicubic +resnext50_32x4d.gluon_in1k,224,79.354,20.646,94.424,5.576,25.03,0.875,bicubic +dpn68b.ra_in1k,288,79.344,20.656,94.426,5.574,12.61,1.000,bicubic +efficientnet_b2.ra_in1k,256,79.340,20.660,94.576,5.424,9.11,0.875,bicubic +convnextv2_femto.fcmae_ft_in1k,288,79.332,20.668,94.602,5.398,5.23,0.950,bicubic +hrnet_w48.ms_in1k,224,79.324,20.676,94.534,5.466,77.47,0.875,bilinear +tf_efficientnet_cc_b1_8e.in1k,240,79.322,20.678,94.380,5.620,39.72,0.882,bicubic +ese_vovnet39b.ra_in1k,224,79.316,20.684,94.714,5.286,24.57,0.875,bicubic +resnext101_32x8d.tv_in1k,224,79.314,20.686,94.524,5.476,88.79,0.875,bilinear +resnetblur50.bt_in1k,224,79.306,20.694,94.632,5.368,25.56,0.875,bicubic +resnet101.gluon_in1k,224,79.306,20.694,94.538,5.462,44.55,0.875,bicubic +tf_efficientnet_b1.ap_in1k,240,79.288,20.712,94.316,5.684,7.79,0.882,bicubic +fastvit_t12.apple_in1k,256,79.276,20.724,94.570,5.430,7.55,0.900,bicubic +eca_botnext26ts_256.c1_in1k,256,79.272,20.728,94.594,5.406,10.59,0.950,bicubic +efficientnet_em.ra2_in1k,240,79.264,20.736,94.796,5.204,6.90,0.882,bicubic +resnet50.a1h_in1k,176,79.260,20.740,94.498,5.502,25.56,0.900,bicubic +botnet26t_256.c1_in1k,256,79.256,20.744,94.530,5.470,12.49,0.950,bicubic +resnet50.fb_ssl_yfcc100m_ft_in1k,224,79.252,20.748,94.826,5.174,25.56,0.875,bilinear +resnext50_32x4d.a3_in1k,224,79.252,20.748,94.290,5.710,25.03,0.950,bicubic +efficientvit_b1.r224_in1k,224,79.240,20.760,94.294,5.706,9.10,0.950,bicubic +regnety_040.pycls_in1k,224,79.236,20.764,94.664,5.336,20.65,0.875,bicubic +resnet33ts.ra2_in1k,256,79.216,20.784,94.576,5.424,19.68,0.900,bicubic +regnetx_080.pycls_in1k,224,79.216,20.784,94.548,5.452,39.57,0.875,bicubic +tf_efficientnetv2_b2.in1k,208,79.206,20.794,94.602,5.398,10.10,0.890,bicubic +tiny_vit_5m_224.in1k,224,79.196,20.804,94.802,5.198,5.39,0.950,bicubic +res2net101_26w_4s.in1k,224,79.186,20.814,94.464,5.536,45.21,0.875,bilinear +pit_xs_distilled_224.in1k,224,79.168,20.832,94.368,5.632,11.00,0.900,bicubic +fbnetv3_b.ra2_in1k,256,79.154,20.846,94.732,5.268,8.60,0.950,bilinear +vit_base_patch16_224.augreg_in1k,224,79.142,20.858,94.090,5.910,86.57,0.900,bicubic +halonet26t.a1h_in1k,256,79.134,20.866,94.340,5.660,12.48,0.950,bicubic +lambda_resnet26t.c1_in1k,256,79.126,20.874,94.554,5.446,10.96,0.940,bicubic +coat_lite_mini.in1k,224,79.096,20.904,94.592,5.408,11.01,0.900,bicubic +mobilenetv4_conv_medium.e500_r224_in1k,224,79.092,20.908,94.788,5.212,9.72,0.950,bicubic +legacy_seresnext50_32x4d.in1k,224,79.084,20.916,94.432,5.568,27.56,0.875,bilinear +resnet50d.gluon_in1k,224,79.080,20.920,94.458,5.542,25.58,0.875,bicubic +regnetx_064.pycls_in1k,224,79.060,20.940,94.470,5.530,26.21,0.875,bicubic +repvit_m0_9.dist_450e_in1k,224,79.058,20.942,94.388,5.612,5.49,0.950,bicubic +resnet32ts.ra2_in1k,256,79.054,20.946,94.368,5.632,17.96,0.900,bicubic +legacy_xception.tf_in1k,299,79.050,20.950,94.386,5.614,22.86,0.897,bicubic +hgnetv2_b1.ssld_stage1_in22k_in1k,288,79.048,20.952,94.882,5.118,6.34,1.000,bicubic +resnet50.ram_in1k,224,79.032,20.968,94.386,5.614,25.56,0.875,bicubic +resnet50.am_in1k,224,79.004,20.996,94.392,5.608,25.56,0.875,bicubic +mixnet_l.ft_in1k,224,78.970,21.030,94.180,5.820,7.33,0.875,bicubic +lambda_resnet26rpt_256.c1_in1k,256,78.954,21.046,94.422,5.578,10.99,0.940,bicubic +convnext_tiny.fb_in22k_ft_in1k,288,78.950,21.050,94.708,5.292,28.59,1.000,bicubic +res2net50_26w_8s.in1k,224,78.948,21.052,94.280,5.720,48.40,0.875,bilinear +hrnet_w40.ms_in1k,224,78.924,21.076,94.478,5.522,57.56,0.875,bilinear +convnext_femto_ols.d1_in1k,288,78.914,21.086,94.548,5.452,5.23,0.950,bicubic +hgnetv2_b1.ssld_stage2_ft_in1k,224,78.896,21.104,94.484,5.516,6.34,0.965,bicubic +regnety_032.pycls_in1k,224,78.896,21.104,94.428,5.572,19.44,0.875,bicubic +resnet152.a3_in1k,160,78.896,21.104,94.124,5.876,60.19,0.950,bicubic +ecaresnet26t.ra2_in1k,256,78.886,21.114,94.544,5.456,16.01,0.875,bicubic +hrnet_w44.ms_in1k,224,78.882,21.118,94.374,5.626,67.06,0.875,bilinear +wide_resnet101_2.tv_in1k,224,78.848,21.152,94.312,5.688,126.89,0.875,bilinear +vit_small_patch16_224.augreg_in1k,224,78.842,21.158,94.278,5.722,22.05,0.900,bicubic +tf_efficientnet_b1.aa_in1k,240,78.840,21.160,94.200,5.800,7.79,0.882,bicubic +seresnext26d_32x4d.bt_in1k,288,78.826,21.174,94.258,5.742,16.81,0.950,bicubic +resnet50.ra_in1k,224,78.814,21.186,94.320,5.680,25.56,0.875,bicubic +inception_v3.gluon_in1k,299,78.804,21.196,94.374,5.626,23.83,0.875,bicubic +efficientnet_b1.ft_in1k,256,78.798,21.202,94.342,5.658,7.79,1.000,bicubic +repvgg_b2.rvgg_in1k,224,78.794,21.206,94.414,5.586,89.02,0.875,bilinear +repghostnet_200.in1k,224,78.790,21.210,94.336,5.664,9.80,0.875,bicubic +tf_mixnet_l.in1k,224,78.776,21.224,93.998,6.002,7.33,0.875,bicubic +vit_base_patch32_384.augreg_in1k,384,78.754,21.246,94.236,5.764,88.30,1.000,bicubic +resnet50d.a3_in1k,224,78.742,21.258,94.236,5.764,25.58,0.950,bicubic +seresnext26t_32x4d.bt_in1k,288,78.738,21.262,94.316,5.684,16.81,0.950,bicubic +nf_regnet_b1.ra2_in1k,256,78.722,21.278,94.386,5.614,10.22,0.900,bicubic +convnext_femto.d1_in1k,288,78.710,21.290,94.442,5.558,5.22,0.950,bicubic +resnet50s.gluon_in1k,224,78.710,21.290,94.248,5.752,25.68,0.875,bicubic +dla169.in1k,224,78.706,21.294,94.338,5.662,53.39,0.875,bilinear +pvt_v2_b1.in1k,224,78.702,21.298,94.492,5.508,14.01,0.900,bicubic +tf_efficientnet_b0.ns_jft_in1k,224,78.684,21.316,94.370,5.630,5.29,0.875,bicubic +legacy_seresnet152.in1k,224,78.660,21.340,94.372,5.628,66.82,0.875,bilinear +fbnetv3_d.ra2_in1k,224,78.656,21.344,94.454,5.546,10.31,0.950,bilinear +regnety_008_tv.tv2_in1k,224,78.656,21.344,94.382,5.618,6.43,0.965,bicubic +repvit_m0_9.dist_300e_in1k,224,78.654,21.346,94.114,5.886,5.49,0.950,bicubic +hgnetv2_b0.ssld_stage2_ft_in1k,288,78.598,21.402,94.380,5.620,6.00,1.000,bicubic +res2net50_26w_6s.in1k,224,78.584,21.416,94.106,5.894,37.05,0.875,bilinear +xcit_tiny_12_p16_224.fb_dist_in1k,224,78.578,21.422,94.210,5.790,6.72,1.000,bicubic +efficientnet_b0.ra4_e3600_r224_in1k,224,78.572,21.428,94.338,5.662,5.29,0.900,bicubic +tf_efficientnet_b1.in1k,240,78.558,21.442,94.102,5.898,7.79,0.882,bicubic +dpn68b.ra_in1k,224,78.544,21.456,93.978,6.022,12.61,0.950,bicubic +repvit_m1.dist_in1k,224,78.542,21.458,94.082,5.918,5.49,0.950,bicubic +xception41.tf_in1k,299,78.524,21.476,94.298,5.702,26.97,0.903,bicubic +dla102x.in1k,224,78.500,21.500,94.228,5.772,26.31,0.875,bilinear +regnetx_040.pycls_in1k,224,78.494,21.506,94.242,5.758,22.12,0.875,bicubic +dla60_res2next.in1k,224,78.488,21.512,94.144,5.856,17.03,0.875,bilinear +levit_conv_128.fb_dist_in1k,224,78.488,21.512,94.000,6.000,9.21,0.900,bicubic +levit_128.fb_dist_in1k,224,78.486,21.514,93.998,6.002,9.21,0.900,bicubic +convnextv2_femto.fcmae_ft_in1k,224,78.484,21.516,93.994,6.006,5.23,0.875,bicubic +dla60_res2net.in1k,224,78.480,21.520,94.202,5.798,20.85,0.875,bilinear +wide_resnet50_2.tv_in1k,224,78.480,21.520,94.086,5.914,68.88,0.875,bilinear +resnest26d.gluon_in1k,224,78.476,21.524,94.300,5.700,17.07,0.875,bilinear +hrnet_w32.ms_in1k,224,78.456,21.544,94.186,5.814,41.23,0.875,bilinear +vit_tiny_patch16_384.augreg_in21k_ft_in1k,384,78.446,21.554,94.552,5.448,5.79,1.000,bicubic +coat_tiny.in1k,224,78.442,21.558,94.036,5.964,5.50,0.900,bicubic +resnet34d.ra2_in1k,288,78.440,21.560,94.348,5.652,21.82,0.950,bicubic +gcresnext26ts.ch_in1k,288,78.438,21.562,94.034,5.966,10.48,1.000,bicubic +resnet50.bt_in1k,224,78.432,21.568,94.270,5.730,25.56,0.875,bicubic +selecsls60b.in1k,224,78.410,21.590,94.166,5.834,32.77,0.875,bicubic +legacy_seresnet101.in1k,224,78.396,21.604,94.258,5.742,49.33,0.875,bilinear +cait_xxs24_224.fb_dist_in1k,224,78.392,21.608,94.334,5.666,11.96,1.000,bicubic +tf_efficientnetv2_b0.in1k,224,78.380,21.620,94.026,5.974,7.14,0.875,bicubic +repvgg_b1.rvgg_in1k,224,78.372,21.628,94.108,5.892,57.42,0.875,bilinear +resnet26t.ra2_in1k,320,78.330,21.670,94.136,5.864,16.01,1.000,bicubic +resnet152.tv_in1k,224,78.330,21.670,94.046,5.954,60.19,0.875,bilinear +mobilevit_s.cvnets_in1k,256,78.302,21.698,94.166,5.834,5.58,0.900,bicubic +seresnext26ts.ch_in1k,288,78.292,21.708,94.076,5.924,10.39,1.000,bicubic +bat_resnext26ts.ch_in1k,256,78.280,21.720,94.114,5.886,10.73,0.900,bicubic +efficientnet_b1_pruned.in1k,240,78.252,21.748,93.820,6.180,6.33,0.882,bicubic +res2next50.in1k,224,78.236,21.764,93.904,6.096,24.67,0.875,bilinear +dla60x.in1k,224,78.230,21.770,94.020,5.980,17.35,0.875,bilinear +hrnet_w30.ms_in1k,224,78.214,21.786,94.214,5.786,37.71,0.875,bilinear +pit_xs_224.in1k,224,78.212,21.788,94.150,5.850,10.62,0.900,bicubic +hrnet_w18_small_v2.gluon_in1k,224,78.184,21.816,93.912,6.088,15.60,0.875,bicubic +regnetx_032.pycls_in1k,224,78.166,21.834,94.090,5.910,15.30,0.875,bicubic +fbnetv3_b.ra2_in1k,224,78.160,21.840,94.242,5.758,8.60,0.950,bilinear +visformer_tiny.in1k,224,78.160,21.840,94.164,5.836,10.32,0.900,bicubic +res2net50_14w_8s.in1k,224,78.146,21.854,93.850,6.150,25.06,0.875,bilinear +tf_efficientnet_em.in1k,240,78.136,21.864,94.062,5.938,6.90,0.882,bicubic +hrnet_w18.ms_aug_in1k,224,78.116,21.884,94.062,5.938,21.30,0.950,bilinear +hardcorenas_f.miil_green_in1k,224,78.108,21.892,93.800,6.200,8.20,0.875,bilinear +mobilevitv2_100.cvnets_in1k,256,78.092,21.908,94.168,5.832,4.90,0.888,bicubic +efficientnet_es.ra_in1k,224,78.092,21.908,93.932,6.068,5.44,0.875,bicubic +hgnetv2_b1.ssld_stage1_in22k_in1k,224,78.078,21.922,94.186,5.814,6.34,0.965,bicubic +resnet50.a3_in1k,224,78.052,21.948,93.780,6.220,25.56,0.950,bicubic +gmixer_24_224.ra3_in1k,224,78.048,21.952,93.654,6.346,24.72,0.875,bicubic +hgnetv2_b0.ssld_stage1_in22k_in1k,288,78.034,21.966,94.248,5.752,6.00,1.000,bicubic +dla102.in1k,224,78.018,21.982,93.948,6.052,33.27,0.875,bilinear +resnet50c.gluon_in1k,224,78.016,21.984,93.994,6.006,25.58,0.875,bicubic +eca_resnext26ts.ch_in1k,288,78.016,21.984,93.932,6.068,10.30,1.000,bicubic +poolformerv2_s12.sail_in1k,224,78.008,21.992,93.864,6.136,11.89,1.000,bicubic +mobileone_s3.apple_in1k,224,78.002,21.998,93.910,6.090,10.17,0.900,bilinear +res2net50_26w_4s.in1k,224,77.986,22.014,93.862,6.138,25.70,0.875,bilinear +selecsls60.in1k,224,77.986,22.014,93.826,6.174,30.67,0.875,bicubic +seresnext26t_32x4d.bt_in1k,224,77.980,22.020,93.750,6.250,16.81,0.875,bicubic +resmlp_12_224.fb_distilled_in1k,224,77.948,22.052,93.562,6.438,15.35,0.875,bicubic +resnet34.a1_in1k,288,77.938,22.062,93.748,6.252,21.80,1.000,bicubic +tf_efficientnetv2_b1.in1k,192,77.930,22.070,93.822,6.178,8.14,0.882,bicubic +resnet101.a3_in1k,160,77.928,22.072,93.686,6.314,44.55,0.950,bicubic +tf_efficientnet_cc_b0_8e.in1k,224,77.924,22.076,93.650,6.350,24.01,0.875,bicubic +mobilenetv3_large_100.miil_in21k_ft_in1k,224,77.910,22.090,92.884,7.116,5.48,0.875,bilinear +regnety_016.pycls_in1k,224,77.908,22.092,93.724,6.276,11.20,0.875,bicubic +resnet26t.ra2_in1k,256,77.884,22.116,93.838,6.162,16.01,0.940,bicubic +inception_v3.tf_in1k,299,77.866,22.134,93.640,6.360,23.83,0.875,bicubic +seresnext26ts.ch_in1k,256,77.856,22.144,93.790,6.210,10.39,0.900,bicubic +resnetrs50.tf_in1k,160,77.850,22.150,93.814,6.186,35.69,0.910,bicubic +rexnet_100.nav_in1k,224,77.846,22.154,93.876,6.124,4.80,0.875,bicubic +convnext_femto_ols.d1_in1k,224,77.844,22.156,93.824,6.176,5.23,0.875,bicubic +ghostnetv2_160.in1k,224,77.836,22.164,93.942,6.058,12.39,0.875,bicubic +xcit_nano_12_p8_384.fb_dist_in1k,384,77.820,22.180,94.030,5.970,3.05,1.000,bicubic +gcresnext26ts.ch_in1k,256,77.816,22.184,93.822,6.178,10.48,0.900,bicubic +ese_vovnet19b_dw.ra_in1k,288,77.798,22.202,93.778,6.222,6.54,0.950,bicubic +convnextv2_atto.fcmae_ft_in1k,288,77.790,22.210,93.732,6.268,3.71,0.950,bicubic +hardcorenas_e.miil_green_in1k,224,77.790,22.210,93.690,6.310,8.07,0.875,bilinear +ecaresnet50t.a3_in1k,160,77.780,22.220,93.612,6.388,25.57,0.950,bicubic +resnext50_32x4d.a3_in1k,160,77.734,22.266,93.314,6.686,25.03,0.950,bicubic +efficientnet_b0.ra_in1k,224,77.696,22.304,93.540,6.460,5.29,0.875,bicubic +tinynet_a.in1k,192,77.664,22.336,93.532,6.468,6.19,0.875,bicubic +legacy_seresnet50.in1k,224,77.644,22.356,93.720,6.280,28.09,0.875,bilinear +resnext50_32x4d.tv_in1k,224,77.632,22.368,93.674,6.326,25.03,0.875,bilinear +cs3darknet_m.c2ns_in1k,288,77.628,22.372,94.018,5.982,9.31,0.950,bicubic +repvgg_b1g4.rvgg_in1k,224,77.602,22.398,93.844,6.156,39.97,0.875,bilinear +inception_v3.tf_adv_in1k,299,77.596,22.404,93.726,6.274,23.83,0.875,bicubic +efficientnet_b1.ft_in1k,224,77.594,22.406,93.630,6.370,7.79,0.875,bicubic +seresnext26d_32x4d.bt_in1k,224,77.586,22.414,93.610,6.390,16.81,0.875,bicubic +mobilenetv1_125.ra4_e3600_r224_in1k,256,77.584,22.416,93.794,6.206,6.27,1.000,bicubic +resnet50.gluon_in1k,224,77.580,22.420,93.726,6.274,25.56,0.875,bicubic +coat_lite_tiny.in1k,224,77.548,22.452,93.924,6.076,5.72,0.900,bicubic +dpn68b.mx_in1k,224,77.542,22.458,93.842,6.158,12.61,0.875,bicubic +res2net50_48w_2s.in1k,224,77.536,22.464,93.564,6.436,25.29,0.875,bilinear +convnext_femto.d1_in1k,224,77.508,22.492,93.688,6.312,5.22,0.875,bicubic +mobileone_s2.apple_in1k,224,77.504,22.496,93.664,6.336,7.88,0.900,bilinear +inception_v3.tv_in1k,299,77.474,22.526,93.474,6.526,23.83,0.875,bicubic +tf_efficientnet_lite2.in1k,260,77.472,22.528,93.744,6.256,6.09,0.890,bicubic +repghostnet_150.in1k,224,77.470,22.530,93.498,6.502,6.58,0.875,bicubic +hardcorenas_d.miil_green_in1k,224,77.450,22.550,93.480,6.520,7.50,0.875,bilinear +eca_resnext26ts.ch_in1k,256,77.442,22.558,93.576,6.424,10.30,0.900,bicubic +resnet26d.bt_in1k,288,77.424,22.576,93.630,6.370,16.01,0.950,bicubic +resnet101.tv_in1k,224,77.404,22.596,93.552,6.448,44.55,0.875,bilinear +densenet161.tv_in1k,224,77.350,22.650,93.654,6.346,28.68,0.875,bicubic +hgnetv2_b0.ssld_stage2_ft_in1k,224,77.342,22.658,93.786,6.214,6.00,0.965,bicubic +tf_efficientnet_cc_b0_4e.in1k,224,77.324,22.676,93.332,6.668,13.31,0.875,bicubic +densenetblur121d.ra_in1k,288,77.310,22.690,93.800,6.200,8.00,0.950,bicubic +mobilenetv2_120d.ra_in1k,224,77.298,22.702,93.516,6.484,5.83,0.875,bicubic +cs3darknet_focus_m.c2ns_in1k,288,77.292,22.708,93.970,6.030,9.30,0.950,bicubic +regnetx_008.tv2_in1k,224,77.288,22.712,93.662,6.338,7.26,0.965,bicubic +densenet201.tv_in1k,224,77.284,22.716,93.480,6.520,20.01,0.875,bicubic +mixnet_m.ft_in1k,224,77.274,22.726,93.428,6.572,5.01,0.875,bicubic +poolformer_s12.sail_in1k,224,77.244,22.756,93.538,6.462,11.92,0.900,bicubic +resnet50d.a3_in1k,160,77.222,22.778,93.256,6.744,25.58,0.950,bicubic +convnext_atto_ols.a2_in1k,288,77.220,22.780,93.700,6.300,3.70,0.950,bicubic +selecsls42b.in1k,224,77.186,22.814,93.392,6.608,32.46,0.875,bicubic +resnext26ts.ra2_in1k,288,77.182,22.818,93.474,6.526,10.30,1.000,bicubic +fastvit_t8.apple_dist_in1k,256,77.172,22.828,93.274,6.726,4.03,0.900,bicubic +resnet34.a2_in1k,288,77.148,22.852,93.290,6.710,21.80,1.000,bicubic +xcit_tiny_12_p16_224.fb_in1k,224,77.142,22.858,93.730,6.270,6.72,1.000,bicubic +resnet34d.ra2_in1k,224,77.104,22.896,93.376,6.624,21.82,0.875,bicubic +legacy_seresnext26_32x4d.in1k,224,77.100,22.900,93.332,6.668,16.79,0.875,bicubic +tf_efficientnet_b0.ap_in1k,224,77.094,22.906,93.260,6.740,5.29,0.875,bicubic +hardcorenas_c.miil_green_in1k,224,77.094,22.906,93.192,6.808,5.52,0.875,bilinear +efficientvit_m5.r224_in1k,224,77.082,22.918,93.166,6.834,12.47,0.875,bicubic +dla60.in1k,224,77.046,22.954,93.318,6.682,22.04,0.875,bilinear +seresnet50.a3_in1k,224,77.036,22.964,93.072,6.928,28.09,0.950,bicubic +convnext_atto.d2_in1k,288,77.014,22.986,93.702,6.298,3.70,0.950,bicubic +crossvit_9_dagger_240.in1k,240,76.986,23.014,93.602,6.398,8.78,0.875,bicubic +cs3darknet_m.c2ns_in1k,256,76.982,23.018,93.602,6.398,9.31,0.887,bicubic +tf_mixnet_m.in1k,224,76.964,23.036,93.168,6.832,5.01,0.875,bicubic +skresnet34.ra_in1k,224,76.956,23.044,93.318,6.682,22.28,0.875,bicubic +convmixer_1024_20_ks9_p14.in1k,224,76.944,23.056,93.364,6.636,24.38,0.960,bicubic +mobilenetv1_125.ra4_e3600_r224_in1k,224,76.928,23.072,93.216,6.784,6.27,0.900,bicubic +regnetx_016.pycls_in1k,224,76.924,23.076,93.430,6.570,9.19,0.875,bicubic +gernet_s.idstcv_in1k,224,76.902,23.098,93.136,6.864,8.17,0.875,bilinear +tf_efficientnet_b0.aa_in1k,224,76.882,23.118,93.270,6.730,5.29,0.875,bicubic +tf_efficientnetv2_b0.in1k,192,76.880,23.120,93.184,6.816,7.14,0.875,bicubic +hgnetv2_b0.ssld_stage1_in22k_in1k,224,76.844,23.156,93.612,6.388,6.00,0.965,bicubic +ese_vovnet19b_dw.ra_in1k,224,76.798,23.202,93.272,6.728,6.54,0.875,bicubic +cs3darknet_focus_m.c2ns_in1k,256,76.774,23.226,93.544,6.456,9.30,0.887,bicubic +resnext26ts.ra2_in1k,256,76.774,23.226,93.138,6.862,10.30,0.900,bicubic +ghostnetv2_130.in1k,224,76.762,23.238,93.360,6.640,8.96,0.875,bicubic +hrnet_w18.ms_in1k,224,76.760,23.240,93.446,6.554,21.30,0.875,bilinear +resnet26d.bt_in1k,224,76.698,23.302,93.156,6.844,16.01,0.875,bicubic +tf_efficientnet_lite1.in1k,240,76.672,23.328,93.232,6.768,5.42,0.882,bicubic +resmlp_12_224.fb_in1k,224,76.660,23.340,93.170,6.830,15.35,0.875,bicubic +convnextv2_atto.fcmae_ft_in1k,224,76.646,23.354,93.044,6.956,3.71,0.875,bicubic +mixer_b16_224.goog_in21k_ft_in1k,224,76.640,23.360,92.228,7.772,59.88,0.875,bicubic +tf_efficientnet_es.in1k,224,76.608,23.392,93.176,6.824,5.44,0.875,bicubic +mobilenetv1_100h.ra4_e3600_r224_in1k,256,76.594,23.406,93.266,6.734,5.28,0.950,bicubic +densenetblur121d.ra_in1k,224,76.572,23.428,93.186,6.814,8.00,0.875,bicubic +hardcorenas_b.miil_green_in1k,224,76.552,23.448,92.766,7.234,5.18,0.875,bilinear +tf_efficientnet_b0.in1k,224,76.536,23.464,93.010,6.990,5.29,0.875,bicubic +levit_conv_128s.fb_dist_in1k,224,76.534,23.466,92.882,7.118,7.78,0.900,bicubic +mobilenetv2_140.ra_in1k,224,76.528,23.472,93.008,6.992,6.11,0.875,bicubic +levit_128s.fb_dist_in1k,224,76.522,23.478,92.874,7.126,7.78,0.900,bicubic +resnet34.bt_in1k,288,76.508,23.492,93.344,6.656,21.80,0.950,bicubic +repvgg_a2.rvgg_in1k,224,76.492,23.508,93.016,6.984,28.21,0.875,bilinear +densenet121.ra_in1k,288,76.480,23.520,93.374,6.626,7.98,0.950,bicubic +resnet34.a1_in1k,224,76.414,23.586,92.886,7.114,21.80,0.950,bicubic +resnet26.bt_in1k,288,76.378,23.622,93.176,6.824,16.00,0.950,bicubic +repghostnet_130.in1k,224,76.366,23.634,92.898,7.102,5.48,0.875,bicubic +dpn68.mx_in1k,224,76.338,23.662,92.990,7.010,12.61,0.875,bicubic +regnety_008.pycls_in1k,224,76.334,23.666,93.060,6.940,6.26,0.875,bicubic +xcit_nano_12_p8_224.fb_dist_in1k,224,76.328,23.672,93.070,6.930,3.05,1.000,bicubic +fastvit_t8.apple_in1k,256,76.184,23.816,93.042,6.958,4.03,0.900,bicubic +resnet50.tv_in1k,224,76.156,23.844,92.866,7.134,25.56,0.875,bilinear +efficientformerv2_s0.snap_dist_in1k,224,76.116,23.884,92.854,7.146,3.60,0.950,bicubic +mobilenetv1_100.ra4_e3600_r224_in1k,256,76.086,23.914,93.012,6.988,4.23,0.950,bicubic +mixnet_s.ft_in1k,224,76.002,23.998,92.800,7.200,4.13,0.875,bicubic +vit_small_patch32_224.augreg_in21k_ft_in1k,224,75.996,24.004,93.272,6.728,22.88,0.900,bicubic +resnet50.a3_in1k,160,75.994,24.006,92.494,7.506,25.56,0.950,bicubic +vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,384,75.962,24.038,93.276,6.724,6.36,1.000,bicubic +hardcorenas_a.miil_green_in1k,224,75.926,24.074,92.486,7.514,5.26,0.875,bilinear +densenet169.tv_in1k,224,75.922,24.078,92.976,7.024,14.15,0.875,bicubic +convnext_atto_ols.a2_in1k,224,75.902,24.098,92.844,7.156,3.70,0.875,bicubic +mobilenetv3_large_100.ra_in1k,224,75.786,24.214,92.528,7.472,5.48,0.875,bicubic +mobileone_s1.apple_in1k,224,75.774,24.226,92.788,7.212,4.83,0.900,bilinear +edgenext_x_small.in1k,288,75.706,24.294,92.760,7.240,2.34,1.000,bicubic +convnext_atto.d2_in1k,224,75.668,24.332,92.912,7.088,3.70,0.875,bicubic +mobilenetv1_100h.ra4_e3600_r224_in1k,224,75.658,24.342,92.504,7.496,5.28,0.875,bicubic +tf_mixnet_s.in1k,224,75.652,24.348,92.628,7.372,4.13,0.875,bicubic +mobilenetv3_rw.rmsp_in1k,224,75.614,24.386,92.698,7.302,5.48,0.875,bicubic +mobilevitv2_075.cvnets_in1k,256,75.604,24.396,92.754,7.246,2.87,0.888,bicubic +regnety_004.tv2_in1k,224,75.588,24.412,92.698,7.302,4.34,0.965,bicubic +densenet121.ra_in1k,224,75.576,24.424,92.648,7.352,7.98,0.875,bicubic +resnest14d.gluon_in1k,224,75.516,24.484,92.514,7.486,10.61,0.875,bilinear +resnet34.a2_in1k,224,75.516,24.484,92.456,7.544,21.80,0.950,bicubic +tf_mobilenetv3_large_100.in1k,224,75.514,24.486,92.602,7.398,5.48,0.875,bilinear +efficientnet_lite0.ra_in1k,224,75.490,24.510,92.514,7.486,4.65,0.875,bicubic +xcit_nano_12_p16_384.fb_dist_in1k,384,75.468,24.532,92.670,7.330,3.05,1.000,bicubic +semnasnet_100.rmsp_in1k,224,75.464,24.536,92.612,7.388,3.89,0.875,bicubic +vit_tiny_patch16_224.augreg_in21k_ft_in1k,224,75.452,24.548,92.854,7.146,5.72,0.900,bicubic +mobilenetv1_100.ra4_e3600_r224_in1k,224,75.384,24.616,92.312,7.688,4.23,0.875,bicubic +resnet26.bt_in1k,224,75.292,24.708,92.572,7.428,16.00,0.875,bicubic +regnety_006.pycls_in1k,224,75.262,24.738,92.526,7.474,6.06,0.875,bicubic +ghostnetv2_100.in1k,224,75.176,24.824,92.334,7.666,6.16,0.875,bicubic +repvgg_b0.rvgg_in1k,224,75.162,24.838,92.420,7.580,15.82,0.875,bilinear +resnet34.bt_in1k,224,75.162,24.838,92.170,7.830,21.80,0.875,bicubic +fbnetc_100.rmsp_in1k,224,75.114,24.886,92.382,7.618,5.57,0.875,bilinear +seresnet50.a3_in1k,160,75.100,24.900,92.096,7.904,28.09,0.950,bicubic +hrnet_w18_small_v2.ms_in1k,224,75.098,24.902,92.418,7.582,15.60,0.875,bilinear +repghostnet_111.in1k,224,75.068,24.932,92.184,7.816,4.54,0.875,bicubic +regnetx_008.pycls_in1k,224,75.062,24.938,92.340,7.660,7.26,0.875,bicubic +mobilenetv2_110d.ra_in1k,224,75.054,24.946,92.186,7.814,4.52,0.875,bicubic +efficientnet_es_pruned.in1k,224,75.000,25.000,92.448,7.552,5.44,0.875,bicubic +tinynet_b.in1k,188,74.966,25.034,92.196,7.804,3.73,0.875,bicubic +vit_base_patch32_224.augreg_in1k,224,74.906,25.094,91.770,8.230,88.22,0.900,bicubic +edgenext_x_small.in1k,256,74.880,25.120,92.304,7.696,2.34,0.900,bicubic +tf_efficientnet_lite0.in1k,224,74.846,25.154,92.180,7.820,4.65,0.875,bicubic +legacy_seresnet34.in1k,224,74.788,25.212,92.134,7.866,21.96,0.875,bilinear +densenet121.tv_in1k,224,74.748,25.252,92.154,7.846,7.98,0.875,bicubic +mnasnet_100.rmsp_in1k,224,74.662,25.338,92.108,7.892,4.38,0.875,bicubic +mobilenetv4_conv_small.e2400_r224_in1k,256,74.644,25.356,92.022,7.978,3.77,0.950,bicubic +mobilevit_xs.cvnets_in1k,256,74.632,25.368,92.348,7.652,2.32,0.900,bicubic +dla34.in1k,224,74.632,25.368,92.052,7.948,15.74,0.875,bilinear +regnetx_004_tv.tv2_in1k,224,74.584,25.416,92.170,7.830,5.50,0.965,bicubic +resnet34.gluon_in1k,224,74.574,25.426,91.988,8.012,21.80,0.875,bicubic +deit_tiny_distilled_patch16_224.fb_in1k,224,74.540,25.460,91.894,8.106,5.91,0.900,bicubic +repvgg_a1.rvgg_in1k,224,74.468,25.532,91.840,8.160,14.09,0.875,bilinear +efficientvit_m4.r224_in1k,224,74.346,25.654,91.984,8.016,8.80,0.875,bicubic +mobilenetv4_conv_small.e1200_r224_in1k,256,74.290,25.710,92.112,7.888,3.77,0.950,bicubic +pit_ti_distilled_224.in1k,224,74.278,25.722,91.928,8.072,5.10,0.900,bicubic +vgg19_bn.tv_in1k,224,74.236,25.764,91.844,8.156,143.68,0.875,bilinear +repghostnet_100.in1k,224,74.200,25.800,91.550,8.450,4.07,0.875,bicubic +spnasnet_100.rmsp_in1k,224,74.082,25.918,91.828,8.172,4.42,0.875,bilinear +regnety_004.pycls_in1k,224,74.006,25.994,91.756,8.244,4.34,0.875,bicubic +crossvit_9_240.in1k,240,73.976,26.024,91.976,8.024,8.55,0.875,bicubic +ghostnet_100.in1k,224,73.960,26.040,91.542,8.458,5.18,0.875,bicubic +hrnet_w18_small.gluon_in1k,224,73.932,26.068,91.172,8.828,13.19,0.875,bicubic +xcit_nano_12_p8_224.fb_in1k,224,73.900,26.100,92.146,7.854,3.05,1.000,bicubic +regnetx_006.pycls_in1k,224,73.884,26.116,91.666,8.334,6.20,0.875,bicubic +resnet18d.ra2_in1k,288,73.794,26.206,91.834,8.166,11.71,0.950,bicubic +mobilenetv4_conv_small.e2400_r224_in1k,224,73.730,26.270,91.426,8.574,3.77,0.875,bicubic +vit_base_patch32_224.sam_in1k,224,73.706,26.294,91.012,8.988,88.22,0.900,bicubic +tf_mobilenetv3_large_075.in1k,224,73.448,26.552,91.344,8.656,3.99,0.875,bilinear +mobilenetv4_conv_small.e1200_r224_in1k,224,73.436,26.564,91.342,8.658,3.77,0.875,bicubic +efficientvit_m3.r224_in1k,224,73.408,26.592,91.348,8.652,6.90,0.875,bicubic +vgg16_bn.tv_in1k,224,73.356,26.644,91.500,8.500,138.37,0.875,bilinear +crossvit_tiny_240.in1k,240,73.330,26.670,91.910,8.090,7.01,0.875,bicubic +resnet34.tv_in1k,224,73.298,26.702,91.422,8.578,21.80,0.875,bilinear +resnet18.fb_swsl_ig1b_ft_in1k,224,73.288,26.712,91.754,8.246,11.69,0.875,bilinear +resnet18.a1_in1k,288,73.164,26.836,91.054,8.946,11.69,1.000,bicubic +convit_tiny.fb_in1k,224,73.126,26.874,91.690,8.310,5.71,0.875,bicubic +skresnet18.ra_in1k,224,73.020,26.980,91.174,8.826,11.96,0.875,bicubic +semnasnet_075.rmsp_in1k,224,73.008,26.992,91.126,8.874,2.91,0.875,bicubic +resnet34.a3_in1k,224,72.982,27.018,91.116,8.884,21.80,0.950,bicubic +mobilenetv2_100.ra_in1k,224,72.936,27.064,91.002,8.998,3.50,0.875,bicubic +pit_ti_224.in1k,224,72.924,27.076,91.412,8.588,4.85,0.900,bicubic +resnet18.fb_ssl_yfcc100m_ft_in1k,224,72.636,27.364,91.416,8.584,11.69,0.875,bilinear +regnetx_004.pycls_in1k,224,72.432,27.568,90.848,9.152,5.16,0.875,bicubic +repvgg_a0.rvgg_in1k,224,72.424,27.576,90.514,9.486,9.11,0.875,bilinear +vgg19.tv_in1k,224,72.400,27.600,90.878,9.122,143.67,0.875,bilinear +resnet18.a2_in1k,288,72.362,27.638,90.616,9.384,11.69,1.000,bicubic +hrnet_w18_small.ms_in1k,224,72.334,27.666,90.686,9.314,13.19,0.875,bilinear +xcit_nano_12_p16_224.fb_dist_in1k,224,72.318,27.682,90.826,9.174,3.05,1.000,bicubic +tf_mobilenetv3_large_minimal_100.in1k,224,72.270,27.730,90.662,9.338,3.92,0.875,bilinear +resnet18d.ra2_in1k,224,72.268,27.732,90.682,9.318,11.71,0.875,bicubic +resnet14t.c3_in1k,224,72.242,27.758,90.318,9.682,10.08,0.950,bicubic +repghostnet_080.in1k,224,72.236,27.764,90.490,9.510,3.28,0.875,bicubic +deit_tiny_patch16_224.fb_in1k,224,72.196,27.804,91.100,8.900,5.72,0.900,bicubic +lcnet_100.ra2_in1k,224,72.128,27.872,90.368,9.632,2.95,0.875,bicubic +mixer_l16_224.goog_in21k_ft_in1k,224,72.090,27.910,87.650,12.350,208.20,0.875,bicubic +edgenext_xx_small.in1k,288,71.886,28.114,90.534,9.466,1.33,1.000,bicubic +vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,224,71.820,28.180,90.814,9.186,6.34,0.900,bicubic +legacy_seresnet18.in1k,224,71.742,28.258,90.340,9.660,11.78,0.875,bicubic +vgg16.tv_in1k,224,71.600,28.400,90.398,9.602,138.36,0.875,bilinear +vgg13_bn.tv_in1k,224,71.556,28.444,90.372,9.628,133.05,0.875,bilinear +resnet18.a1_in1k,224,71.488,28.512,90.076,9.924,11.69,0.950,bicubic +efficientvit_b0.r224_in1k,224,71.404,28.596,89.434,10.566,3.41,0.950,bicubic +mobileone_s0.apple_in1k,224,71.398,28.602,89.864,10.136,5.29,0.875,bilinear +resnet14t.c3_in1k,176,71.318,28.682,89.680,10.320,10.08,0.875,bicubic +tinynet_c.in1k,184,71.224,28.776,89.746,10.254,2.46,0.875,bicubic +edgenext_xx_small.in1k,256,71.116,28.884,90.040,9.960,1.33,0.900,bicubic +resnet18.gluon_in1k,224,70.844,29.156,89.750,10.250,11.69,0.875,bicubic +efficientvit_m2.r224_in1k,224,70.800,29.200,90.160,9.840,4.19,0.875,bicubic +pvt_v2_b0.in1k,224,70.656,29.344,90.212,9.788,3.67,0.900,bicubic +resnet18.a2_in1k,224,70.634,29.366,89.486,10.514,11.69,0.950,bicubic +resnet34.a3_in1k,160,70.572,29.428,89.522,10.478,21.80,0.950,bicubic +vgg11_bn.tv_in1k,224,70.384,29.616,89.808,10.192,132.87,0.875,bilinear +regnety_002.pycls_in1k,224,70.294,29.706,89.534,10.466,3.16,0.875,bicubic +mobilevitv2_050.cvnets_in1k,256,70.158,29.842,89.936,10.064,1.37,0.888,bicubic +xcit_nano_12_p16_224.fb_in1k,224,69.982,30.018,89.782,10.218,3.05,1.000,bicubic +vgg13.tv_in1k,224,69.940,30.060,89.256,10.744,133.05,0.875,bilinear +resnet18.tv_in1k,224,69.752,30.248,89.080,10.920,11.69,0.875,bilinear +vgg11.tv_in1k,224,69.048,30.952,88.632,11.368,132.86,0.875,bilinear +repghostnet_058.in1k,224,68.934,31.066,88.386,11.614,2.55,0.875,bicubic +mobilevit_xxs.cvnets_in1k,256,68.928,31.072,88.940,11.060,1.27,0.900,bicubic +lcnet_075.ra2_in1k,224,68.784,31.216,88.388,11.612,2.36,0.875,bicubic +regnetx_002.pycls_in1k,224,68.760,31.240,88.564,11.436,2.68,0.875,bicubic +efficientvit_m1.r224_in1k,224,68.352,31.648,88.684,11.316,2.98,0.875,bicubic +resnet10t.c3_in1k,224,68.346,31.654,88.022,11.978,5.44,0.950,bicubic +resnet18.a3_in1k,224,68.246,31.754,88.158,11.842,11.69,0.950,bicubic +tf_mobilenetv3_small_100.in1k,224,67.932,32.068,87.684,12.316,2.54,0.875,bilinear +dla60x_c.in1k,224,67.928,32.072,88.426,11.574,1.32,0.875,bilinear +mobilenetv3_small_100.lamb_in1k,224,67.638,32.362,87.650,12.350,2.54,0.875,bicubic +repghostnet_050.in1k,224,66.980,33.020,86.940,13.060,2.31,0.875,bicubic +tinynet_d.in1k,152,66.966,33.034,87.064,12.936,2.34,0.875,bicubic +resnet10t.c3_in1k,176,66.724,33.276,86.974,13.026,5.44,0.875,bicubic +mnasnet_small.lamb_in1k,224,66.196,33.804,86.472,13.528,2.03,0.875,bicubic +dla46x_c.in1k,224,66.008,33.992,86.946,13.054,1.07,0.875,bilinear +mobilenetv2_050.lamb_in1k,224,65.930,34.070,86.102,13.898,1.97,0.875,bicubic +tf_mobilenetv3_small_075.in1k,224,65.732,34.268,86.142,13.858,2.04,0.875,bilinear +resnet18.a3_in1k,160,65.664,34.336,86.278,13.722,11.69,0.950,bicubic +mobilenetv3_small_075.lamb_in1k,224,65.266,34.734,85.466,14.534,2.04,0.875,bicubic +dla46_c.in1k,224,64.880,35.120,86.330,13.670,1.30,0.875,bilinear +efficientvit_m0.r224_in1k,224,63.294,36.706,85.150,14.850,2.35,0.875,bicubic +lcnet_050.ra2_in1k,224,63.130,36.870,84.400,15.600,1.88,0.875,bicubic +tf_mobilenetv3_small_minimal_100.in1k,224,62.894,37.106,84.284,15.716,2.04,0.875,bilinear +tinynet_e.in1k,106,59.874,40.126,81.770,18.230,2.04,0.875,bicubic +mobilenetv3_small_050.lamb_in1k,224,57.924,42.076,80.142,19.858,1.59,0.875,bicubic +test_efficientnet.r160_in1k,160,46.424,53.576,70.958,29.042,0.36,0.875,bicubic +test_byobnet.r160_in1k,160,45.400,54.600,70.610,29.390,0.46,0.875,bicubic +test_vit.r160_in1k,160,40.832,59.168,67.206,32.794,0.37,0.875,bicubic diff --git a/pytorch-image-models/results/results-imagenetv2-matched-frequency.csv b/pytorch-image-models/results/results-imagenetv2-matched-frequency.csv new file mode 100644 index 0000000000000000000000000000000000000000..4816b9b0be633a02e585c0e3d914ef6ec179771d --- /dev/null +++ b/pytorch-image-models/results/results-imagenetv2-matched-frequency.csv @@ -0,0 +1,1446 @@ +model,img_size,top1,top1_err,top5,top5_err,param_count,crop_pct,interpolation,top1_diff,top5_diff,rank_diff +eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,448,82.740,17.260,96.440,3.560,305.08,1.000,bicubic,-7.226,-2.576,+1 +eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,448,82.720,17.280,96.550,3.450,305.08,1.000,bicubic,-7.334,-2.506,-1 +eva02_large_patch14_448.mim_m38m_ft_in1k,448,82.390,17.610,96.180,3.820,305.08,1.000,bicubic,-7.164,-2.744,+3 +eva02_large_patch14_448.mim_in22k_ft_in1k,448,82.190,17.810,96.320,3.680,305.08,1.000,bicubic,-7.442,-2.634,-1 +eva_giant_patch14_336.clip_ft_in1k,336,82.190,17.810,96.250,3.750,"1,013.01",1.000,bicubic,-7.272,-2.578,+3 +eva_giant_patch14_560.m30m_ft_in22k_in1k,560,81.810,18.190,96.340,3.660,"1,014.45",1.000,bicubic,-7.986,-2.650,-3 +eva_giant_patch14_224.clip_ft_in1k,224,81.680,18.320,96.070,3.930,"1,012.56",0.900,bicubic,-7.206,-2.610,+2 +eva_giant_patch14_336.m30m_ft_in22k_in1k,336,81.660,18.340,96.200,3.800,"1,013.01",1.000,bicubic,-7.910,-2.754,-3 +eva_large_patch14_336.in22k_ft_in1k,336,81.070,18.930,95.810,4.190,304.53,1.000,bicubic,-7.620,-2.900,+2 +beit_large_patch16_512.in22k_ft_in22k_in1k,512,80.820,19.180,95.860,4.140,305.67,1.000,bicubic,-7.758,-2.800,+7 +eva_large_patch14_336.in22k_ft_in22k_in1k,336,80.780,19.220,95.990,4.010,304.53,1.000,bicubic,-8.470,-2.862,-3 +convnext_xxlarge.clip_laion2b_soup_ft_in1k,256,80.620,19.380,95.900,4.100,846.47,1.000,bicubic,-8.002,-2.818,+3 +tf_efficientnet_l2.ns_jft_in1k_475,475,80.520,19.480,95.630,4.370,480.31,0.936,bicubic,-7.730,-2.926,+14 +vit_large_patch14_clip_336.openai_ft_in12k_in1k,336,80.480,19.520,95.520,4.480,304.53,1.000,bicubic,-7.784,-3.008,+12 +regnety_1280.swag_ft_in1k,384,80.420,19.580,96.110,3.890,644.81,1.000,bicubic,-7.804,-2.588,+14 +beitv2_large_patch16_224.in1k_ft_in22k_in1k,224,80.410,19.590,95.210,4.790,304.43,0.950,bicubic,-7.996,-3.392,+3 +beit_large_patch16_384.in22k_ft_in22k_in1k,384,80.270,19.730,95.610,4.390,305.00,1.000,bicubic,-8.112,-2.998,+3 +eva_large_patch14_196.in22k_ft_in22k_in1k,196,80.180,19.820,95.410,4.590,304.14,1.000,bicubic,-8.416,-3.252,-2 +eva_large_patch14_196.in22k_ft_in1k,196,80.150,19.850,95.390,4.610,304.14,1.000,bicubic,-7.806,-3.090,+18 +caformer_b36.sail_in22k_ft_in1k_384,384,80.140,19.860,95.440,4.560,98.75,1.000,bicubic,-7.926,-3.150,+14 +tf_efficientnet_l2.ns_jft_in1k,800,80.130,19.870,95.860,4.140,480.31,0.960,bicubic,-8.232,-2.796,0 +eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,448,80.050,19.950,95.520,4.480,87.12,1.000,bicubic,-8.632,-3.208,-10 +maxvit_large_tf_512.in21k_ft_in1k,512,80.040,19.960,95.160,4.840,212.33,1.000,bicubic,-8.196,-3.448,+5 +maxvit_base_tf_512.in21k_ft_in1k,512,79.960,20.040,95.390,4.610,119.88,1.000,bicubic,-8.252,-3.148,+6 +maxvit_xlarge_tf_512.in21k_ft_in1k,512,79.830,20.170,95.400,4.600,475.77,1.000,bicubic,-8.710,-3.252,-7 +convnextv2_huge.fcmae_ft_in22k_in1k_384,384,79.730,20.270,95.580,4.420,660.29,1.000,bicubic,-8.932,-3.154,-13 +vit_large_patch14_clip_224.openai_ft_in1k,224,79.660,20.340,94.960,5.040,304.20,1.000,bicubic,-8.200,-3.470,+15 +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,384,79.620,20.380,95.260,4.740,200.13,1.000,bicubic,-8.714,-3.314,-6 +maxvit_xlarge_tf_384.in21k_ft_in1k,384,79.610,20.390,95.070,4.930,475.32,1.000,bicubic,-8.694,-3.470,-6 +convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,384,79.580,20.420,95.250,4.750,200.13,1.000,bicubic,-8.310,-3.198,+10 +eva02_base_patch14_448.mim_in22k_ft_in1k,448,79.530,20.470,95.170,4.830,87.12,1.000,bicubic,-8.736,-3.400,-6 +maxvit_large_tf_384.in21k_ft_in1k,384,79.510,20.490,95.070,4.930,212.03,1.000,bicubic,-8.486,-3.498,+2 +vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,336,79.510,20.490,94.990,5.010,632.46,1.000,bicubic,-9.118,-3.680,-18 +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,320,79.490,20.510,94.990,5.010,200.13,1.000,bicubic,-8.480,-3.484,+1 +vit_huge_patch14_clip_224.laion2b_ft_in1k,224,79.490,20.510,94.910,5.090,632.05,1.000,bicubic,-8.134,-3.318,+13 +convnextv2_huge.fcmae_ft_in22k_in1k_512,512,79.420,20.580,95.690,4.310,660.29,1.000,bicubic,-9.440,-3.050,-26 +beit_large_patch16_224.in22k_ft_in22k_in1k,224,79.360,20.640,94.930,5.070,304.43,0.900,bicubic,-8.128,-3.386,+13 +maxvit_base_tf_384.in21k_ft_in1k,384,79.330,20.670,95.020,4.980,119.65,1.000,bicubic,-8.598,-3.518,0 +vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,224,79.270,20.730,95.140,4.860,632.05,1.000,bicubic,-9.008,-3.412,-15 +vit_large_patch14_clip_336.laion2b_ft_in1k,336,79.250,20.750,95.010,4.990,304.53,1.000,bicubic,-8.616,-3.344,+1 +convformer_b36.sail_in22k_ft_in1k_384,384,79.230,20.770,94.890,5.110,99.88,1.000,bicubic,-8.372,-3.542,+7 +deit3_large_patch16_384.fb_in22k_ft_in1k,384,79.210,20.790,95.060,4.940,304.76,1.000,bicubic,-8.524,-3.448,+3 +deit3_huge_patch14_224.fb_in22k_ft_in1k,224,79.200,20.800,94.880,5.120,632.13,1.000,bicubic,-7.980,-3.384,+22 +maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,384,79.190,20.810,94.680,5.320,116.14,1.000,bicubic,-8.622,-3.688,-1 +vit_large_patch14_clip_224.openai_ft_in12k_in1k,224,79.150,20.850,94.890,5.110,304.20,1.000,bicubic,-9.012,-3.650,-12 +caformer_m36.sail_in22k_ft_in1k_384,384,79.120,20.880,94.780,5.220,56.20,1.000,bicubic,-8.352,-3.528,+7 +caformer_b36.sail_in22k_ft_in1k,224,78.920,21.080,94.680,5.320,98.75,1.000,bicubic,-8.520,-3.652,+8 +vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,336,78.860,21.140,94.830,5.170,304.53,1.000,bicubic,-9.332,-3.740,-17 +convnext_xlarge.fb_in22k_ft_in1k_384,384,78.810,21.190,95.110,4.890,350.20,1.000,bicubic,-8.956,-3.444,-5 +convnext_large.fb_in22k_ft_in1k_384,384,78.700,21.300,94.870,5.130,197.77,1.000,bicubic,-8.756,-3.510,+4 +convnext_large_mlp.clip_laion2b_augreg_ft_in1k,256,78.670,21.330,94.570,5.430,200.13,1.000,bicubic,-8.666,-3.652,+9 +deit3_large_patch16_224.fb_in22k_ft_in1k,224,78.650,21.350,94.740,5.260,304.37,1.000,bicubic,-8.336,-3.500,+22 +hiera_huge_224.mae_in1k_ft_in1k,224,78.630,21.370,93.830,6.170,672.78,0.900,bicubic,-8.204,-4.180,+31 +beitv2_large_patch16_224.in1k_ft_in1k,224,78.600,21.400,94.190,5.810,304.43,0.950,bicubic,-8.814,-4.026,+3 +vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,224,78.510,21.490,94.680,5.320,304.20,1.000,bicubic,-9.388,-3.728,-16 +coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,384,78.480,21.520,94.340,5.660,73.88,1.000,bicubic,-8.922,-3.968,+2 +swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,384,78.420,21.580,94.710,5.290,87.92,1.000,bicubic,-8.720,-3.518,+10 +vit_large_patch14_clip_224.laion2b_ft_in1k,224,78.410,21.590,94.570,5.430,304.20,1.000,bicubic,-8.888,-3.668,+4 +caformer_s36.sail_in22k_ft_in1k_384,384,78.370,21.630,94.310,5.690,39.30,1.000,bicubic,-8.494,-3.912,+22 +swin_large_patch4_window12_384.ms_in22k_ft_in1k,384,78.340,21.660,94.360,5.640,196.74,1.000,bicubic,-8.798,-3.870,+8 +swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,384,78.310,21.690,94.640,5.360,196.74,1.000,bicubic,-9.164,-3.624,-9 +regnety_320.swag_ft_in1k,384,78.300,21.700,95.160,4.840,145.05,1.000,bicubic,-8.560,-3.196,+20 +convnext_xlarge.fb_in22k_ft_in1k,288,78.280,21.720,94.530,5.470,350.20,1.000,bicubic,-9.094,-3.800,-4 +convformer_m36.sail_in22k_ft_in1k_384,384,78.240,21.760,94.310,5.690,57.05,1.000,bicubic,-8.628,-3.816,+16 +vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,78.160,21.840,94.230,5.770,64.27,1.000,bicubic,-9.276,-4.028,-9 +maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,384,78.150,21.850,94.420,5.580,116.09,1.000,bicubic,-9.328,-3.954,-17 +volo_d5_512.sail_in1k,512,78.150,21.850,94.230,5.770,296.09,1.150,bicubic,-8.916,-3.744,+4 +convformer_b36.sail_in22k_ft_in1k,224,78.150,21.850,94.190,5.810,99.88,1.000,bicubic,-8.834,-3.968,+8 +convnext_large.fb_in22k_ft_in1k,288,78.070,21.930,94.390,5.610,197.77,1.000,bicubic,-8.944,-3.822,+3 +convnextv2_huge.fcmae_ft_in1k,288,78.050,21.950,94.040,5.960,660.29,1.000,bicubic,-8.568,-3.928,+25 +deit3_base_patch16_384.fb_in22k_ft_in1k,384,77.950,22.050,94.220,5.780,86.88,1.000,bicubic,-8.794,-3.890,+20 +tf_efficientnet_b7.ns_jft_in1k,600,77.940,22.060,94.330,5.670,66.35,0.949,bicubic,-8.912,-3.750,+11 +maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,224,77.930,22.070,94.040,5.960,116.14,0.950,bicubic,-8.978,-3.964,+6 +volo_d5_448.sail_in1k,448,77.920,22.080,94.130,5.870,295.91,1.150,bicubic,-9.058,-3.798,+2 +swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,256,77.910,22.090,93.990,6.010,196.74,0.900,bicubic,-9.024,-4.114,+3 +convnextv2_large.fcmae_ft_in22k_in1k_384,384,77.890,22.110,94.630,5.370,197.96,1.000,bicubic,-10.288,-3.888,-44 +convnext_xlarge.fb_in22k_ft_in1k,224,77.880,22.120,94.000,6.000,350.20,0.875,bicubic,-9.090,-4.204,0 +caformer_m36.sail_in22k_ft_in1k,224,77.870,22.130,93.970,6.030,56.20,1.000,bicubic,-8.738,-4.068,+19 +vit_large_patch16_384.augreg_in21k_ft_in1k,384,77.810,22.190,94.290,5.710,304.72,1.000,bicubic,-9.284,-4.016,-10 +convnext_base.fb_in22k_ft_in1k_384,384,77.790,22.210,94.170,5.830,88.59,1.000,bicubic,-9.036,-4.074,+5 +beit_base_patch16_384.in22k_ft_in22k_in1k,384,77.770,22.230,94.320,5.680,86.74,1.000,bicubic,-9.046,-3.816,+5 +nextvit_base.bd_ssld_6m_in1k_384,384,77.760,22.240,94.160,5.840,44.82,1.000,bicubic,-8.604,-3.880,+38 +volo_d4_448.sail_in1k,448,77.750,22.250,93.920,6.080,193.41,1.150,bicubic,-9.040,-3.960,+5 +nextvit_large.bd_ssld_6m_in1k_384,384,77.730,22.270,94.360,5.640,57.87,1.000,bicubic,-8.812,-3.772,+18 +seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,384,77.650,22.350,94.070,5.930,149.39,1.000,bicubic,-9.658,-4.264,-24 +convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,384,77.630,22.370,94.330,5.670,88.59,1.000,bicubic,-9.520,-3.898,-20 +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,320,77.590,22.410,94.060,5.940,93.59,1.000,bicubic,-9.132,-4.122,+5 +tf_efficientnetv2_xl.in21k_ft_in1k,512,77.590,22.410,93.800,6.200,208.12,1.000,bicubic,-9.158,-4.214,+2 +regnety_1280.swag_lc_in1k,224,77.560,22.440,94.480,5.520,644.81,0.965,bicubic,-8.406,-3.372,+67 +convnext_large.fb_in22k_ft_in1k,224,77.560,22.440,93.970,6.030,197.77,0.875,bicubic,-9.052,-4.066,+7 +convnextv2_base.fcmae_ft_in22k_in1k_384,384,77.510,22.490,94.350,5.650,88.72,1.000,bicubic,-10.128,-4.066,-45 +caformer_b36.sail_in1k_384,384,77.480,22.520,93.540,6.460,98.75,1.000,bicubic,-8.924,-4.284,+22 +convformer_m36.sail_in22k_ft_in1k,224,77.470,22.530,93.810,6.190,57.05,1.000,bicubic,-8.682,-4.042,+46 +maxvit_base_tf_512.in1k,512,77.460,22.540,93.900,6.100,119.88,1.000,bicubic,-9.138,-4.026,+6 +convnext_base.clip_laiona_augreg_ft_in1k_384,384,77.450,22.550,93.920,6.080,88.59,1.000,bicubic,-9.038,-4.042,+14 +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,288,77.450,22.550,93.780,6.220,93.59,0.950,bicubic,-9.086,-4.314,+8 +coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,224,77.410,22.590,93.540,6.460,73.88,0.950,bicubic,-9.130,-4.356,+6 +efficientvit_l3.r384_in1k,384,77.410,22.590,93.300,6.700,246.04,1.000,bicubic,-8.988,-4.334,+17 +swin_base_patch4_window12_384.ms_in22k_ft_in1k,384,77.380,22.620,94.320,5.680,87.90,1.000,bicubic,-9.058,-3.748,+13 +tf_efficientnetv2_l.in21k_ft_in1k,480,77.380,22.620,94.230,5.770,118.52,1.000,bicubic,-9.422,-3.906,-12 +hgnetv2_b6.ssld_stage2_ft_in1k,288,77.360,22.640,94.240,5.760,75.26,1.000,bicubic,-9.024,-3.698,+15 +vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,77.360,22.640,93.680,6.320,60.60,1.000,bicubic,-9.242,-4.342,-2 +seresnextaa101d_32x8d.sw_in12k_ft_in1k,288,77.340,22.660,93.810,6.190,93.59,1.000,bicubic,-9.178,-4.226,+3 +hgnetv2_b6.ssld_stage1_in22k_in1k,288,77.320,22.680,94.230,5.770,75.26,1.000,bicubic,-8.978,-3.858,+19 +convnextv2_large.fcmae_ft_in22k_in1k,288,77.280,22.720,94.230,5.770,197.96,1.000,bicubic,-10.214,-4.130,-56 +beitv2_base_patch16_224.in1k_ft_in22k_in1k,224,77.270,22.730,94.030,5.970,86.53,0.900,bicubic,-9.224,-4.026,+2 +swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,256,77.270,22.730,94.020,5.980,87.92,0.900,bicubic,-9.006,-3.888,+18 +efficientvit_l3.r320_in1k,320,77.260,22.740,93.150,6.850,246.04,1.000,bicubic,-8.970,-4.306,+20 +vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,384,77.240,22.760,93.660,6.340,86.86,1.000,bicubic,-9.972,-4.368,-45 +caformer_m36.sail_in1k_384,384,77.240,22.760,93.630,6.370,56.20,1.000,bicubic,-8.920,-4.186,+27 +maxvit_large_tf_512.in1k,512,77.230,22.770,93.700,6.300,212.33,1.000,bicubic,-9.304,-4.180,-7 +convnextv2_huge.fcmae_ft_in1k,224,77.230,22.770,93.580,6.420,660.29,0.875,bicubic,-9.030,-4.172,+15 +convnextv2_large.fcmae_ft_in22k_in1k,224,77.210,22.790,93.970,6.030,197.96,0.875,bicubic,-10.054,-4.274,-50 +volo_d3_448.sail_in1k,448,77.190,22.810,94.030,5.970,86.63,1.000,bicubic,-9.322,-3.680,-8 +swin_large_patch4_window7_224.ms_in22k_ft_in1k,224,77.190,22.810,93.770,6.230,196.53,0.900,bicubic,-9.140,-4.112,+7 +vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,77.190,22.810,93.600,6.400,64.11,0.950,bicubic,-9.018,-4.282,+16 +tf_efficientnet_b6.ns_jft_in1k,528,77.180,22.820,93.800,6.200,43.04,0.942,bicubic,-9.296,-4.068,-6 +regnety_160.swag_ft_in1k,384,77.160,22.840,94.560,5.440,83.59,1.000,bicubic,-8.858,-3.490,+34 +convnextv2_base.fcmae_ft_in22k_in1k,288,77.150,22.850,94.080,5.920,88.72,1.000,bicubic,-9.848,-4.084,-46 +vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,77.140,22.860,93.780,6.220,64.11,0.950,bicubic,-9.464,-4.156,-22 +coatnet_2_rw_224.sw_in12k_ft_in1k,224,77.100,22.900,93.610,6.390,73.87,0.950,bicubic,-9.480,-4.286,-20 +vit_base_patch16_clip_384.laion2b_ft_in1k,384,77.070,22.930,93.870,6.130,86.86,1.000,bicubic,-9.568,-4.138,-28 +convnextv2_base.fcmae_ft_in22k_in1k,224,77.030,22.970,93.590,6.410,88.72,0.875,bicubic,-9.722,-4.430,-34 +hgnetv2_b6.ssld_stage2_ft_in1k,224,77.000,23.000,93.880,6.120,75.26,0.965,bicubic,-9.206,-3.930,+9 +vit_base_patch16_clip_384.openai_ft_in12k_in1k,384,76.990,23.010,93.750,6.250,86.86,0.950,bicubic,-10.038,-4.444,-54 +convnext_base.fb_in22k_ft_in1k,288,76.960,23.040,93.950,6.050,88.59,1.000,bicubic,-9.338,-3.990,-4 +vit_base_patch16_clip_384.openai_ft_in1k,384,76.920,23.080,93.680,6.320,86.86,1.000,bicubic,-9.298,-4.206,+3 +vit_large_r50_s32_384.augreg_in21k_ft_in1k,384,76.900,23.100,93.680,6.320,329.09,1.000,bicubic,-9.284,-3.994,+7 +maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,224,76.890,23.110,93.560,6.440,116.09,0.950,bicubic,-9.748,-4.454,-36 +maxvit_large_tf_384.in1k,384,76.850,23.150,93.450,6.550,212.03,1.000,bicubic,-9.386,-4.240,-3 +hiera_large_224.mae_in1k_ft_in1k,224,76.850,23.150,93.200,6.800,213.74,0.900,bicubic,-9.194,-4.448,+18 +cait_m48_448.fb_dist_in1k,448,76.840,23.160,93.420,6.580,356.46,1.000,bicubic,-9.642,-4.326,-22 +vit_base_patch8_224.augreg2_in21k_ft_in1k,224,76.830,23.170,93.640,6.360,86.58,0.900,bicubic,-9.398,-4.200,-4 +convformer_s36.sail_in22k_ft_in1k_384,384,76.810,23.190,94.080,5.920,40.01,1.000,bicubic,-9.570,-3.896,-16 +hgnetv2_b6.ssld_stage1_in22k_in1k,224,76.790,23.210,93.860,6.140,75.26,0.965,bicubic,-9.262,-3.946,+13 +hgnet_base.ssld_in1k,288,76.780,23.220,93.480,6.520,71.58,1.000,bicubic,-8.692,-4.154,+67 +tf_efficientnetv2_m.in21k_ft_in1k,480,76.750,23.250,93.600,6.400,54.14,1.000,bicubic,-9.264,-4.356,+16 +xcit_large_24_p8_384.fb_dist_in1k,384,76.750,23.250,93.110,6.890,188.93,1.000,bicubic,-9.276,-4.580,+13 +caformer_s36.sail_in22k_ft_in1k,224,76.740,23.260,93.570,6.430,39.30,1.000,bicubic,-9.048,-4.258,+35 +deit3_large_patch16_384.fb_in1k,384,76.730,23.270,93.340,6.660,304.76,1.000,bicubic,-9.088,-4.262,+30 +regnety_160.sw_in12k_ft_in1k,288,76.710,23.290,93.770,6.230,83.59,1.000,bicubic,-9.322,-4.060,+9 +resnext101_32x32d.fb_wsl_ig1b_ft_in1k,224,76.690,23.310,93.210,6.790,468.53,0.875,bilinear,-8.408,-4.232,+104 +efficientvit_l2.r384_in1k,384,76.680,23.320,93.100,6.900,63.71,1.000,bicubic,-9.302,-4.414,+13 +tf_efficientnet_b5.ns_jft_in1k,456,76.670,23.330,93.500,6.500,30.39,0.934,bicubic,-9.432,-4.250,-2 +convnext_base.clip_laion2b_augreg_ft_in12k_in1k,256,76.660,23.340,94.010,5.990,88.59,1.000,bicubic,-9.726,-3.966,-29 +convnextv2_large.fcmae_ft_in1k,288,76.650,23.350,93.610,6.390,197.96,1.000,bicubic,-9.476,-4.208,-6 +volo_d5_224.sail_in1k,224,76.600,23.400,93.360,6.640,295.46,0.960,bicubic,-9.478,-4.218,-2 +deit3_base_patch16_224.fb_in22k_ft_in1k,224,76.560,23.440,93.560,6.440,86.59,1.000,bicubic,-9.168,-4.048,+31 +maxvit_base_tf_384.in1k,384,76.560,23.440,93.490,6.510,119.65,1.000,bicubic,-9.734,-4.314,-24 +tiny_vit_21m_512.dist_in22k_ft_in1k,512,76.560,23.440,93.460,6.540,21.27,1.000,bicubic,-9.892,-4.424,-37 +regnety_160.lion_in12k_ft_in1k,288,76.530,23.470,93.830,6.170,83.59,1.000,bicubic,-9.480,-4.016,+3 +maxvit_small_tf_512.in1k,512,76.520,23.480,93.220,6.780,69.13,1.000,bicubic,-9.584,-4.538,-12 +rdnet_large.nv_in1k_ft_in1k_384,384,76.520,23.480,93.080,6.920,186.27,1.000,bicubic,-9.328,-4.604,+14 +nextvit_small.bd_ssld_6m_in1k_384,384,76.460,23.540,93.870,6.130,31.76,1.000,bicubic,-9.496,-4.030,+4 +beitv2_base_patch16_224.in1k_ft_in1k,224,76.460,23.540,92.900,7.100,86.53,0.900,bicubic,-9.136,-4.614,+36 +efficientvit_l3.r256_in1k,256,76.450,23.550,92.620,7.380,246.04,1.000,bicubic,-9.504,-4.718,+5 +seresnextaa101d_32x8d.sw_in12k_ft_in1k,224,76.440,23.560,93.420,6.580,93.59,0.875,bicubic,-9.516,-4.404,+3 +convnext_base.clip_laion2b_augreg_ft_in1k,256,76.420,23.580,93.580,6.420,88.59,1.000,bicubic,-9.764,-4.348,-22 +convformer_m36.sail_in1k_384,384,76.410,23.590,93.100,6.900,57.05,1.000,bicubic,-9.170,-4.448,+33 +vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,76.410,23.590,92.900,7.100,60.40,0.950,bicubic,-9.318,-4.846,+23 +cait_m36_384.fb_dist_in1k,384,76.370,23.630,93.030,6.970,271.22,1.000,bicubic,-9.694,-4.702,-15 +caformer_s36.sail_in1k_384,384,76.360,23.640,93.430,6.570,39.30,1.000,bicubic,-9.396,-4.238,+17 +convnext_small.in12k_ft_in1k_384,384,76.350,23.650,93.360,6.640,50.22,1.000,bicubic,-9.836,-4.560,-29 +xcit_medium_24_p8_384.fb_dist_in1k,384,76.300,23.700,92.990,7.010,84.32,1.000,bicubic,-9.542,-4.612,+3 +tiny_vit_21m_384.dist_in22k_ft_in1k,384,76.290,23.710,93.020,6.980,21.23,1.000,bicubic,-9.804,-4.692,-21 +efficientvit_l2.r288_in1k,288,76.270,23.730,92.800,7.200,63.71,1.000,bicubic,-9.344,-4.560,+22 +nextvit_large.bd_ssld_6m_in1k,224,76.260,23.740,93.330,6.670,57.87,0.950,bicubic,-9.264,-4.346,+31 +convformer_b36.sail_in1k_384,384,76.250,23.750,92.750,7.250,99.88,1.000,bicubic,-9.528,-4.770,+7 +volo_d2_384.sail_in1k,384,76.240,23.760,93.170,6.830,58.87,1.000,bicubic,-9.818,-4.414,-22 +hgnetv2_b5.ssld_stage1_in22k_in1k,288,76.210,23.790,93.360,6.640,39.57,1.000,bicubic,-8.714,-4.154,+98 +vit_large_patch16_224.augreg_in21k_ft_in1k,224,76.180,23.820,93.510,6.490,304.33,0.900,bicubic,-9.670,-4.316,-7 +maxvit_tiny_tf_512.in1k,512,76.180,23.820,93.060,6.940,31.05,1.000,bicubic,-9.480,-4.532,+14 +convnext_small.fb_in22k_ft_in1k_384,384,76.170,23.830,93.590,6.410,50.22,1.000,bicubic,-9.584,-4.292,+7 +tf_efficientnetv2_l.in21k_ft_in1k,384,76.170,23.830,93.350,6.650,118.52,1.000,bicubic,-9.662,-4.420,-5 +convnext_base.fb_in22k_ft_in1k,224,76.160,23.840,93.350,6.650,88.59,0.875,bicubic,-9.656,-4.504,-4 +dm_nfnet_f6.dm_in1k,576,76.160,23.840,93.200,6.800,438.36,0.956,bicubic,-10.212,-4.692,-57 +vit_base_patch16_384.augreg_in21k_ft_in1k,384,76.150,23.850,93.590,6.410,86.86,1.000,bicubic,-9.856,-4.410,-22 +regnety_160.lion_in12k_ft_in1k,224,76.130,23.870,93.300,6.700,83.59,0.950,bicubic,-9.472,-4.368,+10 +volo_d4_224.sail_in1k,224,76.130,23.870,93.080,6.920,192.96,0.960,bicubic,-9.742,-4.376,-15 +caformer_s18.sail_in22k_ft_in1k_384,384,76.090,23.910,93.630,6.370,26.34,1.000,bicubic,-9.334,-3.952,+28 +vit_base_patch16_clip_224.openai_ft_in1k,224,76.090,23.910,93.020,6.980,86.57,0.900,bicubic,-9.196,-4.420,+39 +convnextv2_large.fcmae_ft_in1k,224,76.080,23.920,93.140,6.860,197.96,0.875,bicubic,-9.682,-4.446,-6 +vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,224,76.080,23.920,92.930,7.070,86.57,0.950,bicubic,-10.130,-4.826,-51 +flexivit_large.1200ep_in1k,240,76.050,23.950,93.010,6.990,304.36,0.950,bicubic,-9.594,-4.536,+3 +xcit_large_24_p8_224.fb_dist_in1k,224,76.050,23.950,92.710,7.290,188.93,1.000,bicubic,-9.352,-4.708,+28 +regnety_160.sw_in12k_ft_in1k,224,76.040,23.960,93.050,6.950,83.59,0.950,bicubic,-9.554,-4.618,+5 +flexivit_large.600ep_in1k,240,76.020,23.980,92.790,7.210,304.36,0.950,bicubic,-9.510,-4.704,+10 +maxvit_small_tf_384.in1k,384,76.020,23.980,92.610,7.390,69.02,1.000,bicubic,-9.514,-4.848,+8 +cait_s36_384.fb_dist_in1k,384,76.010,23.990,92.920,7.080,68.37,1.000,bicubic,-9.448,-4.560,+15 +tf_efficientnetv2_l.in1k,480,76.000,24.000,93.040,6.960,118.52,1.000,bicubic,-9.660,-4.432,-4 +tf_efficientnet_b7.ap_in1k,600,75.990,24.010,92.930,7.070,66.35,0.949,bicubic,-9.142,-4.326,+50 +efficientvit_l3.r224_in1k,224,75.960,24.040,92.460,7.540,246.04,1.000,bicubic,-9.852,-4.750,-20 +tf_efficientnet_b8.ap_in1k,672,75.950,24.050,92.650,7.350,87.41,0.954,bicubic,-9.416,-4.648,+23 +convformer_s36.sail_in1k_384,384,75.940,24.060,93.070,6.930,40.01,1.000,bicubic,-9.440,-4.400,+20 +tf_efficientnetv2_xl.in21k_ft_in1k,384,75.900,24.100,92.820,7.180,208.12,1.000,bicubic,-9.662,-4.630,-1 +hgnet_base.ssld_in1k,224,75.890,24.110,92.790,7.210,71.58,0.965,bicubic,-9.022,-4.550,+74 +hgnetv2_b5.ssld_stage2_ft_in1k,288,75.880,24.120,93.520,6.480,39.57,1.000,bicubic,-9.270,-4.080,+40 +dm_nfnet_f6.dm_in1k,448,75.880,24.120,93.000,7.000,438.36,0.956,bicubic,-10.274,-4.768,-59 +dm_nfnet_f4.dm_in1k,512,75.850,24.150,92.990,7.010,316.07,0.951,bicubic,-10.010,-4.662,-35 +efficientvit_l2.r256_in1k,256,75.850,24.150,92.490,7.510,63.71,1.000,bicubic,-9.518,-4.766,+15 +eva02_small_patch14_336.mim_in22k_ft_in1k,336,75.840,24.160,92.790,7.210,22.13,1.000,bicubic,-9.920,-4.820,-23 +vit_base_patch8_224.augreg_in21k_ft_in1k,224,75.830,24.170,93.390,6.610,86.58,0.900,bicubic,-10.006,-4.384,-36 +xcit_large_24_p16_384.fb_dist_in1k,384,75.830,24.170,92.780,7.220,189.10,1.000,bicubic,-9.946,-4.748,-27 +flexivit_large.300ep_in1k,240,75.830,24.170,92.670,7.330,304.36,0.950,bicubic,-9.452,-4.734,+18 +xcit_small_24_p8_384.fb_dist_in1k,384,75.810,24.190,92.960,7.040,47.63,1.000,bicubic,-9.772,-4.612,-13 +deit3_huge_patch14_224.fb_in1k,224,75.800,24.200,92.730,7.270,632.13,0.900,bicubic,-9.422,-4.636,+22 +convformer_s36.sail_in22k_ft_in1k,224,75.790,24.210,93.330,6.670,40.01,1.000,bicubic,-9.634,-4.144,+3 +efficientnet_b5.sw_in12k_ft_in1k,448,75.780,24.220,93.160,6.840,30.39,1.000,bicubic,-10.112,-4.582,-46 +vit_base_patch16_clip_224.laion2b_ft_in1k,224,75.750,24.250,92.890,7.110,86.57,1.000,bicubic,-9.744,-4.682,-8 +vit_base_patch16_clip_224.openai_ft_in12k_in1k,224,75.720,24.280,92.930,7.070,86.57,0.950,bicubic,-10.242,-4.788,-52 +vit_medium_patch16_gap_384.sw_in12k_ft_in1k,384,75.710,24.290,92.940,7.060,39.03,0.950,bicubic,-9.844,-4.700,-16 +beit_base_patch16_224.in22k_ft_in22k_in1k,224,75.700,24.300,93.430,6.570,86.53,0.900,bicubic,-9.544,-4.222,+11 +swin_base_patch4_window7_224.ms_in22k_ft_in1k,224,75.700,24.300,93.210,6.790,87.77,0.900,bicubic,-9.570,-4.358,+10 +volo_d1_384.sail_in1k,384,75.700,24.300,92.990,7.010,26.78,1.000,bicubic,-9.566,-4.228,+10 +volo_d3_224.sail_in1k,224,75.690,24.310,92.980,7.020,86.33,0.960,bicubic,-9.752,-4.296,-9 +caformer_b36.sail_in1k,224,75.690,24.310,92.680,7.320,98.75,1.000,bicubic,-9.812,-4.636,-17 +hgnetv2_b5.ssld_stage1_in22k_in1k,224,75.680,24.320,92.730,7.270,39.57,0.965,bicubic,-8.776,-4.098,+102 +xcit_medium_24_p8_224.fb_dist_in1k,224,75.660,24.340,92.780,7.220,84.32,1.000,bicubic,-9.416,-4.494,+32 +resnext101_32x16d.fb_wsl_ig1b_ft_in1k,224,75.650,24.350,92.940,7.060,194.03,0.875,bilinear,-8.514,-4.248,+146 +regnety_120.sw_in12k_ft_in1k,288,75.630,24.370,92.940,7.060,51.82,1.000,bicubic,-9.812,-4.632,-15 +hgnetv2_b5.ssld_stage2_ft_in1k,224,75.610,24.390,92.900,7.100,39.57,0.965,bicubic,-9.200,-4.400,+60 +vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,448,75.610,24.390,92.830,7.170,88.34,1.000,bicubic,-10.190,-4.802,-49 +vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,75.600,24.400,92.490,7.510,60.40,0.950,bicubic,-9.824,-5.222,-12 +hiera_base_plus_224.mae_in1k_ft_in1k,224,75.580,24.420,92.470,7.530,69.90,0.900,bicubic,-9.554,-4.688,+16 +hrnet_w48_ssld.paddle_in1k,288,75.570,24.430,92.850,7.150,77.47,1.000,bilinear,-8.914,-4.376,+89 +convnextv2_base.fcmae_ft_in1k,288,75.560,24.440,92.830,7.170,88.72,1.000,bicubic,-9.930,-4.550,-24 +caformer_m36.sail_in1k,224,75.560,24.440,92.350,7.650,56.20,1.000,bicubic,-9.680,-4.856,-1 +convnext_small.fb_in22k_ft_in1k,288,75.540,24.460,93.200,6.800,50.22,1.000,bicubic,-9.736,-4.478,-7 +regnety_320.swag_lc_in1k,224,75.520,24.480,93.800,6.200,145.05,0.965,bicubic,-9.112,-3.684,+68 +tf_efficientnet_b4.ns_jft_in1k,380,75.520,24.480,92.850,7.150,19.34,0.922,bicubic,-9.656,-4.478,+4 +nextvit_base.bd_ssld_6m_in1k,224,75.500,24.500,93.180,6.820,44.82,0.950,bicubic,-9.682,-4.414,+2 +regnetz_e8.ra3_in1k,320,75.470,24.530,92.550,7.450,57.70,1.000,bicubic,-9.570,-4.732,+21 +inception_next_base.sail_in1k_384,384,75.470,24.530,92.530,7.470,86.67,1.000,bicubic,-9.730,-4.894,-3 +volo_d2_224.sail_in1k,224,75.470,24.530,92.480,7.520,58.68,0.960,bicubic,-9.732,-4.706,-2 +resnext101_32x8d.fb_swsl_ig1b_ft_in1k,224,75.460,24.540,92.680,7.320,88.79,0.875,bilinear,-8.822,-4.494,+115 +dm_nfnet_f3.dm_in1k,416,75.430,24.570,92.900,7.100,254.92,0.940,bicubic,-10.242,-4.678,-52 +vit_base_r50_s16_384.orig_in21k_ft_in1k,384,75.420,24.580,92.740,7.260,98.95,1.000,bicubic,-9.574,-4.564,+21 +dm_nfnet_f5.dm_in1k,544,75.410,24.590,92.770,7.230,377.21,0.954,bicubic,-10.690,-4.916,-95 +deit_base_distilled_patch16_384.fb_in1k,384,75.400,24.600,92.520,7.480,87.63,1.000,bicubic,-10.028,-4.808,-31 +cait_s24_384.fb_dist_in1k,384,75.380,24.620,92.520,7.480,47.06,1.000,bicubic,-9.662,-4.830,+13 +tf_efficientnet_b6.ap_in1k,528,75.370,24.630,92.300,7.700,43.04,0.942,bicubic,-9.422,-4.834,+42 +tf_efficientnetv2_m.in21k_ft_in1k,384,75.340,24.660,92.660,7.340,54.14,1.000,bicubic,-9.428,-4.780,+44 +tf_efficientnetv2_l.in1k,384,75.330,24.670,92.330,7.670,118.52,1.000,bicubic,-9.866,-4.946,-11 +convnext_small.in12k_ft_in1k,224,75.320,24.680,92.800,7.200,50.22,0.950,bicubic,-9.844,-4.702,-8 +vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,384,75.320,24.680,92.690,7.310,88.30,1.000,bicubic,-10.090,-4.970,-34 +hgnet_small.ssld_in1k,288,75.320,24.680,92.660,7.340,24.36,1.000,bicubic,-9.058,-4.470,+94 +vit_base_patch16_224.augreg2_in21k_ft_in1k,224,75.310,24.690,93.270,6.730,86.57,0.900,bicubic,-9.800,-4.268,-5 +vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,75.290,24.710,92.410,7.590,38.88,0.950,bicubic,-9.654,-4.978,+14 +dm_nfnet_f4.dm_in1k,384,75.280,24.720,92.450,7.550,316.07,0.951,bicubic,-10.216,-5.040,-49 +dm_nfnet_f5.dm_in1k,416,75.270,24.730,92.490,7.510,377.21,0.954,bicubic,-10.446,-5.062,-67 +efficientvit_l2.r224_in1k,224,75.260,24.740,92.010,7.990,63.71,1.000,bicubic,-9.784,-5.088,+1 +caformer_s18.sail_in1k_384,384,75.230,24.770,92.640,7.360,26.34,1.000,bicubic,-9.806,-4.720,+3 +coat_lite_medium_384.in1k,384,75.210,24.790,92.210,7.790,44.57,1.000,bicubic,-9.684,-5.166,+19 +nextvit_small.bd_ssld_6m_in1k,224,75.200,24.800,92.820,7.180,31.76,0.950,bicubic,-9.656,-4.560,+23 +xcit_medium_24_p16_384.fb_dist_in1k,384,75.190,24.810,92.320,7.680,84.40,1.000,bicubic,-10.244,-5.088,-48 +tf_efficientnetv2_m.in1k,480,75.140,24.860,92.630,7.370,54.14,1.000,bicubic,-10.070,-4.734,-27 +deit3_small_patch16_384.fb_in22k_ft_in1k,384,75.130,24.870,92.810,7.190,22.21,1.000,bicubic,-9.712,-4.672,+20 +efficientnetv2_rw_m.agc_in1k,416,75.130,24.870,92.540,7.460,53.24,1.000,bicubic,-9.694,-4.610,+23 +regnety_2560.seer_ft_in1k,384,75.100,24.900,92.710,7.290,"1,282.60",1.000,bicubic,-10.046,-4.734,-20 +rdnet_large.nv_in1k,224,75.100,24.900,92.140,7.860,186.27,0.900,bicubic,-9.694,-5.014,+22 +dm_nfnet_f2.dm_in1k,352,75.080,24.920,92.300,7.700,193.78,0.920,bicubic,-10.096,-5.188,-26 +deit3_large_patch16_224.fb_in1k,224,75.070,24.930,92.220,7.780,304.37,0.900,bicubic,-9.708,-4.826,+23 +convformer_s18.sail_in22k_ft_in1k_384,384,75.050,24.950,93.020,6.980,26.77,1.000,bicubic,-9.976,-4.560,-7 +xcit_small_12_p8_384.fb_dist_in1k,384,75.040,24.960,92.450,7.550,26.21,1.000,bicubic,-10.032,-4.812,-14 +mvitv2_large.fb_in1k,224,75.040,24.960,92.270,7.730,217.99,0.900,bicubic,-10.224,-4.918,-40 +tiny_vit_21m_224.dist_in22k_ft_in1k,224,75.010,24.990,92.560,7.440,21.20,0.950,bicubic,-10.078,-4.796,-18 +convnextv2_base.fcmae_ft_in1k,224,74.990,25.010,92.290,7.710,88.72,0.875,bicubic,-9.898,-4.790,+6 +xcit_small_24_p8_224.fb_dist_in1k,224,74.980,25.020,92.400,7.600,47.63,1.000,bicubic,-9.896,-4.800,+6 +convnext_small.in12k_ft_in1k,288,74.970,25.030,92.610,7.390,50.22,1.000,bicubic,-10.354,-4.944,-51 +regnety_120.sw_in12k_ft_in1k,224,74.910,25.090,92.590,7.410,51.82,0.950,bicubic,-10.076,-4.832,-11 +hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k,256,74.910,25.090,92.390,7.610,34.36,0.950,bicubic,-9.990,-4.864,+1 +efficientnetv2_rw_m.agc_in1k,320,74.900,25.100,92.090,7.910,53.24,1.000,bicubic,-9.394,-4.786,+75 +convnext_large.fb_in1k,288,74.900,25.100,92.080,7.920,197.77,1.000,bicubic,-9.962,-5.130,+4 +coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,224,74.890,25.110,91.940,8.060,41.72,0.950,bicubic,-10.050,-5.028,-11 +ecaresnet269d.ra2_in1k,352,74.870,25.130,92.770,7.230,102.09,1.000,bicubic,-10.102,-4.454,-14 +maxvit_tiny_tf_384.in1k,384,74.870,25.130,92.380,7.620,30.98,1.000,bicubic,-10.232,-4.938,-32 +convformer_b36.sail_in1k,224,74.840,25.160,91.640,8.360,99.88,1.000,bicubic,-9.990,-5.310,+2 +convnext_small.fb_in22k_ft_in1k,224,74.800,25.200,92.900,7.100,50.22,0.875,bicubic,-9.782,-4.514,+24 +ecaresnet269d.ra2_in1k,320,74.800,25.200,92.440,7.560,102.09,0.950,bicubic,-9.920,-4.742,+11 +convnext_tiny.in12k_ft_in1k_384,384,74.790,25.210,92.830,7.170,28.59,1.000,bicubic,-10.364,-4.804,-43 +deit3_base_patch16_384.fb_in1k,384,74.790,25.210,92.170,7.830,86.88,1.000,bicubic,-10.296,-5.078,-32 +convformer_s18.sail_in1k_384,384,74.770,25.230,92.530,7.470,26.77,1.000,bicubic,-9.624,-4.582,+54 +maxxvit_rmlp_small_rw_256.sw_in1k,256,74.750,25.250,91.910,8.090,66.01,0.950,bicubic,-9.890,-5.152,+13 +dm_nfnet_f3.dm_in1k,320,74.710,25.290,91.920,8.080,254.92,0.940,bicubic,-10.386,-5.466,-37 +maxvit_large_tf_224.in1k,224,74.690,25.310,91.810,8.190,211.79,0.950,bicubic,-10.244,-5.170,-19 +deit3_medium_patch16_224.fb_in22k_ft_in1k,224,74.680,25.320,92.550,7.450,38.85,1.000,bicubic,-9.886,-4.628,+18 +hrnet_w48_ssld.paddle_in1k,224,74.680,25.320,92.080,7.920,77.47,0.950,bilinear,-8.998,-4.768,+161 +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,544,74.680,25.320,91.920,8.080,32.59,1.000,bicubic,-10.310,-5.364,-29 +xcit_small_24_p16_384.fb_dist_in1k,384,74.650,25.350,92.530,7.470,47.67,1.000,bicubic,-10.452,-4.852,-44 +regnetz_e8.ra3_in1k,256,74.630,25.370,91.870,8.130,57.70,0.940,bicubic,-9.788,-5.116,+42 +hiera_base_224.mae_in1k_ft_in1k,224,74.630,25.370,91.850,8.150,51.52,0.900,bicubic,-9.896,-5.190,+21 +caformer_s36.sail_in1k,224,74.620,25.380,92.020,7.980,39.30,1.000,bicubic,-9.924,-4.990,+16 +eca_nfnet_l2.ra3_in1k,384,74.600,25.400,92.680,7.320,56.72,1.000,bicubic,-10.106,-4.576,-2 +tf_efficientnet_b8.ra_in1k,672,74.560,25.440,92.170,7.830,87.41,0.954,bicubic,-10.796,-5.218,-79 +xcit_large_24_p16_224.fb_dist_in1k,224,74.560,25.440,91.990,8.010,189.10,1.000,bicubic,-10.376,-5.138,-30 +vit_medium_patch16_gap_256.sw_in12k_ft_in1k,256,74.560,25.440,91.880,8.120,38.86,0.950,bicubic,-9.890,-5.338,+27 +vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k,256,74.550,25.450,91.600,8.400,63.95,0.950,bicubic,-9.772,-5.212,+46 +regnety_160.swag_lc_in1k,224,74.500,25.500,93.040,6.960,83.59,0.965,bicubic,-9.308,-3.620,+122 +gcvit_base.in1k,224,74.490,25.510,91.780,8.220,90.32,0.875,bicubic,-9.964,-5.070,+22 +nextvit_large.bd_in1k_384,384,74.480,25.520,92.540,7.460,57.87,1.000,bicubic,-10.454,-4.758,-35 +tf_efficientnet_b7.ra_in1k,600,74.470,25.530,92.130,7.870,66.35,0.949,bicubic,-10.460,-5.070,-34 +convnext_tiny.in12k_ft_in1k,288,74.460,25.540,92.600,7.400,28.59,1.000,bicubic,-9.988,-4.728,+21 +maxvit_rmlp_small_rw_224.sw_in1k,224,74.460,25.540,91.480,8.520,64.90,0.900,bicubic,-10.024,-5.294,+12 +fastvit_ma36.apple_dist_in1k,256,74.450,25.550,91.940,8.060,44.07,0.950,bicubic,-10.156,-5.066,-5 +caformer_s18.sail_in22k_ft_in1k,224,74.440,25.560,92.520,7.480,26.34,1.000,bicubic,-9.646,-4.668,+70 +davit_base.msft_in1k,224,74.410,25.590,91.700,8.300,87.95,0.950,bicubic,-10.240,-5.318,-11 +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,480,74.400,25.600,92.090,7.910,32.59,1.000,bicubic,-10.380,-5.252,-24 +dm_nfnet_f1.dm_in1k,320,74.400,25.600,92.020,7.980,132.63,0.910,bicubic,-10.296,-5.160,-15 +convformer_m36.sail_in1k,224,74.390,25.610,91.480,8.520,57.05,1.000,bicubic,-10.096,-5.386,+4 +rexnetr_300.sw_in12k_ft_in1k,288,74.380,25.620,92.460,7.540,34.81,1.000,bicubic,-10.206,-4.818,-10 +xcit_small_12_p16_384.fb_dist_in1k,384,74.380,25.620,92.130,7.870,26.25,1.000,bicubic,-10.356,-5.006,-23 +tf_efficientnet_b5.ap_in1k,456,74.360,25.640,91.920,8.080,30.39,0.934,bicubic,-9.894,-5.058,+43 +regnetz_040_h.ra3_in1k,320,74.340,25.660,92.230,7.770,28.94,1.000,bicubic,-10.170,-4.786,-1 +rdnet_base.nv_in1k,224,74.330,25.670,91.820,8.180,87.45,0.900,bicubic,-10.038,-5.052,+26 +tf_efficientnetv2_s.in21k_ft_in1k,384,74.320,25.680,92.390,7.610,21.46,1.000,bicubic,-9.996,-4.878,+29 +hgnet_small.ssld_in1k,224,74.310,25.690,92.090,7.910,24.36,0.965,bicubic,-9.500,-4.778,+103 +maxvit_base_tf_224.in1k,224,74.310,25.690,91.870,8.130,119.47,0.950,bicubic,-10.560,-5.134,-42 +regnetz_040.ra3_in1k,320,74.300,25.700,91.800,8.200,27.12,1.000,bicubic,-9.956,-5.134,+36 +eca_nfnet_l2.ra3_in1k,320,74.270,25.730,92.320,7.680,56.72,0.900,bicubic,-9.886,-4.412,+47 +mobilenetv4_hybrid_large.ix_e600_r384_in1k,448,74.270,25.730,91.630,8.370,37.76,1.000,bicubic,-10.094,-5.278,+21 +vit_base_patch32_clip_384.openai_ft_in12k_in1k,384,74.260,25.740,92.480,7.520,88.30,0.950,bicubic,-10.966,-4.918,-94 +vit_large_r50_s32_224.augreg_in21k_ft_in1k,224,74.260,25.740,92.330,7.670,328.99,0.900,bicubic,-10.172,-4.822,+7 +resnest200e.in1k,320,74.250,25.750,91.870,8.130,70.20,0.909,bicubic,-9.622,-5.006,+84 +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,448,74.230,25.770,91.610,8.390,32.59,0.950,bicubic,-10.438,-5.498,-30 +hgnetv2_b4.ssld_stage2_ft_in1k,288,74.220,25.780,92.540,7.460,19.80,1.000,bicubic,-9.714,-4.524,+67 +coatnet_rmlp_2_rw_224.sw_in1k,224,74.210,25.790,91.240,8.760,73.88,0.950,bicubic,-10.392,-5.506,-26 +resmlp_big_24_224.fb_in22k_ft_in1k,224,74.200,25.800,92.070,7.930,129.14,0.875,bicubic,-10.188,-5.038,+9 +convnext_large.fb_in1k,224,74.200,25.800,91.550,8.450,197.77,0.875,bicubic,-10.098,-5.342,+20 +nextvit_base.bd_in1k_384,384,74.190,25.810,92.210,7.790,44.82,1.000,bicubic,-10.536,-5.014,-42 +resnetrs200.tf_in1k,320,74.190,25.810,91.860,8.140,93.21,1.000,bicubic,-10.256,-5.212,-6 +flexivit_base.1200ep_in1k,240,74.190,25.810,91.770,8.230,86.59,0.950,bicubic,-10.498,-5.250,-39 +mvitv2_base.fb_in1k,224,74.190,25.810,91.510,8.490,51.47,0.900,bicubic,-10.248,-5.352,-2 +seresnet152d.ra2_in1k,320,74.180,25.820,91.990,8.010,66.84,1.000,bicubic,-10.174,-5.052,+8 +swinv2_base_window16_256.ms_in1k,256,74.180,25.820,91.870,8.130,87.92,0.900,bicubic,-10.428,-5.194,-35 +convnext_base.fb_in1k,288,74.180,25.820,91.660,8.340,88.59,1.000,bicubic,-10.286,-5.322,-17 +xcit_large_24_p8_224.fb_in1k,224,74.170,25.830,90.850,9.150,188.93,1.000,bicubic,-10.216,-5.816,+2 +convnextv2_tiny.fcmae_ft_in22k_in1k_384,384,74.130,25.870,92.460,7.540,28.64,1.000,bicubic,-10.976,-5.172,-94 +cait_xs24_384.fb_dist_in1k,384,74.130,25.870,91.930,8.070,26.67,1.000,bicubic,-9.934,-4.952,+42 +convnext_tiny.in12k_ft_in1k,224,74.120,25.880,92.170,7.830,28.59,0.950,bicubic,-10.072,-4.962,+24 +tf_efficientnetv2_m.in1k,384,74.120,25.880,91.940,8.060,54.14,1.000,bicubic,-10.438,-5.116,-35 +vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k,256,74.120,25.880,91.670,8.330,22.52,0.950,bicubic,-9.682,-5.288,+84 +mobilenetv4_hybrid_large.e600_r384_in1k,448,74.110,25.890,91.960,8.040,37.76,1.000,bicubic,-10.164,-4.990,+8 +vit_base_patch16_rope_reg1_gap_256.sbb_in1k,256,74.110,25.890,91.060,8.940,86.43,0.950,bicubic,-9.780,-5.614,+59 +volo_d1_224.sail_in1k,224,74.100,25.900,92.060,7.940,26.63,0.960,bicubic,-10.052,-4.714,+25 +seresnextaa101d_32x8d.ah_in1k,288,74.090,25.910,91.620,8.380,93.59,1.000,bicubic,-10.486,-5.454,-43 +convformer_s36.sail_in1k,224,74.090,25.910,91.210,8.790,40.01,1.000,bicubic,-9.982,-5.546,+33 +vit_base_patch16_224.augreg_in21k_ft_in1k,224,74.080,25.920,92.390,7.610,86.57,0.900,bicubic,-10.452,-4.908,-37 +efficientnetv2_rw_s.ra2_in1k,384,74.080,25.920,91.760,8.240,23.94,1.000,bicubic,-9.750,-4.952,+65 +efficientvit_l1.r224_in1k,224,74.070,25.930,91.650,8.350,52.65,1.000,bicubic,-10.378,-5.206,-25 +vit_base_patch16_224_miil.in21k_ft_in1k,224,74.060,25.940,91.600,8.400,86.54,0.875,bilinear,-10.212,-5.198,+2 +resnext101_32x4d.fb_swsl_ig1b_ft_in1k,224,74.040,25.960,91.940,8.060,44.18,0.875,bilinear,-9.228,-4.820,+157 +tf_efficientnetv2_s.in1k,384,74.040,25.960,91.420,8.580,21.46,1.000,bicubic,-9.856,-5.278,+49 +flexivit_base.600ep_in1k,240,74.030,25.970,91.680,8.320,86.59,0.950,bicubic,-10.530,-5.230,-48 +seresnext101d_32x8d.ah_in1k,288,74.030,25.970,91.670,8.330,93.59,1.000,bicubic,-10.372,-5.216,-20 +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,384,74.020,25.980,91.210,8.790,32.59,0.950,bicubic,-10.294,-5.890,-10 +crossvit_18_dagger_408.in1k,408,74.010,25.990,91.310,8.690,44.61,1.000,bicubic,-10.192,-5.522,+6 +flexivit_base.300ep_in1k,240,74.000,26.000,91.350,8.650,86.59,0.950,bicubic,-10.402,-5.572,-23 +inception_next_base.sail_in1k,224,74.000,26.000,91.350,8.650,86.67,0.950,bicubic,-10.098,-5.788,+16 +hgnetv2_b4.ssld_stage2_ft_in1k,224,73.960,26.040,91.950,8.050,19.80,0.965,bicubic,-9.734,-4.838,+84 +davit_small.msft_in1k,224,73.950,26.050,91.560,8.440,49.75,0.950,bicubic,-10.316,-5.370,-7 +resnest269e.in1k,416,73.940,26.060,92.040,7.960,110.93,0.928,bicubic,-10.600,-4.950,-53 +hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k,256,73.940,26.060,91.740,8.260,34.36,0.950,bicubic,-10.614,-5.366,-54 +fastvit_sa36.apple_dist_in1k,256,73.930,26.070,91.670,8.330,31.53,0.900,bicubic,-10.102,-5.180,+22 +vit_small_r26_s32_384.augreg_in21k_ft_in1k,384,73.910,26.090,92.190,7.810,36.47,1.000,bicubic,-10.164,-5.124,+12 +xcit_small_12_p8_224.fb_dist_in1k,224,73.910,26.090,91.690,8.310,26.21,1.000,bicubic,-10.340,-5.184,-8 +eca_nfnet_l1.ra2_in1k,320,73.870,26.130,92.020,7.980,41.41,1.000,bicubic,-10.180,-5.014,+15 +deit3_small_patch16_224.fb_in22k_ft_in1k,224,73.870,26.130,91.970,8.030,22.06,1.000,bicubic,-9.212,-4.810,+172 +tf_efficientnet_b6.aa_in1k,528,73.860,26.140,91.720,8.280,43.04,0.942,bicubic,-10.258,-5.166,+2 +tf_efficientnet_b7.aa_in1k,600,73.850,26.150,91.770,8.230,66.35,0.949,bicubic,-10.586,-5.150,-41 +repvgg_d2se.rvgg_in1k,320,73.850,26.150,91.390,8.610,133.33,1.000,bilinear,-9.704,-5.274,+93 +resnetrs420.tf_in1k,416,73.840,26.160,91.700,8.300,191.89,1.000,bicubic,-11.174,-5.416,-114 +pit_b_distilled_224.in1k,224,73.840,26.160,90.690,9.310,74.79,0.900,bicubic,-9.934,-5.778,+55 +vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k,256,73.810,26.190,91.150,8.850,60.23,0.950,bicubic,-10.100,-5.536,+21 +focalnet_base_lrf.ms_in1k,224,73.810,26.190,91.070,8.930,88.75,0.900,bicubic,-10.018,-5.696,+42 +regnety_1280.seer_ft_in1k,384,73.800,26.200,91.780,8.220,644.81,1.000,bicubic,-10.626,-5.304,-44 +rdnet_small.nv_in1k,224,73.800,26.200,91.260,8.740,50.44,0.900,bicubic,-9.868,-5.260,+73 +vit_base_patch16_384.orig_in21k_ft_in1k,384,73.780,26.220,92.100,7.900,86.86,1.000,bicubic,-10.428,-5.120,-17 +tf_efficientnet_b3.ns_jft_in1k,300,73.780,26.220,91.840,8.160,12.23,0.904,bicubic,-10.284,-5.060,0 +convnext_base.fb_in1k,224,73.780,26.220,91.250,8.750,88.59,0.875,bicubic,-10.054,-5.496,+34 +vit_medium_patch16_rope_reg1_gap_256.sbb_in1k,256,73.770,26.230,91.500,8.500,38.74,0.950,bicubic,-10.042,-5.322,+37 +seresnext101_32x8d.ah_in1k,288,73.770,26.230,91.390,8.610,93.57,1.000,bicubic,-10.424,-5.472,-17 +resnext101_32x16d.fb_swsl_ig1b_ft_in1k,224,73.760,26.240,92.040,7.960,194.03,0.875,bilinear,-9.586,-4.804,+122 +regnetz_d32.ra3_in1k,320,73.750,26.250,91.860,8.140,27.58,0.950,bicubic,-10.278,-5.010,+3 +fastvit_ma36.apple_in1k,256,73.750,26.250,91.550,8.450,44.07,0.950,bicubic,-10.134,-5.212,+20 +resnetrs420.tf_in1k,320,73.750,26.250,91.080,8.920,191.89,1.000,bicubic,-10.500,-5.786,-28 +regnetz_d8.ra3_in1k,320,73.730,26.270,91.980,8.020,23.37,1.000,bicubic,-10.312,-5.022,-4 +regnetz_040.ra3_in1k,256,73.730,26.270,91.280,8.720,27.12,1.000,bicubic,-9.930,-5.404,+64 +resnext101_32x8d.fb_wsl_ig1b_ft_in1k,224,73.710,26.290,92.180,7.820,88.79,0.875,bilinear,-9.010,-4.444,+196 +maxvit_small_tf_224.in1k,224,73.710,26.290,91.400,8.600,68.93,0.950,bicubic,-10.746,-5.818,-68 +resnetaa101d.sw_in12k_ft_in1k,288,73.700,26.300,91.770,8.230,44.57,1.000,bicubic,-10.402,-5.348,-19 +swin_small_patch4_window7_224.ms_in22k_ft_in1k,224,73.690,26.310,92.330,7.670,49.61,0.900,bicubic,-9.640,-4.666,+114 +gcvit_small.in1k,224,73.680,26.320,91.310,8.690,51.09,0.875,bicubic,-10.228,-5.350,+4 +swinv2_base_window8_256.ms_in1k,256,73.670,26.330,91.610,8.390,87.92,0.900,bicubic,-10.576,-5.292,-35 +xcit_medium_24_p16_224.fb_dist_in1k,224,73.670,26.330,91.490,8.510,84.40,1.000,bicubic,-10.618,-5.446,-46 +efficientvit_b3.r288_in1k,288,73.670,26.330,91.390,8.610,48.65,1.000,bicubic,-10.486,-5.628,-27 +edgenext_base.usi_in1k,320,73.640,26.360,91.760,8.240,18.51,1.000,bicubic,-10.330,-5.010,-6 +mobilenetv4_hybrid_large.ix_e600_r384_in1k,384,73.640,26.360,91.090,8.910,37.76,0.950,bicubic,-10.344,-5.618,-9 +maxvit_rmlp_tiny_rw_256.sw_in1k,256,73.620,26.380,91.420,8.580,29.15,0.950,bicubic,-10.614,-5.364,-39 +edgenext_base.in21k_ft_in1k,320,73.610,26.390,91.870,8.130,18.51,1.000,bicubic,-10.466,-5.338,-23 +hgnetv2_b4.ssld_stage1_in22k_in1k,288,73.600,26.400,92.340,7.660,19.80,1.000,bicubic,-9.848,-4.582,+81 +maxvit_tiny_rw_224.sw_in1k,224,73.590,26.410,90.860,9.140,29.06,0.950,bicubic,-9.932,-5.628,+68 +sequencer2d_l.in1k,224,73.580,26.420,91.100,8.900,54.30,0.875,bicubic,-9.830,-5.404,+90 +dm_nfnet_f2.dm_in1k,256,73.570,26.430,91.430,8.570,193.78,0.920,bicubic,-10.522,-5.476,-31 +convnext_small.fb_in1k,288,73.570,26.430,91.390,8.610,50.22,1.000,bicubic,-10.134,-5.426,+35 +seresnextaa101d_32x8d.ah_in1k,224,73.570,26.430,90.940,9.060,93.59,0.950,bicubic,-10.330,-5.708,-4 +seresnet152d.ra2_in1k,256,73.560,26.440,91.530,8.470,66.84,0.950,bicubic,-10.134,-5.254,+38 +hiera_small_224.mae_in1k_ft_in1k,224,73.550,26.450,91.300,8.700,35.01,0.900,bicubic,-10.336,-5.462,-4 +convnextv2_tiny.fcmae_ft_in22k_in1k,288,73.530,26.470,91.950,8.050,28.64,1.000,bicubic,-10.892,-5.304,-76 +pvt_v2_b4.in1k,224,73.530,26.470,91.110,8.890,62.56,0.900,bicubic,-10.182,-5.560,+27 +edgenext_base.in21k_ft_in1k,256,73.490,26.510,91.240,8.760,18.51,0.950,bicubic,-9.926,-5.556,+80 +coat_lite_medium.in1k,224,73.480,26.520,91.230,8.770,44.57,0.900,bicubic,-10.122,-5.484,+46 +inception_next_small.sail_in1k,224,73.480,26.520,91.140,8.860,49.37,0.875,bicubic,-10.104,-5.458,+50 +regnety_080.ra3_in1k,288,73.470,26.530,91.700,8.300,39.18,1.000,bicubic,-10.470,-5.180,-23 +resnetrs270.tf_in1k,352,73.470,26.530,91.460,8.540,129.86,1.000,bicubic,-10.970,-5.514,-89 +resnetrs350.tf_in1k,288,73.470,26.530,91.150,8.850,163.96,1.000,bicubic,-10.838,-5.778,-67 +regnetz_040_h.ra3_in1k,256,73.460,26.540,91.530,8.470,28.94,1.000,bicubic,-10.308,-5.162,+13 +xcit_tiny_24_p8_384.fb_dist_in1k,384,73.450,26.550,91.660,8.340,12.11,1.000,bicubic,-10.334,-5.056,+5 +mobilenetv4_hybrid_large.e600_r384_in1k,384,73.450,26.550,91.510,8.490,37.76,0.950,bicubic,-10.372,-5.258,-1 +repvit_m2_3.dist_450e_in1k,224,73.450,26.550,91.080,8.920,23.69,0.950,bicubic,-10.292,-5.562,+14 +tresnet_v2_l.miil_in21k_ft_in1k,224,73.450,26.550,91.030,8.970,46.17,0.875,bilinear,-10.452,-5.466,-20 +twins_svt_large.in1k,224,73.440,26.560,90.880,9.120,99.27,0.900,bicubic,-10.250,-5.728,+24 +deit3_base_patch16_224.fb_in1k,224,73.420,26.580,91.260,8.740,86.59,0.900,bicubic,-10.374,-5.322,+1 +vit_betwixt_patch16_reg4_gap_256.sbb_in1k,256,73.420,26.580,91.240,8.760,60.40,0.950,bicubic,-10.288,-5.378,+16 +swinv2_small_window16_256.ms_in1k,256,73.400,26.600,91.280,8.720,49.73,0.900,bicubic,-10.816,-5.594,-64 +resnetaa101d.sw_in12k_ft_in1k,224,73.400,26.600,91.100,8.900,44.57,0.950,bicubic,-10.144,-5.728,+41 +convformer_s18.sail_in22k_ft_in1k,224,73.390,26.610,91.930,8.070,26.77,1.000,bicubic,-10.372,-5.118,+3 +resnetrs200.tf_in1k,256,73.390,26.610,91.280,8.720,93.21,1.000,bicubic,-10.496,-5.400,-24 +edgenext_base.usi_in1k,256,73.390,26.610,91.170,8.830,18.51,0.950,bicubic,-10.294,-5.530,+20 +resmlp_big_24_224.fb_distilled_in1k,224,73.380,26.620,91.090,8.910,129.14,0.875,bicubic,-10.214,-5.564,+30 +convnext_tiny.fb_in22k_ft_in1k_384,384,73.360,26.640,91.860,8.140,28.59,1.000,bicubic,-10.738,-4.922,-61 +rexnetr_300.sw_in12k_ft_in1k,224,73.360,26.640,91.810,8.190,34.81,0.950,bicubic,-10.676,-5.190,-47 +swin_s3_base_224.ms_in1k,224,73.360,26.640,91.270,8.730,71.13,0.900,bicubic,-10.560,-5.380,-37 +regnety_064.ra3_in1k,288,73.360,26.640,91.240,8.760,30.58,1.000,bicubic,-10.352,-5.488,+3 +resnet200d.ra2_in1k,320,73.350,26.650,91.460,8.540,64.69,1.000,bicubic,-10.626,-5.360,-45 +tf_efficientnet_b5.ra_in1k,456,73.340,26.660,91.370,8.630,30.39,0.934,bicubic,-10.488,-5.244,-21 +regnety_160.deit_in1k,288,73.330,26.670,91.620,8.380,83.59,1.000,bicubic,-10.370,-4.970,+4 +swin_base_patch4_window12_384.ms_in1k,384,73.320,26.680,91.350,8.650,87.90,1.000,bicubic,-11.156,-5.536,-120 +hgnetv2_b3.ssld_stage2_ft_in1k,288,73.310,26.690,91.830,8.170,16.29,1.000,bicubic,-10.270,-4.984,+24 +efficientnet_b4.ra2_in1k,384,73.310,26.690,91.320,8.680,19.34,1.000,bicubic,-10.164,-5.264,+38 +hgnetv2_b3.ssld_stage1_in22k_in1k,288,73.300,26.700,91.960,8.040,16.29,1.000,bicubic,-9.814,-4.752,+94 +regnetz_d8_evos.ch_in1k,256,73.300,26.700,90.750,9.250,23.46,0.950,bicubic,-10.094,-5.908,+53 +hgnetv2_b4.ssld_stage1_in22k_in1k,224,73.290,26.710,91.800,8.200,19.80,0.965,bicubic,-9.596,-4.486,+122 +regnetv_064.ra3_in1k,288,73.280,26.720,91.650,8.350,30.58,1.000,bicubic,-10.468,-5.096,-12 +tf_efficientnet_b5.aa_in1k,456,73.280,26.720,91.070,8.930,30.39,0.934,bicubic,-10.416,-5.644,-1 +focalnet_base_srf.ms_in1k,224,73.270,26.730,91.300,8.700,88.15,0.900,bicubic,-10.538,-5.984,-24 +focalnet_small_srf.ms_in1k,224,73.270,26.730,90.630,9.370,49.89,0.900,bicubic,-10.160,-5.804,+38 +regnetz_d8.ra3_in1k,256,73.260,26.740,91.300,8.700,23.37,0.940,bicubic,-10.288,-5.446,+16 +vit_betwixt_patch16_reg1_gap_256.sbb_in1k,256,73.260,26.740,91.140,8.860,60.40,0.950,bicubic,-10.384,-5.406,+5 +tiny_vit_21m_224.in1k,224,73.250,26.750,91.410,8.590,21.20,0.950,bicubic,-10.020,-5.192,+57 +resnet152d.ra2_in1k,320,73.250,26.750,91.200,8.800,60.21,1.000,bicubic,-10.434,-5.550,-3 +mvitv2_small.fb_in1k,224,73.250,26.750,91.120,8.880,34.87,0.900,bicubic,-10.522,-5.438,-22 +gcvit_tiny.in1k,224,73.230,26.770,90.890,9.110,28.22,0.875,bicubic,-10.170,-5.502,+41 +pvt_v2_b5.in1k,224,73.200,26.800,91.240,8.760,81.96,0.900,bicubic,-10.568,-5.392,-23 +mobilenetv4_conv_aa_large.e600_r384_in1k,480,73.200,26.800,91.180,8.820,32.59,1.000,bicubic,-10.632,-5.552,-42 +swinv2_small_window8_256.ms_in1k,256,73.200,26.800,91.040,8.960,49.73,0.900,bicubic,-10.644,-5.610,-46 +seresnext101d_32x8d.ah_in1k,224,73.180,26.820,91.200,8.800,93.59,0.950,bicubic,-10.520,-5.586,-15 +regnetz_d8_evos.ch_in1k,320,73.170,26.830,91.630,8.370,23.46,1.000,bicubic,-10.982,-5.390,-92 +fastvit_sa24.apple_dist_in1k,256,73.170,26.830,91.390,8.610,21.55,0.900,bicubic,-10.192,-5.186,+40 +vit_medium_patch16_reg4_gap_256.sbb_in1k,256,73.170,26.830,91.200,8.800,38.88,0.950,bicubic,-10.298,-5.422,+22 +nest_base_jx.goog_in1k,224,73.170,26.830,90.990,9.010,67.72,0.875,bicubic,-10.376,-5.376,+7 +vit_small_patch16_384.augreg_in21k_ft_in1k,384,73.160,26.840,91.900,8.100,22.20,1.000,bicubic,-10.644,-5.208,-40 +cs3se_edgenet_x.c2ns_in1k,320,73.160,26.840,91.280,8.720,50.72,1.000,bicubic,-10.384,-5.384,+6 +nextvit_large.bd_in1k,224,73.150,26.850,91.500,8.500,57.87,0.950,bicubic,-10.492,-5.184,-10 +fastvit_sa36.apple_in1k,256,73.150,26.850,90.960,9.040,31.53,0.900,bicubic,-10.354,-5.670,+7 +xcit_small_24_p8_224.fb_in1k,224,73.140,26.860,91.230,8.770,47.63,1.000,bicubic,-10.714,-5.406,-58 +xcit_medium_24_p8_224.fb_in1k,224,73.140,26.860,90.440,9.560,84.32,1.000,bicubic,-10.602,-5.952,-31 +xcit_small_24_p16_224.fb_dist_in1k,224,73.130,26.870,91.460,8.540,47.67,1.000,bicubic,-10.748,-5.274,-61 +resnetv2_152x4_bit.goog_in21k_ft_in1k,480,73.120,26.880,91.790,8.210,936.53,1.000,bilinear,-11.804,-5.668,-201 +regnetz_d32.ra3_in1k,256,73.120,26.880,91.450,8.550,27.58,0.950,bicubic,-10.308,-5.226,+18 +resnetrs350.tf_in1k,384,73.120,26.880,91.180,8.820,163.96,1.000,bicubic,-11.602,-5.792,-182 +seresnext101_32x8d.ah_in1k,224,73.120,26.880,90.480,9.520,93.57,0.950,bicubic,-10.498,-5.932,-14 +resnet200d.ra2_in1k,256,73.110,26.890,90.850,9.150,64.69,0.950,bicubic,-10.130,-5.696,+41 +eca_nfnet_l1.ra2_in1k,256,73.100,26.900,91.370,8.630,41.41,0.900,bicubic,-10.164,-5.304,+37 +efficientvit_b3.r256_in1k,256,73.100,26.900,90.880,9.120,48.65,1.000,bicubic,-10.714,-5.634,-57 +pvt_v2_b3.in1k,224,73.080,26.920,90.980,9.020,45.24,0.900,bicubic,-10.038,-5.474,+56 +resnetv2_152x2_bit.goog_in21k_ft_in1k,448,73.070,26.930,91.960,8.040,236.34,1.000,bilinear,-11.410,-5.456,-160 +resnet152.a1h_in1k,288,73.060,26.940,91.140,8.860,60.19,1.000,bicubic,-10.434,-5.382,-4 +nextvit_small.bd_in1k_384,384,73.050,26.950,91.450,8.550,31.76,1.000,bicubic,-10.992,-5.540,-95 +deit3_small_patch16_384.fb_in1k,384,73.050,26.950,91.290,8.710,22.21,1.000,bicubic,-10.378,-5.346,+6 +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,448,73.040,26.960,91.340,8.660,11.07,1.000,bicubic,-10.382,-5.392,+7 +swin_s3_small_224.ms_in1k,224,73.030,26.970,90.720,9.280,49.74,0.900,bicubic,-10.748,-5.740,-55 +vit_medium_patch16_reg1_gap_256.sbb_in1k,256,73.020,26.980,91.080,8.920,38.88,0.950,bicubic,-10.438,-5.442,-3 +repvit_m2_3.dist_300e_in1k,224,73.020,26.980,90.860,9.140,23.69,0.950,bicubic,-10.504,-5.672,-14 +cait_s24_224.fb_dist_in1k,224,73.010,26.990,91.200,8.800,46.92,1.000,bicubic,-10.474,-5.386,-9 +efficientvit_b3.r224_in1k,224,73.010,26.990,90.530,9.470,48.65,0.950,bicubic,-10.434,-5.808,-2 +convnextv2_tiny.fcmae_ft_in22k_in1k,224,72.990,27.010,91.580,8.420,28.64,0.875,bicubic,-10.914,-5.384,-89 +mobilenetv4_conv_large.e600_r384_in1k,448,72.990,27.010,91.260,8.740,32.59,1.000,bicubic,-10.428,-5.352,+2 +caformer_s18.sail_in1k,224,72.970,27.030,90.990,9.010,26.34,1.000,bicubic,-10.698,-5.722,-39 +deit_base_distilled_patch16_224.fb_in1k,224,72.970,27.030,90.960,9.040,87.34,0.900,bicubic,-10.418,-5.530,+7 +maxvit_tiny_tf_224.in1k,224,72.960,27.040,90.820,9.180,30.92,0.950,bicubic,-10.462,-5.770,-2 +regnety_080.ra3_in1k,224,72.950,27.050,90.750,9.250,39.18,0.950,bicubic,-10.212,-5.728,+33 +resnetrs270.tf_in1k,256,72.940,27.060,90.630,9.370,129.86,1.000,bicubic,-10.654,-5.986,-32 +regnety_640.seer_ft_in1k,384,72.910,27.090,91.280,8.720,281.38,1.000,bicubic,-11.006,-5.640,-99 +efficientnetv2_rw_s.ra2_in1k,288,72.900,27.100,91.290,8.710,23.94,1.000,bicubic,-9.988,-5.338,+69 +resnetrs152.tf_in1k,320,72.900,27.100,91.210,8.790,86.62,1.000,bicubic,-10.810,-5.400,-58 +regnety_320.tv2_in1k,224,72.880,27.120,90.780,9.220,145.05,0.965,bicubic,-10.294,-5.636,+22 +efficientformerv2_l.snap_dist_in1k,224,72.870,27.130,90.850,9.150,26.32,0.950,bicubic,-10.770,-5.690,-43 +hgnet_tiny.ssld_in1k,288,72.860,27.140,91.590,8.410,14.74,1.000,bicubic,-9.664,-4.544,+123 +rexnet_300.nav_in1k,224,72.850,27.150,90.700,9.300,34.71,0.875,bicubic,-9.930,-5.534,+78 +coatnet_rmlp_1_rw_224.sw_in1k,224,72.840,27.160,90.800,9.200,41.69,0.950,bicubic,-10.514,-5.624,+1 +convnextv2_tiny.fcmae_ft_in1k,288,72.800,27.200,91.080,8.920,28.64,1.000,bicubic,-10.676,-5.638,-26 +crossvit_15_dagger_408.in1k,408,72.800,27.200,91.070,8.930,28.50,1.000,bicubic,-11.040,-5.710,-94 +regnety_160.deit_in1k,224,72.800,27.200,90.930,9.070,83.59,0.950,bicubic,-10.194,-5.570,+47 +regnetv_064.ra3_in1k,224,72.800,27.200,90.710,9.290,30.58,0.950,bicubic,-10.318,-5.852,+29 +swinv2_cr_small_ns_224.sw_in1k,224,72.770,27.230,90.590,9.410,49.70,0.900,bicubic,-10.720,-5.896,-31 +tf_efficientnetv2_s.in21k_ft_in1k,300,72.750,27.250,91.390,8.610,21.46,1.000,bicubic,-10.624,-5.320,-9 +tf_efficientnetv2_s.in1k,300,72.750,27.250,90.760,9.240,21.46,1.000,bicubic,-10.422,-5.576,+12 +nextvit_base.bd_in1k,224,72.740,27.260,91.240,8.760,44.82,0.950,bicubic,-10.756,-5.406,-37 +tf_efficientnet_b4.ap_in1k,380,72.740,27.260,90.990,9.010,19.34,0.922,bicubic,-10.510,-5.400,+2 +focalnet_small_lrf.ms_in1k,224,72.740,27.260,90.800,9.200,50.34,0.900,bicubic,-10.768,-5.786,-38 +twins_svt_base.in1k,224,72.720,27.280,90.430,9.570,56.07,0.900,bicubic,-10.404,-5.998,+18 +regnetv_040.ra3_in1k,288,72.710,27.290,91.110,8.890,20.64,1.000,bicubic,-10.490,-5.548,+4 +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,384,72.710,27.290,90.930,9.070,236.34,1.000,bicubic,-11.172,-6.186,-108 +resnetv2_101.a1h_in1k,288,72.700,27.300,90.580,9.420,44.54,1.000,bicubic,-10.302,-5.864,+32 +efficientformer_l7.snap_dist_in1k,224,72.690,27.310,90.690,9.310,82.23,0.950,bicubic,-10.696,-5.848,-19 +ecaresnet101d.miil_in1k,288,72.680,27.320,91.020,8.980,44.57,0.950,bicubic,-10.318,-5.504,+30 +coatnet_1_rw_224.sw_in1k,224,72.680,27.320,90.800,9.200,41.72,0.950,bicubic,-10.932,-5.582,-60 +xcit_small_12_p8_224.fb_in1k,224,72.670,27.330,90.700,9.300,26.21,1.000,bicubic,-10.686,-5.774,-18 +vit_base_patch32_384.augreg_in21k_ft_in1k,384,72.660,27.340,91.110,8.890,88.30,1.000,bicubic,-10.692,-5.722,-16 +regnety_032.ra_in1k,288,72.650,27.350,90.840,9.160,19.44,1.000,bicubic,-10.074,-5.584,+63 +regnety_064.ra3_in1k,224,72.650,27.350,90.630,9.370,30.58,0.950,bicubic,-10.356,-5.666,+24 +regnety_040.ra3_in1k,288,72.600,27.400,90.720,9.280,20.65,1.000,bicubic,-10.458,-5.778,+19 +xception65p.ra3_in1k,299,72.590,27.410,90.740,9.260,39.82,0.940,bicubic,-10.574,-5.760,0 +convnext_tiny.fb_in22k_ft_in1k,224,72.580,27.420,91.340,8.660,28.59,0.875,bicubic,-10.308,-4.988,+38 +twins_pcpvt_large.in1k,224,72.570,27.430,90.870,9.130,60.99,0.900,bicubic,-10.598,-5.740,-4 +pnasnet5large.tf_in1k,331,72.560,27.440,90.520,9.480,86.06,0.911,bicubic,-10.268,-5.518,+43 +deit_base_patch16_384.fb_in1k,384,72.560,27.440,90.200,9.800,86.86,1.000,bicubic,-10.556,-6.166,+7 +xcit_small_12_p16_224.fb_dist_in1k,224,72.540,27.460,91.080,8.920,26.25,1.000,bicubic,-10.814,-5.372,-27 +xception65.ra3_in1k,299,72.540,27.460,90.700,9.300,39.92,0.940,bicubic,-10.644,-5.898,-11 +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,320,72.530,27.470,91.290,8.710,11.07,1.000,bicubic,-10.460,-5.380,+19 +vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,224,72.530,27.470,90.910,9.090,88.22,0.900,bicubic,-10.776,-5.620,-24 +hgnetv2_b3.ssld_stage2_ft_in1k,224,72.520,27.480,91.290,8.710,16.29,0.965,bicubic,-10.390,-5.072,+28 +nfnet_l0.ra2_in1k,288,72.520,27.480,90.890,9.110,35.07,1.000,bicubic,-10.236,-5.604,+47 +deit3_medium_patch16_224.fb_in1k,224,72.490,27.510,90.810,9.190,38.85,0.900,bicubic,-10.596,-5.476,+3 +mobilenetv4_conv_aa_large.e600_r384_in1k,384,72.480,27.520,90.480,9.520,32.59,0.950,bicubic,-10.784,-5.910,-24 +tf_efficientnet_b5.in1k,456,72.470,27.530,90.900,9.100,30.39,0.934,bicubic,-10.696,-5.630,-15 +resnext101_64x4d.c1_in1k,288,72.470,27.530,90.660,9.340,83.46,1.000,bicubic,-10.688,-5.710,-11 +hgnetv2_b3.ssld_stage1_in22k_in1k,224,72.460,27.540,91.170,8.830,16.29,0.965,bicubic,-10.150,-5.192,+67 +resnext50_32x4d.fb_swsl_ig1b_ft_in1k,224,72.460,27.540,90.850,9.150,25.03,0.875,bilinear,-9.702,-5.374,+144 +regnety_080_tv.tv2_in1k,224,72.450,27.550,90.550,9.450,39.38,0.965,bicubic,-10.142,-5.694,+73 +gc_efficientnetv2_rw_t.agc_in1k,288,72.440,27.560,90.790,9.210,13.68,1.000,bicubic,-10.040,-5.510,+89 +resnetv2_101x3_bit.goog_in21k_ft_in1k,448,72.430,27.570,92.070,7.930,387.93,1.000,bilinear,-12.000,-5.310,-212 +convformer_s18.sail_in1k,224,72.430,27.570,90.560,9.440,26.77,1.000,bicubic,-10.538,-5.684,+10 +xcit_tiny_24_p8_224.fb_dist_in1k,224,72.410,27.590,90.790,9.210,12.11,1.000,bicubic,-10.170,-5.394,+72 +cs3sedarknet_x.c2ns_in1k,288,72.400,27.600,91.040,8.960,35.40,1.000,bicubic,-10.250,-5.308,+47 +swin_base_patch4_window7_224.ms_in1k,224,72.400,27.600,90.840,9.160,87.77,0.900,bicubic,-11.210,-5.610,-88 +mobilenetv4_conv_large.e600_r384_in1k,384,72.400,27.600,90.800,9.200,32.59,0.950,bicubic,-10.574,-5.444,+6 +sequencer2d_m.in1k,224,72.390,27.610,90.670,9.330,38.31,0.875,bicubic,-10.448,-5.606,+19 +rdnet_tiny.nv_in1k,224,72.390,27.610,90.470,9.530,23.86,0.900,bicubic,-10.430,-5.808,+25 +resnet101d.ra2_in1k,320,72.380,27.620,90.570,9.430,44.57,1.000,bicubic,-10.638,-5.888,-6 +tf_efficientnet_b2.ns_jft_in1k,260,72.360,27.640,91.010,8.990,9.11,0.890,bicubic,-10.052,-5.224,+86 +nest_small_jx.goog_in1k,224,72.360,27.640,90.730,9.270,38.35,0.875,bicubic,-10.762,-5.604,-23 +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,384,72.360,27.640,90.690,9.310,11.07,0.950,bicubic,-10.600,-5.784,+2 +hrnet_w18_ssld.paddle_in1k,288,72.340,27.660,90.780,9.220,21.30,1.000,bilinear,-9.708,-5.464,+143 +resnest101e.in1k,256,72.330,27.670,90.770,9.230,48.28,0.875,bilinear,-10.586,-5.540,+3 +nasnetalarge.tf_in1k,331,72.330,27.670,90.520,9.480,88.75,0.911,bicubic,-10.306,-5.540,+43 +efficientvit_b2.r288_in1k,288,72.310,27.690,90.840,9.160,24.33,1.000,bicubic,-10.774,-5.462,-21 +maxxvit_rmlp_nano_rw_256.sw_in1k,256,72.310,27.690,90.780,9.220,16.78,0.950,bicubic,-10.716,-5.564,-15 +efficientnetv2_rw_t.ra2_in1k,288,72.310,27.690,90.450,9.550,13.65,1.000,bicubic,-10.044,-5.728,+93 +convnext_small.fb_in1k,224,72.300,27.700,90.860,9.140,50.22,0.875,bicubic,-10.844,-5.572,-33 +resnet152d.ra2_in1k,256,72.280,27.720,90.540,9.460,60.21,0.950,bicubic,-10.876,-5.842,-35 +twins_pcpvt_base.in1k,224,72.250,27.750,90.550,9.450,43.83,0.900,bicubic,-10.472,-5.798,+22 +resnext101_32x8d.tv2_in1k,224,72.240,27.760,90.160,9.840,88.79,0.965,bilinear,-10.592,-6.072,+5 +hgnetv2_b2.ssld_stage2_ft_in1k,288,72.230,27.770,90.850,9.150,11.22,1.000,bicubic,-10.130,-5.554,+84 +resnext101_64x4d.tv_in1k,224,72.200,27.800,90.610,9.390,83.46,0.875,bilinear,-10.778,-5.642,-15 +tresnet_xl.miil_in1k_448,448,72.200,27.800,90.110,9.890,78.44,0.875,bilinear,-10.866,-6.070,-25 +crossvit_18_240.in1k,240,72.190,27.810,90.290,9.710,43.27,0.875,bicubic,-10.196,-5.776,+76 +resnetv2_50x1_bit.goog_distilled_in1k,224,72.180,27.820,91.080,8.920,25.55,0.875,bicubic,-10.640,-5.446,+5 +cs3se_edgenet_x.c2ns_in1k,256,72.170,27.830,90.710,9.290,50.72,0.950,bicubic,-10.590,-5.596,+10 +tf_efficientnet_b4.aa_in1k,380,72.170,27.830,90.500,9.500,19.34,0.922,bicubic,-10.870,-5.790,-28 +efficientnet_b4.ra2_in1k,320,72.160,27.840,90.580,9.420,19.34,0.875,bicubic,-10.494,-5.556,+20 +maxvit_nano_rw_256.sw_in1k,256,72.160,27.840,90.440,9.560,15.45,0.950,bicubic,-10.782,-5.784,-16 +regnetx_320.tv2_in1k,224,72.160,27.840,90.180,9.820,107.81,0.965,bicubic,-10.664,-6.012,0 +rexnetr_200.sw_in12k_ft_in1k,288,72.150,27.850,91.240,8.760,16.52,1.000,bicubic,-11.020,-5.410,-54 +tiny_vit_11m_224.dist_in22k_ft_in1k,224,72.140,27.860,91.380,8.620,11.00,0.950,bicubic,-11.092,-5.248,-61 +maxvit_rmlp_nano_rw_256.sw_in1k,256,72.140,27.860,90.320,9.680,15.50,0.950,bicubic,-10.840,-5.952,-26 +cait_xxs36_384.fb_dist_in1k,384,72.130,27.870,90.790,9.210,17.37,1.000,bicubic,-10.078,-5.360,+100 +maxxvitv2_nano_rw_256.sw_in1k,256,72.120,27.880,90.510,9.490,23.70,0.950,bicubic,-10.984,-5.824,-43 +dm_nfnet_f1.dm_in1k,224,72.120,27.880,90.430,9.570,132.63,0.910,bicubic,-11.324,-6.204,-97 +tresnet_m.miil_in21k_ft_in1k,224,72.120,27.880,90.160,9.840,31.39,0.875,bilinear,-10.970,-5.952,-44 +repvit_m1_5.dist_450e_in1k,224,72.110,27.890,90.400,9.600,14.64,0.950,bicubic,-10.410,-5.710,+42 +vit_relpos_medium_patch16_cls_224.sw_in1k,224,72.110,27.890,90.300,9.700,38.76,0.900,bicubic,-10.462,-5.776,+37 +regnetz_c16.ra3_in1k,320,72.090,27.910,90.950,9.050,13.46,1.000,bicubic,-10.570,-5.382,+9 +fastvit_sa24.apple_in1k,256,72.080,27.920,90.740,9.260,21.55,0.900,bicubic,-10.626,-5.538,+2 +xcit_tiny_24_p16_384.fb_dist_in1k,384,72.080,27.920,90.520,9.480,12.12,1.000,bicubic,-10.500,-5.480,+31 +regnetz_c16_evos.ch_in1k,320,72.050,27.950,91.010,8.990,13.49,0.950,bicubic,-10.594,-5.470,+11 +convnext_nano.in12k_ft_in1k,288,72.030,27.970,90.870,9.130,15.59,1.000,bicubic,-10.852,-5.692,-22 +convnextv2_tiny.fcmae_ft_in1k,224,72.030,27.970,90.350,9.650,28.64,0.875,bicubic,-10.918,-5.936,-34 +crossvit_18_dagger_240.in1k,240,72.030,27.970,90.110,9.890,44.27,0.875,bicubic,-10.474,-5.958,+40 +regnety_320.seer_ft_in1k,384,72.020,27.980,90.860,9.140,145.05,1.000,bicubic,-11.306,-5.852,-84 +coat_small.in1k,224,72.000,28.000,90.450,9.550,21.69,0.900,bicubic,-10.376,-5.764,+54 +resnext101_64x4d.c1_in1k,224,71.980,28.020,89.710,10.290,83.46,0.950,bicubic,-10.466,-6.210,+44 +regnety_040.ra3_in1k,224,71.970,28.030,90.350,9.650,20.65,0.950,bicubic,-10.346,-5.726,+62 +regnetv_040.ra3_in1k,224,71.960,28.040,90.480,9.520,20.64,0.950,bicubic,-10.488,-5.724,+41 +resnet101.a1h_in1k,288,71.950,28.050,90.760,9.240,44.55,1.000,bicubic,-10.852,-5.560,-19 +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,256,71.950,28.050,90.420,9.580,11.07,0.950,bicubic,-10.412,-5.836,+51 +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,320,71.930,28.070,90.740,9.260,11.07,1.000,bicubic,-10.566,-5.540,+31 +cs3edgenet_x.c2_in1k,288,71.930,28.070,90.390,9.610,47.82,1.000,bicubic,-10.816,-6.000,-17 +mobilenetv4_conv_large.e500_r256_in1k,320,71.930,28.070,90.190,9.810,32.59,1.000,bicubic,-10.744,-6.126,-9 +regnety_160.tv2_in1k,224,71.920,28.080,90.220,9.780,83.59,0.965,bicubic,-10.726,-6.010,-5 +convnext_tiny_hnf.a2h_in1k,288,71.920,28.080,89.620,10.380,28.59,1.000,bicubic,-10.688,-6.772,+7 +swinv2_tiny_window16_256.ms_in1k,256,71.910,28.090,90.490,9.510,28.35,0.900,bicubic,-10.918,-5.732,-33 +regnetz_c16_evos.ch_in1k,256,71.890,28.110,90.750,9.250,13.49,0.950,bicubic,-10.052,-5.220,+112 +dm_nfnet_f0.dm_in1k,256,71.890,28.110,90.670,9.330,71.49,0.900,bicubic,-11.580,-5.898,-126 +davit_tiny.msft_in1k,224,71.890,28.110,90.230,9.770,28.36,0.950,bicubic,-10.808,-6.054,-15 +inception_next_tiny.sail_in1k,224,71.890,28.110,90.020,9.980,28.06,0.875,bicubic,-10.618,-5.980,+20 +vit_little_patch16_reg4_gap_256.sbb_in1k,256,71.880,28.120,90.760,9.240,22.52,0.950,bicubic,-10.634,-5.500,+18 +convnext_tiny.fb_in1k,288,71.870,28.130,90.180,9.820,28.59,1.000,bicubic,-10.824,-5.964,-19 +resnet101.a1_in1k,288,71.850,28.150,89.120,10.880,44.55,1.000,bicubic,-10.472,-6.508,+45 +resnetrs152.tf_in1k,256,71.840,28.160,90.200,9.800,86.62,1.000,bicubic,-11.046,-6.432,-45 +resnetv2_50x3_bit.goog_in21k_ft_in1k,448,71.820,28.180,91.260,8.740,217.32,1.000,bilinear,-12.172,-5.872,-225 +convnextv2_nano.fcmae_ft_in22k_in1k,288,71.820,28.180,90.760,9.240,15.62,1.000,bicubic,-10.846,-5.786,-20 +xcit_tiny_12_p8_384.fb_dist_in1k,384,71.790,28.210,90.720,9.280,6.71,1.000,bicubic,-10.602,-5.494,+28 +seresnext50_32x4d.racm_in1k,288,71.790,28.210,89.950,10.050,27.56,0.950,bicubic,-10.396,-6.198,+65 +mobilevitv2_200.cvnets_in22k_ft_in1k_384,384,71.770,28.230,90.510,9.490,18.45,1.000,bicubic,-11.640,-6.062,-125 +efficientformer_l3.snap_dist_in1k,224,71.770,28.230,90.190,9.810,31.41,0.950,bicubic,-10.794,-6.052,+5 +resnet152.a1h_in1k,224,71.760,28.240,90.270,9.730,60.19,0.950,bicubic,-11.058,-5.854,-43 +regnetx_160.tv2_in1k,224,71.760,28.240,90.120,9.880,54.28,0.965,bicubic,-10.816,-5.936,+1 +sequencer2d_s.in1k,224,71.750,28.250,90.520,9.480,27.65,0.875,bicubic,-10.586,-5.512,+32 +swin_small_patch4_window7_224.ms_in1k,224,71.750,28.250,90.220,9.780,49.61,0.900,bicubic,-11.478,-6.106,-105 +hgnet_tiny.ssld_in1k,224,71.740,28.260,90.530,9.470,14.74,0.965,bicubic,-10.200,-5.584,+98 +resnet152.a2_in1k,288,71.740,28.260,89.300,10.700,60.19,1.000,bicubic,-10.880,-6.444,-19 +efficientvit_b2.r256_in1k,256,71.730,28.270,90.250,9.750,24.33,1.000,bicubic,-10.982,-5.842,-38 +pvt_v2_b2_li.in1k,224,71.730,28.270,90.080,9.920,22.55,0.900,bicubic,-10.472,-6.030,+55 +convnext_nano.in12k_ft_in1k,224,71.670,28.330,90.600,9.400,15.59,0.950,bicubic,-10.636,-5.738,+29 +resnet50.fb_swsl_ig1b_ft_in1k,224,71.670,28.330,90.580,9.420,25.56,0.875,bilinear,-9.476,-4.986,+196 +vit_relpos_base_patch16_clsgap_224.sw_in1k,224,71.670,28.330,90.290,9.710,86.43,0.900,bicubic,-11.092,-5.888,-52 +flexivit_small.1200ep_in1k,240,71.670,28.330,90.260,9.740,22.06,0.950,bicubic,-10.922,-5.890,-13 +hiera_tiny_224.mae_in1k_ft_in1k,224,71.670,28.330,89.950,10.050,27.91,0.900,bicubic,-11.154,-6.252,-53 +crossvit_15_dagger_240.in1k,240,71.670,28.330,89.790,10.210,28.21,0.875,bicubic,-10.636,-6.178,+31 +mobilevitv2_175.cvnets_in22k_ft_in1k_384,384,71.660,28.340,90.540,9.460,14.25,1.000,bicubic,-11.268,-5.912,-74 +pit_b_224.in1k,224,71.650,28.350,89.290,10.710,73.76,0.900,bicubic,-10.810,-6.418,+2 +repvit_m1_5.dist_300e_in1k,224,71.630,28.370,90.210,9.790,14.64,0.950,bicubic,-10.752,-5.816,+11 +vit_relpos_base_patch16_224.sw_in1k,224,71.620,28.380,90.230,9.770,86.43,0.900,bicubic,-10.856,-5.914,-4 +gcvit_xtiny.in1k,224,71.620,28.380,90.150,9.850,19.98,0.875,bicubic,-10.348,-5.816,+76 +flexivit_small.600ep_in1k,240,71.610,28.390,90.120,9.880,22.06,0.950,bicubic,-10.782,-5.920,+6 +hgnetv2_b2.ssld_stage1_in22k_in1k,288,71.600,28.400,90.540,9.460,11.22,1.000,bicubic,-9.860,-5.468,+139 +swinv2_cr_small_224.sw_in1k,224,71.600,28.400,90.140,9.860,49.70,0.900,bicubic,-11.526,-5.970,-111 +resnet61q.ra2_in1k,288,71.600,28.400,90.130,9.870,36.85,1.000,bicubic,-10.924,-6.384,-16 +resnetaa50d.sw_in12k_ft_in1k,224,71.600,28.400,89.690,10.310,25.58,0.950,bicubic,-10.182,-6.346,+97 +eca_nfnet_l0.ra2_in1k,288,71.590,28.410,91.000,9.000,24.14,1.000,bicubic,-11.006,-5.490,-30 +coatnet_bn_0_rw_224.sw_in1k,224,71.590,28.410,90.310,9.690,27.44,0.950,bicubic,-10.804,-5.884,-4 +efficientnet_b3.ra2_in1k,320,71.590,28.410,89.990,10.010,12.23,1.000,bicubic,-10.708,-6.138,+20 +resnet152.tv2_in1k,224,71.580,28.420,89.880,10.120,60.19,0.965,bilinear,-10.714,-6.120,+17 +flexivit_small.300ep_in1k,240,71.580,28.420,89.830,10.170,22.06,0.950,bicubic,-10.590,-6.196,+38 +mvitv2_tiny.fb_in1k,224,71.560,28.440,90.220,9.780,24.17,0.900,bicubic,-10.848,-5.930,-8 +convnextv2_nano.fcmae_ft_in22k_in1k_384,384,71.520,28.480,90.640,9.360,15.62,1.000,bicubic,-11.842,-6.100,-150 +xcit_large_24_p16_224.fb_in1k,224,71.520,28.480,89.200,10.800,189.10,1.000,bicubic,-11.370,-6.682,-86 +convit_base.fb_in1k,224,71.510,28.490,90.090,9.910,86.54,0.875,bicubic,-10.784,-5.910,+14 +poolformer_m48.sail_in1k,224,71.510,28.490,89.720,10.280,73.47,0.950,bicubic,-10.952,-6.248,-16 +resnetv2_50d_evos.ah_in1k,288,71.500,28.500,90.050,9.950,25.59,1.000,bicubic,-10.500,-5.848,+52 +resnet101d.ra2_in1k,256,71.490,28.510,89.860,10.140,44.57,0.950,bicubic,-10.762,-6.208,+15 +ecaresnet101d_pruned.miil_in1k,288,71.480,28.520,90.440,9.560,24.88,0.950,bicubic,-10.526,-5.724,+48 +tresnet_l.miil_in1k_448,448,71.480,28.520,89.960,10.040,55.99,0.875,bilinear,-10.798,-6.028,+12 +regnety_032.ra_in1k,224,71.450,28.550,90.190,9.810,19.44,0.950,bicubic,-10.492,-5.960,+63 +tresnet_xl.miil_in1k,224,71.450,28.550,89.470,10.530,78.44,0.875,bilinear,-10.614,-6.460,+39 +resnetaa50d.sw_in12k_ft_in1k,288,71.440,28.560,90.360,9.640,25.58,1.000,bicubic,-11.204,-6.130,-62 +poolformerv2_m48.sail_in1k,224,71.440,28.560,89.820,10.180,73.35,1.000,bicubic,-11.172,-6.248,-53 +resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,224,71.430,28.570,90.310,9.690,88.79,0.875,bilinear,-10.190,-5.726,+91 +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,224,71.430,28.570,90.230,9.770,236.34,0.875,bicubic,-11.486,-6.346,-102 +fbnetv3_g.ra2_in1k,288,71.410,28.590,90.270,9.730,16.62,0.950,bilinear,-10.630,-5.794,+38 +nextvit_small.bd_in1k,224,71.390,28.610,90.380,9.620,31.76,0.950,bicubic,-11.230,-5.842,-60 +efficientvit_b2.r224_in1k,224,71.390,28.610,89.670,10.330,24.33,0.950,bicubic,-10.772,-6.040,+21 +vit_base_patch32_clip_224.laion2b_ft_in1k,224,71.370,28.630,90.450,9.550,88.22,0.900,bicubic,-11.260,-5.754,-63 +pvt_v2_b2.in1k,224,71.350,28.650,89.980,10.020,25.36,0.900,bicubic,-10.744,-5.976,+27 +coatnet_0_rw_224.sw_in1k,224,71.350,28.650,89.370,10.630,27.44,0.950,bicubic,-11.044,-6.474,-26 +resnet152.a1_in1k,288,71.330,28.670,89.280,10.720,60.19,1.000,bicubic,-11.414,-6.440,-85 +xcit_tiny_24_p8_224.fb_in1k,224,71.310,28.690,90.300,9.700,12.11,1.000,bicubic,-10.580,-5.680,+54 +wide_resnet50_2.racm_in1k,288,71.310,28.690,90.160,9.840,68.88,0.950,bicubic,-10.956,-5.902,-3 +ecaresnet101d.miil_in1k,224,71.300,28.700,90.190,9.810,44.57,0.875,bicubic,-10.886,-5.872,+10 +wide_resnet101_2.tv2_in1k,224,71.300,28.700,89.730,10.270,126.89,0.965,bilinear,-11.216,-6.282,-47 +nfnet_l0.ra2_in1k,224,71.300,28.700,89.530,10.470,35.07,0.900,bicubic,-10.568,-6.506,+52 +resnetv2_101.a1h_in1k,224,71.290,28.710,89.770,10.230,44.54,0.950,bicubic,-10.752,-6.096,+24 +resnext101_32x8d.tv2_in1k,176,71.290,28.710,89.310,10.690,88.79,0.875,bilinear,-10.700,-6.406,+33 +regnetz_c16.ra3_in1k,256,71.260,28.740,90.270,9.730,13.46,0.940,bicubic,-10.900,-5.784,+10 +hgnet_small.paddle_in1k,288,71.240,28.760,90.170,9.830,24.36,1.000,bicubic,-10.974,-6.054,-2 +tf_efficientnet_b4.in1k,380,71.240,28.760,90.030,9.970,19.34,0.922,bicubic,-11.368,-5.994,-70 +cs3sedarknet_x.c2ns_in1k,256,71.230,28.770,90.400,9.600,35.40,0.887,bicubic,-10.696,-5.622,+42 +hgnetv2_b2.ssld_stage2_ft_in1k,224,71.220,28.780,90.390,9.610,11.22,0.965,bicubic,-10.346,-5.508,+76 +vit_relpos_medium_patch16_224.sw_in1k,224,71.220,28.780,89.960,10.040,38.75,0.900,bicubic,-11.246,-6.124,-47 +mixer_b16_224.miil_in21k_ft_in1k,224,71.200,28.800,89.520,10.480,59.88,0.875,bilinear,-11.110,-6.194,-25 +rexnetr_200.sw_in12k_ft_in1k,224,71.190,28.810,90.500,9.500,16.52,0.950,bicubic,-11.418,-5.626,-77 +resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,224,71.190,28.810,90.440,9.560,194.03,0.875,bilinear,-10.690,-5.660,+41 +mobilevitv2_150.cvnets_in22k_ft_in1k_384,384,71.170,28.830,90.240,9.760,10.59,1.000,bicubic,-11.436,-6.070,-76 +ecaresnet50t.a1_in1k,288,71.170,28.830,89.540,10.460,25.57,1.000,bicubic,-10.942,-6.114,+5 +pit_s_distilled_224.in1k,224,71.160,28.840,89.670,10.330,24.04,0.900,bicubic,-10.682,-6.030,+44 +convnext_tiny_hnf.a2h_in1k,224,71.150,28.850,89.320,10.680,28.59,0.950,bicubic,-11.080,-6.540,-17 +crossvit_base_240.in1k,240,71.140,28.860,89.760,10.240,105.03,0.875,bicubic,-11.088,-6.054,-17 +ecaresnet50t.ra2_in1k,320,71.130,28.870,90.400,9.600,25.57,0.950,bicubic,-11.240,-5.720,-44 +xcit_small_24_p16_224.fb_in1k,224,71.130,28.870,89.520,10.480,47.67,1.000,bicubic,-11.450,-6.734,-72 +convnextv2_nano.fcmae_ft_in22k_in1k,224,71.120,28.880,90.300,9.700,15.62,0.875,bicubic,-10.918,-5.874,+9 +convmixer_1536_20.in1k,224,71.120,28.880,89.450,10.550,51.63,0.960,bicubic,-10.250,-6.180,+102 +resnet51q.ra2_in1k,288,71.110,28.890,90.040,9.960,35.70,1.000,bilinear,-11.246,-6.138,-45 +hrnet_w18_ssld.paddle_in1k,224,71.110,28.890,89.870,10.130,21.30,0.950,bilinear,-10.022,-5.764,+133 +resnext50_32x4d.a1h_in1k,288,71.100,28.900,89.680,10.320,25.03,1.000,bicubic,-10.912,-6.252,+5 +focalnet_tiny_srf.ms_in1k,224,71.100,28.900,89.580,10.420,28.43,0.900,bicubic,-11.044,-6.390,-8 +tf_efficientnet_b3.ap_in1k,300,71.100,28.900,89.320,10.680,12.23,0.904,bicubic,-10.754,-6.288,+31 +efficientformerv2_s2.snap_dist_in1k,224,71.090,28.910,90.080,9.920,12.71,0.950,bicubic,-11.060,-5.832,-13 +xcit_small_12_p16_224.fb_in1k,224,71.090,28.910,89.660,10.340,26.25,1.000,bicubic,-10.892,-6.154,+9 +tf_efficientnetv2_b3.in21k_ft_in1k,300,71.060,28.940,90.530,9.470,14.36,0.900,bicubic,-11.574,-6.100,-103 +cs3edgenet_x.c2_in1k,256,71.060,28.940,89.880,10.120,47.82,0.887,bicubic,-11.154,-6.016,-26 +focalnet_tiny_lrf.ms_in1k,224,71.060,28.940,89.520,10.480,28.65,0.900,bicubic,-11.114,-6.428,-19 +vit_base_patch16_224.orig_in21k_ft_in1k,224,71.050,28.950,90.420,9.580,86.57,0.900,bicubic,-10.736,-5.704,+32 +vit_relpos_medium_patch16_rpn_224.sw_in1k,224,71.050,28.950,89.950,10.050,38.73,0.900,bicubic,-11.258,-6.032,-46 +coat_lite_small.in1k,224,71.030,28.970,89.580,10.420,19.84,0.900,bicubic,-11.272,-6.254,-45 +convnextv2_nano.fcmae_ft_in1k,288,71.020,28.980,90.120,9.880,15.62,1.000,bicubic,-11.476,-6.108,-77 +deit_base_patch16_224.fb_in1k,224,71.010,28.990,89.190,10.810,86.57,0.900,bicubic,-10.970,-6.598,+2 +mobilenetv4_conv_large.e500_r256_in1k,256,71.000,29.000,89.410,10.590,32.59,0.950,bicubic,-10.864,-6.286,+17 +ecaresnet50d.miil_in1k,288,70.990,29.010,90.280,9.720,25.58,0.950,bicubic,-10.650,-5.606,+38 +edgenext_small.usi_in1k,320,70.990,29.010,89.790,10.210,5.59,1.000,bicubic,-10.582,-5.922,+44 +repvit_m3.dist_in1k,224,70.990,29.010,89.500,10.500,10.68,0.950,bicubic,-10.504,-6.062,+58 +resnetv2_50d_gn.ah_in1k,288,70.980,29.020,89.810,10.190,25.57,1.000,bicubic,-10.982,-6.126,0 +fastvit_sa12.apple_dist_in1k,256,70.980,29.020,89.210,10.790,11.58,0.900,bicubic,-10.862,-6.514,+18 +swin_s3_tiny_224.ms_in1k,224,70.970,29.030,89.870,10.130,28.33,0.900,bicubic,-11.158,-6.088,-26 +tiny_vit_11m_224.in1k,224,70.960,29.040,89.840,10.160,11.00,0.950,bicubic,-10.578,-6.030,+45 +xcit_tiny_12_p8_224.fb_dist_in1k,224,70.960,29.040,89.720,10.280,6.71,1.000,bicubic,-10.252,-5.896,+98 +mobilevitv2_200.cvnets_in22k_ft_in1k,256,70.950,29.050,89.560,10.440,18.45,0.888,bicubic,-11.372,-6.380,-64 +rexnet_200.nav_in1k,224,70.940,29.060,89.880,10.120,16.37,0.875,bicubic,-10.700,-5.788,+30 +xcit_medium_24_p16_224.fb_in1k,224,70.940,29.060,89.420,10.580,84.40,1.000,bicubic,-11.692,-6.560,-118 +convnext_tiny.fb_in1k,224,70.930,29.070,89.820,10.180,28.59,0.875,bicubic,-11.136,-6.034,-26 +tnt_s_patch16_224,224,70.920,29.080,89.520,10.480,23.76,0.900,bicubic,-10.608,-6.214,+40 +visformer_small.in1k,224,70.920,29.080,89.330,10.670,40.22,0.900,bicubic,-11.176,-6.546,-31 +halo2botnet50ts_256.a1h_in1k,256,70.910,29.090,89.540,10.460,22.64,0.950,bicubic,-11.174,-6.118,-30 +vit_large_patch32_384.orig_in21k_ft_in1k,384,70.890,29.110,90.440,9.560,306.63,1.000,bicubic,-10.616,-5.048,+39 +vit_srelpos_medium_patch16_224.sw_in1k,224,70.890,29.110,89.900,10.100,38.74,0.900,bicubic,-11.360,-6.028,-57 +cs3sedarknet_l.c2ns_in1k,288,70.870,29.130,90.290,9.710,21.91,0.950,bicubic,-10.896,-5.676,+12 +coatnext_nano_rw_224.sw_in1k,224,70.870,29.130,90.190,9.810,14.70,0.900,bicubic,-11.128,-5.104,-22 +cs3darknet_x.c2ns_in1k,288,70.870,29.130,90.040,9.960,35.05,1.000,bicubic,-11.366,-6.192,-61 +coatnet_rmlp_nano_rw_224.sw_in1k,224,70.870,29.130,89.910,10.090,15.15,0.900,bicubic,-11.192,-5.960,-32 +resnet101.a1h_in1k,224,70.870,29.130,89.590,10.410,44.55,0.950,bicubic,-11.080,-6.170,-15 +resnest50d_4s2x40d.in1k,224,70.860,29.140,89.520,10.480,30.42,0.875,bicubic,-10.286,-6.460,+91 +poolformer_m36.sail_in1k,224,70.860,29.140,89.430,10.570,56.17,0.950,bicubic,-11.244,-6.268,-41 +nest_tiny_jx.goog_in1k,224,70.840,29.160,89.770,10.230,17.06,0.875,bicubic,-10.588,-5.856,+50 +vit_base_patch16_rpn_224.sw_in1k,224,70.840,29.160,89.760,10.240,86.54,0.900,bicubic,-11.376,-6.238,-61 +resnet101.a2_in1k,288,70.820,29.180,89.250,10.750,44.55,1.000,bicubic,-11.404,-6.488,-64 +wide_resnet50_2.tv2_in1k,224,70.820,29.180,89.170,10.830,68.88,0.965,bilinear,-10.778,-6.594,+18 +eca_nfnet_l0.ra2_in1k,224,70.800,29.200,89.840,10.160,24.14,0.900,bicubic,-10.964,-5.430,+3 +deit3_small_patch16_224.fb_in1k,224,70.790,29.210,89.430,10.570,22.06,0.900,bicubic,-10.584,-6.122,+54 +lamhalobotnet50ts_256.a1h_in1k,256,70.790,29.210,89.010,10.990,22.57,0.950,bicubic,-10.758,-6.484,+19 +tresnet_m.miil_in1k_448,448,70.780,29.220,88.700,11.300,31.39,0.875,bilinear,-10.930,-6.862,+2 +resnetrs101.tf_in1k,288,70.770,29.230,89.690,10.310,63.62,0.940,bicubic,-11.524,-6.248,-79 +efficientnet_b3.ra2_in1k,288,70.770,29.230,89.390,10.610,12.23,0.875,bicubic,-10.704,-6.280,+31 +convnext_nano.d1h_in1k,288,70.760,29.240,89.390,10.610,15.59,1.000,bicubic,-10.714,-6.322,+29 +regnetx_080.tv2_in1k,224,70.760,29.240,89.200,10.800,39.57,0.965,bicubic,-10.800,-6.342,+13 +resnet152.a2_in1k,224,70.760,29.240,88.540,11.460,60.19,0.950,bicubic,-11.004,-7.458,-2 +poolformerv2_m36.sail_in1k,224,70.750,29.250,89.460,10.540,56.08,1.000,bicubic,-11.464,-6.478,-70 +coatnet_nano_rw_224.sw_in1k,224,70.740,29.260,89.610,10.390,15.14,0.900,bicubic,-10.964,-6.040,-4 +vit_base_patch32_clip_224.openai_ft_in1k,224,70.730,29.270,89.920,10.080,88.22,0.900,bicubic,-11.216,-6.054,-33 +seresnet50.ra2_in1k,288,70.730,29.270,89.740,10.260,28.09,0.950,bicubic,-10.552,-5.912,+55 +tf_efficientnet_b1.ns_jft_in1k,240,70.720,29.280,89.970,10.030,7.79,0.882,bicubic,-10.668,-5.570,+39 +swinv2_cr_tiny_ns_224.sw_in1k,224,70.720,29.280,89.380,10.620,28.33,0.900,bicubic,-11.076,-6.444,-17 +wide_resnet50_2.racm_in1k,224,70.720,29.280,89.100,10.900,68.88,0.875,bicubic,-10.768,-6.444,+18 +regnety_032.tv2_in1k,224,70.710,29.290,89.850,10.150,19.44,0.965,bicubic,-11.088,-5.996,-20 +convit_small.fb_in1k,224,70.710,29.290,89.500,10.500,27.78,0.875,bicubic,-10.704,-6.236,+34 +resnetv2_101x1_bit.goog_in21k_ft_in1k,448,70.700,29.300,90.970,9.030,44.54,1.000,bilinear,-11.632,-5.556,-103 +ecaresnetlight.miil_in1k,288,70.690,29.310,89.870,10.130,30.16,0.950,bicubic,-10.726,-5.924,+29 +swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,224,70.680,29.320,90.490,9.510,28.29,0.900,bicubic,-10.286,-5.530,+85 +cs3darknet_x.c2ns_in1k,256,70.680,29.320,89.780,10.220,35.05,0.950,bicubic,-11.176,-5.960,-31 +tf_efficientnetv2_b3.in1k,300,70.680,29.320,89.420,10.580,14.36,0.904,bicubic,-11.280,-6.354,-45 +tresnet_l.miil_in1k,224,70.670,29.330,89.630,10.370,55.99,0.875,bilinear,-10.828,-6.022,+4 +levit_384.fb_dist_in1k,224,70.670,29.330,89.290,10.710,39.13,0.900,bicubic,-11.928,-6.726,-150 +levit_conv_384.fb_dist_in1k,224,70.670,29.330,89.290,10.710,39.13,0.900,bicubic,-11.930,-6.730,-150 +vit_small_patch16_224.augreg_in21k_ft_in1k,224,70.660,29.340,90.090,9.910,22.05,0.900,bicubic,-10.754,-6.060,+23 +resnet50d.ra4_e3600_r224_in1k,288,70.650,29.350,89.500,10.500,25.58,1.000,bicubic,-11.180,-6.420,-32 +resnet61q.ra2_in1k,256,70.630,29.370,89.800,10.200,36.85,0.900,bicubic,-11.336,-6.052,-54 +crossvit_small_240.in1k,240,70.610,29.390,89.350,10.650,26.86,0.875,bicubic,-10.430,-6.118,+73 +mobilevitv2_175.cvnets_in22k_ft_in1k,256,70.570,29.430,89.630,10.370,14.25,0.888,bicubic,-11.374,-6.164,-51 +resnet50_gn.a1h_in1k,288,70.570,29.430,89.480,10.520,25.56,0.950,bicubic,-10.638,-6.152,+46 +resnet152.a1_in1k,224,70.570,29.430,88.420,11.580,60.19,0.950,bicubic,-11.428,-7.468,-63 +vit_small_r26_s32_224.augreg_in21k_ft_in1k,224,70.560,29.440,90.040,9.960,36.43,0.900,bicubic,-11.284,-5.984,-43 +cait_xxs24_384.fb_dist_in1k,384,70.560,29.440,89.780,10.220,12.03,1.000,bicubic,-10.402,-5.862,+74 +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,256,70.560,29.440,89.530,10.470,11.07,0.950,bicubic,-10.914,-6.162,+3 +convnextv2_nano.fcmae_ft_in1k,224,70.550,29.450,89.360,10.640,15.62,0.875,bicubic,-11.306,-6.596,-46 +resnet51q.ra2_in1k,256,70.530,29.470,89.490,10.510,35.70,0.875,bilinear,-11.248,-6.460,-37 +resnet101.tv2_in1k,224,70.530,29.470,89.360,10.640,44.55,0.965,bilinear,-11.376,-6.408,-53 +twins_pcpvt_small.in1k,224,70.520,29.480,89.100,10.900,24.11,0.900,bicubic,-10.602,-6.516,+52 +gc_efficientnetv2_rw_t.agc_in1k,224,70.510,29.490,89.660,10.340,13.68,1.000,bicubic,-10.758,-5.966,+29 +coat_mini.in1k,224,70.510,29.490,89.580,10.420,10.34,0.900,bicubic,-10.794,-5.808,+21 +vit_relpos_small_patch16_224.sw_in1k,224,70.490,29.510,89.970,10.030,21.98,0.900,bicubic,-10.986,-5.854,-10 +efficientnet_b1.ra4_e3600_r240_in1k,288,70.490,29.510,89.580,10.420,7.79,1.000,bicubic,-10.944,-6.116,+1 +legacy_senet154.in1k,224,70.490,29.510,88.930,11.070,115.09,0.875,bilinear,-10.836,-6.566,+18 +deit_small_distilled_patch16_224.fb_in1k,224,70.480,29.520,89.410,10.590,22.44,0.900,bicubic,-10.736,-5.970,+31 +halonet50ts.a1h_in1k,256,70.480,29.520,89.180,10.820,22.73,0.940,bicubic,-11.170,-6.434,-37 +seresnext101_64x4d.gluon_in1k,224,70.470,29.530,89.180,10.820,88.23,0.875,bicubic,-10.416,-6.088,+72 +swinv2_tiny_window8_256.ms_in1k,256,70.450,29.550,89.450,10.550,28.35,0.900,bicubic,-11.374,-6.538,-52 +hgnet_small.paddle_in1k,224,70.440,29.560,89.480,10.520,24.36,0.965,bicubic,-10.986,-6.366,-4 +tf_efficientnet_b3.aa_in1k,300,70.440,29.560,89.330,10.670,12.23,0.904,bicubic,-11.208,-6.394,-39 +resnetv2_50.a1h_in1k,288,70.440,29.560,89.200,10.800,25.55,1.000,bicubic,-10.968,-6.512,+1 +crossvit_15_240.in1k,240,70.420,29.580,89.520,10.480,27.53,0.875,bicubic,-11.098,-6.176,-30 +twins_svt_small.in1k,224,70.420,29.580,89.350,10.650,24.06,0.900,bicubic,-11.272,-6.318,-46 +regnetz_b16.ra3_in1k,288,70.420,29.580,89.220,10.780,9.72,1.000,bicubic,-10.318,-6.310,+89 +seresnext50_32x4d.racm_in1k,224,70.420,29.580,89.120,10.880,27.56,0.875,bicubic,-10.848,-6.454,+16 +hgnetv2_b2.ssld_stage1_in22k_in1k,224,70.410,29.590,89.650,10.350,11.22,0.965,bicubic,-10.336,-5.848,+86 +resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,224,70.400,29.600,89.810,10.190,44.18,0.875,bilinear,-10.536,-5.922,+56 +resnest50d_1s4x24d.in1k,224,70.400,29.600,89.200,10.800,25.68,0.875,bicubic,-10.618,-6.136,+46 +poolformerv2_s36.sail_in1k,224,70.390,29.610,89.610,10.390,30.79,1.000,bicubic,-11.186,-6.070,-44 +resnet50d.ra2_in1k,288,70.390,29.610,89.290,10.710,25.58,0.950,bicubic,-10.960,-6.452,-5 +resnet50.c2_in1k,288,70.390,29.610,89.180,10.820,25.56,1.000,bicubic,-10.466,-6.346,+65 +gernet_l.idstcv_in1k,256,70.390,29.610,88.960,11.040,31.08,0.875,bilinear,-10.984,-6.494,-5 +senet154.gluon_in1k,224,70.390,29.610,88.920,11.080,115.09,0.875,bicubic,-10.868,-6.438,+10 +repvit_m1_1.dist_450e_in1k,224,70.370,29.630,89.240,10.760,8.80,0.950,bicubic,-10.932,-6.332,-1 +ecaresnet50t.a2_in1k,288,70.360,29.640,89.080,10.920,25.57,1.000,bicubic,-11.322,-6.452,-57 +fbnetv3_g.ra2_in1k,240,70.350,29.650,89.600,10.400,16.62,0.950,bilinear,-10.902,-6.082,+6 +convnext_nano_ols.d1h_in1k,288,70.330,29.670,88.980,11.020,15.65,1.000,bicubic,-11.282,-6.646,-53 +tf_efficientnet_lite4.in1k,380,70.320,29.680,89.180,10.820,13.01,0.920,bilinear,-11.226,-6.486,-46 +gcresnext50ts.ch_in1k,288,70.280,29.720,89.240,10.760,15.67,1.000,bicubic,-10.954,-6.296,+5 +sebotnet33ts_256.a1h_in1k,256,70.260,29.740,88.640,11.360,13.70,0.940,bicubic,-10.892,-6.520,+10 +resnest50d.in1k,224,70.260,29.740,88.620,11.380,27.48,0.875,bilinear,-10.698,-6.752,+39 +convnext_nano.d1h_in1k,224,70.260,29.740,88.450,11.550,15.59,0.950,bicubic,-10.502,-6.882,+69 +cs3sedarknet_l.c2ns_in1k,256,70.250,29.750,89.790,10.210,21.91,0.887,bicubic,-10.970,-6.016,+2 +efficientnetv2_rw_t.ra2_in1k,224,70.250,29.750,89.670,10.330,13.65,1.000,bicubic,-11.122,-5.882,-18 +gcresnet50t.ra2_in1k,288,70.200,29.800,89.530,10.470,25.90,1.000,bicubic,-11.258,-6.192,-35 +resnetaa50.a1h_in1k,288,70.190,29.810,89.870,10.130,25.56,1.000,bicubic,-11.414,-5.938,-62 +xception41p.ra3_in1k,299,70.190,29.810,89.150,10.850,26.91,0.940,bicubic,-11.790,-6.592,-105 +resnet152s.gluon_in1k,224,70.170,29.830,88.860,11.140,60.32,0.875,bicubic,-10.878,-6.582,+23 +vit_srelpos_small_patch16_224.sw_in1k,224,70.160,29.840,89.520,10.480,21.97,0.900,bicubic,-10.948,-6.060,+13 +mobilenetv4_hybrid_medium.e500_r224_in1k,256,70.150,29.850,89.440,10.560,11.07,1.000,bicubic,-11.134,-6.300,-15 +cs3darknet_l.c2ns_in1k,288,70.140,29.860,89.610,10.390,21.16,0.950,bicubic,-10.748,-6.052,+37 +efficientnet_el.ra_in1k,300,70.110,29.890,89.170,10.830,10.59,0.904,bicubic,-11.196,-6.370,-21 +resmlp_36_224.fb_distilled_in1k,224,70.100,29.900,89.060,10.940,44.69,0.875,bicubic,-11.050,-6.448,0 +seresnet50.a2_in1k,288,70.080,29.920,88.700,11.300,28.09,1.000,bicubic,-11.012,-6.536,+11 +resnet101.a1_in1k,224,70.080,29.920,88.570,11.430,44.55,0.950,bicubic,-11.414,-6.594,-54 +resnetv2_50d_evos.ah_in1k,224,70.070,29.930,89.070,10.930,25.59,0.950,bicubic,-10.758,-6.200,+44 +resnet50.d_in1k,288,70.060,29.940,88.610,11.390,25.56,1.000,bicubic,-10.952,-6.846,+18 +poolformer_s36.sail_in1k,224,70.050,29.950,89.170,10.830,30.86,0.900,bicubic,-11.382,-6.274,-43 +repvgg_b3.rvgg_in1k,224,70.030,29.970,88.640,11.360,123.09,0.875,bilinear,-10.488,-6.614,+84 +mobilenetv4_conv_medium.e500_r256_in1k,320,70.010,29.990,89.480,10.520,9.72,1.000,bicubic,-10.870,-6.282,+32 +edgenext_small.usi_in1k,256,70.000,30.000,89.230,10.770,5.59,0.950,bicubic,-11.064,-6.100,+7 +inception_resnet_v2.tf_in1k,299,70.000,30.000,88.630,11.370,55.84,0.897,bicubic,-10.446,-6.290,+94 +levit_256.fb_dist_in1k,224,69.980,30.020,89.170,10.830,18.89,0.900,bicubic,-11.526,-6.296,-66 +levit_conv_256.fb_dist_in1k,224,69.980,30.020,89.170,10.830,18.89,0.900,bicubic,-11.526,-6.918,-68 +haloregnetz_b.ra3_in1k,224,69.980,30.020,88.860,11.140,11.68,0.940,bicubic,-11.072,-6.340,+7 +mobilenet_edgetpu_v2_m,256,69.950,30.050,88.930,11.070,8.46,0.950,bicubic,-10.732,-6.514,+58 +resnet50.c1_in1k,288,69.950,30.050,88.920,11.080,25.56,1.000,bicubic,-10.978,-6.634,+17 +resnet50d.a1_in1k,288,69.940,30.060,88.360,11.640,25.58,1.000,bicubic,-11.504,-6.864,-56 +regnety_320.pycls_in1k,224,69.930,30.070,88.760,11.240,145.05,0.875,bicubic,-10.866,-6.480,+37 +ecaresnet50t.a1_in1k,224,69.920,30.080,88.650,11.350,25.57,0.950,bicubic,-11.364,-6.500,-34 +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,256,69.910,30.090,88.920,11.080,8.46,0.950,bicubic,-10.774,-6.522,+52 +seresnext101_32x4d.gluon_in1k,224,69.910,30.090,88.860,11.140,48.96,0.875,bicubic,-10.976,-6.448,+17 +resnext50_32x4d.ra_in1k,288,69.910,30.090,88.390,11.610,25.03,0.950,bicubic,-10.796,-6.968,+49 +ecaresnet50t.ra2_in1k,256,69.860,30.140,89.400,10.600,25.57,0.875,bicubic,-11.586,-6.278,-63 +resnet101.a2_in1k,224,69.860,30.140,88.270,11.730,44.55,0.950,bicubic,-11.484,-6.928,-46 +ecaresnet50d_pruned.miil_in1k,288,69.840,30.160,89.600,10.400,19.94,0.950,bicubic,-10.968,-5.978,+28 +ese_vovnet39b.ra_in1k,288,69.840,30.160,89.550,10.450,24.57,0.950,bicubic,-10.538,-6.148,+90 +fastvit_s12.apple_dist_in1k,256,69.840,30.160,88.700,11.300,9.47,0.900,bicubic,-11.234,-6.578,-9 +resnet152d.gluon_in1k,224,69.820,30.180,88.460,11.540,60.21,0.875,bicubic,-10.656,-6.736,+69 +pit_s_224.in1k,224,69.810,30.190,88.840,11.160,23.46,0.900,bicubic,-11.316,-6.488,-21 +sehalonet33ts.ra2_in1k,256,69.810,30.190,88.710,11.290,13.69,0.940,bicubic,-11.162,-6.562,-4 +seresnet50.a1_in1k,288,69.810,30.190,88.450,11.550,28.09,1.000,bicubic,-11.294,-6.670,-19 +regnety_016.tv2_in1k,224,69.800,30.200,89.340,10.660,11.20,0.965,bicubic,-10.896,-6.000,+38 +ecaresnet101d_pruned.miil_in1k,224,69.800,30.200,89.330,10.670,24.88,0.875,bicubic,-11.014,-6.290,+20 +resnetaa50.a1h_in1k,224,69.780,30.220,88.770,11.230,25.56,0.950,bicubic,-10.834,-6.442,+47 +resnext50_32x4d.a1_in1k,288,69.780,30.220,88.360,11.640,25.03,1.000,bicubic,-11.704,-6.802,-83 +mobilevitv2_150.cvnets_in22k_ft_in1k,256,69.770,30.230,89.060,10.940,10.59,0.888,bicubic,-11.700,-6.612,-79 +maxvit_rmlp_pico_rw_256.sw_in1k,256,69.750,30.250,89.130,10.870,7.52,0.950,bicubic,-10.800,-6.056,+49 +xcit_tiny_24_p16_224.fb_dist_in1k,224,69.740,30.260,88.700,11.300,12.12,1.000,bicubic,-10.726,-6.502,+62 +mobilevitv2_200.cvnets_in1k,256,69.700,30.300,88.450,11.550,18.45,0.888,bicubic,-11.448,-6.932,-36 +resnet50.a1_in1k,288,69.700,30.300,88.270,11.730,25.56,1.000,bicubic,-11.540,-6.842,-48 +resnext50_32x4d.a2_in1k,288,69.690,30.310,88.240,11.760,25.03,1.000,bicubic,-11.608,-6.870,-58 +tresnet_m.miil_in1k,224,69.680,30.320,87.940,12.060,31.39,0.875,bilinear,-11.136,-6.922,+9 +convnextv2_pico.fcmae_ft_in1k,288,69.670,30.330,89.270,10.730,9.07,0.950,bicubic,-11.386,-6.208,-25 +tiny_vit_5m_224.dist_in22k_ft_in1k,224,69.660,30.340,89.380,10.620,5.39,0.950,bicubic,-11.202,-6.292,-1 +fastvit_sa12.apple_in1k,256,69.660,30.340,88.920,11.080,11.58,0.900,bicubic,-11.180,-6.424,+4 +fastvit_t12.apple_dist_in1k,256,69.660,30.340,88.290,11.710,7.55,0.900,bicubic,-10.704,-6.752,+74 +ecaresnet50d.miil_in1k,224,69.640,30.360,89.350,10.650,25.58,0.875,bicubic,-10.978,-5.962,+32 +resnet50d.ra4_e3600_r224_in1k,224,69.640,30.360,88.900,11.100,25.58,0.950,bicubic,-11.316,-6.480,-18 +resmlp_24_224.fb_distilled_in1k,224,69.620,30.380,89.000,11.000,30.02,0.875,bicubic,-11.146,-6.220,+9 +resnetv2_50d_gn.ah_in1k,224,69.610,30.390,88.860,11.140,25.57,0.950,bicubic,-11.184,-6.496,+6 +resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,224,69.600,30.400,89.290,10.710,25.03,0.875,bilinear,-10.716,-6.096,+71 +gcresnet50t.ra2_in1k,256,69.600,30.400,88.930,11.070,25.90,0.900,bicubic,-11.350,-6.534,-21 +inception_resnet_v2.tf_ens_adv_in1k,299,69.580,30.420,88.340,11.660,55.84,0.897,bicubic,-10.412,-6.616,+110 +resnext50d_32x4d.bt_in1k,288,69.570,30.430,89.260,10.740,25.05,0.950,bicubic,-11.110,-6.168,+20 +resnext50_32x4d.a1h_in1k,224,69.570,30.430,88.580,11.420,25.03,0.950,bicubic,-11.570,-6.740,-49 +gernet_m.idstcv_in1k,224,69.560,30.440,88.580,11.420,21.14,0.875,bilinear,-11.166,-6.604,+9 +lambda_resnet50ts.a1h_in1k,256,69.550,30.450,88.770,11.230,21.54,0.950,bicubic,-11.636,-6.326,-59 +efficientnet_b3_pruned.in1k,300,69.520,30.480,88.760,11.240,9.86,0.904,bicubic,-11.352,-6.512,-15 +cspresnext50.ra_in1k,256,69.520,30.480,88.710,11.290,20.57,0.887,bilinear,-11.032,-6.620,+27 +efficientnet_b1.ra4_e3600_r240_in1k,240,69.510,30.490,89.020,10.980,7.79,0.900,bicubic,-10.894,-6.128,+52 +resnet50.tv2_in1k,224,69.510,30.490,88.630,11.370,25.56,0.965,bilinear,-11.334,-6.790,-14 +vit_wee_patch16_reg1_gap_256.sbb_in1k,256,69.500,30.500,89.370,10.630,13.42,0.950,bicubic,-10.768,-5.990,+70 +repvgg_b3g4.rvgg_in1k,224,69.500,30.500,88.520,11.480,83.83,0.875,bilinear,-10.748,-6.582,+77 +xcit_tiny_12_p16_384.fb_dist_in1k,384,69.490,30.510,88.980,11.020,6.72,1.000,bicubic,-11.462,-6.452,-34 +efficientnet_el_pruned.in1k,300,69.490,30.510,88.930,11.070,10.59,0.904,bicubic,-10.804,-6.288,+62 +convnext_nano_ols.d1h_in1k,224,69.490,30.510,88.430,11.570,15.65,0.950,bicubic,-11.416,-6.824,-31 +resnext101_64x4d.gluon_in1k,224,69.490,30.510,88.270,11.730,83.46,0.875,bicubic,-11.150,-6.730,+14 +hgnet_tiny.paddle_in1k,288,69.480,30.520,89.220,10.780,14.74,1.000,bicubic,-11.168,-6.322,+10 +convmixer_768_32.in1k,224,69.480,30.520,88.940,11.060,21.11,0.960,bicubic,-10.678,-6.130,+77 +repvit_m1_1.dist_300e_in1k,224,69.480,30.520,88.700,11.300,8.80,0.950,bicubic,-11.346,-6.474,-21 +efficientvit_b1.r288_in1k,288,69.480,30.520,88.590,11.410,9.10,1.000,bicubic,-10.830,-6.386,+55 +swin_tiny_patch4_window7_224.ms_in1k,224,69.450,30.550,89.020,10.980,28.29,0.900,bicubic,-11.938,-6.738,-100 +gcresnet33ts.ra2_in1k,288,69.450,30.550,88.870,11.130,19.88,1.000,bicubic,-11.138,-6.452,+9 +res2net101d.in1k,224,69.450,30.550,88.620,11.380,45.23,0.875,bilinear,-11.804,-6.728,-83 +regnetx_320.pycls_in1k,224,69.450,30.550,88.140,11.860,107.81,0.875,bicubic,-10.812,-6.872,+61 +regnetx_032.tv2_in1k,224,69.440,30.560,89.120,10.880,15.30,0.965,bicubic,-11.486,-6.148,-42 +rexnet_150.nav_in1k,224,69.430,30.570,88.990,11.010,9.73,0.875,bicubic,-10.880,-6.178,+46 +gcresnext50ts.ch_in1k,256,69.430,30.570,88.740,11.260,15.67,0.900,bicubic,-11.178,-6.440,+5 +eva02_tiny_patch14_336.mim_in22k_ft_in1k,336,69.420,30.580,89.370,10.630,5.76,1.000,bicubic,-11.252,-6.156,-5 +vit_pwee_patch16_reg1_gap_256.sbb_in1k,256,69.420,30.580,89.100,10.900,15.25,0.950,bicubic,-10.658,-5.886,+78 +efficientnet_b2.ra_in1k,288,69.410,30.590,88.670,11.330,9.11,1.000,bicubic,-11.200,-6.648,+1 +tf_efficientnetv2_b3.in21k_ft_in1k,240,69.400,30.600,89.100,10.900,14.36,0.900,bicubic,-11.676,-6.820,-68 +cs3darknet_l.c2ns_in1k,256,69.400,30.600,88.970,11.030,21.16,0.887,bicubic,-10.954,-6.334,+38 +inception_v4.tf_in1k,299,69.390,30.610,88.650,11.350,42.68,0.875,bicubic,-10.754,-6.332,+66 +gcvit_xxtiny.in1k,224,69.370,30.630,88.850,11.150,12.00,0.875,bicubic,-10.380,-6.210,+108 +vit_base_patch32_224.augreg_in21k_ft_in1k,224,69.350,30.650,89.280,10.720,88.22,0.900,bicubic,-11.386,-6.290,-23 +xception71.tf_in1k,299,69.350,30.650,88.210,11.790,42.34,0.903,bicubic,-10.558,-6.630,+82 +nf_resnet50.ra2_in1k,288,69.340,30.660,88.690,11.310,25.56,0.940,bicubic,-11.316,-6.650,-12 +ecaresnetlight.miil_in1k,224,69.320,30.680,89.200,10.800,30.16,0.875,bicubic,-11.136,-6.048,+12 +dm_nfnet_f0.dm_in1k,192,69.320,30.680,88.740,11.260,71.49,0.900,bicubic,-12.118,-6.938,-127 +tf_efficientnetv2_b3.in1k,240,69.320,30.680,88.370,11.630,14.36,0.904,bicubic,-11.392,-6.806,-23 +darknet53.c2ns_in1k,288,69.310,30.690,88.770,11.230,41.61,1.000,bicubic,-11.232,-6.656,-3 +eca_resnet33ts.ra2_in1k,288,69.280,30.720,89.160,10.840,19.68,1.000,bicubic,-11.436,-6.222,-28 +resnext50_32x4d.tv2_in1k,224,69.280,30.720,88.410,11.590,25.03,0.965,bilinear,-11.896,-6.938,-94 +seresnet33ts.ra2_in1k,288,69.260,30.740,89.020,10.980,19.78,1.000,bicubic,-11.554,-6.326,-43 +repvit_m1_0.dist_450e_in1k,224,69.260,30.740,88.750,11.250,7.30,0.950,bicubic,-11.186,-6.556,+11 +regnetz_b16.ra3_in1k,224,69.230,30.770,88.370,11.630,9.72,0.940,bicubic,-10.644,-6.608,+81 +resnet50_gn.a1h_in1k,224,69.200,30.800,88.410,11.590,25.56,0.940,bicubic,-10.866,-6.544,+61 +mobilenet_edgetpu_v2_m,224,69.200,30.800,88.060,11.940,8.46,0.900,bicubic,-10.918,-6.934,+53 +efficientformer_l1.snap_dist_in1k,224,69.190,30.810,88.480,11.520,12.29,0.950,bicubic,-11.312,-6.512,-7 +mobilevitv2_175.cvnets_in1k,256,69.180,30.820,88.910,11.090,14.25,0.888,bicubic,-11.694,-6.350,-58 +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,224,69.180,30.820,88.110,11.890,8.46,0.900,bicubic,-10.950,-6.888,+49 +vit_small_patch16_384.augreg_in1k,384,69.170,30.830,88.790,11.210,22.20,1.000,bicubic,-11.964,-6.786,-97 +resnet50.b2k_in1k,288,69.170,30.830,88.490,11.510,25.56,1.000,bicubic,-11.300,-6.818,-7 +resnet50d.ra2_in1k,224,69.170,30.830,88.130,11.870,25.58,0.875,bicubic,-11.378,-7.028,-16 +cs3darknet_focus_l.c2ns_in1k,288,69.160,30.840,89.320,10.680,21.15,0.950,bicubic,-11.750,-6.358,-71 +mobilenetv4_hybrid_medium.e500_r224_in1k,224,69.150,30.850,88.820,11.180,11.07,0.950,bicubic,-11.288,-6.556,+1 +edgenext_small_rw.sw_in1k,320,69.140,30.860,88.750,11.250,7.83,1.000,bicubic,-11.312,-6.456,-4 +mobilenetv4_conv_blur_medium.e500_r224_in1k,256,69.130,30.870,89.140,10.860,9.72,1.000,bicubic,-11.022,-5.630,+39 +repvit_m2.dist_in1k,224,69.130,30.870,88.570,11.430,8.80,0.950,bicubic,-11.338,-6.602,-11 +wide_resnet50_2.tv2_in1k,176,69.130,30.870,88.060,11.940,68.88,0.875,bilinear,-11.306,-7.022,-2 +poolformerv2_s24.sail_in1k,224,69.110,30.890,88.570,11.430,21.34,1.000,bicubic,-11.642,-6.748,-52 +mixnet_xl.ra_in1k,224,69.080,30.920,88.360,11.640,11.90,0.875,bicubic,-11.410,-6.578,-19 +tf_efficientnetv2_b2.in1k,260,69.070,30.930,88.150,11.850,10.10,0.890,bicubic,-11.156,-6.860,+27 +resnet50d.a2_in1k,288,69.070,30.930,87.970,12.030,25.58,1.000,bicubic,-12.098,-7.130,-114 +legacy_seresnext101_32x4d.in1k,224,69.060,30.940,88.100,11.900,48.96,0.875,bilinear,-11.214,-6.932,+15 +resnet50.c2_in1k,224,69.010,30.990,88.120,11.880,25.56,0.950,bicubic,-10.858,-6.746,+62 +mobilenetv4_conv_medium.e500_r256_in1k,256,69.000,31.000,88.780,11.220,9.72,0.950,bicubic,-10.922,-6.406,+47 +mobilevitv2_150.cvnets_in1k,256,69.000,31.000,88.030,11.970,10.59,0.888,bicubic,-11.404,-7.012,-6 +resnetblur50.bt_in1k,288,68.990,31.010,88.400,11.600,25.56,0.950,bicubic,-11.258,-6.800,+16 +resnetrs101.tf_in1k,192,68.990,31.010,88.260,11.740,63.62,0.940,bicubic,-11.720,-6.978,-53 +resnet152c.gluon_in1k,224,68.990,31.010,87.660,12.340,60.21,0.875,bicubic,-10.916,-6.944,+51 +vit_base_patch16_384.augreg_in1k,384,68.970,31.030,88.410,11.590,86.86,1.000,bicubic,-12.126,-6.924,-110 +seresnet33ts.ra2_in1k,256,68.960,31.040,88.360,11.640,19.78,0.900,bicubic,-11.412,-6.746,-6 +regnety_120.pycls_in1k,224,68.960,31.040,88.170,11.830,51.82,0.875,bicubic,-11.422,-6.934,-11 +vit_small_patch32_384.augreg_in21k_ft_in1k,384,68.930,31.070,89.650,10.350,22.92,1.000,bicubic,-11.552,-5.956,-30 +resnet50.b1k_in1k,288,68.930,31.070,88.480,11.520,25.56,1.000,bicubic,-11.776,-6.952,-58 +cs3darknet_focus_l.c2ns_in1k,256,68.920,31.080,88.820,11.180,21.15,0.887,bicubic,-11.332,-6.478,+9 +resnet50d.a1_in1k,224,68.910,31.090,87.980,12.020,25.58,0.950,bicubic,-11.820,-6.698,-65 +hgnetv2_b1.ssld_stage2_ft_in1k,288,68.900,31.100,89.070,10.930,6.34,1.000,bicubic,-11.004,-5.596,+43 +convnextv2_pico.fcmae_ft_in1k,224,68.900,31.100,88.450,11.550,9.07,0.875,bicubic,-11.404,-6.632,-6 +resnet50.a1h_in1k,224,68.880,31.120,88.310,11.690,25.56,1.000,bicubic,-11.772,-7.002,-56 +resnext101_32x4d.gluon_in1k,224,68.880,31.120,88.280,11.720,44.18,0.875,bicubic,-11.456,-6.628,-11 +resnetv2_50.a1h_in1k,224,68.870,31.130,88.400,11.600,25.55,0.950,bicubic,-11.536,-6.684,-23 +ecaresnet50t.a2_in1k,224,68.870,31.130,88.090,11.910,25.57,0.950,bicubic,-12.014,-6.932,-95 +gcresnet33ts.ra2_in1k,256,68.860,31.140,88.520,11.480,19.88,0.900,bicubic,-11.218,-6.610,+22 +hrnet_w64.ms_in1k,224,68.860,31.140,88.150,11.850,128.06,0.875,bilinear,-10.598,-6.498,+87 +convnext_pico_ols.d1_in1k,288,68.850,31.150,88.720,11.280,9.06,1.000,bicubic,-11.608,-6.528,-36 +cspdarknet53.ra_in1k,256,68.850,31.150,88.550,11.450,27.64,0.887,bilinear,-11.256,-6.518,+14 +seresnet50.ra2_in1k,224,68.830,31.170,88.600,11.400,28.09,0.875,bicubic,-11.430,-6.468,-4 +xception65.tf_in1k,299,68.800,31.200,88.260,11.740,39.92,0.903,bicubic,-10.754,-6.400,+73 +resnet101d.gluon_in1k,224,68.790,31.210,88.080,11.920,44.57,0.875,bicubic,-11.676,-6.954,-41 +resnet152.gluon_in1k,224,68.790,31.210,87.590,12.410,60.19,0.875,bicubic,-10.922,-7.130,+57 +eca_resnet33ts.ra2_in1k,256,68.780,31.220,88.510,11.490,19.68,0.900,bicubic,-11.312,-6.470,+11 +mobilenetv4_conv_medium.e500_r224_in1k,256,68.770,31.230,88.870,11.130,9.72,1.000,bicubic,-11.068,-6.324,+38 +tf_efficientnet_b2.ap_in1k,260,68.770,31.230,88.310,11.690,9.11,0.890,bicubic,-11.526,-6.722,-22 +poolformer_s24.sail_in1k,224,68.770,31.230,88.270,11.730,21.39,0.900,bicubic,-11.530,-6.790,-20 +repvgg_b2g4.rvgg_in1k,224,68.770,31.230,88.240,11.760,61.76,0.875,bilinear,-10.626,-6.440,+82 +resnet50.a2_in1k,288,68.770,31.230,87.950,12.050,25.56,1.000,bicubic,-12.010,-7.028,-88 +convnext_pico.d1_in1k,288,68.750,31.250,88.370,11.630,9.05,0.950,bicubic,-11.680,-6.690,-41 +wide_resnet101_2.tv2_in1k,176,68.750,31.250,87.600,12.400,126.89,0.875,bilinear,-11.738,-7.380,-55 +seresnet50.a1_in1k,224,68.730,31.270,87.500,12.500,28.09,0.950,bicubic,-11.282,-7.206,+8 +resnext50_32x4d.a2_in1k,224,68.730,31.270,87.380,12.620,25.03,0.950,bicubic,-11.714,-7.250,-45 +resnet101s.gluon_in1k,224,68.720,31.280,87.720,12.280,44.67,0.875,bicubic,-11.566,-7.430,-25 +regnety_160.pycls_in1k,224,68.710,31.290,88.200,11.800,83.59,0.875,bicubic,-11.574,-6.782,-25 +resnext50d_32x4d.bt_in1k,224,68.700,31.300,88.220,11.780,25.05,0.875,bicubic,-10.972,-6.658,+48 +seresnet50.a2_in1k,224,68.690,31.310,87.490,12.510,28.09,0.950,bicubic,-11.412,-7.230,-3 +hgnet_tiny.paddle_in1k,224,68.680,31.320,88.210,11.790,14.74,0.965,bicubic,-11.208,-6.838,+18 +repvit_m1_0.dist_300e_in1k,224,68.670,31.330,88.060,11.940,7.30,0.950,bicubic,-11.482,-7.238,-11 +dpn131.mx_in1k,224,68.670,31.330,87.390,12.610,79.25,0.875,bicubic,-11.164,-7.318,+27 +resnet50.c1_in1k,224,68.640,31.360,87.770,12.230,25.56,0.950,bicubic,-11.126,-7.188,+30 +resnet152.a3_in1k,224,68.640,31.360,87.680,12.320,60.19,0.950,bicubic,-11.908,-7.324,-73 +nf_resnet50.ra2_in1k,256,68.620,31.380,88.420,11.580,25.56,0.940,bicubic,-11.604,-6.684,-21 +efficientnet_b0.ra4_e3600_r224_in1k,256,68.620,31.380,87.900,12.100,5.29,1.000,bicubic,-10.750,-6.852,+72 +xcit_tiny_12_p8_224.fb_in1k,224,68.600,31.400,88.690,11.310,6.71,1.000,bicubic,-11.112,-6.364,+33 +gmlp_s16_224.ra3_in1k,224,68.600,31.400,87.950,12.050,19.42,0.875,bicubic,-11.044,-6.678,+43 +seresnext50_32x4d.gluon_in1k,224,68.570,31.430,88.150,11.850,27.56,0.875,bicubic,-11.348,-6.666,-1 +regnety_080.pycls_in1k,224,68.570,31.430,87.970,12.030,39.18,0.875,bicubic,-11.312,-6.866,+10 +regnetx_160.pycls_in1k,224,68.560,31.440,88.280,11.720,54.28,0.875,bicubic,-11.298,-6.544,+13 +dpn107.mx_in1k,224,68.560,31.440,88.090,11.910,86.92,0.875,bicubic,-11.608,-6.846,-24 +deit_small_patch16_224.fb_in1k,224,68.550,31.450,88.190,11.810,22.05,0.900,bicubic,-11.312,-6.866,+9 +resnet50.d_in1k,224,68.530,31.470,87.650,12.350,25.56,0.950,bicubic,-11.374,-7.498,+2 +resnet50.ram_in1k,288,68.520,31.480,88.430,11.570,25.56,0.950,bicubic,-11.454,-6.610,-9 +resnet152.tv2_in1k,176,68.520,31.480,87.720,12.280,60.19,0.875,bilinear,-11.692,-6.934,-30 +skresnext50_32x4d.ra_in1k,224,68.470,31.530,87.620,12.380,27.48,0.875,bicubic,-11.696,-7.024,-31 +resnet50.a1_in1k,224,68.470,31.530,87.590,12.410,25.56,0.950,bicubic,-11.912,-7.008,-60 +resnext50_32x4d.a1_in1k,224,68.470,31.530,87.380,12.620,25.03,0.950,bicubic,-12.056,-7.078,-85 +resnext50_32x4d.ra_in1k,224,68.450,31.550,87.560,12.440,25.03,0.875,bicubic,-11.350,-7.048,+12 +tf_efficientnet_b2.aa_in1k,260,68.440,31.560,88.020,11.980,9.11,0.890,bicubic,-11.642,-6.892,-24 +resnet101.a3_in1k,224,68.440,31.560,87.420,12.580,44.55,0.950,bicubic,-11.380,-7.194,+10 +darknetaa53.c2ns_in1k,288,68.420,31.580,88.780,11.220,36.02,1.000,bilinear,-12.108,-6.548,-92 +fbnetv3_d.ra2_in1k,256,68.420,31.580,88.410,11.590,10.31,0.950,bilinear,-11.244,-6.546,+24 +xcit_tiny_24_p16_224.fb_in1k,224,68.400,31.600,88.100,11.900,12.12,1.000,bicubic,-11.058,-6.782,+38 +darknet53.c2ns_in1k,256,68.400,31.600,88.010,11.990,41.61,0.887,bicubic,-11.602,-7.032,-21 +cspresnet50.ra_in1k,256,68.400,31.600,87.950,12.050,21.62,0.887,bilinear,-11.188,-6.740,+28 +res2net50d.in1k,224,68.380,31.620,88.040,11.960,25.72,0.875,bilinear,-11.890,-6.980,-55 +dla102x2.in1k,224,68.380,31.620,87.790,12.210,41.28,0.875,bilinear,-11.068,-6.864,+41 +tf_efficientnet_b3.in1k,300,68.370,31.630,88.560,11.440,12.23,0.904,bicubic,-12.510,-6.766,-146 +cait_xxs36_224.fb_dist_in1k,224,68.360,31.640,88.640,11.360,17.30,1.000,bicubic,-11.378,-6.222,+7 +regnety_064.pycls_in1k,224,68.360,31.640,88.050,11.950,30.58,0.875,bicubic,-11.368,-6.714,+7 +rexnet_130.nav_in1k,224,68.360,31.640,87.990,12.010,7.56,0.875,bicubic,-11.130,-6.694,+31 +efficientvit_b1.r256_in1k,256,68.350,31.650,87.910,12.090,9.10,1.000,bicubic,-11.394,-6.868,+3 +vit_base_patch16_224.sam_in1k,224,68.350,31.650,87.680,12.320,86.57,0.900,bicubic,-11.892,-7.088,-52 +hgnetv2_b1.ssld_stage1_in22k_in1k,288,68.340,31.660,88.840,11.160,6.34,1.000,bicubic,-10.708,-6.042,+81 +resnet50.fb_ssl_yfcc100m_ft_in1k,224,68.330,31.670,88.560,11.440,25.56,0.875,bilinear,-10.922,-5.730,+58 +dpn98.mx_in1k,224,68.310,31.690,87.560,12.440,61.57,0.875,bicubic,-11.346,-7.082,+9 +resnet50d.a2_in1k,224,68.310,31.690,87.300,12.700,25.58,0.950,bicubic,-11.958,-7.342,-62 +mobilenetv4_conv_blur_medium.e500_r224_in1k,224,68.290,31.710,88.350,11.650,9.72,0.950,bicubic,-11.156,-6.570,+30 +resmlp_big_24_224.fb_in1k,224,68.280,31.720,87.700,12.300,129.14,0.875,bicubic,-12.754,-7.326,-177 +fastvit_s12.apple_in1k,256,68.260,31.740,87.840,12.160,9.47,0.900,bicubic,-11.660,-6.952,-34 +ese_vovnet39b.ra_in1k,224,68.250,31.750,88.210,11.790,24.57,0.875,bicubic,-11.066,-6.504,+42 +resnext50_32x4d.gluon_in1k,224,68.240,31.760,87.400,12.600,25.03,0.875,bicubic,-11.114,-7.024,+35 +ecaresnet26t.ra2_in1k,320,68.230,31.770,88.640,11.360,16.01,0.950,bicubic,-11.670,-6.430,-28 +regnetx_120.pycls_in1k,224,68.230,31.770,87.560,12.440,46.11,0.875,bicubic,-11.378,-7.174,+6 +resnet50.ra_in1k,288,68.220,31.780,87.940,12.060,25.56,0.950,bicubic,-11.640,-6.862,-24 +efficientnet_b2_pruned.in1k,260,68.210,31.790,88.090,11.910,8.31,0.890,bicubic,-11.698,-6.820,-36 +ecaresnet50d_pruned.miil_in1k,224,68.170,31.830,88.350,11.650,19.94,0.875,bicubic,-11.552,-6.522,-9 +efficientnet_b2.ra_in1k,256,68.150,31.850,87.810,12.190,9.11,0.875,bicubic,-11.190,-6.766,+31 +mobileone_s4.apple_in1k,224,68.150,31.850,87.100,12.900,14.95,0.900,bilinear,-11.300,-7.390,+17 +pit_xs_distilled_224.in1k,224,68.130,31.870,87.810,12.190,11.00,0.900,bicubic,-11.038,-6.558,+52 +tf_efficientnet_el.in1k,300,68.110,31.890,88.020,11.980,10.59,0.904,bicubic,-12.132,-7.098,-71 +efficientformerv2_s1.snap_dist_in1k,224,68.060,31.940,88.190,11.810,6.19,0.950,bicubic,-11.624,-6.500,-11 +tiny_vit_5m_224.in1k,224,68.060,31.940,87.660,12.340,5.39,0.950,bicubic,-11.136,-7.142,+48 +resmlp_36_224.fb_in1k,224,68.040,31.960,88.170,11.830,44.69,0.875,bicubic,-11.732,-6.718,-23 +fbnetv3_b.ra2_in1k,256,68.030,31.970,87.900,12.100,8.60,0.950,bilinear,-11.124,-6.832,+48 +resnet50.tv2_in1k,176,68.030,31.970,87.370,12.630,25.56,0.875,bilinear,-11.402,-7.262,+13 +fastvit_t12.apple_in1k,256,68.020,31.980,87.700,12.300,7.55,0.900,bicubic,-11.256,-6.870,+31 +convnext_pico_ols.d1_in1k,224,68.000,32.000,87.890,12.110,9.06,0.950,bicubic,-11.542,-6.816,-2 +dpn68b.ra_in1k,288,68.000,32.000,87.280,12.720,12.61,1.000,bicubic,-11.344,-7.146,+19 +convnext_pico.d1_in1k,224,67.990,32.010,87.730,12.270,9.05,0.875,bicubic,-11.526,-6.824,0 +edgenext_small_rw.sw_in1k,256,67.960,32.040,88.310,11.690,7.83,0.900,bicubic,-11.630,-6.208,-10 +tf_efficientnet_lite3.in1k,300,67.960,32.040,87.810,12.190,8.20,0.904,bilinear,-11.872,-7.060,-35 +regnetx_080.pycls_in1k,224,67.950,32.050,87.040,12.960,39.57,0.875,bicubic,-11.266,-7.508,+34 +resnet50d.gluon_in1k,224,67.950,32.050,86.930,13.070,25.58,0.875,bicubic,-11.130,-7.528,+47 +resnetv2_50x1_bit.goog_in21k_ft_in1k,448,67.910,32.090,89.090,10.910,25.55,1.000,bilinear,-12.468,-6.270,-110 +tf_efficientnetv2_b2.in1k,208,67.910,32.090,87.010,12.990,10.10,0.890,bicubic,-11.296,-7.592,+34 +resnetrs50.tf_in1k,224,67.900,32.100,87.660,12.340,35.69,0.910,bicubic,-12.016,-7.314,-59 +legacy_seresnext50_32x4d.in1k,224,67.900,32.100,87.620,12.380,27.56,0.875,bilinear,-11.184,-6.812,+41 +regnetx_016.tv2_in1k,224,67.890,32.110,88.200,11.800,9.19,0.965,bicubic,-11.562,-6.572,-4 +levit_192.fb_dist_in1k,224,67.870,32.130,87.900,12.100,10.95,0.900,bicubic,-11.980,-6.904,-46 +nf_regnet_b1.ra2_in1k,288,67.860,32.140,87.990,12.010,10.22,0.900,bicubic,-11.508,-6.736,+3 +tf_efficientnetv2_b1.in1k,240,67.860,32.140,87.670,12.330,8.14,0.882,bicubic,-11.658,-6.912,-13 +resnet50.b2k_in1k,224,67.860,32.140,87.320,12.680,25.56,0.950,bicubic,-11.520,-7.256,0 +levit_conv_192.fb_dist_in1k,224,67.850,32.150,87.890,12.110,10.95,0.900,bicubic,-12.010,-7.080,-52 +hgnetv2_b1.ssld_stage2_ft_in1k,224,67.840,32.160,88.000,12.000,6.34,0.965,bicubic,-11.056,-6.484,+49 +repvit_m0_9.dist_450e_in1k,224,67.830,32.170,87.670,12.330,5.49,0.950,bicubic,-11.228,-6.718,+35 +eca_botnext26ts_256.c1_in1k,256,67.830,32.170,86.970,13.030,10.59,0.950,bicubic,-11.442,-7.624,+13 +hrnet_w48.ms_in1k,224,67.820,32.180,87.350,12.650,77.47,0.875,bilinear,-11.504,-7.184,+3 +efficientvit_b1.r224_in1k,224,67.810,32.190,87.290,12.710,9.10,0.950,bicubic,-11.430,-7.004,+15 +resnet50.a2_in1k,224,67.810,32.190,86.870,13.130,25.56,0.950,bicubic,-12.018,-7.690,-51 +resnet101.tv2_in1k,176,67.800,32.200,87.350,12.650,44.55,0.875,bilinear,-12.106,-7.500,-69 +resnet50.b1k_in1k,224,67.800,32.200,87.330,12.670,25.56,0.950,bicubic,-11.764,-7.292,-29 +resnext101_32x8d.tv_in1k,224,67.760,32.240,87.350,12.650,88.79,0.875,bilinear,-11.554,-7.174,+1 +hrnet_w44.ms_in1k,224,67.750,32.250,87.510,12.490,67.06,0.875,bilinear,-11.132,-6.864,+44 +resnet50.bt_in1k,288,67.740,32.260,87.900,12.100,25.56,0.950,bicubic,-11.912,-7.008,-39 +coat_lite_mini.in1k,224,67.740,32.260,87.790,12.210,11.01,0.900,bicubic,-11.356,-6.802,+22 +darknetaa53.c2ns_in1k,256,67.730,32.270,88.090,11.910,36.02,0.887,bilinear,-12.016,-6.812,-54 +tf_efficientnet_b0.ns_jft_in1k,224,67.730,32.270,87.960,12.040,5.29,0.875,bicubic,-10.954,-6.410,+60 +lambda_resnet26t.c1_in1k,256,67.700,32.300,87.730,12.270,10.96,0.940,bicubic,-11.426,-6.824,+17 +resmlp_24_224.fb_in1k,224,67.700,32.300,87.570,12.430,30.02,0.875,bicubic,-11.680,-6.980,-17 +ecaresnet50t.a3_in1k,224,67.680,32.320,87.520,12.480,25.57,0.950,bicubic,-11.868,-7.190,-36 +regnetx_064.pycls_in1k,224,67.670,32.330,87.460,12.540,26.21,0.875,bicubic,-11.390,-7.010,+18 +halonet26t.a1h_in1k,256,67.670,32.330,87.320,12.680,12.48,0.950,bicubic,-11.464,-7.020,+13 +efficientnet_em.ra2_in1k,240,67.660,32.340,88.210,11.790,6.90,0.882,bicubic,-11.604,-6.586,-4 +regnety_040.pycls_in1k,224,67.650,32.350,87.370,12.630,20.65,0.875,bicubic,-11.586,-7.294,+1 +eca_halonext26ts.c1_in1k,256,67.650,32.350,87.260,12.740,10.76,0.940,bicubic,-11.868,-7.450,-37 +dla169.in1k,224,67.620,32.380,87.440,12.560,53.39,0.875,bilinear,-11.086,-6.898,+48 +efficientnet_b1.ft_in1k,256,67.610,32.390,87.470,12.530,7.79,1.000,bicubic,-11.188,-6.872,+37 +dpn92.mx_in1k,224,67.580,32.420,87.270,12.730,37.67,0.875,bicubic,-12.448,-7.608,-100 +resnext50_32x4d.a3_in1k,224,67.580,32.420,86.890,13.110,25.03,0.950,bicubic,-11.672,-7.936,-5 +convnext_tiny.fb_in22k_ft_in1k,288,67.570,32.430,87.470,12.530,28.59,1.000,bicubic,-11.380,-7.238,+19 +resnext50_32x4d.tv2_in1k,176,67.560,32.440,86.720,13.280,25.03,0.875,bilinear,-11.814,-7.582,-28 +legacy_xception.tf_in1k,299,67.550,32.450,87.520,12.480,22.86,0.897,bicubic,-11.500,-6.866,+11 +inception_v3.gluon_in1k,299,67.550,32.450,87.260,12.740,23.83,0.875,bicubic,-11.254,-7.114,+30 +mobilevitv2_125.cvnets_in1k,256,67.540,32.460,87.450,12.550,7.48,0.888,bicubic,-12.138,-7.394,-62 +regnety_008_tv.tv2_in1k,224,67.520,32.480,87.890,12.110,6.43,0.965,bicubic,-11.136,-6.492,+44 +resnet33ts.ra2_in1k,288,67.510,32.490,87.920,12.080,19.68,1.000,bicubic,-12.198,-6.894,-68 +resnetblur50.bt_in1k,224,67.510,32.490,87.480,12.520,25.56,0.875,bicubic,-11.796,-7.058,-23 +hrnet_w40.ms_in1k,224,67.510,32.490,87.110,12.890,57.56,0.875,bilinear,-11.414,-7.368,+15 +hgnetv2_b1.ssld_stage1_in22k_in1k,224,67.480,32.520,87.900,12.100,6.34,0.965,bicubic,-10.598,-6.286,+90 +resnet34d.ra2_in1k,288,67.480,32.520,87.890,12.110,21.82,0.950,bicubic,-10.960,-6.458,+60 +tf_efficientnet_b1.ap_in1k,240,67.480,32.520,87.520,12.480,7.79,0.882,bicubic,-11.808,-6.796,-26 +legacy_seresnet152.in1k,224,67.480,32.520,87.490,12.510,66.82,0.875,bilinear,-11.180,-6.882,+37 +regnety_032.pycls_in1k,224,67.470,32.530,87.150,12.850,19.44,0.875,bicubic,-11.426,-7.278,+11 +resnet50.ram_in1k,224,67.460,32.540,87.370,12.630,25.56,0.875,bicubic,-11.572,-7.016,+1 +resnet32ts.ra2_in1k,288,67.420,32.580,87.480,12.520,17.96,1.000,bicubic,-11.968,-7.196,-45 +convnext_femto_ols.d1_in1k,288,67.420,32.580,87.320,12.680,5.23,0.950,bicubic,-11.494,-7.228,+6 +res2net101_26w_4s.in1k,224,67.410,32.590,87.240,12.760,45.21,0.875,bilinear,-11.776,-7.224,-17 +res2net50_26w_8s.in1k,224,67.390,32.610,87.160,12.840,48.40,0.875,bilinear,-11.558,-7.120,+2 +tf_efficientnet_cc_b1_8e.in1k,240,67.370,32.630,87.250,12.750,39.72,0.882,bicubic,-11.952,-7.130,-38 +resnet101.gluon_in1k,224,67.360,32.640,87.050,12.950,44.55,0.875,bicubic,-11.946,-7.582,-35 +ecaresnet26t.ra2_in1k,256,67.340,32.660,87.670,12.330,16.01,0.875,bicubic,-11.546,-6.874,+4 +efficientnet_b0.ra4_e3600_r224_in1k,224,67.340,32.660,87.140,12.860,5.29,0.900,bicubic,-11.232,-7.198,+33 +mobilenetv4_conv_medium.e500_r224_in1k,224,67.330,32.670,87.940,12.060,9.72,0.950,bicubic,-11.762,-6.848,-16 +resnet101c.gluon_in1k,224,67.320,32.680,87.060,12.940,44.57,0.875,bicubic,-12.222,-7.528,-68 +xception41.tf_in1k,299,67.310,32.690,87.120,12.880,26.97,0.903,bicubic,-11.214,-7.178,+33 +hgnetv2_b0.ssld_stage2_ft_in1k,288,67.290,32.710,87.690,12.310,6.00,1.000,bicubic,-11.308,-6.690,+25 +cait_xxs24_224.fb_dist_in1k,224,67.290,32.710,87.500,12.500,11.96,1.000,bicubic,-11.102,-6.834,+49 +repvit_m0_9.dist_300e_in1k,224,67.260,32.740,87.160,12.840,5.49,0.950,bicubic,-11.394,-6.954,+22 +resnet50.a1h_in1k,176,67.250,32.750,87.110,12.890,25.56,0.900,bicubic,-12.010,-7.388,-40 +resnet50.ra_in1k,224,67.250,32.750,86.940,13.060,25.56,0.875,bicubic,-11.564,-7.380,+3 +nf_regnet_b1.ra2_in1k,256,67.240,32.760,87.230,12.770,10.22,0.900,bicubic,-11.482,-7.156,+10 +regnetx_032.pycls_in1k,224,67.230,32.770,86.950,13.050,15.30,0.875,bicubic,-10.936,-7.140,+58 +coat_tiny.in1k,224,67.220,32.780,87.390,12.610,5.50,0.900,bicubic,-11.222,-6.646,+37 +vit_relpos_base_patch32_plus_rpn_256.sw_in1k,256,67.210,32.790,86.530,13.470,119.42,0.900,bicubic,-12.286,-7.584,-74 +tf_efficientnet_b2.in1k,260,67.200,32.800,87.520,12.480,9.11,0.890,bicubic,-12.414,-7.204,-87 +botnet26t_256.c1_in1k,256,67.190,32.810,87.480,12.520,12.49,0.950,bicubic,-12.066,-7.050,-45 +convnext_femto.d1_in1k,288,67.170,32.830,87.500,12.500,5.22,0.950,bicubic,-11.540,-6.748,+4 +repghostnet_200.in1k,224,67.170,32.830,87.240,12.760,9.80,0.875,bicubic,-11.620,-7.096,-1 +resnet33ts.ra2_in1k,256,67.160,32.840,87.400,12.600,19.68,0.900,bicubic,-12.056,-7.176,-43 +resnet152.a3_in1k,160,67.140,32.860,86.490,13.510,60.19,0.950,bicubic,-11.756,-7.634,-15 +dla60_res2net.in1k,224,67.130,32.870,87.060,12.940,20.85,0.875,bilinear,-11.350,-7.026,+24 +convnextv2_femto.fcmae_ft_in1k,288,67.120,32.880,87.430,12.570,5.23,0.950,bicubic,-12.212,-7.172,-65 +legacy_seresnet101.in1k,224,67.120,32.880,87.180,12.820,49.33,0.875,bilinear,-11.276,-7.078,+32 +resnest26d.gluon_in1k,224,67.120,32.880,87.120,12.880,17.07,0.875,bilinear,-11.356,-7.180,+25 +fbnetv3_d.ra2_in1k,224,67.090,32.910,87.650,12.350,10.31,0.950,bilinear,-11.566,-6.804,+3 +dla60x.in1k,224,67.060,32.940,87.230,12.770,17.35,0.875,bilinear,-11.170,-6.790,+39 +mixnet_l.ft_in1k,224,67.060,32.940,86.770,13.230,7.33,0.875,bicubic,-11.910,-7.410,-29 +resnet152.tv_in1k,224,67.040,32.960,87.460,12.540,60.19,0.875,bilinear,-11.290,-6.676,+32 +res2net50_26w_6s.in1k,224,67.030,32.970,86.860,13.140,37.05,0.875,bilinear,-11.554,-7.246,+3 +dla102x.in1k,224,67.000,33.000,86.730,13.270,26.31,0.875,bilinear,-11.500,-7.498,+9 +visformer_tiny.in1k,224,66.980,33.020,86.910,13.090,10.32,0.900,bicubic,-11.180,-7.332,+41 +xcit_tiny_12_p16_224.fb_dist_in1k,224,66.970,33.030,87.380,12.620,6.72,1.000,bicubic,-11.608,-6.830,+1 +repvgg_b2.rvgg_in1k,224,66.970,33.030,87.260,12.740,89.02,0.875,bilinear,-11.824,-7.154,-18 +resnet50s.gluon_in1k,224,66.940,33.060,86.820,13.180,25.68,0.875,bicubic,-11.770,-7.622,-11 +pit_xs_224.in1k,224,66.930,33.070,87.220,12.780,10.62,0.900,bicubic,-11.282,-6.930,+33 +pvt_v2_b1.in1k,224,66.910,33.090,87.360,12.640,14.01,0.900,bicubic,-11.792,-7.132,-11 +repvit_m1.dist_in1k,224,66.890,33.110,87.150,12.850,5.49,0.950,bicubic,-11.652,-6.932,0 +resnet34.a1_in1k,288,66.890,33.110,86.190,13.810,21.80,1.000,bicubic,-11.048,-7.558,+54 +lambda_resnet26rpt_256.c1_in1k,256,66.840,33.160,87.050,12.950,10.99,0.940,bicubic,-12.114,-7.372,-41 +tf_efficientnet_b1.aa_in1k,240,66.830,33.170,86.930,13.070,7.79,0.882,bicubic,-12.010,-7.270,-30 +repvgg_b1.rvgg_in1k,224,66.820,33.180,86.720,13.280,57.42,0.875,bilinear,-11.552,-7.388,+17 +dpn68b.ra_in1k,224,66.810,33.190,86.690,13.310,12.61,0.950,bicubic,-11.734,-7.288,-6 +mobilevit_s.cvnets_in1k,256,66.800,33.200,86.910,13.090,5.58,0.900,bicubic,-11.502,-7.256,+18 +xcit_nano_12_p8_384.fb_dist_in1k,384,66.780,33.220,87.030,12.970,3.05,1.000,bicubic,-11.040,-7.000,+61 +hrnet_w30.ms_in1k,224,66.770,33.230,86.760,13.240,37.71,0.875,bilinear,-11.444,-7.454,+22 +resnet50d.a3_in1k,224,66.760,33.240,86.520,13.480,25.58,0.950,bicubic,-11.982,-7.716,-27 +fbnetv3_b.ra2_in1k,224,66.740,33.260,86.970,13.030,8.60,0.950,bilinear,-11.420,-7.194,+24 +hrnet_w18.ms_aug_in1k,224,66.730,33.270,87.480,12.520,21.30,0.950,bilinear,-11.386,-6.582,+25 +hrnet_w32.ms_in1k,224,66.730,33.270,87.270,12.730,41.23,0.875,bilinear,-11.726,-6.916,0 +resnet32ts.ra2_in1k,256,66.730,33.270,87.050,12.950,17.96,0.900,bicubic,-12.324,-7.318,-59 +dla60_res2next.in1k,224,66.730,33.270,86.940,13.060,17.03,0.875,bilinear,-11.758,-7.060,-8 +resnet50.am_in1k,224,66.720,33.280,86.700,13.300,25.56,0.875,bicubic,-12.284,-7.692,-57 +efficientnet_es.ra_in1k,224,66.720,33.280,86.650,13.350,5.44,0.875,bicubic,-11.372,-7.282,+26 +resnet50c.gluon_in1k,224,66.690,33.310,86.080,13.920,25.58,0.875,bicubic,-11.326,-7.914,+30 +tf_mixnet_l.in1k,224,66.680,33.320,86.390,13.610,7.33,0.875,bicubic,-12.096,-7.608,-38 +resnet50.bt_in1k,224,66.670,33.330,86.940,13.060,25.56,0.875,bicubic,-11.762,-7.330,-3 +regnetx_040.pycls_in1k,224,66.660,33.340,86.530,13.470,22.12,0.875,bicubic,-11.834,-7.712,-17 +seresnext26t_32x4d.bt_in1k,288,66.650,33.350,86.750,13.250,16.81,0.950,bicubic,-12.088,-7.566,-38 +seresnext26d_32x4d.bt_in1k,288,66.640,33.360,86.660,13.340,16.81,0.950,bicubic,-12.186,-7.598,-48 +selecsls60b.in1k,224,66.640,33.360,86.580,13.420,32.77,0.875,bicubic,-11.770,-7.586,-6 +hgnetv2_b0.ssld_stage1_in22k_in1k,288,66.610,33.390,87.580,12.420,6.00,1.000,bicubic,-11.424,-6.668,+21 +dla102.in1k,224,66.590,33.410,86.930,13.070,33.27,0.875,bilinear,-11.428,-7.018,+21 +wide_resnet101_2.tv_in1k,224,66.570,33.430,86.940,13.060,126.89,0.875,bilinear,-12.278,-7.372,-55 +vit_small_patch16_224.augreg_in1k,224,66.570,33.430,86.790,13.210,22.05,0.900,bicubic,-12.272,-7.488,-55 +tf_efficientnet_b1.in1k,240,66.530,33.470,86.690,13.310,7.79,0.882,bicubic,-12.028,-7.412,-30 +tf_efficientnetv2_b0.in1k,224,66.520,33.480,86.620,13.380,7.14,0.875,bicubic,-11.860,-7.406,-9 +levit_conv_128.fb_dist_in1k,224,66.480,33.520,86.730,13.270,9.21,0.900,bicubic,-12.008,-7.414,-25 +levit_128.fb_dist_in1k,224,66.470,33.530,86.710,13.290,9.21,0.900,bicubic,-12.016,-7.288,-25 +cs3darknet_m.c2ns_in1k,288,66.450,33.550,87.030,12.970,9.31,0.950,bicubic,-11.178,-6.988,+47 +seresnext26ts.ch_in1k,288,66.420,33.580,86.640,13.360,10.39,1.000,bicubic,-11.872,-7.436,-8 +vit_base_patch32_384.augreg_in1k,384,66.410,33.590,86.910,13.090,88.30,1.000,bicubic,-12.344,-7.326,-53 +vit_tiny_patch16_384.augreg_in21k_ft_in1k,384,66.390,33.610,87.120,12.880,5.79,1.000,bicubic,-12.056,-7.432,-23 +wide_resnet50_2.tv_in1k,224,66.380,33.620,86.750,13.250,68.88,0.875,bilinear,-12.100,-7.452,-27 +inception_v3.tf_adv_in1k,299,66.380,33.620,86.410,13.590,23.83,0.875,bicubic,-11.216,-7.316,+44 +hgnetv2_b0.ssld_stage2_ft_in1k,224,66.350,33.650,86.670,13.330,6.00,0.965,bicubic,-10.992,-7.116,+61 +selecsls60.in1k,224,66.340,33.660,86.330,13.670,30.67,0.875,bicubic,-11.646,-7.496,+13 +vit_base_patch16_224.augreg_in1k,224,66.340,33.660,86.150,13.850,86.57,0.900,bicubic,-12.802,-7.940,-94 +hrnet_w18_small_v2.gluon_in1k,224,66.330,33.670,86.440,13.560,15.60,0.875,bicubic,-11.854,-7.472,-9 +eca_resnext26ts.ch_in1k,288,66.330,33.670,86.430,13.570,10.30,1.000,bicubic,-11.686,-7.502,+5 +mobileone_s3.apple_in1k,224,66.330,33.670,86.360,13.640,10.17,0.900,bilinear,-11.672,-7.550,+8 +inception_v3.tf_in1k,299,66.310,33.690,86.580,13.420,23.83,0.875,bicubic,-11.556,-7.060,+18 +resmlp_12_224.fb_distilled_in1k,224,66.290,33.710,86.470,13.530,15.35,0.875,bicubic,-11.658,-7.092,+9 +mobilevitv2_100.cvnets_in1k,256,66.280,33.720,86.820,13.180,4.90,0.888,bicubic,-11.812,-7.348,-6 +hardcorenas_f.miil_green_in1k,224,66.270,33.730,86.260,13.740,8.20,0.875,bilinear,-11.838,-7.540,-8 +convnext_femto_ols.d1_in1k,224,66.260,33.740,86.510,13.490,5.23,0.875,bicubic,-11.584,-7.314,+18 +bat_resnext26ts.ch_in1k,256,66.250,33.750,86.680,13.320,10.73,0.900,bicubic,-12.030,-7.434,-23 +coat_lite_tiny.in1k,224,66.240,33.760,86.950,13.050,5.72,0.900,bicubic,-11.308,-6.974,+36 +tf_efficientnet_cc_b0_8e.in1k,224,66.200,33.800,86.120,13.880,24.01,0.875,bicubic,-11.724,-7.530,+7 +resnet101.a3_in1k,160,66.160,33.840,85.930,14.070,44.55,0.950,bicubic,-11.768,-7.756,+5 +efficientnet_b0.ra_in1k,224,66.150,33.850,86.120,13.880,5.29,0.875,bicubic,-11.546,-7.420,+22 +gmixer_24_224.ra3_in1k,224,66.150,33.850,86.030,13.970,24.72,0.875,bicubic,-11.898,-7.624,-10 +cs3darknet_focus_m.c2ns_in1k,288,66.130,33.870,86.880,13.120,9.30,0.950,bicubic,-11.162,-7.090,+48 +legacy_seresnet50.in1k,224,66.120,33.880,86.280,13.720,28.09,0.875,bilinear,-11.524,-7.440,+21 +ghostnetv2_160.in1k,224,66.100,33.900,86.690,13.310,12.39,0.875,bicubic,-11.736,-7.252,+10 +densenetblur121d.ra_in1k,288,66.090,33.910,86.580,13.420,8.00,0.950,bicubic,-11.220,-7.220,+43 +efficientnet_b1.ft_in1k,224,66.060,33.940,86.480,13.520,7.79,0.875,bicubic,-11.534,-7.150,+21 +tf_efficientnet_em.in1k,240,66.060,33.940,86.160,13.840,6.90,0.882,bicubic,-12.076,-7.902,-23 +inception_v3.tv_in1k,299,66.060,33.940,86.120,13.880,23.83,0.875,bicubic,-11.414,-7.354,+32 +res2net50_14w_8s.in1k,224,66.030,33.970,86.160,13.840,25.06,0.875,bilinear,-12.116,-7.690,-27 +hardcorenas_e.miil_green_in1k,224,66.030,33.970,85.980,14.020,8.07,0.875,bilinear,-11.760,-7.752,+10 +tinynet_a.in1k,192,66.020,33.980,85.930,14.070,6.19,0.875,bicubic,-11.644,-7.602,+12 +resnet26t.ra2_in1k,320,66.010,33.990,86.580,13.420,16.01,1.000,bicubic,-12.320,-7.466,-43 +efficientnet_b1_pruned.in1k,240,66.000,34.000,86.600,13.400,6.33,0.882,bicubic,-12.252,-7.220,-39 +res2net50_26w_4s.in1k,224,65.990,34.010,86.570,13.430,25.70,0.875,bilinear,-11.996,-7.292,-16 +convnextv2_femto.fcmae_ft_in1k,224,65.980,34.020,86.720,13.280,5.23,0.875,bicubic,-12.504,-7.274,-61 +poolformerv2_s12.sail_in1k,224,65.970,34.030,86.480,13.520,11.89,1.000,bicubic,-12.038,-7.384,-20 +ese_vovnet19b_dw.ra_in1k,288,65.960,34.040,86.460,13.540,6.54,0.950,bicubic,-11.838,-7.318,0 +regnety_016.pycls_in1k,224,65.950,34.050,86.250,13.750,11.20,0.875,bicubic,-11.958,-7.474,-11 +resnext50_32x4d.tv_in1k,224,65.950,34.050,86.030,13.970,25.03,0.875,bilinear,-11.682,-7.644,+6 +resnet101.tv_in1k,224,65.940,34.060,86.020,13.980,44.55,0.875,bilinear,-11.464,-7.532,+24 +gcresnext26ts.ch_in1k,288,65.920,34.080,86.650,13.350,10.48,1.000,bicubic,-12.518,-7.384,-59 +resnet50.gluon_in1k,224,65.890,34.110,86.260,13.740,25.56,0.875,bicubic,-11.690,-7.466,+10 +resnet34d.ra2_in1k,224,65.850,34.150,86.580,13.420,21.82,0.875,bicubic,-11.254,-6.796,+39 +convnext_femto.d1_in1k,224,65.820,34.180,86.590,13.410,5.22,0.875,bicubic,-11.688,-7.098,+11 +rexnet_100.nav_in1k,224,65.820,34.180,86.530,13.470,4.80,0.875,bicubic,-12.026,-7.346,-14 +gcresnext26ts.ch_in1k,256,65.820,34.180,85.870,14.130,10.48,0.900,bicubic,-11.996,-7.952,-8 +seresnext26t_32x4d.bt_in1k,224,65.790,34.210,85.630,14.370,16.81,0.875,bicubic,-12.190,-8.120,-27 +repvgg_b1g4.rvgg_in1k,224,65.780,34.220,86.040,13.960,39.97,0.875,bilinear,-11.822,-7.804,-1 +resnet34.a2_in1k,288,65.750,34.250,86.070,13.930,21.80,1.000,bicubic,-11.398,-7.220,+31 +densenet161.tv_in1k,224,65.730,34.270,86.570,13.430,28.68,0.875,bicubic,-11.620,-7.084,+15 +cs3darknet_m.c2ns_in1k,256,65.700,34.300,86.620,13.380,9.31,0.887,bicubic,-11.282,-6.982,+39 +regnetx_008.tv2_in1k,224,65.700,34.300,86.270,13.730,7.26,0.965,bicubic,-11.588,-7.392,+20 +eca_resnext26ts.ch_in1k,256,65.690,34.310,85.840,14.160,10.30,0.900,bicubic,-11.752,-7.736,+9 +skresnet34.ra_in1k,224,65.680,34.320,85.970,14.030,22.28,0.875,bicubic,-11.276,-7.348,+39 +mobilenetv3_large_100.miil_in21k_ft_in1k,224,65.670,34.330,85.210,14.790,5.48,0.875,bilinear,-12.240,-7.674,-29 +resnet50.a3_in1k,224,65.660,34.340,85.690,14.310,25.56,0.950,bicubic,-12.392,-8.090,-47 +resnext50_32x4d.a3_in1k,160,65.660,34.340,85.250,14.750,25.03,0.950,bicubic,-12.074,-8.064,-15 +mobilenetv1_125.ra4_e3600_r224_in1k,256,65.640,34.360,85.950,14.050,6.27,1.000,bicubic,-11.944,-7.844,-7 +xcit_tiny_12_p16_224.fb_in1k,224,65.630,34.370,86.260,13.740,6.72,1.000,bicubic,-11.512,-7.470,+21 +res2next50.in1k,224,65.630,34.370,85.800,14.200,24.67,0.875,bilinear,-12.606,-8.104,-64 +hgnetv2_b0.ssld_stage1_in22k_in1k,224,65.620,34.380,86.370,13.630,6.00,0.965,bicubic,-11.224,-7.242,+39 +convnextv2_atto.fcmae_ft_in1k,288,65.600,34.400,86.090,13.910,3.71,0.950,bicubic,-12.190,-7.600,-24 +seresnext26ts.ch_in1k,256,65.590,34.410,86.060,13.940,10.39,0.900,bicubic,-12.266,-7.730,-33 +selecsls42b.in1k,224,65.580,34.420,85.860,14.140,32.46,0.875,bicubic,-11.606,-7.532,+12 +hardcorenas_d.miil_green_in1k,224,65.580,34.420,85.520,14.480,7.50,0.875,bilinear,-11.870,-7.960,-3 +convnext_atto_ols.a2_in1k,288,65.550,34.450,86.310,13.690,3.70,0.950,bicubic,-11.670,-7.390,+10 +poolformer_s12.sail_in1k,224,65.550,34.450,86.230,13.770,11.92,0.900,bicubic,-11.694,-7.308,+7 +tf_efficientnetv2_b1.in1k,192,65.520,34.480,85.910,14.090,8.14,0.882,bicubic,-12.410,-7.912,-46 +ecaresnet50t.a3_in1k,160,65.520,34.480,85.660,14.340,25.57,0.950,bicubic,-12.260,-7.952,-28 +resnet26t.ra2_in1k,256,65.470,34.530,86.210,13.790,16.01,0.940,bicubic,-12.414,-7.628,-42 +convmixer_1024_20_ks9_p14.in1k,224,65.440,34.560,85.530,14.470,24.38,0.960,bicubic,-11.504,-7.834,+23 +fastvit_t8.apple_dist_in1k,256,65.380,34.620,86.060,13.940,4.03,0.900,bicubic,-11.792,-7.214,+7 +mobileone_s2.apple_in1k,224,65.380,34.620,85.930,14.070,7.88,0.900,bilinear,-12.124,-7.734,-16 +densenetblur121d.ra_in1k,224,65.380,34.620,85.740,14.260,8.00,0.875,bicubic,-11.192,-7.446,+39 +tf_efficientnet_b0.ap_in1k,224,65.350,34.650,85.510,14.490,5.29,0.875,bicubic,-11.744,-7.750,+9 +tf_efficientnet_lite2.in1k,260,65.330,34.670,86.020,13.980,6.09,0.890,bicubic,-12.142,-7.724,-17 +crossvit_9_dagger_240.in1k,240,65.320,34.680,86.450,13.550,8.78,0.875,bicubic,-11.666,-7.152,+13 +dpn68b.mx_in1k,224,65.290,34.710,85.870,14.130,12.61,0.875,bicubic,-12.252,-7.972,-24 +densenet201.tv_in1k,224,65.280,34.720,85.650,14.350,20.01,0.875,bicubic,-12.004,-7.830,-7 +res2net50_48w_2s.in1k,224,65.270,34.730,85.920,14.080,25.29,0.875,bilinear,-12.266,-7.644,-25 +seresnext26d_32x4d.bt_in1k,224,65.230,34.770,85.870,14.130,16.81,0.875,bicubic,-12.356,-7.740,-31 +resnetrs50.tf_in1k,160,65.220,34.780,85.700,14.300,35.69,0.910,bicubic,-12.630,-8.114,-51 +hrnet_w18.ms_in1k,224,65.190,34.810,85.700,14.300,21.30,0.875,bilinear,-11.570,-7.746,+22 +dla60.in1k,224,65.150,34.850,85.820,14.180,22.04,0.875,bilinear,-11.896,-7.498,+3 +cs3darknet_focus_m.c2ns_in1k,256,65.120,34.880,86.030,13.970,9.30,0.887,bicubic,-11.654,-7.514,+17 +gernet_s.idstcv_in1k,224,65.070,34.930,85.360,14.640,8.17,0.875,bilinear,-11.832,-7.776,+11 +resnet26d.bt_in1k,288,65.060,34.940,85.800,14.200,16.01,0.950,bicubic,-12.364,-7.830,-24 +ese_vovnet19b_dw.ra_in1k,224,65.060,34.940,85.380,14.620,6.54,0.875,bicubic,-11.738,-7.892,+13 +resnet34.a1_in1k,224,65.040,34.960,85.160,14.840,21.80,0.950,bicubic,-11.374,-7.726,+33 +convnext_atto.d2_in1k,288,64.980,35.020,86.150,13.850,3.70,0.950,bicubic,-12.034,-7.552,-1 +seresnet50.a3_in1k,224,64.980,35.020,85.120,14.880,28.09,0.950,bicubic,-12.056,-7.952,-3 +tf_efficientnet_cc_b0_4e.in1k,224,64.960,35.040,85.000,15.000,13.31,0.875,bicubic,-12.364,-8.332,-25 +mobilenetv2_120d.ra_in1k,224,64.930,35.070,85.850,14.150,5.83,0.875,bicubic,-12.368,-7.666,-24 +hardcorenas_c.miil_green_in1k,224,64.920,35.080,85.130,14.870,5.52,0.875,bilinear,-12.174,-8.062,-9 +ghostnetv2_130.in1k,224,64.880,35.120,85.400,14.600,8.96,0.875,bicubic,-11.882,-7.960,+9 +resnet34.bt_in1k,288,64.870,35.130,86.140,13.860,21.80,0.950,bicubic,-11.638,-7.204,+23 +legacy_seresnext26_32x4d.in1k,224,64.840,35.160,85.540,14.460,16.79,0.875,bicubic,-12.260,-7.792,-14 +resnet50d.a3_in1k,160,64.820,35.180,84.940,15.060,25.58,0.950,bicubic,-12.402,-8.316,-23 +repghostnet_150.in1k,224,64.810,35.190,85.990,14.010,6.58,0.875,bicubic,-12.660,-7.508,-39 +mixnet_m.ft_in1k,224,64.750,35.250,85.500,14.500,5.01,0.875,bicubic,-12.524,-7.928,-27 +efficientformerv2_s0.snap_dist_in1k,224,64.740,35.260,85.560,14.440,3.60,0.950,bicubic,-11.376,-7.294,+29 +fastvit_t8.apple_in1k,256,64.690,35.310,85.580,14.420,4.03,0.900,bicubic,-11.494,-7.462,+26 +resnet26d.bt_in1k,224,64.660,35.340,85.150,14.850,16.01,0.875,bicubic,-12.038,-8.006,+3 +efficientvit_m5.r224_in1k,224,64.630,35.370,85.340,14.660,12.47,0.875,bicubic,-12.452,-7.826,-18 +tf_efficientnetv2_b0.in1k,192,64.620,35.380,85.400,14.600,7.14,0.875,bicubic,-12.260,-7.784,-6 +resnext26ts.ra2_in1k,288,64.590,35.410,85.540,14.460,10.30,1.000,bicubic,-12.592,-7.934,-28 +tf_efficientnet_lite1.in1k,240,64.580,35.420,85.390,14.610,5.42,0.882,bicubic,-12.092,-7.842,0 +xcit_nano_12_p8_224.fb_dist_in1k,224,64.510,35.490,85.900,14.100,3.05,1.000,bicubic,-11.818,-7.170,+19 +densenet169.tv_in1k,224,64.500,35.500,85.320,14.680,14.15,0.875,bicubic,-11.422,-7.656,+28 +tf_mixnet_m.in1k,224,64.470,35.530,84.920,15.080,5.01,0.875,bicubic,-12.494,-8.248,-19 +levit_conv_128s.fb_dist_in1k,224,64.470,35.530,84.690,15.310,7.78,0.900,bicubic,-12.064,-8.192,+6 +levit_128s.fb_dist_in1k,224,64.450,35.550,84.690,15.310,7.78,0.900,bicubic,-12.072,-8.184,+6 +resnext26ts.ra2_in1k,256,64.440,35.560,85.010,14.990,10.30,0.900,bicubic,-12.334,-8.128,-10 +mobilenetv1_125.ra4_e3600_r224_in1k,224,64.410,35.590,85.230,14.770,6.27,0.900,bicubic,-12.518,-7.986,-19 +hardcorenas_b.miil_green_in1k,224,64.380,35.620,84.750,15.250,5.18,0.875,bilinear,-12.172,-8.016,-1 +mobilenetv1_100h.ra4_e3600_r224_in1k,256,64.350,35.650,85.510,14.490,5.28,0.950,bicubic,-12.244,-7.756,-4 +tf_efficientnet_b0.aa_in1k,224,64.340,35.660,85.190,14.810,5.29,0.875,bicubic,-12.542,-8.080,-19 +resmlp_12_224.fb_in1k,224,64.330,35.670,85.600,14.400,15.35,0.875,bicubic,-12.330,-7.570,-10 +repvgg_a2.rvgg_in1k,224,64.270,35.730,85.070,14.930,28.21,0.875,bilinear,-12.222,-7.946,+1 +regnetx_016.pycls_in1k,224,64.250,35.750,85.430,14.570,9.19,0.875,bicubic,-12.674,-8.000,-25 +xcit_nano_12_p16_384.fb_dist_in1k,384,64.250,35.750,85.260,14.740,3.05,1.000,bicubic,-11.218,-7.410,+33 +convnextv2_atto.fcmae_ft_in1k,224,64.210,35.790,85.110,14.890,3.71,0.875,bicubic,-12.436,-7.934,-13 +densenet121.ra_in1k,288,64.180,35.820,85.700,14.300,7.98,0.950,bicubic,-12.300,-7.674,-2 +convnext_atto_ols.a2_in1k,224,64.100,35.900,84.810,15.190,3.70,0.875,bicubic,-11.802,-8.034,+14 +resnet26.bt_in1k,288,64.090,35.910,85.150,14.850,16.00,0.950,bicubic,-12.288,-8.026,-2 +resnet34.a2_in1k,224,64.020,35.980,84.320,15.680,21.80,0.950,bicubic,-11.496,-8.136,+24 +vit_small_patch32_224.augreg_in21k_ft_in1k,224,63.910,36.090,85.580,14.420,22.88,0.900,bicubic,-12.086,-7.692,+6 +mobilenetv1_100.ra4_e3600_r224_in1k,256,63.880,36.120,85.100,14.900,4.23,0.950,bicubic,-12.206,-7.912,+2 +dpn68.mx_in1k,224,63.880,36.120,85.070,14.930,12.61,0.875,bicubic,-12.458,-7.920,-3 +mobilenetv2_140.ra_in1k,224,63.860,36.140,84.960,15.040,6.11,0.875,bicubic,-12.668,-8.048,-14 +tf_efficientnet_es.in1k,224,63.860,36.140,84.600,15.400,5.44,0.875,bicubic,-12.748,-8.576,-19 +regnety_008.pycls_in1k,224,63.800,36.200,85.240,14.760,6.26,0.875,bicubic,-12.534,-7.820,-6 +repghostnet_130.in1k,224,63.760,36.240,84.780,15.220,5.48,0.875,bicubic,-12.606,-8.118,-9 +densenet121.ra_in1k,224,63.750,36.250,84.580,15.420,7.98,0.875,bicubic,-11.826,-8.068,+14 +hardcorenas_a.miil_green_in1k,224,63.730,36.270,84.480,15.520,5.26,0.875,bilinear,-12.196,-8.006,+1 +convnext_atto.d2_in1k,224,63.720,36.280,84.930,15.070,3.70,0.875,bicubic,-11.948,-7.982,+6 +resnest14d.gluon_in1k,224,63.680,36.320,84.050,15.950,10.61,0.875,bilinear,-11.836,-8.464,+12 +tf_efficientnet_b0.in1k,224,63.540,36.460,84.660,15.340,5.29,0.875,bicubic,-12.996,-8.350,-23 +mobilevitv2_075.cvnets_in1k,256,63.520,36.480,84.880,15.120,2.87,0.888,bicubic,-12.084,-7.874,+7 +regnety_004.tv2_in1k,224,63.510,36.490,84.960,15.040,4.34,0.965,bicubic,-12.078,-7.738,+7 +mixnet_s.ft_in1k,224,63.500,36.500,84.720,15.280,4.13,0.875,bicubic,-12.502,-8.080,-9 +resnet26.bt_in1k,224,63.450,36.550,84.200,15.800,16.00,0.875,bicubic,-11.842,-8.372,+15 +tf_mixnet_s.in1k,224,63.400,36.600,84.090,15.910,4.13,0.875,bicubic,-12.252,-8.538,+1 +mobilenetv3_rw.rmsp_in1k,224,63.320,36.680,84.620,15.380,5.48,0.875,bicubic,-12.294,-8.078,0 +mobilenetv3_large_100.ra_in1k,224,63.320,36.680,84.080,15.920,5.48,0.875,bicubic,-12.466,-8.448,-5 +resnet34.bt_in1k,224,63.300,36.700,84.210,15.790,21.80,0.875,bicubic,-11.862,-8.210,+15 +efficientnet_es_pruned.in1k,224,63.260,36.740,84.850,15.150,5.44,0.875,bicubic,-11.740,-7.598,+21 +semnasnet_100.rmsp_in1k,224,63.230,36.770,84.480,15.520,3.89,0.875,bicubic,-12.234,-8.132,+6 +mixer_b16_224.goog_in21k_ft_in1k,224,63.210,36.790,83.140,16.860,59.88,0.875,bicubic,-13.430,-9.088,-39 +efficientnet_lite0.ra_in1k,224,63.200,36.800,84.350,15.650,4.65,0.875,bicubic,-12.290,-8.164,+2 +vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,384,63.190,36.810,85.140,14.860,6.36,1.000,bicubic,-12.772,-8.136,-16 +resnet50.tv_in1k,224,63.190,36.810,84.640,15.360,25.56,0.875,bilinear,-12.966,-8.226,-23 +vit_tiny_patch16_224.augreg_in21k_ft_in1k,224,63.140,36.860,84.900,15.100,5.72,0.900,bicubic,-12.312,-7.954,+2 +pit_ti_distilled_224.in1k,224,63.090,36.910,83.810,16.190,5.10,0.900,bicubic,-11.188,-8.118,+31 +mobileone_s1.apple_in1k,224,63.060,36.940,84.260,15.740,4.83,0.900,bilinear,-12.714,-8.528,-15 +mobilenetv1_100.ra4_e3600_r224_in1k,224,62.940,37.060,84.340,15.660,4.23,0.875,bicubic,-12.444,-7.972,-1 +ghostnetv2_100.in1k,224,62.940,37.060,84.190,15.810,6.16,0.875,bicubic,-12.236,-8.144,+3 +resnet50.a3_in1k,160,62.870,37.130,84.020,15.980,25.56,0.950,bicubic,-13.124,-8.474,-24 +mobilevit_xs.cvnets_in1k,256,62.840,37.160,84.680,15.320,2.32,0.900,bicubic,-11.792,-7.668,+18 +legacy_seresnet34.in1k,224,62.820,37.180,84.180,15.820,21.96,0.875,bilinear,-11.968,-7.954,+13 +edgenext_x_small.in1k,288,62.780,37.220,84.540,15.460,2.34,1.000,bicubic,-12.926,-8.220,-21 +regnety_006.pycls_in1k,224,62.780,37.220,84.110,15.890,6.06,0.875,bicubic,-12.482,-8.416,-3 +mobilenetv1_100h.ra4_e3600_r224_in1k,224,62.760,37.240,84.420,15.580,5.28,0.875,bicubic,-12.898,-8.084,-20 +densenet121.tv_in1k,224,62.750,37.250,84.100,15.900,7.98,0.875,bicubic,-11.998,-8.054,+10 +deit_tiny_distilled_patch16_224.fb_in1k,224,62.730,37.270,83.820,16.180,5.91,0.900,bicubic,-11.810,-8.074,+16 +seresnet50.a3_in1k,160,62.700,37.300,83.820,16.180,28.09,0.950,bicubic,-12.400,-8.276,-3 +tinynet_b.in1k,188,62.690,37.310,84.300,15.700,3.73,0.875,bicubic,-12.276,-7.896,+2 +resnet18.fb_swsl_ig1b_ft_in1k,224,62.680,37.320,84.300,15.700,11.69,0.875,bilinear,-10.608,-7.454,+36 +mobilenetv2_110d.ra_in1k,224,62.670,37.330,84.460,15.540,4.52,0.875,bicubic,-12.384,-7.726,-2 +hrnet_w18_small_v2.ms_in1k,224,62.660,37.340,83.840,16.160,15.60,0.875,bilinear,-12.438,-8.578,-6 +tf_efficientnet_lite0.in1k,224,62.650,37.350,84.180,15.820,4.65,0.875,bicubic,-12.196,-8.000,+1 +dla34.in1k,224,62.610,37.390,83.860,16.140,15.74,0.875,bilinear,-12.022,-8.192,+5 +repvgg_b0.rvgg_in1k,224,62.610,37.390,83.670,16.330,15.82,0.875,bilinear,-12.552,-8.500,-12 +resnet34.gluon_in1k,224,62.540,37.460,83.960,16.040,21.80,0.875,bicubic,-12.034,-8.028,+6 +regnetx_008.pycls_in1k,224,62.490,37.510,83.910,16.090,7.26,0.875,bicubic,-12.572,-8.430,-9 +fbnetc_100.rmsp_in1k,224,62.460,37.540,83.490,16.510,5.57,0.875,bilinear,-12.654,-8.892,-14 +xcit_nano_12_p8_224.fb_in1k,224,62.380,37.620,84.130,15.870,3.05,1.000,bicubic,-11.520,-8.016,+15 +tf_mobilenetv3_large_100.in1k,224,62.380,37.620,83.800,16.200,5.48,0.875,bilinear,-13.134,-8.802,-26 +edgenext_x_small.in1k,256,62.210,37.790,83.850,16.150,2.34,0.900,bicubic,-12.670,-8.454,-8 +repghostnet_111.in1k,224,62.190,37.810,83.770,16.230,4.54,0.875,bicubic,-12.878,-8.414,-15 +crossvit_9_240.in1k,240,62.160,37.840,84.210,15.790,8.55,0.875,bicubic,-11.816,-7.766,+9 +mnasnet_100.rmsp_in1k,224,62.080,37.920,83.710,16.290,4.38,0.875,bicubic,-12.582,-8.398,-7 +crossvit_tiny_240.in1k,240,62.070,37.930,83.770,16.230,7.01,0.875,bicubic,-11.260,-8.140,+19 +efficientvit_m4.r224_in1k,224,61.940,38.060,83.530,16.470,8.80,0.875,bicubic,-12.406,-8.454,-1 +regnety_004.pycls_in1k,224,61.920,38.080,83.450,16.550,4.34,0.875,bicubic,-12.086,-8.306,+4 +vgg19_bn.tv_in1k,224,61.890,38.110,83.370,16.630,143.68,0.875,bilinear,-12.346,-8.474,0 +mobilenetv4_conv_small.e2400_r224_in1k,256,61.870,38.130,83.860,16.140,3.77,0.950,bicubic,-12.774,-8.162,-11 +repvgg_a1.rvgg_in1k,224,61.870,38.130,83.000,17.000,14.09,0.875,bilinear,-12.598,-8.840,-6 +resnet18d.ra2_in1k,288,61.820,38.180,83.780,16.220,11.71,0.950,bicubic,-11.974,-8.054,+6 +regnetx_004_tv.tv2_in1k,224,61.810,38.190,83.720,16.280,5.50,0.965,bicubic,-12.774,-8.450,-11 +mobilenetv4_conv_small.e1200_r224_in1k,256,61.630,38.370,83.110,16.890,3.77,0.950,bicubic,-12.660,-9.002,-7 +resnet18.a1_in1k,288,61.600,38.400,82.380,17.620,11.69,1.000,bicubic,-11.564,-8.674,+13 +resnet18.fb_ssl_yfcc100m_ft_in1k,224,61.490,38.510,83.200,16.800,11.69,0.875,bilinear,-11.146,-8.216,+19 +convit_tiny.fb_in1k,224,61.460,38.540,83.990,16.010,5.71,0.875,bicubic,-11.666,-7.700,+11 +repghostnet_100.in1k,224,61.460,38.540,82.550,17.450,4.07,0.875,bicubic,-12.740,-9.000,-7 +resnet34.a3_in1k,224,61.370,38.630,82.490,17.510,21.80,0.950,bicubic,-11.612,-8.626,+13 +resnet34.tv_in1k,224,61.260,38.740,82.670,17.330,21.80,0.875,bilinear,-12.038,-8.752,+6 +regnetx_006.pycls_in1k,224,61.240,38.760,83.300,16.700,6.20,0.875,bicubic,-12.644,-8.366,-4 +hrnet_w18_small.gluon_in1k,224,61.230,38.770,81.860,18.140,13.19,0.875,bicubic,-12.702,-9.312,-7 +ghostnet_100.in1k,224,61.160,38.840,82.390,17.610,5.18,0.875,bicubic,-12.800,-9.152,-9 +spnasnet_100.rmsp_in1k,224,61.110,38.890,82.780,17.220,4.42,0.875,bilinear,-12.972,-9.048,-13 +efficientvit_m3.r224_in1k,224,61.050,38.950,83.150,16.850,6.90,0.875,bicubic,-12.358,-8.198,-2 +vit_base_patch32_224.augreg_in1k,224,60.990,39.010,82.740,17.260,88.22,0.900,bicubic,-13.916,-9.030,-33 +pit_ti_224.in1k,224,60.970,39.030,83.830,16.170,4.85,0.900,bicubic,-11.954,-7.582,+7 +mobilenetv4_conv_small.e2400_r224_in1k,224,60.900,39.100,82.710,17.290,3.77,0.875,bicubic,-12.830,-8.716,-9 +skresnet18.ra_in1k,224,60.880,39.120,82.870,17.130,11.96,0.875,bicubic,-12.140,-8.304,+1 +vgg16_bn.tv_in1k,224,60.820,39.180,82.990,17.010,138.37,0.875,bilinear,-12.536,-8.510,-6 +semnasnet_075.rmsp_in1k,224,60.650,39.350,82.510,17.490,2.91,0.875,bicubic,-12.358,-8.616,0 +mobilenetv4_conv_small.e1200_r224_in1k,224,60.620,39.380,82.520,17.480,3.77,0.875,bicubic,-12.816,-8.822,-10 +xcit_nano_12_p16_224.fb_dist_in1k,224,60.350,39.650,82.500,17.500,3.05,1.000,bicubic,-11.968,-8.326,+8 +tf_mobilenetv3_large_075.in1k,224,60.320,39.680,81.780,18.220,3.99,0.875,bilinear,-13.128,-9.564,-13 +mobilenetv2_100.ra_in1k,224,60.220,39.780,82.120,17.880,3.50,0.875,bicubic,-12.716,-8.882,-2 +resnet18.a2_in1k,288,60.090,39.910,81.820,18.180,11.69,1.000,bicubic,-12.272,-8.796,+3 +vit_base_patch32_224.sam_in1k,224,60.000,40.000,81.280,18.720,88.22,0.900,bicubic,-13.706,-9.732,-17 +deit_tiny_patch16_224.fb_in1k,224,59.910,40.090,82.740,17.260,5.72,0.900,bicubic,-12.286,-8.360,+8 +resnet18d.ra2_in1k,224,59.910,40.090,82.330,17.670,11.71,0.875,bicubic,-12.358,-8.352,+4 +legacy_seresnet18.in1k,224,59.760,40.240,81.620,18.380,11.78,0.875,bicubic,-11.982,-8.720,+11 +vgg19.tv_in1k,224,59.720,40.280,81.440,18.560,143.67,0.875,bilinear,-12.680,-9.438,-3 +repvgg_a0.rvgg_in1k,224,59.500,40.500,81.280,18.720,9.11,0.875,bilinear,-12.924,-9.234,-5 +edgenext_xx_small.in1k,288,59.440,40.560,81.870,18.130,1.33,1.000,bicubic,-12.446,-8.664,+6 +resnet18.a1_in1k,224,59.320,40.680,81.120,18.880,11.69,0.950,bicubic,-12.168,-8.956,+10 +regnetx_004.pycls_in1k,224,59.260,40.740,81.830,18.170,5.16,0.875,bicubic,-13.172,-9.018,-9 +repghostnet_080.in1k,224,59.090,40.910,81.250,18.750,3.28,0.875,bicubic,-13.146,-9.240,-1 +tf_mobilenetv3_large_minimal_100.in1k,224,58.960,41.040,80.900,19.100,3.92,0.875,bilinear,-13.310,-9.762,-5 +vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,224,58.930,41.070,81.530,18.470,6.34,0.900,bicubic,-12.890,-9.284,+2 +hrnet_w18_small.ms_in1k,224,58.920,41.080,81.330,18.670,13.19,0.875,bilinear,-13.414,-9.356,-9 +vgg13_bn.tv_in1k,224,58.880,41.120,81.060,18.940,133.05,0.875,bilinear,-12.676,-9.312,+3 +lcnet_100.ra2_in1k,224,58.750,41.250,80.920,19.080,2.95,0.875,bicubic,-13.378,-9.448,-4 +pvt_v2_b0.in1k,224,58.690,41.310,82.010,17.990,3.67,0.900,bicubic,-11.966,-8.202,+10 +vgg16.tv_in1k,224,58.640,41.360,81.610,18.390,138.36,0.875,bilinear,-12.960,-8.788,-1 +mobileone_s0.apple_in1k,224,58.440,41.560,80.070,19.930,5.29,0.875,bilinear,-12.958,-9.794,+2 +xcit_nano_12_p16_224.fb_in1k,224,58.410,41.590,80.750,19.250,3.05,1.000,bicubic,-11.572,-9.032,+13 +efficientvit_m2.r224_in1k,224,58.370,41.630,81.170,18.830,4.19,0.875,bicubic,-12.430,-8.990,+5 +resnet18.gluon_in1k,224,58.330,41.670,80.980,19.020,11.69,0.875,bicubic,-12.514,-8.770,+3 +tinynet_c.in1k,184,58.210,41.790,80.250,19.750,2.46,0.875,bicubic,-13.014,-9.496,0 +resnet18.a2_in1k,224,58.180,41.820,80.180,19.820,11.69,0.950,bicubic,-12.454,-9.306,+4 +efficientvit_b0.r224_in1k,224,58.160,41.840,79.800,20.200,3.41,0.950,bicubic,-13.244,-9.634,-5 +resnet34.a3_in1k,160,58.150,41.850,80.100,19.900,21.80,0.950,bicubic,-12.422,-9.422,+3 +resnet14t.c3_in1k,224,58.150,41.850,80.070,19.930,10.08,0.950,bicubic,-14.092,-10.248,-18 +edgenext_xx_small.in1k,256,58.090,41.910,81.220,18.780,1.33,0.900,bicubic,-13.026,-8.820,-4 +mobilevitv2_050.cvnets_in1k,256,57.700,42.300,80.860,19.140,1.37,0.888,bicubic,-12.458,-9.076,+3 +resnet18.tv_in1k,224,57.350,42.650,80.080,19.920,11.69,0.875,bilinear,-12.402,-9.000,+5 +mobilevit_xxs.cvnets_in1k,256,57.270,42.730,79.720,20.280,1.27,0.900,bicubic,-11.658,-9.220,+7 +vgg13.tv_in1k,224,57.070,42.930,79.620,20.380,133.05,0.875,bilinear,-12.870,-9.636,+2 +vgg11_bn.tv_in1k,224,57.010,42.990,79.770,20.230,132.87,0.875,bilinear,-13.374,-10.038,-4 +resnet14t.c3_in1k,176,57.010,42.990,79.610,20.390,10.08,0.875,bicubic,-14.308,-10.070,-11 +regnety_002.pycls_in1k,224,56.980,43.020,79.890,20.110,3.16,0.875,bicubic,-13.314,-9.644,-4 +dla60x_c.in1k,224,56.230,43.770,78.840,21.160,1.32,0.875,bilinear,-11.698,-9.586,+9 +mixer_l16_224.goog_in21k_ft_in1k,224,56.160,43.840,75.690,24.310,208.20,0.875,bicubic,-15.930,-11.960,-24 +resnet18.a3_in1k,224,55.990,44.010,78.840,21.160,11.69,0.950,bicubic,-12.256,-9.318,+5 +repghostnet_058.in1k,224,55.950,44.050,78.350,21.650,2.55,0.875,bicubic,-12.984,-10.036,-2 +vgg11.tv_in1k,224,55.860,44.140,78.770,21.230,132.86,0.875,bilinear,-13.188,-9.862,-4 +regnetx_002.pycls_in1k,224,55.810,44.190,79.260,20.740,2.68,0.875,bicubic,-12.950,-9.304,-1 +efficientvit_m1.r224_in1k,224,55.570,44.430,78.950,21.050,2.98,0.875,bicubic,-12.782,-9.734,-1 +resnet10t.c3_in1k,224,55.440,44.560,78.300,21.700,5.44,0.950,bicubic,-12.906,-9.722,-1 +lcnet_075.ra2_in1k,224,55.300,44.700,78.220,21.780,2.36,0.875,bicubic,-13.484,-10.168,-5 +mobilenetv3_small_100.lamb_in1k,224,54.610,45.390,77.660,22.340,2.54,0.875,bicubic,-13.028,-9.990,+1 +tf_mobilenetv3_small_100.in1k,224,54.600,45.400,76.970,23.030,2.54,0.875,bilinear,-13.332,-10.714,-2 +resnet10t.c3_in1k,176,54.030,45.970,76.500,23.500,5.44,0.875,bicubic,-12.694,-10.474,+2 +repghostnet_050.in1k,224,53.560,46.440,76.630,23.370,2.31,0.875,bicubic,-13.420,-10.310,-1 +tinynet_d.in1k,152,53.340,46.660,76.350,23.650,2.34,0.875,bicubic,-13.626,-10.714,-1 +dla46x_c.in1k,224,53.140,46.860,76.750,23.250,1.07,0.875,bilinear,-12.868,-10.196,+1 +mnasnet_small.lamb_in1k,224,53.130,46.870,75.840,24.160,2.03,0.875,bicubic,-13.066,-10.632,-1 +mobilenetv2_050.lamb_in1k,224,52.990,47.010,75.510,24.490,1.97,0.875,bicubic,-12.940,-10.592,0 +resnet18.a3_in1k,160,52.870,47.130,75.840,24.160,11.69,0.950,bicubic,-12.794,-10.438,+1 +tf_mobilenetv3_small_075.in1k,224,52.350,47.650,75.470,24.530,2.04,0.875,bilinear,-13.382,-10.672,-1 +dla46_c.in1k,224,52.030,47.970,75.670,24.330,1.30,0.875,bilinear,-12.850,-10.660,+1 +mobilenetv3_small_075.lamb_in1k,224,51.870,48.130,74.690,25.310,2.04,0.875,bicubic,-13.396,-10.776,-1 +efficientvit_m0.r224_in1k,224,50.610,49.390,74.450,25.550,2.35,0.875,bicubic,-12.684,-10.700,0 +lcnet_050.ra2_in1k,224,50.060,49.940,73.430,26.570,1.88,0.875,bicubic,-13.070,-10.970,0 +tf_mobilenetv3_small_minimal_100.in1k,224,49.570,50.430,72.810,27.190,2.04,0.875,bilinear,-13.324,-11.474,0 +tinynet_e.in1k,106,46.760,53.240,70.230,29.770,2.04,0.875,bicubic,-13.114,-11.540,0 +mobilenetv3_small_050.lamb_in1k,224,44.800,55.200,67.750,32.250,1.59,0.875,bicubic,-13.124,-12.392,0 +test_efficientnet.r160_in1k,160,35.120,64.880,59.110,40.890,0.36,0.875,bicubic,-11.304,-11.848,0 +test_byobnet.r160_in1k,160,34.790,65.210,59.300,40.700,0.46,0.875,bicubic,-10.610,-11.310,0 +test_vit.r160_in1k,160,31.540,68.460,56.520,43.480,0.37,0.875,bicubic,-9.292,-10.686,0 diff --git a/pytorch-image-models/results/results-sketch.csv b/pytorch-image-models/results/results-sketch.csv new file mode 100644 index 0000000000000000000000000000000000000000..616a58995d508ec32876f4db17d7add67de0d105 --- /dev/null +++ b/pytorch-image-models/results/results-sketch.csv @@ -0,0 +1,1446 @@ +model,img_size,top1,top1_err,top5,top5_err,param_count,crop_pct,interpolation,top1_diff,top5_diff,rank_diff +eva_giant_patch14_336.clip_ft_in1k,336,71.200,28.800,90.336,9.664,"1,013.01",1.000,bicubic,-18.262,-8.492,+6 +eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,448,70.668,29.332,89.835,10.165,305.08,1.000,bicubic,-19.386,-9.221,-1 +eva02_large_patch14_448.mim_m38m_ft_in1k,448,70.546,29.454,89.841,10.159,305.08,1.000,bicubic,-19.008,-9.083,+3 +eva_giant_patch14_224.clip_ft_in1k,224,70.076,29.924,89.766,10.234,"1,012.56",0.900,bicubic,-18.810,-8.914,+5 +convnext_xxlarge.clip_laion2b_soup_ft_in1k,256,70.062,29.938,90.344,9.656,846.47,1.000,bicubic,-18.560,-8.374,+10 +eva_giant_patch14_336.m30m_ft_in22k_in1k,336,68.036,31.964,87.830,12.170,"1,013.01",1.000,bicubic,-21.534,-11.124,-1 +eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,448,67.561,32.439,87.496,12.504,305.08,1.000,bicubic,-22.405,-11.520,-5 +eva_giant_patch14_560.m30m_ft_in22k_in1k,560,67.480,32.520,87.471,12.529,"1,014.45",1.000,bicubic,-22.316,-11.519,-5 +vit_huge_patch14_clip_224.laion2b_ft_in1k,224,67.437,32.563,87.877,12.123,632.05,1.000,bicubic,-20.187,-10.350,+38 +eva02_large_patch14_448.mim_in22k_ft_in1k,448,66.987,33.013,87.455,12.545,305.08,1.000,bicubic,-22.645,-11.499,-6 +convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,384,66.466,33.534,87.406,12.594,200.13,1.000,bicubic,-21.424,-11.042,+29 +vit_large_patch14_clip_336.laion2b_ft_in1k,336,65.747,34.253,86.948,13.052,304.53,1.000,bicubic,-22.119,-11.406,+29 +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,384,65.745,34.255,87.021,12.979,200.13,1.000,bicubic,-22.589,-11.553,+9 +vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,224,65.309,34.691,86.862,13.138,632.05,1.000,bicubic,-22.969,-11.690,+10 +vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,336,65.289,34.711,86.765,13.235,632.46,1.000,bicubic,-23.339,-11.905,-1 +convnext_large_mlp.clip_laion2b_augreg_ft_in1k,256,65.071,34.929,86.288,13.712,200.13,1.000,bicubic,-22.265,-11.934,+44 +convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,320,64.916,35.084,86.630,13.370,200.13,1.000,bicubic,-23.054,-11.844,+19 +vit_large_patch14_clip_224.laion2b_ft_in1k,224,64.827,35.173,86.581,13.419,304.20,1.000,bicubic,-22.471,-11.657,+44 +regnety_1280.swag_ft_in1k,384,64.110,35.890,86.052,13.948,644.81,1.000,bicubic,-24.114,-12.646,+10 +vit_large_patch14_clip_336.openai_ft_in12k_in1k,336,64.059,35.941,85.912,14.088,304.53,1.000,bicubic,-24.205,-12.616,+6 +eva_large_patch14_336.in22k_ft_in1k,336,63.084,36.916,84.394,15.607,304.53,1.000,bicubic,-25.606,-14.316,-10 +vit_large_patch14_clip_224.openai_ft_in1k,224,62.642,37.358,85.124,14.876,304.20,1.000,bicubic,-25.218,-13.306,+20 +vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,224,62.062,37.938,84.348,15.652,304.20,1.000,bicubic,-25.835,-14.060,+16 +vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,336,61.664,38.336,83.678,16.322,304.53,1.000,bicubic,-26.528,-14.892,+7 +vit_large_patch14_clip_224.openai_ft_in12k_in1k,224,61.396,38.604,83.395,16.605,304.20,1.000,bicubic,-26.766,-15.145,+8 +eva_large_patch14_196.in22k_ft_in1k,196,61.149,38.851,82.759,17.241,304.14,1.000,bicubic,-26.807,-15.721,+11 +eva_large_patch14_336.in22k_ft_in22k_in1k,336,60.935,39.065,82.153,17.847,304.53,1.000,bicubic,-28.315,-16.699,-19 +convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,384,60.815,39.185,83.213,16.788,88.59,1.000,bicubic,-26.335,-15.015,+38 +convnext_base.clip_laion2b_augreg_ft_in1k,256,60.318,39.682,82.719,17.281,88.59,1.000,bicubic,-25.866,-15.209,+107 +regnety_1280.swag_lc_in1k,224,59.934,40.066,83.152,16.848,644.81,0.965,bicubic,-26.032,-14.700,+127 +eva_large_patch14_196.in22k_ft_in22k_in1k,196,59.871,40.129,81.120,18.880,304.14,1.000,bicubic,-28.725,-17.542,-15 +convnext_base.clip_laion2b_augreg_ft_in12k_in1k,256,59.848,40.152,82.808,17.192,88.59,1.000,bicubic,-26.538,-15.168,+84 +convnext_base.clip_laiona_augreg_ft_in1k_384,384,59.414,40.586,82.248,17.752,88.59,1.000,bicubic,-27.074,-15.714,+76 +eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,448,58.510,41.490,80.786,19.214,87.12,1.000,bicubic,-30.172,-17.942,-22 +resnext101_32x32d.fb_wsl_ig1b_ft_in1k,224,58.417,41.583,80.412,19.588,468.53,0.875,bilinear,-26.681,-17.030,+211 +beitv2_large_patch16_224.in1k_ft_in22k_in1k,224,58.374,41.626,80.218,19.782,304.43,0.950,bicubic,-30.032,-18.384,-17 +eva02_base_patch14_448.mim_in22k_ft_in1k,448,58.032,41.968,80.733,19.267,87.12,1.000,bicubic,-30.234,-17.837,-12 +regnety_320.swag_ft_in1k,384,57.936,42.064,81.503,18.497,145.05,1.000,bicubic,-28.924,-16.853,+44 +convnextv2_huge.fcmae_ft_in22k_in1k_384,384,57.889,42.111,79.654,20.346,660.29,1.000,bicubic,-30.773,-19.080,-26 +convnextv2_huge.fcmae_ft_in22k_in1k_512,512,57.859,42.141,79.428,20.572,660.29,1.000,bicubic,-31.001,-19.312,-30 +resnext101_32x16d.fb_wsl_ig1b_ft_in1k,224,57.698,42.302,79.913,20.087,194.03,0.875,bilinear,-26.466,-17.275,+324 +resnext101_32x16d.fb_swsl_ig1b_ft_in1k,224,57.472,42.528,80.404,19.596,194.03,0.875,bilinear,-25.874,-16.440,+462 +beit_large_patch16_384.in22k_ft_in22k_in1k,384,56.979,43.021,79.166,20.834,305.00,1.000,bicubic,-31.403,-19.442,-23 +vit_base_patch16_clip_384.laion2b_ft_in1k,384,56.869,43.131,79.990,20.010,86.86,1.000,bicubic,-29.769,-18.018,+50 +beit_large_patch16_512.in22k_ft_in22k_in1k,512,56.796,43.204,78.897,21.103,305.67,1.000,bicubic,-31.782,-19.763,-28 +resnext101_32x8d.fb_swsl_ig1b_ft_in1k,224,56.448,43.552,78.974,21.026,88.79,0.875,bilinear,-27.834,-18.200,+304 +maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,384,56.283,43.717,77.305,22.695,116.14,1.000,bicubic,-31.529,-21.062,-4 +maxvit_xlarge_tf_384.in21k_ft_in1k,384,56.228,43.772,78.746,21.254,475.32,1.000,bicubic,-32.076,-19.794,-25 +maxvit_xlarge_tf_512.in21k_ft_in1k,512,56.161,43.839,78.681,21.319,475.77,1.000,bicubic,-32.379,-19.971,-31 +maxvit_base_tf_512.in21k_ft_in1k,512,56.108,43.892,78.661,21.339,119.88,1.000,bicubic,-32.104,-19.877,-20 +deit3_huge_patch14_224.fb_in22k_ft_in1k,224,55.784,44.216,77.636,22.364,632.13,1.000,bicubic,-31.396,-20.628,+14 +maxvit_base_tf_384.in21k_ft_in1k,384,55.702,44.298,78.027,21.973,119.65,1.000,bicubic,-32.226,-20.511,-14 +regnety_320.swag_lc_in1k,224,55.442,44.558,79.744,20.256,145.05,0.965,bicubic,-29.190,-17.740,+244 +vit_base_patch16_clip_224.laion2b_ft_in1k,224,55.419,44.581,79.070,20.930,86.57,1.000,bicubic,-30.075,-18.502,+147 +regnety_160.swag_ft_in1k,384,55.165,44.835,79.329,20.671,83.59,1.000,bicubic,-30.853,-18.721,+97 +maxvit_large_tf_512.in21k_ft_in1k,512,55.153,44.847,77.260,22.740,212.33,1.000,bicubic,-33.083,-21.348,-28 +maxvit_large_tf_384.in21k_ft_in1k,384,55.069,44.931,77.148,22.852,212.03,1.000,bicubic,-32.927,-21.420,-22 +convnext_xlarge.fb_in22k_ft_in1k_384,384,55.010,44.990,76.771,23.229,350.20,1.000,bicubic,-32.756,-21.783,-14 +beit_large_patch16_224.in22k_ft_in22k_in1k,224,54.973,45.027,77.616,22.384,304.43,0.900,bicubic,-32.515,-20.700,-9 +resnext101_32x8d.fb_wsl_ig1b_ft_in1k,224,54.957,45.043,77.524,22.476,88.79,0.875,bilinear,-27.763,-19.100,+525 +deit3_large_patch16_384.fb_in22k_ft_in1k,384,54.912,45.088,77.376,22.624,304.76,1.000,bicubic,-32.822,-21.132,-16 +maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,384,54.790,45.210,76.861,23.139,116.09,1.000,bicubic,-32.688,-21.513,-11 +caformer_b36.sail_in22k_ft_in1k_384,384,54.446,45.554,76.824,23.176,98.75,1.000,bicubic,-33.620,-21.766,-29 +deit3_large_patch16_224.fb_in22k_ft_in1k,224,54.383,45.617,76.559,23.441,304.37,1.000,bicubic,-32.603,-21.681,+10 +hgnetv2_b6.ssld_stage1_in22k_in1k,224,54.291,45.709,77.292,22.708,75.26,0.965,bicubic,-31.761,-20.514,+83 +beitv2_large_patch16_224.in1k_ft_in1k,224,54.169,45.831,75.568,24.432,304.43,0.950,bicubic,-33.245,-22.648,-9 +convnextv2_large.fcmae_ft_in22k_in1k_384,384,53.917,46.083,76.032,23.968,197.96,1.000,bicubic,-34.261,-22.486,-35 +hgnetv2_b6.ssld_stage2_ft_in1k,224,53.860,46.140,77.003,22.997,75.26,0.965,bicubic,-32.346,-20.807,+65 +maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,224,53.780,46.220,75.160,24.840,116.14,0.950,bicubic,-33.128,-22.844,+10 +resnext101_32x4d.fb_swsl_ig1b_ft_in1k,224,53.646,46.354,76.407,23.593,44.18,0.875,bilinear,-29.622,-20.353,+439 +vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,384,53.497,46.503,75.659,24.341,86.86,1.000,bicubic,-33.715,-22.369,-7 +hgnetv2_b6.ssld_stage1_in22k_in1k,288,53.169,46.831,76.178,23.822,75.26,1.000,bicubic,-33.129,-21.910,+51 +vit_base_patch16_clip_384.openai_ft_in1k,384,53.096,46.904,76.683,23.317,86.86,1.000,bicubic,-33.122,-21.203,+57 +regnety_160.swag_lc_in1k,224,53.090,46.910,78.162,21.838,83.59,0.965,bicubic,-30.718,-18.498,+346 +hgnetv2_b6.ssld_stage2_ft_in1k,288,53.015,46.985,76.050,23.950,75.26,1.000,bicubic,-33.369,-21.888,+42 +convnextv2_base.fcmae_ft_in22k_in1k_384,384,52.905,47.095,75.087,24.913,88.72,1.000,bicubic,-34.733,-23.329,-30 +convformer_b36.sail_in22k_ft_in1k_384,384,52.895,47.105,74.963,25.037,99.88,1.000,bicubic,-34.707,-23.469,-29 +vit_large_patch16_384.augreg_in21k_ft_in1k,384,52.799,47.201,74.735,25.265,304.72,1.000,bicubic,-34.295,-23.571,-9 +caformer_b36.sail_in22k_ft_in1k,224,52.782,47.218,75.279,24.721,98.75,1.000,bicubic,-34.658,-23.052,-24 +convnext_large.fb_in22k_ft_in1k_384,384,52.738,47.262,74.710,25.290,197.77,1.000,bicubic,-34.718,-23.670,-26 +convformer_b36.sail_in22k_ft_in1k,224,52.730,47.270,74.908,25.092,99.88,1.000,bicubic,-34.253,-23.250,-6 +convnext_xlarge.fb_in22k_ft_in1k,224,52.573,47.427,74.395,25.605,350.20,0.875,bicubic,-34.397,-23.809,-5 +coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,384,52.400,47.600,73.808,26.192,73.88,1.000,bicubic,-35.002,-24.500,-25 +swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,384,52.312,47.688,74.401,25.599,196.74,1.000,bicubic,-35.162,-23.863,-32 +convnext_xlarge.fb_in22k_ft_in1k,288,52.210,47.790,73.916,26.084,350.20,1.000,bicubic,-35.164,-24.414,-26 +vit_large_r50_s32_384.augreg_in21k_ft_in1k,384,52.039,47.961,73.544,26.456,329.09,1.000,bicubic,-34.145,-24.130,+49 +vit_large_patch16_224.augreg_in21k_ft_in1k,224,51.831,48.169,73.706,26.294,304.33,0.900,bicubic,-34.019,-24.120,+78 +vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,224,51.815,48.185,74.668,25.332,86.57,0.950,bicubic,-34.395,-23.088,+43 +convnextv2_large.fcmae_ft_in22k_in1k,224,51.644,48.356,73.684,26.316,197.96,0.875,bicubic,-35.620,-24.560,-26 +convnext_base.fb_in22k_ft_in1k_384,384,51.553,48.447,74.537,25.463,88.59,1.000,bicubic,-35.273,-23.707,-5 +tf_efficientnet_l2.ns_jft_in1k_475,475,51.410,48.590,73.817,26.183,480.31,0.936,bicubic,-36.840,-24.739,-64 +maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,224,51.182,48.818,73.130,26.870,116.09,0.950,bicubic,-35.456,-24.884,+1 +vit_base_patch16_clip_384.openai_ft_in12k_in1k,384,51.149,48.851,74.344,25.656,86.86,0.950,bicubic,-35.879,-23.850,-22 +caformer_m36.sail_in22k_ft_in1k_384,384,51.041,48.959,73.415,26.585,56.20,1.000,bicubic,-36.431,-24.893,-41 +swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,384,51.009,48.991,73.287,26.713,87.92,1.000,bicubic,-36.131,-24.941,-28 +vit_base_patch16_clip_224.openai_ft_in1k,224,50.993,49.007,74.824,25.176,86.57,0.900,bicubic,-34.293,-22.616,+123 +tf_efficientnetv2_xl.in21k_ft_in1k,384,50.789,49.211,72.790,27.210,208.12,1.000,bicubic,-34.773,-24.660,+97 +hgnetv2_b5.ssld_stage1_in22k_in1k,224,50.787,49.213,73.647,26.353,39.57,0.965,bicubic,-33.669,-23.181,+221 +seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,384,50.771,49.229,73.645,26.355,149.39,1.000,bicubic,-36.537,-24.689,-38 +hgnetv2_b5.ssld_stage2_ft_in1k,224,50.663,49.337,73.641,26.359,39.57,0.965,bicubic,-34.147,-23.659,+181 +convnextv2_base.fcmae_ft_in22k_in1k,224,50.555,49.445,72.747,27.253,88.72,0.875,bicubic,-36.197,-25.273,-12 +resnext50_32x4d.fb_swsl_ig1b_ft_in1k,224,50.492,49.508,73.303,26.697,25.03,0.875,bilinear,-31.670,-22.921,+581 +swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,256,50.471,49.529,72.784,27.216,196.74,0.900,bicubic,-36.463,-25.320,-25 +swin_large_patch4_window12_384.ms_in22k_ft_in1k,384,50.343,49.657,72.532,27.468,196.74,1.000,bicubic,-36.795,-25.698,-36 +convnextv2_large.fcmae_ft_in22k_in1k,288,50.166,49.834,72.389,27.611,197.96,1.000,bicubic,-37.328,-25.971,-56 +vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,50.095,49.905,72.603,27.397,64.27,1.000,bicubic,-37.341,-25.655,-50 +hiera_huge_224.mae_in1k_ft_in1k,224,50.078,49.922,71.234,28.767,672.78,0.900,bicubic,-36.756,-26.776,-23 +convnext_large.fb_in22k_ft_in1k,288,49.942,50.058,72.208,27.792,197.77,1.000,bicubic,-37.072,-26.004,-36 +convnext_large.fb_in22k_ft_in1k,224,49.922,50.078,72.204,27.796,197.77,0.875,bicubic,-36.690,-25.832,-13 +nextvit_large.bd_ssld_6m_in1k_384,384,49.793,50.207,72.837,27.163,57.87,1.000,bicubic,-36.749,-25.295,-8 +tf_efficientnetv2_xl.in21k_ft_in1k,512,49.749,50.251,72.116,27.884,208.12,1.000,bicubic,-36.999,-25.898,-21 +caformer_m36.sail_in22k_ft_in1k,224,49.708,50.292,72.133,27.866,56.20,1.000,bicubic,-36.900,-25.904,-15 +tf_efficientnetv2_l.in21k_ft_in1k,384,49.700,50.300,72.731,27.269,118.52,1.000,bicubic,-36.132,-25.039,+56 +vit_base_patch16_clip_224.openai_ft_in12k_in1k,224,49.693,50.307,72.872,27.128,86.57,0.950,bicubic,-36.270,-24.846,+44 +nextvit_base.bd_ssld_6m_in1k_384,384,49.645,50.355,72.611,27.389,44.82,1.000,bicubic,-36.719,-25.429,+5 +vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,49.543,50.457,71.544,28.456,64.11,0.950,bicubic,-37.061,-26.392,-18 +resnet50.fb_swsl_ig1b_ft_in1k,224,49.516,50.484,72.340,27.660,25.56,0.875,bilinear,-31.630,-23.226,+705 +beitv2_base_patch16_224.in1k_ft_in22k_in1k,224,49.512,50.488,72.407,27.593,86.53,0.900,bicubic,-36.982,-25.649,-10 +hgnet_base.ssld_in1k,224,49.374,50.626,71.536,28.464,71.58,0.965,bicubic,-35.538,-25.804,+151 +coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,224,49.349,50.651,70.835,29.165,73.88,0.950,bicubic,-37.191,-27.061,-17 +convnextv2_base.fcmae_ft_in22k_in1k,288,49.170,50.830,71.237,28.763,88.72,1.000,bicubic,-37.828,-26.927,-48 +convformer_m36.sail_in22k_ft_in1k_384,384,49.129,50.871,71.385,28.615,57.05,1.000,bicubic,-37.739,-26.741,-42 +vit_base_patch32_clip_224.laion2b_ft_in1k,224,49.079,50.921,72.605,27.395,88.22,0.900,bicubic,-33.551,-23.599,+478 +convformer_m36.sail_in22k_ft_in1k,224,49.062,50.938,71.475,28.525,57.05,1.000,bicubic,-37.090,-26.377,+15 +swin_large_patch4_window7_224.ms_in22k_ft_in1k,224,48.981,51.019,71.375,28.625,196.53,0.900,bicubic,-37.349,-26.507,-4 +convnext_base.fb_in22k_ft_in1k,288,48.954,51.046,71.705,28.295,88.59,1.000,bicubic,-37.344,-26.235,-4 +convnext_base.fb_in22k_ft_in1k,224,48.806,51.194,71.911,28.089,88.59,0.875,bicubic,-37.010,-25.943,+44 +hgnetv2_b5.ssld_stage1_in22k_in1k,288,48.796,51.204,71.532,28.468,39.57,1.000,bicubic,-36.128,-25.982,+140 +tf_efficientnetv2_l.in21k_ft_in1k,480,48.785,51.215,72.029,27.971,118.52,1.000,bicubic,-38.017,-26.107,-42 +swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,256,48.783,51.217,71.379,28.621,87.92,0.900,bicubic,-37.493,-26.529,-5 +coatnet_2_rw_224.sw_in12k_ft_in1k,224,48.763,51.237,70.121,29.879,73.87,0.950,bicubic,-37.817,-27.775,-30 +beit_base_patch16_384.in22k_ft_in22k_in1k,384,48.690,51.310,72.088,27.912,86.74,1.000,bicubic,-38.126,-26.048,-46 +hgnetv2_b5.ssld_stage2_ft_in1k,288,48.655,51.345,71.381,28.619,39.57,1.000,bicubic,-36.495,-26.219,+105 +convnextv2_huge.fcmae_ft_in1k,224,48.578,51.422,69.540,30.460,660.29,0.875,bicubic,-37.682,-28.212,-8 +swin_base_patch4_window12_384.ms_in22k_ft_in1k,384,48.521,51.479,71.829,28.171,87.90,1.000,bicubic,-37.917,-26.239,-22 +caformer_s36.sail_in22k_ft_in1k_384,384,48.472,51.528,71.513,28.488,39.30,1.000,bicubic,-38.392,-26.709,-55 +tf_efficientnetv2_m.in21k_ft_in1k,384,48.425,51.575,71.892,28.108,54.14,1.000,bicubic,-36.343,-25.548,+149 +maxvit_base_tf_512.in1k,512,48.246,51.754,70.844,29.156,119.88,1.000,bicubic,-38.352,-27.082,-38 +vit_large_r50_s32_224.augreg_in21k_ft_in1k,224,48.211,51.789,70.876,29.124,328.99,0.900,bicubic,-36.221,-26.276,+190 +nextvit_large.bd_ssld_6m_in1k,224,48.077,51.923,71.147,28.853,57.87,0.950,bicubic,-37.447,-26.529,+58 +nextvit_base.bd_ssld_6m_in1k,224,48.046,51.954,70.721,29.279,44.82,0.950,bicubic,-37.136,-26.873,+92 +vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,48.014,51.986,69.671,30.329,64.11,0.950,bicubic,-38.194,-28.211,-10 +vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,384,47.950,52.050,70.899,29.101,88.30,1.000,bicubic,-37.460,-26.761,+69 +vit_base_patch8_224.augreg_in21k_ft_in1k,224,47.786,52.214,70.947,29.053,86.58,0.900,bicubic,-38.050,-26.827,+24 +tf_efficientnet_b7.ns_jft_in1k,600,47.725,52.275,69.603,30.398,66.35,0.949,bicubic,-39.127,-28.477,-62 +tf_efficientnet_b6.ns_jft_in1k,528,47.719,52.281,69.903,30.097,43.04,0.942,bicubic,-38.757,-27.965,-35 +deit3_base_patch16_384.fb_in22k_ft_in1k,384,47.676,52.324,69.736,30.264,86.88,1.000,bicubic,-39.068,-28.374,-56 +vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,448,47.582,52.418,70.066,29.934,88.34,1.000,bicubic,-38.218,-27.566,+25 +hrnet_w48_ssld.paddle_in1k,224,47.535,52.465,69.398,30.602,77.47,0.950,bilinear,-36.143,-27.450,+299 +vit_base_patch8_224.augreg2_in21k_ft_in1k,224,47.499,52.501,70.334,29.666,86.58,0.900,bicubic,-38.728,-27.507,-21 +tf_efficientnetv2_m.in21k_ft_in1k,480,47.468,52.532,70.923,29.077,54.14,1.000,bicubic,-38.546,-27.033,+2 +hgnet_base.ssld_in1k,288,47.419,52.581,69.322,30.678,71.58,1.000,bicubic,-38.053,-28.312,+51 +tf_efficientnet_l2.ns_jft_in1k,800,47.397,52.603,69.844,30.156,480.31,0.960,bicubic,-40.965,-28.812,-132 +deit3_base_patch16_224.fb_in22k_ft_in1k,224,47.370,52.630,69.817,30.183,86.59,1.000,bicubic,-38.358,-27.791,+27 +tiny_vit_21m_512.dist_in22k_ft_in1k,512,47.234,52.766,70.039,29.961,21.27,1.000,bicubic,-39.218,-27.845,-43 +convformer_s36.sail_in22k_ft_in1k_384,384,47.152,52.848,69.498,30.502,40.01,1.000,bicubic,-39.228,-28.478,-38 +maxvit_large_tf_512.in1k,512,47.057,52.943,69.575,30.425,212.33,1.000,bicubic,-39.477,-28.305,-52 +convnext_small.fb_in22k_ft_in1k_384,384,46.886,53.114,69.518,30.482,50.22,1.000,bicubic,-38.868,-28.364,+22 +convnextv2_huge.fcmae_ft_in1k,288,46.882,53.118,67.777,32.223,660.29,1.000,bicubic,-39.736,-30.191,-64 +convformer_s36.sail_in22k_ft_in1k,224,46.877,53.123,69.549,30.451,40.01,1.000,bicubic,-38.548,-27.925,+50 +caformer_s36.sail_in22k_ft_in1k,224,46.708,53.292,69.773,30.227,39.30,1.000,bicubic,-39.080,-28.055,+13 +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,288,46.517,53.483,69.597,30.403,93.59,0.950,bicubic,-40.019,-28.497,-58 +nextvit_small.bd_ssld_6m_in1k_384,384,46.428,53.572,69.154,30.846,31.76,1.000,bicubic,-39.528,-28.746,-4 +tiny_vit_21m_384.dist_in22k_ft_in1k,384,46.281,53.719,69.217,30.783,21.23,1.000,bicubic,-39.813,-28.495,-20 +maxvit_base_tf_384.in1k,384,46.273,53.727,68.537,31.463,119.65,1.000,bicubic,-40.021,-29.267,-41 +beit_base_patch16_224.in22k_ft_in22k_in1k,224,46.258,53.742,69.905,30.095,86.53,0.900,bicubic,-38.986,-27.747,+59 +vit_base_patch32_clip_384.openai_ft_in12k_in1k,384,46.218,53.782,69.320,30.680,88.30,0.950,bicubic,-39.008,-28.078,+60 +hrnet_w48_ssld.paddle_in1k,288,46.210,53.790,68.141,31.860,77.47,1.000,bilinear,-38.274,-29.085,+146 +beitv2_base_patch16_224.in1k_ft_in1k,224,45.998,54.002,67.865,32.135,86.53,0.900,bicubic,-39.598,-29.649,+21 +convnextv2_large.fcmae_ft_in1k,224,45.922,54.078,67.026,32.974,197.96,0.875,bicubic,-39.840,-30.560,+7 +seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,320,45.892,54.108,68.571,31.429,93.59,1.000,bicubic,-40.830,-29.611,-79 +vit_base_patch16_384.augreg_in21k_ft_in1k,384,45.882,54.118,68.522,31.478,86.86,1.000,bicubic,-40.124,-29.478,-17 +hiera_large_224.mae_in1k_ft_in1k,224,45.823,54.177,66.315,33.685,213.74,0.900,bicubic,-40.221,-31.333,-24 +maxvit_large_tf_384.in1k,384,45.796,54.204,68.121,31.879,212.03,1.000,bicubic,-40.440,-29.569,-47 +tf_efficientnet_b8.ap_in1k,672,45.764,54.236,67.911,32.089,87.41,0.954,bicubic,-39.602,-29.387,+41 +vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,224,45.739,54.261,68.881,31.119,88.22,0.900,bicubic,-37.567,-27.649,+331 +vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k,384,45.725,54.275,67.685,32.315,60.60,1.000,bicubic,-40.877,-30.337,-78 +convnext_small.in12k_ft_in1k_384,384,45.709,54.291,67.828,32.172,50.22,1.000,bicubic,-40.477,-30.092,-44 +seresnextaa101d_32x8d.sw_in12k_ft_in1k,224,45.646,54.354,68.856,31.144,93.59,0.875,bicubic,-40.310,-28.968,-19 +tf_efficientnet_b5.ns_jft_in1k,456,45.617,54.383,67.854,32.146,30.39,0.934,bicubic,-40.485,-29.896,-38 +swin_base_patch4_window7_224.ms_in22k_ft_in1k,224,45.562,54.438,68.510,31.490,87.77,0.900,bicubic,-39.708,-29.058,+41 +hgnet_small.ssld_in1k,224,45.354,54.646,67.802,32.197,24.36,0.965,bicubic,-38.456,-29.066,+237 +rdnet_large.nv_in1k_ft_in1k_384,384,45.342,54.658,66.655,33.345,186.27,1.000,bicubic,-40.506,-31.029,-17 +mvitv2_large.fb_in1k,224,45.322,54.678,65.211,34.789,217.99,0.900,bicubic,-39.942,-31.977,+40 +hgnetv2_b4.ssld_stage2_ft_in1k,224,45.259,54.741,67.592,32.408,19.80,0.965,bicubic,-38.435,-29.196,+258 +vit_base_patch16_224.augreg2_in21k_ft_in1k,224,45.120,54.880,67.413,32.587,86.57,0.900,bicubic,-39.990,-30.125,+56 +vit_base_patch32_clip_224.openai_ft_in1k,224,45.031,54.969,68.461,31.539,88.22,0.900,bicubic,-36.915,-27.513,+528 +nextvit_small.bd_ssld_6m_in1k,224,45.018,54.982,67.712,32.288,31.76,0.950,bicubic,-39.838,-29.668,+89 +seresnextaa101d_32x8d.sw_in12k_ft_in1k,288,44.904,55.096,67.549,32.451,93.59,1.000,bicubic,-41.614,-30.487,-83 +tiny_vit_21m_224.dist_in22k_ft_in1k,224,44.823,55.177,67.555,32.445,21.20,0.950,bicubic,-40.265,-29.801,+58 +convnextv2_large.fcmae_ft_in1k,288,44.805,55.195,65.861,34.139,197.96,1.000,bicubic,-41.321,-31.957,-51 +regnety_160.lion_in12k_ft_in1k,224,44.575,55.425,66.317,33.683,83.59,0.950,bicubic,-41.027,-31.351,-3 +volo_d5_512.sail_in1k,512,44.570,55.430,65.755,34.245,296.09,1.150,bicubic,-42.496,-32.219,-123 +regnety_160.sw_in12k_ft_in1k,224,44.530,55.470,66.515,33.485,83.59,0.950,bicubic,-41.064,-31.153,-3 +rdnet_large.nv_in1k,224,44.522,55.478,65.012,34.988,186.27,0.900,bicubic,-40.272,-32.142,+87 +vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k,256,44.462,55.538,65.505,34.495,60.40,0.950,bicubic,-41.266,-32.241,-14 +convnext_small.in12k_ft_in1k,224,44.326,55.674,66.309,33.691,50.22,0.950,bicubic,-40.838,-31.193,+39 +convnextv2_tiny.fcmae_ft_in22k_in1k_384,384,44.302,55.698,66.623,33.377,28.64,1.000,bicubic,-40.804,-31.009,+45 +cait_m48_448.fb_dist_in1k,448,44.247,55.753,64.706,35.294,356.46,1.000,bicubic,-42.235,-33.040,-89 +deit3_large_patch16_384.fb_in1k,384,44.178,55.822,64.833,35.167,304.76,1.000,bicubic,-41.639,-32.769,-30 +dm_nfnet_f6.dm_in1k,448,44.116,55.884,65.885,34.115,438.36,0.956,bicubic,-42.038,-31.883,-63 +volo_d5_448.sail_in1k,448,44.096,55.904,65.065,34.935,295.91,1.150,bicubic,-42.882,-32.863,-126 +eva02_small_patch14_336.mim_in22k_ft_in1k,336,44.013,55.987,65.932,34.068,22.13,1.000,bicubic,-41.747,-31.678,-25 +dm_nfnet_f5.dm_in1k,416,43.923,56.077,64.869,35.131,377.21,0.954,bicubic,-41.793,-32.683,-21 +deit3_huge_patch14_224.fb_in1k,224,43.819,56.181,64.311,35.689,632.13,0.900,bicubic,-41.403,-33.055,+23 +hgnetv2_b4.ssld_stage2_ft_in1k,288,43.797,56.203,66.397,33.602,19.80,1.000,bicubic,-40.137,-30.666,+186 +vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,43.613,56.387,64.106,35.894,60.40,0.950,bicubic,-41.811,-33.606,+4 +convnext_small.fb_in22k_ft_in1k,224,43.611,56.389,66.564,33.435,50.22,0.875,bicubic,-40.971,-30.850,+94 +convnext_small.fb_in22k_ft_in1k,288,43.593,56.407,66.447,33.553,50.22,1.000,bicubic,-41.683,-31.231,+12 +deit3_large_patch16_224.fb_in1k,224,43.557,56.443,63.481,36.519,304.37,0.900,bicubic,-41.221,-33.565,+75 +vit_base_r50_s16_384.orig_in21k_ft_in1k,384,43.532,56.468,66.800,33.200,98.95,1.000,bicubic,-41.462,-30.504,+47 +hgnet_small.ssld_in1k,288,43.512,56.488,65.722,34.279,24.36,1.000,bicubic,-40.866,-31.408,+127 +tf_efficientnet_b4.ns_jft_in1k,380,43.446,56.554,65.466,34.534,19.34,0.922,bicubic,-41.730,-31.862,+21 +regnety_120.sw_in12k_ft_in1k,224,43.398,56.602,65.592,34.408,51.82,0.950,bicubic,-41.588,-31.830,+46 +efficientvit_l3.r384_in1k,384,43.302,56.698,63.169,36.831,246.04,1.000,bicubic,-43.096,-34.465,-100 +dm_nfnet_f3.dm_in1k,320,43.298,56.702,64.228,35.772,254.92,0.940,bicubic,-41.798,-33.158,+31 +volo_d5_224.sail_in1k,224,43.284,56.716,64.102,35.898,295.46,0.960,bicubic,-42.794,-33.476,-72 +deit3_medium_patch16_224.fb_in22k_ft_in1k,224,43.271,56.729,64.914,35.086,38.85,1.000,bicubic,-41.295,-32.264,+86 +vit_base_patch16_224.augreg_in21k_ft_in1k,224,43.251,56.749,65.712,34.288,86.57,0.900,bicubic,-41.281,-31.586,+91 +volo_d4_448.sail_in1k,448,43.125,56.875,64.130,35.870,193.41,1.150,bicubic,-43.665,-33.750,-132 +hgnetv2_b4.ssld_stage1_in22k_in1k,224,43.074,56.926,65.110,34.890,19.80,0.965,bicubic,-39.812,-31.176,+343 +hgnetv2_b3.ssld_stage2_ft_in1k,224,42.968,57.032,65.091,34.909,16.29,0.965,bicubic,-39.942,-31.271,+338 +efficientvit_l3.r320_in1k,320,42.952,57.048,62.397,37.603,246.04,1.000,bicubic,-43.278,-35.059,-95 +efficientnet_b5.sw_in12k_ft_in1k,448,42.872,57.128,65.417,34.583,30.39,1.000,bicubic,-43.020,-32.325,-62 +dm_nfnet_f4.dm_in1k,384,42.868,57.132,63.466,36.534,316.07,0.951,bicubic,-42.628,-34.024,-25 +tf_efficientnetv2_l.in1k,384,42.866,57.134,64.069,35.931,118.52,1.000,bicubic,-42.330,-33.207,+6 +xcit_large_24_p8_384.fb_dist_in1k,384,42.864,57.136,63.371,36.629,188.93,1.000,bicubic,-43.162,-34.319,-76 +regnety_160.lion_in12k_ft_in1k,288,42.748,57.252,64.204,35.796,83.59,1.000,bicubic,-43.262,-33.642,-74 +vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k,256,42.728,57.272,64.012,35.988,38.88,0.950,bicubic,-42.216,-33.376,+33 +regnety_160.sw_in12k_ft_in1k,288,42.722,57.278,64.324,35.676,83.59,1.000,bicubic,-43.310,-33.506,-80 +convnext_small.in12k_ft_in1k,288,42.681,57.319,64.314,35.685,50.22,1.000,bicubic,-42.643,-33.240,-13 +maxvit_small_tf_512.in1k,512,42.665,57.335,64.562,35.438,69.13,1.000,bicubic,-43.439,-33.196,-91 +efficientvit_l3.r224_in1k,224,42.642,57.358,62.306,37.694,246.04,1.000,bicubic,-43.170,-34.904,-61 +xcit_large_24_p8_224.fb_dist_in1k,224,42.561,57.439,63.114,36.886,188.93,1.000,bicubic,-42.841,-34.304,-21 +caformer_b36.sail_in1k,224,42.469,57.531,62.866,37.134,98.75,1.000,bicubic,-43.033,-34.450,-36 +caformer_b36.sail_in1k_384,384,42.443,57.557,62.821,37.179,98.75,1.000,bicubic,-43.961,-35.003,-122 +maxvit_large_tf_224.in1k,224,42.432,57.568,63.391,36.609,211.79,0.950,bicubic,-42.502,-33.589,+29 +tf_efficientnet_b8.ra_in1k,672,42.424,57.576,64.831,35.169,87.41,0.954,bicubic,-42.932,-32.557,-21 +cait_m36_384.fb_dist_in1k,384,42.396,57.604,63.354,36.646,271.22,1.000,bicubic,-43.668,-34.378,-93 +volo_d4_224.sail_in1k,224,42.308,57.692,62.992,37.008,192.96,0.960,bicubic,-43.564,-34.464,-77 +hgnetv2_b3.ssld_stage1_in22k_in1k,224,42.099,57.901,64.059,35.941,16.29,0.965,bicubic,-40.511,-32.303,+364 +efficientvit_l2.r288_in1k,288,42.084,57.916,61.404,38.596,63.71,1.000,bicubic,-43.530,-35.956,-54 +efficientvit_l3.r256_in1k,256,42.066,57.934,61.554,38.446,246.04,1.000,bicubic,-43.888,-35.784,-82 +hiera_base_plus_224.mae_in1k_ft_in1k,224,42.064,57.936,61.738,38.262,69.90,0.900,bicubic,-43.070,-35.420,-4 +caformer_s18.sail_in22k_ft_in1k_384,384,42.019,57.981,64.770,35.230,26.34,1.000,bicubic,-43.405,-32.812,-36 +deit3_small_patch16_384.fb_in22k_ft_in1k,384,41.964,58.036,64.560,35.440,22.21,1.000,bicubic,-42.878,-32.922,+32 +vit_medium_patch16_gap_384.sw_in12k_ft_in1k,384,41.907,58.093,63.721,36.279,39.03,0.950,bicubic,-43.647,-33.919,-52 +maxvit_tiny_tf_512.in1k,512,41.868,58.132,63.578,36.422,31.05,1.000,bicubic,-43.792,-34.014,-63 +efficientnetv2_rw_m.agc_in1k,320,41.854,58.146,62.632,37.368,53.24,1.000,bicubic,-42.440,-34.244,+99 +caformer_s36.sail_in1k_384,384,41.763,58.237,62.772,37.228,39.30,1.000,bicubic,-43.993,-34.896,-71 +hgnetv2_b4.ssld_stage1_in22k_in1k,288,41.705,58.295,63.731,36.269,19.80,1.000,bicubic,-41.743,-33.191,+230 +hgnet_tiny.ssld_in1k,224,41.697,58.303,63.581,36.419,14.74,0.965,bicubic,-40.243,-32.533,+467 +regnetz_e8.ra3_in1k,256,41.653,58.347,63.289,36.711,57.70,0.940,bicubic,-42.765,-33.697,+80 +convnextv2_tiny.fcmae_ft_in22k_in1k,224,41.640,58.360,63.841,36.159,28.64,0.875,bicubic,-42.264,-33.123,+143 +swin_small_patch4_window7_224.ms_in22k_ft_in1k,224,41.602,58.398,64.554,35.446,49.61,0.900,bicubic,-41.728,-32.442,+250 +regnety_2560.seer_ft_in1k,384,41.559,58.441,64.912,35.088,"1,282.60",1.000,bicubic,-43.587,-32.532,-17 +convformer_s18.sail_in22k_ft_in1k_384,384,41.559,58.441,63.354,36.646,26.77,1.000,bicubic,-43.467,-34.226,-1 +tf_efficientnetv2_s.in21k_ft_in1k,300,41.524,58.476,64.594,35.407,21.46,1.000,bicubic,-41.850,-32.116,+239 +coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,224,41.500,58.500,61.477,38.523,41.72,0.950,bicubic,-43.440,-35.491,+4 +caformer_m36.sail_in1k_384,384,41.486,58.514,61.534,38.466,56.20,1.000,bicubic,-44.674,-36.282,-123 +tf_efficientnet_b7.ap_in1k,600,41.473,58.527,62.831,37.169,66.35,0.949,bicubic,-43.659,-34.425,-20 +tf_efficientnet_b7.ra_in1k,600,41.441,58.559,63.061,36.939,66.35,0.949,bicubic,-43.489,-34.139,+5 +hgnetv2_b3.ssld_stage2_ft_in1k,288,41.414,58.586,63.690,36.310,16.29,1.000,bicubic,-42.166,-33.124,+199 +tf_efficientnet_b5.ap_in1k,456,41.392,58.608,62.125,37.875,30.39,0.934,bicubic,-42.862,-34.853,+91 +dm_nfnet_f5.dm_in1k,544,41.335,58.665,62.027,37.973,377.21,0.954,bicubic,-44.765,-35.659,-122 +regnety_120.sw_in12k_ft_in1k,288,41.323,58.677,63.204,36.796,51.82,1.000,bicubic,-44.119,-34.368,-61 +dm_nfnet_f3.dm_in1k,416,41.308,58.692,62.131,37.869,254.92,0.940,bicubic,-44.364,-35.447,-83 +resnetv2_152x4_bit.goog_in21k_ft_in1k,480,41.280,58.720,64.336,35.664,936.53,1.000,bilinear,-43.644,-33.122,+1 +convnextv2_base.fcmae_ft_in1k,224,41.272,58.728,61.430,38.570,88.72,0.875,bicubic,-43.616,-35.650,+4 +caformer_s18.sail_in22k_ft_in1k,224,41.205,58.795,63.900,36.100,26.34,1.000,bicubic,-42.881,-33.288,+105 +dm_nfnet_f6.dm_in1k,576,41.184,58.816,62.827,37.173,438.36,0.956,bicubic,-45.188,-35.065,-152 +tf_efficientnet_b6.ap_in1k,528,41.111,58.889,62.383,37.617,43.04,0.942,bicubic,-43.681,-34.751,+11 +convnext_tiny.in12k_ft_in1k_384,384,41.091,58.909,62.825,37.175,28.59,1.000,bicubic,-44.063,-34.809,-36 +efficientvit_l2.r224_in1k,224,41.074,58.926,60.726,39.274,63.71,1.000,bicubic,-43.970,-36.372,-22 +xcit_large_24_p16_384.fb_dist_in1k,384,41.042,58.958,61.267,38.733,189.10,1.000,bicubic,-44.734,-36.261,-99 +tf_efficientnetv2_s.in21k_ft_in1k,384,40.995,59.005,63.851,36.149,21.46,1.000,bicubic,-43.321,-33.417,+68 +tf_efficientnetv2_l.in1k,480,40.993,59.007,62.013,37.987,118.52,1.000,bicubic,-44.667,-35.459,-91 +xcit_large_24_p16_224.fb_dist_in1k,224,40.979,59.021,61.334,38.666,189.10,1.000,bicubic,-43.957,-35.794,-14 +hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k,256,40.905,59.095,62.566,37.434,34.36,0.950,bicubic,-43.995,-34.688,-8 +maxvit_base_tf_224.in1k,224,40.883,59.117,61.182,38.818,119.47,0.950,bicubic,-43.987,-35.822,-5 +maxvit_small_tf_384.in1k,384,40.858,59.142,62.080,37.920,69.02,1.000,bicubic,-44.676,-35.378,-85 +edgenext_base.in21k_ft_in1k,320,40.842,59.158,61.764,38.236,18.51,1.000,bicubic,-43.234,-35.444,+94 +resnetrs350.tf_in1k,288,40.734,59.266,61.587,38.413,163.96,1.000,bicubic,-43.574,-35.341,+63 +efficientvit_l2.r256_in1k,256,40.675,59.325,60.599,39.401,63.71,1.000,bicubic,-44.693,-36.657,-69 +hrnet_w18_ssld.paddle_in1k,224,40.651,59.349,62.312,37.688,21.30,0.950,bilinear,-40.481,-33.322,+541 +xcit_medium_24_p8_224.fb_dist_in1k,224,40.500,59.500,60.512,39.488,84.32,1.000,bicubic,-44.576,-36.762,-36 +rexnetr_300.sw_in12k_ft_in1k,224,40.482,59.518,63.153,36.847,34.81,0.950,bicubic,-43.554,-33.847,+97 +tf_efficientnet_b4.ap_in1k,380,40.476,59.524,61.740,38.260,19.34,0.922,bicubic,-42.774,-34.650,+224 +vit_small_r26_s32_384.augreg_in21k_ft_in1k,384,40.474,59.526,62.760,37.240,36.47,1.000,bicubic,-43.600,-34.554,+88 +tf_efficientnetv2_m.in1k,384,40.472,59.528,61.805,38.195,54.14,1.000,bicubic,-44.086,-35.251,+16 +hgnetv2_b3.ssld_stage1_in22k_in1k,288,40.392,59.608,62.481,37.519,16.29,1.000,bicubic,-42.722,-34.231,+243 +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,384,40.386,59.614,61.960,38.040,32.59,0.950,bicubic,-43.928,-35.140,+53 +deit3_base_patch16_224.fb_in1k,224,40.382,59.618,60.166,39.834,86.59,0.900,bicubic,-43.412,-36.416,+131 +inception_next_base.sail_in1k_384,384,40.341,59.659,60.793,39.207,86.67,1.000,bicubic,-44.859,-36.631,-63 +convformer_s18.sail_in22k_ft_in1k,224,40.309,59.691,61.724,38.276,26.77,1.000,bicubic,-43.453,-35.324,+136 +ecaresnet269d.ra2_in1k,320,40.295,59.705,61.111,38.889,102.09,0.950,bicubic,-44.425,-36.071,-6 +vit_medium_patch16_gap_256.sw_in12k_ft_in1k,256,40.290,59.710,61.662,38.338,38.86,0.950,bicubic,-44.160,-35.556,+25 +flexivit_large.600ep_in1k,240,40.268,59.732,60.351,39.649,304.36,0.950,bicubic,-45.262,-37.143,-101 +hgnet_tiny.ssld_in1k,288,40.240,59.760,61.831,38.169,14.74,1.000,bicubic,-42.284,-34.303,+322 +deit3_small_patch16_224.fb_in22k_ft_in1k,224,40.184,59.816,61.860,38.140,22.06,1.000,bicubic,-42.898,-34.920,+239 +vit_base_patch16_224_miil.in21k_ft_in1k,224,40.180,59.820,60.891,39.109,86.54,0.875,bilinear,-44.092,-35.907,+51 +convnext_tiny.in12k_ft_in1k,224,40.170,59.830,61.575,38.425,28.59,0.950,bicubic,-44.022,-35.557,+62 +regnetz_e8.ra3_in1k,320,40.132,59.868,61.312,38.688,57.70,1.000,bicubic,-44.908,-35.970,-49 +rdnet_base.nv_in1k,224,40.121,59.879,60.198,39.802,87.45,0.900,bicubic,-44.247,-36.674,+35 +maxvit_rmlp_small_rw_224.sw_in1k,224,40.121,59.879,59.480,40.520,64.90,0.900,bicubic,-44.363,-37.294,+11 +xcit_medium_24_p8_384.fb_dist_in1k,384,40.111,59.889,60.538,39.462,84.32,1.000,bicubic,-45.731,-37.064,-139 +convnext_large.fb_in1k,224,40.111,59.889,60.111,39.889,197.77,0.875,bicubic,-44.187,-36.781,+40 +efficientvit_l1.r224_in1k,224,40.103,59.897,59.510,40.490,52.65,1.000,bicubic,-44.345,-37.346,+16 +flexivit_large.1200ep_in1k,240,40.087,59.913,60.634,39.366,304.36,0.950,bicubic,-45.557,-36.912,-122 +hiera_base_224.mae_in1k_ft_in1k,224,40.058,59.942,60.777,39.223,51.52,0.900,bicubic,-44.468,-36.263,+1 +maxvit_tiny_tf_384.in1k,384,40.050,59.950,60.964,39.036,30.98,1.000,bicubic,-45.052,-36.354,-67 +flexivit_large.300ep_in1k,240,40.026,59.974,59.986,40.014,304.36,0.950,bicubic,-45.256,-37.418,-92 +mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k,480,39.999,60.001,61.723,38.277,32.59,1.000,bicubic,-44.781,-35.619,-29 +edgenext_base.in21k_ft_in1k,256,39.977,60.023,61.210,38.790,18.51,0.950,bicubic,-43.439,-35.586,+176 +convnextv2_tiny.fcmae_ft_in22k_in1k,288,39.958,60.042,61.819,38.181,28.64,1.000,bicubic,-44.464,-35.435,+17 +xcit_medium_24_p16_384.fb_dist_in1k,384,39.938,60.062,60.211,39.789,84.40,1.000,bicubic,-45.496,-37.197,-109 +dm_nfnet_f4.dm_in1k,512,39.924,60.076,60.422,39.578,316.07,0.951,bicubic,-45.936,-37.230,-153 +hgnetv2_b2.ssld_stage1_in22k_in1k,224,39.904,60.096,61.675,38.325,11.22,0.965,bicubic,-40.841,-33.823,+561 +rdnet_small.nv_in1k,224,39.830,60.170,60.306,39.694,50.44,0.900,bicubic,-43.838,-36.214,+130 +convnext_tiny.fb_in22k_ft_in1k_384,384,39.798,60.202,61.530,38.470,28.59,1.000,bicubic,-44.300,-35.252,+52 +vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k,256,39.796,60.204,59.803,40.197,63.95,0.950,bicubic,-44.526,-37.009,+22 +cait_s36_384.fb_dist_in1k,384,39.769,60.231,60.465,39.535,68.37,1.000,bicubic,-45.689,-37.015,-118 +convnextv2_base.fcmae_ft_in1k,288,39.761,60.239,59.846,40.154,88.72,1.000,bicubic,-45.729,-37.534,-121 +volo_d3_448.sail_in1k,448,39.704,60.296,59.769,40.231,86.63,1.000,bicubic,-46.808,-37.941,-217 +efficientnetv2_rw_m.agc_in1k,416,39.667,60.333,59.689,40.311,53.24,1.000,bicubic,-45.157,-37.461,-45 +efficientvit_l2.r384_in1k,384,39.655,60.345,59.467,40.533,63.71,1.000,bicubic,-46.327,-38.047,-170 +xception65.ra3_in1k,299,39.651,60.349,60.931,39.069,39.92,0.940,bicubic,-43.533,-35.667,+190 +caformer_m36.sail_in1k,224,39.618,60.382,58.698,41.302,56.20,1.000,bicubic,-45.622,-38.508,-102 +ecaresnet269d.ra2_in1k,352,39.598,60.402,60.355,39.645,102.09,1.000,bicubic,-45.374,-36.869,-68 +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,448,39.590,60.410,60.750,39.250,32.59,0.950,bicubic,-45.078,-36.358,-36 +eca_nfnet_l2.ra3_in1k,320,39.588,60.412,60.538,39.462,56.72,0.900,bicubic,-44.568,-36.194,+35 +resnetrs420.tf_in1k,320,39.555,60.445,60.304,39.696,191.89,1.000,bicubic,-44.695,-36.562,+25 +convformer_b36.sail_in1k,224,39.547,60.453,58.085,41.915,99.88,1.000,bicubic,-45.283,-38.865,-54 +caformer_s36.sail_in1k,224,39.531,60.469,59.781,40.219,39.30,1.000,bicubic,-45.013,-37.229,-26 +tf_efficientnet_b3.ns_jft_in1k,300,39.500,60.500,61.432,38.568,12.23,0.904,bicubic,-44.564,-35.468,+44 +volo_d3_224.sail_in1k,224,39.484,60.516,59.875,40.125,86.33,0.960,bicubic,-45.958,-37.401,-130 +hgnetv2_b2.ssld_stage2_ft_in1k,224,39.470,60.530,61.239,38.761,11.22,0.965,bicubic,-42.096,-34.659,+419 +convnext_large.fb_in1k,288,39.466,60.534,59.235,40.765,197.77,1.000,bicubic,-45.396,-37.975,-62 +deit3_base_patch16_384.fb_in1k,384,39.421,60.579,58.948,41.052,86.88,1.000,bicubic,-45.665,-38.300,-90 +xcit_small_24_p8_224.fb_dist_in1k,224,39.323,60.677,59.418,40.582,47.63,1.000,bicubic,-45.553,-37.782,-66 +xcit_medium_24_p16_224.fb_dist_in1k,224,39.295,60.705,59.480,40.520,84.40,1.000,bicubic,-44.993,-37.456,+8 +inception_next_base.sail_in1k,224,39.272,60.728,59.264,40.736,86.67,0.950,bicubic,-44.826,-37.874,+31 +convformer_m36.sail_in1k,224,39.242,60.758,57.645,42.355,57.05,1.000,bicubic,-45.244,-39.221,-30 +efficientnet_b4.ra2_in1k,320,39.191,60.809,59.944,40.056,19.34,0.875,bicubic,-43.463,-36.192,+249 +coat_lite_medium_384.in1k,384,39.183,60.817,59.292,40.708,44.57,1.000,bicubic,-45.711,-38.084,-73 +efficientnetv2_rw_s.ra2_in1k,288,39.160,60.840,59.598,40.402,23.94,1.000,bicubic,-43.728,-37.030,+217 +efficientnet_b4.ra2_in1k,384,39.142,60.858,59.661,40.339,19.34,1.000,bicubic,-44.332,-36.923,+130 +tiny_vit_11m_224.dist_in22k_ft_in1k,224,39.120,60.880,61.033,38.967,11.00,0.950,bicubic,-44.112,-35.595,+166 +vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k,256,39.081,60.919,58.822,41.178,60.23,0.950,bicubic,-44.829,-37.864,+46 +hrnet_w18_ssld.paddle_in1k,288,39.069,60.931,60.640,39.360,21.30,1.000,bilinear,-42.979,-35.604,+347 +mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k,544,39.042,60.958,60.540,39.460,32.59,1.000,bicubic,-45.948,-36.744,-92 +xcit_small_24_p8_384.fb_dist_in1k,384,39.028,60.972,59.215,40.785,47.63,1.000,bicubic,-46.554,-38.357,-160 +maxvit_small_tf_224.in1k,224,39.024,60.976,59.306,40.694,68.93,0.950,bicubic,-45.432,-37.913,-33 +vit_base_patch16_rope_reg1_gap_256.sbb_in1k,256,39.022,60.978,58.633,41.367,86.43,0.950,bicubic,-44.868,-38.041,+47 +tresnet_v2_l.miil_in21k_ft_in1k,224,39.018,60.982,59.482,40.518,46.17,0.875,bilinear,-44.884,-37.014,+43 +dm_nfnet_f2.dm_in1k,256,39.002,60.998,59.146,40.854,193.78,0.920,bicubic,-45.090,-37.760,+18 +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,384,38.985,61.015,62.499,37.501,236.34,1.000,bicubic,-44.897,-34.617,+48 +seresnext101d_32x8d.ah_in1k,224,38.946,61.054,58.942,41.058,93.59,0.950,bicubic,-44.755,-37.844,+83 +convformer_b36.sail_in1k_384,384,38.944,61.056,58.402,41.598,99.88,1.000,bicubic,-46.834,-39.118,-184 +convnext_tiny.in12k_ft_in1k,288,38.883,61.117,59.875,40.125,28.59,1.000,bicubic,-45.565,-37.453,-37 +coatnet_rmlp_2_rw_224.sw_in1k,224,38.869,61.131,58.079,41.921,73.88,0.950,bicubic,-45.733,-38.667,-61 +vit_base_patch32_384.augreg_in21k_ft_in1k,384,38.828,61.172,60.337,39.663,88.30,1.000,bicubic,-44.524,-36.495,+140 +nextvit_large.bd_in1k_384,384,38.828,61.172,59.809,40.191,57.87,1.000,bicubic,-46.106,-37.489,-97 +regnetz_d32.ra3_in1k,256,38.765,61.235,60.033,39.967,27.58,0.950,bicubic,-44.663,-36.643,+122 +tf_efficientnetv2_m.in1k,480,38.757,61.243,59.854,40.146,54.14,1.000,bicubic,-46.453,-37.510,-136 +hgnetv2_b2.ssld_stage1_in22k_in1k,288,38.739,61.261,60.298,39.702,11.22,1.000,bicubic,-42.721,-35.710,+410 +eca_nfnet_l2.ra3_in1k,384,38.731,61.269,59.502,40.498,56.72,1.000,bicubic,-45.975,-37.754,-76 +efficientvit_b3.r288_in1k,288,38.696,61.304,58.402,41.598,48.65,1.000,bicubic,-45.460,-38.616,-1 +resnet200d.ra2_in1k,256,38.694,61.306,59.349,40.651,64.69,0.950,bicubic,-44.546,-37.197,+144 +efficientvit_b3.r256_in1k,256,38.682,61.318,58.651,41.349,48.65,1.000,bicubic,-45.132,-37.863,+47 +resnet152d.ra2_in1k,256,38.680,61.320,59.311,40.689,60.21,0.950,bicubic,-44.476,-37.071,+155 +xcit_small_12_p8_384.fb_dist_in1k,384,38.669,61.331,58.999,41.001,26.21,1.000,bicubic,-46.404,-38.263,-121 +davit_small.msft_in1k,224,38.651,61.349,58.205,41.795,49.75,0.950,bicubic,-45.615,-38.725,-20 +resnetrs270.tf_in1k,256,38.611,61.389,59.296,40.704,129.86,1.000,bicubic,-44.982,-37.320,+86 +regnetz_040_h.ra3_in1k,256,38.596,61.404,59.256,40.744,28.94,1.000,bicubic,-45.172,-37.436,+54 +convformer_m36.sail_in1k_384,384,38.553,61.447,57.728,42.272,57.05,1.000,bicubic,-47.027,-39.820,-183 +mvitv2_small.fb_in1k,224,38.545,61.455,58.119,41.881,34.87,0.900,bicubic,-45.227,-38.439,+51 +vit_medium_patch16_rope_reg1_gap_256.sbb_in1k,256,38.543,61.457,58.826,41.174,38.74,0.950,bicubic,-45.269,-37.996,+40 +xcit_small_24_p16_384.fb_dist_in1k,384,38.505,61.495,58.404,41.596,47.67,1.000,bicubic,-46.597,-38.978,-134 +davit_base.msft_in1k,224,38.503,61.497,57.515,42.485,87.95,0.950,bicubic,-46.147,-39.503,-85 +resnetaa101d.sw_in12k_ft_in1k,224,38.492,61.508,59.288,40.712,44.57,0.950,bicubic,-45.052,-37.540,+85 +mvitv2_base.fb_in1k,224,38.478,61.522,57.910,42.090,51.47,0.900,bicubic,-45.960,-38.952,-55 +vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k,256,38.470,61.530,59.388,40.612,22.52,0.950,bicubic,-45.332,-37.570,+40 +convnext_tiny.fb_in22k_ft_in1k,224,38.458,61.542,60.439,39.561,28.59,0.875,bicubic,-44.430,-35.889,+178 +xcit_small_12_p8_224.fb_dist_in1k,224,38.454,61.546,58.836,41.164,26.21,1.000,bicubic,-45.796,-38.038,-29 +rexnetr_300.sw_in12k_ft_in1k,288,38.419,61.581,60.575,39.425,34.81,1.000,bicubic,-46.167,-36.703,-85 +convformer_s36.sail_in1k,224,38.401,61.599,57.720,42.280,40.01,1.000,bicubic,-45.671,-39.036,-9 +fastvit_ma36.apple_dist_in1k,256,38.393,61.607,58.494,41.506,44.07,0.950,bicubic,-46.213,-38.512,-89 +hgnetv2_b2.ssld_stage2_ft_in1k,288,38.368,61.632,59.828,40.172,11.22,1.000,bicubic,-43.992,-36.576,+259 +seresnextaa101d_32x8d.ah_in1k,224,38.362,61.638,58.358,41.642,93.59,0.950,bicubic,-45.538,-38.290,+9 +tf_efficientnet_b5.ra_in1k,456,38.350,61.650,59.930,40.070,30.39,0.934,bicubic,-45.478,-36.684,+23 +dm_nfnet_f1.dm_in1k,224,38.283,61.717,58.132,41.868,132.63,0.910,bicubic,-45.161,-38.502,+90 +deit_base_distilled_patch16_384.fb_in1k,384,38.242,61.758,57.800,42.200,87.63,1.000,bicubic,-47.186,-39.528,-185 +convnext_base.fb_in1k,224,38.240,61.760,58.221,41.779,88.59,0.875,bicubic,-45.594,-38.525,+17 +seresnet152d.ra2_in1k,256,38.148,61.852,58.421,41.579,66.84,0.950,bicubic,-45.546,-38.363,+49 +xcit_large_24_p8_224.fb_in1k,224,38.130,61.870,57.877,42.123,188.93,1.000,bicubic,-46.256,-38.789,-58 +vit_base_patch16_384.orig_in21k_ft_in1k,384,38.128,61.872,60.435,39.565,86.86,1.000,bicubic,-46.080,-36.785,-36 +hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k,256,38.085,61.915,58.270,41.730,34.36,0.950,bicubic,-46.469,-38.836,-91 +mobilenetv4_hybrid_large.ix_e600_r384_in1k,384,38.051,61.949,58.665,41.335,37.76,0.950,bicubic,-45.933,-38.043,-11 +resnetv2_152x2_bit.goog_in21k_ft_in1k,448,38.014,61.986,61.186,38.814,236.34,1.000,bilinear,-46.466,-36.230,-84 +repvit_m2_3.dist_450e_in1k,224,37.995,62.005,58.174,41.826,23.69,0.950,bicubic,-45.748,-38.468,+32 +pvt_v2_b4.in1k,224,37.953,62.047,58.219,41.781,62.56,0.900,bicubic,-45.759,-38.451,+34 +cait_s24_384.fb_dist_in1k,384,37.916,62.084,58.069,41.931,47.06,1.000,bicubic,-47.126,-39.280,-150 +regnetz_040.ra3_in1k,256,37.902,62.098,57.934,42.066,27.12,1.000,bicubic,-45.758,-38.750,+47 +coat_lite_medium.in1k,224,37.896,62.104,57.824,42.176,44.57,0.900,bicubic,-45.706,-38.890,+53 +convnextv2_nano.fcmae_ft_in22k_in1k_384,384,37.892,62.108,59.449,40.551,15.62,1.000,bicubic,-45.470,-37.291,+92 +resnet152d.ra2_in1k,320,37.873,62.127,58.382,41.618,60.21,1.000,bicubic,-45.811,-38.368,+39 +nextvit_large.bd_in1k,224,37.867,62.133,58.213,41.787,57.87,0.950,bicubic,-45.775,-38.471,+45 +convformer_s36.sail_in1k_384,384,37.814,62.186,57.478,42.522,40.01,1.000,bicubic,-47.566,-39.992,-195 +hiera_small_224.mae_in1k_ft_in1k,224,37.774,62.226,57.510,42.490,35.01,0.900,bicubic,-46.112,-39.252,-7 +resnetrs350.tf_in1k,384,37.751,62.249,58.144,41.856,163.96,1.000,bicubic,-46.971,-38.828,-122 +resnetrs420.tf_in1k,416,37.747,62.253,58.223,41.777,191.89,1.000,bicubic,-47.267,-38.893,-155 +deit3_medium_patch16_224.fb_in1k,224,37.745,62.255,57.087,42.913,38.85,0.900,bicubic,-45.341,-39.199,+124 +xcit_small_24_p16_224.fb_dist_in1k,224,37.721,62.279,57.356,42.644,47.67,1.000,bicubic,-46.157,-39.378,-8 +caformer_s18.sail_in1k_384,384,37.678,62.322,57.600,42.400,26.34,1.000,bicubic,-47.358,-39.760,-160 +vit_betwixt_patch16_reg1_gap_256.sbb_in1k,256,37.657,62.343,56.779,43.221,60.40,0.950,bicubic,-45.988,-39.768,+36 +regnety_640.seer_ft_in1k,384,37.623,62.377,59.842,40.158,281.38,1.000,bicubic,-46.293,-37.078,-23 +xcit_small_12_p16_384.fb_dist_in1k,384,37.607,62.393,57.779,42.221,26.25,1.000,bicubic,-47.129,-39.357,-131 +pvt_v2_b5.in1k,224,37.544,62.456,57.250,42.750,81.96,0.900,bicubic,-46.224,-39.382,+11 +resnet200d.ra2_in1k,320,37.525,62.475,58.303,41.697,64.69,1.000,bicubic,-46.451,-38.517,-31 +vit_betwixt_patch16_reg4_gap_256.sbb_in1k,256,37.470,62.530,57.067,42.933,60.40,0.950,bicubic,-46.238,-39.551,+17 +maxvit_rmlp_tiny_rw_256.sw_in1k,256,37.403,62.597,57.185,42.815,29.15,0.950,bicubic,-46.831,-39.599,-63 +resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,224,37.356,62.644,59.465,40.535,236.34,0.875,bicubic,-45.560,-37.111,+135 +efficientvit_b3.r224_in1k,224,37.354,62.646,57.132,42.868,48.65,0.950,bicubic,-46.090,-39.206,+59 +regnety_1280.seer_ft_in1k,384,37.344,62.656,59.156,40.844,644.81,1.000,bicubic,-47.082,-37.928,-94 +regnetz_d8_evos.ch_in1k,256,37.344,62.656,58.003,41.997,23.46,0.950,bicubic,-46.050,-38.655,+68 +mobilenetv4_hybrid_large.e600_r384_in1k,384,37.322,62.678,57.625,42.375,37.76,0.950,bicubic,-46.500,-39.143,-11 +convnext_base.fb_in1k,288,37.315,62.685,57.323,42.677,88.59,1.000,bicubic,-47.151,-39.659,-110 +resnest269e.in1k,416,37.301,62.699,57.456,42.544,110.93,0.928,bicubic,-47.239,-39.534,-120 +vit_small_r26_s32_224.augreg_in21k_ft_in1k,224,37.250,62.750,59.064,40.936,36.43,0.900,bicubic,-44.594,-36.960,+299 +resmlp_big_24_224.fb_in22k_ft_in1k,224,37.240,62.760,58.172,41.828,129.14,0.875,bicubic,-47.148,-38.936,-94 +edgenext_base.usi_in1k,256,37.216,62.784,57.578,42.422,18.51,0.950,bicubic,-46.468,-39.122,+15 +pit_b_distilled_224.in1k,224,37.208,62.792,56.505,43.495,74.79,0.900,bicubic,-46.566,-39.963,-6 +repvit_m2_3.dist_300e_in1k,224,37.199,62.801,57.205,42.795,23.69,0.950,bicubic,-46.325,-39.327,+34 +rdnet_tiny.nv_in1k,224,37.193,62.807,57.313,42.687,23.86,0.900,bicubic,-45.627,-38.965,+139 +cait_s24_224.fb_dist_in1k,224,37.153,62.847,56.718,43.282,46.92,1.000,bicubic,-46.331,-39.868,+39 +vit_medium_patch16_reg4_gap_256.sbb_in1k,256,37.146,62.854,57.313,42.687,38.88,0.950,bicubic,-46.322,-39.309,+42 +pvt_v2_b3.in1k,224,37.134,62.866,57.319,42.681,45.24,0.900,bicubic,-45.984,-39.135,+93 +dm_nfnet_f2.dm_in1k,352,37.130,62.870,56.973,43.027,193.78,0.920,bicubic,-48.046,-40.515,-204 +mobilenetv4_hybrid_large.ix_e600_r384_in1k,448,37.124,62.876,57.671,42.329,37.76,1.000,bicubic,-47.240,-39.237,-99 +tiny_vit_21m_224.in1k,224,37.120,62.880,57.435,42.565,21.20,0.950,bicubic,-46.150,-39.167,+67 +efficientformer_l7.snap_dist_in1k,224,37.120,62.880,56.914,43.086,82.23,0.950,bicubic,-46.266,-39.624,+54 +volo_d1_384.sail_in1k,384,37.110,62.890,57.132,42.868,26.78,1.000,bicubic,-48.156,-40.086,-220 +vit_base_patch32_224.augreg_in21k_ft_in1k,224,37.108,62.892,59.286,40.714,88.22,0.900,bicubic,-43.628,-36.284,+437 +fastvit_sa36.apple_dist_in1k,256,37.108,62.892,57.122,42.878,31.53,0.900,bicubic,-46.924,-39.728,-60 +resnetaa101d.sw_in12k_ft_in1k,288,37.104,62.896,57.901,42.099,44.57,1.000,bicubic,-46.998,-39.217,-75 +tf_efficientnet_b3.ap_in1k,300,37.093,62.907,57.264,42.736,12.23,0.904,bicubic,-44.761,-38.344,+281 +efficientnetv2_rw_s.ra2_in1k,384,37.073,62.927,56.822,43.178,23.94,1.000,bicubic,-46.757,-39.890,-35 +maxvit_tiny_tf_224.in1k,224,37.067,62.933,56.928,43.072,30.92,0.950,bicubic,-46.355,-39.662,+39 +convnext_small.fb_in1k,224,37.063,62.937,57.128,42.872,50.22,0.875,bicubic,-46.081,-39.304,+77 +regnetz_040_h.ra3_in1k,320,36.996,63.004,57.258,42.742,28.94,1.000,bicubic,-47.514,-39.758,-139 +swinv2_base_window16_256.ms_in1k,256,36.994,63.006,56.134,43.866,87.92,0.900,bicubic,-47.614,-40.930,-154 +xcit_small_12_p16_224.fb_dist_in1k,224,36.949,63.051,56.729,43.271,26.25,1.000,bicubic,-46.405,-39.723,+49 +rexnetr_200.sw_in12k_ft_in1k,224,36.923,63.077,58.800,41.200,16.52,0.950,bicubic,-45.685,-37.326,+152 +volo_d1_224.sail_in1k,224,36.902,63.098,56.663,43.337,26.63,0.960,bicubic,-47.250,-40.111,-86 +inception_next_small.sail_in1k,224,36.884,63.116,56.765,43.235,49.37,0.875,bicubic,-46.700,-39.833,+5 +seresnext101_32x8d.ah_in1k,224,36.798,63.202,55.708,44.292,93.57,0.950,bicubic,-46.820,-40.705,-2 +efficientformerv2_l.snap_dist_in1k,224,36.788,63.212,56.649,43.351,26.32,0.950,bicubic,-46.852,-39.891,-4 +seresnet152d.ra2_in1k,320,36.784,63.216,56.745,43.255,66.84,1.000,bicubic,-47.570,-40.297,-117 +eca_nfnet_l1.ra2_in1k,256,36.715,63.285,57.117,42.883,41.41,0.900,bicubic,-46.549,-39.558,+50 +regnetz_d8.ra3_in1k,256,36.700,63.300,58.044,41.956,23.37,0.940,bicubic,-46.849,-38.702,+3 +seresnext101d_32x8d.ah_in1k,288,36.697,63.303,56.423,43.577,93.59,1.000,bicubic,-47.705,-40.463,-128 +maxxvit_rmlp_small_rw_256.sw_in1k,256,36.692,63.308,56.010,43.990,66.01,0.950,bicubic,-47.948,-41.052,-167 +resnetrs200.tf_in1k,256,36.652,63.348,56.674,43.326,93.21,1.000,bicubic,-47.234,-40.006,-62 +volo_d2_224.sail_in1k,224,36.625,63.375,56.476,43.524,58.68,0.960,bicubic,-48.577,-40.710,-235 +caformer_s18.sail_in1k,224,36.619,63.381,55.845,44.155,26.34,1.000,bicubic,-47.049,-40.867,-16 +fastvit_ma36.apple_in1k,256,36.578,63.422,56.533,43.467,44.07,0.950,bicubic,-47.306,-40.229,-63 +xception65p.ra3_in1k,299,36.572,63.428,56.438,43.562,39.82,0.940,bicubic,-46.592,-40.062,+55 +mobilenetv4_hybrid_large.e600_r384_in1k,448,36.556,63.444,56.721,43.279,37.76,1.000,bicubic,-47.718,-40.229,-118 +seresnextaa101d_32x8d.ah_in1k,288,36.548,63.452,56.374,43.626,93.59,1.000,bicubic,-48.028,-40.700,-167 +fastvit_sa36.apple_in1k,256,36.536,63.464,55.994,44.006,31.53,0.900,bicubic,-46.968,-40.636,0 +nextvit_base.bd_in1k,224,36.534,63.466,56.490,43.510,44.82,0.950,bicubic,-46.962,-40.156,0 +focalnet_base_srf.ms_in1k,224,36.464,63.536,56.201,43.799,88.15,0.900,bicubic,-47.344,-41.083,-52 +resnetv2_101x3_bit.goog_in21k_ft_in1k,448,36.426,63.574,59.062,40.938,387.93,1.000,bilinear,-48.004,-38.318,-144 +regnetz_d32.ra3_in1k,320,36.426,63.574,57.366,42.634,27.58,0.950,bicubic,-47.602,-39.504,-89 +volo_d2_384.sail_in1k,384,36.424,63.576,56.301,43.699,58.87,1.000,bicubic,-49.634,-41.283,-329 +deit_base_distilled_patch16_224.fb_in1k,224,36.416,63.584,56.670,43.330,87.34,0.900,bicubic,-46.972,-39.820,+18 +cait_xs24_384.fb_dist_in1k,384,36.413,63.587,56.918,43.082,26.67,1.000,bicubic,-47.651,-39.964,-98 +efficientnet_b3.ra2_in1k,320,36.407,63.593,56.839,43.161,12.23,1.000,bicubic,-45.891,-39.289,+182 +gcvit_base.in1k,224,36.383,63.617,55.908,44.092,90.32,0.875,bicubic,-48.071,-40.942,-159 +vit_little_patch16_reg4_gap_256.sbb_in1k,256,36.375,63.625,56.727,43.273,22.52,0.950,bicubic,-46.139,-39.533,+144 +resnetrs270.tf_in1k,352,36.369,63.631,56.566,43.434,129.86,1.000,bicubic,-48.071,-40.408,-156 +dm_nfnet_f1.dm_in1k,320,36.356,63.644,55.715,44.285,132.63,0.910,bicubic,-48.340,-41.465,-191 +vit_medium_patch16_reg1_gap_256.sbb_in1k,256,36.318,63.682,56.283,43.717,38.88,0.950,bicubic,-47.140,-40.239,-4 +tresnet_m.miil_in21k_ft_in1k,224,36.275,63.725,55.806,44.194,31.39,0.875,bilinear,-46.815,-40.306,+51 +mixer_b16_224.miil_in21k_ft_in1k,224,36.253,63.747,55.961,44.039,59.88,0.875,bilinear,-46.057,-39.753,+170 +convnext_small.fb_in1k,288,36.251,63.749,55.934,44.066,50.22,1.000,bicubic,-47.453,-40.883,-48 +convformer_s18.sail_in1k_384,384,36.218,63.782,56.053,43.947,26.77,1.000,bicubic,-48.176,-41.059,-152 +regnety_160.deit_in1k,224,36.181,63.819,56.417,43.583,83.59,0.950,bicubic,-46.813,-40.083,+59 +deit3_small_patch16_384.fb_in1k,384,36.165,63.835,55.590,44.410,22.21,1.000,bicubic,-47.263,-41.046,-5 +mobilenetv4_conv_large.e600_r384_in1k,384,36.130,63.870,56.232,43.768,32.59,0.950,bicubic,-46.844,-40.012,+61 +mvitv2_tiny.fb_in1k,224,36.120,63.880,55.134,44.866,24.17,0.900,bicubic,-46.288,-41.016,+146 +focalnet_base_lrf.ms_in1k,224,36.114,63.886,55.597,44.403,88.75,0.900,bicubic,-47.714,-41.169,-78 +tf_efficientnet_b2.ns_jft_in1k,260,36.098,63.902,57.496,42.504,9.11,0.890,bicubic,-46.314,-38.738,+143 +convnextv2_tiny.fcmae_ft_in1k,224,36.077,63.923,55.564,44.436,28.64,0.875,bicubic,-46.871,-40.722,+60 +regnetz_040.ra3_in1k,320,36.069,63.931,55.755,44.245,27.12,1.000,bicubic,-48.187,-41.179,-142 +resnet152.a1h_in1k,224,36.067,63.933,55.554,44.446,60.19,0.950,bicubic,-46.751,-40.570,+78 +regnety_320.seer_ft_in1k,384,36.047,63.953,58.470,41.530,145.05,1.000,bicubic,-47.279,-38.242,+8 +ecaresnet101d.miil_in1k,224,36.027,63.973,56.195,43.805,44.57,0.875,bicubic,-46.159,-39.867,+181 +mobilenetv4_conv_large.e600_r384_in1k,448,35.955,64.045,56.014,43.986,32.59,1.000,bicubic,-47.463,-40.598,-11 +resnest200e.in1k,320,35.937,64.063,55.869,44.131,70.20,0.909,bicubic,-47.935,-41.007,-94 +mobilenetv4_conv_aa_large.e600_r384_in1k,384,35.935,64.065,55.428,44.572,32.59,0.950,bicubic,-47.329,-40.962,+9 +nextvit_base.bd_in1k_384,384,35.921,64.079,56.220,43.780,44.82,1.000,bicubic,-48.805,-41.004,-215 +resnetrs152.tf_in1k,256,35.876,64.124,55.434,44.566,86.62,1.000,bicubic,-47.010,-41.198,+61 +resnet18.fb_swsl_ig1b_ft_in1k,224,35.862,64.138,58.461,41.539,11.69,0.875,bilinear,-37.426,-33.293,+868 +dm_nfnet_f0.dm_in1k,192,35.858,64.142,56.523,43.477,71.49,0.900,bicubic,-45.580,-39.155,+274 +eca_nfnet_l1.ra2_in1k,320,35.849,64.151,55.931,44.069,41.41,1.000,bicubic,-48.201,-41.103,-126 +sequencer2d_l.in1k,224,35.823,64.177,55.747,44.253,54.30,0.875,bicubic,-47.587,-40.757,-16 +vit_base_patch16_224.orig_in21k_ft_in1k,224,35.784,64.216,57.395,42.605,86.57,0.900,bicubic,-46.002,-38.728,+227 +gcvit_small.in1k,224,35.778,64.222,54.898,45.102,51.09,0.875,bicubic,-48.130,-41.762,-114 +vit_relpos_medium_patch16_cls_224.sw_in1k,224,35.727,64.273,54.941,45.059,38.76,0.900,bicubic,-46.845,-41.135,+108 +resnet101d.ra2_in1k,256,35.723,64.277,55.401,44.599,44.57,0.950,bicubic,-46.529,-40.667,+155 +xcit_small_12_p8_224.fb_in1k,224,35.587,64.413,55.619,44.381,26.21,1.000,bicubic,-47.769,-40.855,-13 +efficientnet_b3.ra2_in1k,288,35.542,64.458,55.930,44.070,12.23,0.875,bicubic,-45.932,-39.740,+258 +flexivit_base.1200ep_in1k,240,35.519,64.481,53.833,46.167,86.59,0.950,bicubic,-49.169,-43.187,-222 +xcit_small_24_p8_224.fb_in1k,224,35.517,64.484,54.780,45.220,47.63,1.000,bicubic,-48.337,-41.856,-108 +coat_small.in1k,224,35.515,64.485,55.177,44.823,21.69,0.900,bicubic,-46.861,-41.037,+128 +vit_small_patch16_384.augreg_in21k_ft_in1k,384,35.511,64.489,57.557,42.443,22.20,1.000,bicubic,-48.293,-39.551,-96 +xcit_large_24_p16_224.fb_in1k,224,35.501,64.499,54.762,45.238,189.10,1.000,bicubic,-47.389,-41.120,+42 +convnextv2_nano.fcmae_ft_in22k_in1k,224,35.497,64.503,56.378,43.622,15.62,0.875,bicubic,-46.541,-39.796,+180 +tf_efficientnet_b5.aa_in1k,456,35.475,64.525,56.199,43.801,30.39,0.934,bicubic,-48.221,-40.515,-79 +regnetz_d8_evos.ch_in1k,320,35.464,64.537,55.770,44.230,23.46,1.000,bicubic,-48.688,-41.250,-155 +swinv2_base_window8_256.ms_in1k,256,35.464,64.537,54.635,45.365,87.92,0.900,bicubic,-48.782,-42.267,-164 +xcit_medium_24_p8_224.fb_in1k,224,35.442,64.558,54.837,45.163,84.32,1.000,bicubic,-48.300,-41.555,-90 +gc_efficientnetv2_rw_t.agc_in1k,224,35.436,64.564,55.212,44.788,13.68,1.000,bicubic,-45.832,-40.414,+281 +swinv2_small_window16_256.ms_in1k,256,35.422,64.578,54.642,45.358,49.73,0.900,bicubic,-48.794,-42.231,-166 +dm_nfnet_f0.dm_in1k,256,35.410,64.590,55.525,44.475,71.49,0.900,bicubic,-48.060,-41.043,-49 +efficientnetv2_rw_t.ra2_in1k,224,35.391,64.609,54.986,45.014,13.65,1.000,bicubic,-45.981,-40.566,+265 +resnest101e.in1k,256,35.383,64.617,55.786,44.214,48.28,0.875,bilinear,-47.533,-40.524,+30 +resnet152.a1h_in1k,288,35.353,64.647,54.656,45.344,60.19,1.000,bicubic,-48.141,-41.866,-57 +convit_base.fb_in1k,224,35.322,64.678,54.941,45.059,86.54,0.875,bicubic,-46.972,-41.059,+133 +convnext_tiny_hnf.a2h_in1k,224,35.302,64.698,53.860,46.140,28.59,0.950,bicubic,-46.928,-42.000,+138 +efficientformer_l3.snap_dist_in1k,224,35.292,64.707,54.497,45.503,31.41,0.950,bicubic,-47.271,-41.745,+87 +regnety_080.ra3_in1k,224,35.287,64.713,55.425,44.575,39.18,0.950,bicubic,-47.875,-41.053,-10 +focalnet_small_lrf.ms_in1k,224,35.279,64.721,54.922,45.078,50.34,0.900,bicubic,-48.229,-41.664,-65 +convformer_s18.sail_in1k,224,35.255,64.745,54.609,45.391,26.77,1.000,bicubic,-47.713,-41.635,+17 +xcit_tiny_24_p8_224.fb_dist_in1k,224,35.241,64.759,55.271,44.729,12.11,1.000,bicubic,-47.339,-40.913,+79 +edgenext_base.usi_in1k,320,35.241,64.759,55.140,44.860,18.51,1.000,bicubic,-48.729,-41.630,-148 +nfnet_l0.ra2_in1k,224,35.228,64.772,55.959,44.041,35.07,0.900,bicubic,-46.640,-40.077,+185 +fastvit_sa24.apple_dist_in1k,256,35.206,64.794,54.646,45.354,21.55,0.900,bicubic,-48.156,-41.930,-41 +flexivit_base.600ep_in1k,240,35.155,64.845,53.676,46.324,86.59,0.950,bicubic,-49.405,-43.234,-236 +regnetz_c16.ra3_in1k,256,35.114,64.886,56.303,43.697,13.46,0.940,bicubic,-47.046,-39.751,+143 +twins_svt_large.in1k,224,35.100,64.900,54.721,45.279,99.27,0.900,bicubic,-48.590,-41.887,-98 +repvgg_b3g4.rvgg_in1k,224,35.080,64.920,54.745,45.255,83.83,0.875,bilinear,-45.168,-40.357,+413 +convnextv2_tiny.fcmae_ft_in1k,288,35.057,64.943,54.204,45.796,28.64,1.000,bicubic,-48.419,-42.514,-69 +repvgg_b3.rvgg_in1k,224,35.029,64.971,54.515,45.485,123.09,0.875,bilinear,-45.489,-40.739,+364 +regnetz_d8.ra3_in1k,320,35.019,64.981,55.963,44.037,23.37,1.000,bicubic,-49.023,-41.039,-166 +regnety_032.ra_in1k,224,35.019,64.981,54.971,45.029,19.44,0.950,bicubic,-46.923,-41.179,+171 +repvit_m1_5.dist_450e_in1k,224,35.002,64.998,54.297,45.703,14.64,0.950,bicubic,-47.518,-41.813,+74 +rexnetr_200.sw_in12k_ft_in1k,288,34.955,65.046,55.918,44.082,16.52,1.000,bicubic,-48.215,-40.732,-30 +repvgg_d2se.rvgg_in1k,320,34.925,65.075,53.524,46.476,133.33,1.000,bilinear,-48.629,-43.140,-88 +xcit_tiny_24_p8_384.fb_dist_in1k,384,34.900,65.100,55.116,44.884,12.11,1.000,bicubic,-48.885,-41.600,-127 +flexivit_base.300ep_in1k,240,34.876,65.124,53.202,46.798,86.59,0.950,bicubic,-49.526,-43.720,-218 +resnet101d.ra2_in1k,320,34.874,65.126,54.181,45.819,44.57,1.000,bicubic,-48.144,-42.277,-10 +repvit_m1_5.dist_300e_in1k,224,34.872,65.128,54.385,45.615,14.64,0.950,bicubic,-47.510,-41.641,+89 +coatnet_1_rw_224.sw_in1k,224,34.864,65.136,53.426,46.574,41.72,0.950,bicubic,-48.748,-42.956,-100 +coatnet_rmlp_1_rw_224.sw_in1k,224,34.809,65.191,53.965,46.035,41.69,0.950,bicubic,-48.545,-42.460,-56 +swin_s3_base_224.ms_in1k,224,34.805,65.195,53.731,46.269,71.13,0.900,bicubic,-49.115,-42.919,-165 +regnetz_c16_evos.ch_in1k,256,34.803,65.197,56.000,44.000,13.49,0.950,bicubic,-47.139,-39.970,+158 +seresnext101_32x8d.ah_in1k,288,34.797,65.203,53.522,46.478,93.57,1.000,bicubic,-49.397,-43.340,-197 +maxvit_tiny_rw_224.sw_in1k,224,34.785,65.215,53.357,46.643,29.06,0.950,bicubic,-48.737,-43.131,-92 +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,384,34.758,65.242,55.373,44.627,11.07,0.950,bicubic,-48.202,-41.101,-8 +vit_base_patch16_rpn_224.sw_in1k,224,34.727,65.273,54.650,45.350,86.54,0.900,bicubic,-47.489,-41.348,+110 +vit_relpos_base_patch16_clsgap_224.sw_in1k,224,34.717,65.283,54.230,45.770,86.43,0.900,bicubic,-48.045,-41.948,+14 +resmlp_big_24_224.fb_distilled_in1k,224,34.715,65.285,54.534,45.466,129.14,0.875,bicubic,-48.879,-42.120,-106 +sequencer2d_m.in1k,224,34.711,65.289,54.010,45.990,38.31,0.875,bicubic,-48.127,-42.266,+1 +vit_large_patch32_384.orig_in21k_ft_in1k,384,34.709,65.291,55.719,44.281,306.63,1.000,bicubic,-46.797,-39.769,+196 +hgnetv2_b1.ssld_stage1_in22k_in1k,224,34.705,65.295,55.739,44.261,6.34,0.965,bicubic,-43.373,-38.447,+610 +deit3_small_patch16_224.fb_in1k,224,34.679,65.321,53.129,46.871,22.06,0.900,bicubic,-46.695,-42.423,+223 +resnet101.a1h_in1k,224,34.673,65.326,54.300,45.700,44.55,0.950,bicubic,-47.277,-41.460,+144 +focalnet_small_srf.ms_in1k,224,34.672,65.329,54.416,45.584,49.89,0.900,bicubic,-48.759,-42.017,-88 +davit_tiny.msft_in1k,224,34.672,65.329,54.330,45.670,28.36,0.950,bicubic,-48.026,-41.954,+17 +convnext_nano.in12k_ft_in1k,224,34.668,65.332,56.102,43.898,15.59,0.950,bicubic,-47.638,-40.235,+85 +ecaresnet101d.miil_in1k,288,34.660,65.340,54.505,45.495,44.57,0.950,bicubic,-48.338,-42.019,-27 +vit_relpos_base_patch16_224.sw_in1k,224,34.624,65.376,54.271,45.729,86.43,0.900,bicubic,-47.852,-41.873,+56 +resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,224,34.620,65.380,55.951,44.049,194.03,0.875,bilinear,-47.260,-40.149,+147 +repvgg_b2g4.rvgg_in1k,224,34.609,65.391,54.798,45.202,61.76,0.875,bilinear,-44.787,-39.882,+471 +resnetv2_101.a1h_in1k,224,34.593,65.407,53.173,46.827,44.54,0.950,bicubic,-47.449,-42.693,+120 +mobilenetv4_conv_aa_large.e600_r384_in1k,480,34.589,65.411,54.033,45.967,32.59,1.000,bicubic,-49.243,-42.699,-167 +gcvit_tiny.in1k,224,34.542,65.458,53.220,46.780,28.22,0.875,bicubic,-48.858,-43.172,-87 +resnext101_64x4d.c1_in1k,224,34.538,65.462,53.338,46.662,83.46,0.950,bicubic,-47.908,-42.582,+55 +mobilenetv4_conv_large.e500_r256_in1k,256,34.530,65.470,54.334,45.666,32.59,0.950,bicubic,-47.334,-41.362,+142 +resnetrs200.tf_in1k,320,34.530,65.470,54.277,45.723,93.21,1.000,bicubic,-49.916,-42.795,-257 +regnetv_064.ra3_in1k,224,34.502,65.498,55.287,44.713,30.58,0.950,bicubic,-48.615,-41.275,-53 +poolformerv2_m48.sail_in1k,224,34.502,65.498,53.980,46.020,73.35,1.000,bicubic,-48.109,-42.088,+20 +hiera_tiny_224.mae_in1k_ft_in1k,224,34.473,65.527,53.255,46.745,27.91,0.900,bicubic,-48.351,-42.947,-14 +tf_efficientnetv2_s.in1k,300,34.461,65.539,54.257,45.743,21.46,1.000,bicubic,-48.711,-42.079,-68 +convnextv2_nano.fcmae_ft_in22k_in1k,288,34.424,65.576,55.020,44.980,15.62,1.000,bicubic,-48.242,-41.526,+3 +efficientvit_b2.r256_in1k,256,34.418,65.582,53.591,46.409,24.33,1.000,bicubic,-48.294,-42.501,-3 +resnetrs152.tf_in1k,320,34.406,65.594,53.522,46.478,86.62,1.000,bicubic,-49.304,-43.088,-153 +resnest50d_4s2x40d.in1k,224,34.357,65.643,54.723,45.277,30.42,0.875,bicubic,-46.789,-41.257,+232 +pvt_v2_b2_li.in1k,224,34.328,65.672,54.092,45.908,22.55,0.900,bicubic,-47.874,-42.018,+86 +tf_efficientnetv2_b3.in21k_ft_in1k,240,34.243,65.757,55.788,44.212,14.36,0.900,bicubic,-46.833,-40.132,+240 +efficientvit_b2.r288_in1k,288,34.239,65.761,53.534,46.466,24.33,1.000,bicubic,-48.845,-42.768,-56 +crossvit_18_dagger_408.in1k,408,34.237,65.763,53.092,46.908,44.61,1.000,bicubic,-49.965,-43.740,-233 +xcit_medium_24_p16_224.fb_in1k,224,34.235,65.765,53.155,46.845,84.40,1.000,bicubic,-48.397,-42.825,+4 +resnetrs101.tf_in1k,192,34.216,65.784,54.538,45.462,63.62,0.940,bicubic,-46.494,-40.700,+289 +tf_efficientnet_b1.ns_jft_in1k,240,34.184,65.816,55.513,44.487,7.79,0.882,bicubic,-47.204,-40.027,+191 +pit_s_distilled_224.in1k,224,34.174,65.826,53.369,46.631,24.04,0.900,bicubic,-47.668,-42.331,+131 +efficientnetv2_rw_t.ra2_in1k,288,34.157,65.843,53.161,46.839,13.65,1.000,bicubic,-48.197,-43.017,+50 +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,256,34.139,65.861,54.560,45.440,11.07,0.950,bicubic,-48.223,-41.696,+46 +tf_efficientnet_b4.aa_in1k,380,34.104,65.896,54.224,45.776,19.34,0.922,bicubic,-48.936,-42.066,-60 +fastvit_sa24.apple_in1k,256,34.096,65.904,53.756,46.244,21.55,0.900,bicubic,-48.610,-42.522,-16 +twins_pcpvt_large.in1k,224,34.076,65.924,54.110,45.890,60.99,0.900,bicubic,-49.092,-42.500,-84 +resnetv2_101.a1h_in1k,288,34.076,65.924,52.316,47.684,44.54,1.000,bicubic,-48.926,-44.128,-58 +mobilenetv4_hybrid_medium.ix_e550_r384_in1k,448,34.070,65.930,54.418,45.582,11.07,1.000,bicubic,-49.352,-42.314,-119 +tf_efficientnet_b6.aa_in1k,528,34.068,65.932,54.558,45.442,43.04,0.942,bicubic,-50.050,-42.328,-237 +efficientformerv2_s2.snap_dist_in1k,224,34.066,65.934,53.530,46.470,12.71,0.950,bicubic,-48.084,-42.382,+78 +resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,224,34.054,65.945,55.596,44.404,88.79,0.875,bilinear,-47.566,-40.441,+140 +mobilenetv4_conv_large.e500_r256_in1k,320,34.054,65.945,53.721,46.279,32.59,1.000,bicubic,-48.620,-42.595,-19 +xcit_small_24_p16_224.fb_in1k,224,34.039,65.961,53.271,46.729,47.67,1.000,bicubic,-48.541,-42.983,+6 +hgnetv2_b1.ssld_stage2_ft_in1k,224,34.029,65.971,54.872,45.128,6.34,0.965,bicubic,-44.867,-39.612,+490 +nfnet_l0.ra2_in1k,288,34.002,65.999,54.356,45.644,35.07,1.000,bicubic,-48.755,-42.138,-34 +efficientnet_b3_pruned.in1k,300,34.002,65.999,54.114,45.886,9.86,0.904,bicubic,-46.870,-41.158,+249 +regnety_160.deit_in1k,288,33.996,66.004,53.558,46.442,83.59,1.000,bicubic,-49.704,-43.032,-175 +gc_efficientnetv2_rw_t.agc_in1k,288,33.994,66.006,53.281,46.719,13.68,1.000,bicubic,-48.486,-43.019,+14 +nextvit_small.bd_in1k_384,384,33.992,66.008,53.874,46.126,31.76,1.000,bicubic,-50.050,-43.116,-234 +resnext101_64x4d.tv_in1k,224,33.992,66.008,52.512,47.488,83.46,0.875,bilinear,-48.986,-43.740,-67 +resnext101_64x4d.c1_in1k,288,33.854,66.146,52.172,47.828,83.46,1.000,bicubic,-49.304,-44.198,-94 +swinv2_cr_small_ns_224.sw_in1k,224,33.842,66.158,52.634,47.366,49.70,0.900,bicubic,-49.648,-43.852,-146 +poolformerv2_s36.sail_in1k,224,33.836,66.164,53.672,46.328,30.79,1.000,bicubic,-47.740,-42.008,+133 +xcit_small_12_p16_224.fb_in1k,224,33.827,66.173,53.155,46.845,26.25,1.000,bicubic,-48.155,-42.659,+85 +convnext_tiny.fb_in1k,224,33.825,66.175,53.654,46.346,28.59,0.875,bicubic,-48.241,-42.200,+71 +nextvit_small.bd_in1k,224,33.811,66.189,53.181,46.819,31.76,0.950,bicubic,-48.809,-43.041,-22 +convnextv2_nano.fcmae_ft_in1k,224,33.805,66.195,53.967,46.033,15.62,0.875,bicubic,-48.051,-41.989,+102 +repvit_m3.dist_in1k,224,33.789,66.211,53.116,46.884,10.68,0.950,bicubic,-47.705,-42.446,+141 +resnet101.a1h_in1k,288,33.768,66.232,53.141,46.859,44.55,1.000,bicubic,-49.034,-43.179,-51 +resnetv2_50x3_bit.goog_in21k_ft_in1k,448,33.740,66.260,55.935,44.065,217.32,1.000,bilinear,-50.252,-41.197,-241 +hgnetv2_b1.ssld_stage1_in22k_in1k,288,33.728,66.272,54.348,45.652,6.34,1.000,bicubic,-45.320,-40.534,+464 +swin_s3_small_224.ms_in1k,224,33.689,66.311,52.408,47.592,49.74,0.900,bicubic,-50.089,-44.052,-204 +swinv2_small_window8_256.ms_in1k,256,33.665,66.335,52.778,47.222,49.73,0.900,bicubic,-50.179,-43.872,-222 +cs3se_edgenet_x.c2ns_in1k,256,33.652,66.348,52.984,47.016,50.72,0.950,bicubic,-49.108,-43.322,-53 +resnet152.tv2_in1k,224,33.632,66.368,51.650,48.350,60.19,0.965,bilinear,-48.662,-44.350,+29 +resnet51q.ra2_in1k,288,33.595,66.405,53.027,46.973,35.70,1.000,bilinear,-48.761,-43.151,+15 +inception_next_tiny.sail_in1k,224,33.593,66.407,53.045,46.955,28.06,0.875,bicubic,-48.915,-42.955,-9 +xcit_tiny_24_p16_384.fb_dist_in1k,384,33.546,66.454,52.789,47.211,12.12,1.000,bicubic,-49.034,-43.211,-21 +mobilenetv4_hybrid_medium.e500_r224_in1k,224,33.504,66.496,53.125,46.875,11.07,0.950,bicubic,-46.934,-42.251,+289 +vit_relpos_medium_patch16_224.sw_in1k,224,33.504,66.496,52.589,47.411,38.75,0.900,bicubic,-48.962,-43.495,-6 +mobilenetv4_hybrid_medium.e500_r224_in1k,256,33.500,66.500,52.876,47.124,11.07,1.000,bicubic,-47.784,-42.864,+163 +regnety_080.ra3_in1k,288,33.475,66.525,52.901,47.099,39.18,1.000,bicubic,-50.465,-43.979,-249 +cs3edgenet_x.c2_in1k,288,33.455,66.545,52.931,47.069,47.82,1.000,bicubic,-49.291,-43.459,-60 +tf_efficientnetv2_b3.in21k_ft_in1k,300,33.449,66.551,54.986,45.014,14.36,0.900,bicubic,-49.185,-41.644,-43 +convmixer_1536_20.in1k,224,33.445,66.555,53.055,46.945,51.63,0.960,bicubic,-47.925,-42.575,+151 +regnety_064.ra3_in1k,224,33.438,66.562,52.927,47.073,30.58,0.950,bicubic,-49.569,-43.369,-99 +regnety_032.ra_in1k,288,33.434,66.566,52.770,47.230,19.44,1.000,bicubic,-49.290,-43.654,-63 +sequencer2d_s.in1k,224,33.434,66.566,52.392,47.608,27.65,0.875,bicubic,-48.902,-43.639,+6 +crossvit_18_240.in1k,240,33.396,66.604,52.259,47.741,43.27,0.875,bicubic,-48.990,-43.807,-4 +regnetz_c16.ra3_in1k,320,33.394,66.606,54.230,45.770,13.46,1.000,bicubic,-49.266,-42.102,-56 +gernet_l.idstcv_in1k,256,33.390,66.610,51.793,48.207,31.08,0.875,bilinear,-47.984,-43.661,+142 +vit_srelpos_medium_patch16_224.sw_in1k,224,33.380,66.620,52.493,47.507,38.74,0.900,bicubic,-48.870,-43.435,+18 +regnetv_040.ra3_in1k,224,33.369,66.631,52.947,47.053,20.64,0.950,bicubic,-49.079,-43.257,-16 +crossvit_15_dagger_408.in1k,408,33.351,66.649,52.164,47.836,28.50,1.000,bicubic,-50.489,-44.616,-242 +tiny_vit_5m_224.dist_in22k_ft_in1k,224,33.345,66.655,55.049,44.951,5.39,0.950,bicubic,-47.517,-40.623,+210 +crossvit_18_dagger_240.in1k,240,33.278,66.722,52.218,47.782,44.27,0.875,bicubic,-49.226,-43.850,-27 +wide_resnet101_2.tv2_in1k,224,33.278,66.722,51.443,48.557,126.89,0.965,bilinear,-49.238,-44.569,-31 +tresnet_xl.miil_in1k,224,33.276,66.724,52.310,47.690,78.44,0.875,bilinear,-48.788,-43.620,+39 +swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,224,33.272,66.728,55.246,44.754,28.29,0.900,bicubic,-47.694,-40.774,+187 +resnext101_32x8d.tv2_in1k,176,33.249,66.751,51.318,48.682,88.79,0.875,bilinear,-48.741,-44.398,+48 +fbnetv3_g.ra2_in1k,240,33.245,66.755,53.727,46.273,16.62,0.950,bilinear,-48.007,-41.955,+150 +nest_base_jx.goog_in1k,224,33.223,66.777,51.827,48.173,67.72,0.875,bicubic,-50.323,-44.539,-195 +convnext_tiny.fb_in1k,288,33.180,66.820,52.668,47.332,28.59,1.000,bicubic,-49.514,-43.476,-72 +resnest50d_1s4x24d.in1k,224,33.172,66.828,52.854,47.146,25.68,0.875,bicubic,-47.846,-42.482,+179 +convnext_nano.in12k_ft_in1k,288,33.131,66.869,53.986,46.014,15.59,1.000,bicubic,-49.751,-42.576,-97 +resnet61q.ra2_in1k,288,33.121,66.879,51.718,48.282,36.85,1.000,bicubic,-49.403,-44.796,-42 +vit_relpos_medium_patch16_rpn_224.sw_in1k,224,33.103,66.897,52.392,47.608,38.73,0.900,bicubic,-49.205,-43.590,-8 +maxxvit_rmlp_nano_rw_256.sw_in1k,256,33.080,66.920,51.895,48.105,16.78,0.950,bicubic,-49.946,-44.449,-123 +rexnet_300.nav_in1k,224,33.078,66.922,52.371,47.629,34.71,0.875,bicubic,-49.702,-43.863,-90 +twins_pcpvt_base.in1k,224,33.066,66.934,52.618,47.382,43.83,0.900,bicubic,-49.656,-43.730,-84 +tf_efficientnetv2_s.in1k,384,33.054,66.946,51.901,48.099,21.46,1.000,bicubic,-50.842,-44.797,-269 +pvt_v2_b2.in1k,224,33.046,66.954,52.015,47.985,25.36,0.900,bicubic,-49.048,-43.941,+22 +hgnetv2_b1.ssld_stage2_ft_in1k,288,33.035,66.965,53.530,46.470,6.34,1.000,bicubic,-46.869,-41.136,+320 +nest_small_jx.goog_in1k,224,33.029,66.971,51.052,48.948,38.35,0.875,bicubic,-50.093,-45.282,-142 +crossvit_base_240.in1k,240,33.023,66.977,51.371,48.629,105.03,0.875,bicubic,-49.205,-44.443,-2 +poolformerv2_m36.sail_in1k,224,33.019,66.981,51.854,48.146,56.08,1.000,bicubic,-49.195,-44.084,+2 +xcit_tiny_24_p16_224.fb_dist_in1k,224,33.011,66.989,52.084,47.916,12.12,1.000,bicubic,-47.455,-43.118,+243 +resnet51q.ra2_in1k,256,32.991,67.009,52.373,47.627,35.70,0.875,bilinear,-48.787,-43.577,+62 +rexnet_200.nav_in1k,224,32.978,67.022,52.943,47.057,16.37,0.875,bicubic,-48.662,-42.725,+72 +resnest50d.in1k,224,32.962,67.038,52.717,47.283,27.48,0.875,bilinear,-47.996,-42.655,+168 +convit_small.fb_in1k,224,32.956,67.044,52.153,47.847,27.78,0.875,bicubic,-48.458,-43.583,+108 +tf_efficientnet_b3.aa_in1k,300,32.934,67.066,52.935,47.065,12.23,0.904,bicubic,-48.714,-42.789,+67 +crossvit_15_dagger_240.in1k,240,32.917,67.083,51.793,48.207,28.21,0.875,bicubic,-49.389,-44.175,-22 +swin_base_patch4_window12_384.ms_in1k,384,32.911,67.089,51.770,48.230,87.90,1.000,bicubic,-51.565,-45.116,-365 +convnext_tiny_hnf.a2h_in1k,288,32.905,67.095,51.198,48.802,28.59,1.000,bicubic,-49.703,-45.194,-75 +pnasnet5large.tf_in1k,331,32.899,67.101,50.539,49.461,86.06,0.911,bicubic,-49.929,-45.499,-114 +vit_small_patch16_224.augreg_in21k_ft_in1k,224,32.895,67.105,53.949,46.051,22.05,0.900,bicubic,-48.519,-42.201,+101 +twins_svt_base.in1k,224,32.856,67.144,51.485,48.515,56.07,0.900,bicubic,-50.268,-44.943,-157 +regnetv_064.ra3_in1k,288,32.828,67.172,52.890,47.110,30.58,1.000,bicubic,-50.920,-43.856,-256 +cs3edgenet_x.c2_in1k,256,32.828,67.172,52.184,47.816,47.82,0.887,bicubic,-49.386,-43.712,-12 +convnextv2_nano.fcmae_ft_in1k,288,32.809,67.191,52.679,47.321,15.62,1.000,bicubic,-49.687,-43.549,-60 +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,256,32.809,67.191,52.530,47.470,11.07,0.950,bicubic,-48.665,-43.162,+83 +nasnetalarge.tf_in1k,331,32.803,67.197,50.162,49.838,88.75,0.911,bicubic,-49.833,-45.898,-93 +hgnet_small.paddle_in1k,224,32.791,67.209,52.465,47.535,24.36,0.965,bicubic,-48.635,-43.381,+92 +resnet61q.ra2_in1k,256,32.785,67.215,51.154,48.846,36.85,0.900,bicubic,-49.181,-44.698,+18 +resnet152d.gluon_in1k,224,32.764,67.237,51.076,48.924,60.21,0.875,bicubic,-47.712,-44.120,+221 +inception_resnet_v2.tf_in1k,299,32.750,67.250,50.671,49.329,55.84,0.897,bicubic,-47.696,-44.249,+228 +gernet_m.idstcv_in1k,224,32.746,67.254,51.905,48.095,21.14,0.875,bilinear,-47.980,-43.279,+187 +repvit_m1_1.dist_450e_in1k,224,32.740,67.260,52.675,47.325,8.80,0.950,bicubic,-48.562,-42.897,+103 +eca_nfnet_l0.ra2_in1k,224,32.712,67.288,53.226,46.774,24.14,0.900,bicubic,-49.052,-42.044,+42 +pit_b_224.in1k,224,32.703,67.297,49.848,50.152,73.76,0.900,bicubic,-49.757,-45.860,-65 +tf_efficientnet_b2.ap_in1k,260,32.663,67.337,52.249,47.751,9.11,0.890,bicubic,-47.633,-42.783,+245 +swin_base_patch4_window7_224.ms_in1k,224,32.653,67.347,51.569,48.431,87.77,0.900,bicubic,-50.957,-44.881,-244 +mobilenetv4_conv_blur_medium.e500_r224_in1k,224,32.630,67.370,52.410,47.590,9.72,0.950,bicubic,-46.816,-42.510,+344 +fbnetv3_g.ra2_in1k,288,32.618,67.382,52.892,47.108,16.62,0.950,bilinear,-49.422,-43.172,-4 +regnety_320.tv2_in1k,224,32.612,67.388,50.288,49.712,145.05,0.965,bicubic,-50.562,-46.128,-186 +mobilenetv4_conv_blur_medium.e500_r224_in1k,256,32.604,67.396,52.363,47.637,9.72,1.000,bicubic,-47.548,-42.407,+261 +mobilenetv4_conv_medium.e500_r256_in1k,256,32.590,67.409,52.642,47.358,9.72,0.950,bicubic,-47.331,-42.544,+277 +resnext101_32x8d.tv2_in1k,224,32.571,67.429,50.154,49.846,88.79,0.965,bilinear,-50.261,-46.078,-139 +regnetz_c16_evos.ch_in1k,320,32.565,67.435,52.939,47.061,13.49,0.950,bicubic,-50.079,-43.541,-111 +cait_xxs36_384.fb_dist_in1k,384,32.549,67.451,52.253,47.747,17.37,1.000,bicubic,-49.659,-43.897,-32 +tresnet_l.miil_in1k,224,32.549,67.451,51.127,48.873,55.99,0.875,bilinear,-48.949,-44.525,+56 +wide_resnet50_2.racm_in1k,224,32.488,67.512,51.469,48.531,68.88,0.875,bicubic,-49.000,-44.075,+58 +resnet152.a1_in1k,224,32.478,67.522,49.828,50.172,60.19,0.950,bicubic,-49.520,-46.060,-7 +gmlp_s16_224.ra3_in1k,224,32.416,67.584,51.823,48.177,19.42,0.875,bicubic,-47.228,-42.805,+313 +resnetaa50d.sw_in12k_ft_in1k,224,32.404,67.596,52.516,47.484,25.58,0.950,bicubic,-49.378,-43.520,+23 +inception_resnet_v2.tf_ens_adv_in1k,299,32.396,67.604,50.439,49.561,55.84,0.897,bicubic,-47.596,-44.517,+266 +deit_base_patch16_224.fb_in1k,224,32.390,67.610,50.986,49.014,86.57,0.900,bicubic,-49.590,-44.802,-7 +maxvit_nano_rw_256.sw_in1k,256,32.384,67.616,50.608,49.392,15.45,0.950,bicubic,-50.558,-45.616,-161 +mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k,320,32.365,67.635,51.803,48.197,11.07,1.000,bicubic,-50.625,-44.867,-169 +swin_small_patch4_window7_224.ms_in1k,224,32.349,67.651,50.913,49.087,49.61,0.900,bicubic,-50.879,-45.413,-204 +resnet152s.gluon_in1k,224,32.347,67.653,50.532,49.468,60.32,0.875,bicubic,-48.701,-44.910,+118 +regnety_040.ra3_in1k,224,32.345,67.655,51.504,48.496,20.65,0.950,bicubic,-49.971,-44.572,-66 +repvit_m1_1.dist_300e_in1k,224,32.290,67.710,51.962,48.038,8.80,0.950,bicubic,-48.536,-43.212,+146 +deit_small_distilled_patch16_224.fb_in1k,224,32.284,67.716,52.111,47.889,22.44,0.900,bicubic,-48.932,-43.268,+90 +poolformerv2_s24.sail_in1k,224,32.276,67.724,51.490,48.510,21.34,1.000,bicubic,-48.476,-43.828,+154 +edgenext_small.usi_in1k,256,32.272,67.728,51.887,48.113,5.59,0.950,bicubic,-48.792,-43.443,+110 +xcit_tiny_24_p8_224.fb_in1k,224,32.239,67.761,51.878,48.122,12.11,1.000,bicubic,-49.651,-44.102,-4 +seresnext101_64x4d.gluon_in1k,224,32.203,67.797,50.325,49.675,88.23,0.875,bicubic,-48.683,-44.943,+129 +regnetx_320.tv2_in1k,224,32.196,67.804,49.364,50.636,107.81,0.965,bicubic,-50.628,-46.828,-157 +gcvit_xtiny.in1k,224,32.133,67.867,51.115,48.885,19.98,0.875,bicubic,-49.835,-44.851,-19 +coat_lite_small.in1k,224,32.127,67.873,49.983,50.017,19.84,0.900,bicubic,-50.175,-45.851,-70 +seresnext101_32x4d.gluon_in1k,224,32.123,67.877,51.221,48.779,48.96,0.875,bicubic,-48.763,-44.087,+126 +tiny_vit_11m_224.in1k,224,32.093,67.907,51.306,48.694,11.00,0.950,bicubic,-49.445,-44.564,+27 +coatnext_nano_rw_224.sw_in1k,224,32.093,67.907,51.033,48.967,14.70,0.900,bicubic,-49.905,-44.261,-28 +tf_efficientnet_b7.aa_in1k,600,32.086,67.915,52.155,47.845,66.35,0.949,bicubic,-52.351,-44.765,-406 +flexivit_small.1200ep_in1k,240,32.080,67.920,50.313,49.687,22.06,0.950,bicubic,-50.512,-45.837,-121 +efficientvit_b2.r224_in1k,224,32.074,67.926,50.936,49.064,24.33,0.950,bicubic,-50.088,-44.774,-52 +maxxvitv2_nano_rw_256.sw_in1k,256,32.066,67.934,50.329,49.671,23.70,0.950,bicubic,-51.038,-46.005,-202 +focalnet_tiny_lrf.ms_in1k,224,32.064,67.936,51.435,48.565,28.65,0.900,bicubic,-50.110,-44.512,-57 +seresnext50_32x4d.racm_in1k,224,32.017,67.983,51.257,48.743,27.56,0.875,bicubic,-49.251,-44.317,+66 +resnetv2_50d_gn.ah_in1k,224,32.009,67.991,51.235,48.765,25.57,0.950,bicubic,-48.785,-44.121,+134 +deit_base_patch16_384.fb_in1k,384,31.985,68.015,50.539,49.461,86.86,1.000,bicubic,-51.131,-45.827,-208 +maxvit_rmlp_nano_rw_256.sw_in1k,256,31.966,68.034,50.620,49.380,15.50,0.950,bicubic,-51.014,-45.652,-192 +mobilenetv4_hybrid_medium.ix_e550_r256_in1k,320,31.954,68.046,51.463,48.537,11.07,1.000,bicubic,-50.542,-44.817,-115 +xcit_tiny_12_p8_224.fb_dist_in1k,224,31.946,68.054,51.386,48.614,6.71,1.000,bicubic,-49.266,-44.230,+70 +wide_resnet101_2.tv2_in1k,176,31.907,68.093,49.527,50.473,126.89,0.875,bilinear,-48.581,-45.453,+168 +hgnetv2_b0.ssld_stage1_in22k_in1k,224,31.899,68.101,52.318,47.682,6.00,0.965,bicubic,-44.945,-41.294,+523 +coatnet_bn_0_rw_224.sw_in1k,224,31.883,68.117,50.999,49.001,27.44,0.950,bicubic,-50.511,-45.195,-108 +levit_conv_384.fb_dist_in1k,224,31.873,68.127,50.624,49.376,39.13,0.900,bicubic,-50.727,-45.396,-138 +levit_384.fb_dist_in1k,224,31.869,68.131,50.626,49.374,39.13,0.900,bicubic,-50.729,-45.390,-138 +ecaresnet50t.ra2_in1k,256,31.867,68.133,51.777,48.223,25.57,0.875,bicubic,-49.579,-43.901,+28 +resnetrs101.tf_in1k,288,31.865,68.135,51.011,48.989,63.62,0.940,bicubic,-50.429,-44.927,-88 +mobilenetv4_conv_medium.e500_r256_in1k,320,31.863,68.136,51.819,48.181,9.72,1.000,bicubic,-49.016,-43.943,+107 +cs3se_edgenet_x.c2ns_in1k,320,31.861,68.138,50.822,49.178,50.72,1.000,bicubic,-51.682,-45.842,-286 +vit_wee_patch16_reg1_gap_256.sbb_in1k,256,31.854,68.146,51.545,48.455,13.42,0.950,bicubic,-48.414,-43.815,+197 +mobilenetv4_conv_medium.e500_r224_in1k,224,31.838,68.162,51.540,48.460,9.72,0.950,bicubic,-47.254,-43.248,+331 +mobilenetv4_conv_medium.e500_r224_in1k,256,31.828,68.172,51.583,48.417,9.72,1.000,bicubic,-48.010,-43.611,+247 +vit_relpos_small_patch16_224.sw_in1k,224,31.775,68.225,50.608,49.392,21.98,0.900,bicubic,-49.701,-45.216,+14 +flexivit_small.600ep_in1k,240,31.755,68.245,49.614,50.386,22.06,0.950,bicubic,-50.637,-46.426,-116 +tf_efficientnetv2_b3.in1k,240,31.724,68.276,51.109,48.891,14.36,0.904,bicubic,-48.988,-44.067,+126 +convnextv2_pico.fcmae_ft_in1k,224,31.722,68.278,51.156,48.844,9.07,0.875,bicubic,-48.582,-43.926,+183 +poolformer_m48.sail_in1k,224,31.669,68.331,49.842,50.158,73.47,0.950,bicubic,-50.793,-46.126,-128 +tnt_s_patch16_224,224,31.663,68.337,51.170,48.830,23.76,0.900,bicubic,-49.865,-44.564,-1 +convnext_tiny.fb_in22k_ft_in1k,288,31.643,68.357,51.768,48.232,28.59,1.000,bicubic,-47.307,-42.940,+335 +resnetv2_50x1_bit.goog_distilled_in1k,224,31.640,68.361,51.312,48.688,25.55,0.875,bicubic,-51.180,-45.214,-191 +efficientnet_b1.ra4_e3600_r240_in1k,240,31.630,68.370,50.486,49.514,7.79,0.900,bicubic,-48.774,-44.662,+165 +eca_nfnet_l0.ra2_in1k,288,31.616,68.384,51.612,48.388,24.14,1.000,bicubic,-50.980,-44.878,-155 +focalnet_tiny_srf.ms_in1k,224,31.616,68.384,50.868,49.132,28.43,0.900,bicubic,-50.528,-45.102,-79 +efficientnet_b1.ra4_e3600_r240_in1k,288,31.614,68.386,50.622,49.378,7.79,1.000,bicubic,-49.820,-45.074,+13 +resnet50.ram_in1k,224,31.594,68.406,50.205,49.795,25.56,0.875,bicubic,-47.438,-44.181,+325 +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,224,31.573,68.427,50.893,49.107,8.46,0.900,bicubic,-48.557,-44.105,+199 +xception41p.ra3_in1k,299,31.563,68.437,50.368,49.632,26.91,0.940,bicubic,-50.417,-45.374,-63 +mobilenet_edgetpu_v2_m,224,31.557,68.443,50.907,49.093,8.46,0.900,bicubic,-48.561,-44.087,+198 +coatnet_rmlp_nano_rw_224.sw_in1k,224,31.553,68.447,50.223,49.777,15.15,0.900,bicubic,-50.509,-45.647,-77 +mobilevitv2_200.cvnets_in22k_ft_in1k,256,31.539,68.461,51.834,48.166,18.45,0.888,bicubic,-50.783,-44.106,-121 +wide_resnet50_2.racm_in1k,288,31.521,68.478,50.378,49.622,68.88,0.950,bicubic,-50.745,-45.684,-109 +nf_resnet50.ra2_in1k,256,31.490,68.510,50.769,49.231,25.56,0.940,bicubic,-48.734,-44.335,+185 +hgnetv2_b0.ssld_stage2_ft_in1k,224,31.484,68.516,51.717,48.283,6.00,0.965,bicubic,-45.858,-42.069,+458 +resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,224,31.466,68.534,52.151,47.849,44.18,0.875,bilinear,-49.470,-43.581,+71 +regnety_064.ra3_in1k,288,31.466,68.534,50.488,49.512,30.58,1.000,bicubic,-52.246,-46.240,-343 +poolformer_m36.sail_in1k,224,31.463,68.537,50.025,49.975,56.17,0.950,bicubic,-50.641,-45.673,-90 +flexivit_small.300ep_in1k,240,31.453,68.547,49.221,50.779,22.06,0.950,bicubic,-50.717,-46.805,-99 +repvit_m1_0.dist_450e_in1k,224,31.443,68.557,50.677,49.323,7.30,0.950,bicubic,-49.003,-44.629,+142 +resnet152.a1_in1k,288,31.433,68.567,48.663,51.337,60.19,1.000,bicubic,-51.311,-47.057,-201 +rexnet_150.nav_in1k,224,31.423,68.577,51.276,48.724,9.73,0.875,bicubic,-48.887,-43.892,+157 +resnet50.b1k_in1k,224,31.410,68.591,50.648,49.352,25.56,0.950,bicubic,-48.154,-43.974,+246 +inception_v4.tf_in1k,299,31.388,68.612,49.248,50.752,42.68,0.875,bicubic,-48.756,-45.734,+182 +resnet101.tv2_in1k,224,31.366,68.634,49.578,50.422,44.55,0.965,bilinear,-50.540,-46.190,-66 +efficientformer_l1.snap_dist_in1k,224,31.358,68.642,50.514,49.486,12.29,0.950,bicubic,-49.144,-44.478,+123 +repvit_m2.dist_in1k,224,31.335,68.665,50.675,49.325,8.80,0.950,bicubic,-49.133,-44.497,+128 +pit_s_224.in1k,224,31.325,68.675,49.677,50.323,23.46,0.900,bicubic,-49.801,-45.651,+37 +regnety_032.tv2_in1k,224,31.313,68.687,50.133,49.867,19.44,0.965,bicubic,-50.485,-45.713,-57 +swinv2_tiny_window16_256.ms_in1k,256,31.299,68.701,49.683,50.317,28.35,0.900,bicubic,-51.529,-46.539,-223 +crossvit_15_240.in1k,240,31.297,68.703,50.200,49.800,27.53,0.875,bicubic,-50.221,-45.496,-31 +coatnet_0_rw_224.sw_in1k,224,31.284,68.716,48.651,51.349,27.44,0.950,bicubic,-51.110,-47.193,-154 +vit_srelpos_small_patch16_224.sw_in1k,224,31.282,68.718,50.264,49.736,21.97,0.900,bicubic,-49.826,-45.316,+33 +crossvit_small_240.in1k,240,31.282,68.718,50.197,49.803,26.86,0.875,bicubic,-49.758,-45.271,+44 +cait_xxs36_224.fb_dist_in1k,224,31.280,68.720,50.636,49.364,17.30,1.000,bicubic,-48.458,-44.226,+217 +repvit_m1_0.dist_300e_in1k,224,31.270,68.730,50.820,49.180,7.30,0.950,bicubic,-48.882,-44.478,+169 +swinv2_cr_small_224.sw_in1k,224,31.254,68.746,48.761,51.239,49.70,0.900,bicubic,-51.872,-47.349,-271 +cspresnet50.ra_in1k,256,31.248,68.752,51.243,48.757,21.62,0.887,bilinear,-48.340,-43.447,+230 +convmixer_768_32.in1k,224,31.235,68.765,50.936,49.064,21.11,0.960,bicubic,-48.923,-44.134,+164 +regnetv_040.ra3_in1k,288,31.227,68.773,50.105,49.895,20.64,1.000,bicubic,-51.973,-46.553,-286 +cspresnext50.ra_in1k,256,31.225,68.775,50.911,49.089,20.57,0.887,bilinear,-49.327,-44.419,+100 +mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k,256,31.221,68.779,50.345,49.655,8.46,0.950,bicubic,-49.463,-45.097,+86 +hgnetv2_b0.ssld_stage1_in22k_in1k,288,31.219,68.781,51.490,48.510,6.00,1.000,bicubic,-46.815,-42.758,+376 +vit_pwee_patch16_reg1_gap_256.sbb_in1k,256,31.219,68.781,51.099,48.901,15.25,0.950,bicubic,-48.859,-43.887,+169 +mobilenet_edgetpu_v2_m,256,31.219,68.781,50.364,49.636,8.46,0.950,bicubic,-49.463,-45.080,+83 +swin_s3_tiny_224.ms_in1k,224,31.219,68.781,49.714,50.286,28.33,0.900,bicubic,-50.909,-46.244,-119 +coat_mini.in1k,224,31.209,68.791,49.777,50.223,10.34,0.900,bicubic,-50.095,-45.611,-10 +resnet50d.ra4_e3600_r224_in1k,224,31.205,68.795,49.887,50.113,25.58,0.950,bicubic,-49.751,-45.493,+37 +xcit_tiny_12_p8_384.fb_dist_in1k,384,31.201,68.799,50.508,49.492,6.71,1.000,bicubic,-51.191,-45.706,-170 +resnet152.tv2_in1k,176,31.172,68.828,48.737,51.263,60.19,0.875,bilinear,-49.040,-45.917,+150 +fastvit_sa12.apple_dist_in1k,256,31.168,68.832,49.991,50.009,11.58,0.900,bicubic,-50.674,-45.733,-82 +resnet101.a1_in1k,224,31.162,68.838,48.026,51.974,44.55,0.950,bicubic,-50.332,-47.138,-46 +ecaresnetlight.miil_in1k,224,31.152,68.848,50.262,49.738,30.16,0.875,bicubic,-49.304,-44.986,+106 +resnet101s.gluon_in1k,224,31.150,68.850,49.826,50.174,44.67,0.875,bicubic,-49.136,-45.324,+131 +convnext_nano.d1h_in1k,224,31.140,68.860,50.072,49.928,15.59,0.950,bicubic,-49.622,-45.260,+60 +repvit_m0_9.dist_300e_in1k,224,31.131,68.870,50.769,49.231,5.49,0.950,bicubic,-47.523,-43.345,+311 +edgenext_small.usi_in1k,320,31.125,68.875,50.146,49.854,5.59,1.000,bicubic,-50.447,-45.566,-64 +resnet152.a3_in1k,160,31.109,68.891,49.258,50.742,60.19,0.950,bicubic,-47.787,-44.866,+284 +coatnet_nano_rw_224.sw_in1k,224,31.103,68.897,49.575,50.425,15.14,0.900,bicubic,-50.601,-46.075,-78 +resmlp_36_224.fb_distilled_in1k,224,31.099,68.901,49.693,50.307,44.69,0.875,bicubic,-50.051,-45.815,-2 +tf_efficientnet_cc_b0_8e.in1k,224,31.091,68.909,50.795,49.205,24.01,0.875,bicubic,-46.833,-42.855,+371 +ecaresnet50d.miil_in1k,224,31.083,68.917,50.860,49.140,25.58,0.875,bicubic,-49.535,-44.452,+74 +convnext_nano_ols.d1h_in1k,224,31.068,68.932,49.828,50.172,15.65,0.950,bicubic,-49.838,-45.426,+29 +ecaresnet50t.ra2_in1k,320,31.048,68.952,50.590,49.410,25.57,0.950,bicubic,-51.322,-45.530,-180 +resnet50d.ra2_in1k,224,31.038,68.962,49.844,50.156,25.58,0.875,bicubic,-49.510,-45.314,+78 +cs3sedarknet_x.c2ns_in1k,288,31.030,68.970,50.154,49.846,35.40,1.000,bicubic,-51.620,-46.194,-234 +gcresnet50t.ra2_in1k,256,31.020,68.980,50.129,49.871,25.90,0.900,bicubic,-49.930,-45.335,+20 +resnet152.a2_in1k,224,31.013,68.987,47.798,52.202,60.19,0.950,bicubic,-50.751,-48.200,-89 +cspdarknet53.ra_in1k,256,31.011,68.989,50.392,49.608,27.64,0.887,bilinear,-49.095,-44.676,+139 +resnext101_64x4d.gluon_in1k,224,31.011,68.989,48.533,51.467,83.46,0.875,bicubic,-49.629,-46.467,+66 +regnety_160.tv2_in1k,224,31.003,68.997,49.091,50.909,83.59,0.965,bicubic,-51.643,-47.139,-238 +resnet152c.gluon_in1k,224,30.995,69.005,48.950,51.050,60.21,0.875,bicubic,-48.911,-45.654,+154 +tresnet_m.miil_in1k,224,30.995,69.005,48.684,51.316,31.39,0.875,bilinear,-49.821,-46.178,+35 +twins_svt_small.in1k,224,30.959,69.040,49.201,50.799,24.06,0.900,bicubic,-50.732,-46.467,-92 +gcresnet50t.ra2_in1k,288,30.958,69.042,50.076,49.924,25.90,1.000,bicubic,-50.500,-45.646,-60 +cs3sedarknet_x.c2ns_in1k,256,30.924,69.076,50.017,49.983,35.40,0.887,bicubic,-51.002,-46.005,-118 +resnext50_32x4d.a1h_in1k,224,30.916,69.084,49.242,50.758,25.03,0.950,bicubic,-50.224,-46.077,-15 +ecaresnet101d_pruned.miil_in1k,224,30.912,69.088,50.009,49.991,24.88,0.875,bicubic,-49.902,-45.611,+30 +regnety_080_tv.tv2_in1k,224,30.907,69.094,48.700,51.300,39.38,0.965,bicubic,-51.685,-47.544,-228 +hgnetv2_b0.ssld_stage2_ft_in1k,288,30.899,69.101,51.056,48.944,6.00,1.000,bicubic,-47.699,-43.324,+288 +tf_efficientnet_cc_b1_8e.in1k,240,30.897,69.103,50.080,49.920,39.72,0.882,bicubic,-48.425,-44.300,+217 +tf_efficientnetv2_b3.in1k,300,30.895,69.105,49.803,50.197,14.36,0.904,bicubic,-51.065,-45.971,-131 +resmlp_24_224.fb_distilled_in1k,224,30.891,69.109,50.144,49.856,30.02,0.875,bicubic,-49.875,-45.076,+31 +resnetaa50.a1h_in1k,224,30.885,69.115,49.514,50.486,25.56,0.950,bicubic,-49.729,-45.698,+53 +resnet50.b2k_in1k,224,30.883,69.117,49.402,50.598,25.56,0.950,bicubic,-48.497,-45.174,+203 +repvit_m0_9.dist_450e_in1k,224,30.879,69.121,50.144,49.856,5.49,0.950,bicubic,-48.179,-44.244,+242 +resnext101_32x4d.gluon_in1k,224,30.869,69.131,48.553,51.447,44.18,0.875,bicubic,-49.467,-46.355,+90 +tf_efficientnet_lite4.in1k,380,30.838,69.162,50.398,49.602,13.01,0.920,bilinear,-50.708,-45.268,-91 +resnet50.c1_in1k,224,30.832,69.168,49.465,50.535,25.56,0.950,bicubic,-48.934,-45.493,+159 +cs3darknet_x.c2ns_in1k,256,30.816,69.184,49.700,50.300,35.05,0.950,bicubic,-51.040,-46.040,-126 +resnetaa50d.sw_in12k_ft_in1k,288,30.812,69.188,50.581,49.419,25.58,1.000,bicubic,-51.832,-45.909,-257 +efficientvit_b1.r288_in1k,288,30.785,69.215,49.969,50.031,9.10,1.000,bicubic,-49.525,-45.007,+88 +dpn68b.ra_in1k,224,30.759,69.241,49.498,50.502,12.61,0.950,bicubic,-47.785,-44.480,+280 +resnetv2_50d_evos.ah_in1k,224,30.757,69.243,48.812,51.188,25.59,0.950,bicubic,-50.071,-46.458,+11 +wide_resnet50_2.tv2_in1k,176,30.726,69.274,48.889,51.111,68.88,0.875,bilinear,-49.710,-46.193,+70 +nf_resnet50.ra2_in1k,288,30.718,69.282,49.954,50.046,25.56,0.940,bicubic,-49.938,-45.386,+36 +xcit_tiny_24_p16_224.fb_in1k,224,30.716,69.284,50.390,49.610,12.12,1.000,bicubic,-48.742,-44.492,+182 +poolformer_s36.sail_in1k,224,30.706,69.294,49.453,50.547,30.86,0.900,bicubic,-50.726,-45.991,-78 +ese_vovnet39b.ra_in1k,224,30.690,69.310,49.883,50.117,24.57,0.875,bicubic,-48.626,-44.831,+200 +hgnet_small.paddle_in1k,288,30.667,69.333,49.966,50.034,24.36,1.000,bicubic,-51.547,-46.258,-188 +dpn107.mx_in1k,224,30.645,69.355,48.745,51.255,86.92,0.875,bicubic,-49.523,-46.191,+100 +resnet152.gluon_in1k,224,30.639,69.361,48.525,51.475,60.19,0.875,bicubic,-49.073,-46.195,+154 +tresnet_xl.miil_in1k_448,448,30.633,69.367,49.117,50.883,78.44,0.875,bilinear,-52.433,-47.063,-325 +resnet50.a1h_in1k,224,30.623,69.376,49.425,50.575,25.56,1.000,bicubic,-50.029,-45.887,+29 +resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,224,30.616,69.384,50.691,49.309,25.03,0.875,bilinear,-49.700,-44.695,+73 +haloregnetz_b.ra3_in1k,224,30.596,69.404,48.981,51.019,11.68,0.940,bicubic,-50.456,-46.219,-31 +pit_xs_distilled_224.in1k,224,30.559,69.441,50.176,49.824,11.00,0.900,bicubic,-48.609,-44.192,+211 +regnetx_080.tv2_in1k,224,30.557,69.443,48.093,51.907,39.57,0.965,bicubic,-51.003,-47.449,-113 +hgnet_tiny.paddle_in1k,224,30.553,69.447,50.109,49.891,14.74,0.965,bicubic,-49.335,-44.939,+123 +regnetz_b16.ra3_in1k,224,30.547,69.453,49.300,50.700,9.72,0.940,bicubic,-49.327,-45.678,+124 +resnet50.a1h_in1k,176,30.537,69.463,49.309,50.691,25.56,0.900,bicubic,-48.723,-45.189,+196 +mobilevitv2_200.cvnets_in22k_ft_in1k_384,384,30.515,69.485,50.557,49.443,18.45,1.000,bicubic,-52.895,-46.015,-383 +resnet101d.gluon_in1k,224,30.515,69.485,47.977,52.023,44.57,0.875,bicubic,-49.951,-47.057,+44 +resnest26d.gluon_in1k,224,30.494,69.506,50.642,49.358,17.07,0.875,bilinear,-47.982,-43.658,+270 +efficientnet_b2.ra_in1k,288,30.492,69.508,49.696,50.304,9.11,1.000,bicubic,-50.118,-45.622,+23 +resnet50.ram_in1k,288,30.447,69.553,49.019,50.981,25.56,0.950,bicubic,-49.527,-46.022,+104 +cs3darknet_x.c2ns_in1k,288,30.435,69.565,49.180,50.820,35.05,1.000,bicubic,-51.801,-47.052,-210 +tf_efficientnet_b1.ap_in1k,240,30.433,69.567,49.604,50.396,7.79,0.882,bicubic,-48.855,-44.712,+185 +resnetv2_50.a1h_in1k,224,30.429,69.571,48.918,51.082,25.55,0.950,bicubic,-49.977,-46.166,+48 +twins_pcpvt_small.in1k,224,30.394,69.606,49.376,50.624,24.11,0.900,bicubic,-50.728,-46.240,-54 +xcit_tiny_12_p16_384.fb_dist_in1k,384,30.390,69.610,50.109,49.891,6.72,1.000,bicubic,-50.562,-45.323,-35 +resnet50d.ra2_in1k,288,30.390,69.610,48.767,51.233,25.58,0.950,bicubic,-50.960,-46.975,-89 +resnet50.d_in1k,224,30.378,69.622,48.162,51.838,25.56,0.950,bicubic,-49.526,-46.986,+107 +ecaresnetlight.miil_in1k,288,30.368,69.632,49.166,50.834,30.16,0.950,bicubic,-51.048,-46.628,-101 +ecaresnet101d_pruned.miil_in1k,288,30.364,69.636,48.812,51.188,24.88,0.950,bicubic,-51.642,-47.352,-185 +tf_efficientnet_b5.in1k,456,30.340,69.659,49.779,50.221,30.39,0.934,bicubic,-52.825,-46.751,-366 +visformer_small.in1k,224,30.329,69.671,48.315,51.685,40.22,0.900,bicubic,-51.767,-47.561,-198 +tf_efficientnetv2_b2.in1k,208,30.313,69.687,49.044,50.956,10.10,0.890,bicubic,-48.893,-45.558,+187 +resnet101.a1_in1k,288,30.311,69.689,46.554,53.446,44.55,1.000,bicubic,-52.011,-49.074,-237 +regnety_040.ra3_in1k,288,30.305,69.695,48.885,51.115,20.65,1.000,bicubic,-52.753,-47.613,-351 +mobilevitv2_175.cvnets_in22k_ft_in1k,256,30.274,69.726,49.295,50.705,14.25,0.888,bicubic,-51.670,-46.498,-177 +efficientformerv2_s1.snap_dist_in1k,224,30.262,69.738,49.209,50.791,6.19,0.950,bicubic,-49.422,-45.481,+126 +resnet50.c2_in1k,224,30.252,69.748,48.474,51.526,25.56,0.950,bicubic,-49.616,-46.392,+102 +regnetx_160.tv2_in1k,224,30.252,69.748,47.047,52.953,54.28,0.965,bicubic,-52.324,-49.008,-278 +vit_relpos_base_patch32_plus_rpn_256.sw_in1k,256,30.221,69.779,48.712,51.288,119.42,0.900,bicubic,-49.275,-45.402,+142 +resnet50.b1k_in1k,288,30.207,69.793,49.195,50.805,25.56,1.000,bicubic,-50.499,-46.237,-11 +cs3sedarknet_l.c2ns_in1k,256,30.191,69.809,49.529,50.471,21.91,0.887,bicubic,-51.029,-46.277,-87 +fastvit_s12.apple_dist_in1k,256,30.187,69.813,48.948,51.052,9.47,0.900,bicubic,-50.887,-46.330,-66 +seresnext50_32x4d.racm_in1k,288,30.170,69.830,49.093,50.907,27.56,0.950,bicubic,-52.016,-47.055,-222 +resnet50.b2k_in1k,288,30.160,69.840,48.285,51.715,25.56,1.000,bicubic,-50.310,-47.023,+14 +wide_resnet50_2.tv2_in1k,224,30.150,69.850,48.358,51.642,68.88,0.965,bilinear,-51.448,-47.406,-150 +efficientnet_b0.ra4_e3600_r224_in1k,256,30.136,69.864,49.024,50.976,5.29,1.000,bicubic,-49.234,-45.728,+149 +regnety_016.tv2_in1k,224,30.124,69.876,49.268,50.732,11.20,0.965,bicubic,-50.572,-46.072,-16 +resnet50d.ra4_e3600_r224_in1k,288,30.124,69.876,48.616,51.384,25.58,1.000,bicubic,-51.706,-47.304,-174 +resnet101.tv2_in1k,176,30.097,69.903,48.091,51.909,44.55,0.875,bilinear,-49.809,-46.759,+83 +nf_regnet_b1.ra2_in1k,256,30.087,69.913,50.172,49.828,10.22,0.900,bicubic,-48.635,-44.214,+212 +seresnet50.ra2_in1k,224,30.085,69.915,49.319,50.681,28.09,0.875,bicubic,-50.175,-45.749,+45 +convmixer_1024_20_ks9_p14.in1k,224,30.067,69.933,49.914,50.086,24.38,0.960,bicubic,-46.877,-43.450,+353 +dpn68b.ra_in1k,288,30.067,69.933,48.183,51.817,12.61,1.000,bicubic,-49.277,-46.243,+145 +halo2botnet50ts_256.a1h_in1k,256,30.044,69.956,48.494,51.506,22.64,0.950,bicubic,-52.040,-47.164,-219 +efficientnet_el.ra_in1k,300,30.042,69.958,48.836,51.164,10.59,0.904,bicubic,-51.264,-46.704,-115 +legacy_senet154.in1k,224,30.034,69.966,48.016,51.984,115.09,0.875,bilinear,-51.292,-47.480,-117 +tf_efficientnet_b2.aa_in1k,260,30.014,69.986,49.614,50.386,9.11,0.890,bicubic,-50.068,-45.298,+59 +xcit_tiny_12_p16_224.fb_dist_in1k,224,30.010,69.990,49.671,50.329,6.72,1.000,bicubic,-48.568,-44.539,+216 +fbnetv3_d.ra2_in1k,224,29.995,70.005,49.942,50.058,10.31,0.950,bilinear,-48.661,-44.512,+210 +mobilevitv2_150.cvnets_in22k_ft_in1k,256,29.981,70.019,49.272,50.728,10.59,0.888,bicubic,-51.489,-46.400,-143 +dpn98.mx_in1k,224,29.973,70.027,48.172,51.828,61.57,0.875,bicubic,-49.683,-46.470,+105 +resnext50_32x4d.a1h_in1k,288,29.969,70.031,48.232,51.768,25.03,1.000,bicubic,-52.043,-47.700,-219 +resnet101.a2_in1k,224,29.969,70.031,47.000,53.000,44.55,0.950,bicubic,-51.375,-48.198,-125 +resnetv2_50d_gn.ah_in1k,288,29.950,70.050,48.227,51.773,25.57,1.000,bicubic,-52.013,-47.710,-210 +dpn131.mx_in1k,224,29.942,70.058,48.050,51.950,79.25,0.875,bicubic,-49.892,-46.658,+81 +dpn92.mx_in1k,224,29.934,70.066,49.125,50.875,37.67,0.875,bicubic,-50.094,-45.753,+54 +resnetv2_101x1_bit.goog_in21k_ft_in1k,448,29.908,70.092,51.113,48.887,44.54,1.000,bilinear,-52.424,-45.413,-273 +tf_efficientnet_b4.in1k,380,29.885,70.115,49.048,50.952,19.34,0.922,bicubic,-52.723,-46.976,-319 +senet154.gluon_in1k,224,29.883,70.117,47.885,52.115,115.09,0.875,bicubic,-51.375,-47.473,-120 +legacy_xception.tf_in1k,299,29.869,70.131,48.728,51.272,22.86,0.897,bicubic,-49.181,-45.658,+163 +resnet50.tv2_in1k,224,29.869,70.131,48.046,51.954,25.56,0.965,bilinear,-50.975,-47.374,-63 +convnextv2_pico.fcmae_ft_in1k,288,29.867,70.133,48.794,51.206,9.07,0.950,bicubic,-51.189,-46.684,-94 +cs3sedarknet_l.c2ns_in1k,288,29.832,70.168,49.099,50.901,21.91,0.950,bicubic,-51.934,-46.867,-192 +inception_v3.tf_adv_in1k,299,29.820,70.180,47.859,52.141,23.83,0.875,bicubic,-47.776,-45.867,+285 +resnet152.a2_in1k,288,29.814,70.186,45.947,54.053,60.19,1.000,bicubic,-52.806,-49.797,-330 +efficientvit_b1.r224_in1k,224,29.806,70.194,48.246,51.754,9.10,0.950,bicubic,-49.434,-46.048,+139 +efficientnet_b0.ra4_e3600_r224_in1k,224,29.804,70.196,48.914,51.086,5.29,0.900,bicubic,-48.768,-45.424,+198 +vit_base_patch16_384.augreg_in1k,384,29.800,70.200,48.356,51.644,86.86,1.000,bicubic,-51.296,-46.978,-105 +resnetaa50.a1h_in1k,288,29.796,70.204,47.991,52.009,25.56,1.000,bicubic,-51.808,-47.817,-185 +ese_vovnet39b.ra_in1k,288,29.749,70.251,49.054,50.946,24.57,0.950,bicubic,-50.629,-46.644,-3 +resmlp_36_224.fb_in1k,224,29.739,70.261,48.916,51.084,44.69,0.875,bicubic,-50.033,-45.972,+70 +fbnetv3_d.ra2_in1k,256,29.731,70.269,49.476,50.524,10.31,0.950,bilinear,-49.933,-45.480,+83 +edgenext_small_rw.sw_in1k,256,29.727,70.273,49.193,50.807,7.83,0.900,bicubic,-49.863,-45.325,+88 +ecaresnet50t.a1_in1k,224,29.724,70.276,47.527,52.473,25.57,0.950,bicubic,-51.561,-47.623,-139 +lamhalobotnet50ts_256.a1h_in1k,256,29.722,70.278,48.384,51.616,22.57,0.950,bicubic,-51.826,-47.110,-185 +resnet101.a3_in1k,160,29.714,70.286,47.669,52.331,44.55,0.950,bicubic,-48.214,-46.018,+249 +convnext_nano.d1h_in1k,288,29.702,70.298,47.926,52.074,15.59,1.000,bicubic,-51.772,-47.786,-171 +resnet50.ra_in1k,224,29.698,70.302,48.537,51.463,25.56,0.875,bicubic,-49.116,-45.783,+165 +efficientvit_b1.r256_in1k,256,29.690,70.310,48.244,51.756,9.10,1.000,bicubic,-50.054,-46.534,+66 +fastvit_sa12.apple_in1k,256,29.678,70.322,48.572,51.428,11.58,0.900,bicubic,-51.162,-46.772,-82 +resnet50.tv2_in1k,176,29.674,70.326,48.091,51.909,25.56,0.875,bilinear,-49.758,-46.541,+98 +resnet50.c1_in1k,288,29.671,70.329,48.474,51.526,25.56,1.000,bicubic,-51.257,-47.080,-99 +vit_base_patch32_384.augreg_in1k,384,29.661,70.339,49.005,50.995,88.30,1.000,bicubic,-49.093,-45.231,+166 +fastvit_t12.apple_dist_in1k,256,29.645,70.355,48.517,51.483,7.55,0.900,bicubic,-50.719,-46.525,-15 +efficientnet_b2.ra_in1k,256,29.643,70.357,48.881,51.119,9.11,0.875,bicubic,-49.697,-45.695,+104 +resnet50.a1_in1k,224,29.641,70.359,46.737,53.263,25.56,0.950,bicubic,-50.741,-47.861,-21 +resnetblur50.bt_in1k,224,29.623,70.377,48.258,51.742,25.56,0.875,bicubic,-49.683,-46.280,+108 +ecaresnet50d.miil_in1k,288,29.572,70.428,48.987,51.013,25.58,0.950,bicubic,-52.068,-46.899,-208 +resnet50_gn.a1h_in1k,224,29.566,70.434,48.319,51.681,25.56,0.940,bicubic,-50.500,-46.635,+20 +nest_tiny_jx.goog_in1k,224,29.564,70.436,46.990,53.010,17.06,0.875,bicubic,-51.864,-48.636,-175 +cs3darknet_l.c2ns_in1k,256,29.537,70.463,48.380,51.620,21.16,0.887,bicubic,-50.817,-46.924,-21 +resnet152.a3_in1k,224,29.523,70.477,47.032,52.968,60.19,0.950,bicubic,-51.025,-47.972,-54 +gcresnext50ts.ch_in1k,288,29.517,70.483,47.849,52.151,15.67,1.000,bicubic,-51.717,-47.687,-150 +efficientnet_em.ra2_in1k,240,29.496,70.504,48.940,51.060,6.90,0.882,bicubic,-49.768,-45.856,+106 +resnext50_32x4d.tv2_in1k,224,29.488,70.512,47.222,52.778,25.03,0.965,bilinear,-51.688,-48.126,-146 +cs3darknet_l.c2ns_in1k,288,29.482,70.518,48.240,51.760,21.16,0.950,bicubic,-51.406,-47.422,-109 +gcresnext50ts.ch_in1k,256,29.458,70.542,47.947,52.053,15.67,0.900,bicubic,-51.150,-47.233,-64 +resnetv2_50.a1h_in1k,288,29.448,70.552,47.494,52.506,25.55,1.000,bicubic,-51.960,-48.218,-178 +resnext101_32x8d.tv_in1k,224,29.442,70.558,48.488,51.512,88.79,0.875,bilinear,-49.871,-46.036,+95 +mobileone_s4.apple_in1k,224,29.439,70.561,47.997,52.003,14.95,0.900,bilinear,-50.011,-46.493,+76 +deit_small_patch16_224.fb_in1k,224,29.429,70.571,48.256,51.744,22.05,0.900,bicubic,-50.433,-46.800,+29 +sebotnet33ts_256.a1h_in1k,256,29.429,70.571,47.161,52.839,13.70,0.940,bicubic,-51.723,-47.998,-151 +nf_regnet_b1.ra2_in1k,288,29.423,70.577,49.421,50.579,10.22,0.900,bicubic,-49.945,-45.305,+83 +resnet50.fb_ssl_yfcc100m_ft_in1k,224,29.419,70.581,49.783,50.217,25.56,0.875,bilinear,-49.833,-44.507,+99 +coat_lite_mini.in1k,224,29.403,70.597,47.672,52.328,11.01,0.900,bicubic,-49.693,-46.920,+112 +cait_xxs24_384.fb_dist_in1k,384,29.393,70.607,48.739,51.261,12.03,1.000,bicubic,-51.569,-46.903,-129 +resnetv2_50d_evos.ah_in1k,288,29.390,70.611,47.272,52.728,25.59,1.000,bicubic,-52.611,-48.626,-272 +repvit_m1.dist_in1k,224,29.384,70.616,48.525,51.475,5.49,0.950,bicubic,-49.158,-45.557,+160 +resnext50_32x4d.a1_in1k,224,29.370,70.630,46.238,53.762,25.03,0.950,bicubic,-51.156,-48.220,-68 +edgenext_small_rw.sw_in1k,320,29.368,70.632,48.728,51.272,7.83,1.000,bicubic,-51.084,-46.478,-56 +resnext50_32x4d.ra_in1k,224,29.360,70.640,47.395,52.605,25.03,0.875,bicubic,-50.440,-47.213,+29 +swin_tiny_patch4_window7_224.ms_in1k,224,29.350,70.650,47.584,52.416,28.29,0.900,bicubic,-52.038,-48.174,-190 +convnext_nano_ols.d1h_in1k,288,29.342,70.658,47.507,52.493,15.65,1.000,bicubic,-52.270,-48.119,-230 +resnet34d.ra2_in1k,224,29.328,70.671,48.431,51.569,21.82,0.875,bicubic,-47.776,-44.945,+269 +regnetz_b16.ra3_in1k,288,29.327,70.673,47.896,52.104,9.72,1.000,bicubic,-51.411,-47.634,-103 +cait_xxs24_224.fb_dist_in1k,224,29.309,70.691,48.525,51.475,11.96,1.000,bicubic,-49.083,-45.809,+171 +eca_resnet33ts.ra2_in1k,288,29.276,70.725,48.910,51.090,19.68,1.000,bicubic,-51.440,-46.472,-101 +resnet50.d_in1k,288,29.270,70.730,47.220,52.780,25.56,1.000,bicubic,-51.742,-48.236,-144 +pvt_v2_b1.in1k,224,29.260,70.740,48.958,51.042,14.01,0.900,bicubic,-49.442,-45.535,+137 +resnet34.a1_in1k,224,29.258,70.742,47.106,52.894,21.80,0.950,bicubic,-47.156,-45.780,+303 +maxvit_rmlp_pico_rw_256.sw_in1k,256,29.248,70.752,47.737,52.263,7.52,0.950,bicubic,-51.302,-47.449,-85 +resnet50.c2_in1k,288,29.244,70.756,47.152,52.848,25.56,1.000,bicubic,-51.612,-48.374,-126 +ecaresnet50d_pruned.miil_in1k,224,29.236,70.764,48.506,51.494,19.94,0.875,bicubic,-50.486,-46.366,+25 +poolformer_s24.sail_in1k,224,29.209,70.791,48.122,51.878,21.39,0.900,bicubic,-51.091,-46.938,-48 +gcvit_xxtiny.in1k,224,29.197,70.803,48.374,51.626,12.00,0.875,bicubic,-50.553,-46.686,+18 +tresnet_l.miil_in1k_448,448,29.183,70.817,47.262,52.738,55.99,0.875,bilinear,-53.095,-48.726,-329 +seresnet50.ra2_in1k,288,29.150,70.850,47.725,52.275,28.09,0.950,bicubic,-52.132,-47.927,-191 +inception_v3.gluon_in1k,299,29.140,70.860,46.953,53.047,23.83,0.875,bicubic,-49.664,-47.421,+116 +lambda_resnet50ts.a1h_in1k,256,29.128,70.872,46.965,53.035,21.54,0.950,bicubic,-52.058,-48.131,-181 +eca_resnet33ts.ra2_in1k,256,29.099,70.901,48.824,51.176,19.68,0.900,bicubic,-50.993,-46.156,-25 +resnet50d.a1_in1k,224,29.099,70.901,46.004,53.996,25.58,0.950,bicubic,-51.631,-48.674,-117 +resnet101.a2_in1k,288,29.095,70.905,45.733,54.267,44.55,1.000,bicubic,-53.129,-50.005,-328 +cs3darknet_focus_l.c2ns_in1k,256,29.077,70.923,47.672,52.328,21.15,0.887,bicubic,-51.175,-47.626,-46 +xception71.tf_in1k,299,29.069,70.931,47.395,52.605,42.34,0.903,bicubic,-50.839,-47.445,-15 +convnext_pico_ols.d1_in1k,224,29.046,70.954,47.961,52.039,9.06,0.950,bicubic,-50.496,-46.745,+31 +resnext50_32x4d.tv2_in1k,176,29.030,70.970,46.784,53.216,25.03,0.875,bilinear,-50.344,-47.518,+48 +hrnet_w64.ms_in1k,224,29.022,70.978,47.101,52.899,128.06,0.875,bilinear,-50.436,-47.547,+37 +resnet34d.ra2_in1k,288,29.014,70.986,48.077,51.923,21.82,0.950,bicubic,-49.426,-46.271,+144 +cs3darknet_focus_l.c2ns_in1k,288,28.979,71.021,47.619,52.381,21.15,0.950,bicubic,-51.931,-48.059,-154 +regnetx_032.tv2_in1k,224,28.975,71.025,47.053,52.947,15.30,0.965,bicubic,-51.951,-48.215,-156 +vit_small_patch32_384.augreg_in21k_ft_in1k,384,28.926,71.074,48.948,51.052,22.92,1.000,bicubic,-51.556,-46.658,-95 +xcit_tiny_12_p8_224.fb_in1k,224,28.916,71.084,47.495,52.505,6.71,1.000,bicubic,-50.796,-47.559,+7 +tf_efficientnet_b0.ns_jft_in1k,224,28.912,71.088,48.958,51.042,5.29,0.875,bicubic,-49.772,-45.413,+114 +resnet101.gluon_in1k,224,28.900,71.100,46.419,53.581,44.55,0.875,bicubic,-50.406,-48.213,+52 +tf_efficientnet_b1.aa_in1k,240,28.890,71.110,47.547,52.453,7.79,0.882,bicubic,-49.950,-46.653,+96 +xception65.tf_in1k,299,28.886,71.114,47.140,52.860,39.92,0.903,bicubic,-50.668,-47.520,+18 +mobilevitv2_150.cvnets_in22k_ft_in1k_384,384,28.853,71.147,47.924,52.076,10.59,1.000,bicubic,-53.753,-48.386,-406 +halonet50ts.a1h_in1k,256,28.843,71.157,46.511,53.489,22.73,0.940,bicubic,-52.807,-49.103,-270 +skresnext50_32x4d.ra_in1k,224,28.843,71.157,46.474,53.526,27.48,0.875,bicubic,-51.323,-48.170,-53 +sehalonet33ts.ra2_in1k,256,28.782,71.218,46.576,53.424,13.69,0.940,bicubic,-52.190,-48.696,-175 +levit_conv_256.fb_dist_in1k,224,28.770,71.230,46.723,53.277,18.89,0.900,bicubic,-52.736,-49.365,-255 +levit_256.fb_dist_in1k,224,28.768,71.231,46.729,53.271,18.89,0.900,bicubic,-52.737,-48.737,-255 +hgnet_tiny.paddle_in1k,288,28.765,71.235,47.737,52.263,14.74,1.000,bicubic,-51.883,-47.805,-126 +tf_efficientnet_lite3.in1k,300,28.765,71.235,47.480,52.520,8.20,0.904,bilinear,-51.067,-47.390,-16 +resnet50.ra_in1k,288,28.765,71.235,47.342,52.658,25.56,0.950,bicubic,-51.095,-47.460,-24 +seresnet50.a1_in1k,224,28.731,71.269,45.847,54.153,28.09,0.950,bicubic,-51.281,-48.859,-45 +mobileone_s3.apple_in1k,224,28.698,71.302,47.539,52.461,10.17,0.900,bilinear,-49.304,-46.371,+161 +darknetaa53.c2ns_in1k,288,28.660,71.340,46.961,53.039,36.02,1.000,bilinear,-51.868,-48.367,-118 +skresnet34.ra_in1k,224,28.657,71.344,47.983,52.017,22.28,0.875,bicubic,-48.300,-45.335,+235 +resnetblur50.bt_in1k,288,28.654,71.346,46.922,53.078,25.56,0.950,bicubic,-51.594,-48.278,-72 +tf_efficientnetv2_b0.in1k,192,28.645,71.355,47.413,52.587,7.14,0.875,bicubic,-48.235,-45.771,+239 +seresnext50_32x4d.gluon_in1k,224,28.643,71.357,46.438,53.562,27.56,0.875,bicubic,-51.275,-48.378,-45 +convnext_pico.d1_in1k,224,28.639,71.361,47.366,52.634,9.05,0.875,bicubic,-50.877,-47.188,+7 +hrnet_w40.ms_in1k,224,28.629,71.371,47.466,52.534,57.56,0.875,bilinear,-50.295,-47.012,+68 +swinv2_tiny_window8_256.ms_in1k,256,28.615,71.385,46.177,53.823,28.35,0.900,bicubic,-53.209,-49.811,-300 +mobilevitv2_175.cvnets_in22k_ft_in1k_384,384,28.609,71.391,47.136,52.864,14.25,1.000,bicubic,-54.319,-49.316,-477 +tf_efficientnet_b3.in1k,300,28.566,71.434,48.016,51.984,12.23,0.904,bicubic,-52.314,-47.310,-175 +tf_efficientnetv2_b1.in1k,192,28.564,71.436,47.452,52.548,8.14,0.882,bicubic,-49.366,-46.370,+156 +tf_efficientnetv2_b0.in1k,224,28.562,71.438,47.146,52.854,7.14,0.875,bicubic,-49.818,-46.880,+119 +resnet152.tv_in1k,224,28.550,71.450,47.146,52.854,60.19,0.875,bilinear,-49.780,-46.990,+121 +poolformerv2_s12.sail_in1k,224,28.543,71.457,47.411,52.589,11.89,1.000,bicubic,-49.465,-46.453,+146 +eva02_tiny_patch14_336.mim_in22k_ft_in1k,336,28.533,71.467,47.545,52.455,5.76,1.000,bicubic,-52.139,-47.981,-147 +xcit_tiny_12_p16_224.fb_in1k,224,28.507,71.493,47.372,52.628,6.72,1.000,bicubic,-48.635,-46.358,+209 +ecaresnet50t.a1_in1k,288,28.470,71.530,45.546,54.454,25.57,1.000,bicubic,-53.642,-50.108,-353 +resnet50d.a2_in1k,224,28.458,71.542,45.513,54.487,25.58,0.950,bicubic,-51.810,-49.129,-91 +ecaresnet50t.a2_in1k,224,28.452,71.548,45.721,54.279,25.57,0.950,bicubic,-52.432,-49.301,-186 +repvgg_b2.rvgg_in1k,224,28.428,71.572,47.036,52.964,89.02,0.875,bilinear,-50.365,-47.378,+69 +tf_efficientnet_b0.ap_in1k,224,28.427,71.573,47.553,52.447,5.29,0.875,bicubic,-48.667,-45.708,+207 +dla102x2.in1k,224,28.411,71.589,46.755,53.245,41.28,0.875,bilinear,-51.037,-47.899,-2 +hrnet_w48.ms_in1k,224,28.405,71.595,47.590,52.410,77.47,0.875,bilinear,-50.919,-46.944,+11 +resnext50_32x4d.gluon_in1k,224,28.403,71.597,45.350,54.650,25.03,0.875,bicubic,-50.951,-49.074,+6 +dla169.in1k,224,28.379,71.621,47.505,52.495,53.39,0.875,bilinear,-50.327,-46.833,+73 +tf_efficientnet_cc_b0_4e.in1k,224,28.358,71.642,47.358,52.642,13.31,0.875,bicubic,-48.966,-45.974,+185 +efficientnet_b2_pruned.in1k,260,28.356,71.644,47.136,52.864,8.31,0.890,bicubic,-51.552,-47.774,-64 +swinv2_cr_tiny_ns_224.sw_in1k,224,28.348,71.652,45.947,54.053,28.33,0.900,bicubic,-53.448,-49.877,-318 +seresnet33ts.ra2_in1k,256,28.336,71.664,47.779,52.221,19.78,0.900,bicubic,-52.036,-47.327,-118 +resnext50_32x4d.ra_in1k,288,28.322,71.678,46.126,53.874,25.03,0.950,bicubic,-52.384,-49.232,-167 +darknet53.c2ns_in1k,288,28.319,71.681,46.888,53.112,41.61,1.000,bicubic,-52.224,-48.538,-149 +ecaresnet50t.a3_in1k,160,28.291,71.709,46.148,53.852,25.57,0.950,bicubic,-49.489,-47.464,+152 +mixnet_xl.ra_in1k,224,28.275,71.725,46.729,53.271,11.90,0.875,bicubic,-52.215,-48.209,-146 +resnet50d.gluon_in1k,224,28.234,71.766,45.922,54.078,25.58,0.875,bicubic,-50.846,-48.536,+29 +seresnet33ts.ra2_in1k,288,28.209,71.791,47.576,52.424,19.78,1.000,bicubic,-52.605,-47.770,-189 +resnet50.a1_in1k,288,28.191,71.809,44.921,55.079,25.56,1.000,bicubic,-53.049,-50.191,-251 +fastvit_s12.apple_in1k,256,28.149,71.850,46.672,53.328,9.47,0.900,bicubic,-51.770,-48.120,-78 +wide_resnet101_2.tv_in1k,224,28.142,71.858,46.560,53.440,126.89,0.875,bilinear,-50.706,-47.752,+44 +resnet101c.gluon_in1k,224,28.128,71.872,45.977,54.023,44.57,0.875,bicubic,-51.414,-48.611,-29 +densenet161.tv_in1k,224,28.116,71.884,46.653,53.347,28.68,0.875,bicubic,-49.234,-47.001,+169 +ecaresnet50d_pruned.miil_in1k,288,28.095,71.906,47.059,52.941,19.94,0.950,bicubic,-52.714,-48.519,-194 +resnext50_32x4d.a1_in1k,288,28.091,71.909,44.825,55.175,25.03,1.000,bicubic,-53.393,-50.337,-297 +resnet34.a1_in1k,288,28.087,71.913,45.717,54.283,21.80,1.000,bicubic,-49.851,-48.031,+123 +regnetx_320.pycls_in1k,224,28.083,71.917,45.124,54.876,107.81,0.875,bicubic,-52.179,-49.888,-116 +regnety_320.pycls_in1k,224,28.075,71.925,45.448,54.552,145.05,0.875,bicubic,-52.721,-49.792,-197 +darknetaa53.c2ns_in1k,256,28.065,71.935,46.592,53.408,36.02,0.887,bilinear,-51.681,-48.310,-59 +gernet_s.idstcv_in1k,224,28.049,71.951,46.757,53.243,8.17,0.875,bilinear,-48.853,-46.379,+194 +fbnetv3_b.ra2_in1k,224,28.038,71.963,47.751,52.249,8.60,0.950,bilinear,-50.122,-46.413,+97 +mobilevitv2_175.cvnets_in1k,256,28.035,71.965,46.100,53.900,14.25,0.888,bicubic,-52.838,-49.160,-213 +resnext50_32x4d.a3_in1k,160,28.016,71.984,45.591,54.409,25.03,0.950,bicubic,-49.718,-47.723,+135 +efficientnet_el_pruned.in1k,300,28.010,71.990,46.796,53.204,10.59,0.904,bicubic,-52.284,-48.422,-130 +levit_conv_192.fb_dist_in1k,224,28.006,71.994,45.884,54.116,10.95,0.900,bicubic,-51.854,-49.086,-77 +levit_192.fb_dist_in1k,224,28.002,71.998,45.880,54.120,10.95,0.900,bicubic,-51.848,-48.924,-76 +vit_base_patch16_224.augreg_in1k,224,27.973,72.027,45.719,54.281,86.57,0.900,bicubic,-51.169,-48.371,+3 +resnext50_32x4d.a2_in1k,224,27.965,72.035,44.446,55.554,25.03,0.950,bicubic,-52.479,-50.184,-155 +fastvit_t12.apple_in1k,256,27.939,72.061,46.393,53.607,7.55,0.900,bicubic,-51.337,-48.177,-15 +resnet101.a3_in1k,224,27.937,72.063,45.023,54.977,44.55,0.950,bicubic,-51.883,-49.591,-75 +resnet50d.a3_in1k,160,27.935,72.065,45.303,54.697,25.58,0.950,bicubic,-49.287,-47.953,+161 +resnet50_gn.a1h_in1k,288,27.931,72.069,46.098,53.902,25.56,0.950,bicubic,-53.277,-49.534,-269 +darknet53.c2ns_in1k,256,27.908,72.092,46.529,53.471,41.61,0.887,bicubic,-52.094,-48.513,-105 +xception41.tf_in1k,299,27.896,72.104,45.908,54.092,26.97,0.903,bicubic,-50.628,-48.390,+51 +resnetrs50.tf_in1k,160,27.865,72.135,46.686,53.314,35.69,0.910,bicubic,-49.985,-47.128,+113 +dpn68b.mx_in1k,224,27.845,72.155,47.364,52.636,12.61,0.875,bicubic,-49.697,-46.478,+135 +regnetx_160.pycls_in1k,224,27.831,72.169,45.619,54.381,54.28,0.875,bicubic,-52.027,-49.205,-88 +res2net101_26w_4s.in1k,224,27.804,72.196,45.185,54.815,45.21,0.875,bilinear,-51.382,-49.279,-11 +seresnet50.a2_in1k,224,27.784,72.216,44.713,55.287,28.09,0.950,bicubic,-52.318,-50.007,-119 +inception_v3.tf_in1k,299,27.782,72.218,45.701,54.299,23.83,0.875,bicubic,-50.084,-47.939,+106 +resnet50d.a1_in1k,288,27.770,72.230,44.395,55.605,25.58,1.000,bicubic,-53.674,-50.829,-314 +repghostnet_200.in1k,224,27.756,72.243,46.313,53.687,9.80,0.875,bicubic,-51.034,-48.023,+21 +tf_efficientnetv2_b1.in1k,240,27.749,72.251,46.574,53.426,8.14,0.882,bicubic,-51.769,-48.008,-59 +mobilevitv2_200.cvnets_in1k,256,27.723,72.277,45.833,54.167,18.45,0.888,bicubic,-53.425,-49.549,-275 +vit_base_patch16_224.sam_in1k,224,27.717,72.283,45.106,54.894,86.57,0.900,bicubic,-52.525,-49.662,-138 +repvgg_b1.rvgg_in1k,224,27.652,72.348,46.511,53.489,57.42,0.875,bilinear,-50.720,-47.597,+59 +fbnetv3_b.ra2_in1k,256,27.650,72.350,46.985,53.015,8.60,0.950,bilinear,-51.504,-47.747,-18 +inception_v3.tv_in1k,299,27.639,72.361,45.253,54.747,23.83,0.875,bicubic,-49.835,-48.221,+127 +convnextv2_femto.fcmae_ft_in1k,224,27.635,72.365,46.822,53.178,5.23,0.875,bicubic,-50.849,-47.172,+42 +hrnet_w44.ms_in1k,224,27.631,72.369,45.843,54.157,67.06,0.875,bilinear,-51.251,-48.531,+4 +gcresnet33ts.ra2_in1k,256,27.607,72.393,46.246,53.754,19.88,0.900,bicubic,-52.471,-48.884,-127 +regnety_160.pycls_in1k,224,27.601,72.399,45.538,54.462,83.59,0.875,bicubic,-52.683,-49.444,-156 +resnet50.am_in1k,224,27.580,72.420,45.361,54.639,25.56,0.875,bicubic,-51.424,-49.030,-10 +resmlp_24_224.fb_in1k,224,27.570,72.430,45.700,54.300,30.02,0.875,bicubic,-51.810,-48.850,-55 +pit_xs_224.in1k,224,27.489,72.511,45.855,54.145,10.62,0.900,bicubic,-50.723,-48.295,+60 +tiny_vit_5m_224.in1k,224,27.487,72.513,45.867,54.133,5.39,0.950,bicubic,-51.709,-48.936,-30 +hrnet_w30.ms_in1k,224,27.472,72.528,46.546,53.454,37.71,0.875,bilinear,-50.742,-47.668,+57 +gcresnet33ts.ra2_in1k,288,27.399,72.601,46.150,53.850,19.88,1.000,bicubic,-53.189,-49.172,-208 +resnet50.a2_in1k,224,27.393,72.607,44.251,55.749,25.56,0.950,bicubic,-52.435,-50.309,-105 +regnetx_080.pycls_in1k,224,27.385,72.615,44.996,55.004,39.57,0.875,bicubic,-51.831,-49.552,-36 +convnext_pico.d1_in1k,288,27.381,72.619,45.664,54.336,9.05,0.950,bicubic,-53.049,-49.396,-185 +hrnet_w32.ms_in1k,224,27.369,72.631,46.012,53.988,41.23,0.875,bilinear,-51.087,-48.174,+33 +vit_small_patch16_384.augreg_in1k,384,27.348,72.652,46.151,53.849,22.20,1.000,bicubic,-53.786,-49.425,-290 +resnet33ts.ra2_in1k,288,27.340,72.660,45.200,54.800,19.68,1.000,bicubic,-52.368,-49.614,-97 +resnet50s.gluon_in1k,224,27.332,72.668,45.253,54.747,25.68,0.875,bicubic,-51.378,-49.189,+5 +res2net50_26w_8s.in1k,224,27.312,72.688,44.815,55.185,48.40,0.875,bilinear,-51.636,-49.465,-19 +convnext_pico_ols.d1_in1k,288,27.303,72.697,45.646,54.354,9.06,1.000,bicubic,-53.155,-49.602,-199 +densenet201.tv_in1k,224,27.279,72.721,46.212,53.788,20.01,0.875,bicubic,-50.005,-47.268,+121 +ecaresnet50t.a2_in1k,288,27.273,72.727,44.074,55.926,25.57,1.000,bicubic,-54.409,-51.458,-376 +ghostnetv2_160.in1k,224,27.263,72.737,46.389,53.611,12.39,0.875,bicubic,-50.573,-47.553,+81 +densenetblur121d.ra_in1k,224,27.230,72.770,46.309,53.691,8.00,0.875,bicubic,-49.342,-46.877,+159 +efficientnet_b1_pruned.in1k,240,27.226,72.774,45.961,54.039,6.33,0.882,bicubic,-51.026,-47.859,+39 +regnety_064.pycls_in1k,224,27.224,72.776,44.855,55.145,30.58,0.875,bicubic,-52.504,-49.909,-110 +resnet33ts.ra2_in1k,256,27.187,72.813,45.391,54.609,19.68,0.900,bicubic,-52.029,-49.185,-51 +tf_efficientnetv2_b2.in1k,260,27.169,72.831,44.577,55.423,10.10,0.890,bicubic,-53.057,-50.433,-167 +resnetrs50.tf_in1k,224,27.155,72.845,45.069,54.931,35.69,0.910,bicubic,-52.761,-49.905,-142 +vit_base_patch32_224.augreg_in1k,224,27.141,72.859,45.191,54.809,88.22,0.900,bicubic,-47.765,-46.579,+210 +seresnet50.a1_in1k,288,27.098,72.902,43.593,56.407,28.09,1.000,bicubic,-54.006,-51.527,-300 +resnet50d.a2_in1k,288,27.094,72.906,43.840,56.160,25.58,1.000,bicubic,-54.074,-51.259,-313 +resnet32ts.ra2_in1k,256,27.081,72.919,45.259,54.741,17.96,0.900,bicubic,-51.974,-49.109,-41 +rexnet_130.nav_in1k,224,27.075,72.925,45.929,54.071,7.56,0.875,bicubic,-52.415,-48.755,-93 +dla102x.in1k,224,27.051,72.949,45.491,54.509,26.31,0.875,bilinear,-51.449,-48.737,+4 +gmixer_24_224.ra3_in1k,224,27.031,72.969,44.373,55.627,24.72,0.875,bicubic,-51.017,-49.281,+45 +resnet101.tv_in1k,224,26.974,73.026,45.240,54.760,44.55,0.875,bilinear,-50.430,-48.312,+97 +resnet32ts.ra2_in1k,288,26.931,73.069,45.065,54.935,17.96,1.000,bicubic,-52.457,-49.611,-88 +resnext50d_32x4d.bt_in1k,224,26.913,73.087,44.393,55.607,25.05,0.875,bicubic,-52.758,-50.485,-116 +rexnet_100.nav_in1k,224,26.872,73.128,45.363,54.637,4.80,0.875,bicubic,-50.974,-48.513,+62 +regnetx_120.pycls_in1k,224,26.870,73.130,44.676,55.324,46.11,0.875,bicubic,-52.738,-50.058,-112 +densenet169.tv_in1k,224,26.862,73.138,45.419,54.581,14.15,0.875,bicubic,-49.060,-47.557,+165 +regnety_120.pycls_in1k,224,26.809,73.191,44.450,55.550,51.82,0.875,bicubic,-53.573,-50.654,-210 +legacy_seresnext101_32x4d.in1k,224,26.802,73.198,43.475,56.525,48.96,0.875,bilinear,-53.472,-51.557,-194 +regnetx_064.pycls_in1k,224,26.792,73.208,44.937,55.063,26.21,0.875,bicubic,-52.268,-49.533,-55 +tinynet_a.in1k,192,26.786,73.214,45.090,54.910,6.19,0.875,bicubic,-50.878,-48.442,+67 +res2net101d.in1k,224,26.729,73.271,44.365,55.635,45.23,0.875,bilinear,-54.525,-50.983,-338 +regnetx_032.pycls_in1k,224,26.705,73.295,45.251,54.749,15.30,0.875,bicubic,-51.461,-48.839,+22 +resnext50_32x4d.a2_in1k,288,26.689,73.311,42.744,57.256,25.03,1.000,bicubic,-54.609,-52.366,-347 +legacy_seresnet152.in1k,224,26.680,73.320,43.956,56.044,66.82,0.875,bilinear,-51.980,-50.416,-23 +densenet121.ra_in1k,224,26.674,73.326,45.896,54.104,7.98,0.875,bicubic,-48.902,-46.752,+167 +efficientvit_m5.r224_in1k,224,26.666,73.334,44.921,55.079,12.47,0.875,bicubic,-50.416,-48.245,+104 +dla60x.in1k,224,26.634,73.366,45.025,54.975,17.35,0.875,bilinear,-51.596,-48.995,+13 +efficientnet_es.ra_in1k,224,26.633,73.368,45.090,54.910,5.44,0.875,bicubic,-51.459,-48.842,+24 +res2net50_26w_6s.in1k,224,26.599,73.401,43.996,56.004,37.05,0.875,bilinear,-51.985,-50.110,-23 +seresnet50.a3_in1k,160,26.591,73.409,44.740,55.260,28.09,0.950,bicubic,-48.509,-47.356,+177 +repvgg_b1g4.rvgg_in1k,224,26.579,73.421,45.090,54.910,39.97,0.875,bilinear,-51.023,-48.754,+60 +resnet50.a3_in1k,160,26.572,73.428,44.224,55.776,25.56,0.950,bicubic,-49.422,-48.270,+146 +coat_lite_tiny.in1k,224,26.554,73.446,44.719,55.281,5.72,0.900,bicubic,-50.994,-49.205,+64 +regnety_080.pycls_in1k,224,26.540,73.460,44.395,55.605,39.18,0.875,bicubic,-53.342,-50.441,-165 +resnet34.a2_in1k,224,26.540,73.460,43.911,56.089,21.80,0.950,bicubic,-48.976,-48.545,+160 +mobilenetv3_large_100.miil_in21k_ft_in1k,224,26.530,73.470,44.530,55.470,5.48,0.875,bilinear,-51.380,-48.354,+34 +ecaresnet26t.ra2_in1k,256,26.497,73.503,44.937,55.063,16.01,0.875,bicubic,-52.389,-49.607,-57 +res2net50_14w_8s.in1k,224,26.489,73.511,44.363,55.637,25.06,0.875,bilinear,-51.657,-49.487,+9 +tf_efficientnet_b0.aa_in1k,224,26.479,73.521,45.646,54.354,5.29,0.875,bicubic,-50.403,-47.624,+103 +tf_efficientnet_b2.in1k,260,26.473,73.527,44.782,55.218,9.11,0.890,bicubic,-53.141,-49.942,-138 +ecaresnet50t.a3_in1k,224,26.454,73.546,43.507,56.493,25.57,0.950,bicubic,-53.094,-51.203,-133 +convnextv2_atto.fcmae_ft_in1k,224,26.440,73.560,44.285,55.715,3.71,0.875,bicubic,-50.206,-48.759,+111 +resnet50.gluon_in1k,224,26.432,73.568,44.051,55.949,25.56,0.875,bicubic,-51.148,-49.675,+53 +mobileone_s2.apple_in1k,224,26.418,73.582,44.554,55.446,7.88,0.900,bilinear,-51.086,-49.110,+57 +convnext_femto.d1_in1k,224,26.387,73.613,44.835,55.165,5.22,0.875,bicubic,-51.121,-48.853,+55 +mobilenetv1_125.ra4_e3600_r224_in1k,224,26.387,73.613,44.627,55.373,6.27,0.900,bicubic,-50.541,-48.589,+92 +tf_efficientnet_el.in1k,300,26.387,73.613,44.245,55.755,10.59,0.904,bicubic,-53.855,-50.873,-213 +lambda_resnet26t.c1_in1k,256,26.361,73.639,44.408,55.592,10.96,0.940,bicubic,-52.765,-50.146,-90 +levit_conv_128.fb_dist_in1k,224,26.361,73.639,44.143,55.857,9.21,0.900,bicubic,-52.127,-50.001,-32 +levit_128.fb_dist_in1k,224,26.349,73.650,44.121,55.879,9.21,0.900,bicubic,-52.137,-49.877,-33 +mobilenetv1_125.ra4_e3600_r224_in1k,256,26.338,73.662,44.534,55.466,6.27,1.000,bicubic,-51.246,-49.260,+44 +resmlp_12_224.fb_distilled_in1k,224,26.322,73.678,44.896,55.104,15.35,0.875,bicubic,-51.626,-48.666,+13 +resmlp_big_24_224.fb_in1k,224,26.316,73.684,43.559,56.441,129.14,0.875,bicubic,-54.718,-51.466,-338 +regnetx_040.pycls_in1k,224,26.263,73.737,44.408,55.592,22.12,0.875,bicubic,-52.231,-49.834,-40 +visformer_tiny.in1k,224,26.257,73.743,44.206,55.794,10.32,0.900,bicubic,-51.903,-50.036,-9 +mobilevitv2_150.cvnets_in1k,256,26.224,73.776,43.829,56.171,10.59,0.888,bicubic,-54.180,-51.213,-250 +convnext_femto_ols.d1_in1k,224,26.186,73.814,44.233,55.767,5.23,0.875,bicubic,-51.658,-49.590,+20 +crossvit_9_dagger_240.in1k,240,26.177,73.823,44.562,55.438,8.78,0.875,bicubic,-50.809,-49.040,+76 +vit_small_patch32_224.augreg_in21k_ft_in1k,224,26.171,73.829,45.128,54.872,22.88,0.900,bicubic,-49.825,-48.144,+118 +seresnet50.a2_in1k,288,26.165,73.835,42.683,57.317,28.09,1.000,bicubic,-54.927,-52.553,-353 +densenetblur121d.ra_in1k,288,26.163,73.837,45.047,54.953,8.00,0.950,bicubic,-51.147,-48.753,+51 +resnet50.a2_in1k,288,26.129,73.871,42.587,57.413,25.56,1.000,bicubic,-54.651,-52.391,-312 +resnet50d.a3_in1k,224,26.114,73.886,42.960,57.040,25.58,0.950,bicubic,-52.628,-51.276,-70 +resnext50_32x4d.a3_in1k,224,26.096,73.904,42.952,57.048,25.03,0.950,bicubic,-53.156,-51.874,-117 +resnet34.a2_in1k,288,26.090,73.910,43.133,56.867,21.80,1.000,bicubic,-51.058,-50.157,+59 +efficientnet_b1.ft_in1k,256,26.084,73.916,44.047,55.953,7.79,1.000,bicubic,-52.714,-50.295,-78 +convnextv2_femto.fcmae_ft_in1k,288,26.070,73.930,44.344,55.656,5.23,0.950,bicubic,-53.261,-50.258,-134 +mobilevitv2_125.cvnets_in1k,256,26.039,73.961,43.697,56.303,7.48,0.888,bicubic,-53.639,-51.147,-172 +lambda_resnet26rpt_256.c1_in1k,256,26.031,73.969,44.232,55.768,10.99,0.940,bicubic,-52.923,-50.190,-97 +dpn68.mx_in1k,224,26.015,73.985,44.082,55.918,12.61,0.875,bicubic,-50.323,-48.908,+99 +hardcorenas_c.miil_green_in1k,224,26.006,73.994,44.855,55.145,5.52,0.875,bilinear,-51.088,-48.337,+58 +fastvit_t8.apple_dist_in1k,256,25.992,74.008,44.424,55.576,4.03,0.900,bicubic,-51.180,-48.850,+51 +repghostnet_150.in1k,224,25.982,74.018,44.369,55.631,6.58,0.875,bicubic,-51.488,-49.129,+31 +hrnet_w18.ms_in1k,224,25.974,74.026,44.801,55.199,21.30,0.875,bilinear,-50.786,-48.645,+75 +hardcorenas_f.miil_green_in1k,224,25.968,74.032,44.236,55.764,8.20,0.875,bilinear,-52.140,-49.564,-25 +vit_small_patch16_224.augreg_in1k,224,25.956,74.043,43.960,56.040,22.05,0.900,bicubic,-52.886,-50.318,-93 +resnext50d_32x4d.bt_in1k,288,25.921,74.079,42.952,57.048,25.05,0.950,bicubic,-54.759,-52.476,-310 +regnety_040.pycls_in1k,224,25.919,74.081,43.850,56.150,20.65,0.875,bicubic,-53.317,-50.814,-129 +hrnet_w18_small_v2.gluon_in1k,224,25.915,74.085,43.817,56.183,15.60,0.875,bicubic,-52.269,-50.095,-36 +regnetx_016.tv2_in1k,224,25.888,74.112,43.357,56.643,9.19,0.965,bicubic,-53.564,-51.415,-162 +densenet121.ra_in1k,288,25.874,74.126,44.904,55.096,7.98,0.950,bicubic,-50.606,-48.470,+83 +resnet26t.ra2_in1k,256,25.874,74.126,43.998,56.002,16.01,0.940,bicubic,-52.010,-49.840,-9 +res2net50_26w_4s.in1k,224,25.868,74.132,43.159,56.841,25.70,0.875,bilinear,-52.118,-50.703,-21 +coat_tiny.in1k,224,25.866,74.134,43.286,56.714,5.50,0.900,bicubic,-52.576,-50.750,-60 +tresnet_m.miil_in1k_448,448,25.860,74.140,42.883,57.117,31.39,0.875,bilinear,-55.850,-52.678,-468 +fastvit_t8.apple_in1k,256,25.850,74.150,44.110,55.890,4.03,0.900,bicubic,-50.334,-48.932,+86 +resnet50c.gluon_in1k,224,25.790,74.210,43.039,56.961,25.58,0.875,bicubic,-52.227,-50.955,-29 +selecsls60.in1k,224,25.748,74.252,44.065,55.935,30.67,0.875,bicubic,-52.238,-49.761,-25 +halonet26t.a1h_in1k,256,25.738,74.262,43.235,56.765,12.48,0.950,bicubic,-53.396,-51.105,-131 +cs3darknet_focus_m.c2ns_in1k,256,25.687,74.313,44.157,55.843,9.30,0.887,bicubic,-51.087,-49.387,+56 +dla60_res2net.in1k,224,25.675,74.325,43.593,56.407,20.85,0.875,bilinear,-52.805,-50.493,-72 +poolformer_s12.sail_in1k,224,25.664,74.336,44.190,55.810,11.92,0.900,bicubic,-51.580,-49.348,+26 +hardcorenas_e.miil_green_in1k,224,25.660,74.340,43.436,56.564,8.07,0.875,bilinear,-52.130,-50.296,-10 +dla60_res2next.in1k,224,25.628,74.372,43.689,56.311,17.03,0.875,bilinear,-52.860,-50.311,-79 +eca_halonext26ts.c1_in1k,256,25.546,74.454,43.221,56.779,10.76,0.940,bicubic,-53.972,-51.488,-183 +ecaresnet26t.ra2_in1k,320,25.538,74.462,43.691,56.309,16.01,0.950,bicubic,-54.362,-51.379,-228 +convnext_femto.d1_in1k,288,25.530,74.470,43.668,56.332,5.22,0.950,bicubic,-53.180,-50.580,-101 +mixnet_l.ft_in1k,224,25.528,74.472,43.489,56.511,7.33,0.875,bicubic,-53.442,-50.691,-127 +resmlp_12_224.fb_in1k,224,25.526,74.474,44.355,55.645,15.35,0.875,bicubic,-51.134,-48.815,+53 +tf_efficientnet_lite1.in1k,240,25.524,74.476,43.611,56.389,5.42,0.882,bicubic,-51.148,-49.621,+51 +cs3darknet_focus_m.c2ns_in1k,288,25.506,74.493,43.764,56.236,9.30,0.950,bicubic,-51.785,-50.206,+13 +resnet50.bt_in1k,224,25.503,74.497,43.145,56.855,25.56,0.875,bicubic,-52.929,-51.125,-75 +res2net50d.in1k,224,25.503,74.497,43.064,56.936,25.72,0.875,bilinear,-54.767,-51.956,-278 +repvgg_a2.rvgg_in1k,224,25.501,74.499,43.890,56.110,28.21,0.875,bilinear,-50.991,-49.126,+60 +bat_resnext26ts.ch_in1k,256,25.501,74.499,43.214,56.786,10.73,0.900,bicubic,-52.779,-50.900,-68 +resnext50_32x4d.tv_in1k,224,25.481,74.519,42.817,57.183,25.03,0.875,bilinear,-52.151,-50.857,-17 +mobilenetv1_100h.ra4_e3600_r224_in1k,224,25.465,74.535,43.850,56.150,5.28,0.875,bicubic,-50.193,-48.654,+80 +botnet26t_256.c1_in1k,256,25.436,74.564,42.628,57.372,12.49,0.950,bicubic,-53.820,-51.902,-163 +regnety_008_tv.tv2_in1k,224,25.424,74.576,43.436,56.564,6.43,0.965,bicubic,-53.232,-50.946,-106 +tf_mixnet_l.in1k,224,25.424,74.576,42.532,57.468,7.33,0.875,bicubic,-53.352,-51.466,-119 +res2next50.in1k,224,25.402,74.598,42.528,57.472,24.67,0.875,bilinear,-52.834,-51.376,-72 +convnext_femto_ols.d1_in1k,288,25.391,74.609,43.176,56.824,5.23,0.950,bicubic,-53.523,-51.372,-136 +hardcorenas_b.miil_green_in1k,224,25.385,74.615,44.165,55.835,5.18,0.875,bilinear,-51.167,-48.601,+45 +resnet34.bt_in1k,224,25.367,74.633,43.070,56.930,21.80,0.875,bicubic,-49.795,-49.350,+91 +efficientformerv2_s0.snap_dist_in1k,224,25.357,74.643,43.931,56.069,3.60,0.950,bicubic,-50.759,-48.923,+59 +resnetv2_50x1_bit.goog_in21k_ft_in1k,448,25.355,74.645,45.373,54.627,25.55,1.000,bilinear,-55.023,-49.987,-307 +wide_resnet50_2.tv_in1k,224,25.330,74.670,42.190,57.810,68.88,0.875,bilinear,-53.150,-52.012,-97 +legacy_seresnet101.in1k,224,25.326,74.674,42.823,57.177,49.33,0.875,bilinear,-53.070,-51.435,-89 +hardcorenas_d.miil_green_in1k,224,25.324,74.676,43.176,56.824,7.50,0.875,bilinear,-52.126,-50.304,-14 +regnety_032.pycls_in1k,224,25.322,74.678,42.935,57.065,19.44,0.875,bicubic,-53.574,-51.493,-142 +dla102.in1k,224,25.320,74.680,43.835,56.165,33.27,0.875,bilinear,-52.698,-50.113,-64 +resnest14d.gluon_in1k,224,25.316,74.684,44.088,55.912,10.61,0.875,bilinear,-50.200,-48.426,+71 +mobilenetv1_100h.ra4_e3600_r224_in1k,256,25.316,74.684,43.872,56.128,5.28,0.950,bicubic,-51.278,-49.394,+33 +selecsls60b.in1k,224,25.314,74.686,43.497,56.503,32.77,0.875,bicubic,-53.096,-50.669,-96 +efficientnet_b1.ft_in1k,224,25.251,74.749,42.990,57.010,7.79,0.875,bicubic,-52.343,-50.640,-32 +legacy_seresnext50_32x4d.in1k,224,25.212,74.788,41.964,58.036,27.56,0.875,bilinear,-53.872,-52.468,-164 +ghostnetv2_130.in1k,224,25.178,74.822,43.294,56.706,8.96,0.875,bicubic,-51.584,-50.066,+21 +mixer_b16_224.goog_in21k_ft_in1k,224,25.145,74.855,41.237,58.763,59.88,0.875,bicubic,-51.495,-50.991,+26 +resnet50.a3_in1k,224,25.068,74.932,41.968,58.032,25.56,0.950,bicubic,-52.984,-51.812,-75 +eca_botnext26ts_256.c1_in1k,256,25.047,74.953,43.037,56.963,10.59,0.950,bicubic,-54.225,-51.557,-188 +res2net50_48w_2s.in1k,224,25.019,74.981,42.217,57.783,25.29,0.875,bilinear,-52.517,-51.347,-32 +efficientnet_b0.ra_in1k,224,25.015,74.985,42.791,57.209,5.29,0.875,bicubic,-52.681,-50.749,-46 +xcit_nano_12_p8_224.fb_dist_in1k,224,24.958,75.042,43.292,56.708,3.05,1.000,bicubic,-51.370,-49.778,+38 +resnet34.gluon_in1k,224,24.954,75.046,42.294,57.706,21.80,0.875,bicubic,-49.620,-49.694,+90 +dla60.in1k,224,24.927,75.073,43.326,56.674,22.04,0.875,bilinear,-52.119,-49.992,-4 +mobilenetv2_120d.ra_in1k,224,24.921,75.079,43.039,56.961,5.83,0.875,bicubic,-52.377,-50.477,-23 +cs3darknet_m.c2ns_in1k,256,24.895,75.105,43.117,56.883,9.31,0.887,bicubic,-52.087,-50.485,-2 +convnextv2_atto.fcmae_ft_in1k,288,24.878,75.122,42.487,57.513,3.71,0.950,bicubic,-52.912,-51.203,-56 +resnet34.bt_in1k,288,24.836,75.164,42.101,57.899,21.80,0.950,bicubic,-51.672,-51.243,+24 +regnety_016.pycls_in1k,224,24.813,75.187,42.618,57.382,11.20,0.875,bicubic,-53.095,-51.106,-69 +seresnet50.a3_in1k,224,24.809,75.191,42.101,57.899,28.09,0.950,bicubic,-52.227,-50.971,-9 +mobilenetv1_100.ra4_e3600_r224_in1k,256,24.797,75.203,43.487,56.513,4.23,0.950,bicubic,-51.289,-49.525,+33 +mobilenetv1_100.ra4_e3600_r224_in1k,224,24.795,75.205,43.457,56.543,4.23,0.875,bicubic,-50.589,-48.855,+57 +resnet34.a3_in1k,160,24.748,75.252,42.583,57.417,21.80,0.950,bicubic,-45.824,-46.939,+141 +pit_ti_distilled_224.in1k,224,24.722,75.278,43.190,56.810,5.10,0.900,bicubic,-49.556,-48.738,+84 +seresnext26ts.ch_in1k,256,24.703,75.297,43.098,56.902,10.39,0.900,bicubic,-53.153,-50.692,-72 +eca_resnext26ts.ch_in1k,256,24.669,75.331,42.868,57.132,10.30,0.900,bicubic,-52.773,-50.708,-41 +cs3darknet_m.c2ns_in1k,288,24.640,75.360,43.009,56.991,9.31,0.950,bicubic,-52.988,-51.009,-58 +resnet50.bt_in1k,288,24.595,75.405,41.478,58.522,25.56,0.950,bicubic,-55.057,-53.430,-249 +eca_resnext26ts.ch_in1k,288,24.593,75.407,42.536,57.464,10.30,1.000,bicubic,-53.423,-51.396,-91 +tf_efficientnet_lite2.in1k,260,24.575,75.425,42.264,57.736,6.09,0.890,bicubic,-52.897,-51.480,-48 +regnetx_016.pycls_in1k,224,24.563,75.437,42.496,57.504,9.19,0.875,bicubic,-52.361,-50.934,-12 +mobilevitv2_100.cvnets_in1k,256,24.552,75.448,42.954,57.046,4.90,0.888,bicubic,-53.540,-51.214,-102 +seresnext26ts.ch_in1k,288,24.522,75.478,42.650,57.350,10.39,1.000,bicubic,-53.770,-51.426,-118 +skresnet18.ra_in1k,224,24.487,75.513,42.561,57.439,11.96,0.875,bicubic,-48.533,-48.613,+96 +hardcorenas_a.miil_green_in1k,224,24.390,75.610,43.349,56.651,5.26,0.875,bilinear,-51.536,-49.137,+24 +tf_efficientnet_lite0.in1k,224,24.381,75.620,42.490,57.510,4.65,0.875,bicubic,-50.466,-49.690,+59 +convnext_atto.d2_in1k,224,24.369,75.631,42.349,57.651,3.70,0.875,bicubic,-51.299,-50.563,+28 +hrnet_w18.ms_aug_in1k,224,24.337,75.663,42.866,57.134,21.30,0.950,bilinear,-53.779,-51.196,-110 +efficientvit_m4.r224_in1k,224,24.290,75.710,41.791,58.209,8.80,0.875,bicubic,-50.056,-50.193,+67 +mobilenetv4_conv_small.e2400_r224_in1k,256,24.255,75.745,42.551,57.449,3.77,0.950,bicubic,-50.389,-49.471,+59 +gcresnext26ts.ch_in1k,288,24.190,75.810,41.347,58.653,10.48,1.000,bicubic,-54.248,-52.687,-136 +convnext_atto_ols.a2_in1k,224,24.159,75.841,42.050,57.950,3.70,0.875,bicubic,-51.743,-50.794,+19 +tf_efficientnet_b1.in1k,240,24.119,75.881,41.520,58.480,7.79,0.882,bicubic,-54.439,-52.582,-155 +resnet18.a1_in1k,224,24.072,75.928,40.919,59.081,11.69,0.950,bicubic,-47.416,-49.157,+110 +xcit_nano_12_p8_384.fb_dist_in1k,384,24.064,75.936,42.035,57.965,3.05,1.000,bicubic,-53.756,-51.995,-87 +resnet50.tv_in1k,224,24.064,75.936,41.329,58.671,25.56,0.875,bilinear,-52.092,-51.537,+6 +levit_128s.fb_dist_in1k,224,24.037,75.963,40.983,59.017,7.78,0.900,bicubic,-52.485,-51.891,-6 +levit_conv_128s.fb_dist_in1k,224,24.035,75.965,40.983,59.017,7.78,0.900,bicubic,-52.499,-51.899,-9 +legacy_seresnet34.in1k,224,24.017,75.983,41.909,58.091,21.96,0.875,bilinear,-50.771,-50.225,+46 +gcresnext26ts.ch_in1k,256,24.017,75.983,41.372,58.628,10.48,0.900,bicubic,-53.799,-52.450,-90 +xcit_nano_12_p16_384.fb_dist_in1k,384,24.001,75.999,42.284,57.716,3.05,1.000,bicubic,-51.467,-50.386,+25 +repghostnet_130.in1k,224,23.966,76.034,41.671,58.329,5.48,0.875,bicubic,-52.400,-51.227,-5 +resnet18d.ra2_in1k,224,23.944,76.056,42.282,57.718,11.71,0.875,bicubic,-48.324,-48.400,+90 +mobilenetv4_conv_small.e2400_r224_in1k,224,23.925,76.075,41.732,58.268,3.77,0.875,bicubic,-49.805,-49.694,+65 +efficientnet_lite0.ra_in1k,224,23.905,76.095,42.131,57.869,4.65,0.875,bicubic,-51.585,-50.383,+20 +resnext26ts.ra2_in1k,256,23.881,76.119,41.119,58.881,10.30,0.900,bicubic,-52.893,-52.019,-30 +efficientnet_es_pruned.in1k,224,23.858,76.142,42.005,57.995,5.44,0.875,bicubic,-51.142,-50.443,+34 +densenet121.tv_in1k,224,23.838,76.162,41.932,58.068,7.98,0.875,bicubic,-50.910,-50.222,+39 +regnetx_008.tv2_in1k,224,23.771,76.229,40.716,59.284,7.26,0.965,bicubic,-53.517,-52.946,-65 +resnet26t.ra2_in1k,320,23.746,76.254,41.345,58.655,16.01,1.000,bicubic,-54.584,-52.701,-148 +mobilenetv2_140.ra_in1k,224,23.693,76.307,41.459,58.541,6.11,0.875,bicubic,-52.835,-51.549,-21 +mixnet_m.ft_in1k,224,23.687,76.313,41.170,58.830,5.01,0.875,bicubic,-53.587,-52.258,-66 +dla34.in1k,224,23.685,76.315,41.555,58.445,15.74,0.875,bilinear,-50.947,-50.497,+38 +legacy_seresnet50.in1k,224,23.640,76.360,40.105,59.895,28.09,0.875,bilinear,-54.004,-53.615,-97 +convnext_atto.d2_in1k,288,23.612,76.388,41.093,58.907,3.70,0.950,bicubic,-53.402,-52.609,-53 +resnext26ts.ra2_in1k,288,23.606,76.394,40.930,59.070,10.30,1.000,bicubic,-53.576,-52.544,-65 +ese_vovnet19b_dw.ra_in1k,224,23.543,76.457,41.276,58.724,6.54,0.875,bicubic,-53.255,-51.996,-43 +resnet34.tv_in1k,224,23.494,76.506,41.380,58.620,21.80,0.875,bilinear,-49.804,-50.042,+58 +tf_mixnet_m.in1k,224,23.473,76.527,40.911,59.089,5.01,0.875,bicubic,-53.491,-52.257,-54 +selecsls42b.in1k,224,23.400,76.600,40.661,59.339,32.46,0.875,bicubic,-53.786,-52.731,-70 +efficientvit_m3.r224_in1k,224,23.396,76.604,40.514,59.486,6.90,0.875,bicubic,-50.012,-50.834,+52 +tf_efficientnet_em.in1k,240,23.388,76.612,40.415,59.585,6.90,0.882,bicubic,-54.748,-53.647,-145 +resnet34.a3_in1k,224,23.355,76.645,40.138,59.862,21.80,0.950,bicubic,-49.627,-50.978,+59 +repvgg_b0.rvgg_in1k,224,23.339,76.661,41.260,58.740,15.82,0.875,bilinear,-51.823,-50.910,+9 +xcit_nano_12_p16_224.fb_dist_in1k,224,23.272,76.728,41.459,58.541,3.05,1.000,bicubic,-49.046,-49.367,+66 +regnety_004.tv2_in1k,224,23.260,76.740,40.873,59.127,4.34,0.965,bicubic,-52.328,-51.825,-6 +convnext_atto_ols.a2_in1k,288,23.137,76.863,40.897,59.103,3.70,0.950,bicubic,-54.083,-52.803,-78 +resnet18.a1_in1k,288,23.074,76.926,39.572,60.428,11.69,1.000,bicubic,-50.090,-51.482,+50 +mobilenetv2_110d.ra_in1k,224,23.070,76.930,40.749,59.251,4.52,0.875,bicubic,-51.984,-51.437,+11 +vit_base_patch32_224.sam_in1k,224,23.054,76.946,39.592,60.408,88.22,0.900,bicubic,-50.652,-51.420,+40 +tinynet_b.in1k,188,23.040,76.960,40.987,59.013,3.73,0.875,bicubic,-51.926,-51.209,+11 +resnet18d.ra2_in1k,288,23.025,76.975,41.123,58.877,11.71,0.950,bicubic,-50.769,-50.711,+36 +mobilenetv4_conv_small.e1200_r224_in1k,256,22.960,77.040,41.062,58.938,3.77,0.950,bicubic,-51.330,-51.050,+24 +repghostnet_111.in1k,224,22.887,77.113,40.508,59.492,4.54,0.875,bicubic,-52.181,-51.676,+4 +mobileone_s1.apple_in1k,224,22.830,77.170,39.887,60.113,4.83,0.900,bilinear,-52.944,-52.901,-22 +deit_tiny_distilled_patch16_224.fb_in1k,224,22.712,77.288,40.775,59.225,5.91,0.900,bicubic,-51.828,-51.119,+18 +mobilenetv3_large_100.ra_in1k,224,22.691,77.309,40.710,59.290,5.48,0.875,bicubic,-53.095,-51.818,-25 +repvgg_a1.rvgg_in1k,224,22.653,77.347,39.881,60.119,14.09,0.875,bilinear,-51.815,-51.959,+17 +mobilenetv3_rw.rmsp_in1k,224,22.632,77.368,40.406,59.594,5.48,0.875,bicubic,-52.982,-52.292,-21 +ghostnetv2_100.in1k,224,22.614,77.386,40.058,59.942,6.16,0.875,bicubic,-52.562,-52.276,-8 +mobilevit_s.cvnets_in1k,256,22.606,77.394,38.863,61.137,5.58,0.900,bicubic,-55.696,-55.303,-177 +edgenext_x_small.in1k,288,22.592,77.408,39.515,60.485,2.34,1.000,bicubic,-53.114,-53.245,-28 +mobilenetv4_conv_small.e1200_r224_in1k,224,22.553,77.447,40.610,59.390,3.77,0.875,bicubic,-50.883,-50.732,+28 +tf_mobilenetv3_large_100.in1k,224,22.553,77.447,39.765,60.235,5.48,0.875,bilinear,-52.961,-52.837,-19 +tf_efficientnet_b0.in1k,224,22.553,77.447,39.596,60.404,5.29,0.875,bicubic,-53.983,-53.414,-57 +xcit_nano_12_p8_224.fb_in1k,224,22.504,77.496,40.795,59.205,3.05,1.000,bicubic,-51.396,-51.351,+20 +tf_efficientnet_es.in1k,224,22.425,77.575,39.114,60.886,5.44,0.875,bicubic,-54.183,-54.062,-63 +hrnet_w18_small_v2.ms_in1k,224,22.368,77.632,39.938,60.062,15.60,0.875,bilinear,-52.730,-52.480,-11 +convit_tiny.fb_in1k,224,22.264,77.736,39.678,60.322,5.71,0.875,bicubic,-50.862,-52.011,+30 +regnetx_004_tv.tv2_in1k,224,22.242,77.757,39.120,60.880,5.50,0.965,bicubic,-52.342,-53.050,+2 +edgenext_x_small.in1k,256,22.188,77.812,39.044,60.956,2.34,0.900,bicubic,-52.692,-53.260,-7 +regnety_008.pycls_in1k,224,22.131,77.870,38.985,61.015,6.26,0.875,bicubic,-54.204,-54.075,-53 +ese_vovnet19b_dw.ra_in1k,288,22.093,77.907,39.480,60.520,6.54,0.950,bicubic,-55.705,-54.298,-143 +seresnext26t_32x4d.bt_in1k,224,22.015,77.985,38.501,61.499,16.81,0.875,bicubic,-55.965,-55.249,-161 +regnetx_008.pycls_in1k,224,21.981,78.019,38.920,61.080,7.26,0.875,bicubic,-53.081,-53.420,-16 +regnety_006.pycls_in1k,224,21.960,78.040,38.951,61.049,6.06,0.875,bicubic,-53.302,-53.575,-25 +semnasnet_100.rmsp_in1k,224,21.956,78.044,38.702,61.298,3.89,0.875,bicubic,-53.508,-53.910,-30 +vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,384,21.938,78.062,39.433,60.567,6.36,1.000,bicubic,-54.024,-53.843,-50 +resnet26d.bt_in1k,224,21.936,78.064,38.631,61.369,16.01,0.875,bicubic,-54.762,-54.525,-80 +resnet18.a2_in1k,224,21.873,78.127,38.466,61.534,11.69,0.950,bicubic,-48.761,-51.020,+53 +pit_ti_224.in1k,224,21.857,78.143,39.517,60.483,4.85,0.900,bicubic,-51.067,-51.895,+23 +pvt_v2_b0.in1k,224,21.840,78.160,40.140,59.860,3.67,0.900,bicubic,-48.816,-50.072,+50 +regnetx_006.pycls_in1k,224,21.745,78.255,38.940,61.060,6.20,0.875,bicubic,-52.139,-52.726,+4 +vit_tiny_patch16_384.augreg_in21k_ft_in1k,384,21.712,78.288,39.321,60.679,5.79,1.000,bicubic,-56.734,-55.231,-212 +crossvit_9_240.in1k,240,21.702,78.298,39.262,60.738,8.55,0.875,bicubic,-52.274,-52.714,-2 +vgg19_bn.tv_in1k,224,21.637,78.363,39.285,60.715,143.68,0.875,bilinear,-52.599,-52.558,-7 +semnasnet_075.rmsp_in1k,224,21.592,78.408,38.947,61.053,2.91,0.875,bicubic,-51.416,-52.179,+14 +resnet18.gluon_in1k,224,21.559,78.441,38.891,61.109,11.69,0.875,bicubic,-49.285,-50.859,+42 +mobilevitv2_075.cvnets_in1k,256,21.549,78.451,38.608,61.392,2.87,0.888,bicubic,-54.055,-54.146,-50 +fbnetc_100.rmsp_in1k,224,21.549,78.451,38.148,61.852,5.57,0.875,bilinear,-53.565,-54.234,-35 +repghostnet_100.in1k,224,21.490,78.510,38.696,61.304,4.07,0.875,bicubic,-52.710,-52.854,-11 +xcit_nano_12_p16_224.fb_in1k,224,21.449,78.551,39.787,60.213,3.05,1.000,bicubic,-48.533,-49.995,+46 +mixnet_s.ft_in1k,224,21.417,78.583,38.228,61.772,4.13,0.875,bicubic,-54.585,-54.572,-68 +ghostnet_100.in1k,224,21.376,78.624,38.128,61.872,5.18,0.875,bicubic,-52.584,-53.414,-10 +mnasnet_100.rmsp_in1k,224,21.370,78.630,37.725,62.275,4.38,0.875,bicubic,-53.292,-54.383,-27 +resnet26.bt_in1k,224,21.295,78.705,38.030,61.970,16.00,0.875,bicubic,-53.997,-54.542,-46 +seresnext26d_32x4d.bt_in1k,224,21.291,78.709,37.326,62.674,16.81,0.875,bicubic,-56.295,-56.284,-154 +resnet18.fb_ssl_yfcc100m_ft_in1k,224,21.290,78.710,39.126,60.874,11.69,0.875,bilinear,-51.346,-52.290,+7 +lcnet_100.ra2_in1k,224,21.284,78.716,38.891,61.109,2.95,0.875,bicubic,-50.844,-51.477,+18 +legacy_seresnext26_32x4d.in1k,224,21.087,78.913,37.641,62.359,16.79,0.875,bicubic,-56.013,-55.691,-124 +crossvit_tiny_240.in1k,240,21.050,78.950,38.061,61.939,7.01,0.875,bicubic,-52.280,-53.849,-6 +efficientvit_m2.r224_in1k,224,21.046,78.954,37.676,62.324,4.19,0.875,bicubic,-49.754,-52.484,+29 +repvgg_a0.rvgg_in1k,224,20.993,79.007,37.601,62.399,9.11,0.875,bilinear,-51.431,-52.913,+4 +resnet18.a2_in1k,288,20.948,79.052,36.847,63.153,11.69,1.000,bicubic,-51.414,-53.769,+5 +regnetx_004.pycls_in1k,224,20.906,79.094,37.562,62.438,5.16,0.875,bicubic,-51.526,-53.286,+1 +seresnext26t_32x4d.bt_in1k,288,20.871,79.129,36.371,63.629,16.81,0.950,bicubic,-57.867,-57.945,-263 +spnasnet_100.rmsp_in1k,224,20.849,79.151,37.922,62.078,4.42,0.875,bilinear,-53.233,-53.906,-26 +legacy_seresnet18.in1k,224,20.830,79.170,37.633,62.367,11.78,0.875,bicubic,-50.912,-52.707,+13 +mobilenetv2_100.ra_in1k,224,20.761,79.239,37.780,62.220,3.50,0.875,bicubic,-52.175,-53.222,-6 +tf_mixnet_s.in1k,224,20.464,79.536,36.629,63.371,4.13,0.875,bicubic,-55.188,-55.999,-73 +vit_tiny_patch16_224.augreg_in21k_ft_in1k,224,20.462,79.538,37.615,62.385,5.72,0.900,bicubic,-54.990,-55.239,-63 +regnety_004.pycls_in1k,224,20.427,79.573,37.030,62.970,4.34,0.875,bicubic,-53.579,-54.726,-30 +tf_mobilenetv3_large_075.in1k,224,20.403,79.597,36.800,63.200,3.99,0.875,bilinear,-53.045,-54.544,-22 +hrnet_w18_small.gluon_in1k,224,20.397,79.603,37.018,62.982,13.19,0.875,bicubic,-53.535,-54.154,-29 +hrnet_w18_small.ms_in1k,224,20.352,79.648,37.089,62.911,13.19,0.875,bilinear,-51.982,-53.597,-5 +resnet26d.bt_in1k,288,20.273,79.727,36.356,63.644,16.01,0.950,bicubic,-57.151,-57.274,-160 +resnet18.tv_in1k,224,20.238,79.762,37.258,62.742,11.69,0.875,bilinear,-49.514,-51.822,+23 +mixer_l16_224.goog_in21k_ft_in1k,224,20.142,79.858,32.966,67.034,208.20,0.875,bicubic,-51.948,-54.684,0 +deit_tiny_patch16_224.fb_in1k,224,20.132,79.868,37.576,62.424,5.72,0.900,bicubic,-52.064,-53.524,-3 +tf_mobilenetv3_large_minimal_100.in1k,224,20.130,79.870,36.914,63.086,3.92,0.875,bilinear,-52.140,-53.748,-8 +seresnext26d_32x4d.bt_in1k,288,20.063,79.937,35.241,64.759,16.81,0.950,bicubic,-58.763,-59.017,-287 +efficientvit_m1.r224_in1k,224,19.975,80.025,36.481,63.519,2.98,0.875,bicubic,-48.377,-52.203,+24 +vgg16_bn.tv_in1k,224,19.965,80.035,36.316,63.684,138.37,0.875,bilinear,-53.391,-55.184,-29 +resnet26.bt_in1k,288,19.759,80.241,35.849,64.151,16.00,0.950,bicubic,-56.619,-57.327,-108 +resnet18.a3_in1k,160,19.700,80.300,35.416,64.584,11.69,0.950,bicubic,-45.964,-50.862,+34 +repghostnet_080.in1k,224,19.476,80.524,35.953,64.047,3.28,0.875,bicubic,-52.760,-54.537,-11 +vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,224,19.356,80.644,36.102,63.898,6.34,0.900,bicubic,-52.464,-54.712,-7 +mobileone_s0.apple_in1k,224,19.301,80.699,35.336,64.664,5.29,0.875,bilinear,-52.097,-54.528,-2 +tinynet_c.in1k,184,19.299,80.701,36.016,63.984,2.46,0.875,bicubic,-51.925,-53.730,-1 +edgenext_xx_small.in1k,288,18.870,81.129,35.181,64.820,1.33,1.000,bicubic,-53.015,-55.354,-11 +edgenext_xx_small.in1k,256,18.611,81.389,34.699,65.301,1.33,0.900,bicubic,-52.505,-55.341,-2 +efficientvit_b0.r224_in1k,224,18.472,81.528,33.237,66.763,3.41,0.950,bicubic,-52.932,-56.197,-7 +resnet18.a3_in1k,224,18.434,81.566,33.445,66.555,11.69,0.950,bicubic,-49.812,-54.713,+15 +mobilevit_xs.cvnets_in1k,256,18.340,81.660,33.235,66.765,2.32,0.900,bicubic,-56.292,-59.113,-64 +lcnet_075.ra2_in1k,224,18.114,81.886,34.363,65.637,2.36,0.875,bicubic,-50.670,-54.025,+9 +vgg19.tv_in1k,224,17.931,82.069,33.066,66.934,143.67,0.875,bilinear,-54.469,-57.812,-28 +vgg13_bn.tv_in1k,224,17.819,82.181,34.047,65.953,133.05,0.875,bilinear,-53.737,-56.325,-14 +resnet10t.c3_in1k,176,17.646,82.354,33.512,66.488,5.44,0.875,bicubic,-49.078,-53.462,+16 +vgg16.tv_in1k,224,17.536,82.464,32.756,67.244,138.36,0.875,bilinear,-54.064,-57.642,-17 +regnety_002.pycls_in1k,224,17.456,82.544,32.461,67.539,3.16,0.875,bicubic,-52.838,-57.073,-4 +vgg11_bn.tv_in1k,224,17.395,82.605,32.952,67.048,132.87,0.875,bilinear,-52.989,-56.856,-6 +resnet14t.c3_in1k,176,17.381,82.619,32.115,67.885,10.08,0.875,bicubic,-53.937,-57.565,-15 +mobilevitv2_050.cvnets_in1k,256,17.348,82.652,33.007,66.993,1.37,0.888,bicubic,-52.810,-56.929,-6 +repghostnet_058.in1k,224,17.198,82.802,32.630,67.370,2.55,0.875,bicubic,-51.736,-55.756,-2 +regnetx_002.pycls_in1k,224,16.972,83.028,32.247,67.753,2.68,0.875,bicubic,-51.788,-56.317,0 +mobilenetv3_small_100.lamb_in1k,224,16.850,83.150,32.524,67.476,2.54,0.875,bicubic,-50.788,-55.126,+5 +mobilenetv2_050.lamb_in1k,224,16.721,83.279,31.897,68.103,1.97,0.875,bicubic,-49.209,-54.205,+10 +resnet10t.c3_in1k,224,16.709,83.291,32.139,67.861,5.44,0.950,bicubic,-51.637,-55.883,-1 +tinynet_d.in1k,152,16.695,83.305,32.477,67.523,2.34,0.875,bicubic,-50.271,-54.587,+4 +efficientvit_m0.r224_in1k,224,16.652,83.348,31.946,68.054,2.35,0.875,bicubic,-46.642,-53.204,+12 +mnasnet_small.lamb_in1k,224,16.628,83.372,31.889,68.111,2.03,0.875,bicubic,-49.568,-54.583,+4 +dla60x_c.in1k,224,16.316,83.684,31.747,68.252,1.32,0.875,bilinear,-51.612,-56.678,-2 +tf_mobilenetv3_small_100.in1k,224,16.273,83.727,31.119,68.881,2.54,0.875,bilinear,-51.659,-56.565,-4 +vgg13.tv_in1k,224,16.125,83.875,30.989,69.011,133.05,0.875,bilinear,-53.815,-58.267,-15 +resnet14t.c3_in1k,224,15.999,84.001,30.040,69.960,10.08,0.950,bicubic,-56.243,-60.278,-41 +vgg11.tv_in1k,224,15.715,84.285,30.464,69.536,132.86,0.875,bilinear,-53.333,-58.168,-15 +repghostnet_050.in1k,224,15.601,84.399,30.221,69.779,2.31,0.875,bicubic,-51.379,-56.719,-5 +mobilenetv3_small_075.lamb_in1k,224,14.993,85.007,29.743,70.257,2.04,0.875,bicubic,-50.273,-55.723,+2 +tf_mobilenetv3_small_075.in1k,224,14.968,85.032,29.647,70.353,2.04,0.875,bilinear,-50.764,-56.495,-1 +dla46_c.in1k,224,14.744,85.256,29.354,70.646,1.30,0.875,bilinear,-50.136,-56.976,+1 +mobilevit_xxs.cvnets_in1k,256,14.565,85.435,28.725,71.275,1.27,0.900,bicubic,-54.363,-60.215,-18 +dla46x_c.in1k,224,14.402,85.598,29.236,70.764,1.07,0.875,bilinear,-51.606,-57.710,-6 +tf_mobilenetv3_small_minimal_100.in1k,224,14.257,85.743,28.666,71.334,2.04,0.875,bilinear,-48.637,-55.618,+1 +lcnet_050.ra2_in1k,224,14.237,85.763,28.531,71.469,1.88,0.875,bicubic,-48.893,-55.869,-1 +tinynet_e.in1k,106,12.743,87.257,26.495,73.505,2.04,0.875,bicubic,-47.131,-55.275,0 +mobilenetv3_small_050.lamb_in1k,224,11.004,88.996,23.416,76.584,1.59,0.875,bicubic,-46.920,-56.726,0 +test_byobnet.r160_in1k,160,7.469,92.531,17.552,82.448,0.46,0.875,bicubic,-37.931,-53.058,+1 +test_efficientnet.r160_in1k,160,7.206,92.794,16.758,83.242,0.36,0.875,bicubic,-39.218,-54.200,-1 +test_vit.r160_in1k,160,4.814,95.186,11.802,88.198,0.37,0.875,bicubic,-36.018,-55.404,0 diff --git a/pytorch-image-models/setup.cfg b/pytorch-image-models/setup.cfg new file mode 100644 index 0000000000000000000000000000000000000000..55b106b0c4098bc447acb110592c2b24123fbd27 --- /dev/null +++ b/pytorch-image-models/setup.cfg @@ -0,0 +1,9 @@ +[dist_conda] + +conda_name_differences = 'torch:pytorch' +channels = pytorch +noarch = True + +[metadata] + +url = "https://github.com/huggingface/pytorch-image-models" \ No newline at end of file diff --git a/pytorch-image-models/tests/__init__.py b/pytorch-image-models/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/pytorch-image-models/tests/test_layers.py b/pytorch-image-models/tests/test_layers.py new file mode 100644 index 0000000000000000000000000000000000000000..2cc8420abf3eb4cc9bba88ea15bcbf36a1e5477d --- /dev/null +++ b/pytorch-image-models/tests/test_layers.py @@ -0,0 +1,121 @@ +import torch +import torch.nn as nn + +from timm.layers import create_act_layer, set_layer_config, get_act_layer, get_act_fn + +import importlib +import os + +torch_backend = os.environ.get('TORCH_BACKEND') +if torch_backend is not None: + importlib.import_module(torch_backend) +torch_device = os.environ.get('TORCH_DEVICE', 'cpu') + +class MLP(nn.Module): + def __init__(self, act_layer="relu", inplace=True): + super(MLP, self).__init__() + self.fc1 = nn.Linear(1000, 100) + self.act = create_act_layer(act_layer, inplace=inplace) + self.fc2 = nn.Linear(100, 10) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.fc2(x) + return x + + +def _run_act_layer_grad(act_type, inplace=True): + x = torch.rand(10, 1000) * 10 + m = MLP(act_layer=act_type, inplace=inplace) + + def _run(x, act_layer=''): + if act_layer: + # replace act layer if set + m.act = create_act_layer(act_layer, inplace=inplace) + out = m(x) + l = (out - 0).pow(2).sum() + return l + + x = x.to(device=torch_device) + m.to(device=torch_device) + + out_me = _run(x) + + with set_layer_config(scriptable=True): + out_jit = _run(x, act_type) + + assert torch.isclose(out_jit, out_me) + + with set_layer_config(no_jit=True): + out_basic = _run(x, act_type) + + assert torch.isclose(out_basic, out_jit) + + +def test_swish_grad(): + for _ in range(100): + _run_act_layer_grad('swish') + + +def test_mish_grad(): + for _ in range(100): + _run_act_layer_grad('mish') + + +def test_hard_sigmoid_grad(): + for _ in range(100): + _run_act_layer_grad('hard_sigmoid', inplace=None) + + +def test_hard_swish_grad(): + for _ in range(100): + _run_act_layer_grad('hard_swish') + + +def test_hard_mish_grad(): + for _ in range(100): + _run_act_layer_grad('hard_mish') + +def test_get_act_layer_empty_string(): + # Empty string should return None + assert get_act_layer('') is None + + +def test_create_act_layer_inplace_error(): + class NoInplaceAct(nn.Module): + def __init__(self): + super().__init__() + def forward(self, x): + return x + + # Should recover when inplace arg causes TypeError + layer = create_act_layer(NoInplaceAct, inplace=True) + assert isinstance(layer, NoInplaceAct) + + +def test_create_act_layer_edge_cases(): + # Test None input + assert create_act_layer(None) is None + + # Test TypeError handling for inplace + class CustomAct(nn.Module): + def __init__(self, **kwargs): + super().__init__() + def forward(self, x): + return x + + result = create_act_layer(CustomAct, inplace=True) + assert isinstance(result, CustomAct) + + +def test_get_act_fn_callable(): + def custom_act(x): + return x + assert get_act_fn(custom_act) is custom_act + + +def test_get_act_fn_none(): + assert get_act_fn(None) is None + assert get_act_fn('') is None + diff --git a/pytorch-image-models/tests/test_models.py b/pytorch-image-models/tests/test_models.py new file mode 100644 index 0000000000000000000000000000000000000000..0b7303c54893ea3b7e19527cb946594b10824191 --- /dev/null +++ b/pytorch-image-models/tests/test_models.py @@ -0,0 +1,710 @@ +"""Run tests for all models + +Tests that run on CI should have a specific marker, e.g. @pytest.mark.base. This +marker is used to parallelize the CI runs, with one runner for each marker. + +If new tests are added, ensure that they use one of the existing markers +(documented in pyproject.toml > pytest > markers) or that a new marker is added +for this set of tests. If using a new marker, adjust the test matrix in +.github/workflows/tests.yml to run tests with this new marker, otherwise the +tests will be skipped on CI. + +""" + +import pytest +import torch +import platform +import os +import fnmatch + +_IS_MAC = platform.system() == 'Darwin' + +try: + from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names, NodePathTracer + has_fx_feature_extraction = True +except ImportError: + has_fx_feature_extraction = False + +import timm +from timm import list_models, list_pretrained, create_model, set_scriptable, get_pretrained_cfg_value +from timm.layers import Format, get_spatial_dim, get_channel_dim +from timm.models import get_notrace_modules, get_notrace_functions + +import importlib +import os + +torch_backend = os.environ.get('TORCH_BACKEND') +if torch_backend is not None: + importlib.import_module(torch_backend) +torch_device = os.environ.get('TORCH_DEVICE', 'cpu') +timeout = os.environ.get('TIMEOUT') +timeout120 = int(timeout) if timeout else 120 +timeout240 = int(timeout) if timeout else 240 +timeout360 = int(timeout) if timeout else 360 + +if hasattr(torch._C, '_jit_set_profiling_executor'): + # legacy executor is too slow to compile large models for unit tests + # no need for the fusion performance here + torch._C._jit_set_profiling_executor(True) + torch._C._jit_set_profiling_mode(False) + +# models with forward_intermediates() and support for FeatureGetterNet features_only wrapper +FEAT_INTER_FILTERS = [ + 'vision_transformer', 'vision_transformer_sam', 'vision_transformer_hybrid', 'vision_transformer_relpos', + 'beit', 'mvitv2', 'eva', 'cait', 'xcit', 'volo', 'twins', 'deit', 'swin_transformer', 'swin_transformer_v2', + 'swin_transformer_v2_cr', 'maxxvit', 'efficientnet', 'mobilenetv3', 'levit', 'efficientformer', 'resnet', + 'regnet', 'byobnet', 'byoanet', 'mlp_mixer', 'hiera', 'fastvit', 'hieradet_sam2' +] + +# transformer / hybrid models don't support full set of spatial / feature APIs and/or have spatial output. +NON_STD_FILTERS = [ + 'vit_*', 'tnt_*', 'pit_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*', + 'convit_*', 'levit*', 'visformer*', 'deit*', 'xcit_*', 'crossvit_*', 'beit*', + 'poolformer_*', 'volo_*', 'sequencer2d_*', 'mvitv2*', 'gcvit*', 'efficientformer*', 'sam_hiera*', + 'eva_*', 'flexivit*', 'eva02*', 'samvit_*', 'efficientvit_m*', 'tiny_vit_*', 'hiera_*', 'vitamin*', 'test_vit*', +] +NUM_NON_STD = len(NON_STD_FILTERS) + +# exclude models that cause specific test failures +if 'GITHUB_ACTIONS' in os.environ: + # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models + EXCLUDE_FILTERS = [ + '*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm', '*101x3_bitm', '*50x3_bitm', + '*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*', '*efficientnetv2_xl*', + '*resnetrs350*', '*resnetrs420*', 'xcit_large_24_p8*', '*huge*', '*giant*', '*gigantic*', + '*enormous*', 'maxvit_xlarge*', 'regnet*1280', 'regnet*2560'] + NON_STD_EXCLUDE_FILTERS = ['*huge*', '*giant*', '*gigantic*', '*enormous*'] +else: + EXCLUDE_FILTERS = ['*enormous*'] + NON_STD_EXCLUDE_FILTERS = ['*gigantic*', '*enormous*'] + +EXCLUDE_JIT_FILTERS = ['hiera_*'] + +TARGET_FWD_SIZE = MAX_FWD_SIZE = 384 +TARGET_BWD_SIZE = 128 +MAX_BWD_SIZE = 320 +MAX_FWD_OUT_SIZE = 448 +TARGET_JIT_SIZE = 128 +MAX_JIT_SIZE = 320 +TARGET_FFEAT_SIZE = 96 +MAX_FFEAT_SIZE = 256 +TARGET_FWD_FX_SIZE = 128 +MAX_FWD_FX_SIZE = 256 +TARGET_BWD_FX_SIZE = 128 +MAX_BWD_FX_SIZE = 224 + + +def _get_input_size(model=None, model_name='', target=None): + if model is None: + assert model_name, "One of model or model_name must be provided" + input_size = get_pretrained_cfg_value(model_name, 'input_size') + fixed_input_size = get_pretrained_cfg_value(model_name, 'fixed_input_size') + min_input_size = get_pretrained_cfg_value(model_name, 'min_input_size') + else: + default_cfg = model.default_cfg + input_size = default_cfg['input_size'] + fixed_input_size = default_cfg.get('fixed_input_size', None) + min_input_size = default_cfg.get('min_input_size', None) + assert input_size is not None + + if fixed_input_size: + return input_size + + if min_input_size: + if target and max(input_size) > target: + input_size = min_input_size + else: + if target and max(input_size) > target: + input_size = tuple([min(x, target) for x in input_size]) + return input_size + + +@pytest.mark.base +@pytest.mark.timeout(timeout240) +@pytest.mark.parametrize('model_name', list_pretrained('test_*')) +@pytest.mark.parametrize('batch_size', [1]) +def test_model_inference(model_name, batch_size): + """Run a single forward pass with each model""" + from PIL import Image + from huggingface_hub import snapshot_download + import tempfile + import safetensors + + model = create_model(model_name, pretrained=True) + model.eval() + pp = timm.data.create_transform(**timm.data.resolve_data_config(model=model)) + + with tempfile.TemporaryDirectory() as temp_dir: + snapshot_download( + repo_id='timm/' + model_name, repo_type='model', local_dir=temp_dir, allow_patterns='test/*' + ) + rand_tensors = safetensors.torch.load_file(os.path.join(temp_dir, 'test', 'rand_tensors.safetensors')) + owl_tensors = safetensors.torch.load_file(os.path.join(temp_dir, 'test', 'owl_tensors.safetensors')) + test_owl = Image.open(os.path.join(temp_dir, 'test', 'test_owl.jpg')) + + with torch.no_grad(): + rand_output = model(rand_tensors['input']) + rand_features = model.forward_features(rand_tensors['input']) + rand_pre_logits = model.forward_head(rand_features, pre_logits=True) + assert torch.allclose(rand_output, rand_tensors['output'], rtol=1e-3, atol=1e-4), 'rand output does not match' + assert torch.allclose(rand_features, rand_tensors['features'], rtol=1e-3, atol=1e-4), 'rand features do not match' + assert torch.allclose(rand_pre_logits, rand_tensors['pre_logits'], rtol=1e-3, atol=1e-4), 'rand pre_logits do not match' + + def _test_owl(owl_input, tol=(1e-3, 1e-4)): + owl_output = model(owl_input) + owl_features = model.forward_features(owl_input) + owl_pre_logits = model.forward_head(owl_features.clone(), pre_logits=True) + assert owl_output.softmax(1).argmax(1) == 24 # owl + assert torch.allclose(owl_output, owl_tensors['output'], rtol=tol[0], atol=tol[1]), 'owl output does not match' + assert torch.allclose(owl_features, owl_tensors['features'], rtol=tol[0], atol=tol[1]), 'owl output does not match' + assert torch.allclose(owl_pre_logits, owl_tensors['pre_logits'], rtol=tol[0], atol=tol[1]), 'owl output does not match' + + _test_owl(owl_tensors['input']) # test with original pp owl tensor + _test_owl(pp(test_owl).unsqueeze(0), tol=(1e-1, 1e-1)) # re-process from original jpg, Pillow output can change a lot btw ver + + +@pytest.mark.base +@pytest.mark.timeout(timeout120) +@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS)) +@pytest.mark.parametrize('batch_size', [1]) +def test_model_forward(model_name, batch_size): + """Run a single forward pass with each model""" + model = create_model(model_name, pretrained=False) + model.eval() + + input_size = _get_input_size(model=model, target=TARGET_FWD_SIZE) + if max(input_size) > MAX_FWD_SIZE: + pytest.skip("Fixed input size model > limit.") + inputs = torch.randn((batch_size, *input_size)) + inputs = inputs.to(torch_device) + model.to(torch_device) + outputs = model(inputs) + + assert outputs.shape[0] == batch_size + assert not torch.isnan(outputs).any(), 'Output included NaNs' + + +@pytest.mark.base +@pytest.mark.timeout(timeout120) +@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS, name_matches_cfg=True)) +@pytest.mark.parametrize('batch_size', [2]) +def test_model_backward(model_name, batch_size): + """Run a single forward pass with each model""" + input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_SIZE) + if max(input_size) > MAX_BWD_SIZE: + pytest.skip("Fixed input size model > limit.") + + model = create_model(model_name, pretrained=False, num_classes=42) + num_params = sum([x.numel() for x in model.parameters()]) + model.train() + + inputs = torch.randn((batch_size, *input_size)) + inputs = inputs.to(torch_device) + model.to(torch_device) + outputs = model(inputs) + if isinstance(outputs, tuple): + outputs = torch.cat(outputs) + outputs.mean().backward() + for n, x in model.named_parameters(): + assert x.grad is not None, f'No gradient for {n}' + num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None]) + + assert outputs.shape[-1] == 42 + assert num_params == num_grad, 'Some parameters are missing gradients' + assert not torch.isnan(outputs).any(), 'Output included NaNs' + + +# models with extra conv/linear layers after pooling +EARLY_POOL_MODELS = ( + timm.models.EfficientVit, + timm.models.EfficientVitLarge, + timm.models.HighPerfGpuNet, + timm.models.GhostNet, + timm.models.MetaNeXt, # InceptionNeXt + timm.models.MobileNetV3, + timm.models.RepGhostNet, + timm.models.VGG, +) + +@pytest.mark.cfg +@pytest.mark.timeout(timeout360) +@pytest.mark.parametrize('model_name', list_models( + exclude_filters=EXCLUDE_FILTERS + NON_STD_FILTERS, include_tags=True)) +@pytest.mark.parametrize('batch_size', [1]) +def test_model_default_cfgs(model_name, batch_size): + """Run a single forward pass with each model""" + model = create_model(model_name, pretrained=False) + model.eval() + model.to(torch_device) + assert getattr(model, 'num_classes') >= 0 + assert getattr(model, 'num_features') > 0 + assert getattr(model, 'head_hidden_size') > 0 + state_dict = model.state_dict() + cfg = model.default_cfg + + pool_size = cfg['pool_size'] + input_size = model.default_cfg['input_size'] + output_fmt = getattr(model, 'output_fmt', 'NCHW') + spatial_axis = get_spatial_dim(output_fmt) + assert len(spatial_axis) == 2 # TODO add 1D sequence support + feat_axis = get_channel_dim(output_fmt) + + if all([x <= MAX_FWD_OUT_SIZE for x in input_size]) and \ + not any([fnmatch.fnmatch(model_name, x) for x in EXCLUDE_FILTERS]): + # output sizes only checked if default res <= 448 * 448 to keep resource down + input_size = tuple([min(x, MAX_FWD_OUT_SIZE) for x in input_size]) + input_tensor = torch.randn((batch_size, *input_size), device=torch_device) + + # test forward_features (always unpooled) & forward_head w/ pre_logits + outputs = model.forward_features(input_tensor) + outputs_pre = model.forward_head(outputs, pre_logits=True) + assert outputs.shape[spatial_axis[0]] == pool_size[0], f'unpooled feature shape {outputs.shape} != config' + assert outputs.shape[spatial_axis[1]] == pool_size[1], f'unpooled feature shape {outputs.shape} != config' + assert outputs.shape[feat_axis] == model.num_features, f'unpooled feature dim {outputs.shape[feat_axis]} != model.num_features {model.num_features}' + assert outputs_pre.shape[1] == model.head_hidden_size, f'pre_logits feature dim {outputs_pre.shape[1]} != model.head_hidden_size {model.head_hidden_size}' + + # test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features + model.reset_classifier(0) + model.to(torch_device) + outputs = model.forward(input_tensor) + assert len(outputs.shape) == 2 + assert outputs.shape[1] == model.head_hidden_size, f'feature dim w/ removed classifier {outputs.shape[1]} != model.head_hidden_size {model.head_hidden_size}' + assert outputs.shape == outputs_pre.shape, f'output shape of pre_logits {outputs_pre.shape} does not match reset_head(0) {outputs.shape}' + + # test model forward after removing pooling and classifier + if not isinstance(model, EARLY_POOL_MODELS): + model.reset_classifier(0, '') # reset classifier and disable global pooling + model.to(torch_device) + outputs = model.forward(input_tensor) + assert len(outputs.shape) == 4 + assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1] + + # test classifier + global pool deletion via __init__ + if 'pruned' not in model_name and not isinstance(model, EARLY_POOL_MODELS): + model = create_model(model_name, pretrained=False, num_classes=0, global_pool='').eval() + model.to(torch_device) + outputs = model.forward(input_tensor) + assert len(outputs.shape) == 4 + assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1] + + # check classifier name matches default_cfg + if cfg.get('num_classes', None): + classifier = cfg['classifier'] + if not isinstance(classifier, (tuple, list)): + classifier = classifier, + for c in classifier: + assert c + ".weight" in state_dict.keys(), f'{c} not in model params' + + # check first conv(s) names match default_cfg + first_conv = cfg['first_conv'] + if isinstance(first_conv, str): + first_conv = (first_conv,) + assert isinstance(first_conv, (tuple, list)) + for fc in first_conv: + assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params' + + +@pytest.mark.cfg +@pytest.mark.timeout(timeout360) +@pytest.mark.parametrize('model_name', list_models(filter=NON_STD_FILTERS, exclude_filters=NON_STD_EXCLUDE_FILTERS, include_tags=True)) +@pytest.mark.parametrize('batch_size', [1]) +def test_model_default_cfgs_non_std(model_name, batch_size): + """Run a single forward pass with each model""" + model = create_model(model_name, pretrained=False) + model.eval() + model.to(torch_device) + assert getattr(model, 'num_classes') >= 0 + assert getattr(model, 'num_features') > 0 + assert getattr(model, 'head_hidden_size') > 0 + state_dict = model.state_dict() + cfg = model.default_cfg + + input_size = _get_input_size(model=model) + if max(input_size) > 320: # FIXME const + pytest.skip("Fixed input size model > limit.") + + input_tensor = torch.randn((batch_size, *input_size), device=torch_device) + feat_dim = getattr(model, 'feature_dim', None) + + outputs = model.forward_features(input_tensor) + outputs_pre = model.forward_head(outputs, pre_logits=True) + if isinstance(outputs, (tuple, list)): + # cannot currently verify multi-tensor output. + pass + else: + if feat_dim is None: + feat_dim = -1 if outputs.ndim == 3 else 1 + assert outputs.shape[feat_dim] == model.num_features + assert outputs_pre.shape[1] == model.head_hidden_size + + # test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features + model.reset_classifier(0) + model.to(torch_device) + outputs = model.forward(input_tensor) + if isinstance(outputs, (tuple, list)): + outputs = outputs[0] + if feat_dim is None: + feat_dim = -1 if outputs.ndim == 3 else 1 + assert outputs.shape[feat_dim] == model.head_hidden_size, 'pooled num_features != config' + assert outputs.shape == outputs_pre.shape + + model = create_model(model_name, pretrained=False, num_classes=0).eval() + model.to(torch_device) + outputs = model.forward(input_tensor) + if isinstance(outputs, (tuple, list)): + outputs = outputs[0] + if feat_dim is None: + feat_dim = -1 if outputs.ndim == 3 else 1 + assert outputs.shape[feat_dim] == model.num_features + + # check classifier name matches default_cfg + if cfg.get('num_classes', None): + classifier = cfg['classifier'] + if not isinstance(classifier, (tuple, list)): + classifier = classifier, + for c in classifier: + assert c + ".weight" in state_dict.keys(), f'{c} not in model params' + + # check first conv(s) names match default_cfg + first_conv = cfg['first_conv'] + if isinstance(first_conv, str): + first_conv = (first_conv,) + assert isinstance(first_conv, (tuple, list)) + for fc in first_conv: + assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params' + + +if 'GITHUB_ACTIONS' not in os.environ: + @pytest.mark.timeout(240) + @pytest.mark.parametrize('model_name', list_models(pretrained=True)) + @pytest.mark.parametrize('batch_size', [1]) + def test_model_load_pretrained(model_name, batch_size): + """Create that pretrained weights load, verify support for in_chans != 3 while doing so.""" + in_chans = 3 if 'pruned' in model_name else 1 # pruning not currently supported with in_chans change + create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=5) + create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=0) + + @pytest.mark.timeout(240) + @pytest.mark.parametrize('model_name', list_models(pretrained=True, exclude_filters=NON_STD_FILTERS)) + @pytest.mark.parametrize('batch_size', [1]) + def test_model_features_pretrained(model_name, batch_size): + """Create that pretrained weights load when features_only==True.""" + create_model(model_name, pretrained=True, features_only=True) + + +@pytest.mark.torchscript +@pytest.mark.timeout(timeout120) +@pytest.mark.parametrize( + 'model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS, name_matches_cfg=True)) +@pytest.mark.parametrize('batch_size', [1]) +def test_model_forward_torchscript(model_name, batch_size): + """Run a single forward pass with each model""" + input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE) + if max(input_size) > MAX_JIT_SIZE: + pytest.skip("Fixed input size model > limit.") + + with set_scriptable(True): + model = create_model(model_name, pretrained=False) + model.eval() + + model = torch.jit.script(model) + model.to(torch_device) + outputs = model(torch.randn((batch_size, *input_size))) + + assert outputs.shape[0] == batch_size + assert not torch.isnan(outputs).any(), 'Output included NaNs' + + +EXCLUDE_FEAT_FILTERS = [ + '*pruned*', # hopefully fix at some point +] + NON_STD_FILTERS +if 'GITHUB_ACTIONS' in os.environ: # and 'Linux' in platform.system(): + # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models + EXCLUDE_FEAT_FILTERS += ['*resnext101_32x32d', '*resnext101_32x16d'] + + +@pytest.mark.features +@pytest.mark.timeout(120) +@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FEAT_FILTERS)) +@pytest.mark.parametrize('batch_size', [1]) +def test_model_forward_features(model_name, batch_size): + """Run a single forward pass with each model in feature extraction mode""" + model = create_model(model_name, pretrained=False, features_only=True) + model.eval() + expected_channels = model.feature_info.channels() + expected_reduction = model.feature_info.reduction() + assert len(expected_channels) >= 3 # all models here should have at least 3 default feat levels + + input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE) + if max(input_size) > MAX_FFEAT_SIZE: + pytest.skip("Fixed input size model > limit.") + output_fmt = getattr(model, 'output_fmt', 'NCHW') + feat_axis = get_channel_dim(output_fmt) + spatial_axis = get_spatial_dim(output_fmt) + import math + + outputs = model(torch.randn((batch_size, *input_size))) + assert len(expected_channels) == len(outputs) + spatial_size = input_size[-2:] + for e, r, o in zip(expected_channels, expected_reduction, outputs): + assert e == o.shape[feat_axis] + assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1 + assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1 + assert o.shape[0] == batch_size + assert not torch.isnan(o).any() + + +@pytest.mark.features +@pytest.mark.timeout(120) +@pytest.mark.parametrize('model_name', list_models(module=FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS + ['*pruned*'])) +@pytest.mark.parametrize('batch_size', [1]) +def test_model_forward_intermediates_features(model_name, batch_size): + """Run a single forward pass with each model in feature extraction mode""" + model = create_model(model_name, pretrained=False, features_only=True, feature_cls='getter') + model.eval() + expected_channels = model.feature_info.channels() + expected_reduction = model.feature_info.reduction() + + input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE) + if max(input_size) > MAX_FFEAT_SIZE: + pytest.skip("Fixed input size model > limit.") + output_fmt = getattr(model, 'output_fmt', 'NCHW') + feat_axis = get_channel_dim(output_fmt) + spatial_axis = get_spatial_dim(output_fmt) + import math + + outputs = model(torch.randn((batch_size, *input_size))) + assert len(expected_channels) == len(outputs) + spatial_size = input_size[-2:] + for e, r, o in zip(expected_channels, expected_reduction, outputs): + print(o.shape) + assert e == o.shape[feat_axis] + assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1 + assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1 + assert o.shape[0] == batch_size + assert not torch.isnan(o).any() + + +@pytest.mark.features +@pytest.mark.timeout(120) +@pytest.mark.parametrize('model_name', list_models(module=FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS + ['*pruned*'])) +@pytest.mark.parametrize('batch_size', [1]) +def test_model_forward_intermediates(model_name, batch_size): + """Run a single forward pass with each model in feature extraction mode""" + model = create_model(model_name, pretrained=False) + model.eval() + feature_info = timm.models.FeatureInfo(model.feature_info, len(model.feature_info)) + expected_channels = feature_info.channels() + expected_reduction = feature_info.reduction() + assert len(expected_channels) >= 3 # all models here should have at least 3 feature levels + + input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE) + if max(input_size) > MAX_FFEAT_SIZE: + pytest.skip("Fixed input size model > limit.") + output_fmt = 'NCHW' # NOTE output_fmt determined by forward_intermediates() arg, not model attribute + feat_axis = get_channel_dim(output_fmt) + spatial_axis = get_spatial_dim(output_fmt) + import math + + output, intermediates = model.forward_intermediates( + torch.randn((batch_size, *input_size)), + output_fmt=output_fmt, + ) + assert len(expected_channels) == len(intermediates) + spatial_size = input_size[-2:] + for e, r, o in zip(expected_channels, expected_reduction, intermediates): + assert e == o.shape[feat_axis] + assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1 + assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1 + assert o.shape[0] == batch_size + assert not torch.isnan(o).any() + + +def _create_fx_model(model, train=False): + # This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode + # So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output + # node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names + tracer_kwargs = dict( + leaf_modules=get_notrace_modules(), + autowrap_functions=get_notrace_functions(), + #enable_cpatching=True, + param_shapes_constant=True + ) + train_nodes, eval_nodes = get_graph_node_names(model, tracer_kwargs=tracer_kwargs) + + eval_return_nodes = [eval_nodes[-1]] + train_return_nodes = [train_nodes[-1]] + if train: + tracer = NodePathTracer(**tracer_kwargs) + graph = tracer.trace(model) + graph_nodes = list(reversed(graph.nodes)) + output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()] + graph_node_names = [n.name for n in graph_nodes] + output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names] + train_return_nodes = [train_nodes[ix] for ix in output_node_indices] + + fx_model = create_feature_extractor( + model, + train_return_nodes=train_return_nodes, + eval_return_nodes=eval_return_nodes, + tracer_kwargs=tracer_kwargs, + ) + return fx_model + + +EXCLUDE_FX_FILTERS = ['vit_gi*', 'hiera*'] +# not enough memory to run fx on more models than other tests +if 'GITHUB_ACTIONS' in os.environ: + EXCLUDE_FX_FILTERS += [ + 'beit_large*', + 'mixer_l*', + '*nfnet_f2*', + '*resnext101_32x32d', + 'resnetv2_152x2*', + 'resmlp_big*', + 'resnetrs270', + 'swin_large*', + 'vgg*', + 'vit_large*', + 'vit_base_patch8*', + 'xcit_large*', + ] + + +@pytest.mark.fxforward +@pytest.mark.timeout(120) +@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS)) +@pytest.mark.parametrize('batch_size', [1]) +def test_model_forward_fx(model_name, batch_size): + """ + Symbolically trace each model and run single forward pass through the resulting GraphModule + Also check that the output of a forward pass through the GraphModule is the same as that from the original Module + """ + if not has_fx_feature_extraction: + pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.") + + model = create_model(model_name, pretrained=False) + model.eval() + + input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE) + if max(input_size) > MAX_FWD_FX_SIZE: + pytest.skip("Fixed input size model > limit.") + with torch.no_grad(): + inputs = torch.randn((batch_size, *input_size)) + outputs = model(inputs) + if isinstance(outputs, tuple): + outputs = torch.cat(outputs) + + model = _create_fx_model(model) + fx_outputs = tuple(model(inputs).values()) + if isinstance(fx_outputs, tuple): + fx_outputs = torch.cat(fx_outputs) + + assert torch.all(fx_outputs == outputs) + assert outputs.shape[0] == batch_size + assert not torch.isnan(outputs).any(), 'Output included NaNs' + + +@pytest.mark.fxbackward +@pytest.mark.timeout(120) +@pytest.mark.parametrize('model_name', list_models( + exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True)) +@pytest.mark.parametrize('batch_size', [2]) +def test_model_backward_fx(model_name, batch_size): + """Symbolically trace each model and run single backward pass through the resulting GraphModule""" + if not has_fx_feature_extraction: + pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.") + + input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE) + if max(input_size) > MAX_BWD_FX_SIZE: + pytest.skip("Fixed input size model > limit.") + + model = create_model(model_name, pretrained=False, num_classes=42) + model.train() + num_params = sum([x.numel() for x in model.parameters()]) + if 'GITHUB_ACTIONS' in os.environ and num_params > 100e6: + pytest.skip("Skipping FX backward test on model with more than 100M params.") + + model = _create_fx_model(model, train=True) + outputs = tuple(model(torch.randn((batch_size, *input_size))).values()) + if isinstance(outputs, tuple): + outputs = torch.cat(outputs) + outputs.mean().backward() + for n, x in model.named_parameters(): + assert x.grad is not None, f'No gradient for {n}' + num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None]) + + assert outputs.shape[-1] == 42 + assert num_params == num_grad, 'Some parameters are missing gradients' + assert not torch.isnan(outputs).any(), 'Output included NaNs' + + +if 'GITHUB_ACTIONS' not in os.environ: + # FIXME this test is causing GitHub actions to run out of RAM and abruptly kill the test process + + # reason: model is scripted after fx tracing, but beit has torch.jit.is_scripting() control flow + EXCLUDE_FX_JIT_FILTERS = [ + 'deit_*_distilled_patch16_224', + 'levit*', + 'pit_*_distilled_224', + ] + EXCLUDE_FX_FILTERS + + + @pytest.mark.timeout(120) + @pytest.mark.parametrize( + 'model_name', list_models( + exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True)) + @pytest.mark.parametrize('batch_size', [1]) + def test_model_forward_fx_torchscript(model_name, batch_size): + """Symbolically trace each model, script it, and run single forward pass""" + if not has_fx_feature_extraction: + pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.") + + input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE) + if max(input_size) > MAX_JIT_SIZE: + pytest.skip("Fixed input size model > limit.") + + with set_scriptable(True): + model = create_model(model_name, pretrained=False) + model.eval() + + model = torch.jit.script(_create_fx_model(model)) + with torch.no_grad(): + outputs = tuple(model(torch.randn((batch_size, *input_size))).values()) + if isinstance(outputs, tuple): + outputs = torch.cat(outputs) + + assert outputs.shape[0] == batch_size + assert not torch.isnan(outputs).any(), 'Output included NaNs' + + @pytest.mark.timeout(120) + @pytest.mark.parametrize('model_name', ["regnetx_002"]) + @pytest.mark.parametrize('batch_size', [1]) + def test_model_forward_torchscript_with_features_fx(model_name, batch_size): + """Create a model with feature extraction based on fx, script it, and run + a single forward pass""" + if not has_fx_feature_extraction: + pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.") + + allowed_models = list_models( + exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, + name_matches_cfg=True + ) + assert model_name in allowed_models, f"{model_name=} not supported for this test" + + input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE) + assert max(input_size) <= MAX_JIT_SIZE, "Fixed input size model > limit. Pick a different model to run this test" + + with set_scriptable(True): + model = create_model(model_name, pretrained=False, features_only=True, feature_cfg={"feature_cls": "fx"}) + model.eval() + + model = torch.jit.script(model) + with torch.no_grad(): + outputs = model(torch.randn((batch_size, *input_size))) + + assert isinstance(outputs, list) + + for tensor in outputs: + assert tensor.shape[0] == batch_size + assert not torch.isnan(tensor).any(), 'Output included NaNs' \ No newline at end of file diff --git a/pytorch-image-models/tests/test_optim.py b/pytorch-image-models/tests/test_optim.py new file mode 100644 index 0000000000000000000000000000000000000000..0d540f66a33aaefa2b1e4094c17be7c1296151c5 --- /dev/null +++ b/pytorch-image-models/tests/test_optim.py @@ -0,0 +1,616 @@ +""" Optimzier Tests + +These tests were adapted from PyTorch' optimizer tests. + +""" +import functools +import importlib +import os +from copy import deepcopy + +import pytest +import torch +from torch.nn import Parameter +from torch.testing._internal.common_utils import TestCase + +from timm.optim import create_optimizer_v2, list_optimizers, get_optimizer_class, get_optimizer_info, OptimInfo +from timm.optim import param_groups_layer_decay, param_groups_weight_decay +from timm.scheduler import PlateauLRScheduler + +torch_backend = os.environ.get('TORCH_BACKEND') +if torch_backend is not None: + importlib.import_module(torch_backend) +torch_device = os.environ.get('TORCH_DEVICE', 'cuda') + +# HACK relying on internal PyTorch test functionality for comparisons that I don't want to write +torch_tc = TestCase() + + +def _test_basic_cases_template(weight, bias, input, constructor, scheduler_constructors): + weight = Parameter(weight) + bias = Parameter(bias) + input = Parameter(input) + optimizer = constructor(weight, bias) + schedulers = [] + for scheduler_constructor in scheduler_constructors: + schedulers.append(scheduler_constructor(optimizer)) + + # to check if the optimizer can be printed as a string + optimizer.__repr__() + + def fn(): + optimizer.zero_grad() + y = weight.mv(input) + if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device(): + y = y.cuda(bias.get_device()) + loss = (y + bias).pow(2).sum() + loss.backward() + return loss + + initial_value = fn().item() + for _i in range(200): + for scheduler in schedulers: + if isinstance(scheduler, PlateauLRScheduler): + val_loss = fn() + scheduler.step(val_loss) + else: + scheduler.step() + optimizer.step(fn) + + assert fn().item() < initial_value + + +def _test_state_dict(weight, bias, input, constructor): + weight = Parameter(weight) + bias = Parameter(bias) + input = Parameter(input) + + def fn_base(optimizer, weight, bias): + optimizer.zero_grad() + i = input_device if weight.device.type != 'cpu' else input + loss = (weight.mv(i) + bias).pow(2).sum() + loss.backward() + return loss + + optimizer = constructor(weight, bias) + fn = functools.partial(fn_base, optimizer, weight, bias) + + # Prime the optimizer + for _i in range(20): + optimizer.step(fn) + # Clone the weights and construct new optimizer for them + with torch.no_grad(): + weight_c = Parameter(weight.clone().detach()) + bias_c = Parameter(bias.clone().detach()) + optimizer_c = constructor(weight_c, bias_c) + fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c) + # Load state dict + state_dict = deepcopy(optimizer.state_dict()) + state_dict_c = deepcopy(optimizer.state_dict()) + optimizer_c.load_state_dict(state_dict_c) + + # Run both optimizations in parallel + for _i in range(20): + optimizer.step(fn) + optimizer_c.step(fn_c) + torch_tc.assertEqual(weight, weight_c) + torch_tc.assertEqual(bias, bias_c) + # Make sure state dict is deterministic with equal but not identical parameters + torch_tc.assertEqual(optimizer.state_dict(), optimizer_c.state_dict()) + # Make sure repeated parameters have identical representation in state dict + optimizer_c.param_groups.extend(optimizer_c.param_groups) + torch_tc.assertEqual(optimizer.state_dict()['param_groups'][-1], optimizer_c.state_dict()['param_groups'][-1]) + + # Check that state dict can be loaded even when we cast parameters + # to a different type and move to a different device. + if torch_device == 'cpu': + return + elif torch_device == 'cuda' and not torch.cuda.is_available(): + return + + with torch.no_grad(): + input_device = Parameter(input.clone().detach().float().to(torch_device)) + weight_device = Parameter(weight.clone().detach().to(torch_device)) + bias_device = Parameter(bias.clone().detach().to(torch_device)) + optimizer_device = constructor(weight_device, bias_device) + fn_device = functools.partial(fn_base, optimizer_device, weight_device, bias_device) + + state_dict = deepcopy(optimizer.state_dict()) + state_dict_c = deepcopy(optimizer.state_dict()) + optimizer_device.load_state_dict(state_dict_c) + + # Make sure state dict wasn't modified + torch_tc.assertEqual(state_dict, state_dict_c) + + for _i in range(20): + optimizer.step(fn) + optimizer_device.step(fn_device) + torch_tc.assertEqual(weight, weight_device) + torch_tc.assertEqual(bias, bias_device) + + # validate deepcopy() copies all public attributes + def getPublicAttr(obj): + return set(k for k in obj.__dict__ if not k.startswith('_')) + + assert getPublicAttr(optimizer) == getPublicAttr(deepcopy(optimizer)) + + +def _test_basic_cases(constructor, scheduler_constructors=None): + if scheduler_constructors is None: + scheduler_constructors = [] + _test_state_dict( + torch.randn(10, 5), + torch.randn(10), + torch.randn(5), + constructor + ) + _test_basic_cases_template( + torch.randn(10, 5), + torch.randn(10), + torch.randn(5), + constructor, + scheduler_constructors + ) + # non-contiguous parameters + _test_basic_cases_template( + torch.randn(10, 5, 2)[..., 0], + torch.randn(10, 2)[..., 0], + torch.randn(5), + constructor, + scheduler_constructors + ) + # CUDA + if torch_device == 'cpu': + return + elif torch_device == 'cuda' and not torch.cuda.is_available(): + return + + _test_basic_cases_template( + torch.randn(10, 5).to(torch_device), + torch.randn(10).to(torch_device), + torch.randn(5).to(torch_device), + constructor, + scheduler_constructors + ) + + +def _test_model(optimizer, params, device=torch.device('cpu'), after_step=0): + weight = torch.tensor( + [[-0.2109, -0.4976], [-0.1413, -0.3420], [-0.2524, 0.6976]], + device=device, requires_grad=True) + bias = torch.tensor([-0.1085, -0.2979, 0.6892], device=device, requires_grad=True) + weight2 = torch.tensor([[-0.0508, -0.3941, -0.2843]], device=device, requires_grad=True) + bias2 = torch.tensor([-0.0711], device=device, requires_grad=True) + input = torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], device=device).reshape(3, 2) + + model = torch.nn.Sequential(torch.nn.Linear(2, 3), + torch.nn.Sigmoid(), + torch.nn.Linear(3, 1), + torch.nn.Sigmoid()) + model.to(device) + + pretrained_dict = model.state_dict() + pretrained_dict['0.weight'] = weight + pretrained_dict['0.bias'] = bias + pretrained_dict['2.weight'] = weight2 + pretrained_dict['2.bias'] = bias2 + model.load_state_dict(pretrained_dict) + + optimizer = create_optimizer_v2(model, opt=optimizer, **params) + + prev_loss = float('inf') + for i in range(20): + optimizer.zero_grad() + output = model(input) + loss = output.sum() + loss.backward() + loss = loss.item() + if i > after_step: + assert loss < prev_loss + prev_loss = loss + optimizer.step() + + +def rosenbrock(tensor): + x, y = tensor + return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2 + + +def drosenbrock(tensor): + x, y = tensor + return torch.tensor((-400 * x * (y - x ** 2) - 2 * (1 - x), 200 * (y - x ** 2))) + + +def _test_rosenbrock(constructor, scheduler_constructors=None): + if scheduler_constructors is None: + scheduler_constructors = [] + params_t = torch.tensor([1.5, 1.5]) + + params = Parameter(params_t) + optimizer = constructor([params]) + schedulers = [] + for scheduler_constructor in scheduler_constructors: + schedulers.append(scheduler_constructor(optimizer)) + + solution = torch.tensor([1, 1]) + initial_dist = params.clone().detach().dist(solution) + + + def get_grad(_param, _sparse_grad, _w): + grad = drosenbrock(params.clone().detach()) + # Depending on w, provide only the x or y gradient + if _sparse_grad: + if _w: + i = torch.tensor([[0, 0]], dtype=torch.int64) + x = grad[0] + v = torch.tensor([x / 4.0, x - x / 4.0]) + else: + i = torch.tensor([[1, 1]], dtype=torch.int64) + y = grad[1] + v = torch.tensor([y - y / 4.0, y / 4.0]) + grad_out = torch.sparse_coo_tensor(i, v, (2,), dtype=v.dtype) + else: + if _w: + grad_out = torch.tensor([grad[0], 0], dtype=_param.dtype) + else: + grad_out = torch.tensor([0, grad[1]], dtype=_param.dtype) + return grad_out + + + def eval(_param, _sparse_grad, _w): + # Depending on w, provide only the x or y gradient + optimizer.zero_grad() + loss = rosenbrock(_param) + loss.backward() + + grad_out = get_grad(_param, _sparse_grad, _w) + with torch.no_grad(): + _param.grad = grad_out.to_dense() + + return loss + + for i in range(2000): + # Do cyclic coordinate descent + w = i % 2 + optimizer.step(functools.partial(eval, params, True, w)) + for scheduler in schedulers: + if isinstance(scheduler, PlateauLRScheduler): + scheduler.step(rosenbrock(params)) + else: + scheduler.step() + + torch_tc.assertLessEqual(params.clone().detach().dist(solution), initial_dist) + + +def _build_params_dict(weight, bias, **kwargs): + return [{'params': [weight]}, dict(params=[bias], **kwargs)] + + +def _build_params_dict_single(weight, bias, **kwargs): + return [dict(params=bias, **kwargs)] + + +@pytest.mark.parametrize('optimizer', list_optimizers(exclude_filters=('fused*', 'bnb*'))) +def test_optim_factory(optimizer): + assert issubclass(get_optimizer_class(optimizer, bind_defaults=False), torch.optim.Optimizer) + + opt_info = get_optimizer_info(optimizer) + assert isinstance(opt_info, OptimInfo) + + lr = (1e-2,) * 4 + if optimizer in ('mars', 'nadam', 'claprop', 'crmsproptf', 'cadafactorbv', 'csgdw', 'clamb'): + lr = (1e-3,) * 4 + elif optimizer in ('cmars',): + lr = (1e-4,) * 4 + + try: + if not opt_info.second_order: # basic tests don't support second order right now + # test basic cases that don't need specific tuning via factory test + _test_basic_cases( + lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=lr[0]) + ) + _test_basic_cases( + lambda weight, bias: create_optimizer_v2( + _build_params_dict(weight, bias, lr=lr[1]), + optimizer, + lr=lr[1] / 10) + ) + _test_basic_cases( + lambda weight, bias: create_optimizer_v2( + _build_params_dict_single(weight, bias, lr=lr[2]), + optimizer, + lr=lr[2] / 10) + ) + _test_basic_cases( + lambda weight, bias: create_optimizer_v2( + _build_params_dict_single(weight, bias, lr=lr[3]), + optimizer) + ) + except TypeError as e: + if 'radamw' in optimizer: + pytest.skip("Expected for 'radamw' (decoupled decay) to fail in older PyTorch versions.") + else: + raise e + + + +#@pytest.mark.parametrize('optimizer', ['sgd', 'momentum']) +# FIXME momentum variant frequently fails in GitHub runner, but never local after many attempts +@pytest.mark.parametrize('optimizer', ['sgd']) +def test_sgd(optimizer): + # _test_basic_cases( + # lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3), + # [lambda opt: StepLR(opt, gamma=0.9, step_size=10)] + # ) + # _test_basic_cases( + # lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3), + # [lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4, warmup_method="linear")] + # ) + # _test_basic_cases( + # lambda weight, bias: optimizer([weight, bias], lr=1e-3), + # [lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4, warmup_method="constant")] + # ) + # _test_basic_cases( + # lambda weight, bias: optimizer([weight, bias], lr=1e-3), + # [lambda opt: StepLR(opt, gamma=0.9, step_size=10), + # lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4)] + # ) + # _test_basic_cases( + # lambda weight, bias: optimizer([weight, bias], lr=1e-3), + # [lambda opt: StepLR(opt, gamma=0.9, step_size=10), + # lambda opt: ReduceLROnPlateau(opt)] + # ) + # _test_basic_cases( + # lambda weight, bias: optimizer([weight, bias], lr=1e-3), + # [lambda opt: StepLR(opt, gamma=0.99, step_size=10), + # lambda opt: ExponentialLR(opt, gamma=0.99), + # lambda opt: ReduceLROnPlateau(opt)] + # ) + _test_basic_cases( + lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=3e-3, momentum=1) + ) + _test_basic_cases( + lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=3e-3, momentum=1, weight_decay=.1) + ) + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) + ) + _test_model(optimizer, dict(lr=1e-3)) + + +@pytest.mark.parametrize('optimizer', ['adamw', 'adam', 'nadam', 'adamax', 'nadamw']) +def test_adam(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) + ) + _test_model(optimizer, dict(lr=5e-2)) + + +@pytest.mark.parametrize('optimizer', ['adopt', 'adoptw']) +def test_adopt(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=3e-3) + ) + _test_model(optimizer, dict(lr=5e-2), after_step=1) # note no convergence in first step for ADOPT + + +@pytest.mark.parametrize('optimizer', ['adan', 'adanw']) +def test_adan(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) + ) + _test_model(optimizer, dict(lr=5e-2), after_step=1) # note no convergence in first step for ADOPT + + +@pytest.mark.parametrize('optimizer', ['adabelief']) +def test_adabelief(optimizer): + _test_basic_cases( + lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1) + ) + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) + ) + _test_model(optimizer, dict(lr=5e-2)) + + +@pytest.mark.parametrize('optimizer', ['radam', 'radabelief']) +def test_rectified(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) + ) + _test_model(optimizer, dict(lr=1e-3)) + + +@pytest.mark.parametrize('optimizer', ['adadelta', 'adagrad']) +def test_adaother(optimizer): + _test_basic_cases( + lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1) + ) + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-1) + ) + _test_model(optimizer, dict(lr=5e-2)) + + +@pytest.mark.parametrize('optimizer', ['adafactor', 'adafactorbv']) +def test_adafactor(optimizer): + _test_basic_cases( + lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1) + ) + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) + ) + _test_model(optimizer, dict(lr=5e-2)) + + +@pytest.mark.parametrize('optimizer', ['lamb', 'lambc']) +def test_lamb(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) + ) + _test_model(optimizer, dict(lr=1e-3)) + + +@pytest.mark.parametrize('optimizer', ['laprop']) +def test_laprop(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-2) + ) + _test_model(optimizer, dict(lr=1e-2)) + + +@pytest.mark.parametrize('optimizer', ['lars', 'larc', 'nlars', 'nlarc']) +def test_lars(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) + ) + _test_model(optimizer, dict(lr=1e-3)) + + +@pytest.mark.parametrize('optimizer', ['madgrad', 'madgradw']) +def test_madgrad(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-2) + ) + _test_model(optimizer, dict(lr=1e-2)) + + +@pytest.mark.parametrize('optimizer', ['mars']) +def test_mars(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) + ) + _test_model(optimizer, dict(lr=5e-2), after_step=1) # note no convergence in first step for ADOPT + + +@pytest.mark.parametrize('optimizer', ['novograd']) +def test_novograd(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) + ) + _test_model(optimizer, dict(lr=1e-3)) + + +@pytest.mark.parametrize('optimizer', ['rmsprop', 'rmsproptf']) +def test_rmsprop(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-2) + ) + _test_model(optimizer, dict(lr=1e-2)) + + +@pytest.mark.parametrize('optimizer', ['adamp']) +def test_adamp(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) + ) + _test_model(optimizer, dict(lr=5e-2)) + + +@pytest.mark.parametrize('optimizer', ['sgdp']) +def test_sgdp(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) + ) + _test_model(optimizer, dict(lr=1e-3)) + + +@pytest.mark.parametrize('optimizer', ['lookahead_sgd', 'lookahead_momentum']) +def test_lookahead_sgd(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) + ) + + +@pytest.mark.parametrize('optimizer', ['lookahead_adamw', 'lookahead_adam']) +def test_lookahead_adam(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) + ) + + +@pytest.mark.parametrize('optimizer', ['lookahead_radam']) +def test_lookahead_radam(optimizer): + _test_rosenbrock( + lambda params: create_optimizer_v2(params, optimizer, lr=1e-4) + ) + + +def test_param_groups_layer_decay_with_end_decay(): + model = torch.nn.Sequential( + torch.nn.Linear(10, 5), + torch.nn.ReLU(), + torch.nn.Linear(5, 2) + ) + + param_groups = param_groups_layer_decay( + model, + weight_decay=0.05, + layer_decay=0.75, + end_layer_decay=0.5, + verbose=True + ) + + assert len(param_groups) > 0 + # Verify layer scaling is applied with end decay + for group in param_groups: + assert 'lr_scale' in group + assert group['lr_scale'] <= 1.0 + assert group['lr_scale'] >= 0.5 + + +def test_param_groups_layer_decay_with_matcher(): + class ModelWithMatcher(torch.nn.Module): + def __init__(self): + super().__init__() + self.layer1 = torch.nn.Linear(10, 5) + self.layer2 = torch.nn.Linear(5, 2) + + def group_matcher(self, coarse=False): + return lambda name: int(name.split('.')[0][-1]) + + model = ModelWithMatcher() + param_groups = param_groups_layer_decay( + model, + weight_decay=0.05, + layer_decay=0.75, + verbose=True + ) + + assert len(param_groups) > 0 + # Verify layer scaling is applied + for group in param_groups: + assert 'lr_scale' in group + assert 'weight_decay' in group + assert len(group['params']) > 0 + + +def test_param_groups_weight_decay(): + model = torch.nn.Sequential( + torch.nn.Linear(10, 5), + torch.nn.ReLU(), + torch.nn.Linear(5, 2) + ) + weight_decay = 0.01 + no_weight_decay_list = ['1.weight'] + + param_groups = param_groups_weight_decay( + model, + weight_decay=weight_decay, + no_weight_decay_list=no_weight_decay_list + ) + + assert len(param_groups) == 2 + assert param_groups[0]['weight_decay'] == 0.0 + assert param_groups[1]['weight_decay'] == weight_decay + + # Verify parameters are correctly grouped + no_decay_params = set(param_groups[0]['params']) + decay_params = set(param_groups[1]['params']) + + for name, param in model.named_parameters(): + if param.ndim <= 1 or name.endswith(".bias") or name in no_weight_decay_list: + assert param in no_decay_params + else: + assert param in decay_params + diff --git a/pytorch-image-models/tests/test_utils.py b/pytorch-image-models/tests/test_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..1e2126eead8cef9bce68e619c23d9074b834d751 --- /dev/null +++ b/pytorch-image-models/tests/test_utils.py @@ -0,0 +1,192 @@ +from torch.nn.modules.batchnorm import BatchNorm2d +from torchvision.ops.misc import FrozenBatchNorm2d + +import timm +import pytest +from timm.utils.model import freeze, unfreeze +from timm.utils.model import ActivationStatsHook +from timm.utils.model import extract_spp_stats + +from timm.utils.model import _freeze_unfreeze +from timm.utils.model import avg_sq_ch_mean, avg_ch_var, avg_ch_var_residual +from timm.utils.model import reparameterize_model +from timm.utils.model import get_state_dict + +def test_freeze_unfreeze(): + model = timm.create_model('resnet18') + + # Freeze all + freeze(model) + # Check top level module + assert model.fc.weight.requires_grad == False + # Check submodule + assert model.layer1[0].conv1.weight.requires_grad == False + # Check BN + assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) + + # Unfreeze all + unfreeze(model) + # Check top level module + assert model.fc.weight.requires_grad == True + # Check submodule + assert model.layer1[0].conv1.weight.requires_grad == True + # Check BN + assert isinstance(model.layer1[0].bn1, BatchNorm2d) + + # Freeze some + freeze(model, ['layer1', 'layer2.0']) + # Check frozen + assert model.layer1[0].conv1.weight.requires_grad == False + assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) + assert model.layer2[0].conv1.weight.requires_grad == False + # Check not frozen + assert model.layer3[0].conv1.weight.requires_grad == True + assert isinstance(model.layer3[0].bn1, BatchNorm2d) + assert model.layer2[1].conv1.weight.requires_grad == True + + # Unfreeze some + unfreeze(model, ['layer1', 'layer2.0']) + # Check not frozen + assert model.layer1[0].conv1.weight.requires_grad == True + assert isinstance(model.layer1[0].bn1, BatchNorm2d) + assert model.layer2[0].conv1.weight.requires_grad == True + + # Freeze/unfreeze BN + # From root + freeze(model, ['layer1.0.bn1']) + assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) + unfreeze(model, ['layer1.0.bn1']) + assert isinstance(model.layer1[0].bn1, BatchNorm2d) + # From direct parent + freeze(model.layer1[0], ['bn1']) + assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) + unfreeze(model.layer1[0], ['bn1']) + assert isinstance(model.layer1[0].bn1, BatchNorm2d) + +def test_activation_stats_hook_validation(): + model = timm.create_model('resnet18') + + def test_hook(model, input, output): + return output.mean().item() + + # Test error case with mismatched lengths + with pytest.raises(ValueError, match="Please provide `hook_fns` for each `hook_fn_locs`"): + ActivationStatsHook( + model, + hook_fn_locs=['layer1.0.conv1', 'layer1.0.conv2'], + hook_fns=[test_hook] + ) + + +def test_extract_spp_stats(): + model = timm.create_model('resnet18') + + def test_hook(model, input, output): + return output.mean().item() + + stats = extract_spp_stats( + model, + hook_fn_locs=['layer1.0.conv1'], + hook_fns=[test_hook], + input_shape=[2, 3, 32, 32] + ) + + assert isinstance(stats, dict) + assert test_hook.__name__ in stats + assert isinstance(stats[test_hook.__name__], list) + assert len(stats[test_hook.__name__]) > 0 + +def test_freeze_unfreeze_bn_root(): + import torch.nn as nn + from timm.layers import BatchNormAct2d + + # Create batch norm layers + bn = nn.BatchNorm2d(10) + bn_act = BatchNormAct2d(10) + + # Test with BatchNorm2d as root + with pytest.raises(AssertionError): + _freeze_unfreeze(bn, mode="freeze") + + # Test with BatchNormAct2d as root + with pytest.raises(AssertionError): + _freeze_unfreeze(bn_act, mode="freeze") + + +def test_activation_stats_functions(): + import torch + + # Create sample input tensor [batch, channels, height, width] + x = torch.randn(2, 3, 4, 4) + + # Test avg_sq_ch_mean + result1 = avg_sq_ch_mean(None, None, x) + assert isinstance(result1, float) + + # Test avg_ch_var + result2 = avg_ch_var(None, None, x) + assert isinstance(result2, float) + + # Test avg_ch_var_residual + result3 = avg_ch_var_residual(None, None, x) + assert isinstance(result3, float) + + +def test_reparameterize_model(): + import torch.nn as nn + + class FusableModule(nn.Module): + def __init__(self): + super().__init__() + self.conv = nn.Conv2d(3, 3, 1) + + def fuse(self): + return nn.Identity() + + class ModelWithFusable(nn.Module): + def __init__(self): + super().__init__() + self.fusable = FusableModule() + self.normal = nn.Linear(10, 10) + + model = ModelWithFusable() + + # Test with inplace=False (should create a copy) + new_model = reparameterize_model(model, inplace=False) + assert isinstance(new_model.fusable, nn.Identity) + assert isinstance(model.fusable, FusableModule) # Original unchanged + + # Test with inplace=True + reparameterize_model(model, inplace=True) + assert isinstance(model.fusable, nn.Identity) + + +def test_get_state_dict_custom_unwrap(): + import torch.nn as nn + + class CustomModel(nn.Module): + def __init__(self): + super().__init__() + self.linear = nn.Linear(10, 10) + + model = CustomModel() + + def custom_unwrap(m): + return m + + state_dict = get_state_dict(model, unwrap_fn=custom_unwrap) + assert 'linear.weight' in state_dict + assert 'linear.bias' in state_dict + + +def test_freeze_unfreeze_string_input(): + model = timm.create_model('resnet18') + + # Test with string input + _freeze_unfreeze(model, 'layer1', mode='freeze') + assert model.layer1[0].conv1.weight.requires_grad == False + + # Test unfreezing with string input + _freeze_unfreeze(model, 'layer1', mode='unfreeze') + assert model.layer1[0].conv1.weight.requires_grad == True + diff --git a/pytorch-image-models/timm/__init__.py b/pytorch-image-models/timm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3d38cdb978f4130e6d02bc9503d1eaa2c1d74e92 --- /dev/null +++ b/pytorch-image-models/timm/__init__.py @@ -0,0 +1,4 @@ +from .version import __version__ +from .layers import is_scriptable, is_exportable, set_scriptable, set_exportable +from .models import create_model, list_models, list_pretrained, is_model, list_modules, model_entrypoint, \ + is_model_pretrained, get_pretrained_cfg, get_pretrained_cfg_value diff --git a/pytorch-image-models/timm/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..81b083bab93c7c3be020c4bcc34ada52dd36f008 Binary files /dev/null and b/pytorch-image-models/timm/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/__pycache__/version.cpython-39.pyc b/pytorch-image-models/timm/__pycache__/version.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f3b26b4c56c50bc8b11a5430ec83547aeab11ad1 Binary files /dev/null and b/pytorch-image-models/timm/__pycache__/version.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__init__.py b/pytorch-image-models/timm/data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4b95fbd174540370f056398137fbf409ad3d7686 --- /dev/null +++ b/pytorch-image-models/timm/data/__init__.py @@ -0,0 +1,15 @@ +from .auto_augment import RandAugment, AutoAugment, rand_augment_ops, auto_augment_policy,\ + rand_augment_transform, auto_augment_transform +from .config import resolve_data_config, resolve_model_data_config +from .constants import * +from .dataset import ImageDataset, IterableImageDataset, AugMixDataset +from .dataset_factory import create_dataset +from .dataset_info import DatasetInfo, CustomDatasetInfo +from .imagenet_info import ImageNetInfo, infer_imagenet_subset +from .loader import create_loader +from .mixup import Mixup, FastCollateMixup +from .readers import create_reader +from .readers import get_img_extensions, is_img_extension, set_img_extensions, add_img_extensions, del_img_extensions +from .real_labels import RealLabelsImagenet +from .transforms import * +from .transforms_factory import create_transform diff --git a/pytorch-image-models/timm/data/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a481ba00b787c821e71874ae15dca69c41bf4c18 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/auto_augment.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/auto_augment.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1e95444af671b16cdb3c867a6fce56dd8dea84c6 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/auto_augment.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/config.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/config.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c3a5b0b29c3255bbb51d692abe741a1b18698e4c Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/config.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/constants.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/constants.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7be7a9e09c42ace5e183f11f08ea81b83694ee24 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/constants.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/dataset.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/dataset.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a9179598aba33a3354cd8c431b8d408bac58e283 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/dataset.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/dataset_factory.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/dataset_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0985a5634cd416cdf463efd66474041d3f23de45 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/dataset_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/dataset_info.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/dataset_info.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2618c9ba5b7344580b7d31be9c92895a159a55b0 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/dataset_info.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/distributed_sampler.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/distributed_sampler.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..07ac007df9aaa05488b8421a591de24066769282 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/distributed_sampler.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/imagenet_info.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/imagenet_info.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2dbfe89f3649893375d710e59a0a959095fe2ada Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/imagenet_info.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/loader.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/loader.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6ce9dc7d4092d9f741d6cf7a8ed59c2bafe2831b Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/loader.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/mixup.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/mixup.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9a72a10dd540b174adfef5a4bd3b781db43dc8b2 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/mixup.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/random_erasing.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/random_erasing.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1fd594a5d7567bd77f564f8dd1309b676e035309 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/random_erasing.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/real_labels.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/real_labels.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..57ee8a719e23939836629b403dc6e2b402bc84f7 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/real_labels.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/transforms.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/transforms.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2fe0fce3ded95ad55b3e65eed3385bf2be592888 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/transforms.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/transforms_factory.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/transforms_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8443571a881e9a337e95e67cdbb5ef98a3892604 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/transforms_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/_info/imagenet12k_synsets.txt b/pytorch-image-models/timm/data/_info/imagenet12k_synsets.txt new file mode 100644 index 0000000000000000000000000000000000000000..c1517a458f566da0186e0d28772f29ac9fa3fbe5 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet12k_synsets.txt @@ -0,0 +1,11821 @@ +n00005787 +n00006484 +n00007846 +n00015388 +n00017222 +n00021265 +n00021939 +n00120010 +n00141669 +n00288000 +n00288384 +n00324978 +n00326094 +n00433458 +n00433661 +n00433802 +n00434075 +n00439826 +n00440039 +n00440382 +n00440509 +n00440747 +n00440941 +n00441073 +n00441824 +n00442115 +n00442437 +n00442847 +n00442981 +n00443231 +n00443692 +n00443803 +n00444340 +n00444651 +n00444846 +n00444937 +n00445055 +n00445226 +n00445351 +n00445685 +n00445802 +n00446311 +n00446493 +n00446804 +n00446980 +n00447073 +n00447221 +n00447463 +n00447540 +n00447957 +n00448126 +n00448232 +n00448466 +n00448640 +n00448748 +n00448872 +n00448958 +n00449054 +n00449168 +n00449295 +n00449517 +n00449695 +n00449796 +n00449892 +n00449977 +n00450070 +n00450335 +n00450700 +n00450866 +n00450998 +n00451186 +n00451370 +n00451563 +n00451635 +n00452034 +n00452152 +n00452293 +n00452864 +n00453126 +n00453313 +n00453396 +n00453478 +n00453935 +n00454237 +n00454395 +n00454493 +n00454624 +n00454983 +n00455173 +n00456465 +n00463246 +n00463543 +n00464277 +n00464478 +n00464651 +n00464894 +n00466273 +n00466377 +n00466524 +n00466630 +n00466712 +n00466880 +n00467320 +n00467536 +n00467719 +n00467995 +n00468299 +n00468480 +n00469651 +n00470554 +n00470682 +n00470830 +n00470966 +n00471437 +n00471613 +n00474568 +n00474657 +n00474881 +n00475014 +n00475273 +n00475403 +n00475535 +n00475661 +n00475787 +n00476235 +n00476389 +n00477392 +n00477639 +n00478262 +n00479076 +n00479440 +n00479616 +n00479887 +n00480211 +n00480366 +n00480508 +n00480993 +n00481803 +n00482122 +n00482298 +n00483205 +n00483313 +n00483409 +n00483508 +n00483605 +n00483705 +n00483848 +n00523513 +n00825773 +n00887544 +n01055165 +n01314388 +n01314663 +n01314781 +n01315213 +n01316422 +n01317089 +n01317294 +n01317541 +n01317813 +n01317916 +n01318279 +n01318381 +n01318894 +n01319467 +n01321123 +n01321230 +n01321456 +n01321579 +n01321770 +n01321854 +n01322221 +n01322343 +n01322508 +n01322604 +n01322685 +n01322898 +n01322983 +n01323068 +n01323155 +n01323261 +n01323355 +n01323493 +n01323599 +n01324431 +n01324610 +n01326291 +n01338685 +n01339083 +n01339336 +n01339471 +n01339801 +n01340014 +n01379389 +n01381044 +n01384164 +n01386354 +n01392275 +n01392380 +n01395254 +n01396048 +n01397114 +n01397871 +n01402600 +n01405007 +n01405616 +n01407798 +n01410457 +n01415626 +n01421807 +n01422335 +n01424420 +n01438581 +n01439121 +n01439514 +n01440160 +n01440764 +n01441117 +n01442972 +n01443243 +n01443537 +n01443831 +n01444339 +n01446760 +n01447331 +n01447658 +n01448291 +n01448594 +n01448951 +n01449374 +n01449712 +n01451426 +n01453087 +n01454545 +n01455778 +n01456756 +n01457852 +n01458842 +n01459791 +n01461315 +n01462042 +n01462544 +n01464844 +n01468238 +n01468712 +n01469103 +n01471682 +n01472303 +n01477525 +n01477875 +n01482071 +n01482330 +n01483830 +n01484097 +n01484285 +n01484850 +n01485479 +n01486838 +n01487506 +n01488038 +n01489501 +n01489709 +n01489920 +n01490112 +n01490360 +n01490670 +n01491006 +n01491361 +n01491874 +n01492569 +n01493146 +n01494475 +n01495006 +n01495493 +n01495701 +n01496331 +n01497118 +n01498041 +n01498989 +n01499396 +n01500091 +n01500476 +n01501160 +n01503061 +n01503976 +n01504179 +n01504344 +n01514668 +n01514752 +n01514859 +n01515303 +n01517565 +n01517966 +n01518878 +n01519563 +n01519873 +n01520576 +n01521399 +n01521756 +n01524359 +n01526521 +n01527194 +n01527347 +n01527617 +n01527917 +n01528396 +n01528654 +n01528845 +n01529672 +n01530439 +n01530575 +n01531178 +n01531344 +n01531512 +n01531811 +n01531971 +n01532325 +n01532511 +n01532829 +n01533000 +n01533339 +n01533481 +n01533651 +n01533893 +n01534155 +n01534433 +n01534582 +n01535140 +n01535469 +n01535690 +n01536035 +n01536186 +n01536334 +n01536644 +n01536780 +n01537134 +n01537544 +n01537895 +n01538059 +n01538200 +n01538630 +n01538955 +n01539573 +n01539925 +n01540090 +n01540233 +n01540566 +n01540832 +n01541102 +n01541386 +n01541760 +n01541922 +n01542786 +n01543175 +n01543632 +n01544389 +n01544704 +n01545574 +n01546039 +n01546506 +n01547832 +n01548301 +n01548492 +n01548694 +n01548865 +n01549053 +n01549430 +n01549641 +n01549886 +n01550172 +n01551080 +n01551300 +n01551711 +n01552034 +n01552813 +n01553142 +n01554448 +n01555004 +n01555305 +n01555809 +n01556182 +n01557185 +n01557962 +n01558149 +n01558307 +n01558461 +n01558594 +n01558765 +n01558993 +n01559477 +n01559639 +n01559804 +n01560105 +n01560280 +n01560419 +n01560636 +n01560793 +n01560935 +n01561452 +n01561732 +n01562014 +n01562265 +n01562451 +n01563128 +n01563449 +n01563746 +n01563945 +n01564217 +n01564394 +n01564773 +n01564914 +n01565078 +n01565345 +n01565599 +n01565930 +n01566207 +n01566645 +n01567133 +n01567678 +n01567879 +n01568294 +n01568720 +n01568892 +n01569060 +n01569262 +n01569423 +n01569566 +n01569836 +n01569971 +n01570267 +n01570421 +n01570676 +n01570839 +n01571904 +n01572328 +n01572489 +n01572654 +n01572782 +n01573074 +n01573240 +n01573360 +n01573898 +n01574045 +n01574390 +n01574560 +n01574801 +n01575117 +n01575401 +n01575745 +n01576076 +n01576695 +n01577035 +n01577659 +n01577941 +n01578180 +n01578575 +n01579028 +n01579149 +n01579260 +n01579410 +n01579578 +n01579729 +n01580077 +n01580870 +n01581166 +n01581730 +n01581984 +n01582220 +n01582398 +n01582856 +n01583209 +n01583495 +n01583828 +n01584225 +n01584695 +n01584853 +n01585121 +n01585287 +n01585422 +n01585715 +n01586020 +n01586374 +n01586941 +n01587526 +n01587834 +n01588002 +n01588725 +n01589286 +n01589718 +n01589893 +n01591005 +n01591123 +n01591301 +n01591697 +n01592084 +n01592257 +n01592387 +n01592540 +n01592694 +n01593028 +n01594004 +n01594372 +n01594787 +n01594968 +n01595168 +n01595450 +n01595974 +n01596273 +n01596608 +n01597022 +n01597336 +n01597737 +n01597906 +n01598074 +n01598588 +n01598988 +n01599159 +n01599269 +n01599556 +n01600085 +n01600657 +n01601068 +n01601694 +n01602630 +n01602832 +n01603152 +n01603600 +n01603812 +n01603953 +n01604330 +n01604968 +n01605630 +n01606522 +n01606672 +n01606809 +n01607600 +n01607812 +n01607962 +n01608265 +n01608432 +n01608814 +n01609062 +n01609391 +n01609751 +n01609956 +n01610100 +n01610226 +n01610552 +n01610955 +n01611472 +n01611800 +n01611969 +n01612122 +n01612275 +n01612476 +n01612628 +n01613177 +n01613294 +n01613615 +n01613807 +n01614038 +n01614343 +n01614556 +n01614925 +n01615121 +n01615303 +n01615458 +n01615703 +n01616086 +n01616318 +n01617095 +n01617443 +n01617766 +n01618082 +n01618503 +n01618922 +n01619310 +n01619536 +n01619835 +n01620135 +n01620414 +n01620735 +n01621127 +n01621635 +n01622120 +n01622352 +n01622483 +n01622779 +n01622959 +n01623110 +n01623425 +n01623615 +n01623706 +n01623880 +n01624115 +n01624212 +n01624305 +n01624537 +n01624833 +n01625562 +n01627424 +n01628770 +n01629276 +n01629819 +n01629962 +n01630284 +n01630670 +n01630901 +n01631354 +n01631512 +n01631663 +n01632458 +n01632601 +n01632777 +n01633406 +n01633781 +n01635027 +n01636127 +n01636352 +n01636829 +n01637615 +n01639765 +n01640846 +n01641206 +n01641391 +n01641577 +n01641739 +n01642257 +n01642539 +n01643507 +n01643896 +n01644373 +n01644900 +n01645776 +n01646292 +n01646388 +n01646555 +n01646648 +n01646802 +n01646902 +n01647303 +n01647640 +n01648139 +n01648620 +n01649170 +n01650167 +n01650690 +n01650901 +n01651059 +n01652026 +n01653223 +n01654637 +n01661091 +n01662622 +n01662784 +n01663401 +n01663782 +n01664065 +n01664369 +n01664492 +n01664674 +n01664990 +n01665541 +n01665932 +n01666228 +n01666585 +n01667114 +n01667432 +n01667778 +n01668091 +n01668436 +n01668665 +n01668892 +n01669191 +n01669372 +n01669654 +n01670092 +n01670535 +n01670802 +n01671125 +n01671479 +n01672032 +n01673282 +n01674464 +n01674990 +n01675722 +n01677366 +n01677747 +n01678043 +n01678343 +n01679307 +n01679626 +n01679962 +n01680264 +n01680478 +n01680655 +n01680813 +n01681328 +n01681653 +n01681940 +n01682172 +n01682435 +n01682714 +n01683558 +n01684133 +n01684578 +n01685808 +n01686044 +n01687665 +n01687978 +n01688243 +n01689081 +n01689811 +n01690149 +n01690466 +n01691217 +n01692333 +n01692523 +n01693175 +n01693334 +n01693783 +n01694178 +n01694709 +n01694955 +n01695060 +n01696633 +n01697178 +n01697457 +n01697611 +n01698434 +n01698640 +n01698782 +n01699040 +n01699675 +n01701859 +n01704323 +n01713764 +n01726692 +n01727646 +n01728572 +n01728920 +n01729322 +n01729977 +n01730185 +n01730307 +n01730563 +n01730812 +n01730960 +n01731545 +n01731941 +n01732244 +n01732614 +n01732789 +n01733466 +n01733757 +n01733957 +n01734104 +n01734418 +n01734637 +n01734808 +n01735189 +n01735439 +n01735577 +n01737021 +n01737472 +n01737728 +n01737875 +n01738065 +n01738601 +n01739381 +n01740131 +n01740551 +n01741232 +n01741562 +n01741943 +n01742172 +n01742821 +n01743086 +n01743605 +n01743936 +n01744100 +n01744270 +n01744401 +n01745125 +n01745484 +n01745902 +n01746359 +n01747589 +n01747885 +n01748264 +n01748389 +n01748686 +n01748906 +n01749244 +n01749582 +n01749742 +n01749939 +n01750167 +n01750437 +n01751036 +n01751472 +n01751748 +n01752165 +n01752585 +n01752736 +n01753032 +n01753180 +n01753488 +n01753959 +n01754370 +n01754533 +n01754876 +n01755581 +n01755740 +n01756089 +n01756291 +n01756508 +n01756733 +n01757115 +n01757343 +n01757677 +n01757901 +n01758141 +n01758757 +n01767661 +n01768244 +n01769347 +n01770081 +n01770393 +n01770795 +n01771417 +n01772222 +n01772664 +n01773157 +n01773549 +n01773797 +n01774384 +n01774750 +n01775062 +n01775370 +n01776313 +n01777304 +n01778217 +n01779148 +n01779629 +n01782209 +n01782516 +n01784675 +n01785667 +n01786646 +n01787835 +n01789740 +n01790711 +n01791107 +n01791463 +n01791625 +n01791954 +n01792042 +n01792158 +n01792429 +n01792640 +n01792955 +n01793085 +n01793249 +n01793435 +n01793715 +n01794158 +n01794344 +n01794651 +n01795088 +n01795545 +n01795735 +n01796340 +n01796519 +n01796729 +n01797020 +n01797307 +n01797601 +n01797886 +n01798168 +n01798484 +n01798706 +n01798839 +n01799679 +n01800424 +n01801876 +n01803078 +n01803362 +n01804163 +n01804478 +n01804653 +n01805070 +n01805801 +n01806143 +n01806297 +n01806364 +n01806467 +n01806567 +n01806847 +n01807105 +n01807496 +n01807828 +n01808140 +n01809106 +n01809371 +n01809752 +n01810268 +n01811909 +n01812337 +n01812662 +n01812866 +n01813088 +n01813385 +n01813532 +n01813948 +n01814217 +n01814370 +n01814755 +n01814921 +n01815601 +n01816887 +n01817263 +n01817346 +n01817953 +n01818299 +n01818515 +n01818832 +n01819115 +n01819313 +n01819465 +n01819734 +n01820052 +n01820348 +n01820546 +n01821076 +n01821203 +n01821869 +n01822300 +n01823013 +n01823414 +n01824035 +n01824575 +n01825278 +n01826364 +n01826680 +n01827403 +n01827793 +n01828096 +n01828556 +n01828970 +n01829413 +n01829869 +n01830042 +n01830915 +n01832167 +n01832493 +n01833805 +n01834177 +n01834540 +n01835276 +n01837072 +n01838598 +n01839086 +n01839330 +n01839598 +n01839750 +n01840120 +n01840775 +n01841102 +n01841288 +n01841441 +n01841679 +n01842235 +n01842504 +n01843065 +n01843383 +n01843719 +n01844231 +n01844551 +n01844917 +n01845132 +n01846331 +n01847000 +n01847089 +n01847170 +n01847253 +n01847407 +n01847806 +n01847978 +n01848123 +n01848323 +n01848453 +n01848555 +n01848648 +n01848840 +n01848976 +n01849157 +n01849466 +n01849676 +n01849863 +n01850192 +n01850373 +n01850553 +n01850873 +n01851038 +n01851207 +n01851375 +n01851573 +n01851731 +n01851895 +n01852142 +n01852329 +n01852400 +n01852671 +n01852861 +n01853195 +n01853498 +n01853666 +n01853870 +n01854415 +n01854700 +n01854838 +n01855032 +n01855188 +n01855476 +n01855672 +n01856072 +n01856155 +n01856380 +n01856553 +n01856890 +n01857079 +n01857325 +n01857512 +n01857632 +n01857851 +n01858281 +n01858441 +n01858780 +n01858845 +n01858906 +n01859190 +n01859325 +n01859496 +n01859689 +n01859852 +n01860002 +n01860187 +n01860497 +n01861778 +n01862399 +n01871265 +n01871875 +n01872401 +n01872772 +n01873310 +n01874434 +n01874928 +n01875313 +n01876034 +n01876326 +n01877134 +n01877606 +n01877812 +n01878061 +n01878929 +n01879217 +n01879509 +n01881171 +n01882125 +n01882714 +n01883070 +n01884834 +n01885498 +n01886756 +n01887474 +n01887623 +n01887787 +n01887896 +n01888045 +n01888181 +n01888264 +n01888411 +n01889520 +n01891633 +n01892030 +n01893825 +n01896844 +n01897536 +n01899894 +n01900150 +n01903346 +n01904029 +n01904806 +n01904886 +n01905661 +n01906749 +n01909906 +n01910747 +n01913166 +n01914609 +n01914830 +n01915700 +n01915811 +n01916187 +n01916388 +n01916481 +n01916925 +n01917289 +n01917611 +n01917882 +n01918744 +n01922303 +n01923025 +n01924916 +n01930112 +n01934440 +n01935395 +n01937909 +n01938454 +n01940736 +n01942869 +n01943087 +n01943899 +n01944118 +n01944390 +n01944812 +n01944955 +n01945143 +n01945685 +n01946630 +n01947396 +n01947997 +n01948573 +n01949085 +n01950731 +n01951274 +n01951613 +n01953361 +n01953594 +n01953762 +n01955084 +n01955933 +n01956344 +n01956481 +n01956764 +n01957335 +n01958038 +n01958346 +n01958531 +n01959492 +n01959985 +n01960177 +n01960459 +n01961985 +n01963317 +n01963571 +n01964049 +n01964271 +n01964441 +n01965529 +n01965889 +n01968897 +n01970164 +n01970667 +n01971280 +n01972541 +n01974773 +n01976146 +n01976868 +n01976957 +n01978287 +n01978455 +n01979874 +n01980166 +n01981276 +n01982068 +n01982347 +n01982650 +n01983481 +n01984245 +n01984695 +n01985128 +n01985493 +n01986214 +n01986806 +n01987545 +n01990007 +n01990800 +n01991028 +n01991520 +n01992773 +n01994910 +n01998183 +n01998741 +n01999186 +n02000954 +n02002075 +n02002556 +n02002724 +n02003037 +n02003204 +n02003577 +n02003839 +n02004131 +n02004492 +n02004855 +n02005399 +n02005790 +n02006063 +n02006364 +n02006656 +n02006985 +n02007284 +n02007558 +n02008041 +n02008497 +n02008643 +n02008796 +n02009229 +n02009380 +n02009508 +n02009750 +n02009912 +n02010272 +n02010453 +n02010728 +n02011016 +n02011281 +n02011460 +n02011805 +n02011943 +n02012185 +n02012849 +n02013177 +n02013567 +n02013706 +n02014237 +n02014524 +n02014941 +n02015357 +n02015554 +n02016066 +n02016358 +n02016659 +n02016816 +n02016956 +n02017213 +n02017475 +n02017725 +n02018027 +n02018207 +n02018368 +n02018795 +n02019190 +n02019929 +n02021050 +n02021795 +n02022684 +n02023341 +n02023855 +n02023992 +n02024185 +n02024479 +n02024763 +n02025043 +n02025239 +n02025389 +n02026059 +n02026629 +n02026948 +n02027075 +n02027357 +n02027492 +n02027897 +n02028035 +n02028175 +n02028342 +n02028451 +n02028727 +n02028900 +n02029087 +n02029378 +n02029706 +n02030035 +n02030287 +n02030837 +n02030996 +n02031585 +n02031934 +n02032222 +n02032355 +n02032480 +n02033041 +n02033208 +n02033561 +n02033779 +n02034129 +n02034295 +n02034661 +n02034971 +n02035210 +n02036053 +n02036711 +n02037110 +n02037464 +n02037869 +n02038466 +n02038993 +n02039171 +n02040266 +n02041085 +n02041246 +n02041678 +n02041875 +n02042046 +n02042180 +n02042472 +n02042759 +n02043063 +n02043333 +n02043808 +n02044178 +n02044517 +n02044778 +n02044908 +n02045369 +n02045596 +n02045864 +n02046171 +n02046759 +n02046939 +n02047045 +n02047260 +n02047411 +n02047517 +n02047614 +n02047975 +n02048115 +n02048353 +n02049088 +n02050004 +n02050313 +n02050442 +n02050586 +n02050809 +n02051059 +n02051845 +n02052204 +n02052365 +n02052775 +n02053083 +n02053425 +n02053584 +n02054036 +n02054502 +n02054711 +n02055107 +n02055658 +n02055803 +n02056228 +n02056570 +n02056728 +n02057035 +n02057330 +n02057731 +n02058221 +n02058594 +n02059162 +n02060133 +n02060411 +n02060569 +n02060889 +n02062017 +n02062430 +n02062744 +n02063224 +n02063662 +n02064338 +n02064816 +n02065026 +n02065263 +n02065407 +n02066245 +n02066707 +n02067240 +n02068541 +n02068974 +n02069412 +n02069701 +n02069974 +n02070174 +n02070430 +n02071294 +n02071636 +n02072040 +n02072798 +n02073831 +n02074367 +n02075296 +n02075612 +n02075927 +n02076196 +n02076402 +n02076779 +n02077152 +n02077384 +n02077658 +n02077787 +n02077923 +n02078292 +n02078574 +n02078738 +n02079005 +n02079389 +n02079851 +n02080146 +n02080415 +n02080713 +n02081571 +n02081798 +n02082791 +n02083346 +n02083672 +n02084071 +n02084732 +n02084861 +n02085272 +n02085374 +n02085620 +n02085936 +n02086079 +n02086240 +n02086478 +n02086646 +n02086753 +n02086910 +n02087046 +n02087122 +n02087394 +n02087551 +n02088094 +n02088238 +n02088364 +n02088466 +n02088632 +n02088839 +n02089232 +n02089468 +n02089555 +n02089973 +n02090379 +n02090475 +n02090622 +n02090721 +n02090827 +n02091032 +n02091134 +n02091244 +n02091467 +n02091831 +n02092002 +n02092339 +n02092468 +n02093056 +n02093256 +n02093428 +n02093647 +n02093754 +n02093859 +n02093991 +n02094114 +n02094258 +n02094433 +n02094562 +n02094721 +n02094931 +n02095050 +n02095314 +n02095412 +n02095570 +n02095727 +n02095889 +n02096051 +n02096177 +n02096294 +n02096437 +n02096585 +n02096756 +n02097047 +n02097130 +n02097209 +n02097298 +n02097474 +n02097658 +n02097786 +n02098105 +n02098286 +n02098413 +n02098550 +n02098806 +n02098906 +n02099029 +n02099267 +n02099429 +n02099601 +n02099712 +n02099849 +n02099997 +n02100236 +n02100399 +n02100583 +n02100735 +n02100877 +n02101006 +n02101108 +n02101388 +n02101556 +n02101861 +n02102040 +n02102177 +n02102318 +n02102480 +n02102605 +n02102973 +n02103406 +n02103841 +n02104029 +n02104280 +n02104365 +n02104523 +n02104882 +n02105056 +n02105162 +n02105251 +n02105412 +n02105505 +n02105641 +n02105855 +n02106030 +n02106166 +n02106382 +n02106550 +n02106662 +n02106854 +n02106966 +n02107142 +n02107312 +n02107420 +n02107574 +n02107683 +n02107908 +n02108000 +n02108089 +n02108254 +n02108422 +n02108551 +n02108672 +n02108915 +n02109047 +n02109525 +n02109811 +n02109961 +n02110063 +n02110185 +n02110341 +n02110627 +n02110806 +n02110958 +n02111129 +n02111277 +n02111500 +n02111626 +n02111889 +n02112018 +n02112137 +n02112350 +n02112497 +n02112826 +n02113023 +n02113186 +n02113335 +n02113624 +n02113712 +n02113799 +n02114100 +n02114367 +n02114548 +n02114712 +n02114855 +n02115096 +n02115335 +n02115641 +n02115913 +n02116738 +n02117135 +n02117512 +n02117900 +n02118333 +n02119022 +n02119477 +n02119634 +n02119789 +n02120079 +n02120505 +n02120997 +n02121620 +n02121808 +n02122298 +n02122430 +n02122510 +n02122580 +n02122725 +n02122878 +n02122948 +n02123045 +n02123159 +n02123242 +n02123394 +n02123478 +n02123597 +n02123785 +n02123917 +n02124075 +n02124313 +n02124484 +n02124623 +n02125010 +n02125081 +n02125311 +n02125494 +n02126028 +n02126139 +n02126640 +n02126787 +n02127052 +n02127292 +n02127381 +n02127482 +n02127586 +n02127678 +n02127808 +n02128385 +n02128669 +n02128757 +n02128925 +n02129165 +n02129463 +n02129604 +n02129837 +n02129923 +n02129991 +n02130308 +n02131653 +n02132136 +n02132466 +n02132580 +n02132788 +n02133161 +n02133704 +n02134084 +n02134418 +n02135220 +n02136103 +n02136452 +n02137015 +n02137549 +n02138441 +n02138647 +n02138777 +n02139199 +n02139671 +n02140049 +n02146371 +n02146700 +n02147173 +n02147328 +n02147591 +n02147947 +n02149420 +n02150482 +n02152740 +n02152881 +n02153109 +n02156871 +n02157206 +n02159955 +n02160947 +n02161338 +n02161457 +n02162561 +n02163297 +n02164464 +n02165105 +n02165456 +n02165877 +n02166567 +n02166826 +n02167151 +n02167820 +n02168245 +n02168699 +n02169023 +n02169497 +n02169705 +n02169974 +n02172182 +n02172518 +n02172870 +n02173113 +n02173373 +n02174001 +n02174659 +n02175014 +n02175569 +n02175916 +n02176261 +n02176439 +n02176747 +n02177972 +n02180875 +n02181235 +n02181477 +n02181724 +n02183096 +n02183857 +n02184473 +n02188699 +n02190166 +n02190790 +n02191773 +n02191979 +n02192252 +n02192513 +n02195526 +n02195819 +n02196119 +n02196344 +n02197185 +n02197689 +n02198859 +n02200198 +n02200509 +n02200850 +n02201000 +n02201626 +n02202006 +n02203152 +n02204907 +n02205219 +n02205673 +n02206856 +n02207179 +n02207345 +n02207805 +n02208280 +n02208498 +n02208848 +n02209111 +n02209354 +n02209624 +n02210427 +n02211444 +n02211627 +n02212062 +n02212958 +n02213107 +n02213239 +n02213543 +n02213663 +n02213788 +n02214341 +n02214773 +n02215621 +n02215770 +n02216211 +n02216365 +n02217563 +n02218371 +n02219486 +n02220518 +n02220804 +n02221083 +n02221414 +n02222035 +n02223266 +n02226429 +n02226821 +n02226970 +n02227247 +n02227966 +n02228341 +n02229156 +n02229544 +n02229765 +n02230187 +n02231052 +n02231487 +n02231803 +n02233338 +n02233943 +n02234355 +n02234848 +n02236044 +n02236241 +n02236355 +n02236896 +n02237581 +n02239774 +n02240068 +n02240517 +n02241426 +n02242137 +n02243562 +n02244797 +n02246628 +n02247216 +n02250822 +n02251775 +n02252226 +n02254697 +n02256656 +n02257284 +n02257985 +n02258198 +n02259212 +n02259708 +n02262449 +n02262803 +n02264232 +n02264363 +n02264885 +n02266050 +n02266864 +n02268148 +n02268443 +n02268853 +n02270623 +n02272871 +n02273392 +n02274024 +n02274259 +n02274822 +n02275560 +n02275773 +n02276078 +n02276258 +n02276355 +n02276749 +n02276902 +n02277094 +n02277268 +n02277742 +n02278024 +n02278210 +n02278839 +n02278980 +n02279257 +n02279637 +n02279972 +n02280649 +n02281015 +n02281136 +n02281406 +n02281787 +n02282257 +n02282385 +n02282553 +n02282903 +n02283077 +n02283201 +n02283951 +n02284611 +n02284884 +n02285801 +n02286089 +n02287004 +n02287799 +n02288268 +n02288789 +n02289610 +n02291748 +n02292692 +n02295064 +n02295390 +n02297442 +n02298218 +n02298541 +n02299157 +n02299505 +n02299846 +n02300797 +n02301935 +n02302244 +n02302459 +n02302620 +n02302969 +n02303284 +n02304036 +n02304432 +n02305085 +n02305929 +n02307325 +n02307681 +n02308139 +n02308471 +n02308735 +n02309242 +n02309337 +n02310334 +n02310585 +n02310717 +n02310941 +n02311060 +n02311617 +n02312006 +n02312427 +n02312640 +n02313008 +n02315487 +n02316707 +n02317335 +n02317781 +n02318167 +n02319095 +n02319308 +n02319555 +n02321170 +n02321529 +n02322047 +n02323449 +n02324045 +n02324431 +n02324514 +n02324587 +n02324850 +n02325366 +n02325722 +n02326432 +n02326862 +n02327028 +n02327656 +n02327842 +n02328150 +n02328429 +n02329401 +n02330245 +n02331046 +n02332156 +n02332755 +n02333190 +n02333546 +n02333909 +n02334201 +n02336641 +n02337001 +n02338145 +n02339376 +n02341475 +n02341974 +n02342885 +n02343320 +n02343772 +n02346627 +n02348173 +n02350105 +n02352591 +n02353861 +n02355227 +n02355477 +n02356381 +n02356612 +n02356798 +n02356977 +n02357111 +n02357401 +n02357585 +n02357911 +n02358091 +n02358390 +n02358584 +n02358890 +n02359047 +n02359324 +n02359556 +n02359915 +n02360282 +n02361337 +n02361587 +n02361706 +n02363005 +n02363245 +n02363351 +n02364520 +n02364673 +n02364840 +n02365108 +n02365480 +n02366002 +n02366959 +n02367492 +n02369293 +n02370806 +n02372584 +n02372952 +n02373336 +n02374149 +n02374451 +n02375302 +n02376542 +n02376679 +n02376791 +n02376918 +n02377063 +n02377181 +n02377291 +n02377388 +n02377480 +n02377603 +n02377703 +n02378541 +n02378969 +n02379081 +n02379183 +n02379329 +n02379430 +n02379630 +n02379908 +n02380052 +n02380335 +n02380464 +n02380583 +n02380745 +n02380875 +n02381004 +n02381261 +n02381364 +n02381460 +n02381609 +n02381831 +n02382039 +n02382132 +n02382204 +n02382338 +n02382437 +n02382635 +n02382750 +n02382850 +n02382948 +n02383231 +n02385214 +n02386014 +n02386141 +n02386224 +n02386310 +n02386496 +n02386853 +n02386968 +n02387093 +n02387254 +n02387346 +n02387722 +n02387887 +n02388143 +n02388276 +n02388735 +n02388832 +n02388917 +n02389026 +n02389128 +n02389261 +n02389346 +n02389559 +n02389779 +n02390015 +n02390101 +n02390454 +n02390640 +n02391049 +n02391234 +n02391373 +n02391508 +n02391994 +n02392434 +n02392824 +n02393161 +n02393580 +n02393807 +n02393940 +n02394477 +n02395003 +n02395406 +n02395694 +n02396014 +n02396088 +n02396427 +n02397096 +n02397529 +n02397744 +n02398521 +n02399000 +n02402010 +n02402175 +n02402425 +n02403003 +n02403231 +n02403325 +n02403454 +n02403740 +n02403920 +n02404186 +n02404432 +n02404573 +n02404906 +n02405101 +n02405302 +n02405440 +n02405799 +n02405929 +n02406174 +n02406432 +n02406533 +n02406647 +n02406749 +n02406859 +n02407071 +n02407276 +n02407390 +n02407521 +n02407625 +n02407959 +n02408429 +n02408817 +n02409508 +n02410011 +n02410509 +n02410702 +n02410900 +n02411206 +n02411705 +n02411999 +n02412080 +n02412210 +n02412440 +n02412629 +n02413050 +n02413131 +n02413593 +n02414209 +n02414290 +n02414578 +n02414763 +n02415253 +n02415435 +n02415577 +n02415829 +n02416104 +n02416519 +n02416820 +n02416880 +n02416964 +n02417070 +n02417387 +n02417534 +n02417663 +n02417914 +n02418465 +n02419336 +n02419634 +n02419796 +n02420509 +n02420828 +n02421136 +n02421449 +n02421792 +n02422106 +n02422391 +n02422699 +n02423022 +n02423218 +n02423589 +n02424085 +n02424305 +n02424486 +n02424909 +n02425228 +n02425887 +n02426481 +n02426813 +n02427032 +n02427470 +n02427576 +n02427724 +n02428349 +n02428508 +n02429456 +n02430045 +n02430559 +n02430830 +n02431122 +n02431337 +n02431441 +n02431628 +n02431785 +n02431976 +n02432291 +n02432511 +n02432704 +n02432983 +n02433318 +n02433546 +n02433925 +n02434190 +n02434954 +n02437136 +n02437312 +n02437482 +n02437616 +n02438173 +n02438272 +n02438580 +n02439033 +n02439398 +n02441326 +n02441942 +n02442336 +n02442845 +n02443015 +n02443114 +n02443346 +n02443484 +n02444819 +n02445004 +n02445171 +n02445394 +n02445715 +n02446206 +n02447366 +n02447762 +n02448060 +n02449350 +n02450295 +n02453108 +n02454379 +n02454794 +n02456962 +n02457408 +n02457945 +n02458135 +n02460009 +n02460451 +n02461128 +n02461830 +n02469248 +n02469472 +n02469914 +n02470238 +n02470325 +n02472293 +n02472987 +n02473307 +n02474777 +n02475078 +n02475669 +n02480153 +n02480495 +n02480855 +n02481103 +n02481235 +n02481366 +n02481500 +n02481823 +n02482286 +n02482474 +n02482650 +n02483362 +n02483708 +n02484322 +n02484473 +n02484975 +n02485536 +n02486261 +n02486410 +n02486657 +n02486908 +n02487347 +n02487547 +n02487675 +n02487847 +n02488291 +n02488415 +n02488702 +n02488894 +n02489166 +n02490219 +n02490811 +n02491107 +n02492035 +n02492660 +n02493509 +n02493793 +n02494079 +n02496913 +n02497673 +n02499022 +n02499316 +n02499808 +n02500267 +n02501583 +n02503517 +n02504013 +n02504458 +n02508021 +n02508213 +n02508742 +n02509197 +n02509515 +n02509815 +n02510455 +n02512053 +n02512830 +n02512938 +n02514041 +n02516188 +n02517442 +n02518324 +n02519148 +n02519686 +n02519862 +n02520147 +n02522399 +n02523427 +n02524202 +n02525382 +n02526121 +n02527057 +n02527271 +n02527622 +n02530421 +n02530831 +n02530999 +n02532028 +n02532602 +n02533209 +n02533834 +n02534734 +n02535163 +n02535258 +n02535537 +n02535759 +n02536165 +n02536456 +n02536864 +n02537085 +n02537319 +n02537525 +n02537716 +n02538010 +n02538216 +n02540412 +n02541687 +n02542432 +n02543565 +n02548247 +n02549248 +n02549989 +n02555863 +n02556846 +n02557182 +n02557318 +n02557591 +n02557749 +n02557909 +n02560110 +n02561108 +n02561381 +n02561514 +n02561661 +n02562315 +n02562796 +n02563182 +n02563648 +n02563792 +n02564270 +n02564720 +n02565072 +n02565324 +n02565573 +n02568087 +n02568447 +n02568959 +n02569484 +n02570164 +n02570838 +n02572196 +n02572484 +n02573704 +n02574271 +n02576575 +n02576906 +n02577403 +n02578771 +n02578928 +n02579303 +n02579928 +n02580336 +n02580679 +n02580830 +n02581957 +n02583890 +n02584145 +n02584449 +n02585872 +n02586543 +n02587618 +n02588286 +n02589623 +n02590094 +n02590702 +n02592055 +n02593019 +n02595702 +n02596067 +n02596381 +n02597608 +n02598573 +n02598878 +n02599052 +n02599347 +n02599557 +n02601344 +n02603317 +n02603540 +n02605316 +n02605703 +n02605936 +n02606052 +n02606384 +n02607072 +n02607201 +n02607470 +n02607862 +n02610066 +n02610664 +n02611561 +n02613181 +n02616851 +n02618827 +n02619165 +n02619550 +n02620167 +n02624167 +n02624551 +n02624807 +n02624987 +n02625258 +n02625612 +n02625851 +n02626265 +n02626762 +n02627292 +n02627532 +n02627835 +n02628062 +n02629230 +n02630281 +n02630615 +n02630739 +n02631041 +n02631330 +n02631475 +n02639087 +n02639605 +n02640242 +n02640626 +n02640857 +n02641379 +n02643112 +n02643566 +n02643836 +n02644113 +n02649546 +n02650050 +n02652132 +n02653145 +n02653497 +n02654112 +n02654425 +n02654745 +n02655020 +n02655848 +n02656032 +n02656670 +n02657368 +n02657694 +n02658531 +n02660208 +n02660640 +n02663211 +n02666196 +n02666501 +n02666624 +n02666943 +n02667093 +n02667244 +n02667379 +n02667478 +n02667576 +n02669295 +n02669534 +n02669723 +n02670186 +n02670382 +n02670683 +n02670935 +n02672371 +n02672831 +n02675219 +n02676566 +n02676938 +n02677718 +n02678897 +n02679257 +n02680110 +n02680512 +n02680754 +n02681392 +n02682311 +n02682569 +n02682922 +n02683323 +n02683454 +n02683558 +n02683791 +n02685082 +n02685995 +n02686121 +n02686227 +n02686379 +n02686568 +n02687172 +n02687423 +n02687821 +n02687992 +n02688273 +n02688443 +n02689144 +n02689274 +n02689434 +n02689748 +n02690373 +n02691156 +n02692086 +n02692232 +n02692877 +n02693246 +n02694045 +n02694426 +n02694662 +n02695627 +n02696165 +n02697221 +n02697675 +n02698634 +n02699494 +n02699629 +n02699770 +n02699915 +n02700064 +n02700258 +n02700895 +n02701002 +n02702989 +n02703275 +n02704645 +n02704792 +n02704949 +n02705201 +n02705429 +n02705944 +n02706806 +n02708093 +n02708433 +n02708555 +n02708711 +n02709101 +n02709367 +n02709637 +n02709908 +n02710044 +n02710201 +n02710324 +n02710429 +n02710600 +n02713003 +n02713364 +n02714751 +n02715229 +n02715513 +n02715712 +n02720048 +n02723165 +n02725872 +n02726017 +n02726210 +n02726305 +n02726681 +n02727016 +n02727141 +n02727426 +n02728440 +n02729837 +n02729965 +n02730930 +n02731398 +n02731629 +n02731900 +n02732072 +n02732572 +n02732827 +n02733213 +n02733524 +n02734725 +n02734835 +n02735361 +n02735538 +n02735688 +n02736798 +n02737660 +n02738031 +n02738535 +n02738741 +n02738859 +n02739427 +n02739550 +n02739668 +n02739889 +n02740300 +n02740533 +n02740764 +n02741475 +n02742322 +n02742468 +n02742753 +n02744323 +n02744844 +n02745611 +n02746365 +n02746595 +n02747177 +n02747672 +n02747802 +n02749479 +n02749953 +n02750070 +n02750169 +n02751215 +n02751295 +n02752496 +n02752615 +n02752810 +n02753044 +n02753394 +n02754103 +n02754656 +n02755140 +n02755529 +n02755823 +n02756098 +n02756977 +n02757061 +n02757337 +n02757462 +n02757714 +n02757810 +n02758134 +n02758863 +n02758960 +n02759257 +n02759387 +n02759963 +n02760099 +n02760199 +n02760429 +n02760658 +n02760855 +n02761206 +n02761392 +n02761557 +n02761696 +n02761834 +n02762371 +n02762508 +n02763306 +n02763604 +n02763901 +n02764044 +n02764398 +n02764505 +n02764779 +n02764935 +n02766320 +n02766534 +n02766792 +n02767038 +n02767147 +n02767433 +n02767665 +n02767956 +n02768114 +n02768226 +n02768655 +n02768973 +n02769075 +n02769290 +n02769669 +n02769748 +n02769963 +n02770211 +n02770721 +n02770830 +n02771004 +n02771166 +n02771286 +n02771750 +n02772101 +n02772435 +n02772700 +n02773037 +n02773838 +n02774152 +n02774630 +n02774921 +n02775039 +n02775178 +n02775483 +n02775897 +n02776007 +n02776205 +n02776631 +n02776825 +n02776978 +n02777100 +n02777292 +n02777734 +n02778294 +n02778456 +n02778669 +n02779435 +n02780704 +n02780815 +n02781121 +n02781338 +n02782093 +n02782602 +n02782681 +n02782778 +n02783161 +n02783324 +n02783459 +n02783900 +n02783994 +n02784124 +n02785648 +n02786058 +n02786198 +n02786331 +n02786736 +n02786837 +n02787435 +n02787622 +n02788021 +n02788148 +n02788572 +n02789487 +n02790669 +n02790823 +n02790996 +n02791124 +n02791270 +n02791665 +n02792409 +n02792552 +n02793089 +n02793199 +n02793495 +n02793842 +n02794008 +n02794156 +n02794664 +n02795169 +n02795528 +n02795670 +n02796207 +n02796318 +n02796995 +n02797295 +n02797535 +n02797692 +n02799071 +n02799175 +n02799323 +n02799897 +n02800213 +n02800497 +n02800675 +n02801184 +n02801450 +n02801525 +n02801823 +n02801938 +n02802215 +n02802426 +n02802544 +n02802721 +n02802990 +n02803349 +n02803539 +n02803666 +n02803934 +n02804123 +n02804252 +n02804414 +n02804515 +n02804610 +n02805983 +n02806088 +n02806379 +n02806530 +n02807133 +n02807523 +n02807616 +n02807731 +n02808185 +n02808304 +n02808440 +n02809105 +n02809241 +n02810270 +n02810471 +n02810782 +n02811059 +n02811204 +n02811350 +n02811468 +n02811618 +n02811719 +n02811936 +n02812201 +n02812949 +n02813252 +n02813399 +n02813544 +n02813645 +n02813752 +n02814116 +n02814428 +n02814533 +n02814774 +n02814860 +n02815749 +n02815834 +n02815950 +n02816656 +n02816768 +n02817031 +n02817516 +n02818135 +n02818832 +n02820210 +n02820556 +n02820675 +n02821202 +n02821415 +n02821627 +n02821943 +n02822064 +n02822220 +n02822579 +n02823124 +n02823335 +n02823428 +n02823510 +n02823586 +n02823750 +n02823848 +n02823964 +n02824058 +n02824319 +n02824448 +n02825153 +n02825442 +n02825657 +n02825961 +n02826068 +n02826589 +n02826886 +n02827606 +n02828299 +n02828427 +n02828884 +n02829596 +n02831237 +n02831335 +n02831595 +n02831724 +n02831894 +n02833793 +n02834397 +n02834506 +n02834778 +n02835271 +n02835412 +n02835724 +n02835829 +n02835915 +n02836035 +n02836174 +n02836392 +n02837789 +n02837887 +n02838345 +n02838728 +n02839110 +n02839351 +n02839592 +n02839910 +n02840134 +n02840245 +n02840619 +n02841187 +n02841315 +n02841506 +n02842573 +n02842809 +n02843029 +n02843158 +n02843276 +n02843553 +n02843684 +n02844307 +n02846141 +n02846511 +n02846733 +n02847631 +n02847852 +n02848216 +n02848523 +n02848921 +n02849154 +n02849885 +n02850732 +n02850950 +n02851099 +n02851939 +n02852043 +n02852173 +n02852360 +n02853016 +n02854378 +n02854532 +n02854739 +n02854926 +n02855089 +n02855390 +n02855701 +n02855925 +n02856237 +n02857477 +n02857644 +n02858304 +n02859184 +n02859343 +n02859443 +n02859955 +n02860415 +n02860640 +n02860847 +n02861022 +n02861147 +n02861387 +n02861886 +n02862048 +n02862916 +n02863014 +n02863426 +n02863536 +n02863750 +n02864504 +n02864593 +n02865351 +n02865665 +n02865931 +n02866386 +n02866578 +n02867715 +n02867966 +n02868638 +n02868975 +n02869155 +n02869249 +n02869563 +n02869737 +n02869837 +n02870526 +n02870676 +n02870880 +n02871005 +n02871147 +n02871314 +n02871439 +n02871525 +n02871824 +n02871963 +n02872333 +n02872529 +n02872752 +n02873520 +n02873733 +n02873839 +n02874086 +n02874442 +n02874537 +n02874750 +n02876084 +n02876326 +n02876657 +n02877266 +n02877765 +n02877962 +n02878222 +n02878425 +n02878628 +n02879087 +n02879309 +n02879718 +n02880189 +n02880393 +n02880546 +n02880842 +n02880940 +n02881193 +n02881757 +n02881906 +n02882190 +n02882301 +n02882647 +n02882894 +n02883004 +n02883205 +n02883344 +n02884994 +n02885108 +n02885338 +n02885462 +n02885882 +n02886321 +n02886434 +n02887079 +n02887209 +n02887489 +n02887970 +n02888270 +n02889425 +n02889646 +n02890188 +n02890351 +n02890513 +n02890662 +n02890940 +n02891188 +n02891788 +n02892201 +n02892304 +n02892499 +n02892767 +n02892948 +n02893608 +n02893692 +n02893941 +n02894158 +n02894337 +n02894605 +n02895154 +n02895328 +n02895438 +n02896442 +n02897097 +n02897820 +n02898269 +n02898369 +n02898585 +n02898711 +n02899439 +n02900160 +n02900705 +n02901114 +n02901259 +n02901377 +n02901793 +n02902079 +n02902687 +n02902916 +n02903126 +n02903204 +n02903852 +n02904233 +n02904640 +n02904803 +n02904927 +n02905036 +n02905152 +n02906734 +n02907082 +n02907391 +n02907656 +n02907873 +n02908217 +n02908773 +n02909285 +n02909870 +n02910145 +n02910353 +n02910542 +n02910864 +n02911332 +n02911485 +n02912065 +n02912319 +n02912557 +n02912894 +n02913152 +n02914991 +n02915904 +n02916179 +n02916350 +n02916936 +n02917067 +n02917377 +n02917521 +n02917607 +n02917964 +n02918112 +n02918330 +n02918595 +n02918831 +n02918964 +n02919148 +n02919414 +n02919792 +n02919890 +n02920083 +n02920259 +n02920369 +n02920658 +n02921029 +n02921195 +n02921756 +n02921884 +n02922292 +n02922578 +n02922798 +n02923682 +n02924116 +n02925009 +n02925107 +n02925519 +n02925666 +n02926426 +n02926591 +n02927161 +n02927764 +n02927887 +n02928049 +n02928299 +n02928608 +n02929289 +n02929582 +n02930080 +n02930214 +n02930645 +n02930766 +n02931148 +n02931294 +n02931417 +n02931836 +n02932019 +n02932400 +n02932523 +n02932693 +n02932891 +n02933112 +n02933340 +n02933462 +n02933649 +n02933990 +n02934168 +n02934451 +n02935017 +n02935387 +n02935658 +n02935891 +n02936176 +n02936281 +n02936402 +n02936570 +n02936714 +n02937958 +n02938886 +n02939185 +n02939866 +n02940385 +n02940570 +n02942349 +n02942460 +n02942699 +n02943241 +n02943871 +n02943964 +n02944075 +n02944146 +n02944459 +n02944579 +n02946127 +n02946270 +n02946348 +n02946509 +n02946824 +n02946921 +n02947660 +n02947818 +n02948072 +n02948403 +n02948557 +n02949202 +n02949542 +n02950256 +n02950632 +n02950826 +n02950943 +n02951358 +n02951585 +n02951703 +n02951843 +n02952109 +n02952237 +n02952374 +n02952485 +n02952585 +n02952674 +n02953197 +n02953455 +n02954163 +n02954340 +n02954938 +n02955065 +n02955247 +n02955540 +n02955767 +n02956699 +n02956795 +n02956883 +n02957008 +n02957135 +n02957755 +n02958343 +n02959942 +n02960352 +n02960690 +n02960903 +n02961035 +n02961225 +n02961451 +n02961544 +n02962061 +n02962200 +n02962414 +n02962843 +n02963159 +n02963302 +n02963503 +n02963692 +n02963821 +n02963987 +n02964843 +n02965216 +n02965300 +n02965783 +n02966193 +n02966545 +n02966687 +n02967294 +n02967626 +n02967782 +n02968074 +n02968333 +n02968473 +n02969010 +n02969323 +n02970408 +n02970534 +n02970685 +n02970849 +n02971167 +n02971356 +n02971473 +n02971579 +n02971691 +n02972397 +n02973017 +n02973236 +n02973805 +n02973904 +n02974003 +n02974348 +n02974697 +n02975212 +n02976123 +n02976249 +n02976350 +n02976455 +n02976939 +n02977058 +n02977330 +n02977438 +n02977619 +n02977936 +n02978055 +n02978367 +n02978478 +n02978753 +n02978881 +n02979074 +n02979186 +n02979290 +n02979399 +n02979836 +n02980036 +n02980441 +n02981024 +n02981321 +n02981792 +n02981911 +n02982232 +n02982416 +n02982515 +n02982599 +n02983189 +n02983357 +n02984061 +n02984203 +n02984469 +n02985963 +n02986160 +n02987379 +n02987492 +n02988066 +n02988156 +n02988304 +n02988486 +n02988679 +n02988963 +n02989099 +n02990373 +n02991302 +n02991847 +n02992032 +n02992211 +n02992368 +n02992529 +n02992795 +n02993194 +n02993368 +n02994573 +n02995345 +n02995871 +n02995998 +n02997391 +n02997607 +n02997910 +n02998003 +n02998563 +n02998841 +n02999138 +n02999410 +n02999936 +n03000134 +n03000247 +n03000684 +n03001115 +n03001627 +n03002096 +n03002341 +n03002711 +n03002816 +n03002948 +n03003091 +n03004275 +n03004824 +n03005033 +n03005147 +n03005285 +n03006626 +n03007130 +n03007444 +n03007591 +n03008177 +n03008976 +n03009794 +n03010473 +n03010656 +n03010795 +n03010915 +n03011018 +n03011355 +n03011741 +n03012013 +n03012373 +n03012897 +n03013438 +n03013580 +n03013850 +n03014440 +n03014705 +n03015149 +n03015254 +n03015478 +n03015851 +n03016389 +n03016609 +n03016737 +n03016868 +n03016953 +n03017070 +n03017168 +n03018209 +n03018349 +n03018712 +n03019434 +n03019685 +n03019806 +n03019938 +n03020034 +n03020416 +n03020692 +n03021228 +n03024064 +n03025165 +n03025250 +n03026506 +n03026907 +n03027001 +n03027108 +n03027250 +n03027625 +n03028079 +n03028596 +n03028785 +n03029197 +n03029445 +n03029925 +n03030262 +n03030353 +n03030557 +n03030880 +n03031012 +n03031152 +n03031422 +n03032252 +n03032453 +n03032811 +n03033362 +n03033986 +n03034244 +n03034405 +n03034663 +n03035252 +n03035832 +n03036022 +n03036469 +n03037404 +n03037709 +n03038281 +n03038480 +n03038685 +n03038870 +n03039015 +n03039259 +n03039493 +n03039827 +n03039947 +n03040376 +n03041114 +n03041449 +n03041632 +n03041810 +n03042139 +n03042490 +n03042697 +n03043423 +n03043693 +n03043958 +n03044934 +n03045228 +n03045337 +n03045698 +n03046029 +n03046133 +n03046257 +n03046802 +n03046921 +n03047052 +n03047690 +n03047799 +n03047941 +n03048883 +n03049066 +n03049782 +n03049924 +n03050453 +n03050546 +n03050655 +n03050864 +n03051041 +n03051249 +n03051396 +n03051540 +n03054901 +n03055418 +n03055857 +n03057021 +n03057541 +n03057636 +n03057920 +n03058107 +n03058603 +n03059685 +n03061211 +n03061345 +n03061505 +n03061674 +n03061893 +n03062015 +n03062122 +n03062245 +n03062336 +n03062985 +n03063073 +n03063199 +n03063338 +n03063485 +n03063599 +n03063689 +n03063968 +n03064250 +n03064350 +n03064758 +n03064935 +n03065243 +n03065424 +n03066359 +n03066849 +n03067093 +n03067212 +n03067339 +n03067518 +n03068181 +n03068998 +n03069752 +n03070059 +n03070193 +n03071021 +n03071160 +n03072201 +n03072440 +n03072682 +n03073296 +n03073545 +n03073694 +n03073977 +n03074380 +n03074855 +n03075097 +n03075370 +n03075634 +n03075768 +n03075946 +n03077616 +n03077741 +n03078287 +n03078802 +n03078995 +n03079136 +n03079230 +n03079494 +n03080497 +n03080633 +n03081986 +n03082280 +n03082656 +n03082807 +n03082979 +n03084420 +n03084834 +n03085013 +n03085219 +n03085602 +n03085915 +n03086457 +n03086580 +n03086670 +n03086868 +n03087069 +n03087245 +n03087366 +n03087816 +n03088389 +n03088580 +n03089624 +n03089753 +n03089879 +n03090000 +n03090172 +n03091044 +n03091374 +n03092166 +n03092314 +n03092656 +n03092883 +n03094159 +n03094503 +n03095699 +n03096960 +n03097362 +n03097535 +n03097673 +n03098140 +n03098688 +n03098959 +n03099147 +n03099274 +n03099454 +n03099945 +n03100240 +n03100346 +n03100490 +n03100897 +n03101156 +n03101517 +n03101664 +n03101796 +n03101986 +n03102371 +n03102654 +n03103396 +n03103563 +n03104512 +n03105088 +n03105306 +n03105467 +n03106898 +n03107046 +n03107488 +n03108455 +n03108853 +n03109150 +n03109253 +n03109693 +n03109881 +n03110669 +n03111041 +n03111177 +n03111296 +n03112719 +n03112869 +n03113152 +n03113657 +n03113835 +n03114236 +n03114379 +n03114504 +n03115180 +n03115400 +n03115762 +n03115897 +n03116530 +n03116767 +n03118969 +n03119203 +n03119396 +n03119510 +n03120491 +n03120778 +n03121298 +n03121431 +n03121897 +n03122073 +n03122202 +n03122295 +n03123553 +n03123809 +n03123917 +n03124043 +n03124170 +n03124474 +n03124590 +n03125057 +n03125729 +n03125870 +n03126385 +n03126580 +n03126707 +n03127203 +n03127408 +n03127747 +n03127925 +n03128085 +n03128248 +n03128427 +n03128519 +n03129001 +n03129471 +n03129753 +n03129848 +n03130761 +n03131574 +n03131669 +n03131967 +n03132076 +n03132261 +n03132666 +n03132776 +n03133050 +n03133415 +n03133878 +n03134739 +n03134853 +n03135030 +n03135532 +n03136369 +n03137473 +n03138344 +n03138669 +n03139464 +n03140126 +n03140292 +n03140431 +n03140652 +n03141065 +n03141327 +n03141455 +n03141702 +n03141823 +n03142679 +n03145147 +n03145522 +n03145719 +n03146219 +n03146687 +n03146777 +n03146846 +n03147280 +n03147509 +n03148324 +n03148727 +n03149135 +n03149686 +n03150232 +n03150511 +n03151077 +n03152303 +n03154073 +n03154895 +n03155178 +n03156279 +n03156767 +n03157348 +n03158186 +n03158885 +n03159535 +n03159640 +n03160309 +n03160740 +n03161450 +n03163222 +n03163381 +n03164344 +n03164605 +n03164722 +n03165096 +n03165466 +n03165616 +n03166514 +n03167978 +n03168107 +n03168217 +n03169176 +n03170635 +n03170872 +n03171228 +n03171356 +n03171635 +n03172038 +n03173270 +n03173387 +n03173929 +n03174450 +n03174731 +n03175081 +n03175189 +n03175457 +n03176386 +n03176594 +n03176763 +n03177059 +n03177165 +n03178000 +n03178430 +n03178674 +n03179701 +n03179910 +n03180011 +n03180384 +n03180504 +n03180865 +n03180969 +n03181293 +n03183080 +n03186285 +n03186818 +n03187037 +n03187268 +n03187595 +n03188531 +n03188725 +n03189083 +n03191286 +n03192543 +n03193107 +n03193260 +n03193423 +n03193597 +n03195332 +n03195959 +n03196062 +n03196217 +n03196598 +n03196990 +n03197201 +n03197337 +n03198500 +n03199647 +n03199775 +n03199901 +n03200231 +n03200357 +n03200539 +n03200701 +n03200906 +n03201035 +n03201208 +n03201529 +n03201638 +n03201776 +n03202354 +n03202940 +n03204306 +n03204558 +n03205458 +n03205574 +n03205669 +n03206158 +n03206282 +n03206718 +n03206908 +n03207305 +n03207630 +n03207743 +n03207835 +n03207941 +n03208556 +n03208938 +n03209359 +n03209477 +n03209910 +n03210245 +n03210372 +n03210552 +n03211117 +n03211789 +n03212114 +n03212811 +n03213538 +n03213715 +n03213826 +n03214253 +n03214582 +n03215508 +n03216402 +n03216710 +n03216828 +n03218198 +n03219010 +n03219135 +n03219483 +n03219612 +n03219859 +n03219966 +n03220237 +n03220513 +n03220692 +n03221059 +n03221351 +n03221540 +n03221720 +n03222176 +n03222318 +n03222516 +n03223162 +n03223299 +n03223553 +n03223686 +n03224603 +n03224753 +n03225108 +n03225777 +n03225988 +n03226254 +n03226375 +n03226538 +n03226880 +n03227184 +n03227317 +n03228254 +n03228365 +n03228692 +n03228967 +n03229244 +n03231160 +n03231368 +n03231819 +n03232309 +n03232543 +n03233123 +n03233624 +n03233744 +n03233905 +n03234164 +n03234952 +n03235042 +n03235180 +n03235327 +n03235796 +n03236093 +n03236217 +n03236423 +n03236735 +n03237340 +n03237416 +n03237839 +n03237992 +n03238131 +n03238286 +n03238586 +n03239054 +n03239259 +n03239726 +n03240140 +n03240683 +n03240892 +n03241093 +n03241335 +n03241496 +n03242506 +n03243218 +n03244047 +n03244231 +n03244775 +n03244919 +n03245724 +n03245889 +n03246454 +n03246933 +n03247083 +n03249342 +n03249569 +n03250089 +n03250279 +n03250405 +n03250847 +n03250952 +n03251533 +n03251766 +n03251932 +n03252637 +n03253279 +n03253796 +n03253886 +n03254046 +n03254189 +n03254374 +n03254862 +n03255030 +n03255899 +n03256032 +n03256166 +n03256788 +n03256928 +n03257210 +n03257586 +n03258330 +n03258577 +n03258905 +n03259009 +n03259280 +n03259401 +n03259505 +n03260849 +n03261019 +n03261603 +n03261776 +n03262072 +n03262248 +n03262519 +n03262717 +n03262809 +n03262932 +n03263076 +n03264906 +n03266371 +n03266749 +n03267113 +n03267468 +n03267821 +n03268142 +n03268311 +n03268645 +n03268790 +n03268918 +n03269203 +n03269401 +n03270165 +n03270854 +n03271030 +n03271574 +n03272010 +n03272125 +n03272239 +n03272383 +n03272562 +n03272810 +n03272940 +n03273061 +n03273551 +n03273740 +n03273913 +n03274265 +n03274435 +n03275681 +n03276696 +n03277459 +n03277771 +n03278248 +n03278914 +n03279508 +n03280644 +n03281145 +n03281673 +n03282295 +n03282401 +n03283221 +n03284308 +n03284743 +n03284886 +n03284981 +n03285578 +n03285912 +n03287351 +n03287733 +n03288003 +n03288500 +n03288886 +n03289660 +n03289985 +n03290096 +n03290195 +n03290653 +n03291413 +n03291741 +n03291819 +n03291963 +n03292475 +n03292603 +n03293741 +n03293863 +n03294048 +n03294604 +n03294833 +n03295012 +n03295246 +n03296081 +n03296328 +n03296478 +n03297103 +n03297226 +n03297495 +n03297644 +n03297735 +n03298089 +n03298716 +n03298858 +n03300216 +n03300443 +n03301291 +n03301568 +n03301833 +n03301940 +n03302671 +n03302938 +n03303217 +n03303831 +n03306385 +n03307037 +n03307792 +n03308152 +n03308481 +n03309110 +n03309356 +n03309465 +n03309687 +n03309808 +n03313333 +n03314227 +n03314608 +n03314780 +n03314884 +n03315644 +n03316105 +n03316406 +n03317788 +n03317889 +n03318136 +n03318294 +n03318865 +n03318983 +n03319457 +n03319745 +n03320046 +n03320262 +n03320421 +n03320519 +n03320959 +n03321103 +n03321563 +n03321954 +n03322570 +n03322704 +n03322836 +n03322940 +n03323096 +n03323703 +n03324928 +n03325088 +n03325403 +n03325584 +n03325691 +n03325941 +n03326660 +n03326795 +n03326948 +n03327133 +n03327234 +n03327553 +n03327691 +n03329302 +n03329536 +n03329663 +n03331077 +n03331599 +n03332005 +n03332271 +n03332393 +n03332989 +n03333129 +n03333252 +n03333610 +n03333711 +n03334291 +n03334382 +n03334912 +n03335030 +n03336282 +n03336575 +n03337140 +n03337383 +n03338821 +n03339529 +n03339643 +n03340723 +n03341153 +n03341297 +n03341606 +n03342015 +n03342127 +n03342262 +n03342657 +n03343354 +n03343560 +n03343737 +n03343853 +n03344305 +n03344393 +n03344642 +n03345487 +n03345837 +n03346135 +n03346455 +n03347037 +n03347617 +n03348868 +n03349469 +n03349771 +n03349892 +n03350204 +n03350602 +n03351434 +n03351979 +n03352628 +n03353951 +n03354207 +n03354903 +n03355768 +n03355925 +n03356858 +n03356982 +n03357267 +n03357716 +n03358172 +n03358380 +n03358726 +n03359137 +n03359285 +n03359436 +n03359566 +n03360300 +n03360431 +n03360622 +n03361297 +n03361380 +n03361550 +n03362890 +n03363363 +n03363549 +n03363749 +n03364008 +n03364599 +n03365231 +n03365374 +n03365592 +n03365991 +n03366823 +n03366974 +n03367059 +n03367410 +n03367545 +n03368352 +n03369276 +n03370387 +n03371875 +n03372029 +n03372549 +n03373237 +n03373611 +n03373943 +n03374372 +n03374473 +n03374649 +n03374838 +n03375171 +n03375329 +n03375575 +n03376159 +n03376279 +n03376595 +n03376938 +n03378005 +n03378174 +n03379051 +n03379204 +n03379343 +n03379828 +n03380724 +n03380867 +n03381126 +n03382292 +n03382413 +n03382856 +n03383099 +n03384352 +n03384891 +n03385557 +n03386011 +n03386544 +n03386726 +n03386870 +n03387653 +n03388043 +n03388183 +n03388323 +n03388549 +n03389611 +n03389761 +n03389889 +n03390075 +n03390786 +n03390983 +n03391301 +n03391770 +n03392741 +n03393017 +n03393761 +n03393912 +n03394272 +n03394480 +n03394649 +n03394916 +n03395256 +n03395514 +n03395859 +n03396074 +n03396580 +n03396654 +n03397087 +n03397266 +n03397532 +n03397947 +n03398153 +n03398228 +n03399677 +n03399761 +n03399971 +n03400231 +n03400972 +n03401129 +n03401279 +n03402188 +n03402369 +n03402941 +n03403643 +n03404149 +n03404251 +n03404360 +n03404449 +n03405111 +n03405265 +n03405595 +n03405725 +n03406966 +n03407369 +n03407865 +n03408054 +n03408444 +n03409297 +n03409393 +n03409591 +n03410423 +n03410571 +n03410740 +n03410938 +n03411079 +n03412058 +n03413684 +n03414029 +n03414162 +n03414676 +n03415252 +n03415486 +n03415749 +n03416094 +n03416489 +n03416640 +n03416775 +n03416900 +n03417042 +n03417202 +n03417345 +n03417749 +n03417970 +n03418158 +n03418242 +n03418402 +n03418618 +n03418915 +n03419014 +n03420345 +n03420801 +n03421117 +n03421324 +n03421485 +n03421669 +n03422072 +n03422771 +n03423306 +n03423479 +n03423568 +n03423719 +n03423877 +n03424325 +n03424489 +n03424630 +n03424862 +n03425241 +n03425325 +n03425413 +n03425595 +n03425769 +n03426134 +n03426285 +n03427202 +n03427296 +n03428090 +n03428226 +n03428349 +n03429003 +n03429137 +n03429288 +n03429682 +n03429914 +n03430091 +n03430313 +n03430418 +n03430551 +n03431243 +n03431745 +n03432061 +n03432129 +n03433877 +n03434188 +n03434285 +n03435593 +n03435743 +n03435991 +n03436075 +n03436182 +n03436417 +n03436549 +n03436891 +n03437430 +n03437741 +n03437829 +n03437941 +n03438071 +n03438257 +n03438661 +n03438863 +n03439348 +n03439814 +n03440216 +n03440682 +n03441112 +n03441345 +n03441582 +n03442597 +n03442756 +n03443005 +n03443149 +n03443371 +n03443912 +n03444034 +n03445326 +n03445617 +n03445777 +n03445924 +n03446070 +n03446268 +n03446832 +n03447075 +n03447358 +n03447447 +n03447721 +n03448590 +n03448956 +n03449309 +n03449451 +n03450230 +n03450516 +n03450734 +n03450974 +n03451120 +n03451711 +n03451798 +n03452267 +n03452449 +n03452594 +n03452741 +n03453231 +n03453443 +n03454110 +n03454211 +n03454442 +n03454536 +n03454707 +n03454885 +n03455488 +n03456024 +n03456186 +n03456299 +n03456447 +n03456548 +n03456665 +n03457008 +n03457686 +n03457902 +n03458271 +n03459328 +n03459775 +n03460040 +n03460147 +n03460297 +n03461288 +n03461385 +n03461988 +n03462110 +n03463381 +n03463666 +n03464053 +n03465151 +n03465426 +n03465500 +n03465718 +n03466493 +n03466600 +n03466839 +n03467068 +n03467517 +n03467796 +n03467984 +n03468696 +n03468821 +n03469175 +n03469493 +n03469903 +n03470629 +n03471190 +n03472232 +n03473227 +n03474779 +n03474896 +n03475581 +n03475823 +n03476083 +n03476313 +n03476684 +n03476991 +n03477512 +n03478589 +n03478756 +n03478907 +n03479121 +n03479397 +n03479502 +n03480579 +n03480719 +n03481172 +n03482252 +n03482405 +n03482523 +n03482877 +n03483230 +n03483316 +n03483823 +n03483971 +n03484083 +n03484487 +n03484576 +n03484809 +n03484931 +n03485198 +n03485309 +n03485407 +n03485794 +n03487090 +n03487331 +n03487444 +n03487533 +n03487642 +n03487774 +n03487886 +n03488188 +n03488438 +n03488887 +n03489162 +n03490006 +n03490119 +n03490884 +n03491032 +n03491988 +n03492250 +n03492542 +n03492922 +n03494278 +n03494537 +n03494706 +n03495039 +n03495258 +n03495570 +n03496296 +n03496612 +n03496892 +n03497352 +n03497657 +n03498441 +n03498662 +n03498781 +n03498962 +n03499354 +n03499468 +n03499907 +n03500209 +n03500389 +n03500699 +n03501152 +n03501614 +n03502200 +n03502331 +n03502509 +n03503233 +n03503477 +n03503997 +n03504205 +n03504723 +n03505133 +n03505383 +n03505504 +n03505667 +n03506028 +n03506184 +n03506370 +n03506560 +n03506727 +n03506880 +n03507241 +n03507458 +n03507963 +n03508101 +n03508881 +n03509394 +n03509608 +n03510244 +n03511175 +n03511333 +n03512147 +n03512911 +n03513137 +n03513376 +n03514451 +n03514693 +n03514894 +n03516367 +n03516844 +n03516996 +n03517647 +n03517760 +n03517899 +n03518135 +n03518305 +n03518445 +n03518943 +n03519081 +n03519387 +n03520493 +n03521076 +n03521544 +n03521675 +n03521899 +n03522003 +n03522100 +n03522634 +n03523134 +n03523987 +n03524150 +n03524574 +n03524745 +n03525074 +n03525454 +n03527149 +n03527444 +n03527565 +n03528263 +n03528523 +n03528901 +n03529175 +n03529444 +n03529629 +n03529860 +n03530511 +n03530642 +n03530910 +n03531281 +n03532342 +n03532672 +n03532919 +n03533014 +n03534580 +n03534776 +n03535024 +n03535780 +n03536122 +n03536761 +n03537241 +n03537412 +n03538037 +n03538179 +n03538406 +n03538634 +n03539433 +n03539546 +n03539678 +n03540090 +n03540267 +n03540595 +n03540914 +n03541091 +n03541269 +n03541537 +n03541696 +n03541923 +n03542333 +n03542605 +n03542860 +n03543012 +n03543112 +n03543254 +n03543394 +n03543603 +n03543735 +n03543945 +n03544143 +n03544238 +n03544360 +n03545150 +n03545470 +n03545756 +n03546112 +n03546235 +n03546340 +n03547054 +n03547229 +n03548086 +n03548402 +n03548626 +n03549199 +n03549473 +n03549589 +n03549732 +n03549897 +n03550153 +n03550289 +n03551395 +n03551582 +n03552749 +n03553019 +n03553248 +n03554460 +n03555006 +n03555426 +n03555564 +n03555662 +n03556679 +n03556992 +n03557270 +n03557360 +n03557590 +n03557692 +n03558176 +n03558404 +n03558633 +n03558739 +n03559999 +n03560430 +n03561047 +n03563200 +n03563460 +n03565288 +n03565830 +n03566193 +n03566730 +n03567066 +n03568117 +n03569293 +n03571280 +n03571625 +n03571942 +n03572107 +n03572321 +n03574243 +n03574555 +n03574816 +n03577090 +n03577672 +n03578055 +n03578251 +n03578656 +n03579538 +n03580518 +n03580845 +n03581125 +n03582508 +n03582959 +n03584254 +n03584400 +n03584829 +n03585073 +n03585438 +n03585682 +n03586219 +n03586631 +n03587205 +n03588841 +n03588951 +n03589513 +n03589791 +n03590306 +n03590588 +n03590841 +n03590932 +n03592245 +n03592669 +n03592773 +n03592931 +n03593122 +n03593526 +n03594148 +n03594523 +n03594734 +n03594945 +n03595264 +n03595409 +n03595523 +n03595614 +n03595860 +n03596285 +n03596543 +n03597916 +n03598151 +n03598299 +n03598515 +n03598930 +n03599486 +n03600285 +n03600475 +n03600722 +n03600977 +n03601442 +n03601638 +n03601840 +n03602081 +n03602883 +n03603442 +n03603594 +n03603722 +n03604156 +n03604311 +n03604400 +n03604843 +n03605598 +n03605722 +n03605915 +n03606251 +n03607029 +n03607659 +n03607923 +n03609235 +n03609397 +n03610098 +n03610418 +n03610524 +n03610682 +n03612010 +n03612814 +n03612965 +n03613294 +n03613592 +n03614007 +n03614532 +n03614782 +n03615300 +n03615406 +n03615563 +n03615655 +n03615790 +n03616428 +n03616763 +n03616979 +n03617095 +n03617312 +n03617480 +n03618101 +n03618982 +n03619196 +n03619275 +n03619396 +n03619650 +n03619793 +n03619890 +n03620052 +n03620967 +n03621049 +n03621377 +n03622058 +n03622526 +n03622839 +n03622931 +n03623198 +n03623338 +n03623556 +n03624134 +n03624400 +n03625355 +n03625539 +n03625646 +n03625943 +n03626115 +n03626760 +n03627232 +n03627954 +n03628215 +n03628511 +n03629100 +n03629231 +n03629520 +n03630262 +n03630383 +n03631177 +n03631922 +n03632577 +n03632729 +n03632852 +n03633091 +n03633886 +n03634034 +n03635032 +n03635108 +n03635330 +n03635668 +n03636248 +n03636649 +n03637181 +n03637318 +n03637898 +n03638883 +n03639077 +n03639497 +n03640850 +n03640988 +n03641569 +n03642444 +n03642806 +n03643149 +n03643253 +n03643491 +n03643737 +n03644378 +n03644858 +n03645011 +n03645577 +n03646020 +n03646148 +n03646296 +n03646916 +n03647520 +n03648431 +n03649161 +n03649674 +n03649797 +n03649909 +n03650551 +n03651388 +n03651843 +n03652100 +n03652729 +n03652932 +n03653110 +n03653220 +n03653583 +n03653740 +n03653833 +n03653975 +n03654576 +n03655072 +n03655720 +n03656484 +n03656957 +n03657121 +n03657511 +n03658185 +n03658858 +n03659292 +n03659686 +n03659809 +n03659950 +n03660124 +n03660909 +n03661043 +n03661340 +n03662601 +n03662719 +n03662887 +n03663531 +n03664943 +n03665366 +n03665924 +n03666362 +n03666591 +n03666917 +n03667235 +n03667552 +n03667664 +n03667829 +n03668067 +n03668279 +n03668488 +n03668803 +n03669534 +n03669886 +n03670208 +n03671914 +n03672827 +n03673027 +n03673450 +n03674270 +n03674440 +n03674731 +n03675235 +n03676087 +n03676483 +n03676623 +n03676759 +n03677115 +n03678558 +n03678729 +n03679384 +n03679712 +n03680355 +n03680512 +n03680734 +n03680858 +n03680942 +n03682487 +n03682877 +n03683079 +n03683457 +n03683606 +n03683708 +n03683995 +n03684143 +n03684224 +n03684611 +n03684823 +n03685307 +n03685820 +n03686130 +n03686924 +n03687137 +n03687928 +n03688192 +n03688405 +n03688605 +n03688943 +n03689157 +n03690279 +n03690473 +n03690938 +n03691459 +n03691817 +n03692379 +n03692522 +n03693293 +n03693474 +n03693707 +n03693860 +n03694639 +n03695452 +n03695753 +n03695857 +n03696065 +n03696301 +n03696568 +n03697007 +n03697552 +n03697913 +n03698360 +n03698604 +n03698723 +n03698815 +n03699280 +n03699591 +n03699975 +n03700963 +n03701391 +n03701790 +n03703730 +n03703862 +n03703945 +n03704549 +n03706229 +n03706653 +n03708036 +n03708843 +n03709206 +n03709363 +n03709823 +n03710193 +n03710637 +n03710721 +n03711044 +n03711999 +n03712111 +n03712337 +n03713069 +n03713436 +n03714235 +n03715114 +n03715386 +n03715669 +n03715892 +n03716887 +n03716966 +n03717131 +n03717285 +n03717447 +n03717622 +n03718212 +n03718335 +n03718458 +n03718581 +n03718789 +n03718935 +n03719053 +n03719343 +n03719743 +n03720163 +n03720891 +n03721047 +n03721252 +n03721384 +n03721590 +n03722007 +n03722288 +n03723267 +n03723781 +n03724066 +n03724417 +n03724538 +n03724623 +n03724756 +n03724870 +n03725035 +n03725600 +n03725717 +n03726760 +n03726993 +n03727067 +n03727465 +n03727605 +n03727837 +n03727946 +n03728437 +n03728982 +n03729308 +n03729826 +n03730153 +n03730334 +n03730494 +n03730893 +n03731019 +n03731483 +n03731695 +n03732020 +n03732114 +n03732458 +n03733131 +n03733281 +n03733644 +n03733805 +n03733925 +n03735637 +n03735963 +n03736064 +n03736470 +n03736970 +n03738066 +n03738241 +n03738472 +n03739518 +n03739693 +n03742019 +n03742115 +n03743016 +n03743279 +n03743902 +n03744276 +n03744840 +n03745146 +n03745571 +n03746005 +n03746155 +n03746330 +n03746486 +n03748162 +n03749807 +n03751269 +n03751458 +n03751757 +n03752185 +n03753077 +n03757604 +n03758089 +n03759243 +n03759661 +n03759954 +n03760310 +n03760671 +n03760944 +n03761084 +n03762332 +n03762434 +n03762602 +n03763968 +n03764276 +n03764736 +n03764822 +n03764995 +n03765561 +n03765934 +n03766044 +n03766322 +n03766508 +n03766935 +n03767112 +n03767203 +n03767459 +n03767745 +n03767966 +n03768916 +n03769610 +n03769881 +n03770085 +n03770316 +n03770439 +n03770679 +n03770954 +n03772077 +n03772269 +n03772584 +n03773035 +n03773504 +n03774327 +n03774461 +n03775071 +n03775199 +n03775388 +n03775546 +n03775636 +n03775747 +n03775847 +n03776460 +n03776877 +n03777568 +n03777754 +n03778817 +n03779128 +n03781244 +n03781683 +n03781787 +n03782006 +n03782190 +n03782794 +n03783430 +n03784270 +n03784896 +n03785016 +n03785237 +n03785721 +n03786194 +n03786313 +n03786621 +n03786715 +n03786901 +n03787032 +n03787523 +n03788047 +n03788195 +n03788365 +n03788498 +n03788601 +n03788914 +n03789171 +n03789946 +n03790230 +n03790512 +n03790755 +n03790953 +n03791053 +n03791235 +n03792048 +n03792334 +n03792526 +n03792782 +n03792972 +n03793489 +n03793850 +n03794056 +n03794136 +n03794798 +n03795123 +n03795269 +n03795758 +n03795976 +n03796401 +n03796522 +n03796605 +n03797182 +n03797264 +n03797390 +n03797896 +n03798061 +n03798442 +n03799876 +n03800933 +n03801353 +n03801533 +n03801671 +n03801760 +n03801880 +n03802007 +n03802393 +n03802643 +n03803284 +n03804744 +n03805180 +n03805280 +n03805725 +n03809312 +n03809603 +n03810952 +n03811295 +n03811444 +n03811847 +n03811965 +n03812924 +n03813078 +n03814639 +n03814817 +n03814906 +n03815149 +n03815482 +n03815615 +n03816005 +n03816136 +n03816530 +n03816849 +n03817191 +n03817647 +n03818343 +n03819336 +n03819448 +n03819595 +n03819994 +n03820318 +n03820728 +n03821518 +n03822171 +n03822504 +n03822656 +n03822767 +n03823111 +n03823216 +n03823312 +n03824381 +n03824713 +n03825080 +n03825271 +n03825788 +n03826039 +n03826186 +n03827536 +n03828020 +n03829954 +n03831382 +n03832144 +n03832673 +n03834040 +n03835197 +n03836062 +n03836451 +n03836906 +n03836976 +n03837422 +n03837606 +n03837698 +n03837869 +n03838298 +n03838899 +n03839424 +n03839671 +n03840681 +n03840823 +n03841143 +n03841290 +n03841666 +n03842012 +n03842156 +n03842377 +n03842986 +n03843316 +n03843438 +n03843555 +n03844045 +n03844233 +n03844673 +n03844815 +n03845190 +n03846100 +n03846234 +n03846431 +n03846677 +n03847471 +n03847823 +n03848168 +n03848348 +n03849679 +n03849814 +n03850053 +n03850245 +n03850492 +n03851341 +n03851787 +n03852280 +n03852688 +n03853924 +n03854065 +n03854421 +n03854506 +n03854722 +n03854815 +n03855214 +n03855333 +n03855604 +n03855756 +n03856012 +n03856465 +n03857291 +n03857687 +n03857828 +n03858085 +n03858183 +n03858418 +n03859000 +n03859170 +n03859280 +n03859495 +n03859608 +n03859958 +n03860404 +n03861271 +n03861430 +n03861842 +n03862676 +n03862862 +n03863108 +n03863262 +n03863923 +n03864139 +n03864356 +n03864692 +n03865371 +n03865557 +n03865949 +n03866082 +n03868242 +n03868406 +n03868643 +n03868863 +n03870105 +n03870672 +n03870980 +n03871083 +n03871371 +n03871524 +n03871628 +n03871724 +n03873416 +n03873699 +n03874138 +n03874293 +n03874487 +n03874599 +n03874823 +n03875218 +n03875806 +n03875955 +n03876231 +n03877351 +n03877472 +n03877674 +n03877845 +n03878066 +n03878211 +n03878828 +n03878963 +n03879705 +n03880323 +n03880531 +n03882611 +n03882960 +n03883054 +n03883385 +n03883524 +n03884397 +n03884778 +n03884926 +n03885028 +n03885194 +n03885293 +n03885535 +n03885669 +n03885788 +n03885904 +n03886053 +n03886641 +n03886762 +n03887185 +n03887330 +n03887697 +n03888257 +n03888605 +n03889503 +n03889726 +n03889871 +n03890093 +n03890233 +n03890514 +n03891051 +n03891251 +n03891332 +n03891538 +n03892178 +n03892425 +n03892557 +n03892728 +n03894051 +n03894379 +n03894677 +n03895866 +n03896103 +n03896233 +n03896419 +n03896526 +n03897943 +n03898129 +n03898271 +n03898395 +n03898633 +n03899768 +n03899933 +n03900393 +n03900979 +n03901229 +n03901750 +n03901974 +n03902125 +n03902482 +n03902756 +n03903424 +n03903733 +n03903868 +n03904060 +n03904183 +n03904433 +n03904657 +n03904782 +n03904909 +n03905947 +n03906224 +n03906463 +n03906997 +n03908204 +n03908618 +n03908714 +n03909020 +n03909160 +n03909406 +n03911513 +n03911658 +n03911767 +n03911866 +n03912218 +n03913343 +n03914106 +n03914337 +n03914438 +n03914583 +n03914831 +n03915118 +n03915437 +n03915900 +n03916031 +n03916470 +n03916720 +n03917198 +n03917814 +n03918480 +n03918737 +n03919096 +n03919289 +n03919430 +n03920288 +n03920641 +n03920737 +n03920867 +n03923379 +n03923918 +n03924069 +n03924679 +n03926148 +n03927091 +n03927299 +n03927539 +n03928116 +n03928814 +n03929660 +n03929855 +n03930313 +n03930630 +n03931765 +n03931885 +n03933933 +n03934042 +n03934229 +n03934311 +n03934565 +n03934656 +n03935116 +n03935234 +n03935335 +n03936466 +n03937543 +n03937835 +n03937931 +n03938037 +n03938244 +n03938401 +n03938522 +n03938725 +n03939178 +n03939677 +n03939844 +n03940256 +n03941013 +n03941231 +n03941417 +n03941684 +n03942813 +n03942920 +n03943115 +n03943266 +n03943714 +n03943920 +n03944024 +n03944138 +n03944341 +n03946076 +n03946162 +n03947466 +n03947798 +n03947888 +n03948242 +n03948459 +n03948830 +n03948950 +n03949145 +n03949317 +n03950228 +n03950537 +n03950899 +n03952576 +n03953901 +n03954393 +n03954731 +n03955296 +n03955489 +n03956157 +n03956623 +n03956785 +n03956922 +n03957315 +n03957420 +n03957762 +n03957991 +n03958227 +n03958752 +n03959014 +n03959701 +n03960374 +n03960490 +n03961711 +n03961939 +n03962852 +n03963198 +n03963294 +n03963645 +n03964495 +n03964611 +n03965456 +n03965907 +n03966206 +n03966976 +n03967270 +n03967396 +n03967562 +n03967942 +n03968293 +n03968581 +n03968728 +n03970156 +n03970546 +n03971218 +n03973285 +n03973402 +n03973628 +n03973839 +n03973945 +n03974070 +n03974915 +n03975035 +n03975657 +n03975788 +n03976467 +n03976657 +n03977592 +n03977966 +n03978421 +n03978686 +n03978815 +n03978966 +n03980026 +n03980478 +n03980874 +n03981340 +n03981566 +n03981760 +n03981924 +n03982232 +n03982331 +n03982430 +n03982642 +n03982895 +n03983396 +n03983612 +n03984234 +n03984381 +n03984643 +n03984759 +n03985069 +n03985232 +n03985441 +n03985881 +n03986224 +n03986355 +n03986562 +n03986704 +n03986949 +n03987266 +n03987376 +n03987990 +n03988170 +n03989665 +n03990474 +n03991062 +n03991202 +n03991646 +n03991837 +n03992325 +n03992436 +n03992509 +n03992703 +n03993053 +n03993180 +n03993403 +n03993703 +n03994008 +n03994614 +n03995265 +n03995372 +n03995535 +n03995856 +n03996145 +n03996416 +n03996849 +n03998194 +n03998333 +n03999160 +n03999992 +n04000311 +n04000592 +n04000998 +n04001265 +n04001499 +n04001845 +n04002262 +n04003241 +n04003856 +n04004210 +n04004475 +n04004767 +n04004990 +n04005197 +n04005630 +n04008385 +n04008634 +n04009552 +n04009801 +n04011827 +n04012084 +n04012482 +n04013729 +n04015908 +n04016240 +n04016576 +n04016684 +n04016846 +n04018155 +n04018667 +n04019101 +n04019541 +n04019696 +n04020087 +n04020298 +n04020912 +n04021028 +n04021798 +n04022332 +n04023695 +n04023962 +n04024274 +n04024862 +n04024983 +n04025508 +n04026053 +n04026180 +n04026417 +n04026813 +n04026918 +n04027023 +n04027706 +n04028074 +n04028221 +n04028315 +n04028581 +n04028764 +n04029647 +n04029734 +n04030274 +n04030518 +n04032603 +n04033425 +n04033901 +n04033995 +n04034262 +n04035836 +n04035912 +n04036303 +n04037220 +n04037443 +n04037964 +n04038231 +n04038338 +n04038440 +n04038727 +n04039381 +n04039742 +n04039848 +n04040247 +n04040373 +n04040759 +n04041069 +n04041243 +n04041408 +n04041544 +n04041747 +n04042358 +n04043411 +n04043733 +n04044307 +n04044498 +n04044716 +n04045255 +n04045397 +n04045644 +n04046091 +n04046277 +n04046400 +n04046590 +n04046974 +n04047401 +n04048441 +n04049303 +n04049405 +n04049585 +n04049753 +n04050066 +n04050313 +n04050933 +n04051549 +n04051825 +n04052442 +n04052658 +n04052757 +n04053508 +n04053677 +n04054361 +n04054670 +n04055180 +n04056180 +n04056413 +n04056932 +n04057047 +n04057215 +n04057981 +n04058096 +n04058239 +n04058594 +n04059157 +n04059516 +n04059947 +n04060647 +n04061681 +n04061793 +n04061969 +n04062428 +n04063154 +n04063373 +n04063868 +n04064401 +n04064747 +n04064862 +n04065272 +n04065464 +n04065789 +n04066270 +n04067472 +n04067658 +n04067818 +n04067921 +n04068441 +n04068601 +n04069276 +n04069434 +n04070003 +n04070207 +n04070415 +n04070727 +n04071263 +n04071393 +n04072193 +n04072551 +n04072960 +n04073948 +n04074185 +n04074963 +n04075291 +n04075468 +n04075715 +n04075916 +n04076284 +n04076713 +n04077430 +n04078574 +n04079244 +n04079933 +n04080138 +n04080454 +n04080705 +n04080833 +n04081281 +n04081699 +n04082562 +n04082710 +n04082886 +n04083309 +n04083800 +n04084889 +n04086273 +n04086446 +n04087432 +n04087709 +n04087826 +n04089376 +n04089666 +n04089836 +n04089976 +n04090263 +n04091097 +n04091693 +n04093625 +n04093775 +n04094720 +n04095109 +n04095210 +n04095342 +n04095577 +n04096066 +n04097373 +n04097760 +n04097866 +n04098513 +n04099003 +n04099175 +n04099429 +n04099969 +n04100519 +n04101701 +n04102037 +n04102162 +n04102285 +n04102406 +n04102618 +n04102872 +n04103094 +n04103206 +n04103364 +n04103665 +n04103769 +n04103918 +n04104147 +n04104384 +n04104500 +n04104770 +n04105068 +n04105704 +n04105893 +n04107743 +n04108268 +n04108822 +n04110178 +n04110955 +n04111190 +n04111414 +n04111531 +n04111668 +n04112147 +n04112252 +n04112430 +n04112579 +n04112654 +n04112752 +n04113194 +n04113316 +n04113406 +n04113641 +n04113765 +n04114069 +n04114844 +n04115144 +n04115256 +n04115456 +n04115802 +n04115996 +n04116098 +n04116294 +n04116512 +n04117464 +n04118021 +n04118538 +n04118635 +n04118776 +n04119091 +n04119230 +n04119360 +n04119478 +n04119751 +n04120489 +n04120842 +n04121426 +n04121511 +n04121728 +n04122349 +n04122492 +n04122578 +n04122685 +n04122825 +n04123026 +n04123448 +n04123567 +n04123740 +n04124098 +n04124202 +n04124370 +n04124488 +n04125021 +n04125257 +n04125853 +n04126066 +n04127249 +n04127395 +n04127521 +n04127633 +n04127904 +n04128413 +n04128499 +n04128710 +n04128837 +n04130143 +n04130257 +n04130907 +n04131208 +n04131368 +n04131690 +n04131929 +n04132158 +n04132603 +n04132985 +n04133789 +n04134008 +n04134170 +n04134523 +n04134632 +n04135024 +n04135118 +n04135315 +n04135710 +n04136045 +n04136161 +n04136333 +n04136510 +n04136800 +n04137089 +n04137217 +n04137355 +n04137444 +n04137773 +n04137897 +n04138261 +n04138977 +n04139140 +n04139395 +n04139859 +n04140064 +n04140631 +n04141076 +n04141198 +n04141327 +n04141712 +n04141838 +n04141975 +n04142434 +n04142731 +n04142999 +n04143140 +n04143897 +n04144241 +n04144539 +n04145863 +n04146050 +n04146343 +n04146504 +n04146614 +n04146862 +n04147183 +n04147793 +n04148054 +n04148579 +n04148703 +n04149083 +n04149374 +n04149813 +n04150153 +n04150980 +n04152387 +n04152593 +n04153025 +n04153751 +n04154152 +n04154340 +n04154565 +n04154938 +n04155068 +n04156040 +n04156140 +n04156946 +n04157099 +n04157320 +n04158807 +n04158956 +n04160372 +n04160586 +n04160847 +n04161358 +n04161981 +n04162433 +n04162706 +n04163530 +n04164002 +n04164406 +n04164757 +n04164868 +n04165409 +n04166281 +n04167346 +n04168199 +n04169437 +n04170037 +n04170933 +n04171208 +n04171459 +n04171629 +n04171831 +n04172107 +n04172230 +n04172342 +n04172776 +n04172904 +n04173046 +n04173511 +n04173907 +n04174101 +n04175039 +n04175147 +n04176068 +n04176190 +n04176295 +n04177041 +n04177755 +n04177820 +n04177931 +n04178190 +n04178329 +n04179126 +n04179712 +n04179824 +n04179913 +n04180063 +n04180229 +n04180888 +n04181228 +n04181561 +n04182152 +n04182322 +n04183217 +n04183329 +n04184316 +n04184435 +n04184880 +n04185071 +n04185529 +n04185804 +n04185946 +n04186051 +n04186268 +n04186455 +n04186848 +n04187061 +n04187233 +n04187547 +n04187970 +n04188179 +n04189282 +n04189651 +n04189816 +n04190052 +n04190376 +n04190997 +n04191595 +n04191943 +n04192238 +n04192698 +n04192858 +n04193377 +n04194127 +n04194289 +n04196502 +n04197110 +n04197391 +n04197781 +n04198355 +n04198453 +n04198562 +n04198722 +n04198797 +n04199027 +n04200000 +n04200258 +n04200537 +n04200800 +n04200908 +n04201064 +n04201297 +n04201733 +n04202417 +n04204081 +n04204238 +n04204347 +n04205318 +n04205505 +n04206225 +n04206356 +n04206570 +n04206790 +n04207151 +n04207343 +n04207596 +n04207763 +n04207903 +n04208065 +n04208210 +n04208427 +n04208760 +n04208936 +n04209133 +n04209239 +n04209509 +n04209613 +n04210120 +n04210288 +n04210390 +n04210591 +n04211219 +n04211356 +n04211528 +n04211857 +n04211970 +n04212165 +n04212282 +n04212467 +n04213353 +n04214046 +n04214282 +n04215153 +n04215402 +n04216634 +n04216860 +n04216963 +n04217546 +n04217882 +n04218564 +n04219185 +n04219424 +n04220250 +n04221823 +n04222210 +n04222307 +n04222470 +n04222723 +n04223170 +n04223299 +n04224543 +n04224842 +n04225031 +n04225729 +n04225987 +n04226464 +n04226826 +n04227144 +n04227900 +n04228054 +n04228215 +n04228581 +n04228693 +n04229007 +n04229107 +n04229480 +n04229737 +n04229816 +n04229959 +n04230387 +n04230603 +n04230808 +n04231272 +n04231693 +n04231905 +n04232153 +n04232800 +n04233124 +n04233715 +n04234455 +n04234887 +n04235291 +n04235860 +n04236377 +n04236809 +n04236935 +n04237423 +n04238128 +n04238321 +n04238617 +n04238763 +n04239074 +n04239436 +n04239786 +n04240752 +n04241249 +n04241573 +n04242084 +n04242408 +n04242704 +n04243546 +n04243941 +n04244379 +n04244997 +n04245508 +n04246060 +n04246271 +n04246731 +n04246855 +n04247011 +n04247630 +n04247736 +n04247876 +n04248396 +n04248507 +n04248851 +n04249415 +n04249582 +n04249882 +n04250224 +n04250473 +n04250692 +n04250850 +n04251144 +n04251701 +n04251791 +n04252077 +n04252225 +n04252331 +n04252560 +n04252653 +n04253057 +n04253168 +n04253931 +n04254009 +n04254120 +n04254680 +n04254777 +n04255163 +n04255586 +n04255899 +n04256520 +n04256891 +n04257223 +n04257684 +n04257790 +n04257986 +n04258138 +n04258333 +n04258438 +n04258618 +n04258732 +n04258859 +n04259630 +n04260364 +n04261116 +n04261281 +n04261638 +n04262161 +n04263257 +n04263336 +n04263502 +n04264628 +n04264765 +n04264914 +n04265275 +n04265904 +n04266014 +n04266162 +n04266375 +n04266486 +n04266968 +n04267435 +n04269270 +n04269822 +n04269944 +n04270147 +n04270371 +n04270891 +n04271531 +n04272054 +n04272389 +n04272928 +n04273285 +n04273569 +n04273659 +n04273796 +n04273972 +n04274985 +n04275175 +n04275548 +n04275661 +n04277352 +n04277493 +n04277826 +n04278247 +n04278353 +n04278447 +n04279172 +n04279353 +n04279462 +n04281260 +n04281375 +n04282231 +n04282494 +n04282872 +n04282992 +n04283096 +n04283255 +n04283378 +n04283585 +n04283905 +n04284002 +n04284341 +n04284438 +n04284572 +n04284869 +n04285008 +n04285146 +n04285803 +n04285965 +n04286575 +n04287451 +n04287747 +n04287898 +n04288272 +n04288533 +n04289027 +n04289195 +n04289576 +n04289690 +n04289827 +n04290079 +n04290259 +n04290507 +n04290615 +n04291992 +n04292080 +n04292414 +n04292572 +n04292921 +n04293119 +n04294426 +n04294614 +n04294879 +n04295081 +n04295571 +n04295881 +n04296562 +n04297098 +n04297750 +n04297847 +n04298053 +n04298661 +n04299215 +n04299370 +n04299963 +n04300643 +n04301000 +n04301760 +n04303357 +n04303497 +n04304215 +n04304375 +n04304680 +n04305210 +n04305323 +n04305572 +n04306080 +n04306592 +n04306847 +n04307767 +n04307986 +n04308084 +n04308273 +n04308397 +n04309049 +n04309348 +n04309548 +n04309833 +n04310018 +n04310157 +n04310721 +n04310904 +n04311004 +n04311174 +n04311595 +n04312154 +n04312432 +n04313220 +n04313503 +n04313628 +n04314522 +n04314914 +n04315342 +n04315713 +n04315948 +n04316498 +n04317063 +n04317175 +n04317325 +n04317420 +n04317833 +n04317976 +n04318787 +n04318892 +n04319937 +n04320973 +n04321453 +n04322026 +n04322801 +n04323819 +n04324297 +n04324387 +n04325041 +n04325704 +n04326547 +n04326676 +n04326799 +n04326896 +n04327204 +n04327682 +n04328186 +n04328329 +n04328946 +n04329834 +n04329958 +n04330267 +n04330340 +n04330746 +n04330998 +n04331277 +n04331639 +n04332074 +n04332243 +n04332580 +n04333129 +n04333869 +n04334105 +n04334365 +n04334599 +n04335209 +n04335435 +n04335693 +n04335886 +n04336792 +n04337287 +n04338517 +n04338963 +n04339879 +n04340521 +n04340750 +n04340935 +n04341133 +n04341686 +n04344003 +n04344734 +n04344873 +n04345028 +n04345201 +n04346003 +n04346157 +n04346328 +n04346428 +n04347119 +n04347519 +n04347754 +n04348359 +n04349306 +n04349401 +n04350458 +n04350581 +n04350769 +n04350905 +n04351699 +n04353573 +n04354026 +n04354182 +n04354487 +n04354589 +n04355115 +n04355267 +n04355338 +n04355511 +n04355933 +n04356056 +n04356595 +n04356925 +n04357121 +n04357314 +n04357531 +n04358117 +n04358491 +n04358707 +n04358874 +n04359335 +n04359500 +n04360798 +n04360914 +n04361095 +n04361260 +n04363082 +n04363777 +n04363991 +n04364160 +n04364545 +n04365328 +n04366033 +n04366116 +n04366367 +n04367011 +n04367371 +n04367480 +n04367746 +n04367950 +n04368496 +n04369025 +n04369282 +n04370048 +n04370288 +n04370456 +n04370774 +n04371050 +n04371430 +n04371563 +n04371774 +n04372370 +n04373089 +n04373428 +n04373704 +n04373795 +n04373894 +n04374315 +n04374735 +n04375241 +n04375405 +n04375615 +n04376400 +n04376876 +n04377057 +n04378956 +n04379243 +n04379964 +n04380255 +n04380346 +n04380533 +n04380916 +n04381073 +n04381587 +n04381724 +n04381860 +n04381994 +n04382438 +n04382695 +n04382880 +n04383015 +n04383130 +n04383839 +n04384593 +n04384910 +n04385536 +n04385799 +n04386051 +n04386664 +n04386792 +n04387095 +n04387201 +n04387261 +n04387400 +n04387706 +n04387932 +n04388743 +n04389033 +n04389430 +n04389521 +n04389718 +n04389854 +n04390577 +n04390873 +n04390977 +n04391445 +n04391838 +n04392113 +n04392526 +n04392764 +n04392985 +n04393095 +n04393549 +n04393808 +n04393913 +n04394630 +n04395024 +n04395106 +n04395651 +n04396335 +n04396808 +n04396902 +n04397027 +n04397452 +n04397645 +n04397768 +n04398044 +n04398497 +n04398688 +n04398834 +n04398951 +n04399158 +n04399537 +n04399846 +n04400109 +n04400289 +n04400737 +n04401088 +n04401578 +n04401680 +n04401828 +n04401949 +n04402057 +n04402449 +n04402580 +n04402746 +n04402984 +n04403413 +n04403524 +n04403638 +n04403925 +n04404412 +n04404817 +n04404997 +n04405540 +n04405762 +n04405907 +n04406239 +n04406817 +n04407435 +n04407686 +n04408871 +n04409011 +n04409128 +n04409384 +n04409515 +n04409625 +n04409806 +n04410086 +n04411264 +n04412097 +n04412416 +n04413969 +n04414199 +n04414319 +n04414476 +n04414675 +n04414909 +n04415663 +n04416005 +n04417086 +n04417180 +n04417361 +n04417672 +n04417809 +n04418357 +n04419073 +n04419642 +n04419868 +n04421872 +n04422409 +n04422727 +n04422875 +n04423845 +n04424692 +n04425804 +n04426316 +n04426427 +n04427715 +n04428191 +n04428634 +n04429376 +n04430475 +n04430896 +n04431025 +n04431745 +n04432203 +n04432662 +n04433585 +n04434207 +n04434531 +n04434932 +n04435180 +n04435653 +n04436012 +n04436185 +n04436329 +n04437953 +n04438304 +n04438507 +n04438897 +n04439585 +n04439712 +n04440963 +n04441662 +n04441790 +n04442312 +n04442441 +n04442741 +n04443164 +n04443257 +n04443766 +n04444749 +n04445040 +n04445154 +n04445327 +n04445952 +n04446276 +n04446844 +n04447028 +n04447276 +n04447443 +n04447861 +n04448070 +n04448361 +n04449290 +n04449966 +n04450133 +n04450243 +n04450640 +n04450749 +n04450994 +n04451318 +n04451818 +n04452528 +n04452615 +n04452757 +n04453037 +n04453156 +n04453390 +n04453666 +n04454908 +n04455250 +n04455652 +n04456115 +n04457157 +n04457474 +n04457767 +n04457910 +n04458633 +n04458843 +n04459018 +n04459362 +n04459610 +n04459773 +n04459909 +n04460130 +n04461437 +n04461570 +n04461696 +n04461879 +n04462011 +n04462240 +n04463679 +n04464615 +n04464852 +n04465050 +n04465358 +n04465501 +n04465666 +n04466871 +n04467099 +n04467307 +n04467665 +n04468005 +n04469003 +n04469514 +n04469813 +n04471148 +n04471632 +n04472563 +n04473108 +n04474035 +n04474187 +n04474466 +n04475411 +n04475631 +n04476116 +n04476259 +n04476831 +n04476972 +n04477219 +n04477387 +n04477548 +n04478512 +n04479046 +n04479823 +n04479939 +n04480033 +n04480853 +n04482177 +n04482297 +n04482393 +n04483073 +n04483307 +n04483925 +n04484432 +n04485082 +n04485423 +n04485884 +n04486054 +n04486213 +n04486934 +n04487081 +n04487394 +n04487724 +n04488202 +n04488427 +n04488530 +n04488742 +n04488857 +n04489008 +n04489695 +n04489817 +n04490091 +n04491388 +n04491638 +n04491769 +n04492060 +n04492375 +n04492749 +n04493381 +n04494204 +n04495698 +n04495843 +n04496614 +n04496726 +n04496872 +n04497442 +n04497570 +n04497801 +n04498389 +n04499062 +n04499446 +n04500060 +n04501370 +n04501550 +n04501837 +n04501947 +n04502059 +n04502197 +n04502502 +n04502670 +n04502851 +n04503413 +n04503593 +n04504141 +n04505036 +n04505345 +n04505470 +n04506289 +n04506506 +n04506688 +n04507155 +n04508163 +n04508489 +n04508949 +n04509171 +n04509260 +n04509417 +n04510706 +n04511002 +n04513827 +n04513998 +n04514241 +n04515003 +n04516116 +n04516214 +n04516354 +n04516672 +n04517211 +n04517408 +n04517823 +n04518132 +n04518343 +n04518643 +n04518764 +n04519153 +n04520170 +n04520382 +n04520784 +n04521863 +n04522168 +n04523525 +n04523831 +n04524142 +n04524313 +n04524941 +n04525038 +n04525191 +n04525305 +n04525417 +n04525584 +n04525821 +n04526964 +n04527648 +n04528079 +n04528968 +n04529108 +n04529681 +n04529962 +n04530283 +n04530566 +n04531098 +n04531873 +n04532106 +n04532398 +n04532670 +n04532831 +n04533199 +n04533499 +n04533594 +n04533700 +n04533802 +n04533946 +n04534127 +n04534359 +n04534520 +n04534895 +n04535252 +n04535370 +n04535524 +n04536153 +n04536335 +n04536595 +n04536866 +n04538552 +n04539053 +n04539203 +n04539794 +n04540053 +n04540255 +n04541320 +n04541987 +n04542095 +n04542715 +n04542858 +n04542943 +n04543158 +n04543636 +n04543772 +n04543996 +n04544325 +n04544450 +n04545305 +n04545748 +n04545858 +n04546194 +n04546340 +n04547592 +n04548280 +n04548362 +n04549028 +n04549122 +n04549629 +n04549919 +n04550184 +n04551055 +n04552348 +n04552696 +n04553561 +n04553703 +n04554211 +n04554406 +n04554684 +n04554871 +n04555291 +n04555400 +n04555600 +n04555700 +n04555897 +n04556408 +n04556533 +n04556948 +n04557648 +n04557751 +n04558478 +n04559166 +n04559451 +n04559730 +n04559910 +n04560113 +n04560292 +n04560804 +n04560882 +n04561287 +n04561422 +n04561734 +n04562262 +n04562496 +n04562935 +n04563204 +n04563413 +n04564278 +n04564581 +n04565375 +n04566257 +n04566561 +n04566756 +n04568069 +n04568557 +n04568841 +n04569063 +n04569822 +n04570214 +n04570815 +n04570958 +n04571292 +n04571566 +n04571686 +n04571958 +n04573281 +n04573379 +n04573513 +n04573937 +n04574067 +n04574999 +n04575723 +n04575824 +n04576002 +n04576211 +n04577426 +n04577769 +n04578934 +n04579056 +n04579145 +n04579230 +n04579432 +n04579667 +n04579986 +n04580493 +n04581102 +n04581829 +n04582205 +n04582349 +n04582771 +n04582869 +n04583212 +n04583620 +n04584207 +n04584373 +n04585128 +n04585745 +n04585980 +n04586072 +n04586581 +n04586932 +n04587327 +n04587404 +n04587559 +n04587648 +n04588739 +n04589190 +n04589325 +n04589593 +n04589890 +n04590021 +n04590129 +n04590263 +n04590553 +n04590746 +n04590933 +n04591056 +n04591157 +n04591517 +n04591713 +n04591887 +n04592005 +n04592099 +n04592465 +n04592741 +n04593077 +n04593185 +n04593376 +n04593524 +n04593866 +n04594114 +n04594218 +n04594489 +n04594828 +n04595028 +n04595285 +n04595855 +n04596742 +n04596852 +n04597309 +n04597400 +n04597804 +n04597913 +n04598318 +n04598582 +n04598965 +n04599124 +n04599235 +n04600312 +n04600912 +n04602762 +n04602956 +n04603399 +n04603729 +n04603872 +n04604644 +n04605163 +n04605321 +n04605572 +n04605726 +n04606251 +n04606574 +n04607035 +n04607242 +n04607869 +n04608329 +n04608435 +n04608567 +n04608923 +n04609531 +n04609651 +n04610013 +n04610274 +n04610503 +n04610676 +n04611916 +n04612026 +n04612373 +n04612504 +n04613015 +n04613696 +n04613939 +n04614655 +n04615226 +n04615644 +n04950952 +n04951071 +n04951186 +n04953296 +n04955160 +n04959672 +n04960277 +n04960582 +n04961062 +n04961331 +n04961691 +n04962062 +n04962240 +n04963307 +n04963588 +n04963740 +n04964001 +n04964799 +n04964878 +n04965179 +n04965451 +n04965661 +n04966543 +n04966941 +n04967191 +n04967674 +n04967801 +n04967882 +n04968056 +n04968139 +n04968749 +n04968895 +n04969242 +n04969540 +n04969798 +n04969952 +n04970059 +n04970398 +n04970470 +n04970916 +n04971211 +n04971313 +n04972350 +n04972451 +n04972801 +n04973291 +n04973386 +n04973585 +n04973816 +n04974859 +n04976319 +n04976952 +n04977412 +n04979002 +n04981658 +n05218119 +n05238282 +n05239437 +n05242928 +n05244934 +n05245192 +n05258051 +n05259914 +n05260127 +n05260240 +n05261310 +n05262422 +n05262534 +n05262698 +n05263183 +n05263448 +n05282652 +n05302499 +n05399034 +n05399243 +n05418717 +n05450617 +n05451384 +n05453657 +n05458576 +n05486510 +n05526957 +n05538625 +n05578095 +n05581932 +n05586759 +n05716342 +n06255081 +n06263609 +n06266633 +n06266973 +n06267145 +n06267564 +n06267655 +n06267758 +n06267893 +n06267991 +n06271778 +n06272290 +n06272612 +n06272803 +n06273414 +n06273555 +n06273743 +n06273986 +n06274760 +n06275095 +n06275353 +n06275471 +n06276501 +n06276697 +n06277135 +n06277280 +n06278338 +n06278475 +n06281040 +n06359193 +n06359467 +n06415688 +n06417096 +n06470073 +n06592281 +n06595351 +n06596364 +n06596474 +n06596607 +n06596727 +n06785654 +n06793231 +n06794110 +n06874185 +n06883725 +n06892775 +n06998748 +n07005523 +n07248320 +n07273802 +n07461050 +n07556406 +n07556637 +n07556970 +n07557434 +n07560193 +n07560331 +n07560542 +n07560652 +n07560903 +n07561112 +n07561590 +n07561848 +n07562495 +n07563207 +n07564008 +n07564796 +n07564971 +n07565083 +n07565161 +n07565259 +n07566340 +n07567707 +n07567980 +n07568502 +n07568818 +n07569106 +n07569644 +n07570720 +n07572616 +n07572957 +n07573347 +n07573696 +n07574176 +n07574426 +n07574504 +n07574602 +n07574780 +n07574923 +n07575076 +n07575392 +n07575510 +n07575726 +n07575984 +n07576182 +n07576438 +n07576781 +n07577144 +n07577374 +n07577538 +n07578093 +n07579575 +n07579688 +n07579787 +n07579917 +n07580053 +n07580253 +n07580359 +n07580470 +n07580592 +n07581249 +n07581346 +n07581775 +n07581931 +n07582152 +n07582277 +n07582609 +n07582892 +n07583066 +n07584110 +n07584332 +n07584423 +n07584593 +n07585107 +n07585208 +n07585557 +n07585758 +n07585906 +n07586099 +n07586318 +n07586604 +n07586718 +n07586894 +n07587023 +n07587111 +n07587331 +n07587441 +n07587618 +n07587700 +n07587962 +n07588111 +n07588193 +n07588299 +n07588419 +n07588574 +n07588817 +n07588947 +n07589458 +n07589543 +n07590320 +n07590502 +n07590611 +n07590752 +n07591049 +n07591473 +n07591586 +n07591961 +n07592094 +n07592400 +n07592481 +n07592656 +n07592768 +n07593004 +n07593199 +n07593471 +n07594066 +n07595180 +n07595649 +n07595914 +n07596684 +n07596967 +n07597145 +n07597365 +n07598256 +n07598734 +n07599161 +n07599911 +n07599998 +n07600177 +n07600285 +n07600696 +n07601290 +n07601572 +n07601686 +n07601809 +n07604956 +n07605040 +n07605380 +n07605474 +n07605597 +n07605804 +n07605944 +n07606538 +n07606669 +n07606764 +n07607138 +n07607605 +n07607967 +n07608098 +n07608339 +n07608429 +n07608866 +n07609215 +n07609407 +n07609632 +n07609840 +n07610620 +n07611046 +n07611148 +n07611267 +n07611358 +n07611839 +n07611991 +n07612137 +n07612367 +n07612632 +n07612996 +n07613266 +n07613480 +n07613815 +n07614198 +n07614500 +n07614730 +n07614825 +n07615190 +n07615289 +n07615460 +n07615569 +n07615671 +n07615774 +n07616046 +n07616386 +n07616487 +n07616590 +n07616748 +n07617051 +n07617611 +n07617708 +n07617932 +n07618029 +n07618119 +n07618432 +n07619004 +n07619208 +n07619409 +n07620689 +n07621618 +n07623136 +n07624466 +n07624666 +n07624924 +n07625061 +n07627931 +n07628068 +n07631926 +n07639069 +n07641928 +n07642361 +n07642471 +n07642742 +n07642933 +n07643026 +n07643200 +n07643306 +n07643474 +n07643891 +n07643981 +n07648913 +n07648997 +n07650903 +n07651025 +n07654148 +n07654298 +n07655263 +n07665438 +n07666176 +n07678729 +n07679034 +n07679356 +n07680313 +n07680517 +n07680761 +n07680932 +n07681450 +n07681691 +n07681926 +n07682197 +n07682316 +n07682477 +n07682624 +n07682808 +n07682952 +n07683039 +n07683360 +n07683490 +n07683617 +n07683786 +n07684084 +n07684164 +n07684289 +n07684517 +n07684600 +n07684938 +n07685031 +n07685218 +n07685399 +n07685546 +n07685730 +n07685918 +n07686021 +n07686202 +n07686720 +n07686873 +n07687053 +n07687211 +n07687381 +n07687469 +n07687626 +n07687789 +n07688130 +n07688624 +n07688898 +n07689003 +n07689842 +n07690019 +n07690152 +n07690273 +n07690431 +n07690511 +n07690585 +n07690739 +n07690892 +n07691091 +n07691237 +n07691539 +n07691650 +n07691758 +n07691863 +n07691954 +n07692614 +n07693048 +n07693223 +n07693590 +n07693725 +n07693972 +n07694403 +n07694516 +n07694659 +n07694839 +n07695652 +n07695742 +n07695878 +n07695965 +n07696403 +n07696527 +n07696625 +n07696728 +n07696839 +n07696977 +n07697100 +n07697313 +n07697537 +n07697699 +n07697825 +n07698250 +n07698401 +n07698543 +n07698672 +n07698782 +n07700003 +n07704054 +n07704205 +n07705931 +n07707451 +n07708124 +n07708398 +n07708685 +n07709046 +n07709172 +n07709333 +n07709881 +n07710283 +n07710616 +n07710952 +n07711080 +n07711232 +n07711371 +n07711569 +n07712063 +n07712267 +n07712382 +n07712559 +n07712748 +n07712856 +n07712959 +n07713074 +n07713267 +n07713395 +n07713763 +n07713895 +n07714078 +n07714188 +n07714287 +n07714448 +n07714571 +n07714802 +n07714895 +n07714990 +n07715103 +n07715221 +n07715407 +n07715561 +n07715721 +n07716034 +n07716203 +n07716358 +n07716504 +n07716906 +n07717070 +n07717410 +n07717556 +n07718472 +n07718747 +n07719213 +n07719616 +n07719839 +n07720277 +n07720442 +n07720615 +n07720875 +n07721018 +n07721195 +n07721325 +n07721456 +n07721678 +n07721942 +n07722052 +n07722217 +n07722485 +n07722763 +n07722888 +n07723039 +n07723177 +n07723330 +n07723559 +n07723968 +n07724269 +n07724492 +n07724654 +n07724943 +n07725255 +n07725376 +n07725531 +n07725789 +n07725888 +n07726095 +n07726525 +n07726672 +n07726796 +n07727048 +n07727458 +n07727578 +n07727868 +n07728053 +n07728181 +n07728391 +n07728585 +n07728708 +n07729384 +n07729485 +n07729828 +n07729926 +n07730033 +n07730207 +n07730320 +n07730406 +n07730708 +n07730855 +n07731006 +n07731284 +n07731587 +n07731767 +n07731952 +n07732168 +n07732636 +n07732747 +n07732904 +n07733394 +n07733567 +n07733712 +n07734017 +n07734183 +n07734292 +n07734417 +n07734555 +n07734744 +n07734879 +n07735404 +n07735510 +n07735687 +n07735803 +n07736087 +n07736256 +n07736371 +n07736692 +n07736813 +n07737745 +n07739125 +n07739344 +n07739506 +n07740033 +n07740220 +n07740342 +n07740461 +n07740597 +n07740954 +n07741138 +n07741461 +n07742012 +n07742313 +n07742704 +n07743224 +n07743544 +n07743902 +n07744057 +n07744246 +n07744430 +n07744682 +n07744811 +n07745046 +n07745466 +n07745940 +n07746186 +n07746334 +n07746551 +n07747055 +n07747607 +n07747951 +n07748157 +n07748276 +n07748416 +n07748574 +n07748753 +n07748912 +n07749192 +n07749312 +n07749446 +n07749582 +n07749731 +n07749870 +n07749969 +n07750146 +n07750449 +n07750736 +n07750872 +n07751004 +n07751148 +n07751280 +n07751451 +n07751858 +n07752109 +n07752377 +n07752514 +n07752664 +n07752966 +n07753113 +n07753275 +n07753592 +n07753743 +n07753980 +n07754451 +n07754684 +n07754894 +n07755089 +n07755411 +n07755707 +n07755929 +n07756325 +n07756641 +n07756951 +n07757132 +n07757312 +n07757511 +n07757990 +n07758680 +n07759194 +n07759816 +n07760153 +n07760859 +n07761141 +n07761309 +n07761611 +n07762114 +n07762244 +n07762740 +n07762913 +n07763107 +n07763629 +n07763792 +n07763987 +n07764155 +n07764315 +n07764630 +n07764847 +n07765073 +n07765208 +n07765361 +n07765862 +n07765999 +n07766173 +n07766891 +n07767002 +n07767171 +n07767344 +n07767549 +n07767709 +n07767847 +n07768068 +n07768230 +n07768423 +n07768694 +n07768858 +n07769584 +n07769731 +n07770034 +n07770763 +n07771212 +n07771731 +n07772147 +n07772274 +n07772788 +n07772935 +n07774596 +n07774719 +n07774842 +n07775050 +n07775197 +n07800740 +n07801091 +n07801342 +n07801508 +n07801779 +n07801892 +n07802026 +n07802417 +n07802863 +n07802963 +n07803093 +n07803545 +n07804323 +n07804543 +n07804657 +n07804771 +n07804900 +n07805594 +n07805731 +n07805966 +n07806120 +n07806221 +n07806633 +n07806774 +n07807002 +n07807171 +n07807317 +n07807472 +n07807594 +n07807710 +n07807834 +n07807922 +n07808022 +n07808587 +n07808904 +n07809096 +n07810907 +n07812046 +n07812184 +n07814203 +n07814390 +n07814487 +n07814634 +n07814790 +n07815424 +n07815588 +n07815839 +n07816052 +n07816164 +n07816296 +n07816398 +n07816575 +n07816839 +n07817024 +n07817160 +n07817315 +n07817871 +n07818133 +n07818277 +n07818572 +n07818689 +n07818825 +n07818995 +n07819166 +n07819480 +n07819769 +n07819896 +n07820145 +n07820297 +n07820497 +n07820683 +n07820960 +n07821260 +n07821610 +n07821758 +n07821919 +n07822197 +n07822323 +n07822518 +n07822845 +n07823105 +n07823280 +n07823460 +n07823698 +n07823951 +n07824191 +n07824702 +n07825194 +n07825717 +n07825972 +n07826091 +n07826340 +n07826453 +n07826930 +n07827130 +n07827284 +n07827410 +n07827750 +n07827896 +n07828642 +n07829248 +n07829331 +n07829412 +n07830593 +n07831146 +n07831267 +n07832416 +n07832902 +n07834065 +n07834507 +n07834618 +n07834872 +n07835331 +n07835457 +n07835921 +n07836838 +n07837002 +n07837362 +n07837912 +n07838073 +n07838233 +n07838441 +n07838551 +n07840027 +n07840520 +n07840804 +n07841345 +n07841495 +n07841639 +n07841800 +n07841907 +n07842044 +n07842130 +n07842202 +n07842308 +n07842433 +n07842605 +n07842753 +n07843117 +n07843464 +n07843636 +n07843775 +n07844042 +n07844604 +n07844867 +n07845087 +n07845702 +n07845863 +n07846143 +n07847198 +n07847453 +n07847827 +n07847917 +n07848093 +n07848196 +n07848338 +n07849336 +n07849619 +n07849733 +n07849912 +n07850083 +n07850329 +n07851298 +n07851443 +n07851554 +n07851641 +n07851767 +n07852045 +n07852229 +n07852302 +n07852614 +n07852833 +n07852919 +n07853560 +n07854184 +n07854982 +n07855510 +n07855907 +n07857170 +n07857731 +n07858114 +n07858978 +n07859284 +n07859583 +n07859796 +n07860103 +n07860331 +n07860447 +n07860805 +n07860988 +n07861158 +n07861557 +n07861813 +n07861983 +n07862095 +n07862244 +n07862348 +n07862461 +n07862611 +n07863374 +n07863547 +n07863802 +n07864065 +n07864756 +n07864934 +n07865105 +n07865196 +n07865484 +n07866015 +n07866151 +n07866277 +n07866409 +n07866723 +n07866868 +n07867021 +n07867164 +n07867324 +n07867421 +n07867616 +n07867751 +n07868200 +n07868340 +n07868508 +n07868830 +n07868955 +n07869291 +n07869391 +n07869522 +n07869611 +n07869775 +n07870069 +n07870167 +n07870313 +n07870894 +n07871234 +n07871436 +n07871720 +n07871810 +n07872593 +n07873057 +n07873348 +n07873464 +n07873807 +n07874063 +n07874159 +n07874259 +n07874343 +n07874441 +n07874780 +n07875152 +n07875436 +n07875560 +n07875693 +n07876189 +n07876651 +n07877187 +n07877299 +n07877675 +n07877849 +n07877961 +n07878647 +n07878785 +n07878926 +n07879072 +n07879174 +n07879350 +n07879450 +n07879659 +n07879953 +n07880080 +n07880213 +n07880325 +n07880458 +n07880751 +n07880880 +n07880968 +n07881205 +n07881404 +n07881800 +n07882420 +n07882497 +n07883031 +n07883251 +n07884567 +n07885705 +n07886057 +n07886176 +n07886463 +n07886572 +n07886849 +n07887099 +n07887192 +n07887304 +n07887461 +n07887634 +n07887967 +n07888229 +n07888465 +n07888816 +n07889274 +n07889510 +n07889814 +n07890068 +n07890226 +n07890352 +n07890540 +n07890750 +n07891189 +n07891309 +n07891433 +n07891726 +n07892418 +n07892512 +n07892813 +n07893253 +n07893528 +n07893642 +n07893891 +n07894102 +n07894298 +n07894451 +n07894551 +n07894703 +n07894799 +n07894965 +n07895100 +n07895237 +n07895435 +n07895595 +n07895710 +n07895839 +n07895962 +n07896060 +n07896165 +n07896287 +n07896661 +n07896765 +n07896893 +n07896994 +n07897116 +n07897438 +n07897600 +n07897750 +n07897865 +n07897975 +n07898117 +n07898247 +n07898333 +n07898443 +n07898617 +n07898745 +n07899003 +n07899108 +n07899292 +n07899434 +n07899533 +n07899660 +n07899769 +n07899899 +n07900225 +n07900406 +n07900616 +n07900734 +n07900825 +n07900958 +n07901355 +n07901457 +n07901587 +n07902121 +n07902336 +n07902443 +n07902799 +n07902937 +n07903101 +n07903208 +n07903543 +n07903643 +n07903731 +n07903841 +n07903962 +n07904293 +n07904395 +n07904637 +n07904760 +n07904865 +n07904934 +n07905038 +n07905296 +n07905386 +n07905474 +n07905979 +n07906111 +n07906284 +n07906572 +n07906718 +n07906877 +n07907037 +n07907161 +n07907342 +n07907429 +n07907548 +n07907831 +n07907943 +n07908411 +n07908567 +n07908647 +n07908812 +n07909129 +n07909593 +n07910048 +n07910152 +n07910379 +n07910538 +n07910656 +n07911249 +n07911371 +n07911677 +n07912211 +n07913393 +n07913882 +n07914006 +n07914128 +n07914271 +n07914413 +n07914586 +n07914777 +n07914995 +n07915094 +n07915491 +n07915618 +n07915918 +n07916041 +n07916183 +n07916319 +n07916437 +n07917133 +n07917272 +n07917392 +n07917507 +n07917618 +n07918028 +n07918193 +n07918309 +n07918879 +n07919310 +n07919441 +n07919572 +n07920052 +n07920222 +n07920349 +n07920540 +n07920663 +n07920872 +n07920989 +n07921239 +n07921455 +n07921615 +n07921834 +n07922041 +n07922147 +n07922512 +n07922764 +n07923748 +n07924033 +n07924276 +n07924443 +n07924560 +n07924747 +n07924834 +n07924955 +n07925116 +n07925229 +n07925500 +n07925608 +n07925966 +n07926250 +n07926346 +n07926785 +n07926920 +n07927197 +n07927512 +n07927836 +n07927931 +n07928163 +n07928367 +n07928488 +n07928696 +n07928790 +n07928887 +n07929172 +n07929351 +n07929519 +n07930062 +n07930315 +n07930433 +n07930554 +n07930864 +n07931001 +n07931452 +n07931612 +n07931870 +n07932039 +n07932841 +n07933154 +n07933274 +n07933799 +n07934282 +n07935043 +n07935379 +n07935504 +n07935737 +n07935878 +n07936263 +n07936548 +n07936745 +n07937461 +n07938007 +n07938149 +n07938313 +n07938594 +n07942152 +n07951464 +n07954211 +n07977870 +n08182379 +n08242223 +n08249459 +n08256735 +n08376250 +n08492461 +n08494231 +n08495908 +n08505018 +n08517676 +n08518171 +n08521623 +n08524735 +n08539072 +n08547468 +n08547544 +n08551296 +n08555710 +n08560295 +n08571898 +n08573842 +n08578517 +n08579352 +n08580944 +n08583292 +n08583455 +n08584914 +n08596076 +n08598301 +n08598568 +n08611339 +n08614632 +n08616050 +n08628141 +n08633683 +n08640531 +n08640739 +n08640962 +n08645104 +n08645212 +n08649711 +n08658309 +n08659446 +n08659861 +n08663703 +n08673039 +n08677424 +n08896327 +n09189157 +n09191635 +n09193705 +n09194227 +n09199101 +n09205509 +n09206896 +n09206985 +n09208496 +n09210862 +n09217230 +n09218315 +n09218494 +n09218641 +n09219233 +n09224725 +n09228055 +n09229709 +n09230041 +n09230202 +n09231117 +n09233446 +n09238926 +n09239302 +n09242389 +n09245515 +n09246464 +n09247410 +n09248399 +n09249034 +n09251407 +n09256479 +n09257843 +n09259025 +n09259219 +n09260907 +n09263912 +n09265620 +n09267854 +n09269341 +n09269472 +n09270735 +n09274152 +n09279986 +n09282208 +n09283193 +n09283405 +n09283767 +n09283866 +n09287968 +n09288635 +n09289331 +n09290444 +n09294877 +n09295946 +n09300905 +n09302616 +n09303008 +n09303528 +n09304750 +n09305898 +n09308572 +n09308743 +n09309168 +n09309292 +n09326662 +n09331251 +n09332890 +n09335809 +n09336555 +n09337253 +n09344324 +n09348460 +n09349648 +n09359803 +n09361517 +n09362945 +n09366317 +n09376198 +n09376526 +n09376786 +n09381242 +n09382099 +n09384106 +n09392402 +n09393605 +n09396465 +n09396608 +n09398076 +n09398677 +n09399592 +n09400987 +n09403211 +n09403427 +n09403734 +n09405078 +n09406793 +n09409512 +n09409752 +n09410224 +n09411189 +n09415584 +n09415671 +n09416076 +n09416890 +n09421799 +n09421951 +n09428293 +n09428628 +n09432283 +n09433442 +n09433839 +n09435739 +n09436444 +n09436708 +n09437454 +n09438844 +n09438940 +n09439213 +n09442595 +n09443281 +n09443641 +n09444783 +n09445008 +n09445289 +n09447666 +n09448690 +n09450163 +n09451237 +n09452395 +n09452760 +n09453008 +n09454153 +n09454412 +n09457979 +n09460046 +n09461069 +n09466678 +n09468604 +n09472413 +n09472597 +n09475044 +n09475179 +n09475925 +n09481120 +n09505153 +n09606527 +n09607630 +n09607903 +n09608709 +n09610405 +n09616922 +n09618760 +n09618880 +n09618957 +n09619168 +n09620078 +n09620794 +n09621232 +n09622049 +n09622302 +n09624168 +n09624559 +n09626238 +n09627906 +n09629752 +n09632518 +n09635534 +n09636339 +n09637339 +n09638454 +n09638875 +n09639919 +n09640715 +n09641002 +n09643799 +n09644152 +n09648743 +n09650729 +n09651123 +n09652149 +n09654518 +n09656077 +n09659039 +n09659188 +n09661873 +n09666883 +n09670521 +n09675922 +n09676021 +n09676247 +n09676884 +n09679170 +n09681234 +n09683757 +n09683924 +n09684901 +n09686401 +n09688804 +n09689435 +n09689958 +n09690621 +n09691729 +n09691858 +n09692915 +n09693982 +n09694664 +n09694771 +n09695514 +n09695620 +n09695979 +n09696456 +n09696585 +n09696763 +n09697401 +n09698644 +n09700964 +n09701148 +n09701833 +n09703485 +n09703708 +n09705124 +n09705784 +n09706255 +n09707289 +n09708750 +n09708889 +n09710041 +n09711435 +n09712324 +n09712448 +n09712696 +n09713108 +n09714694 +n09715427 +n09717233 +n09718217 +n09718811 +n09718936 +n09719309 +n09719794 +n09720033 +n09720256 +n09720595 +n09720842 +n09722658 +n09723067 +n09724533 +n09724656 +n09724785 +n09725000 +n09725653 +n09725772 +n09726621 +n09727440 +n09727826 +n09728137 +n09728285 +n09730077 +n09730204 +n09730824 +n09731343 +n09731436 +n09732170 +n09733793 +n09734185 +n09734450 +n09734535 +n09734639 +n09736798 +n09736945 +n09738121 +n09740724 +n09741816 +n09742101 +n09742315 +n09743487 +n09743792 +n09744161 +n09744834 +n09747191 +n09747495 +n09749386 +n09750282 +n09750641 +n09750770 +n09750891 +n09751496 +n09751895 +n09752023 +n09752519 +n09753792 +n09754217 +n09755241 +n09756049 +n09757449 +n09758885 +n09759501 +n09760609 +n09761068 +n09763784 +n09764598 +n09764900 +n09765118 +n09767197 +n09770179 +n09770359 +n09772930 +n09774783 +n09776346 +n09779790 +n09782167 +n09782397 +n09785659 +n09785891 +n09787534 +n09787765 +n09789566 +n09791014 +n09791419 +n09791816 +n09792555 +n09792969 +n09793141 +n09796809 +n09797873 +n09800964 +n09801533 +n09805151 +n09805324 +n09809538 +n09809749 +n09809925 +n09811852 +n09813219 +n09814660 +n09816771 +n09818022 +n09820263 +n09822830 +n09823502 +n09823832 +n09824135 +n09824609 +n09827246 +n09827363 +n09828216 +n09830194 +n09830400 +n09830629 +n09832456 +n09833441 +n09833536 +n09834378 +n09834699 +n09835230 +n09835348 +n09835506 +n09836160 +n09836343 +n09836519 +n09836786 +n09838621 +n09839702 +n09840217 +n09840520 +n09841188 +n09841696 +n09842047 +n09842395 +n09842528 +n09843443 +n09843824 +n09844457 +n09845401 +n09846469 +n09846755 +n09846894 +n09847543 +n09850760 +n09851165 +n09851575 +n09854218 +n09854421 +n09855433 +n09856671 +n09858165 +n09859152 +n09861599 +n09861863 +n09861946 +n09862621 +n09863031 +n09866817 +n09871229 +n09871681 +n09871867 +n09872066 +n09873348 +n09873473 +n09873899 +n09874428 +n09874725 +n09874862 +n09877288 +n09877750 +n09877951 +n09881265 +n09881895 +n09886403 +n09889065 +n09889170 +n09889941 +n09890749 +n09893191 +n09893344 +n09893502 +n09894143 +n09894445 +n09894654 +n09895222 +n09895561 +n09896170 +n09896401 +n09896685 +n09899671 +n09899782 +n09899929 +n09901337 +n09901921 +n09902731 +n09902954 +n09903153 +n09903501 +n09904208 +n09904837 +n09905185 +n09906449 +n09911226 +n09913455 +n09913593 +n09915434 +n09915651 +n09916348 +n09917214 +n09917345 +n09917593 +n09918248 +n09918554 +n09919451 +n09920283 +n09923186 +n09923418 +n09923561 +n09923673 +n09924106 +n09924195 +n09924996 +n09927451 +n09928136 +n09929298 +n09929577 +n09930257 +n09930876 +n09931165 +n09931640 +n09932098 +n09932336 +n09932508 +n09933098 +n09934337 +n09934774 +n09936825 +n09938449 +n09941089 +n09941787 +n09941964 +n09942970 +n09943239 +n09943811 +n09944022 +n09944430 +n09945745 +n09946814 +n09951274 +n09951616 +n09953350 +n09954639 +n09959142 +n09964202 +n09967967 +n09970822 +n09971273 +n09972010 +n09972458 +n09974648 +n09975425 +n09976283 +n09976429 +n09980985 +n09981278 +n09981540 +n09981939 +n09988063 +n09988493 +n09988703 +n09989502 +n09990415 +n09990690 +n09990777 +n09991867 +n09993252 +n09994673 +n10001217 +n10001481 +n10002760 +n10004718 +n10005934 +n10007684 +n10009276 +n10013811 +n10015485 +n10017272 +n10019072 +n10019406 +n10020670 +n10020890 +n10024362 +n10025635 +n10026976 +n10027246 +n10033412 +n10033663 +n10034201 +n10034614 +n10036692 +n10036929 +n10037385 +n10037922 +n10038409 +n10039271 +n10039946 +n10040945 +n10042845 +n10043491 +n10043643 +n10048612 +n10049363 +n10053439 +n10053808 +n10054657 +n10055410 +n10058962 +n10060352 +n10063635 +n10069296 +n10069981 +n10070108 +n10070711 +n10075693 +n10076224 +n10076604 +n10076957 +n10077593 +n10078131 +n10078719 +n10078806 +n10079399 +n10080869 +n10081204 +n10082043 +n10082687 +n10082997 +n10084295 +n10085869 +n10086383 +n10087434 +n10091450 +n10091564 +n10091651 +n10092488 +n10092643 +n10092794 +n10092978 +n10093475 +n10093818 +n10095769 +n10095869 +n10098245 +n10098517 +n10098624 +n10098710 +n10098862 +n10102800 +n10104064 +n10105733 +n10107303 +n10108018 +n10112129 +n10115430 +n10116702 +n10117739 +n10117851 +n10120330 +n10120671 +n10123122 +n10123844 +n10127689 +n10129825 +n10131151 +n10131815 +n10132035 +n10134178 +n10134982 +n10135129 +n10137825 +n10140597 +n10140929 +n10141364 +n10141732 +n10142391 +n10142747 +n10143172 +n10144338 +n10145239 +n10145340 +n10145480 +n10145590 +n10145774 +n10145902 +n10146002 +n10146104 +n10146416 +n10146816 +n10147121 +n10147262 +n10147935 +n10148035 +n10150071 +n10150940 +n10151760 +n10152763 +n10153414 +n10153594 +n10155849 +n10157128 +n10159045 +n10159533 +n10160280 +n10164233 +n10164492 +n10165448 +n10167152 +n10167838 +n10168837 +n10169147 +n10173410 +n10173771 +n10174330 +n10174445 +n10175248 +n10178216 +n10182190 +n10183931 +n10185483 +n10185793 +n10186068 +n10186216 +n10187491 +n10187990 +n10188957 +n10189278 +n10191001 +n10192839 +n10194231 +n10195593 +n10198437 +n10200781 +n10202624 +n10203949 +n10205231 +n10205457 +n10207169 +n10208189 +n10208950 +n10209082 +n10209731 +n10210911 +n10212231 +n10212501 +n10215623 +n10216106 +n10221312 +n10222170 +n10223177 +n10225219 +n10225931 +n10226413 +n10227985 +n10229883 +n10233248 +n10235024 +n10235385 +n10236304 +n10237069 +n10237196 +n10237464 +n10237676 +n10241300 +n10242328 +n10243137 +n10243273 +n10243664 +n10247358 +n10247880 +n10249270 +n10249459 +n10252222 +n10253122 +n10253296 +n10253479 +n10253703 +n10258786 +n10259348 +n10259780 +n10259997 +n10260706 +n10260800 +n10261624 +n10262445 +n10262561 +n10262655 +n10263411 +n10263790 +n10267311 +n10267865 +n10274815 +n10275395 +n10276477 +n10277027 +n10279018 +n10280674 +n10282482 +n10282672 +n10283170 +n10288964 +n10289039 +n10289462 +n10290919 +n10291822 +n10293332 +n10296176 +n10296444 +n10297234 +n10297531 +n10297841 +n10298647 +n10298912 +n10299250 +n10300154 +n10300303 +n10300500 +n10303814 +n10304086 +n10304914 +n10305802 +n10308168 +n10308732 +n10313000 +n10313239 +n10313724 +n10314054 +n10314517 +n10314836 +n10315456 +n10315561 +n10316360 +n10317007 +n10317500 +n10318293 +n10318607 +n10320863 +n10321340 +n10323634 +n10324560 +n10325774 +n10327987 +n10328123 +n10328328 +n10331167 +n10332385 +n10332861 +n10333439 +n10333601 +n10333838 +n10334009 +n10339717 +n10340312 +n10341343 +n10341573 +n10342992 +n10343355 +n10345015 +n10346015 +n10347446 +n10348526 +n10353016 +n10355142 +n10355449 +n10355688 +n10356877 +n10357613 +n10359546 +n10360747 +n10362319 +n10362557 +n10364198 +n10366276 +n10366966 +n10368291 +n10368528 +n10368624 +n10369317 +n10370955 +n10373390 +n10375052 +n10375314 +n10375402 +n10376523 +n10377021 +n10377185 +n10377291 +n10378026 +n10380672 +n10382710 +n10382825 +n10384392 +n10384496 +n10385566 +n10386984 +n10387196 +n10387324 +n10393909 +n10395073 +n10395828 +n10396106 +n10400108 +n10400437 +n10400618 +n10401331 +n10401639 +n10403876 +n10405694 +n10406266 +n10406391 +n10406765 +n10407310 +n10407954 +n10410246 +n10411551 +n10415037 +n10418735 +n10419472 +n10419785 +n10420507 +n10421016 +n10421470 +n10421956 +n10422405 +n10427764 +n10431625 +n10432189 +n10432441 +n10435169 +n10435988 +n10438842 +n10439373 +n10439851 +n10441037 +n10441962 +n10449664 +n10450161 +n10450303 +n10451450 +n10453184 +n10461060 +n10464052 +n10465451 +n10465831 +n10467179 +n10467395 +n10469874 +n10470779 +n10472129 +n10473917 +n10474645 +n10476467 +n10477713 +n10481268 +n10482220 +n10483138 +n10483799 +n10485883 +n10486166 +n10487182 +n10488656 +n10493685 +n10495756 +n10498816 +n10498986 +n10499232 +n10499355 +n10500217 +n10500419 +n10500603 +n10502329 +n10504206 +n10505613 +n10506915 +n10508141 +n10508710 +n10509063 +n10510245 +n10512372 +n10513823 +n10514429 +n10521100 +n10521662 +n10522035 +n10522759 +n10523341 +n10524076 +n10525436 +n10525617 +n10528023 +n10529231 +n10530150 +n10530383 +n10530959 +n10536416 +n10540114 +n10542608 +n10542761 +n10542888 +n10548537 +n10548681 +n10550369 +n10553235 +n10559288 +n10559508 +n10559996 +n10560106 +n10562135 +n10562283 +n10563314 +n10563403 +n10565667 +n10566072 +n10568358 +n10568608 +n10569179 +n10572706 +n10572889 +n10574538 +n10574840 +n10575463 +n10577284 +n10578021 +n10578471 +n10580030 +n10581890 +n10582746 +n10583387 +n10583790 +n10585077 +n10588074 +n10588357 +n10588965 +n10590146 +n10592811 +n10593521 +n10595164 +n10595647 +n10598181 +n10599806 +n10602470 +n10602985 +n10603851 +n10604380 +n10604979 +n10607291 +n10607478 +n10610465 +n10610850 +n10611267 +n10611613 +n10613996 +n10618342 +n10620586 +n10620758 +n10622053 +n10624074 +n10624310 +n10624437 +n10624540 +n10627252 +n10628644 +n10629939 +n10630188 +n10631309 +n10633450 +n10634849 +n10635788 +n10638922 +n10639359 +n10639637 +n10642596 +n10644598 +n10645017 +n10646140 +n10649197 +n10652605 +n10655594 +n10657835 +n10661563 +n10665587 +n10665698 +n10667477 +n10667863 +n10669991 +n10671613 +n10671736 +n10672371 +n10672662 +n10674713 +n10675010 +n10678937 +n10679174 +n10680609 +n10680796 +n10682953 +n10685398 +n10686073 +n10686885 +n10688356 +n10689306 +n10690648 +n10692482 +n10693824 +n10694258 +n10696508 +n10698368 +n10699981 +n10701180 +n10701644 +n10701962 +n10702167 +n10707134 +n10707233 +n10709529 +n10711766 +n10718131 +n10719132 +n10721321 +n10726031 +n10727171 +n10727458 +n10728624 +n10730728 +n10732010 +n10734394 +n10734891 +n10737103 +n10738111 +n10739391 +n10740868 +n10741367 +n10744164 +n10745006 +n10746931 +n10747119 +n10748620 +n10750031 +n10750640 +n10751152 +n10753442 +n10754189 +n10755080 +n10755648 +n10756148 +n10757050 +n10757492 +n10761190 +n10763075 +n10763383 +n10763620 +n10765679 +n10772092 +n10773665 +n10780284 +n10780632 +n10782471 +n10782791 +n10782940 +n10787470 +n10791115 +n10791221 +n10792335 +n10792856 +n10793570 +n10802507 +n10804287 +n10806113 +n11448153 +n11487732 +n11508382 +n11524451 +n11532682 +n11533212 +n11536673 +n11537327 +n11542137 +n11542640 +n11544015 +n11545524 +n11545714 +n11547855 +n11552133 +n11552806 +n11552976 +n11599324 +n11600372 +n11601177 +n11601333 +n11601918 +n11602873 +n11603246 +n11603835 +n11608250 +n11609475 +n11609862 +n11610047 +n11610215 +n11610437 +n11611087 +n11611233 +n11611356 +n11611561 +n11611758 +n11612018 +n11612349 +n11612575 +n11613219 +n11613459 +n11614039 +n11614250 +n11614420 +n11614713 +n11615026 +n11615387 +n11615607 +n11615967 +n11616486 +n11616662 +n11617090 +n11617272 +n11617631 +n11618290 +n11618525 +n11618861 +n11619227 +n11619455 +n11620389 +n11620673 +n11621029 +n11621281 +n11621547 +n11621727 +n11621950 +n11622184 +n11622368 +n11622591 +n11622771 +n11623105 +n11623815 +n11623967 +n11624192 +n11624531 +n11625003 +n11625223 +n11625632 +n11625804 +n11626152 +n11626409 +n11626585 +n11626826 +n11627168 +n11627512 +n11627908 +n11628087 +n11628456 +n11628793 +n11630017 +n11631854 +n11632167 +n11632619 +n11634736 +n11635152 +n11635433 +n11635830 +n11636204 +n11636835 +n11639445 +n11640132 +n11643835 +n11644046 +n11644226 +n11644462 +n11645590 +n11645914 +n11646167 +n11646344 +n11646694 +n11647306 +n11647703 +n11650558 +n11652376 +n11653904 +n11654293 +n11655974 +n11656123 +n11658331 +n11658544 +n11660300 +n11661372 +n11661909 +n11662371 +n11664418 +n11665372 +n11666854 +n11669786 +n11669921 +n11672269 +n11672400 +n11675025 +n11676500 +n11678010 +n11680596 +n11682659 +n11686912 +n11689483 +n11690254 +n11690455 +n11691046 +n11691857 +n11692265 +n11692792 +n11693981 +n11694664 +n11695599 +n11695974 +n11698042 +n11699442 +n11700058 +n11701066 +n11703669 +n11704093 +n11704620 +n11705171 +n11705387 +n11705776 +n11706761 +n11707229 +n11707827 +n11709205 +n11709674 +n11710136 +n11710393 +n11710827 +n11711537 +n11711764 +n11712282 +n11714382 +n11715430 +n11715678 +n11717577 +n11719286 +n11720353 +n11720643 +n11720891 +n11721337 +n11722466 +n11722982 +n11723227 +n11723770 +n11724109 +n11725015 +n11725311 +n11725480 +n11725821 +n11725973 +n11726269 +n11726707 +n11727091 +n11727358 +n11727540 +n11727738 +n11728099 +n11728945 +n11730602 +n11731659 +n11732567 +n11733054 +n11733312 +n11733548 +n11735053 +n11736694 +n11736851 +n11737534 +n11748811 +n11752937 +n11753143 +n11753355 +n11753700 +n11754893 +n11756092 +n11756669 +n11756870 +n11757653 +n11757851 +n11758122 +n11758276 +n11758483 +n11758799 +n11759224 +n11759404 +n11759853 +n11760785 +n11761202 +n11761650 +n11762433 +n11769176 +n11769621 +n11769803 +n11770256 +n11772408 +n11772879 +n11773987 +n11774513 +n11777080 +n11778257 +n11779300 +n11780148 +n11781176 +n11782036 +n11782761 +n11783920 +n11784126 +n11784497 +n11785668 +n11786131 +n11786539 +n11788727 +n11789066 +n11789589 +n11791341 +n11791569 +n11792029 +n11792341 +n11792742 +n11793779 +n11794024 +n11794519 +n11795049 +n11797321 +n11800236 +n11801891 +n11802586 +n11802800 +n11805544 +n11805956 +n11806219 +n11806679 +n11807108 +n11807525 +n11807979 +n11808299 +n11808468 +n11808721 +n11808932 +n11809094 +n11809271 +n11809437 +n11809594 +n11809754 +n11810358 +n11811473 +n11811706 +n11811921 +n11812094 +n11812910 +n11813077 +n11814584 +n11815491 +n11815721 +n11815918 +n11816121 +n11816336 +n11816649 +n11816829 +n11817914 +n11818069 +n11819509 +n11819912 +n11820965 +n11821184 +n11823436 +n11824146 +n11825351 +n11826198 +n11828577 +n11830906 +n11832214 +n11832480 +n11834654 +n11836722 +n11837970 +n11838916 +n11839568 +n11839823 +n11840067 +n11844371 +n11844892 +n11845557 +n11845793 +n11845913 +n11846765 +n11847169 +n11848479 +n11849467 +n11849871 +n11849983 +n11850521 +n11851258 +n11851578 +n11851839 +n11852028 +n11853356 +n11853813 +n11854479 +n11855274 +n11855553 +n11855842 +n11857875 +n11858077 +n11859275 +n11859472 +n11859737 +n11860555 +n11861641 +n11861853 +n11862835 +n11865874 +n11866248 +n11869689 +n11870418 +n11870747 +n11872146 +n11874081 +n11875523 +n11875691 +n11875938 +n11876204 +n11876432 +n11876634 +n11876803 +n11877193 +n11877283 +n11877646 +n11878101 +n11879054 +n11879722 +n11879895 +n11881189 +n11882074 +n11882426 +n11883328 +n11885856 +n11887119 +n11888800 +n11889619 +n11890150 +n11891175 +n11892029 +n11892637 +n11892817 +n11893640 +n11894327 +n11894558 +n11894770 +n11895092 +n11896722 +n11897116 +n11898775 +n11900569 +n11901294 +n11901597 +n11901759 +n11901977 +n11902200 +n11902389 +n11902709 +n11902982 +n11903671 +n11904109 +n11905392 +n11905749 +n11906917 +n11907100 +n11907689 +n11908549 +n11908846 +n11910271 +n11910460 +n11915214 +n11915658 +n11915899 +n11916467 +n11916696 +n11918286 +n11918473 +n11919447 +n11919975 +n11920133 +n11921395 +n11923174 +n11923397 +n11923637 +n11924445 +n11924849 +n11925303 +n11925898 +n11926365 +n11926833 +n11927215 +n11928352 +n11928858 +n11929743 +n11931540 +n11931918 +n11933546 +n11933728 +n11934616 +n11934807 +n11935330 +n11935469 +n11939180 +n11939491 +n11939699 +n11940006 +n11940599 +n11941924 +n11943407 +n11943660 +n11943992 +n11944196 +n11944954 +n11945367 +n11945514 +n11945783 +n11946727 +n11946918 +n11947629 +n11947802 +n11948264 +n11948864 +n11949015 +n11949402 +n11950345 +n11950686 +n11950877 +n11951511 +n11952541 +n11953038 +n11953610 +n11953884 +n11954161 +n11954345 +n11954642 +n11955153 +n11955896 +n11956348 +n11956850 +n11957678 +n11958080 +n11959632 +n11959862 +n11960245 +n11961100 +n11961446 +n11961871 +n11962272 +n11962667 +n11963932 +n11965218 +n11965627 +n11966083 +n11966215 +n11966617 +n11966896 +n11968704 +n11968931 +n11969166 +n11969607 +n11970586 +n11971248 +n11971406 +n11971783 +n11971927 +n11972291 +n11972759 +n11973341 +n11977303 +n11978233 +n11978551 +n11978713 +n11978961 +n11979527 +n11979715 +n11979964 +n11980318 +n11980682 +n11981192 +n11982115 +n11984144 +n11984542 +n11986511 +n11987126 +n11988596 +n11989087 +n11989393 +n11989869 +n11990167 +n11990313 +n11991263 +n11992806 +n11995092 +n11998888 +n12001707 +n12002428 +n12003167 +n12003696 +n12004547 +n12005656 +n12006766 +n12006930 +n12007196 +n12007406 +n12008252 +n12008487 +n12008749 +n12009420 +n12011620 +n12012111 +n12014085 +n12015221 +n12015525 +n12015959 +n12016567 +n12018760 +n12019035 +n12019827 +n12020184 +n12020507 +n12020736 +n12020941 +n12022054 +n12023108 +n12023407 +n12023726 +n12024445 +n12024690 +n12026018 +n12026476 +n12026981 +n12027222 +n12027658 +n12029635 +n12030908 +n12031139 +n12031927 +n12033709 +n12034141 +n12034384 +n12035631 +n12036939 +n12037499 +n12037691 +n12038038 +n12038406 +n12038585 +n12038898 +n12039317 +n12041446 +n12043444 +n12043673 +n12043836 +n12044467 +n12046028 +n12046428 +n12046815 +n12047345 +n12047884 +n12048056 +n12048399 +n12049282 +n12049562 +n12050533 +n12050959 +n12051103 +n12052447 +n12052787 +n12053405 +n12053690 +n12055516 +n12056217 +n12056601 +n12056758 +n12057211 +n12057447 +n12057660 +n12058192 +n12058630 +n12058822 +n12059314 +n12059625 +n12061380 +n12061614 +n12062468 +n12062626 +n12062781 +n12063639 +n12064389 +n12064591 +n12065316 +n12065777 +n12066018 +n12066261 +n12066630 +n12067193 +n12068432 +n12069217 +n12069679 +n12070016 +n12070381 +n12070583 +n12070712 +n12071744 +n12072722 +n12073554 +n12073991 +n12074408 +n12074867 +n12075010 +n12075151 +n12075299 +n12075830 +n12076223 +n12076577 +n12076852 +n12077944 +n12078172 +n12079120 +n12079963 +n12080395 +n12080820 +n12081215 +n12083113 +n12083591 +n12083847 +n12084158 +n12084555 +n12084890 +n12085267 +n12085664 +n12086012 +n12086192 +n12086539 +n12086778 +n12087961 +n12088223 +n12090890 +n12091213 +n12091377 +n12091550 +n12091953 +n12092262 +n12092417 +n12093329 +n12093600 +n12094612 +n12095020 +n12095647 +n12097396 +n12098403 +n12098524 +n12099342 +n12101870 +n12102133 +n12104238 +n12104501 +n12104734 +n12105125 +n12107710 +n12107970 +n12108871 +n12109365 +n12110085 +n12110778 +n12112008 +n12112609 +n12112918 +n12113195 +n12115180 +n12116429 +n12119238 +n12121610 +n12122725 +n12123741 +n12124627 +n12124818 +n12126084 +n12127460 +n12127768 +n12128071 +n12129134 +n12133462 +n12133682 +n12134025 +n12135049 +n12136392 +n12137120 +n12137569 +n12139575 +n12140903 +n12141167 +n12141385 +n12142085 +n12144313 +n12144580 +n12145477 +n12146311 +n12146654 +n12148757 +n12150722 +n12151615 +n12152532 +n12152722 +n12154773 +n12155009 +n12157056 +n12158031 +n12158443 +n12159055 +n12159388 +n12160303 +n12160490 +n12160857 +n12161056 +n12161969 +n12162181 +n12162425 +n12164363 +n12164656 +n12164881 +n12165170 +n12165758 +n12166128 +n12166424 +n12166793 +n12167075 +n12167436 +n12167602 +n12168565 +n12171098 +n12171316 +n12171966 +n12172364 +n12172481 +n12172906 +n12173069 +n12173664 +n12173912 +n12174311 +n12174521 +n12174926 +n12178896 +n12179122 +n12180168 +n12180885 +n12184912 +n12185859 +n12187247 +n12187891 +n12189429 +n12189987 +n12190410 +n12190869 +n12194147 +n12195533 +n12196336 +n12196527 +n12196694 +n12198286 +n12199790 +n12200143 +n12201331 +n12201580 +n12202936 +n12203529 +n12203896 +n12204032 +n12204175 +n12205694 +n12214789 +n12215022 +n12215579 +n12217453 +n12223569 +n12223764 +n12224978 +n12225563 +n12227658 +n12228229 +n12228387 +n12230794 +n12237486 +n12237641 +n12238913 +n12240477 +n12242409 +n12243109 +n12244153 +n12244650 +n12244819 +n12245319 +n12246232 +n12249542 +n12252168 +n12256920 +n12257570 +n12258885 +n12260799 +n12261571 +n12261808 +n12262018 +n12262185 +n12263038 +n12263204 +n12263738 +n12263987 +n12264512 +n12265600 +n12266217 +n12266796 +n12267411 +n12267677 +n12268246 +n12269241 +n12269406 +n12270027 +n12270741 +n12270946 +n12271933 +n12272239 +n12272883 +n12273114 +n12273344 +n12273768 +n12273939 +n12274358 +n12274863 +n12275131 +n12275675 +n12275888 +n12276110 +n12276477 +n12276628 +n12276872 +n12277150 +n12277578 +n12277800 +n12278107 +n12278371 +n12278650 +n12278865 +n12279458 +n12279772 +n12280060 +n12281241 +n12281788 +n12281974 +n12282235 +n12282527 +n12282737 +n12282933 +n12283147 +n12283542 +n12284262 +n12284821 +n12285369 +n12285900 +n12286826 +n12286988 +n12287836 +n12288005 +n12288823 +n12289433 +n12290748 +n12291143 +n12291959 +n12293723 +n12294124 +n12294331 +n12294723 +n12294871 +n12295033 +n12295429 +n12295796 +n12296432 +n12300840 +n12301180 +n12301445 +n12302071 +n12302248 +n12302565 +n12303083 +n12303462 +n12304115 +n12304703 +n12304899 +n12305089 +n12305293 +n12305475 +n12305819 +n12305986 +n12306089 +n12306717 +n12307076 +n12307240 +n12307756 +n12309277 +n12311579 +n12312728 +n12315598 +n12315999 +n12316444 +n12316572 +n12317296 +n12318378 +n12318965 +n12319204 +n12319414 +n12320010 +n12320806 +n12321077 +n12322099 +n12322501 +n12322699 +n12325234 +n12328398 +n12328567 +n12329260 +n12329473 +n12330469 +n12330587 +n12330891 +n12331655 +n12332030 +n12332555 +n12333053 +n12333530 +n12333771 +n12334293 +n12334891 +n12336092 +n12336224 +n12336333 +n12336727 +n12336973 +n12337391 +n12337617 +n12338258 +n12338454 +n12338655 +n12338796 +n12339831 +n12340383 +n12340755 +n12342299 +n12342498 +n12342852 +n12343480 +n12344283 +n12344483 +n12344700 +n12344837 +n12345280 +n12345899 +n12346813 +n12347158 +n12350758 +n12352287 +n12352639 +n12352844 +n12352990 +n12353203 +n12353754 +n12356023 +n12356960 +n12357485 +n12360108 +n12360684 +n12360958 +n12361135 +n12361946 +n12362274 +n12362668 +n12367611 +n12368028 +n12368257 +n12368451 +n12369309 +n12371439 +n12373100 +n12374418 +n12374862 +n12377198 +n12383894 +n12384037 +n12384227 +n12384375 +n12384839 +n12385429 +n12385566 +n12387633 +n12387839 +n12388143 +n12388858 +n12388989 +n12389130 +n12389501 +n12390099 +n12390314 +n12392549 +n12393269 +n12397431 +n12399132 +n12399384 +n12400489 +n12400720 +n12401684 +n12402051 +n12402348 +n12402596 +n12402840 +n12403994 +n12405714 +n12406488 +n12406715 +n12406902 +n12407079 +n12407222 +n12407715 +n12407890 +n12408077 +n12408717 +n12409231 +n12409470 +n12409840 +n12412355 +n12412606 +n12413165 +n12413301 +n12413419 +n12413642 +n12413880 +n12414035 +n12414159 +n12414449 +n12414818 +n12414932 +n12415595 +n12416073 +n12416703 +n12418221 +n12420722 +n12421137 +n12421683 +n12421917 +n12422129 +n12426623 +n12426749 +n12427184 +n12427391 +n12427566 +n12427757 +n12428076 +n12428412 +n12428747 +n12429352 +n12432356 +n12433081 +n12433178 +n12433769 +n12435152 +n12435649 +n12435777 +n12437513 +n12437769 +n12437930 +n12441183 +n12441390 +n12441958 +n12443323 +n12446519 +n12448700 +n12449296 +n12449526 +n12450344 +n12450840 +n12451070 +n12451240 +n12451399 +n12451915 +n12452836 +n12453186 +n12454159 +n12454436 +n12454556 +n12454705 +n12454949 +n12455950 +n12457091 +n12458550 +n12459629 +n12460697 +n12460957 +n12461109 +n12461466 +n12461673 +n12462805 +n12463134 +n12465557 +n12466727 +n12469517 +n12472024 +n12473608 +n12473840 +n12474167 +n12475035 +n12475242 +n12476510 +n12477163 +n12477401 +n12477583 +n12477747 +n12478768 +n12479537 +n12480456 +n12480895 +n12481458 +n12482437 +n12482668 +n12482893 +n12483427 +n12483625 +n12483841 +n12484784 +n12485653 +n12485981 +n12486574 +n12489815 +n12491017 +n12491826 +n12492106 +n12493208 +n12494794 +n12495146 +n12495895 +n12496427 +n12496949 +n12498055 +n12499979 +n12501202 +n12504570 +n12504783 +n12506341 +n12506991 +n12508309 +n12509476 +n12509665 +n12513172 +n12513613 +n12513933 +n12514138 +n12515711 +n12515925 +n12516828 +n12517445 +n12517642 +n12519089 +n12519563 +n12521394 +n12523475 +n12527738 +n12528549 +n12528974 +n12529220 +n12530629 +n12530818 +n12532564 +n12537253 +n12539306 +n12540250 +n12544539 +n12545635 +n12546183 +n12546617 +n12546962 +n12547215 +n12547503 +n12548280 +n12549192 +n12552309 +n12554911 +n12556656 +n12557064 +n12557438 +n12557556 +n12557681 +n12558230 +n12558425 +n12560282 +n12560621 +n12560775 +n12561169 +n12562785 +n12564083 +n12566954 +n12568186 +n12570394 +n12570703 +n12570972 +n12571781 +n12573474 +n12574320 +n12574866 +n12575322 +n12575812 +n12576323 +n12577895 +n12578626 +n12578916 +n12579038 +n12580654 +n12580896 +n12582231 +n12582665 +n12582846 +n12583126 +n12583401 +n12584191 +n12584715 +n12585629 +n12587132 +n12587803 +n12588320 +n12588780 +n12590232 +n12590499 +n12591017 +n12591351 +n12593994 +n12595699 +n12595964 +n12596148 +n12596345 +n12596709 +n12596849 +n12597134 +n12597466 +n12597798 +n12598027 +n12599435 +n12602262 +n12602980 +n12603449 +n12604228 +n12606438 +n12606545 +n12607456 +n12610328 +n12614477 +n12615232 +n12620196 +n12620546 +n12620969 +n12621410 +n12622297 +n12622875 +n12623077 +n12624381 +n12624568 +n12625383 +n12627119 +n12628986 +n12629305 +n12629666 +n12630763 +n12631331 +n12631932 +n12632335 +n12633638 +n12633994 +n12634211 +n12634429 +n12634734 +n12634986 +n12635532 +n12635744 +n12635955 +n12636224 +n12637123 +n12638218 +n12638753 +n12638964 +n12639584 +n12640839 +n12641007 +n12641413 +n12642090 +n12642200 +n12643313 +n12643473 +n12644902 +n12645174 +n12646072 +n12646397 +n12646605 +n12646740 +n12647560 +n12647893 +n12648045 +n12648888 +n12649065 +n12649317 +n12649539 +n12650379 +n12650556 +n12651229 +n12651611 +n12651821 +n12653218 +n12655869 +n12656369 +n12656685 +n12657082 +n12658118 +n12658308 +n12658481 +n12659064 +n12659356 +n12659539 +n12662772 +n12663023 +n12663359 +n12665048 +n12665271 +n12665857 +n12666965 +n12670758 +n12671651 +n12674895 +n12675299 +n12675876 +n12676534 +n12676703 +n12679593 +n12680402 +n12680864 +n12681893 +n12682411 +n12682668 +n12683096 +n12683407 +n12683571 +n12683791 +n12684379 +n12685431 +n12685831 +n12686077 +n12686274 +n12686676 +n12687044 +n12687462 +n12687698 +n12687957 +n12688716 +n12691428 +n12691661 +n12694486 +n12695975 +n12696492 +n12698598 +n12700088 +n12703190 +n12703383 +n12703557 +n12703856 +n12704343 +n12706410 +n12707781 +n12708293 +n12708654 +n12708941 +n12709103 +n12709688 +n12709901 +n12710295 +n12710415 +n12710577 +n12710693 +n12711596 +n12711817 +n12711984 +n12713063 +n12713866 +n12714755 +n12717072 +n12717224 +n12719684 +n12719944 +n12720200 +n12723610 +n12724942 +n12725521 +n12725738 +n12726159 +n12726670 +n12727101 +n12727518 +n12729315 +n12729521 +n12729729 +n12731029 +n12731401 +n12731835 +n12732009 +n12732491 +n12732756 +n12732966 +n12733218 +n12733428 +n12733647 +n12733870 +n12734070 +n12737383 +n12737898 +n12739332 +n12741222 +n12741792 +n12743009 +n12743352 +n12744387 +n12745386 +n12746884 +n12749049 +n12749456 +n12749679 +n12749852 +n12752205 +n12753007 +n12753245 +n12753573 +n12753762 +n12754003 +n12754468 +n12754648 +n12754781 +n12754981 +n12755225 +n12755387 +n12755727 +n12756457 +n12757303 +n12757458 +n12757816 +n12759273 +n12761284 +n12762049 +n12762896 +n12764202 +n12765115 +n12766595 +n12766869 +n12767648 +n12768682 +n12771192 +n12771390 +n12771597 +n12772753 +n12772908 +n12773651 +n12774299 +n12774641 +n12775919 +n12777680 +n12778398 +n12778605 +n12779603 +n12779851 +n12781940 +n12782530 +n12782915 +n12784889 +n12785724 +n12785889 +n12788854 +n12789054 +n12790430 +n12791064 +n12791329 +n12793015 +n12793284 +n12793494 +n12794135 +n12794367 +n12794985 +n12795352 +n12795555 +n12796022 +n12797860 +n12799776 +n12801520 +n12801781 +n12803754 +n12805146 +n12805561 +n12806015 +n12806732 +n12807251 +n12807409 +n12807773 +n12808007 +n12810595 +n12811027 +n12812478 +n12813189 +n12814643 +n12815198 +n12816508 +n12817464 +n12817694 +n12818346 +n12818966 +n12819728 +n12820853 +n12821505 +n12821895 +n12822115 +n12822769 +n12822955 +n12823717 +n12823859 +n12824053 +n12825497 +n12827270 +n12827537 +n12828220 +n12828379 +n12828791 +n12830222 +n12830568 +n12831932 +n12832315 +n12832538 +n12833149 +n12833985 +n12834798 +n12835331 +n12836212 +n12836337 +n12836508 +n12836862 +n12837803 +n12840362 +n12840749 +n12841007 +n12841193 +n12841354 +n12843557 +n12843970 +n12844939 +n12845413 +n12847008 +n12847374 +n12847927 +n12848499 +n12849061 +n12849279 +n12849416 +n12849952 +n12850168 +n12850336 +n12850906 +n12851469 +n12853482 +n12854048 +n12854600 +n12855494 +n12856091 +n12856287 +n12856479 +n12856680 +n12857779 +n12858150 +n12858397 +n12858618 +n12858871 +n12859986 +n12860365 +n12861345 +n12861541 +n12861892 +n12862512 +n12863624 +n12864160 +n12865037 +n12865562 +n12865708 +n12865824 +n12866002 +n12866162 +n12866459 +n12866635 +n12867826 +n12868019 +n12869061 +n12869478 +n12870535 +n12870682 +n12870891 +n12872458 +n12875269 +n12877838 +n12879527 +n12879963 +n12880244 +n12880462 +n12882779 +n12882945 +n12884100 +n12884260 +n12887293 +n12889219 +n12889713 +n12890265 +n12890490 +n12890685 +n12890928 +n12891093 +n12891305 +n12891469 +n12891643 +n12893463 +n12893993 +n12895811 +n12898774 +n12899537 +n12899752 +n12901724 +n12902662 +n12904314 +n12905412 +n12906214 +n12906498 +n12908093 +n12908645 +n12909421 +n12909917 +n12911079 +n12911440 +n12911673 +n12912670 +n12913791 +n12914923 +n12915568 +n12915811 +n12916179 +n12916511 +n12917901 +n12918609 +n12919403 +n12919646 +n12919847 +n12920204 +n12920955 +n12921868 +n12922763 +n12924623 +n12925179 +n12926480 +n12926689 +n12927013 +n12927494 +n12928071 +n12929403 +n12931542 +n12932173 +n12932365 +n12932966 +n12934036 +n12934174 +n12934479 +n12934985 +n12935609 +n12937130 +n12938193 +n12939282 +n12939874 +n12940226 +n12940609 +n12942395 +n12942572 +n12946849 +n12947313 +n12947544 +n12947895 +n12948053 +n12948251 +n12948495 +n12950126 +n12950314 +n12951146 +n12951835 +n12953206 +n12953484 +n12954799 +n12956367 +n12957924 +n12961879 +n12963628 +n12964920 +n12965626 +n12966945 +n12969131 +n12969425 +n12973443 +n12974987 +n12975804 +n12979829 +n12980840 +n12981443 +n12982468 +n12983048 +n12985420 +n12985773 +n12985857 +n12986227 +n12987056 +n12988158 +n12989938 +n12991184 +n12991837 +n12992177 +n12992868 +n12995601 +n12997654 +n12997919 +n12998815 +n13000891 +n13001041 +n13001206 +n13001366 +n13001529 +n13001930 +n13002750 +n13002925 +n13003061 +n13003254 +n13003522 +n13003712 +n13004423 +n13005329 +n13005984 +n13006171 +n13006631 +n13006894 +n13007034 +n13007417 +n13008315 +n13009085 +n13009429 +n13011595 +n13012253 +n13012973 +n13013534 +n13013764 +n13014409 +n13014741 +n13017102 +n13017240 +n13019835 +n13020191 +n13020964 +n13021689 +n13022210 +n13022709 +n13023134 +n13024012 +n13025647 +n13028611 +n13029326 +n13029760 +n13032115 +n13032381 +n13032618 +n13032923 +n13033134 +n13033577 +n13034062 +n13035241 +n13035707 +n13035925 +n13037406 +n13038068 +n13038744 +n13039349 +n13040303 +n13040629 +n13041312 +n13043926 +n13044375 +n13044778 +n13046669 +n13049953 +n13050397 +n13052670 +n13052931 +n13053608 +n13054073 +n13054560 +n13055423 +n13055577 +n13055949 +n13060190 +n13061348 +n13062421 +n13065089 +n13066448 +n13068255 +n13072528 +n13074619 +n13077033 +n13077295 +n13079073 +n13083023 +n13084184 +n13084834 +n13085747 +n13090871 +n13091620 +n13094273 +n13099999 +n13100677 +n13102775 +n13103877 +n13104059 +n13107694 +n13107891 +n13108131 +n13108323 +n13108481 +n13108545 +n13108841 +n13111881 +n13121349 +n13122364 +n13123431 +n13125117 +n13126856 +n13127843 +n13128976 +n13130726 +n13131028 +n13131618 +n13132338 +n13132656 +n13133613 +n13133932 +n13134947 +n13135832 +n13136316 +n13136556 +n13137409 +n13138308 +n13138842 +n13139055 +n13141415 +n13141564 +n13142504 +n13145040 +n13145250 +n13146583 +n13147270 +n13147386 +n13148208 +n13150894 +n13154388 +n13154494 +n13155095 +n13155305 +n13155611 +n13157684 +n13158512 +n13160604 +n13163991 +n13172923 +n13173488 +n13173882 +n13177048 +n13177884 +n13180534 +n13180875 +n13181055 +n13181811 +n13183056 +n13183489 +n13185269 +n13187367 +n13188096 +n13190747 +n13192625 +n13193642 +n13193856 +n13194036 +n13194572 +n13195341 +n13196003 +n13197274 +n13197507 +n13198914 +n13199717 +n13199970 +n13200651 +n13201969 +n13205058 +n13206178 +n13206817 +n13207094 +n13207335 +n13208302 +n13209808 +n13211020 +n13213066 +n13214340 +n13215586 +n13219422 +n13219833 +n13219976 +n13220122 +n13221529 +n13223588 +n13223710 +n13223843 +n13226871 +n13229543 +n13230662 +n13231078 +n13232779 +n13234678 +n13235159 +n13235503 +n13237188 +n13238375 +n13238988 +n13579829 +n13653902 +n13862407 +n13863020 +n13863771 +n13864035 +n13865298 +n13865483 +n13865904 +n13868944 +n13869547 +n13869788 +n13869896 +n13872592 +n13872822 +n13873502 +n13873917 +n13875392 +n13875571 +n13876561 +n13878306 +n13879049 +n13879320 +n13880994 +n13881644 +n13882201 +n13882276 +n13882563 +n13886260 +n13895262 +n13896100 +n13896217 +n13897996 +n13898207 +n13900287 +n13900422 +n13901211 +n13901321 +n13901858 +n13902048 +n13902336 +n13905792 +n13907272 +n13908201 +n13908580 +n13912260 +n13912540 +n13914608 +n13915023 +n13915113 +n13916721 +n13918274 +n13918387 +n13919547 +n13919919 +n13926786 +n14131950 +n14564779 +n14685296 +n14696793 +n14698884 +n14765422 +n14785065 +n14810561 +n14820180 +n14844693 +n14858292 +n14900342 +n14908027 +n14915184 +n14919819 +n14973585 +n14974264 +n14976759 +n14976871 +n14977504 +n15019030 +n15062057 +n15067877 +n15075141 +n15086247 +n15089258 +n15090065 +n15091129 +n15091304 +n15091473 +n15091669 +n15091846 +n15092059 +n15092227 +n15092650 +n15092942 +n15093137 +n15093298 +n15102455 +n15102894 diff --git a/pytorch-image-models/timm/data/_info/imagenet21k_goog_synsets.txt b/pytorch-image-models/timm/data/_info/imagenet21k_goog_synsets.txt new file mode 100644 index 0000000000000000000000000000000000000000..e276a97bdd01bd9ce46033cb190a0d56ac1548c9 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet21k_goog_synsets.txt @@ -0,0 +1,21843 @@ +n00004475 +n00005787 +n00006024 +n00006484 +n00007846 +n00015388 +n00017222 +n00021265 +n00021939 +n00120010 +n00141669 +n00288000 +n00288190 +n00288384 +n00324978 +n00326094 +n00433458 +n00433661 +n00433802 +n00434075 +n00439826 +n00440039 +n00440218 +n00440382 +n00440509 +n00440643 +n00440747 +n00440941 +n00441073 +n00441824 +n00442115 +n00442437 +n00442847 +n00442981 +n00443231 +n00443375 +n00443517 +n00443692 +n00443803 +n00443917 +n00444142 +n00444340 +n00444490 +n00444651 +n00444846 +n00444937 +n00445055 +n00445226 +n00445351 +n00445685 +n00445802 +n00446311 +n00446411 +n00446493 +n00446632 +n00446804 +n00446980 +n00447073 +n00447221 +n00447361 +n00447463 +n00447540 +n00447957 +n00448126 +n00448232 +n00448466 +n00448640 +n00448748 +n00448872 +n00448958 +n00449054 +n00449168 +n00449295 +n00449517 +n00449695 +n00449796 +n00449892 +n00449977 +n00450070 +n00450335 +n00450700 +n00450866 +n00450998 +n00451186 +n00451370 +n00451563 +n00451635 +n00451768 +n00451866 +n00452034 +n00452152 +n00452293 +n00452734 +n00452864 +n00453126 +n00453313 +n00453396 +n00453478 +n00453631 +n00453935 +n00454237 +n00454395 +n00454493 +n00454624 +n00454855 +n00454983 +n00455076 +n00455173 +n00456465 +n00463246 +n00463543 +n00464277 +n00464478 +n00464651 +n00464894 +n00466273 +n00466377 +n00466524 +n00466630 +n00466712 +n00466880 +n00467320 +n00467536 +n00467719 +n00467995 +n00468299 +n00468480 +n00469651 +n00470554 +n00470682 +n00470830 +n00470966 +n00471437 +n00471613 +n00474568 +n00474657 +n00474769 +n00474881 +n00475014 +n00475142 +n00475273 +n00475403 +n00475535 +n00475661 +n00475787 +n00476140 +n00476235 +n00476389 +n00477392 +n00477639 +n00477827 +n00478262 +n00479076 +n00479440 +n00479616 +n00479734 +n00479887 +n00480211 +n00480366 +n00480508 +n00480885 +n00480993 +n00481803 +n00481938 +n00482122 +n00482298 +n00483205 +n00483313 +n00483409 +n00483508 +n00483605 +n00483705 +n00483848 +n00523513 +n00812526 +n00825773 +n00887544 +n01035504 +n01035667 +n01055165 +n01314388 +n01314663 +n01314781 +n01314910 +n01315213 +n01315330 +n01315581 +n01315805 +n01316422 +n01316579 +n01316734 +n01316949 +n01317089 +n01317294 +n01317391 +n01317541 +n01317813 +n01317916 +n01318053 +n01318279 +n01318381 +n01318478 +n01318660 +n01318894 +n01319001 +n01319187 +n01319467 +n01319685 +n01320872 +n01321123 +n01321230 +n01321456 +n01321579 +n01321770 +n01321854 +n01322221 +n01322343 +n01322508 +n01322604 +n01322685 +n01322898 +n01322983 +n01323068 +n01323155 +n01323261 +n01323355 +n01323493 +n01323599 +n01323781 +n01324305 +n01324431 +n01324610 +n01324799 +n01324916 +n01325060 +n01326291 +n01327909 +n01329186 +n01330126 +n01330497 +n01332181 +n01333082 +n01333483 +n01333610 +n01334217 +n01334690 +n01335218 +n01337191 +n01337734 +n01338685 +n01339083 +n01339336 +n01339471 +n01339801 +n01340014 +n01340522 +n01340785 +n01340935 +n01341090 +n01342269 +n01347583 +n01349735 +n01350226 +n01350701 +n01351170 +n01351315 +n01357328 +n01357507 +n01358572 +n01359762 +n01362336 +n01363719 +n01365474 +n01365885 +n01366700 +n01367772 +n01368672 +n01369358 +n01369484 +n01374703 +n01374846 +n01375204 +n01376237 +n01376437 +n01376543 +n01377278 +n01377510 +n01377694 +n01378545 +n01379389 +n01380610 +n01380754 +n01381044 +n01382033 +n01384084 +n01384164 +n01384687 +n01385017 +n01385330 +n01386007 +n01386182 +n01386354 +n01387065 +n01389507 +n01390123 +n01390763 +n01392275 +n01392380 +n01393486 +n01394040 +n01394492 +n01394771 +n01395254 +n01396048 +n01396617 +n01397114 +n01397690 +n01397871 +n01400247 +n01400391 +n01402600 +n01403457 +n01404365 +n01404495 +n01405007 +n01405616 +n01407798 +n01410457 +n01411450 +n01412694 +n01413457 +n01414216 +n01415626 +n01415920 +n01416213 +n01418498 +n01418620 +n01419332 +n01419573 +n01419888 +n01421333 +n01421807 +n01422185 +n01422335 +n01422450 +n01423302 +n01423617 +n01424420 +n01425223 +n01427399 +n01429172 +n01438208 +n01438581 +n01439121 +n01439514 +n01439808 +n01440160 +n01440242 +n01440467 +n01440764 +n01441117 +n01441272 +n01441425 +n01441910 +n01442450 +n01442710 +n01442972 +n01443243 +n01443537 +n01443831 +n01444339 +n01444783 +n01445429 +n01445593 +n01445857 +n01446152 +n01446589 +n01446760 +n01447139 +n01447331 +n01447658 +n01447946 +n01448291 +n01448594 +n01448951 +n01449374 +n01449712 +n01449980 +n01450661 +n01450950 +n01451115 +n01451295 +n01451426 +n01451863 +n01452345 +n01453087 +n01453475 +n01453742 +n01454545 +n01454856 +n01455317 +n01455461 +n01455778 +n01456137 +n01456454 +n01456756 +n01457082 +n01457407 +n01457852 +n01458746 +n01458842 +n01459791 +n01460303 +n01461315 +n01461646 +n01462042 +n01462544 +n01462803 +n01464844 +n01466257 +n01467336 +n01467804 +n01468238 +n01468712 +n01469103 +n01469723 +n01470145 +n01470479 +n01470733 +n01470895 +n01471682 +n01472303 +n01472502 +n01473806 +n01474283 +n01474864 +n01475232 +n01475940 +n01476418 +n01477080 +n01477525 +n01477875 +n01478511 +n01478969 +n01479213 +n01479820 +n01480106 +n01480516 +n01480880 +n01481331 +n01481498 +n01482071 +n01482330 +n01483021 +n01483522 +n01483830 +n01484097 +n01484285 +n01484447 +n01484562 +n01484850 +n01485479 +n01486010 +n01486540 +n01486838 +n01487506 +n01488038 +n01488918 +n01489501 +n01489709 +n01489920 +n01490112 +n01490360 +n01490670 +n01491006 +n01491361 +n01491661 +n01491874 +n01492357 +n01492569 +n01492708 +n01492860 +n01493146 +n01493541 +n01493829 +n01494041 +n01494475 +n01494757 +n01494882 +n01495006 +n01495493 +n01495701 +n01496331 +n01497118 +n01497413 +n01497738 +n01498041 +n01498406 +n01498699 +n01498989 +n01499396 +n01499732 +n01500091 +n01500476 +n01500854 +n01501160 +n01501641 +n01501777 +n01501948 +n01502101 +n01503061 +n01503976 +n01504179 +n01504344 +n01514668 +n01514752 +n01514859 +n01514926 +n01515078 +n01515217 +n01515303 +n01516212 +n01517389 +n01517565 +n01517966 +n01518878 +n01519563 +n01519873 +n01520576 +n01521399 +n01521756 +n01522450 +n01523105 +n01524359 +n01524761 +n01525720 +n01526521 +n01526766 +n01527194 +n01527347 +n01527617 +n01527917 +n01528396 +n01528654 +n01528845 +n01529672 +n01530439 +n01530575 +n01531178 +n01531344 +n01531512 +n01531639 +n01531811 +n01531971 +n01532325 +n01532511 +n01532829 +n01533000 +n01533339 +n01533481 +n01533651 +n01533893 +n01534155 +n01534433 +n01534582 +n01534762 +n01535140 +n01535469 +n01535690 +n01536035 +n01536186 +n01536334 +n01536644 +n01536780 +n01537134 +n01537544 +n01537895 +n01538059 +n01538200 +n01538362 +n01538630 +n01538955 +n01539272 +n01539573 +n01539925 +n01540090 +n01540233 +n01540566 +n01540832 +n01541102 +n01541386 +n01541760 +n01541922 +n01542168 +n01542433 +n01542786 +n01543175 +n01543383 +n01543632 +n01543936 +n01544208 +n01544389 +n01544704 +n01545574 +n01546039 +n01546506 +n01546921 +n01547832 +n01548301 +n01548492 +n01548694 +n01548865 +n01549053 +n01549430 +n01549641 +n01549886 +n01550172 +n01550761 +n01551080 +n01551300 +n01551711 +n01552034 +n01552333 +n01552813 +n01553142 +n01553527 +n01553762 +n01554017 +n01554448 +n01555004 +n01555305 +n01555809 +n01556182 +n01556514 +n01557185 +n01557962 +n01558149 +n01558307 +n01558461 +n01558594 +n01558765 +n01558993 +n01559160 +n01559477 +n01559639 +n01559804 +n01560105 +n01560280 +n01560419 +n01560636 +n01560793 +n01560935 +n01561181 +n01561452 +n01561732 +n01562014 +n01562265 +n01562451 +n01563128 +n01563449 +n01563746 +n01563945 +n01564101 +n01564217 +n01564394 +n01564773 +n01564914 +n01565078 +n01565345 +n01565599 +n01565930 +n01566207 +n01566645 +n01567133 +n01567678 +n01567879 +n01568132 +n01568294 +n01568720 +n01568892 +n01569060 +n01569262 +n01569423 +n01569566 +n01569836 +n01569971 +n01570267 +n01570421 +n01570676 +n01570839 +n01571410 +n01571904 +n01572328 +n01572489 +n01572654 +n01572782 +n01573074 +n01573240 +n01573360 +n01573627 +n01573898 +n01574045 +n01574390 +n01574560 +n01574801 +n01575117 +n01575401 +n01575745 +n01576076 +n01576358 +n01576695 +n01577035 +n01577458 +n01577659 +n01577941 +n01578180 +n01578575 +n01579028 +n01579149 +n01579260 +n01579410 +n01579578 +n01579729 +n01580077 +n01580379 +n01580490 +n01580772 +n01580870 +n01581166 +n01581434 +n01581730 +n01581874 +n01581984 +n01582220 +n01582398 +n01582498 +n01582856 +n01583209 +n01583495 +n01583828 +n01584225 +n01584695 +n01584853 +n01585121 +n01585287 +n01585422 +n01585715 +n01586020 +n01586374 +n01586941 +n01587278 +n01587526 +n01587834 +n01588002 +n01588431 +n01588725 +n01588996 +n01589286 +n01589718 +n01589893 +n01590220 +n01591005 +n01591123 +n01591301 +n01591697 +n01592084 +n01592257 +n01592387 +n01592540 +n01592694 +n01593028 +n01593282 +n01593553 +n01594004 +n01594372 +n01594787 +n01594968 +n01595168 +n01595450 +n01595624 +n01595974 +n01596273 +n01596608 +n01597022 +n01597336 +n01597737 +n01597906 +n01598074 +n01598271 +n01598588 +n01598988 +n01599159 +n01599269 +n01599388 +n01599556 +n01599741 +n01600085 +n01600341 +n01600657 +n01601068 +n01601410 +n01601694 +n01602080 +n01602209 +n01602630 +n01602832 +n01603000 +n01603152 +n01603600 +n01603812 +n01603953 +n01604330 +n01604968 +n01605630 +n01606097 +n01606177 +n01606522 +n01606672 +n01606809 +n01606978 +n01607309 +n01607429 +n01607600 +n01607812 +n01607962 +n01608265 +n01608432 +n01608814 +n01609062 +n01609391 +n01609751 +n01609956 +n01610100 +n01610226 +n01610552 +n01610955 +n01611472 +n01611674 +n01611800 +n01611969 +n01612122 +n01612275 +n01612476 +n01612628 +n01612955 +n01613177 +n01613294 +n01613615 +n01613807 +n01614038 +n01614343 +n01614556 +n01614925 +n01615121 +n01615303 +n01615458 +n01615703 +n01616086 +n01616318 +n01616551 +n01616764 +n01617095 +n01617443 +n01617766 +n01618082 +n01618503 +n01618922 +n01619310 +n01619536 +n01619835 +n01620135 +n01620414 +n01620735 +n01621127 +n01621635 +n01622120 +n01622352 +n01622483 +n01622779 +n01622959 +n01623110 +n01623425 +n01623615 +n01623706 +n01623880 +n01624115 +n01624212 +n01624305 +n01624537 +n01624833 +n01625121 +n01625562 +n01627424 +n01628331 +n01628770 +n01629276 +n01629819 +n01629962 +n01630148 +n01630284 +n01630670 +n01630901 +n01631175 +n01631354 +n01631512 +n01631663 +n01632047 +n01632308 +n01632458 +n01632601 +n01632777 +n01632952 +n01633406 +n01633781 +n01634227 +n01634522 +n01635027 +n01635176 +n01635480 +n01636127 +n01636352 +n01636510 +n01636829 +n01637112 +n01637338 +n01637615 +n01637932 +n01638194 +n01638329 +n01638722 +n01639187 +n01639765 +n01640846 +n01641206 +n01641391 +n01641577 +n01641739 +n01641930 +n01642097 +n01642257 +n01642391 +n01642539 +n01642943 +n01643255 +n01643507 +n01643896 +n01644373 +n01644900 +n01645466 +n01645776 +n01646292 +n01646388 +n01646555 +n01646648 +n01646802 +n01646902 +n01647033 +n01647180 +n01647303 +n01647466 +n01647640 +n01648139 +n01648356 +n01648620 +n01649170 +n01649412 +n01649556 +n01649726 +n01650167 +n01650690 +n01650901 +n01651059 +n01651285 +n01651487 +n01651641 +n01651778 +n01652026 +n01652297 +n01653026 +n01653223 +n01653509 +n01653773 +n01654083 +n01654637 +n01654863 +n01655344 +n01661091 +n01661592 +n01661818 +n01662060 +n01662622 +n01662784 +n01663401 +n01663782 +n01664065 +n01664369 +n01664492 +n01664674 +n01664990 +n01665541 +n01665932 +n01666228 +n01666585 +n01667114 +n01667432 +n01667778 +n01668091 +n01668436 +n01668665 +n01668892 +n01669191 +n01669372 +n01669654 +n01670092 +n01670535 +n01670802 +n01671125 +n01671479 +n01671705 +n01672032 +n01672432 +n01672611 +n01673282 +n01674216 +n01674464 +n01674990 +n01675352 +n01675722 +n01676755 +n01677366 +n01677747 +n01678043 +n01678343 +n01678657 +n01679005 +n01679307 +n01679626 +n01679962 +n01680264 +n01680478 +n01680655 +n01680813 +n01680983 +n01681328 +n01681653 +n01681940 +n01682172 +n01682435 +n01682714 +n01683201 +n01683558 +n01684133 +n01684578 +n01684741 +n01685439 +n01685808 +n01686044 +n01686220 +n01686403 +n01686609 +n01686808 +n01687128 +n01687290 +n01687665 +n01687978 +n01688243 +n01688961 +n01689081 +n01689411 +n01689811 +n01690149 +n01690466 +n01691217 +n01691652 +n01691951 +n01692333 +n01692523 +n01692864 +n01693175 +n01693334 +n01693783 +n01694178 +n01694311 +n01694709 +n01694955 +n01695060 +n01696633 +n01697178 +n01697457 +n01697611 +n01697749 +n01697978 +n01698434 +n01698640 +n01698782 +n01699040 +n01699254 +n01699675 +n01701551 +n01701859 +n01702256 +n01702479 +n01703011 +n01703161 +n01703569 +n01704103 +n01704323 +n01704626 +n01705010 +n01705591 +n01705934 +n01707294 +n01708106 +n01708998 +n01709484 +n01709876 +n01710177 +n01711160 +n01712008 +n01712752 +n01713170 +n01713764 +n01714231 +n01715888 +n01717016 +n01717229 +n01717467 +n01718096 +n01718414 +n01719403 +n01721174 +n01721898 +n01722670 +n01722998 +n01723579 +n01724231 +n01724840 +n01725086 +n01725713 +n01726203 +n01726692 +n01727646 +n01728266 +n01728572 +n01728920 +n01729322 +n01729672 +n01729977 +n01730185 +n01730307 +n01730563 +n01730812 +n01730960 +n01731137 +n01731277 +n01731545 +n01731764 +n01731941 +n01732093 +n01732244 +n01732614 +n01732789 +n01732989 +n01733214 +n01733466 +n01733757 +n01733957 +n01734104 +n01734418 +n01734637 +n01734808 +n01735189 +n01735439 +n01735577 +n01735728 +n01736032 +n01736375 +n01736796 +n01737021 +n01737472 +n01737728 +n01737875 +n01738065 +n01738306 +n01738601 +n01738731 +n01739094 +n01739381 +n01739647 +n01739871 +n01740131 +n01740551 +n01740885 +n01741232 +n01741442 +n01741562 +n01741943 +n01742172 +n01742447 +n01742821 +n01743086 +n01743605 +n01743936 +n01744100 +n01744270 +n01744401 +n01744555 +n01745125 +n01745484 +n01745902 +n01746191 +n01746359 +n01746952 +n01747285 +n01747589 +n01747885 +n01748264 +n01748389 +n01748686 +n01748906 +n01749244 +n01749582 +n01749742 +n01749939 +n01750167 +n01750437 +n01750743 +n01751036 +n01751215 +n01751472 +n01751748 +n01752165 +n01752585 +n01752736 +n01753032 +n01753180 +n01753488 +n01753959 +n01754370 +n01754533 +n01754876 +n01755581 +n01755740 +n01755952 +n01756089 +n01756291 +n01756508 +n01756733 +n01756916 +n01757115 +n01757343 +n01757677 +n01757901 +n01758141 +n01758757 +n01758895 +n01767661 +n01768244 +n01769347 +n01770081 +n01770393 +n01770795 +n01771100 +n01771417 +n01771766 +n01772222 +n01772664 +n01773157 +n01773549 +n01773797 +n01774097 +n01774384 +n01774750 +n01775062 +n01775370 +n01775730 +n01776192 +n01776313 +n01776705 +n01777304 +n01777467 +n01777649 +n01777909 +n01778217 +n01778487 +n01778621 +n01778801 +n01779148 +n01779463 +n01779629 +n01779939 +n01780142 +n01780426 +n01780696 +n01781071 +n01781570 +n01781698 +n01781875 +n01782209 +n01782516 +n01783017 +n01783706 +n01784293 +n01784675 +n01785667 +n01786646 +n01787006 +n01787191 +n01787835 +n01788291 +n01788579 +n01788864 +n01789386 +n01789740 +n01790171 +n01790304 +n01790398 +n01790557 +n01790711 +n01790812 +n01791107 +n01791314 +n01791388 +n01791463 +n01791625 +n01791954 +n01792042 +n01792158 +n01792429 +n01792530 +n01792640 +n01792808 +n01792955 +n01793085 +n01793159 +n01793249 +n01793340 +n01793435 +n01793565 +n01793715 +n01794158 +n01794344 +n01794651 +n01795088 +n01795545 +n01795735 +n01795900 +n01796019 +n01796105 +n01796340 +n01796519 +n01796729 +n01797020 +n01797307 +n01797601 +n01797886 +n01798168 +n01798484 +n01798706 +n01798839 +n01798979 +n01799302 +n01799679 +n01800195 +n01800424 +n01800633 +n01801088 +n01801479 +n01801672 +n01801876 +n01802159 +n01802721 +n01803078 +n01803362 +n01803641 +n01803893 +n01804163 +n01804478 +n01804653 +n01804921 +n01805070 +n01805321 +n01805801 +n01806061 +n01806143 +n01806297 +n01806364 +n01806467 +n01806567 +n01806847 +n01807105 +n01807496 +n01807828 +n01808140 +n01808291 +n01808596 +n01809106 +n01809371 +n01809752 +n01810268 +n01810700 +n01811243 +n01811909 +n01812187 +n01812337 +n01812662 +n01812866 +n01813088 +n01813385 +n01813532 +n01813658 +n01813948 +n01814217 +n01814370 +n01814549 +n01814620 +n01814755 +n01814921 +n01815036 +n01815270 +n01815601 +n01816017 +n01816140 +n01816474 +n01816887 +n01817263 +n01817346 +n01817953 +n01818299 +n01818515 +n01818832 +n01819115 +n01819313 +n01819465 +n01819734 +n01820052 +n01820348 +n01820546 +n01820801 +n01821076 +n01821203 +n01821554 +n01821869 +n01822300 +n01822602 +n01823013 +n01823414 +n01823740 +n01824035 +n01824344 +n01824575 +n01824749 +n01825278 +n01825930 +n01826364 +n01826680 +n01826844 +n01827403 +n01827793 +n01828096 +n01828556 +n01828970 +n01829413 +n01829869 +n01830042 +n01830479 +n01830915 +n01831360 +n01831712 +n01832167 +n01832493 +n01832813 +n01833112 +n01833415 +n01833805 +n01834177 +n01834540 +n01835276 +n01835769 +n01835918 +n01836087 +n01836673 +n01837072 +n01837526 +n01838038 +n01838598 +n01839086 +n01839330 +n01839598 +n01839750 +n01839949 +n01840120 +n01840412 +n01840775 +n01841102 +n01841288 +n01841441 +n01841679 +n01841943 +n01842235 +n01842504 +n01842788 +n01843065 +n01843383 +n01843719 +n01844231 +n01844551 +n01844746 +n01844917 +n01845132 +n01845477 +n01846331 +n01847000 +n01847089 +n01847170 +n01847253 +n01847407 +n01847806 +n01847978 +n01848123 +n01848323 +n01848453 +n01848555 +n01848648 +n01848840 +n01848976 +n01849157 +n01849466 +n01849676 +n01849863 +n01850192 +n01850373 +n01850553 +n01850873 +n01851038 +n01851207 +n01851375 +n01851573 +n01851731 +n01851895 +n01852142 +n01852329 +n01852400 +n01852671 +n01852861 +n01853195 +n01853498 +n01853666 +n01853870 +n01854415 +n01854700 +n01854838 +n01855032 +n01855188 +n01855476 +n01855672 +n01856072 +n01856155 +n01856380 +n01856553 +n01856890 +n01857079 +n01857325 +n01857512 +n01857632 +n01857851 +n01858281 +n01858441 +n01858780 +n01858845 +n01858906 +n01859190 +n01859325 +n01859496 +n01859689 +n01859852 +n01860002 +n01860187 +n01860497 +n01860864 +n01861148 +n01861330 +n01861778 +n01862399 +n01871265 +n01871543 +n01871875 +n01872401 +n01872772 +n01873310 +n01874434 +n01874928 +n01875313 +n01875610 +n01876034 +n01876326 +n01876667 +n01877134 +n01877606 +n01877812 +n01878061 +n01878335 +n01878639 +n01878929 +n01879217 +n01879509 +n01879837 +n01880152 +n01880473 +n01880716 +n01880813 +n01881171 +n01881564 +n01881857 +n01882125 +n01882714 +n01883070 +n01883513 +n01883920 +n01884104 +n01884203 +n01884476 +n01884834 +n01885158 +n01885498 +n01886045 +n01886756 +n01887474 +n01887623 +n01887787 +n01887896 +n01888045 +n01888181 +n01888264 +n01888411 +n01889074 +n01889520 +n01889849 +n01890144 +n01890564 +n01890860 +n01891013 +n01891274 +n01891633 +n01892030 +n01892145 +n01892385 +n01892551 +n01892744 +n01893021 +n01893164 +n01893399 +n01893825 +n01894207 +n01894522 +n01894956 +n01896844 +n01897257 +n01897426 +n01897536 +n01897667 +n01898593 +n01899894 +n01900150 +n01903234 +n01903346 +n01903498 +n01904029 +n01904806 +n01904886 +n01905321 +n01905661 +n01906749 +n01907287 +n01907738 +n01908042 +n01908958 +n01909422 +n01909788 +n01909906 +n01910252 +n01910747 +n01911063 +n01911403 +n01911839 +n01912152 +n01912454 +n01912809 +n01913166 +n01913346 +n01913440 +n01914163 +n01914609 +n01914830 +n01915700 +n01915811 +n01916187 +n01916388 +n01916481 +n01916588 +n01916925 +n01917289 +n01917611 +n01917882 +n01918744 +n01919385 +n01920051 +n01920438 +n01921059 +n01922303 +n01922717 +n01922948 +n01923025 +n01923404 +n01923890 +n01924800 +n01924916 +n01925270 +n01925695 +n01925916 +n01926379 +n01926689 +n01927159 +n01927456 +n01927928 +n01928215 +n01928517 +n01928865 +n01929186 +n01930112 +n01930852 +n01931140 +n01931520 +n01931714 +n01932151 +n01932936 +n01933151 +n01933478 +n01933988 +n01934440 +n01934844 +n01935176 +n01935395 +n01936391 +n01936671 +n01936858 +n01937579 +n01937909 +n01938454 +n01938735 +n01940736 +n01941223 +n01941340 +n01942177 +n01942869 +n01943087 +n01943541 +n01943899 +n01944118 +n01944390 +n01944812 +n01944955 +n01945143 +n01945340 +n01945685 +n01945845 +n01946277 +n01946630 +n01946827 +n01947139 +n01947396 +n01947997 +n01948446 +n01948573 +n01949085 +n01949499 +n01949973 +n01950731 +n01951274 +n01951613 +n01952029 +n01952712 +n01953361 +n01953594 +n01953762 +n01954516 +n01955084 +n01955933 +n01956344 +n01956481 +n01956764 +n01957335 +n01958038 +n01958346 +n01958435 +n01958531 +n01959029 +n01959492 +n01959985 +n01960177 +n01960459 +n01961234 +n01961600 +n01961985 +n01962506 +n01962788 +n01963317 +n01963479 +n01963571 +n01964049 +n01964271 +n01964441 +n01964957 +n01965252 +n01965529 +n01965889 +n01966377 +n01966586 +n01967094 +n01967308 +n01967963 +n01968315 +n01968897 +n01969726 +n01970164 +n01970667 +n01971094 +n01971280 +n01971620 +n01971850 +n01972131 +n01972541 +n01973148 +n01974773 +n01975687 +n01976146 +n01976868 +n01976957 +n01977485 +n01978010 +n01978136 +n01978287 +n01978455 +n01978587 +n01978930 +n01979269 +n01979526 +n01979874 +n01980166 +n01980655 +n01981276 +n01981702 +n01982068 +n01982347 +n01982650 +n01983048 +n01983481 +n01983674 +n01983829 +n01984245 +n01984695 +n01985128 +n01985493 +n01985797 +n01986214 +n01986806 +n01987076 +n01987545 +n01987727 +n01988203 +n01988701 +n01988869 +n01989516 +n01989869 +n01990007 +n01990516 +n01990800 +n01991028 +n01991520 +n01992262 +n01992423 +n01992773 +n01993525 +n01993830 +n01994910 +n01995514 +n01995686 +n01996280 +n01996585 +n01997119 +n01997825 +n01998183 +n01998741 +n01999186 +n01999767 +n02000954 +n02002075 +n02002556 +n02002724 +n02003037 +n02003204 +n02003577 +n02003839 +n02004131 +n02004492 +n02004855 +n02005399 +n02005790 +n02006063 +n02006364 +n02006656 +n02006985 +n02007284 +n02007558 +n02008041 +n02008497 +n02008643 +n02008796 +n02009229 +n02009380 +n02009508 +n02009750 +n02009912 +n02010272 +n02010453 +n02010728 +n02011016 +n02011281 +n02011460 +n02011805 +n02011943 +n02012185 +n02012849 +n02013177 +n02013567 +n02013706 +n02014237 +n02014524 +n02014941 +n02015357 +n02015554 +n02015797 +n02016066 +n02016358 +n02016659 +n02016816 +n02016956 +n02017213 +n02017475 +n02017725 +n02018027 +n02018207 +n02018368 +n02018795 +n02019190 +n02019438 +n02019929 +n02020219 +n02020578 +n02021050 +n02021281 +n02021795 +n02022684 +n02023341 +n02023855 +n02023992 +n02024185 +n02024479 +n02024763 +n02025043 +n02025239 +n02025389 +n02026059 +n02026629 +n02026948 +n02027075 +n02027357 +n02027492 +n02027897 +n02028035 +n02028175 +n02028342 +n02028451 +n02028727 +n02028900 +n02029087 +n02029378 +n02029706 +n02030035 +n02030224 +n02030287 +n02030568 +n02030837 +n02030996 +n02031298 +n02031585 +n02031934 +n02032222 +n02032355 +n02032480 +n02032769 +n02033041 +n02033208 +n02033324 +n02033561 +n02033779 +n02033882 +n02034129 +n02034295 +n02034661 +n02034971 +n02035210 +n02035402 +n02035656 +n02036053 +n02036228 +n02036711 +n02037110 +n02037464 +n02037869 +n02038141 +n02038466 +n02038993 +n02039171 +n02039497 +n02039780 +n02040266 +n02040505 +n02041085 +n02041246 +n02041678 +n02041875 +n02042046 +n02042180 +n02042472 +n02042759 +n02043063 +n02043333 +n02043808 +n02044178 +n02044517 +n02044778 +n02044908 +n02045369 +n02045596 +n02045864 +n02046171 +n02046759 +n02046939 +n02047045 +n02047260 +n02047411 +n02047517 +n02047614 +n02047975 +n02048115 +n02048353 +n02048698 +n02049088 +n02049532 +n02050004 +n02050313 +n02050442 +n02050586 +n02050809 +n02051059 +n02051474 +n02051845 +n02052204 +n02052365 +n02052775 +n02053083 +n02053425 +n02053584 +n02054036 +n02054502 +n02054711 +n02055107 +n02055658 +n02055803 +n02056228 +n02056570 +n02056728 +n02057035 +n02057330 +n02057731 +n02057898 +n02058221 +n02058594 +n02058747 +n02059162 +n02059541 +n02059852 +n02060133 +n02060411 +n02060569 +n02060889 +n02061217 +n02061560 +n02061853 +n02062017 +n02062430 +n02062744 +n02063224 +n02063662 +n02064000 +n02064338 +n02064816 +n02065026 +n02065263 +n02065407 +n02065726 +n02066245 +n02066707 +n02067240 +n02067603 +n02067768 +n02068206 +n02068541 +n02068974 +n02069412 +n02069701 +n02069974 +n02070174 +n02070430 +n02070624 +n02070776 +n02071028 +n02071294 +n02071636 +n02072040 +n02072493 +n02072798 +n02073250 +n02073831 +n02074367 +n02074726 +n02075296 +n02075612 +n02075927 +n02076196 +n02076402 +n02076779 +n02077152 +n02077384 +n02077658 +n02077787 +n02077923 +n02078292 +n02078574 +n02078738 +n02079005 +n02079389 +n02079851 +n02080146 +n02080415 +n02080713 +n02081060 +n02081571 +n02081798 +n02081927 +n02082056 +n02082190 +n02082791 +n02083346 +n02083672 +n02083780 +n02084071 +n02084732 +n02084861 +n02085019 +n02085118 +n02085272 +n02085374 +n02085620 +n02085782 +n02085936 +n02086079 +n02086240 +n02086346 +n02086478 +n02086646 +n02086753 +n02086910 +n02087046 +n02087122 +n02087314 +n02087394 +n02087551 +n02088094 +n02088238 +n02088364 +n02088466 +n02088632 +n02088745 +n02088839 +n02088992 +n02089078 +n02089232 +n02089468 +n02089555 +n02089725 +n02089867 +n02089973 +n02090129 +n02090253 +n02090379 +n02090475 +n02090622 +n02090721 +n02090827 +n02091032 +n02091134 +n02091244 +n02091467 +n02091635 +n02091831 +n02092002 +n02092173 +n02092339 +n02092468 +n02093056 +n02093256 +n02093428 +n02093647 +n02093754 +n02093859 +n02093991 +n02094114 +n02094258 +n02094433 +n02094562 +n02094721 +n02094931 +n02095050 +n02095212 +n02095314 +n02095412 +n02095570 +n02095727 +n02095889 +n02096051 +n02096177 +n02096294 +n02096437 +n02096585 +n02096756 +n02097047 +n02097130 +n02097209 +n02097298 +n02097474 +n02097658 +n02097786 +n02097967 +n02098105 +n02098286 +n02098413 +n02098550 +n02098806 +n02098906 +n02099029 +n02099267 +n02099429 +n02099601 +n02099712 +n02099849 +n02099997 +n02100236 +n02100399 +n02100583 +n02100735 +n02100877 +n02101006 +n02101108 +n02101388 +n02101556 +n02101670 +n02101861 +n02102040 +n02102177 +n02102318 +n02102480 +n02102605 +n02102806 +n02102973 +n02103181 +n02103406 +n02103841 +n02104029 +n02104184 +n02104280 +n02104365 +n02104523 +n02104882 +n02105056 +n02105162 +n02105251 +n02105412 +n02105505 +n02105641 +n02105855 +n02106030 +n02106166 +n02106382 +n02106550 +n02106662 +n02106854 +n02106966 +n02107142 +n02107312 +n02107420 +n02107574 +n02107683 +n02107908 +n02108000 +n02108089 +n02108254 +n02108422 +n02108551 +n02108672 +n02108915 +n02109047 +n02109150 +n02109256 +n02109391 +n02109525 +n02109687 +n02109811 +n02109961 +n02110063 +n02110185 +n02110341 +n02110532 +n02110627 +n02110806 +n02110958 +n02111129 +n02111277 +n02111500 +n02111626 +n02111889 +n02112018 +n02112137 +n02112350 +n02112497 +n02112706 +n02112826 +n02113023 +n02113186 +n02113335 +n02113624 +n02113712 +n02113799 +n02113892 +n02113978 +n02114100 +n02114367 +n02114548 +n02114712 +n02114855 +n02115012 +n02115096 +n02115335 +n02115641 +n02115913 +n02116185 +n02116450 +n02116738 +n02117135 +n02117512 +n02117646 +n02117900 +n02118176 +n02118333 +n02118643 +n02118707 +n02119022 +n02119247 +n02119359 +n02119477 +n02119634 +n02119789 +n02120079 +n02120278 +n02120505 +n02120997 +n02121620 +n02121808 +n02122298 +n02122430 +n02122510 +n02122580 +n02122725 +n02122810 +n02122878 +n02122948 +n02123045 +n02123159 +n02123242 +n02123394 +n02123478 +n02123597 +n02123785 +n02123917 +n02124075 +n02124157 +n02124313 +n02124484 +n02124623 +n02125010 +n02125081 +n02125311 +n02125494 +n02125689 +n02125872 +n02126028 +n02126139 +n02126317 +n02126640 +n02126787 +n02127052 +n02127292 +n02127381 +n02127482 +n02127586 +n02127678 +n02127808 +n02128385 +n02128598 +n02128669 +n02128757 +n02128925 +n02129165 +n02129463 +n02129530 +n02129604 +n02129837 +n02129923 +n02129991 +n02130086 +n02130308 +n02130545 +n02130925 +n02131653 +n02132136 +n02132320 +n02132466 +n02132580 +n02132788 +n02133161 +n02133400 +n02133704 +n02134084 +n02134418 +n02134971 +n02135220 +n02135610 +n02135844 +n02136103 +n02136285 +n02136452 +n02136794 +n02137015 +n02137302 +n02137549 +n02137722 +n02137888 +n02138169 +n02138441 +n02138647 +n02138777 +n02139199 +n02139671 +n02140049 +n02140179 +n02140268 +n02140491 +n02140858 +n02141306 +n02141611 +n02141713 +n02142407 +n02142734 +n02142898 +n02143142 +n02143439 +n02143891 +n02144251 +n02144593 +n02144936 +n02145424 +n02145910 +n02146201 +n02146371 +n02146700 +n02146879 +n02147173 +n02147328 +n02147591 +n02147947 +n02148088 +n02148512 +n02148835 +n02148991 +n02149420 +n02149653 +n02149861 +n02150134 +n02150482 +n02150885 +n02151230 +n02152740 +n02152881 +n02152991 +n02153109 +n02153203 +n02153809 +n02156732 +n02156871 +n02157206 +n02157285 +n02159955 +n02160947 +n02161225 +n02161338 +n02161457 +n02161588 +n02162561 +n02163008 +n02163297 +n02164464 +n02165105 +n02165456 +n02165877 +n02166229 +n02166567 +n02166826 +n02167151 +n02167505 +n02167820 +n02167944 +n02168245 +n02168427 +n02168699 +n02169023 +n02169218 +n02169497 +n02169705 +n02169974 +n02170400 +n02170599 +n02170738 +n02170993 +n02171164 +n02171453 +n02171869 +n02172182 +n02172518 +n02172678 +n02172761 +n02172870 +n02173113 +n02173373 +n02173784 +n02174001 +n02174355 +n02174659 +n02175014 +n02175569 +n02175916 +n02176261 +n02176439 +n02176747 +n02176916 +n02177196 +n02177506 +n02177775 +n02177972 +n02178411 +n02178717 +n02179012 +n02179192 +n02179340 +n02179891 +n02180233 +n02180427 +n02180875 +n02181235 +n02181477 +n02181724 +n02182045 +n02182355 +n02182642 +n02182930 +n02183096 +n02183507 +n02183857 +n02184473 +n02184589 +n02184720 +n02185167 +n02185481 +n02186153 +n02186717 +n02187150 +n02187279 +n02187554 +n02187900 +n02188699 +n02189363 +n02189670 +n02190166 +n02190790 +n02191273 +n02191773 +n02191979 +n02192252 +n02192513 +n02192814 +n02193009 +n02193163 +n02194249 +n02194750 +n02195091 +n02195526 +n02195819 +n02196119 +n02196344 +n02196896 +n02197185 +n02197689 +n02197877 +n02198129 +n02198532 +n02198859 +n02199170 +n02199502 +n02200198 +n02200509 +n02200630 +n02200850 +n02201000 +n02201497 +n02201626 +n02202006 +n02202124 +n02202287 +n02202678 +n02203152 +n02203592 +n02203978 +n02204249 +n02204722 +n02204907 +n02205219 +n02205673 +n02206270 +n02206856 +n02207179 +n02207345 +n02207449 +n02207647 +n02207805 +n02208280 +n02208498 +n02208848 +n02208979 +n02209111 +n02209354 +n02209624 +n02209964 +n02210427 +n02210921 +n02211444 +n02211627 +n02211896 +n02212062 +n02212602 +n02212958 +n02213107 +n02213239 +n02213543 +n02213663 +n02213788 +n02214096 +n02214341 +n02214499 +n02214660 +n02214773 +n02215161 +n02215621 +n02215770 +n02216211 +n02216365 +n02216740 +n02217563 +n02217839 +n02218134 +n02218371 +n02218713 +n02219015 +n02219486 +n02220055 +n02220225 +n02220518 +n02220804 +n02221083 +n02221414 +n02221571 +n02221715 +n02221820 +n02222035 +n02222321 +n02222582 +n02223266 +n02223520 +n02224023 +n02224713 +n02225081 +n02225798 +n02226183 +n02226429 +n02226821 +n02226970 +n02227247 +n02227604 +n02227966 +n02228341 +n02228697 +n02229156 +n02229544 +n02229765 +n02230023 +n02230187 +n02230480 +n02230634 +n02231052 +n02231487 +n02231803 +n02232223 +n02233338 +n02233943 +n02234355 +n02234570 +n02234848 +n02235205 +n02236044 +n02236241 +n02236355 +n02236896 +n02237424 +n02237581 +n02237868 +n02238235 +n02238358 +n02238594 +n02238887 +n02239192 +n02239528 +n02239774 +n02240068 +n02240517 +n02241008 +n02241426 +n02241569 +n02241799 +n02242137 +n02242455 +n02243209 +n02243562 +n02243878 +n02244173 +n02244515 +n02244797 +n02245111 +n02245443 +n02246011 +n02246628 +n02246941 +n02247216 +n02247511 +n02247655 +n02248062 +n02248368 +n02248510 +n02248887 +n02249134 +n02249515 +n02249809 +n02250280 +n02250822 +n02251067 +n02251233 +n02251593 +n02251775 +n02252226 +n02252799 +n02252972 +n02253127 +n02253264 +n02253494 +n02253715 +n02253913 +n02254246 +n02254697 +n02254901 +n02255023 +n02255391 +n02256172 +n02256656 +n02257003 +n02257284 +n02257715 +n02257985 +n02258198 +n02258508 +n02258629 +n02259212 +n02259377 +n02259708 +n02259987 +n02260421 +n02260863 +n02261063 +n02261419 +n02261757 +n02262178 +n02262449 +n02262803 +n02263378 +n02264021 +n02264232 +n02264363 +n02264591 +n02264885 +n02265330 +n02266050 +n02266269 +n02266421 +n02266864 +n02267208 +n02267483 +n02268148 +n02268443 +n02268853 +n02269196 +n02269340 +n02269522 +n02269657 +n02270011 +n02270200 +n02270623 +n02270945 +n02271222 +n02271570 +n02271897 +n02272286 +n02272552 +n02272871 +n02273392 +n02274024 +n02274259 +n02274822 +n02275560 +n02275773 +n02276078 +n02276258 +n02276355 +n02276749 +n02276902 +n02277094 +n02277268 +n02277422 +n02277742 +n02278024 +n02278210 +n02278463 +n02278839 +n02278980 +n02279257 +n02279637 +n02279972 +n02280458 +n02280649 +n02281015 +n02281136 +n02281267 +n02281406 +n02281787 +n02282257 +n02282385 +n02282553 +n02282903 +n02283077 +n02283201 +n02283617 +n02283951 +n02284224 +n02284611 +n02284884 +n02285179 +n02285548 +n02285801 +n02286089 +n02286425 +n02286654 +n02287004 +n02287352 +n02287622 +n02287799 +n02287987 +n02288122 +n02288268 +n02288789 +n02289307 +n02289610 +n02289988 +n02290340 +n02290664 +n02290870 +n02291220 +n02291572 +n02291748 +n02292085 +n02292401 +n02292692 +n02293352 +n02293868 +n02294097 +n02294407 +n02294577 +n02295064 +n02295390 +n02295870 +n02296021 +n02296276 +n02296612 +n02296912 +n02297294 +n02297442 +n02297819 +n02297938 +n02298095 +n02298218 +n02298541 +n02299039 +n02299157 +n02299378 +n02299505 +n02299846 +n02300173 +n02300554 +n02300797 +n02301452 +n02301935 +n02302244 +n02302459 +n02302620 +n02302969 +n02303284 +n02303585 +n02303777 +n02304036 +n02304432 +n02304657 +n02304797 +n02305085 +n02305407 +n02305636 +n02305929 +n02306433 +n02306825 +n02307176 +n02307325 +n02307515 +n02307681 +n02307910 +n02308033 +n02308139 +n02308471 +n02308618 +n02308735 +n02309120 +n02309242 +n02309337 +n02309841 +n02310000 +n02310149 +n02310334 +n02310585 +n02310717 +n02310941 +n02311060 +n02311617 +n02311748 +n02312006 +n02312175 +n02312325 +n02312427 +n02312640 +n02312912 +n02313008 +n02313360 +n02313709 +n02315487 +n02315821 +n02316707 +n02317335 +n02317781 +n02318167 +n02318687 +n02319095 +n02319308 +n02319555 +n02319829 +n02320127 +n02320465 +n02321170 +n02321529 +n02322047 +n02322992 +n02323449 +n02323902 +n02324045 +n02324431 +n02324514 +n02324587 +n02324850 +n02325366 +n02325722 +n02325884 +n02326074 +n02326432 +n02326763 +n02326862 +n02327028 +n02327175 +n02327435 +n02327656 +n02327842 +n02328009 +n02328150 +n02328429 +n02328820 +n02328942 +n02329401 +n02330245 +n02331046 +n02331309 +n02331842 +n02332156 +n02332447 +n02332755 +n02332954 +n02333190 +n02333546 +n02333733 +n02333819 +n02333909 +n02334201 +n02334460 +n02334728 +n02335127 +n02335231 +n02336011 +n02336275 +n02336641 +n02336826 +n02337001 +n02337171 +n02337332 +n02337598 +n02337902 +n02338145 +n02338449 +n02338722 +n02338901 +n02339282 +n02339376 +n02339922 +n02340186 +n02340358 +n02340640 +n02340930 +n02341288 +n02341475 +n02341616 +n02341974 +n02342250 +n02342534 +n02342885 +n02343058 +n02343320 +n02343772 +n02344175 +n02344270 +n02344408 +n02344528 +n02344918 +n02345078 +n02345340 +n02345600 +n02345774 +n02345997 +n02346170 +n02346627 +n02346998 +n02347274 +n02347573 +n02347744 +n02348173 +n02348788 +n02349205 +n02349390 +n02349557 +n02349847 +n02350105 +n02350357 +n02350670 +n02350989 +n02351343 +n02351870 +n02352002 +n02352290 +n02352591 +n02352932 +n02353172 +n02353411 +n02353861 +n02354162 +n02354320 +n02354621 +n02354781 +n02355227 +n02355477 +n02356381 +n02356612 +n02356798 +n02356977 +n02357111 +n02357401 +n02357585 +n02357911 +n02358091 +n02358390 +n02358584 +n02358712 +n02358890 +n02359047 +n02359324 +n02359556 +n02359667 +n02359915 +n02360282 +n02360480 +n02360781 +n02360933 +n02361090 +n02361337 +n02361587 +n02361706 +n02361850 +n02362194 +n02363005 +n02363245 +n02363351 +n02363996 +n02364520 +n02364673 +n02364840 +n02365108 +n02365480 +n02366002 +n02366301 +n02366579 +n02366959 +n02367492 +n02367812 +n02368116 +n02368399 +n02368821 +n02369293 +n02369555 +n02369680 +n02369935 +n02370137 +n02370525 +n02370806 +n02371344 +n02372140 +n02372584 +n02372952 +n02373336 +n02374149 +n02374451 +n02375302 +n02375438 +n02375757 +n02375862 +n02376542 +n02376679 +n02376791 +n02376918 +n02377063 +n02377181 +n02377291 +n02377388 +n02377480 +n02377603 +n02377703 +n02378149 +n02378299 +n02378415 +n02378541 +n02378625 +n02378755 +n02378870 +n02378969 +n02379081 +n02379183 +n02379329 +n02379430 +n02379630 +n02379743 +n02379908 +n02380052 +n02380335 +n02380464 +n02380583 +n02380745 +n02380875 +n02381004 +n02381119 +n02381261 +n02381364 +n02381460 +n02381609 +n02381831 +n02382039 +n02382132 +n02382204 +n02382338 +n02382437 +n02382635 +n02382750 +n02382850 +n02382948 +n02383231 +n02384741 +n02384858 +n02385002 +n02385098 +n02385214 +n02385580 +n02385676 +n02385776 +n02385898 +n02386014 +n02386141 +n02386224 +n02386310 +n02386496 +n02386746 +n02386853 +n02386968 +n02387093 +n02387254 +n02387346 +n02387452 +n02387722 +n02387887 +n02387983 +n02388143 +n02388276 +n02388453 +n02388588 +n02388735 +n02388832 +n02388917 +n02389026 +n02389128 +n02389261 +n02389346 +n02389559 +n02389779 +n02389865 +n02389943 +n02390015 +n02390101 +n02390258 +n02390454 +n02390640 +n02390738 +n02390834 +n02390938 +n02391049 +n02391234 +n02391373 +n02391508 +n02391617 +n02391994 +n02392434 +n02392555 +n02392824 +n02393161 +n02393580 +n02393807 +n02393940 +n02394477 +n02395003 +n02395406 +n02395694 +n02395855 +n02395931 +n02396014 +n02396088 +n02396157 +n02396427 +n02396796 +n02397096 +n02397529 +n02397744 +n02397987 +n02398521 +n02399000 +n02401031 +n02402010 +n02402175 +n02402425 +n02403003 +n02403153 +n02403231 +n02403325 +n02403454 +n02403740 +n02403820 +n02403920 +n02404028 +n02404186 +n02404432 +n02404573 +n02404906 +n02405101 +n02405302 +n02405440 +n02405577 +n02405692 +n02405799 +n02405929 +n02406046 +n02406174 +n02406432 +n02406533 +n02406647 +n02406749 +n02406859 +n02406952 +n02407071 +n02407172 +n02407276 +n02407390 +n02407521 +n02407625 +n02407763 +n02407959 +n02408429 +n02408660 +n02408817 +n02409038 +n02409202 +n02409508 +n02409870 +n02410011 +n02410141 +n02410509 +n02410702 +n02410900 +n02411206 +n02411705 +n02411999 +n02412080 +n02412210 +n02412440 +n02412629 +n02412700 +n02412787 +n02412909 +n02412977 +n02413050 +n02413131 +n02413484 +n02413593 +n02413717 +n02413824 +n02413917 +n02414043 +n02414209 +n02414290 +n02414442 +n02414578 +n02414763 +n02414904 +n02415130 +n02415253 +n02415435 +n02415577 +n02415829 +n02416104 +n02416519 +n02416820 +n02416880 +n02416964 +n02417070 +n02417242 +n02417387 +n02417534 +n02417663 +n02417785 +n02417914 +n02418064 +n02418465 +n02418770 +n02419056 +n02419336 +n02419634 +n02419796 +n02420509 +n02420828 +n02421136 +n02421449 +n02421792 +n02422106 +n02422391 +n02422699 +n02423022 +n02423218 +n02423362 +n02423589 +n02424085 +n02424305 +n02424486 +n02424589 +n02424695 +n02424909 +n02425086 +n02425228 +n02425532 +n02425887 +n02426176 +n02426481 +n02426813 +n02427032 +n02427183 +n02427470 +n02427576 +n02427724 +n02428089 +n02428349 +n02428508 +n02428842 +n02429456 +n02430045 +n02430559 +n02430643 +n02430748 +n02430830 +n02431122 +n02431337 +n02431441 +n02431542 +n02431628 +n02431785 +n02431976 +n02432291 +n02432511 +n02432704 +n02432983 +n02433318 +n02433546 +n02433729 +n02433925 +n02434190 +n02434415 +n02434712 +n02434954 +n02435216 +n02435517 +n02435853 +n02436224 +n02436353 +n02436645 +n02437136 +n02437312 +n02437482 +n02437616 +n02437971 +n02438173 +n02438272 +n02438580 +n02439033 +n02439398 +n02441326 +n02441942 +n02442172 +n02442336 +n02442446 +n02442572 +n02442668 +n02442845 +n02443015 +n02443114 +n02443346 +n02443484 +n02443808 +n02443959 +n02444251 +n02444819 +n02445004 +n02445171 +n02445394 +n02445715 +n02446206 +n02446352 +n02446645 +n02447021 +n02447366 +n02447762 +n02448060 +n02448318 +n02448633 +n02448885 +n02449183 +n02449350 +n02449699 +n02450034 +n02450295 +n02450426 +n02450561 +n02450677 +n02450829 +n02451125 +n02451415 +n02451575 +n02453108 +n02453611 +n02454379 +n02454794 +n02455135 +n02455428 +n02455720 +n02456008 +n02456275 +n02456962 +n02457408 +n02457945 +n02458135 +n02458517 +n02459190 +n02460009 +n02460451 +n02460817 +n02461128 +n02461830 +n02462213 +n02469248 +n02469472 +n02469914 +n02470238 +n02470325 +n02470709 +n02470899 +n02471300 +n02471762 +n02472293 +n02472987 +n02473307 +n02473554 +n02473720 +n02473857 +n02473983 +n02474110 +n02474282 +n02474605 +n02474777 +n02475078 +n02475358 +n02475669 +n02476219 +n02476567 +n02476870 +n02477028 +n02477187 +n02477329 +n02477516 +n02477782 +n02478239 +n02478875 +n02479332 +n02480153 +n02480495 +n02480855 +n02481103 +n02481235 +n02481366 +n02481500 +n02481823 +n02482060 +n02482286 +n02482474 +n02482650 +n02483092 +n02483362 +n02483708 +n02484322 +n02484473 +n02484975 +n02485225 +n02485371 +n02485536 +n02485688 +n02485988 +n02486261 +n02486410 +n02486657 +n02486908 +n02487079 +n02487347 +n02487547 +n02487675 +n02487847 +n02488003 +n02488291 +n02488415 +n02488702 +n02488894 +n02489166 +n02489589 +n02490219 +n02490597 +n02490811 +n02491107 +n02491329 +n02491474 +n02492035 +n02492356 +n02492660 +n02492948 +n02493224 +n02493509 +n02493793 +n02494079 +n02494383 +n02495242 +n02496052 +n02496913 +n02497673 +n02498153 +n02498743 +n02499022 +n02499316 +n02499568 +n02499808 +n02500267 +n02500596 +n02501583 +n02501923 +n02502006 +n02502514 +n02502807 +n02503127 +n02503517 +n02503756 +n02504013 +n02504458 +n02504770 +n02505063 +n02505238 +n02505485 +n02505998 +n02506947 +n02507148 +n02507649 +n02508021 +n02508213 +n02508346 +n02508742 +n02509197 +n02509515 +n02509815 +n02510455 +n02511730 +n02512053 +n02512752 +n02512830 +n02512938 +n02513248 +n02513355 +n02513560 +n02513727 +n02513805 +n02513939 +n02514041 +n02515214 +n02515713 +n02516188 +n02516776 +n02517442 +n02517938 +n02518324 +n02518622 +n02519148 +n02519340 +n02519472 +n02519686 +n02519862 +n02520147 +n02520525 +n02520810 +n02521646 +n02522399 +n02522637 +n02522722 +n02522866 +n02523110 +n02523427 +n02523877 +n02524202 +n02524524 +n02524659 +n02524928 +n02525382 +n02525703 +n02526121 +n02526425 +n02526818 +n02527057 +n02527271 +n02527622 +n02528163 +n02529293 +n02529772 +n02530052 +n02530188 +n02530421 +n02530637 +n02530831 +n02530999 +n02531114 +n02531625 +n02532028 +n02532272 +n02532451 +n02532602 +n02532786 +n02532918 +n02533209 +n02533545 +n02533834 +n02534165 +n02534559 +n02534734 +n02535080 +n02535163 +n02535258 +n02535537 +n02535759 +n02536165 +n02536456 +n02536864 +n02537085 +n02537319 +n02537525 +n02537716 +n02538010 +n02538216 +n02538406 +n02538562 +n02538985 +n02539424 +n02539573 +n02539894 +n02540412 +n02540983 +n02541257 +n02541687 +n02542017 +n02542432 +n02542958 +n02543255 +n02543565 +n02544274 +n02545841 +n02546028 +n02546331 +n02546627 +n02547014 +n02547733 +n02548247 +n02548689 +n02548884 +n02549248 +n02549376 +n02549989 +n02550203 +n02550460 +n02550655 +n02551134 +n02551668 +n02552171 +n02553028 +n02554730 +n02555863 +n02556373 +n02556846 +n02557182 +n02557318 +n02557591 +n02557749 +n02557909 +n02558206 +n02558860 +n02559144 +n02559383 +n02559862 +n02560110 +n02561108 +n02561381 +n02561514 +n02561661 +n02561803 +n02561937 +n02562315 +n02562796 +n02562971 +n02563079 +n02563182 +n02563648 +n02563792 +n02563949 +n02564270 +n02564403 +n02564720 +n02564935 +n02565072 +n02565324 +n02565573 +n02566109 +n02566489 +n02566665 +n02567334 +n02567633 +n02568087 +n02568447 +n02568959 +n02569484 +n02569631 +n02569905 +n02570164 +n02570484 +n02570838 +n02571167 +n02571652 +n02571810 +n02572196 +n02572484 +n02573249 +n02573704 +n02574271 +n02574910 +n02575325 +n02575590 +n02576223 +n02576575 +n02576906 +n02577041 +n02577164 +n02577403 +n02577662 +n02577952 +n02578233 +n02578454 +n02578771 +n02578928 +n02579303 +n02579557 +n02579762 +n02579928 +n02580336 +n02580679 +n02580830 +n02581108 +n02581482 +n02581642 +n02581957 +n02582220 +n02582349 +n02582721 +n02583567 +n02583890 +n02584145 +n02584449 +n02585872 +n02586238 +n02586543 +n02587051 +n02587300 +n02587479 +n02587618 +n02587877 +n02588286 +n02588794 +n02588945 +n02589062 +n02589196 +n02589316 +n02589623 +n02589796 +n02590094 +n02590495 +n02590702 +n02590987 +n02591330 +n02591613 +n02591911 +n02592055 +n02592371 +n02592734 +n02593019 +n02593191 +n02593453 +n02593679 +n02594250 +n02594942 +n02595056 +n02595339 +n02595702 +n02596067 +n02596252 +n02596381 +n02596720 +n02597004 +n02597367 +n02597608 +n02597818 +n02597972 +n02598134 +n02598573 +n02598878 +n02599052 +n02599347 +n02599557 +n02599958 +n02600298 +n02600503 +n02600798 +n02601344 +n02601767 +n02601921 +n02602059 +n02602405 +n02602760 +n02603317 +n02603540 +n02603862 +n02604157 +n02604480 +n02604954 +n02605316 +n02605703 +n02605936 +n02606052 +n02606384 +n02606751 +n02607072 +n02607201 +n02607470 +n02607862 +n02608284 +n02608547 +n02608860 +n02608996 +n02609302 +n02609823 +n02610066 +n02610373 +n02610664 +n02610980 +n02611561 +n02611898 +n02612167 +n02613181 +n02613572 +n02613820 +n02614140 +n02614482 +n02614653 +n02614978 +n02615298 +n02616128 +n02616397 +n02616851 +n02617537 +n02618094 +n02618513 +n02618827 +n02619165 +n02619550 +n02619861 +n02620167 +n02620578 +n02621258 +n02621908 +n02622249 +n02622547 +n02622712 +n02622955 +n02623445 +n02624167 +n02624551 +n02624807 +n02624987 +n02625258 +n02625612 +n02625851 +n02626089 +n02626265 +n02626471 +n02626762 +n02627037 +n02627292 +n02627532 +n02627835 +n02628062 +n02628259 +n02628600 +n02629230 +n02629716 +n02630281 +n02630615 +n02630739 +n02631041 +n02631330 +n02631475 +n02631628 +n02631775 +n02632039 +n02632494 +n02633422 +n02633677 +n02633977 +n02634545 +n02635154 +n02635580 +n02636170 +n02636405 +n02636550 +n02636854 +n02637179 +n02637475 +n02637977 +n02638596 +n02639087 +n02639605 +n02639922 +n02640242 +n02640626 +n02640857 +n02641379 +n02642107 +n02642644 +n02643112 +n02643316 +n02643566 +n02643836 +n02644113 +n02644360 +n02644501 +n02644665 +n02644817 +n02645538 +n02645691 +n02645953 +n02646667 +n02646892 +n02648035 +n02648625 +n02648916 +n02649218 +n02649546 +n02650050 +n02650413 +n02650541 +n02651060 +n02652132 +n02652668 +n02653145 +n02653497 +n02653786 +n02654112 +n02654425 +n02654745 +n02655020 +n02655523 +n02655848 +n02656032 +n02656301 +n02656670 +n02656969 +n02657368 +n02657694 +n02658079 +n02658531 +n02658811 +n02659176 +n02659478 +n02659808 +n02660091 +n02660208 +n02660519 +n02660640 +n02661017 +n02661473 +n02661618 +n02662239 +n02662397 +n02662559 +n02662825 +n02662993 +n02663211 +n02663485 +n02663849 +n02664285 +n02664642 +n02665250 +n02665985 +n02666196 +n02666501 +n02666624 +n02666943 +n02667093 +n02667244 +n02667379 +n02667478 +n02667576 +n02667693 +n02668393 +n02668613 +n02669295 +n02669442 +n02669534 +n02669723 +n02670186 +n02670382 +n02670683 +n02670935 +n02671780 +n02672152 +n02672371 +n02672831 +n02675077 +n02675219 +n02675522 +n02676097 +n02676261 +n02676566 +n02676670 +n02676938 +n02677028 +n02677136 +n02677436 +n02677718 +n02678010 +n02678384 +n02678897 +n02679142 +n02679257 +n02679961 +n02680110 +n02680512 +n02680638 +n02680754 +n02681392 +n02682311 +n02682407 +n02682569 +n02682811 +n02682922 +n02683183 +n02683323 +n02683454 +n02683558 +n02683791 +n02684248 +n02684356 +n02684515 +n02684649 +n02684962 +n02685082 +n02685253 +n02685365 +n02685701 +n02685995 +n02686121 +n02686227 +n02686379 +n02686568 +n02687172 +n02687423 +n02687682 +n02687821 +n02687992 +n02688273 +n02688443 +n02689144 +n02689274 +n02689434 +n02689748 +n02689819 +n02690373 +n02690715 +n02691156 +n02692086 +n02692232 +n02692513 +n02692680 +n02692877 +n02693246 +n02693413 +n02693540 +n02694045 +n02694279 +n02694426 +n02694662 +n02694966 +n02695627 +n02695762 +n02696165 +n02696246 +n02696569 +n02696843 +n02697022 +n02697221 +n02697576 +n02697675 +n02697876 +n02698244 +n02698473 +n02698634 +n02699494 +n02699629 +n02699770 +n02699915 +n02700064 +n02700258 +n02700895 +n02701002 +n02701260 +n02701730 +n02702989 +n02703124 +n02703275 +n02704645 +n02704792 +n02704949 +n02705201 +n02705429 +n02705944 +n02706221 +n02706806 +n02708093 +n02708224 +n02708433 +n02708555 +n02708711 +n02708885 +n02709101 +n02709367 +n02709637 +n02709763 +n02709908 +n02710044 +n02710201 +n02710324 +n02710429 +n02710600 +n02711237 +n02711780 +n02712545 +n02712643 +n02713003 +n02713218 +n02713364 +n02713496 +n02714315 +n02714535 +n02714751 +n02715229 +n02715513 +n02715712 +n02716626 +n02720048 +n02720576 +n02721813 +n02723165 +n02724722 +n02725872 +n02726017 +n02726210 +n02726305 +n02726681 +n02727016 +n02727141 +n02727426 +n02727825 +n02728440 +n02729222 +n02729837 +n02729965 +n02730265 +n02730568 +n02730930 +n02731251 +n02731398 +n02731629 +n02731900 +n02732072 +n02732572 +n02732827 +n02733213 +n02733524 +n02734725 +n02734835 +n02735268 +n02735361 +n02735538 +n02735688 +n02736396 +n02736798 +n02737351 +n02737660 +n02738031 +n02738271 +n02738449 +n02738535 +n02738741 +n02738859 +n02738978 +n02739123 +n02739427 +n02739550 +n02739668 +n02739889 +n02740061 +n02740300 +n02740533 +n02740764 +n02741367 +n02741475 +n02742070 +n02742194 +n02742322 +n02742468 +n02742753 +n02743426 +n02744323 +n02744844 +n02744961 +n02745492 +n02745611 +n02745816 +n02746008 +n02746225 +n02746365 +n02746595 +n02746683 +n02746978 +n02747063 +n02747177 +n02747672 +n02747802 +n02748183 +n02748359 +n02748491 +n02749169 +n02749292 +n02749479 +n02749670 +n02749790 +n02749953 +n02750070 +n02750169 +n02750320 +n02750652 +n02751067 +n02751215 +n02751295 +n02751490 +n02752199 +n02752496 +n02752615 +n02752810 +n02752917 +n02753044 +n02753394 +n02753710 +n02754103 +n02754656 +n02755140 +n02755352 +n02755529 +n02755675 +n02755823 +n02755984 +n02756098 +n02756854 +n02756977 +n02757061 +n02757337 +n02757462 +n02757714 +n02757810 +n02757927 +n02758134 +n02758490 +n02758863 +n02758960 +n02759257 +n02759387 +n02759700 +n02759963 +n02760099 +n02760199 +n02760298 +n02760429 +n02760658 +n02760855 +n02761034 +n02761206 +n02761392 +n02761557 +n02761696 +n02761834 +n02762169 +n02762371 +n02762508 +n02762725 +n02762909 +n02763083 +n02763198 +n02763306 +n02763604 +n02763714 +n02763901 +n02764044 +n02764398 +n02764505 +n02764614 +n02764779 +n02764935 +n02765028 +n02766168 +n02766320 +n02766534 +n02766792 +n02767038 +n02767147 +n02767433 +n02767665 +n02767956 +n02768114 +n02768226 +n02768433 +n02768655 +n02768973 +n02769075 +n02769290 +n02769669 +n02769748 +n02769963 +n02770078 +n02770211 +n02770585 +n02770721 +n02770830 +n02771004 +n02771166 +n02771286 +n02771547 +n02771750 +n02772101 +n02772435 +n02772554 +n02772700 +n02773037 +n02773838 +n02774152 +n02774630 +n02774921 +n02775039 +n02775178 +n02775483 +n02775689 +n02775813 +n02775897 +n02776007 +n02776205 +n02776505 +n02776631 +n02776825 +n02776978 +n02777100 +n02777292 +n02777402 +n02777638 +n02777734 +n02777927 +n02778131 +n02778294 +n02778456 +n02778588 +n02778669 +n02779435 +n02779609 +n02779719 +n02779971 +n02780315 +n02780445 +n02780588 +n02780704 +n02780815 +n02781121 +n02781213 +n02781338 +n02781517 +n02781764 +n02782093 +n02782432 +n02782602 +n02782681 +n02782778 +n02783035 +n02783161 +n02783324 +n02783459 +n02783900 +n02783994 +n02784124 +n02784998 +n02785648 +n02786058 +n02786198 +n02786331 +n02786463 +n02786611 +n02786736 +n02786837 +n02787120 +n02787269 +n02787435 +n02787622 +n02788021 +n02788148 +n02788386 +n02788462 +n02788572 +n02788689 +n02789487 +n02790669 +n02790823 +n02790996 +n02791124 +n02791270 +n02791532 +n02791665 +n02791795 +n02792409 +n02792552 +n02792948 +n02793089 +n02793199 +n02793296 +n02793414 +n02793495 +n02793684 +n02793842 +n02793930 +n02794008 +n02794156 +n02794368 +n02794474 +n02794664 +n02794779 +n02794972 +n02795169 +n02795528 +n02795670 +n02795783 +n02795978 +n02796207 +n02796318 +n02796412 +n02796623 +n02796995 +n02797295 +n02797535 +n02797692 +n02797881 +n02799071 +n02799175 +n02799323 +n02799897 +n02800213 +n02800497 +n02800675 +n02800940 +n02801047 +n02801184 +n02801450 +n02801525 +n02801823 +n02801938 +n02802215 +n02802426 +n02802544 +n02802721 +n02802990 +n02803349 +n02803539 +n02803666 +n02803809 +n02803934 +n02804123 +n02804252 +n02804414 +n02804515 +n02804610 +n02805283 +n02805845 +n02805983 +n02806088 +n02806379 +n02806530 +n02806762 +n02806875 +n02806992 +n02807133 +n02807523 +n02807616 +n02807731 +n02808185 +n02808304 +n02808440 +n02808829 +n02808968 +n02809105 +n02809241 +n02809364 +n02809491 +n02809605 +n02809736 +n02810139 +n02810270 +n02810471 +n02810782 +n02811059 +n02811204 +n02811350 +n02811468 +n02811618 +n02811719 +n02811936 +n02812201 +n02812342 +n02812631 +n02812785 +n02812949 +n02813252 +n02813399 +n02813544 +n02813645 +n02813752 +n02813981 +n02814116 +n02814338 +n02814428 +n02814533 +n02814774 +n02814860 +n02815478 +n02815749 +n02815834 +n02815950 +n02816494 +n02816656 +n02816768 +n02817031 +n02817251 +n02817386 +n02817516 +n02817650 +n02817799 +n02818135 +n02818254 +n02818687 +n02818832 +n02819697 +n02820085 +n02820210 +n02820556 +n02820675 +n02821202 +n02821415 +n02821543 +n02821627 +n02821943 +n02822064 +n02822220 +n02822399 +n02822579 +n02822762 +n02822865 +n02823124 +n02823335 +n02823428 +n02823510 +n02823586 +n02823750 +n02823848 +n02823964 +n02824058 +n02824152 +n02824319 +n02824448 +n02825153 +n02825240 +n02825442 +n02825657 +n02825872 +n02825961 +n02826068 +n02826259 +n02826459 +n02826589 +n02826683 +n02826812 +n02826886 +n02827148 +n02827606 +n02828115 +n02828299 +n02828427 +n02828884 +n02829246 +n02829353 +n02829510 +n02829596 +n02830157 +n02831237 +n02831335 +n02831595 +n02831724 +n02831894 +n02831998 +n02833040 +n02833140 +n02833275 +n02833403 +n02833793 +n02834027 +n02834397 +n02834506 +n02834642 +n02834778 +n02835271 +n02835412 +n02835551 +n02835724 +n02835829 +n02835915 +n02836035 +n02836174 +n02836268 +n02836392 +n02836513 +n02836607 +n02836900 +n02837134 +n02837567 +n02837789 +n02837887 +n02838014 +n02838178 +n02838345 +n02838577 +n02838728 +n02838958 +n02839110 +n02839351 +n02839592 +n02839910 +n02840134 +n02840245 +n02840515 +n02840619 +n02841063 +n02841187 +n02841315 +n02841506 +n02841641 +n02841847 +n02842133 +n02842573 +n02842809 +n02843029 +n02843158 +n02843276 +n02843465 +n02843553 +n02843684 +n02843777 +n02843909 +n02844056 +n02844214 +n02844307 +n02844714 +n02845130 +n02845293 +n02845985 +n02846141 +n02846260 +n02846511 +n02846619 +n02846733 +n02846874 +n02847461 +n02847631 +n02847852 +n02848118 +n02848216 +n02848523 +n02848806 +n02848921 +n02849154 +n02849885 +n02850060 +n02850358 +n02850732 +n02850950 +n02851099 +n02851795 +n02851939 +n02852043 +n02852173 +n02852360 +n02853016 +n02853218 +n02853336 +n02853745 +n02853870 +n02854378 +n02854532 +n02854630 +n02854739 +n02854926 +n02855089 +n02855390 +n02855701 +n02855793 +n02855925 +n02856013 +n02856237 +n02856362 +n02857365 +n02857477 +n02857644 +n02857907 +n02858304 +n02859184 +n02859343 +n02859443 +n02859557 +n02859729 +n02859955 +n02860415 +n02860640 +n02860847 +n02861022 +n02861147 +n02861286 +n02861387 +n02861509 +n02861658 +n02861777 +n02861886 +n02862048 +n02862916 +n02863014 +n02863176 +n02863340 +n02863426 +n02863536 +n02863638 +n02863750 +n02864122 +n02864504 +n02864593 +n02864987 +n02865351 +n02865665 +n02865931 +n02866106 +n02866386 +n02866578 +n02867401 +n02867592 +n02867715 +n02867966 +n02868240 +n02868429 +n02868546 +n02868638 +n02868975 +n02869155 +n02869249 +n02869563 +n02869737 +n02869837 +n02870526 +n02870676 +n02870772 +n02870880 +n02871005 +n02871147 +n02871314 +n02871439 +n02871525 +n02871631 +n02871824 +n02871963 +n02872333 +n02872529 +n02872752 +n02873520 +n02873623 +n02873733 +n02873839 +n02874086 +n02874214 +n02874336 +n02874442 +n02874537 +n02874642 +n02874750 +n02875436 +n02875626 +n02875948 +n02876084 +n02876326 +n02876457 +n02876657 +n02877266 +n02877513 +n02877642 +n02877765 +n02877962 +n02878107 +n02878222 +n02878425 +n02878534 +n02878628 +n02878796 +n02879087 +n02879309 +n02879422 +n02879517 +n02879718 +n02880189 +n02880393 +n02880546 +n02880842 +n02880940 +n02881193 +n02881546 +n02881757 +n02881906 +n02882190 +n02882301 +n02882483 +n02882647 +n02882894 +n02883004 +n02883101 +n02883205 +n02883344 +n02884225 +n02884450 +n02884859 +n02884994 +n02885108 +n02885233 +n02885338 +n02885462 +n02885882 +n02886321 +n02886434 +n02886599 +n02887079 +n02887209 +n02887489 +n02887832 +n02887970 +n02888270 +n02888429 +n02888569 +n02888898 +n02889425 +n02889646 +n02889856 +n02889996 +n02890188 +n02890351 +n02890513 +n02890662 +n02890804 +n02890940 +n02891188 +n02891788 +n02892201 +n02892304 +n02892392 +n02892499 +n02892626 +n02892767 +n02892948 +n02893269 +n02893418 +n02893608 +n02893692 +n02893941 +n02894024 +n02894158 +n02894337 +n02894605 +n02894847 +n02895008 +n02895154 +n02895328 +n02895438 +n02896074 +n02896294 +n02896442 +n02896694 +n02896856 +n02896949 +n02897097 +n02897389 +n02897820 +n02898093 +n02898173 +n02898269 +n02898369 +n02898585 +n02898711 +n02899439 +n02900160 +n02900459 +n02900594 +n02900705 +n02900857 +n02900987 +n02901114 +n02901259 +n02901377 +n02901481 +n02901620 +n02901793 +n02901901 +n02902079 +n02902687 +n02902816 +n02902916 +n02903006 +n02903126 +n02903204 +n02903727 +n02903852 +n02904109 +n02904233 +n02904505 +n02904640 +n02904803 +n02904927 +n02905036 +n02905152 +n02905886 +n02906734 +n02906963 +n02907082 +n02907296 +n02907391 +n02907656 +n02907873 +n02908123 +n02908217 +n02908773 +n02908951 +n02909053 +n02909165 +n02909285 +n02909706 +n02909870 +n02910145 +n02910241 +n02910353 +n02910542 +n02910701 +n02910864 +n02910964 +n02911332 +n02911485 +n02912065 +n02912319 +n02912557 +n02912894 +n02913152 +n02914991 +n02915904 +n02916065 +n02916179 +n02916350 +n02916936 +n02917067 +n02917377 +n02917521 +n02917607 +n02917742 +n02917964 +n02918112 +n02918330 +n02918455 +n02918595 +n02918831 +n02918964 +n02919148 +n02919308 +n02919414 +n02919648 +n02919792 +n02919890 +n02919976 +n02920083 +n02920164 +n02920259 +n02920369 +n02920503 +n02920658 +n02921029 +n02921195 +n02921292 +n02921406 +n02921592 +n02921756 +n02921884 +n02922159 +n02922292 +n02922461 +n02922578 +n02922798 +n02922877 +n02923129 +n02923535 +n02923682 +n02923915 +n02924116 +n02925009 +n02925107 +n02925385 +n02925519 +n02925666 +n02926426 +n02926591 +n02927053 +n02927161 +n02927764 +n02927887 +n02928049 +n02928299 +n02928413 +n02928608 +n02929184 +n02929289 +n02929462 +n02929582 +n02929923 +n02930080 +n02930214 +n02930339 +n02930645 +n02930766 +n02931013 +n02931148 +n02931294 +n02931417 +n02931836 +n02932019 +n02932400 +n02932523 +n02932693 +n02932891 +n02933112 +n02933340 +n02933462 +n02933649 +n02933750 +n02933990 +n02934168 +n02934451 +n02935017 +n02935387 +n02935490 +n02935658 +n02935891 +n02936176 +n02936281 +n02936402 +n02936570 +n02936714 +n02936921 +n02937010 +n02937336 +n02937958 +n02938218 +n02938321 +n02938886 +n02939185 +n02939763 +n02939866 +n02940289 +n02940385 +n02940570 +n02940706 +n02941095 +n02941228 +n02941845 +n02942015 +n02942147 +n02942349 +n02942460 +n02942699 +n02943241 +n02943465 +n02943686 +n02943871 +n02943964 +n02944075 +n02944146 +n02944256 +n02944459 +n02944579 +n02944826 +n02945161 +n02945813 +n02945964 +n02946127 +n02946270 +n02946348 +n02946509 +n02946753 +n02946824 +n02946921 +n02947212 +n02947660 +n02947818 +n02947977 +n02948072 +n02948293 +n02948403 +n02948557 +n02948834 +n02948942 +n02949084 +n02949202 +n02949356 +n02949542 +n02950018 +n02950120 +n02950186 +n02950256 +n02950482 +n02950632 +n02950826 +n02950943 +n02951358 +n02951585 +n02951703 +n02951843 +n02952109 +n02952237 +n02952374 +n02952485 +n02952585 +n02952674 +n02952798 +n02952935 +n02953056 +n02953197 +n02953455 +n02953552 +n02953673 +n02953850 +n02954163 +n02954340 +n02954938 +n02955065 +n02955247 +n02955540 +n02955767 +n02956393 +n02956699 +n02956795 +n02956883 +n02957008 +n02957135 +n02957252 +n02957427 +n02957755 +n02957862 +n02958343 +n02959942 +n02960352 +n02960690 +n02960903 +n02961035 +n02961225 +n02961451 +n02961544 +n02961947 +n02962061 +n02962200 +n02962414 +n02962843 +n02962938 +n02963159 +n02963302 +n02963503 +n02963692 +n02963821 +n02963987 +n02964075 +n02964196 +n02964295 +n02964634 +n02964843 +n02964934 +n02965024 +n02965122 +n02965216 +n02965300 +n02965529 +n02965783 +n02966068 +n02966193 +n02966545 +n02966687 +n02966786 +n02966942 +n02967081 +n02967170 +n02967294 +n02967407 +n02967540 +n02967626 +n02967782 +n02967991 +n02968074 +n02968210 +n02968333 +n02968473 +n02969010 +n02969163 +n02969323 +n02969527 +n02969634 +n02969886 +n02970408 +n02970534 +n02970685 +n02970849 +n02971167 +n02971356 +n02971473 +n02971579 +n02971691 +n02971940 +n02972397 +n02972714 +n02972934 +n02973017 +n02973236 +n02973805 +n02973904 +n02974003 +n02974348 +n02974454 +n02974565 +n02974697 +n02975212 +n02975589 +n02975994 +n02976123 +n02976249 +n02976350 +n02976455 +n02976552 +n02976641 +n02976815 +n02976939 +n02977058 +n02977330 +n02977438 +n02977619 +n02977936 +n02978055 +n02978205 +n02978367 +n02978478 +n02978753 +n02978881 +n02979074 +n02979186 +n02979290 +n02979399 +n02979516 +n02979836 +n02980036 +n02980203 +n02980441 +n02980625 +n02981024 +n02981198 +n02981321 +n02981565 +n02981792 +n02981911 +n02982232 +n02982416 +n02982515 +n02982599 +n02983072 +n02983189 +n02983357 +n02983507 +n02983904 +n02984061 +n02984203 +n02984469 +n02984699 +n02985137 +n02985606 +n02985828 +n02985963 +n02986066 +n02986160 +n02986348 +n02987047 +n02987379 +n02987492 +n02987706 +n02987823 +n02987950 +n02988066 +n02988156 +n02988304 +n02988486 +n02988679 +n02988963 +n02989099 +n02990373 +n02990758 +n02991048 +n02991302 +n02991847 +n02992032 +n02992211 +n02992368 +n02992529 +n02992795 +n02993194 +n02993368 +n02993546 +n02994573 +n02994743 +n02995345 +n02995871 +n02995998 +n02997391 +n02997607 +n02997910 +n02998003 +n02998107 +n02998563 +n02998696 +n02998841 +n02999138 +n02999410 +n02999936 +n03000134 +n03000247 +n03000530 +n03000684 +n03001115 +n03001282 +n03001540 +n03001627 +n03002096 +n03002210 +n03002341 +n03002555 +n03002711 +n03002816 +n03002948 +n03003091 +n03003633 +n03004275 +n03004409 +n03004531 +n03004620 +n03004713 +n03004824 +n03005033 +n03005147 +n03005285 +n03005515 +n03005619 +n03006626 +n03006788 +n03006903 +n03007130 +n03007297 +n03007444 +n03007591 +n03008177 +n03008817 +n03008976 +n03009111 +n03009269 +n03009794 +n03010473 +n03010656 +n03010795 +n03010915 +n03011018 +n03011355 +n03011741 +n03012013 +n03012159 +n03012373 +n03012499 +n03012644 +n03012734 +n03012897 +n03013006 +n03013438 +n03013580 +n03013850 +n03014440 +n03014705 +n03015149 +n03015254 +n03015478 +n03015631 +n03015851 +n03016209 +n03016389 +n03016609 +n03016737 +n03016868 +n03016953 +n03017070 +n03017168 +n03017698 +n03017835 +n03018209 +n03018349 +n03018614 +n03018712 +n03018848 +n03019198 +n03019304 +n03019434 +n03019685 +n03019806 +n03019938 +n03020034 +n03020416 +n03020692 +n03021228 +n03024064 +n03024233 +n03024333 +n03024518 +n03025070 +n03025165 +n03025250 +n03025886 +n03026506 +n03026907 +n03027001 +n03027108 +n03027250 +n03027505 +n03027625 +n03028079 +n03028596 +n03028785 +n03029066 +n03029197 +n03029296 +n03029445 +n03029925 +n03030262 +n03030353 +n03030557 +n03030880 +n03031012 +n03031152 +n03031422 +n03031756 +n03032252 +n03032453 +n03032811 +n03033267 +n03033362 +n03033986 +n03034244 +n03034405 +n03034516 +n03034663 +n03035252 +n03035510 +n03035715 +n03035832 +n03036022 +n03036149 +n03036244 +n03036341 +n03036469 +n03036701 +n03036866 +n03037108 +n03037228 +n03037404 +n03037590 +n03037709 +n03038041 +n03038281 +n03038480 +n03038685 +n03038870 +n03039015 +n03039259 +n03039353 +n03039493 +n03039827 +n03039947 +n03040229 +n03040376 +n03040836 +n03041114 +n03041265 +n03041449 +n03041632 +n03041810 +n03042139 +n03042384 +n03042490 +n03042697 +n03042829 +n03042984 +n03043173 +n03043274 +n03043423 +n03043693 +n03043798 +n03043958 +n03044671 +n03044801 +n03044934 +n03045074 +n03045228 +n03045337 +n03045698 +n03045800 +n03046029 +n03046133 +n03046257 +n03046802 +n03046921 +n03047052 +n03047171 +n03047690 +n03047799 +n03047941 +n03048883 +n03049066 +n03049326 +n03049457 +n03049782 +n03049924 +n03050026 +n03050453 +n03050546 +n03050655 +n03050864 +n03051041 +n03051249 +n03051396 +n03051540 +n03052464 +n03052917 +n03053047 +n03053976 +n03054491 +n03054605 +n03054901 +n03055159 +n03055418 +n03055670 +n03055857 +n03056097 +n03056215 +n03056288 +n03056493 +n03056583 +n03056873 +n03057021 +n03057541 +n03057636 +n03057724 +n03057841 +n03057920 +n03058107 +n03058603 +n03058949 +n03059103 +n03059236 +n03059366 +n03059685 +n03059934 +n03060728 +n03061050 +n03061211 +n03061345 +n03061505 +n03061674 +n03061819 +n03061893 +n03062015 +n03062122 +n03062245 +n03062336 +n03062651 +n03062798 +n03062985 +n03063073 +n03063199 +n03063338 +n03063485 +n03063599 +n03063689 +n03063834 +n03063968 +n03064250 +n03064350 +n03064562 +n03064758 +n03064935 +n03065243 +n03065424 +n03065708 +n03066232 +n03066359 +n03066464 +n03066849 +n03067093 +n03067212 +n03067339 +n03067518 +n03068181 +n03068998 +n03069752 +n03070059 +n03070193 +n03070396 +n03070587 +n03070854 +n03071021 +n03071160 +n03071288 +n03071552 +n03072056 +n03072201 +n03072440 +n03072682 +n03073296 +n03073384 +n03073545 +n03073694 +n03073977 +n03074380 +n03074855 +n03075097 +n03075248 +n03075370 +n03075500 +n03075634 +n03075768 +n03075946 +n03076411 +n03076623 +n03076708 +n03077442 +n03077616 +n03077741 +n03078287 +n03078506 +n03078670 +n03078802 +n03078995 +n03079136 +n03079230 +n03079494 +n03079616 +n03079741 +n03080309 +n03080497 +n03080633 +n03080731 +n03080904 +n03081859 +n03081986 +n03082127 +n03082280 +n03082450 +n03082656 +n03082807 +n03082979 +n03084420 +n03084834 +n03085013 +n03085219 +n03085333 +n03085602 +n03085781 +n03085915 +n03086183 +n03086457 +n03086580 +n03086670 +n03086868 +n03087069 +n03087245 +n03087366 +n03087521 +n03087643 +n03087816 +n03088389 +n03088580 +n03088707 +n03089477 +n03089624 +n03089753 +n03089879 +n03090000 +n03090172 +n03090437 +n03090710 +n03090856 +n03091044 +n03091223 +n03091374 +n03091907 +n03092053 +n03092166 +n03092314 +n03092476 +n03092656 +n03092883 +n03093427 +n03093792 +n03094159 +n03094503 +n03095699 +n03095965 +n03096439 +n03096960 +n03097362 +n03097535 +n03097673 +n03098140 +n03098515 +n03098688 +n03098806 +n03098959 +n03099147 +n03099274 +n03099454 +n03099622 +n03099771 +n03099945 +n03100240 +n03100346 +n03100490 +n03100897 +n03101156 +n03101302 +n03101375 +n03101517 +n03101664 +n03101796 +n03101986 +n03102371 +n03102516 +n03102654 +n03102859 +n03103128 +n03103396 +n03103563 +n03103904 +n03104019 +n03104512 +n03105088 +n03105214 +n03105306 +n03105467 +n03105645 +n03105810 +n03105974 +n03106722 +n03106898 +n03107046 +n03107488 +n03107716 +n03108455 +n03108624 +n03108759 +n03108853 +n03109033 +n03109150 +n03109253 +n03109693 +n03109881 +n03110202 +n03110669 +n03111041 +n03111177 +n03111296 +n03111690 +n03112240 +n03112719 +n03112869 +n03113152 +n03113505 +n03113657 +n03113835 +n03114041 +n03114236 +n03114379 +n03114504 +n03114743 +n03114839 +n03115014 +n03115180 +n03115400 +n03115663 +n03115762 +n03115897 +n03116008 +n03116163 +n03116530 +n03116767 +n03117199 +n03117642 +n03118346 +n03118969 +n03119203 +n03119396 +n03119510 +n03120198 +n03120491 +n03120778 +n03121040 +n03121190 +n03121298 +n03121431 +n03121897 +n03122073 +n03122202 +n03122295 +n03122748 +n03123553 +n03123666 +n03123809 +n03123917 +n03124043 +n03124170 +n03124313 +n03124474 +n03124590 +n03125057 +n03125588 +n03125729 +n03125870 +n03126090 +n03126385 +n03126580 +n03126707 +n03126927 +n03127024 +n03127203 +n03127408 +n03127531 +n03127747 +n03127925 +n03128085 +n03128248 +n03128427 +n03128519 +n03129001 +n03129471 +n03129636 +n03129753 +n03129848 +n03130066 +n03130233 +n03130563 +n03130761 +n03130866 +n03131193 +n03131574 +n03131669 +n03131967 +n03132076 +n03132261 +n03132438 +n03132666 +n03132776 +n03133050 +n03133415 +n03133878 +n03134118 +n03134232 +n03134394 +n03134739 +n03134853 +n03135030 +n03135532 +n03135656 +n03135788 +n03135917 +n03136051 +n03136254 +n03136369 +n03136504 +n03137473 +n03137579 +n03138128 +n03138217 +n03138344 +n03138669 +n03139089 +n03139464 +n03139640 +n03139998 +n03140126 +n03140292 +n03140431 +n03140546 +n03140652 +n03140771 +n03140900 +n03141065 +n03141327 +n03141455 +n03141612 +n03141702 +n03141823 +n03142099 +n03142205 +n03142325 +n03142431 +n03142679 +n03143400 +n03143572 +n03143754 +n03144156 +n03144873 +n03144982 +n03145147 +n03145277 +n03145384 +n03145522 +n03145719 +n03145843 +n03146219 +n03146342 +n03146449 +n03146560 +n03146687 +n03146777 +n03146846 +n03147084 +n03147156 +n03147280 +n03147509 +n03148324 +n03148518 +n03148727 +n03148808 +n03149135 +n03149401 +n03149686 +n03149810 +n03150232 +n03150511 +n03150661 +n03150795 +n03151077 +n03152303 +n03152951 +n03153246 +n03153585 +n03153948 +n03154073 +n03154316 +n03154446 +n03154616 +n03154745 +n03154895 +n03155178 +n03155502 +n03155915 +n03156071 +n03156279 +n03156405 +n03156767 +n03157348 +n03158186 +n03158414 +n03158668 +n03158796 +n03158885 +n03159535 +n03159640 +n03160001 +n03160186 +n03160309 +n03160740 +n03161016 +n03161450 +n03161893 +n03162297 +n03162460 +n03162556 +n03162714 +n03162818 +n03163222 +n03163381 +n03163488 +n03163798 +n03163973 +n03164192 +n03164344 +n03164605 +n03164722 +n03164929 +n03165096 +n03165211 +n03165466 +n03165616 +n03165823 +n03165955 +n03166120 +n03166514 +n03166600 +n03166685 +n03166809 +n03166951 +n03167153 +n03167978 +n03168107 +n03168217 +n03168543 +n03168663 +n03168774 +n03168933 +n03169063 +n03169176 +n03170292 +n03170459 +n03170635 +n03170872 +n03171228 +n03171356 +n03171635 +n03171910 +n03172038 +n03172738 +n03172965 +n03173270 +n03173387 +n03173929 +n03174079 +n03174450 +n03174731 +n03175081 +n03175189 +n03175301 +n03175457 +n03175604 +n03175843 +n03175983 +n03176238 +n03176386 +n03176594 +n03176763 +n03177059 +n03177165 +n03177708 +n03178000 +n03178173 +n03178430 +n03178538 +n03178674 +n03179701 +n03179910 +n03180011 +n03180384 +n03180504 +n03180732 +n03180865 +n03180969 +n03181293 +n03181667 +n03182140 +n03182232 +n03182912 +n03183080 +n03185868 +n03186199 +n03186285 +n03186818 +n03187037 +n03187153 +n03187268 +n03187595 +n03187751 +n03188290 +n03188531 +n03188725 +n03188871 +n03189083 +n03189311 +n03189818 +n03190458 +n03191286 +n03191451 +n03191561 +n03191776 +n03192543 +n03192907 +n03193107 +n03193260 +n03193423 +n03193597 +n03193754 +n03194170 +n03194297 +n03194812 +n03194992 +n03195332 +n03195485 +n03195799 +n03195959 +n03196062 +n03196217 +n03196324 +n03196598 +n03196990 +n03197201 +n03197337 +n03197446 +n03198223 +n03198500 +n03199358 +n03199488 +n03199647 +n03199775 +n03199901 +n03200231 +n03200357 +n03200539 +n03200701 +n03200906 +n03201035 +n03201208 +n03201529 +n03201638 +n03201776 +n03201895 +n03201996 +n03202354 +n03202481 +n03202760 +n03202940 +n03203089 +n03203806 +n03204134 +n03204306 +n03204436 +n03204558 +n03204955 +n03205143 +n03205304 +n03205458 +n03205574 +n03205669 +n03205903 +n03206023 +n03206158 +n03206282 +n03206405 +n03206602 +n03206718 +n03206908 +n03207305 +n03207548 +n03207630 +n03207743 +n03207835 +n03207941 +n03208556 +n03208938 +n03209359 +n03209477 +n03209666 +n03209910 +n03210245 +n03210372 +n03210552 +n03210683 +n03211117 +n03211413 +n03211616 +n03211789 +n03212114 +n03212247 +n03212406 +n03212811 +n03213014 +n03213361 +n03213538 +n03213715 +n03213826 +n03214253 +n03214450 +n03214582 +n03214966 +n03215076 +n03215191 +n03215337 +n03215508 +n03215749 +n03215930 +n03216199 +n03216402 +n03216562 +n03216710 +n03216828 +n03217653 +n03217739 +n03217889 +n03218198 +n03218446 +n03219010 +n03219135 +n03219483 +n03219612 +n03219859 +n03219966 +n03220095 +n03220237 +n03220513 +n03220692 +n03221059 +n03221351 +n03221540 +n03221720 +n03222176 +n03222318 +n03222516 +n03222722 +n03222857 +n03223162 +n03223299 +n03223441 +n03223553 +n03223686 +n03223923 +n03224490 +n03224603 +n03224753 +n03224893 +n03225108 +n03225458 +n03225616 +n03225777 +n03225988 +n03226090 +n03226254 +n03226375 +n03226538 +n03226880 +n03227010 +n03227184 +n03227317 +n03227721 +n03227856 +n03228016 +n03228254 +n03228365 +n03228533 +n03228692 +n03228796 +n03228967 +n03229115 +n03229244 +n03229526 +n03231160 +n03231368 +n03231819 +n03232309 +n03232417 +n03232543 +n03232815 +n03232923 +n03233123 +n03233624 +n03233744 +n03233905 +n03234164 +n03234952 +n03235042 +n03235180 +n03235327 +n03235796 +n03235979 +n03236093 +n03236217 +n03236423 +n03236580 +n03236735 +n03237212 +n03237340 +n03237416 +n03237639 +n03237839 +n03237992 +n03238131 +n03238286 +n03238586 +n03238762 +n03238879 +n03239054 +n03239259 +n03239607 +n03239726 +n03240140 +n03240683 +n03240892 +n03241093 +n03241335 +n03241496 +n03241903 +n03242120 +n03242264 +n03242390 +n03242506 +n03242995 +n03243218 +n03243625 +n03244047 +n03244231 +n03244388 +n03244775 +n03244919 +n03245271 +n03245421 +n03245724 +n03245889 +n03246197 +n03246312 +n03246454 +n03246653 +n03246933 +n03247083 +n03247351 +n03247495 +n03248835 +n03249342 +n03249569 +n03249956 +n03250089 +n03250279 +n03250405 +n03250588 +n03250847 +n03250952 +n03251100 +n03251280 +n03251533 +n03251766 +n03251932 +n03252231 +n03252324 +n03252422 +n03252637 +n03252787 +n03253071 +n03253187 +n03253279 +n03253714 +n03253796 +n03253886 +n03254046 +n03254189 +n03254374 +n03254625 +n03254737 +n03254862 +n03255030 +n03255167 +n03255322 +n03255488 +n03255899 +n03256032 +n03256166 +n03256472 +n03256631 +n03256788 +n03256928 +n03257065 +n03257210 +n03257586 +n03258192 +n03258330 +n03258456 +n03258577 +n03258905 +n03259009 +n03259280 +n03259401 +n03259505 +n03260206 +n03260504 +n03260733 +n03260849 +n03261019 +n03261263 +n03261395 +n03261603 +n03261776 +n03262072 +n03262248 +n03262519 +n03262717 +n03262809 +n03262932 +n03263076 +n03263338 +n03263640 +n03263758 +n03264906 +n03265032 +n03265754 +n03266195 +n03266371 +n03266620 +n03266749 +n03267113 +n03267468 +n03267696 +n03267821 +n03268142 +n03268311 +n03268645 +n03268790 +n03268918 +n03269073 +n03269203 +n03269401 +n03270165 +n03270695 +n03270854 +n03271030 +n03271260 +n03271376 +n03271574 +n03271765 +n03271865 +n03272010 +n03272125 +n03272239 +n03272383 +n03272562 +n03272810 +n03272940 +n03273061 +n03273551 +n03273740 +n03273913 +n03274265 +n03274435 +n03274561 +n03274796 +n03275125 +n03275311 +n03275566 +n03275681 +n03275864 +n03276179 +n03276696 +n03276839 +n03277004 +n03277149 +n03277459 +n03277602 +n03277771 +n03278248 +n03278914 +n03279153 +n03279364 +n03279508 +n03279804 +n03279918 +n03280216 +n03280394 +n03280644 +n03281145 +n03281524 +n03281673 +n03282060 +n03282295 +n03282401 +n03283221 +n03283413 +n03283827 +n03284308 +n03284482 +n03284743 +n03284886 +n03284981 +n03285578 +n03285730 +n03285912 +n03286572 +n03287351 +n03287733 +n03288003 +n03288500 +n03288643 +n03288742 +n03288886 +n03289660 +n03289985 +n03290096 +n03290195 +n03290653 +n03291413 +n03291551 +n03291741 +n03291819 +n03291963 +n03292085 +n03292362 +n03292475 +n03292603 +n03292736 +n03292960 +n03293095 +n03293741 +n03293863 +n03294048 +n03294604 +n03294833 +n03295012 +n03295140 +n03295246 +n03295928 +n03296081 +n03296217 +n03296328 +n03296478 +n03296963 +n03297103 +n03297226 +n03297495 +n03297644 +n03297735 +n03298089 +n03298352 +n03298716 +n03298858 +n03299406 +n03300216 +n03300443 +n03301175 +n03301291 +n03301389 +n03301568 +n03301833 +n03301940 +n03302671 +n03302790 +n03302938 +n03303217 +n03303669 +n03303831 +n03304197 +n03304323 +n03304465 +n03305300 +n03305522 +n03305953 +n03306385 +n03306869 +n03307037 +n03307573 +n03307792 +n03308152 +n03308481 +n03308614 +n03309110 +n03309356 +n03309465 +n03309687 +n03309808 +n03313333 +n03314227 +n03314378 +n03314608 +n03314780 +n03314884 +n03315644 +n03315805 +n03315990 +n03316105 +n03316406 +n03316873 +n03317233 +n03317510 +n03317673 +n03317788 +n03317889 +n03318136 +n03318294 +n03318865 +n03318983 +n03319167 +n03319457 +n03319576 +n03319745 +n03320046 +n03320262 +n03320421 +n03320519 +n03320845 +n03320959 +n03321103 +n03321419 +n03321563 +n03321843 +n03321954 +n03322570 +n03322704 +n03322836 +n03322940 +n03323096 +n03323211 +n03323319 +n03323703 +n03324629 +n03324814 +n03324928 +n03325088 +n03325288 +n03325403 +n03325584 +n03325691 +n03325941 +n03326073 +n03326371 +n03326475 +n03326660 +n03326795 +n03326948 +n03327133 +n03327234 +n03327553 +n03327691 +n03327841 +n03328201 +n03329302 +n03329536 +n03329663 +n03330002 +n03330665 +n03330792 +n03330947 +n03331077 +n03331244 +n03331599 +n03332005 +n03332173 +n03332271 +n03332393 +n03332591 +n03332784 +n03332989 +n03333129 +n03333252 +n03333349 +n03333610 +n03333711 +n03333851 +n03334017 +n03334291 +n03334382 +n03334492 +n03334912 +n03335030 +n03335333 +n03335461 +n03335846 +n03336168 +n03336282 +n03336575 +n03336742 +n03336839 +n03337140 +n03337383 +n03337494 +n03337822 +n03338287 +n03338821 +n03339296 +n03339529 +n03339643 +n03340009 +n03340723 +n03340923 +n03341035 +n03341153 +n03341297 +n03341606 +n03342015 +n03342127 +n03342262 +n03342432 +n03342657 +n03342863 +n03342961 +n03343047 +n03343234 +n03343354 +n03343560 +n03343737 +n03343853 +n03344305 +n03344393 +n03344509 +n03344642 +n03344784 +n03344935 +n03345487 +n03345837 +n03346135 +n03346289 +n03346455 +n03347037 +n03347472 +n03347617 +n03348142 +n03348868 +n03349020 +n03349296 +n03349367 +n03349469 +n03349599 +n03349771 +n03349892 +n03350204 +n03350352 +n03350456 +n03350602 +n03351151 +n03351262 +n03351434 +n03351979 +n03352232 +n03352366 +n03352628 +n03352961 +n03353281 +n03353951 +n03354207 +n03354903 +n03355468 +n03355768 +n03355925 +n03356038 +n03356279 +n03356446 +n03356559 +n03356858 +n03356982 +n03357081 +n03357267 +n03357716 +n03358172 +n03358380 +n03358726 +n03358841 +n03359137 +n03359285 +n03359436 +n03359566 +n03360133 +n03360300 +n03360431 +n03360622 +n03360731 +n03361109 +n03361297 +n03361380 +n03361550 +n03361683 +n03362639 +n03362771 +n03362890 +n03363363 +n03363549 +n03363749 +n03364008 +n03364156 +n03364599 +n03364937 +n03365231 +n03365374 +n03365592 +n03365991 +n03366464 +n03366721 +n03366823 +n03366974 +n03367059 +n03367321 +n03367410 +n03367545 +n03367875 +n03367969 +n03368048 +n03368352 +n03369276 +n03369407 +n03369512 +n03369866 +n03370387 +n03370646 +n03371875 +n03372029 +n03372549 +n03372822 +n03372933 +n03373237 +n03373611 +n03373943 +n03374102 +n03374282 +n03374372 +n03374473 +n03374570 +n03374649 +n03374838 +n03375171 +n03375329 +n03375575 +n03376159 +n03376279 +n03376595 +n03376771 +n03376938 +n03378005 +n03378174 +n03378342 +n03378442 +n03378593 +n03378765 +n03379051 +n03379204 +n03379343 +n03379719 +n03379828 +n03379989 +n03380301 +n03380647 +n03380724 +n03380867 +n03381126 +n03381231 +n03381450 +n03381565 +n03381776 +n03382104 +n03382292 +n03382413 +n03382533 +n03382708 +n03382856 +n03382969 +n03383099 +n03383211 +n03383378 +n03383468 +n03383562 +n03383821 +n03384167 +n03384352 +n03384891 +n03385295 +n03385557 +n03386011 +n03386343 +n03386544 +n03386726 +n03386870 +n03387323 +n03387653 +n03388043 +n03388183 +n03388323 +n03388549 +n03388711 +n03388990 +n03389611 +n03389761 +n03389889 +n03389983 +n03390075 +n03390327 +n03390673 +n03390786 +n03390983 +n03391301 +n03391613 +n03391770 +n03392648 +n03392741 +n03393017 +n03393199 +n03393324 +n03393761 +n03393912 +n03394149 +n03394272 +n03394480 +n03394649 +n03394916 +n03395256 +n03395401 +n03395514 +n03395859 +n03396074 +n03396580 +n03396654 +n03396997 +n03397087 +n03397266 +n03397412 +n03397532 +n03397947 +n03398153 +n03398228 +n03399579 +n03399677 +n03399761 +n03399971 +n03400231 +n03400972 +n03401129 +n03401279 +n03401721 +n03402188 +n03402369 +n03402511 +n03402785 +n03402941 +n03403643 +n03404012 +n03404149 +n03404251 +n03404360 +n03404449 +n03404900 +n03405111 +n03405265 +n03405595 +n03405725 +n03406759 +n03406966 +n03407369 +n03407865 +n03408054 +n03408264 +n03408340 +n03408444 +n03409297 +n03409393 +n03409591 +n03409920 +n03410022 +n03410147 +n03410303 +n03410423 +n03410571 +n03410740 +n03410938 +n03411079 +n03411208 +n03411339 +n03411927 +n03412058 +n03412220 +n03412387 +n03412511 +n03412906 +n03413124 +n03413264 +n03413428 +n03413684 +n03413828 +n03414029 +n03414162 +n03414676 +n03415252 +n03415486 +n03415626 +n03415749 +n03415868 +n03416094 +n03416489 +n03416640 +n03416775 +n03416900 +n03417042 +n03417202 +n03417345 +n03417749 +n03417970 +n03418158 +n03418242 +n03418402 +n03418618 +n03418749 +n03418915 +n03419014 +n03420345 +n03420801 +n03420935 +n03421117 +n03421324 +n03421485 +n03421669 +n03421768 +n03421960 +n03422072 +n03422484 +n03422589 +n03422771 +n03423099 +n03423224 +n03423306 +n03423479 +n03423568 +n03423719 +n03423877 +n03424204 +n03424325 +n03424489 +n03424630 +n03424862 +n03425241 +n03425325 +n03425413 +n03425595 +n03425769 +n03426134 +n03426285 +n03426462 +n03426574 +n03426871 +n03427202 +n03427296 +n03428090 +n03428226 +n03428349 +n03429003 +n03429137 +n03429288 +n03429682 +n03429771 +n03429914 +n03430091 +n03430313 +n03430418 +n03430551 +n03430959 +n03431243 +n03431570 +n03431745 +n03432061 +n03432129 +n03432360 +n03432509 +n03433247 +n03433637 +n03433877 +n03434188 +n03434285 +n03434830 +n03435593 +n03435743 +n03435991 +n03436075 +n03436182 +n03436417 +n03436549 +n03436656 +n03436772 +n03436891 +n03436990 +n03437184 +n03437295 +n03437430 +n03437581 +n03437741 +n03437829 +n03437941 +n03438071 +n03438257 +n03438661 +n03438780 +n03438863 +n03439348 +n03439631 +n03439814 +n03440216 +n03440682 +n03440876 +n03441112 +n03441345 +n03441465 +n03441582 +n03442288 +n03442487 +n03442597 +n03442756 +n03443005 +n03443149 +n03443371 +n03443543 +n03443912 +n03444034 +n03445326 +n03445617 +n03445777 +n03445924 +n03446070 +n03446268 +n03446832 +n03447075 +n03447358 +n03447447 +n03447721 +n03447894 +n03448031 +n03448590 +n03448696 +n03448956 +n03449217 +n03449309 +n03449451 +n03449564 +n03449858 +n03450230 +n03450516 +n03450734 +n03450881 +n03450974 +n03451120 +n03451253 +n03451365 +n03451711 +n03451798 +n03452267 +n03452449 +n03452594 +n03452741 +n03453231 +n03453320 +n03453443 +n03454110 +n03454211 +n03454442 +n03454536 +n03454707 +n03454885 +n03455355 +n03455488 +n03455642 +n03455802 +n03456024 +n03456186 +n03456299 +n03456447 +n03456548 +n03456665 +n03457008 +n03457451 +n03457686 +n03457902 +n03458271 +n03458422 +n03459328 +n03459591 +n03459775 +n03459914 +n03460040 +n03460147 +n03460297 +n03460455 +n03460899 +n03461288 +n03461385 +n03461651 +n03461882 +n03461988 +n03462110 +n03462315 +n03462747 +n03462972 +n03463185 +n03463381 +n03463666 +n03464053 +n03464467 +n03464628 +n03464952 +n03465040 +n03465151 +n03465320 +n03465426 +n03465500 +n03465605 +n03465718 +n03465818 +n03466162 +n03466493 +n03466600 +n03466839 +n03466947 +n03467068 +n03467254 +n03467380 +n03467517 +n03467796 +n03467887 +n03467984 +n03468570 +n03468696 +n03468821 +n03469031 +n03469175 +n03469493 +n03469832 +n03469903 +n03470005 +n03470222 +n03470387 +n03470629 +n03470948 +n03471030 +n03471190 +n03471347 +n03471779 +n03472232 +n03472535 +n03472672 +n03472796 +n03472937 +n03473078 +n03473227 +n03473465 +n03473817 +n03473966 +n03474167 +n03474352 +n03474779 +n03474896 +n03475581 +n03475674 +n03475823 +n03475961 +n03476083 +n03476313 +n03476542 +n03476684 +n03476991 +n03477143 +n03477303 +n03477410 +n03477512 +n03477773 +n03477902 +n03478589 +n03478756 +n03478907 +n03479121 +n03479266 +n03479397 +n03479502 +n03480579 +n03480719 +n03480973 +n03481172 +n03481521 +n03482001 +n03482128 +n03482252 +n03482405 +n03482523 +n03482877 +n03483086 +n03483230 +n03483316 +n03483531 +n03483637 +n03483823 +n03483971 +n03484083 +n03484487 +n03484576 +n03484809 +n03484931 +n03485198 +n03485309 +n03485407 +n03485575 +n03485794 +n03487090 +n03487331 +n03487444 +n03487533 +n03487642 +n03487774 +n03487886 +n03488111 +n03488188 +n03488438 +n03488603 +n03488784 +n03488887 +n03489048 +n03489162 +n03490006 +n03490119 +n03490324 +n03490449 +n03490649 +n03490784 +n03490884 +n03491032 +n03491724 +n03491988 +n03492087 +n03492250 +n03492542 +n03492922 +n03493219 +n03493792 +n03493911 +n03494278 +n03494537 +n03494706 +n03495039 +n03495258 +n03495570 +n03495671 +n03495941 +n03496183 +n03496296 +n03496486 +n03496612 +n03496892 +n03497100 +n03497352 +n03497657 +n03498441 +n03498536 +n03498662 +n03498781 +n03498866 +n03498962 +n03499354 +n03499468 +n03499907 +n03500090 +n03500209 +n03500295 +n03500389 +n03500457 +n03500557 +n03500699 +n03500838 +n03500971 +n03501152 +n03501288 +n03501520 +n03501614 +n03502200 +n03502331 +n03502509 +n03502777 +n03502897 +n03503097 +n03503233 +n03503358 +n03503477 +n03503567 +n03503718 +n03503997 +n03504205 +n03504293 +n03504723 +n03505015 +n03505133 +n03505383 +n03505504 +n03505667 +n03505764 +n03506028 +n03506184 +n03506370 +n03506560 +n03506727 +n03506880 +n03507241 +n03507458 +n03507658 +n03507963 +n03508101 +n03508485 +n03508881 +n03509394 +n03509608 +n03509843 +n03510072 +n03510244 +n03510384 +n03510487 +n03510583 +n03510866 +n03510987 +n03511175 +n03511333 +n03512030 +n03512147 +n03512452 +n03512624 +n03512911 +n03513137 +n03513376 +n03514129 +n03514340 +n03514451 +n03514693 +n03514894 +n03515338 +n03515934 +n03516266 +n03516367 +n03516647 +n03516844 +n03516996 +n03517509 +n03517647 +n03517760 +n03517899 +n03517982 +n03518135 +n03518230 +n03518305 +n03518445 +n03518631 +n03518829 +n03518943 +n03519081 +n03519226 +n03519387 +n03519674 +n03519848 +n03520493 +n03521076 +n03521431 +n03521544 +n03521675 +n03521771 +n03521899 +n03522003 +n03522100 +n03522634 +n03522863 +n03522990 +n03523134 +n03523398 +n03523506 +n03523987 +n03524150 +n03524287 +n03524425 +n03524574 +n03524745 +n03524976 +n03525074 +n03525252 +n03525454 +n03525693 +n03525827 +n03526062 +n03527149 +n03527444 +n03527565 +n03527675 +n03528100 +n03528263 +n03528523 +n03528901 +n03529175 +n03529444 +n03529629 +n03529860 +n03530189 +n03530511 +n03530642 +n03530910 +n03531281 +n03531447 +n03531546 +n03531691 +n03531982 +n03532342 +n03532672 +n03532919 +n03533014 +n03533392 +n03533486 +n03533654 +n03533845 +n03534580 +n03534695 +n03534776 +n03535024 +n03535284 +n03535647 +n03535780 +n03536122 +n03536568 +n03536761 +n03537085 +n03537241 +n03537412 +n03537550 +n03538037 +n03538179 +n03538300 +n03538406 +n03538542 +n03538634 +n03538817 +n03538957 +n03539103 +n03539293 +n03539433 +n03539546 +n03539678 +n03539754 +n03540090 +n03540267 +n03540476 +n03540595 +n03540914 +n03541091 +n03541269 +n03541393 +n03541537 +n03541696 +n03541923 +n03542333 +n03542605 +n03542727 +n03542860 +n03543012 +n03543112 +n03543254 +n03543394 +n03543511 +n03543603 +n03543735 +n03543945 +n03544143 +n03544238 +n03544360 +n03545150 +n03545470 +n03545585 +n03545756 +n03545961 +n03546112 +n03546235 +n03546340 +n03547054 +n03547229 +n03547397 +n03547530 +n03547861 +n03548086 +n03548195 +n03548320 +n03548402 +n03548533 +n03548626 +n03548930 +n03549199 +n03549350 +n03549473 +n03549589 +n03549732 +n03549897 +n03550153 +n03550289 +n03550420 +n03551084 +n03551395 +n03551582 +n03551790 +n03552001 +n03552449 +n03552749 +n03553019 +n03553248 +n03553486 +n03554375 +n03554460 +n03554645 +n03555006 +n03555217 +n03555426 +n03555564 +n03555662 +n03555862 +n03555996 +n03556173 +n03556679 +n03556811 +n03556992 +n03557270 +n03557360 +n03557590 +n03557692 +n03557840 +n03558007 +n03558176 +n03558404 +n03558633 +n03558739 +n03559373 +n03559531 +n03559999 +n03560430 +n03560860 +n03561047 +n03561169 +n03561573 +n03562565 +n03563200 +n03563460 +n03563710 +n03563967 +n03564849 +n03565288 +n03565565 +n03565710 +n03565830 +n03565991 +n03566193 +n03566329 +n03566555 +n03566730 +n03566860 +n03567066 +n03567635 +n03567788 +n03567912 +n03568117 +n03568818 +n03569014 +n03569174 +n03569293 +n03569494 +n03571280 +n03571439 +n03571625 +n03571853 +n03571942 +n03572107 +n03572205 +n03572321 +n03572631 +n03573574 +n03573848 +n03574243 +n03574416 +n03574555 +n03574816 +n03575958 +n03576215 +n03576443 +n03576955 +n03577090 +n03577312 +n03577474 +n03577672 +n03577818 +n03578055 +n03578251 +n03578656 +n03578981 +n03579538 +n03579982 +n03580518 +n03580615 +n03580845 +n03580990 +n03581125 +n03581531 +n03581897 +n03582508 +n03582959 +n03583419 +n03583621 +n03584254 +n03584400 +n03584829 +n03585073 +n03585337 +n03585438 +n03585551 +n03585682 +n03585778 +n03585875 +n03586219 +n03586631 +n03586911 +n03587205 +n03588216 +n03588841 +n03588951 +n03589313 +n03589513 +n03589672 +n03589791 +n03590306 +n03590475 +n03590588 +n03590841 +n03590932 +n03591116 +n03591313 +n03591592 +n03591798 +n03591901 +n03592245 +n03592669 +n03592773 +n03592931 +n03593122 +n03593222 +n03593526 +n03593862 +n03594010 +n03594148 +n03594277 +n03594523 +n03594734 +n03594945 +n03595055 +n03595264 +n03595409 +n03595523 +n03595614 +n03595860 +n03596099 +n03596285 +n03596543 +n03597147 +n03597317 +n03597916 +n03598151 +n03598299 +n03598385 +n03598515 +n03598646 +n03598783 +n03598930 +n03599486 +n03599964 +n03600285 +n03600475 +n03600722 +n03600977 +n03601442 +n03601638 +n03601840 +n03602081 +n03602194 +n03602365 +n03602686 +n03602790 +n03602883 +n03603442 +n03603594 +n03603722 +n03604156 +n03604311 +n03604400 +n03604536 +n03604629 +n03604763 +n03604843 +n03605417 +n03605504 +n03605598 +n03605722 +n03605915 +n03606106 +n03606251 +n03606347 +n03606465 +n03607029 +n03607186 +n03607527 +n03607659 +n03607923 +n03608504 +n03609147 +n03609235 +n03609397 +n03609542 +n03609786 +n03609959 +n03610098 +n03610418 +n03610524 +n03610682 +n03610836 +n03610992 +n03612010 +n03612814 +n03612965 +n03613294 +n03613592 +n03614007 +n03614383 +n03614532 +n03614782 +n03614887 +n03615300 +n03615406 +n03615563 +n03615655 +n03615790 +n03616091 +n03616225 +n03616428 +n03616763 +n03616979 +n03617095 +n03617312 +n03617480 +n03617594 +n03617834 +n03618101 +n03618339 +n03618546 +n03618678 +n03618797 +n03618982 +n03619050 +n03619196 +n03619275 +n03619396 +n03619650 +n03619793 +n03619890 +n03620052 +n03620353 +n03620967 +n03621049 +n03621377 +n03621694 +n03622058 +n03622401 +n03622526 +n03622839 +n03622931 +n03623198 +n03623338 +n03623556 +n03624134 +n03624400 +n03624767 +n03625355 +n03625539 +n03625646 +n03625943 +n03626115 +n03626272 +n03626418 +n03626502 +n03626760 +n03627232 +n03627954 +n03628071 +n03628215 +n03628421 +n03628511 +n03628728 +n03628831 +n03628984 +n03629100 +n03629231 +n03629520 +n03629643 +n03630262 +n03630383 +n03631177 +n03631811 +n03631922 +n03632100 +n03632577 +n03632729 +n03632852 +n03632963 +n03633091 +n03633341 +n03633632 +n03633886 +n03634034 +n03634899 +n03635032 +n03635108 +n03635330 +n03635516 +n03635668 +n03635932 +n03636248 +n03636649 +n03637027 +n03637181 +n03637318 +n03637480 +n03637787 +n03637898 +n03638014 +n03638180 +n03638623 +n03638743 +n03638883 +n03639077 +n03639230 +n03639497 +n03639675 +n03639880 +n03640850 +n03640988 +n03641569 +n03641947 +n03642144 +n03642341 +n03642444 +n03642573 +n03642806 +n03643149 +n03643253 +n03643491 +n03643737 +n03643907 +n03644073 +n03644378 +n03644858 +n03645011 +n03645168 +n03645290 +n03645577 +n03646020 +n03646148 +n03646296 +n03646809 +n03646916 +n03647423 +n03647520 +n03648219 +n03648431 +n03648667 +n03649003 +n03649161 +n03649288 +n03649674 +n03649797 +n03649909 +n03650551 +n03651388 +n03651605 +n03651843 +n03652100 +n03652389 +n03652729 +n03652826 +n03652932 +n03653110 +n03653220 +n03653454 +n03653583 +n03653740 +n03653833 +n03653975 +n03654576 +n03654826 +n03655072 +n03655470 +n03655720 +n03656484 +n03656957 +n03657121 +n03657239 +n03657511 +n03658102 +n03658185 +n03658635 +n03658858 +n03659292 +n03659686 +n03659809 +n03659950 +n03660124 +n03660562 +n03660909 +n03661043 +n03661340 +n03662301 +n03662452 +n03662601 +n03662719 +n03662887 +n03663433 +n03663531 +n03663910 +n03664159 +n03664675 +n03664840 +n03664943 +n03665232 +n03665366 +n03665851 +n03665924 +n03666238 +n03666362 +n03666591 +n03666917 +n03667060 +n03667235 +n03667552 +n03667664 +n03667829 +n03668067 +n03668279 +n03668488 +n03668803 +n03669245 +n03669534 +n03669886 +n03670208 +n03671914 +n03672521 +n03672827 +n03673027 +n03673270 +n03673450 +n03673767 +n03674270 +n03674440 +n03674731 +n03674842 +n03675076 +n03675235 +n03675445 +n03675558 +n03675907 +n03676087 +n03676483 +n03676623 +n03676759 +n03677115 +n03677682 +n03677766 +n03678558 +n03678729 +n03678879 +n03679384 +n03679712 +n03680248 +n03680355 +n03680512 +n03680734 +n03680858 +n03680942 +n03681477 +n03681813 +n03682380 +n03682487 +n03682877 +n03683079 +n03683341 +n03683457 +n03683606 +n03683708 +n03683995 +n03684143 +n03684224 +n03684489 +n03684611 +n03684740 +n03684823 +n03685307 +n03685486 +n03685640 +n03685820 +n03686130 +n03686363 +n03686470 +n03686924 +n03687137 +n03687928 +n03688066 +n03688192 +n03688405 +n03688504 +n03688605 +n03688707 +n03688832 +n03688943 +n03689157 +n03689570 +n03690168 +n03690279 +n03690473 +n03690851 +n03690938 +n03691459 +n03691817 +n03692004 +n03692136 +n03692272 +n03692379 +n03692522 +n03692842 +n03693293 +n03693474 +n03693707 +n03693860 +n03694196 +n03694356 +n03694639 +n03694761 +n03694949 +n03695122 +n03695452 +n03695616 +n03695753 +n03695857 +n03695957 +n03696065 +n03696301 +n03696445 +n03696568 +n03696746 +n03696909 +n03697007 +n03697366 +n03697552 +n03697812 +n03697913 +n03698123 +n03698226 +n03698360 +n03698604 +n03698723 +n03698815 +n03699280 +n03699591 +n03699754 +n03699975 +n03700963 +n03701191 +n03701391 +n03701640 +n03701790 +n03702248 +n03702440 +n03702582 +n03703075 +n03703203 +n03703463 +n03703590 +n03703730 +n03703862 +n03703945 +n03704549 +n03704834 +n03705379 +n03705808 +n03706229 +n03706415 +n03706653 +n03706939 +n03707171 +n03707372 +n03707597 +n03707766 +n03708036 +n03708425 +n03708843 +n03708962 +n03709206 +n03709363 +n03709545 +n03709644 +n03709823 +n03709960 +n03710079 +n03710193 +n03710294 +n03710421 +n03710528 +n03710637 +n03710721 +n03710937 +n03711044 +n03711711 +n03711999 +n03712111 +n03712337 +n03712444 +n03712887 +n03712981 +n03713069 +n03713151 +n03713436 +n03714235 +n03715114 +n03715275 +n03715386 +n03715669 +n03715892 +n03716228 +n03716887 +n03716966 +n03717131 +n03717285 +n03717447 +n03717622 +n03718212 +n03718335 +n03718458 +n03718581 +n03718699 +n03718789 +n03718935 +n03719053 +n03719343 +n03719560 +n03719743 +n03720005 +n03720163 +n03720665 +n03720891 +n03721047 +n03721252 +n03721384 +n03721590 +n03722007 +n03722288 +n03722646 +n03722944 +n03723153 +n03723267 +n03723439 +n03723781 +n03723885 +n03724066 +n03724176 +n03724417 +n03724538 +n03724623 +n03724756 +n03724870 +n03725035 +n03725506 +n03725600 +n03725717 +n03725869 +n03726116 +n03726233 +n03726371 +n03726516 +n03726760 +n03726993 +n03727067 +n03727465 +n03727605 +n03727837 +n03727946 +n03728437 +n03728982 +n03729131 +n03729308 +n03729402 +n03729482 +n03729647 +n03729826 +n03729951 +n03730153 +n03730334 +n03730494 +n03730655 +n03730788 +n03730893 +n03731019 +n03731483 +n03731695 +n03731882 +n03732020 +n03732114 +n03732458 +n03732543 +n03732658 +n03733131 +n03733281 +n03733465 +n03733547 +n03733644 +n03733805 +n03733925 +n03735637 +n03735963 +n03736064 +n03736147 +n03736269 +n03736372 +n03736470 +n03736970 +n03738066 +n03738241 +n03738472 +n03739518 +n03739693 +n03742019 +n03742115 +n03742238 +n03743016 +n03743279 +n03743902 +n03744276 +n03744684 +n03744840 +n03745146 +n03745487 +n03745571 +n03746005 +n03746155 +n03746330 +n03746486 +n03748162 +n03749504 +n03749634 +n03749807 +n03750206 +n03750437 +n03750614 +n03751065 +n03751269 +n03751458 +n03751590 +n03751757 +n03752071 +n03752185 +n03752398 +n03752922 +n03753077 +n03753514 +n03757604 +n03758089 +n03758220 +n03758894 +n03758992 +n03759243 +n03759432 +n03759661 +n03759954 +n03760310 +n03760671 +n03760944 +n03761084 +n03761588 +n03761731 +n03762238 +n03762332 +n03762434 +n03762602 +n03762982 +n03763727 +n03763968 +n03764276 +n03764606 +n03764736 +n03764822 +n03764995 +n03765128 +n03765467 +n03765561 +n03765934 +n03766044 +n03766218 +n03766322 +n03766508 +n03766600 +n03766697 +n03766935 +n03767112 +n03767203 +n03767459 +n03767745 +n03767966 +n03768132 +n03768683 +n03768823 +n03768916 +n03769610 +n03769722 +n03769881 +n03770085 +n03770224 +n03770316 +n03770439 +n03770520 +n03770679 +n03770834 +n03770954 +n03772077 +n03772269 +n03772584 +n03772674 +n03773035 +n03773504 +n03773835 +n03774327 +n03774461 +n03775071 +n03775199 +n03775388 +n03775546 +n03775636 +n03775747 +n03775847 +n03776167 +n03776460 +n03776877 +n03776997 +n03777126 +n03777568 +n03777754 +n03778459 +n03778817 +n03779000 +n03779128 +n03779246 +n03779370 +n03779884 +n03780047 +n03780799 +n03781055 +n03781244 +n03781467 +n03781594 +n03781683 +n03781787 +n03782006 +n03782190 +n03782794 +n03782929 +n03783304 +n03783430 +n03783575 +n03783873 +n03784139 +n03784270 +n03784793 +n03784896 +n03785016 +n03785142 +n03785237 +n03785499 +n03785721 +n03786096 +n03786194 +n03786313 +n03786621 +n03786715 +n03786901 +n03787032 +n03787523 +n03788047 +n03788195 +n03788365 +n03788498 +n03788601 +n03788914 +n03789171 +n03789400 +n03789603 +n03789794 +n03789946 +n03790230 +n03790512 +n03790755 +n03790953 +n03791053 +n03791235 +n03792048 +n03792334 +n03792526 +n03792782 +n03792972 +n03793489 +n03793850 +n03794056 +n03794136 +n03794798 +n03795123 +n03795269 +n03795758 +n03795976 +n03796181 +n03796401 +n03796522 +n03796605 +n03796848 +n03796974 +n03797062 +n03797182 +n03797264 +n03797390 +n03797896 +n03798061 +n03798442 +n03798610 +n03798982 +n03799113 +n03799240 +n03799375 +n03799610 +n03799876 +n03800371 +n03800485 +n03800563 +n03800772 +n03800933 +n03801353 +n03801533 +n03801671 +n03801760 +n03801880 +n03802007 +n03802228 +n03802393 +n03802643 +n03802800 +n03802973 +n03803116 +n03803284 +n03803780 +n03804211 +n03804744 +n03805180 +n03805280 +n03805374 +n03805503 +n03805725 +n03805933 +n03807334 +n03809211 +n03809312 +n03809603 +n03809686 +n03809802 +n03810412 +n03810952 +n03811295 +n03811444 +n03811847 +n03811965 +n03812263 +n03812382 +n03812789 +n03812924 +n03813078 +n03813176 +n03813946 +n03814528 +n03814639 +n03814727 +n03814817 +n03814906 +n03815149 +n03815278 +n03815482 +n03815615 +n03816005 +n03816136 +n03816394 +n03816530 +n03816849 +n03817191 +n03817331 +n03817522 +n03817647 +n03818001 +n03818343 +n03819047 +n03819336 +n03819448 +n03819595 +n03819994 +n03820154 +n03820318 +n03820728 +n03820950 +n03821145 +n03821424 +n03821518 +n03822171 +n03822361 +n03822504 +n03822656 +n03822767 +n03823111 +n03823216 +n03823312 +n03823673 +n03823906 +n03824197 +n03824284 +n03824381 +n03824589 +n03824713 +n03824999 +n03825080 +n03825271 +n03825442 +n03825673 +n03825788 +n03825913 +n03826039 +n03826186 +n03827420 +n03827536 +n03828020 +n03829340 +n03829857 +n03829954 +n03831203 +n03831382 +n03831757 +n03832144 +n03832673 +n03833907 +n03834040 +n03834472 +n03834604 +n03835197 +n03835729 +n03835941 +n03836062 +n03836451 +n03836602 +n03836906 +n03836976 +n03837422 +n03837606 +n03837698 +n03837869 +n03838024 +n03838298 +n03838748 +n03838899 +n03839172 +n03839276 +n03839424 +n03839671 +n03839795 +n03840327 +n03840681 +n03840823 +n03841011 +n03841143 +n03841290 +n03841666 +n03842012 +n03842156 +n03842276 +n03842377 +n03842585 +n03842754 +n03842986 +n03843092 +n03843316 +n03843438 +n03843555 +n03843883 +n03844045 +n03844233 +n03844550 +n03844673 +n03844815 +n03844965 +n03845107 +n03845190 +n03845990 +n03846100 +n03846234 +n03846431 +n03846677 +n03846772 +n03846970 +n03847471 +n03847823 +n03848033 +n03848168 +n03848348 +n03848537 +n03849275 +n03849412 +n03849679 +n03849814 +n03849943 +n03850053 +n03850245 +n03850492 +n03850613 +n03851341 +n03851787 +n03852280 +n03852544 +n03852688 +n03853291 +n03853924 +n03854065 +n03854421 +n03854506 +n03854722 +n03854815 +n03855214 +n03855333 +n03855464 +n03855604 +n03855756 +n03855908 +n03856012 +n03856335 +n03856465 +n03856728 +n03857026 +n03857156 +n03857291 +n03857687 +n03857828 +n03858085 +n03858183 +n03858418 +n03858533 +n03858837 +n03859000 +n03859170 +n03859280 +n03859495 +n03859608 +n03859958 +n03860234 +n03860404 +n03861048 +n03861271 +n03861430 +n03861596 +n03861842 +n03862379 +n03862676 +n03862862 +n03863108 +n03863262 +n03863657 +n03863783 +n03863923 +n03864139 +n03864356 +n03864692 +n03865288 +n03865371 +n03865557 +n03865820 +n03865949 +n03866082 +n03867854 +n03868044 +n03868242 +n03868324 +n03868406 +n03868643 +n03868763 +n03868863 +n03869838 +n03869976 +n03870105 +n03870290 +n03870546 +n03870672 +n03870980 +n03871083 +n03871371 +n03871524 +n03871628 +n03871724 +n03871860 +n03872016 +n03872167 +n03872273 +n03873416 +n03873699 +n03873848 +n03873996 +n03874138 +n03874293 +n03874487 +n03874599 +n03874823 +n03875218 +n03875806 +n03875955 +n03876111 +n03876231 +n03877351 +n03877472 +n03877674 +n03877845 +n03878066 +n03878211 +n03878294 +n03878418 +n03878511 +n03878674 +n03878828 +n03878963 +n03879456 +n03879705 +n03880032 +n03880129 +n03880323 +n03880531 +n03881305 +n03881404 +n03881534 +n03882611 +n03882960 +n03883054 +n03883385 +n03883524 +n03883664 +n03883773 +n03883944 +n03884397 +n03884554 +n03884639 +n03884778 +n03884926 +n03885028 +n03885194 +n03885293 +n03885410 +n03885535 +n03885669 +n03885788 +n03885904 +n03886053 +n03886641 +n03886762 +n03886940 +n03887185 +n03887330 +n03887512 +n03887697 +n03887899 +n03888022 +n03888257 +n03888605 +n03888808 +n03888998 +n03889397 +n03889503 +n03889626 +n03889726 +n03889871 +n03890093 +n03890233 +n03890358 +n03890514 +n03891051 +n03891251 +n03891332 +n03891538 +n03892178 +n03892425 +n03892557 +n03892728 +n03893935 +n03894051 +n03894379 +n03894677 +n03894933 +n03895038 +n03895170 +n03895866 +n03896103 +n03896233 +n03896419 +n03896526 +n03896628 +n03896984 +n03897130 +n03897634 +n03897943 +n03898129 +n03898271 +n03898395 +n03898633 +n03898787 +n03899100 +n03899612 +n03899768 +n03899933 +n03900028 +n03900194 +n03900301 +n03900393 +n03900979 +n03901229 +n03901338 +n03901750 +n03901974 +n03902125 +n03902220 +n03902482 +n03902756 +n03903133 +n03903290 +n03903424 +n03903733 +n03903868 +n03904060 +n03904183 +n03904433 +n03904657 +n03904782 +n03904909 +n03905361 +n03905540 +n03905730 +n03905947 +n03906106 +n03906224 +n03906463 +n03906590 +n03906789 +n03906894 +n03906997 +n03907475 +n03907654 +n03907908 +n03908111 +n03908204 +n03908456 +n03908618 +n03908714 +n03909020 +n03909160 +n03909406 +n03909516 +n03909658 +n03911406 +n03911513 +n03911658 +n03911767 +n03911866 +n03912218 +n03912821 +n03913343 +n03913930 +n03914106 +n03914337 +n03914438 +n03914583 +n03914831 +n03915118 +n03915320 +n03915437 +n03915900 +n03916031 +n03916289 +n03916385 +n03916470 +n03916720 +n03917048 +n03917198 +n03917327 +n03917814 +n03918074 +n03918480 +n03918737 +n03919096 +n03919289 +n03919430 +n03919808 +n03920288 +n03920384 +n03920641 +n03920737 +n03920867 +n03923379 +n03923564 +n03923692 +n03923918 +n03924069 +n03924407 +n03924532 +n03924679 +n03926148 +n03926412 +n03926876 +n03927091 +n03927299 +n03927539 +n03927792 +n03928116 +n03928589 +n03928814 +n03928994 +n03929091 +n03929202 +n03929443 +n03929660 +n03929855 +n03930229 +n03930313 +n03930431 +n03930515 +n03930630 +n03931044 +n03931765 +n03931885 +n03931980 +n03932080 +n03932670 +n03933391 +n03933933 +n03934042 +n03934229 +n03934311 +n03934565 +n03934656 +n03934890 +n03935116 +n03935234 +n03935335 +n03935883 +n03936269 +n03936466 +n03937543 +n03937835 +n03937931 +n03938037 +n03938244 +n03938401 +n03938522 +n03938725 +n03939062 +n03939178 +n03939281 +n03939440 +n03939565 +n03939677 +n03939844 +n03940256 +n03940894 +n03941013 +n03941231 +n03941417 +n03941586 +n03941684 +n03941887 +n03942028 +n03942600 +n03942813 +n03942920 +n03943115 +n03943266 +n03943623 +n03943714 +n03943833 +n03943920 +n03944024 +n03944138 +n03944341 +n03945459 +n03945615 +n03945817 +n03945928 +n03946076 +n03946162 +n03947111 +n03947343 +n03947466 +n03947798 +n03947888 +n03948242 +n03948459 +n03948830 +n03948950 +n03949145 +n03949317 +n03949761 +n03950228 +n03950359 +n03950537 +n03950647 +n03950899 +n03951068 +n03951213 +n03951453 +n03951800 +n03951971 +n03952150 +n03952576 +n03953020 +n03953416 +n03953901 +n03954393 +n03954731 +n03955296 +n03955489 +n03955809 +n03955941 +n03956157 +n03956331 +n03956531 +n03956623 +n03956785 +n03956922 +n03957315 +n03957420 +n03957762 +n03957991 +n03958227 +n03958338 +n03958630 +n03958752 +n03959014 +n03959123 +n03959227 +n03959701 +n03960374 +n03960490 +n03961394 +n03961630 +n03961711 +n03961828 +n03961939 +n03962525 +n03962685 +n03962852 +n03962932 +n03963028 +n03963198 +n03963294 +n03963483 +n03963645 +n03964495 +n03964611 +n03965456 +n03965907 +n03966206 +n03966325 +n03966582 +n03966751 +n03966976 +n03967270 +n03967396 +n03967562 +n03967942 +n03968293 +n03968479 +n03968581 +n03968728 +n03969510 +n03970156 +n03970363 +n03970546 +n03971218 +n03971321 +n03971960 +n03972146 +n03972372 +n03972524 +n03973003 +n03973285 +n03973402 +n03973520 +n03973628 +n03973839 +n03973945 +n03974070 +n03974915 +n03975035 +n03975657 +n03975788 +n03975926 +n03976105 +n03976268 +n03976467 +n03976657 +n03977158 +n03977266 +n03977430 +n03977592 +n03977966 +n03978421 +n03978575 +n03978686 +n03978815 +n03978966 +n03979377 +n03979492 +n03980026 +n03980478 +n03980874 +n03980986 +n03981094 +n03981340 +n03981566 +n03981760 +n03981924 +n03982232 +n03982331 +n03982430 +n03982642 +n03982767 +n03982895 +n03983396 +n03983499 +n03983612 +n03983712 +n03983928 +n03984125 +n03984234 +n03984381 +n03984643 +n03984759 +n03985069 +n03985232 +n03985441 +n03985881 +n03986071 +n03986224 +n03986355 +n03986562 +n03986704 +n03986857 +n03986949 +n03987266 +n03987376 +n03987674 +n03987865 +n03987990 +n03988170 +n03988758 +n03988926 +n03989199 +n03989349 +n03989447 +n03989665 +n03989777 +n03989898 +n03990474 +n03991062 +n03991202 +n03991321 +n03991443 +n03991646 +n03991837 +n03992325 +n03992436 +n03992509 +n03992703 +n03992975 +n03993053 +n03993180 +n03993403 +n03993703 +n03993878 +n03994008 +n03994297 +n03994417 +n03994614 +n03994757 +n03995018 +n03995265 +n03995372 +n03995535 +n03995661 +n03995856 +n03996004 +n03996145 +n03996416 +n03996849 +n03997274 +n03997484 +n03997875 +n03998194 +n03998333 +n03998673 +n03999064 +n03999160 +n03999621 +n03999992 +n04000311 +n04000480 +n04000592 +n04000716 +n04000998 +n04001132 +n04001265 +n04001397 +n04001499 +n04001661 +n04001845 +n04002262 +n04002371 +n04002629 +n04003241 +n04003359 +n04003856 +n04004099 +n04004210 +n04004475 +n04004767 +n04004990 +n04005197 +n04005630 +n04005912 +n04006067 +n04006227 +n04006330 +n04006411 +n04007415 +n04007664 +n04008385 +n04008634 +n04009552 +n04009801 +n04009923 +n04010057 +n04010779 +n04010927 +n04011827 +n04012084 +n04012482 +n04012665 +n04013060 +n04013176 +n04013600 +n04013729 +n04014297 +n04015204 +n04015786 +n04015908 +n04016240 +n04016479 +n04016576 +n04016684 +n04016846 +n04017571 +n04017807 +n04018155 +n04018399 +n04018667 +n04019101 +n04019335 +n04019541 +n04019696 +n04019881 +n04020087 +n04020298 +n04020744 +n04020912 +n04021028 +n04021164 +n04021362 +n04021503 +n04021704 +n04021798 +n04022332 +n04022434 +n04022708 +n04022866 +n04023021 +n04023119 +n04023249 +n04023422 +n04023695 +n04023962 +n04024137 +n04024274 +n04024862 +n04024983 +n04025508 +n04025633 +n04026053 +n04026180 +n04026417 +n04026813 +n04026918 +n04027023 +n04027367 +n04027706 +n04027820 +n04027935 +n04028074 +n04028221 +n04028315 +n04028581 +n04028764 +n04029416 +n04029647 +n04029734 +n04029913 +n04030054 +n04030161 +n04030274 +n04030414 +n04030518 +n04030846 +n04030965 +n04031884 +n04032509 +n04032603 +n04032936 +n04033287 +n04033425 +n04033557 +n04033801 +n04033901 +n04033995 +n04034262 +n04034367 +n04035231 +n04035634 +n04035748 +n04035836 +n04035912 +n04036155 +n04036303 +n04036776 +n04036963 +n04037076 +n04037220 +n04037298 +n04037443 +n04037873 +n04037964 +n04038231 +n04038338 +n04038440 +n04038727 +n04039041 +n04039209 +n04039381 +n04039742 +n04039848 +n04040247 +n04040373 +n04040540 +n04040759 +n04041069 +n04041243 +n04041408 +n04041544 +n04041747 +n04042076 +n04042204 +n04042358 +n04042632 +n04042795 +n04042985 +n04043168 +n04043411 +n04043733 +n04044307 +n04044498 +n04044716 +n04044955 +n04045085 +n04045255 +n04045397 +n04045644 +n04045787 +n04045941 +n04046091 +n04046277 +n04046400 +n04046590 +n04046974 +n04047139 +n04047401 +n04047733 +n04047834 +n04048441 +n04049303 +n04049405 +n04049585 +n04049753 +n04050066 +n04050313 +n04050600 +n04050933 +n04051269 +n04051439 +n04051549 +n04051705 +n04051825 +n04052235 +n04052346 +n04052442 +n04052658 +n04052757 +n04053508 +n04053677 +n04053767 +n04054361 +n04054566 +n04054670 +n04055180 +n04055447 +n04055700 +n04055861 +n04056073 +n04056180 +n04056413 +n04056932 +n04057047 +n04057215 +n04057435 +n04057673 +n04057846 +n04057981 +n04058096 +n04058239 +n04058486 +n04058594 +n04058721 +n04059157 +n04059298 +n04059399 +n04059516 +n04059947 +n04060198 +n04060448 +n04060647 +n04060904 +n04061681 +n04061793 +n04061969 +n04062179 +n04062428 +n04062644 +n04062807 +n04063154 +n04063373 +n04063868 +n04064213 +n04064401 +n04064747 +n04064862 +n04065272 +n04065464 +n04065789 +n04065909 +n04066023 +n04066270 +n04066388 +n04066476 +n04066767 +n04067143 +n04067231 +n04067353 +n04067472 +n04067658 +n04067818 +n04067921 +n04068441 +n04068601 +n04069166 +n04069276 +n04069434 +n04069582 +n04069777 +n04070003 +n04070207 +n04070415 +n04070545 +n04070727 +n04070964 +n04071102 +n04071263 +n04071393 +n04072193 +n04072551 +n04072960 +n04073425 +n04073948 +n04074185 +n04074963 +n04075291 +n04075468 +n04075715 +n04075813 +n04075916 +n04076052 +n04076284 +n04076713 +n04077430 +n04077594 +n04077734 +n04077889 +n04078002 +n04078574 +n04078955 +n04079106 +n04079244 +n04079603 +n04079933 +n04080138 +n04080454 +n04080705 +n04080833 +n04081281 +n04081699 +n04081844 +n04082344 +n04082562 +n04082710 +n04082886 +n04083113 +n04083309 +n04083649 +n04083800 +n04084517 +n04084682 +n04084889 +n04085017 +n04085574 +n04085873 +n04086066 +n04086273 +n04086446 +n04086663 +n04086794 +n04086937 +n04087126 +n04087432 +n04087709 +n04087826 +n04088229 +n04088343 +n04088441 +n04088696 +n04088797 +n04089152 +n04089376 +n04089666 +n04089836 +n04089976 +n04090263 +n04090548 +n04090781 +n04091097 +n04091466 +n04091584 +n04091693 +n04092168 +n04093157 +n04093223 +n04093625 +n04093775 +n04093915 +n04094060 +n04094250 +n04094438 +n04094608 +n04094720 +n04094859 +n04095109 +n04095210 +n04095342 +n04095577 +n04095938 +n04096066 +n04096733 +n04096848 +n04097085 +n04097373 +n04097622 +n04097760 +n04097866 +n04098169 +n04098260 +n04098399 +n04098513 +n04098795 +n04099003 +n04099175 +n04099429 +n04099969 +n04100174 +n04100519 +n04101375 +n04101497 +n04101701 +n04101860 +n04102037 +n04102162 +n04102285 +n04102406 +n04102618 +n04102760 +n04102872 +n04102962 +n04103094 +n04103206 +n04103364 +n04103665 +n04103769 +n04103918 +n04104147 +n04104384 +n04104500 +n04104770 +n04104925 +n04105068 +n04105438 +n04105704 +n04105893 +n04107598 +n04107743 +n04107984 +n04108268 +n04108822 +n04108999 +n04110068 +n04110178 +n04110281 +n04110439 +n04110654 +n04110841 +n04110955 +n04111190 +n04111414 +n04111531 +n04111668 +n04111962 +n04112147 +n04112252 +n04112430 +n04112579 +n04112654 +n04112752 +n04112921 +n04113038 +n04113194 +n04113316 +n04113406 +n04113641 +n04113765 +n04113968 +n04114069 +n04114301 +n04114428 +n04114719 +n04114844 +n04114996 +n04115144 +n04115256 +n04115456 +n04115542 +n04115802 +n04115996 +n04116098 +n04116294 +n04116389 +n04116512 +n04117216 +n04117464 +n04117639 +n04118021 +n04118538 +n04118635 +n04118776 +n04119091 +n04119230 +n04119360 +n04119478 +n04119630 +n04119751 +n04120489 +n04120695 +n04120842 +n04121228 +n04121342 +n04121426 +n04121511 +n04121728 +n04122262 +n04122349 +n04122492 +n04122578 +n04122685 +n04122825 +n04123026 +n04123123 +n04123228 +n04123317 +n04123448 +n04123567 +n04123740 +n04124098 +n04124202 +n04124370 +n04124488 +n04124573 +n04124887 +n04125021 +n04125116 +n04125257 +n04125541 +n04125692 +n04125853 +n04126066 +n04126244 +n04126541 +n04126659 +n04126852 +n04126980 +n04127117 +n04127249 +n04127395 +n04127521 +n04127633 +n04127904 +n04128413 +n04128499 +n04128710 +n04128837 +n04129490 +n04129688 +n04129766 +n04130143 +n04130257 +n04130566 +n04130907 +n04131015 +n04131113 +n04131208 +n04131368 +n04131499 +n04131690 +n04131811 +n04131929 +n04132158 +n04132465 +n04132603 +n04132829 +n04132985 +n04133114 +n04133789 +n04134008 +n04134170 +n04134523 +n04134632 +n04135024 +n04135118 +n04135315 +n04135710 +n04135933 +n04136045 +n04136161 +n04136333 +n04136510 +n04136800 +n04137089 +n04137217 +n04137355 +n04137444 +n04137773 +n04137897 +n04138131 +n04138261 +n04138869 +n04138977 +n04139140 +n04139395 +n04139859 +n04140064 +n04140539 +n04140631 +n04140777 +n04140853 +n04141076 +n04141198 +n04141327 +n04141712 +n04141838 +n04141975 +n04142175 +n04142327 +n04142434 +n04142731 +n04142999 +n04143140 +n04143365 +n04143897 +n04144241 +n04144539 +n04144651 +n04145863 +n04146050 +n04146343 +n04146504 +n04146614 +n04146862 +n04146976 +n04147183 +n04147291 +n04147495 +n04147793 +n04147916 +n04148054 +n04148285 +n04148464 +n04148579 +n04148703 +n04149083 +n04149374 +n04149813 +n04150153 +n04150273 +n04150371 +n04150980 +n04151108 +n04151581 +n04151940 +n04152387 +n04152593 +n04153025 +n04153330 +n04153751 +n04154152 +n04154340 +n04154565 +n04154753 +n04154854 +n04154938 +n04155068 +n04155177 +n04155457 +n04155625 +n04155735 +n04155889 +n04156040 +n04156140 +n04156297 +n04156411 +n04156591 +n04156814 +n04156946 +n04157099 +n04157320 +n04158002 +n04158138 +n04158250 +n04158672 +n04158807 +n04158956 +n04160036 +n04160261 +n04160372 +n04160586 +n04160847 +n04161010 +n04161358 +n04161981 +n04162433 +n04162706 +n04163530 +n04164002 +n04164199 +n04164406 +n04164757 +n04164868 +n04165409 +n04165675 +n04165945 +n04166111 +n04166281 +n04166436 +n04167346 +n04167489 +n04167661 +n04168084 +n04168199 +n04168472 +n04168541 +n04168840 +n04169437 +n04169597 +n04170037 +n04170384 +n04170515 +n04170694 +n04170933 +n04171208 +n04171459 +n04171629 +n04171831 +n04172107 +n04172230 +n04172342 +n04172512 +n04172607 +n04172776 +n04172904 +n04173046 +n04173172 +n04173511 +n04173907 +n04174026 +n04174101 +n04174234 +n04174500 +n04174705 +n04175039 +n04175147 +n04175574 +n04176068 +n04176190 +n04176295 +n04176528 +n04177041 +n04177329 +n04177545 +n04177654 +n04177755 +n04177820 +n04177931 +n04178190 +n04178329 +n04178668 +n04179126 +n04179712 +n04179824 +n04179913 +n04180063 +n04180229 +n04180888 +n04181083 +n04181228 +n04181561 +n04181718 +n04182152 +n04182322 +n04183217 +n04183329 +n04183957 +n04184095 +n04184316 +n04184435 +n04184600 +n04184880 +n04185071 +n04185529 +n04185804 +n04185946 +n04186051 +n04186268 +n04186455 +n04186624 +n04186848 +n04187061 +n04187233 +n04187547 +n04187751 +n04187885 +n04187970 +n04188064 +n04188179 +n04189092 +n04189282 +n04189651 +n04189816 +n04190052 +n04190376 +n04190464 +n04190747 +n04190997 +n04191150 +n04191595 +n04191943 +n04192238 +n04192361 +n04192521 +n04192698 +n04192858 +n04193179 +n04193377 +n04193742 +n04193883 +n04194009 +n04194127 +n04194289 +n04196080 +n04196502 +n04196803 +n04196925 +n04197110 +n04197391 +n04197781 +n04197878 +n04198015 +n04198233 +n04198355 +n04198453 +n04198562 +n04198722 +n04198797 +n04199027 +n04200000 +n04200258 +n04200537 +n04200800 +n04200908 +n04201064 +n04201297 +n04201733 +n04202142 +n04202282 +n04202417 +n04203356 +n04204081 +n04204238 +n04204347 +n04204755 +n04205062 +n04205318 +n04205505 +n04205613 +n04206070 +n04206225 +n04206356 +n04206570 +n04206790 +n04207151 +n04207343 +n04207596 +n04207763 +n04207903 +n04208065 +n04208210 +n04208427 +n04208582 +n04208760 +n04208936 +n04209133 +n04209239 +n04209509 +n04209613 +n04209811 +n04210012 +n04210120 +n04210288 +n04210390 +n04210591 +n04210858 +n04211001 +n04211219 +n04211356 +n04211528 +n04211857 +n04211970 +n04212165 +n04212282 +n04212467 +n04212810 +n04213105 +n04213264 +n04213353 +n04213530 +n04214046 +n04214282 +n04214413 +n04214649 +n04215153 +n04215402 +n04215588 +n04215800 +n04215910 +n04216634 +n04216860 +n04216963 +n04217387 +n04217546 +n04217718 +n04217882 +n04218564 +n04218921 +n04219185 +n04219424 +n04219580 +n04220250 +n04220805 +n04221076 +n04221673 +n04221823 +n04222210 +n04222307 +n04222470 +n04222723 +n04222847 +n04223066 +n04223170 +n04223299 +n04224395 +n04224543 +n04224842 +n04225031 +n04225222 +n04225729 +n04225987 +n04226322 +n04226464 +n04226537 +n04226826 +n04226962 +n04227050 +n04227144 +n04227519 +n04227787 +n04227900 +n04228054 +n04228215 +n04228422 +n04228581 +n04228693 +n04229007 +n04229107 +n04229480 +n04229620 +n04229737 +n04229816 +n04229959 +n04230387 +n04230487 +n04230603 +n04230707 +n04230808 +n04231272 +n04231693 +n04231905 +n04232153 +n04232312 +n04232437 +n04232800 +n04233027 +n04233124 +n04233295 +n04233715 +n04233832 +n04234160 +n04234260 +n04234455 +n04234670 +n04234763 +n04234887 +n04235291 +n04235646 +n04235771 +n04235860 +n04236001 +n04236377 +n04236702 +n04236809 +n04236935 +n04237174 +n04237287 +n04237423 +n04238128 +n04238321 +n04238617 +n04238763 +n04238953 +n04239074 +n04239218 +n04239333 +n04239436 +n04239639 +n04239786 +n04239900 +n04240434 +n04240752 +n04240867 +n04241042 +n04241249 +n04241394 +n04241573 +n04242084 +n04242315 +n04242408 +n04242587 +n04242704 +n04243003 +n04243142 +n04243251 +n04243546 +n04243941 +n04244379 +n04244847 +n04244997 +n04245218 +n04245412 +n04245508 +n04245847 +n04246060 +n04246271 +n04246459 +n04246731 +n04246855 +n04247011 +n04247440 +n04247544 +n04247630 +n04247736 +n04247876 +n04248209 +n04248396 +n04248507 +n04248851 +n04249415 +n04249582 +n04249882 +n04250224 +n04250473 +n04250599 +n04250692 +n04250850 +n04251144 +n04251701 +n04251791 +n04252077 +n04252225 +n04252331 +n04252560 +n04252653 +n04253057 +n04253168 +n04253304 +n04253931 +n04254009 +n04254120 +n04254450 +n04254680 +n04254777 +n04255163 +n04255346 +n04255499 +n04255586 +n04255670 +n04255768 +n04255899 +n04256318 +n04256520 +n04256758 +n04256891 +n04257223 +n04257684 +n04257790 +n04257986 +n04258138 +n04258333 +n04258438 +n04258618 +n04258732 +n04258859 +n04259202 +n04259468 +n04259630 +n04260192 +n04260364 +n04260589 +n04261116 +n04261281 +n04261369 +n04261506 +n04261638 +n04261767 +n04261868 +n04262161 +n04262530 +n04262678 +n04262869 +n04263257 +n04263336 +n04263502 +n04263760 +n04263950 +n04264134 +n04264233 +n04264361 +n04264485 +n04264628 +n04264765 +n04264914 +n04265275 +n04265428 +n04265904 +n04266014 +n04266162 +n04266375 +n04266486 +n04266849 +n04266968 +n04267091 +n04267165 +n04267246 +n04267435 +n04267577 +n04267985 +n04268142 +n04268275 +n04268418 +n04268565 +n04268799 +n04269086 +n04269270 +n04269502 +n04269668 +n04269822 +n04269944 +n04270147 +n04270371 +n04270576 +n04270891 +n04271148 +n04271531 +n04271793 +n04271891 +n04272054 +n04272389 +n04272782 +n04272928 +n04273064 +n04273285 +n04273569 +n04273659 +n04273796 +n04273972 +n04274686 +n04274985 +n04275093 +n04275175 +n04275283 +n04275548 +n04275661 +n04275904 +n04277352 +n04277493 +n04277669 +n04277826 +n04278247 +n04278353 +n04278447 +n04278605 +n04278932 +n04279063 +n04279172 +n04279353 +n04279462 +n04279858 +n04279987 +n04280259 +n04280373 +n04280487 +n04280845 +n04280970 +n04281260 +n04281375 +n04281571 +n04281998 +n04282231 +n04282494 +n04282872 +n04282992 +n04283096 +n04283255 +n04283378 +n04283585 +n04283784 +n04283905 +n04284002 +n04284341 +n04284438 +n04284572 +n04284869 +n04285008 +n04285146 +n04285622 +n04285803 +n04285965 +n04286128 +n04286575 +n04286960 +n04287351 +n04287451 +n04287747 +n04287898 +n04287986 +n04288165 +n04288272 +n04288533 +n04288673 +n04289027 +n04289195 +n04289449 +n04289576 +n04289690 +n04289827 +n04290079 +n04290259 +n04290507 +n04290615 +n04290762 +n04291069 +n04291242 +n04291759 +n04291992 +n04292080 +n04292221 +n04292414 +n04292572 +n04292921 +n04293119 +n04293258 +n04293744 +n04294212 +n04294426 +n04294614 +n04294879 +n04295081 +n04295353 +n04295571 +n04295777 +n04295881 +n04296562 +n04297098 +n04297750 +n04297847 +n04298053 +n04298661 +n04298765 +n04299215 +n04299370 +n04299963 +n04300358 +n04300509 +n04300643 +n04301000 +n04301242 +n04301474 +n04301760 +n04302200 +n04302863 +n04302988 +n04303095 +n04303258 +n04303357 +n04303497 +n04304215 +n04304375 +n04304680 +n04305016 +n04305210 +n04305323 +n04305471 +n04305572 +n04305947 +n04306080 +n04306592 +n04306847 +n04307419 +n04307767 +n04307878 +n04307986 +n04308084 +n04308273 +n04308397 +n04308583 +n04308807 +n04308915 +n04309049 +n04309348 +n04309548 +n04309833 +n04310018 +n04310157 +n04310507 +n04310604 +n04310721 +n04310904 +n04311004 +n04311174 +n04311595 +n04312020 +n04312154 +n04312432 +n04312654 +n04312756 +n04312916 +n04313220 +n04313503 +n04313628 +n04314107 +n04314216 +n04314522 +n04314632 +n04314914 +n04315342 +n04315713 +n04315828 +n04315948 +n04316498 +n04316815 +n04316924 +n04317063 +n04317175 +n04317325 +n04317420 +n04317833 +n04317976 +n04318131 +n04318787 +n04318892 +n04318982 +n04319545 +n04319774 +n04319937 +n04320405 +n04320598 +n04320871 +n04320973 +n04321121 +n04321453 +n04322026 +n04322531 +n04322692 +n04322801 +n04323519 +n04323819 +n04324120 +n04324297 +n04324387 +n04324515 +n04325041 +n04325208 +n04325704 +n04325804 +n04325968 +n04326547 +n04326676 +n04326799 +n04326896 +n04327204 +n04327544 +n04327682 +n04328054 +n04328186 +n04328329 +n04328580 +n04328703 +n04328946 +n04329477 +n04329681 +n04329834 +n04329958 +n04330109 +n04330189 +n04330267 +n04330340 +n04330669 +n04330746 +n04330896 +n04330998 +n04331277 +n04331443 +n04331639 +n04331765 +n04331892 +n04332074 +n04332243 +n04332580 +n04332987 +n04333129 +n04333869 +n04334105 +n04334365 +n04334504 +n04334599 +n04335209 +n04335435 +n04335693 +n04335886 +n04336792 +n04337157 +n04337287 +n04337503 +n04337650 +n04338517 +n04338963 +n04339062 +n04339191 +n04339638 +n04339879 +n04340019 +n04340521 +n04340750 +n04340935 +n04341133 +n04341288 +n04341414 +n04341686 +n04343511 +n04343630 +n04343740 +n04344003 +n04344734 +n04344873 +n04345028 +n04345201 +n04345787 +n04346003 +n04346157 +n04346328 +n04346428 +n04346511 +n04346679 +n04346855 +n04347119 +n04347519 +n04347754 +n04348070 +n04348184 +n04348359 +n04348988 +n04349189 +n04349306 +n04349401 +n04349913 +n04350104 +n04350235 +n04350458 +n04350581 +n04350688 +n04350769 +n04350905 +n04351550 +n04351699 +n04353573 +n04354026 +n04354182 +n04354387 +n04354487 +n04354589 +n04355115 +n04355267 +n04355338 +n04355511 +n04355684 +n04355821 +n04355933 +n04356056 +n04356595 +n04356772 +n04356925 +n04357121 +n04357314 +n04357531 +n04357930 +n04358117 +n04358256 +n04358491 +n04358707 +n04358874 +n04359034 +n04359124 +n04359217 +n04359335 +n04359500 +n04359589 +n04360501 +n04360798 +n04360914 +n04361095 +n04361260 +n04361937 +n04362624 +n04362821 +n04362972 +n04363082 +n04363210 +n04363412 +n04363671 +n04363777 +n04363874 +n04363991 +n04364160 +n04364397 +n04364545 +n04364827 +n04364994 +n04365112 +n04365229 +n04365328 +n04365484 +n04365751 +n04366033 +n04366116 +n04366367 +n04366832 +n04367011 +n04367371 +n04367480 +n04367746 +n04367950 +n04368109 +n04368235 +n04368365 +n04368496 +n04368695 +n04368840 +n04369025 +n04369282 +n04369485 +n04369618 +n04370048 +n04370288 +n04370456 +n04370600 +n04370774 +n04370955 +n04371050 +n04371430 +n04371563 +n04371774 +n04371979 +n04372370 +n04373089 +n04373428 +n04373563 +n04373704 +n04373795 +n04373894 +n04374315 +n04374521 +n04374735 +n04374907 +n04375080 +n04375241 +n04375405 +n04375615 +n04375775 +n04375926 +n04376400 +n04376876 +n04377057 +n04378489 +n04378651 +n04378956 +n04379096 +n04379243 +n04379964 +n04380255 +n04380346 +n04380533 +n04380916 +n04381073 +n04381450 +n04381587 +n04381724 +n04381860 +n04381994 +n04382334 +n04382438 +n04382537 +n04382695 +n04382880 +n04383015 +n04383130 +n04383301 +n04383839 +n04383923 +n04384593 +n04384910 +n04385079 +n04385157 +n04385536 +n04385799 +n04386051 +n04386456 +n04386664 +n04386792 +n04387095 +n04387201 +n04387261 +n04387400 +n04387531 +n04387706 +n04387932 +n04388040 +n04388162 +n04388473 +n04388574 +n04388743 +n04389033 +n04389430 +n04389521 +n04389718 +n04389854 +n04389999 +n04390483 +n04390577 +n04390873 +n04390977 +n04391445 +n04391838 +n04392113 +n04392526 +n04392764 +n04392985 +n04393095 +n04393301 +n04393549 +n04393808 +n04393913 +n04394031 +n04394261 +n04394421 +n04394630 +n04395024 +n04395106 +n04395332 +n04395651 +n04395875 +n04396226 +n04396335 +n04396650 +n04396808 +n04396902 +n04397027 +n04397168 +n04397261 +n04397452 +n04397645 +n04397768 +n04397860 +n04398044 +n04398497 +n04398688 +n04398834 +n04398951 +n04399046 +n04399158 +n04399537 +n04399846 +n04400109 +n04400289 +n04400499 +n04400737 +n04400899 +n04401088 +n04401578 +n04401680 +n04401828 +n04401949 +n04402057 +n04402342 +n04402449 +n04402580 +n04402746 +n04402984 +n04403413 +n04403524 +n04403638 +n04403925 +n04404072 +n04404200 +n04404412 +n04404817 +n04404997 +n04405540 +n04405762 +n04405907 +n04406239 +n04406552 +n04406687 +n04406817 +n04407257 +n04407435 +n04407686 +n04408871 +n04409011 +n04409128 +n04409279 +n04409384 +n04409515 +n04409625 +n04409806 +n04409911 +n04410086 +n04410365 +n04410485 +n04410565 +n04410663 +n04410760 +n04410886 +n04411019 +n04411264 +n04411835 +n04411966 +n04412097 +n04412300 +n04412416 +n04413151 +n04413419 +n04413969 +n04414101 +n04414199 +n04414319 +n04414476 +n04414675 +n04414909 +n04415257 +n04415663 +n04415815 +n04416005 +n04416901 +n04417086 +n04417180 +n04417361 +n04417672 +n04417809 +n04418357 +n04418644 +n04419073 +n04419642 +n04419868 +n04420024 +n04420720 +n04421083 +n04421258 +n04421417 +n04421582 +n04421740 +n04421872 +n04422409 +n04422566 +n04422727 +n04422875 +n04423552 +n04423687 +n04423845 +n04424692 +n04425804 +n04425977 +n04426184 +n04426316 +n04426427 +n04427216 +n04427473 +n04427559 +n04427715 +n04427857 +n04428008 +n04428191 +n04428382 +n04428634 +n04429038 +n04429376 +n04430475 +n04430605 +n04430896 +n04431025 +n04431436 +n04431648 +n04431745 +n04431925 +n04432043 +n04432203 +n04432662 +n04432785 +n04433377 +n04433585 +n04434207 +n04434531 +n04434932 +n04435180 +n04435552 +n04435653 +n04435759 +n04435870 +n04436012 +n04436185 +n04436329 +n04436401 +n04436542 +n04436832 +n04436992 +n04437276 +n04437380 +n04437670 +n04437953 +n04438304 +n04438507 +n04438643 +n04438897 +n04439505 +n04439585 +n04439712 +n04440597 +n04440963 +n04441093 +n04441528 +n04441662 +n04441790 +n04442312 +n04442441 +n04442582 +n04442741 +n04443164 +n04443257 +n04443433 +n04443766 +n04444121 +n04444218 +n04444749 +n04444953 +n04445040 +n04445154 +n04445327 +n04445610 +n04445782 +n04445952 +n04446162 +n04446276 +n04446844 +n04447028 +n04447156 +n04447276 +n04447443 +n04447861 +n04448070 +n04448185 +n04448361 +n04449290 +n04449449 +n04449550 +n04449700 +n04449966 +n04450133 +n04450243 +n04450465 +n04450640 +n04450749 +n04450994 +n04451139 +n04451318 +n04451636 +n04451818 +n04452528 +n04452615 +n04452757 +n04452848 +n04453037 +n04453156 +n04453390 +n04453666 +n04453910 +n04454654 +n04454792 +n04454908 +n04455048 +n04455250 +n04455579 +n04455652 +n04456011 +n04456115 +n04456472 +n04456734 +n04457157 +n04457326 +n04457474 +n04457638 +n04457767 +n04457910 +n04458201 +n04458633 +n04458843 +n04459018 +n04459122 +n04459243 +n04459362 +n04459610 +n04459773 +n04459909 +n04460130 +n04461437 +n04461570 +n04461696 +n04461879 +n04462011 +n04462240 +n04462576 +n04463679 +n04464125 +n04464615 +n04464852 +n04465050 +n04465203 +n04465358 +n04465501 +n04465666 +n04466871 +n04467099 +n04467307 +n04467506 +n04467665 +n04467899 +n04468005 +n04469003 +n04469251 +n04469514 +n04469684 +n04469813 +n04470741 +n04471148 +n04471315 +n04471632 +n04471912 +n04472243 +n04472563 +n04472726 +n04472961 +n04473108 +n04473275 +n04473884 +n04474035 +n04474187 +n04474466 +n04475309 +n04475411 +n04475496 +n04475631 +n04475749 +n04475900 +n04476116 +n04476259 +n04476526 +n04476831 +n04476972 +n04477219 +n04477387 +n04477548 +n04477725 +n04478066 +n04478383 +n04478512 +n04478657 +n04479046 +n04479287 +n04479405 +n04479526 +n04479694 +n04479823 +n04479939 +n04480033 +n04480141 +n04480303 +n04480527 +n04480853 +n04480995 +n04481524 +n04481642 +n04482177 +n04482297 +n04482393 +n04482975 +n04483073 +n04483307 +n04483925 +n04484024 +n04484432 +n04485082 +n04485423 +n04485586 +n04485750 +n04485884 +n04486054 +n04486213 +n04486322 +n04486616 +n04486934 +n04487081 +n04487394 +n04487724 +n04487894 +n04488202 +n04488427 +n04488530 +n04488742 +n04488857 +n04489008 +n04489695 +n04489817 +n04490091 +n04491312 +n04491388 +n04491638 +n04491769 +n04491934 +n04492060 +n04492157 +n04492375 +n04492749 +n04493109 +n04493259 +n04493381 +n04494204 +n04495051 +n04495183 +n04495310 +n04495450 +n04495555 +n04495698 +n04495843 +n04496614 +n04496726 +n04496872 +n04497249 +n04497442 +n04497570 +n04497801 +n04498275 +n04498389 +n04498523 +n04498873 +n04499062 +n04499300 +n04499446 +n04499554 +n04499810 +n04500060 +n04500390 +n04501127 +n04501281 +n04501370 +n04501550 +n04501837 +n04501947 +n04502059 +n04502197 +n04502502 +n04502670 +n04502851 +n04502989 +n04503073 +n04503155 +n04503269 +n04503413 +n04503499 +n04503593 +n04503705 +n04504038 +n04504141 +n04504770 +n04505036 +n04505345 +n04505470 +n04505888 +n04506289 +n04506402 +n04506506 +n04506688 +n04506895 +n04506994 +n04507155 +n04507326 +n04507453 +n04507689 +n04508163 +n04508489 +n04508949 +n04509171 +n04509260 +n04509417 +n04509592 +n04510706 +n04511002 +n04513827 +n04513998 +n04514095 +n04514241 +n04514648 +n04515003 +n04515444 +n04515729 +n04515890 +n04516116 +n04516214 +n04516354 +n04516672 +n04517211 +n04517408 +n04517823 +n04517999 +n04518132 +n04518343 +n04518643 +n04518764 +n04519153 +n04519536 +n04519728 +n04519887 +n04520170 +n04520382 +n04520784 +n04520962 +n04521571 +n04521863 +n04521987 +n04522168 +n04523525 +n04523831 +n04524142 +n04524313 +n04524594 +n04524716 +n04524941 +n04525038 +n04525191 +n04525305 +n04525417 +n04525584 +n04525821 +n04526520 +n04526800 +n04526964 +n04527648 +n04528079 +n04528968 +n04529108 +n04529681 +n04529962 +n04530283 +n04530456 +n04530566 +n04531098 +n04531873 +n04532022 +n04532106 +n04532398 +n04532504 +n04532670 +n04532831 +n04533042 +n04533199 +n04533499 +n04533594 +n04533700 +n04533802 +n04533946 +n04534127 +n04534359 +n04534520 +n04534895 +n04535252 +n04535370 +n04535524 +n04536153 +n04536335 +n04536465 +n04536595 +n04536765 +n04536866 +n04537436 +n04538249 +n04538403 +n04538552 +n04538878 +n04539053 +n04539203 +n04539407 +n04539794 +n04540053 +n04540255 +n04540397 +n04540761 +n04541136 +n04541320 +n04541662 +n04541777 +n04541987 +n04542095 +n04542329 +n04542474 +n04542595 +n04542715 +n04542858 +n04542943 +n04543158 +n04543509 +n04543636 +n04543772 +n04543924 +n04543996 +n04544325 +n04544450 +n04545305 +n04545471 +n04545748 +n04545858 +n04545984 +n04546081 +n04546194 +n04546340 +n04546595 +n04546855 +n04547592 +n04548280 +n04548362 +n04549028 +n04549122 +n04549629 +n04549721 +n04549919 +n04550184 +n04550676 +n04551055 +n04551833 +n04552097 +n04552348 +n04552551 +n04552696 +n04553389 +n04553561 +n04553703 +n04554211 +n04554406 +n04554684 +n04554871 +n04554998 +n04555291 +n04555400 +n04555600 +n04555700 +n04555897 +n04556408 +n04556533 +n04556664 +n04556948 +n04557308 +n04557522 +n04557648 +n04557751 +n04558059 +n04558199 +n04558478 +n04558804 +n04559023 +n04559166 +n04559451 +n04559620 +n04559730 +n04559910 +n04559994 +n04560113 +n04560292 +n04560502 +n04560619 +n04560804 +n04560882 +n04561010 +n04561287 +n04561422 +n04561734 +n04561857 +n04561965 +n04562122 +n04562262 +n04562496 +n04562935 +n04563020 +n04563204 +n04563413 +n04563560 +n04563790 +n04564278 +n04564581 +n04565039 +n04565375 +n04566257 +n04566561 +n04566756 +n04567098 +n04567593 +n04567746 +n04568069 +n04568557 +n04568713 +n04568841 +n04569063 +n04569520 +n04569822 +n04570118 +n04570214 +n04570416 +n04570532 +n04570815 +n04570958 +n04571292 +n04571566 +n04571686 +n04571800 +n04571958 +n04572121 +n04572235 +n04572935 +n04573045 +n04573281 +n04573379 +n04573513 +n04573625 +n04573832 +n04573937 +n04574067 +n04574348 +n04574471 +n04574606 +n04574999 +n04575723 +n04575824 +n04576002 +n04576211 +n04576971 +n04577139 +n04577293 +n04577426 +n04577567 +n04577769 +n04578112 +n04578329 +n04578559 +n04578708 +n04578801 +n04578934 +n04579056 +n04579145 +n04579230 +n04579432 +n04579667 +n04579986 +n04580493 +n04581102 +n04581595 +n04581829 +n04582205 +n04582349 +n04582771 +n04582869 +n04583022 +n04583212 +n04583620 +n04583888 +n04583967 +n04584056 +n04584207 +n04584373 +n04585128 +n04585318 +n04585456 +n04585626 +n04585745 +n04585980 +n04586072 +n04586581 +n04586932 +n04587327 +n04587404 +n04587559 +n04587648 +n04588739 +n04589190 +n04589325 +n04589434 +n04589593 +n04589890 +n04590021 +n04590129 +n04590263 +n04590553 +n04590746 +n04590933 +n04591056 +n04591157 +n04591249 +n04591359 +n04591517 +n04591631 +n04591713 +n04591887 +n04592005 +n04592099 +n04592356 +n04592465 +n04592596 +n04592741 +n04593077 +n04593185 +n04593376 +n04593524 +n04593629 +n04593866 +n04594114 +n04594218 +n04594489 +n04594742 +n04594828 +n04594919 +n04595028 +n04595285 +n04595501 +n04595611 +n04595762 +n04595855 +n04596116 +n04596492 +n04596742 +n04596852 +n04597066 +n04597309 +n04597400 +n04597804 +n04597913 +n04598136 +n04598318 +n04598416 +n04598582 +n04598965 +n04599124 +n04599235 +n04600312 +n04600486 +n04600912 +n04601041 +n04601159 +n04601938 +n04602762 +n04602840 +n04602956 +n04603399 +n04603729 +n04603872 +n04604276 +n04604644 +n04604806 +n04605057 +n04605163 +n04605321 +n04605446 +n04605572 +n04605726 +n04606251 +n04606574 +n04607035 +n04607242 +n04607640 +n04607759 +n04607869 +n04607982 +n04608329 +n04608435 +n04608567 +n04608809 +n04608923 +n04609531 +n04609651 +n04609811 +n04610013 +n04610176 +n04610274 +n04610503 +n04610676 +n04611351 +n04611795 +n04611916 +n04612026 +n04612159 +n04612257 +n04612373 +n04612504 +n04612840 +n04613015 +n04613158 +n04613696 +n04613939 +n04614505 +n04614655 +n04614844 +n04615149 +n04615226 +n04615644 +n04682018 +n04950713 +n04950952 +n04951071 +n04951186 +n04951373 +n04951716 +n04951875 +n04953296 +n04953678 +n04955160 +n04957356 +n04957589 +n04958634 +n04958865 +n04959061 +n04959230 +n04959672 +n04960277 +n04960582 +n04961062 +n04961331 +n04961691 +n04962062 +n04962240 +n04963111 +n04963307 +n04963588 +n04963740 +n04964001 +n04964799 +n04964878 +n04965179 +n04965451 +n04965661 +n04966543 +n04966941 +n04967191 +n04967561 +n04967674 +n04967801 +n04967882 +n04968056 +n04968139 +n04968749 +n04968895 +n04969242 +n04969540 +n04969798 +n04969952 +n04970059 +n04970312 +n04970398 +n04970470 +n04970631 +n04970916 +n04971211 +n04971313 +n04972350 +n04972451 +n04972801 +n04973020 +n04973291 +n04973386 +n04973585 +n04973669 +n04973816 +n04974145 +n04974340 +n04974859 +n04975739 +n04976319 +n04976952 +n04977412 +n04978561 +n04979002 +n04979307 +n04981658 +n05102764 +n05218119 +n05233741 +n05235879 +n05238282 +n05239437 +n05241218 +n05241485 +n05241662 +n05242070 +n05242239 +n05242928 +n05244421 +n05244755 +n05244934 +n05245192 +n05257476 +n05257967 +n05258051 +n05258627 +n05259914 +n05260127 +n05260240 +n05261310 +n05262422 +n05262534 +n05262698 +n05263183 +n05263316 +n05263448 +n05265736 +n05266096 +n05266879 +n05278922 +n05279953 +n05282652 +n05285623 +n05302499 +n05314075 +n05399034 +n05399243 +n05399356 +n05418717 +n05427346 +n05442594 +n05447757 +n05448704 +n05448827 +n05449196 +n05449661 +n05449959 +n05450617 +n05451099 +n05451384 +n05453412 +n05453657 +n05453815 +n05454833 +n05454978 +n05455113 +n05458173 +n05458576 +n05459101 +n05459457 +n05459769 +n05460759 +n05464534 +n05467054 +n05467758 +n05468098 +n05468739 +n05469664 +n05469861 +n05475397 +n05482922 +n05486510 +n05491154 +n05526957 +n05538625 +n05539947 +n05541509 +n05542893 +n05545879 +n05571341 +n05578095 +n05581932 +n05584746 +n05586759 +n05604434 +n05716342 +n06008896 +n06209940 +n06254669 +n06255081 +n06255613 +n06259898 +n06262567 +n06262943 +n06263202 +n06263369 +n06263609 +n06263762 +n06263895 +n06266417 +n06266633 +n06266710 +n06266878 +n06266973 +n06267145 +n06267564 +n06267655 +n06267758 +n06267893 +n06267991 +n06271778 +n06272290 +n06272612 +n06272803 +n06273207 +n06273294 +n06273414 +n06273555 +n06273743 +n06273890 +n06273986 +n06274092 +n06274292 +n06274546 +n06274760 +n06274921 +n06275095 +n06275353 +n06275471 +n06276501 +n06276697 +n06276902 +n06277025 +n06277135 +n06277280 +n06278338 +n06278475 +n06281040 +n06281175 +n06340977 +n06359193 +n06359467 +n06359657 +n06415688 +n06417096 +n06418693 +n06419354 +n06423496 +n06470073 +n06591815 +n06592078 +n06592281 +n06592421 +n06595351 +n06596179 +n06596364 +n06596474 +n06596607 +n06596727 +n06596845 +n06613686 +n06614901 +n06616216 +n06618653 +n06625062 +n06785654 +n06793231 +n06794110 +n06874185 +n06883725 +n06892775 +n06998748 +n07005523 +n07248320 +n07273802 +n07461050 +n07556406 +n07556637 +n07556872 +n07556970 +n07557165 +n07557434 +n07560193 +n07560331 +n07560422 +n07560542 +n07560652 +n07560903 +n07561112 +n07561590 +n07561848 +n07562017 +n07562172 +n07562379 +n07562495 +n07562651 +n07562881 +n07562984 +n07563207 +n07563366 +n07563642 +n07563800 +n07564008 +n07564101 +n07564292 +n07564515 +n07564629 +n07564796 +n07564971 +n07565083 +n07565161 +n07565259 +n07565608 +n07565725 +n07565945 +n07566092 +n07566231 +n07566340 +n07566863 +n07567039 +n07567139 +n07567390 +n07567611 +n07567707 +n07567980 +n07568095 +n07568241 +n07568389 +n07568502 +n07568625 +n07568818 +n07568991 +n07569106 +n07569423 +n07569543 +n07569644 +n07569873 +n07570021 +n07570530 +n07570720 +n07572353 +n07572616 +n07572858 +n07572957 +n07573103 +n07573347 +n07573453 +n07573563 +n07573696 +n07574176 +n07574426 +n07574504 +n07574602 +n07574780 +n07574923 +n07575076 +n07575226 +n07575392 +n07575510 +n07575726 +n07575984 +n07576182 +n07576438 +n07576577 +n07576781 +n07576969 +n07577144 +n07577374 +n07577538 +n07577657 +n07577772 +n07577918 +n07578093 +n07579575 +n07579688 +n07579787 +n07579917 +n07580053 +n07580253 +n07580359 +n07580470 +n07580592 +n07581249 +n07581346 +n07581607 +n07581775 +n07581931 +n07582027 +n07582152 +n07582277 +n07582441 +n07582609 +n07582811 +n07582892 +n07582970 +n07583066 +n07583197 +n07583865 +n07583978 +n07584110 +n07584228 +n07584332 +n07584423 +n07584593 +n07584859 +n07584938 +n07585015 +n07585107 +n07585208 +n07585474 +n07585557 +n07585644 +n07585758 +n07585906 +n07585997 +n07586099 +n07586179 +n07586318 +n07586485 +n07586604 +n07586718 +n07586894 +n07587023 +n07587111 +n07587206 +n07587331 +n07587441 +n07587618 +n07587700 +n07587819 +n07587962 +n07588111 +n07588193 +n07588299 +n07588419 +n07588574 +n07588688 +n07588817 +n07588947 +n07589458 +n07589543 +n07589724 +n07589872 +n07589967 +n07590068 +n07590177 +n07590320 +n07590502 +n07590611 +n07590752 +n07590841 +n07590974 +n07591049 +n07591162 +n07591236 +n07591330 +n07591473 +n07591586 +n07591813 +n07591961 +n07592094 +n07592317 +n07592400 +n07592481 +n07592656 +n07592768 +n07592922 +n07593004 +n07593107 +n07593199 +n07593471 +n07593774 +n07593972 +n07594066 +n07594155 +n07594250 +n07594737 +n07594840 +n07595051 +n07595180 +n07595368 +n07595649 +n07595751 +n07595914 +n07596046 +n07596160 +n07596362 +n07596452 +n07596566 +n07596684 +n07596967 +n07597145 +n07597263 +n07597365 +n07598256 +n07598529 +n07598622 +n07598734 +n07598928 +n07599068 +n07599161 +n07599242 +n07599383 +n07599468 +n07599554 +n07599649 +n07599783 +n07599911 +n07599998 +n07600177 +n07600285 +n07600394 +n07600506 +n07600696 +n07600895 +n07601025 +n07601175 +n07601290 +n07601407 +n07601572 +n07601686 +n07601809 +n07602650 +n07604956 +n07605040 +n07605198 +n07605282 +n07605380 +n07605474 +n07605597 +n07605693 +n07605804 +n07605944 +n07606058 +n07606191 +n07606278 +n07606419 +n07606538 +n07606669 +n07606764 +n07606933 +n07607027 +n07607138 +n07607361 +n07607492 +n07607605 +n07607707 +n07607832 +n07607967 +n07608098 +n07608245 +n07608339 +n07608429 +n07608533 +n07608641 +n07608721 +n07608866 +n07608980 +n07609083 +n07609215 +n07609316 +n07609407 +n07609549 +n07609632 +n07609728 +n07609840 +n07610295 +n07610502 +n07610620 +n07610746 +n07610890 +n07611046 +n07611148 +n07611267 +n07611358 +n07611733 +n07611839 +n07611991 +n07612137 +n07612273 +n07612367 +n07612530 +n07612632 +n07612996 +n07613158 +n07613266 +n07613480 +n07613671 +n07613815 +n07614103 +n07614198 +n07614348 +n07614500 +n07614730 +n07614825 +n07615052 +n07615190 +n07615289 +n07615460 +n07615569 +n07615671 +n07615774 +n07615954 +n07616046 +n07616174 +n07616265 +n07616386 +n07616487 +n07616590 +n07616748 +n07616906 +n07617051 +n07617188 +n07617344 +n07617447 +n07617526 +n07617611 +n07617708 +n07617839 +n07617932 +n07618029 +n07618119 +n07618281 +n07618432 +n07618587 +n07618684 +n07618871 +n07619004 +n07619208 +n07619301 +n07619409 +n07619508 +n07619881 +n07620047 +n07620145 +n07620327 +n07620597 +n07620689 +n07621264 +n07621497 +n07621618 +n07623136 +n07624466 +n07624666 +n07624757 +n07624924 +n07625061 +n07625324 +n07627931 +n07628068 +n07628181 +n07631926 +n07639069 +n07641928 +n07642361 +n07642471 +n07642742 +n07642833 +n07642933 +n07643026 +n07643200 +n07643306 +n07643474 +n07643577 +n07643679 +n07643764 +n07643891 +n07643981 +n07644244 +n07648913 +n07648997 +n07650792 +n07650903 +n07651025 +n07654148 +n07654298 +n07655067 +n07655263 +n07663899 +n07665438 +n07666176 +n07672914 +n07678586 +n07678729 +n07678953 +n07679034 +n07679140 +n07679356 +n07680168 +n07680313 +n07680416 +n07680517 +n07680655 +n07680761 +n07680932 +n07681264 +n07681355 +n07681450 +n07681691 +n07681805 +n07681926 +n07682197 +n07682316 +n07682477 +n07682624 +n07682808 +n07682952 +n07683039 +n07683138 +n07683265 +n07683360 +n07683490 +n07683617 +n07683786 +n07684084 +n07684164 +n07684289 +n07684422 +n07684517 +n07684600 +n07684938 +n07685031 +n07685118 +n07685218 +n07685303 +n07685399 +n07685546 +n07685730 +n07685918 +n07686021 +n07686202 +n07686299 +n07686461 +n07686634 +n07686720 +n07686873 +n07687053 +n07687211 +n07687381 +n07687469 +n07687626 +n07687789 +n07688021 +n07688130 +n07688265 +n07688412 +n07688624 +n07688757 +n07688898 +n07689003 +n07689217 +n07689313 +n07689490 +n07689624 +n07689757 +n07689842 +n07690019 +n07690152 +n07690273 +n07690431 +n07690511 +n07690585 +n07690739 +n07690892 +n07691091 +n07691237 +n07691539 +n07691650 +n07691758 +n07691863 +n07691954 +n07692114 +n07692248 +n07692405 +n07692517 +n07692614 +n07692887 +n07693048 +n07693223 +n07693439 +n07693590 +n07693725 +n07693889 +n07693972 +n07694169 +n07694403 +n07694516 +n07694659 +n07694839 +n07695187 +n07695284 +n07695410 +n07695504 +n07695652 +n07695742 +n07695878 +n07695965 +n07696403 +n07696527 +n07696625 +n07696728 +n07696839 +n07696977 +n07697100 +n07697313 +n07697408 +n07697537 +n07697699 +n07697825 +n07698250 +n07698401 +n07698543 +n07698672 +n07698782 +n07700003 +n07703889 +n07704054 +n07704205 +n07704305 +n07705931 +n07707451 +n07708124 +n07708398 +n07708512 +n07708685 +n07708798 +n07709046 +n07709172 +n07709333 +n07709701 +n07709881 +n07710007 +n07710283 +n07710616 +n07710952 +n07711080 +n07711232 +n07711371 +n07711569 +n07711683 +n07711799 +n07711907 +n07712063 +n07712267 +n07712382 +n07712559 +n07712748 +n07712856 +n07712959 +n07713074 +n07713267 +n07713395 +n07713763 +n07713895 +n07714078 +n07714188 +n07714287 +n07714448 +n07714571 +n07714802 +n07714895 +n07714990 +n07715103 +n07715221 +n07715407 +n07715561 +n07715721 +n07716034 +n07716203 +n07716358 +n07716504 +n07716649 +n07716750 +n07716906 +n07717070 +n07717410 +n07717556 +n07717714 +n07717858 +n07718068 +n07718195 +n07718329 +n07718472 +n07718671 +n07718747 +n07718920 +n07719058 +n07719213 +n07719330 +n07719437 +n07719616 +n07719756 +n07719839 +n07719980 +n07720084 +n07720185 +n07720277 +n07720442 +n07720615 +n07720875 +n07721018 +n07721118 +n07721195 +n07721325 +n07721456 +n07721678 +n07721833 +n07721942 +n07722052 +n07722217 +n07722390 +n07722485 +n07722666 +n07722763 +n07722888 +n07723039 +n07723177 +n07723330 +n07723559 +n07723753 +n07723968 +n07724078 +n07724173 +n07724269 +n07724492 +n07724654 +n07724819 +n07724943 +n07725158 +n07725255 +n07725376 +n07725531 +n07725663 +n07725789 +n07725888 +n07726009 +n07726095 +n07726230 +n07726386 +n07726525 +n07726672 +n07726796 +n07727048 +n07727140 +n07727252 +n07727377 +n07727458 +n07727578 +n07727741 +n07727868 +n07728053 +n07728181 +n07728284 +n07728391 +n07728585 +n07728708 +n07728804 +n07729000 +n07729142 +n07729225 +n07729384 +n07729485 +n07729828 +n07729926 +n07730033 +n07730207 +n07730320 +n07730406 +n07730562 +n07730708 +n07730855 +n07731006 +n07731122 +n07731284 +n07731436 +n07731587 +n07731767 +n07731952 +n07732168 +n07732302 +n07732433 +n07732525 +n07732636 +n07732747 +n07732904 +n07733005 +n07733124 +n07733217 +n07733394 +n07733567 +n07733712 +n07733847 +n07734017 +n07734183 +n07734292 +n07734417 +n07734555 +n07734744 +n07734879 +n07735052 +n07735179 +n07735294 +n07735404 +n07735510 +n07735687 +n07735803 +n07735981 +n07736087 +n07736256 +n07736371 +n07736527 +n07736692 +n07736813 +n07736971 +n07737081 +n07737594 +n07737745 +n07738105 +n07738224 +n07739035 +n07739125 +n07739344 +n07739506 +n07739923 +n07740033 +n07740115 +n07740220 +n07740342 +n07740461 +n07740597 +n07740744 +n07740855 +n07740954 +n07741138 +n07741235 +n07741357 +n07741461 +n07741623 +n07741706 +n07741804 +n07741888 +n07742012 +n07742224 +n07742313 +n07742415 +n07742513 +n07742605 +n07742704 +n07743224 +n07743384 +n07743544 +n07743723 +n07743902 +n07744057 +n07744246 +n07744430 +n07744559 +n07744682 +n07744811 +n07745046 +n07745197 +n07745357 +n07745466 +n07745661 +n07745940 +n07746038 +n07746186 +n07746334 +n07746551 +n07746749 +n07746910 +n07747055 +n07747607 +n07747811 +n07747951 +n07748157 +n07748276 +n07748416 +n07748574 +n07748753 +n07748912 +n07749095 +n07749192 +n07749312 +n07749446 +n07749582 +n07749731 +n07749870 +n07749969 +n07750146 +n07750299 +n07750449 +n07750586 +n07750736 +n07750872 +n07751004 +n07751148 +n07751280 +n07751451 +n07751737 +n07751858 +n07751977 +n07752109 +n07752264 +n07752377 +n07752514 +n07752602 +n07752664 +n07752782 +n07752874 +n07752966 +n07753113 +n07753275 +n07753448 +n07753592 +n07753743 +n07753980 +n07754155 +n07754279 +n07754451 +n07754684 +n07754894 +n07755089 +n07755262 +n07755411 +n07755619 +n07755707 +n07755929 +n07756096 +n07756325 +n07756499 +n07756641 +n07756838 +n07756951 +n07757132 +n07757312 +n07757511 +n07757602 +n07757753 +n07757874 +n07757990 +n07758125 +n07758260 +n07758407 +n07758582 +n07758680 +n07758950 +n07759194 +n07759324 +n07759424 +n07759576 +n07759691 +n07759816 +n07760070 +n07760153 +n07760297 +n07760395 +n07760501 +n07760673 +n07760755 +n07760859 +n07761141 +n07761309 +n07761611 +n07761777 +n07761954 +n07762114 +n07762244 +n07762373 +n07762534 +n07762740 +n07762913 +n07763107 +n07763290 +n07763483 +n07763629 +n07763792 +n07763987 +n07764155 +n07764315 +n07764486 +n07764630 +n07764847 +n07765073 +n07765208 +n07765361 +n07765517 +n07765612 +n07765728 +n07765862 +n07765999 +n07766173 +n07766409 +n07766530 +n07766723 +n07766891 +n07767002 +n07767171 +n07767344 +n07767549 +n07767709 +n07767847 +n07768068 +n07768139 +n07768230 +n07768318 +n07768423 +n07768590 +n07768694 +n07768858 +n07769102 +n07769306 +n07769465 +n07769584 +n07769731 +n07769886 +n07770034 +n07770180 +n07770439 +n07770571 +n07770763 +n07770869 +n07771082 +n07771212 +n07771405 +n07771539 +n07771731 +n07771891 +n07772026 +n07772147 +n07772274 +n07772413 +n07772788 +n07772935 +n07773428 +n07774182 +n07774295 +n07774479 +n07774596 +n07774719 +n07774842 +n07775050 +n07775197 +n07783827 +n07785487 +n07800091 +n07800487 +n07800636 +n07800740 +n07801007 +n07801091 +n07801342 +n07801508 +n07801709 +n07801779 +n07801892 +n07802026 +n07802152 +n07802246 +n07802417 +n07802767 +n07802863 +n07802963 +n07803093 +n07803213 +n07803310 +n07803408 +n07803545 +n07803779 +n07803895 +n07803992 +n07804152 +n07804323 +n07804543 +n07804657 +n07804771 +n07804900 +n07805006 +n07805254 +n07805389 +n07805478 +n07805594 +n07805731 +n07805966 +n07806043 +n07806120 +n07806221 +n07806633 +n07806774 +n07806879 +n07807002 +n07807171 +n07807317 +n07807472 +n07807594 +n07807710 +n07807834 +n07807922 +n07808022 +n07808166 +n07808268 +n07808352 +n07808479 +n07808587 +n07808675 +n07808806 +n07808904 +n07809096 +n07809368 +n07810531 +n07810907 +n07811416 +n07812046 +n07812184 +n07812662 +n07812790 +n07812913 +n07813107 +n07813324 +n07813495 +n07813579 +n07813717 +n07813833 +n07814007 +n07814203 +n07814390 +n07814487 +n07814634 +n07814790 +n07814925 +n07815163 +n07815294 +n07815424 +n07815588 +n07815839 +n07815956 +n07816052 +n07816164 +n07816296 +n07816398 +n07816575 +n07816726 +n07816839 +n07817024 +n07817160 +n07817315 +n07817465 +n07817599 +n07817758 +n07817871 +n07818029 +n07818133 +n07818277 +n07818422 +n07818572 +n07818689 +n07818825 +n07818995 +n07819166 +n07819303 +n07819480 +n07819682 +n07819769 +n07819896 +n07820036 +n07820145 +n07820297 +n07820497 +n07820683 +n07820814 +n07820960 +n07821107 +n07821260 +n07821404 +n07821610 +n07821758 +n07821919 +n07822053 +n07822197 +n07822323 +n07822518 +n07822687 +n07822845 +n07823105 +n07823280 +n07823369 +n07823460 +n07823591 +n07823698 +n07823814 +n07823951 +n07824191 +n07824268 +n07824383 +n07824502 +n07824702 +n07824863 +n07824988 +n07825194 +n07825399 +n07825496 +n07825597 +n07825717 +n07825850 +n07825972 +n07826091 +n07826250 +n07826340 +n07826453 +n07826544 +n07826653 +n07826930 +n07827130 +n07827284 +n07827410 +n07827554 +n07827750 +n07827896 +n07828041 +n07828156 +n07828275 +n07828378 +n07828642 +n07828987 +n07829248 +n07829331 +n07829412 +n07830493 +n07830593 +n07830690 +n07830841 +n07830986 +n07831146 +n07831267 +n07831450 +n07831663 +n07831821 +n07831955 +n07832099 +n07832202 +n07832307 +n07832416 +n07832592 +n07832741 +n07832902 +n07833333 +n07833535 +n07833672 +n07833816 +n07833951 +n07834065 +n07834160 +n07834286 +n07834507 +n07834618 +n07834774 +n07834872 +n07835051 +n07835173 +n07835331 +n07835457 +n07835547 +n07835701 +n07835823 +n07835921 +n07836077 +n07836269 +n07836456 +n07836600 +n07836731 +n07836838 +n07837002 +n07837110 +n07837234 +n07837362 +n07837545 +n07837630 +n07837755 +n07837912 +n07838073 +n07838233 +n07838441 +n07838551 +n07838659 +n07838811 +n07838905 +n07839055 +n07839172 +n07839312 +n07839478 +n07839593 +n07839730 +n07839864 +n07840027 +n07840124 +n07840219 +n07840304 +n07840395 +n07840520 +n07840672 +n07840804 +n07841037 +n07841345 +n07841495 +n07841639 +n07841800 +n07841907 +n07842044 +n07842130 +n07842202 +n07842308 +n07842433 +n07842605 +n07842753 +n07842972 +n07843117 +n07843220 +n07843348 +n07843464 +n07843636 +n07843775 +n07844042 +n07844604 +n07844786 +n07844867 +n07845087 +n07845166 +n07845335 +n07845421 +n07845495 +n07845571 +n07845702 +n07845775 +n07845863 +n07846014 +n07846143 +n07846274 +n07846359 +n07846471 +n07846557 +n07846688 +n07846802 +n07846938 +n07847047 +n07847198 +n07847453 +n07847585 +n07847706 +n07847827 +n07847917 +n07848093 +n07848196 +n07848338 +n07848771 +n07848936 +n07849026 +n07849186 +n07849336 +n07849506 +n07849619 +n07849733 +n07849912 +n07850083 +n07850219 +n07850329 +n07851054 +n07851298 +n07851443 +n07851554 +n07851641 +n07851767 +n07851926 +n07852045 +n07852229 +n07852302 +n07852376 +n07852452 +n07852532 +n07852614 +n07852712 +n07852833 +n07852919 +n07853125 +n07853232 +n07853345 +n07853445 +n07853560 +n07853648 +n07853762 +n07853852 +n07853946 +n07854066 +n07854184 +n07854266 +n07854348 +n07854455 +n07854614 +n07854707 +n07854813 +n07854982 +n07855105 +n07855188 +n07855317 +n07855413 +n07855510 +n07855603 +n07855721 +n07855812 +n07855907 +n07856045 +n07856186 +n07856270 +n07856756 +n07856895 +n07856992 +n07857076 +n07857170 +n07857356 +n07857598 +n07857731 +n07857959 +n07858114 +n07858197 +n07858336 +n07858484 +n07858595 +n07858841 +n07858978 +n07859142 +n07859284 +n07859583 +n07859796 +n07859951 +n07860103 +n07860208 +n07860331 +n07860447 +n07860548 +n07860629 +n07860805 +n07860988 +n07861158 +n07861247 +n07861334 +n07861557 +n07861681 +n07861813 +n07861983 +n07862095 +n07862244 +n07862348 +n07862461 +n07862611 +n07862770 +n07862946 +n07863107 +n07863229 +n07863374 +n07863547 +n07863644 +n07863802 +n07863935 +n07864065 +n07864198 +n07864317 +n07864475 +n07864638 +n07864756 +n07864934 +n07865105 +n07865196 +n07865484 +n07865575 +n07865700 +n07865788 +n07866015 +n07866151 +n07866277 +n07866409 +n07866571 +n07866723 +n07866868 +n07867021 +n07867164 +n07867324 +n07867421 +n07867616 +n07867751 +n07867883 +n07868045 +n07868200 +n07868340 +n07868508 +n07868684 +n07868830 +n07868955 +n07869111 +n07869291 +n07869391 +n07869522 +n07869611 +n07869775 +n07869937 +n07870069 +n07870167 +n07870313 +n07870478 +n07870620 +n07870734 +n07870894 +n07871065 +n07871234 +n07871335 +n07871436 +n07871588 +n07871720 +n07871810 +n07872593 +n07872748 +n07873057 +n07873198 +n07873348 +n07873464 +n07873679 +n07873807 +n07874063 +n07874159 +n07874259 +n07874343 +n07874441 +n07874531 +n07874674 +n07874780 +n07874995 +n07875086 +n07875152 +n07875267 +n07875436 +n07875560 +n07875693 +n07875835 +n07875926 +n07876026 +n07876189 +n07876281 +n07876460 +n07876550 +n07876651 +n07876775 +n07876893 +n07877187 +n07877299 +n07877675 +n07877849 +n07877961 +n07878145 +n07878283 +n07878479 +n07878647 +n07878785 +n07878926 +n07879072 +n07879174 +n07879350 +n07879450 +n07879560 +n07879659 +n07879821 +n07879953 +n07880080 +n07880213 +n07880325 +n07880458 +n07880751 +n07880880 +n07880968 +n07881117 +n07881205 +n07881404 +n07881525 +n07881625 +n07881800 +n07882420 +n07882497 +n07882886 +n07883031 +n07883156 +n07883251 +n07883384 +n07883510 +n07883661 +n07884567 +n07885705 +n07886057 +n07886176 +n07886317 +n07886463 +n07886572 +n07886849 +n07887099 +n07887192 +n07887304 +n07887461 +n07887634 +n07887967 +n07888058 +n07888229 +n07888378 +n07888465 +n07888816 +n07888909 +n07889193 +n07889274 +n07889510 +n07889814 +n07889990 +n07890068 +n07890226 +n07890352 +n07890540 +n07890617 +n07890750 +n07890890 +n07890970 +n07891095 +n07891189 +n07891309 +n07891433 +n07891726 +n07892418 +n07892512 +n07892813 +n07893253 +n07893425 +n07893528 +n07893642 +n07893792 +n07893891 +n07894102 +n07894298 +n07894451 +n07894551 +n07894703 +n07894799 +n07894965 +n07895100 +n07895237 +n07895435 +n07895595 +n07895710 +n07895839 +n07895962 +n07896060 +n07896165 +n07896287 +n07896422 +n07896560 +n07896661 +n07896765 +n07896893 +n07896994 +n07897116 +n07897200 +n07897438 +n07897600 +n07897750 +n07897865 +n07897975 +n07898117 +n07898247 +n07898333 +n07898443 +n07898617 +n07898745 +n07898895 +n07899003 +n07899108 +n07899292 +n07899434 +n07899533 +n07899660 +n07899769 +n07899899 +n07899976 +n07900225 +n07900406 +n07900616 +n07900734 +n07900825 +n07900958 +n07901355 +n07901457 +n07901587 +n07902121 +n07902336 +n07902443 +n07902520 +n07902698 +n07902799 +n07902937 +n07903101 +n07903208 +n07903543 +n07903643 +n07903731 +n07903841 +n07903962 +n07904072 +n07904293 +n07904395 +n07904637 +n07904760 +n07904865 +n07904934 +n07905038 +n07905296 +n07905386 +n07905474 +n07905618 +n07905770 +n07905979 +n07906111 +n07906284 +n07906572 +n07906718 +n07906877 +n07907037 +n07907161 +n07907342 +n07907429 +n07907548 +n07907831 +n07907943 +n07908411 +n07908567 +n07908647 +n07908812 +n07908923 +n07909129 +n07909231 +n07909362 +n07909504 +n07909593 +n07909714 +n07909811 +n07909954 +n07910048 +n07910152 +n07910245 +n07910379 +n07910538 +n07910656 +n07910799 +n07910970 +n07911061 +n07911249 +n07911371 +n07911677 +n07912093 +n07912211 +n07913180 +n07913300 +n07913393 +n07913537 +n07913644 +n07913774 +n07913882 +n07914006 +n07914128 +n07914271 +n07914413 +n07914586 +n07914686 +n07914777 +n07914887 +n07914995 +n07915094 +n07915213 +n07915366 +n07915491 +n07915618 +n07915800 +n07915918 +n07916041 +n07916183 +n07916319 +n07916437 +n07916582 +n07917133 +n07917272 +n07917392 +n07917507 +n07917618 +n07917791 +n07917874 +n07917951 +n07918028 +n07918193 +n07918309 +n07918706 +n07918879 +n07919165 +n07919310 +n07919441 +n07919572 +n07919665 +n07919787 +n07919894 +n07920052 +n07920222 +n07920349 +n07920540 +n07920663 +n07920872 +n07920989 +n07921090 +n07921239 +n07921360 +n07921455 +n07921615 +n07921834 +n07921948 +n07922041 +n07922147 +n07922512 +n07922607 +n07922764 +n07922955 +n07923748 +n07924033 +n07924276 +n07924366 +n07924443 +n07924560 +n07924655 +n07924747 +n07924834 +n07924955 +n07925116 +n07925229 +n07925327 +n07925423 +n07925500 +n07925608 +n07925708 +n07925808 +n07925966 +n07926250 +n07926346 +n07926442 +n07926540 +n07926785 +n07926920 +n07927070 +n07927197 +n07927512 +n07927716 +n07927836 +n07927931 +n07928163 +n07928264 +n07928367 +n07928488 +n07928578 +n07928696 +n07928790 +n07928887 +n07928998 +n07929172 +n07929351 +n07929519 +n07929940 +n07930062 +n07930205 +n07930315 +n07930433 +n07930554 +n07930864 +n07931001 +n07931096 +n07931280 +n07931452 +n07931612 +n07931733 +n07931870 +n07932039 +n07932323 +n07932454 +n07932614 +n07932762 +n07932841 +n07933154 +n07933274 +n07933530 +n07933652 +n07933799 +n07933891 +n07934032 +n07934152 +n07934282 +n07934373 +n07934530 +n07934678 +n07934800 +n07934908 +n07935043 +n07935152 +n07935288 +n07935379 +n07935504 +n07935737 +n07935878 +n07936015 +n07936093 +n07936263 +n07936459 +n07936548 +n07936745 +n07936979 +n07937069 +n07937344 +n07937461 +n07937621 +n07938007 +n07938149 +n07938313 +n07938594 +n07942152 +n07951464 +n07954211 +n07977870 +n08079613 +n08182379 +n08238463 +n08242223 +n08249459 +n08253141 +n08256735 +n08376250 +n08385989 +n08492354 +n08492461 +n08494231 +n08495908 +n08496334 +n08500819 +n08500989 +n08501887 +n08505018 +n08506347 +n08511017 +n08517010 +n08517676 +n08518171 +n08519299 +n08521623 +n08523340 +n08524735 +n08539072 +n08539276 +n08540532 +n08547468 +n08547544 +n08551296 +n08554440 +n08555333 +n08555710 +n08558770 +n08558963 +n08559155 +n08560295 +n08569482 +n08571275 +n08571642 +n08571898 +n08573674 +n08573842 +n08578517 +n08579266 +n08579352 +n08580944 +n08583292 +n08583455 +n08583554 +n08583682 +n08584914 +n08586978 +n08589670 +n08596076 +n08597579 +n08598301 +n08598568 +n08599174 +n08599292 +n08611339 +n08611421 +n08613733 +n08614632 +n08616050 +n08618831 +n08619112 +n08623676 +n08628141 +n08633683 +n08640531 +n08640739 +n08640962 +n08643267 +n08644045 +n08645104 +n08645212 +n08645318 +n08647264 +n08648917 +n08649711 +n08651104 +n08652376 +n08658309 +n08658918 +n08659242 +n08659331 +n08659446 +n08659861 +n08661878 +n08662427 +n08663051 +n08663703 +n08663860 +n08673039 +n08674344 +n08676253 +n08677424 +n08677801 +n08678783 +n08679167 +n08679269 +n08679562 +n08685188 +n08782627 +n08896327 +n09032191 +n09186592 +n09189157 +n09191635 +n09193551 +n09193705 +n09194227 +n09199101 +n09201998 +n09203827 +n09205509 +n09206896 +n09206985 +n09208496 +n09209025 +n09210862 +n09213434 +n09213565 +n09214060 +n09214269 +n09214916 +n09215023 +n09215437 +n09217230 +n09218315 +n09218494 +n09218641 +n09219233 +n09223487 +n09224725 +n09226869 +n09228055 +n09229709 +n09230041 +n09230202 +n09231117 +n09233446 +n09233603 +n09238926 +n09239302 +n09242389 +n09245515 +n09246464 +n09247410 +n09248153 +n09248399 +n09249034 +n09249155 +n09251407 +n09255070 +n09256479 +n09257843 +n09259025 +n09259219 +n09260907 +n09262690 +n09263912 +n09264803 +n09265620 +n09266604 +n09267854 +n09268007 +n09269341 +n09269472 +n09269882 +n09270160 +n09270657 +n09270735 +n09274152 +n09274305 +n09279986 +n09281252 +n09282208 +n09283193 +n09283405 +n09283514 +n09283767 +n09283866 +n09287415 +n09287968 +n09288635 +n09289331 +n09289596 +n09290350 +n09290444 +n09294877 +n09295210 +n09295946 +n09300306 +n09300905 +n09302616 +n09303008 +n09303528 +n09304750 +n09305031 +n09305898 +n09308572 +n09308743 +n09309046 +n09309168 +n09309292 +n09310616 +n09315159 +n09319604 +n09325824 +n09326662 +n09327077 +n09327538 +n09330378 +n09331251 +n09332890 +n09335693 +n09335809 +n09336555 +n09337048 +n09337253 +n09338013 +n09339810 +n09344198 +n09344324 +n09344724 +n09348460 +n09349648 +n09351905 +n09352849 +n09353815 +n09354511 +n09357346 +n09357447 +n09359803 +n09361517 +n09362316 +n09362945 +n09366017 +n09366317 +n09375606 +n09376198 +n09376526 +n09376786 +n09381242 +n09382099 +n09384106 +n09389867 +n09391386 +n09391644 +n09391774 +n09392402 +n09393524 +n09393605 +n09396465 +n09396608 +n09398076 +n09398677 +n09399592 +n09400584 +n09400987 +n09402944 +n09403086 +n09403211 +n09403427 +n09403734 +n09405078 +n09405787 +n09406793 +n09409512 +n09409752 +n09410224 +n09411189 +n09411295 +n09415584 +n09415671 +n09416076 +n09416890 +n09421031 +n09421799 +n09421951 +n09422190 +n09422631 +n09425019 +n09425344 +n09428293 +n09428628 +n09429630 +n09432283 +n09432990 +n09433312 +n09433442 +n09433839 +n09435739 +n09436444 +n09436708 +n09437454 +n09438844 +n09438940 +n09439032 +n09439213 +n09442595 +n09443281 +n09443641 +n09444783 +n09445008 +n09445289 +n09447666 +n09448690 +n09450163 +n09451237 +n09452291 +n09452395 +n09452760 +n09453008 +n09454153 +n09454412 +n09454744 +n09456207 +n09457979 +n09458269 +n09459979 +n09460046 +n09461069 +n09462600 +n09463226 +n09464486 +n09466678 +n09467696 +n09468604 +n09470027 +n09470222 +n09472413 +n09472597 +n09474010 +n09474412 +n09474765 +n09475044 +n09475179 +n09475925 +n09476123 +n09478210 +n09480959 +n09481120 +n09493983 +n09495962 +n09505153 +n09537660 +n09556121 +n09605110 +n09606009 +n09606527 +n09607630 +n09607782 +n09607903 +n09608709 +n09610255 +n09610405 +n09611722 +n09612700 +n09613118 +n09613191 +n09613690 +n09615336 +n09616573 +n09616922 +n09617161 +n09617435 +n09617577 +n09617696 +n09618760 +n09618880 +n09618957 +n09619168 +n09619452 +n09620078 +n09620794 +n09621232 +n09622049 +n09622302 +n09624168 +n09624559 +n09624899 +n09625401 +n09626238 +n09627807 +n09627906 +n09629065 +n09629246 +n09629752 +n09631129 +n09632274 +n09632518 +n09633969 +n09635534 +n09635635 +n09635973 +n09636339 +n09637339 +n09638454 +n09638875 +n09639382 +n09639919 +n09640327 +n09640715 +n09641002 +n09641578 +n09643799 +n09644152 +n09644657 +n09648743 +n09648911 +n09649067 +n09650729 +n09650839 +n09650989 +n09651123 +n09651968 +n09652149 +n09653144 +n09653438 +n09654079 +n09654518 +n09654898 +n09655213 +n09655466 +n09656077 +n09657206 +n09657748 +n09658254 +n09658398 +n09658815 +n09658921 +n09659039 +n09659188 +n09660010 +n09660240 +n09661873 +n09662038 +n09662661 +n09662951 +n09663248 +n09663786 +n09663999 +n09664556 +n09664908 +n09665367 +n09665545 +n09666349 +n09666476 +n09666883 +n09667358 +n09668199 +n09668437 +n09668562 +n09668988 +n09669631 +n09670280 +n09670521 +n09670909 +n09671089 +n09672590 +n09672725 +n09672840 +n09673091 +n09674412 +n09674786 +n09675045 +n09675673 +n09675799 +n09675922 +n09676021 +n09676247 +n09676884 +n09677427 +n09678747 +n09679028 +n09679170 +n09679925 +n09680908 +n09681107 +n09681234 +n09681973 +n09683180 +n09683757 +n09683924 +n09684082 +n09684901 +n09685233 +n09685806 +n09686262 +n09686401 +n09688233 +n09688804 +n09689435 +n09689958 +n09690083 +n09690208 +n09690496 +n09690621 +n09690864 +n09691604 +n09691729 +n09691858 +n09692125 +n09692915 +n09693244 +n09693982 +n09694664 +n09694771 +n09695019 +n09695132 +n09695514 +n09695620 +n09695979 +n09696456 +n09696585 +n09696763 +n09697401 +n09697986 +n09698644 +n09699020 +n09699642 +n09700125 +n09700964 +n09701148 +n09701833 +n09702134 +n09702673 +n09703101 +n09703344 +n09703485 +n09703708 +n09703809 +n09703932 +n09704057 +n09704157 +n09704283 +n09705003 +n09705124 +n09705671 +n09705784 +n09706029 +n09706255 +n09707061 +n09707289 +n09707735 +n09708750 +n09708889 +n09709531 +n09709673 +n09710041 +n09710164 +n09710886 +n09711132 +n09711435 +n09712324 +n09712448 +n09712696 +n09712967 +n09713108 +n09714120 +n09714694 +n09715165 +n09715303 +n09715427 +n09716047 +n09716933 +n09717233 +n09718217 +n09718811 +n09718936 +n09719309 +n09719794 +n09720033 +n09720256 +n09720595 +n09720702 +n09720842 +n09721244 +n09721444 +n09722064 +n09722658 +n09722817 +n09723067 +n09723819 +n09723944 +n09724234 +n09724533 +n09724656 +n09724785 +n09725000 +n09725229 +n09725546 +n09725653 +n09725772 +n09725935 +n09726621 +n09726811 +n09727440 +n09727826 +n09728137 +n09728285 +n09729062 +n09729156 +n09730077 +n09730204 +n09730824 +n09731343 +n09731436 +n09731571 +n09732170 +n09733459 +n09733793 +n09734185 +n09734450 +n09734535 +n09734639 +n09735258 +n09735654 +n09736485 +n09736798 +n09736945 +n09737050 +n09737161 +n09737453 +n09738121 +n09738400 +n09740724 +n09741074 +n09741331 +n09741722 +n09741816 +n09741904 +n09741999 +n09742101 +n09742315 +n09742927 +n09743487 +n09743601 +n09743792 +n09744161 +n09744346 +n09744462 +n09744679 +n09744834 +n09745229 +n09745324 +n09745834 +n09745933 +n09746936 +n09747191 +n09747495 +n09748101 +n09748408 +n09748648 +n09748889 +n09749386 +n09750282 +n09750641 +n09750770 +n09750891 +n09751076 +n09751496 +n09751622 +n09751895 +n09752023 +n09752519 +n09753348 +n09753792 +n09754152 +n09754217 +n09754633 +n09754907 +n09755086 +n09755241 +n09755555 +n09755788 +n09755893 +n09756049 +n09756195 +n09756961 +n09757449 +n09758173 +n09758885 +n09759501 +n09760290 +n09760609 +n09760913 +n09761068 +n09761753 +n09762011 +n09762385 +n09763272 +n09763784 +n09764201 +n09764598 +n09764732 +n09764900 +n09765118 +n09765278 +n09767197 +n09769076 +n09769525 +n09769929 +n09770179 +n09770359 +n09771435 +n09772330 +n09772746 +n09772930 +n09773962 +n09774167 +n09774783 +n09775907 +n09776346 +n09776642 +n09776807 +n09777870 +n09778266 +n09778537 +n09778783 +n09778927 +n09779124 +n09779280 +n09779461 +n09779790 +n09780395 +n09780828 +n09780984 +n09781398 +n09781504 +n09781650 +n09782167 +n09782397 +n09782855 +n09783537 +n09783776 +n09783884 +n09784043 +n09784160 +n09784564 +n09785236 +n09785659 +n09785891 +n09786115 +n09787534 +n09787765 +n09788073 +n09788237 +n09789150 +n09789566 +n09789898 +n09790047 +n09790482 +n09791014 +n09791419 +n09791816 +n09792125 +n09792555 +n09792969 +n09793141 +n09793352 +n09793946 +n09794550 +n09794668 +n09795010 +n09795124 +n09795334 +n09796809 +n09796974 +n09797742 +n09797873 +n09797998 +n09798096 +n09800469 +n09800964 +n09801102 +n09801275 +n09801533 +n09802445 +n09802641 +n09802951 +n09804230 +n09805151 +n09805324 +n09805475 +n09806944 +n09807075 +n09808080 +n09808591 +n09809279 +n09809538 +n09809749 +n09809925 +n09810166 +n09811568 +n09811712 +n09811852 +n09813219 +n09814252 +n09814381 +n09814488 +n09814567 +n09814660 +n09815455 +n09815790 +n09816654 +n09816771 +n09817174 +n09817386 +n09818022 +n09819477 +n09820044 +n09820263 +n09821831 +n09822830 +n09823153 +n09823287 +n09823502 +n09823832 +n09824135 +n09824609 +n09825096 +n09825750 +n09826204 +n09826605 +n09826821 +n09827246 +n09827363 +n09828216 +n09828403 +n09828988 +n09830194 +n09830400 +n09830629 +n09830759 +n09830926 +n09831962 +n09832456 +n09832633 +n09832978 +n09833111 +n09833275 +n09833441 +n09833536 +n09833751 +n09833997 +n09834258 +n09834378 +n09834699 +n09834885 +n09835017 +n09835153 +n09835230 +n09835348 +n09835506 +n09836160 +n09836343 +n09836519 +n09836786 +n09837459 +n09837720 +n09838295 +n09838370 +n09838621 +n09839702 +n09840217 +n09840435 +n09840520 +n09841188 +n09841515 +n09841696 +n09842047 +n09842288 +n09842395 +n09842528 +n09842823 +n09843443 +n09843602 +n09843716 +n09843824 +n09844457 +n09844898 +n09845401 +n09845849 +n09846142 +n09846469 +n09846586 +n09846755 +n09846894 +n09847267 +n09847344 +n09847543 +n09848110 +n09848489 +n09849167 +n09849990 +n09850760 +n09850974 +n09851165 +n09851575 +n09853541 +n09853645 +n09853881 +n09854218 +n09854421 +n09854915 +n09855433 +n09856401 +n09856671 +n09856827 +n09857007 +n09858165 +n09858299 +n09858733 +n09859152 +n09859285 +n09859684 +n09859975 +n09861287 +n09861599 +n09861863 +n09861946 +n09862183 +n09862621 +n09863031 +n09863339 +n09863749 +n09863936 +n09864632 +n09864968 +n09865068 +n09865162 +n09865398 +n09865672 +n09865744 +n09866115 +n09866354 +n09866559 +n09866661 +n09866817 +n09866922 +n09867069 +n09867154 +n09867311 +n09868270 +n09868782 +n09868899 +n09869317 +n09869447 +n09869578 +n09870096 +n09871095 +n09871229 +n09871681 +n09871867 +n09871952 +n09872066 +n09872557 +n09873348 +n09873473 +n09873769 +n09873899 +n09874428 +n09874725 +n09874862 +n09875025 +n09875979 +n09876701 +n09877288 +n09877587 +n09877750 +n09877951 +n09878921 +n09879552 +n09880189 +n09880741 +n09881265 +n09881358 +n09881895 +n09883047 +n09883452 +n09883807 +n09885059 +n09885866 +n09886403 +n09886540 +n09888635 +n09889065 +n09889170 +n09889691 +n09889941 +n09890192 +n09890749 +n09891730 +n09892262 +n09892513 +n09892693 +n09893191 +n09893344 +n09893502 +n09893600 +n09894143 +n09894445 +n09894654 +n09894909 +n09895222 +n09895480 +n09895561 +n09895701 +n09895902 +n09896170 +n09896311 +n09896401 +n09896685 +n09896826 +n09898020 +n09899289 +n09899671 +n09899782 +n09899929 +n09901337 +n09901502 +n09901642 +n09901786 +n09901921 +n09902128 +n09902353 +n09902731 +n09902851 +n09902954 +n09903153 +n09903501 +n09903639 +n09903936 +n09904208 +n09904837 +n09905050 +n09905185 +n09905530 +n09906293 +n09906449 +n09906704 +n09907804 +n09908769 +n09909660 +n09909929 +n09910222 +n09910374 +n09910556 +n09910840 +n09911226 +n09912431 +n09912681 +n09912907 +n09912995 +n09913329 +n09913455 +n09913593 +n09915434 +n09915651 +n09916348 +n09917214 +n09917345 +n09917481 +n09917593 +n09918248 +n09918554 +n09918867 +n09919061 +n09919200 +n09919451 +n09919899 +n09920106 +n09920283 +n09920901 +n09921034 +n09923003 +n09923186 +n09923418 +n09923561 +n09923673 +n09923996 +n09924106 +n09924195 +n09924313 +n09924437 +n09924996 +n09927089 +n09927451 +n09928136 +n09928451 +n09928845 +n09929202 +n09929298 +n09929577 +n09930257 +n09930628 +n09930876 +n09931165 +n09931418 +n09931640 +n09932098 +n09932336 +n09932508 +n09932788 +n09933020 +n09933098 +n09933842 +n09933972 +n09934337 +n09934488 +n09934774 +n09935107 +n09935434 +n09936825 +n09936892 +n09937056 +n09937688 +n09937802 +n09937903 +n09938080 +n09938449 +n09938991 +n09940725 +n09940818 +n09941089 +n09941571 +n09941787 +n09941964 +n09942697 +n09942970 +n09943239 +n09943811 +n09944022 +n09944160 +n09944430 +n09945021 +n09945223 +n09945319 +n09945603 +n09945745 +n09946814 +n09947127 +n09950457 +n09950728 +n09951070 +n09951274 +n09951524 +n09951616 +n09952163 +n09953052 +n09953350 +n09953615 +n09954355 +n09954639 +n09955406 +n09955944 +n09956578 +n09957523 +n09958133 +n09958292 +n09958447 +n09958569 +n09959142 +n09959658 +n09960688 +n09961198 +n09961331 +n09961469 +n09961605 +n09961739 +n09962966 +n09964202 +n09964411 +n09965515 +n09965787 +n09966470 +n09966554 +n09967063 +n09967406 +n09967555 +n09967816 +n09967967 +n09968259 +n09968652 +n09968741 +n09968845 +n09970088 +n09970192 +n09970402 +n09970822 +n09971273 +n09971385 +n09971839 +n09972010 +n09972458 +n09972587 +n09974648 +n09975425 +n09976024 +n09976283 +n09976429 +n09976728 +n09976917 +n09978442 +n09979321 +n09979913 +n09980458 +n09980805 +n09980985 +n09981092 +n09981278 +n09981540 +n09981939 +n09982152 +n09982525 +n09983314 +n09983572 +n09983889 +n09984960 +n09985470 +n09985809 +n09985978 +n09986450 +n09986700 +n09986904 +n09987045 +n09987161 +n09987239 +n09988063 +n09988311 +n09988493 +n09988703 +n09989502 +n09990415 +n09990690 +n09990777 +n09991740 +n09991867 +n09992538 +n09992837 +n09993252 +n09993651 +n09994400 +n09994673 +n09994808 +n09994878 +n09995829 +n09996039 +n09996304 +n09996481 +n09997622 +n09998788 +n09999135 +n10000294 +n10000459 +n10000787 +n10001217 +n10001481 +n10001764 +n10002257 +n10002760 +n10003476 +n10004718 +n10005006 +n10005934 +n10006177 +n10006748 +n10007684 +n10007809 +n10007995 +n10008123 +n10008254 +n10009162 +n10009276 +n10009484 +n10009671 +n10010062 +n10010243 +n10010632 +n10010767 +n10010864 +n10011360 +n10011486 +n10012484 +n10013811 +n10015215 +n10015485 +n10015792 +n10015897 +n10017272 +n10017422 +n10018747 +n10018861 +n10019072 +n10019187 +n10019406 +n10020366 +n10020533 +n10020670 +n10020807 +n10020890 +n10022908 +n10023264 +n10023506 +n10023656 +n10024025 +n10024362 +n10024937 +n10025060 +n10025295 +n10025391 +n10025635 +n10026976 +n10027246 +n10027590 +n10028402 +n10028541 +n10029068 +n10030277 +n10032987 +n10033412 +n10033572 +n10033663 +n10033888 +n10034201 +n10034614 +n10035952 +n10036266 +n10036444 +n10036692 +n10036929 +n10037080 +n10037385 +n10037588 +n10037922 +n10038119 +n10038409 +n10038620 +n10039271 +n10039946 +n10040240 +n10040698 +n10040945 +n10041373 +n10041887 +n10042690 +n10042845 +n10043024 +n10043491 +n10043643 +n10044682 +n10044879 +n10047199 +n10047459 +n10048117 +n10048367 +n10048612 +n10048836 +n10049363 +n10050043 +n10050880 +n10051026 +n10051761 +n10051861 +n10051975 +n10052694 +n10053439 +n10053808 +n10054657 +n10055297 +n10055410 +n10055566 +n10055730 +n10055847 +n10056103 +n10056611 +n10056719 +n10057271 +n10058411 +n10058962 +n10059067 +n10060075 +n10060175 +n10060352 +n10061043 +n10061195 +n10061431 +n10061882 +n10062042 +n10062176 +n10062275 +n10062492 +n10062594 +n10062716 +n10062905 +n10062996 +n10063635 +n10063919 +n10064831 +n10064977 +n10065758 +n10066206 +n10066314 +n10067011 +n10067305 +n10067600 +n10067968 +n10068234 +n10068425 +n10069296 +n10069981 +n10070108 +n10070377 +n10070449 +n10070563 +n10070711 +n10071332 +n10071557 +n10072054 +n10074249 +n10074578 +n10074735 +n10074841 +n10075299 +n10075693 +n10076224 +n10076483 +n10076604 +n10076957 +n10077106 +n10077593 +n10077879 +n10078131 +n10078719 +n10078806 +n10079399 +n10079893 +n10080117 +n10080508 +n10080869 +n10081204 +n10081842 +n10082043 +n10082299 +n10082423 +n10082562 +n10082687 +n10082997 +n10083677 +n10083823 +n10084043 +n10084295 +n10085101 +n10085869 +n10086383 +n10086744 +n10087434 +n10087736 +n10088200 +n10090745 +n10091349 +n10091450 +n10091564 +n10091651 +n10091861 +n10091997 +n10092488 +n10092643 +n10092794 +n10092978 +n10093167 +n10093475 +n10093818 +n10094320 +n10094584 +n10094782 +n10095265 +n10095420 +n10095769 +n10095869 +n10096126 +n10096508 +n10097262 +n10097477 +n10097590 +n10097842 +n10097995 +n10098245 +n10098388 +n10098517 +n10098624 +n10098710 +n10098862 +n10099002 +n10099375 +n10101308 +n10101634 +n10101981 +n10102800 +n10103155 +n10103228 +n10103921 +n10104064 +n10104487 +n10104756 +n10104888 +n10105085 +n10105733 +n10105906 +n10106387 +n10106509 +n10106995 +n10107173 +n10107303 +n10108018 +n10108089 +n10108464 +n10108832 +n10109443 +n10109662 +n10109826 +n10110093 +n10110731 +n10110893 +n10111358 +n10111779 +n10111903 +n10112129 +n10113249 +n10113583 +n10113869 +n10114476 +n10114550 +n10114662 +n10115430 +n10115946 +n10116370 +n10116478 +n10116702 +n10117017 +n10117267 +n10117415 +n10117739 +n10117851 +n10118301 +n10118743 +n10118844 +n10119609 +n10120330 +n10120671 +n10121026 +n10121246 +n10121714 +n10121800 +n10122300 +n10122531 +n10123122 +n10123844 +n10126177 +n10126424 +n10126708 +n10127186 +n10127689 +n10128519 +n10128748 +n10129338 +n10129825 +n10130686 +n10130877 +n10131151 +n10131268 +n10131590 +n10131815 +n10132035 +n10132502 +n10134178 +n10134396 +n10134760 +n10134982 +n10135129 +n10135197 +n10135297 +n10136615 +n10136959 +n10137825 +n10138369 +n10138472 +n10139077 +n10139651 +n10140051 +n10140597 +n10140683 +n10140783 +n10140929 +n10141364 +n10141732 +n10142166 +n10142391 +n10142537 +n10142747 +n10142946 +n10143172 +n10143595 +n10143725 +n10144338 +n10145239 +n10145340 +n10145480 +n10145590 +n10145774 +n10145902 +n10146002 +n10146104 +n10146416 +n10146816 +n10146927 +n10147121 +n10147262 +n10147710 +n10147935 +n10148035 +n10148305 +n10148825 +n10149436 +n10149867 +n10150071 +n10150794 +n10150940 +n10151133 +n10151261 +n10151367 +n10151570 +n10151760 +n10152306 +n10152616 +n10152763 +n10153155 +n10153414 +n10153594 +n10153865 +n10154013 +n10154186 +n10154601 +n10155222 +n10155600 +n10155849 +n10156629 +n10156831 +n10157016 +n10157128 +n10157271 +n10158506 +n10159045 +n10159289 +n10159533 +n10160188 +n10160280 +n10160412 +n10161622 +n10162016 +n10162194 +n10162354 +n10164025 +n10164233 +n10164492 +n10165448 +n10166189 +n10166394 +n10167152 +n10167361 +n10167565 +n10167838 +n10168012 +n10168183 +n10168584 +n10168837 +n10169147 +n10169241 +n10169419 +n10169796 +n10170060 +n10170681 +n10170866 +n10171219 +n10171456 +n10171567 +n10172080 +n10173410 +n10173579 +n10173665 +n10173771 +n10174253 +n10174330 +n10174445 +n10174589 +n10174695 +n10174971 +n10175248 +n10175725 +n10176913 +n10177150 +n10178077 +n10178216 +n10179069 +n10180580 +n10180791 +n10180923 +n10181445 +n10181547 +n10181799 +n10181878 +n10182190 +n10182402 +n10183347 +n10183931 +n10184505 +n10185148 +n10185483 +n10185793 +n10186068 +n10186143 +n10186216 +n10186350 +n10186686 +n10186774 +n10187130 +n10187491 +n10187990 +n10188715 +n10188856 +n10188957 +n10189278 +n10189597 +n10190122 +n10190516 +n10191001 +n10191388 +n10191613 +n10192839 +n10193650 +n10194231 +n10194775 +n10195056 +n10195155 +n10195261 +n10195593 +n10196404 +n10196725 +n10197392 +n10198437 +n10198832 +n10199251 +n10200246 +n10200781 +n10202225 +n10202624 +n10202763 +n10203949 +n10204177 +n10204833 +n10205231 +n10205344 +n10205457 +n10205714 +n10206173 +n10206506 +n10206629 +n10207077 +n10207169 +n10208189 +n10208847 +n10208950 +n10209082 +n10209731 +n10210137 +n10210512 +n10210648 +n10210911 +n10211036 +n10211666 +n10211830 +n10212231 +n10212501 +n10212780 +n10213034 +n10213429 +n10214062 +n10214390 +n10215623 +n10216106 +n10216403 +n10217208 +n10218043 +n10218164 +n10218292 +n10219240 +n10219453 +n10219879 +n10220080 +n10220924 +n10221312 +n10221520 +n10222170 +n10222259 +n10222497 +n10222716 +n10223069 +n10223177 +n10223606 +n10224578 +n10225219 +n10225931 +n10226413 +n10227166 +n10227266 +n10227393 +n10227490 +n10227698 +n10227793 +n10227985 +n10228278 +n10228468 +n10228592 +n10228712 +n10229883 +n10230216 +n10233248 +n10235024 +n10235269 +n10235385 +n10236304 +n10236521 +n10236842 +n10237069 +n10237196 +n10237464 +n10237556 +n10237676 +n10237799 +n10238272 +n10238375 +n10239928 +n10240082 +n10240235 +n10240417 +n10240821 +n10241024 +n10241300 +n10242328 +n10243137 +n10243273 +n10243483 +n10243664 +n10243872 +n10244108 +n10244359 +n10244913 +n10245029 +n10245341 +n10245507 +n10245639 +n10245863 +n10246317 +n10246395 +n10246703 +n10247358 +n10247880 +n10248008 +n10248198 +n10248377 +n10249191 +n10249270 +n10249459 +n10249869 +n10249950 +n10250712 +n10251329 +n10251612 +n10252075 +n10252222 +n10252354 +n10252547 +n10253122 +n10253296 +n10253479 +n10253611 +n10253703 +n10255459 +n10257221 +n10258602 +n10258786 +n10259348 +n10259780 +n10259997 +n10260473 +n10260706 +n10260800 +n10261211 +n10261511 +n10261624 +n10261862 +n10262343 +n10262445 +n10262561 +n10262655 +n10262880 +n10263146 +n10263411 +n10263790 +n10265281 +n10265801 +n10265891 +n10266016 +n10266328 +n10266848 +n10267166 +n10267311 +n10267865 +n10268629 +n10269199 +n10269289 +n10271677 +n10272782 +n10272913 +n10273064 +n10274173 +n10274318 +n10274815 +n10275249 +n10275395 +n10275848 +n10276045 +n10276477 +n10276942 +n10277027 +n10277638 +n10277815 +n10277912 +n10278456 +n10279018 +n10279778 +n10280034 +n10280130 +n10280598 +n10280674 +n10281546 +n10281770 +n10281896 +n10282482 +n10282672 +n10283170 +n10283366 +n10283546 +n10284064 +n10284871 +n10284965 +n10286282 +n10286539 +n10286749 +n10288964 +n10289039 +n10289176 +n10289462 +n10289766 +n10290422 +n10290541 +n10290813 +n10290919 +n10291110 +n10291469 +n10291822 +n10291942 +n10292316 +n10293332 +n10293590 +n10293861 +n10294020 +n10294139 +n10295371 +n10295479 +n10296176 +n10296444 +n10297234 +n10297367 +n10297531 +n10297841 +n10298202 +n10298271 +n10298647 +n10298912 +n10299125 +n10299250 +n10299700 +n10299875 +n10300041 +n10300154 +n10300303 +n10300500 +n10300654 +n10300829 +n10302576 +n10302700 +n10302905 +n10303037 +n10303814 +n10304086 +n10304650 +n10304914 +n10305635 +n10305802 +n10306004 +n10306279 +n10306496 +n10306595 +n10306890 +n10307114 +n10308066 +n10308168 +n10308275 +n10308504 +n10308653 +n10308732 +n10310783 +n10311506 +n10311661 +n10312287 +n10312491 +n10312600 +n10313000 +n10313239 +n10313441 +n10313724 +n10314054 +n10314182 +n10314517 +n10314836 +n10315217 +n10315456 +n10315561 +n10315730 +n10316360 +n10316527 +n10316862 +n10317007 +n10317500 +n10317963 +n10318293 +n10318607 +n10318686 +n10319313 +n10320484 +n10320863 +n10321126 +n10321340 +n10321632 +n10321882 +n10322238 +n10323634 +n10323752 +n10323999 +n10324560 +n10325549 +n10325774 +n10326776 +n10327143 +n10327987 +n10328123 +n10328328 +n10328437 +n10328696 +n10328941 +n10329035 +n10330593 +n10330931 +n10331098 +n10331167 +n10331258 +n10331347 +n10331841 +n10332110 +n10332385 +n10332861 +n10332953 +n10333044 +n10333165 +n10333317 +n10333439 +n10333601 +n10333838 +n10334009 +n10334461 +n10334782 +n10335246 +n10335801 +n10335931 +n10336411 +n10336904 +n10337488 +n10338231 +n10338391 +n10339179 +n10339251 +n10339717 +n10340312 +n10341243 +n10341343 +n10341446 +n10341573 +n10341955 +n10342180 +n10342367 +n10342543 +n10342893 +n10342992 +n10343088 +n10343355 +n10343449 +n10343554 +n10343869 +n10344121 +n10344203 +n10344319 +n10344656 +n10344774 +n10345015 +n10345100 +n10345302 +n10345422 +n10345659 +n10346015 +n10347204 +n10347446 +n10348526 +n10349243 +n10349750 +n10349836 +n10350220 +n10350774 +n10351064 +n10353016 +n10353355 +n10353928 +n10354265 +n10354754 +n10355142 +n10355306 +n10355449 +n10355688 +n10355806 +n10356450 +n10356877 +n10357012 +n10357613 +n10357737 +n10358032 +n10358124 +n10358575 +n10359117 +n10359422 +n10359546 +n10359659 +n10360366 +n10360747 +n10361060 +n10361194 +n10361296 +n10361525 +n10362003 +n10362319 +n10362557 +n10363445 +n10363573 +n10364198 +n10364502 +n10365514 +n10366145 +n10366276 +n10366966 +n10368291 +n10368528 +n10368624 +n10368711 +n10368798 +n10369095 +n10369317 +n10369417 +n10369528 +n10369699 +n10369955 +n10370381 +n10370955 +n10371052 +n10371221 +n10371330 +n10371450 +n10373390 +n10373525 +n10374541 +n10374849 +n10374943 +n10375052 +n10375314 +n10375402 +n10376523 +n10376890 +n10377021 +n10377185 +n10377291 +n10377542 +n10377633 +n10378026 +n10378113 +n10378780 +n10379376 +n10380126 +n10380499 +n10380672 +n10381804 +n10381981 +n10382157 +n10382302 +n10382480 +n10382710 +n10382825 +n10383094 +n10383237 +n10383505 +n10383816 +n10384214 +n10384392 +n10384496 +n10385566 +n10386196 +n10386754 +n10386874 +n10386984 +n10387196 +n10387324 +n10387836 +n10389865 +n10389976 +n10390600 +n10390698 +n10390807 +n10391416 +n10393909 +n10394434 +n10394786 +n10395073 +n10395209 +n10395390 +n10395828 +n10396106 +n10396337 +n10396727 +n10396908 +n10397001 +n10397142 +n10397392 +n10399130 +n10400003 +n10400108 +n10400205 +n10400437 +n10400618 +n10400998 +n10401204 +n10401331 +n10401639 +n10402709 +n10402824 +n10403633 +n10403876 +n10404426 +n10404998 +n10405540 +n10405694 +n10406266 +n10406391 +n10406765 +n10407310 +n10407954 +n10408809 +n10409459 +n10409752 +n10410246 +n10410996 +n10411356 +n10411551 +n10411867 +n10414239 +n10414768 +n10414865 +n10415037 +n10416567 +n10417288 +n10417424 +n10417551 +n10417682 +n10417843 +n10417969 +n10418101 +n10418735 +n10419047 +n10419472 +n10419630 +n10419785 +n10420031 +n10420277 +n10420507 +n10420649 +n10421016 +n10421470 +n10421956 +n10422405 +n10425946 +n10426454 +n10426630 +n10427223 +n10427359 +n10427764 +n10428004 +n10431122 +n10431625 +n10432189 +n10432441 +n10432875 +n10432957 +n10433077 +n10433452 +n10433610 +n10433737 +n10435169 +n10435251 +n10435716 +n10435988 +n10436334 +n10437014 +n10437137 +n10437262 +n10437698 +n10438172 +n10438619 +n10438842 +n10439373 +n10439523 +n10439727 +n10439851 +n10441037 +n10441124 +n10441694 +n10441962 +n10442093 +n10442232 +n10442417 +n10442573 +n10443032 +n10443659 +n10443830 +n10444194 +n10448322 +n10448455 +n10449664 +n10450038 +n10450161 +n10450303 +n10451450 +n10451590 +n10451858 +n10453184 +n10455619 +n10456070 +n10456138 +n10456696 +n10457214 +n10457444 +n10457903 +n10458111 +n10458356 +n10458596 +n10459882 +n10460033 +n10461060 +n10462588 +n10462751 +n10462860 +n10464052 +n10464542 +n10464711 +n10464870 +n10465002 +n10465451 +n10465831 +n10466198 +n10466564 +n10466918 +n10467179 +n10467395 +n10468750 +n10469611 +n10469874 +n10470779 +n10471640 +n10471732 +n10471859 +n10472129 +n10472447 +n10473453 +n10473562 +n10473789 +n10473917 +n10474064 +n10474343 +n10474446 +n10474645 +n10475835 +n10475940 +n10476467 +n10477713 +n10477955 +n10478118 +n10478293 +n10478462 +n10478827 +n10478960 +n10479135 +n10479328 +n10481167 +n10481268 +n10482054 +n10482220 +n10482587 +n10482921 +n10483138 +n10483395 +n10483799 +n10483890 +n10484858 +n10485298 +n10485883 +n10486166 +n10486236 +n10486561 +n10487182 +n10487363 +n10487592 +n10488016 +n10488309 +n10488656 +n10489426 +n10490421 +n10491998 +n10492086 +n10492727 +n10493199 +n10493419 +n10493685 +n10493835 +n10493922 +n10494195 +n10494373 +n10495167 +n10495421 +n10495555 +n10495756 +n10496393 +n10496489 +n10497135 +n10497534 +n10497645 +n10498046 +n10498699 +n10498816 +n10498986 +n10499110 +n10499232 +n10499355 +n10499631 +n10499857 +n10500217 +n10500419 +n10500603 +n10500824 +n10500942 +n10501453 +n10501635 +n10502046 +n10502329 +n10502950 +n10503818 +n10504090 +n10504206 +n10505347 +n10505613 +n10505732 +n10505942 +n10506336 +n10506544 +n10506915 +n10507070 +n10507380 +n10507482 +n10507565 +n10507692 +n10508141 +n10508379 +n10508710 +n10509063 +n10509161 +n10509810 +n10510245 +n10510974 +n10511771 +n10512201 +n10512372 +n10512708 +n10512859 +n10513509 +n10513823 +n10513938 +n10514051 +n10514121 +n10514255 +n10514429 +n10514784 +n10515863 +n10516527 +n10517137 +n10517283 +n10518349 +n10519126 +n10519494 +n10519984 +n10520286 +n10520544 +n10520964 +n10521100 +n10521662 +n10521853 +n10522035 +n10522324 +n10522759 +n10523341 +n10524076 +n10524223 +n10524869 +n10525134 +n10525436 +n10525617 +n10525878 +n10526534 +n10527147 +n10527334 +n10528023 +n10528148 +n10528493 +n10529231 +n10530150 +n10530383 +n10530571 +n10530959 +n10531109 +n10531445 +n10531838 +n10533874 +n10533983 +n10536134 +n10536274 +n10536416 +n10537708 +n10537906 +n10538629 +n10538733 +n10538853 +n10539015 +n10539160 +n10539278 +n10540114 +n10540252 +n10540656 +n10541833 +n10542608 +n10542761 +n10542888 +n10543161 +n10543937 +n10544232 +n10544748 +n10545792 +n10546428 +n10546633 +n10548419 +n10548537 +n10548681 +n10549510 +n10550252 +n10550369 +n10550468 +n10551576 +n10552393 +n10553140 +n10553235 +n10554024 +n10554141 +n10554846 +n10555059 +n10555430 +n10556033 +n10556518 +n10556704 +n10556825 +n10557246 +n10557854 +n10559009 +n10559288 +n10559508 +n10559683 +n10559996 +n10560106 +n10560637 +n10561222 +n10561320 +n10561736 +n10562135 +n10562283 +n10562509 +n10562968 +n10563314 +n10563403 +n10563711 +n10564098 +n10565502 +n10565667 +n10566072 +n10567613 +n10567722 +n10567848 +n10568200 +n10568358 +n10568443 +n10568608 +n10568915 +n10569011 +n10569179 +n10570019 +n10570704 +n10571907 +n10572706 +n10572889 +n10573957 +n10574311 +n10574538 +n10574840 +n10575463 +n10575594 +n10575787 +n10576223 +n10576316 +n10576676 +n10576818 +n10576962 +n10577182 +n10577284 +n10577710 +n10577820 +n10578021 +n10578162 +n10578471 +n10578656 +n10579062 +n10579549 +n10580030 +n10580437 +n10580535 +n10581648 +n10581890 +n10582604 +n10582746 +n10583387 +n10583790 +n10585077 +n10585217 +n10585628 +n10586166 +n10586265 +n10586444 +n10586903 +n10586998 +n10588074 +n10588357 +n10588724 +n10588965 +n10589666 +n10590146 +n10590239 +n10590452 +n10590903 +n10591072 +n10591811 +n10592049 +n10592811 +n10593521 +n10594147 +n10594523 +n10594857 +n10595164 +n10595647 +n10596517 +n10596899 +n10597505 +n10597745 +n10597889 +n10598013 +n10598181 +n10598459 +n10598904 +n10599215 +n10599806 +n10601234 +n10601362 +n10602119 +n10602470 +n10602985 +n10603528 +n10603851 +n10604275 +n10604380 +n10604634 +n10604880 +n10604979 +n10605253 +n10605737 +n10607291 +n10607478 +n10609092 +n10609198 +n10610465 +n10610850 +n10611267 +n10611613 +n10612210 +n10612373 +n10612518 +n10613996 +n10614507 +n10614629 +n10615179 +n10615334 +n10616578 +n10617024 +n10617193 +n10617397 +n10618234 +n10618342 +n10618465 +n10618685 +n10618848 +n10619492 +n10619642 +n10619888 +n10620212 +n10620586 +n10620758 +n10621294 +n10621400 +n10621514 +n10622053 +n10624074 +n10624310 +n10624437 +n10624540 +n10625860 +n10626630 +n10627252 +n10628097 +n10628644 +n10629329 +n10629647 +n10629939 +n10630093 +n10630188 +n10631131 +n10631309 +n10631654 +n10632576 +n10633298 +n10633450 +n10634464 +n10634849 +n10634990 +n10635788 +n10636488 +n10637483 +n10638922 +n10639238 +n10639359 +n10639637 +n10639817 +n10641223 +n10642596 +n10642705 +n10643095 +n10643837 +n10643937 +n10644598 +n10645017 +n10645223 +n10646032 +n10646140 +n10646433 +n10646641 +n10646780 +n10646942 +n10647745 +n10648237 +n10648696 +n10649197 +n10649308 +n10650162 +n10652605 +n10652703 +n10654015 +n10654211 +n10654321 +n10654827 +n10654932 +n10655169 +n10655442 +n10655594 +n10655730 +n10655986 +n10656120 +n10656223 +n10656969 +n10657306 +n10657556 +n10657835 +n10658304 +n10659042 +n10659762 +n10660128 +n10660621 +n10660883 +n10661002 +n10661216 +n10661563 +n10661732 +n10663315 +n10663549 +n10665302 +n10665587 +n10665698 +n10666752 +n10667477 +n10667709 +n10667863 +n10668450 +n10668666 +n10669991 +n10671042 +n10671613 +n10671736 +n10671898 +n10672371 +n10672540 +n10672662 +n10673296 +n10673776 +n10674130 +n10674713 +n10675010 +n10675142 +n10675609 +n10676018 +n10676434 +n10676569 +n10678937 +n10679174 +n10679503 +n10679610 +n10679723 +n10680609 +n10680796 +n10681194 +n10681557 +n10682713 +n10682953 +n10683675 +n10684146 +n10684630 +n10684827 +n10685398 +n10686073 +n10686517 +n10686694 +n10686885 +n10688356 +n10688811 +n10689306 +n10690268 +n10690421 +n10690648 +n10691318 +n10691937 +n10692090 +n10692482 +n10692883 +n10693235 +n10693334 +n10693824 +n10694258 +n10694939 +n10695450 +n10696101 +n10696508 +n10697135 +n10697282 +n10698368 +n10699558 +n10699752 +n10699981 +n10700105 +n10700201 +n10700640 +n10700963 +n10701180 +n10701644 +n10701962 +n10702167 +n10702615 +n10703221 +n10703336 +n10703480 +n10703692 +n10704238 +n10704712 +n10704886 +n10705448 +n10705615 +n10706812 +n10707134 +n10707233 +n10707707 +n10708292 +n10708454 +n10709529 +n10710171 +n10710259 +n10710778 +n10710913 +n10711483 +n10711766 +n10712229 +n10712374 +n10712474 +n10712690 +n10712835 +n10713254 +n10713686 +n10713843 +n10714195 +n10715030 +n10715347 +n10715789 +n10716576 +n10716864 +n10717055 +n10717196 +n10717337 +n10718131 +n10718349 +n10718509 +n10718665 +n10718952 +n10719036 +n10719132 +n10719267 +n10719807 +n10720197 +n10720453 +n10720964 +n10721124 +n10721321 +n10721612 +n10721708 +n10721819 +n10722029 +n10722575 +n10722965 +n10723230 +n10723597 +n10724132 +n10724372 +n10724570 +n10725280 +n10726031 +n10726786 +n10727016 +n10727171 +n10727458 +n10728117 +n10728233 +n10728624 +n10728998 +n10729330 +n10730542 +n10730728 +n10731013 +n10731732 +n10732010 +n10732521 +n10732854 +n10732967 +n10733820 +n10734394 +n10734741 +n10734891 +n10734963 +n10735173 +n10735298 +n10735984 +n10737103 +n10737264 +n10738111 +n10738215 +n10738670 +n10738871 +n10739135 +n10739297 +n10739391 +n10740594 +n10740732 +n10740868 +n10741152 +n10741367 +n10741493 +n10742005 +n10742111 +n10742546 +n10742997 +n10743124 +n10743356 +n10744078 +n10744164 +n10745006 +n10745770 +n10746931 +n10747119 +n10747424 +n10747548 +n10747965 +n10748142 +n10748506 +n10748620 +n10749928 +n10750031 +n10750188 +n10750640 +n10751026 +n10751152 +n10751265 +n10751710 +n10752480 +n10753061 +n10753182 +n10753339 +n10753442 +n10753989 +n10754189 +n10754281 +n10754449 +n10755080 +n10755164 +n10755394 +n10755648 +n10756061 +n10756148 +n10756261 +n10756641 +n10756837 +n10757050 +n10757492 +n10758337 +n10758445 +n10758949 +n10759151 +n10759331 +n10759982 +n10760199 +n10760622 +n10760951 +n10761190 +n10761326 +n10761519 +n10762212 +n10762480 +n10763075 +n10763245 +n10763383 +n10763620 +n10764465 +n10764622 +n10764719 +n10765305 +n10765587 +n10765679 +n10765885 +n10766260 +n10768148 +n10768272 +n10768903 +n10769084 +n10769188 +n10769321 +n10769459 +n10771066 +n10772092 +n10772580 +n10772937 +n10773665 +n10773800 +n10774329 +n10774756 +n10775003 +n10775128 +n10776052 +n10776339 +n10776887 +n10777299 +n10778044 +n10778148 +n10778711 +n10778999 +n10779610 +n10779897 +n10779995 +n10780284 +n10780632 +n10781236 +n10781817 +n10782362 +n10782471 +n10782791 +n10782940 +n10783240 +n10783539 +n10783646 +n10783734 +n10784113 +n10784544 +n10784922 +n10785480 +n10787470 +n10788852 +n10789415 +n10789709 +n10791115 +n10791221 +n10791820 +n10791890 +n10792335 +n10792506 +n10792856 +n10793570 +n10793799 +n10794014 +n10801561 +n10801802 +n10802507 +n10802621 +n10802953 +n10803031 +n10803282 +n10803978 +n10804287 +n10804636 +n10804732 +n10805501 +n10806113 +n10994097 +n11100798 +n11196627 +n11242849 +n11318824 +n11346873 +n11448153 +n11487732 +n11508382 +n11511327 +n11524451 +n11530008 +n11531193 +n11531334 +n11532682 +n11533212 +n11533999 +n11536567 +n11536673 +n11537327 +n11539289 +n11542137 +n11542640 +n11544015 +n11545350 +n11545524 +n11545714 +n11547562 +n11547855 +n11548728 +n11548870 +n11549009 +n11549245 +n11549779 +n11549895 +n11552133 +n11552386 +n11552594 +n11552806 +n11552976 +n11553240 +n11553522 +n11596108 +n11597657 +n11598287 +n11598686 +n11598886 +n11599324 +n11600372 +n11601177 +n11601333 +n11601918 +n11602091 +n11602478 +n11602873 +n11603246 +n11603462 +n11603835 +n11604046 +n11608250 +n11609475 +n11609684 +n11609862 +n11610047 +n11610215 +n11610437 +n11610602 +n11610823 +n11611087 +n11611233 +n11611356 +n11611561 +n11611758 +n11612018 +n11612235 +n11612349 +n11612575 +n11612923 +n11613219 +n11613459 +n11613692 +n11613867 +n11614039 +n11614250 +n11614420 +n11614713 +n11615026 +n11615259 +n11615387 +n11615607 +n11615812 +n11615967 +n11616260 +n11616486 +n11616662 +n11616852 +n11617090 +n11617272 +n11617631 +n11617878 +n11618079 +n11618290 +n11618525 +n11618861 +n11619227 +n11619455 +n11619687 +n11619845 +n11620016 +n11620389 +n11620673 +n11621029 +n11621281 +n11621547 +n11621727 +n11621950 +n11622184 +n11622368 +n11622591 +n11622771 +n11623105 +n11623815 +n11623967 +n11624192 +n11624531 +n11625003 +n11625223 +n11625391 +n11625632 +n11625804 +n11626010 +n11626152 +n11626409 +n11626585 +n11626826 +n11627168 +n11627512 +n11627714 +n11627908 +n11628087 +n11628456 +n11628793 +n11629047 +n11629354 +n11630017 +n11630489 +n11631159 +n11631405 +n11631619 +n11631854 +n11631985 +n11632167 +n11632376 +n11632619 +n11632929 +n11633284 +n11634736 +n11635152 +n11635433 +n11635830 +n11636204 +n11636835 +n11639084 +n11639306 +n11639445 +n11640132 +n11643835 +n11644046 +n11644226 +n11644462 +n11644872 +n11645163 +n11645590 +n11645914 +n11646167 +n11646344 +n11646517 +n11646694 +n11646955 +n11647306 +n11647703 +n11647868 +n11648039 +n11648268 +n11648776 +n11649150 +n11649359 +n11649878 +n11650160 +n11650307 +n11650430 +n11650558 +n11650759 +n11652039 +n11652217 +n11652376 +n11652578 +n11652753 +n11652966 +n11653126 +n11653570 +n11653904 +n11654293 +n11654438 +n11654984 +n11655152 +n11655592 +n11655974 +n11656123 +n11656549 +n11656771 +n11657585 +n11658331 +n11658544 +n11658709 +n11659248 +n11659627 +n11660300 +n11661372 +n11661909 +n11662128 +n11662371 +n11662585 +n11662937 +n11663263 +n11664418 +n11665372 +n11666854 +n11668117 +n11669786 +n11669921 +n11672269 +n11672400 +n11674019 +n11674332 +n11675025 +n11675404 +n11675738 +n11676500 +n11676743 +n11676850 +n11677485 +n11677902 +n11678010 +n11678299 +n11678377 +n11679378 +n11680457 +n11680596 +n11682659 +n11683216 +n11683838 +n11684264 +n11684499 +n11684654 +n11685091 +n11685621 +n11686195 +n11686652 +n11686780 +n11686912 +n11687071 +n11687432 +n11687789 +n11687964 +n11688069 +n11688378 +n11689197 +n11689367 +n11689483 +n11689678 +n11689815 +n11689957 +n11690088 +n11690254 +n11690455 +n11691046 +n11691857 +n11692265 +n11692792 +n11693981 +n11694300 +n11694469 +n11694664 +n11694866 +n11695085 +n11695285 +n11695599 +n11695974 +n11696450 +n11696935 +n11697560 +n11697802 +n11698042 +n11698245 +n11699442 +n11699751 +n11700058 +n11700279 +n11700864 +n11701066 +n11701302 +n11702713 +n11703669 +n11704093 +n11704620 +n11704791 +n11705171 +n11705387 +n11705573 +n11705776 +n11706325 +n11706761 +n11706942 +n11707229 +n11707827 +n11708658 +n11708857 +n11709045 +n11709205 +n11709674 +n11710136 +n11710393 +n11710658 +n11710827 +n11710987 +n11711289 +n11711537 +n11711764 +n11711971 +n11712282 +n11713164 +n11713370 +n11713763 +n11714382 +n11715430 +n11715678 +n11716698 +n11717399 +n11717577 +n11718296 +n11718681 +n11719286 +n11720353 +n11720643 +n11720891 +n11721337 +n11721642 +n11722036 +n11722342 +n11722466 +n11722621 +n11722982 +n11723227 +n11723452 +n11723770 +n11723986 +n11724109 +n11724660 +n11725015 +n11725311 +n11725480 +n11725623 +n11725821 +n11725973 +n11726145 +n11726269 +n11726433 +n11726707 +n11727091 +n11727358 +n11727540 +n11727738 +n11728099 +n11728769 +n11728945 +n11729142 +n11729478 +n11729860 +n11730015 +n11730458 +n11730602 +n11730750 +n11730933 +n11731157 +n11731659 +n11732052 +n11732567 +n11733054 +n11733312 +n11733548 +n11734493 +n11734698 +n11735053 +n11735570 +n11735977 +n11736362 +n11736694 +n11736851 +n11737009 +n11737125 +n11737534 +n11738547 +n11738997 +n11739365 +n11739978 +n11740414 +n11741175 +n11741350 +n11741575 +n11741797 +n11742310 +n11742878 +n11744011 +n11744108 +n11744471 +n11745817 +n11746600 +n11747468 +n11748002 +n11748811 +n11749112 +n11749603 +n11750173 +n11750508 +n11750989 +n11751765 +n11751974 +n11752578 +n11752798 +n11752937 +n11753143 +n11753355 +n11753562 +n11753700 +n11754893 +n11756092 +n11756329 +n11756669 +n11756870 +n11757017 +n11757190 +n11757653 +n11757851 +n11758122 +n11758276 +n11758483 +n11758799 +n11759224 +n11759404 +n11759609 +n11759853 +n11760785 +n11761202 +n11761650 +n11761836 +n11762018 +n11762433 +n11762927 +n11763142 +n11763625 +n11763874 +n11764478 +n11764814 +n11765568 +n11766046 +n11766189 +n11766432 +n11767354 +n11767877 +n11768816 +n11769176 +n11769621 +n11769803 +n11770256 +n11771147 +n11771539 +n11771746 +n11771924 +n11772408 +n11772879 +n11773408 +n11773628 +n11773987 +n11774513 +n11774972 +n11775340 +n11775626 +n11776234 +n11777080 +n11778092 +n11778257 +n11779300 +n11780148 +n11780424 +n11781176 +n11782036 +n11782266 +n11782761 +n11782878 +n11783162 +n11783920 +n11784126 +n11784497 +n11785276 +n11785668 +n11785875 +n11786131 +n11786539 +n11786843 +n11787190 +n11788039 +n11788727 +n11789066 +n11789438 +n11789589 +n11789962 +n11790089 +n11790788 +n11790936 +n11791341 +n11791569 +n11792029 +n11792341 +n11792742 +n11793403 +n11793779 +n11794024 +n11794139 +n11794519 +n11795049 +n11795216 +n11795580 +n11796005 +n11796188 +n11797321 +n11797508 +n11797981 +n11798270 +n11798496 +n11798688 +n11798978 +n11799331 +n11799732 +n11800236 +n11800565 +n11801392 +n11801665 +n11801891 +n11802410 +n11802586 +n11802800 +n11802995 +n11805255 +n11805544 +n11805956 +n11806219 +n11806369 +n11806521 +n11806679 +n11806814 +n11807108 +n11807525 +n11807696 +n11807979 +n11808299 +n11808468 +n11808721 +n11808932 +n11809094 +n11809271 +n11809437 +n11809594 +n11809754 +n11810030 +n11810358 +n11811059 +n11811473 +n11811706 +n11811921 +n11812094 +n11812910 +n11813077 +n11814584 +n11814996 +n11815491 +n11815721 +n11815918 +n11816121 +n11816336 +n11816649 +n11816829 +n11817160 +n11817501 +n11817914 +n11818069 +n11818636 +n11819509 +n11819912 +n11820965 +n11821184 +n11822300 +n11823043 +n11823305 +n11823436 +n11823756 +n11824146 +n11824344 +n11824747 +n11825351 +n11825749 +n11826198 +n11826569 +n11827541 +n11828577 +n11828973 +n11829205 +n11829672 +n11829922 +n11830045 +n11830252 +n11830400 +n11830714 +n11830906 +n11831100 +n11831297 +n11831521 +n11832214 +n11832480 +n11832671 +n11832899 +n11833373 +n11833749 +n11834272 +n11834654 +n11834890 +n11835251 +n11836327 +n11836722 +n11837204 +n11837351 +n11837562 +n11837743 +n11837970 +n11838413 +n11838916 +n11839460 +n11839568 +n11839823 +n11840067 +n11840246 +n11840476 +n11840764 +n11841247 +n11843441 +n11844371 +n11844892 +n11845557 +n11845793 +n11845913 +n11846312 +n11846425 +n11846765 +n11847169 +n11848479 +n11848867 +n11849271 +n11849467 +n11849871 +n11849983 +n11850521 +n11850918 +n11851258 +n11851578 +n11851839 +n11852028 +n11852148 +n11852531 +n11853079 +n11853356 +n11853813 +n11854479 +n11855274 +n11855435 +n11855553 +n11855842 +n11856573 +n11857696 +n11857875 +n11858077 +n11858703 +n11858814 +n11859275 +n11859472 +n11859737 +n11860208 +n11860555 +n11861238 +n11861487 +n11861641 +n11861853 +n11862835 +n11863467 +n11863877 +n11865071 +n11865276 +n11865429 +n11865574 +n11865874 +n11866248 +n11866706 +n11867311 +n11868814 +n11869351 +n11869689 +n11870044 +n11870418 +n11870747 +n11871059 +n11871496 +n11871748 +n11872146 +n11872324 +n11872658 +n11873182 +n11873612 +n11874081 +n11874423 +n11874878 +n11875523 +n11875691 +n11875938 +n11876204 +n11876432 +n11876634 +n11876803 +n11877193 +n11877283 +n11877473 +n11877646 +n11877860 +n11878101 +n11878283 +n11878633 +n11879054 +n11879722 +n11879895 +n11881189 +n11882074 +n11882237 +n11882426 +n11882636 +n11882821 +n11882972 +n11883328 +n11883628 +n11883945 +n11884384 +n11884967 +n11885856 +n11887119 +n11887310 +n11887476 +n11887750 +n11888061 +n11888424 +n11888800 +n11889205 +n11889619 +n11890022 +n11890150 +n11890884 +n11891175 +n11892029 +n11892181 +n11892637 +n11892817 +n11893640 +n11893916 +n11894327 +n11894558 +n11894770 +n11895092 +n11895472 +n11895714 +n11896141 +n11896722 +n11897116 +n11897466 +n11898639 +n11898775 +n11899223 +n11899762 +n11899921 +n11900569 +n11901294 +n11901452 +n11901597 +n11901759 +n11901977 +n11902200 +n11902389 +n11902709 +n11902982 +n11903333 +n11903671 +n11904109 +n11904274 +n11905392 +n11905749 +n11906127 +n11906514 +n11906917 +n11907100 +n11907405 +n11907689 +n11908549 +n11908846 +n11909864 +n11910271 +n11910460 +n11910666 +n11915214 +n11915658 +n11915899 +n11916467 +n11916696 +n11917407 +n11917835 +n11918286 +n11918473 +n11918808 +n11919447 +n11919761 +n11919975 +n11920133 +n11920498 +n11920663 +n11920998 +n11921395 +n11921792 +n11922661 +n11922755 +n11922839 +n11922926 +n11923174 +n11923397 +n11923637 +n11924014 +n11924445 +n11924849 +n11925303 +n11925450 +n11925898 +n11926365 +n11926833 +n11926976 +n11927215 +n11927740 +n11928352 +n11928858 +n11929743 +n11930038 +n11930203 +n11930353 +n11930571 +n11930788 +n11930994 +n11931135 +n11931540 +n11931918 +n11932745 +n11932927 +n11933099 +n11933257 +n11933387 +n11933546 +n11933728 +n11933903 +n11934041 +n11934239 +n11934463 +n11934616 +n11934807 +n11935027 +n11935187 +n11935330 +n11935469 +n11935627 +n11935715 +n11935794 +n11935877 +n11935953 +n11936027 +n11936113 +n11936199 +n11936287 +n11936369 +n11936448 +n11936539 +n11936624 +n11936707 +n11936782 +n11936864 +n11936946 +n11937023 +n11937102 +n11937195 +n11937278 +n11937360 +n11937446 +n11937692 +n11938556 +n11939180 +n11939491 +n11939699 +n11940006 +n11940349 +n11940599 +n11940750 +n11941094 +n11941478 +n11941924 +n11942659 +n11943133 +n11943407 +n11943660 +n11943992 +n11944196 +n11944751 +n11944954 +n11945367 +n11945514 +n11945783 +n11946051 +n11946313 +n11946727 +n11946918 +n11947251 +n11947629 +n11947802 +n11948044 +n11948264 +n11948469 +n11948864 +n11949015 +n11949402 +n11949857 +n11950345 +n11950686 +n11950877 +n11951052 +n11951511 +n11951820 +n11952346 +n11952541 +n11953038 +n11953339 +n11953610 +n11953884 +n11954161 +n11954345 +n11954484 +n11954642 +n11954798 +n11955040 +n11955153 +n11955532 +n11955896 +n11956348 +n11956850 +n11957317 +n11957514 +n11957678 +n11958080 +n11958499 +n11958888 +n11959259 +n11959632 +n11959862 +n11960245 +n11960673 +n11961100 +n11961446 +n11961871 +n11962272 +n11962667 +n11962994 +n11963572 +n11963932 +n11964446 +n11964848 +n11965218 +n11965627 +n11965962 +n11966083 +n11966215 +n11966385 +n11966617 +n11966896 +n11967142 +n11967315 +n11967744 +n11967878 +n11968519 +n11968704 +n11968931 +n11969166 +n11969607 +n11969806 +n11970101 +n11970298 +n11970586 +n11971248 +n11971406 +n11971783 +n11971927 +n11972291 +n11972759 +n11972959 +n11973341 +n11973634 +n11973749 +n11974373 +n11974557 +n11974888 +n11975254 +n11976170 +n11976314 +n11976511 +n11976933 +n11977303 +n11977660 +n11977887 +n11978233 +n11978551 +n11978713 +n11978961 +n11979187 +n11979354 +n11979527 +n11979715 +n11979964 +n11980318 +n11980682 +n11981192 +n11981475 +n11982115 +n11982545 +n11982939 +n11983375 +n11983606 +n11984144 +n11984542 +n11985053 +n11985321 +n11985739 +n11985903 +n11986511 +n11986729 +n11987126 +n11987349 +n11987511 +n11988132 +n11988596 +n11988893 +n11989087 +n11989393 +n11989869 +n11990167 +n11990313 +n11990627 +n11990920 +n11991263 +n11991549 +n11991777 +n11992479 +n11992806 +n11993203 +n11993444 +n11993675 +n11994150 +n11995092 +n11995396 +n11996251 +n11996677 +n11997032 +n11997160 +n11997969 +n11998492 +n11998888 +n11999278 +n11999656 +n12000191 +n12001294 +n12001707 +n12001924 +n12002428 +n12002651 +n12002826 +n12003167 +n12003696 +n12004120 +n12004547 +n12004987 +n12005656 +n12006306 +n12006766 +n12006930 +n12007196 +n12007406 +n12007766 +n12008252 +n12008487 +n12008749 +n12009047 +n12009420 +n12009792 +n12010628 +n12010815 +n12011370 +n12011620 +n12012111 +n12012253 +n12012510 +n12013035 +n12013511 +n12013701 +n12014085 +n12014355 +n12014923 +n12015221 +n12015525 +n12015959 +n12016434 +n12016567 +n12016777 +n12016914 +n12017127 +n12017326 +n12017511 +n12017664 +n12017853 +n12018014 +n12018100 +n12018188 +n12018271 +n12018363 +n12018447 +n12018530 +n12018760 +n12019035 +n12019827 +n12020184 +n12020507 +n12020736 +n12020941 +n12022054 +n12022382 +n12022821 +n12023108 +n12023407 +n12023726 +n12024176 +n12024445 +n12024690 +n12024805 +n12025220 +n12026018 +n12026476 +n12026981 +n12027222 +n12027658 +n12028424 +n12029039 +n12029635 +n12030092 +n12030654 +n12030908 +n12031139 +n12031388 +n12031547 +n12031927 +n12032429 +n12032686 +n12033139 +n12033504 +n12033709 +n12034141 +n12034384 +n12034594 +n12035631 +n12035907 +n12036067 +n12036226 +n12036939 +n12037499 +n12037691 +n12038038 +n12038208 +n12038406 +n12038585 +n12038760 +n12038898 +n12039317 +n12041446 +n12043444 +n12043673 +n12043836 +n12044041 +n12044467 +n12044784 +n12045157 +n12045514 +n12045860 +n12046028 +n12046428 +n12046815 +n12047345 +n12047884 +n12048056 +n12048399 +n12048928 +n12049282 +n12049562 +n12050533 +n12050959 +n12051103 +n12051514 +n12051792 +n12052267 +n12052447 +n12052787 +n12053405 +n12053690 +n12053962 +n12054195 +n12055073 +n12055516 +n12056099 +n12056217 +n12056601 +n12056758 +n12056990 +n12057211 +n12057447 +n12057660 +n12057895 +n12058192 +n12058630 +n12058822 +n12059314 +n12059625 +n12060546 +n12061104 +n12061380 +n12061614 +n12062105 +n12062468 +n12062626 +n12062781 +n12063211 +n12063639 +n12064389 +n12064591 +n12065316 +n12065649 +n12065777 +n12066018 +n12066261 +n12066451 +n12066630 +n12066821 +n12067029 +n12067193 +n12067433 +n12067672 +n12067817 +n12068138 +n12068432 +n12068615 +n12069009 +n12069217 +n12069679 +n12070016 +n12070381 +n12070583 +n12070712 +n12071259 +n12071477 +n12071744 +n12072210 +n12072722 +n12073217 +n12073554 +n12073991 +n12074408 +n12074867 +n12075010 +n12075151 +n12075299 +n12075830 +n12076223 +n12076577 +n12076852 +n12077244 +n12077944 +n12078172 +n12078451 +n12078747 +n12079120 +n12079523 +n12079963 +n12080395 +n12080588 +n12080820 +n12081215 +n12081649 +n12082131 +n12083113 +n12083591 +n12083847 +n12084158 +n12084400 +n12084555 +n12084890 +n12085267 +n12085664 +n12086012 +n12086192 +n12086539 +n12086778 +n12087961 +n12088223 +n12088327 +n12088495 +n12088909 +n12089320 +n12089496 +n12089846 +n12090890 +n12091213 +n12091377 +n12091550 +n12091697 +n12091953 +n12092262 +n12092417 +n12092629 +n12092930 +n12093329 +n12093600 +n12093885 +n12094244 +n12094401 +n12094612 +n12095020 +n12095281 +n12095412 +n12095543 +n12095647 +n12095934 +n12096089 +n12096395 +n12096563 +n12096674 +n12097396 +n12097556 +n12098403 +n12098524 +n12098827 +n12099342 +n12100187 +n12101870 +n12102133 +n12103680 +n12103894 +n12104104 +n12104238 +n12104501 +n12104734 +n12105125 +n12105353 +n12105828 +n12105981 +n12106134 +n12106323 +n12107002 +n12107191 +n12107710 +n12107970 +n12108432 +n12108613 +n12108871 +n12109365 +n12109827 +n12110085 +n12110236 +n12110352 +n12110475 +n12110778 +n12111238 +n12111627 +n12112008 +n12112337 +n12112609 +n12112918 +n12113195 +n12113323 +n12113657 +n12114010 +n12114590 +n12115180 +n12116058 +n12116429 +n12116734 +n12117017 +n12117235 +n12117326 +n12117695 +n12117912 +n12118414 +n12118661 +n12119099 +n12119238 +n12119390 +n12119539 +n12119717 +n12120347 +n12120578 +n12121033 +n12121187 +n12121610 +n12122442 +n12122725 +n12122918 +n12123648 +n12123741 +n12124172 +n12124627 +n12124818 +n12125001 +n12125183 +n12125584 +n12126084 +n12126360 +n12126736 +n12127460 +n12127575 +n12127768 +n12128071 +n12128306 +n12128490 +n12129134 +n12129738 +n12129986 +n12130549 +n12131405 +n12131550 +n12132092 +n12132956 +n12133151 +n12133462 +n12133682 +n12134025 +n12134486 +n12134695 +n12134836 +n12135049 +n12135576 +n12135729 +n12135898 +n12136392 +n12136581 +n12136720 +n12137120 +n12137569 +n12137791 +n12137954 +n12138110 +n12138248 +n12138444 +n12138578 +n12139196 +n12139575 +n12139793 +n12139921 +n12140511 +n12140759 +n12140903 +n12141167 +n12141385 +n12141495 +n12142085 +n12142357 +n12142450 +n12143065 +n12143215 +n12143405 +n12143676 +n12144313 +n12144580 +n12144987 +n12145148 +n12145477 +n12146311 +n12146488 +n12146654 +n12147226 +n12147835 +n12148757 +n12150722 +n12150969 +n12151170 +n12151615 +n12152031 +n12152251 +n12152532 +n12152722 +n12153033 +n12153224 +n12153580 +n12153741 +n12153914 +n12154114 +n12154773 +n12155009 +n12155583 +n12155773 +n12156679 +n12156819 +n12157056 +n12157179 +n12157769 +n12158031 +n12158443 +n12158798 +n12159055 +n12159388 +n12159555 +n12159804 +n12159942 +n12160125 +n12160303 +n12160490 +n12160857 +n12161056 +n12161285 +n12161577 +n12161744 +n12161969 +n12162181 +n12162425 +n12162758 +n12163035 +n12163279 +n12164363 +n12164656 +n12164881 +n12165170 +n12165384 +n12165758 +n12166128 +n12166424 +n12166793 +n12166929 +n12167075 +n12167436 +n12167602 +n12168565 +n12169099 +n12170585 +n12171098 +n12171316 +n12171966 +n12172364 +n12172481 +n12172906 +n12173069 +n12173664 +n12173912 +n12174311 +n12174521 +n12174926 +n12175181 +n12175370 +n12175598 +n12176453 +n12176709 +n12176953 +n12177129 +n12177455 +n12178129 +n12178780 +n12178896 +n12179122 +n12179632 +n12180168 +n12180456 +n12180885 +n12181352 +n12181612 +n12182049 +n12182276 +n12183026 +n12183452 +n12183816 +n12184095 +n12184468 +n12184912 +n12185254 +n12185859 +n12186352 +n12186554 +n12186839 +n12187247 +n12187663 +n12187891 +n12188289 +n12188635 +n12189429 +n12189779 +n12189987 +n12190410 +n12190869 +n12191240 +n12192132 +n12192877 +n12193334 +n12193665 +n12194147 +n12194613 +n12195391 +n12195533 +n12195734 +n12196129 +n12196336 +n12196527 +n12196694 +n12196954 +n12197359 +n12197601 +n12198286 +n12198793 +n12199266 +n12199399 +n12199790 +n12199982 +n12200143 +n12200504 +n12200905 +n12201331 +n12201580 +n12201938 +n12202936 +n12203529 +n12203699 +n12203896 +n12204032 +n12204175 +n12204730 +n12205460 +n12205694 +n12214789 +n12215022 +n12215210 +n12215579 +n12215824 +n12216215 +n12216628 +n12216968 +n12217453 +n12217851 +n12218274 +n12218490 +n12218868 +n12219668 +n12220019 +n12220496 +n12220829 +n12221191 +n12221368 +n12221522 +n12221801 +n12222090 +n12222493 +n12222900 +n12223160 +n12223569 +n12223764 +n12224978 +n12225222 +n12225349 +n12225563 +n12226932 +n12227658 +n12227909 +n12228229 +n12228387 +n12228689 +n12228886 +n12229111 +n12229651 +n12229887 +n12230540 +n12230794 +n12231192 +n12231709 +n12232114 +n12232280 +n12232851 +n12233249 +n12234318 +n12234669 +n12235051 +n12235479 +n12236160 +n12236546 +n12236768 +n12236977 +n12237152 +n12237486 +n12237641 +n12237855 +n12238756 +n12238913 +n12239240 +n12239647 +n12239880 +n12240150 +n12240477 +n12240965 +n12241192 +n12241426 +n12241880 +n12242123 +n12242409 +n12242850 +n12243109 +n12243693 +n12244153 +n12244458 +n12244650 +n12244819 +n12245319 +n12245695 +n12245885 +n12246037 +n12246232 +n12246773 +n12246941 +n12247202 +n12247407 +n12247963 +n12248141 +n12248359 +n12248574 +n12248780 +n12248941 +n12249122 +n12249294 +n12249542 +n12251001 +n12251278 +n12251740 +n12252168 +n12252383 +n12252866 +n12253229 +n12253487 +n12253664 +n12253835 +n12254168 +n12255225 +n12256112 +n12256325 +n12256522 +n12256708 +n12256920 +n12257570 +n12257725 +n12258101 +n12258885 +n12259316 +n12260799 +n12261359 +n12261571 +n12261808 +n12262018 +n12262185 +n12262553 +n12263038 +n12263204 +n12263410 +n12263588 +n12263738 +n12263987 +n12264512 +n12264786 +n12265083 +n12265394 +n12265600 +n12266217 +n12266528 +n12266644 +n12266796 +n12266984 +n12267133 +n12267265 +n12267411 +n12267534 +n12267677 +n12267931 +n12268246 +n12269241 +n12269406 +n12269652 +n12270027 +n12270278 +n12270460 +n12270741 +n12270946 +n12271187 +n12271451 +n12271643 +n12271933 +n12272239 +n12272432 +n12272735 +n12272883 +n12273114 +n12273344 +n12273515 +n12273768 +n12273939 +n12274151 +n12274358 +n12274630 +n12274863 +n12275131 +n12275317 +n12275489 +n12275675 +n12275888 +n12276110 +n12276314 +n12276477 +n12276628 +n12276872 +n12277150 +n12277334 +n12277578 +n12277800 +n12278107 +n12278371 +n12278650 +n12278865 +n12279060 +n12279293 +n12279458 +n12279772 +n12280060 +n12280364 +n12281241 +n12281788 +n12281974 +n12282235 +n12282527 +n12282737 +n12282933 +n12283147 +n12283395 +n12283542 +n12283790 +n12284262 +n12284821 +n12285049 +n12285195 +n12285369 +n12285512 +n12285705 +n12285900 +n12286068 +n12286197 +n12286826 +n12286988 +n12287195 +n12287642 +n12287836 +n12288005 +n12288823 +n12289310 +n12289433 +n12289585 +n12290748 +n12290975 +n12291143 +n12291459 +n12291671 +n12291959 +n12292463 +n12292877 +n12293723 +n12294124 +n12294331 +n12294542 +n12294723 +n12294871 +n12295033 +n12295237 +n12295429 +n12295796 +n12296045 +n12296432 +n12296735 +n12296929 +n12297110 +n12297280 +n12297507 +n12297846 +n12298165 +n12299640 +n12300840 +n12301180 +n12301445 +n12301613 +n12301766 +n12302071 +n12302248 +n12302565 +n12303083 +n12303462 +n12304115 +n12304286 +n12304420 +n12304703 +n12304899 +n12305089 +n12305293 +n12305475 +n12305654 +n12305819 +n12305986 +n12306089 +n12306270 +n12306717 +n12306938 +n12307076 +n12307240 +n12307756 +n12308112 +n12308447 +n12308907 +n12309277 +n12309630 +n12310021 +n12310349 +n12310638 +n12311045 +n12311224 +n12311413 +n12311579 +n12312110 +n12312728 +n12315060 +n12315245 +n12315598 +n12315999 +n12316444 +n12316572 +n12317296 +n12318378 +n12318782 +n12318965 +n12319204 +n12319414 +n12320010 +n12320414 +n12320627 +n12320806 +n12321077 +n12321395 +n12321669 +n12321873 +n12322099 +n12322501 +n12322699 +n12323665 +n12324056 +n12324222 +n12324388 +n12324558 +n12324906 +n12325234 +n12325787 +n12327022 +n12327528 +n12327846 +n12328398 +n12328567 +n12328801 +n12329260 +n12329473 +n12330239 +n12330469 +n12330587 +n12330891 +n12331066 +n12331263 +n12331655 +n12331788 +n12332030 +n12332218 +n12332555 +n12333053 +n12333530 +n12333771 +n12333961 +n12334153 +n12334293 +n12334891 +n12335483 +n12335664 +n12335800 +n12335937 +n12336092 +n12336224 +n12336333 +n12336586 +n12336727 +n12336973 +n12337131 +n12337246 +n12337391 +n12337617 +n12337800 +n12337922 +n12338034 +n12338146 +n12338258 +n12338454 +n12338655 +n12338796 +n12338979 +n12339526 +n12339831 +n12340383 +n12340581 +n12340755 +n12341542 +n12341931 +n12342299 +n12342498 +n12342852 +n12343480 +n12343753 +n12344283 +n12344483 +n12344700 +n12344837 +n12345280 +n12345899 +n12346578 +n12346813 +n12346986 +n12347158 +n12349315 +n12349711 +n12350032 +n12350758 +n12351091 +n12351790 +n12352287 +n12352639 +n12352844 +n12352990 +n12353203 +n12353431 +n12353754 +n12355760 +n12356023 +n12356395 +n12356960 +n12357485 +n12357968 +n12358293 +n12360108 +n12360534 +n12360684 +n12360817 +n12360958 +n12361135 +n12361560 +n12361754 +n12361946 +n12362274 +n12362514 +n12362668 +n12363301 +n12363768 +n12364604 +n12364940 +n12365158 +n12365285 +n12365462 +n12365900 +n12366053 +n12366186 +n12366313 +n12366675 +n12366870 +n12367611 +n12368028 +n12368257 +n12368451 +n12369066 +n12369309 +n12369476 +n12369665 +n12369845 +n12370174 +n12370549 +n12371202 +n12371439 +n12371704 +n12372233 +n12373100 +n12373739 +n12374418 +n12374705 +n12374862 +n12375769 +n12377198 +n12377494 +n12378249 +n12378753 +n12378963 +n12379531 +n12380761 +n12381511 +n12382233 +n12382875 +n12383737 +n12383894 +n12384037 +n12384227 +n12384375 +n12384569 +n12384680 +n12384839 +n12385429 +n12385566 +n12385830 +n12386945 +n12387103 +n12387633 +n12387839 +n12388143 +n12388293 +n12388858 +n12388989 +n12389130 +n12389501 +n12389727 +n12389932 +n12390099 +n12390314 +n12392070 +n12392549 +n12392765 +n12393269 +n12394118 +n12394328 +n12394638 +n12395068 +n12395289 +n12395463 +n12395906 +n12396091 +n12396924 +n12397431 +n12399132 +n12399384 +n12399534 +n12399656 +n12399899 +n12400489 +n12400720 +n12400924 +n12401335 +n12401684 +n12401893 +n12402051 +n12402348 +n12402596 +n12402840 +n12403075 +n12403276 +n12403513 +n12403994 +n12404729 +n12405714 +n12406304 +n12406488 +n12406715 +n12406902 +n12407079 +n12407222 +n12407396 +n12407545 +n12407715 +n12407890 +n12408077 +n12408280 +n12408466 +n12408717 +n12408873 +n12409231 +n12409470 +n12409651 +n12409840 +n12411461 +n12412355 +n12412606 +n12412987 +n12413165 +n12413301 +n12413419 +n12413642 +n12413880 +n12414035 +n12414159 +n12414329 +n12414449 +n12414818 +n12414932 +n12415595 +n12416073 +n12416423 +n12416703 +n12417836 +n12418221 +n12418507 +n12419037 +n12419878 +n12420124 +n12420535 +n12420722 +n12421137 +n12421467 +n12421683 +n12421917 +n12422129 +n12422559 +n12425281 +n12426623 +n12426749 +n12427184 +n12427391 +n12427566 +n12427757 +n12427946 +n12428076 +n12428242 +n12428412 +n12428747 +n12429352 +n12430198 +n12430471 +n12430675 +n12431434 +n12432069 +n12432356 +n12432574 +n12432707 +n12433081 +n12433178 +n12433769 +n12433952 +n12434106 +n12434483 +n12434634 +n12434775 +n12434985 +n12435152 +n12435486 +n12435649 +n12435777 +n12435965 +n12436090 +n12436907 +n12437513 +n12437769 +n12437930 +n12439154 +n12439830 +n12441183 +n12441390 +n12441552 +n12441958 +n12442548 +n12443323 +n12443736 +n12444095 +n12444898 +n12446200 +n12446519 +n12446737 +n12446908 +n12447121 +n12447346 +n12447581 +n12447891 +n12448136 +n12448361 +n12448700 +n12449296 +n12449526 +n12449784 +n12449934 +n12450344 +n12450607 +n12450840 +n12451070 +n12451240 +n12451399 +n12451566 +n12451915 +n12452256 +n12452480 +n12452673 +n12452836 +n12453018 +n12453186 +n12453714 +n12453857 +n12454159 +n12454436 +n12454556 +n12454705 +n12454793 +n12454949 +n12455950 +n12457091 +n12458550 +n12458713 +n12458874 +n12459629 +n12460146 +n12460697 +n12460957 +n12461109 +n12461466 +n12461673 +n12462032 +n12462221 +n12462582 +n12462805 +n12463134 +n12463743 +n12463975 +n12464128 +n12464476 +n12464649 +n12465557 +n12466727 +n12467018 +n12467197 +n12467433 +n12467592 +n12468545 +n12468719 +n12469517 +n12470092 +n12470512 +n12470907 +n12472024 +n12473608 +n12473840 +n12474167 +n12474418 +n12475035 +n12475242 +n12475774 +n12476510 +n12477163 +n12477401 +n12477583 +n12477747 +n12477983 +n12478768 +n12479537 +n12480456 +n12480895 +n12481150 +n12481289 +n12481458 +n12482437 +n12482668 +n12482893 +n12483282 +n12483427 +n12483625 +n12483841 +n12484244 +n12484784 +n12485653 +n12485981 +n12486574 +n12487058 +n12488454 +n12488709 +n12489046 +n12489676 +n12489815 +n12490490 +n12491017 +n12491435 +n12491826 +n12492106 +n12492460 +n12492682 +n12492900 +n12493208 +n12493426 +n12493868 +n12494794 +n12495146 +n12495670 +n12495895 +n12496427 +n12496949 +n12497669 +n12498055 +n12498457 +n12499163 +n12499757 +n12499979 +n12500309 +n12500518 +n12500751 +n12501202 +n12504570 +n12504783 +n12505253 +n12506181 +n12506341 +n12506991 +n12507379 +n12507823 +n12508309 +n12508618 +n12508762 +n12509109 +n12509476 +n12509665 +n12509821 +n12509993 +n12510343 +n12510774 +n12511488 +n12511856 +n12512095 +n12512294 +n12512674 +n12513172 +n12513613 +n12513933 +n12514138 +n12514592 +n12514992 +n12515393 +n12515711 +n12515925 +n12516165 +n12516584 +n12516828 +n12517077 +n12517445 +n12517642 +n12518013 +n12518481 +n12519089 +n12519563 +n12520406 +n12521186 +n12521394 +n12522188 +n12522678 +n12522894 +n12523141 +n12523475 +n12523850 +n12524188 +n12525168 +n12525513 +n12525753 +n12526178 +n12526516 +n12526754 +n12527081 +n12527738 +n12528109 +n12528382 +n12528549 +n12528768 +n12528974 +n12529220 +n12529500 +n12529905 +n12530629 +n12530818 +n12531328 +n12531727 +n12532564 +n12532886 +n12533190 +n12533437 +n12534208 +n12534625 +n12534862 +n12536291 +n12537253 +n12537569 +n12538209 +n12539074 +n12539306 +n12539832 +n12540250 +n12540647 +n12540966 +n12541157 +n12541403 +n12542043 +n12542240 +n12543186 +n12543455 +n12543639 +n12543826 +n12544240 +n12544539 +n12545232 +n12545635 +n12545865 +n12546183 +n12546420 +n12546617 +n12546962 +n12547215 +n12547503 +n12548280 +n12548564 +n12548804 +n12549005 +n12549192 +n12549420 +n12549799 +n12550210 +n12550408 +n12551173 +n12551457 +n12552309 +n12552893 +n12553742 +n12554029 +n12554526 +n12554729 +n12554911 +n12555255 +n12555859 +n12556656 +n12557064 +n12557438 +n12557556 +n12557681 +n12558230 +n12558425 +n12558680 +n12559044 +n12559518 +n12560282 +n12560621 +n12560775 +n12561169 +n12561309 +n12561594 +n12562141 +n12562577 +n12562785 +n12563045 +n12563702 +n12564083 +n12564613 +n12565102 +n12565912 +n12566331 +n12566954 +n12567950 +n12568186 +n12568649 +n12569037 +n12569616 +n12569851 +n12570394 +n12570703 +n12570972 +n12571781 +n12572546 +n12572759 +n12572858 +n12573256 +n12573474 +n12573647 +n12573911 +n12574320 +n12574470 +n12574866 +n12575322 +n12575812 +n12576323 +n12576451 +n12576695 +n12577362 +n12577895 +n12578255 +n12578626 +n12578916 +n12579038 +n12579404 +n12579822 +n12580012 +n12580654 +n12580786 +n12580896 +n12581110 +n12582231 +n12582665 +n12582846 +n12583126 +n12583401 +n12583681 +n12583855 +n12584191 +n12584365 +n12584715 +n12585137 +n12585373 +n12585629 +n12586298 +n12586499 +n12586725 +n12586989 +n12587132 +n12587487 +n12587803 +n12588320 +n12588780 +n12589142 +n12589458 +n12589687 +n12589841 +n12590232 +n12590499 +n12590600 +n12590715 +n12591017 +n12591351 +n12591702 +n12592058 +n12592544 +n12592839 +n12593122 +n12593341 +n12593994 +n12594324 +n12594989 +n12595699 +n12595964 +n12596148 +n12596345 +n12596709 +n12596849 +n12597134 +n12597466 +n12597798 +n12598027 +n12599185 +n12599435 +n12599661 +n12599874 +n12600095 +n12600267 +n12601494 +n12601805 +n12602262 +n12602434 +n12602612 +n12602980 +n12603273 +n12603449 +n12603672 +n12604228 +n12604460 +n12604639 +n12604845 +n12605683 +n12606438 +n12606545 +n12607456 +n12609379 +n12610328 +n12610740 +n12611640 +n12612170 +n12612811 +n12613706 +n12614096 +n12614477 +n12614625 +n12615232 +n12615710 +n12616248 +n12616630 +n12616996 +n12617559 +n12618146 +n12618727 +n12620196 +n12620546 +n12620969 +n12621410 +n12621619 +n12621945 +n12622297 +n12622875 +n12623077 +n12623211 +n12623818 +n12624381 +n12624568 +n12625003 +n12625383 +n12625670 +n12625823 +n12626674 +n12626878 +n12627119 +n12627347 +n12627526 +n12628356 +n12628705 +n12628986 +n12629305 +n12629666 +n12630763 +n12630999 +n12631331 +n12631637 +n12631932 +n12632335 +n12632733 +n12633061 +n12633638 +n12633994 +n12634211 +n12634429 +n12634734 +n12634986 +n12635151 +n12635359 +n12635532 +n12635744 +n12635955 +n12636224 +n12636885 +n12637123 +n12637485 +n12638218 +n12638556 +n12638753 +n12638964 +n12639168 +n12639376 +n12639584 +n12639736 +n12639910 +n12640081 +n12640284 +n12640435 +n12640607 +n12640839 +n12641007 +n12641180 +n12641413 +n12641931 +n12642090 +n12642200 +n12642435 +n12642600 +n12642964 +n12643113 +n12643313 +n12643473 +n12643688 +n12643877 +n12644283 +n12644902 +n12645174 +n12645530 +n12646072 +n12646197 +n12646397 +n12646605 +n12646740 +n12646950 +n12647231 +n12647376 +n12647560 +n12647787 +n12647893 +n12648045 +n12648196 +n12648424 +n12648693 +n12648888 +n12649065 +n12649317 +n12649539 +n12649866 +n12650038 +n12650229 +n12650379 +n12650556 +n12650805 +n12650915 +n12651229 +n12651611 +n12651821 +n12653218 +n12653436 +n12653633 +n12654227 +n12654857 +n12655062 +n12655245 +n12655351 +n12655498 +n12655605 +n12655726 +n12655869 +n12656369 +n12656528 +n12656685 +n12656909 +n12657082 +n12657755 +n12658118 +n12658308 +n12658481 +n12658603 +n12658715 +n12658846 +n12659064 +n12659356 +n12659539 +n12660601 +n12661045 +n12661227 +n12661538 +n12662074 +n12662379 +n12662772 +n12663023 +n12663254 +n12663359 +n12663804 +n12664005 +n12664187 +n12664469 +n12664710 +n12665048 +n12665271 +n12665659 +n12665857 +n12666050 +n12666159 +n12666369 +n12666965 +n12667406 +n12667582 +n12667964 +n12668131 +n12669803 +n12670334 +n12670758 +n12670962 +n12671651 +n12672289 +n12673588 +n12674120 +n12674685 +n12674895 +n12675299 +n12675515 +n12675876 +n12676134 +n12676370 +n12676534 +n12676703 +n12677120 +n12677331 +n12677612 +n12677841 +n12678794 +n12679023 +n12679432 +n12679593 +n12679876 +n12680402 +n12680652 +n12680864 +n12681376 +n12681579 +n12681893 +n12682411 +n12682668 +n12682882 +n12683096 +n12683407 +n12683571 +n12683791 +n12684379 +n12685431 +n12685831 +n12686077 +n12686274 +n12686496 +n12686676 +n12686877 +n12687044 +n12687462 +n12687698 +n12687957 +n12688187 +n12688372 +n12688716 +n12689305 +n12690653 +n12691428 +n12691661 +n12692024 +n12692160 +n12692521 +n12692714 +n12693244 +n12693352 +n12693865 +n12694486 +n12695144 +n12695975 +n12696492 +n12696830 +n12697152 +n12697514 +n12698027 +n12698435 +n12698598 +n12698774 +n12699031 +n12699301 +n12699922 +n12700088 +n12700357 +n12702124 +n12703190 +n12703383 +n12703557 +n12703716 +n12703856 +n12704041 +n12704343 +n12704513 +n12705013 +n12705220 +n12705458 +n12705698 +n12705978 +n12706410 +n12707199 +n12707781 +n12708293 +n12708654 +n12708941 +n12709103 +n12709349 +n12709688 +n12709901 +n12710295 +n12710415 +n12710577 +n12710693 +n12710917 +n12711182 +n12711398 +n12711596 +n12711817 +n12711984 +n12712320 +n12712626 +n12713063 +n12713358 +n12713521 +n12713866 +n12714254 +n12714755 +n12714949 +n12715195 +n12715914 +n12716400 +n12716594 +n12717072 +n12717224 +n12717644 +n12718074 +n12718483 +n12718995 +n12719684 +n12719944 +n12720200 +n12720354 +n12721122 +n12721477 +n12722071 +n12723062 +n12723610 +n12724942 +n12725521 +n12725738 +n12725940 +n12726159 +n12726357 +n12726528 +n12726670 +n12726902 +n12727101 +n12727301 +n12727518 +n12727729 +n12727960 +n12728164 +n12728322 +n12728508 +n12728656 +n12728864 +n12729023 +n12729164 +n12729315 +n12729521 +n12729729 +n12729950 +n12730143 +n12730370 +n12730544 +n12730776 +n12731029 +n12731401 +n12731835 +n12732009 +n12732252 +n12732491 +n12732605 +n12732756 +n12732966 +n12733218 +n12733428 +n12733647 +n12733870 +n12734070 +n12734215 +n12735160 +n12736603 +n12736999 +n12737383 +n12737898 +n12738259 +n12739332 +n12739966 +n12740967 +n12741222 +n12741586 +n12741792 +n12742290 +n12742741 +n12742878 +n12743009 +n12743352 +n12743823 +n12743976 +n12744142 +n12744387 +n12744850 +n12745386 +n12745564 +n12746884 +n12747120 +n12748248 +n12749049 +n12749456 +n12749679 +n12749852 +n12750076 +n12750767 +n12751172 +n12751675 +n12752205 +n12753007 +n12753245 +n12753573 +n12753762 +n12754003 +n12754174 +n12754311 +n12754468 +n12754648 +n12754781 +n12754981 +n12755225 +n12755387 +n12755559 +n12755727 +n12755876 +n12756457 +n12757115 +n12757303 +n12757458 +n12757668 +n12757816 +n12757930 +n12758014 +n12758099 +n12758176 +n12758250 +n12758325 +n12758399 +n12758471 +n12758555 +n12759273 +n12759668 +n12760539 +n12760875 +n12761284 +n12761702 +n12761905 +n12762049 +n12762405 +n12762896 +n12763529 +n12764008 +n12764202 +n12764507 +n12764978 +n12765115 +n12765402 +n12765846 +n12766043 +n12766595 +n12766869 +n12767208 +n12767423 +n12767648 +n12768369 +n12768682 +n12768809 +n12768933 +n12769065 +n12769219 +n12769318 +n12770529 +n12770892 +n12771085 +n12771192 +n12771390 +n12771597 +n12771890 +n12772753 +n12772908 +n12773142 +n12773651 +n12773917 +n12774299 +n12774641 +n12775070 +n12775393 +n12775717 +n12775919 +n12776558 +n12776774 +n12777436 +n12777680 +n12777778 +n12777892 +n12778398 +n12778605 +n12779603 +n12779851 +n12780325 +n12780563 +n12781940 +n12782530 +n12782915 +n12783316 +n12783730 +n12784371 +n12784889 +n12785724 +n12785889 +n12786273 +n12786464 +n12786836 +n12787364 +n12788854 +n12789054 +n12789554 +n12789977 +n12790430 +n12791064 +n12791329 +n12793015 +n12793284 +n12793494 +n12793695 +n12793886 +n12794135 +n12794367 +n12794568 +n12794985 +n12795209 +n12795352 +n12795555 +n12796022 +n12796385 +n12796849 +n12797368 +n12797860 +n12798284 +n12798910 +n12799269 +n12799776 +n12800049 +n12800586 +n12801072 +n12801520 +n12801781 +n12801966 +n12803226 +n12803754 +n12803958 +n12804352 +n12805146 +n12805561 +n12805762 +n12806015 +n12806732 +n12807251 +n12807409 +n12807624 +n12807773 +n12808007 +n12809868 +n12810007 +n12810151 +n12810595 +n12811027 +n12811713 +n12812235 +n12812478 +n12812801 +n12813189 +n12814643 +n12814857 +n12814960 +n12815198 +n12815668 +n12815838 +n12816508 +n12816942 +n12817464 +n12817694 +n12817855 +n12818004 +n12818346 +n12818601 +n12818966 +n12819141 +n12819354 +n12819728 +n12820113 +n12820669 +n12820853 +n12821505 +n12821895 +n12822115 +n12822466 +n12822769 +n12822955 +n12823717 +n12823859 +n12824053 +n12824289 +n12824735 +n12825497 +n12826143 +n12827270 +n12827537 +n12827907 +n12828220 +n12828379 +n12828520 +n12828791 +n12828977 +n12829582 +n12829975 +n12830222 +n12830568 +n12831141 +n12831535 +n12831932 +n12832315 +n12832538 +n12832822 +n12833149 +n12833985 +n12834190 +n12834798 +n12834938 +n12835331 +n12835766 +n12836212 +n12836337 +n12836508 +n12836862 +n12837052 +n12837259 +n12837466 +n12837803 +n12839574 +n12839979 +n12840168 +n12840362 +n12840502 +n12840749 +n12841007 +n12841193 +n12841354 +n12842302 +n12842519 +n12842642 +n12842887 +n12843144 +n12843316 +n12843557 +n12843970 +n12844409 +n12844939 +n12845187 +n12845413 +n12845908 +n12846335 +n12846690 +n12847008 +n12847374 +n12847927 +n12848499 +n12849061 +n12849279 +n12849416 +n12849952 +n12850168 +n12850336 +n12850906 +n12851094 +n12851469 +n12851860 +n12852234 +n12852428 +n12852570 +n12853080 +n12853287 +n12853482 +n12854048 +n12854193 +n12854600 +n12855365 +n12855494 +n12855710 +n12855886 +n12856091 +n12856287 +n12856479 +n12856680 +n12857204 +n12857779 +n12858150 +n12858397 +n12858618 +n12858871 +n12858987 +n12859153 +n12859272 +n12859679 +n12859986 +n12860365 +n12860978 +n12861345 +n12861541 +n12861892 +n12862512 +n12862828 +n12863234 +n12863624 +n12864160 +n12865037 +n12865562 +n12865708 +n12865824 +n12866002 +n12866162 +n12866333 +n12866459 +n12866635 +n12866968 +n12867184 +n12867449 +n12867826 +n12868019 +n12868880 +n12869061 +n12869478 +n12869668 +n12870048 +n12870225 +n12870535 +n12870682 +n12870891 +n12871272 +n12871696 +n12871859 +n12872458 +n12872914 +n12873341 +n12873984 +n12875269 +n12875697 +n12875861 +n12876899 +n12877244 +n12877493 +n12877637 +n12877838 +n12878169 +n12878325 +n12878784 +n12879068 +n12879527 +n12879963 +n12880244 +n12880462 +n12880638 +n12880799 +n12881105 +n12881913 +n12882158 +n12882779 +n12882945 +n12883265 +n12883628 +n12884100 +n12884260 +n12885045 +n12885265 +n12885510 +n12885754 +n12886185 +n12886402 +n12886600 +n12886831 +n12887293 +n12887532 +n12887713 +n12888016 +n12888234 +n12888457 +n12889219 +n12889412 +n12889579 +n12889713 +n12890265 +n12890490 +n12890685 +n12890928 +n12891093 +n12891305 +n12891469 +n12891643 +n12891824 +n12892013 +n12893463 +n12893993 +n12895298 +n12895811 +n12896615 +n12897118 +n12897788 +n12897999 +n12898342 +n12898774 +n12899166 +n12899537 +n12899752 +n12899971 +n12900783 +n12901724 +n12902466 +n12902662 +n12903014 +n12903367 +n12903503 +n12903964 +n12904314 +n12904562 +n12904938 +n12905135 +n12905412 +n12906214 +n12906498 +n12906771 +n12907057 +n12907671 +n12907857 +n12908093 +n12908645 +n12908854 +n12909421 +n12909614 +n12909759 +n12909917 +n12911079 +n12911264 +n12911440 +n12911673 +n12911914 +n12912274 +n12912670 +n12912801 +n12913144 +n12913524 +n12913791 +n12914923 +n12915140 +n12915568 +n12915811 +n12916179 +n12916511 +n12917901 +n12918609 +n12918810 +n12918991 +n12919195 +n12919403 +n12919646 +n12919847 +n12920043 +n12920204 +n12920521 +n12920719 +n12920955 +n12921315 +n12921499 +n12921660 +n12921868 +n12922119 +n12922458 +n12922763 +n12923108 +n12923257 +n12924623 +n12925179 +n12925583 +n12926039 +n12926480 +n12926689 +n12927013 +n12927194 +n12927494 +n12927758 +n12928071 +n12928307 +n12928491 +n12928819 +n12929403 +n12929600 +n12930778 +n12930951 +n12931231 +n12931542 +n12931906 +n12932173 +n12932365 +n12932706 +n12932966 +n12933274 +n12934036 +n12934174 +n12934479 +n12934685 +n12934985 +n12935166 +n12935609 +n12936155 +n12936826 +n12937130 +n12938081 +n12938193 +n12938445 +n12938667 +n12939104 +n12939282 +n12939479 +n12939874 +n12940226 +n12940609 +n12941220 +n12941536 +n12941717 +n12942025 +n12942395 +n12942572 +n12942729 +n12943049 +n12943443 +n12943912 +n12944095 +n12945177 +n12945366 +n12945549 +n12946849 +n12947313 +n12947544 +n12947756 +n12947895 +n12948053 +n12948251 +n12948495 +n12949160 +n12949361 +n12950126 +n12950314 +n12950796 +n12951146 +n12951835 +n12952165 +n12952469 +n12952590 +n12952717 +n12953206 +n12953484 +n12953712 +n12954353 +n12954799 +n12955414 +n12955840 +n12956170 +n12956367 +n12956588 +n12956922 +n12957608 +n12957803 +n12957924 +n12958261 +n12958615 +n12959074 +n12959538 +n12960378 +n12960552 +n12960863 +n12961242 +n12961393 +n12961536 +n12961879 +n12963628 +n12964920 +n12965626 +n12965951 +n12966804 +n12966945 +n12968136 +n12968309 +n12969131 +n12969425 +n12969670 +n12969927 +n12970193 +n12970293 +n12970733 +n12971400 +n12971804 +n12972136 +n12973443 +n12973791 +n12973937 +n12974987 +n12975804 +n12976198 +n12976554 +n12978076 +n12979316 +n12979829 +n12980080 +n12980840 +n12981086 +n12981301 +n12981443 +n12981954 +n12982468 +n12982590 +n12982915 +n12983048 +n12983654 +n12983873 +n12983961 +n12984267 +n12984489 +n12984595 +n12985420 +n12985773 +n12985857 +n12986227 +n12987056 +n12987423 +n12987535 +n12988158 +n12988341 +n12988572 +n12989007 +n12989938 +n12990597 +n12991184 +n12991837 +n12992177 +n12992868 +n12994892 +n12995601 +n12997654 +n12997919 +n12998815 +n13000891 +n13001041 +n13001206 +n13001366 +n13001529 +n13001930 +n13002209 +n13002750 +n13002925 +n13003061 +n13003254 +n13003522 +n13003712 +n13004423 +n13004640 +n13004826 +n13004992 +n13005329 +n13005984 +n13006171 +n13006631 +n13006894 +n13007034 +n13007417 +n13007629 +n13008157 +n13008315 +n13008485 +n13008689 +n13008839 +n13009085 +n13009244 +n13009429 +n13009656 +n13010694 +n13010951 +n13011221 +n13011595 +n13012253 +n13012469 +n13012973 +n13013534 +n13013764 +n13013965 +n13014097 +n13014265 +n13014409 +n13014581 +n13014741 +n13014879 +n13015509 +n13015688 +n13016076 +n13016289 +n13017102 +n13017240 +n13017439 +n13017610 +n13017789 +n13017979 +n13018088 +n13018232 +n13018407 +n13018906 +n13019496 +n13019643 +n13019835 +n13020191 +n13020481 +n13020964 +n13021166 +n13021332 +n13021543 +n13021689 +n13021867 +n13022210 +n13022709 +n13022903 +n13023134 +n13024012 +n13024500 +n13024653 +n13025647 +n13025854 +n13026015 +n13027557 +n13027879 +n13028611 +n13028937 +n13029122 +n13029326 +n13029610 +n13029760 +n13030337 +n13030616 +n13030852 +n13031193 +n13031323 +n13031474 +n13032115 +n13032381 +n13032618 +n13032923 +n13033134 +n13033396 +n13033577 +n13033879 +n13034062 +n13034555 +n13034788 +n13035241 +n13035389 +n13035707 +n13035925 +n13036116 +n13036312 +n13036804 +n13037406 +n13037585 +n13037805 +n13038068 +n13038376 +n13038577 +n13038744 +n13039349 +n13040303 +n13040629 +n13040796 +n13041312 +n13041943 +n13042134 +n13042316 +n13042982 +n13043926 +n13044375 +n13044778 +n13045210 +n13045594 +n13045975 +n13046130 +n13046669 +n13047862 +n13048447 +n13049953 +n13050397 +n13050705 +n13050940 +n13051346 +n13052014 +n13052248 +n13052670 +n13052931 +n13053608 +n13054073 +n13054560 +n13055423 +n13055577 +n13055792 +n13055949 +n13056135 +n13056349 +n13056607 +n13056799 +n13057054 +n13057242 +n13057422 +n13057639 +n13058037 +n13058272 +n13058608 +n13059298 +n13059657 +n13060017 +n13060190 +n13061172 +n13061348 +n13061471 +n13061704 +n13062421 +n13063269 +n13063514 +n13064111 +n13064457 +n13065089 +n13065514 +n13066129 +n13066448 +n13066979 +n13067191 +n13067330 +n13067532 +n13067672 +n13068255 +n13068434 +n13068735 +n13068917 +n13069224 +n13069773 +n13070308 +n13070875 +n13071371 +n13071553 +n13071815 +n13072031 +n13072209 +n13072350 +n13072528 +n13072706 +n13072863 +n13073055 +n13073703 +n13074619 +n13074814 +n13075020 +n13075272 +n13075441 +n13075684 +n13075847 +n13076041 +n13076405 +n13076643 +n13076831 +n13077033 +n13077295 +n13078021 +n13079073 +n13079419 +n13079567 +n13080306 +n13080866 +n13081229 +n13081999 +n13082568 +n13083023 +n13083461 +n13084184 +n13084834 +n13085113 +n13085747 +n13090018 +n13090871 +n13091620 +n13091774 +n13091982 +n13092078 +n13092240 +n13092385 +n13092987 +n13093275 +n13093629 +n13094145 +n13094273 +n13095013 +n13096779 +n13098515 +n13098962 +n13099833 +n13099999 +n13100156 +n13100677 +n13102648 +n13102775 +n13103023 +n13103660 +n13103750 +n13103877 +n13104059 +n13107694 +n13107807 +n13107891 +n13108131 +n13108323 +n13108481 +n13108545 +n13108662 +n13108841 +n13109733 +n13110915 +n13111174 +n13111340 +n13111504 +n13111881 +n13112035 +n13112201 +n13118330 +n13118707 +n13119870 +n13120211 +n13120958 +n13121104 +n13121349 +n13122364 +n13123309 +n13123431 +n13123841 +n13124358 +n13124654 +n13125117 +n13126050 +n13126856 +n13127001 +n13127303 +n13127666 +n13127843 +n13128278 +n13128582 +n13128976 +n13129078 +n13130014 +n13130161 +n13130726 +n13131028 +n13131618 +n13132034 +n13132156 +n13132338 +n13132486 +n13132656 +n13132756 +n13132940 +n13133140 +n13133233 +n13133316 +n13133613 +n13133932 +n13134302 +n13134531 +n13134844 +n13134947 +n13135692 +n13135832 +n13136316 +n13136556 +n13136781 +n13137010 +n13137225 +n13137409 +n13137672 +n13137951 +n13138155 +n13138308 +n13138658 +n13138842 +n13139055 +n13139321 +n13139482 +n13139647 +n13139837 +n13140049 +n13140367 +n13141141 +n13141415 +n13141564 +n13141797 +n13141972 +n13142182 +n13142504 +n13142907 +n13143285 +n13143758 +n13144084 +n13145040 +n13145250 +n13145444 +n13146403 +n13146583 +n13146928 +n13147153 +n13147270 +n13147386 +n13147532 +n13147689 +n13147918 +n13148208 +n13148384 +n13149296 +n13149970 +n13150378 +n13150592 +n13150894 +n13151082 +n13152339 +n13154388 +n13154494 +n13154841 +n13155095 +n13155305 +n13155611 +n13156986 +n13157137 +n13157346 +n13157481 +n13157684 +n13157971 +n13158167 +n13158512 +n13158605 +n13158714 +n13158815 +n13159357 +n13159691 +n13159890 +n13160116 +n13160254 +n13160365 +n13160604 +n13160831 +n13160938 +n13161151 +n13161254 +n13161904 +n13163553 +n13163649 +n13163991 +n13164501 +n13170840 +n13171210 +n13171797 +n13172923 +n13173132 +n13173259 +n13173488 +n13173697 +n13173882 +n13174354 +n13174670 +n13174823 +n13175682 +n13176363 +n13176714 +n13177048 +n13177529 +n13177768 +n13177884 +n13178284 +n13178707 +n13179056 +n13179804 +n13180534 +n13180875 +n13181055 +n13181244 +n13181406 +n13181811 +n13182164 +n13182338 +n13182799 +n13182937 +n13183056 +n13183489 +n13184394 +n13185269 +n13185658 +n13186388 +n13186546 +n13187367 +n13188096 +n13188268 +n13188462 +n13188767 +n13190060 +n13190747 +n13191148 +n13191620 +n13191884 +n13192625 +n13193143 +n13193269 +n13193466 +n13193642 +n13193856 +n13194036 +n13194212 +n13194572 +n13194758 +n13194918 +n13195341 +n13195761 +n13196003 +n13196234 +n13196369 +n13196738 +n13197274 +n13197507 +n13198054 +n13198482 +n13198914 +n13199717 +n13199970 +n13200193 +n13200542 +n13200651 +n13200986 +n13201423 +n13201566 +n13201969 +n13202125 +n13202355 +n13202602 +n13205058 +n13205249 +n13206178 +n13206817 +n13207094 +n13207335 +n13207572 +n13207736 +n13207923 +n13208302 +n13208705 +n13208965 +n13209129 +n13209270 +n13209460 +n13209808 +n13210350 +n13210597 +n13211020 +n13211790 +n13212025 +n13212175 +n13212379 +n13212559 +n13213066 +n13213397 +n13213577 +n13214217 +n13214340 +n13214485 +n13215258 +n13215586 +n13217005 +n13219422 +n13219833 +n13219976 +n13220122 +n13220355 +n13220525 +n13220663 +n13221529 +n13222877 +n13222985 +n13223090 +n13223588 +n13223710 +n13223843 +n13224673 +n13224922 +n13225244 +n13225365 +n13225617 +n13226320 +n13226871 +n13228017 +n13228536 +n13229543 +n13229951 +n13230190 +n13230662 +n13230843 +n13231078 +n13231678 +n13231919 +n13232106 +n13232363 +n13232779 +n13233727 +n13234114 +n13234519 +n13234678 +n13234857 +n13235011 +n13235159 +n13235319 +n13235503 +n13235766 +n13236100 +n13237188 +n13237508 +n13238375 +n13238654 +n13238988 +n13239177 +n13239736 +n13239921 +n13240362 +n13252672 +n13354021 +n13555775 +n13579829 +n13650447 +n13653902 +n13862407 +n13862552 +n13862780 +n13863020 +n13863186 +n13863473 +n13863771 +n13864035 +n13864153 +n13864965 +n13865298 +n13865483 +n13865904 +n13866144 +n13866626 +n13866827 +n13867005 +n13867492 +n13868248 +n13868371 +n13868515 +n13868944 +n13869045 +n13869547 +n13869788 +n13869896 +n13871717 +n13872592 +n13872822 +n13873361 +n13873502 +n13873917 +n13874073 +n13874558 +n13875392 +n13875571 +n13875884 +n13876561 +n13877547 +n13877667 +n13878306 +n13879049 +n13879320 +n13879816 +n13880199 +n13880415 +n13880551 +n13880704 +n13880994 +n13881512 +n13881644 +n13882201 +n13882276 +n13882487 +n13882563 +n13882639 +n13882713 +n13882961 +n13883603 +n13883763 +n13884261 +n13884384 +n13884930 +n13885011 +n13886260 +n13888491 +n13889066 +n13889331 +n13891547 +n13891937 +n13893786 +n13894154 +n13894434 +n13895262 +n13896100 +n13896217 +n13897198 +n13897528 +n13897996 +n13898207 +n13898315 +n13898645 +n13899735 +n13900287 +n13900422 +n13901211 +n13901321 +n13901423 +n13901490 +n13901858 +n13902048 +n13902336 +n13902793 +n13903079 +n13905121 +n13905275 +n13905792 +n13906484 +n13906669 +n13906767 +n13906936 +n13907272 +n13908201 +n13908580 +n13911045 +n13912260 +n13912540 +n13914141 +n13914265 +n13914608 +n13915023 +n13915113 +n13915209 +n13915305 +n13915999 +n13916363 +n13916721 +n13917690 +n13917785 +n13918274 +n13918387 +n13918717 +n13919547 +n13919919 +n13926786 +n14131950 +n14175579 +n14564779 +n14582716 +n14583400 +n14585392 +n14592309 +n14603798 +n14633206 +n14685296 +n14696793 +n14698884 +n14714645 +n14720833 +n14765422 +n14785065 +n14786943 +n14804958 +n14810561 +n14820180 +n14821852 +n14844693 +n14853210 +n14858292 +n14867545 +n14891255 +n14899328 +n14900184 +n14900342 +n14908027 +n14909584 +n14914945 +n14915184 +n14919819 +n14938389 +n14941787 +n14942411 +n14973585 +n14974264 +n14975598 +n14976759 +n14976871 +n14977188 +n14977504 +n14992287 +n14993378 +n15005577 +n15006012 +n15019030 +n15048888 +n15060326 +n15060688 +n15062057 +n15067877 +n15075141 +n15086247 +n15089258 +n15089472 +n15089645 +n15089803 +n15090065 +n15090238 +n15090742 +n15091129 +n15091304 +n15091473 +n15091669 +n15091846 +n15092059 +n15092227 +n15092409 +n15092650 +n15092751 +n15092942 +n15093049 +n15093137 +n15093298 +n15102359 +n15102455 +n15102894 diff --git a/pytorch-image-models/timm/data/_info/imagenet21k_goog_to_12k_indices.txt b/pytorch-image-models/timm/data/_info/imagenet21k_goog_to_12k_indices.txt new file mode 100644 index 0000000000000000000000000000000000000000..953537f8cb064bf3cfcc87cff4806584575dda24 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet21k_goog_to_12k_indices.txt @@ -0,0 +1,11821 @@ +1 +3 +4 +5 +6 +7 +8 +9 +10 +11 +13 +14 +15 +16 +17 +18 +19 +20 +21 +23 +24 +26 +27 +28 +29 +30 +31 +32 +33 +34 +37 +38 +41 +43 +44 +45 +46 +47 +48 +49 +50 +51 +53 +55 +56 +57 +58 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +89 +90 +91 +93 +94 +95 +96 +97 +99 +100 +101 +102 +103 +105 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +137 +138 +140 +141 +142 +143 +144 +146 +147 +148 +149 +151 +152 +153 +154 +156 +157 +158 +159 +161 +162 +164 +165 +166 +167 +168 +169 +170 +171 +172 +173 +175 +176 +179 +180 +181 +182 +184 +188 +192 +193 +195 +196 +197 +199 +200 +203 +206 +209 +210 +211 +212 +213 +214 +215 +216 +217 +218 +219 +220 +221 +222 +223 +224 +225 +226 +227 +230 +231 +235 +249 +250 +251 +252 +253 +254 +289 +292 +295 +301 +306 +307 +312 +313 +315 +317 +320 +324 +325 +326 +327 +332 +341 +343 +347 +352 +353 +354 +356 +359 +360 +366 +367 +368 +369 +370 +377 +379 +380 +382 +383 +384 +385 +386 +392 +395 +398 +402 +405 +408 +410 +411 +413 +415 +416 +418 +422 +423 +424 +430 +431 +440 +441 +451 +452 +455 +456 +457 +460 +461 +464 +465 +466 +468 +469 +470 +471 +472 +473 +474 +475 +477 +479 +482 +486 +489 +490 +491 +492 +493 +496 +499 +500 +502 +503 +505 +510 +511 +512 +513 +514 +515 +516 +520 +523 +524 +525 +526 +527 +528 +529 +530 +533 +536 +538 +539 +540 +541 +542 +543 +544 +545 +546 +547 +548 +549 +550 +552 +553 +554 +555 +556 +557 +558 +559 +560 +561 +562 +563 +564 +566 +567 +568 +569 +570 +571 +572 +573 +574 +575 +576 +577 +578 +580 +581 +583 +584 +585 +586 +587 +588 +589 +590 +591 +592 +595 +596 +598 +601 +602 +603 +604 +605 +607 +608 +609 +610 +611 +612 +613 +614 +615 +616 +618 +619 +620 +621 +623 +624 +628 +629 +630 +631 +632 +634 +635 +636 +637 +638 +639 +640 +641 +643 +644 +645 +646 +647 +648 +649 +650 +651 +653 +654 +655 +656 +657 +658 +659 +660 +661 +663 +664 +665 +666 +667 +668 +669 +670 +671 +672 +673 +674 +675 +677 +678 +679 +680 +681 +682 +683 +684 +685 +686 +687 +688 +689 +691 +692 +693 +694 +695 +696 +697 +698 +700 +701 +702 +703 +704 +705 +706 +707 +708 +710 +711 +713 +714 +715 +716 +717 +718 +719 +720 +721 +722 +723 +727 +728 +730 +732 +733 +734 +736 +737 +738 +739 +740 +741 +742 +743 +744 +745 +746 +747 +748 +749 +751 +752 +753 +755 +757 +758 +759 +761 +762 +763 +764 +765 +766 +767 +768 +769 +770 +773 +774 +775 +776 +777 +778 +780 +781 +782 +783 +784 +785 +786 +787 +789 +790 +791 +792 +794 +796 +798 +799 +801 +804 +805 +807 +808 +809 +810 +811 +812 +813 +816 +817 +818 +822 +823 +824 +825 +826 +827 +828 +829 +830 +831 +832 +833 +834 +835 +836 +838 +839 +840 +841 +842 +843 +845 +846 +847 +848 +849 +850 +851 +852 +853 +854 +855 +856 +857 +858 +861 +862 +863 +864 +865 +866 +867 +868 +869 +870 +871 +872 +873 +874 +875 +876 +877 +878 +879 +880 +881 +882 +883 +884 +885 +886 +887 +888 +889 +891 +892 +894 +895 +896 +897 +899 +900 +901 +903 +904 +905 +908 +909 +910 +912 +913 +916 +919 +920 +922 +925 +931 +932 +933 +934 +935 +936 +939 +941 +944 +945 +946 +947 +949 +950 +951 +952 +953 +954 +955 +958 +960 +961 +963 +964 +968 +969 +970 +971 +976 +979 +983 +986 +990 +991 +992 +993 +994 +995 +996 +997 +998 +999 +1000 +1001 +1002 +1003 +1004 +1005 +1006 +1007 +1008 +1009 +1010 +1011 +1012 +1013 +1014 +1015 +1016 +1017 +1019 +1022 +1024 +1025 +1027 +1029 +1030 +1031 +1032 +1035 +1036 +1037 +1038 +1039 +1040 +1041 +1043 +1044 +1045 +1046 +1047 +1048 +1050 +1051 +1052 +1055 +1056 +1063 +1064 +1065 +1067 +1069 +1070 +1071 +1072 +1075 +1076 +1078 +1079 +1080 +1081 +1083 +1084 +1085 +1086 +1087 +1088 +1089 +1092 +1093 +1094 +1095 +1097 +1099 +1106 +1121 +1140 +1141 +1143 +1144 +1145 +1147 +1148 +1149 +1150 +1151 +1152 +1155 +1157 +1159 +1160 +1161 +1164 +1165 +1166 +1167 +1168 +1169 +1170 +1171 +1172 +1173 +1178 +1179 +1180 +1181 +1182 +1184 +1187 +1190 +1191 +1193 +1195 +1196 +1197 +1199 +1200 +1201 +1202 +1203 +1204 +1205 +1207 +1208 +1209 +1211 +1214 +1215 +1216 +1217 +1218 +1219 +1220 +1221 +1222 +1223 +1224 +1225 +1227 +1229 +1230 +1231 +1232 +1233 +1234 +1235 +1236 +1237 +1238 +1239 +1240 +1241 +1242 +1244 +1245 +1246 +1247 +1249 +1250 +1251 +1252 +1253 +1254 +1256 +1257 +1258 +1259 +1260 +1261 +1263 +1265 +1266 +1267 +1268 +1269 +1271 +1272 +1273 +1274 +1277 +1279 +1283 +1287 +1289 +1298 +1299 +1303 +1304 +1305 +1308 +1313 +1318 +1320 +1323 +1324 +1325 +1326 +1327 +1328 +1330 +1332 +1333 +1335 +1337 +1339 +1340 +1341 +1342 +1343 +1344 +1345 +1349 +1350 +1351 +1352 +1353 +1354 +1355 +1356 +1357 +1358 +1359 +1362 +1364 +1369 +1372 +1373 +1376 +1377 +1378 +1380 +1382 +1384 +1385 +1386 +1387 +1388 +1389 +1390 +1391 +1392 +1393 +1396 +1397 +1398 +1399 +1402 +1404 +1405 +1406 +1407 +1408 +1409 +1411 +1412 +1413 +1416 +1417 +1420 +1424 +1425 +1426 +1427 +1428 +1429 +1430 +1431 +1432 +1433 +1434 +1435 +1436 +1437 +1439 +1440 +1442 +1443 +1445 +1446 +1448 +1450 +1452 +1454 +1455 +1457 +1458 +1459 +1460 +1461 +1462 +1463 +1464 +1466 +1469 +1470 +1474 +1475 +1476 +1477 +1482 +1485 +1486 +1487 +1488 +1489 +1491 +1493 +1494 +1495 +1496 +1497 +1499 +1500 +1502 +1503 +1504 +1505 +1506 +1508 +1509 +1511 +1512 +1513 +1514 +1515 +1516 +1517 +1518 +1519 +1520 +1521 +1522 +1523 +1524 +1525 +1526 +1527 +1528 +1529 +1530 +1531 +1532 +1533 +1534 +1535 +1536 +1537 +1538 +1539 +1540 +1541 +1542 +1543 +1544 +1545 +1546 +1547 +1548 +1549 +1550 +1551 +1552 +1553 +1554 +1555 +1556 +1557 +1558 +1559 +1560 +1561 +1562 +1563 +1564 +1565 +1566 +1567 +1568 +1569 +1570 +1571 +1572 +1573 +1574 +1575 +1576 +1577 +1578 +1582 +1583 +1584 +1586 +1587 +1588 +1589 +1590 +1591 +1592 +1594 +1595 +1597 +1598 +1599 +1600 +1603 +1604 +1605 +1611 +1614 +1615 +1616 +1622 +1624 +1626 +1627 +1628 +1629 +1630 +1631 +1632 +1633 +1634 +1636 +1643 +1644 +1652 +1656 +1659 +1662 +1663 +1665 +1667 +1668 +1669 +1671 +1672 +1679 +1681 +1688 +1692 +1693 +1694 +1695 +1696 +1697 +1698 +1700 +1701 +1702 +1703 +1704 +1709 +1712 +1716 +1729 +1739 +1742 +1747 +1748 +1750 +1754 +1755 +1757 +1758 +1759 +1760 +1761 +1762 +1764 +1767 +1770 +1771 +1773 +1774 +1777 +1778 +1779 +1782 +1783 +1784 +1786 +1787 +1788 +1789 +1790 +1791 +1792 +1793 +1795 +1797 +1798 +1799 +1800 +1803 +1806 +1808 +1809 +1810 +1811 +1814 +1815 +1822 +1824 +1825 +1827 +1831 +1833 +1835 +1836 +1837 +1841 +1842 +1847 +1848 +1850 +1852 +1853 +1854 +1856 +1859 +1860 +1861 +1862 +1864 +1865 +1867 +1874 +1876 +1877 +1878 +1881 +1884 +1891 +1892 +1893 +1895 +1896 +1897 +1898 +1899 +1900 +1901 +1902 +1903 +1904 +1905 +1906 +1907 +1908 +1909 +1910 +1911 +1912 +1913 +1914 +1915 +1916 +1917 +1918 +1919 +1920 +1921 +1922 +1923 +1924 +1925 +1926 +1927 +1928 +1929 +1930 +1931 +1932 +1933 +1934 +1935 +1936 +1937 +1938 +1939 +1940 +1942 +1943 +1944 +1945 +1946 +1947 +1948 +1949 +1950 +1951 +1952 +1953 +1954 +1956 +1959 +1961 +1962 +1963 +1964 +1965 +1966 +1967 +1968 +1969 +1970 +1971 +1972 +1973 +1974 +1975 +1976 +1977 +1978 +1979 +1980 +1981 +1982 +1983 +1984 +1985 +1986 +1987 +1988 +1990 +1992 +1993 +1995 +1996 +1997 +1998 +1999 +2001 +2002 +2004 +2005 +2007 +2008 +2009 +2010 +2011 +2014 +2016 +2017 +2018 +2019 +2021 +2022 +2023 +2026 +2028 +2029 +2030 +2031 +2032 +2033 +2034 +2035 +2036 +2037 +2038 +2039 +2040 +2041 +2042 +2043 +2044 +2045 +2046 +2047 +2048 +2049 +2050 +2051 +2052 +2053 +2054 +2055 +2056 +2058 +2060 +2061 +2062 +2063 +2064 +2065 +2067 +2068 +2069 +2070 +2071 +2072 +2073 +2074 +2075 +2076 +2077 +2078 +2079 +2080 +2081 +2082 +2083 +2084 +2085 +2087 +2088 +2090 +2093 +2094 +2095 +2096 +2100 +2101 +2102 +2103 +2104 +2106 +2107 +2108 +2109 +2110 +2112 +2113 +2114 +2118 +2119 +2120 +2121 +2122 +2123 +2124 +2128 +2129 +2130 +2132 +2134 +2135 +2137 +2138 +2139 +2140 +2141 +2142 +2143 +2144 +2145 +2146 +2147 +2148 +2149 +2150 +2151 +2152 +2153 +2154 +2155 +2156 +2158 +2159 +2163 +2164 +2165 +2167 +2168 +2169 +2172 +2173 +2174 +2176 +2177 +2178 +2180 +2181 +2182 +2183 +2184 +2185 +2187 +2188 +2189 +2190 +2191 +2192 +2193 +2195 +2198 +2199 +2200 +2203 +2206 +2207 +2208 +2209 +2210 +2211 +2212 +2213 +2214 +2216 +2217 +2219 +2220 +2221 +2222 +2223 +2224 +2225 +2226 +2227 +2228 +2229 +2230 +2231 +2232 +2233 +2234 +2236 +2237 +2238 +2239 +2240 +2241 +2242 +2243 +2244 +2245 +2246 +2247 +2248 +2249 +2250 +2251 +2252 +2253 +2255 +2256 +2257 +2258 +2259 +2260 +2261 +2262 +2263 +2264 +2265 +2266 +2267 +2268 +2269 +2270 +2271 +2272 +2273 +2274 +2275 +2276 +2278 +2279 +2280 +2281 +2282 +2283 +2285 +2287 +2288 +2289 +2291 +2292 +2293 +2294 +2295 +2296 +2297 +2298 +2299 +2300 +2301 +2302 +2303 +2304 +2305 +2306 +2307 +2308 +2309 +2310 +2311 +2312 +2313 +2314 +2315 +2316 +2317 +2318 +2319 +2320 +2321 +2322 +2326 +2328 +2329 +2330 +2331 +2332 +2334 +2335 +2336 +2337 +2338 +2339 +2340 +2341 +2342 +2343 +2344 +2345 +2347 +2348 +2349 +2350 +2351 +2352 +2353 +2356 +2357 +2358 +2359 +2360 +2362 +2363 +2364 +2365 +2368 +2369 +2370 +2372 +2374 +2377 +2380 +2381 +2382 +2383 +2385 +2386 +2387 +2388 +2389 +2390 +2391 +2392 +2393 +2395 +2396 +2397 +2398 +2399 +2400 +2401 +2402 +2403 +2404 +2405 +2407 +2408 +2409 +2410 +2411 +2412 +2413 +2416 +2417 +2419 +2420 +2421 +2422 +2423 +2424 +2425 +2426 +2427 +2428 +2430 +2431 +2432 +2433 +2434 +2436 +2437 +2438 +2439 +2441 +2444 +2445 +2447 +2448 +2449 +2450 +2452 +2453 +2454 +2456 +2459 +2461 +2463 +2465 +2469 +2470 +2471 +2472 +2473 +2474 +2494 +2495 +2497 +2498 +2499 +2500 +2505 +2509 +2512 +2513 +2515 +2519 +2520 +2522 +2523 +2525 +2526 +2528 +2530 +2531 +2532 +2533 +2534 +2536 +2537 +2538 +2540 +2542 +2544 +2545 +2547 +2548 +2549 +2557 +2558 +2561 +2562 +2563 +2565 +2567 +2568 +2569 +2570 +2571 +2572 +2573 +2578 +2587 +2588 +2589 +2590 +2595 +2597 +2598 +2609 +2612 +2613 +2615 +2616 +2617 +2618 +2625 +2626 +2627 +2628 +2630 +2631 +2635 +2638 +2639 +2641 +2642 +2644 +2645 +2649 +2654 +2655 +2656 +2658 +2659 +2660 +2663 +2664 +2665 +2666 +2668 +2669 +2670 +2672 +2674 +2675 +2677 +2679 +2680 +2681 +2682 +2683 +2684 +2686 +2689 +2691 +2692 +2693 +2694 +2696 +2699 +2702 +2705 +2706 +2707 +2708 +2712 +2715 +2722 +2723 +2724 +2725 +2727 +2728 +2730 +2731 +2732 +2734 +2737 +2738 +2739 +2741 +2742 +2743 +2745 +2747 +2748 +2749 +2750 +2752 +2760 +2761 +2762 +2764 +2767 +2770 +2774 +2778 +2780 +2791 +2795 +2796 +2805 +2810 +2812 +2814 +2815 +2818 +2820 +2828 +2829 +2832 +2833 +2835 +2837 +2840 +2843 +2844 +2845 +2852 +2859 +2860 +2861 +2862 +2863 +2864 +2865 +2866 +2867 +2868 +2869 +2870 +2871 +2872 +2874 +2875 +2876 +2878 +2879 +2880 +2881 +2882 +2884 +2885 +2886 +2888 +2889 +2890 +2891 +2892 +2893 +2894 +2895 +2897 +2899 +2900 +2903 +2904 +2907 +2910 +2913 +2914 +2916 +2923 +2926 +2932 +2933 +2940 +2944 +2945 +2947 +2949 +2950 +2953 +2955 +2956 +2957 +2958 +2959 +2960 +2963 +2964 +2967 +2970 +2974 +2976 +2979 +2980 +2982 +2984 +2985 +2989 +2990 +2991 +2992 +2993 +2994 +2996 +2999 +3000 +3002 +3005 +3007 +3008 +3009 +3010 +3012 +3013 +3014 +3018 +3019 +3020 +3022 +3024 +3025 +3026 +3027 +3028 +3029 +3030 +3033 +3035 +3036 +3039 +3040 +3042 +3043 +3046 +3047 +3048 +3051 +3053 +3055 +3056 +3059 +3060 +3067 +3069 +3074 +3079 +3086 +3088 +3091 +3093 +3094 +3106 +3111 +3117 +3125 +3129 +3134 +3135 +3136 +3137 +3138 +3139 +3140 +3141 +3142 +3143 +3144 +3145 +3146 +3148 +3149 +3150 +3151 +3153 +3154 +3159 +3160 +3161 +3164 +3165 +3166 +3168 +3169 +3170 +3171 +3172 +3173 +3176 +3177 +3182 +3188 +3191 +3192 +3193 +3194 +3195 +3196 +3200 +3201 +3202 +3203 +3204 +3205 +3206 +3207 +3208 +3209 +3210 +3214 +3218 +3219 +3220 +3221 +3222 +3223 +3225 +3226 +3227 +3228 +3229 +3230 +3231 +3232 +3234 +3235 +3236 +3237 +3238 +3239 +3240 +3241 +3242 +3243 +3244 +3245 +3246 +3247 +3248 +3253 +3258 +3259 +3260 +3261 +3262 +3264 +3265 +3266 +3267 +3268 +3270 +3271 +3273 +3274 +3277 +3278 +3279 +3280 +3281 +3282 +3283 +3284 +3285 +3288 +3289 +3291 +3292 +3296 +3297 +3298 +3299 +3301 +3302 +3304 +3305 +3306 +3307 +3308 +3309 +3310 +3311 +3312 +3315 +3316 +3318 +3320 +3321 +3322 +3324 +3325 +3327 +3328 +3329 +3330 +3332 +3333 +3334 +3335 +3337 +3339 +3340 +3341 +3342 +3343 +3344 +3345 +3348 +3349 +3351 +3352 +3353 +3354 +3355 +3356 +3358 +3360 +3361 +3362 +3363 +3365 +3366 +3368 +3371 +3373 +3375 +3376 +3377 +3378 +3379 +3380 +3381 +3382 +3383 +3384 +3389 +3390 +3392 +3397 +3398 +3400 +3401 +3404 +3405 +3406 +3407 +3408 +3409 +3410 +3411 +3412 +3413 +3415 +3416 +3417 +3419 +3421 +3424 +3425 +3426 +3427 +3428 +3429 +3430 +3431 +3432 +3433 +3434 +3435 +3436 +3438 +3439 +3440 +3441 +3444 +3446 +3448 +3450 +3451 +3452 +3454 +3455 +3456 +3458 +3459 +3461 +3462 +3463 +3466 +3467 +3468 +3469 +3471 +3472 +3473 +3474 +3475 +3476 +3477 +3478 +3479 +3481 +3482 +3485 +3492 +3493 +3494 +3495 +3497 +3498 +3499 +3500 +3501 +3502 +3503 +3505 +3509 +3510 +3511 +3512 +3513 +3517 +3518 +3519 +3520 +3521 +3522 +3526 +3527 +3528 +3533 +3536 +3544 +3546 +3547 +3553 +3554 +3555 +3556 +3559 +3560 +3562 +3563 +3565 +3566 +3567 +3568 +3569 +3574 +3575 +3576 +3584 +3585 +3587 +3599 +3600 +3601 +3602 +3603 +3604 +3605 +3606 +3608 +3609 +3610 +3612 +3613 +3614 +3615 +3616 +3619 +3622 +3623 +3624 +3625 +3627 +3628 +3629 +3630 +3632 +3633 +3634 +3635 +3636 +3638 +3640 +3641 +3644 +3646 +3649 +3650 +3651 +3655 +3656 +3659 +3660 +3662 +3663 +3665 +3671 +3673 +3674 +3683 +3684 +3686 +3687 +3688 +3689 +3690 +3692 +3694 +3695 +3702 +3705 +3707 +3709 +3711 +3714 +3715 +3716 +3720 +3725 +3727 +3731 +3733 +3736 +3737 +3738 +3744 +3746 +3747 +3750 +3753 +3756 +3758 +3761 +3763 +3764 +3765 +3766 +3767 +3768 +3769 +3770 +3771 +3772 +3773 +3774 +3775 +3782 +3785 +3787 +3790 +3798 +3801 +3803 +3812 +3814 +3815 +3816 +3817 +3818 +3819 +3825 +3826 +3827 +3828 +3829 +3832 +3833 +3836 +3837 +3838 +3840 +3842 +3844 +3845 +3846 +3852 +3853 +3854 +3855 +3858 +3860 +3864 +3865 +3867 +3868 +3873 +3874 +3877 +3882 +3883 +3884 +3887 +3888 +3889 +3890 +3894 +3899 +3900 +3901 +3902 +3904 +3908 +3910 +3916 +3918 +3920 +3925 +3928 +3936 +3937 +3939 +3943 +3947 +3948 +3949 +3950 +3951 +3956 +3962 +3963 +3968 +3969 +3970 +3971 +3972 +3974 +3975 +3976 +3977 +3984 +3986 +3988 +3991 +4001 +4005 +4006 +4007 +4009 +4018 +4019 +4020 +4021 +4022 +4023 +4024 +4026 +4028 +4030 +4031 +4032 +4033 +4036 +4038 +4039 +4040 +4041 +4042 +4043 +4062 +4063 +4065 +4066 +4067 +4068 +4071 +4073 +4074 +4075 +4089 +4090 +4094 +4096 +4097 +4099 +4100 +4101 +4102 +4104 +4105 +4107 +4109 +4110 +4112 +4118 +4120 +4129 +4136 +4137 +4138 +4139 +4140 +4141 +4142 +4143 +4144 +4148 +4150 +4151 +4152 +4153 +4154 +4155 +4158 +4159 +4161 +4165 +4167 +4171 +4174 +4176 +4178 +4179 +4181 +4182 +4183 +4185 +4187 +4189 +4190 +4191 +4192 +4198 +4202 +4203 +4204 +4205 +4206 +4207 +4208 +4210 +4211 +4212 +4213 +4214 +4215 +4216 +4217 +4219 +4221 +4222 +4223 +4226 +4227 +4230 +4232 +4233 +4235 +4237 +4242 +4244 +4248 +4249 +4250 +4251 +4252 +4253 +4254 +4255 +4256 +4259 +4261 +4262 +4263 +4264 +4265 +4266 +4267 +4269 +4270 +4272 +4273 +4274 +4276 +4277 +4278 +4280 +4281 +4282 +4283 +4284 +4285 +4290 +4292 +4296 +4297 +4298 +4299 +4301 +4304 +4306 +4307 +4308 +4309 +4310 +4311 +4312 +4313 +4315 +4317 +4318 +4321 +4323 +4324 +4325 +4326 +4327 +4328 +4329 +4330 +4331 +4332 +4334 +4335 +4336 +4338 +4340 +4341 +4344 +4345 +4346 +4349 +4350 +4351 +4352 +4354 +4355 +4356 +4358 +4361 +4362 +4363 +4365 +4366 +4369 +4373 +4374 +4378 +4379 +4380 +4386 +4389 +4390 +4391 +4395 +4396 +4399 +4400 +4401 +4403 +4404 +4406 +4407 +4408 +4410 +4412 +4414 +4416 +4417 +4418 +4419 +4420 +4421 +4423 +4425 +4426 +4427 +4428 +4430 +4431 +4432 +4434 +4435 +4436 +4438 +4439 +4440 +4441 +4442 +4444 +4445 +4450 +4451 +4453 +4454 +4455 +4456 +4458 +4459 +4462 +4463 +4464 +4465 +4466 +4467 +4468 +4469 +4470 +4471 +4473 +4474 +4475 +4476 +4477 +4478 +4479 +4481 +4483 +4484 +4485 +4486 +4487 +4489 +4490 +4491 +4493 +4494 +4495 +4496 +4497 +4498 +4499 +4500 +4501 +4504 +4505 +4506 +4508 +4509 +4510 +4511 +4512 +4515 +4518 +4519 +4521 +4522 +4529 +4530 +4531 +4533 +4536 +4538 +4539 +4540 +4542 +4543 +4544 +4545 +4546 +4547 +4549 +4550 +4551 +4552 +4555 +4556 +4559 +4560 +4561 +4562 +4565 +4567 +4568 +4569 +4570 +4571 +4572 +4574 +4576 +4577 +4579 +4580 +4583 +4585 +4587 +4588 +4591 +4594 +4595 +4596 +4599 +4600 +4603 +4604 +4605 +4606 +4608 +4609 +4610 +4611 +4612 +4613 +4614 +4617 +4618 +4619 +4620 +4621 +4622 +4623 +4624 +4625 +4626 +4627 +4628 +4629 +4631 +4632 +4633 +4634 +4635 +4636 +4639 +4640 +4641 +4642 +4646 +4647 +4648 +4649 +4650 +4651 +4652 +4655 +4656 +4662 +4663 +4664 +4665 +4666 +4667 +4668 +4669 +4670 +4671 +4672 +4676 +4677 +4678 +4679 +4680 +4681 +4683 +4685 +4686 +4687 +4688 +4690 +4691 +4692 +4694 +4695 +4696 +4699 +4702 +4705 +4708 +4709 +4710 +4711 +4712 +4714 +4715 +4716 +4717 +4719 +4722 +4723 +4724 +4725 +4726 +4727 +4728 +4729 +4730 +4732 +4733 +4734 +4736 +4737 +4739 +4740 +4743 +4746 +4748 +4750 +4751 +4752 +4756 +4758 +4759 +4760 +4761 +4762 +4768 +4770 +4771 +4773 +4774 +4775 +4777 +4778 +4779 +4780 +4781 +4783 +4789 +4790 +4793 +4795 +4797 +4798 +4799 +4800 +4801 +4802 +4804 +4806 +4807 +4808 +4812 +4813 +4814 +4815 +4816 +4818 +4819 +4824 +4829 +4831 +4833 +4836 +4837 +4839 +4840 +4842 +4843 +4844 +4847 +4848 +4849 +4851 +4852 +4853 +4854 +4855 +4860 +4861 +4863 +4864 +4865 +4866 +4867 +4869 +4871 +4874 +4875 +4877 +4878 +4879 +4880 +4883 +4884 +4885 +4886 +4887 +4888 +4890 +4894 +4895 +4896 +4897 +4900 +4901 +4903 +4905 +4906 +4908 +4909 +4910 +4912 +4913 +4916 +4917 +4921 +4922 +4923 +4924 +4925 +4926 +4927 +4928 +4929 +4931 +4932 +4933 +4934 +4935 +4936 +4938 +4939 +4940 +4941 +4942 +4943 +4945 +4946 +4947 +4950 +4951 +4953 +4957 +4958 +4960 +4961 +4964 +4965 +4967 +4968 +4970 +4972 +4973 +4976 +4977 +4978 +4979 +4980 +4981 +4982 +4984 +4985 +4986 +4987 +4989 +4990 +4991 +4993 +4994 +4998 +4999 +5001 +5002 +5003 +5004 +5005 +5007 +5008 +5009 +5011 +5012 +5016 +5017 +5020 +5021 +5022 +5023 +5025 +5026 +5027 +5028 +5029 +5031 +5033 +5034 +5037 +5038 +5039 +5041 +5042 +5043 +5046 +5047 +5048 +5051 +5055 +5057 +5060 +5061 +5062 +5063 +5064 +5065 +5068 +5071 +5072 +5073 +5076 +5078 +5079 +5081 +5083 +5084 +5086 +5088 +5090 +5091 +5092 +5093 +5094 +5096 +5098 +5100 +5101 +5102 +5104 +5105 +5109 +5111 +5112 +5114 +5115 +5117 +5119 +5120 +5121 +5122 +5123 +5124 +5125 +5126 +5127 +5129 +5130 +5131 +5132 +5133 +5134 +5135 +5137 +5138 +5139 +5141 +5142 +5143 +5144 +5146 +5148 +5149 +5151 +5153 +5154 +5156 +5157 +5158 +5162 +5163 +5165 +5167 +5168 +5172 +5174 +5175 +5176 +5178 +5179 +5180 +5181 +5183 +5184 +5185 +5186 +5187 +5189 +5191 +5193 +5195 +5196 +5198 +5199 +5201 +5202 +5203 +5204 +5205 +5206 +5207 +5208 +5209 +5210 +5211 +5212 +5213 +5215 +5216 +5217 +5218 +5219 +5221 +5222 +5223 +5224 +5225 +5226 +5227 +5231 +5234 +5235 +5237 +5239 +5240 +5247 +5248 +5249 +5250 +5253 +5254 +5255 +5256 +5258 +5259 +5264 +5265 +5266 +5267 +5269 +5270 +5272 +5273 +5275 +5277 +5278 +5282 +5284 +5288 +5290 +5291 +5292 +5293 +5294 +5295 +5296 +5297 +5298 +5299 +5300 +5301 +5302 +5306 +5307 +5311 +5312 +5313 +5314 +5315 +5316 +5317 +5319 +5320 +5321 +5322 +5323 +5326 +5328 +5329 +5330 +5331 +5332 +5333 +5334 +5335 +5336 +5338 +5339 +5340 +5341 +5343 +5344 +5345 +5346 +5347 +5348 +5353 +5357 +5358 +5360 +5362 +5363 +5364 +5369 +5372 +5373 +5375 +5377 +5378 +5379 +5381 +5385 +5386 +5387 +5388 +5389 +5390 +5391 +5392 +5393 +5395 +5398 +5399 +5400 +5401 +5402 +5403 +5406 +5407 +5410 +5411 +5412 +5413 +5417 +5418 +5419 +5420 +5421 +5422 +5423 +5425 +5426 +5427 +5428 +5429 +5430 +5431 +5432 +5434 +5435 +5437 +5439 +5441 +5443 +5444 +5445 +5446 +5447 +5448 +5450 +5451 +5454 +5455 +5456 +5461 +5463 +5466 +5467 +5471 +5472 +5473 +5474 +5475 +5476 +5477 +5478 +5481 +5482 +5483 +5484 +5485 +5486 +5487 +5488 +5489 +5491 +5493 +5494 +5495 +5496 +5497 +5498 +5499 +5501 +5503 +5504 +5505 +5506 +5507 +5508 +5510 +5511 +5514 +5515 +5517 +5519 +5520 +5521 +5522 +5524 +5529 +5530 +5531 +5532 +5535 +5538 +5540 +5541 +5542 +5544 +5547 +5548 +5549 +5550 +5551 +5552 +5553 +5554 +5555 +5557 +5561 +5563 +5564 +5565 +5566 +5567 +5568 +5569 +5570 +5572 +5574 +5575 +5576 +5577 +5578 +5579 +5580 +5583 +5584 +5586 +5590 +5591 +5592 +5593 +5594 +5595 +5596 +5597 +5598 +5603 +5604 +5606 +5607 +5608 +5609 +5610 +5612 +5613 +5614 +5615 +5617 +5619 +5620 +5621 +5622 +5623 +5624 +5625 +5626 +5627 +5629 +5630 +5631 +5633 +5634 +5635 +5636 +5638 +5639 +5642 +5643 +5647 +5652 +5654 +5656 +5657 +5658 +5659 +5660 +5661 +5663 +5664 +5665 +5667 +5669 +5671 +5672 +5673 +5674 +5676 +5677 +5682 +5683 +5685 +5688 +5690 +5691 +5692 +5694 +5695 +5696 +5697 +5698 +5699 +5701 +5702 +5703 +5704 +5705 +5708 +5709 +5711 +5712 +5713 +5714 +5715 +5716 +5717 +5718 +5725 +5727 +5729 +5736 +5737 +5738 +5741 +5742 +5743 +5748 +5752 +5753 +5754 +5755 +5757 +5758 +5759 +5760 +5761 +5764 +5765 +5766 +5767 +5768 +5769 +5770 +5772 +5773 +5774 +5776 +5777 +5778 +5779 +5782 +5784 +5785 +5786 +5787 +5788 +5789 +5790 +5791 +5792 +5793 +5797 +5798 +5802 +5803 +5804 +5805 +5807 +5808 +5809 +5810 +5811 +5812 +5814 +5816 +5817 +5818 +5823 +5824 +5825 +5828 +5829 +5830 +5831 +5832 +5836 +5837 +5841 +5843 +5845 +5846 +5847 +5848 +5849 +5850 +5851 +5853 +5855 +5857 +5858 +5859 +5860 +5861 +5862 +5863 +5866 +5867 +5868 +5871 +5872 +5873 +5874 +5875 +5879 +5881 +5884 +5885 +5887 +5888 +5891 +5892 +5893 +5896 +5897 +5898 +5899 +5900 +5902 +5904 +5905 +5906 +5907 +5910 +5911 +5912 +5913 +5914 +5915 +5918 +5919 +5920 +5921 +5922 +5924 +5927 +5928 +5931 +5932 +5934 +5935 +5940 +5941 +5942 +5944 +5947 +5949 +5950 +5951 +5952 +5954 +5955 +5956 +5957 +5960 +5961 +5962 +5964 +5965 +5967 +5968 +5969 +5973 +5974 +5976 +5977 +5980 +5981 +5985 +5986 +5987 +5988 +5990 +5991 +5994 +5995 +5996 +5997 +5998 +5999 +6001 +6003 +6004 +6005 +6006 +6008 +6009 +6010 +6012 +6013 +6015 +6016 +6017 +6020 +6021 +6023 +6024 +6025 +6026 +6027 +6028 +6029 +6030 +6032 +6033 +6037 +6040 +6041 +6042 +6043 +6044 +6046 +6047 +6048 +6049 +6050 +6054 +6055 +6056 +6057 +6063 +6065 +6069 +6070 +6072 +6075 +6076 +6077 +6079 +6082 +6083 +6084 +6086 +6087 +6092 +6099 +6102 +6103 +6105 +6109 +6110 +6111 +6114 +6115 +6116 +6118 +6120 +6122 +6124 +6125 +6128 +6129 +6134 +6139 +6140 +6144 +6146 +6147 +6148 +6152 +6153 +6154 +6157 +6158 +6160 +6167 +6168 +6173 +6174 +6175 +6177 +6179 +6180 +6184 +6190 +6191 +6192 +6198 +6201 +6202 +6203 +6204 +6205 +6207 +6210 +6211 +6212 +6214 +6215 +6216 +6217 +6219 +6224 +6225 +6226 +6227 +6228 +6230 +6232 +6234 +6235 +6236 +6237 +6238 +6239 +6241 +6242 +6243 +6248 +6251 +6252 +6253 +6255 +6256 +6259 +6260 +6262 +6266 +6270 +6272 +6273 +6274 +6275 +6281 +6284 +6285 +6286 +6288 +6289 +6290 +6291 +6294 +6297 +6298 +6299 +6300 +6301 +6302 +6303 +6304 +6305 +6306 +6307 +6308 +6309 +6312 +6315 +6319 +6321 +6325 +6326 +6327 +6330 +6331 +6334 +6335 +6336 +6338 +6339 +6340 +6341 +6342 +6343 +6344 +6345 +6347 +6348 +6349 +6350 +6352 +6355 +6356 +6359 +6362 +6363 +6364 +6365 +6367 +6372 +6376 +6378 +6379 +6383 +6385 +6386 +6387 +6388 +6389 +6390 +6392 +6393 +6394 +6395 +6396 +6397 +6398 +6399 +6400 +6401 +6404 +6405 +6407 +6408 +6411 +6412 +6414 +6417 +6418 +6420 +6421 +6422 +6423 +6425 +6426 +6430 +6431 +6433 +6435 +6437 +6439 +6440 +6441 +6442 +6444 +6447 +6448 +6449 +6450 +6451 +6452 +6453 +6454 +6455 +6456 +6458 +6459 +6460 +6462 +6464 +6465 +6467 +6468 +6469 +6470 +6471 +6474 +6475 +6477 +6478 +6479 +6480 +6481 +6482 +6483 +6488 +6490 +6492 +6493 +6495 +6496 +6499 +6500 +6503 +6505 +6506 +6510 +6511 +6513 +6514 +6515 +6517 +6518 +6521 +6522 +6523 +6527 +6531 +6533 +6534 +6535 +6536 +6537 +6540 +6541 +6545 +6546 +6547 +6550 +6551 +6553 +6554 +6556 +6558 +6559 +6560 +6561 +6562 +6563 +6567 +6568 +6571 +6572 +6573 +6574 +6575 +6576 +6577 +6578 +6579 +6583 +6587 +6589 +6590 +6591 +6593 +6594 +6595 +6596 +6597 +6598 +6600 +6601 +6602 +6604 +6605 +6608 +6611 +6612 +6613 +6614 +6615 +6616 +6617 +6618 +6619 +6620 +6621 +6622 +6623 +6629 +6632 +6636 +6638 +6639 +6640 +6643 +6648 +6649 +6651 +6653 +6654 +6655 +6658 +6660 +6661 +6662 +6663 +6665 +6667 +6668 +6669 +6670 +6673 +6674 +6675 +6676 +6677 +6678 +6679 +6681 +6682 +6683 +6686 +6687 +6691 +6692 +6693 +6694 +6695 +6696 +6698 +6700 +6702 +6703 +6705 +6706 +6707 +6708 +6709 +6710 +6712 +6713 +6715 +6716 +6718 +6720 +6721 +6722 +6723 +6725 +6726 +6728 +6735 +6737 +6739 +6740 +6741 +6743 +6744 +6745 +6746 +6747 +6748 +6749 +6751 +6752 +6753 +6754 +6757 +6758 +6763 +6764 +6765 +6766 +6767 +6768 +6770 +6772 +6773 +6774 +6775 +6776 +6778 +6779 +6781 +6783 +6784 +6785 +6786 +6787 +6788 +6791 +6794 +6795 +6797 +6798 +6799 +6800 +6804 +6805 +6806 +6807 +6808 +6809 +6810 +6813 +6814 +6815 +6820 +6822 +6823 +6825 +6826 +6829 +6830 +6831 +6833 +6834 +6837 +6838 +6840 +6841 +6846 +6847 +6850 +6851 +6855 +6857 +6858 +6860 +6863 +6864 +6865 +6866 +6867 +6868 +6870 +6875 +6876 +6877 +6878 +6879 +6880 +6882 +6885 +6886 +6887 +6889 +6890 +6892 +6894 +6898 +6900 +6901 +6902 +6905 +6908 +6909 +6912 +6915 +6916 +6917 +6919 +6920 +6925 +6926 +6928 +6929 +6930 +6931 +6932 +6934 +6935 +6936 +6937 +6939 +6940 +6941 +6944 +6945 +6946 +6950 +6951 +6952 +6953 +6954 +6956 +6958 +6959 +6960 +6961 +6964 +6965 +6966 +6968 +6969 +6973 +6974 +6978 +6980 +6981 +6982 +6985 +6986 +6987 +6990 +6991 +6993 +6994 +6995 +6996 +6997 +6998 +6999 +7000 +7002 +7003 +7004 +7009 +7010 +7011 +7013 +7017 +7018 +7019 +7025 +7026 +7029 +7031 +7038 +7039 +7041 +7042 +7044 +7045 +7046 +7048 +7049 +7050 +7051 +7052 +7055 +7056 +7057 +7059 +7062 +7063 +7064 +7066 +7068 +7069 +7072 +7073 +7075 +7076 +7077 +7078 +7079 +7081 +7082 +7083 +7084 +7085 +7087 +7088 +7090 +7091 +7092 +7093 +7095 +7096 +7097 +7098 +7099 +7100 +7101 +7103 +7104 +7107 +7108 +7110 +7111 +7112 +7113 +7115 +7116 +7117 +7118 +7120 +7121 +7122 +7123 +7126 +7127 +7128 +7129 +7134 +7135 +7136 +7137 +7138 +7142 +7150 +7152 +7153 +7154 +7155 +7156 +7158 +7160 +7161 +7162 +7163 +7164 +7165 +7166 +7167 +7168 +7169 +7170 +7171 +7172 +7173 +7175 +7176 +7177 +7178 +7180 +7181 +7182 +7183 +7186 +7189 +7192 +7193 +7194 +7195 +7196 +7198 +7199 +7200 +7201 +7202 +7203 +7204 +7205 +7206 +7207 +7208 +7212 +7213 +7214 +7215 +7216 +7217 +7218 +7219 +7220 +7222 +7223 +7224 +7225 +7226 +7228 +7230 +7231 +7232 +7237 +7238 +7239 +7241 +7242 +7243 +7244 +7245 +7246 +7247 +7250 +7254 +7256 +7257 +7258 +7259 +7260 +7261 +7263 +7264 +7266 +7267 +7268 +7270 +7271 +7273 +7276 +7277 +7278 +7279 +7280 +7282 +7283 +7284 +7285 +7286 +7287 +7288 +7289 +7290 +7291 +7292 +7293 +7294 +7297 +7299 +7301 +7302 +7305 +7306 +7307 +7309 +7310 +7313 +7314 +7315 +7316 +7317 +7318 +7319 +7321 +7322 +7323 +7324 +7325 +7326 +7327 +7329 +7332 +7333 +7334 +7335 +7336 +7337 +7338 +7340 +7341 +7342 +7344 +7346 +7348 +7349 +7350 +7353 +7354 +7357 +7358 +7363 +7364 +7365 +7370 +7372 +7373 +7375 +7378 +7379 +7380 +7382 +7385 +7386 +7388 +7390 +7391 +7393 +7394 +7396 +7400 +7403 +7406 +7412 +7418 +7419 +7420 +7422 +7424 +7425 +7427 +7428 +7432 +7435 +7436 +7437 +7438 +7440 +7441 +7442 +7443 +7445 +7449 +7450 +7451 +7452 +7454 +7455 +7458 +7459 +7460 +7461 +7462 +7463 +7464 +7465 +7466 +7467 +7469 +7470 +7471 +7472 +7473 +7474 +7475 +7476 +7478 +7479 +7482 +7484 +7485 +7486 +7491 +7492 +7494 +7496 +7497 +7498 +7502 +7503 +7504 +7505 +7506 +7507 +7511 +7513 +7514 +7516 +7517 +7518 +7520 +7521 +7523 +7524 +7525 +7526 +7528 +7530 +7533 +7536 +7539 +7540 +7541 +7542 +7546 +7548 +7551 +7552 +7554 +7556 +7557 +7558 +7559 +7561 +7562 +7563 +7564 +7565 +7566 +7567 +7568 +7570 +7571 +7573 +7574 +7575 +7578 +7584 +7585 +7587 +7590 +7591 +7592 +7595 +7596 +7597 +7601 +7603 +7604 +7606 +7607 +7608 +7610 +7612 +7613 +7616 +7617 +7619 +7622 +7623 +7625 +7626 +7628 +7629 +7630 +7631 +7634 +7637 +7638 +7641 +7642 +7644 +7646 +7650 +7651 +7652 +7655 +7656 +7657 +7658 +7659 +7660 +7661 +7663 +7664 +7665 +7666 +7671 +7672 +7673 +7674 +7679 +7681 +7682 +7685 +7686 +7688 +7690 +7691 +7693 +7694 +7696 +7698 +7703 +7704 +7705 +7707 +7708 +7710 +7711 +7712 +7713 +7715 +7716 +7717 +7718 +7719 +7721 +7722 +7723 +7724 +7725 +7727 +7728 +7729 +7730 +7731 +7732 +7733 +7734 +7736 +7738 +7739 +7740 +7741 +7742 +7746 +7749 +7751 +7753 +7755 +7756 +7757 +7758 +7759 +7760 +7763 +7764 +7768 +7769 +7770 +7773 +7775 +7777 +7778 +7779 +7783 +7785 +7786 +7787 +7788 +7789 +7792 +7793 +7794 +7795 +7798 +7799 +7801 +7805 +7806 +7810 +7813 +7815 +7818 +7820 +7824 +7828 +7830 +7832 +7834 +7835 +7837 +7841 +7843 +7844 +7849 +7852 +7854 +7855 +7856 +7858 +7860 +7862 +7864 +7867 +7868 +7871 +7872 +7873 +7874 +7876 +7878 +7881 +7882 +7884 +7886 +7887 +7889 +7891 +7892 +7894 +7895 +7896 +7902 +7903 +7904 +7905 +7906 +7908 +7911 +7913 +7914 +7915 +7917 +7918 +7919 +7920 +7921 +7923 +7924 +7927 +7928 +7929 +7931 +7934 +7935 +7937 +7938 +7939 +7940 +7941 +7942 +7943 +7944 +7949 +7950 +7951 +7952 +7953 +7954 +7955 +7959 +7962 +7963 +7964 +7966 +7969 +7972 +7973 +7976 +7977 +7981 +7982 +7983 +7984 +7987 +7988 +7989 +7990 +7991 +7992 +7994 +7995 +7997 +7998 +7999 +8000 +8001 +8004 +8005 +8006 +8007 +8008 +8009 +8012 +8017 +8019 +8020 +8021 +8022 +8023 +8024 +8025 +8027 +8028 +8029 +8031 +8033 +8034 +8035 +8036 +8037 +8038 +8039 +8040 +8042 +8043 +8044 +8045 +8046 +8050 +8051 +8052 +8054 +8056 +8060 +8061 +8062 +8064 +8065 +8066 +8068 +8070 +8071 +8072 +8074 +8077 +8078 +8080 +8081 +8082 +8084 +8086 +8087 +8089 +8090 +8093 +8098 +8099 +8101 +8104 +8105 +8106 +8110 +8112 +8113 +8114 +8115 +8116 +8119 +8120 +8121 +8124 +8125 +8126 +8127 +8129 +8131 +8133 +8136 +8138 +8139 +8140 +8141 +8142 +8144 +8145 +8147 +8149 +8150 +8151 +8153 +8154 +8155 +8156 +8157 +8159 +8161 +8162 +8163 +8164 +8166 +8168 +8170 +8171 +8172 +8173 +8174 +8175 +8177 +8178 +8179 +8182 +8183 +8184 +8186 +8191 +8193 +8195 +8197 +8198 +8199 +8201 +8202 +8203 +8204 +8205 +8206 +8207 +8208 +8210 +8211 +8212 +8213 +8215 +8216 +8218 +8220 +8221 +8222 +8225 +8229 +8230 +8231 +8232 +8233 +8236 +8237 +8239 +8240 +8242 +8243 +8244 +8245 +8246 +8250 +8251 +8252 +8254 +8255 +8256 +8257 +8258 +8259 +8261 +8263 +8264 +8267 +8268 +8271 +8272 +8273 +8275 +8276 +8278 +8281 +8282 +8285 +8286 +8288 +8289 +8290 +8294 +8295 +8297 +8298 +8299 +8300 +8303 +8307 +8309 +8310 +8312 +8313 +8315 +8318 +8320 +8322 +8325 +8326 +8327 +8328 +8329 +8330 +8332 +8333 +8335 +8337 +8345 +8346 +8347 +8348 +8352 +8354 +8360 +8362 +8364 +8365 +8368 +8371 +8375 +8376 +8378 +8380 +8381 +8382 +8386 +8388 +8389 +8390 +8392 +8393 +8394 +8396 +8397 +8398 +8399 +8400 +8401 +8402 +8403 +8404 +8405 +8407 +8408 +8409 +8410 +8412 +8414 +8416 +8417 +8418 +8419 +8420 +8421 +8422 +8426 +8428 +8430 +8432 +8433 +8434 +8435 +8436 +8437 +8439 +8440 +8446 +8447 +8448 +8449 +8450 +8451 +8452 +8453 +8454 +8456 +8460 +8462 +8463 +8464 +8467 +8468 +8469 +8470 +8472 +8473 +8474 +8477 +8478 +8481 +8482 +8483 +8484 +8485 +8486 +8490 +8491 +8492 +8493 +8494 +8495 +8496 +8497 +8498 +8500 +8501 +8502 +8503 +8505 +8506 +8508 +8509 +8510 +8511 +8512 +8513 +8516 +8521 +8522 +8524 +8526 +8529 +8531 +8532 +8536 +8538 +8539 +8540 +8541 +8542 +8543 +8547 +8548 +8549 +8552 +8553 +8555 +8556 +8557 +8560 +8561 +8562 +8564 +8565 +8568 +8569 +8570 +8571 +8572 +8573 +8577 +8578 +8580 +8581 +8583 +8584 +8586 +8588 +8589 +8590 +8591 +8593 +8594 +8596 +8597 +8598 +8599 +8600 +8601 +8602 +8603 +8604 +8606 +8607 +8610 +8611 +8613 +8615 +8622 +8625 +8626 +8627 +8628 +8629 +8632 +8636 +8638 +8639 +8641 +8643 +8645 +8646 +8647 +8648 +8649 +8650 +8651 +8652 +8653 +8654 +8655 +8656 +8657 +8658 +8662 +8663 +8664 +8665 +8666 +8667 +8668 +8669 +8670 +8671 +8672 +8673 +8674 +8675 +8676 +8677 +8678 +8679 +8680 +8681 +8682 +8684 +8685 +8686 +8690 +8691 +8692 +8693 +8694 +8695 +8702 +8707 +8708 +8709 +8710 +8711 +8712 +8713 +8715 +8716 +8720 +8723 +8724 +8725 +8728 +8732 +8733 +8737 +8738 +8739 +8740 +8741 +8745 +8746 +8750 +8752 +8753 +8754 +8756 +8757 +8758 +8759 +8761 +8762 +8763 +8766 +8768 +8770 +8771 +8772 +8773 +8775 +8776 +8780 +8781 +8783 +8784 +8785 +8786 +8787 +8788 +8793 +8795 +8797 +8798 +8801 +8803 +8804 +8806 +8807 +8810 +8812 +8814 +8815 +8817 +8820 +8823 +8824 +8826 +8827 +8828 +8829 +8830 +8831 +8833 +8835 +8838 +8839 +8842 +8843 +8845 +8846 +8847 +8848 +8849 +8851 +8854 +8856 +8857 +8858 +8860 +8861 +8863 +8864 +8867 +8869 +8870 +8871 +8872 +8875 +8876 +8878 +8879 +8883 +8884 +8886 +8887 +8888 +8890 +8891 +8892 +8894 +8896 +8897 +8898 +8899 +8900 +8901 +8902 +8903 +8905 +8906 +8908 +8910 +8914 +8915 +8916 +8917 +8918 +8919 +8922 +8923 +8924 +8925 +8926 +8927 +8929 +8931 +8932 +8934 +8936 +8937 +8938 +8939 +8942 +8943 +8944 +8945 +8947 +8948 +8950 +8951 +8954 +8956 +8957 +8959 +8962 +8965 +8966 +8967 +8968 +8969 +8970 +8971 +8976 +8977 +8980 +8981 +8982 +8983 +8984 +8985 +8986 +8987 +8989 +8990 +8991 +8992 +8993 +8994 +8995 +9000 +9001 +9003 +9006 +9007 +9011 +9012 +9013 +9014 +9015 +9019 +9022 +9023 +9024 +9025 +9026 +9028 +9029 +9030 +9031 +9032 +9033 +9034 +9036 +9037 +9039 +9042 +9043 +9047 +9049 +9050 +9051 +9052 +9054 +9055 +9056 +9057 +9058 +9059 +9060 +9061 +9062 +9064 +9065 +9066 +9070 +9071 +9072 +9073 +9074 +9079 +9080 +9081 +9082 +9083 +9087 +9088 +9092 +9093 +9094 +9096 +9097 +9098 +9100 +9101 +9104 +9105 +9106 +9107 +9108 +9109 +9110 +9111 +9112 +9116 +9118 +9119 +9123 +9128 +9130 +9131 +9132 +9133 +9134 +9138 +9139 +9140 +9141 +9142 +9144 +9146 +9147 +9148 +9149 +9150 +9151 +9153 +9154 +9155 +9158 +9159 +9161 +9163 +9165 +9166 +9167 +9168 +9169 +9171 +9173 +9174 +9175 +9176 +9179 +9180 +9183 +9184 +9187 +9188 +9189 +9191 +9193 +9198 +9199 +9201 +9204 +9206 +9207 +9212 +9213 +9214 +9215 +9216 +9217 +9219 +9220 +9221 +9224 +9225 +9226 +9227 +9228 +9229 +9230 +9231 +9232 +9234 +9238 +9239 +9240 +9242 +9243 +9244 +9246 +9250 +9251 +9252 +9253 +9255 +9257 +9258 +9259 +9260 +9265 +9266 +9269 +9270 +9271 +9272 +9273 +9274 +9275 +9276 +9277 +9279 +9281 +9283 +9290 +9293 +9294 +9295 +9296 +9297 +9300 +9303 +9304 +9305 +9306 +9307 +9308 +9309 +9310 +9313 +9314 +9317 +9318 +9319 +9322 +9324 +9327 +9330 +9331 +9333 +9334 +9335 +9336 +9337 +9338 +9342 +9343 +9344 +9345 +9346 +9347 +9349 +9350 +9352 +9354 +9355 +9362 +9363 +9365 +9366 +9367 +9368 +9369 +9370 +9371 +9372 +9376 +9377 +9381 +9382 +9383 +9385 +9386 +9387 +9390 +9391 +9392 +9395 +9396 +9397 +9398 +9399 +9400 +9401 +9402 +9404 +9405 +9407 +9411 +9412 +9413 +9414 +9415 +9416 +9417 +9418 +9420 +9421 +9422 +9423 +9425 +9426 +9427 +9430 +9431 +9437 +9440 +9441 +9442 +9445 +9446 +9447 +9448 +9449 +9450 +9452 +9453 +9454 +9455 +9457 +9460 +9463 +9464 +9465 +9467 +9469 +9470 +9471 +9475 +9476 +9479 +9481 +9482 +9484 +9486 +9488 +9490 +9492 +9493 +9496 +9498 +9500 +9501 +9502 +9503 +9504 +9505 +9513 +9514 +9515 +9516 +9521 +9522 +9523 +9528 +9532 +9533 +9535 +9536 +9537 +9540 +9542 +9543 +9545 +9546 +9548 +9549 +9551 +9552 +9557 +9558 +9566 +9567 +9569 +9570 +9571 +9572 +9574 +9575 +9576 +9577 +9578 +9579 +9581 +9584 +9585 +9586 +9587 +9588 +9590 +9591 +9595 +9597 +9602 +9605 +9608 +9609 +9610 +9615 +9616 +9618 +9622 +9624 +9626 +9627 +9628 +9629 +9630 +9633 +9634 +9635 +9636 +9637 +9639 +9640 +9641 +9642 +9643 +9644 +9647 +9652 +9653 +9654 +9655 +9656 +9659 +9660 +9661 +9664 +9665 +9666 +9667 +9668 +9670 +9673 +9674 +9675 +9676 +9677 +9678 +9679 +9681 +9684 +9686 +9689 +9690 +9691 +9692 +9693 +9695 +9697 +9698 +9703 +9704 +9705 +9706 +9707 +9711 +9712 +9713 +9715 +9717 +9720 +9721 +9724 +9726 +9727 +9728 +9730 +9733 +9734 +9735 +9737 +9738 +9739 +9740 +9741 +9742 +9745 +9752 +9753 +9754 +9755 +9756 +9757 +9759 +9760 +9763 +9764 +9765 +9767 +9770 +9771 +9772 +9773 +9774 +9776 +9777 +9778 +9779 +9780 +9781 +9783 +9785 +9786 +9787 +9792 +9795 +9797 +9798 +9799 +9800 +9801 +9802 +9803 +9806 +9807 +9808 +9810 +9812 +9815 +9820 +9821 +9826 +9827 +9828 +9835 +9836 +9837 +9838 +9839 +9842 +9845 +9849 +9850 +9856 +9858 +9859 +9860 +9861 +9863 +9867 +9869 +9870 +9874 +9876 +9877 +9878 +9879 +9881 +9884 +9886 +9887 +9888 +9889 +9890 +9892 +9894 +9895 +9896 +9897 +9898 +9899 +9900 +9901 +9902 +9903 +9905 +9907 +9908 +9910 +9912 +9913 +9916 +9921 +9922 +9923 +9924 +9925 +9927 +9928 +9929 +9930 +9931 +9932 +9935 +9936 +9937 +9938 +9939 +9941 +9945 +9947 +9948 +9949 +9951 +9952 +9953 +9954 +9956 +9958 +9960 +9961 +9962 +9963 +9964 +9965 +9966 +9967 +9969 +9970 +9972 +9975 +9976 +9977 +9979 +9980 +9981 +9982 +9983 +9984 +9988 +9989 +9990 +9991 +9992 +9993 +9994 +9997 +9999 +10002 +10003 +10010 +10011 +10012 +10013 +10014 +10015 +10016 +10017 +10018 +10022 +10023 +10025 +10028 +10029 +10031 +10033 +10034 +10036 +10038 +10040 +10041 +10042 +10043 +10044 +10045 +10046 +10047 +10048 +10050 +10051 +10052 +10053 +10054 +10055 +10056 +10057 +10058 +10059 +10060 +10062 +10064 +10065 +10066 +10067 +10068 +10070 +10073 +10074 +10075 +10076 +10077 +10078 +10081 +10082 +10083 +10084 +10086 +10087 +10088 +10090 +10091 +10092 +10093 +10094 +10095 +10097 +10100 +10102 +10105 +10106 +10107 +10108 +10109 +10110 +10113 +10117 +10118 +10119 +10121 +10122 +10123 +10124 +10127 +10128 +10134 +10135 +10140 +10141 +10142 +10147 +10148 +10151 +10152 +10153 +10155 +10156 +10157 +10158 +10159 +10160 +10162 +10163 +10164 +10165 +10169 +10171 +10175 +10179 +10181 +10185 +10186 +10187 +10188 +10189 +10190 +10191 +10192 +10195 +10196 +10197 +10199 +10200 +10202 +10206 +10207 +10209 +10210 +10211 +10213 +10217 +10218 +10219 +10220 +10221 +10223 +10224 +10225 +10226 +10227 +10228 +10229 +10231 +10232 +10234 +10235 +10236 +10237 +10240 +10241 +10243 +10244 +10245 +10246 +10247 +10248 +10249 +10250 +10252 +10253 +10254 +10255 +10258 +10260 +10262 +10263 +10264 +10265 +10266 +10269 +10271 +10272 +10273 +10276 +10277 +10279 +10283 +10284 +10286 +10289 +10290 +10291 +10295 +10296 +10297 +10298 +10299 +10300 +10301 +10302 +10303 +10304 +10305 +10306 +10307 +10308 +10311 +10313 +10314 +10315 +10318 +10319 +10322 +10323 +10324 +10325 +10326 +10327 +10328 +10329 +10330 +10331 +10332 +10333 +10335 +10336 +10337 +10338 +10339 +10340 +10343 +10344 +10345 +10346 +10349 +10350 +10351 +10352 +10353 +10354 +10355 +10356 +10360 +10362 +10363 +10366 +10367 +10371 +10372 +10373 +10375 +10377 +10378 +10380 +10381 +10383 +10387 +10388 +10389 +10390 +10391 +10394 +10395 +10397 +10398 +10399 +10401 +10402 +10404 +10406 +10409 +10412 +10413 +10414 +10416 +10417 +10418 +10419 +10420 +10422 +10423 +10424 +10425 +10427 +10429 +10430 +10431 +10432 +10433 +10436 +10438 +10440 +10444 +10447 +10448 +10451 +10453 +10455 +10456 +10459 +10460 +10461 +10462 +10463 +10465 +10468 +10470 +10473 +10476 +10478 +10479 +10481 +10483 +10487 +10488 +10489 +10491 +10494 +10496 +10497 +10499 +10500 +10501 +10504 +10505 +10506 +10508 +10509 +10510 +10511 +10512 +10513 +10514 +10515 +10517 +10518 +10519 +10520 +10521 +10522 +10523 +10524 +10525 +10526 +10527 +10528 +10530 +10531 +10532 +10534 +10535 +10536 +10539 +10542 +10544 +10546 +10547 +10548 +10549 +10550 +10551 +10552 +10553 +10554 +10555 +10556 +10559 +10561 +10563 +10564 +10567 +10570 +10574 +10575 +10576 +10583 +10584 +10585 +10586 +10588 +10589 +10590 +10591 +10592 +10594 +10598 +10607 +10610 +10611 +10612 +10613 +10615 +10617 +10620 +10621 +10623 +10625 +10626 +10627 +10628 +10629 +10631 +10633 +10635 +10636 +10638 +10639 +10641 +10642 +10643 +10644 +10648 +10649 +10650 +10658 +10659 +10662 +10663 +10664 +10665 +10666 +10667 +10668 +10669 +10671 +10672 +10673 +10674 +10675 +10676 +10677 +10678 +10680 +10681 +10683 +10686 +10687 +10688 +10691 +10692 +10694 +10695 +10697 +10698 +10699 +10700 +10701 +10702 +10703 +10708 +10709 +10711 +10712 +10713 +10714 +10718 +10719 +10720 +10721 +10723 +10725 +10726 +10727 +10728 +10729 +10730 +10731 +10733 +10734 +10735 +10738 +10739 +10742 +10748 +10749 +10750 +10751 +10752 +10754 +10755 +10757 +10759 +10760 +10761 +10763 +10765 +10766 +10767 +10768 +10772 +10773 +10774 +10775 +10776 +10777 +10780 +10781 +10782 +10783 +10784 +10786 +10787 +10791 +10792 +10793 +10796 +10798 +10799 +10800 +10802 +10803 +10806 +10807 +10808 +10809 +10810 +10811 +10813 +10814 +10818 +10822 +10824 +10825 +10828 +10830 +10832 +10833 +10835 +10837 +10840 +10841 +10842 +10843 +10844 +10846 +10848 +10849 +10852 +10855 +10856 +10859 +10860 +10862 +10864 +10865 +10867 +10870 +10871 +10872 +10874 +10875 +10876 +10877 +10879 +10880 +10881 +10882 +10883 +10884 +10886 +10889 +10890 +10894 +10896 +10897 +10898 +10899 +10902 +10906 +10907 +10908 +10909 +10910 +10912 +10913 +10914 +10915 +10919 +10920 +10921 +10924 +10927 +10928 +10932 +10933 +10935 +10936 +10938 +10939 +10940 +10941 +10943 +10944 +10945 +10946 +10947 +10948 +10951 +10952 +10953 +10955 +10956 +10957 +10958 +10960 +10962 +10963 +10964 +10968 +10969 +10972 +10973 +10974 +10975 +10980 +10984 +10986 +10987 +10989 +10994 +10997 +10998 +10999 +11001 +11002 +11003 +11004 +11005 +11009 +11012 +11013 +11016 +11017 +11018 +11020 +11022 +11023 +11024 +11025 +11027 +11028 +11029 +11031 +11032 +11033 +11034 +11036 +11039 +11040 +11041 +11044 +11045 +11046 +11049 +11051 +11052 +11053 +11054 +11055 +11056 +11057 +11059 +11060 +11061 +11062 +11064 +11066 +11067 +11068 +11069 +11071 +11073 +11074 +11077 +11078 +11079 +11081 +11082 +11083 +11084 +11085 +11086 +11088 +11089 +11094 +11095 +11096 +11097 +11098 +11099 +11102 +11103 +11104 +11105 +11106 +11107 +11108 +11109 +11110 +11111 +11113 +11114 +11115 +11119 +11120 +11121 +11123 +11126 +11128 +11129 +11130 +11133 +11134 +11135 +11137 +11138 +11139 +11140 +11141 +11143 +11144 +11145 +11146 +11147 +11149 +11151 +11152 +11153 +11154 +11155 +11156 +11158 +11159 +11160 +11161 +11162 +11163 +11164 +11165 +11168 +11169 +11170 +11171 +11172 +11173 +11174 +11177 +11179 +11180 +11181 +11182 +11183 +11185 +11186 +11187 +11188 +11190 +11198 +11201 +11203 +11206 +11208 +11209 +11210 +11211 +11212 +11214 +11216 +11218 +11219 +11220 +11221 +11222 +11223 +11225 +11226 +11227 +11235 +11236 +11238 +11239 +11242 +11243 +11244 +11247 +11248 +11252 +11255 +11257 +11259 +11260 +11262 +11263 +11266 +11269 +11270 +11273 +11274 +11275 +11276 +11277 +11279 +11282 +11283 +11284 +11292 +11293 +11294 +11296 +11298 +11299 +11301 +11304 +11305 +11306 +11307 +11309 +11310 +11311 +11313 +11316 +11318 +11319 +11320 +11323 +11325 +11326 +11327 +11329 +11330 +11331 +11332 +11334 +11335 +11339 +11340 +11341 +11343 +11344 +11345 +11347 +11349 +11350 +11351 +11352 +11354 +11355 +11356 +11357 +11361 +11363 +11365 +11367 +11370 +11372 +11374 +11375 +11377 +11378 +11379 +11382 +11383 +11384 +11385 +11386 +11387 +11388 +11389 +11390 +11391 +11392 +11394 +11396 +11397 +11398 +11400 +11401 +11402 +11403 +11404 +11405 +11407 +11409 +11410 +11412 +11414 +11416 +11418 +11421 +11424 +11427 +11428 +11429 +11431 +11433 +11436 +11437 +11439 +11440 +11441 +11442 +11443 +11447 +11449 +11454 +11455 +11456 +11460 +11464 +11465 +11466 +11468 +11469 +11470 +11472 +11473 +11474 +11477 +11478 +11479 +11482 +11483 +11484 +11485 +11487 +11488 +11489 +11490 +11491 +11492 +11493 +11494 +11495 +11497 +11498 +11499 +11501 +11503 +11504 +11507 +11508 +11514 +11515 +11516 +11517 +11518 +11520 +11521 +11522 +11524 +11527 +11529 +11532 +11536 +11537 +11538 +11539 +11540 +11541 +11542 +11543 +11544 +11549 +11551 +11554 +11556 +11557 +11558 +11560 +11562 +11563 +11566 +11570 +11571 +11572 +11573 +11574 +11575 +11577 +11578 +11579 +11580 +11582 +11584 +11588 +11589 +11590 +11591 +11592 +11593 +11594 +11596 +11597 +11598 +11599 +11600 +11604 +11605 +11606 +11609 +11611 +11612 +11613 +11614 +11615 +11618 +11619 +11620 +11621 +11622 +11623 +11624 +11627 +11628 +11629 +11630 +11631 +11632 +11633 +11634 +11636 +11637 +11638 +11640 +11641 +11643 +11644 +11646 +11647 +11648 +11649 +11650 +11651 +11652 +11653 +11654 +11655 +11656 +11657 +11658 +11659 +11660 +11662 +11664 +11668 +11670 +11671 +11673 +11674 +11675 +11679 +11682 +11683 +11687 +11688 +11689 +11690 +11692 +11693 +11695 +11696 +11697 +11698 +11700 +11701 +11704 +11705 +11708 +11709 +11710 +11711 +11712 +11713 +11715 +11716 +11718 +11721 +11723 +11725 +11726 +11727 +11728 +11729 +11730 +11732 +11733 +11734 +11735 +11736 +11737 +11738 +11740 +11743 +11744 +11747 +11750 +11751 +11753 +11754 +11756 +11757 +11760 +11761 +11763 +11764 +11765 +11769 +11770 +11771 +11773 +11774 +11777 +11778 +11780 +11781 +11782 +11783 +11787 +11788 +11790 +11791 +11793 +11795 +11798 +11799 +11800 +11801 +11802 +11804 +11809 +11810 +11811 +11814 +11815 +11819 +11820 +11821 +11822 +11823 +11827 +11829 +11835 +11836 +11837 +11838 +11839 +11840 +11841 +11842 +11843 +11845 +11846 +11847 +11848 +11849 +11851 +11852 +11856 +11857 +11858 +11862 +11863 +11864 +11865 +11866 +11867 +11868 +11869 +11870 +11871 +11872 +11873 +11875 +11876 +11877 +11878 +11879 +11880 +11881 +11882 +11883 +11884 +11887 +11889 +11890 +11891 +11892 +11894 +11896 +11897 +11898 +11899 +11900 +11902 +11903 +11904 +11905 +11907 +11909 +11910 +11914 +11917 +11918 +11920 +11921 +11922 +11923 +11925 +11927 +11928 +11929 +11930 +11931 +11933 +11937 +11939 +11940 +11941 +11942 +11944 +11947 +11948 +11950 +11951 +11952 +11953 +11954 +11955 +11958 +11960 +11961 +11962 +11964 +11965 +11966 +11968 +11970 +11971 +11972 +11975 +11976 +11979 +11980 +11982 +11984 +11985 +11987 +11990 +11991 +11994 +11995 +11996 +12000 +12002 +12009 +12010 +12011 +12012 +12013 +12014 +12015 +12016 +12018 +12019 +12020 +12021 +12022 +12023 +12024 +12025 +12026 +12027 +12028 +12029 +12031 +12032 +12033 +12034 +12035 +12036 +12037 +12038 +12039 +12040 +12041 +12042 +12044 +12045 +12047 +12048 +12049 +12050 +12051 +12052 +12054 +12055 +12056 +12058 +12061 +12063 +12064 +12065 +12067 +12069 +12071 +12074 +12075 +12081 +12084 +12085 +12088 +12090 +12091 +12092 +12093 +12094 +12095 +12096 +12097 +12099 +12105 +12107 +12109 +12110 +12112 +12121 +12123 +12125 +12131 +12145 +12147 +12148 +12154 +12155 +12157 +12159 +12163 +12170 +12174 +12177 +12178 +12179 +12180 +12181 +12182 +12183 +12184 +12185 +12186 +12187 +12190 +12191 +12192 +12194 +12198 +12200 +12201 +12202 +12203 +12204 +12207 +12208 +12209 +12210 +12211 +12214 +12215 +12217 +12218 +12222 +12225 +12227 +12229 +12230 +12231 +12232 +12239 +12240 +12241 +12242 +12243 +12244 +12245 +12246 +12247 +12248 +12249 +12250 +12251 +12253 +12255 +12256 +12257 +12259 +12260 +12261 +12262 +12263 +12264 +12268 +12272 +12276 +12281 +12282 +12283 +12284 +12285 +12291 +12297 +12298 +12302 +12304 +12306 +12309 +12313 +12315 +12317 +12319 +12322 +12323 +12324 +12325 +12326 +12327 +12328 +12329 +12331 +12332 +12333 +12334 +12335 +12336 +12338 +12340 +12341 +12342 +12346 +12347 +12348 +12349 +12350 +12351 +12352 +12353 +12354 +12355 +12356 +12357 +12359 +12360 +12362 +12363 +12365 +12367 +12369 +12373 +12375 +12376 +12377 +12381 +12382 +12384 +12386 +12387 +12389 +12391 +12393 +12394 +12395 +12396 +12397 +12399 +12400 +12401 +12402 +12404 +12405 +12406 +12407 +12408 +12409 +12411 +12412 +12413 +12414 +12420 +12421 +12422 +12423 +12426 +12430 +12431 +12433 +12434 +12436 +12437 +12438 +12439 +12441 +12443 +12444 +12447 +12453 +12455 +12457 +12463 +12464 +12465 +12467 +12468 +12471 +12474 +12481 +12482 +12483 +12484 +12487 +12491 +12493 +12494 +12495 +12497 +12498 +12501 +12502 +12503 +12505 +12506 +12511 +12512 +12513 +12516 +12519 +12522 +12523 +12525 +12526 +12530 +12533 +12535 +12537 +12539 +12542 +12545 +12546 +12547 +12548 +12550 +12551 +12552 +12554 +12556 +12557 +12559 +12560 +12562 +12564 +12566 +12567 +12568 +12570 +12571 +12572 +12573 +12574 +12575 +12577 +12580 +12581 +12582 +12583 +12585 +12590 +12591 +12593 +12594 +12595 +12597 +12601 +12602 +12604 +12611 +12614 +12615 +12616 +12617 +12619 +12620 +12622 +12623 +12625 +12626 +12627 +12628 +12629 +12630 +12632 +12633 +12634 +12635 +12636 +12640 +12641 +12643 +12644 +12646 +12647 +12648 +12649 +12651 +12653 +12654 +12657 +12659 +12661 +12663 +12665 +12667 +12668 +12671 +12672 +12674 +12675 +12676 +12677 +12678 +12679 +12680 +12681 +12684 +12685 +12686 +12687 +12688 +12689 +12690 +12692 +12693 +12694 +12695 +12697 +12699 +12700 +12701 +12702 +12703 +12704 +12708 +12709 +12710 +12711 +12712 +12713 +12714 +12715 +12717 +12720 +12722 +12723 +12729 +12730 +12731 +12732 +12733 +12734 +12735 +12736 +12737 +12738 +12739 +12740 +12741 +12742 +12743 +12744 +12749 +12751 +12752 +12754 +12755 +12757 +12759 +12760 +12761 +12762 +12767 +12768 +12769 +12770 +12771 +12772 +12773 +12774 +12775 +12776 +12777 +12778 +12780 +12781 +12782 +12783 +12784 +12785 +12786 +12787 +12788 +12790 +12791 +12793 +12794 +12795 +12796 +12798 +12800 +12801 +12802 +12804 +12806 +12807 +12808 +12809 +12810 +12811 +12812 +12816 +12817 +12818 +12819 +12820 +12821 +12822 +12823 +12824 +12825 +12826 +12827 +12828 +12829 +12830 +12831 +12832 +12833 +12834 +12835 +12836 +12837 +12838 +12839 +12840 +12841 +12842 +12843 +12844 +12847 +12848 +12849 +12850 +12856 +12858 +12861 +12864 +12866 +12870 +12871 +12872 +12873 +12874 +12876 +12877 +12878 +12879 +12881 +12882 +12883 +12885 +12887 +12888 +12889 +12890 +12891 +12892 +12894 +12897 +12898 +12899 +12901 +12903 +12904 +12905 +12907 +12908 +12910 +12913 +12914 +12915 +12916 +12920 +12921 +12923 +12924 +12925 +12927 +12928 +12929 +12934 +12935 +12936 +12937 +12938 +12939 +12940 +12941 +12943 +12944 +12945 +12947 +12949 +12950 +12951 +12952 +12956 +12957 +12958 +12962 +12963 +12964 +12966 +12967 +12968 +12969 +12970 +12971 +12972 +12976 +12977 +12978 +12979 +12981 +12982 +12983 +12985 +12986 +12990 +12994 +12995 +12996 +12998 +13000 +13001 +13002 +13003 +13006 +13007 +13010 +13015 +13017 +13021 +13022 +13024 +13026 +13027 +13028 +13029 +13031 +13032 +13033 +13036 +13038 +13040 +13041 +13042 +13045 +13046 +13048 +13049 +13050 +13051 +13052 +13053 +13054 +13056 +13057 +13058 +13059 +13060 +13061 +13062 +13063 +13065 +13067 +13068 +13069 +13070 +13071 +13072 +13074 +13076 +13078 +13079 +13081 +13084 +13085 +13086 +13088 +13089 +13090 +13093 +13094 +13095 +13096 +13098 +13100 +13101 +13103 +13105 +13107 +13108 +13109 +13110 +13114 +13119 +13121 +13126 +13128 +13134 +13135 +13136 +13137 +13140 +13141 +13144 +13145 +13146 +13149 +13150 +13151 +13152 +13153 +13155 +13156 +13157 +13158 +13159 +13163 +13164 +13165 +13169 +13170 +13171 +13172 +13173 +13174 +13175 +13176 +13178 +13180 +13182 +13183 +13187 +13188 +13190 +13194 +13197 +13200 +13203 +13204 +13206 +13207 +13212 +13213 +13214 +13215 +13216 +13222 +13224 +13225 +13226 +13228 +13229 +13230 +13233 +13235 +13236 +13237 +13241 +13246 +13247 +13248 +13249 +13250 +13255 +13256 +13257 +13259 +13260 +13261 +13262 +13264 +13265 +13266 +13267 +13268 +13269 +13270 +13271 +13272 +13277 +13280 +13281 +13284 +13286 +13287 +13298 +13299 +13300 +13301 +13302 +13306 +13307 +13308 +13310 +13311 +13312 +13313 +13314 +13316 +13317 +13318 +13319 +13323 +13325 +13326 +13328 +13329 +13330 +13331 +13332 +13334 +13336 +13337 +13339 +13340 +13341 +13342 +13344 +13346 +13348 +13349 +13350 +13352 +13353 +13354 +13356 +13357 +13358 +13360 +13362 +13364 +13365 +13369 +13372 +13376 +13378 +13379 +13381 +13382 +13385 +13386 +13387 +13388 +13390 +13391 +13396 +13398 +13399 +13400 +13402 +13406 +13407 +13415 +13418 +13424 +13427 +13428 +13430 +13433 +13434 +13438 +13444 +13445 +13448 +13452 +13453 +13454 +13455 +13456 +13467 +13472 +13474 +13476 +13477 +13478 +13479 +13480 +13481 +13482 +13483 +13484 +13485 +13486 +13487 +13489 +13492 +13493 +13494 +13495 +13496 +13498 +13499 +13505 +13507 +13509 +13518 +13519 +13522 +13523 +13524 +13525 +13526 +13531 +13533 +13534 +13535 +13536 +13538 +13540 +13541 +13542 +13543 +13544 +13546 +13547 +13548 +13552 +13554 +13555 +13560 +13566 +13573 +13578 +13582 +13590 +13593 +13595 +13601 +13603 +13604 +13605 +13607 +13609 +13610 +13613 +13614 +13615 +13618 +13620 +13621 +13622 +13623 +13624 +13625 +13626 +13631 +13632 +13634 +13636 +13641 +13642 +13643 +13644 +13645 +13649 +13650 +13651 +13652 +13654 +13655 +13656 +13657 +13658 +13659 +13660 +13661 +13664 +13665 +13666 +13668 +13669 +13671 +13672 +13673 +13674 +13675 +13677 +13678 +13679 +13683 +13685 +13687 +13689 +13690 +13691 +13693 +13695 +13696 +13698 +13699 +13700 +13701 +13702 +13703 +13706 +13709 +13711 +13712 +13713 +13717 +13721 +13724 +13725 +13726 +13727 +13728 +13732 +13733 +13734 +13735 +13736 +13737 +13738 +13740 +13742 +13743 +13744 +13745 +13746 +13747 +13748 +13749 +13751 +13752 +13755 +13756 +13757 +13759 +13761 +13765 +13766 +13767 +13768 +13770 +13771 +13772 +13773 +13774 +13775 +13776 +13777 +13778 +13780 +13782 +13783 +13786 +13787 +13788 +13790 +13791 +13792 +13793 +13795 +13799 +13800 +13801 +13802 +13803 +13804 +13805 +13806 +13808 +13809 +13811 +13812 +13813 +13814 +13815 +13816 +13817 +13818 +13819 +13820 +13821 +13822 +13823 +13824 +13825 +13826 +13827 +13828 +13831 +13832 +13833 +13834 +13835 +13837 +13838 +13839 +13840 +13841 +13842 +13843 +13844 +13845 +13846 +13847 +13849 +13850 +13851 +13852 +13853 +13854 +13855 +13856 +13858 +13859 +13860 +13861 +13862 +13863 +13864 +13865 +13866 +13867 +13868 +13869 +13872 +13873 +13874 +13875 +13876 +13877 +13878 +13879 +13880 +13882 +13883 +13884 +13885 +13886 +13887 +13888 +13889 +13890 +13891 +13894 +13895 +13896 +13897 +13898 +13899 +13900 +13901 +13902 +13903 +13904 +13905 +13906 +13907 +13908 +13909 +13910 +13912 +13916 +13920 +13921 +13923 +13924 +13925 +13929 +13930 +13931 +13933 +13936 +13940 +13941 +13942 +13943 +13944 +13945 +13947 +13949 +13950 +13953 +13954 +13956 +13957 +13958 +13959 +13960 +13962 +13963 +13964 +13965 +13966 +13970 +13971 +13972 +13974 +13976 +13977 +13978 +13982 +13983 +13984 +13985 +13986 +13987 +13988 +13990 +13992 +13993 +13994 +13996 +13997 +13998 +14000 +14002 +14003 +14004 +14006 +14007 +14009 +14010 +14011 +14012 +14013 +14016 +14017 +14020 +14021 +14022 +14025 +14026 +14028 +14029 +14031 +14032 +14033 +14035 +14036 +14038 +14039 +14040 +14042 +14043 +14044 +14046 +14048 +14049 +14050 +14051 +14052 +14055 +14056 +14058 +14059 +14064 +14065 +14066 +14069 +14073 +14079 +14082 +14083 +14084 +14085 +14088 +14090 +14091 +14095 +14097 +14098 +14099 +14100 +14101 +14102 +14103 +14104 +14106 +14108 +14109 +14111 +14112 +14115 +14116 +14117 +14122 +14126 +14127 +14129 +14131 +14132 +14135 +14136 +14137 +14140 +14144 +14148 +14150 +14151 +14153 +14154 +14155 +14156 +14159 +14162 +14164 +14165 +14168 +14171 +14172 +14176 +14177 +14178 +14179 +14180 +14183 +14184 +14188 +14191 +14195 +14196 +14200 +14202 +14205 +14213 +14216 +14217 +14219 +14220 +14221 +14224 +14225 +14226 +14227 +14229 +14237 +14238 +14239 +14240 +14241 +14243 +14245 +14246 +14247 +14248 +14249 +14250 +14252 +14253 +14254 +14255 +14256 +14257 +14259 +14260 +14262 +14264 +14265 +14266 +14267 +14268 +14270 +14272 +14274 +14276 +14277 +14281 +14282 +14284 +14286 +14287 +14288 +14290 +14291 +14293 +14294 +14295 +14298 +14299 +14301 +14303 +14304 +14305 +14306 +14307 +14309 +14310 +14311 +14313 +14314 +14319 +14323 +14324 +14326 +14327 +14329 +14333 +14335 +14336 +14343 +14344 +14346 +14348 +14350 +14351 +14352 +14353 +14354 +14355 +14360 +14362 +14363 +14364 +14365 +14366 +14367 +14369 +14372 +14373 +14374 +14375 +14377 +14378 +14379 +14380 +14381 +14383 +14384 +14385 +14386 +14388 +14389 +14394 +14395 +14397 +14400 +14401 +14402 +14403 +14404 +14405 +14406 +14407 +14409 +14410 +14411 +14412 +14413 +14414 +14415 +14416 +14417 +14418 +14419 +14421 +14422 +14423 +14424 +14425 +14428 +14431 +14432 +14436 +14438 +14441 +14442 +14446 +14447 +14448 +14452 +14455 +14460 +14461 +14463 +14464 +14466 +14474 +14479 +14480 +14481 +14482 +14484 +14485 +14486 +14487 +14488 +14489 +14490 +14493 +14495 +14498 +14501 +14503 +14506 +14507 +14508 +14509 +14511 +14513 +14514 +14516 +14517 +14519 +14522 +14525 +14527 +14531 +14535 +14542 +14543 +14546 +14559 +14567 +14579 +14580 +14581 +14582 +14586 +14590 +14593 +14594 +14596 +14600 +14602 +14603 +14604 +14608 +14611 +14612 +14614 +14616 +14617 +14618 +14621 +14622 +14623 +14624 +14625 +14626 +14627 +14629 +14633 +14634 +14635 +14640 +14641 +14648 +14650 +14652 +14654 +14656 +14657 +14660 +14664 +14665 +14666 +14667 +14669 +14671 +14674 +14677 +14678 +14679 +14680 +14681 +14682 +14683 +14684 +14685 +14687 +14691 +14693 +14697 +14698 +14699 +14700 +14703 +14704 +14706 +14708 +14709 +14710 +14711 +14714 +14715 +14716 +14717 +14718 +14720 +14722 +14723 +14724 +14725 +14726 +14730 +14731 +14735 +14737 +14741 +14744 +14745 +14747 +14749 +14750 +14754 +14760 +14761 +14766 +14767 +14768 +14769 +14770 +14772 +14774 +14775 +14776 +14778 +14780 +14784 +14788 +14791 +14793 +14794 +14796 +14798 +14803 +14805 +14807 +14808 +14810 +14814 +14815 +14819 +14822 +14824 +14835 +14842 +14843 +14852 +14853 +14855 +14856 +14860 +14864 +14865 +14866 +14868 +14869 +14870 +14878 +14881 +14885 +14888 +14893 +14894 +14901 +14902 +14903 +14907 +14908 +14913 +14917 +14920 +14923 +14925 +14928 +14929 +14930 +14931 +14937 +14938 +14939 +14942 +14943 +14944 +14948 +14953 +14954 +14958 +14959 +14963 +14964 +14965 +14966 +14967 +14968 +14969 +14974 +14975 +14976 +14978 +14979 +14981 +14982 +14984 +14985 +14987 +14990 +14991 +14993 +14996 +14998 +14999 +15002 +15007 +15009 +15010 +15014 +15015 +15017 +15019 +15022 +15025 +15030 +15031 +15032 +15034 +15035 +15050 +15063 +15064 +15065 +15067 +15069 +15070 +15072 +15073 +15074 +15075 +15079 +15081 +15082 +15087 +15089 +15095 +15098 +15099 +15101 +15103 +15108 +15109 +15110 +15112 +15113 +15114 +15116 +15118 +15121 +15123 +15124 +15128 +15129 +15130 +15131 +15135 +15138 +15140 +15141 +15142 +15145 +15146 +15148 +15151 +15161 +15167 +15168 +15169 +15170 +15171 +15172 +15173 +15175 +15176 +15177 +15181 +15184 +15188 +15189 +15190 +15191 +15193 +15194 +15197 +15199 +15200 +15204 +15205 +15206 +15208 +15209 +15211 +15212 +15213 +15214 +15217 +15220 +15222 +15225 +15232 +15236 +15238 +15239 +15241 +15242 +15243 +15244 +15246 +15251 +15252 +15257 +15259 +15262 +15265 +15274 +15283 +15293 +15301 +15302 +15305 +15306 +15308 +15309 +15311 +15312 +15320 +15322 +15323 +15324 +15340 +15342 +15343 +15344 +15345 +15346 +15347 +15349 +15352 +15355 +15368 +15369 +15372 +15374 +15376 +15379 +15385 +15396 +15398 +15401 +15405 +15407 +15410 +15412 +15418 +15423 +15424 +15425 +15432 +15434 +15436 +15437 +15441 +15442 +15444 +15446 +15448 +15450 +15451 +15454 +15458 +15460 +15461 +15468 +15470 +15478 +15479 +15480 +15482 +15491 +15495 +15508 +15521 +15522 +15523 +15527 +15536 +15537 +15539 +15540 +15542 +15544 +15545 +15546 +15547 +15551 +15552 +15554 +15558 +15559 +15563 +15565 +15566 +15568 +15573 +15574 +15575 +15578 +15579 +15580 +15581 +15583 +15584 +15590 +15591 +15599 +15601 +15602 +15603 +15604 +15610 +15614 +15619 +15625 +15626 +15639 +15646 +15650 +15654 +15655 +15660 +15661 +15668 +15669 +15674 +15678 +15681 +15684 +15685 +15687 +15690 +15691 +15696 +15702 +15705 +15706 +15707 +15709 +15711 +15713 +15716 +15717 +15718 +15719 +15720 +15721 +15722 +15723 +15724 +15725 +15726 +15728 +15729 +15731 +15732 +15737 +15739 +15744 +15747 +15749 +15750 +15757 +15761 +15764 +15766 +15768 +15775 +15776 +15777 +15780 +15783 +15787 +15788 +15799 +15802 +15804 +15805 +15809 +15814 +15823 +15826 +15829 +15830 +15831 +15833 +15838 +15839 +15842 +15843 +15847 +15850 +15852 +15857 +15861 +15865 +15867 +15869 +15872 +15874 +15880 +15881 +15883 +15884 +15885 +15889 +15893 +15894 +15900 +15901 +15912 +15914 +15919 +15922 +15923 +15924 +15931 +15936 +15938 +15939 +15941 +15942 +15945 +15946 +15947 +15949 +15959 +15960 +15961 +15962 +15964 +15977 +15978 +15983 +15984 +15991 +15994 +15995 +15996 +15998 +16002 +16003 +16004 +16005 +16007 +16008 +16011 +16014 +16015 +16016 +16019 +16020 +16028 +16029 +16039 +16041 +16044 +16046 +16051 +16056 +16060 +16061 +16062 +16071 +16072 +16074 +16079 +16082 +16085 +16092 +16093 +16094 +16096 +16097 +16100 +16101 +16103 +16107 +16108 +16109 +16116 +16117 +16119 +16121 +16129 +16133 +16140 +16141 +16143 +16144 +16146 +16147 +16149 +16150 +16152 +16155 +16156 +16158 +16159 +16163 +16165 +16169 +16172 +16174 +16177 +16178 +16179 +16187 +16192 +16193 +16198 +16199 +16200 +16201 +16214 +16215 +16217 +16219 +16225 +16227 +16236 +16241 +16243 +16244 +16251 +16256 +16258 +16259 +16262 +16264 +16271 +16274 +16280 +16281 +16284 +16288 +16289 +16290 +16291 +16292 +16296 +16302 +16307 +16312 +16313 +16314 +16315 +16317 +16318 +16319 +16322 +16328 +16334 +16335 +16341 +16342 +16343 +16347 +16348 +16349 +16357 +16360 +16363 +16364 +16373 +16375 +16376 +16379 +16380 +16384 +16388 +16389 +16390 +16391 +16392 +16393 +16397 +16400 +16405 +16414 +16416 +16418 +16421 +16423 +16424 +16425 +16426 +16432 +16435 +16436 +16437 +16444 +16447 +16455 +16456 +16459 +16460 +16463 +16474 +16476 +16477 +16478 +16481 +16494 +16498 +16503 +16504 +16508 +16509 +16512 +16513 +16517 +16522 +16526 +16529 +16530 +16540 +16542 +16545 +16547 +16551 +16552 +16555 +16560 +16568 +16576 +16584 +16585 +16587 +16588 +16591 +16592 +16593 +16599 +16603 +16605 +16610 +16616 +16618 +16619 +16622 +16626 +16630 +16635 +16648 +16649 +16651 +16653 +16654 +16655 +16659 +16660 +16665 +16668 +16669 +16670 +16672 +16680 +16689 +16693 +16694 +16695 +16704 +16705 +16708 +16713 +16726 +16727 +16729 +16730 +16735 +16736 +16739 +16740 +16744 +16745 +16750 +16752 +16755 +16759 +16760 +16763 +16764 +16765 +16774 +16777 +16779 +16783 +16787 +16789 +16790 +16791 +16792 +16800 +16801 +16803 +16805 +16812 +16813 +16817 +16818 +16825 +16829 +16833 +16834 +16836 +16838 +16841 +16844 +16845 +16848 +16849 +16850 +16851 +16855 +16865 +16873 +16874 +16878 +16879 +16880 +16881 +16882 +16885 +16887 +16890 +16892 +16894 +16898 +16900 +16902 +16905 +16907 +16908 +16911 +16916 +16917 +16920 +16928 +16931 +16940 +16948 +16957 +16962 +16963 +16965 +16967 +16970 +16972 +16973 +16975 +16977 +16981 +16982 +16988 +16989 +16993 +16994 +16998 +17003 +17004 +17007 +17008 +17010 +17013 +17017 +17021 +17022 +17026 +17029 +17032 +17037 +17038 +17039 +17040 +17052 +17053 +17057 +17063 +17081 +17087 +17094 +17107 +17110 +17111 +17114 +17118 +17121 +17126 +17128 +17133 +17135 +17141 +17144 +17146 +17155 +17156 +17158 +17159 +17165 +17167 +17169 +17171 +17178 +17180 +17183 +17186 +17188 +17192 +17193 +17203 +17208 +17210 +17211 +17217 +17228 +17231 +17248 +17249 +17253 +17254 +17255 +17264 +17268 +17269 +17272 +17274 +17275 +17280 +17286 +17290 +17297 +17298 +17299 +17301 +17305 +17306 +17309 +17310 +17312 +17313 +17314 +17316 +17317 +17319 +17326 +17329 +17330 +17338 +17339 +17340 +17341 +17342 +17345 +17346 +17348 +17350 +17351 +17353 +17354 +17355 +17356 +17359 +17360 +17361 +17362 +17363 +17364 +17366 +17367 +17369 +17370 +17373 +17374 +17375 +17376 +17377 +17379 +17380 +17382 +17384 +17385 +17387 +17388 +17389 +17392 +17393 +17394 +17395 +17396 +17400 +17401 +17402 +17403 +17404 +17405 +17406 +17407 +17408 +17409 +17410 +17411 +17412 +17413 +17414 +17415 +17416 +17417 +17419 +17420 +17422 +17423 +17424 +17425 +17426 +17427 +17429 +17430 +17431 +17432 +17435 +17440 +17442 +17444 +17447 +17448 +17449 +17450 +17451 +17452 +17455 +17456 +17457 +17458 +17459 +17460 +17463 +17464 +17465 +17466 +17468 +17470 +17471 +17482 +17486 +17492 +17493 +17498 +17499 +17503 +17504 +17508 +17509 +17510 +17512 +17516 +17517 +17518 +17520 +17521 +17522 +17523 +17526 +17529 +17534 +17539 +17540 +17551 +17560 +17565 +17566 +17567 +17568 +17569 +17570 +17571 +17574 +17578 +17579 +17584 +17586 +17588 +17591 +17594 +17595 +17596 +17598 +17599 +17601 +17603 +17605 +17606 +17610 +17611 +17612 +17613 +17615 +17618 +17619 +17621 +17625 +17626 +17627 +17630 +17633 +17634 +17635 +17636 +17637 +17641 +17643 +17644 +17646 +17648 +17650 +17651 +17652 +17654 +17655 +17657 +17659 +17660 +17661 +17662 +17663 +17664 +17666 +17672 +17676 +17678 +17679 +17680 +17681 +17684 +17688 +17689 +17692 +17711 +17721 +17722 +17723 +17725 +17726 +17727 +17729 +17730 +17733 +17734 +17735 +17736 +17737 +17738 +17739 +17740 +17742 +17743 +17744 +17745 +17748 +17762 +17763 +17764 +17765 +17770 +17771 +17774 +17775 +17780 +17782 +17783 +17784 +17786 +17787 +17789 +17792 +17793 +17794 +17796 +17798 +17799 +17803 +17804 +17806 +17811 +17812 +17813 +17814 +17815 +17817 +17818 +17820 +17821 +17826 +17835 +17839 +17841 +17842 +17845 +17846 +17847 +17850 +17852 +17853 +17855 +17856 +17857 +17858 +17859 +17860 +17861 +17862 +17863 +17864 +17866 +17868 +17869 +17870 +17871 +17872 +17873 +17874 +17876 +17877 +17878 +17879 +17880 +17881 +17882 +17885 +17886 +17888 +17889 +17890 +17891 +17895 +17897 +17900 +17902 +17905 +17914 +17918 +17919 +17925 +17929 +17934 +17936 +17938 +17939 +17940 +17946 +17947 +17948 +17949 +17950 +17953 +17954 +17955 +17958 +17959 +17960 +17961 +17963 +17964 +17965 +17966 +17970 +17971 +17972 +17973 +17975 +17976 +17979 +17980 +17983 +17984 +17985 +17987 +17990 +17991 +17992 +17999 +18000 +18005 +18007 +18008 +18012 +18017 +18020 +18021 +18022 +18023 +18024 +18025 +18026 +18027 +18028 +18030 +18032 +18035 +18036 +18037 +18038 +18039 +18041 +18045 +18050 +18051 +18057 +18059 +18061 +18063 +18064 +18066 +18067 +18068 +18070 +18071 +18072 +18073 +18077 +18078 +18081 +18085 +18086 +18088 +18089 +18090 +18091 +18092 +18093 +18094 +18096 +18097 +18099 +18100 +18103 +18104 +18106 +18107 +18108 +18110 +18111 +18113 +18114 +18115 +18116 +18117 +18120 +18121 +18123 +18125 +18126 +18130 +18136 +18137 +18138 +18140 +18141 +18142 +18144 +18145 +18146 +18148 +18150 +18151 +18152 +18160 +18161 +18167 +18168 +18173 +18174 +18177 +18178 +18204 +18205 +18206 +18207 +18209 +18213 +18216 +18217 +18218 +18219 +18221 +18222 +18223 +18224 +18227 +18228 +18230 +18231 +18233 +18235 +18236 +18237 +18239 +18240 +18241 +18243 +18246 +18247 +18249 +18250 +18251 +18252 +18254 +18257 +18259 +18260 +18261 +18264 +18265 +18269 +18270 +18271 +18273 +18274 +18275 +18276 +18277 +18280 +18283 +18284 +18286 +18287 +18289 +18290 +18296 +18297 +18298 +18299 +18303 +18304 +18305 +18306 +18307 +18308 +18309 +18311 +18322 +18325 +18326 +18327 +18328 +18331 +18332 +18333 +18334 +18335 +18336 +18338 +18343 +18344 +18349 +18351 +18355 +18357 +18358 +18359 +18360 +18361 +18364 +18368 +18373 +18381 +18386 +18388 +18391 +18392 +18394 +18396 +18398 +18399 +18400 +18401 +18403 +18404 +18405 +18407 +18412 +18413 +18419 +18422 +18423 +18424 +18426 +18441 +18442 +18443 +18444 +18445 +18446 +18447 +18448 +18451 +18452 +18453 +18455 +18456 +18459 +18460 +18461 +18462 +18463 +18466 +18469 +18470 +18473 +18478 +18479 +18480 +18482 +18486 +18487 +18488 +18489 +18491 +18492 +18494 +18495 +18496 +18497 +18498 +18499 +18501 +18506 +18507 +18508 +18509 +18510 +18511 +18512 +18514 +18515 +18516 +18517 +18518 +18522 +18523 +18524 +18525 +18529 +18531 +18532 +18533 +18535 +18536 +18537 +18539 +18540 +18541 +18542 +18543 +18546 +18547 +18549 +18550 +18551 +18553 +18554 +18555 +18556 +18558 +18559 +18560 +18562 +18565 +18570 +18573 +18574 +18575 +18576 +18577 +18578 +18581 +18583 +18585 +18586 +18587 +18588 +18589 +18590 +18591 +18592 +18593 +18594 +18595 +18597 +18598 +18601 +18603 +18604 +18606 +18607 +18610 +18611 +18612 +18613 +18615 +18616 +18617 +18618 +18619 +18620 +18621 +18622 +18623 +18624 +18631 +18632 +18633 +18634 +18636 +18637 +18638 +18641 +18642 +18646 +18647 +18651 +18657 +18659 +18660 +18662 +18664 +18665 +18669 +18670 +18671 +18672 +18680 +18681 +18684 +18685 +18687 +18691 +18694 +18696 +18697 +18698 +18703 +18705 +18715 +18723 +18725 +18728 +18730 +18731 +18735 +18738 +18740 +18741 +18744 +18753 +18754 +18755 +18759 +18763 +18766 +18767 +18775 +18780 +18781 +18782 +18784 +18791 +18792 +18795 +18796 +18798 +18801 +18802 +18805 +18808 +18809 +18816 +18817 +18822 +18825 +18826 +18828 +18829 +18834 +18835 +18836 +18837 +18841 +18842 +18843 +18847 +18848 +18849 +18850 +18852 +18853 +18854 +18855 +18857 +18858 +18859 +18860 +18863 +18864 +18865 +18866 +18867 +18868 +18869 +18870 +18871 +18872 +18873 +18874 +18885 +18886 +18888 +18890 +18900 +18902 +18906 +18908 +18911 +18913 +18914 +18915 +18921 +18924 +18927 +18928 +18929 +18933 +18937 +18939 +18942 +18943 +18945 +18946 +18948 +18949 +18950 +18953 +18954 +18955 +18957 +18962 +18979 +18980 +18981 +18984 +18986 +18988 +18989 +18996 +19012 +19013 +19016 +19021 +19027 +19029 +19031 +19033 +19034 +19035 +19039 +19052 +19056 +19069 +19070 +19073 +19075 +19077 +19078 +19079 +19080 +19082 +19083 +19086 +19087 +19088 +19092 +19093 +19096 +19100 +19102 +19104 +19105 +19106 +19108 +19111 +19112 +19116 +19117 +19120 +19121 +19122 +19124 +19125 +19127 +19129 +19130 +19133 +19134 +19135 +19137 +19138 +19139 +19140 +19142 +19143 +19144 +19145 +19146 +19147 +19150 +19151 +19152 +19154 +19155 +19156 +19157 +19158 +19159 +19160 +19161 +19163 +19165 +19166 +19169 +19172 +19175 +19176 +19179 +19180 +19181 +19183 +19185 +19187 +19190 +19193 +19194 +19195 +19197 +19198 +19199 +19201 +19202 +19204 +19213 +19214 +19215 +19218 +19219 +19220 +19221 +19222 +19223 +19226 +19227 +19228 +19229 +19230 +19232 +19233 +19234 +19236 +19238 +19239 +19240 +19244 +19252 +19254 +19257 +19258 +19259 +19260 +19261 +19262 +19264 +19265 +19266 +19267 +19270 +19271 +19275 +19276 +19277 +19284 +19289 +19290 +19292 +19293 +19295 +19296 +19297 +19300 +19302 +19304 +19305 +19306 +19307 +19310 +19311 +19316 +19317 +19318 +19320 +19321 +19324 +19325 +19330 +19331 +19332 +19333 +19336 +19337 +19339 +19342 +19343 +19344 +19345 +19347 +19348 +19349 +19350 +19351 +19352 +19354 +19356 +19360 +19363 +19364 +19365 +19366 +19367 +19369 +19371 +19373 +19374 +19377 +19379 +19381 +19382 +19385 +19386 +19388 +19402 +19403 +19404 +19405 +19407 +19414 +19417 +19419 +19421 +19423 +19434 +19435 +19436 +19437 +19440 +19441 +19442 +19446 +19447 +19448 +19450 +19451 +19452 +19453 +19456 +19457 +19459 +19461 +19471 +19472 +19473 +19477 +19478 +19481 +19483 +19484 +19485 +19486 +19490 +19492 +19494 +19495 +19496 +19497 +19498 +19501 +19502 +19503 +19506 +19508 +19509 +19511 +19513 +19514 +19516 +19517 +19518 +19519 +19520 +19521 +19522 +19524 +19525 +19526 +19527 +19528 +19530 +19532 +19538 +19539 +19541 +19542 +19543 +19546 +19547 +19548 +19549 +19550 +19551 +19553 +19555 +19556 +19557 +19563 +19566 +19567 +19568 +19575 +19577 +19578 +19582 +19583 +19584 +19587 +19588 +19590 +19592 +19597 +19606 +19607 +19608 +19611 +19613 +19614 +19615 +19616 +19618 +19622 +19624 +19627 +19628 +19629 +19630 +19632 +19633 +19634 +19635 +19638 +19640 +19641 +19642 +19643 +19644 +19648 +19649 +19655 +19656 +19663 +19667 +19668 +19669 +19670 +19672 +19673 +19675 +19676 +19677 +19678 +19679 +19681 +19682 +19683 +19684 +19687 +19688 +19689 +19690 +19692 +19693 +19694 +19696 +19697 +19698 +19699 +19705 +19707 +19709 +19710 +19714 +19717 +19718 +19720 +19721 +19722 +19724 +19728 +19732 +19733 +19734 +19737 +19738 +19741 +19745 +19746 +19756 +19757 +19758 +19759 +19763 +19764 +19767 +19769 +19770 +19773 +19774 +19777 +19782 +19792 +19795 +19797 +19798 +19801 +19802 +19805 +19813 +19817 +19819 +19831 +19833 +19835 +19837 +19838 +19839 +19840 +19841 +19845 +19852 +19858 +19861 +19862 +19863 +19864 +19865 +19866 +19867 +19871 +19872 +19873 +19874 +19879 +19882 +19887 +19889 +19894 +19895 +19896 +19897 +19902 +19905 +19907 +19908 +19909 +19910 +19914 +19916 +19917 +19918 +19922 +19924 +19926 +19927 +19928 +19929 +19930 +19933 +19935 +19938 +19943 +19945 +19946 +19947 +19952 +19953 +19956 +19957 +19964 +19967 +19968 +19969 +19970 +19971 +19972 +19973 +19974 +19975 +19976 +19978 +19985 +19988 +19990 +19992 +19997 +19998 +19999 +20001 +20008 +20010 +20018 +20019 +20020 +20021 +20024 +20025 +20026 +20029 +20030 +20032 +20037 +20042 +20043 +20044 +20045 +20047 +20049 +20050 +20053 +20054 +20055 +20056 +20057 +20058 +20061 +20062 +20063 +20064 +20066 +20068 +20070 +20071 +20074 +20081 +20082 +20084 +20086 +20087 +20092 +20093 +20097 +20098 +20100 +20102 +20103 +20104 +20108 +20110 +20111 +20115 +20116 +20117 +20118 +20122 +20123 +20126 +20127 +20128 +20129 +20140 +20141 +20143 +20145 +20147 +20148 +20149 +20153 +20154 +20155 +20162 +20163 +20165 +20171 +20172 +20174 +20178 +20185 +20187 +20192 +20193 +20195 +20198 +20199 +20207 +20209 +20211 +20214 +20215 +20216 +20218 +20219 +20220 +20221 +20222 +20223 +20224 +20225 +20226 +20228 +20230 +20231 +20232 +20233 +20236 +20239 +20240 +20248 +20250 +20251 +20257 +20262 +20265 +20266 +20267 +20269 +20271 +20278 +20280 +20281 +20282 +20283 +20284 +20286 +20287 +20288 +20289 +20290 +20291 +20295 +20296 +20297 +20300 +20303 +20305 +20311 +20312 +20317 +20318 +20319 +20325 +20326 +20327 +20328 +20330 +20333 +20335 +20337 +20347 +20348 +20349 +20355 +20356 +20357 +20358 +20360 +20362 +20363 +20364 +20365 +20366 +20367 +20368 +20373 +20374 +20376 +20379 +20381 +20385 +20386 +20390 +20392 +20394 +20397 +20398 +20399 +20400 +20405 +20406 +20407 +20408 +20409 +20410 +20413 +20414 +20415 +20416 +20417 +20418 +20420 +20422 +20424 +20425 +20427 +20437 +20441 +20444 +20446 +20449 +20452 +20456 +20457 +20460 +20462 +20471 +20472 +20473 +20475 +20476 +20478 +20480 +20481 +20485 +20489 +20492 +20493 +20494 +20495 +20498 +20499 +20500 +20504 +20505 +20506 +20511 +20512 +20515 +20516 +20517 +20518 +20519 +20520 +20523 +20524 +20526 +20528 +20529 +20530 +20534 +20538 +20542 +20543 +20546 +20549 +20550 +20552 +20553 +20554 +20555 +20557 +20558 +20562 +20563 +20566 +20568 +20569 +20572 +20575 +20577 +20578 +20581 +20583 +20586 +20589 +20590 +20591 +20592 +20594 +20595 +20596 +20597 +20598 +20601 +20603 +20604 +20606 +20607 +20609 +20613 +20614 +20617 +20618 +20619 +20621 +20622 +20624 +20626 +20628 +20629 +20630 +20631 +20635 +20639 +20641 +20642 +20643 +20644 +20651 +20652 +20654 +20656 +20660 +20661 +20662 +20663 +20664 +20665 +20666 +20667 +20668 +20669 +20670 +20672 +20679 +20680 +20682 +20684 +20687 +20688 +20689 +20690 +20692 +20693 +20694 +20695 +20696 +20701 +20702 +20704 +20705 +20706 +20707 +20710 +20711 +20712 +20713 +20714 +20715 +20716 +20717 +20719 +20720 +20724 +20725 +20727 +20728 +20732 +20733 +20734 +20738 +20742 +20749 +20754 +20755 +20756 +20757 +20763 +20764 +20767 +20768 +20777 +20783 +20786 +20787 +20788 +20789 +20790 +20791 +20792 +20793 +20794 +20797 +20798 +20800 +20806 +20808 +20809 +20812 +20814 +20819 +20823 +20824 +20825 +20830 +20831 +20833 +20836 +20837 +20839 +20840 +20843 +20847 +20848 +20850 +20851 +20852 +20853 +20854 +20855 +20859 +20860 +20861 +20863 +20866 +20870 +20873 +20876 +20877 +20880 +20881 +20882 +20884 +20886 +20890 +20895 +20897 +20898 +20900 +20902 +20903 +20904 +20906 +20908 +20911 +20913 +20917 +20919 +20920 +20921 +20926 +20927 +20936 +20937 +20938 +20940 +20941 +20942 +20943 +20946 +20947 +20949 +20950 +20955 +20956 +20959 +20963 +20968 +20979 +20980 +20981 +20982 +20985 +20988 +20989 +20998 +21001 +21002 +21007 +21009 +21012 +21014 +21017 +21024 +21025 +21026 +21027 +21028 +21031 +21035 +21037 +21038 +21039 +21040 +21042 +21043 +21044 +21045 +21046 +21047 +21048 +21049 +21050 +21051 +21053 +21054 +21055 +21056 +21057 +21058 +21059 +21063 +21064 +21065 +21066 +21067 +21068 +21069 +21072 +21076 +21078 +21083 +21084 +21086 +21087 +21088 +21092 +21094 +21100 +21101 +21112 +21113 +21115 +21119 +21121 +21122 +21124 +21125 +21128 +21133 +21136 +21138 +21145 +21146 +21147 +21148 +21149 +21151 +21153 +21156 +21158 +21159 +21163 +21166 +21169 +21170 +21171 +21172 +21174 +21179 +21180 +21181 +21186 +21189 +21190 +21196 +21197 +21198 +21199 +21200 +21201 +21202 +21204 +21219 +21221 +21224 +21229 +21232 +21238 +21252 +21257 +21268 +21269 +21271 +21279 +21281 +21282 +21284 +21286 +21287 +21297 +21303 +21305 +21307 +21311 +21312 +21313 +21315 +21316 +21317 +21318 +21319 +21321 +21327 +21336 +21337 +21339 +21343 +21345 +21349 +21352 +21356 +21357 +21358 +21361 +21363 +21369 +21370 +21374 +21376 +21377 +21378 +21382 +21386 +21388 +21389 +21397 +21398 +21402 +21407 +21408 +21411 +21414 +21415 +21419 +21425 +21428 +21429 +21431 +21432 +21433 +21438 +21441 +21451 +21459 +21464 +21467 +21469 +21476 +21479 +21484 +21485 +21486 +21489 +21494 +21495 +21497 +21501 +21502 +21507 +21511 +21515 +21516 +21517 +21519 +21522 +21524 +21528 +21529 +21532 +21533 +21534 +21537 +21541 +21545 +21547 +21548 +21549 +21550 +21554 +21560 +21563 +21569 +21573 +21576 +21578 +21579 +21580 +21581 +21585 +21589 +21590 +21591 +21598 +21601 +21604 +21606 +21611 +21615 +21618 +21620 +21623 +21625 +21627 +21635 +21637 +21638 +21641 +21644 +21645 +21648 +21649 +21650 +21659 +21661 +21662 +21663 +21665 +21666 +21668 +21669 +21672 +21673 +21675 +21678 +21679 +21680 +21686 +21688 +21689 +21690 +21692 +21702 +21711 +21712 +21713 +21716 +21717 +21721 +21722 +21723 +21724 +21727 +21728 +21729 +21734 +21739 +21740 +21741 +21743 +21744 +21747 +21748 +21749 +21754 +21757 +21758 +21760 +21761 +21762 +21763 +21765 +21772 +21773 +21774 +21777 +21778 +21781 +21782 +21784 +21786 +21791 +21792 +21795 +21796 +21800 +21801 +21803 +21804 +21806 +21811 +21815 +21816 +21817 +21818 +21819 +21823 +21826 +21827 +21828 +21829 +21830 +21831 +21832 +21834 +21836 +21838 +21839 +21841 +21842 diff --git a/pytorch-image-models/timm/data/_info/imagenet21k_goog_to_22k_indices.txt b/pytorch-image-models/timm/data/_info/imagenet21k_goog_to_22k_indices.txt new file mode 100644 index 0000000000000000000000000000000000000000..12c05e6b11fed863b5fad9f3422f390299ab715f --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet21k_goog_to_22k_indices.txt @@ -0,0 +1,21841 @@ +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +101 +102 +103 +104 +105 +106 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +136 +137 +138 +139 +140 +141 +142 +143 +144 +145 +146 +147 +148 +149 +150 +151 +152 +153 +154 +155 +156 +157 +158 +159 +160 +161 +162 +163 +164 +165 +166 +167 +168 +169 +170 +171 +172 +173 +174 +175 +176 +177 +178 +179 +180 +181 +182 +183 +184 +185 +186 +187 +188 +189 +190 +191 +192 +193 +194 +195 +196 +197 +198 +199 +200 +201 +202 +203 +204 +205 +206 +207 +208 +209 +210 +211 +212 +213 +214 +215 +216 +217 +218 +219 +220 +221 +222 +223 +224 +225 +226 +227 +228 +229 +230 +231 +232 +233 +234 +235 +236 +237 +238 +239 +240 +241 +242 +243 +244 +245 +246 +247 +248 +249 +250 +251 +252 +253 +254 +255 +256 +257 +258 +259 +260 +261 +262 +263 +264 +265 +266 +267 +268 +269 +270 +271 +272 +273 +274 +275 +276 +277 +278 +279 +280 +281 +282 +283 +284 +285 +286 +287 +288 +289 +290 +291 +292 +293 +294 +295 +296 +297 +298 +299 +300 +301 +302 +303 +304 +305 +306 +307 +308 +309 +310 +311 +312 +313 +314 +315 +316 +317 +318 +319 +320 +321 +322 +323 +324 +325 +326 +327 +328 +329 +330 +331 +332 +333 +334 +335 +336 +337 +338 +339 +340 +341 +342 +343 +344 +345 +346 +347 +348 +349 +350 +351 +352 +353 +354 +355 +356 +357 +358 +359 +360 +361 +362 +363 +364 +365 +366 +367 +368 +369 +370 +371 +372 +373 +374 +375 +376 +377 +378 +379 +380 +381 +382 +383 +384 +385 +386 +387 +388 +389 +390 +391 +392 +393 +394 +395 +396 +397 +398 +399 +400 +401 +402 +403 +404 +405 +406 +407 +408 +409 +410 +411 +412 +413 +414 +415 +416 +417 +418 +419 +420 +421 +422 +423 +424 +425 +426 +427 +428 +429 +430 +431 +432 +433 +434 +435 +436 +437 +438 +439 +440 +441 +442 +443 +444 +445 +446 +447 +448 +449 +450 +451 +452 +453 +454 +455 +456 +457 +458 +459 +460 +461 +462 +463 +464 +465 +466 +467 +468 +469 +470 +471 +472 +473 +474 +475 +476 +477 +478 +479 +480 +481 +482 +483 +484 +485 +486 +487 +488 +489 +490 +491 +492 +493 +494 +495 +496 +497 +498 +499 +500 +501 +502 +503 +504 +505 +506 +507 +508 +509 +510 +511 +512 +513 +514 +515 +516 +517 +518 +519 +520 +521 +522 +523 +524 +525 +526 +527 +528 +529 +530 +531 +532 +533 +534 +535 +536 +537 +538 +539 +540 +541 +542 +543 +544 +545 +546 +547 +548 +549 +550 +551 +552 +553 +554 +555 +556 +557 +558 +559 +560 +561 +562 +563 +564 +565 +566 +567 +568 +569 +570 +571 +572 +573 +574 +575 +576 +577 +578 +579 +580 +581 +582 +583 +584 +585 +586 +587 +588 +589 +590 +591 +592 +593 +594 +595 +596 +597 +598 +599 +600 +601 +602 +603 +604 +605 +606 +607 +608 +609 +610 +611 +612 +613 +614 +615 +616 +617 +618 +619 +620 +621 +622 +623 +624 +625 +626 +627 +628 +629 +630 +631 +632 +633 +634 +635 +636 +637 +638 +639 +640 +641 +642 +643 +644 +645 +646 +647 +648 +649 +650 +651 +652 +653 +654 +655 +656 +657 +658 +659 +660 +661 +662 +663 +664 +665 +666 +667 +668 +669 +670 +671 +672 +673 +674 +675 +676 +677 +678 +679 +680 +681 +682 +683 +684 +685 +686 +687 +688 +689 +690 +691 +692 +693 +694 +695 +696 +697 +698 +699 +700 +701 +702 +703 +704 +705 +706 +707 +708 +709 +710 +711 +712 +713 +714 +715 +716 +717 +718 +719 +720 +721 +722 +723 +724 +725 +726 +727 +728 +729 +730 +731 +732 +733 +734 +735 +736 +737 +738 +739 +740 +741 +742 +743 +744 +745 +746 +747 +748 +749 +750 +751 +752 +753 +754 +755 +756 +757 +758 +759 +760 +761 +762 +763 +764 +765 +766 +767 +768 +769 +770 +771 +772 +773 +774 +775 +776 +777 +778 +779 +780 +781 +782 +783 +784 +785 +786 +787 +788 +789 +790 +791 +792 +793 +794 +795 +796 +797 +798 +799 +800 +801 +802 +803 +804 +805 +806 +807 +808 +809 +810 +811 +812 +813 +814 +815 +816 +817 +818 +819 +820 +821 +822 +823 +824 +825 +826 +827 +828 +829 +830 +831 +832 +833 +834 +835 +836 +837 +838 +839 +840 +841 +842 +843 +844 +845 +846 +847 +848 +849 +850 +851 +852 +853 +854 +855 +856 +857 +858 +859 +860 +861 +862 +863 +864 +865 +866 +867 +868 +869 +870 +871 +872 +873 +874 +875 +876 +877 +878 +879 +880 +881 +882 +883 +884 +885 +886 +887 +888 +889 +890 +891 +892 +893 +894 +895 +896 +897 +898 +899 +900 +901 +902 +903 +904 +905 +906 +907 +908 +909 +910 +911 +912 +913 +914 +915 +916 +917 +918 +919 +920 +921 +922 +923 +924 +925 +926 +927 +928 +929 +930 +931 +932 +933 +934 +935 +936 +937 +938 +939 +940 +941 +942 +943 +944 +945 +946 +947 +948 +949 +950 +951 +952 +953 +954 +955 +956 +957 +958 +959 +960 +961 +962 +963 +964 +965 +966 +967 +968 +969 +970 +971 +972 +973 +974 +975 +976 +977 +978 +979 +980 +981 +982 +983 +984 +985 +986 +987 +988 +989 +990 +991 +992 +993 +994 +995 +996 +997 +998 +999 +1000 +1001 +1002 +1003 +1004 +1005 +1006 +1007 +1008 +1009 +1010 +1011 +1012 +1013 +1014 +1015 +1016 +1017 +1018 +1019 +1020 +1021 +1022 +1023 +1024 +1025 +1026 +1027 +1028 +1029 +1030 +1031 +1032 +1033 +1034 +1035 +1036 +1037 +1038 +1039 +1040 +1041 +1042 +1043 +1044 +1045 +1046 +1047 +1048 +1049 +1050 +1051 +1052 +1053 +1054 +1055 +1056 +1057 +1058 +1059 +1060 +1061 +1062 +1063 +1064 +1065 +1066 +1067 +1068 +1069 +1070 +1071 +1072 +1073 +1074 +1075 +1076 +1077 +1078 +1079 +1080 +1081 +1082 +1083 +1084 +1085 +1086 +1087 +1088 +1089 +1090 +1091 +1092 +1093 +1094 +1095 +1096 +1097 +1098 +1099 +1100 +1101 +1102 +1103 +1104 +1105 +1106 +1107 +1108 +1109 +1110 +1111 +1112 +1113 +1114 +1115 +1116 +1117 +1118 +1119 +1120 +1121 +1122 +1123 +1124 +1125 +1126 +1127 +1128 +1129 +1130 +1131 +1132 +1133 +1134 +1135 +1136 +1137 +1138 +1139 +1140 +1141 +1142 +1143 +1144 +1145 +1146 +1147 +1148 +1149 +1150 +1151 +1152 +1153 +1154 +1155 +1156 +1157 +1158 +1159 +1160 +1161 +1162 +1163 +1164 +1165 +1166 +1167 +1168 +1169 +1170 +1171 +1172 +1173 +1174 +1175 +1176 +1177 +1178 +1179 +1180 +1181 +1182 +1183 +1184 +1185 +1186 +1187 +1188 +1189 +1190 +1191 +1192 +1193 +1194 +1195 +1196 +1197 +1198 +1199 +1200 +1201 +1202 +1203 +1204 +1205 +1206 +1207 +1208 +1209 +1210 +1211 +1212 +1213 +1214 +1215 +1216 +1217 +1218 +1219 +1220 +1221 +1222 +1223 +1224 +1225 +1226 +1227 +1228 +1229 +1230 +1231 +1232 +1233 +1234 +1235 +1236 +1237 +1238 +1239 +1240 +1241 +1242 +1243 +1244 +1245 +1246 +1247 +1248 +1249 +1250 +1251 +1252 +1253 +1254 +1255 +1256 +1257 +1258 +1259 +1260 +1261 +1262 +1263 +1264 +1265 +1266 +1267 +1268 +1269 +1270 +1271 +1272 +1273 +1274 +1275 +1276 +1277 +1278 +1279 +1280 +1281 +1282 +1283 +1284 +1285 +1286 +1287 +1288 +1289 +1290 +1291 +1292 +1293 +1294 +1295 +1296 +1297 +1298 +1299 +1300 +1301 +1302 +1303 +1304 +1305 +1306 +1307 +1308 +1309 +1310 +1311 +1312 +1313 +1314 +1315 +1316 +1317 +1318 +1319 +1320 +1321 +1322 +1323 +1324 +1325 +1326 +1327 +1328 +1329 +1330 +1331 +1332 +1333 +1334 +1335 +1336 +1337 +1338 +1339 +1340 +1341 +1342 +1343 +1344 +1345 +1346 +1347 +1348 +1349 +1350 +1351 +1352 +1353 +1354 +1355 +1356 +1357 +1358 +1359 +1360 +1361 +1362 +1363 +1364 +1365 +1366 +1367 +1368 +1369 +1370 +1371 +1372 +1373 +1374 +1375 +1376 +1377 +1378 +1379 +1380 +1381 +1382 +1383 +1384 +1385 +1386 +1387 +1388 +1389 +1390 +1391 +1392 +1393 +1394 +1395 +1396 +1397 +1398 +1399 +1400 +1401 +1402 +1403 +1404 +1405 +1406 +1407 +1408 +1409 +1410 +1411 +1412 +1413 +1414 +1415 +1416 +1417 +1418 +1419 +1420 +1421 +1422 +1423 +1424 +1425 +1426 +1427 +1428 +1429 +1430 +1431 +1432 +1433 +1434 +1435 +1436 +1437 +1438 +1439 +1440 +1441 +1442 +1443 +1444 +1445 +1446 +1447 +1448 +1449 +1450 +1451 +1452 +1453 +1454 +1455 +1456 +1457 +1458 +1459 +1460 +1461 +1462 +1463 +1464 +1465 +1466 +1467 +1468 +1469 +1470 +1471 +1472 +1473 +1474 +1475 +1476 +1477 +1478 +1479 +1480 +1481 +1482 +1483 +1484 +1485 +1486 +1487 +1488 +1489 +1490 +1491 +1492 +1493 +1494 +1495 +1496 +1497 +1498 +1499 +1500 +1501 +1502 +1503 +1504 +1505 +1506 +1507 +1508 +1509 +1510 +1511 +1512 +1513 +1514 +1515 +1516 +1517 +1518 +1519 +1520 +1521 +1522 +1523 +1524 +1525 +1526 +1527 +1528 +1529 +1530 +1531 +1532 +1533 +1534 +1535 +1536 +1537 +1538 +1539 +1540 +1541 +1542 +1543 +1544 +1545 +1546 +1547 +1548 +1549 +1550 +1551 +1552 +1553 +1554 +1555 +1556 +1557 +1558 +1559 +1560 +1561 +1562 +1563 +1564 +1565 +1566 +1567 +1568 +1569 +1570 +1571 +1572 +1573 +1574 +1575 +1576 +1577 +1578 +1579 +1580 +1581 +1582 +1583 +1584 +1585 +1586 +1587 +1588 +1589 +1590 +1591 +1592 +1593 +1594 +1595 +1596 +1597 +1598 +1599 +1600 +1601 +1602 +1603 +1604 +1605 +1606 +1607 +1608 +1609 +1610 +1611 +1612 +1613 +1614 +1615 +1616 +1617 +1618 +1619 +1620 +1621 +1622 +1623 +1624 +1625 +1626 +1627 +1628 +1629 +1630 +1631 +1632 +1633 +1634 +1635 +1636 +1637 +1638 +1639 +1640 +1641 +1642 +1643 +1644 +1645 +1646 +1647 +1648 +1649 +1650 +1651 +1652 +1653 +1654 +1655 +1656 +1657 +1658 +1659 +1660 +1661 +1662 +1663 +1664 +1665 +1666 +1667 +1668 +1669 +1670 +1671 +1672 +1673 +1674 +1675 +1676 +1677 +1678 +1679 +1680 +1681 +1682 +1683 +1684 +1685 +1686 +1687 +1688 +1689 +1690 +1691 +1692 +1693 +1694 +1695 +1696 +1697 +1698 +1699 +1700 +1701 +1702 +1703 +1704 +1705 +1706 +1707 +1708 +1709 +1710 +1711 +1712 +1713 +1714 +1715 +1716 +1717 +1718 +1719 +1720 +1721 +1722 +1723 +1724 +1725 +1726 +1727 +1728 +1729 +1730 +1731 +1732 +1733 +1734 +1735 +1736 +1737 +1738 +1739 +1740 +1741 +1742 +1743 +1744 +1745 +1746 +1747 +1748 +1749 +1750 +1751 +1752 +1753 +1754 +1755 +1756 +1757 +1758 +1759 +1760 +1761 +1762 +1763 +1764 +1765 +1766 +1767 +1768 +1769 +1770 +1771 +1772 +1773 +1774 +1775 +1776 +1777 +1778 +1779 +1780 +1781 +1782 +1783 +1784 +1785 +1786 +1787 +1788 +1789 +1790 +1791 +1792 +1793 +1794 +1795 +1796 +1797 +1798 +1799 +1800 +1801 +1802 +1803 +1804 +1805 +1806 +1807 +1808 +1809 +1810 +1811 +1812 +1813 +1814 +1815 +1816 +1817 +1818 +1819 +1820 +1821 +1822 +1823 +1824 +1825 +1826 +1827 +1828 +1829 +1830 +1831 +1832 +1833 +1834 +1835 +1836 +1837 +1838 +1839 +1840 +1841 +1842 +1843 +1844 +1845 +1846 +1847 +1848 +1849 +1850 +1851 +1852 +1853 +1854 +1855 +1856 +1857 +1858 +1859 +1860 +1861 +1862 +1863 +1864 +1865 +1866 +1867 +1868 +1869 +1870 +1871 +1872 +1873 +1874 +1875 +1876 +1877 +1878 +1879 +1880 +1881 +1882 +1883 +1884 +1885 +1886 +1887 +1888 +1889 +1890 +1891 +1892 +1893 +1894 +1895 +1896 +1897 +1898 +1899 +1900 +1901 +1902 +1903 +1904 +1905 +1906 +1907 +1908 +1909 +1910 +1911 +1912 +1913 +1914 +1915 +1916 +1917 +1918 +1919 +1920 +1921 +1922 +1923 +1924 +1925 +1926 +1927 +1928 +1929 +1930 +1931 +1932 +1933 +1934 +1935 +1936 +1937 +1938 +1939 +1940 +1941 +1942 +1943 +1944 +1945 +1946 +1947 +1948 +1949 +1950 +1951 +1952 +1953 +1954 +1955 +1956 +1957 +1958 +1959 +1960 +1961 +1962 +1963 +1964 +1965 +1966 +1967 +1968 +1969 +1970 +1971 +1972 +1973 +1974 +1975 +1976 +1977 +1978 +1979 +1980 +1981 +1982 +1983 +1984 +1985 +1986 +1987 +1988 +1989 +1990 +1991 +1992 +1993 +1994 +1995 +1996 +1997 +1998 +1999 +2000 +2001 +2002 +2003 +2004 +2005 +2006 +2007 +2008 +2009 +2010 +2011 +2012 +2013 +2014 +2015 +2016 +2017 +2018 +2019 +2020 +2021 +2022 +2023 +2024 +2025 +2026 +2027 +2028 +2029 +2030 +2031 +2032 +2033 +2034 +2035 +2036 +2037 +2038 +2039 +2040 +2041 +2042 +2043 +2044 +2045 +2046 +2047 +2048 +2049 +2050 +2051 +2052 +2053 +2054 +2055 +2056 +2057 +2058 +2059 +2060 +2061 +2062 +2063 +2064 +2065 +2066 +2067 +2068 +2069 +2070 +2071 +2072 +2073 +2074 +2075 +2076 +2077 +2078 +2079 +2080 +2081 +2082 +2083 +2084 +2085 +2086 +2087 +2088 +2089 +2090 +2091 +2092 +2093 +2094 +2095 +2096 +2097 +2098 +2099 +2100 +2101 +2102 +2103 +2104 +2105 +2106 +2107 +2108 +2109 +2110 +2111 +2112 +2113 +2114 +2115 +2116 +2117 +2118 +2119 +2120 +2121 +2122 +2123 +2124 +2125 +2126 +2127 +2128 +2129 +2130 +2131 +2132 +2133 +2134 +2135 +2136 +2137 +2138 +2139 +2140 +2141 +2142 +2143 +2144 +2145 +2146 +2147 +2148 +2149 +2150 +2151 +2152 +2153 +2154 +2155 +2156 +2157 +2158 +2159 +2160 +2161 +2162 +2163 +2164 +2165 +2166 +2167 +2168 +2169 +2170 +2171 +2172 +2173 +2174 +2175 +2176 +2177 +2178 +2179 +2180 +2181 +2182 +2183 +2184 +2185 +2186 +2187 +2188 +2189 +2190 +2191 +2192 +2193 +2194 +2195 +2196 +2197 +2198 +2199 +2200 +2201 +2202 +2203 +2204 +2205 +2206 +2207 +2208 +2209 +2210 +2211 +2212 +2213 +2214 +2215 +2216 +2217 +2218 +2219 +2220 +2221 +2222 +2223 +2224 +2225 +2226 +2227 +2228 +2229 +2230 +2231 +2232 +2233 +2234 +2235 +2236 +2237 +2238 +2239 +2240 +2241 +2242 +2243 +2244 +2245 +2246 +2247 +2248 +2249 +2250 +2251 +2252 +2253 +2254 +2255 +2256 +2257 +2258 +2259 +2260 +2261 +2262 +2263 +2264 +2265 +2266 +2267 +2268 +2269 +2270 +2271 +2272 +2273 +2274 +2275 +2276 +2277 +2278 +2279 +2280 +2281 +2282 +2283 +2284 +2285 +2286 +2287 +2288 +2289 +2290 +2291 +2292 +2293 +2294 +2295 +2296 +2297 +2298 +2299 +2300 +2301 +2302 +2303 +2304 +2305 +2306 +2307 +2308 +2309 +2310 +2311 +2312 +2313 +2314 +2315 +2316 +2317 +2318 +2319 +2320 +2321 +2322 +2323 +2324 +2325 +2326 +2327 +2328 +2329 +2330 +2331 +2332 +2333 +2334 +2335 +2336 +2337 +2338 +2339 +2340 +2341 +2342 +2343 +2344 +2345 +2346 +2347 +2348 +2349 +2350 +2351 +2352 +2353 +2354 +2355 +2356 +2357 +2358 +2359 +2360 +2361 +2362 +2363 +2364 +2365 +2366 +2367 +2368 +2369 +2370 +2371 +2372 +2373 +2374 +2375 +2376 +2377 +2378 +2379 +2380 +2381 +2382 +2383 +2384 +2385 +2386 +2387 +2388 +2389 +2390 +2391 +2392 +2393 +2394 +2395 +2396 +2397 +2398 +2399 +2400 +2401 +2402 +2403 +2404 +2405 +2406 +2407 +2408 +2409 +2410 +2411 +2412 +2413 +2414 +2415 +2416 +2417 +2418 +2419 +2420 +2421 +2422 +2423 +2424 +2425 +2426 +2427 +2428 +2429 +2430 +2431 +2432 +2433 +2434 +2435 +2436 +2437 +2438 +2439 +2440 +2441 +2442 +2443 +2444 +2445 +2446 +2447 +2448 +2449 +2450 +2451 +2452 +2453 +2454 +2455 +2456 +2457 +2458 +2459 +2460 +2461 +2462 +2463 +2464 +2465 +2466 +2467 +2468 +2469 +2470 +2471 +2472 +2473 +2474 +2475 +2476 +2477 +2478 +2479 +2480 +2481 +2482 +2483 +2484 +2485 +2486 +2487 +2488 +2489 +2490 +2491 +2492 +2493 +2494 +2495 +2496 +2497 +2498 +2499 +2500 +2501 +2502 +2503 +2504 +2505 +2506 +2507 +2508 +2509 +2510 +2511 +2512 +2513 +2514 +2515 +2516 +2517 +2518 +2519 +2520 +2521 +2522 +2523 +2524 +2525 +2526 +2527 +2528 +2529 +2530 +2531 +2532 +2533 +2534 +2535 +2536 +2537 +2538 +2539 +2540 +2541 +2542 +2543 +2544 +2545 +2546 +2547 +2548 +2549 +2550 +2551 +2552 +2553 +2554 +2555 +2556 +2557 +2558 +2559 +2560 +2561 +2562 +2563 +2564 +2565 +2566 +2567 +2568 +2569 +2570 +2571 +2572 +2573 +2574 +2575 +2576 +2577 +2578 +2579 +2580 +2581 +2582 +2583 +2584 +2585 +2586 +2587 +2588 +2589 +2590 +2591 +2592 +2593 +2594 +2595 +2596 +2597 +2598 +2599 +2600 +2601 +2602 +2603 +2604 +2605 +2606 +2607 +2608 +2609 +2610 +2611 +2612 +2613 +2614 +2615 +2616 +2617 +2618 +2619 +2620 +2621 +2622 +2623 +2624 +2625 +2626 +2627 +2628 +2629 +2630 +2631 +2632 +2633 +2634 +2635 +2636 +2637 +2638 +2639 +2640 +2641 +2642 +2643 +2644 +2645 +2646 +2647 +2648 +2649 +2650 +2651 +2652 +2653 +2654 +2655 +2656 +2657 +2658 +2659 +2660 +2661 +2662 +2663 +2664 +2665 +2666 +2667 +2668 +2669 +2670 +2671 +2672 +2673 +2674 +2675 +2676 +2677 +2678 +2679 +2680 +2681 +2682 +2683 +2684 +2685 +2686 +2687 +2688 +2689 +2690 +2691 +2692 +2693 +2694 +2695 +2696 +2697 +2698 +2699 +2700 +2701 +2702 +2703 +2704 +2705 +2706 +2707 +2708 +2709 +2710 +2711 +2712 +2713 +2714 +2715 +2716 +2717 +2718 +2719 +2720 +2721 +2722 +2723 +2724 +2725 +2726 +2727 +2728 +2729 +2730 +2731 +2732 +2733 +2734 +2735 +2736 +2737 +2738 +2739 +2740 +2741 +2742 +2743 +2744 +2745 +2746 +2747 +2748 +2749 +2750 +2751 +2752 +2753 +2754 +2755 +2756 +2757 +2758 +2759 +2760 +2761 +2762 +2763 +2764 +2765 +2766 +2767 +2768 +2769 +2770 +2771 +2772 +2773 +2774 +2775 +2776 +2777 +2778 +2779 +2780 +2781 +2782 +2783 +2784 +2785 +2786 +2787 +2788 +2789 +2790 +2791 +2792 +2793 +2794 +2795 +2796 +2797 +2798 +2799 +2800 +2801 +2802 +2803 +2804 +2805 +2806 +2807 +2808 +2809 +2810 +2811 +2812 +2813 +2814 +2815 +2816 +2817 +2818 +2819 +2820 +2821 +2822 +2823 +2824 +2825 +2826 +2827 +2828 +2829 +2830 +2831 +2832 +2833 +2834 +2835 +2836 +2837 +2838 +2839 +2840 +2841 +2842 +2843 +2844 +2845 +2846 +2847 +2848 +2849 +2850 +2851 +2852 +2853 +2854 +2855 +2856 +2857 +2858 +2859 +2860 +2861 +2862 +2863 +2864 +2865 +2866 +2867 +2868 +2869 +2870 +2871 +2872 +2873 +2874 +2875 +2876 +2877 +2878 +2879 +2880 +2881 +2882 +2883 +2884 +2885 +2886 +2887 +2888 +2889 +2890 +2891 +2892 +2893 +2894 +2895 +2896 +2897 +2898 +2899 +2900 +2901 +2902 +2903 +2904 +2905 +2906 +2907 +2908 +2909 +2910 +2911 +2912 +2913 +2914 +2915 +2916 +2917 +2918 +2919 +2920 +2921 +2922 +2923 +2924 +2925 +2926 +2927 +2928 +2929 +2930 +2931 +2932 +2933 +2934 +2935 +2936 +2937 +2938 +2939 +2940 +2941 +2942 +2943 +2944 +2945 +2946 +2947 +2948 +2949 +2950 +2951 +2952 +2953 +2954 +2955 +2956 +2957 +2958 +2959 +2960 +2961 +2962 +2963 +2964 +2965 +2966 +2967 +2968 +2969 +2970 +2971 +2972 +2973 +2974 +2975 +2976 +2977 +2978 +2979 +2980 +2981 +2982 +2983 +2984 +2985 +2986 +2987 +2988 +2989 +2990 +2991 +2992 +2993 +2994 +2995 +2996 +2997 +2998 +2999 +3000 +3001 +3002 +3003 +3004 +3005 +3006 +3007 +3008 +3009 +3010 +3011 +3012 +3013 +3014 +3015 +3016 +3017 +3018 +3019 +3020 +3021 +3022 +3023 +3024 +3025 +3026 +3027 +3028 +3029 +3030 +3031 +3032 +3033 +3034 +3035 +3036 +3037 +3038 +3039 +3040 +3041 +3042 +3043 +3044 +3045 +3046 +3047 +3048 +3049 +3050 +3051 +3052 +3053 +3054 +3055 +3056 +3057 +3058 +3059 +3060 +3061 +3062 +3063 +3064 +3065 +3066 +3067 +3068 +3069 +3070 +3071 +3072 +3073 +3074 +3075 +3076 +3077 +3078 +3079 +3080 +3081 +3082 +3083 +3084 +3085 +3086 +3087 +3088 +3089 +3090 +3091 +3092 +3093 +3094 +3095 +3096 +3097 +3098 +3099 +3100 +3101 +3102 +3103 +3104 +3105 +3106 +3107 +3108 +3109 +3110 +3111 +3112 +3113 +3114 +3115 +3116 +3117 +3118 +3119 +3120 +3121 +3122 +3123 +3124 +3125 +3126 +3127 +3128 +3129 +3130 +3131 +3132 +3133 +3134 +3135 +3136 +3137 +3138 +3139 +3140 +3141 +3142 +3143 +3144 +3145 +3146 +3147 +3148 +3149 +3150 +3151 +3152 +3153 +3154 +3155 +3156 +3157 +3158 +3159 +3160 +3161 +3162 +3163 +3164 +3165 +3166 +3167 +3168 +3169 +3170 +3171 +3172 +3173 +3174 +3175 +3176 +3177 +3178 +3179 +3180 +3181 +3182 +3183 +3184 +3185 +3186 +3187 +3188 +3189 +3190 +3191 +3192 +3193 +3194 +3195 +3196 +3197 +3198 +3199 +3200 +3201 +3202 +3203 +3204 +3205 +3206 +3207 +3208 +3209 +3210 +3211 +3212 +3213 +3214 +3215 +3216 +3217 +3218 +3219 +3220 +3221 +3222 +3223 +3224 +3225 +3226 +3227 +3228 +3229 +3230 +3231 +3232 +3233 +3234 +3235 +3236 +3237 +3238 +3239 +3240 +3241 +3242 +3243 +3244 +3245 +3246 +3247 +3248 +3249 +3250 +3251 +3252 +3253 +3254 +3255 +3256 +3257 +3258 +3259 +3260 +3261 +3262 +3263 +3264 +3265 +3266 +3267 +3268 +3269 +3270 +3271 +3272 +3273 +3274 +3275 +3276 +3277 +3278 +3279 +3280 +3281 +3282 +3283 +3284 +3285 +3286 +3287 +3288 +3289 +3290 +3291 +3292 +3293 +3294 +3295 +3296 +3297 +3298 +3299 +3300 +3301 +3302 +3303 +3304 +3305 +3306 +3307 +3308 +3309 +3310 +3311 +3312 +3313 +3314 +3315 +3316 +3317 +3318 +3319 +3320 +3321 +3322 +3323 +3324 +3325 +3326 +3327 +3328 +3329 +3330 +3331 +3332 +3333 +3334 +3335 +3336 +3337 +3338 +3339 +3340 +3341 +3342 +3343 +3344 +3345 +3346 +3347 +3348 +3349 +3350 +3351 +3352 +3353 +3354 +3355 +3356 +3357 +3358 +3359 +3360 +3361 +3362 +3363 +3364 +3365 +3366 +3367 +3368 +3369 +3370 +3371 +3372 +3373 +3374 +3375 +3376 +3377 +3378 +3379 +3380 +3381 +3382 +3383 +3384 +3385 +3386 +3387 +3388 +3389 +3390 +3391 +3392 +3393 +3394 +3395 +3396 +3397 +3398 +3399 +3400 +3401 +3402 +3403 +3404 +3405 +3406 +3407 +3408 +3409 +3410 +3411 +3412 +3413 +3414 +3415 +3416 +3417 +3418 +3419 +3420 +3421 +3422 +3423 +3424 +3425 +3426 +3427 +3428 +3429 +3430 +3431 +3432 +3433 +3434 +3435 +3436 +3437 +3438 +3439 +3440 +3441 +3442 +3443 +3444 +3445 +3446 +3447 +3448 +3449 +3450 +3451 +3452 +3453 +3454 +3455 +3456 +3457 +3458 +3459 +3460 +3461 +3462 +3463 +3464 +3465 +3466 +3467 +3468 +3469 +3470 +3471 +3472 +3473 +3474 +3475 +3476 +3477 +3478 +3479 +3480 +3481 +3482 +3483 +3484 +3485 +3486 +3487 +3488 +3489 +3490 +3491 +3492 +3493 +3494 +3495 +3496 +3497 +3498 +3499 +3500 +3501 +3502 +3503 +3504 +3505 +3506 +3507 +3508 +3509 +3510 +3511 +3512 +3513 +3514 +3515 +3516 +3517 +3518 +3519 +3520 +3521 +3522 +3523 +3524 +3525 +3526 +3527 +3528 +3529 +3530 +3531 +3532 +3533 +3534 +3535 +3536 +3537 +3538 +3539 +3540 +3541 +3542 +3543 +3544 +3545 +3546 +3547 +3548 +3549 +3550 +3551 +3552 +3553 +3554 +3555 +3556 +3557 +3558 +3559 +3560 +3561 +3562 +3563 +3564 +3565 +3566 +3567 +3568 +3569 +3570 +3571 +3572 +3573 +3574 +3575 +3576 +3577 +3578 +3579 +3580 +3581 +3582 +3583 +3584 +3585 +3586 +3587 +3588 +3589 +3590 +3591 +3592 +3593 +3594 +3595 +3596 +3597 +3598 +3599 +3600 +3601 +3602 +3603 +3604 +3605 +3606 +3607 +3608 +3609 +3610 +3611 +3612 +3613 +3614 +3615 +3616 +3617 +3618 +3619 +3620 +3621 +3622 +3623 +3624 +3625 +3626 +3627 +3628 +3629 +3630 +3631 +3632 +3633 +3634 +3635 +3636 +3637 +3638 +3639 +3640 +3641 +3642 +3643 +3644 +3645 +3646 +3647 +3648 +3649 +3650 +3651 +3652 +3653 +3654 +3655 +3656 +3657 +3658 +3659 +3660 +3661 +3662 +3663 +3664 +3665 +3666 +3667 +3668 +3669 +3670 +3671 +3672 +3673 +3674 +3675 +3676 +3677 +3678 +3679 +3680 +3681 +3682 +3683 +3684 +3685 +3686 +3687 +3688 +3689 +3690 +3691 +3692 +3693 +3694 +3695 +3696 +3697 +3698 +3699 +3700 +3701 +3702 +3703 +3704 +3705 +3706 +3707 +3708 +3709 +3710 +3711 +3712 +3713 +3714 +3715 +3716 +3717 +3718 +3719 +3720 +3721 +3722 +3723 +3724 +3725 +3726 +3727 +3728 +3729 +3730 +3731 +3732 +3733 +3734 +3735 +3736 +3737 +3738 +3739 +3740 +3741 +3742 +3743 +3744 +3745 +3746 +3747 +3748 +3749 +3750 +3751 +3752 +3753 +3754 +3755 +3756 +3757 +3758 +3759 +3760 +3761 +3762 +3763 +3764 +3765 +3766 +3767 +3768 +3769 +3770 +3771 +3772 +3773 +3774 +3775 +3776 +3777 +3778 +3779 +3780 +3781 +3782 +3783 +3784 +3785 +3786 +3787 +3788 +3789 +3790 +3791 +3792 +3793 +3794 +3795 +3796 +3797 +3798 +3799 +3800 +3801 +3802 +3803 +3804 +3805 +3806 +3807 +3808 +3809 +3810 +3811 +3812 +3813 +3814 +3815 +3816 +3817 +3818 +3819 +3820 +3821 +3822 +3823 +3824 +3825 +3826 +3827 +3828 +3829 +3830 +3831 +3832 +3833 +3834 +3835 +3836 +3837 +3838 +3839 +3840 +3841 +3842 +3843 +3844 +3845 +3846 +3847 +3848 +3849 +3850 +3851 +3852 +3853 +3854 +3855 +3856 +3857 +3858 +3859 +3860 +3861 +3862 +3863 +3864 +3865 +3866 +3867 +3868 +3869 +3870 +3871 +3872 +3873 +3874 +3875 +3876 +3877 +3878 +3879 +3880 +3881 +3882 +3883 +3884 +3885 +3886 +3887 +3888 +3889 +3890 +3891 +3892 +3893 +3894 +3895 +3896 +3897 +3898 +3899 +3900 +3901 +3902 +3903 +3904 +3905 +3906 +3907 +3908 +3909 +3910 +3911 +3912 +3913 +3914 +3915 +3916 +3917 +3918 +3919 +3920 +3921 +3922 +3923 +3924 +3925 +3926 +3927 +3928 +3929 +3930 +3931 +3932 +3933 +3934 +3935 +3936 +3937 +3938 +3939 +3940 +3941 +3942 +3943 +3944 +3945 +3946 +3947 +3948 +3949 +3950 +3951 +3952 +3953 +3954 +3955 +3956 +3957 +3958 +3959 +3960 +3961 +3962 +3963 +3964 +3965 +3966 +3967 +3968 +3969 +3970 +3971 +3972 +3973 +3974 +3975 +3976 +3977 +3978 +3979 +3980 +3981 +3982 +3983 +3984 +3985 +3986 +3987 +3988 +3989 +3990 +3991 +3992 +3993 +3994 +3995 +3996 +3997 +3998 +3999 +4000 +4001 +4002 +4003 +4004 +4005 +4006 +4007 +4008 +4009 +4010 +4011 +4012 +4013 +4014 +4015 +4016 +4017 +4018 +4019 +4020 +4021 +4022 +4023 +4024 +4025 +4026 +4027 +4028 +4029 +4030 +4031 +4032 +4033 +4034 +4035 +4036 +4037 +4038 +4039 +4040 +4041 +4042 +4043 +4044 +4045 +4046 +4047 +4048 +4049 +4050 +4051 +4052 +4053 +4054 +4055 +4056 +4057 +4058 +4059 +4060 +4061 +4062 +4063 +4064 +4065 +4066 +4067 +4068 +4069 +4070 +4071 +4072 +4073 +4074 +4075 +4076 +4077 +4078 +4079 +4080 +4081 +4082 +4083 +4084 +4085 +4086 +4087 +4088 +4089 +4090 +4091 +4092 +4093 +4094 +4095 +4096 +4097 +4098 +4099 +4100 +4101 +4102 +4103 +4104 +4105 +4106 +4107 +4108 +4109 +4110 +4111 +4112 +4113 +4114 +4115 +4116 +4117 +4118 +4119 +4120 +4121 +4122 +4123 +4124 +4125 +4126 +4127 +4128 +4129 +4130 +4131 +4132 +4133 +4134 +4135 +4136 +4137 +4138 +4139 +4140 +4141 +4142 +4143 +4144 +4145 +4146 +4147 +4148 +4149 +4150 +4151 +4152 +4153 +4154 +4155 +4156 +4157 +4158 +4159 +4160 +4161 +4162 +4163 +4164 +4165 +4166 +4167 +4168 +4169 +4170 +4171 +4172 +4173 +4174 +4175 +4176 +4177 +4178 +4179 +4180 +4181 +4182 +4183 +4184 +4185 +4186 +4187 +4188 +4189 +4190 +4191 +4192 +4193 +4194 +4195 +4196 +4197 +4198 +4199 +4200 +4201 +4202 +4203 +4204 +4205 +4206 +4207 +4208 +4209 +4210 +4211 +4212 +4213 +4214 +4215 +4216 +4217 +4218 +4219 +4220 +4221 +4222 +4223 +4224 +4225 +4226 +4227 +4228 +4229 +4230 +4231 +4232 +4233 +4234 +4235 +4236 +4237 +4238 +4239 +4240 +4241 +4242 +4243 +4244 +4245 +4246 +4247 +4248 +4249 +4250 +4251 +4252 +4253 +4254 +4255 +4256 +4257 +4258 +4259 +4260 +4261 +4262 +4263 +4264 +4265 +4266 +4267 +4268 +4269 +4270 +4271 +4272 +4273 +4274 +4275 +4276 +4277 +4278 +4279 +4280 +4281 +4282 +4283 +4284 +4285 +4286 +4287 +4288 +4289 +4290 +4291 +4292 +4293 +4294 +4295 +4296 +4297 +4298 +4299 +4300 +4301 +4302 +4303 +4304 +4305 +4306 +4307 +4308 +4309 +4310 +4311 +4312 +4313 +4314 +4315 +4316 +4317 +4318 +4319 +4320 +4321 +4322 +4323 +4324 +4325 +4326 +4327 +4328 +4329 +4330 +4331 +4332 +4333 +4334 +4335 +4336 +4337 +4338 +4339 +4340 +4341 +4342 +4343 +4344 +4345 +4346 +4347 +4348 +4349 +4350 +4351 +4352 +4353 +4354 +4355 +4356 +4357 +4358 +4359 +4360 +4361 +4362 +4363 +4364 +4365 +4366 +4367 +4368 +4369 +4370 +4371 +4372 +4373 +4374 +4375 +4376 +4377 +4378 +4379 +4380 +4381 +4382 +4383 +4384 +4385 +4386 +4387 +4388 +4389 +4390 +4391 +4392 +4393 +4394 +4395 +4396 +4397 +4398 +4399 +4400 +4401 +4402 +4403 +4404 +4405 +4406 +4407 +4408 +4409 +4410 +4411 +4412 +4413 +4414 +4415 +4416 +4417 +4418 +4419 +4420 +4421 +4422 +4423 +4424 +4425 +4426 +4427 +4428 +4429 +4430 +4431 +4432 +4433 +4434 +4435 +4436 +4437 +4438 +4439 +4440 +4441 +4442 +4443 +4444 +4445 +4446 +4447 +4448 +4449 +4450 +4451 +4452 +4453 +4454 +4455 +4456 +4457 +4458 +4459 +4460 +4461 +4462 +4463 +4464 +4465 +4466 +4467 +4468 +4469 +4470 +4471 +4472 +4473 +4474 +4475 +4476 +4477 +4478 +4479 +4480 +4481 +4482 +4483 +4484 +4485 +4486 +4487 +4488 +4489 +4490 +4491 +4492 +4493 +4494 +4495 +4496 +4497 +4498 +4499 +4500 +4501 +4502 +4503 +4504 +4505 +4506 +4507 +4508 +4509 +4510 +4511 +4512 +4513 +4514 +4515 +4516 +4517 +4518 +4519 +4520 +4521 +4522 +4523 +4524 +4525 +4526 +4527 +4528 +4529 +4530 +4531 +4532 +4533 +4534 +4535 +4536 +4537 +4538 +4539 +4540 +4541 +4542 +4543 +4544 +4545 +4546 +4547 +4548 +4549 +4550 +4551 +4552 +4553 +4554 +4555 +4556 +4557 +4558 +4559 +4560 +4561 +4562 +4563 +4564 +4565 +4566 +4567 +4568 +4569 +4570 +4571 +4572 +4573 +4574 +4575 +4576 +4577 +4578 +4579 +4580 +4581 +4582 +4583 +4584 +4585 +4586 +4587 +4588 +4589 +4590 +4591 +4592 +4593 +4594 +4595 +4596 +4597 +4598 +4599 +4600 +4601 +4602 +4603 +4604 +4605 +4606 +4607 +4608 +4609 +4610 +4611 +4612 +4613 +4614 +4615 +4616 +4617 +4618 +4619 +4620 +4621 +4622 +4623 +4624 +4625 +4626 +4627 +4628 +4629 +4630 +4631 +4632 +4633 +4634 +4635 +4636 +4637 +4638 +4639 +4640 +4641 +4642 +4643 +4644 +4645 +4646 +4647 +4648 +4649 +4650 +4651 +4652 +4653 +4654 +4655 +4656 +4657 +4658 +4659 +4660 +4661 +4662 +4663 +4664 +4665 +4666 +4667 +4668 +4669 +4670 +4671 +4672 +4673 +4674 +4675 +4676 +4677 +4678 +4679 +4680 +4681 +4682 +4683 +4684 +4685 +4686 +4687 +4688 +4689 +4690 +4691 +4692 +4693 +4694 +4695 +4696 +4697 +4698 +4699 +4700 +4701 +4702 +4703 +4704 +4705 +4706 +4707 +4708 +4709 +4710 +4711 +4712 +4713 +4714 +4715 +4716 +4717 +4718 +4719 +4720 +4721 +4722 +4723 +4724 +4725 +4726 +4727 +4728 +4729 +4730 +4731 +4732 +4733 +4734 +4735 +4736 +4737 +4738 +4739 +4740 +4741 +4742 +4743 +4744 +4745 +4746 +4747 +4748 +4749 +4750 +4751 +4752 +4753 +4754 +4755 +4756 +4757 +4758 +4759 +4760 +4761 +4762 +4763 +4764 +4765 +4766 +4767 +4768 +4769 +4770 +4771 +4772 +4773 +4774 +4775 +4776 +4777 +4778 +4779 +4780 +4781 +4782 +4783 +4784 +4785 +4786 +4787 +4788 +4789 +4790 +4791 +4792 +4793 +4794 +4795 +4796 +4797 +4798 +4799 +4800 +4801 +4802 +4803 +4804 +4805 +4806 +4807 +4808 +4809 +4810 +4811 +4812 +4813 +4814 +4815 +4816 +4817 +4818 +4819 +4820 +4821 +4822 +4823 +4824 +4825 +4826 +4827 +4828 +4829 +4830 +4831 +4832 +4833 +4834 +4835 +4836 +4837 +4838 +4839 +4840 +4841 +4842 +4843 +4844 +4845 +4846 +4847 +4848 +4849 +4850 +4851 +4852 +4853 +4854 +4855 +4856 +4857 +4858 +4859 +4860 +4861 +4862 +4863 +4864 +4865 +4866 +4867 +4868 +4869 +4870 +4871 +4872 +4873 +4874 +4875 +4876 +4877 +4878 +4879 +4880 +4881 +4882 +4883 +4884 +4885 +4886 +4887 +4888 +4889 +4890 +4891 +4892 +4893 +4894 +4895 +4896 +4897 +4898 +4899 +4900 +4901 +4902 +4903 +4904 +4905 +4906 +4907 +4908 +4909 +4910 +4911 +4912 +4913 +4914 +4915 +4916 +4917 +4918 +4919 +4920 +4921 +4922 +4923 +4924 +4925 +4926 +4927 +4928 +4929 +4930 +4931 +4932 +4933 +4934 +4935 +4936 +4937 +4938 +4939 +4940 +4941 +4942 +4943 +4944 +4945 +4946 +4947 +4948 +4949 +4950 +4951 +4952 +4953 +4954 +4955 +4956 +4957 +4958 +4959 +4960 +4961 +4962 +4963 +4964 +4965 +4966 +4967 +4968 +4969 +4970 +4971 +4972 +4973 +4974 +4975 +4976 +4977 +4978 +4979 +4980 +4981 +4982 +4983 +4984 +4985 +4986 +4987 +4988 +4989 +4990 +4991 +4992 +4993 +4994 +4995 +4996 +4997 +4998 +4999 +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5039 +5040 +5041 +5042 +5043 +5044 +5045 +5046 +5047 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 +5060 +5061 +5062 +5063 +5064 +5065 +5066 +5067 +5068 +5069 +5070 +5071 +5072 +5073 +5074 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5093 +5094 +5095 +5096 +5097 +5098 +5099 +5100 +5101 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5110 +5111 +5112 +5113 +5114 +5115 +5116 +5117 +5118 +5119 +5120 +5121 +5122 +5123 +5124 +5125 +5126 +5127 +5128 +5129 +5130 +5131 +5132 +5133 +5134 +5135 +5136 +5137 +5138 +5139 +5140 +5141 +5142 +5143 +5144 +5145 +5146 +5147 +5148 +5149 +5150 +5151 +5152 +5153 +5154 +5155 +5156 +5157 +5158 +5159 +5160 +5161 +5162 +5163 +5164 +5165 +5166 +5167 +5168 +5169 +5170 +5171 +5172 +5173 +5174 +5175 +5176 +5177 +5178 +5179 +5180 +5181 +5182 +5183 +5184 +5185 +5186 +5187 +5188 +5189 +5190 +5191 +5192 +5193 +5194 +5195 +5196 +5197 +5198 +5199 +5200 +5201 +5202 +5203 +5204 +5205 +5206 +5207 +5208 +5209 +5210 +5211 +5212 +5213 +5214 +5215 +5216 +5217 +5218 +5219 +5220 +5221 +5222 +5223 +5224 +5225 +5226 +5227 +5228 +5229 +5230 +5231 +5232 +5233 +5234 +5235 +5236 +5237 +5238 +5239 +5240 +5241 +5242 +5243 +5244 +5245 +5246 +5247 +5248 +5249 +5250 +5251 +5252 +5253 +5254 +5255 +5256 +5257 +5258 +5259 +5260 +5261 +5262 +5263 +5264 +5265 +5266 +5267 +5268 +5269 +5270 +5271 +5272 +5273 +5274 +5275 +5276 +5277 +5278 +5279 +5280 +5281 +5282 +5283 +5284 +5285 +5286 +5287 +5288 +5289 +5290 +5291 +5292 +5293 +5294 +5295 +5296 +5297 +5298 +5299 +5300 +5301 +5302 +5303 +5304 +5305 +5306 +5307 +5308 +5309 +5310 +5311 +5312 +5313 +5314 +5315 +5316 +5317 +5318 +5319 +5320 +5321 +5322 +5323 +5324 +5325 +5326 +5327 +5328 +5329 +5330 +5331 +5332 +5333 +5334 +5335 +5336 +5337 +5338 +5339 +5340 +5341 +5342 +5343 +5344 +5345 +5346 +5347 +5348 +5349 +5350 +5351 +5352 +5353 +5354 +5355 +5356 +5357 +5358 +5359 +5360 +5361 +5362 +5363 +5364 +5365 +5366 +5367 +5368 +5369 +5370 +5371 +5372 +5373 +5374 +5375 +5376 +5377 +5378 +5379 +5380 +5381 +5382 +5383 +5384 +5385 +5386 +5387 +5388 +5389 +5390 +5391 +5392 +5393 +5394 +5395 +5396 +5397 +5398 +5399 +5400 +5401 +5402 +5403 +5404 +5405 +5406 +5407 +5408 +5409 +5410 +5411 +5412 +5413 +5414 +5415 +5416 +5417 +5418 +5419 +5420 +5421 +5422 +5423 +5424 +5425 +5426 +5427 +5428 +5429 +5430 +5431 +5432 +5433 +5434 +5435 +5436 +5437 +5438 +5439 +5440 +5441 +5442 +5443 +5444 +5445 +5446 +5447 +5448 +5449 +5450 +5451 +5452 +5453 +5454 +5455 +5456 +5457 +5458 +5459 +5460 +5461 +5462 +5463 +5464 +5465 +5466 +5467 +5468 +5469 +5470 +5471 +5472 +5473 +5474 +5475 +5476 +5477 +5478 +5479 +5480 +5481 +5482 +5483 +5484 +5485 +5486 +5487 +5488 +5489 +5490 +5491 +5492 +5493 +5494 +5495 +5496 +5497 +5498 +5499 +5500 +5501 +5502 +5503 +5504 +5505 +5506 +5507 +5508 +5509 +5510 +5511 +5512 +5513 +5514 +5515 +5516 +5517 +5518 +5519 +5520 +5521 +5522 +5523 +5524 +5525 +5526 +5527 +5528 +5529 +5530 +5531 +5532 +5533 +5534 +5535 +5536 +5537 +5538 +5539 +5540 +5541 +5542 +5543 +5544 +5545 +5546 +5547 +5548 +5549 +5550 +5551 +5552 +5553 +5554 +5555 +5556 +5557 +5558 +5559 +5560 +5561 +5562 +5563 +5564 +5565 +5566 +5567 +5568 +5569 +5570 +5571 +5572 +5573 +5574 +5575 +5576 +5577 +5578 +5579 +5580 +5581 +5582 +5583 +5584 +5585 +5586 +5587 +5588 +5589 +5590 +5591 +5592 +5593 +5594 +5595 +5596 +5597 +5598 +5599 +5600 +5601 +5602 +5603 +5604 +5605 +5606 +5607 +5608 +5609 +5610 +5611 +5612 +5613 +5614 +5615 +5616 +5617 +5618 +5619 +5620 +5621 +5622 +5623 +5624 +5625 +5626 +5627 +5628 +5629 +5630 +5631 +5632 +5633 +5634 +5635 +5636 +5637 +5638 +5639 +5640 +5641 +5642 +5643 +5644 +5645 +5646 +5647 +5648 +5649 +5650 +5651 +5652 +5653 +5654 +5655 +5656 +5657 +5658 +5659 +5660 +5661 +5662 +5663 +5664 +5665 +5666 +5667 +5668 +5669 +5670 +5671 +5672 +5673 +5674 +5675 +5676 +5677 +5678 +5679 +5680 +5681 +5682 +5683 +5684 +5685 +5686 +5687 +5688 +5689 +5690 +5691 +5692 +5693 +5694 +5695 +5696 +5697 +5698 +5699 +5700 +5701 +5702 +5703 +5704 +5705 +5706 +5707 +5708 +5709 +5710 +5711 +5712 +5713 +5714 +5715 +5716 +5717 +5718 +5719 +5720 +5721 +5722 +5723 +5724 +5725 +5726 +5727 +5728 +5729 +5730 +5731 +5732 +5733 +5734 +5735 +5736 +5737 +5738 +5739 +5740 +5741 +5742 +5743 +5744 +5745 +5746 +5747 +5748 +5749 +5750 +5751 +5752 +5753 +5754 +5755 +5756 +5757 +5758 +5759 +5760 +5761 +5762 +5763 +5764 +5765 +5766 +5767 +5768 +5769 +5770 +5771 +5772 +5773 +5774 +5775 +5776 +5777 +5778 +5779 +5780 +5781 +5782 +5783 +5784 +5785 +5786 +5787 +5788 +5789 +5790 +5791 +5792 +5793 +5794 +5795 +5796 +5797 +5798 +5799 +5800 +5801 +5802 +5803 +5804 +5805 +5806 +5807 +5808 +5809 +5810 +5811 +5812 +5813 +5814 +5815 +5816 +5817 +5818 +5819 +5820 +5821 +5822 +5823 +5824 +5825 +5826 +5827 +5828 +5829 +5830 +5831 +5832 +5833 +5834 +5835 +5836 +5837 +5838 +5839 +5840 +5841 +5842 +5843 +5844 +5845 +5846 +5847 +5848 +5849 +5850 +5851 +5852 +5853 +5854 +5855 +5856 +5857 +5858 +5859 +5860 +5861 +5862 +5863 +5864 +5865 +5866 +5867 +5868 +5869 +5870 +5871 +5872 +5873 +5874 +5875 +5876 +5877 +5878 +5879 +5880 +5881 +5882 +5883 +5884 +5885 +5886 +5887 +5888 +5889 +5890 +5891 +5892 +5893 +5894 +5895 +5896 +5897 +5898 +5899 +5900 +5901 +5902 +5903 +5904 +5905 +5906 +5907 +5908 +5909 +5910 +5911 +5912 +5913 +5914 +5915 +5916 +5917 +5918 +5919 +5920 +5921 +5922 +5923 +5924 +5925 +5926 +5927 +5928 +5929 +5930 +5931 +5932 +5933 +5934 +5935 +5936 +5937 +5938 +5939 +5940 +5941 +5942 +5943 +5944 +5945 +5946 +5947 +5948 +5949 +5950 +5951 +5952 +5953 +5954 +5955 +5956 +5957 +5958 +5959 +5960 +5961 +5962 +5963 +5964 +5965 +5966 +5967 +5968 +5969 +5970 +5971 +5972 +5973 +5974 +5975 +5976 +5977 +5978 +5979 +5980 +5981 +5982 +5983 +5984 +5985 +5986 +5987 +5988 +5989 +5990 +5991 +5992 +5993 +5994 +5995 +5996 +5997 +5998 +5999 +6000 +6001 +6002 +6003 +6004 +6005 +6006 +6007 +6008 +6009 +6010 +6011 +6012 +6013 +6014 +6015 +6016 +6017 +6018 +6019 +6020 +6021 +6022 +6023 +6024 +6025 +6026 +6027 +6028 +6029 +6030 +6031 +6032 +6033 +6034 +6035 +6036 +6037 +6038 +6039 +6040 +6041 +6042 +6043 +6044 +6045 +6046 +6047 +6048 +6049 +6050 +6051 +6052 +6053 +6054 +6055 +6056 +6057 +6058 +6059 +6060 +6061 +6062 +6063 +6064 +6065 +6066 +6067 +6068 +6069 +6070 +6071 +6072 +6073 +6074 +6075 +6076 +6077 +6078 +6079 +6080 +6081 +6082 +6083 +6084 +6085 +6086 +6087 +6088 +6089 +6090 +6091 +6092 +6093 +6094 +6095 +6096 +6097 +6098 +6099 +6100 +6101 +6102 +6103 +6104 +6105 +6106 +6107 +6108 +6109 +6110 +6111 +6112 +6113 +6114 +6115 +6116 +6117 +6118 +6119 +6120 +6121 +6122 +6123 +6124 +6125 +6126 +6127 +6128 +6129 +6130 +6131 +6132 +6133 +6134 +6135 +6136 +6137 +6138 +6139 +6140 +6141 +6142 +6143 +6144 +6145 +6146 +6147 +6148 +6149 +6150 +6151 +6152 +6153 +6154 +6155 +6156 +6157 +6158 +6159 +6160 +6161 +6162 +6163 +6164 +6165 +6166 +6167 +6168 +6169 +6170 +6171 +6172 +6173 +6174 +6175 +6176 +6177 +6178 +6179 +6180 +6181 +6182 +6183 +6184 +6185 +6186 +6187 +6188 +6189 +6190 +6191 +6192 +6193 +6194 +6195 +6196 +6197 +6198 +6199 +6200 +6201 +6202 +6203 +6204 +6205 +6206 +6207 +6208 +6209 +6210 +6211 +6212 +6213 +6214 +6215 +6216 +6217 +6218 +6219 +6220 +6221 +6222 +6223 +6224 +6225 +6226 +6227 +6228 +6229 +6230 +6231 +6232 +6233 +6234 +6235 +6236 +6237 +6238 +6239 +6240 +6241 +6242 +6243 +6244 +6245 +6246 +6247 +6248 +6249 +6250 +6251 +6252 +6253 +6254 +6255 +6256 +6257 +6258 +6259 +6260 +6261 +6262 +6263 +6264 +6265 +6266 +6267 +6268 +6269 +6270 +6271 +6272 +6273 +6274 +6275 +6276 +6277 +6278 +6279 +6280 +6281 +6282 +6283 +6284 +6285 +6286 +6287 +6288 +6289 +6290 +6291 +6292 +6293 +6294 +6295 +6296 +6297 +6298 +6299 +6300 +6301 +6302 +6303 +6304 +6305 +6306 +6307 +6308 +6309 +6310 +6311 +6312 +6313 +6314 +6315 +6316 +6317 +6318 +6319 +6320 +6321 +6322 +6323 +6324 +6325 +6326 +6327 +6328 +6329 +6330 +6331 +6332 +6333 +6334 +6335 +6336 +6337 +6338 +6339 +6340 +6341 +6342 +6343 +6344 +6345 +6346 +6347 +6348 +6349 +6350 +6351 +6352 +6353 +6354 +6355 +6356 +6357 +6358 +6359 +6360 +6361 +6362 +6363 +6364 +6365 +6366 +6367 +6368 +6369 +6370 +6371 +6372 +6373 +6374 +6375 +6376 +6377 +6378 +6379 +6380 +6381 +6382 +6383 +6384 +6385 +6386 +6387 +6388 +6389 +6390 +6391 +6392 +6393 +6394 +6395 +6396 +6397 +6398 +6399 +6400 +6401 +6402 +6403 +6404 +6405 +6406 +6407 +6408 +6409 +6410 +6411 +6412 +6413 +6414 +6415 +6416 +6417 +6418 +6419 +6420 +6421 +6422 +6423 +6424 +6425 +6426 +6427 +6428 +6429 +6430 +6431 +6432 +6433 +6434 +6435 +6436 +6437 +6438 +6439 +6440 +6441 +6442 +6443 +6444 +6445 +6446 +6447 +6448 +6449 +6450 +6451 +6452 +6453 +6454 +6455 +6456 +6457 +6458 +6459 +6460 +6461 +6462 +6463 +6464 +6465 +6466 +6467 +6468 +6469 +6470 +6471 +6472 +6473 +6474 +6475 +6476 +6477 +6478 +6479 +6480 +6481 +6482 +6483 +6484 +6485 +6486 +6487 +6488 +6489 +6490 +6491 +6492 +6493 +6494 +6495 +6496 +6497 +6498 +6499 +6500 +6501 +6502 +6503 +6504 +6505 +6506 +6507 +6508 +6509 +6510 +6511 +6512 +6513 +6514 +6515 +6516 +6517 +6518 +6519 +6520 +6521 +6522 +6523 +6524 +6525 +6526 +6527 +6528 +6529 +6530 +6531 +6532 +6533 +6534 +6535 +6536 +6537 +6538 +6539 +6540 +6541 +6542 +6543 +6544 +6545 +6546 +6547 +6548 +6549 +6550 +6551 +6552 +6553 +6554 +6555 +6556 +6557 +6558 +6559 +6560 +6561 +6562 +6563 +6564 +6565 +6566 +6567 +6568 +6569 +6570 +6571 +6572 +6573 +6574 +6575 +6576 +6577 +6578 +6579 +6580 +6581 +6582 +6583 +6584 +6585 +6586 +6587 +6588 +6589 +6590 +6591 +6592 +6593 +6594 +6595 +6596 +6597 +6598 +6599 +6600 +6601 +6602 +6603 +6604 +6605 +6606 +6607 +6608 +6609 +6610 +6611 +6612 +6613 +6614 +6615 +6616 +6617 +6618 +6619 +6620 +6621 +6622 +6623 +6624 +6625 +6626 +6627 +6628 +6629 +6630 +6631 +6632 +6633 +6634 +6635 +6636 +6637 +6638 +6639 +6640 +6641 +6642 +6643 +6644 +6645 +6646 +6647 +6648 +6649 +6650 +6651 +6652 +6653 +6654 +6655 +6656 +6657 +6658 +6659 +6660 +6661 +6662 +6663 +6664 +6665 +6666 +6667 +6668 +6669 +6670 +6671 +6672 +6673 +6674 +6675 +6676 +6677 +6678 +6679 +6680 +6681 +6682 +6683 +6684 +6685 +6686 +6687 +6688 +6689 +6690 +6691 +6692 +6693 +6694 +6695 +6696 +6697 +6698 +6699 +6700 +6701 +6702 +6703 +6704 +6705 +6706 +6707 +6708 +6709 +6710 +6711 +6712 +6713 +6714 +6715 +6716 +6717 +6718 +6719 +6720 +6721 +6722 +6723 +6724 +6725 +6726 +6727 +6728 +6729 +6730 +6731 +6732 +6733 +6734 +6735 +6736 +6737 +6738 +6739 +6740 +6741 +6742 +6743 +6744 +6745 +6746 +6747 +6748 +6749 +6750 +6751 +6752 +6753 +6754 +6755 +6756 +6757 +6758 +6759 +6760 +6761 +6762 +6763 +6764 +6765 +6766 +6767 +6768 +6769 +6770 +6771 +6772 +6773 +6774 +6775 +6776 +6777 +6778 +6779 +6780 +6781 +6782 +6783 +6784 +6785 +6786 +6787 +6788 +6789 +6790 +6791 +6792 +6793 +6794 +6795 +6796 +6797 +6798 +6799 +6800 +6801 +6802 +6803 +6804 +6805 +6806 +6807 +6808 +6809 +6810 +6811 +6812 +6813 +6814 +6815 +6816 +6817 +6818 +6819 +6820 +6821 +6822 +6823 +6824 +6825 +6826 +6827 +6828 +6829 +6830 +6831 +6832 +6833 +6834 +6835 +6836 +6837 +6838 +6839 +6840 +6841 +6842 +6843 +6844 +6845 +6846 +6847 +6848 +6849 +6850 +6851 +6852 +6853 +6854 +6855 +6856 +6857 +6858 +6859 +6860 +6861 +6862 +6863 +6864 +6865 +6866 +6867 +6868 +6869 +6870 +6871 +6872 +6873 +6874 +6875 +6876 +6877 +6878 +6879 +6880 +6881 +6882 +6883 +6884 +6885 +6886 +6887 +6888 +6889 +6890 +6891 +6892 +6893 +6894 +6895 +6896 +6897 +6898 +6899 +6900 +6901 +6902 +6903 +6904 +6905 +6906 +6907 +6908 +6909 +6910 +6911 +6912 +6913 +6914 +6915 +6916 +6917 +6918 +6919 +6920 +6921 +6922 +6923 +6924 +6925 +6926 +6927 +6928 +6929 +6930 +6931 +6932 +6933 +6934 +6935 +6936 +6937 +6938 +6939 +6940 +6941 +6942 +6943 +6944 +6945 +6946 +6947 +6948 +6949 +6950 +6951 +6952 +6953 +6954 +6955 +6956 +6957 +6958 +6959 +6960 +6961 +6962 +6963 +6964 +6965 +6966 +6967 +6968 +6969 +6970 +6971 +6972 +6973 +6974 +6975 +6976 +6977 +6978 +6979 +6980 +6981 +6982 +6983 +6984 +6985 +6986 +6987 +6988 +6989 +6990 +6991 +6992 +6993 +6994 +6995 +6996 +6997 +6998 +6999 +7000 +7001 +7002 +7003 +7004 +7005 +7006 +7007 +7008 +7009 +7010 +7011 +7012 +7013 +7014 +7015 +7016 +7017 +7018 +7019 +7020 +7021 +7022 +7023 +7024 +7025 +7026 +7027 +7028 +7029 +7030 +7031 +7032 +7033 +7034 +7035 +7036 +7037 +7038 +7039 +7040 +7041 +7042 +7043 +7044 +7045 +7046 +7047 +7048 +7049 +7050 +7051 +7052 +7053 +7054 +7055 +7056 +7057 +7058 +7059 +7060 +7061 +7062 +7063 +7064 +7065 +7066 +7067 +7068 +7069 +7070 +7071 +7072 +7073 +7074 +7075 +7076 +7077 +7078 +7079 +7080 +7081 +7082 +7083 +7084 +7085 +7086 +7087 +7088 +7089 +7090 +7091 +7092 +7093 +7094 +7095 +7096 +7097 +7098 +7099 +7100 +7101 +7102 +7103 +7104 +7105 +7106 +7107 +7108 +7109 +7110 +7111 +7112 +7113 +7114 +7115 +7116 +7117 +7118 +7119 +7120 +7121 +7122 +7123 +7124 +7125 +7126 +7127 +7128 +7129 +7130 +7131 +7132 +7133 +7134 +7135 +7136 +7137 +7138 +7139 +7140 +7141 +7142 +7143 +7144 +7145 +7146 +7147 +7148 +7149 +7150 +7151 +7152 +7153 +7154 +7155 +7156 +7157 +7158 +7159 +7160 +7161 +7162 +7163 +7164 +7165 +7166 +7167 +7168 +7169 +7170 +7171 +7172 +7173 +7174 +7175 +7176 +7177 +7178 +7179 +7180 +7181 +7182 +7183 +7184 +7185 +7186 +7187 +7188 +7189 +7190 +7191 +7192 +7193 +7194 +7195 +7196 +7197 +7198 +7199 +7200 +7201 +7202 +7203 +7204 +7205 +7206 +7207 +7208 +7209 +7210 +7211 +7212 +7213 +7214 +7215 +7216 +7217 +7218 +7219 +7220 +7221 +7222 +7223 +7224 +7225 +7226 +7227 +7228 +7229 +7230 +7231 +7232 +7233 +7234 +7235 +7236 +7237 +7238 +7239 +7240 +7241 +7242 +7243 +7244 +7245 +7246 +7247 +7248 +7249 +7250 +7251 +7252 +7253 +7254 +7255 +7256 +7257 +7258 +7259 +7260 +7261 +7262 +7263 +7264 +7265 +7266 +7267 +7268 +7269 +7270 +7271 +7272 +7273 +7274 +7275 +7276 +7277 +7278 +7279 +7280 +7281 +7282 +7283 +7284 +7285 +7286 +7287 +7288 +7289 +7290 +7291 +7292 +7293 +7294 +7295 +7296 +7297 +7298 +7299 +7300 +7301 +7302 +7303 +7304 +7305 +7306 +7307 +7308 +7309 +7310 +7311 +7312 +7313 +7314 +7315 +7316 +7317 +7318 +7319 +7320 +7321 +7322 +7323 +7324 +7325 +7326 +7327 +7328 +7329 +7330 +7331 +7332 +7333 +7334 +7335 +7336 +7337 +7338 +7339 +7340 +7341 +7342 +7343 +7344 +7345 +7346 +7347 +7348 +7349 +7350 +7351 +7352 +7353 +7354 +7355 +7356 +7357 +7358 +7359 +7360 +7361 +7362 +7363 +7364 +7365 +7366 +7367 +7368 +7369 +7370 +7371 +7372 +7373 +7374 +7375 +7376 +7377 +7378 +7379 +7380 +7381 +7382 +7383 +7384 +7385 +7386 +7387 +7388 +7389 +7390 +7391 +7392 +7393 +7394 +7395 +7396 +7397 +7398 +7399 +7400 +7401 +7402 +7403 +7404 +7405 +7406 +7407 +7408 +7409 +7410 +7411 +7412 +7413 +7414 +7415 +7416 +7417 +7418 +7419 +7420 +7421 +7422 +7423 +7424 +7425 +7426 +7427 +7428 +7429 +7430 +7431 +7432 +7433 +7434 +7435 +7436 +7437 +7438 +7439 +7440 +7441 +7442 +7443 +7444 +7445 +7446 +7447 +7448 +7449 +7450 +7451 +7452 +7453 +7454 +7455 +7456 +7457 +7458 +7459 +7460 +7461 +7462 +7463 +7464 +7465 +7466 +7467 +7468 +7469 +7470 +7471 +7472 +7473 +7474 +7475 +7476 +7477 +7478 +7479 +7480 +7481 +7482 +7483 +7484 +7485 +7486 +7487 +7488 +7489 +7490 +7491 +7492 +7493 +7494 +7495 +7496 +7497 +7498 +7499 +7500 +7501 +7502 +7503 +7504 +7505 +7506 +7507 +7508 +7509 +7510 +7511 +7512 +7513 +7514 +7515 +7516 +7517 +7518 +7519 +7520 +7521 +7522 +7523 +7524 +7525 +7526 +7527 +7528 +7529 +7530 +7531 +7532 +7533 +7534 +7535 +7536 +7537 +7538 +7539 +7540 +7541 +7542 +7543 +7544 +7545 +7546 +7547 +7548 +7549 +7550 +7551 +7552 +7553 +7554 +7555 +7556 +7557 +7558 +7559 +7560 +7561 +7562 +7563 +7564 +7565 +7566 +7567 +7568 +7569 +7570 +7571 +7572 +7573 +7574 +7575 +7576 +7577 +7578 +7579 +7580 +7581 +7582 +7583 +7584 +7585 +7586 +7587 +7588 +7589 +7590 +7591 +7592 +7593 +7594 +7595 +7596 +7597 +7598 +7599 +7600 +7601 +7602 +7603 +7604 +7605 +7606 +7607 +7608 +7609 +7610 +7611 +7612 +7613 +7614 +7615 +7616 +7617 +7618 +7619 +7620 +7621 +7622 +7623 +7624 +7625 +7626 +7627 +7628 +7629 +7630 +7631 +7632 +7633 +7634 +7635 +7636 +7637 +7638 +7639 +7640 +7641 +7642 +7643 +7644 +7645 +7646 +7647 +7648 +7649 +7650 +7651 +7652 +7653 +7654 +7655 +7656 +7657 +7658 +7659 +7660 +7661 +7662 +7663 +7664 +7665 +7666 +7667 +7668 +7669 +7670 +7671 +7672 +7673 +7674 +7675 +7676 +7677 +7678 +7679 +7680 +7681 +7682 +7683 +7684 +7685 +7686 +7687 +7688 +7689 +7690 +7691 +7692 +7693 +7694 +7695 +7696 +7697 +7698 +7699 +7700 +7701 +7702 +7703 +7704 +7705 +7706 +7707 +7708 +7709 +7710 +7711 +7712 +7713 +7714 +7715 +7716 +7717 +7718 +7719 +7720 +7721 +7722 +7723 +7724 +7725 +7726 +7727 +7728 +7729 +7730 +7731 +7732 +7733 +7734 +7735 +7736 +7737 +7738 +7739 +7740 +7741 +7742 +7743 +7744 +7745 +7746 +7747 +7748 +7749 +7750 +7751 +7752 +7753 +7754 +7755 +7756 +7757 +7758 +7759 +7760 +7761 +7762 +7763 +7764 +7765 +7766 +7767 +7768 +7769 +7770 +7771 +7772 +7773 +7774 +7775 +7776 +7777 +7778 +7779 +7780 +7781 +7782 +7783 +7784 +7785 +7786 +7787 +7788 +7789 +7790 +7791 +7792 +7793 +7794 +7795 +7796 +7797 +7798 +7799 +7800 +7801 +7802 +7803 +7804 +7805 +7806 +7807 +7808 +7809 +7810 +7811 +7812 +7813 +7814 +7815 +7816 +7817 +7818 +7819 +7820 +7821 +7822 +7823 +7824 +7825 +7826 +7827 +7828 +7829 +7830 +7831 +7832 +7833 +7834 +7835 +7836 +7837 +7838 +7839 +7840 +7841 +7842 +7843 +7844 +7845 +7846 +7847 +7848 +7849 +7850 +7851 +7852 +7853 +7854 +7855 +7856 +7857 +7858 +7859 +7860 +7861 +7862 +7863 +7864 +7865 +7866 +7867 +7868 +7869 +7870 +7871 +7872 +7873 +7874 +7875 +7876 +7877 +7878 +7879 +7880 +7881 +7882 +7883 +7884 +7885 +7886 +7887 +7888 +7889 +7890 +7891 +7892 +7893 +7894 +7895 +7896 +7897 +7898 +7899 +7900 +7901 +7902 +7903 +7904 +7905 +7906 +7907 +7908 +7909 +7910 +7911 +7912 +7913 +7914 +7915 +7916 +7917 +7918 +7919 +7920 +7921 +7922 +7923 +7924 +7925 +7926 +7927 +7928 +7929 +7930 +7931 +7932 +7933 +7934 +7935 +7936 +7937 +7938 +7939 +7940 +7941 +7942 +7943 +7944 +7945 +7946 +7947 +7948 +7949 +7950 +7951 +7952 +7953 +7954 +7955 +7956 +7957 +7958 +7959 +7960 +7961 +7962 +7963 +7964 +7965 +7966 +7967 +7968 +7969 +7970 +7971 +7972 +7973 +7974 +7975 +7976 +7977 +7978 +7979 +7980 +7981 +7982 +7983 +7984 +7985 +7986 +7987 +7988 +7989 +7990 +7991 +7992 +7993 +7994 +7995 +7996 +7997 +7998 +7999 +8000 +8001 +8002 +8003 +8004 +8005 +8006 +8007 +8008 +8009 +8010 +8011 +8012 +8013 +8014 +8015 +8016 +8017 +8018 +8019 +8020 +8021 +8022 +8023 +8024 +8025 +8026 +8027 +8028 +8029 +8030 +8031 +8032 +8033 +8034 +8035 +8036 +8037 +8038 +8039 +8040 +8041 +8042 +8043 +8044 +8045 +8046 +8047 +8048 +8049 +8050 +8051 +8052 +8053 +8054 +8055 +8056 +8057 +8058 +8059 +8060 +8061 +8062 +8063 +8064 +8065 +8066 +8067 +8068 +8069 +8070 +8071 +8072 +8073 +8074 +8075 +8076 +8077 +8078 +8079 +8080 +8081 +8082 +8083 +8084 +8085 +8086 +8087 +8088 +8089 +8090 +8091 +8092 +8093 +8094 +8095 +8096 +8097 +8098 +8099 +8100 +8101 +8102 +8103 +8104 +8105 +8106 +8107 +8108 +8109 +8110 +8111 +8112 +8113 +8114 +8115 +8116 +8117 +8118 +8119 +8120 +8121 +8122 +8123 +8124 +8125 +8126 +8127 +8128 +8129 +8130 +8131 +8132 +8133 +8134 +8135 +8136 +8137 +8138 +8139 +8140 +8141 +8142 +8143 +8144 +8145 +8146 +8147 +8148 +8149 +8150 +8151 +8152 +8153 +8154 +8155 +8156 +8157 +8158 +8159 +8160 +8161 +8162 +8163 +8164 +8165 +8166 +8167 +8168 +8169 +8170 +8171 +8172 +8173 +8174 +8175 +8176 +8177 +8178 +8179 +8180 +8181 +8182 +8183 +8184 +8185 +8186 +8187 +8188 +8189 +8190 +8191 +8192 +8193 +8194 +8195 +8196 +8197 +8198 +8199 +8200 +8201 +8202 +8203 +8204 +8205 +8206 +8207 +8208 +8209 +8210 +8211 +8212 +8213 +8214 +8215 +8216 +8217 +8218 +8219 +8220 +8221 +8222 +8223 +8224 +8225 +8226 +8227 +8228 +8229 +8230 +8231 +8232 +8233 +8234 +8235 +8236 +8237 +8238 +8239 +8240 +8241 +8242 +8243 +8244 +8245 +8246 +8247 +8248 +8249 +8250 +8251 +8252 +8253 +8254 +8255 +8256 +8257 +8258 +8259 +8260 +8261 +8262 +8263 +8264 +8265 +8266 +8267 +8268 +8269 +8270 +8271 +8272 +8273 +8274 +8275 +8276 +8277 +8278 +8279 +8280 +8281 +8282 +8283 +8284 +8285 +8286 +8287 +8288 +8289 +8290 +8291 +8292 +8293 +8294 +8295 +8296 +8297 +8298 +8299 +8300 +8301 +8302 +8303 +8304 +8305 +8306 +8307 +8308 +8309 +8310 +8311 +8312 +8313 +8314 +8315 +8316 +8317 +8318 +8319 +8320 +8321 +8322 +8323 +8324 +8325 +8326 +8327 +8328 +8329 +8330 +8331 +8332 +8333 +8334 +8335 +8336 +8337 +8338 +8339 +8340 +8341 +8342 +8343 +8344 +8345 +8346 +8347 +8348 +8349 +8350 +8351 +8352 +8353 +8354 +8355 +8356 +8357 +8358 +8359 +8360 +8361 +8362 +8363 +8364 +8365 +8366 +8367 +8368 +8369 +8370 +8371 +8372 +8373 +8374 +8375 +8376 +8377 +8378 +8379 +8380 +8381 +8382 +8383 +8384 +8385 +8386 +8387 +8388 +8389 +8390 +8391 +8392 +8393 +8394 +8395 +8396 +8397 +8398 +8399 +8400 +8401 +8402 +8403 +8404 +8405 +8406 +8407 +8408 +8409 +8410 +8411 +8412 +8413 +8414 +8415 +8416 +8417 +8418 +8419 +8420 +8421 +8422 +8423 +8424 +8425 +8426 +8427 +8428 +8429 +8430 +8431 +8432 +8433 +8434 +8435 +8436 +8437 +8438 +8439 +8440 +8441 +8442 +8443 +8444 +8445 +8446 +8447 +8448 +8449 +8450 +8451 +8452 +8453 +8454 +8455 +8456 +8457 +8458 +8459 +8460 +8461 +8462 +8463 +8464 +8465 +8466 +8467 +8468 +8469 +8470 +8471 +8472 +8473 +8474 +8475 +8476 +8477 +8478 +8479 +8480 +8481 +8482 +8483 +8484 +8485 +8486 +8487 +8488 +8489 +8490 +8491 +8492 +8493 +8494 +8495 +8496 +8497 +8498 +8499 +8500 +8501 +8502 +8503 +8504 +8505 +8506 +8507 +8508 +8509 +8510 +8511 +8512 +8513 +8514 +8515 +8516 +8517 +8518 +8519 +8520 +8521 +8522 +8523 +8524 +8525 +8526 +8527 +8528 +8529 +8530 +8531 +8532 +8533 +8534 +8535 +8536 +8537 +8538 +8539 +8540 +8541 +8542 +8543 +8544 +8545 +8546 +8547 +8548 +8549 +8550 +8551 +8552 +8553 +8554 +8555 +8556 +8557 +8558 +8559 +8560 +8561 +8562 +8563 +8564 +8565 +8566 +8567 +8568 +8569 +8570 +8571 +8572 +8573 +8574 +8575 +8576 +8577 +8578 +8579 +8580 +8581 +8582 +8583 +8584 +8585 +8586 +8587 +8588 +8589 +8590 +8591 +8592 +8593 +8594 +8595 +8596 +8597 +8598 +8599 +8600 +8601 +8602 +8603 +8604 +8605 +8606 +8607 +8608 +8609 +8610 +8611 +8612 +8613 +8614 +8615 +8616 +8617 +8618 +8619 +8620 +8621 +8622 +8623 +8624 +8625 +8626 +8627 +8628 +8629 +8630 +8631 +8632 +8633 +8634 +8635 +8636 +8637 +8638 +8639 +8640 +8641 +8642 +8643 +8644 +8645 +8646 +8647 +8648 +8649 +8650 +8651 +8652 +8653 +8654 +8655 +8656 +8657 +8658 +8659 +8660 +8661 +8662 +8663 +8664 +8665 +8666 +8667 +8668 +8669 +8670 +8671 +8672 +8673 +8674 +8675 +8676 +8677 +8678 +8679 +8680 +8681 +8682 +8683 +8684 +8685 +8686 +8687 +8688 +8689 +8690 +8691 +8692 +8693 +8694 +8695 +8696 +8697 +8698 +8699 +8700 +8701 +8702 +8703 +8704 +8705 +8706 +8707 +8708 +8709 +8710 +8711 +8712 +8713 +8714 +8715 +8716 +8717 +8718 +8719 +8720 +8721 +8722 +8723 +8724 +8725 +8726 +8727 +8728 +8729 +8730 +8731 +8732 +8733 +8734 +8735 +8736 +8737 +8738 +8739 +8740 +8741 +8742 +8743 +8744 +8745 +8746 +8747 +8748 +8749 +8750 +8751 +8752 +8753 +8754 +8755 +8756 +8757 +8758 +8759 +8760 +8761 +8762 +8763 +8764 +8765 +8766 +8767 +8768 +8769 +8770 +8771 +8772 +8773 +8774 +8775 +8776 +8777 +8778 +8779 +8780 +8781 +8782 +8783 +8784 +8785 +8786 +8787 +8788 +8789 +8790 +8791 +8792 +8793 +8794 +8795 +8796 +8797 +8798 +8799 +8800 +8801 +8802 +8803 +8804 +8805 +8806 +8807 +8808 +8809 +8810 +8811 +8812 +8813 +8814 +8815 +8816 +8817 +8818 +8819 +8820 +8821 +8822 +8823 +8824 +8825 +8826 +8827 +8828 +8829 +8830 +8831 +8832 +8833 +8834 +8835 +8836 +8837 +8838 +8839 +8840 +8841 +8842 +8843 +8844 +8845 +8846 +8847 +8848 +8849 +8850 +8851 +8852 +8853 +8854 +8855 +8856 +8857 +8858 +8859 +8860 +8861 +8862 +8863 +8864 +8865 +8866 +8867 +8868 +8869 +8870 +8871 +8872 +8873 +8874 +8875 +8876 +8877 +8878 +8879 +8880 +8881 +8882 +8883 +8884 +8885 +8886 +8887 +8888 +8889 +8890 +8891 +8892 +8893 +8894 +8895 +8896 +8897 +8898 +8899 +8900 +8901 +8902 +8903 +8904 +8905 +8906 +8907 +8908 +8909 +8910 +8911 +8912 +8913 +8914 +8915 +8916 +8917 +8918 +8919 +8920 +8921 +8922 +8923 +8924 +8925 +8926 +8927 +8928 +8929 +8930 +8931 +8932 +8933 +8934 +8935 +8936 +8937 +8938 +8939 +8940 +8941 +8942 +8943 +8944 +8945 +8946 +8947 +8948 +8949 +8950 +8951 +8952 +8953 +8954 +8955 +8956 +8957 +8958 +8959 +8960 +8961 +8962 +8963 +8964 +8965 +8966 +8967 +8968 +8969 +8970 +8971 +8972 +8973 +8974 +8975 +8976 +8977 +8978 +8979 +8980 +8981 +8982 +8983 +8984 +8985 +8986 +8987 +8988 +8989 +8990 +8991 +8992 +8993 +8994 +8995 +8996 +8997 +8998 +8999 +9000 +9001 +9002 +9003 +9004 +9005 +9006 +9007 +9008 +9009 +9010 +9011 +9012 +9013 +9014 +9015 +9016 +9017 +9018 +9019 +9020 +9021 +9022 +9023 +9024 +9025 +9026 +9027 +9028 +9029 +9030 +9031 +9032 +9033 +9034 +9035 +9036 +9037 +9038 +9039 +9040 +9041 +9042 +9043 +9044 +9045 +9046 +9047 +9048 +9049 +9050 +9051 +9052 +9053 +9054 +9055 +9056 +9057 +9058 +9059 +9060 +9061 +9062 +9063 +9064 +9065 +9066 +9067 +9068 +9069 +9070 +9071 +9072 +9073 +9074 +9075 +9076 +9077 +9078 +9079 +9080 +9081 +9082 +9083 +9084 +9085 +9086 +9087 +9088 +9089 +9090 +9091 +9092 +9093 +9094 +9095 +9096 +9097 +9098 +9099 +9100 +9101 +9102 +9103 +9104 +9105 +9106 +9107 +9108 +9109 +9110 +9111 +9112 +9113 +9114 +9115 +9116 +9117 +9118 +9119 +9120 +9121 +9122 +9123 +9124 +9125 +9126 +9127 +9128 +9129 +9130 +9131 +9132 +9133 +9134 +9135 +9136 +9137 +9138 +9139 +9140 +9141 +9142 +9143 +9144 +9145 +9146 +9147 +9148 +9149 +9150 +9151 +9152 +9153 +9154 +9155 +9156 +9157 +9158 +9159 +9160 +9161 +9162 +9163 +9164 +9165 +9166 +9167 +9168 +9169 +9170 +9171 +9172 +9173 +9174 +9175 +9176 +9177 +9178 +9179 +9180 +9181 +9182 +9183 +9184 +9185 +9186 +9187 +9188 +9189 +9190 +9191 +9192 +9193 +9194 +9195 +9196 +9197 +9198 +9199 +9200 +9201 +9202 +9203 +9204 +9206 +9207 +9208 +9209 +9210 +9211 +9212 +9213 +9214 +9215 +9216 +9217 +9218 +9219 +9220 +9221 +9222 +9223 +9224 +9225 +9226 +9227 +9228 +9229 +9230 +9231 +9232 +9233 +9234 +9235 +9236 +9237 +9238 +9239 +9240 +9241 +9242 +9243 +9244 +9245 +9246 +9247 +9248 +9249 +9250 +9251 +9252 +9253 +9254 +9255 +9256 +9257 +9258 +9259 +9260 +9261 +9262 +9263 +9264 +9265 +9266 +9267 +9268 +9269 +9270 +9271 +9272 +9273 +9274 +9275 +9276 +9277 +9278 +9279 +9280 +9281 +9282 +9283 +9284 +9285 +9286 +9287 +9288 +9289 +9290 +9291 +9292 +9293 +9294 +9295 +9296 +9297 +9298 +9299 +9300 +9301 +9302 +9303 +9304 +9305 +9306 +9307 +9308 +9309 +9310 +9311 +9312 +9313 +9314 +9315 +9316 +9317 +9318 +9319 +9320 +9321 +9322 +9323 +9324 +9325 +9326 +9327 +9328 +9329 +9330 +9331 +9332 +9333 +9334 +9335 +9336 +9337 +9338 +9339 +9340 +9341 +9342 +9343 +9344 +9345 +9346 +9347 +9348 +9349 +9350 +9351 +9352 +9353 +9354 +9355 +9356 +9357 +9358 +9359 +9360 +9361 +9362 +9363 +9364 +9365 +9366 +9367 +9368 +9369 +9370 +9371 +9372 +9373 +9374 +9375 +9376 +9377 +9378 +9379 +9380 +9381 +9382 +9383 +9384 +9385 +9386 +9387 +9388 +9389 +9390 +9391 +9392 +9393 +9394 +9395 +9396 +9397 +9398 +9399 +9400 +9401 +9402 +9403 +9404 +9405 +9406 +9407 +9408 +9409 +9410 +9411 +9412 +9413 +9414 +9415 +9416 +9417 +9418 +9419 +9420 +9421 +9422 +9423 +9424 +9425 +9426 +9427 +9428 +9429 +9430 +9431 +9432 +9433 +9434 +9435 +9436 +9437 +9438 +9439 +9440 +9441 +9442 +9443 +9444 +9445 +9446 +9447 +9448 +9449 +9450 +9451 +9452 +9453 +9454 +9455 +9456 +9457 +9458 +9459 +9460 +9461 +9462 +9463 +9464 +9465 +9466 +9467 +9468 +9469 +9470 +9471 +9472 +9473 +9474 +9475 +9476 +9477 +9478 +9479 +9480 +9481 +9482 +9483 +9484 +9485 +9486 +9487 +9488 +9489 +9490 +9491 +9492 +9493 +9494 +9495 +9496 +9497 +9498 +9499 +9500 +9501 +9502 +9503 +9504 +9505 +9506 +9507 +9508 +9509 +9510 +9511 +9512 +9513 +9514 +9515 +9516 +9517 +9518 +9519 +9520 +9521 +9522 +9523 +9524 +9525 +9526 +9527 +9528 +9529 +9530 +9531 +9532 +9533 +9534 +9535 +9536 +9537 +9538 +9539 +9540 +9541 +9542 +9543 +9544 +9545 +9546 +9547 +9548 +9549 +9550 +9551 +9552 +9553 +9554 +9555 +9556 +9557 +9558 +9559 +9560 +9561 +9562 +9563 +9564 +9565 +9566 +9567 +9568 +9569 +9570 +9571 +9572 +9573 +9574 +9575 +9576 +9577 +9578 +9579 +9580 +9581 +9582 +9583 +9584 +9585 +9586 +9587 +9588 +9589 +9590 +9591 +9592 +9593 +9594 +9595 +9596 +9597 +9598 +9599 +9600 +9601 +9602 +9603 +9604 +9605 +9606 +9607 +9608 +9609 +9610 +9611 +9612 +9613 +9614 +9615 +9616 +9617 +9618 +9619 +9620 +9621 +9622 +9623 +9624 +9625 +9626 +9627 +9628 +9629 +9630 +9631 +9632 +9633 +9634 +9635 +9636 +9637 +9638 +9639 +9640 +9641 +9642 +9643 +9644 +9645 +9646 +9647 +9648 +9649 +9650 +9651 +9652 +9653 +9654 +9655 +9656 +9657 +9658 +9659 +9660 +9661 +9662 +9663 +9664 +9665 +9666 +9667 +9668 +9669 +9670 +9671 +9672 +9673 +9674 +9675 +9676 +9677 +9678 +9679 +9680 +9681 +9682 +9683 +9684 +9685 +9686 +9687 +9688 +9689 +9690 +9691 +9692 +9693 +9694 +9695 +9696 +9697 +9698 +9699 +9700 +9701 +9702 +9703 +9704 +9705 +9706 +9707 +9708 +9709 +9710 +9711 +9712 +9713 +9714 +9715 +9716 +9717 +9718 +9719 +9720 +9721 +9722 +9723 +9724 +9725 +9726 +9727 +9728 +9729 +9730 +9731 +9732 +9733 +9734 +9735 +9736 +9737 +9738 +9739 +9740 +9741 +9742 +9743 +9744 +9745 +9746 +9747 +9748 +9749 +9750 +9751 +9752 +9753 +9754 +9755 +9756 +9757 +9758 +9759 +9760 +9761 +9762 +9763 +9764 +9765 +9766 +9767 +9768 +9769 +9770 +9771 +9772 +9773 +9774 +9775 +9776 +9777 +9778 +9779 +9780 +9781 +9782 +9783 +9784 +9785 +9786 +9787 +9788 +9789 +9790 +9791 +9792 +9793 +9794 +9795 +9796 +9797 +9798 +9799 +9800 +9801 +9802 +9803 +9804 +9805 +9806 +9807 +9808 +9809 +9810 +9811 +9812 +9813 +9814 +9815 +9816 +9817 +9818 +9819 +9820 +9821 +9822 +9823 +9824 +9825 +9826 +9827 +9828 +9829 +9830 +9831 +9832 +9833 +9834 +9835 +9836 +9837 +9838 +9839 +9840 +9841 +9842 +9843 +9844 +9845 +9846 +9847 +9848 +9849 +9850 +9851 +9852 +9853 +9854 +9855 +9856 +9857 +9858 +9859 +9860 +9861 +9862 +9863 +9864 +9865 +9866 +9867 +9868 +9869 +9870 +9871 +9872 +9873 +9874 +9875 +9876 +9877 +9878 +9879 +9880 +9881 +9882 +9883 +9884 +9885 +9886 +9887 +9888 +9889 +9890 +9891 +9892 +9893 +9894 +9895 +9896 +9897 +9898 +9899 +9900 +9901 +9902 +9903 +9904 +9905 +9906 +9907 +9908 +9909 +9910 +9911 +9912 +9913 +9914 +9915 +9916 +9917 +9918 +9919 +9920 +9921 +9922 +9923 +9924 +9925 +9926 +9927 +9928 +9929 +9930 +9931 +9932 +9933 +9934 +9935 +9936 +9937 +9938 +9939 +9940 +9941 +9942 +9943 +9944 +9945 +9946 +9947 +9948 +9949 +9950 +9951 +9952 +9953 +9954 +9955 +9956 +9957 +9958 +9959 +9960 +9961 +9962 +9963 +9964 +9965 +9966 +9967 +9968 +9969 +9970 +9971 +9972 +9973 +9974 +9975 +9976 +9977 +9978 +9979 +9980 +9981 +9982 +9983 +9984 +9985 +9986 +9987 +9988 +9989 +9990 +9991 +9992 +9993 +9994 +9995 +9996 +9997 +9998 +9999 +10000 +10001 +10002 +10003 +10004 +10005 +10006 +10007 +10008 +10009 +10010 +10011 +10012 +10013 +10014 +10015 +10016 +10017 +10018 +10019 +10020 +10021 +10022 +10023 +10024 +10025 +10026 +10027 +10028 +10029 +10030 +10031 +10032 +10033 +10034 +10035 +10036 +10037 +10038 +10039 +10040 +10041 +10042 +10043 +10044 +10045 +10046 +10047 +10048 +10049 +10050 +10051 +10052 +10053 +10054 +10055 +10056 +10057 +10058 +10059 +10060 +10061 +10062 +10063 +10064 +10065 +10066 +10067 +10068 +10069 +10070 +10071 +10072 +10073 +10074 +10075 +10076 +10077 +10078 +10079 +10080 +10081 +10082 +10083 +10084 +10085 +10086 +10087 +10088 +10089 +10090 +10091 +10092 +10093 +10094 +10095 +10096 +10097 +10098 +10099 +10100 +10101 +10102 +10103 +10104 +10105 +10106 +10107 +10108 +10109 +10110 +10111 +10112 +10113 +10114 +10115 +10116 +10117 +10118 +10119 +10120 +10121 +10122 +10123 +10124 +10125 +10126 +10127 +10128 +10129 +10130 +10131 +10132 +10133 +10134 +10135 +10136 +10137 +10138 +10139 +10140 +10141 +10142 +10143 +10144 +10145 +10146 +10147 +10148 +10149 +10150 +10151 +10152 +10153 +10154 +10155 +10156 +10157 +10158 +10159 +10160 +10161 +10162 +10163 +10164 +10165 +10166 +10167 +10168 +10169 +10170 +10171 +10172 +10173 +10174 +10175 +10176 +10177 +10178 +10179 +10180 +10181 +10182 +10183 +10184 +10185 +10186 +10187 +10188 +10189 +10190 +10191 +10192 +10193 +10194 +10195 +10196 +10197 +10198 +10199 +10200 +10201 +10202 +10203 +10204 +10205 +10206 +10207 +10208 +10209 +10210 +10211 +10212 +10213 +10214 +10215 +10216 +10217 +10218 +10219 +10220 +10221 +10222 +10223 +10224 +10225 +10226 +10227 +10228 +10229 +10230 +10231 +10232 +10233 +10234 +10235 +10236 +10237 +10238 +10239 +10240 +10241 +10242 +10243 +10244 +10245 +10246 +10247 +10248 +10249 +10250 +10251 +10252 +10253 +10254 +10255 +10256 +10257 +10258 +10259 +10260 +10261 +10262 +10263 +10264 +10265 +10266 +10267 +10268 +10269 +10270 +10271 +10272 +10273 +10274 +10275 +10276 +10277 +10278 +10279 +10280 +10281 +10282 +10283 +10284 +10285 +10286 +10287 +10288 +10289 +10290 +10291 +10292 +10293 +10294 +10295 +10296 +10297 +10298 +10299 +10300 +10301 +10302 +10303 +10304 +10305 +10306 +10307 +10308 +10309 +10310 +10311 +10312 +10313 +10314 +10315 +10316 +10317 +10318 +10319 +10320 +10321 +10322 +10323 +10324 +10325 +10326 +10327 +10328 +10329 +10330 +10331 +10332 +10333 +10334 +10335 +10336 +10337 +10338 +10339 +10340 +10341 +10342 +10343 +10344 +10345 +10346 +10347 +10348 +10349 +10350 +10351 +10352 +10353 +10354 +10355 +10356 +10357 +10358 +10359 +10360 +10361 +10362 +10363 +10364 +10365 +10366 +10367 +10368 +10369 +10370 +10371 +10372 +10373 +10374 +10375 +10376 +10377 +10378 +10379 +10380 +10381 +10382 +10383 +10384 +10385 +10386 +10387 +10388 +10389 +10390 +10391 +10392 +10393 +10394 +10395 +10396 +10397 +10398 +10399 +10400 +10401 +10402 +10403 +10404 +10405 +10406 +10407 +10408 +10409 +10410 +10411 +10412 +10413 +10414 +10415 +10416 +10417 +10418 +10419 +10420 +10421 +10422 +10423 +10424 +10425 +10426 +10427 +10428 +10429 +10430 +10431 +10432 +10433 +10434 +10435 +10436 +10437 +10438 +10439 +10440 +10441 +10442 +10443 +10444 +10445 +10446 +10447 +10448 +10449 +10450 +10451 +10452 +10453 +10454 +10455 +10456 +10457 +10458 +10459 +10460 +10461 +10462 +10463 +10464 +10465 +10466 +10467 +10468 +10469 +10470 +10471 +10472 +10473 +10474 +10475 +10476 +10477 +10478 +10479 +10480 +10481 +10482 +10483 +10484 +10485 +10486 +10487 +10488 +10489 +10490 +10491 +10492 +10493 +10494 +10495 +10496 +10497 +10498 +10499 +10500 +10501 +10502 +10503 +10504 +10505 +10506 +10507 +10508 +10509 +10510 +10511 +10512 +10513 +10514 +10515 +10516 +10517 +10518 +10519 +10520 +10521 +10522 +10523 +10524 +10525 +10526 +10527 +10528 +10529 +10530 +10531 +10532 +10533 +10534 +10535 +10536 +10537 +10538 +10539 +10540 +10541 +10542 +10543 +10544 +10545 +10546 +10547 +10548 +10549 +10550 +10551 +10552 +10553 +10554 +10555 +10556 +10557 +10558 +10559 +10560 +10561 +10562 +10563 +10564 +10565 +10566 +10567 +10568 +10569 +10570 +10571 +10572 +10573 +10574 +10575 +10576 +10577 +10578 +10579 +10580 +10581 +10582 +10583 +10584 +10585 +10586 +10587 +10588 +10589 +10590 +10591 +10592 +10593 +10594 +10595 +10596 +10597 +10598 +10599 +10600 +10601 +10602 +10603 +10604 +10605 +10606 +10607 +10608 +10609 +10610 +10611 +10612 +10613 +10614 +10615 +10616 +10617 +10618 +10619 +10620 +10621 +10622 +10623 +10624 +10625 +10626 +10627 +10628 +10629 +10630 +10631 +10632 +10633 +10634 +10635 +10636 +10637 +10638 +10639 +10640 +10641 +10642 +10643 +10644 +10645 +10646 +10647 +10648 +10649 +10650 +10651 +10652 +10653 +10654 +10655 +10656 +10657 +10658 +10659 +10660 +10661 +10662 +10663 +10664 +10665 +10666 +10667 +10668 +10669 +10670 +10671 +10672 +10673 +10674 +10675 +10676 +10677 +10678 +10679 +10680 +10681 +10682 +10683 +10684 +10685 +10686 +10687 +10688 +10689 +10690 +10691 +10692 +10693 +10694 +10695 +10696 +10697 +10698 +10699 +10700 +10701 +10702 +10703 +10704 +10705 +10706 +10707 +10708 +10709 +10710 +10711 +10712 +10713 +10714 +10715 +10716 +10717 +10718 +10719 +10720 +10721 +10722 +10723 +10724 +10725 +10726 +10727 +10728 +10729 +10730 +10731 +10732 +10733 +10734 +10735 +10736 +10737 +10738 +10739 +10740 +10741 +10742 +10743 +10744 +10745 +10746 +10747 +10748 +10749 +10750 +10751 +10752 +10753 +10754 +10755 +10756 +10757 +10758 +10759 +10760 +10761 +10762 +10763 +10764 +10765 +10766 +10767 +10768 +10769 +10770 +10771 +10772 +10773 +10774 +10775 +10776 +10777 +10778 +10779 +10780 +10781 +10782 +10783 +10784 +10785 +10786 +10787 +10788 +10789 +10790 +10791 +10792 +10793 +10794 +10795 +10796 +10797 +10798 +10799 +10800 +10801 +10802 +10803 +10804 +10805 +10806 +10807 +10808 +10809 +10810 +10811 +10812 +10813 +10814 +10815 +10816 +10817 +10818 +10819 +10820 +10821 +10822 +10823 +10824 +10825 +10826 +10827 +10828 +10829 +10830 +10831 +10832 +10833 +10834 +10835 +10836 +10837 +10838 +10839 +10840 +10841 +10842 +10843 +10844 +10845 +10846 +10847 +10848 +10849 +10850 +10851 +10852 +10853 +10854 +10855 +10856 +10857 +10858 +10859 +10860 +10861 +10862 +10863 +10864 +10865 +10866 +10867 +10868 +10869 +10870 +10871 +10872 +10873 +10874 +10875 +10876 +10877 +10878 +10879 +10880 +10881 +10882 +10883 +10884 +10885 +10886 +10887 +10888 +10889 +10890 +10891 +10892 +10893 +10894 +10895 +10896 +10897 +10898 +10899 +10900 +10901 +10902 +10903 +10904 +10905 +10906 +10907 +10908 +10909 +10910 +10911 +10912 +10913 +10914 +10915 +10916 +10917 +10918 +10919 +10920 +10921 +10922 +10923 +10924 +10925 +10926 +10927 +10928 +10929 +10930 +10931 +10932 +10933 +10934 +10935 +10936 +10937 +10938 +10939 +10940 +10941 +10942 +10943 +10944 +10945 +10946 +10947 +10948 +10949 +10950 +10951 +10952 +10953 +10954 +10955 +10956 +10957 +10958 +10959 +10960 +10961 +10962 +10963 +10964 +10965 +10966 +10967 +10968 +10969 +10970 +10971 +10972 +10973 +10974 +10975 +10976 +10977 +10978 +10979 +10980 +10981 +10982 +10983 +10984 +10985 +10986 +10987 +10988 +10989 +10990 +10991 +10992 +10993 +10994 +10995 +10996 +10997 +10998 +10999 +11000 +11001 +11002 +11003 +11004 +11005 +11006 +11007 +11008 +11009 +11010 +11011 +11012 +11013 +11014 +11015 +11016 +11017 +11018 +11019 +11020 +11021 +11022 +11023 +11024 +11025 +11026 +11027 +11028 +11029 +11030 +11031 +11032 +11033 +11034 +11035 +11036 +11037 +11038 +11039 +11040 +11041 +11042 +11043 +11044 +11045 +11046 +11047 +11048 +11049 +11050 +11051 +11052 +11053 +11054 +11055 +11056 +11057 +11058 +11059 +11060 +11061 +11062 +11063 +11064 +11065 +11066 +11067 +11068 +11069 +11070 +11071 +11072 +11073 +11074 +11075 +11076 +11077 +11078 +11079 +11080 +11081 +11082 +11083 +11084 +11085 +11086 +11087 +11088 +11089 +11090 +11091 +11092 +11093 +11094 +11095 +11096 +11097 +11098 +11099 +11100 +11101 +11102 +11103 +11104 +11105 +11106 +11107 +11108 +11109 +11110 +11111 +11112 +11113 +11114 +11115 +11116 +11117 +11118 +11119 +11120 +11121 +11122 +11123 +11124 +11125 +11126 +11127 +11128 +11129 +11130 +11131 +11132 +11133 +11134 +11135 +11136 +11137 +11138 +11139 +11140 +11141 +11142 +11143 +11144 +11145 +11146 +11147 +11148 +11149 +11150 +11151 +11152 +11153 +11154 +11155 +11156 +11157 +11158 +11159 +11160 +11161 +11162 +11163 +11164 +11165 +11166 +11167 +11168 +11169 +11170 +11171 +11172 +11173 +11174 +11175 +11176 +11177 +11178 +11179 +11180 +11181 +11182 +11183 +11184 +11185 +11186 +11187 +11188 +11189 +11190 +11191 +11192 +11193 +11194 +11195 +11196 +11197 +11198 +11199 +11200 +11201 +11202 +11203 +11204 +11205 +11206 +11207 +11208 +11209 +11210 +11211 +11212 +11213 +11214 +11215 +11216 +11217 +11218 +11219 +11220 +11221 +11222 +11223 +11224 +11225 +11226 +11227 +11228 +11229 +11230 +11231 +11232 +11233 +11234 +11235 +11236 +11237 +11238 +11239 +11240 +11241 +11242 +11243 +11244 +11245 +11246 +11247 +11248 +11249 +11250 +11251 +11252 +11253 +11254 +11255 +11256 +11257 +11258 +11259 +11260 +11261 +11262 +11263 +11264 +11265 +11266 +11267 +11268 +11269 +11270 +11271 +11272 +11273 +11274 +11275 +11276 +11277 +11278 +11279 +11280 +11281 +11282 +11283 +11284 +11285 +11286 +11287 +11288 +11289 +11290 +11291 +11292 +11293 +11294 +11295 +11296 +11297 +11298 +11299 +11300 +11301 +11302 +11303 +11304 +11305 +11306 +11307 +11308 +11309 +11310 +11311 +11312 +11313 +11314 +11315 +11316 +11317 +11318 +11319 +11320 +11321 +11322 +11323 +11324 +11325 +11326 +11327 +11328 +11329 +11330 +11331 +11332 +11333 +11334 +11335 +11336 +11337 +11338 +11339 +11340 +11341 +11342 +11343 +11344 +11345 +11346 +11347 +11348 +11349 +11350 +11351 +11352 +11353 +11354 +11355 +11356 +11357 +11358 +11359 +11360 +11361 +11362 +11363 +11364 +11365 +11366 +11367 +11368 +11369 +11370 +11371 +11372 +11373 +11374 +11375 +11376 +11377 +11378 +11379 +11380 +11381 +11382 +11383 +11384 +11385 +11386 +11387 +11388 +11389 +11390 +11391 +11392 +11393 +11394 +11395 +11396 +11397 +11398 +11399 +11400 +11401 +11402 +11403 +11404 +11405 +11406 +11407 +11408 +11409 +11410 +11411 +11412 +11413 +11414 +11415 +11416 +11417 +11418 +11419 +11420 +11421 +11422 +11423 +11424 +11425 +11426 +11427 +11428 +11429 +11430 +11431 +11432 +11433 +11434 +11435 +11436 +11437 +11438 +11439 +11440 +11441 +11442 +11443 +11444 +11445 +11446 +11447 +11448 +11449 +11450 +11451 +11452 +11453 +11454 +11455 +11456 +11457 +11458 +11459 +11460 +11461 +11462 +11463 +11464 +11465 +11466 +11467 +11468 +11469 +11470 +11471 +11472 +11473 +11474 +11475 +11476 +11477 +11478 +11479 +11480 +11481 +11482 +11483 +11484 +11485 +11486 +11487 +11488 +11489 +11490 +11491 +11492 +11493 +11494 +11495 +11496 +11497 +11498 +11499 +11500 +11501 +11502 +11503 +11504 +11505 +11506 +11507 +11508 +11509 +11510 +11511 +11512 +11513 +11514 +11515 +11516 +11517 +11518 +11519 +11520 +11521 +11522 +11523 +11524 +11525 +11526 +11527 +11528 +11529 +11530 +11531 +11532 +11533 +11534 +11535 +11536 +11537 +11538 +11539 +11540 +11541 +11542 +11543 +11544 +11545 +11546 +11547 +11548 +11549 +11550 +11551 +11552 +11553 +11554 +11555 +11556 +11557 +11558 +11559 +11560 +11561 +11562 +11563 +11564 +11565 +11566 +11567 +11568 +11569 +11570 +11571 +11572 +11573 +11574 +11575 +11576 +11577 +11578 +11579 +11580 +11581 +11582 +11583 +11584 +11585 +11586 +11587 +11588 +11589 +11590 +11591 +11592 +11593 +11594 +11595 +11596 +11597 +11598 +11599 +11600 +11601 +11602 +11603 +11604 +11605 +11606 +11607 +11608 +11609 +11610 +11611 +11612 +11613 +11614 +11615 +11616 +11617 +11618 +11619 +11620 +11621 +11622 +11623 +11624 +11625 +11626 +11627 +11628 +11629 +11630 +11631 +11632 +11633 +11634 +11635 +11636 +11637 +11638 +11639 +11640 +11641 +11642 +11643 +11644 +11645 +11646 +11647 +11648 +11649 +11650 +11651 +11652 +11653 +11654 +11655 +11656 +11657 +11658 +11659 +11660 +11661 +11662 +11663 +11664 +11665 +11666 +11667 +11668 +11669 +11670 +11671 +11672 +11673 +11674 +11675 +11676 +11677 +11678 +11679 +11680 +11681 +11682 +11683 +11684 +11685 +11686 +11687 +11688 +11689 +11690 +11691 +11692 +11693 +11694 +11695 +11696 +11697 +11698 +11699 +11700 +11701 +11702 +11703 +11704 +11705 +11706 +11707 +11708 +11709 +11710 +11711 +11712 +11713 +11714 +11715 +11716 +11717 +11718 +11719 +11720 +11721 +11722 +11723 +11724 +11725 +11726 +11727 +11728 +11729 +11730 +11731 +11732 +11733 +11734 +11735 +11736 +11737 +11738 +11739 +11740 +11741 +11742 +11743 +11744 +11745 +11746 +11747 +11748 +11749 +11750 +11751 +11752 +11753 +11754 +11755 +11756 +11757 +11758 +11759 +11760 +11761 +11762 +11763 +11764 +11765 +11766 +11767 +11768 +11769 +11770 +11771 +11772 +11773 +11774 +11775 +11776 +11777 +11778 +11779 +11780 +11781 +11782 +11783 +11784 +11785 +11786 +11787 +11788 +11789 +11790 +11791 +11792 +11793 +11794 +11795 +11796 +11797 +11798 +11799 +11800 +11801 +11802 +11803 +11804 +11805 +11806 +11807 +11808 +11809 +11810 +11811 +11812 +11813 +11814 +11815 +11816 +11817 +11818 +11819 +11820 +11821 +11822 +11823 +11824 +11825 +11826 +11827 +11828 +11829 +11830 +11831 +11832 +11833 +11834 +11835 +11836 +11837 +11838 +11839 +11840 +11841 +11842 +11843 +11844 +11845 +11846 +11847 +11848 +11849 +11850 +11851 +11852 +11853 +11854 +11855 +11856 +11857 +11858 +11859 +11860 +11861 +11862 +11863 +11864 +11865 +11866 +11867 +11868 +11869 +11870 +11871 +11872 +11873 +11874 +11875 +11876 +11877 +11878 +11879 +11880 +11881 +11882 +11883 +11884 +11885 +11886 +11887 +11888 +11889 +11890 +11891 +11892 +11893 +11894 +11895 +11896 +11897 +11898 +11899 +11900 +11901 +11902 +11903 +11904 +11905 +11906 +11907 +11908 +11909 +11910 +11911 +11912 +11913 +11914 +11915 +11916 +11917 +11918 +11919 +11920 +11921 +11922 +11923 +11924 +11925 +11926 +11927 +11928 +11929 +11930 +11931 +11932 +11933 +11934 +11935 +11936 +11937 +11938 +11939 +11940 +11941 +11942 +11943 +11944 +11945 +11946 +11947 +11948 +11949 +11950 +11951 +11952 +11953 +11954 +11955 +11956 +11957 +11958 +11959 +11960 +11961 +11962 +11963 +11964 +11965 +11966 +11967 +11968 +11969 +11970 +11971 +11972 +11973 +11974 +11975 +11976 +11977 +11978 +11979 +11980 +11981 +11982 +11983 +11984 +11985 +11986 +11987 +11988 +11989 +11990 +11991 +11992 +11993 +11994 +11995 +11996 +11997 +11998 +11999 +12000 +12001 +12002 +12003 +12004 +12005 +12006 +12007 +12008 +12009 +12010 +12011 +12012 +12013 +12014 +12015 +12016 +12017 +12018 +12019 +12020 +12021 +12022 +12023 +12024 +12025 +12026 +12027 +12028 +12029 +12030 +12031 +12032 +12033 +12034 +12035 +12036 +12037 +12038 +12039 +12040 +12041 +12042 +12043 +12044 +12045 +12046 +12047 +12048 +12049 +12050 +12051 +12052 +12053 +12054 +12055 +12056 +12057 +12058 +12059 +12060 +12061 +12062 +12063 +12064 +12065 +12066 +12067 +12068 +12069 +12070 +12071 +12072 +12073 +12074 +12075 +12076 +12077 +12078 +12079 +12080 +12081 +12082 +12083 +12084 +12085 +12086 +12087 +12088 +12089 +12090 +12091 +12092 +12093 +12094 +12095 +12096 +12097 +12098 +12099 +12100 +12101 +12102 +12103 +12104 +12105 +12106 +12107 +12108 +12109 +12110 +12111 +12112 +12113 +12114 +12115 +12116 +12117 +12118 +12119 +12120 +12121 +12122 +12123 +12124 +12125 +12126 +12127 +12128 +12129 +12130 +12131 +12132 +12133 +12134 +12135 +12136 +12137 +12138 +12139 +12140 +12141 +12142 +12143 +12144 +12145 +12146 +12147 +12148 +12149 +12150 +12151 +12152 +12153 +12154 +12155 +12156 +12157 +12158 +12159 +12160 +12161 +12162 +12163 +12164 +12165 +12166 +12167 +12168 +12169 +12170 +12171 +12172 +12173 +12174 +12175 +12176 +12177 +12178 +12179 +12180 +12181 +12182 +12183 +12184 +12185 +12186 +12187 +12188 +12189 +12190 +12191 +12192 +12193 +12194 +12195 +12196 +12197 +12198 +12199 +12200 +12201 +12202 +12203 +12204 +12205 +12206 +12207 +12208 +12209 +12210 +12211 +12212 +12213 +12214 +12215 +12216 +12217 +12218 +12219 +12220 +12221 +12222 +12223 +12224 +12225 +12226 +12227 +12228 +12229 +12230 +12231 +12232 +12233 +12234 +12235 +12236 +12237 +12238 +12239 +12240 +12241 +12242 +12243 +12244 +12245 +12246 +12247 +12248 +12249 +12250 +12251 +12252 +12253 +12254 +12255 +12256 +12257 +12258 +12259 +12260 +12261 +12262 +12263 +12264 +12265 +12266 +12267 +12268 +12269 +12270 +12271 +12272 +12273 +12274 +12275 +12276 +12277 +12278 +12279 +12280 +12281 +12282 +12283 +12284 +12285 +12286 +12287 +12288 +12289 +12290 +12291 +12292 +12293 +12294 +12295 +12296 +12297 +12298 +12299 +12300 +12301 +12302 +12303 +12304 +12305 +12306 +12307 +12308 +12309 +12310 +12311 +12312 +12313 +12314 +12315 +12316 +12317 +12318 +12319 +12320 +12321 +12322 +12323 +12324 +12325 +12326 +12327 +12328 +12329 +12330 +12331 +12332 +12333 +12334 +12335 +12336 +12337 +12338 +12339 +12340 +12341 +12342 +12343 +12344 +12345 +12346 +12347 +12348 +12349 +12350 +12351 +12352 +12353 +12354 +12355 +12356 +12357 +12358 +12359 +12360 +12361 +12362 +12363 +12364 +12365 +12366 +12367 +12368 +12369 +12370 +12371 +12372 +12373 +12374 +12375 +12376 +12377 +12378 +12379 +12380 +12381 +12382 +12383 +12384 +12385 +12386 +12387 +12388 +12389 +12390 +12391 +12392 +12393 +12394 +12395 +12396 +12397 +12398 +12399 +12400 +12401 +12402 +12403 +12404 +12405 +12406 +12407 +12408 +12409 +12410 +12411 +12412 +12413 +12414 +12415 +12416 +12417 +12418 +12419 +12420 +12421 +12422 +12423 +12424 +12425 +12426 +12427 +12428 +12429 +12430 +12431 +12432 +12433 +12434 +12435 +12436 +12437 +12438 +12439 +12440 +12441 +12442 +12443 +12444 +12445 +12446 +12447 +12448 +12449 +12450 +12451 +12452 +12453 +12454 +12455 +12456 +12457 +12458 +12459 +12460 +12461 +12462 +12463 +12464 +12465 +12466 +12467 +12468 +12469 +12470 +12471 +12472 +12473 +12474 +12475 +12476 +12477 +12478 +12479 +12480 +12481 +12482 +12483 +12484 +12485 +12486 +12487 +12488 +12489 +12490 +12491 +12492 +12493 +12494 +12495 +12496 +12497 +12498 +12499 +12500 +12501 +12502 +12503 +12504 +12505 +12506 +12507 +12508 +12509 +12510 +12511 +12512 +12513 +12514 +12515 +12516 +12517 +12518 +12519 +12520 +12521 +12522 +12523 +12524 +12525 +12526 +12527 +12528 +12529 +12530 +12531 +12532 +12533 +12534 +12535 +12536 +12537 +12538 +12539 +12540 +12541 +12542 +12543 +12544 +12545 +12546 +12547 +12548 +12549 +12550 +12551 +12552 +12553 +12554 +12555 +12556 +12557 +12558 +12559 +12560 +12561 +12562 +12563 +12564 +12565 +12566 +12567 +12568 +12569 +12570 +12571 +12572 +12573 +12574 +12575 +12576 +12577 +12578 +12579 +12580 +12581 +12582 +12583 +12584 +12585 +12586 +12587 +12588 +12589 +12590 +12591 +12592 +12593 +12594 +12595 +12596 +12597 +12598 +12599 +12600 +12601 +12602 +12603 +12604 +12605 +12606 +12607 +12608 +12609 +12610 +12611 +12612 +12613 +12614 +12615 +12616 +12617 +12618 +12619 +12620 +12621 +12622 +12623 +12624 +12625 +12626 +12627 +12628 +12629 +12630 +12631 +12632 +12633 +12634 +12635 +12636 +12637 +12638 +12639 +12640 +12641 +12642 +12643 +12644 +12645 +12646 +12647 +12648 +12649 +12650 +12651 +12652 +12653 +12654 +12655 +12656 +12657 +12658 +12659 +12660 +12661 +12662 +12663 +12664 +12665 +12666 +12667 +12668 +12669 +12670 +12671 +12672 +12673 +12674 +12675 +12676 +12677 +12678 +12679 +12680 +12681 +12682 +12683 +12684 +12685 +12686 +12687 +12688 +12689 +12690 +12691 +12692 +12693 +12694 +12695 +12696 +12697 +12698 +12699 +12700 +12701 +12702 +12703 +12704 +12705 +12706 +12707 +12708 +12709 +12710 +12711 +12712 +12713 +12714 +12715 +12716 +12717 +12718 +12719 +12720 +12721 +12722 +12723 +12724 +12725 +12726 +12727 +12728 +12729 +12730 +12731 +12732 +12733 +12734 +12735 +12736 +12737 +12738 +12739 +12740 +12741 +12742 +12743 +12744 +12745 +12746 +12747 +12748 +12749 +12750 +12751 +12752 +12753 +12754 +12755 +12756 +12757 +12758 +12759 +12760 +12761 +12762 +12763 +12764 +12765 +12766 +12767 +12768 +12769 +12770 +12771 +12772 +12773 +12774 +12775 +12776 +12777 +12778 +12779 +12780 +12781 +12782 +12783 +12784 +12785 +12786 +12787 +12788 +12789 +12790 +12791 +12792 +12793 +12794 +12795 +12796 +12797 +12798 +12799 +12800 +12801 +12802 +12803 +12804 +12805 +12806 +12807 +12808 +12809 +12810 +12811 +12812 +12813 +12814 +12815 +12816 +12817 +12818 +12819 +12820 +12821 +12822 +12823 +12824 +12825 +12826 +12827 +12828 +12829 +12830 +12831 +12832 +12833 +12834 +12835 +12836 +12837 +12838 +12839 +12840 +12841 +12842 +12843 +12844 +12845 +12846 +12847 +12848 +12849 +12850 +12851 +12852 +12853 +12854 +12855 +12856 +12857 +12858 +12859 +12860 +12861 +12862 +12863 +12864 +12865 +12866 +12867 +12868 +12869 +12870 +12871 +12872 +12873 +12874 +12875 +12876 +12877 +12878 +12879 +12880 +12881 +12882 +12883 +12884 +12885 +12886 +12887 +12888 +12889 +12890 +12891 +12892 +12893 +12894 +12895 +12896 +12897 +12898 +12899 +12900 +12901 +12902 +12903 +12904 +12905 +12906 +12907 +12908 +12909 +12910 +12911 +12912 +12913 +12914 +12915 +12916 +12917 +12918 +12919 +12920 +12921 +12922 +12923 +12924 +12925 +12926 +12927 +12928 +12929 +12930 +12931 +12932 +12933 +12934 +12935 +12936 +12937 +12938 +12939 +12940 +12941 +12942 +12943 +12944 +12945 +12946 +12947 +12948 +12949 +12950 +12951 +12952 +12953 +12954 +12955 +12956 +12957 +12958 +12959 +12960 +12961 +12962 +12963 +12964 +12965 +12966 +12967 +12968 +12969 +12970 +12971 +12972 +12973 +12974 +12975 +12976 +12977 +12978 +12979 +12980 +12981 +12982 +12983 +12984 +12985 +12986 +12987 +12988 +12989 +12990 +12991 +12992 +12993 +12994 +12995 +12996 +12997 +12998 +12999 +13000 +13001 +13002 +13003 +13004 +13005 +13006 +13007 +13008 +13009 +13010 +13011 +13012 +13013 +13014 +13015 +13016 +13017 +13018 +13019 +13020 +13021 +13022 +13023 +13024 +13025 +13026 +13027 +13028 +13029 +13030 +13031 +13032 +13033 +13034 +13035 +13036 +13037 +13038 +13039 +13040 +13041 +13042 +13043 +13044 +13045 +13046 +13047 +13048 +13049 +13050 +13051 +13052 +13053 +13054 +13055 +13056 +13057 +13058 +13059 +13060 +13061 +13062 +13063 +13064 +13065 +13066 +13067 +13068 +13069 +13070 +13071 +13072 +13073 +13074 +13075 +13076 +13077 +13078 +13079 +13080 +13081 +13082 +13083 +13084 +13085 +13086 +13087 +13088 +13089 +13090 +13091 +13092 +13093 +13094 +13095 +13096 +13097 +13098 +13099 +13100 +13101 +13102 +13103 +13104 +13105 +13106 +13107 +13108 +13109 +13110 +13111 +13112 +13113 +13114 +13115 +13116 +13117 +13118 +13119 +13120 +13121 +13122 +13123 +13124 +13125 +13126 +13127 +13128 +13129 +13130 +13131 +13132 +13133 +13134 +13135 +13136 +13137 +13138 +13139 +13140 +13141 +13142 +13143 +13144 +13145 +13146 +13147 +13148 +13149 +13150 +13151 +13152 +13153 +13154 +13155 +13156 +13157 +13158 +13159 +13160 +13161 +13162 +13163 +13164 +13165 +13166 +13167 +13168 +13169 +13170 +13171 +13172 +13173 +13174 +13175 +13176 +13177 +13178 +13179 +13180 +13181 +13182 +13183 +13184 +13185 +13186 +13187 +13188 +13189 +13190 +13191 +13192 +13193 +13194 +13195 +13196 +13197 +13198 +13199 +13200 +13201 +13202 +13203 +13204 +13205 +13206 +13207 +13208 +13209 +13210 +13211 +13212 +13213 +13214 +13215 +13216 +13217 +13218 +13219 +13220 +13221 +13222 +13223 +13224 +13225 +13226 +13227 +13228 +13229 +13230 +13231 +13232 +13233 +13234 +13235 +13236 +13237 +13238 +13239 +13240 +13241 +13242 +13243 +13244 +13245 +13246 +13247 +13248 +13249 +13250 +13251 +13252 +13253 +13254 +13255 +13256 +13257 +13258 +13259 +13260 +13261 +13262 +13263 +13264 +13265 +13266 +13267 +13268 +13269 +13270 +13271 +13272 +13273 +13274 +13275 +13276 +13277 +13278 +13279 +13280 +13281 +13282 +13283 +13284 +13285 +13286 +13287 +13288 +13289 +13290 +13291 +13292 +13293 +13294 +13295 +13296 +13297 +13298 +13299 +13300 +13301 +13302 +13303 +13304 +13305 +13306 +13307 +13308 +13309 +13310 +13311 +13312 +13313 +13314 +13315 +13316 +13317 +13318 +13319 +13320 +13321 +13322 +13323 +13324 +13325 +13326 +13327 +13328 +13329 +13330 +13331 +13332 +13333 +13334 +13335 +13336 +13337 +13338 +13339 +13340 +13341 +13342 +13343 +13344 +13345 +13346 +13347 +13348 +13349 +13350 +13351 +13352 +13353 +13354 +13355 +13356 +13357 +13358 +13359 +13360 +13361 +13362 +13363 +13364 +13365 +13366 +13367 +13368 +13369 +13370 +13371 +13372 +13373 +13374 +13375 +13376 +13377 +13378 +13379 +13380 +13381 +13382 +13383 +13384 +13385 +13386 +13387 +13388 +13389 +13390 +13391 +13392 +13393 +13394 +13395 +13396 +13397 +13398 +13399 +13400 +13401 +13402 +13403 +13404 +13405 +13406 +13407 +13408 +13409 +13410 +13411 +13412 +13413 +13414 +13415 +13416 +13417 +13418 +13419 +13420 +13421 +13422 +13423 +13424 +13425 +13426 +13427 +13428 +13429 +13430 +13431 +13432 +13433 +13434 +13435 +13436 +13437 +13438 +13439 +13440 +13441 +13442 +13443 +13444 +13445 +13446 +13447 +13448 +13449 +13450 +13451 +13452 +13453 +13454 +13455 +13456 +13457 +13458 +13459 +13460 +13461 +13462 +13463 +13464 +13465 +13466 +13467 +13468 +13469 +13470 +13471 +13472 +13473 +13474 +13475 +13476 +13477 +13478 +13479 +13480 +13481 +13482 +13483 +13484 +13485 +13486 +13487 +13488 +13489 +13490 +13491 +13492 +13493 +13494 +13495 +13496 +13497 +13498 +13499 +13500 +13501 +13502 +13503 +13504 +13505 +13506 +13507 +13508 +13509 +13510 +13511 +13512 +13513 +13514 +13515 +13516 +13517 +13518 +13519 +13520 +13521 +13522 +13523 +13524 +13525 +13526 +13527 +13528 +13529 +13530 +13531 +13532 +13533 +13534 +13535 +13536 +13537 +13538 +13539 +13540 +13541 +13542 +13543 +13544 +13545 +13546 +13547 +13548 +13549 +13550 +13551 +13552 +13553 +13554 +13555 +13556 +13557 +13558 +13559 +13560 +13561 +13562 +13563 +13564 +13565 +13566 +13567 +13568 +13569 +13570 +13571 +13572 +13573 +13574 +13575 +13576 +13577 +13578 +13579 +13580 +13581 +13582 +13583 +13584 +13585 +13586 +13587 +13588 +13589 +13590 +13591 +13592 +13593 +13594 +13595 +13596 +13597 +13598 +13599 +13600 +13601 +13602 +13603 +13604 +13605 +13606 +13607 +13608 +13609 +13610 +13611 +13612 +13613 +13614 +13615 +13616 +13617 +13618 +13619 +13620 +13621 +13622 +13623 +13624 +13625 +13626 +13627 +13628 +13629 +13630 +13631 +13632 +13633 +13634 +13635 +13636 +13637 +13638 +13639 +13640 +13641 +13642 +13643 +13644 +13645 +13646 +13647 +13648 +13649 +13650 +13651 +13652 +13653 +13654 +13655 +13656 +13657 +13658 +13659 +13660 +13661 +13662 +13663 +13664 +13665 +13666 +13667 +13668 +13669 +13670 +13671 +13672 +13673 +13674 +13675 +13676 +13677 +13678 +13679 +13680 +13681 +13682 +13683 +13684 +13685 +13686 +13687 +13688 +13689 +13690 +13691 +13692 +13693 +13694 +13695 +13696 +13697 +13698 +13699 +13700 +13701 +13702 +13703 +13704 +13705 +13706 +13707 +13708 +13709 +13710 +13711 +13712 +13713 +13714 +13715 +13716 +13717 +13718 +13719 +13720 +13721 +13722 +13723 +13724 +13725 +13726 +13727 +13728 +13729 +13730 +13731 +13732 +13733 +13734 +13735 +13736 +13737 +13738 +13739 +13740 +13741 +13742 +13743 +13744 +13745 +13746 +13747 +13748 +13749 +13750 +13751 +13752 +13753 +13754 +13755 +13756 +13757 +13758 +13759 +13760 +13761 +13762 +13763 +13764 +13765 +13766 +13767 +13768 +13769 +13770 +13771 +13772 +13773 +13774 +13775 +13776 +13777 +13778 +13779 +13780 +13781 +13782 +13783 +13784 +13785 +13786 +13787 +13788 +13789 +13790 +13791 +13792 +13793 +13794 +13795 +13796 +13797 +13798 +13799 +13800 +13801 +13802 +13803 +13804 +13805 +13806 +13807 +13808 +13809 +13810 +13811 +13812 +13813 +13814 +13815 +13816 +13817 +13818 +13819 +13820 +13821 +13822 +13823 +13824 +13825 +13826 +13827 +13828 +13829 +13830 +13831 +13832 +13833 +13834 +13835 +13836 +13837 +13838 +13839 +13840 +13841 +13842 +13843 +13844 +13845 +13846 +13847 +13848 +13849 +13850 +13851 +13852 +13853 +13854 +13855 +13856 +13857 +13858 +13859 +13860 +13861 +13862 +13863 +13864 +13865 +13866 +13867 +13868 +13869 +13870 +13871 +13872 +13873 +13874 +13875 +13876 +13877 +13878 +13879 +13880 +13881 +13882 +13883 +13884 +13885 +13886 +13887 +13888 +13889 +13890 +13891 +13892 +13893 +13894 +13895 +13896 +13897 +13898 +13899 +13900 +13901 +13902 +13903 +13904 +13905 +13906 +13907 +13908 +13909 +13910 +13911 +13912 +13913 +13914 +13915 +13916 +13917 +13918 +13919 +13920 +13921 +13922 +13923 +13924 +13925 +13926 +13927 +13928 +13929 +13930 +13931 +13932 +13933 +13934 +13935 +13936 +13937 +13938 +13939 +13940 +13941 +13942 +13943 +13944 +13945 +13946 +13947 +13948 +13949 +13950 +13951 +13952 +13953 +13954 +13955 +13956 +13957 +13958 +13959 +13960 +13961 +13962 +13963 +13964 +13965 +13966 +13967 +13968 +13969 +13970 +13971 +13972 +13973 +13974 +13975 +13976 +13977 +13978 +13979 +13980 +13981 +13982 +13983 +13984 +13985 +13986 +13987 +13988 +13989 +13990 +13991 +13992 +13993 +13994 +13995 +13996 +13997 +13998 +13999 +14000 +14001 +14002 +14003 +14004 +14005 +14006 +14007 +14008 +14009 +14010 +14011 +14012 +14013 +14014 +14015 +14016 +14017 +14018 +14019 +14020 +14021 +14022 +14023 +14024 +14025 +14026 +14027 +14028 +14029 +14030 +14031 +14032 +14033 +14034 +14035 +14036 +14037 +14038 +14039 +14040 +14041 +14042 +14043 +14044 +14045 +14046 +14047 +14048 +14049 +14050 +14051 +14052 +14053 +14054 +14055 +14056 +14057 +14058 +14059 +14060 +14061 +14062 +14063 +14064 +14065 +14066 +14067 +14068 +14069 +14070 +14071 +14072 +14073 +14074 +14075 +14076 +14077 +14078 +14079 +14080 +14081 +14082 +14083 +14084 +14085 +14086 +14087 +14088 +14089 +14090 +14091 +14092 +14093 +14094 +14095 +14096 +14097 +14098 +14099 +14100 +14101 +14102 +14103 +14104 +14105 +14106 +14107 +14108 +14109 +14110 +14111 +14112 +14113 +14114 +14115 +14116 +14117 +14118 +14119 +14120 +14121 +14122 +14123 +14124 +14125 +14126 +14127 +14128 +14129 +14130 +14131 +14132 +14133 +14134 +14135 +14136 +14137 +14138 +14139 +14140 +14141 +14142 +14143 +14144 +14145 +14146 +14147 +14148 +14149 +14150 +14151 +14152 +14153 +14154 +14155 +14156 +14157 +14158 +14159 +14160 +14161 +14162 +14163 +14164 +14165 +14166 +14167 +14168 +14169 +14170 +14171 +14172 +14173 +14174 +14175 +14176 +14177 +14178 +14179 +14180 +14181 +14182 +14183 +14184 +14185 +14186 +14187 +14188 +14189 +14190 +14191 +14192 +14193 +14194 +14195 +14196 +14197 +14198 +14199 +14200 +14201 +14202 +14203 +14204 +14205 +14206 +14207 +14208 +14209 +14210 +14211 +14212 +14213 +14214 +14215 +14216 +14217 +14218 +14219 +14220 +14221 +14222 +14223 +14224 +14225 +14226 +14227 +14228 +14229 +14230 +14231 +14232 +14233 +14234 +14235 +14236 +14237 +14238 +14239 +14240 +14241 +14242 +14243 +14244 +14245 +14246 +14247 +14248 +14249 +14250 +14251 +14252 +14253 +14254 +14255 +14256 +14257 +14258 +14259 +14260 +14261 +14262 +14263 +14264 +14265 +14266 +14267 +14268 +14269 +14270 +14271 +14272 +14273 +14274 +14275 +14276 +14277 +14278 +14279 +14280 +14281 +14282 +14283 +14284 +14285 +14286 +14287 +14288 +14289 +14290 +14291 +14292 +14293 +14294 +14295 +14296 +14297 +14298 +14299 +14300 +14301 +14302 +14303 +14304 +14305 +14306 +14307 +14308 +14309 +14310 +14311 +14312 +14313 +14314 +14315 +14316 +14317 +14318 +14319 +14320 +14321 +14322 +14323 +14324 +14325 +14326 +14327 +14328 +14329 +14330 +14331 +14332 +14333 +14334 +14335 +14336 +14337 +14338 +14339 +14340 +14341 +14342 +14343 +14344 +14345 +14346 +14347 +14348 +14349 +14350 +14351 +14352 +14353 +14354 +14355 +14356 +14357 +14358 +14359 +14360 +14361 +14362 +14363 +14364 +14365 +14366 +14367 +14368 +14369 +14370 +14371 +14372 +14373 +14374 +14375 +14376 +14377 +14378 +14379 +14380 +14381 +14382 +14383 +14384 +14385 +14386 +14387 +14388 +14389 +14390 +14391 +14392 +14393 +14394 +14395 +14396 +14397 +14398 +14399 +14400 +14401 +14402 +14403 +14404 +14405 +14406 +14407 +14408 +14409 +14410 +14411 +14412 +14413 +14414 +14415 +14416 +14417 +14418 +14419 +14420 +14421 +14422 +14423 +14424 +14425 +14426 +14427 +14428 +14429 +14430 +14431 +14432 +14433 +14434 +14435 +14436 +14437 +14438 +14439 +14440 +14441 +14442 +14443 +14444 +14445 +14446 +14447 +14448 +14449 +14450 +14451 +14452 +14453 +14454 +14455 +14456 +14457 +14458 +14459 +14460 +14461 +14462 +14463 +14464 +14465 +14466 +14467 +14468 +14469 +14470 +14471 +14472 +14473 +14474 +14475 +14476 +14477 +14478 +14479 +14480 +14481 +14482 +14483 +14484 +14485 +14486 +14487 +14488 +14489 +14490 +14491 +14492 +14493 +14494 +14495 +14496 +14497 +14498 +14499 +14500 +14501 +14502 +14503 +14504 +14505 +14506 +14507 +14508 +14509 +14510 +14511 +14512 +14513 +14514 +14515 +14516 +14517 +14518 +14519 +14520 +14521 +14522 +14523 +14524 +14525 +14526 +14527 +14528 +14529 +14530 +14531 +14532 +14533 +14534 +14535 +14536 +14537 +14538 +14539 +14540 +14541 +14542 +14543 +14544 +14545 +14546 +14547 +14548 +14549 +14550 +14551 +14552 +14553 +14554 +14555 +14556 +14557 +14558 +14559 +14560 +14561 +14562 +14563 +14564 +14565 +14566 +14567 +14568 +14569 +14570 +14571 +14572 +14573 +14574 +14575 +14576 +14577 +14578 +14579 +14580 +14581 +14582 +14583 +14584 +14585 +14586 +14587 +14588 +14589 +14590 +14591 +14592 +14593 +14594 +14595 +14596 +14597 +14598 +14599 +14600 +14601 +14602 +14603 +14604 +14605 +14606 +14607 +14608 +14609 +14610 +14611 +14612 +14613 +14614 +14615 +14616 +14617 +14618 +14619 +14620 +14621 +14622 +14623 +14624 +14625 +14626 +14627 +14628 +14629 +14630 +14631 +14632 +14633 +14634 +14635 +14636 +14637 +14638 +14639 +14640 +14641 +14642 +14643 +14644 +14645 +14646 +14647 +14648 +14649 +14650 +14651 +14652 +14653 +14654 +14655 +14656 +14657 +14658 +14659 +14660 +14661 +14662 +14663 +14664 +14665 +14666 +14667 +14668 +14669 +14670 +14671 +14672 +14673 +14674 +14675 +14676 +14677 +14678 +14679 +14680 +14681 +14682 +14683 +14684 +14685 +14686 +14687 +14688 +14689 +14690 +14691 +14692 +14693 +14694 +14695 +14696 +14697 +14698 +14699 +14700 +14701 +14702 +14703 +14704 +14705 +14706 +14707 +14708 +14709 +14710 +14711 +14712 +14713 +14714 +14715 +14716 +14717 +14718 +14719 +14720 +14721 +14722 +14723 +14724 +14725 +14726 +14727 +14728 +14729 +14730 +14731 +14732 +14733 +14734 +14735 +14736 +14737 +14738 +14739 +14740 +14741 +14742 +14743 +14744 +14745 +14746 +14747 +14748 +14749 +14750 +14751 +14752 +14753 +14754 +14755 +14756 +14757 +14758 +14759 +14760 +14761 +14762 +14763 +14764 +14765 +14766 +14767 +14768 +14769 +14770 +14771 +14772 +14773 +14774 +14775 +14776 +14777 +14778 +14779 +14780 +14781 +14782 +14783 +14784 +14785 +14786 +14787 +14788 +14789 +14790 +14791 +14792 +14793 +14794 +14795 +14796 +14797 +14798 +14799 +14800 +14801 +14802 +14803 +14804 +14805 +14806 +14807 +14808 +14809 +14810 +14811 +14812 +14813 +14814 +14815 +14816 +14817 +14818 +14819 +14820 +14821 +14822 +14823 +14824 +14825 +14826 +14827 +14828 +14829 +14830 +14831 +14832 +14833 +14834 +14835 +14836 +14837 +14838 +14839 +14840 +14841 +14842 +14843 +14844 +14845 +14846 +14847 +14848 +14849 +14850 +14851 +14852 +14853 +14854 +14855 +14856 +14857 +14858 +14859 +14860 +14861 +14862 +14863 +14864 +14865 +14866 +14867 +14868 +14869 +14870 +14871 +14872 +14873 +14874 +14875 +14876 +14877 +14878 +14879 +14880 +14881 +14882 +14883 +14884 +14885 +14886 +14887 +14888 +14889 +14890 +14891 +14892 +14893 +14894 +14895 +14896 +14897 +14898 +14899 +14900 +14901 +14902 +14903 +14904 +14905 +14906 +14907 +14908 +14909 +14910 +14911 +14912 +14913 +14914 +14915 +14916 +14917 +14918 +14919 +14920 +14921 +14922 +14923 +14924 +14925 +14926 +14927 +14928 +14929 +14930 +14931 +14932 +14933 +14934 +14935 +14936 +14937 +14938 +14939 +14940 +14941 +14942 +14943 +14944 +14945 +14946 +14947 +14948 +14949 +14950 +14951 +14952 +14953 +14954 +14955 +14956 +14957 +14958 +14959 +14960 +14961 +14962 +14963 +14964 +14965 +14966 +14967 +14968 +14969 +14970 +14971 +14972 +14973 +14974 +14975 +14976 +14977 +14978 +14979 +14980 +14981 +14982 +14983 +14984 +14985 +14986 +14987 +14988 +14989 +14990 +14991 +14992 +14993 +14994 +14995 +14996 +14997 +14998 +14999 +15000 +15001 +15002 +15003 +15004 +15005 +15006 +15007 +15008 +15009 +15010 +15011 +15012 +15013 +15014 +15015 +15016 +15017 +15018 +15019 +15020 +15021 +15022 +15023 +15024 +15025 +15026 +15028 +15029 +15030 +15031 +15032 +15033 +15034 +15035 +15036 +15037 +15038 +15039 +15040 +15041 +15042 +15043 +15044 +15045 +15046 +15047 +15048 +15049 +15050 +15051 +15052 +15053 +15054 +15055 +15056 +15057 +15058 +15059 +15060 +15061 +15062 +15063 +15064 +15065 +15066 +15067 +15068 +15069 +15070 +15071 +15072 +15073 +15074 +15075 +15076 +15077 +15078 +15079 +15080 +15081 +15082 +15083 +15084 +15085 +15086 +15087 +15088 +15089 +15090 +15091 +15092 +15093 +15094 +15095 +15096 +15097 +15098 +15099 +15100 +15101 +15102 +15103 +15104 +15105 +15106 +15107 +15108 +15109 +15110 +15111 +15112 +15113 +15114 +15115 +15116 +15117 +15118 +15119 +15120 +15121 +15122 +15123 +15124 +15125 +15126 +15127 +15128 +15129 +15130 +15131 +15132 +15133 +15134 +15135 +15136 +15137 +15138 +15139 +15140 +15141 +15142 +15143 +15144 +15145 +15146 +15147 +15148 +15149 +15150 +15151 +15152 +15153 +15154 +15155 +15156 +15157 +15158 +15159 +15160 +15161 +15162 +15163 +15164 +15165 +15166 +15167 +15168 +15169 +15170 +15171 +15172 +15173 +15174 +15175 +15176 +15177 +15178 +15179 +15180 +15181 +15182 +15183 +15184 +15185 +15186 +15187 +15188 +15189 +15190 +15191 +15192 +15193 +15194 +15195 +15196 +15197 +15198 +15199 +15200 +15201 +15202 +15203 +15204 +15205 +15206 +15207 +15208 +15209 +15210 +15211 +15212 +15213 +15214 +15215 +15216 +15217 +15218 +15219 +15220 +15221 +15222 +15223 +15224 +15225 +15226 +15227 +15228 +15229 +15230 +15231 +15232 +15233 +15234 +15235 +15236 +15237 +15238 +15239 +15240 +15241 +15242 +15243 +15244 +15245 +15246 +15247 +15248 +15249 +15250 +15251 +15252 +15253 +15254 +15255 +15256 +15257 +15258 +15259 +15260 +15261 +15262 +15263 +15264 +15265 +15266 +15267 +15268 +15269 +15270 +15271 +15272 +15273 +15274 +15275 +15276 +15277 +15278 +15279 +15280 +15281 +15282 +15283 +15284 +15285 +15286 +15287 +15288 +15289 +15290 +15291 +15292 +15293 +15294 +15295 +15296 +15297 +15298 +15299 +15300 +15301 +15302 +15303 +15304 +15305 +15306 +15307 +15308 +15309 +15310 +15311 +15312 +15313 +15314 +15315 +15316 +15317 +15318 +15319 +15320 +15321 +15322 +15323 +15324 +15325 +15326 +15327 +15328 +15329 +15330 +15331 +15332 +15333 +15334 +15335 +15336 +15337 +15338 +15339 +15340 +15341 +15342 +15343 +15344 +15345 +15346 +15347 +15348 +15349 +15350 +15351 +15352 +15353 +15354 +15355 +15356 +15357 +15358 +15359 +15360 +15361 +15362 +15363 +15364 +15365 +15366 +15367 +15368 +15369 +15370 +15371 +15372 +15373 +15374 +15375 +15376 +15377 +15378 +15379 +15380 +15381 +15382 +15383 +15384 +15385 +15386 +15387 +15388 +15389 +15390 +15391 +15392 +15393 +15394 +15395 +15396 +15397 +15398 +15399 +15400 +15401 +15402 +15403 +15404 +15405 +15406 +15407 +15408 +15409 +15410 +15411 +15412 +15413 +15414 +15415 +15416 +15417 +15418 +15419 +15420 +15421 +15422 +15423 +15424 +15425 +15426 +15427 +15428 +15429 +15430 +15431 +15432 +15433 +15434 +15435 +15436 +15437 +15438 +15439 +15440 +15441 +15442 +15443 +15444 +15445 +15446 +15447 +15448 +15449 +15450 +15451 +15452 +15453 +15454 +15455 +15456 +15457 +15458 +15459 +15460 +15461 +15462 +15463 +15464 +15465 +15466 +15467 +15468 +15469 +15470 +15471 +15472 +15473 +15474 +15475 +15476 +15477 +15478 +15479 +15480 +15481 +15482 +15483 +15484 +15485 +15486 +15487 +15488 +15489 +15490 +15491 +15492 +15493 +15494 +15495 +15496 +15497 +15498 +15499 +15500 +15501 +15502 +15503 +15504 +15505 +15506 +15507 +15508 +15509 +15510 +15511 +15512 +15513 +15514 +15515 +15516 +15517 +15518 +15519 +15520 +15521 +15522 +15523 +15524 +15525 +15526 +15527 +15528 +15529 +15530 +15531 +15532 +15533 +15534 +15535 +15536 +15537 +15538 +15539 +15540 +15541 +15542 +15543 +15544 +15545 +15546 +15547 +15548 +15549 +15550 +15551 +15552 +15553 +15554 +15555 +15556 +15557 +15558 +15559 +15560 +15561 +15562 +15563 +15564 +15565 +15566 +15567 +15568 +15569 +15570 +15571 +15572 +15573 +15574 +15575 +15576 +15577 +15578 +15579 +15580 +15581 +15582 +15583 +15584 +15585 +15586 +15587 +15588 +15589 +15590 +15591 +15592 +15593 +15594 +15595 +15596 +15597 +15598 +15599 +15600 +15601 +15602 +15603 +15604 +15605 +15606 +15607 +15608 +15609 +15610 +15611 +15612 +15613 +15614 +15615 +15616 +15617 +15618 +15619 +15620 +15621 +15622 +15623 +15624 +15625 +15626 +15627 +15628 +15629 +15630 +15631 +15632 +15633 +15634 +15635 +15636 +15637 +15638 +15639 +15640 +15641 +15642 +15643 +15644 +15645 +15646 +15647 +15648 +15649 +15650 +15651 +15652 +15653 +15654 +15655 +15656 +15657 +15658 +15659 +15660 +15661 +15662 +15663 +15664 +15665 +15666 +15667 +15668 +15669 +15670 +15671 +15672 +15673 +15674 +15675 +15676 +15677 +15678 +15679 +15680 +15681 +15682 +15683 +15684 +15685 +15686 +15687 +15688 +15689 +15690 +15691 +15692 +15693 +15694 +15695 +15696 +15697 +15698 +15699 +15700 +15701 +15702 +15703 +15704 +15705 +15706 +15707 +15708 +15709 +15710 +15711 +15712 +15713 +15714 +15715 +15716 +15717 +15718 +15719 +15720 +15721 +15722 +15723 +15724 +15725 +15726 +15727 +15728 +15729 +15730 +15731 +15732 +15733 +15734 +15735 +15736 +15737 +15738 +15739 +15740 +15741 +15742 +15743 +15744 +15745 +15746 +15747 +15748 +15749 +15750 +15751 +15752 +15753 +15754 +15755 +15756 +15757 +15758 +15759 +15760 +15761 +15762 +15763 +15764 +15765 +15766 +15767 +15768 +15769 +15770 +15771 +15772 +15773 +15774 +15775 +15776 +15777 +15778 +15779 +15780 +15781 +15782 +15783 +15784 +15785 +15786 +15787 +15788 +15789 +15790 +15791 +15792 +15793 +15794 +15795 +15796 +15797 +15798 +15799 +15800 +15801 +15802 +15803 +15804 +15805 +15806 +15807 +15808 +15809 +15810 +15811 +15812 +15813 +15814 +15815 +15816 +15817 +15818 +15819 +15820 +15821 +15822 +15823 +15824 +15825 +15826 +15827 +15828 +15829 +15830 +15831 +15832 +15833 +15834 +15835 +15836 +15837 +15838 +15839 +15840 +15841 +15842 +15843 +15844 +15845 +15846 +15847 +15848 +15849 +15850 +15851 +15852 +15853 +15854 +15855 +15856 +15857 +15858 +15859 +15860 +15861 +15862 +15863 +15864 +15865 +15866 +15867 +15868 +15869 +15870 +15871 +15872 +15873 +15874 +15875 +15876 +15877 +15878 +15879 +15880 +15881 +15882 +15883 +15884 +15885 +15886 +15887 +15888 +15889 +15890 +15891 +15892 +15893 +15894 +15895 +15896 +15897 +15898 +15899 +15900 +15901 +15902 +15903 +15904 +15905 +15906 +15907 +15908 +15909 +15910 +15911 +15912 +15913 +15914 +15915 +15916 +15917 +15918 +15919 +15920 +15921 +15922 +15923 +15924 +15925 +15926 +15927 +15928 +15929 +15930 +15931 +15932 +15933 +15934 +15935 +15936 +15937 +15938 +15939 +15940 +15941 +15942 +15943 +15944 +15945 +15946 +15947 +15948 +15949 +15950 +15951 +15952 +15953 +15954 +15955 +15956 +15957 +15958 +15959 +15960 +15961 +15962 +15963 +15964 +15965 +15966 +15967 +15968 +15969 +15970 +15971 +15972 +15973 +15974 +15975 +15976 +15977 +15978 +15979 +15980 +15981 +15982 +15983 +15984 +15985 +15986 +15987 +15988 +15989 +15990 +15991 +15992 +15993 +15994 +15995 +15996 +15997 +15998 +15999 +16000 +16001 +16002 +16003 +16004 +16005 +16006 +16007 +16008 +16009 +16010 +16011 +16012 +16013 +16014 +16015 +16016 +16017 +16018 +16019 +16020 +16021 +16022 +16023 +16024 +16025 +16026 +16027 +16028 +16029 +16030 +16031 +16032 +16033 +16034 +16035 +16036 +16037 +16038 +16039 +16040 +16041 +16042 +16043 +16044 +16045 +16046 +16047 +16048 +16049 +16050 +16051 +16052 +16053 +16054 +16055 +16056 +16057 +16058 +16059 +16060 +16061 +16062 +16063 +16064 +16065 +16066 +16067 +16068 +16069 +16070 +16071 +16072 +16073 +16074 +16075 +16076 +16077 +16078 +16079 +16080 +16081 +16082 +16083 +16084 +16085 +16086 +16087 +16088 +16089 +16090 +16091 +16092 +16093 +16094 +16095 +16096 +16097 +16098 +16099 +16100 +16101 +16102 +16103 +16104 +16105 +16106 +16107 +16108 +16109 +16110 +16111 +16112 +16113 +16114 +16115 +16116 +16117 +16118 +16119 +16120 +16121 +16122 +16123 +16124 +16125 +16126 +16127 +16128 +16129 +16130 +16131 +16132 +16133 +16134 +16135 +16136 +16137 +16138 +16139 +16140 +16141 +16142 +16143 +16144 +16145 +16146 +16147 +16148 +16149 +16150 +16151 +16152 +16153 +16154 +16155 +16156 +16157 +16158 +16159 +16160 +16161 +16162 +16163 +16164 +16165 +16166 +16167 +16168 +16169 +16170 +16171 +16172 +16173 +16174 +16175 +16176 +16177 +16178 +16179 +16180 +16181 +16182 +16183 +16184 +16185 +16186 +16187 +16188 +16189 +16190 +16191 +16192 +16193 +16194 +16195 +16196 +16197 +16198 +16199 +16200 +16201 +16202 +16203 +16204 +16205 +16206 +16207 +16208 +16209 +16210 +16211 +16212 +16213 +16214 +16215 +16216 +16217 +16218 +16219 +16220 +16221 +16222 +16223 +16224 +16225 +16226 +16227 +16228 +16229 +16230 +16231 +16232 +16233 +16234 +16235 +16236 +16237 +16238 +16239 +16240 +16241 +16242 +16243 +16244 +16245 +16246 +16247 +16248 +16249 +16250 +16251 +16252 +16253 +16254 +16255 +16256 +16257 +16258 +16259 +16260 +16261 +16262 +16263 +16264 +16265 +16266 +16267 +16268 +16269 +16270 +16271 +16272 +16273 +16274 +16275 +16276 +16277 +16278 +16279 +16280 +16281 +16282 +16283 +16284 +16285 +16286 +16287 +16288 +16289 +16290 +16291 +16292 +16293 +16294 +16295 +16296 +16297 +16298 +16299 +16300 +16301 +16302 +16303 +16304 +16305 +16306 +16307 +16308 +16309 +16310 +16311 +16312 +16313 +16314 +16315 +16316 +16317 +16318 +16319 +16320 +16321 +16322 +16323 +16324 +16325 +16326 +16327 +16328 +16329 +16330 +16331 +16332 +16333 +16334 +16335 +16336 +16337 +16338 +16339 +16340 +16341 +16342 +16343 +16344 +16345 +16346 +16347 +16348 +16349 +16350 +16351 +16352 +16353 +16354 +16355 +16356 +16357 +16358 +16359 +16360 +16361 +16362 +16363 +16364 +16365 +16366 +16367 +16368 +16369 +16370 +16371 +16372 +16373 +16374 +16375 +16376 +16377 +16378 +16379 +16380 +16381 +16382 +16383 +16384 +16385 +16386 +16387 +16388 +16389 +16390 +16391 +16392 +16393 +16394 +16395 +16396 +16397 +16398 +16399 +16400 +16401 +16402 +16403 +16404 +16405 +16406 +16407 +16408 +16409 +16410 +16411 +16412 +16413 +16414 +16415 +16416 +16417 +16418 +16419 +16420 +16421 +16422 +16423 +16424 +16425 +16426 +16427 +16428 +16429 +16430 +16431 +16432 +16433 +16434 +16435 +16436 +16437 +16438 +16439 +16440 +16441 +16442 +16443 +16444 +16445 +16446 +16447 +16448 +16449 +16450 +16451 +16452 +16453 +16454 +16455 +16456 +16457 +16458 +16459 +16460 +16461 +16462 +16463 +16464 +16465 +16466 +16467 +16468 +16469 +16470 +16471 +16472 +16473 +16474 +16475 +16476 +16477 +16478 +16479 +16480 +16481 +16482 +16483 +16484 +16485 +16486 +16487 +16488 +16489 +16490 +16491 +16492 +16493 +16494 +16495 +16496 +16497 +16498 +16499 +16500 +16501 +16502 +16503 +16504 +16505 +16506 +16507 +16508 +16509 +16510 +16511 +16512 +16513 +16514 +16515 +16516 +16517 +16518 +16519 +16520 +16521 +16522 +16523 +16524 +16525 +16526 +16527 +16528 +16529 +16530 +16531 +16532 +16533 +16534 +16535 +16536 +16537 +16538 +16539 +16540 +16541 +16542 +16543 +16544 +16545 +16546 +16547 +16548 +16549 +16550 +16551 +16552 +16553 +16554 +16555 +16556 +16557 +16558 +16559 +16560 +16561 +16562 +16563 +16564 +16565 +16566 +16567 +16568 +16569 +16570 +16571 +16572 +16573 +16574 +16575 +16576 +16577 +16578 +16579 +16580 +16581 +16582 +16583 +16584 +16585 +16586 +16587 +16588 +16589 +16590 +16591 +16592 +16593 +16594 +16595 +16596 +16597 +16598 +16599 +16600 +16601 +16602 +16603 +16604 +16605 +16606 +16607 +16608 +16609 +16610 +16611 +16612 +16613 +16614 +16615 +16616 +16617 +16618 +16619 +16620 +16621 +16622 +16623 +16624 +16625 +16626 +16627 +16628 +16629 +16630 +16631 +16632 +16633 +16634 +16635 +16636 +16637 +16638 +16639 +16640 +16641 +16642 +16643 +16644 +16645 +16646 +16647 +16648 +16649 +16650 +16651 +16652 +16653 +16654 +16655 +16656 +16657 +16658 +16659 +16660 +16661 +16662 +16663 +16664 +16665 +16666 +16667 +16668 +16669 +16670 +16671 +16672 +16673 +16674 +16675 +16676 +16677 +16678 +16679 +16680 +16681 +16682 +16683 +16684 +16685 +16686 +16687 +16688 +16689 +16690 +16691 +16692 +16693 +16694 +16695 +16696 +16697 +16698 +16699 +16700 +16701 +16702 +16703 +16704 +16705 +16706 +16707 +16708 +16709 +16710 +16711 +16712 +16713 +16714 +16715 +16716 +16717 +16718 +16719 +16720 +16721 +16722 +16723 +16724 +16725 +16726 +16727 +16728 +16729 +16730 +16731 +16732 +16733 +16734 +16735 +16736 +16737 +16738 +16739 +16740 +16741 +16742 +16743 +16744 +16745 +16746 +16747 +16748 +16749 +16750 +16751 +16752 +16753 +16754 +16755 +16756 +16757 +16758 +16759 +16760 +16761 +16762 +16763 +16764 +16765 +16766 +16767 +16768 +16769 +16770 +16771 +16772 +16773 +16774 +16775 +16776 +16777 +16778 +16779 +16780 +16781 +16782 +16783 +16784 +16785 +16786 +16787 +16788 +16789 +16790 +16791 +16792 +16793 +16794 +16795 +16796 +16797 +16798 +16799 +16800 +16801 +16802 +16803 +16804 +16805 +16806 +16807 +16808 +16809 +16810 +16811 +16812 +16813 +16814 +16815 +16816 +16817 +16818 +16819 +16820 +16821 +16822 +16823 +16824 +16825 +16826 +16827 +16828 +16829 +16830 +16831 +16832 +16833 +16834 +16835 +16836 +16837 +16838 +16839 +16840 +16841 +16842 +16843 +16844 +16845 +16846 +16847 +16848 +16849 +16850 +16851 +16852 +16853 +16854 +16855 +16856 +16857 +16858 +16859 +16860 +16861 +16862 +16863 +16864 +16865 +16866 +16867 +16868 +16869 +16870 +16871 +16872 +16873 +16874 +16875 +16876 +16877 +16878 +16879 +16880 +16881 +16882 +16883 +16884 +16885 +16886 +16887 +16888 +16889 +16890 +16891 +16892 +16893 +16894 +16895 +16896 +16897 +16898 +16899 +16900 +16901 +16902 +16903 +16904 +16905 +16906 +16907 +16908 +16909 +16910 +16911 +16912 +16913 +16914 +16915 +16916 +16917 +16918 +16919 +16920 +16921 +16922 +16923 +16924 +16925 +16926 +16927 +16928 +16929 +16930 +16931 +16932 +16933 +16934 +16935 +16936 +16937 +16938 +16939 +16940 +16941 +16942 +16943 +16944 +16945 +16946 +16947 +16948 +16949 +16950 +16951 +16952 +16953 +16954 +16955 +16956 +16957 +16958 +16959 +16960 +16961 +16962 +16963 +16964 +16965 +16966 +16967 +16968 +16969 +16970 +16971 +16972 +16973 +16974 +16975 +16976 +16977 +16978 +16979 +16980 +16981 +16982 +16983 +16984 +16985 +16986 +16987 +16988 +16989 +16990 +16991 +16992 +16993 +16994 +16995 +16996 +16997 +16998 +16999 +17000 +17001 +17002 +17003 +17004 +17005 +17006 +17007 +17008 +17009 +17010 +17011 +17012 +17013 +17014 +17015 +17016 +17017 +17018 +17019 +17020 +17021 +17022 +17023 +17024 +17025 +17026 +17027 +17028 +17029 +17030 +17031 +17032 +17033 +17034 +17035 +17036 +17037 +17038 +17039 +17040 +17041 +17042 +17043 +17044 +17045 +17046 +17047 +17048 +17049 +17050 +17051 +17052 +17053 +17054 +17055 +17056 +17057 +17058 +17059 +17060 +17061 +17062 +17063 +17064 +17065 +17066 +17067 +17068 +17069 +17070 +17071 +17072 +17073 +17074 +17075 +17076 +17077 +17078 +17079 +17080 +17081 +17082 +17083 +17084 +17085 +17086 +17087 +17088 +17089 +17090 +17091 +17092 +17093 +17094 +17095 +17096 +17097 +17098 +17099 +17100 +17101 +17102 +17103 +17104 +17105 +17106 +17107 +17108 +17109 +17110 +17111 +17112 +17113 +17114 +17115 +17116 +17117 +17118 +17119 +17120 +17121 +17122 +17123 +17124 +17125 +17126 +17127 +17128 +17129 +17130 +17131 +17132 +17133 +17134 +17135 +17136 +17137 +17138 +17139 +17140 +17141 +17142 +17143 +17144 +17145 +17146 +17147 +17148 +17149 +17150 +17151 +17152 +17153 +17154 +17155 +17156 +17157 +17158 +17159 +17160 +17161 +17162 +17163 +17164 +17165 +17166 +17167 +17168 +17169 +17170 +17171 +17172 +17173 +17174 +17175 +17176 +17177 +17178 +17179 +17180 +17181 +17182 +17183 +17184 +17185 +17186 +17187 +17188 +17189 +17190 +17191 +17192 +17193 +17194 +17195 +17196 +17197 +17198 +17199 +17200 +17201 +17202 +17203 +17204 +17205 +17206 +17207 +17208 +17209 +17210 +17211 +17212 +17213 +17214 +17215 +17216 +17217 +17218 +17219 +17220 +17221 +17222 +17223 +17224 +17225 +17226 +17227 +17228 +17229 +17230 +17231 +17232 +17233 +17234 +17235 +17236 +17237 +17238 +17239 +17240 +17241 +17242 +17243 +17244 +17245 +17246 +17247 +17248 +17249 +17250 +17251 +17252 +17253 +17254 +17255 +17256 +17257 +17258 +17259 +17260 +17261 +17262 +17263 +17264 +17265 +17266 +17267 +17268 +17269 +17270 +17271 +17272 +17273 +17274 +17275 +17276 +17277 +17278 +17279 +17280 +17281 +17282 +17283 +17284 +17285 +17286 +17287 +17288 +17289 +17290 +17291 +17292 +17293 +17294 +17295 +17296 +17297 +17298 +17299 +17300 +17301 +17302 +17303 +17304 +17305 +17306 +17307 +17308 +17309 +17310 +17311 +17312 +17313 +17314 +17315 +17316 +17317 +17318 +17319 +17320 +17321 +17322 +17323 +17324 +17325 +17326 +17327 +17328 +17329 +17330 +17331 +17332 +17333 +17334 +17335 +17336 +17337 +17338 +17339 +17340 +17341 +17342 +17343 +17344 +17345 +17346 +17347 +17348 +17349 +17350 +17351 +17352 +17353 +17354 +17355 +17356 +17357 +17358 +17359 +17360 +17361 +17362 +17363 +17364 +17365 +17366 +17367 +17368 +17369 +17370 +17371 +17372 +17373 +17374 +17375 +17376 +17377 +17378 +17379 +17380 +17381 +17382 +17383 +17384 +17385 +17386 +17387 +17388 +17389 +17390 +17391 +17392 +17393 +17394 +17395 +17396 +17397 +17398 +17399 +17400 +17401 +17402 +17403 +17404 +17405 +17406 +17407 +17408 +17409 +17410 +17411 +17412 +17413 +17414 +17415 +17416 +17417 +17418 +17419 +17420 +17421 +17422 +17423 +17424 +17425 +17426 +17427 +17428 +17429 +17430 +17431 +17432 +17433 +17434 +17435 +17436 +17437 +17438 +17439 +17440 +17441 +17442 +17443 +17444 +17445 +17446 +17447 +17448 +17449 +17450 +17451 +17452 +17453 +17454 +17455 +17456 +17457 +17458 +17459 +17460 +17461 +17462 +17463 +17464 +17465 +17466 +17467 +17468 +17469 +17470 +17471 +17472 +17473 +17474 +17475 +17476 +17477 +17478 +17479 +17480 +17481 +17482 +17483 +17484 +17485 +17486 +17487 +17488 +17489 +17490 +17491 +17492 +17493 +17494 +17495 +17496 +17497 +17498 +17499 +17500 +17501 +17502 +17503 +17504 +17505 +17506 +17507 +17508 +17509 +17510 +17511 +17512 +17513 +17514 +17515 +17516 +17517 +17518 +17519 +17520 +17521 +17522 +17523 +17524 +17525 +17526 +17527 +17528 +17529 +17530 +17531 +17532 +17533 +17534 +17535 +17536 +17537 +17538 +17539 +17540 +17541 +17542 +17543 +17544 +17545 +17546 +17547 +17548 +17549 +17550 +17551 +17552 +17553 +17554 +17555 +17556 +17557 +17558 +17559 +17560 +17561 +17562 +17563 +17564 +17565 +17566 +17567 +17568 +17569 +17570 +17571 +17572 +17573 +17574 +17575 +17576 +17577 +17578 +17579 +17580 +17581 +17582 +17583 +17584 +17585 +17586 +17587 +17588 +17589 +17590 +17591 +17592 +17593 +17594 +17595 +17596 +17597 +17598 +17599 +17600 +17601 +17602 +17603 +17604 +17605 +17606 +17607 +17608 +17609 +17610 +17611 +17612 +17613 +17614 +17615 +17616 +17617 +17618 +17619 +17620 +17621 +17622 +17623 +17624 +17625 +17626 +17627 +17628 +17629 +17630 +17631 +17632 +17633 +17634 +17635 +17636 +17637 +17638 +17639 +17640 +17641 +17642 +17643 +17644 +17645 +17646 +17647 +17648 +17649 +17650 +17651 +17652 +17653 +17654 +17655 +17656 +17657 +17658 +17659 +17660 +17661 +17662 +17663 +17664 +17665 +17666 +17667 +17668 +17669 +17670 +17671 +17672 +17673 +17674 +17675 +17676 +17677 +17678 +17679 +17680 +17681 +17682 +17683 +17684 +17685 +17686 +17687 +17688 +17689 +17690 +17691 +17692 +17693 +17694 +17695 +17696 +17697 +17698 +17699 +17700 +17701 +17702 +17703 +17704 +17705 +17706 +17707 +17708 +17709 +17710 +17711 +17712 +17713 +17714 +17715 +17716 +17717 +17718 +17719 +17720 +17721 +17722 +17723 +17724 +17725 +17726 +17727 +17728 +17729 +17730 +17731 +17732 +17733 +17734 +17735 +17736 +17737 +17738 +17739 +17740 +17741 +17742 +17743 +17744 +17745 +17746 +17747 +17748 +17749 +17750 +17751 +17752 +17753 +17754 +17755 +17756 +17757 +17758 +17759 +17760 +17761 +17762 +17763 +17764 +17765 +17766 +17767 +17768 +17769 +17770 +17771 +17772 +17773 +17774 +17775 +17776 +17777 +17778 +17779 +17780 +17781 +17782 +17783 +17784 +17785 +17786 +17787 +17788 +17789 +17790 +17791 +17792 +17793 +17794 +17795 +17796 +17797 +17798 +17799 +17800 +17801 +17802 +17803 +17804 +17805 +17806 +17807 +17808 +17809 +17810 +17811 +17812 +17813 +17814 +17815 +17816 +17817 +17818 +17819 +17820 +17821 +17822 +17823 +17824 +17825 +17826 +17827 +17828 +17829 +17830 +17831 +17832 +17833 +17834 +17835 +17836 +17837 +17838 +17839 +17840 +17841 +17842 +17843 +17844 +17845 +17846 +17847 +17848 +17849 +17850 +17851 +17852 +17853 +17854 +17855 +17856 +17857 +17858 +17859 +17860 +17861 +17862 +17863 +17864 +17865 +17866 +17867 +17868 +17869 +17870 +17871 +17872 +17873 +17874 +17875 +17876 +17877 +17878 +17879 +17880 +17881 +17882 +17883 +17884 +17885 +17886 +17887 +17888 +17889 +17890 +17891 +17892 +17893 +17894 +17895 +17896 +17897 +17898 +17899 +17900 +17901 +17902 +17903 +17904 +17905 +17906 +17907 +17908 +17909 +17910 +17911 +17912 +17913 +17914 +17915 +17916 +17917 +17918 +17919 +17920 +17921 +17922 +17923 +17924 +17925 +17926 +17927 +17928 +17929 +17930 +17931 +17932 +17933 +17934 +17935 +17936 +17937 +17938 +17939 +17940 +17941 +17942 +17943 +17944 +17945 +17946 +17947 +17948 +17949 +17950 +17951 +17952 +17953 +17954 +17955 +17956 +17957 +17958 +17959 +17960 +17961 +17962 +17963 +17964 +17965 +17966 +17967 +17968 +17969 +17970 +17971 +17972 +17973 +17974 +17975 +17976 +17977 +17978 +17979 +17980 +17981 +17982 +17983 +17984 +17985 +17986 +17987 +17988 +17989 +17990 +17991 +17992 +17993 +17994 +17995 +17996 +17997 +17998 +17999 +18000 +18001 +18002 +18003 +18004 +18005 +18006 +18007 +18008 +18009 +18010 +18011 +18012 +18013 +18014 +18015 +18016 +18017 +18018 +18019 +18020 +18021 +18022 +18023 +18024 +18025 +18026 +18027 +18028 +18029 +18030 +18031 +18032 +18033 +18034 +18035 +18036 +18037 +18038 +18039 +18040 +18041 +18042 +18043 +18044 +18045 +18046 +18047 +18048 +18049 +18050 +18051 +18052 +18053 +18054 +18055 +18056 +18057 +18058 +18059 +18060 +18061 +18062 +18063 +18064 +18065 +18066 +18067 +18068 +18069 +18070 +18071 +18072 +18073 +18074 +18075 +18076 +18077 +18078 +18079 +18080 +18081 +18082 +18083 +18084 +18085 +18086 +18087 +18088 +18089 +18090 +18091 +18092 +18093 +18094 +18095 +18096 +18097 +18098 +18099 +18100 +18101 +18102 +18103 +18104 +18105 +18106 +18107 +18108 +18109 +18110 +18111 +18112 +18113 +18114 +18115 +18116 +18117 +18118 +18119 +18120 +18121 +18122 +18123 +18124 +18125 +18126 +18127 +18128 +18129 +18130 +18131 +18132 +18133 +18134 +18135 +18136 +18137 +18138 +18139 +18140 +18141 +18142 +18143 +18144 +18145 +18146 +18147 +18148 +18149 +18150 +18151 +18152 +18153 +18154 +18155 +18156 +18157 +18158 +18159 +18160 +18161 +18162 +18163 +18164 +18165 +18166 +18167 +18168 +18169 +18170 +18171 +18172 +18173 +18174 +18175 +18176 +18177 +18178 +18179 +18180 +18181 +18182 +18183 +18184 +18185 +18186 +18187 +18188 +18189 +18190 +18191 +18192 +18193 +18194 +18195 +18196 +18197 +18198 +18199 +18200 +18201 +18202 +18203 +18204 +18205 +18206 +18207 +18208 +18209 +18210 +18211 +18212 +18213 +18214 +18215 +18216 +18217 +18218 +18219 +18220 +18221 +18222 +18223 +18224 +18225 +18226 +18227 +18228 +18229 +18230 +18231 +18232 +18233 +18234 +18235 +18236 +18237 +18238 +18239 +18240 +18241 +18242 +18243 +18244 +18245 +18246 +18247 +18248 +18249 +18250 +18251 +18252 +18253 +18254 +18255 +18256 +18257 +18258 +18259 +18260 +18261 +18262 +18263 +18264 +18265 +18266 +18267 +18268 +18269 +18270 +18271 +18272 +18273 +18274 +18275 +18276 +18277 +18278 +18279 +18280 +18281 +18282 +18283 +18284 +18285 +18286 +18287 +18288 +18289 +18290 +18291 +18292 +18293 +18294 +18295 +18296 +18297 +18298 +18299 +18300 +18301 +18302 +18303 +18304 +18305 +18306 +18307 +18308 +18309 +18310 +18311 +18312 +18313 +18314 +18315 +18316 +18317 +18318 +18319 +18320 +18321 +18322 +18323 +18324 +18325 +18326 +18327 +18328 +18329 +18330 +18331 +18332 +18333 +18334 +18335 +18336 +18337 +18338 +18339 +18340 +18341 +18342 +18343 +18344 +18345 +18346 +18347 +18348 +18349 +18350 +18351 +18352 +18353 +18354 +18355 +18356 +18357 +18358 +18359 +18360 +18361 +18362 +18363 +18364 +18365 +18366 +18367 +18368 +18369 +18370 +18371 +18372 +18373 +18374 +18375 +18376 +18377 +18378 +18379 +18380 +18381 +18382 +18383 +18384 +18385 +18386 +18387 +18388 +18389 +18390 +18391 +18392 +18393 +18394 +18395 +18396 +18397 +18398 +18399 +18400 +18401 +18402 +18403 +18404 +18405 +18406 +18407 +18408 +18409 +18410 +18411 +18412 +18413 +18414 +18415 +18416 +18417 +18418 +18419 +18420 +18421 +18422 +18423 +18424 +18425 +18426 +18427 +18428 +18429 +18430 +18431 +18432 +18433 +18434 +18435 +18436 +18437 +18438 +18439 +18440 +18441 +18442 +18443 +18444 +18445 +18446 +18447 +18448 +18449 +18450 +18451 +18452 +18453 +18454 +18455 +18456 +18457 +18458 +18459 +18460 +18461 +18462 +18463 +18464 +18465 +18466 +18467 +18468 +18469 +18470 +18471 +18472 +18473 +18474 +18475 +18476 +18477 +18478 +18479 +18480 +18481 +18482 +18483 +18484 +18485 +18486 +18487 +18488 +18489 +18490 +18491 +18492 +18493 +18494 +18495 +18496 +18497 +18498 +18499 +18500 +18501 +18502 +18503 +18504 +18505 +18506 +18507 +18508 +18509 +18510 +18511 +18512 +18513 +18514 +18515 +18516 +18517 +18518 +18519 +18520 +18521 +18522 +18523 +18524 +18525 +18526 +18527 +18528 +18529 +18530 +18531 +18532 +18533 +18534 +18535 +18536 +18537 +18538 +18539 +18540 +18541 +18542 +18543 +18544 +18545 +18546 +18547 +18548 +18549 +18550 +18551 +18552 +18553 +18554 +18555 +18556 +18557 +18558 +18559 +18560 +18561 +18562 +18563 +18564 +18565 +18566 +18567 +18568 +18569 +18570 +18571 +18572 +18573 +18574 +18575 +18576 +18577 +18578 +18579 +18580 +18581 +18582 +18583 +18584 +18585 +18586 +18587 +18588 +18589 +18590 +18591 +18592 +18593 +18594 +18595 +18596 +18597 +18598 +18599 +18600 +18601 +18602 +18603 +18604 +18605 +18606 +18607 +18608 +18609 +18610 +18611 +18612 +18613 +18614 +18615 +18616 +18617 +18618 +18619 +18620 +18621 +18622 +18623 +18624 +18625 +18626 +18627 +18628 +18629 +18630 +18631 +18632 +18633 +18634 +18635 +18636 +18637 +18638 +18639 +18640 +18641 +18642 +18643 +18644 +18645 +18646 +18647 +18648 +18649 +18650 +18651 +18652 +18653 +18654 +18655 +18656 +18657 +18658 +18659 +18660 +18661 +18662 +18663 +18664 +18665 +18666 +18667 +18668 +18669 +18670 +18671 +18672 +18673 +18674 +18675 +18676 +18677 +18678 +18679 +18680 +18681 +18682 +18683 +18684 +18685 +18686 +18687 +18688 +18689 +18690 +18691 +18692 +18693 +18694 +18695 +18696 +18697 +18698 +18699 +18700 +18701 +18702 +18703 +18704 +18705 +18706 +18707 +18708 +18709 +18710 +18711 +18712 +18713 +18714 +18715 +18716 +18717 +18718 +18719 +18720 +18721 +18722 +18723 +18724 +18725 +18726 +18727 +18728 +18729 +18730 +18731 +18732 +18733 +18734 +18735 +18736 +18737 +18738 +18739 +18740 +18741 +18742 +18743 +18744 +18745 +18746 +18747 +18748 +18749 +18750 +18751 +18752 +18753 +18754 +18755 +18756 +18757 +18758 +18759 +18760 +18761 +18762 +18763 +18764 +18765 +18766 +18767 +18768 +18769 +18770 +18771 +18772 +18773 +18774 +18775 +18776 +18777 +18778 +18779 +18780 +18781 +18782 +18783 +18784 +18785 +18786 +18787 +18788 +18789 +18790 +18791 +18792 +18793 +18794 +18795 +18796 +18797 +18798 +18799 +18800 +18801 +18802 +18803 +18804 +18805 +18806 +18807 +18808 +18809 +18810 +18811 +18812 +18813 +18814 +18815 +18816 +18817 +18818 +18819 +18820 +18821 +18822 +18823 +18824 +18825 +18826 +18827 +18828 +18829 +18830 +18831 +18832 +18833 +18834 +18835 +18836 +18837 +18838 +18839 +18840 +18841 +18842 +18843 +18844 +18845 +18846 +18847 +18848 +18849 +18850 +18851 +18852 +18853 +18854 +18855 +18856 +18857 +18858 +18859 +18860 +18861 +18862 +18863 +18864 +18865 +18866 +18867 +18868 +18869 +18870 +18871 +18872 +18873 +18874 +18875 +18876 +18877 +18878 +18879 +18880 +18881 +18882 +18883 +18884 +18885 +18886 +18887 +18888 +18889 +18890 +18891 +18892 +18893 +18894 +18895 +18896 +18897 +18898 +18899 +18900 +18901 +18902 +18903 +18904 +18905 +18906 +18907 +18908 +18909 +18910 +18911 +18912 +18913 +18914 +18915 +18916 +18917 +18918 +18919 +18920 +18921 +18922 +18923 +18924 +18925 +18926 +18927 +18928 +18929 +18930 +18931 +18932 +18933 +18934 +18935 +18936 +18937 +18938 +18939 +18940 +18941 +18942 +18943 +18944 +18945 +18946 +18947 +18948 +18949 +18950 +18951 +18952 +18953 +18954 +18955 +18956 +18957 +18958 +18959 +18960 +18961 +18962 +18963 +18964 +18965 +18966 +18967 +18968 +18969 +18970 +18971 +18972 +18973 +18974 +18975 +18976 +18977 +18978 +18979 +18980 +18981 +18982 +18983 +18984 +18985 +18986 +18987 +18988 +18989 +18990 +18991 +18992 +18993 +18994 +18995 +18996 +18997 +18998 +18999 +19000 +19001 +19002 +19003 +19004 +19005 +19006 +19007 +19008 +19009 +19010 +19011 +19012 +19013 +19014 +19015 +19016 +19017 +19018 +19019 +19020 +19021 +19022 +19023 +19024 +19025 +19026 +19027 +19028 +19029 +19030 +19031 +19032 +19033 +19034 +19035 +19036 +19037 +19038 +19039 +19040 +19041 +19042 +19043 +19044 +19045 +19046 +19047 +19048 +19049 +19050 +19051 +19052 +19053 +19054 +19055 +19056 +19057 +19058 +19059 +19060 +19061 +19062 +19063 +19064 +19065 +19066 +19067 +19068 +19069 +19070 +19071 +19072 +19073 +19074 +19075 +19076 +19077 +19078 +19079 +19080 +19081 +19082 +19083 +19084 +19085 +19086 +19087 +19088 +19089 +19090 +19091 +19092 +19093 +19094 +19095 +19096 +19097 +19098 +19099 +19100 +19101 +19102 +19103 +19104 +19105 +19106 +19107 +19108 +19109 +19110 +19111 +19112 +19113 +19114 +19115 +19116 +19117 +19118 +19119 +19120 +19121 +19122 +19123 +19124 +19125 +19126 +19127 +19128 +19129 +19130 +19131 +19132 +19133 +19134 +19135 +19136 +19137 +19138 +19139 +19140 +19141 +19142 +19143 +19144 +19145 +19146 +19147 +19148 +19149 +19150 +19151 +19152 +19153 +19154 +19155 +19156 +19157 +19158 +19159 +19160 +19161 +19162 +19163 +19164 +19165 +19166 +19167 +19168 +19169 +19170 +19171 +19172 +19173 +19174 +19175 +19176 +19177 +19178 +19179 +19180 +19181 +19182 +19183 +19184 +19185 +19186 +19187 +19188 +19189 +19190 +19191 +19192 +19193 +19194 +19195 +19196 +19197 +19198 +19199 +19200 +19201 +19202 +19203 +19204 +19205 +19206 +19207 +19208 +19209 +19210 +19211 +19212 +19213 +19214 +19215 +19216 +19217 +19218 +19219 +19220 +19221 +19222 +19223 +19224 +19225 +19226 +19227 +19228 +19229 +19230 +19231 +19232 +19233 +19234 +19235 +19236 +19237 +19238 +19239 +19240 +19241 +19242 +19243 +19244 +19245 +19246 +19247 +19248 +19249 +19250 +19251 +19252 +19253 +19254 +19255 +19256 +19257 +19258 +19259 +19260 +19261 +19262 +19263 +19264 +19265 +19266 +19267 +19268 +19269 +19270 +19271 +19272 +19273 +19274 +19275 +19276 +19277 +19278 +19279 +19280 +19281 +19282 +19283 +19284 +19285 +19286 +19287 +19288 +19289 +19290 +19291 +19292 +19293 +19294 +19295 +19296 +19297 +19298 +19299 +19300 +19301 +19302 +19303 +19304 +19305 +19306 +19307 +19308 +19309 +19310 +19311 +19312 +19313 +19314 +19315 +19316 +19317 +19318 +19319 +19320 +19321 +19322 +19323 +19324 +19325 +19326 +19327 +19328 +19329 +19330 +19331 +19332 +19333 +19334 +19335 +19336 +19337 +19338 +19339 +19340 +19341 +19342 +19343 +19344 +19345 +19346 +19347 +19348 +19349 +19350 +19351 +19352 +19353 +19354 +19355 +19356 +19357 +19358 +19359 +19360 +19361 +19362 +19363 +19364 +19365 +19366 +19367 +19368 +19369 +19370 +19371 +19372 +19373 +19374 +19375 +19376 +19377 +19378 +19379 +19380 +19381 +19382 +19383 +19384 +19385 +19386 +19387 +19388 +19389 +19390 +19391 +19392 +19393 +19394 +19395 +19396 +19397 +19398 +19399 +19400 +19401 +19402 +19403 +19404 +19405 +19406 +19407 +19408 +19409 +19410 +19411 +19412 +19413 +19414 +19415 +19416 +19417 +19418 +19419 +19420 +19421 +19422 +19423 +19424 +19425 +19426 +19427 +19428 +19429 +19430 +19431 +19432 +19433 +19434 +19435 +19436 +19437 +19438 +19439 +19440 +19441 +19442 +19443 +19444 +19445 +19446 +19447 +19448 +19449 +19450 +19451 +19452 +19453 +19454 +19455 +19456 +19457 +19458 +19459 +19460 +19461 +19462 +19463 +19464 +19465 +19466 +19467 +19468 +19469 +19470 +19471 +19472 +19473 +19474 +19475 +19476 +19477 +19478 +19479 +19480 +19481 +19482 +19483 +19484 +19485 +19486 +19487 +19488 +19489 +19490 +19491 +19492 +19493 +19494 +19495 +19496 +19497 +19498 +19499 +19500 +19501 +19502 +19503 +19504 +19505 +19506 +19507 +19508 +19509 +19510 +19511 +19512 +19513 +19514 +19515 +19516 +19517 +19518 +19519 +19520 +19521 +19522 +19523 +19524 +19525 +19526 +19527 +19528 +19529 +19530 +19531 +19532 +19533 +19534 +19535 +19536 +19537 +19538 +19539 +19540 +19541 +19542 +19543 +19544 +19545 +19546 +19547 +19548 +19549 +19550 +19551 +19552 +19553 +19554 +19555 +19556 +19557 +19558 +19559 +19560 +19561 +19562 +19563 +19564 +19565 +19566 +19567 +19568 +19569 +19570 +19571 +19572 +19573 +19574 +19575 +19576 +19577 +19578 +19579 +19580 +19581 +19582 +19583 +19584 +19585 +19586 +19587 +19588 +19589 +19590 +19591 +19592 +19593 +19594 +19595 +19596 +19597 +19598 +19599 +19600 +19601 +19602 +19603 +19604 +19605 +19606 +19607 +19608 +19609 +19610 +19611 +19612 +19613 +19614 +19615 +19616 +19617 +19618 +19619 +19620 +19621 +19622 +19623 +19624 +19625 +19626 +19627 +19628 +19629 +19630 +19631 +19632 +19633 +19634 +19635 +19636 +19637 +19638 +19639 +19640 +19641 +19642 +19643 +19644 +19645 +19646 +19647 +19648 +19649 +19650 +19651 +19652 +19653 +19654 +19655 +19656 +19657 +19658 +19659 +19660 +19661 +19662 +19663 +19664 +19665 +19666 +19667 +19668 +19669 +19670 +19671 +19672 +19673 +19674 +19675 +19676 +19677 +19678 +19679 +19680 +19681 +19682 +19683 +19684 +19685 +19686 +19687 +19688 +19689 +19690 +19691 +19692 +19693 +19694 +19695 +19696 +19697 +19698 +19699 +19700 +19701 +19702 +19703 +19704 +19705 +19706 +19707 +19708 +19709 +19710 +19711 +19712 +19713 +19714 +19715 +19716 +19717 +19718 +19719 +19720 +19721 +19722 +19723 +19724 +19725 +19726 +19727 +19728 +19729 +19730 +19731 +19732 +19733 +19734 +19735 +19736 +19737 +19738 +19739 +19740 +19741 +19742 +19743 +19744 +19745 +19746 +19747 +19748 +19749 +19750 +19751 +19752 +19753 +19754 +19755 +19756 +19757 +19758 +19759 +19760 +19761 +19762 +19763 +19764 +19765 +19766 +19767 +19768 +19769 +19770 +19771 +19772 +19773 +19774 +19775 +19776 +19777 +19778 +19779 +19780 +19781 +19782 +19783 +19784 +19785 +19786 +19787 +19788 +19789 +19790 +19791 +19792 +19793 +19794 +19795 +19796 +19797 +19798 +19799 +19800 +19801 +19802 +19803 +19804 +19805 +19806 +19807 +19808 +19809 +19810 +19811 +19812 +19813 +19814 +19815 +19816 +19817 +19818 +19819 +19820 +19821 +19822 +19823 +19824 +19825 +19826 +19827 +19828 +19829 +19830 +19831 +19832 +19833 +19834 +19835 +19836 +19837 +19838 +19839 +19840 +19841 +19842 +19843 +19844 +19845 +19846 +19847 +19848 +19849 +19850 +19851 +19852 +19853 +19854 +19855 +19856 +19857 +19858 +19859 +19860 +19861 +19862 +19863 +19864 +19865 +19866 +19867 +19868 +19869 +19870 +19871 +19872 +19873 +19874 +19875 +19876 +19877 +19878 +19879 +19880 +19881 +19882 +19883 +19884 +19885 +19886 +19887 +19888 +19889 +19890 +19891 +19892 +19893 +19894 +19895 +19896 +19897 +19898 +19899 +19900 +19901 +19902 +19903 +19904 +19905 +19906 +19907 +19908 +19909 +19910 +19911 +19912 +19913 +19914 +19915 +19916 +19917 +19918 +19919 +19920 +19921 +19922 +19923 +19924 +19925 +19926 +19927 +19928 +19929 +19930 +19931 +19932 +19933 +19934 +19935 +19936 +19937 +19938 +19939 +19940 +19941 +19942 +19943 +19944 +19945 +19946 +19947 +19948 +19949 +19950 +19951 +19952 +19953 +19954 +19955 +19956 +19957 +19958 +19959 +19960 +19961 +19962 +19963 +19964 +19965 +19966 +19967 +19968 +19969 +19970 +19971 +19972 +19973 +19974 +19975 +19976 +19977 +19978 +19979 +19980 +19981 +19982 +19983 +19984 +19985 +19986 +19987 +19988 +19989 +19990 +19991 +19992 +19993 +19994 +19995 +19996 +19997 +19998 +19999 +20000 +20001 +20002 +20003 +20004 +20005 +20006 +20007 +20008 +20009 +20010 +20011 +20012 +20013 +20014 +20015 +20016 +20017 +20018 +20019 +20020 +20021 +20022 +20023 +20024 +20025 +20026 +20027 +20028 +20029 +20030 +20031 +20032 +20033 +20034 +20035 +20036 +20037 +20038 +20039 +20040 +20041 +20042 +20043 +20044 +20045 +20046 +20047 +20048 +20049 +20050 +20051 +20052 +20053 +20054 +20055 +20056 +20057 +20058 +20059 +20060 +20061 +20062 +20063 +20064 +20065 +20066 +20067 +20068 +20069 +20070 +20071 +20072 +20073 +20074 +20075 +20076 +20077 +20078 +20079 +20080 +20081 +20082 +20083 +20084 +20085 +20086 +20087 +20088 +20089 +20090 +20091 +20092 +20093 +20094 +20095 +20096 +20097 +20098 +20099 +20100 +20101 +20102 +20103 +20104 +20105 +20106 +20107 +20108 +20109 +20110 +20111 +20112 +20113 +20114 +20115 +20116 +20117 +20118 +20119 +20120 +20121 +20122 +20123 +20124 +20125 +20126 +20127 +20128 +20129 +20130 +20131 +20132 +20133 +20134 +20135 +20136 +20137 +20138 +20139 +20140 +20141 +20142 +20143 +20144 +20145 +20146 +20147 +20148 +20149 +20150 +20151 +20152 +20153 +20154 +20155 +20156 +20157 +20158 +20159 +20160 +20161 +20162 +20163 +20164 +20165 +20166 +20167 +20168 +20169 +20170 +20171 +20172 +20173 +20174 +20175 +20176 +20177 +20178 +20179 +20180 +20181 +20182 +20183 +20184 +20185 +20186 +20187 +20188 +20189 +20190 +20191 +20192 +20193 +20194 +20195 +20196 +20197 +20198 +20199 +20200 +20201 +20202 +20203 +20204 +20205 +20206 +20207 +20208 +20209 +20210 +20211 +20212 +20213 +20214 +20215 +20216 +20217 +20218 +20219 +20220 +20221 +20222 +20223 +20224 +20225 +20226 +20227 +20228 +20229 +20230 +20231 +20232 +20233 +20234 +20235 +20236 +20237 +20238 +20239 +20240 +20241 +20242 +20243 +20244 +20245 +20246 +20247 +20248 +20249 +20250 +20251 +20252 +20253 +20254 +20255 +20256 +20257 +20258 +20259 +20260 +20261 +20262 +20263 +20264 +20265 +20266 +20267 +20268 +20269 +20270 +20271 +20272 +20273 +20274 +20275 +20276 +20277 +20278 +20279 +20280 +20281 +20282 +20283 +20284 +20285 +20286 +20287 +20288 +20289 +20290 +20291 +20292 +20293 +20294 +20295 +20296 +20297 +20298 +20299 +20300 +20301 +20302 +20303 +20304 +20305 +20306 +20307 +20308 +20309 +20310 +20311 +20312 +20313 +20314 +20315 +20316 +20317 +20318 +20319 +20320 +20321 +20322 +20323 +20324 +20325 +20326 +20327 +20328 +20329 +20330 +20331 +20332 +20333 +20334 +20335 +20336 +20337 +20338 +20339 +20340 +20341 +20342 +20343 +20344 +20345 +20346 +20347 +20348 +20349 +20350 +20351 +20352 +20353 +20354 +20355 +20356 +20357 +20358 +20359 +20360 +20361 +20362 +20363 +20364 +20365 +20366 +20367 +20368 +20369 +20370 +20371 +20372 +20373 +20374 +20375 +20376 +20377 +20378 +20379 +20380 +20381 +20382 +20383 +20384 +20385 +20386 +20387 +20388 +20389 +20390 +20391 +20392 +20393 +20394 +20395 +20396 +20397 +20398 +20399 +20400 +20401 +20402 +20403 +20404 +20405 +20406 +20407 +20408 +20409 +20410 +20411 +20412 +20413 +20414 +20415 +20416 +20417 +20418 +20419 +20420 +20421 +20422 +20423 +20424 +20425 +20426 +20427 +20428 +20429 +20430 +20431 +20432 +20433 +20434 +20435 +20436 +20437 +20438 +20439 +20440 +20441 +20442 +20443 +20444 +20445 +20446 +20447 +20448 +20449 +20450 +20451 +20452 +20453 +20454 +20455 +20456 +20457 +20458 +20459 +20460 +20461 +20462 +20463 +20464 +20465 +20466 +20467 +20468 +20469 +20470 +20471 +20472 +20473 +20474 +20475 +20476 +20477 +20478 +20479 +20480 +20481 +20482 +20483 +20484 +20485 +20486 +20487 +20488 +20489 +20490 +20491 +20492 +20493 +20494 +20495 +20496 +20497 +20498 +20499 +20500 +20501 +20502 +20503 +20504 +20505 +20506 +20507 +20508 +20509 +20510 +20511 +20512 +20513 +20514 +20515 +20516 +20517 +20518 +20519 +20520 +20521 +20522 +20523 +20524 +20525 +20526 +20527 +20528 +20529 +20530 +20531 +20532 +20533 +20534 +20535 +20536 +20537 +20538 +20539 +20540 +20541 +20542 +20543 +20544 +20545 +20546 +20547 +20548 +20549 +20550 +20551 +20552 +20553 +20554 +20555 +20556 +20557 +20558 +20559 +20560 +20561 +20562 +20563 +20564 +20565 +20566 +20567 +20568 +20569 +20570 +20571 +20572 +20573 +20574 +20575 +20576 +20577 +20578 +20579 +20580 +20581 +20582 +20583 +20584 +20585 +20586 +20587 +20588 +20589 +20590 +20591 +20592 +20593 +20594 +20595 +20596 +20597 +20598 +20599 +20600 +20601 +20602 +20603 +20604 +20605 +20606 +20607 +20608 +20609 +20610 +20611 +20612 +20613 +20614 +20615 +20616 +20617 +20618 +20619 +20620 +20621 +20622 +20623 +20624 +20625 +20626 +20627 +20628 +20629 +20630 +20631 +20632 +20633 +20634 +20635 +20636 +20637 +20638 +20639 +20640 +20641 +20642 +20643 +20644 +20645 +20646 +20647 +20648 +20649 +20650 +20651 +20652 +20653 +20654 +20655 +20656 +20657 +20658 +20659 +20660 +20661 +20662 +20663 +20664 +20665 +20666 +20667 +20668 +20669 +20670 +20671 +20672 +20673 +20674 +20675 +20676 +20677 +20678 +20679 +20680 +20681 +20682 +20683 +20684 +20685 +20686 +20687 +20688 +20689 +20690 +20691 +20692 +20693 +20694 +20695 +20696 +20697 +20698 +20699 +20700 +20701 +20702 +20703 +20704 +20705 +20706 +20707 +20708 +20709 +20710 +20711 +20712 +20713 +20714 +20715 +20716 +20717 +20718 +20719 +20720 +20721 +20722 +20723 +20724 +20725 +20726 +20727 +20728 +20729 +20730 +20731 +20732 +20733 +20734 +20735 +20736 +20737 +20738 +20739 +20740 +20741 +20742 +20743 +20744 +20745 +20746 +20747 +20748 +20749 +20750 +20751 +20752 +20753 +20754 +20755 +20756 +20757 +20758 +20759 +20760 +20761 +20762 +20763 +20764 +20765 +20766 +20767 +20768 +20769 +20770 +20771 +20772 +20773 +20774 +20775 +20776 +20777 +20778 +20779 +20780 +20781 +20782 +20783 +20784 +20785 +20786 +20787 +20788 +20789 +20790 +20791 +20792 +20793 +20794 +20795 +20796 +20797 +20798 +20799 +20800 +20801 +20802 +20803 +20804 +20805 +20806 +20807 +20808 +20809 +20810 +20811 +20812 +20813 +20814 +20815 +20816 +20817 +20818 +20819 +20820 +20821 +20822 +20823 +20824 +20825 +20826 +20827 +20828 +20829 +20830 +20831 +20832 +20833 +20834 +20835 +20836 +20837 +20838 +20839 +20840 +20841 +20842 +20843 +20844 +20845 +20846 +20847 +20848 +20849 +20850 +20851 +20852 +20853 +20854 +20855 +20856 +20857 +20858 +20859 +20860 +20861 +20862 +20863 +20864 +20865 +20866 +20867 +20868 +20869 +20870 +20871 +20872 +20873 +20874 +20875 +20876 +20877 +20878 +20879 +20880 +20881 +20882 +20883 +20884 +20885 +20886 +20887 +20888 +20889 +20890 +20891 +20892 +20893 +20894 +20895 +20896 +20897 +20898 +20899 +20900 +20901 +20902 +20903 +20904 +20905 +20906 +20907 +20908 +20909 +20910 +20911 +20912 +20913 +20914 +20915 +20916 +20917 +20918 +20919 +20920 +20921 +20922 +20923 +20924 +20925 +20926 +20927 +20928 +20929 +20930 +20931 +20932 +20933 +20934 +20935 +20936 +20937 +20938 +20939 +20940 +20941 +20942 +20943 +20944 +20945 +20946 +20947 +20948 +20949 +20950 +20951 +20952 +20953 +20954 +20955 +20956 +20957 +20958 +20959 +20960 +20961 +20962 +20963 +20964 +20965 +20966 +20967 +20968 +20969 +20970 +20971 +20972 +20973 +20974 +20975 +20976 +20977 +20978 +20979 +20980 +20981 +20982 +20983 +20984 +20985 +20986 +20987 +20988 +20989 +20990 +20991 +20992 +20993 +20994 +20995 +20996 +20997 +20998 +20999 +21000 +21001 +21002 +21003 +21004 +21005 +21006 +21007 +21008 +21009 +21010 +21011 +21012 +21013 +21014 +21015 +21016 +21017 +21018 +21019 +21020 +21021 +21022 +21023 +21024 +21025 +21026 +21027 +21028 +21029 +21030 +21031 +21032 +21033 +21034 +21035 +21036 +21037 +21038 +21039 +21040 +21041 +21042 +21043 +21044 +21045 +21046 +21047 +21048 +21049 +21050 +21051 +21052 +21053 +21054 +21055 +21056 +21057 +21058 +21059 +21060 +21061 +21062 +21063 +21064 +21065 +21066 +21067 +21068 +21069 +21070 +21071 +21072 +21073 +21074 +21075 +21076 +21077 +21078 +21079 +21080 +21081 +21082 +21083 +21084 +21085 +21086 +21087 +21088 +21089 +21090 +21091 +21092 +21093 +21094 +21095 +21096 +21097 +21098 +21099 +21100 +21101 +21102 +21103 +21104 +21105 +21106 +21107 +21108 +21109 +21110 +21111 +21112 +21113 +21114 +21115 +21116 +21117 +21118 +21119 +21120 +21121 +21122 +21123 +21124 +21125 +21126 +21127 +21128 +21129 +21130 +21131 +21132 +21133 +21134 +21135 +21136 +21137 +21138 +21139 +21140 +21141 +21142 +21143 +21144 +21145 +21146 +21147 +21148 +21149 +21150 +21151 +21152 +21153 +21154 +21155 +21156 +21157 +21158 +21159 +21160 +21161 +21162 +21163 +21164 +21165 +21166 +21167 +21168 +21169 +21170 +21171 +21172 +21173 +21174 +21175 +21176 +21177 +21178 +21179 +21180 +21181 +21182 +21183 +21184 +21185 +21186 +21187 +21188 +21189 +21190 +21191 +21192 +21193 +21194 +21195 +21196 +21197 +21198 +21199 +21200 +21201 +21202 +21203 +21204 +21205 +21206 +21207 +21208 +21209 +21210 +21211 +21212 +21213 +21214 +21215 +21216 +21217 +21218 +21219 +21220 +21221 +21222 +21223 +21224 +21225 +21226 +21227 +21228 +21229 +21230 +21231 +21232 +21233 +21234 +21235 +21236 +21237 +21238 +21239 +21240 +21241 +21242 +21243 +21244 +21245 +21246 +21247 +21248 +21249 +21250 +21251 +21252 +21253 +21254 +21255 +21256 +21257 +21258 +21259 +21260 +21261 +21262 +21263 +21264 +21265 +21266 +21267 +21268 +21269 +21270 +21271 +21272 +21273 +21274 +21275 +21276 +21277 +21278 +21279 +21280 +21281 +21282 +21283 +21284 +21285 +21286 +21287 +21288 +21289 +21290 +21291 +21292 +21293 +21294 +21295 +21296 +21297 +21298 +21299 +21300 +21301 +21302 +21303 +21304 +21305 +21306 +21307 +21308 +21309 +21310 +21311 +21312 +21313 +21314 +21315 +21316 +21317 +21318 +21319 +21320 +21321 +21322 +21323 +21324 +21325 +21326 +21327 +21328 +21329 +21330 +21331 +21332 +21333 +21334 +21335 +21336 +21337 +21338 +21339 +21340 +21341 +21342 +21343 +21344 +21345 +21346 +21347 +21348 +21349 +21350 +21351 +21352 +21353 +21354 +21355 +21356 +21357 +21358 +21359 +21360 +21361 +21362 +21363 +21364 +21365 +21366 +21367 +21368 +21369 +21370 +21371 +21372 +21373 +21374 +21375 +21376 +21377 +21378 +21379 +21380 +21381 +21382 +21383 +21384 +21385 +21386 +21387 +21388 +21389 +21390 +21391 +21392 +21393 +21394 +21395 +21396 +21397 +21398 +21399 +21400 +21401 +21402 +21403 +21404 +21405 +21406 +21407 +21408 +21409 +21410 +21411 +21412 +21413 +21414 +21415 +21416 +21417 +21418 +21419 +21420 +21421 +21422 +21423 +21424 +21425 +21426 +21427 +21428 +21429 +21430 +21431 +21432 +21433 +21434 +21435 +21436 +21437 +21438 +21439 +21440 +21441 +21442 +21443 +21444 +21445 +21446 +21447 +21448 +21449 +21450 +21451 +21452 +21453 +21454 +21455 +21456 +21457 +21458 +21459 +21460 +21461 +21462 +21463 +21464 +21465 +21466 +21467 +21468 +21469 +21470 +21471 +21472 +21473 +21474 +21475 +21476 +21477 +21478 +21479 +21480 +21481 +21482 +21483 +21484 +21485 +21486 +21487 +21488 +21489 +21490 +21491 +21492 +21493 +21494 +21495 +21496 +21497 +21498 +21499 +21500 +21501 +21502 +21503 +21504 +21505 +21506 +21507 +21508 +21509 +21510 +21511 +21512 +21513 +21514 +21515 +21516 +21517 +21518 +21519 +21520 +21521 +21522 +21523 +21524 +21525 +21526 +21527 +21528 +21529 +21530 +21531 +21532 +21533 +21534 +21535 +21536 +21537 +21538 +21539 +21540 +21541 +21542 +21543 +21544 +21545 +21546 +21547 +21548 +21549 +21550 +21551 +21552 +21553 +21554 +21555 +21556 +21557 +21558 +21559 +21560 +21561 +21562 +21563 +21564 +21565 +21566 +21567 +21568 +21569 +21570 +21571 +21572 +21573 +21574 +21575 +21576 +21577 +21578 +21579 +21580 +21581 +21582 +21583 +21584 +21585 +21586 +21587 +21588 +21589 +21590 +21591 +21592 +21593 +21594 +21595 +21596 +21597 +21598 +21599 +21600 +21601 +21602 +21603 +21604 +21605 +21606 +21607 +21608 +21609 +21610 +21611 +21612 +21613 +21614 +21615 +21616 +21617 +21618 +21619 +21620 +21621 +21622 +21623 +21624 +21625 +21626 +21627 +21628 +21629 +21630 +21631 +21632 +21633 +21634 +21635 +21636 +21637 +21638 +21639 +21640 +21641 +21642 +21643 +21644 +21645 +21646 +21647 +21648 +21649 +21650 +21651 +21652 +21653 +21654 +21655 +21656 +21657 +21658 +21659 +21660 +21661 +21662 +21663 +21664 +21665 +21666 +21667 +21668 +21669 +21670 +21671 +21672 +21673 +21674 +21675 +21676 +21677 +21678 +21679 +21680 +21681 +21682 +21683 +21684 +21685 +21686 +21687 +21688 +21689 +21690 +21691 +21692 +21693 +21694 +21695 +21696 +21697 +21698 +21699 +21700 +21701 +21702 +21703 +21704 +21705 +21706 +21707 +21708 +21709 +21710 +21711 +21712 +21713 +21714 +21715 +21716 +21717 +21718 +21719 +21720 +21721 +21722 +21723 +21724 +21725 +21726 +21727 +21728 +21729 +21730 +21731 +21732 +21733 +21734 +21735 +21736 +21737 +21738 +21739 +21740 +21741 +21742 +21743 +21744 +21745 +21746 +21747 +21748 +21749 +21750 +21751 +21752 +21753 +21754 +21755 +21756 +21757 +21758 +21759 +21760 +21761 +21762 +21763 +21764 +21765 +21766 +21767 +21768 +21769 +21770 +21771 +21772 +21773 +21774 +21775 +21776 +21777 +21778 +21779 +21780 +21781 +21782 +21783 +21784 +21785 +21786 +21787 +21788 +21789 +21790 +21791 +21792 +21793 +21794 +21795 +21796 +21797 +21798 +21799 +21800 +21801 +21802 +21803 +21804 +21805 +21806 +21807 +21808 +21809 +21810 +21811 +21812 +21813 +21814 +21815 +21816 +21817 +21818 +21819 +21820 +21821 +21822 +21823 +21824 +21825 +21826 +21827 +21828 +21829 +21830 +21831 +21832 +21833 +21834 +21835 +21836 +21837 +21838 +21839 +21840 +21841 +21842 diff --git a/pytorch-image-models/timm/data/_info/imagenet21k_miil_synsets.txt b/pytorch-image-models/timm/data/_info/imagenet21k_miil_synsets.txt new file mode 100644 index 0000000000000000000000000000000000000000..2fa3eedf8fe34e7759e6a70dc8fd2e41dfc3ba96 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet21k_miil_synsets.txt @@ -0,0 +1,11221 @@ +n00005787 +n00006484 +n00007846 +n00015388 +n00017222 +n00021265 +n00021939 +n00120010 +n00141669 +n00288000 +n00288384 +n00324978 +n00326094 +n00433458 +n00433661 +n00433802 +n00434075 +n00439826 +n00440039 +n00440382 +n00440509 +n00440747 +n00440941 +n00441073 +n00441824 +n00442115 +n00442437 +n00442847 +n00442981 +n00443231 +n00443692 +n00443803 +n00444651 +n00444846 +n00444937 +n00445055 +n00445226 +n00445351 +n00445685 +n00445802 +n00446311 +n00446493 +n00446804 +n00446980 +n00447073 +n00447221 +n00447463 +n00447540 +n00447957 +n00448126 +n00448232 +n00448466 +n00448640 +n00448748 +n00448872 +n00448958 +n00449054 +n00449168 +n00449295 +n00449517 +n00449695 +n00449796 +n00449892 +n00449977 +n00450070 +n00450335 +n00450700 +n00450866 +n00450998 +n00451186 +n00451370 +n00451563 +n00451635 +n00452034 +n00452152 +n00452293 +n00452864 +n00453126 +n00453313 +n00453396 +n00453478 +n00453935 +n00454237 +n00454395 +n00454493 +n00454624 +n00454983 +n00455173 +n00456465 +n00463246 +n00463543 +n00464277 +n00464478 +n00464651 +n00464894 +n00466273 +n00466377 +n00466524 +n00466630 +n00466712 +n00466880 +n00467320 +n00467536 +n00467719 +n00467995 +n00468299 +n00468480 +n00469651 +n00470554 +n00470682 +n00470830 +n00470966 +n00471437 +n00471613 +n00474568 +n00474657 +n00475014 +n00475273 +n00475403 +n00475535 +n00475787 +n00476235 +n00476389 +n00477392 +n00477639 +n00478262 +n00479076 +n00479440 +n00479616 +n00479887 +n00480211 +n00480366 +n00480508 +n00480993 +n00481803 +n00482122 +n00482298 +n00483205 +n00483313 +n00483409 +n00483508 +n00483605 +n00483705 +n00483848 +n00523513 +n00825773 +n00887544 +n01055165 +n01314388 +n01314663 +n01314781 +n01315213 +n01316422 +n01317089 +n01317294 +n01317541 +n01317813 +n01317916 +n01318279 +n01318381 +n01318894 +n01319467 +n01321123 +n01321230 +n01321456 +n01321579 +n01321770 +n01321854 +n01322221 +n01322343 +n01322508 +n01322604 +n01322685 +n01322898 +n01322983 +n01323068 +n01323155 +n01323261 +n01323355 +n01323493 +n01323599 +n01324431 +n01324610 +n01326291 +n01338685 +n01339083 +n01339336 +n01339471 +n01339801 +n01340014 +n01379389 +n01381044 +n01384164 +n01392275 +n01392380 +n01395254 +n01396048 +n01397114 +n01397871 +n01402600 +n01405007 +n01407798 +n01410457 +n01415626 +n01421807 +n01424420 +n01438581 +n01439121 +n01439514 +n01440764 +n01441117 +n01442972 +n01443243 +n01443537 +n01443831 +n01444339 +n01446760 +n01447331 +n01447658 +n01448291 +n01448594 +n01448951 +n01449374 +n01449712 +n01451426 +n01453087 +n01454545 +n01455778 +n01456756 +n01457852 +n01459791 +n01462042 +n01462544 +n01464844 +n01468238 +n01468712 +n01469103 +n01471682 +n01472303 +n01477525 +n01477875 +n01482071 +n01482330 +n01483830 +n01484097 +n01484850 +n01485479 +n01486838 +n01487506 +n01488038 +n01489501 +n01489709 +n01489920 +n01490112 +n01490360 +n01490670 +n01491006 +n01491361 +n01491874 +n01492569 +n01493146 +n01494475 +n01495006 +n01495493 +n01495701 +n01496331 +n01497118 +n01498041 +n01498989 +n01499396 +n01500091 +n01500476 +n01501160 +n01503061 +n01503976 +n01504179 +n01504344 +n01514668 +n01514752 +n01514859 +n01515303 +n01517565 +n01517966 +n01518878 +n01519563 +n01519873 +n01520576 +n01521399 +n01521756 +n01524359 +n01526521 +n01527194 +n01527347 +n01527617 +n01527917 +n01528396 +n01528654 +n01528845 +n01529672 +n01530439 +n01530575 +n01531178 +n01531344 +n01531512 +n01531811 +n01531971 +n01532325 +n01532511 +n01532829 +n01533000 +n01533339 +n01533481 +n01533651 +n01533893 +n01534155 +n01534433 +n01534582 +n01535140 +n01535469 +n01535690 +n01536035 +n01536186 +n01536334 +n01536644 +n01536780 +n01537134 +n01537544 +n01537895 +n01538059 +n01538200 +n01538630 +n01538955 +n01539573 +n01539925 +n01540090 +n01540233 +n01540566 +n01540832 +n01541102 +n01541386 +n01541760 +n01541922 +n01542786 +n01543175 +n01543632 +n01544389 +n01544704 +n01545574 +n01546039 +n01546506 +n01547832 +n01548301 +n01548492 +n01548865 +n01549053 +n01549430 +n01549641 +n01549886 +n01550172 +n01551080 +n01551300 +n01551711 +n01552034 +n01552813 +n01553142 +n01554448 +n01555004 +n01555305 +n01555809 +n01556182 +n01557185 +n01557962 +n01558149 +n01558307 +n01558461 +n01558594 +n01558765 +n01558993 +n01559477 +n01559639 +n01559804 +n01560105 +n01560280 +n01560419 +n01560636 +n01560793 +n01560935 +n01561452 +n01561732 +n01562014 +n01562265 +n01562451 +n01563128 +n01563449 +n01563746 +n01563945 +n01564217 +n01564394 +n01564773 +n01564914 +n01565078 +n01565345 +n01565599 +n01565930 +n01566207 +n01566645 +n01567133 +n01567678 +n01567879 +n01568294 +n01568720 +n01568892 +n01569060 +n01569262 +n01569423 +n01569566 +n01569836 +n01569971 +n01570267 +n01570421 +n01570676 +n01570839 +n01571904 +n01572328 +n01572489 +n01572654 +n01572782 +n01573074 +n01573240 +n01573360 +n01573898 +n01574045 +n01574390 +n01574560 +n01574801 +n01575117 +n01575401 +n01575745 +n01576076 +n01576695 +n01577035 +n01577659 +n01577941 +n01578180 +n01578575 +n01579028 +n01579149 +n01579260 +n01579410 +n01579578 +n01579729 +n01580077 +n01580870 +n01581166 +n01581730 +n01581984 +n01582220 +n01582398 +n01582856 +n01583209 +n01583495 +n01583828 +n01584225 +n01584695 +n01584853 +n01585121 +n01585287 +n01585422 +n01585715 +n01586020 +n01586374 +n01586941 +n01587526 +n01587834 +n01588002 +n01588725 +n01589286 +n01589718 +n01589893 +n01591005 +n01591123 +n01591301 +n01591697 +n01592084 +n01592257 +n01592387 +n01592540 +n01592694 +n01593028 +n01594004 +n01594372 +n01594787 +n01594968 +n01595168 +n01595450 +n01595974 +n01596273 +n01596608 +n01597022 +n01597336 +n01597737 +n01597906 +n01598074 +n01598588 +n01598988 +n01599159 +n01599269 +n01599556 +n01600085 +n01600657 +n01601068 +n01601694 +n01602630 +n01602832 +n01603152 +n01603600 +n01603812 +n01603953 +n01604330 +n01604968 +n01605630 +n01606522 +n01606672 +n01606809 +n01607600 +n01607812 +n01607962 +n01608265 +n01608432 +n01608814 +n01609062 +n01609391 +n01609751 +n01609956 +n01610100 +n01610226 +n01610552 +n01610955 +n01611472 +n01611800 +n01611969 +n01612122 +n01612275 +n01612476 +n01612628 +n01613177 +n01613294 +n01613615 +n01613807 +n01614038 +n01614343 +n01614556 +n01614925 +n01615121 +n01615303 +n01615458 +n01615703 +n01616086 +n01616318 +n01617095 +n01617443 +n01617766 +n01618082 +n01618503 +n01619310 +n01619536 +n01619835 +n01620135 +n01620414 +n01620735 +n01621127 +n01621635 +n01622120 +n01622352 +n01622483 +n01622779 +n01622959 +n01623110 +n01623425 +n01623615 +n01623706 +n01623880 +n01624115 +n01624537 +n01624833 +n01625562 +n01627424 +n01628770 +n01629276 +n01629819 +n01629962 +n01630284 +n01630670 +n01630901 +n01631354 +n01631663 +n01632458 +n01632601 +n01632777 +n01633406 +n01633781 +n01635027 +n01636352 +n01636829 +n01637615 +n01639765 +n01640846 +n01641206 +n01641391 +n01641577 +n01641739 +n01642257 +n01642539 +n01643507 +n01643896 +n01644373 +n01644900 +n01645776 +n01646292 +n01646388 +n01646555 +n01646648 +n01646802 +n01646902 +n01647303 +n01647640 +n01648139 +n01648620 +n01649170 +n01650167 +n01650690 +n01651059 +n01652026 +n01654637 +n01661091 +n01662622 +n01662784 +n01663401 +n01663782 +n01664065 +n01664369 +n01664492 +n01664674 +n01664990 +n01665541 +n01665932 +n01666228 +n01666585 +n01667114 +n01667432 +n01667778 +n01668091 +n01668436 +n01668665 +n01668892 +n01669191 +n01669372 +n01669654 +n01670092 +n01670535 +n01670802 +n01671125 +n01671479 +n01672032 +n01673282 +n01674464 +n01674990 +n01675722 +n01677366 +n01677747 +n01678043 +n01678343 +n01679307 +n01679626 +n01679962 +n01680264 +n01680478 +n01680655 +n01680813 +n01681328 +n01681653 +n01681940 +n01682172 +n01682435 +n01682714 +n01683558 +n01684133 +n01684578 +n01685808 +n01687665 +n01687978 +n01688243 +n01689081 +n01689811 +n01690149 +n01691217 +n01692333 +n01692523 +n01693175 +n01693334 +n01693783 +n01694178 +n01694709 +n01694955 +n01695060 +n01696633 +n01697178 +n01697457 +n01697611 +n01698434 +n01698640 +n01698782 +n01699040 +n01699675 +n01701859 +n01704323 +n01713764 +n01726692 +n01727646 +n01728572 +n01728920 +n01729322 +n01729977 +n01730185 +n01730307 +n01730563 +n01730812 +n01730960 +n01731545 +n01731941 +n01732244 +n01732614 +n01732789 +n01733466 +n01733757 +n01733957 +n01734104 +n01734418 +n01734637 +n01734808 +n01735189 +n01735439 +n01735577 +n01737021 +n01737472 +n01737728 +n01737875 +n01738065 +n01738601 +n01739381 +n01740131 +n01740551 +n01741232 +n01741562 +n01741943 +n01742172 +n01742821 +n01743086 +n01743605 +n01743936 +n01744100 +n01744270 +n01744401 +n01745125 +n01745484 +n01745902 +n01746359 +n01747589 +n01747885 +n01748264 +n01748686 +n01748906 +n01749244 +n01749582 +n01749742 +n01749939 +n01750167 +n01750437 +n01751036 +n01751472 +n01751748 +n01752165 +n01752585 +n01752736 +n01753032 +n01753180 +n01753488 +n01753959 +n01754370 +n01754533 +n01754876 +n01755581 +n01755740 +n01756089 +n01756291 +n01756508 +n01756733 +n01757115 +n01757343 +n01757677 +n01757901 +n01758141 +n01758757 +n01768244 +n01769347 +n01770081 +n01770393 +n01770795 +n01771417 +n01772222 +n01772664 +n01773157 +n01773549 +n01773797 +n01774384 +n01774750 +n01775062 +n01775370 +n01776313 +n01777304 +n01778217 +n01779148 +n01779629 +n01782209 +n01782516 +n01784675 +n01785667 +n01786646 +n01787835 +n01789740 +n01790711 +n01791107 +n01791463 +n01791625 +n01791954 +n01792042 +n01792158 +n01792429 +n01792640 +n01792955 +n01793249 +n01793435 +n01793715 +n01794158 +n01794344 +n01794651 +n01795088 +n01795545 +n01795735 +n01796340 +n01796519 +n01796729 +n01797020 +n01797307 +n01797601 +n01797886 +n01798168 +n01798484 +n01798706 +n01798839 +n01800424 +n01801876 +n01803078 +n01803362 +n01804163 +n01804478 +n01804653 +n01805801 +n01806143 +n01806297 +n01806364 +n01806467 +n01806567 +n01806847 +n01807105 +n01807496 +n01807828 +n01808140 +n01809106 +n01809371 +n01809752 +n01810268 +n01811909 +n01812337 +n01812662 +n01812866 +n01813088 +n01813385 +n01813532 +n01813948 +n01814217 +n01814370 +n01814755 +n01814921 +n01815601 +n01816887 +n01817263 +n01817346 +n01817953 +n01818299 +n01818515 +n01818832 +n01819115 +n01819313 +n01819465 +n01819734 +n01820052 +n01820348 +n01820546 +n01821076 +n01821203 +n01821869 +n01822300 +n01823013 +n01823414 +n01824035 +n01824575 +n01825278 +n01826364 +n01826680 +n01827403 +n01827793 +n01828096 +n01828556 +n01828970 +n01829413 +n01829869 +n01830042 +n01830915 +n01832167 +n01832493 +n01833805 +n01834177 +n01834540 +n01835276 +n01837072 +n01838598 +n01839086 +n01839330 +n01839598 +n01839750 +n01840120 +n01840775 +n01841102 +n01841288 +n01841441 +n01841679 +n01842235 +n01842504 +n01843065 +n01843383 +n01843719 +n01844231 +n01844551 +n01844917 +n01845132 +n01846331 +n01847000 +n01847089 +n01847170 +n01847253 +n01847407 +n01847806 +n01847978 +n01848123 +n01848323 +n01848453 +n01848555 +n01848648 +n01848840 +n01848976 +n01849157 +n01849466 +n01849676 +n01849863 +n01850192 +n01850373 +n01850553 +n01850873 +n01851038 +n01851207 +n01851375 +n01851573 +n01851731 +n01851895 +n01852142 +n01852329 +n01852400 +n01852671 +n01852861 +n01853195 +n01853498 +n01853666 +n01853870 +n01854415 +n01854700 +n01854838 +n01855032 +n01855188 +n01855476 +n01855672 +n01856072 +n01856155 +n01856380 +n01856553 +n01856890 +n01857079 +n01857325 +n01857512 +n01857632 +n01857851 +n01858281 +n01858441 +n01858780 +n01858845 +n01858906 +n01859190 +n01859325 +n01859496 +n01859689 +n01859852 +n01860002 +n01860187 +n01861778 +n01862399 +n01871265 +n01872401 +n01872772 +n01873310 +n01874434 +n01874928 +n01875313 +n01876034 +n01877134 +n01877606 +n01877812 +n01878929 +n01879217 +n01879509 +n01881171 +n01882714 +n01883070 +n01884834 +n01885498 +n01886756 +n01887474 +n01887623 +n01887787 +n01887896 +n01888045 +n01888181 +n01888264 +n01888411 +n01889520 +n01891633 +n01893825 +n01896844 +n01897536 +n01899894 +n01900150 +n01903346 +n01904029 +n01904806 +n01904886 +n01905661 +n01906749 +n01909906 +n01910747 +n01913166 +n01914609 +n01914830 +n01915700 +n01915811 +n01916187 +n01916388 +n01916481 +n01916925 +n01917289 +n01917611 +n01917882 +n01918744 +n01922303 +n01923025 +n01924916 +n01930112 +n01934440 +n01935395 +n01937909 +n01938454 +n01940736 +n01942869 +n01943087 +n01943899 +n01944118 +n01944390 +n01944812 +n01944955 +n01945143 +n01945685 +n01946630 +n01947396 +n01948573 +n01949085 +n01950731 +n01951274 +n01951613 +n01953361 +n01953594 +n01953762 +n01955084 +n01955933 +n01956344 +n01956481 +n01956764 +n01957335 +n01958038 +n01958346 +n01958531 +n01959492 +n01959985 +n01960177 +n01960459 +n01961985 +n01963317 +n01963571 +n01964049 +n01964271 +n01964441 +n01965529 +n01965889 +n01968897 +n01970164 +n01970667 +n01971280 +n01972541 +n01974773 +n01976146 +n01976868 +n01976957 +n01978287 +n01978455 +n01979874 +n01980166 +n01981276 +n01982068 +n01982347 +n01982650 +n01983481 +n01984245 +n01984695 +n01985128 +n01986214 +n01986806 +n01987545 +n01990007 +n01990800 +n01991028 +n01991520 +n01992773 +n01994910 +n01998183 +n01998741 +n01999186 +n02000954 +n02002075 +n02002556 +n02002724 +n02003037 +n02003204 +n02003577 +n02003839 +n02004131 +n02004492 +n02004855 +n02005399 +n02005790 +n02006063 +n02006364 +n02006656 +n02006985 +n02007284 +n02007558 +n02008041 +n02008497 +n02008643 +n02008796 +n02009229 +n02009380 +n02009508 +n02009750 +n02009912 +n02010272 +n02010453 +n02010728 +n02011016 +n02011281 +n02011460 +n02011805 +n02011943 +n02012185 +n02012849 +n02013177 +n02013567 +n02013706 +n02014237 +n02014524 +n02014941 +n02015357 +n02015554 +n02016066 +n02016358 +n02016659 +n02016816 +n02016956 +n02017213 +n02017475 +n02017725 +n02018027 +n02018207 +n02018368 +n02018795 +n02019190 +n02019929 +n02021050 +n02021795 +n02022684 +n02023341 +n02023855 +n02023992 +n02024185 +n02024479 +n02024763 +n02025043 +n02025239 +n02025389 +n02026059 +n02026629 +n02026948 +n02027075 +n02027357 +n02027492 +n02027897 +n02028035 +n02028175 +n02028342 +n02028451 +n02028727 +n02028900 +n02029087 +n02029378 +n02029706 +n02030035 +n02030287 +n02030837 +n02030996 +n02031585 +n02031934 +n02032222 +n02032355 +n02032480 +n02033041 +n02033208 +n02033561 +n02033779 +n02034129 +n02034295 +n02034661 +n02034971 +n02035210 +n02036053 +n02036711 +n02037110 +n02037464 +n02037869 +n02038466 +n02038993 +n02040266 +n02041085 +n02041246 +n02041678 +n02041875 +n02042046 +n02042180 +n02042472 +n02042759 +n02043063 +n02043333 +n02043808 +n02044178 +n02044517 +n02044778 +n02044908 +n02045369 +n02045596 +n02045864 +n02046171 +n02046759 +n02046939 +n02047045 +n02047260 +n02047411 +n02047517 +n02047614 +n02047975 +n02048115 +n02048353 +n02049088 +n02050004 +n02050313 +n02050442 +n02050586 +n02050809 +n02051059 +n02051845 +n02052204 +n02052365 +n02052775 +n02053083 +n02053425 +n02053584 +n02054036 +n02054502 +n02054711 +n02055107 +n02055658 +n02055803 +n02056228 +n02056570 +n02056728 +n02057035 +n02057330 +n02057731 +n02058221 +n02058594 +n02059162 +n02060133 +n02060411 +n02060889 +n02062017 +n02062430 +n02062744 +n02063224 +n02063662 +n02064338 +n02064816 +n02065026 +n02065407 +n02066245 +n02066707 +n02067240 +n02068541 +n02068974 +n02069412 +n02069701 +n02069974 +n02070174 +n02070430 +n02071294 +n02071636 +n02072798 +n02073831 +n02074367 +n02075296 +n02075612 +n02075927 +n02076196 +n02076402 +n02076779 +n02077152 +n02077384 +n02077658 +n02077787 +n02077923 +n02078292 +n02078574 +n02078738 +n02079005 +n02079389 +n02079851 +n02080146 +n02080415 +n02081571 +n02081798 +n02082791 +n02083346 +n02083672 +n02084071 +n02084732 +n02084861 +n02085272 +n02085374 +n02085620 +n02085936 +n02086079 +n02086240 +n02086646 +n02086753 +n02086910 +n02087046 +n02087122 +n02087394 +n02087551 +n02088094 +n02088238 +n02088364 +n02088466 +n02088632 +n02088839 +n02089232 +n02089468 +n02089555 +n02090379 +n02090475 +n02090622 +n02090721 +n02090827 +n02091032 +n02091134 +n02091244 +n02091467 +n02091831 +n02092002 +n02092339 +n02092468 +n02093056 +n02093256 +n02093428 +n02093647 +n02093754 +n02093859 +n02093991 +n02094114 +n02094258 +n02094433 +n02094562 +n02094721 +n02094931 +n02095050 +n02095314 +n02095412 +n02095570 +n02095727 +n02095889 +n02096051 +n02096177 +n02096294 +n02096437 +n02096585 +n02096756 +n02097047 +n02097130 +n02097209 +n02097298 +n02097474 +n02097658 +n02097786 +n02098105 +n02098286 +n02098413 +n02098550 +n02098806 +n02098906 +n02099029 +n02099267 +n02099429 +n02099601 +n02099712 +n02099849 +n02099997 +n02100236 +n02100399 +n02100583 +n02100735 +n02100877 +n02101006 +n02101108 +n02101388 +n02101556 +n02101861 +n02102040 +n02102177 +n02102318 +n02102480 +n02102605 +n02102973 +n02103406 +n02103841 +n02104029 +n02104280 +n02104365 +n02104523 +n02104882 +n02105056 +n02105162 +n02105251 +n02105412 +n02105505 +n02105641 +n02105855 +n02106030 +n02106166 +n02106382 +n02106550 +n02106662 +n02106854 +n02106966 +n02107142 +n02107312 +n02107420 +n02107574 +n02107683 +n02107908 +n02108089 +n02108254 +n02108422 +n02108551 +n02108672 +n02108915 +n02109047 +n02109525 +n02109811 +n02109961 +n02110063 +n02110185 +n02110341 +n02110627 +n02110806 +n02110958 +n02111129 +n02111277 +n02111500 +n02111626 +n02111889 +n02112018 +n02112137 +n02112350 +n02112497 +n02112826 +n02113023 +n02113186 +n02113335 +n02113624 +n02113712 +n02113799 +n02114100 +n02114367 +n02114548 +n02114712 +n02114855 +n02115096 +n02115335 +n02115641 +n02115913 +n02116738 +n02117135 +n02117512 +n02117900 +n02118333 +n02119022 +n02119477 +n02119634 +n02119789 +n02120079 +n02120505 +n02120997 +n02121620 +n02121808 +n02122298 +n02122430 +n02122510 +n02122580 +n02122725 +n02122878 +n02122948 +n02123045 +n02123159 +n02123242 +n02123394 +n02123478 +n02123597 +n02123917 +n02124075 +n02124313 +n02124484 +n02124623 +n02125010 +n02125081 +n02125311 +n02125494 +n02126028 +n02126139 +n02126640 +n02126787 +n02127052 +n02127292 +n02127381 +n02127482 +n02127586 +n02127678 +n02127808 +n02128385 +n02128669 +n02128757 +n02128925 +n02129165 +n02129463 +n02129604 +n02129837 +n02129923 +n02129991 +n02130308 +n02131653 +n02132136 +n02132466 +n02132580 +n02132788 +n02133161 +n02133704 +n02134084 +n02134418 +n02135220 +n02136103 +n02137015 +n02137549 +n02138441 +n02138647 +n02138777 +n02139199 +n02139671 +n02140049 +n02146371 +n02146700 +n02147173 +n02147591 +n02147947 +n02150482 +n02152740 +n02152881 +n02153109 +n02156871 +n02157206 +n02159955 +n02160947 +n02161338 +n02161457 +n02162561 +n02163297 +n02164464 +n02165105 +n02165456 +n02165877 +n02166567 +n02166826 +n02167151 +n02167820 +n02168245 +n02168699 +n02169023 +n02169497 +n02169705 +n02169974 +n02172182 +n02172518 +n02172870 +n02173113 +n02173373 +n02174001 +n02174659 +n02175014 +n02175569 +n02175916 +n02176261 +n02176439 +n02177972 +n02180875 +n02181724 +n02183096 +n02184473 +n02188699 +n02190166 +n02190790 +n02191773 +n02191979 +n02192252 +n02192513 +n02195526 +n02195819 +n02196119 +n02196344 +n02197689 +n02198859 +n02200198 +n02200509 +n02200850 +n02201000 +n02202006 +n02203152 +n02204907 +n02205219 +n02205673 +n02206856 +n02207179 +n02207345 +n02207805 +n02208280 +n02208498 +n02208848 +n02209354 +n02209624 +n02210427 +n02211444 +n02211627 +n02212062 +n02212958 +n02213107 +n02213239 +n02213543 +n02213663 +n02213788 +n02214341 +n02214773 +n02215770 +n02216211 +n02216365 +n02218371 +n02219486 +n02220518 +n02220804 +n02221083 +n02221414 +n02222035 +n02226429 +n02226821 +n02226970 +n02227247 +n02228341 +n02229156 +n02229544 +n02229765 +n02231052 +n02231487 +n02233338 +n02233943 +n02234355 +n02234848 +n02236044 +n02236241 +n02236355 +n02236896 +n02239774 +n02240068 +n02240517 +n02241426 +n02242137 +n02243562 +n02244797 +n02246628 +n02250822 +n02251775 +n02252226 +n02254697 +n02256656 +n02257284 +n02257985 +n02258198 +n02259212 +n02262449 +n02262803 +n02264232 +n02264363 +n02264885 +n02266050 +n02266864 +n02268148 +n02268443 +n02268853 +n02270623 +n02272871 +n02273392 +n02274024 +n02274259 +n02274822 +n02275560 +n02275773 +n02276078 +n02276258 +n02276355 +n02276749 +n02276902 +n02277094 +n02277268 +n02277742 +n02278024 +n02278210 +n02278839 +n02278980 +n02279257 +n02279637 +n02279972 +n02280649 +n02281015 +n02281136 +n02281406 +n02281787 +n02282257 +n02282385 +n02282553 +n02282903 +n02283077 +n02283201 +n02283951 +n02284611 +n02284884 +n02285801 +n02286089 +n02287004 +n02288268 +n02288789 +n02291748 +n02292692 +n02295064 +n02295390 +n02297442 +n02298218 +n02298541 +n02299157 +n02299505 +n02299846 +n02300797 +n02301935 +n02302244 +n02302620 +n02302969 +n02303284 +n02304036 +n02304432 +n02305085 +n02305929 +n02307325 +n02307681 +n02308139 +n02308471 +n02308735 +n02309242 +n02309337 +n02310334 +n02310585 +n02310717 +n02310941 +n02311060 +n02311617 +n02312006 +n02312427 +n02312640 +n02313008 +n02316707 +n02317335 +n02317781 +n02318167 +n02319095 +n02319308 +n02319555 +n02321170 +n02321529 +n02323449 +n02324045 +n02324431 +n02324514 +n02324587 +n02324850 +n02325366 +n02325722 +n02326432 +n02326862 +n02327028 +n02327656 +n02327842 +n02328150 +n02328429 +n02329401 +n02330245 +n02331046 +n02332156 +n02332755 +n02333546 +n02333909 +n02334201 +n02337001 +n02338145 +n02339376 +n02341475 +n02341974 +n02342885 +n02343320 +n02343772 +n02346627 +n02348173 +n02350105 +n02352591 +n02353861 +n02355227 +n02355477 +n02356381 +n02356612 +n02356798 +n02356977 +n02357111 +n02357401 +n02357585 +n02357911 +n02358091 +n02358390 +n02358584 +n02358890 +n02359047 +n02359324 +n02359556 +n02359915 +n02360282 +n02361337 +n02361587 +n02361706 +n02363005 +n02363351 +n02364520 +n02364673 +n02364840 +n02365480 +n02366959 +n02367492 +n02370806 +n02372584 +n02372952 +n02373336 +n02374149 +n02374451 +n02375302 +n02376542 +n02376679 +n02376791 +n02376918 +n02377063 +n02377181 +n02377291 +n02377388 +n02377480 +n02377603 +n02377703 +n02378541 +n02378969 +n02379081 +n02379183 +n02379329 +n02379430 +n02379630 +n02379908 +n02380052 +n02380335 +n02380464 +n02380583 +n02380745 +n02380875 +n02381004 +n02381261 +n02381364 +n02381460 +n02381609 +n02381831 +n02382039 +n02382132 +n02382204 +n02382338 +n02382437 +n02382635 +n02382750 +n02382850 +n02382948 +n02383231 +n02385214 +n02386014 +n02386141 +n02386224 +n02386310 +n02386496 +n02386853 +n02386968 +n02387093 +n02387254 +n02387346 +n02387722 +n02387887 +n02388143 +n02388276 +n02388735 +n02388832 +n02388917 +n02389026 +n02389128 +n02389261 +n02389346 +n02389559 +n02389779 +n02390015 +n02390101 +n02390640 +n02391049 +n02391234 +n02391373 +n02391508 +n02391994 +n02392434 +n02392824 +n02393161 +n02393580 +n02393807 +n02393940 +n02394477 +n02395003 +n02395406 +n02395694 +n02396014 +n02396088 +n02396427 +n02397096 +n02397529 +n02397744 +n02398521 +n02399000 +n02402010 +n02402175 +n02402425 +n02403003 +n02403231 +n02403325 +n02403454 +n02403740 +n02403920 +n02404186 +n02404432 +n02404573 +n02404906 +n02405101 +n02405302 +n02405799 +n02405929 +n02406174 +n02406533 +n02406647 +n02406749 +n02407071 +n02407276 +n02407390 +n02407625 +n02407959 +n02408429 +n02408817 +n02409508 +n02410011 +n02410509 +n02410702 +n02410900 +n02411206 +n02411705 +n02411999 +n02412080 +n02412210 +n02412440 +n02412629 +n02413050 +n02413131 +n02413593 +n02414209 +n02414290 +n02414578 +n02414763 +n02415253 +n02415435 +n02415577 +n02415829 +n02416104 +n02416519 +n02416820 +n02416880 +n02416964 +n02417070 +n02417387 +n02417534 +n02417663 +n02417914 +n02418465 +n02419336 +n02419634 +n02419796 +n02420509 +n02420828 +n02421136 +n02421449 +n02421792 +n02422106 +n02422391 +n02422699 +n02423022 +n02423218 +n02423589 +n02424085 +n02424305 +n02424486 +n02424909 +n02425228 +n02425887 +n02426481 +n02426813 +n02427032 +n02427470 +n02427576 +n02427724 +n02428349 +n02428508 +n02429456 +n02430045 +n02430559 +n02430830 +n02431122 +n02431337 +n02431628 +n02431785 +n02431976 +n02432291 +n02432511 +n02432704 +n02432983 +n02433318 +n02433546 +n02433925 +n02434190 +n02434954 +n02437136 +n02437312 +n02437482 +n02437616 +n02438173 +n02438272 +n02438580 +n02439033 +n02439398 +n02441942 +n02442845 +n02443015 +n02443114 +n02443346 +n02443484 +n02444819 +n02445004 +n02445171 +n02445394 +n02445715 +n02446206 +n02447366 +n02447762 +n02448060 +n02449350 +n02450295 +n02453108 +n02454379 +n02454794 +n02456962 +n02457408 +n02457945 +n02458135 +n02460009 +n02460451 +n02461128 +n02461830 +n02469248 +n02469472 +n02469914 +n02470238 +n02470325 +n02472293 +n02472987 +n02473307 +n02474777 +n02475078 +n02475669 +n02480153 +n02480495 +n02480855 +n02481103 +n02481235 +n02481366 +n02481500 +n02481823 +n02482286 +n02482474 +n02482650 +n02483362 +n02483708 +n02484322 +n02484975 +n02485536 +n02486261 +n02486410 +n02486657 +n02486908 +n02487347 +n02487547 +n02487847 +n02488291 +n02488415 +n02488702 +n02489166 +n02490219 +n02490811 +n02491107 +n02492035 +n02492660 +n02493509 +n02493793 +n02494079 +n02496913 +n02497673 +n02499022 +n02499316 +n02499808 +n02500267 +n02501583 +n02503517 +n02504013 +n02504458 +n02508021 +n02508213 +n02508742 +n02509197 +n02509515 +n02509815 +n02510455 +n02512053 +n02512830 +n02512938 +n02514041 +n02516188 +n02517442 +n02518324 +n02519148 +n02519686 +n02519862 +n02520147 +n02522399 +n02523427 +n02524202 +n02525382 +n02526121 +n02527057 +n02527271 +n02527622 +n02530421 +n02530999 +n02532028 +n02532602 +n02533209 +n02533834 +n02534734 +n02535258 +n02535537 +n02535759 +n02536165 +n02536456 +n02536864 +n02537085 +n02537319 +n02537525 +n02537716 +n02538010 +n02538216 +n02541687 +n02542432 +n02543565 +n02548247 +n02549248 +n02549989 +n02555863 +n02556846 +n02557182 +n02557318 +n02557591 +n02557749 +n02560110 +n02561108 +n02561381 +n02561514 +n02561661 +n02562315 +n02562796 +n02563182 +n02563648 +n02563792 +n02564270 +n02564720 +n02565072 +n02565324 +n02565573 +n02568087 +n02568959 +n02569484 +n02570164 +n02570838 +n02572196 +n02572484 +n02573704 +n02574271 +n02576575 +n02576906 +n02577403 +n02578771 +n02578928 +n02579303 +n02579928 +n02580336 +n02580679 +n02580830 +n02581957 +n02583890 +n02584145 +n02584449 +n02585872 +n02586543 +n02588286 +n02589623 +n02590094 +n02590702 +n02592055 +n02593019 +n02595702 +n02596067 +n02596381 +n02597608 +n02598573 +n02598878 +n02599052 +n02599347 +n02599557 +n02601344 +n02603317 +n02603540 +n02605316 +n02605703 +n02605936 +n02606052 +n02606384 +n02607072 +n02607201 +n02607470 +n02607862 +n02610066 +n02610664 +n02611561 +n02613181 +n02616851 +n02618827 +n02619165 +n02619550 +n02620167 +n02624167 +n02624807 +n02625258 +n02625612 +n02625851 +n02626265 +n02626762 +n02627292 +n02627532 +n02628062 +n02629230 +n02630281 +n02630615 +n02630739 +n02631041 +n02631330 +n02631475 +n02639087 +n02639605 +n02640242 +n02640626 +n02640857 +n02641379 +n02643112 +n02643566 +n02643836 +n02644113 +n02649546 +n02650050 +n02652132 +n02653145 +n02653497 +n02654112 +n02654425 +n02654745 +n02655020 +n02655848 +n02656032 +n02656670 +n02657368 +n02657694 +n02658531 +n02660208 +n02660640 +n02663211 +n02666196 +n02666501 +n02666624 +n02666943 +n02667093 +n02667244 +n02667379 +n02667478 +n02667576 +n02669295 +n02669534 +n02669723 +n02670186 +n02670382 +n02670683 +n02672371 +n02672831 +n02675219 +n02676566 +n02676938 +n02678897 +n02679257 +n02680110 +n02680512 +n02680754 +n02681392 +n02682569 +n02682922 +n02683323 +n02683454 +n02683558 +n02683791 +n02685082 +n02686121 +n02686227 +n02686379 +n02686568 +n02687172 +n02687423 +n02687821 +n02687992 +n02688273 +n02688443 +n02689144 +n02689274 +n02689434 +n02689748 +n02690373 +n02691156 +n02692086 +n02692232 +n02692877 +n02693246 +n02694045 +n02694426 +n02694662 +n02695627 +n02696165 +n02697221 +n02697675 +n02698634 +n02699494 +n02699629 +n02699770 +n02699915 +n02700064 +n02700258 +n02700895 +n02701002 +n02702989 +n02703275 +n02704645 +n02704792 +n02704949 +n02705201 +n02705429 +n02705944 +n02708093 +n02708433 +n02708555 +n02708711 +n02709101 +n02709367 +n02709637 +n02709908 +n02710044 +n02710201 +n02710324 +n02710429 +n02710600 +n02713003 +n02713364 +n02714751 +n02715229 +n02715513 +n02715712 +n02720048 +n02723165 +n02725872 +n02726017 +n02726305 +n02726681 +n02727016 +n02727141 +n02727426 +n02728440 +n02729837 +n02729965 +n02730930 +n02731398 +n02731629 +n02731900 +n02732072 +n02732572 +n02732827 +n02733213 +n02733524 +n02734725 +n02735361 +n02735538 +n02735688 +n02736798 +n02737660 +n02738031 +n02738535 +n02738741 +n02738859 +n02739427 +n02739550 +n02739668 +n02739889 +n02740300 +n02740533 +n02740764 +n02741475 +n02742322 +n02742468 +n02742753 +n02744323 +n02744844 +n02745611 +n02746365 +n02747177 +n02747672 +n02747802 +n02749479 +n02749953 +n02750070 +n02750169 +n02751215 +n02751295 +n02752496 +n02752615 +n02752810 +n02753044 +n02753394 +n02754103 +n02754656 +n02755140 +n02755529 +n02755823 +n02756098 +n02756977 +n02757061 +n02757337 +n02757462 +n02757714 +n02757810 +n02758134 +n02758863 +n02758960 +n02759257 +n02759387 +n02759963 +n02760099 +n02760199 +n02760429 +n02760658 +n02760855 +n02761206 +n02761392 +n02761557 +n02761696 +n02761834 +n02762371 +n02762508 +n02763306 +n02763604 +n02763901 +n02764044 +n02764398 +n02764505 +n02764779 +n02764935 +n02766320 +n02766534 +n02766792 +n02767038 +n02767147 +n02767433 +n02767665 +n02767956 +n02768114 +n02768226 +n02768655 +n02768973 +n02769075 +n02769290 +n02769669 +n02769748 +n02769963 +n02770211 +n02770721 +n02770830 +n02771004 +n02771166 +n02771286 +n02771750 +n02772101 +n02772435 +n02772700 +n02773037 +n02773838 +n02774152 +n02774630 +n02774921 +n02775039 +n02775178 +n02775483 +n02775897 +n02776205 +n02776631 +n02776825 +n02776978 +n02777100 +n02777292 +n02777734 +n02778294 +n02778456 +n02778669 +n02779435 +n02780704 +n02780815 +n02781121 +n02781338 +n02782093 +n02782602 +n02782681 +n02782778 +n02783161 +n02783324 +n02783459 +n02783900 +n02783994 +n02784124 +n02785648 +n02786058 +n02786198 +n02786331 +n02786736 +n02786837 +n02787435 +n02787622 +n02788021 +n02788148 +n02788572 +n02789487 +n02790669 +n02790823 +n02790996 +n02791124 +n02791270 +n02792409 +n02792552 +n02793089 +n02793199 +n02793495 +n02793842 +n02794156 +n02794664 +n02795169 +n02795528 +n02795670 +n02796207 +n02796318 +n02796995 +n02797295 +n02797535 +n02797692 +n02799071 +n02799175 +n02799323 +n02799897 +n02800213 +n02800497 +n02800675 +n02801184 +n02801450 +n02801525 +n02801823 +n02801938 +n02802215 +n02802426 +n02802544 +n02802721 +n02802990 +n02803349 +n02803539 +n02803666 +n02803934 +n02804123 +n02804252 +n02804414 +n02804515 +n02804610 +n02805983 +n02806088 +n02806379 +n02806530 +n02807133 +n02807523 +n02807616 +n02807731 +n02808185 +n02808304 +n02808440 +n02809105 +n02810471 +n02810782 +n02811059 +n02811204 +n02811350 +n02811468 +n02811618 +n02811719 +n02811936 +n02812201 +n02812949 +n02813252 +n02813399 +n02813544 +n02813645 +n02813752 +n02814428 +n02814533 +n02814774 +n02814860 +n02815749 +n02815834 +n02815950 +n02816656 +n02816768 +n02817031 +n02817516 +n02818135 +n02818832 +n02820210 +n02820556 +n02820675 +n02821202 +n02821627 +n02821943 +n02822064 +n02822220 +n02822579 +n02823124 +n02823335 +n02823428 +n02823510 +n02823586 +n02823750 +n02823848 +n02823964 +n02824058 +n02824319 +n02824448 +n02825153 +n02825442 +n02825657 +n02825961 +n02826068 +n02826589 +n02826886 +n02827606 +n02828299 +n02828427 +n02828884 +n02829596 +n02831237 +n02831335 +n02831595 +n02831724 +n02831894 +n02833793 +n02834397 +n02834778 +n02835271 +n02835412 +n02835724 +n02835829 +n02835915 +n02836035 +n02836174 +n02836392 +n02837789 +n02837887 +n02838345 +n02838728 +n02839110 +n02839351 +n02839592 +n02839910 +n02840134 +n02840245 +n02840619 +n02841187 +n02841315 +n02841506 +n02842573 +n02843029 +n02843158 +n02843276 +n02843553 +n02843684 +n02844307 +n02846141 +n02846511 +n02846733 +n02847631 +n02847852 +n02848216 +n02848523 +n02849154 +n02849885 +n02850732 +n02850950 +n02851099 +n02851939 +n02852043 +n02852173 +n02852360 +n02853016 +n02854532 +n02854739 +n02854926 +n02855089 +n02855390 +n02855701 +n02855925 +n02856237 +n02857477 +n02857644 +n02858304 +n02859184 +n02859343 +n02859443 +n02859955 +n02860415 +n02860640 +n02860847 +n02861022 +n02861147 +n02861387 +n02861886 +n02862048 +n02862916 +n02863014 +n02863426 +n02863536 +n02863750 +n02864504 +n02864593 +n02865351 +n02865665 +n02865931 +n02866386 +n02867715 +n02867966 +n02868638 +n02868975 +n02869155 +n02869249 +n02869737 +n02869837 +n02870526 +n02870676 +n02870880 +n02871005 +n02871147 +n02871314 +n02871439 +n02871525 +n02871824 +n02871963 +n02872333 +n02872529 +n02872752 +n02873520 +n02873733 +n02873839 +n02874086 +n02874442 +n02874537 +n02876084 +n02876326 +n02876657 +n02877266 +n02877765 +n02877962 +n02878222 +n02878425 +n02879087 +n02879309 +n02879718 +n02880189 +n02880393 +n02880546 +n02880842 +n02880940 +n02881193 +n02881757 +n02881906 +n02882190 +n02882301 +n02882647 +n02882894 +n02883004 +n02883205 +n02883344 +n02884994 +n02885108 +n02885338 +n02885462 +n02885882 +n02886321 +n02886434 +n02887079 +n02887209 +n02887489 +n02887970 +n02888270 +n02889425 +n02889646 +n02890188 +n02890351 +n02890513 +n02890662 +n02890940 +n02891188 +n02891788 +n02892201 +n02892304 +n02892499 +n02892767 +n02892948 +n02893608 +n02893692 +n02893941 +n02894158 +n02894337 +n02894605 +n02895154 +n02895438 +n02896442 +n02897097 +n02897820 +n02898269 +n02898369 +n02898585 +n02898711 +n02899439 +n02900160 +n02900705 +n02901114 +n02901259 +n02901377 +n02901793 +n02902079 +n02902687 +n02902916 +n02903126 +n02903204 +n02903852 +n02904233 +n02904640 +n02904803 +n02904927 +n02905036 +n02905152 +n02906734 +n02907082 +n02907391 +n02907656 +n02907873 +n02908217 +n02908773 +n02909285 +n02909870 +n02910145 +n02910353 +n02910542 +n02910864 +n02911332 +n02912065 +n02912557 +n02912894 +n02913152 +n02914991 +n02915904 +n02916179 +n02916350 +n02916936 +n02917067 +n02917377 +n02917521 +n02917607 +n02917964 +n02918112 +n02918330 +n02918595 +n02918831 +n02918964 +n02919148 +n02919414 +n02919792 +n02919890 +n02920083 +n02920259 +n02920369 +n02920658 +n02921029 +n02921195 +n02921756 +n02921884 +n02922292 +n02922578 +n02922798 +n02923682 +n02924116 +n02925009 +n02925107 +n02925519 +n02925666 +n02926426 +n02926591 +n02927161 +n02927764 +n02927887 +n02928049 +n02928299 +n02928608 +n02929289 +n02929582 +n02930080 +n02930214 +n02930645 +n02930766 +n02931148 +n02931294 +n02931417 +n02931836 +n02932019 +n02932400 +n02932523 +n02932693 +n02932891 +n02933112 +n02933340 +n02933462 +n02933649 +n02934168 +n02934451 +n02935017 +n02935387 +n02935658 +n02935891 +n02936176 +n02936281 +n02936402 +n02936570 +n02936714 +n02937958 +n02938886 +n02939185 +n02939866 +n02940385 +n02940570 +n02942349 +n02942460 +n02942699 +n02943241 +n02943871 +n02943964 +n02944075 +n02944146 +n02944459 +n02944579 +n02946127 +n02946270 +n02946348 +n02946509 +n02946824 +n02946921 +n02947660 +n02947818 +n02948072 +n02948557 +n02949202 +n02949542 +n02950256 +n02950632 +n02950826 +n02950943 +n02951358 +n02951585 +n02951703 +n02951843 +n02952109 +n02952237 +n02952374 +n02952485 +n02952585 +n02952674 +n02953197 +n02953455 +n02954163 +n02954340 +n02954938 +n02955065 +n02955247 +n02955540 +n02956699 +n02956795 +n02956883 +n02957008 +n02957135 +n02957755 +n02958343 +n02959942 +n02960352 +n02960690 +n02960903 +n02961035 +n02961225 +n02961451 +n02961544 +n02962061 +n02962200 +n02962843 +n02963159 +n02963302 +n02963503 +n02963692 +n02963821 +n02963987 +n02964843 +n02965216 +n02965300 +n02965783 +n02966193 +n02966545 +n02966687 +n02967294 +n02967626 +n02967782 +n02968074 +n02968333 +n02968473 +n02969010 +n02969323 +n02970408 +n02970534 +n02970685 +n02970849 +n02971167 +n02971356 +n02971579 +n02971691 +n02972397 +n02973017 +n02973236 +n02973805 +n02973904 +n02974003 +n02974348 +n02974697 +n02975212 +n02976123 +n02976249 +n02976350 +n02976455 +n02976939 +n02977058 +n02977330 +n02977438 +n02977619 +n02977936 +n02978055 +n02978478 +n02978753 +n02978881 +n02979074 +n02979186 +n02979290 +n02979399 +n02979836 +n02980036 +n02980441 +n02981024 +n02981321 +n02981792 +n02981911 +n02982232 +n02982416 +n02982515 +n02983189 +n02983357 +n02984061 +n02984203 +n02984469 +n02985963 +n02986160 +n02987379 +n02987492 +n02988066 +n02988156 +n02988304 +n02988486 +n02988679 +n02988963 +n02989099 +n02990373 +n02991302 +n02991847 +n02992032 +n02992211 +n02992368 +n02992529 +n02992795 +n02993194 +n02993368 +n02994573 +n02995345 +n02995871 +n02995998 +n02997391 +n02997607 +n02997910 +n02998003 +n02998563 +n02998841 +n02999138 +n02999410 +n02999936 +n03000134 +n03000247 +n03000684 +n03001115 +n03001627 +n03002096 +n03002341 +n03002711 +n03002816 +n03002948 +n03003091 +n03004275 +n03004824 +n03005033 +n03005285 +n03006626 +n03007130 +n03007444 +n03007591 +n03008177 +n03008976 +n03009794 +n03010473 +n03010656 +n03010795 +n03010915 +n03011018 +n03011355 +n03011741 +n03012013 +n03012897 +n03013438 +n03013580 +n03013850 +n03014440 +n03014705 +n03015149 +n03015254 +n03015478 +n03015851 +n03016389 +n03016609 +n03016737 +n03016868 +n03016953 +n03017070 +n03017168 +n03018209 +n03018349 +n03018712 +n03019434 +n03019685 +n03019938 +n03020034 +n03020416 +n03020692 +n03021228 +n03024064 +n03025250 +n03026506 +n03026907 +n03027108 +n03027250 +n03027625 +n03028079 +n03028596 +n03028785 +n03029197 +n03029445 +n03030262 +n03030353 +n03030557 +n03030880 +n03031012 +n03031152 +n03031422 +n03032252 +n03032453 +n03032811 +n03033362 +n03033986 +n03034244 +n03034405 +n03034663 +n03035252 +n03035832 +n03036022 +n03037404 +n03037709 +n03038281 +n03038685 +n03038870 +n03039015 +n03039259 +n03039493 +n03039827 +n03039947 +n03040376 +n03041114 +n03041449 +n03041632 +n03041810 +n03042139 +n03042490 +n03042697 +n03043423 +n03043693 +n03043958 +n03044934 +n03045228 +n03045337 +n03045698 +n03046029 +n03046133 +n03046257 +n03046802 +n03046921 +n03047052 +n03047690 +n03047799 +n03047941 +n03048883 +n03049782 +n03049924 +n03050453 +n03050546 +n03050655 +n03050864 +n03051041 +n03051249 +n03051396 +n03051540 +n03054901 +n03055418 +n03055857 +n03057021 +n03057541 +n03057636 +n03057920 +n03058107 +n03058603 +n03059685 +n03061211 +n03061345 +n03061505 +n03061674 +n03062015 +n03062122 +n03062245 +n03062336 +n03062985 +n03063073 +n03063199 +n03063338 +n03063485 +n03063599 +n03063689 +n03063968 +n03064250 +n03064350 +n03064758 +n03064935 +n03065243 +n03065424 +n03066359 +n03066849 +n03067093 +n03067212 +n03067339 +n03067518 +n03068181 +n03068998 +n03069752 +n03070059 +n03070193 +n03071021 +n03071160 +n03072201 +n03072440 +n03073296 +n03073545 +n03073694 +n03073977 +n03074380 +n03074855 +n03075097 +n03075370 +n03075634 +n03075768 +n03075946 +n03077616 +n03077741 +n03078802 +n03078995 +n03079136 +n03079230 +n03079494 +n03080497 +n03080633 +n03082280 +n03082656 +n03082807 +n03082979 +n03084420 +n03084834 +n03085013 +n03085219 +n03085602 +n03085915 +n03086457 +n03086580 +n03086670 +n03086868 +n03087069 +n03087245 +n03087366 +n03087816 +n03088389 +n03088580 +n03089624 +n03089753 +n03089879 +n03090000 +n03090172 +n03091044 +n03091374 +n03092166 +n03092314 +n03092656 +n03092883 +n03094159 +n03094503 +n03095699 +n03096960 +n03097362 +n03097535 +n03097673 +n03098140 +n03098688 +n03098959 +n03099147 +n03099274 +n03099454 +n03099945 +n03100240 +n03100346 +n03100490 +n03100897 +n03101156 +n03101517 +n03101664 +n03101796 +n03101986 +n03102371 +n03102654 +n03103396 +n03103563 +n03105088 +n03105306 +n03105467 +n03106898 +n03107046 +n03107488 +n03108455 +n03108853 +n03109150 +n03109253 +n03109693 +n03109881 +n03110669 +n03111041 +n03111177 +n03111296 +n03112719 +n03112869 +n03113152 +n03113657 +n03113835 +n03114236 +n03114379 +n03114504 +n03115180 +n03115400 +n03115762 +n03115897 +n03116530 +n03116767 +n03118969 +n03119203 +n03119396 +n03119510 +n03120491 +n03120778 +n03121298 +n03121431 +n03121897 +n03122073 +n03122202 +n03122295 +n03123553 +n03123809 +n03123917 +n03124043 +n03124170 +n03124474 +n03124590 +n03125057 +n03125729 +n03125870 +n03126385 +n03126580 +n03126707 +n03127203 +n03127408 +n03127747 +n03127925 +n03128085 +n03128248 +n03128427 +n03128519 +n03129001 +n03129471 +n03129753 +n03130761 +n03131574 +n03131669 +n03131967 +n03132076 +n03132261 +n03132666 +n03132776 +n03133050 +n03133415 +n03133878 +n03134739 +n03134853 +n03135030 +n03135532 +n03136369 +n03137473 +n03138344 +n03138669 +n03139464 +n03140126 +n03140292 +n03140431 +n03140652 +n03141065 +n03141327 +n03141455 +n03141702 +n03141823 +n03142679 +n03145147 +n03145522 +n03145719 +n03146219 +n03146687 +n03146846 +n03147280 +n03147509 +n03148324 +n03148727 +n03149686 +n03150232 +n03150511 +n03151077 +n03152303 +n03154073 +n03154895 +n03156279 +n03156767 +n03157348 +n03158186 +n03158885 +n03159535 +n03159640 +n03160309 +n03160740 +n03161450 +n03163222 +n03163381 +n03164344 +n03164605 +n03164722 +n03165096 +n03165466 +n03165616 +n03166514 +n03167978 +n03168107 +n03168217 +n03169176 +n03170635 +n03171228 +n03171356 +n03171635 +n03172038 +n03173270 +n03173387 +n03173929 +n03174450 +n03174731 +n03175081 +n03175189 +n03175457 +n03176386 +n03176594 +n03176763 +n03177165 +n03178000 +n03178430 +n03178674 +n03179701 +n03179910 +n03180011 +n03180384 +n03180504 +n03180865 +n03180969 +n03181293 +n03183080 +n03186285 +n03186818 +n03187037 +n03187268 +n03187595 +n03188531 +n03188725 +n03189083 +n03191286 +n03192543 +n03193107 +n03193260 +n03193423 +n03193597 +n03195332 +n03195959 +n03196062 +n03196217 +n03196598 +n03196990 +n03197337 +n03198500 +n03199647 +n03199775 +n03199901 +n03200231 +n03200357 +n03200539 +n03200701 +n03200906 +n03201035 +n03201208 +n03201529 +n03201638 +n03201776 +n03202354 +n03202940 +n03204306 +n03204558 +n03205458 +n03205574 +n03205669 +n03206282 +n03206718 +n03206908 +n03207305 +n03207630 +n03207743 +n03207835 +n03207941 +n03208556 +n03208938 +n03209359 +n03209910 +n03210245 +n03210372 +n03210552 +n03211117 +n03211789 +n03212114 +n03212811 +n03213538 +n03213826 +n03214253 +n03214582 +n03215508 +n03216402 +n03216710 +n03216828 +n03218198 +n03219010 +n03219135 +n03219483 +n03219966 +n03220237 +n03220513 +n03220692 +n03221059 +n03221351 +n03221540 +n03221720 +n03222176 +n03222318 +n03222516 +n03223162 +n03223299 +n03223553 +n03223686 +n03224603 +n03224753 +n03225108 +n03225777 +n03225988 +n03226254 +n03226375 +n03226538 +n03226880 +n03227317 +n03228254 +n03228365 +n03228692 +n03228967 +n03229244 +n03231368 +n03231819 +n03232309 +n03232543 +n03233123 +n03233624 +n03233744 +n03233905 +n03234164 +n03234952 +n03235042 +n03235180 +n03235327 +n03235796 +n03236217 +n03236423 +n03236735 +n03237340 +n03237416 +n03237839 +n03237992 +n03238131 +n03238286 +n03238586 +n03239054 +n03239259 +n03239726 +n03240140 +n03240683 +n03240892 +n03241093 +n03241335 +n03241496 +n03242506 +n03243218 +n03244047 +n03244231 +n03244775 +n03244919 +n03245724 +n03245889 +n03246454 +n03246933 +n03247083 +n03249342 +n03249569 +n03250089 +n03250279 +n03250405 +n03250847 +n03251533 +n03251766 +n03251932 +n03252637 +n03253279 +n03253796 +n03253886 +n03254046 +n03254189 +n03254374 +n03254862 +n03255030 +n03255899 +n03256032 +n03256166 +n03256788 +n03256928 +n03257210 +n03257586 +n03258330 +n03258577 +n03258905 +n03259009 +n03259280 +n03259401 +n03259505 +n03260849 +n03261019 +n03261603 +n03261776 +n03262072 +n03262248 +n03262519 +n03262717 +n03262809 +n03262932 +n03263076 +n03266371 +n03266749 +n03267113 +n03267468 +n03267821 +n03268142 +n03268311 +n03268645 +n03268790 +n03268918 +n03269203 +n03269401 +n03271030 +n03271574 +n03272010 +n03272125 +n03272239 +n03272383 +n03272562 +n03272810 +n03272940 +n03273061 +n03273551 +n03273740 +n03273913 +n03274265 +n03274435 +n03275681 +n03277459 +n03277771 +n03278248 +n03278914 +n03279508 +n03281145 +n03281673 +n03282295 +n03282401 +n03283221 +n03284743 +n03284886 +n03285578 +n03287351 +n03287733 +n03288500 +n03288886 +n03289660 +n03289985 +n03290096 +n03290195 +n03290653 +n03291413 +n03291741 +n03291819 +n03291963 +n03292475 +n03292603 +n03293741 +n03293863 +n03294048 +n03294833 +n03295012 +n03295246 +n03296081 +n03296328 +n03297103 +n03297226 +n03297495 +n03297644 +n03297735 +n03298089 +n03298716 +n03298858 +n03300216 +n03300443 +n03301568 +n03301833 +n03301940 +n03302671 +n03302938 +n03303217 +n03303831 +n03306385 +n03307037 +n03307792 +n03308152 +n03308481 +n03309110 +n03309356 +n03309465 +n03309687 +n03309808 +n03313333 +n03314227 +n03314608 +n03314780 +n03314884 +n03315644 +n03316105 +n03316406 +n03317788 +n03318294 +n03318865 +n03318983 +n03319457 +n03319745 +n03320046 +n03320262 +n03320421 +n03320519 +n03320959 +n03321103 +n03321563 +n03321954 +n03322570 +n03322704 +n03322836 +n03322940 +n03323096 +n03324928 +n03325088 +n03325584 +n03325941 +n03326660 +n03326795 +n03326948 +n03327133 +n03327234 +n03327553 +n03327691 +n03329302 +n03329536 +n03329663 +n03331077 +n03331599 +n03332005 +n03332271 +n03332393 +n03332989 +n03333129 +n03333252 +n03333610 +n03333711 +n03334291 +n03334382 +n03334912 +n03335030 +n03336282 +n03336575 +n03337140 +n03337383 +n03338821 +n03339529 +n03339643 +n03340723 +n03341153 +n03341297 +n03342015 +n03342127 +n03342262 +n03343354 +n03343560 +n03343737 +n03343853 +n03344305 +n03344393 +n03344642 +n03345487 +n03345837 +n03346135 +n03346455 +n03347037 +n03347617 +n03348868 +n03349469 +n03349771 +n03349892 +n03350204 +n03350602 +n03351434 +n03351979 +n03352628 +n03353951 +n03354207 +n03354903 +n03355768 +n03355925 +n03356858 +n03356982 +n03357267 +n03357716 +n03358172 +n03358380 +n03358726 +n03359137 +n03359285 +n03359436 +n03359566 +n03360300 +n03360431 +n03360622 +n03361297 +n03361380 +n03361550 +n03362890 +n03363363 +n03363549 +n03363749 +n03364008 +n03364599 +n03365231 +n03365374 +n03365592 +n03365991 +n03366823 +n03366974 +n03367059 +n03367410 +n03367545 +n03368352 +n03369276 +n03370387 +n03371875 +n03372029 +n03372549 +n03373237 +n03373611 +n03373943 +n03374372 +n03374473 +n03374649 +n03374838 +n03375329 +n03375575 +n03376159 +n03376279 +n03376595 +n03376938 +n03378005 +n03378174 +n03379051 +n03379204 +n03379343 +n03379828 +n03380724 +n03380867 +n03381126 +n03382292 +n03382413 +n03382856 +n03383099 +n03384352 +n03384891 +n03385557 +n03386011 +n03386544 +n03386726 +n03386870 +n03387653 +n03388043 +n03388183 +n03388323 +n03388549 +n03389611 +n03389761 +n03389889 +n03390075 +n03390786 +n03390983 +n03391301 +n03392741 +n03393017 +n03393761 +n03393912 +n03394272 +n03394480 +n03394649 +n03394916 +n03395514 +n03395859 +n03396074 +n03396654 +n03397087 +n03397266 +n03397532 +n03397947 +n03398153 +n03398228 +n03399677 +n03399761 +n03399971 +n03400231 +n03401129 +n03401279 +n03402188 +n03402941 +n03403643 +n03404149 +n03404251 +n03404360 +n03405265 +n03405595 +n03405725 +n03406966 +n03407369 +n03407865 +n03408054 +n03408444 +n03409297 +n03409393 +n03409591 +n03410571 +n03410740 +n03410938 +n03411079 +n03412058 +n03413684 +n03414029 +n03414162 +n03414676 +n03415252 +n03415486 +n03415749 +n03416094 +n03416489 +n03416640 +n03416775 +n03416900 +n03417042 +n03417202 +n03417345 +n03417749 +n03417970 +n03418158 +n03418242 +n03418402 +n03418618 +n03418915 +n03419014 +n03420345 +n03420801 +n03421324 +n03421485 +n03421669 +n03422072 +n03423306 +n03423479 +n03423568 +n03423719 +n03423877 +n03424325 +n03424489 +n03424630 +n03424862 +n03425241 +n03425325 +n03425413 +n03425595 +n03425769 +n03426134 +n03427202 +n03427296 +n03428090 +n03428226 +n03428349 +n03429003 +n03429137 +n03429288 +n03429682 +n03429914 +n03430091 +n03430313 +n03430418 +n03430551 +n03431243 +n03431745 +n03432061 +n03432129 +n03433877 +n03434188 +n03434285 +n03435593 +n03435743 +n03435991 +n03436075 +n03436182 +n03436417 +n03436549 +n03436891 +n03437430 +n03437741 +n03437829 +n03437941 +n03438071 +n03438257 +n03438661 +n03438863 +n03439348 +n03439814 +n03440216 +n03440682 +n03441112 +n03441345 +n03442597 +n03442756 +n03443005 +n03443149 +n03443371 +n03443912 +n03444034 +n03445326 +n03445617 +n03445777 +n03445924 +n03446070 +n03446268 +n03446832 +n03447075 +n03447358 +n03447447 +n03447721 +n03448590 +n03448956 +n03449309 +n03449451 +n03450230 +n03450516 +n03450734 +n03450974 +n03451120 +n03451711 +n03451798 +n03452267 +n03452449 +n03452594 +n03452741 +n03453231 +n03453443 +n03454110 +n03454211 +n03454442 +n03454536 +n03454707 +n03454885 +n03455488 +n03456024 +n03456186 +n03456299 +n03456447 +n03456548 +n03456665 +n03457008 +n03457686 +n03457902 +n03458271 +n03459328 +n03459775 +n03460040 +n03460147 +n03460297 +n03461288 +n03461385 +n03462110 +n03463381 +n03463666 +n03464053 +n03465426 +n03465500 +n03465718 +n03466493 +n03466600 +n03466839 +n03467068 +n03467517 +n03467796 +n03467984 +n03468696 +n03468821 +n03469175 +n03469493 +n03469903 +n03470629 +n03471190 +n03472232 +n03473227 +n03474779 +n03474896 +n03475581 +n03475823 +n03476083 +n03476313 +n03476684 +n03476991 +n03477512 +n03478589 +n03478756 +n03478907 +n03479121 +n03479397 +n03480579 +n03480719 +n03481172 +n03482252 +n03482405 +n03482523 +n03482877 +n03483230 +n03483316 +n03483823 +n03484083 +n03484487 +n03484576 +n03484931 +n03485198 +n03485407 +n03485794 +n03487090 +n03487331 +n03487444 +n03487533 +n03487642 +n03487774 +n03487886 +n03488188 +n03488438 +n03489162 +n03490006 +n03490119 +n03490884 +n03491032 +n03492250 +n03492542 +n03492922 +n03494278 +n03494537 +n03494706 +n03495039 +n03495258 +n03495570 +n03496296 +n03496612 +n03496892 +n03497352 +n03497657 +n03498441 +n03498662 +n03498781 +n03498962 +n03499354 +n03499468 +n03499907 +n03500209 +n03500389 +n03500699 +n03501614 +n03502200 +n03502331 +n03502509 +n03503477 +n03503997 +n03504205 +n03504723 +n03505133 +n03505383 +n03505504 +n03505667 +n03506028 +n03506184 +n03506370 +n03506560 +n03506727 +n03506880 +n03507241 +n03507458 +n03507963 +n03508101 +n03509394 +n03509608 +n03510244 +n03511175 +n03511333 +n03512147 +n03513137 +n03513376 +n03514451 +n03514693 +n03514894 +n03516367 +n03516844 +n03516996 +n03517647 +n03517760 +n03517899 +n03518135 +n03518305 +n03518445 +n03518943 +n03519081 +n03519387 +n03520493 +n03521076 +n03521544 +n03521675 +n03521899 +n03522003 +n03522100 +n03523987 +n03524150 +n03524574 +n03525074 +n03525454 +n03527149 +n03527444 +n03527565 +n03528263 +n03528523 +n03528901 +n03529175 +n03529444 +n03529629 +n03529860 +n03530511 +n03530642 +n03530910 +n03531281 +n03532342 +n03532672 +n03532919 +n03533014 +n03534580 +n03534776 +n03535024 +n03535780 +n03536122 +n03537241 +n03537412 +n03538037 +n03538179 +n03538406 +n03538634 +n03539433 +n03539546 +n03539678 +n03540090 +n03540267 +n03540595 +n03540914 +n03541091 +n03541269 +n03541537 +n03541696 +n03541923 +n03542333 +n03542605 +n03542860 +n03543012 +n03543112 +n03543254 +n03543394 +n03543603 +n03543735 +n03543945 +n03544143 +n03544238 +n03544360 +n03545150 +n03545470 +n03545756 +n03546112 +n03546235 +n03546340 +n03547054 +n03547229 +n03548086 +n03548402 +n03548626 +n03549199 +n03549473 +n03549589 +n03549732 +n03549897 +n03550153 +n03550289 +n03551395 +n03552749 +n03553019 +n03553248 +n03554460 +n03555006 +n03555426 +n03555564 +n03555662 +n03556679 +n03557270 +n03557360 +n03557590 +n03557692 +n03558176 +n03558404 +n03558633 +n03558739 +n03559999 +n03560430 +n03561047 +n03563200 +n03563460 +n03565288 +n03565830 +n03566193 +n03566730 +n03567066 +n03568117 +n03571280 +n03571625 +n03571942 +n03572107 +n03572321 +n03574243 +n03574555 +n03574816 +n03577090 +n03577672 +n03578055 +n03578251 +n03578656 +n03579538 +n03580518 +n03580845 +n03581125 +n03582959 +n03584254 +n03584400 +n03584829 +n03585073 +n03585438 +n03585682 +n03586219 +n03586631 +n03587205 +n03588951 +n03589513 +n03589791 +n03590306 +n03590588 +n03590841 +n03590932 +n03592245 +n03592669 +n03592773 +n03593122 +n03593526 +n03594148 +n03594523 +n03594734 +n03594945 +n03595264 +n03595409 +n03595523 +n03595614 +n03595860 +n03596285 +n03596543 +n03597916 +n03598151 +n03598299 +n03598515 +n03598930 +n03599486 +n03600285 +n03600475 +n03600722 +n03601638 +n03601840 +n03602081 +n03602883 +n03603442 +n03603594 +n03603722 +n03604156 +n03604311 +n03604400 +n03604843 +n03605598 +n03605722 +n03606251 +n03607029 +n03607659 +n03607923 +n03609235 +n03609397 +n03610098 +n03610418 +n03610524 +n03610682 +n03612010 +n03612814 +n03612965 +n03613294 +n03613592 +n03614007 +n03614532 +n03614782 +n03615300 +n03615406 +n03615563 +n03615655 +n03615790 +n03616428 +n03616763 +n03616979 +n03617095 +n03617312 +n03617480 +n03618101 +n03618982 +n03619196 +n03619275 +n03619396 +n03619650 +n03619793 +n03619890 +n03620052 +n03620967 +n03621049 +n03621377 +n03622058 +n03622839 +n03622931 +n03623198 +n03623338 +n03623556 +n03624134 +n03624400 +n03625355 +n03625539 +n03625646 +n03625943 +n03626115 +n03626760 +n03627232 +n03628215 +n03628511 +n03629100 +n03629231 +n03629520 +n03630262 +n03630383 +n03631177 +n03631922 +n03632577 +n03632729 +n03632852 +n03633091 +n03633886 +n03635032 +n03635108 +n03635330 +n03635668 +n03636248 +n03636649 +n03637181 +n03637318 +n03637898 +n03638883 +n03639077 +n03639497 +n03640850 +n03640988 +n03641569 +n03642444 +n03642806 +n03643149 +n03643253 +n03643491 +n03643737 +n03644378 +n03644858 +n03645011 +n03645577 +n03646020 +n03646148 +n03646296 +n03646916 +n03647520 +n03648431 +n03649161 +n03649674 +n03649797 +n03649909 +n03650551 +n03651388 +n03651843 +n03652100 +n03652729 +n03652932 +n03653110 +n03653220 +n03653583 +n03653740 +n03653833 +n03654576 +n03655072 +n03655720 +n03656484 +n03656957 +n03657121 +n03657511 +n03658185 +n03658858 +n03659292 +n03659686 +n03659809 +n03659950 +n03660124 +n03660909 +n03661043 +n03661340 +n03662601 +n03662719 +n03662887 +n03663531 +n03664943 +n03665366 +n03665924 +n03666362 +n03666591 +n03666917 +n03667552 +n03667664 +n03667829 +n03668067 +n03668279 +n03668488 +n03668803 +n03669886 +n03670208 +n03671914 +n03672827 +n03673027 +n03673450 +n03674440 +n03674731 +n03675235 +n03676087 +n03676483 +n03676623 +n03676759 +n03677115 +n03678558 +n03678729 +n03679384 +n03679712 +n03680355 +n03680512 +n03680734 +n03680858 +n03680942 +n03682487 +n03682877 +n03683079 +n03683457 +n03683606 +n03683708 +n03683995 +n03684143 +n03684224 +n03684611 +n03684823 +n03685820 +n03686130 +n03686924 +n03687137 +n03687928 +n03688192 +n03688405 +n03688605 +n03688943 +n03689157 +n03690473 +n03690938 +n03691459 +n03691817 +n03692379 +n03692522 +n03693293 +n03693474 +n03693707 +n03693860 +n03694639 +n03695857 +n03696065 +n03696301 +n03696568 +n03697007 +n03697552 +n03698360 +n03698604 +n03698723 +n03698815 +n03699591 +n03699975 +n03700963 +n03701391 +n03703730 +n03703862 +n03703945 +n03704549 +n03706229 +n03706653 +n03708036 +n03708843 +n03709206 +n03709363 +n03709823 +n03710193 +n03710637 +n03710721 +n03711044 +n03711999 +n03712111 +n03712337 +n03713436 +n03714235 +n03715114 +n03715386 +n03715669 +n03715892 +n03716887 +n03716966 +n03717131 +n03717285 +n03717447 +n03717622 +n03718212 +n03718335 +n03718458 +n03718581 +n03718789 +n03718935 +n03719053 +n03719343 +n03719743 +n03720163 +n03720891 +n03721047 +n03721252 +n03721384 +n03721590 +n03722007 +n03722288 +n03723267 +n03723781 +n03724066 +n03724417 +n03724538 +n03724623 +n03724756 +n03724870 +n03725035 +n03725600 +n03725717 +n03726760 +n03726993 +n03727067 +n03727465 +n03727605 +n03727837 +n03727946 +n03728437 +n03729308 +n03729826 +n03730153 +n03730334 +n03730494 +n03730893 +n03731019 +n03731483 +n03731695 +n03732020 +n03732114 +n03732458 +n03733131 +n03733281 +n03733644 +n03733805 +n03733925 +n03735637 +n03735963 +n03736064 +n03736470 +n03736970 +n03738066 +n03738472 +n03739518 +n03742019 +n03742115 +n03743016 +n03743279 +n03743902 +n03744276 +n03744840 +n03745146 +n03745571 +n03746005 +n03746155 +n03746330 +n03746486 +n03748162 +n03749807 +n03751269 +n03751458 +n03751757 +n03752185 +n03753077 +n03757604 +n03758089 +n03759243 +n03759661 +n03759954 +n03760310 +n03760671 +n03760944 +n03761084 +n03762332 +n03762434 +n03762602 +n03763968 +n03764276 +n03764736 +n03764822 +n03765561 +n03766044 +n03766322 +n03766508 +n03766935 +n03767112 +n03767203 +n03767459 +n03767745 +n03767966 +n03768916 +n03769610 +n03769881 +n03770085 +n03770316 +n03770439 +n03770679 +n03770954 +n03772077 +n03772269 +n03772584 +n03773035 +n03773504 +n03774327 +n03774461 +n03775071 +n03775199 +n03775388 +n03775546 +n03775636 +n03775747 +n03775847 +n03776460 +n03777568 +n03777754 +n03778817 +n03779128 +n03781244 +n03781683 +n03781787 +n03782006 +n03782190 +n03782794 +n03783430 +n03784270 +n03784896 +n03785016 +n03785237 +n03785721 +n03786194 +n03786313 +n03786621 +n03786715 +n03786901 +n03787032 +n03787523 +n03788047 +n03788195 +n03788365 +n03788498 +n03788601 +n03788914 +n03789171 +n03789946 +n03790230 +n03790512 +n03790755 +n03790953 +n03791053 +n03791235 +n03792048 +n03792334 +n03792526 +n03792782 +n03792972 +n03793489 +n03793850 +n03794056 +n03794136 +n03794798 +n03795123 +n03795269 +n03795758 +n03795976 +n03796401 +n03796522 +n03796605 +n03797182 +n03797264 +n03797390 +n03797896 +n03798061 +n03798442 +n03799876 +n03800933 +n03801353 +n03801533 +n03801671 +n03801760 +n03801880 +n03802007 +n03802393 +n03803284 +n03804744 +n03805180 +n03805280 +n03805725 +n03809312 +n03809603 +n03810952 +n03811295 +n03811444 +n03811847 +n03811965 +n03812924 +n03813078 +n03814639 +n03814817 +n03814906 +n03815149 +n03815482 +n03815615 +n03816005 +n03816136 +n03816530 +n03816849 +n03817191 +n03817647 +n03818343 +n03819336 +n03819448 +n03819595 +n03819994 +n03820318 +n03820728 +n03821518 +n03822171 +n03822504 +n03822656 +n03822767 +n03823111 +n03823216 +n03823312 +n03824381 +n03824713 +n03825080 +n03825788 +n03826039 +n03826186 +n03827536 +n03828020 +n03829954 +n03831382 +n03832144 +n03832673 +n03834040 +n03835197 +n03836062 +n03836451 +n03836906 +n03836976 +n03837422 +n03837606 +n03837698 +n03837869 +n03838298 +n03838899 +n03839424 +n03839671 +n03840681 +n03840823 +n03841143 +n03841666 +n03842012 +n03842156 +n03842377 +n03842986 +n03843438 +n03843555 +n03844045 +n03844233 +n03844673 +n03844815 +n03845190 +n03846100 +n03846234 +n03846431 +n03846677 +n03847471 +n03847823 +n03848168 +n03848348 +n03849679 +n03849814 +n03850053 +n03850245 +n03850492 +n03851787 +n03852280 +n03852688 +n03853924 +n03854065 +n03854421 +n03854506 +n03854722 +n03854815 +n03855214 +n03855333 +n03855604 +n03855756 +n03856012 +n03856465 +n03857687 +n03857828 +n03858085 +n03858183 +n03858418 +n03859000 +n03859170 +n03859280 +n03859495 +n03859608 +n03859958 +n03860404 +n03861271 +n03861430 +n03861842 +n03862676 +n03862862 +n03863108 +n03863262 +n03863923 +n03864356 +n03864692 +n03865371 +n03865557 +n03865949 +n03866082 +n03868242 +n03868406 +n03868643 +n03868863 +n03870105 +n03870672 +n03870980 +n03871083 +n03871371 +n03871524 +n03871628 +n03871724 +n03873416 +n03873699 +n03874138 +n03874293 +n03874487 +n03874599 +n03875218 +n03875806 +n03875955 +n03876231 +n03877351 +n03877472 +n03877674 +n03877845 +n03878066 +n03878211 +n03878963 +n03879705 +n03880323 +n03880531 +n03882611 +n03882960 +n03883054 +n03883385 +n03883524 +n03884397 +n03884778 +n03884926 +n03885028 +n03885194 +n03885293 +n03885535 +n03885669 +n03885788 +n03885904 +n03886053 +n03886641 +n03886762 +n03887185 +n03887330 +n03887697 +n03888257 +n03888605 +n03889503 +n03889726 +n03889871 +n03890093 +n03890233 +n03890514 +n03891051 +n03891251 +n03891332 +n03891538 +n03892178 +n03892425 +n03892557 +n03894051 +n03894379 +n03894677 +n03895866 +n03896103 +n03896233 +n03896419 +n03896526 +n03897943 +n03898129 +n03898271 +n03898395 +n03898633 +n03899768 +n03899933 +n03900393 +n03900979 +n03901229 +n03901750 +n03902125 +n03902482 +n03902756 +n03903424 +n03903733 +n03903868 +n03904060 +n03904183 +n03904433 +n03904657 +n03904782 +n03904909 +n03905947 +n03906224 +n03906463 +n03906997 +n03908204 +n03908618 +n03908714 +n03909020 +n03909160 +n03909406 +n03911513 +n03911658 +n03911767 +n03911866 +n03912218 +n03913343 +n03914106 +n03914337 +n03914438 +n03914583 +n03914831 +n03915118 +n03915437 +n03915900 +n03916031 +n03916470 +n03916720 +n03917198 +n03917814 +n03918480 +n03918737 +n03919096 +n03919289 +n03919430 +n03920288 +n03920641 +n03920737 +n03920867 +n03923379 +n03923918 +n03924069 +n03924679 +n03926148 +n03927091 +n03927299 +n03927539 +n03928116 +n03928814 +n03929660 +n03929855 +n03930313 +n03930630 +n03931765 +n03931885 +n03933933 +n03934042 +n03934229 +n03934311 +n03934565 +n03934656 +n03935116 +n03935234 +n03935335 +n03936466 +n03937543 +n03937835 +n03937931 +n03938037 +n03938244 +n03938401 +n03938522 +n03938725 +n03939178 +n03939677 +n03939844 +n03940256 +n03941013 +n03941231 +n03941417 +n03941684 +n03942813 +n03942920 +n03943115 +n03943266 +n03943920 +n03944024 +n03944138 +n03944341 +n03946076 +n03946162 +n03947466 +n03947798 +n03947888 +n03948242 +n03948459 +n03948830 +n03948950 +n03949145 +n03949317 +n03950228 +n03950537 +n03950899 +n03952576 +n03953901 +n03954393 +n03954731 +n03955296 +n03955489 +n03956157 +n03956623 +n03956785 +n03956922 +n03957315 +n03957420 +n03957762 +n03957991 +n03958227 +n03958752 +n03959014 +n03959701 +n03960374 +n03960490 +n03961711 +n03961939 +n03962852 +n03963198 +n03963294 +n03963645 +n03964495 +n03965456 +n03965907 +n03966206 +n03966976 +n03967270 +n03967396 +n03967562 +n03967942 +n03968293 +n03968581 +n03968728 +n03970156 +n03970546 +n03971218 +n03973285 +n03973402 +n03973628 +n03973839 +n03973945 +n03974070 +n03974915 +n03975035 +n03975657 +n03975788 +n03976467 +n03976657 +n03977592 +n03977966 +n03978421 +n03978686 +n03978966 +n03980026 +n03980478 +n03980874 +n03981340 +n03981566 +n03981760 +n03981924 +n03982232 +n03982331 +n03982430 +n03982642 +n03983396 +n03983612 +n03984234 +n03984381 +n03984643 +n03984759 +n03985069 +n03985232 +n03985441 +n03985881 +n03986224 +n03986355 +n03986562 +n03986704 +n03986949 +n03987266 +n03987376 +n03987990 +n03988170 +n03989665 +n03990474 +n03991062 +n03991646 +n03991837 +n03992325 +n03992436 +n03992509 +n03992703 +n03993053 +n03993180 +n03993403 +n03993703 +n03994008 +n03994614 +n03995265 +n03995372 +n03995535 +n03995856 +n03996145 +n03996416 +n03996849 +n03998194 +n03998333 +n03999160 +n03999992 +n04000311 +n04000592 +n04001265 +n04001499 +n04001845 +n04003241 +n04003856 +n04004210 +n04004475 +n04004767 +n04004990 +n04005197 +n04005630 +n04008385 +n04008634 +n04009552 +n04009801 +n04011827 +n04012084 +n04012482 +n04013729 +n04015908 +n04016240 +n04016576 +n04016684 +n04016846 +n04018155 +n04018667 +n04019101 +n04019541 +n04019696 +n04020298 +n04020912 +n04021028 +n04021798 +n04022332 +n04023695 +n04023962 +n04024274 +n04024862 +n04024983 +n04025508 +n04026053 +n04026180 +n04026417 +n04026813 +n04027023 +n04027706 +n04028074 +n04028221 +n04028315 +n04028581 +n04028764 +n04029734 +n04030274 +n04030518 +n04032603 +n04033425 +n04033901 +n04033995 +n04034262 +n04035836 +n04035912 +n04036303 +n04037220 +n04037443 +n04037964 +n04038231 +n04038338 +n04038440 +n04038727 +n04039381 +n04039742 +n04039848 +n04040247 +n04040373 +n04040759 +n04041069 +n04041243 +n04041408 +n04041544 +n04041747 +n04042358 +n04043411 +n04043733 +n04044307 +n04044498 +n04044716 +n04045255 +n04045397 +n04045644 +n04046091 +n04046277 +n04046400 +n04046590 +n04046974 +n04047401 +n04048441 +n04049303 +n04049405 +n04049585 +n04049753 +n04050066 +n04050313 +n04050933 +n04051549 +n04051825 +n04052442 +n04052658 +n04052757 +n04053508 +n04053677 +n04054361 +n04054670 +n04056180 +n04056413 +n04056932 +n04057047 +n04057981 +n04058096 +n04058239 +n04058594 +n04059157 +n04059516 +n04059947 +n04060647 +n04061681 +n04061793 +n04061969 +n04062428 +n04063154 +n04063373 +n04063868 +n04064401 +n04064747 +n04064862 +n04065272 +n04065464 +n04065789 +n04066270 +n04067472 +n04067658 +n04067818 +n04067921 +n04068441 +n04068601 +n04069276 +n04069434 +n04070003 +n04070207 +n04070415 +n04070727 +n04071263 +n04072193 +n04072551 +n04072960 +n04074185 +n04074963 +n04075291 +n04075715 +n04075916 +n04076284 +n04076713 +n04078574 +n04079244 +n04079933 +n04080138 +n04080454 +n04080705 +n04080833 +n04081281 +n04081699 +n04082562 +n04082710 +n04082886 +n04083309 +n04083800 +n04084889 +n04086273 +n04086446 +n04087432 +n04087709 +n04087826 +n04089376 +n04089666 +n04089836 +n04089976 +n04090263 +n04091097 +n04091693 +n04093625 +n04093775 +n04094720 +n04095109 +n04095210 +n04095342 +n04095577 +n04096066 +n04097373 +n04097760 +n04097866 +n04098513 +n04099003 +n04099175 +n04099429 +n04099969 +n04100519 +n04101701 +n04102037 +n04102162 +n04102285 +n04102406 +n04102618 +n04103094 +n04103206 +n04103364 +n04103665 +n04103769 +n04103918 +n04104147 +n04104384 +n04104500 +n04104770 +n04105068 +n04105704 +n04105893 +n04107743 +n04108268 +n04108822 +n04110178 +n04110955 +n04111190 +n04111414 +n04111531 +n04111668 +n04112147 +n04112252 +n04112430 +n04112579 +n04112654 +n04112752 +n04113194 +n04113316 +n04113406 +n04113641 +n04113765 +n04114844 +n04115144 +n04115256 +n04115456 +n04115802 +n04115996 +n04116098 +n04116294 +n04116512 +n04117464 +n04118021 +n04118538 +n04118635 +n04118776 +n04119091 +n04119230 +n04119360 +n04119478 +n04119751 +n04120489 +n04120842 +n04121426 +n04121511 +n04121728 +n04122349 +n04122492 +n04122578 +n04122685 +n04122825 +n04123026 +n04123448 +n04123567 +n04123740 +n04124098 +n04124202 +n04124370 +n04124488 +n04125021 +n04125257 +n04125853 +n04126066 +n04127249 +n04127395 +n04127521 +n04127633 +n04127904 +n04128413 +n04128499 +n04128710 +n04128837 +n04130143 +n04130257 +n04130907 +n04131208 +n04131368 +n04131690 +n04131929 +n04132158 +n04132603 +n04132985 +n04133789 +n04134008 +n04134523 +n04134632 +n04135024 +n04135118 +n04135315 +n04135710 +n04136045 +n04136161 +n04136333 +n04136510 +n04136800 +n04137089 +n04137217 +n04137355 +n04137444 +n04137773 +n04137897 +n04138261 +n04138977 +n04139140 +n04139395 +n04139859 +n04140064 +n04140631 +n04141076 +n04141198 +n04141327 +n04141712 +n04141838 +n04141975 +n04142434 +n04142731 +n04142999 +n04143140 +n04143897 +n04144241 +n04144539 +n04145863 +n04146050 +n04146343 +n04146504 +n04146614 +n04146862 +n04147183 +n04147793 +n04148054 +n04148579 +n04148703 +n04149083 +n04149813 +n04150153 +n04150980 +n04152593 +n04153025 +n04153751 +n04154152 +n04154340 +n04154565 +n04154938 +n04155068 +n04156140 +n04156946 +n04157320 +n04158807 +n04158956 +n04160372 +n04160586 +n04160847 +n04161358 +n04161981 +n04162433 +n04162706 +n04163530 +n04164406 +n04164757 +n04164868 +n04165409 +n04166281 +n04167346 +n04168199 +n04169437 +n04170037 +n04170933 +n04171208 +n04171459 +n04171629 +n04171831 +n04172107 +n04172342 +n04172776 +n04172904 +n04173046 +n04173511 +n04173907 +n04174101 +n04175039 +n04175147 +n04176068 +n04176190 +n04176295 +n04177041 +n04177755 +n04177820 +n04177931 +n04178190 +n04178329 +n04179712 +n04179824 +n04179913 +n04180063 +n04180229 +n04180888 +n04181228 +n04181561 +n04182152 +n04182322 +n04183217 +n04183329 +n04184316 +n04184435 +n04184880 +n04185071 +n04185529 +n04185804 +n04185946 +n04186051 +n04186268 +n04186455 +n04186848 +n04187061 +n04187233 +n04187547 +n04187970 +n04188179 +n04189282 +n04189651 +n04189816 +n04190052 +n04190376 +n04190997 +n04191595 +n04191943 +n04192238 +n04192698 +n04192858 +n04193377 +n04194127 +n04194289 +n04196502 +n04197110 +n04197391 +n04197781 +n04198355 +n04198453 +n04198562 +n04198722 +n04198797 +n04199027 +n04200000 +n04200258 +n04200537 +n04200800 +n04201064 +n04201297 +n04201733 +n04202417 +n04204081 +n04204238 +n04204347 +n04205318 +n04205505 +n04206225 +n04206356 +n04206570 +n04206790 +n04207151 +n04207343 +n04207596 +n04207763 +n04207903 +n04208065 +n04208210 +n04208427 +n04208760 +n04208936 +n04209133 +n04209239 +n04209509 +n04209613 +n04210120 +n04210390 +n04211219 +n04211356 +n04211528 +n04211857 +n04211970 +n04212165 +n04212282 +n04212467 +n04213353 +n04214046 +n04214282 +n04215153 +n04215402 +n04216634 +n04216860 +n04216963 +n04217546 +n04217882 +n04218564 +n04219185 +n04219424 +n04220250 +n04221823 +n04222210 +n04222307 +n04222470 +n04222723 +n04223299 +n04224543 +n04224842 +n04225031 +n04225729 +n04225987 +n04226464 +n04226826 +n04227144 +n04227900 +n04228054 +n04228215 +n04228581 +n04228693 +n04229107 +n04229480 +n04229737 +n04229816 +n04230603 +n04230808 +n04231272 +n04231693 +n04231905 +n04232153 +n04232800 +n04233124 +n04233715 +n04234455 +n04234887 +n04235291 +n04235860 +n04236377 +n04236809 +n04236935 +n04237423 +n04238128 +n04238321 +n04238617 +n04238763 +n04239074 +n04239436 +n04239786 +n04240752 +n04241249 +n04241573 +n04242408 +n04243546 +n04243941 +n04244379 +n04244997 +n04245508 +n04246060 +n04246271 +n04246731 +n04246855 +n04247011 +n04247630 +n04247736 +n04247876 +n04248396 +n04248507 +n04248851 +n04249415 +n04249582 +n04249882 +n04250224 +n04250473 +n04250692 +n04250850 +n04251144 +n04251701 +n04251791 +n04252077 +n04252225 +n04252331 +n04252560 +n04252653 +n04253057 +n04253168 +n04253931 +n04254009 +n04254120 +n04254680 +n04254777 +n04255163 +n04255586 +n04255899 +n04256520 +n04256891 +n04257223 +n04257684 +n04257790 +n04257986 +n04258138 +n04258333 +n04258438 +n04258618 +n04258732 +n04258859 +n04259630 +n04260364 +n04261281 +n04261638 +n04262161 +n04263257 +n04263336 +n04263502 +n04264628 +n04264765 +n04264914 +n04265275 +n04265904 +n04266014 +n04266162 +n04266375 +n04266486 +n04266968 +n04267435 +n04269270 +n04269822 +n04269944 +n04270147 +n04270371 +n04270891 +n04271531 +n04272054 +n04272389 +n04272928 +n04273285 +n04273569 +n04273659 +n04273796 +n04273972 +n04274985 +n04275175 +n04275548 +n04275661 +n04277352 +n04277493 +n04277826 +n04278247 +n04278353 +n04278447 +n04279172 +n04279353 +n04279462 +n04281260 +n04281375 +n04282494 +n04282872 +n04282992 +n04283096 +n04283255 +n04283378 +n04283585 +n04283905 +n04284002 +n04284341 +n04284438 +n04284572 +n04284869 +n04285008 +n04285146 +n04285803 +n04285965 +n04286575 +n04287747 +n04287898 +n04288533 +n04289027 +n04289195 +n04289576 +n04289690 +n04289827 +n04290079 +n04290259 +n04290507 +n04290615 +n04292414 +n04292572 +n04292921 +n04293119 +n04294426 +n04294614 +n04294879 +n04295081 +n04295571 +n04295881 +n04296562 +n04297098 +n04297750 +n04297847 +n04298661 +n04299215 +n04299370 +n04299963 +n04300643 +n04301000 +n04301760 +n04303357 +n04303497 +n04304375 +n04304680 +n04305210 +n04305323 +n04305572 +n04306080 +n04306592 +n04306847 +n04307767 +n04307986 +n04308084 +n04308273 +n04308397 +n04309049 +n04309348 +n04309548 +n04309833 +n04310018 +n04310157 +n04310904 +n04311004 +n04311174 +n04311595 +n04312154 +n04312432 +n04313503 +n04313628 +n04314914 +n04315342 +n04315948 +n04316498 +n04317063 +n04317175 +n04317325 +n04317420 +n04317833 +n04317976 +n04318787 +n04318892 +n04319937 +n04320973 +n04321453 +n04322026 +n04322801 +n04323819 +n04324297 +n04324387 +n04325041 +n04325704 +n04326547 +n04326676 +n04326799 +n04326896 +n04327204 +n04327682 +n04328186 +n04328329 +n04328946 +n04329834 +n04329958 +n04330267 +n04330340 +n04330746 +n04330998 +n04331277 +n04331639 +n04332074 +n04332243 +n04332580 +n04333129 +n04333869 +n04334105 +n04334365 +n04334599 +n04335209 +n04335435 +n04335693 +n04335886 +n04336792 +n04337287 +n04338517 +n04338963 +n04339879 +n04340521 +n04340750 +n04340935 +n04341686 +n04344003 +n04344734 +n04344873 +n04345028 +n04345201 +n04346157 +n04346328 +n04346428 +n04347119 +n04347519 +n04347754 +n04348359 +n04349306 +n04349401 +n04350458 +n04350581 +n04350769 +n04350905 +n04351699 +n04353573 +n04354026 +n04354182 +n04354487 +n04354589 +n04355267 +n04355338 +n04355511 +n04355933 +n04356056 +n04356595 +n04356925 +n04357121 +n04357314 +n04357531 +n04358117 +n04358491 +n04358707 +n04358874 +n04359500 +n04360798 +n04360914 +n04361095 +n04361260 +n04363777 +n04363991 +n04364160 +n04364545 +n04365328 +n04366033 +n04366116 +n04366367 +n04367011 +n04367371 +n04367480 +n04367746 +n04367950 +n04368496 +n04369025 +n04369282 +n04370048 +n04370288 +n04370456 +n04370774 +n04371050 +n04371430 +n04371563 +n04371774 +n04372370 +n04373089 +n04373428 +n04373704 +n04373795 +n04373894 +n04374315 +n04374735 +n04375241 +n04375405 +n04375615 +n04376400 +n04376876 +n04377057 +n04378956 +n04379243 +n04379964 +n04380255 +n04380346 +n04380533 +n04380916 +n04381073 +n04381587 +n04381724 +n04381860 +n04381994 +n04382438 +n04382695 +n04382880 +n04383015 +n04383130 +n04383839 +n04384593 +n04384910 +n04385536 +n04385799 +n04386051 +n04386664 +n04386792 +n04387095 +n04387201 +n04387261 +n04387400 +n04387706 +n04387932 +n04388743 +n04389033 +n04389430 +n04389521 +n04389718 +n04389854 +n04390577 +n04390873 +n04390977 +n04391445 +n04391838 +n04392113 +n04392526 +n04392764 +n04392985 +n04393095 +n04393549 +n04393808 +n04394630 +n04395024 +n04395106 +n04395651 +n04396808 +n04396902 +n04397027 +n04397452 +n04397645 +n04397768 +n04398044 +n04398497 +n04398688 +n04398834 +n04398951 +n04399158 +n04399537 +n04399846 +n04400289 +n04400737 +n04401088 +n04401578 +n04401680 +n04401828 +n04401949 +n04402057 +n04402449 +n04402580 +n04402746 +n04402984 +n04403413 +n04403524 +n04403638 +n04403925 +n04404412 +n04404817 +n04404997 +n04405540 +n04405762 +n04405907 +n04406239 +n04406817 +n04407435 +n04407686 +n04408871 +n04409011 +n04409128 +n04409384 +n04409515 +n04409625 +n04409806 +n04410086 +n04411264 +n04412097 +n04412416 +n04413969 +n04414199 +n04414319 +n04414476 +n04414675 +n04414909 +n04415663 +n04416005 +n04417086 +n04417180 +n04417672 +n04417809 +n04418357 +n04419073 +n04419642 +n04419868 +n04421872 +n04422409 +n04422727 +n04422875 +n04423845 +n04424692 +n04425804 +n04426316 +n04426427 +n04427715 +n04428191 +n04428634 +n04429376 +n04430475 +n04430896 +n04431025 +n04431745 +n04432203 +n04432662 +n04433585 +n04434207 +n04434531 +n04434932 +n04435180 +n04435653 +n04436012 +n04436185 +n04436329 +n04437953 +n04438304 +n04438507 +n04438897 +n04439585 +n04439712 +n04440963 +n04441662 +n04441790 +n04442312 +n04442441 +n04442741 +n04443164 +n04443257 +n04443766 +n04444749 +n04445040 +n04445154 +n04445327 +n04445952 +n04446276 +n04446844 +n04447028 +n04447276 +n04447443 +n04447861 +n04448070 +n04448361 +n04449290 +n04449966 +n04450133 +n04450243 +n04450640 +n04450749 +n04450994 +n04451318 +n04451818 +n04452528 +n04452615 +n04452757 +n04453037 +n04453156 +n04453390 +n04453666 +n04454908 +n04455250 +n04455652 +n04456115 +n04457474 +n04457767 +n04457910 +n04458633 +n04458843 +n04459018 +n04459362 +n04459610 +n04459773 +n04459909 +n04460130 +n04461437 +n04461570 +n04461696 +n04461879 +n04462011 +n04462240 +n04463679 +n04464615 +n04464852 +n04465050 +n04465358 +n04465501 +n04465666 +n04466871 +n04467099 +n04467307 +n04467665 +n04468005 +n04469003 +n04469514 +n04469813 +n04471148 +n04471632 +n04472563 +n04473108 +n04474035 +n04474187 +n04474466 +n04475411 +n04475631 +n04476116 +n04476259 +n04476831 +n04476972 +n04477219 +n04477387 +n04477548 +n04478512 +n04479046 +n04479823 +n04479939 +n04480033 +n04480853 +n04482177 +n04482297 +n04482393 +n04483073 +n04483307 +n04483925 +n04484432 +n04485082 +n04485423 +n04485884 +n04486054 +n04486213 +n04486934 +n04487081 +n04487394 +n04487724 +n04488202 +n04488427 +n04488530 +n04488742 +n04488857 +n04489008 +n04489695 +n04489817 +n04490091 +n04491388 +n04491638 +n04491769 +n04492060 +n04492375 +n04492749 +n04493381 +n04494204 +n04495698 +n04495843 +n04496614 +n04496726 +n04496872 +n04497442 +n04497570 +n04497801 +n04498389 +n04499062 +n04499446 +n04500060 +n04501370 +n04501550 +n04501947 +n04502059 +n04502197 +n04502502 +n04502670 +n04502851 +n04503413 +n04503593 +n04504141 +n04505036 +n04505470 +n04506289 +n04506506 +n04506688 +n04507155 +n04508163 +n04508489 +n04508949 +n04509171 +n04509260 +n04509417 +n04510706 +n04511002 +n04513827 +n04513998 +n04514241 +n04515003 +n04516116 +n04516214 +n04516354 +n04516672 +n04517211 +n04517408 +n04517823 +n04518132 +n04518343 +n04518643 +n04518764 +n04519153 +n04520170 +n04520382 +n04520784 +n04521863 +n04522168 +n04523525 +n04523831 +n04524142 +n04524313 +n04524941 +n04525038 +n04525191 +n04525305 +n04525417 +n04525584 +n04525821 +n04526964 +n04527648 +n04528079 +n04528968 +n04529108 +n04529681 +n04529962 +n04530283 +n04530566 +n04531098 +n04531873 +n04532106 +n04532398 +n04532670 +n04532831 +n04533199 +n04533499 +n04533594 +n04533700 +n04533802 +n04533946 +n04534127 +n04534359 +n04534520 +n04534895 +n04535370 +n04535524 +n04536153 +n04536335 +n04536595 +n04536866 +n04538552 +n04539203 +n04539794 +n04540053 +n04540255 +n04541320 +n04541987 +n04542715 +n04542858 +n04542943 +n04543158 +n04543636 +n04543772 +n04543996 +n04544325 +n04544450 +n04545305 +n04545748 +n04545858 +n04546194 +n04546340 +n04547592 +n04548280 +n04548362 +n04549028 +n04549122 +n04549629 +n04549919 +n04550184 +n04551055 +n04552348 +n04552696 +n04553561 +n04553703 +n04554211 +n04554406 +n04554684 +n04554871 +n04555291 +n04555400 +n04555600 +n04555700 +n04555897 +n04556408 +n04556533 +n04556948 +n04557648 +n04557751 +n04558478 +n04559166 +n04559451 +n04559730 +n04559910 +n04560113 +n04560292 +n04560804 +n04560882 +n04561287 +n04561422 +n04561734 +n04562262 +n04562496 +n04562935 +n04563204 +n04563413 +n04564278 +n04564581 +n04565375 +n04566257 +n04566561 +n04566756 +n04568069 +n04568557 +n04568841 +n04569063 +n04569822 +n04570214 +n04570815 +n04571292 +n04571566 +n04571686 +n04571958 +n04573281 +n04573513 +n04573937 +n04574067 +n04574999 +n04575723 +n04575824 +n04576002 +n04576211 +n04577769 +n04578934 +n04579056 +n04579145 +n04579230 +n04579432 +n04579667 +n04579986 +n04580493 +n04581102 +n04581829 +n04582205 +n04582349 +n04582771 +n04582869 +n04583212 +n04583620 +n04584207 +n04584373 +n04585128 +n04585745 +n04585980 +n04586072 +n04586581 +n04586932 +n04587327 +n04587404 +n04587559 +n04587648 +n04588739 +n04589190 +n04589325 +n04589593 +n04589890 +n04590021 +n04590129 +n04590263 +n04590553 +n04590746 +n04590933 +n04591157 +n04591517 +n04591713 +n04591887 +n04592005 +n04592099 +n04592465 +n04592741 +n04593077 +n04593185 +n04593376 +n04593524 +n04593866 +n04594218 +n04594489 +n04594828 +n04595028 +n04595285 +n04595855 +n04596742 +n04596852 +n04597309 +n04597400 +n04597804 +n04597913 +n04598318 +n04598582 +n04598965 +n04599124 +n04599235 +n04600312 +n04600912 +n04602762 +n04602956 +n04603399 +n04603729 +n04603872 +n04604644 +n04605163 +n04605321 +n04605572 +n04605726 +n04606251 +n04606574 +n04607035 +n04607242 +n04607869 +n04608329 +n04608435 +n04608567 +n04608923 +n04609531 +n04609651 +n04610013 +n04610274 +n04610503 +n04610676 +n04612026 +n04612373 +n04612504 +n04613015 +n04613696 +n04613939 +n04614655 +n04615226 +n04615644 +n04950952 +n04951071 +n04951186 +n04953296 +n04955160 +n04959672 +n04960277 +n04960582 +n04961062 +n04961331 +n04961691 +n04962062 +n04962240 +n04963307 +n04963588 +n04963740 +n04964001 +n04964799 +n04964878 +n04965179 +n04965451 +n04965661 +n04966543 +n04966941 +n04967191 +n04967674 +n04967801 +n04967882 +n04968056 +n04968139 +n04968749 +n04968895 +n04969242 +n04969540 +n04969798 +n04969952 +n04970059 +n04970398 +n04970470 +n04970916 +n04971211 +n04971313 +n04972350 +n04972451 +n04972801 +n04973291 +n04973386 +n04973585 +n04973816 +n04974859 +n04976319 +n04976952 +n04977412 +n04979002 +n04981658 +n05218119 +n05238282 +n05239437 +n05242928 +n05244934 +n05245192 +n05258051 +n05259914 +n05260127 +n05260240 +n05261310 +n05262422 +n05262534 +n05263183 +n05263448 +n05282652 +n05302499 +n05399034 +n05399243 +n05418717 +n05450617 +n05451384 +n05453657 +n05486510 +n05526957 +n05538625 +n05578095 +n05581932 +n05586759 +n05716342 +n06255081 +n06263609 +n06266633 +n06266973 +n06267145 +n06267564 +n06267655 +n06267758 +n06267893 +n06267991 +n06271778 +n06272290 +n06272612 +n06272803 +n06273414 +n06273555 +n06273743 +n06273986 +n06274760 +n06275095 +n06275353 +n06275471 +n06276501 +n06276697 +n06277135 +n06277280 +n06278338 +n06278475 +n06281040 +n06359193 +n06359467 +n06415688 +n06417096 +n06470073 +n06592281 +n06595351 +n06596364 +n06596474 +n06596607 +n06596727 +n06785654 +n06793231 +n06794110 +n06874185 +n06883725 +n06892775 +n06998748 +n07005523 +n07248320 +n07273802 +n07461050 +n07556406 +n07556637 +n07556970 +n07557434 +n07560193 +n07560331 +n07560542 +n07560652 +n07560903 +n07561112 +n07561590 +n07561848 +n07562495 +n07563207 +n07564971 +n07565083 +n07565161 +n07565259 +n07566340 +n07567707 +n07568502 +n07568818 +n07569106 +n07569644 +n07570720 +n07572616 +n07572957 +n07573347 +n07573696 +n07574176 +n07574426 +n07574504 +n07574602 +n07574780 +n07574923 +n07575076 +n07575392 +n07575510 +n07575726 +n07575984 +n07576182 +n07576438 +n07576781 +n07577144 +n07577374 +n07577538 +n07578093 +n07579575 +n07579688 +n07579787 +n07579917 +n07580053 +n07580253 +n07580359 +n07580470 +n07580592 +n07581249 +n07581346 +n07581775 +n07581931 +n07582152 +n07582277 +n07582609 +n07582892 +n07583066 +n07584110 +n07584332 +n07584423 +n07584593 +n07585107 +n07585208 +n07585557 +n07585758 +n07585906 +n07586099 +n07586318 +n07586604 +n07586718 +n07586894 +n07587023 +n07587111 +n07587331 +n07587441 +n07587618 +n07587700 +n07587962 +n07588111 +n07588193 +n07588299 +n07588419 +n07588574 +n07588817 +n07588947 +n07590320 +n07590502 +n07590611 +n07590752 +n07591049 +n07591473 +n07591586 +n07591961 +n07592094 +n07592481 +n07592768 +n07593004 +n07593199 +n07593471 +n07594066 +n07595649 +n07595914 +n07596684 +n07596967 +n07597145 +n07597365 +n07598256 +n07598734 +n07599911 +n07599998 +n07600177 +n07600285 +n07600696 +n07601290 +n07601572 +n07601686 +n07601809 +n07604956 +n07605040 +n07605380 +n07605474 +n07605597 +n07605804 +n07605944 +n07606538 +n07606669 +n07606764 +n07607138 +n07607605 +n07607967 +n07608098 +n07608339 +n07608429 +n07608866 +n07609215 +n07609407 +n07609632 +n07609840 +n07610620 +n07611046 +n07611148 +n07611267 +n07611358 +n07611839 +n07611991 +n07612137 +n07612367 +n07612632 +n07612996 +n07613266 +n07613480 +n07613815 +n07614198 +n07614500 +n07614730 +n07614825 +n07615190 +n07615289 +n07615460 +n07615569 +n07615671 +n07615774 +n07616046 +n07616386 +n07616487 +n07616590 +n07616748 +n07617051 +n07617611 +n07617708 +n07617932 +n07618119 +n07618432 +n07619004 +n07619208 +n07619409 +n07620689 +n07621618 +n07623136 +n07624466 +n07625061 +n07627931 +n07628068 +n07631926 +n07639069 +n07641928 +n07642361 +n07642471 +n07642742 +n07642933 +n07643026 +n07643200 +n07643306 +n07643891 +n07643981 +n07648913 +n07648997 +n07650903 +n07651025 +n07654148 +n07654298 +n07655263 +n07665438 +n07666176 +n07678729 +n07679034 +n07679356 +n07680313 +n07680517 +n07680761 +n07680932 +n07681450 +n07681691 +n07682197 +n07682316 +n07682477 +n07682624 +n07682808 +n07682952 +n07683039 +n07683360 +n07683490 +n07683617 +n07683786 +n07684084 +n07684164 +n07684289 +n07684517 +n07684600 +n07684938 +n07685031 +n07685218 +n07685399 +n07685546 +n07685730 +n07685918 +n07686021 +n07686202 +n07686720 +n07686873 +n07687053 +n07687211 +n07687381 +n07687469 +n07687626 +n07687789 +n07688624 +n07688898 +n07689003 +n07689842 +n07690019 +n07690152 +n07690273 +n07690431 +n07690511 +n07690585 +n07690739 +n07690892 +n07691091 +n07691237 +n07691539 +n07691650 +n07691758 +n07691954 +n07692614 +n07693048 +n07693223 +n07693590 +n07693725 +n07693972 +n07694403 +n07694516 +n07694659 +n07694839 +n07695652 +n07695742 +n07695878 +n07695965 +n07696403 +n07696527 +n07696625 +n07696728 +n07696839 +n07696977 +n07697100 +n07697313 +n07697537 +n07697699 +n07697825 +n07698250 +n07698401 +n07698543 +n07698672 +n07698782 +n07700003 +n07704054 +n07704205 +n07705931 +n07707451 +n07708124 +n07708398 +n07708685 +n07709046 +n07709172 +n07709333 +n07710283 +n07710616 +n07710952 +n07711080 +n07711232 +n07711371 +n07711569 +n07712063 +n07712267 +n07712382 +n07712559 +n07712748 +n07712856 +n07712959 +n07713074 +n07713267 +n07713395 +n07713763 +n07713895 +n07714078 +n07714188 +n07714287 +n07714448 +n07714571 +n07714802 +n07714895 +n07714990 +n07715103 +n07715221 +n07715407 +n07715561 +n07715721 +n07716034 +n07716203 +n07716358 +n07716906 +n07717070 +n07717410 +n07717556 +n07718472 +n07718747 +n07719213 +n07719616 +n07719839 +n07720277 +n07720442 +n07720615 +n07720875 +n07721018 +n07721195 +n07721325 +n07721456 +n07721678 +n07721942 +n07722052 +n07722217 +n07722485 +n07722888 +n07723039 +n07723177 +n07723330 +n07723559 +n07723968 +n07724269 +n07724492 +n07724654 +n07724943 +n07725255 +n07725376 +n07725531 +n07725789 +n07725888 +n07726095 +n07726525 +n07726672 +n07726796 +n07727048 +n07727458 +n07727578 +n07727868 +n07728053 +n07728181 +n07728585 +n07728708 +n07729384 +n07729485 +n07729828 +n07729926 +n07730033 +n07730207 +n07730320 +n07730406 +n07730708 +n07730855 +n07731006 +n07731284 +n07731587 +n07731767 +n07731952 +n07732168 +n07732636 +n07732747 +n07732904 +n07733394 +n07733567 +n07733712 +n07734017 +n07734183 +n07734292 +n07734417 +n07734555 +n07734744 +n07734879 +n07735404 +n07735510 +n07735687 +n07735803 +n07736087 +n07736256 +n07736371 +n07736692 +n07736813 +n07737745 +n07739125 +n07739344 +n07739506 +n07740033 +n07740220 +n07740342 +n07740461 +n07740597 +n07740954 +n07741138 +n07741461 +n07742012 +n07742313 +n07742704 +n07743224 +n07743544 +n07743902 +n07744057 +n07744246 +n07744430 +n07744682 +n07744811 +n07745046 +n07745466 +n07745940 +n07746186 +n07746334 +n07746551 +n07747055 +n07747607 +n07747951 +n07748157 +n07748276 +n07748416 +n07748574 +n07748753 +n07748912 +n07749192 +n07749312 +n07749446 +n07749582 +n07749731 +n07749969 +n07750146 +n07750449 +n07750736 +n07750872 +n07751004 +n07751148 +n07751280 +n07751451 +n07752109 +n07752377 +n07752514 +n07752966 +n07753113 +n07753275 +n07753592 +n07753743 +n07753980 +n07754451 +n07754684 +n07754894 +n07755089 +n07755411 +n07755707 +n07755929 +n07756325 +n07756951 +n07757132 +n07757312 +n07757511 +n07757990 +n07758680 +n07759194 +n07759816 +n07760153 +n07760859 +n07761141 +n07761309 +n07762114 +n07762244 +n07762740 +n07762913 +n07763107 +n07763629 +n07763792 +n07763987 +n07764155 +n07764315 +n07764630 +n07764847 +n07765073 +n07765208 +n07765361 +n07765862 +n07765999 +n07766173 +n07766891 +n07767002 +n07767171 +n07767344 +n07767549 +n07767709 +n07767847 +n07768068 +n07768230 +n07768423 +n07768694 +n07768858 +n07769584 +n07769731 +n07770034 +n07770763 +n07771212 +n07771731 +n07772147 +n07772274 +n07772788 +n07772935 +n07774596 +n07774719 +n07774842 +n07775050 +n07775197 +n07800740 +n07801091 +n07801342 +n07801508 +n07801779 +n07801892 +n07802026 +n07802417 +n07802863 +n07802963 +n07803093 +n07803545 +n07804323 +n07804543 +n07804657 +n07804771 +n07804900 +n07805594 +n07805731 +n07806120 +n07806221 +n07806633 +n07806774 +n07807002 +n07807171 +n07807472 +n07807594 +n07807710 +n07807834 +n07807922 +n07808587 +n07808904 +n07809096 +n07810907 +n07812184 +n07814203 +n07814390 +n07814487 +n07814634 +n07815424 +n07815588 +n07816052 +n07816164 +n07816296 +n07816398 +n07816575 +n07816839 +n07817024 +n07817160 +n07817315 +n07817871 +n07818277 +n07818572 +n07818689 +n07818825 +n07818995 +n07819166 +n07819769 +n07819896 +n07820145 +n07820497 +n07820683 +n07821260 +n07821758 +n07821919 +n07822197 +n07822323 +n07822518 +n07822845 +n07823105 +n07823280 +n07823460 +n07823698 +n07823951 +n07824191 +n07824702 +n07825194 +n07825972 +n07826091 +n07826453 +n07826930 +n07827130 +n07827284 +n07827410 +n07827750 +n07828642 +n07829248 +n07829331 +n07829412 +n07830593 +n07831146 +n07831267 +n07832416 +n07832902 +n07834065 +n07834507 +n07834618 +n07834872 +n07835331 +n07835457 +n07835921 +n07836838 +n07837002 +n07837362 +n07837912 +n07838073 +n07838233 +n07838441 +n07838551 +n07840027 +n07840804 +n07841345 +n07841495 +n07841639 +n07841800 +n07841907 +n07842044 +n07842130 +n07842202 +n07842308 +n07842433 +n07842605 +n07842753 +n07843464 +n07843636 +n07843775 +n07844042 +n07844867 +n07845087 +n07845702 +n07846143 +n07847198 +n07847453 +n07847827 +n07847917 +n07848093 +n07848196 +n07848338 +n07849336 +n07849619 +n07849733 +n07849912 +n07850083 +n07850329 +n07851298 +n07851443 +n07851554 +n07851641 +n07851767 +n07852229 +n07852614 +n07852833 +n07854184 +n07854982 +n07855510 +n07855907 +n07857170 +n07857731 +n07858978 +n07859284 +n07859583 +n07859796 +n07860103 +n07860331 +n07860447 +n07860805 +n07860988 +n07861158 +n07861557 +n07861813 +n07862095 +n07862244 +n07862348 +n07862461 +n07862611 +n07863374 +n07863547 +n07863802 +n07864756 +n07864934 +n07865105 +n07865196 +n07865484 +n07866015 +n07866151 +n07866277 +n07866409 +n07866723 +n07866868 +n07867021 +n07867164 +n07867324 +n07867421 +n07867616 +n07867751 +n07868200 +n07868340 +n07868508 +n07868830 +n07868955 +n07869522 +n07869611 +n07869775 +n07870069 +n07870167 +n07870313 +n07871234 +n07871436 +n07871720 +n07871810 +n07872593 +n07873057 +n07873348 +n07873464 +n07873807 +n07874063 +n07874159 +n07874259 +n07874343 +n07874441 +n07874780 +n07875152 +n07875436 +n07875693 +n07876651 +n07877187 +n07877299 +n07877675 +n07877849 +n07877961 +n07878647 +n07878785 +n07878926 +n07879072 +n07879174 +n07879350 +n07879450 +n07879659 +n07879953 +n07880080 +n07880213 +n07880325 +n07880458 +n07880751 +n07880880 +n07880968 +n07881205 +n07881404 +n07881800 +n07882497 +n07883031 +n07883251 +n07884567 +n07885705 +n07886057 +n07886176 +n07886463 +n07886572 +n07886849 +n07887099 +n07887192 +n07887304 +n07887461 +n07887634 +n07887967 +n07888229 +n07888465 +n07888816 +n07889274 +n07889510 +n07889814 +n07890068 +n07890226 +n07890352 +n07890540 +n07890750 +n07891189 +n07891309 +n07891433 +n07891726 +n07892418 +n07892512 +n07892813 +n07893253 +n07893528 +n07893642 +n07893891 +n07894102 +n07894298 +n07894451 +n07894551 +n07894703 +n07894799 +n07894965 +n07895100 +n07895237 +n07895435 +n07895595 +n07895710 +n07895839 +n07895962 +n07896060 +n07896165 +n07896287 +n07896661 +n07896893 +n07896994 +n07897116 +n07897438 +n07897600 +n07897750 +n07897865 +n07897975 +n07898117 +n07898247 +n07898333 +n07898443 +n07898617 +n07898745 +n07899003 +n07899108 +n07899292 +n07899434 +n07899533 +n07899660 +n07899769 +n07899899 +n07900225 +n07900406 +n07900616 +n07900734 +n07900825 +n07900958 +n07901355 +n07901457 +n07901587 +n07902121 +n07902336 +n07902443 +n07902799 +n07902937 +n07903101 +n07903208 +n07903543 +n07903643 +n07903731 +n07903841 +n07903962 +n07904395 +n07904637 +n07904760 +n07904865 +n07904934 +n07905038 +n07905296 +n07905386 +n07905474 +n07905979 +n07906111 +n07906284 +n07906572 +n07906718 +n07906877 +n07907037 +n07907161 +n07907342 +n07907429 +n07907548 +n07907831 +n07907943 +n07908411 +n07908567 +n07908647 +n07908812 +n07909129 +n07909593 +n07910048 +n07910152 +n07910379 +n07910538 +n07910656 +n07911249 +n07911371 +n07911677 +n07912211 +n07913393 +n07913882 +n07914006 +n07914128 +n07914271 +n07914413 +n07914586 +n07914777 +n07914995 +n07915094 +n07915491 +n07915618 +n07915918 +n07916041 +n07916183 +n07916319 +n07917133 +n07917272 +n07917392 +n07917507 +n07917618 +n07918028 +n07918193 +n07918879 +n07919310 +n07919441 +n07919572 +n07920052 +n07920222 +n07920349 +n07920540 +n07920663 +n07920872 +n07920989 +n07921239 +n07921455 +n07921615 +n07922512 +n07922764 +n07923748 +n07924033 +n07924276 +n07924443 +n07924560 +n07924747 +n07924834 +n07924955 +n07925116 +n07925229 +n07925500 +n07925608 +n07925966 +n07926250 +n07926920 +n07927197 +n07927512 +n07927931 +n07928163 +n07928367 +n07928488 +n07928696 +n07928790 +n07928887 +n07929172 +n07929351 +n07929519 +n07930062 +n07930315 +n07930433 +n07930554 +n07930864 +n07931452 +n07931612 +n07931870 +n07932039 +n07932841 +n07933154 +n07933274 +n07933799 +n07934282 +n07935043 +n07935379 +n07935504 +n07935737 +n07935878 +n07936263 +n07936548 +n07936745 +n07937461 +n07938007 +n07938149 +n07938313 +n07942152 +n07951464 +n07954211 +n07977870 +n08182379 +n08242223 +n08249459 +n08256735 +n08376250 +n08492461 +n08494231 +n08495908 +n08505018 +n08517676 +n08518171 +n08521623 +n08524735 +n08539072 +n08547468 +n08547544 +n08551296 +n08555710 +n08560295 +n08571898 +n08573842 +n08578517 +n08579352 +n08580944 +n08583292 +n08583455 +n08584914 +n08596076 +n08598301 +n08598568 +n08611339 +n08614632 +n08616050 +n08628141 +n08633683 +n08640531 +n08640739 +n08640962 +n08645104 +n08645212 +n08649711 +n08658309 +n08659446 +n08659861 +n08663703 +n08673039 +n08677424 +n09189157 +n09191635 +n09193705 +n09194227 +n09199101 +n09205509 +n09206896 +n09206985 +n09208496 +n09210862 +n09217230 +n09218315 +n09218494 +n09218641 +n09219233 +n09224725 +n09228055 +n09229709 +n09230041 +n09230202 +n09233446 +n09238926 +n09239302 +n09242389 +n09245515 +n09246464 +n09247410 +n09249034 +n09251407 +n09256479 +n09257843 +n09259025 +n09259219 +n09260907 +n09263912 +n09265620 +n09267854 +n09269341 +n09269472 +n09270735 +n09274152 +n09279986 +n09282208 +n09283193 +n09283405 +n09283767 +n09283866 +n09287968 +n09288635 +n09289331 +n09290444 +n09294877 +n09295946 +n09300905 +n09302616 +n09303008 +n09303528 +n09304750 +n09305898 +n09308572 +n09308743 +n09309168 +n09309292 +n09326662 +n09331251 +n09332890 +n09335809 +n09337253 +n09344324 +n09348460 +n09349648 +n09359803 +n09361517 +n09362945 +n09366317 +n09376198 +n09376526 +n09376786 +n09381242 +n09382099 +n09384106 +n09392402 +n09393605 +n09396465 +n09398076 +n09398677 +n09399592 +n09400987 +n09403211 +n09403427 +n09403734 +n09405078 +n09406793 +n09409512 +n09409752 +n09411189 +n09415584 +n09415671 +n09416076 +n09416890 +n09421799 +n09421951 +n09428293 +n09428628 +n09432283 +n09433442 +n09433839 +n09435739 +n09436444 +n09436708 +n09437454 +n09438844 +n09438940 +n09439213 +n09442595 +n09443281 +n09443641 +n09444783 +n09445008 +n09445289 +n09447666 +n09448690 +n09450163 +n09451237 +n09452395 +n09452760 +n09453008 +n09454153 +n09454412 +n09457979 +n09460046 +n09461069 +n09466678 +n09468604 +n09472413 +n09472597 +n09475044 +n09475179 +n09475925 +n09481120 +n09505153 +n09606527 +n09607630 +n09607903 +n09610405 +n09616922 +n09618760 +n09618880 +n09618957 +n09619168 +n09620078 +n09620794 +n09621232 +n09622302 +n09624168 +n09624559 +n09626238 +n09627906 +n09629752 +n09632518 +n09635534 +n09636339 +n09637339 +n09638454 +n09638875 +n09639919 +n09641002 +n09643799 +n09644152 +n09650729 +n09651123 +n09652149 +n09654518 +n09659039 +n09659188 +n09661873 +n09666883 +n09670521 +n09675922 +n09676021 +n09676247 +n09676884 +n09679170 +n09681234 +n09683757 +n09683924 +n09684901 +n09686401 +n09688804 +n09689435 +n09689958 +n09690621 +n09691729 +n09692915 +n09693982 +n09694664 +n09694771 +n09695620 +n09695979 +n09696456 +n09696585 +n09696763 +n09697401 +n09698644 +n09700964 +n09701148 +n09701833 +n09703485 +n09705124 +n09705784 +n09706255 +n09707289 +n09708750 +n09708889 +n09711435 +n09712324 +n09712448 +n09712696 +n09713108 +n09714694 +n09715427 +n09717233 +n09718217 +n09718811 +n09718936 +n09719309 +n09719794 +n09720033 +n09720256 +n09720595 +n09720842 +n09722658 +n09723067 +n09724533 +n09724656 +n09724785 +n09725000 +n09725653 +n09725772 +n09727440 +n09727826 +n09728137 +n09728285 +n09730077 +n09730204 +n09730824 +n09731343 +n09731436 +n09732170 +n09733793 +n09734185 +n09734450 +n09734535 +n09734639 +n09736945 +n09738121 +n09740724 +n09742101 +n09742315 +n09743487 +n09743792 +n09744161 +n09744834 +n09747191 +n09747495 +n09749386 +n09750282 +n09750770 +n09750891 +n09751496 +n09751895 +n09752023 +n09752519 +n09753792 +n09756049 +n09757449 +n09758885 +n09759501 +n09760609 +n09763784 +n09764598 +n09764900 +n09767197 +n09770179 +n09770359 +n09772930 +n09774783 +n09776346 +n09779790 +n09782167 +n09782397 +n09785659 +n09785891 +n09787534 +n09787765 +n09789566 +n09791014 +n09791419 +n09791816 +n09792555 +n09792969 +n09793141 +n09796809 +n09797873 +n09800964 +n09801533 +n09805151 +n09805324 +n09809749 +n09809925 +n09811852 +n09813219 +n09814660 +n09816771 +n09818022 +n09820263 +n09822830 +n09823502 +n09823832 +n09824135 +n09824609 +n09827246 +n09827363 +n09828216 +n09830194 +n09830400 +n09830629 +n09832456 +n09833441 +n09833536 +n09834378 +n09834699 +n09835230 +n09835348 +n09835506 +n09836160 +n09836343 +n09836519 +n09836786 +n09838621 +n09839702 +n09840217 +n09840520 +n09841188 +n09841696 +n09842047 +n09842395 +n09842528 +n09843443 +n09843824 +n09844457 +n09845401 +n09846469 +n09846755 +n09846894 +n09847543 +n09851165 +n09854218 +n09854421 +n09855433 +n09856671 +n09858165 +n09859152 +n09861599 +n09861863 +n09861946 +n09862621 +n09863031 +n09866817 +n09871229 +n09871681 +n09871867 +n09872066 +n09873348 +n09873473 +n09873899 +n09874428 +n09874725 +n09874862 +n09877288 +n09877750 +n09877951 +n09881265 +n09881895 +n09886403 +n09889065 +n09889170 +n09889941 +n09890749 +n09893191 +n09893344 +n09893502 +n09894143 +n09894445 +n09895222 +n09895561 +n09896170 +n09896401 +n09896685 +n09899671 +n09899782 +n09899929 +n09901337 +n09902954 +n09903153 +n09903501 +n09904208 +n09904837 +n09905185 +n09906449 +n09911226 +n09913455 +n09913593 +n09915434 +n09915651 +n09916348 +n09917214 +n09917593 +n09918248 +n09918554 +n09920283 +n09923186 +n09923418 +n09923561 +n09923673 +n09924106 +n09924996 +n09927451 +n09928136 +n09929298 +n09929577 +n09930257 +n09930876 +n09931165 +n09932098 +n09932336 +n09932508 +n09933098 +n09934337 +n09934774 +n09936825 +n09938449 +n09941787 +n09941964 +n09942970 +n09943239 +n09943811 +n09944022 +n09944430 +n09945745 +n09946814 +n09951274 +n09951616 +n09953350 +n09954639 +n09964202 +n09967967 +n09971273 +n09972010 +n09972458 +n09974648 +n09975425 +n09976283 +n09976429 +n09981278 +n09981540 +n09981939 +n09988063 +n09988493 +n09988703 +n09989502 +n09990415 +n09990690 +n09990777 +n09991867 +n09993252 +n10001481 +n10002760 +n10004718 +n10005934 +n10007684 +n10009276 +n10013811 +n10015485 +n10017272 +n10019072 +n10019406 +n10020890 +n10024362 +n10025635 +n10026976 +n10027246 +n10033412 +n10033663 +n10034201 +n10034614 +n10036692 +n10036929 +n10037385 +n10037922 +n10038409 +n10039271 +n10040945 +n10042845 +n10043491 +n10043643 +n10048612 +n10049363 +n10053808 +n10054657 +n10055410 +n10058962 +n10060352 +n10069296 +n10070108 +n10070711 +n10075693 +n10076224 +n10076604 +n10076957 +n10077593 +n10078131 +n10078719 +n10078806 +n10079399 +n10080869 +n10081204 +n10082043 +n10082687 +n10082997 +n10084295 +n10085869 +n10086383 +n10087434 +n10091450 +n10091564 +n10091651 +n10092488 +n10092643 +n10092794 +n10092978 +n10093475 +n10093818 +n10095769 +n10098245 +n10098517 +n10098624 +n10098710 +n10098862 +n10102800 +n10104064 +n10105733 +n10107303 +n10112129 +n10115430 +n10116702 +n10117739 +n10117851 +n10120330 +n10120671 +n10123122 +n10123844 +n10127689 +n10129825 +n10131151 +n10131815 +n10132035 +n10134178 +n10134982 +n10135129 +n10137825 +n10140597 +n10140929 +n10141364 +n10141732 +n10142391 +n10142747 +n10143172 +n10144338 +n10145239 +n10145340 +n10145480 +n10145590 +n10145774 +n10145902 +n10146002 +n10146104 +n10146416 +n10147121 +n10147935 +n10148035 +n10150071 +n10150940 +n10151760 +n10152763 +n10153414 +n10153594 +n10155849 +n10157128 +n10159045 +n10159533 +n10160280 +n10164233 +n10164492 +n10165448 +n10167152 +n10167838 +n10168837 +n10169147 +n10173410 +n10173771 +n10174330 +n10174445 +n10175248 +n10178216 +n10182190 +n10183931 +n10185483 +n10185793 +n10186216 +n10187990 +n10188957 +n10189278 +n10191001 +n10192839 +n10195593 +n10200781 +n10202624 +n10203949 +n10205231 +n10205457 +n10207169 +n10208950 +n10209082 +n10209731 +n10210911 +n10212501 +n10215623 +n10216106 +n10221312 +n10223177 +n10225219 +n10226413 +n10229883 +n10233248 +n10235024 +n10235385 +n10236304 +n10237069 +n10237196 +n10237676 +n10241300 +n10242328 +n10243137 +n10243664 +n10247358 +n10247880 +n10249270 +n10249459 +n10252222 +n10253122 +n10253296 +n10258786 +n10259348 +n10259780 +n10259997 +n10260706 +n10260800 +n10261624 +n10262445 +n10262561 +n10262655 +n10263411 +n10263790 +n10267311 +n10267865 +n10274815 +n10275395 +n10276477 +n10277027 +n10279018 +n10280674 +n10282482 +n10282672 +n10283170 +n10288964 +n10289039 +n10289462 +n10290919 +n10293332 +n10296176 +n10296444 +n10297234 +n10297531 +n10297841 +n10298647 +n10298912 +n10299250 +n10300154 +n10300303 +n10300500 +n10303814 +n10304086 +n10304914 +n10305802 +n10308168 +n10308732 +n10313000 +n10313239 +n10313724 +n10314054 +n10314517 +n10314836 +n10315456 +n10315561 +n10316360 +n10317007 +n10317500 +n10318293 +n10318607 +n10320863 +n10321340 +n10323634 +n10324560 +n10325774 +n10327987 +n10328123 +n10331167 +n10332385 +n10332861 +n10333439 +n10333601 +n10333838 +n10334009 +n10339717 +n10340312 +n10341573 +n10342992 +n10343355 +n10345015 +n10346015 +n10347446 +n10348526 +n10353016 +n10355142 +n10355449 +n10356877 +n10357613 +n10359546 +n10360747 +n10362319 +n10362557 +n10364198 +n10366966 +n10368528 +n10368624 +n10369317 +n10370955 +n10373390 +n10375052 +n10375314 +n10375402 +n10376523 +n10377021 +n10377185 +n10378026 +n10380672 +n10382710 +n10382825 +n10384392 +n10384496 +n10385566 +n10386984 +n10387196 +n10387324 +n10393909 +n10395828 +n10396106 +n10400108 +n10400437 +n10400618 +n10401331 +n10401639 +n10403876 +n10405694 +n10406266 +n10406391 +n10406765 +n10407310 +n10407954 +n10410246 +n10411551 +n10415037 +n10419472 +n10419785 +n10420507 +n10421016 +n10421470 +n10421956 +n10422405 +n10427764 +n10431625 +n10432441 +n10435169 +n10435988 +n10439373 +n10439851 +n10441962 +n10449664 +n10450161 +n10450303 +n10451450 +n10453184 +n10461060 +n10464052 +n10465451 +n10465831 +n10467179 +n10467395 +n10469874 +n10470779 +n10472129 +n10473917 +n10474645 +n10476467 +n10477713 +n10481268 +n10482220 +n10483138 +n10485883 +n10486166 +n10487182 +n10488656 +n10493685 +n10495756 +n10498816 +n10498986 +n10499232 +n10499355 +n10500217 +n10500419 +n10500603 +n10502329 +n10504206 +n10505613 +n10506915 +n10508141 +n10508710 +n10509063 +n10510245 +n10512372 +n10513823 +n10514429 +n10521100 +n10521662 +n10522035 +n10522759 +n10523341 +n10524076 +n10525436 +n10525617 +n10528023 +n10529231 +n10530150 +n10530959 +n10536416 +n10540114 +n10542608 +n10542761 +n10542888 +n10548537 +n10548681 +n10550369 +n10553235 +n10559288 +n10559508 +n10559996 +n10560106 +n10562135 +n10562283 +n10563314 +n10563403 +n10565667 +n10566072 +n10568358 +n10568608 +n10569179 +n10572706 +n10572889 +n10574538 +n10574840 +n10575463 +n10577284 +n10578021 +n10578471 +n10581890 +n10582746 +n10583387 +n10583790 +n10585077 +n10588074 +n10588357 +n10588965 +n10595164 +n10595647 +n10598181 +n10599806 +n10602470 +n10602985 +n10603851 +n10604380 +n10604979 +n10607291 +n10607478 +n10610465 +n10610850 +n10611267 +n10611613 +n10613996 +n10618342 +n10620586 +n10620758 +n10622053 +n10624074 +n10624310 +n10624437 +n10624540 +n10627252 +n10628644 +n10629939 +n10630188 +n10631309 +n10633450 +n10634849 +n10635788 +n10638922 +n10639359 +n10639637 +n10642596 +n10644598 +n10645017 +n10649197 +n10652605 +n10655594 +n10657835 +n10661563 +n10665587 +n10665698 +n10667477 +n10667863 +n10671613 +n10671736 +n10672371 +n10674713 +n10675010 +n10678937 +n10679174 +n10680609 +n10680796 +n10682953 +n10685398 +n10686073 +n10686885 +n10688356 +n10689306 +n10690648 +n10692482 +n10694258 +n10696508 +n10698368 +n10701180 +n10701644 +n10701962 +n10707134 +n10707233 +n10709529 +n10711766 +n10718131 +n10719132 +n10721321 +n10726031 +n10727171 +n10727458 +n10728624 +n10730728 +n10732010 +n10734394 +n10734891 +n10737103 +n10738111 +n10739391 +n10740868 +n10745006 +n10746931 +n10747119 +n10748620 +n10750031 +n10750640 +n10753442 +n10754189 +n10755080 +n10756148 +n10757050 +n10763075 +n10763383 +n10763620 +n10765679 +n10772092 +n10773665 +n10780284 +n10780632 +n10782471 +n10787470 +n10791115 +n10791221 +n10792335 +n10793570 +n10802507 +n10804287 +n10806113 +n11448153 +n11487732 +n11508382 +n11524451 +n11532682 +n11533212 +n11536673 +n11537327 +n11542137 +n11542640 +n11544015 +n11545714 +n11547855 +n11552133 +n11552806 +n11599324 +n11600372 +n11601177 +n11601333 +n11601918 +n11602873 +n11603246 +n11603835 +n11608250 +n11609475 +n11609862 +n11610215 +n11611087 +n11611233 +n11611356 +n11611561 +n11611758 +n11612018 +n11612349 +n11612575 +n11613219 +n11613459 +n11614039 +n11614250 +n11614420 +n11614713 +n11615026 +n11615387 +n11615607 +n11615967 +n11616486 +n11616662 +n11617090 +n11617272 +n11617631 +n11618290 +n11618525 +n11618861 +n11619227 +n11619455 +n11620673 +n11621029 +n11621281 +n11621547 +n11621727 +n11621950 +n11622184 +n11622368 +n11622591 +n11622771 +n11623105 +n11623815 +n11623967 +n11624192 +n11624531 +n11625003 +n11625223 +n11625632 +n11625804 +n11626152 +n11626409 +n11626585 +n11626826 +n11627168 +n11627512 +n11627908 +n11628087 +n11628456 +n11628793 +n11630017 +n11631854 +n11632167 +n11632619 +n11634736 +n11635152 +n11635433 +n11635830 +n11636204 +n11636835 +n11639445 +n11640132 +n11643835 +n11644046 +n11644226 +n11644462 +n11645590 +n11645914 +n11646167 +n11646344 +n11646694 +n11647306 +n11647703 +n11650558 +n11652376 +n11653904 +n11655974 +n11658331 +n11658544 +n11660300 +n11661372 +n11661909 +n11662371 +n11664418 +n11665372 +n11666854 +n11669786 +n11669921 +n11672269 +n11672400 +n11675025 +n11676500 +n11678010 +n11680596 +n11682659 +n11686912 +n11690254 +n11690455 +n11691046 +n11691857 +n11692265 +n11692792 +n11693981 +n11694664 +n11695599 +n11695974 +n11698042 +n11699442 +n11700058 +n11701066 +n11703669 +n11704093 +n11704620 +n11705171 +n11705387 +n11705776 +n11706761 +n11707229 +n11709205 +n11709674 +n11710136 +n11710393 +n11710827 +n11711537 +n11711764 +n11712282 +n11714382 +n11715430 +n11715678 +n11717577 +n11719286 +n11720353 +n11720643 +n11720891 +n11721337 +n11722466 +n11722982 +n11723227 +n11723770 +n11724109 +n11725015 +n11725311 +n11725480 +n11725821 +n11725973 +n11726269 +n11726707 +n11727091 +n11727358 +n11727540 +n11727738 +n11728099 +n11728945 +n11730602 +n11731659 +n11732567 +n11733054 +n11733312 +n11733548 +n11735053 +n11736694 +n11736851 +n11737534 +n11748811 +n11752937 +n11753143 +n11753355 +n11753700 +n11754893 +n11756092 +n11756669 +n11756870 +n11757653 +n11757851 +n11758122 +n11758276 +n11758483 +n11758799 +n11759224 +n11759404 +n11759853 +n11760785 +n11761202 +n11762433 +n11769176 +n11769621 +n11769803 +n11770256 +n11772408 +n11772879 +n11773987 +n11774513 +n11777080 +n11778257 +n11779300 +n11780148 +n11781176 +n11782036 +n11782761 +n11783920 +n11784126 +n11784497 +n11785668 +n11786131 +n11786539 +n11788727 +n11789066 +n11789589 +n11791341 +n11791569 +n11792029 +n11792341 +n11792742 +n11793779 +n11794024 +n11794519 +n11795049 +n11797321 +n11800236 +n11801891 +n11802586 +n11802800 +n11805544 +n11805956 +n11806219 +n11807108 +n11807525 +n11807979 +n11808299 +n11808468 +n11808721 +n11808932 +n11809094 +n11809271 +n11809437 +n11809594 +n11810358 +n11811473 +n11811706 +n11811921 +n11812094 +n11812910 +n11813077 +n11814584 +n11815491 +n11815721 +n11815918 +n11816121 +n11816336 +n11816649 +n11816829 +n11817914 +n11818069 +n11819509 +n11819912 +n11820965 +n11821184 +n11823436 +n11824146 +n11825351 +n11826198 +n11830906 +n11832214 +n11832480 +n11834654 +n11836722 +n11837970 +n11838916 +n11839568 +n11839823 +n11840067 +n11844371 +n11844892 +n11845557 +n11845793 +n11845913 +n11846765 +n11847169 +n11848479 +n11849467 +n11849871 +n11849983 +n11850521 +n11851258 +n11851578 +n11851839 +n11852028 +n11853356 +n11853813 +n11854479 +n11855274 +n11855553 +n11857875 +n11859472 +n11859737 +n11860555 +n11861641 +n11861853 +n11862835 +n11865874 +n11866248 +n11870418 +n11870747 +n11872146 +n11874081 +n11875523 +n11875691 +n11875938 +n11876204 +n11876432 +n11876634 +n11876803 +n11877193 +n11877283 +n11877646 +n11878101 +n11879054 +n11879722 +n11879895 +n11882074 +n11882426 +n11883328 +n11887119 +n11888800 +n11889619 +n11890150 +n11891175 +n11892029 +n11892637 +n11892817 +n11893640 +n11894327 +n11894558 +n11894770 +n11895092 +n11896722 +n11897116 +n11898775 +n11900569 +n11901294 +n11901597 +n11901759 +n11901977 +n11902200 +n11902389 +n11902709 +n11902982 +n11903671 +n11904109 +n11905392 +n11905749 +n11906917 +n11907100 +n11907689 +n11908549 +n11908846 +n11910271 +n11910460 +n11915214 +n11915658 +n11915899 +n11916467 +n11916696 +n11918286 +n11918473 +n11921395 +n11923174 +n11923397 +n11923637 +n11924445 +n11924849 +n11925303 +n11925898 +n11926365 +n11926833 +n11927215 +n11928352 +n11928858 +n11929743 +n11931540 +n11931918 +n11933546 +n11933728 +n11934616 +n11934807 +n11935469 +n11939180 +n11939491 +n11939699 +n11940006 +n11940599 +n11941924 +n11943407 +n11943660 +n11943992 +n11944196 +n11944954 +n11945514 +n11945783 +n11946727 +n11947629 +n11947802 +n11948264 +n11948864 +n11949015 +n11949402 +n11950345 +n11950686 +n11950877 +n11953038 +n11953610 +n11953884 +n11954161 +n11954345 +n11954642 +n11955153 +n11955896 +n11956348 +n11956850 +n11957678 +n11958080 +n11959632 +n11959862 +n11960245 +n11961100 +n11961446 +n11962272 +n11962667 +n11963932 +n11965218 +n11965627 +n11966083 +n11966215 +n11966617 +n11966896 +n11968704 +n11968931 +n11969166 +n11969607 +n11970586 +n11971248 +n11971406 +n11971783 +n11971927 +n11972291 +n11972759 +n11973341 +n11977303 +n11978233 +n11978551 +n11978713 +n11978961 +n11979527 +n11979715 +n11979964 +n11980318 +n11980682 +n11981192 +n11982115 +n11984144 +n11984542 +n11986511 +n11987126 +n11988596 +n11989393 +n11989869 +n11990167 +n11990313 +n11991263 +n11992806 +n11995092 +n11998888 +n12001707 +n12002428 +n12003167 +n12003696 +n12004547 +n12005656 +n12006766 +n12006930 +n12007196 +n12007406 +n12008252 +n12008487 +n12008749 +n12009420 +n12011620 +n12012111 +n12014085 +n12015221 +n12015525 +n12015959 +n12016567 +n12018760 +n12019827 +n12020184 +n12020507 +n12020736 +n12020941 +n12022054 +n12023108 +n12023407 +n12023726 +n12024445 +n12024690 +n12026018 +n12026476 +n12026981 +n12027222 +n12027658 +n12029635 +n12030908 +n12031139 +n12031927 +n12033709 +n12034141 +n12034384 +n12036939 +n12037499 +n12037691 +n12038406 +n12038585 +n12038898 +n12039317 +n12041446 +n12043444 +n12043673 +n12043836 +n12044467 +n12046028 +n12046428 +n12046815 +n12047345 +n12047884 +n12048056 +n12048399 +n12049282 +n12049562 +n12050533 +n12050959 +n12051103 +n12052447 +n12052787 +n12053405 +n12053690 +n12055516 +n12056217 +n12056601 +n12056758 +n12057211 +n12057447 +n12057660 +n12058192 +n12058630 +n12058822 +n12059314 +n12059625 +n12061380 +n12061614 +n12062468 +n12062626 +n12062781 +n12063639 +n12064389 +n12064591 +n12065316 +n12065777 +n12066018 +n12066261 +n12066630 +n12067193 +n12068432 +n12069217 +n12069679 +n12070016 +n12070381 +n12070583 +n12070712 +n12071744 +n12072722 +n12073554 +n12073991 +n12074408 +n12074867 +n12075010 +n12075151 +n12075299 +n12075830 +n12076223 +n12076577 +n12076852 +n12077944 +n12078172 +n12079120 +n12079963 +n12080395 +n12080820 +n12081215 +n12083113 +n12083591 +n12083847 +n12084555 +n12084890 +n12085267 +n12085664 +n12086012 +n12086192 +n12086539 +n12086778 +n12088223 +n12090890 +n12091213 +n12091377 +n12091550 +n12091953 +n12092262 +n12092417 +n12093329 +n12093600 +n12094612 +n12095020 +n12095647 +n12098403 +n12099342 +n12101870 +n12102133 +n12104238 +n12104501 +n12104734 +n12105125 +n12107710 +n12107970 +n12108871 +n12109365 +n12110085 +n12110778 +n12112008 +n12112609 +n12112918 +n12113195 +n12115180 +n12116429 +n12119238 +n12121610 +n12122725 +n12123741 +n12124627 +n12124818 +n12127460 +n12127768 +n12128071 +n12129134 +n12133462 +n12133682 +n12134025 +n12135049 +n12136392 +n12137120 +n12137569 +n12139575 +n12141167 +n12142085 +n12144313 +n12144580 +n12145477 +n12146311 +n12148757 +n12150722 +n12151615 +n12152532 +n12152722 +n12154773 +n12155009 +n12157056 +n12158031 +n12158443 +n12159055 +n12159388 +n12160303 +n12160490 +n12160857 +n12161056 +n12161969 +n12162181 +n12162425 +n12164363 +n12164656 +n12164881 +n12165170 +n12166128 +n12166424 +n12166793 +n12167075 +n12167436 +n12167602 +n12168565 +n12171098 +n12171316 +n12171966 +n12172364 +n12172481 +n12172906 +n12173069 +n12173664 +n12173912 +n12174311 +n12174521 +n12178896 +n12179122 +n12180168 +n12180885 +n12184912 +n12185859 +n12187247 +n12189429 +n12189987 +n12190410 +n12190869 +n12194147 +n12195533 +n12196336 +n12196527 +n12196694 +n12198286 +n12199790 +n12200143 +n12201331 +n12201580 +n12202936 +n12203529 +n12204032 +n12204175 +n12205694 +n12214789 +n12215022 +n12215579 +n12217453 +n12223569 +n12223764 +n12224978 +n12225563 +n12227658 +n12228229 +n12228387 +n12230794 +n12237486 +n12237641 +n12240477 +n12242409 +n12243109 +n12244153 +n12244650 +n12244819 +n12245319 +n12246232 +n12249542 +n12252168 +n12257570 +n12258885 +n12260799 +n12261571 +n12261808 +n12262018 +n12262185 +n12263038 +n12263738 +n12263987 +n12264512 +n12265600 +n12266217 +n12266796 +n12267411 +n12267677 +n12268246 +n12269241 +n12269406 +n12270027 +n12270741 +n12270946 +n12271933 +n12272239 +n12272883 +n12273114 +n12273344 +n12273768 +n12273939 +n12274358 +n12274863 +n12275131 +n12275675 +n12275888 +n12276110 +n12276477 +n12276628 +n12276872 +n12277150 +n12277578 +n12277800 +n12278107 +n12278371 +n12278650 +n12279458 +n12279772 +n12280060 +n12281241 +n12281788 +n12281974 +n12282235 +n12282527 +n12282737 +n12282933 +n12283542 +n12284262 +n12284821 +n12285369 +n12285900 +n12286826 +n12286988 +n12287836 +n12288005 +n12288823 +n12290748 +n12291143 +n12291959 +n12293723 +n12294124 +n12294331 +n12294723 +n12294871 +n12295033 +n12295796 +n12296432 +n12300840 +n12301180 +n12301445 +n12302071 +n12302248 +n12303083 +n12303462 +n12304115 +n12304703 +n12304899 +n12305089 +n12305293 +n12305475 +n12305819 +n12305986 +n12306089 +n12306717 +n12307076 +n12307240 +n12309277 +n12311579 +n12312728 +n12315598 +n12315999 +n12316444 +n12316572 +n12317296 +n12318378 +n12319204 +n12319414 +n12320010 +n12320806 +n12322099 +n12322501 +n12322699 +n12325234 +n12328398 +n12328567 +n12329260 +n12329473 +n12330469 +n12330587 +n12330891 +n12331655 +n12332030 +n12332555 +n12333053 +n12333530 +n12333771 +n12334293 +n12336092 +n12336224 +n12336333 +n12336727 +n12336973 +n12337617 +n12338258 +n12338454 +n12338655 +n12338796 +n12339831 +n12340383 +n12340755 +n12342299 +n12342498 +n12342852 +n12343480 +n12344283 +n12344483 +n12344700 +n12344837 +n12345280 +n12345899 +n12347158 +n12350758 +n12352287 +n12352639 +n12352844 +n12352990 +n12353203 +n12353754 +n12356023 +n12356960 +n12357485 +n12360108 +n12360684 +n12361135 +n12361946 +n12362274 +n12362668 +n12367611 +n12368028 +n12368257 +n12368451 +n12369309 +n12371439 +n12373100 +n12374418 +n12383894 +n12384037 +n12384227 +n12384839 +n12385429 +n12385566 +n12387633 +n12387839 +n12388143 +n12388858 +n12388989 +n12389130 +n12389501 +n12390099 +n12390314 +n12392549 +n12393269 +n12397431 +n12399132 +n12399384 +n12400489 +n12400720 +n12401684 +n12402051 +n12402348 +n12402596 +n12402840 +n12403994 +n12405714 +n12406488 +n12406715 +n12406902 +n12407079 +n12407222 +n12407890 +n12408077 +n12408717 +n12409231 +n12409470 +n12409840 +n12412355 +n12412606 +n12413165 +n12413301 +n12413419 +n12413880 +n12414035 +n12414449 +n12414818 +n12414932 +n12415595 +n12416073 +n12418221 +n12421137 +n12421683 +n12421917 +n12422129 +n12426623 +n12426749 +n12427184 +n12427391 +n12427566 +n12427757 +n12428076 +n12428412 +n12428747 +n12429352 +n12432356 +n12433081 +n12433178 +n12433769 +n12435152 +n12435649 +n12435777 +n12437513 +n12437769 +n12437930 +n12441183 +n12441390 +n12441958 +n12443323 +n12446519 +n12448700 +n12449296 +n12449526 +n12450344 +n12450840 +n12451240 +n12451399 +n12451915 +n12452836 +n12453186 +n12454159 +n12454436 +n12454705 +n12454949 +n12455950 +n12457091 +n12458550 +n12459629 +n12460697 +n12460957 +n12461109 +n12461466 +n12461673 +n12462805 +n12463134 +n12465557 +n12466727 +n12469517 +n12472024 +n12473608 +n12473840 +n12474167 +n12475035 +n12475242 +n12476510 +n12477163 +n12477583 +n12477747 +n12478768 +n12479537 +n12480456 +n12480895 +n12481458 +n12482437 +n12482668 +n12482893 +n12483427 +n12483625 +n12483841 +n12484784 +n12485653 +n12485981 +n12486574 +n12489815 +n12491017 +n12491826 +n12492106 +n12493208 +n12494794 +n12495146 +n12495895 +n12496427 +n12496949 +n12498055 +n12501202 +n12504570 +n12504783 +n12506341 +n12506991 +n12508309 +n12509476 +n12509665 +n12513172 +n12513613 +n12513933 +n12514138 +n12515711 +n12515925 +n12516828 +n12517445 +n12517642 +n12519089 +n12519563 +n12521394 +n12523475 +n12527738 +n12528549 +n12528974 +n12529220 +n12530629 +n12530818 +n12532564 +n12539306 +n12540250 +n12544539 +n12545635 +n12546183 +n12546617 +n12546962 +n12547215 +n12547503 +n12548280 +n12549192 +n12552309 +n12554911 +n12556656 +n12557438 +n12557556 +n12557681 +n12558230 +n12558425 +n12560282 +n12560621 +n12560775 +n12561169 +n12562785 +n12564083 +n12566954 +n12568186 +n12570394 +n12570703 +n12570972 +n12571781 +n12573474 +n12574320 +n12574866 +n12575322 +n12575812 +n12576323 +n12577895 +n12578626 +n12578916 +n12579038 +n12580654 +n12580896 +n12582231 +n12582665 +n12582846 +n12583126 +n12583401 +n12584191 +n12584715 +n12585629 +n12587132 +n12587803 +n12588320 +n12588780 +n12590232 +n12590499 +n12591017 +n12591351 +n12593994 +n12595699 +n12595964 +n12596148 +n12596709 +n12596849 +n12597134 +n12597466 +n12597798 +n12598027 +n12599435 +n12602262 +n12602980 +n12603449 +n12604228 +n12606438 +n12606545 +n12607456 +n12610328 +n12614477 +n12615232 +n12620196 +n12620546 +n12620969 +n12621410 +n12622297 +n12622875 +n12623077 +n12624381 +n12624568 +n12625383 +n12627119 +n12628986 +n12629305 +n12629666 +n12630763 +n12631331 +n12632335 +n12633638 +n12633994 +n12634211 +n12634429 +n12634734 +n12634986 +n12635532 +n12635744 +n12635955 +n12636224 +n12638218 +n12638753 +n12639584 +n12640839 +n12641007 +n12641413 +n12642090 +n12642200 +n12643313 +n12643473 +n12644902 +n12645174 +n12646605 +n12646740 +n12647560 +n12647893 +n12648045 +n12648888 +n12649065 +n12649317 +n12649539 +n12650379 +n12650556 +n12651229 +n12651611 +n12651821 +n12655869 +n12656369 +n12656685 +n12657082 +n12658118 +n12658308 +n12658481 +n12659064 +n12659356 +n12659539 +n12662772 +n12663023 +n12665048 +n12665271 +n12665857 +n12666965 +n12670758 +n12671651 +n12675299 +n12675876 +n12676534 +n12676703 +n12680402 +n12680864 +n12681893 +n12682411 +n12682668 +n12683407 +n12683571 +n12683791 +n12684379 +n12685431 +n12685831 +n12686077 +n12686274 +n12686676 +n12687044 +n12687462 +n12687698 +n12687957 +n12688716 +n12691428 +n12691661 +n12694486 +n12695975 +n12696492 +n12698598 +n12700088 +n12703190 +n12703383 +n12703557 +n12703856 +n12704343 +n12706410 +n12707781 +n12708293 +n12708654 +n12708941 +n12709103 +n12709688 +n12709901 +n12710295 +n12710415 +n12710577 +n12710693 +n12711596 +n12711817 +n12711984 +n12713063 +n12713866 +n12714755 +n12717072 +n12717224 +n12719684 +n12719944 +n12720200 +n12723610 +n12724942 +n12725738 +n12726159 +n12726670 +n12727101 +n12727518 +n12729315 +n12729521 +n12729729 +n12731029 +n12731401 +n12731835 +n12732009 +n12732491 +n12732756 +n12732966 +n12733218 +n12733647 +n12733870 +n12734070 +n12737383 +n12737898 +n12739332 +n12741222 +n12741792 +n12743352 +n12744387 +n12745386 +n12746884 +n12749049 +n12749679 +n12749852 +n12752205 +n12753007 +n12753245 +n12753573 +n12753762 +n12754003 +n12754468 +n12754648 +n12754781 +n12754981 +n12755225 +n12755387 +n12755727 +n12756457 +n12757303 +n12757458 +n12757816 +n12759273 +n12761284 +n12762049 +n12762896 +n12764202 +n12765115 +n12766595 +n12766869 +n12768682 +n12771192 +n12771390 +n12771597 +n12772753 +n12772908 +n12773651 +n12774299 +n12774641 +n12775919 +n12777680 +n12778398 +n12778605 +n12779603 +n12779851 +n12781940 +n12782530 +n12782915 +n12784889 +n12785724 +n12785889 +n12788854 +n12789054 +n12790430 +n12791064 +n12791329 +n12793015 +n12793284 +n12793494 +n12794135 +n12794367 +n12794985 +n12795352 +n12795555 +n12796022 +n12797860 +n12799776 +n12801520 +n12801781 +n12803754 +n12805146 +n12805561 +n12806015 +n12806732 +n12807251 +n12807409 +n12807773 +n12810595 +n12811027 +n12812478 +n12813189 +n12814643 +n12815198 +n12816508 +n12817464 +n12817694 +n12818346 +n12818966 +n12819728 +n12820853 +n12821505 +n12821895 +n12822115 +n12822769 +n12822955 +n12823717 +n12823859 +n12824053 +n12825497 +n12827270 +n12827537 +n12828220 +n12828791 +n12830222 +n12830568 +n12832315 +n12832538 +n12833149 +n12833985 +n12834798 +n12835331 +n12836212 +n12836337 +n12836508 +n12836862 +n12840362 +n12840749 +n12841007 +n12841193 +n12841354 +n12843970 +n12844939 +n12845413 +n12847008 +n12847374 +n12847927 +n12848499 +n12849061 +n12849279 +n12849416 +n12849952 +n12850168 +n12850336 +n12850906 +n12851469 +n12853482 +n12854600 +n12855494 +n12856091 +n12856287 +n12856479 +n12856680 +n12858150 +n12858397 +n12858618 +n12858871 +n12859986 +n12860365 +n12861345 +n12861892 +n12862512 +n12863624 +n12864160 +n12865037 +n12865562 +n12865708 +n12865824 +n12866002 +n12866162 +n12866459 +n12866635 +n12867826 +n12869061 +n12869478 +n12870535 +n12870682 +n12870891 +n12877838 +n12879527 +n12879963 +n12880244 +n12880462 +n12882779 +n12882945 +n12884100 +n12884260 +n12887293 +n12889219 +n12889713 +n12890265 +n12890490 +n12890685 +n12890928 +n12891093 +n12891305 +n12891469 +n12891643 +n12893463 +n12893993 +n12895811 +n12898774 +n12899537 +n12899752 +n12901724 +n12902662 +n12904314 +n12905412 +n12906214 +n12908645 +n12909421 +n12909917 +n12911079 +n12911440 +n12911673 +n12913791 +n12914923 +n12915568 +n12915811 +n12916179 +n12916511 +n12917901 +n12919403 +n12919646 +n12919847 +n12920204 +n12920955 +n12921868 +n12922763 +n12924623 +n12925179 +n12926480 +n12926689 +n12927013 +n12927494 +n12928071 +n12929403 +n12931542 +n12932173 +n12932365 +n12932966 +n12934036 +n12934174 +n12934479 +n12934985 +n12935609 +n12937130 +n12938193 +n12939282 +n12939874 +n12940226 +n12940609 +n12942395 +n12942572 +n12946849 +n12947313 +n12947544 +n12948053 +n12948251 +n12948495 +n12950126 +n12950314 +n12951146 +n12951835 +n12953206 +n12953484 +n12957924 +n12961879 +n12963628 +n12965626 +n12966945 +n12969131 +n12969425 +n12973443 +n12974987 +n12975804 +n12979829 +n12980840 +n12982468 +n12983048 +n12985420 +n12985773 +n12985857 +n12986227 +n12987056 +n12988158 +n12989938 +n12991184 +n12992177 +n12992868 +n12995601 +n12997654 +n12997919 +n12998815 +n13000891 +n13001041 +n13001206 +n13001366 +n13001529 +n13001930 +n13002750 +n13002925 +n13003061 +n13003254 +n13003522 +n13003712 +n13004423 +n13005329 +n13005984 +n13006171 +n13006631 +n13006894 +n13007034 +n13007417 +n13008315 +n13009085 +n13009429 +n13011595 +n13012253 +n13013534 +n13013764 +n13014409 +n13014741 +n13017102 +n13017240 +n13019835 +n13020191 +n13020964 +n13021689 +n13022210 +n13022709 +n13023134 +n13024012 +n13025647 +n13028611 +n13029326 +n13029760 +n13032115 +n13032381 +n13032618 +n13032923 +n13033134 +n13033577 +n13034062 +n13035241 +n13035707 +n13037406 +n13038068 +n13038744 +n13039349 +n13040303 +n13040629 +n13041312 +n13043926 +n13044375 +n13044778 +n13046669 +n13049953 +n13050397 +n13052670 +n13052931 +n13053608 +n13054073 +n13054560 +n13055423 +n13055577 +n13055949 +n13060190 +n13061348 +n13062421 +n13065089 +n13066448 +n13068255 +n13072528 +n13074619 +n13077033 +n13077295 +n13079073 +n13083023 +n13084184 +n13084834 +n13085747 +n13090871 +n13091620 +n13099999 +n13100677 +n13102775 +n13103877 +n13104059 +n13107694 +n13107891 +n13108131 +n13108323 +n13108481 +n13108545 +n13108841 +n13111881 +n13121349 +n13122364 +n13123431 +n13125117 +n13126856 +n13127843 +n13128976 +n13130726 +n13131028 +n13131618 +n13132338 +n13132656 +n13133613 +n13133932 +n13134947 +n13135832 +n13136316 +n13136556 +n13137409 +n13138842 +n13141415 +n13141564 +n13142504 +n13145040 +n13145250 +n13146583 +n13147270 +n13148208 +n13150894 +n13154388 +n13154494 +n13155095 +n13155305 +n13158512 +n13160604 +n13163991 +n13172923 +n13173882 +n13177048 +n13177884 +n13180534 +n13180875 +n13181055 +n13181811 +n13183056 +n13183489 +n13185269 +n13187367 +n13190747 +n13192625 +n13193642 +n13193856 +n13194036 +n13194572 +n13195341 +n13196003 +n13197274 +n13197507 +n13198914 +n13199717 +n13199970 +n13200651 +n13201969 +n13205058 +n13206817 +n13207094 +n13207335 +n13209808 +n13213066 +n13214340 +n13215586 +n13219422 +n13219833 +n13219976 +n13220122 +n13221529 +n13223588 +n13223710 +n13223843 +n13226871 +n13229543 +n13231078 +n13232779 +n13234678 +n13235159 +n13235503 +n13237188 +n13238375 +n13238988 +n13579829 +n13653902 +n13862407 +n13863020 +n13863771 +n13864035 +n13865298 +n13865483 +n13865904 +n13868944 +n13869547 +n13869788 +n13869896 +n13872592 +n13872822 +n13873502 +n13873917 +n13875392 +n13875571 +n13876561 +n13878306 +n13879049 +n13879320 +n13880994 +n13881644 +n13882201 +n13882276 +n13882563 +n13886260 +n13895262 +n13896100 +n13896217 +n13897996 +n13898207 +n13900287 +n13900422 +n13901211 +n13901321 +n13901858 +n13902048 +n13902336 +n13905792 +n13907272 +n13908201 +n13908580 +n13912260 +n13912540 +n13914608 +n13915023 +n13915113 +n13916721 +n13918274 +n13918387 +n13919547 +n13919919 +n13926786 +n14131950 +n14564779 +n14685296 +n14696793 +n14698884 +n14765422 +n14785065 +n14810561 +n14820180 +n14844693 +n14858292 +n14900342 +n14908027 +n14915184 +n14919819 +n14973585 +n14974264 +n14976759 +n14976871 +n14977504 +n15019030 +n15062057 +n15067877 +n15075141 +n15086247 +n15089258 +n15090065 +n15091129 +n15091304 +n15091473 +n15091669 +n15091846 +n15092059 +n15092227 +n15092650 +n15092942 +n15093137 +n15093298 +n15102455 +n15102894 diff --git a/pytorch-image-models/timm/data/_info/imagenet21k_miil_w21_synsets.txt b/pytorch-image-models/timm/data/_info/imagenet21k_miil_w21_synsets.txt new file mode 100644 index 0000000000000000000000000000000000000000..5e4aee34028d5e1ad033a868c66512c74baf341b --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet21k_miil_w21_synsets.txt @@ -0,0 +1,10450 @@ +n00005787 +n00006484 +n00007846 +n00015388 +n00017222 +n00021265 +n00021939 +n00120010 +n00141669 +n00288000 +n00288384 +n00324978 +n00326094 +n00433458 +n00433661 +n00433802 +n00434075 +n00439826 +n00440039 +n00440382 +n00440509 +n00440747 +n00440941 +n00441073 +n00441824 +n00442115 +n00442437 +n00442847 +n00442981 +n00443231 +n00443692 +n00443803 +n00444651 +n00444846 +n00444937 +n00445055 +n00445226 +n00445351 +n00445685 +n00445802 +n00446311 +n00446493 +n00446804 +n00446980 +n00447073 +n00447221 +n00447463 +n00447540 +n00447957 +n00448126 +n00448232 +n00448466 +n00448640 +n00448748 +n00448872 +n00448958 +n00449054 +n00449168 +n00449295 +n00449517 +n00449695 +n00449796 +n00449892 +n00449977 +n00450070 +n00450335 +n00450700 +n00450866 +n00450998 +n00451186 +n00451370 +n00451563 +n00451635 +n00452034 +n00452152 +n00452293 +n00452864 +n00453126 +n00453313 +n00453396 +n00453478 +n00453935 +n00454237 +n00454395 +n00454493 +n00454624 +n00454983 +n00455173 +n00456465 +n00463246 +n00463543 +n00464277 +n00464478 +n00464651 +n00464894 +n00466273 +n00466377 +n00466524 +n00466630 +n00466712 +n00466880 +n00467320 +n00467536 +n00467719 +n00467995 +n00468299 +n00468480 +n00469651 +n00470554 +n00470682 +n00470830 +n00470966 +n00471437 +n00471613 +n00474568 +n00474657 +n00475014 +n00475273 +n00475403 +n00475535 +n00475787 +n00476235 +n00476389 +n00477392 +n00477639 +n00478262 +n00479076 +n00479440 +n00479616 +n00479887 +n00480211 +n00480366 +n00480508 +n00480993 +n00481803 +n00482122 +n00482298 +n00483205 +n00483313 +n00483409 +n00483508 +n00483605 +n00483705 +n00483848 +n00523513 +n00825773 +n00887544 +n01055165 +n01314388 +n01314663 +n01314781 +n01315213 +n01316422 +n01317089 +n01317294 +n01317541 +n01317813 +n01317916 +n01318279 +n01318381 +n01318894 +n01319467 +n01321123 +n01321230 +n01321456 +n01321579 +n01321770 +n01321854 +n01322221 +n01322343 +n01322508 +n01322604 +n01322685 +n01322898 +n01322983 +n01323068 +n01323155 +n01323261 +n01323355 +n01323493 +n01323599 +n01324431 +n01324610 +n01326291 +n01338685 +n01339083 +n01339336 +n01339471 +n01339801 +n01340014 +n01379389 +n01381044 +n01384164 +n01392275 +n01392380 +n01395254 +n01396048 +n01397114 +n01397871 +n01402600 +n01405007 +n01407798 +n01410457 +n01415626 +n01421807 +n01424420 +n01438581 +n01439121 +n01439514 +n01440764 +n01441117 +n01442972 +n01443243 +n01443537 +n01443831 +n01444339 +n01446760 +n01447331 +n01447658 +n01448291 +n01448594 +n01448951 +n01449374 +n01449712 +n01451426 +n01453087 +n01454545 +n01455778 +n01456756 +n01457852 +n01459791 +n01462042 +n01462544 +n01464844 +n01468238 +n01468712 +n01469103 +n01471682 +n01472303 +n01477525 +n01477875 +n01482071 +n01482330 +n01483830 +n01484097 +n01484850 +n01485479 +n01486838 +n01487506 +n01488038 +n01489501 +n01489709 +n01489920 +n01490112 +n01490360 +n01490670 +n01491006 +n01491361 +n01491874 +n01492569 +n01493146 +n01494475 +n01495006 +n01495493 +n01495701 +n01496331 +n01497118 +n01498041 +n01498989 +n01499396 +n01500091 +n01500476 +n01501160 +n01503061 +n01503976 +n01504179 +n01504344 +n01514668 +n01514752 +n01514859 +n01515303 +n01517565 +n01517966 +n01518878 +n01519563 +n01519873 +n01520576 +n01521399 +n01521756 +n01524359 +n01526521 +n01527194 +n01527347 +n01527617 +n01527917 +n01528396 +n01528654 +n01528845 +n01529672 +n01530439 +n01530575 +n01531178 +n01531344 +n01531512 +n01531811 +n01531971 +n01532325 +n01532511 +n01532829 +n01533000 +n01533339 +n01533481 +n01533651 +n01533893 +n01534155 +n01534433 +n01534582 +n01535140 +n01535469 +n01535690 +n01536035 +n01536186 +n01536334 +n01536644 +n01536780 +n01537134 +n01537544 +n01537895 +n01538059 +n01538200 +n01538630 +n01538955 +n01539573 +n01539925 +n01540090 +n01540233 +n01540566 +n01540832 +n01541102 +n01541386 +n01541760 +n01541922 +n01542786 +n01543175 +n01543632 +n01544389 +n01544704 +n01545574 +n01546039 +n01546506 +n01547832 +n01548301 +n01548492 +n01548865 +n01549053 +n01549430 +n01549641 +n01549886 +n01550172 +n01551080 +n01551300 +n01551711 +n01552034 +n01552813 +n01553142 +n01554448 +n01555004 +n01555305 +n01555809 +n01556182 +n01557185 +n01557962 +n01558149 +n01558307 +n01558461 +n01558594 +n01558765 +n01558993 +n01559477 +n01559639 +n01559804 +n01560105 +n01560280 +n01560419 +n01560636 +n01560793 +n01560935 +n01561452 +n01561732 +n01562014 +n01562265 +n01562451 +n01563128 +n01563449 +n01563746 +n01563945 +n01564217 +n01564394 +n01564773 +n01564914 +n01565078 +n01565345 +n01565599 +n01565930 +n01566207 +n01566645 +n01567133 +n01567678 +n01567879 +n01568294 +n01568720 +n01568892 +n01569060 +n01569262 +n01569423 +n01569566 +n01569836 +n01569971 +n01570267 +n01570421 +n01570676 +n01570839 +n01571904 +n01572328 +n01572489 +n01572654 +n01572782 +n01573074 +n01573240 +n01573360 +n01573898 +n01574045 +n01574390 +n01574560 +n01574801 +n01575117 +n01575401 +n01575745 +n01576076 +n01576695 +n01577035 +n01577659 +n01577941 +n01578180 +n01578575 +n01579028 +n01579149 +n01579260 +n01579410 +n01579578 +n01579729 +n01580077 +n01580870 +n01581166 +n01581730 +n01581984 +n01582220 +n01582398 +n01582856 +n01583209 +n01583495 +n01583828 +n01584225 +n01584695 +n01584853 +n01585121 +n01585287 +n01585422 +n01585715 +n01586020 +n01586374 +n01586941 +n01587526 +n01587834 +n01588002 +n01588725 +n01589286 +n01589718 +n01589893 +n01591005 +n01591123 +n01591301 +n01591697 +n01592084 +n01592257 +n01592387 +n01592540 +n01592694 +n01593028 +n01594004 +n01594372 +n01594787 +n01594968 +n01595168 +n01595450 +n01595974 +n01596273 +n01596608 +n01597022 +n01597336 +n01597737 +n01597906 +n01598074 +n01598588 +n01598988 +n01599159 +n01599269 +n01599556 +n01600085 +n01600657 +n01601068 +n01601694 +n01602630 +n01602832 +n01603152 +n01603600 +n01603812 +n01603953 +n01604330 +n01604968 +n01605630 +n01606522 +n01606672 +n01606809 +n01607600 +n01607812 +n01607962 +n01608265 +n01608432 +n01608814 +n01609062 +n01609391 +n01609751 +n01609956 +n01610100 +n01610226 +n01610552 +n01610955 +n01611472 +n01611800 +n01611969 +n01612122 +n01612275 +n01612476 +n01612628 +n01613177 +n01613294 +n01613615 +n01613807 +n01614038 +n01614343 +n01614556 +n01614925 +n01615121 +n01615303 +n01615458 +n01615703 +n01616086 +n01616318 +n01617095 +n01617443 +n01617766 +n01618082 +n01618503 +n01619310 +n01619536 +n01619835 +n01620135 +n01620414 +n01620735 +n01621127 +n01621635 +n01622120 +n01622352 +n01622483 +n01622779 +n01622959 +n01623110 +n01623425 +n01623615 +n01623706 +n01623880 +n01624115 +n01624537 +n01624833 +n01625562 +n01627424 +n01628770 +n01629276 +n01629819 +n01629962 +n01630284 +n01630670 +n01630901 +n01631354 +n01631663 +n01632458 +n01632601 +n01632777 +n01633406 +n01633781 +n01635027 +n01636352 +n01636829 +n01637615 +n01639765 +n01640846 +n01641206 +n01641391 +n01641577 +n01641739 +n01642257 +n01642539 +n01643507 +n01643896 +n01644373 +n01644900 +n01645776 +n01646292 +n01646388 +n01646555 +n01646648 +n01646802 +n01646902 +n01647303 +n01647640 +n01648139 +n01648620 +n01649170 +n01650167 +n01650690 +n01651059 +n01652026 +n01654637 +n01661091 +n01662622 +n01662784 +n01663401 +n01663782 +n01664065 +n01664369 +n01664492 +n01664674 +n01664990 +n01665541 +n01665932 +n01666228 +n01666585 +n01667114 +n01667432 +n01667778 +n01668091 +n01668436 +n01668665 +n01668892 +n01669191 +n01669372 +n01669654 +n01670092 +n01670535 +n01670802 +n01671125 +n01671479 +n01672032 +n01673282 +n01674464 +n01674990 +n01675722 +n01677366 +n01677747 +n01678043 +n01678343 +n01679307 +n01679626 +n01679962 +n01680264 +n01680478 +n01680655 +n01680813 +n01681328 +n01681653 +n01681940 +n01682172 +n01682435 +n01682714 +n01683558 +n01684133 +n01684578 +n01685808 +n01687665 +n01687978 +n01688243 +n01689081 +n01689811 +n01690149 +n01691217 +n01692333 +n01692523 +n01693175 +n01693334 +n01693783 +n01694178 +n01694709 +n01694955 +n01695060 +n01696633 +n01697178 +n01697457 +n01697611 +n01698434 +n01698640 +n01698782 +n01699040 +n01699675 +n01701859 +n01704323 +n01713764 +n01726692 +n01727646 +n01728572 +n01728920 +n01729322 +n01729977 +n01730185 +n01730307 +n01730563 +n01730812 +n01730960 +n01731545 +n01731941 +n01732244 +n01732614 +n01732789 +n01733466 +n01733757 +n01733957 +n01734104 +n01734418 +n01734637 +n01734808 +n01735189 +n01735439 +n01735577 +n01737021 +n01737472 +n01737728 +n01737875 +n01738065 +n01738601 +n01739381 +n01740131 +n01740551 +n01741232 +n01741562 +n01741943 +n01742172 +n01742821 +n01743086 +n01743605 +n01743936 +n01744100 +n01744270 +n01744401 +n01745125 +n01745484 +n01745902 +n01746359 +n01747589 +n01747885 +n01748264 +n01748686 +n01748906 +n01749244 +n01749582 +n01749742 +n01749939 +n01750167 +n01750437 +n01751036 +n01751472 +n01751748 +n01752165 +n01752585 +n01752736 +n01753032 +n01753180 +n01753488 +n01753959 +n01754370 +n01754533 +n01754876 +n01755581 +n01755740 +n01756089 +n01756291 +n01756508 +n01756733 +n01757115 +n01757343 +n01757677 +n01757901 +n01758141 +n01758757 +n01768244 +n01769347 +n01770081 +n01770393 +n01770795 +n01771417 +n01772222 +n01772664 +n01773157 +n01773549 +n01773797 +n01774384 +n01774750 +n01775062 +n01775370 +n01776313 +n01777304 +n01778217 +n01779148 +n01779629 +n01782209 +n01782516 +n01784675 +n01785667 +n01786646 +n01787835 +n01789740 +n01790711 +n01791107 +n01791463 +n01791625 +n01791954 +n01792042 +n01792158 +n01792429 +n01792640 +n01792955 +n01793249 +n01793435 +n01793715 +n01794158 +n01794344 +n01794651 +n01795088 +n01795545 +n01795735 +n01796340 +n01796519 +n01796729 +n01797020 +n01797307 +n01797601 +n01797886 +n01798168 +n01798484 +n01798706 +n01798839 +n01800424 +n01801876 +n01803078 +n01803362 +n01804163 +n01804478 +n01804653 +n01805801 +n01806143 +n01806297 +n01806364 +n01806467 +n01806567 +n01806847 +n01807105 +n01807496 +n01807828 +n01808140 +n01809106 +n01809371 +n01809752 +n01810268 +n01811909 +n01812337 +n01812662 +n01812866 +n01813088 +n01813385 +n01813532 +n01813948 +n01814217 +n01814370 +n01814755 +n01814921 +n01815601 +n01816887 +n01817263 +n01817346 +n01817953 +n01818299 +n01818515 +n01818832 +n01819115 +n01819313 +n01819465 +n01819734 +n01820052 +n01820348 +n01820546 +n01821076 +n01821203 +n01821869 +n01822300 +n01823013 +n01823414 +n01824035 +n01824575 +n01825278 +n01826364 +n01826680 +n01827403 +n01827793 +n01828096 +n01828556 +n01828970 +n01829413 +n01829869 +n01830042 +n01830915 +n01832167 +n01832493 +n01833805 +n01834177 +n01834540 +n01835276 +n01837072 +n01838598 +n01839086 +n01839330 +n01839598 +n01839750 +n01840120 +n01840775 +n01841102 +n01841288 +n01841441 +n01841679 +n01842235 +n01842504 +n01843065 +n01843383 +n01843719 +n01844231 +n01844551 +n01844917 +n01845132 +n01846331 +n01847000 +n01847089 +n01847170 +n01847253 +n01847407 +n01847806 +n01847978 +n01848123 +n01848323 +n01848453 +n01848555 +n01848648 +n01848840 +n01848976 +n01849157 +n01849466 +n01849676 +n01849863 +n01850192 +n01850373 +n01850553 +n01850873 +n01851038 +n01851207 +n01851375 +n01851573 +n01851731 +n01851895 +n01852142 +n01852329 +n01852400 +n01852671 +n01852861 +n01853195 +n01853498 +n01853666 +n01853870 +n01854415 +n01854700 +n01854838 +n01855032 +n01855188 +n01855476 +n01855672 +n01856072 +n01856155 +n01856380 +n01856553 +n01856890 +n01857079 +n01857325 +n01857512 +n01857632 +n01857851 +n01858281 +n01858441 +n01858780 +n01858845 +n01858906 +n01859190 +n01859325 +n01859496 +n01859689 +n01859852 +n01860002 +n01860187 +n01861778 +n01862399 +n01871265 +n01872401 +n01872772 +n01873310 +n01874434 +n01874928 +n01875313 +n01876034 +n01877134 +n01877606 +n01877812 +n01878929 +n01879217 +n01879509 +n01881171 +n01882714 +n01883070 +n01884834 +n01885498 +n01886756 +n01887474 +n01887623 +n01887787 +n01887896 +n01888045 +n01888181 +n01888264 +n01888411 +n01889520 +n01891633 +n01893825 +n01896844 +n01897536 +n01899894 +n01900150 +n01903346 +n01904029 +n01904806 +n01904886 +n01905661 +n01906749 +n01909906 +n01910747 +n01913166 +n01914609 +n01914830 +n01915700 +n01915811 +n01916187 +n01916388 +n01916481 +n01916925 +n01917289 +n01917611 +n01917882 +n01918744 +n01922303 +n01923025 +n01924916 +n01930112 +n01934440 +n01935395 +n01937909 +n01938454 +n01940736 +n01942869 +n01943087 +n01943899 +n01944118 +n01944390 +n01944812 +n01944955 +n01945143 +n01945685 +n01946630 +n01947396 +n01948573 +n01949085 +n01950731 +n01951274 +n01951613 +n01953361 +n01953594 +n01953762 +n01955084 +n01955933 +n01956344 +n01956481 +n01956764 +n01957335 +n01958038 +n01958346 +n01958531 +n01959492 +n01959985 +n01960177 +n01960459 +n01961985 +n01963317 +n01963571 +n01964049 +n01964271 +n01964441 +n01965529 +n01965889 +n01968897 +n01970164 +n01970667 +n01971280 +n01972541 +n01974773 +n01976146 +n01976868 +n01976957 +n01978287 +n01978455 +n01979874 +n01980166 +n01981276 +n01982068 +n01982347 +n01982650 +n01983481 +n01984245 +n01984695 +n01985128 +n01986214 +n01986806 +n01987545 +n01990007 +n01990800 +n01991028 +n01991520 +n01992773 +n01994910 +n01998183 +n01998741 +n01999186 +n02000954 +n02002075 +n02002556 +n02002724 +n02003037 +n02003204 +n02003577 +n02003839 +n02004131 +n02004492 +n02004855 +n02005399 +n02005790 +n02006063 +n02006364 +n02006656 +n02006985 +n02007284 +n02007558 +n02008041 +n02008497 +n02008643 +n02008796 +n02009229 +n02009380 +n02009508 +n02009750 +n02009912 +n02010272 +n02010453 +n02010728 +n02011016 +n02011281 +n02011460 +n02011805 +n02011943 +n02012185 +n02012849 +n02013177 +n02013567 +n02013706 +n02014237 +n02014524 +n02014941 +n02015357 +n02015554 +n02016066 +n02016358 +n02016659 +n02016816 +n02016956 +n02017213 +n02017475 +n02017725 +n02018027 +n02018207 +n02018368 +n02018795 +n02019190 +n02019929 +n02021050 +n02021795 +n02022684 +n02023341 +n02023855 +n02023992 +n02024185 +n02024479 +n02024763 +n02025043 +n02025239 +n02025389 +n02026059 +n02026629 +n02026948 +n02027075 +n02027357 +n02027492 +n02027897 +n02028035 +n02028175 +n02028342 +n02028451 +n02028727 +n02028900 +n02029087 +n02029378 +n02029706 +n02030035 +n02030287 +n02030837 +n02030996 +n02031585 +n02031934 +n02032222 +n02032355 +n02032480 +n02033041 +n02033208 +n02033561 +n02033779 +n02034129 +n02034295 +n02034661 +n02034971 +n02035210 +n02036053 +n02036711 +n02037110 +n02037464 +n02037869 +n02038466 +n02038993 +n02040266 +n02041085 +n02041246 +n02041678 +n02041875 +n02042046 +n02042180 +n02042472 +n02042759 +n02043063 +n02043333 +n02043808 +n02044178 +n02044517 +n02044778 +n02044908 +n02045369 +n02045596 +n02045864 +n02046171 +n02046759 +n02046939 +n02047045 +n02047260 +n02047411 +n02047517 +n02047614 +n02047975 +n02048115 +n02048353 +n02049088 +n02050004 +n02050313 +n02050442 +n02050586 +n02050809 +n02051059 +n02051845 +n02052204 +n02052365 +n02052775 +n02053083 +n02053425 +n02053584 +n02054036 +n02054502 +n02054711 +n02055107 +n02055658 +n02055803 +n02056228 +n02056570 +n02056728 +n02057035 +n02057330 +n02057731 +n02058221 +n02058594 +n02059162 +n02060133 +n02060411 +n02060889 +n02062017 +n02062430 +n02062744 +n02063224 +n02063662 +n02064338 +n02064816 +n02065026 +n02065407 +n02066245 +n02066707 +n02067240 +n02068541 +n02068974 +n02069412 +n02069701 +n02069974 +n02070174 +n02070430 +n02071294 +n02071636 +n02072798 +n02073831 +n02074367 +n02075296 +n02075612 +n02075927 +n02076196 +n02076402 +n02076779 +n02077152 +n02077384 +n02077658 +n02077787 +n02077923 +n02078292 +n02078574 +n02078738 +n02079005 +n02079389 +n02079851 +n02080146 +n02080415 +n02081571 +n02081798 +n02082791 +n02083346 +n02083672 +n02084071 +n02084732 +n02084861 +n02085272 +n02085374 +n02085620 +n02085936 +n02086079 +n02086240 +n02086646 +n02086753 +n02086910 +n02087046 +n02087122 +n02087394 +n02087551 +n02088094 +n02088238 +n02088364 +n02088466 +n02088632 +n02088839 +n02089232 +n02089468 +n02089555 +n02090379 +n02090475 +n02090622 +n02090721 +n02090827 +n02091032 +n02091134 +n02091244 +n02091467 +n02091831 +n02092002 +n02092339 +n02092468 +n02093056 +n02093256 +n02093428 +n02093647 +n02093754 +n02093859 +n02093991 +n02094114 +n02094258 +n02094433 +n02094562 +n02094721 +n02094931 +n02095050 +n02095314 +n02095412 +n02095570 +n02095727 +n02095889 +n02096051 +n02096177 +n02096294 +n02096437 +n02096585 +n02096756 +n02097047 +n02097130 +n02097209 +n02097298 +n02097474 +n02097658 +n02097786 +n02098105 +n02098286 +n02098413 +n02098550 +n02098806 +n02098906 +n02099029 +n02099267 +n02099429 +n02099601 +n02099712 +n02099849 +n02099997 +n02100236 +n02100399 +n02100583 +n02100735 +n02100877 +n02101006 +n02101108 +n02101388 +n02101556 +n02101861 +n02102040 +n02102177 +n02102318 +n02102480 +n02102605 +n02102973 +n02103406 +n02103841 +n02104029 +n02104280 +n02104365 +n02104523 +n02104882 +n02105056 +n02105162 +n02105251 +n02105412 +n02105505 +n02105641 +n02105855 +n02106030 +n02106166 +n02106382 +n02106550 +n02106662 +n02106854 +n02106966 +n02107142 +n02107312 +n02107420 +n02107574 +n02107683 +n02107908 +n02108089 +n02108254 +n02108422 +n02108551 +n02108672 +n02108915 +n02109047 +n02109525 +n02109811 +n02109961 +n02110063 +n02110185 +n02110341 +n02110627 +n02110806 +n02110958 +n02111129 +n02111277 +n02111500 +n02111626 +n02111889 +n02112018 +n02112137 +n02112350 +n02112497 +n02112826 +n02113023 +n02113186 +n02113335 +n02113624 +n02113712 +n02113799 +n02114100 +n02114367 +n02114548 +n02114712 +n02114855 +n02115096 +n02115335 +n02115641 +n02115913 +n02116738 +n02117135 +n02117512 +n02117900 +n02118333 +n02119022 +n02119477 +n02119634 +n02119789 +n02120079 +n02120505 +n02120997 +n02121620 +n02121808 +n02122298 +n02122430 +n02122510 +n02122580 +n02122725 +n02122878 +n02122948 +n02123045 +n02123159 +n02123242 +n02123394 +n02123478 +n02123597 +n02123917 +n02124075 +n02124313 +n02124484 +n02124623 +n02125010 +n02125081 +n02125311 +n02125494 +n02126028 +n02126139 +n02126640 +n02126787 +n02127052 +n02127292 +n02127381 +n02127482 +n02127586 +n02127678 +n02127808 +n02128385 +n02128669 +n02128757 +n02128925 +n02129165 +n02129463 +n02129604 +n02129837 +n02129923 +n02129991 +n02130308 +n02131653 +n02132136 +n02132466 +n02132580 +n02132788 +n02133161 +n02133704 +n02134084 +n02134418 +n02135220 +n02136103 +n02137015 +n02137549 +n02138441 +n02138647 +n02138777 +n02139199 +n02139671 +n02140049 +n02146371 +n02146700 +n02147173 +n02147591 +n02147947 +n02150482 +n02152740 +n02152881 +n02153109 +n02156871 +n02157206 +n02159955 +n02160947 +n02161338 +n02161457 +n02162561 +n02163297 +n02164464 +n02165105 +n02165456 +n02165877 +n02166567 +n02166826 +n02167151 +n02167820 +n02168245 +n02168699 +n02169023 +n02169497 +n02169705 +n02169974 +n02172182 +n02172518 +n02172870 +n02173113 +n02173373 +n02174001 +n02174659 +n02175014 +n02175569 +n02175916 +n02176261 +n02176439 +n02177972 +n02180875 +n02181724 +n02183096 +n02184473 +n02188699 +n02190166 +n02190790 +n02191773 +n02191979 +n02192252 +n02192513 +n02195526 +n02195819 +n02196119 +n02196344 +n02197689 +n02198859 +n02200198 +n02200509 +n02200850 +n02201000 +n02202006 +n02203152 +n02204907 +n02205219 +n02205673 +n02206856 +n02207179 +n02207345 +n02207805 +n02208280 +n02208498 +n02208848 +n02209354 +n02209624 +n02210427 +n02211444 +n02211627 +n02212062 +n02212958 +n02213107 +n02213239 +n02213543 +n02213663 +n02213788 +n02214341 +n02214773 +n02215770 +n02216211 +n02216365 +n02218371 +n02219486 +n02220518 +n02220804 +n02221083 +n02221414 +n02222035 +n02226429 +n02226821 +n02226970 +n02227247 +n02228341 +n02229156 +n02229544 +n02229765 +n02231052 +n02231487 +n02233338 +n02233943 +n02234355 +n02234848 +n02236044 +n02236241 +n02236355 +n02236896 +n02239774 +n02240068 +n02240517 +n02241426 +n02242137 +n02243562 +n02244797 +n02246628 +n02250822 +n02251775 +n02252226 +n02254697 +n02256656 +n02257284 +n02257985 +n02258198 +n02259212 +n02262449 +n02262803 +n02264232 +n02264363 +n02264885 +n02266050 +n02266864 +n02268148 +n02268443 +n02268853 +n02270623 +n02272871 +n02273392 +n02274024 +n02274259 +n02274822 +n02275560 +n02275773 +n02276078 +n02276258 +n02276355 +n02276749 +n02276902 +n02277094 +n02277268 +n02277742 +n02278024 +n02278210 +n02278839 +n02278980 +n02279257 +n02279637 +n02279972 +n02280649 +n02281015 +n02281136 +n02281406 +n02281787 +n02282257 +n02282385 +n02282553 +n02282903 +n02283077 +n02283201 +n02283951 +n02284611 +n02284884 +n02285801 +n02286089 +n02287004 +n02288268 +n02288789 +n02291748 +n02292692 +n02295064 +n02295390 +n02297442 +n02298218 +n02298541 +n02299157 +n02299505 +n02299846 +n02300797 +n02301935 +n02302244 +n02302620 +n02302969 +n02303284 +n02304036 +n02304432 +n02305085 +n02305929 +n02307325 +n02307681 +n02308139 +n02308471 +n02308735 +n02309242 +n02309337 +n02310334 +n02310585 +n02310717 +n02310941 +n02311060 +n02311617 +n02312006 +n02312427 +n02312640 +n02313008 +n02316707 +n02317335 +n02317781 +n02318167 +n02319095 +n02319308 +n02319555 +n02321170 +n02321529 +n02323449 +n02324045 +n02324431 +n02324514 +n02324587 +n02324850 +n02325366 +n02325722 +n02326432 +n02326862 +n02327028 +n02327656 +n02327842 +n02328150 +n02328429 +n02329401 +n02330245 +n02331046 +n02332156 +n02332755 +n02333546 +n02333909 +n02334201 +n02337001 +n02338145 +n02339376 +n02341475 +n02341974 +n02342885 +n02343320 +n02343772 +n02346627 +n02348173 +n02350105 +n02352591 +n02353861 +n02355227 +n02355477 +n02356381 +n02356612 +n02356798 +n02356977 +n02357111 +n02357401 +n02357585 +n02357911 +n02358091 +n02358390 +n02358584 +n02358890 +n02359047 +n02359324 +n02359556 +n02359915 +n02360282 +n02361337 +n02361587 +n02361706 +n02363005 +n02363351 +n02364520 +n02364673 +n02364840 +n02365480 +n02366959 +n02367492 +n02370806 +n02372584 +n02372952 +n02373336 +n02374149 +n02374451 +n02375302 +n02376542 +n02376679 +n02376791 +n02376918 +n02377063 +n02377181 +n02377291 +n02377388 +n02377480 +n02377603 +n02377703 +n02378541 +n02378969 +n02379081 +n02379183 +n02379329 +n02379430 +n02379630 +n02379908 +n02380052 +n02380335 +n02380464 +n02380583 +n02380745 +n02380875 +n02381004 +n02381261 +n02381364 +n02381460 +n02381609 +n02381831 +n02382039 +n02382132 +n02382204 +n02382338 +n02382437 +n02382635 +n02382750 +n02382850 +n02382948 +n02383231 +n02385214 +n02386014 +n02386141 +n02386224 +n02386310 +n02386496 +n02386853 +n02386968 +n02387093 +n02387254 +n02387346 +n02387722 +n02387887 +n02388143 +n02388276 +n02388735 +n02388832 +n02388917 +n02389026 +n02389128 +n02389261 +n02389346 +n02389559 +n02389779 +n02390015 +n02390101 +n02390640 +n02391049 +n02391234 +n02391373 +n02391508 +n02391994 +n02392434 +n02392824 +n02393161 +n02393580 +n02393807 +n02393940 +n02394477 +n02395003 +n02395406 +n02395694 +n02396014 +n02396088 +n02396427 +n02397096 +n02397529 +n02397744 +n02398521 +n02399000 +n02402010 +n02402175 +n02402425 +n02403003 +n02403231 +n02403325 +n02403454 +n02403740 +n02403920 +n02404186 +n02404432 +n02404573 +n02404906 +n02405101 +n02405302 +n02405799 +n02405929 +n02406174 +n02406533 +n02406647 +n02406749 +n02407071 +n02407276 +n02407390 +n02407625 +n02407959 +n02408429 +n02408817 +n02409508 +n02410011 +n02410509 +n02410702 +n02410900 +n02411206 +n02411705 +n02411999 +n02412080 +n02412210 +n02412440 +n02412629 +n02413050 +n02413131 +n02413593 +n02414209 +n02414290 +n02414578 +n02414763 +n02415253 +n02415435 +n02415577 +n02415829 +n02416104 +n02416519 +n02416820 +n02416880 +n02416964 +n02417070 +n02417387 +n02417534 +n02417663 +n02417914 +n02418465 +n02419336 +n02419634 +n02419796 +n02420509 +n02420828 +n02421136 +n02421449 +n02421792 +n02422106 +n02422391 +n02422699 +n02423022 +n02423218 +n02423589 +n02424085 +n02424305 +n02424486 +n02424909 +n02425228 +n02425887 +n02426481 +n02426813 +n02427032 +n02427470 +n02427576 +n02427724 +n02428349 +n02428508 +n02429456 +n02430045 +n02430559 +n02430830 +n02431122 +n02431337 +n02431628 +n02431785 +n02431976 +n02432291 +n02432511 +n02432704 +n02432983 +n02433318 +n02433546 +n02433925 +n02434190 +n02434954 +n02437136 +n02437312 +n02437482 +n02437616 +n02438173 +n02438272 +n02438580 +n02439033 +n02439398 +n02441942 +n02442845 +n02443015 +n02443114 +n02443346 +n02443484 +n02444819 +n02445004 +n02445171 +n02445394 +n02445715 +n02446206 +n02447366 +n02447762 +n02448060 +n02449350 +n02450295 +n02453108 +n02454379 +n02454794 +n02456962 +n02457408 +n02457945 +n02458135 +n02460009 +n02460451 +n02461128 +n02461830 +n02469248 +n02469472 +n02469914 +n02470238 +n02470325 +n02472293 +n02472987 +n02473307 +n02474777 +n02475078 +n02475669 +n02480153 +n02480495 +n02480855 +n02481103 +n02481235 +n02481366 +n02481500 +n02481823 +n02482286 +n02482474 +n02482650 +n02483362 +n02483708 +n02484322 +n02484975 +n02485536 +n02486261 +n02486410 +n02486657 +n02486908 +n02487347 +n02487547 +n02487847 +n02488291 +n02488415 +n02488702 +n02489166 +n02490219 +n02490811 +n02491107 +n02492035 +n02492660 +n02493509 +n02493793 +n02494079 +n02496913 +n02497673 +n02499022 +n02499316 +n02499808 +n02500267 +n02501583 +n02503517 +n02504013 +n02504458 +n02508021 +n02508213 +n02508742 +n02509197 +n02509515 +n02509815 +n02510455 +n02512053 +n02512830 +n02512938 +n02514041 +n02516188 +n02517442 +n02518324 +n02519148 +n02519686 +n02519862 +n02520147 +n02522399 +n02523427 +n02524202 +n02525382 +n02526121 +n02527057 +n02527271 +n02527622 +n02530421 +n02530999 +n02532028 +n02532602 +n02533209 +n02533834 +n02534734 +n02535258 +n02535537 +n02535759 +n02536165 +n02536456 +n02536864 +n02537085 +n02537319 +n02537525 +n02537716 +n02538010 +n02538216 +n02541687 +n02542432 +n02543565 +n02548247 +n02549248 +n02549989 +n02555863 +n02556846 +n02557182 +n02557318 +n02557591 +n02557749 +n02560110 +n02561108 +n02561381 +n02561514 +n02561661 +n02562315 +n02562796 +n02563182 +n02563648 +n02563792 +n02564270 +n02564720 +n02565072 +n02565324 +n02565573 +n02568087 +n02568959 +n02569484 +n02570164 +n02570838 +n02572196 +n02572484 +n02573704 +n02574271 +n02576575 +n02576906 +n02577403 +n02578771 +n02578928 +n02579303 +n02579928 +n02580336 +n02580679 +n02580830 +n02581957 +n02583890 +n02584145 +n02584449 +n02585872 +n02586543 +n02588286 +n02589623 +n02590094 +n02590702 +n02592055 +n02593019 +n02595702 +n02596067 +n02596381 +n02597608 +n02598573 +n02598878 +n02599052 +n02599347 +n02599557 +n02601344 +n02603317 +n02603540 +n02605316 +n02605703 +n02605936 +n02606052 +n02606384 +n02607072 +n02607201 +n02607470 +n02607862 +n02610066 +n02610664 +n02611561 +n02613181 +n02616851 +n02618827 +n02619165 +n02619550 +n02620167 +n02624167 +n02624807 +n02625258 +n02625612 +n02625851 +n02626265 +n02626762 +n02627292 +n02627532 +n02628062 +n02629230 +n02630281 +n02630615 +n02630739 +n02631041 +n02631330 +n02631475 +n02639087 +n02639605 +n02640242 +n02640626 +n02640857 +n02641379 +n02643112 +n02643566 +n02643836 +n02644113 +n02649546 +n02650050 +n02652132 +n02653145 +n02653497 +n02654112 +n02654425 +n02654745 +n02655020 +n02655848 +n02656032 +n02656670 +n02657368 +n02657694 +n02658531 +n02660208 +n02660640 +n02663211 +n02666196 +n02666501 +n02666624 +n02666943 +n02667093 +n02667244 +n02667379 +n02667478 +n02667576 +n02669295 +n02669534 +n02669723 +n02670186 +n02670382 +n02670683 +n02672371 +n02672831 +n02675219 +n02676566 +n02676938 +n02678897 +n02679257 +n02680110 +n02680512 +n02680754 +n02681392 +n02682569 +n02682922 +n02683323 +n02683454 +n02683558 +n02683791 +n02685082 +n02686121 +n02686227 +n02686379 +n02686568 +n02687172 +n02687423 +n02687821 +n02687992 +n02688273 +n02688443 +n02689144 +n02689274 +n02689434 +n02689748 +n02690373 +n02691156 +n02692086 +n02692232 +n02692877 +n02693246 +n02694045 +n02694426 +n02694662 +n02695627 +n02696165 +n02697221 +n02697675 +n02698634 +n02699494 +n02699629 +n02699770 +n02699915 +n02700064 +n02700258 +n02700895 +n02701002 +n02702989 +n02703275 +n02704645 +n02704792 +n02704949 +n02705201 +n02705429 +n02705944 +n02708093 +n02708433 +n02708555 +n02708711 +n02709101 +n02709367 +n02709637 +n02709908 +n02710044 +n02710201 +n02710324 +n02710429 +n02710600 +n02713003 +n02713364 +n02714751 +n02715229 +n02715513 +n02715712 +n02720048 +n02723165 +n02725872 +n02726017 +n02726305 +n02726681 +n02727016 +n02727141 +n02727426 +n02728440 +n02729837 +n02729965 +n02730930 +n02731398 +n02731629 +n02731900 +n02732072 +n02732572 +n02732827 +n02733213 +n02733524 +n02734725 +n02735361 +n02735538 +n02735688 +n02736798 +n02737660 +n02738031 +n02738535 +n02738741 +n02738859 +n02739427 +n02739550 +n02739668 +n02739889 +n02740300 +n02740533 +n02740764 +n02741475 +n02742322 +n02742468 +n02742753 +n02744323 +n02744844 +n02745611 +n02746365 +n02747177 +n02747672 +n02747802 +n02749479 +n02749953 +n02750070 +n02750169 +n02751215 +n02751295 +n02752496 +n02752615 +n02752810 +n02753044 +n02753394 +n02754103 +n02754656 +n02755140 +n02755529 +n02755823 +n02756098 +n02756977 +n02757061 +n02757337 +n02757462 +n02757714 +n02757810 +n02758134 +n02758863 +n02758960 +n02759257 +n02759387 +n02759963 +n02760099 +n02760199 +n02760429 +n02760658 +n02760855 +n02761206 +n02761392 +n02761557 +n02761696 +n02761834 +n02762371 +n02762508 +n02763306 +n02763604 +n02763901 +n02764044 +n02764398 +n02764505 +n02764779 +n02764935 +n02766320 +n02766534 +n02766792 +n02767038 +n02767147 +n02767433 +n02767665 +n02767956 +n02768114 +n02768226 +n02768655 +n02768973 +n02769075 +n02769290 +n02769669 +n02769748 +n02769963 +n02770211 +n02770721 +n02770830 +n02771004 +n02771166 +n02771286 +n02771750 +n02772101 +n02772435 +n02772700 +n02773037 +n02773838 +n02774152 +n02774630 +n02774921 +n02775039 +n02775178 +n02775483 +n02775897 +n02776205 +n02776631 +n02776825 +n02776978 +n02777100 +n02777292 +n02777734 +n02778294 +n02778456 +n02778669 +n02779435 +n02780704 +n02780815 +n02781121 +n02781338 +n02782093 +n02782602 +n02782681 +n02782778 +n02783161 +n02783324 +n02783459 +n02783900 +n02783994 +n02784124 +n02785648 +n02786058 +n02786198 +n02786331 +n02786736 +n02786837 +n02787435 +n02787622 +n02788021 +n02788148 +n02788572 +n02789487 +n02790669 +n02790823 +n02790996 +n02791124 +n02791270 +n02792409 +n02792552 +n02793089 +n02793199 +n02793495 +n02793842 +n02794156 +n02794664 +n02795169 +n02795528 +n02795670 +n02796207 +n02796318 +n02796995 +n02797295 +n02797535 +n02797692 +n02799071 +n02799175 +n02799323 +n02799897 +n02800213 +n02800497 +n02800675 +n02801184 +n02801450 +n02801525 +n02801823 +n02801938 +n02802215 +n02802426 +n02802544 +n02802721 +n02802990 +n02803349 +n02803539 +n02803666 +n02803934 +n02804123 +n02804252 +n02804414 +n02804515 +n02804610 +n02805983 +n02806088 +n02806379 +n02806530 +n02807133 +n02807523 +n02807616 +n02807731 +n02808185 +n02808304 +n02808440 +n02809105 +n02810471 +n02810782 +n02811059 +n02811204 +n02811350 +n02811468 +n02811618 +n02811719 +n02811936 +n02812201 +n02812949 +n02813252 +n02813399 +n02813544 +n02813645 +n02813752 +n02814428 +n02814533 +n02814774 +n02814860 +n02815749 +n02815834 +n02815950 +n02816656 +n02816768 +n02817031 +n02817516 +n02818135 +n02818832 +n02820210 +n02820556 +n02820675 +n02821202 +n02821627 +n02821943 +n02822064 +n02822220 +n02822579 +n02823124 +n02823335 +n02823428 +n02823510 +n02823586 +n02823750 +n02823848 +n02823964 +n02824058 +n02824319 +n02824448 +n02825153 +n02825442 +n02825657 +n02825961 +n02826068 +n02826589 +n02826886 +n02827606 +n02828299 +n02828427 +n02828884 +n02829596 +n02831237 +n02831335 +n02831595 +n02831724 +n02831894 +n02833793 +n02834397 +n02834778 +n02835271 +n02835412 +n02835724 +n02835829 +n02835915 +n02836035 +n02836174 +n02836392 +n02837789 +n02837887 +n02838345 +n02838728 +n02839110 +n02839351 +n02839592 +n02839910 +n02840134 +n02840245 +n02840619 +n02841187 +n02841315 +n02841506 +n02842573 +n02843029 +n02843158 +n02843276 +n02843553 +n02843684 +n02844307 +n02846141 +n02846511 +n02846733 +n02847631 +n02847852 +n02848216 +n02848523 +n02849154 +n02849885 +n02850732 +n02850950 +n02851099 +n02851939 +n02852043 +n02852173 +n02852360 +n02853016 +n02854532 +n02854739 +n02854926 +n02855089 +n02855390 +n02855701 +n02855925 +n02856237 +n02857477 +n02857644 +n02858304 +n02859184 +n02859343 +n02859443 +n02859955 +n02860415 +n02860640 +n02860847 +n02861022 +n02861147 +n02861387 +n02861886 +n02862048 +n02862916 +n02863014 +n02863426 +n02863536 +n02863750 +n02864504 +n02864593 +n02865351 +n02865665 +n02865931 +n02866386 +n02867715 +n02867966 +n02868638 +n02868975 +n02869155 +n02869249 +n02869737 +n02869837 +n02870526 +n02870676 +n02870880 +n02871005 +n02871147 +n02871314 +n02871439 +n02871525 +n02871824 +n02871963 +n02872333 +n02872529 +n02872752 +n02873520 +n02873733 +n02873839 +n02874086 +n02874442 +n02874537 +n02876084 +n02876326 +n02876657 +n02877266 +n02877765 +n02877962 +n02878222 +n02878425 +n02879087 +n02879309 +n02879718 +n02880189 +n02880393 +n02880546 +n02880842 +n02880940 +n02881193 +n02881757 +n02881906 +n02882190 +n02882301 +n02882647 +n02882894 +n02883004 +n02883205 +n02883344 +n02884994 +n02885108 +n02885338 +n02885462 +n02885882 +n02886321 +n02886434 +n02887079 +n02887209 +n02887489 +n02887970 +n02888270 +n02889425 +n02889646 +n02890188 +n02890351 +n02890513 +n02890662 +n02890940 +n02891188 +n02891788 +n02892201 +n02892304 +n02892499 +n02892767 +n02892948 +n02893608 +n02893692 +n02893941 +n02894158 +n02894337 +n02894605 +n02895154 +n02895438 +n02896442 +n02897097 +n02897820 +n02898269 +n02898369 +n02898585 +n02898711 +n02899439 +n02900160 +n02900705 +n02901114 +n02901259 +n02901377 +n02901793 +n02902079 +n02902687 +n02902916 +n02903126 +n02903204 +n02903852 +n02904233 +n02904640 +n02904803 +n02904927 +n02905036 +n02905152 +n02906734 +n02907082 +n02907391 +n02907656 +n02907873 +n02908217 +n02908773 +n02909285 +n02909870 +n02910145 +n02910353 +n02910542 +n02910864 +n02911332 +n02912065 +n02912557 +n02912894 +n02913152 +n02914991 +n02915904 +n02916179 +n02916350 +n02916936 +n02917067 +n02917377 +n02917521 +n02917607 +n02917964 +n02918112 +n02918330 +n02918595 +n02918831 +n02918964 +n02919148 +n02919414 +n02919792 +n02919890 +n02920083 +n02920259 +n02920369 +n02920658 +n02921029 +n02921195 +n02921756 +n02921884 +n02922292 +n02922578 +n02922798 +n02923682 +n02924116 +n02925009 +n02925107 +n02925519 +n02925666 +n02926426 +n02926591 +n02927161 +n02927764 +n02927887 +n02928049 +n02928299 +n02928608 +n02929289 +n02929582 +n02930080 +n02930214 +n02930645 +n02930766 +n02931148 +n02931294 +n02931417 +n02931836 +n02932019 +n02932400 +n02932523 +n02932693 +n02932891 +n02933112 +n02933340 +n02933462 +n02933649 +n02934168 +n02934451 +n02935017 +n02935387 +n02935658 +n02935891 +n02936176 +n02936281 +n02936402 +n02936570 +n02936714 +n02937958 +n02938886 +n02939185 +n02939866 +n02940385 +n02940570 +n02942349 +n02942460 +n02942699 +n02943241 +n02943871 +n02943964 +n02944075 +n02944146 +n02944459 +n02944579 +n02946127 +n02946270 +n02946348 +n02946509 +n02946824 +n02946921 +n02947660 +n02947818 +n02948072 +n02948557 +n02949202 +n02949542 +n02950256 +n02950632 +n02950826 +n02950943 +n02951358 +n02951585 +n02951703 +n02951843 +n02952109 +n02952237 +n02952374 +n02952485 +n02952585 +n02952674 +n02953197 +n02953455 +n02954163 +n02954340 +n02954938 +n02955065 +n02955247 +n02955540 +n02956699 +n02956795 +n02956883 +n02957008 +n02957135 +n02957755 +n02958343 +n02959942 +n02960352 +n02960690 +n02960903 +n02961035 +n02961225 +n02961451 +n02961544 +n02962061 +n02962200 +n02962843 +n02963159 +n02963302 +n02963503 +n02963692 +n02963821 +n02963987 +n02964843 +n02965216 +n02965300 +n02965783 +n02966193 +n02966545 +n02966687 +n02967294 +n02967626 +n02967782 +n02968074 +n02968333 +n02968473 +n02969010 +n02969323 +n02970408 +n02970534 +n02970685 +n02970849 +n02971167 +n02971356 +n02971579 +n02971691 +n02972397 +n02973017 +n02973236 +n02973805 +n02973904 +n02974003 +n02974348 +n02974697 +n02975212 +n02976123 +n02976249 +n02976350 +n02976455 +n02976939 +n02977058 +n02977330 +n02977438 +n02977619 +n02977936 +n02978055 +n02978478 +n02978753 +n02978881 +n02979074 +n02979186 +n02979290 +n02979399 +n02979836 +n02980036 +n02980441 +n02981024 +n02981321 +n02981792 +n02981911 +n02982232 +n02982416 +n02982515 +n02983189 +n02983357 +n02984061 +n02984203 +n02984469 +n02985963 +n02986160 +n02987379 +n02987492 +n02988066 +n02988156 +n02988304 +n02988486 +n02988679 +n02988963 +n02989099 +n02990373 +n02991302 +n02991847 +n02992032 +n02992211 +n02992368 +n02992529 +n02992795 +n02993194 +n02993368 +n02994573 +n02995345 +n02995871 +n02995998 +n02997391 +n02997607 +n02997910 +n02998003 +n02998563 +n02998841 +n02999138 +n02999410 +n02999936 +n03000134 +n03000247 +n03000684 +n03001115 +n03001627 +n03002096 +n03002341 +n03002711 +n03002816 +n03002948 +n03003091 +n03004275 +n03004824 +n03005033 +n03005285 +n03006626 +n03007130 +n03007444 +n03007591 +n03008177 +n03008976 +n03009794 +n03010473 +n03010656 +n03010795 +n03010915 +n03011018 +n03011355 +n03011741 +n03012013 +n03012897 +n03013438 +n03013580 +n03013850 +n03014440 +n03014705 +n03015149 +n03015254 +n03015478 +n03015851 +n03016389 +n03016609 +n03016737 +n03016868 +n03016953 +n03017070 +n03017168 +n03018209 +n03018349 +n03018712 +n03019434 +n03019685 +n03019938 +n03020034 +n03020416 +n03020692 +n03021228 +n03024064 +n03025250 +n03026506 +n03026907 +n03027108 +n03027250 +n03027625 +n03028079 +n03028596 +n03028785 +n03029197 +n03029445 +n03030262 +n03030353 +n03030557 +n03030880 +n03031012 +n03031152 +n03031422 +n03032252 +n03032453 +n03032811 +n03033362 +n03033986 +n03034244 +n03034405 +n03034663 +n03035252 +n03035832 +n03036022 +n03037404 +n03037709 +n03038281 +n03038685 +n03038870 +n03039015 +n03039259 +n03039493 +n03039827 +n03039947 +n03040376 +n03041114 +n03041449 +n03041632 +n03041810 +n03042139 +n03042490 +n03042697 +n03043423 +n03043693 +n03043958 +n03044934 +n03045228 +n03045337 +n03045698 +n03046029 +n03046133 +n03046257 +n03046802 +n03046921 +n03047052 +n03047690 +n03047799 +n03047941 +n03048883 +n03049782 +n03049924 +n03050453 +n03050546 +n03050655 +n03050864 +n03051041 +n03051249 +n03051396 +n03051540 +n03054901 +n03055418 +n03055857 +n03057021 +n03057541 +n03057636 +n03057920 +n03058107 +n03058603 +n03059685 +n03061211 +n03061345 +n03061505 +n03061674 +n03062015 +n03062122 +n03062245 +n03062336 +n03062985 +n03063073 +n03063199 +n03063338 +n03063485 +n03063599 +n03063689 +n03063968 +n03064250 +n03064350 +n03064758 +n03064935 +n03065243 +n03065424 +n03066359 +n03066849 +n03067093 +n03067212 +n03067339 +n03067518 +n03068181 +n03068998 +n03069752 +n03070059 +n03070193 +n03071021 +n03071160 +n03072201 +n03072440 +n03073296 +n03073545 +n03073694 +n03073977 +n03074380 +n03074855 +n03075097 +n03075370 +n03075634 +n03075768 +n03075946 +n03077616 +n03077741 +n03078802 +n03078995 +n03079136 +n03079230 +n03079494 +n03080497 +n03080633 +n03082280 +n03082656 +n03082807 +n03082979 +n03084420 +n03084834 +n03085013 +n03085219 +n03085602 +n03085915 +n03086457 +n03086580 +n03086670 +n03086868 +n03087069 +n03087245 +n03087366 +n03087816 +n03088389 +n03088580 +n03089624 +n03089753 +n03089879 +n03090000 +n03090172 +n03091044 +n03091374 +n03092166 +n03092314 +n03092656 +n03092883 +n03094159 +n03094503 +n03095699 +n03096960 +n03097362 +n03097535 +n03097673 +n03098140 +n03098688 +n03098959 +n03099147 +n03099274 +n03099454 +n03099945 +n03100240 +n03100346 +n03100490 +n03100897 +n03101156 +n03101517 +n03101664 +n03101796 +n03101986 +n03102371 +n03102654 +n03103396 +n03103563 +n03105088 +n03105306 +n03105467 +n03106898 +n03107046 +n03107488 +n03108455 +n03108853 +n03109150 +n03109253 +n03109693 +n03109881 +n03110669 +n03111041 +n03111177 +n03111296 +n03112719 +n03112869 +n03113152 +n03113657 +n03113835 +n03114236 +n03114379 +n03114504 +n03115180 +n03115400 +n03115762 +n03115897 +n03116530 +n03116767 +n03118969 +n03119203 +n03119396 +n03119510 +n03120491 +n03120778 +n03121298 +n03121431 +n03121897 +n03122073 +n03122202 +n03122295 +n03123553 +n03123809 +n03123917 +n03124043 +n03124170 +n03124474 +n03124590 +n03125057 +n03125729 +n03125870 +n03126385 +n03126580 +n03126707 +n03127203 +n03127408 +n03127747 +n03127925 +n03128085 +n03128248 +n03128427 +n03128519 +n03129001 +n03129471 +n03129753 +n03130761 +n03131574 +n03131669 +n03131967 +n03132076 +n03132261 +n03132666 +n03132776 +n03133050 +n03133415 +n03133878 +n03134739 +n03134853 +n03135030 +n03135532 +n03136369 +n03137473 +n03138344 +n03138669 +n03139464 +n03140126 +n03140292 +n03140431 +n03140652 +n03141065 +n03141327 +n03141455 +n03141702 +n03141823 +n03142679 +n03145147 +n03145522 +n03145719 +n03146219 +n03146687 +n03146846 +n03147280 +n03147509 +n03148324 +n03148727 +n03149686 +n03150232 +n03150511 +n03151077 +n03152303 +n03154073 +n03154895 +n03156279 +n03156767 +n03157348 +n03158186 +n03158885 +n03159535 +n03159640 +n03160309 +n03160740 +n03161450 +n03163222 +n03163381 +n03164344 +n03164605 +n03164722 +n03165096 +n03165466 +n03165616 +n03166514 +n03167978 +n03168107 +n03168217 +n03169176 +n03170635 +n03171228 +n03171356 +n03171635 +n03172038 +n03173270 +n03173387 +n03173929 +n03174450 +n03174731 +n03175081 +n03175189 +n03175457 +n03176386 +n03176594 +n03176763 +n03177165 +n03178000 +n03178430 +n03178674 +n03179701 +n03179910 +n03180011 +n03180384 +n03180504 +n03180865 +n03180969 +n03181293 +n03183080 +n03186285 +n03186818 +n03187037 +n03187268 +n03187595 +n03188531 +n03188725 +n03189083 +n03191286 +n03192543 +n03193107 +n03193260 +n03193423 +n03193597 +n03195332 +n03195959 +n03196062 +n03196217 +n03196598 +n03196990 +n03197337 +n03198500 +n03199647 +n03199775 +n03199901 +n03200231 +n03200357 +n03200539 +n03200701 +n03200906 +n03201035 +n03201208 +n03201529 +n03201638 +n03201776 +n03202354 +n03202940 +n03204306 +n03204558 +n03205458 +n03205574 +n03205669 +n03206282 +n03206718 +n03206908 +n03207305 +n03207630 +n03207743 +n03207835 +n03207941 +n03208556 +n03208938 +n03209359 +n03209910 +n03210245 +n03210372 +n03210552 +n03211117 +n03211789 +n03212114 +n03212811 +n03213538 +n03213826 +n03214253 +n03214582 +n03215508 +n03216402 +n03216710 +n03216828 +n03218198 +n03219010 +n03219135 +n03219483 +n03219966 +n03220237 +n03220513 +n03220692 +n03221059 +n03221351 +n03221540 +n03221720 +n03222176 +n03222318 +n03222516 +n03223162 +n03223299 +n03223553 +n03223686 +n03224603 +n03224753 +n03225108 +n03225777 +n03225988 +n03226254 +n03226375 +n03226538 +n03226880 +n03227317 +n03228254 +n03228365 +n03228692 +n03228967 +n03229244 +n03231368 +n03231819 +n03232309 +n03232543 +n03233123 +n03233624 +n03233744 +n03233905 +n03234164 +n03234952 +n03235042 +n03235180 +n03235327 +n03235796 +n03236217 +n03236423 +n03236735 +n03237340 +n03237416 +n03237839 +n03237992 +n03238131 +n03238286 +n03238586 +n03239054 +n03239259 +n03239726 +n03240140 +n03240683 +n03240892 +n03241093 +n03241335 +n03241496 +n03242506 +n03243218 +n03244047 +n03244231 +n03244775 +n03244919 +n03245724 +n03245889 +n03246454 +n03246933 +n03247083 +n03249342 +n03249569 +n03250089 +n03250279 +n03250405 +n03250847 +n03251533 +n03251766 +n03251932 +n03252637 +n03253279 +n03253796 +n03253886 +n03254046 +n03254189 +n03254374 +n03254862 +n03255030 +n03255899 +n03256032 +n03256166 +n03256788 +n03256928 +n03257210 +n03257586 +n03258330 +n03258577 +n03258905 +n03259009 +n03259280 +n03259401 +n03259505 +n03260849 +n03261019 +n03261603 +n03261776 +n03262072 +n03262248 +n03262519 +n03262717 +n03262809 +n03262932 +n03263076 +n03266371 +n03266749 +n03267113 +n03267468 +n03267821 +n03268142 +n03268311 +n03268645 +n03268790 +n03268918 +n03269203 +n03269401 +n03271030 +n03271574 +n03272010 +n03272125 +n03272239 +n03272383 +n03272562 +n03272810 +n03272940 +n03273061 +n03273551 +n03273740 +n03273913 +n03274265 +n03274435 +n03275681 +n03277459 +n03277771 +n03278248 +n03278914 +n03279508 +n03281145 +n03281673 +n03282295 +n03282401 +n03283221 +n03284743 +n03284886 +n03285578 +n03287351 +n03287733 +n03288500 +n03288886 +n03289660 +n03289985 +n03290096 +n03290195 +n03290653 +n03291413 +n03291741 +n03291819 +n03291963 +n03292475 +n03292603 +n03293741 +n03293863 +n03294048 +n03294833 +n03295012 +n03295246 +n03296081 +n03296328 +n03297103 +n03297226 +n03297495 +n03297644 +n03297735 +n03298089 +n03298716 +n03298858 +n03300216 +n03300443 +n03301568 +n03301833 +n03301940 +n03302671 +n03302938 +n03303217 +n03303831 +n03306385 +n03307037 +n03307792 +n03308152 +n03308481 +n03309110 +n03309356 +n03309465 +n03309687 +n03309808 +n03313333 +n03314227 +n03314608 +n03314780 +n03314884 +n03315644 +n03316105 +n03316406 +n03317788 +n03318294 +n03318865 +n03318983 +n03319457 +n03319745 +n03320046 +n03320262 +n03320421 +n03320519 +n03320959 +n03321103 +n03321563 +n03321954 +n03322570 +n03322704 +n03322836 +n03322940 +n03323096 +n03324928 +n03325088 +n03325584 +n03325941 +n03326660 +n03326795 +n03326948 +n03327133 +n03327234 +n03327553 +n03327691 +n03329302 +n03329536 +n03329663 +n03331077 +n03331599 +n03332005 +n03332271 +n03332393 +n03332989 +n03333129 +n03333252 +n03333610 +n03333711 +n03334291 +n03334382 +n03334912 +n03335030 +n03336282 +n03336575 +n03337140 +n03337383 +n03338821 +n03339529 +n03339643 +n03340723 +n03341153 +n03341297 +n03342015 +n03342127 +n03342262 +n03343354 +n03343560 +n03343737 +n03343853 +n03344305 +n03344393 +n03344642 +n03345487 +n03345837 +n03346135 +n03346455 +n03347037 +n03347617 +n03348868 +n03349469 +n03349771 +n03349892 +n03350204 +n03350602 +n03351434 +n03351979 +n03352628 +n03353951 +n03354207 +n03354903 +n03355768 +n03355925 +n03356858 +n03356982 +n03357267 +n03357716 +n03358172 +n03358380 +n03358726 +n03359137 +n03359285 +n03359436 +n03359566 +n03360300 +n03360431 +n03360622 +n03361297 +n03361380 +n03361550 +n03362890 +n03363363 +n03363549 +n03363749 +n03364008 +n03364599 +n03365231 +n03365374 +n03365592 +n03365991 +n03366823 +n03366974 +n03367059 +n03367410 +n03367545 +n03368352 +n03369276 +n03370387 +n03371875 +n03372029 +n03372549 +n03373237 +n03373611 +n03373943 +n03374372 +n03374473 +n03374649 +n03374838 +n03375329 +n03375575 +n03376159 +n03376279 +n03376595 +n03376938 +n03378005 +n03378174 +n03379051 +n03379204 +n03379343 +n03379828 +n03380724 +n03380867 +n03381126 +n03382292 +n03382413 +n03382856 +n03383099 +n03384352 +n03384891 +n03385557 +n03386011 +n03386544 +n03386726 +n03386870 +n03387653 +n03388043 +n03388183 +n03388323 +n03388549 +n03389611 +n03389761 +n03389889 +n03390075 +n03390786 +n03390983 +n03391301 +n03392741 +n03393017 +n03393761 +n03393912 +n03394272 +n03394480 +n03394649 +n03394916 +n03395514 +n03395859 +n03396074 +n03396654 +n03397087 +n03397266 +n03397532 +n03397947 +n03398153 +n03398228 +n03399677 +n03399761 +n03399971 +n03400231 +n03401129 +n03401279 +n03402188 +n03402941 +n03403643 +n03404149 +n03404251 +n03404360 +n03405265 +n03405595 +n03405725 +n03406966 +n03407369 +n03407865 +n03408054 +n03408444 +n03409297 +n03409393 +n03409591 +n03410571 +n03410740 +n03410938 +n03411079 +n03412058 +n03413684 +n03414029 +n03414162 +n03414676 +n03415252 +n03415486 +n03415749 +n03416094 +n03416489 +n03416640 +n03416775 +n03416900 +n03417042 +n03417202 +n03417345 +n03417749 +n03417970 +n03418158 +n03418242 +n03418402 +n03418618 +n03418915 +n03419014 +n03420345 +n03420801 +n03421324 +n03421485 +n03421669 +n03422072 +n03423306 +n03423479 +n03423568 +n03423719 +n03423877 +n03424325 +n03424489 +n03424630 +n03424862 +n03425241 +n03425325 +n03425413 +n03425595 +n03425769 +n03426134 +n03427202 +n03427296 +n03428090 +n03428226 +n03428349 +n03429003 +n03429137 +n03429288 +n03429682 +n03429914 +n03430091 +n03430313 +n03430418 +n03430551 +n03431243 +n03431745 +n03432061 +n03432129 +n03433877 +n03434188 +n03434285 +n03435593 +n03435743 +n03435991 +n03436075 +n03436182 +n03436417 +n03436549 +n03436891 +n03437430 +n03437741 +n03437829 +n03437941 +n03438071 +n03438257 +n03438661 +n03438863 +n03439348 +n03439814 +n03440216 +n03440682 +n03441112 +n03441345 +n03442597 +n03442756 +n03443005 +n03443149 +n03443371 +n03443912 +n03444034 +n03445326 +n03445617 +n03445777 +n03445924 +n03446070 +n03446268 +n03446832 +n03447075 +n03447358 +n03447447 +n03447721 +n03448590 +n03448956 +n03449309 +n03449451 +n03450230 +n03450516 +n03450734 +n03450974 +n03451120 +n03451711 +n03451798 +n03452267 +n03452449 +n03452594 +n03452741 +n03453231 +n03453443 +n03454110 +n03454211 +n03454442 +n03454536 +n03454707 +n03454885 +n03455488 +n03456024 +n03456186 +n03456299 +n03456447 +n03456548 +n03456665 +n03457008 +n03457686 +n03457902 +n03458271 +n03459328 +n03459775 +n03460040 +n03460147 +n03460297 +n03461288 +n03461385 +n03462110 +n03463381 +n03463666 +n03464053 +n03465426 +n03465500 +n03465718 +n03466493 +n03466600 +n03466839 +n03467068 +n03467517 +n03467796 +n03467984 +n03468696 +n03468821 +n03469175 +n03469493 +n03469903 +n03470629 +n03471190 +n03472232 +n03473227 +n03474779 +n03474896 +n03475581 +n03475823 +n03476083 +n03476313 +n03476684 +n03476991 +n03477512 +n03478589 +n03478756 +n03478907 +n03479121 +n03479397 +n03480579 +n03480719 +n03481172 +n03482252 +n03482405 +n03482523 +n03482877 +n03483230 +n03483316 +n03483823 +n03484083 +n03484487 +n03484576 +n03484931 +n03485198 +n03485407 +n03485794 +n03487090 +n03487331 +n03487444 +n03487533 +n03487642 +n03487774 +n03487886 +n03488188 +n03488438 +n03489162 +n03490006 +n03490119 +n03490884 +n03491032 +n03492250 +n03492542 +n03492922 +n03494278 +n03494537 +n03494706 +n03495039 +n03495258 +n03495570 +n03496296 +n03496612 +n03496892 +n03497352 +n03497657 +n03498441 +n03498662 +n03498781 +n03498962 +n03499354 +n03499468 +n03499907 +n03500209 +n03500389 +n03500699 +n03501614 +n03502200 +n03502331 +n03502509 +n03503477 +n03503997 +n03504205 +n03504723 +n03505133 +n03505383 +n03505504 +n03505667 +n03506028 +n03506184 +n03506370 +n03506560 +n03506727 +n03506880 +n03507241 +n03507458 +n03507963 +n03508101 +n03509394 +n03509608 +n03510244 +n03511175 +n03511333 +n03512147 +n03513137 +n03513376 +n03514451 +n03514693 +n03514894 +n03516367 +n03516844 +n03516996 +n03517647 +n03517760 +n03517899 +n03518135 +n03518305 +n03518445 +n03518943 +n03519081 +n03519387 +n03520493 +n03521076 +n03521544 +n03521675 +n03521899 +n03522003 +n03522100 +n03523987 +n03524150 +n03524574 +n03525074 +n03525454 +n03527149 +n03527444 +n03527565 +n03528263 +n03528523 +n03528901 +n03529175 +n03529444 +n03529629 +n03529860 +n03530511 +n03530642 +n03530910 +n03531281 +n03532342 +n03532672 +n03532919 +n03533014 +n03534580 +n03534776 +n03535024 +n03535780 +n03536122 +n03537241 +n03537412 +n03538037 +n03538179 +n03538406 +n03538634 +n03539433 +n03539546 +n03539678 +n03540090 +n03540267 +n03540595 +n03540914 +n03541091 +n03541269 +n03541537 +n03541696 +n03541923 +n03542333 +n03542605 +n03542860 +n03543012 +n03543112 +n03543254 +n03543394 +n03543603 +n03543735 +n03543945 +n03544143 +n03544238 +n03544360 +n03545150 +n03545470 +n03545756 +n03546112 +n03546235 +n03546340 +n03547054 +n03547229 +n03548086 +n03548402 +n03548626 +n03549199 +n03549473 +n03549589 +n03549732 +n03549897 +n03550153 +n03550289 +n03551395 +n03552749 +n03553019 +n03553248 +n03554460 +n03555006 +n03555426 +n03555564 +n03555662 +n03556679 +n03557270 +n03557360 +n03557590 +n03557692 +n03558176 +n03558404 +n03558633 +n03558739 +n03559999 +n03560430 +n03561047 +n03563200 +n03563460 +n03565288 +n03565830 +n03566193 +n03566730 +n03567066 +n03568117 +n03571280 +n03571625 +n03571942 +n03572107 +n03572321 +n03574243 +n03574555 +n03574816 +n03577090 +n03577672 +n03578055 +n03578251 +n03578656 +n03579538 +n03580518 +n03580845 +n03581125 +n03582959 +n03584254 +n03584400 +n03584829 +n03585073 +n03585438 +n03585682 +n03586219 +n03586631 +n03587205 +n03588951 +n03589513 +n03589791 +n03590306 +n03590588 +n03590841 +n03590932 +n03592245 +n03592669 +n03592773 +n03593122 +n03593526 +n03594148 +n03594523 +n03594734 +n03594945 +n03595264 +n03595409 +n03595523 +n03595614 +n03595860 +n03596285 +n03596543 +n03597916 +n03598151 +n03598299 +n03598515 +n03598930 +n03599486 +n03600285 +n03600475 +n03600722 +n03601638 +n03601840 +n03602081 +n03602883 +n03603442 +n03603594 +n03603722 +n03604156 +n03604311 +n03604400 +n03604843 +n03605598 +n03605722 +n03606251 +n03607029 +n03607659 +n03607923 +n03609235 +n03609397 +n03610098 +n03610418 +n03610524 +n03610682 +n03612010 +n03612814 +n03612965 +n03613294 +n03613592 +n03614007 +n03614532 +n03614782 +n03615300 +n03615406 +n03615563 +n03615655 +n03615790 +n03616428 +n03616763 +n03616979 +n03617095 +n03617312 +n03617480 +n03618101 +n03618982 +n03619196 +n03619275 +n03619396 +n03619650 +n03619793 +n03619890 +n03620052 +n03620967 +n03621049 +n03621377 +n03622058 +n03622839 +n03622931 +n03623198 +n03623338 +n03623556 +n03624134 +n03624400 +n03625355 +n03625539 +n03625646 +n03625943 +n03626115 +n03626760 +n03627232 +n03628215 +n03628511 +n03629100 +n03629231 +n03629520 +n03630262 +n03630383 +n03631177 +n03631922 +n03632577 +n03632729 +n03632852 +n03633091 +n03633886 +n03635032 +n03635108 +n03635330 +n03635668 +n03636248 +n03636649 +n03637181 +n03637318 +n03637898 +n03638883 +n03639077 +n03639497 +n03640850 +n03640988 +n03641569 +n03642444 +n03642806 +n03643149 +n03643253 +n03643491 +n03643737 +n03644378 +n03644858 +n03645011 +n03645577 +n03646020 +n03646148 +n03646296 +n03646916 +n03647520 +n03648431 +n03649161 +n03649674 +n03649797 +n03649909 +n03650551 +n03651388 +n03651843 +n03652100 +n03652729 +n03652932 +n03653110 +n03653220 +n03653583 +n03653740 +n03653833 +n03654576 +n03655072 +n03655720 +n03656484 +n03656957 +n03657121 +n03657511 +n03658185 +n03658858 +n03659292 +n03659686 +n03659809 +n03659950 +n03660124 +n03660909 +n03661043 +n03661340 +n03662601 +n03662719 +n03662887 +n03663531 +n03664943 +n03665366 +n03665924 +n03666362 +n03666591 +n03666917 +n03667552 +n03667664 +n03667829 +n03668067 +n03668279 +n03668488 +n03668803 +n03669886 +n03670208 +n03671914 +n03672827 +n03673027 +n03673450 +n03674440 +n03674731 +n03675235 +n03676087 +n03676483 +n03676623 +n03676759 +n03677115 +n03678558 +n03678729 +n03679384 +n03679712 +n03680355 +n03680512 +n03680734 +n03680858 +n03680942 +n03682487 +n03682877 +n03683079 +n03683457 +n03683606 +n03683708 +n03683995 +n03684143 +n03684224 +n03684611 +n03684823 +n03685820 +n03686130 +n03686924 +n03687137 +n03687928 +n03688192 +n03688405 +n03688605 +n03688943 +n03689157 +n03690473 +n03690938 +n03691459 +n03691817 +n03692379 +n03692522 +n03693293 +n03693474 +n03693707 +n03693860 +n03694639 +n03695857 +n03696065 +n03696301 +n03696568 +n03697007 +n03697552 +n03698360 +n03698604 +n03698723 +n03698815 +n03699591 +n03699975 +n03700963 +n03701391 +n03703730 +n03703862 +n03703945 +n03704549 +n03706229 +n03706653 +n03708036 +n03708843 +n03709206 +n03709363 +n03709823 +n03710193 +n03710637 +n03710721 +n03711044 +n03711999 +n03712111 +n03712337 +n03713436 +n03714235 +n03715114 +n03715386 +n03715669 +n03715892 +n03716887 +n03716966 +n03717131 +n03717285 +n03717447 +n03717622 +n03718212 +n03718335 +n03718458 +n03718581 +n03718789 +n03718935 +n03719053 +n03719343 +n03719743 +n03720163 +n03720891 +n03721047 +n03721252 +n03721384 +n03721590 +n03722007 +n03722288 +n03723267 +n03723781 +n03724066 +n03724417 +n03724538 +n03724623 +n03724756 +n03724870 +n03725035 +n03725600 +n03725717 +n03726760 +n03726993 +n03727067 +n03727465 +n03727605 +n03727837 +n03727946 +n03728437 +n03729308 +n03729826 +n03730153 +n03730334 +n03730494 +n03730893 +n03731019 +n03731483 +n03731695 +n03732020 +n03732114 +n03732458 +n03733131 +n03733281 +n03733644 +n03733805 +n03733925 +n03735637 +n03735963 +n03736064 +n03736470 +n03736970 +n03738066 +n03738472 +n03739518 +n03742019 +n03742115 +n03743016 +n03743279 +n03743902 +n03744276 +n03744840 +n03745146 +n03745571 +n03746005 +n03746155 +n03746330 +n03746486 +n03748162 +n03749807 +n03751269 +n03751458 +n03751757 +n03752185 +n03753077 +n03757604 +n03758089 +n03759243 +n03759661 +n03759954 +n03760310 +n03760671 +n03760944 +n03761084 +n03762332 +n03762434 +n03762602 +n03763968 +n03764276 +n03764736 +n03764822 +n03765561 +n03766044 +n03766322 +n03766508 +n03766935 +n03767112 +n03767203 +n03767459 +n03767745 +n03767966 +n03768916 +n03769610 +n03769881 +n03770085 +n03770316 +n03770439 +n03770679 +n03770954 +n03772077 +n03772269 +n03772584 +n03773035 +n03773504 +n03774327 +n03774461 +n03775071 +n03775199 +n03775388 +n03775546 +n03775636 +n03775747 +n03775847 +n03776460 +n03777568 +n03777754 +n03778817 +n03779128 +n03781244 +n03781683 +n03781787 +n03782006 +n03782190 +n03782794 +n03783430 +n03784270 +n03784896 +n03785016 +n03785237 +n03785721 +n03786194 +n03786313 +n03786621 +n03786715 +n03786901 +n03787032 +n03787523 +n03788047 +n03788195 +n03788365 +n03788498 +n03788601 +n03788914 +n03789171 +n03789946 +n03790230 +n03790512 +n03790755 +n03790953 +n03791053 +n03791235 +n03792048 +n03792334 +n03792526 +n03792782 +n03792972 +n03793489 +n03793850 +n03794056 +n03794136 +n03794798 +n03795123 +n03795269 +n03795758 +n03795976 +n03796401 +n03796522 +n03796605 +n03797182 +n03797264 +n03797390 +n03797896 +n03798061 +n03798442 +n03799876 +n03800933 +n03801353 +n03801533 +n03801671 +n03801760 +n03801880 +n03802007 +n03802393 +n03803284 +n03804744 +n03805180 +n03805280 +n03805725 +n03809312 +n03809603 +n03810952 +n03811295 +n03811444 +n03811847 +n03811965 +n03812924 +n03813078 +n03814639 +n03814817 +n03814906 +n03815149 +n03815482 +n03815615 +n03816005 +n03816136 +n03816530 +n03816849 +n03817191 +n03817647 +n03818343 +n03819336 +n03819448 +n03819595 +n03819994 +n03820318 +n03820728 +n03821518 +n03822171 +n03822504 +n03822656 +n03822767 +n03823111 +n03823216 +n03823312 +n03824381 +n03824713 +n03825080 +n03825788 +n03826039 +n03826186 +n03827536 +n03828020 +n03829954 +n03831382 +n03832144 +n03832673 +n03834040 +n03835197 +n03836062 +n03836451 +n03836906 +n03836976 +n03837422 +n03837606 +n03837698 +n03837869 +n03838298 +n03838899 +n03839424 +n03839671 +n03840681 +n03840823 +n03841143 +n03841666 +n03842012 +n03842156 +n03842377 +n03842986 +n03843438 +n03843555 +n03844045 +n03844233 +n03844673 +n03844815 +n03845190 +n03846100 +n03846234 +n03846431 +n03846677 +n03847471 +n03847823 +n03848168 +n03848348 +n03849679 +n03849814 +n03850053 +n03850245 +n03850492 +n03851787 +n03852280 +n03852688 +n03853924 +n03854065 +n03854421 +n03854506 +n03854722 +n03854815 +n03855214 +n03855333 +n03855604 +n03855756 +n03856012 +n03856465 +n03857687 +n03857828 +n03858085 +n03858183 +n03858418 +n03859000 +n03859170 +n03859280 +n03859495 +n03859608 +n03859958 +n03860404 +n03861271 +n03861430 +n03861842 +n03862676 +n03862862 +n03863108 +n03863262 +n03863923 +n03864356 +n03864692 +n03865371 +n03865557 +n03865949 +n03866082 +n03868242 +n03868406 +n03868643 +n03868863 +n03870105 +n03870672 +n03870980 +n03871083 +n03871371 +n03871524 +n03871628 +n03871724 +n03873416 +n03873699 +n03874138 +n03874293 +n03874487 +n03874599 +n03875218 +n03875806 +n03875955 +n03876231 +n03877351 +n03877472 +n03877674 +n03877845 +n03878066 +n03878211 +n03878963 +n03879705 +n03880323 +n03880531 +n03882611 +n03882960 +n03883054 +n03883385 +n03883524 +n03884397 +n03884778 +n03884926 +n03885028 +n03885194 +n03885293 +n03885535 +n03885669 +n03885788 +n03885904 +n03886053 +n03886641 +n03886762 +n03887185 +n03887330 +n03887697 +n03888257 +n03888605 +n03889503 +n03889726 +n03889871 +n03890093 +n03890233 +n03890514 +n03891051 +n03891251 +n03891332 +n03891538 +n03892178 +n03892425 +n03892557 +n03894051 +n03894379 +n03894677 +n03895866 +n03896103 +n03896233 +n03896419 +n03896526 +n03897943 +n03898129 +n03898271 +n03898395 +n03898633 +n03899768 +n03899933 +n03900393 +n03900979 +n03901229 +n03901750 +n03902125 +n03902482 +n03902756 +n03903424 +n03903733 +n03903868 +n03904060 +n03904183 +n03904433 +n03904657 +n03904782 +n03904909 +n03905947 +n03906224 +n03906463 +n03906997 +n03908204 +n03908618 +n03908714 +n03909020 +n03909160 +n03909406 +n03911513 +n03911658 +n03911767 +n03911866 +n03912218 +n03913343 +n03914106 +n03914337 +n03914438 +n03914583 +n03914831 +n03915118 +n03915437 +n03915900 +n03916031 +n03916470 +n03916720 +n03917198 +n03917814 +n03918480 +n03918737 +n03919096 +n03919289 +n03919430 +n03920288 +n03920641 +n03920737 +n03920867 +n03923379 +n03923918 +n03924069 +n03924679 +n03926148 +n03927091 +n03927299 +n03927539 +n03928116 +n03928814 +n03929660 +n03929855 +n03930313 +n03930630 +n03931765 +n03931885 +n03933933 +n03934042 +n03934229 +n03934311 +n03934565 +n03934656 +n03935116 +n03935234 +n03935335 +n03936466 +n03937543 +n03937835 +n03937931 +n03938037 +n03938244 +n03938401 +n03938522 +n03938725 +n03939178 +n03939677 +n03939844 +n03940256 +n03941013 +n03941231 +n03941417 +n03941684 +n03942813 +n03942920 +n03943115 +n03943266 +n03943920 +n03944024 +n03944138 +n03944341 +n03946076 +n03946162 +n03947466 +n03947798 +n03947888 +n03948242 +n03948459 +n03948830 +n03948950 +n03949145 +n03949317 +n03950228 +n03950537 +n03950899 +n03952576 +n03953901 +n03954393 +n03954731 +n03955296 +n03955489 +n03956157 +n03956623 +n03956785 +n03956922 +n03957315 +n03957420 +n03957762 +n03957991 +n03958227 +n03958752 +n03959014 +n03959701 +n03960374 +n03960490 +n03961711 +n03961939 +n03962852 +n03963198 +n03963294 +n03963645 +n03964495 +n03965456 +n03965907 +n03966206 +n03966976 +n03967270 +n03967396 +n03967562 +n03967942 +n03968293 +n03968581 +n03968728 +n03970156 +n03970546 +n03971218 +n03973285 +n03973402 +n03973628 +n03973839 +n03973945 +n03974070 +n03974915 +n03975035 +n03975657 +n03975788 +n03976467 +n03976657 +n03977592 +n03977966 +n03978421 +n03978686 +n03978966 +n03980026 +n03980478 +n03980874 +n03981340 +n03981566 +n03981760 +n03981924 +n03982232 +n03982331 +n03982430 +n03982642 +n03983396 +n03983612 +n03984234 +n03984381 +n03984643 +n03984759 +n03985069 +n03985232 +n03985441 +n03985881 +n03986224 +n03986355 +n03986562 +n03986704 +n03986949 +n03987266 +n03987376 +n03987990 +n03988170 +n03989665 +n03990474 +n03991062 +n03991646 +n03991837 +n03992325 +n03992436 +n03992509 +n03992703 +n03993053 +n03993180 +n03993403 +n03993703 +n03994008 +n03994614 +n03995265 +n03995372 +n03995535 +n03995856 +n03996145 +n03996416 +n03996849 +n03998194 +n03998333 +n03999160 +n03999992 +n04000311 +n04000592 +n04001265 +n04001499 +n04001845 +n04003241 +n04003856 +n04004210 +n04004475 +n04004767 +n04004990 +n04005197 +n04005630 +n04008385 +n04008634 +n04009552 +n04009801 +n04011827 +n04012084 +n04012482 +n04013729 +n04015908 +n04016240 +n04016576 +n04016684 +n04016846 +n04018155 +n04018667 +n04019101 +n04019541 +n04019696 +n04020298 +n04020912 +n04021028 +n04021798 +n04022332 +n04023695 +n04023962 +n04024274 +n04024862 +n04024983 +n04025508 +n04026053 +n04026180 +n04026417 +n04026813 +n04027023 +n04027706 +n04028074 +n04028221 +n04028315 +n04028581 +n04028764 +n04029734 +n04030274 +n04030518 +n04032603 +n04033425 +n04033901 +n04033995 +n04034262 +n04035836 +n04035912 +n04036303 +n04037220 +n04037443 +n04037964 +n04038231 +n04038338 +n04038440 +n04038727 +n04039381 +n04039742 +n04039848 +n04040247 +n04040373 +n04040759 +n04041069 +n04041243 +n04041408 +n04041544 +n04041747 +n04042358 +n04043411 +n04043733 +n04044307 +n04044498 +n04044716 +n04045255 +n04045397 +n04045644 +n04046091 +n04046277 +n04046400 +n04046590 +n04046974 +n04047401 +n04048441 +n04049303 +n04049405 +n04049585 +n04049753 +n04050066 +n04050313 +n04050933 +n04051549 +n04051825 +n04052442 +n04052658 +n04052757 +n04053508 +n04053677 +n04054361 +n04054670 +n04056180 +n04056413 +n04056932 +n04057047 +n04057981 +n04058096 +n04058239 +n04058594 +n04059157 +n04059516 +n04059947 +n04060647 +n04061681 +n04061793 +n04061969 +n04062428 +n04063154 +n04063373 +n04063868 +n04064401 +n04064747 +n04064862 +n04065272 +n04065464 +n04065789 +n04066270 +n04067472 +n04067658 +n04067818 +n04067921 +n04068441 +n04068601 +n04069276 +n04069434 +n04070003 +n04070207 +n04070415 +n04070727 +n04071263 +n04072193 +n04072551 +n04072960 +n04074185 +n04074963 +n04075291 +n04075715 +n04075916 +n04076284 +n04076713 +n04078574 +n04079244 +n04079933 +n04080138 +n04080454 +n04080705 +n04080833 +n04081281 +n04081699 +n04082562 +n04082710 +n04082886 +n04083309 +n04083800 +n04084889 +n04086273 +n04086446 +n04087432 +n04087709 +n04087826 +n04089376 +n04089666 +n04089836 +n04089976 +n04090263 +n04091097 +n04091693 +n04093625 +n04093775 +n04094720 +n04095109 +n04095210 +n04095342 +n04095577 +n04096066 +n04097373 +n04097760 +n04097866 +n04098513 +n04099003 +n04099175 +n04099429 +n04099969 +n04100519 +n04101701 +n04102037 +n04102162 +n04102285 +n04102406 +n04102618 +n04103094 +n04103206 +n04103364 +n04103665 +n04103769 +n04103918 +n04104147 +n04104384 +n04104500 +n04104770 +n04105068 +n04105704 +n04105893 +n04107743 +n04108268 +n04108822 +n04110178 +n04110955 +n04111190 +n04111414 +n04111531 +n04111668 +n04112147 +n04112252 +n04112430 +n04112579 +n04112654 +n04112752 +n04113194 +n04113316 +n04113406 +n04113641 +n04113765 +n04114844 +n04115144 +n04115256 +n04115456 +n04115802 +n04115996 +n04116098 +n04116294 +n04116512 +n04117464 +n04118021 +n04118538 +n04118635 +n04118776 +n04119091 +n04119230 +n04119360 +n04119478 +n04119751 +n04120489 +n04120842 +n04121426 +n04121511 +n04121728 +n04122349 +n04122492 +n04122578 +n04122685 +n04122825 +n04123026 +n04123448 +n04123567 +n04123740 +n04124098 +n04124202 +n04124370 +n04124488 +n04125021 +n04125257 +n04125853 +n04126066 +n04127249 +n04127395 +n04127521 +n04127633 +n04127904 +n04128413 +n04128499 +n04128710 +n04128837 +n04130143 +n04130257 +n04130907 +n04131208 +n04131368 +n04131690 +n04131929 +n04132158 +n04132603 +n04132985 +n04133789 +n04134008 +n04134523 +n04134632 +n04135024 +n04135118 +n04135315 +n04135710 +n04136045 +n04136161 +n04136333 +n04136510 +n04136800 +n04137089 +n04137217 +n04137355 +n04137444 +n04137773 +n04137897 +n04138261 +n04138977 +n04139140 +n04139395 +n04139859 +n04140064 +n04140631 +n04141076 +n04141198 +n04141327 +n04141712 +n04141838 +n04141975 +n04142434 +n04142731 +n04142999 +n04143140 +n04143897 +n04144241 +n04144539 +n04145863 +n04146050 +n04146343 +n04146504 +n04146614 +n04146862 +n04147183 +n04147793 +n04148054 +n04148579 +n04148703 +n04149083 +n04149813 +n04150153 +n04150980 +n04152593 +n04153025 +n04153751 +n04154152 +n04154340 +n04154565 +n04154938 +n04155068 +n04156140 +n04156946 +n04157320 +n04158807 +n04158956 +n04160372 +n04160586 +n04160847 +n04161358 +n04161981 +n04162433 +n04162706 +n04163530 +n04164406 +n04164757 +n04164868 +n04165409 +n04166281 +n04167346 +n04168199 +n04169437 +n04170037 +n04170933 +n04171208 +n04171459 +n04171629 +n04171831 +n04172107 +n04172342 +n04172776 +n04172904 +n04173046 +n04173511 +n04173907 +n04174101 +n04175039 +n04175147 +n04176068 +n04176190 +n04176295 +n04177041 +n04177755 +n04177820 +n04177931 +n04178190 +n04178329 +n04179712 +n04179824 +n04179913 +n04180063 +n04180229 +n04180888 +n04181228 +n04181561 +n04182152 +n04182322 +n04183217 +n04183329 +n04184316 +n04184435 +n04184880 +n04185071 +n04185529 +n04185804 +n04185946 +n04186051 +n04186268 +n04186455 +n04186848 +n04187061 +n04187233 +n04187547 +n04187970 +n04188179 +n04189282 +n04189651 +n04189816 +n04190052 +n04190376 +n04190997 +n04191595 +n04191943 +n04192238 +n04192698 +n04192858 +n04193377 +n04194127 +n04194289 +n04196502 +n04197110 +n04197391 +n04197781 +n04198355 +n04198453 +n04198562 +n04198722 +n04198797 +n04199027 +n04200000 +n04200258 +n04200537 +n04200800 +n04201064 +n04201297 +n04201733 +n04202417 +n04204081 +n04204238 +n04204347 +n04205318 +n04205505 +n04206225 +n04206356 +n04206570 +n04206790 +n04207151 +n04207343 +n04207596 +n04207763 +n04207903 +n04208065 +n04208210 +n04208427 +n04208760 +n04208936 +n04209133 +n04209239 +n04209509 +n04209613 +n04210120 +n04210390 +n04211219 +n04211356 +n04211528 +n04211857 +n04211970 +n04212165 +n04212282 +n04212467 +n04213353 +n04214046 +n04214282 +n04215153 +n04215402 +n04216634 +n04216860 +n04216963 +n04217546 +n04217882 +n04218564 +n04219185 +n04219424 +n04220250 +n04221823 +n04222210 +n04222307 +n04222470 +n04222723 +n04223299 +n04224543 +n04224842 +n04225031 +n04225729 +n04225987 +n04226464 +n04226826 +n04227144 +n04227900 +n04228054 +n04228215 +n04228581 +n04228693 +n04229107 +n04229480 +n04229737 +n04229816 +n04230603 +n04230808 +n04231272 +n04231693 +n04231905 +n04232153 +n04232800 +n04233124 +n04233715 +n04234455 +n04234887 +n04235291 +n04235860 +n04236377 +n04236809 +n04236935 +n04237423 +n04238128 +n04238321 +n04238617 +n04238763 +n04239074 +n04239436 +n04239786 +n04240752 +n04241249 +n04241573 +n04242408 +n04243546 +n04243941 +n04244379 +n04244997 +n04245508 +n04246060 +n04246271 +n04246731 +n04246855 +n04247011 +n04247630 +n04247736 +n04247876 +n04248396 +n04248507 +n04248851 +n04249415 +n04249582 +n04249882 +n04250224 +n04250473 +n04250692 +n04250850 +n04251144 +n04251701 +n04251791 +n04252077 +n04252225 +n04252331 +n04252560 +n04252653 +n04253057 +n04253168 +n04253931 +n04254009 +n04254120 +n04254680 +n04254777 +n04255163 +n04255586 +n04255899 +n04256520 +n04256891 +n04257223 +n04257684 +n04257790 +n04257986 +n04258138 +n04258333 +n04258438 +n04258618 +n04258732 +n04258859 +n04259630 +n04260364 +n04261281 +n04261638 +n04262161 +n04263257 +n04263336 +n04263502 +n04264628 +n04264765 +n04264914 +n04265275 +n04265904 +n04266014 +n04266162 +n04266375 +n04266486 +n04266968 +n04267435 +n04269270 +n04269822 +n04269944 +n04270147 +n04270371 +n04270891 +n04271531 +n04272054 +n04272389 +n04272928 +n04273285 +n04273569 +n04273659 +n04273796 +n04273972 +n04274985 +n04275175 +n04275548 +n04275661 +n04277352 +n04277493 +n04277826 +n04278247 +n04278353 +n04278447 +n04279172 +n04279353 +n04279462 +n04281260 +n04281375 +n04282494 +n04282872 +n04282992 +n04283096 +n04283255 +n04283378 +n04283585 +n04283905 +n04284002 +n04284341 +n04284438 +n04284572 +n04284869 +n04285008 +n04285146 +n04285803 +n04285965 +n04286575 +n04287747 +n04287898 +n04288533 +n04289027 +n04289195 +n04289576 +n04289690 +n04289827 +n04290079 +n04290259 +n04290507 +n04290615 +n04292414 +n04292572 +n04292921 +n04293119 +n04294426 +n04294614 +n04294879 +n04295081 +n04295571 +n04295881 +n04296562 +n04297098 +n04297750 +n04297847 +n04298661 +n04299215 +n04299370 +n04299963 +n04300643 +n04301000 +n04301760 +n04303357 +n04303497 +n04304375 +n04304680 +n04305210 +n04305323 +n04305572 +n04306080 +n04306592 +n04306847 +n04307767 +n04307986 +n04308084 +n04308273 +n04308397 +n04309049 +n04309348 +n04309548 +n04309833 +n04310018 +n04310157 +n04310904 +n04311004 +n04311174 +n04311595 +n04312154 +n04312432 +n04313503 +n04313628 +n04314914 +n04315342 +n04315948 +n04316498 +n04317063 +n04317175 +n04317325 +n04317420 +n04317833 +n04317976 +n04318787 +n04318892 +n04319937 +n04320973 +n04321453 +n04322026 +n04322801 +n04323819 +n04324297 +n04324387 +n04325041 +n04325704 +n04326547 +n04326676 +n04326799 +n04326896 +n04327204 +n04327682 +n04328186 +n04328329 +n04328946 +n04329834 +n04329958 +n04330267 +n04330340 +n04330746 +n04330998 +n04331277 +n04331639 +n04332074 +n04332243 +n04332580 +n04333129 +n04333869 +n04334105 +n04334365 +n04334599 +n04335209 +n04335435 +n04335693 +n04335886 +n04336792 +n04337287 +n04338517 +n04338963 +n04339879 +n04340521 +n04340750 +n04340935 +n04341686 +n04344003 +n04344734 +n04344873 +n04345028 +n04345201 +n04346157 +n04346328 +n04346428 +n04347119 +n04347519 +n04347754 +n04348359 +n04349306 +n04349401 +n04350458 +n04350581 +n04350769 +n04350905 +n04351699 +n04353573 +n04354026 +n04354182 +n04354487 +n04354589 +n04355267 +n04355338 +n04355511 +n04355933 +n04356056 +n04356595 +n04356925 +n04357121 +n04357314 +n04357531 +n04358117 +n04358491 +n04358707 +n04358874 +n04359500 +n04360798 +n04360914 +n04361095 +n04361260 +n04363777 +n04363991 +n04364160 +n04364545 +n04365328 +n04366033 +n04366116 +n04366367 +n04367011 +n04367371 +n04367480 +n04367746 +n04367950 +n04368496 +n04369025 +n04369282 +n04370048 +n04370288 +n04370456 +n04370774 +n04371050 +n04371430 +n04371563 +n04371774 +n04372370 +n04373089 +n04373428 +n04373704 +n04373795 +n04373894 +n04374315 +n04374735 +n04375241 +n04375405 +n04375615 +n04376400 +n04376876 +n04377057 +n04378956 +n04379243 +n04379964 +n04380255 +n04380346 +n04380533 +n04380916 +n04381073 +n04381587 +n04381724 +n04381860 +n04381994 +n04382438 +n04382695 +n04382880 +n04383015 +n04383130 +n04383839 +n04384593 +n04384910 +n04385536 +n04385799 +n04386051 +n04386664 +n04386792 +n04387095 +n04387201 +n04387261 +n04387400 +n04387706 +n04387932 +n04388743 +n04389033 +n04389430 +n04389521 +n04389718 +n04389854 +n04390577 +n04390873 +n04390977 +n04391445 +n04391838 +n04392113 +n04392526 +n04392764 +n04392985 +n04393095 +n04393549 +n04393808 +n04394630 +n04395024 +n04395106 +n04395651 +n04396808 +n04396902 +n04397027 +n04397452 +n04397645 +n04397768 +n04398044 +n04398497 +n04398688 +n04398834 +n04398951 +n04399158 +n04399537 +n04399846 +n04400289 +n04400737 +n04401088 +n04401578 +n04401680 +n04401828 +n04401949 +n04402057 +n04402449 +n04402580 +n04402746 +n04402984 +n04403413 +n04403524 +n04403638 +n04403925 +n04404412 +n04404817 +n04404997 +n04405540 +n04405762 +n04405907 +n04406239 +n04406817 +n04407435 +n04407686 +n04408871 +n04409011 +n04409128 +n04409384 +n04409515 +n04409625 +n04409806 +n04410086 +n04411264 +n04412097 +n04412416 +n04413969 +n04414199 +n04414319 +n04414476 +n04414675 +n04414909 +n04415663 +n04416005 +n04417086 +n04417180 +n04417672 +n04417809 +n04418357 +n04419073 +n04419642 +n04419868 +n04421872 +n04422409 +n04422727 +n04422875 +n04423845 +n04424692 +n04425804 +n04426316 +n04426427 +n04427715 +n04428191 +n04428634 +n04429376 +n04430475 +n04430896 +n04431025 +n04431745 +n04432203 +n04432662 +n04433585 +n04434207 +n04434531 +n04434932 +n04435180 +n04435653 +n04436012 +n04436185 +n04436329 +n04437953 +n04438304 +n04438507 +n04438897 +n04439585 +n04439712 +n04440963 +n04441662 +n04441790 +n04442312 +n04442441 +n04442741 +n04443164 +n04443257 +n04443766 +n04444749 +n04445040 +n04445154 +n04445327 +n04445952 +n04446276 +n04446844 +n04447028 +n04447276 +n04447443 +n04447861 +n04448070 +n04448361 +n04449290 +n04449966 +n04450133 +n04450243 +n04450640 +n04450749 +n04450994 +n04451318 +n04451818 +n04452528 +n04452615 +n04452757 +n04453037 +n04453156 +n04453390 +n04453666 +n04454908 +n04455250 +n04455652 +n04456115 +n04457474 +n04457767 +n04457910 +n04458633 +n04458843 +n04459018 +n04459362 +n04459610 +n04459773 +n04459909 +n04460130 +n04461437 +n04461570 +n04461696 +n04461879 +n04462011 +n04462240 +n04463679 +n04464615 +n04464852 +n04465050 +n04465358 +n04465501 +n04465666 +n04466871 +n04467099 +n04467307 +n04467665 +n04468005 +n04469003 +n04469514 +n04469813 +n04471148 +n04471632 +n04472563 +n04473108 +n04474035 +n04474187 +n04474466 +n04475411 +n04475631 +n04476116 +n04476259 +n04476831 +n04476972 +n04477219 +n04477387 +n04477548 +n04478512 +n04479046 +n04479823 +n04479939 +n04480033 +n04480853 +n04482177 +n04482297 +n04482393 +n04483073 +n04483307 +n04483925 +n04484432 +n04485082 +n04485423 +n04485884 +n04486054 +n04486213 +n04486934 +n04487081 +n04487394 +n04487724 +n04488202 +n04488427 +n04488530 +n04488742 +n04488857 +n04489008 +n04489695 +n04489817 +n04490091 +n04491388 +n04491638 +n04491769 +n04492060 +n04492375 +n04492749 +n04493381 +n04494204 +n04495698 +n04495843 +n04496614 +n04496726 +n04496872 +n04497442 +n04497570 +n04497801 +n04498389 +n04499062 +n04499446 +n04500060 +n04501370 +n04501550 +n04501947 +n04502059 +n04502197 +n04502502 +n04502670 +n04502851 +n04503413 +n04503593 +n04504141 +n04505036 +n04505470 +n04506289 +n04506506 +n04506688 +n04507155 +n04508163 +n04508489 +n04508949 +n04509171 +n04509260 +n04509417 +n04510706 +n04511002 +n04513827 +n04513998 +n04514241 +n04515003 +n04516116 +n04516214 +n04516354 +n04516672 +n04517211 +n04517408 +n04517823 +n04518132 +n04518343 +n04518643 +n04518764 +n04519153 +n04520170 +n04520382 +n04520784 +n04521863 +n04522168 +n04523525 +n04523831 +n04524142 +n04524313 +n04524941 +n04525038 +n04525191 +n04525305 +n04525417 +n04525584 +n04525821 +n04526964 +n04527648 +n04528079 +n04528968 +n04529108 +n04529681 +n04529962 +n04530283 +n04530566 +n04531098 +n04531873 +n04532106 +n04532398 +n04532670 +n04532831 +n04533199 +n04533499 +n04533594 +n04533700 +n04533802 +n04533946 +n04534127 +n04534359 +n04534520 +n04534895 +n04535370 +n04535524 +n04536153 +n04536335 +n04536595 +n04536866 +n04538552 +n04539203 +n04539794 +n04540053 +n04540255 +n04541320 +n04541987 +n04542715 +n04542858 +n04542943 +n04543158 +n04543636 +n04543772 +n04543996 +n04544325 +n04544450 +n04545305 +n04545748 +n04545858 +n04546194 +n04546340 +n04547592 +n04548280 +n04548362 +n04549028 +n04549122 +n04549629 +n04549919 +n04550184 +n04551055 +n04552348 +n04552696 +n04553561 +n04553703 +n04554211 +n04554406 +n04554684 +n04554871 +n04555291 +n04555400 +n04555600 +n04555700 +n04555897 +n04556408 +n04556533 +n04556948 +n04557648 +n04557751 +n04558478 +n04559166 +n04559451 +n04559730 +n04559910 +n04560113 +n04560292 +n04560804 +n04560882 +n04561287 +n04561422 +n04561734 +n04562262 +n04562496 +n04562935 +n04563204 +n04563413 +n04564278 +n04564581 +n04565375 +n04566257 +n04566561 +n04566756 +n04568069 +n04568557 +n04568841 +n04569063 +n04569822 +n04570214 +n04570815 +n04571292 +n04571566 +n04571686 +n04571958 +n04573281 +n04573513 +n04573937 +n04574067 +n04574999 +n04575723 +n04575824 +n04576002 +n04576211 +n04577769 +n04578934 +n04579056 +n04579145 +n04579230 +n04579432 +n04579667 +n04579986 +n04580493 +n04581102 +n04581829 +n04582205 +n04582349 +n04582771 +n04582869 +n04583212 +n04583620 +n04584207 +n04584373 +n04585128 +n04585745 +n04585980 +n04586072 +n04586581 +n04586932 +n04587327 +n04587404 +n04587559 +n04587648 +n04588739 +n04589190 +n04589325 +n04589593 +n04589890 +n04590021 +n04590129 +n04590263 +n04590553 +n04590746 +n04590933 +n04591157 +n04591517 +n04591713 +n04591887 +n04592005 +n04592099 +n04592465 +n04592741 +n04593077 +n04593185 +n04593376 +n04593524 +n04593866 +n04594218 +n04594489 +n04594828 +n04595028 +n04595285 +n04595855 +n04596742 +n04596852 +n04597309 +n04597400 +n04597804 +n04597913 +n04598318 +n04598582 +n04598965 +n04599124 +n04599235 +n04600312 +n04600912 +n04602762 +n04602956 +n04603399 +n04603729 +n04603872 +n04604644 +n04605163 +n04605321 +n04605572 +n04605726 +n04606251 +n04606574 +n04607035 +n04607242 +n04607869 +n04608329 +n04608435 +n04608567 +n04608923 +n04609531 +n04609651 +n04610013 +n04610274 +n04610503 +n04610676 +n04612026 +n04612373 +n04612504 +n04613015 +n04613696 +n04613939 +n04614655 +n04615226 +n04615644 +n04950952 +n04951071 +n04951186 +n04953296 +n04955160 +n04959672 +n04960277 +n04960582 +n04961062 +n04961331 +n04961691 +n04962062 +n04962240 +n04963307 +n04963588 +n04963740 +n04964001 +n04964799 +n04964878 +n04965179 +n04965451 +n04965661 +n04966543 +n04966941 +n04967191 +n04967674 +n04967801 +n04967882 +n04968056 +n04968139 +n04968749 +n04968895 +n04969242 +n04969540 +n04969798 +n04969952 +n04970059 +n04970398 +n04970470 +n04970916 +n04971211 +n04971313 +n04972350 +n04972451 +n04972801 +n04973291 +n04973386 +n04973585 +n04973816 +n04974859 +n04976319 +n04976952 +n04977412 +n04979002 +n04981658 +n05218119 +n05238282 +n05239437 +n05242928 +n05244934 +n05245192 +n05258051 +n05259914 +n05260127 +n05260240 +n05261310 +n05262422 +n05262534 +n05263183 +n05263448 +n05282652 +n05302499 +n05399034 +n05399243 +n05418717 +n05450617 +n05451384 +n05453657 +n05486510 +n05526957 +n05538625 +n05578095 +n05581932 +n05586759 +n05716342 +n06255081 +n06263609 +n06266633 +n06266973 +n06267145 +n06267564 +n06267655 +n06267758 +n06267893 +n06267991 +n06271778 +n06272290 +n06272612 +n06272803 +n06273414 +n06273555 +n06273743 +n06273986 +n06274760 +n06275095 +n06275353 +n06275471 +n06276501 +n06276697 +n06277135 +n06277280 +n06278338 +n06278475 +n06281040 +n06359193 +n06359467 +n06415688 +n06417096 +n06470073 +n06592281 +n06595351 +n06596364 +n06596474 +n06596607 +n06596727 +n06785654 +n06793231 +n06794110 +n06874185 +n06883725 +n06892775 +n06998748 +n07005523 +n07248320 +n07273802 +n07461050 +n07556406 +n07556637 +n07556970 +n07557434 +n07560193 +n07560331 +n07560542 +n07560652 +n07560903 +n07561112 +n07561590 +n07561848 +n07562495 +n07563207 +n07564971 +n07565083 +n07565161 +n07565259 +n07566340 +n07567707 +n07568502 +n07568818 +n07569106 +n07569644 +n07570720 +n07572616 +n07572957 +n07573347 +n07573696 +n07574176 +n07574426 +n07574504 +n07574602 +n07574780 +n07574923 +n07575076 +n07575392 +n07575510 +n07575726 +n07575984 +n07576182 +n07576438 +n07576781 +n07577144 +n07577374 +n07577538 +n07578093 +n07579575 +n07579688 +n07579787 +n07579917 +n07580053 +n07580253 +n07580359 +n07580470 +n07580592 +n07581249 +n07581346 +n07581775 +n07581931 +n07582152 +n07582277 +n07582609 +n07582892 +n07583066 +n07584110 +n07584332 +n07584423 +n07584593 +n07585107 +n07585208 +n07585557 +n07585758 +n07585906 +n07586099 +n07586318 +n07586604 +n07586718 +n07586894 +n07587023 +n07587111 +n07587331 +n07587441 +n07587618 +n07587700 +n07587962 +n07588111 +n07588193 +n07588299 +n07588419 +n07588574 +n07588817 +n07588947 +n07590320 +n07590502 +n07590611 +n07590752 +n07591049 +n07591473 +n07591586 +n07591961 +n07592094 +n07592481 +n07592768 +n07593004 +n07593199 +n07593471 +n07594066 +n07595649 +n07595914 +n07596684 +n07596967 +n07597145 +n07597365 +n07598256 +n07598734 +n07599911 +n07599998 +n07600177 +n07600285 +n07600696 +n07601290 +n07601572 +n07601686 +n07601809 +n07604956 +n07605040 +n07605380 +n07605474 +n07605597 +n07605804 +n07605944 +n07606538 +n07606669 +n07606764 +n07607138 +n07607605 +n07607967 +n07608098 +n07608339 +n07608429 +n07608866 +n07609215 +n07609407 +n07609632 +n07609840 +n07610620 +n07611046 +n07611148 +n07611267 +n07611358 +n07611839 +n07611991 +n07612137 +n07612367 +n07612632 +n07612996 +n07613266 +n07613480 +n07613815 +n07614198 +n07614500 +n07614730 +n07614825 +n07615190 +n07615289 +n07615460 +n07615569 +n07615671 +n07615774 +n07616046 +n07616386 +n07616487 +n07616590 +n07616748 +n07617051 +n07617611 +n07617708 +n07617932 +n07618119 +n07618432 +n07619004 +n07619208 +n07619409 +n07620689 +n07621618 +n07623136 +n07624466 +n07625061 +n07627931 +n07628068 +n07631926 +n07639069 +n07641928 +n07642361 +n07642471 +n07642742 +n07642933 +n07643026 +n07643200 +n07643306 +n07643891 +n07643981 +n07648913 +n07648997 +n07650903 +n07651025 +n07654148 +n07654298 +n07655263 +n07665438 +n07666176 +n07678729 +n07679034 +n07679356 +n07680313 +n07680517 +n07680761 +n07680932 +n07681450 +n07681691 +n07682197 +n07682316 +n07682477 +n07682624 +n07682808 +n07682952 +n07683039 +n07683360 +n07683490 +n07683617 +n07683786 +n07684084 +n07684164 +n07684289 +n07684517 +n07684600 +n07684938 +n07685031 +n07685218 +n07685399 +n07685546 +n07685730 +n07685918 +n07686021 +n07686202 +n07686720 +n07686873 +n07687053 +n07687211 +n07687381 +n07687469 +n07687626 +n07687789 +n07688624 +n07688898 +n07689003 +n07689842 +n07690019 +n07690152 +n07690273 +n07690431 +n07690511 +n07690585 +n07690739 +n07690892 +n07691091 +n07691237 +n07691539 +n07691650 +n07691758 +n07691954 +n07692614 +n07693048 +n07693223 +n07693590 +n07693725 +n07693972 +n07694403 +n07694516 +n07694659 +n07694839 +n07695652 +n07695742 +n07695878 +n07695965 +n07696403 +n07696527 +n07696625 +n07696728 +n07696839 +n07696977 +n07697100 +n07697313 +n07697537 +n07697699 +n07697825 +n07698250 +n07698401 +n07698543 +n07698672 +n07698782 +n07700003 +n07704054 +n07704205 +n07705931 +n07707451 +n07708124 +n07708398 +n07708685 +n07709046 +n07709172 +n07709333 +n07710283 +n07710616 +n07710952 +n07711080 +n07711232 +n07711371 +n07711569 +n07712063 +n07712267 +n07712382 +n07712559 +n07712748 +n07712856 +n07712959 +n07713074 +n07713267 +n07713395 +n07713763 +n07713895 +n07714078 +n07714188 +n07714287 +n07714448 +n07714571 +n07714802 +n07714895 +n07714990 +n07715103 +n07715221 +n07715407 +n07715561 +n07715721 +n07716034 +n07716203 +n07716358 +n07716906 +n07717070 +n07717410 +n07717556 +n07718472 +n07718747 +n07719213 +n07719616 +n07719839 +n07720277 +n07720442 +n07720615 +n07720875 +n07721018 +n07721195 +n07721325 +n07721456 +n07721678 +n07721942 +n07722052 +n07722217 +n07722485 +n07722888 +n07723039 +n07723177 +n07723330 +n07723559 +n07723968 +n07724269 +n07724492 +n07724654 +n07724943 +n07725255 +n07725376 +n07725531 +n07725789 +n07725888 +n07726095 +n07726525 +n07726672 +n07726796 +n07727048 +n07727458 +n07727578 +n07727868 +n07728053 +n07728181 +n07728585 +n07728708 +n07729384 +n07729485 +n07729828 +n07729926 +n07730033 +n07730207 +n07730320 +n07730406 +n07730708 +n07730855 +n07731006 +n07731284 +n07731587 +n07731767 +n07731952 +n07732168 +n07732636 +n07732747 +n07732904 +n07733394 +n07733567 +n07733712 +n07734017 +n07734183 +n07734292 +n07734417 +n07734555 +n07734744 +n07734879 +n07735404 +n07735510 +n07735687 +n07735803 +n07736087 +n07736256 +n07736371 +n07736692 +n07736813 +n07737745 +n07739125 +n07739344 +n07739506 +n07740033 +n07740220 +n07740342 +n07740461 +n07740597 +n07740954 +n07741138 +n07741461 +n07742012 +n07742313 +n07742704 +n07743224 +n07743544 +n07743902 +n07744057 +n07744246 +n07744430 +n07744682 +n07744811 +n07745046 +n07745466 +n07745940 +n07746186 +n07746334 +n07746551 +n07747055 +n07747607 +n07747951 +n07748157 +n07748276 +n07748416 +n07748574 +n07748753 +n07748912 +n07749192 +n07749312 +n07749446 +n07749582 +n07749731 +n07749969 +n07750146 +n07750449 +n07750736 +n07750872 +n07751004 +n07751148 +n07751280 +n07751451 +n07752109 +n07752377 +n07752514 +n07752966 +n07753113 +n07753275 +n07753592 +n07753743 +n07753980 +n07754451 +n07754684 +n07754894 +n07755089 +n07755411 +n07755707 +n07755929 +n07756325 +n07756951 +n07757132 +n07757312 +n07757511 +n07757990 +n07758680 +n07759194 +n07759816 +n07760153 +n07760859 +n07761141 +n07761309 +n07762114 +n07762244 +n07762740 +n07762913 +n07763107 +n07763629 +n07763792 +n07763987 +n07764155 +n07764315 +n07764630 +n07764847 +n07765073 +n07765208 +n07765361 +n07765862 +n07765999 +n07766173 +n07766891 +n07767002 +n07767171 +n07767344 +n07767549 +n07767709 +n07767847 +n07768068 +n07768230 +n07768423 +n07768694 +n07768858 +n07769584 +n07769731 +n07770034 +n07770763 +n07771212 +n07771731 +n07772147 +n07772274 +n07772788 +n07772935 +n07774596 +n07774719 +n07774842 +n07775050 +n07775197 +n07800740 +n07801091 +n07801342 +n07801508 +n07801779 +n07801892 +n07802026 +n07802417 +n07802863 +n07802963 +n07803093 +n07803545 +n07804323 +n07804543 +n07804657 +n07804771 +n07804900 +n07805594 +n07805731 +n07806120 +n07806221 +n07806633 +n07806774 +n07807002 +n07807171 +n07807472 +n07807594 +n07807710 +n07807834 +n07807922 +n07808587 +n07808904 +n07809096 +n07810907 +n07812184 +n07814203 +n07814390 +n07814487 +n07814634 +n07815424 +n07815588 +n07816052 +n07816164 +n07816296 +n07816398 +n07816575 +n07816839 +n07817024 +n07817160 +n07817315 +n07817871 +n07818277 +n07818572 +n07818689 +n07818825 +n07818995 +n07819166 +n07819769 +n07819896 +n07820145 +n07820497 +n07820683 +n07821260 +n07821758 +n07821919 +n07822197 +n07822323 +n07822518 +n07822845 +n07823105 +n07823280 +n07823460 +n07823698 +n07823951 +n07824191 +n07824702 +n07825194 +n07825972 +n07826091 +n07826453 +n07826930 +n07827130 +n07827284 +n07827410 +n07827750 +n07828642 +n07829248 +n07829331 +n07829412 +n07830593 +n07831146 +n07831267 +n07832416 +n07832902 +n07834065 +n07834507 +n07834618 +n07834872 +n07835331 +n07835457 +n07835921 +n07836838 +n07837002 +n07837362 +n07837912 +n07838073 +n07838233 +n07838441 +n07838551 +n07840027 +n07840804 +n07841345 +n07841495 +n07841639 +n07841800 +n07841907 +n07842044 +n07842130 +n07842202 +n07842308 +n07842433 +n07842605 +n07842753 +n07843464 +n07843636 +n07843775 +n07844042 +n07844867 +n07845087 +n07845702 +n07846143 +n07847198 +n07847453 +n07847827 +n07847917 +n07848093 +n07848196 +n07848338 +n07849336 +n07849619 +n07849733 +n07849912 +n07850083 +n07850329 +n07851298 +n07851443 +n07851554 +n07851641 +n07851767 +n07852229 +n07852614 +n07852833 +n07854184 +n07854982 +n07855510 +n07855907 +n07857170 +n07857731 +n07858978 +n07859284 +n07859583 +n07859796 +n07860103 +n07860331 +n07860447 +n07860805 +n07860988 +n07861158 +n07861557 +n07861813 +n07862095 +n07862244 +n07862348 +n07862461 +n07862611 +n07863374 +n07863547 +n07863802 +n07864756 +n07864934 +n07865105 +n07865196 +n07865484 +n07866015 +n07866151 +n07866277 +n07866409 +n07866723 +n07866868 +n07867021 +n07867164 +n07867324 +n07867421 +n07867616 +n07867751 +n07868200 +n07868340 +n07868508 +n07868830 +n07868955 +n07869522 +n07869611 +n07869775 +n07870069 +n07870167 +n07870313 +n07871234 +n07871436 +n07871720 +n07871810 +n07872593 +n07873057 +n07873348 +n07873464 +n07873807 +n07874063 +n07874159 +n07874259 +n07874343 +n07874441 +n07874780 +n07875152 +n07875436 +n07875693 +n07876651 +n07877187 +n07877299 +n07877675 +n07877849 +n07877961 +n07878647 +n07878785 +n07878926 +n07879072 +n07879174 +n07879350 +n07879450 +n07879659 +n07879953 +n07880080 +n07880213 +n07880325 +n07880458 +n07880751 +n07880880 +n07880968 +n07881205 +n07881404 +n07881800 +n07882497 +n07883031 +n07883251 +n07884567 +n07885705 +n07886057 +n07886176 +n07886463 +n07886572 +n07886849 +n07887099 +n07887192 +n07887304 +n07887461 +n07887634 +n07887967 +n07888229 +n07888465 +n07888816 +n07889274 +n07889510 +n07889814 +n07890068 +n07890226 +n07890352 +n07890540 +n07890750 +n07891189 +n07891309 +n07891433 +n07891726 +n07892418 +n07892512 +n07892813 +n07893253 +n07893528 +n07893642 +n07893891 +n07894102 +n07894298 +n07894451 +n07894551 +n07894703 +n07894799 +n07894965 +n07895100 +n07895237 +n07895435 +n07895595 +n07895710 +n07895839 +n07895962 +n07896060 +n07896165 +n07896287 +n07896661 +n07896893 +n07896994 +n07897116 +n07897438 +n07897600 +n07897750 +n07897865 +n07897975 +n07898117 +n07898247 +n07898333 +n07898443 +n07898617 +n07898745 +n07899003 +n07899108 +n07899292 +n07899434 +n07899533 +n07899660 +n07899769 +n07899899 +n07900225 +n07900406 +n07900616 +n07900734 +n07900825 +n07900958 +n07901355 +n07901457 +n07901587 +n07902121 +n07902336 +n07902443 +n07902799 +n07902937 +n07903101 +n07903208 +n07903543 +n07903643 +n07903731 +n07903841 +n07903962 +n07904395 +n07904637 +n07904760 +n07904865 +n07904934 +n07905038 +n07905296 +n07905386 +n07905474 +n07905979 +n07906111 +n07906284 +n07906572 +n07906718 +n07906877 +n07907037 +n07907161 +n07907342 +n07907429 +n07907548 +n07907831 +n07907943 +n07908411 +n07908567 +n07908647 +n07908812 +n07909129 +n07909593 +n07910048 +n07910152 +n07910379 +n07910538 +n07910656 +n07911249 +n07911371 +n07911677 +n07912211 +n07913393 +n07913882 +n07914006 +n07914128 +n07914271 +n07914413 +n07914586 +n07914777 +n07914995 +n07915094 +n07915491 +n07915618 +n07915918 +n07916041 +n07916183 +n07916319 +n07917133 +n07917272 +n07917392 +n07917507 +n07917618 +n07918028 +n07918193 +n07918879 +n07919310 +n07919441 +n07919572 +n07920052 +n07920222 +n07920349 +n07920540 +n07920663 +n07920872 +n07920989 +n07921239 +n07921455 +n07921615 +n07922512 +n07922764 +n07923748 +n07924033 +n07924276 +n07924443 +n07924560 +n07924747 +n07924834 +n07924955 +n07925116 +n07925229 +n07925500 +n07925608 +n07925966 +n07926250 +n07926920 +n07927197 +n07927512 +n07927931 +n07928163 +n07928367 +n07928488 +n07928696 +n07928790 +n07928887 +n07929172 +n07929351 +n07929519 +n07930062 +n07930315 +n07930433 +n07930554 +n07930864 +n07931452 +n07931612 +n07931870 +n07932039 +n07932841 +n07933154 +n07933274 +n07933799 +n07934282 +n07935043 +n07935379 +n07935504 +n07935737 +n07935878 +n07936263 +n07936548 +n07936745 +n07937461 +n07938007 +n07938149 +n07938313 +n07942152 +n07951464 +n07954211 +n07977870 +n08182379 +n08242223 +n08249459 +n08256735 +n08376250 +n08492461 +n08494231 +n08495908 +n08505018 +n08517676 +n08518171 +n08521623 +n08524735 +n08539072 +n08547468 +n08547544 +n08551296 +n08555710 +n08560295 +n08571898 +n08573842 +n08578517 +n08579352 +n08580944 +n08583292 +n08583455 +n08584914 +n08596076 +n08598301 +n08598568 +n08611339 +n08614632 +n08616050 +n08628141 +n08633683 +n08640531 +n08640739 +n08640962 +n08645104 +n08645212 +n08649711 +n08658309 +n08659446 +n08659861 +n08663703 +n08673039 +n08677424 +n09189157 +n09191635 +n09193705 +n09194227 +n09199101 +n09205509 +n09206896 +n09206985 +n09208496 +n09210862 +n09217230 +n09218315 +n09218494 +n09218641 +n09219233 +n09224725 +n09228055 +n09229709 +n09230041 +n09230202 +n09233446 +n09238926 +n09239302 +n09242389 +n09245515 +n09246464 +n09247410 +n09249034 +n09251407 +n09256479 +n09257843 +n09259025 +n09259219 +n09260907 +n09263912 +n09265620 +n09267854 +n09269341 +n09269472 +n09270735 +n09274152 +n09279986 +n09282208 +n09283193 +n09283405 +n09283767 +n09283866 +n09287968 +n09288635 +n09289331 +n09290444 +n09294877 +n09295946 +n09300905 +n09302616 +n09303008 +n09303528 +n09304750 +n09305898 +n09308572 +n09308743 +n09309168 +n09309292 +n09326662 +n09331251 +n09332890 +n09335809 +n09337253 +n09344324 +n09348460 +n09349648 +n09359803 +n09361517 +n09362945 +n09366317 +n09376198 +n09376526 +n09376786 +n09381242 +n09382099 +n09384106 +n09392402 +n09393605 +n09396465 +n09398076 +n09398677 +n09399592 +n09400987 +n09403211 +n09403427 +n09403734 +n09405078 +n09406793 +n09409512 +n09409752 +n09411189 +n09415584 +n09415671 +n09416076 +n09416890 +n09421799 +n09421951 +n09428293 +n09428628 +n09432283 +n09433442 +n09433839 +n09435739 +n09436444 +n09436708 +n09437454 +n09438844 +n09438940 +n09439213 +n09442595 +n09443281 +n09443641 +n09444783 +n09445008 +n09445289 +n09447666 +n09448690 +n09450163 +n09451237 +n09452395 +n09452760 +n09453008 +n09454153 +n09454412 +n09457979 +n09460046 +n09461069 +n09466678 +n09468604 +n09472413 +n09472597 +n09475044 +n09475179 +n09475925 +n09481120 +n09618880 +n09618957 +n09666883 +n09763784 +n09792969 +n09818022 +n09820263 +n09828216 +n09833536 +n09834699 +n09835506 +n09842047 +n09846755 +n09856671 +n09858165 +n09861946 +n09874862 +n09877951 +n09893191 +n09893502 +n09894445 +n09896685 +n09913593 +n09915651 +n09917214 +n09923561 +n09932508 +n09945745 +n09990415 +n09990777 +n10020890 +n10043643 +n10080869 +n10082043 +n10087434 +n10091651 +n10092794 +n10120671 +n10123844 +n10142747 +n10147935 +n10148035 +n10150071 +n10151760 +n10153594 +n10155849 +n10164233 +n10164492 +n10185793 +n10186216 +n10223177 +n10229883 +n10253296 +n10260800 +n10263411 +n10283170 +n10297234 +n10298912 +n10300303 +n10304914 +n10305802 +n10324560 +n10333601 +n10334009 +n10340312 +n10345015 +n10348526 +n10366966 +n10382710 +n10386984 +n10393909 +n10405694 +n10421470 +n10467179 +n10469874 +n10474645 +n10500217 +n10509063 +n10514429 +n10521662 +n10530150 +n10536416 +n10542761 +n10542888 +n10559288 +n10560106 +n10562135 +n10565667 +n10582746 +n10599806 +n10610465 +n10618342 +n10628644 +n10634849 +n10638922 +n10642596 +n10655594 +n10665698 +n10679174 +n10701180 +n10701644 +n10707233 +n10721321 +n10732010 +n10755080 +n10763383 +n10772092 +n10780632 +n10806113 +n11448153 +n11487732 +n11508382 +n11524451 +n11532682 +n11533212 +n11536673 +n11537327 +n11542137 +n11542640 +n11544015 +n11545714 +n11547855 +n11552133 +n11552806 +n11599324 +n11600372 +n11601177 +n11601333 +n11601918 +n11602873 +n11603246 +n11603835 +n11608250 +n11609475 +n11609862 +n11610215 +n11611087 +n11611233 +n11611356 +n11611561 +n11611758 +n11612018 +n11612349 +n11612575 +n11613219 +n11613459 +n11614039 +n11614250 +n11614420 +n11614713 +n11615026 +n11615387 +n11615607 +n11615967 +n11616486 +n11616662 +n11617090 +n11617272 +n11617631 +n11618290 +n11618525 +n11618861 +n11619227 +n11619455 +n11620673 +n11621029 +n11621281 +n11621547 +n11621727 +n11621950 +n11622184 +n11622368 +n11622591 +n11622771 +n11623105 +n11623815 +n11623967 +n11624192 +n11624531 +n11625003 +n11625223 +n11625632 +n11625804 +n11626152 +n11626409 +n11626585 +n11626826 +n11627168 +n11627512 +n11627908 +n11628087 +n11628456 +n11628793 +n11630017 +n11631854 +n11632167 +n11632619 +n11634736 +n11635152 +n11635433 +n11635830 +n11636204 +n11636835 +n11639445 +n11640132 +n11643835 +n11644046 +n11644226 +n11644462 +n11645590 +n11645914 +n11646167 +n11646344 +n11646694 +n11647306 +n11647703 +n11650558 +n11652376 +n11653904 +n11655974 +n11658331 +n11658544 +n11660300 +n11661372 +n11661909 +n11662371 +n11664418 +n11665372 +n11666854 +n11669786 +n11669921 +n11672269 +n11672400 +n11675025 +n11676500 +n11678010 +n11680596 +n11682659 +n11686912 +n11690254 +n11690455 +n11691046 +n11691857 +n11692265 +n11692792 +n11693981 +n11694664 +n11695599 +n11695974 +n11698042 +n11699442 +n11700058 +n11701066 +n11703669 +n11704093 +n11704620 +n11705171 +n11705387 +n11705776 +n11706761 +n11707229 +n11709205 +n11709674 +n11710136 +n11710393 +n11710827 +n11711537 +n11711764 +n11712282 +n11714382 +n11715430 +n11715678 +n11717577 +n11719286 +n11720353 +n11720643 +n11720891 +n11721337 +n11722466 +n11722982 +n11723227 +n11723770 +n11724109 +n11725015 +n11725311 +n11725480 +n11725821 +n11725973 +n11726269 +n11726707 +n11727091 +n11727358 +n11727540 +n11727738 +n11728099 +n11728945 +n11730602 +n11731659 +n11732567 +n11733054 +n11733312 +n11733548 +n11735053 +n11736694 +n11736851 +n11737534 +n11748811 +n11752937 +n11753143 +n11753355 +n11753700 +n11754893 +n11756092 +n11756669 +n11756870 +n11757653 +n11757851 +n11758122 +n11758276 +n11758483 +n11758799 +n11759224 +n11759404 +n11759853 +n11760785 +n11761202 +n11762433 +n11769176 +n11769621 +n11769803 +n11770256 +n11772408 +n11772879 +n11773987 +n11774513 +n11777080 +n11778257 +n11779300 +n11780148 +n11781176 +n11782036 +n11782761 +n11783920 +n11784126 +n11784497 +n11785668 +n11786131 +n11786539 +n11788727 +n11789066 +n11789589 +n11791341 +n11791569 +n11792029 +n11792341 +n11792742 +n11793779 +n11794024 +n11794519 +n11795049 +n11797321 +n11800236 +n11801891 +n11802586 +n11802800 +n11805544 +n11805956 +n11806219 +n11807108 +n11807525 +n11807979 +n11808299 +n11808468 +n11808721 +n11808932 +n11809094 +n11809271 +n11809437 +n11809594 +n11810358 +n11811473 +n11811706 +n11811921 +n11812094 +n11812910 +n11813077 +n11814584 +n11815491 +n11815721 +n11815918 +n11816121 +n11816336 +n11816649 +n11816829 +n11817914 +n11818069 +n11819509 +n11819912 +n11820965 +n11821184 +n11823436 +n11824146 +n11825351 +n11826198 +n11830906 +n11832214 +n11832480 +n11834654 +n11836722 +n11837970 +n11838916 +n11839568 +n11839823 +n11840067 +n11844371 +n11844892 +n11845557 +n11845793 +n11845913 +n11846765 +n11847169 +n11848479 +n11849467 +n11849871 +n11849983 +n11850521 +n11851258 +n11851578 +n11851839 +n11852028 +n11853356 +n11853813 +n11854479 +n11855274 +n11855553 +n11857875 +n11859472 +n11859737 +n11860555 +n11861641 +n11861853 +n11862835 +n11865874 +n11866248 +n11870418 +n11870747 +n11872146 +n11874081 +n11875523 +n11875691 +n11875938 +n11876204 +n11876432 +n11876634 +n11876803 +n11877193 +n11877283 +n11877646 +n11878101 +n11879054 +n11879722 +n11879895 +n11882074 +n11882426 +n11883328 +n11887119 +n11888800 +n11889619 +n11890150 +n11891175 +n11892029 +n11892637 +n11892817 +n11893640 +n11894327 +n11894558 +n11894770 +n11895092 +n11896722 +n11897116 +n11898775 +n11900569 +n11901294 +n11901597 +n11901759 +n11901977 +n11902200 +n11902389 +n11902709 +n11902982 +n11903671 +n11904109 +n11905392 +n11905749 +n11906917 +n11907100 +n11907689 +n11908549 +n11908846 +n11910271 +n11910460 +n11915214 +n11915658 +n11915899 +n11916467 +n11916696 +n11918286 +n11918473 +n11921395 +n11923174 +n11923397 +n11923637 +n11924445 +n11924849 +n11925303 +n11925898 +n11926365 +n11926833 +n11927215 +n11928352 +n11928858 +n11929743 +n11931540 +n11931918 +n11933546 +n11933728 +n11934616 +n11934807 +n11935469 +n11939180 +n11939491 +n11939699 +n11940006 +n11940599 +n11941924 +n11943407 +n11943660 +n11943992 +n11944196 +n11944954 +n11945514 +n11945783 +n11946727 +n11947629 +n11947802 +n11948264 +n11948864 +n11949015 +n11949402 +n11950345 +n11950686 +n11950877 +n11953038 +n11953610 +n11953884 +n11954161 +n11954345 +n11954642 +n11955153 +n11955896 +n11956348 +n11956850 +n11957678 +n11958080 +n11959632 +n11959862 +n11960245 +n11961100 +n11961446 +n11962272 +n11962667 +n11963932 +n11965218 +n11965627 +n11966083 +n11966215 +n11966617 +n11966896 +n11968704 +n11968931 +n11969166 +n11969607 +n11970586 +n11971248 +n11971406 +n11971783 +n11971927 +n11972291 +n11972759 +n11973341 +n11977303 +n11978233 +n11978551 +n11978713 +n11978961 +n11979527 +n11979715 +n11979964 +n11980318 +n11980682 +n11981192 +n11982115 +n11984144 +n11984542 +n11986511 +n11987126 +n11988596 +n11989393 +n11989869 +n11990167 +n11990313 +n11991263 +n11992806 +n11995092 +n11998888 +n12001707 +n12002428 +n12003167 +n12003696 +n12004547 +n12005656 +n12006766 +n12006930 +n12007196 +n12007406 +n12008252 +n12008487 +n12008749 +n12009420 +n12011620 +n12012111 +n12014085 +n12015221 +n12015525 +n12015959 +n12016567 +n12018760 +n12019827 +n12020184 +n12020507 +n12020736 +n12020941 +n12022054 +n12023108 +n12023407 +n12023726 +n12024445 +n12024690 +n12026018 +n12026476 +n12026981 +n12027222 +n12027658 +n12029635 +n12030908 +n12031139 +n12031927 +n12033709 +n12034141 +n12034384 +n12036939 +n12037499 +n12037691 +n12038406 +n12038585 +n12038898 +n12039317 +n12041446 +n12043444 +n12043673 +n12043836 +n12044467 +n12046028 +n12046428 +n12046815 +n12047345 +n12047884 +n12048056 +n12048399 +n12049282 +n12049562 +n12050533 +n12050959 +n12051103 +n12052447 +n12052787 +n12053405 +n12053690 +n12055516 +n12056217 +n12056601 +n12056758 +n12057211 +n12057447 +n12057660 +n12058192 +n12058630 +n12058822 +n12059314 +n12059625 +n12061380 +n12061614 +n12062468 +n12062626 +n12062781 +n12063639 +n12064389 +n12064591 +n12065316 +n12065777 +n12066018 +n12066261 +n12066630 +n12067193 +n12068432 +n12069217 +n12069679 +n12070016 +n12070381 +n12070583 +n12070712 +n12071744 +n12072722 +n12073554 +n12073991 +n12074408 +n12074867 +n12075010 +n12075151 +n12075299 +n12075830 +n12076223 +n12076577 +n12076852 +n12077944 +n12078172 +n12079120 +n12079963 +n12080395 +n12080820 +n12081215 +n12083113 +n12083591 +n12083847 +n12084555 +n12084890 +n12085267 +n12085664 +n12086012 +n12086192 +n12086539 +n12086778 +n12088223 +n12090890 +n12091213 +n12091377 +n12091550 +n12091953 +n12092262 +n12092417 +n12093329 +n12093600 +n12094612 +n12095020 +n12095647 +n12098403 +n12099342 +n12101870 +n12102133 +n12104238 +n12104501 +n12104734 +n12105125 +n12107710 +n12107970 +n12108871 +n12109365 +n12110085 +n12110778 +n12112008 +n12112609 +n12112918 +n12113195 +n12115180 +n12116429 +n12119238 +n12121610 +n12122725 +n12123741 +n12124627 +n12124818 +n12127460 +n12127768 +n12128071 +n12129134 +n12133462 +n12133682 +n12134025 +n12135049 +n12136392 +n12137120 +n12137569 +n12139575 +n12141167 +n12142085 +n12144313 +n12144580 +n12145477 +n12146311 +n12148757 +n12150722 +n12151615 +n12152532 +n12152722 +n12154773 +n12155009 +n12157056 +n12158031 +n12158443 +n12159055 +n12159388 +n12160303 +n12160490 +n12160857 +n12161056 +n12161969 +n12162181 +n12162425 +n12164363 +n12164656 +n12164881 +n12165170 +n12166128 +n12166424 +n12166793 +n12167075 +n12167436 +n12167602 +n12168565 +n12171098 +n12171316 +n12171966 +n12172364 +n12172481 +n12172906 +n12173069 +n12173664 +n12173912 +n12174311 +n12174521 +n12178896 +n12179122 +n12180168 +n12180885 +n12184912 +n12185859 +n12187247 +n12189429 +n12189987 +n12190410 +n12190869 +n12194147 +n12195533 +n12196336 +n12196527 +n12196694 +n12198286 +n12199790 +n12200143 +n12201331 +n12201580 +n12202936 +n12203529 +n12204032 +n12204175 +n12205694 +n12214789 +n12215022 +n12215579 +n12217453 +n12223569 +n12223764 +n12224978 +n12225563 +n12227658 +n12228229 +n12228387 +n12230794 +n12237486 +n12237641 +n12240477 +n12242409 +n12243109 +n12244153 +n12244650 +n12244819 +n12245319 +n12246232 +n12249542 +n12252168 +n12257570 +n12258885 +n12260799 +n12261571 +n12261808 +n12262018 +n12262185 +n12263038 +n12263738 +n12263987 +n12264512 +n12265600 +n12266217 +n12266796 +n12267411 +n12267677 +n12268246 +n12269241 +n12269406 +n12270027 +n12270741 +n12270946 +n12271933 +n12272239 +n12272883 +n12273114 +n12273344 +n12273768 +n12273939 +n12274358 +n12274863 +n12275131 +n12275675 +n12275888 +n12276110 +n12276477 +n12276628 +n12276872 +n12277150 +n12277578 +n12277800 +n12278107 +n12278371 +n12278650 +n12279458 +n12279772 +n12280060 +n12281241 +n12281788 +n12281974 +n12282235 +n12282527 +n12282737 +n12282933 +n12283542 +n12284262 +n12284821 +n12285369 +n12285900 +n12286826 +n12286988 +n12287836 +n12288005 +n12288823 +n12290748 +n12291143 +n12291959 +n12293723 +n12294124 +n12294331 +n12294723 +n12294871 +n12295033 +n12295796 +n12296432 +n12300840 +n12301180 +n12301445 +n12302071 +n12302248 +n12303083 +n12303462 +n12304115 +n12304703 +n12304899 +n12305089 +n12305293 +n12305475 +n12305819 +n12305986 +n12306089 +n12306717 +n12307076 +n12307240 +n12309277 +n12311579 +n12312728 +n12315598 +n12315999 +n12316444 +n12316572 +n12317296 +n12318378 +n12319204 +n12319414 +n12320010 +n12320806 +n12322099 +n12322501 +n12322699 +n12325234 +n12328398 +n12328567 +n12329260 +n12329473 +n12330469 +n12330587 +n12330891 +n12331655 +n12332030 +n12332555 +n12333053 +n12333530 +n12333771 +n12334293 +n12336092 +n12336224 +n12336333 +n12336727 +n12336973 +n12337617 +n12338258 +n12338454 +n12338655 +n12338796 +n12339831 +n12340383 +n12340755 +n12342299 +n12342498 +n12342852 +n12343480 +n12344283 +n12344483 +n12344700 +n12344837 +n12345280 +n12345899 +n12347158 +n12350758 +n12352287 +n12352639 +n12352844 +n12352990 +n12353203 +n12353754 +n12356023 +n12356960 +n12357485 +n12360108 +n12360684 +n12361135 +n12361946 +n12362274 +n12362668 +n12367611 +n12368028 +n12368257 +n12368451 +n12369309 +n12371439 +n12373100 +n12374418 +n12383894 +n12384037 +n12384227 +n12384839 +n12385429 +n12385566 +n12387633 +n12387839 +n12388143 +n12388858 +n12388989 +n12389130 +n12389501 +n12390099 +n12390314 +n12392549 +n12393269 +n12397431 +n12399132 +n12399384 +n12400489 +n12400720 +n12401684 +n12402051 +n12402348 +n12402596 +n12402840 +n12403994 +n12405714 +n12406488 +n12406715 +n12406902 +n12407079 +n12407222 +n12407890 +n12408077 +n12408717 +n12409231 +n12409470 +n12409840 +n12412355 +n12412606 +n12413165 +n12413301 +n12413419 +n12413880 +n12414035 +n12414449 +n12414818 +n12414932 +n12415595 +n12416073 +n12418221 +n12421137 +n12421683 +n12421917 +n12422129 +n12426623 +n12426749 +n12427184 +n12427391 +n12427566 +n12427757 +n12428076 +n12428412 +n12428747 +n12429352 +n12432356 +n12433081 +n12433178 +n12433769 +n12435152 +n12435649 +n12435777 +n12437513 +n12437769 +n12437930 +n12441183 +n12441390 +n12441958 +n12443323 +n12446519 +n12448700 +n12449296 +n12449526 +n12450344 +n12450840 +n12451240 +n12451399 +n12451915 +n12452836 +n12453186 +n12454159 +n12454436 +n12454705 +n12454949 +n12455950 +n12457091 +n12458550 +n12459629 +n12460697 +n12460957 +n12461109 +n12461466 +n12461673 +n12462805 +n12463134 +n12465557 +n12466727 +n12469517 +n12472024 +n12473608 +n12473840 +n12474167 +n12475035 +n12475242 +n12476510 +n12477163 +n12477583 +n12477747 +n12478768 +n12479537 +n12480456 +n12480895 +n12481458 +n12482437 +n12482668 +n12482893 +n12483427 +n12483625 +n12483841 +n12484784 +n12485653 +n12485981 +n12486574 +n12489815 +n12491017 +n12491826 +n12492106 +n12493208 +n12494794 +n12495146 +n12495895 +n12496427 +n12496949 +n12498055 +n12501202 +n12504570 +n12504783 +n12506341 +n12506991 +n12508309 +n12509476 +n12509665 +n12513172 +n12513613 +n12513933 +n12514138 +n12515711 +n12515925 +n12516828 +n12517445 +n12517642 +n12519089 +n12519563 +n12521394 +n12523475 +n12527738 +n12528549 +n12528974 +n12529220 +n12530629 +n12530818 +n12532564 +n12539306 +n12540250 +n12544539 +n12545635 +n12546183 +n12546617 +n12546962 +n12547215 +n12547503 +n12548280 +n12549192 +n12552309 +n12554911 +n12556656 +n12557438 +n12557556 +n12557681 +n12558230 +n12558425 +n12560282 +n12560621 +n12560775 +n12561169 +n12562785 +n12564083 +n12566954 +n12568186 +n12570394 +n12570703 +n12570972 +n12571781 +n12573474 +n12574320 +n12574866 +n12575322 +n12575812 +n12576323 +n12577895 +n12578626 +n12578916 +n12579038 +n12580654 +n12580896 +n12582231 +n12582665 +n12582846 +n12583126 +n12583401 +n12584191 +n12584715 +n12585629 +n12587132 +n12587803 +n12588320 +n12588780 +n12590232 +n12590499 +n12591017 +n12591351 +n12593994 +n12595699 +n12595964 +n12596148 +n12596709 +n12596849 +n12597134 +n12597466 +n12597798 +n12598027 +n12599435 +n12602262 +n12602980 +n12603449 +n12604228 +n12606438 +n12606545 +n12607456 +n12610328 +n12614477 +n12615232 +n12620196 +n12620546 +n12620969 +n12621410 +n12622297 +n12622875 +n12623077 +n12624381 +n12624568 +n12625383 +n12627119 +n12628986 +n12629305 +n12629666 +n12630763 +n12631331 +n12632335 +n12633638 +n12633994 +n12634211 +n12634429 +n12634734 +n12634986 +n12635532 +n12635744 +n12635955 +n12636224 +n12638218 +n12638753 +n12639584 +n12640839 +n12641007 +n12641413 +n12642090 +n12642200 +n12643313 +n12643473 +n12644902 +n12645174 +n12646605 +n12646740 +n12647560 +n12647893 +n12648045 +n12648888 +n12649065 +n12649317 +n12649539 +n12650379 +n12650556 +n12651229 +n12651611 +n12651821 +n12655869 +n12656369 +n12656685 +n12657082 +n12658118 +n12658308 +n12658481 +n12659064 +n12659356 +n12659539 +n12662772 +n12663023 +n12665048 +n12665271 +n12665857 +n12666965 +n12670758 +n12671651 +n12675299 +n12675876 +n12676534 +n12676703 +n12680402 +n12680864 +n12681893 +n12682411 +n12682668 +n12683407 +n12683571 +n12683791 +n12684379 +n12685431 +n12685831 +n12686077 +n12686274 +n12686676 +n12687044 +n12687462 +n12687698 +n12687957 +n12688716 +n12691428 +n12691661 +n12694486 +n12695975 +n12696492 +n12698598 +n12700088 +n12703190 +n12703383 +n12703557 +n12703856 +n12704343 +n12706410 +n12707781 +n12708293 +n12708654 +n12708941 +n12709103 +n12709688 +n12709901 +n12710295 +n12710415 +n12710577 +n12710693 +n12711596 +n12711817 +n12711984 +n12713063 +n12713866 +n12714755 +n12717072 +n12717224 +n12719684 +n12719944 +n12720200 +n12723610 +n12724942 +n12725738 +n12726159 +n12726670 +n12727101 +n12727518 +n12729315 +n12729521 +n12729729 +n12731029 +n12731401 +n12731835 +n12732009 +n12732491 +n12732756 +n12732966 +n12733218 +n12733647 +n12733870 +n12734070 +n12737383 +n12737898 +n12739332 +n12741222 +n12741792 +n12743352 +n12744387 +n12745386 +n12746884 +n12749049 +n12749679 +n12749852 +n12752205 +n12753007 +n12753245 +n12753573 +n12753762 +n12754003 +n12754468 +n12754648 +n12754781 +n12754981 +n12755225 +n12755387 +n12755727 +n12756457 +n12757303 +n12757458 +n12757816 +n12759273 +n12761284 +n12762049 +n12762896 +n12764202 +n12765115 +n12766595 +n12766869 +n12768682 +n12771192 +n12771390 +n12771597 +n12772753 +n12772908 +n12773651 +n12774299 +n12774641 +n12775919 +n12777680 +n12778398 +n12778605 +n12779603 +n12779851 +n12781940 +n12782530 +n12782915 +n12784889 +n12785724 +n12785889 +n12788854 +n12789054 +n12790430 +n12791064 +n12791329 +n12793015 +n12793284 +n12793494 +n12794135 +n12794367 +n12794985 +n12795352 +n12795555 +n12796022 +n12797860 +n12799776 +n12801520 +n12801781 +n12803754 +n12805146 +n12805561 +n12806015 +n12806732 +n12807251 +n12807409 +n12807773 +n12810595 +n12811027 +n12812478 +n12813189 +n12814643 +n12815198 +n12816508 +n12817464 +n12817694 +n12818346 +n12818966 +n12819728 +n12820853 +n12821505 +n12821895 +n12822115 +n12822769 +n12822955 +n12823717 +n12823859 +n12824053 +n12825497 +n12827270 +n12827537 +n12828220 +n12828791 +n12830222 +n12830568 +n12832315 +n12832538 +n12833149 +n12833985 +n12834798 +n12835331 +n12836212 +n12836337 +n12836508 +n12836862 +n12840362 +n12840749 +n12841007 +n12841193 +n12841354 +n12843970 +n12844939 +n12845413 +n12847008 +n12847374 +n12847927 +n12848499 +n12849061 +n12849279 +n12849416 +n12849952 +n12850168 +n12850336 +n12850906 +n12851469 +n12853482 +n12854600 +n12855494 +n12856091 +n12856287 +n12856479 +n12856680 +n12858150 +n12858397 +n12858618 +n12858871 +n12859986 +n12860365 +n12861345 +n12861892 +n12862512 +n12863624 +n12864160 +n12865037 +n12865562 +n12865708 +n12865824 +n12866002 +n12866162 +n12866459 +n12866635 +n12867826 +n12869061 +n12869478 +n12870535 +n12870682 +n12870891 +n12877838 +n12879527 +n12879963 +n12880244 +n12880462 +n12882779 +n12882945 +n12884100 +n12884260 +n12887293 +n12889219 +n12889713 +n12890265 +n12890490 +n12890685 +n12890928 +n12891093 +n12891305 +n12891469 +n12891643 +n12893463 +n12893993 +n12895811 +n12898774 +n12899537 +n12899752 +n12901724 +n12902662 +n12904314 +n12905412 +n12906214 +n12908645 +n12909421 +n12909917 +n12911079 +n12911440 +n12911673 +n12913791 +n12914923 +n12915568 +n12915811 +n12916179 +n12916511 +n12917901 +n12919403 +n12919646 +n12919847 +n12920204 +n12920955 +n12921868 +n12922763 +n12924623 +n12925179 +n12926480 +n12926689 +n12927013 +n12927494 +n12928071 +n12929403 +n12931542 +n12932173 +n12932365 +n12932966 +n12934036 +n12934174 +n12934479 +n12934985 +n12935609 +n12937130 +n12938193 +n12939282 +n12939874 +n12940226 +n12940609 +n12942395 +n12942572 +n12946849 +n12947313 +n12947544 +n12948053 +n12948251 +n12948495 +n12950126 +n12950314 +n12951146 +n12951835 +n12953206 +n12953484 +n12957924 +n12961879 +n12963628 +n12965626 +n12966945 +n12969131 +n12969425 +n12973443 +n12974987 +n12975804 +n12979829 +n12980840 +n12982468 +n12983048 +n12985420 +n12985773 +n12985857 +n12986227 +n12987056 +n12988158 +n12989938 +n12991184 +n12992177 +n12992868 +n12995601 +n12997654 +n12997919 +n12998815 +n13000891 +n13001041 +n13001206 +n13001366 +n13001529 +n13001930 +n13002750 +n13002925 +n13003061 +n13003254 +n13003522 +n13003712 +n13004423 +n13005329 +n13005984 +n13006171 +n13006631 +n13006894 +n13007034 +n13007417 +n13008315 +n13009085 +n13009429 +n13011595 +n13012253 +n13013534 +n13013764 +n13014409 +n13014741 +n13017102 +n13017240 +n13019835 +n13020191 +n13020964 +n13021689 +n13022210 +n13022709 +n13023134 +n13024012 +n13025647 +n13028611 +n13029326 +n13029760 +n13032115 +n13032381 +n13032618 +n13032923 +n13033134 +n13033577 +n13034062 +n13035241 +n13035707 +n13037406 +n13038068 +n13038744 +n13039349 +n13040303 +n13040629 +n13041312 +n13043926 +n13044375 +n13044778 +n13046669 +n13049953 +n13050397 +n13052670 +n13052931 +n13053608 +n13054073 +n13054560 +n13055423 +n13055577 +n13055949 +n13060190 +n13061348 +n13062421 +n13065089 +n13066448 +n13068255 +n13072528 +n13074619 +n13077033 +n13077295 +n13079073 +n13083023 +n13084184 +n13084834 +n13085747 +n13090871 +n13091620 +n13099999 +n13100677 +n13102775 +n13103877 +n13104059 +n13107694 +n13107891 +n13108131 +n13108323 +n13108481 +n13108545 +n13108841 +n13111881 +n13121349 +n13122364 +n13123431 +n13125117 +n13126856 +n13127843 +n13128976 +n13130726 +n13131028 +n13131618 +n13132338 +n13132656 +n13133613 +n13133932 +n13134947 +n13135832 +n13136316 +n13136556 +n13137409 +n13138842 +n13141415 +n13141564 +n13142504 +n13145040 +n13145250 +n13146583 +n13147270 +n13148208 +n13150894 +n13154388 +n13154494 +n13155095 +n13155305 +n13158512 +n13160604 +n13163991 +n13172923 +n13173882 +n13177048 +n13177884 +n13180534 +n13180875 +n13181055 +n13181811 +n13183056 +n13183489 +n13185269 +n13187367 +n13190747 +n13192625 +n13193642 +n13193856 +n13194036 +n13194572 +n13195341 +n13196003 +n13197274 +n13197507 +n13198914 +n13199717 +n13199970 +n13200651 +n13201969 +n13205058 +n13206817 +n13207094 +n13207335 +n13209808 +n13213066 +n13214340 +n13215586 +n13219422 +n13219833 +n13219976 +n13220122 +n13221529 +n13223588 +n13223710 +n13223843 +n13226871 +n13229543 +n13231078 +n13232779 +n13234678 +n13235159 +n13235503 +n13237188 +n13238375 +n13238988 +n13579829 +n13653902 +n13862407 +n13863020 +n13863771 +n13864035 +n13865298 +n13865483 +n13865904 +n13868944 +n13869547 +n13869788 +n13869896 +n13872592 +n13872822 +n13873502 +n13873917 +n13875392 +n13875571 +n13876561 +n13878306 +n13879049 +n13879320 +n13880994 +n13881644 +n13882201 +n13882276 +n13882563 +n13886260 +n13895262 +n13896100 +n13896217 +n13897996 +n13898207 +n13900287 +n13900422 +n13901211 +n13901321 +n13901858 +n13902048 +n13902336 +n13905792 +n13907272 +n13908201 +n13908580 +n13912260 +n13912540 +n13914608 +n13915023 +n13915113 +n13916721 +n13918274 +n13918387 +n13919547 +n13919919 +n13926786 +n14131950 +n14564779 +n14685296 +n14696793 +n14698884 +n14765422 +n14785065 +n14810561 +n14820180 +n14844693 +n14858292 +n14900342 +n14908027 +n14915184 +n14919819 +n14973585 +n14974264 +n14976759 +n14976871 +n14977504 +n15019030 +n15062057 +n15067877 +n15075141 +n15086247 +n15089258 +n15090065 +n15091129 +n15091304 +n15091473 +n15091669 +n15091846 +n15092059 +n15092227 +n15092650 +n15092942 +n15093137 +n15093298 +n15102455 +n15102894 diff --git a/pytorch-image-models/timm/data/_info/imagenet22k_ms_synsets.txt b/pytorch-image-models/timm/data/_info/imagenet22k_ms_synsets.txt new file mode 100644 index 0000000000000000000000000000000000000000..33fff6a427f28aba99e6af8f1ae596db80d025de --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet22k_ms_synsets.txt @@ -0,0 +1,21842 @@ +n01440764 +n01443537 +n01484850 +n01491361 +n01494475 +n01496331 +n01498041 +n01514668 +n01514859 +n01518878 +n01530575 +n01531178 +n01532829 +n01534433 +n01537544 +n01558993 +n01560419 +n01580077 +n01582220 +n01592084 +n01601694 +n01608432 +n01614925 +n01616318 +n01622779 +n01629819 +n01630670 +n01631663 +n01632458 +n01632777 +n01641577 +n01644373 +n01644900 +n01664065 +n01665541 +n01667114 +n01667778 +n01669191 +n01675722 +n01677366 +n01682714 +n01685808 +n01687978 +n01688243 +n01689811 +n01692333 +n01693334 +n01694178 +n01695060 +n01697457 +n01698640 +n01704323 +n01728572 +n01728920 +n01729322 +n01729977 +n01734418 +n01735189 +n01737021 +n01739381 +n01740131 +n01742172 +n01744401 +n01748264 +n01749939 +n01751748 +n01753488 +n01755581 +n01756291 +n01768244 +n01770081 +n01770393 +n01773157 +n01773549 +n01773797 +n01774384 +n01774750 +n01775062 +n01776313 +n01784675 +n01795545 +n01796340 +n01797886 +n01798484 +n01806143 +n01806567 +n01807496 +n01817953 +n01818515 +n01819313 +n01820546 +n01824575 +n01828970 +n01829413 +n01833805 +n01843065 +n01843383 +n01847000 +n01855032 +n01855672 +n01860187 +n01871265 +n01872401 +n01873310 +n01877812 +n01882714 +n01883070 +n01910747 +n01914609 +n01917289 +n01924916 +n01930112 +n01943899 +n01944390 +n01945685 +n01950731 +n01955084 +n01968897 +n01978287 +n01978455 +n01980166 +n01981276 +n01983481 +n01984695 +n01985128 +n01986214 +n01990800 +n02002556 +n02002724 +n02006656 +n02007558 +n02009229 +n02009912 +n02011460 +n02012849 +n02013706 +n02017213 +n02018207 +n02018795 +n02025239 +n02027492 +n02028035 +n02033041 +n02037110 +n02051845 +n02056570 +n02058221 +n02066245 +n02071294 +n02074367 +n02077923 +n02085620 +n02085782 +n02085936 +n02086079 +n02086240 +n02086646 +n02086910 +n02087046 +n02087394 +n02088094 +n02088238 +n02088364 +n02088466 +n02088632 +n02089078 +n02089867 +n02089973 +n02090379 +n02090622 +n02090721 +n02091032 +n02091134 +n02091244 +n02091467 +n02091635 +n02091831 +n02092002 +n02092339 +n02093256 +n02093428 +n02093647 +n02093754 +n02093859 +n02093991 +n02094114 +n02094258 +n02094433 +n02095314 +n02095570 +n02095889 +n02096051 +n02096177 +n02096294 +n02096437 +n02096585 +n02097047 +n02097130 +n02097209 +n02097298 +n02097474 +n02097658 +n02098105 +n02098286 +n02098413 +n02099267 +n02099429 +n02099601 +n02099712 +n02099849 +n02100236 +n02100583 +n02100735 +n02100877 +n02101006 +n02101388 +n02101556 +n02102040 +n02102177 +n02102318 +n02102480 +n02102973 +n02104029 +n02104365 +n02105056 +n02105162 +n02105251 +n02105412 +n02105505 +n02105641 +n02105855 +n02106030 +n02106166 +n02106382 +n02106550 +n02106662 +n02107142 +n02107312 +n02107574 +n02107683 +n02107908 +n02108000 +n02108089 +n02108422 +n02108551 +n02108915 +n02109047 +n02109525 +n02109961 +n02110063 +n02110185 +n02110341 +n02110627 +n02110806 +n02110958 +n02111129 +n02111277 +n02111500 +n02111889 +n02112018 +n02112137 +n02112350 +n02112706 +n02113023 +n02113186 +n02113624 +n02113712 +n02113799 +n02113978 +n02114367 +n02114548 +n02114712 +n02114855 +n02115641 +n02115913 +n02116738 +n02117135 +n02119022 +n02119789 +n02120079 +n02120505 +n02123045 +n02123159 +n02123394 +n02123597 +n02124075 +n02125311 +n02127052 +n02128385 +n02128757 +n02128925 +n02129165 +n02129604 +n02130308 +n02132136 +n02133161 +n02134084 +n02134418 +n02137549 +n02138441 +n02165105 +n02165456 +n02167151 +n02168699 +n02169497 +n02172182 +n02174001 +n02177972 +n02190166 +n02206856 +n02219486 +n02226429 +n02229544 +n02231487 +n02233338 +n02236044 +n02256656 +n02259212 +n02264363 +n02268443 +n02268853 +n02276258 +n02277742 +n02279972 +n02280649 +n02281406 +n02281787 +n02317335 +n02319095 +n02321529 +n02325366 +n02326432 +n02328150 +n02342885 +n02346627 +n02356798 +n02361337 +n02363005 +n02364673 +n02389026 +n02391049 +n02395406 +n02396427 +n02397096 +n02398521 +n02403003 +n02408429 +n02410509 +n02412080 +n02415577 +n02417914 +n02422106 +n02422699 +n02423022 +n02437312 +n02437616 +n02441942 +n02442845 +n02443114 +n02443484 +n02444819 +n02445715 +n02447366 +n02454379 +n02457408 +n02480495 +n02480855 +n02481823 +n02483362 +n02483708 +n02484975 +n02486261 +n02486410 +n02487347 +n02488291 +n02488702 +n02489166 +n02490219 +n02492035 +n02492660 +n02493509 +n02493793 +n02494079 +n02497673 +n02500267 +n02504013 +n02504458 +n02509815 +n02510455 +n02514041 +n02526121 +n02536864 +n02606052 +n02607072 +n02640242 +n02641379 +n02643566 +n02655020 +n02666196 +n02667093 +n02669723 +n02672831 +n02676566 +n02687172 +n02690373 +n02692877 +n02699494 +n02701002 +n02704792 +n02708093 +n02727426 +n02730930 +n02747177 +n02749479 +n02769748 +n02776631 +n02777292 +n02782093 +n02783161 +n02786058 +n02787622 +n02788148 +n02790996 +n02791124 +n02791270 +n02793495 +n02794156 +n02795169 +n02797295 +n02799071 +n02802426 +n02804414 +n02804610 +n02807133 +n02808304 +n02808440 +n02814533 +n02814860 +n02815834 +n02817516 +n02823428 +n02823750 +n02825657 +n02834397 +n02835271 +n02837789 +n02840245 +n02841315 +n02843684 +n02859443 +n02860847 +n02865351 +n02869837 +n02870880 +n02871525 +n02877765 +n02879718 +n02883205 +n02892201 +n02892767 +n02894605 +n02895154 +n02906734 +n02909870 +n02910353 +n02916936 +n02917067 +n02927161 +n02930766 +n02939185 +n02948072 +n02950826 +n02951358 +n02951585 +n02963159 +n02965783 +n02966193 +n02966687 +n02971356 +n02974003 +n02977058 +n02978881 +n02979186 +n02980441 +n02981792 +n02988304 +n02992211 +n02992529 +n02999410 +n03000134 +n03000247 +n03000684 +n03014705 +n03016953 +n03017168 +n03018349 +n03026506 +n03028079 +n03032252 +n03041632 +n03042490 +n03045698 +n03047690 +n03062245 +n03063599 +n03063689 +n03065424 +n03075370 +n03085013 +n03089624 +n03095699 +n03100240 +n03109150 +n03110669 +n03124043 +n03124170 +n03125729 +n03126707 +n03127747 +n03127925 +n03131574 +n03133878 +n03134739 +n03141823 +n03146219 +n03160309 +n03179701 +n03180011 +n03187595 +n03188531 +n03196217 +n03197337 +n03201208 +n03207743 +n03207941 +n03208938 +n03216828 +n03218198 +n03220513 +n03223299 +n03240683 +n03249569 +n03250847 +n03255030 +n03259280 +n03271574 +n03272010 +n03272562 +n03290653 +n03291819 +n03297495 +n03314780 +n03325584 +n03337140 +n03344393 +n03345487 +n03347037 +n03355925 +n03372029 +n03376595 +n03379051 +n03384352 +n03388043 +n03388183 +n03388549 +n03393912 +n03394916 +n03400231 +n03404251 +n03417042 +n03424325 +n03425413 +n03443371 +n03444034 +n03445777 +n03445924 +n03447447 +n03447721 +n03450230 +n03452741 +n03457902 +n03459775 +n03461385 +n03467068 +n03476684 +n03476991 +n03478589 +n03481172 +n03482405 +n03483316 +n03485407 +n03485794 +n03492542 +n03494278 +n03495258 +n03496892 +n03498962 +n03527444 +n03529860 +n03530642 +n03532672 +n03534580 +n03535780 +n03538406 +n03544143 +n03584254 +n03584829 +n03590841 +n03594734 +n03594945 +n03595614 +n03598930 +n03599486 +n03602883 +n03617480 +n03623198 +n03627232 +n03630383 +n03633091 +n03637318 +n03642806 +n03649909 +n03657121 +n03658185 +n03661043 +n03662601 +n03666591 +n03670208 +n03673027 +n03676483 +n03680355 +n03690938 +n03691459 +n03692522 +n03697007 +n03706229 +n03709823 +n03710193 +n03710637 +n03710721 +n03717622 +n03720891 +n03721384 +n03724870 +n03729826 +n03733131 +n03733281 +n03733805 +n03742115 +n03743016 +n03759954 +n03761084 +n03763968 +n03764736 +n03769881 +n03770439 +n03770679 +n03773504 +n03775071 +n03775546 +n03776460 +n03777568 +n03777754 +n03781244 +n03782006 +n03785016 +n03786901 +n03787032 +n03788195 +n03788365 +n03791053 +n03792782 +n03792972 +n03793489 +n03794056 +n03796401 +n03803284 +n03804744 +n03814639 +n03814906 +n03825788 +n03832673 +n03837869 +n03838899 +n03840681 +n03841143 +n03843555 +n03854065 +n03857828 +n03866082 +n03868242 +n03868863 +n03871628 +n03873416 +n03874293 +n03874599 +n03876231 +n03877472 +n03877845 +n03884397 +n03887697 +n03888257 +n03888605 +n03891251 +n03891332 +n03895866 +n03899768 +n03902125 +n03903868 +n03908618 +n03908714 +n03916031 +n03920288 +n03924679 +n03929660 +n03929855 +n03930313 +n03930630 +n03933933 +n03935335 +n03937543 +n03938244 +n03942813 +n03944341 +n03947888 +n03950228 +n03954731 +n03956157 +n03958227 +n03961711 +n03967562 +n03970156 +n03976467 +n03976657 +n03977966 +n03980874 +n03982430 +n03983396 +n03991062 +n03992509 +n03995372 +n03998194 +n04004767 +n04005630 +n04008634 +n04009552 +n04019541 +n04023962 +n04026417 +n04033901 +n04033995 +n04037443 +n04039381 +n04040759 +n04041544 +n04044716 +n04049303 +n04065272 +n04067472 +n04069434 +n04070727 +n04074963 +n04081281 +n04086273 +n04090263 +n04099969 +n04111531 +n04116512 +n04118538 +n04118776 +n04120489 +n04125021 +n04127249 +n04131690 +n04133789 +n04136333 +n04141076 +n04141327 +n04141975 +n04146614 +n04147183 +n04149813 +n04152593 +n04153751 +n04154565 +n04162706 +n04179913 +n04192698 +n04200800 +n04201297 +n04204238 +n04204347 +n04208210 +n04209133 +n04209239 +n04228054 +n04229816 +n04235860 +n04238763 +n04239074 +n04243546 +n04251144 +n04252077 +n04252225 +n04254120 +n04254680 +n04254777 +n04258138 +n04259630 +n04263257 +n04264628 +n04265275 +n04266014 +n04270147 +n04273569 +n04275548 +n04277352 +n04285008 +n04286575 +n04296562 +n04310018 +n04311004 +n04311174 +n04317175 +n04325704 +n04326547 +n04328186 +n04330267 +n04332243 +n04335435 +n04336792 +n04344873 +n04346328 +n04347754 +n04350905 +n04355338 +n04355933 +n04356056 +n04357314 +n04366367 +n04367480 +n04370456 +n04371430 +n04371774 +n04372370 +n04376876 +n04380533 +n04389033 +n04392985 +n04398044 +n04399382 +n04404412 +n04409515 +n04417672 +n04418357 +n04423845 +n04428191 +n04429376 +n04435653 +n04442312 +n04443257 +n04447861 +n04456115 +n04458633 +n04461696 +n04462240 +n04465501 +n04467665 +n04476259 +n04479046 +n04482393 +n04483307 +n04485082 +n04486054 +n04487081 +n04487394 +n04493381 +n04501370 +n04505470 +n04507155 +n04509417 +n04515003 +n04517823 +n04522168 +n04523525 +n04525038 +n04525305 +n04532106 +n04532670 +n04536866 +n04540053 +n04542943 +n04548280 +n04548362 +n04550184 +n04552348 +n04553703 +n04554684 +n04557648 +n04560804 +n04562935 +n04579145 +n04579432 +n04584207 +n04589890 +n04590129 +n04591157 +n04591713 +n04592741 +n04596742 +n04597913 +n04599235 +n04604644 +n04606251 +n04612504 +n04613696 +n06359193 +n06596364 +n06785654 +n06794110 +n06874185 +n07248320 +n07565083 +n07579787 +n07583066 +n07584110 +n07590611 +n07613480 +n07614500 +n07615774 +n07684084 +n07693725 +n07695742 +n07697313 +n07697537 +n07711569 +n07714571 +n07714990 +n07715103 +n07716358 +n07716906 +n07717410 +n07717556 +n07718472 +n07718747 +n07720875 +n07730033 +n07734744 +n07742313 +n07745940 +n07747607 +n07749582 +n07753113 +n07753275 +n07753592 +n07754684 +n07760859 +n07768694 +n07802026 +n07831146 +n07836838 +n07860988 +n07871810 +n07873807 +n07875152 +n07880968 +n07892512 +n07920052 +n07930864 +n07932039 +n09193705 +n09229709 +n09246464 +n09256479 +n09288635 +n09332890 +n09399592 +n09421951 +n09428293 +n09468604 +n09472597 +n09835506 +n10148035 +n10565667 +n11879895 +n11939491 +n12057211 +n12144580 +n12267677 +n12620546 +n12768682 +n12985857 +n12998815 +n13037406 +n13040303 +n13044778 +n13052670 +n13054560 +n13133613 +n15075141 +n00004475 +n00005787 +n00006024 +n00006484 +n00007846 +n00015388 +n00017222 +n00021265 +n00021939 +n00120010 +n00141669 +n00288000 +n00288190 +n00288384 +n00324978 +n00326094 +n00433458 +n00433661 +n00433802 +n00434075 +n00439826 +n00440039 +n00440218 +n00440382 +n00440509 +n00440643 +n00440747 +n00440941 +n00441073 +n00441824 +n00442115 +n00442437 +n00442847 +n00442981 +n00443231 +n00443375 +n00443517 +n00443692 +n00443803 +n00443917 +n00444142 +n00444340 +n00444490 +n00444651 +n00444846 +n00444937 +n00445055 +n00445226 +n00445351 +n00445685 +n00445802 +n00446311 +n00446411 +n00446493 +n00446632 +n00446804 +n00446980 +n00447073 +n00447221 +n00447361 +n00447463 +n00447540 +n00447957 +n00448126 +n00448232 +n00448466 +n00448640 +n00448748 +n00448872 +n00448958 +n00449054 +n00449168 +n00449295 +n00449517 +n00449695 +n00449796 +n00449892 +n00449977 +n00450070 +n00450335 +n00450700 +n00450866 +n00450998 +n00451186 +n00451370 +n00451563 +n00451635 +n00451768 +n00451866 +n00452034 +n00452152 +n00452293 +n00452734 +n00452864 +n00453126 +n00453313 +n00453396 +n00453478 +n00453631 +n00453935 +n00454237 +n00454395 +n00454493 +n00454624 +n00454855 +n00454983 +n00455076 +n00455173 +n00456465 +n00463246 +n00463543 +n00464277 +n00464478 +n00464651 +n00464894 +n00466273 +n00466377 +n00466524 +n00466630 +n00466712 +n00466880 +n00467320 +n00467536 +n00467719 +n00467995 +n00468299 +n00468480 +n00469651 +n00470554 +n00470682 +n00470830 +n00470966 +n00471437 +n00471613 +n00474568 +n00474657 +n00474769 +n00474881 +n00475014 +n00475142 +n00475273 +n00475403 +n00475535 +n00475661 +n00475787 +n00476140 +n00476235 +n00476389 +n00477392 +n00477639 +n00477827 +n00478262 +n00479076 +n00479440 +n00479616 +n00479734 +n00479887 +n00480211 +n00480366 +n00480508 +n00480885 +n00480993 +n00481803 +n00481938 +n00482122 +n00482298 +n00483205 +n00483313 +n00483409 +n00483508 +n00483605 +n00483705 +n00483848 +n00523513 +n00812526 +n00825773 +n00887544 +n01035504 +n01035667 +n01055165 +n01314388 +n01314663 +n01314781 +n01314910 +n01315213 +n01315330 +n01315581 +n01315805 +n01316422 +n01316579 +n01316734 +n01316949 +n01317089 +n01317294 +n01317391 +n01317541 +n01317813 +n01317916 +n01318053 +n01318279 +n01318381 +n01318478 +n01318660 +n01318894 +n01319001 +n01319187 +n01319467 +n01319685 +n01320872 +n01321123 +n01321230 +n01321456 +n01321579 +n01321770 +n01321854 +n01322221 +n01322343 +n01322508 +n01322604 +n01322685 +n01322898 +n01322983 +n01323068 +n01323155 +n01323261 +n01323355 +n01323493 +n01323599 +n01323781 +n01324305 +n01324431 +n01324610 +n01324799 +n01324916 +n01325060 +n01326291 +n01327909 +n01329186 +n01330126 +n01330497 +n01332181 +n01333082 +n01333483 +n01333610 +n01334217 +n01334690 +n01335218 +n01337191 +n01337734 +n01338685 +n01339083 +n01339336 +n01339471 +n01339801 +n01340014 +n01340522 +n01340785 +n01340935 +n01341090 +n01342269 +n01347583 +n01349735 +n01350226 +n01350701 +n01351170 +n01351315 +n01357328 +n01357507 +n01358572 +n01359762 +n01362336 +n01363719 +n01365474 +n01365885 +n01366700 +n01367772 +n01368672 +n01369358 +n01369484 +n01374703 +n01374846 +n01375204 +n01376237 +n01376437 +n01376543 +n01377278 +n01377510 +n01377694 +n01378545 +n01379389 +n01380610 +n01380754 +n01381044 +n01382033 +n01384084 +n01384164 +n01384687 +n01385017 +n01385330 +n01386007 +n01386182 +n01386354 +n01387065 +n01389507 +n01390123 +n01390763 +n01392275 +n01392380 +n01393486 +n01394040 +n01394492 +n01394771 +n01395254 +n01396048 +n01396617 +n01397114 +n01397690 +n01397871 +n01400247 +n01400391 +n01402600 +n01403457 +n01404365 +n01404495 +n01405007 +n01405616 +n01407798 +n01410457 +n01411450 +n01412694 +n01413457 +n01414216 +n01415626 +n01415920 +n01416213 +n01418498 +n01418620 +n01419332 +n01419573 +n01419888 +n01421333 +n01421807 +n01422185 +n01422335 +n01422450 +n01423302 +n01423617 +n01424420 +n01425223 +n01427399 +n01429172 +n01438208 +n01438581 +n01439121 +n01439514 +n01439808 +n01440160 +n01440242 +n01440467 +n01441117 +n01441272 +n01441425 +n01441910 +n01442450 +n01442710 +n01442972 +n01443243 +n01443831 +n01444339 +n01444783 +n01445429 +n01445593 +n01445857 +n01446152 +n01446589 +n01446760 +n01447139 +n01447331 +n01447658 +n01447946 +n01448291 +n01448594 +n01448951 +n01449374 +n01449712 +n01449980 +n01450661 +n01450950 +n01451115 +n01451295 +n01451426 +n01451863 +n01452345 +n01453087 +n01453475 +n01453742 +n01454545 +n01454856 +n01455317 +n01455461 +n01455778 +n01456137 +n01456454 +n01456756 +n01457082 +n01457407 +n01457852 +n01458746 +n01458842 +n01459791 +n01460303 +n01461315 +n01461646 +n01462042 +n01462544 +n01462803 +n01464844 +n01466257 +n01467336 +n01467804 +n01468238 +n01468712 +n01469103 +n01469723 +n01470145 +n01470479 +n01470733 +n01470895 +n01471682 +n01472303 +n01472502 +n01473806 +n01474283 +n01474864 +n01475232 +n01475940 +n01476418 +n01477080 +n01477525 +n01477875 +n01478511 +n01478969 +n01479213 +n01479820 +n01480106 +n01480516 +n01480880 +n01481331 +n01481498 +n01482071 +n01482330 +n01483021 +n01483522 +n01483830 +n01484097 +n01484285 +n01484447 +n01484562 +n01485479 +n01486010 +n01486540 +n01486838 +n01487506 +n01488038 +n01488918 +n01489501 +n01489709 +n01489920 +n01490112 +n01490360 +n01490670 +n01491006 +n01491661 +n01491874 +n01492357 +n01492569 +n01492708 +n01492860 +n01493146 +n01493541 +n01493829 +n01494041 +n01494757 +n01494882 +n01495006 +n01495493 +n01495701 +n01497118 +n01497413 +n01497738 +n01498406 +n01498699 +n01498989 +n01499396 +n01499732 +n01500091 +n01500476 +n01500854 +n01501160 +n01501641 +n01501777 +n01501948 +n01502101 +n01503061 +n01503976 +n01504179 +n01504344 +n01514752 +n01514926 +n01515078 +n01515217 +n01515303 +n01516212 +n01517389 +n01517565 +n01517966 +n01519563 +n01519873 +n01520576 +n01521399 +n01521756 +n01522450 +n01523105 +n01524359 +n01524761 +n01525720 +n01526521 +n01526766 +n01527194 +n01527347 +n01527617 +n01527917 +n01528396 +n01528654 +n01528845 +n01529672 +n01530439 +n01531344 +n01531512 +n01531639 +n01531811 +n01531971 +n01532325 +n01532511 +n01533000 +n01533339 +n01533481 +n01533651 +n01533893 +n01534155 +n01534582 +n01534762 +n01535140 +n01535469 +n01535690 +n01536035 +n01536186 +n01536334 +n01536644 +n01536780 +n01537134 +n01537895 +n01538059 +n01538200 +n01538362 +n01538630 +n01538955 +n01539272 +n01539573 +n01539925 +n01540090 +n01540233 +n01540566 +n01540832 +n01541102 +n01541386 +n01541760 +n01541922 +n01542168 +n01542433 +n01542786 +n01543175 +n01543383 +n01543632 +n01543936 +n01544208 +n01544389 +n01544704 +n01545574 +n01546039 +n01546506 +n01546921 +n01547832 +n01548301 +n01548492 +n01548694 +n01548865 +n01549053 +n01549430 +n01549641 +n01549886 +n01550172 +n01550761 +n01551080 +n01551300 +n01551711 +n01552034 +n01552333 +n01552813 +n01553142 +n01553527 +n01553762 +n01554017 +n01554448 +n01555004 +n01555305 +n01555809 +n01556182 +n01556514 +n01557185 +n01557962 +n01558149 +n01558307 +n01558461 +n01558594 +n01558765 +n01559160 +n01559477 +n01559639 +n01559804 +n01560105 +n01560280 +n01560636 +n01560793 +n01560935 +n01561181 +n01561452 +n01561732 +n01562014 +n01562265 +n01562451 +n01563128 +n01563449 +n01563746 +n01563945 +n01564101 +n01564217 +n01564394 +n01564773 +n01564914 +n01565078 +n01565345 +n01565599 +n01565930 +n01566207 +n01566645 +n01567133 +n01567678 +n01567879 +n01568132 +n01568294 +n01568720 +n01568892 +n01569060 +n01569262 +n01569423 +n01569566 +n01569836 +n01569971 +n01570267 +n01570421 +n01570676 +n01570839 +n01571410 +n01571904 +n01572328 +n01572489 +n01572654 +n01572782 +n01573074 +n01573240 +n01573360 +n01573627 +n01573898 +n01574045 +n01574390 +n01574560 +n01574801 +n01575117 +n01575401 +n01575745 +n01576076 +n01576358 +n01576695 +n01577035 +n01577458 +n01577659 +n01577941 +n01578180 +n01578575 +n01579028 +n01579149 +n01579260 +n01579410 +n01579578 +n01579729 +n01580379 +n01580490 +n01580772 +n01580870 +n01581166 +n01581434 +n01581730 +n01581874 +n01581984 +n01582398 +n01582498 +n01582856 +n01583209 +n01583495 +n01583828 +n01584225 +n01584695 +n01584853 +n01585121 +n01585287 +n01585422 +n01585715 +n01586020 +n01586374 +n01586941 +n01587278 +n01587526 +n01587834 +n01588002 +n01588431 +n01588725 +n01588996 +n01589286 +n01589718 +n01589893 +n01590220 +n01591005 +n01591123 +n01591301 +n01591697 +n01592257 +n01592387 +n01592540 +n01592694 +n01593028 +n01593282 +n01593553 +n01594004 +n01594372 +n01594787 +n01594968 +n01595168 +n01595450 +n01595624 +n01595974 +n01596273 +n01596608 +n01597022 +n01597336 +n01597737 +n01597906 +n01598074 +n01598271 +n01598588 +n01598988 +n01599159 +n01599269 +n01599388 +n01599556 +n01599741 +n01600085 +n01600341 +n01600657 +n01601068 +n01601410 +n01602080 +n01602209 +n01602630 +n01602832 +n01603000 +n01603152 +n01603600 +n01603812 +n01603953 +n01604330 +n01604968 +n01605630 +n01606097 +n01606177 +n01606522 +n01606672 +n01606809 +n01606978 +n01607309 +n01607429 +n01607600 +n01607812 +n01607962 +n01608265 +n01608814 +n01609062 +n01609391 +n01609751 +n01609956 +n01610100 +n01610226 +n01610552 +n01610955 +n01611472 +n01611674 +n01611800 +n01611969 +n01612122 +n01612275 +n01612476 +n01612628 +n01612955 +n01613177 +n01613294 +n01613615 +n01613807 +n01614038 +n01614343 +n01614556 +n01615121 +n01615303 +n01615458 +n01615703 +n01616086 +n01616551 +n01616764 +n01617095 +n01617443 +n01617766 +n01618082 +n01618503 +n01618922 +n01619310 +n01619536 +n01619835 +n01620135 +n01620414 +n01620735 +n01621127 +n01621635 +n01622120 +n01622352 +n01622483 +n01622959 +n01623110 +n01623425 +n01623615 +n01623706 +n01623880 +n01624115 +n01624212 +n01624305 +n01624537 +n01624833 +n01625121 +n01625562 +n01627424 +n01628331 +n01628770 +n01629276 +n01629962 +n01630148 +n01630284 +n01630901 +n01631175 +n01631354 +n01631512 +n01632047 +n01632308 +n01632601 +n01632952 +n01633406 +n01633781 +n01634227 +n01634522 +n01635027 +n01635176 +n01635480 +n01636127 +n01636352 +n01636510 +n01636829 +n01637112 +n01637338 +n01637615 +n01637932 +n01638194 +n01638329 +n01638722 +n01639187 +n01639765 +n01640846 +n01641206 +n01641391 +n01641739 +n01641930 +n01642097 +n01642257 +n01642391 +n01642539 +n01642943 +n01643255 +n01643507 +n01643896 +n01645466 +n01645776 +n01646292 +n01646388 +n01646555 +n01646648 +n01646802 +n01646902 +n01647033 +n01647180 +n01647303 +n01647466 +n01647640 +n01648139 +n01648356 +n01648620 +n01649170 +n01649412 +n01649556 +n01649726 +n01650167 +n01650690 +n01650901 +n01651059 +n01651285 +n01651487 +n01651641 +n01651778 +n01652026 +n01652297 +n01653026 +n01653223 +n01653509 +n01653773 +n01654083 +n01654637 +n01654863 +n01655344 +n01661091 +n01661592 +n01661818 +n01662060 +n01662622 +n01662784 +n01663401 +n01663782 +n01664369 +n01664492 +n01664674 +n01664990 +n01665932 +n01666228 +n01666585 +n01667432 +n01668091 +n01668436 +n01668665 +n01668892 +n01669372 +n01669654 +n01670092 +n01670535 +n01670802 +n01671125 +n01671479 +n01671705 +n01672032 +n01672432 +n01672611 +n01673282 +n01674216 +n01674464 +n01674990 +n01675352 +n01676755 +n01677747 +n01678043 +n01678343 +n01678657 +n01679005 +n01679307 +n01679626 +n01679962 +n01680264 +n01680478 +n01680655 +n01680813 +n01680983 +n01681328 +n01681653 +n01681940 +n01682172 +n01682435 +n01683201 +n01683558 +n01684133 +n01684578 +n01684741 +n01685439 +n01686044 +n01686220 +n01686403 +n01686609 +n01686808 +n01687128 +n01687290 +n01687665 +n01688961 +n01689081 +n01689411 +n01690149 +n01690466 +n01691217 +n01691652 +n01691951 +n01692523 +n01692864 +n01693175 +n01693783 +n01694311 +n01694709 +n01694955 +n01696633 +n01697178 +n01697611 +n01697749 +n01697978 +n01698434 +n01698782 +n01699040 +n01699254 +n01699675 +n01701551 +n01701859 +n01702256 +n01702479 +n01703011 +n01703161 +n01703569 +n01704103 +n01704626 +n01705010 +n01705591 +n01705934 +n01707294 +n01708106 +n01708998 +n01709484 +n01709876 +n01710177 +n01711160 +n01712008 +n01712752 +n01713170 +n01713764 +n01714231 +n01715888 +n01717016 +n01717229 +n01717467 +n01718096 +n01718414 +n01719403 +n01721174 +n01721898 +n01722670 +n01722998 +n01723579 +n01724231 +n01724840 +n01725086 +n01725713 +n01726203 +n01726692 +n01727646 +n01728266 +n01729672 +n01730185 +n01730307 +n01730563 +n01730812 +n01730960 +n01731137 +n01731277 +n01731545 +n01731764 +n01731941 +n01732093 +n01732244 +n01732614 +n01732789 +n01732989 +n01733214 +n01733466 +n01733757 +n01733957 +n01734104 +n01734637 +n01734808 +n01735439 +n01735577 +n01735728 +n01736032 +n01736375 +n01736796 +n01737472 +n01737728 +n01737875 +n01738065 +n01738306 +n01738601 +n01738731 +n01739094 +n01739647 +n01739871 +n01740551 +n01740885 +n01741232 +n01741442 +n01741562 +n01741943 +n01742447 +n01742821 +n01743086 +n01743605 +n01743936 +n01744100 +n01744270 +n01744555 +n01745125 +n01745484 +n01745902 +n01746191 +n01746359 +n01746952 +n01747285 +n01747589 +n01747885 +n01748389 +n01748686 +n01748906 +n01749244 +n01749582 +n01749742 +n01750167 +n01750437 +n01750743 +n01751036 +n01751215 +n01751472 +n01752165 +n01752585 +n01752736 +n01753032 +n01753180 +n01753959 +n01754370 +n01754533 +n01754876 +n01755740 +n01755952 +n01756089 +n01756508 +n01756733 +n01756916 +n01757115 +n01757343 +n01757677 +n01757901 +n01758141 +n01758757 +n01758895 +n01767661 +n01769347 +n01770795 +n01771100 +n01771417 +n01771766 +n01772222 +n01772664 +n01774097 +n01775370 +n01775730 +n01776192 +n01776705 +n01777304 +n01777467 +n01777649 +n01777909 +n01778217 +n01778487 +n01778621 +n01778801 +n01779148 +n01779463 +n01779629 +n01779939 +n01780142 +n01780426 +n01780696 +n01781071 +n01781570 +n01781698 +n01781875 +n01782209 +n01782516 +n01783017 +n01783706 +n01784293 +n01785667 +n01786646 +n01787006 +n01787191 +n01787835 +n01788291 +n01788579 +n01788864 +n01789386 +n01789740 +n01790171 +n01790304 +n01790398 +n01790557 +n01790711 +n01790812 +n01791107 +n01791314 +n01791388 +n01791463 +n01791625 +n01791954 +n01792042 +n01792158 +n01792429 +n01792530 +n01792640 +n01792808 +n01792955 +n01793085 +n01793159 +n01793249 +n01793340 +n01793435 +n01793565 +n01793715 +n01794158 +n01794344 +n01794651 +n01795088 +n01795735 +n01795900 +n01796019 +n01796105 +n01796519 +n01796729 +n01797020 +n01797307 +n01797601 +n01798168 +n01798706 +n01798839 +n01798979 +n01799302 +n01799679 +n01800195 +n01800424 +n01800633 +n01801088 +n01801479 +n01801672 +n01801876 +n01802159 +n01802721 +n01803078 +n01803362 +n01803641 +n01803893 +n01804163 +n01804478 +n01804653 +n01804921 +n01805070 +n01805321 +n01805801 +n01806061 +n01806297 +n01806364 +n01806467 +n01806847 +n01807105 +n01807828 +n01808140 +n01808291 +n01808596 +n01809106 +n01809371 +n01809752 +n01810268 +n01810700 +n01811243 +n01811909 +n01812187 +n01812337 +n01812662 +n01812866 +n01813088 +n01813385 +n01813532 +n01813658 +n01813948 +n01814217 +n01814370 +n01814549 +n01814620 +n01814755 +n01814921 +n01815036 +n01815270 +n01815601 +n01816017 +n01816140 +n01816474 +n01816887 +n01817263 +n01817346 +n01818299 +n01818832 +n01819115 +n01819465 +n01819734 +n01820052 +n01820348 +n01820801 +n01821076 +n01821203 +n01821554 +n01821869 +n01822300 +n01822602 +n01823013 +n01823414 +n01823740 +n01824035 +n01824344 +n01824749 +n01825278 +n01825930 +n01826364 +n01826680 +n01826844 +n01827403 +n01827793 +n01828096 +n01828556 +n01829869 +n01830042 +n01830479 +n01830915 +n01831360 +n01831712 +n01832167 +n01832493 +n01832813 +n01833112 +n01833415 +n01834177 +n01834540 +n01835276 +n01835769 +n01835918 +n01836087 +n01836673 +n01837072 +n01837526 +n01838038 +n01838598 +n01839086 +n01839330 +n01839598 +n01839750 +n01839949 +n01840120 +n01840412 +n01840775 +n01841102 +n01841288 +n01841441 +n01841679 +n01841943 +n01842235 +n01842504 +n01842788 +n01843719 +n01844231 +n01844551 +n01844746 +n01844917 +n01845132 +n01845477 +n01846331 +n01847089 +n01847170 +n01847253 +n01847407 +n01847806 +n01847978 +n01848123 +n01848323 +n01848453 +n01848555 +n01848648 +n01848840 +n01848976 +n01849157 +n01849466 +n01849676 +n01849863 +n01850192 +n01850373 +n01850553 +n01850873 +n01851038 +n01851207 +n01851375 +n01851573 +n01851731 +n01851895 +n01852142 +n01852329 +n01852400 +n01852671 +n01852861 +n01853195 +n01853498 +n01853666 +n01853870 +n01854415 +n01854700 +n01854838 +n01855188 +n01855476 +n01856072 +n01856155 +n01856380 +n01856553 +n01856890 +n01857079 +n01857325 +n01857512 +n01857632 +n01857851 +n01858281 +n01858441 +n01858780 +n01858845 +n01858906 +n01859190 +n01859325 +n01859496 +n01859689 +n01859852 +n01860002 +n01860497 +n01860864 +n01861148 +n01861330 +n01861778 +n01862399 +n01871543 +n01871875 +n01872772 +n01874434 +n01874928 +n01875313 +n01875610 +n01876034 +n01876326 +n01876667 +n01877134 +n01877606 +n01878061 +n01878335 +n01878639 +n01878929 +n01879217 +n01879509 +n01879837 +n01880152 +n01880473 +n01880716 +n01880813 +n01881171 +n01881564 +n01881857 +n01882125 +n01883513 +n01883920 +n01884104 +n01884203 +n01884476 +n01884834 +n01885158 +n01885498 +n01886045 +n01886756 +n01887474 +n01887623 +n01887787 +n01887896 +n01888045 +n01888181 +n01888264 +n01888411 +n01889074 +n01889520 +n01889849 +n01890144 +n01890564 +n01890860 +n01891013 +n01891274 +n01891633 +n01892030 +n01892145 +n01892385 +n01892551 +n01892744 +n01893021 +n01893164 +n01893399 +n01893825 +n01894207 +n01894522 +n01894956 +n01896844 +n01897257 +n01897426 +n01897536 +n01897667 +n01898593 +n01899894 +n01900150 +n01903234 +n01903346 +n01903498 +n01904029 +n01904806 +n01904886 +n01905321 +n01905661 +n01906749 +n01907287 +n01907738 +n01908042 +n01908958 +n01909422 +n01909788 +n01909906 +n01910252 +n01911063 +n01911403 +n01911839 +n01912152 +n01912454 +n01912809 +n01913166 +n01913346 +n01913440 +n01914163 +n01914830 +n01915700 +n01915811 +n01916187 +n01916388 +n01916481 +n01916588 +n01916925 +n01917611 +n01917882 +n01918744 +n01919385 +n01920051 +n01920438 +n01921059 +n01922303 +n01922717 +n01922948 +n01923025 +n01923404 +n01923890 +n01924800 +n01925270 +n01925695 +n01925916 +n01926379 +n01926689 +n01927159 +n01927456 +n01927928 +n01928215 +n01928517 +n01928865 +n01929186 +n01930852 +n01931140 +n01931520 +n01931714 +n01932151 +n01932936 +n01933151 +n01933478 +n01933988 +n01934440 +n01934844 +n01935176 +n01935395 +n01936391 +n01936671 +n01936858 +n01937579 +n01937909 +n01938454 +n01938735 +n01940736 +n01941223 +n01941340 +n01942177 +n01942869 +n01943087 +n01943541 +n01944118 +n01944812 +n01944955 +n01945143 +n01945340 +n01945845 +n01946277 +n01946630 +n01946827 +n01947139 +n01947396 +n01947997 +n01948446 +n01948573 +n01949085 +n01949499 +n01949973 +n01951274 +n01951613 +n01952029 +n01952712 +n01953361 +n01953594 +n01953762 +n01954516 +n01955933 +n01956344 +n01956481 +n01956764 +n01957335 +n01958038 +n01958346 +n01958435 +n01958531 +n01959029 +n01959492 +n01959985 +n01960177 +n01960459 +n01961234 +n01961600 +n01961985 +n01962506 +n01962788 +n01963317 +n01963479 +n01963571 +n01964049 +n01964271 +n01964441 +n01964957 +n01965252 +n01965529 +n01965889 +n01966377 +n01966586 +n01967094 +n01967308 +n01967963 +n01968315 +n01969726 +n01970164 +n01970667 +n01971094 +n01971280 +n01971620 +n01971850 +n01972131 +n01972541 +n01973148 +n01974773 +n01975687 +n01976146 +n01976868 +n01976957 +n01977485 +n01978010 +n01978136 +n01978587 +n01978930 +n01979269 +n01979526 +n01979874 +n01980655 +n01981702 +n01982068 +n01982347 +n01982650 +n01983048 +n01983674 +n01983829 +n01984245 +n01985493 +n01985797 +n01986806 +n01987076 +n01987545 +n01987727 +n01988203 +n01988701 +n01988869 +n01989516 +n01989869 +n01990007 +n01990516 +n01991028 +n01991520 +n01992262 +n01992423 +n01992773 +n01993525 +n01993830 +n01994910 +n01995514 +n01995686 +n01996280 +n01996585 +n01997119 +n01997825 +n01998183 +n01998741 +n01999186 +n01999767 +n02000954 +n02002075 +n02003037 +n02003204 +n02003577 +n02003839 +n02004131 +n02004492 +n02004855 +n02005399 +n02005790 +n02006063 +n02006364 +n02006985 +n02007284 +n02008041 +n02008497 +n02008643 +n02008796 +n02009380 +n02009508 +n02009750 +n02010272 +n02010453 +n02010728 +n02011016 +n02011281 +n02011805 +n02011943 +n02012185 +n02013177 +n02013567 +n02014237 +n02014524 +n02014941 +n02015357 +n02015554 +n02015797 +n02016066 +n02016358 +n02016659 +n02016816 +n02016956 +n02017475 +n02017725 +n02018027 +n02018368 +n02019190 +n02019438 +n02019929 +n02020219 +n02020578 +n02021050 +n02021281 +n02021795 +n02022684 +n02023341 +n02023855 +n02023992 +n02024185 +n02024479 +n02024763 +n02025043 +n02025389 +n02026059 +n02026629 +n02026948 +n02027075 +n02027357 +n02027897 +n02028175 +n02028342 +n02028451 +n02028727 +n02028900 +n02029087 +n02029378 +n02029706 +n02030035 +n02030224 +n02030287 +n02030568 +n02030837 +n02030996 +n02031298 +n02031585 +n02031934 +n02032222 +n02032355 +n02032480 +n02032769 +n02033208 +n02033324 +n02033561 +n02033779 +n02033882 +n02034129 +n02034295 +n02034661 +n02034971 +n02035210 +n02035402 +n02035656 +n02036053 +n02036228 +n02036711 +n02037464 +n02037869 +n02038141 +n02038466 +n02038993 +n02039171 +n02039497 +n02039780 +n02040266 +n02040505 +n02041085 +n02041246 +n02041678 +n02041875 +n02042046 +n02042180 +n02042472 +n02042759 +n02043063 +n02043333 +n02043808 +n02044178 +n02044517 +n02044778 +n02044908 +n02045369 +n02045596 +n02045864 +n02046171 +n02046759 +n02046939 +n02047045 +n02047260 +n02047411 +n02047517 +n02047614 +n02047975 +n02048115 +n02048353 +n02048698 +n02049088 +n02049532 +n02050004 +n02050313 +n02050442 +n02050586 +n02050809 +n02051059 +n02051474 +n02052204 +n02052365 +n02052775 +n02053083 +n02053425 +n02053584 +n02054036 +n02054502 +n02054711 +n02055107 +n02055658 +n02055803 +n02056228 +n02056728 +n02057035 +n02057330 +n02057731 +n02057898 +n02058594 +n02058747 +n02059162 +n02059541 +n02059852 +n02060133 +n02060411 +n02060569 +n02060889 +n02061217 +n02061560 +n02061853 +n02062017 +n02062430 +n02062744 +n02063224 +n02063662 +n02064000 +n02064338 +n02064816 +n02065026 +n02065263 +n02065407 +n02065726 +n02066707 +n02067240 +n02067603 +n02067768 +n02068206 +n02068541 +n02068974 +n02069412 +n02069701 +n02069974 +n02070174 +n02070430 +n02070624 +n02070776 +n02071028 +n02071636 +n02072040 +n02072493 +n02072798 +n02073250 +n02073831 +n02074726 +n02075296 +n02075612 +n02075927 +n02076196 +n02076402 +n02076779 +n02077152 +n02077384 +n02077658 +n02077787 +n02078292 +n02078574 +n02078738 +n02079005 +n02079389 +n02079851 +n02080146 +n02080415 +n02080713 +n02081060 +n02081571 +n02081798 +n02081927 +n02082056 +n02082190 +n02082791 +n02083346 +n02083672 +n02083780 +n02084071 +n02084732 +n02084861 +n02085019 +n02085118 +n02085272 +n02085374 +n02086346 +n02086478 +n02086753 +n02087122 +n02087314 +n02087551 +n02088745 +n02088839 +n02088992 +n02089232 +n02089468 +n02089555 +n02089725 +n02090129 +n02090253 +n02090475 +n02090827 +n02092173 +n02092468 +n02093056 +n02094562 +n02094721 +n02094931 +n02095050 +n02095212 +n02095412 +n02095727 +n02096756 +n02097786 +n02097967 +n02098550 +n02098806 +n02098906 +n02099029 +n02099997 +n02100399 +n02101108 +n02101670 +n02101861 +n02102605 +n02102806 +n02103181 +n02103406 +n02103841 +n02104184 +n02104280 +n02104523 +n02104882 +n02106854 +n02106966 +n02107420 +n02108254 +n02108672 +n02109150 +n02109256 +n02109391 +n02109687 +n02109811 +n02110532 +n02111626 +n02112497 +n02112826 +n02113335 +n02113892 +n02114100 +n02115012 +n02115096 +n02115335 +n02116185 +n02116450 +n02117512 +n02117646 +n02117900 +n02118176 +n02118333 +n02118643 +n02118707 +n02119247 +n02119359 +n02119477 +n02119634 +n02120278 +n02120997 +n02121620 +n02121808 +n02122298 +n02122430 +n02122510 +n02122580 +n02122725 +n02122810 +n02122878 +n02122948 +n02123242 +n02123478 +n02123785 +n02123917 +n02124157 +n02124313 +n02124484 +n02124623 +n02125010 +n02125081 +n02125494 +n02125689 +n02125872 +n02126028 +n02126139 +n02126317 +n02126640 +n02126787 +n02127292 +n02127381 +n02127482 +n02127586 +n02127678 +n02127808 +n02128598 +n02128669 +n02129463 +n02129530 +n02129837 +n02129923 +n02129991 +n02130086 +n02130545 +n02130925 +n02131653 +n02132320 +n02132466 +n02132580 +n02132788 +n02133400 +n02133704 +n02134971 +n02135220 +n02135610 +n02135844 +n02136103 +n02136285 +n02136452 +n02136794 +n02137015 +n02137302 +n02137722 +n02137888 +n02138169 +n02138647 +n02138777 +n02139199 +n02139671 +n02140049 +n02140179 +n02140268 +n02140491 +n02140858 +n02141306 +n02141611 +n02141713 +n02142407 +n02142734 +n02142898 +n02143142 +n02143439 +n02143891 +n02144251 +n02144593 +n02144936 +n02145424 +n02145910 +n02146201 +n02146371 +n02146700 +n02146879 +n02147173 +n02147328 +n02147591 +n02147947 +n02148088 +n02148512 +n02148835 +n02148991 +n02149420 +n02149653 +n02149861 +n02150134 +n02150482 +n02150885 +n02151230 +n02152740 +n02152881 +n02152991 +n02153109 +n02153203 +n02153809 +n02156732 +n02156871 +n02157206 +n02157285 +n02159955 +n02160947 +n02161225 +n02161338 +n02161457 +n02161588 +n02162561 +n02163008 +n02163297 +n02164464 +n02165877 +n02166229 +n02166567 +n02166826 +n02167505 +n02167820 +n02167944 +n02168245 +n02168427 +n02169023 +n02169218 +n02169705 +n02169974 +n02170400 +n02170599 +n02170738 +n02170993 +n02171164 +n02171453 +n02171869 +n02172518 +n02172678 +n02172761 +n02172870 +n02173113 +n02173373 +n02173784 +n02174355 +n02174659 +n02175014 +n02175569 +n02175916 +n02176261 +n02176439 +n02176747 +n02176916 +n02177196 +n02177506 +n02177775 +n02178411 +n02178717 +n02179012 +n02179192 +n02179340 +n02179891 +n02180233 +n02180427 +n02180875 +n02181235 +n02181477 +n02181724 +n02182045 +n02182355 +n02182642 +n02182930 +n02183096 +n02183507 +n02183857 +n02184473 +n02184589 +n02184720 +n02185167 +n02185481 +n02186153 +n02186717 +n02187150 +n02187279 +n02187554 +n02187900 +n02188699 +n02189363 +n02189670 +n02190790 +n02191273 +n02191773 +n02191979 +n02192252 +n02192513 +n02192814 +n02193009 +n02193163 +n02194249 +n02194750 +n02195091 +n02195526 +n02195819 +n02196119 +n02196344 +n02196896 +n02197185 +n02197689 +n02197877 +n02198129 +n02198532 +n02198859 +n02199170 +n02199502 +n02200198 +n02200509 +n02200630 +n02200850 +n02201000 +n02201497 +n02201626 +n02202006 +n02202124 +n02202287 +n02202678 +n02203152 +n02203592 +n02203978 +n02204249 +n02204722 +n02204907 +n02205219 +n02205673 +n02206270 +n02207179 +n02207345 +n02207449 +n02207647 +n02207805 +n02208280 +n02208498 +n02208848 +n02208979 +n02209111 +n02209354 +n02209624 +n02209964 +n02210427 +n02210921 +n02211444 +n02211627 +n02211896 +n02212062 +n02212602 +n02212958 +n02213107 +n02213239 +n02213543 +n02213663 +n02213788 +n02214096 +n02214341 +n02214499 +n02214660 +n02214773 +n02215161 +n02215621 +n02215770 +n02216211 +n02216365 +n02216740 +n02217563 +n02217839 +n02218134 +n02218371 +n02218713 +n02219015 +n02220055 +n02220225 +n02220518 +n02220804 +n02221083 +n02221414 +n02221571 +n02221715 +n02221820 +n02222035 +n02222321 +n02222582 +n02223266 +n02223520 +n02224023 +n02224713 +n02225081 +n02225798 +n02226183 +n02226821 +n02226970 +n02227247 +n02227604 +n02227966 +n02228341 +n02228697 +n02229156 +n02229765 +n02230023 +n02230187 +n02230480 +n02230634 +n02231052 +n02231803 +n02232223 +n02233943 +n02234355 +n02234570 +n02234848 +n02235205 +n02236241 +n02236355 +n02236896 +n02237424 +n02237581 +n02237868 +n02238235 +n02238358 +n02238594 +n02238887 +n02239192 +n02239528 +n02239774 +n02240068 +n02240517 +n02241008 +n02241426 +n02241569 +n02241799 +n02242137 +n02242455 +n02243209 +n02243562 +n02243878 +n02244173 +n02244515 +n02244797 +n02245111 +n02245443 +n02246011 +n02246628 +n02246941 +n02247216 +n02247511 +n02247655 +n02248062 +n02248368 +n02248510 +n02248887 +n02249134 +n02249515 +n02249809 +n02250280 +n02250822 +n02251067 +n02251233 +n02251593 +n02251775 +n02252226 +n02252799 +n02252972 +n02253127 +n02253264 +n02253494 +n02253715 +n02253913 +n02254246 +n02254697 +n02254901 +n02255023 +n02255391 +n02256172 +n02257003 +n02257284 +n02257715 +n02257985 +n02258198 +n02258508 +n02258629 +n02259377 +n02259708 +n02259987 +n02260421 +n02260863 +n02261063 +n02261419 +n02261757 +n02262178 +n02262449 +n02262803 +n02263378 +n02264021 +n02264232 +n02264591 +n02264885 +n02265330 +n02266050 +n02266269 +n02266421 +n02266864 +n02267208 +n02267483 +n02268148 +n02269196 +n02269340 +n02269522 +n02269657 +n02270011 +n02270200 +n02270623 +n02270945 +n02271222 +n02271570 +n02271897 +n02272286 +n02272552 +n02272871 +n02273392 +n02274024 +n02274259 +n02274822 +n02275560 +n02275773 +n02276078 +n02276355 +n02276749 +n02276902 +n02277094 +n02277268 +n02277422 +n02278024 +n02278210 +n02278463 +n02278839 +n02278980 +n02279257 +n02279637 +n02280458 +n02281015 +n02281136 +n02281267 +n02282257 +n02282385 +n02282553 +n02282903 +n02283077 +n02283201 +n02283617 +n02283951 +n02284224 +n02284611 +n02284884 +n02285179 +n02285548 +n02285801 +n02286089 +n02286425 +n02286654 +n02287004 +n02287352 +n02287622 +n02287799 +n02287987 +n02288122 +n02288268 +n02288789 +n02289307 +n02289610 +n02289988 +n02290340 +n02290664 +n02290870 +n02291220 +n02291572 +n02291748 +n02292085 +n02292401 +n02292692 +n02293352 +n02293868 +n02294097 +n02294407 +n02294577 +n02295064 +n02295390 +n02295870 +n02296021 +n02296276 +n02296612 +n02296912 +n02297294 +n02297442 +n02297819 +n02297938 +n02298095 +n02298218 +n02298541 +n02299039 +n02299157 +n02299378 +n02299505 +n02299846 +n02300173 +n02300554 +n02300797 +n02301452 +n02301935 +n02302244 +n02302459 +n02302620 +n02302969 +n02303284 +n02303585 +n02303777 +n02304036 +n02304432 +n02304657 +n02304797 +n02305085 +n02305407 +n02305636 +n02305929 +n02306433 +n02306825 +n02307176 +n02307325 +n02307515 +n02307681 +n02307910 +n02308033 +n02308139 +n02308471 +n02308618 +n02308735 +n02309120 +n02309242 +n02309337 +n02309841 +n02310000 +n02310149 +n02310334 +n02310585 +n02310717 +n02310941 +n02311060 +n02311617 +n02311748 +n02312006 +n02312175 +n02312325 +n02312427 +n02312640 +n02312912 +n02313008 +n02313360 +n02313709 +n02315487 +n02315821 +n02316707 +n02317781 +n02318167 +n02318687 +n02319308 +n02319555 +n02319829 +n02320127 +n02320465 +n02321170 +n02322047 +n02322992 +n02323449 +n02323902 +n02324045 +n02324431 +n02324514 +n02324587 +n02324850 +n02325722 +n02325884 +n02326074 +n02326763 +n02326862 +n02327028 +n02327175 +n02327435 +n02327656 +n02327842 +n02328009 +n02328429 +n02328820 +n02328942 +n02329401 +n02330245 +n02331046 +n02331309 +n02331842 +n02332156 +n02332447 +n02332755 +n02332954 +n02333190 +n02333546 +n02333733 +n02333819 +n02333909 +n02334201 +n02334460 +n02334728 +n02335127 +n02335231 +n02336011 +n02336275 +n02336641 +n02336826 +n02337001 +n02337171 +n02337332 +n02337598 +n02337902 +n02338145 +n02338449 +n02338722 +n02338901 +n02339282 +n02339376 +n02339922 +n02340186 +n02340358 +n02340640 +n02340930 +n02341288 +n02341475 +n02341616 +n02341974 +n02342250 +n02342534 +n02343058 +n02343320 +n02343772 +n02344175 +n02344270 +n02344408 +n02344528 +n02344918 +n02345078 +n02345340 +n02345600 +n02345774 +n02345997 +n02346170 +n02346998 +n02347274 +n02347573 +n02347744 +n02348173 +n02348788 +n02349205 +n02349390 +n02349557 +n02349847 +n02350105 +n02350357 +n02350670 +n02350989 +n02351343 +n02351870 +n02352002 +n02352290 +n02352591 +n02352932 +n02353172 +n02353411 +n02353861 +n02354162 +n02354320 +n02354621 +n02354781 +n02355227 +n02355477 +n02356381 +n02356612 +n02356977 +n02357111 +n02357401 +n02357585 +n02357911 +n02358091 +n02358390 +n02358584 +n02358712 +n02358890 +n02359047 +n02359324 +n02359556 +n02359667 +n02359915 +n02360282 +n02360480 +n02360781 +n02360933 +n02361090 +n02361587 +n02361706 +n02361850 +n02362194 +n02363245 +n02363351 +n02363996 +n02364520 +n02364840 +n02365108 +n02365480 +n02366002 +n02366301 +n02366579 +n02366959 +n02367492 +n02367812 +n02368116 +n02368399 +n02368821 +n02369293 +n02369555 +n02369680 +n02369935 +n02370137 +n02370525 +n02370806 +n02371344 +n02372140 +n02372584 +n02372952 +n02373336 +n02374149 +n02374451 +n02375302 +n02375438 +n02375757 +n02375862 +n02376542 +n02376679 +n02376791 +n02376918 +n02377063 +n02377181 +n02377291 +n02377388 +n02377480 +n02377603 +n02377703 +n02378149 +n02378299 +n02378415 +n02378541 +n02378625 +n02378755 +n02378870 +n02378969 +n02379081 +n02379183 +n02379329 +n02379430 +n02379630 +n02379743 +n02379908 +n02380052 +n02380335 +n02380464 +n02380583 +n02380745 +n02380875 +n02381004 +n02381119 +n02381261 +n02381364 +n02381460 +n02381609 +n02381831 +n02382039 +n02382132 +n02382204 +n02382338 +n02382437 +n02382635 +n02382750 +n02382850 +n02382948 +n02383231 +n02384741 +n02384858 +n02385002 +n02385098 +n02385214 +n02385580 +n02385676 +n02385776 +n02385898 +n02386014 +n02386141 +n02386224 +n02386310 +n02386496 +n02386746 +n02386853 +n02386968 +n02387093 +n02387254 +n02387346 +n02387452 +n02387722 +n02387887 +n02387983 +n02388143 +n02388276 +n02388453 +n02388588 +n02388735 +n02388832 +n02388917 +n02389128 +n02389261 +n02389346 +n02389559 +n02389779 +n02389865 +n02389943 +n02390015 +n02390101 +n02390258 +n02390454 +n02390640 +n02390738 +n02390834 +n02390938 +n02391234 +n02391373 +n02391508 +n02391617 +n02391994 +n02392434 +n02392555 +n02392824 +n02393161 +n02393580 +n02393807 +n02393940 +n02394477 +n02395003 +n02395694 +n02395855 +n02395931 +n02396014 +n02396088 +n02396157 +n02396796 +n02397529 +n02397744 +n02397987 +n02399000 +n02401031 +n02402010 +n02402175 +n02402425 +n02403153 +n02403231 +n02403325 +n02403454 +n02403740 +n02403820 +n02403920 +n02404028 +n02404186 +n02404432 +n02404573 +n02404906 +n02405101 +n02405302 +n02405440 +n02405577 +n02405692 +n02405799 +n02405929 +n02406046 +n02406174 +n02406432 +n02406533 +n02406647 +n02406749 +n02406859 +n02406952 +n02407071 +n02407172 +n02407276 +n02407390 +n02407521 +n02407625 +n02407763 +n02407959 +n02408660 +n02408817 +n02409038 +n02409202 +n02409508 +n02409870 +n02410011 +n02410141 +n02410702 +n02410900 +n02411206 +n02411705 +n02411999 +n02412210 +n02412440 +n02412629 +n02412700 +n02412787 +n02412909 +n02412977 +n02413050 +n02413131 +n02413484 +n02413593 +n02413717 +n02413824 +n02413917 +n02414043 +n02414209 +n02414290 +n02414442 +n02414578 +n02414763 +n02414904 +n02415130 +n02415253 +n02415435 +n02415829 +n02416104 +n02416519 +n02416820 +n02416880 +n02416964 +n02417070 +n02417242 +n02417387 +n02417534 +n02417663 +n02417785 +n02418064 +n02418465 +n02418770 +n02419056 +n02419336 +n02419634 +n02419796 +n02420509 +n02420828 +n02421136 +n02421449 +n02421792 +n02422391 +n02423218 +n02423362 +n02423589 +n02424085 +n02424305 +n02424486 +n02424589 +n02424695 +n02424909 +n02425086 +n02425228 +n02425532 +n02425887 +n02426176 +n02426481 +n02426813 +n02427032 +n02427183 +n02427470 +n02427576 +n02427724 +n02428089 +n02428349 +n02428508 +n02428842 +n02429456 +n02430045 +n02430559 +n02430643 +n02430748 +n02430830 +n02431122 +n02431337 +n02431441 +n02431542 +n02431628 +n02431785 +n02431976 +n02432291 +n02432511 +n02432704 +n02432983 +n02433318 +n02433546 +n02433729 +n02433925 +n02434190 +n02434415 +n02434712 +n02434954 +n02435216 +n02435517 +n02435853 +n02436224 +n02436353 +n02436645 +n02437136 +n02437482 +n02437971 +n02438173 +n02438272 +n02438580 +n02439033 +n02439398 +n02441326 +n02442172 +n02442336 +n02442446 +n02442572 +n02442668 +n02443015 +n02443346 +n02443808 +n02443959 +n02444251 +n02445004 +n02445171 +n02445394 +n02446206 +n02446352 +n02446645 +n02447021 +n02447762 +n02448060 +n02448318 +n02448633 +n02448885 +n02449183 +n02449350 +n02449699 +n02450034 +n02450295 +n02450426 +n02450561 +n02450677 +n02450829 +n02451125 +n02451415 +n02451575 +n02453108 +n02453611 +n02454794 +n02455135 +n02455428 +n02455720 +n02456008 +n02456275 +n02456962 +n02457945 +n02458135 +n02458517 +n02459190 +n02460009 +n02460451 +n02460817 +n02461128 +n02461830 +n02462213 +n02469248 +n02469472 +n02469914 +n02470238 +n02470325 +n02470709 +n02470899 +n02471300 +n02471762 +n02472293 +n02472987 +n02473307 +n02473554 +n02473720 +n02473857 +n02473983 +n02474110 +n02474282 +n02474605 +n02474777 +n02475078 +n02475358 +n02475669 +n02476219 +n02476567 +n02476870 +n02477028 +n02477187 +n02477329 +n02477516 +n02477782 +n02478239 +n02478875 +n02479332 +n02480153 +n02481103 +n02481235 +n02481366 +n02481500 +n02482060 +n02482286 +n02482474 +n02482650 +n02483092 +n02484322 +n02484473 +n02485225 +n02485371 +n02485536 +n02485688 +n02485988 +n02486657 +n02486908 +n02487079 +n02487547 +n02487675 +n02487847 +n02488003 +n02488415 +n02488894 +n02489589 +n02490597 +n02490811 +n02491107 +n02491329 +n02491474 +n02492356 +n02492948 +n02493224 +n02494383 +n02495242 +n02496052 +n02496913 +n02498153 +n02498743 +n02499022 +n02499316 +n02499568 +n02499808 +n02500596 +n02501583 +n02501923 +n02502006 +n02502514 +n02502807 +n02503127 +n02503517 +n02503756 +n02504770 +n02505063 +n02505238 +n02505485 +n02505998 +n02506947 +n02507148 +n02507649 +n02508021 +n02508213 +n02508346 +n02508742 +n02509197 +n02509515 +n02511730 +n02512053 +n02512752 +n02512830 +n02512938 +n02513248 +n02513355 +n02513560 +n02513727 +n02513805 +n02513939 +n02515214 +n02515713 +n02516188 +n02516776 +n02517442 +n02517938 +n02518324 +n02518622 +n02519148 +n02519340 +n02519472 +n02519686 +n02519862 +n02520147 +n02520525 +n02520810 +n02521646 +n02522399 +n02522637 +n02522722 +n02522866 +n02523110 +n02523427 +n02523877 +n02524202 +n02524524 +n02524659 +n02524928 +n02525382 +n02525703 +n02526425 +n02526818 +n02527057 +n02527271 +n02527622 +n02528163 +n02529293 +n02529772 +n02530052 +n02530188 +n02530421 +n02530637 +n02530831 +n02530999 +n02531114 +n02531625 +n02532028 +n02532272 +n02532451 +n02532602 +n02532786 +n02532918 +n02533209 +n02533545 +n02533834 +n02534165 +n02534559 +n02534734 +n02535080 +n02535163 +n02535258 +n02535537 +n02535759 +n02536165 +n02536456 +n02537085 +n02537319 +n02537525 +n02537716 +n02538010 +n02538216 +n02538406 +n02538562 +n02538985 +n02539424 +n02539573 +n02539894 +n02540412 +n02540983 +n02541257 +n02541687 +n02542017 +n02542432 +n02542958 +n02543255 +n02543565 +n02544274 +n02545841 +n02546028 +n02546331 +n02546627 +n02547014 +n02547733 +n02548247 +n02548689 +n02548884 +n02549248 +n02549376 +n02549989 +n02550203 +n02550460 +n02550655 +n02551134 +n02551668 +n02552171 +n02553028 +n02554730 +n02555863 +n02556373 +n02556846 +n02557182 +n02557318 +n02557591 +n02557749 +n02557909 +n02558206 +n02558860 +n02559144 +n02559383 +n02559862 +n02560110 +n02561108 +n02561381 +n02561514 +n02561661 +n02561803 +n02561937 +n02562315 +n02562796 +n02562971 +n02563079 +n02563182 +n02563648 +n02563792 +n02563949 +n02564270 +n02564403 +n02564720 +n02564935 +n02565072 +n02565324 +n02565573 +n02566109 +n02566489 +n02566665 +n02567334 +n02567633 +n02568087 +n02568447 +n02568959 +n02569484 +n02569631 +n02569905 +n02570164 +n02570484 +n02570838 +n02571167 +n02571652 +n02571810 +n02572196 +n02572484 +n02573249 +n02573704 +n02574271 +n02574910 +n02575325 +n02575590 +n02576223 +n02576575 +n02576906 +n02577041 +n02577164 +n02577403 +n02577662 +n02577952 +n02578233 +n02578454 +n02578771 +n02578928 +n02579303 +n02579557 +n02579762 +n02579928 +n02580336 +n02580679 +n02580830 +n02581108 +n02581482 +n02581642 +n02581957 +n02582220 +n02582349 +n02582721 +n02583567 +n02583890 +n02584145 +n02584449 +n02585872 +n02586238 +n02586543 +n02587051 +n02587300 +n02587479 +n02587618 +n02587877 +n02588286 +n02588794 +n02588945 +n02589062 +n02589196 +n02589316 +n02589623 +n02589796 +n02590094 +n02590495 +n02590702 +n02590987 +n02591330 +n02591613 +n02591911 +n02592055 +n02592371 +n02592734 +n02593019 +n02593191 +n02593453 +n02593679 +n02594250 +n02594942 +n02595056 +n02595339 +n02595702 +n02596067 +n02596252 +n02596381 +n02596720 +n02597004 +n02597367 +n02597608 +n02597818 +n02597972 +n02598134 +n02598573 +n02598878 +n02599052 +n02599347 +n02599557 +n02599958 +n02600298 +n02600503 +n02600798 +n02601344 +n02601767 +n02601921 +n02602059 +n02602405 +n02602760 +n02603317 +n02603540 +n02603862 +n02604157 +n02604480 +n02604954 +n02605316 +n02605703 +n02605936 +n02606384 +n02606751 +n02607201 +n02607470 +n02607862 +n02608284 +n02608547 +n02608860 +n02608996 +n02609302 +n02609823 +n02610066 +n02610373 +n02610664 +n02610980 +n02611561 +n02611898 +n02612167 +n02613181 +n02613572 +n02613820 +n02614140 +n02614482 +n02614653 +n02614978 +n02615298 +n02616128 +n02616397 +n02616851 +n02617537 +n02618094 +n02618513 +n02618827 +n02619165 +n02619550 +n02619861 +n02620167 +n02620578 +n02621258 +n02621908 +n02622249 +n02622547 +n02622712 +n02622955 +n02623445 +n02624167 +n02624551 +n02624807 +n02624987 +n02625258 +n02625612 +n02625851 +n02626089 +n02626265 +n02626471 +n02626762 +n02627037 +n02627292 +n02627532 +n02627835 +n02628062 +n02628259 +n02628600 +n02629230 +n02629716 +n02630281 +n02630615 +n02630739 +n02631041 +n02631330 +n02631475 +n02631628 +n02631775 +n02632039 +n02632494 +n02633422 +n02633677 +n02633977 +n02634545 +n02635154 +n02635580 +n02636170 +n02636405 +n02636550 +n02636854 +n02637179 +n02637475 +n02637977 +n02638596 +n02639087 +n02639605 +n02639922 +n02640626 +n02640857 +n02642107 +n02642644 +n02643112 +n02643316 +n02643836 +n02644113 +n02644360 +n02644501 +n02644665 +n02644817 +n02645538 +n02645691 +n02645953 +n02646667 +n02646892 +n02648035 +n02648625 +n02648916 +n02649218 +n02649546 +n02650050 +n02650413 +n02650541 +n02651060 +n02652132 +n02652668 +n02653145 +n02653497 +n02653786 +n02654112 +n02654425 +n02654745 +n02655523 +n02655848 +n02656032 +n02656301 +n02656670 +n02656969 +n02657368 +n02657694 +n02658079 +n02658531 +n02658811 +n02659176 +n02659478 +n02659808 +n02660091 +n02660208 +n02660519 +n02660640 +n02661017 +n02661473 +n02661618 +n02662239 +n02662397 +n02662559 +n02662825 +n02662993 +n02663211 +n02663485 +n02663849 +n02664285 +n02664642 +n02665250 +n02665985 +n02666501 +n02666624 +n02666943 +n02667244 +n02667379 +n02667478 +n02667576 +n02667693 +n02668393 +n02668613 +n02669295 +n02669442 +n02669534 +n02670186 +n02670382 +n02670683 +n02670935 +n02671780 +n02672152 +n02672371 +n02675077 +n02675219 +n02675522 +n02676097 +n02676261 +n02676670 +n02676938 +n02677028 +n02677136 +n02677436 +n02677718 +n02678010 +n02678384 +n02678897 +n02679142 +n02679257 +n02679961 +n02680110 +n02680512 +n02680638 +n02680754 +n02681392 +n02682311 +n02682407 +n02682569 +n02682811 +n02682922 +n02683183 +n02683323 +n02683454 +n02683558 +n02683791 +n02684248 +n02684356 +n02684515 +n02684649 +n02684962 +n02685082 +n02685253 +n02685365 +n02685701 +n02685995 +n02686121 +n02686227 +n02686379 +n02686568 +n02687423 +n02687682 +n02687821 +n02687992 +n02688273 +n02688443 +n02689144 +n02689274 +n02689434 +n02689748 +n02689819 +n02690715 +n02691156 +n02692086 +n02692232 +n02692513 +n02692680 +n02693246 +n02693413 +n02693540 +n02694045 +n02694279 +n02694426 +n02694662 +n02694966 +n02695627 +n02695762 +n02696165 +n02696246 +n02696569 +n02696843 +n02697022 +n02697221 +n02697576 +n02697675 +n02697876 +n02698244 +n02698473 +n02698634 +n02699629 +n02699770 +n02699915 +n02700064 +n02700258 +n02700895 +n02701260 +n02701730 +n02702989 +n02703124 +n02703275 +n02704645 +n02704949 +n02705201 +n02705429 +n02705944 +n02706221 +n02706806 +n02708224 +n02708433 +n02708555 +n02708711 +n02708885 +n02709101 +n02709367 +n02709637 +n02709763 +n02709908 +n02710044 +n02710201 +n02710324 +n02710429 +n02710600 +n02711237 +n02711780 +n02712545 +n02712643 +n02713003 +n02713218 +n02713364 +n02713496 +n02714315 +n02714535 +n02714751 +n02715229 +n02715513 +n02715712 +n02716626 +n02720048 +n02720576 +n02721813 +n02723165 +n02724722 +n02725872 +n02726017 +n02726210 +n02726305 +n02726681 +n02727016 +n02727141 +n02727825 +n02728440 +n02729222 +n02729837 +n02729965 +n02730265 +n02730568 +n02731251 +n02731398 +n02731629 +n02731900 +n02732072 +n02732572 +n02732827 +n02733213 +n02733524 +n02734725 +n02734835 +n02735268 +n02735361 +n02735538 +n02735688 +n02736396 +n02736798 +n02737351 +n02737660 +n02738031 +n02738271 +n02738449 +n02738535 +n02738741 +n02738859 +n02738978 +n02739123 +n02739427 +n02739550 +n02739668 +n02739889 +n02740061 +n02740300 +n02740533 +n02740764 +n02741367 +n02741475 +n02742070 +n02742194 +n02742322 +n02742468 +n02742753 +n02743426 +n02744323 +n02744844 +n02744961 +n02745492 +n02745611 +n02745816 +n02746008 +n02746225 +n02746365 +n02746595 +n02746683 +n02746978 +n02747063 +n02747672 +n02747802 +n02748183 +n02748359 +n02748491 +n02749169 +n02749292 +n02749670 +n02749790 +n02749953 +n02750070 +n02750169 +n02750320 +n02750652 +n02751067 +n02751215 +n02751295 +n02751490 +n02752199 +n02752496 +n02752615 +n02752810 +n02752917 +n02753044 +n02753394 +n02753710 +n02754103 +n02754656 +n02755140 +n02755352 +n02755529 +n02755675 +n02755823 +n02755984 +n02756098 +n02756854 +n02756977 +n02757061 +n02757337 +n02757462 +n02757714 +n02757810 +n02757927 +n02758134 +n02758490 +n02758863 +n02758960 +n02759257 +n02759387 +n02759700 +n02759963 +n02760099 +n02760199 +n02760298 +n02760429 +n02760658 +n02760855 +n02761034 +n02761206 +n02761392 +n02761557 +n02761696 +n02761834 +n02762169 +n02762371 +n02762508 +n02762725 +n02762909 +n02763083 +n02763198 +n02763306 +n02763604 +n02763714 +n02763901 +n02764044 +n02764398 +n02764505 +n02764614 +n02764779 +n02764935 +n02765028 +n02766168 +n02766320 +n02766534 +n02766792 +n02767038 +n02767147 +n02767433 +n02767665 +n02767956 +n02768114 +n02768226 +n02768433 +n02768655 +n02768973 +n02769075 +n02769290 +n02769669 +n02769963 +n02770078 +n02770211 +n02770585 +n02770721 +n02770830 +n02771004 +n02771166 +n02771286 +n02771547 +n02771750 +n02772101 +n02772435 +n02772554 +n02772700 +n02773037 +n02773838 +n02774152 +n02774630 +n02774921 +n02775039 +n02775178 +n02775483 +n02775689 +n02775813 +n02775897 +n02776007 +n02776205 +n02776505 +n02776825 +n02776978 +n02777100 +n02777402 +n02777638 +n02777734 +n02777927 +n02778131 +n02778294 +n02778456 +n02778588 +n02778669 +n02779435 +n02779609 +n02779719 +n02779971 +n02780315 +n02780445 +n02780588 +n02780704 +n02780815 +n02781121 +n02781213 +n02781338 +n02781517 +n02781764 +n02782432 +n02782602 +n02782681 +n02782778 +n02783035 +n02783324 +n02783459 +n02783900 +n02783994 +n02784124 +n02784998 +n02785648 +n02786198 +n02786331 +n02786463 +n02786611 +n02786736 +n02786837 +n02787120 +n02787269 +n02787435 +n02788021 +n02788386 +n02788462 +n02788572 +n02788689 +n02789487 +n02790669 +n02790823 +n02791532 +n02791665 +n02791795 +n02792409 +n02792552 +n02792948 +n02793089 +n02793199 +n02793296 +n02793414 +n02793684 +n02793842 +n02793930 +n02794008 +n02794368 +n02794474 +n02794664 +n02794779 +n02794972 +n02795528 +n02795670 +n02795783 +n02795978 +n02796207 +n02796318 +n02796412 +n02796623 +n02796995 +n02797535 +n02797692 +n02797881 +n02799175 +n02799323 +n02799897 +n02800213 +n02800497 +n02800675 +n02800940 +n02801047 +n02801184 +n02801450 +n02801525 +n02801823 +n02801938 +n02802215 +n02802544 +n02802721 +n02802990 +n02803349 +n02803539 +n02803666 +n02803809 +n02803934 +n02804123 +n02804252 +n02804515 +n02805283 +n02805845 +n02805983 +n02806088 +n02806379 +n02806530 +n02806762 +n02806875 +n02806992 +n02807523 +n02807616 +n02807731 +n02808185 +n02808829 +n02808968 +n02809105 +n02809241 +n02809364 +n02809491 +n02809605 +n02809736 +n02810139 +n02810270 +n02810471 +n02810782 +n02811059 +n02811204 +n02811350 +n02811468 +n02811618 +n02811719 +n02811936 +n02812201 +n02812342 +n02812631 +n02812785 +n02812949 +n02813252 +n02813399 +n02813544 +n02813645 +n02813752 +n02813981 +n02814116 +n02814338 +n02814428 +n02814774 +n02815478 +n02815749 +n02815950 +n02816494 +n02816656 +n02816768 +n02817031 +n02817251 +n02817386 +n02817650 +n02817799 +n02818135 +n02818254 +n02818687 +n02818832 +n02819697 +n02820085 +n02820210 +n02820556 +n02820675 +n02821202 +n02821415 +n02821543 +n02821627 +n02821943 +n02822064 +n02822220 +n02822399 +n02822579 +n02822762 +n02822865 +n02823124 +n02823335 +n02823510 +n02823586 +n02823848 +n02823964 +n02824058 +n02824152 +n02824319 +n02824448 +n02825153 +n02825240 +n02825442 +n02825872 +n02825961 +n02826068 +n02826259 +n02826459 +n02826589 +n02826683 +n02826812 +n02826886 +n02827148 +n02827606 +n02828115 +n02828299 +n02828427 +n02828884 +n02829246 +n02829353 +n02829510 +n02829596 +n02830157 +n02831237 +n02831335 +n02831595 +n02831724 +n02831894 +n02831998 +n02833040 +n02833140 +n02833275 +n02833403 +n02833793 +n02834027 +n02834506 +n02834642 +n02834778 +n02835412 +n02835551 +n02835724 +n02835829 +n02835915 +n02836035 +n02836174 +n02836268 +n02836392 +n02836513 +n02836607 +n02836900 +n02837134 +n02837567 +n02837887 +n02838014 +n02838178 +n02838345 +n02838577 +n02838728 +n02838958 +n02839110 +n02839351 +n02839592 +n02839910 +n02840134 +n02840515 +n02840619 +n02841063 +n02841187 +n02841506 +n02841641 +n02841847 +n02842133 +n02842573 +n02842809 +n02843029 +n02843158 +n02843276 +n02843465 +n02843553 +n02843777 +n02843909 +n02844056 +n02844214 +n02844307 +n02844714 +n02845130 +n02845293 +n02845985 +n02846141 +n02846260 +n02846511 +n02846619 +n02846733 +n02846874 +n02847461 +n02847631 +n02847852 +n02848118 +n02848216 +n02848523 +n02848806 +n02848921 +n02849154 +n02849885 +n02850060 +n02850358 +n02850732 +n02850950 +n02851099 +n02851795 +n02851939 +n02852043 +n02852173 +n02852360 +n02853016 +n02853218 +n02853336 +n02853745 +n02853870 +n02854378 +n02854532 +n02854630 +n02854739 +n02854926 +n02855089 +n02855390 +n02855701 +n02855793 +n02855925 +n02856013 +n02856237 +n02856362 +n02857365 +n02857477 +n02857644 +n02857907 +n02858304 +n02859184 +n02859343 +n02859557 +n02859729 +n02859955 +n02860415 +n02860640 +n02861022 +n02861147 +n02861286 +n02861387 +n02861509 +n02861658 +n02861777 +n02861886 +n02862048 +n02862916 +n02863014 +n02863176 +n02863340 +n02863426 +n02863536 +n02863638 +n02863750 +n02864122 +n02864504 +n02864593 +n02864987 +n02865665 +n02865931 +n02866106 +n02866386 +n02866578 +n02867401 +n02867592 +n02867715 +n02867966 +n02868240 +n02868429 +n02868546 +n02868638 +n02868975 +n02869155 +n02869249 +n02869563 +n02869737 +n02870526 +n02870676 +n02870772 +n02871005 +n02871147 +n02871314 +n02871439 +n02871631 +n02871824 +n02871963 +n02872333 +n02872529 +n02872752 +n02873520 +n02873623 +n02873733 +n02873839 +n02874086 +n02874214 +n02874336 +n02874442 +n02874537 +n02874642 +n02874750 +n02875436 +n02875626 +n02875948 +n02876084 +n02876326 +n02876457 +n02876657 +n02877266 +n02877513 +n02877642 +n02877962 +n02878107 +n02878222 +n02878425 +n02878534 +n02878628 +n02878796 +n02879087 +n02879309 +n02879422 +n02879517 +n02880189 +n02880393 +n02880546 +n02880842 +n02880940 +n02881193 +n02881546 +n02881757 +n02881906 +n02882190 +n02882301 +n02882483 +n02882647 +n02882894 +n02883004 +n02883101 +n02883344 +n02884225 +n02884450 +n02884859 +n02884994 +n02885108 +n02885233 +n02885338 +n02885462 +n02885882 +n02886321 +n02886434 +n02886599 +n02887079 +n02887209 +n02887489 +n02887832 +n02887970 +n02888270 +n02888429 +n02888569 +n02888898 +n02889425 +n02889646 +n02889856 +n02889996 +n02890188 +n02890351 +n02890513 +n02890662 +n02890804 +n02890940 +n02891188 +n02891788 +n02892304 +n02892392 +n02892499 +n02892626 +n02892948 +n02893269 +n02893418 +n02893608 +n02893692 +n02893941 +n02894024 +n02894158 +n02894337 +n02894847 +n02895008 +n02895328 +n02895438 +n02896074 +n02896294 +n02896442 +n02896694 +n02896856 +n02896949 +n02897097 +n02897389 +n02897820 +n02898093 +n02898173 +n02898269 +n02898369 +n02898585 +n02898711 +n02899439 +n02900160 +n02900459 +n02900594 +n02900705 +n02900857 +n02900987 +n02901114 +n02901259 +n02901377 +n02901481 +n02901620 +n02901793 +n02901901 +n02902079 +n02902687 +n02902816 +n02902916 +n02903006 +n02903126 +n02903204 +n02903727 +n02903852 +n02904109 +n02904233 +n02904505 +n02904640 +n02904803 +n02904927 +n02905036 +n02905152 +n02905886 +n02906963 +n02907082 +n02907296 +n02907391 +n02907656 +n02907873 +n02908123 +n02908217 +n02908773 +n02908951 +n02909053 +n02909165 +n02909285 +n02909706 +n02910145 +n02910241 +n02910542 +n02910701 +n02910864 +n02910964 +n02911332 +n02911485 +n02912065 +n02912319 +n02912557 +n02912894 +n02913152 +n02914991 +n02915904 +n02916065 +n02916179 +n02916350 +n02917377 +n02917521 +n02917607 +n02917742 +n02917964 +n02918112 +n02918330 +n02918455 +n02918595 +n02918831 +n02918964 +n02919148 +n02919308 +n02919414 +n02919648 +n02919792 +n02919890 +n02919976 +n02920083 +n02920164 +n02920259 +n02920369 +n02920503 +n02920658 +n02921029 +n02921195 +n02921292 +n02921406 +n02921592 +n02921756 +n02921884 +n02922159 +n02922292 +n02922461 +n02922578 +n02922798 +n02922877 +n02923129 +n02923535 +n02923682 +n02923915 +n02924116 +n02925009 +n02925107 +n02925385 +n02925519 +n02925666 +n02926426 +n02926591 +n02927053 +n02927764 +n02927887 +n02928049 +n02928299 +n02928413 +n02928608 +n02929184 +n02929289 +n02929462 +n02929582 +n02929923 +n02930080 +n02930214 +n02930339 +n02930645 +n02931013 +n02931148 +n02931294 +n02931417 +n02931836 +n02932019 +n02932400 +n02932523 +n02932693 +n02932891 +n02933112 +n02933340 +n02933462 +n02933649 +n02933750 +n02933990 +n02934168 +n02934451 +n02935017 +n02935387 +n02935490 +n02935658 +n02935891 +n02936176 +n02936281 +n02936402 +n02936570 +n02936714 +n02936921 +n02937010 +n02937336 +n02937958 +n02938218 +n02938321 +n02938886 +n02939763 +n02939866 +n02940289 +n02940385 +n02940570 +n02940706 +n02941095 +n02941228 +n02941845 +n02942015 +n02942147 +n02942349 +n02942460 +n02942699 +n02943241 +n02943465 +n02943686 +n02943871 +n02943964 +n02944075 +n02944146 +n02944256 +n02944459 +n02944579 +n02944826 +n02945161 +n02945813 +n02945964 +n02946127 +n02946270 +n02946348 +n02946509 +n02946753 +n02946824 +n02946921 +n02947212 +n02947660 +n02947818 +n02947977 +n02948293 +n02948403 +n02948557 +n02948834 +n02948942 +n02949084 +n02949202 +n02949356 +n02949542 +n02950018 +n02950120 +n02950186 +n02950256 +n02950482 +n02950632 +n02950943 +n02951703 +n02951843 +n02952109 +n02952237 +n02952374 +n02952485 +n02952585 +n02952674 +n02952798 +n02952935 +n02953056 +n02953197 +n02953455 +n02953552 +n02953673 +n02953850 +n02954163 +n02954340 +n02954938 +n02955065 +n02955247 +n02955540 +n02955767 +n02956393 +n02956699 +n02956795 +n02956883 +n02957008 +n02957135 +n02957252 +n02957427 +n02957755 +n02957862 +n02958343 +n02959942 +n02960352 +n02960690 +n02960903 +n02961035 +n02961225 +n02961451 +n02961544 +n02961947 +n02962061 +n02962200 +n02962414 +n02962843 +n02962938 +n02963302 +n02963503 +n02963692 +n02963821 +n02963987 +n02964075 +n02964196 +n02964295 +n02964634 +n02964843 +n02964934 +n02965024 +n02965122 +n02965216 +n02965300 +n02965529 +n02966068 +n02966545 +n02966786 +n02966942 +n02967081 +n02967170 +n02967294 +n02967407 +n02967540 +n02967626 +n02967782 +n02967991 +n02968074 +n02968210 +n02968333 +n02968473 +n02969010 +n02969163 +n02969323 +n02969527 +n02969634 +n02969886 +n02970408 +n02970534 +n02970685 +n02970849 +n02971167 +n02971473 +n02971579 +n02971691 +n02971940 +n02972397 +n02972714 +n02972934 +n02973017 +n02973236 +n02973805 +n02973904 +n02974348 +n02974454 +n02974565 +n02974697 +n02975212 +n02975589 +n02975994 +n02976123 +n02976249 +n02976350 +n02976455 +n02976552 +n02976641 +n02976815 +n02976939 +n02977330 +n02977438 +n02977619 +n02977936 +n02978055 +n02978205 +n02978367 +n02978478 +n02978753 +n02979074 +n02979290 +n02979399 +n02979516 +n02979836 +n02980036 +n02980203 +n02980625 +n02981024 +n02981198 +n02981321 +n02981565 +n02981911 +n02982232 +n02982416 +n02982515 +n02982599 +n02983072 +n02983189 +n02983357 +n02983507 +n02983904 +n02984061 +n02984203 +n02984469 +n02984699 +n02985137 +n02985606 +n02985828 +n02985963 +n02986066 +n02986160 +n02986348 +n02987047 +n02987379 +n02987492 +n02987706 +n02987823 +n02987950 +n02988066 +n02988156 +n02988486 +n02988679 +n02988963 +n02989099 +n02990373 +n02990758 +n02991048 +n02991302 +n02991847 +n02992032 +n02992368 +n02992795 +n02993194 +n02993368 +n02993546 +n02994573 +n02994743 +n02995345 +n02995871 +n02995998 +n02997391 +n02997607 +n02997910 +n02998003 +n02998107 +n02998563 +n02998696 +n02998841 +n02999138 +n02999936 +n03000530 +n03001115 +n03001282 +n03001540 +n03001627 +n03002096 +n03002210 +n03002341 +n03002555 +n03002711 +n03002816 +n03002948 +n03003091 +n03003633 +n03004275 +n03004409 +n03004531 +n03004620 +n03004713 +n03004824 +n03005033 +n03005147 +n03005285 +n03005515 +n03005619 +n03006626 +n03006788 +n03006903 +n03007130 +n03007297 +n03007444 +n03007591 +n03008177 +n03008817 +n03008976 +n03009111 +n03009269 +n03009794 +n03010473 +n03010656 +n03010795 +n03010915 +n03011018 +n03011355 +n03011741 +n03012013 +n03012159 +n03012373 +n03012499 +n03012644 +n03012734 +n03012897 +n03013006 +n03013438 +n03013580 +n03013850 +n03014440 +n03015149 +n03015254 +n03015478 +n03015631 +n03015851 +n03016209 +n03016389 +n03016609 +n03016737 +n03016868 +n03017070 +n03017698 +n03017835 +n03018209 +n03018614 +n03018712 +n03018848 +n03019198 +n03019304 +n03019434 +n03019685 +n03019806 +n03019938 +n03020034 +n03020416 +n03020692 +n03021228 +n03024064 +n03024233 +n03024333 +n03024518 +n03025070 +n03025165 +n03025250 +n03025886 +n03026907 +n03027001 +n03027108 +n03027250 +n03027505 +n03027625 +n03028596 +n03028785 +n03029066 +n03029197 +n03029296 +n03029445 +n03029925 +n03030262 +n03030353 +n03030557 +n03030880 +n03031012 +n03031152 +n03031422 +n03031756 +n03032453 +n03032811 +n03033267 +n03033362 +n03033986 +n03034244 +n03034405 +n03034516 +n03034663 +n03035252 +n03035510 +n03035715 +n03035832 +n03036022 +n03036149 +n03036244 +n03036341 +n03036469 +n03036701 +n03036866 +n03037108 +n03037228 +n03037404 +n03037590 +n03037709 +n03038041 +n03038281 +n03038480 +n03038685 +n03038870 +n03039015 +n03039259 +n03039353 +n03039493 +n03039827 +n03039947 +n03040229 +n03040376 +n03040836 +n03041114 +n03041265 +n03041449 +n03041810 +n03042139 +n03042384 +n03042697 +n03042829 +n03042984 +n03043173 +n03043274 +n03043423 +n03043693 +n03043798 +n03043958 +n03044671 +n03044801 +n03044934 +n03045074 +n03045228 +n03045337 +n03045800 +n03046029 +n03046133 +n03046257 +n03046802 +n03046921 +n03047052 +n03047171 +n03047799 +n03047941 +n03048883 +n03049066 +n03049326 +n03049457 +n03049782 +n03049924 +n03050026 +n03050453 +n03050546 +n03050655 +n03050864 +n03051041 +n03051249 +n03051396 +n03051540 +n03052464 +n03052917 +n03053047 +n03053976 +n03054491 +n03054605 +n03054901 +n03055159 +n03055418 +n03055670 +n03055857 +n03056097 +n03056215 +n03056288 +n03056493 +n03056583 +n03056873 +n03057021 +n03057541 +n03057636 +n03057724 +n03057841 +n03057920 +n03058107 +n03058603 +n03058949 +n03059103 +n03059236 +n03059366 +n03059685 +n03059934 +n03060728 +n03061050 +n03061211 +n03061345 +n03061505 +n03061674 +n03061819 +n03061893 +n03062015 +n03062122 +n03062336 +n03062651 +n03062798 +n03062985 +n03063073 +n03063199 +n03063338 +n03063485 +n03063834 +n03063968 +n03064250 +n03064350 +n03064562 +n03064758 +n03064935 +n03065243 +n03065708 +n03066232 +n03066359 +n03066464 +n03066849 +n03067093 +n03067212 +n03067339 +n03067518 +n03068181 +n03068998 +n03069752 +n03070059 +n03070193 +n03070396 +n03070587 +n03070854 +n03071021 +n03071160 +n03071288 +n03071552 +n03072056 +n03072201 +n03072440 +n03072682 +n03073296 +n03073384 +n03073545 +n03073694 +n03073977 +n03074380 +n03074855 +n03075097 +n03075248 +n03075500 +n03075634 +n03075768 +n03075946 +n03076411 +n03076623 +n03076708 +n03077442 +n03077616 +n03077741 +n03078287 +n03078506 +n03078670 +n03078802 +n03078995 +n03079136 +n03079230 +n03079494 +n03079616 +n03079741 +n03080309 +n03080497 +n03080633 +n03080731 +n03080904 +n03081859 +n03081986 +n03082127 +n03082280 +n03082450 +n03082656 +n03082807 +n03082979 +n03084420 +n03084834 +n03085219 +n03085333 +n03085602 +n03085781 +n03085915 +n03086183 +n03086457 +n03086580 +n03086670 +n03086868 +n03087069 +n03087245 +n03087366 +n03087521 +n03087643 +n03087816 +n03088389 +n03088580 +n03088707 +n03089477 +n03089753 +n03089879 +n03090000 +n03090172 +n03090437 +n03090710 +n03090856 +n03091044 +n03091223 +n03091374 +n03091907 +n03092053 +n03092166 +n03092314 +n03092476 +n03092656 +n03092883 +n03093427 +n03093792 +n03094159 +n03094503 +n03095965 +n03096439 +n03096960 +n03097362 +n03097535 +n03097673 +n03098140 +n03098515 +n03098688 +n03098806 +n03098959 +n03099147 +n03099274 +n03099454 +n03099622 +n03099771 +n03099945 +n03100346 +n03100490 +n03100897 +n03101156 +n03101302 +n03101375 +n03101517 +n03101664 +n03101796 +n03101986 +n03102371 +n03102516 +n03102654 +n03102859 +n03103128 +n03103396 +n03103563 +n03103904 +n03104019 +n03104512 +n03105088 +n03105214 +n03105306 +n03105467 +n03105645 +n03105810 +n03105974 +n03106722 +n03106898 +n03107046 +n03107488 +n03107716 +n03108455 +n03108624 +n03108759 +n03108853 +n03109033 +n03109253 +n03109693 +n03109881 +n03110202 +n03111041 +n03111177 +n03111296 +n03111690 +n03112240 +n03112719 +n03112869 +n03113152 +n03113505 +n03113657 +n03113835 +n03114041 +n03114236 +n03114379 +n03114504 +n03114743 +n03114839 +n03115014 +n03115180 +n03115400 +n03115663 +n03115762 +n03115897 +n03116008 +n03116163 +n03116530 +n03116767 +n03117199 +n03117642 +n03118346 +n03118969 +n03119203 +n03119396 +n03119510 +n03120198 +n03120491 +n03120778 +n03121040 +n03121190 +n03121298 +n03121431 +n03121897 +n03122073 +n03122202 +n03122295 +n03122748 +n03123553 +n03123666 +n03123809 +n03123917 +n03124313 +n03124474 +n03124590 +n03125057 +n03125588 +n03125870 +n03126090 +n03126385 +n03126580 +n03126927 +n03127024 +n03127203 +n03127408 +n03127531 +n03128085 +n03128248 +n03128427 +n03128519 +n03129001 +n03129471 +n03129636 +n03129753 +n03129848 +n03130066 +n03130233 +n03130563 +n03130761 +n03130866 +n03131193 +n03131669 +n03131967 +n03132076 +n03132261 +n03132438 +n03132666 +n03132776 +n03133050 +n03133415 +n03134118 +n03134232 +n03134394 +n03134853 +n03135030 +n03135532 +n03135656 +n03135788 +n03135917 +n03136051 +n03136254 +n03136369 +n03136504 +n03137473 +n03137579 +n03138128 +n03138217 +n03138344 +n03138669 +n03139089 +n03139464 +n03139640 +n03139998 +n03140126 +n03140292 +n03140431 +n03140546 +n03140652 +n03140771 +n03140900 +n03141065 +n03141327 +n03141455 +n03141612 +n03141702 +n03142099 +n03142205 +n03142325 +n03142431 +n03142679 +n03143400 +n03143572 +n03143754 +n03144156 +n03144873 +n03144982 +n03145147 +n03145277 +n03145384 +n03145522 +n03145719 +n03145843 +n03146342 +n03146449 +n03146560 +n03146687 +n03146777 +n03146846 +n03147084 +n03147156 +n03147280 +n03147509 +n03148324 +n03148518 +n03148727 +n03148808 +n03149135 +n03149401 +n03149686 +n03149810 +n03150232 +n03150511 +n03150661 +n03150795 +n03151077 +n03152303 +n03152951 +n03153246 +n03153585 +n03153948 +n03154073 +n03154316 +n03154446 +n03154616 +n03154745 +n03154895 +n03155178 +n03155502 +n03155915 +n03156071 +n03156279 +n03156405 +n03156767 +n03157348 +n03158186 +n03158414 +n03158668 +n03158796 +n03158885 +n03159535 +n03159640 +n03160001 +n03160186 +n03160740 +n03161016 +n03161450 +n03161893 +n03162297 +n03162460 +n03162556 +n03162714 +n03162818 +n03163222 +n03163381 +n03163488 +n03163798 +n03163973 +n03164192 +n03164344 +n03164605 +n03164722 +n03164929 +n03165096 +n03165211 +n03165466 +n03165616 +n03165823 +n03165955 +n03166120 +n03166514 +n03166600 +n03166685 +n03166809 +n03166951 +n03167153 +n03167978 +n03168107 +n03168217 +n03168543 +n03168663 +n03168774 +n03168933 +n03169063 +n03169176 +n03170292 +n03170459 +n03170635 +n03170872 +n03171228 +n03171356 +n03171635 +n03171910 +n03172038 +n03172738 +n03172965 +n03173270 +n03173387 +n03173929 +n03174079 +n03174450 +n03174731 +n03175081 +n03175189 +n03175301 +n03175457 +n03175604 +n03175843 +n03175983 +n03176238 +n03176386 +n03176594 +n03176763 +n03177059 +n03177165 +n03177708 +n03178000 +n03178173 +n03178430 +n03178538 +n03178674 +n03179910 +n03180384 +n03180504 +n03180732 +n03180865 +n03180969 +n03181293 +n03181667 +n03182140 +n03182232 +n03182912 +n03183080 +n03185868 +n03186199 +n03186285 +n03186818 +n03187037 +n03187153 +n03187268 +n03187751 +n03188290 +n03188725 +n03188871 +n03189083 +n03189311 +n03189818 +n03190458 +n03191286 +n03191451 +n03191561 +n03191776 +n03192543 +n03192907 +n03193107 +n03193260 +n03193423 +n03193597 +n03193754 +n03194170 +n03194297 +n03194812 +n03194992 +n03195332 +n03195485 +n03195799 +n03195959 +n03196062 +n03196324 +n03196598 +n03196990 +n03197201 +n03197446 +n03198223 +n03198500 +n03199358 +n03199488 +n03199647 +n03199775 +n03199901 +n03200231 +n03200357 +n03200539 +n03200701 +n03200906 +n03201035 +n03201529 +n03201638 +n03201776 +n03201895 +n03201996 +n03202354 +n03202481 +n03202760 +n03202940 +n03203089 +n03203806 +n03204134 +n03204306 +n03204436 +n03204558 +n03204955 +n03205143 +n03205304 +n03205458 +n03205574 +n03205669 +n03205903 +n03206023 +n03206158 +n03206282 +n03206405 +n03206602 +n03206718 +n03206908 +n03207305 +n03207548 +n03207630 +n03207835 +n03208556 +n03209359 +n03209477 +n03209666 +n03209910 +n03210245 +n03210372 +n03210552 +n03210683 +n03211117 +n03211413 +n03211616 +n03211789 +n03212114 +n03212247 +n03212406 +n03212811 +n03213014 +n03213361 +n03213538 +n03213715 +n03213826 +n03214253 +n03214450 +n03214582 +n03214966 +n03215076 +n03215191 +n03215337 +n03215508 +n03215749 +n03215930 +n03216199 +n03216402 +n03216562 +n03216710 +n03217653 +n03217739 +n03217889 +n03218446 +n03219010 +n03219135 +n03219483 +n03219612 +n03219859 +n03219966 +n03220095 +n03220237 +n03220692 +n03221059 +n03221351 +n03221540 +n03221720 +n03222176 +n03222318 +n03222516 +n03222722 +n03222857 +n03223162 +n03223441 +n03223553 +n03223686 +n03223923 +n03224490 +n03224603 +n03224753 +n03224893 +n03225108 +n03225458 +n03225616 +n03225777 +n03225988 +n03226090 +n03226254 +n03226375 +n03226538 +n03226880 +n03227010 +n03227184 +n03227317 +n03227721 +n03227856 +n03228016 +n03228254 +n03228365 +n03228533 +n03228692 +n03228796 +n03228967 +n03229115 +n03229244 +n03229526 +n03231160 +n03231368 +n03231819 +n03232309 +n03232417 +n03232543 +n03232815 +n03232923 +n03233123 +n03233624 +n03233744 +n03233905 +n03234164 +n03234952 +n03235042 +n03235180 +n03235327 +n03235796 +n03235979 +n03236093 +n03236217 +n03236423 +n03236580 +n03236735 +n03237212 +n03237340 +n03237416 +n03237639 +n03237839 +n03237992 +n03238131 +n03238286 +n03238586 +n03238762 +n03238879 +n03239054 +n03239259 +n03239607 +n03239726 +n03240140 +n03240892 +n03241093 +n03241335 +n03241496 +n03241903 +n03242120 +n03242264 +n03242390 +n03242506 +n03242995 +n03243218 +n03243625 +n03244047 +n03244231 +n03244388 +n03244775 +n03244919 +n03245271 +n03245421 +n03245724 +n03245889 +n03246197 +n03246312 +n03246454 +n03246653 +n03246933 +n03247083 +n03247351 +n03247495 +n03248835 +n03249342 +n03249956 +n03250089 +n03250279 +n03250405 +n03250588 +n03250952 +n03251100 +n03251280 +n03251533 +n03251766 +n03251932 +n03252231 +n03252324 +n03252422 +n03252637 +n03252787 +n03253071 +n03253187 +n03253279 +n03253714 +n03253796 +n03253886 +n03254046 +n03254189 +n03254374 +n03254625 +n03254737 +n03254862 +n03255167 +n03255322 +n03255488 +n03255899 +n03256032 +n03256166 +n03256472 +n03256631 +n03256788 +n03256928 +n03257065 +n03257210 +n03257586 +n03258192 +n03258330 +n03258456 +n03258577 +n03258905 +n03259009 +n03259401 +n03259505 +n03260206 +n03260504 +n03260733 +n03260849 +n03261019 +n03261263 +n03261395 +n03261603 +n03261776 +n03262072 +n03262248 +n03262519 +n03262717 +n03262809 +n03262932 +n03263076 +n03263338 +n03263640 +n03263758 +n03264906 +n03265032 +n03265754 +n03266195 +n03266371 +n03266620 +n03266749 +n03267113 +n03267468 +n03267696 +n03267821 +n03268142 +n03268311 +n03268645 +n03268790 +n03268918 +n03269073 +n03269203 +n03269401 +n03270165 +n03270695 +n03270854 +n03271030 +n03271260 +n03271376 +n03271765 +n03271865 +n03272125 +n03272239 +n03272383 +n03272810 +n03272940 +n03273061 +n03273551 +n03273740 +n03273913 +n03274265 +n03274435 +n03274561 +n03274796 +n03275125 +n03275311 +n03275566 +n03275681 +n03275864 +n03276179 +n03276696 +n03276839 +n03277004 +n03277149 +n03277459 +n03277602 +n03277771 +n03278248 +n03278914 +n03279153 +n03279364 +n03279508 +n03279804 +n03279918 +n03280216 +n03280394 +n03280644 +n03281145 +n03281524 +n03281673 +n03282060 +n03282295 +n03282401 +n03283221 +n03283413 +n03283827 +n03284308 +n03284482 +n03284743 +n03284886 +n03284981 +n03285578 +n03285730 +n03285912 +n03286572 +n03287351 +n03287733 +n03288003 +n03288500 +n03288643 +n03288742 +n03288886 +n03289660 +n03289985 +n03290096 +n03290195 +n03291413 +n03291551 +n03291741 +n03291963 +n03292085 +n03292362 +n03292475 +n03292603 +n03292736 +n03292960 +n03293095 +n03293741 +n03293863 +n03294048 +n03294604 +n03294833 +n03295012 +n03295140 +n03295246 +n03295928 +n03296081 +n03296217 +n03296328 +n03296478 +n03296963 +n03297103 +n03297226 +n03297644 +n03297735 +n03298089 +n03298352 +n03298716 +n03298858 +n03299406 +n03300216 +n03300443 +n03301175 +n03301291 +n03301389 +n03301568 +n03301833 +n03301940 +n03302671 +n03302790 +n03302938 +n03303217 +n03303669 +n03303831 +n03304197 +n03304323 +n03304465 +n03305300 +n03305522 +n03305953 +n03306385 +n03306869 +n03307037 +n03307573 +n03307792 +n03308152 +n03308481 +n03308614 +n03309110 +n03309356 +n03309465 +n03309687 +n03309808 +n03313333 +n03314227 +n03314378 +n03314608 +n03314884 +n03315644 +n03315805 +n03315990 +n03316105 +n03316406 +n03316873 +n03317233 +n03317510 +n03317673 +n03317788 +n03317889 +n03318136 +n03318294 +n03318865 +n03318983 +n03319167 +n03319457 +n03319576 +n03319745 +n03320046 +n03320262 +n03320421 +n03320519 +n03320845 +n03320959 +n03321103 +n03321419 +n03321563 +n03321843 +n03321954 +n03322570 +n03322704 +n03322836 +n03322940 +n03323096 +n03323211 +n03323319 +n03323703 +n03324629 +n03324814 +n03324928 +n03325088 +n03325288 +n03325403 +n03325691 +n03325941 +n03326073 +n03326371 +n03326475 +n03326660 +n03326795 +n03326948 +n03327133 +n03327234 +n03327553 +n03327691 +n03327841 +n03328201 +n03329302 +n03329536 +n03329663 +n03330002 +n03330665 +n03330792 +n03330947 +n03331077 +n03331244 +n03331599 +n03332005 +n03332173 +n03332271 +n03332393 +n03332591 +n03332784 +n03332989 +n03333129 +n03333252 +n03333349 +n03333610 +n03333711 +n03333851 +n03334017 +n03334291 +n03334382 +n03334492 +n03334912 +n03335030 +n03335333 +n03335461 +n03335846 +n03336168 +n03336282 +n03336575 +n03336742 +n03336839 +n03337383 +n03337494 +n03337822 +n03338287 +n03338821 +n03339296 +n03339529 +n03339643 +n03340009 +n03340723 +n03340923 +n03341035 +n03341153 +n03341297 +n03341606 +n03342015 +n03342127 +n03342262 +n03342432 +n03342657 +n03342863 +n03342961 +n03343047 +n03343234 +n03343354 +n03343560 +n03343737 +n03343853 +n03344305 +n03344509 +n03344642 +n03344784 +n03344935 +n03345837 +n03346135 +n03346289 +n03346455 +n03347472 +n03347617 +n03348142 +n03348868 +n03349020 +n03349296 +n03349367 +n03349469 +n03349599 +n03349771 +n03349892 +n03350204 +n03350352 +n03350456 +n03350602 +n03351151 +n03351262 +n03351434 +n03351979 +n03352232 +n03352366 +n03352628 +n03352961 +n03353281 +n03353951 +n03354207 +n03354903 +n03355468 +n03355768 +n03356038 +n03356279 +n03356446 +n03356559 +n03356858 +n03356982 +n03357081 +n03357267 +n03357716 +n03358172 +n03358380 +n03358726 +n03358841 +n03359137 +n03359285 +n03359436 +n03359566 +n03360133 +n03360300 +n03360431 +n03360622 +n03360731 +n03361109 +n03361297 +n03361380 +n03361550 +n03361683 +n03362639 +n03362771 +n03362890 +n03363363 +n03363549 +n03363749 +n03364008 +n03364156 +n03364599 +n03364937 +n03365231 +n03365374 +n03365592 +n03365991 +n03366464 +n03366721 +n03366823 +n03366974 +n03367059 +n03367321 +n03367410 +n03367545 +n03367875 +n03367969 +n03368048 +n03368352 +n03369276 +n03369407 +n03369512 +n03369866 +n03370387 +n03370646 +n03371875 +n03372549 +n03372822 +n03372933 +n03373237 +n03373611 +n03373943 +n03374102 +n03374282 +n03374372 +n03374473 +n03374570 +n03374649 +n03374838 +n03375171 +n03375329 +n03375575 +n03376159 +n03376279 +n03376771 +n03376938 +n03378005 +n03378174 +n03378342 +n03378442 +n03378593 +n03378765 +n03379204 +n03379343 +n03379719 +n03379828 +n03379989 +n03380301 +n03380647 +n03380724 +n03380867 +n03381126 +n03381231 +n03381450 +n03381565 +n03381776 +n03382104 +n03382292 +n03382413 +n03382533 +n03382708 +n03382856 +n03382969 +n03383099 +n03383211 +n03383378 +n03383468 +n03383562 +n03383821 +n03384167 +n03384891 +n03385295 +n03385557 +n03386011 +n03386343 +n03386544 +n03386726 +n03386870 +n03387323 +n03387653 +n03388323 +n03388711 +n03388990 +n03389611 +n03389761 +n03389889 +n03389983 +n03390075 +n03390327 +n03390673 +n03390786 +n03390983 +n03391301 +n03391613 +n03391770 +n03392648 +n03392741 +n03393017 +n03393199 +n03393324 +n03393761 +n03394149 +n03394272 +n03394480 +n03394649 +n03395256 +n03395401 +n03395514 +n03395859 +n03396074 +n03396580 +n03396654 +n03396997 +n03397087 +n03397266 +n03397412 +n03397532 +n03397947 +n03398153 +n03398228 +n03399579 +n03399677 +n03399761 +n03399971 +n03400972 +n03401129 +n03401279 +n03401721 +n03402188 +n03402369 +n03402511 +n03402785 +n03402941 +n03403643 +n03404012 +n03404149 +n03404360 +n03404449 +n03404900 +n03405111 +n03405265 +n03405595 +n03405725 +n03406759 +n03406966 +n03407369 +n03407865 +n03408054 +n03408264 +n03408340 +n03408444 +n03409297 +n03409393 +n03409591 +n03409920 +n03410022 +n03410147 +n03410303 +n03410423 +n03410571 +n03410740 +n03410938 +n03411079 +n03411208 +n03411339 +n03411927 +n03412058 +n03412220 +n03412387 +n03412511 +n03412906 +n03413124 +n03413264 +n03413428 +n03413684 +n03413828 +n03414029 +n03414162 +n03414676 +n03415252 +n03415486 +n03415626 +n03415749 +n03415868 +n03416094 +n03416489 +n03416640 +n03416775 +n03416900 +n03417202 +n03417345 +n03417749 +n03417970 +n03418158 +n03418242 +n03418402 +n03418618 +n03418749 +n03418915 +n03419014 +n03420345 +n03420801 +n03420935 +n03421117 +n03421324 +n03421485 +n03421669 +n03421768 +n03421960 +n03422072 +n03422484 +n03422589 +n03422771 +n03423099 +n03423224 +n03423306 +n03423479 +n03423568 +n03423719 +n03423877 +n03424204 +n03424489 +n03424630 +n03424862 +n03425241 +n03425325 +n03425595 +n03425769 +n03426134 +n03426285 +n03426462 +n03426574 +n03426871 +n03427202 +n03427296 +n03428090 +n03428226 +n03428349 +n03429003 +n03429137 +n03429288 +n03429682 +n03429771 +n03429914 +n03430091 +n03430313 +n03430418 +n03430551 +n03430959 +n03431243 +n03431570 +n03431745 +n03432061 +n03432129 +n03432360 +n03432509 +n03433247 +n03433637 +n03433877 +n03434188 +n03434285 +n03434830 +n03435593 +n03435743 +n03435991 +n03436075 +n03436182 +n03436417 +n03436549 +n03436656 +n03436772 +n03436891 +n03436990 +n03437184 +n03437295 +n03437430 +n03437581 +n03437741 +n03437829 +n03437941 +n03438071 +n03438257 +n03438661 +n03438780 +n03438863 +n03439348 +n03439631 +n03439814 +n03440216 +n03440682 +n03440876 +n03441112 +n03441345 +n03441465 +n03441582 +n03442288 +n03442487 +n03442597 +n03442756 +n03443005 +n03443149 +n03443543 +n03443912 +n03445326 +n03445617 +n03446070 +n03446268 +n03446832 +n03447075 +n03447358 +n03447894 +n03448031 +n03448590 +n03448696 +n03448956 +n03449217 +n03449309 +n03449451 +n03449564 +n03449858 +n03450516 +n03450734 +n03450881 +n03450974 +n03451120 +n03451253 +n03451365 +n03451711 +n03451798 +n03452267 +n03452449 +n03452594 +n03453231 +n03453320 +n03453443 +n03454110 +n03454211 +n03454442 +n03454536 +n03454707 +n03454885 +n03455355 +n03455488 +n03455642 +n03455802 +n03456024 +n03456186 +n03456299 +n03456447 +n03456548 +n03456665 +n03457008 +n03457451 +n03457686 +n03458271 +n03458422 +n03459328 +n03459591 +n03459914 +n03460040 +n03460147 +n03460297 +n03460455 +n03460899 +n03461288 +n03461651 +n03461882 +n03461988 +n03462110 +n03462315 +n03462747 +n03462972 +n03463185 +n03463381 +n03463666 +n03464053 +n03464467 +n03464628 +n03464952 +n03465040 +n03465151 +n03465320 +n03465426 +n03465500 +n03465605 +n03465718 +n03465818 +n03466162 +n03466493 +n03466600 +n03466839 +n03466947 +n03467254 +n03467380 +n03467517 +n03467796 +n03467887 +n03467984 +n03468570 +n03468696 +n03468821 +n03469031 +n03469175 +n03469493 +n03469832 +n03469903 +n03470005 +n03470222 +n03470387 +n03470629 +n03470948 +n03471030 +n03471190 +n03471347 +n03471779 +n03472232 +n03472535 +n03472672 +n03472796 +n03472937 +n03473078 +n03473227 +n03473465 +n03473817 +n03473966 +n03474167 +n03474352 +n03474779 +n03474896 +n03475581 +n03475674 +n03475823 +n03475961 +n03476083 +n03476313 +n03476542 +n03477143 +n03477303 +n03477410 +n03477512 +n03477773 +n03477902 +n03478756 +n03478907 +n03479121 +n03479266 +n03479397 +n03479502 +n03480579 +n03480719 +n03480973 +n03481521 +n03482001 +n03482128 +n03482252 +n03482523 +n03482877 +n03483086 +n03483230 +n03483531 +n03483637 +n03483823 +n03483971 +n03484083 +n03484487 +n03484576 +n03484809 +n03484931 +n03485198 +n03485309 +n03485575 +n03487090 +n03487331 +n03487444 +n03487533 +n03487642 +n03487774 +n03487886 +n03488111 +n03488188 +n03488438 +n03488603 +n03488784 +n03488887 +n03489048 +n03489162 +n03490006 +n03490119 +n03490324 +n03490449 +n03490649 +n03490784 +n03490884 +n03491032 +n03491724 +n03491988 +n03492087 +n03492250 +n03492922 +n03493219 +n03493792 +n03493911 +n03494537 +n03494706 +n03495039 +n03495570 +n03495671 +n03495941 +n03496183 +n03496296 +n03496486 +n03496612 +n03497100 +n03497352 +n03497657 +n03498441 +n03498536 +n03498662 +n03498781 +n03498866 +n03499354 +n03499468 +n03499907 +n03500090 +n03500209 +n03500295 +n03500389 +n03500457 +n03500557 +n03500699 +n03500838 +n03500971 +n03501152 +n03501288 +n03501520 +n03501614 +n03502200 +n03502331 +n03502509 +n03502777 +n03502897 +n03503097 +n03503233 +n03503358 +n03503477 +n03503567 +n03503718 +n03503997 +n03504205 +n03504293 +n03504723 +n03505015 +n03505133 +n03505383 +n03505504 +n03505667 +n03505764 +n03506028 +n03506184 +n03506370 +n03506560 +n03506727 +n03506880 +n03507241 +n03507458 +n03507658 +n03507963 +n03508101 +n03508485 +n03508881 +n03509394 +n03509608 +n03509843 +n03510072 +n03510244 +n03510384 +n03510487 +n03510583 +n03510866 +n03510987 +n03511175 +n03511333 +n03512030 +n03512147 +n03512452 +n03512624 +n03512911 +n03513137 +n03513376 +n03514129 +n03514340 +n03514451 +n03514693 +n03514894 +n03515338 +n03515934 +n03516266 +n03516367 +n03516647 +n03516844 +n03516996 +n03517509 +n03517647 +n03517760 +n03517899 +n03517982 +n03518135 +n03518230 +n03518305 +n03518445 +n03518631 +n03518829 +n03518943 +n03519081 +n03519226 +n03519387 +n03519674 +n03519848 +n03520493 +n03521076 +n03521431 +n03521544 +n03521675 +n03521771 +n03521899 +n03522003 +n03522100 +n03522634 +n03522863 +n03522990 +n03523134 +n03523398 +n03523506 +n03523987 +n03524150 +n03524287 +n03524425 +n03524574 +n03524745 +n03524976 +n03525074 +n03525252 +n03525454 +n03525693 +n03525827 +n03526062 +n03527149 +n03527565 +n03527675 +n03528100 +n03528263 +n03528523 +n03528901 +n03529175 +n03529444 +n03529629 +n03530189 +n03530511 +n03530910 +n03531281 +n03531447 +n03531546 +n03531691 +n03531982 +n03532342 +n03532919 +n03533014 +n03533392 +n03533486 +n03533654 +n03533845 +n03534695 +n03534776 +n03535024 +n03535284 +n03535647 +n03536122 +n03536568 +n03536761 +n03537085 +n03537241 +n03537412 +n03537550 +n03538037 +n03538179 +n03538300 +n03538542 +n03538634 +n03538817 +n03538957 +n03539103 +n03539293 +n03539433 +n03539546 +n03539678 +n03539754 +n03540090 +n03540267 +n03540476 +n03540595 +n03540914 +n03541091 +n03541269 +n03541393 +n03541537 +n03541696 +n03541923 +n03542333 +n03542605 +n03542727 +n03542860 +n03543012 +n03543112 +n03543254 +n03543394 +n03543511 +n03543603 +n03543735 +n03543945 +n03544238 +n03544360 +n03545150 +n03545470 +n03545585 +n03545756 +n03545961 +n03546112 +n03546235 +n03546340 +n03547054 +n03547229 +n03547397 +n03547530 +n03547861 +n03548086 +n03548195 +n03548320 +n03548402 +n03548533 +n03548626 +n03548930 +n03549199 +n03549350 +n03549473 +n03549589 +n03549732 +n03549897 +n03550153 +n03550289 +n03550420 +n03551084 +n03551395 +n03551582 +n03551790 +n03552001 +n03552449 +n03552749 +n03553019 +n03553248 +n03553486 +n03554375 +n03554460 +n03554645 +n03555006 +n03555217 +n03555426 +n03555564 +n03555662 +n03555862 +n03555996 +n03556173 +n03556679 +n03556811 +n03556992 +n03557270 +n03557360 +n03557590 +n03557692 +n03557840 +n03558007 +n03558176 +n03558404 +n03558633 +n03558739 +n03559373 +n03559531 +n03559999 +n03560430 +n03560860 +n03561047 +n03561169 +n03561573 +n03562565 +n03563200 +n03563460 +n03563710 +n03563967 +n03564849 +n03565288 +n03565565 +n03565710 +n03565830 +n03565991 +n03566193 +n03566329 +n03566555 +n03566730 +n03566860 +n03567066 +n03567635 +n03567788 +n03567912 +n03568117 +n03568818 +n03569014 +n03569174 +n03569293 +n03569494 +n03571280 +n03571439 +n03571625 +n03571853 +n03571942 +n03572107 +n03572205 +n03572321 +n03572631 +n03573574 +n03573848 +n03574243 +n03574416 +n03574555 +n03574816 +n03575958 +n03576215 +n03576443 +n03576955 +n03577090 +n03577312 +n03577474 +n03577672 +n03577818 +n03578055 +n03578251 +n03578656 +n03578981 +n03579538 +n03579982 +n03580518 +n03580615 +n03580845 +n03580990 +n03581125 +n03581531 +n03581897 +n03582508 +n03582959 +n03583419 +n03583621 +n03584400 +n03585073 +n03585337 +n03585438 +n03585551 +n03585682 +n03585778 +n03585875 +n03586219 +n03586631 +n03586911 +n03587205 +n03588216 +n03588841 +n03588951 +n03589313 +n03589513 +n03589672 +n03589791 +n03590306 +n03590475 +n03590588 +n03590932 +n03591116 +n03591313 +n03591592 +n03591798 +n03591901 +n03592245 +n03592669 +n03592773 +n03592931 +n03593122 +n03593222 +n03593526 +n03593862 +n03594010 +n03594148 +n03594277 +n03594523 +n03595055 +n03595264 +n03595409 +n03595523 +n03595860 +n03596099 +n03596285 +n03596543 +n03597147 +n03597317 +n03597916 +n03598151 +n03598299 +n03598385 +n03598515 +n03598646 +n03598783 +n03599964 +n03600285 +n03600475 +n03600722 +n03600977 +n03601442 +n03601638 +n03601840 +n03602081 +n03602194 +n03602365 +n03602686 +n03602790 +n03603442 +n03603594 +n03603722 +n03604156 +n03604311 +n03604400 +n03604536 +n03604629 +n03604763 +n03604843 +n03605417 +n03605504 +n03605598 +n03605722 +n03605915 +n03606106 +n03606251 +n03606347 +n03606465 +n03607029 +n03607186 +n03607527 +n03607659 +n03607923 +n03608504 +n03609147 +n03609235 +n03609397 +n03609542 +n03609786 +n03609959 +n03610098 +n03610418 +n03610524 +n03610682 +n03610836 +n03610992 +n03612010 +n03612814 +n03612965 +n03613294 +n03613592 +n03614007 +n03614383 +n03614532 +n03614782 +n03614887 +n03615300 +n03615406 +n03615563 +n03615655 +n03615790 +n03616091 +n03616225 +n03616428 +n03616763 +n03616979 +n03617095 +n03617312 +n03617594 +n03617834 +n03618101 +n03618339 +n03618546 +n03618678 +n03618797 +n03618982 +n03619050 +n03619196 +n03619275 +n03619396 +n03619650 +n03619793 +n03619890 +n03620052 +n03620353 +n03620967 +n03621049 +n03621377 +n03621694 +n03622058 +n03622401 +n03622526 +n03622839 +n03622931 +n03623338 +n03623556 +n03624134 +n03624400 +n03624767 +n03625355 +n03625539 +n03625646 +n03625943 +n03626115 +n03626272 +n03626418 +n03626502 +n03626760 +n03627954 +n03628071 +n03628215 +n03628421 +n03628511 +n03628728 +n03628831 +n03628984 +n03629100 +n03629231 +n03629520 +n03629643 +n03630262 +n03631177 +n03631811 +n03631922 +n03632100 +n03632577 +n03632729 +n03632852 +n03632963 +n03633341 +n03633632 +n03633886 +n03634034 +n03634899 +n03635032 +n03635108 +n03635330 +n03635516 +n03635668 +n03635932 +n03636248 +n03636649 +n03637027 +n03637181 +n03637480 +n03637787 +n03637898 +n03638014 +n03638180 +n03638623 +n03638743 +n03638883 +n03639077 +n03639230 +n03639497 +n03639675 +n03639880 +n03640850 +n03640988 +n03641569 +n03641947 +n03642144 +n03642341 +n03642444 +n03642573 +n03643149 +n03643253 +n03643491 +n03643737 +n03643907 +n03644073 +n03644378 +n03644858 +n03645011 +n03645168 +n03645290 +n03645577 +n03646020 +n03646148 +n03646296 +n03646809 +n03646916 +n03647423 +n03647520 +n03648219 +n03648431 +n03648667 +n03649003 +n03649161 +n03649288 +n03649674 +n03649797 +n03650551 +n03651388 +n03651605 +n03651843 +n03652100 +n03652389 +n03652729 +n03652826 +n03652932 +n03653110 +n03653220 +n03653454 +n03653583 +n03653740 +n03653833 +n03653975 +n03654576 +n03654826 +n03655072 +n03655470 +n03655720 +n03656484 +n03656957 +n03657239 +n03657511 +n03658102 +n03658635 +n03658858 +n03659292 +n03659686 +n03659809 +n03659950 +n03660124 +n03660562 +n03660909 +n03661340 +n03662301 +n03662452 +n03662719 +n03662887 +n03663433 +n03663531 +n03663910 +n03664159 +n03664675 +n03664840 +n03664943 +n03665232 +n03665366 +n03665851 +n03665924 +n03666238 +n03666362 +n03666917 +n03667060 +n03667235 +n03667552 +n03667664 +n03667829 +n03668067 +n03668279 +n03668488 +n03668803 +n03669245 +n03669534 +n03669886 +n03671914 +n03672521 +n03672827 +n03673270 +n03673450 +n03673767 +n03674270 +n03674440 +n03674731 +n03674842 +n03675076 +n03675235 +n03675445 +n03675558 +n03675907 +n03676087 +n03676623 +n03676759 +n03677115 +n03677682 +n03677766 +n03678558 +n03678729 +n03678879 +n03679384 +n03679712 +n03680248 +n03680512 +n03680734 +n03680858 +n03680942 +n03681477 +n03681813 +n03682380 +n03682487 +n03682877 +n03683079 +n03683341 +n03683457 +n03683606 +n03683708 +n03683995 +n03684143 +n03684224 +n03684489 +n03684611 +n03684740 +n03684823 +n03685307 +n03685486 +n03685640 +n03685820 +n03686130 +n03686363 +n03686470 +n03686924 +n03687137 +n03687928 +n03688066 +n03688192 +n03688405 +n03688504 +n03688605 +n03688707 +n03688832 +n03688943 +n03689157 +n03689570 +n03690168 +n03690279 +n03690473 +n03690851 +n03691817 +n03692004 +n03692136 +n03692272 +n03692379 +n03692842 +n03693293 +n03693474 +n03693707 +n03693860 +n03694196 +n03694356 +n03694639 +n03694761 +n03694949 +n03695122 +n03695452 +n03695616 +n03695753 +n03695857 +n03695957 +n03696065 +n03696301 +n03696445 +n03696568 +n03696746 +n03696909 +n03697366 +n03697552 +n03697812 +n03697913 +n03698123 +n03698226 +n03698360 +n03698604 +n03698723 +n03698815 +n03699280 +n03699591 +n03699754 +n03699975 +n03700963 +n03701191 +n03701391 +n03701640 +n03701790 +n03702248 +n03702440 +n03702582 +n03703075 +n03703203 +n03703463 +n03703590 +n03703730 +n03703862 +n03703945 +n03704549 +n03704834 +n03705379 +n03705808 +n03706415 +n03706653 +n03706939 +n03707171 +n03707372 +n03707597 +n03707766 +n03708036 +n03708425 +n03708843 +n03708962 +n03709206 +n03709363 +n03709545 +n03709644 +n03709960 +n03710079 +n03710294 +n03710421 +n03710528 +n03710937 +n03711044 +n03711711 +n03711999 +n03712111 +n03712337 +n03712444 +n03712887 +n03712981 +n03713069 +n03713151 +n03713436 +n03714235 +n03715114 +n03715275 +n03715386 +n03715669 +n03715892 +n03716228 +n03716887 +n03716966 +n03717131 +n03717285 +n03717447 +n03718212 +n03718335 +n03718458 +n03718581 +n03718699 +n03718789 +n03718935 +n03719053 +n03719343 +n03719560 +n03719743 +n03720005 +n03720163 +n03720665 +n03721047 +n03721252 +n03721590 +n03722007 +n03722288 +n03722646 +n03722944 +n03723153 +n03723267 +n03723439 +n03723781 +n03723885 +n03724066 +n03724176 +n03724417 +n03724538 +n03724623 +n03724756 +n03725035 +n03725506 +n03725600 +n03725717 +n03725869 +n03726116 +n03726233 +n03726371 +n03726516 +n03726760 +n03726993 +n03727067 +n03727465 +n03727605 +n03727837 +n03727946 +n03728437 +n03728982 +n03729131 +n03729308 +n03729402 +n03729482 +n03729647 +n03729951 +n03730153 +n03730334 +n03730494 +n03730655 +n03730788 +n03730893 +n03731019 +n03731483 +n03731695 +n03731882 +n03732020 +n03732114 +n03732458 +n03732543 +n03732658 +n03733465 +n03733547 +n03733644 +n03733925 +n03735637 +n03735963 +n03736064 +n03736147 +n03736269 +n03736372 +n03736470 +n03736970 +n03738066 +n03738241 +n03738472 +n03739518 +n03739693 +n03742019 +n03742238 +n03743279 +n03743902 +n03744276 +n03744684 +n03744840 +n03745146 +n03745487 +n03745571 +n03746005 +n03746155 +n03746330 +n03746486 +n03748162 +n03749504 +n03749634 +n03749807 +n03750206 +n03750437 +n03750614 +n03751065 +n03751269 +n03751458 +n03751590 +n03751757 +n03752071 +n03752185 +n03752398 +n03752922 +n03753077 +n03753514 +n03757604 +n03758089 +n03758220 +n03758894 +n03758992 +n03759243 +n03759432 +n03759661 +n03760310 +n03760671 +n03760944 +n03761588 +n03761731 +n03762238 +n03762332 +n03762434 +n03762602 +n03762982 +n03763727 +n03764276 +n03764606 +n03764822 +n03764995 +n03765128 +n03765467 +n03765561 +n03765934 +n03766044 +n03766218 +n03766322 +n03766508 +n03766600 +n03766697 +n03766935 +n03767112 +n03767203 +n03767459 +n03767745 +n03767966 +n03768132 +n03768683 +n03768823 +n03768916 +n03769610 +n03769722 +n03770085 +n03770224 +n03770316 +n03770520 +n03770834 +n03770954 +n03772077 +n03772269 +n03772584 +n03772674 +n03773035 +n03773835 +n03774327 +n03774461 +n03775199 +n03775388 +n03775636 +n03775747 +n03775847 +n03776167 +n03776877 +n03776997 +n03777126 +n03778459 +n03778817 +n03779000 +n03779128 +n03779246 +n03779370 +n03779884 +n03780047 +n03780799 +n03781055 +n03781467 +n03781594 +n03781683 +n03781787 +n03782190 +n03782794 +n03782929 +n03783304 +n03783430 +n03783575 +n03783873 +n03784139 +n03784270 +n03784793 +n03784896 +n03785142 +n03785237 +n03785499 +n03785721 +n03786096 +n03786194 +n03786313 +n03786621 +n03786715 +n03787523 +n03788047 +n03788498 +n03788601 +n03788914 +n03789171 +n03789400 +n03789603 +n03789794 +n03789946 +n03790230 +n03790512 +n03790755 +n03790953 +n03791235 +n03792048 +n03792334 +n03792526 +n03793850 +n03794136 +n03794798 +n03795123 +n03795269 +n03795758 +n03795976 +n03796181 +n03796522 +n03796605 +n03796848 +n03796974 +n03797062 +n03797182 +n03797264 +n03797390 +n03797896 +n03798061 +n03798442 +n03798610 +n03798982 +n03799113 +n03799240 +n03799375 +n03799610 +n03799876 +n03800371 +n03800485 +n03800563 +n03800772 +n03800933 +n03801353 +n03801533 +n03801671 +n03801760 +n03801880 +n03802007 +n03802228 +n03802393 +n03802643 +n03802800 +n03802973 +n03803116 +n03803780 +n03804211 +n03805180 +n03805280 +n03805374 +n03805503 +n03805725 +n03805933 +n03807334 +n03809211 +n03809312 +n03809603 +n03809686 +n03809802 +n03810412 +n03810952 +n03811295 +n03811444 +n03811847 +n03811965 +n03812263 +n03812382 +n03812789 +n03812924 +n03813078 +n03813176 +n03813946 +n03814528 +n03814727 +n03814817 +n03815149 +n03815278 +n03815482 +n03815615 +n03816005 +n03816136 +n03816394 +n03816530 +n03816849 +n03817191 +n03817331 +n03817522 +n03817647 +n03818001 +n03818343 +n03819047 +n03819336 +n03819448 +n03819595 +n03819994 +n03820154 +n03820318 +n03820728 +n03820950 +n03821145 +n03821424 +n03821518 +n03822171 +n03822361 +n03822504 +n03822656 +n03822767 +n03823111 +n03823216 +n03823312 +n03823673 +n03823906 +n03824197 +n03824284 +n03824381 +n03824589 +n03824713 +n03824999 +n03825080 +n03825271 +n03825442 +n03825673 +n03825913 +n03826039 +n03826186 +n03827420 +n03827536 +n03828020 +n03829340 +n03829857 +n03829954 +n03831203 +n03831382 +n03831757 +n03832144 +n03833907 +n03834040 +n03834472 +n03834604 +n03835197 +n03835729 +n03835941 +n03836062 +n03836451 +n03836602 +n03836906 +n03836976 +n03837422 +n03837606 +n03837698 +n03838024 +n03838298 +n03838748 +n03839172 +n03839276 +n03839424 +n03839671 +n03839795 +n03840327 +n03840823 +n03841011 +n03841290 +n03841666 +n03842012 +n03842156 +n03842276 +n03842377 +n03842585 +n03842754 +n03842986 +n03843092 +n03843316 +n03843438 +n03843883 +n03844045 +n03844233 +n03844550 +n03844673 +n03844815 +n03844965 +n03845107 +n03845190 +n03845990 +n03846100 +n03846234 +n03846431 +n03846677 +n03846772 +n03846970 +n03847471 +n03847823 +n03848033 +n03848168 +n03848348 +n03848537 +n03849275 +n03849412 +n03849679 +n03849814 +n03849943 +n03850053 +n03850245 +n03850492 +n03850613 +n03851341 +n03851787 +n03852280 +n03852544 +n03852688 +n03853291 +n03853924 +n03854421 +n03854506 +n03854722 +n03854815 +n03855214 +n03855333 +n03855464 +n03855604 +n03855756 +n03855908 +n03856012 +n03856335 +n03856465 +n03856728 +n03857026 +n03857156 +n03857291 +n03857687 +n03858085 +n03858183 +n03858418 +n03858533 +n03858837 +n03859000 +n03859170 +n03859280 +n03859495 +n03859608 +n03859958 +n03860234 +n03860404 +n03861048 +n03861271 +n03861430 +n03861596 +n03861842 +n03862379 +n03862676 +n03862862 +n03863108 +n03863262 +n03863657 +n03863783 +n03863923 +n03864139 +n03864356 +n03864692 +n03865288 +n03865371 +n03865557 +n03865820 +n03865949 +n03867854 +n03868044 +n03868324 +n03868406 +n03868643 +n03868763 +n03869838 +n03869976 +n03870105 +n03870290 +n03870546 +n03870672 +n03870980 +n03871083 +n03871371 +n03871524 +n03871724 +n03871860 +n03872016 +n03872167 +n03872273 +n03873699 +n03873848 +n03873996 +n03874138 +n03874487 +n03874823 +n03875218 +n03875806 +n03875955 +n03876111 +n03877351 +n03877674 +n03878066 +n03878211 +n03878294 +n03878418 +n03878511 +n03878674 +n03878828 +n03878963 +n03879456 +n03879705 +n03880032 +n03880129 +n03880323 +n03880531 +n03881305 +n03881404 +n03881534 +n03882611 +n03882960 +n03883054 +n03883385 +n03883524 +n03883664 +n03883773 +n03883944 +n03884554 +n03884639 +n03884778 +n03884926 +n03885028 +n03885194 +n03885293 +n03885410 +n03885535 +n03885669 +n03885788 +n03885904 +n03886053 +n03886641 +n03886762 +n03886940 +n03887185 +n03887330 +n03887512 +n03887899 +n03888022 +n03888808 +n03888998 +n03889397 +n03889503 +n03889626 +n03889726 +n03889871 +n03890093 +n03890233 +n03890358 +n03890514 +n03891051 +n03891538 +n03892178 +n03892425 +n03892557 +n03892728 +n03893935 +n03894051 +n03894379 +n03894677 +n03894933 +n03895038 +n03895170 +n03896103 +n03896233 +n03896419 +n03896526 +n03896628 +n03896984 +n03897130 +n03897634 +n03897943 +n03898129 +n03898271 +n03898395 +n03898633 +n03898787 +n03899100 +n03899612 +n03899933 +n03900028 +n03900194 +n03900301 +n03900393 +n03900979 +n03901229 +n03901338 +n03901750 +n03901974 +n03902220 +n03902482 +n03902756 +n03903133 +n03903290 +n03903424 +n03903733 +n03904060 +n03904183 +n03904433 +n03904657 +n03904782 +n03904909 +n03905361 +n03905540 +n03905730 +n03905947 +n03906106 +n03906224 +n03906463 +n03906590 +n03906789 +n03906894 +n03906997 +n03907475 +n03907654 +n03907908 +n03908111 +n03908204 +n03908456 +n03909020 +n03909160 +n03909406 +n03909516 +n03909658 +n03911406 +n03911513 +n03911658 +n03911767 +n03911866 +n03912218 +n03912821 +n03913343 +n03913930 +n03914106 +n03914337 +n03914438 +n03914583 +n03914831 +n03915118 +n03915320 +n03915437 +n03915900 +n03916289 +n03916385 +n03916470 +n03916720 +n03917048 +n03917198 +n03917327 +n03917814 +n03918074 +n03918480 +n03918737 +n03919096 +n03919289 +n03919430 +n03919808 +n03920384 +n03920641 +n03920737 +n03920867 +n03923379 +n03923564 +n03923692 +n03923918 +n03924069 +n03924407 +n03924532 +n03926148 +n03926412 +n03926876 +n03927091 +n03927299 +n03927539 +n03927792 +n03928116 +n03928589 +n03928814 +n03928994 +n03929091 +n03929202 +n03929443 +n03930229 +n03930431 +n03930515 +n03931765 +n03931885 +n03931980 +n03932080 +n03932670 +n03933391 +n03934042 +n03934229 +n03934311 +n03934565 +n03934656 +n03934890 +n03935116 +n03935234 +n03935883 +n03936269 +n03936466 +n03937835 +n03937931 +n03938037 +n03938401 +n03938522 +n03938725 +n03939062 +n03939178 +n03939281 +n03939440 +n03939565 +n03939677 +n03939844 +n03940256 +n03940894 +n03941013 +n03941231 +n03941417 +n03941586 +n03941684 +n03941887 +n03942028 +n03942600 +n03942920 +n03943115 +n03943266 +n03943623 +n03943714 +n03943833 +n03943920 +n03944024 +n03944138 +n03945459 +n03945615 +n03945817 +n03945928 +n03946076 +n03946162 +n03947111 +n03947343 +n03947466 +n03947798 +n03948242 +n03948459 +n03948830 +n03948950 +n03949145 +n03949317 +n03949761 +n03950359 +n03950537 +n03950647 +n03950899 +n03951068 +n03951213 +n03951453 +n03951800 +n03951971 +n03952150 +n03952576 +n03953020 +n03953416 +n03953901 +n03954393 +n03955296 +n03955489 +n03955809 +n03955941 +n03956331 +n03956531 +n03956623 +n03956785 +n03956922 +n03957315 +n03957420 +n03957762 +n03957991 +n03958338 +n03958630 +n03958752 +n03959014 +n03959123 +n03959227 +n03959701 +n03960374 +n03960490 +n03961394 +n03961630 +n03961828 +n03961939 +n03962525 +n03962685 +n03962852 +n03962932 +n03963028 +n03963198 +n03963294 +n03963483 +n03963645 +n03964495 +n03964611 +n03965456 +n03965907 +n03966206 +n03966325 +n03966582 +n03966751 +n03966976 +n03967270 +n03967396 +n03967942 +n03968293 +n03968479 +n03968581 +n03968728 +n03969510 +n03970363 +n03970546 +n03971218 +n03971321 +n03971960 +n03972146 +n03972372 +n03972524 +n03973003 +n03973285 +n03973402 +n03973520 +n03973628 +n03973839 +n03973945 +n03974070 +n03974915 +n03975035 +n03975657 +n03975788 +n03975926 +n03976105 +n03976268 +n03977158 +n03977266 +n03977430 +n03977592 +n03978421 +n03978575 +n03978686 +n03978815 +n03978966 +n03979377 +n03979492 +n03980026 +n03980478 +n03980986 +n03981094 +n03981340 +n03981566 +n03981760 +n03981924 +n03982232 +n03982331 +n03982642 +n03982767 +n03982895 +n03983499 +n03983612 +n03983712 +n03983928 +n03984125 +n03984234 +n03984381 +n03984643 +n03984759 +n03985069 +n03985232 +n03985441 +n03985881 +n03986071 +n03986224 +n03986355 +n03986562 +n03986704 +n03986857 +n03986949 +n03987266 +n03987376 +n03987674 +n03987865 +n03987990 +n03988170 +n03988758 +n03988926 +n03989199 +n03989349 +n03989447 +n03989665 +n03989777 +n03989898 +n03990474 +n03991202 +n03991321 +n03991443 +n03991646 +n03991837 +n03992325 +n03992436 +n03992703 +n03992975 +n03993053 +n03993180 +n03993403 +n03993703 +n03993878 +n03994008 +n03994297 +n03994417 +n03994614 +n03994757 +n03995018 +n03995265 +n03995535 +n03995661 +n03995856 +n03996004 +n03996145 +n03996416 +n03996849 +n03997274 +n03997484 +n03997875 +n03998333 +n03998673 +n03999064 +n03999160 +n03999621 +n03999992 +n04000311 +n04000480 +n04000592 +n04000716 +n04000998 +n04001132 +n04001265 +n04001397 +n04001499 +n04001661 +n04001845 +n04002262 +n04002371 +n04002629 +n04003241 +n04003359 +n04003856 +n04004099 +n04004210 +n04004475 +n04004990 +n04005197 +n04005912 +n04006067 +n04006227 +n04006330 +n04006411 +n04007415 +n04007664 +n04008385 +n04009801 +n04009923 +n04010057 +n04010779 +n04010927 +n04011827 +n04012084 +n04012482 +n04012665 +n04013060 +n04013176 +n04013600 +n04013729 +n04014297 +n04015204 +n04015786 +n04015908 +n04016240 +n04016479 +n04016576 +n04016684 +n04016846 +n04017571 +n04017807 +n04018155 +n04018399 +n04018667 +n04019101 +n04019335 +n04019696 +n04019881 +n04020087 +n04020298 +n04020744 +n04020912 +n04021028 +n04021164 +n04021362 +n04021503 +n04021704 +n04021798 +n04022332 +n04022434 +n04022708 +n04022866 +n04023021 +n04023119 +n04023249 +n04023422 +n04023695 +n04024137 +n04024274 +n04024862 +n04024983 +n04025508 +n04025633 +n04026053 +n04026180 +n04026813 +n04026918 +n04027023 +n04027367 +n04027706 +n04027820 +n04027935 +n04028074 +n04028221 +n04028315 +n04028581 +n04028764 +n04029416 +n04029647 +n04029734 +n04029913 +n04030054 +n04030161 +n04030274 +n04030414 +n04030518 +n04030846 +n04030965 +n04031884 +n04032509 +n04032603 +n04032936 +n04033287 +n04033425 +n04033557 +n04033801 +n04034262 +n04034367 +n04035231 +n04035634 +n04035748 +n04035836 +n04035912 +n04036155 +n04036303 +n04036776 +n04036963 +n04037076 +n04037220 +n04037298 +n04037873 +n04037964 +n04038231 +n04038338 +n04038440 +n04038727 +n04039041 +n04039209 +n04039742 +n04039848 +n04040247 +n04040373 +n04040540 +n04041069 +n04041243 +n04041408 +n04041747 +n04042076 +n04042204 +n04042358 +n04042632 +n04042795 +n04042985 +n04043168 +n04043411 +n04043733 +n04044307 +n04044498 +n04044955 +n04045085 +n04045255 +n04045397 +n04045644 +n04045787 +n04045941 +n04046091 +n04046277 +n04046400 +n04046590 +n04046974 +n04047139 +n04047401 +n04047733 +n04047834 +n04048441 +n04049405 +n04049585 +n04049753 +n04050066 +n04050313 +n04050600 +n04050933 +n04051269 +n04051439 +n04051549 +n04051705 +n04051825 +n04052235 +n04052346 +n04052442 +n04052658 +n04052757 +n04053508 +n04053677 +n04053767 +n04054361 +n04054566 +n04054670 +n04055180 +n04055447 +n04055700 +n04055861 +n04056073 +n04056180 +n04056413 +n04056932 +n04057047 +n04057215 +n04057435 +n04057673 +n04057846 +n04057981 +n04058096 +n04058239 +n04058486 +n04058594 +n04058721 +n04059157 +n04059298 +n04059399 +n04059516 +n04059947 +n04060198 +n04060448 +n04060647 +n04060904 +n04061681 +n04061793 +n04061969 +n04062179 +n04062428 +n04062644 +n04062807 +n04063154 +n04063373 +n04063868 +n04064213 +n04064401 +n04064747 +n04064862 +n04065464 +n04065789 +n04065909 +n04066023 +n04066270 +n04066388 +n04066476 +n04066767 +n04067143 +n04067231 +n04067353 +n04067658 +n04067818 +n04067921 +n04068441 +n04068601 +n04069166 +n04069276 +n04069582 +n04069777 +n04070003 +n04070207 +n04070415 +n04070545 +n04070964 +n04071102 +n04071263 +n04071393 +n04072193 +n04072551 +n04072960 +n04073425 +n04073948 +n04074185 +n04075291 +n04075468 +n04075715 +n04075813 +n04075916 +n04076052 +n04076284 +n04076713 +n04077430 +n04077594 +n04077734 +n04077889 +n04078002 +n04078574 +n04078955 +n04079106 +n04079244 +n04079603 +n04079933 +n04080138 +n04080454 +n04080705 +n04080833 +n04081699 +n04081844 +n04082344 +n04082562 +n04082710 +n04082886 +n04083113 +n04083309 +n04083649 +n04083800 +n04084517 +n04084682 +n04084889 +n04085017 +n04085574 +n04085873 +n04086066 +n04086446 +n04086663 +n04086794 +n04086937 +n04087126 +n04087432 +n04087709 +n04087826 +n04088229 +n04088343 +n04088441 +n04088696 +n04088797 +n04089152 +n04089376 +n04089666 +n04089836 +n04089976 +n04090548 +n04090781 +n04091097 +n04091466 +n04091584 +n04091693 +n04092168 +n04093157 +n04093223 +n04093625 +n04093775 +n04093915 +n04094060 +n04094250 +n04094438 +n04094608 +n04094720 +n04094859 +n04095109 +n04095210 +n04095342 +n04095577 +n04095938 +n04096066 +n04096733 +n04096848 +n04097085 +n04097373 +n04097622 +n04097760 +n04097866 +n04098169 +n04098260 +n04098399 +n04098513 +n04098795 +n04099003 +n04099175 +n04099429 +n04100174 +n04100519 +n04101375 +n04101497 +n04101701 +n04101860 +n04102037 +n04102162 +n04102285 +n04102406 +n04102618 +n04102760 +n04102872 +n04102962 +n04103094 +n04103206 +n04103364 +n04103665 +n04103769 +n04103918 +n04104147 +n04104384 +n04104500 +n04104770 +n04104925 +n04105068 +n04105438 +n04105704 +n04105893 +n04107598 +n04107743 +n04107984 +n04108268 +n04108822 +n04108999 +n04110068 +n04110178 +n04110281 +n04110439 +n04110654 +n04110841 +n04110955 +n04111190 +n04111414 +n04111668 +n04111962 +n04112147 +n04112252 +n04112430 +n04112579 +n04112654 +n04112752 +n04112921 +n04113038 +n04113194 +n04113316 +n04113406 +n04113641 +n04113765 +n04113968 +n04114069 +n04114301 +n04114428 +n04114719 +n04114844 +n04114996 +n04115144 +n04115256 +n04115456 +n04115542 +n04115802 +n04115996 +n04116098 +n04116294 +n04116389 +n04117216 +n04117464 +n04117639 +n04118021 +n04118635 +n04119091 +n04119230 +n04119360 +n04119478 +n04119630 +n04119751 +n04120695 +n04120842 +n04121228 +n04121342 +n04121426 +n04121511 +n04121728 +n04122262 +n04122349 +n04122492 +n04122578 +n04122685 +n04122825 +n04123026 +n04123123 +n04123228 +n04123317 +n04123448 +n04123567 +n04123740 +n04124098 +n04124202 +n04124370 +n04124488 +n04124573 +n04124887 +n04125116 +n04125257 +n04125541 +n04125692 +n04125853 +n04126066 +n04126244 +n04126541 +n04126659 +n04126852 +n04126980 +n04127117 +n04127395 +n04127521 +n04127633 +n04127904 +n04128413 +n04128499 +n04128710 +n04128837 +n04129490 +n04129688 +n04129766 +n04130143 +n04130257 +n04130566 +n04130907 +n04131015 +n04131113 +n04131208 +n04131368 +n04131499 +n04131811 +n04131929 +n04132158 +n04132465 +n04132603 +n04132829 +n04132985 +n04133114 +n04134008 +n04134170 +n04134523 +n04134632 +n04135024 +n04135118 +n04135315 +n04135710 +n04135933 +n04136045 +n04136161 +n04136510 +n04136800 +n04137089 +n04137217 +n04137355 +n04137444 +n04137773 +n04137897 +n04138131 +n04138261 +n04138869 +n04138977 +n04139140 +n04139395 +n04139859 +n04140064 +n04140539 +n04140631 +n04140777 +n04140853 +n04141198 +n04141712 +n04141838 +n04142175 +n04142327 +n04142434 +n04142731 +n04142999 +n04143140 +n04143365 +n04143897 +n04144241 +n04144539 +n04144651 +n04145863 +n04146050 +n04146343 +n04146504 +n04146862 +n04146976 +n04147291 +n04147495 +n04147793 +n04147916 +n04148054 +n04148285 +n04148464 +n04148579 +n04148703 +n04149083 +n04149374 +n04150153 +n04150273 +n04150371 +n04150980 +n04151108 +n04151581 +n04151940 +n04152387 +n04153025 +n04153330 +n04154152 +n04154340 +n04154753 +n04154854 +n04154938 +n04155068 +n04155177 +n04155457 +n04155625 +n04155735 +n04155889 +n04156040 +n04156140 +n04156297 +n04156411 +n04156591 +n04156814 +n04156946 +n04157099 +n04157320 +n04158002 +n04158138 +n04158250 +n04158672 +n04158807 +n04158956 +n04160036 +n04160261 +n04160372 +n04160586 +n04160847 +n04161010 +n04161358 +n04161981 +n04162433 +n04163530 +n04164002 +n04164199 +n04164406 +n04164757 +n04164868 +n04165409 +n04165675 +n04165945 +n04166111 +n04166281 +n04166436 +n04167346 +n04167489 +n04167661 +n04168084 +n04168199 +n04168472 +n04168541 +n04168840 +n04169437 +n04169597 +n04170037 +n04170384 +n04170515 +n04170694 +n04170933 +n04171208 +n04171459 +n04171629 +n04171831 +n04172107 +n04172230 +n04172342 +n04172512 +n04172607 +n04172776 +n04172904 +n04173046 +n04173172 +n04173511 +n04173907 +n04174026 +n04174101 +n04174234 +n04174500 +n04174705 +n04175039 +n04175147 +n04175574 +n04176068 +n04176190 +n04176295 +n04176528 +n04177041 +n04177329 +n04177545 +n04177654 +n04177755 +n04177820 +n04177931 +n04178190 +n04178329 +n04178668 +n04179126 +n04179712 +n04179824 +n04180063 +n04180229 +n04180888 +n04181083 +n04181228 +n04181561 +n04181718 +n04182152 +n04182322 +n04183217 +n04183329 +n04183957 +n04184095 +n04184316 +n04184435 +n04184600 +n04184880 +n04185071 +n04185529 +n04185804 +n04185946 +n04186051 +n04186268 +n04186455 +n04186624 +n04186848 +n04187061 +n04187233 +n04187547 +n04187751 +n04187885 +n04187970 +n04188064 +n04188179 +n04189092 +n04189282 +n04189651 +n04189816 +n04190052 +n04190376 +n04190464 +n04190747 +n04190997 +n04191150 +n04191595 +n04191943 +n04192238 +n04192361 +n04192521 +n04192858 +n04193179 +n04193377 +n04193742 +n04193883 +n04194009 +n04194127 +n04194289 +n04196080 +n04196502 +n04196803 +n04196925 +n04197110 +n04197391 +n04197781 +n04197878 +n04198015 +n04198233 +n04198355 +n04198453 +n04198562 +n04198722 +n04198797 +n04199027 +n04200000 +n04200258 +n04200537 +n04200908 +n04201064 +n04201733 +n04202142 +n04202282 +n04202417 +n04203356 +n04204081 +n04204755 +n04205062 +n04205318 +n04205505 +n04205613 +n04206070 +n04206225 +n04206356 +n04206570 +n04206790 +n04207151 +n04207343 +n04207596 +n04207763 +n04207903 +n04208065 +n04208427 +n04208582 +n04208760 +n04208936 +n04209509 +n04209613 +n04209811 +n04210012 +n04210120 +n04210288 +n04210390 +n04210591 +n04210858 +n04211001 +n04211219 +n04211356 +n04211528 +n04211857 +n04211970 +n04212165 +n04212282 +n04212467 +n04212810 +n04213105 +n04213264 +n04213353 +n04213530 +n04214046 +n04214282 +n04214413 +n04214649 +n04215153 +n04215402 +n04215588 +n04215800 +n04215910 +n04216634 +n04216860 +n04216963 +n04217387 +n04217546 +n04217718 +n04217882 +n04218564 +n04218921 +n04219185 +n04219424 +n04219580 +n04220250 +n04220805 +n04221076 +n04221673 +n04221823 +n04222210 +n04222307 +n04222470 +n04222723 +n04222847 +n04223066 +n04223170 +n04223299 +n04224395 +n04224543 +n04224842 +n04225031 +n04225222 +n04225729 +n04225987 +n04226322 +n04226464 +n04226537 +n04226826 +n04226962 +n04227050 +n04227144 +n04227519 +n04227787 +n04227900 +n04228215 +n04228422 +n04228581 +n04228693 +n04229007 +n04229107 +n04229480 +n04229620 +n04229737 +n04229959 +n04230387 +n04230487 +n04230603 +n04230707 +n04230808 +n04231272 +n04231693 +n04231905 +n04232153 +n04232312 +n04232437 +n04232800 +n04233027 +n04233124 +n04233295 +n04233715 +n04233832 +n04234160 +n04234260 +n04234455 +n04234670 +n04234763 +n04234887 +n04235291 +n04235646 +n04235771 +n04236001 +n04236377 +n04236702 +n04236809 +n04236935 +n04237174 +n04237287 +n04237423 +n04238128 +n04238321 +n04238617 +n04238953 +n04239218 +n04239333 +n04239436 +n04239639 +n04239786 +n04239900 +n04240434 +n04240752 +n04240867 +n04241042 +n04241249 +n04241394 +n04241573 +n04242084 +n04242315 +n04242408 +n04242587 +n04242704 +n04243003 +n04243142 +n04243251 +n04243941 +n04244379 +n04244847 +n04244997 +n04245218 +n04245412 +n04245508 +n04245847 +n04246060 +n04246271 +n04246459 +n04246731 +n04246855 +n04247011 +n04247440 +n04247544 +n04247630 +n04247736 +n04247876 +n04248209 +n04248396 +n04248507 +n04248851 +n04249415 +n04249582 +n04249882 +n04250224 +n04250473 +n04250599 +n04250692 +n04250850 +n04251701 +n04251791 +n04252331 +n04252560 +n04252653 +n04253057 +n04253168 +n04253304 +n04253931 +n04254009 +n04254450 +n04255163 +n04255346 +n04255499 +n04255586 +n04255670 +n04255768 +n04255899 +n04256318 +n04256520 +n04256758 +n04256891 +n04257223 +n04257684 +n04257790 +n04257986 +n04258333 +n04258438 +n04258618 +n04258732 +n04258859 +n04259202 +n04259468 +n04260192 +n04260364 +n04260589 +n04261116 +n04261281 +n04261369 +n04261506 +n04261638 +n04261767 +n04261868 +n04262161 +n04262530 +n04262678 +n04262869 +n04263336 +n04263502 +n04263760 +n04263950 +n04264134 +n04264233 +n04264361 +n04264485 +n04264765 +n04264914 +n04265428 +n04265904 +n04266162 +n04266375 +n04266486 +n04266849 +n04266968 +n04267091 +n04267165 +n04267246 +n04267435 +n04267577 +n04267985 +n04268142 +n04268275 +n04268418 +n04268565 +n04268799 +n04269086 +n04269270 +n04269502 +n04269668 +n04269822 +n04269944 +n04270371 +n04270576 +n04270891 +n04271148 +n04271531 +n04271793 +n04271891 +n04272054 +n04272389 +n04272782 +n04272928 +n04273064 +n04273285 +n04273659 +n04273796 +n04273972 +n04274686 +n04274985 +n04275093 +n04275175 +n04275283 +n04275661 +n04275904 +n04277493 +n04277669 +n04277826 +n04278247 +n04278353 +n04278447 +n04278605 +n04278932 +n04279063 +n04279172 +n04279353 +n04279462 +n04279858 +n04279987 +n04280259 +n04280373 +n04280487 +n04280845 +n04280970 +n04281260 +n04281375 +n04281571 +n04281998 +n04282231 +n04282494 +n04282872 +n04282992 +n04283096 +n04283255 +n04283378 +n04283585 +n04283784 +n04283905 +n04284002 +n04284341 +n04284438 +n04284572 +n04284869 +n04285146 +n04285622 +n04285803 +n04285965 +n04286128 +n04286960 +n04287351 +n04287451 +n04287747 +n04287898 +n04287986 +n04288165 +n04288272 +n04288533 +n04288673 +n04289027 +n04289195 +n04289449 +n04289576 +n04289690 +n04289827 +n04290079 +n04290259 +n04290507 +n04290615 +n04290762 +n04291069 +n04291242 +n04291759 +n04291992 +n04292080 +n04292221 +n04292414 +n04292572 +n04292921 +n04293119 +n04293258 +n04293744 +n04294212 +n04294426 +n04294614 +n04294879 +n04295081 +n04295353 +n04295571 +n04295777 +n04295881 +n04297098 +n04297750 +n04297847 +n04298053 +n04298661 +n04298765 +n04299215 +n04299370 +n04299963 +n04300358 +n04300509 +n04300643 +n04301000 +n04301242 +n04301474 +n04301760 +n04302200 +n04302863 +n04302988 +n04303095 +n04303258 +n04303357 +n04303497 +n04304215 +n04304375 +n04304680 +n04305016 +n04305210 +n04305323 +n04305471 +n04305572 +n04305947 +n04306080 +n04306592 +n04306847 +n04307419 +n04307767 +n04307878 +n04307986 +n04308084 +n04308273 +n04308397 +n04308583 +n04308807 +n04308915 +n04309049 +n04309348 +n04309548 +n04309833 +n04310157 +n04310507 +n04310604 +n04310721 +n04310904 +n04311595 +n04312020 +n04312154 +n04312432 +n04312654 +n04312756 +n04312916 +n04313220 +n04313503 +n04313628 +n04314107 +n04314216 +n04314522 +n04314632 +n04314914 +n04315342 +n04315713 +n04315828 +n04315948 +n04316498 +n04316815 +n04316924 +n04317063 +n04317325 +n04317420 +n04317833 +n04317976 +n04318131 +n04318787 +n04318892 +n04318982 +n04319545 +n04319774 +n04319937 +n04320405 +n04320598 +n04320871 +n04320973 +n04321121 +n04321453 +n04322026 +n04322531 +n04322692 +n04322801 +n04323519 +n04323819 +n04324120 +n04324297 +n04324387 +n04324515 +n04325041 +n04325208 +n04325804 +n04325968 +n04326676 +n04326799 +n04326896 +n04327204 +n04327544 +n04327682 +n04328054 +n04328329 +n04328580 +n04328703 +n04328946 +n04329477 +n04329681 +n04329834 +n04329958 +n04330109 +n04330189 +n04330340 +n04330669 +n04330746 +n04330896 +n04330998 +n04331277 +n04331443 +n04331639 +n04331765 +n04331892 +n04332074 +n04332580 +n04332987 +n04333129 +n04333869 +n04334105 +n04334365 +n04334504 +n04334599 +n04335209 +n04335693 +n04335886 +n04337157 +n04337287 +n04337503 +n04337650 +n04338517 +n04338963 +n04339062 +n04339191 +n04339638 +n04339879 +n04340019 +n04340521 +n04340750 +n04340935 +n04341133 +n04341288 +n04341414 +n04341686 +n04343511 +n04343630 +n04343740 +n04344003 +n04344734 +n04345028 +n04345201 +n04345787 +n04346003 +n04346157 +n04346428 +n04346511 +n04346679 +n04346855 +n04347119 +n04347519 +n04348070 +n04348184 +n04348359 +n04348988 +n04349189 +n04349306 +n04349401 +n04349913 +n04350104 +n04350235 +n04350458 +n04350581 +n04350688 +n04350769 +n04351550 +n04351699 +n04353573 +n04354026 +n04354182 +n04354387 +n04354487 +n04354589 +n04355115 +n04355267 +n04355511 +n04355684 +n04355821 +n04356595 +n04356772 +n04356925 +n04357121 +n04357531 +n04357930 +n04358117 +n04358256 +n04358491 +n04358707 +n04358874 +n04359034 +n04359124 +n04359217 +n04359335 +n04359500 +n04359589 +n04360501 +n04360798 +n04360914 +n04361095 +n04361260 +n04361937 +n04362624 +n04362821 +n04362972 +n04363082 +n04363210 +n04363412 +n04363671 +n04363777 +n04363874 +n04363991 +n04364160 +n04364397 +n04364545 +n04364827 +n04364994 +n04365112 +n04365229 +n04365328 +n04365484 +n04365751 +n04366033 +n04366116 +n04366832 +n04367011 +n04367371 +n04367746 +n04367950 +n04368109 +n04368235 +n04368365 +n04368496 +n04368695 +n04368840 +n04369025 +n04369282 +n04369485 +n04369618 +n04370048 +n04370288 +n04370600 +n04370774 +n04370955 +n04371050 +n04371563 +n04371979 +n04373089 +n04373428 +n04373563 +n04373704 +n04373795 +n04373894 +n04374315 +n04374521 +n04374735 +n04374907 +n04375080 +n04375241 +n04375405 +n04375615 +n04375775 +n04375926 +n04376400 +n04377057 +n04378489 +n04378651 +n04378956 +n04379096 +n04379243 +n04379964 +n04380255 +n04380346 +n04380916 +n04381073 +n04381450 +n04381587 +n04381724 +n04381860 +n04381994 +n04382334 +n04382438 +n04382537 +n04382695 +n04382880 +n04383015 +n04383130 +n04383301 +n04383839 +n04383923 +n04384593 +n04384910 +n04385079 +n04385157 +n04385536 +n04385799 +n04386051 +n04386456 +n04386664 +n04386792 +n04387095 +n04387201 +n04387261 +n04387400 +n04387531 +n04387706 +n04387932 +n04388040 +n04388162 +n04388473 +n04388574 +n04388743 +n04389430 +n04389521 +n04389718 +n04389854 +n04389999 +n04390483 +n04390577 +n04390873 +n04390977 +n04391445 +n04391838 +n04392113 +n04392526 +n04392764 +n04393095 +n04393301 +n04393549 +n04393808 +n04393913 +n04394031 +n04394261 +n04394421 +n04394630 +n04395024 +n04395106 +n04395332 +n04395651 +n04395875 +n04396226 +n04396335 +n04396650 +n04396808 +n04396902 +n04397027 +n04397168 +n04397261 +n04397452 +n04397645 +n04397768 +n04397860 +n04398497 +n04398688 +n04398834 +n04398951 +n04399046 +n04399158 +n04399537 +n04399846 +n04400109 +n04400289 +n04400499 +n04400737 +n04400899 +n04401088 +n04401578 +n04401680 +n04401828 +n04401949 +n04402057 +n04402342 +n04402449 +n04402580 +n04402746 +n04402984 +n04403413 +n04403524 +n04403638 +n04403925 +n04404072 +n04404200 +n04404817 +n04404997 +n04405540 +n04405762 +n04405907 +n04406239 +n04406552 +n04406687 +n04406817 +n04407257 +n04407435 +n04407686 +n04408871 +n04409011 +n04409128 +n04409279 +n04409384 +n04409625 +n04409806 +n04409911 +n04410086 +n04410365 +n04410485 +n04410565 +n04410663 +n04410760 +n04410886 +n04411019 +n04411264 +n04411835 +n04411966 +n04412097 +n04412300 +n04412416 +n04413151 +n04413419 +n04413969 +n04414101 +n04414199 +n04414319 +n04414476 +n04414675 +n04414909 +n04415257 +n04415663 +n04415815 +n04416005 +n04416901 +n04417086 +n04417180 +n04417361 +n04417809 +n04418644 +n04419073 +n04419642 +n04419868 +n04420024 +n04420720 +n04421083 +n04421258 +n04421417 +n04421582 +n04421740 +n04421872 +n04422409 +n04422566 +n04422727 +n04422875 +n04423552 +n04423687 +n04424692 +n04425804 +n04425977 +n04426184 +n04426316 +n04426427 +n04427216 +n04427473 +n04427559 +n04427715 +n04427857 +n04428008 +n04428382 +n04428634 +n04429038 +n04430475 +n04430605 +n04430896 +n04431025 +n04431436 +n04431648 +n04431745 +n04431925 +n04432043 +n04432203 +n04432662 +n04432785 +n04433377 +n04433585 +n04434207 +n04434531 +n04434932 +n04435180 +n04435552 +n04435759 +n04435870 +n04436012 +n04436185 +n04436329 +n04436401 +n04436542 +n04436832 +n04436992 +n04437276 +n04437380 +n04437670 +n04437953 +n04438304 +n04438507 +n04438643 +n04438897 +n04439505 +n04439585 +n04439712 +n04440597 +n04440963 +n04441093 +n04441528 +n04441662 +n04441790 +n04442441 +n04442582 +n04442741 +n04443164 +n04443433 +n04443766 +n04444121 +n04444218 +n04444749 +n04444953 +n04445040 +n04445154 +n04445327 +n04445610 +n04445782 +n04445952 +n04446162 +n04446276 +n04446844 +n04447028 +n04447156 +n04447276 +n04447443 +n04448070 +n04448185 +n04448361 +n04449290 +n04449449 +n04449550 +n04449700 +n04449966 +n04450133 +n04450243 +n04450465 +n04450640 +n04450749 +n04450994 +n04451139 +n04451318 +n04451636 +n04451818 +n04452528 +n04452615 +n04452757 +n04452848 +n04453037 +n04453156 +n04453390 +n04453666 +n04453910 +n04454654 +n04454792 +n04454908 +n04455048 +n04455250 +n04455579 +n04455652 +n04456011 +n04456472 +n04456734 +n04457157 +n04457326 +n04457474 +n04457638 +n04457767 +n04457910 +n04458201 +n04458843 +n04459018 +n04459122 +n04459243 +n04459362 +n04459610 +n04459773 +n04459909 +n04460130 +n04461437 +n04461570 +n04461879 +n04462011 +n04462576 +n04463679 +n04464125 +n04464615 +n04464852 +n04465050 +n04465203 +n04465358 +n04465666 +n04466871 +n04467099 +n04467307 +n04467506 +n04467899 +n04468005 +n04469003 +n04469251 +n04469514 +n04469684 +n04469813 +n04470741 +n04471148 +n04471315 +n04471632 +n04471912 +n04472243 +n04472563 +n04472726 +n04472961 +n04473108 +n04473275 +n04473884 +n04474035 +n04474187 +n04474466 +n04475309 +n04475411 +n04475496 +n04475631 +n04475749 +n04475900 +n04476116 +n04476526 +n04476831 +n04476972 +n04477219 +n04477387 +n04477548 +n04477725 +n04478066 +n04478383 +n04478512 +n04478657 +n04479287 +n04479405 +n04479526 +n04479694 +n04479823 +n04479939 +n04480033 +n04480141 +n04480303 +n04480527 +n04480853 +n04480995 +n04481524 +n04481642 +n04482177 +n04482297 +n04482975 +n04483073 +n04483925 +n04484024 +n04484432 +n04485423 +n04485586 +n04485750 +n04485884 +n04486213 +n04486322 +n04486616 +n04486934 +n04487724 +n04487894 +n04488202 +n04488427 +n04488530 +n04488742 +n04488857 +n04489008 +n04489695 +n04489817 +n04490091 +n04491312 +n04491388 +n04491638 +n04491769 +n04491934 +n04492060 +n04492157 +n04492375 +n04492749 +n04493109 +n04493259 +n04494204 +n04495051 +n04495183 +n04495310 +n04495450 +n04495555 +n04495698 +n04495843 +n04496614 +n04496726 +n04496872 +n04497249 +n04497442 +n04497570 +n04497801 +n04498275 +n04498389 +n04498523 +n04498873 +n04499062 +n04499300 +n04499446 +n04499554 +n04499810 +n04500060 +n04500390 +n04501127 +n04501281 +n04501550 +n04501837 +n04501947 +n04502059 +n04502197 +n04502502 +n04502670 +n04502851 +n04502989 +n04503073 +n04503155 +n04503269 +n04503413 +n04503499 +n04503593 +n04503705 +n04504038 +n04504141 +n04504770 +n04505036 +n04505345 +n04505888 +n04506289 +n04506402 +n04506506 +n04506688 +n04506895 +n04506994 +n04507326 +n04507453 +n04507689 +n04508163 +n04508489 +n04508949 +n04509171 +n04509260 +n04509592 +n04510706 +n04511002 +n04513827 +n04513998 +n04514095 +n04514241 +n04514648 +n04515444 +n04515729 +n04515890 +n04516116 +n04516214 +n04516354 +n04516672 +n04517211 +n04517408 +n04517999 +n04518132 +n04518343 +n04518643 +n04518764 +n04519153 +n04519536 +n04519728 +n04519887 +n04520170 +n04520382 +n04520784 +n04520962 +n04521571 +n04521863 +n04521987 +n04523831 +n04524142 +n04524313 +n04524594 +n04524716 +n04524941 +n04525191 +n04525417 +n04525584 +n04525821 +n04526520 +n04526800 +n04526964 +n04527648 +n04528079 +n04528968 +n04529108 +n04529681 +n04529962 +n04530283 +n04530456 +n04530566 +n04531098 +n04531873 +n04532022 +n04532398 +n04532504 +n04532831 +n04533042 +n04533199 +n04533499 +n04533594 +n04533700 +n04533802 +n04533946 +n04534127 +n04534359 +n04534520 +n04534895 +n04535252 +n04535370 +n04535524 +n04536153 +n04536335 +n04536465 +n04536595 +n04536765 +n04537436 +n04538249 +n04538403 +n04538552 +n04538878 +n04539053 +n04539203 +n04539407 +n04539794 +n04540255 +n04540397 +n04540761 +n04541136 +n04541320 +n04541662 +n04541777 +n04541987 +n04542095 +n04542329 +n04542474 +n04542595 +n04542715 +n04542858 +n04543158 +n04543509 +n04543636 +n04543772 +n04543924 +n04543996 +n04544325 +n04544450 +n04545305 +n04545471 +n04545748 +n04545858 +n04545984 +n04546081 +n04546194 +n04546340 +n04546595 +n04546855 +n04547592 +n04549028 +n04549122 +n04549629 +n04549721 +n04549919 +n04550676 +n04551055 +n04551833 +n04552097 +n04552551 +n04552696 +n04553389 +n04553561 +n04554211 +n04554406 +n04554871 +n04554998 +n04555291 +n04555400 +n04555600 +n04555700 +n04555897 +n04556408 +n04556533 +n04556664 +n04556948 +n04557308 +n04557522 +n04557751 +n04558059 +n04558199 +n04558478 +n04558804 +n04559023 +n04559166 +n04559451 +n04559620 +n04559730 +n04559910 +n04559994 +n04560113 +n04560292 +n04560502 +n04560619 +n04560882 +n04561010 +n04561287 +n04561422 +n04561734 +n04561857 +n04561965 +n04562122 +n04562262 +n04562496 +n04563020 +n04563204 +n04563413 +n04563560 +n04563790 +n04564278 +n04564581 +n04565039 +n04565375 +n04566257 +n04566561 +n04566756 +n04567098 +n04567593 +n04567746 +n04568069 +n04568557 +n04568713 +n04568841 +n04569063 +n04569520 +n04569822 +n04570118 +n04570214 +n04570416 +n04570532 +n04570815 +n04570958 +n04571292 +n04571566 +n04571686 +n04571800 +n04571958 +n04572121 +n04572235 +n04572935 +n04573045 +n04573281 +n04573379 +n04573513 +n04573625 +n04573832 +n04573937 +n04574067 +n04574348 +n04574471 +n04574606 +n04574999 +n04575723 +n04575824 +n04576002 +n04576211 +n04576971 +n04577139 +n04577293 +n04577426 +n04577567 +n04577769 +n04578112 +n04578329 +n04578559 +n04578708 +n04578801 +n04578934 +n04579056 +n04579230 +n04579667 +n04579986 +n04580493 +n04581102 +n04581595 +n04581829 +n04582205 +n04582349 +n04582771 +n04582869 +n04583022 +n04583212 +n04583620 +n04583888 +n04583967 +n04584056 +n04584373 +n04585128 +n04585318 +n04585456 +n04585626 +n04585745 +n04585980 +n04586072 +n04586581 +n04586932 +n04587327 +n04587404 +n04587559 +n04587648 +n04588739 +n04589190 +n04589325 +n04589434 +n04589593 +n04590021 +n04590263 +n04590553 +n04590746 +n04590933 +n04591056 +n04591249 +n04591359 +n04591517 +n04591631 +n04591887 +n04592005 +n04592099 +n04592356 +n04592465 +n04592596 +n04593077 +n04593185 +n04593376 +n04593524 +n04593629 +n04593866 +n04594114 +n04594218 +n04594489 +n04594742 +n04594828 +n04594919 +n04595028 +n04595285 +n04595501 +n04595611 +n04595762 +n04595855 +n04596116 +n04596492 +n04596852 +n04597066 +n04597309 +n04597400 +n04597804 +n04598136 +n04598318 +n04598416 +n04598582 +n04598965 +n04599124 +n04600312 +n04600486 +n04600912 +n04601041 +n04601159 +n04601938 +n04602762 +n04602840 +n04602956 +n04603399 +n04603729 +n04603872 +n04604276 +n04604806 +n04605057 +n04605163 +n04605321 +n04605446 +n04605572 +n04605726 +n04606574 +n04607035 +n04607242 +n04607640 +n04607759 +n04607869 +n04607982 +n04608329 +n04608435 +n04608567 +n04608809 +n04608923 +n04609531 +n04609651 +n04609811 +n04610013 +n04610176 +n04610274 +n04610503 +n04610676 +n04611351 +n04611795 +n04611916 +n04612026 +n04612159 +n04612257 +n04612373 +n04612840 +n04613015 +n04613158 +n04613939 +n04614505 +n04614655 +n04614844 +n04615149 +n04615226 +n04615644 +n04682018 +n04950713 +n04950952 +n04951071 +n04951186 +n04951373 +n04951716 +n04951875 +n04953296 +n04953678 +n04955160 +n04957356 +n04957589 +n04958634 +n04958865 +n04959061 +n04959230 +n04959672 +n04960277 +n04960582 +n04961062 +n04961331 +n04961691 +n04962062 +n04962240 +n04963111 +n04963307 +n04963588 +n04963740 +n04964001 +n04964799 +n04964878 +n04965179 +n04965451 +n04965661 +n04966543 +n04966941 +n04967191 +n04967561 +n04967674 +n04967801 +n04967882 +n04968056 +n04968139 +n04968749 +n04968895 +n04969242 +n04969540 +n04969798 +n04969952 +n04970059 +n04970312 +n04970398 +n04970470 +n04970631 +n04970916 +n04971211 +n04971313 +n04972350 +n04972451 +n04972801 +n04973020 +n04973291 +n04973386 +n04973585 +n04973669 +n04973816 +n04974145 +n04974340 +n04974859 +n04975739 +n04976319 +n04976952 +n04977412 +n04978561 +n04979002 +n04979307 +n04981658 +n05102764 +n05218119 +n05233741 +n05235879 +n05238282 +n05239437 +n05241218 +n05241485 +n05241662 +n05242070 +n05242239 +n05242928 +n05244421 +n05244755 +n05244934 +n05245192 +n05257476 +n05257967 +n05258051 +n05258627 +n05259914 +n05260127 +n05260240 +n05261310 +n05262422 +n05262534 +n05262698 +n05263183 +n05263316 +n05263448 +n05265736 +n05266096 +n05266879 +n05278922 +n05279953 +n05282652 +n05285623 +n05302499 +n05314075 +n05399034 +n05399243 +n05399356 +n05418717 +n05427346 +n05442594 +n05447757 +n05448704 +n05448827 +n05449196 +n05449661 +n05449959 +n05450617 +n05451099 +n05451384 +n05453412 +n05453657 +n05453815 +n05454833 +n05454978 +n05455113 +n05458173 +n05458576 +n05459101 +n05459457 +n05459769 +n05460759 +n05464534 +n05467054 +n05467758 +n05468098 +n05468739 +n05469664 +n05469861 +n05475397 +n05482922 +n05486510 +n05491154 +n05526957 +n05538625 +n05539947 +n05541509 +n05542893 +n05545879 +n05571341 +n05578095 +n05581932 +n05584746 +n05586759 +n05604434 +n05716342 +n06008896 +n06209940 +n06254669 +n06255081 +n06255613 +n06259898 +n06262567 +n06262943 +n06263202 +n06263369 +n06263609 +n06263762 +n06263895 +n06266417 +n06266633 +n06266710 +n06266878 +n06266973 +n06267145 +n06267564 +n06267655 +n06267758 +n06267893 +n06267991 +n06271778 +n06272290 +n06272612 +n06272803 +n06273207 +n06273294 +n06273414 +n06273555 +n06273743 +n06273890 +n06273986 +n06274092 +n06274292 +n06274546 +n06274760 +n06274921 +n06275095 +n06275353 +n06275471 +n06276501 +n06276697 +n06276902 +n06277025 +n06277135 +n06277280 +n06278338 +n06278475 +n06281040 +n06281175 +n06340977 +n06359467 +n06359657 +n06415688 +n06417096 +n06418693 +n06419354 +n06423496 +n06470073 +n06591815 +n06592078 +n06592281 +n06592421 +n06595351 +n06596179 +n06596474 +n06596607 +n06596727 +n06596845 +n06613686 +n06614901 +n06616216 +n06618653 +n06625062 +n06793231 +n06883725 +n06892775 +n06998748 +n07005523 +n07273802 +n07461050 +n07556406 +n07556637 +n07556872 +n07556970 +n07557165 +n07557434 +n07560193 +n07560331 +n07560422 +n07560542 +n07560652 +n07560903 +n07561112 +n07561590 +n07561848 +n07562017 +n07562172 +n07562379 +n07562495 +n07562651 +n07562881 +n07562984 +n07563207 +n07563366 +n07563642 +n07563800 +n07564008 +n07564101 +n07564292 +n07564515 +n07564629 +n07564796 +n07564971 +n07565161 +n07565259 +n07565608 +n07565725 +n07565945 +n07566092 +n07566231 +n07566340 +n07566863 +n07567039 +n07567139 +n07567390 +n07567611 +n07567707 +n07567980 +n07568095 +n07568241 +n07568389 +n07568502 +n07568625 +n07568818 +n07568991 +n07569106 +n07569423 +n07569543 +n07569644 +n07569873 +n07570021 +n07570530 +n07570720 +n07572353 +n07572616 +n07572858 +n07572957 +n07573103 +n07573347 +n07573453 +n07573563 +n07573696 +n07574176 +n07574426 +n07574504 +n07574602 +n07574780 +n07574923 +n07575076 +n07575226 +n07575392 +n07575510 +n07575726 +n07575984 +n07576182 +n07576438 +n07576577 +n07576781 +n07576969 +n07577144 +n07577374 +n07577538 +n07577657 +n07577772 +n07577918 +n07578093 +n07579575 +n07579688 +n07579917 +n07580053 +n07580253 +n07580359 +n07580470 +n07580592 +n07581249 +n07581346 +n07581607 +n07581775 +n07581931 +n07582027 +n07582152 +n07582277 +n07582441 +n07582609 +n07582811 +n07582892 +n07582970 +n07583197 +n07583865 +n07583978 +n07584228 +n07584332 +n07584423 +n07584593 +n07584859 +n07584938 +n07585015 +n07585107 +n07585208 +n07585474 +n07585557 +n07585644 +n07585758 +n07585906 +n07585997 +n07586099 +n07586179 +n07586318 +n07586485 +n07586604 +n07586718 +n07586894 +n07587023 +n07587111 +n07587206 +n07587331 +n07587441 +n07587618 +n07587700 +n07587819 +n07587962 +n07588111 +n07588193 +n07588299 +n07588419 +n07588574 +n07588688 +n07588817 +n07588947 +n07589458 +n07589543 +n07589724 +n07589872 +n07589967 +n07590068 +n07590177 +n07590320 +n07590502 +n07590752 +n07590841 +n07590974 +n07591049 +n07591162 +n07591236 +n07591330 +n07591473 +n07591586 +n07591813 +n07591961 +n07592094 +n07592317 +n07592400 +n07592481 +n07592656 +n07592768 +n07592922 +n07593004 +n07593107 +n07593199 +n07593471 +n07593774 +n07593972 +n07594066 +n07594155 +n07594250 +n07594737 +n07594840 +n07595051 +n07595180 +n07595368 +n07595649 +n07595751 +n07595914 +n07596046 +n07596160 +n07596362 +n07596452 +n07596566 +n07596684 +n07596967 +n07597145 +n07597263 +n07597365 +n07598256 +n07598529 +n07598622 +n07598734 +n07598928 +n07599068 +n07599161 +n07599242 +n07599383 +n07599468 +n07599554 +n07599649 +n07599783 +n07599911 +n07599998 +n07600177 +n07600285 +n07600394 +n07600506 +n07600696 +n07600895 +n07601025 +n07601175 +n07601290 +n07601407 +n07601572 +n07601686 +n07601809 +n07602650 +n07604956 +n07605040 +n07605198 +n07605282 +n07605380 +n07605474 +n07605597 +n07605693 +n07605804 +n07605944 +n07606058 +n07606191 +n07606278 +n07606419 +n07606538 +n07606669 +n07606764 +n07606933 +n07607027 +n07607138 +n07607361 +n07607492 +n07607605 +n07607707 +n07607832 +n07607967 +n07608098 +n07608245 +n07608339 +n07608429 +n07608533 +n07608641 +n07608721 +n07608866 +n07608980 +n07609083 +n07609215 +n07609316 +n07609407 +n07609549 +n07609632 +n07609728 +n07609840 +n07610295 +n07610502 +n07610620 +n07610746 +n07610890 +n07611046 +n07611148 +n07611267 +n07611358 +n07611733 +n07611839 +n07611991 +n07612137 +n07612273 +n07612367 +n07612530 +n07612632 +n07612996 +n07613158 +n07613266 +n07613671 +n07613815 +n07614103 +n07614198 +n07614348 +n07614730 +n07614825 +n07615052 +n07615190 +n07615289 +n07615460 +n07615569 +n07615671 +n07615954 +n07616046 +n07616174 +n07616265 +n07616386 +n07616487 +n07616590 +n07616748 +n07616906 +n07617051 +n07617188 +n07617344 +n07617447 +n07617526 +n07617611 +n07617708 +n07617839 +n07617932 +n07618029 +n07618119 +n07618281 +n07618432 +n07618587 +n07618684 +n07618871 +n07619004 +n07619208 +n07619301 +n07619409 +n07619508 +n07619881 +n07620047 +n07620145 +n07620327 +n07620597 +n07620689 +n07621264 +n07621497 +n07621618 +n07623136 +n07624466 +n07624666 +n07624757 +n07624924 +n07625061 +n07625324 +n07627931 +n07628068 +n07628181 +n07631926 +n07639069 +n07641928 +n07642361 +n07642471 +n07642742 +n07642833 +n07642933 +n07643026 +n07643200 +n07643306 +n07643474 +n07643577 +n07643679 +n07643764 +n07643891 +n07643981 +n07644244 +n07648913 +n07648997 +n07650792 +n07650903 +n07651025 +n07654148 +n07654298 +n07655067 +n07655263 +n07663899 +n07665438 +n07666176 +n07672914 +n07678586 +n07678729 +n07678953 +n07679034 +n07679140 +n07679356 +n07680168 +n07680313 +n07680416 +n07680517 +n07680655 +n07680761 +n07680932 +n07681264 +n07681355 +n07681450 +n07681691 +n07681805 +n07681926 +n07682197 +n07682316 +n07682477 +n07682624 +n07682808 +n07682952 +n07683039 +n07683138 +n07683265 +n07683360 +n07683490 +n07683617 +n07683786 +n07684164 +n07684289 +n07684422 +n07684517 +n07684600 +n07684938 +n07685031 +n07685118 +n07685218 +n07685303 +n07685399 +n07685546 +n07685730 +n07685918 +n07686021 +n07686202 +n07686299 +n07686461 +n07686634 +n07686720 +n07686873 +n07687053 +n07687211 +n07687381 +n07687469 +n07687626 +n07687789 +n07688021 +n07688130 +n07688265 +n07688412 +n07688624 +n07688757 +n07688898 +n07689003 +n07689217 +n07689313 +n07689490 +n07689624 +n07689757 +n07689842 +n07690019 +n07690152 +n07690273 +n07690431 +n07690511 +n07690585 +n07690739 +n07690892 +n07691091 +n07691237 +n07691539 +n07691650 +n07691758 +n07691863 +n07691954 +n07692114 +n07692248 +n07692405 +n07692517 +n07692614 +n07692887 +n07693048 +n07693223 +n07693439 +n07693590 +n07693889 +n07693972 +n07694169 +n07694403 +n07694516 +n07694659 +n07694839 +n07695187 +n07695284 +n07695410 +n07695504 +n07695652 +n07695878 +n07695965 +n07696403 +n07696527 +n07696625 +n07696728 +n07696839 +n07696977 +n07697100 +n07697408 +n07697699 +n07697825 +n07698250 +n07698401 +n07698543 +n07698672 +n07698782 +n07700003 +n07703889 +n07704054 +n07704205 +n07704305 +n07705931 +n07707451 +n07708124 +n07708398 +n07708512 +n07708685 +n07708798 +n07709046 +n07709172 +n07709333 +n07709701 +n07709881 +n07710007 +n07710283 +n07710616 +n07710952 +n07711080 +n07711232 +n07711371 +n07711683 +n07711799 +n07711907 +n07712063 +n07712267 +n07712382 +n07712559 +n07712748 +n07712856 +n07712959 +n07713074 +n07713267 +n07713395 +n07713763 +n07713895 +n07714078 +n07714188 +n07714287 +n07714448 +n07714802 +n07714895 +n07715221 +n07715407 +n07715561 +n07715721 +n07716034 +n07716203 +n07716504 +n07716649 +n07716750 +n07717070 +n07717714 +n07717858 +n07718068 +n07718195 +n07718329 +n07718671 +n07718920 +n07719058 +n07719213 +n07719330 +n07719437 +n07719616 +n07719756 +n07719839 +n07719980 +n07720084 +n07720185 +n07720277 +n07720442 +n07720615 +n07721018 +n07721118 +n07721195 +n07721325 +n07721456 +n07721678 +n07721833 +n07721942 +n07722052 +n07722217 +n07722390 +n07722485 +n07722666 +n07722763 +n07722888 +n07723039 +n07723177 +n07723330 +n07723559 +n07723753 +n07723968 +n07724078 +n07724173 +n07724269 +n07724492 +n07724654 +n07724819 +n07724943 +n07725158 +n07725255 +n07725376 +n07725531 +n07725663 +n07725789 +n07725888 +n07726009 +n07726095 +n07726230 +n07726386 +n07726525 +n07726672 +n07726796 +n07727048 +n07727140 +n07727252 +n07727377 +n07727458 +n07727578 +n07727741 +n07727868 +n07728053 +n07728181 +n07728284 +n07728391 +n07728585 +n07728708 +n07728804 +n07729000 +n07729142 +n07729225 +n07729384 +n07729485 +n07729828 +n07729926 +n07730207 +n07730320 +n07730406 +n07730562 +n07730708 +n07730855 +n07731006 +n07731122 +n07731284 +n07731436 +n07731587 +n07731767 +n07731952 +n07732168 +n07732302 +n07732433 +n07732525 +n07732636 +n07732747 +n07732904 +n07733005 +n07733124 +n07733217 +n07733394 +n07733567 +n07733712 +n07733847 +n07734017 +n07734183 +n07734292 +n07734417 +n07734555 +n07734879 +n07735052 +n07735179 +n07735294 +n07735404 +n07735510 +n07735687 +n07735803 +n07735981 +n07736087 +n07736256 +n07736371 +n07736527 +n07736692 +n07736813 +n07736971 +n07737081 +n07737594 +n07737745 +n07738105 +n07738224 +n07739035 +n07739125 +n07739344 +n07739506 +n07739923 +n07740033 +n07740115 +n07740220 +n07740342 +n07740461 +n07740597 +n07740744 +n07740855 +n07740954 +n07741138 +n07741235 +n07741357 +n07741461 +n07741623 +n07741706 +n07741804 +n07741888 +n07742012 +n07742224 +n07742415 +n07742513 +n07742605 +n07742704 +n07743224 +n07743384 +n07743544 +n07743723 +n07743902 +n07744057 +n07744246 +n07744430 +n07744559 +n07744682 +n07744811 +n07745046 +n07745197 +n07745357 +n07745466 +n07745661 +n07746038 +n07746186 +n07746334 +n07746551 +n07746749 +n07746910 +n07747055 +n07747811 +n07747951 +n07748157 +n07748276 +n07748416 +n07748574 +n07748753 +n07748912 +n07749095 +n07749192 +n07749312 +n07749446 +n07749731 +n07749870 +n07749969 +n07750146 +n07750299 +n07750449 +n07750586 +n07750736 +n07750872 +n07751004 +n07751148 +n07751280 +n07751451 +n07751737 +n07751858 +n07751977 +n07752109 +n07752264 +n07752377 +n07752514 +n07752602 +n07752664 +n07752782 +n07752874 +n07752966 +n07753448 +n07753743 +n07753980 +n07754155 +n07754279 +n07754451 +n07754894 +n07755089 +n07755262 +n07755411 +n07755619 +n07755707 +n07755929 +n07756096 +n07756325 +n07756499 +n07756641 +n07756838 +n07756951 +n07757132 +n07757312 +n07757511 +n07757602 +n07757753 +n07757874 +n07757990 +n07758125 +n07758260 +n07758407 +n07758582 +n07758680 +n07758950 +n07759194 +n07759324 +n07759424 +n07759576 +n07759691 +n07759816 +n07760070 +n07760153 +n07760297 +n07760395 +n07760501 +n07760673 +n07760755 +n07761141 +n07761309 +n07761611 +n07761777 +n07761954 +n07762114 +n07762244 +n07762373 +n07762534 +n07762740 +n07762913 +n07763107 +n07763290 +n07763483 +n07763629 +n07763792 +n07763987 +n07764155 +n07764315 +n07764486 +n07764630 +n07764847 +n07765073 +n07765208 +n07765361 +n07765517 +n07765612 +n07765728 +n07765862 +n07765999 +n07766173 +n07766409 +n07766530 +n07766723 +n07766891 +n07767002 +n07767171 +n07767344 +n07767549 +n07767709 +n07767847 +n07768068 +n07768139 +n07768230 +n07768318 +n07768423 +n07768590 +n07768858 +n07769102 +n07769306 +n07769465 +n07769584 +n07769731 +n07769886 +n07770034 +n07770180 +n07770439 +n07770571 +n07770763 +n07770869 +n07771082 +n07771212 +n07771405 +n07771539 +n07771731 +n07771891 +n07772026 +n07772147 +n07772274 +n07772413 +n07772788 +n07772935 +n07773428 +n07774182 +n07774295 +n07774479 +n07774596 +n07774719 +n07774842 +n07775050 +n07775197 +n07783827 +n07785487 +n07800091 +n07800487 +n07800636 +n07800740 +n07801007 +n07801091 +n07801342 +n07801508 +n07801709 +n07801779 +n07801892 +n07802152 +n07802246 +n07802417 +n07802767 +n07802863 +n07802963 +n07803093 +n07803213 +n07803310 +n07803408 +n07803545 +n07803779 +n07803895 +n07803992 +n07804152 +n07804323 +n07804543 +n07804657 +n07804771 +n07804900 +n07805006 +n07805254 +n07805389 +n07805478 +n07805594 +n07805731 +n07805966 +n07806043 +n07806120 +n07806221 +n07806633 +n07806774 +n07806879 +n07807002 +n07807171 +n07807317 +n07807472 +n07807594 +n07807710 +n07807834 +n07807922 +n07808022 +n07808166 +n07808268 +n07808352 +n07808479 +n07808587 +n07808675 +n07808806 +n07808904 +n07809096 +n07809368 +n07810531 +n07810907 +n07811416 +n07812046 +n07812184 +n07812662 +n07812790 +n07812913 +n07813107 +n07813324 +n07813495 +n07813579 +n07813717 +n07813833 +n07814007 +n07814203 +n07814390 +n07814487 +n07814634 +n07814790 +n07814925 +n07815163 +n07815294 +n07815424 +n07815588 +n07815839 +n07815956 +n07816052 +n07816164 +n07816296 +n07816398 +n07816575 +n07816726 +n07816839 +n07817024 +n07817160 +n07817315 +n07817465 +n07817599 +n07817758 +n07817871 +n07818029 +n07818133 +n07818277 +n07818422 +n07818572 +n07818689 +n07818825 +n07818995 +n07819166 +n07819303 +n07819480 +n07819682 +n07819769 +n07819896 +n07820036 +n07820145 +n07820297 +n07820497 +n07820683 +n07820814 +n07820960 +n07821107 +n07821260 +n07821404 +n07821610 +n07821758 +n07821919 +n07822053 +n07822197 +n07822323 +n07822518 +n07822687 +n07822845 +n07823105 +n07823280 +n07823369 +n07823460 +n07823591 +n07823698 +n07823814 +n07823951 +n07824191 +n07824268 +n07824383 +n07824502 +n07824702 +n07824863 +n07824988 +n07825194 +n07825399 +n07825496 +n07825597 +n07825717 +n07825850 +n07825972 +n07826091 +n07826250 +n07826340 +n07826453 +n07826544 +n07826653 +n07826930 +n07827130 +n07827284 +n07827410 +n07827554 +n07827750 +n07827896 +n07828041 +n07828156 +n07828275 +n07828378 +n07828642 +n07828987 +n07829248 +n07829331 +n07829412 +n07830493 +n07830593 +n07830690 +n07830841 +n07830986 +n07831267 +n07831450 +n07831663 +n07831821 +n07831955 +n07832099 +n07832202 +n07832307 +n07832416 +n07832592 +n07832741 +n07832902 +n07833333 +n07833535 +n07833672 +n07833816 +n07833951 +n07834065 +n07834160 +n07834286 +n07834507 +n07834618 +n07834774 +n07834872 +n07835051 +n07835173 +n07835331 +n07835457 +n07835547 +n07835701 +n07835823 +n07835921 +n07836077 +n07836269 +n07836456 +n07836600 +n07836731 +n07837002 +n07837110 +n07837234 +n07837362 +n07837545 +n07837630 +n07837755 +n07837912 +n07838073 +n07838233 +n07838441 +n07838551 +n07838659 +n07838811 +n07838905 +n07839055 +n07839172 +n07839312 +n07839478 +n07839593 +n07839730 +n07839864 +n07840027 +n07840124 +n07840219 +n07840304 +n07840395 +n07840520 +n07840672 +n07840804 +n07841037 +n07841345 +n07841495 +n07841639 +n07841800 +n07841907 +n07842044 +n07842130 +n07842202 +n07842308 +n07842433 +n07842605 +n07842753 +n07842972 +n07843117 +n07843220 +n07843348 +n07843464 +n07843636 +n07843775 +n07844042 +n07844604 +n07844786 +n07844867 +n07845087 +n07845166 +n07845335 +n07845421 +n07845495 +n07845571 +n07845702 +n07845775 +n07845863 +n07846014 +n07846143 +n07846274 +n07846359 +n07846471 +n07846557 +n07846688 +n07846802 +n07846938 +n07847047 +n07847198 +n07847453 +n07847585 +n07847706 +n07847827 +n07847917 +n07848093 +n07848196 +n07848338 +n07848771 +n07848936 +n07849026 +n07849186 +n07849336 +n07849506 +n07849619 +n07849733 +n07849912 +n07850083 +n07850219 +n07850329 +n07851054 +n07851298 +n07851443 +n07851554 +n07851641 +n07851767 +n07851926 +n07852045 +n07852229 +n07852302 +n07852376 +n07852452 +n07852532 +n07852614 +n07852712 +n07852833 +n07852919 +n07853125 +n07853232 +n07853345 +n07853445 +n07853560 +n07853648 +n07853762 +n07853852 +n07853946 +n07854066 +n07854184 +n07854266 +n07854348 +n07854455 +n07854614 +n07854707 +n07854813 +n07854982 +n07855105 +n07855188 +n07855317 +n07855413 +n07855510 +n07855603 +n07855721 +n07855812 +n07855907 +n07856045 +n07856186 +n07856270 +n07856756 +n07856895 +n07856992 +n07857076 +n07857170 +n07857356 +n07857598 +n07857731 +n07857959 +n07858114 +n07858197 +n07858336 +n07858484 +n07858595 +n07858841 +n07858978 +n07859142 +n07859284 +n07859583 +n07859796 +n07859951 +n07860103 +n07860208 +n07860331 +n07860447 +n07860548 +n07860629 +n07860805 +n07861158 +n07861247 +n07861334 +n07861557 +n07861681 +n07861813 +n07861983 +n07862095 +n07862244 +n07862348 +n07862461 +n07862611 +n07862770 +n07862946 +n07863107 +n07863229 +n07863374 +n07863547 +n07863644 +n07863802 +n07863935 +n07864065 +n07864198 +n07864317 +n07864475 +n07864638 +n07864756 +n07864934 +n07865105 +n07865196 +n07865484 +n07865575 +n07865700 +n07865788 +n07866015 +n07866151 +n07866277 +n07866409 +n07866571 +n07866723 +n07866868 +n07867021 +n07867164 +n07867324 +n07867421 +n07867616 +n07867751 +n07867883 +n07868045 +n07868200 +n07868340 +n07868508 +n07868684 +n07868830 +n07868955 +n07869111 +n07869291 +n07869391 +n07869522 +n07869611 +n07869775 +n07869937 +n07870069 +n07870167 +n07870313 +n07870478 +n07870620 +n07870734 +n07870894 +n07871065 +n07871234 +n07871335 +n07871436 +n07871588 +n07871720 +n07872593 +n07872748 +n07873057 +n07873198 +n07873348 +n07873464 +n07873679 +n07874063 +n07874159 +n07874259 +n07874343 +n07874441 +n07874531 +n07874674 +n07874780 +n07874995 +n07875086 +n07875267 +n07875436 +n07875560 +n07875693 +n07875835 +n07875926 +n07876026 +n07876189 +n07876281 +n07876460 +n07876550 +n07876651 +n07876775 +n07876893 +n07877187 +n07877299 +n07877675 +n07877849 +n07877961 +n07878145 +n07878283 +n07878479 +n07878647 +n07878785 +n07878926 +n07879072 +n07879174 +n07879350 +n07879450 +n07879560 +n07879659 +n07879821 +n07879953 +n07880080 +n07880213 +n07880325 +n07880458 +n07880751 +n07880880 +n07881117 +n07881205 +n07881404 +n07881525 +n07881625 +n07881800 +n07882420 +n07882497 +n07882886 +n07883031 +n07883156 +n07883251 +n07883384 +n07883510 +n07883661 +n07884567 +n07885705 +n07886057 +n07886176 +n07886317 +n07886463 +n07886572 +n07886849 +n07887099 +n07887192 +n07887304 +n07887461 +n07887634 +n07887967 +n07888058 +n07888229 +n07888378 +n07888465 +n07888816 +n07888909 +n07889193 +n07889274 +n07889510 +n07889814 +n07889990 +n07890068 +n07890226 +n07890352 +n07890540 +n07890617 +n07890750 +n07890890 +n07890970 +n07891095 +n07891189 +n07891309 +n07891433 +n07891726 +n07892418 +n07892813 +n07893253 +n07893425 +n07893528 +n07893642 +n07893792 +n07893891 +n07894102 +n07894298 +n07894451 +n07894551 +n07894703 +n07894799 +n07894965 +n07895100 +n07895237 +n07895435 +n07895595 +n07895710 +n07895839 +n07895962 +n07896060 +n07896165 +n07896287 +n07896422 +n07896560 +n07896661 +n07896765 +n07896893 +n07896994 +n07897116 +n07897200 +n07897438 +n07897600 +n07897750 +n07897865 +n07897975 +n07898117 +n07898247 +n07898333 +n07898443 +n07898617 +n07898745 +n07898895 +n07899003 +n07899108 +n07899292 +n07899434 +n07899533 +n07899660 +n07899769 +n07899899 +n07899976 +n07900225 +n07900406 +n07900616 +n07900734 +n07900825 +n07900958 +n07901355 +n07901457 +n07901587 +n07902121 +n07902336 +n07902443 +n07902520 +n07902698 +n07902799 +n07902937 +n07903101 +n07903208 +n07903543 +n07903643 +n07903731 +n07903841 +n07903962 +n07904072 +n07904293 +n07904395 +n07904637 +n07904760 +n07904865 +n07904934 +n07905038 +n07905296 +n07905386 +n07905474 +n07905618 +n07905770 +n07905979 +n07906111 +n07906284 +n07906572 +n07906718 +n07906877 +n07907037 +n07907161 +n07907342 +n07907429 +n07907548 +n07907831 +n07907943 +n07908411 +n07908567 +n07908647 +n07908812 +n07908923 +n07909129 +n07909231 +n07909362 +n07909504 +n07909593 +n07909714 +n07909811 +n07909954 +n07910048 +n07910152 +n07910245 +n07910379 +n07910538 +n07910656 +n07910799 +n07910970 +n07911061 +n07911249 +n07911371 +n07911677 +n07912093 +n07912211 +n07913180 +n07913300 +n07913393 +n07913537 +n07913644 +n07913774 +n07913882 +n07914006 +n07914128 +n07914271 +n07914413 +n07914586 +n07914686 +n07914777 +n07914887 +n07914995 +n07915094 +n07915213 +n07915366 +n07915491 +n07915618 +n07915800 +n07915918 +n07916041 +n07916183 +n07916319 +n07916437 +n07916582 +n07917133 +n07917272 +n07917392 +n07917507 +n07917618 +n07917791 +n07917874 +n07917951 +n07918028 +n07918193 +n07918309 +n07918706 +n07918879 +n07919165 +n07919310 +n07919441 +n07919572 +n07919665 +n07919787 +n07919894 +n07920222 +n07920349 +n07920540 +n07920663 +n07920872 +n07920989 +n07921090 +n07921239 +n07921360 +n07921455 +n07921615 +n07921834 +n07921948 +n07922041 +n07922147 +n07922512 +n07922607 +n07922764 +n07922955 +n07923748 +n07924033 +n07924276 +n07924366 +n07924443 +n07924560 +n07924655 +n07924747 +n07924834 +n07924955 +n07925116 +n07925229 +n07925327 +n07925423 +n07925500 +n07925608 +n07925708 +n07925808 +n07925966 +n07926250 +n07926346 +n07926442 +n07926540 +n07926785 +n07926920 +n07927070 +n07927197 +n07927512 +n07927716 +n07927836 +n07927931 +n07928163 +n07928264 +n07928367 +n07928488 +n07928578 +n07928696 +n07928790 +n07928887 +n07928998 +n07929172 +n07929351 +n07929519 +n07929940 +n07930062 +n07930205 +n07930315 +n07930433 +n07930554 +n07931001 +n07931096 +n07931280 +n07931452 +n07931612 +n07931733 +n07931870 +n07932323 +n07932454 +n07932614 +n07932762 +n07932841 +n07933154 +n07933274 +n07933530 +n07933652 +n07933799 +n07933891 +n07934032 +n07934152 +n07934282 +n07934373 +n07934530 +n07934678 +n07934800 +n07934908 +n07935043 +n07935152 +n07935288 +n07935379 +n07935504 +n07935737 +n07935878 +n07936015 +n07936093 +n07936263 +n07936459 +n07936548 +n07936745 +n07936979 +n07937069 +n07937344 +n07937461 +n07937621 +n07938007 +n07938149 +n07938313 +n07938594 +n07942152 +n07951464 +n07954211 +n07977870 +n08079613 +n08182379 +n08238463 +n08242223 +n08249459 +n08253141 +n08256735 +n08376250 +n08385989 +n08492354 +n08492461 +n08494231 +n08495908 +n08496334 +n08500819 +n08500989 +n08501887 +n08505018 +n08506347 +n08511017 +n08517010 +n08517676 +n08518171 +n08519299 +n08521623 +n08523340 +n08524735 +n08539072 +n08539276 +n08540532 +n08547468 +n08547544 +n08551296 +n08554440 +n08555333 +n08555710 +n08558770 +n08558963 +n08559155 +n08560295 +n08569482 +n08571275 +n08571642 +n08571898 +n08573674 +n08573842 +n08578517 +n08579266 +n08579352 +n08580944 +n08583292 +n08583455 +n08583554 +n08583682 +n08584914 +n08586978 +n08589670 +n08596076 +n08597579 +n08598301 +n08598568 +n08599174 +n08599292 +n08611339 +n08611421 +n08613733 +n08614632 +n08616050 +n08618831 +n08619112 +n08623676 +n08628141 +n08633683 +n08640531 +n08640739 +n08640962 +n08643267 +n08644045 +n08645104 +n08645212 +n08645318 +n08647264 +n08648917 +n08649711 +n08651104 +n08652376 +n08658309 +n08658918 +n08659242 +n08659331 +n08659446 +n08659861 +n08661878 +n08662427 +n08663051 +n08663703 +n08663860 +n08673039 +n08674344 +n08676253 +n08677424 +n08677801 +n08678783 +n08679167 +n08679269 +n08679562 +n08685188 +n08782627 +n08896327 +n09032191 +n09186592 +n09189157 +n09191635 +n09193551 +n09194227 +n09199101 +n09201998 +n09203827 +n09205509 +n09206896 +n09206985 +n09208496 +n09209025 +n09210862 +n09213434 +n09213565 +n09214060 +n09214269 +n09214916 +n09215023 +n09215437 +n09217230 +n09218315 +n09218494 +n09218641 +n09219233 +n09223487 +n09224725 +n09226869 +n09228055 +n09230041 +n09230202 +n09231117 +n09233446 +n09233603 +n09238926 +n09239302 +n09242389 +n09245515 +n09247410 +n09248153 +n09248399 +n09249034 +n09249155 +n09251407 +n09255070 +n09257843 +n09259025 +n09259219 +n09260907 +n09262690 +n09263912 +n09264803 +n09265620 +n09266604 +n09267854 +n09268007 +n09269341 +n09269472 +n09269882 +n09270160 +n09270657 +n09270735 +n09274152 +n09274305 +n09279986 +n09281252 +n09282208 +n09283193 +n09283405 +n09283514 +n09283767 +n09283866 +n09287415 +n09287968 +n09289331 +n09289596 +n09290350 +n09290444 +n09294877 +n09295210 +n09295946 +n09300306 +n09300905 +n09302616 +n09303008 +n09303528 +n09304750 +n09305031 +n09305898 +n09308572 +n09308743 +n09309046 +n09309168 +n09309292 +n09310616 +n09315159 +n09319604 +n09325824 +n09326662 +n09327077 +n09327538 +n09330378 +n09331251 +n09335693 +n09335809 +n09336555 +n09337048 +n09337253 +n09338013 +n09339810 +n09344198 +n09344324 +n09344724 +n09348460 +n09349648 +n09351905 +n09352849 +n09353815 +n09354511 +n09357346 +n09357447 +n09359803 +n09361517 +n09362316 +n09362945 +n09366017 +n09366317 +n09375606 +n09376198 +n09376526 +n09376786 +n09381242 +n09382099 +n09384106 +n09389867 +n09391386 +n09391644 +n09391774 +n09392402 +n09393524 +n09393605 +n09396465 +n09396608 +n09398076 +n09398677 +n09400584 +n09400987 +n09402944 +n09403086 +n09403211 +n09403427 +n09403734 +n09405078 +n09405787 +n09406793 +n09409512 +n09409752 +n09410224 +n09411189 +n09411295 +n09415584 +n09415671 +n09416076 +n09416890 +n09421031 +n09421799 +n09422190 +n09422631 +n09425019 +n09425344 +n09428628 +n09429630 +n09432283 +n09432990 +n09433312 +n09433442 +n09433839 +n09435739 +n09436444 +n09436708 +n09437454 +n09438844 +n09438940 +n09439032 +n09439213 +n09442595 +n09443281 +n09443641 +n09444783 +n09445008 +n09445289 +n09447666 +n09448690 +n09450163 +n09451237 +n09452291 +n09452395 +n09452760 +n09453008 +n09454153 +n09454412 +n09454744 +n09456207 +n09457979 +n09458269 +n09459979 +n09460046 +n09461069 +n09462600 +n09463226 +n09464486 +n09466678 +n09467696 +n09470027 +n09470222 +n09472413 +n09474010 +n09474412 +n09474765 +n09475044 +n09475179 +n09475925 +n09476123 +n09478210 +n09480959 +n09481120 +n09493983 +n09495962 +n09505153 +n09537660 +n09556121 +n09605110 +n09606009 +n09606527 +n09607630 +n09607782 +n09607903 +n09608709 +n09610255 +n09610405 +n09611722 +n09612700 +n09613118 +n09613191 +n09613690 +n09615336 +n09616573 +n09616922 +n09617161 +n09617435 +n09617577 +n09617696 +n09618760 +n09618880 +n09618957 +n09619168 +n09619452 +n09620078 +n09620794 +n09621232 +n09622049 +n09622302 +n09624168 +n09624559 +n09624899 +n09625401 +n09626238 +n09627807 +n09627906 +n09629065 +n09629246 +n09629752 +n09631129 +n09632274 +n09632518 +n09633969 +n09635534 +n09635635 +n09635973 +n09636339 +n09637339 +n09638454 +n09638875 +n09639382 +n09639919 +n09640327 +n09640715 +n09641002 +n09641578 +n09643799 +n09644152 +n09644657 +n09648743 +n09648911 +n09649067 +n09650729 +n09650839 +n09650989 +n09651123 +n09651968 +n09652149 +n09653144 +n09653438 +n09654079 +n09654518 +n09654898 +n09655213 +n09655466 +n09656077 +n09657206 +n09657748 +n09658254 +n09658398 +n09658815 +n09658921 +n09659039 +n09659188 +n09660010 +n09660240 +n09661873 +n09662038 +n09662661 +n09662951 +n09663248 +n09663786 +n09663999 +n09664556 +n09664908 +n09665367 +n09665545 +n09666349 +n09666476 +n09666883 +n09667358 +n09668199 +n09668437 +n09668562 +n09668988 +n09669631 +n09670280 +n09670521 +n09670909 +n09671089 +n09672590 +n09672725 +n09672840 +n09673091 +n09674412 +n09674786 +n09675045 +n09675673 +n09675799 +n09675922 +n09676021 +n09676247 +n09676884 +n09677427 +n09678747 +n09679028 +n09679170 +n09679925 +n09680908 +n09681107 +n09681234 +n09681973 +n09683180 +n09683757 +n09683924 +n09684082 +n09684901 +n09685233 +n09685806 +n09686262 +n09686401 +n09688233 +n09688804 +n09689435 +n09689958 +n09690083 +n09690208 +n09690496 +n09690621 +n09690864 +n09691604 +n09691729 +n09691858 +n09692125 +n09692915 +n09693244 +n09693982 +n09694664 +n09694771 +n09695019 +n09695132 +n09695514 +n09695620 +n09695979 +n09696456 +n09696585 +n09696763 +n09697401 +n09697986 +n09698644 +n09699020 +n09699642 +n09700125 +n09700964 +n09701148 +n09701833 +n09702134 +n09702673 +n09703101 +n09703344 +n09703485 +n09703708 +n09703809 +n09703932 +n09704057 +n09704157 +n09704283 +n09705003 +n09705124 +n09705671 +n09705784 +n09706029 +n09706255 +n09707061 +n09707289 +n09707735 +n09708750 +n09708889 +n09709531 +n09709673 +n09710041 +n09710164 +n09710886 +n09711132 +n09711435 +n09712324 +n09712448 +n09712696 +n09712967 +n09713108 +n09714120 +n09714694 +n09715165 +n09715303 +n09715427 +n09716047 +n09716933 +n09717233 +n09718217 +n09718811 +n09718936 +n09719309 +n09719794 +n09720033 +n09720256 +n09720595 +n09720702 +n09720842 +n09721244 +n09721444 +n09722064 +n09722658 +n09722817 +n09723067 +n09723819 +n09723944 +n09724234 +n09724533 +n09724656 +n09724785 +n09725000 +n09725229 +n09725546 +n09725653 +n09725772 +n09725935 +n09726621 +n09726811 +n09727440 +n09727826 +n09728137 +n09728285 +n09729062 +n09729156 +n09730077 +n09730204 +n09730824 +n09731343 +n09731436 +n09731571 +n09732170 +n09733459 +n09733793 +n09734185 +n09734450 +n09734535 +n09734639 +n09735258 +n09735654 +n09736485 +n09736798 +n09736945 +n09737050 +n09737161 +n09737453 +n09738121 +n09738400 +n09740724 +n09741074 +n09741331 +n09741722 +n09741816 +n09741904 +n09741999 +n09742101 +n09742315 +n09742927 +n09743487 +n09743601 +n09743792 +n09744161 +n09744346 +n09744462 +n09744679 +n09744834 +n09745229 +n09745324 +n09745834 +n09745933 +n09746936 +n09747191 +n09747495 +n09748101 +n09748408 +n09748648 +n09748889 +n09749386 +n09750282 +n09750641 +n09750770 +n09750891 +n09751076 +n09751496 +n09751622 +n09751895 +n09752023 +n09752519 +n09753348 +n09753792 +n09754152 +n09754217 +n09754633 +n09754907 +n09755086 +n09755241 +n09755555 +n09755788 +n09755893 +n09756049 +n09756195 +n09756961 +n09757449 +n09758173 +n09758885 +n09759501 +n09760290 +n09760609 +n09760913 +n09761068 +n09761753 +n09762011 +n09762385 +n09763272 +n09763784 +n09764201 +n09764598 +n09764732 +n09764900 +n09765118 +n09765278 +n09767197 +n09769076 +n09769525 +n09769929 +n09770179 +n09770359 +n09771435 +n09772330 +n09772746 +n09772930 +n09773962 +n09774167 +n09774783 +n09775907 +n09776346 +n09776642 +n09776807 +n09777870 +n09778266 +n09778537 +n09778783 +n09778927 +n09779124 +n09779280 +n09779461 +n09779790 +n09780395 +n09780828 +n09780984 +n09781398 +n09781504 +n09781650 +n09782167 +n09782397 +n09782855 +n09783537 +n09783776 +n09783884 +n09784043 +n09784160 +n09784564 +n09785236 +n09785659 +n09785891 +n09786115 +n09787534 +n09787765 +n09788073 +n09788237 +n09789150 +n09789566 +n09789898 +n09790047 +n09790482 +n09791014 +n09791419 +n09791816 +n09792125 +n09792555 +n09792969 +n09793141 +n09793352 +n09793946 +n09794550 +n09794668 +n09795010 +n09795124 +n09795334 +n09796809 +n09796974 +n09797742 +n09797873 +n09797998 +n09798096 +n09800469 +n09800964 +n09801102 +n09801275 +n09801533 +n09802445 +n09802641 +n09802951 +n09804230 +n09805151 +n09805324 +n09805475 +n09806944 +n09807075 +n09808080 +n09808591 +n09809279 +n09809538 +n09809749 +n09809925 +n09810166 +n09811568 +n09811712 +n09811852 +n09813219 +n09814252 +n09814381 +n09814488 +n09814567 +n09814660 +n09815455 +n09815790 +n09816654 +n09816771 +n09817174 +n09817386 +n09818022 +n09819477 +n09820044 +n09820263 +n09821831 +n09822830 +n09823153 +n09823287 +n09823502 +n09823832 +n09824135 +n09824609 +n09825096 +n09825750 +n09826204 +n09826605 +n09826821 +n09827246 +n09827363 +n09828216 +n09828403 +n09828988 +n09830194 +n09830400 +n09830629 +n09830759 +n09830926 +n09831962 +n09832456 +n09832633 +n09832978 +n09833111 +n09833275 +n09833441 +n09833536 +n09833751 +n09833997 +n09834258 +n09834378 +n09834699 +n09834885 +n09835017 +n09835153 +n09835230 +n09835348 +n09836160 +n09836343 +n09836519 +n09836786 +n09837459 +n09837720 +n09838295 +n09838370 +n09838621 +n09839702 +n09840217 +n09840435 +n09840520 +n09841188 +n09841515 +n09841696 +n09842047 +n09842288 +n09842395 +n09842528 +n09842823 +n09843443 +n09843602 +n09843716 +n09843824 +n09844457 +n09844898 +n09845401 +n09845849 +n09846142 +n09846469 +n09846586 +n09846755 +n09846894 +n09847267 +n09847344 +n09847543 +n09848110 +n09848489 +n09849167 +n09849990 +n09850760 +n09850974 +n09851165 +n09851575 +n09853541 +n09853645 +n09853881 +n09854218 +n09854421 +n09854915 +n09855433 +n09856401 +n09856671 +n09856827 +n09857007 +n09858165 +n09858299 +n09858733 +n09859152 +n09859285 +n09859975 +n09861287 +n09861599 +n09861863 +n09861946 +n09862183 +n09862621 +n09863031 +n09863339 +n09863749 +n09863936 +n09864632 +n09864968 +n09865068 +n09865162 +n09865398 +n09865672 +n09865744 +n09866115 +n09866354 +n09866559 +n09866661 +n09866817 +n09866922 +n09867069 +n09867154 +n09867311 +n09868270 +n09868782 +n09868899 +n09869317 +n09869447 +n09869578 +n09870096 +n09871095 +n09871229 +n09871681 +n09871867 +n09871952 +n09872066 +n09872557 +n09873348 +n09873473 +n09873769 +n09873899 +n09874428 +n09874725 +n09874862 +n09875025 +n09875979 +n09876701 +n09877288 +n09877587 +n09877750 +n09877951 +n09878921 +n09879552 +n09880189 +n09880741 +n09881265 +n09881358 +n09881895 +n09883047 +n09883452 +n09883807 +n09885059 +n09885866 +n09886403 +n09886540 +n09888635 +n09889065 +n09889170 +n09889691 +n09889941 +n09890192 +n09890749 +n09891730 +n09892262 +n09892513 +n09892693 +n09893191 +n09893344 +n09893502 +n09893600 +n09894143 +n09894445 +n09894654 +n09894909 +n09895222 +n09895480 +n09895561 +n09895701 +n09895902 +n09896170 +n09896311 +n09896401 +n09896685 +n09896826 +n09898020 +n09899289 +n09899671 +n09899782 +n09899929 +n09901337 +n09901502 +n09901642 +n09901786 +n09901921 +n09902128 +n09902353 +n09902731 +n09902851 +n09902954 +n09903153 +n09903501 +n09903639 +n09903936 +n09904208 +n09904837 +n09905050 +n09905185 +n09905530 +n09906293 +n09906449 +n09906704 +n09907804 +n09908769 +n09909660 +n09909929 +n09910222 +n09910374 +n09910556 +n09910840 +n09911226 +n09912431 +n09912681 +n09912907 +n09912995 +n09913329 +n09913455 +n09913593 +n09915434 +n09915651 +n09916348 +n09917214 +n09917345 +n09917481 +n09917593 +n09918248 +n09918554 +n09918867 +n09919061 +n09919200 +n09919451 +n09919899 +n09920106 +n09920283 +n09920901 +n09921034 +n09923003 +n09923186 +n09923418 +n09923561 +n09923673 +n09923996 +n09924106 +n09924195 +n09924313 +n09924437 +n09924996 +n09927089 +n09927451 +n09928136 +n09928451 +n09928845 +n09929202 +n09929298 +n09929577 +n09930257 +n09930628 +n09930876 +n09931165 +n09931418 +n09931640 +n09932098 +n09932336 +n09932508 +n09932788 +n09933020 +n09933098 +n09933842 +n09933972 +n09934337 +n09934488 +n09934774 +n09935107 +n09935434 +n09936825 +n09936892 +n09937056 +n09937688 +n09937802 +n09937903 +n09938080 +n09938449 +n09938991 +n09940725 +n09940818 +n09941089 +n09941571 +n09941787 +n09941964 +n09942697 +n09942970 +n09943239 +n09943811 +n09944022 +n09944160 +n09944430 +n09945021 +n09945223 +n09945319 +n09945603 +n09945745 +n09946814 +n09947127 +n09950457 +n09950728 +n09951070 +n09951274 +n09951524 +n09951616 +n09952163 +n09953052 +n09953350 +n09953615 +n09954355 +n09954639 +n09955406 +n09955944 +n09956578 +n09957523 +n09958133 +n09958292 +n09958447 +n09958569 +n09959142 +n09959658 +n09960688 +n09961198 +n09961331 +n09961469 +n09961605 +n09961739 +n09962966 +n09964202 +n09964411 +n09965515 +n09965787 +n09966470 +n09966554 +n09967063 +n09967406 +n09967555 +n09967816 +n09967967 +n09968259 +n09968652 +n09968741 +n09968845 +n09970088 +n09970192 +n09970402 +n09970822 +n09971273 +n09971385 +n09971839 +n09972010 +n09972458 +n09972587 +n09974648 +n09975425 +n09976024 +n09976283 +n09976429 +n09976728 +n09976917 +n09978442 +n09979321 +n09979913 +n09980458 +n09980805 +n09980985 +n09981092 +n09981278 +n09981540 +n09981939 +n09982152 +n09982525 +n09983314 +n09983572 +n09983889 +n09984960 +n09985470 +n09985809 +n09985978 +n09986450 +n09986700 +n09986904 +n09987045 +n09987161 +n09987239 +n09988063 +n09988311 +n09988493 +n09988703 +n09989502 +n09990415 +n09990690 +n09990777 +n09991740 +n09991867 +n09992538 +n09992837 +n09993252 +n09993651 +n09994400 +n09994673 +n09994808 +n09994878 +n09995829 +n09996039 +n09996304 +n09996481 +n09997622 +n09998788 +n09999135 +n10000294 +n10000459 +n10000787 +n10001217 +n10001481 +n10001764 +n10002257 +n10002760 +n10003476 +n10004718 +n10005006 +n10005934 +n10006177 +n10006748 +n10007684 +n10007809 +n10007995 +n10008123 +n10008254 +n10009162 +n10009276 +n10009484 +n10009671 +n10010062 +n10010243 +n10010632 +n10010767 +n10010864 +n10011360 +n10011486 +n10012484 +n10013811 +n10015215 +n10015485 +n10015792 +n10015897 +n10017272 +n10017422 +n10018747 +n10018861 +n10019072 +n10019187 +n10019406 +n10020366 +n10020533 +n10020670 +n10020807 +n10020890 +n10022908 +n10023264 +n10023506 +n10023656 +n10024025 +n10024362 +n10024937 +n10025060 +n10025295 +n10025391 +n10025635 +n10026976 +n10027246 +n10027590 +n10028402 +n10028541 +n10029068 +n10030277 +n10032987 +n10033412 +n10033572 +n10033663 +n10033888 +n10034201 +n10034614 +n10035952 +n10036266 +n10036444 +n10036692 +n10036929 +n10037080 +n10037385 +n10037588 +n10037922 +n10038119 +n10038409 +n10038620 +n10039271 +n10039946 +n10040240 +n10040698 +n10040945 +n10041373 +n10041887 +n10042690 +n10042845 +n10043024 +n10043491 +n10043643 +n10044682 +n10044879 +n10047199 +n10047459 +n10048117 +n10048367 +n10048612 +n10048836 +n10049363 +n10050043 +n10050880 +n10051026 +n10051761 +n10051861 +n10051975 +n10052694 +n10053439 +n10053808 +n10054657 +n10055297 +n10055410 +n10055566 +n10055730 +n10055847 +n10056103 +n10056611 +n10056719 +n10057271 +n10058411 +n10058962 +n10059067 +n10060075 +n10060175 +n10060352 +n10061043 +n10061195 +n10061431 +n10061882 +n10062042 +n10062176 +n10062275 +n10062492 +n10062594 +n10062716 +n10062905 +n10062996 +n10063635 +n10063919 +n10064831 +n10064977 +n10065758 +n10066206 +n10066314 +n10067011 +n10067305 +n10067600 +n10067968 +n10068234 +n10068425 +n10069296 +n10069981 +n10070108 +n10070377 +n10070449 +n10070563 +n10070711 +n10071332 +n10071557 +n10072054 +n10074249 +n10074578 +n10074735 +n10074841 +n10075299 +n10075693 +n10076224 +n10076483 +n10076604 +n10076957 +n10077106 +n10077593 +n10077879 +n10078131 +n10078719 +n10078806 +n10079399 +n10079893 +n10080117 +n10080508 +n10080869 +n10081204 +n10081842 +n10082043 +n10082299 +n10082423 +n10082562 +n10082687 +n10082997 +n10083677 +n10083823 +n10084043 +n10084295 +n10085101 +n10085869 +n10086383 +n10086744 +n10087434 +n10087736 +n10088200 +n10090745 +n10091349 +n10091450 +n10091564 +n10091651 +n10091861 +n10091997 +n10092488 +n10092643 +n10092794 +n10092978 +n10093167 +n10093475 +n10093818 +n10094320 +n10094584 +n10094782 +n10095265 +n10095420 +n10095769 +n10095869 +n10096126 +n10096508 +n10097262 +n10097477 +n10097590 +n10097842 +n10097995 +n10098245 +n10098388 +n10098517 +n10098624 +n10098710 +n10098862 +n10099002 +n10099375 +n10101308 +n10101634 +n10101981 +n10102800 +n10103155 +n10103228 +n10103921 +n10104064 +n10104487 +n10104756 +n10104888 +n10105085 +n10105733 +n10105906 +n10106387 +n10106509 +n10106995 +n10107173 +n10107303 +n10108018 +n10108089 +n10108464 +n10108832 +n10109443 +n10109662 +n10109826 +n10110093 +n10110731 +n10110893 +n10111358 +n10111779 +n10111903 +n10112129 +n10113249 +n10113583 +n10113869 +n10114476 +n10114550 +n10114662 +n10115430 +n10115946 +n10116370 +n10116478 +n10116702 +n10117017 +n10117267 +n10117415 +n10117739 +n10117851 +n10118301 +n10118743 +n10118844 +n10119609 +n10120330 +n10120671 +n10121026 +n10121246 +n10121714 +n10121800 +n10122300 +n10122531 +n10123122 +n10123844 +n10126177 +n10126424 +n10126708 +n10127186 +n10127689 +n10128519 +n10128748 +n10129338 +n10129825 +n10130686 +n10130877 +n10131151 +n10131268 +n10131590 +n10131815 +n10132035 +n10132502 +n10134178 +n10134396 +n10134760 +n10134982 +n10135129 +n10135197 +n10135297 +n10136615 +n10136959 +n10137825 +n10138369 +n10138472 +n10139077 +n10139651 +n10140051 +n10140597 +n10140683 +n10140783 +n10140929 +n10141364 +n10141732 +n10142166 +n10142391 +n10142537 +n10142747 +n10142946 +n10143172 +n10143595 +n10143725 +n10144338 +n10145239 +n10145340 +n10145480 +n10145590 +n10145774 +n10145902 +n10146002 +n10146104 +n10146416 +n10146816 +n10146927 +n10147121 +n10147262 +n10147710 +n10147935 +n10148305 +n10148825 +n10149436 +n10149867 +n10150071 +n10150794 +n10150940 +n10151133 +n10151261 +n10151367 +n10151570 +n10151760 +n10152306 +n10152616 +n10152763 +n10153155 +n10153414 +n10153594 +n10153865 +n10154013 +n10154186 +n10154601 +n10155222 +n10155600 +n10155849 +n10156629 +n10156831 +n10157016 +n10157128 +n10157271 +n10158506 +n10159045 +n10159289 +n10159533 +n10160188 +n10160280 +n10160412 +n10161622 +n10162016 +n10162194 +n10162354 +n10164025 +n10164233 +n10164492 +n10165448 +n10166189 +n10166394 +n10167152 +n10167361 +n10167565 +n10167838 +n10168012 +n10168183 +n10168584 +n10168837 +n10169147 +n10169241 +n10169419 +n10169796 +n10170060 +n10170681 +n10170866 +n10171219 +n10171456 +n10171567 +n10172080 +n10173410 +n10173579 +n10173665 +n10173771 +n10174253 +n10174330 +n10174445 +n10174589 +n10174695 +n10174971 +n10175248 +n10175725 +n10176913 +n10177150 +n10178077 +n10178216 +n10179069 +n10180580 +n10180791 +n10180923 +n10181445 +n10181547 +n10181799 +n10181878 +n10182190 +n10182402 +n10183347 +n10183931 +n10184505 +n10185148 +n10185483 +n10185793 +n10186068 +n10186143 +n10186216 +n10186350 +n10186686 +n10186774 +n10187130 +n10187491 +n10187990 +n10188715 +n10188856 +n10188957 +n10189278 +n10189597 +n10190122 +n10190516 +n10191001 +n10191388 +n10191613 +n10192839 +n10193650 +n10194231 +n10194775 +n10195056 +n10195155 +n10195261 +n10195593 +n10196404 +n10196725 +n10197392 +n10198437 +n10198832 +n10199251 +n10200246 +n10200781 +n10202225 +n10202624 +n10202763 +n10203949 +n10204177 +n10204833 +n10205231 +n10205344 +n10205457 +n10205714 +n10206173 +n10206506 +n10206629 +n10207077 +n10207169 +n10208189 +n10208847 +n10208950 +n10209082 +n10209731 +n10210137 +n10210512 +n10210648 +n10210911 +n10211036 +n10211666 +n10211830 +n10212231 +n10212501 +n10212780 +n10213034 +n10213429 +n10214062 +n10214390 +n10215623 +n10216106 +n10216403 +n10217208 +n10218043 +n10218164 +n10218292 +n10219240 +n10219453 +n10219879 +n10220080 +n10220924 +n10221312 +n10221520 +n10222170 +n10222259 +n10222497 +n10222716 +n10223069 +n10223177 +n10223606 +n10224578 +n10225219 +n10225931 +n10226413 +n10227166 +n10227266 +n10227393 +n10227490 +n10227698 +n10227793 +n10227985 +n10228278 +n10228468 +n10228592 +n10228712 +n10229883 +n10230216 +n10233248 +n10235024 +n10235269 +n10235385 +n10236304 +n10236521 +n10236842 +n10237069 +n10237196 +n10237464 +n10237556 +n10237676 +n10237799 +n10238272 +n10238375 +n10239928 +n10240082 +n10240235 +n10240417 +n10240821 +n10241024 +n10241300 +n10242328 +n10243137 +n10243273 +n10243483 +n10243664 +n10243872 +n10244108 +n10244359 +n10244913 +n10245029 +n10245341 +n10245507 +n10245639 +n10245863 +n10246317 +n10246395 +n10246703 +n10247358 +n10247880 +n10248008 +n10248198 +n10248377 +n10249191 +n10249270 +n10249459 +n10249869 +n10249950 +n10250712 +n10251329 +n10251612 +n10252075 +n10252222 +n10252354 +n10252547 +n10253122 +n10253296 +n10253479 +n10253611 +n10253703 +n10255459 +n10257221 +n10258602 +n10258786 +n10259348 +n10259780 +n10259997 +n10260473 +n10260706 +n10260800 +n10261211 +n10261511 +n10261624 +n10261862 +n10262343 +n10262445 +n10262561 +n10262655 +n10262880 +n10263146 +n10263411 +n10263790 +n10265281 +n10265801 +n10265891 +n10266016 +n10266328 +n10266848 +n10267166 +n10267311 +n10267865 +n10268629 +n10269199 +n10269289 +n10271677 +n10272782 +n10272913 +n10273064 +n10274173 +n10274318 +n10274815 +n10275249 +n10275395 +n10275848 +n10276045 +n10276477 +n10276942 +n10277027 +n10277638 +n10277815 +n10277912 +n10278456 +n10279018 +n10279778 +n10280034 +n10280130 +n10280598 +n10280674 +n10281546 +n10281770 +n10281896 +n10282482 +n10282672 +n10283170 +n10283366 +n10283546 +n10284064 +n10284871 +n10284965 +n10286282 +n10286539 +n10286749 +n10288964 +n10289039 +n10289176 +n10289462 +n10289766 +n10290422 +n10290541 +n10290813 +n10290919 +n10291110 +n10291469 +n10291822 +n10291942 +n10292316 +n10293332 +n10293590 +n10293861 +n10294020 +n10294139 +n10295371 +n10295479 +n10296176 +n10296444 +n10297234 +n10297367 +n10297531 +n10297841 +n10298202 +n10298271 +n10298647 +n10298912 +n10299125 +n10299250 +n10299700 +n10299875 +n10300041 +n10300154 +n10300303 +n10300500 +n10300654 +n10300829 +n10302576 +n10302700 +n10302905 +n10303037 +n10303814 +n10304086 +n10304650 +n10304914 +n10305635 +n10305802 +n10306004 +n10306279 +n10306496 +n10306595 +n10306890 +n10307114 +n10308066 +n10308168 +n10308275 +n10308504 +n10308653 +n10308732 +n10310783 +n10311506 +n10311661 +n10312287 +n10312491 +n10312600 +n10313000 +n10313239 +n10313441 +n10313724 +n10314054 +n10314182 +n10314517 +n10314836 +n10315217 +n10315456 +n10315561 +n10315730 +n10316360 +n10316527 +n10316862 +n10317007 +n10317500 +n10317963 +n10318293 +n10318607 +n10318686 +n10319313 +n10320484 +n10320863 +n10321126 +n10321340 +n10321632 +n10321882 +n10322238 +n10323634 +n10323752 +n10323999 +n10324560 +n10325549 +n10325774 +n10326776 +n10327143 +n10327987 +n10328123 +n10328328 +n10328437 +n10328696 +n10328941 +n10329035 +n10330593 +n10330931 +n10331098 +n10331167 +n10331258 +n10331347 +n10331841 +n10332110 +n10332385 +n10332861 +n10332953 +n10333044 +n10333165 +n10333317 +n10333439 +n10333601 +n10333838 +n10334009 +n10334461 +n10334782 +n10335246 +n10335801 +n10335931 +n10336411 +n10336904 +n10337488 +n10338231 +n10338391 +n10339179 +n10339251 +n10339717 +n10340312 +n10341243 +n10341343 +n10341446 +n10341573 +n10341955 +n10342180 +n10342367 +n10342543 +n10342893 +n10342992 +n10343088 +n10343355 +n10343449 +n10343554 +n10343869 +n10344121 +n10344203 +n10344319 +n10344656 +n10344774 +n10345015 +n10345100 +n10345302 +n10345422 +n10345659 +n10346015 +n10347204 +n10347446 +n10348526 +n10349243 +n10349750 +n10349836 +n10350220 +n10350774 +n10351064 +n10353016 +n10353355 +n10353928 +n10354265 +n10354754 +n10355142 +n10355306 +n10355449 +n10355688 +n10355806 +n10356450 +n10356877 +n10357012 +n10357613 +n10357737 +n10358032 +n10358124 +n10358575 +n10359117 +n10359422 +n10359546 +n10359659 +n10360366 +n10360747 +n10361060 +n10361194 +n10361296 +n10361525 +n10362003 +n10362319 +n10362557 +n10363445 +n10363573 +n10364198 +n10364502 +n10365514 +n10366145 +n10366276 +n10366966 +n10368291 +n10368528 +n10368624 +n10368711 +n10368798 +n10369095 +n10369317 +n10369417 +n10369528 +n10369699 +n10369955 +n10370381 +n10370955 +n10371052 +n10371221 +n10371330 +n10371450 +n10373390 +n10373525 +n10374541 +n10374849 +n10374943 +n10375052 +n10375314 +n10375402 +n10376523 +n10376890 +n10377021 +n10377185 +n10377291 +n10377542 +n10377633 +n10378026 +n10378113 +n10378780 +n10379376 +n10380126 +n10380499 +n10380672 +n10381804 +n10381981 +n10382157 +n10382302 +n10382480 +n10382710 +n10382825 +n10383094 +n10383237 +n10383505 +n10383816 +n10384214 +n10384392 +n10384496 +n10385566 +n10386196 +n10386754 +n10386874 +n10386984 +n10387196 +n10387324 +n10387836 +n10389865 +n10389976 +n10390600 +n10390698 +n10390807 +n10391416 +n10393909 +n10394434 +n10394786 +n10395073 +n10395209 +n10395390 +n10395828 +n10396106 +n10396337 +n10396727 +n10396908 +n10397001 +n10397142 +n10397392 +n10399130 +n10400003 +n10400108 +n10400205 +n10400437 +n10400618 +n10400998 +n10401204 +n10401331 +n10401639 +n10402709 +n10402824 +n10403633 +n10403876 +n10404426 +n10404998 +n10405540 +n10405694 +n10406266 +n10406391 +n10406765 +n10407310 +n10407954 +n10408809 +n10409459 +n10409752 +n10410246 +n10410996 +n10411356 +n10411551 +n10411867 +n10414239 +n10414768 +n10414865 +n10415037 +n10416567 +n10417288 +n10417424 +n10417551 +n10417682 +n10417843 +n10417969 +n10418101 +n10418735 +n10419047 +n10419472 +n10419630 +n10419785 +n10420031 +n10420277 +n10420507 +n10420649 +n10421016 +n10421470 +n10421956 +n10422405 +n10425946 +n10426454 +n10426630 +n10427223 +n10427359 +n10427764 +n10428004 +n10431122 +n10431625 +n10432189 +n10432441 +n10432875 +n10432957 +n10433077 +n10433452 +n10433610 +n10433737 +n10435169 +n10435251 +n10435716 +n10435988 +n10436334 +n10437014 +n10437137 +n10437262 +n10437698 +n10438172 +n10438619 +n10438842 +n10439373 +n10439523 +n10439727 +n10439851 +n10441037 +n10441124 +n10441694 +n10441962 +n10442093 +n10442232 +n10442417 +n10442573 +n10443032 +n10443659 +n10443830 +n10444194 +n10448322 +n10448455 +n10449664 +n10450038 +n10450161 +n10450303 +n10451450 +n10451590 +n10451858 +n10453184 +n10455619 +n10456070 +n10456138 +n10456696 +n10457214 +n10457444 +n10457903 +n10458111 +n10458356 +n10458596 +n10459882 +n10460033 +n10461060 +n10462588 +n10462751 +n10462860 +n10464052 +n10464542 +n10464711 +n10464870 +n10465002 +n10465451 +n10465831 +n10466198 +n10466564 +n10466918 +n10467179 +n10467395 +n10468750 +n10469611 +n10469874 +n10470779 +n10471640 +n10471732 +n10471859 +n10472129 +n10472447 +n10473453 +n10473562 +n10473789 +n10473917 +n10474064 +n10474343 +n10474446 +n10474645 +n10475835 +n10475940 +n10476467 +n10477713 +n10477955 +n10478118 +n10478293 +n10478462 +n10478827 +n10478960 +n10479135 +n10479328 +n10481167 +n10481268 +n10482054 +n10482220 +n10482587 +n10482921 +n10483138 +n10483395 +n10483799 +n10483890 +n10484858 +n10485298 +n10485883 +n10486166 +n10486236 +n10486561 +n10487182 +n10487363 +n10487592 +n10488016 +n10488309 +n10488656 +n10489426 +n10490421 +n10491998 +n10492086 +n10492727 +n10493199 +n10493419 +n10493685 +n10493835 +n10493922 +n10494195 +n10494373 +n10495167 +n10495421 +n10495555 +n10495756 +n10496393 +n10496489 +n10497135 +n10497534 +n10497645 +n10498046 +n10498699 +n10498816 +n10498986 +n10499110 +n10499232 +n10499355 +n10499631 +n10499857 +n10500217 +n10500419 +n10500603 +n10500824 +n10500942 +n10501453 +n10501635 +n10502046 +n10502329 +n10502950 +n10503818 +n10504090 +n10504206 +n10505347 +n10505613 +n10505732 +n10505942 +n10506336 +n10506544 +n10506915 +n10507070 +n10507380 +n10507482 +n10507565 +n10507692 +n10508141 +n10508379 +n10508710 +n10509063 +n10509161 +n10509810 +n10510245 +n10510974 +n10511771 +n10512201 +n10512372 +n10512708 +n10512859 +n10513509 +n10513823 +n10513938 +n10514051 +n10514121 +n10514255 +n10514429 +n10514784 +n10515863 +n10516527 +n10517137 +n10517283 +n10518349 +n10519126 +n10519494 +n10519984 +n10520286 +n10520544 +n10520964 +n10521100 +n10521662 +n10521853 +n10522035 +n10522324 +n10522759 +n10523341 +n10524076 +n10524223 +n10524869 +n10525134 +n10525436 +n10525617 +n10525878 +n10526534 +n10527147 +n10527334 +n10528023 +n10528148 +n10528493 +n10529231 +n10530150 +n10530383 +n10530571 +n10530959 +n10531109 +n10531445 +n10531838 +n10533874 +n10533983 +n10536134 +n10536274 +n10536416 +n10537708 +n10537906 +n10538629 +n10538733 +n10538853 +n10539015 +n10539160 +n10539278 +n10540114 +n10540252 +n10540656 +n10541833 +n10542608 +n10542761 +n10542888 +n10543161 +n10543937 +n10544232 +n10544748 +n10545792 +n10546428 +n10546633 +n10548419 +n10548537 +n10548681 +n10549510 +n10550252 +n10550369 +n10550468 +n10551576 +n10552393 +n10553140 +n10553235 +n10554024 +n10554141 +n10554846 +n10555059 +n10555430 +n10556033 +n10556518 +n10556704 +n10556825 +n10557246 +n10557854 +n10559009 +n10559288 +n10559508 +n10559683 +n10559996 +n10560106 +n10560637 +n10561222 +n10561320 +n10561736 +n10562135 +n10562283 +n10562509 +n10562968 +n10563314 +n10563403 +n10563711 +n10564098 +n10565502 +n10566072 +n10567613 +n10567722 +n10567848 +n10568200 +n10568358 +n10568443 +n10568608 +n10568915 +n10569011 +n10569179 +n10570019 +n10570704 +n10571907 +n10572706 +n10572889 +n10573957 +n10574311 +n10574538 +n10574840 +n10575463 +n10575594 +n10575787 +n10576223 +n10576316 +n10576676 +n10576818 +n10576962 +n10577182 +n10577284 +n10577710 +n10577820 +n10578021 +n10578162 +n10578471 +n10578656 +n10579062 +n10579549 +n10580030 +n10580437 +n10580535 +n10581648 +n10581890 +n10582604 +n10582746 +n10583387 +n10583790 +n10585077 +n10585217 +n10585628 +n10586166 +n10586265 +n10586444 +n10586903 +n10586998 +n10588074 +n10588357 +n10588724 +n10588965 +n10589666 +n10590146 +n10590239 +n10590452 +n10590903 +n10591072 +n10591811 +n10592049 +n10592811 +n10593521 +n10594147 +n10594523 +n10594857 +n10595164 +n10595647 +n10596517 +n10596899 +n10597505 +n10597745 +n10597889 +n10598013 +n10598181 +n10598459 +n10598904 +n10599215 +n10599806 +n10601234 +n10601362 +n10602119 +n10602470 +n10602985 +n10603528 +n10603851 +n10604275 +n10604380 +n10604634 +n10604880 +n10604979 +n10605253 +n10605737 +n10607291 +n10607478 +n10609092 +n10609198 +n10610465 +n10610850 +n10611267 +n10611613 +n10612210 +n10612373 +n10612518 +n10613996 +n10614507 +n10614629 +n10615179 +n10615334 +n10616578 +n10617024 +n10617193 +n10617397 +n10618234 +n10618342 +n10618465 +n10618685 +n10618848 +n10619492 +n10619642 +n10619888 +n10620212 +n10620586 +n10620758 +n10621294 +n10621400 +n10621514 +n10622053 +n10624074 +n10624310 +n10624437 +n10624540 +n10625860 +n10626630 +n10627252 +n10628097 +n10628644 +n10629329 +n10629647 +n10629939 +n10630093 +n10630188 +n10631131 +n10631309 +n10631654 +n10632576 +n10633298 +n10633450 +n10634464 +n10634849 +n10634990 +n10635788 +n10636488 +n10637483 +n10638922 +n10639238 +n10639359 +n10639637 +n10639817 +n10641223 +n10642596 +n10642705 +n10643095 +n10643837 +n10643937 +n10644598 +n10645017 +n10645223 +n10646032 +n10646140 +n10646433 +n10646641 +n10646780 +n10646942 +n10647745 +n10648237 +n10648696 +n10649197 +n10649308 +n10650162 +n10652605 +n10652703 +n10654015 +n10654211 +n10654321 +n10654827 +n10654932 +n10655169 +n10655442 +n10655594 +n10655730 +n10655986 +n10656120 +n10656223 +n10656969 +n10657306 +n10657556 +n10657835 +n10658304 +n10659042 +n10659762 +n10660128 +n10660621 +n10660883 +n10661002 +n10661216 +n10661563 +n10661732 +n10663315 +n10663549 +n10665302 +n10665587 +n10665698 +n10666752 +n10667477 +n10667709 +n10667863 +n10668450 +n10668666 +n10669991 +n10671042 +n10671613 +n10671736 +n10671898 +n10672371 +n10672540 +n10672662 +n10673296 +n10673776 +n10674130 +n10674713 +n10675010 +n10675142 +n10675609 +n10676018 +n10676434 +n10676569 +n10678937 +n10679174 +n10679503 +n10679610 +n10679723 +n10680609 +n10680796 +n10681194 +n10681557 +n10682713 +n10682953 +n10683675 +n10684146 +n10684630 +n10684827 +n10685398 +n10686073 +n10686517 +n10686694 +n10686885 +n10688356 +n10688811 +n10689306 +n10690268 +n10690421 +n10690648 +n10691318 +n10691937 +n10692090 +n10692482 +n10692883 +n10693235 +n10693334 +n10693824 +n10694258 +n10694939 +n10695450 +n10696101 +n10696508 +n10697135 +n10697282 +n10698368 +n10699558 +n10699752 +n10699981 +n10700105 +n10700201 +n10700640 +n10700963 +n10701180 +n10701644 +n10701962 +n10702167 +n10702615 +n10703221 +n10703336 +n10703480 +n10703692 +n10704238 +n10704712 +n10704886 +n10705448 +n10705615 +n10706812 +n10707134 +n10707233 +n10707707 +n10708292 +n10708454 +n10709529 +n10710171 +n10710259 +n10710778 +n10710913 +n10711483 +n10711766 +n10712229 +n10712374 +n10712474 +n10712690 +n10712835 +n10713254 +n10713686 +n10713843 +n10714195 +n10715030 +n10715347 +n10715789 +n10716576 +n10716864 +n10717055 +n10717196 +n10717337 +n10718131 +n10718349 +n10718509 +n10718665 +n10718952 +n10719036 +n10719132 +n10719267 +n10719807 +n10720197 +n10720453 +n10720964 +n10721124 +n10721321 +n10721612 +n10721708 +n10721819 +n10722029 +n10722575 +n10722965 +n10723230 +n10723597 +n10724132 +n10724372 +n10724570 +n10725280 +n10726031 +n10726786 +n10727016 +n10727171 +n10727458 +n10728117 +n10728233 +n10728624 +n10728998 +n10729330 +n10730542 +n10730728 +n10731013 +n10731732 +n10732010 +n10732521 +n10732854 +n10732967 +n10733820 +n10734394 +n10734741 +n10734891 +n10734963 +n10735173 +n10735298 +n10735984 +n10737103 +n10737264 +n10738111 +n10738215 +n10738670 +n10738871 +n10739135 +n10739297 +n10739391 +n10740594 +n10740732 +n10740868 +n10741152 +n10741367 +n10741493 +n10742005 +n10742111 +n10742546 +n10742997 +n10743124 +n10743356 +n10744078 +n10744164 +n10745006 +n10745770 +n10746931 +n10747119 +n10747424 +n10747548 +n10747965 +n10748142 +n10748506 +n10748620 +n10749928 +n10750031 +n10750188 +n10750640 +n10751026 +n10751152 +n10751265 +n10751710 +n10752480 +n10753061 +n10753182 +n10753339 +n10753442 +n10753989 +n10754189 +n10754281 +n10754449 +n10755080 +n10755164 +n10755394 +n10755648 +n10756061 +n10756148 +n10756261 +n10756641 +n10756837 +n10757050 +n10757492 +n10758337 +n10758445 +n10758949 +n10759151 +n10759331 +n10759982 +n10760199 +n10760622 +n10760951 +n10761190 +n10761326 +n10761519 +n10762212 +n10762480 +n10763075 +n10763245 +n10763383 +n10763620 +n10764465 +n10764622 +n10764719 +n10765305 +n10765587 +n10765679 +n10765885 +n10766260 +n10768148 +n10768272 +n10768903 +n10769084 +n10769188 +n10769321 +n10769459 +n10771066 +n10772092 +n10772580 +n10772937 +n10773665 +n10773800 +n10774329 +n10774756 +n10775003 +n10775128 +n10776052 +n10776339 +n10776887 +n10777299 +n10778044 +n10778148 +n10778711 +n10778999 +n10779610 +n10779897 +n10779995 +n10780284 +n10780632 +n10781236 +n10781817 +n10782362 +n10782471 +n10782791 +n10782940 +n10783240 +n10783539 +n10783646 +n10783734 +n10784113 +n10784544 +n10784922 +n10785480 +n10787470 +n10788852 +n10789415 +n10789709 +n10791115 +n10791221 +n10791820 +n10791890 +n10792335 +n10792506 +n10792856 +n10793570 +n10793799 +n10794014 +n10801561 +n10801802 +n10802507 +n10802621 +n10802953 +n10803031 +n10803282 +n10803978 +n10804287 +n10804636 +n10804732 +n10805501 +n10806113 +n10994097 +n11100798 +n11196627 +n11242849 +n11318824 +n11346873 +n11448153 +n11487732 +n11508382 +n11511327 +n11524451 +n11530008 +n11531193 +n11531334 +n11532682 +n11533212 +n11533999 +n11536567 +n11536673 +n11537327 +n11539289 +n11542137 +n11542640 +n11544015 +n11545350 +n11545524 +n11545714 +n11547562 +n11547855 +n11548728 +n11548870 +n11549009 +n11549245 +n11549779 +n11549895 +n11552133 +n11552386 +n11552594 +n11552806 +n11552976 +n11553240 +n11553522 +n11596108 +n11597657 +n11598287 +n11598686 +n11598886 +n11599324 +n11600372 +n11601177 +n11601333 +n11601918 +n11602091 +n11602478 +n11602873 +n11603246 +n11603462 +n11603835 +n11604046 +n11608250 +n11609475 +n11609684 +n11609862 +n11610047 +n11610215 +n11610437 +n11610602 +n11610823 +n11611087 +n11611233 +n11611356 +n11611561 +n11611758 +n11612018 +n11612235 +n11612349 +n11612575 +n11612923 +n11613219 +n11613459 +n11613692 +n11613867 +n11614039 +n11614250 +n11614420 +n11614713 +n11615026 +n11615259 +n11615387 +n11615607 +n11615812 +n11615967 +n11616260 +n11616486 +n11616662 +n11616852 +n11617090 +n11617272 +n11617631 +n11617878 +n11618079 +n11618290 +n11618525 +n11618861 +n11619227 +n11619455 +n11619687 +n11619845 +n11620016 +n11620389 +n11620673 +n11621029 +n11621281 +n11621547 +n11621727 +n11621950 +n11622184 +n11622368 +n11622591 +n11622771 +n11623105 +n11623815 +n11623967 +n11624192 +n11624531 +n11625003 +n11625223 +n11625391 +n11625632 +n11625804 +n11626010 +n11626152 +n11626409 +n11626585 +n11626826 +n11627168 +n11627512 +n11627714 +n11627908 +n11628087 +n11628456 +n11628793 +n11629047 +n11629354 +n11630017 +n11630489 +n11631159 +n11631405 +n11631619 +n11631854 +n11631985 +n11632167 +n11632376 +n11632619 +n11632929 +n11633284 +n11634736 +n11635152 +n11635433 +n11635830 +n11636204 +n11636835 +n11639084 +n11639306 +n11639445 +n11640132 +n11643835 +n11644046 +n11644226 +n11644462 +n11644872 +n11645163 +n11645590 +n11645914 +n11646167 +n11646344 +n11646517 +n11646694 +n11646955 +n11647306 +n11647703 +n11647868 +n11648039 +n11648268 +n11648776 +n11649150 +n11649359 +n11649878 +n11650160 +n11650307 +n11650430 +n11650558 +n11650759 +n11652039 +n11652217 +n11652376 +n11652578 +n11652753 +n11652966 +n11653126 +n11653570 +n11653904 +n11654293 +n11654438 +n11654984 +n11655152 +n11655592 +n11655974 +n11656123 +n11656549 +n11656771 +n11657585 +n11658331 +n11658544 +n11658709 +n11659248 +n11659627 +n11660300 +n11661372 +n11661909 +n11662128 +n11662371 +n11662585 +n11662937 +n11663263 +n11664418 +n11665372 +n11666854 +n11668117 +n11669786 +n11669921 +n11672269 +n11672400 +n11674019 +n11674332 +n11675025 +n11675404 +n11675738 +n11676500 +n11676743 +n11676850 +n11677485 +n11677902 +n11678010 +n11678299 +n11678377 +n11679378 +n11680457 +n11680596 +n11682659 +n11683216 +n11683838 +n11684264 +n11684499 +n11684654 +n11685091 +n11685621 +n11686195 +n11686652 +n11686780 +n11686912 +n11687071 +n11687432 +n11687789 +n11687964 +n11688069 +n11688378 +n11689197 +n11689367 +n11689483 +n11689678 +n11689815 +n11689957 +n11690088 +n11690254 +n11690455 +n11691046 +n11691857 +n11692265 +n11692792 +n11693981 +n11694300 +n11694469 +n11694664 +n11694866 +n11695085 +n11695285 +n11695599 +n11695974 +n11696450 +n11696935 +n11697560 +n11697802 +n11698042 +n11698245 +n11699442 +n11699751 +n11700058 +n11700279 +n11700864 +n11701066 +n11701302 +n11702713 +n11703669 +n11704093 +n11704620 +n11704791 +n11705171 +n11705387 +n11705573 +n11705776 +n11706325 +n11706761 +n11706942 +n11707229 +n11707827 +n11708658 +n11708857 +n11709045 +n11709205 +n11709674 +n11710136 +n11710393 +n11710658 +n11710827 +n11710987 +n11711289 +n11711537 +n11711764 +n11711971 +n11712282 +n11713164 +n11713370 +n11713763 +n11714382 +n11715430 +n11715678 +n11716698 +n11717399 +n11717577 +n11718296 +n11718681 +n11719286 +n11720353 +n11720643 +n11720891 +n11721337 +n11721642 +n11722036 +n11722342 +n11722466 +n11722621 +n11722982 +n11723227 +n11723452 +n11723770 +n11723986 +n11724109 +n11724660 +n11725015 +n11725311 +n11725480 +n11725623 +n11725821 +n11725973 +n11726145 +n11726269 +n11726433 +n11726707 +n11727091 +n11727358 +n11727540 +n11727738 +n11728099 +n11728769 +n11728945 +n11729142 +n11729478 +n11729860 +n11730015 +n11730458 +n11730602 +n11730750 +n11730933 +n11731157 +n11731659 +n11732052 +n11732567 +n11733054 +n11733312 +n11733548 +n11734493 +n11734698 +n11735053 +n11735570 +n11735977 +n11736362 +n11736694 +n11736851 +n11737009 +n11737125 +n11737534 +n11738547 +n11738997 +n11739365 +n11739978 +n11740414 +n11741175 +n11741350 +n11741575 +n11741797 +n11742310 +n11742878 +n11744011 +n11744108 +n11744471 +n11745817 +n11746600 +n11747468 +n11748002 +n11748811 +n11749112 +n11749603 +n11750173 +n11750508 +n11750989 +n11751765 +n11751974 +n11752578 +n11752798 +n11752937 +n11753143 +n11753355 +n11753562 +n11753700 +n11754893 +n11756092 +n11756329 +n11756669 +n11756870 +n11757017 +n11757190 +n11757653 +n11757851 +n11758122 +n11758276 +n11758483 +n11758799 +n11759224 +n11759404 +n11759609 +n11759853 +n11760785 +n11761202 +n11761650 +n11761836 +n11762018 +n11762433 +n11762927 +n11763142 +n11763625 +n11763874 +n11764478 +n11764814 +n11765568 +n11766046 +n11766189 +n11766432 +n11767354 +n11767877 +n11768816 +n11769176 +n11769621 +n11769803 +n11770256 +n11771147 +n11771539 +n11771746 +n11771924 +n11772408 +n11772879 +n11773408 +n11773628 +n11773987 +n11774513 +n11774972 +n11775340 +n11775626 +n11776234 +n11777080 +n11778092 +n11778257 +n11779300 +n11780148 +n11780424 +n11781176 +n11782036 +n11782266 +n11782761 +n11782878 +n11783162 +n11783920 +n11784126 +n11784497 +n11785276 +n11785668 +n11785875 +n11786131 +n11786539 +n11786843 +n11787190 +n11788039 +n11788727 +n11789066 +n11789438 +n11789589 +n11789962 +n11790089 +n11790788 +n11790936 +n11791341 +n11791569 +n11792029 +n11792341 +n11792742 +n11793403 +n11793779 +n11794024 +n11794139 +n11794519 +n11795049 +n11795216 +n11795580 +n11796005 +n11796188 +n11797321 +n11797508 +n11797981 +n11798270 +n11798496 +n11798688 +n11798978 +n11799331 +n11799732 +n11800236 +n11800565 +n11801392 +n11801665 +n11801891 +n11802410 +n11802586 +n11802800 +n11802995 +n11805255 +n11805544 +n11805956 +n11806219 +n11806369 +n11806521 +n11806679 +n11806814 +n11807108 +n11807525 +n11807696 +n11807979 +n11808299 +n11808468 +n11808721 +n11808932 +n11809094 +n11809271 +n11809437 +n11809594 +n11809754 +n11810030 +n11810358 +n11811059 +n11811473 +n11811706 +n11811921 +n11812094 +n11812910 +n11813077 +n11814584 +n11814996 +n11815491 +n11815721 +n11815918 +n11816121 +n11816336 +n11816649 +n11816829 +n11817160 +n11817501 +n11817914 +n11818069 +n11818636 +n11819509 +n11819912 +n11820965 +n11821184 +n11822300 +n11823043 +n11823305 +n11823436 +n11823756 +n11824146 +n11824344 +n11824747 +n11825351 +n11825749 +n11826198 +n11826569 +n11827541 +n11828577 +n11828973 +n11829205 +n11829672 +n11829922 +n11830045 +n11830252 +n11830400 +n11830714 +n11830906 +n11831100 +n11831297 +n11831521 +n11832214 +n11832480 +n11832671 +n11832899 +n11833373 +n11833749 +n11834272 +n11834654 +n11834890 +n11835251 +n11836327 +n11836722 +n11837204 +n11837351 +n11837562 +n11837743 +n11837970 +n11838413 +n11838916 +n11839460 +n11839568 +n11839823 +n11840067 +n11840246 +n11840476 +n11840764 +n11841247 +n11843441 +n11844371 +n11844892 +n11845557 +n11845793 +n11845913 +n11846312 +n11846425 +n11846765 +n11847169 +n11848479 +n11848867 +n11849271 +n11849467 +n11849871 +n11849983 +n11850521 +n11850918 +n11851258 +n11851578 +n11851839 +n11852028 +n11852148 +n11852531 +n11853079 +n11853356 +n11853813 +n11854479 +n11855274 +n11855435 +n11855553 +n11855842 +n11856573 +n11857696 +n11857875 +n11858077 +n11858703 +n11858814 +n11859275 +n11859472 +n11859737 +n11860208 +n11860555 +n11861238 +n11861487 +n11861641 +n11861853 +n11862835 +n11863467 +n11863877 +n11865071 +n11865276 +n11865429 +n11865574 +n11865874 +n11866248 +n11866706 +n11867311 +n11868814 +n11869351 +n11869689 +n11870044 +n11870418 +n11870747 +n11871059 +n11871496 +n11871748 +n11872146 +n11872324 +n11872658 +n11873182 +n11873612 +n11874081 +n11874423 +n11874878 +n11875523 +n11875691 +n11875938 +n11876204 +n11876432 +n11876634 +n11876803 +n11877193 +n11877283 +n11877473 +n11877646 +n11877860 +n11878101 +n11878283 +n11878633 +n11879054 +n11879722 +n11881189 +n11882074 +n11882237 +n11882426 +n11882636 +n11882821 +n11882972 +n11883328 +n11883628 +n11883945 +n11884384 +n11884967 +n11885856 +n11887119 +n11887310 +n11887476 +n11887750 +n11888061 +n11888424 +n11888800 +n11889205 +n11889619 +n11890022 +n11890150 +n11890884 +n11891175 +n11892029 +n11892181 +n11892637 +n11892817 +n11893640 +n11893916 +n11894327 +n11894558 +n11894770 +n11895092 +n11895472 +n11895714 +n11896141 +n11896722 +n11897116 +n11897466 +n11898639 +n11898775 +n11899223 +n11899762 +n11899921 +n11900569 +n11901294 +n11901452 +n11901597 +n11901759 +n11901977 +n11902200 +n11902389 +n11902709 +n11902982 +n11903333 +n11903671 +n11904109 +n11904274 +n11905392 +n11905749 +n11906127 +n11906514 +n11906917 +n11907100 +n11907405 +n11907689 +n11908549 +n11908846 +n11909864 +n11910271 +n11910460 +n11910666 +n11915214 +n11915658 +n11915899 +n11916467 +n11916696 +n11917407 +n11917835 +n11918286 +n11918473 +n11918808 +n11919447 +n11919761 +n11919975 +n11920133 +n11920498 +n11920663 +n11920998 +n11921395 +n11921792 +n11922661 +n11922755 +n11922839 +n11922926 +n11923174 +n11923397 +n11923637 +n11924014 +n11924445 +n11924849 +n11925303 +n11925450 +n11925898 +n11926365 +n11926833 +n11926976 +n11927215 +n11927740 +n11928352 +n11928858 +n11929743 +n11930038 +n11930203 +n11930353 +n11930571 +n11930788 +n11930994 +n11931135 +n11931540 +n11931918 +n11932745 +n11932927 +n11933099 +n11933257 +n11933387 +n11933546 +n11933728 +n11933903 +n11934041 +n11934239 +n11934463 +n11934616 +n11934807 +n11935027 +n11935187 +n11935330 +n11935469 +n11935627 +n11935715 +n11935794 +n11935877 +n11935953 +n11936027 +n11936113 +n11936199 +n11936287 +n11936369 +n11936448 +n11936539 +n11936624 +n11936707 +n11936782 +n11936864 +n11936946 +n11937023 +n11937102 +n11937195 +n11937278 +n11937360 +n11937446 +n11937692 +n11938556 +n11939180 +n11939699 +n11940006 +n11940349 +n11940599 +n11940750 +n11941094 +n11941478 +n11941924 +n11942659 +n11943133 +n11943407 +n11943660 +n11943992 +n11944196 +n11944751 +n11944954 +n11945367 +n11945514 +n11945783 +n11946051 +n11946313 +n11946727 +n11946918 +n11947251 +n11947629 +n11947802 +n11948044 +n11948264 +n11948469 +n11948864 +n11949015 +n11949402 +n11949857 +n11950345 +n11950686 +n11950877 +n11951052 +n11951511 +n11951820 +n11952346 +n11952541 +n11953038 +n11953339 +n11953610 +n11953884 +n11954161 +n11954345 +n11954484 +n11954642 +n11954798 +n11955040 +n11955153 +n11955532 +n11955896 +n11956348 +n11956850 +n11957317 +n11957514 +n11957678 +n11958080 +n11958499 +n11958888 +n11959259 +n11959632 +n11959862 +n11960245 +n11960673 +n11961100 +n11961446 +n11961871 +n11962272 +n11962667 +n11962994 +n11963572 +n11963932 +n11964446 +n11964848 +n11965218 +n11965627 +n11965962 +n11966083 +n11966215 +n11966385 +n11966617 +n11966896 +n11967142 +n11967315 +n11967744 +n11967878 +n11968519 +n11968704 +n11968931 +n11969166 +n11969607 +n11969806 +n11970101 +n11970298 +n11970586 +n11971248 +n11971406 +n11971783 +n11971927 +n11972291 +n11972759 +n11972959 +n11973341 +n11973634 +n11973749 +n11974373 +n11974557 +n11974888 +n11975254 +n11976170 +n11976314 +n11976511 +n11976933 +n11977303 +n11977660 +n11977887 +n11978233 +n11978551 +n11978713 +n11978961 +n11979187 +n11979354 +n11979527 +n11979715 +n11979964 +n11980318 +n11980682 +n11981192 +n11981475 +n11982115 +n11982545 +n11982939 +n11983375 +n11983606 +n11984144 +n11984542 +n11985053 +n11985321 +n11985739 +n11985903 +n11986511 +n11986729 +n11987126 +n11987349 +n11987511 +n11988132 +n11988596 +n11988893 +n11989087 +n11989393 +n11989869 +n11990167 +n11990313 +n11990627 +n11990920 +n11991263 +n11991549 +n11991777 +n11992479 +n11992806 +n11993203 +n11993444 +n11993675 +n11994150 +n11995092 +n11995396 +n11996251 +n11996677 +n11997032 +n11997160 +n11997969 +n11998492 +n11998888 +n11999278 +n11999656 +n12000191 +n12001294 +n12001707 +n12001924 +n12002428 +n12002651 +n12002826 +n12003167 +n12003696 +n12004120 +n12004547 +n12004987 +n12005656 +n12006306 +n12006766 +n12006930 +n12007196 +n12007406 +n12007766 +n12008252 +n12008487 +n12008749 +n12009047 +n12009420 +n12009792 +n12010628 +n12010815 +n12011370 +n12011620 +n12012111 +n12012253 +n12012510 +n12013035 +n12013511 +n12013701 +n12014085 +n12014355 +n12014923 +n12015221 +n12015525 +n12015959 +n12016434 +n12016567 +n12016777 +n12016914 +n12017127 +n12017326 +n12017511 +n12017664 +n12017853 +n12018014 +n12018100 +n12018188 +n12018271 +n12018363 +n12018447 +n12018530 +n12018760 +n12019035 +n12019827 +n12020184 +n12020507 +n12020736 +n12020941 +n12022054 +n12022382 +n12022821 +n12023108 +n12023407 +n12023726 +n12024176 +n12024445 +n12024690 +n12024805 +n12025220 +n12026018 +n12026476 +n12026981 +n12027222 +n12027658 +n12028424 +n12029039 +n12029635 +n12030092 +n12030654 +n12030908 +n12031139 +n12031388 +n12031547 +n12031927 +n12032429 +n12032686 +n12033139 +n12033504 +n12033709 +n12034141 +n12034384 +n12034594 +n12035631 +n12035907 +n12036067 +n12036226 +n12036939 +n12037499 +n12037691 +n12038038 +n12038208 +n12038406 +n12038585 +n12038760 +n12038898 +n12039317 +n12041446 +n12043444 +n12043673 +n12043836 +n12044041 +n12044467 +n12044784 +n12045157 +n12045514 +n12045860 +n12046028 +n12046428 +n12046815 +n12047345 +n12047884 +n12048056 +n12048399 +n12048928 +n12049282 +n12049562 +n12050533 +n12050959 +n12051103 +n12051514 +n12051792 +n12052267 +n12052447 +n12052787 +n12053405 +n12053690 +n12053962 +n12054195 +n12055073 +n12055516 +n12056099 +n12056217 +n12056601 +n12056758 +n12056990 +n12057447 +n12057660 +n12057895 +n12058192 +n12058630 +n12058822 +n12059314 +n12059625 +n12060546 +n12061104 +n12061380 +n12061614 +n12062105 +n12062468 +n12062626 +n12062781 +n12063211 +n12063639 +n12064389 +n12064591 +n12065316 +n12065649 +n12065777 +n12066018 +n12066261 +n12066451 +n12066630 +n12066821 +n12067029 +n12067193 +n12067433 +n12067672 +n12067817 +n12068138 +n12068432 +n12068615 +n12069009 +n12069217 +n12069679 +n12070016 +n12070381 +n12070583 +n12070712 +n12071259 +n12071477 +n12071744 +n12072210 +n12072722 +n12073217 +n12073554 +n12073991 +n12074408 +n12074867 +n12075010 +n12075151 +n12075299 +n12075830 +n12076223 +n12076577 +n12076852 +n12077244 +n12077944 +n12078172 +n12078451 +n12078747 +n12079120 +n12079523 +n12079963 +n12080395 +n12080588 +n12080820 +n12081215 +n12081649 +n12082131 +n12083113 +n12083591 +n12083847 +n12084158 +n12084400 +n12084555 +n12084890 +n12085267 +n12085664 +n12086012 +n12086192 +n12086539 +n12086778 +n12087961 +n12088223 +n12088327 +n12088495 +n12088909 +n12089320 +n12089496 +n12089846 +n12090890 +n12091213 +n12091377 +n12091550 +n12091697 +n12091953 +n12092262 +n12092417 +n12092629 +n12092930 +n12093329 +n12093600 +n12093885 +n12094244 +n12094401 +n12094612 +n12095020 +n12095281 +n12095412 +n12095543 +n12095647 +n12095934 +n12096089 +n12096395 +n12096563 +n12096674 +n12097396 +n12097556 +n12098403 +n12098524 +n12098827 +n12099342 +n12100187 +n12101870 +n12102133 +n12103680 +n12103894 +n12104104 +n12104238 +n12104501 +n12104734 +n12105125 +n12105353 +n12105828 +n12105981 +n12106134 +n12106323 +n12107002 +n12107191 +n12107710 +n12107970 +n12108432 +n12108613 +n12108871 +n12109365 +n12109827 +n12110085 +n12110236 +n12110352 +n12110475 +n12110778 +n12111238 +n12111627 +n12112008 +n12112337 +n12112609 +n12112918 +n12113195 +n12113323 +n12113657 +n12114010 +n12114590 +n12115180 +n12116058 +n12116429 +n12116734 +n12117017 +n12117235 +n12117326 +n12117695 +n12117912 +n12118414 +n12118661 +n12119099 +n12119238 +n12119390 +n12119539 +n12119717 +n12120347 +n12120578 +n12121033 +n12121187 +n12121610 +n12122442 +n12122725 +n12122918 +n12123648 +n12123741 +n12124172 +n12124627 +n12124818 +n12125001 +n12125183 +n12125584 +n12126084 +n12126360 +n12126736 +n12127460 +n12127575 +n12127768 +n12128071 +n12128306 +n12128490 +n12129134 +n12129738 +n12129986 +n12130549 +n12131405 +n12131550 +n12132092 +n12132956 +n12133151 +n12133462 +n12133682 +n12134025 +n12134486 +n12134695 +n12134836 +n12135049 +n12135576 +n12135729 +n12135898 +n12136392 +n12136581 +n12136720 +n12137120 +n12137569 +n12137791 +n12137954 +n12138110 +n12138248 +n12138444 +n12138578 +n12139196 +n12139575 +n12139793 +n12139921 +n12140511 +n12140759 +n12140903 +n12141167 +n12141385 +n12141495 +n12142085 +n12142357 +n12142450 +n12143065 +n12143215 +n12143405 +n12143676 +n12144313 +n12144987 +n12145148 +n12145477 +n12146311 +n12146488 +n12146654 +n12147226 +n12147835 +n12148757 +n12150722 +n12150969 +n12151170 +n12151615 +n12152031 +n12152251 +n12152532 +n12152722 +n12153033 +n12153224 +n12153580 +n12153741 +n12153914 +n12154114 +n12154773 +n12155009 +n12155583 +n12155773 +n12156679 +n12156819 +n12157056 +n12157179 +n12157769 +n12158031 +n12158443 +n12158798 +n12159055 +n12159388 +n12159555 +n12159804 +n12159942 +n12160125 +n12160303 +n12160490 +n12160857 +n12161056 +n12161285 +n12161577 +n12161744 +n12161969 +n12162181 +n12162425 +n12162758 +n12163035 +n12163279 +n12164363 +n12164656 +n12164881 +n12165170 +n12165384 +n12165758 +n12166128 +n12166424 +n12166793 +n12166929 +n12167075 +n12167436 +n12167602 +n12168565 +n12169099 +n12170585 +n12171098 +n12171316 +n12171966 +n12172364 +n12172481 +n12172906 +n12173069 +n12173664 +n12173912 +n12174311 +n12174521 +n12174926 +n12175181 +n12175370 +n12175598 +n12176453 +n12176709 +n12176953 +n12177129 +n12177455 +n12178129 +n12178780 +n12178896 +n12179122 +n12179632 +n12180168 +n12180456 +n12180885 +n12181352 +n12181612 +n12182049 +n12182276 +n12183026 +n12183452 +n12183816 +n12184095 +n12184468 +n12184912 +n12185254 +n12185859 +n12186352 +n12186554 +n12186839 +n12187247 +n12187663 +n12187891 +n12188289 +n12188635 +n12189429 +n12189779 +n12189987 +n12190410 +n12190869 +n12191240 +n12192132 +n12192877 +n12193334 +n12193665 +n12194147 +n12194613 +n12195391 +n12195533 +n12195734 +n12196129 +n12196336 +n12196527 +n12196694 +n12196954 +n12197359 +n12197601 +n12198286 +n12198793 +n12199266 +n12199399 +n12199790 +n12199982 +n12200143 +n12200504 +n12200905 +n12201331 +n12201580 +n12201938 +n12202936 +n12203529 +n12203699 +n12203896 +n12204032 +n12204175 +n12204730 +n12205460 +n12205694 +n12214789 +n12215022 +n12215210 +n12215579 +n12215824 +n12216215 +n12216628 +n12216968 +n12217453 +n12217851 +n12218274 +n12218490 +n12218868 +n12219668 +n12220019 +n12220496 +n12220829 +n12221191 +n12221368 +n12221522 +n12221801 +n12222090 +n12222493 +n12222900 +n12223160 +n12223569 +n12223764 +n12224978 +n12225222 +n12225349 +n12225563 +n12226932 +n12227658 +n12227909 +n12228229 +n12228387 +n12228689 +n12228886 +n12229111 +n12229651 +n12229887 +n12230540 +n12230794 +n12231192 +n12231709 +n12232114 +n12232280 +n12232851 +n12233249 +n12234318 +n12234669 +n12235051 +n12235479 +n12236160 +n12236546 +n12236768 +n12236977 +n12237152 +n12237486 +n12237641 +n12237855 +n12238756 +n12238913 +n12239240 +n12239647 +n12239880 +n12240150 +n12240477 +n12240965 +n12241192 +n12241426 +n12241880 +n12242123 +n12242409 +n12242850 +n12243109 +n12243693 +n12244153 +n12244458 +n12244650 +n12244819 +n12245319 +n12245695 +n12245885 +n12246037 +n12246232 +n12246773 +n12246941 +n12247202 +n12247407 +n12247963 +n12248141 +n12248359 +n12248574 +n12248780 +n12248941 +n12249122 +n12249294 +n12249542 +n12251001 +n12251278 +n12251740 +n12252168 +n12252383 +n12252866 +n12253229 +n12253487 +n12253664 +n12253835 +n12254168 +n12255225 +n12256112 +n12256325 +n12256522 +n12256708 +n12256920 +n12257570 +n12257725 +n12258101 +n12258885 +n12259316 +n12260799 +n12261359 +n12261571 +n12261808 +n12262018 +n12262185 +n12262553 +n12263038 +n12263204 +n12263410 +n12263588 +n12263738 +n12263987 +n12264512 +n12264786 +n12265083 +n12265394 +n12265600 +n12266217 +n12266528 +n12266644 +n12266796 +n12266984 +n12267133 +n12267265 +n12267411 +n12267534 +n12267931 +n12268246 +n12269241 +n12269406 +n12269652 +n12270027 +n12270278 +n12270460 +n12270741 +n12270946 +n12271187 +n12271451 +n12271643 +n12271933 +n12272239 +n12272432 +n12272735 +n12272883 +n12273114 +n12273344 +n12273515 +n12273768 +n12273939 +n12274151 +n12274358 +n12274630 +n12274863 +n12275131 +n12275317 +n12275489 +n12275675 +n12275888 +n12276110 +n12276314 +n12276477 +n12276628 +n12276872 +n12277150 +n12277334 +n12277578 +n12277800 +n12278107 +n12278371 +n12278650 +n12278865 +n12279060 +n12279293 +n12279458 +n12279772 +n12280060 +n12280364 +n12281241 +n12281788 +n12281974 +n12282235 +n12282527 +n12282737 +n12282933 +n12283147 +n12283395 +n12283542 +n12283790 +n12284262 +n12284821 +n12285049 +n12285195 +n12285369 +n12285512 +n12285705 +n12285900 +n12286068 +n12286197 +n12286826 +n12286988 +n12287195 +n12287642 +n12287836 +n12288005 +n12288823 +n12289310 +n12289433 +n12289585 +n12290748 +n12290975 +n12291143 +n12291459 +n12291671 +n12291959 +n12292463 +n12292877 +n12293723 +n12294124 +n12294331 +n12294542 +n12294723 +n12294871 +n12295033 +n12295237 +n12295429 +n12295796 +n12296045 +n12296432 +n12296735 +n12296929 +n12297110 +n12297280 +n12297507 +n12297846 +n12298165 +n12299640 +n12300840 +n12301180 +n12301445 +n12301613 +n12301766 +n12302071 +n12302248 +n12302565 +n12303083 +n12303462 +n12304115 +n12304286 +n12304420 +n12304703 +n12304899 +n12305089 +n12305293 +n12305475 +n12305654 +n12305819 +n12305986 +n12306089 +n12306270 +n12306717 +n12306938 +n12307076 +n12307240 +n12307756 +n12308112 +n12308447 +n12308907 +n12309277 +n12309630 +n12310021 +n12310349 +n12310638 +n12311045 +n12311224 +n12311413 +n12311579 +n12312110 +n12312728 +n12315060 +n12315245 +n12315598 +n12315999 +n12316444 +n12316572 +n12317296 +n12318378 +n12318782 +n12318965 +n12319204 +n12319414 +n12320010 +n12320414 +n12320627 +n12320806 +n12321077 +n12321395 +n12321669 +n12321873 +n12322099 +n12322501 +n12322699 +n12323665 +n12324056 +n12324222 +n12324388 +n12324558 +n12324906 +n12325234 +n12325787 +n12327022 +n12327528 +n12327846 +n12328398 +n12328567 +n12328801 +n12329260 +n12329473 +n12330239 +n12330469 +n12330587 +n12330891 +n12331066 +n12331263 +n12331655 +n12331788 +n12332030 +n12332218 +n12332555 +n12333053 +n12333530 +n12333771 +n12333961 +n12334153 +n12334293 +n12334891 +n12335483 +n12335664 +n12335800 +n12335937 +n12336092 +n12336224 +n12336333 +n12336586 +n12336727 +n12336973 +n12337131 +n12337246 +n12337391 +n12337617 +n12337800 +n12337922 +n12338034 +n12338146 +n12338258 +n12338454 +n12338655 +n12338796 +n12338979 +n12339526 +n12339831 +n12340383 +n12340581 +n12340755 +n12341542 +n12341931 +n12342299 +n12342498 +n12342852 +n12343480 +n12343753 +n12344283 +n12344483 +n12344700 +n12344837 +n12345280 +n12345899 +n12346578 +n12346813 +n12346986 +n12347158 +n12349315 +n12349711 +n12350032 +n12350758 +n12351091 +n12351790 +n12352287 +n12352639 +n12352844 +n12352990 +n12353203 +n12353431 +n12353754 +n12355760 +n12356023 +n12356395 +n12356960 +n12357485 +n12357968 +n12358293 +n12360108 +n12360534 +n12360684 +n12360817 +n12360958 +n12361135 +n12361560 +n12361754 +n12361946 +n12362274 +n12362514 +n12362668 +n12363301 +n12363768 +n12364604 +n12364940 +n12365158 +n12365285 +n12365462 +n12365900 +n12366053 +n12366186 +n12366313 +n12366675 +n12366870 +n12367611 +n12368028 +n12368257 +n12368451 +n12369066 +n12369309 +n12369476 +n12369665 +n12369845 +n12370174 +n12370549 +n12371202 +n12371439 +n12371704 +n12372233 +n12373100 +n12373739 +n12374418 +n12374705 +n12374862 +n12375769 +n12377198 +n12377494 +n12378249 +n12378753 +n12378963 +n12379531 +n12380761 +n12381511 +n12382233 +n12382875 +n12383737 +n12383894 +n12384037 +n12384227 +n12384375 +n12384569 +n12384680 +n12384839 +n12385429 +n12385566 +n12385830 +n12386945 +n12387103 +n12387633 +n12387839 +n12388143 +n12388293 +n12388858 +n12388989 +n12389130 +n12389501 +n12389727 +n12389932 +n12390099 +n12390314 +n12392070 +n12392549 +n12392765 +n12393269 +n12394118 +n12394328 +n12394638 +n12395068 +n12395289 +n12395463 +n12395906 +n12396091 +n12396924 +n12397431 +n12399132 +n12399384 +n12399534 +n12399656 +n12399899 +n12400489 +n12400720 +n12400924 +n12401335 +n12401684 +n12401893 +n12402051 +n12402348 +n12402596 +n12402840 +n12403075 +n12403276 +n12403513 +n12403994 +n12404729 +n12405714 +n12406304 +n12406488 +n12406715 +n12406902 +n12407079 +n12407222 +n12407396 +n12407545 +n12407715 +n12407890 +n12408077 +n12408280 +n12408466 +n12408717 +n12408873 +n12409231 +n12409470 +n12409651 +n12409840 +n12411461 +n12412355 +n12412606 +n12412987 +n12413165 +n12413301 +n12413419 +n12413642 +n12413880 +n12414035 +n12414159 +n12414329 +n12414449 +n12414818 +n12414932 +n12415595 +n12416073 +n12416423 +n12416703 +n12417836 +n12418221 +n12418507 +n12419037 +n12419878 +n12420124 +n12420535 +n12420722 +n12421137 +n12421467 +n12421683 +n12421917 +n12422129 +n12422559 +n12425281 +n12426623 +n12426749 +n12427184 +n12427391 +n12427566 +n12427757 +n12427946 +n12428076 +n12428242 +n12428412 +n12428747 +n12429352 +n12430198 +n12430471 +n12430675 +n12431434 +n12432069 +n12432356 +n12432574 +n12432707 +n12433081 +n12433178 +n12433769 +n12433952 +n12434106 +n12434483 +n12434634 +n12434775 +n12434985 +n12435152 +n12435486 +n12435649 +n12435777 +n12435965 +n12436090 +n12436907 +n12437513 +n12437769 +n12437930 +n12439154 +n12439830 +n12441183 +n12441390 +n12441552 +n12441958 +n12442548 +n12443323 +n12443736 +n12444095 +n12444898 +n12446200 +n12446519 +n12446737 +n12446908 +n12447121 +n12447346 +n12447581 +n12447891 +n12448136 +n12448361 +n12448700 +n12449296 +n12449526 +n12449784 +n12449934 +n12450344 +n12450607 +n12450840 +n12451070 +n12451240 +n12451399 +n12451566 +n12451915 +n12452256 +n12452480 +n12452673 +n12452836 +n12453018 +n12453186 +n12453714 +n12453857 +n12454159 +n12454436 +n12454556 +n12454705 +n12454793 +n12454949 +n12455950 +n12457091 +n12458550 +n12458713 +n12458874 +n12459629 +n12460146 +n12460697 +n12460957 +n12461109 +n12461466 +n12461673 +n12462032 +n12462221 +n12462582 +n12462805 +n12463134 +n12463743 +n12463975 +n12464128 +n12464476 +n12464649 +n12465557 +n12466727 +n12467018 +n12467197 +n12467433 +n12467592 +n12468545 +n12468719 +n12469517 +n12470092 +n12470512 +n12470907 +n12472024 +n12473608 +n12473840 +n12474167 +n12474418 +n12475035 +n12475242 +n12475774 +n12476510 +n12477163 +n12477401 +n12477583 +n12477747 +n12477983 +n12478768 +n12479537 +n12480456 +n12480895 +n12481150 +n12481289 +n12481458 +n12482437 +n12482668 +n12482893 +n12483282 +n12483427 +n12483625 +n12483841 +n12484244 +n12484784 +n12485653 +n12485981 +n12486574 +n12487058 +n12488454 +n12488709 +n12489046 +n12489676 +n12489815 +n12490490 +n12491017 +n12491435 +n12491826 +n12492106 +n12492460 +n12492682 +n12492900 +n12493208 +n12493426 +n12493868 +n12494794 +n12495146 +n12495670 +n12495895 +n12496427 +n12496949 +n12497669 +n12498055 +n12498457 +n12499163 +n12499757 +n12499979 +n12500309 +n12500518 +n12500751 +n12501202 +n12504570 +n12504783 +n12505253 +n12506181 +n12506341 +n12506991 +n12507379 +n12507823 +n12508309 +n12508618 +n12508762 +n12509109 +n12509476 +n12509665 +n12509821 +n12509993 +n12510343 +n12510774 +n12511488 +n12511856 +n12512095 +n12512294 +n12512674 +n12513172 +n12513613 +n12513933 +n12514138 +n12514592 +n12514992 +n12515393 +n12515711 +n12515925 +n12516165 +n12516584 +n12516828 +n12517077 +n12517445 +n12517642 +n12518013 +n12518481 +n12519089 +n12519563 +n12520406 +n12521186 +n12521394 +n12522188 +n12522678 +n12522894 +n12523141 +n12523475 +n12523850 +n12524188 +n12525168 +n12525513 +n12525753 +n12526178 +n12526516 +n12526754 +n12527081 +n12527738 +n12528109 +n12528382 +n12528549 +n12528768 +n12528974 +n12529220 +n12529500 +n12529905 +n12530629 +n12530818 +n12531328 +n12531727 +n12532564 +n12532886 +n12533190 +n12533437 +n12534208 +n12534625 +n12534862 +n12536291 +n12537253 +n12537569 +n12538209 +n12539074 +n12539306 +n12539832 +n12540250 +n12540647 +n12540966 +n12541157 +n12541403 +n12542043 +n12542240 +n12543186 +n12543455 +n12543639 +n12543826 +n12544240 +n12544539 +n12545232 +n12545635 +n12545865 +n12546183 +n12546420 +n12546617 +n12546962 +n12547215 +n12547503 +n12548280 +n12548564 +n12548804 +n12549005 +n12549192 +n12549420 +n12549799 +n12550210 +n12550408 +n12551173 +n12551457 +n12552309 +n12552893 +n12553742 +n12554029 +n12554526 +n12554729 +n12554911 +n12555255 +n12555859 +n12556656 +n12557064 +n12557438 +n12557556 +n12557681 +n12558230 +n12558425 +n12558680 +n12559044 +n12559518 +n12560282 +n12560621 +n12560775 +n12561169 +n12561309 +n12561594 +n12562141 +n12562577 +n12562785 +n12563045 +n12563702 +n12564083 +n12564613 +n12565102 +n12565912 +n12566331 +n12566954 +n12567950 +n12568186 +n12568649 +n12569037 +n12569616 +n12569851 +n12570394 +n12570703 +n12570972 +n12571781 +n12572546 +n12572759 +n12572858 +n12573256 +n12573474 +n12573647 +n12573911 +n12574320 +n12574470 +n12574866 +n12575322 +n12575812 +n12576323 +n12576451 +n12576695 +n12577362 +n12577895 +n12578255 +n12578626 +n12578916 +n12579038 +n12579404 +n12579822 +n12580012 +n12580654 +n12580786 +n12580896 +n12581110 +n12582231 +n12582665 +n12582846 +n12583126 +n12583401 +n12583681 +n12583855 +n12584191 +n12584365 +n12584715 +n12585137 +n12585373 +n12585629 +n12586298 +n12586499 +n12586725 +n12586989 +n12587132 +n12587487 +n12587803 +n12588320 +n12588780 +n12589142 +n12589458 +n12589687 +n12589841 +n12590232 +n12590499 +n12590600 +n12590715 +n12591017 +n12591351 +n12591702 +n12592058 +n12592544 +n12592839 +n12593122 +n12593341 +n12593994 +n12594324 +n12594989 +n12595699 +n12595964 +n12596148 +n12596345 +n12596709 +n12596849 +n12597134 +n12597466 +n12597798 +n12598027 +n12599185 +n12599435 +n12599661 +n12599874 +n12600095 +n12600267 +n12601494 +n12601805 +n12602262 +n12602434 +n12602612 +n12602980 +n12603273 +n12603449 +n12603672 +n12604228 +n12604460 +n12604639 +n12604845 +n12605683 +n12606438 +n12606545 +n12607456 +n12609379 +n12610328 +n12610740 +n12611640 +n12612170 +n12612811 +n12613706 +n12614096 +n12614477 +n12614625 +n12615232 +n12615710 +n12616248 +n12616630 +n12616996 +n12617559 +n12618146 +n12618727 +n12620196 +n12620969 +n12621410 +n12621619 +n12621945 +n12622297 +n12622875 +n12623077 +n12623211 +n12623818 +n12624381 +n12624568 +n12625003 +n12625383 +n12625670 +n12625823 +n12626674 +n12626878 +n12627119 +n12627347 +n12627526 +n12628356 +n12628705 +n12628986 +n12629305 +n12629666 +n12630763 +n12630999 +n12631331 +n12631637 +n12631932 +n12632335 +n12632733 +n12633061 +n12633638 +n12633994 +n12634211 +n12634429 +n12634734 +n12634986 +n12635151 +n12635359 +n12635532 +n12635744 +n12635955 +n12636224 +n12636885 +n12637123 +n12637485 +n12638218 +n12638556 +n12638753 +n12638964 +n12639168 +n12639376 +n12639584 +n12639736 +n12639910 +n12640081 +n12640284 +n12640435 +n12640607 +n12640839 +n12641007 +n12641180 +n12641413 +n12641931 +n12642090 +n12642200 +n12642435 +n12642600 +n12642964 +n12643113 +n12643313 +n12643473 +n12643688 +n12643877 +n12644283 +n12644902 +n12645174 +n12645530 +n12646072 +n12646197 +n12646397 +n12646605 +n12646740 +n12646950 +n12647231 +n12647376 +n12647560 +n12647787 +n12647893 +n12648045 +n12648196 +n12648424 +n12648693 +n12648888 +n12649065 +n12649317 +n12649539 +n12649866 +n12650038 +n12650229 +n12650379 +n12650556 +n12650805 +n12650915 +n12651229 +n12651611 +n12651821 +n12653218 +n12653436 +n12653633 +n12654227 +n12654857 +n12655062 +n12655245 +n12655351 +n12655498 +n12655605 +n12655726 +n12655869 +n12656369 +n12656528 +n12656685 +n12656909 +n12657082 +n12657755 +n12658118 +n12658308 +n12658481 +n12658603 +n12658715 +n12658846 +n12659064 +n12659356 +n12659539 +n12660601 +n12661045 +n12661227 +n12661538 +n12662074 +n12662379 +n12662772 +n12663023 +n12663254 +n12663359 +n12663804 +n12664005 +n12664187 +n12664469 +n12664710 +n12665048 +n12665271 +n12665659 +n12665857 +n12666050 +n12666159 +n12666369 +n12666965 +n12667406 +n12667582 +n12667964 +n12668131 +n12669803 +n12670334 +n12670758 +n12670962 +n12671651 +n12672289 +n12673588 +n12674120 +n12674685 +n12674895 +n12675299 +n12675515 +n12675876 +n12676134 +n12676370 +n12676534 +n12676703 +n12677120 +n12677331 +n12677612 +n12677841 +n12678794 +n12679023 +n12679432 +n12679593 +n12679876 +n12680402 +n12680652 +n12680864 +n12681376 +n12681579 +n12681893 +n12682411 +n12682668 +n12682882 +n12683096 +n12683407 +n12683571 +n12683791 +n12684379 +n12685431 +n12685831 +n12686077 +n12686274 +n12686496 +n12686676 +n12686877 +n12687044 +n12687462 +n12687698 +n12687957 +n12688187 +n12688372 +n12688716 +n12689305 +n12690653 +n12691428 +n12691661 +n12692024 +n12692160 +n12692521 +n12692714 +n12693244 +n12693352 +n12693865 +n12694486 +n12695144 +n12695975 +n12696492 +n12696830 +n12697152 +n12697514 +n12698027 +n12698435 +n12698598 +n12698774 +n12699031 +n12699301 +n12699922 +n12700088 +n12700357 +n12702124 +n12703190 +n12703383 +n12703557 +n12703716 +n12703856 +n12704041 +n12704343 +n12704513 +n12705013 +n12705220 +n12705458 +n12705698 +n12705978 +n12706410 +n12707199 +n12707781 +n12708293 +n12708654 +n12708941 +n12709103 +n12709349 +n12709688 +n12709901 +n12710295 +n12710415 +n12710577 +n12710693 +n12710917 +n12711182 +n12711398 +n12711596 +n12711817 +n12711984 +n12712320 +n12712626 +n12713063 +n12713358 +n12713521 +n12713866 +n12714254 +n12714755 +n12714949 +n12715195 +n12715914 +n12716400 +n12716594 +n12717072 +n12717224 +n12717644 +n12718074 +n12718483 +n12718995 +n12719684 +n12719944 +n12720200 +n12720354 +n12721122 +n12721477 +n12722071 +n12723062 +n12723610 +n12724942 +n12725521 +n12725738 +n12725940 +n12726159 +n12726357 +n12726528 +n12726670 +n12726902 +n12727101 +n12727301 +n12727518 +n12727729 +n12727960 +n12728164 +n12728322 +n12728508 +n12728656 +n12728864 +n12729023 +n12729164 +n12729315 +n12729521 +n12729729 +n12729950 +n12730143 +n12730370 +n12730544 +n12730776 +n12731029 +n12731401 +n12731835 +n12732009 +n12732252 +n12732491 +n12732605 +n12732756 +n12732966 +n12733218 +n12733428 +n12733647 +n12733870 +n12734070 +n12734215 +n12735160 +n12736603 +n12736999 +n12737383 +n12737898 +n12738259 +n12739332 +n12739966 +n12740967 +n12741222 +n12741586 +n12741792 +n12742290 +n12742741 +n12742878 +n12743009 +n12743352 +n12743823 +n12743976 +n12744142 +n12744387 +n12744850 +n12745386 +n12745564 +n12746884 +n12747120 +n12748248 +n12749049 +n12749456 +n12749679 +n12749852 +n12750076 +n12750767 +n12751172 +n12751675 +n12752205 +n12753007 +n12753245 +n12753573 +n12753762 +n12754003 +n12754174 +n12754311 +n12754468 +n12754648 +n12754781 +n12754981 +n12755225 +n12755387 +n12755559 +n12755727 +n12755876 +n12756457 +n12757115 +n12757303 +n12757458 +n12757668 +n12757816 +n12757930 +n12758014 +n12758099 +n12758176 +n12758250 +n12758325 +n12758399 +n12758471 +n12758555 +n12759273 +n12759668 +n12760539 +n12760875 +n12761284 +n12761702 +n12761905 +n12762049 +n12762405 +n12762896 +n12763529 +n12764008 +n12764202 +n12764507 +n12764978 +n12765115 +n12765402 +n12765846 +n12766043 +n12766595 +n12766869 +n12767208 +n12767423 +n12767648 +n12768369 +n12768809 +n12768933 +n12769065 +n12769219 +n12769318 +n12770529 +n12770892 +n12771085 +n12771192 +n12771390 +n12771597 +n12771890 +n12772753 +n12772908 +n12773142 +n12773651 +n12773917 +n12774299 +n12774641 +n12775070 +n12775393 +n12775717 +n12775919 +n12776558 +n12776774 +n12777436 +n12777680 +n12777778 +n12777892 +n12778398 +n12778605 +n12779603 +n12779851 +n12780325 +n12780563 +n12781940 +n12782530 +n12782915 +n12783316 +n12783730 +n12784371 +n12784889 +n12785724 +n12785889 +n12786273 +n12786464 +n12786836 +n12787364 +n12788854 +n12789054 +n12789554 +n12789977 +n12790430 +n12791064 +n12791329 +n12793015 +n12793284 +n12793494 +n12793695 +n12793886 +n12794135 +n12794367 +n12794568 +n12794985 +n12795209 +n12795352 +n12795555 +n12796022 +n12796385 +n12796849 +n12797368 +n12797860 +n12798284 +n12798910 +n12799269 +n12799776 +n12800049 +n12800586 +n12801072 +n12801520 +n12801781 +n12801966 +n12803226 +n12803754 +n12803958 +n12804352 +n12805146 +n12805561 +n12805762 +n12806015 +n12806732 +n12807251 +n12807409 +n12807624 +n12807773 +n12808007 +n12809868 +n12810007 +n12810151 +n12810595 +n12811027 +n12811713 +n12812235 +n12812478 +n12812801 +n12813189 +n12814643 +n12814857 +n12814960 +n12815198 +n12815668 +n12815838 +n12816508 +n12816942 +n12817464 +n12817694 +n12817855 +n12818004 +n12818346 +n12818601 +n12818966 +n12819141 +n12819354 +n12819728 +n12820113 +n12820669 +n12820853 +n12821505 +n12821895 +n12822115 +n12822466 +n12822769 +n12822955 +n12823717 +n12823859 +n12824053 +n12824289 +n12824735 +n12825497 +n12826143 +n12827270 +n12827537 +n12827907 +n12828220 +n12828379 +n12828520 +n12828791 +n12828977 +n12829582 +n12829975 +n12830222 +n12830568 +n12831141 +n12831535 +n12831932 +n12832315 +n12832538 +n12832822 +n12833149 +n12833985 +n12834190 +n12834798 +n12834938 +n12835331 +n12835766 +n12836212 +n12836337 +n12836508 +n12836862 +n12837052 +n12837259 +n12837466 +n12837803 +n12839574 +n12839979 +n12840168 +n12840362 +n12840502 +n12840749 +n12841007 +n12841193 +n12841354 +n12842302 +n12842519 +n12842642 +n12842887 +n12843144 +n12843316 +n12843557 +n12843970 +n12844409 +n12844939 +n12845187 +n12845413 +n12845908 +n12846335 +n12846690 +n12847008 +n12847374 +n12847927 +n12848499 +n12849061 +n12849279 +n12849416 +n12849952 +n12850168 +n12850336 +n12850906 +n12851094 +n12851469 +n12851860 +n12852234 +n12852428 +n12852570 +n12853080 +n12853287 +n12853482 +n12854048 +n12854193 +n12854600 +n12855365 +n12855494 +n12855710 +n12855886 +n12856091 +n12856287 +n12856479 +n12856680 +n12857204 +n12857779 +n12858150 +n12858397 +n12858618 +n12858871 +n12858987 +n12859153 +n12859272 +n12859679 +n12859986 +n12860365 +n12860978 +n12861345 +n12861541 +n12861892 +n12862512 +n12862828 +n12863234 +n12863624 +n12864160 +n12865037 +n12865562 +n12865708 +n12865824 +n12866002 +n12866162 +n12866333 +n12866459 +n12866635 +n12866968 +n12867184 +n12867449 +n12867826 +n12868019 +n12868880 +n12869061 +n12869478 +n12869668 +n12870048 +n12870225 +n12870535 +n12870682 +n12870891 +n12871272 +n12871696 +n12871859 +n12872458 +n12872914 +n12873341 +n12873984 +n12875269 +n12875697 +n12875861 +n12876899 +n12877244 +n12877493 +n12877637 +n12877838 +n12878169 +n12878325 +n12878784 +n12879068 +n12879527 +n12879963 +n12880244 +n12880462 +n12880638 +n12880799 +n12881105 +n12881913 +n12882158 +n12882779 +n12882945 +n12883265 +n12883628 +n12884100 +n12884260 +n12885045 +n12885265 +n12885510 +n12885754 +n12886185 +n12886402 +n12886600 +n12886831 +n12887293 +n12887532 +n12887713 +n12888016 +n12888234 +n12888457 +n12889219 +n12889412 +n12889579 +n12889713 +n12890265 +n12890490 +n12890685 +n12890928 +n12891093 +n12891305 +n12891469 +n12891643 +n12891824 +n12892013 +n12893463 +n12893993 +n12895298 +n12895811 +n12896615 +n12897118 +n12897788 +n12897999 +n12898342 +n12898774 +n12899166 +n12899537 +n12899752 +n12899971 +n12900783 +n12901724 +n12902466 +n12902662 +n12903014 +n12903367 +n12903503 +n12903964 +n12904314 +n12904562 +n12904938 +n12905135 +n12905412 +n12906214 +n12906498 +n12906771 +n12907057 +n12907671 +n12907857 +n12908093 +n12908645 +n12908854 +n12909421 +n12909614 +n12909759 +n12909917 +n12911079 +n12911264 +n12911440 +n12911673 +n12911914 +n12912274 +n12912670 +n12912801 +n12913144 +n12913524 +n12913791 +n12914923 +n12915140 +n12915568 +n12915811 +n12916179 +n12916511 +n12917901 +n12918609 +n12918810 +n12918991 +n12919195 +n12919403 +n12919646 +n12919847 +n12920043 +n12920204 +n12920521 +n12920719 +n12920955 +n12921315 +n12921499 +n12921660 +n12921868 +n12922119 +n12922458 +n12922763 +n12923108 +n12923257 +n12924623 +n12925179 +n12925583 +n12926039 +n12926480 +n12926689 +n12927013 +n12927194 +n12927494 +n12927758 +n12928071 +n12928307 +n12928491 +n12928819 +n12929403 +n12929600 +n12930778 +n12930951 +n12931231 +n12931542 +n12931906 +n12932173 +n12932365 +n12932706 +n12932966 +n12933274 +n12934036 +n12934174 +n12934479 +n12934685 +n12934985 +n12935166 +n12935609 +n12936155 +n12936826 +n12937130 +n12938081 +n12938193 +n12938445 +n12938667 +n12939104 +n12939282 +n12939479 +n12939874 +n12940226 +n12940609 +n12941220 +n12941536 +n12941717 +n12942025 +n12942395 +n12942572 +n12942729 +n12943049 +n12943443 +n12943912 +n12944095 +n12945177 +n12945366 +n12945549 +n12946849 +n12947313 +n12947544 +n12947756 +n12947895 +n12948053 +n12948251 +n12948495 +n12949160 +n12949361 +n12950126 +n12950314 +n12950796 +n12951146 +n12951835 +n12952165 +n12952469 +n12952590 +n12952717 +n12953206 +n12953484 +n12953712 +n12954353 +n12954799 +n12955414 +n12955840 +n12956170 +n12956367 +n12956588 +n12956922 +n12957608 +n12957803 +n12957924 +n12958261 +n12958615 +n12959074 +n12959538 +n12960378 +n12960552 +n12960863 +n12961242 +n12961393 +n12961536 +n12961879 +n12963628 +n12964920 +n12965626 +n12965951 +n12966804 +n12966945 +n12968136 +n12968309 +n12969131 +n12969425 +n12969670 +n12969927 +n12970193 +n12970293 +n12970733 +n12971400 +n12971804 +n12972136 +n12973443 +n12973791 +n12973937 +n12974987 +n12975804 +n12976198 +n12976554 +n12978076 +n12979316 +n12979829 +n12980080 +n12980840 +n12981086 +n12981301 +n12981443 +n12981954 +n12982468 +n12982590 +n12982915 +n12983048 +n12983654 +n12983873 +n12983961 +n12984267 +n12984489 +n12984595 +n12985420 +n12985773 +n12986227 +n12987056 +n12987423 +n12987535 +n12988158 +n12988341 +n12988572 +n12989007 +n12989938 +n12990597 +n12991184 +n12991837 +n12992177 +n12992868 +n12994892 +n12995601 +n12997654 +n12997919 +n13000891 +n13001041 +n13001206 +n13001366 +n13001529 +n13001930 +n13002209 +n13002750 +n13002925 +n13003061 +n13003254 +n13003522 +n13003712 +n13004423 +n13004640 +n13004826 +n13004992 +n13005329 +n13005984 +n13006171 +n13006631 +n13006894 +n13007034 +n13007417 +n13007629 +n13008157 +n13008315 +n13008485 +n13008689 +n13008839 +n13009085 +n13009244 +n13009429 +n13009656 +n13010694 +n13010951 +n13011221 +n13011595 +n13012253 +n13012469 +n13012973 +n13013534 +n13013764 +n13013965 +n13014097 +n13014265 +n13014409 +n13014581 +n13014741 +n13014879 +n13015509 +n13015688 +n13016076 +n13016289 +n13017102 +n13017240 +n13017439 +n13017610 +n13017789 +n13017979 +n13018088 +n13018232 +n13018407 +n13018906 +n13019496 +n13019643 +n13019835 +n13020191 +n13020481 +n13020964 +n13021166 +n13021332 +n13021543 +n13021689 +n13021867 +n13022210 +n13022709 +n13022903 +n13023134 +n13024012 +n13024500 +n13024653 +n13025647 +n13025854 +n13026015 +n13027557 +n13027879 +n13028611 +n13028937 +n13029122 +n13029326 +n13029610 +n13029760 +n13030337 +n13030616 +n13030852 +n13031193 +n13031323 +n13031474 +n13032115 +n13032381 +n13032618 +n13032923 +n13033134 +n13033396 +n13033577 +n13033879 +n13034062 +n13034555 +n13034788 +n13035241 +n13035389 +n13035707 +n13035925 +n13036116 +n13036312 +n13036804 +n13037585 +n13037805 +n13038068 +n13038376 +n13038577 +n13038744 +n13039349 +n13040629 +n13040796 +n13041312 +n13041943 +n13042134 +n13042316 +n13042982 +n13043926 +n13044375 +n13045210 +n13045594 +n13045975 +n13046130 +n13046669 +n13047862 +n13048447 +n13049953 +n13050397 +n13050705 +n13050940 +n13051346 +n13052014 +n13052248 +n13052931 +n13053608 +n13054073 +n13055423 +n13055577 +n13055792 +n13055949 +n13056135 +n13056349 +n13056607 +n13056799 +n13057054 +n13057242 +n13057422 +n13057639 +n13058037 +n13058272 +n13058608 +n13059298 +n13059657 +n13060017 +n13060190 +n13061172 +n13061348 +n13061471 +n13061704 +n13062421 +n13063269 +n13063514 +n13064111 +n13064457 +n13065089 +n13065514 +n13066129 +n13066448 +n13066979 +n13067191 +n13067330 +n13067532 +n13067672 +n13068255 +n13068434 +n13068735 +n13068917 +n13069224 +n13069773 +n13070308 +n13070875 +n13071371 +n13071553 +n13071815 +n13072031 +n13072209 +n13072350 +n13072528 +n13072706 +n13072863 +n13073055 +n13073703 +n13074619 +n13074814 +n13075020 +n13075272 +n13075441 +n13075684 +n13075847 +n13076041 +n13076405 +n13076643 +n13076831 +n13077033 +n13077295 +n13078021 +n13079073 +n13079419 +n13079567 +n13080306 +n13080866 +n13081229 +n13081999 +n13082568 +n13083023 +n13083461 +n13084184 +n13084834 +n13085113 +n13085747 +n13090018 +n13090871 +n13091620 +n13091774 +n13091982 +n13092078 +n13092240 +n13092385 +n13092987 +n13093275 +n13093629 +n13094145 +n13094273 +n13095013 +n13096779 +n13098515 +n13098962 +n13099833 +n13099999 +n13100156 +n13100677 +n13102648 +n13102775 +n13103023 +n13103660 +n13103750 +n13103877 +n13104059 +n13107694 +n13107807 +n13107891 +n13108131 +n13108323 +n13108481 +n13108545 +n13108662 +n13108841 +n13109733 +n13110915 +n13111174 +n13111340 +n13111504 +n13111881 +n13112035 +n13112201 +n13118330 +n13118707 +n13119870 +n13120211 +n13120958 +n13121104 +n13121349 +n13122364 +n13123309 +n13123431 +n13123841 +n13124358 +n13124654 +n13125117 +n13126050 +n13126856 +n13127001 +n13127303 +n13127666 +n13127843 +n13128278 +n13128582 +n13128976 +n13129078 +n13130014 +n13130161 +n13130726 +n13131028 +n13131618 +n13132034 +n13132156 +n13132338 +n13132486 +n13132656 +n13132756 +n13132940 +n13133140 +n13133233 +n13133316 +n13133932 +n13134302 +n13134531 +n13134844 +n13134947 +n13135692 +n13135832 +n13136316 +n13136556 +n13136781 +n13137010 +n13137225 +n13137409 +n13137672 +n13137951 +n13138155 +n13138308 +n13138658 +n13138842 +n13139055 +n13139321 +n13139482 +n13139647 +n13139837 +n13140049 +n13140367 +n13141141 +n13141415 +n13141564 +n13141797 +n13141972 +n13142182 +n13142504 +n13142907 +n13143285 +n13143758 +n13144084 +n13145040 +n13145250 +n13145444 +n13146403 +n13146583 +n13146928 +n13147153 +n13147270 +n13147386 +n13147532 +n13147689 +n13147918 +n13148208 +n13148384 +n13149296 +n13149970 +n13150378 +n13150592 +n13150894 +n13151082 +n13152339 +n13154388 +n13154494 +n13154841 +n13155095 +n13155305 +n13155611 +n13156986 +n13157137 +n13157346 +n13157481 +n13157684 +n13157971 +n13158167 +n13158512 +n13158605 +n13158714 +n13158815 +n13159357 +n13159691 +n13159890 +n13160116 +n13160254 +n13160365 +n13160604 +n13160831 +n13160938 +n13161151 +n13161254 +n13161904 +n13163553 +n13163649 +n13163991 +n13164501 +n13170840 +n13171210 +n13171797 +n13172923 +n13173132 +n13173259 +n13173488 +n13173697 +n13173882 +n13174354 +n13174670 +n13174823 +n13175682 +n13176363 +n13176714 +n13177048 +n13177529 +n13177768 +n13177884 +n13178284 +n13178707 +n13179056 +n13179804 +n13180534 +n13180875 +n13181055 +n13181244 +n13181406 +n13181811 +n13182164 +n13182338 +n13182799 +n13182937 +n13183056 +n13183489 +n13184394 +n13185269 +n13185658 +n13186388 +n13186546 +n13187367 +n13188096 +n13188268 +n13188462 +n13188767 +n13190060 +n13190747 +n13191148 +n13191620 +n13191884 +n13192625 +n13193143 +n13193269 +n13193466 +n13193642 +n13193856 +n13194036 +n13194212 +n13194572 +n13194758 +n13194918 +n13195341 +n13195761 +n13196003 +n13196234 +n13196369 +n13196738 +n13197274 +n13197507 +n13198054 +n13198482 +n13198914 +n13199717 +n13199970 +n13200193 +n13200542 +n13200651 +n13200986 +n13201423 +n13201566 +n13201969 +n13202125 +n13202355 +n13202602 +n13205058 +n13205249 +n13206178 +n13206817 +n13207094 +n13207335 +n13207572 +n13207736 +n13207923 +n13208302 +n13208705 +n13208965 +n13209129 +n13209270 +n13209460 +n13209808 +n13210350 +n13210597 +n13211020 +n13211790 +n13212025 +n13212175 +n13212379 +n13212559 +n13213066 +n13213397 +n13213577 +n13214217 +n13214340 +n13214485 +n13215258 +n13215586 +n13217005 +n13219422 +n13219833 +n13219976 +n13220122 +n13220355 +n13220525 +n13220663 +n13221529 +n13222877 +n13222985 +n13223090 +n13223588 +n13223710 +n13223843 +n13224673 +n13224922 +n13225244 +n13225365 +n13225617 +n13226320 +n13226871 +n13228017 +n13228536 +n13229543 +n13229951 +n13230190 +n13230662 +n13230843 +n13231078 +n13231678 +n13231919 +n13232106 +n13232363 +n13232779 +n13233727 +n13234114 +n13234519 +n13234678 +n13234857 +n13235011 +n13235159 +n13235319 +n13235503 +n13235766 +n13236100 +n13237188 +n13237508 +n13238375 +n13238654 +n13238988 +n13239177 +n13239736 +n13239921 +n13240362 +n13252672 +n13354021 +n13555775 +n13579829 +n13650447 +n13653902 +n13862407 +n13862552 +n13862780 +n13863020 +n13863186 +n13863473 +n13863771 +n13864035 +n13864153 +n13864965 +n13865298 +n13865483 +n13865904 +n13866144 +n13866626 +n13866827 +n13867005 +n13867492 +n13868248 +n13868371 +n13868515 +n13868944 +n13869045 +n13869547 +n13869788 +n13869896 +n13871717 +n13872592 +n13872822 +n13873361 +n13873502 +n13873917 +n13874073 +n13874558 +n13875392 +n13875571 +n13875884 +n13876561 +n13877547 +n13877667 +n13878306 +n13879049 +n13879320 +n13879816 +n13880199 +n13880415 +n13880551 +n13880704 +n13880994 +n13881512 +n13881644 +n13882201 +n13882276 +n13882487 +n13882563 +n13882639 +n13882713 +n13882961 +n13883603 +n13883763 +n13884261 +n13884384 +n13884930 +n13885011 +n13886260 +n13888491 +n13889066 +n13889331 +n13891547 +n13891937 +n13893786 +n13894154 +n13894434 +n13895262 +n13896100 +n13896217 +n13897198 +n13897528 +n13897996 +n13898207 +n13898315 +n13898645 +n13899735 +n13900287 +n13900422 +n13901211 +n13901321 +n13901423 +n13901490 +n13901858 +n13902048 +n13902336 +n13902793 +n13903079 +n13905121 +n13905275 +n13905792 +n13906484 +n13906669 +n13906767 +n13906936 +n13907272 +n13908201 +n13908580 +n13911045 +n13912260 +n13912540 +n13914141 +n13914265 +n13914608 +n13915023 +n13915113 +n13915209 +n13915305 +n13915999 +n13916363 +n13916721 +n13917690 +n13917785 +n13918274 +n13918387 +n13918717 +n13919547 +n13919919 +n13926786 +n14131950 +n14175579 +n14564779 +n14582716 +n14583400 +n14585392 +n14592309 +n14603798 +n14633206 +n14685296 +n14696793 +n14698884 +n14714645 +n14720833 +n14765422 +n14785065 +n14786943 +n14804958 +n14810561 +n14820180 +n14821852 +n14844693 +n14853210 +n14858292 +n14867545 +n14891255 +n14899328 +n14900184 +n14900342 +n14908027 +n14909584 +n14914945 +n14915184 +n14919819 +n14938389 +n14941787 +n14942411 +n14973585 +n14974264 +n14975598 +n14976759 +n14976871 +n14977188 +n14977504 +n14992287 +n14993378 +n15005577 +n15006012 +n15019030 +n15048888 +n15060326 +n15060688 +n15062057 +n15067877 +n15086247 +n15089258 +n15089472 +n15089645 +n15089803 +n15090065 +n15090238 +n15090742 +n15091129 +n15091304 +n15091473 +n15091669 +n15091846 +n15092059 +n15092227 +n15092409 +n15092650 +n15092751 +n15092942 +n15093049 +n15093137 +n15093298 +n15102359 +n15102455 +n15102894 diff --git a/pytorch-image-models/timm/data/_info/imagenet22k_ms_to_12k_indices.txt b/pytorch-image-models/timm/data/_info/imagenet22k_ms_to_12k_indices.txt new file mode 100644 index 0000000000000000000000000000000000000000..79b08f03f68ffebecee74d1a15467a4b9aab9314 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet22k_ms_to_12k_indices.txt @@ -0,0 +1,11821 @@ +1001 +1003 +1004 +1005 +1006 +1007 +1008 +1009 +1010 +1011 +1013 +1014 +1015 +1016 +1017 +1018 +1019 +1020 +1021 +1023 +1024 +1026 +1027 +1028 +1029 +1030 +1031 +1032 +1033 +1034 +1037 +1038 +1041 +1043 +1044 +1045 +1046 +1047 +1048 +1049 +1050 +1051 +1053 +1055 +1056 +1057 +1058 +1060 +1061 +1062 +1063 +1064 +1065 +1066 +1067 +1068 +1069 +1070 +1071 +1072 +1073 +1074 +1075 +1076 +1077 +1078 +1079 +1080 +1081 +1082 +1083 +1084 +1085 +1086 +1089 +1090 +1091 +1093 +1094 +1095 +1096 +1097 +1099 +1100 +1101 +1102 +1103 +1105 +1107 +1108 +1109 +1110 +1111 +1112 +1113 +1114 +1115 +1116 +1117 +1118 +1119 +1120 +1121 +1122 +1123 +1124 +1125 +1126 +1127 +1128 +1129 +1130 +1131 +1132 +1133 +1134 +1135 +1137 +1138 +1140 +1141 +1142 +1143 +1144 +1146 +1147 +1148 +1149 +1151 +1152 +1153 +1154 +1156 +1157 +1158 +1159 +1161 +1162 +1164 +1165 +1166 +1167 +1168 +1169 +1170 +1171 +1172 +1173 +1175 +1176 +1179 +1180 +1181 +1182 +1184 +1188 +1192 +1193 +1195 +1196 +1197 +1199 +1200 +1203 +1206 +1209 +1210 +1211 +1212 +1213 +1214 +1215 +1216 +1217 +1218 +1219 +1220 +1221 +1222 +1223 +1224 +1225 +1226 +1227 +1230 +1231 +1235 +1249 +1250 +1251 +1252 +1253 +1254 +1289 +1292 +1295 +1301 +1306 +1307 +1312 +1313 +1315 +1317 +1320 +1324 +1325 +1326 +1327 +1332 +1341 +1343 +1347 +1352 +1353 +1354 +1356 +0 +1359 +1365 +1366 +1 +1367 +1368 +1375 +1377 +1378 +1380 +1381 +1382 +1383 +1384 +1390 +1393 +1396 +1400 +1403 +1406 +1408 +1409 +1411 +1413 +1414 +1416 +1420 +1421 +1422 +1428 +1429 +1438 +1439 +1449 +1450 +1453 +1454 +1455 +2 +1458 +1461 +1462 +1463 +1465 +1466 +1467 +1468 +1469 +1470 +1471 +3 +1473 +1475 +1478 +4 +1484 +1485 +1486 +5 +1487 +6 +1492 +1493 +1495 +1496 +1498 +1503 +1504 +1505 +1506 +7 +1507 +8 +1511 +1514 +1515 +9 +1516 +1517 +1518 +1519 +1520 +1523 +1526 +1528 +1529 +1530 +1531 +1532 +1533 +1534 +1535 +1536 +10 +11 +1537 +1538 +1540 +1541 +1542 +1543 +12 +1544 +1545 +1546 +1547 +1548 +1549 +13 +1550 +1552 +1553 +1554 +1555 +1556 +1557 +1558 +1559 +1560 +14 +1561 +1562 +1563 +1565 +1566 +1568 +1569 +1570 +1571 +1572 +1573 +1574 +1575 +1576 +1577 +1580 +1581 +1583 +1586 +1587 +1588 +1589 +1590 +1592 +1593 +1594 +1595 +1596 +1597 +1598 +1599 +1600 +1601 +1603 +1604 +1605 +1606 +1608 +1609 +1613 +1614 +1615 +1616 +1617 +1619 +1620 +1621 +1622 +1623 +1624 +1625 +15 +1627 +1628 +1629 +1630 +1631 +16 +1632 +1633 +1634 +1636 +1637 +1638 +1639 +1640 +1641 +1642 +1643 +1644 +1646 +1647 +1648 +1649 +1650 +1651 +1652 +1653 +1654 +1655 +1656 +1657 +1658 +1660 +1661 +1662 +1663 +1664 +1665 +1666 +1667 +1668 +1669 +1670 +1671 +1672 +1674 +1675 +1676 +1677 +1678 +1679 +1680 +1681 +1683 +1684 +1685 +1686 +1687 +1688 +1689 +1690 +1691 +1693 +1694 +1696 +1697 +1698 +1699 +1700 +1701 +1702 +1703 +1704 +1705 +17 +1709 +1710 +1712 +1714 +18 +1715 +1717 +1718 +1719 +1720 +1721 +1722 +1723 +1724 +1725 +1726 +1727 +1728 +1729 +1730 +1732 +1733 +1734 +1736 +1738 +1739 +1740 +1742 +1743 +1744 +1745 +19 +1746 +1747 +1748 +1749 +1750 +1753 +1754 +1755 +1756 +1757 +1758 +1760 +1761 +1762 +1763 +1764 +1765 +1766 +1767 +1769 +1770 +1771 +1772 +1774 +1776 +1778 +1779 +20 +1783 +1784 +1786 +1787 +1788 +1789 +1790 +1791 +1792 +1795 +1796 +1797 +1801 +1802 +1803 +1804 +21 +1805 +1806 +1807 +1808 +1809 +1810 +1811 +1812 +1813 +1814 +1816 +1817 +1818 +1819 +1820 +1821 +1823 +1824 +1825 +1826 +1827 +1828 +1829 +22 +1830 +1831 +1832 +1833 +1834 +23 +1837 +1838 +1839 +1840 +1841 +1842 +1843 +1844 +1845 +1846 +1847 +1848 +1849 +1850 +1851 +1852 +1853 +24 +1854 +1855 +1856 +1857 +1858 +1859 +1860 +1861 +1862 +1863 +1864 +1866 +1867 +1869 +1870 +25 +1871 +1873 +26 +1874 +1876 +1877 +27 +28 +1880 +29 +1882 +1883 +1886 +1889 +1890 +1892 +1895 +1901 +1902 +1903 +1904 +30 +1905 +1908 +1910 +1913 +1914 +31 +32 +1916 +1917 +1918 +1919 +1920 +1921 +1922 +1925 +1927 +1928 +1930 +1931 +1935 +1936 +1937 +1938 +1943 +1946 +1950 +1953 +1957 +1958 +1959 +1960 +33 +1961 +1962 +1963 +1964 +34 +1965 +1966 +1967 +35 +1968 +36 +1969 +1970 +1971 +1972 +37 +1973 +1974 +1975 +1976 +1977 +1978 +1979 +1981 +1984 +1986 +1987 +38 +39 +1990 +1991 +1992 +1995 +1996 +1997 +1998 +1999 +2000 +2001 +2003 +2004 +2005 +2006 +2007 +40 +2009 +2010 +2011 +41 +2014 +2021 +42 +43 +2023 +44 +2025 +2026 +2027 +45 +2030 +2032 +46 +2033 +47 +2035 +2036 +48 +2037 +2038 +49 +2039 +2042 +50 +2043 +2044 +2046 +2048 +51 +2069 +2088 +2089 +52 +53 +54 +55 +2092 +2093 +2094 +2095 +2096 +2099 +2101 +2103 +2104 +2105 +2108 +2109 +2110 +2111 +56 +2112 +2113 +57 +2114 +2115 +58 +2120 +2121 +2122 +2123 +2125 +59 +60 +2130 +2132 +2134 +2135 +61 +2137 +2138 +2139 +2140 +2141 +2142 +62 +2144 +2145 +2146 +2148 +2151 +2152 +63 +2153 +2154 +2155 +2156 +2157 +2158 +64 +2159 +2160 +2162 +2164 +65 +2165 +2166 +2167 +2168 +2169 +66 +2170 +2171 +2172 +2173 +67 +2174 +2176 +68 +2177 +2178 +2180 +2181 +2182 +2183 +2184 +2185 +2187 +69 +2188 +70 +71 +2189 +2191 +2193 +2194 +72 +73 +74 +75 +76 +77 +2196 +78 +2200 +2204 +2208 +2210 +2219 +2220 +79 +2224 +2225 +2228 +2233 +2238 +2240 +2243 +2244 +2245 +2246 +2247 +2248 +2250 +2252 +2253 +2255 +2257 +2259 +2260 +2261 +2262 +2263 +80 +2264 +81 +2268 +2269 +2270 +2271 +2272 +82 +2273 +83 +2274 +2275 +2278 +2280 +2285 +2288 +2289 +2292 +2293 +2294 +2296 +2298 +84 +2300 +2301 +2302 +85 +2303 +2304 +86 +2305 +2306 +2309 +2310 +2311 +2312 +2315 +2317 +2318 +2319 +2320 +2321 +2322 +2324 +2325 +2326 +2329 +2330 +2333 +2337 +2338 +2339 +87 +2340 +88 +2341 +2342 +89 +2343 +2344 +2345 +2346 +90 +2348 +2349 +2351 +2352 +2354 +2355 +2357 +91 +2360 +2362 +2363 +2365 +2366 +2367 +2368 +92 +93 +2369 +2370 +2372 +2375 +2376 +94 +2380 +2381 +2382 +2387 +2390 +2391 +2392 +2393 +2394 +2396 +2398 +2399 +2400 +2401 +2402 +2404 +2405 +95 +96 +2407 +2408 +2409 +2411 +2412 +2414 +97 +2415 +2416 +2417 +2418 +2419 +2420 +2421 +2422 +2423 +2424 +2425 +2426 +2427 +2428 +2429 +2430 +2431 +2432 +2433 +2434 +2435 +2436 +2437 +2438 +2439 +2440 +2441 +2442 +2443 +2444 +2445 +2446 +2447 +2448 +2449 +2450 +2451 +2452 +2453 +98 +2454 +2455 +99 +2456 +2457 +2458 +2459 +2460 +2461 +2462 +2463 +2464 +2465 +2466 +2467 +2468 +2469 +2470 +2471 +2472 +2473 +2474 +2475 +2476 +100 +2477 +2481 +2482 +101 +2484 +102 +2485 +103 +2486 +2487 +2488 +2490 +2491 +2493 +2494 +104 +2495 +2498 +2499 +2500 +2506 +2509 +105 +106 +2515 +2517 +2519 +2520 +2521 +2522 +2523 +2524 +2525 +2526 +2527 +2529 +2536 +2537 +2545 +2549 +2552 +2555 +2556 +2558 +2560 +2561 +2562 +2564 +2565 +2572 +107 +2580 +108 +2584 +2585 +2586 +2587 +2588 +2589 +2591 +109 +2592 +2593 +2594 +2599 +2602 +110 +111 +2627 +2630 +2635 +2636 +2638 +2642 +2643 +112 +2645 +113 +2646 +2647 +2648 +114 +2652 +2655 +2656 +2658 +2659 +115 +2662 +2663 +2666 +2667 +2668 +116 +2670 +2671 +2672 +2673 +2674 +2675 +2676 +2678 +2680 +2681 +2682 +2683 +2686 +2689 +2691 +2692 +2693 +2694 +2697 +2698 +117 +2706 +2707 +2709 +2713 +2715 +2717 +2718 +2719 +118 +119 +2727 +120 +121 +2730 +2731 +2732 +122 +2736 +123 +124 +2737 +125 +2739 +2741 +2748 +126 +2750 +2751 +2754 +2757 +2764 +2765 +2766 +2768 +2769 +127 +128 +2770 +2771 +2772 +2773 +2774 +2775 +2776 +2777 +2778 +2779 +2780 +129 +2781 +2782 +130 +2783 +2784 +2785 +2786 +131 +2787 +2788 +2789 +132 +2790 +2791 +2792 +2793 +2794 +133 +2795 +2796 +2797 +134 +2798 +2799 +135 +2800 +2801 +2802 +2803 +2804 +2806 +2807 +2808 +2809 +2810 +136 +2811 +2812 +2813 +137 +2814 +138 +2815 +2817 +2820 +2822 +2823 +2824 +2825 +2826 +2827 +2828 +2829 +2830 +139 +2831 +2832 +2833 +2834 +2835 +2836 +140 +2837 +141 +2838 +2839 +2840 +2841 +2842 +2843 +2844 +2845 +2846 +2848 +2850 +2851 +2853 +2854 +2855 +2856 +2857 +142 +2859 +2861 +2862 +2864 +2865 +2866 +2867 +2868 +2871 +2873 +143 +2874 +2875 +2877 +2878 +2879 +2882 +2884 +2885 +2886 +2887 +2888 +2889 +2890 +2891 +2892 +2893 +2894 +2895 +2896 +2897 +2898 +2899 +2900 +2901 +2902 +2903 +2904 +2905 +2906 +2907 +2908 +2909 +2910 +2911 +2912 +2914 +2916 +2917 +2918 +2919 +2920 +2921 +144 +2923 +2924 +2925 +2926 +2927 +2928 +2929 +2930 +2931 +2932 +2933 +2934 +2935 +145 +2936 +2937 +2938 +2939 +146 +2941 +2943 +2946 +2947 +2948 +2949 +2953 +2954 +2955 +2956 +2957 +2959 +2960 +2961 +2962 +2963 +147 +2965 +2966 +2970 +2971 +2972 +2973 +2974 +2975 +2976 +148 +2980 +2981 +2983 +2985 +149 +2987 +2988 +2989 +2990 +2991 +2992 +2993 +2994 +2995 +2996 +150 +2997 +2998 +2999 +3000 +3001 +3002 +3003 +3004 +3005 +3007 +3008 +3012 +3013 +3014 +3016 +3017 +3018 +3021 +3022 +151 +153 +154 +155 +3024 +156 +3025 +157 +158 +3026 +159 +3028 +160 +161 +162 +163 +164 +3030 +3032 +3033 +3034 +167 +168 +3038 +169 +170 +3039 +171 +172 +173 +174 +176 +177 +178 +3041 +3042 +179 +180 +181 +182 +183 +184 +185 +186 +187 +3043 +3044 +3045 +3046 +188 +3048 +189 +3049 +190 +191 +192 +193 +194 +195 +3050 +196 +197 +198 +199 +200 +201 +3051 +202 +203 +204 +3053 +3054 +3055 +3056 +205 +206 +207 +208 +209 +3057 +210 +3058 +211 +212 +213 +214 +3059 +215 +216 +3061 +217 +218 +219 +220 +3062 +221 +3065 +3066 +222 +3068 +223 +3069 +3070 +224 +225 +226 +227 +228 +229 +230 +231 +232 +233 +234 +235 +3071 +3072 +236 +237 +3073 +238 +239 +240 +241 +242 +3074 +243 +244 +3075 +245 +246 +247 +3080 +248 +249 +250 +251 +252 +253 +254 +255 +256 +257 +3082 +258 +259 +260 +261 +3083 +3084 +263 +264 +3085 +265 +266 +267 +3087 +269 +270 +271 +272 +3089 +3090 +273 +274 +275 +276 +3093 +3095 +3097 +277 +3102 +3103 +278 +279 +280 +3105 +3106 +3107 +3108 +3109 +3110 +3111 +3112 +3114 +3115 +281 +282 +3116 +283 +3117 +284 +3118 +3119 +285 +3121 +3122 +3123 +3124 +3125 +286 +3126 +3129 +3130 +3132 +3133 +287 +3134 +3135 +3136 +3137 +3138 +3139 +288 +3141 +289 +290 +291 +3142 +292 +3144 +3145 +3146 +293 +3150 +294 +3152 +3153 +3154 +295 +3156 +296 +297 +3158 +3161 +3163 +3165 +298 +299 +3170 +3171 +3172 +3173 +3174 +3194 +3195 +3197 +3198 +3199 +3200 +3205 +3209 +3212 +3213 +3215 +3219 +3220 +3222 +3223 +3225 +3226 +3228 +3230 +3231 +300 +301 +3232 +3234 +3235 +302 +3237 +3239 +303 +3241 +304 +3243 +3244 +305 +3252 +3255 +3256 +3257 +306 +3260 +3261 +3262 +3263 +3264 +3265 +3266 +307 +3279 +3280 +3281 +3282 +3287 +3289 +3290 +3301 +308 +3304 +3306 +3307 +3308 +3309 +3316 +3317 +3318 +3319 +3321 +3322 +3326 +3329 +3330 +3332 +3333 +3335 +3336 +3340 +3345 +3346 +3347 +309 +3349 +3350 +3353 +3354 +3355 +3356 +3358 +3359 +3360 +3362 +3364 +3365 +3367 +3369 +3370 +3371 +3372 +3373 +3374 +3376 +3379 +3381 +3382 +3383 +3384 +3386 +3389 +310 +3394 +3395 +3396 +3397 +3401 +3404 +311 +3411 +3412 +3413 +3415 +3416 +3418 +312 +3419 +3421 +3424 +313 +3425 +314 +3427 +3428 +3430 +315 +3432 +3433 +3434 +3436 +3444 +3445 +3446 +3448 +3451 +3454 +3458 +3462 +3464 +3475 +3479 +3480 +3489 +316 +3495 +3497 +3498 +317 +3502 +3510 +3511 +3514 +318 +3516 +3518 +3521 +3524 +319 +320 +3531 +3538 +3539 +3540 +3541 +3542 +3543 +3544 +3545 +321 +3546 +3547 +3548 +3549 +3550 +322 +3552 +3553 +3555 +3556 +3557 +3558 +323 +324 +3560 +3561 +325 +326 +3563 +3564 +3565 +3566 +3567 +3568 +3570 +3572 +3573 +3576 +3577 +3580 +3583 +3586 +3587 +3589 +3596 +3599 +3605 +3606 +3613 +3617 +3618 +3620 +3622 +3623 +3626 +3628 +3629 +3630 +3631 +3632 +3633 +3636 +3637 +3640 +3643 +3647 +3649 +3652 +3653 +3655 +3657 +3658 +3662 +3663 +3664 +3665 +3666 +3667 +3669 +3672 +3673 +3675 +3678 +3680 +327 +3681 +3682 +328 +3684 +3685 +3689 +329 +3690 +3692 +3694 +3695 +3696 +3697 +3698 +330 +3699 +331 +3703 +3704 +3707 +3708 +332 +3710 +3713 +3714 +3715 +3718 +3720 +3722 +3723 +3726 +3727 +3734 +3736 +3741 +3746 +3753 +3755 +333 +3759 +3760 +334 +3776 +3782 +3790 +3794 +3799 +3800 +3801 +3802 +335 +3803 +3804 +3805 +3806 +3807 +3808 +3809 +3810 +3812 +3813 +3814 +3815 +3817 +3818 +336 +3823 +3824 +337 +3827 +3828 +3830 +338 +3831 +3832 +3833 +3834 +3837 +3838 +3843 +3849 +3852 +3853 +3854 +3855 +3856 +3857 +3861 +3862 +3863 +3864 +3865 +3866 +3867 +3868 +3869 +3870 +3871 +3875 +3879 +3880 +3881 +3882 +3883 +3884 +3886 +3887 +3888 +3889 +3890 +3891 +3892 +3893 +3895 +3896 +3897 +3898 +3899 +3900 +3901 +3902 +3903 +3904 +3905 +3906 +3907 +3908 +3909 +3914 +3919 +3920 +3921 +3922 +3923 +3925 +3926 +3927 +3928 +3929 +3931 +3932 +3934 +3935 +3938 +3939 +3940 +339 +3941 +3942 +3943 +3944 +3945 +3948 +3949 +3951 +3952 +340 +3956 +3957 +3958 +3960 +3961 +3963 +3964 +3965 +3966 +3967 +3968 +3969 +341 +3970 +3973 +3974 +342 +343 +3977 +3978 +344 +3980 +3982 +3983 +3984 +345 +3986 +3987 +3988 +3989 +3991 +3993 +3994 +3995 +3996 +3997 +3998 +3999 +4002 +4003 +4005 +4006 +4007 +4008 +4009 +4010 +4012 +4014 +4015 +4016 +4017 +4019 +346 +4021 +4024 +4026 +347 +4028 +4029 +4030 +4031 +4032 +348 +4033 +4034 +4035 +4040 +4041 +4043 +4048 +4049 +4051 +4052 +4055 +4056 +349 +4057 +4058 +4059 +4060 +4061 +4062 +4063 +4065 +4066 +4067 +350 +4070 +4073 +4074 +4075 +4076 +4077 +4078 +4079 +4080 +351 +4081 +352 +353 +4082 +4084 +4085 +4086 +4087 +4090 +4092 +4094 +4096 +4097 +4098 +4100 +4101 +4102 +4104 +4105 +4107 +4108 +4109 +4112 +4113 +4114 +4115 +4117 +4118 +4119 +4120 +4121 +4122 +4123 +4124 +4125 +4127 +4128 +4131 +4138 +354 +4139 +355 +4141 +4142 +4143 +4144 +4145 +4146 +356 +4148 +357 +4152 +358 +4153 +359 +360 +4157 +4158 +4159 +361 +4160 +362 +4164 +4165 +4170 +4173 +4181 +363 +4183 +4189 +364 +4190 +4191 +4194 +4195 +4197 +4198 +4200 +4201 +4202 +4203 +4204 +4209 +4210 +4211 +4219 +4220 +4222 +4234 +365 +366 +4235 +4236 +4237 +4238 +367 +4240 +4241 +4242 +368 +369 +4244 +4245 +370 +4248 +371 +372 +4251 +4252 +373 +4254 +4255 +4256 +374 +4258 +375 +4259 +376 +377 +4262 +4263 +378 +379 +380 +381 +382 +4272 +383 +4275 +4276 +4278 +384 +4280 +4286 +385 +386 +4296 +4297 +4299 +4300 +4301 +387 +388 +4303 +4305 +4306 +389 +4315 +4317 +4319 +4321 +4324 +4325 +4326 +4330 +4335 +4337 +4341 +390 +4345 +4346 +4347 +4353 +4355 +4356 +4359 +4362 +4365 +4367 +4370 +4372 +4373 +4374 +4375 +4376 +4377 +391 +4378 +4379 +4380 +4381 +4382 +4383 +4390 +4393 +4395 +4398 +4406 +4409 +4411 +4420 +4422 +4423 +4424 +4425 +4426 +4427 +4433 +4434 +4435 +4436 +4437 +4440 +4441 +4444 +4445 +4446 +4448 +4450 +4452 +4453 +4454 +4460 +4461 +4462 +4463 +4466 +4468 +4472 +4473 +4475 +4476 +4481 +4482 +4485 +4490 +4491 +4492 +4495 +4496 +4497 +4498 +4502 +4507 +4508 +4509 +4510 +4512 +4516 +4518 +4524 +4526 +4528 +4533 +4536 +4544 +4545 +4547 +4551 +4555 +4556 +4557 +4558 +4559 +4564 +4570 +4571 +4576 +4577 +4578 +392 +4579 +393 +4581 +4582 +4583 +4590 +4592 +4594 +4597 +4607 +4611 +4612 +4613 +4615 +4624 +4625 +4626 +4627 +4628 +4629 +4630 +4632 +4634 +4636 +4637 +4638 +4639 +4642 +4644 +4645 +4646 +4647 +4648 +4649 +4668 +4669 +394 +4671 +4672 +395 +4675 +396 +4677 +4678 +4692 +4693 +4697 +4699 +4700 +4702 +4703 +4704 +397 +4706 +4707 +4709 +4711 +4712 +4714 +4720 +4722 +4731 +398 +4738 +4739 +4740 +399 +4741 +4742 +4743 +4744 +4748 +4750 +400 +4751 +4752 +4753 +4754 +4757 +401 +4759 +402 +4764 +4768 +4771 +4773 +4775 +4776 +4778 +4779 +4780 +4782 +4784 +4786 +4787 +4788 +4789 +4795 +4799 +4800 +4801 +4802 +4803 +403 +4804 +4806 +4807 +4808 +4809 +4810 +4811 +4812 +4813 +404 +4816 +4817 +4818 +405 +4821 +4824 +4826 +4827 +4829 +4831 +4836 +4838 +4842 +406 +4843 +4844 +4845 +4846 +4847 +4848 +407 +4851 +4853 +4854 +408 +4855 +4856 +4857 +4858 +4860 +409 +4862 +4863 +4864 +4866 +4867 +4868 +4870 +4871 +4872 +4873 +4874 +4875 +4880 +4882 +4886 +4887 +4888 +4889 +4891 +4894 +4896 +4897 +4898 +4899 +4900 +4901 +4902 +410 +4904 +4906 +4907 +411 +4911 +4912 +4913 +4914 +4915 +4916 +4917 +4918 +4919 +4920 +4922 +4923 +4924 +4926 +4928 +4929 +4932 +4933 +4934 +4937 +4938 +4939 +4940 +4942 +4943 +4944 +4946 +4949 +4950 +4951 +4953 +4954 +4957 +4961 +4962 +412 +4966 +4967 +413 +4975 +4976 +4977 +4981 +4982 +4985 +4986 +4987 +4989 +4990 +4992 +4993 +4994 +4996 +4998 +5000 +5002 +5003 +5004 +5005 +5006 +5007 +5009 +5011 +5012 +5013 +5014 +5016 +5017 +5018 +5020 +5021 +5022 +5024 +5025 +5026 +5027 +5028 +5030 +5031 +5036 +5037 +5039 +5040 +5041 +5042 +5044 +5045 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5059 +5060 +5061 +5062 +5063 +414 +5064 +5066 +5068 +5069 +5070 +5071 +5072 +5074 +5075 +5076 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5089 +5090 +5091 +415 +5093 +5094 +5095 +416 +5098 +5101 +5102 +5104 +5105 +5112 +5113 +5114 +5116 +417 +5120 +5121 +5122 +418 +5124 +5125 +5126 +5127 +5128 +5130 +419 +5131 +5132 +5135 +5136 +5139 +420 +5140 +421 +5143 +5145 +5146 +5147 +422 +423 +424 +5149 +5151 +5152 +5154 +5155 +425 +5159 +5161 +426 +5164 +427 +5167 +5168 +5171 +5172 +5175 +428 +5176 +5177 +429 +5179 +5180 +5181 +5182 +5183 +5184 +5187 +5188 +5189 +5190 +5191 +5192 +430 +5193 +5194 +5195 +5196 +5197 +5198 +5200 +5201 +5202 +431 +5203 +432 +5206 +5207 +5208 +5209 +433 +5213 +5214 +5215 +5216 +434 +435 +5219 +5220 +5226 +5227 +5228 +5229 +5230 +5231 +5232 +5233 +5234 +5235 +5236 +5240 +5241 +5242 +5243 +5244 +5245 +5247 +5249 +436 +5250 +437 +5252 +438 +5253 +5255 +5256 +5257 +439 +5262 +5265 +5268 +5269 +5270 +5271 +5272 +5274 +5275 +5276 +5277 +5279 +5282 +5283 +440 +5284 +5285 +441 +5286 +5287 +5288 +5290 +5291 +5292 +5294 +442 +5296 +5297 +5300 +5303 +5305 +5307 +5308 +5309 +5313 +5315 +5316 +5317 +5318 +5319 +5325 +443 +5327 +5329 +444 +5330 +5332 +5333 +5334 +5335 +5336 +5338 +445 +5344 +5347 +5349 +5351 +5352 +5353 +5354 +5355 +446 +5357 +5359 +447 +5360 +5364 +5365 +5366 +5367 +5368 +5370 +448 +5375 +5380 +5382 +5384 +5387 +5388 +5390 +5391 +5393 +5394 +5395 +5398 +5399 +5400 +5402 +5403 +5404 +5405 +5406 +5411 +5412 +5414 +5415 +5416 +5417 +5418 +5420 +5422 +5425 +5426 +5428 +5429 +5430 +449 +5433 +5434 +5435 +450 +5436 +5437 +5439 +5443 +5444 +5445 +5446 +5449 +5450 +5452 +5454 +5455 +451 +5457 +5458 +5460 +5461 +5464 +5465 +5469 +5470 +5471 +5472 +5473 +5474 +452 +5475 +5476 +453 +5478 +5479 +5480 +5481 +454 +5483 +5484 +5485 +5486 +5487 +5488 +5490 +5491 +5492 +5495 +5496 +5498 +5502 +5503 +5505 +5506 +455 +5509 +5511 +5512 +5514 +5516 +5517 +456 +5520 +5521 +5522 +5523 +5524 +5525 +5527 +5528 +5529 +5530 +5532 +5533 +5534 +457 +5536 +5540 +5541 +5543 +5544 +5545 +5546 +5547 +5549 +5550 +5551 +5553 +5554 +5558 +5559 +5562 +5563 +5564 +5565 +5567 +5568 +5569 +458 +5570 +5572 +459 +5574 +5577 +5578 +5579 +5581 +5582 +460 +461 +5585 +5586 +5589 +5593 +5595 +5598 +5599 +5600 +5601 +5602 +5603 +5606 +5609 +5610 +5611 +5614 +5616 +5617 +5619 +5621 +5622 +5624 +5626 +5628 +5629 +5630 +5631 +5632 +462 +5635 +5637 +5638 +5639 +5641 +5642 +5646 +463 +5648 +464 +5650 +5652 +5654 +5655 +5656 +5657 +5658 +5659 +5660 +5661 +5662 +5664 +5665 +465 +466 +5666 +5667 +5668 +5670 +5671 +5672 +5674 +5675 +5676 +5677 +5679 +5681 +5682 +5684 +5686 +5687 +5689 +5690 +5691 +5695 +5696 +5698 +5700 +5701 +5705 +5707 +5708 +5709 +5711 +5712 +5713 +5714 +467 +5716 +5717 +5718 +5719 +5721 +5723 +5725 +5727 +5728 +5730 +468 +5732 +5733 +5734 +5735 +5736 +5737 +5738 +5739 +5740 +5741 +5742 +5743 +5744 +5746 +5747 +5748 +5749 +5750 +5752 +5753 +5754 +5755 +5756 +5757 +5758 +5762 +5765 +469 +5767 +5769 +5770 +5777 +5778 +5779 +5780 +5783 +5784 +5785 +5786 +5788 +5789 +5794 +5795 +5796 +5797 +5799 +5800 +5802 +5803 +470 +5806 +5807 +5811 +5813 +5817 +5819 +471 +5820 +472 +473 +5821 +5822 +5823 +5824 +5825 +5826 +5827 +5828 +5832 +5833 +5837 +5838 +5839 +5840 +5841 +5842 +5843 +5845 +5846 +5847 +5848 +5849 +5852 +5854 +5855 +5856 +5857 +5858 +5859 +5860 +5861 +5862 +5864 +5865 +5866 +5867 +474 +5869 +5870 +5871 +5872 +5873 +5878 +5882 +5883 +475 +476 +5886 +477 +5891 +5894 +5895 +5897 +5899 +5900 +5901 +5903 +5907 +5908 +5909 +5910 +5911 +478 +5912 +5913 +5914 +5916 +5919 +5920 +5921 +5922 +479 +5923 +5926 +5927 +5930 +5931 +5932 +5933 +5937 +480 +5938 +5939 +5940 +5941 +5942 +5944 +5945 +5946 +481 +5947 +482 +5948 +5949 +5951 +5952 +483 +5955 +5957 +484 +5959 +5960 +5961 +5962 +5963 +5965 +5966 +5969 +5970 +5971 +5976 +5978 +5981 +5982 +5986 +5987 +485 +5988 +5989 +5990 +5991 +5992 +5995 +5996 +5997 +486 +5998 +487 +5999 +6000 +6001 +6003 +6005 +6006 +6007 +6008 +6009 +6010 +6011 +6013 +6015 +6016 +488 +6017 +489 +490 +491 +6019 +6022 +6023 +6025 +6027 +6028 +6029 +6030 +6032 +6037 +6038 +6039 +6040 +6043 +6046 +6048 +6049 +6050 +6052 +6055 +6056 +6057 +6058 +6059 +6060 +6061 +6062 +6063 +6065 +6069 +6071 +6072 +6073 +6074 +492 +6075 +6076 +6077 +6079 +6081 +6082 +6083 +6084 +493 +6085 +494 +6088 +495 +6090 +6094 +6095 +6096 +6097 +6098 +6099 +6100 +6101 +6102 +6107 +6108 +496 +6110 +6111 +6112 +6113 +6115 +497 +6116 +6117 +6119 +6121 +6122 +6123 +6124 +6125 +6126 +6127 +6128 +6129 +498 +6131 +6132 +6134 +6135 +6136 +6137 +6139 +6140 +6143 +6144 +6148 +6153 +6155 +6157 +6158 +6159 +6160 +6161 +6162 +6164 +6165 +6166 +6168 +6170 +6172 +499 +6173 +6174 +500 +6176 +6181 +6182 +6184 +6187 +6189 +6190 +501 +6192 +6193 +6194 +6195 +6196 +6197 +502 +6199 +6200 +6201 +6202 +6205 +6206 +6208 +6209 +6210 +6211 +6212 +6213 +6214 +6215 +6222 +6224 +6226 +6233 +6234 +6235 +6238 +6239 +6240 +6245 +6249 +6250 +6251 +6252 +6254 +6255 +6256 +503 +6257 +6260 +6261 +6262 +6263 +6264 +504 +505 +6266 +6267 +6268 +6270 +6271 +6272 +506 +6275 +6277 +6278 +6279 +6280 +6281 +6282 +6283 +6284 +6285 +6286 +6290 +6291 +6295 +6296 +6297 +6298 +6300 +6301 +6302 +6303 +6304 +6305 +507 +6308 +6309 +6310 +6315 +6316 +6317 +6320 +6321 +6322 +6323 +6324 +6328 +6329 +6333 +6335 +6337 +6338 +6339 +6340 +6341 +508 +6342 +6344 +6346 +6348 +6349 +6350 +6351 +6352 +6353 +6354 +6357 +6358 +6359 +509 +6362 +6363 +6364 +6365 +6369 +6371 +6374 +6375 +6377 +6378 +6381 +6382 +510 +6385 +6386 +6387 +6388 +6389 +6391 +6393 +6394 +6395 +6396 +6399 +511 +6400 +6401 +6402 +6403 +6406 +6407 +6408 +6409 +6410 +6412 +6415 +6416 +6419 +6420 +6422 +6423 +6428 +6429 +6430 +6432 +6435 +512 +6437 +6438 +6439 +513 +6441 +6442 +6443 +6446 +6447 +6448 +6450 +6451 +6453 +6454 +6455 +6459 +6460 +6462 +6463 +6466 +6467 +6471 +6472 +6473 +6474 +6476 +6477 +6480 +6481 +6482 +6483 +6484 +6485 +6487 +6489 +6490 +514 +515 +6492 +6493 +6494 +516 +6496 +6498 +6499 +517 +6502 +6503 +518 +519 +6505 +6506 +6507 +6508 +6509 +6510 +6512 +6513 +6517 +520 +6520 +6521 +6522 +6523 +6525 +6526 +6527 +6528 +521 +522 +6532 +6533 +6534 +6540 +6542 +6546 +6547 +6549 +6552 +6553 +6554 +6556 +6559 +6560 +6561 +6563 +523 +6568 +6575 +6578 +6579 +524 +6584 +6585 +6586 +6589 +6590 +6591 +6593 +6595 +6597 +6599 +6600 +6603 +6604 +6609 +6614 +6615 +6619 +6621 +6622 +6623 +6627 +6628 +6629 +525 +6632 +6634 +6641 +6642 +6647 +6648 +6649 +6651 +6653 +6654 +6658 +6664 +6665 +6666 +6672 +6675 +6676 +6677 +6678 +6679 +6681 +6684 +6685 +6686 +6688 +6689 +6690 +6691 +6693 +6698 +6699 +6700 +6701 +6702 +6704 +6706 +6708 +526 +6709 +527 +6710 +6711 +6713 +6714 +6715 +6720 +6723 +6724 +6725 +6727 +528 +529 +6730 +6732 +6736 +6740 +6742 +6743 +6744 +6745 +6751 +6754 +6755 +530 +6757 +6758 +6759 +531 +6762 +6765 +6766 +6767 +6768 +6769 +6770 +6771 +6772 +6773 +532 +6774 +6775 +6776 +6779 +6782 +6786 +6788 +6792 +6793 +6794 +6797 +6798 +6801 +6802 +6803 +6805 +533 +6806 +534 +6807 +535 +6808 +6809 +6811 +6812 +6813 +6814 +6816 +6819 +6820 +6823 +6826 +6827 +6828 +6829 +6831 +6836 +6840 +6842 +536 +537 +6847 +6848 +6849 +6850 +6851 +6852 +6854 +538 +6855 +6856 +6857 +6858 +6859 +6860 +6861 +6862 +6865 +539 +6867 +6868 +6871 +6872 +6874 +6877 +6878 +6880 +6881 +6882 +6883 +6885 +6886 +6890 +6891 +6893 +6895 +6897 +6899 +6900 +6901 +6902 +6904 +6907 +6908 +6909 +6910 +6911 +6912 +6913 +6914 +6915 +6916 +6918 +6919 +6920 +6922 +6924 +6925 +6927 +6928 +6929 +6930 +6931 +6934 +6935 +6937 +6938 +540 +6939 +6940 +6941 +6942 +6947 +6949 +6951 +6952 +6954 +6955 +6958 +6959 +6962 +6964 +6965 +6969 +541 +6971 +6972 +6973 +542 +6975 +6978 +6979 +6980 +6984 +6988 +6990 +6991 +6992 +6993 +6994 +6997 +543 +7001 +7002 +7003 +7006 +7007 +7009 +7010 +7012 +7014 +7015 +7016 +544 +7017 +7018 +7022 +7023 +7026 +7027 +7028 +7029 +7030 +7031 +7032 +7033 +7034 +7038 +7042 +7044 +7045 +7046 +7048 +7049 +7050 +7051 +7052 +7053 +7055 +7056 +7057 +7059 +7060 +545 +546 +7065 +7066 +7067 +547 +7068 +7069 +7070 +7071 +7072 +7073 +7074 +7075 +7081 +7084 +7088 +7090 +7091 +7092 +7095 +7100 +7101 +7103 +7105 +7106 +7107 +7110 +7112 +7113 +7114 +7115 +7117 +7119 +7120 +7121 +7122 +7125 +7126 +7127 +7128 +7129 +548 +7130 +7132 +549 +7133 +7136 +7137 +7141 +7142 +7143 +7144 +7145 +7146 +7148 +7150 +7152 +7153 +7155 +7156 +550 +7157 +7158 +7159 +7161 +7162 +7164 +7165 +7167 +7169 +7170 +7171 +7172 +7174 +7175 +7177 +7184 +7186 +7188 +7189 +7190 +7192 +7193 +7194 +7195 +7196 +7197 +7198 +7200 +551 +7201 +7202 +7205 +7206 +7211 +7212 +7213 +7214 +7215 +7216 +7218 +7220 +7221 +7222 +7223 +7224 +7226 +7227 +7229 +7231 +7232 +7233 +7234 +7235 +7236 +7239 +7242 +7243 +7245 +552 +7246 +7247 +7251 +7252 +7253 +7254 +7255 +7256 +7257 +7260 +7261 +7262 +7267 +7269 +7270 +7272 +7273 +7276 +7277 +7278 +7280 +7281 +7284 +7285 +7287 +7288 +7293 +7294 +553 +7297 +7301 +7303 +7304 +7306 +7309 +7310 +7311 +7312 +7313 +7314 +7316 +7321 +7322 +7323 +7324 +7325 +554 +7327 +555 +7330 +7331 +7333 +556 +7335 +7337 +7341 +7343 +7344 +7345 +7348 +7351 +7352 +7355 +7358 +7359 +7360 +7362 +557 +7367 +7368 +7370 +7371 +7372 +7373 +7374 +7376 +7377 +7378 +7379 +7381 +7382 +7383 +7386 +7387 +7388 +7392 +7393 +7394 +7395 +7396 +7398 +7400 +7401 +7402 +7403 +7406 +7407 +7408 +7410 +7411 +7415 +7416 +7420 +7422 +558 +7423 +7426 +7427 +7428 +7431 +7432 +7434 +7435 +7436 +7437 +7438 +7439 +7440 +559 +7442 +7443 +7444 +560 +7449 +7450 +7452 +7456 +7457 +7458 +7464 +7465 +7468 +7470 +561 +7477 +7479 +7480 +7482 +7483 +7484 +7486 +562 +563 +7487 +564 +7490 +7491 +7492 +7494 +7497 +7498 +7499 +7501 +7503 +7504 +7507 +565 +7509 +7510 +7511 +566 +7512 +7514 +7515 +7516 +7517 +7518 +7520 +7521 +7523 +7524 +7525 +7526 +7528 +7529 +7530 +567 +7531 +7532 +7533 +7535 +7536 +7539 +7540 +7542 +568 +7543 +7544 +7546 +7547 +7548 +7549 +7551 +7552 +7553 +7554 +7557 +7558 +7559 +7560 +7565 +7566 +7567 +7568 +7569 +7573 +7581 +7583 +7584 +7585 +7586 +7587 +7589 +7591 +7592 +7593 +7594 +7595 +569 +7596 +7597 +7598 +7599 +7600 +7601 +7602 +7603 +7605 +7606 +7607 +7608 +7610 +7611 +7612 +7613 +7616 +7619 +7622 +7623 +7624 +7625 +7626 +570 +7628 +7629 +7630 +7631 +7632 +571 +7633 +7634 +7635 +7636 +7640 +7641 +7642 +7643 +7644 +7645 +7646 +7647 +7648 +7650 +7651 +7652 +7653 +7654 +7656 +7658 +7659 +7660 +7665 +7666 +7667 +7669 +7670 +7671 +7672 +7673 +7674 +7675 +7678 +7682 +7684 +7685 +7686 +7687 +7688 +7689 +7691 +7692 +7694 +7695 +7696 +7698 +7699 +7701 +7704 +7705 +7706 +7707 +572 +7709 +573 +7710 +7711 +574 +575 +7712 +7713 +7714 +7715 +7716 +576 +577 +7719 +7721 +7723 +7724 +578 +7727 +7728 +7730 +7731 +7734 +7735 +7736 +7737 +7738 +579 +7739 +7741 +7742 +7743 +7744 +7745 +7746 +7747 +7749 +7752 +7753 +7754 +7755 +7756 +7757 +7758 +7760 +580 +7761 +7763 +581 +7766 +7767 +7768 +7771 +582 +7774 +7775 +7780 +7781 +7782 +7787 +7789 +7790 +7792 +7795 +7796 +7797 +583 +7801 +7802 +7804 +7806 +7807 +7809 +7810 +7812 +7816 +7819 +7822 +7828 +7834 +7835 +7836 +7838 +7840 +7841 +584 +585 +7846 +586 +7849 +7850 +7851 +7853 +7854 +7855 +7856 +587 +7861 +588 +7862 +7863 +7865 +589 +7868 +7869 +7870 +7871 +7872 +7873 +7874 +7875 +7876 +590 +591 +7878 +7879 +7880 +7881 +7882 +7883 +7884 +7886 +7887 +7890 +7892 +7893 +7894 +7899 +7900 +7902 +7904 +592 +7905 +593 +7909 +7910 +7911 +594 +7912 +7916 +7918 +595 +7920 +7921 +7922 +7924 +7925 +596 +7927 +7928 +7929 +7931 +7933 +7936 +7939 +7942 +7943 +7944 +7945 +7949 +7951 +7954 +7955 +7957 +7959 +7960 +7961 +7962 +7964 +7965 +7966 +7967 +7968 +7969 +7970 +7971 +7973 +7974 +7976 +7977 +7978 +7981 +7987 +7988 +7990 +7993 +7994 +7995 +7998 +7999 +8000 +8004 +8006 +8007 +8009 +8010 +8011 +8013 +8015 +8016 +8019 +8020 +8022 +8025 +8026 +8028 +8029 +8031 +8032 +8033 +8034 +8037 +8040 +8041 +8044 +8045 +8047 +8049 +8053 +597 +8054 +8057 +8058 +8059 +8060 +8061 +8062 +598 +8064 +599 +8065 +8066 +8071 +600 +8072 +8073 +601 +8079 +8080 +602 +8083 +8085 +8087 +8088 +8090 +8091 +603 +8094 +8099 +8100 +8101 +8103 +8104 +8106 +8107 +8108 +8109 +8111 +8112 +8113 +8114 +8115 +8117 +8118 +8119 +8120 +8121 +8123 +8124 +8125 +604 +8126 +8127 +8128 +8129 +8131 +8133 +8134 +8135 +8136 +8137 +8141 +8144 +8146 +8148 +8150 +8151 +8152 +8153 +8154 +8155 +8158 +8159 +8163 +8164 +8165 +8168 +8170 +8172 +8173 +8174 +8178 +8180 +8181 +8182 +8183 +8184 +8187 +8188 +8189 +8190 +8193 +8194 +8196 +8200 +8201 +8205 +8208 +8210 +8213 +8215 +8219 +8223 +8225 +8227 +8229 +8230 +8232 +8236 +8238 +8239 +8244 +8247 +8249 +8250 +8251 +8253 +8255 +8257 +8259 +8262 +8263 +605 +8266 +606 +8267 +8269 +8271 +8274 +8275 +8277 +8279 +8280 +8282 +8284 +8285 +8287 +607 +8288 +8294 +8295 +8296 +8297 +8298 +8300 +8303 +8305 +608 +609 +8307 +8308 +8309 +610 +8310 +8312 +8313 +8316 +8317 +8318 +8320 +611 +612 +8324 +8325 +8326 +8327 +8328 +8329 +8330 +8331 +613 +8336 +8337 +8338 +8339 +8340 +8341 +8345 +8348 +8349 +8350 +8352 +8355 +8358 +8359 +8362 +8363 +8367 +8368 +8369 +8370 +8373 +8374 +8375 +8376 +8377 +8378 +8380 +8381 +8383 +8384 +8385 +8386 +8387 +8390 +8391 +8392 +8393 +8394 +614 +8397 +8402 +8404 +8405 +8406 +8407 +8408 +8409 +8410 +8412 +8413 +8414 +8416 +8418 +8419 +8420 +615 +8421 +8422 +8423 +8424 +8426 +8427 +8428 +8429 +8430 +8434 +616 +8435 +8437 +8439 +8443 +8444 +8445 +8447 +617 +8448 +8450 +8452 +8453 +8454 +618 +8458 +8459 +8461 +8462 +8463 +8465 +8467 +8468 +8470 +619 +8473 +8478 +8479 +8481 +8484 +8485 +8486 +8490 +620 +8492 +8493 +8494 +8495 +8498 +8499 +8500 +8503 +8504 +8505 +8506 +8508 +8510 +8512 +8515 +8517 +8518 +621 +8519 +8520 +8522 +8523 +8525 +8527 +8528 +8529 +8531 +8532 +8533 +8534 +8535 +8537 +8539 +8540 +8541 +622 +8543 +623 +8546 +8547 +8548 +8549 +8550 +8551 +8553 +624 +8554 +625 +8557 +8558 +8560 +8565 +8567 +8569 +8571 +626 +8572 +8574 +8575 +8576 +8577 +8578 +8579 +8580 +8581 +8583 +8584 +627 +8585 +8587 +628 +8589 +8591 +8592 +8593 +8596 +8600 +629 +8601 +8602 +8603 +8606 +8607 +8609 +8610 +630 +8612 +8613 +8614 +8615 +8619 +8620 +8621 +8623 +8624 +8625 +8626 +8627 +8628 +8630 +8632 +8633 +8636 +8637 +8640 +8641 +8642 +8644 +8645 +8647 +8650 +8651 +8654 +8655 +631 +632 +8657 +8661 +633 +8663 +8664 +8665 +8666 +8669 +8673 +8675 +8676 +8678 +8679 +8681 +634 +8685 +8687 +8690 +8691 +8692 +8693 +8694 +8695 +8697 +8698 +8700 +8702 +8710 +8711 +8712 +8713 +635 +8718 +8724 +8726 +8728 +8729 +636 +637 +638 +639 +8738 +8740 +8741 +8742 +8746 +8748 +8749 +8750 +8752 +8753 +8754 +8756 +8757 +8758 +8759 +8760 +640 +8761 +8762 +8763 +8764 +8766 +8767 +8768 +8769 +8771 +8773 +641 +8775 +8776 +642 +8777 +8778 +8779 +8783 +8785 +8787 +8789 +8790 +8791 +8792 +643 +8793 +8795 +8796 +8802 +8803 +8804 +8805 +8806 +8807 +8808 +8809 +8810 +8812 +644 +8817 +8818 +8819 +8822 +8823 +8824 +8825 +8827 +8828 +8829 +645 +646 +8834 +647 +8835 +8836 +8837 +8838 +8842 +8843 +8844 +8845 +8846 +8847 +8848 +8849 +648 +649 +8851 +8852 +8853 +8855 +8856 +8858 +8859 +8860 +8861 +8862 +8863 +8866 +8871 +8872 +8874 +8876 +8879 +8881 +8882 +8886 +8888 +650 +8889 +8890 +8891 +651 +8895 +8896 +8897 +652 +8900 +653 +8902 +8903 +8906 +8907 +8908 +8910 +8911 +8914 +8915 +8916 +8917 +8918 +8919 +8923 +8924 +654 +8926 +8928 +655 +656 +8931 +8932 +8933 +8934 +8936 +657 +8938 +8939 +658 +8940 +8941 +659 +8942 +8943 +8944 +660 +8946 +661 +662 +8950 +8952 +663 +8961 +8962 +664 +8963 +8964 +8967 +8971 +8973 +665 +8975 +8977 +8979 +8980 +8981 +8982 +666 +667 +8983 +8984 +668 +669 +8985 +8986 +8987 +8988 +8992 +8993 +8994 +8995 +8996 +670 +8997 +8998 +8999 +9000 +671 +672 +673 +9001 +674 +9002 +9003 +9004 +9005 +9006 +9007 +675 +9009 +9010 +9014 +9015 +9016 +9017 +9018 +9019 +9026 +9031 +9032 +9033 +9034 +9035 +9036 +9037 +9039 +9040 +676 +677 +9046 +9047 +9050 +9054 +9055 +9059 +9060 +9061 +9062 +9063 +9067 +9068 +678 +9073 +679 +9074 +9076 +9077 +9078 +9079 +9081 +9082 +9083 +9086 +9088 +9090 +9091 +9092 +9093 +9095 +9096 +9100 +9101 +9103 +9104 +9105 +9106 +9107 +9108 +9113 +9115 +9117 +9118 +680 +9122 +9123 +9125 +9126 +9129 +9131 +9133 +681 +9135 +9138 +9141 +9142 +9144 +9145 +9146 +9147 +9148 +682 +9150 +683 +9154 +9155 +684 +9158 +685 +9160 +9161 +9162 +9163 +9165 +9168 +9170 +9171 +686 +9173 +9174 +9176 +9177 +9180 +9182 +9183 +9184 +9185 +9188 +9189 +9191 +9192 +9196 +9197 +9199 +9200 +9201 +9203 +9204 +9205 +9207 +9209 +687 +9210 +9211 +9212 +9213 +9214 +9215 +9217 +9218 +9220 +9222 +9226 +9227 +688 +9228 +9229 +9230 +9233 +9234 +9235 +9236 +9237 +9238 +9240 +9242 +9243 +9245 +9247 +9248 +9249 +9250 +9253 +9254 +9255 +9256 +9258 +9259 +9261 +689 +690 +9265 +9266 +691 +9270 +9273 +9274 +9275 +9276 +9277 +692 +9278 +693 +9283 +9286 +694 +9287 +695 +9288 +9289 +9290 +9291 +696 +9293 +697 +9294 +698 +9295 +9296 +9301 +9302 +9304 +9307 +9308 +9312 +9313 +9314 +9315 +9316 +699 +9322 +9323 +9324 +9325 +9326 +9328 +9329 +9330 +9331 +9332 +9333 +9334 +9336 +9337 +700 +701 +702 +9344 +9346 +9347 +9348 +9349 +9351 +9352 +703 +704 +9353 +9354 +9355 +9356 +9357 +9359 +9360 +9361 +705 +9365 +9366 +9367 +9368 +9373 +9374 +9375 +9376 +9377 +706 +9381 +9385 +9386 +9387 +9389 +9390 +707 +9392 +9393 +9396 +9397 +708 +9398 +9399 +9400 +9401 +9402 +9403 +9407 +9409 +9410 +9414 +9419 +709 +710 +9421 +9422 +9423 +9427 +9428 +9429 +9430 +9431 +9433 +9435 +9436 +9437 +9438 +9439 +9440 +9442 +9443 +711 +9446 +9447 +9449 +9451 +9453 +9454 +9455 +9456 +9457 +712 +9460 +9461 +9462 +9463 +9466 +9467 +713 +9470 +9473 +9474 +9475 +9477 +9479 +714 +715 +716 +717 +9487 +9488 +718 +9493 +9494 +9495 +9496 +9497 +9499 +9500 +719 +9503 +720 +9504 +9505 +9506 +721 +9507 +9508 +9509 +9511 +9515 +9516 +9517 +9519 +9520 +9521 +9523 +722 +9527 +9528 +9529 +9531 +9533 +9534 +9535 +723 +9540 +9541 +9544 +9545 +724 +9546 +9547 +9548 +9549 +9550 +9551 +725 +9554 +9556 +9563 +9566 +9567 +726 +9568 +9569 +727 +9574 +9575 +9576 +9577 +9578 +9579 +9580 +728 +9583 +9584 +9587 +9588 +9589 +729 +9593 +9596 +9599 +9600 +9602 +9603 +9604 +9605 +9606 +9607 +9611 +9612 +9613 +730 +9614 +9615 +9617 +9618 +731 +9621 +9622 +9629 +9630 +9632 +9633 +9634 +9635 +9636 +9637 +9638 +9639 +732 +733 +9646 +734 +9647 +9649 +9650 +9651 +9654 +9655 +735 +9658 +9659 +9660 +9661 +9662 +9663 +736 +9664 +9666 +737 +9668 +9672 +9673 +9674 +9675 +9676 +9677 +9678 +9679 +9681 +9682 +9683 +9684 +9686 +9687 +9688 +9691 +9692 +9698 +9701 +738 +9702 +9705 +9706 +9707 +9708 +739 +9709 +9711 +9712 +9713 +9714 +9716 +9719 +9722 +740 +9723 +9725 +9727 +9728 +9729 +741 +9733 +9736 +9738 +9739 +9741 +9743 +9745 +9747 +9749 +9750 +9753 +9755 +9757 +9758 +742 +9759 +9760 +743 +9768 +744 +745 +9769 +9774 +9775 +9776 +9781 +9785 +9786 +9788 +9789 +9790 +9793 +9795 +9796 +746 +9798 +9800 +9801 +9803 +9804 +9809 +9810 +9818 +747 +9820 +9821 +9822 +9823 +9825 +9826 +748 +9827 +9828 +9829 +9831 +9834 +9835 +9836 +9837 +9838 +9840 +9841 +9845 +9847 +9852 +9855 +749 +750 +9858 +9863 +9864 +9866 +9870 +751 +9873 +9874 +9875 +9876 +9877 +752 +9880 +9881 +9882 +9883 +753 +9885 +9886 +9887 +754 +9888 +9891 +9896 +9897 +9898 +9899 +755 +9902 +9903 +9904 +9907 +9908 +9909 +9910 +9911 +9913 +9916 +756 +9917 +9918 +9919 +9920 +9921 +9923 +9926 +9928 +9931 +9932 +9933 +9934 +9935 +9937 +9939 +9940 +9945 +9946 +9947 +9948 +9949 +9953 +9954 +9955 +9957 +9959 +9962 +9963 +9966 +9968 +9969 +9970 +9972 +9975 +9976 +9977 +9979 +9980 +9981 +757 +9982 +9983 +9986 +758 +9993 +9994 +9995 +9996 +9997 +9999 +759 +10002 +10003 +10004 +760 +10008 +10009 +10010 +10011 +10012 +10014 +10015 +761 +10016 +10017 +10018 +10020 +10022 +10023 +10024 +10029 +10032 +10034 +10035 +10036 +10037 +10038 +762 +10039 +10042 +10043 +10044 +10046 +10048 +10051 +763 +10056 +10061 +10062 +10063 +10070 +10071 +10072 +10073 +764 +10076 +10079 +10083 +10084 +10090 +10092 +10093 +10094 +10095 +10097 +10101 +10103 +10104 +10108 +10110 +10111 +10112 +765 +10114 +10117 +10119 +10120 +10121 +10122 +10123 +10125 +10127 +10128 +10129 +10130 +10131 +10132 +10133 +10134 +10135 +10136 +10138 +10140 +10141 +10143 +10145 +10146 +10149 +10154 +10155 +10156 +766 +10157 +10159 +10160 +10161 +10162 +10163 +10164 +10167 +10168 +10169 +10170 +10171 +10173 +10177 +10179 +10180 +10181 +10183 +10184 +10185 +10186 +767 +10189 +10191 +768 +10192 +769 +10193 +10194 +10195 +10196 +10198 +770 +10200 +10203 +10204 +10205 +10207 +10208 +10209 +10210 +10211 +10212 +10216 +10217 +10218 +10219 +10220 +10221 +10222 +771 +10226 +10229 +10230 +772 +10237 +10238 +10239 +10240 +10241 +10242 +10243 +10244 +10248 +10249 +10251 +10254 +10255 +773 +10258 +10259 +10261 +10263 +774 +10265 +10266 +10267 +10268 +10269 +10270 +10271 +10272 +10274 +10275 +775 +10276 +10277 +10278 +10279 +10280 +10281 +10282 +10283 +10285 +10287 +10288 +10289 +10290 +10291 +10293 +776 +10296 +777 +10297 +10298 +778 +10301 +10302 +10303 +10304 +10306 +10307 +10308 +10310 +10311 +10312 +10313 +779 +10314 +780 +10318 +10320 +10323 +10324 +10325 +10326 +781 +10327 +10330 +10334 +782 +10335 +783 +10337 +10338 +784 +10341 +10342 +10348 +10349 +10354 +10355 +10356 +10361 +10362 +10365 +10366 +10367 +10369 +10370 +10371 +785 +10372 +10373 +10375 +10376 +10377 +10378 +10382 +10384 +10388 +10392 +10394 +10398 +10399 +10400 +10401 +10402 +10403 +10404 +10405 +10408 +10409 +10410 +10412 +10413 +10415 +10419 +10420 +10422 +10423 +10424 +10426 +10430 +10431 +10432 +10433 +10434 +10436 +10437 +10438 +786 +10439 +10440 +10441 +10443 +10444 +10446 +10447 +10448 +10449 +10452 +10453 +10455 +10456 +10457 +10458 +10459 +10460 +10461 +10462 +10464 +10465 +10466 +10467 +10470 +10472 +10474 +10475 +10476 +10477 +10478 +10481 +10483 +10484 +10485 +787 +10488 +10490 +10494 +10495 +10497 +10500 +10501 +10502 +10506 +10507 +10508 +10509 +10510 +10511 +10512 +10513 +10514 +788 +10515 +10516 +789 +10517 +10520 +10522 +790 +791 +10525 +10526 +10529 +10530 +10531 +10532 +10533 +10534 +10535 +10536 +10537 +10538 +792 +10539 +10541 +10542 +793 +794 +10543 +10544 +10547 +10548 +10549 +10550 +10553 +10554 +10555 +10556 +10557 +10558 +10559 +10560 +10564 +10566 +10567 +10570 +10571 +10575 +10576 +10577 +10579 +10581 +10582 +10584 +10585 +10587 +10591 +10592 +10593 +10594 +10595 +10598 +10599 +10601 +10602 +10603 +10605 +10606 +10608 +10610 +10613 +10616 +795 +10617 +10619 +10620 +10621 +10622 +10623 +10625 +796 +10626 +10627 +10629 +10631 +10632 +10633 +10634 +10635 +10638 +10640 +10642 +10646 +10649 +10650 +797 +10654 +10656 +10657 +10660 +10661 +10662 +10663 +798 +799 +10667 +10669 +10672 +10675 +10677 +10678 +10680 +10682 +800 +10686 +10687 +10689 +10692 +10694 +10695 +10697 +10698 +10699 +10702 +10703 +10704 +10706 +10707 +10708 +10709 +10710 +10711 +10712 +10713 +10715 +10716 +801 +10717 +10718 +802 +803 +10719 +10720 +10721 +10722 +10723 +10725 +10726 +804 +805 +806 +10728 +10731 +10734 +10736 +10738 +10739 +10740 +10741 +10742 +807 +10743 +10744 +10745 +10746 +10747 +808 +10751 +10753 +10754 +10757 +10760 +809 +10764 +10765 +810 +10772 +10773 +811 +10775 +812 +10776 +10777 +10778 +10780 +10784 +10793 +10796 +10797 +813 +10798 +10800 +10802 +10805 +10806 +10808 +10810 +814 +10811 +10812 +10813 +10815 +10817 +815 +10819 +816 +10821 +10823 +10824 +10825 +10826 +10830 +10831 +10832 +10840 +10841 +10844 +10845 +10846 +10847 +10848 +10849 +10850 +10851 +10853 +10854 +10855 +10856 +10857 +10858 +817 +10859 +10861 +10862 +818 +10866 +10867 +10868 +10871 +10872 +10874 +10875 +10877 +10878 +10879 +10880 +10881 +10882 +10883 +10888 +10889 +10891 +10892 +10893 +10894 +10898 +10899 +10900 +10901 +10903 +10905 +819 +10906 +10907 +10908 +10909 +10910 +10912 +10913 +10914 +10917 +10918 +10921 +10927 +10928 +10929 +10930 +10931 +10933 +10934 +10936 +10938 +10939 +10940 +10942 +10944 +10945 +10946 +10947 +10951 +10952 +10953 +10954 +820 +10955 +10958 +10959 +821 +822 +10960 +10962 +10963 +10967 +10968 +10969 +10972 +10974 +10975 +10976 +10978 +10979 +10982 +823 +10983 +10984 +10985 +10986 +10988 +10989 +10993 +10997 +10999 +11000 +11003 +11005 +11007 +11008 +11010 +824 +825 +11014 +11015 +11016 +11017 +11019 +826 +11021 +11024 +11027 +11028 +827 +11031 +11033 +11035 +11036 +11038 +11041 +828 +11042 +11044 +11045 +11046 +11047 +11049 +11050 +829 +11051 +11052 +830 +11054 +11057 +11058 +11062 +11064 +11065 +11066 +11067 +11070 +11074 +11075 +831 +11076 +11077 +11079 +11080 +832 +11081 +11085 +11086 +833 +11089 +11092 +11093 +11097 +11098 +11100 +834 +11102 +11103 +11104 +11105 +11107 +11108 +11109 +11110 +835 +11111 +836 +837 +11114 +11116 +11117 +838 +11118 +11120 +11122 +11123 +11124 +11128 +11129 +11132 +11133 +11134 +11135 +11140 +11144 +11146 +11147 +11149 +11154 +11157 +11158 +839 +11160 +11161 +840 +11162 +11163 +11167 +11170 +11171 +11174 +11175 +841 +11177 +11179 +842 +11180 +843 +844 +11182 +11183 +11185 +11186 +11187 +11188 +11190 +11193 +11194 +11195 +11198 +845 +11199 +11202 +11204 +11205 +11206 +11207 +846 +11208 +11209 +11211 +11212 +11213 +11214 +11216 +11218 +11219 +11220 +11221 +11223 +11225 +11226 +11229 +11230 +11231 +11233 +11234 +11235 +11236 +11237 +11238 +11240 +11241 +11246 +847 +11247 +11248 +11249 +11250 +11253 +11254 +11255 +11256 +11257 +11258 +11259 +11260 +848 +11261 +11263 +11264 +11265 +11269 +11270 +11271 +11273 +11276 +11278 +11279 +11280 +11283 +11284 +11285 +849 +11287 +11288 +11289 +11290 +11292 +11293 +11294 +11295 +11296 +11298 +11300 +11301 +11302 +11303 +11304 +11305 +11307 +11308 +11309 +11310 +11311 +11312 +11313 +11314 +851 +11317 +11318 +11319 +11320 +11321 +11322 +11325 +11327 +11328 +11329 +11330 +11331 +11333 +852 +11334 +11335 +11337 +11345 +11348 +11350 +11353 +11355 +11356 +11357 +11358 +11359 +11361 +11363 +11365 +11366 +11367 +853 +11368 +854 +11370 +11371 +11372 +11380 +11381 +11383 +11384 +855 +11387 +11388 +11391 +11392 +11396 +856 +11400 +857 +11402 +11404 +11405 +11408 +11411 +11412 +11415 +11416 +11417 +11418 +11419 +858 +11423 +11424 +11425 +11433 +11434 +11435 +11437 +11439 +11440 +11442 +11445 +11446 +859 +11447 +11449 +11450 +860 +11452 +11455 +11457 +11458 +11459 +11462 +11464 +11465 +11466 +11468 +11469 +861 +11470 +11472 +11473 +11477 +11478 +11479 +11481 +11482 +11483 +11485 +11487 +11488 +11489 +11490 +11492 +11493 +11494 +11495 +11499 +11501 +11503 +862 +11507 +11509 +11511 +11512 +863 +11514 +11515 +11518 +11519 +11520 +11521 +11522 +11523 +11524 +864 +11525 +11526 +865 +11528 +11530 +11531 +11532 +11534 +866 +11535 +11536 +11537 +11538 +867 +11541 +11542 +11544 +11546 +11548 +11550 +11553 +11556 +11559 +11560 +11561 +11563 +11565 +11568 +868 +11570 +11571 +11572 +11573 +11574 +11578 +869 +11584 +11585 +11586 +11590 +11594 +11595 +870 +11597 +871 +11598 +11600 +872 +11601 +11604 +873 +11605 +11608 +874 +875 +11609 +11611 +11612 +11613 +11614 +11615 +11616 +11617 +11618 +11619 +11621 +11622 +11623 +11625 +11627 +11628 +876 +11631 +11637 +11638 +11639 +11640 +11641 +11643 +11644 +11645 +11647 +11650 +11652 +11655 +877 +11659 +11660 +11661 +11662 +11663 +11664 +11665 +11666 +11671 +11673 +11676 +11678 +11679 +878 +11681 +11683 +11684 +879 +11690 +11691 +11692 +11693 +11694 +880 +11696 +11697 +11698 +11699 +11701 +881 +11706 +11707 +11708 +11709 +11710 +11711 +882 +11713 +11714 +11715 +11716 +11717 +11721 +11722 +11723 +11726 +883 +884 +11728 +11729 +11730 +11733 +885 +11734 +886 +11735 +11736 +11737 +11740 +11741 +11742 +11743 +11744 +11745 +11746 +11747 +11749 +11750 +11751 +887 +11753 +888 +11755 +11757 +11758 +11759 +11760 +11761 +11762 +11763 +11764 +11765 +11766 +11767 +11768 +11769 +11770 +11771 +11773 +889 +11778 +11780 +11781 +11783 +890 +11784 +11788 +11791 +11792 +11796 +11797 +891 +11798 +11800 +11801 +11803 +11804 +11805 +11806 +11808 +11809 +11812 +11813 +11816 +892 +893 +11817 +11818 +11819 +11821 +894 +11823 +895 +11827 +11829 +896 +11830 +11831 +897 +11832 +11834 +11835 +11836 +11837 +11838 +11839 +11840 +11842 +898 +11845 +11848 +11851 +11852 +11854 +11855 +11857 +11858 +899 +11861 +11863 +11864 +11865 +11869 +11870 +900 +11872 +11873 +11876 +11877 +11879 +11880 +11881 +11882 +11886 +11887 +11889 +11890 +11892 +11894 +11897 +11898 +11899 +11900 +11901 +11903 +11908 +11909 +11910 +11913 +11914 +11918 +11919 +11920 +11921 +11922 +11926 +11928 +11934 +11935 +901 +11936 +902 +11937 +11938 +11939 +11940 +11942 +11943 +11944 +11945 +11946 +11948 +11949 +903 +11953 +11954 +11958 +11959 +11960 +11961 +11962 +11963 +11964 +11965 +11966 +11967 +11968 +11969 +11971 +904 +11972 +905 +11973 +11974 +11975 +11976 +11977 +906 +11980 +907 +11982 +11983 +11984 +11986 +908 +11988 +11989 +11990 +11991 +11993 +11994 +11995 +11996 +11998 +12000 +12001 +12005 +909 +12008 +12010 +12011 +12012 +910 +12014 +12016 +12017 +12018 +911 +12019 +12021 +12025 +12027 +12028 +12029 +12030 +912 +12034 +12035 +12037 +12038 +913 +12039 +12040 +12041 +12044 +12046 +12047 +12048 +12050 +12051 +12052 +12054 +12056 +12057 +12058 +12061 +12062 +12065 +914 +12067 +915 +12069 +12071 +12074 +12075 +12078 +12079 +12080 +12084 +12086 +12093 +12094 +12095 +12096 +12097 +12098 +12099 +12100 +12102 +12103 +12104 +12105 +12106 +12107 +12108 +12109 +12110 +12111 +12112 +12113 +12115 +12116 +12117 +12118 +12119 +12120 +12121 +12122 +12123 +12124 +12125 +12126 +12128 +12129 +12131 +12132 +12133 +12134 +12135 +12136 +12138 +12139 +12140 +12142 +12145 +12147 +12148 +12149 +12151 +12153 +12155 +12158 +12159 +12165 +12168 +12169 +12172 +12174 +12175 +12176 +12177 +12178 +12179 +12180 +12181 +12183 +12189 +12191 +12193 +12194 +12196 +12205 +12207 +12209 +12215 +12229 +12231 +12232 +12238 +12239 +12241 +12243 +12247 +12254 +12258 +12261 +12262 +12263 +12264 +12265 +12266 +12267 +12268 +12269 +12270 +12271 +12274 +12275 +12276 +12278 +12282 +12284 +12285 +12286 +12287 +12288 +12291 +12292 +12293 +12294 +12295 +916 +12298 +12300 +12301 +12305 +12308 +12310 +917 +12312 +12313 +12314 +918 +12321 +919 +920 +12322 +12323 +12324 +12325 +921 +12326 +12327 +12328 +12329 +12331 +12333 +12334 +12335 +12337 +12338 +12339 +12340 +12341 +12342 +12346 +12350 +12354 +12359 +12360 +922 +12361 +12362 +12368 +12374 +12375 +12379 +12381 +12383 +12386 +12390 +12392 +12394 +12396 +12399 +12400 +12401 +12402 +12403 +12404 +12405 +12406 +12408 +12409 +12410 +12411 +12412 +12413 +12415 +12417 +12418 +12419 +12423 +12424 +12425 +923 +12426 +12427 +12428 +12429 +12430 +12431 +12432 +12433 +12435 +12436 +12438 +12439 +12441 +12443 +924 +925 +12449 +12450 +12451 +12455 +12456 +12458 +12460 +12461 +12463 +12465 +12467 +12468 +12469 +12470 +12471 +12473 +12474 +12475 +12476 +12478 +12479 +12480 +12481 +12482 +12483 +12485 +12486 +12487 +12488 +12494 +12495 +926 +12496 +12499 +12503 +12504 +12506 +12507 +12509 +12510 +12511 +12512 +12514 +12516 +12517 +12520 +12526 +12528 +12530 +12536 +12537 +12538 +12540 +12541 +12544 +12547 +12554 +12555 +12556 +12557 +12560 +12564 +12566 +12567 +12568 +12570 +12571 +12574 +12575 +12576 +12578 +12579 +12584 +12585 +12586 +12589 +12592 +12595 +12596 +12598 +12599 +12603 +12606 +12608 +12610 +12612 +12615 +12618 +12619 +12620 +12621 +12623 +12624 +12625 +12627 +12629 +12630 +12632 +927 +12634 +12636 +928 +12638 +12639 +12641 +12642 +12643 +12644 +12645 +929 +12647 +12650 +12651 +12652 +12653 +12655 +12660 +12661 +12663 +12664 +12665 +12667 +12671 +12672 +12674 +12681 +12684 +12685 +12686 +12687 +12689 +12690 +12692 +12693 +12695 +12696 +12697 +12698 +12699 +12700 +12702 +12703 +12704 +12705 +12706 +12710 +12711 +12713 +12714 +12716 +12717 +12718 +12719 +12721 +12723 +12724 +12727 +12729 +12731 +12733 +12735 +12737 +12738 +12741 +12742 +12744 +12745 +12746 +12747 +12748 +12749 +12750 +12751 +12754 +12755 +12756 +12757 +930 +12758 +12759 +12761 +12762 +12763 +12764 +12766 +12768 +12769 +12770 +12771 +12772 +12773 +12777 +12778 +12779 +12780 +12781 +12782 +12783 +12784 +12786 +12789 +12791 +12792 +12798 +12799 +12800 +12801 +12802 +12803 +12804 +12805 +12806 +12807 +12808 +12809 +12810 +12811 +12812 +12813 +12818 +12820 +12821 +12823 +931 +12825 +12827 +12828 +12829 +12830 +12835 +932 +12836 +12837 +12838 +12839 +12840 +12841 +12842 +12843 +12844 +933 +934 +12846 +12847 +12848 +12849 +12850 +12851 +12852 +12853 +12855 +12856 +12858 +12859 +12860 +12861 +12863 +12865 +12866 +12867 +12869 +12871 +12872 +12873 +12874 +12875 +12876 +935 +12880 +12881 +12882 +12883 +12884 +12885 +12886 +12887 +12888 +12889 +12890 +12891 +12892 +12893 +12894 +12895 +936 +12896 +12897 +937 +938 +12898 +12899 +12900 +12901 +12902 +12903 +939 +12904 +940 +12907 +941 +942 +943 +944 +12916 +12919 +12921 +12925 +12926 +12927 +945 +12928 +12930 +12931 +12932 +12933 +12935 +12936 +12937 +12939 +12941 +12942 +12943 +12944 +12945 +12946 +12948 +12951 +12952 +12953 +12955 +12957 +12958 +12959 +12961 +12962 +12964 +12967 +12968 +12969 +12970 +12974 +12975 +12977 +12978 +12979 +12981 +12982 +12983 +12988 +12989 +12990 +12991 +946 +12992 +12993 +12994 +12996 +12997 +12998 +13000 +13002 +13003 +13004 +13005 +13009 +13010 +13011 +13015 +13016 +13017 +13019 +13020 +13021 +13022 +13023 +947 +13024 +13028 +13029 +13030 +13031 +13033 +13034 +13035 +13037 +13038 +13042 +13046 +13047 +13048 +13050 +13052 +13053 +13054 +13055 +13058 +13059 +13062 +13067 +948 +13072 +13073 +13075 +13077 +13078 +13079 +13080 +13082 +13083 +13084 +13087 +949 +13090 +13091 +13092 +13095 +950 +13097 +13098 +13099 +13100 +13101 +13102 +13103 +13105 +13106 +13107 +951 +13108 +13109 +13110 +13111 +13113 +13115 +13116 +13117 +13118 +13119 +13120 +13122 +13124 +13126 +13127 +13129 +13132 +952 +953 +954 +13134 +13135 +13138 +955 +13139 +13140 +13142 +13144 +13145 +13147 +13149 +13151 +13152 +13153 +13154 +13158 +13163 +13165 +13170 +13172 +956 +13178 +13179 +13180 +13183 +13184 +13187 +13188 +13189 +13192 +13193 +13194 +13195 +13196 +13198 +13199 +13200 +13201 +13202 +13206 +13207 +13208 +13212 +13213 +13214 +13215 +13216 +13217 +13218 +13219 +13221 +13223 +957 +13225 +13229 +13230 +13232 +13236 +13239 +13242 +13245 +13246 +13248 +13249 +13254 +13255 +13256 +13257 +13258 +13264 +13266 +13267 +13268 +13270 +13271 +958 +13274 +13276 +13277 +13278 +13282 +13287 +13288 +13289 +13290 +13291 +13296 +13297 +13298 +13300 +13301 +13302 +13303 +13305 +13306 +13307 +13308 +13309 +13310 +13311 +13312 +13313 +13318 +13321 +13322 +13325 +13327 +13328 +13339 +13340 +13341 +13342 +13343 +13347 +13348 +13349 +13351 +13352 +13353 +13354 +13355 +13357 +13358 +13359 +13360 +13364 +13366 +13367 +13369 +13370 +13371 +13372 +13373 +13375 +13377 +13378 +13380 +13381 +13382 +13383 +13385 +13387 +13389 +13390 +13391 +13393 +13394 +13395 +13397 +13398 +13399 +13401 +13403 +13405 +13406 +13410 +13413 +13417 +13419 +13420 +13422 +13423 +13426 +13427 +13428 +13429 +13431 +13432 +13437 +13439 +13440 +13441 +13443 +959 +13447 +13455 +13458 +13464 +13467 +13468 +13470 +13473 +13474 +13478 +960 +13484 +13487 +13491 +13492 +13493 +13494 +13495 +13506 +13511 +13513 +13515 +13516 +13517 +13518 +13519 +13520 +13521 +13522 +13523 +13524 +13525 +13526 +13528 +13531 +13532 +13533 +13534 +13535 +13537 +13538 +13544 +13546 +13548 +13557 +13558 +13561 +13562 +13563 +13564 +13565 +13570 +13572 +13573 +13574 +13575 +13577 +13579 +13580 +13581 +13582 +13583 +13585 +13586 +13587 +13591 +13593 +13594 +13599 +13605 +13612 +13617 +13621 +13629 +13632 +13634 +13640 +13642 +13643 +13644 +13646 +13648 +13649 +13652 +961 +13653 +13656 +13658 +13659 +13660 +13661 +13662 +13663 +13664 +13669 +13670 +13672 +13674 +13679 +13680 +13681 +13682 +13683 +13687 +13688 +13689 +13690 +13692 +13693 +13694 +13695 +13696 +13697 +13698 +13699 +13702 +13703 +13704 +13706 +13707 +13709 +13710 +13711 +13712 +13713 +13715 +13716 +13717 +13721 +13723 +13725 +13727 +962 +13728 +13730 +13732 +13733 +963 +13735 +13736 +13737 +13738 +13739 +13742 +964 +13746 +13747 +13748 +13752 +13756 +13759 +13760 +13761 +13762 +13763 +13767 +13768 +13769 +13770 +13771 +13772 +13773 +13775 +13777 +13778 +13779 +13780 +13781 +13782 +13783 +965 +13785 +13786 +13789 +13790 +13791 +13793 +13795 +13799 +13800 +13801 +13802 +13804 +13805 +13806 +13807 +13808 +13809 +13810 +13811 +13812 +13814 +13816 +13817 +13820 +13821 +13822 +13824 +13825 +13826 +13827 +13829 +13833 +13834 +13835 +13836 +13837 +966 +13838 +13839 +13841 +13842 +13844 +13845 +13846 +13847 +13848 +13849 +13850 +13851 +13852 +13853 +13854 +13855 +13856 +13857 +13858 +13859 +13860 +13861 +13864 +13865 +13866 +13867 +13868 +13870 +13871 +13872 +13873 +13874 +13875 +13876 +13877 +13878 +13879 +13880 +13882 +13883 +13884 +13885 +13886 +13887 +13888 +13889 +13891 +13892 +13893 +13894 +13895 +13896 +13897 +13898 +13899 +13900 +13901 +13902 +13905 +13906 +13907 +13908 +13909 +13910 +13911 +13912 +13913 +13915 +13916 +13917 +13918 +13919 +13920 +13921 +13922 +13923 +13924 +13927 +13928 +13929 +13930 +13931 +13932 +13933 +13934 +13935 +13936 +13937 +13938 +13939 +13940 +13941 +13942 +13943 +13945 +13949 +13953 +13954 +13956 +13957 +13958 +13962 +13963 +13964 +13966 +13969 +13973 +13974 +13975 +13976 +13977 +13978 +13980 +13982 +13983 +13986 +13987 +13989 +13990 +13991 +13992 +13993 +13995 +13996 +13997 +13998 +13999 +14003 +14004 +14005 +14007 +14009 +14010 +14011 +967 +14015 +14016 +14017 +14018 +14019 +14020 +14022 +14024 +14025 +14026 +14028 +14029 +14030 +14032 +14034 +14035 +14036 +14038 +14039 +14041 +14042 +14043 +14044 +14045 +14048 +14049 +14052 +14053 +14054 +14057 +14058 +14060 +14061 +14063 +14064 +14065 +14067 +14068 +14070 +14071 +14072 +14074 +14075 +14076 +14078 +14080 +14081 +14082 +968 +14083 +14086 +14087 +14089 +969 +14094 +14095 +14096 +14099 +14103 +14109 +14112 +14113 +14114 +14115 +14118 +14120 +14121 +14125 +14127 +14128 +14129 +14130 +14131 +14132 +14133 +14134 +14136 +14138 +14139 +14141 +14142 +14145 +14146 +14147 +14152 +14156 +14157 +14159 +14161 +14162 +14165 +14166 +14167 +14170 +14174 +14178 +14180 +14181 +14183 +14184 +14185 +14186 +14189 +14192 +14194 +14195 +14198 +14201 +14202 +14206 +14207 +14208 +14209 +14210 +14213 +14214 +14218 +14221 +14225 +14226 +14230 +14232 +14235 +14243 +14246 +14247 +970 +14249 +14250 +14253 +14254 +14255 +14256 +14258 +14266 +14267 +14268 +14269 +14270 +14272 +14274 +971 +14275 +14276 +14277 +14278 +14280 +14281 +14282 +14283 +972 +14284 +14286 +14287 +14289 +973 +14291 +14292 +14293 +14294 +14296 +14298 +14300 +14302 +14303 +14307 +14308 +14310 +14312 +14313 +14314 +14316 +14317 +14319 +974 +14320 +14323 +14324 +14326 +14328 +14329 +14330 +14331 +14332 +14334 +14335 +14336 +14338 +14339 +14344 +14348 +975 +14350 +14351 +14353 +14357 +14359 +14360 +14367 +14368 +14370 +14372 +14374 +14375 +14376 +14377 +14378 +14379 +14384 +14386 +14387 +14388 +14389 +14390 +976 +14392 +14395 +14396 +14397 +14398 +14400 +14401 +14402 +14403 +14404 +14406 +14407 +14408 +14409 +14411 +977 +978 +14416 +14418 +14421 +14422 +14423 +14424 +14425 +14426 +14427 +14428 +14430 +14431 +14432 +14433 +14434 +14435 +14436 +14437 +14438 +14439 +14440 +14442 +14443 +14444 +14445 +14446 +14449 +14452 +14453 +14457 +979 +14461 +980 +14465 +14466 +14467 +14471 +14474 +14479 +14480 +14482 +14483 +14485 +14493 +14498 +14499 +14500 +14501 +14503 +14504 +14505 +14506 +14507 +14508 +14509 +14512 +14514 +14517 +14520 +14522 +14525 +14526 +14527 +14528 +14530 +14532 +14533 +14535 +14536 +14538 +14541 +14544 +14546 +14550 +14554 +14561 +14562 +14565 +14578 +14586 +14598 +14599 +14600 +14601 +14605 +14609 +14612 +14613 +14615 +14619 +14621 +14622 +14623 +14627 +14630 +14631 +14633 +14635 +14636 +14637 +14640 +14641 +14642 +14643 +14644 +14645 +14646 +14648 +14652 +14653 +14654 +14659 +14660 +14667 +14669 +14671 +14673 +14675 +14676 +14679 +14683 +14684 +14685 +14686 +14688 +14690 +14693 +14696 +14697 +14698 +14699 +14700 +14701 +14702 +14703 +14704 +14706 +14710 +14712 +14716 +14717 +14718 +14719 +14722 +14723 +14725 +14727 +14728 +14729 +14730 +14733 +14734 +14735 +14736 +14737 +14739 +14741 +14742 +14743 +14744 +14745 +14749 +14750 +14754 +14756 +14760 +14763 +14764 +14766 +14768 +14769 +14773 +14779 +14780 +14785 +14786 +14787 +14788 +14789 +14791 +14793 +14794 +14795 +14797 +14799 +14803 +14807 +14810 +14812 +14813 +14815 +14817 +14822 +14824 +14826 +14827 +14829 +14833 +14834 +14838 +14841 +14843 +14854 +14861 +14862 +14871 +14872 +14874 +14875 +14879 +14883 +14884 +14885 +14887 +14888 +14889 +14897 +14900 +14904 +14907 +14912 +14913 +14920 +14921 +14922 +14926 +14927 +14932 +14936 +14939 +14942 +14944 +14947 +14948 +14949 +14950 +14956 +14957 +14958 +14961 +14962 +14963 +14967 +14972 +14973 +14977 +14978 +14982 +14983 +981 +14984 +14985 +14986 +14987 +14992 +14993 +14994 +14996 +14997 +14999 +15000 +15002 +15003 +15005 +15008 +15009 +15011 +15014 +15016 +15017 +15020 +15025 +15027 +15028 +15032 +15033 +15035 +15037 +15040 +15043 +15047 +15048 +15049 +15051 +15052 +15067 +15080 +15081 +15082 +15084 +15086 +15087 +15089 +15090 +15091 +15092 +15096 +15098 +15099 +15104 +15106 +15112 +15115 +15116 +15118 +15120 +15125 +15126 +15127 +15129 +15130 +15131 +15133 +15135 +15138 +15140 +15141 +15145 +15146 +15147 +15148 +15152 +15155 +15157 +15158 +15159 +15162 +15163 +15165 +15168 +15178 +15184 +15185 +15186 +15187 +15188 +15189 +15190 +15192 +15193 +15194 +15198 +15201 +15205 +15206 +15207 +15208 +15210 +15211 +15214 +15216 +15217 +15221 +15222 +15223 +15225 +15226 +15228 +15229 +15230 +15231 +15234 +15237 +15239 +15242 +15249 +15253 +15255 +15256 +15258 +15259 +15260 +15261 +15263 +15268 +15269 +15274 +15276 +15279 +15282 +15291 +15300 +15310 +15318 +15319 +15322 +15323 +15325 +15326 +15328 +15329 +15337 +15339 +15340 +15341 +15357 +15359 +15360 +15361 +15362 +15363 +15364 +15366 +15369 +15372 +15385 +15386 +15389 +15391 +15393 +15396 +15402 +15413 +15415 +15418 +15422 +15424 +15427 +15429 +15435 +15440 +15441 +15442 +15449 +15451 +15453 +15454 +15458 +15459 +15461 +15463 +15465 +15467 +15468 +15471 +15475 +15477 +15478 +15485 +15487 +15495 +15496 +15497 +15499 +15508 +15512 +15525 +15538 +15539 +15540 +15544 +15553 +15554 +15556 +15557 +15559 +15561 +15562 +15563 +15564 +15568 +15569 +15571 +15575 +15576 +15580 +15582 +15583 +15585 +15590 +15591 +15592 +15595 +15596 +15597 +15598 +15600 +15601 +15607 +15608 +15616 +15618 +15619 +15620 +15621 +15627 +15631 +15636 +15642 +15643 +15656 +15663 +15667 +15671 +15672 +15677 +15678 +15685 +15686 +15691 +15695 +15698 +15701 +15702 +15704 +15707 +15708 +15713 +15719 +15722 +15723 +15724 +15726 +15728 +15730 +15733 +15734 +15735 +15736 +15737 +15738 +15739 +15740 +15741 +15742 +15743 +15745 +15746 +15748 +982 +15753 +15755 +15760 +15763 +15765 +15766 +15773 +15777 +15780 +15782 +15784 +15791 +15792 +15793 +15796 +15799 +15803 +15804 +15815 +15818 +15820 +15821 +15825 +15830 +15839 +15842 +15845 +15846 +15847 +15849 +15854 +15855 +15858 +15859 +15863 +15866 +15868 +15873 +15877 +15881 +15883 +15885 +15888 +15890 +15896 +15897 +15899 +15900 +15901 +15905 +15909 +15910 +15916 +15917 +15928 +15930 +15935 +15938 +15939 +15940 +15947 +15952 +15954 +15955 +15957 +15958 +15961 +15962 +15963 +15965 +15975 +15976 +15977 +15978 +15980 +15993 +15994 +15999 +16000 +16007 +16010 +16011 +16012 +16014 +16018 +16019 +16020 +16021 +16023 +16024 +16027 +16030 +16031 +16032 +16035 +16036 +16044 +16045 +16055 +16057 +16060 +16062 +16067 +16072 +16076 +16077 +16078 +16087 +16088 +16090 +16095 +16098 +16101 +16108 +16109 +16110 +16112 +16113 +16116 +16117 +16119 +16123 +16124 +16125 +16132 +16133 +16135 +16137 +16145 +16149 +16156 +16157 +16159 +16160 +16162 +16163 +16165 +16166 +16168 +16171 +16172 +16174 +16175 +16179 +16181 +16185 +16188 +16190 +16193 +16194 +16195 +16203 +16208 +16209 +16214 +16215 +16216 +16217 +16230 +16231 +16233 +16235 +16241 +16243 +16252 +16257 +16259 +16260 +16267 +16272 +16274 +16275 +16278 +16280 +16287 +16290 +16296 +16297 +16300 +16304 +16305 +16306 +16307 +16308 +16312 +16318 +16323 +16328 +16329 +16330 +16331 +16333 +16334 +16335 +16338 +16344 +16350 +16351 +16357 +16358 +16359 +16363 +16364 +16365 +16373 +16376 +16379 +16380 +16389 +16391 +16392 +16395 +16396 +16400 +16404 +16405 +16406 +16407 +16408 +16409 +16413 +16416 +16421 +16430 +16432 +16434 +16437 +16439 +16440 +16441 +16442 +16448 +16451 +16452 +16453 +16460 +16463 +16471 +16472 +16475 +16476 +16479 +16490 +16492 +16493 +16494 +16497 +16510 +16514 +16519 +16520 +16524 +16525 +16528 +16529 +16533 +16538 +16542 +16545 +16546 +16556 +16558 +16561 +16563 +16567 +16568 +16571 +16576 +16584 +16592 +16600 +16601 +16603 +16604 +16607 +16608 +16609 +16615 +16619 +16621 +16626 +16632 +16634 +16635 +16638 +16642 +16646 +16651 +16664 +16665 +16667 +16669 +16670 +16671 +16675 +16676 +16681 +16684 +16685 +16686 +16688 +16696 +16705 +16709 +16710 +16711 +16720 +16721 +16724 +16729 +16742 +16743 +16745 +16746 +16751 +16752 +16755 +16756 +983 +16760 +16765 +16767 +16770 +16774 +16775 +16778 +16779 +16780 +16789 +16792 +16794 +16798 +16802 +16804 +16805 +16806 +16807 +16815 +16816 +16818 +16820 +16827 +16828 +16832 +16833 +16840 +16844 +16848 +16849 +16851 +16853 +16856 +16859 +16860 +16863 +16864 +16865 +16866 +16870 +16880 +16888 +16889 +16893 +16894 +16895 +16896 +16897 +16900 +16902 +16905 +16907 +16909 +16913 +16915 +16917 +16920 +16922 +16923 +16926 +16931 +16932 +16935 +16943 +16946 +16955 +16963 +16972 +16977 +16978 +16980 +16982 +16985 +16987 +16988 +16990 +16992 +16996 +16997 +17003 +17004 +17008 +17009 +17013 +17018 +17019 +17022 +17023 +17025 +17028 +17032 +17036 +17037 +17041 +17044 +17047 +17052 +17053 +17054 +17055 +17067 +17068 +17072 +17078 +17096 +17102 +17109 +17122 +17125 +17126 +17129 +17133 +17136 +17141 +17143 +17148 +17150 +17156 +17159 +17161 +17170 +17171 +17173 +17174 +17180 +17182 +17184 +17186 +17193 +17195 +17198 +17201 +17203 +17207 +17208 +17218 +17223 +17225 +17226 +17232 +17243 +17246 +17263 +17264 +17268 +17269 +17270 +17279 +17283 +17284 +17287 +17289 +17290 +17295 +17301 +17305 +17312 +17313 +17314 +17316 +17320 +17321 +17324 +17325 +17327 +17328 +17329 +17331 +17332 +17334 +17341 +17344 +17345 +17353 +17354 +17355 +17356 +17357 +17360 +17361 +17363 +17365 +17366 +17368 +17369 +17370 +17371 +17374 +17375 +17376 +17377 +17378 +17379 +17381 +17382 +17384 +17385 +17388 +17389 +17390 +17391 +17392 +17394 +17395 +17397 +17399 +17400 +17402 +17403 +17404 +17407 +17408 +17409 +17410 +17411 +17415 +17416 +17417 +17418 +17419 +17420 +17421 +17422 +17423 +17424 +17425 +17426 +17427 +17428 +17429 +17430 +17431 +17432 +17434 +17435 +17437 +17438 +17439 +17440 +17441 +17442 +17444 +17445 +17446 +17447 +17450 +17455 +17457 +17459 +17462 +17463 +17464 +17465 +17466 +17467 +17470 +17471 +17472 +17473 +17474 +17475 +17478 +17479 +17480 +17481 +17483 +17485 +17486 +17497 +17501 +17507 +17508 +17513 +17514 +17518 +17519 +17523 +17524 +17525 +17527 +17531 +17532 +17533 +17535 +17536 +17537 +17538 +17541 +17544 +17549 +17554 +17555 +17566 +17575 +17580 +17581 +17582 +17583 +17584 +17585 +17586 +17589 +17593 +17594 +17599 +17601 +17603 +17606 +17609 +17610 +17611 +17613 +17614 +17616 +17618 +17620 +17621 +17625 +17626 +17627 +17628 +17630 +17633 +17634 +17636 +17640 +17641 +17642 +17645 +17648 +17649 +17650 +17651 +17652 +17656 +17658 +17659 +17661 +17663 +17665 +17666 +17667 +17669 +17670 +17672 +17674 +17675 +17676 +17677 +17678 +17679 +17681 +17687 +17691 +17693 +17694 +17695 +17696 +17699 +17703 +17704 +17707 +17726 +17736 +17737 +17738 +17740 +17741 +17742 +17744 +17745 +17748 +17749 +17750 +17751 +17752 +17753 +17754 +17755 +17757 +17758 +17759 +17760 +17763 +17777 +17778 +17779 +17780 +17785 +17786 +17789 +17790 +17795 +17797 +17798 +17799 +17801 +17802 +17804 +17807 +17808 +17809 +17811 +17813 +17814 +17818 +17819 +17821 +17826 +17827 +17828 +17829 +17830 +17832 +17833 +17835 +17836 +17841 +17850 +17854 +17856 +17857 +17860 +17861 +17862 +17865 +17867 +17868 +17870 +17871 +17872 +17873 +17874 +17875 +17876 +17877 +17878 +17879 +17881 +17883 +17884 +17885 +17886 +17887 +17888 +17889 +17891 +17892 +17893 +17894 +17895 +17896 +17897 +17900 +17901 +17903 +17904 +17905 +17906 +17910 +17912 +17915 +17917 +17920 +17929 +17933 +17934 +17940 +17944 +17949 +17951 +17953 +17954 +17955 +17961 +17962 +17963 +17964 +17965 +17968 +17969 +17970 +17973 +17974 +17975 +17976 +17978 +17979 +17980 +17981 +17985 +17986 +17987 +17988 +17990 +17991 +17994 +17995 +17998 +17999 +18000 +18002 +18005 +18006 +18007 +18014 +18015 +18020 +18022 +18023 +18027 +18032 +18035 +18036 +18037 +18038 +18039 +18040 +18041 +18042 +18043 +18045 +18047 +18050 +18051 +984 +18052 +18053 +18055 +18059 +18064 +18065 +18071 +18073 +18075 +18077 +18078 +18080 +18081 +18082 +18084 +18085 +18086 +18087 +18091 +18092 +18095 +18099 +18100 +18102 +18103 +18104 +18105 +18106 +18107 +18108 +18110 +18111 +18113 +18114 +18117 +18118 +18120 +18121 +18122 +18124 +18125 +18127 +18128 +18129 +18130 +18131 +18134 +18135 +18137 +18139 +18140 +18144 +18150 +18151 +18152 +18154 +18155 +18156 +18158 +18159 +18160 +18162 +18164 +18165 +18166 +18174 +18175 +18181 +18182 +18187 +18188 +18191 +18192 +18218 +985 +18219 +18220 +18222 +18226 +18229 +18230 +18231 +18232 +18234 +18235 +18236 +18237 +18240 +18241 +18243 +18244 +18246 +18248 +18249 +18250 +18252 +18253 +18254 +18256 +18259 +18260 +18262 +18263 +18264 +18265 +18267 +18270 +18272 +18273 +18274 +18277 +18278 +18282 +18283 +18284 +18286 +18287 +18288 +18289 +18290 +18293 +18296 +18297 +18299 +18300 +18302 +18303 +18309 +18310 +18311 +18312 +18316 +18317 +18318 +18319 +18320 +18321 +18322 +18324 +18335 +18338 +18339 +18340 +18341 +18344 +18345 +18346 +18347 +18348 +18349 +18351 +18356 +18357 +18362 +18364 +18368 +18370 +18371 +18372 +18373 +18374 +18377 +18381 +18386 +18394 +18399 +18401 +18404 +18405 +18407 +18409 +18411 +18412 +18413 +18414 +18416 +18417 +18418 +18420 +18425 +18426 +18432 +18435 +18436 +18437 +18439 +18454 +18455 +18456 +18457 +18458 +18459 +18460 +18461 +18464 +18465 +18466 +18468 +18469 +18472 +18473 +18474 +18475 +18476 +18479 +18482 +18483 +18486 +18491 +18492 +18493 +18495 +18499 +18500 +18501 +18502 +18504 +18505 +18507 +18508 +18509 +18510 +18511 +18512 +18514 +18519 +18520 +18521 +18522 +18523 +18524 +18525 +18527 +18528 +18529 +18530 +18531 +18535 +18536 +18537 +18538 +18542 +18544 +18545 +18546 +986 +18548 +18549 +18551 +18552 +18553 +18554 +18555 +18558 +18559 +18561 +18562 +18563 +18565 +18566 +18567 +18568 +18570 +18571 +18572 +18574 +18577 +18582 +18585 +18586 +18587 +18588 +18589 +18590 +18593 +18595 +18597 +18598 +18599 +18600 +18601 +18602 +18603 +18604 +18605 +18606 +18607 +18609 +18610 +18613 +18615 +18616 +18618 +18619 +18622 +18623 +18624 +18625 +18627 +18628 +18629 +18630 +18631 +18632 +18633 +18634 +18635 +18636 +18643 +18644 +18645 +18646 +18648 +18649 +18650 +18653 +18654 +18658 +18659 +18663 +18669 +18671 +18672 +18674 +18676 +18677 +18681 +18682 +18683 +18684 +18692 +18693 +18696 +18697 +18699 +18703 +18706 +18708 +18709 +18710 +18715 +18717 +18727 +18735 +18737 +18740 +18742 +18743 +18747 +18750 +18752 +18753 +18756 +18765 +18766 +18767 +18771 +18775 +18778 +18779 +18787 +18792 +18793 +18794 +18796 +18803 +987 +18806 +18807 +18809 +18812 +18813 +18816 +18819 +18820 +18827 +18828 +18833 +18836 +18837 +18839 +18840 +18845 +18846 +18847 +18848 +18852 +18853 +18854 +18858 +18859 +18860 +18861 +18863 +18864 +18865 +18866 +18868 +18869 +18870 +18871 +18874 +18875 +18876 +18877 +18878 +18879 +18880 +18881 +18882 +18883 +18884 +18885 +18896 +18897 +18899 +18901 +18911 +18913 +18917 +18919 +18922 +18924 +18925 +18926 +18932 +18935 +18938 +18939 +18940 +18944 +18948 +18950 +18953 +18954 +18956 +18957 +18959 +18960 +18961 +18964 +18965 +18966 +18968 +18973 +18990 +18991 +18992 +18995 +18997 +18999 +19000 +19007 +19023 +19024 +19027 +19032 +19038 +19040 +19042 +19044 +19045 +19046 +19050 +19063 +19067 +19080 +19081 +19084 +19086 +19088 +19089 +19090 +19091 +19093 +19094 +19097 +19098 +19099 +19103 +19104 +19107 +19111 +988 +19114 +19115 +19116 +19118 +19121 +19122 +19126 +19127 +19130 +19131 +19132 +19134 +19135 +19137 +19139 +19140 +19143 +19144 +19145 +19147 +19148 +19149 +19150 +19152 +19153 +19154 +19155 +19156 +19157 +19160 +19161 +19162 +19164 +19165 +19166 +19167 +19168 +19169 +19170 +19171 +19173 +19175 +19176 +19179 +19182 +19185 +19186 +19189 +19190 +19191 +19193 +19195 +19197 +19200 +19203 +19204 +19205 +19207 +19208 +19209 +19211 +19212 +19214 +19223 +19224 +19225 +19228 +19229 +19230 +19231 +19232 +19233 +19236 +19237 +19238 +19239 +19240 +19242 +19243 +19244 +19246 +19248 +19249 +19250 +19254 +19262 +19264 +19267 +19268 +19269 +19270 +19271 +19272 +19274 +19275 +19276 +19277 +19280 +19281 +19285 +19286 +19287 +19294 +19299 +19300 +19302 +19303 +19305 +19306 +19307 +19310 +19312 +19314 +19315 +19316 +19317 +19320 +19321 +19326 +19327 +19328 +19330 +19331 +19334 +19335 +19340 +19341 +19342 +19343 +19346 +19347 +19349 +19352 +19353 +19354 +19355 +19357 +19358 +19359 +19360 +19361 +19362 +19364 +19366 +19370 +19373 +19374 +19375 +19376 +19377 +19379 +19381 +19383 +19384 +19387 +19389 +19391 +19392 +19395 +19396 +19398 +19412 +19413 +19414 +19415 +19417 +19424 +19427 +19429 +19431 +19433 +19444 +19445 +19446 +19447 +19450 +19451 +19452 +19456 +19457 +19458 +19460 +19461 +19462 +19463 +19466 +19467 +19469 +19471 +19481 +19482 +19483 +19487 +19488 +19491 +19493 +19494 +19495 +19496 +19500 +19502 +19504 +19505 +19506 +19507 +19508 +19511 +19512 +19513 +19516 +19518 +19519 +19521 +19523 +19524 +19526 +19527 +19528 +19529 +19530 +19531 +19532 +19534 +19535 +19536 +19537 +19538 +19540 +19542 +19548 +19549 +19551 +19552 +19553 +19556 +19557 +19558 +19559 +19560 +19561 +19563 +19565 +19566 +19567 +19573 +19576 +19577 +19578 +19585 +19587 +19588 +19592 +19593 +19594 +19597 +19598 +19600 +19602 +19607 +19616 +19617 +19618 +19621 +19623 +19624 +19625 +19626 +19628 +19632 +19634 +19637 +19638 +19639 +19640 +19642 +19643 +19644 +19645 +19648 +19650 +19651 +19652 +19653 +19654 +19658 +19659 +19665 +19666 +19673 +19677 +19678 +19679 +19680 +19682 +19683 +19685 +19686 +19687 +19688 +19689 +19691 +19692 +19693 +19694 +19697 +19698 +19699 +19700 +19702 +19703 +19704 +19706 +19707 +19708 +19709 +19715 +19717 +19719 +19720 +19724 +19727 +19728 +19730 +19731 +19732 +19734 +19738 +19742 +19743 +19744 +19747 +19748 +19751 +19755 +19756 +19766 +19767 +19768 +19769 +19773 +19774 +19777 +19779 +19780 +19783 +19784 +19787 +19792 +19802 +19805 +19807 +19808 +19811 +19812 +19815 +19823 +19827 +19829 +19841 +19843 +19845 +19847 +19848 +19849 +19850 +19851 +19855 +19862 +19868 +19871 +19872 +19873 +19874 +19875 +19876 +19877 +19881 +19882 +19883 +19884 +19889 +19892 +19897 +19899 +19904 +19905 +19906 +19907 +19912 +19915 +19917 +19918 +19919 +19920 +19924 +19926 +19927 +19928 +19932 +19934 +19936 +19937 +19938 +19939 +19940 +19943 +19945 +19948 +19953 +19955 +19956 +19957 +19962 +19963 +19966 +19967 +19974 +19977 +19978 +19979 +19980 +19981 +19982 +19983 +19984 +19985 +19986 +19988 +19995 +19998 +20000 +20002 +20007 +20008 +20009 +20011 +20018 +20020 +20028 +989 +20029 +20030 +20033 +20034 +20035 +20038 +20039 +20041 +20046 +20051 +20052 +20053 +20054 +20056 +20058 +20059 +20062 +20063 +20064 +20065 +20066 +20067 +20070 +20071 +20072 +20073 +20075 +20077 +20079 +20080 +20083 +20090 +20091 +20093 +20095 +20096 +20101 +20102 +20106 +20107 +20109 +20111 +20112 +20113 +20117 +20119 +20120 +20124 +20125 +20126 +20127 +20131 +20132 +20135 +20136 +20137 +20138 +20149 +20150 +20152 +20154 +20156 +20157 +20158 +20162 +20163 +20164 +20171 +20172 +20174 +20180 +20181 +20183 +20187 +20194 +20196 +20201 +20202 +20204 +20207 +20208 +20216 +20218 +20220 +20223 +20224 +20225 +20227 +20228 +20229 +20230 +20231 +20232 +20233 +20234 +20235 +20237 +20239 +20240 +20241 +20242 +20245 +20248 +20249 +20257 +20259 +20260 +20266 +20271 +20274 +20275 +20276 +20278 +20280 +20287 +20289 +20290 +20291 +20292 +20293 +20295 +20296 +20297 +20298 +20299 +20300 +20304 +20305 +20306 +20309 +20312 +20314 +20320 +20321 +20326 +20327 +20328 +20334 +20335 +20336 +20337 +20339 +20342 +20344 +20346 +20356 +20357 +20358 +20364 +20365 +20366 +20367 +20369 +20371 +20372 +20373 +20374 +20375 +20376 +20377 +20382 +20383 +20385 +20388 +20390 +20394 +20395 +20399 +20401 +20403 +20406 +20407 +20408 +20409 +20414 +20415 +20416 +20417 +20418 +20419 +20422 +20423 +20424 +20425 +20426 +20427 +20429 +20431 +20433 +20434 +20436 +20446 +20450 +20453 +20455 +20458 +20461 +20465 +20466 +20469 +990 +20479 +20480 +20481 +20483 +20484 +20486 +20488 +20489 +20493 +20497 +20500 +20501 +20502 +20503 +20506 +20507 +20508 +20512 +20513 +20514 +20519 +20520 +20523 +20524 +20525 +20526 +20527 +20528 +20531 +20532 +20534 +20536 +20537 +20538 +20542 +20546 +20550 +20551 +20554 +20557 +20558 +20560 +20561 +20562 +20563 +20565 +20566 +20570 +20571 +20574 +20576 +20577 +20580 +20583 +20585 +20586 +20589 +20591 +20594 +20597 +20598 +20599 +20600 +20602 +20603 +20604 +20605 +20606 +20609 +20611 +20612 +20614 +20615 +20617 +20621 +20622 +20625 +20626 +20627 +20629 +20630 +20632 +20634 +20636 +20637 +20638 +20639 +20643 +20647 +20649 +20650 +20651 +20652 +20659 +20660 +20662 +20664 +20668 +20669 +20670 +20671 +20672 +20673 +20674 +20675 +20676 +20677 +20678 +20680 +20687 +20688 +20690 +20692 +20695 +20696 +20697 +20698 +20700 +20701 +20702 +20703 +20704 +20709 +20710 +20712 +20713 +20714 +20715 +20718 +20719 +20720 +20721 +20722 +20723 +20724 +20725 +20727 +20728 +20732 +20733 +20735 +20736 +20740 +20741 +20742 +20746 +20750 +20757 +20762 +20763 +20764 +20765 +20771 +20772 +20775 +20776 +20785 +20791 +20794 +20795 +20796 +20797 +20798 +20799 +20800 +20801 +20802 +20805 +20806 +20808 +20814 +20816 +20817 +20820 +20822 +20827 +20831 +20832 +20833 +20838 +20839 +20841 +20844 +20845 +20847 +20848 +20851 +20855 +20856 +20858 +20859 +20860 +20861 +20862 +20863 +20867 +20868 +20869 +20871 +20874 +20878 +20881 +20884 +20885 +20888 +20889 +20890 +20892 +20894 +20898 +20903 +20905 +20906 +20908 +20910 +20911 +20912 +20914 +20916 +20919 +20921 +20925 +20927 +20928 +20929 +20934 +20935 +20944 +20945 +20946 +20948 +20949 +20950 +20951 +20954 +20955 +20957 +20958 +20963 +20964 +20967 +20971 +20976 +20987 +20988 +20989 +20990 +20993 +20996 +20997 +21006 +21009 +21010 +21015 +21017 +21020 +21022 +21025 +21032 +21033 +991 +21034 +21035 +21038 +21042 +21044 +21045 +21046 +21047 +21049 +21050 +21051 +992 +21052 +21053 +21054 +21055 +21056 +21057 +21059 +21060 +21061 +21062 +21063 +21064 +21065 +21069 +21070 +21071 +21072 +21073 +21074 +21075 +21078 +21082 +21084 +21089 +21090 +21092 +21093 +21094 +21098 +21100 +21106 +21107 +21118 +21119 +21121 +21125 +21127 +21128 +21130 +21131 +21134 +21139 +21142 +21144 +21151 +21152 +21153 +21154 +21155 +21157 +21159 +21162 +21164 +21165 +993 +21171 +21174 +21175 +994 +21176 +21178 +21183 +21184 +995 +21189 +21192 +21193 +996 +21199 +21200 +21201 +997 +21202 +21203 +21205 +21220 +21222 +21225 +21230 +21233 +21239 +21253 +21258 +21269 +21270 +21272 +21280 +21282 +21283 +21285 +21287 +21288 +21298 +21304 +21306 +21308 +21312 +21313 +21314 +21316 +21317 +21318 +21319 +21320 +21322 +21328 +21337 +21338 +21340 +21344 +21346 +21350 +21353 +21357 +21358 +21359 +21362 +21364 +998 +21370 +21374 +21376 +21377 +21378 +21382 +21386 +21388 +21389 +21397 +21398 +21402 +21407 +21408 +21411 +21414 +21415 +21419 +21425 +21428 +21429 +21431 +21432 +21433 +21438 +21441 +21451 +21459 +21464 +21467 +21469 +21476 +21479 +21484 +21485 +21486 +21489 +21494 +21495 +21497 +21501 +21502 +21507 +21511 +21515 +21516 +21517 +21519 +21522 +21524 +21528 +21529 +21532 +21533 +21534 +21537 +21541 +21545 +21547 +21548 +21549 +21550 +21554 +21560 +21563 +21569 +21573 +21576 +21578 +21579 +21580 +21581 +21585 +21589 +21590 +21591 +21598 +21601 +21604 +21606 +21611 +21615 +21618 +21620 +21623 +21625 +21627 +21635 +21637 +21638 +21641 +21644 +21645 +21648 +21649 +21650 +21659 +21661 +21662 +21663 +21665 +21666 +21668 +21669 +21672 +21673 +21675 +21678 +21679 +21680 +21686 +21688 +21689 +21690 +21692 +21702 +21711 +21712 +21713 +21716 +21717 +21721 +21722 +21723 +21724 +21727 +21728 +21729 +21734 +21739 +21740 +21741 +21743 +21744 +21747 +21748 +21749 +21754 +21757 +21758 +21760 +21761 +21762 +21763 +21765 +21772 +21773 +21774 +21777 +21778 +21781 +21782 +21784 +21786 +21791 +21792 +21795 +21796 +21800 +21801 +21803 +21804 +21806 +21811 +21815 +21816 +999 +21817 +21818 +21822 +21825 +21826 +21827 +21828 +21829 +21830 +21831 +21833 +21835 +21837 +21838 +21840 +21841 diff --git a/pytorch-image-models/timm/data/_info/imagenet22k_ms_to_22k_indices.txt b/pytorch-image-models/timm/data/_info/imagenet22k_ms_to_22k_indices.txt new file mode 100644 index 0000000000000000000000000000000000000000..c6934bffed6e5de22a5f0c093c9b5084787eba86 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet22k_ms_to_22k_indices.txt @@ -0,0 +1,21841 @@ +1000 +1001 +1002 +1003 +1004 +1005 +1006 +1007 +1008 +1009 +1010 +1011 +1012 +1013 +1014 +1015 +1016 +1017 +1018 +1019 +1020 +1021 +1022 +1023 +1024 +1025 +1026 +1027 +1028 +1029 +1030 +1031 +1032 +1033 +1034 +1035 +1036 +1037 +1038 +1039 +1040 +1041 +1042 +1043 +1044 +1045 +1046 +1047 +1048 +1049 +1050 +1051 +1052 +1053 +1054 +1055 +1056 +1057 +1058 +1059 +1060 +1061 +1062 +1063 +1064 +1065 +1066 +1067 +1068 +1069 +1070 +1071 +1072 +1073 +1074 +1075 +1076 +1077 +1078 +1079 +1080 +1081 +1082 +1083 +1084 +1085 +1086 +1087 +1088 +1089 +1090 +1091 +1092 +1093 +1094 +1095 +1096 +1097 +1098 +1099 +1100 +1101 +1102 +1103 +1104 +1105 +1106 +1107 +1108 +1109 +1110 +1111 +1112 +1113 +1114 +1115 +1116 +1117 +1118 +1119 +1120 +1121 +1122 +1123 +1124 +1125 +1126 +1127 +1128 +1129 +1130 +1131 +1132 +1133 +1134 +1135 +1136 +1137 +1138 +1139 +1140 +1141 +1142 +1143 +1144 +1145 +1146 +1147 +1148 +1149 +1150 +1151 +1152 +1153 +1154 +1155 +1156 +1157 +1158 +1159 +1160 +1161 +1162 +1163 +1164 +1165 +1166 +1167 +1168 +1169 +1170 +1171 +1172 +1173 +1174 +1175 +1176 +1177 +1178 +1179 +1180 +1181 +1182 +1183 +1184 +1185 +1186 +1187 +1188 +1189 +1190 +1191 +1192 +1193 +1194 +1195 +1196 +1197 +1198 +1199 +1200 +1201 +1202 +1203 +1204 +1205 +1206 +1207 +1208 +1209 +1210 +1211 +1212 +1213 +1214 +1215 +1216 +1217 +1218 +1219 +1220 +1221 +1222 +1223 +1224 +1225 +1226 +1227 +1228 +1229 +1230 +1231 +1232 +1233 +1234 +1235 +1236 +1237 +1238 +1239 +1240 +1241 +1242 +1243 +1244 +1245 +1246 +1247 +1248 +1249 +1250 +1251 +1252 +1253 +1254 +1255 +1256 +1257 +1258 +1259 +1260 +1261 +1262 +1263 +1264 +1265 +1266 +1267 +1268 +1269 +1270 +1271 +1272 +1273 +1274 +1275 +1276 +1277 +1278 +1279 +1280 +1281 +1282 +1283 +1284 +1285 +1286 +1287 +1288 +1289 +1290 +1291 +1292 +1293 +1294 +1295 +1296 +1297 +1298 +1299 +1300 +1301 +1302 +1303 +1304 +1305 +1306 +1307 +1308 +1309 +1310 +1311 +1312 +1313 +1314 +1315 +1316 +1317 +1318 +1319 +1320 +1321 +1322 +1323 +1324 +1325 +1326 +1327 +1328 +1329 +1330 +1331 +1332 +1333 +1334 +1335 +1336 +1337 +1338 +1339 +1340 +1341 +1342 +1343 +1344 +1345 +1346 +1347 +1348 +1349 +1350 +1351 +1352 +1353 +1354 +1355 +1356 +1357 +1358 +0 +1359 +1360 +1361 +1362 +1363 +1364 +1365 +1366 +1 +1367 +1368 +1369 +1370 +1371 +1372 +1373 +1374 +1375 +1376 +1377 +1378 +1379 +1380 +1381 +1382 +1383 +1384 +1385 +1386 +1387 +1388 +1389 +1390 +1391 +1392 +1393 +1394 +1395 +1396 +1397 +1398 +1399 +1400 +1401 +1402 +1403 +1404 +1405 +1406 +1407 +1408 +1409 +1410 +1411 +1412 +1413 +1414 +1415 +1416 +1417 +1418 +1419 +1420 +1421 +1422 +1423 +1424 +1425 +1426 +1427 +1428 +1429 +1430 +1431 +1432 +1433 +1434 +1435 +1436 +1437 +1438 +1439 +1440 +1441 +1442 +1443 +1444 +1445 +1446 +1447 +1448 +1449 +1450 +1451 +1452 +1453 +1454 +1455 +1456 +1457 +2 +1458 +1459 +1460 +1461 +1462 +1463 +1464 +1465 +1466 +1467 +1468 +1469 +1470 +1471 +3 +1472 +1473 +1474 +1475 +1476 +1477 +1478 +1479 +1480 +1481 +4 +1482 +1483 +1484 +1485 +1486 +5 +1487 +1488 +1489 +6 +1490 +1491 +1492 +1493 +1494 +1495 +1496 +1497 +1498 +1499 +1500 +1501 +1502 +1503 +1504 +1505 +1506 +7 +1507 +8 +1508 +1509 +1510 +1511 +1512 +1513 +1514 +1515 +9 +1516 +1517 +1518 +1519 +1520 +1521 +1522 +1523 +1524 +1525 +1526 +1527 +1528 +1529 +1530 +1531 +1532 +1533 +1534 +1535 +1536 +10 +11 +1537 +1538 +1539 +1540 +1541 +1542 +1543 +12 +1544 +1545 +1546 +1547 +1548 +1549 +13 +1550 +1551 +1552 +1553 +1554 +1555 +1556 +1557 +1558 +1559 +1560 +14 +1561 +1562 +1563 +1564 +1565 +1566 +1567 +1568 +1569 +1570 +1571 +1572 +1573 +1574 +1575 +1576 +1577 +1578 +1579 +1580 +1581 +1582 +1583 +1584 +1585 +1586 +1587 +1588 +1589 +1590 +1591 +1592 +1593 +1594 +1595 +1596 +1597 +1598 +1599 +1600 +1601 +1602 +1603 +1604 +1605 +1606 +1607 +1608 +1609 +1610 +1611 +1612 +1613 +1614 +1615 +1616 +1617 +1618 +1619 +1620 +1621 +1622 +1623 +1624 +1625 +15 +1626 +1627 +1628 +1629 +1630 +1631 +16 +1632 +1633 +1634 +1635 +1636 +1637 +1638 +1639 +1640 +1641 +1642 +1643 +1644 +1645 +1646 +1647 +1648 +1649 +1650 +1651 +1652 +1653 +1654 +1655 +1656 +1657 +1658 +1659 +1660 +1661 +1662 +1663 +1664 +1665 +1666 +1667 +1668 +1669 +1670 +1671 +1672 +1673 +1674 +1675 +1676 +1677 +1678 +1679 +1680 +1681 +1682 +1683 +1684 +1685 +1686 +1687 +1688 +1689 +1690 +1691 +1692 +1693 +1694 +1695 +1696 +1697 +1698 +1699 +1700 +1701 +1702 +1703 +1704 +1705 +17 +1706 +1707 +1708 +1709 +1710 +1711 +1712 +1713 +1714 +18 +1715 +1716 +1717 +1718 +1719 +1720 +1721 +1722 +1723 +1724 +1725 +1726 +1727 +1728 +1729 +1730 +1731 +1732 +1733 +1734 +1735 +1736 +1737 +1738 +1739 +1740 +1741 +1742 +1743 +1744 +1745 +19 +1746 +1747 +1748 +1749 +1750 +1751 +1752 +1753 +1754 +1755 +1756 +1757 +1758 +1759 +1760 +1761 +1762 +1763 +1764 +1765 +1766 +1767 +1768 +1769 +1770 +1771 +1772 +1773 +1774 +1775 +1776 +1777 +1778 +1779 +1780 +20 +1781 +1782 +1783 +1784 +1785 +1786 +1787 +1788 +1789 +1790 +1791 +1792 +1793 +1794 +1795 +1796 +1797 +1798 +1799 +1800 +1801 +1802 +1803 +1804 +21 +1805 +1806 +1807 +1808 +1809 +1810 +1811 +1812 +1813 +1814 +1815 +1816 +1817 +1818 +1819 +1820 +1821 +1822 +1823 +1824 +1825 +1826 +1827 +1828 +1829 +22 +1830 +1831 +1832 +1833 +1834 +23 +1835 +1836 +1837 +1838 +1839 +1840 +1841 +1842 +1843 +1844 +1845 +1846 +1847 +1848 +1849 +1850 +1851 +1852 +1853 +24 +1854 +1855 +1856 +1857 +1858 +1859 +1860 +1861 +1862 +1863 +1864 +1865 +1866 +1867 +1868 +1869 +1870 +25 +1871 +1872 +1873 +26 +1874 +1875 +1876 +1877 +27 +1878 +1879 +28 +1880 +29 +1881 +1882 +1883 +1884 +1885 +1886 +1887 +1888 +1889 +1890 +1891 +1892 +1893 +1894 +1895 +1896 +1897 +1898 +1899 +1900 +1901 +1902 +1903 +1904 +30 +1905 +1906 +1907 +1908 +1909 +1910 +1911 +1912 +1913 +1914 +31 +32 +1915 +1916 +1917 +1918 +1919 +1920 +1921 +1922 +1923 +1924 +1925 +1926 +1927 +1928 +1929 +1930 +1931 +1932 +1933 +1934 +1935 +1936 +1937 +1938 +1939 +1940 +1941 +1942 +1943 +1944 +1945 +1946 +1947 +1948 +1949 +1950 +1951 +1952 +1953 +1954 +1955 +1956 +1957 +1958 +1959 +1960 +33 +1961 +1962 +1963 +1964 +34 +1965 +1966 +1967 +35 +1968 +36 +1969 +1970 +1971 +1972 +37 +1973 +1974 +1975 +1976 +1977 +1978 +1979 +1980 +1981 +1982 +1983 +1984 +1985 +1986 +1987 +1988 +38 +1989 +39 +1990 +1991 +1992 +1993 +1994 +1995 +1996 +1997 +1998 +1999 +2000 +2001 +2002 +2003 +2004 +2005 +2006 +2007 +40 +2008 +2009 +2010 +2011 +2012 +2013 +41 +2014 +2015 +2016 +2017 +2018 +2019 +2020 +2021 +42 +43 +2022 +2023 +2024 +44 +2025 +2026 +2027 +2028 +2029 +45 +2030 +2031 +2032 +46 +2033 +47 +2034 +2035 +2036 +48 +2037 +2038 +49 +2039 +2040 +2041 +2042 +50 +2043 +2044 +2045 +2046 +2047 +2048 +2049 +2050 +2051 +2052 +2053 +2054 +51 +2055 +2056 +2057 +2058 +2059 +2060 +2061 +2062 +2063 +2064 +2065 +2066 +2067 +2068 +2069 +2070 +2071 +2072 +2073 +2074 +2075 +2076 +2077 +2078 +2079 +2080 +2081 +2082 +2083 +2084 +2085 +2086 +2087 +2088 +2089 +2090 +52 +53 +54 +2091 +55 +2092 +2093 +2094 +2095 +2096 +2097 +2098 +2099 +2100 +2101 +2102 +2103 +2104 +2105 +2106 +2107 +2108 +2109 +2110 +2111 +56 +2112 +2113 +57 +2114 +2115 +2116 +2117 +2118 +2119 +58 +2120 +2121 +2122 +2123 +2124 +2125 +2126 +2127 +59 +2128 +2129 +60 +2130 +2131 +2132 +2133 +2134 +2135 +61 +2136 +2137 +2138 +2139 +2140 +2141 +2142 +62 +2143 +2144 +2145 +2146 +2147 +2148 +2149 +2150 +2151 +2152 +63 +2153 +2154 +2155 +2156 +2157 +2158 +64 +2159 +2160 +2161 +2162 +2163 +2164 +65 +2165 +2166 +2167 +2168 +2169 +66 +2170 +2171 +2172 +2173 +67 +2174 +2175 +2176 +68 +2177 +2178 +2179 +2180 +2181 +2182 +2183 +2184 +2185 +2186 +2187 +69 +2188 +70 +71 +2189 +2190 +2191 +2192 +2193 +2194 +72 +73 +74 +2195 +75 +76 +77 +2196 +2197 +2198 +78 +2199 +2200 +2201 +2202 +2203 +2204 +2205 +2206 +2207 +2208 +2209 +2210 +2211 +2212 +2213 +2214 +2215 +2216 +2217 +2218 +2219 +2220 +2221 +2222 +2223 +79 +2224 +2225 +2226 +2227 +2228 +2229 +2230 +2231 +2232 +2233 +2234 +2235 +2236 +2237 +2238 +2239 +2240 +2241 +2242 +2243 +2244 +2245 +2246 +2247 +2248 +2249 +2250 +2251 +2252 +2253 +2254 +2255 +2256 +2257 +2258 +2259 +2260 +2261 +2262 +2263 +80 +2264 +2265 +2266 +2267 +81 +2268 +2269 +2270 +2271 +2272 +82 +2273 +83 +2274 +2275 +2276 +2277 +2278 +2279 +2280 +2281 +2282 +2283 +2284 +2285 +2286 +2287 +2288 +2289 +2290 +2291 +2292 +2293 +2294 +2295 +2296 +2297 +2298 +2299 +84 +2300 +2301 +2302 +85 +2303 +2304 +86 +2305 +2306 +2307 +2308 +2309 +2310 +2311 +2312 +2313 +2314 +2315 +2316 +2317 +2318 +2319 +2320 +2321 +2322 +2323 +2324 +2325 +2326 +2327 +2328 +2329 +2330 +2331 +2332 +2333 +2334 +2335 +2336 +2337 +2338 +2339 +87 +2340 +88 +2341 +2342 +89 +2343 +2344 +2345 +2346 +90 +2347 +2348 +2349 +2350 +2351 +2352 +2353 +2354 +2355 +2356 +2357 +2358 +91 +2359 +2360 +2361 +2362 +2363 +2364 +2365 +2366 +2367 +2368 +92 +93 +2369 +2370 +2371 +2372 +2373 +2374 +2375 +2376 +2377 +2378 +2379 +94 +2380 +2381 +2382 +2383 +2384 +2385 +2386 +2387 +2388 +2389 +2390 +2391 +2392 +2393 +2394 +2395 +2396 +2397 +2398 +2399 +2400 +2401 +2402 +2403 +2404 +2405 +2406 +95 +96 +2407 +2408 +2409 +2410 +2411 +2412 +2413 +2414 +97 +2415 +2416 +2417 +2418 +2419 +2420 +2421 +2422 +2423 +2424 +2425 +2426 +2427 +2428 +2429 +2430 +2431 +2432 +2433 +2434 +2435 +2436 +2437 +2438 +2439 +2440 +2441 +2442 +2443 +2444 +2445 +2446 +2447 +2448 +2449 +2450 +2451 +2452 +2453 +98 +2454 +2455 +99 +2456 +2457 +2458 +2459 +2460 +2461 +2462 +2463 +2464 +2465 +2466 +2467 +2468 +2469 +2470 +2471 +2472 +2473 +2474 +2475 +2476 +100 +2477 +2478 +2479 +2480 +2481 +2482 +101 +2483 +2484 +102 +2485 +103 +2486 +2487 +2488 +2489 +2490 +2491 +2492 +2493 +2494 +104 +2495 +2496 +2497 +2498 +2499 +2500 +2501 +2502 +2503 +2504 +2505 +2506 +2507 +2508 +2509 +105 +106 +2510 +2511 +2512 +2513 +2514 +2515 +2516 +2517 +2518 +2519 +2520 +2521 +2522 +2523 +2524 +2525 +2526 +2527 +2528 +2529 +2530 +2531 +2532 +2533 +2534 +2535 +2536 +2537 +2538 +2539 +2540 +2541 +2542 +2543 +2544 +2545 +2546 +2547 +2548 +2549 +2550 +2551 +2552 +2553 +2554 +2555 +2556 +2557 +2558 +2559 +2560 +2561 +2562 +2563 +2564 +2565 +2566 +2567 +2568 +2569 +2570 +2571 +2572 +2573 +107 +2574 +2575 +2576 +2577 +2578 +2579 +2580 +2581 +2582 +2583 +108 +2584 +2585 +2586 +2587 +2588 +2589 +2590 +2591 +109 +2592 +2593 +2594 +2595 +2596 +2597 +2598 +2599 +2600 +2601 +2602 +2603 +2604 +2605 +110 +2606 +2607 +2608 +2609 +2610 +2611 +2612 +2613 +2614 +2615 +2616 +2617 +111 +2618 +2619 +2620 +2621 +2622 +2623 +2624 +2625 +2626 +2627 +2628 +2629 +2630 +2631 +2632 +2633 +2634 +2635 +2636 +2637 +2638 +2639 +2640 +2641 +2642 +2643 +2644 +112 +2645 +113 +2646 +2647 +2648 +2649 +114 +2650 +2651 +2652 +2653 +2654 +2655 +2656 +2657 +2658 +2659 +2660 +2661 +115 +2662 +2663 +2664 +2665 +2666 +2667 +2668 +2669 +116 +2670 +2671 +2672 +2673 +2674 +2675 +2676 +2677 +2678 +2679 +2680 +2681 +2682 +2683 +2684 +2685 +2686 +2687 +2688 +2689 +2690 +2691 +2692 +2693 +2694 +2695 +2696 +2697 +2698 +2699 +2700 +2701 +2702 +2703 +2704 +117 +2705 +2706 +2707 +2708 +2709 +2710 +2711 +2712 +2713 +2714 +2715 +2716 +2717 +2718 +2719 +2720 +2721 +2722 +118 +119 +2723 +2724 +2725 +2726 +2727 +120 +2728 +121 +2729 +2730 +2731 +2732 +2733 +122 +2734 +2735 +2736 +123 +124 +2737 +2738 +125 +2739 +2740 +2741 +2742 +2743 +2744 +2745 +2746 +2747 +2748 +2749 +126 +2750 +2751 +2752 +2753 +2754 +2755 +2756 +2757 +2758 +2759 +2760 +2761 +2762 +2763 +2764 +2765 +2766 +2767 +2768 +2769 +127 +128 +2770 +2771 +2772 +2773 +2774 +2775 +2776 +2777 +2778 +2779 +2780 +129 +2781 +2782 +130 +2783 +2784 +2785 +2786 +131 +2787 +2788 +2789 +132 +2790 +2791 +2792 +2793 +2794 +133 +2795 +2796 +2797 +134 +2798 +2799 +135 +2800 +2801 +2802 +2803 +2804 +2805 +2806 +2807 +2808 +2809 +2810 +136 +2811 +2812 +2813 +137 +2814 +138 +2815 +2816 +2817 +2818 +2819 +2820 +2821 +2822 +2823 +2824 +2825 +2826 +2827 +2828 +2829 +2830 +139 +2831 +2832 +2833 +2834 +2835 +2836 +140 +2837 +141 +2838 +2839 +2840 +2841 +2842 +2843 +2844 +2845 +2846 +2847 +2848 +2849 +2850 +2851 +2852 +2853 +2854 +2855 +2856 +2857 +2858 +142 +2859 +2860 +2861 +2862 +2863 +2864 +2865 +2866 +2867 +2868 +2869 +2870 +2871 +2872 +2873 +143 +2874 +2875 +2876 +2877 +2878 +2879 +2880 +2881 +2882 +2883 +2884 +2885 +2886 +2887 +2888 +2889 +2890 +2891 +2892 +2893 +2894 +2895 +2896 +2897 +2898 +2899 +2900 +2901 +2902 +2903 +2904 +2905 +2906 +2907 +2908 +2909 +2910 +2911 +2912 +2913 +2914 +2915 +2916 +2917 +2918 +2919 +2920 +2921 +2922 +144 +2923 +2924 +2925 +2926 +2927 +2928 +2929 +2930 +2931 +2932 +2933 +2934 +2935 +145 +2936 +2937 +2938 +2939 +2940 +146 +2941 +2942 +2943 +2944 +2945 +2946 +2947 +2948 +2949 +2950 +2951 +2952 +2953 +2954 +2955 +2956 +2957 +2958 +2959 +2960 +2961 +2962 +2963 +2964 +147 +2965 +2966 +2967 +2968 +2969 +2970 +2971 +2972 +2973 +2974 +2975 +2976 +2977 +2978 +2979 +148 +2980 +2981 +2982 +2983 +2984 +2985 +149 +2986 +2987 +2988 +2989 +2990 +2991 +2992 +2993 +2994 +2995 +2996 +150 +2997 +2998 +2999 +3000 +3001 +3002 +3003 +3004 +3005 +3006 +3007 +3008 +3009 +3010 +3011 +3012 +3013 +3014 +3015 +3016 +3017 +3018 +3019 +3020 +3021 +3022 +151 +152 +153 +154 +155 +3023 +3024 +156 +3025 +157 +158 +3026 +3027 +159 +3028 +160 +161 +162 +163 +164 +3029 +3030 +3031 +165 +3032 +3033 +3034 +3035 +166 +167 +3036 +3037 +168 +3038 +169 +170 +3039 +171 +172 +173 +174 +175 +176 +177 +3040 +178 +3041 +3042 +179 +180 +181 +182 +183 +184 +185 +186 +187 +3043 +3044 +3045 +3046 +3047 +188 +3048 +189 +3049 +190 +191 +192 +193 +194 +195 +3050 +196 +197 +198 +199 +200 +201 +3051 +3052 +202 +203 +204 +3053 +3054 +3055 +3056 +205 +206 +207 +208 +209 +3057 +210 +3058 +211 +212 +213 +214 +3059 +215 +216 +3060 +3061 +217 +218 +219 +220 +3062 +3063 +221 +3064 +3065 +3066 +222 +3067 +3068 +223 +3069 +3070 +224 +225 +226 +227 +228 +229 +230 +231 +232 +233 +234 +235 +3071 +3072 +236 +237 +3073 +238 +239 +240 +241 +242 +3074 +243 +244 +3075 +245 +246 +3076 +3077 +3078 +247 +3079 +3080 +248 +249 +250 +251 +3081 +252 +253 +254 +255 +256 +257 +3082 +258 +259 +260 +261 +3083 +262 +3084 +263 +264 +3085 +265 +266 +267 +3086 +268 +3087 +269 +270 +271 +272 +3088 +3089 +3090 +273 +274 +3091 +3092 +275 +276 +3093 +3094 +3095 +3096 +3097 +3098 +3099 +277 +3100 +3101 +3102 +3103 +278 +279 +3104 +280 +3105 +3106 +3107 +3108 +3109 +3110 +3111 +3112 +3113 +3114 +3115 +281 +282 +3116 +283 +3117 +284 +3118 +3119 +285 +3120 +3121 +3122 +3123 +3124 +3125 +286 +3126 +3127 +3128 +3129 +3130 +3131 +3132 +3133 +287 +3134 +3135 +3136 +3137 +3138 +3139 +288 +3140 +3141 +289 +290 +291 +3142 +3143 +292 +3144 +3145 +3146 +3147 +293 +3148 +3149 +3150 +294 +3151 +3152 +3153 +3154 +295 +3155 +3156 +296 +297 +3157 +3158 +3159 +3160 +3161 +3162 +3163 +3164 +3165 +3166 +298 +3167 +3168 +3169 +299 +3170 +3171 +3172 +3173 +3174 +3175 +3176 +3177 +3178 +3179 +3180 +3181 +3182 +3183 +3184 +3185 +3186 +3187 +3188 +3189 +3190 +3191 +3192 +3193 +3194 +3195 +3196 +3197 +3198 +3199 +3200 +3201 +3202 +3203 +3204 +3205 +3206 +3207 +3208 +3209 +3210 +3211 +3212 +3213 +3214 +3215 +3216 +3217 +3218 +3219 +3220 +3221 +3222 +3223 +3224 +3225 +3226 +3227 +3228 +3229 +3230 +3231 +300 +301 +3232 +3233 +3234 +3235 +302 +3236 +3237 +3238 +3239 +3240 +303 +3241 +3242 +304 +3243 +3244 +3245 +3246 +3247 +3248 +3249 +3250 +3251 +305 +3252 +3253 +3254 +3255 +3256 +3257 +3258 +306 +3259 +3260 +3261 +3262 +3263 +3264 +3265 +3266 +3267 +3268 +3269 +3270 +307 +3271 +3272 +3273 +3274 +3275 +3276 +3277 +3278 +3279 +3280 +3281 +3282 +3283 +3284 +3285 +3286 +3287 +3288 +3289 +3290 +3291 +3292 +3293 +3294 +3295 +3296 +3297 +3298 +3299 +3300 +3301 +3302 +3303 +308 +3304 +3305 +3306 +3307 +3308 +3309 +3310 +3311 +3312 +3313 +3314 +3315 +3316 +3317 +3318 +3319 +3320 +3321 +3322 +3323 +3324 +3325 +3326 +3327 +3328 +3329 +3330 +3331 +3332 +3333 +3334 +3335 +3336 +3337 +3338 +3339 +3340 +3341 +3342 +3343 +3344 +3345 +3346 +3347 +3348 +309 +3349 +3350 +3351 +3352 +3353 +3354 +3355 +3356 +3357 +3358 +3359 +3360 +3361 +3362 +3363 +3364 +3365 +3366 +3367 +3368 +3369 +3370 +3371 +3372 +3373 +3374 +3375 +3376 +3377 +3378 +3379 +3380 +3381 +3382 +3383 +3384 +3385 +3386 +3387 +3388 +3389 +3390 +3391 +310 +3392 +3393 +3394 +3395 +3396 +3397 +3398 +3399 +3400 +3401 +3402 +3403 +3404 +3405 +3406 +3407 +3408 +3409 +3410 +311 +3411 +3412 +3413 +3414 +3415 +3416 +3417 +3418 +312 +3419 +3420 +3421 +3422 +3423 +3424 +313 +3425 +3426 +314 +3427 +3428 +3429 +3430 +3431 +315 +3432 +3433 +3434 +3435 +3436 +3437 +3438 +3439 +3440 +3441 +3442 +3443 +3444 +3445 +3446 +3447 +3448 +3449 +3450 +3451 +3452 +3453 +3454 +3455 +3456 +3457 +3458 +3459 +3460 +3461 +3462 +3463 +3464 +3465 +3466 +3467 +3468 +3469 +3470 +3471 +3472 +3473 +3474 +3475 +3476 +3477 +3478 +3479 +3480 +3481 +3482 +3483 +3484 +3485 +3486 +3487 +3488 +3489 +3490 +3491 +3492 +3493 +316 +3494 +3495 +3496 +3497 +3498 +3499 +3500 +317 +3501 +3502 +3503 +3504 +3505 +3506 +3507 +3508 +3509 +3510 +3511 +3512 +3513 +3514 +318 +3515 +3516 +3517 +3518 +3519 +3520 +3521 +3522 +3523 +3524 +319 +320 +3525 +3526 +3527 +3528 +3529 +3530 +3531 +3532 +3533 +3534 +3535 +3536 +3537 +3538 +3539 +3540 +3541 +3542 +3543 +3544 +3545 +321 +3546 +3547 +3548 +3549 +3550 +3551 +322 +3552 +3553 +3554 +3555 +3556 +3557 +3558 +323 +3559 +324 +3560 +3561 +3562 +325 +326 +3563 +3564 +3565 +3566 +3567 +3568 +3569 +3570 +3571 +3572 +3573 +3574 +3575 +3576 +3577 +3578 +3579 +3580 +3581 +3582 +3583 +3584 +3585 +3586 +3587 +3588 +3589 +3590 +3591 +3592 +3593 +3594 +3595 +3596 +3597 +3598 +3599 +3600 +3601 +3602 +3603 +3604 +3605 +3606 +3607 +3608 +3609 +3610 +3611 +3612 +3613 +3614 +3615 +3616 +3617 +3618 +3619 +3620 +3621 +3622 +3623 +3624 +3625 +3626 +3627 +3628 +3629 +3630 +3631 +3632 +3633 +3634 +3635 +3636 +3637 +3638 +3639 +3640 +3641 +3642 +3643 +3644 +3645 +3646 +3647 +3648 +3649 +3650 +3651 +3652 +3653 +3654 +3655 +3656 +3657 +3658 +3659 +3660 +3661 +3662 +3663 +3664 +3665 +3666 +3667 +3668 +3669 +3670 +3671 +3672 +3673 +3674 +3675 +3676 +3677 +3678 +3679 +3680 +327 +3681 +3682 +3683 +328 +3684 +3685 +3686 +3687 +3688 +3689 +329 +3690 +3691 +3692 +3693 +3694 +3695 +3696 +3697 +3698 +330 +3699 +3700 +3701 +331 +3702 +3703 +3704 +3705 +3706 +3707 +3708 +3709 +332 +3710 +3711 +3712 +3713 +3714 +3715 +3716 +3717 +3718 +3719 +3720 +3721 +3722 +3723 +3724 +3725 +3726 +3727 +3728 +3729 +3730 +3731 +3732 +3733 +3734 +3735 +3736 +3737 +3738 +3739 +3740 +3741 +3742 +3743 +3744 +3745 +3746 +3747 +3748 +3749 +3750 +3751 +3752 +3753 +3754 +3755 +3756 +3757 +333 +3758 +3759 +3760 +3761 +3762 +3763 +3764 +3765 +3766 +3767 +3768 +3769 +3770 +3771 +334 +3772 +3773 +3774 +3775 +3776 +3777 +3778 +3779 +3780 +3781 +3782 +3783 +3784 +3785 +3786 +3787 +3788 +3789 +3790 +3791 +3792 +3793 +3794 +3795 +3796 +3797 +3798 +3799 +3800 +3801 +3802 +335 +3803 +3804 +3805 +3806 +3807 +3808 +3809 +3810 +3811 +3812 +3813 +3814 +3815 +3816 +3817 +3818 +3819 +3820 +3821 +3822 +336 +3823 +3824 +3825 +3826 +337 +3827 +3828 +3829 +3830 +338 +3831 +3832 +3833 +3834 +3835 +3836 +3837 +3838 +3839 +3840 +3841 +3842 +3843 +3844 +3845 +3846 +3847 +3848 +3849 +3850 +3851 +3852 +3853 +3854 +3855 +3856 +3857 +3858 +3859 +3860 +3861 +3862 +3863 +3864 +3865 +3866 +3867 +3868 +3869 +3870 +3871 +3872 +3873 +3874 +3875 +3876 +3877 +3878 +3879 +3880 +3881 +3882 +3883 +3884 +3885 +3886 +3887 +3888 +3889 +3890 +3891 +3892 +3893 +3894 +3895 +3896 +3897 +3898 +3899 +3900 +3901 +3902 +3903 +3904 +3905 +3906 +3907 +3908 +3909 +3910 +3911 +3912 +3913 +3914 +3915 +3916 +3917 +3918 +3919 +3920 +3921 +3922 +3923 +3924 +3925 +3926 +3927 +3928 +3929 +3930 +3931 +3932 +3933 +3934 +3935 +3936 +3937 +3938 +3939 +3940 +339 +3941 +3942 +3943 +3944 +3945 +3946 +3947 +3948 +3949 +3950 +3951 +3952 +3953 +3954 +3955 +340 +3956 +3957 +3958 +3959 +3960 +3961 +3962 +3963 +3964 +3965 +3966 +3967 +3968 +3969 +341 +3970 +3971 +3972 +3973 +3974 +3975 +342 +3976 +343 +3977 +3978 +3979 +344 +3980 +3981 +3982 +3983 +3984 +345 +3985 +3986 +3987 +3988 +3989 +3990 +3991 +3992 +3993 +3994 +3995 +3996 +3997 +3998 +3999 +4000 +4001 +4002 +4003 +4004 +4005 +4006 +4007 +4008 +4009 +4010 +4011 +4012 +4013 +4014 +4015 +4016 +4017 +4018 +4019 +346 +4020 +4021 +4022 +4023 +4024 +4025 +4026 +4027 +347 +4028 +4029 +4030 +4031 +4032 +348 +4033 +4034 +4035 +4036 +4037 +4038 +4039 +4040 +4041 +4042 +4043 +4044 +4045 +4046 +4047 +4048 +4049 +4050 +4051 +4052 +4053 +4054 +4055 +4056 +349 +4057 +4058 +4059 +4060 +4061 +4062 +4063 +4064 +4065 +4066 +4067 +4068 +350 +4069 +4070 +4071 +4072 +4073 +4074 +4075 +4076 +4077 +4078 +4079 +4080 +351 +4081 +352 +353 +4082 +4083 +4084 +4085 +4086 +4087 +4088 +4089 +4090 +4091 +4092 +4093 +4094 +4095 +4096 +4097 +4098 +4099 +4100 +4101 +4102 +4103 +4104 +4105 +4106 +4107 +4108 +4109 +4110 +4111 +4112 +4113 +4114 +4115 +4116 +4117 +4118 +4119 +4120 +4121 +4122 +4123 +4124 +4125 +4126 +4127 +4128 +4129 +4130 +4131 +4132 +4133 +4134 +4135 +4136 +4137 +4138 +354 +4139 +355 +4140 +4141 +4142 +4143 +4144 +4145 +4146 +356 +4147 +4148 +4149 +4150 +4151 +357 +4152 +358 +4153 +359 +4154 +4155 +4156 +360 +4157 +4158 +4159 +361 +4160 +4161 +4162 +4163 +362 +4164 +4165 +4166 +4167 +4168 +4169 +4170 +4171 +4172 +4173 +4174 +4175 +4176 +4177 +4178 +4179 +4180 +4181 +4182 +363 +4183 +4184 +4185 +4186 +4187 +4188 +4189 +364 +4190 +4191 +4192 +4193 +4194 +4195 +4196 +4197 +4198 +4199 +4200 +4201 +4202 +4203 +4204 +4205 +4206 +4207 +4208 +4209 +4210 +4211 +4212 +4213 +4214 +4215 +4216 +4217 +4218 +4219 +4220 +4221 +4222 +4223 +4224 +4225 +4226 +4227 +4228 +4229 +4230 +4231 +4232 +4233 +4234 +365 +366 +4235 +4236 +4237 +4238 +367 +4239 +4240 +4241 +4242 +4243 +368 +369 +4244 +4245 +370 +4246 +4247 +4248 +4249 +4250 +371 +372 +4251 +4252 +4253 +373 +4254 +4255 +4256 +4257 +374 +4258 +375 +4259 +376 +4260 +377 +4261 +4262 +4263 +4264 +4265 +378 +4266 +379 +4267 +4268 +380 +381 +382 +4269 +4270 +4271 +4272 +383 +4273 +4274 +4275 +4276 +4277 +4278 +384 +4279 +4280 +4281 +4282 +4283 +4284 +4285 +4286 +4287 +385 +386 +4288 +4289 +4290 +4291 +4292 +4293 +4294 +4295 +4296 +4297 +4298 +4299 +4300 +4301 +387 +388 +4302 +4303 +4304 +4305 +4306 +4307 +4308 +4309 +4310 +4311 +4312 +389 +4313 +4314 +4315 +4316 +4317 +4318 +4319 +4320 +4321 +4322 +4323 +4324 +4325 +4326 +4327 +4328 +4329 +4330 +4331 +4332 +4333 +4334 +4335 +4336 +4337 +4338 +4339 +4340 +4341 +4342 +390 +4343 +4344 +4345 +4346 +4347 +4348 +4349 +4350 +4351 +4352 +4353 +4354 +4355 +4356 +4357 +4358 +4359 +4360 +4361 +4362 +4363 +4364 +4365 +4366 +4367 +4368 +4369 +4370 +4371 +4372 +4373 +4374 +4375 +4376 +4377 +391 +4378 +4379 +4380 +4381 +4382 +4383 +4384 +4385 +4386 +4387 +4388 +4389 +4390 +4391 +4392 +4393 +4394 +4395 +4396 +4397 +4398 +4399 +4400 +4401 +4402 +4403 +4404 +4405 +4406 +4407 +4408 +4409 +4410 +4411 +4412 +4413 +4414 +4415 +4416 +4417 +4418 +4419 +4420 +4421 +4422 +4423 +4424 +4425 +4426 +4427 +4428 +4429 +4430 +4431 +4432 +4433 +4434 +4435 +4436 +4437 +4438 +4439 +4440 +4441 +4442 +4443 +4444 +4445 +4446 +4447 +4448 +4449 +4450 +4451 +4452 +4453 +4454 +4455 +4456 +4457 +4458 +4459 +4460 +4461 +4462 +4463 +4464 +4465 +4466 +4467 +4468 +4469 +4470 +4471 +4472 +4473 +4474 +4475 +4476 +4477 +4478 +4479 +4480 +4481 +4482 +4483 +4484 +4485 +4486 +4487 +4488 +4489 +4490 +4491 +4492 +4493 +4494 +4495 +4496 +4497 +4498 +4499 +4500 +4501 +4502 +4503 +4504 +4505 +4506 +4507 +4508 +4509 +4510 +4511 +4512 +4513 +4514 +4515 +4516 +4517 +4518 +4519 +4520 +4521 +4522 +4523 +4524 +4525 +4526 +4527 +4528 +4529 +4530 +4531 +4532 +4533 +4534 +4535 +4536 +4537 +4538 +4539 +4540 +4541 +4542 +4543 +4544 +4545 +4546 +4547 +4548 +4549 +4550 +4551 +4552 +4553 +4554 +4555 +4556 +4557 +4558 +4559 +4560 +4561 +4562 +4563 +4564 +4565 +4566 +4567 +4568 +4569 +4570 +4571 +4572 +4573 +4574 +4575 +4576 +4577 +4578 +392 +4579 +4580 +393 +4581 +4582 +4583 +4584 +4585 +4586 +4587 +4588 +4589 +4590 +4591 +4592 +4593 +4594 +4595 +4596 +4597 +4598 +4599 +4600 +4601 +4602 +4603 +4604 +4605 +4606 +4607 +4608 +4609 +4610 +4611 +4612 +4613 +4614 +4615 +4616 +4617 +4618 +4619 +4620 +4621 +4622 +4623 +4624 +4625 +4626 +4627 +4628 +4629 +4630 +4631 +4632 +4633 +4634 +4635 +4636 +4637 +4638 +4639 +4640 +4641 +4642 +4643 +4644 +4645 +4646 +4647 +4648 +4649 +4650 +4651 +4652 +4653 +4654 +4655 +4656 +4657 +4658 +4659 +4660 +4661 +4662 +4663 +4664 +4665 +4666 +4667 +4668 +4669 +4670 +394 +4671 +4672 +395 +4673 +4674 +4675 +4676 +396 +4677 +4678 +4679 +4680 +4681 +4682 +4683 +4684 +4685 +4686 +4687 +4688 +4689 +4690 +4691 +4692 +4693 +4694 +4695 +4696 +4697 +4698 +4699 +4700 +4701 +4702 +4703 +4704 +397 +4705 +4706 +4707 +4708 +4709 +4710 +4711 +4712 +4713 +4714 +4715 +4716 +4717 +4718 +4719 +4720 +4721 +4722 +4723 +4724 +4725 +4726 +4727 +4728 +4729 +4730 +4731 +4732 +4733 +4734 +4735 +4736 +4737 +398 +4738 +4739 +4740 +399 +4741 +4742 +4743 +4744 +4745 +4746 +4747 +4748 +4749 +4750 +400 +4751 +4752 +4753 +4754 +4755 +4756 +4757 +401 +4758 +4759 +4760 +4761 +4762 +402 +4763 +4764 +4765 +4766 +4767 +4768 +4769 +4770 +4771 +4772 +4773 +4774 +4775 +4776 +4777 +4778 +4779 +4780 +4781 +4782 +4783 +4784 +4785 +4786 +4787 +4788 +4789 +4790 +4791 +4792 +4793 +4794 +4795 +4796 +4797 +4798 +4799 +4800 +4801 +4802 +4803 +403 +4804 +4805 +4806 +4807 +4808 +4809 +4810 +4811 +4812 +4813 +4814 +404 +4815 +4816 +4817 +4818 +4819 +4820 +405 +4821 +4822 +4823 +4824 +4825 +4826 +4827 +4828 +4829 +4830 +4831 +4832 +4833 +4834 +4835 +4836 +4837 +4838 +4839 +4840 +4841 +4842 +406 +4843 +4844 +4845 +4846 +4847 +4848 +407 +4849 +4850 +4851 +4852 +4853 +4854 +408 +4855 +4856 +4857 +4858 +4859 +4860 +409 +4861 +4862 +4863 +4864 +4865 +4866 +4867 +4868 +4869 +4870 +4871 +4872 +4873 +4874 +4875 +4876 +4877 +4878 +4879 +4880 +4881 +4882 +4883 +4884 +4885 +4886 +4887 +4888 +4889 +4890 +4891 +4892 +4893 +4894 +4895 +4896 +4897 +4898 +4899 +4900 +4901 +4902 +410 +4903 +4904 +4905 +4906 +4907 +4908 +4909 +411 +4910 +4911 +4912 +4913 +4914 +4915 +4916 +4917 +4918 +4919 +4920 +4921 +4922 +4923 +4924 +4925 +4926 +4927 +4928 +4929 +4930 +4931 +4932 +4933 +4934 +4935 +4936 +4937 +4938 +4939 +4940 +4941 +4942 +4943 +4944 +4945 +4946 +4947 +4948 +4949 +4950 +4951 +4952 +4953 +4954 +4955 +4956 +4957 +4958 +4959 +4960 +4961 +4962 +4963 +4964 +4965 +412 +4966 +4967 +4968 +4969 +4970 +4971 +4972 +413 +4973 +4974 +4975 +4976 +4977 +4978 +4979 +4980 +4981 +4982 +4983 +4984 +4985 +4986 +4987 +4988 +4989 +4990 +4991 +4992 +4993 +4994 +4995 +4996 +4997 +4998 +4999 +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5039 +5040 +5041 +5042 +5043 +5044 +5045 +5046 +5047 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 +5060 +5061 +5062 +5063 +414 +5064 +5065 +5066 +5067 +5068 +5069 +5070 +5071 +5072 +5073 +5074 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +415 +5093 +5094 +5095 +416 +5096 +5097 +5098 +5099 +5100 +5101 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5110 +5111 +5112 +5113 +5114 +5115 +5116 +5117 +5118 +417 +5119 +5120 +5121 +5122 +5123 +418 +5124 +5125 +5126 +5127 +5128 +5129 +5130 +419 +5131 +5132 +5133 +5134 +5135 +5136 +5137 +5138 +5139 +420 +5140 +421 +5141 +5142 +5143 +5144 +5145 +5146 +5147 +422 +423 +424 +5148 +5149 +5150 +5151 +5152 +5153 +5154 +5155 +5156 +5157 +425 +5158 +5159 +5160 +5161 +426 +5162 +5163 +5164 +5165 +5166 +427 +5167 +5168 +5169 +5170 +5171 +5172 +5173 +5174 +5175 +428 +5176 +5177 +5178 +429 +5179 +5180 +5181 +5182 +5183 +5184 +5185 +5186 +5187 +5188 +5189 +5190 +5191 +5192 +430 +5193 +5194 +5195 +5196 +5197 +5198 +5199 +5200 +5201 +5202 +431 +5203 +432 +5204 +5205 +5206 +5207 +5208 +5209 +5210 +5211 +5212 +433 +5213 +5214 +5215 +5216 +434 +435 +5217 +5218 +5219 +5220 +5221 +5222 +5223 +5224 +5225 +5226 +5227 +5228 +5229 +5230 +5231 +5232 +5233 +5234 +5235 +5236 +5237 +5238 +5239 +5240 +5241 +5242 +5243 +5244 +5245 +5246 +5247 +5248 +5249 +436 +5250 +437 +5251 +5252 +438 +5253 +5254 +5255 +5256 +5257 +5258 +5259 +439 +5260 +5261 +5262 +5263 +5264 +5265 +5266 +5267 +5268 +5269 +5270 +5271 +5272 +5273 +5274 +5275 +5276 +5277 +5278 +5279 +5280 +5281 +5282 +5283 +440 +5284 +5285 +441 +5286 +5287 +5288 +5289 +5290 +5291 +5292 +5293 +5294 +442 +5295 +5296 +5297 +5298 +5299 +5300 +5301 +5302 +5303 +5304 +5305 +5306 +5307 +5308 +5309 +5310 +5311 +5312 +5313 +5314 +5315 +5316 +5317 +5318 +5319 +5320 +5321 +5322 +5323 +5324 +5325 +5326 +443 +5327 +5328 +5329 +444 +5330 +5331 +5332 +5333 +5334 +5335 +5336 +5337 +5338 +5339 +5340 +5341 +5342 +5343 +445 +5344 +5345 +5346 +5347 +5348 +5349 +5350 +5351 +5352 +5353 +5354 +5355 +446 +5356 +5357 +5358 +5359 +447 +5360 +5361 +5362 +5363 +5364 +5365 +5366 +5367 +5368 +5369 +5370 +448 +5371 +5372 +5373 +5374 +5375 +5376 +5377 +5378 +5379 +5380 +5381 +5382 +5383 +5384 +5385 +5386 +5387 +5388 +5389 +5390 +5391 +5392 +5393 +5394 +5395 +5396 +5397 +5398 +5399 +5400 +5401 +5402 +5403 +5404 +5405 +5406 +5407 +5408 +5409 +5410 +5411 +5412 +5413 +5414 +5415 +5416 +5417 +5418 +5419 +5420 +5421 +5422 +5423 +5424 +5425 +5426 +5427 +5428 +5429 +5430 +449 +5431 +5432 +5433 +5434 +5435 +450 +5436 +5437 +5438 +5439 +5440 +5441 +5442 +5443 +5444 +5445 +5446 +5447 +5448 +5449 +5450 +5451 +5452 +5453 +5454 +5455 +5456 +451 +5457 +5458 +5459 +5460 +5461 +5462 +5463 +5464 +5465 +5466 +5467 +5468 +5469 +5470 +5471 +5472 +5473 +5474 +452 +5475 +5476 +5477 +453 +5478 +5479 +5480 +5481 +454 +5482 +5483 +5484 +5485 +5486 +5487 +5488 +5489 +5490 +5491 +5492 +5493 +5494 +5495 +5496 +5497 +5498 +5499 +5500 +5501 +5502 +5503 +5504 +5505 +5506 +5507 +5508 +455 +5509 +5510 +5511 +5512 +5513 +5514 +5515 +5516 +5517 +5518 +5519 +456 +5520 +5521 +5522 +5523 +5524 +5525 +5526 +5527 +5528 +5529 +5530 +5531 +5532 +5533 +5534 +5535 +457 +5536 +5537 +5538 +5539 +5540 +5541 +5542 +5543 +5544 +5545 +5546 +5547 +5548 +5549 +5550 +5551 +5552 +5553 +5554 +5555 +5556 +5557 +5558 +5559 +5560 +5561 +5562 +5563 +5564 +5565 +5566 +5567 +5568 +5569 +458 +5570 +5571 +5572 +5573 +459 +5574 +5575 +5576 +5577 +5578 +5579 +5580 +5581 +5582 +460 +5583 +5584 +461 +5585 +5586 +5587 +5588 +5589 +5590 +5591 +5592 +5593 +5594 +5595 +5596 +5597 +5598 +5599 +5600 +5601 +5602 +5603 +5604 +5605 +5606 +5607 +5608 +5609 +5610 +5611 +5612 +5613 +5614 +5615 +5616 +5617 +5618 +5619 +5620 +5621 +5622 +5623 +5624 +5625 +5626 +5627 +5628 +5629 +5630 +5631 +5632 +5633 +462 +5634 +5635 +5636 +5637 +5638 +5639 +5640 +5641 +5642 +5643 +5644 +5645 +5646 +5647 +463 +5648 +5649 +464 +5650 +5651 +5652 +5653 +5654 +5655 +5656 +5657 +5658 +5659 +5660 +5661 +5662 +5663 +5664 +5665 +465 +466 +5666 +5667 +5668 +5669 +5670 +5671 +5672 +5673 +5674 +5675 +5676 +5677 +5678 +5679 +5680 +5681 +5682 +5683 +5684 +5685 +5686 +5687 +5688 +5689 +5690 +5691 +5692 +5693 +5694 +5695 +5696 +5697 +5698 +5699 +5700 +5701 +5702 +5703 +5704 +5705 +5706 +5707 +5708 +5709 +5710 +5711 +5712 +5713 +5714 +5715 +467 +5716 +5717 +5718 +5719 +5720 +5721 +5722 +5723 +5724 +5725 +5726 +5727 +5728 +5729 +5730 +468 +5731 +5732 +5733 +5734 +5735 +5736 +5737 +5738 +5739 +5740 +5741 +5742 +5743 +5744 +5745 +5746 +5747 +5748 +5749 +5750 +5751 +5752 +5753 +5754 +5755 +5756 +5757 +5758 +5759 +5760 +5761 +5762 +5763 +5764 +5765 +469 +5766 +5767 +5768 +5769 +5770 +5771 +5772 +5773 +5774 +5775 +5776 +5777 +5778 +5779 +5780 +5781 +5782 +5783 +5784 +5785 +5786 +5787 +5788 +5789 +5790 +5791 +5792 +5793 +5794 +5795 +5796 +5797 +5798 +5799 +5800 +5801 +5802 +5803 +5804 +470 +5805 +5806 +5807 +5808 +5809 +5810 +5811 +5812 +5813 +5814 +5815 +5816 +5817 +5818 +5819 +471 +5820 +472 +473 +5821 +5822 +5823 +5824 +5825 +5826 +5827 +5828 +5829 +5830 +5831 +5832 +5833 +5834 +5835 +5836 +5837 +5838 +5839 +5840 +5841 +5842 +5843 +5844 +5845 +5846 +5847 +5848 +5849 +5850 +5851 +5852 +5853 +5854 +5855 +5856 +5857 +5858 +5859 +5860 +5861 +5862 +5863 +5864 +5865 +5866 +5867 +5868 +474 +5869 +5870 +5871 +5872 +5873 +5874 +5875 +5876 +5877 +5878 +5879 +5880 +5881 +5882 +5883 +5884 +475 +5885 +476 +5886 +477 +5887 +5888 +5889 +5890 +5891 +5892 +5893 +5894 +5895 +5896 +5897 +5898 +5899 +5900 +5901 +5902 +5903 +5904 +5905 +5906 +5907 +5908 +5909 +5910 +5911 +478 +5912 +5913 +5914 +5915 +5916 +5917 +5918 +5919 +5920 +5921 +5922 +479 +5923 +5924 +5925 +5926 +5927 +5928 +5929 +5930 +5931 +5932 +5933 +5934 +5935 +5936 +5937 +480 +5938 +5939 +5940 +5941 +5942 +5943 +5944 +5945 +5946 +481 +5947 +482 +5948 +5949 +5950 +5951 +5952 +5953 +483 +5954 +5955 +5956 +5957 +5958 +484 +5959 +5960 +5961 +5962 +5963 +5964 +5965 +5966 +5967 +5968 +5969 +5970 +5971 +5972 +5973 +5974 +5975 +5976 +5977 +5978 +5979 +5980 +5981 +5982 +5983 +5984 +5985 +5986 +5987 +485 +5988 +5989 +5990 +5991 +5992 +5993 +5994 +5995 +5996 +5997 +486 +5998 +487 +5999 +6000 +6001 +6002 +6003 +6004 +6005 +6006 +6007 +6008 +6009 +6010 +6011 +6012 +6013 +6014 +6015 +6016 +488 +6017 +489 +490 +6018 +491 +6019 +6020 +6021 +6022 +6023 +6024 +6025 +6026 +6027 +6028 +6029 +6030 +6031 +6032 +6033 +6034 +6035 +6036 +6037 +6038 +6039 +6040 +6041 +6042 +6043 +6044 +6045 +6046 +6047 +6048 +6049 +6050 +6051 +6052 +6053 +6054 +6055 +6056 +6057 +6058 +6059 +6060 +6061 +6062 +6063 +6064 +6065 +6066 +6067 +6068 +6069 +6070 +6071 +6072 +6073 +6074 +492 +6075 +6076 +6077 +6078 +6079 +6080 +6081 +6082 +6083 +6084 +493 +6085 +494 +6086 +6087 +6088 +495 +6089 +6090 +6091 +6092 +6093 +6094 +6095 +6096 +6097 +6098 +6099 +6100 +6101 +6102 +6103 +6104 +6105 +6106 +6107 +6108 +6109 +496 +6110 +6111 +6112 +6113 +6114 +6115 +497 +6116 +6117 +6118 +6119 +6120 +6121 +6122 +6123 +6124 +6125 +6126 +6127 +6128 +6129 +6130 +498 +6131 +6132 +6133 +6134 +6135 +6136 +6137 +6138 +6139 +6140 +6141 +6142 +6143 +6144 +6145 +6146 +6147 +6148 +6149 +6150 +6151 +6152 +6153 +6154 +6155 +6156 +6157 +6158 +6159 +6160 +6161 +6162 +6163 +6164 +6165 +6166 +6167 +6168 +6169 +6170 +6171 +6172 +499 +6173 +6174 +6175 +500 +6176 +6177 +6178 +6179 +6180 +6181 +6182 +6183 +6184 +6185 +6186 +6187 +6188 +6189 +6190 +501 +6191 +6192 +6193 +6194 +6195 +6196 +6197 +6198 +502 +6199 +6200 +6201 +6202 +6203 +6204 +6205 +6206 +6207 +6208 +6209 +6210 +6211 +6212 +6213 +6214 +6215 +6216 +6217 +6218 +6219 +6220 +6221 +6222 +6223 +6224 +6225 +6226 +6227 +6228 +6229 +6230 +6231 +6232 +6233 +6234 +6235 +6236 +6237 +6238 +6239 +6240 +6241 +6242 +6243 +6244 +6245 +6246 +6247 +6248 +6249 +6250 +6251 +6252 +6253 +6254 +6255 +6256 +503 +6257 +6258 +6259 +6260 +6261 +6262 +6263 +6264 +504 +505 +6265 +6266 +6267 +6268 +6269 +6270 +6271 +6272 +506 +6273 +6274 +6275 +6276 +6277 +6278 +6279 +6280 +6281 +6282 +6283 +6284 +6285 +6286 +6287 +6288 +6289 +6290 +6291 +6292 +6293 +6294 +6295 +6296 +6297 +6298 +6299 +6300 +6301 +6302 +6303 +6304 +6305 +6306 +507 +6307 +6308 +6309 +6310 +6311 +6312 +6313 +6314 +6315 +6316 +6317 +6318 +6319 +6320 +6321 +6322 +6323 +6324 +6325 +6326 +6327 +6328 +6329 +6330 +6331 +6332 +6333 +6334 +6335 +6336 +6337 +6338 +6339 +6340 +6341 +508 +6342 +6343 +6344 +6345 +6346 +6347 +6348 +6349 +6350 +6351 +6352 +6353 +6354 +6355 +6356 +6357 +6358 +6359 +6360 +6361 +509 +6362 +6363 +6364 +6365 +6366 +6367 +6368 +6369 +6370 +6371 +6372 +6373 +6374 +6375 +6376 +6377 +6378 +6379 +6380 +6381 +6382 +510 +6383 +6384 +6385 +6386 +6387 +6388 +6389 +6390 +6391 +6392 +6393 +6394 +6395 +6396 +6397 +6398 +6399 +511 +6400 +6401 +6402 +6403 +6404 +6405 +6406 +6407 +6408 +6409 +6410 +6411 +6412 +6413 +6414 +6415 +6416 +6417 +6418 +6419 +6420 +6421 +6422 +6423 +6424 +6425 +6426 +6427 +6428 +6429 +6430 +6431 +6432 +6433 +6434 +6435 +6436 +512 +6437 +6438 +6439 +6440 +513 +6441 +6442 +6443 +6444 +6445 +6446 +6447 +6448 +6449 +6450 +6451 +6452 +6453 +6454 +6455 +6456 +6457 +6458 +6459 +6460 +6461 +6462 +6463 +6464 +6465 +6466 +6467 +6468 +6469 +6470 +6471 +6472 +6473 +6474 +6475 +6476 +6477 +6478 +6479 +6480 +6481 +6482 +6483 +6484 +6485 +6486 +6487 +6488 +6489 +6490 +514 +515 +6491 +6492 +6493 +6494 +6495 +516 +6496 +6497 +6498 +6499 +517 +6500 +6501 +6502 +6503 +6504 +518 +519 +6505 +6506 +6507 +6508 +6509 +6510 +6511 +6512 +6513 +6514 +6515 +6516 +6517 +6518 +6519 +520 +6520 +6521 +6522 +6523 +6524 +6525 +6526 +6527 +6528 +521 +6529 +6530 +6531 +522 +6532 +6533 +6534 +6535 +6536 +6537 +6538 +6539 +6540 +6541 +6542 +6543 +6544 +6545 +6546 +6547 +6548 +6549 +6550 +6551 +6552 +6553 +6554 +6555 +6556 +6557 +6558 +6559 +6560 +6561 +6562 +6563 +523 +6564 +6565 +6566 +6567 +6568 +6569 +6570 +6571 +6572 +6573 +6574 +6575 +6576 +6577 +6578 +6579 +6580 +524 +6581 +6582 +6583 +6584 +6585 +6586 +6587 +6588 +6589 +6590 +6591 +6592 +6593 +6594 +6595 +6596 +6597 +6598 +6599 +6600 +6601 +6602 +6603 +6604 +6605 +6606 +6607 +6608 +6609 +6610 +6611 +6612 +6613 +6614 +6615 +6616 +6617 +6618 +6619 +6620 +6621 +6622 +6623 +6624 +6625 +6626 +6627 +6628 +6629 +6630 +6631 +525 +6632 +6633 +6634 +6635 +6636 +6637 +6638 +6639 +6640 +6641 +6642 +6643 +6644 +6645 +6646 +6647 +6648 +6649 +6650 +6651 +6652 +6653 +6654 +6655 +6656 +6657 +6658 +6659 +6660 +6661 +6662 +6663 +6664 +6665 +6666 +6667 +6668 +6669 +6670 +6671 +6672 +6673 +6674 +6675 +6676 +6677 +6678 +6679 +6680 +6681 +6682 +6683 +6684 +6685 +6686 +6687 +6688 +6689 +6690 +6691 +6692 +6693 +6694 +6695 +6696 +6697 +6698 +6699 +6700 +6701 +6702 +6703 +6704 +6705 +6706 +6707 +6708 +526 +6709 +527 +6710 +6711 +6712 +6713 +6714 +6715 +6716 +6717 +6718 +6719 +6720 +6721 +6722 +6723 +6724 +6725 +6726 +6727 +528 +6728 +6729 +529 +6730 +6731 +6732 +6733 +6734 +6735 +6736 +6737 +6738 +6739 +6740 +6741 +6742 +6743 +6744 +6745 +6746 +6747 +6748 +6749 +6750 +6751 +6752 +6753 +6754 +6755 +530 +6756 +6757 +6758 +6759 +531 +6760 +6761 +6762 +6763 +6764 +6765 +6766 +6767 +6768 +6769 +6770 +6771 +6772 +6773 +532 +6774 +6775 +6776 +6777 +6778 +6779 +6780 +6781 +6782 +6783 +6784 +6785 +6786 +6787 +6788 +6789 +6790 +6791 +6792 +6793 +6794 +6795 +6796 +6797 +6798 +6799 +6800 +6801 +6802 +6803 +6804 +6805 +533 +6806 +534 +6807 +535 +6808 +6809 +6810 +6811 +6812 +6813 +6814 +6815 +6816 +6817 +6818 +6819 +6820 +6821 +6822 +6823 +6824 +6825 +6826 +6827 +6828 +6829 +6830 +6831 +6832 +6833 +6834 +6835 +6836 +6837 +6838 +6839 +6840 +6841 +6842 +536 +6843 +6844 +6845 +537 +6846 +6847 +6848 +6849 +6850 +6851 +6852 +6853 +6854 +538 +6855 +6856 +6857 +6858 +6859 +6860 +6861 +6862 +6863 +6864 +6865 +539 +6866 +6867 +6868 +6869 +6870 +6871 +6872 +6873 +6874 +6875 +6876 +6877 +6878 +6879 +6880 +6881 +6882 +6883 +6884 +6885 +6886 +6887 +6888 +6889 +6890 +6891 +6892 +6893 +6894 +6895 +6896 +6897 +6898 +6899 +6900 +6901 +6902 +6903 +6904 +6905 +6906 +6907 +6908 +6909 +6910 +6911 +6912 +6913 +6914 +6915 +6916 +6917 +6918 +6919 +6920 +6921 +6922 +6923 +6924 +6925 +6926 +6927 +6928 +6929 +6930 +6931 +6932 +6933 +6934 +6935 +6936 +6937 +6938 +540 +6939 +6940 +6941 +6942 +6943 +6944 +6945 +6946 +6947 +6948 +6949 +6950 +6951 +6952 +6953 +6954 +6955 +6956 +6957 +6958 +6959 +6960 +6961 +6962 +6963 +6964 +6965 +6966 +6967 +6968 +6969 +541 +6970 +6971 +6972 +6973 +6974 +542 +6975 +6976 +6977 +6978 +6979 +6980 +6981 +6982 +6983 +6984 +6985 +6986 +6987 +6988 +6989 +6990 +6991 +6992 +6993 +6994 +6995 +6996 +6997 +543 +6998 +6999 +7000 +7001 +7002 +7003 +7004 +7005 +7006 +7007 +7008 +7009 +7010 +7011 +7012 +7013 +7014 +7015 +7016 +544 +7017 +7018 +7019 +7020 +7021 +7022 +7023 +7024 +7025 +7026 +7027 +7028 +7029 +7030 +7031 +7032 +7033 +7034 +7035 +7036 +7037 +7038 +7039 +7040 +7041 +7042 +7043 +7044 +7045 +7046 +7047 +7048 +7049 +7050 +7051 +7052 +7053 +7054 +7055 +7056 +7057 +7058 +7059 +7060 +7061 +7062 +545 +7063 +7064 +546 +7065 +7066 +7067 +547 +7068 +7069 +7070 +7071 +7072 +7073 +7074 +7075 +7076 +7077 +7078 +7079 +7080 +7081 +7082 +7083 +7084 +7085 +7086 +7087 +7088 +7089 +7090 +7091 +7092 +7093 +7094 +7095 +7096 +7097 +7098 +7099 +7100 +7101 +7102 +7103 +7104 +7105 +7106 +7107 +7108 +7109 +7110 +7111 +7112 +7113 +7114 +7115 +7116 +7117 +7118 +7119 +7120 +7121 +7122 +7123 +7124 +7125 +7126 +7127 +7128 +7129 +548 +7130 +7131 +7132 +549 +7133 +7134 +7135 +7136 +7137 +7138 +7139 +7140 +7141 +7142 +7143 +7144 +7145 +7146 +7147 +7148 +7149 +7150 +7151 +7152 +7153 +7154 +7155 +7156 +550 +7157 +7158 +7159 +7160 +7161 +7162 +7163 +7164 +7165 +7166 +7167 +7168 +7169 +7170 +7171 +7172 +7173 +7174 +7175 +7176 +7177 +7178 +7179 +7180 +7181 +7182 +7183 +7184 +7185 +7186 +7187 +7188 +7189 +7190 +7191 +7192 +7193 +7194 +7195 +7196 +7197 +7198 +7199 +7200 +551 +7201 +7202 +7203 +7204 +7205 +7206 +7207 +7208 +7209 +7210 +7211 +7212 +7213 +7214 +7215 +7216 +7217 +7218 +7219 +7220 +7221 +7222 +7223 +7224 +7225 +7226 +7227 +7228 +7229 +7230 +7231 +7232 +7233 +7234 +7235 +7236 +7237 +7238 +7239 +7240 +7241 +7242 +7243 +7244 +7245 +552 +7246 +7247 +7248 +7249 +7250 +7251 +7252 +7253 +7254 +7255 +7256 +7257 +7258 +7259 +7260 +7261 +7262 +7263 +7264 +7265 +7266 +7267 +7268 +7269 +7270 +7271 +7272 +7273 +7274 +7275 +7276 +7277 +7278 +7279 +7280 +7281 +7282 +7283 +7284 +7285 +7286 +7287 +7288 +7289 +7290 +7291 +7292 +7293 +7294 +7295 +7296 +553 +7297 +7298 +7299 +7300 +7301 +7302 +7303 +7304 +7305 +7306 +7307 +7308 +7309 +7310 +7311 +7312 +7313 +7314 +7315 +7316 +7317 +7318 +7319 +7320 +7321 +7322 +7323 +7324 +7325 +554 +7326 +7327 +7328 +7329 +555 +7330 +7331 +7332 +7333 +556 +7334 +7335 +7336 +7337 +7338 +7339 +7340 +7341 +7342 +7343 +7344 +7345 +7346 +7347 +7348 +7349 +7350 +7351 +7352 +7353 +7354 +7355 +7356 +7357 +7358 +7359 +7360 +7361 +7362 +557 +7363 +7364 +7365 +7366 +7367 +7368 +7369 +7370 +7371 +7372 +7373 +7374 +7375 +7376 +7377 +7378 +7379 +7380 +7381 +7382 +7383 +7384 +7385 +7386 +7387 +7388 +7389 +7390 +7391 +7392 +7393 +7394 +7395 +7396 +7397 +7398 +7399 +7400 +7401 +7402 +7403 +7404 +7405 +7406 +7407 +7408 +7409 +7410 +7411 +7412 +7413 +7414 +7415 +7416 +7417 +7418 +7419 +7420 +7421 +7422 +558 +7423 +7424 +7425 +7426 +7427 +7428 +7429 +7430 +7431 +7432 +7433 +7434 +7435 +7436 +7437 +7438 +7439 +7440 +559 +7441 +7442 +7443 +7444 +7445 +7446 +7447 +7448 +560 +7449 +7450 +7451 +7452 +7453 +7454 +7455 +7456 +7457 +7458 +7459 +7460 +7461 +7462 +7463 +7464 +7465 +7466 +7467 +7468 +7469 +7470 +7471 +7472 +7473 +7474 +7475 +7476 +561 +7477 +7478 +7479 +7480 +7481 +7482 +7483 +7484 +7485 +7486 +562 +563 +7487 +564 +7488 +7489 +7490 +7491 +7492 +7493 +7494 +7495 +7496 +7497 +7498 +7499 +7500 +7501 +7502 +7503 +7504 +7505 +7506 +7507 +565 +7508 +7509 +7510 +7511 +566 +7512 +7513 +7514 +7515 +7516 +7517 +7518 +7519 +7520 +7521 +7522 +7523 +7524 +7525 +7526 +7527 +7528 +7529 +7530 +567 +7531 +7532 +7533 +7534 +7535 +7536 +7537 +7538 +7539 +7540 +7541 +7542 +568 +7543 +7544 +7545 +7546 +7547 +7548 +7549 +7550 +7551 +7552 +7553 +7554 +7555 +7556 +7557 +7558 +7559 +7560 +7561 +7562 +7563 +7564 +7565 +7566 +7567 +7568 +7569 +7570 +7571 +7572 +7573 +7574 +7575 +7576 +7577 +7578 +7579 +7580 +7581 +7582 +7583 +7584 +7585 +7586 +7587 +7588 +7589 +7590 +7591 +7592 +7593 +7594 +7595 +569 +7596 +7597 +7598 +7599 +7600 +7601 +7602 +7603 +7604 +7605 +7606 +7607 +7608 +7609 +7610 +7611 +7612 +7613 +7614 +7615 +7616 +7617 +7618 +7619 +7620 +7621 +7622 +7623 +7624 +7625 +7626 +7627 +570 +7628 +7629 +7630 +7631 +7632 +571 +7633 +7634 +7635 +7636 +7637 +7638 +7639 +7640 +7641 +7642 +7643 +7644 +7645 +7646 +7647 +7648 +7649 +7650 +7651 +7652 +7653 +7654 +7655 +7656 +7657 +7658 +7659 +7660 +7661 +7662 +7663 +7664 +7665 +7666 +7667 +7668 +7669 +7670 +7671 +7672 +7673 +7674 +7675 +7676 +7677 +7678 +7679 +7680 +7681 +7682 +7683 +7684 +7685 +7686 +7687 +7688 +7689 +7690 +7691 +7692 +7693 +7694 +7695 +7696 +7697 +7698 +7699 +7700 +7701 +7702 +7703 +7704 +7705 +7706 +7707 +572 +7708 +7709 +573 +7710 +7711 +574 +575 +7712 +7713 +7714 +7715 +7716 +576 +577 +7717 +7718 +7719 +7720 +7721 +7722 +7723 +7724 +7725 +7726 +578 +7727 +7728 +7729 +7730 +7731 +7732 +7733 +7734 +7735 +7736 +7737 +7738 +579 +7739 +7740 +7741 +7742 +7743 +7744 +7745 +7746 +7747 +7748 +7749 +7750 +7751 +7752 +7753 +7754 +7755 +7756 +7757 +7758 +7759 +7760 +580 +7761 +7762 +7763 +7764 +581 +7765 +7766 +7767 +7768 +7769 +7770 +7771 +582 +7772 +7773 +7774 +7775 +7776 +7777 +7778 +7779 +7780 +7781 +7782 +7783 +7784 +7785 +7786 +7787 +7788 +7789 +7790 +7791 +7792 +7793 +7794 +7795 +7796 +7797 +7798 +583 +7799 +7800 +7801 +7802 +7803 +7804 +7805 +7806 +7807 +7808 +7809 +7810 +7811 +7812 +7813 +7814 +7815 +7816 +7817 +7818 +7819 +7820 +7821 +7822 +7823 +7824 +7825 +7826 +7827 +7828 +7829 +7830 +7831 +7832 +7833 +7834 +7835 +7836 +7837 +7838 +7839 +7840 +7841 +7842 +584 +585 +7843 +7844 +7845 +7846 +7847 +7848 +586 +7849 +7850 +7851 +7852 +7853 +7854 +7855 +7856 +7857 +587 +7858 +7859 +7860 +7861 +588 +7862 +7863 +7864 +7865 +589 +7866 +7867 +7868 +7869 +7870 +7871 +7872 +7873 +7874 +7875 +7876 +590 +7877 +591 +7878 +7879 +7880 +7881 +7882 +7883 +7884 +7885 +7886 +7887 +7888 +7889 +7890 +7891 +7892 +7893 +7894 +7895 +7896 +7897 +7898 +7899 +7900 +7901 +7902 +7903 +7904 +592 +7905 +7906 +7907 +7908 +593 +7909 +7910 +7911 +594 +7912 +7913 +7914 +7915 +7916 +7917 +7918 +595 +7919 +7920 +7921 +7922 +7923 +7924 +7925 +7926 +596 +7927 +7928 +7929 +7930 +7931 +7932 +7933 +7934 +7935 +7936 +7937 +7938 +7939 +7940 +7941 +7942 +7943 +7944 +7945 +7946 +7947 +7948 +7949 +7950 +7951 +7952 +7953 +7954 +7955 +7956 +7957 +7958 +7959 +7960 +7961 +7962 +7963 +7964 +7965 +7966 +7967 +7968 +7969 +7970 +7971 +7972 +7973 +7974 +7975 +7976 +7977 +7978 +7979 +7980 +7981 +7982 +7983 +7984 +7985 +7986 +7987 +7988 +7989 +7990 +7991 +7992 +7993 +7994 +7995 +7996 +7997 +7998 +7999 +8000 +8001 +8002 +8003 +8004 +8005 +8006 +8007 +8008 +8009 +8010 +8011 +8012 +8013 +8014 +8015 +8016 +8017 +8018 +8019 +8020 +8021 +8022 +8023 +8024 +8025 +8026 +8027 +8028 +8029 +8030 +8031 +8032 +8033 +8034 +8035 +8036 +8037 +8038 +8039 +8040 +8041 +8042 +8043 +8044 +8045 +8046 +8047 +8048 +8049 +8050 +8051 +8052 +8053 +597 +8054 +8055 +8056 +8057 +8058 +8059 +8060 +8061 +8062 +598 +8063 +8064 +599 +8065 +8066 +8067 +8068 +8069 +8070 +8071 +600 +8072 +8073 +8074 +8075 +8076 +8077 +601 +8078 +8079 +8080 +8081 +8082 +602 +8083 +8084 +8085 +8086 +8087 +8088 +8089 +8090 +8091 +8092 +603 +8093 +8094 +8095 +8096 +8097 +8098 +8099 +8100 +8101 +8102 +8103 +8104 +8105 +8106 +8107 +8108 +8109 +8110 +8111 +8112 +8113 +8114 +8115 +8116 +8117 +8118 +8119 +8120 +8121 +8122 +8123 +8124 +8125 +604 +8126 +8127 +8128 +8129 +8130 +8131 +8132 +8133 +8134 +8135 +8136 +8137 +8138 +8139 +8140 +8141 +8142 +8143 +8144 +8145 +8146 +8147 +8148 +8149 +8150 +8151 +8152 +8153 +8154 +8155 +8156 +8157 +8158 +8159 +8160 +8161 +8162 +8163 +8164 +8165 +8166 +8167 +8168 +8169 +8170 +8171 +8172 +8173 +8174 +8175 +8176 +8177 +8178 +8179 +8180 +8181 +8182 +8183 +8184 +8185 +8186 +8187 +8188 +8189 +8190 +8191 +8192 +8193 +8194 +8195 +8196 +8197 +8198 +8199 +8200 +8201 +8202 +8203 +8204 +8205 +8206 +8207 +8208 +8209 +8210 +8211 +8212 +8213 +8214 +8215 +8216 +8217 +8218 +8219 +8220 +8221 +8222 +8223 +8224 +8225 +8226 +8227 +8228 +8229 +8230 +8231 +8232 +8233 +8234 +8235 +8236 +8237 +8238 +8239 +8240 +8241 +8242 +8243 +8244 +8245 +8246 +8247 +8248 +8249 +8250 +8251 +8252 +8253 +8254 +8255 +8256 +8257 +8258 +8259 +8260 +8261 +8262 +8263 +8264 +8265 +605 +8266 +606 +8267 +8268 +8269 +8270 +8271 +8272 +8273 +8274 +8275 +8276 +8277 +8278 +8279 +8280 +8281 +8282 +8283 +8284 +8285 +8286 +8287 +607 +8288 +8289 +8290 +8291 +8292 +8293 +8294 +8295 +8296 +8297 +8298 +8299 +8300 +8301 +8302 +8303 +8304 +8305 +608 +609 +8306 +8307 +8308 +8309 +610 +8310 +8311 +8312 +8313 +8314 +8315 +8316 +8317 +8318 +8319 +8320 +8321 +8322 +611 +612 +8323 +8324 +8325 +8326 +8327 +8328 +8329 +8330 +8331 +8332 +8333 +8334 +8335 +613 +8336 +8337 +8338 +8339 +8340 +8341 +8342 +8343 +8344 +8345 +8346 +8347 +8348 +8349 +8350 +8351 +8352 +8353 +8354 +8355 +8356 +8357 +8358 +8359 +8360 +8361 +8362 +8363 +8364 +8365 +8366 +8367 +8368 +8369 +8370 +8371 +8372 +8373 +8374 +8375 +8376 +8377 +8378 +8379 +8380 +8381 +8382 +8383 +8384 +8385 +8386 +8387 +8388 +8389 +8390 +8391 +8392 +8393 +8394 +614 +8395 +8396 +8397 +8398 +8399 +8400 +8401 +8402 +8403 +8404 +8405 +8406 +8407 +8408 +8409 +8410 +8411 +8412 +8413 +8414 +8415 +8416 +8417 +8418 +8419 +8420 +615 +8421 +8422 +8423 +8424 +8425 +8426 +8427 +8428 +8429 +8430 +8431 +8432 +8433 +8434 +616 +8435 +8436 +8437 +8438 +8439 +8440 +8441 +8442 +8443 +8444 +8445 +8446 +8447 +617 +8448 +8449 +8450 +8451 +8452 +8453 +8454 +8455 +618 +8456 +8457 +8458 +8459 +8460 +8461 +8462 +8463 +8464 +8465 +8466 +8467 +8468 +8469 +8470 +619 +8471 +8472 +8473 +8474 +8475 +8476 +8477 +8478 +8479 +8480 +8481 +8482 +8483 +8484 +8485 +8486 +8487 +8488 +8489 +8490 +8491 +620 +8492 +8493 +8494 +8495 +8496 +8497 +8498 +8499 +8500 +8501 +8502 +8503 +8504 +8505 +8506 +8507 +8508 +8509 +8510 +8511 +8512 +8513 +8514 +8515 +8516 +8517 +8518 +621 +8519 +8520 +8521 +8522 +8523 +8524 +8525 +8526 +8527 +8528 +8529 +8530 +8531 +8532 +8533 +8534 +8535 +8536 +8537 +8538 +8539 +8540 +8541 +622 +8542 +8543 +8544 +623 +8545 +8546 +8547 +8548 +8549 +8550 +8551 +8552 +8553 +624 +8554 +8555 +8556 +625 +8557 +8558 +8559 +8560 +8561 +8562 +8563 +8564 +8565 +8566 +8567 +8568 +8569 +8570 +8571 +626 +8572 +8573 +8574 +8575 +8576 +8577 +8578 +8579 +8580 +8581 +8582 +8583 +8584 +627 +8585 +8586 +8587 +628 +8588 +8589 +8590 +8591 +8592 +8593 +8594 +8595 +8596 +8597 +8598 +8599 +8600 +629 +8601 +8602 +8603 +8604 +8605 +8606 +8607 +8608 +8609 +8610 +8611 +630 +8612 +8613 +8614 +8615 +8616 +8617 +8618 +8619 +8620 +8621 +8622 +8623 +8624 +8625 +8626 +8627 +8628 +8629 +8630 +8631 +8632 +8633 +8634 +8635 +8636 +8637 +8638 +8639 +8640 +8641 +8642 +8643 +8644 +8645 +8646 +8647 +8648 +8649 +8650 +8651 +8652 +8653 +8654 +8655 +8656 +631 +632 +8657 +8658 +8659 +8660 +8661 +633 +8662 +8663 +8664 +8665 +8666 +8667 +8668 +8669 +8670 +8671 +8672 +8673 +8674 +8675 +8676 +8677 +8678 +8679 +8680 +8681 +8682 +8683 +634 +8684 +8685 +8686 +8687 +8688 +8689 +8690 +8691 +8692 +8693 +8694 +8695 +8696 +8697 +8698 +8699 +8700 +8701 +8702 +8703 +8704 +8705 +8706 +8707 +8708 +8709 +8710 +8711 +8712 +8713 +8714 +8715 +8716 +635 +8717 +8718 +8719 +8720 +8721 +8722 +8723 +8724 +8725 +8726 +8727 +8728 +8729 +8730 +8731 +636 +8732 +8733 +637 +8734 +8735 +8736 +638 +639 +8737 +8738 +8739 +8740 +8741 +8742 +8743 +8744 +8745 +8746 +8747 +8748 +8749 +8750 +8751 +8752 +8753 +8754 +8755 +8756 +8757 +8758 +8759 +8760 +640 +8761 +8762 +8763 +8764 +8765 +8766 +8767 +8768 +8769 +8770 +8771 +8772 +8773 +8774 +641 +8775 +8776 +642 +8777 +8778 +8779 +8780 +8781 +8782 +8783 +8784 +8785 +8786 +8787 +8788 +8789 +8790 +8791 +8792 +643 +8793 +8794 +8795 +8796 +8797 +8798 +8799 +8800 +8801 +8802 +8803 +8804 +8805 +8806 +8807 +8808 +8809 +8810 +8811 +8812 +8813 +8814 +8815 +644 +8816 +8817 +8818 +8819 +8820 +8821 +8822 +8823 +8824 +8825 +8826 +8827 +8828 +8829 +8830 +8831 +645 +646 +8832 +8833 +8834 +647 +8835 +8836 +8837 +8838 +8839 +8840 +8841 +8842 +8843 +8844 +8845 +8846 +8847 +8848 +8849 +648 +8850 +649 +8851 +8852 +8853 +8854 +8855 +8856 +8857 +8858 +8859 +8860 +8861 +8862 +8863 +8864 +8865 +8866 +8867 +8868 +8869 +8870 +8871 +8872 +8873 +8874 +8875 +8876 +8877 +8878 +8879 +8880 +8881 +8882 +8883 +8884 +8885 +8886 +8887 +8888 +650 +8889 +8890 +8891 +651 +8892 +8893 +8894 +8895 +8896 +8897 +8898 +8899 +652 +8900 +8901 +653 +8902 +8903 +8904 +8905 +8906 +8907 +8908 +8909 +8910 +8911 +8912 +8913 +8914 +8915 +8916 +8917 +8918 +8919 +8920 +8921 +8922 +8923 +8924 +8925 +654 +8926 +8927 +8928 +655 +8929 +656 +8930 +8931 +8932 +8933 +8934 +8935 +8936 +657 +8937 +8938 +8939 +658 +8940 +8941 +659 +8942 +8943 +8944 +8945 +660 +8946 +8947 +8948 +661 +662 +8949 +8950 +8951 +8952 +8953 +8954 +8955 +8956 +8957 +8958 +663 +8959 +8960 +8961 +8962 +664 +8963 +8964 +8965 +8966 +8967 +8968 +8969 +8970 +8971 +8972 +8973 +665 +8974 +8975 +8976 +8977 +8978 +8979 +8980 +8981 +8982 +666 +667 +8983 +8984 +668 +669 +8985 +8986 +8987 +8988 +8989 +8990 +8991 +8992 +8993 +8994 +8995 +8996 +670 +8997 +8998 +8999 +9000 +671 +672 +673 +9001 +674 +9002 +9003 +9004 +9005 +9006 +9007 +9008 +675 +9009 +9010 +9011 +9012 +9013 +9014 +9015 +9016 +9017 +9018 +9019 +9020 +9021 +9022 +9023 +9024 +9025 +9026 +9027 +9028 +9029 +9030 +9031 +9032 +9033 +9034 +9035 +9036 +9037 +9038 +9039 +9040 +9041 +9042 +9043 +676 +9044 +9045 +677 +9046 +9047 +9048 +9049 +9050 +9051 +9052 +9053 +9054 +9055 +9056 +9057 +9058 +9059 +9060 +9061 +9062 +9063 +9064 +9065 +9066 +9067 +9068 +9069 +9070 +9071 +678 +9072 +9073 +679 +9074 +9075 +9076 +9077 +9078 +9079 +9080 +9081 +9082 +9083 +9084 +9085 +9086 +9087 +9088 +9089 +9090 +9091 +9092 +9093 +9094 +9095 +9096 +9097 +9098 +9099 +9100 +9101 +9102 +9103 +9104 +9105 +9106 +9107 +9108 +9109 +9110 +9111 +9112 +9113 +9114 +9115 +9116 +9117 +9118 +9119 +9120 +680 +9121 +9122 +9123 +9124 +9125 +9126 +9127 +9128 +9129 +9130 +9131 +9132 +9133 +681 +9134 +9135 +9136 +9137 +9138 +9139 +9140 +9141 +9142 +9143 +9144 +9145 +9146 +9147 +9148 +682 +9149 +9150 +9151 +683 +9152 +9153 +9154 +9155 +9156 +9157 +684 +9158 +9159 +685 +9160 +9161 +9162 +9163 +9164 +9165 +9166 +9167 +9168 +9169 +9170 +9171 +686 +9172 +9173 +9174 +9175 +9176 +9177 +9178 +9179 +9180 +9181 +9182 +9183 +9184 +9185 +9186 +9187 +9188 +9189 +9190 +9191 +9192 +9193 +9194 +9195 +9196 +9197 +9198 +9199 +9200 +9201 +9202 +9203 +9204 +9205 +9206 +9207 +9208 +9209 +687 +9210 +9211 +9212 +9213 +9214 +9215 +9216 +9217 +9218 +9219 +9220 +9221 +9222 +9223 +9224 +9225 +9226 +9227 +688 +9228 +9229 +9230 +9231 +9232 +9233 +9234 +9235 +9236 +9237 +9238 +9239 +9240 +9241 +9242 +9243 +9244 +9245 +9246 +9247 +9248 +9249 +9250 +9251 +9252 +9253 +9254 +9255 +9256 +9257 +9258 +9259 +9260 +9261 +689 +9262 +9263 +690 +9264 +9265 +9266 +9267 +691 +9268 +9269 +9270 +9271 +9272 +9273 +9274 +9275 +9276 +9277 +692 +9278 +9279 +9280 +9281 +9282 +693 +9283 +9284 +9285 +9286 +694 +9287 +695 +9288 +9289 +9290 +9291 +9292 +696 +9293 +697 +9294 +698 +9295 +9296 +9297 +9298 +9299 +9300 +9301 +9302 +9303 +9304 +9305 +9306 +9307 +9308 +9309 +9310 +9311 +9312 +9313 +9314 +9315 +9316 +9317 +9318 +9319 +699 +9320 +9321 +9322 +9323 +9324 +9325 +9326 +9327 +9328 +9329 +9330 +9331 +9332 +9333 +9334 +9335 +9336 +9337 +9338 +700 +9339 +9340 +701 +702 +9341 +9342 +9343 +9344 +9345 +9346 +9347 +9348 +9349 +9350 +9351 +9352 +703 +704 +9353 +9354 +9355 +9356 +9357 +9358 +9359 +9360 +9361 +9362 +9363 +9364 +705 +9365 +9366 +9367 +9368 +9369 +9370 +9371 +9372 +9373 +9374 +9375 +9376 +9377 +9378 +9379 +9380 +706 +9381 +9382 +9383 +9384 +9385 +9386 +9387 +9388 +9389 +9390 +707 +9391 +9392 +9393 +9394 +9395 +9396 +9397 +708 +9398 +9399 +9400 +9401 +9402 +9403 +9404 +9405 +9406 +9407 +9408 +9409 +9410 +9411 +9412 +9413 +9414 +9415 +9416 +9417 +9418 +9419 +9420 +709 +710 +9421 +9422 +9423 +9424 +9425 +9426 +9427 +9428 +9429 +9430 +9431 +9432 +9433 +9434 +9435 +9436 +9437 +9438 +9439 +9440 +9441 +9442 +9443 +711 +9444 +9445 +9446 +9447 +9448 +9449 +9450 +9451 +9452 +9453 +9454 +9455 +9456 +9457 +9458 +712 +9459 +9460 +9461 +9462 +9463 +9464 +9465 +9466 +9467 +9468 +9469 +713 +9470 +9471 +9472 +9473 +9474 +9475 +9476 +9477 +9478 +9479 +9480 +9481 +9482 +9483 +714 +715 +9484 +716 +9485 +9486 +717 +9487 +9488 +9489 +9490 +9491 +9492 +718 +9493 +9494 +9495 +9496 +9497 +9498 +9499 +9500 +719 +9501 +9502 +9503 +720 +9504 +9505 +9506 +721 +9507 +9508 +9509 +9510 +9511 +9512 +9513 +9514 +9515 +9516 +9517 +9518 +9519 +9520 +9521 +9522 +9523 +9524 +9525 +9526 +722 +9527 +9528 +9529 +9530 +9531 +9532 +9533 +9534 +9535 +723 +9536 +9537 +9538 +9539 +9540 +9541 +9542 +9543 +9544 +9545 +724 +9546 +9547 +9548 +9549 +9550 +9551 +9552 +725 +9553 +9554 +9555 +9556 +9557 +9558 +9559 +9560 +9561 +9562 +9563 +9564 +9565 +9566 +9567 +726 +9568 +9569 +9570 +9571 +727 +9572 +9573 +9574 +9575 +9576 +9577 +9578 +9579 +9580 +728 +9581 +9582 +9583 +9584 +9585 +9586 +9587 +9588 +9589 +9590 +9591 +729 +9592 +9593 +9594 +9595 +9596 +9597 +9598 +9599 +9600 +9601 +9602 +9603 +9604 +9605 +9606 +9607 +9608 +9609 +9610 +9611 +9612 +9613 +730 +9614 +9615 +9616 +9617 +9618 +9619 +731 +9620 +9621 +9622 +9623 +9624 +9625 +9626 +9627 +9628 +9629 +9630 +9631 +9632 +9633 +9634 +9635 +9636 +9637 +9638 +9639 +9640 +9641 +9642 +732 +733 +9643 +9644 +9645 +9646 +734 +9647 +9648 +9649 +9650 +9651 +9652 +9653 +9654 +9655 +735 +9656 +9657 +9658 +9659 +9660 +9661 +9662 +9663 +736 +9664 +9665 +9666 +737 +9667 +9668 +9669 +9670 +9671 +9672 +9673 +9674 +9675 +9676 +9677 +9678 +9679 +9680 +9681 +9682 +9683 +9684 +9685 +9686 +9687 +9688 +9689 +9690 +9691 +9692 +9693 +9694 +9695 +9696 +9697 +9698 +9699 +9700 +9701 +738 +9702 +9703 +9704 +9705 +9706 +9707 +9708 +739 +9709 +9710 +9711 +9712 +9713 +9714 +9715 +9716 +9717 +9718 +9719 +9720 +9721 +9722 +740 +9723 +9724 +9725 +9726 +9727 +9728 +9729 +9730 +9731 +9732 +741 +9733 +9734 +9735 +9736 +9737 +9738 +9739 +9740 +9741 +9742 +9743 +9744 +9745 +9746 +9747 +9748 +9749 +9750 +9751 +9752 +9753 +9754 +9755 +9756 +9757 +9758 +742 +9759 +9760 +743 +9761 +9762 +9763 +9764 +9765 +9766 +9767 +9768 +744 +745 +9769 +9770 +9771 +9772 +9773 +9774 +9775 +9776 +9777 +9778 +9779 +9780 +9781 +9782 +9783 +9784 +9785 +9786 +9787 +9788 +9789 +9790 +9791 +9792 +9793 +9794 +9795 +9796 +9797 +746 +9798 +9799 +9800 +9801 +9802 +9803 +9804 +9805 +9806 +9807 +9808 +9809 +9810 +9811 +9812 +9813 +9814 +9815 +9816 +9817 +9818 +747 +9819 +9820 +9821 +9822 +9823 +9824 +9825 +9826 +748 +9827 +9828 +9829 +9830 +9831 +9832 +9833 +9834 +9835 +9836 +9837 +9838 +9839 +9840 +9841 +9842 +9843 +9844 +9845 +9846 +9847 +9848 +9849 +9850 +9851 +9852 +9853 +9854 +9855 +9856 +9857 +749 +750 +9858 +9859 +9860 +9861 +9862 +9863 +9864 +9865 +9866 +9867 +9868 +9869 +9870 +9871 +751 +9872 +9873 +9874 +9875 +9876 +9877 +9878 +9879 +752 +9880 +9881 +9882 +9883 +9884 +753 +9885 +9886 +9887 +754 +9888 +9889 +9890 +9891 +9892 +9893 +9894 +9895 +9896 +9897 +9898 +9899 +755 +9900 +9901 +9902 +9903 +9904 +9905 +9906 +9907 +9908 +9909 +9910 +9911 +9912 +9913 +9914 +9915 +9916 +756 +9917 +9918 +9919 +9920 +9921 +9922 +9923 +9924 +9925 +9926 +9927 +9928 +9929 +9930 +9931 +9932 +9933 +9934 +9935 +9936 +9937 +9938 +9939 +9940 +9941 +9942 +9943 +9944 +9945 +9946 +9947 +9948 +9949 +9950 +9951 +9952 +9953 +9954 +9955 +9956 +9957 +9958 +9959 +9960 +9961 +9962 +9963 +9964 +9965 +9966 +9967 +9968 +9969 +9970 +9971 +9972 +9973 +9974 +9975 +9976 +9977 +9978 +9979 +9980 +9981 +757 +9982 +9983 +9984 +9985 +9986 +9987 +9988 +9989 +9990 +9991 +9992 +758 +9993 +9994 +9995 +9996 +9997 +9998 +9999 +759 +10000 +10001 +10002 +10003 +10004 +10005 +760 +10006 +10007 +10008 +10009 +10010 +10011 +10012 +10013 +10014 +10015 +761 +10016 +10017 +10018 +10019 +10020 +10021 +10022 +10023 +10024 +10025 +10026 +10027 +10028 +10029 +10030 +10031 +10032 +10033 +10034 +10035 +10036 +10037 +10038 +762 +10039 +10040 +10041 +10042 +10043 +10044 +10045 +10046 +10047 +10048 +10049 +10050 +10051 +10052 +10053 +10054 +10055 +763 +10056 +10057 +10058 +10059 +10060 +10061 +10062 +10063 +10064 +10065 +10066 +10067 +10068 +10069 +10070 +10071 +10072 +10073 +764 +10074 +10075 +10076 +10077 +10078 +10079 +10080 +10081 +10082 +10083 +10084 +10085 +10086 +10087 +10088 +10089 +10090 +10091 +10092 +10093 +10094 +10095 +10096 +10097 +10098 +10099 +10100 +10101 +10102 +10103 +10104 +10105 +10106 +10107 +10108 +10109 +10110 +10111 +10112 +765 +10113 +10114 +10115 +10116 +10117 +10118 +10119 +10120 +10121 +10122 +10123 +10124 +10125 +10126 +10127 +10128 +10129 +10130 +10131 +10132 +10133 +10134 +10135 +10136 +10137 +10138 +10139 +10140 +10141 +10142 +10143 +10144 +10145 +10146 +10147 +10148 +10149 +10150 +10151 +10152 +10153 +10154 +10155 +10156 +766 +10157 +10158 +10159 +10160 +10161 +10162 +10163 +10164 +10165 +10166 +10167 +10168 +10169 +10170 +10171 +10172 +10173 +10174 +10175 +10176 +10177 +10178 +10179 +10180 +10181 +10182 +10183 +10184 +10185 +10186 +10187 +767 +10188 +10189 +10190 +10191 +768 +10192 +769 +10193 +10194 +10195 +10196 +10197 +10198 +770 +10199 +10200 +10201 +10202 +10203 +10204 +10205 +10206 +10207 +10208 +10209 +10210 +10211 +10212 +10213 +10214 +10215 +10216 +10217 +10218 +10219 +10220 +10221 +10222 +10223 +10224 +771 +10225 +10226 +10227 +10228 +10229 +10230 +10231 +10232 +10233 +10234 +10235 +10236 +772 +10237 +10238 +10239 +10240 +10241 +10242 +10243 +10244 +10245 +10246 +10247 +10248 +10249 +10250 +10251 +10252 +10253 +10254 +10255 +10256 +773 +10257 +10258 +10259 +10260 +10261 +10262 +10263 +10264 +774 +10265 +10266 +10267 +10268 +10269 +10270 +10271 +10272 +10273 +10274 +10275 +775 +10276 +10277 +10278 +10279 +10280 +10281 +10282 +10283 +10284 +10285 +10286 +10287 +10288 +10289 +10290 +10291 +10292 +10293 +10294 +10295 +776 +10296 +777 +10297 +10298 +778 +10299 +10300 +10301 +10302 +10303 +10304 +10305 +10306 +10307 +10308 +10309 +10310 +10311 +10312 +10313 +779 +10314 +10315 +780 +10316 +10317 +10318 +10319 +10320 +10321 +10322 +10323 +10324 +10325 +10326 +781 +10327 +10328 +10329 +10330 +10331 +10332 +10333 +10334 +782 +10335 +10336 +783 +10337 +10338 +784 +10339 +10340 +10341 +10342 +10343 +10344 +10345 +10346 +10347 +10348 +10349 +10350 +10351 +10352 +10353 +10354 +10355 +10356 +10357 +10358 +10359 +10360 +10361 +10362 +10363 +10364 +10365 +10366 +10367 +10368 +10369 +10370 +10371 +785 +10372 +10373 +10374 +10375 +10376 +10377 +10378 +10379 +10380 +10381 +10382 +10383 +10384 +10385 +10386 +10387 +10388 +10389 +10390 +10391 +10392 +10393 +10394 +10395 +10396 +10397 +10398 +10399 +10400 +10401 +10402 +10403 +10404 +10405 +10406 +10407 +10408 +10409 +10410 +10411 +10412 +10413 +10414 +10415 +10416 +10417 +10418 +10419 +10420 +10421 +10422 +10423 +10424 +10425 +10426 +10427 +10428 +10429 +10430 +10431 +10432 +10433 +10434 +10435 +10436 +10437 +10438 +786 +10439 +10440 +10441 +10442 +10443 +10444 +10445 +10446 +10447 +10448 +10449 +10450 +10451 +10452 +10453 +10454 +10455 +10456 +10457 +10458 +10459 +10460 +10461 +10462 +10463 +10464 +10465 +10466 +10467 +10468 +10469 +10470 +10471 +10472 +10473 +10474 +10475 +10476 +10477 +10478 +10479 +10480 +10481 +10482 +10483 +10484 +10485 +10486 +10487 +787 +10488 +10489 +10490 +10491 +10492 +10493 +10494 +10495 +10496 +10497 +10498 +10499 +10500 +10501 +10502 +10503 +10504 +10505 +10506 +10507 +10508 +10509 +10510 +10511 +10512 +10513 +10514 +788 +10515 +10516 +789 +10517 +10518 +10519 +10520 +10521 +10522 +790 +791 +10523 +10524 +10525 +10526 +10527 +10528 +10529 +10530 +10531 +10532 +10533 +10534 +10535 +10536 +10537 +10538 +792 +10539 +10540 +10541 +10542 +793 +794 +10543 +10544 +10545 +10546 +10547 +10548 +10549 +10550 +10551 +10552 +10553 +10554 +10555 +10556 +10557 +10558 +10559 +10560 +10561 +10562 +10563 +10564 +10565 +10566 +10567 +10568 +10569 +10570 +10571 +10572 +10573 +10574 +10575 +10576 +10577 +10578 +10579 +10580 +10581 +10582 +10583 +10584 +10585 +10586 +10587 +10588 +10589 +10590 +10591 +10592 +10593 +10594 +10595 +10596 +10597 +10598 +10599 +10600 +10601 +10602 +10603 +10604 +10605 +10606 +10607 +10608 +10609 +10610 +10611 +10612 +10613 +10614 +10615 +10616 +795 +10617 +10618 +10619 +10620 +10621 +10622 +10623 +10624 +10625 +796 +10626 +10627 +10628 +10629 +10630 +10631 +10632 +10633 +10634 +10635 +10636 +10637 +10638 +10639 +10640 +10641 +10642 +10643 +10644 +10645 +10646 +10647 +10648 +10649 +10650 +10651 +10652 +797 +10653 +10654 +10655 +10656 +10657 +10658 +10659 +10660 +10661 +10662 +10663 +798 +10664 +799 +10665 +10666 +10667 +10668 +10669 +10670 +10671 +10672 +10673 +10674 +10675 +10676 +10677 +10678 +10679 +10680 +10681 +10682 +10683 +10684 +10685 +800 +10686 +10687 +10688 +10689 +10690 +10691 +10692 +10693 +10694 +10695 +10696 +10697 +10698 +10699 +10700 +10701 +10702 +10703 +10704 +10705 +10706 +10707 +10708 +10709 +10710 +10711 +10712 +10713 +10714 +10715 +10716 +801 +10717 +10718 +802 +803 +10719 +10720 +10721 +10722 +10723 +10724 +10725 +10726 +804 +10727 +805 +806 +10728 +10729 +10730 +10731 +10732 +10733 +10734 +10735 +10736 +10737 +10738 +10739 +10740 +10741 +10742 +807 +10743 +10744 +10745 +10746 +10747 +10748 +10749 +808 +10750 +10751 +10752 +10753 +10754 +10755 +10756 +10757 +10758 +10759 +10760 +10761 +10762 +10763 +809 +10764 +10765 +10766 +10767 +10768 +10769 +10770 +10771 +810 +10772 +10773 +811 +10774 +10775 +812 +10776 +10777 +10778 +10779 +10780 +10781 +10782 +10783 +10784 +10785 +10786 +10787 +10788 +10789 +10790 +10791 +10792 +10793 +10794 +10795 +10796 +10797 +813 +10798 +10799 +10800 +10801 +10802 +10803 +10804 +10805 +10806 +10807 +10808 +10809 +10810 +814 +10811 +10812 +10813 +10814 +10815 +10816 +10817 +10818 +815 +10819 +10820 +816 +10821 +10822 +10823 +10824 +10825 +10826 +10827 +10828 +10829 +10830 +10831 +10832 +10833 +10834 +10835 +10836 +10837 +10838 +10839 +10840 +10841 +10842 +10843 +10844 +10845 +10846 +10847 +10848 +10849 +10850 +10851 +10852 +10853 +10854 +10855 +10856 +10857 +10858 +817 +10859 +10860 +10861 +10862 +10863 +818 +10864 +10865 +10866 +10867 +10868 +10869 +10870 +10871 +10872 +10873 +10874 +10875 +10876 +10877 +10878 +10879 +10880 +10881 +10882 +10883 +10884 +10885 +10886 +10887 +10888 +10889 +10890 +10891 +10892 +10893 +10894 +10895 +10896 +10897 +10898 +10899 +10900 +10901 +10902 +10903 +10904 +10905 +819 +10906 +10907 +10908 +10909 +10910 +10911 +10912 +10913 +10914 +10915 +10916 +10917 +10918 +10919 +10920 +10921 +10922 +10923 +10924 +10925 +10926 +10927 +10928 +10929 +10930 +10931 +10932 +10933 +10934 +10935 +10936 +10937 +10938 +10939 +10940 +10941 +10942 +10943 +10944 +10945 +10946 +10947 +10948 +10949 +10950 +10951 +10952 +10953 +10954 +820 +10955 +10956 +10957 +10958 +10959 +821 +822 +10960 +10961 +10962 +10963 +10964 +10965 +10966 +10967 +10968 +10969 +10970 +10971 +10972 +10973 +10974 +10975 +10976 +10977 +10978 +10979 +10980 +10981 +10982 +823 +10983 +10984 +10985 +10986 +10987 +10988 +10989 +10990 +10991 +10992 +10993 +10994 +10995 +10996 +10997 +10998 +10999 +11000 +11001 +11002 +11003 +11004 +11005 +11006 +11007 +11008 +11009 +11010 +11011 +824 +11012 +11013 +825 +11014 +11015 +11016 +11017 +11018 +11019 +11020 +826 +11021 +11022 +11023 +11024 +11025 +11026 +11027 +11028 +11029 +11030 +827 +11031 +11032 +11033 +11034 +11035 +11036 +11037 +11038 +11039 +11040 +11041 +828 +11042 +11043 +11044 +11045 +11046 +11047 +11048 +11049 +11050 +829 +11051 +11052 +830 +11053 +11054 +11055 +11056 +11057 +11058 +11059 +11060 +11061 +11062 +11063 +11064 +11065 +11066 +11067 +11068 +11069 +11070 +11071 +11072 +11073 +11074 +11075 +831 +11076 +11077 +11078 +11079 +11080 +832 +11081 +11082 +11083 +11084 +11085 +11086 +833 +11087 +11088 +11089 +11090 +11091 +11092 +11093 +11094 +11095 +11096 +11097 +11098 +11099 +11100 +834 +11101 +11102 +11103 +11104 +11105 +11106 +11107 +11108 +11109 +11110 +835 +11111 +11112 +11113 +836 +837 +11114 +11115 +11116 +11117 +838 +11118 +11119 +11120 +11121 +11122 +11123 +11124 +11125 +11126 +11127 +11128 +11129 +11130 +11131 +11132 +11133 +11134 +11135 +11136 +11137 +11138 +11139 +11140 +11141 +11142 +11143 +11144 +11145 +11146 +11147 +11148 +11149 +11150 +11151 +11152 +11153 +11154 +11155 +11156 +11157 +11158 +839 +11159 +11160 +11161 +840 +11162 +11163 +11164 +11165 +11166 +11167 +11168 +11169 +11170 +11171 +11172 +11173 +11174 +11175 +841 +11176 +11177 +11178 +11179 +842 +11180 +843 +11181 +844 +11182 +11183 +11184 +11185 +11186 +11187 +11188 +11189 +11190 +11191 +11192 +11193 +11194 +11195 +11196 +11197 +11198 +845 +11199 +11200 +11201 +11202 +11203 +11204 +11205 +11206 +11207 +846 +11208 +11209 +11210 +11211 +11212 +11213 +11214 +11215 +11216 +11217 +11218 +11219 +11220 +11221 +11222 +11223 +11224 +11225 +11226 +11227 +11228 +11229 +11230 +11231 +11232 +11233 +11234 +11235 +11236 +11237 +11238 +11239 +11240 +11241 +11242 +11243 +11244 +11245 +11246 +847 +11247 +11248 +11249 +11250 +11251 +11252 +11253 +11254 +11255 +11256 +11257 +11258 +11259 +11260 +848 +11261 +11262 +11263 +11264 +11265 +11266 +11267 +11268 +11269 +11270 +11271 +11272 +11273 +11274 +11275 +11276 +11277 +11278 +11279 +11280 +11281 +11282 +11283 +11284 +11285 +11286 +849 +11287 +11288 +11289 +11290 +11291 +11292 +11293 +11294 +11295 +11296 +11297 +11298 +11299 +11300 +11301 +11302 +11303 +11304 +11305 +11306 +11307 +11308 +11309 +11310 +11311 +11312 +11313 +11314 +11315 +11316 +851 +11317 +11318 +11319 +11320 +11321 +11322 +11323 +11324 +11325 +11326 +11327 +11328 +11329 +11330 +11331 +11332 +11333 +852 +11334 +11335 +11336 +11337 +11338 +11339 +11340 +11341 +11342 +11343 +11344 +11345 +11346 +11347 +11348 +11349 +11350 +11351 +11352 +11353 +11354 +11355 +11356 +11357 +11358 +11359 +11360 +11361 +11362 +11363 +11364 +11365 +11366 +11367 +853 +11368 +854 +11369 +11370 +11371 +11372 +11373 +11374 +11375 +11376 +11377 +11378 +11379 +11380 +11381 +11382 +11383 +11384 +11385 +11386 +855 +11387 +11388 +11389 +11390 +11391 +11392 +11393 +11394 +11395 +11396 +11397 +11398 +856 +11399 +11400 +11401 +857 +11402 +11403 +11404 +11405 +11406 +11407 +11408 +11409 +11410 +11411 +11412 +11413 +11414 +11415 +11416 +11417 +11418 +11419 +11420 +858 +11421 +11422 +11423 +11424 +11425 +11426 +11427 +11428 +11429 +11430 +11431 +11432 +11433 +11434 +11435 +11436 +11437 +11438 +11439 +11440 +11441 +11442 +11443 +11444 +11445 +11446 +859 +11447 +11448 +11449 +11450 +860 +11451 +11452 +11453 +11454 +11455 +11456 +11457 +11458 +11459 +11460 +11461 +11462 +11463 +11464 +11465 +11466 +11467 +11468 +11469 +861 +11470 +11471 +11472 +11473 +11474 +11475 +11476 +11477 +11478 +11479 +11480 +11481 +11482 +11483 +11484 +11485 +11486 +11487 +11488 +11489 +11490 +11491 +11492 +11493 +11494 +11495 +11496 +11497 +11498 +11499 +11500 +11501 +11502 +11503 +11504 +862 +11505 +11506 +11507 +11508 +11509 +11510 +11511 +11512 +11513 +863 +11514 +11515 +11516 +11517 +11518 +11519 +11520 +11521 +11522 +11523 +11524 +864 +11525 +11526 +865 +11527 +11528 +11529 +11530 +11531 +11532 +11533 +11534 +866 +11535 +11536 +11537 +11538 +11539 +867 +11540 +11541 +11542 +11543 +11544 +11545 +11546 +11547 +11548 +11549 +11550 +11551 +11552 +11553 +11554 +11555 +11556 +11557 +11558 +11559 +11560 +11561 +11562 +11563 +11564 +11565 +11566 +11567 +11568 +868 +11569 +11570 +11571 +11572 +11573 +11574 +11575 +11576 +11577 +11578 +11579 +869 +11580 +11581 +11582 +11583 +11584 +11585 +11586 +11587 +11588 +11589 +11590 +11591 +11592 +11593 +11594 +11595 +870 +11596 +11597 +871 +11598 +11599 +11600 +872 +11601 +11602 +11603 +11604 +873 +11605 +11606 +11607 +11608 +874 +875 +11609 +11610 +11611 +11612 +11613 +11614 +11615 +11616 +11617 +11618 +11619 +11620 +11621 +11622 +11623 +11624 +11625 +11626 +11627 +11628 +11629 +11630 +876 +11631 +11632 +11633 +11634 +11635 +11636 +11637 +11638 +11639 +11640 +11641 +11642 +11643 +11644 +11645 +11646 +11647 +11648 +11649 +11650 +11651 +11652 +11653 +11654 +11655 +11656 +11657 +11658 +877 +11659 +11660 +11661 +11662 +11663 +11664 +11665 +11666 +11667 +11668 +11669 +11670 +11671 +11672 +11673 +11674 +11675 +11676 +11677 +11678 +11679 +878 +11680 +11681 +11682 +11683 +11684 +11685 +11686 +879 +11687 +11688 +11689 +11690 +11691 +11692 +11693 +11694 +880 +11695 +11696 +11697 +11698 +11699 +11700 +11701 +11702 +881 +11703 +11704 +11705 +11706 +11707 +11708 +11709 +11710 +11711 +882 +11712 +11713 +11714 +11715 +11716 +11717 +11718 +11719 +11720 +11721 +11722 +11723 +11724 +11725 +11726 +11727 +883 +884 +11728 +11729 +11730 +11731 +11732 +11733 +885 +11734 +886 +11735 +11736 +11737 +11738 +11739 +11740 +11741 +11742 +11743 +11744 +11745 +11746 +11747 +11748 +11749 +11750 +11751 +11752 +887 +11753 +11754 +888 +11755 +11756 +11757 +11758 +11759 +11760 +11761 +11762 +11763 +11764 +11765 +11766 +11767 +11768 +11769 +11770 +11771 +11772 +11773 +11774 +889 +11775 +11776 +11777 +11778 +11779 +11780 +11781 +11782 +11783 +890 +11784 +11785 +11786 +11787 +11788 +11789 +11790 +11791 +11792 +11793 +11794 +11795 +11796 +11797 +891 +11798 +11799 +11800 +11801 +11802 +11803 +11804 +11805 +11806 +11807 +11808 +11809 +11810 +11811 +11812 +11813 +11814 +11815 +11816 +892 +893 +11817 +11818 +11819 +11820 +11821 +894 +11822 +11823 +11824 +11825 +895 +11826 +11827 +11828 +11829 +896 +11830 +11831 +897 +11832 +11833 +11834 +11835 +11836 +11837 +11838 +11839 +11840 +11841 +11842 +11843 +11844 +898 +11845 +11846 +11847 +11848 +11849 +11850 +11851 +11852 +11853 +11854 +11855 +11856 +11857 +11858 +11859 +11860 +899 +11861 +11862 +11863 +11864 +11865 +11866 +11867 +11868 +11869 +11870 +900 +11871 +11872 +11873 +11874 +11875 +11876 +11877 +11878 +11879 +11880 +11881 +11882 +11883 +11884 +11885 +11886 +11887 +11888 +11889 +11890 +11891 +11892 +11893 +11894 +11895 +11896 +11897 +11898 +11899 +11900 +11901 +11902 +11903 +11904 +11905 +11906 +11907 +11908 +11909 +11910 +11911 +11912 +11913 +11914 +11915 +11916 +11917 +11918 +11919 +11920 +11921 +11922 +11923 +11924 +11925 +11926 +11927 +11928 +11929 +11930 +11931 +11932 +11933 +11934 +11935 +901 +11936 +902 +11937 +11938 +11939 +11940 +11941 +11942 +11943 +11944 +11945 +11946 +11947 +11948 +11949 +11950 +11951 +11952 +903 +11953 +11954 +11955 +11956 +11957 +11958 +11959 +11960 +11961 +11962 +11963 +11964 +11965 +11966 +11967 +11968 +11969 +11970 +11971 +904 +11972 +905 +11973 +11974 +11975 +11976 +11977 +906 +11978 +11979 +11980 +11981 +907 +11982 +11983 +11984 +11985 +11986 +11987 +908 +11988 +11989 +11990 +11991 +11992 +11993 +11994 +11995 +11996 +11997 +11998 +11999 +12000 +12001 +12002 +12003 +12004 +12005 +12006 +12007 +909 +12008 +12009 +12010 +12011 +12012 +910 +12013 +12014 +12015 +12016 +12017 +12018 +911 +12019 +12020 +12021 +12022 +12023 +12024 +12025 +12026 +12027 +12028 +12029 +12030 +12031 +912 +12032 +12033 +12034 +12035 +12036 +12037 +12038 +913 +12039 +12040 +12041 +12042 +12043 +12044 +12045 +12046 +12047 +12048 +12049 +12050 +12051 +12052 +12053 +12054 +12055 +12056 +12057 +12058 +12059 +12060 +12061 +12062 +12063 +12064 +12065 +914 +12066 +12067 +12068 +915 +12069 +12070 +12071 +12072 +12073 +12074 +12075 +12076 +12077 +12078 +12079 +12080 +12081 +12082 +12083 +12084 +12085 +12086 +12087 +12088 +12089 +12090 +12091 +12092 +12093 +12094 +12095 +12096 +12097 +12098 +12099 +12100 +12101 +12102 +12103 +12104 +12105 +12106 +12107 +12108 +12109 +12110 +12111 +12112 +12113 +12114 +12115 +12116 +12117 +12118 +12119 +12120 +12121 +12122 +12123 +12124 +12125 +12126 +12127 +12128 +12129 +12130 +12131 +12132 +12133 +12134 +12135 +12136 +12137 +12138 +12139 +12140 +12141 +12142 +12143 +12144 +12145 +12146 +12147 +12148 +12149 +12150 +12151 +12152 +12153 +12154 +12155 +12156 +12157 +12158 +12159 +12160 +12161 +12162 +12163 +12164 +12165 +12166 +12167 +12168 +12169 +12170 +12171 +12172 +12173 +12174 +12175 +12176 +12177 +12178 +12179 +12180 +12181 +12182 +12183 +12184 +12185 +12186 +12187 +12188 +12189 +12190 +12191 +12192 +12193 +12194 +12195 +12196 +12197 +12198 +12199 +12200 +12201 +12202 +12203 +12204 +12205 +12206 +12207 +12208 +12209 +12210 +12211 +12212 +12213 +12214 +12215 +12216 +12217 +12218 +12219 +12220 +12221 +12222 +12223 +12224 +12225 +12226 +12227 +12228 +12229 +12230 +12231 +12232 +12233 +12234 +12235 +12236 +12237 +12238 +12239 +12240 +12241 +12242 +12243 +12244 +12245 +12246 +12247 +12248 +12249 +12250 +12251 +12252 +12253 +12254 +12255 +12256 +12257 +12258 +12259 +12260 +12261 +12262 +12263 +12264 +12265 +12266 +12267 +12268 +12269 +12270 +12271 +12272 +12273 +12274 +12275 +12276 +12277 +12278 +12279 +12280 +12281 +12282 +12283 +12284 +12285 +12286 +12287 +12288 +12289 +12290 +12291 +12292 +12293 +12294 +12295 +12296 +12297 +916 +12298 +12299 +12300 +12301 +12302 +12303 +12304 +12305 +12306 +12307 +12308 +12309 +12310 +12311 +917 +12312 +12313 +12314 +12315 +12316 +12317 +12318 +12319 +12320 +918 +12321 +919 +920 +12322 +12323 +12324 +12325 +921 +12326 +12327 +12328 +12329 +12330 +12331 +12332 +12333 +12334 +12335 +12336 +12337 +12338 +12339 +12340 +12341 +12342 +12343 +12344 +12345 +12346 +12347 +12348 +12349 +12350 +12351 +12352 +12353 +12354 +12355 +12356 +12357 +12358 +12359 +12360 +922 +12361 +12362 +12363 +12364 +12365 +12366 +12367 +12368 +12369 +12370 +12371 +12372 +12373 +12374 +12375 +12376 +12377 +12378 +12379 +12380 +12381 +12382 +12383 +12384 +12385 +12386 +12387 +12388 +12389 +12390 +12391 +12392 +12393 +12394 +12395 +12396 +12397 +12398 +12399 +12400 +12401 +12402 +12403 +12404 +12405 +12406 +12407 +12408 +12409 +12410 +12411 +12412 +12413 +12414 +12415 +12416 +12417 +12418 +12419 +12420 +12421 +12422 +12423 +12424 +12425 +923 +12426 +12427 +12428 +12429 +12430 +12431 +12432 +12433 +12434 +12435 +12436 +12437 +12438 +12439 +12440 +12441 +12442 +12443 +12444 +924 +12445 +12446 +12447 +925 +12448 +12449 +12450 +12451 +12452 +12453 +12454 +12455 +12456 +12457 +12458 +12459 +12460 +12461 +12462 +12463 +12464 +12465 +12466 +12467 +12468 +12469 +12470 +12471 +12472 +12473 +12474 +12475 +12476 +12477 +12478 +12479 +12480 +12481 +12482 +12483 +12484 +12485 +12486 +12487 +12488 +12489 +12490 +12491 +12492 +12493 +12494 +12495 +926 +12496 +12497 +12498 +12499 +12500 +12501 +12502 +12503 +12504 +12505 +12506 +12507 +12508 +12509 +12510 +12511 +12512 +12513 +12514 +12515 +12516 +12517 +12518 +12519 +12520 +12521 +12522 +12523 +12524 +12525 +12526 +12527 +12528 +12529 +12530 +12531 +12532 +12533 +12534 +12535 +12536 +12537 +12538 +12539 +12540 +12541 +12542 +12543 +12544 +12545 +12546 +12547 +12548 +12549 +12550 +12551 +12552 +12553 +12554 +12555 +12556 +12557 +12558 +12559 +12560 +12561 +12562 +12563 +12564 +12565 +12566 +12567 +12568 +12569 +12570 +12571 +12572 +12573 +12574 +12575 +12576 +12577 +12578 +12579 +12580 +12581 +12582 +12583 +12584 +12585 +12586 +12587 +12588 +12589 +12590 +12591 +12592 +12593 +12594 +12595 +12596 +12597 +12598 +12599 +12600 +12601 +12602 +12603 +12604 +12605 +12606 +12607 +12608 +12609 +12610 +12611 +12612 +12613 +12614 +12615 +12616 +12617 +12618 +12619 +12620 +12621 +12622 +12623 +12624 +12625 +12626 +12627 +12628 +12629 +12630 +12631 +12632 +927 +12633 +12634 +12635 +12636 +12637 +928 +12638 +12639 +12640 +12641 +12642 +12643 +12644 +12645 +929 +12646 +12647 +12648 +12649 +12650 +12651 +12652 +12653 +12654 +12655 +12656 +12657 +12658 +12659 +12660 +12661 +12662 +12663 +12664 +12665 +12666 +12667 +12668 +12669 +12670 +12671 +12672 +12673 +12674 +12675 +12676 +12677 +12678 +12679 +12680 +12681 +12682 +12683 +12684 +12685 +12686 +12687 +12688 +12689 +12690 +12691 +12692 +12693 +12694 +12695 +12696 +12697 +12698 +12699 +12700 +12701 +12702 +12703 +12704 +12705 +12706 +12707 +12708 +12709 +12710 +12711 +12712 +12713 +12714 +12715 +12716 +12717 +12718 +12719 +12720 +12721 +12722 +12723 +12724 +12725 +12726 +12727 +12728 +12729 +12730 +12731 +12732 +12733 +12734 +12735 +12736 +12737 +12738 +12739 +12740 +12741 +12742 +12743 +12744 +12745 +12746 +12747 +12748 +12749 +12750 +12751 +12752 +12753 +12754 +12755 +12756 +12757 +930 +12758 +12759 +12760 +12761 +12762 +12763 +12764 +12765 +12766 +12767 +12768 +12769 +12770 +12771 +12772 +12773 +12774 +12775 +12776 +12777 +12778 +12779 +12780 +12781 +12782 +12783 +12784 +12785 +12786 +12787 +12788 +12789 +12790 +12791 +12792 +12793 +12794 +12795 +12796 +12797 +12798 +12799 +12800 +12801 +12802 +12803 +12804 +12805 +12806 +12807 +12808 +12809 +12810 +12811 +12812 +12813 +12814 +12815 +12816 +12817 +12818 +12819 +12820 +12821 +12822 +12823 +931 +12824 +12825 +12826 +12827 +12828 +12829 +12830 +12831 +12832 +12833 +12834 +12835 +932 +12836 +12837 +12838 +12839 +12840 +12841 +12842 +12843 +12844 +933 +12845 +934 +12846 +12847 +12848 +12849 +12850 +12851 +12852 +12853 +12854 +12855 +12856 +12857 +12858 +12859 +12860 +12861 +12862 +12863 +12864 +12865 +12866 +12867 +12868 +12869 +12870 +12871 +12872 +12873 +12874 +12875 +12876 +935 +12877 +12878 +12879 +12880 +12881 +12882 +12883 +12884 +12885 +12886 +12887 +12888 +12889 +12890 +12891 +12892 +12893 +12894 +12895 +936 +12896 +12897 +937 +938 +12898 +12899 +12900 +12901 +12902 +12903 +939 +12904 +12905 +12906 +940 +12907 +941 +942 +12908 +12909 +12910 +12911 +12912 +943 +12913 +944 +12914 +12915 +12916 +12917 +12918 +12919 +12920 +12921 +12922 +12923 +12924 +12925 +12926 +12927 +945 +12928 +12929 +12930 +12931 +12932 +12933 +12934 +12935 +12936 +12937 +12938 +12939 +12940 +12941 +12942 +12943 +12944 +12945 +12946 +12947 +12948 +12949 +12950 +12951 +12952 +12953 +12954 +12955 +12956 +12957 +12958 +12959 +12960 +12961 +12962 +12963 +12964 +12965 +12966 +12967 +12968 +12969 +12970 +12971 +12972 +12973 +12974 +12975 +12976 +12977 +12978 +12979 +12980 +12981 +12982 +12983 +12984 +12985 +12986 +12987 +12988 +12989 +12990 +12991 +946 +12992 +12993 +12994 +12995 +12996 +12997 +12998 +12999 +13000 +13001 +13002 +13003 +13004 +13005 +13006 +13007 +13008 +13009 +13010 +13011 +13012 +13013 +13014 +13015 +13016 +13017 +13018 +13019 +13020 +13021 +13022 +13023 +947 +13024 +13025 +13026 +13027 +13028 +13029 +13030 +13031 +13032 +13033 +13034 +13035 +13036 +13037 +13038 +13039 +13040 +13041 +13042 +13043 +13044 +13045 +13046 +13047 +13048 +13049 +13050 +13051 +13052 +13053 +13054 +13055 +13056 +13057 +13058 +13059 +13060 +13061 +13062 +13063 +13064 +13065 +13066 +13067 +13068 +948 +13069 +13070 +13071 +13072 +13073 +13074 +13075 +13076 +13077 +13078 +13079 +13080 +13081 +13082 +13083 +13084 +13085 +13086 +13087 +13088 +949 +13089 +13090 +13091 +13092 +13093 +13094 +13095 +950 +13096 +13097 +13098 +13099 +13100 +13101 +13102 +13103 +13104 +13105 +13106 +13107 +951 +13108 +13109 +13110 +13111 +13112 +13113 +13114 +13115 +13116 +13117 +13118 +13119 +13120 +13121 +13122 +13123 +13124 +13125 +13126 +13127 +13128 +13129 +13130 +13131 +13132 +952 +953 +13133 +954 +13134 +13135 +13136 +13137 +13138 +955 +13139 +13140 +13141 +13142 +13143 +13144 +13145 +13146 +13147 +13148 +13149 +13150 +13151 +13152 +13153 +13154 +13155 +13156 +13157 +13158 +13159 +13160 +13161 +13162 +13163 +13164 +13165 +13166 +13167 +13168 +13169 +13170 +13171 +13172 +13173 +13174 +13175 +13176 +13177 +956 +13178 +13179 +13180 +13181 +13182 +13183 +13184 +13185 +13186 +13187 +13188 +13189 +13190 +13191 +13192 +13193 +13194 +13195 +13196 +13197 +13198 +13199 +13200 +13201 +13202 +13203 +13204 +13205 +13206 +13207 +13208 +13209 +13210 +13211 +13212 +13213 +13214 +13215 +13216 +13217 +13218 +13219 +13220 +13221 +13222 +13223 +13224 +957 +13225 +13226 +13227 +13228 +13229 +13230 +13231 +13232 +13233 +13234 +13235 +13236 +13237 +13238 +13239 +13240 +13241 +13242 +13243 +13244 +13245 +13246 +13247 +13248 +13249 +13250 +13251 +13252 +13253 +13254 +13255 +13256 +13257 +13258 +13259 +13260 +13261 +13262 +13263 +13264 +13265 +13266 +13267 +13268 +13269 +13270 +13271 +958 +13272 +13273 +13274 +13275 +13276 +13277 +13278 +13279 +13280 +13281 +13282 +13283 +13284 +13285 +13286 +13287 +13288 +13289 +13290 +13291 +13292 +13293 +13294 +13295 +13296 +13297 +13298 +13299 +13300 +13301 +13302 +13303 +13304 +13305 +13306 +13307 +13308 +13309 +13310 +13311 +13312 +13313 +13314 +13315 +13316 +13317 +13318 +13319 +13320 +13321 +13322 +13323 +13324 +13325 +13326 +13327 +13328 +13329 +13330 +13331 +13332 +13333 +13334 +13335 +13336 +13337 +13338 +13339 +13340 +13341 +13342 +13343 +13344 +13345 +13346 +13347 +13348 +13349 +13350 +13351 +13352 +13353 +13354 +13355 +13356 +13357 +13358 +13359 +13360 +13361 +13362 +13363 +13364 +13365 +13366 +13367 +13368 +13369 +13370 +13371 +13372 +13373 +13374 +13375 +13376 +13377 +13378 +13379 +13380 +13381 +13382 +13383 +13384 +13385 +13386 +13387 +13388 +13389 +13390 +13391 +13392 +13393 +13394 +13395 +13396 +13397 +13398 +13399 +13400 +13401 +13402 +13403 +13404 +13405 +13406 +13407 +13408 +13409 +13410 +13411 +13412 +13413 +13414 +13415 +13416 +13417 +13418 +13419 +13420 +13421 +13422 +13423 +13424 +13425 +13426 +13427 +13428 +13429 +13430 +13431 +13432 +13433 +13434 +13435 +13436 +13437 +13438 +13439 +13440 +13441 +13442 +13443 +13444 +13445 +13446 +959 +13447 +13448 +13449 +13450 +13451 +13452 +13453 +13454 +13455 +13456 +13457 +13458 +13459 +13460 +13461 +13462 +13463 +13464 +13465 +13466 +13467 +13468 +13469 +13470 +13471 +13472 +13473 +13474 +13475 +13476 +13477 +13478 +13479 +13480 +13481 +13482 +13483 +960 +13484 +13485 +13486 +13487 +13488 +13489 +13490 +13491 +13492 +13493 +13494 +13495 +13496 +13497 +13498 +13499 +13500 +13501 +13502 +13503 +13504 +13505 +13506 +13507 +13508 +13509 +13510 +13511 +13512 +13513 +13514 +13515 +13516 +13517 +13518 +13519 +13520 +13521 +13522 +13523 +13524 +13525 +13526 +13527 +13528 +13529 +13530 +13531 +13532 +13533 +13534 +13535 +13536 +13537 +13538 +13539 +13540 +13541 +13542 +13543 +13544 +13545 +13546 +13547 +13548 +13549 +13550 +13551 +13552 +13553 +13554 +13555 +13556 +13557 +13558 +13559 +13560 +13561 +13562 +13563 +13564 +13565 +13566 +13567 +13568 +13569 +13570 +13571 +13572 +13573 +13574 +13575 +13576 +13577 +13578 +13579 +13580 +13581 +13582 +13583 +13584 +13585 +13586 +13587 +13588 +13589 +13590 +13591 +13592 +13593 +13594 +13595 +13596 +13597 +13598 +13599 +13600 +13601 +13602 +13603 +13604 +13605 +13606 +13607 +13608 +13609 +13610 +13611 +13612 +13613 +13614 +13615 +13616 +13617 +13618 +13619 +13620 +13621 +13622 +13623 +13624 +13625 +13626 +13627 +13628 +13629 +13630 +13631 +13632 +13633 +13634 +13635 +13636 +13637 +13638 +13639 +13640 +13641 +13642 +13643 +13644 +13645 +13646 +13647 +13648 +13649 +13650 +13651 +13652 +961 +13653 +13654 +13655 +13656 +13657 +13658 +13659 +13660 +13661 +13662 +13663 +13664 +13665 +13666 +13667 +13668 +13669 +13670 +13671 +13672 +13673 +13674 +13675 +13676 +13677 +13678 +13679 +13680 +13681 +13682 +13683 +13684 +13685 +13686 +13687 +13688 +13689 +13690 +13691 +13692 +13693 +13694 +13695 +13696 +13697 +13698 +13699 +13700 +13701 +13702 +13703 +13704 +13705 +13706 +13707 +13708 +13709 +13710 +13711 +13712 +13713 +13714 +13715 +13716 +13717 +13718 +13719 +13720 +13721 +13722 +13723 +13724 +13725 +13726 +13727 +962 +13728 +13729 +13730 +13731 +13732 +13733 +13734 +963 +13735 +13736 +13737 +13738 +13739 +13740 +13741 +13742 +13743 +13744 +964 +13745 +13746 +13747 +13748 +13749 +13750 +13751 +13752 +13753 +13754 +13755 +13756 +13757 +13758 +13759 +13760 +13761 +13762 +13763 +13764 +13765 +13766 +13767 +13768 +13769 +13770 +13771 +13772 +13773 +13774 +13775 +13776 +13777 +13778 +13779 +13780 +13781 +13782 +13783 +965 +13784 +13785 +13786 +13787 +13788 +13789 +13790 +13791 +13792 +13793 +13794 +13795 +13796 +13797 +13798 +13799 +13800 +13801 +13802 +13803 +13804 +13805 +13806 +13807 +13808 +13809 +13810 +13811 +13812 +13813 +13814 +13815 +13816 +13817 +13818 +13819 +13820 +13821 +13822 +13823 +13824 +13825 +13826 +13827 +13828 +13829 +13830 +13831 +13832 +13833 +13834 +13835 +13836 +13837 +966 +13838 +13839 +13840 +13841 +13842 +13843 +13844 +13845 +13846 +13847 +13848 +13849 +13850 +13851 +13852 +13853 +13854 +13855 +13856 +13857 +13858 +13859 +13860 +13861 +13862 +13863 +13864 +13865 +13866 +13867 +13868 +13869 +13870 +13871 +13872 +13873 +13874 +13875 +13876 +13877 +13878 +13879 +13880 +13881 +13882 +13883 +13884 +13885 +13886 +13887 +13888 +13889 +13890 +13891 +13892 +13893 +13894 +13895 +13896 +13897 +13898 +13899 +13900 +13901 +13902 +13903 +13904 +13905 +13906 +13907 +13908 +13909 +13910 +13911 +13912 +13913 +13914 +13915 +13916 +13917 +13918 +13919 +13920 +13921 +13922 +13923 +13924 +13925 +13926 +13927 +13928 +13929 +13930 +13931 +13932 +13933 +13934 +13935 +13936 +13937 +13938 +13939 +13940 +13941 +13942 +13943 +13944 +13945 +13946 +13947 +13948 +13949 +13950 +13951 +13952 +13953 +13954 +13955 +13956 +13957 +13958 +13959 +13960 +13961 +13962 +13963 +13964 +13965 +13966 +13967 +13968 +13969 +13970 +13971 +13972 +13973 +13974 +13975 +13976 +13977 +13978 +13979 +13980 +13981 +13982 +13983 +13984 +13985 +13986 +13987 +13988 +13989 +13990 +13991 +13992 +13993 +13994 +13995 +13996 +13997 +13998 +13999 +14000 +14001 +14002 +14003 +14004 +14005 +14006 +14007 +14008 +14009 +14010 +14011 +14012 +14013 +14014 +967 +14015 +14016 +14017 +14018 +14019 +14020 +14021 +14022 +14023 +14024 +14025 +14026 +14027 +14028 +14029 +14030 +14031 +14032 +14033 +14034 +14035 +14036 +14037 +14038 +14039 +14040 +14041 +14042 +14043 +14044 +14045 +14046 +14047 +14048 +14049 +14050 +14051 +14052 +14053 +14054 +14055 +14056 +14057 +14058 +14059 +14060 +14061 +14062 +14063 +14064 +14065 +14066 +14067 +14068 +14069 +14070 +14071 +14072 +14073 +14074 +14075 +14076 +14077 +14078 +14079 +14080 +14081 +14082 +968 +14083 +14084 +14085 +14086 +14087 +14088 +14089 +969 +14090 +14091 +14092 +14093 +14094 +14095 +14096 +14097 +14098 +14099 +14100 +14101 +14102 +14103 +14104 +14105 +14106 +14107 +14108 +14109 +14110 +14111 +14112 +14113 +14114 +14115 +14116 +14117 +14118 +14119 +14120 +14121 +14122 +14123 +14124 +14125 +14126 +14127 +14128 +14129 +14130 +14131 +14132 +14133 +14134 +14135 +14136 +14137 +14138 +14139 +14140 +14141 +14142 +14143 +14144 +14145 +14146 +14147 +14148 +14149 +14150 +14151 +14152 +14153 +14154 +14155 +14156 +14157 +14158 +14159 +14160 +14161 +14162 +14163 +14164 +14165 +14166 +14167 +14168 +14169 +14170 +14171 +14172 +14173 +14174 +14175 +14176 +14177 +14178 +14179 +14180 +14181 +14182 +14183 +14184 +14185 +14186 +14187 +14188 +14189 +14190 +14191 +14192 +14193 +14194 +14195 +14196 +14197 +14198 +14199 +14200 +14201 +14202 +14203 +14204 +14205 +14206 +14207 +14208 +14209 +14210 +14211 +14212 +14213 +14214 +14215 +14216 +14217 +14218 +14219 +14220 +14221 +14222 +14223 +14224 +14225 +14226 +14227 +14228 +14229 +14230 +14231 +14232 +14233 +14234 +14235 +14236 +14237 +14238 +14239 +14240 +14241 +14242 +14243 +14244 +14245 +14246 +14247 +14248 +970 +14249 +14250 +14251 +14252 +14253 +14254 +14255 +14256 +14257 +14258 +14259 +14260 +14261 +14262 +14263 +14264 +14265 +14266 +14267 +14268 +14269 +14270 +14271 +14272 +14273 +14274 +971 +14275 +14276 +14277 +14278 +14279 +14280 +14281 +14282 +14283 +972 +14284 +14285 +14286 +14287 +14288 +14289 +14290 +973 +14291 +14292 +14293 +14294 +14295 +14296 +14297 +14298 +14299 +14300 +14301 +14302 +14303 +14304 +14305 +14306 +14307 +14308 +14309 +14310 +14311 +14312 +14313 +14314 +14315 +14316 +14317 +14318 +14319 +974 +14320 +14321 +14322 +14323 +14324 +14325 +14326 +14327 +14328 +14329 +14330 +14331 +14332 +14333 +14334 +14335 +14336 +14337 +14338 +14339 +14340 +14341 +14342 +14343 +14344 +14345 +14346 +14347 +14348 +975 +14349 +14350 +14351 +14352 +14353 +14354 +14355 +14356 +14357 +14358 +14359 +14360 +14361 +14362 +14363 +14364 +14365 +14366 +14367 +14368 +14369 +14370 +14371 +14372 +14373 +14374 +14375 +14376 +14377 +14378 +14379 +14380 +14381 +14382 +14383 +14384 +14385 +14386 +14387 +14388 +14389 +14390 +976 +14391 +14392 +14393 +14394 +14395 +14396 +14397 +14398 +14399 +14400 +14401 +14402 +14403 +14404 +14405 +14406 +14407 +14408 +14409 +14410 +14411 +977 +14412 +14413 +14414 +14415 +978 +14416 +14417 +14418 +14419 +14420 +14421 +14422 +14423 +14424 +14425 +14426 +14427 +14428 +14429 +14430 +14431 +14432 +14433 +14434 +14435 +14436 +14437 +14438 +14439 +14440 +14441 +14442 +14443 +14444 +14445 +14446 +14447 +14448 +14449 +14450 +14451 +14452 +14453 +14454 +14455 +14456 +14457 +14458 +979 +14459 +14460 +14461 +980 +14462 +14463 +14464 +14465 +14466 +14467 +14468 +14469 +14470 +14471 +14472 +14473 +14474 +14475 +14476 +14477 +14478 +14479 +14480 +14481 +14482 +14483 +14484 +14485 +14486 +14487 +14488 +14489 +14490 +14491 +14492 +14493 +14494 +14495 +14496 +14497 +14498 +14499 +14500 +14501 +14502 +14503 +14504 +14505 +14506 +14507 +14508 +14509 +14510 +14511 +14512 +14513 +14514 +14515 +14516 +14517 +14518 +14519 +14520 +14521 +14522 +14523 +14524 +14525 +14526 +14527 +14528 +14529 +14530 +14531 +14532 +14533 +14534 +14535 +14536 +14537 +14538 +14539 +14540 +14541 +14542 +14543 +14544 +14545 +14546 +14547 +14548 +14549 +14550 +14551 +14552 +14553 +14554 +14555 +14556 +14557 +14558 +14559 +14560 +14561 +14562 +14563 +14564 +14565 +14566 +14567 +14568 +14569 +14570 +14571 +14572 +14573 +14574 +14575 +14576 +14577 +14578 +14579 +14580 +14581 +14582 +14583 +14584 +14585 +14586 +14587 +14588 +14589 +14590 +14591 +14592 +14593 +14594 +14595 +14596 +14597 +14598 +14599 +14600 +14601 +14602 +14603 +14604 +14605 +14606 +14607 +14608 +14609 +14610 +14611 +14612 +14613 +14614 +14615 +14616 +14617 +14618 +14619 +14620 +14621 +14622 +14623 +14624 +14625 +14626 +14627 +14628 +14629 +14630 +14631 +14632 +14633 +14634 +14635 +14636 +14637 +14638 +14639 +14640 +14641 +14642 +14643 +14644 +14645 +14646 +14647 +14648 +14649 +14650 +14651 +14652 +14653 +14654 +14655 +14656 +14657 +14658 +14659 +14660 +14661 +14662 +14663 +14664 +14665 +14666 +14667 +14668 +14669 +14670 +14671 +14672 +14673 +14674 +14675 +14676 +14677 +14678 +14679 +14680 +14681 +14682 +14683 +14684 +14685 +14686 +14687 +14688 +14689 +14690 +14691 +14692 +14693 +14694 +14695 +14696 +14697 +14698 +14699 +14700 +14701 +14702 +14703 +14704 +14705 +14706 +14707 +14708 +14709 +14710 +14711 +14712 +14713 +14714 +14715 +14716 +14717 +14718 +14719 +14720 +14721 +14722 +14723 +14724 +14725 +14726 +14727 +14728 +14729 +14730 +14731 +14732 +14733 +14734 +14735 +14736 +14737 +14738 +14739 +14740 +14741 +14742 +14743 +14744 +14745 +14746 +14747 +14748 +14749 +14750 +14751 +14752 +14753 +14754 +14755 +14756 +14757 +14758 +14759 +14760 +14761 +14762 +14763 +14764 +14765 +14766 +14767 +14768 +14769 +14770 +14771 +14772 +14773 +14774 +14775 +14776 +14777 +14778 +14779 +14780 +14781 +14782 +14783 +14784 +14785 +14786 +14787 +14788 +14789 +14790 +14791 +14792 +14793 +14794 +14795 +14796 +14797 +14798 +14799 +14800 +14801 +14802 +14803 +14804 +14805 +14806 +14807 +14808 +14809 +14810 +14811 +14812 +14813 +14814 +14815 +14816 +14817 +14818 +14819 +14820 +14821 +14822 +14823 +14824 +14825 +14826 +14827 +14828 +14829 +14830 +14831 +14832 +14833 +14834 +14835 +14836 +14837 +14838 +14839 +14840 +14841 +14842 +14843 +14844 +14845 +14846 +14847 +14848 +14849 +14850 +14851 +14852 +14853 +14854 +14855 +14856 +14857 +14858 +14859 +14860 +14861 +14862 +14863 +14864 +14865 +14866 +14867 +14868 +14869 +14870 +14871 +14872 +14873 +14874 +14875 +14876 +14877 +14878 +14879 +14880 +14881 +14882 +14883 +14884 +14885 +14886 +14887 +14888 +14889 +14890 +14891 +14892 +14893 +14894 +14895 +14896 +14897 +14898 +14899 +14900 +14901 +14902 +14903 +14904 +14905 +14906 +14907 +14908 +14909 +14910 +14911 +14912 +14913 +14914 +14915 +14916 +14917 +14918 +14919 +14920 +14921 +14922 +14923 +14924 +14925 +14926 +14927 +14928 +14929 +14930 +14931 +14932 +14933 +14934 +14935 +14936 +14937 +14938 +14939 +14940 +14941 +14942 +14943 +14944 +14945 +14946 +14947 +14948 +14949 +14950 +14951 +14952 +14953 +14954 +14955 +14956 +14957 +14958 +14959 +14960 +14961 +14962 +14963 +14964 +14965 +14966 +14967 +14968 +14969 +14970 +14971 +14972 +14973 +14974 +14975 +14976 +14977 +14978 +14979 +14980 +14981 +14982 +14983 +981 +14984 +14985 +14986 +14987 +14988 +14989 +14990 +14991 +14992 +14993 +14994 +14995 +14996 +14997 +14998 +14999 +15000 +15001 +15002 +15003 +15004 +15005 +15006 +15007 +15008 +15009 +15010 +15011 +15012 +15013 +15014 +15015 +15016 +15017 +15018 +15019 +15020 +15021 +15022 +15023 +15024 +15025 +15026 +15027 +15028 +15029 +15030 +15031 +15032 +15033 +15034 +15035 +15036 +15037 +15038 +15039 +15040 +15041 +15042 +15043 +15044 +15045 +15046 +15047 +15048 +15049 +15050 +15051 +15052 +15053 +15054 +15055 +15056 +15057 +15058 +15059 +15060 +15061 +15062 +15063 +15064 +15065 +15066 +15067 +15068 +15069 +15070 +15071 +15072 +15073 +15074 +15075 +15076 +15077 +15078 +15079 +15080 +15081 +15082 +15083 +15084 +15085 +15086 +15087 +15088 +15089 +15090 +15091 +15092 +15093 +15094 +15095 +15096 +15097 +15098 +15099 +15100 +15101 +15102 +15103 +15104 +15105 +15106 +15107 +15108 +15109 +15110 +15111 +15112 +15113 +15114 +15115 +15116 +15117 +15118 +15119 +15120 +15121 +15122 +15123 +15124 +15125 +15126 +15127 +15128 +15129 +15130 +15131 +15132 +15133 +15134 +15135 +15136 +15137 +15138 +15139 +15140 +15141 +15142 +15143 +15144 +15145 +15146 +15147 +15148 +15149 +15150 +15151 +15152 +15153 +15154 +15155 +15156 +15157 +15158 +15159 +15160 +15161 +15162 +15163 +15164 +15165 +15166 +15167 +15168 +15169 +15170 +15171 +15172 +15173 +15174 +15175 +15176 +15177 +15178 +15179 +15180 +15181 +15182 +15183 +15184 +15185 +15186 +15187 +15188 +15189 +15190 +15191 +15192 +15193 +15194 +15195 +15196 +15197 +15198 +15199 +15200 +15201 +15202 +15203 +15204 +15205 +15206 +15207 +15208 +15209 +15210 +15211 +15212 +15213 +15214 +15215 +15216 +15217 +15218 +15219 +15220 +15221 +15222 +15223 +15224 +15225 +15226 +15227 +15228 +15229 +15230 +15231 +15232 +15233 +15234 +15235 +15236 +15237 +15238 +15239 +15240 +15241 +15242 +15243 +15244 +15245 +15246 +15247 +15248 +15249 +15250 +15251 +15252 +15253 +15254 +15255 +15256 +15257 +15258 +15259 +15260 +15261 +15262 +15263 +15264 +15265 +15266 +15267 +15268 +15269 +15270 +15271 +15272 +15273 +15274 +15275 +15276 +15277 +15278 +15279 +15280 +15281 +15282 +15283 +15284 +15285 +15286 +15287 +15288 +15289 +15290 +15291 +15292 +15293 +15294 +15295 +15296 +15297 +15298 +15299 +15300 +15301 +15302 +15303 +15304 +15305 +15306 +15307 +15308 +15309 +15310 +15311 +15312 +15313 +15314 +15315 +15316 +15317 +15318 +15319 +15320 +15321 +15322 +15323 +15324 +15325 +15326 +15327 +15328 +15329 +15330 +15331 +15332 +15333 +15334 +15335 +15336 +15337 +15338 +15339 +15340 +15341 +15342 +15343 +15344 +15345 +15346 +15347 +15348 +15349 +15350 +15351 +15352 +15353 +15354 +15355 +15356 +15357 +15358 +15359 +15360 +15361 +15362 +15363 +15364 +15365 +15366 +15367 +15368 +15369 +15370 +15371 +15372 +15373 +15374 +15375 +15376 +15377 +15378 +15379 +15380 +15381 +15382 +15383 +15384 +15385 +15386 +15387 +15388 +15389 +15390 +15391 +15392 +15393 +15394 +15395 +15396 +15397 +15398 +15399 +15400 +15401 +15402 +15403 +15404 +15405 +15406 +15407 +15408 +15409 +15410 +15411 +15412 +15413 +15414 +15415 +15416 +15417 +15418 +15419 +15420 +15421 +15422 +15423 +15424 +15425 +15426 +15427 +15428 +15429 +15430 +15431 +15432 +15433 +15434 +15435 +15436 +15437 +15438 +15439 +15440 +15441 +15442 +15443 +15444 +15445 +15446 +15447 +15448 +15449 +15450 +15451 +15452 +15453 +15454 +15455 +15456 +15457 +15458 +15459 +15460 +15461 +15462 +15463 +15464 +15465 +15466 +15467 +15468 +15469 +15470 +15471 +15472 +15473 +15474 +15475 +15476 +15477 +15478 +15479 +15480 +15481 +15482 +15483 +15484 +15485 +15486 +15487 +15488 +15489 +15490 +15491 +15492 +15493 +15494 +15495 +15496 +15497 +15498 +15499 +15500 +15501 +15502 +15503 +15504 +15505 +15506 +15507 +15508 +15509 +15510 +15511 +15512 +15513 +15514 +15515 +15516 +15517 +15518 +15519 +15520 +15521 +15522 +15523 +15524 +15525 +15526 +15527 +15528 +15529 +15530 +15531 +15532 +15533 +15534 +15535 +15536 +15537 +15538 +15539 +15540 +15541 +15542 +15543 +15544 +15545 +15546 +15547 +15548 +15549 +15550 +15551 +15552 +15553 +15554 +15555 +15556 +15557 +15558 +15559 +15560 +15561 +15562 +15563 +15564 +15565 +15566 +15567 +15568 +15569 +15570 +15571 +15572 +15573 +15574 +15575 +15576 +15577 +15578 +15579 +15580 +15581 +15582 +15583 +15584 +15585 +15586 +15587 +15588 +15589 +15590 +15591 +15592 +15593 +15594 +15595 +15596 +15597 +15598 +15599 +15600 +15601 +15602 +15603 +15604 +15605 +15606 +15607 +15608 +15609 +15610 +15611 +15612 +15613 +15614 +15615 +15616 +15617 +15618 +15619 +15620 +15621 +15622 +15623 +15624 +15625 +15626 +15627 +15628 +15629 +15630 +15631 +15632 +15633 +15634 +15635 +15636 +15637 +15638 +15639 +15640 +15641 +15642 +15643 +15644 +15645 +15646 +15647 +15648 +15649 +15650 +15651 +15652 +15653 +15654 +15655 +15656 +15657 +15658 +15659 +15660 +15661 +15662 +15663 +15664 +15665 +15666 +15667 +15668 +15669 +15670 +15671 +15672 +15673 +15674 +15675 +15676 +15677 +15678 +15679 +15680 +15681 +15682 +15683 +15684 +15685 +15686 +15687 +15688 +15689 +15690 +15691 +15692 +15693 +15694 +15695 +15696 +15697 +15698 +15699 +15700 +15701 +15702 +15703 +15704 +15705 +15706 +15707 +15708 +15709 +15710 +15711 +15712 +15713 +15714 +15715 +15716 +15717 +15718 +15719 +15720 +15721 +15722 +15723 +15724 +15725 +15726 +15727 +15728 +15729 +15730 +15731 +15732 +15733 +15734 +15735 +15736 +15737 +15738 +15739 +15740 +15741 +15742 +15743 +15744 +15745 +15746 +15747 +15748 +982 +15749 +15750 +15751 +15752 +15753 +15754 +15755 +15756 +15757 +15758 +15759 +15760 +15761 +15762 +15763 +15764 +15765 +15766 +15767 +15768 +15769 +15770 +15771 +15772 +15773 +15774 +15775 +15776 +15777 +15778 +15779 +15780 +15781 +15782 +15783 +15784 +15785 +15786 +15787 +15788 +15789 +15790 +15791 +15792 +15793 +15794 +15795 +15796 +15797 +15798 +15799 +15800 +15801 +15802 +15803 +15804 +15805 +15806 +15807 +15808 +15809 +15810 +15811 +15812 +15813 +15814 +15815 +15816 +15817 +15818 +15819 +15820 +15821 +15822 +15823 +15824 +15825 +15826 +15827 +15828 +15829 +15830 +15831 +15832 +15833 +15834 +15835 +15836 +15837 +15838 +15839 +15840 +15841 +15842 +15843 +15844 +15845 +15846 +15847 +15848 +15849 +15850 +15851 +15852 +15853 +15854 +15855 +15856 +15857 +15858 +15859 +15860 +15861 +15862 +15863 +15864 +15865 +15866 +15867 +15868 +15869 +15870 +15871 +15872 +15873 +15874 +15875 +15876 +15877 +15878 +15879 +15880 +15881 +15882 +15883 +15884 +15885 +15886 +15887 +15888 +15889 +15890 +15891 +15892 +15893 +15894 +15895 +15896 +15897 +15898 +15899 +15900 +15901 +15902 +15903 +15904 +15905 +15906 +15907 +15908 +15909 +15910 +15911 +15912 +15913 +15914 +15915 +15916 +15917 +15918 +15919 +15920 +15921 +15922 +15923 +15924 +15925 +15926 +15927 +15928 +15929 +15930 +15931 +15932 +15933 +15934 +15935 +15936 +15937 +15938 +15939 +15940 +15941 +15942 +15943 +15944 +15945 +15946 +15947 +15948 +15949 +15950 +15951 +15952 +15953 +15954 +15955 +15956 +15957 +15958 +15959 +15960 +15961 +15962 +15963 +15964 +15965 +15966 +15967 +15968 +15969 +15970 +15971 +15972 +15973 +15974 +15975 +15976 +15977 +15978 +15979 +15980 +15981 +15982 +15983 +15984 +15985 +15986 +15987 +15988 +15989 +15990 +15991 +15992 +15993 +15994 +15995 +15996 +15997 +15998 +15999 +16000 +16001 +16002 +16003 +16004 +16005 +16006 +16007 +16008 +16009 +16010 +16011 +16012 +16013 +16014 +16015 +16016 +16017 +16018 +16019 +16020 +16021 +16022 +16023 +16024 +16025 +16026 +16027 +16028 +16029 +16030 +16031 +16032 +16033 +16034 +16035 +16036 +16037 +16038 +16039 +16040 +16041 +16042 +16043 +16044 +16045 +16046 +16047 +16048 +16049 +16050 +16051 +16052 +16053 +16054 +16055 +16056 +16057 +16058 +16059 +16060 +16061 +16062 +16063 +16064 +16065 +16066 +16067 +16068 +16069 +16070 +16071 +16072 +16073 +16074 +16075 +16076 +16077 +16078 +16079 +16080 +16081 +16082 +16083 +16084 +16085 +16086 +16087 +16088 +16089 +16090 +16091 +16092 +16093 +16094 +16095 +16096 +16097 +16098 +16099 +16100 +16101 +16102 +16103 +16104 +16105 +16106 +16107 +16108 +16109 +16110 +16111 +16112 +16113 +16114 +16115 +16116 +16117 +16118 +16119 +16120 +16121 +16122 +16123 +16124 +16125 +16126 +16127 +16128 +16129 +16130 +16131 +16132 +16133 +16134 +16135 +16136 +16137 +16138 +16139 +16140 +16141 +16142 +16143 +16144 +16145 +16146 +16147 +16148 +16149 +16150 +16151 +16152 +16153 +16154 +16155 +16156 +16157 +16158 +16159 +16160 +16161 +16162 +16163 +16164 +16165 +16166 +16167 +16168 +16169 +16170 +16171 +16172 +16173 +16174 +16175 +16176 +16177 +16178 +16179 +16180 +16181 +16182 +16183 +16184 +16185 +16186 +16187 +16188 +16189 +16190 +16191 +16192 +16193 +16194 +16195 +16196 +16197 +16198 +16199 +16200 +16201 +16202 +16203 +16204 +16205 +16206 +16207 +16208 +16209 +16210 +16211 +16212 +16213 +16214 +16215 +16216 +16217 +16218 +16219 +16220 +16221 +16222 +16223 +16224 +16225 +16226 +16227 +16228 +16229 +16230 +16231 +16232 +16233 +16234 +16235 +16236 +16237 +16238 +16239 +16240 +16241 +16242 +16243 +16244 +16245 +16246 +16247 +16248 +16249 +16250 +16251 +16252 +16253 +16254 +16255 +16256 +16257 +16258 +16259 +16260 +16261 +16262 +16263 +16264 +16265 +16266 +16267 +16268 +16269 +16270 +16271 +16272 +16273 +16274 +16275 +16276 +16277 +16278 +16279 +16280 +16281 +16282 +16283 +16284 +16285 +16286 +16287 +16288 +16289 +16290 +16291 +16292 +16293 +16294 +16295 +16296 +16297 +16298 +16299 +16300 +16301 +16302 +16303 +16304 +16305 +16306 +16307 +16308 +16309 +16310 +16311 +16312 +16313 +16314 +16315 +16316 +16317 +16318 +16319 +16320 +16321 +16322 +16323 +16324 +16325 +16326 +16327 +16328 +16329 +16330 +16331 +16332 +16333 +16334 +16335 +16336 +16337 +16338 +16339 +16340 +16341 +16342 +16343 +16344 +16345 +16346 +16347 +16348 +16349 +16350 +16351 +16352 +16353 +16354 +16355 +16356 +16357 +16358 +16359 +16360 +16361 +16362 +16363 +16364 +16365 +16366 +16367 +16368 +16369 +16370 +16371 +16372 +16373 +16374 +16375 +16376 +16377 +16378 +16379 +16380 +16381 +16382 +16383 +16384 +16385 +16386 +16387 +16388 +16389 +16390 +16391 +16392 +16393 +16394 +16395 +16396 +16397 +16398 +16399 +16400 +16401 +16402 +16403 +16404 +16405 +16406 +16407 +16408 +16409 +16410 +16411 +16412 +16413 +16414 +16415 +16416 +16417 +16418 +16419 +16420 +16421 +16422 +16423 +16424 +16425 +16426 +16427 +16428 +16429 +16430 +16431 +16432 +16433 +16434 +16435 +16436 +16437 +16438 +16439 +16440 +16441 +16442 +16443 +16444 +16445 +16446 +16447 +16448 +16449 +16450 +16451 +16452 +16453 +16454 +16455 +16456 +16457 +16458 +16459 +16460 +16461 +16462 +16463 +16464 +16465 +16466 +16467 +16468 +16469 +16470 +16471 +16472 +16473 +16474 +16475 +16476 +16477 +16478 +16479 +16480 +16481 +16482 +16483 +16484 +16485 +16486 +16487 +16488 +16489 +16490 +16491 +16492 +16493 +16494 +16495 +16496 +16497 +16498 +16499 +16500 +16501 +16502 +16503 +16504 +16505 +16506 +16507 +16508 +16509 +16510 +16511 +16512 +16513 +16514 +16515 +16516 +16517 +16518 +16519 +16520 +16521 +16522 +16523 +16524 +16525 +16526 +16527 +16528 +16529 +16530 +16531 +16532 +16533 +16534 +16535 +16536 +16537 +16538 +16539 +16540 +16541 +16542 +16543 +16544 +16545 +16546 +16547 +16548 +16549 +16550 +16551 +16552 +16553 +16554 +16555 +16556 +16557 +16558 +16559 +16560 +16561 +16562 +16563 +16564 +16565 +16566 +16567 +16568 +16569 +16570 +16571 +16572 +16573 +16574 +16575 +16576 +16577 +16578 +16579 +16580 +16581 +16582 +16583 +16584 +16585 +16586 +16587 +16588 +16589 +16590 +16591 +16592 +16593 +16594 +16595 +16596 +16597 +16598 +16599 +16600 +16601 +16602 +16603 +16604 +16605 +16606 +16607 +16608 +16609 +16610 +16611 +16612 +16613 +16614 +16615 +16616 +16617 +16618 +16619 +16620 +16621 +16622 +16623 +16624 +16625 +16626 +16627 +16628 +16629 +16630 +16631 +16632 +16633 +16634 +16635 +16636 +16637 +16638 +16639 +16640 +16641 +16642 +16643 +16644 +16645 +16646 +16647 +16648 +16649 +16650 +16651 +16652 +16653 +16654 +16655 +16656 +16657 +16658 +16659 +16660 +16661 +16662 +16663 +16664 +16665 +16666 +16667 +16668 +16669 +16670 +16671 +16672 +16673 +16674 +16675 +16676 +16677 +16678 +16679 +16680 +16681 +16682 +16683 +16684 +16685 +16686 +16687 +16688 +16689 +16690 +16691 +16692 +16693 +16694 +16695 +16696 +16697 +16698 +16699 +16700 +16701 +16702 +16703 +16704 +16705 +16706 +16707 +16708 +16709 +16710 +16711 +16712 +16713 +16714 +16715 +16716 +16717 +16718 +16719 +16720 +16721 +16722 +16723 +16724 +16725 +16726 +16727 +16728 +16729 +16730 +16731 +16732 +16733 +16734 +16735 +16736 +16737 +16738 +16739 +16740 +16741 +16742 +16743 +16744 +16745 +16746 +16747 +16748 +16749 +16750 +16751 +16752 +16753 +16754 +16755 +16756 +16757 +16758 +16759 +983 +16760 +16761 +16762 +16763 +16764 +16765 +16766 +16767 +16768 +16769 +16770 +16771 +16772 +16773 +16774 +16775 +16776 +16777 +16778 +16779 +16780 +16781 +16782 +16783 +16784 +16785 +16786 +16787 +16788 +16789 +16790 +16791 +16792 +16793 +16794 +16795 +16796 +16797 +16798 +16799 +16800 +16801 +16802 +16803 +16804 +16805 +16806 +16807 +16808 +16809 +16810 +16811 +16812 +16813 +16814 +16815 +16816 +16817 +16818 +16819 +16820 +16821 +16822 +16823 +16824 +16825 +16826 +16827 +16828 +16829 +16830 +16831 +16832 +16833 +16834 +16835 +16836 +16837 +16838 +16839 +16840 +16841 +16842 +16843 +16844 +16845 +16846 +16847 +16848 +16849 +16850 +16851 +16852 +16853 +16854 +16855 +16856 +16857 +16858 +16859 +16860 +16861 +16862 +16863 +16864 +16865 +16866 +16867 +16868 +16869 +16870 +16871 +16872 +16873 +16874 +16875 +16876 +16877 +16878 +16879 +16880 +16881 +16882 +16883 +16884 +16885 +16886 +16887 +16888 +16889 +16890 +16891 +16892 +16893 +16894 +16895 +16896 +16897 +16898 +16899 +16900 +16901 +16902 +16903 +16904 +16905 +16906 +16907 +16908 +16909 +16910 +16911 +16912 +16913 +16914 +16915 +16916 +16917 +16918 +16919 +16920 +16921 +16922 +16923 +16924 +16925 +16926 +16927 +16928 +16929 +16930 +16931 +16932 +16933 +16934 +16935 +16936 +16937 +16938 +16939 +16940 +16941 +16942 +16943 +16944 +16945 +16946 +16947 +16948 +16949 +16950 +16951 +16952 +16953 +16954 +16955 +16956 +16957 +16958 +16959 +16960 +16961 +16962 +16963 +16964 +16965 +16966 +16967 +16968 +16969 +16970 +16971 +16972 +16973 +16974 +16975 +16976 +16977 +16978 +16979 +16980 +16981 +16982 +16983 +16984 +16985 +16986 +16987 +16988 +16989 +16990 +16991 +16992 +16993 +16994 +16995 +16996 +16997 +16998 +16999 +17000 +17001 +17002 +17003 +17004 +17005 +17006 +17007 +17008 +17009 +17010 +17011 +17012 +17013 +17014 +17015 +17016 +17017 +17018 +17019 +17020 +17021 +17022 +17023 +17024 +17025 +17026 +17027 +17028 +17029 +17030 +17031 +17032 +17033 +17034 +17035 +17036 +17037 +17038 +17039 +17040 +17041 +17042 +17043 +17044 +17045 +17046 +17047 +17048 +17049 +17050 +17051 +17052 +17053 +17054 +17055 +17056 +17057 +17058 +17059 +17060 +17061 +17062 +17063 +17064 +17065 +17066 +17067 +17068 +17069 +17070 +17071 +17072 +17073 +17074 +17075 +17076 +17077 +17078 +17079 +17080 +17081 +17082 +17083 +17084 +17085 +17086 +17087 +17088 +17089 +17090 +17091 +17092 +17093 +17094 +17095 +17096 +17097 +17098 +17099 +17100 +17101 +17102 +17103 +17104 +17105 +17106 +17107 +17108 +17109 +17110 +17111 +17112 +17113 +17114 +17115 +17116 +17117 +17118 +17119 +17120 +17121 +17122 +17123 +17124 +17125 +17126 +17127 +17128 +17129 +17130 +17131 +17132 +17133 +17134 +17135 +17136 +17137 +17138 +17139 +17140 +17141 +17142 +17143 +17144 +17145 +17146 +17147 +17148 +17149 +17150 +17151 +17152 +17153 +17154 +17155 +17156 +17157 +17158 +17159 +17160 +17161 +17162 +17163 +17164 +17165 +17166 +17167 +17168 +17169 +17170 +17171 +17172 +17173 +17174 +17175 +17176 +17177 +17178 +17179 +17180 +17181 +17182 +17183 +17184 +17185 +17186 +17187 +17188 +17189 +17190 +17191 +17192 +17193 +17194 +17195 +17196 +17197 +17198 +17199 +17200 +17201 +17202 +17203 +17204 +17205 +17206 +17207 +17208 +17209 +17210 +17211 +17212 +17213 +17214 +17215 +17216 +17217 +17218 +17219 +17220 +17221 +17222 +17223 +17224 +17225 +17226 +17227 +17228 +17229 +17230 +17231 +17232 +17233 +17234 +17235 +17236 +17237 +17238 +17239 +17240 +17241 +17242 +17243 +17244 +17245 +17246 +17247 +17248 +17249 +17250 +17251 +17252 +17253 +17254 +17255 +17256 +17257 +17258 +17259 +17260 +17261 +17262 +17263 +17264 +17265 +17266 +17267 +17268 +17269 +17270 +17271 +17272 +17273 +17274 +17275 +17276 +17277 +17278 +17279 +17280 +17281 +17282 +17283 +17284 +17285 +17286 +17287 +17288 +17289 +17290 +17291 +17292 +17293 +17294 +17295 +17296 +17297 +17298 +17299 +17300 +17301 +17302 +17303 +17304 +17305 +17306 +17307 +17308 +17309 +17310 +17311 +17312 +17313 +17314 +17315 +17316 +17317 +17318 +17319 +17320 +17321 +17322 +17323 +17324 +17325 +17326 +17327 +17328 +17329 +17330 +17331 +17332 +17333 +17334 +17335 +17336 +17337 +17338 +17339 +17340 +17341 +17342 +17343 +17344 +17345 +17346 +17347 +17348 +17349 +17350 +17351 +17352 +17353 +17354 +17355 +17356 +17357 +17358 +17359 +17360 +17361 +17362 +17363 +17364 +17365 +17366 +17367 +17368 +17369 +17370 +17371 +17372 +17373 +17374 +17375 +17376 +17377 +17378 +17379 +17380 +17381 +17382 +17383 +17384 +17385 +17386 +17387 +17388 +17389 +17390 +17391 +17392 +17393 +17394 +17395 +17396 +17397 +17398 +17399 +17400 +17401 +17402 +17403 +17404 +17405 +17406 +17407 +17408 +17409 +17410 +17411 +17412 +17413 +17414 +17415 +17416 +17417 +17418 +17419 +17420 +17421 +17422 +17423 +17424 +17425 +17426 +17427 +17428 +17429 +17430 +17431 +17432 +17433 +17434 +17435 +17436 +17437 +17438 +17439 +17440 +17441 +17442 +17443 +17444 +17445 +17446 +17447 +17448 +17449 +17450 +17451 +17452 +17453 +17454 +17455 +17456 +17457 +17458 +17459 +17460 +17461 +17462 +17463 +17464 +17465 +17466 +17467 +17468 +17469 +17470 +17471 +17472 +17473 +17474 +17475 +17476 +17477 +17478 +17479 +17480 +17481 +17482 +17483 +17484 +17485 +17486 +17487 +17488 +17489 +17490 +17491 +17492 +17493 +17494 +17495 +17496 +17497 +17498 +17499 +17500 +17501 +17502 +17503 +17504 +17505 +17506 +17507 +17508 +17509 +17510 +17511 +17512 +17513 +17514 +17515 +17516 +17517 +17518 +17519 +17520 +17521 +17522 +17523 +17524 +17525 +17526 +17527 +17528 +17529 +17530 +17531 +17532 +17533 +17534 +17535 +17536 +17537 +17538 +17539 +17540 +17541 +17542 +17543 +17544 +17545 +17546 +17547 +17548 +17549 +17550 +17551 +17552 +17553 +17554 +17555 +17556 +17557 +17558 +17559 +17560 +17561 +17562 +17563 +17564 +17565 +17566 +17567 +17568 +17569 +17570 +17571 +17572 +17573 +17574 +17575 +17576 +17577 +17578 +17579 +17580 +17581 +17582 +17583 +17584 +17585 +17586 +17587 +17588 +17589 +17590 +17591 +17592 +17593 +17594 +17595 +17596 +17597 +17598 +17599 +17600 +17601 +17602 +17603 +17604 +17605 +17606 +17607 +17608 +17609 +17610 +17611 +17612 +17613 +17614 +17615 +17616 +17617 +17618 +17619 +17620 +17621 +17622 +17623 +17624 +17625 +17626 +17627 +17628 +17629 +17630 +17631 +17632 +17633 +17634 +17635 +17636 +17637 +17638 +17639 +17640 +17641 +17642 +17643 +17644 +17645 +17646 +17647 +17648 +17649 +17650 +17651 +17652 +17653 +17654 +17655 +17656 +17657 +17658 +17659 +17660 +17661 +17662 +17663 +17664 +17665 +17666 +17667 +17668 +17669 +17670 +17671 +17672 +17673 +17674 +17675 +17676 +17677 +17678 +17679 +17680 +17681 +17682 +17683 +17684 +17685 +17686 +17687 +17688 +17689 +17690 +17691 +17692 +17693 +17694 +17695 +17696 +17697 +17698 +17699 +17700 +17701 +17702 +17703 +17704 +17705 +17706 +17707 +17708 +17709 +17710 +17711 +17712 +17713 +17714 +17715 +17716 +17717 +17718 +17719 +17720 +17721 +17722 +17723 +17724 +17725 +17726 +17727 +17728 +17729 +17730 +17731 +17732 +17733 +17734 +17735 +17736 +17737 +17738 +17739 +17740 +17741 +17742 +17743 +17744 +17745 +17746 +17747 +17748 +17749 +17750 +17751 +17752 +17753 +17754 +17755 +17756 +17757 +17758 +17759 +17760 +17761 +17762 +17763 +17764 +17765 +17766 +17767 +17768 +17769 +17770 +17771 +17772 +17773 +17774 +17775 +17776 +17777 +17778 +17779 +17780 +17781 +17782 +17783 +17784 +17785 +17786 +17787 +17788 +17789 +17790 +17791 +17792 +17793 +17794 +17795 +17796 +17797 +17798 +17799 +17800 +17801 +17802 +17803 +17804 +17805 +17806 +17807 +17808 +17809 +17810 +17811 +17812 +17813 +17814 +17815 +17816 +17817 +17818 +17819 +17820 +17821 +17822 +17823 +17824 +17825 +17826 +17827 +17828 +17829 +17830 +17831 +17832 +17833 +17834 +17835 +17836 +17837 +17838 +17839 +17840 +17841 +17842 +17843 +17844 +17845 +17846 +17847 +17848 +17849 +17850 +17851 +17852 +17853 +17854 +17855 +17856 +17857 +17858 +17859 +17860 +17861 +17862 +17863 +17864 +17865 +17866 +17867 +17868 +17869 +17870 +17871 +17872 +17873 +17874 +17875 +17876 +17877 +17878 +17879 +17880 +17881 +17882 +17883 +17884 +17885 +17886 +17887 +17888 +17889 +17890 +17891 +17892 +17893 +17894 +17895 +17896 +17897 +17898 +17899 +17900 +17901 +17902 +17903 +17904 +17905 +17906 +17907 +17908 +17909 +17910 +17911 +17912 +17913 +17914 +17915 +17916 +17917 +17918 +17919 +17920 +17921 +17922 +17923 +17924 +17925 +17926 +17927 +17928 +17929 +17930 +17931 +17932 +17933 +17934 +17935 +17936 +17937 +17938 +17939 +17940 +17941 +17942 +17943 +17944 +17945 +17946 +17947 +17948 +17949 +17950 +17951 +17952 +17953 +17954 +17955 +17956 +17957 +17958 +17959 +17960 +17961 +17962 +17963 +17964 +17965 +17966 +17967 +17968 +17969 +17970 +17971 +17972 +17973 +17974 +17975 +17976 +17977 +17978 +17979 +17980 +17981 +17982 +17983 +17984 +17985 +17986 +17987 +17988 +17989 +17990 +17991 +17992 +17993 +17994 +17995 +17996 +17997 +17998 +17999 +18000 +18001 +18002 +18003 +18004 +18005 +18006 +18007 +18008 +18009 +18010 +18011 +18012 +18013 +18014 +18015 +18016 +18017 +18018 +18019 +18020 +18021 +18022 +18023 +18024 +18025 +18026 +18027 +18028 +18029 +18030 +18031 +18032 +18033 +18034 +18035 +18036 +18037 +18038 +18039 +18040 +18041 +18042 +18043 +18044 +18045 +18046 +18047 +18048 +18049 +18050 +18051 +984 +18052 +18053 +18054 +18055 +18056 +18057 +18058 +18059 +18060 +18061 +18062 +18063 +18064 +18065 +18066 +18067 +18068 +18069 +18070 +18071 +18072 +18073 +18074 +18075 +18076 +18077 +18078 +18079 +18080 +18081 +18082 +18083 +18084 +18085 +18086 +18087 +18088 +18089 +18090 +18091 +18092 +18093 +18094 +18095 +18096 +18097 +18098 +18099 +18100 +18101 +18102 +18103 +18104 +18105 +18106 +18107 +18108 +18109 +18110 +18111 +18112 +18113 +18114 +18115 +18116 +18117 +18118 +18119 +18120 +18121 +18122 +18123 +18124 +18125 +18126 +18127 +18128 +18129 +18130 +18131 +18132 +18133 +18134 +18135 +18136 +18137 +18138 +18139 +18140 +18141 +18142 +18143 +18144 +18145 +18146 +18147 +18148 +18149 +18150 +18151 +18152 +18153 +18154 +18155 +18156 +18157 +18158 +18159 +18160 +18161 +18162 +18163 +18164 +18165 +18166 +18167 +18168 +18169 +18170 +18171 +18172 +18173 +18174 +18175 +18176 +18177 +18178 +18179 +18180 +18181 +18182 +18183 +18184 +18185 +18186 +18187 +18188 +18189 +18190 +18191 +18192 +18193 +18194 +18195 +18196 +18197 +18198 +18199 +18200 +18201 +18202 +18203 +18204 +18205 +18206 +18207 +18208 +18209 +18210 +18211 +18212 +18213 +18214 +18215 +18216 +18217 +18218 +985 +18219 +18220 +18221 +18222 +18223 +18224 +18225 +18226 +18227 +18228 +18229 +18230 +18231 +18232 +18233 +18234 +18235 +18236 +18237 +18238 +18239 +18240 +18241 +18242 +18243 +18244 +18245 +18246 +18247 +18248 +18249 +18250 +18251 +18252 +18253 +18254 +18255 +18256 +18257 +18258 +18259 +18260 +18261 +18262 +18263 +18264 +18265 +18266 +18267 +18268 +18269 +18270 +18271 +18272 +18273 +18274 +18275 +18276 +18277 +18278 +18279 +18280 +18281 +18282 +18283 +18284 +18285 +18286 +18287 +18288 +18289 +18290 +18291 +18292 +18293 +18294 +18295 +18296 +18297 +18298 +18299 +18300 +18301 +18302 +18303 +18304 +18305 +18306 +18307 +18308 +18309 +18310 +18311 +18312 +18313 +18314 +18315 +18316 +18317 +18318 +18319 +18320 +18321 +18322 +18323 +18324 +18325 +18326 +18327 +18328 +18329 +18330 +18331 +18332 +18333 +18334 +18335 +18336 +18337 +18338 +18339 +18340 +18341 +18342 +18343 +18344 +18345 +18346 +18347 +18348 +18349 +18350 +18351 +18352 +18353 +18354 +18355 +18356 +18357 +18358 +18359 +18360 +18361 +18362 +18363 +18364 +18365 +18366 +18367 +18368 +18369 +18370 +18371 +18372 +18373 +18374 +18375 +18376 +18377 +18378 +18379 +18380 +18381 +18382 +18383 +18384 +18385 +18386 +18387 +18388 +18389 +18390 +18391 +18392 +18393 +18394 +18395 +18396 +18397 +18398 +18399 +18400 +18401 +18402 +18403 +18404 +18405 +18406 +18407 +18408 +18409 +18410 +18411 +18412 +18413 +18414 +18415 +18416 +18417 +18418 +18419 +18420 +18421 +18422 +18423 +18424 +18425 +18426 +18427 +18428 +18429 +18430 +18431 +18432 +18433 +18434 +18435 +18436 +18437 +18438 +18439 +18440 +18441 +18442 +18443 +18444 +18445 +18446 +18447 +18448 +18449 +18450 +18451 +18452 +18453 +18454 +18455 +18456 +18457 +18458 +18459 +18460 +18461 +18462 +18463 +18464 +18465 +18466 +18467 +18468 +18469 +18470 +18471 +18472 +18473 +18474 +18475 +18476 +18477 +18478 +18479 +18480 +18481 +18482 +18483 +18484 +18485 +18486 +18487 +18488 +18489 +18490 +18491 +18492 +18493 +18494 +18495 +18496 +18497 +18498 +18499 +18500 +18501 +18502 +18503 +18504 +18505 +18506 +18507 +18508 +18509 +18510 +18511 +18512 +18513 +18514 +18515 +18516 +18517 +18518 +18519 +18520 +18521 +18522 +18523 +18524 +18525 +18526 +18527 +18528 +18529 +18530 +18531 +18532 +18533 +18534 +18535 +18536 +18537 +18538 +18539 +18540 +18541 +18542 +18543 +18544 +18545 +18546 +18547 +986 +18548 +18549 +18550 +18551 +18552 +18553 +18554 +18555 +18556 +18557 +18558 +18559 +18560 +18561 +18562 +18563 +18564 +18565 +18566 +18567 +18568 +18569 +18570 +18571 +18572 +18573 +18574 +18575 +18576 +18577 +18578 +18579 +18580 +18581 +18582 +18583 +18584 +18585 +18586 +18587 +18588 +18589 +18590 +18591 +18592 +18593 +18594 +18595 +18596 +18597 +18598 +18599 +18600 +18601 +18602 +18603 +18604 +18605 +18606 +18607 +18608 +18609 +18610 +18611 +18612 +18613 +18614 +18615 +18616 +18617 +18618 +18619 +18620 +18621 +18622 +18623 +18624 +18625 +18626 +18627 +18628 +18629 +18630 +18631 +18632 +18633 +18634 +18635 +18636 +18637 +18638 +18639 +18640 +18641 +18642 +18643 +18644 +18645 +18646 +18647 +18648 +18649 +18650 +18651 +18652 +18653 +18654 +18655 +18656 +18657 +18658 +18659 +18660 +18661 +18662 +18663 +18664 +18665 +18666 +18667 +18668 +18669 +18670 +18671 +18672 +18673 +18674 +18675 +18676 +18677 +18678 +18679 +18680 +18681 +18682 +18683 +18684 +18685 +18686 +18687 +18688 +18689 +18690 +18691 +18692 +18693 +18694 +18695 +18696 +18697 +18698 +18699 +18700 +18701 +18702 +18703 +18704 +18705 +18706 +18707 +18708 +18709 +18710 +18711 +18712 +18713 +18714 +18715 +18716 +18717 +18718 +18719 +18720 +18721 +18722 +18723 +18724 +18725 +18726 +18727 +18728 +18729 +18730 +18731 +18732 +18733 +18734 +18735 +18736 +18737 +18738 +18739 +18740 +18741 +18742 +18743 +18744 +18745 +18746 +18747 +18748 +18749 +18750 +18751 +18752 +18753 +18754 +18755 +18756 +18757 +18758 +18759 +18760 +18761 +18762 +18763 +18764 +18765 +18766 +18767 +18768 +18769 +18770 +18771 +18772 +18773 +18774 +18775 +18776 +18777 +18778 +18779 +18780 +18781 +18782 +18783 +18784 +18785 +18786 +18787 +18788 +18789 +18790 +18791 +18792 +18793 +18794 +18795 +18796 +18797 +18798 +18799 +18800 +18801 +18802 +18803 +987 +18804 +18805 +18806 +18807 +18808 +18809 +18810 +18811 +18812 +18813 +18814 +18815 +18816 +18817 +18818 +18819 +18820 +18821 +18822 +18823 +18824 +18825 +18826 +18827 +18828 +18829 +18830 +18831 +18832 +18833 +18834 +18835 +18836 +18837 +18838 +18839 +18840 +18841 +18842 +18843 +18844 +18845 +18846 +18847 +18848 +18849 +18850 +18851 +18852 +18853 +18854 +18855 +18856 +18857 +18858 +18859 +18860 +18861 +18862 +18863 +18864 +18865 +18866 +18867 +18868 +18869 +18870 +18871 +18872 +18873 +18874 +18875 +18876 +18877 +18878 +18879 +18880 +18881 +18882 +18883 +18884 +18885 +18886 +18887 +18888 +18889 +18890 +18891 +18892 +18893 +18894 +18895 +18896 +18897 +18898 +18899 +18900 +18901 +18902 +18903 +18904 +18905 +18906 +18907 +18908 +18909 +18910 +18911 +18912 +18913 +18914 +18915 +18916 +18917 +18918 +18919 +18920 +18921 +18922 +18923 +18924 +18925 +18926 +18927 +18928 +18929 +18930 +18931 +18932 +18933 +18934 +18935 +18936 +18937 +18938 +18939 +18940 +18941 +18942 +18943 +18944 +18945 +18946 +18947 +18948 +18949 +18950 +18951 +18952 +18953 +18954 +18955 +18956 +18957 +18958 +18959 +18960 +18961 +18962 +18963 +18964 +18965 +18966 +18967 +18968 +18969 +18970 +18971 +18972 +18973 +18974 +18975 +18976 +18977 +18978 +18979 +18980 +18981 +18982 +18983 +18984 +18985 +18986 +18987 +18988 +18989 +18990 +18991 +18992 +18993 +18994 +18995 +18996 +18997 +18998 +18999 +19000 +19001 +19002 +19003 +19004 +19005 +19006 +19007 +19008 +19009 +19010 +19011 +19012 +19013 +19014 +19015 +19016 +19017 +19018 +19019 +19020 +19021 +19022 +19023 +19024 +19025 +19026 +19027 +19028 +19029 +19030 +19031 +19032 +19033 +19034 +19035 +19036 +19037 +19038 +19039 +19040 +19041 +19042 +19043 +19044 +19045 +19046 +19047 +19048 +19049 +19050 +19051 +19052 +19053 +19054 +19055 +19056 +19057 +19058 +19059 +19060 +19061 +19062 +19063 +19064 +19065 +19066 +19067 +19068 +19069 +19070 +19071 +19072 +19073 +19074 +19075 +19076 +19077 +19078 +19079 +19080 +19081 +19082 +19083 +19084 +19085 +19086 +19087 +19088 +19089 +19090 +19091 +19092 +19093 +19094 +19095 +19096 +19097 +19098 +19099 +19100 +19101 +19102 +19103 +19104 +19105 +19106 +19107 +19108 +19109 +19110 +19111 +19112 +988 +19113 +19114 +19115 +19116 +19117 +19118 +19119 +19120 +19121 +19122 +19123 +19124 +19125 +19126 +19127 +19128 +19129 +19130 +19131 +19132 +19133 +19134 +19135 +19136 +19137 +19138 +19139 +19140 +19141 +19142 +19143 +19144 +19145 +19146 +19147 +19148 +19149 +19150 +19151 +19152 +19153 +19154 +19155 +19156 +19157 +19158 +19159 +19160 +19161 +19162 +19163 +19164 +19165 +19166 +19167 +19168 +19169 +19170 +19171 +19172 +19173 +19174 +19175 +19176 +19177 +19178 +19179 +19180 +19181 +19182 +19183 +19184 +19185 +19186 +19187 +19188 +19189 +19190 +19191 +19192 +19193 +19194 +19195 +19196 +19197 +19198 +19199 +19200 +19201 +19202 +19203 +19204 +19205 +19206 +19207 +19208 +19209 +19210 +19211 +19212 +19213 +19214 +19215 +19216 +19217 +19218 +19219 +19220 +19221 +19222 +19223 +19224 +19225 +19226 +19227 +19228 +19229 +19230 +19231 +19232 +19233 +19234 +19235 +19236 +19237 +19238 +19239 +19240 +19241 +19242 +19243 +19244 +19245 +19246 +19247 +19248 +19249 +19250 +19251 +19252 +19253 +19254 +19255 +19256 +19257 +19258 +19259 +19260 +19261 +19262 +19263 +19264 +19265 +19266 +19267 +19268 +19269 +19270 +19271 +19272 +19273 +19274 +19275 +19276 +19277 +19278 +19279 +19280 +19281 +19282 +19283 +19284 +19285 +19286 +19287 +19288 +19289 +19290 +19291 +19292 +19293 +19294 +19295 +19296 +19297 +19298 +19299 +19300 +19301 +19302 +19303 +19304 +19305 +19306 +19307 +19308 +19309 +19310 +19311 +19312 +19313 +19314 +19315 +19316 +19317 +19318 +19319 +19320 +19321 +19322 +19323 +19324 +19325 +19326 +19327 +19328 +19329 +19330 +19331 +19332 +19333 +19334 +19335 +19336 +19337 +19338 +19339 +19340 +19341 +19342 +19343 +19344 +19345 +19346 +19347 +19348 +19349 +19350 +19351 +19352 +19353 +19354 +19355 +19356 +19357 +19358 +19359 +19360 +19361 +19362 +19363 +19364 +19365 +19366 +19367 +19368 +19369 +19370 +19371 +19372 +19373 +19374 +19375 +19376 +19377 +19378 +19379 +19380 +19381 +19382 +19383 +19384 +19385 +19386 +19387 +19388 +19389 +19390 +19391 +19392 +19393 +19394 +19395 +19396 +19397 +19398 +19399 +19400 +19401 +19402 +19403 +19404 +19405 +19406 +19407 +19408 +19409 +19410 +19411 +19412 +19413 +19414 +19415 +19416 +19417 +19418 +19419 +19420 +19421 +19422 +19423 +19424 +19425 +19426 +19427 +19428 +19429 +19430 +19431 +19432 +19433 +19434 +19435 +19436 +19437 +19438 +19439 +19440 +19441 +19442 +19443 +19444 +19445 +19446 +19447 +19448 +19449 +19450 +19451 +19452 +19453 +19454 +19455 +19456 +19457 +19458 +19459 +19460 +19461 +19462 +19463 +19464 +19465 +19466 +19467 +19468 +19469 +19470 +19471 +19472 +19473 +19474 +19475 +19476 +19477 +19478 +19479 +19480 +19481 +19482 +19483 +19484 +19485 +19486 +19487 +19488 +19489 +19490 +19491 +19492 +19493 +19494 +19495 +19496 +19497 +19498 +19499 +19500 +19501 +19502 +19503 +19504 +19505 +19506 +19507 +19508 +19509 +19510 +19511 +19512 +19513 +19514 +19515 +19516 +19517 +19518 +19519 +19520 +19521 +19522 +19523 +19524 +19525 +19526 +19527 +19528 +19529 +19530 +19531 +19532 +19533 +19534 +19535 +19536 +19537 +19538 +19539 +19540 +19541 +19542 +19543 +19544 +19545 +19546 +19547 +19548 +19549 +19550 +19551 +19552 +19553 +19554 +19555 +19556 +19557 +19558 +19559 +19560 +19561 +19562 +19563 +19564 +19565 +19566 +19567 +19568 +19569 +19570 +19571 +19572 +19573 +19574 +19575 +19576 +19577 +19578 +19579 +19580 +19581 +19582 +19583 +19584 +19585 +19586 +19587 +19588 +19589 +19590 +19591 +19592 +19593 +19594 +19595 +19596 +19597 +19598 +19599 +19600 +19601 +19602 +19603 +19604 +19605 +19606 +19607 +19608 +19609 +19610 +19611 +19612 +19613 +19614 +19615 +19616 +19617 +19618 +19619 +19620 +19621 +19622 +19623 +19624 +19625 +19626 +19627 +19628 +19629 +19630 +19631 +19632 +19633 +19634 +19635 +19636 +19637 +19638 +19639 +19640 +19641 +19642 +19643 +19644 +19645 +19646 +19647 +19648 +19649 +19650 +19651 +19652 +19653 +19654 +19655 +19656 +19657 +19658 +19659 +19660 +19661 +19662 +19663 +19664 +19665 +19666 +19667 +19668 +19669 +19670 +19671 +19672 +19673 +19674 +19675 +19676 +19677 +19678 +19679 +19680 +19681 +19682 +19683 +19684 +19685 +19686 +19687 +19688 +19689 +19690 +19691 +19692 +19693 +19694 +19695 +19696 +19697 +19698 +19699 +19700 +19701 +19702 +19703 +19704 +19705 +19706 +19707 +19708 +19709 +19710 +19711 +19712 +19713 +19714 +19715 +19716 +19717 +19718 +19719 +19720 +19721 +19722 +19723 +19724 +19725 +19726 +19727 +19728 +19729 +19730 +19731 +19732 +19733 +19734 +19735 +19736 +19737 +19738 +19739 +19740 +19741 +19742 +19743 +19744 +19745 +19746 +19747 +19748 +19749 +19750 +19751 +19752 +19753 +19754 +19755 +19756 +19757 +19758 +19759 +19760 +19761 +19762 +19763 +19764 +19765 +19766 +19767 +19768 +19769 +19770 +19771 +19772 +19773 +19774 +19775 +19776 +19777 +19778 +19779 +19780 +19781 +19782 +19783 +19784 +19785 +19786 +19787 +19788 +19789 +19790 +19791 +19792 +19793 +19794 +19795 +19796 +19797 +19798 +19799 +19800 +19801 +19802 +19803 +19804 +19805 +19806 +19807 +19808 +19809 +19810 +19811 +19812 +19813 +19814 +19815 +19816 +19817 +19818 +19819 +19820 +19821 +19822 +19823 +19824 +19825 +19826 +19827 +19828 +19829 +19830 +19831 +19832 +19833 +19834 +19835 +19836 +19837 +19838 +19839 +19840 +19841 +19842 +19843 +19844 +19845 +19846 +19847 +19848 +19849 +19850 +19851 +19852 +19853 +19854 +19855 +19856 +19857 +19858 +19859 +19860 +19861 +19862 +19863 +19864 +19865 +19866 +19867 +19868 +19869 +19870 +19871 +19872 +19873 +19874 +19875 +19876 +19877 +19878 +19879 +19880 +19881 +19882 +19883 +19884 +19885 +19886 +19887 +19888 +19889 +19890 +19891 +19892 +19893 +19894 +19895 +19896 +19897 +19898 +19899 +19900 +19901 +19902 +19903 +19904 +19905 +19906 +19907 +19908 +19909 +19910 +19911 +19912 +19913 +19914 +19915 +19916 +19917 +19918 +19919 +19920 +19921 +19922 +19923 +19924 +19925 +19926 +19927 +19928 +19929 +19930 +19931 +19932 +19933 +19934 +19935 +19936 +19937 +19938 +19939 +19940 +19941 +19942 +19943 +19944 +19945 +19946 +19947 +19948 +19949 +19950 +19951 +19952 +19953 +19954 +19955 +19956 +19957 +19958 +19959 +19960 +19961 +19962 +19963 +19964 +19965 +19966 +19967 +19968 +19969 +19970 +19971 +19972 +19973 +19974 +19975 +19976 +19977 +19978 +19979 +19980 +19981 +19982 +19983 +19984 +19985 +19986 +19987 +19988 +19989 +19990 +19991 +19992 +19993 +19994 +19995 +19996 +19997 +19998 +19999 +20000 +20001 +20002 +20003 +20004 +20005 +20006 +20007 +20008 +20009 +20010 +20011 +20012 +20013 +20014 +20015 +20016 +20017 +20018 +20019 +20020 +20021 +20022 +20023 +20024 +20025 +20026 +20027 +20028 +989 +20029 +20030 +20031 +20032 +20033 +20034 +20035 +20036 +20037 +20038 +20039 +20040 +20041 +20042 +20043 +20044 +20045 +20046 +20047 +20048 +20049 +20050 +20051 +20052 +20053 +20054 +20055 +20056 +20057 +20058 +20059 +20060 +20061 +20062 +20063 +20064 +20065 +20066 +20067 +20068 +20069 +20070 +20071 +20072 +20073 +20074 +20075 +20076 +20077 +20078 +20079 +20080 +20081 +20082 +20083 +20084 +20085 +20086 +20087 +20088 +20089 +20090 +20091 +20092 +20093 +20094 +20095 +20096 +20097 +20098 +20099 +20100 +20101 +20102 +20103 +20104 +20105 +20106 +20107 +20108 +20109 +20110 +20111 +20112 +20113 +20114 +20115 +20116 +20117 +20118 +20119 +20120 +20121 +20122 +20123 +20124 +20125 +20126 +20127 +20128 +20129 +20130 +20131 +20132 +20133 +20134 +20135 +20136 +20137 +20138 +20139 +20140 +20141 +20142 +20143 +20144 +20145 +20146 +20147 +20148 +20149 +20150 +20151 +20152 +20153 +20154 +20155 +20156 +20157 +20158 +20159 +20160 +20161 +20162 +20163 +20164 +20165 +20166 +20167 +20168 +20169 +20170 +20171 +20172 +20173 +20174 +20175 +20176 +20177 +20178 +20179 +20180 +20181 +20182 +20183 +20184 +20185 +20186 +20187 +20188 +20189 +20190 +20191 +20192 +20193 +20194 +20195 +20196 +20197 +20198 +20199 +20200 +20201 +20202 +20203 +20204 +20205 +20206 +20207 +20208 +20209 +20210 +20211 +20212 +20213 +20214 +20215 +20216 +20217 +20218 +20219 +20220 +20221 +20222 +20223 +20224 +20225 +20226 +20227 +20228 +20229 +20230 +20231 +20232 +20233 +20234 +20235 +20236 +20237 +20238 +20239 +20240 +20241 +20242 +20243 +20244 +20245 +20246 +20247 +20248 +20249 +20250 +20251 +20252 +20253 +20254 +20255 +20256 +20257 +20258 +20259 +20260 +20261 +20262 +20263 +20264 +20265 +20266 +20267 +20268 +20269 +20270 +20271 +20272 +20273 +20274 +20275 +20276 +20277 +20278 +20279 +20280 +20281 +20282 +20283 +20284 +20285 +20286 +20287 +20288 +20289 +20290 +20291 +20292 +20293 +20294 +20295 +20296 +20297 +20298 +20299 +20300 +20301 +20302 +20303 +20304 +20305 +20306 +20307 +20308 +20309 +20310 +20311 +20312 +20313 +20314 +20315 +20316 +20317 +20318 +20319 +20320 +20321 +20322 +20323 +20324 +20325 +20326 +20327 +20328 +20329 +20330 +20331 +20332 +20333 +20334 +20335 +20336 +20337 +20338 +20339 +20340 +20341 +20342 +20343 +20344 +20345 +20346 +20347 +20348 +20349 +20350 +20351 +20352 +20353 +20354 +20355 +20356 +20357 +20358 +20359 +20360 +20361 +20362 +20363 +20364 +20365 +20366 +20367 +20368 +20369 +20370 +20371 +20372 +20373 +20374 +20375 +20376 +20377 +20378 +20379 +20380 +20381 +20382 +20383 +20384 +20385 +20386 +20387 +20388 +20389 +20390 +20391 +20392 +20393 +20394 +20395 +20396 +20397 +20398 +20399 +20400 +20401 +20402 +20403 +20404 +20405 +20406 +20407 +20408 +20409 +20410 +20411 +20412 +20413 +20414 +20415 +20416 +20417 +20418 +20419 +20420 +20421 +20422 +20423 +20424 +20425 +20426 +20427 +20428 +20429 +20430 +20431 +20432 +20433 +20434 +20435 +20436 +20437 +20438 +20439 +20440 +20441 +20442 +20443 +20444 +20445 +20446 +20447 +20448 +20449 +20450 +20451 +20452 +20453 +20454 +20455 +20456 +20457 +20458 +20459 +20460 +20461 +20462 +20463 +20464 +20465 +20466 +20467 +20468 +20469 +20470 +990 +20471 +20472 +20473 +20474 +20475 +20476 +20477 +20478 +20479 +20480 +20481 +20482 +20483 +20484 +20485 +20486 +20487 +20488 +20489 +20490 +20491 +20492 +20493 +20494 +20495 +20496 +20497 +20498 +20499 +20500 +20501 +20502 +20503 +20504 +20505 +20506 +20507 +20508 +20509 +20510 +20511 +20512 +20513 +20514 +20515 +20516 +20517 +20518 +20519 +20520 +20521 +20522 +20523 +20524 +20525 +20526 +20527 +20528 +20529 +20530 +20531 +20532 +20533 +20534 +20535 +20536 +20537 +20538 +20539 +20540 +20541 +20542 +20543 +20544 +20545 +20546 +20547 +20548 +20549 +20550 +20551 +20552 +20553 +20554 +20555 +20556 +20557 +20558 +20559 +20560 +20561 +20562 +20563 +20564 +20565 +20566 +20567 +20568 +20569 +20570 +20571 +20572 +20573 +20574 +20575 +20576 +20577 +20578 +20579 +20580 +20581 +20582 +20583 +20584 +20585 +20586 +20587 +20588 +20589 +20590 +20591 +20592 +20593 +20594 +20595 +20596 +20597 +20598 +20599 +20600 +20601 +20602 +20603 +20604 +20605 +20606 +20607 +20608 +20609 +20610 +20611 +20612 +20613 +20614 +20615 +20616 +20617 +20618 +20619 +20620 +20621 +20622 +20623 +20624 +20625 +20626 +20627 +20628 +20629 +20630 +20631 +20632 +20633 +20634 +20635 +20636 +20637 +20638 +20639 +20640 +20641 +20642 +20643 +20644 +20645 +20646 +20647 +20648 +20649 +20650 +20651 +20652 +20653 +20654 +20655 +20656 +20657 +20658 +20659 +20660 +20661 +20662 +20663 +20664 +20665 +20666 +20667 +20668 +20669 +20670 +20671 +20672 +20673 +20674 +20675 +20676 +20677 +20678 +20679 +20680 +20681 +20682 +20683 +20684 +20685 +20686 +20687 +20688 +20689 +20690 +20691 +20692 +20693 +20694 +20695 +20696 +20697 +20698 +20699 +20700 +20701 +20702 +20703 +20704 +20705 +20706 +20707 +20708 +20709 +20710 +20711 +20712 +20713 +20714 +20715 +20716 +20717 +20718 +20719 +20720 +20721 +20722 +20723 +20724 +20725 +20726 +20727 +20728 +20729 +20730 +20731 +20732 +20733 +20734 +20735 +20736 +20737 +20738 +20739 +20740 +20741 +20742 +20743 +20744 +20745 +20746 +20747 +20748 +20749 +20750 +20751 +20752 +20753 +20754 +20755 +20756 +20757 +20758 +20759 +20760 +20761 +20762 +20763 +20764 +20765 +20766 +20767 +20768 +20769 +20770 +20771 +20772 +20773 +20774 +20775 +20776 +20777 +20778 +20779 +20780 +20781 +20782 +20783 +20784 +20785 +20786 +20787 +20788 +20789 +20790 +20791 +20792 +20793 +20794 +20795 +20796 +20797 +20798 +20799 +20800 +20801 +20802 +20803 +20804 +20805 +20806 +20807 +20808 +20809 +20810 +20811 +20812 +20813 +20814 +20815 +20816 +20817 +20818 +20819 +20820 +20821 +20822 +20823 +20824 +20825 +20826 +20827 +20828 +20829 +20830 +20831 +20832 +20833 +20834 +20835 +20836 +20837 +20838 +20839 +20840 +20841 +20842 +20843 +20844 +20845 +20846 +20847 +20848 +20849 +20850 +20851 +20852 +20853 +20854 +20855 +20856 +20857 +20858 +20859 +20860 +20861 +20862 +20863 +20864 +20865 +20866 +20867 +20868 +20869 +20870 +20871 +20872 +20873 +20874 +20875 +20876 +20877 +20878 +20879 +20880 +20881 +20882 +20883 +20884 +20885 +20886 +20887 +20888 +20889 +20890 +20891 +20892 +20893 +20894 +20895 +20896 +20897 +20898 +20899 +20900 +20901 +20902 +20903 +20904 +20905 +20906 +20907 +20908 +20909 +20910 +20911 +20912 +20913 +20914 +20915 +20916 +20917 +20918 +20919 +20920 +20921 +20922 +20923 +20924 +20925 +20926 +20927 +20928 +20929 +20930 +20931 +20932 +20933 +20934 +20935 +20936 +20937 +20938 +20939 +20940 +20941 +20942 +20943 +20944 +20945 +20946 +20947 +20948 +20949 +20950 +20951 +20952 +20953 +20954 +20955 +20956 +20957 +20958 +20959 +20960 +20961 +20962 +20963 +20964 +20965 +20966 +20967 +20968 +20969 +20970 +20971 +20972 +20973 +20974 +20975 +20976 +20977 +20978 +20979 +20980 +20981 +20982 +20983 +20984 +20985 +20986 +20987 +20988 +20989 +20990 +20991 +20992 +20993 +20994 +20995 +20996 +20997 +20998 +20999 +21000 +21001 +21002 +21003 +21004 +21005 +21006 +21007 +21008 +21009 +21010 +21011 +21012 +21013 +21014 +21015 +21016 +21017 +21018 +21019 +21020 +21021 +21022 +21023 +21024 +21025 +21026 +21027 +21028 +21029 +21030 +21031 +21032 +21033 +991 +21034 +21035 +21036 +21037 +21038 +21039 +21040 +21041 +21042 +21043 +21044 +21045 +21046 +21047 +21048 +21049 +21050 +21051 +992 +21052 +21053 +21054 +21055 +21056 +21057 +21058 +21059 +21060 +21061 +21062 +21063 +21064 +21065 +21066 +21067 +21068 +21069 +21070 +21071 +21072 +21073 +21074 +21075 +21076 +21077 +21078 +21079 +21080 +21081 +21082 +21083 +21084 +21085 +21086 +21087 +21088 +21089 +21090 +21091 +21092 +21093 +21094 +21095 +21096 +21097 +21098 +21099 +21100 +21101 +21102 +21103 +21104 +21105 +21106 +21107 +21108 +21109 +21110 +21111 +21112 +21113 +21114 +21115 +21116 +21117 +21118 +21119 +21120 +21121 +21122 +21123 +21124 +21125 +21126 +21127 +21128 +21129 +21130 +21131 +21132 +21133 +21134 +21135 +21136 +21137 +21138 +21139 +21140 +21141 +21142 +21143 +21144 +21145 +21146 +21147 +21148 +21149 +21150 +21151 +21152 +21153 +21154 +21155 +21156 +21157 +21158 +21159 +21160 +21161 +21162 +21163 +21164 +21165 +21166 +21167 +21168 +993 +21169 +21170 +21171 +21172 +21173 +21174 +21175 +994 +21176 +21177 +21178 +21179 +21180 +21181 +21182 +21183 +21184 +995 +21185 +21186 +21187 +21188 +21189 +21190 +21191 +21192 +21193 +21194 +21195 +21196 +21197 +21198 +996 +21199 +21200 +21201 +997 +21202 +21203 +21204 +21205 +21206 +21207 +21208 +21209 +21210 +21211 +21212 +21213 +21214 +21215 +21216 +21217 +21218 +21219 +21220 +21221 +21222 +21223 +21224 +21225 +21226 +21227 +21228 +21229 +21230 +21231 +21232 +21233 +21234 +21235 +21236 +21237 +21238 +21239 +21240 +21241 +21242 +21243 +21244 +21245 +21246 +21247 +21248 +21249 +21250 +21251 +21252 +21253 +21254 +21255 +21256 +21257 +21258 +21259 +21260 +21261 +21262 +21263 +21264 +21265 +21266 +21267 +21268 +21269 +21270 +21271 +21272 +21273 +21274 +21275 +21276 +21277 +21278 +21279 +21280 +21281 +21282 +21283 +21284 +21285 +21286 +21287 +21288 +21289 +21290 +21291 +21292 +21293 +21294 +21295 +21296 +21297 +21298 +21299 +21300 +21301 +21302 +21303 +21304 +21305 +21306 +21307 +21308 +21309 +21310 +21311 +21312 +21313 +21314 +21315 +21316 +21317 +21318 +21319 +21320 +21321 +21322 +21323 +21324 +21325 +21326 +21327 +21328 +21329 +21330 +21331 +21332 +21333 +21334 +21335 +21336 +21337 +21338 +21339 +21340 +21341 +21342 +21343 +21344 +21345 +21346 +21347 +21348 +21349 +21350 +21351 +21352 +21353 +21354 +21355 +21356 +21357 +21358 +21359 +21360 +21361 +21362 +21363 +21364 +21365 +21366 +21367 +21368 +21369 +998 +21370 +21371 +21372 +21373 +21374 +21375 +21376 +21377 +21378 +21379 +21380 +21381 +21382 +21383 +21384 +21385 +21386 +21387 +21388 +21389 +21390 +21391 +21392 +21393 +21394 +21395 +21396 +21397 +21398 +21399 +21400 +21401 +21402 +21403 +21404 +21405 +21406 +21407 +21408 +21409 +21410 +21411 +21412 +21413 +21414 +21415 +21416 +21417 +21418 +21419 +21420 +21421 +21422 +21423 +21424 +21425 +21426 +21427 +21428 +21429 +21430 +21431 +21432 +21433 +21434 +21435 +21436 +21437 +21438 +21439 +21440 +21441 +21442 +21443 +21444 +21445 +21446 +21447 +21448 +21449 +21450 +21451 +21452 +21453 +21454 +21455 +21456 +21457 +21458 +21459 +21460 +21461 +21462 +21463 +21464 +21465 +21466 +21467 +21468 +21469 +21470 +21471 +21472 +21473 +21474 +21475 +21476 +21477 +21478 +21479 +21480 +21481 +21482 +21483 +21484 +21485 +21486 +21487 +21488 +21489 +21490 +21491 +21492 +21493 +21494 +21495 +21496 +21497 +21498 +21499 +21500 +21501 +21502 +21503 +21504 +21505 +21506 +21507 +21508 +21509 +21510 +21511 +21512 +21513 +21514 +21515 +21516 +21517 +21518 +21519 +21520 +21521 +21522 +21523 +21524 +21525 +21526 +21527 +21528 +21529 +21530 +21531 +21532 +21533 +21534 +21535 +21536 +21537 +21538 +21539 +21540 +21541 +21542 +21543 +21544 +21545 +21546 +21547 +21548 +21549 +21550 +21551 +21552 +21553 +21554 +21555 +21556 +21557 +21558 +21559 +21560 +21561 +21562 +21563 +21564 +21565 +21566 +21567 +21568 +21569 +21570 +21571 +21572 +21573 +21574 +21575 +21576 +21577 +21578 +21579 +21580 +21581 +21582 +21583 +21584 +21585 +21586 +21587 +21588 +21589 +21590 +21591 +21592 +21593 +21594 +21595 +21596 +21597 +21598 +21599 +21600 +21601 +21602 +21603 +21604 +21605 +21606 +21607 +21608 +21609 +21610 +21611 +21612 +21613 +21614 +21615 +21616 +21617 +21618 +21619 +21620 +21621 +21622 +21623 +21624 +21625 +21626 +21627 +21628 +21629 +21630 +21631 +21632 +21633 +21634 +21635 +21636 +21637 +21638 +21639 +21640 +21641 +21642 +21643 +21644 +21645 +21646 +21647 +21648 +21649 +21650 +21651 +21652 +21653 +21654 +21655 +21656 +21657 +21658 +21659 +21660 +21661 +21662 +21663 +21664 +21665 +21666 +21667 +21668 +21669 +21670 +21671 +21672 +21673 +21674 +21675 +21676 +21677 +21678 +21679 +21680 +21681 +21682 +21683 +21684 +21685 +21686 +21687 +21688 +21689 +21690 +21691 +21692 +21693 +21694 +21695 +21696 +21697 +21698 +21699 +21700 +21701 +21702 +21703 +21704 +21705 +21706 +21707 +21708 +21709 +21710 +21711 +21712 +21713 +21714 +21715 +21716 +21717 +21718 +21719 +21720 +21721 +21722 +21723 +21724 +21725 +21726 +21727 +21728 +21729 +21730 +21731 +21732 +21733 +21734 +21735 +21736 +21737 +21738 +21739 +21740 +21741 +21742 +21743 +21744 +21745 +21746 +21747 +21748 +21749 +21750 +21751 +21752 +21753 +21754 +21755 +21756 +21757 +21758 +21759 +21760 +21761 +21762 +21763 +21764 +21765 +21766 +21767 +21768 +21769 +21770 +21771 +21772 +21773 +21774 +21775 +21776 +21777 +21778 +21779 +21780 +21781 +21782 +21783 +21784 +21785 +21786 +21787 +21788 +21789 +21790 +21791 +21792 +21793 +21794 +21795 +21796 +21797 +21798 +21799 +21800 +21801 +21802 +21803 +21804 +21805 +21806 +21807 +21808 +21809 +21810 +21811 +21812 +21813 +21814 +21815 +21816 +999 +21817 +21818 +21819 +21820 +21821 +21822 +21823 +21824 +21825 +21826 +21827 +21828 +21829 +21830 +21831 +21832 +21833 +21834 +21835 +21836 +21837 +21838 +21839 +21840 +21841 diff --git a/pytorch-image-models/timm/data/_info/imagenet22k_synsets.txt b/pytorch-image-models/timm/data/_info/imagenet22k_synsets.txt new file mode 100644 index 0000000000000000000000000000000000000000..0561374dd4ff8f2f97f62733711ee736d61d711c --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet22k_synsets.txt @@ -0,0 +1,21841 @@ +n00004475 +n00005787 +n00006024 +n00006484 +n00007846 +n00015388 +n00017222 +n00021265 +n00021939 +n00120010 +n00141669 +n00288000 +n00288190 +n00288384 +n00324978 +n00326094 +n00433458 +n00433661 +n00433802 +n00434075 +n00439826 +n00440039 +n00440218 +n00440382 +n00440509 +n00440643 +n00440747 +n00440941 +n00441073 +n00441824 +n00442115 +n00442437 +n00442847 +n00442981 +n00443231 +n00443375 +n00443517 +n00443692 +n00443803 +n00443917 +n00444142 +n00444340 +n00444490 +n00444651 +n00444846 +n00444937 +n00445055 +n00445226 +n00445351 +n00445685 +n00445802 +n00446311 +n00446411 +n00446493 +n00446632 +n00446804 +n00446980 +n00447073 +n00447221 +n00447361 +n00447463 +n00447540 +n00447957 +n00448126 +n00448232 +n00448466 +n00448640 +n00448748 +n00448872 +n00448958 +n00449054 +n00449168 +n00449295 +n00449517 +n00449695 +n00449796 +n00449892 +n00449977 +n00450070 +n00450335 +n00450700 +n00450866 +n00450998 +n00451186 +n00451370 +n00451563 +n00451635 +n00451768 +n00451866 +n00452034 +n00452152 +n00452293 +n00452734 +n00452864 +n00453126 +n00453313 +n00453396 +n00453478 +n00453631 +n00453935 +n00454237 +n00454395 +n00454493 +n00454624 +n00454855 +n00454983 +n00455076 +n00455173 +n00456465 +n00463246 +n00463543 +n00464277 +n00464478 +n00464651 +n00464894 +n00466273 +n00466377 +n00466524 +n00466630 +n00466712 +n00466880 +n00467320 +n00467536 +n00467719 +n00467995 +n00468299 +n00468480 +n00469651 +n00470554 +n00470682 +n00470830 +n00470966 +n00471437 +n00471613 +n00474568 +n00474657 +n00474769 +n00474881 +n00475014 +n00475142 +n00475273 +n00475403 +n00475535 +n00475661 +n00475787 +n00476140 +n00476235 +n00476389 +n00477392 +n00477639 +n00477827 +n00478262 +n00479076 +n00479440 +n00479616 +n00479734 +n00479887 +n00480211 +n00480366 +n00480508 +n00480885 +n00480993 +n00481803 +n00481938 +n00482122 +n00482298 +n00483205 +n00483313 +n00483409 +n00483508 +n00483605 +n00483705 +n00483848 +n00523513 +n00812526 +n00825773 +n00887544 +n01035504 +n01035667 +n01055165 +n01314388 +n01314663 +n01314781 +n01314910 +n01315213 +n01315330 +n01315581 +n01315805 +n01316422 +n01316579 +n01316734 +n01316949 +n01317089 +n01317294 +n01317391 +n01317541 +n01317813 +n01317916 +n01318053 +n01318279 +n01318381 +n01318478 +n01318660 +n01318894 +n01319001 +n01319187 +n01319467 +n01319685 +n01320872 +n01321123 +n01321230 +n01321456 +n01321579 +n01321770 +n01321854 +n01322221 +n01322343 +n01322508 +n01322604 +n01322685 +n01322898 +n01322983 +n01323068 +n01323155 +n01323261 +n01323355 +n01323493 +n01323599 +n01323781 +n01324305 +n01324431 +n01324610 +n01324799 +n01324916 +n01325060 +n01326291 +n01327909 +n01329186 +n01330126 +n01330497 +n01332181 +n01333082 +n01333483 +n01333610 +n01334217 +n01334690 +n01335218 +n01337191 +n01337734 +n01338685 +n01339083 +n01339336 +n01339471 +n01339801 +n01340014 +n01340522 +n01340785 +n01340935 +n01341090 +n01342269 +n01347583 +n01349735 +n01350226 +n01350701 +n01351170 +n01351315 +n01357328 +n01357507 +n01358572 +n01359762 +n01362336 +n01363719 +n01365474 +n01365885 +n01366700 +n01367772 +n01368672 +n01369358 +n01369484 +n01374703 +n01374846 +n01375204 +n01376237 +n01376437 +n01376543 +n01377278 +n01377510 +n01377694 +n01378545 +n01379389 +n01380610 +n01380754 +n01381044 +n01382033 +n01384084 +n01384164 +n01384687 +n01385017 +n01385330 +n01386007 +n01386182 +n01386354 +n01387065 +n01389507 +n01390123 +n01390763 +n01392275 +n01392380 +n01393486 +n01394040 +n01394492 +n01394771 +n01395254 +n01396048 +n01396617 +n01397114 +n01397690 +n01397871 +n01400247 +n01400391 +n01402600 +n01403457 +n01404365 +n01404495 +n01405007 +n01405616 +n01407798 +n01410457 +n01411450 +n01412694 +n01413457 +n01414216 +n01415626 +n01415920 +n01416213 +n01418498 +n01418620 +n01419332 +n01419573 +n01419888 +n01421333 +n01421807 +n01422185 +n01422335 +n01422450 +n01423302 +n01423617 +n01424420 +n01425223 +n01427399 +n01429172 +n01438208 +n01438581 +n01439121 +n01439514 +n01439808 +n01440160 +n01440242 +n01440467 +n01440764 +n01441117 +n01441272 +n01441425 +n01441910 +n01442450 +n01442710 +n01442972 +n01443243 +n01443537 +n01443831 +n01444339 +n01444783 +n01445429 +n01445593 +n01445857 +n01446152 +n01446589 +n01446760 +n01447139 +n01447331 +n01447658 +n01447946 +n01448291 +n01448594 +n01448951 +n01449374 +n01449712 +n01449980 +n01450661 +n01450950 +n01451115 +n01451295 +n01451426 +n01451863 +n01452345 +n01453087 +n01453475 +n01453742 +n01454545 +n01454856 +n01455317 +n01455461 +n01455778 +n01456137 +n01456454 +n01456756 +n01457082 +n01457407 +n01457852 +n01458746 +n01458842 +n01459791 +n01460303 +n01461315 +n01461646 +n01462042 +n01462544 +n01462803 +n01464844 +n01466257 +n01467336 +n01467804 +n01468238 +n01468712 +n01469103 +n01469723 +n01470145 +n01470479 +n01470733 +n01470895 +n01471682 +n01472303 +n01472502 +n01473806 +n01474283 +n01474864 +n01475232 +n01475940 +n01476418 +n01477080 +n01477525 +n01477875 +n01478511 +n01478969 +n01479213 +n01479820 +n01480106 +n01480516 +n01480880 +n01481331 +n01481498 +n01482071 +n01482330 +n01483021 +n01483522 +n01483830 +n01484097 +n01484285 +n01484447 +n01484562 +n01484850 +n01485479 +n01486010 +n01486540 +n01486838 +n01487506 +n01488038 +n01488918 +n01489501 +n01489709 +n01489920 +n01490112 +n01490360 +n01490670 +n01491006 +n01491361 +n01491661 +n01491874 +n01492357 +n01492569 +n01492708 +n01492860 +n01493146 +n01493541 +n01493829 +n01494041 +n01494475 +n01494757 +n01494882 +n01495006 +n01495493 +n01495701 +n01496331 +n01497118 +n01497413 +n01497738 +n01498041 +n01498406 +n01498699 +n01498989 +n01499396 +n01499732 +n01500091 +n01500476 +n01500854 +n01501160 +n01501641 +n01501777 +n01501948 +n01502101 +n01503061 +n01503976 +n01504179 +n01504344 +n01514668 +n01514752 +n01514859 +n01514926 +n01515078 +n01515217 +n01515303 +n01516212 +n01517389 +n01517565 +n01517966 +n01518878 +n01519563 +n01519873 +n01520576 +n01521399 +n01521756 +n01522450 +n01523105 +n01524359 +n01524761 +n01525720 +n01526521 +n01526766 +n01527194 +n01527347 +n01527617 +n01527917 +n01528396 +n01528654 +n01528845 +n01529672 +n01530439 +n01530575 +n01531178 +n01531344 +n01531512 +n01531639 +n01531811 +n01531971 +n01532325 +n01532511 +n01532829 +n01533000 +n01533339 +n01533481 +n01533651 +n01533893 +n01534155 +n01534433 +n01534582 +n01534762 +n01535140 +n01535469 +n01535690 +n01536035 +n01536186 +n01536334 +n01536644 +n01536780 +n01537134 +n01537544 +n01537895 +n01538059 +n01538200 +n01538362 +n01538630 +n01538955 +n01539272 +n01539573 +n01539925 +n01540090 +n01540233 +n01540566 +n01540832 +n01541102 +n01541386 +n01541760 +n01541922 +n01542168 +n01542433 +n01542786 +n01543175 +n01543383 +n01543632 +n01543936 +n01544208 +n01544389 +n01544704 +n01545574 +n01546039 +n01546506 +n01546921 +n01547832 +n01548301 +n01548492 +n01548694 +n01548865 +n01549053 +n01549430 +n01549641 +n01549886 +n01550172 +n01550761 +n01551080 +n01551300 +n01551711 +n01552034 +n01552333 +n01552813 +n01553142 +n01553527 +n01553762 +n01554017 +n01554448 +n01555004 +n01555305 +n01555809 +n01556182 +n01556514 +n01557185 +n01557962 +n01558149 +n01558307 +n01558461 +n01558594 +n01558765 +n01558993 +n01559160 +n01559477 +n01559639 +n01559804 +n01560105 +n01560280 +n01560419 +n01560636 +n01560793 +n01560935 +n01561181 +n01561452 +n01561732 +n01562014 +n01562265 +n01562451 +n01563128 +n01563449 +n01563746 +n01563945 +n01564101 +n01564217 +n01564394 +n01564773 +n01564914 +n01565078 +n01565345 +n01565599 +n01565930 +n01566207 +n01566645 +n01567133 +n01567678 +n01567879 +n01568132 +n01568294 +n01568720 +n01568892 +n01569060 +n01569262 +n01569423 +n01569566 +n01569836 +n01569971 +n01570267 +n01570421 +n01570676 +n01570839 +n01571410 +n01571904 +n01572328 +n01572489 +n01572654 +n01572782 +n01573074 +n01573240 +n01573360 +n01573627 +n01573898 +n01574045 +n01574390 +n01574560 +n01574801 +n01575117 +n01575401 +n01575745 +n01576076 +n01576358 +n01576695 +n01577035 +n01577458 +n01577659 +n01577941 +n01578180 +n01578575 +n01579028 +n01579149 +n01579260 +n01579410 +n01579578 +n01579729 +n01580077 +n01580379 +n01580490 +n01580772 +n01580870 +n01581166 +n01581434 +n01581730 +n01581874 +n01581984 +n01582220 +n01582398 +n01582498 +n01582856 +n01583209 +n01583495 +n01583828 +n01584225 +n01584695 +n01584853 +n01585121 +n01585287 +n01585422 +n01585715 +n01586020 +n01586374 +n01586941 +n01587278 +n01587526 +n01587834 +n01588002 +n01588431 +n01588725 +n01588996 +n01589286 +n01589718 +n01589893 +n01590220 +n01591005 +n01591123 +n01591301 +n01591697 +n01592084 +n01592257 +n01592387 +n01592540 +n01592694 +n01593028 +n01593282 +n01593553 +n01594004 +n01594372 +n01594787 +n01594968 +n01595168 +n01595450 +n01595624 +n01595974 +n01596273 +n01596608 +n01597022 +n01597336 +n01597737 +n01597906 +n01598074 +n01598271 +n01598588 +n01598988 +n01599159 +n01599269 +n01599388 +n01599556 +n01599741 +n01600085 +n01600341 +n01600657 +n01601068 +n01601410 +n01601694 +n01602080 +n01602209 +n01602630 +n01602832 +n01603000 +n01603152 +n01603600 +n01603812 +n01603953 +n01604330 +n01604968 +n01605630 +n01606097 +n01606177 +n01606522 +n01606672 +n01606809 +n01606978 +n01607309 +n01607429 +n01607600 +n01607812 +n01607962 +n01608265 +n01608432 +n01608814 +n01609062 +n01609391 +n01609751 +n01609956 +n01610100 +n01610226 +n01610552 +n01610955 +n01611472 +n01611674 +n01611800 +n01611969 +n01612122 +n01612275 +n01612476 +n01612628 +n01612955 +n01613177 +n01613294 +n01613615 +n01613807 +n01614038 +n01614343 +n01614556 +n01614925 +n01615121 +n01615303 +n01615458 +n01615703 +n01616086 +n01616318 +n01616551 +n01616764 +n01617095 +n01617443 +n01617766 +n01618082 +n01618503 +n01618922 +n01619310 +n01619536 +n01619835 +n01620135 +n01620414 +n01620735 +n01621127 +n01621635 +n01622120 +n01622352 +n01622483 +n01622779 +n01622959 +n01623110 +n01623425 +n01623615 +n01623706 +n01623880 +n01624115 +n01624212 +n01624305 +n01624537 +n01624833 +n01625121 +n01625562 +n01627424 +n01628331 +n01628770 +n01629276 +n01629819 +n01629962 +n01630148 +n01630284 +n01630670 +n01630901 +n01631175 +n01631354 +n01631512 +n01631663 +n01632047 +n01632308 +n01632458 +n01632601 +n01632777 +n01632952 +n01633406 +n01633781 +n01634227 +n01634522 +n01635027 +n01635176 +n01635480 +n01636127 +n01636352 +n01636510 +n01636829 +n01637112 +n01637338 +n01637615 +n01637932 +n01638194 +n01638329 +n01638722 +n01639187 +n01639765 +n01640846 +n01641206 +n01641391 +n01641577 +n01641739 +n01641930 +n01642097 +n01642257 +n01642391 +n01642539 +n01642943 +n01643255 +n01643507 +n01643896 +n01644373 +n01644900 +n01645466 +n01645776 +n01646292 +n01646388 +n01646555 +n01646648 +n01646802 +n01646902 +n01647033 +n01647180 +n01647303 +n01647466 +n01647640 +n01648139 +n01648356 +n01648620 +n01649170 +n01649412 +n01649556 +n01649726 +n01650167 +n01650690 +n01650901 +n01651059 +n01651285 +n01651487 +n01651641 +n01651778 +n01652026 +n01652297 +n01653026 +n01653223 +n01653509 +n01653773 +n01654083 +n01654637 +n01654863 +n01655344 +n01661091 +n01661592 +n01661818 +n01662060 +n01662622 +n01662784 +n01663401 +n01663782 +n01664065 +n01664369 +n01664492 +n01664674 +n01664990 +n01665541 +n01665932 +n01666228 +n01666585 +n01667114 +n01667432 +n01667778 +n01668091 +n01668436 +n01668665 +n01668892 +n01669191 +n01669372 +n01669654 +n01670092 +n01670535 +n01670802 +n01671125 +n01671479 +n01671705 +n01672032 +n01672432 +n01672611 +n01673282 +n01674216 +n01674464 +n01674990 +n01675352 +n01675722 +n01676755 +n01677366 +n01677747 +n01678043 +n01678343 +n01678657 +n01679005 +n01679307 +n01679626 +n01679962 +n01680264 +n01680478 +n01680655 +n01680813 +n01680983 +n01681328 +n01681653 +n01681940 +n01682172 +n01682435 +n01682714 +n01683201 +n01683558 +n01684133 +n01684578 +n01684741 +n01685439 +n01685808 +n01686044 +n01686220 +n01686403 +n01686609 +n01686808 +n01687128 +n01687290 +n01687665 +n01687978 +n01688243 +n01688961 +n01689081 +n01689411 +n01689811 +n01690149 +n01690466 +n01691217 +n01691652 +n01691951 +n01692333 +n01692523 +n01692864 +n01693175 +n01693334 +n01693783 +n01694178 +n01694311 +n01694709 +n01694955 +n01695060 +n01696633 +n01697178 +n01697457 +n01697611 +n01697749 +n01697978 +n01698434 +n01698640 +n01698782 +n01699040 +n01699254 +n01699675 +n01701551 +n01701859 +n01702256 +n01702479 +n01703011 +n01703161 +n01703569 +n01704103 +n01704323 +n01704626 +n01705010 +n01705591 +n01705934 +n01707294 +n01708106 +n01708998 +n01709484 +n01709876 +n01710177 +n01711160 +n01712008 +n01712752 +n01713170 +n01713764 +n01714231 +n01715888 +n01717016 +n01717229 +n01717467 +n01718096 +n01718414 +n01719403 +n01721174 +n01721898 +n01722670 +n01722998 +n01723579 +n01724231 +n01724840 +n01725086 +n01725713 +n01726203 +n01726692 +n01727646 +n01728266 +n01728572 +n01728920 +n01729322 +n01729672 +n01729977 +n01730185 +n01730307 +n01730563 +n01730812 +n01730960 +n01731137 +n01731277 +n01731545 +n01731764 +n01731941 +n01732093 +n01732244 +n01732614 +n01732789 +n01732989 +n01733214 +n01733466 +n01733757 +n01733957 +n01734104 +n01734418 +n01734637 +n01734808 +n01735189 +n01735439 +n01735577 +n01735728 +n01736032 +n01736375 +n01736796 +n01737021 +n01737472 +n01737728 +n01737875 +n01738065 +n01738306 +n01738601 +n01738731 +n01739094 +n01739381 +n01739647 +n01739871 +n01740131 +n01740551 +n01740885 +n01741232 +n01741442 +n01741562 +n01741943 +n01742172 +n01742447 +n01742821 +n01743086 +n01743605 +n01743936 +n01744100 +n01744270 +n01744401 +n01744555 +n01745125 +n01745484 +n01745902 +n01746191 +n01746359 +n01746952 +n01747285 +n01747589 +n01747885 +n01748264 +n01748389 +n01748686 +n01748906 +n01749244 +n01749582 +n01749742 +n01749939 +n01750167 +n01750437 +n01750743 +n01751036 +n01751215 +n01751472 +n01751748 +n01752165 +n01752585 +n01752736 +n01753032 +n01753180 +n01753488 +n01753959 +n01754370 +n01754533 +n01754876 +n01755581 +n01755740 +n01755952 +n01756089 +n01756291 +n01756508 +n01756733 +n01756916 +n01757115 +n01757343 +n01757677 +n01757901 +n01758141 +n01758757 +n01758895 +n01767661 +n01768244 +n01769347 +n01770081 +n01770393 +n01770795 +n01771100 +n01771417 +n01771766 +n01772222 +n01772664 +n01773157 +n01773549 +n01773797 +n01774097 +n01774384 +n01774750 +n01775062 +n01775370 +n01775730 +n01776192 +n01776313 +n01776705 +n01777304 +n01777467 +n01777649 +n01777909 +n01778217 +n01778487 +n01778621 +n01778801 +n01779148 +n01779463 +n01779629 +n01779939 +n01780142 +n01780426 +n01780696 +n01781071 +n01781570 +n01781698 +n01781875 +n01782209 +n01782516 +n01783017 +n01783706 +n01784293 +n01784675 +n01785667 +n01786646 +n01787006 +n01787191 +n01787835 +n01788291 +n01788579 +n01788864 +n01789386 +n01789740 +n01790171 +n01790304 +n01790398 +n01790557 +n01790711 +n01790812 +n01791107 +n01791314 +n01791388 +n01791463 +n01791625 +n01791954 +n01792042 +n01792158 +n01792429 +n01792530 +n01792640 +n01792808 +n01792955 +n01793085 +n01793159 +n01793249 +n01793340 +n01793435 +n01793565 +n01793715 +n01794158 +n01794344 +n01794651 +n01795088 +n01795545 +n01795735 +n01795900 +n01796019 +n01796105 +n01796340 +n01796519 +n01796729 +n01797020 +n01797307 +n01797601 +n01797886 +n01798168 +n01798484 +n01798706 +n01798839 +n01798979 +n01799302 +n01799679 +n01800195 +n01800424 +n01800633 +n01801088 +n01801479 +n01801672 +n01801876 +n01802159 +n01802721 +n01803078 +n01803362 +n01803641 +n01803893 +n01804163 +n01804478 +n01804653 +n01804921 +n01805070 +n01805321 +n01805801 +n01806061 +n01806143 +n01806297 +n01806364 +n01806467 +n01806567 +n01806847 +n01807105 +n01807496 +n01807828 +n01808140 +n01808291 +n01808596 +n01809106 +n01809371 +n01809752 +n01810268 +n01810700 +n01811243 +n01811909 +n01812187 +n01812337 +n01812662 +n01812866 +n01813088 +n01813385 +n01813532 +n01813658 +n01813948 +n01814217 +n01814370 +n01814549 +n01814620 +n01814755 +n01814921 +n01815036 +n01815270 +n01815601 +n01816017 +n01816140 +n01816474 +n01816887 +n01817263 +n01817346 +n01817953 +n01818299 +n01818515 +n01818832 +n01819115 +n01819313 +n01819465 +n01819734 +n01820052 +n01820348 +n01820546 +n01820801 +n01821076 +n01821203 +n01821554 +n01821869 +n01822300 +n01822602 +n01823013 +n01823414 +n01823740 +n01824035 +n01824344 +n01824575 +n01824749 +n01825278 +n01825930 +n01826364 +n01826680 +n01826844 +n01827403 +n01827793 +n01828096 +n01828556 +n01828970 +n01829413 +n01829869 +n01830042 +n01830479 +n01830915 +n01831360 +n01831712 +n01832167 +n01832493 +n01832813 +n01833112 +n01833415 +n01833805 +n01834177 +n01834540 +n01835276 +n01835769 +n01835918 +n01836087 +n01836673 +n01837072 +n01837526 +n01838038 +n01838598 +n01839086 +n01839330 +n01839598 +n01839750 +n01839949 +n01840120 +n01840412 +n01840775 +n01841102 +n01841288 +n01841441 +n01841679 +n01841943 +n01842235 +n01842504 +n01842788 +n01843065 +n01843383 +n01843719 +n01844231 +n01844551 +n01844746 +n01844917 +n01845132 +n01845477 +n01846331 +n01847000 +n01847089 +n01847170 +n01847253 +n01847407 +n01847806 +n01847978 +n01848123 +n01848323 +n01848453 +n01848555 +n01848648 +n01848840 +n01848976 +n01849157 +n01849466 +n01849676 +n01849863 +n01850192 +n01850373 +n01850553 +n01850873 +n01851038 +n01851207 +n01851375 +n01851573 +n01851731 +n01851895 +n01852142 +n01852329 +n01852400 +n01852671 +n01852861 +n01853195 +n01853498 +n01853666 +n01853870 +n01854415 +n01854700 +n01854838 +n01855032 +n01855188 +n01855476 +n01855672 +n01856072 +n01856155 +n01856380 +n01856553 +n01856890 +n01857079 +n01857325 +n01857512 +n01857632 +n01857851 +n01858281 +n01858441 +n01858780 +n01858845 +n01858906 +n01859190 +n01859325 +n01859496 +n01859689 +n01859852 +n01860002 +n01860187 +n01860497 +n01860864 +n01861148 +n01861330 +n01861778 +n01862399 +n01871265 +n01871543 +n01871875 +n01872401 +n01872772 +n01873310 +n01874434 +n01874928 +n01875313 +n01875610 +n01876034 +n01876326 +n01876667 +n01877134 +n01877606 +n01877812 +n01878061 +n01878335 +n01878639 +n01878929 +n01879217 +n01879509 +n01879837 +n01880152 +n01880473 +n01880716 +n01880813 +n01881171 +n01881564 +n01881857 +n01882125 +n01882714 +n01883070 +n01883513 +n01883920 +n01884104 +n01884203 +n01884476 +n01884834 +n01885158 +n01885498 +n01886045 +n01886756 +n01887474 +n01887623 +n01887787 +n01887896 +n01888045 +n01888181 +n01888264 +n01888411 +n01889074 +n01889520 +n01889849 +n01890144 +n01890564 +n01890860 +n01891013 +n01891274 +n01891633 +n01892030 +n01892145 +n01892385 +n01892551 +n01892744 +n01893021 +n01893164 +n01893399 +n01893825 +n01894207 +n01894522 +n01894956 +n01896844 +n01897257 +n01897426 +n01897536 +n01897667 +n01898593 +n01899894 +n01900150 +n01903234 +n01903346 +n01903498 +n01904029 +n01904806 +n01904886 +n01905321 +n01905661 +n01906749 +n01907287 +n01907738 +n01908042 +n01908958 +n01909422 +n01909788 +n01909906 +n01910252 +n01910747 +n01911063 +n01911403 +n01911839 +n01912152 +n01912454 +n01912809 +n01913166 +n01913346 +n01913440 +n01914163 +n01914609 +n01914830 +n01915700 +n01915811 +n01916187 +n01916388 +n01916481 +n01916588 +n01916925 +n01917289 +n01917611 +n01917882 +n01918744 +n01919385 +n01920051 +n01920438 +n01921059 +n01922303 +n01922717 +n01922948 +n01923025 +n01923404 +n01923890 +n01924800 +n01924916 +n01925270 +n01925695 +n01925916 +n01926379 +n01926689 +n01927159 +n01927456 +n01927928 +n01928215 +n01928517 +n01928865 +n01929186 +n01930112 +n01930852 +n01931140 +n01931520 +n01931714 +n01932151 +n01932936 +n01933151 +n01933478 +n01933988 +n01934440 +n01934844 +n01935176 +n01935395 +n01936391 +n01936671 +n01936858 +n01937579 +n01937909 +n01938454 +n01938735 +n01940736 +n01941223 +n01941340 +n01942177 +n01942869 +n01943087 +n01943541 +n01943899 +n01944118 +n01944390 +n01944812 +n01944955 +n01945143 +n01945340 +n01945685 +n01945845 +n01946277 +n01946630 +n01946827 +n01947139 +n01947396 +n01947997 +n01948446 +n01948573 +n01949085 +n01949499 +n01949973 +n01950731 +n01951274 +n01951613 +n01952029 +n01952712 +n01953361 +n01953594 +n01953762 +n01954516 +n01955084 +n01955933 +n01956344 +n01956481 +n01956764 +n01957335 +n01958038 +n01958346 +n01958435 +n01958531 +n01959029 +n01959492 +n01959985 +n01960177 +n01960459 +n01961234 +n01961600 +n01961985 +n01962506 +n01962788 +n01963317 +n01963479 +n01963571 +n01964049 +n01964271 +n01964441 +n01964957 +n01965252 +n01965529 +n01965889 +n01966377 +n01966586 +n01967094 +n01967308 +n01967963 +n01968315 +n01968897 +n01969726 +n01970164 +n01970667 +n01971094 +n01971280 +n01971620 +n01971850 +n01972131 +n01972541 +n01973148 +n01974773 +n01975687 +n01976146 +n01976868 +n01976957 +n01977485 +n01978010 +n01978136 +n01978287 +n01978455 +n01978587 +n01978930 +n01979269 +n01979526 +n01979874 +n01980166 +n01980655 +n01981276 +n01981702 +n01982068 +n01982347 +n01982650 +n01983048 +n01983481 +n01983674 +n01983829 +n01984245 +n01984695 +n01985128 +n01985493 +n01985797 +n01986214 +n01986806 +n01987076 +n01987545 +n01987727 +n01988203 +n01988701 +n01988869 +n01989516 +n01989869 +n01990007 +n01990516 +n01990800 +n01991028 +n01991520 +n01992262 +n01992423 +n01992773 +n01993525 +n01993830 +n01994910 +n01995514 +n01995686 +n01996280 +n01996585 +n01997119 +n01997825 +n01998183 +n01998741 +n01999186 +n01999767 +n02000954 +n02002075 +n02002556 +n02002724 +n02003037 +n02003204 +n02003577 +n02003839 +n02004131 +n02004492 +n02004855 +n02005399 +n02005790 +n02006063 +n02006364 +n02006656 +n02006985 +n02007284 +n02007558 +n02008041 +n02008497 +n02008643 +n02008796 +n02009229 +n02009380 +n02009508 +n02009750 +n02009912 +n02010272 +n02010453 +n02010728 +n02011016 +n02011281 +n02011460 +n02011805 +n02011943 +n02012185 +n02012849 +n02013177 +n02013567 +n02013706 +n02014237 +n02014524 +n02014941 +n02015357 +n02015554 +n02015797 +n02016066 +n02016358 +n02016659 +n02016816 +n02016956 +n02017213 +n02017475 +n02017725 +n02018027 +n02018207 +n02018368 +n02018795 +n02019190 +n02019438 +n02019929 +n02020219 +n02020578 +n02021050 +n02021281 +n02021795 +n02022684 +n02023341 +n02023855 +n02023992 +n02024185 +n02024479 +n02024763 +n02025043 +n02025239 +n02025389 +n02026059 +n02026629 +n02026948 +n02027075 +n02027357 +n02027492 +n02027897 +n02028035 +n02028175 +n02028342 +n02028451 +n02028727 +n02028900 +n02029087 +n02029378 +n02029706 +n02030035 +n02030224 +n02030287 +n02030568 +n02030837 +n02030996 +n02031298 +n02031585 +n02031934 +n02032222 +n02032355 +n02032480 +n02032769 +n02033041 +n02033208 +n02033324 +n02033561 +n02033779 +n02033882 +n02034129 +n02034295 +n02034661 +n02034971 +n02035210 +n02035402 +n02035656 +n02036053 +n02036228 +n02036711 +n02037110 +n02037464 +n02037869 +n02038141 +n02038466 +n02038993 +n02039171 +n02039497 +n02039780 +n02040266 +n02040505 +n02041085 +n02041246 +n02041678 +n02041875 +n02042046 +n02042180 +n02042472 +n02042759 +n02043063 +n02043333 +n02043808 +n02044178 +n02044517 +n02044778 +n02044908 +n02045369 +n02045596 +n02045864 +n02046171 +n02046759 +n02046939 +n02047045 +n02047260 +n02047411 +n02047517 +n02047614 +n02047975 +n02048115 +n02048353 +n02048698 +n02049088 +n02049532 +n02050004 +n02050313 +n02050442 +n02050586 +n02050809 +n02051059 +n02051474 +n02051845 +n02052204 +n02052365 +n02052775 +n02053083 +n02053425 +n02053584 +n02054036 +n02054502 +n02054711 +n02055107 +n02055658 +n02055803 +n02056228 +n02056570 +n02056728 +n02057035 +n02057330 +n02057731 +n02057898 +n02058221 +n02058594 +n02058747 +n02059162 +n02059541 +n02059852 +n02060133 +n02060411 +n02060569 +n02060889 +n02061217 +n02061560 +n02061853 +n02062017 +n02062430 +n02062744 +n02063224 +n02063662 +n02064000 +n02064338 +n02064816 +n02065026 +n02065263 +n02065407 +n02065726 +n02066245 +n02066707 +n02067240 +n02067603 +n02067768 +n02068206 +n02068541 +n02068974 +n02069412 +n02069701 +n02069974 +n02070174 +n02070430 +n02070624 +n02070776 +n02071028 +n02071294 +n02071636 +n02072040 +n02072493 +n02072798 +n02073250 +n02073831 +n02074367 +n02074726 +n02075296 +n02075612 +n02075927 +n02076196 +n02076402 +n02076779 +n02077152 +n02077384 +n02077658 +n02077787 +n02077923 +n02078292 +n02078574 +n02078738 +n02079005 +n02079389 +n02079851 +n02080146 +n02080415 +n02080713 +n02081060 +n02081571 +n02081798 +n02081927 +n02082056 +n02082190 +n02082791 +n02083346 +n02083672 +n02083780 +n02084071 +n02084732 +n02084861 +n02085019 +n02085118 +n02085272 +n02085374 +n02085620 +n02085782 +n02085936 +n02086079 +n02086240 +n02086346 +n02086478 +n02086646 +n02086753 +n02086910 +n02087046 +n02087122 +n02087314 +n02087394 +n02087551 +n02088094 +n02088238 +n02088364 +n02088466 +n02088632 +n02088745 +n02088839 +n02088992 +n02089078 +n02089232 +n02089468 +n02089555 +n02089725 +n02089867 +n02089973 +n02090129 +n02090253 +n02090379 +n02090475 +n02090622 +n02090721 +n02090827 +n02091032 +n02091134 +n02091244 +n02091467 +n02091635 +n02091831 +n02092002 +n02092173 +n02092339 +n02092468 +n02093056 +n02093256 +n02093428 +n02093647 +n02093754 +n02093859 +n02093991 +n02094114 +n02094258 +n02094433 +n02094562 +n02094721 +n02094931 +n02095050 +n02095212 +n02095314 +n02095412 +n02095570 +n02095727 +n02095889 +n02096051 +n02096177 +n02096294 +n02096437 +n02096585 +n02096756 +n02097047 +n02097130 +n02097209 +n02097298 +n02097474 +n02097658 +n02097786 +n02097967 +n02098105 +n02098286 +n02098413 +n02098550 +n02098806 +n02098906 +n02099029 +n02099267 +n02099429 +n02099601 +n02099712 +n02099849 +n02099997 +n02100236 +n02100399 +n02100583 +n02100735 +n02100877 +n02101006 +n02101108 +n02101388 +n02101556 +n02101670 +n02101861 +n02102040 +n02102177 +n02102318 +n02102480 +n02102605 +n02102806 +n02102973 +n02103181 +n02103406 +n02103841 +n02104029 +n02104184 +n02104280 +n02104365 +n02104523 +n02104882 +n02105056 +n02105162 +n02105251 +n02105412 +n02105505 +n02105641 +n02105855 +n02106030 +n02106166 +n02106382 +n02106550 +n02106662 +n02106854 +n02106966 +n02107142 +n02107312 +n02107420 +n02107574 +n02107683 +n02107908 +n02108000 +n02108089 +n02108254 +n02108422 +n02108551 +n02108672 +n02108915 +n02109047 +n02109150 +n02109256 +n02109391 +n02109525 +n02109687 +n02109811 +n02109961 +n02110063 +n02110185 +n02110341 +n02110532 +n02110627 +n02110806 +n02110958 +n02111129 +n02111277 +n02111500 +n02111626 +n02111889 +n02112018 +n02112137 +n02112350 +n02112497 +n02112706 +n02112826 +n02113023 +n02113186 +n02113335 +n02113624 +n02113712 +n02113799 +n02113892 +n02113978 +n02114100 +n02114367 +n02114548 +n02114712 +n02114855 +n02115012 +n02115096 +n02115335 +n02115641 +n02115913 +n02116185 +n02116450 +n02116738 +n02117135 +n02117512 +n02117646 +n02117900 +n02118176 +n02118333 +n02118643 +n02118707 +n02119022 +n02119247 +n02119359 +n02119477 +n02119634 +n02119789 +n02120079 +n02120278 +n02120505 +n02120997 +n02121620 +n02121808 +n02122298 +n02122430 +n02122510 +n02122580 +n02122725 +n02122810 +n02122878 +n02122948 +n02123045 +n02123159 +n02123242 +n02123394 +n02123478 +n02123597 +n02123785 +n02123917 +n02124075 +n02124157 +n02124313 +n02124484 +n02124623 +n02125010 +n02125081 +n02125311 +n02125494 +n02125689 +n02125872 +n02126028 +n02126139 +n02126317 +n02126640 +n02126787 +n02127052 +n02127292 +n02127381 +n02127482 +n02127586 +n02127678 +n02127808 +n02128385 +n02128598 +n02128669 +n02128757 +n02128925 +n02129165 +n02129463 +n02129530 +n02129604 +n02129837 +n02129923 +n02129991 +n02130086 +n02130308 +n02130545 +n02130925 +n02131653 +n02132136 +n02132320 +n02132466 +n02132580 +n02132788 +n02133161 +n02133400 +n02133704 +n02134084 +n02134418 +n02134971 +n02135220 +n02135610 +n02135844 +n02136103 +n02136285 +n02136452 +n02136794 +n02137015 +n02137302 +n02137549 +n02137722 +n02137888 +n02138169 +n02138441 +n02138647 +n02138777 +n02139199 +n02139671 +n02140049 +n02140179 +n02140268 +n02140491 +n02140858 +n02141306 +n02141611 +n02141713 +n02142407 +n02142734 +n02142898 +n02143142 +n02143439 +n02143891 +n02144251 +n02144593 +n02144936 +n02145424 +n02145910 +n02146201 +n02146371 +n02146700 +n02146879 +n02147173 +n02147328 +n02147591 +n02147947 +n02148088 +n02148512 +n02148835 +n02148991 +n02149420 +n02149653 +n02149861 +n02150134 +n02150482 +n02150885 +n02151230 +n02152740 +n02152881 +n02152991 +n02153109 +n02153203 +n02153809 +n02156732 +n02156871 +n02157206 +n02157285 +n02159955 +n02160947 +n02161225 +n02161338 +n02161457 +n02161588 +n02162561 +n02163008 +n02163297 +n02164464 +n02165105 +n02165456 +n02165877 +n02166229 +n02166567 +n02166826 +n02167151 +n02167505 +n02167820 +n02167944 +n02168245 +n02168427 +n02168699 +n02169023 +n02169218 +n02169497 +n02169705 +n02169974 +n02170400 +n02170599 +n02170738 +n02170993 +n02171164 +n02171453 +n02171869 +n02172182 +n02172518 +n02172678 +n02172761 +n02172870 +n02173113 +n02173373 +n02173784 +n02174001 +n02174355 +n02174659 +n02175014 +n02175569 +n02175916 +n02176261 +n02176439 +n02176747 +n02176916 +n02177196 +n02177506 +n02177775 +n02177972 +n02178411 +n02178717 +n02179012 +n02179192 +n02179340 +n02179891 +n02180233 +n02180427 +n02180875 +n02181235 +n02181477 +n02181724 +n02182045 +n02182355 +n02182642 +n02182930 +n02183096 +n02183507 +n02183857 +n02184473 +n02184589 +n02184720 +n02185167 +n02185481 +n02186153 +n02186717 +n02187150 +n02187279 +n02187554 +n02187900 +n02188699 +n02189363 +n02189670 +n02190166 +n02190790 +n02191273 +n02191773 +n02191979 +n02192252 +n02192513 +n02192814 +n02193009 +n02193163 +n02194249 +n02194750 +n02195091 +n02195526 +n02195819 +n02196119 +n02196344 +n02196896 +n02197185 +n02197689 +n02197877 +n02198129 +n02198532 +n02198859 +n02199170 +n02199502 +n02200198 +n02200509 +n02200630 +n02200850 +n02201000 +n02201497 +n02201626 +n02202006 +n02202124 +n02202287 +n02202678 +n02203152 +n02203592 +n02203978 +n02204249 +n02204722 +n02204907 +n02205219 +n02205673 +n02206270 +n02206856 +n02207179 +n02207345 +n02207449 +n02207647 +n02207805 +n02208280 +n02208498 +n02208848 +n02208979 +n02209111 +n02209354 +n02209624 +n02209964 +n02210427 +n02210921 +n02211444 +n02211627 +n02211896 +n02212062 +n02212602 +n02212958 +n02213107 +n02213239 +n02213543 +n02213663 +n02213788 +n02214096 +n02214341 +n02214499 +n02214660 +n02214773 +n02215161 +n02215621 +n02215770 +n02216211 +n02216365 +n02216740 +n02217563 +n02217839 +n02218134 +n02218371 +n02218713 +n02219015 +n02219486 +n02220055 +n02220225 +n02220518 +n02220804 +n02221083 +n02221414 +n02221571 +n02221715 +n02221820 +n02222035 +n02222321 +n02222582 +n02223266 +n02223520 +n02224023 +n02224713 +n02225081 +n02225798 +n02226183 +n02226429 +n02226821 +n02226970 +n02227247 +n02227604 +n02227966 +n02228341 +n02228697 +n02229156 +n02229544 +n02229765 +n02230023 +n02230187 +n02230480 +n02230634 +n02231052 +n02231487 +n02231803 +n02232223 +n02233338 +n02233943 +n02234355 +n02234570 +n02234848 +n02235205 +n02236044 +n02236241 +n02236355 +n02236896 +n02237424 +n02237581 +n02237868 +n02238235 +n02238358 +n02238594 +n02238887 +n02239192 +n02239528 +n02239774 +n02240068 +n02240517 +n02241008 +n02241426 +n02241569 +n02241799 +n02242137 +n02242455 +n02243209 +n02243562 +n02243878 +n02244173 +n02244515 +n02244797 +n02245111 +n02245443 +n02246011 +n02246628 +n02246941 +n02247216 +n02247511 +n02247655 +n02248062 +n02248368 +n02248510 +n02248887 +n02249134 +n02249515 +n02249809 +n02250280 +n02250822 +n02251067 +n02251233 +n02251593 +n02251775 +n02252226 +n02252799 +n02252972 +n02253127 +n02253264 +n02253494 +n02253715 +n02253913 +n02254246 +n02254697 +n02254901 +n02255023 +n02255391 +n02256172 +n02256656 +n02257003 +n02257284 +n02257715 +n02257985 +n02258198 +n02258508 +n02258629 +n02259212 +n02259377 +n02259708 +n02259987 +n02260421 +n02260863 +n02261063 +n02261419 +n02261757 +n02262178 +n02262449 +n02262803 +n02263378 +n02264021 +n02264232 +n02264363 +n02264591 +n02264885 +n02265330 +n02266050 +n02266269 +n02266421 +n02266864 +n02267208 +n02267483 +n02268148 +n02268443 +n02268853 +n02269196 +n02269340 +n02269522 +n02269657 +n02270011 +n02270200 +n02270623 +n02270945 +n02271222 +n02271570 +n02271897 +n02272286 +n02272552 +n02272871 +n02273392 +n02274024 +n02274259 +n02274822 +n02275560 +n02275773 +n02276078 +n02276258 +n02276355 +n02276749 +n02276902 +n02277094 +n02277268 +n02277422 +n02277742 +n02278024 +n02278210 +n02278463 +n02278839 +n02278980 +n02279257 +n02279637 +n02279972 +n02280458 +n02280649 +n02281015 +n02281136 +n02281267 +n02281406 +n02281787 +n02282257 +n02282385 +n02282553 +n02282903 +n02283077 +n02283201 +n02283617 +n02283951 +n02284224 +n02284611 +n02284884 +n02285179 +n02285548 +n02285801 +n02286089 +n02286425 +n02286654 +n02287004 +n02287352 +n02287622 +n02287799 +n02287987 +n02288122 +n02288268 +n02288789 +n02289307 +n02289610 +n02289988 +n02290340 +n02290664 +n02290870 +n02291220 +n02291572 +n02291748 +n02292085 +n02292401 +n02292692 +n02293352 +n02293868 +n02294097 +n02294407 +n02294577 +n02295064 +n02295390 +n02295870 +n02296021 +n02296276 +n02296612 +n02296912 +n02297294 +n02297442 +n02297819 +n02297938 +n02298095 +n02298218 +n02298541 +n02299039 +n02299157 +n02299378 +n02299505 +n02299846 +n02300173 +n02300554 +n02300797 +n02301452 +n02301935 +n02302244 +n02302459 +n02302620 +n02302969 +n02303284 +n02303585 +n02303777 +n02304036 +n02304432 +n02304657 +n02304797 +n02305085 +n02305407 +n02305636 +n02305929 +n02306433 +n02306825 +n02307176 +n02307325 +n02307515 +n02307681 +n02307910 +n02308033 +n02308139 +n02308471 +n02308618 +n02308735 +n02309120 +n02309242 +n02309337 +n02309841 +n02310000 +n02310149 +n02310334 +n02310585 +n02310717 +n02310941 +n02311060 +n02311617 +n02311748 +n02312006 +n02312175 +n02312325 +n02312427 +n02312640 +n02312912 +n02313008 +n02313360 +n02313709 +n02315487 +n02315821 +n02316707 +n02317335 +n02317781 +n02318167 +n02318687 +n02319095 +n02319308 +n02319555 +n02319829 +n02320127 +n02320465 +n02321170 +n02321529 +n02322047 +n02322992 +n02323449 +n02323902 +n02324045 +n02324431 +n02324514 +n02324587 +n02324850 +n02325366 +n02325722 +n02325884 +n02326074 +n02326432 +n02326763 +n02326862 +n02327028 +n02327175 +n02327435 +n02327656 +n02327842 +n02328009 +n02328150 +n02328429 +n02328820 +n02328942 +n02329401 +n02330245 +n02331046 +n02331309 +n02331842 +n02332156 +n02332447 +n02332755 +n02332954 +n02333190 +n02333546 +n02333733 +n02333819 +n02333909 +n02334201 +n02334460 +n02334728 +n02335127 +n02335231 +n02336011 +n02336275 +n02336641 +n02336826 +n02337001 +n02337171 +n02337332 +n02337598 +n02337902 +n02338145 +n02338449 +n02338722 +n02338901 +n02339282 +n02339376 +n02339922 +n02340186 +n02340358 +n02340640 +n02340930 +n02341288 +n02341475 +n02341616 +n02341974 +n02342250 +n02342534 +n02342885 +n02343058 +n02343320 +n02343772 +n02344175 +n02344270 +n02344408 +n02344528 +n02344918 +n02345078 +n02345340 +n02345600 +n02345774 +n02345997 +n02346170 +n02346627 +n02346998 +n02347274 +n02347573 +n02347744 +n02348173 +n02348788 +n02349205 +n02349390 +n02349557 +n02349847 +n02350105 +n02350357 +n02350670 +n02350989 +n02351343 +n02351870 +n02352002 +n02352290 +n02352591 +n02352932 +n02353172 +n02353411 +n02353861 +n02354162 +n02354320 +n02354621 +n02354781 +n02355227 +n02355477 +n02356381 +n02356612 +n02356798 +n02356977 +n02357111 +n02357401 +n02357585 +n02357911 +n02358091 +n02358390 +n02358584 +n02358712 +n02358890 +n02359047 +n02359324 +n02359556 +n02359667 +n02359915 +n02360282 +n02360480 +n02360781 +n02360933 +n02361090 +n02361337 +n02361587 +n02361706 +n02361850 +n02362194 +n02363005 +n02363245 +n02363351 +n02363996 +n02364520 +n02364673 +n02364840 +n02365108 +n02365480 +n02366002 +n02366301 +n02366579 +n02366959 +n02367492 +n02367812 +n02368116 +n02368399 +n02368821 +n02369293 +n02369555 +n02369680 +n02369935 +n02370137 +n02370525 +n02370806 +n02371344 +n02372140 +n02372584 +n02372952 +n02373336 +n02374149 +n02374451 +n02375302 +n02375438 +n02375757 +n02375862 +n02376542 +n02376679 +n02376791 +n02376918 +n02377063 +n02377181 +n02377291 +n02377388 +n02377480 +n02377603 +n02377703 +n02378149 +n02378299 +n02378415 +n02378541 +n02378625 +n02378755 +n02378870 +n02378969 +n02379081 +n02379183 +n02379329 +n02379430 +n02379630 +n02379743 +n02379908 +n02380052 +n02380335 +n02380464 +n02380583 +n02380745 +n02380875 +n02381004 +n02381119 +n02381261 +n02381364 +n02381460 +n02381609 +n02381831 +n02382039 +n02382132 +n02382204 +n02382338 +n02382437 +n02382635 +n02382750 +n02382850 +n02382948 +n02383231 +n02384741 +n02384858 +n02385002 +n02385098 +n02385214 +n02385580 +n02385676 +n02385776 +n02385898 +n02386014 +n02386141 +n02386224 +n02386310 +n02386496 +n02386746 +n02386853 +n02386968 +n02387093 +n02387254 +n02387346 +n02387452 +n02387722 +n02387887 +n02387983 +n02388143 +n02388276 +n02388453 +n02388588 +n02388735 +n02388832 +n02388917 +n02389026 +n02389128 +n02389261 +n02389346 +n02389559 +n02389779 +n02389865 +n02389943 +n02390015 +n02390101 +n02390258 +n02390454 +n02390640 +n02390738 +n02390834 +n02390938 +n02391049 +n02391234 +n02391373 +n02391508 +n02391617 +n02391994 +n02392434 +n02392555 +n02392824 +n02393161 +n02393580 +n02393807 +n02393940 +n02394477 +n02395003 +n02395406 +n02395694 +n02395855 +n02395931 +n02396014 +n02396088 +n02396157 +n02396427 +n02396796 +n02397096 +n02397529 +n02397744 +n02397987 +n02398521 +n02399000 +n02401031 +n02402010 +n02402175 +n02402425 +n02403003 +n02403153 +n02403231 +n02403325 +n02403454 +n02403740 +n02403820 +n02403920 +n02404028 +n02404186 +n02404432 +n02404573 +n02404906 +n02405101 +n02405302 +n02405440 +n02405577 +n02405692 +n02405799 +n02405929 +n02406046 +n02406174 +n02406432 +n02406533 +n02406647 +n02406749 +n02406859 +n02406952 +n02407071 +n02407172 +n02407276 +n02407390 +n02407521 +n02407625 +n02407763 +n02407959 +n02408429 +n02408660 +n02408817 +n02409038 +n02409202 +n02409508 +n02409870 +n02410011 +n02410141 +n02410509 +n02410702 +n02410900 +n02411206 +n02411705 +n02411999 +n02412080 +n02412210 +n02412440 +n02412629 +n02412700 +n02412787 +n02412909 +n02412977 +n02413050 +n02413131 +n02413484 +n02413593 +n02413717 +n02413824 +n02413917 +n02414043 +n02414209 +n02414290 +n02414442 +n02414578 +n02414763 +n02414904 +n02415130 +n02415253 +n02415435 +n02415577 +n02415829 +n02416104 +n02416519 +n02416820 +n02416880 +n02416964 +n02417070 +n02417242 +n02417387 +n02417534 +n02417663 +n02417785 +n02417914 +n02418064 +n02418465 +n02418770 +n02419056 +n02419336 +n02419634 +n02419796 +n02420509 +n02420828 +n02421136 +n02421449 +n02421792 +n02422106 +n02422391 +n02422699 +n02423022 +n02423218 +n02423362 +n02423589 +n02424085 +n02424305 +n02424486 +n02424589 +n02424695 +n02424909 +n02425086 +n02425228 +n02425532 +n02425887 +n02426176 +n02426481 +n02426813 +n02427032 +n02427183 +n02427470 +n02427576 +n02427724 +n02428089 +n02428349 +n02428508 +n02428842 +n02429456 +n02430045 +n02430559 +n02430643 +n02430748 +n02430830 +n02431122 +n02431337 +n02431441 +n02431542 +n02431628 +n02431785 +n02431976 +n02432291 +n02432511 +n02432704 +n02432983 +n02433318 +n02433546 +n02433729 +n02433925 +n02434190 +n02434415 +n02434712 +n02434954 +n02435216 +n02435517 +n02435853 +n02436224 +n02436353 +n02436645 +n02437136 +n02437312 +n02437482 +n02437616 +n02437971 +n02438173 +n02438272 +n02438580 +n02439033 +n02439398 +n02441326 +n02441942 +n02442172 +n02442336 +n02442446 +n02442572 +n02442668 +n02442845 +n02443015 +n02443114 +n02443346 +n02443484 +n02443808 +n02443959 +n02444251 +n02444819 +n02445004 +n02445171 +n02445394 +n02445715 +n02446206 +n02446352 +n02446645 +n02447021 +n02447366 +n02447762 +n02448060 +n02448318 +n02448633 +n02448885 +n02449183 +n02449350 +n02449699 +n02450034 +n02450295 +n02450426 +n02450561 +n02450677 +n02450829 +n02451125 +n02451415 +n02451575 +n02453108 +n02453611 +n02454379 +n02454794 +n02455135 +n02455428 +n02455720 +n02456008 +n02456275 +n02456962 +n02457408 +n02457945 +n02458135 +n02458517 +n02459190 +n02460009 +n02460451 +n02460817 +n02461128 +n02461830 +n02462213 +n02469248 +n02469472 +n02469914 +n02470238 +n02470325 +n02470709 +n02470899 +n02471300 +n02471762 +n02472293 +n02472987 +n02473307 +n02473554 +n02473720 +n02473857 +n02473983 +n02474110 +n02474282 +n02474605 +n02474777 +n02475078 +n02475358 +n02475669 +n02476219 +n02476567 +n02476870 +n02477028 +n02477187 +n02477329 +n02477516 +n02477782 +n02478239 +n02478875 +n02479332 +n02480153 +n02480495 +n02480855 +n02481103 +n02481235 +n02481366 +n02481500 +n02481823 +n02482060 +n02482286 +n02482474 +n02482650 +n02483092 +n02483362 +n02483708 +n02484322 +n02484473 +n02484975 +n02485225 +n02485371 +n02485536 +n02485688 +n02485988 +n02486261 +n02486410 +n02486657 +n02486908 +n02487079 +n02487347 +n02487547 +n02487675 +n02487847 +n02488003 +n02488291 +n02488415 +n02488702 +n02488894 +n02489166 +n02489589 +n02490219 +n02490597 +n02490811 +n02491107 +n02491329 +n02491474 +n02492035 +n02492356 +n02492660 +n02492948 +n02493224 +n02493509 +n02493793 +n02494079 +n02494383 +n02495242 +n02496052 +n02496913 +n02497673 +n02498153 +n02498743 +n02499022 +n02499316 +n02499568 +n02499808 +n02500267 +n02500596 +n02501583 +n02501923 +n02502006 +n02502514 +n02502807 +n02503127 +n02503517 +n02503756 +n02504013 +n02504458 +n02504770 +n02505063 +n02505238 +n02505485 +n02505998 +n02506947 +n02507148 +n02507649 +n02508021 +n02508213 +n02508346 +n02508742 +n02509197 +n02509515 +n02509815 +n02510455 +n02511730 +n02512053 +n02512752 +n02512830 +n02512938 +n02513248 +n02513355 +n02513560 +n02513727 +n02513805 +n02513939 +n02514041 +n02515214 +n02515713 +n02516188 +n02516776 +n02517442 +n02517938 +n02518324 +n02518622 +n02519148 +n02519340 +n02519472 +n02519686 +n02519862 +n02520147 +n02520525 +n02520810 +n02521646 +n02522399 +n02522637 +n02522722 +n02522866 +n02523110 +n02523427 +n02523877 +n02524202 +n02524524 +n02524659 +n02524928 +n02525382 +n02525703 +n02526121 +n02526425 +n02526818 +n02527057 +n02527271 +n02527622 +n02528163 +n02529293 +n02529772 +n02530052 +n02530188 +n02530421 +n02530637 +n02530831 +n02530999 +n02531114 +n02531625 +n02532028 +n02532272 +n02532451 +n02532602 +n02532786 +n02532918 +n02533209 +n02533545 +n02533834 +n02534165 +n02534559 +n02534734 +n02535080 +n02535163 +n02535258 +n02535537 +n02535759 +n02536165 +n02536456 +n02536864 +n02537085 +n02537319 +n02537525 +n02537716 +n02538010 +n02538216 +n02538406 +n02538562 +n02538985 +n02539424 +n02539573 +n02539894 +n02540412 +n02540983 +n02541257 +n02541687 +n02542017 +n02542432 +n02542958 +n02543255 +n02543565 +n02544274 +n02545841 +n02546028 +n02546331 +n02546627 +n02547014 +n02547733 +n02548247 +n02548689 +n02548884 +n02549248 +n02549376 +n02549989 +n02550203 +n02550460 +n02550655 +n02551134 +n02551668 +n02552171 +n02553028 +n02554730 +n02555863 +n02556373 +n02556846 +n02557182 +n02557318 +n02557591 +n02557749 +n02557909 +n02558206 +n02558860 +n02559144 +n02559383 +n02559862 +n02560110 +n02561108 +n02561381 +n02561514 +n02561661 +n02561803 +n02561937 +n02562315 +n02562796 +n02562971 +n02563079 +n02563182 +n02563648 +n02563792 +n02563949 +n02564270 +n02564403 +n02564720 +n02564935 +n02565072 +n02565324 +n02565573 +n02566109 +n02566489 +n02566665 +n02567334 +n02567633 +n02568087 +n02568447 +n02568959 +n02569484 +n02569631 +n02569905 +n02570164 +n02570484 +n02570838 +n02571167 +n02571652 +n02571810 +n02572196 +n02572484 +n02573249 +n02573704 +n02574271 +n02574910 +n02575325 +n02575590 +n02576223 +n02576575 +n02576906 +n02577041 +n02577164 +n02577403 +n02577662 +n02577952 +n02578233 +n02578454 +n02578771 +n02578928 +n02579303 +n02579557 +n02579762 +n02579928 +n02580336 +n02580679 +n02580830 +n02581108 +n02581482 +n02581642 +n02581957 +n02582220 +n02582349 +n02582721 +n02583567 +n02583890 +n02584145 +n02584449 +n02585872 +n02586238 +n02586543 +n02587051 +n02587300 +n02587479 +n02587618 +n02587877 +n02588286 +n02588794 +n02588945 +n02589062 +n02589196 +n02589316 +n02589623 +n02589796 +n02590094 +n02590495 +n02590702 +n02590987 +n02591330 +n02591613 +n02591911 +n02592055 +n02592371 +n02592734 +n02593019 +n02593191 +n02593453 +n02593679 +n02594250 +n02594942 +n02595056 +n02595339 +n02595702 +n02596067 +n02596252 +n02596381 +n02596720 +n02597004 +n02597367 +n02597608 +n02597818 +n02597972 +n02598134 +n02598573 +n02598878 +n02599052 +n02599347 +n02599557 +n02599958 +n02600298 +n02600503 +n02600798 +n02601344 +n02601767 +n02601921 +n02602059 +n02602405 +n02602760 +n02603317 +n02603540 +n02603862 +n02604157 +n02604480 +n02604954 +n02605316 +n02605703 +n02605936 +n02606052 +n02606384 +n02606751 +n02607072 +n02607201 +n02607470 +n02607862 +n02608284 +n02608547 +n02608860 +n02608996 +n02609302 +n02609823 +n02610066 +n02610373 +n02610664 +n02610980 +n02611561 +n02611898 +n02612167 +n02613181 +n02613572 +n02613820 +n02614140 +n02614482 +n02614653 +n02614978 +n02615298 +n02616128 +n02616397 +n02616851 +n02617537 +n02618094 +n02618513 +n02618827 +n02619165 +n02619550 +n02619861 +n02620167 +n02620578 +n02621258 +n02621908 +n02622249 +n02622547 +n02622712 +n02622955 +n02623445 +n02624167 +n02624551 +n02624807 +n02624987 +n02625258 +n02625612 +n02625851 +n02626089 +n02626265 +n02626471 +n02626762 +n02627037 +n02627292 +n02627532 +n02627835 +n02628062 +n02628259 +n02628600 +n02629230 +n02629716 +n02630281 +n02630615 +n02630739 +n02631041 +n02631330 +n02631475 +n02631628 +n02631775 +n02632039 +n02632494 +n02633422 +n02633677 +n02633977 +n02634545 +n02635154 +n02635580 +n02636170 +n02636405 +n02636550 +n02636854 +n02637179 +n02637475 +n02637977 +n02638596 +n02639087 +n02639605 +n02639922 +n02640242 +n02640626 +n02640857 +n02641379 +n02642107 +n02642644 +n02643112 +n02643316 +n02643566 +n02643836 +n02644113 +n02644360 +n02644501 +n02644665 +n02644817 +n02645538 +n02645691 +n02645953 +n02646667 +n02646892 +n02648035 +n02648625 +n02648916 +n02649218 +n02649546 +n02650050 +n02650413 +n02650541 +n02651060 +n02652132 +n02652668 +n02653145 +n02653497 +n02653786 +n02654112 +n02654425 +n02654745 +n02655020 +n02655523 +n02655848 +n02656032 +n02656301 +n02656670 +n02656969 +n02657368 +n02657694 +n02658079 +n02658531 +n02658811 +n02659176 +n02659478 +n02659808 +n02660091 +n02660208 +n02660519 +n02660640 +n02661017 +n02661473 +n02661618 +n02662239 +n02662397 +n02662559 +n02662825 +n02662993 +n02663211 +n02663485 +n02663849 +n02664285 +n02664642 +n02665250 +n02665985 +n02666196 +n02666501 +n02666624 +n02666943 +n02667093 +n02667244 +n02667379 +n02667478 +n02667576 +n02667693 +n02668393 +n02668613 +n02669295 +n02669442 +n02669534 +n02669723 +n02670186 +n02670382 +n02670683 +n02670935 +n02671780 +n02672152 +n02672371 +n02672831 +n02675077 +n02675219 +n02675522 +n02676097 +n02676261 +n02676566 +n02676670 +n02676938 +n02677028 +n02677136 +n02677436 +n02677718 +n02678010 +n02678384 +n02678897 +n02679142 +n02679257 +n02679961 +n02680110 +n02680512 +n02680638 +n02680754 +n02681392 +n02682311 +n02682407 +n02682569 +n02682811 +n02682922 +n02683183 +n02683323 +n02683454 +n02683558 +n02683791 +n02684248 +n02684356 +n02684515 +n02684649 +n02684962 +n02685082 +n02685253 +n02685365 +n02685701 +n02685995 +n02686121 +n02686227 +n02686379 +n02686568 +n02687172 +n02687423 +n02687682 +n02687821 +n02687992 +n02688273 +n02688443 +n02689144 +n02689274 +n02689434 +n02689748 +n02689819 +n02690373 +n02690715 +n02691156 +n02692086 +n02692232 +n02692513 +n02692680 +n02692877 +n02693246 +n02693413 +n02693540 +n02694045 +n02694279 +n02694426 +n02694662 +n02694966 +n02695627 +n02695762 +n02696165 +n02696246 +n02696569 +n02696843 +n02697022 +n02697221 +n02697576 +n02697675 +n02697876 +n02698244 +n02698473 +n02698634 +n02699494 +n02699629 +n02699770 +n02699915 +n02700064 +n02700258 +n02700895 +n02701002 +n02701260 +n02701730 +n02702989 +n02703124 +n02703275 +n02704645 +n02704792 +n02704949 +n02705201 +n02705429 +n02705944 +n02706221 +n02706806 +n02708093 +n02708224 +n02708433 +n02708555 +n02708711 +n02708885 +n02709101 +n02709367 +n02709637 +n02709763 +n02709908 +n02710044 +n02710201 +n02710324 +n02710429 +n02710600 +n02711237 +n02711780 +n02712545 +n02712643 +n02713003 +n02713218 +n02713364 +n02713496 +n02714315 +n02714535 +n02714751 +n02715229 +n02715513 +n02715712 +n02716626 +n02720048 +n02720576 +n02721813 +n02723165 +n02724722 +n02725872 +n02726017 +n02726210 +n02726305 +n02726681 +n02727016 +n02727141 +n02727426 +n02727825 +n02728440 +n02729222 +n02729837 +n02729965 +n02730265 +n02730568 +n02730930 +n02731251 +n02731398 +n02731629 +n02731900 +n02732072 +n02732572 +n02732827 +n02733213 +n02733524 +n02734725 +n02734835 +n02735268 +n02735361 +n02735538 +n02735688 +n02736396 +n02736798 +n02737351 +n02737660 +n02738031 +n02738271 +n02738449 +n02738535 +n02738741 +n02738859 +n02738978 +n02739123 +n02739427 +n02739550 +n02739668 +n02739889 +n02740061 +n02740300 +n02740533 +n02740764 +n02741367 +n02741475 +n02742070 +n02742194 +n02742322 +n02742468 +n02742753 +n02743426 +n02744323 +n02744844 +n02744961 +n02745492 +n02745611 +n02745816 +n02746008 +n02746225 +n02746365 +n02746595 +n02746683 +n02746978 +n02747063 +n02747177 +n02747672 +n02747802 +n02748183 +n02748359 +n02748491 +n02749169 +n02749292 +n02749479 +n02749670 +n02749790 +n02749953 +n02750070 +n02750169 +n02750320 +n02750652 +n02751067 +n02751215 +n02751295 +n02751490 +n02752199 +n02752496 +n02752615 +n02752810 +n02752917 +n02753044 +n02753394 +n02753710 +n02754103 +n02754656 +n02755140 +n02755352 +n02755529 +n02755675 +n02755823 +n02755984 +n02756098 +n02756854 +n02756977 +n02757061 +n02757337 +n02757462 +n02757714 +n02757810 +n02757927 +n02758134 +n02758490 +n02758863 +n02758960 +n02759257 +n02759387 +n02759700 +n02759963 +n02760099 +n02760199 +n02760298 +n02760429 +n02760658 +n02760855 +n02761034 +n02761206 +n02761392 +n02761557 +n02761696 +n02761834 +n02762169 +n02762371 +n02762508 +n02762725 +n02762909 +n02763083 +n02763198 +n02763306 +n02763604 +n02763714 +n02763901 +n02764044 +n02764398 +n02764505 +n02764614 +n02764779 +n02764935 +n02765028 +n02766168 +n02766320 +n02766534 +n02766792 +n02767038 +n02767147 +n02767433 +n02767665 +n02767956 +n02768114 +n02768226 +n02768433 +n02768655 +n02768973 +n02769075 +n02769290 +n02769669 +n02769748 +n02769963 +n02770078 +n02770211 +n02770585 +n02770721 +n02770830 +n02771004 +n02771166 +n02771286 +n02771547 +n02771750 +n02772101 +n02772435 +n02772554 +n02772700 +n02773037 +n02773838 +n02774152 +n02774630 +n02774921 +n02775039 +n02775178 +n02775483 +n02775689 +n02775813 +n02775897 +n02776007 +n02776205 +n02776505 +n02776631 +n02776825 +n02776978 +n02777100 +n02777292 +n02777402 +n02777638 +n02777734 +n02777927 +n02778131 +n02778294 +n02778456 +n02778588 +n02778669 +n02779435 +n02779609 +n02779719 +n02779971 +n02780315 +n02780445 +n02780588 +n02780704 +n02780815 +n02781121 +n02781213 +n02781338 +n02781517 +n02781764 +n02782093 +n02782432 +n02782602 +n02782681 +n02782778 +n02783035 +n02783161 +n02783324 +n02783459 +n02783900 +n02783994 +n02784124 +n02784998 +n02785648 +n02786058 +n02786198 +n02786331 +n02786463 +n02786611 +n02786736 +n02786837 +n02787120 +n02787269 +n02787435 +n02787622 +n02788021 +n02788148 +n02788386 +n02788462 +n02788572 +n02788689 +n02789487 +n02790669 +n02790823 +n02790996 +n02791124 +n02791270 +n02791532 +n02791665 +n02791795 +n02792409 +n02792552 +n02792948 +n02793089 +n02793199 +n02793296 +n02793414 +n02793495 +n02793684 +n02793842 +n02793930 +n02794008 +n02794156 +n02794368 +n02794474 +n02794664 +n02794779 +n02794972 +n02795169 +n02795528 +n02795670 +n02795783 +n02795978 +n02796207 +n02796318 +n02796412 +n02796623 +n02796995 +n02797295 +n02797535 +n02797692 +n02797881 +n02799071 +n02799175 +n02799323 +n02799897 +n02800213 +n02800497 +n02800675 +n02800940 +n02801047 +n02801184 +n02801450 +n02801525 +n02801823 +n02801938 +n02802215 +n02802426 +n02802544 +n02802721 +n02802990 +n02803349 +n02803539 +n02803666 +n02803809 +n02803934 +n02804123 +n02804252 +n02804414 +n02804515 +n02804610 +n02805283 +n02805845 +n02805983 +n02806088 +n02806379 +n02806530 +n02806762 +n02806875 +n02806992 +n02807133 +n02807523 +n02807616 +n02807731 +n02808185 +n02808304 +n02808440 +n02808829 +n02808968 +n02809105 +n02809241 +n02809364 +n02809491 +n02809605 +n02809736 +n02810139 +n02810270 +n02810471 +n02810782 +n02811059 +n02811204 +n02811350 +n02811468 +n02811618 +n02811719 +n02811936 +n02812201 +n02812342 +n02812631 +n02812785 +n02812949 +n02813252 +n02813399 +n02813544 +n02813645 +n02813752 +n02813981 +n02814116 +n02814338 +n02814428 +n02814533 +n02814774 +n02814860 +n02815478 +n02815749 +n02815834 +n02815950 +n02816494 +n02816656 +n02816768 +n02817031 +n02817251 +n02817386 +n02817516 +n02817650 +n02817799 +n02818135 +n02818254 +n02818687 +n02818832 +n02819697 +n02820085 +n02820210 +n02820556 +n02820675 +n02821202 +n02821415 +n02821543 +n02821627 +n02821943 +n02822064 +n02822220 +n02822399 +n02822579 +n02822762 +n02822865 +n02823124 +n02823335 +n02823428 +n02823510 +n02823586 +n02823750 +n02823848 +n02823964 +n02824058 +n02824152 +n02824319 +n02824448 +n02825153 +n02825240 +n02825442 +n02825657 +n02825872 +n02825961 +n02826068 +n02826259 +n02826459 +n02826589 +n02826683 +n02826812 +n02826886 +n02827148 +n02827606 +n02828115 +n02828299 +n02828427 +n02828884 +n02829246 +n02829353 +n02829510 +n02829596 +n02830157 +n02831237 +n02831335 +n02831595 +n02831724 +n02831894 +n02831998 +n02833040 +n02833140 +n02833275 +n02833403 +n02833793 +n02834027 +n02834397 +n02834506 +n02834642 +n02834778 +n02835271 +n02835412 +n02835551 +n02835724 +n02835829 +n02835915 +n02836035 +n02836174 +n02836268 +n02836392 +n02836513 +n02836607 +n02836900 +n02837134 +n02837567 +n02837789 +n02837887 +n02838014 +n02838178 +n02838345 +n02838577 +n02838728 +n02838958 +n02839110 +n02839351 +n02839592 +n02839910 +n02840134 +n02840245 +n02840515 +n02840619 +n02841063 +n02841187 +n02841315 +n02841506 +n02841641 +n02841847 +n02842133 +n02842573 +n02842809 +n02843029 +n02843158 +n02843276 +n02843465 +n02843553 +n02843684 +n02843777 +n02843909 +n02844056 +n02844214 +n02844307 +n02844714 +n02845130 +n02845293 +n02845985 +n02846141 +n02846260 +n02846511 +n02846619 +n02846733 +n02846874 +n02847461 +n02847631 +n02847852 +n02848118 +n02848216 +n02848523 +n02848806 +n02848921 +n02849154 +n02849885 +n02850060 +n02850358 +n02850732 +n02850950 +n02851099 +n02851795 +n02851939 +n02852043 +n02852173 +n02852360 +n02853016 +n02853218 +n02853336 +n02853745 +n02853870 +n02854378 +n02854532 +n02854630 +n02854739 +n02854926 +n02855089 +n02855390 +n02855701 +n02855793 +n02855925 +n02856013 +n02856237 +n02856362 +n02857365 +n02857477 +n02857644 +n02857907 +n02858304 +n02859184 +n02859343 +n02859443 +n02859557 +n02859729 +n02859955 +n02860415 +n02860640 +n02860847 +n02861022 +n02861147 +n02861286 +n02861387 +n02861509 +n02861658 +n02861777 +n02861886 +n02862048 +n02862916 +n02863014 +n02863176 +n02863340 +n02863426 +n02863536 +n02863638 +n02863750 +n02864122 +n02864504 +n02864593 +n02864987 +n02865351 +n02865665 +n02865931 +n02866106 +n02866386 +n02866578 +n02867401 +n02867592 +n02867715 +n02867966 +n02868240 +n02868429 +n02868546 +n02868638 +n02868975 +n02869155 +n02869249 +n02869563 +n02869737 +n02869837 +n02870526 +n02870676 +n02870772 +n02870880 +n02871005 +n02871147 +n02871314 +n02871439 +n02871525 +n02871631 +n02871824 +n02871963 +n02872333 +n02872529 +n02872752 +n02873520 +n02873623 +n02873733 +n02873839 +n02874086 +n02874214 +n02874336 +n02874442 +n02874537 +n02874642 +n02874750 +n02875436 +n02875626 +n02875948 +n02876084 +n02876326 +n02876457 +n02876657 +n02877266 +n02877513 +n02877642 +n02877765 +n02877962 +n02878107 +n02878222 +n02878425 +n02878534 +n02878628 +n02878796 +n02879087 +n02879309 +n02879422 +n02879517 +n02879718 +n02880189 +n02880393 +n02880546 +n02880842 +n02880940 +n02881193 +n02881546 +n02881757 +n02881906 +n02882190 +n02882301 +n02882483 +n02882647 +n02882894 +n02883004 +n02883101 +n02883205 +n02883344 +n02884225 +n02884450 +n02884859 +n02884994 +n02885108 +n02885233 +n02885338 +n02885462 +n02885882 +n02886321 +n02886434 +n02886599 +n02887079 +n02887209 +n02887489 +n02887832 +n02887970 +n02888270 +n02888429 +n02888569 +n02888898 +n02889425 +n02889646 +n02889856 +n02889996 +n02890188 +n02890351 +n02890513 +n02890662 +n02890804 +n02890940 +n02891188 +n02891788 +n02892201 +n02892304 +n02892392 +n02892499 +n02892626 +n02892767 +n02892948 +n02893269 +n02893418 +n02893608 +n02893692 +n02893941 +n02894024 +n02894158 +n02894337 +n02894605 +n02894847 +n02895008 +n02895154 +n02895328 +n02895438 +n02896074 +n02896294 +n02896442 +n02896694 +n02896856 +n02896949 +n02897097 +n02897389 +n02897820 +n02898093 +n02898173 +n02898269 +n02898369 +n02898585 +n02898711 +n02899439 +n02900160 +n02900459 +n02900594 +n02900705 +n02900857 +n02900987 +n02901114 +n02901259 +n02901377 +n02901481 +n02901620 +n02901793 +n02901901 +n02902079 +n02902687 +n02902816 +n02902916 +n02903006 +n02903126 +n02903204 +n02903727 +n02903852 +n02904109 +n02904233 +n02904505 +n02904640 +n02904803 +n02904927 +n02905036 +n02905152 +n02905886 +n02906734 +n02906963 +n02907082 +n02907296 +n02907391 +n02907656 +n02907873 +n02908123 +n02908217 +n02908773 +n02908951 +n02909053 +n02909165 +n02909285 +n02909706 +n02909870 +n02910145 +n02910241 +n02910353 +n02910542 +n02910701 +n02910864 +n02910964 +n02911332 +n02911485 +n02912065 +n02912319 +n02912557 +n02912894 +n02913152 +n02914991 +n02915904 +n02916065 +n02916179 +n02916350 +n02916936 +n02917067 +n02917377 +n02917521 +n02917607 +n02917742 +n02917964 +n02918112 +n02918330 +n02918455 +n02918595 +n02918831 +n02918964 +n02919148 +n02919308 +n02919414 +n02919648 +n02919792 +n02919890 +n02919976 +n02920083 +n02920164 +n02920259 +n02920369 +n02920503 +n02920658 +n02921029 +n02921195 +n02921292 +n02921406 +n02921592 +n02921756 +n02921884 +n02922159 +n02922292 +n02922461 +n02922578 +n02922798 +n02922877 +n02923129 +n02923535 +n02923682 +n02923915 +n02924116 +n02925009 +n02925107 +n02925385 +n02925519 +n02925666 +n02926426 +n02926591 +n02927053 +n02927161 +n02927764 +n02927887 +n02928049 +n02928299 +n02928413 +n02928608 +n02929184 +n02929289 +n02929462 +n02929582 +n02929923 +n02930080 +n02930214 +n02930339 +n02930645 +n02930766 +n02931013 +n02931148 +n02931294 +n02931417 +n02931836 +n02932019 +n02932400 +n02932523 +n02932693 +n02932891 +n02933112 +n02933340 +n02933462 +n02933649 +n02933750 +n02933990 +n02934168 +n02934451 +n02935017 +n02935387 +n02935490 +n02935658 +n02935891 +n02936176 +n02936281 +n02936402 +n02936570 +n02936714 +n02936921 +n02937010 +n02937336 +n02937958 +n02938218 +n02938321 +n02938886 +n02939185 +n02939763 +n02939866 +n02940289 +n02940385 +n02940570 +n02940706 +n02941095 +n02941228 +n02941845 +n02942015 +n02942147 +n02942349 +n02942460 +n02942699 +n02943241 +n02943465 +n02943686 +n02943871 +n02943964 +n02944075 +n02944146 +n02944256 +n02944459 +n02944579 +n02944826 +n02945161 +n02945813 +n02945964 +n02946127 +n02946270 +n02946348 +n02946509 +n02946753 +n02946824 +n02946921 +n02947212 +n02947660 +n02947818 +n02947977 +n02948072 +n02948293 +n02948403 +n02948557 +n02948834 +n02948942 +n02949084 +n02949202 +n02949356 +n02949542 +n02950018 +n02950120 +n02950186 +n02950256 +n02950482 +n02950632 +n02950826 +n02950943 +n02951358 +n02951585 +n02951703 +n02951843 +n02952109 +n02952237 +n02952374 +n02952485 +n02952585 +n02952674 +n02952798 +n02952935 +n02953056 +n02953197 +n02953455 +n02953552 +n02953673 +n02953850 +n02954163 +n02954340 +n02954938 +n02955065 +n02955247 +n02955540 +n02955767 +n02956393 +n02956699 +n02956795 +n02956883 +n02957008 +n02957135 +n02957252 +n02957427 +n02957755 +n02957862 +n02958343 +n02959942 +n02960352 +n02960690 +n02960903 +n02961035 +n02961225 +n02961451 +n02961544 +n02961947 +n02962061 +n02962200 +n02962414 +n02962843 +n02962938 +n02963159 +n02963302 +n02963503 +n02963692 +n02963821 +n02963987 +n02964075 +n02964196 +n02964295 +n02964634 +n02964843 +n02964934 +n02965024 +n02965122 +n02965216 +n02965300 +n02965529 +n02965783 +n02966068 +n02966193 +n02966545 +n02966687 +n02966786 +n02966942 +n02967081 +n02967170 +n02967294 +n02967407 +n02967540 +n02967626 +n02967782 +n02967991 +n02968074 +n02968210 +n02968333 +n02968473 +n02969010 +n02969163 +n02969323 +n02969527 +n02969634 +n02969886 +n02970408 +n02970534 +n02970685 +n02970849 +n02971167 +n02971356 +n02971473 +n02971579 +n02971691 +n02971940 +n02972397 +n02972714 +n02972934 +n02973017 +n02973236 +n02973805 +n02973904 +n02974003 +n02974348 +n02974454 +n02974565 +n02974697 +n02975212 +n02975589 +n02975994 +n02976123 +n02976249 +n02976350 +n02976455 +n02976552 +n02976641 +n02976815 +n02976939 +n02977058 +n02977330 +n02977438 +n02977619 +n02977936 +n02978055 +n02978205 +n02978367 +n02978478 +n02978753 +n02978881 +n02979074 +n02979186 +n02979290 +n02979399 +n02979516 +n02979836 +n02980036 +n02980203 +n02980441 +n02980625 +n02981024 +n02981198 +n02981321 +n02981565 +n02981792 +n02981911 +n02982232 +n02982416 +n02982515 +n02982599 +n02983072 +n02983189 +n02983357 +n02983507 +n02983904 +n02984061 +n02984203 +n02984469 +n02984699 +n02985137 +n02985606 +n02985828 +n02985963 +n02986066 +n02986160 +n02986348 +n02987047 +n02987379 +n02987492 +n02987706 +n02987823 +n02987950 +n02988066 +n02988156 +n02988304 +n02988486 +n02988679 +n02988963 +n02989099 +n02990373 +n02990758 +n02991048 +n02991302 +n02991847 +n02992032 +n02992211 +n02992368 +n02992529 +n02992795 +n02993194 +n02993368 +n02993546 +n02994573 +n02994743 +n02995345 +n02995871 +n02995998 +n02997391 +n02997607 +n02997910 +n02998003 +n02998107 +n02998563 +n02998696 +n02998841 +n02999138 +n02999410 +n02999936 +n03000134 +n03000247 +n03000530 +n03000684 +n03001115 +n03001282 +n03001540 +n03001627 +n03002096 +n03002210 +n03002341 +n03002555 +n03002711 +n03002816 +n03002948 +n03003091 +n03003633 +n03004275 +n03004409 +n03004531 +n03004620 +n03004713 +n03004824 +n03005033 +n03005147 +n03005285 +n03005515 +n03005619 +n03006626 +n03006788 +n03006903 +n03007130 +n03007297 +n03007444 +n03007591 +n03008177 +n03008817 +n03008976 +n03009111 +n03009269 +n03009794 +n03010473 +n03010656 +n03010795 +n03010915 +n03011018 +n03011355 +n03011741 +n03012013 +n03012159 +n03012373 +n03012499 +n03012644 +n03012734 +n03012897 +n03013006 +n03013438 +n03013580 +n03013850 +n03014440 +n03014705 +n03015149 +n03015254 +n03015478 +n03015631 +n03015851 +n03016209 +n03016389 +n03016609 +n03016737 +n03016868 +n03016953 +n03017070 +n03017168 +n03017698 +n03017835 +n03018209 +n03018349 +n03018614 +n03018712 +n03018848 +n03019198 +n03019304 +n03019434 +n03019685 +n03019806 +n03019938 +n03020034 +n03020416 +n03020692 +n03021228 +n03024064 +n03024233 +n03024333 +n03024518 +n03025070 +n03025165 +n03025250 +n03025886 +n03026506 +n03026907 +n03027001 +n03027108 +n03027250 +n03027505 +n03027625 +n03028079 +n03028596 +n03028785 +n03029066 +n03029197 +n03029296 +n03029445 +n03029925 +n03030262 +n03030353 +n03030557 +n03030880 +n03031012 +n03031152 +n03031422 +n03031756 +n03032252 +n03032453 +n03032811 +n03033267 +n03033362 +n03033986 +n03034244 +n03034405 +n03034516 +n03034663 +n03035252 +n03035510 +n03035715 +n03035832 +n03036022 +n03036149 +n03036244 +n03036341 +n03036469 +n03036701 +n03036866 +n03037108 +n03037228 +n03037404 +n03037590 +n03037709 +n03038041 +n03038281 +n03038480 +n03038685 +n03038870 +n03039015 +n03039259 +n03039353 +n03039493 +n03039827 +n03039947 +n03040229 +n03040376 +n03040836 +n03041114 +n03041265 +n03041449 +n03041632 +n03041810 +n03042139 +n03042384 +n03042490 +n03042697 +n03042829 +n03042984 +n03043173 +n03043274 +n03043423 +n03043693 +n03043798 +n03043958 +n03044671 +n03044801 +n03044934 +n03045074 +n03045228 +n03045337 +n03045698 +n03045800 +n03046029 +n03046133 +n03046257 +n03046802 +n03046921 +n03047052 +n03047171 +n03047690 +n03047799 +n03047941 +n03048883 +n03049066 +n03049326 +n03049457 +n03049782 +n03049924 +n03050026 +n03050453 +n03050546 +n03050655 +n03050864 +n03051041 +n03051249 +n03051396 +n03051540 +n03052464 +n03052917 +n03053047 +n03053976 +n03054491 +n03054605 +n03054901 +n03055159 +n03055418 +n03055670 +n03055857 +n03056097 +n03056215 +n03056288 +n03056493 +n03056583 +n03056873 +n03057021 +n03057541 +n03057636 +n03057724 +n03057841 +n03057920 +n03058107 +n03058603 +n03058949 +n03059103 +n03059236 +n03059366 +n03059685 +n03059934 +n03060728 +n03061050 +n03061211 +n03061345 +n03061505 +n03061674 +n03061819 +n03061893 +n03062015 +n03062122 +n03062245 +n03062336 +n03062651 +n03062798 +n03062985 +n03063073 +n03063199 +n03063338 +n03063485 +n03063599 +n03063689 +n03063834 +n03063968 +n03064250 +n03064350 +n03064562 +n03064758 +n03064935 +n03065243 +n03065424 +n03065708 +n03066232 +n03066359 +n03066464 +n03066849 +n03067093 +n03067212 +n03067339 +n03067518 +n03068181 +n03068998 +n03069752 +n03070059 +n03070193 +n03070396 +n03070587 +n03070854 +n03071021 +n03071160 +n03071288 +n03071552 +n03072056 +n03072201 +n03072440 +n03072682 +n03073296 +n03073384 +n03073545 +n03073694 +n03073977 +n03074380 +n03074855 +n03075097 +n03075248 +n03075370 +n03075500 +n03075634 +n03075768 +n03075946 +n03076411 +n03076623 +n03076708 +n03077442 +n03077616 +n03077741 +n03078287 +n03078506 +n03078670 +n03078802 +n03078995 +n03079136 +n03079230 +n03079494 +n03079616 +n03079741 +n03080309 +n03080497 +n03080633 +n03080731 +n03080904 +n03081859 +n03081986 +n03082127 +n03082280 +n03082450 +n03082656 +n03082807 +n03082979 +n03084420 +n03084834 +n03085013 +n03085219 +n03085333 +n03085602 +n03085781 +n03085915 +n03086183 +n03086457 +n03086580 +n03086670 +n03086868 +n03087069 +n03087245 +n03087366 +n03087521 +n03087643 +n03087816 +n03088389 +n03088580 +n03088707 +n03089477 +n03089624 +n03089753 +n03089879 +n03090000 +n03090172 +n03090437 +n03090710 +n03090856 +n03091044 +n03091223 +n03091374 +n03091907 +n03092053 +n03092166 +n03092314 +n03092476 +n03092656 +n03092883 +n03093427 +n03093792 +n03094159 +n03094503 +n03095699 +n03095965 +n03096439 +n03096960 +n03097362 +n03097535 +n03097673 +n03098140 +n03098515 +n03098688 +n03098806 +n03098959 +n03099147 +n03099274 +n03099454 +n03099622 +n03099771 +n03099945 +n03100240 +n03100346 +n03100490 +n03100897 +n03101156 +n03101302 +n03101375 +n03101517 +n03101664 +n03101796 +n03101986 +n03102371 +n03102516 +n03102654 +n03102859 +n03103128 +n03103396 +n03103563 +n03103904 +n03104019 +n03104512 +n03105088 +n03105214 +n03105306 +n03105467 +n03105645 +n03105810 +n03105974 +n03106722 +n03106898 +n03107046 +n03107488 +n03107716 +n03108455 +n03108624 +n03108759 +n03108853 +n03109033 +n03109150 +n03109253 +n03109693 +n03109881 +n03110202 +n03110669 +n03111041 +n03111177 +n03111296 +n03111690 +n03112240 +n03112719 +n03112869 +n03113152 +n03113505 +n03113657 +n03113835 +n03114041 +n03114236 +n03114379 +n03114504 +n03114743 +n03114839 +n03115014 +n03115180 +n03115400 +n03115663 +n03115762 +n03115897 +n03116008 +n03116163 +n03116530 +n03116767 +n03117199 +n03117642 +n03118346 +n03118969 +n03119203 +n03119396 +n03119510 +n03120198 +n03120491 +n03120778 +n03121040 +n03121190 +n03121298 +n03121431 +n03121897 +n03122073 +n03122202 +n03122295 +n03122748 +n03123553 +n03123666 +n03123809 +n03123917 +n03124043 +n03124170 +n03124313 +n03124474 +n03124590 +n03125057 +n03125588 +n03125729 +n03125870 +n03126090 +n03126385 +n03126580 +n03126707 +n03126927 +n03127024 +n03127203 +n03127408 +n03127531 +n03127747 +n03127925 +n03128085 +n03128248 +n03128427 +n03128519 +n03129001 +n03129471 +n03129636 +n03129753 +n03129848 +n03130066 +n03130233 +n03130563 +n03130761 +n03130866 +n03131193 +n03131574 +n03131669 +n03131967 +n03132076 +n03132261 +n03132438 +n03132666 +n03132776 +n03133050 +n03133415 +n03133878 +n03134118 +n03134232 +n03134394 +n03134739 +n03134853 +n03135030 +n03135532 +n03135656 +n03135788 +n03135917 +n03136051 +n03136254 +n03136369 +n03136504 +n03137473 +n03137579 +n03138128 +n03138217 +n03138344 +n03138669 +n03139089 +n03139464 +n03139640 +n03139998 +n03140126 +n03140292 +n03140431 +n03140546 +n03140652 +n03140771 +n03140900 +n03141065 +n03141327 +n03141455 +n03141612 +n03141702 +n03141823 +n03142099 +n03142205 +n03142325 +n03142431 +n03142679 +n03143400 +n03143572 +n03143754 +n03144156 +n03144873 +n03144982 +n03145147 +n03145277 +n03145384 +n03145522 +n03145719 +n03145843 +n03146219 +n03146342 +n03146449 +n03146560 +n03146687 +n03146777 +n03146846 +n03147084 +n03147156 +n03147280 +n03147509 +n03148324 +n03148518 +n03148727 +n03148808 +n03149135 +n03149401 +n03149686 +n03149810 +n03150232 +n03150511 +n03150661 +n03150795 +n03151077 +n03152303 +n03152951 +n03153246 +n03153585 +n03153948 +n03154073 +n03154316 +n03154446 +n03154616 +n03154745 +n03154895 +n03155178 +n03155502 +n03155915 +n03156071 +n03156279 +n03156405 +n03156767 +n03157348 +n03158186 +n03158414 +n03158668 +n03158796 +n03158885 +n03159535 +n03159640 +n03160001 +n03160186 +n03160309 +n03160740 +n03161016 +n03161450 +n03161893 +n03162297 +n03162460 +n03162556 +n03162714 +n03162818 +n03163222 +n03163381 +n03163488 +n03163798 +n03163973 +n03164192 +n03164344 +n03164605 +n03164722 +n03164929 +n03165096 +n03165211 +n03165466 +n03165616 +n03165823 +n03165955 +n03166120 +n03166514 +n03166600 +n03166685 +n03166809 +n03166951 +n03167153 +n03167978 +n03168107 +n03168217 +n03168543 +n03168663 +n03168774 +n03168933 +n03169063 +n03169176 +n03170292 +n03170459 +n03170635 +n03170872 +n03171228 +n03171356 +n03171635 +n03171910 +n03172038 +n03172738 +n03172965 +n03173270 +n03173387 +n03173929 +n03174079 +n03174450 +n03174731 +n03175081 +n03175189 +n03175301 +n03175457 +n03175604 +n03175843 +n03175983 +n03176238 +n03176386 +n03176594 +n03176763 +n03177059 +n03177165 +n03177708 +n03178000 +n03178173 +n03178430 +n03178538 +n03178674 +n03179701 +n03179910 +n03180011 +n03180384 +n03180504 +n03180732 +n03180865 +n03180969 +n03181293 +n03181667 +n03182140 +n03182232 +n03182912 +n03183080 +n03185868 +n03186199 +n03186285 +n03186818 +n03187037 +n03187153 +n03187268 +n03187595 +n03187751 +n03188290 +n03188531 +n03188725 +n03188871 +n03189083 +n03189311 +n03189818 +n03190458 +n03191286 +n03191451 +n03191561 +n03191776 +n03192543 +n03192907 +n03193107 +n03193260 +n03193423 +n03193597 +n03193754 +n03194170 +n03194297 +n03194812 +n03194992 +n03195332 +n03195485 +n03195799 +n03195959 +n03196062 +n03196217 +n03196324 +n03196598 +n03196990 +n03197201 +n03197337 +n03197446 +n03198223 +n03198500 +n03199358 +n03199488 +n03199647 +n03199775 +n03199901 +n03200231 +n03200357 +n03200539 +n03200701 +n03200906 +n03201035 +n03201208 +n03201529 +n03201638 +n03201776 +n03201895 +n03201996 +n03202354 +n03202481 +n03202760 +n03202940 +n03203089 +n03203806 +n03204134 +n03204306 +n03204436 +n03204558 +n03204955 +n03205143 +n03205304 +n03205458 +n03205574 +n03205669 +n03205903 +n03206023 +n03206158 +n03206282 +n03206405 +n03206602 +n03206718 +n03206908 +n03207305 +n03207548 +n03207630 +n03207743 +n03207835 +n03207941 +n03208556 +n03208938 +n03209359 +n03209477 +n03209666 +n03209910 +n03210245 +n03210372 +n03210552 +n03210683 +n03211117 +n03211413 +n03211616 +n03211789 +n03212114 +n03212247 +n03212406 +n03212811 +n03213014 +n03213361 +n03213538 +n03213715 +n03213826 +n03214253 +n03214450 +n03214582 +n03214966 +n03215076 +n03215191 +n03215337 +n03215508 +n03215749 +n03215930 +n03216199 +n03216402 +n03216562 +n03216710 +n03216828 +n03217653 +n03217739 +n03217889 +n03218198 +n03218446 +n03219010 +n03219135 +n03219483 +n03219612 +n03219859 +n03219966 +n03220095 +n03220237 +n03220513 +n03220692 +n03221059 +n03221351 +n03221540 +n03221720 +n03222176 +n03222318 +n03222516 +n03222722 +n03222857 +n03223162 +n03223299 +n03223441 +n03223553 +n03223686 +n03223923 +n03224490 +n03224603 +n03224753 +n03224893 +n03225108 +n03225458 +n03225616 +n03225777 +n03225988 +n03226090 +n03226254 +n03226375 +n03226538 +n03226880 +n03227010 +n03227184 +n03227317 +n03227721 +n03227856 +n03228016 +n03228254 +n03228365 +n03228533 +n03228692 +n03228796 +n03228967 +n03229115 +n03229244 +n03229526 +n03231160 +n03231368 +n03231819 +n03232309 +n03232417 +n03232543 +n03232815 +n03232923 +n03233123 +n03233624 +n03233744 +n03233905 +n03234164 +n03234952 +n03235042 +n03235180 +n03235327 +n03235796 +n03235979 +n03236093 +n03236217 +n03236423 +n03236580 +n03236735 +n03237212 +n03237340 +n03237416 +n03237639 +n03237839 +n03237992 +n03238131 +n03238286 +n03238586 +n03238762 +n03238879 +n03239054 +n03239259 +n03239607 +n03239726 +n03240140 +n03240683 +n03240892 +n03241093 +n03241335 +n03241496 +n03241903 +n03242120 +n03242264 +n03242390 +n03242506 +n03242995 +n03243218 +n03243625 +n03244047 +n03244231 +n03244388 +n03244775 +n03244919 +n03245271 +n03245421 +n03245724 +n03245889 +n03246197 +n03246312 +n03246454 +n03246653 +n03246933 +n03247083 +n03247351 +n03247495 +n03248835 +n03249342 +n03249569 +n03249956 +n03250089 +n03250279 +n03250405 +n03250588 +n03250847 +n03250952 +n03251100 +n03251280 +n03251533 +n03251766 +n03251932 +n03252231 +n03252324 +n03252422 +n03252637 +n03252787 +n03253071 +n03253187 +n03253279 +n03253714 +n03253796 +n03253886 +n03254046 +n03254189 +n03254374 +n03254625 +n03254737 +n03254862 +n03255030 +n03255167 +n03255322 +n03255488 +n03255899 +n03256032 +n03256166 +n03256472 +n03256631 +n03256788 +n03256928 +n03257065 +n03257210 +n03257586 +n03258192 +n03258330 +n03258456 +n03258577 +n03258905 +n03259009 +n03259280 +n03259401 +n03259505 +n03260206 +n03260504 +n03260733 +n03260849 +n03261019 +n03261263 +n03261395 +n03261603 +n03261776 +n03262072 +n03262248 +n03262519 +n03262717 +n03262809 +n03262932 +n03263076 +n03263338 +n03263640 +n03263758 +n03264906 +n03265032 +n03265754 +n03266195 +n03266371 +n03266620 +n03266749 +n03267113 +n03267468 +n03267696 +n03267821 +n03268142 +n03268311 +n03268645 +n03268790 +n03268918 +n03269073 +n03269203 +n03269401 +n03270165 +n03270695 +n03270854 +n03271030 +n03271260 +n03271376 +n03271574 +n03271765 +n03271865 +n03272010 +n03272125 +n03272239 +n03272383 +n03272562 +n03272810 +n03272940 +n03273061 +n03273551 +n03273740 +n03273913 +n03274265 +n03274435 +n03274561 +n03274796 +n03275125 +n03275311 +n03275566 +n03275681 +n03275864 +n03276179 +n03276696 +n03276839 +n03277004 +n03277149 +n03277459 +n03277602 +n03277771 +n03278248 +n03278914 +n03279153 +n03279364 +n03279508 +n03279804 +n03279918 +n03280216 +n03280394 +n03280644 +n03281145 +n03281524 +n03281673 +n03282060 +n03282295 +n03282401 +n03283221 +n03283413 +n03283827 +n03284308 +n03284482 +n03284743 +n03284886 +n03284981 +n03285578 +n03285730 +n03285912 +n03286572 +n03287351 +n03287733 +n03288003 +n03288500 +n03288643 +n03288742 +n03288886 +n03289660 +n03289985 +n03290096 +n03290195 +n03290653 +n03291413 +n03291551 +n03291741 +n03291819 +n03291963 +n03292085 +n03292362 +n03292475 +n03292603 +n03292736 +n03292960 +n03293095 +n03293741 +n03293863 +n03294048 +n03294604 +n03294833 +n03295012 +n03295140 +n03295246 +n03295928 +n03296081 +n03296217 +n03296328 +n03296478 +n03296963 +n03297103 +n03297226 +n03297495 +n03297644 +n03297735 +n03298089 +n03298352 +n03298716 +n03298858 +n03299406 +n03300216 +n03300443 +n03301175 +n03301291 +n03301389 +n03301568 +n03301833 +n03301940 +n03302671 +n03302790 +n03302938 +n03303217 +n03303669 +n03303831 +n03304197 +n03304323 +n03304465 +n03305300 +n03305522 +n03305953 +n03306385 +n03306869 +n03307037 +n03307573 +n03307792 +n03308152 +n03308481 +n03308614 +n03309110 +n03309356 +n03309465 +n03309687 +n03309808 +n03313333 +n03314227 +n03314378 +n03314608 +n03314780 +n03314884 +n03315644 +n03315805 +n03315990 +n03316105 +n03316406 +n03316873 +n03317233 +n03317510 +n03317673 +n03317788 +n03317889 +n03318136 +n03318294 +n03318865 +n03318983 +n03319167 +n03319457 +n03319576 +n03319745 +n03320046 +n03320262 +n03320421 +n03320519 +n03320845 +n03320959 +n03321103 +n03321419 +n03321563 +n03321843 +n03321954 +n03322570 +n03322704 +n03322836 +n03322940 +n03323096 +n03323211 +n03323319 +n03323703 +n03324629 +n03324814 +n03324928 +n03325088 +n03325288 +n03325403 +n03325584 +n03325691 +n03325941 +n03326073 +n03326371 +n03326475 +n03326660 +n03326795 +n03326948 +n03327133 +n03327234 +n03327553 +n03327691 +n03327841 +n03328201 +n03329302 +n03329536 +n03329663 +n03330002 +n03330665 +n03330792 +n03330947 +n03331077 +n03331244 +n03331599 +n03332005 +n03332173 +n03332271 +n03332393 +n03332591 +n03332784 +n03332989 +n03333129 +n03333252 +n03333349 +n03333610 +n03333711 +n03333851 +n03334017 +n03334291 +n03334382 +n03334492 +n03334912 +n03335030 +n03335333 +n03335461 +n03335846 +n03336168 +n03336282 +n03336575 +n03336742 +n03336839 +n03337140 +n03337383 +n03337494 +n03337822 +n03338287 +n03338821 +n03339296 +n03339529 +n03339643 +n03340009 +n03340723 +n03340923 +n03341035 +n03341153 +n03341297 +n03341606 +n03342015 +n03342127 +n03342262 +n03342432 +n03342657 +n03342863 +n03342961 +n03343047 +n03343234 +n03343354 +n03343560 +n03343737 +n03343853 +n03344305 +n03344393 +n03344509 +n03344642 +n03344784 +n03344935 +n03345487 +n03345837 +n03346135 +n03346289 +n03346455 +n03347037 +n03347472 +n03347617 +n03348142 +n03348868 +n03349020 +n03349296 +n03349367 +n03349469 +n03349599 +n03349771 +n03349892 +n03350204 +n03350352 +n03350456 +n03350602 +n03351151 +n03351262 +n03351434 +n03351979 +n03352232 +n03352366 +n03352628 +n03352961 +n03353281 +n03353951 +n03354207 +n03354903 +n03355468 +n03355768 +n03355925 +n03356038 +n03356279 +n03356446 +n03356559 +n03356858 +n03356982 +n03357081 +n03357267 +n03357716 +n03358172 +n03358380 +n03358726 +n03358841 +n03359137 +n03359285 +n03359436 +n03359566 +n03360133 +n03360300 +n03360431 +n03360622 +n03360731 +n03361109 +n03361297 +n03361380 +n03361550 +n03361683 +n03362639 +n03362771 +n03362890 +n03363363 +n03363549 +n03363749 +n03364008 +n03364156 +n03364599 +n03364937 +n03365231 +n03365374 +n03365592 +n03365991 +n03366464 +n03366721 +n03366823 +n03366974 +n03367059 +n03367321 +n03367410 +n03367545 +n03367875 +n03367969 +n03368048 +n03368352 +n03369276 +n03369407 +n03369512 +n03369866 +n03370387 +n03370646 +n03371875 +n03372029 +n03372549 +n03372822 +n03372933 +n03373237 +n03373611 +n03373943 +n03374102 +n03374282 +n03374372 +n03374473 +n03374570 +n03374649 +n03374838 +n03375171 +n03375329 +n03375575 +n03376159 +n03376279 +n03376595 +n03376771 +n03376938 +n03378005 +n03378174 +n03378342 +n03378442 +n03378593 +n03378765 +n03379051 +n03379204 +n03379343 +n03379719 +n03379828 +n03379989 +n03380301 +n03380647 +n03380724 +n03380867 +n03381126 +n03381231 +n03381450 +n03381565 +n03381776 +n03382104 +n03382292 +n03382413 +n03382533 +n03382708 +n03382856 +n03382969 +n03383099 +n03383211 +n03383378 +n03383468 +n03383562 +n03383821 +n03384167 +n03384352 +n03384891 +n03385295 +n03385557 +n03386011 +n03386343 +n03386544 +n03386726 +n03386870 +n03387323 +n03387653 +n03388043 +n03388183 +n03388323 +n03388549 +n03388711 +n03388990 +n03389611 +n03389761 +n03389889 +n03389983 +n03390075 +n03390327 +n03390673 +n03390786 +n03390983 +n03391301 +n03391613 +n03391770 +n03392648 +n03392741 +n03393017 +n03393199 +n03393324 +n03393761 +n03393912 +n03394149 +n03394272 +n03394480 +n03394649 +n03394916 +n03395256 +n03395401 +n03395514 +n03395859 +n03396074 +n03396580 +n03396654 +n03396997 +n03397087 +n03397266 +n03397412 +n03397532 +n03397947 +n03398153 +n03398228 +n03399579 +n03399677 +n03399761 +n03399971 +n03400231 +n03400972 +n03401129 +n03401279 +n03401721 +n03402188 +n03402369 +n03402511 +n03402785 +n03402941 +n03403643 +n03404012 +n03404149 +n03404251 +n03404360 +n03404449 +n03404900 +n03405111 +n03405265 +n03405595 +n03405725 +n03406759 +n03406966 +n03407369 +n03407865 +n03408054 +n03408264 +n03408340 +n03408444 +n03409297 +n03409393 +n03409591 +n03409920 +n03410022 +n03410147 +n03410303 +n03410423 +n03410571 +n03410740 +n03410938 +n03411079 +n03411208 +n03411339 +n03411927 +n03412058 +n03412220 +n03412387 +n03412511 +n03412906 +n03413124 +n03413264 +n03413428 +n03413684 +n03413828 +n03414029 +n03414162 +n03414676 +n03415252 +n03415486 +n03415626 +n03415749 +n03415868 +n03416094 +n03416489 +n03416640 +n03416775 +n03416900 +n03417042 +n03417202 +n03417345 +n03417749 +n03417970 +n03418158 +n03418242 +n03418402 +n03418618 +n03418749 +n03418915 +n03419014 +n03420345 +n03420801 +n03420935 +n03421117 +n03421324 +n03421485 +n03421669 +n03421768 +n03421960 +n03422072 +n03422484 +n03422589 +n03422771 +n03423099 +n03423224 +n03423306 +n03423479 +n03423568 +n03423719 +n03423877 +n03424204 +n03424325 +n03424489 +n03424630 +n03424862 +n03425241 +n03425325 +n03425413 +n03425595 +n03425769 +n03426134 +n03426285 +n03426462 +n03426574 +n03426871 +n03427202 +n03427296 +n03428090 +n03428226 +n03428349 +n03429003 +n03429137 +n03429288 +n03429682 +n03429771 +n03429914 +n03430091 +n03430313 +n03430418 +n03430551 +n03430959 +n03431243 +n03431570 +n03431745 +n03432061 +n03432129 +n03432360 +n03432509 +n03433247 +n03433637 +n03433877 +n03434188 +n03434285 +n03434830 +n03435593 +n03435743 +n03435991 +n03436075 +n03436182 +n03436417 +n03436549 +n03436656 +n03436772 +n03436891 +n03436990 +n03437184 +n03437295 +n03437430 +n03437581 +n03437741 +n03437829 +n03437941 +n03438071 +n03438257 +n03438661 +n03438780 +n03438863 +n03439348 +n03439631 +n03439814 +n03440216 +n03440682 +n03440876 +n03441112 +n03441345 +n03441465 +n03441582 +n03442288 +n03442487 +n03442597 +n03442756 +n03443005 +n03443149 +n03443371 +n03443543 +n03443912 +n03444034 +n03445326 +n03445617 +n03445777 +n03445924 +n03446070 +n03446268 +n03446832 +n03447075 +n03447358 +n03447447 +n03447721 +n03447894 +n03448031 +n03448590 +n03448696 +n03448956 +n03449217 +n03449309 +n03449451 +n03449564 +n03449858 +n03450230 +n03450516 +n03450734 +n03450881 +n03450974 +n03451120 +n03451253 +n03451365 +n03451711 +n03451798 +n03452267 +n03452449 +n03452594 +n03452741 +n03453231 +n03453320 +n03453443 +n03454110 +n03454211 +n03454442 +n03454536 +n03454707 +n03454885 +n03455355 +n03455488 +n03455642 +n03455802 +n03456024 +n03456186 +n03456299 +n03456447 +n03456548 +n03456665 +n03457008 +n03457451 +n03457686 +n03457902 +n03458271 +n03458422 +n03459328 +n03459591 +n03459775 +n03459914 +n03460040 +n03460147 +n03460297 +n03460455 +n03460899 +n03461288 +n03461385 +n03461651 +n03461882 +n03461988 +n03462110 +n03462315 +n03462747 +n03462972 +n03463185 +n03463381 +n03463666 +n03464053 +n03464467 +n03464628 +n03464952 +n03465040 +n03465151 +n03465320 +n03465426 +n03465500 +n03465605 +n03465718 +n03465818 +n03466162 +n03466493 +n03466600 +n03466839 +n03466947 +n03467068 +n03467254 +n03467380 +n03467517 +n03467796 +n03467887 +n03467984 +n03468570 +n03468696 +n03468821 +n03469031 +n03469175 +n03469493 +n03469832 +n03469903 +n03470005 +n03470222 +n03470387 +n03470629 +n03470948 +n03471030 +n03471190 +n03471347 +n03471779 +n03472232 +n03472535 +n03472672 +n03472796 +n03472937 +n03473078 +n03473227 +n03473465 +n03473817 +n03473966 +n03474167 +n03474352 +n03474779 +n03474896 +n03475581 +n03475674 +n03475823 +n03475961 +n03476083 +n03476313 +n03476542 +n03476684 +n03476991 +n03477143 +n03477303 +n03477410 +n03477512 +n03477773 +n03477902 +n03478589 +n03478756 +n03478907 +n03479121 +n03479266 +n03479397 +n03479502 +n03480579 +n03480719 +n03480973 +n03481172 +n03481521 +n03482001 +n03482128 +n03482252 +n03482405 +n03482523 +n03482877 +n03483086 +n03483230 +n03483316 +n03483531 +n03483637 +n03483823 +n03483971 +n03484083 +n03484487 +n03484576 +n03484809 +n03484931 +n03485198 +n03485309 +n03485407 +n03485575 +n03485794 +n03487090 +n03487331 +n03487444 +n03487533 +n03487642 +n03487774 +n03487886 +n03488111 +n03488188 +n03488438 +n03488603 +n03488784 +n03488887 +n03489048 +n03489162 +n03490006 +n03490119 +n03490324 +n03490449 +n03490649 +n03490784 +n03490884 +n03491032 +n03491724 +n03491988 +n03492087 +n03492250 +n03492542 +n03492922 +n03493219 +n03493792 +n03493911 +n03494278 +n03494537 +n03494706 +n03495039 +n03495258 +n03495570 +n03495671 +n03495941 +n03496183 +n03496296 +n03496486 +n03496612 +n03496892 +n03497100 +n03497352 +n03497657 +n03498441 +n03498536 +n03498662 +n03498781 +n03498866 +n03498962 +n03499354 +n03499468 +n03499907 +n03500090 +n03500209 +n03500295 +n03500389 +n03500457 +n03500557 +n03500699 +n03500838 +n03500971 +n03501152 +n03501288 +n03501520 +n03501614 +n03502200 +n03502331 +n03502509 +n03502777 +n03502897 +n03503097 +n03503233 +n03503358 +n03503477 +n03503567 +n03503718 +n03503997 +n03504205 +n03504293 +n03504723 +n03505015 +n03505133 +n03505383 +n03505504 +n03505667 +n03505764 +n03506028 +n03506184 +n03506370 +n03506560 +n03506727 +n03506880 +n03507241 +n03507458 +n03507658 +n03507963 +n03508101 +n03508485 +n03508881 +n03509394 +n03509608 +n03509843 +n03510072 +n03510244 +n03510384 +n03510487 +n03510583 +n03510866 +n03510987 +n03511175 +n03511333 +n03512030 +n03512147 +n03512452 +n03512624 +n03512911 +n03513137 +n03513376 +n03514129 +n03514340 +n03514451 +n03514693 +n03514894 +n03515338 +n03515934 +n03516266 +n03516367 +n03516647 +n03516844 +n03516996 +n03517509 +n03517647 +n03517760 +n03517899 +n03517982 +n03518135 +n03518230 +n03518305 +n03518445 +n03518631 +n03518829 +n03518943 +n03519081 +n03519226 +n03519387 +n03519674 +n03519848 +n03520493 +n03521076 +n03521431 +n03521544 +n03521675 +n03521771 +n03521899 +n03522003 +n03522100 +n03522634 +n03522863 +n03522990 +n03523134 +n03523398 +n03523506 +n03523987 +n03524150 +n03524287 +n03524425 +n03524574 +n03524745 +n03524976 +n03525074 +n03525252 +n03525454 +n03525693 +n03525827 +n03526062 +n03527149 +n03527444 +n03527565 +n03527675 +n03528100 +n03528263 +n03528523 +n03528901 +n03529175 +n03529444 +n03529629 +n03529860 +n03530189 +n03530511 +n03530642 +n03530910 +n03531281 +n03531447 +n03531546 +n03531691 +n03531982 +n03532342 +n03532672 +n03532919 +n03533014 +n03533392 +n03533486 +n03533654 +n03533845 +n03534580 +n03534695 +n03534776 +n03535024 +n03535284 +n03535647 +n03535780 +n03536122 +n03536568 +n03536761 +n03537085 +n03537241 +n03537412 +n03537550 +n03538037 +n03538179 +n03538300 +n03538406 +n03538542 +n03538634 +n03538817 +n03538957 +n03539103 +n03539293 +n03539433 +n03539546 +n03539678 +n03539754 +n03540090 +n03540267 +n03540476 +n03540595 +n03540914 +n03541091 +n03541269 +n03541393 +n03541537 +n03541696 +n03541923 +n03542333 +n03542605 +n03542727 +n03542860 +n03543012 +n03543112 +n03543254 +n03543394 +n03543511 +n03543603 +n03543735 +n03543945 +n03544143 +n03544238 +n03544360 +n03545150 +n03545470 +n03545585 +n03545756 +n03545961 +n03546112 +n03546235 +n03546340 +n03547054 +n03547229 +n03547397 +n03547530 +n03547861 +n03548086 +n03548195 +n03548320 +n03548402 +n03548533 +n03548626 +n03548930 +n03549199 +n03549350 +n03549473 +n03549589 +n03549732 +n03549897 +n03550153 +n03550289 +n03550420 +n03551084 +n03551395 +n03551582 +n03551790 +n03552001 +n03552449 +n03552749 +n03553019 +n03553248 +n03553486 +n03554375 +n03554460 +n03554645 +n03555006 +n03555217 +n03555426 +n03555564 +n03555662 +n03555862 +n03555996 +n03556173 +n03556679 +n03556811 +n03556992 +n03557270 +n03557360 +n03557590 +n03557692 +n03557840 +n03558007 +n03558176 +n03558404 +n03558633 +n03558739 +n03559373 +n03559531 +n03559999 +n03560430 +n03560860 +n03561047 +n03561169 +n03561573 +n03562565 +n03563200 +n03563460 +n03563710 +n03563967 +n03564849 +n03565288 +n03565565 +n03565710 +n03565830 +n03565991 +n03566193 +n03566329 +n03566555 +n03566730 +n03566860 +n03567066 +n03567635 +n03567788 +n03567912 +n03568117 +n03568818 +n03569014 +n03569174 +n03569293 +n03569494 +n03571280 +n03571439 +n03571625 +n03571853 +n03571942 +n03572107 +n03572205 +n03572321 +n03572631 +n03573574 +n03573848 +n03574243 +n03574416 +n03574555 +n03574816 +n03575958 +n03576215 +n03576443 +n03576955 +n03577090 +n03577312 +n03577474 +n03577672 +n03577818 +n03578055 +n03578251 +n03578656 +n03578981 +n03579538 +n03579982 +n03580518 +n03580615 +n03580845 +n03580990 +n03581125 +n03581531 +n03581897 +n03582508 +n03582959 +n03583419 +n03583621 +n03584254 +n03584400 +n03584829 +n03585073 +n03585337 +n03585438 +n03585551 +n03585682 +n03585778 +n03585875 +n03586219 +n03586631 +n03586911 +n03587205 +n03588216 +n03588841 +n03588951 +n03589313 +n03589513 +n03589672 +n03589791 +n03590306 +n03590475 +n03590588 +n03590841 +n03590932 +n03591116 +n03591313 +n03591592 +n03591798 +n03591901 +n03592245 +n03592669 +n03592773 +n03592931 +n03593122 +n03593222 +n03593526 +n03593862 +n03594010 +n03594148 +n03594277 +n03594523 +n03594734 +n03594945 +n03595055 +n03595264 +n03595409 +n03595523 +n03595614 +n03595860 +n03596099 +n03596285 +n03596543 +n03597147 +n03597317 +n03597916 +n03598151 +n03598299 +n03598385 +n03598515 +n03598646 +n03598783 +n03598930 +n03599486 +n03599964 +n03600285 +n03600475 +n03600722 +n03600977 +n03601442 +n03601638 +n03601840 +n03602081 +n03602194 +n03602365 +n03602686 +n03602790 +n03602883 +n03603442 +n03603594 +n03603722 +n03604156 +n03604311 +n03604400 +n03604536 +n03604629 +n03604763 +n03604843 +n03605417 +n03605504 +n03605598 +n03605722 +n03605915 +n03606106 +n03606251 +n03606347 +n03606465 +n03607029 +n03607186 +n03607527 +n03607659 +n03607923 +n03608504 +n03609147 +n03609235 +n03609397 +n03609542 +n03609786 +n03609959 +n03610098 +n03610418 +n03610524 +n03610682 +n03610836 +n03610992 +n03612010 +n03612814 +n03612965 +n03613294 +n03613592 +n03614007 +n03614383 +n03614532 +n03614782 +n03614887 +n03615300 +n03615406 +n03615563 +n03615655 +n03615790 +n03616091 +n03616225 +n03616428 +n03616763 +n03616979 +n03617095 +n03617312 +n03617480 +n03617594 +n03617834 +n03618101 +n03618339 +n03618546 +n03618678 +n03618797 +n03618982 +n03619050 +n03619196 +n03619275 +n03619396 +n03619650 +n03619793 +n03619890 +n03620052 +n03620353 +n03620967 +n03621049 +n03621377 +n03621694 +n03622058 +n03622401 +n03622526 +n03622839 +n03622931 +n03623198 +n03623338 +n03623556 +n03624134 +n03624400 +n03624767 +n03625355 +n03625539 +n03625646 +n03625943 +n03626115 +n03626272 +n03626418 +n03626502 +n03626760 +n03627232 +n03627954 +n03628071 +n03628215 +n03628421 +n03628511 +n03628728 +n03628831 +n03628984 +n03629100 +n03629231 +n03629520 +n03629643 +n03630262 +n03630383 +n03631177 +n03631811 +n03631922 +n03632100 +n03632577 +n03632729 +n03632852 +n03632963 +n03633091 +n03633341 +n03633632 +n03633886 +n03634034 +n03634899 +n03635032 +n03635108 +n03635330 +n03635516 +n03635668 +n03635932 +n03636248 +n03636649 +n03637027 +n03637181 +n03637318 +n03637480 +n03637787 +n03637898 +n03638014 +n03638180 +n03638623 +n03638743 +n03638883 +n03639077 +n03639230 +n03639497 +n03639675 +n03639880 +n03640850 +n03640988 +n03641569 +n03641947 +n03642144 +n03642341 +n03642444 +n03642573 +n03642806 +n03643149 +n03643253 +n03643491 +n03643737 +n03643907 +n03644073 +n03644378 +n03644858 +n03645011 +n03645168 +n03645290 +n03645577 +n03646020 +n03646148 +n03646296 +n03646809 +n03646916 +n03647423 +n03647520 +n03648219 +n03648431 +n03648667 +n03649003 +n03649161 +n03649288 +n03649674 +n03649797 +n03649909 +n03650551 +n03651388 +n03651605 +n03651843 +n03652100 +n03652389 +n03652729 +n03652826 +n03652932 +n03653110 +n03653220 +n03653454 +n03653583 +n03653740 +n03653833 +n03653975 +n03654576 +n03654826 +n03655072 +n03655470 +n03655720 +n03656484 +n03656957 +n03657121 +n03657239 +n03657511 +n03658102 +n03658185 +n03658635 +n03658858 +n03659292 +n03659686 +n03659809 +n03659950 +n03660124 +n03660562 +n03660909 +n03661043 +n03661340 +n03662301 +n03662452 +n03662601 +n03662719 +n03662887 +n03663433 +n03663531 +n03663910 +n03664159 +n03664675 +n03664840 +n03664943 +n03665232 +n03665366 +n03665851 +n03665924 +n03666238 +n03666362 +n03666591 +n03666917 +n03667060 +n03667235 +n03667552 +n03667664 +n03667829 +n03668067 +n03668279 +n03668488 +n03668803 +n03669245 +n03669534 +n03669886 +n03670208 +n03671914 +n03672521 +n03672827 +n03673027 +n03673270 +n03673450 +n03673767 +n03674270 +n03674440 +n03674731 +n03674842 +n03675076 +n03675235 +n03675445 +n03675558 +n03675907 +n03676087 +n03676483 +n03676623 +n03676759 +n03677115 +n03677682 +n03677766 +n03678558 +n03678729 +n03678879 +n03679384 +n03679712 +n03680248 +n03680355 +n03680512 +n03680734 +n03680858 +n03680942 +n03681477 +n03681813 +n03682380 +n03682487 +n03682877 +n03683079 +n03683341 +n03683457 +n03683606 +n03683708 +n03683995 +n03684143 +n03684224 +n03684489 +n03684611 +n03684740 +n03684823 +n03685307 +n03685486 +n03685640 +n03685820 +n03686130 +n03686363 +n03686470 +n03686924 +n03687137 +n03687928 +n03688066 +n03688192 +n03688405 +n03688504 +n03688605 +n03688707 +n03688832 +n03688943 +n03689157 +n03689570 +n03690168 +n03690279 +n03690473 +n03690851 +n03690938 +n03691459 +n03691817 +n03692004 +n03692136 +n03692272 +n03692379 +n03692522 +n03692842 +n03693293 +n03693474 +n03693707 +n03693860 +n03694196 +n03694356 +n03694639 +n03694761 +n03694949 +n03695122 +n03695452 +n03695616 +n03695753 +n03695857 +n03695957 +n03696065 +n03696301 +n03696445 +n03696568 +n03696746 +n03696909 +n03697007 +n03697366 +n03697552 +n03697812 +n03697913 +n03698123 +n03698226 +n03698360 +n03698604 +n03698723 +n03698815 +n03699280 +n03699591 +n03699754 +n03699975 +n03700963 +n03701191 +n03701391 +n03701640 +n03701790 +n03702248 +n03702440 +n03702582 +n03703075 +n03703203 +n03703463 +n03703590 +n03703730 +n03703862 +n03703945 +n03704549 +n03704834 +n03705379 +n03705808 +n03706229 +n03706415 +n03706653 +n03706939 +n03707171 +n03707372 +n03707597 +n03707766 +n03708036 +n03708425 +n03708843 +n03708962 +n03709206 +n03709363 +n03709545 +n03709644 +n03709823 +n03709960 +n03710079 +n03710193 +n03710294 +n03710421 +n03710528 +n03710637 +n03710721 +n03710937 +n03711044 +n03711711 +n03711999 +n03712111 +n03712337 +n03712444 +n03712887 +n03712981 +n03713069 +n03713151 +n03713436 +n03714235 +n03715114 +n03715275 +n03715386 +n03715669 +n03715892 +n03716228 +n03716887 +n03716966 +n03717131 +n03717285 +n03717447 +n03717622 +n03718212 +n03718335 +n03718458 +n03718581 +n03718699 +n03718789 +n03718935 +n03719053 +n03719343 +n03719560 +n03719743 +n03720005 +n03720163 +n03720665 +n03720891 +n03721047 +n03721252 +n03721384 +n03721590 +n03722007 +n03722288 +n03722646 +n03722944 +n03723153 +n03723267 +n03723439 +n03723781 +n03723885 +n03724066 +n03724176 +n03724417 +n03724538 +n03724623 +n03724756 +n03724870 +n03725035 +n03725506 +n03725600 +n03725717 +n03725869 +n03726116 +n03726233 +n03726371 +n03726516 +n03726760 +n03726993 +n03727067 +n03727465 +n03727605 +n03727837 +n03727946 +n03728437 +n03728982 +n03729131 +n03729308 +n03729402 +n03729482 +n03729647 +n03729826 +n03729951 +n03730153 +n03730334 +n03730494 +n03730655 +n03730788 +n03730893 +n03731019 +n03731483 +n03731695 +n03731882 +n03732020 +n03732114 +n03732458 +n03732543 +n03732658 +n03733131 +n03733281 +n03733465 +n03733547 +n03733644 +n03733805 +n03733925 +n03735637 +n03735963 +n03736064 +n03736147 +n03736269 +n03736372 +n03736470 +n03736970 +n03738066 +n03738241 +n03738472 +n03739518 +n03739693 +n03742019 +n03742115 +n03742238 +n03743016 +n03743279 +n03743902 +n03744276 +n03744684 +n03744840 +n03745146 +n03745487 +n03745571 +n03746005 +n03746155 +n03746330 +n03746486 +n03748162 +n03749504 +n03749634 +n03749807 +n03750206 +n03750437 +n03750614 +n03751065 +n03751269 +n03751458 +n03751590 +n03751757 +n03752071 +n03752185 +n03752398 +n03752922 +n03753077 +n03753514 +n03757604 +n03758089 +n03758220 +n03758894 +n03758992 +n03759243 +n03759432 +n03759661 +n03759954 +n03760310 +n03760671 +n03760944 +n03761084 +n03761588 +n03761731 +n03762238 +n03762332 +n03762434 +n03762602 +n03762982 +n03763727 +n03763968 +n03764276 +n03764606 +n03764736 +n03764822 +n03764995 +n03765128 +n03765467 +n03765561 +n03765934 +n03766044 +n03766218 +n03766322 +n03766508 +n03766600 +n03766697 +n03766935 +n03767112 +n03767203 +n03767459 +n03767745 +n03767966 +n03768132 +n03768683 +n03768823 +n03768916 +n03769610 +n03769722 +n03769881 +n03770085 +n03770224 +n03770316 +n03770439 +n03770520 +n03770679 +n03770834 +n03770954 +n03772077 +n03772269 +n03772584 +n03772674 +n03773035 +n03773504 +n03773835 +n03774327 +n03774461 +n03775071 +n03775199 +n03775388 +n03775546 +n03775636 +n03775747 +n03775847 +n03776167 +n03776460 +n03776877 +n03776997 +n03777126 +n03777568 +n03777754 +n03778459 +n03778817 +n03779000 +n03779128 +n03779246 +n03779370 +n03779884 +n03780047 +n03780799 +n03781055 +n03781244 +n03781467 +n03781594 +n03781683 +n03781787 +n03782006 +n03782190 +n03782794 +n03782929 +n03783304 +n03783430 +n03783575 +n03783873 +n03784139 +n03784270 +n03784793 +n03784896 +n03785016 +n03785142 +n03785237 +n03785499 +n03785721 +n03786096 +n03786194 +n03786313 +n03786621 +n03786715 +n03786901 +n03787032 +n03787523 +n03788047 +n03788195 +n03788365 +n03788498 +n03788601 +n03788914 +n03789171 +n03789400 +n03789603 +n03789794 +n03789946 +n03790230 +n03790512 +n03790755 +n03790953 +n03791053 +n03791235 +n03792048 +n03792334 +n03792526 +n03792782 +n03792972 +n03793489 +n03793850 +n03794056 +n03794136 +n03794798 +n03795123 +n03795269 +n03795758 +n03795976 +n03796181 +n03796401 +n03796522 +n03796605 +n03796848 +n03796974 +n03797062 +n03797182 +n03797264 +n03797390 +n03797896 +n03798061 +n03798442 +n03798610 +n03798982 +n03799113 +n03799240 +n03799375 +n03799610 +n03799876 +n03800371 +n03800485 +n03800563 +n03800772 +n03800933 +n03801353 +n03801533 +n03801671 +n03801760 +n03801880 +n03802007 +n03802228 +n03802393 +n03802643 +n03802800 +n03802973 +n03803116 +n03803284 +n03803780 +n03804211 +n03804744 +n03805180 +n03805280 +n03805374 +n03805503 +n03805725 +n03805933 +n03807334 +n03809211 +n03809312 +n03809603 +n03809686 +n03809802 +n03810412 +n03810952 +n03811295 +n03811444 +n03811847 +n03811965 +n03812263 +n03812382 +n03812789 +n03812924 +n03813078 +n03813176 +n03813946 +n03814528 +n03814639 +n03814727 +n03814817 +n03814906 +n03815149 +n03815278 +n03815482 +n03815615 +n03816005 +n03816136 +n03816394 +n03816530 +n03816849 +n03817191 +n03817331 +n03817522 +n03817647 +n03818001 +n03818343 +n03819047 +n03819336 +n03819448 +n03819595 +n03819994 +n03820154 +n03820318 +n03820728 +n03820950 +n03821145 +n03821424 +n03821518 +n03822171 +n03822361 +n03822504 +n03822656 +n03822767 +n03823111 +n03823216 +n03823312 +n03823673 +n03823906 +n03824197 +n03824284 +n03824381 +n03824589 +n03824713 +n03824999 +n03825080 +n03825271 +n03825442 +n03825673 +n03825788 +n03825913 +n03826039 +n03826186 +n03827420 +n03827536 +n03828020 +n03829340 +n03829857 +n03829954 +n03831203 +n03831382 +n03831757 +n03832144 +n03832673 +n03833907 +n03834040 +n03834472 +n03834604 +n03835197 +n03835729 +n03835941 +n03836062 +n03836451 +n03836602 +n03836906 +n03836976 +n03837422 +n03837606 +n03837698 +n03837869 +n03838024 +n03838298 +n03838748 +n03838899 +n03839172 +n03839276 +n03839424 +n03839671 +n03839795 +n03840327 +n03840681 +n03840823 +n03841011 +n03841143 +n03841290 +n03841666 +n03842012 +n03842156 +n03842276 +n03842377 +n03842585 +n03842754 +n03842986 +n03843092 +n03843316 +n03843438 +n03843555 +n03843883 +n03844045 +n03844233 +n03844550 +n03844673 +n03844815 +n03844965 +n03845107 +n03845190 +n03845990 +n03846100 +n03846234 +n03846431 +n03846677 +n03846772 +n03846970 +n03847471 +n03847823 +n03848033 +n03848168 +n03848348 +n03848537 +n03849275 +n03849412 +n03849679 +n03849814 +n03849943 +n03850053 +n03850245 +n03850492 +n03850613 +n03851341 +n03851787 +n03852280 +n03852544 +n03852688 +n03853291 +n03853924 +n03854065 +n03854421 +n03854506 +n03854722 +n03854815 +n03855214 +n03855333 +n03855464 +n03855604 +n03855756 +n03855908 +n03856012 +n03856335 +n03856465 +n03856728 +n03857026 +n03857156 +n03857291 +n03857687 +n03857828 +n03858085 +n03858183 +n03858418 +n03858533 +n03858837 +n03859000 +n03859170 +n03859280 +n03859495 +n03859608 +n03859958 +n03860234 +n03860404 +n03861048 +n03861271 +n03861430 +n03861596 +n03861842 +n03862379 +n03862676 +n03862862 +n03863108 +n03863262 +n03863657 +n03863783 +n03863923 +n03864139 +n03864356 +n03864692 +n03865288 +n03865371 +n03865557 +n03865820 +n03865949 +n03866082 +n03867854 +n03868044 +n03868242 +n03868324 +n03868406 +n03868643 +n03868763 +n03868863 +n03869838 +n03869976 +n03870105 +n03870290 +n03870546 +n03870672 +n03870980 +n03871083 +n03871371 +n03871524 +n03871628 +n03871724 +n03871860 +n03872016 +n03872167 +n03872273 +n03873416 +n03873699 +n03873848 +n03873996 +n03874138 +n03874293 +n03874487 +n03874599 +n03874823 +n03875218 +n03875806 +n03875955 +n03876111 +n03876231 +n03877351 +n03877472 +n03877674 +n03877845 +n03878066 +n03878211 +n03878294 +n03878418 +n03878511 +n03878674 +n03878828 +n03878963 +n03879456 +n03879705 +n03880032 +n03880129 +n03880323 +n03880531 +n03881305 +n03881404 +n03881534 +n03882611 +n03882960 +n03883054 +n03883385 +n03883524 +n03883664 +n03883773 +n03883944 +n03884397 +n03884554 +n03884639 +n03884778 +n03884926 +n03885028 +n03885194 +n03885293 +n03885410 +n03885535 +n03885669 +n03885788 +n03885904 +n03886053 +n03886641 +n03886762 +n03886940 +n03887185 +n03887330 +n03887512 +n03887697 +n03887899 +n03888022 +n03888257 +n03888605 +n03888808 +n03888998 +n03889397 +n03889503 +n03889626 +n03889726 +n03889871 +n03890093 +n03890233 +n03890358 +n03890514 +n03891051 +n03891251 +n03891332 +n03891538 +n03892178 +n03892425 +n03892557 +n03892728 +n03893935 +n03894051 +n03894379 +n03894677 +n03894933 +n03895038 +n03895170 +n03895866 +n03896103 +n03896233 +n03896419 +n03896526 +n03896628 +n03896984 +n03897130 +n03897634 +n03897943 +n03898129 +n03898271 +n03898395 +n03898633 +n03898787 +n03899100 +n03899612 +n03899768 +n03899933 +n03900028 +n03900194 +n03900301 +n03900393 +n03900979 +n03901229 +n03901338 +n03901750 +n03901974 +n03902125 +n03902220 +n03902482 +n03902756 +n03903133 +n03903290 +n03903424 +n03903733 +n03903868 +n03904060 +n03904183 +n03904433 +n03904657 +n03904782 +n03904909 +n03905361 +n03905540 +n03905730 +n03905947 +n03906106 +n03906224 +n03906463 +n03906590 +n03906789 +n03906894 +n03906997 +n03907475 +n03907654 +n03907908 +n03908111 +n03908204 +n03908456 +n03908618 +n03908714 +n03909020 +n03909160 +n03909406 +n03909516 +n03909658 +n03911406 +n03911513 +n03911658 +n03911767 +n03911866 +n03912218 +n03912821 +n03913343 +n03913930 +n03914106 +n03914337 +n03914438 +n03914583 +n03914831 +n03915118 +n03915320 +n03915437 +n03915900 +n03916031 +n03916289 +n03916385 +n03916470 +n03916720 +n03917048 +n03917198 +n03917327 +n03917814 +n03918074 +n03918480 +n03918737 +n03919096 +n03919289 +n03919430 +n03919808 +n03920288 +n03920384 +n03920641 +n03920737 +n03920867 +n03923379 +n03923564 +n03923692 +n03923918 +n03924069 +n03924407 +n03924532 +n03924679 +n03926148 +n03926412 +n03926876 +n03927091 +n03927299 +n03927539 +n03927792 +n03928116 +n03928589 +n03928814 +n03928994 +n03929091 +n03929202 +n03929443 +n03929660 +n03929855 +n03930229 +n03930313 +n03930431 +n03930515 +n03930630 +n03931765 +n03931885 +n03931980 +n03932080 +n03932670 +n03933391 +n03933933 +n03934042 +n03934229 +n03934311 +n03934565 +n03934656 +n03934890 +n03935116 +n03935234 +n03935335 +n03935883 +n03936269 +n03936466 +n03937543 +n03937835 +n03937931 +n03938037 +n03938244 +n03938401 +n03938522 +n03938725 +n03939062 +n03939178 +n03939281 +n03939440 +n03939565 +n03939677 +n03939844 +n03940256 +n03940894 +n03941013 +n03941231 +n03941417 +n03941586 +n03941684 +n03941887 +n03942028 +n03942600 +n03942813 +n03942920 +n03943115 +n03943266 +n03943623 +n03943714 +n03943833 +n03943920 +n03944024 +n03944138 +n03944341 +n03945459 +n03945615 +n03945817 +n03945928 +n03946076 +n03946162 +n03947111 +n03947343 +n03947466 +n03947798 +n03947888 +n03948242 +n03948459 +n03948830 +n03948950 +n03949145 +n03949317 +n03949761 +n03950228 +n03950359 +n03950537 +n03950647 +n03950899 +n03951068 +n03951213 +n03951453 +n03951800 +n03951971 +n03952150 +n03952576 +n03953020 +n03953416 +n03953901 +n03954393 +n03954731 +n03955296 +n03955489 +n03955809 +n03955941 +n03956157 +n03956331 +n03956531 +n03956623 +n03956785 +n03956922 +n03957315 +n03957420 +n03957762 +n03957991 +n03958227 +n03958338 +n03958630 +n03958752 +n03959014 +n03959123 +n03959227 +n03959701 +n03960374 +n03960490 +n03961394 +n03961630 +n03961711 +n03961828 +n03961939 +n03962525 +n03962685 +n03962852 +n03962932 +n03963028 +n03963198 +n03963294 +n03963483 +n03963645 +n03964495 +n03964611 +n03965456 +n03965907 +n03966206 +n03966325 +n03966582 +n03966751 +n03966976 +n03967270 +n03967396 +n03967562 +n03967942 +n03968293 +n03968479 +n03968581 +n03968728 +n03969510 +n03970156 +n03970363 +n03970546 +n03971218 +n03971321 +n03971960 +n03972146 +n03972372 +n03972524 +n03973003 +n03973285 +n03973402 +n03973520 +n03973628 +n03973839 +n03973945 +n03974070 +n03974915 +n03975035 +n03975657 +n03975788 +n03975926 +n03976105 +n03976268 +n03976467 +n03976657 +n03977158 +n03977266 +n03977430 +n03977592 +n03977966 +n03978421 +n03978575 +n03978686 +n03978815 +n03978966 +n03979377 +n03979492 +n03980026 +n03980478 +n03980874 +n03980986 +n03981094 +n03981340 +n03981566 +n03981760 +n03981924 +n03982232 +n03982331 +n03982430 +n03982642 +n03982767 +n03982895 +n03983396 +n03983499 +n03983612 +n03983712 +n03983928 +n03984125 +n03984234 +n03984381 +n03984643 +n03984759 +n03985069 +n03985232 +n03985441 +n03985881 +n03986071 +n03986224 +n03986355 +n03986562 +n03986704 +n03986857 +n03986949 +n03987266 +n03987376 +n03987674 +n03987865 +n03987990 +n03988170 +n03988758 +n03988926 +n03989199 +n03989349 +n03989447 +n03989665 +n03989777 +n03989898 +n03990474 +n03991062 +n03991202 +n03991321 +n03991443 +n03991646 +n03991837 +n03992325 +n03992436 +n03992509 +n03992703 +n03992975 +n03993053 +n03993180 +n03993403 +n03993703 +n03993878 +n03994008 +n03994297 +n03994417 +n03994614 +n03994757 +n03995018 +n03995265 +n03995372 +n03995535 +n03995661 +n03995856 +n03996004 +n03996145 +n03996416 +n03996849 +n03997274 +n03997484 +n03997875 +n03998194 +n03998333 +n03998673 +n03999064 +n03999160 +n03999621 +n03999992 +n04000311 +n04000480 +n04000592 +n04000716 +n04000998 +n04001132 +n04001265 +n04001397 +n04001499 +n04001661 +n04001845 +n04002262 +n04002371 +n04002629 +n04003241 +n04003359 +n04003856 +n04004099 +n04004210 +n04004475 +n04004767 +n04004990 +n04005197 +n04005630 +n04005912 +n04006067 +n04006227 +n04006330 +n04006411 +n04007415 +n04007664 +n04008385 +n04008634 +n04009552 +n04009801 +n04009923 +n04010057 +n04010779 +n04010927 +n04011827 +n04012084 +n04012482 +n04012665 +n04013060 +n04013176 +n04013600 +n04013729 +n04014297 +n04015204 +n04015786 +n04015908 +n04016240 +n04016479 +n04016576 +n04016684 +n04016846 +n04017571 +n04017807 +n04018155 +n04018399 +n04018667 +n04019101 +n04019335 +n04019541 +n04019696 +n04019881 +n04020087 +n04020298 +n04020744 +n04020912 +n04021028 +n04021164 +n04021362 +n04021503 +n04021704 +n04021798 +n04022332 +n04022434 +n04022708 +n04022866 +n04023021 +n04023119 +n04023249 +n04023422 +n04023695 +n04023962 +n04024137 +n04024274 +n04024862 +n04024983 +n04025508 +n04025633 +n04026053 +n04026180 +n04026417 +n04026813 +n04026918 +n04027023 +n04027367 +n04027706 +n04027820 +n04027935 +n04028074 +n04028221 +n04028315 +n04028581 +n04028764 +n04029416 +n04029647 +n04029734 +n04029913 +n04030054 +n04030161 +n04030274 +n04030414 +n04030518 +n04030846 +n04030965 +n04031884 +n04032509 +n04032603 +n04032936 +n04033287 +n04033425 +n04033557 +n04033801 +n04033901 +n04033995 +n04034262 +n04034367 +n04035231 +n04035634 +n04035748 +n04035836 +n04035912 +n04036155 +n04036303 +n04036776 +n04036963 +n04037076 +n04037220 +n04037298 +n04037443 +n04037873 +n04037964 +n04038231 +n04038338 +n04038440 +n04038727 +n04039041 +n04039209 +n04039381 +n04039742 +n04039848 +n04040247 +n04040373 +n04040540 +n04040759 +n04041069 +n04041243 +n04041408 +n04041544 +n04041747 +n04042076 +n04042204 +n04042358 +n04042632 +n04042795 +n04042985 +n04043168 +n04043411 +n04043733 +n04044307 +n04044498 +n04044716 +n04044955 +n04045085 +n04045255 +n04045397 +n04045644 +n04045787 +n04045941 +n04046091 +n04046277 +n04046400 +n04046590 +n04046974 +n04047139 +n04047401 +n04047733 +n04047834 +n04048441 +n04049303 +n04049405 +n04049585 +n04049753 +n04050066 +n04050313 +n04050600 +n04050933 +n04051269 +n04051439 +n04051549 +n04051705 +n04051825 +n04052235 +n04052346 +n04052442 +n04052658 +n04052757 +n04053508 +n04053677 +n04053767 +n04054361 +n04054566 +n04054670 +n04055180 +n04055447 +n04055700 +n04055861 +n04056073 +n04056180 +n04056413 +n04056932 +n04057047 +n04057215 +n04057435 +n04057673 +n04057846 +n04057981 +n04058096 +n04058239 +n04058486 +n04058594 +n04058721 +n04059157 +n04059298 +n04059399 +n04059516 +n04059947 +n04060198 +n04060448 +n04060647 +n04060904 +n04061681 +n04061793 +n04061969 +n04062179 +n04062428 +n04062644 +n04062807 +n04063154 +n04063373 +n04063868 +n04064213 +n04064401 +n04064747 +n04064862 +n04065272 +n04065464 +n04065789 +n04065909 +n04066023 +n04066270 +n04066388 +n04066476 +n04066767 +n04067143 +n04067231 +n04067353 +n04067472 +n04067658 +n04067818 +n04067921 +n04068441 +n04068601 +n04069166 +n04069276 +n04069434 +n04069582 +n04069777 +n04070003 +n04070207 +n04070415 +n04070545 +n04070727 +n04070964 +n04071102 +n04071263 +n04071393 +n04072193 +n04072551 +n04072960 +n04073425 +n04073948 +n04074185 +n04074963 +n04075291 +n04075468 +n04075715 +n04075813 +n04075916 +n04076052 +n04076284 +n04076713 +n04077430 +n04077594 +n04077734 +n04077889 +n04078002 +n04078574 +n04078955 +n04079106 +n04079244 +n04079603 +n04079933 +n04080138 +n04080454 +n04080705 +n04080833 +n04081281 +n04081699 +n04081844 +n04082344 +n04082562 +n04082710 +n04082886 +n04083113 +n04083309 +n04083649 +n04083800 +n04084517 +n04084682 +n04084889 +n04085017 +n04085574 +n04085873 +n04086066 +n04086273 +n04086446 +n04086663 +n04086794 +n04086937 +n04087126 +n04087432 +n04087709 +n04087826 +n04088229 +n04088343 +n04088441 +n04088696 +n04088797 +n04089152 +n04089376 +n04089666 +n04089836 +n04089976 +n04090263 +n04090548 +n04090781 +n04091097 +n04091466 +n04091584 +n04091693 +n04092168 +n04093157 +n04093223 +n04093625 +n04093775 +n04093915 +n04094060 +n04094250 +n04094438 +n04094608 +n04094720 +n04094859 +n04095109 +n04095210 +n04095342 +n04095577 +n04095938 +n04096066 +n04096733 +n04096848 +n04097085 +n04097373 +n04097622 +n04097760 +n04097866 +n04098169 +n04098260 +n04098399 +n04098513 +n04098795 +n04099003 +n04099175 +n04099429 +n04099969 +n04100174 +n04100519 +n04101375 +n04101497 +n04101701 +n04101860 +n04102037 +n04102162 +n04102285 +n04102406 +n04102618 +n04102760 +n04102872 +n04102962 +n04103094 +n04103206 +n04103364 +n04103665 +n04103769 +n04103918 +n04104147 +n04104384 +n04104500 +n04104770 +n04104925 +n04105068 +n04105438 +n04105704 +n04105893 +n04107598 +n04107743 +n04107984 +n04108268 +n04108822 +n04108999 +n04110068 +n04110178 +n04110281 +n04110439 +n04110654 +n04110841 +n04110955 +n04111190 +n04111414 +n04111531 +n04111668 +n04111962 +n04112147 +n04112252 +n04112430 +n04112579 +n04112654 +n04112752 +n04112921 +n04113038 +n04113194 +n04113316 +n04113406 +n04113641 +n04113765 +n04113968 +n04114069 +n04114301 +n04114428 +n04114719 +n04114844 +n04114996 +n04115144 +n04115256 +n04115456 +n04115542 +n04115802 +n04115996 +n04116098 +n04116294 +n04116389 +n04116512 +n04117216 +n04117464 +n04117639 +n04118021 +n04118538 +n04118635 +n04118776 +n04119091 +n04119230 +n04119360 +n04119478 +n04119630 +n04119751 +n04120489 +n04120695 +n04120842 +n04121228 +n04121342 +n04121426 +n04121511 +n04121728 +n04122262 +n04122349 +n04122492 +n04122578 +n04122685 +n04122825 +n04123026 +n04123123 +n04123228 +n04123317 +n04123448 +n04123567 +n04123740 +n04124098 +n04124202 +n04124370 +n04124488 +n04124573 +n04124887 +n04125021 +n04125116 +n04125257 +n04125541 +n04125692 +n04125853 +n04126066 +n04126244 +n04126541 +n04126659 +n04126852 +n04126980 +n04127117 +n04127249 +n04127395 +n04127521 +n04127633 +n04127904 +n04128413 +n04128499 +n04128710 +n04128837 +n04129490 +n04129688 +n04129766 +n04130143 +n04130257 +n04130566 +n04130907 +n04131015 +n04131113 +n04131208 +n04131368 +n04131499 +n04131690 +n04131811 +n04131929 +n04132158 +n04132465 +n04132603 +n04132829 +n04132985 +n04133114 +n04133789 +n04134008 +n04134170 +n04134523 +n04134632 +n04135024 +n04135118 +n04135315 +n04135710 +n04135933 +n04136045 +n04136161 +n04136333 +n04136510 +n04136800 +n04137089 +n04137217 +n04137355 +n04137444 +n04137773 +n04137897 +n04138131 +n04138261 +n04138869 +n04138977 +n04139140 +n04139395 +n04139859 +n04140064 +n04140539 +n04140631 +n04140777 +n04140853 +n04141076 +n04141198 +n04141327 +n04141712 +n04141838 +n04141975 +n04142175 +n04142327 +n04142434 +n04142731 +n04142999 +n04143140 +n04143365 +n04143897 +n04144241 +n04144539 +n04144651 +n04145863 +n04146050 +n04146343 +n04146504 +n04146614 +n04146862 +n04146976 +n04147183 +n04147291 +n04147495 +n04147793 +n04147916 +n04148054 +n04148285 +n04148464 +n04148579 +n04148703 +n04149083 +n04149374 +n04149813 +n04150153 +n04150273 +n04150371 +n04150980 +n04151108 +n04151581 +n04151940 +n04152387 +n04152593 +n04153025 +n04153330 +n04153751 +n04154152 +n04154340 +n04154565 +n04154753 +n04154854 +n04154938 +n04155068 +n04155177 +n04155457 +n04155625 +n04155735 +n04155889 +n04156040 +n04156140 +n04156297 +n04156411 +n04156591 +n04156814 +n04156946 +n04157099 +n04157320 +n04158002 +n04158138 +n04158250 +n04158672 +n04158807 +n04158956 +n04160036 +n04160261 +n04160372 +n04160586 +n04160847 +n04161010 +n04161358 +n04161981 +n04162433 +n04162706 +n04163530 +n04164002 +n04164199 +n04164406 +n04164757 +n04164868 +n04165409 +n04165675 +n04165945 +n04166111 +n04166281 +n04166436 +n04167346 +n04167489 +n04167661 +n04168084 +n04168199 +n04168472 +n04168541 +n04168840 +n04169437 +n04169597 +n04170037 +n04170384 +n04170515 +n04170694 +n04170933 +n04171208 +n04171459 +n04171629 +n04171831 +n04172107 +n04172230 +n04172342 +n04172512 +n04172607 +n04172776 +n04172904 +n04173046 +n04173172 +n04173511 +n04173907 +n04174026 +n04174101 +n04174234 +n04174500 +n04174705 +n04175039 +n04175147 +n04175574 +n04176068 +n04176190 +n04176295 +n04176528 +n04177041 +n04177329 +n04177545 +n04177654 +n04177755 +n04177820 +n04177931 +n04178190 +n04178329 +n04178668 +n04179126 +n04179712 +n04179824 +n04179913 +n04180063 +n04180229 +n04180888 +n04181083 +n04181228 +n04181561 +n04181718 +n04182152 +n04182322 +n04183217 +n04183329 +n04183957 +n04184095 +n04184316 +n04184435 +n04184600 +n04184880 +n04185071 +n04185529 +n04185804 +n04185946 +n04186051 +n04186268 +n04186455 +n04186624 +n04186848 +n04187061 +n04187233 +n04187547 +n04187751 +n04187885 +n04187970 +n04188064 +n04188179 +n04189092 +n04189282 +n04189651 +n04189816 +n04190052 +n04190376 +n04190464 +n04190747 +n04190997 +n04191150 +n04191595 +n04191943 +n04192238 +n04192361 +n04192521 +n04192698 +n04192858 +n04193179 +n04193377 +n04193742 +n04193883 +n04194009 +n04194127 +n04194289 +n04196080 +n04196502 +n04196803 +n04196925 +n04197110 +n04197391 +n04197781 +n04197878 +n04198015 +n04198233 +n04198355 +n04198453 +n04198562 +n04198722 +n04198797 +n04199027 +n04200000 +n04200258 +n04200537 +n04200800 +n04200908 +n04201064 +n04201297 +n04201733 +n04202142 +n04202282 +n04202417 +n04203356 +n04204081 +n04204238 +n04204347 +n04204755 +n04205062 +n04205318 +n04205505 +n04205613 +n04206070 +n04206225 +n04206356 +n04206570 +n04206790 +n04207151 +n04207343 +n04207596 +n04207763 +n04207903 +n04208065 +n04208210 +n04208427 +n04208582 +n04208760 +n04208936 +n04209133 +n04209239 +n04209509 +n04209613 +n04209811 +n04210012 +n04210120 +n04210288 +n04210390 +n04210591 +n04210858 +n04211001 +n04211219 +n04211356 +n04211528 +n04211857 +n04211970 +n04212165 +n04212282 +n04212467 +n04212810 +n04213105 +n04213264 +n04213353 +n04213530 +n04214046 +n04214282 +n04214413 +n04214649 +n04215153 +n04215402 +n04215588 +n04215800 +n04215910 +n04216634 +n04216860 +n04216963 +n04217387 +n04217546 +n04217718 +n04217882 +n04218564 +n04218921 +n04219185 +n04219424 +n04219580 +n04220250 +n04220805 +n04221076 +n04221673 +n04221823 +n04222210 +n04222307 +n04222470 +n04222723 +n04222847 +n04223066 +n04223170 +n04223299 +n04224395 +n04224543 +n04224842 +n04225031 +n04225222 +n04225729 +n04225987 +n04226322 +n04226464 +n04226537 +n04226826 +n04226962 +n04227050 +n04227144 +n04227519 +n04227787 +n04227900 +n04228054 +n04228215 +n04228422 +n04228581 +n04228693 +n04229007 +n04229107 +n04229480 +n04229620 +n04229737 +n04229816 +n04229959 +n04230387 +n04230487 +n04230603 +n04230707 +n04230808 +n04231272 +n04231693 +n04231905 +n04232153 +n04232312 +n04232437 +n04232800 +n04233027 +n04233124 +n04233295 +n04233715 +n04233832 +n04234160 +n04234260 +n04234455 +n04234670 +n04234763 +n04234887 +n04235291 +n04235646 +n04235771 +n04235860 +n04236001 +n04236377 +n04236702 +n04236809 +n04236935 +n04237174 +n04237287 +n04237423 +n04238128 +n04238321 +n04238617 +n04238763 +n04238953 +n04239074 +n04239218 +n04239333 +n04239436 +n04239639 +n04239786 +n04239900 +n04240434 +n04240752 +n04240867 +n04241042 +n04241249 +n04241394 +n04241573 +n04242084 +n04242315 +n04242408 +n04242587 +n04242704 +n04243003 +n04243142 +n04243251 +n04243546 +n04243941 +n04244379 +n04244847 +n04244997 +n04245218 +n04245412 +n04245508 +n04245847 +n04246060 +n04246271 +n04246459 +n04246731 +n04246855 +n04247011 +n04247440 +n04247544 +n04247630 +n04247736 +n04247876 +n04248209 +n04248396 +n04248507 +n04248851 +n04249415 +n04249582 +n04249882 +n04250224 +n04250473 +n04250599 +n04250692 +n04250850 +n04251144 +n04251701 +n04251791 +n04252077 +n04252225 +n04252331 +n04252560 +n04252653 +n04253057 +n04253168 +n04253304 +n04253931 +n04254009 +n04254120 +n04254450 +n04254680 +n04254777 +n04255163 +n04255346 +n04255499 +n04255586 +n04255670 +n04255768 +n04255899 +n04256318 +n04256520 +n04256758 +n04256891 +n04257223 +n04257684 +n04257790 +n04257986 +n04258138 +n04258333 +n04258438 +n04258618 +n04258732 +n04258859 +n04259202 +n04259468 +n04259630 +n04260192 +n04260364 +n04260589 +n04261116 +n04261281 +n04261369 +n04261506 +n04261638 +n04261767 +n04261868 +n04262161 +n04262530 +n04262678 +n04262869 +n04263257 +n04263336 +n04263502 +n04263760 +n04263950 +n04264134 +n04264233 +n04264361 +n04264485 +n04264628 +n04264765 +n04264914 +n04265275 +n04265428 +n04265904 +n04266014 +n04266162 +n04266375 +n04266486 +n04266849 +n04266968 +n04267091 +n04267165 +n04267246 +n04267435 +n04267577 +n04267985 +n04268142 +n04268275 +n04268418 +n04268565 +n04268799 +n04269086 +n04269270 +n04269502 +n04269668 +n04269822 +n04269944 +n04270147 +n04270371 +n04270576 +n04270891 +n04271148 +n04271531 +n04271793 +n04271891 +n04272054 +n04272389 +n04272782 +n04272928 +n04273064 +n04273285 +n04273569 +n04273659 +n04273796 +n04273972 +n04274686 +n04274985 +n04275093 +n04275175 +n04275283 +n04275548 +n04275661 +n04275904 +n04277352 +n04277493 +n04277669 +n04277826 +n04278247 +n04278353 +n04278447 +n04278605 +n04278932 +n04279063 +n04279172 +n04279353 +n04279462 +n04279858 +n04279987 +n04280259 +n04280373 +n04280487 +n04280845 +n04280970 +n04281260 +n04281375 +n04281571 +n04281998 +n04282231 +n04282494 +n04282872 +n04282992 +n04283096 +n04283255 +n04283378 +n04283585 +n04283784 +n04283905 +n04284002 +n04284341 +n04284438 +n04284572 +n04284869 +n04285008 +n04285146 +n04285622 +n04285803 +n04285965 +n04286128 +n04286575 +n04286960 +n04287351 +n04287451 +n04287747 +n04287898 +n04287986 +n04288165 +n04288272 +n04288533 +n04288673 +n04289027 +n04289195 +n04289449 +n04289576 +n04289690 +n04289827 +n04290079 +n04290259 +n04290507 +n04290615 +n04290762 +n04291069 +n04291242 +n04291759 +n04291992 +n04292080 +n04292221 +n04292414 +n04292572 +n04292921 +n04293119 +n04293258 +n04293744 +n04294212 +n04294426 +n04294614 +n04294879 +n04295081 +n04295353 +n04295571 +n04295777 +n04295881 +n04296562 +n04297098 +n04297750 +n04297847 +n04298053 +n04298661 +n04298765 +n04299215 +n04299370 +n04299963 +n04300358 +n04300509 +n04300643 +n04301000 +n04301242 +n04301474 +n04301760 +n04302200 +n04302863 +n04302988 +n04303095 +n04303258 +n04303357 +n04303497 +n04304215 +n04304375 +n04304680 +n04305016 +n04305210 +n04305323 +n04305471 +n04305572 +n04305947 +n04306080 +n04306592 +n04306847 +n04307419 +n04307767 +n04307878 +n04307986 +n04308084 +n04308273 +n04308397 +n04308583 +n04308807 +n04308915 +n04309049 +n04309348 +n04309548 +n04309833 +n04310018 +n04310157 +n04310507 +n04310604 +n04310721 +n04310904 +n04311004 +n04311174 +n04311595 +n04312020 +n04312154 +n04312432 +n04312654 +n04312756 +n04312916 +n04313220 +n04313503 +n04313628 +n04314107 +n04314216 +n04314522 +n04314632 +n04314914 +n04315342 +n04315713 +n04315828 +n04315948 +n04316498 +n04316815 +n04316924 +n04317063 +n04317175 +n04317325 +n04317420 +n04317833 +n04317976 +n04318131 +n04318787 +n04318892 +n04318982 +n04319545 +n04319774 +n04319937 +n04320405 +n04320598 +n04320871 +n04320973 +n04321121 +n04321453 +n04322026 +n04322531 +n04322692 +n04322801 +n04323519 +n04323819 +n04324120 +n04324297 +n04324387 +n04324515 +n04325041 +n04325208 +n04325704 +n04325804 +n04325968 +n04326547 +n04326676 +n04326799 +n04326896 +n04327204 +n04327544 +n04327682 +n04328054 +n04328186 +n04328329 +n04328580 +n04328703 +n04328946 +n04329477 +n04329681 +n04329834 +n04329958 +n04330109 +n04330189 +n04330267 +n04330340 +n04330669 +n04330746 +n04330896 +n04330998 +n04331277 +n04331443 +n04331639 +n04331765 +n04331892 +n04332074 +n04332243 +n04332580 +n04332987 +n04333129 +n04333869 +n04334105 +n04334365 +n04334504 +n04334599 +n04335209 +n04335435 +n04335693 +n04335886 +n04336792 +n04337157 +n04337287 +n04337503 +n04337650 +n04338517 +n04338963 +n04339062 +n04339191 +n04339638 +n04339879 +n04340019 +n04340521 +n04340750 +n04340935 +n04341133 +n04341288 +n04341414 +n04341686 +n04343511 +n04343630 +n04343740 +n04344003 +n04344734 +n04344873 +n04345028 +n04345201 +n04345787 +n04346003 +n04346157 +n04346328 +n04346428 +n04346511 +n04346679 +n04346855 +n04347119 +n04347519 +n04347754 +n04348070 +n04348184 +n04348359 +n04348988 +n04349189 +n04349306 +n04349401 +n04349913 +n04350104 +n04350235 +n04350458 +n04350581 +n04350688 +n04350769 +n04350905 +n04351550 +n04351699 +n04353573 +n04354026 +n04354182 +n04354387 +n04354487 +n04354589 +n04355115 +n04355267 +n04355338 +n04355511 +n04355684 +n04355821 +n04355933 +n04356056 +n04356595 +n04356772 +n04356925 +n04357121 +n04357314 +n04357531 +n04357930 +n04358117 +n04358256 +n04358491 +n04358707 +n04358874 +n04359034 +n04359124 +n04359217 +n04359335 +n04359500 +n04359589 +n04360501 +n04360798 +n04360914 +n04361095 +n04361260 +n04361937 +n04362624 +n04362821 +n04362972 +n04363082 +n04363210 +n04363412 +n04363671 +n04363777 +n04363874 +n04363991 +n04364160 +n04364397 +n04364545 +n04364827 +n04364994 +n04365112 +n04365229 +n04365328 +n04365484 +n04365751 +n04366033 +n04366116 +n04366367 +n04366832 +n04367011 +n04367371 +n04367480 +n04367746 +n04367950 +n04368109 +n04368235 +n04368365 +n04368496 +n04368695 +n04368840 +n04369025 +n04369282 +n04369485 +n04369618 +n04370048 +n04370288 +n04370456 +n04370600 +n04370774 +n04370955 +n04371050 +n04371430 +n04371563 +n04371774 +n04371979 +n04372370 +n04373089 +n04373428 +n04373563 +n04373704 +n04373795 +n04373894 +n04374315 +n04374521 +n04374735 +n04374907 +n04375080 +n04375241 +n04375405 +n04375615 +n04375775 +n04375926 +n04376400 +n04376876 +n04377057 +n04378489 +n04378651 +n04378956 +n04379096 +n04379243 +n04379964 +n04380255 +n04380346 +n04380533 +n04380916 +n04381073 +n04381450 +n04381587 +n04381724 +n04381860 +n04381994 +n04382334 +n04382438 +n04382537 +n04382695 +n04382880 +n04383015 +n04383130 +n04383301 +n04383839 +n04383923 +n04384593 +n04384910 +n04385079 +n04385157 +n04385536 +n04385799 +n04386051 +n04386456 +n04386664 +n04386792 +n04387095 +n04387201 +n04387261 +n04387400 +n04387531 +n04387706 +n04387932 +n04388040 +n04388162 +n04388473 +n04388574 +n04388743 +n04389033 +n04389430 +n04389521 +n04389718 +n04389854 +n04389999 +n04390483 +n04390577 +n04390873 +n04390977 +n04391445 +n04391838 +n04392113 +n04392526 +n04392764 +n04392985 +n04393095 +n04393301 +n04393549 +n04393808 +n04393913 +n04394031 +n04394261 +n04394421 +n04394630 +n04395024 +n04395106 +n04395332 +n04395651 +n04395875 +n04396226 +n04396335 +n04396650 +n04396808 +n04396902 +n04397027 +n04397168 +n04397261 +n04397452 +n04397645 +n04397768 +n04397860 +n04398044 +n04398497 +n04398688 +n04398834 +n04398951 +n04399046 +n04399158 +n04399537 +n04399846 +n04400109 +n04400289 +n04400499 +n04400737 +n04400899 +n04401088 +n04401578 +n04401680 +n04401828 +n04401949 +n04402057 +n04402342 +n04402449 +n04402580 +n04402746 +n04402984 +n04403413 +n04403524 +n04403638 +n04403925 +n04404072 +n04404200 +n04404412 +n04404817 +n04404997 +n04405540 +n04405762 +n04405907 +n04406239 +n04406552 +n04406687 +n04406817 +n04407257 +n04407435 +n04407686 +n04408871 +n04409011 +n04409128 +n04409279 +n04409384 +n04409515 +n04409625 +n04409806 +n04409911 +n04410086 +n04410365 +n04410485 +n04410565 +n04410663 +n04410760 +n04410886 +n04411019 +n04411264 +n04411835 +n04411966 +n04412097 +n04412300 +n04412416 +n04413151 +n04413419 +n04413969 +n04414101 +n04414199 +n04414319 +n04414476 +n04414675 +n04414909 +n04415257 +n04415663 +n04415815 +n04416005 +n04416901 +n04417086 +n04417180 +n04417361 +n04417672 +n04417809 +n04418357 +n04418644 +n04419073 +n04419642 +n04419868 +n04420024 +n04420720 +n04421083 +n04421258 +n04421417 +n04421582 +n04421740 +n04421872 +n04422409 +n04422566 +n04422727 +n04422875 +n04423552 +n04423687 +n04423845 +n04424692 +n04425804 +n04425977 +n04426184 +n04426316 +n04426427 +n04427216 +n04427473 +n04427559 +n04427715 +n04427857 +n04428008 +n04428191 +n04428382 +n04428634 +n04429038 +n04429376 +n04430475 +n04430605 +n04430896 +n04431025 +n04431436 +n04431648 +n04431745 +n04431925 +n04432043 +n04432203 +n04432662 +n04432785 +n04433377 +n04433585 +n04434207 +n04434531 +n04434932 +n04435180 +n04435552 +n04435653 +n04435759 +n04435870 +n04436012 +n04436185 +n04436329 +n04436401 +n04436542 +n04436832 +n04436992 +n04437276 +n04437380 +n04437670 +n04437953 +n04438304 +n04438507 +n04438643 +n04438897 +n04439505 +n04439585 +n04439712 +n04440597 +n04440963 +n04441093 +n04441528 +n04441662 +n04441790 +n04442312 +n04442441 +n04442582 +n04442741 +n04443164 +n04443257 +n04443433 +n04443766 +n04444121 +n04444218 +n04444749 +n04444953 +n04445040 +n04445154 +n04445327 +n04445610 +n04445782 +n04445952 +n04446162 +n04446276 +n04446844 +n04447028 +n04447156 +n04447276 +n04447443 +n04447861 +n04448070 +n04448185 +n04448361 +n04449290 +n04449449 +n04449550 +n04449700 +n04449966 +n04450133 +n04450243 +n04450465 +n04450640 +n04450749 +n04450994 +n04451139 +n04451318 +n04451636 +n04451818 +n04452528 +n04452615 +n04452757 +n04452848 +n04453037 +n04453156 +n04453390 +n04453666 +n04453910 +n04454654 +n04454792 +n04454908 +n04455048 +n04455250 +n04455579 +n04455652 +n04456011 +n04456115 +n04456472 +n04456734 +n04457157 +n04457326 +n04457474 +n04457638 +n04457767 +n04457910 +n04458201 +n04458633 +n04458843 +n04459018 +n04459122 +n04459243 +n04459362 +n04459610 +n04459773 +n04459909 +n04460130 +n04461437 +n04461570 +n04461696 +n04461879 +n04462011 +n04462240 +n04462576 +n04463679 +n04464125 +n04464615 +n04464852 +n04465050 +n04465203 +n04465358 +n04465501 +n04465666 +n04466871 +n04467099 +n04467307 +n04467506 +n04467665 +n04467899 +n04468005 +n04469003 +n04469251 +n04469514 +n04469684 +n04469813 +n04470741 +n04471148 +n04471315 +n04471632 +n04471912 +n04472243 +n04472563 +n04472726 +n04472961 +n04473108 +n04473275 +n04473884 +n04474035 +n04474187 +n04474466 +n04475309 +n04475411 +n04475496 +n04475631 +n04475749 +n04475900 +n04476116 +n04476259 +n04476526 +n04476831 +n04476972 +n04477219 +n04477387 +n04477548 +n04477725 +n04478066 +n04478383 +n04478512 +n04478657 +n04479046 +n04479287 +n04479405 +n04479526 +n04479694 +n04479823 +n04479939 +n04480033 +n04480141 +n04480303 +n04480527 +n04480853 +n04480995 +n04481524 +n04481642 +n04482177 +n04482297 +n04482393 +n04482975 +n04483073 +n04483307 +n04483925 +n04484024 +n04484432 +n04485082 +n04485423 +n04485586 +n04485750 +n04485884 +n04486054 +n04486213 +n04486322 +n04486616 +n04486934 +n04487081 +n04487394 +n04487724 +n04487894 +n04488202 +n04488427 +n04488530 +n04488742 +n04488857 +n04489008 +n04489695 +n04489817 +n04490091 +n04491312 +n04491388 +n04491638 +n04491769 +n04491934 +n04492060 +n04492157 +n04492375 +n04492749 +n04493109 +n04493259 +n04493381 +n04494204 +n04495051 +n04495183 +n04495310 +n04495450 +n04495555 +n04495698 +n04495843 +n04496614 +n04496726 +n04496872 +n04497249 +n04497442 +n04497570 +n04497801 +n04498275 +n04498389 +n04498523 +n04498873 +n04499062 +n04499300 +n04499446 +n04499554 +n04499810 +n04500060 +n04500390 +n04501127 +n04501281 +n04501370 +n04501550 +n04501837 +n04501947 +n04502059 +n04502197 +n04502502 +n04502670 +n04502851 +n04502989 +n04503073 +n04503155 +n04503269 +n04503413 +n04503499 +n04503593 +n04503705 +n04504038 +n04504141 +n04504770 +n04505036 +n04505345 +n04505470 +n04505888 +n04506289 +n04506402 +n04506506 +n04506688 +n04506895 +n04506994 +n04507155 +n04507326 +n04507453 +n04507689 +n04508163 +n04508489 +n04508949 +n04509171 +n04509260 +n04509417 +n04509592 +n04510706 +n04511002 +n04513827 +n04513998 +n04514095 +n04514241 +n04514648 +n04515003 +n04515444 +n04515729 +n04515890 +n04516116 +n04516214 +n04516354 +n04516672 +n04517211 +n04517408 +n04517823 +n04517999 +n04518132 +n04518343 +n04518643 +n04518764 +n04519153 +n04519536 +n04519728 +n04519887 +n04520170 +n04520382 +n04520784 +n04520962 +n04521571 +n04521863 +n04521987 +n04522168 +n04523525 +n04523831 +n04524142 +n04524313 +n04524594 +n04524716 +n04524941 +n04525038 +n04525191 +n04525305 +n04525417 +n04525584 +n04525821 +n04526520 +n04526800 +n04526964 +n04527648 +n04528079 +n04528968 +n04529108 +n04529681 +n04529962 +n04530283 +n04530456 +n04530566 +n04531098 +n04531873 +n04532022 +n04532106 +n04532398 +n04532504 +n04532670 +n04532831 +n04533042 +n04533199 +n04533499 +n04533594 +n04533700 +n04533802 +n04533946 +n04534127 +n04534359 +n04534520 +n04534895 +n04535252 +n04535370 +n04535524 +n04536153 +n04536335 +n04536465 +n04536595 +n04536765 +n04536866 +n04537436 +n04538249 +n04538403 +n04538552 +n04538878 +n04539053 +n04539203 +n04539407 +n04539794 +n04540053 +n04540255 +n04540397 +n04540761 +n04541136 +n04541320 +n04541662 +n04541777 +n04541987 +n04542095 +n04542329 +n04542474 +n04542595 +n04542715 +n04542858 +n04542943 +n04543158 +n04543509 +n04543636 +n04543772 +n04543924 +n04543996 +n04544325 +n04544450 +n04545305 +n04545471 +n04545748 +n04545858 +n04545984 +n04546081 +n04546194 +n04546340 +n04546595 +n04546855 +n04547592 +n04548280 +n04548362 +n04549028 +n04549122 +n04549629 +n04549721 +n04549919 +n04550184 +n04550676 +n04551055 +n04551833 +n04552097 +n04552348 +n04552551 +n04552696 +n04553389 +n04553561 +n04553703 +n04554211 +n04554406 +n04554684 +n04554871 +n04554998 +n04555291 +n04555400 +n04555600 +n04555700 +n04555897 +n04556408 +n04556533 +n04556664 +n04556948 +n04557308 +n04557522 +n04557648 +n04557751 +n04558059 +n04558199 +n04558478 +n04558804 +n04559023 +n04559166 +n04559451 +n04559620 +n04559730 +n04559910 +n04559994 +n04560113 +n04560292 +n04560502 +n04560619 +n04560804 +n04560882 +n04561010 +n04561287 +n04561422 +n04561734 +n04561857 +n04561965 +n04562122 +n04562262 +n04562496 +n04562935 +n04563020 +n04563204 +n04563413 +n04563560 +n04563790 +n04564278 +n04564581 +n04565039 +n04565375 +n04566257 +n04566561 +n04566756 +n04567098 +n04567593 +n04567746 +n04568069 +n04568557 +n04568713 +n04568841 +n04569063 +n04569520 +n04569822 +n04570118 +n04570214 +n04570416 +n04570532 +n04570815 +n04570958 +n04571292 +n04571566 +n04571686 +n04571800 +n04571958 +n04572121 +n04572235 +n04572935 +n04573045 +n04573281 +n04573379 +n04573513 +n04573625 +n04573832 +n04573937 +n04574067 +n04574348 +n04574471 +n04574606 +n04574999 +n04575723 +n04575824 +n04576002 +n04576211 +n04576971 +n04577139 +n04577293 +n04577426 +n04577567 +n04577769 +n04578112 +n04578329 +n04578559 +n04578708 +n04578801 +n04578934 +n04579056 +n04579145 +n04579230 +n04579432 +n04579667 +n04579986 +n04580493 +n04581102 +n04581595 +n04581829 +n04582205 +n04582349 +n04582771 +n04582869 +n04583022 +n04583212 +n04583620 +n04583888 +n04583967 +n04584056 +n04584207 +n04584373 +n04585128 +n04585318 +n04585456 +n04585626 +n04585745 +n04585980 +n04586072 +n04586581 +n04586932 +n04587327 +n04587404 +n04587559 +n04587648 +n04588739 +n04589190 +n04589325 +n04589434 +n04589593 +n04589890 +n04590021 +n04590129 +n04590263 +n04590553 +n04590746 +n04590933 +n04591056 +n04591157 +n04591249 +n04591359 +n04591517 +n04591631 +n04591713 +n04591887 +n04592005 +n04592099 +n04592356 +n04592465 +n04592596 +n04592741 +n04593077 +n04593185 +n04593376 +n04593524 +n04593629 +n04593866 +n04594114 +n04594218 +n04594489 +n04594742 +n04594828 +n04594919 +n04595028 +n04595285 +n04595501 +n04595611 +n04595762 +n04595855 +n04596116 +n04596492 +n04596742 +n04596852 +n04597066 +n04597309 +n04597400 +n04597804 +n04597913 +n04598136 +n04598318 +n04598416 +n04598582 +n04598965 +n04599124 +n04599235 +n04600312 +n04600486 +n04600912 +n04601041 +n04601159 +n04601938 +n04602762 +n04602840 +n04602956 +n04603399 +n04603729 +n04603872 +n04604276 +n04604644 +n04604806 +n04605057 +n04605163 +n04605321 +n04605446 +n04605572 +n04605726 +n04606251 +n04606574 +n04607035 +n04607242 +n04607640 +n04607759 +n04607869 +n04607982 +n04608329 +n04608435 +n04608567 +n04608809 +n04608923 +n04609531 +n04609651 +n04609811 +n04610013 +n04610176 +n04610274 +n04610503 +n04610676 +n04611351 +n04611795 +n04611916 +n04612026 +n04612159 +n04612257 +n04612373 +n04612504 +n04612840 +n04613015 +n04613158 +n04613696 +n04613939 +n04614505 +n04614655 +n04614844 +n04615149 +n04615226 +n04615644 +n04682018 +n04950713 +n04950952 +n04951071 +n04951186 +n04951373 +n04951716 +n04951875 +n04953296 +n04953678 +n04955160 +n04957356 +n04957589 +n04958634 +n04958865 +n04959061 +n04959230 +n04959672 +n04960277 +n04960582 +n04961062 +n04961331 +n04961691 +n04962062 +n04962240 +n04963111 +n04963307 +n04963588 +n04963740 +n04964001 +n04964799 +n04964878 +n04965179 +n04965451 +n04965661 +n04966543 +n04966941 +n04967191 +n04967561 +n04967674 +n04967801 +n04967882 +n04968056 +n04968139 +n04968749 +n04968895 +n04969242 +n04969540 +n04969798 +n04969952 +n04970059 +n04970312 +n04970398 +n04970470 +n04970631 +n04970916 +n04971211 +n04971313 +n04972350 +n04972451 +n04972801 +n04973020 +n04973291 +n04973386 +n04973585 +n04973669 +n04973816 +n04974145 +n04974340 +n04974859 +n04975739 +n04976319 +n04976952 +n04977412 +n04978561 +n04979002 +n04979307 +n04981658 +n05102764 +n05218119 +n05233741 +n05235879 +n05238282 +n05239437 +n05241218 +n05241485 +n05241662 +n05242070 +n05242239 +n05242928 +n05244421 +n05244755 +n05244934 +n05245192 +n05257476 +n05257967 +n05258051 +n05258627 +n05259914 +n05260127 +n05260240 +n05261310 +n05262422 +n05262534 +n05262698 +n05263183 +n05263316 +n05263448 +n05265736 +n05266096 +n05266879 +n05278922 +n05279953 +n05282652 +n05285623 +n05302499 +n05314075 +n05399034 +n05399243 +n05399356 +n05418717 +n05427346 +n05442594 +n05447757 +n05448704 +n05448827 +n05449196 +n05449661 +n05449959 +n05450617 +n05451099 +n05451384 +n05453412 +n05453657 +n05453815 +n05454833 +n05454978 +n05455113 +n05458173 +n05458576 +n05459101 +n05459457 +n05459769 +n05460759 +n05464534 +n05467054 +n05467758 +n05468098 +n05468739 +n05469664 +n05469861 +n05475397 +n05482922 +n05486510 +n05491154 +n05526957 +n05538625 +n05539947 +n05541509 +n05542893 +n05545879 +n05571341 +n05578095 +n05581932 +n05584746 +n05586759 +n05604434 +n05716342 +n06008896 +n06209940 +n06254669 +n06255081 +n06255613 +n06259898 +n06262567 +n06262943 +n06263202 +n06263369 +n06263609 +n06263762 +n06263895 +n06266417 +n06266633 +n06266710 +n06266878 +n06266973 +n06267145 +n06267564 +n06267655 +n06267758 +n06267893 +n06267991 +n06271778 +n06272290 +n06272612 +n06272803 +n06273207 +n06273294 +n06273414 +n06273555 +n06273743 +n06273890 +n06273986 +n06274092 +n06274292 +n06274546 +n06274760 +n06274921 +n06275095 +n06275353 +n06275471 +n06276501 +n06276697 +n06276902 +n06277025 +n06277135 +n06277280 +n06278338 +n06278475 +n06281040 +n06281175 +n06340977 +n06359193 +n06359467 +n06359657 +n06415688 +n06417096 +n06418693 +n06419354 +n06423496 +n06470073 +n06591815 +n06592078 +n06592281 +n06592421 +n06595351 +n06596179 +n06596364 +n06596474 +n06596607 +n06596727 +n06596845 +n06613686 +n06614901 +n06616216 +n06618653 +n06625062 +n06785654 +n06793231 +n06794110 +n06874185 +n06883725 +n06892775 +n06998748 +n07005523 +n07248320 +n07273802 +n07461050 +n07556406 +n07556637 +n07556872 +n07556970 +n07557165 +n07557434 +n07560193 +n07560331 +n07560422 +n07560542 +n07560652 +n07560903 +n07561112 +n07561590 +n07561848 +n07562017 +n07562172 +n07562379 +n07562495 +n07562651 +n07562881 +n07562984 +n07563207 +n07563366 +n07563642 +n07563800 +n07564008 +n07564101 +n07564292 +n07564515 +n07564629 +n07564796 +n07564971 +n07565083 +n07565161 +n07565259 +n07565608 +n07565725 +n07565945 +n07566092 +n07566231 +n07566340 +n07566863 +n07567039 +n07567139 +n07567390 +n07567611 +n07567707 +n07567980 +n07568095 +n07568241 +n07568389 +n07568502 +n07568625 +n07568818 +n07568991 +n07569106 +n07569423 +n07569543 +n07569644 +n07569873 +n07570021 +n07570530 +n07570720 +n07572353 +n07572616 +n07572858 +n07572957 +n07573103 +n07573347 +n07573453 +n07573563 +n07573696 +n07574176 +n07574426 +n07574504 +n07574602 +n07574780 +n07574923 +n07575076 +n07575226 +n07575392 +n07575510 +n07575726 +n07575984 +n07576182 +n07576438 +n07576577 +n07576781 +n07576969 +n07577144 +n07577374 +n07577538 +n07577657 +n07577772 +n07577918 +n07578093 +n07579575 +n07579688 +n07579787 +n07579917 +n07580053 +n07580253 +n07580359 +n07580470 +n07580592 +n07581249 +n07581346 +n07581607 +n07581775 +n07581931 +n07582027 +n07582152 +n07582277 +n07582441 +n07582609 +n07582811 +n07582892 +n07582970 +n07583066 +n07583197 +n07583865 +n07583978 +n07584110 +n07584228 +n07584332 +n07584423 +n07584593 +n07584859 +n07584938 +n07585015 +n07585107 +n07585208 +n07585474 +n07585557 +n07585644 +n07585758 +n07585906 +n07585997 +n07586099 +n07586179 +n07586318 +n07586485 +n07586604 +n07586718 +n07586894 +n07587023 +n07587111 +n07587206 +n07587331 +n07587441 +n07587618 +n07587700 +n07587819 +n07587962 +n07588111 +n07588193 +n07588299 +n07588419 +n07588574 +n07588688 +n07588817 +n07588947 +n07589458 +n07589543 +n07589724 +n07589872 +n07589967 +n07590068 +n07590177 +n07590320 +n07590502 +n07590611 +n07590752 +n07590841 +n07590974 +n07591049 +n07591162 +n07591236 +n07591330 +n07591473 +n07591586 +n07591813 +n07591961 +n07592094 +n07592317 +n07592400 +n07592481 +n07592656 +n07592768 +n07592922 +n07593004 +n07593107 +n07593199 +n07593471 +n07593774 +n07593972 +n07594066 +n07594155 +n07594250 +n07594737 +n07594840 +n07595051 +n07595180 +n07595368 +n07595649 +n07595751 +n07595914 +n07596046 +n07596160 +n07596362 +n07596452 +n07596566 +n07596684 +n07596967 +n07597145 +n07597263 +n07597365 +n07598256 +n07598529 +n07598622 +n07598734 +n07598928 +n07599068 +n07599161 +n07599242 +n07599383 +n07599468 +n07599554 +n07599649 +n07599783 +n07599911 +n07599998 +n07600177 +n07600285 +n07600394 +n07600506 +n07600696 +n07600895 +n07601025 +n07601175 +n07601290 +n07601407 +n07601572 +n07601686 +n07601809 +n07602650 +n07604956 +n07605040 +n07605198 +n07605282 +n07605380 +n07605474 +n07605597 +n07605693 +n07605804 +n07605944 +n07606058 +n07606191 +n07606278 +n07606419 +n07606538 +n07606669 +n07606764 +n07606933 +n07607027 +n07607138 +n07607361 +n07607492 +n07607605 +n07607707 +n07607832 +n07607967 +n07608098 +n07608245 +n07608339 +n07608429 +n07608533 +n07608641 +n07608721 +n07608866 +n07608980 +n07609083 +n07609215 +n07609316 +n07609407 +n07609549 +n07609632 +n07609728 +n07609840 +n07610295 +n07610502 +n07610620 +n07610746 +n07610890 +n07611046 +n07611148 +n07611267 +n07611358 +n07611733 +n07611839 +n07611991 +n07612137 +n07612273 +n07612367 +n07612530 +n07612632 +n07612996 +n07613158 +n07613266 +n07613480 +n07613671 +n07613815 +n07614103 +n07614198 +n07614348 +n07614500 +n07614730 +n07614825 +n07615052 +n07615190 +n07615289 +n07615460 +n07615569 +n07615671 +n07615774 +n07615954 +n07616046 +n07616174 +n07616265 +n07616386 +n07616487 +n07616590 +n07616748 +n07616906 +n07617051 +n07617188 +n07617344 +n07617447 +n07617526 +n07617611 +n07617708 +n07617839 +n07617932 +n07618029 +n07618119 +n07618281 +n07618432 +n07618587 +n07618684 +n07618871 +n07619004 +n07619208 +n07619301 +n07619409 +n07619508 +n07619881 +n07620047 +n07620145 +n07620327 +n07620597 +n07620689 +n07621264 +n07621497 +n07621618 +n07623136 +n07624466 +n07624666 +n07624757 +n07624924 +n07625061 +n07625324 +n07627931 +n07628068 +n07628181 +n07631926 +n07639069 +n07641928 +n07642361 +n07642471 +n07642742 +n07642833 +n07642933 +n07643026 +n07643200 +n07643306 +n07643474 +n07643577 +n07643679 +n07643764 +n07643891 +n07643981 +n07644244 +n07648913 +n07648997 +n07650792 +n07650903 +n07651025 +n07654148 +n07654298 +n07655067 +n07655263 +n07663899 +n07665438 +n07666176 +n07672914 +n07678586 +n07678729 +n07678953 +n07679034 +n07679140 +n07679356 +n07680168 +n07680313 +n07680416 +n07680517 +n07680655 +n07680761 +n07680932 +n07681264 +n07681355 +n07681450 +n07681691 +n07681805 +n07681926 +n07682197 +n07682316 +n07682477 +n07682624 +n07682808 +n07682952 +n07683039 +n07683138 +n07683265 +n07683360 +n07683490 +n07683617 +n07683786 +n07684084 +n07684164 +n07684289 +n07684422 +n07684517 +n07684600 +n07684938 +n07685031 +n07685118 +n07685218 +n07685303 +n07685399 +n07685546 +n07685730 +n07685918 +n07686021 +n07686202 +n07686299 +n07686461 +n07686634 +n07686720 +n07686873 +n07687053 +n07687211 +n07687381 +n07687469 +n07687626 +n07687789 +n07688021 +n07688130 +n07688265 +n07688412 +n07688624 +n07688757 +n07688898 +n07689003 +n07689217 +n07689313 +n07689490 +n07689624 +n07689757 +n07689842 +n07690019 +n07690152 +n07690273 +n07690431 +n07690511 +n07690585 +n07690739 +n07690892 +n07691091 +n07691237 +n07691539 +n07691650 +n07691758 +n07691863 +n07691954 +n07692114 +n07692248 +n07692405 +n07692517 +n07692614 +n07692887 +n07693048 +n07693223 +n07693439 +n07693590 +n07693725 +n07693889 +n07693972 +n07694169 +n07694403 +n07694516 +n07694659 +n07694839 +n07695187 +n07695284 +n07695410 +n07695504 +n07695652 +n07695742 +n07695878 +n07695965 +n07696403 +n07696527 +n07696625 +n07696728 +n07696839 +n07696977 +n07697100 +n07697313 +n07697408 +n07697537 +n07697699 +n07697825 +n07698250 +n07698401 +n07698543 +n07698672 +n07698782 +n07700003 +n07703889 +n07704054 +n07704205 +n07704305 +n07705931 +n07707451 +n07708124 +n07708398 +n07708512 +n07708685 +n07708798 +n07709046 +n07709172 +n07709333 +n07709701 +n07709881 +n07710007 +n07710283 +n07710616 +n07710952 +n07711080 +n07711232 +n07711371 +n07711569 +n07711683 +n07711799 +n07711907 +n07712063 +n07712267 +n07712382 +n07712559 +n07712748 +n07712856 +n07712959 +n07713074 +n07713267 +n07713395 +n07713763 +n07713895 +n07714078 +n07714188 +n07714287 +n07714448 +n07714571 +n07714802 +n07714895 +n07714990 +n07715103 +n07715221 +n07715407 +n07715561 +n07715721 +n07716034 +n07716203 +n07716358 +n07716504 +n07716649 +n07716750 +n07716906 +n07717070 +n07717410 +n07717556 +n07717714 +n07717858 +n07718068 +n07718195 +n07718329 +n07718472 +n07718671 +n07718747 +n07718920 +n07719058 +n07719213 +n07719330 +n07719437 +n07719616 +n07719756 +n07719839 +n07719980 +n07720084 +n07720185 +n07720277 +n07720442 +n07720615 +n07720875 +n07721018 +n07721118 +n07721195 +n07721325 +n07721456 +n07721678 +n07721833 +n07721942 +n07722052 +n07722217 +n07722390 +n07722485 +n07722666 +n07722763 +n07722888 +n07723039 +n07723177 +n07723330 +n07723559 +n07723753 +n07723968 +n07724078 +n07724173 +n07724269 +n07724492 +n07724654 +n07724819 +n07724943 +n07725158 +n07725255 +n07725376 +n07725531 +n07725663 +n07725789 +n07725888 +n07726009 +n07726095 +n07726230 +n07726386 +n07726525 +n07726672 +n07726796 +n07727048 +n07727140 +n07727252 +n07727377 +n07727458 +n07727578 +n07727741 +n07727868 +n07728053 +n07728181 +n07728284 +n07728391 +n07728585 +n07728708 +n07728804 +n07729000 +n07729142 +n07729225 +n07729384 +n07729485 +n07729828 +n07729926 +n07730033 +n07730207 +n07730320 +n07730406 +n07730562 +n07730708 +n07730855 +n07731006 +n07731122 +n07731284 +n07731436 +n07731587 +n07731767 +n07731952 +n07732168 +n07732302 +n07732433 +n07732525 +n07732636 +n07732747 +n07732904 +n07733005 +n07733124 +n07733217 +n07733394 +n07733567 +n07733712 +n07733847 +n07734017 +n07734183 +n07734292 +n07734417 +n07734555 +n07734744 +n07734879 +n07735052 +n07735179 +n07735294 +n07735404 +n07735510 +n07735687 +n07735803 +n07735981 +n07736087 +n07736256 +n07736371 +n07736527 +n07736692 +n07736813 +n07736971 +n07737081 +n07737594 +n07737745 +n07738105 +n07738224 +n07739035 +n07739125 +n07739344 +n07739506 +n07739923 +n07740033 +n07740115 +n07740220 +n07740342 +n07740461 +n07740597 +n07740744 +n07740855 +n07740954 +n07741138 +n07741235 +n07741357 +n07741461 +n07741623 +n07741706 +n07741804 +n07741888 +n07742012 +n07742224 +n07742313 +n07742415 +n07742513 +n07742605 +n07742704 +n07743224 +n07743384 +n07743544 +n07743723 +n07743902 +n07744057 +n07744246 +n07744430 +n07744559 +n07744682 +n07744811 +n07745046 +n07745197 +n07745357 +n07745466 +n07745661 +n07745940 +n07746038 +n07746186 +n07746334 +n07746551 +n07746749 +n07746910 +n07747055 +n07747607 +n07747811 +n07747951 +n07748157 +n07748276 +n07748416 +n07748574 +n07748753 +n07748912 +n07749095 +n07749192 +n07749312 +n07749446 +n07749582 +n07749731 +n07749870 +n07749969 +n07750146 +n07750299 +n07750449 +n07750586 +n07750736 +n07750872 +n07751004 +n07751148 +n07751280 +n07751451 +n07751737 +n07751858 +n07751977 +n07752109 +n07752264 +n07752377 +n07752514 +n07752602 +n07752664 +n07752782 +n07752874 +n07752966 +n07753113 +n07753275 +n07753448 +n07753592 +n07753743 +n07753980 +n07754155 +n07754279 +n07754451 +n07754684 +n07754894 +n07755089 +n07755262 +n07755411 +n07755619 +n07755707 +n07755929 +n07756096 +n07756325 +n07756499 +n07756641 +n07756838 +n07756951 +n07757132 +n07757312 +n07757511 +n07757602 +n07757753 +n07757874 +n07757990 +n07758125 +n07758260 +n07758407 +n07758582 +n07758680 +n07758950 +n07759194 +n07759324 +n07759424 +n07759576 +n07759691 +n07759816 +n07760070 +n07760153 +n07760297 +n07760395 +n07760501 +n07760673 +n07760755 +n07760859 +n07761141 +n07761309 +n07761611 +n07761777 +n07761954 +n07762114 +n07762244 +n07762373 +n07762534 +n07762740 +n07762913 +n07763107 +n07763290 +n07763483 +n07763629 +n07763792 +n07763987 +n07764155 +n07764315 +n07764486 +n07764630 +n07764847 +n07765073 +n07765208 +n07765361 +n07765517 +n07765612 +n07765728 +n07765862 +n07765999 +n07766173 +n07766409 +n07766530 +n07766723 +n07766891 +n07767002 +n07767171 +n07767344 +n07767549 +n07767709 +n07767847 +n07768068 +n07768139 +n07768230 +n07768318 +n07768423 +n07768590 +n07768694 +n07768858 +n07769102 +n07769306 +n07769465 +n07769584 +n07769731 +n07769886 +n07770034 +n07770180 +n07770439 +n07770571 +n07770763 +n07770869 +n07771082 +n07771212 +n07771405 +n07771539 +n07771731 +n07771891 +n07772026 +n07772147 +n07772274 +n07772413 +n07772788 +n07772935 +n07773428 +n07774182 +n07774295 +n07774479 +n07774596 +n07774719 +n07774842 +n07775050 +n07775197 +n07783827 +n07785487 +n07800091 +n07800487 +n07800636 +n07800740 +n07801007 +n07801091 +n07801342 +n07801508 +n07801709 +n07801779 +n07801892 +n07802026 +n07802152 +n07802246 +n07802417 +n07802767 +n07802863 +n07802963 +n07803093 +n07803213 +n07803310 +n07803408 +n07803545 +n07803779 +n07803895 +n07803992 +n07804152 +n07804323 +n07804543 +n07804657 +n07804771 +n07804900 +n07805006 +n07805254 +n07805389 +n07805478 +n07805594 +n07805731 +n07805966 +n07806043 +n07806120 +n07806221 +n07806633 +n07806774 +n07806879 +n07807002 +n07807171 +n07807317 +n07807472 +n07807594 +n07807710 +n07807834 +n07807922 +n07808022 +n07808166 +n07808268 +n07808352 +n07808479 +n07808587 +n07808675 +n07808806 +n07808904 +n07809096 +n07809368 +n07810531 +n07810907 +n07811416 +n07812046 +n07812184 +n07812662 +n07812790 +n07812913 +n07813107 +n07813324 +n07813495 +n07813579 +n07813717 +n07813833 +n07814007 +n07814203 +n07814390 +n07814487 +n07814634 +n07814790 +n07814925 +n07815163 +n07815294 +n07815424 +n07815588 +n07815839 +n07815956 +n07816052 +n07816164 +n07816296 +n07816398 +n07816575 +n07816726 +n07816839 +n07817024 +n07817160 +n07817315 +n07817465 +n07817599 +n07817758 +n07817871 +n07818029 +n07818133 +n07818277 +n07818422 +n07818572 +n07818689 +n07818825 +n07818995 +n07819166 +n07819303 +n07819480 +n07819682 +n07819769 +n07819896 +n07820036 +n07820145 +n07820297 +n07820497 +n07820683 +n07820814 +n07820960 +n07821107 +n07821260 +n07821404 +n07821610 +n07821758 +n07821919 +n07822053 +n07822197 +n07822323 +n07822518 +n07822687 +n07822845 +n07823105 +n07823280 +n07823369 +n07823460 +n07823591 +n07823698 +n07823814 +n07823951 +n07824191 +n07824268 +n07824383 +n07824502 +n07824702 +n07824863 +n07824988 +n07825194 +n07825399 +n07825496 +n07825597 +n07825717 +n07825850 +n07825972 +n07826091 +n07826250 +n07826340 +n07826453 +n07826544 +n07826653 +n07826930 +n07827130 +n07827284 +n07827410 +n07827554 +n07827750 +n07827896 +n07828041 +n07828156 +n07828275 +n07828378 +n07828642 +n07828987 +n07829248 +n07829331 +n07829412 +n07830493 +n07830593 +n07830690 +n07830841 +n07830986 +n07831146 +n07831267 +n07831450 +n07831663 +n07831821 +n07831955 +n07832099 +n07832202 +n07832307 +n07832416 +n07832592 +n07832741 +n07832902 +n07833333 +n07833535 +n07833672 +n07833816 +n07833951 +n07834065 +n07834160 +n07834286 +n07834507 +n07834618 +n07834774 +n07834872 +n07835051 +n07835173 +n07835331 +n07835457 +n07835547 +n07835701 +n07835823 +n07835921 +n07836077 +n07836269 +n07836456 +n07836600 +n07836731 +n07836838 +n07837002 +n07837110 +n07837234 +n07837362 +n07837545 +n07837630 +n07837755 +n07837912 +n07838073 +n07838233 +n07838441 +n07838551 +n07838659 +n07838811 +n07838905 +n07839055 +n07839172 +n07839312 +n07839478 +n07839593 +n07839730 +n07839864 +n07840027 +n07840124 +n07840219 +n07840304 +n07840395 +n07840520 +n07840672 +n07840804 +n07841037 +n07841345 +n07841495 +n07841639 +n07841800 +n07841907 +n07842044 +n07842130 +n07842202 +n07842308 +n07842433 +n07842605 +n07842753 +n07842972 +n07843117 +n07843220 +n07843348 +n07843464 +n07843636 +n07843775 +n07844042 +n07844604 +n07844786 +n07844867 +n07845087 +n07845166 +n07845335 +n07845421 +n07845495 +n07845571 +n07845702 +n07845775 +n07845863 +n07846014 +n07846143 +n07846274 +n07846359 +n07846471 +n07846557 +n07846688 +n07846802 +n07846938 +n07847047 +n07847198 +n07847453 +n07847585 +n07847706 +n07847827 +n07847917 +n07848093 +n07848196 +n07848338 +n07848771 +n07848936 +n07849026 +n07849186 +n07849336 +n07849506 +n07849619 +n07849733 +n07849912 +n07850083 +n07850219 +n07850329 +n07851054 +n07851298 +n07851443 +n07851554 +n07851641 +n07851767 +n07851926 +n07852045 +n07852229 +n07852302 +n07852376 +n07852452 +n07852532 +n07852614 +n07852712 +n07852833 +n07852919 +n07853125 +n07853232 +n07853345 +n07853445 +n07853560 +n07853648 +n07853762 +n07853852 +n07853946 +n07854066 +n07854184 +n07854266 +n07854348 +n07854455 +n07854614 +n07854707 +n07854813 +n07854982 +n07855105 +n07855188 +n07855317 +n07855413 +n07855510 +n07855603 +n07855721 +n07855812 +n07855907 +n07856045 +n07856186 +n07856270 +n07856756 +n07856895 +n07856992 +n07857076 +n07857170 +n07857356 +n07857598 +n07857731 +n07857959 +n07858114 +n07858197 +n07858336 +n07858484 +n07858595 +n07858841 +n07858978 +n07859142 +n07859284 +n07859583 +n07859796 +n07859951 +n07860103 +n07860208 +n07860331 +n07860447 +n07860548 +n07860629 +n07860805 +n07860988 +n07861158 +n07861247 +n07861334 +n07861557 +n07861681 +n07861813 +n07861983 +n07862095 +n07862244 +n07862348 +n07862461 +n07862611 +n07862770 +n07862946 +n07863107 +n07863229 +n07863374 +n07863547 +n07863644 +n07863802 +n07863935 +n07864065 +n07864198 +n07864317 +n07864475 +n07864638 +n07864756 +n07864934 +n07865105 +n07865196 +n07865484 +n07865575 +n07865700 +n07865788 +n07866015 +n07866151 +n07866277 +n07866409 +n07866571 +n07866723 +n07866868 +n07867021 +n07867164 +n07867324 +n07867421 +n07867616 +n07867751 +n07867883 +n07868045 +n07868200 +n07868340 +n07868508 +n07868684 +n07868830 +n07868955 +n07869111 +n07869291 +n07869391 +n07869522 +n07869611 +n07869775 +n07869937 +n07870069 +n07870167 +n07870313 +n07870478 +n07870620 +n07870734 +n07870894 +n07871065 +n07871234 +n07871335 +n07871436 +n07871588 +n07871720 +n07871810 +n07872593 +n07872748 +n07873057 +n07873198 +n07873348 +n07873464 +n07873679 +n07873807 +n07874063 +n07874159 +n07874259 +n07874343 +n07874441 +n07874531 +n07874674 +n07874780 +n07874995 +n07875086 +n07875152 +n07875267 +n07875436 +n07875560 +n07875693 +n07875835 +n07875926 +n07876026 +n07876189 +n07876281 +n07876460 +n07876550 +n07876651 +n07876775 +n07876893 +n07877187 +n07877299 +n07877675 +n07877849 +n07877961 +n07878145 +n07878283 +n07878479 +n07878647 +n07878785 +n07878926 +n07879072 +n07879174 +n07879350 +n07879450 +n07879560 +n07879659 +n07879821 +n07879953 +n07880080 +n07880213 +n07880325 +n07880458 +n07880751 +n07880880 +n07880968 +n07881117 +n07881205 +n07881404 +n07881525 +n07881625 +n07881800 +n07882420 +n07882497 +n07882886 +n07883031 +n07883156 +n07883251 +n07883384 +n07883510 +n07883661 +n07884567 +n07885705 +n07886057 +n07886176 +n07886317 +n07886463 +n07886572 +n07886849 +n07887099 +n07887192 +n07887304 +n07887461 +n07887634 +n07887967 +n07888058 +n07888229 +n07888378 +n07888465 +n07888816 +n07888909 +n07889193 +n07889274 +n07889510 +n07889814 +n07889990 +n07890068 +n07890226 +n07890352 +n07890540 +n07890617 +n07890750 +n07890890 +n07890970 +n07891095 +n07891189 +n07891309 +n07891433 +n07891726 +n07892418 +n07892512 +n07892813 +n07893253 +n07893425 +n07893528 +n07893642 +n07893792 +n07893891 +n07894102 +n07894298 +n07894451 +n07894551 +n07894703 +n07894799 +n07894965 +n07895100 +n07895237 +n07895435 +n07895595 +n07895710 +n07895839 +n07895962 +n07896060 +n07896165 +n07896287 +n07896422 +n07896560 +n07896661 +n07896765 +n07896893 +n07896994 +n07897116 +n07897200 +n07897438 +n07897600 +n07897750 +n07897865 +n07897975 +n07898117 +n07898247 +n07898333 +n07898443 +n07898617 +n07898745 +n07898895 +n07899003 +n07899108 +n07899292 +n07899434 +n07899533 +n07899660 +n07899769 +n07899899 +n07899976 +n07900225 +n07900406 +n07900616 +n07900734 +n07900825 +n07900958 +n07901355 +n07901457 +n07901587 +n07902121 +n07902336 +n07902443 +n07902520 +n07902698 +n07902799 +n07902937 +n07903101 +n07903208 +n07903543 +n07903643 +n07903731 +n07903841 +n07903962 +n07904072 +n07904293 +n07904395 +n07904637 +n07904760 +n07904865 +n07904934 +n07905038 +n07905296 +n07905386 +n07905474 +n07905618 +n07905770 +n07905979 +n07906111 +n07906284 +n07906572 +n07906718 +n07906877 +n07907037 +n07907161 +n07907342 +n07907429 +n07907548 +n07907831 +n07907943 +n07908411 +n07908567 +n07908647 +n07908812 +n07908923 +n07909129 +n07909231 +n07909362 +n07909504 +n07909593 +n07909714 +n07909811 +n07909954 +n07910048 +n07910152 +n07910245 +n07910379 +n07910538 +n07910656 +n07910799 +n07910970 +n07911061 +n07911249 +n07911371 +n07911677 +n07912093 +n07912211 +n07913180 +n07913300 +n07913393 +n07913537 +n07913644 +n07913774 +n07913882 +n07914006 +n07914128 +n07914271 +n07914413 +n07914586 +n07914686 +n07914777 +n07914887 +n07914995 +n07915094 +n07915213 +n07915366 +n07915491 +n07915618 +n07915800 +n07915918 +n07916041 +n07916183 +n07916319 +n07916437 +n07916582 +n07917133 +n07917272 +n07917392 +n07917507 +n07917618 +n07917791 +n07917874 +n07917951 +n07918028 +n07918193 +n07918309 +n07918706 +n07918879 +n07919165 +n07919310 +n07919441 +n07919572 +n07919665 +n07919787 +n07919894 +n07920052 +n07920222 +n07920349 +n07920540 +n07920663 +n07920872 +n07920989 +n07921090 +n07921239 +n07921360 +n07921455 +n07921615 +n07921834 +n07921948 +n07922041 +n07922147 +n07922512 +n07922607 +n07922764 +n07922955 +n07923748 +n07924033 +n07924276 +n07924366 +n07924443 +n07924560 +n07924655 +n07924747 +n07924834 +n07924955 +n07925116 +n07925229 +n07925327 +n07925423 +n07925500 +n07925608 +n07925708 +n07925808 +n07925966 +n07926250 +n07926346 +n07926442 +n07926540 +n07926785 +n07926920 +n07927070 +n07927197 +n07927512 +n07927716 +n07927836 +n07927931 +n07928163 +n07928264 +n07928367 +n07928488 +n07928578 +n07928696 +n07928790 +n07928887 +n07928998 +n07929172 +n07929351 +n07929519 +n07929940 +n07930062 +n07930205 +n07930315 +n07930433 +n07930554 +n07930864 +n07931001 +n07931096 +n07931280 +n07931452 +n07931612 +n07931733 +n07931870 +n07932039 +n07932323 +n07932454 +n07932614 +n07932762 +n07932841 +n07933154 +n07933274 +n07933530 +n07933652 +n07933799 +n07933891 +n07934032 +n07934152 +n07934282 +n07934373 +n07934530 +n07934678 +n07934800 +n07934908 +n07935043 +n07935152 +n07935288 +n07935379 +n07935504 +n07935737 +n07935878 +n07936015 +n07936093 +n07936263 +n07936459 +n07936548 +n07936745 +n07936979 +n07937069 +n07937344 +n07937461 +n07937621 +n07938007 +n07938149 +n07938313 +n07938594 +n07942152 +n07951464 +n07954211 +n07977870 +n08079613 +n08182379 +n08238463 +n08242223 +n08249459 +n08253141 +n08256735 +n08376250 +n08385989 +n08492354 +n08492461 +n08494231 +n08495908 +n08496334 +n08500819 +n08500989 +n08501887 +n08505018 +n08506347 +n08511017 +n08517010 +n08517676 +n08518171 +n08519299 +n08521623 +n08523340 +n08524735 +n08539072 +n08539276 +n08540532 +n08547468 +n08547544 +n08551296 +n08554440 +n08555333 +n08555710 +n08558770 +n08558963 +n08559155 +n08560295 +n08569482 +n08571275 +n08571642 +n08571898 +n08573674 +n08573842 +n08578517 +n08579266 +n08579352 +n08580944 +n08583292 +n08583455 +n08583554 +n08583682 +n08584914 +n08586978 +n08589670 +n08596076 +n08597579 +n08598301 +n08598568 +n08599174 +n08599292 +n08611339 +n08611421 +n08613733 +n08614632 +n08616050 +n08618831 +n08619112 +n08623676 +n08628141 +n08633683 +n08640531 +n08640739 +n08640962 +n08643267 +n08644045 +n08645104 +n08645212 +n08645318 +n08647264 +n08648917 +n08649711 +n08651104 +n08652376 +n08658309 +n08658918 +n08659242 +n08659331 +n08659446 +n08659861 +n08661878 +n08662427 +n08663051 +n08663703 +n08663860 +n08673039 +n08674344 +n08676253 +n08677424 +n08677801 +n08678783 +n08679167 +n08679269 +n08679562 +n08685188 +n08782627 +n08896327 +n09032191 +n09186592 +n09189157 +n09191635 +n09193551 +n09193705 +n09194227 +n09199101 +n09201998 +n09203827 +n09205509 +n09206896 +n09206985 +n09208496 +n09209025 +n09210862 +n09213434 +n09213565 +n09214060 +n09214269 +n09214916 +n09215023 +n09215437 +n09217230 +n09218315 +n09218494 +n09218641 +n09219233 +n09223487 +n09224725 +n09226869 +n09228055 +n09229709 +n09230041 +n09230202 +n09231117 +n09233446 +n09233603 +n09238926 +n09239302 +n09242389 +n09245515 +n09246464 +n09247410 +n09248153 +n09248399 +n09249034 +n09249155 +n09251407 +n09255070 +n09256479 +n09257843 +n09259025 +n09259219 +n09260907 +n09262690 +n09263912 +n09264803 +n09265620 +n09266604 +n09267854 +n09268007 +n09269341 +n09269472 +n09269882 +n09270160 +n09270657 +n09270735 +n09274152 +n09274305 +n09279986 +n09281252 +n09282208 +n09283193 +n09283405 +n09283514 +n09283767 +n09283866 +n09287415 +n09287968 +n09288635 +n09289331 +n09289596 +n09290350 +n09290444 +n09294877 +n09295210 +n09295946 +n09300306 +n09300905 +n09302616 +n09303008 +n09303528 +n09304750 +n09305031 +n09305898 +n09308572 +n09308743 +n09309046 +n09309168 +n09309292 +n09310616 +n09315159 +n09319604 +n09325824 +n09326662 +n09327077 +n09327538 +n09330378 +n09331251 +n09332890 +n09335693 +n09335809 +n09336555 +n09337048 +n09337253 +n09338013 +n09339810 +n09344198 +n09344324 +n09344724 +n09348460 +n09349648 +n09351905 +n09352849 +n09353815 +n09354511 +n09357346 +n09357447 +n09359803 +n09361517 +n09362316 +n09362945 +n09366017 +n09366317 +n09375606 +n09376198 +n09376526 +n09376786 +n09381242 +n09382099 +n09384106 +n09389867 +n09391386 +n09391644 +n09391774 +n09392402 +n09393524 +n09393605 +n09396465 +n09396608 +n09398076 +n09398677 +n09399592 +n09400584 +n09400987 +n09402944 +n09403086 +n09403211 +n09403427 +n09403734 +n09405078 +n09405787 +n09406793 +n09409512 +n09409752 +n09410224 +n09411189 +n09411295 +n09415584 +n09415671 +n09416076 +n09416890 +n09421031 +n09421799 +n09421951 +n09422190 +n09422631 +n09425019 +n09425344 +n09428293 +n09428628 +n09429630 +n09432283 +n09432990 +n09433312 +n09433442 +n09433839 +n09435739 +n09436444 +n09436708 +n09437454 +n09438844 +n09438940 +n09439032 +n09439213 +n09442595 +n09443281 +n09443641 +n09444783 +n09445008 +n09445289 +n09447666 +n09448690 +n09450163 +n09451237 +n09452291 +n09452395 +n09452760 +n09453008 +n09454153 +n09454412 +n09454744 +n09456207 +n09457979 +n09458269 +n09459979 +n09460046 +n09461069 +n09462600 +n09463226 +n09464486 +n09466678 +n09467696 +n09468604 +n09470027 +n09470222 +n09472413 +n09472597 +n09474010 +n09474412 +n09474765 +n09475044 +n09475179 +n09475925 +n09476123 +n09478210 +n09480959 +n09481120 +n09493983 +n09495962 +n09505153 +n09537660 +n09556121 +n09605110 +n09606009 +n09606527 +n09607630 +n09607782 +n09607903 +n09608709 +n09610255 +n09610405 +n09611722 +n09612700 +n09613118 +n09613191 +n09613690 +n09615336 +n09616573 +n09616922 +n09617161 +n09617435 +n09617577 +n09617696 +n09618760 +n09618880 +n09618957 +n09619168 +n09619452 +n09620078 +n09620794 +n09621232 +n09622049 +n09622302 +n09624168 +n09624559 +n09624899 +n09625401 +n09626238 +n09627807 +n09627906 +n09629065 +n09629246 +n09629752 +n09631129 +n09632274 +n09632518 +n09633969 +n09635534 +n09635635 +n09635973 +n09636339 +n09637339 +n09638454 +n09638875 +n09639382 +n09639919 +n09640327 +n09640715 +n09641002 +n09641578 +n09643799 +n09644152 +n09644657 +n09648743 +n09648911 +n09649067 +n09650729 +n09650839 +n09650989 +n09651123 +n09651968 +n09652149 +n09653144 +n09653438 +n09654079 +n09654518 +n09654898 +n09655213 +n09655466 +n09656077 +n09657206 +n09657748 +n09658254 +n09658398 +n09658815 +n09658921 +n09659039 +n09659188 +n09660010 +n09660240 +n09661873 +n09662038 +n09662661 +n09662951 +n09663248 +n09663786 +n09663999 +n09664556 +n09664908 +n09665367 +n09665545 +n09666349 +n09666476 +n09666883 +n09667358 +n09668199 +n09668437 +n09668562 +n09668988 +n09669631 +n09670280 +n09670521 +n09670909 +n09671089 +n09672590 +n09672725 +n09672840 +n09673091 +n09674412 +n09674786 +n09675045 +n09675673 +n09675799 +n09675922 +n09676021 +n09676247 +n09676884 +n09677427 +n09678747 +n09679028 +n09679170 +n09679925 +n09680908 +n09681107 +n09681234 +n09681973 +n09683180 +n09683757 +n09683924 +n09684082 +n09684901 +n09685233 +n09685806 +n09686262 +n09686401 +n09688233 +n09688804 +n09689435 +n09689958 +n09690083 +n09690208 +n09690496 +n09690621 +n09690864 +n09691604 +n09691729 +n09691858 +n09692125 +n09692915 +n09693244 +n09693982 +n09694664 +n09694771 +n09695019 +n09695132 +n09695514 +n09695620 +n09695979 +n09696456 +n09696585 +n09696763 +n09697401 +n09697986 +n09698644 +n09699020 +n09699642 +n09700125 +n09700964 +n09701148 +n09701833 +n09702134 +n09702673 +n09703101 +n09703344 +n09703485 +n09703708 +n09703809 +n09703932 +n09704057 +n09704157 +n09704283 +n09705003 +n09705124 +n09705671 +n09705784 +n09706029 +n09706255 +n09707061 +n09707289 +n09707735 +n09708750 +n09708889 +n09709531 +n09709673 +n09710041 +n09710164 +n09710886 +n09711132 +n09711435 +n09712324 +n09712448 +n09712696 +n09712967 +n09713108 +n09714120 +n09714694 +n09715165 +n09715303 +n09715427 +n09716047 +n09716933 +n09717233 +n09718217 +n09718811 +n09718936 +n09719309 +n09719794 +n09720033 +n09720256 +n09720595 +n09720702 +n09720842 +n09721244 +n09721444 +n09722064 +n09722658 +n09722817 +n09723067 +n09723819 +n09723944 +n09724234 +n09724533 +n09724656 +n09724785 +n09725000 +n09725229 +n09725546 +n09725653 +n09725772 +n09725935 +n09726621 +n09726811 +n09727440 +n09727826 +n09728137 +n09728285 +n09729062 +n09729156 +n09730077 +n09730204 +n09730824 +n09731343 +n09731436 +n09731571 +n09732170 +n09733459 +n09733793 +n09734185 +n09734450 +n09734535 +n09734639 +n09735258 +n09735654 +n09736485 +n09736798 +n09736945 +n09737050 +n09737161 +n09737453 +n09738121 +n09738400 +n09740724 +n09741074 +n09741331 +n09741722 +n09741816 +n09741904 +n09741999 +n09742101 +n09742315 +n09742927 +n09743487 +n09743601 +n09743792 +n09744161 +n09744346 +n09744462 +n09744679 +n09744834 +n09745229 +n09745324 +n09745834 +n09745933 +n09746936 +n09747191 +n09747495 +n09748101 +n09748408 +n09748648 +n09748889 +n09749386 +n09750282 +n09750641 +n09750770 +n09750891 +n09751076 +n09751496 +n09751622 +n09751895 +n09752023 +n09752519 +n09753348 +n09753792 +n09754152 +n09754217 +n09754633 +n09754907 +n09755086 +n09755241 +n09755555 +n09755788 +n09755893 +n09756049 +n09756195 +n09756961 +n09757449 +n09758173 +n09758885 +n09759501 +n09760290 +n09760609 +n09760913 +n09761068 +n09761753 +n09762011 +n09762385 +n09763272 +n09763784 +n09764201 +n09764598 +n09764732 +n09764900 +n09765118 +n09765278 +n09767197 +n09769076 +n09769525 +n09769929 +n09770179 +n09770359 +n09771435 +n09772330 +n09772746 +n09772930 +n09773962 +n09774167 +n09774783 +n09775907 +n09776346 +n09776642 +n09776807 +n09777870 +n09778266 +n09778537 +n09778783 +n09778927 +n09779124 +n09779280 +n09779461 +n09779790 +n09780395 +n09780828 +n09780984 +n09781398 +n09781504 +n09781650 +n09782167 +n09782397 +n09782855 +n09783537 +n09783776 +n09783884 +n09784043 +n09784160 +n09784564 +n09785236 +n09785659 +n09785891 +n09786115 +n09787534 +n09787765 +n09788073 +n09788237 +n09789150 +n09789566 +n09789898 +n09790047 +n09790482 +n09791014 +n09791419 +n09791816 +n09792125 +n09792555 +n09792969 +n09793141 +n09793352 +n09793946 +n09794550 +n09794668 +n09795010 +n09795124 +n09795334 +n09796809 +n09796974 +n09797742 +n09797873 +n09797998 +n09798096 +n09800469 +n09800964 +n09801102 +n09801275 +n09801533 +n09802445 +n09802641 +n09802951 +n09804230 +n09805151 +n09805324 +n09805475 +n09806944 +n09807075 +n09808080 +n09808591 +n09809279 +n09809538 +n09809749 +n09809925 +n09810166 +n09811568 +n09811712 +n09811852 +n09813219 +n09814252 +n09814381 +n09814488 +n09814567 +n09814660 +n09815455 +n09815790 +n09816654 +n09816771 +n09817174 +n09817386 +n09818022 +n09819477 +n09820044 +n09820263 +n09821831 +n09822830 +n09823153 +n09823287 +n09823502 +n09823832 +n09824135 +n09824609 +n09825096 +n09825750 +n09826204 +n09826605 +n09826821 +n09827246 +n09827363 +n09828216 +n09828403 +n09828988 +n09830194 +n09830400 +n09830629 +n09830759 +n09830926 +n09831962 +n09832456 +n09832633 +n09832978 +n09833111 +n09833275 +n09833441 +n09833536 +n09833751 +n09833997 +n09834258 +n09834378 +n09834699 +n09834885 +n09835017 +n09835153 +n09835230 +n09835348 +n09835506 +n09836160 +n09836343 +n09836519 +n09836786 +n09837459 +n09837720 +n09838295 +n09838370 +n09838621 +n09839702 +n09840217 +n09840435 +n09840520 +n09841188 +n09841515 +n09841696 +n09842047 +n09842288 +n09842395 +n09842528 +n09842823 +n09843443 +n09843602 +n09843716 +n09843824 +n09844457 +n09844898 +n09845401 +n09845849 +n09846142 +n09846469 +n09846586 +n09846755 +n09846894 +n09847267 +n09847344 +n09847543 +n09848110 +n09848489 +n09849167 +n09849990 +n09850760 +n09850974 +n09851165 +n09851575 +n09853541 +n09853645 +n09853881 +n09854218 +n09854421 +n09854915 +n09855433 +n09856401 +n09856671 +n09856827 +n09857007 +n09858165 +n09858299 +n09858733 +n09859152 +n09859285 +n09859975 +n09861287 +n09861599 +n09861863 +n09861946 +n09862183 +n09862621 +n09863031 +n09863339 +n09863749 +n09863936 +n09864632 +n09864968 +n09865068 +n09865162 +n09865398 +n09865672 +n09865744 +n09866115 +n09866354 +n09866559 +n09866661 +n09866817 +n09866922 +n09867069 +n09867154 +n09867311 +n09868270 +n09868782 +n09868899 +n09869317 +n09869447 +n09869578 +n09870096 +n09871095 +n09871229 +n09871681 +n09871867 +n09871952 +n09872066 +n09872557 +n09873348 +n09873473 +n09873769 +n09873899 +n09874428 +n09874725 +n09874862 +n09875025 +n09875979 +n09876701 +n09877288 +n09877587 +n09877750 +n09877951 +n09878921 +n09879552 +n09880189 +n09880741 +n09881265 +n09881358 +n09881895 +n09883047 +n09883452 +n09883807 +n09885059 +n09885866 +n09886403 +n09886540 +n09888635 +n09889065 +n09889170 +n09889691 +n09889941 +n09890192 +n09890749 +n09891730 +n09892262 +n09892513 +n09892693 +n09893191 +n09893344 +n09893502 +n09893600 +n09894143 +n09894445 +n09894654 +n09894909 +n09895222 +n09895480 +n09895561 +n09895701 +n09895902 +n09896170 +n09896311 +n09896401 +n09896685 +n09896826 +n09898020 +n09899289 +n09899671 +n09899782 +n09899929 +n09901337 +n09901502 +n09901642 +n09901786 +n09901921 +n09902128 +n09902353 +n09902731 +n09902851 +n09902954 +n09903153 +n09903501 +n09903639 +n09903936 +n09904208 +n09904837 +n09905050 +n09905185 +n09905530 +n09906293 +n09906449 +n09906704 +n09907804 +n09908769 +n09909660 +n09909929 +n09910222 +n09910374 +n09910556 +n09910840 +n09911226 +n09912431 +n09912681 +n09912907 +n09912995 +n09913329 +n09913455 +n09913593 +n09915434 +n09915651 +n09916348 +n09917214 +n09917345 +n09917481 +n09917593 +n09918248 +n09918554 +n09918867 +n09919061 +n09919200 +n09919451 +n09919899 +n09920106 +n09920283 +n09920901 +n09921034 +n09923003 +n09923186 +n09923418 +n09923561 +n09923673 +n09923996 +n09924106 +n09924195 +n09924313 +n09924437 +n09924996 +n09927089 +n09927451 +n09928136 +n09928451 +n09928845 +n09929202 +n09929298 +n09929577 +n09930257 +n09930628 +n09930876 +n09931165 +n09931418 +n09931640 +n09932098 +n09932336 +n09932508 +n09932788 +n09933020 +n09933098 +n09933842 +n09933972 +n09934337 +n09934488 +n09934774 +n09935107 +n09935434 +n09936825 +n09936892 +n09937056 +n09937688 +n09937802 +n09937903 +n09938080 +n09938449 +n09938991 +n09940725 +n09940818 +n09941089 +n09941571 +n09941787 +n09941964 +n09942697 +n09942970 +n09943239 +n09943811 +n09944022 +n09944160 +n09944430 +n09945021 +n09945223 +n09945319 +n09945603 +n09945745 +n09946814 +n09947127 +n09950457 +n09950728 +n09951070 +n09951274 +n09951524 +n09951616 +n09952163 +n09953052 +n09953350 +n09953615 +n09954355 +n09954639 +n09955406 +n09955944 +n09956578 +n09957523 +n09958133 +n09958292 +n09958447 +n09958569 +n09959142 +n09959658 +n09960688 +n09961198 +n09961331 +n09961469 +n09961605 +n09961739 +n09962966 +n09964202 +n09964411 +n09965515 +n09965787 +n09966470 +n09966554 +n09967063 +n09967406 +n09967555 +n09967816 +n09967967 +n09968259 +n09968652 +n09968741 +n09968845 +n09970088 +n09970192 +n09970402 +n09970822 +n09971273 +n09971385 +n09971839 +n09972010 +n09972458 +n09972587 +n09974648 +n09975425 +n09976024 +n09976283 +n09976429 +n09976728 +n09976917 +n09978442 +n09979321 +n09979913 +n09980458 +n09980805 +n09980985 +n09981092 +n09981278 +n09981540 +n09981939 +n09982152 +n09982525 +n09983314 +n09983572 +n09983889 +n09984960 +n09985470 +n09985809 +n09985978 +n09986450 +n09986700 +n09986904 +n09987045 +n09987161 +n09987239 +n09988063 +n09988311 +n09988493 +n09988703 +n09989502 +n09990415 +n09990690 +n09990777 +n09991740 +n09991867 +n09992538 +n09992837 +n09993252 +n09993651 +n09994400 +n09994673 +n09994808 +n09994878 +n09995829 +n09996039 +n09996304 +n09996481 +n09997622 +n09998788 +n09999135 +n10000294 +n10000459 +n10000787 +n10001217 +n10001481 +n10001764 +n10002257 +n10002760 +n10003476 +n10004718 +n10005006 +n10005934 +n10006177 +n10006748 +n10007684 +n10007809 +n10007995 +n10008123 +n10008254 +n10009162 +n10009276 +n10009484 +n10009671 +n10010062 +n10010243 +n10010632 +n10010767 +n10010864 +n10011360 +n10011486 +n10012484 +n10013811 +n10015215 +n10015485 +n10015792 +n10015897 +n10017272 +n10017422 +n10018747 +n10018861 +n10019072 +n10019187 +n10019406 +n10020366 +n10020533 +n10020670 +n10020807 +n10020890 +n10022908 +n10023264 +n10023506 +n10023656 +n10024025 +n10024362 +n10024937 +n10025060 +n10025295 +n10025391 +n10025635 +n10026976 +n10027246 +n10027590 +n10028402 +n10028541 +n10029068 +n10030277 +n10032987 +n10033412 +n10033572 +n10033663 +n10033888 +n10034201 +n10034614 +n10035952 +n10036266 +n10036444 +n10036692 +n10036929 +n10037080 +n10037385 +n10037588 +n10037922 +n10038119 +n10038409 +n10038620 +n10039271 +n10039946 +n10040240 +n10040698 +n10040945 +n10041373 +n10041887 +n10042690 +n10042845 +n10043024 +n10043491 +n10043643 +n10044682 +n10044879 +n10047199 +n10047459 +n10048117 +n10048367 +n10048612 +n10048836 +n10049363 +n10050043 +n10050880 +n10051026 +n10051761 +n10051861 +n10051975 +n10052694 +n10053439 +n10053808 +n10054657 +n10055297 +n10055410 +n10055566 +n10055730 +n10055847 +n10056103 +n10056611 +n10056719 +n10057271 +n10058411 +n10058962 +n10059067 +n10060075 +n10060175 +n10060352 +n10061043 +n10061195 +n10061431 +n10061882 +n10062042 +n10062176 +n10062275 +n10062492 +n10062594 +n10062716 +n10062905 +n10062996 +n10063635 +n10063919 +n10064831 +n10064977 +n10065758 +n10066206 +n10066314 +n10067011 +n10067305 +n10067600 +n10067968 +n10068234 +n10068425 +n10069296 +n10069981 +n10070108 +n10070377 +n10070449 +n10070563 +n10070711 +n10071332 +n10071557 +n10072054 +n10074249 +n10074578 +n10074735 +n10074841 +n10075299 +n10075693 +n10076224 +n10076483 +n10076604 +n10076957 +n10077106 +n10077593 +n10077879 +n10078131 +n10078719 +n10078806 +n10079399 +n10079893 +n10080117 +n10080508 +n10080869 +n10081204 +n10081842 +n10082043 +n10082299 +n10082423 +n10082562 +n10082687 +n10082997 +n10083677 +n10083823 +n10084043 +n10084295 +n10085101 +n10085869 +n10086383 +n10086744 +n10087434 +n10087736 +n10088200 +n10090745 +n10091349 +n10091450 +n10091564 +n10091651 +n10091861 +n10091997 +n10092488 +n10092643 +n10092794 +n10092978 +n10093167 +n10093475 +n10093818 +n10094320 +n10094584 +n10094782 +n10095265 +n10095420 +n10095769 +n10095869 +n10096126 +n10096508 +n10097262 +n10097477 +n10097590 +n10097842 +n10097995 +n10098245 +n10098388 +n10098517 +n10098624 +n10098710 +n10098862 +n10099002 +n10099375 +n10101308 +n10101634 +n10101981 +n10102800 +n10103155 +n10103228 +n10103921 +n10104064 +n10104487 +n10104756 +n10104888 +n10105085 +n10105733 +n10105906 +n10106387 +n10106509 +n10106995 +n10107173 +n10107303 +n10108018 +n10108089 +n10108464 +n10108832 +n10109443 +n10109662 +n10109826 +n10110093 +n10110731 +n10110893 +n10111358 +n10111779 +n10111903 +n10112129 +n10113249 +n10113583 +n10113869 +n10114476 +n10114550 +n10114662 +n10115430 +n10115946 +n10116370 +n10116478 +n10116702 +n10117017 +n10117267 +n10117415 +n10117739 +n10117851 +n10118301 +n10118743 +n10118844 +n10119609 +n10120330 +n10120671 +n10121026 +n10121246 +n10121714 +n10121800 +n10122300 +n10122531 +n10123122 +n10123844 +n10126177 +n10126424 +n10126708 +n10127186 +n10127689 +n10128519 +n10128748 +n10129338 +n10129825 +n10130686 +n10130877 +n10131151 +n10131268 +n10131590 +n10131815 +n10132035 +n10132502 +n10134178 +n10134396 +n10134760 +n10134982 +n10135129 +n10135197 +n10135297 +n10136615 +n10136959 +n10137825 +n10138369 +n10138472 +n10139077 +n10139651 +n10140051 +n10140597 +n10140683 +n10140783 +n10140929 +n10141364 +n10141732 +n10142166 +n10142391 +n10142537 +n10142747 +n10142946 +n10143172 +n10143595 +n10143725 +n10144338 +n10145239 +n10145340 +n10145480 +n10145590 +n10145774 +n10145902 +n10146002 +n10146104 +n10146416 +n10146816 +n10146927 +n10147121 +n10147262 +n10147710 +n10147935 +n10148035 +n10148305 +n10148825 +n10149436 +n10149867 +n10150071 +n10150794 +n10150940 +n10151133 +n10151261 +n10151367 +n10151570 +n10151760 +n10152306 +n10152616 +n10152763 +n10153155 +n10153414 +n10153594 +n10153865 +n10154013 +n10154186 +n10154601 +n10155222 +n10155600 +n10155849 +n10156629 +n10156831 +n10157016 +n10157128 +n10157271 +n10158506 +n10159045 +n10159289 +n10159533 +n10160188 +n10160280 +n10160412 +n10161622 +n10162016 +n10162194 +n10162354 +n10164025 +n10164233 +n10164492 +n10165448 +n10166189 +n10166394 +n10167152 +n10167361 +n10167565 +n10167838 +n10168012 +n10168183 +n10168584 +n10168837 +n10169147 +n10169241 +n10169419 +n10169796 +n10170060 +n10170681 +n10170866 +n10171219 +n10171456 +n10171567 +n10172080 +n10173410 +n10173579 +n10173665 +n10173771 +n10174253 +n10174330 +n10174445 +n10174589 +n10174695 +n10174971 +n10175248 +n10175725 +n10176913 +n10177150 +n10178077 +n10178216 +n10179069 +n10180580 +n10180791 +n10180923 +n10181445 +n10181547 +n10181799 +n10181878 +n10182190 +n10182402 +n10183347 +n10183931 +n10184505 +n10185148 +n10185483 +n10185793 +n10186068 +n10186143 +n10186216 +n10186350 +n10186686 +n10186774 +n10187130 +n10187491 +n10187990 +n10188715 +n10188856 +n10188957 +n10189278 +n10189597 +n10190122 +n10190516 +n10191001 +n10191388 +n10191613 +n10192839 +n10193650 +n10194231 +n10194775 +n10195056 +n10195155 +n10195261 +n10195593 +n10196404 +n10196725 +n10197392 +n10198437 +n10198832 +n10199251 +n10200246 +n10200781 +n10202225 +n10202624 +n10202763 +n10203949 +n10204177 +n10204833 +n10205231 +n10205344 +n10205457 +n10205714 +n10206173 +n10206506 +n10206629 +n10207077 +n10207169 +n10208189 +n10208847 +n10208950 +n10209082 +n10209731 +n10210137 +n10210512 +n10210648 +n10210911 +n10211036 +n10211666 +n10211830 +n10212231 +n10212501 +n10212780 +n10213034 +n10213429 +n10214062 +n10214390 +n10215623 +n10216106 +n10216403 +n10217208 +n10218043 +n10218164 +n10218292 +n10219240 +n10219453 +n10219879 +n10220080 +n10220924 +n10221312 +n10221520 +n10222170 +n10222259 +n10222497 +n10222716 +n10223069 +n10223177 +n10223606 +n10224578 +n10225219 +n10225931 +n10226413 +n10227166 +n10227266 +n10227393 +n10227490 +n10227698 +n10227793 +n10227985 +n10228278 +n10228468 +n10228592 +n10228712 +n10229883 +n10230216 +n10233248 +n10235024 +n10235269 +n10235385 +n10236304 +n10236521 +n10236842 +n10237069 +n10237196 +n10237464 +n10237556 +n10237676 +n10237799 +n10238272 +n10238375 +n10239928 +n10240082 +n10240235 +n10240417 +n10240821 +n10241024 +n10241300 +n10242328 +n10243137 +n10243273 +n10243483 +n10243664 +n10243872 +n10244108 +n10244359 +n10244913 +n10245029 +n10245341 +n10245507 +n10245639 +n10245863 +n10246317 +n10246395 +n10246703 +n10247358 +n10247880 +n10248008 +n10248198 +n10248377 +n10249191 +n10249270 +n10249459 +n10249869 +n10249950 +n10250712 +n10251329 +n10251612 +n10252075 +n10252222 +n10252354 +n10252547 +n10253122 +n10253296 +n10253479 +n10253611 +n10253703 +n10255459 +n10257221 +n10258602 +n10258786 +n10259348 +n10259780 +n10259997 +n10260473 +n10260706 +n10260800 +n10261211 +n10261511 +n10261624 +n10261862 +n10262343 +n10262445 +n10262561 +n10262655 +n10262880 +n10263146 +n10263411 +n10263790 +n10265281 +n10265801 +n10265891 +n10266016 +n10266328 +n10266848 +n10267166 +n10267311 +n10267865 +n10268629 +n10269199 +n10269289 +n10271677 +n10272782 +n10272913 +n10273064 +n10274173 +n10274318 +n10274815 +n10275249 +n10275395 +n10275848 +n10276045 +n10276477 +n10276942 +n10277027 +n10277638 +n10277815 +n10277912 +n10278456 +n10279018 +n10279778 +n10280034 +n10280130 +n10280598 +n10280674 +n10281546 +n10281770 +n10281896 +n10282482 +n10282672 +n10283170 +n10283366 +n10283546 +n10284064 +n10284871 +n10284965 +n10286282 +n10286539 +n10286749 +n10288964 +n10289039 +n10289176 +n10289462 +n10289766 +n10290422 +n10290541 +n10290813 +n10290919 +n10291110 +n10291469 +n10291822 +n10291942 +n10292316 +n10293332 +n10293590 +n10293861 +n10294020 +n10294139 +n10295371 +n10295479 +n10296176 +n10296444 +n10297234 +n10297367 +n10297531 +n10297841 +n10298202 +n10298271 +n10298647 +n10298912 +n10299125 +n10299250 +n10299700 +n10299875 +n10300041 +n10300154 +n10300303 +n10300500 +n10300654 +n10300829 +n10302576 +n10302700 +n10302905 +n10303037 +n10303814 +n10304086 +n10304650 +n10304914 +n10305635 +n10305802 +n10306004 +n10306279 +n10306496 +n10306595 +n10306890 +n10307114 +n10308066 +n10308168 +n10308275 +n10308504 +n10308653 +n10308732 +n10310783 +n10311506 +n10311661 +n10312287 +n10312491 +n10312600 +n10313000 +n10313239 +n10313441 +n10313724 +n10314054 +n10314182 +n10314517 +n10314836 +n10315217 +n10315456 +n10315561 +n10315730 +n10316360 +n10316527 +n10316862 +n10317007 +n10317500 +n10317963 +n10318293 +n10318607 +n10318686 +n10319313 +n10320484 +n10320863 +n10321126 +n10321340 +n10321632 +n10321882 +n10322238 +n10323634 +n10323752 +n10323999 +n10324560 +n10325549 +n10325774 +n10326776 +n10327143 +n10327987 +n10328123 +n10328328 +n10328437 +n10328696 +n10328941 +n10329035 +n10330593 +n10330931 +n10331098 +n10331167 +n10331258 +n10331347 +n10331841 +n10332110 +n10332385 +n10332861 +n10332953 +n10333044 +n10333165 +n10333317 +n10333439 +n10333601 +n10333838 +n10334009 +n10334461 +n10334782 +n10335246 +n10335801 +n10335931 +n10336411 +n10336904 +n10337488 +n10338231 +n10338391 +n10339179 +n10339251 +n10339717 +n10340312 +n10341243 +n10341343 +n10341446 +n10341573 +n10341955 +n10342180 +n10342367 +n10342543 +n10342893 +n10342992 +n10343088 +n10343355 +n10343449 +n10343554 +n10343869 +n10344121 +n10344203 +n10344319 +n10344656 +n10344774 +n10345015 +n10345100 +n10345302 +n10345422 +n10345659 +n10346015 +n10347204 +n10347446 +n10348526 +n10349243 +n10349750 +n10349836 +n10350220 +n10350774 +n10351064 +n10353016 +n10353355 +n10353928 +n10354265 +n10354754 +n10355142 +n10355306 +n10355449 +n10355688 +n10355806 +n10356450 +n10356877 +n10357012 +n10357613 +n10357737 +n10358032 +n10358124 +n10358575 +n10359117 +n10359422 +n10359546 +n10359659 +n10360366 +n10360747 +n10361060 +n10361194 +n10361296 +n10361525 +n10362003 +n10362319 +n10362557 +n10363445 +n10363573 +n10364198 +n10364502 +n10365514 +n10366145 +n10366276 +n10366966 +n10368291 +n10368528 +n10368624 +n10368711 +n10368798 +n10369095 +n10369317 +n10369417 +n10369528 +n10369699 +n10369955 +n10370381 +n10370955 +n10371052 +n10371221 +n10371330 +n10371450 +n10373390 +n10373525 +n10374541 +n10374849 +n10374943 +n10375052 +n10375314 +n10375402 +n10376523 +n10376890 +n10377021 +n10377185 +n10377291 +n10377542 +n10377633 +n10378026 +n10378113 +n10378780 +n10379376 +n10380126 +n10380499 +n10380672 +n10381804 +n10381981 +n10382157 +n10382302 +n10382480 +n10382710 +n10382825 +n10383094 +n10383237 +n10383505 +n10383816 +n10384214 +n10384392 +n10384496 +n10385566 +n10386196 +n10386754 +n10386874 +n10386984 +n10387196 +n10387324 +n10387836 +n10389865 +n10389976 +n10390600 +n10390698 +n10390807 +n10391416 +n10393909 +n10394434 +n10394786 +n10395073 +n10395209 +n10395390 +n10395828 +n10396106 +n10396337 +n10396727 +n10396908 +n10397001 +n10397142 +n10397392 +n10399130 +n10400003 +n10400108 +n10400205 +n10400437 +n10400618 +n10400998 +n10401204 +n10401331 +n10401639 +n10402709 +n10402824 +n10403633 +n10403876 +n10404426 +n10404998 +n10405540 +n10405694 +n10406266 +n10406391 +n10406765 +n10407310 +n10407954 +n10408809 +n10409459 +n10409752 +n10410246 +n10410996 +n10411356 +n10411551 +n10411867 +n10414239 +n10414768 +n10414865 +n10415037 +n10416567 +n10417288 +n10417424 +n10417551 +n10417682 +n10417843 +n10417969 +n10418101 +n10418735 +n10419047 +n10419472 +n10419630 +n10419785 +n10420031 +n10420277 +n10420507 +n10420649 +n10421016 +n10421470 +n10421956 +n10422405 +n10425946 +n10426454 +n10426630 +n10427223 +n10427359 +n10427764 +n10428004 +n10431122 +n10431625 +n10432189 +n10432441 +n10432875 +n10432957 +n10433077 +n10433452 +n10433610 +n10433737 +n10435169 +n10435251 +n10435716 +n10435988 +n10436334 +n10437014 +n10437137 +n10437262 +n10437698 +n10438172 +n10438619 +n10438842 +n10439373 +n10439523 +n10439727 +n10439851 +n10441037 +n10441124 +n10441694 +n10441962 +n10442093 +n10442232 +n10442417 +n10442573 +n10443032 +n10443659 +n10443830 +n10444194 +n10448322 +n10448455 +n10449664 +n10450038 +n10450161 +n10450303 +n10451450 +n10451590 +n10451858 +n10453184 +n10455619 +n10456070 +n10456138 +n10456696 +n10457214 +n10457444 +n10457903 +n10458111 +n10458356 +n10458596 +n10459882 +n10460033 +n10461060 +n10462588 +n10462751 +n10462860 +n10464052 +n10464542 +n10464711 +n10464870 +n10465002 +n10465451 +n10465831 +n10466198 +n10466564 +n10466918 +n10467179 +n10467395 +n10468750 +n10469611 +n10469874 +n10470779 +n10471640 +n10471732 +n10471859 +n10472129 +n10472447 +n10473453 +n10473562 +n10473789 +n10473917 +n10474064 +n10474343 +n10474446 +n10474645 +n10475835 +n10475940 +n10476467 +n10477713 +n10477955 +n10478118 +n10478293 +n10478462 +n10478827 +n10478960 +n10479135 +n10479328 +n10481167 +n10481268 +n10482054 +n10482220 +n10482587 +n10482921 +n10483138 +n10483395 +n10483799 +n10483890 +n10484858 +n10485298 +n10485883 +n10486166 +n10486236 +n10486561 +n10487182 +n10487363 +n10487592 +n10488016 +n10488309 +n10488656 +n10489426 +n10490421 +n10491998 +n10492086 +n10492727 +n10493199 +n10493419 +n10493685 +n10493835 +n10493922 +n10494195 +n10494373 +n10495167 +n10495421 +n10495555 +n10495756 +n10496393 +n10496489 +n10497135 +n10497534 +n10497645 +n10498046 +n10498699 +n10498816 +n10498986 +n10499110 +n10499232 +n10499355 +n10499631 +n10499857 +n10500217 +n10500419 +n10500603 +n10500824 +n10500942 +n10501453 +n10501635 +n10502046 +n10502329 +n10502950 +n10503818 +n10504090 +n10504206 +n10505347 +n10505613 +n10505732 +n10505942 +n10506336 +n10506544 +n10506915 +n10507070 +n10507380 +n10507482 +n10507565 +n10507692 +n10508141 +n10508379 +n10508710 +n10509063 +n10509161 +n10509810 +n10510245 +n10510974 +n10511771 +n10512201 +n10512372 +n10512708 +n10512859 +n10513509 +n10513823 +n10513938 +n10514051 +n10514121 +n10514255 +n10514429 +n10514784 +n10515863 +n10516527 +n10517137 +n10517283 +n10518349 +n10519126 +n10519494 +n10519984 +n10520286 +n10520544 +n10520964 +n10521100 +n10521662 +n10521853 +n10522035 +n10522324 +n10522759 +n10523341 +n10524076 +n10524223 +n10524869 +n10525134 +n10525436 +n10525617 +n10525878 +n10526534 +n10527147 +n10527334 +n10528023 +n10528148 +n10528493 +n10529231 +n10530150 +n10530383 +n10530571 +n10530959 +n10531109 +n10531445 +n10531838 +n10533874 +n10533983 +n10536134 +n10536274 +n10536416 +n10537708 +n10537906 +n10538629 +n10538733 +n10538853 +n10539015 +n10539160 +n10539278 +n10540114 +n10540252 +n10540656 +n10541833 +n10542608 +n10542761 +n10542888 +n10543161 +n10543937 +n10544232 +n10544748 +n10545792 +n10546428 +n10546633 +n10548419 +n10548537 +n10548681 +n10549510 +n10550252 +n10550369 +n10550468 +n10551576 +n10552393 +n10553140 +n10553235 +n10554024 +n10554141 +n10554846 +n10555059 +n10555430 +n10556033 +n10556518 +n10556704 +n10556825 +n10557246 +n10557854 +n10559009 +n10559288 +n10559508 +n10559683 +n10559996 +n10560106 +n10560637 +n10561222 +n10561320 +n10561736 +n10562135 +n10562283 +n10562509 +n10562968 +n10563314 +n10563403 +n10563711 +n10564098 +n10565502 +n10565667 +n10566072 +n10567613 +n10567722 +n10567848 +n10568200 +n10568358 +n10568443 +n10568608 +n10568915 +n10569011 +n10569179 +n10570019 +n10570704 +n10571907 +n10572706 +n10572889 +n10573957 +n10574311 +n10574538 +n10574840 +n10575463 +n10575594 +n10575787 +n10576223 +n10576316 +n10576676 +n10576818 +n10576962 +n10577182 +n10577284 +n10577710 +n10577820 +n10578021 +n10578162 +n10578471 +n10578656 +n10579062 +n10579549 +n10580030 +n10580437 +n10580535 +n10581648 +n10581890 +n10582604 +n10582746 +n10583387 +n10583790 +n10585077 +n10585217 +n10585628 +n10586166 +n10586265 +n10586444 +n10586903 +n10586998 +n10588074 +n10588357 +n10588724 +n10588965 +n10589666 +n10590146 +n10590239 +n10590452 +n10590903 +n10591072 +n10591811 +n10592049 +n10592811 +n10593521 +n10594147 +n10594523 +n10594857 +n10595164 +n10595647 +n10596517 +n10596899 +n10597505 +n10597745 +n10597889 +n10598013 +n10598181 +n10598459 +n10598904 +n10599215 +n10599806 +n10601234 +n10601362 +n10602119 +n10602470 +n10602985 +n10603528 +n10603851 +n10604275 +n10604380 +n10604634 +n10604880 +n10604979 +n10605253 +n10605737 +n10607291 +n10607478 +n10609092 +n10609198 +n10610465 +n10610850 +n10611267 +n10611613 +n10612210 +n10612373 +n10612518 +n10613996 +n10614507 +n10614629 +n10615179 +n10615334 +n10616578 +n10617024 +n10617193 +n10617397 +n10618234 +n10618342 +n10618465 +n10618685 +n10618848 +n10619492 +n10619642 +n10619888 +n10620212 +n10620586 +n10620758 +n10621294 +n10621400 +n10621514 +n10622053 +n10624074 +n10624310 +n10624437 +n10624540 +n10625860 +n10626630 +n10627252 +n10628097 +n10628644 +n10629329 +n10629647 +n10629939 +n10630093 +n10630188 +n10631131 +n10631309 +n10631654 +n10632576 +n10633298 +n10633450 +n10634464 +n10634849 +n10634990 +n10635788 +n10636488 +n10637483 +n10638922 +n10639238 +n10639359 +n10639637 +n10639817 +n10641223 +n10642596 +n10642705 +n10643095 +n10643837 +n10643937 +n10644598 +n10645017 +n10645223 +n10646032 +n10646140 +n10646433 +n10646641 +n10646780 +n10646942 +n10647745 +n10648237 +n10648696 +n10649197 +n10649308 +n10650162 +n10652605 +n10652703 +n10654015 +n10654211 +n10654321 +n10654827 +n10654932 +n10655169 +n10655442 +n10655594 +n10655730 +n10655986 +n10656120 +n10656223 +n10656969 +n10657306 +n10657556 +n10657835 +n10658304 +n10659042 +n10659762 +n10660128 +n10660621 +n10660883 +n10661002 +n10661216 +n10661563 +n10661732 +n10663315 +n10663549 +n10665302 +n10665587 +n10665698 +n10666752 +n10667477 +n10667709 +n10667863 +n10668450 +n10668666 +n10669991 +n10671042 +n10671613 +n10671736 +n10671898 +n10672371 +n10672540 +n10672662 +n10673296 +n10673776 +n10674130 +n10674713 +n10675010 +n10675142 +n10675609 +n10676018 +n10676434 +n10676569 +n10678937 +n10679174 +n10679503 +n10679610 +n10679723 +n10680609 +n10680796 +n10681194 +n10681557 +n10682713 +n10682953 +n10683675 +n10684146 +n10684630 +n10684827 +n10685398 +n10686073 +n10686517 +n10686694 +n10686885 +n10688356 +n10688811 +n10689306 +n10690268 +n10690421 +n10690648 +n10691318 +n10691937 +n10692090 +n10692482 +n10692883 +n10693235 +n10693334 +n10693824 +n10694258 +n10694939 +n10695450 +n10696101 +n10696508 +n10697135 +n10697282 +n10698368 +n10699558 +n10699752 +n10699981 +n10700105 +n10700201 +n10700640 +n10700963 +n10701180 +n10701644 +n10701962 +n10702167 +n10702615 +n10703221 +n10703336 +n10703480 +n10703692 +n10704238 +n10704712 +n10704886 +n10705448 +n10705615 +n10706812 +n10707134 +n10707233 +n10707707 +n10708292 +n10708454 +n10709529 +n10710171 +n10710259 +n10710778 +n10710913 +n10711483 +n10711766 +n10712229 +n10712374 +n10712474 +n10712690 +n10712835 +n10713254 +n10713686 +n10713843 +n10714195 +n10715030 +n10715347 +n10715789 +n10716576 +n10716864 +n10717055 +n10717196 +n10717337 +n10718131 +n10718349 +n10718509 +n10718665 +n10718952 +n10719036 +n10719132 +n10719267 +n10719807 +n10720197 +n10720453 +n10720964 +n10721124 +n10721321 +n10721612 +n10721708 +n10721819 +n10722029 +n10722575 +n10722965 +n10723230 +n10723597 +n10724132 +n10724372 +n10724570 +n10725280 +n10726031 +n10726786 +n10727016 +n10727171 +n10727458 +n10728117 +n10728233 +n10728624 +n10728998 +n10729330 +n10730542 +n10730728 +n10731013 +n10731732 +n10732010 +n10732521 +n10732854 +n10732967 +n10733820 +n10734394 +n10734741 +n10734891 +n10734963 +n10735173 +n10735298 +n10735984 +n10737103 +n10737264 +n10738111 +n10738215 +n10738670 +n10738871 +n10739135 +n10739297 +n10739391 +n10740594 +n10740732 +n10740868 +n10741152 +n10741367 +n10741493 +n10742005 +n10742111 +n10742546 +n10742997 +n10743124 +n10743356 +n10744078 +n10744164 +n10745006 +n10745770 +n10746931 +n10747119 +n10747424 +n10747548 +n10747965 +n10748142 +n10748506 +n10748620 +n10749928 +n10750031 +n10750188 +n10750640 +n10751026 +n10751152 +n10751265 +n10751710 +n10752480 +n10753061 +n10753182 +n10753339 +n10753442 +n10753989 +n10754189 +n10754281 +n10754449 +n10755080 +n10755164 +n10755394 +n10755648 +n10756061 +n10756148 +n10756261 +n10756641 +n10756837 +n10757050 +n10757492 +n10758337 +n10758445 +n10758949 +n10759151 +n10759331 +n10759982 +n10760199 +n10760622 +n10760951 +n10761190 +n10761326 +n10761519 +n10762212 +n10762480 +n10763075 +n10763245 +n10763383 +n10763620 +n10764465 +n10764622 +n10764719 +n10765305 +n10765587 +n10765679 +n10765885 +n10766260 +n10768148 +n10768272 +n10768903 +n10769084 +n10769188 +n10769321 +n10769459 +n10771066 +n10772092 +n10772580 +n10772937 +n10773665 +n10773800 +n10774329 +n10774756 +n10775003 +n10775128 +n10776052 +n10776339 +n10776887 +n10777299 +n10778044 +n10778148 +n10778711 +n10778999 +n10779610 +n10779897 +n10779995 +n10780284 +n10780632 +n10781236 +n10781817 +n10782362 +n10782471 +n10782791 +n10782940 +n10783240 +n10783539 +n10783646 +n10783734 +n10784113 +n10784544 +n10784922 +n10785480 +n10787470 +n10788852 +n10789415 +n10789709 +n10791115 +n10791221 +n10791820 +n10791890 +n10792335 +n10792506 +n10792856 +n10793570 +n10793799 +n10794014 +n10801561 +n10801802 +n10802507 +n10802621 +n10802953 +n10803031 +n10803282 +n10803978 +n10804287 +n10804636 +n10804732 +n10805501 +n10806113 +n10994097 +n11100798 +n11196627 +n11242849 +n11318824 +n11346873 +n11448153 +n11487732 +n11508382 +n11511327 +n11524451 +n11530008 +n11531193 +n11531334 +n11532682 +n11533212 +n11533999 +n11536567 +n11536673 +n11537327 +n11539289 +n11542137 +n11542640 +n11544015 +n11545350 +n11545524 +n11545714 +n11547562 +n11547855 +n11548728 +n11548870 +n11549009 +n11549245 +n11549779 +n11549895 +n11552133 +n11552386 +n11552594 +n11552806 +n11552976 +n11553240 +n11553522 +n11596108 +n11597657 +n11598287 +n11598686 +n11598886 +n11599324 +n11600372 +n11601177 +n11601333 +n11601918 +n11602091 +n11602478 +n11602873 +n11603246 +n11603462 +n11603835 +n11604046 +n11608250 +n11609475 +n11609684 +n11609862 +n11610047 +n11610215 +n11610437 +n11610602 +n11610823 +n11611087 +n11611233 +n11611356 +n11611561 +n11611758 +n11612018 +n11612235 +n11612349 +n11612575 +n11612923 +n11613219 +n11613459 +n11613692 +n11613867 +n11614039 +n11614250 +n11614420 +n11614713 +n11615026 +n11615259 +n11615387 +n11615607 +n11615812 +n11615967 +n11616260 +n11616486 +n11616662 +n11616852 +n11617090 +n11617272 +n11617631 +n11617878 +n11618079 +n11618290 +n11618525 +n11618861 +n11619227 +n11619455 +n11619687 +n11619845 +n11620016 +n11620389 +n11620673 +n11621029 +n11621281 +n11621547 +n11621727 +n11621950 +n11622184 +n11622368 +n11622591 +n11622771 +n11623105 +n11623815 +n11623967 +n11624192 +n11624531 +n11625003 +n11625223 +n11625391 +n11625632 +n11625804 +n11626010 +n11626152 +n11626409 +n11626585 +n11626826 +n11627168 +n11627512 +n11627714 +n11627908 +n11628087 +n11628456 +n11628793 +n11629047 +n11629354 +n11630017 +n11630489 +n11631159 +n11631405 +n11631619 +n11631854 +n11631985 +n11632167 +n11632376 +n11632619 +n11632929 +n11633284 +n11634736 +n11635152 +n11635433 +n11635830 +n11636204 +n11636835 +n11639084 +n11639306 +n11639445 +n11640132 +n11643835 +n11644046 +n11644226 +n11644462 +n11644872 +n11645163 +n11645590 +n11645914 +n11646167 +n11646344 +n11646517 +n11646694 +n11646955 +n11647306 +n11647703 +n11647868 +n11648039 +n11648268 +n11648776 +n11649150 +n11649359 +n11649878 +n11650160 +n11650307 +n11650430 +n11650558 +n11650759 +n11652039 +n11652217 +n11652376 +n11652578 +n11652753 +n11652966 +n11653126 +n11653570 +n11653904 +n11654293 +n11654438 +n11654984 +n11655152 +n11655592 +n11655974 +n11656123 +n11656549 +n11656771 +n11657585 +n11658331 +n11658544 +n11658709 +n11659248 +n11659627 +n11660300 +n11661372 +n11661909 +n11662128 +n11662371 +n11662585 +n11662937 +n11663263 +n11664418 +n11665372 +n11666854 +n11668117 +n11669786 +n11669921 +n11672269 +n11672400 +n11674019 +n11674332 +n11675025 +n11675404 +n11675738 +n11676500 +n11676743 +n11676850 +n11677485 +n11677902 +n11678010 +n11678299 +n11678377 +n11679378 +n11680457 +n11680596 +n11682659 +n11683216 +n11683838 +n11684264 +n11684499 +n11684654 +n11685091 +n11685621 +n11686195 +n11686652 +n11686780 +n11686912 +n11687071 +n11687432 +n11687789 +n11687964 +n11688069 +n11688378 +n11689197 +n11689367 +n11689483 +n11689678 +n11689815 +n11689957 +n11690088 +n11690254 +n11690455 +n11691046 +n11691857 +n11692265 +n11692792 +n11693981 +n11694300 +n11694469 +n11694664 +n11694866 +n11695085 +n11695285 +n11695599 +n11695974 +n11696450 +n11696935 +n11697560 +n11697802 +n11698042 +n11698245 +n11699442 +n11699751 +n11700058 +n11700279 +n11700864 +n11701066 +n11701302 +n11702713 +n11703669 +n11704093 +n11704620 +n11704791 +n11705171 +n11705387 +n11705573 +n11705776 +n11706325 +n11706761 +n11706942 +n11707229 +n11707827 +n11708658 +n11708857 +n11709045 +n11709205 +n11709674 +n11710136 +n11710393 +n11710658 +n11710827 +n11710987 +n11711289 +n11711537 +n11711764 +n11711971 +n11712282 +n11713164 +n11713370 +n11713763 +n11714382 +n11715430 +n11715678 +n11716698 +n11717399 +n11717577 +n11718296 +n11718681 +n11719286 +n11720353 +n11720643 +n11720891 +n11721337 +n11721642 +n11722036 +n11722342 +n11722466 +n11722621 +n11722982 +n11723227 +n11723452 +n11723770 +n11723986 +n11724109 +n11724660 +n11725015 +n11725311 +n11725480 +n11725623 +n11725821 +n11725973 +n11726145 +n11726269 +n11726433 +n11726707 +n11727091 +n11727358 +n11727540 +n11727738 +n11728099 +n11728769 +n11728945 +n11729142 +n11729478 +n11729860 +n11730015 +n11730458 +n11730602 +n11730750 +n11730933 +n11731157 +n11731659 +n11732052 +n11732567 +n11733054 +n11733312 +n11733548 +n11734493 +n11734698 +n11735053 +n11735570 +n11735977 +n11736362 +n11736694 +n11736851 +n11737009 +n11737125 +n11737534 +n11738547 +n11738997 +n11739365 +n11739978 +n11740414 +n11741175 +n11741350 +n11741575 +n11741797 +n11742310 +n11742878 +n11744011 +n11744108 +n11744471 +n11745817 +n11746600 +n11747468 +n11748002 +n11748811 +n11749112 +n11749603 +n11750173 +n11750508 +n11750989 +n11751765 +n11751974 +n11752578 +n11752798 +n11752937 +n11753143 +n11753355 +n11753562 +n11753700 +n11754893 +n11756092 +n11756329 +n11756669 +n11756870 +n11757017 +n11757190 +n11757653 +n11757851 +n11758122 +n11758276 +n11758483 +n11758799 +n11759224 +n11759404 +n11759609 +n11759853 +n11760785 +n11761202 +n11761650 +n11761836 +n11762018 +n11762433 +n11762927 +n11763142 +n11763625 +n11763874 +n11764478 +n11764814 +n11765568 +n11766046 +n11766189 +n11766432 +n11767354 +n11767877 +n11768816 +n11769176 +n11769621 +n11769803 +n11770256 +n11771147 +n11771539 +n11771746 +n11771924 +n11772408 +n11772879 +n11773408 +n11773628 +n11773987 +n11774513 +n11774972 +n11775340 +n11775626 +n11776234 +n11777080 +n11778092 +n11778257 +n11779300 +n11780148 +n11780424 +n11781176 +n11782036 +n11782266 +n11782761 +n11782878 +n11783162 +n11783920 +n11784126 +n11784497 +n11785276 +n11785668 +n11785875 +n11786131 +n11786539 +n11786843 +n11787190 +n11788039 +n11788727 +n11789066 +n11789438 +n11789589 +n11789962 +n11790089 +n11790788 +n11790936 +n11791341 +n11791569 +n11792029 +n11792341 +n11792742 +n11793403 +n11793779 +n11794024 +n11794139 +n11794519 +n11795049 +n11795216 +n11795580 +n11796005 +n11796188 +n11797321 +n11797508 +n11797981 +n11798270 +n11798496 +n11798688 +n11798978 +n11799331 +n11799732 +n11800236 +n11800565 +n11801392 +n11801665 +n11801891 +n11802410 +n11802586 +n11802800 +n11802995 +n11805255 +n11805544 +n11805956 +n11806219 +n11806369 +n11806521 +n11806679 +n11806814 +n11807108 +n11807525 +n11807696 +n11807979 +n11808299 +n11808468 +n11808721 +n11808932 +n11809094 +n11809271 +n11809437 +n11809594 +n11809754 +n11810030 +n11810358 +n11811059 +n11811473 +n11811706 +n11811921 +n11812094 +n11812910 +n11813077 +n11814584 +n11814996 +n11815491 +n11815721 +n11815918 +n11816121 +n11816336 +n11816649 +n11816829 +n11817160 +n11817501 +n11817914 +n11818069 +n11818636 +n11819509 +n11819912 +n11820965 +n11821184 +n11822300 +n11823043 +n11823305 +n11823436 +n11823756 +n11824146 +n11824344 +n11824747 +n11825351 +n11825749 +n11826198 +n11826569 +n11827541 +n11828577 +n11828973 +n11829205 +n11829672 +n11829922 +n11830045 +n11830252 +n11830400 +n11830714 +n11830906 +n11831100 +n11831297 +n11831521 +n11832214 +n11832480 +n11832671 +n11832899 +n11833373 +n11833749 +n11834272 +n11834654 +n11834890 +n11835251 +n11836327 +n11836722 +n11837204 +n11837351 +n11837562 +n11837743 +n11837970 +n11838413 +n11838916 +n11839460 +n11839568 +n11839823 +n11840067 +n11840246 +n11840476 +n11840764 +n11841247 +n11843441 +n11844371 +n11844892 +n11845557 +n11845793 +n11845913 +n11846312 +n11846425 +n11846765 +n11847169 +n11848479 +n11848867 +n11849271 +n11849467 +n11849871 +n11849983 +n11850521 +n11850918 +n11851258 +n11851578 +n11851839 +n11852028 +n11852148 +n11852531 +n11853079 +n11853356 +n11853813 +n11854479 +n11855274 +n11855435 +n11855553 +n11855842 +n11856573 +n11857696 +n11857875 +n11858077 +n11858703 +n11858814 +n11859275 +n11859472 +n11859737 +n11860208 +n11860555 +n11861238 +n11861487 +n11861641 +n11861853 +n11862835 +n11863467 +n11863877 +n11865071 +n11865276 +n11865429 +n11865574 +n11865874 +n11866248 +n11866706 +n11867311 +n11868814 +n11869351 +n11869689 +n11870044 +n11870418 +n11870747 +n11871059 +n11871496 +n11871748 +n11872146 +n11872324 +n11872658 +n11873182 +n11873612 +n11874081 +n11874423 +n11874878 +n11875523 +n11875691 +n11875938 +n11876204 +n11876432 +n11876634 +n11876803 +n11877193 +n11877283 +n11877473 +n11877646 +n11877860 +n11878101 +n11878283 +n11878633 +n11879054 +n11879722 +n11879895 +n11881189 +n11882074 +n11882237 +n11882426 +n11882636 +n11882821 +n11882972 +n11883328 +n11883628 +n11883945 +n11884384 +n11884967 +n11885856 +n11887119 +n11887310 +n11887476 +n11887750 +n11888061 +n11888424 +n11888800 +n11889205 +n11889619 +n11890022 +n11890150 +n11890884 +n11891175 +n11892029 +n11892181 +n11892637 +n11892817 +n11893640 +n11893916 +n11894327 +n11894558 +n11894770 +n11895092 +n11895472 +n11895714 +n11896141 +n11896722 +n11897116 +n11897466 +n11898639 +n11898775 +n11899223 +n11899762 +n11899921 +n11900569 +n11901294 +n11901452 +n11901597 +n11901759 +n11901977 +n11902200 +n11902389 +n11902709 +n11902982 +n11903333 +n11903671 +n11904109 +n11904274 +n11905392 +n11905749 +n11906127 +n11906514 +n11906917 +n11907100 +n11907405 +n11907689 +n11908549 +n11908846 +n11909864 +n11910271 +n11910460 +n11910666 +n11915214 +n11915658 +n11915899 +n11916467 +n11916696 +n11917407 +n11917835 +n11918286 +n11918473 +n11918808 +n11919447 +n11919761 +n11919975 +n11920133 +n11920498 +n11920663 +n11920998 +n11921395 +n11921792 +n11922661 +n11922755 +n11922839 +n11922926 +n11923174 +n11923397 +n11923637 +n11924014 +n11924445 +n11924849 +n11925303 +n11925450 +n11925898 +n11926365 +n11926833 +n11926976 +n11927215 +n11927740 +n11928352 +n11928858 +n11929743 +n11930038 +n11930203 +n11930353 +n11930571 +n11930788 +n11930994 +n11931135 +n11931540 +n11931918 +n11932745 +n11932927 +n11933099 +n11933257 +n11933387 +n11933546 +n11933728 +n11933903 +n11934041 +n11934239 +n11934463 +n11934616 +n11934807 +n11935027 +n11935187 +n11935330 +n11935469 +n11935627 +n11935715 +n11935794 +n11935877 +n11935953 +n11936027 +n11936113 +n11936199 +n11936287 +n11936369 +n11936448 +n11936539 +n11936624 +n11936707 +n11936782 +n11936864 +n11936946 +n11937023 +n11937102 +n11937195 +n11937278 +n11937360 +n11937446 +n11937692 +n11938556 +n11939180 +n11939491 +n11939699 +n11940006 +n11940349 +n11940599 +n11940750 +n11941094 +n11941478 +n11941924 +n11942659 +n11943133 +n11943407 +n11943660 +n11943992 +n11944196 +n11944751 +n11944954 +n11945367 +n11945514 +n11945783 +n11946051 +n11946313 +n11946727 +n11946918 +n11947251 +n11947629 +n11947802 +n11948044 +n11948264 +n11948469 +n11948864 +n11949015 +n11949402 +n11949857 +n11950345 +n11950686 +n11950877 +n11951052 +n11951511 +n11951820 +n11952346 +n11952541 +n11953038 +n11953339 +n11953610 +n11953884 +n11954161 +n11954345 +n11954484 +n11954642 +n11954798 +n11955040 +n11955153 +n11955532 +n11955896 +n11956348 +n11956850 +n11957317 +n11957514 +n11957678 +n11958080 +n11958499 +n11958888 +n11959259 +n11959632 +n11959862 +n11960245 +n11960673 +n11961100 +n11961446 +n11961871 +n11962272 +n11962667 +n11962994 +n11963572 +n11963932 +n11964446 +n11964848 +n11965218 +n11965627 +n11965962 +n11966083 +n11966215 +n11966385 +n11966617 +n11966896 +n11967142 +n11967315 +n11967744 +n11967878 +n11968519 +n11968704 +n11968931 +n11969166 +n11969607 +n11969806 +n11970101 +n11970298 +n11970586 +n11971248 +n11971406 +n11971783 +n11971927 +n11972291 +n11972759 +n11972959 +n11973341 +n11973634 +n11973749 +n11974373 +n11974557 +n11974888 +n11975254 +n11976170 +n11976314 +n11976511 +n11976933 +n11977303 +n11977660 +n11977887 +n11978233 +n11978551 +n11978713 +n11978961 +n11979187 +n11979354 +n11979527 +n11979715 +n11979964 +n11980318 +n11980682 +n11981192 +n11981475 +n11982115 +n11982545 +n11982939 +n11983375 +n11983606 +n11984144 +n11984542 +n11985053 +n11985321 +n11985739 +n11985903 +n11986511 +n11986729 +n11987126 +n11987349 +n11987511 +n11988132 +n11988596 +n11988893 +n11989087 +n11989393 +n11989869 +n11990167 +n11990313 +n11990627 +n11990920 +n11991263 +n11991549 +n11991777 +n11992479 +n11992806 +n11993203 +n11993444 +n11993675 +n11994150 +n11995092 +n11995396 +n11996251 +n11996677 +n11997032 +n11997160 +n11997969 +n11998492 +n11998888 +n11999278 +n11999656 +n12000191 +n12001294 +n12001707 +n12001924 +n12002428 +n12002651 +n12002826 +n12003167 +n12003696 +n12004120 +n12004547 +n12004987 +n12005656 +n12006306 +n12006766 +n12006930 +n12007196 +n12007406 +n12007766 +n12008252 +n12008487 +n12008749 +n12009047 +n12009420 +n12009792 +n12010628 +n12010815 +n12011370 +n12011620 +n12012111 +n12012253 +n12012510 +n12013035 +n12013511 +n12013701 +n12014085 +n12014355 +n12014923 +n12015221 +n12015525 +n12015959 +n12016434 +n12016567 +n12016777 +n12016914 +n12017127 +n12017326 +n12017511 +n12017664 +n12017853 +n12018014 +n12018100 +n12018188 +n12018271 +n12018363 +n12018447 +n12018530 +n12018760 +n12019035 +n12019827 +n12020184 +n12020507 +n12020736 +n12020941 +n12022054 +n12022382 +n12022821 +n12023108 +n12023407 +n12023726 +n12024176 +n12024445 +n12024690 +n12024805 +n12025220 +n12026018 +n12026476 +n12026981 +n12027222 +n12027658 +n12028424 +n12029039 +n12029635 +n12030092 +n12030654 +n12030908 +n12031139 +n12031388 +n12031547 +n12031927 +n12032429 +n12032686 +n12033139 +n12033504 +n12033709 +n12034141 +n12034384 +n12034594 +n12035631 +n12035907 +n12036067 +n12036226 +n12036939 +n12037499 +n12037691 +n12038038 +n12038208 +n12038406 +n12038585 +n12038760 +n12038898 +n12039317 +n12041446 +n12043444 +n12043673 +n12043836 +n12044041 +n12044467 +n12044784 +n12045157 +n12045514 +n12045860 +n12046028 +n12046428 +n12046815 +n12047345 +n12047884 +n12048056 +n12048399 +n12048928 +n12049282 +n12049562 +n12050533 +n12050959 +n12051103 +n12051514 +n12051792 +n12052267 +n12052447 +n12052787 +n12053405 +n12053690 +n12053962 +n12054195 +n12055073 +n12055516 +n12056099 +n12056217 +n12056601 +n12056758 +n12056990 +n12057211 +n12057447 +n12057660 +n12057895 +n12058192 +n12058630 +n12058822 +n12059314 +n12059625 +n12060546 +n12061104 +n12061380 +n12061614 +n12062105 +n12062468 +n12062626 +n12062781 +n12063211 +n12063639 +n12064389 +n12064591 +n12065316 +n12065649 +n12065777 +n12066018 +n12066261 +n12066451 +n12066630 +n12066821 +n12067029 +n12067193 +n12067433 +n12067672 +n12067817 +n12068138 +n12068432 +n12068615 +n12069009 +n12069217 +n12069679 +n12070016 +n12070381 +n12070583 +n12070712 +n12071259 +n12071477 +n12071744 +n12072210 +n12072722 +n12073217 +n12073554 +n12073991 +n12074408 +n12074867 +n12075010 +n12075151 +n12075299 +n12075830 +n12076223 +n12076577 +n12076852 +n12077244 +n12077944 +n12078172 +n12078451 +n12078747 +n12079120 +n12079523 +n12079963 +n12080395 +n12080588 +n12080820 +n12081215 +n12081649 +n12082131 +n12083113 +n12083591 +n12083847 +n12084158 +n12084400 +n12084555 +n12084890 +n12085267 +n12085664 +n12086012 +n12086192 +n12086539 +n12086778 +n12087961 +n12088223 +n12088327 +n12088495 +n12088909 +n12089320 +n12089496 +n12089846 +n12090890 +n12091213 +n12091377 +n12091550 +n12091697 +n12091953 +n12092262 +n12092417 +n12092629 +n12092930 +n12093329 +n12093600 +n12093885 +n12094244 +n12094401 +n12094612 +n12095020 +n12095281 +n12095412 +n12095543 +n12095647 +n12095934 +n12096089 +n12096395 +n12096563 +n12096674 +n12097396 +n12097556 +n12098403 +n12098524 +n12098827 +n12099342 +n12100187 +n12101870 +n12102133 +n12103680 +n12103894 +n12104104 +n12104238 +n12104501 +n12104734 +n12105125 +n12105353 +n12105828 +n12105981 +n12106134 +n12106323 +n12107002 +n12107191 +n12107710 +n12107970 +n12108432 +n12108613 +n12108871 +n12109365 +n12109827 +n12110085 +n12110236 +n12110352 +n12110475 +n12110778 +n12111238 +n12111627 +n12112008 +n12112337 +n12112609 +n12112918 +n12113195 +n12113323 +n12113657 +n12114010 +n12114590 +n12115180 +n12116058 +n12116429 +n12116734 +n12117017 +n12117235 +n12117326 +n12117695 +n12117912 +n12118414 +n12118661 +n12119099 +n12119238 +n12119390 +n12119539 +n12119717 +n12120347 +n12120578 +n12121033 +n12121187 +n12121610 +n12122442 +n12122725 +n12122918 +n12123648 +n12123741 +n12124172 +n12124627 +n12124818 +n12125001 +n12125183 +n12125584 +n12126084 +n12126360 +n12126736 +n12127460 +n12127575 +n12127768 +n12128071 +n12128306 +n12128490 +n12129134 +n12129738 +n12129986 +n12130549 +n12131405 +n12131550 +n12132092 +n12132956 +n12133151 +n12133462 +n12133682 +n12134025 +n12134486 +n12134695 +n12134836 +n12135049 +n12135576 +n12135729 +n12135898 +n12136392 +n12136581 +n12136720 +n12137120 +n12137569 +n12137791 +n12137954 +n12138110 +n12138248 +n12138444 +n12138578 +n12139196 +n12139575 +n12139793 +n12139921 +n12140511 +n12140759 +n12140903 +n12141167 +n12141385 +n12141495 +n12142085 +n12142357 +n12142450 +n12143065 +n12143215 +n12143405 +n12143676 +n12144313 +n12144580 +n12144987 +n12145148 +n12145477 +n12146311 +n12146488 +n12146654 +n12147226 +n12147835 +n12148757 +n12150722 +n12150969 +n12151170 +n12151615 +n12152031 +n12152251 +n12152532 +n12152722 +n12153033 +n12153224 +n12153580 +n12153741 +n12153914 +n12154114 +n12154773 +n12155009 +n12155583 +n12155773 +n12156679 +n12156819 +n12157056 +n12157179 +n12157769 +n12158031 +n12158443 +n12158798 +n12159055 +n12159388 +n12159555 +n12159804 +n12159942 +n12160125 +n12160303 +n12160490 +n12160857 +n12161056 +n12161285 +n12161577 +n12161744 +n12161969 +n12162181 +n12162425 +n12162758 +n12163035 +n12163279 +n12164363 +n12164656 +n12164881 +n12165170 +n12165384 +n12165758 +n12166128 +n12166424 +n12166793 +n12166929 +n12167075 +n12167436 +n12167602 +n12168565 +n12169099 +n12170585 +n12171098 +n12171316 +n12171966 +n12172364 +n12172481 +n12172906 +n12173069 +n12173664 +n12173912 +n12174311 +n12174521 +n12174926 +n12175181 +n12175370 +n12175598 +n12176453 +n12176709 +n12176953 +n12177129 +n12177455 +n12178129 +n12178780 +n12178896 +n12179122 +n12179632 +n12180168 +n12180456 +n12180885 +n12181352 +n12181612 +n12182049 +n12182276 +n12183026 +n12183452 +n12183816 +n12184095 +n12184468 +n12184912 +n12185254 +n12185859 +n12186352 +n12186554 +n12186839 +n12187247 +n12187663 +n12187891 +n12188289 +n12188635 +n12189429 +n12189779 +n12189987 +n12190410 +n12190869 +n12191240 +n12192132 +n12192877 +n12193334 +n12193665 +n12194147 +n12194613 +n12195391 +n12195533 +n12195734 +n12196129 +n12196336 +n12196527 +n12196694 +n12196954 +n12197359 +n12197601 +n12198286 +n12198793 +n12199266 +n12199399 +n12199790 +n12199982 +n12200143 +n12200504 +n12200905 +n12201331 +n12201580 +n12201938 +n12202936 +n12203529 +n12203699 +n12203896 +n12204032 +n12204175 +n12204730 +n12205460 +n12205694 +n12214789 +n12215022 +n12215210 +n12215579 +n12215824 +n12216215 +n12216628 +n12216968 +n12217453 +n12217851 +n12218274 +n12218490 +n12218868 +n12219668 +n12220019 +n12220496 +n12220829 +n12221191 +n12221368 +n12221522 +n12221801 +n12222090 +n12222493 +n12222900 +n12223160 +n12223569 +n12223764 +n12224978 +n12225222 +n12225349 +n12225563 +n12226932 +n12227658 +n12227909 +n12228229 +n12228387 +n12228689 +n12228886 +n12229111 +n12229651 +n12229887 +n12230540 +n12230794 +n12231192 +n12231709 +n12232114 +n12232280 +n12232851 +n12233249 +n12234318 +n12234669 +n12235051 +n12235479 +n12236160 +n12236546 +n12236768 +n12236977 +n12237152 +n12237486 +n12237641 +n12237855 +n12238756 +n12238913 +n12239240 +n12239647 +n12239880 +n12240150 +n12240477 +n12240965 +n12241192 +n12241426 +n12241880 +n12242123 +n12242409 +n12242850 +n12243109 +n12243693 +n12244153 +n12244458 +n12244650 +n12244819 +n12245319 +n12245695 +n12245885 +n12246037 +n12246232 +n12246773 +n12246941 +n12247202 +n12247407 +n12247963 +n12248141 +n12248359 +n12248574 +n12248780 +n12248941 +n12249122 +n12249294 +n12249542 +n12251001 +n12251278 +n12251740 +n12252168 +n12252383 +n12252866 +n12253229 +n12253487 +n12253664 +n12253835 +n12254168 +n12255225 +n12256112 +n12256325 +n12256522 +n12256708 +n12256920 +n12257570 +n12257725 +n12258101 +n12258885 +n12259316 +n12260799 +n12261359 +n12261571 +n12261808 +n12262018 +n12262185 +n12262553 +n12263038 +n12263204 +n12263410 +n12263588 +n12263738 +n12263987 +n12264512 +n12264786 +n12265083 +n12265394 +n12265600 +n12266217 +n12266528 +n12266644 +n12266796 +n12266984 +n12267133 +n12267265 +n12267411 +n12267534 +n12267677 +n12267931 +n12268246 +n12269241 +n12269406 +n12269652 +n12270027 +n12270278 +n12270460 +n12270741 +n12270946 +n12271187 +n12271451 +n12271643 +n12271933 +n12272239 +n12272432 +n12272735 +n12272883 +n12273114 +n12273344 +n12273515 +n12273768 +n12273939 +n12274151 +n12274358 +n12274630 +n12274863 +n12275131 +n12275317 +n12275489 +n12275675 +n12275888 +n12276110 +n12276314 +n12276477 +n12276628 +n12276872 +n12277150 +n12277334 +n12277578 +n12277800 +n12278107 +n12278371 +n12278650 +n12278865 +n12279060 +n12279293 +n12279458 +n12279772 +n12280060 +n12280364 +n12281241 +n12281788 +n12281974 +n12282235 +n12282527 +n12282737 +n12282933 +n12283147 +n12283395 +n12283542 +n12283790 +n12284262 +n12284821 +n12285049 +n12285195 +n12285369 +n12285512 +n12285705 +n12285900 +n12286068 +n12286197 +n12286826 +n12286988 +n12287195 +n12287642 +n12287836 +n12288005 +n12288823 +n12289310 +n12289433 +n12289585 +n12290748 +n12290975 +n12291143 +n12291459 +n12291671 +n12291959 +n12292463 +n12292877 +n12293723 +n12294124 +n12294331 +n12294542 +n12294723 +n12294871 +n12295033 +n12295237 +n12295429 +n12295796 +n12296045 +n12296432 +n12296735 +n12296929 +n12297110 +n12297280 +n12297507 +n12297846 +n12298165 +n12299640 +n12300840 +n12301180 +n12301445 +n12301613 +n12301766 +n12302071 +n12302248 +n12302565 +n12303083 +n12303462 +n12304115 +n12304286 +n12304420 +n12304703 +n12304899 +n12305089 +n12305293 +n12305475 +n12305654 +n12305819 +n12305986 +n12306089 +n12306270 +n12306717 +n12306938 +n12307076 +n12307240 +n12307756 +n12308112 +n12308447 +n12308907 +n12309277 +n12309630 +n12310021 +n12310349 +n12310638 +n12311045 +n12311224 +n12311413 +n12311579 +n12312110 +n12312728 +n12315060 +n12315245 +n12315598 +n12315999 +n12316444 +n12316572 +n12317296 +n12318378 +n12318782 +n12318965 +n12319204 +n12319414 +n12320010 +n12320414 +n12320627 +n12320806 +n12321077 +n12321395 +n12321669 +n12321873 +n12322099 +n12322501 +n12322699 +n12323665 +n12324056 +n12324222 +n12324388 +n12324558 +n12324906 +n12325234 +n12325787 +n12327022 +n12327528 +n12327846 +n12328398 +n12328567 +n12328801 +n12329260 +n12329473 +n12330239 +n12330469 +n12330587 +n12330891 +n12331066 +n12331263 +n12331655 +n12331788 +n12332030 +n12332218 +n12332555 +n12333053 +n12333530 +n12333771 +n12333961 +n12334153 +n12334293 +n12334891 +n12335483 +n12335664 +n12335800 +n12335937 +n12336092 +n12336224 +n12336333 +n12336586 +n12336727 +n12336973 +n12337131 +n12337246 +n12337391 +n12337617 +n12337800 +n12337922 +n12338034 +n12338146 +n12338258 +n12338454 +n12338655 +n12338796 +n12338979 +n12339526 +n12339831 +n12340383 +n12340581 +n12340755 +n12341542 +n12341931 +n12342299 +n12342498 +n12342852 +n12343480 +n12343753 +n12344283 +n12344483 +n12344700 +n12344837 +n12345280 +n12345899 +n12346578 +n12346813 +n12346986 +n12347158 +n12349315 +n12349711 +n12350032 +n12350758 +n12351091 +n12351790 +n12352287 +n12352639 +n12352844 +n12352990 +n12353203 +n12353431 +n12353754 +n12355760 +n12356023 +n12356395 +n12356960 +n12357485 +n12357968 +n12358293 +n12360108 +n12360534 +n12360684 +n12360817 +n12360958 +n12361135 +n12361560 +n12361754 +n12361946 +n12362274 +n12362514 +n12362668 +n12363301 +n12363768 +n12364604 +n12364940 +n12365158 +n12365285 +n12365462 +n12365900 +n12366053 +n12366186 +n12366313 +n12366675 +n12366870 +n12367611 +n12368028 +n12368257 +n12368451 +n12369066 +n12369309 +n12369476 +n12369665 +n12369845 +n12370174 +n12370549 +n12371202 +n12371439 +n12371704 +n12372233 +n12373100 +n12373739 +n12374418 +n12374705 +n12374862 +n12375769 +n12377198 +n12377494 +n12378249 +n12378753 +n12378963 +n12379531 +n12380761 +n12381511 +n12382233 +n12382875 +n12383737 +n12383894 +n12384037 +n12384227 +n12384375 +n12384569 +n12384680 +n12384839 +n12385429 +n12385566 +n12385830 +n12386945 +n12387103 +n12387633 +n12387839 +n12388143 +n12388293 +n12388858 +n12388989 +n12389130 +n12389501 +n12389727 +n12389932 +n12390099 +n12390314 +n12392070 +n12392549 +n12392765 +n12393269 +n12394118 +n12394328 +n12394638 +n12395068 +n12395289 +n12395463 +n12395906 +n12396091 +n12396924 +n12397431 +n12399132 +n12399384 +n12399534 +n12399656 +n12399899 +n12400489 +n12400720 +n12400924 +n12401335 +n12401684 +n12401893 +n12402051 +n12402348 +n12402596 +n12402840 +n12403075 +n12403276 +n12403513 +n12403994 +n12404729 +n12405714 +n12406304 +n12406488 +n12406715 +n12406902 +n12407079 +n12407222 +n12407396 +n12407545 +n12407715 +n12407890 +n12408077 +n12408280 +n12408466 +n12408717 +n12408873 +n12409231 +n12409470 +n12409651 +n12409840 +n12411461 +n12412355 +n12412606 +n12412987 +n12413165 +n12413301 +n12413419 +n12413642 +n12413880 +n12414035 +n12414159 +n12414329 +n12414449 +n12414818 +n12414932 +n12415595 +n12416073 +n12416423 +n12416703 +n12417836 +n12418221 +n12418507 +n12419037 +n12419878 +n12420124 +n12420535 +n12420722 +n12421137 +n12421467 +n12421683 +n12421917 +n12422129 +n12422559 +n12425281 +n12426623 +n12426749 +n12427184 +n12427391 +n12427566 +n12427757 +n12427946 +n12428076 +n12428242 +n12428412 +n12428747 +n12429352 +n12430198 +n12430471 +n12430675 +n12431434 +n12432069 +n12432356 +n12432574 +n12432707 +n12433081 +n12433178 +n12433769 +n12433952 +n12434106 +n12434483 +n12434634 +n12434775 +n12434985 +n12435152 +n12435486 +n12435649 +n12435777 +n12435965 +n12436090 +n12436907 +n12437513 +n12437769 +n12437930 +n12439154 +n12439830 +n12441183 +n12441390 +n12441552 +n12441958 +n12442548 +n12443323 +n12443736 +n12444095 +n12444898 +n12446200 +n12446519 +n12446737 +n12446908 +n12447121 +n12447346 +n12447581 +n12447891 +n12448136 +n12448361 +n12448700 +n12449296 +n12449526 +n12449784 +n12449934 +n12450344 +n12450607 +n12450840 +n12451070 +n12451240 +n12451399 +n12451566 +n12451915 +n12452256 +n12452480 +n12452673 +n12452836 +n12453018 +n12453186 +n12453714 +n12453857 +n12454159 +n12454436 +n12454556 +n12454705 +n12454793 +n12454949 +n12455950 +n12457091 +n12458550 +n12458713 +n12458874 +n12459629 +n12460146 +n12460697 +n12460957 +n12461109 +n12461466 +n12461673 +n12462032 +n12462221 +n12462582 +n12462805 +n12463134 +n12463743 +n12463975 +n12464128 +n12464476 +n12464649 +n12465557 +n12466727 +n12467018 +n12467197 +n12467433 +n12467592 +n12468545 +n12468719 +n12469517 +n12470092 +n12470512 +n12470907 +n12472024 +n12473608 +n12473840 +n12474167 +n12474418 +n12475035 +n12475242 +n12475774 +n12476510 +n12477163 +n12477401 +n12477583 +n12477747 +n12477983 +n12478768 +n12479537 +n12480456 +n12480895 +n12481150 +n12481289 +n12481458 +n12482437 +n12482668 +n12482893 +n12483282 +n12483427 +n12483625 +n12483841 +n12484244 +n12484784 +n12485653 +n12485981 +n12486574 +n12487058 +n12488454 +n12488709 +n12489046 +n12489676 +n12489815 +n12490490 +n12491017 +n12491435 +n12491826 +n12492106 +n12492460 +n12492682 +n12492900 +n12493208 +n12493426 +n12493868 +n12494794 +n12495146 +n12495670 +n12495895 +n12496427 +n12496949 +n12497669 +n12498055 +n12498457 +n12499163 +n12499757 +n12499979 +n12500309 +n12500518 +n12500751 +n12501202 +n12504570 +n12504783 +n12505253 +n12506181 +n12506341 +n12506991 +n12507379 +n12507823 +n12508309 +n12508618 +n12508762 +n12509109 +n12509476 +n12509665 +n12509821 +n12509993 +n12510343 +n12510774 +n12511488 +n12511856 +n12512095 +n12512294 +n12512674 +n12513172 +n12513613 +n12513933 +n12514138 +n12514592 +n12514992 +n12515393 +n12515711 +n12515925 +n12516165 +n12516584 +n12516828 +n12517077 +n12517445 +n12517642 +n12518013 +n12518481 +n12519089 +n12519563 +n12520406 +n12521186 +n12521394 +n12522188 +n12522678 +n12522894 +n12523141 +n12523475 +n12523850 +n12524188 +n12525168 +n12525513 +n12525753 +n12526178 +n12526516 +n12526754 +n12527081 +n12527738 +n12528109 +n12528382 +n12528549 +n12528768 +n12528974 +n12529220 +n12529500 +n12529905 +n12530629 +n12530818 +n12531328 +n12531727 +n12532564 +n12532886 +n12533190 +n12533437 +n12534208 +n12534625 +n12534862 +n12536291 +n12537253 +n12537569 +n12538209 +n12539074 +n12539306 +n12539832 +n12540250 +n12540647 +n12540966 +n12541157 +n12541403 +n12542043 +n12542240 +n12543186 +n12543455 +n12543639 +n12543826 +n12544240 +n12544539 +n12545232 +n12545635 +n12545865 +n12546183 +n12546420 +n12546617 +n12546962 +n12547215 +n12547503 +n12548280 +n12548564 +n12548804 +n12549005 +n12549192 +n12549420 +n12549799 +n12550210 +n12550408 +n12551173 +n12551457 +n12552309 +n12552893 +n12553742 +n12554029 +n12554526 +n12554729 +n12554911 +n12555255 +n12555859 +n12556656 +n12557064 +n12557438 +n12557556 +n12557681 +n12558230 +n12558425 +n12558680 +n12559044 +n12559518 +n12560282 +n12560621 +n12560775 +n12561169 +n12561309 +n12561594 +n12562141 +n12562577 +n12562785 +n12563045 +n12563702 +n12564083 +n12564613 +n12565102 +n12565912 +n12566331 +n12566954 +n12567950 +n12568186 +n12568649 +n12569037 +n12569616 +n12569851 +n12570394 +n12570703 +n12570972 +n12571781 +n12572546 +n12572759 +n12572858 +n12573256 +n12573474 +n12573647 +n12573911 +n12574320 +n12574470 +n12574866 +n12575322 +n12575812 +n12576323 +n12576451 +n12576695 +n12577362 +n12577895 +n12578255 +n12578626 +n12578916 +n12579038 +n12579404 +n12579822 +n12580012 +n12580654 +n12580786 +n12580896 +n12581110 +n12582231 +n12582665 +n12582846 +n12583126 +n12583401 +n12583681 +n12583855 +n12584191 +n12584365 +n12584715 +n12585137 +n12585373 +n12585629 +n12586298 +n12586499 +n12586725 +n12586989 +n12587132 +n12587487 +n12587803 +n12588320 +n12588780 +n12589142 +n12589458 +n12589687 +n12589841 +n12590232 +n12590499 +n12590600 +n12590715 +n12591017 +n12591351 +n12591702 +n12592058 +n12592544 +n12592839 +n12593122 +n12593341 +n12593994 +n12594324 +n12594989 +n12595699 +n12595964 +n12596148 +n12596345 +n12596709 +n12596849 +n12597134 +n12597466 +n12597798 +n12598027 +n12599185 +n12599435 +n12599661 +n12599874 +n12600095 +n12600267 +n12601494 +n12601805 +n12602262 +n12602434 +n12602612 +n12602980 +n12603273 +n12603449 +n12603672 +n12604228 +n12604460 +n12604639 +n12604845 +n12605683 +n12606438 +n12606545 +n12607456 +n12609379 +n12610328 +n12610740 +n12611640 +n12612170 +n12612811 +n12613706 +n12614096 +n12614477 +n12614625 +n12615232 +n12615710 +n12616248 +n12616630 +n12616996 +n12617559 +n12618146 +n12618727 +n12620196 +n12620546 +n12620969 +n12621410 +n12621619 +n12621945 +n12622297 +n12622875 +n12623077 +n12623211 +n12623818 +n12624381 +n12624568 +n12625003 +n12625383 +n12625670 +n12625823 +n12626674 +n12626878 +n12627119 +n12627347 +n12627526 +n12628356 +n12628705 +n12628986 +n12629305 +n12629666 +n12630763 +n12630999 +n12631331 +n12631637 +n12631932 +n12632335 +n12632733 +n12633061 +n12633638 +n12633994 +n12634211 +n12634429 +n12634734 +n12634986 +n12635151 +n12635359 +n12635532 +n12635744 +n12635955 +n12636224 +n12636885 +n12637123 +n12637485 +n12638218 +n12638556 +n12638753 +n12638964 +n12639168 +n12639376 +n12639584 +n12639736 +n12639910 +n12640081 +n12640284 +n12640435 +n12640607 +n12640839 +n12641007 +n12641180 +n12641413 +n12641931 +n12642090 +n12642200 +n12642435 +n12642600 +n12642964 +n12643113 +n12643313 +n12643473 +n12643688 +n12643877 +n12644283 +n12644902 +n12645174 +n12645530 +n12646072 +n12646197 +n12646397 +n12646605 +n12646740 +n12646950 +n12647231 +n12647376 +n12647560 +n12647787 +n12647893 +n12648045 +n12648196 +n12648424 +n12648693 +n12648888 +n12649065 +n12649317 +n12649539 +n12649866 +n12650038 +n12650229 +n12650379 +n12650556 +n12650805 +n12650915 +n12651229 +n12651611 +n12651821 +n12653218 +n12653436 +n12653633 +n12654227 +n12654857 +n12655062 +n12655245 +n12655351 +n12655498 +n12655605 +n12655726 +n12655869 +n12656369 +n12656528 +n12656685 +n12656909 +n12657082 +n12657755 +n12658118 +n12658308 +n12658481 +n12658603 +n12658715 +n12658846 +n12659064 +n12659356 +n12659539 +n12660601 +n12661045 +n12661227 +n12661538 +n12662074 +n12662379 +n12662772 +n12663023 +n12663254 +n12663359 +n12663804 +n12664005 +n12664187 +n12664469 +n12664710 +n12665048 +n12665271 +n12665659 +n12665857 +n12666050 +n12666159 +n12666369 +n12666965 +n12667406 +n12667582 +n12667964 +n12668131 +n12669803 +n12670334 +n12670758 +n12670962 +n12671651 +n12672289 +n12673588 +n12674120 +n12674685 +n12674895 +n12675299 +n12675515 +n12675876 +n12676134 +n12676370 +n12676534 +n12676703 +n12677120 +n12677331 +n12677612 +n12677841 +n12678794 +n12679023 +n12679432 +n12679593 +n12679876 +n12680402 +n12680652 +n12680864 +n12681376 +n12681579 +n12681893 +n12682411 +n12682668 +n12682882 +n12683096 +n12683407 +n12683571 +n12683791 +n12684379 +n12685431 +n12685831 +n12686077 +n12686274 +n12686496 +n12686676 +n12686877 +n12687044 +n12687462 +n12687698 +n12687957 +n12688187 +n12688372 +n12688716 +n12689305 +n12690653 +n12691428 +n12691661 +n12692024 +n12692160 +n12692521 +n12692714 +n12693244 +n12693352 +n12693865 +n12694486 +n12695144 +n12695975 +n12696492 +n12696830 +n12697152 +n12697514 +n12698027 +n12698435 +n12698598 +n12698774 +n12699031 +n12699301 +n12699922 +n12700088 +n12700357 +n12702124 +n12703190 +n12703383 +n12703557 +n12703716 +n12703856 +n12704041 +n12704343 +n12704513 +n12705013 +n12705220 +n12705458 +n12705698 +n12705978 +n12706410 +n12707199 +n12707781 +n12708293 +n12708654 +n12708941 +n12709103 +n12709349 +n12709688 +n12709901 +n12710295 +n12710415 +n12710577 +n12710693 +n12710917 +n12711182 +n12711398 +n12711596 +n12711817 +n12711984 +n12712320 +n12712626 +n12713063 +n12713358 +n12713521 +n12713866 +n12714254 +n12714755 +n12714949 +n12715195 +n12715914 +n12716400 +n12716594 +n12717072 +n12717224 +n12717644 +n12718074 +n12718483 +n12718995 +n12719684 +n12719944 +n12720200 +n12720354 +n12721122 +n12721477 +n12722071 +n12723062 +n12723610 +n12724942 +n12725521 +n12725738 +n12725940 +n12726159 +n12726357 +n12726528 +n12726670 +n12726902 +n12727101 +n12727301 +n12727518 +n12727729 +n12727960 +n12728164 +n12728322 +n12728508 +n12728656 +n12728864 +n12729023 +n12729164 +n12729315 +n12729521 +n12729729 +n12729950 +n12730143 +n12730370 +n12730544 +n12730776 +n12731029 +n12731401 +n12731835 +n12732009 +n12732252 +n12732491 +n12732605 +n12732756 +n12732966 +n12733218 +n12733428 +n12733647 +n12733870 +n12734070 +n12734215 +n12735160 +n12736603 +n12736999 +n12737383 +n12737898 +n12738259 +n12739332 +n12739966 +n12740967 +n12741222 +n12741586 +n12741792 +n12742290 +n12742741 +n12742878 +n12743009 +n12743352 +n12743823 +n12743976 +n12744142 +n12744387 +n12744850 +n12745386 +n12745564 +n12746884 +n12747120 +n12748248 +n12749049 +n12749456 +n12749679 +n12749852 +n12750076 +n12750767 +n12751172 +n12751675 +n12752205 +n12753007 +n12753245 +n12753573 +n12753762 +n12754003 +n12754174 +n12754311 +n12754468 +n12754648 +n12754781 +n12754981 +n12755225 +n12755387 +n12755559 +n12755727 +n12755876 +n12756457 +n12757115 +n12757303 +n12757458 +n12757668 +n12757816 +n12757930 +n12758014 +n12758099 +n12758176 +n12758250 +n12758325 +n12758399 +n12758471 +n12758555 +n12759273 +n12759668 +n12760539 +n12760875 +n12761284 +n12761702 +n12761905 +n12762049 +n12762405 +n12762896 +n12763529 +n12764008 +n12764202 +n12764507 +n12764978 +n12765115 +n12765402 +n12765846 +n12766043 +n12766595 +n12766869 +n12767208 +n12767423 +n12767648 +n12768369 +n12768682 +n12768809 +n12768933 +n12769065 +n12769219 +n12769318 +n12770529 +n12770892 +n12771085 +n12771192 +n12771390 +n12771597 +n12771890 +n12772753 +n12772908 +n12773142 +n12773651 +n12773917 +n12774299 +n12774641 +n12775070 +n12775393 +n12775717 +n12775919 +n12776558 +n12776774 +n12777436 +n12777680 +n12777778 +n12777892 +n12778398 +n12778605 +n12779603 +n12779851 +n12780325 +n12780563 +n12781940 +n12782530 +n12782915 +n12783316 +n12783730 +n12784371 +n12784889 +n12785724 +n12785889 +n12786273 +n12786464 +n12786836 +n12787364 +n12788854 +n12789054 +n12789554 +n12789977 +n12790430 +n12791064 +n12791329 +n12793015 +n12793284 +n12793494 +n12793695 +n12793886 +n12794135 +n12794367 +n12794568 +n12794985 +n12795209 +n12795352 +n12795555 +n12796022 +n12796385 +n12796849 +n12797368 +n12797860 +n12798284 +n12798910 +n12799269 +n12799776 +n12800049 +n12800586 +n12801072 +n12801520 +n12801781 +n12801966 +n12803226 +n12803754 +n12803958 +n12804352 +n12805146 +n12805561 +n12805762 +n12806015 +n12806732 +n12807251 +n12807409 +n12807624 +n12807773 +n12808007 +n12809868 +n12810007 +n12810151 +n12810595 +n12811027 +n12811713 +n12812235 +n12812478 +n12812801 +n12813189 +n12814643 +n12814857 +n12814960 +n12815198 +n12815668 +n12815838 +n12816508 +n12816942 +n12817464 +n12817694 +n12817855 +n12818004 +n12818346 +n12818601 +n12818966 +n12819141 +n12819354 +n12819728 +n12820113 +n12820669 +n12820853 +n12821505 +n12821895 +n12822115 +n12822466 +n12822769 +n12822955 +n12823717 +n12823859 +n12824053 +n12824289 +n12824735 +n12825497 +n12826143 +n12827270 +n12827537 +n12827907 +n12828220 +n12828379 +n12828520 +n12828791 +n12828977 +n12829582 +n12829975 +n12830222 +n12830568 +n12831141 +n12831535 +n12831932 +n12832315 +n12832538 +n12832822 +n12833149 +n12833985 +n12834190 +n12834798 +n12834938 +n12835331 +n12835766 +n12836212 +n12836337 +n12836508 +n12836862 +n12837052 +n12837259 +n12837466 +n12837803 +n12839574 +n12839979 +n12840168 +n12840362 +n12840502 +n12840749 +n12841007 +n12841193 +n12841354 +n12842302 +n12842519 +n12842642 +n12842887 +n12843144 +n12843316 +n12843557 +n12843970 +n12844409 +n12844939 +n12845187 +n12845413 +n12845908 +n12846335 +n12846690 +n12847008 +n12847374 +n12847927 +n12848499 +n12849061 +n12849279 +n12849416 +n12849952 +n12850168 +n12850336 +n12850906 +n12851094 +n12851469 +n12851860 +n12852234 +n12852428 +n12852570 +n12853080 +n12853287 +n12853482 +n12854048 +n12854193 +n12854600 +n12855365 +n12855494 +n12855710 +n12855886 +n12856091 +n12856287 +n12856479 +n12856680 +n12857204 +n12857779 +n12858150 +n12858397 +n12858618 +n12858871 +n12858987 +n12859153 +n12859272 +n12859679 +n12859986 +n12860365 +n12860978 +n12861345 +n12861541 +n12861892 +n12862512 +n12862828 +n12863234 +n12863624 +n12864160 +n12865037 +n12865562 +n12865708 +n12865824 +n12866002 +n12866162 +n12866333 +n12866459 +n12866635 +n12866968 +n12867184 +n12867449 +n12867826 +n12868019 +n12868880 +n12869061 +n12869478 +n12869668 +n12870048 +n12870225 +n12870535 +n12870682 +n12870891 +n12871272 +n12871696 +n12871859 +n12872458 +n12872914 +n12873341 +n12873984 +n12875269 +n12875697 +n12875861 +n12876899 +n12877244 +n12877493 +n12877637 +n12877838 +n12878169 +n12878325 +n12878784 +n12879068 +n12879527 +n12879963 +n12880244 +n12880462 +n12880638 +n12880799 +n12881105 +n12881913 +n12882158 +n12882779 +n12882945 +n12883265 +n12883628 +n12884100 +n12884260 +n12885045 +n12885265 +n12885510 +n12885754 +n12886185 +n12886402 +n12886600 +n12886831 +n12887293 +n12887532 +n12887713 +n12888016 +n12888234 +n12888457 +n12889219 +n12889412 +n12889579 +n12889713 +n12890265 +n12890490 +n12890685 +n12890928 +n12891093 +n12891305 +n12891469 +n12891643 +n12891824 +n12892013 +n12893463 +n12893993 +n12895298 +n12895811 +n12896615 +n12897118 +n12897788 +n12897999 +n12898342 +n12898774 +n12899166 +n12899537 +n12899752 +n12899971 +n12900783 +n12901724 +n12902466 +n12902662 +n12903014 +n12903367 +n12903503 +n12903964 +n12904314 +n12904562 +n12904938 +n12905135 +n12905412 +n12906214 +n12906498 +n12906771 +n12907057 +n12907671 +n12907857 +n12908093 +n12908645 +n12908854 +n12909421 +n12909614 +n12909759 +n12909917 +n12911079 +n12911264 +n12911440 +n12911673 +n12911914 +n12912274 +n12912670 +n12912801 +n12913144 +n12913524 +n12913791 +n12914923 +n12915140 +n12915568 +n12915811 +n12916179 +n12916511 +n12917901 +n12918609 +n12918810 +n12918991 +n12919195 +n12919403 +n12919646 +n12919847 +n12920043 +n12920204 +n12920521 +n12920719 +n12920955 +n12921315 +n12921499 +n12921660 +n12921868 +n12922119 +n12922458 +n12922763 +n12923108 +n12923257 +n12924623 +n12925179 +n12925583 +n12926039 +n12926480 +n12926689 +n12927013 +n12927194 +n12927494 +n12927758 +n12928071 +n12928307 +n12928491 +n12928819 +n12929403 +n12929600 +n12930778 +n12930951 +n12931231 +n12931542 +n12931906 +n12932173 +n12932365 +n12932706 +n12932966 +n12933274 +n12934036 +n12934174 +n12934479 +n12934685 +n12934985 +n12935166 +n12935609 +n12936155 +n12936826 +n12937130 +n12938081 +n12938193 +n12938445 +n12938667 +n12939104 +n12939282 +n12939479 +n12939874 +n12940226 +n12940609 +n12941220 +n12941536 +n12941717 +n12942025 +n12942395 +n12942572 +n12942729 +n12943049 +n12943443 +n12943912 +n12944095 +n12945177 +n12945366 +n12945549 +n12946849 +n12947313 +n12947544 +n12947756 +n12947895 +n12948053 +n12948251 +n12948495 +n12949160 +n12949361 +n12950126 +n12950314 +n12950796 +n12951146 +n12951835 +n12952165 +n12952469 +n12952590 +n12952717 +n12953206 +n12953484 +n12953712 +n12954353 +n12954799 +n12955414 +n12955840 +n12956170 +n12956367 +n12956588 +n12956922 +n12957608 +n12957803 +n12957924 +n12958261 +n12958615 +n12959074 +n12959538 +n12960378 +n12960552 +n12960863 +n12961242 +n12961393 +n12961536 +n12961879 +n12963628 +n12964920 +n12965626 +n12965951 +n12966804 +n12966945 +n12968136 +n12968309 +n12969131 +n12969425 +n12969670 +n12969927 +n12970193 +n12970293 +n12970733 +n12971400 +n12971804 +n12972136 +n12973443 +n12973791 +n12973937 +n12974987 +n12975804 +n12976198 +n12976554 +n12978076 +n12979316 +n12979829 +n12980080 +n12980840 +n12981086 +n12981301 +n12981443 +n12981954 +n12982468 +n12982590 +n12982915 +n12983048 +n12983654 +n12983873 +n12983961 +n12984267 +n12984489 +n12984595 +n12985420 +n12985773 +n12985857 +n12986227 +n12987056 +n12987423 +n12987535 +n12988158 +n12988341 +n12988572 +n12989007 +n12989938 +n12990597 +n12991184 +n12991837 +n12992177 +n12992868 +n12994892 +n12995601 +n12997654 +n12997919 +n12998815 +n13000891 +n13001041 +n13001206 +n13001366 +n13001529 +n13001930 +n13002209 +n13002750 +n13002925 +n13003061 +n13003254 +n13003522 +n13003712 +n13004423 +n13004640 +n13004826 +n13004992 +n13005329 +n13005984 +n13006171 +n13006631 +n13006894 +n13007034 +n13007417 +n13007629 +n13008157 +n13008315 +n13008485 +n13008689 +n13008839 +n13009085 +n13009244 +n13009429 +n13009656 +n13010694 +n13010951 +n13011221 +n13011595 +n13012253 +n13012469 +n13012973 +n13013534 +n13013764 +n13013965 +n13014097 +n13014265 +n13014409 +n13014581 +n13014741 +n13014879 +n13015509 +n13015688 +n13016076 +n13016289 +n13017102 +n13017240 +n13017439 +n13017610 +n13017789 +n13017979 +n13018088 +n13018232 +n13018407 +n13018906 +n13019496 +n13019643 +n13019835 +n13020191 +n13020481 +n13020964 +n13021166 +n13021332 +n13021543 +n13021689 +n13021867 +n13022210 +n13022709 +n13022903 +n13023134 +n13024012 +n13024500 +n13024653 +n13025647 +n13025854 +n13026015 +n13027557 +n13027879 +n13028611 +n13028937 +n13029122 +n13029326 +n13029610 +n13029760 +n13030337 +n13030616 +n13030852 +n13031193 +n13031323 +n13031474 +n13032115 +n13032381 +n13032618 +n13032923 +n13033134 +n13033396 +n13033577 +n13033879 +n13034062 +n13034555 +n13034788 +n13035241 +n13035389 +n13035707 +n13035925 +n13036116 +n13036312 +n13036804 +n13037406 +n13037585 +n13037805 +n13038068 +n13038376 +n13038577 +n13038744 +n13039349 +n13040303 +n13040629 +n13040796 +n13041312 +n13041943 +n13042134 +n13042316 +n13042982 +n13043926 +n13044375 +n13044778 +n13045210 +n13045594 +n13045975 +n13046130 +n13046669 +n13047862 +n13048447 +n13049953 +n13050397 +n13050705 +n13050940 +n13051346 +n13052014 +n13052248 +n13052670 +n13052931 +n13053608 +n13054073 +n13054560 +n13055423 +n13055577 +n13055792 +n13055949 +n13056135 +n13056349 +n13056607 +n13056799 +n13057054 +n13057242 +n13057422 +n13057639 +n13058037 +n13058272 +n13058608 +n13059298 +n13059657 +n13060017 +n13060190 +n13061172 +n13061348 +n13061471 +n13061704 +n13062421 +n13063269 +n13063514 +n13064111 +n13064457 +n13065089 +n13065514 +n13066129 +n13066448 +n13066979 +n13067191 +n13067330 +n13067532 +n13067672 +n13068255 +n13068434 +n13068735 +n13068917 +n13069224 +n13069773 +n13070308 +n13070875 +n13071371 +n13071553 +n13071815 +n13072031 +n13072209 +n13072350 +n13072528 +n13072706 +n13072863 +n13073055 +n13073703 +n13074619 +n13074814 +n13075020 +n13075272 +n13075441 +n13075684 +n13075847 +n13076041 +n13076405 +n13076643 +n13076831 +n13077033 +n13077295 +n13078021 +n13079073 +n13079419 +n13079567 +n13080306 +n13080866 +n13081229 +n13081999 +n13082568 +n13083023 +n13083461 +n13084184 +n13084834 +n13085113 +n13085747 +n13090018 +n13090871 +n13091620 +n13091774 +n13091982 +n13092078 +n13092240 +n13092385 +n13092987 +n13093275 +n13093629 +n13094145 +n13094273 +n13095013 +n13096779 +n13098515 +n13098962 +n13099833 +n13099999 +n13100156 +n13100677 +n13102648 +n13102775 +n13103023 +n13103660 +n13103750 +n13103877 +n13104059 +n13107694 +n13107807 +n13107891 +n13108131 +n13108323 +n13108481 +n13108545 +n13108662 +n13108841 +n13109733 +n13110915 +n13111174 +n13111340 +n13111504 +n13111881 +n13112035 +n13112201 +n13118330 +n13118707 +n13119870 +n13120211 +n13120958 +n13121104 +n13121349 +n13122364 +n13123309 +n13123431 +n13123841 +n13124358 +n13124654 +n13125117 +n13126050 +n13126856 +n13127001 +n13127303 +n13127666 +n13127843 +n13128278 +n13128582 +n13128976 +n13129078 +n13130014 +n13130161 +n13130726 +n13131028 +n13131618 +n13132034 +n13132156 +n13132338 +n13132486 +n13132656 +n13132756 +n13132940 +n13133140 +n13133233 +n13133316 +n13133613 +n13133932 +n13134302 +n13134531 +n13134844 +n13134947 +n13135692 +n13135832 +n13136316 +n13136556 +n13136781 +n13137010 +n13137225 +n13137409 +n13137672 +n13137951 +n13138155 +n13138308 +n13138658 +n13138842 +n13139055 +n13139321 +n13139482 +n13139647 +n13139837 +n13140049 +n13140367 +n13141141 +n13141415 +n13141564 +n13141797 +n13141972 +n13142182 +n13142504 +n13142907 +n13143285 +n13143758 +n13144084 +n13145040 +n13145250 +n13145444 +n13146403 +n13146583 +n13146928 +n13147153 +n13147270 +n13147386 +n13147532 +n13147689 +n13147918 +n13148208 +n13148384 +n13149296 +n13149970 +n13150378 +n13150592 +n13150894 +n13151082 +n13152339 +n13154388 +n13154494 +n13154841 +n13155095 +n13155305 +n13155611 +n13156986 +n13157137 +n13157346 +n13157481 +n13157684 +n13157971 +n13158167 +n13158512 +n13158605 +n13158714 +n13158815 +n13159357 +n13159691 +n13159890 +n13160116 +n13160254 +n13160365 +n13160604 +n13160831 +n13160938 +n13161151 +n13161254 +n13161904 +n13163553 +n13163649 +n13163991 +n13164501 +n13170840 +n13171210 +n13171797 +n13172923 +n13173132 +n13173259 +n13173488 +n13173697 +n13173882 +n13174354 +n13174670 +n13174823 +n13175682 +n13176363 +n13176714 +n13177048 +n13177529 +n13177768 +n13177884 +n13178284 +n13178707 +n13179056 +n13179804 +n13180534 +n13180875 +n13181055 +n13181244 +n13181406 +n13181811 +n13182164 +n13182338 +n13182799 +n13182937 +n13183056 +n13183489 +n13184394 +n13185269 +n13185658 +n13186388 +n13186546 +n13187367 +n13188096 +n13188268 +n13188462 +n13188767 +n13190060 +n13190747 +n13191148 +n13191620 +n13191884 +n13192625 +n13193143 +n13193269 +n13193466 +n13193642 +n13193856 +n13194036 +n13194212 +n13194572 +n13194758 +n13194918 +n13195341 +n13195761 +n13196003 +n13196234 +n13196369 +n13196738 +n13197274 +n13197507 +n13198054 +n13198482 +n13198914 +n13199717 +n13199970 +n13200193 +n13200542 +n13200651 +n13200986 +n13201423 +n13201566 +n13201969 +n13202125 +n13202355 +n13202602 +n13205058 +n13205249 +n13206178 +n13206817 +n13207094 +n13207335 +n13207572 +n13207736 +n13207923 +n13208302 +n13208705 +n13208965 +n13209129 +n13209270 +n13209460 +n13209808 +n13210350 +n13210597 +n13211020 +n13211790 +n13212025 +n13212175 +n13212379 +n13212559 +n13213066 +n13213397 +n13213577 +n13214217 +n13214340 +n13214485 +n13215258 +n13215586 +n13217005 +n13219422 +n13219833 +n13219976 +n13220122 +n13220355 +n13220525 +n13220663 +n13221529 +n13222877 +n13222985 +n13223090 +n13223588 +n13223710 +n13223843 +n13224673 +n13224922 +n13225244 +n13225365 +n13225617 +n13226320 +n13226871 +n13228017 +n13228536 +n13229543 +n13229951 +n13230190 +n13230662 +n13230843 +n13231078 +n13231678 +n13231919 +n13232106 +n13232363 +n13232779 +n13233727 +n13234114 +n13234519 +n13234678 +n13234857 +n13235011 +n13235159 +n13235319 +n13235503 +n13235766 +n13236100 +n13237188 +n13237508 +n13238375 +n13238654 +n13238988 +n13239177 +n13239736 +n13239921 +n13240362 +n13252672 +n13354021 +n13555775 +n13579829 +n13650447 +n13653902 +n13862407 +n13862552 +n13862780 +n13863020 +n13863186 +n13863473 +n13863771 +n13864035 +n13864153 +n13864965 +n13865298 +n13865483 +n13865904 +n13866144 +n13866626 +n13866827 +n13867005 +n13867492 +n13868248 +n13868371 +n13868515 +n13868944 +n13869045 +n13869547 +n13869788 +n13869896 +n13871717 +n13872592 +n13872822 +n13873361 +n13873502 +n13873917 +n13874073 +n13874558 +n13875392 +n13875571 +n13875884 +n13876561 +n13877547 +n13877667 +n13878306 +n13879049 +n13879320 +n13879816 +n13880199 +n13880415 +n13880551 +n13880704 +n13880994 +n13881512 +n13881644 +n13882201 +n13882276 +n13882487 +n13882563 +n13882639 +n13882713 +n13882961 +n13883603 +n13883763 +n13884261 +n13884384 +n13884930 +n13885011 +n13886260 +n13888491 +n13889066 +n13889331 +n13891547 +n13891937 +n13893786 +n13894154 +n13894434 +n13895262 +n13896100 +n13896217 +n13897198 +n13897528 +n13897996 +n13898207 +n13898315 +n13898645 +n13899735 +n13900287 +n13900422 +n13901211 +n13901321 +n13901423 +n13901490 +n13901858 +n13902048 +n13902336 +n13902793 +n13903079 +n13905121 +n13905275 +n13905792 +n13906484 +n13906669 +n13906767 +n13906936 +n13907272 +n13908201 +n13908580 +n13911045 +n13912260 +n13912540 +n13914141 +n13914265 +n13914608 +n13915023 +n13915113 +n13915209 +n13915305 +n13915999 +n13916363 +n13916721 +n13917690 +n13917785 +n13918274 +n13918387 +n13918717 +n13919547 +n13919919 +n13926786 +n14131950 +n14175579 +n14564779 +n14582716 +n14583400 +n14585392 +n14592309 +n14603798 +n14633206 +n14685296 +n14696793 +n14698884 +n14714645 +n14720833 +n14765422 +n14785065 +n14786943 +n14804958 +n14810561 +n14820180 +n14821852 +n14844693 +n14853210 +n14858292 +n14867545 +n14891255 +n14899328 +n14900184 +n14900342 +n14908027 +n14909584 +n14914945 +n14915184 +n14919819 +n14938389 +n14941787 +n14942411 +n14973585 +n14974264 +n14975598 +n14976759 +n14976871 +n14977188 +n14977504 +n14992287 +n14993378 +n15005577 +n15006012 +n15019030 +n15048888 +n15060326 +n15060688 +n15062057 +n15067877 +n15075141 +n15086247 +n15089258 +n15089472 +n15089645 +n15089803 +n15090065 +n15090238 +n15090742 +n15091129 +n15091304 +n15091473 +n15091669 +n15091846 +n15092059 +n15092227 +n15092409 +n15092650 +n15092751 +n15092942 +n15093049 +n15093137 +n15093298 +n15102359 +n15102455 +n15102894 diff --git a/pytorch-image-models/timm/data/_info/imagenet22k_to_12k_indices.txt b/pytorch-image-models/timm/data/_info/imagenet22k_to_12k_indices.txt new file mode 100644 index 0000000000000000000000000000000000000000..a63bc984b90353620e5871ba816fd76da6ccb070 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet22k_to_12k_indices.txt @@ -0,0 +1,11821 @@ +1 +3 +4 +5 +6 +7 +8 +9 +10 +11 +13 +14 +15 +16 +17 +18 +19 +20 +21 +23 +24 +26 +27 +28 +29 +30 +31 +32 +33 +34 +37 +38 +41 +43 +44 +45 +46 +47 +48 +49 +50 +51 +53 +55 +56 +57 +58 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +89 +90 +91 +93 +94 +95 +96 +97 +99 +100 +101 +102 +103 +105 +107 +108 +109 +110 +111 +112 +113 +114 +115 +116 +117 +118 +119 +120 +121 +122 +123 +124 +125 +126 +127 +128 +129 +130 +131 +132 +133 +134 +135 +137 +138 +140 +141 +142 +143 +144 +146 +147 +148 +149 +151 +152 +153 +154 +156 +157 +158 +159 +161 +162 +164 +165 +166 +167 +168 +169 +170 +171 +172 +173 +175 +176 +179 +180 +181 +182 +184 +188 +192 +193 +195 +196 +197 +199 +200 +203 +206 +209 +210 +211 +212 +213 +214 +215 +216 +217 +218 +219 +220 +221 +222 +223 +224 +225 +226 +227 +230 +231 +235 +249 +250 +251 +252 +253 +254 +289 +292 +295 +301 +306 +307 +312 +313 +315 +317 +320 +324 +325 +326 +327 +332 +341 +343 +347 +352 +353 +354 +356 +359 +360 +366 +367 +368 +369 +370 +377 +379 +380 +382 +383 +384 +385 +386 +392 +395 +398 +402 +405 +408 +410 +411 +413 +415 +416 +418 +422 +423 +424 +430 +431 +440 +441 +451 +452 +455 +456 +457 +460 +461 +464 +465 +466 +468 +469 +470 +471 +472 +473 +474 +475 +477 +479 +482 +486 +489 +490 +491 +492 +493 +496 +499 +500 +502 +503 +505 +510 +511 +512 +513 +514 +515 +516 +520 +523 +524 +525 +526 +527 +528 +529 +530 +533 +536 +538 +539 +540 +541 +542 +543 +544 +545 +546 +547 +548 +549 +550 +552 +553 +554 +555 +556 +557 +558 +559 +560 +561 +562 +563 +564 +566 +567 +568 +569 +570 +571 +572 +573 +574 +575 +576 +577 +578 +580 +581 +583 +584 +585 +586 +587 +588 +589 +590 +591 +592 +595 +596 +598 +601 +602 +603 +604 +605 +607 +608 +609 +610 +611 +612 +613 +614 +615 +616 +618 +619 +620 +621 +623 +624 +628 +629 +630 +631 +632 +634 +635 +636 +637 +638 +639 +640 +641 +643 +644 +645 +646 +647 +648 +649 +650 +651 +653 +654 +655 +656 +657 +658 +659 +660 +661 +663 +664 +665 +666 +667 +668 +669 +670 +671 +672 +673 +674 +675 +677 +678 +679 +680 +681 +682 +683 +684 +685 +686 +687 +688 +689 +691 +692 +693 +694 +695 +696 +697 +698 +700 +701 +702 +703 +704 +705 +706 +707 +708 +710 +711 +713 +714 +715 +716 +717 +718 +719 +720 +721 +722 +723 +727 +728 +730 +732 +733 +734 +736 +737 +738 +739 +740 +741 +742 +743 +744 +745 +746 +747 +748 +749 +751 +752 +753 +755 +757 +758 +759 +761 +762 +763 +764 +765 +766 +767 +768 +769 +770 +773 +774 +775 +776 +777 +778 +780 +781 +782 +783 +784 +785 +786 +787 +789 +790 +791 +792 +794 +796 +798 +799 +801 +804 +805 +807 +808 +809 +810 +811 +812 +813 +816 +817 +818 +822 +823 +824 +825 +826 +827 +828 +829 +830 +831 +832 +833 +834 +835 +836 +838 +839 +840 +841 +842 +843 +845 +846 +847 +848 +849 +850 +851 +852 +853 +854 +855 +856 +857 +858 +861 +862 +863 +864 +865 +866 +867 +868 +869 +870 +871 +872 +873 +874 +875 +876 +877 +878 +879 +880 +881 +882 +883 +884 +885 +886 +887 +888 +889 +891 +892 +894 +895 +896 +897 +899 +900 +901 +903 +904 +905 +908 +909 +910 +912 +913 +916 +919 +920 +922 +925 +931 +932 +933 +934 +935 +936 +939 +941 +944 +945 +946 +947 +949 +950 +951 +952 +953 +954 +955 +958 +960 +961 +963 +964 +968 +969 +970 +971 +976 +979 +983 +986 +990 +991 +992 +993 +994 +995 +996 +997 +998 +999 +1000 +1001 +1002 +1003 +1004 +1005 +1006 +1007 +1008 +1009 +1010 +1011 +1012 +1013 +1014 +1015 +1016 +1017 +1019 +1022 +1024 +1025 +1027 +1029 +1030 +1031 +1032 +1035 +1036 +1037 +1038 +1039 +1040 +1041 +1043 +1044 +1045 +1046 +1047 +1048 +1050 +1051 +1052 +1055 +1056 +1063 +1064 +1065 +1067 +1069 +1070 +1071 +1072 +1075 +1076 +1078 +1079 +1080 +1081 +1083 +1084 +1085 +1086 +1087 +1088 +1089 +1092 +1093 +1094 +1095 +1097 +1099 +1106 +1121 +1140 +1141 +1143 +1144 +1145 +1147 +1148 +1149 +1150 +1151 +1152 +1155 +1157 +1159 +1160 +1161 +1164 +1165 +1166 +1167 +1168 +1169 +1170 +1171 +1172 +1173 +1178 +1179 +1180 +1181 +1182 +1184 +1187 +1190 +1191 +1193 +1195 +1196 +1197 +1199 +1200 +1201 +1202 +1203 +1204 +1205 +1207 +1208 +1209 +1211 +1214 +1215 +1216 +1217 +1218 +1219 +1220 +1221 +1222 +1223 +1224 +1225 +1227 +1229 +1230 +1231 +1232 +1233 +1234 +1235 +1236 +1237 +1238 +1239 +1240 +1241 +1242 +1244 +1245 +1246 +1247 +1249 +1250 +1251 +1252 +1253 +1254 +1256 +1257 +1258 +1259 +1260 +1261 +1263 +1265 +1266 +1267 +1268 +1269 +1271 +1272 +1273 +1274 +1277 +1279 +1283 +1287 +1289 +1298 +1299 +1303 +1304 +1305 +1308 +1313 +1318 +1320 +1323 +1324 +1325 +1326 +1327 +1328 +1330 +1332 +1333 +1335 +1337 +1339 +1340 +1341 +1342 +1343 +1344 +1345 +1349 +1350 +1351 +1352 +1353 +1354 +1355 +1356 +1357 +1358 +1359 +1362 +1364 +1369 +1372 +1373 +1376 +1377 +1378 +1380 +1382 +1384 +1385 +1386 +1387 +1388 +1389 +1390 +1391 +1392 +1393 +1396 +1397 +1398 +1399 +1402 +1404 +1405 +1406 +1407 +1408 +1409 +1411 +1412 +1413 +1416 +1417 +1420 +1424 +1425 +1426 +1427 +1428 +1429 +1430 +1431 +1432 +1433 +1434 +1435 +1436 +1437 +1439 +1440 +1442 +1443 +1445 +1446 +1448 +1450 +1452 +1454 +1455 +1457 +1458 +1459 +1460 +1461 +1462 +1463 +1464 +1466 +1469 +1470 +1474 +1475 +1476 +1477 +1482 +1485 +1486 +1487 +1488 +1489 +1491 +1493 +1494 +1495 +1496 +1497 +1499 +1500 +1502 +1503 +1504 +1505 +1506 +1508 +1509 +1511 +1512 +1513 +1514 +1515 +1516 +1517 +1518 +1519 +1520 +1521 +1522 +1523 +1524 +1525 +1526 +1527 +1528 +1529 +1530 +1531 +1532 +1533 +1534 +1535 +1536 +1537 +1538 +1539 +1540 +1541 +1542 +1543 +1544 +1545 +1546 +1547 +1548 +1549 +1550 +1551 +1552 +1553 +1554 +1555 +1556 +1557 +1558 +1559 +1560 +1561 +1562 +1563 +1564 +1565 +1566 +1567 +1568 +1569 +1570 +1571 +1572 +1573 +1574 +1575 +1576 +1577 +1578 +1582 +1583 +1584 +1586 +1587 +1588 +1589 +1590 +1591 +1592 +1594 +1595 +1597 +1598 +1599 +1600 +1603 +1604 +1605 +1611 +1614 +1615 +1616 +1622 +1624 +1626 +1627 +1628 +1629 +1630 +1631 +1632 +1633 +1634 +1636 +1643 +1644 +1652 +1656 +1659 +1662 +1663 +1665 +1667 +1668 +1669 +1671 +1672 +1679 +1681 +1688 +1692 +1693 +1694 +1695 +1696 +1697 +1698 +1700 +1701 +1702 +1703 +1704 +1709 +1712 +1716 +1729 +1739 +1742 +1747 +1748 +1750 +1754 +1755 +1757 +1758 +1759 +1760 +1761 +1762 +1764 +1767 +1770 +1771 +1773 +1774 +1777 +1778 +1779 +1782 +1783 +1784 +1786 +1787 +1788 +1789 +1790 +1791 +1792 +1793 +1795 +1797 +1798 +1799 +1800 +1803 +1806 +1808 +1809 +1810 +1811 +1814 +1815 +1822 +1824 +1825 +1827 +1831 +1833 +1835 +1836 +1837 +1841 +1842 +1847 +1848 +1850 +1852 +1853 +1854 +1856 +1859 +1860 +1861 +1862 +1864 +1865 +1867 +1874 +1876 +1877 +1878 +1881 +1884 +1891 +1892 +1893 +1895 +1896 +1897 +1898 +1899 +1900 +1901 +1902 +1903 +1904 +1905 +1906 +1907 +1908 +1909 +1910 +1911 +1912 +1913 +1914 +1915 +1916 +1917 +1918 +1919 +1920 +1921 +1922 +1923 +1924 +1925 +1926 +1927 +1928 +1929 +1930 +1931 +1932 +1933 +1934 +1935 +1936 +1937 +1938 +1939 +1940 +1942 +1943 +1944 +1945 +1946 +1947 +1948 +1949 +1950 +1951 +1952 +1953 +1954 +1956 +1959 +1961 +1962 +1963 +1964 +1965 +1966 +1967 +1968 +1969 +1970 +1971 +1972 +1973 +1974 +1975 +1976 +1977 +1978 +1979 +1980 +1981 +1982 +1983 +1984 +1985 +1986 +1987 +1988 +1990 +1992 +1993 +1995 +1996 +1997 +1998 +1999 +2001 +2002 +2004 +2005 +2007 +2008 +2009 +2010 +2011 +2014 +2016 +2017 +2018 +2019 +2021 +2022 +2023 +2026 +2028 +2029 +2030 +2031 +2032 +2033 +2034 +2035 +2036 +2037 +2038 +2039 +2040 +2041 +2042 +2043 +2044 +2045 +2046 +2047 +2048 +2049 +2050 +2051 +2052 +2053 +2054 +2055 +2056 +2058 +2060 +2061 +2062 +2063 +2064 +2065 +2067 +2068 +2069 +2070 +2071 +2072 +2073 +2074 +2075 +2076 +2077 +2078 +2079 +2080 +2081 +2082 +2083 +2084 +2085 +2087 +2088 +2090 +2093 +2094 +2095 +2096 +2100 +2101 +2102 +2103 +2104 +2106 +2107 +2108 +2109 +2110 +2112 +2113 +2114 +2118 +2119 +2120 +2121 +2122 +2123 +2124 +2128 +2129 +2130 +2132 +2134 +2135 +2137 +2138 +2139 +2140 +2141 +2142 +2143 +2144 +2145 +2146 +2147 +2148 +2149 +2150 +2151 +2152 +2153 +2154 +2155 +2156 +2158 +2159 +2163 +2164 +2165 +2167 +2168 +2169 +2172 +2173 +2174 +2176 +2177 +2178 +2180 +2181 +2182 +2183 +2184 +2185 +2187 +2188 +2189 +2190 +2191 +2192 +2193 +2195 +2198 +2199 +2200 +2203 +2206 +2207 +2208 +2209 +2210 +2211 +2212 +2213 +2214 +2216 +2217 +2219 +2220 +2221 +2222 +2223 +2224 +2225 +2226 +2227 +2228 +2229 +2230 +2231 +2232 +2233 +2234 +2236 +2237 +2238 +2239 +2240 +2241 +2242 +2243 +2244 +2245 +2246 +2247 +2248 +2249 +2250 +2251 +2252 +2253 +2255 +2256 +2257 +2258 +2259 +2260 +2261 +2262 +2263 +2264 +2265 +2266 +2267 +2268 +2269 +2270 +2271 +2272 +2273 +2274 +2275 +2276 +2278 +2279 +2280 +2281 +2282 +2283 +2285 +2287 +2288 +2289 +2291 +2292 +2293 +2294 +2295 +2296 +2297 +2298 +2299 +2300 +2301 +2302 +2303 +2304 +2305 +2306 +2307 +2308 +2309 +2310 +2311 +2312 +2313 +2314 +2315 +2316 +2317 +2318 +2319 +2320 +2321 +2322 +2326 +2328 +2329 +2330 +2331 +2332 +2334 +2335 +2336 +2337 +2338 +2339 +2340 +2341 +2342 +2343 +2344 +2345 +2347 +2348 +2349 +2350 +2351 +2352 +2353 +2356 +2357 +2358 +2359 +2360 +2362 +2363 +2364 +2365 +2368 +2369 +2370 +2372 +2374 +2377 +2380 +2381 +2382 +2383 +2385 +2386 +2387 +2388 +2389 +2390 +2391 +2392 +2393 +2395 +2396 +2397 +2398 +2399 +2400 +2401 +2402 +2403 +2404 +2405 +2407 +2408 +2409 +2410 +2411 +2412 +2413 +2416 +2417 +2419 +2420 +2421 +2422 +2423 +2424 +2425 +2426 +2427 +2428 +2430 +2431 +2432 +2433 +2434 +2436 +2437 +2438 +2439 +2441 +2444 +2445 +2447 +2448 +2449 +2450 +2452 +2453 +2454 +2456 +2459 +2461 +2463 +2465 +2469 +2470 +2471 +2472 +2473 +2474 +2494 +2495 +2497 +2498 +2499 +2500 +2505 +2509 +2512 +2513 +2515 +2519 +2520 +2522 +2523 +2525 +2526 +2528 +2530 +2531 +2532 +2533 +2534 +2536 +2537 +2538 +2540 +2542 +2544 +2545 +2547 +2548 +2549 +2557 +2558 +2561 +2562 +2563 +2565 +2567 +2568 +2569 +2570 +2571 +2572 +2573 +2578 +2587 +2588 +2589 +2590 +2595 +2597 +2598 +2609 +2612 +2613 +2615 +2616 +2617 +2618 +2625 +2626 +2627 +2628 +2630 +2631 +2635 +2638 +2639 +2641 +2642 +2644 +2645 +2649 +2654 +2655 +2656 +2658 +2659 +2660 +2663 +2664 +2665 +2666 +2668 +2669 +2670 +2672 +2674 +2675 +2677 +2679 +2680 +2681 +2682 +2683 +2684 +2686 +2689 +2691 +2692 +2693 +2694 +2696 +2699 +2702 +2705 +2706 +2707 +2708 +2712 +2715 +2722 +2723 +2724 +2725 +2727 +2728 +2730 +2731 +2732 +2734 +2737 +2738 +2739 +2741 +2742 +2743 +2745 +2747 +2748 +2749 +2750 +2752 +2760 +2761 +2762 +2764 +2767 +2770 +2774 +2778 +2780 +2791 +2795 +2796 +2805 +2810 +2812 +2814 +2815 +2818 +2820 +2828 +2829 +2832 +2833 +2835 +2837 +2840 +2843 +2844 +2845 +2852 +2859 +2860 +2861 +2862 +2863 +2864 +2865 +2866 +2867 +2868 +2869 +2870 +2871 +2872 +2874 +2875 +2876 +2878 +2879 +2880 +2881 +2882 +2884 +2885 +2886 +2888 +2889 +2890 +2891 +2892 +2893 +2894 +2895 +2897 +2899 +2900 +2903 +2904 +2907 +2910 +2913 +2914 +2916 +2923 +2926 +2932 +2933 +2940 +2944 +2945 +2947 +2949 +2950 +2953 +2955 +2956 +2957 +2958 +2959 +2960 +2963 +2964 +2967 +2970 +2974 +2976 +2979 +2980 +2982 +2984 +2985 +2989 +2990 +2991 +2992 +2993 +2994 +2996 +2999 +3000 +3002 +3005 +3007 +3008 +3009 +3010 +3012 +3013 +3014 +3018 +3019 +3020 +3022 +3024 +3025 +3026 +3027 +3028 +3029 +3030 +3033 +3035 +3036 +3039 +3040 +3042 +3043 +3046 +3047 +3048 +3051 +3053 +3055 +3056 +3059 +3060 +3067 +3069 +3074 +3079 +3086 +3088 +3091 +3093 +3094 +3106 +3111 +3117 +3125 +3129 +3134 +3135 +3136 +3137 +3138 +3139 +3140 +3141 +3142 +3143 +3144 +3145 +3146 +3148 +3149 +3150 +3151 +3153 +3154 +3159 +3160 +3161 +3164 +3165 +3166 +3168 +3169 +3170 +3171 +3172 +3173 +3176 +3177 +3182 +3188 +3191 +3192 +3193 +3194 +3195 +3196 +3200 +3201 +3202 +3203 +3204 +3205 +3206 +3207 +3208 +3209 +3210 +3214 +3218 +3219 +3220 +3221 +3222 +3223 +3225 +3226 +3227 +3228 +3229 +3230 +3231 +3232 +3234 +3235 +3236 +3237 +3238 +3239 +3240 +3241 +3242 +3243 +3244 +3245 +3246 +3247 +3248 +3253 +3258 +3259 +3260 +3261 +3262 +3264 +3265 +3266 +3267 +3268 +3270 +3271 +3273 +3274 +3277 +3278 +3279 +3280 +3281 +3282 +3283 +3284 +3285 +3288 +3289 +3291 +3292 +3296 +3297 +3298 +3299 +3301 +3302 +3304 +3305 +3306 +3307 +3308 +3309 +3310 +3311 +3312 +3315 +3316 +3318 +3320 +3321 +3322 +3324 +3325 +3327 +3328 +3329 +3330 +3332 +3333 +3334 +3335 +3337 +3339 +3340 +3341 +3342 +3343 +3344 +3345 +3348 +3349 +3351 +3352 +3353 +3354 +3355 +3356 +3358 +3360 +3361 +3362 +3363 +3365 +3366 +3368 +3371 +3373 +3375 +3376 +3377 +3378 +3379 +3380 +3381 +3382 +3383 +3384 +3389 +3390 +3392 +3397 +3398 +3400 +3401 +3404 +3405 +3406 +3407 +3408 +3409 +3410 +3411 +3412 +3413 +3415 +3416 +3417 +3419 +3421 +3424 +3425 +3426 +3427 +3428 +3429 +3430 +3431 +3432 +3433 +3434 +3435 +3436 +3438 +3439 +3440 +3441 +3444 +3446 +3448 +3450 +3451 +3452 +3454 +3455 +3456 +3458 +3459 +3461 +3462 +3463 +3466 +3467 +3468 +3469 +3471 +3472 +3473 +3474 +3475 +3476 +3477 +3478 +3479 +3481 +3482 +3485 +3492 +3493 +3494 +3495 +3497 +3498 +3499 +3500 +3501 +3502 +3503 +3505 +3509 +3510 +3511 +3512 +3513 +3517 +3518 +3519 +3520 +3521 +3522 +3526 +3527 +3528 +3533 +3536 +3544 +3546 +3547 +3553 +3554 +3555 +3556 +3559 +3560 +3562 +3563 +3565 +3566 +3567 +3568 +3569 +3574 +3575 +3576 +3584 +3585 +3587 +3599 +3600 +3601 +3602 +3603 +3604 +3605 +3606 +3608 +3609 +3610 +3612 +3613 +3614 +3615 +3616 +3619 +3622 +3623 +3624 +3625 +3627 +3628 +3629 +3630 +3632 +3633 +3634 +3635 +3636 +3638 +3640 +3641 +3644 +3646 +3649 +3650 +3651 +3655 +3656 +3659 +3660 +3662 +3663 +3665 +3671 +3673 +3674 +3683 +3684 +3686 +3687 +3688 +3689 +3690 +3692 +3694 +3695 +3702 +3705 +3707 +3709 +3711 +3714 +3715 +3716 +3720 +3725 +3727 +3731 +3733 +3736 +3737 +3738 +3744 +3746 +3747 +3750 +3753 +3756 +3758 +3761 +3763 +3764 +3765 +3766 +3767 +3768 +3769 +3770 +3771 +3772 +3773 +3774 +3775 +3782 +3785 +3787 +3790 +3798 +3801 +3803 +3812 +3814 +3815 +3816 +3817 +3818 +3819 +3825 +3826 +3827 +3828 +3829 +3832 +3833 +3836 +3837 +3838 +3840 +3842 +3844 +3845 +3846 +3852 +3853 +3854 +3855 +3858 +3860 +3864 +3865 +3867 +3868 +3873 +3874 +3877 +3882 +3883 +3884 +3887 +3888 +3889 +3890 +3894 +3899 +3900 +3901 +3902 +3904 +3908 +3910 +3916 +3918 +3920 +3925 +3928 +3936 +3937 +3939 +3943 +3947 +3948 +3949 +3950 +3951 +3956 +3962 +3963 +3968 +3969 +3970 +3971 +3972 +3974 +3975 +3976 +3977 +3984 +3986 +3988 +3991 +4001 +4005 +4006 +4007 +4009 +4018 +4019 +4020 +4021 +4022 +4023 +4024 +4026 +4028 +4030 +4031 +4032 +4033 +4036 +4038 +4039 +4040 +4041 +4042 +4043 +4062 +4063 +4065 +4066 +4067 +4068 +4071 +4073 +4074 +4075 +4089 +4090 +4094 +4096 +4097 +4099 +4100 +4101 +4102 +4104 +4105 +4107 +4109 +4110 +4112 +4118 +4120 +4129 +4136 +4137 +4138 +4139 +4140 +4141 +4142 +4143 +4144 +4148 +4150 +4151 +4152 +4153 +4154 +4155 +4158 +4159 +4161 +4165 +4167 +4171 +4174 +4176 +4178 +4179 +4181 +4182 +4183 +4185 +4187 +4189 +4190 +4191 +4192 +4198 +4202 +4203 +4204 +4205 +4206 +4207 +4208 +4210 +4211 +4212 +4213 +4214 +4215 +4216 +4217 +4219 +4221 +4222 +4223 +4226 +4227 +4230 +4232 +4233 +4235 +4237 +4242 +4244 +4248 +4249 +4250 +4251 +4252 +4253 +4254 +4255 +4256 +4259 +4261 +4262 +4263 +4264 +4265 +4266 +4267 +4269 +4270 +4272 +4273 +4274 +4276 +4277 +4278 +4280 +4281 +4282 +4283 +4284 +4285 +4290 +4292 +4296 +4297 +4298 +4299 +4301 +4304 +4306 +4307 +4308 +4309 +4310 +4311 +4312 +4313 +4315 +4317 +4318 +4321 +4323 +4324 +4325 +4326 +4327 +4328 +4329 +4330 +4331 +4332 +4334 +4335 +4336 +4338 +4340 +4341 +4344 +4345 +4346 +4349 +4350 +4351 +4352 +4354 +4355 +4356 +4358 +4361 +4362 +4363 +4365 +4366 +4369 +4373 +4374 +4378 +4379 +4380 +4386 +4389 +4390 +4391 +4395 +4396 +4399 +4400 +4401 +4403 +4404 +4406 +4407 +4408 +4410 +4412 +4414 +4416 +4417 +4418 +4419 +4420 +4421 +4423 +4425 +4426 +4427 +4428 +4430 +4431 +4432 +4434 +4435 +4436 +4438 +4439 +4440 +4441 +4442 +4444 +4445 +4450 +4451 +4453 +4454 +4455 +4456 +4458 +4459 +4462 +4463 +4464 +4465 +4466 +4467 +4468 +4469 +4470 +4471 +4473 +4474 +4475 +4476 +4477 +4478 +4479 +4481 +4483 +4484 +4485 +4486 +4487 +4489 +4490 +4491 +4493 +4494 +4495 +4496 +4497 +4498 +4499 +4500 +4501 +4504 +4505 +4506 +4508 +4509 +4510 +4511 +4512 +4515 +4518 +4519 +4521 +4522 +4529 +4530 +4531 +4533 +4536 +4538 +4539 +4540 +4542 +4543 +4544 +4545 +4546 +4547 +4549 +4550 +4551 +4552 +4555 +4556 +4559 +4560 +4561 +4562 +4565 +4567 +4568 +4569 +4570 +4571 +4572 +4574 +4576 +4577 +4579 +4580 +4583 +4585 +4587 +4588 +4591 +4594 +4595 +4596 +4599 +4600 +4603 +4604 +4605 +4606 +4608 +4609 +4610 +4611 +4612 +4613 +4614 +4617 +4618 +4619 +4620 +4621 +4622 +4623 +4624 +4625 +4626 +4627 +4628 +4629 +4631 +4632 +4633 +4634 +4635 +4636 +4639 +4640 +4641 +4642 +4646 +4647 +4648 +4649 +4650 +4651 +4652 +4655 +4656 +4662 +4663 +4664 +4665 +4666 +4667 +4668 +4669 +4670 +4671 +4672 +4676 +4677 +4678 +4679 +4680 +4681 +4683 +4685 +4686 +4687 +4688 +4690 +4691 +4692 +4694 +4695 +4696 +4699 +4702 +4705 +4708 +4709 +4710 +4711 +4712 +4714 +4715 +4716 +4717 +4719 +4722 +4723 +4724 +4725 +4726 +4727 +4728 +4729 +4730 +4732 +4733 +4734 +4736 +4737 +4739 +4740 +4743 +4746 +4748 +4750 +4751 +4752 +4756 +4758 +4759 +4760 +4761 +4762 +4768 +4770 +4771 +4773 +4774 +4775 +4777 +4778 +4779 +4780 +4781 +4783 +4789 +4790 +4793 +4795 +4797 +4798 +4799 +4800 +4801 +4802 +4804 +4806 +4807 +4808 +4812 +4813 +4814 +4815 +4816 +4818 +4819 +4824 +4829 +4831 +4833 +4836 +4837 +4839 +4840 +4842 +4843 +4844 +4847 +4848 +4849 +4851 +4852 +4853 +4854 +4855 +4860 +4861 +4863 +4864 +4865 +4866 +4867 +4869 +4871 +4874 +4875 +4877 +4878 +4879 +4880 +4883 +4884 +4885 +4886 +4887 +4888 +4890 +4894 +4895 +4896 +4897 +4900 +4901 +4903 +4905 +4906 +4908 +4909 +4910 +4912 +4913 +4916 +4917 +4921 +4922 +4923 +4924 +4925 +4926 +4927 +4928 +4929 +4931 +4932 +4933 +4934 +4935 +4936 +4938 +4939 +4940 +4941 +4942 +4943 +4945 +4946 +4947 +4950 +4951 +4953 +4957 +4958 +4960 +4961 +4964 +4965 +4967 +4968 +4970 +4972 +4973 +4976 +4977 +4978 +4979 +4980 +4981 +4982 +4984 +4985 +4986 +4987 +4989 +4990 +4991 +4993 +4994 +4998 +4999 +5001 +5002 +5003 +5004 +5005 +5007 +5008 +5009 +5011 +5012 +5016 +5017 +5020 +5021 +5022 +5023 +5025 +5026 +5027 +5028 +5029 +5031 +5033 +5034 +5037 +5038 +5039 +5041 +5042 +5043 +5046 +5047 +5048 +5051 +5055 +5057 +5060 +5061 +5062 +5063 +5064 +5065 +5068 +5071 +5072 +5073 +5076 +5078 +5079 +5081 +5083 +5084 +5086 +5088 +5090 +5091 +5092 +5093 +5094 +5096 +5098 +5100 +5101 +5102 +5104 +5105 +5109 +5111 +5112 +5114 +5115 +5117 +5119 +5120 +5121 +5122 +5123 +5124 +5125 +5126 +5127 +5129 +5130 +5131 +5132 +5133 +5134 +5135 +5137 +5138 +5139 +5141 +5142 +5143 +5144 +5146 +5148 +5149 +5151 +5153 +5154 +5156 +5157 +5158 +5162 +5163 +5165 +5167 +5168 +5172 +5174 +5175 +5176 +5178 +5179 +5180 +5181 +5183 +5184 +5185 +5186 +5187 +5189 +5191 +5193 +5195 +5196 +5198 +5199 +5201 +5202 +5203 +5204 +5205 +5206 +5207 +5208 +5209 +5210 +5211 +5212 +5213 +5215 +5216 +5217 +5218 +5219 +5221 +5222 +5223 +5224 +5225 +5226 +5227 +5231 +5234 +5235 +5237 +5239 +5240 +5247 +5248 +5249 +5250 +5253 +5254 +5255 +5256 +5258 +5259 +5264 +5265 +5266 +5267 +5269 +5270 +5272 +5273 +5275 +5277 +5278 +5282 +5284 +5288 +5290 +5291 +5292 +5293 +5294 +5295 +5296 +5297 +5298 +5299 +5300 +5301 +5302 +5306 +5307 +5311 +5312 +5313 +5314 +5315 +5316 +5317 +5319 +5320 +5321 +5322 +5323 +5326 +5328 +5329 +5330 +5331 +5332 +5333 +5334 +5335 +5336 +5338 +5339 +5340 +5341 +5343 +5344 +5345 +5346 +5347 +5348 +5353 +5357 +5358 +5360 +5362 +5363 +5364 +5369 +5372 +5373 +5375 +5377 +5378 +5379 +5381 +5385 +5386 +5387 +5388 +5389 +5390 +5391 +5392 +5393 +5395 +5398 +5399 +5400 +5401 +5402 +5403 +5406 +5407 +5410 +5411 +5412 +5413 +5417 +5418 +5419 +5420 +5421 +5422 +5423 +5425 +5426 +5427 +5428 +5429 +5430 +5431 +5432 +5434 +5435 +5437 +5439 +5441 +5443 +5444 +5445 +5446 +5447 +5448 +5450 +5451 +5454 +5455 +5456 +5461 +5463 +5466 +5467 +5471 +5472 +5473 +5474 +5475 +5476 +5477 +5478 +5481 +5482 +5483 +5484 +5485 +5486 +5487 +5488 +5489 +5491 +5493 +5494 +5495 +5496 +5497 +5498 +5499 +5501 +5503 +5504 +5505 +5506 +5507 +5508 +5510 +5511 +5514 +5515 +5517 +5519 +5520 +5521 +5522 +5524 +5529 +5530 +5531 +5532 +5535 +5538 +5540 +5541 +5542 +5544 +5547 +5548 +5549 +5550 +5551 +5552 +5553 +5554 +5555 +5557 +5561 +5563 +5564 +5565 +5566 +5567 +5568 +5569 +5570 +5572 +5574 +5575 +5576 +5577 +5578 +5579 +5580 +5583 +5584 +5586 +5590 +5591 +5592 +5593 +5594 +5595 +5596 +5597 +5598 +5603 +5604 +5606 +5607 +5608 +5609 +5610 +5612 +5613 +5614 +5615 +5617 +5619 +5620 +5621 +5622 +5623 +5624 +5625 +5626 +5627 +5629 +5630 +5631 +5633 +5634 +5635 +5636 +5638 +5639 +5642 +5643 +5647 +5652 +5654 +5656 +5657 +5658 +5659 +5660 +5661 +5663 +5664 +5665 +5667 +5669 +5671 +5672 +5673 +5674 +5676 +5677 +5682 +5683 +5685 +5688 +5690 +5691 +5692 +5694 +5695 +5696 +5697 +5698 +5699 +5701 +5702 +5703 +5704 +5705 +5708 +5709 +5711 +5712 +5713 +5714 +5715 +5716 +5717 +5718 +5725 +5727 +5729 +5736 +5737 +5738 +5741 +5742 +5743 +5748 +5752 +5753 +5754 +5755 +5757 +5758 +5759 +5760 +5761 +5764 +5765 +5766 +5767 +5768 +5769 +5770 +5772 +5773 +5774 +5776 +5777 +5778 +5779 +5782 +5784 +5785 +5786 +5787 +5788 +5789 +5790 +5791 +5792 +5793 +5797 +5798 +5802 +5803 +5804 +5805 +5807 +5808 +5809 +5810 +5811 +5812 +5814 +5816 +5817 +5818 +5823 +5824 +5825 +5828 +5829 +5830 +5831 +5832 +5836 +5837 +5841 +5843 +5845 +5846 +5847 +5848 +5849 +5850 +5851 +5853 +5855 +5857 +5858 +5859 +5860 +5861 +5862 +5863 +5866 +5867 +5868 +5871 +5872 +5873 +5874 +5875 +5879 +5881 +5884 +5885 +5887 +5888 +5891 +5892 +5893 +5896 +5897 +5898 +5899 +5900 +5902 +5904 +5905 +5906 +5907 +5910 +5911 +5912 +5913 +5914 +5915 +5918 +5919 +5920 +5921 +5922 +5924 +5927 +5928 +5931 +5932 +5934 +5935 +5940 +5941 +5942 +5944 +5947 +5949 +5950 +5951 +5952 +5954 +5955 +5956 +5957 +5960 +5961 +5962 +5964 +5965 +5967 +5968 +5969 +5973 +5974 +5976 +5977 +5980 +5981 +5985 +5986 +5987 +5988 +5990 +5991 +5994 +5995 +5996 +5997 +5998 +5999 +6001 +6003 +6004 +6005 +6006 +6008 +6009 +6010 +6012 +6013 +6015 +6016 +6017 +6020 +6021 +6023 +6024 +6025 +6026 +6027 +6028 +6029 +6030 +6032 +6033 +6037 +6040 +6041 +6042 +6043 +6044 +6046 +6047 +6048 +6049 +6050 +6054 +6055 +6056 +6057 +6063 +6065 +6069 +6070 +6072 +6075 +6076 +6077 +6079 +6082 +6083 +6084 +6086 +6087 +6092 +6099 +6102 +6103 +6105 +6109 +6110 +6111 +6114 +6115 +6116 +6118 +6120 +6122 +6124 +6125 +6128 +6129 +6134 +6139 +6140 +6144 +6146 +6147 +6148 +6152 +6153 +6154 +6157 +6158 +6160 +6167 +6168 +6173 +6174 +6175 +6177 +6179 +6180 +6184 +6190 +6191 +6192 +6198 +6201 +6202 +6203 +6204 +6205 +6207 +6210 +6211 +6212 +6214 +6215 +6216 +6217 +6219 +6224 +6225 +6226 +6227 +6228 +6230 +6232 +6234 +6235 +6236 +6237 +6238 +6239 +6241 +6242 +6243 +6248 +6251 +6252 +6253 +6255 +6256 +6259 +6260 +6262 +6266 +6270 +6272 +6273 +6274 +6275 +6281 +6284 +6285 +6286 +6288 +6289 +6290 +6291 +6294 +6297 +6298 +6299 +6300 +6301 +6302 +6303 +6304 +6305 +6306 +6307 +6308 +6309 +6312 +6315 +6319 +6321 +6325 +6326 +6327 +6330 +6331 +6334 +6335 +6336 +6338 +6339 +6340 +6341 +6342 +6343 +6344 +6345 +6347 +6348 +6349 +6350 +6352 +6355 +6356 +6359 +6362 +6363 +6364 +6365 +6367 +6372 +6376 +6378 +6379 +6383 +6385 +6386 +6387 +6388 +6389 +6390 +6392 +6393 +6394 +6395 +6396 +6397 +6398 +6399 +6400 +6401 +6404 +6405 +6407 +6408 +6411 +6412 +6414 +6417 +6418 +6420 +6421 +6422 +6423 +6425 +6426 +6430 +6431 +6433 +6435 +6437 +6439 +6440 +6441 +6442 +6444 +6447 +6448 +6449 +6450 +6451 +6452 +6453 +6454 +6455 +6456 +6458 +6459 +6460 +6462 +6464 +6465 +6467 +6468 +6469 +6470 +6471 +6474 +6475 +6477 +6478 +6479 +6480 +6481 +6482 +6483 +6488 +6490 +6492 +6493 +6495 +6496 +6499 +6500 +6503 +6505 +6506 +6510 +6511 +6513 +6514 +6515 +6517 +6518 +6521 +6522 +6523 +6527 +6531 +6533 +6534 +6535 +6536 +6537 +6540 +6541 +6545 +6546 +6547 +6550 +6551 +6553 +6554 +6556 +6558 +6559 +6560 +6561 +6562 +6563 +6567 +6568 +6571 +6572 +6573 +6574 +6575 +6576 +6577 +6578 +6579 +6583 +6587 +6589 +6590 +6591 +6593 +6594 +6595 +6596 +6597 +6598 +6600 +6601 +6602 +6604 +6605 +6608 +6611 +6612 +6613 +6614 +6615 +6616 +6617 +6618 +6619 +6620 +6621 +6622 +6623 +6629 +6632 +6636 +6638 +6639 +6640 +6643 +6648 +6649 +6651 +6653 +6654 +6655 +6658 +6660 +6661 +6662 +6663 +6665 +6667 +6668 +6669 +6670 +6673 +6674 +6675 +6676 +6677 +6678 +6679 +6681 +6682 +6683 +6686 +6687 +6691 +6692 +6693 +6694 +6695 +6696 +6698 +6700 +6702 +6703 +6705 +6706 +6707 +6708 +6709 +6710 +6712 +6713 +6715 +6716 +6718 +6720 +6721 +6722 +6723 +6725 +6726 +6728 +6735 +6737 +6739 +6740 +6741 +6743 +6744 +6745 +6746 +6747 +6748 +6749 +6751 +6752 +6753 +6754 +6757 +6758 +6763 +6764 +6765 +6766 +6767 +6768 +6770 +6772 +6773 +6774 +6775 +6776 +6778 +6779 +6781 +6783 +6784 +6785 +6786 +6787 +6788 +6791 +6794 +6795 +6797 +6798 +6799 +6800 +6804 +6805 +6806 +6807 +6808 +6809 +6810 +6813 +6814 +6815 +6820 +6822 +6823 +6825 +6826 +6829 +6830 +6831 +6833 +6834 +6837 +6838 +6840 +6841 +6846 +6847 +6850 +6851 +6855 +6857 +6858 +6860 +6863 +6864 +6865 +6866 +6867 +6868 +6870 +6875 +6876 +6877 +6878 +6879 +6880 +6882 +6885 +6886 +6887 +6889 +6890 +6892 +6894 +6898 +6900 +6901 +6902 +6905 +6908 +6909 +6912 +6915 +6916 +6917 +6919 +6920 +6925 +6926 +6928 +6929 +6930 +6931 +6932 +6934 +6935 +6936 +6937 +6939 +6940 +6941 +6944 +6945 +6946 +6950 +6951 +6952 +6953 +6954 +6956 +6958 +6959 +6960 +6961 +6964 +6965 +6966 +6968 +6969 +6973 +6974 +6978 +6980 +6981 +6982 +6985 +6986 +6987 +6990 +6991 +6993 +6994 +6995 +6996 +6997 +6998 +6999 +7000 +7002 +7003 +7004 +7009 +7010 +7011 +7013 +7017 +7018 +7019 +7025 +7026 +7029 +7031 +7038 +7039 +7041 +7042 +7044 +7045 +7046 +7048 +7049 +7050 +7051 +7052 +7055 +7056 +7057 +7059 +7062 +7063 +7064 +7066 +7068 +7069 +7072 +7073 +7075 +7076 +7077 +7078 +7079 +7081 +7082 +7083 +7084 +7085 +7087 +7088 +7090 +7091 +7092 +7093 +7095 +7096 +7097 +7098 +7099 +7100 +7101 +7103 +7104 +7107 +7108 +7110 +7111 +7112 +7113 +7115 +7116 +7117 +7118 +7120 +7121 +7122 +7123 +7126 +7127 +7128 +7129 +7134 +7135 +7136 +7137 +7138 +7142 +7150 +7152 +7153 +7154 +7155 +7156 +7158 +7160 +7161 +7162 +7163 +7164 +7165 +7166 +7167 +7168 +7169 +7170 +7171 +7172 +7173 +7175 +7176 +7177 +7178 +7180 +7181 +7182 +7183 +7186 +7189 +7192 +7193 +7194 +7195 +7196 +7198 +7199 +7200 +7201 +7202 +7203 +7204 +7205 +7206 +7207 +7208 +7212 +7213 +7214 +7215 +7216 +7217 +7218 +7219 +7220 +7222 +7223 +7224 +7225 +7226 +7228 +7230 +7231 +7232 +7237 +7238 +7239 +7241 +7242 +7243 +7244 +7245 +7246 +7247 +7250 +7254 +7256 +7257 +7258 +7259 +7260 +7261 +7263 +7264 +7266 +7267 +7268 +7270 +7271 +7273 +7276 +7277 +7278 +7279 +7280 +7282 +7283 +7284 +7285 +7286 +7287 +7288 +7289 +7290 +7291 +7292 +7293 +7294 +7297 +7299 +7301 +7302 +7305 +7306 +7307 +7309 +7310 +7313 +7314 +7315 +7316 +7317 +7318 +7319 +7321 +7322 +7323 +7324 +7325 +7326 +7327 +7329 +7332 +7333 +7334 +7335 +7336 +7337 +7338 +7340 +7341 +7342 +7344 +7346 +7348 +7349 +7350 +7353 +7354 +7357 +7358 +7363 +7364 +7365 +7370 +7372 +7373 +7375 +7378 +7379 +7380 +7382 +7385 +7386 +7388 +7390 +7391 +7393 +7394 +7396 +7400 +7403 +7406 +7412 +7418 +7419 +7420 +7422 +7424 +7425 +7427 +7428 +7432 +7435 +7436 +7437 +7438 +7440 +7441 +7442 +7443 +7445 +7449 +7450 +7451 +7452 +7454 +7455 +7458 +7459 +7460 +7461 +7462 +7463 +7464 +7465 +7466 +7467 +7469 +7470 +7471 +7472 +7473 +7474 +7475 +7476 +7478 +7479 +7482 +7484 +7485 +7486 +7491 +7492 +7494 +7496 +7497 +7498 +7502 +7503 +7504 +7505 +7506 +7507 +7511 +7513 +7514 +7516 +7517 +7518 +7520 +7521 +7523 +7524 +7525 +7526 +7528 +7530 +7533 +7536 +7539 +7540 +7541 +7542 +7546 +7548 +7551 +7552 +7554 +7556 +7557 +7558 +7559 +7561 +7562 +7563 +7564 +7565 +7566 +7567 +7568 +7570 +7571 +7573 +7574 +7575 +7578 +7584 +7585 +7587 +7590 +7591 +7592 +7595 +7596 +7597 +7601 +7603 +7604 +7606 +7607 +7608 +7610 +7612 +7613 +7616 +7617 +7619 +7622 +7623 +7625 +7626 +7628 +7629 +7630 +7631 +7634 +7637 +7638 +7641 +7642 +7644 +7646 +7650 +7651 +7652 +7655 +7656 +7657 +7658 +7659 +7660 +7661 +7663 +7664 +7665 +7666 +7671 +7672 +7673 +7674 +7679 +7681 +7682 +7685 +7686 +7688 +7690 +7691 +7693 +7694 +7696 +7698 +7703 +7704 +7705 +7707 +7708 +7710 +7711 +7712 +7713 +7715 +7716 +7717 +7718 +7719 +7721 +7722 +7723 +7724 +7725 +7727 +7728 +7729 +7730 +7731 +7732 +7733 +7734 +7736 +7738 +7739 +7740 +7741 +7742 +7746 +7749 +7751 +7753 +7755 +7756 +7757 +7758 +7759 +7760 +7763 +7764 +7768 +7769 +7770 +7773 +7775 +7777 +7778 +7779 +7783 +7785 +7786 +7787 +7788 +7789 +7792 +7793 +7794 +7795 +7798 +7799 +7801 +7805 +7806 +7810 +7813 +7815 +7818 +7820 +7824 +7828 +7830 +7832 +7834 +7835 +7837 +7841 +7843 +7844 +7849 +7852 +7854 +7855 +7856 +7858 +7860 +7862 +7864 +7867 +7868 +7871 +7872 +7873 +7874 +7876 +7878 +7881 +7882 +7884 +7886 +7887 +7889 +7891 +7892 +7894 +7895 +7896 +7902 +7903 +7904 +7905 +7906 +7908 +7911 +7913 +7914 +7915 +7917 +7918 +7919 +7920 +7921 +7923 +7924 +7927 +7928 +7929 +7931 +7934 +7935 +7937 +7938 +7939 +7940 +7941 +7942 +7943 +7944 +7949 +7950 +7951 +7952 +7953 +7954 +7955 +7959 +7962 +7963 +7964 +7966 +7969 +7972 +7973 +7976 +7977 +7981 +7982 +7983 +7984 +7987 +7988 +7989 +7990 +7991 +7992 +7994 +7995 +7997 +7998 +7999 +8000 +8001 +8004 +8005 +8006 +8007 +8008 +8009 +8012 +8017 +8019 +8020 +8021 +8022 +8023 +8024 +8025 +8027 +8028 +8029 +8031 +8033 +8034 +8035 +8036 +8037 +8038 +8039 +8040 +8042 +8043 +8044 +8045 +8046 +8050 +8051 +8052 +8054 +8056 +8060 +8061 +8062 +8064 +8065 +8066 +8068 +8070 +8071 +8072 +8074 +8077 +8078 +8080 +8081 +8082 +8084 +8086 +8087 +8089 +8090 +8093 +8098 +8099 +8101 +8104 +8105 +8106 +8110 +8112 +8113 +8114 +8115 +8116 +8119 +8120 +8121 +8124 +8125 +8126 +8127 +8129 +8131 +8133 +8136 +8138 +8139 +8140 +8141 +8142 +8144 +8145 +8147 +8149 +8150 +8151 +8153 +8154 +8155 +8156 +8157 +8159 +8161 +8162 +8163 +8164 +8166 +8168 +8170 +8171 +8172 +8173 +8174 +8175 +8177 +8178 +8179 +8182 +8183 +8184 +8186 +8191 +8193 +8195 +8197 +8198 +8199 +8201 +8202 +8203 +8204 +8205 +8206 +8207 +8208 +8210 +8211 +8212 +8213 +8215 +8216 +8218 +8220 +8221 +8222 +8225 +8229 +8230 +8231 +8232 +8233 +8236 +8237 +8239 +8240 +8242 +8243 +8244 +8245 +8246 +8250 +8251 +8252 +8254 +8255 +8256 +8257 +8258 +8259 +8261 +8263 +8264 +8267 +8268 +8271 +8272 +8273 +8275 +8276 +8278 +8281 +8282 +8285 +8286 +8288 +8289 +8290 +8294 +8295 +8297 +8298 +8299 +8300 +8303 +8307 +8309 +8310 +8312 +8313 +8315 +8318 +8320 +8322 +8325 +8326 +8327 +8328 +8329 +8330 +8332 +8333 +8335 +8337 +8345 +8346 +8347 +8348 +8352 +8354 +8360 +8362 +8364 +8365 +8368 +8371 +8375 +8376 +8378 +8380 +8381 +8382 +8386 +8388 +8389 +8390 +8392 +8393 +8394 +8396 +8397 +8398 +8399 +8400 +8401 +8402 +8403 +8404 +8405 +8407 +8408 +8409 +8410 +8412 +8414 +8416 +8417 +8418 +8419 +8420 +8421 +8422 +8426 +8428 +8430 +8432 +8433 +8434 +8435 +8436 +8437 +8439 +8440 +8446 +8447 +8448 +8449 +8450 +8451 +8452 +8453 +8454 +8456 +8460 +8462 +8463 +8464 +8467 +8468 +8469 +8470 +8472 +8473 +8474 +8477 +8478 +8481 +8482 +8483 +8484 +8485 +8486 +8490 +8491 +8492 +8493 +8494 +8495 +8496 +8497 +8498 +8500 +8501 +8502 +8503 +8505 +8506 +8508 +8509 +8510 +8511 +8512 +8513 +8516 +8521 +8522 +8524 +8526 +8529 +8531 +8532 +8536 +8538 +8539 +8540 +8541 +8542 +8543 +8547 +8548 +8549 +8552 +8553 +8555 +8556 +8557 +8560 +8561 +8562 +8564 +8565 +8568 +8569 +8570 +8571 +8572 +8573 +8577 +8578 +8580 +8581 +8583 +8584 +8586 +8588 +8589 +8590 +8591 +8593 +8594 +8596 +8597 +8598 +8599 +8600 +8601 +8602 +8603 +8604 +8606 +8607 +8610 +8611 +8613 +8615 +8622 +8625 +8626 +8627 +8628 +8629 +8632 +8636 +8638 +8639 +8641 +8643 +8645 +8646 +8647 +8648 +8649 +8650 +8651 +8652 +8653 +8654 +8655 +8656 +8657 +8658 +8662 +8663 +8664 +8665 +8666 +8667 +8668 +8669 +8670 +8671 +8672 +8673 +8674 +8675 +8676 +8677 +8678 +8679 +8680 +8681 +8682 +8684 +8685 +8686 +8690 +8691 +8692 +8693 +8694 +8695 +8702 +8707 +8708 +8709 +8710 +8711 +8712 +8713 +8715 +8716 +8720 +8723 +8724 +8725 +8728 +8732 +8733 +8737 +8738 +8739 +8740 +8741 +8745 +8746 +8750 +8752 +8753 +8754 +8756 +8757 +8758 +8759 +8761 +8762 +8763 +8766 +8768 +8770 +8771 +8772 +8773 +8775 +8776 +8780 +8781 +8783 +8784 +8785 +8786 +8787 +8788 +8793 +8795 +8797 +8798 +8801 +8803 +8804 +8806 +8807 +8810 +8812 +8814 +8815 +8817 +8820 +8823 +8824 +8826 +8827 +8828 +8829 +8830 +8831 +8833 +8835 +8838 +8839 +8842 +8843 +8845 +8846 +8847 +8848 +8849 +8851 +8854 +8856 +8857 +8858 +8860 +8861 +8863 +8864 +8867 +8869 +8870 +8871 +8872 +8875 +8876 +8878 +8879 +8883 +8884 +8886 +8887 +8888 +8890 +8891 +8892 +8894 +8896 +8897 +8898 +8899 +8900 +8901 +8902 +8903 +8905 +8906 +8908 +8910 +8914 +8915 +8916 +8917 +8918 +8919 +8922 +8923 +8924 +8925 +8926 +8927 +8929 +8931 +8932 +8934 +8936 +8937 +8938 +8939 +8942 +8943 +8944 +8945 +8947 +8948 +8950 +8951 +8954 +8956 +8957 +8959 +8962 +8965 +8966 +8967 +8968 +8969 +8970 +8971 +8976 +8977 +8980 +8981 +8982 +8983 +8984 +8985 +8986 +8987 +8989 +8990 +8991 +8992 +8993 +8994 +8995 +9000 +9001 +9003 +9006 +9007 +9011 +9012 +9013 +9014 +9015 +9019 +9022 +9023 +9024 +9025 +9026 +9028 +9029 +9030 +9031 +9032 +9033 +9034 +9036 +9037 +9039 +9042 +9043 +9047 +9049 +9050 +9051 +9052 +9054 +9055 +9056 +9057 +9058 +9059 +9060 +9061 +9062 +9064 +9065 +9066 +9070 +9071 +9072 +9073 +9074 +9079 +9080 +9081 +9082 +9083 +9087 +9088 +9092 +9093 +9094 +9096 +9097 +9098 +9100 +9101 +9104 +9105 +9106 +9107 +9108 +9109 +9110 +9111 +9112 +9116 +9118 +9119 +9123 +9128 +9130 +9131 +9132 +9133 +9134 +9138 +9139 +9140 +9141 +9142 +9144 +9146 +9147 +9148 +9149 +9150 +9151 +9153 +9154 +9155 +9158 +9159 +9161 +9163 +9165 +9166 +9167 +9168 +9169 +9171 +9173 +9174 +9175 +9176 +9179 +9180 +9183 +9184 +9187 +9188 +9189 +9191 +9193 +9198 +9199 +9201 +9204 +9205 +9206 +9211 +9212 +9213 +9214 +9215 +9216 +9218 +9219 +9220 +9223 +9224 +9225 +9226 +9227 +9228 +9229 +9230 +9231 +9233 +9237 +9238 +9239 +9241 +9242 +9243 +9245 +9249 +9250 +9251 +9252 +9254 +9256 +9257 +9258 +9259 +9264 +9265 +9268 +9269 +9270 +9271 +9272 +9273 +9274 +9275 +9276 +9278 +9280 +9282 +9289 +9292 +9293 +9294 +9295 +9296 +9299 +9302 +9303 +9304 +9305 +9306 +9307 +9308 +9309 +9312 +9313 +9316 +9317 +9318 +9321 +9323 +9326 +9329 +9330 +9332 +9333 +9334 +9335 +9336 +9337 +9341 +9342 +9343 +9344 +9345 +9346 +9348 +9349 +9351 +9353 +9354 +9361 +9362 +9364 +9365 +9366 +9367 +9368 +9369 +9370 +9371 +9375 +9376 +9380 +9381 +9382 +9384 +9385 +9386 +9389 +9390 +9391 +9394 +9395 +9396 +9397 +9398 +9399 +9400 +9401 +9403 +9404 +9406 +9410 +9411 +9412 +9413 +9414 +9415 +9416 +9417 +9419 +9420 +9421 +9422 +9424 +9425 +9426 +9429 +9430 +9436 +9439 +9440 +9441 +9444 +9445 +9446 +9447 +9448 +9449 +9451 +9452 +9453 +9454 +9456 +9459 +9462 +9463 +9464 +9466 +9468 +9469 +9470 +9474 +9475 +9478 +9480 +9481 +9483 +9485 +9487 +9489 +9491 +9492 +9495 +9497 +9499 +9500 +9501 +9502 +9503 +9504 +9512 +9513 +9514 +9515 +9520 +9521 +9522 +9527 +9531 +9532 +9534 +9535 +9536 +9539 +9541 +9542 +9544 +9545 +9547 +9548 +9550 +9551 +9556 +9557 +9565 +9566 +9568 +9569 +9570 +9571 +9573 +9574 +9575 +9576 +9577 +9578 +9580 +9583 +9584 +9585 +9586 +9587 +9589 +9590 +9594 +9596 +9601 +9604 +9607 +9608 +9609 +9614 +9615 +9617 +9621 +9623 +9625 +9626 +9627 +9628 +9629 +9632 +9633 +9634 +9635 +9636 +9638 +9639 +9640 +9641 +9642 +9643 +9646 +9651 +9652 +9653 +9654 +9655 +9658 +9659 +9660 +9663 +9664 +9665 +9666 +9667 +9669 +9672 +9673 +9674 +9675 +9676 +9677 +9678 +9680 +9683 +9685 +9688 +9689 +9690 +9691 +9692 +9694 +9696 +9697 +9702 +9703 +9704 +9705 +9706 +9710 +9711 +9712 +9714 +9716 +9719 +9720 +9723 +9725 +9726 +9727 +9729 +9732 +9733 +9734 +9736 +9737 +9738 +9739 +9740 +9741 +9744 +9751 +9752 +9753 +9754 +9755 +9756 +9758 +9759 +9762 +9763 +9764 +9766 +9769 +9770 +9771 +9772 +9773 +9775 +9776 +9777 +9778 +9779 +9780 +9782 +9784 +9785 +9786 +9791 +9794 +9796 +9797 +9798 +9799 +9800 +9801 +9802 +9805 +9806 +9807 +9809 +9811 +9814 +9819 +9820 +9825 +9826 +9827 +9834 +9835 +9836 +9837 +9838 +9841 +9844 +9848 +9849 +9855 +9857 +9858 +9859 +9860 +9862 +9866 +9868 +9869 +9873 +9875 +9876 +9877 +9878 +9880 +9883 +9885 +9886 +9887 +9888 +9889 +9891 +9893 +9894 +9895 +9896 +9897 +9898 +9899 +9900 +9901 +9902 +9904 +9906 +9907 +9909 +9911 +9912 +9915 +9920 +9921 +9922 +9923 +9924 +9926 +9927 +9928 +9929 +9930 +9931 +9934 +9935 +9936 +9937 +9938 +9940 +9944 +9946 +9947 +9948 +9950 +9951 +9952 +9953 +9955 +9957 +9959 +9960 +9961 +9962 +9963 +9964 +9965 +9966 +9968 +9969 +9971 +9974 +9975 +9976 +9978 +9979 +9980 +9981 +9982 +9983 +9987 +9988 +9989 +9990 +9991 +9992 +9993 +9996 +9998 +10001 +10002 +10009 +10010 +10011 +10012 +10013 +10014 +10015 +10016 +10017 +10021 +10022 +10024 +10027 +10028 +10030 +10032 +10033 +10035 +10037 +10039 +10040 +10041 +10042 +10043 +10044 +10045 +10046 +10047 +10049 +10050 +10051 +10052 +10053 +10054 +10055 +10056 +10057 +10058 +10059 +10061 +10063 +10064 +10065 +10066 +10067 +10069 +10072 +10073 +10074 +10075 +10076 +10077 +10080 +10081 +10082 +10083 +10085 +10086 +10087 +10089 +10090 +10091 +10092 +10093 +10094 +10096 +10099 +10101 +10104 +10105 +10106 +10107 +10108 +10109 +10112 +10116 +10117 +10118 +10120 +10121 +10122 +10123 +10126 +10127 +10133 +10134 +10139 +10140 +10141 +10146 +10147 +10150 +10151 +10152 +10154 +10155 +10156 +10157 +10158 +10159 +10161 +10162 +10163 +10164 +10168 +10170 +10174 +10178 +10180 +10184 +10185 +10186 +10187 +10188 +10189 +10190 +10191 +10194 +10195 +10196 +10198 +10199 +10201 +10205 +10206 +10208 +10209 +10210 +10212 +10216 +10217 +10218 +10219 +10220 +10222 +10223 +10224 +10225 +10226 +10227 +10228 +10230 +10231 +10233 +10234 +10235 +10236 +10239 +10240 +10242 +10243 +10244 +10245 +10246 +10247 +10248 +10249 +10251 +10252 +10253 +10254 +10257 +10259 +10261 +10262 +10263 +10264 +10265 +10268 +10270 +10271 +10272 +10275 +10276 +10278 +10282 +10283 +10285 +10288 +10289 +10290 +10294 +10295 +10296 +10297 +10298 +10299 +10300 +10301 +10302 +10303 +10304 +10305 +10306 +10307 +10310 +10312 +10313 +10314 +10317 +10318 +10321 +10322 +10323 +10324 +10325 +10326 +10327 +10328 +10329 +10330 +10331 +10332 +10334 +10335 +10336 +10337 +10338 +10339 +10342 +10343 +10344 +10345 +10348 +10349 +10350 +10351 +10352 +10353 +10354 +10355 +10359 +10361 +10362 +10365 +10366 +10370 +10371 +10372 +10374 +10376 +10377 +10379 +10380 +10382 +10386 +10387 +10388 +10389 +10390 +10393 +10394 +10396 +10397 +10398 +10400 +10401 +10403 +10405 +10408 +10411 +10412 +10413 +10415 +10416 +10417 +10418 +10419 +10421 +10422 +10423 +10424 +10426 +10428 +10429 +10430 +10431 +10432 +10435 +10437 +10439 +10443 +10446 +10447 +10450 +10452 +10454 +10455 +10458 +10459 +10460 +10461 +10462 +10464 +10467 +10469 +10472 +10475 +10477 +10478 +10480 +10482 +10486 +10487 +10488 +10490 +10493 +10495 +10496 +10498 +10499 +10500 +10503 +10504 +10505 +10507 +10508 +10509 +10510 +10511 +10512 +10513 +10514 +10516 +10517 +10518 +10519 +10520 +10521 +10522 +10523 +10524 +10525 +10526 +10527 +10529 +10530 +10531 +10533 +10534 +10535 +10538 +10541 +10543 +10545 +10546 +10547 +10548 +10549 +10550 +10551 +10552 +10553 +10554 +10555 +10558 +10560 +10562 +10563 +10566 +10569 +10573 +10574 +10575 +10582 +10583 +10584 +10585 +10587 +10588 +10589 +10590 +10591 +10593 +10597 +10606 +10609 +10610 +10611 +10612 +10614 +10616 +10619 +10620 +10622 +10624 +10625 +10626 +10627 +10628 +10630 +10632 +10634 +10635 +10637 +10638 +10640 +10641 +10642 +10643 +10647 +10648 +10649 +10657 +10658 +10661 +10662 +10663 +10664 +10665 +10666 +10667 +10668 +10670 +10671 +10672 +10673 +10674 +10675 +10676 +10677 +10679 +10680 +10682 +10685 +10686 +10687 +10690 +10691 +10693 +10694 +10696 +10697 +10698 +10699 +10700 +10701 +10702 +10707 +10708 +10710 +10711 +10712 +10713 +10717 +10718 +10719 +10720 +10722 +10724 +10725 +10726 +10727 +10728 +10729 +10730 +10732 +10733 +10734 +10737 +10738 +10741 +10747 +10748 +10749 +10750 +10751 +10753 +10754 +10756 +10758 +10759 +10760 +10762 +10764 +10765 +10766 +10767 +10771 +10772 +10773 +10774 +10775 +10776 +10779 +10780 +10781 +10782 +10783 +10785 +10786 +10790 +10791 +10792 +10795 +10797 +10798 +10799 +10801 +10802 +10805 +10806 +10807 +10808 +10809 +10810 +10812 +10813 +10817 +10821 +10823 +10824 +10827 +10829 +10831 +10832 +10834 +10836 +10839 +10840 +10841 +10842 +10843 +10845 +10847 +10848 +10851 +10854 +10855 +10858 +10859 +10861 +10863 +10864 +10866 +10869 +10870 +10871 +10873 +10874 +10875 +10876 +10878 +10879 +10880 +10881 +10882 +10883 +10885 +10888 +10889 +10893 +10895 +10896 +10897 +10898 +10901 +10905 +10906 +10907 +10908 +10909 +10911 +10912 +10913 +10914 +10918 +10919 +10920 +10923 +10926 +10927 +10931 +10932 +10934 +10935 +10937 +10938 +10939 +10940 +10942 +10943 +10944 +10945 +10946 +10947 +10950 +10951 +10952 +10954 +10955 +10956 +10957 +10959 +10961 +10962 +10963 +10967 +10968 +10971 +10972 +10973 +10974 +10979 +10983 +10985 +10986 +10988 +10993 +10996 +10997 +10998 +11000 +11001 +11002 +11003 +11004 +11008 +11011 +11012 +11015 +11016 +11017 +11019 +11021 +11022 +11023 +11024 +11026 +11027 +11028 +11030 +11031 +11032 +11033 +11035 +11038 +11039 +11040 +11043 +11044 +11045 +11048 +11050 +11051 +11052 +11053 +11054 +11055 +11056 +11058 +11059 +11060 +11061 +11063 +11065 +11066 +11067 +11068 +11070 +11072 +11073 +11076 +11077 +11078 +11080 +11081 +11082 +11083 +11084 +11085 +11087 +11088 +11093 +11094 +11095 +11096 +11097 +11098 +11101 +11102 +11103 +11104 +11105 +11106 +11107 +11108 +11109 +11110 +11112 +11113 +11114 +11118 +11119 +11120 +11122 +11125 +11127 +11128 +11129 +11132 +11133 +11134 +11136 +11137 +11138 +11139 +11140 +11142 +11143 +11144 +11145 +11146 +11148 +11150 +11151 +11152 +11153 +11154 +11155 +11157 +11158 +11159 +11160 +11161 +11162 +11163 +11164 +11167 +11168 +11169 +11170 +11171 +11172 +11173 +11176 +11178 +11179 +11180 +11181 +11182 +11184 +11185 +11186 +11187 +11189 +11197 +11200 +11202 +11205 +11207 +11208 +11209 +11210 +11211 +11213 +11215 +11217 +11218 +11219 +11220 +11221 +11222 +11224 +11225 +11226 +11234 +11235 +11237 +11238 +11241 +11242 +11243 +11246 +11247 +11251 +11254 +11256 +11258 +11259 +11261 +11262 +11265 +11268 +11269 +11272 +11273 +11274 +11275 +11276 +11278 +11281 +11282 +11283 +11291 +11292 +11293 +11295 +11297 +11298 +11300 +11303 +11304 +11305 +11306 +11308 +11309 +11310 +11312 +11315 +11317 +11318 +11319 +11322 +11324 +11325 +11326 +11328 +11329 +11330 +11331 +11333 +11334 +11338 +11339 +11340 +11342 +11343 +11344 +11346 +11348 +11349 +11350 +11351 +11353 +11354 +11355 +11356 +11360 +11362 +11364 +11366 +11369 +11371 +11373 +11374 +11376 +11377 +11378 +11381 +11382 +11383 +11384 +11385 +11386 +11387 +11388 +11389 +11390 +11391 +11393 +11395 +11396 +11397 +11399 +11400 +11401 +11402 +11403 +11404 +11406 +11408 +11409 +11411 +11413 +11415 +11417 +11420 +11423 +11426 +11427 +11428 +11430 +11432 +11435 +11436 +11438 +11439 +11440 +11441 +11442 +11446 +11448 +11453 +11454 +11455 +11459 +11463 +11464 +11465 +11467 +11468 +11469 +11471 +11472 +11473 +11476 +11477 +11478 +11481 +11482 +11483 +11484 +11486 +11487 +11488 +11489 +11490 +11491 +11492 +11493 +11494 +11496 +11497 +11498 +11500 +11502 +11503 +11506 +11507 +11513 +11514 +11515 +11516 +11517 +11519 +11520 +11521 +11523 +11526 +11528 +11531 +11535 +11536 +11537 +11538 +11539 +11540 +11541 +11542 +11543 +11548 +11550 +11553 +11555 +11556 +11557 +11559 +11561 +11562 +11565 +11569 +11570 +11571 +11572 +11573 +11574 +11576 +11577 +11578 +11579 +11581 +11583 +11587 +11588 +11589 +11590 +11591 +11592 +11593 +11595 +11596 +11597 +11598 +11599 +11603 +11604 +11605 +11608 +11610 +11611 +11612 +11613 +11614 +11617 +11618 +11619 +11620 +11621 +11622 +11623 +11626 +11627 +11628 +11629 +11630 +11631 +11632 +11633 +11635 +11636 +11637 +11639 +11640 +11642 +11643 +11645 +11646 +11647 +11648 +11649 +11650 +11651 +11652 +11653 +11654 +11655 +11656 +11657 +11658 +11659 +11661 +11663 +11667 +11669 +11670 +11672 +11673 +11674 +11678 +11681 +11682 +11686 +11687 +11688 +11689 +11691 +11692 +11694 +11695 +11696 +11697 +11699 +11700 +11703 +11704 +11707 +11708 +11709 +11710 +11711 +11712 +11714 +11715 +11717 +11720 +11722 +11724 +11725 +11726 +11727 +11728 +11729 +11731 +11732 +11733 +11734 +11735 +11736 +11737 +11739 +11742 +11743 +11746 +11749 +11750 +11752 +11753 +11755 +11756 +11759 +11760 +11762 +11763 +11764 +11768 +11769 +11770 +11772 +11773 +11776 +11777 +11779 +11780 +11781 +11782 +11786 +11787 +11789 +11790 +11792 +11794 +11797 +11798 +11799 +11800 +11801 +11803 +11808 +11809 +11810 +11813 +11814 +11818 +11819 +11820 +11821 +11822 +11826 +11828 +11834 +11835 +11836 +11837 +11838 +11839 +11840 +11841 +11842 +11844 +11845 +11846 +11847 +11848 +11850 +11851 +11855 +11856 +11857 +11861 +11862 +11863 +11864 +11865 +11866 +11867 +11868 +11869 +11870 +11871 +11872 +11874 +11875 +11876 +11877 +11878 +11879 +11880 +11881 +11882 +11883 +11886 +11888 +11889 +11890 +11891 +11893 +11895 +11896 +11897 +11898 +11899 +11901 +11902 +11903 +11904 +11906 +11908 +11909 +11913 +11916 +11917 +11919 +11920 +11921 +11922 +11924 +11926 +11927 +11928 +11929 +11930 +11932 +11936 +11938 +11939 +11940 +11941 +11943 +11946 +11947 +11949 +11950 +11951 +11952 +11953 +11954 +11957 +11959 +11960 +11961 +11963 +11964 +11965 +11967 +11969 +11970 +11971 +11974 +11975 +11978 +11979 +11981 +11983 +11984 +11986 +11989 +11990 +11993 +11994 +11995 +11999 +12001 +12008 +12009 +12010 +12011 +12012 +12013 +12014 +12015 +12017 +12018 +12019 +12020 +12021 +12022 +12023 +12024 +12025 +12026 +12027 +12028 +12030 +12031 +12032 +12033 +12034 +12035 +12036 +12037 +12038 +12039 +12040 +12041 +12043 +12044 +12046 +12047 +12048 +12049 +12050 +12051 +12053 +12054 +12055 +12057 +12060 +12062 +12063 +12064 +12066 +12068 +12070 +12073 +12074 +12080 +12083 +12084 +12087 +12089 +12090 +12091 +12092 +12093 +12094 +12095 +12096 +12098 +12104 +12106 +12108 +12109 +12111 +12120 +12122 +12124 +12130 +12144 +12146 +12147 +12153 +12154 +12156 +12158 +12162 +12169 +12173 +12176 +12177 +12178 +12179 +12180 +12181 +12182 +12183 +12184 +12185 +12186 +12189 +12190 +12191 +12193 +12197 +12199 +12200 +12201 +12202 +12203 +12206 +12207 +12208 +12209 +12210 +12213 +12214 +12216 +12217 +12221 +12224 +12226 +12228 +12229 +12230 +12231 +12238 +12239 +12240 +12241 +12242 +12243 +12244 +12245 +12246 +12247 +12248 +12249 +12250 +12252 +12254 +12255 +12256 +12258 +12259 +12260 +12261 +12262 +12263 +12267 +12271 +12275 +12280 +12281 +12282 +12283 +12284 +12290 +12296 +12297 +12301 +12303 +12305 +12308 +12312 +12314 +12316 +12318 +12321 +12322 +12323 +12324 +12325 +12326 +12327 +12328 +12330 +12331 +12332 +12333 +12334 +12335 +12337 +12339 +12340 +12341 +12345 +12346 +12347 +12348 +12349 +12350 +12351 +12352 +12353 +12354 +12355 +12356 +12358 +12359 +12361 +12362 +12364 +12366 +12368 +12372 +12374 +12375 +12376 +12380 +12381 +12383 +12385 +12386 +12388 +12390 +12392 +12393 +12394 +12395 +12396 +12398 +12399 +12400 +12401 +12403 +12404 +12405 +12406 +12407 +12408 +12410 +12411 +12412 +12413 +12419 +12420 +12421 +12422 +12425 +12429 +12430 +12432 +12433 +12435 +12436 +12437 +12438 +12440 +12442 +12443 +12446 +12452 +12454 +12456 +12462 +12463 +12464 +12466 +12467 +12470 +12473 +12480 +12481 +12482 +12483 +12486 +12490 +12492 +12493 +12494 +12496 +12497 +12500 +12501 +12502 +12504 +12505 +12510 +12511 +12512 +12515 +12518 +12521 +12522 +12524 +12525 +12529 +12532 +12534 +12536 +12538 +12541 +12544 +12545 +12546 +12547 +12549 +12550 +12551 +12553 +12555 +12556 +12558 +12559 +12561 +12563 +12565 +12566 +12567 +12569 +12570 +12571 +12572 +12573 +12574 +12576 +12579 +12580 +12581 +12582 +12584 +12589 +12590 +12592 +12593 +12594 +12596 +12600 +12601 +12603 +12610 +12613 +12614 +12615 +12616 +12618 +12619 +12621 +12622 +12624 +12625 +12626 +12627 +12628 +12629 +12631 +12632 +12633 +12634 +12635 +12639 +12640 +12642 +12643 +12645 +12646 +12647 +12648 +12650 +12652 +12653 +12656 +12658 +12660 +12662 +12664 +12666 +12667 +12670 +12671 +12673 +12674 +12675 +12676 +12677 +12678 +12679 +12680 +12683 +12684 +12685 +12686 +12687 +12688 +12689 +12691 +12692 +12693 +12694 +12696 +12698 +12699 +12700 +12701 +12702 +12703 +12707 +12708 +12709 +12710 +12711 +12712 +12713 +12714 +12716 +12719 +12721 +12722 +12728 +12729 +12730 +12731 +12732 +12733 +12734 +12735 +12736 +12737 +12738 +12739 +12740 +12741 +12742 +12743 +12748 +12750 +12751 +12753 +12754 +12756 +12758 +12759 +12760 +12761 +12766 +12767 +12768 +12769 +12770 +12771 +12772 +12773 +12774 +12775 +12776 +12777 +12779 +12780 +12781 +12782 +12783 +12784 +12785 +12786 +12787 +12789 +12790 +12792 +12793 +12794 +12795 +12797 +12799 +12800 +12801 +12803 +12805 +12806 +12807 +12808 +12809 +12810 +12811 +12815 +12816 +12817 +12818 +12819 +12820 +12821 +12822 +12823 +12824 +12825 +12826 +12827 +12828 +12829 +12830 +12831 +12832 +12833 +12834 +12835 +12836 +12837 +12838 +12839 +12840 +12841 +12842 +12843 +12846 +12847 +12848 +12849 +12855 +12857 +12860 +12863 +12865 +12869 +12870 +12871 +12872 +12873 +12875 +12876 +12877 +12878 +12880 +12881 +12882 +12884 +12886 +12887 +12888 +12889 +12890 +12891 +12893 +12896 +12897 +12898 +12900 +12902 +12903 +12904 +12906 +12907 +12909 +12912 +12913 +12914 +12915 +12919 +12920 +12922 +12923 +12924 +12926 +12927 +12928 +12933 +12934 +12935 +12936 +12937 +12938 +12939 +12940 +12942 +12943 +12944 +12946 +12948 +12949 +12950 +12951 +12955 +12956 +12957 +12961 +12962 +12963 +12965 +12966 +12967 +12968 +12969 +12970 +12971 +12975 +12976 +12977 +12978 +12980 +12981 +12982 +12984 +12985 +12989 +12993 +12994 +12995 +12997 +12999 +13000 +13001 +13002 +13005 +13006 +13009 +13014 +13016 +13020 +13021 +13023 +13025 +13026 +13027 +13028 +13030 +13031 +13032 +13035 +13037 +13039 +13040 +13041 +13044 +13045 +13047 +13048 +13049 +13050 +13051 +13052 +13053 +13055 +13056 +13057 +13058 +13059 +13060 +13061 +13062 +13064 +13066 +13067 +13068 +13069 +13070 +13071 +13073 +13075 +13077 +13078 +13080 +13083 +13084 +13085 +13087 +13088 +13089 +13092 +13093 +13094 +13095 +13097 +13099 +13100 +13102 +13104 +13106 +13107 +13108 +13109 +13113 +13118 +13120 +13125 +13127 +13133 +13134 +13135 +13136 +13139 +13140 +13143 +13144 +13145 +13148 +13149 +13150 +13151 +13152 +13154 +13155 +13156 +13157 +13158 +13162 +13163 +13164 +13168 +13169 +13170 +13171 +13172 +13173 +13174 +13175 +13177 +13179 +13181 +13182 +13186 +13187 +13189 +13193 +13196 +13199 +13202 +13203 +13205 +13206 +13211 +13212 +13213 +13214 +13215 +13221 +13223 +13224 +13225 +13227 +13228 +13229 +13232 +13234 +13235 +13236 +13240 +13245 +13246 +13247 +13248 +13249 +13254 +13255 +13256 +13258 +13259 +13260 +13261 +13263 +13264 +13265 +13266 +13267 +13268 +13269 +13270 +13271 +13276 +13279 +13280 +13283 +13285 +13286 +13297 +13298 +13299 +13300 +13301 +13305 +13306 +13307 +13309 +13310 +13311 +13312 +13313 +13315 +13316 +13317 +13318 +13322 +13324 +13325 +13327 +13328 +13329 +13330 +13331 +13333 +13335 +13336 +13338 +13339 +13340 +13341 +13343 +13345 +13347 +13348 +13349 +13351 +13352 +13353 +13355 +13356 +13357 +13359 +13361 +13363 +13364 +13368 +13371 +13375 +13377 +13378 +13380 +13381 +13384 +13385 +13386 +13387 +13389 +13390 +13395 +13397 +13398 +13399 +13401 +13405 +13406 +13414 +13417 +13423 +13426 +13427 +13429 +13432 +13433 +13437 +13443 +13444 +13447 +13451 +13452 +13453 +13454 +13455 +13466 +13471 +13473 +13475 +13476 +13477 +13478 +13479 +13480 +13481 +13482 +13483 +13484 +13485 +13486 +13488 +13491 +13492 +13493 +13494 +13495 +13497 +13498 +13504 +13506 +13508 +13517 +13518 +13521 +13522 +13523 +13524 +13525 +13530 +13532 +13533 +13534 +13535 +13537 +13539 +13540 +13541 +13542 +13543 +13545 +13546 +13547 +13551 +13553 +13554 +13559 +13565 +13572 +13577 +13581 +13589 +13592 +13594 +13600 +13602 +13603 +13604 +13606 +13608 +13609 +13612 +13613 +13614 +13617 +13619 +13620 +13621 +13622 +13623 +13624 +13625 +13630 +13631 +13633 +13635 +13640 +13641 +13642 +13643 +13644 +13648 +13649 +13650 +13651 +13653 +13654 +13655 +13656 +13657 +13658 +13659 +13660 +13663 +13664 +13665 +13667 +13668 +13670 +13671 +13672 +13673 +13674 +13676 +13677 +13678 +13682 +13684 +13686 +13688 +13689 +13690 +13692 +13694 +13695 +13697 +13698 +13699 +13700 +13701 +13702 +13705 +13708 +13710 +13711 +13712 +13716 +13720 +13723 +13724 +13725 +13726 +13727 +13731 +13732 +13733 +13734 +13735 +13736 +13737 +13739 +13741 +13742 +13743 +13744 +13745 +13746 +13747 +13748 +13750 +13751 +13754 +13755 +13756 +13758 +13760 +13764 +13765 +13766 +13767 +13769 +13770 +13771 +13772 +13773 +13774 +13775 +13776 +13777 +13779 +13781 +13782 +13785 +13786 +13787 +13789 +13790 +13791 +13792 +13794 +13798 +13799 +13800 +13801 +13802 +13803 +13804 +13805 +13807 +13808 +13810 +13811 +13812 +13813 +13814 +13815 +13816 +13817 +13818 +13819 +13820 +13821 +13822 +13823 +13824 +13825 +13826 +13827 +13830 +13831 +13832 +13833 +13834 +13836 +13837 +13838 +13839 +13840 +13841 +13842 +13843 +13844 +13845 +13846 +13848 +13849 +13850 +13851 +13852 +13853 +13854 +13855 +13857 +13858 +13859 +13860 +13861 +13862 +13863 +13864 +13865 +13866 +13867 +13868 +13871 +13872 +13873 +13874 +13875 +13876 +13877 +13878 +13879 +13881 +13882 +13883 +13884 +13885 +13886 +13887 +13888 +13889 +13890 +13893 +13894 +13895 +13896 +13897 +13898 +13899 +13900 +13901 +13902 +13903 +13904 +13905 +13906 +13907 +13908 +13909 +13911 +13915 +13919 +13920 +13922 +13923 +13924 +13928 +13929 +13930 +13932 +13935 +13939 +13940 +13941 +13942 +13943 +13944 +13946 +13948 +13949 +13952 +13953 +13955 +13956 +13957 +13958 +13959 +13961 +13962 +13963 +13964 +13965 +13969 +13970 +13971 +13973 +13975 +13976 +13977 +13981 +13982 +13983 +13984 +13985 +13986 +13987 +13989 +13991 +13992 +13993 +13995 +13996 +13997 +13999 +14001 +14002 +14003 +14005 +14006 +14008 +14009 +14010 +14011 +14012 +14015 +14016 +14019 +14020 +14021 +14024 +14025 +14027 +14028 +14030 +14031 +14032 +14034 +14035 +14037 +14038 +14039 +14041 +14042 +14043 +14045 +14047 +14048 +14049 +14050 +14051 +14054 +14055 +14057 +14058 +14063 +14064 +14065 +14068 +14072 +14078 +14081 +14082 +14083 +14084 +14087 +14089 +14090 +14094 +14096 +14097 +14098 +14099 +14100 +14101 +14102 +14103 +14105 +14107 +14108 +14110 +14111 +14114 +14115 +14116 +14121 +14125 +14126 +14128 +14130 +14131 +14134 +14135 +14136 +14139 +14143 +14147 +14149 +14150 +14152 +14153 +14154 +14155 +14158 +14161 +14163 +14164 +14167 +14170 +14171 +14175 +14176 +14177 +14178 +14179 +14182 +14183 +14187 +14190 +14194 +14195 +14199 +14201 +14204 +14212 +14215 +14216 +14218 +14219 +14220 +14223 +14224 +14225 +14226 +14228 +14236 +14237 +14238 +14239 +14240 +14242 +14244 +14245 +14246 +14247 +14248 +14249 +14251 +14252 +14253 +14254 +14255 +14256 +14258 +14259 +14261 +14263 +14264 +14265 +14266 +14267 +14269 +14271 +14273 +14275 +14276 +14280 +14281 +14283 +14285 +14286 +14287 +14289 +14290 +14292 +14293 +14294 +14297 +14298 +14300 +14302 +14303 +14304 +14305 +14306 +14308 +14309 +14310 +14312 +14313 +14318 +14322 +14323 +14325 +14326 +14328 +14332 +14334 +14335 +14342 +14343 +14345 +14347 +14349 +14350 +14351 +14352 +14353 +14354 +14359 +14361 +14362 +14363 +14364 +14365 +14366 +14368 +14371 +14372 +14373 +14374 +14376 +14377 +14378 +14379 +14380 +14382 +14383 +14384 +14385 +14387 +14388 +14393 +14394 +14396 +14399 +14400 +14401 +14402 +14403 +14404 +14405 +14406 +14408 +14409 +14410 +14411 +14412 +14413 +14414 +14415 +14416 +14417 +14418 +14420 +14421 +14422 +14423 +14424 +14427 +14430 +14431 +14435 +14437 +14440 +14441 +14445 +14446 +14447 +14451 +14454 +14459 +14460 +14462 +14463 +14465 +14473 +14478 +14479 +14480 +14481 +14483 +14484 +14485 +14486 +14487 +14488 +14489 +14492 +14494 +14497 +14500 +14502 +14505 +14506 +14507 +14508 +14510 +14512 +14513 +14515 +14516 +14518 +14521 +14524 +14526 +14530 +14534 +14541 +14542 +14545 +14558 +14566 +14578 +14579 +14580 +14581 +14585 +14589 +14592 +14593 +14595 +14599 +14601 +14602 +14603 +14607 +14610 +14611 +14613 +14615 +14616 +14617 +14620 +14621 +14622 +14623 +14624 +14625 +14626 +14628 +14632 +14633 +14634 +14639 +14640 +14647 +14649 +14651 +14653 +14655 +14656 +14659 +14663 +14664 +14665 +14666 +14668 +14670 +14673 +14676 +14677 +14678 +14679 +14680 +14681 +14682 +14683 +14684 +14686 +14690 +14692 +14696 +14697 +14698 +14699 +14702 +14703 +14705 +14707 +14708 +14709 +14710 +14713 +14714 +14715 +14716 +14717 +14719 +14721 +14722 +14723 +14724 +14725 +14729 +14730 +14734 +14736 +14740 +14743 +14744 +14746 +14748 +14749 +14753 +14759 +14760 +14765 +14766 +14767 +14768 +14769 +14771 +14773 +14774 +14775 +14777 +14779 +14783 +14787 +14790 +14792 +14793 +14795 +14797 +14802 +14804 +14806 +14807 +14809 +14813 +14814 +14818 +14821 +14823 +14834 +14841 +14842 +14851 +14852 +14854 +14855 +14859 +14863 +14864 +14865 +14867 +14868 +14869 +14877 +14880 +14884 +14887 +14892 +14893 +14900 +14901 +14902 +14906 +14907 +14912 +14916 +14919 +14922 +14924 +14927 +14928 +14929 +14930 +14936 +14937 +14938 +14941 +14942 +14943 +14947 +14952 +14953 +14957 +14958 +14962 +14963 +14964 +14965 +14966 +14967 +14968 +14973 +14974 +14975 +14977 +14978 +14980 +14981 +14983 +14984 +14986 +14989 +14990 +14992 +14995 +14997 +14998 +15001 +15006 +15008 +15009 +15013 +15014 +15016 +15018 +15021 +15024 +15028 +15029 +15030 +15032 +15033 +15048 +15061 +15062 +15063 +15065 +15067 +15068 +15070 +15071 +15072 +15073 +15077 +15079 +15080 +15085 +15087 +15093 +15096 +15097 +15099 +15101 +15106 +15107 +15108 +15110 +15111 +15112 +15114 +15116 +15119 +15121 +15122 +15126 +15127 +15128 +15129 +15133 +15136 +15138 +15139 +15140 +15143 +15144 +15146 +15149 +15159 +15165 +15166 +15167 +15168 +15169 +15170 +15171 +15173 +15174 +15175 +15179 +15182 +15186 +15187 +15188 +15189 +15191 +15192 +15195 +15197 +15198 +15202 +15203 +15204 +15206 +15207 +15209 +15210 +15211 +15212 +15215 +15218 +15220 +15223 +15230 +15234 +15236 +15237 +15239 +15240 +15241 +15242 +15244 +15249 +15250 +15255 +15257 +15260 +15263 +15272 +15281 +15291 +15299 +15300 +15303 +15304 +15306 +15307 +15309 +15310 +15318 +15320 +15321 +15322 +15338 +15340 +15341 +15342 +15343 +15344 +15345 +15347 +15350 +15353 +15366 +15367 +15370 +15372 +15374 +15377 +15383 +15394 +15396 +15399 +15403 +15405 +15408 +15410 +15416 +15421 +15422 +15423 +15430 +15432 +15434 +15435 +15439 +15440 +15442 +15444 +15446 +15448 +15449 +15452 +15456 +15458 +15459 +15466 +15468 +15476 +15477 +15478 +15480 +15489 +15493 +15506 +15519 +15520 +15521 +15525 +15534 +15535 +15537 +15538 +15540 +15542 +15543 +15544 +15545 +15549 +15550 +15552 +15556 +15557 +15561 +15563 +15564 +15566 +15571 +15572 +15573 +15576 +15577 +15578 +15579 +15581 +15582 +15588 +15589 +15597 +15599 +15600 +15601 +15602 +15608 +15612 +15617 +15623 +15624 +15637 +15644 +15648 +15652 +15653 +15658 +15659 +15666 +15667 +15672 +15676 +15679 +15682 +15683 +15685 +15688 +15689 +15694 +15700 +15703 +15704 +15705 +15707 +15709 +15711 +15714 +15715 +15716 +15717 +15718 +15719 +15720 +15721 +15722 +15723 +15724 +15726 +15727 +15729 +15730 +15735 +15737 +15742 +15745 +15747 +15748 +15755 +15759 +15762 +15764 +15766 +15773 +15774 +15775 +15778 +15781 +15785 +15786 +15797 +15800 +15802 +15803 +15807 +15812 +15821 +15824 +15827 +15828 +15829 +15831 +15836 +15837 +15840 +15841 +15845 +15848 +15850 +15855 +15859 +15863 +15865 +15867 +15870 +15872 +15878 +15879 +15881 +15882 +15883 +15887 +15891 +15892 +15898 +15899 +15910 +15912 +15917 +15920 +15921 +15922 +15929 +15934 +15936 +15937 +15939 +15940 +15943 +15944 +15945 +15947 +15957 +15958 +15959 +15960 +15962 +15975 +15976 +15981 +15982 +15989 +15992 +15993 +15994 +15996 +16000 +16001 +16002 +16003 +16005 +16006 +16009 +16012 +16013 +16014 +16017 +16018 +16026 +16027 +16037 +16039 +16042 +16044 +16049 +16054 +16058 +16059 +16060 +16069 +16070 +16072 +16077 +16080 +16083 +16090 +16091 +16092 +16094 +16095 +16098 +16099 +16101 +16105 +16106 +16107 +16114 +16115 +16117 +16119 +16127 +16131 +16138 +16139 +16141 +16142 +16144 +16145 +16147 +16148 +16150 +16153 +16154 +16156 +16157 +16161 +16163 +16167 +16170 +16172 +16175 +16176 +16177 +16185 +16190 +16191 +16196 +16197 +16198 +16199 +16212 +16213 +16215 +16217 +16223 +16225 +16234 +16239 +16241 +16242 +16249 +16254 +16256 +16257 +16260 +16262 +16269 +16272 +16278 +16279 +16282 +16286 +16287 +16288 +16289 +16290 +16294 +16300 +16305 +16310 +16311 +16312 +16313 +16315 +16316 +16317 +16320 +16326 +16332 +16333 +16339 +16340 +16341 +16345 +16346 +16347 +16355 +16358 +16361 +16362 +16371 +16373 +16374 +16377 +16378 +16382 +16386 +16387 +16388 +16389 +16390 +16391 +16395 +16398 +16403 +16412 +16414 +16416 +16419 +16421 +16422 +16423 +16424 +16430 +16433 +16434 +16435 +16442 +16445 +16453 +16454 +16457 +16458 +16461 +16472 +16474 +16475 +16476 +16479 +16492 +16496 +16501 +16502 +16506 +16507 +16510 +16511 +16515 +16520 +16524 +16527 +16528 +16538 +16540 +16543 +16545 +16549 +16550 +16553 +16558 +16566 +16574 +16582 +16583 +16585 +16586 +16589 +16590 +16591 +16597 +16601 +16603 +16608 +16614 +16616 +16617 +16620 +16624 +16628 +16633 +16646 +16647 +16649 +16651 +16652 +16653 +16657 +16658 +16663 +16666 +16667 +16668 +16670 +16678 +16687 +16691 +16692 +16693 +16702 +16703 +16706 +16711 +16724 +16725 +16727 +16728 +16733 +16734 +16737 +16738 +16742 +16743 +16748 +16750 +16753 +16757 +16758 +16761 +16762 +16763 +16772 +16775 +16777 +16781 +16785 +16787 +16788 +16789 +16790 +16798 +16799 +16801 +16803 +16810 +16811 +16815 +16816 +16823 +16827 +16831 +16832 +16834 +16836 +16839 +16842 +16843 +16846 +16847 +16848 +16849 +16853 +16863 +16871 +16872 +16876 +16877 +16878 +16879 +16880 +16883 +16885 +16888 +16890 +16892 +16896 +16898 +16900 +16903 +16905 +16906 +16909 +16914 +16915 +16918 +16926 +16929 +16938 +16946 +16955 +16960 +16961 +16963 +16965 +16968 +16970 +16971 +16973 +16975 +16979 +16980 +16986 +16987 +16991 +16992 +16996 +17001 +17002 +17005 +17006 +17008 +17011 +17015 +17019 +17020 +17024 +17027 +17030 +17035 +17036 +17037 +17038 +17050 +17051 +17055 +17061 +17079 +17085 +17092 +17105 +17108 +17109 +17112 +17116 +17119 +17124 +17126 +17131 +17133 +17139 +17142 +17144 +17153 +17154 +17156 +17157 +17163 +17165 +17167 +17169 +17176 +17178 +17181 +17184 +17186 +17190 +17191 +17201 +17206 +17208 +17209 +17215 +17226 +17229 +17246 +17247 +17251 +17252 +17253 +17262 +17266 +17267 +17270 +17272 +17273 +17278 +17284 +17288 +17295 +17296 +17297 +17299 +17303 +17304 +17307 +17308 +17310 +17311 +17312 +17314 +17315 +17317 +17324 +17327 +17328 +17336 +17337 +17338 +17339 +17340 +17343 +17344 +17346 +17348 +17349 +17351 +17352 +17353 +17354 +17357 +17358 +17359 +17360 +17361 +17362 +17364 +17365 +17367 +17368 +17371 +17372 +17373 +17374 +17375 +17377 +17378 +17380 +17382 +17383 +17385 +17386 +17387 +17390 +17391 +17392 +17393 +17394 +17398 +17399 +17400 +17401 +17402 +17403 +17404 +17405 +17406 +17407 +17408 +17409 +17410 +17411 +17412 +17413 +17414 +17415 +17417 +17418 +17420 +17421 +17422 +17423 +17424 +17425 +17427 +17428 +17429 +17430 +17433 +17438 +17440 +17442 +17445 +17446 +17447 +17448 +17449 +17450 +17453 +17454 +17455 +17456 +17457 +17458 +17461 +17462 +17463 +17464 +17466 +17468 +17469 +17480 +17484 +17490 +17491 +17496 +17497 +17501 +17502 +17506 +17507 +17508 +17510 +17514 +17515 +17516 +17518 +17519 +17520 +17521 +17524 +17527 +17532 +17537 +17538 +17549 +17558 +17563 +17564 +17565 +17566 +17567 +17568 +17569 +17572 +17576 +17577 +17582 +17584 +17586 +17589 +17592 +17593 +17594 +17596 +17597 +17599 +17601 +17603 +17604 +17608 +17609 +17610 +17611 +17613 +17616 +17617 +17619 +17623 +17624 +17625 +17628 +17631 +17632 +17633 +17634 +17635 +17639 +17641 +17642 +17644 +17646 +17648 +17649 +17650 +17652 +17653 +17655 +17657 +17658 +17659 +17660 +17661 +17662 +17664 +17670 +17674 +17676 +17677 +17678 +17679 +17682 +17686 +17687 +17690 +17709 +17719 +17720 +17721 +17723 +17724 +17725 +17727 +17728 +17731 +17732 +17733 +17734 +17735 +17736 +17737 +17738 +17740 +17741 +17742 +17743 +17746 +17760 +17761 +17762 +17763 +17768 +17769 +17772 +17773 +17778 +17780 +17781 +17782 +17784 +17785 +17787 +17790 +17791 +17792 +17794 +17796 +17797 +17801 +17802 +17804 +17809 +17810 +17811 +17812 +17813 +17815 +17816 +17818 +17819 +17824 +17833 +17837 +17839 +17840 +17843 +17844 +17845 +17848 +17850 +17851 +17853 +17854 +17855 +17856 +17857 +17858 +17859 +17860 +17861 +17862 +17864 +17866 +17867 +17868 +17869 +17870 +17871 +17872 +17874 +17875 +17876 +17877 +17878 +17879 +17880 +17883 +17884 +17886 +17887 +17888 +17889 +17893 +17895 +17898 +17900 +17903 +17912 +17916 +17917 +17923 +17927 +17932 +17934 +17936 +17937 +17938 +17944 +17945 +17946 +17947 +17948 +17951 +17952 +17953 +17956 +17957 +17958 +17959 +17961 +17962 +17963 +17964 +17968 +17969 +17970 +17971 +17973 +17974 +17977 +17978 +17981 +17982 +17983 +17985 +17988 +17989 +17990 +17997 +17998 +18003 +18005 +18006 +18010 +18015 +18018 +18019 +18020 +18021 +18022 +18023 +18024 +18025 +18026 +18028 +18030 +18033 +18034 +18035 +18036 +18037 +18039 +18043 +18048 +18049 +18055 +18057 +18059 +18061 +18062 +18064 +18065 +18066 +18068 +18069 +18070 +18071 +18075 +18076 +18079 +18083 +18084 +18086 +18087 +18088 +18089 +18090 +18091 +18092 +18094 +18095 +18097 +18098 +18101 +18102 +18104 +18105 +18106 +18108 +18109 +18111 +18112 +18113 +18114 +18115 +18118 +18119 +18121 +18123 +18124 +18128 +18134 +18135 +18136 +18138 +18139 +18140 +18142 +18143 +18144 +18146 +18148 +18149 +18150 +18158 +18159 +18165 +18166 +18171 +18172 +18175 +18176 +18202 +18203 +18204 +18205 +18207 +18211 +18214 +18215 +18216 +18217 +18219 +18220 +18221 +18222 +18225 +18226 +18228 +18229 +18231 +18233 +18234 +18235 +18237 +18238 +18239 +18241 +18244 +18245 +18247 +18248 +18249 +18250 +18252 +18255 +18257 +18258 +18259 +18262 +18263 +18267 +18268 +18269 +18271 +18272 +18273 +18274 +18275 +18278 +18281 +18282 +18284 +18285 +18287 +18288 +18294 +18295 +18296 +18297 +18301 +18302 +18303 +18304 +18305 +18306 +18307 +18309 +18320 +18323 +18324 +18325 +18326 +18329 +18330 +18331 +18332 +18333 +18334 +18336 +18341 +18342 +18347 +18349 +18353 +18355 +18356 +18357 +18358 +18359 +18362 +18366 +18371 +18379 +18384 +18386 +18389 +18390 +18392 +18394 +18396 +18397 +18398 +18399 +18401 +18402 +18403 +18405 +18410 +18411 +18417 +18420 +18421 +18422 +18424 +18439 +18440 +18441 +18442 +18443 +18444 +18445 +18446 +18449 +18450 +18451 +18453 +18454 +18457 +18458 +18459 +18460 +18461 +18464 +18467 +18468 +18471 +18476 +18477 +18478 +18480 +18484 +18485 +18486 +18487 +18489 +18490 +18492 +18493 +18494 +18495 +18496 +18497 +18499 +18504 +18505 +18506 +18507 +18508 +18509 +18510 +18512 +18513 +18514 +18515 +18516 +18520 +18521 +18522 +18523 +18527 +18529 +18530 +18531 +18533 +18534 +18535 +18537 +18538 +18539 +18540 +18541 +18544 +18545 +18547 +18548 +18549 +18551 +18552 +18553 +18554 +18556 +18557 +18558 +18560 +18563 +18568 +18571 +18572 +18573 +18574 +18575 +18576 +18579 +18581 +18583 +18584 +18585 +18586 +18587 +18588 +18589 +18590 +18591 +18592 +18593 +18595 +18596 +18599 +18601 +18602 +18604 +18605 +18608 +18609 +18610 +18611 +18613 +18614 +18615 +18616 +18617 +18618 +18619 +18620 +18621 +18622 +18629 +18630 +18631 +18632 +18634 +18635 +18636 +18639 +18640 +18644 +18645 +18649 +18655 +18657 +18658 +18660 +18662 +18663 +18667 +18668 +18669 +18670 +18678 +18679 +18682 +18683 +18685 +18689 +18692 +18694 +18695 +18696 +18701 +18703 +18713 +18721 +18723 +18726 +18728 +18729 +18733 +18736 +18738 +18739 +18742 +18751 +18752 +18753 +18757 +18761 +18764 +18765 +18773 +18778 +18779 +18780 +18782 +18789 +18790 +18793 +18794 +18796 +18799 +18800 +18803 +18806 +18807 +18814 +18815 +18820 +18823 +18824 +18826 +18827 +18832 +18833 +18834 +18835 +18839 +18840 +18841 +18845 +18846 +18847 +18848 +18850 +18851 +18852 +18853 +18855 +18856 +18857 +18858 +18861 +18862 +18863 +18864 +18865 +18866 +18867 +18868 +18869 +18870 +18871 +18872 +18883 +18884 +18886 +18888 +18898 +18900 +18904 +18906 +18909 +18911 +18912 +18913 +18919 +18922 +18925 +18926 +18927 +18931 +18935 +18937 +18940 +18941 +18943 +18944 +18946 +18947 +18948 +18951 +18952 +18953 +18955 +18960 +18977 +18978 +18979 +18982 +18984 +18986 +18987 +18994 +19010 +19011 +19014 +19019 +19025 +19027 +19029 +19031 +19032 +19033 +19037 +19050 +19054 +19067 +19068 +19071 +19073 +19075 +19076 +19077 +19078 +19080 +19081 +19084 +19085 +19086 +19090 +19091 +19094 +19098 +19100 +19102 +19103 +19104 +19106 +19109 +19110 +19114 +19115 +19118 +19119 +19120 +19122 +19123 +19125 +19127 +19128 +19131 +19132 +19133 +19135 +19136 +19137 +19138 +19140 +19141 +19142 +19143 +19144 +19145 +19148 +19149 +19150 +19152 +19153 +19154 +19155 +19156 +19157 +19158 +19159 +19161 +19163 +19164 +19167 +19170 +19173 +19174 +19177 +19178 +19179 +19181 +19183 +19185 +19188 +19191 +19192 +19193 +19195 +19196 +19197 +19199 +19200 +19202 +19211 +19212 +19213 +19216 +19217 +19218 +19219 +19220 +19221 +19224 +19225 +19226 +19227 +19228 +19230 +19231 +19232 +19234 +19236 +19237 +19238 +19242 +19250 +19252 +19255 +19256 +19257 +19258 +19259 +19260 +19262 +19263 +19264 +19265 +19268 +19269 +19273 +19274 +19275 +19282 +19287 +19288 +19290 +19291 +19293 +19294 +19295 +19298 +19300 +19302 +19303 +19304 +19305 +19308 +19309 +19314 +19315 +19316 +19318 +19319 +19322 +19323 +19328 +19329 +19330 +19331 +19334 +19335 +19337 +19340 +19341 +19342 +19343 +19345 +19346 +19347 +19348 +19349 +19350 +19352 +19354 +19358 +19361 +19362 +19363 +19364 +19365 +19367 +19369 +19371 +19372 +19375 +19377 +19379 +19380 +19383 +19384 +19386 +19400 +19401 +19402 +19403 +19405 +19412 +19415 +19417 +19419 +19421 +19432 +19433 +19434 +19435 +19438 +19439 +19440 +19444 +19445 +19446 +19448 +19449 +19450 +19451 +19454 +19455 +19457 +19459 +19469 +19470 +19471 +19475 +19476 +19479 +19481 +19482 +19483 +19484 +19488 +19490 +19492 +19493 +19494 +19495 +19496 +19499 +19500 +19501 +19504 +19506 +19507 +19509 +19511 +19512 +19514 +19515 +19516 +19517 +19518 +19519 +19520 +19522 +19523 +19524 +19525 +19526 +19528 +19530 +19536 +19537 +19539 +19540 +19541 +19544 +19545 +19546 +19547 +19548 +19549 +19551 +19553 +19554 +19555 +19561 +19564 +19565 +19566 +19573 +19575 +19576 +19580 +19581 +19582 +19585 +19586 +19588 +19590 +19595 +19604 +19605 +19606 +19609 +19611 +19612 +19613 +19614 +19616 +19620 +19622 +19625 +19626 +19627 +19628 +19630 +19631 +19632 +19633 +19636 +19638 +19639 +19640 +19641 +19642 +19646 +19647 +19653 +19654 +19661 +19665 +19666 +19667 +19668 +19670 +19671 +19673 +19674 +19675 +19676 +19677 +19679 +19680 +19681 +19682 +19685 +19686 +19687 +19688 +19690 +19691 +19692 +19694 +19695 +19696 +19697 +19703 +19705 +19707 +19708 +19712 +19715 +19716 +19718 +19719 +19720 +19722 +19726 +19730 +19731 +19732 +19735 +19736 +19739 +19743 +19744 +19754 +19755 +19756 +19757 +19761 +19762 +19765 +19767 +19768 +19771 +19772 +19775 +19780 +19790 +19793 +19795 +19796 +19799 +19800 +19803 +19811 +19815 +19817 +19829 +19831 +19833 +19835 +19836 +19837 +19838 +19839 +19843 +19850 +19856 +19859 +19860 +19861 +19862 +19863 +19864 +19865 +19869 +19870 +19871 +19872 +19877 +19880 +19885 +19887 +19892 +19893 +19894 +19895 +19900 +19903 +19905 +19906 +19907 +19908 +19912 +19914 +19915 +19916 +19920 +19922 +19924 +19925 +19926 +19927 +19928 +19931 +19933 +19936 +19941 +19943 +19944 +19945 +19950 +19951 +19954 +19955 +19962 +19965 +19966 +19967 +19968 +19969 +19970 +19971 +19972 +19973 +19974 +19976 +19983 +19986 +19988 +19990 +19995 +19996 +19997 +19999 +20006 +20008 +20016 +20017 +20018 +20019 +20022 +20023 +20024 +20027 +20028 +20030 +20035 +20040 +20041 +20042 +20043 +20045 +20047 +20048 +20051 +20052 +20053 +20054 +20055 +20056 +20059 +20060 +20061 +20062 +20064 +20066 +20068 +20069 +20072 +20079 +20080 +20082 +20084 +20085 +20090 +20091 +20095 +20096 +20098 +20100 +20101 +20102 +20106 +20108 +20109 +20113 +20114 +20115 +20116 +20120 +20121 +20124 +20125 +20126 +20127 +20138 +20139 +20141 +20143 +20145 +20146 +20147 +20151 +20152 +20153 +20160 +20161 +20163 +20169 +20170 +20172 +20176 +20183 +20185 +20190 +20191 +20193 +20196 +20197 +20205 +20207 +20209 +20212 +20213 +20214 +20216 +20217 +20218 +20219 +20220 +20221 +20222 +20223 +20224 +20226 +20228 +20229 +20230 +20231 +20234 +20237 +20238 +20246 +20248 +20249 +20255 +20260 +20263 +20264 +20265 +20267 +20269 +20276 +20278 +20279 +20280 +20281 +20282 +20284 +20285 +20286 +20287 +20288 +20289 +20293 +20294 +20295 +20298 +20301 +20303 +20309 +20310 +20315 +20316 +20317 +20323 +20324 +20325 +20326 +20328 +20331 +20333 +20335 +20345 +20346 +20347 +20353 +20354 +20355 +20356 +20358 +20360 +20361 +20362 +20363 +20364 +20365 +20366 +20371 +20372 +20374 +20377 +20379 +20383 +20384 +20388 +20390 +20392 +20395 +20396 +20397 +20398 +20403 +20404 +20405 +20406 +20407 +20408 +20411 +20412 +20413 +20414 +20415 +20416 +20418 +20420 +20422 +20423 +20425 +20435 +20439 +20442 +20444 +20447 +20450 +20454 +20455 +20458 +20460 +20469 +20470 +20471 +20473 +20474 +20476 +20478 +20479 +20483 +20487 +20490 +20491 +20492 +20493 +20496 +20497 +20498 +20502 +20503 +20504 +20509 +20510 +20513 +20514 +20515 +20516 +20517 +20518 +20521 +20522 +20524 +20526 +20527 +20528 +20532 +20536 +20540 +20541 +20544 +20547 +20548 +20550 +20551 +20552 +20553 +20555 +20556 +20560 +20561 +20564 +20566 +20567 +20570 +20573 +20575 +20576 +20579 +20581 +20584 +20587 +20588 +20589 +20590 +20592 +20593 +20594 +20595 +20596 +20599 +20601 +20602 +20604 +20605 +20607 +20611 +20612 +20615 +20616 +20617 +20619 +20620 +20622 +20624 +20626 +20627 +20628 +20629 +20633 +20637 +20639 +20640 +20641 +20642 +20649 +20650 +20652 +20654 +20658 +20659 +20660 +20661 +20662 +20663 +20664 +20665 +20666 +20667 +20668 +20670 +20677 +20678 +20680 +20682 +20685 +20686 +20687 +20688 +20690 +20691 +20692 +20693 +20694 +20699 +20700 +20702 +20703 +20704 +20705 +20708 +20709 +20710 +20711 +20712 +20713 +20714 +20715 +20717 +20718 +20722 +20723 +20725 +20726 +20730 +20731 +20732 +20736 +20740 +20747 +20752 +20753 +20754 +20755 +20761 +20762 +20765 +20766 +20775 +20781 +20784 +20785 +20786 +20787 +20788 +20789 +20790 +20791 +20792 +20795 +20796 +20798 +20804 +20806 +20807 +20810 +20812 +20817 +20821 +20822 +20823 +20828 +20829 +20831 +20834 +20835 +20837 +20838 +20841 +20845 +20846 +20848 +20849 +20850 +20851 +20852 +20853 +20857 +20858 +20859 +20861 +20864 +20868 +20871 +20874 +20875 +20878 +20879 +20880 +20882 +20884 +20888 +20893 +20895 +20896 +20898 +20900 +20901 +20902 +20904 +20906 +20909 +20911 +20915 +20917 +20918 +20919 +20924 +20925 +20934 +20935 +20936 +20938 +20939 +20940 +20941 +20944 +20945 +20947 +20948 +20953 +20954 +20957 +20961 +20966 +20977 +20978 +20979 +20980 +20983 +20986 +20987 +20996 +20999 +21000 +21005 +21007 +21010 +21012 +21015 +21022 +21023 +21024 +21025 +21026 +21029 +21033 +21035 +21036 +21037 +21038 +21040 +21041 +21042 +21043 +21044 +21045 +21046 +21047 +21048 +21049 +21051 +21052 +21053 +21054 +21055 +21056 +21057 +21061 +21062 +21063 +21064 +21065 +21066 +21067 +21070 +21074 +21076 +21081 +21082 +21084 +21085 +21086 +21090 +21092 +21098 +21099 +21110 +21111 +21113 +21117 +21119 +21120 +21122 +21123 +21126 +21131 +21134 +21136 +21143 +21144 +21145 +21146 +21147 +21149 +21151 +21154 +21156 +21157 +21161 +21164 +21167 +21168 +21169 +21170 +21172 +21177 +21178 +21179 +21184 +21187 +21188 +21194 +21195 +21196 +21197 +21198 +21199 +21200 +21202 +21217 +21219 +21222 +21227 +21230 +21236 +21250 +21255 +21266 +21267 +21269 +21277 +21279 +21280 +21282 +21284 +21285 +21295 +21301 +21303 +21305 +21309 +21310 +21311 +21313 +21314 +21315 +21316 +21317 +21319 +21325 +21334 +21335 +21337 +21341 +21343 +21347 +21350 +21354 +21355 +21356 +21359 +21361 +21367 +21368 +21372 +21374 +21375 +21376 +21380 +21384 +21386 +21387 +21395 +21396 +21400 +21405 +21406 +21409 +21412 +21413 +21417 +21423 +21426 +21427 +21429 +21430 +21431 +21436 +21439 +21449 +21457 +21462 +21465 +21467 +21474 +21477 +21482 +21483 +21484 +21487 +21492 +21493 +21495 +21499 +21500 +21505 +21509 +21513 +21514 +21515 +21517 +21520 +21522 +21526 +21527 +21530 +21531 +21532 +21535 +21539 +21543 +21545 +21546 +21547 +21548 +21552 +21558 +21561 +21567 +21571 +21574 +21576 +21577 +21578 +21579 +21583 +21587 +21588 +21589 +21596 +21599 +21602 +21604 +21609 +21613 +21616 +21618 +21621 +21623 +21625 +21633 +21635 +21636 +21639 +21642 +21643 +21646 +21647 +21648 +21657 +21659 +21660 +21661 +21663 +21664 +21666 +21667 +21670 +21671 +21673 +21676 +21677 +21678 +21684 +21686 +21687 +21688 +21690 +21700 +21709 +21710 +21711 +21714 +21715 +21719 +21720 +21721 +21722 +21725 +21726 +21727 +21732 +21737 +21738 +21739 +21741 +21742 +21745 +21746 +21747 +21752 +21755 +21756 +21758 +21759 +21760 +21761 +21763 +21770 +21771 +21772 +21775 +21776 +21779 +21780 +21782 +21784 +21789 +21790 +21793 +21794 +21798 +21799 +21801 +21802 +21804 +21809 +21813 +21814 +21815 +21816 +21817 +21821 +21824 +21825 +21826 +21827 +21828 +21829 +21830 +21832 +21834 +21836 +21837 +21839 +21840 diff --git a/pytorch-image-models/timm/data/_info/imagenet_a_indices.txt b/pytorch-image-models/timm/data/_info/imagenet_a_indices.txt new file mode 100644 index 0000000000000000000000000000000000000000..8e373bc707cb853e1b41ed35c6b21d078553a206 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet_a_indices.txt @@ -0,0 +1,200 @@ +6 +11 +13 +15 +17 +22 +23 +27 +30 +37 +39 +42 +47 +50 +57 +70 +71 +76 +79 +89 +90 +94 +96 +97 +99 +105 +107 +108 +110 +113 +124 +125 +130 +132 +143 +144 +150 +151 +207 +234 +235 +254 +277 +283 +287 +291 +295 +298 +301 +306 +307 +308 +309 +310 +311 +313 +314 +315 +317 +319 +323 +324 +326 +327 +330 +334 +335 +336 +347 +361 +363 +372 +378 +386 +397 +400 +401 +402 +404 +407 +411 +416 +417 +420 +425 +428 +430 +437 +438 +445 +456 +457 +461 +462 +470 +472 +483 +486 +488 +492 +496 +514 +516 +528 +530 +539 +542 +543 +549 +552 +557 +561 +562 +569 +572 +573 +575 +579 +589 +606 +607 +609 +614 +626 +627 +640 +641 +642 +643 +658 +668 +677 +682 +684 +687 +701 +704 +719 +736 +746 +749 +752 +758 +763 +765 +768 +773 +774 +776 +779 +780 +786 +792 +797 +802 +803 +804 +813 +815 +820 +823 +831 +833 +835 +839 +845 +847 +850 +859 +862 +870 +879 +880 +888 +890 +897 +900 +907 +913 +924 +932 +933 +934 +937 +943 +945 +947 +951 +954 +956 +957 +959 +971 +972 +980 +981 +984 +986 +987 +988 diff --git a/pytorch-image-models/timm/data/_info/imagenet_a_synsets.txt b/pytorch-image-models/timm/data/_info/imagenet_a_synsets.txt new file mode 100644 index 0000000000000000000000000000000000000000..6eeaaf66f3f471b7f622a608607a0c4e8409df33 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet_a_synsets.txt @@ -0,0 +1,200 @@ +n01498041 +n01531178 +n01534433 +n01558993 +n01580077 +n01614925 +n01616318 +n01631663 +n01641577 +n01669191 +n01677366 +n01687978 +n01694178 +n01698640 +n01735189 +n01770081 +n01770393 +n01774750 +n01784675 +n01819313 +n01820546 +n01833805 +n01843383 +n01847000 +n01855672 +n01882714 +n01910747 +n01914609 +n01924916 +n01944390 +n01985128 +n01986214 +n02007558 +n02009912 +n02037110 +n02051845 +n02077923 +n02085620 +n02099601 +n02106550 +n02106662 +n02110958 +n02119022 +n02123394 +n02127052 +n02129165 +n02133161 +n02137549 +n02165456 +n02174001 +n02177972 +n02190166 +n02206856 +n02219486 +n02226429 +n02231487 +n02233338 +n02236044 +n02259212 +n02268443 +n02279972 +n02280649 +n02281787 +n02317335 +n02325366 +n02346627 +n02356798 +n02361337 +n02410509 +n02445715 +n02454379 +n02486410 +n02492035 +n02504458 +n02655020 +n02669723 +n02672831 +n02676566 +n02690373 +n02701002 +n02730930 +n02777292 +n02782093 +n02787622 +n02793495 +n02797295 +n02802426 +n02814860 +n02815834 +n02837789 +n02879718 +n02883205 +n02895154 +n02906734 +n02948072 +n02951358 +n02980441 +n02992211 +n02999410 +n03014705 +n03026506 +n03124043 +n03125729 +n03187595 +n03196217 +n03223299 +n03250847 +n03255030 +n03291819 +n03325584 +n03355925 +n03384352 +n03388043 +n03417042 +n03443371 +n03444034 +n03445924 +n03452741 +n03483316 +n03584829 +n03590841 +n03594945 +n03617480 +n03666591 +n03670208 +n03717622 +n03720891 +n03721384 +n03724870 +n03775071 +n03788195 +n03804744 +n03837869 +n03840681 +n03854065 +n03888257 +n03891332 +n03935335 +n03982430 +n04019541 +n04033901 +n04039381 +n04067472 +n04086273 +n04099969 +n04118538 +n04131690 +n04133789 +n04141076 +n04146614 +n04147183 +n04179913 +n04208210 +n04235860 +n04252077 +n04252225 +n04254120 +n04270147 +n04275548 +n04310018 +n04317175 +n04344873 +n04347754 +n04355338 +n04366367 +n04376876 +n04389033 +n04399382 +n04442312 +n04456115 +n04482393 +n04507155 +n04509417 +n04532670 +n04540053 +n04554684 +n04562935 +n04591713 +n04606251 +n07583066 +n07695742 +n07697313 +n07697537 +n07714990 +n07718472 +n07720875 +n07734744 +n07749582 +n07753592 +n07760859 +n07768694 +n07831146 +n09229709 +n09246464 +n09472597 +n09835506 +n11879895 +n12057211 +n12144580 +n12267677 diff --git a/pytorch-image-models/timm/data/_info/imagenet_r_indices.txt b/pytorch-image-models/timm/data/_info/imagenet_r_indices.txt new file mode 100644 index 0000000000000000000000000000000000000000..e4ff6ffbbbf9ad310932b3df08863feaecdadeba --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet_r_indices.txt @@ -0,0 +1,200 @@ +1 +2 +4 +6 +8 +9 +11 +13 +22 +23 +26 +29 +31 +39 +47 +63 +71 +76 +79 +84 +90 +94 +96 +97 +99 +100 +105 +107 +113 +122 +125 +130 +132 +144 +145 +147 +148 +150 +151 +155 +160 +161 +162 +163 +171 +172 +178 +187 +195 +199 +203 +207 +208 +219 +231 +232 +234 +235 +242 +245 +247 +250 +251 +254 +259 +260 +263 +265 +267 +269 +276 +277 +281 +288 +289 +291 +292 +293 +296 +299 +301 +308 +309 +310 +311 +314 +315 +319 +323 +327 +330 +334 +335 +337 +338 +340 +341 +344 +347 +353 +355 +361 +362 +365 +366 +367 +368 +372 +388 +390 +393 +397 +401 +407 +413 +414 +425 +428 +430 +435 +437 +441 +447 +448 +457 +462 +463 +469 +470 +471 +472 +476 +483 +487 +515 +546 +555 +558 +570 +579 +583 +587 +593 +594 +596 +609 +613 +617 +621 +629 +637 +657 +658 +701 +717 +724 +763 +768 +774 +776 +779 +780 +787 +805 +812 +815 +820 +824 +833 +847 +852 +866 +875 +883 +889 +895 +907 +928 +931 +932 +933 +934 +936 +937 +943 +945 +947 +948 +949 +951 +953 +954 +957 +963 +965 +967 +980 +981 +983 +988 diff --git a/pytorch-image-models/timm/data/_info/imagenet_r_synsets.txt b/pytorch-image-models/timm/data/_info/imagenet_r_synsets.txt new file mode 100644 index 0000000000000000000000000000000000000000..33723baf489f210b1b79a8e9e033311fc016630b --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet_r_synsets.txt @@ -0,0 +1,200 @@ +n01443537 +n01484850 +n01494475 +n01498041 +n01514859 +n01518878 +n01531178 +n01534433 +n01614925 +n01616318 +n01630670 +n01632777 +n01644373 +n01677366 +n01694178 +n01748264 +n01770393 +n01774750 +n01784675 +n01806143 +n01820546 +n01833805 +n01843383 +n01847000 +n01855672 +n01860187 +n01882714 +n01910747 +n01944390 +n01983481 +n01986214 +n02007558 +n02009912 +n02051845 +n02056570 +n02066245 +n02071294 +n02077923 +n02085620 +n02086240 +n02088094 +n02088238 +n02088364 +n02088466 +n02091032 +n02091134 +n02092339 +n02094433 +n02096585 +n02097298 +n02098286 +n02099601 +n02099712 +n02102318 +n02106030 +n02106166 +n02106550 +n02106662 +n02108089 +n02108915 +n02109525 +n02110185 +n02110341 +n02110958 +n02112018 +n02112137 +n02113023 +n02113624 +n02113799 +n02114367 +n02117135 +n02119022 +n02123045 +n02128385 +n02128757 +n02129165 +n02129604 +n02130308 +n02134084 +n02138441 +n02165456 +n02190166 +n02206856 +n02219486 +n02226429 +n02233338 +n02236044 +n02268443 +n02279972 +n02317335 +n02325366 +n02346627 +n02356798 +n02363005 +n02364673 +n02391049 +n02395406 +n02398521 +n02410509 +n02423022 +n02437616 +n02445715 +n02447366 +n02480495 +n02480855 +n02481823 +n02483362 +n02486410 +n02510455 +n02526121 +n02607072 +n02655020 +n02672831 +n02701002 +n02749479 +n02769748 +n02793495 +n02797295 +n02802426 +n02808440 +n02814860 +n02823750 +n02841315 +n02843684 +n02883205 +n02906734 +n02909870 +n02939185 +n02948072 +n02950826 +n02951358 +n02966193 +n02980441 +n02992529 +n03124170 +n03272010 +n03345487 +n03372029 +n03424325 +n03452741 +n03467068 +n03481172 +n03494278 +n03495258 +n03498962 +n03594945 +n03602883 +n03630383 +n03649909 +n03676483 +n03710193 +n03773504 +n03775071 +n03888257 +n03930630 +n03947888 +n04086273 +n04118538 +n04133789 +n04141076 +n04146614 +n04147183 +n04192698 +n04254680 +n04266014 +n04275548 +n04310018 +n04325704 +n04347754 +n04389033 +n04409515 +n04465501 +n04487394 +n04522168 +n04536866 +n04552348 +n04591713 +n07614500 +n07693725 +n07695742 +n07697313 +n07697537 +n07714571 +n07714990 +n07718472 +n07720875 +n07734744 +n07742313 +n07745940 +n07749582 +n07753275 +n07753592 +n07768694 +n07873807 +n07880968 +n07920052 +n09472597 +n09835506 +n10565667 +n12267677 diff --git a/pytorch-image-models/timm/data/_info/imagenet_real_labels.json b/pytorch-image-models/timm/data/_info/imagenet_real_labels.json new file mode 100644 index 0000000000000000000000000000000000000000..2818c1f2f6113756498b40de12de3fafd05b7c05 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet_real_labels.json @@ -0,0 +1 @@ +[[], [970, 795], [230, 231], [809], [516, 850], [57], [334], [700], [674], [332], [109], [286], [370], [757], [595], [147], [327, 108], [21, 22], [478], [517], [334], [], [948], [727], [23], [619, 526, 846], [270], [167], [64, 55], [858], [324], [573], [150], [981], [586], [887], [], [398], [], [74], [516], [756], [129], [198], [256], [725], [565], [162, 167], [717, 581], [390, 467], [92], [29], [844], [591], [358], [468], [], [994], [872], [588], [608, 474], [183], [107], [40, 46], [842], [390], [101], [887], [870], [903, 841], [], [149], [21], [476], [80], [424], [159], [275], [175], [461], [970], [160], [788], [58], [479, 817], [498], [374], [28], [487], [50], [270], [383], [366], [484, 724], [373], [705], [330], [142], [949], [348, 349], [473], [159], [872], [878], [201], [906], [70], [889, 486], [632], [608, 774, 630, 636], [122], [720], [227], [], [162], [959], [638], [], [655, 851, 598], [645], [718], [483], [852], [397], [312, 988, 311], [457, 834], [352], [82], [934], [283], [802], [742], [276], [234, 236], [751], [342], [526, 528, 784], [328], [], [251], [163], [328], [771], [726], [977], [], [265], [], [590], [977, 978], [681, 810, 620, 508], [637], [39], [115], [937], [274], [277], [763], [905, 789], [646], [], [894], [647], [504], [937], [687], [781], [666], [583], [158], [825], [212], [659], [257, 222], [436], [199], [140], [248], [339], [230], [361], [909, 910, 926], [935], [638, 639], [654, 785], [289], [867], [], [103], [584], [243], [703], [449, 975], [771], [118], [396], [934], [16], [548], [993], [704], [841, 457], [233], [401, 593, 819], [827], [376], [146], [606], [922], [431], [284], [889], [475], [977, 978], [475], [984], [16], [77], [610, 453], [254], [636], [662], [473], [207], [25], [427, 463], [215], [230, 173], [35], [741], [125], [518, 652, 663, 465], [289], [425], [973], [], [167], [121], [445], [702], [], [366], [678], [764], [125], [349], [13], [179], [522], [], [989], [], [647, 438], [660], [801, 836, 837, 983], [533], [487], [27], [644], [750, 721], [865, 850], [1], [176], [694], [488, 664, 695, 508], [798], [809], [652, 413], [], [], [821], [421], [361], [920], [761], [27], [464], [92], [182], [897], [612], [610, 918], [283], [881], [906], [728], [426], [554], [], [531], [869], [730], [0], [866], [738, 580], [547], [43], [64], [69], [176], [329], [544, 926], [288, 290], [991], [591], [346], [1], [607], [934], [784, 828], [572], [], [888], [654], [546, 402], [390], [702], [24], [102], [949, 953, 954, 923], [810, 508], [361], [280], [65], [777], [359], [234], [21], [7], [525], [737, 886, 760, 894], [938], [254], [616, 733], [707], [463], [60], [], [531, 487, 623, 893], [380], [982], [305], [355], [503], [], [495], [472], [293], [816], [195], [738, 905], [475], [481], [431], [260], [130], [627], [977, 978], [622], [696], [300], [37], [133], [637], [867], [465], [592], [741], [908, 404, 895], [91], [109], [426], [694], [546], [208], [488, 649], [786], [959], [], [834, 906], [879, 568], [649], [228], [621], [630, 703], [107], [818, 598], [420], [], [133], [185], [471], [230], [974], [74], [76], [852], [383], [267], [], [359], [484], [510], [33], [177], [935], [310], [987, 998], [270], [598], [199], [998], [836, 837, 608], [14], [97], [856], [398], [319], [549, 681, 620], [92], [765], [840, 728, 412], [769, 945], [160], [265, 266], [638, 639], [846], [722], [183], [674], [468], [], [748, 636], [867], [636], [], [912], [721], [16], [199], [170], [], [946], [350], [557], [361], [361], [594], [861], [208], [606], [734], [767], [746], [788], [346], [153], [739], [414], [915], [], [152], [943], [849], [], [100], [546], [657], [764], [141], [39], [993], [758], [190], [888], [18], [], [341], [875], [359], [388], [894], [437], [987, 998], [517], [372], [286], [754, 662], [713], [915], [964], [146], [529], [416], [376], [147], [902], [26], [398], [175], [270], [335], [899, 559, 532, 505, 762, 923], [540], [607], [495], [257, 222], [801], [576, 879, 982, 472], [301], [166], [56], [868, 967, 968, 659], [], [], [567], [277], [], [651], [377], [684], [832], [39], [219], [863], [868], [794], [80], [983], [269, 347], [238], [781], [223], [521, 926], [830], [260], [491], [896], [220], [680], [48], [542], [], [820], [148], [113, 114], [99], [143], [691, 570], [796], [986], [346], [367], [939], [875], [625], [481, 482, 848], [464], [812], [705], [], [466], [781], [499], [617, 338], [679, 488], [858], [795], [437], [11], [625], [965], [874], [949, 954], [600, 517], [86], [133], [149], [865], [480, 582, 760, 886], [325], [499], [834], [506, 421], [298], [900], [905], [202], [740], [258], [762], [297, 295], [132], [240, 238], [833], [471], [386], [898], [162], [288, 290], [450], [850], [232], [273], [954], [965], [611], [643], [147], [290], [866, 977], [186], [156], [776, 683], [775], [987, 998], [333], [325], [572], [927], [744, 657], [777, 623], [833], [551], [301], [716], [485], [102], [791], [959], [404], [987, 998], [415], [455], [242, 852], [], [517], [16], [320], [632], [568], [], [216], [332], [769, 726], [923, 959], [861, 605], [134], [677], [288], [10], [919, 733], [852], [], [104], [712], [388], [261], [609, 479], [673, 681, 620, 526, 664, 508], [], [579], [450], [628], [217], [810, 878], [763], [208], [126], [442, 497], [864], [232], [776], [942], [336], [978], [681, 620], [512, 587], [78], [668], [699], [746], [46, 39], [968, 809, 618, 828], [330], [615], [], [62], [116], [127], [955], [306], [425], [190], [370], [187], [971], [897, 411], [396], [744, 657], [840, 463], [718], [116], [836, 837], [994], [419], [764], [214], [285], [641], [951], [882], [13], [829], [453], [216], [665], [521], [268], [468], [418], [728], [], [449], [194], [362], [928, 963, 948, 923], [924], [249], [524, 461], [992], [571], [283], [608], [129], [486], [859], [498], [21], [467], [591], [924], [556], [97], [898], [586], [10], [202], [67], [649], [141], [603], [727], [101], [995], [278], [964], [238, 240], [423, 424], [489, 634], [533], [424, 423], [451], [555], [732], [514], [803], [300], [551], [753], [411], [315], [963], [], [389], [559, 578, 601], [673, 742, 526, 527, 662, 664, 508], [839], [299], [578, 689], [112], [960], [632], [867], [], [61], [427], [367], [926], [465, 597, 413], [34], [773], [654], [131], [874], [281, 282], [891], [956], [201], [267], [], [200], [673, 508], [424, 423], [907], [57], [27], [906, 578, 834, 459], [7], [322, 946], [934], [663], [423, 424], [687], [836, 837], [958], [645], [119], [306], [930], [124], [694], [777, 524, 461], [205], [137], [849], [681, 620, 526, 508], [380], [586], [916], [478], [182], [874], [715], [487], [], [19], [161, 162, 785], [915], [730], [678, 487, 830], [822], [], [699], [689, 819, 578], [673], [], [], [624], [679], [887], [581], [665], [903], [746, 622], [585, 440], [800], [899], [669], [81], [746], [866], [935], [668], [295], [893], [265], [628], [987, 923], [367], [294], [727], [12], [435, 876], [192, 186], [589], [70], [129], [454], [17], [946], [204], [181], [163], [80], [940], [587], [21], [198], [25], [932], [339], [480], [465, 413], [883], [453, 619, 818], [807], [287], [], [614], [814], [591, 689, 601], [919], [508], [479], [452], [155], [41], [163], [606], [8, 7], [], [515, 808, 693], [858], [506], [23], [976, 447], [801, 397, 983], [856, 595], [753], [5], [186], [667], [305], [46], [303], [], [927], [91], [34], [675, 654], [406], [65], [76], [517], [806], [330, 331], [], [130], [103], [56], [], [78], [31], [372], [225, 235], [431], [159], [187], [930], [888], [96], [836, 837, 655, 879, 444], [994], [872, 622, 759], [302], [566], [33], [619], [694], [406], [20], [18], [371], [320], [780], [997], [730], [613], [105], [810, 878], [311], [883], [367], [243], [], [], [515, 39, 47], [412], [921], [332], [514, 464], [276], [629], [917], [77], [643], [556], [998], [328], [723], [161], [250], [1], [919], [392], [264], [652, 847, 465, 408, 413], [488, 633], [968, 495, 504], [188], [884], [335], [795], [241, 238], [842], [71], [862], [254], [27], [409], [444], [433], [324], [322], [688], [579], [562], [917, 335], [803], [863], [44], [719], [16], [384], [328], [348], [194], [678], [593], [9], [], [25], [913, 983], [260, 667], [104], [72, 815], [223], [268], [283], [784, 477], [53], [615, 465], [100], [543], [133], [159], [439], [151], [355], [392], [577], [72], [383], [619, 846], [145], [109], [988], [824], [293], [], [821], [484], [608, 806, 966, 572], [259], [344], [132], [128], [154], [210], [508], [638, 639], [138, 83], [256, 233, 252], [376], [720], [464], [960, 968, 504], [999], [455], [613], [314], [993], [17], [759], [843], [591, 721], [330], [681, 810, 620, 531], [432], [778], [489, 372], [468], [489], [375], [263], [], [418], [377], [878], [283], [838, 631], [442], [382], [641], [628], [592], [59], [223], [587], [724], [207], [228], [8], [962], [575], [988], [402, 889], [551], [990], [141], [120], [207], [118], [946], [828, 463], [786], [166, 167], [256], [986], [28], [283], [636, 834, 671], [720], [411], [80], [678, 211], [29], [606], [636, 748], [156], [91], [734], [569], [458], [84], [230], [274], [707], [75], [965], [260], [978], [709], [372], [717], [763, 764], [96], [958], [884], [327], [140], [88], [156], [137, 98, 99], [559, 836, 837, 842], [669], [492], [771], [653], [484, 871, 913], [], [787], [827], [644], [393], [386], [654], [137], [715], [906], [724], [633, 477, 823], [516], [64], [850], [321], [611], [392], [509], [207], [903, 655, 638], [397], [582, 949], [188], [652, 465, 830], [750], [259], [294], [450], [511], [477], [255], [814], [781], [177], [654], [806, 911], [680], [769], [830], [273], [24], [463, 977, 978], [321], [480], [331], [21], [556], [481], [420], [195], [216], [215], [152], [333], [646], [152], [635], [128], [993], [351], [928], [267], [830], [], [335], [319], [786], [816], [334], [509], [444], [155], [902], [526, 527, 664], [483, 581, 479, 817, 511], [346], [482], [173], [438], [], [], [374], [548], [552], [619, 607], [411, 478], [451], [277], [715, 652], [], [855], [694], [709], [611], [168], [113], [782, 851], [974], [147], [69], [546, 650, 402, 818, 819], [11], [543], [629], [127], [652, 465, 764, 413], [349], [975, 628], [922, 412], [484], [78], [204], [399], [192, 186], [543], [89], [423], [323], [764], [970], [829], [645], [542], [809, 925], [195], [732], [474], [741], [820], [238], [643], [977, 978], [234], [844], [717], [925], [57], [806, 911], [444], [], [245], [], [923, 868], [791], [401], [896, 804], [773], [977], [875], [637], [442], [652, 847], [873], [472], [977, 978, 608, 502], [926], [102], [810, 878], [784], [], [355], [643], [279], [92], [523], [50], [510], [765], [681, 620, 526, 664, 281, 508], [870], [748], [253], [749], [], [452, 911], [824, 775], [261], [562], [911], [289], [950], [456], [449], [117], [97], [101], [291], [346], [809], [997], [168], [896, 861], [714], [126], [593], [8], [432], [72], [158], [958], [662], [945], [47], [919], [427], [809, 762], [185], [685], [122, 124], [660], [449, 536], [434, 533], [178], [356], [128], [819, 517], [157], [404], [23], [939, 582, 943], [204, 155], [756], [797], [916], [254], [9], [471], [577, 904], [255], [882], [654], [261, 174], [923, 931], [950], [360], [246], [872], [578, 982], [675], [418], [556], [216, 220], [928, 923, 960], [402], [911], [601], [179], [975, 638, 639], [303], [709, 526, 470, 767], [778], [664, 553, 697, 851], [178], [500], [], [557], [745], [611], [401], [571], [621], [206], [89], [394], [481], [627], [333], [701], [644], [364], [450], [979], [203], [872], [795], [265, 267], [118], [705], [565], [519], [641], [75], [], [590], [749], [374], [986], [76], [83], [14], [945], [683], [770], [74], [211], [429], [269], [], [505], [150], [344], [858], [45], [959], [884], [333], [953], [86], [204], [62], [928, 960], [257], [178], [178], [274], [], [552, 37], [147], [919, 920, 555, 733], [566], [74], [248], [399], [281], [768], [296], [327], [502], [721], [310], [944], [377], [825], [404], [], [17], [356], [860], [750], [926], [345], [957], [488, 830], [843], [430], [656, 919], [871], [424, 610], [141, 142], [653], [930], [977], [744], [673, 681, 620, 526, 527, 782, 664, 508], [840], [471], [], [863], [122], [851, 981, 664], [803], [544], [365], [326], [80], [166], [304], [398], [821], [456], [738, 428, 580], [149], [505], [366, 367, 369], [872], [173], [944], [220], [780], [492], [437], [888], [185], [12], [33], [763, 764], [740], [522], [917], [921, 638, 639], [86], [193, 187, 852], [], [300], [741], [262], [839], [307], [673, 681, 620, 526, 632, 508], [859], [49], [658], [966], [], [215], [64], [867], [370], [690], [68], [403], [433], [313], [138], [868, 813], [968, 504], [966, 907, 572], [], [587], [862], [67], [328], [390], [81], [968, 187], [15], [872], [519], [494], [405], [786], [423], [593], [917, 454], [65], [149], [558, 541, 542], [], [868, 945, 923], [894], [454, 921], [651], [943], [559], [], [72], [921, 763], [567], [861], [687], [40, 47], [257], [766], [169], [578, 982], [889, 486], [87], [448], [654], [789], [790], [185], [798], [35], [275], [636], [783], [353], [81], [960], [139, 140], [586], [44], [254], [603], [533], [37], [489], [159], [30], [963], [551], [906], [374], [816], [951], [671], [724], [671, 535], [37], [219], [669], [532, 762], [482, 754], [42, 26], [898], [], [330, 331], [951], [810, 878], [874], [481], [641], [], [472], [92], [559, 846, 818], [890], [659, 828], [840], [684], [235], [559], [264], [673, 526, 527, 782, 664, 508], [979], [518], [840], [548], [956], [221], [548], [], [167], [157], [], [547], [470], [665], [251], [53], [897], [350], [], [607], [], [264], [], [209], [343], [681, 620], [], [786], [127], [323], [861], [836, 837], [], [361], [581, 479, 656], [715, 652, 439], [43], [872, 917], [968], [114], [27], [536], [740], [417], [100], [692], [902, 488], [], [779], [307], [482], [31], [327], [896], [299], [994], [122, 124], [387], [114], [390], [327], [90], [478], [16], [320], [654], [711], [486], [518], [], [219, 220], [816], [78], [494], [255], [308], [204, 243, 155], [], [78], [977], [263, 185], [401], [603, 653], [779], [556], [690], [399], [265, 181], [304], [167], [950], [152], [438, 647], [227], [157], [588, 790], [599], [924], [], [475], [877], [763], [809, 925], [358, 359], [785], [927], [434], [812], [642], [867], [884, 406], [785], [139], [779], [39], [786], [771], [466], [], [894], [170], [867], [492], [905, 831], [175], [], [631], [778], [25, 28], [884], [116], [], [860], [467], [965], [923, 960], [370], [171], [936], [602], [781], [], [142], [605], [894], [700, 999], [], [306], [546], [550], [761], [621], [595], [515, 583], [320], [939, 813, 909, 910, 567], [179], [840], [], [769, 798], [215], [954], [385, 101], [223], [], [729], [759], [559], [87], [116], [236], [554], [911, 636], [661, 479], [168, 211], [828], [520, 529, 516, 431], [719], [978, 437], [100], [538], [], [697], [21], [240, 241], [312], [634], [515], [309], [685], [783], [61], [998, 987], [886], [111], [427], [314], [350], [719], [71], [286], [588], [616], [132], [670], [], [], [877], [558], [591], [251], [788], [232], [908, 895], [471], [754], [959], [767], [8], [690], [496], [], [407], [767], [647], [715], [629], [13], [407], [268], [842], [738], [943], [320], [810, 878], [195, 202], [922], [262], [185], [184], [], [197, 199], [502], [40], [941], [106], [900], [6], [949, 954], [247], [30], [47], [505], [460], [40, 46], [921, 604], [216], [473], [590], [872, 759], [315], [], [39], [], [404], [765], [608, 678, 841], [155, 204], [124], [181], [386], [113], [575], [689], [557, 624, 436], [230], [499], [818], [726], [932, 415], [217], [727], [737, 455, 760, 886], [230, 231], [541], [732], [686], [395], [547, 565], [623], [732], [344], [670], [506], [650, 818, 819], [], [675], [120], [970, 979, 858], [74], [292], [831, 721, 745], [483, 460, 975], [529, 831], [212], [961], [715], [751, 479], [583], [], [706, 762], [893], [865], [749], [134], [131], [248, 249, 537], [], [], [314], [540], [565], [661], [382], [235], [750, 721, 697], [], [], [], [406], [768], [562], [452], [196, 198], [899, 968, 504, 505], [10], [171], [500], [716], [318], [357], [330, 331], [106], [22], [577], [573], [481, 482], [910, 438], [283], [542], [457], [897], [502], [72], [305], [541, 542], [915], [633], [755], [991], [333], [571], [524], [51], [16], [479], [932], [894], [644], [822, 542], [515, 467, 728], [175], [126], [483, 698], [402], [270], [352], [792], [248, 250], [828], [772], [], [340], [14], [285], [351], [77], [529], [356], [46, 47], [505], [162], [868], [859], [672], [959], [369], [832], [907, 440], [674], [783], [673, 526, 527, 664, 508], [146], [785], [883], [628], [871], [632], [586], [219], [951], [946], [93], [64], [877], [980], [497], [296], [61, 62], [673, 650, 664, 526, 527, 632, 508], [896], [489, 981], [677], [], [758], [653], [487], [507], [496], [], [417], [668], [471], [628], [847], [658], [90], [987], [135], [308], [], [], [724], [64, 55], [299], [810, 878], [730], [575], [835], [394], [0, 758], [988], [376], [300], [612], [546], [137], [412], [874], [277], [398], [392], [156], [581], [124], [992], [65], [552, 903], [781], [121], [447], [662], [845], [449], [847], [34], [792], [754], [148], [996], [23], [692], [141], [513], [89], [796], [636], [673, 681, 620, 664, 526, 527, 508], [190], [84], [], [952], [683], [], [610], [414], [958], [838], [974], [954], [], [532, 799], [], [10], [129], [682, 708], [184, 232], [613], [585], [], [614], [547], [332], [683, 889], [437], [637], [809], [741], [854], [5], [154], [594], [569], [538], [499], [867], [153], [727], [251], [956], [583], [442], [400, 667], [962, 923], [187], [640], [607], [320, 319], [933, 923], [449], [24], [679, 488], [104], [62], [37], [879], [241], [578, 982], [745], [842, 977, 978], [738, 580], [], [650, 819, 854], [1], [133], [123], [424, 423], [614], [162, 167], [229], [610], [534], [524], [840, 911], [932], [559], [560, 981], [333], [565], [821], [904], [269], [222], [114, 947], [], [91], [846], [139], [537], [252], [], [652, 413], [928, 927], [354], [556], [345, 690], [722], [601], [803], [241], [682], [300], [490], [721, 831], [386], [250], [5], [651, 659, 411, 813], [], [742, 713], [156], [981], [570], [608, 610, 841, 894], [662], [598], [217, 852, 239], [43], [], [212], [218], [763], [106], [839, 873], [238], [220], [744, 657], [301], [777], [356], [625], [98], [], [138], [545], [199], [574], [217], [614], [243], [200, 155], [247], [185], [984], [539], [211], [684], [173], [92, 95], [654], [174], [297], [246], [], [775], [799], [370], [808], [956], [500], [2], [358], [801], [686], [773], [936, 939, 940], [605], [749], [779], [618], [993], [805], [924], [589], [145], [215], [], [938, 37], [752], [12], [481], [906, 834], [769], [401], [918], [836, 837, 951], [], [275], [799], [369], [515, 40, 42], [504], [137], [761], [8, 765], [166], [677], [767], [430], [469, 616], [400, 834, 667], [325], [927], [390], [802], [84], [], [736], [745], [23], [92], [712], [630], [410], [474], [221], [793], [83], [309], [], [165], [843], [579, 881], [397], [222], [104], [426], [488, 479, 695], [195], [886], [401, 881], [265], [466], [194, 185], [949], [331], [551], [315], [221], [172], [550], [629], [806, 658], [889], [897], [769], [832], [10], [608, 774], [525], [111], [593], [968, 504], [704], [868], [347], [569], [], [596], [738], [763], [59], [953], [506], [585], [922], [22], [807], [676], [279], [363], [14], [378], [], [60], [608], [357], [872], [612], [154], [740, 587, 783, 477], [877], [265], [230, 220], [612], [785], [690], [433, 728], [423], [89], [275], [975], [653], [584], [292], [330], [580], [284], [976], [374], [669], [70], [6], [251], [443], [340], [263], [208], [59], [483], [140], [535], [947, 997], [140], [241], [707], [755], [977, 978], [121], [452], [571], [508], [677], [357], [122], [163], [150], [60], [979], [418], [701], [428], [], [24], [37], [977, 638, 639], [37], [122], [243], [766], [399, 786], [588], [652], [457, 158, 151], [102], [405], [29], [395], [467, 596], [449, 718, 975], [672], [752], [366, 367], [612], [825], [], [908, 404], [], [18], [996], [430], [82], [968], [834], [558], [370], [977, 978, 879], [700], [261], [513], [464], [185], [218], [274], [432], [831, 765, 799], [652], [768], [758], [289], [201], [209], [105, 106], [378], [560], [435], [632], [270], [309], [733], [57], [959], [106], [22], [289], [197], [861], [996], [192, 187], [632], [296], [382], [681, 810, 620, 508], [775], [320], [350], [704], [972, 977], [498], [442], [596], [525], [748], [514, 819, 638, 639], [578, 903, 689, 601], [536], [965], [], [470, 921], [899], [526, 527, 782, 664, 508], [880], [699], [292], [113], [820], [763], [925], [807], [681, 620, 526], [994], [247], [865], [423, 424, 762], [803], [760], [243], [590], [181], [489], [865, 850], [929, 443], [727], [415], [55], [690], [738, 703], [385], [527], [617], [117], [544], [200], [784, 507], [850], [141], [754], [255], [496], [847], [435], [515, 596], [291], [415], [808], [707], [956], [62], [289], [], [238], [316], [], [398], [383], [997], [393, 108], [17], [166], [617], [139], [284], [433], [628], [617, 823], [700], [80], [701], [773], [793], [11], [347], [785], [678], [], [806, 850], [538], [920], [851], [965], [147], [57], [545], [19], [836, 837, 975], [999, 153, 700], [119], [910], [962], [183], [73, 74, 815], [517], [579], [140], [346], [], [627], [863], [814], [665], [65], [529], [466], [155], [655], [540], [712], [726], [247], [894], [239], [34], [820], [], [528], [678], [189], [117], [695], [380], [293], [413], [114], [389, 391], [784], [332], [], [68], [690, 346], [313], [855], [842, 731], [10], [830], [472, 718], [456], [723], [668], [461], [558], [143], [745], [523, 975, 978], [221], [946], [123], [931], [654], [27], [406], [510], [261], [746], [981], [2], [933], [], [508], [754], [342], [456], [704], [905, 750], [545], [363], [113], [205], [187, 636], [945], [370], [647, 600], [155], [790], [589], [532], [191], [28], [532], [67], [456], [506], [143], [245], [433], [417], [35, 37], [203], [803], [273], [322, 769], [919], [340], [873], [87], [754], [816], [241, 238], [], [843], [844], [643], [563], [842, 978], [421], [87], [406], [946], [979], [806], [877], [619, 846], [417], [782], [105], [465], [624], [830], [352], [746], [33], [552], [863], [855], [688], [597], [281], [185], [15], [907], [221], [625], [506], [563], [], [37], [605], [679], [944], [58], [402], [80], [961], [763], [828], [577], [93], [315], [300], [81], [178], [1], [841], [729], [923], [66, 68], [409], [256], [76], [818], [369], [128], [391], [567], [591], [365], [387], [766], [], [], [], [458], [172], [769, 767], [457, 541], [20], [883], [356], [545], [405], [716], [212], [730], [635], [277], [256], [25], [868], [728], [540], [386], [864], [971], [53], [351], [], [320], [707], [691, 570], [978], [870, 903], [630], [62], [989], [128], [515, 775, 564, 669], [362], [311], [822, 542], [325], [642], [695], [473], [761], [365], [715], [], [559], [950], [999], [158, 151], [704], [647], [627], [227], [3], [676, 236], [349], [936, 923], [715], [993], [60], [17], [703], [290], [33], [225], [968], [323], [377], [462], [108], [51], [], [592], [870], [421], [126], [564], [801], [959], [270], [928, 923, 960], [578, 982], [651, 732], [577], [129], [958], [841], [350], [78], [259], [559, 721], [0, 391], [958], [877], [474], [650], [141], [755], [283], [907, 440], [2, 3], [744, 657], [104], [929], [991], [94], [772], [879], [628], [105], [975, 634], [619, 846], [828], [988], [936], [591], [], [738], [280], [156], [240], [708, 460, 975], [80], [546], [936], [196], [694], [340], [], [386, 101], [672, 792], [], [135], [191], [611], [472, 693], [624, 453, 454], [221], [894, 638, 639], [72], [535, 479], [824], [], [298], [286], [758, 472], [85], [555], [794], [961], [958], [936], [990], [180, 243], [71], [608, 514], [], [224], [868], [454], [611], [309], [539], [317], [393], [610, 443], [338], [520], [430], [276], [841], [93], [749], [281, 282], [892], [294], [457], [945], [923], [458], [817, 479], [555], [624], [855], [135], [110], [510], [], [783], [451], [866], [419], [206], [492], [265, 266], [94], [713], [720], [457, 459], [89], [], [47], [], [435], [908, 404], [119], [762, 766], [890], [215], [719], [844], [717], [358], [687], [643], [970], [394], [730], [618, 813, 659, 567], [914], [639], [475], [473], [18], [492], [396], [64], [679], [105], [], [450], [834], [49], [538, 668], [821], [697], [794], [781], [656], [748], [968], [624, 454], [909, 567], [], [915], [689, 601], [126], [13], [724], [379], [], [673, 508], [734], [80], [763], [43], [352], [], [697], [535], [532, 923, 868], [894], [504], [884], [], [688], [297, 295], [154], [984, 475], [629], [238], [268], [653], [681, 620], [63], [302], [914], [439], [144], [643, 819], [150], [1], [], [228], [144], [211], [57], [820], [28], [387], [], [37], [690], [567], [351], [785], [787, 524], [343], [488, 600], [135], [24], [369], [528], [271], [520], [585], [683], [225, 235], [912], [44], [265], [], [335], [74], [2], [793], [868], [573], [374], [590], [26], [911, 533], [306], [443], [387], [603], [602], [231], [877], [202], [652], [978, 510], [907], [337], [612, 670], [2], [169], [607], [681, 810, 620], [135], [518, 920, 671], [917], [761], [847], [362], [27, 455], [707], [647, 968], [524, 461], [479], [724], [], [351], [756], [342], [253, 703], [351], [873], [176], [956], [673, 681, 620, 526, 527, 664, 508], [724], [633], [199], [613], [479], [], [777], [], [419, 605], [320], [939, 567, 926], [669], [256], [223], [605], [880], [593], [469], [337], [630], [839], [752, 852], [846], [528], [105], [630], [514, 515], [125], [742], [94], [776], [], [512], [738], [968], [270], [455], [182], [58], [181], [674], [96], [118], [37], [453], [148], [203], [770], [894, 799], [11, 14], [101], [715, 671], [970], [601], [495], [786], [57], [33, 973], [990], [400], [716], [788], [337], [812, 908], [739], [292], [878], [9], [61], [361], [605], [218], [344], [232], [844], [832], [246], [596], [120], [950, 953], [896, 999, 648, 861], [975], [853], [921], [348, 349], [537], [866], [], [836, 837, 518, 898, 671], [39], [76], [], [449, 975, 472], [862], [138], [719], [], [262], [981, 429], [930], [22], [], [913], [617, 823], [821], [150], [825], [369], [474], [922], [], [343], [], [312, 937], [823], [951], [676, 235], [862], [92], [346], [28], [497], [549], [72], [195], [212, 251], [37], [112], [648], [107], [623], [139], [929], [170], [99], [475], [713], [], [264], [813], [432], [916], [475], [526, 664], [976], [44], [749, 526], [204], [121], [622, 759, 414], [194], [685], [283], [362], [555], [474], [17], [587], [368], [460, 718], [247], [885], [109], [737], [865], [783], [739], [462], [548], [136], [999, 876, 435], [579, 402], [351], [274], [641], [982], [426], [], [538], [354], [], [890], [954], [229], [824, 911], [728, 861], [932], [626], [681, 620], [107], [646], [69], [702], [987, 998], [607], [478], [], [792], [908], [898], [304], [73], [401], [], [923, 122], [268, 151], [593], [], [373], [503], [302], [402], [481, 482], [750, 721], [], [374], [446], [492], [755], [277], [91], [], [], [], [372], [531], [479], [763], [359], [595], [642], [654, 603], [499], [467], [346], [650], [804, 631], [111], [], [487], [693, 472], [929], [134], [661], [629], [117], [689], [743], [479, 817, 511], [447], [232], [321], [351], [621], [494], [200], [470], [316], [786], [981, 429], [258], [485], [960, 923], [144], [], [395], [506], [789], [325], [297], [384], [], [453], [614], [349], [645], [608], [673, 526, 527, 916, 664, 508], [807], [818], [830], [370], [754], [762, 923], [], [903], [213], [581], [6], [], [802], [579, 881], [242], [696], [683], [939], [139], [475], [749], [685], [219], [702], [661], [834, 906, 630], [495], [816], [945], [327], [386], [374], [298], [377], [979], [625], [888], [227], [176], [677, 587, 784], [11], [907, 953], [276], [105], [546], [650, 834, 906], [578], [739], [298], [14], [4], [526], [47], [281, 897], [791], [984], [839], [842, 625], [986], [411], [582], [52], [43], [778], [306], [820], [150], [], [822, 542], [78], [887], [], [], [948], [829], [259], [199], [804], [580, 315], [513], [84], [821], [814], [929], [928, 960], [957], [921], [608], [744, 657], [172], [392], [820], [937], [610, 114], [331], [51], [113], [7], [7], [60], [836, 837], [592], [396], [650], [687], [873], [431], [159], [182], [430], [837, 465, 597], [950], [566], [31], [440], [234], [726], [113], [980], [517], [221], [572], [598], [376], [913], [843], [531], [803], [125], [685], [255], [801, 983, 327], [417], [666], [891], [530], [57], [520], [166], [745], [450], [], [385, 386], [716], [650, 819], [564], [355], [353], [308], [883, 725], [775], [131], [939], [83], [116, 126], [], [955], [18], [628], [480], [841, 823], [594], [405], [162], [95], [605, 748], [430], [338], [86], [305], [648, 794], [403], [], [939, 943], [497], [236], [413], [350], [854], [93], [49, 50], [719], [187], [262], [405], [62], [955], [608, 679], [260], [331], [265], [938], [370], [497], [26], [581, 407], [660], [119], [67], [89], [683], [779], [801], [263], [368], [862], [], [486, 776, 683], [143], [689, 501], [], [541], [916], [530], [40], [], [634, 561], [177], [208], [425, 825], [836, 638, 639], [], [547], [198], [671, 518, 615], [110], [232], [1], [558], [911, 796], [126], [807], [619], [616, 618], [526], [88], [759, 474], [249], [33], [386], [30], [900], [898, 680], [472, 693], [370], [123], [608, 897, 651, 567], [], [482], [546, 631], [197], [566], [515], [721], [18], [774], [962, 923], [272], [361], [494], [55], [], [783], [946], [430], [293], [195], [100], [120], [619, 409, 442, 892], [578, 689, 982, 601], [751], [764], [336], [441], [448], [558], [55], [283, 435], [561], [291], [189], [465], [182], [179], [574], [257], [896], [487], [696, 738], [], [534], [856], [346], [], [416], [], [911], [391], [762], [258], [535], [230], [983], [378], [402], [310], [780], [11], [923, 891], [369, 379], [672], [329], [39, 44, 47], [147], [88], [582, 953, 954], [879, 638, 639], [687], [102], [97], [631], [917, 921], [969], [221], [85], [], [999, 435, 794], [246], [159], [76], [], [962, 923, 935], [155], [794], [951], [481, 482], [146], [31], [737, 519], [], [872], [563], [252], [300], [665], [317], [195, 245], [], [517], [126], [125], [29], [17], [230, 231], [25, 28], [453, 553], [48], [976], [767], [572], [201], [752], [352], [230], [671], [312], [110], [316], [711], [13], [670], [788], [551], [770], [903], [90], [771], [656, 468], [181], [464], [579, 881], [492, 588], [619, 846], [24], [957], [500], [582, 692], [817], [890], [], [986], [769], [785], [989], [13], [38], [165], [548], [457], [923, 934], [565], [263], [492], [858], [607], [744, 657], [417], [483], [466, 799], [795], [698], [747], [851], [161], [614], [627], [971, 542], [478], [896], [], [174], [934], [], [929], [332], [487, 457], [962, 923], [7], [], [245], [956], [286], [], [115], [], [481, 482], [609], [547], [356], [994], [637], [636, 748], [604], [448], [152], [163], [107], [], [97], [353], [898, 585, 631], [404], [946], [853], [292], [140], [860], [734], [739], [243], [964], [673, 526, 508], [519], [899, 968, 725, 504, 572], [341], [277], [759, 635], [707], [661], [286], [863], [401], [79], [299], [826], [274, 277], [31], [604], [88], [697], [755], [], [538], [], [305], [440, 441], [327], [867], [], [756, 412], [275], [521, 926], [138], [791], [365], [305], [976, 977, 978], [10, 858], [478], [489], [50], [896], [324], [86], [386], [789, 614], [699], [133], [408], [565], [], [611], [77], [998, 941, 987], [769], [248, 537, 250], [543], [255], [458], [573], [], [338], [944], [697, 819, 854], [797], [491], [714, 402], [578, 627, 982], [16], [382], [531], [58], [933], [269], [653], [960, 813], [200], [791, 922], [549], [522], [155], [632], [110], [453, 894], [182], [513], [396], [243], [], [368], [440, 455], [181], [438], [759], [], [331], [259], [728], [807], [596], [634], [517], [], [599], [157], [159], [324], [581, 479], [179], [115], [645], [816], [155], [604], [673, 526, 527, 664, 508], [29], [], [550], [972], [284], [403], [874], [315], [637], [393], [421], [], [459, 845], [221], [963], [558], [258, 222], [400], [40, 44], [991], [444, 670], [147], [50], [763], [502, 638, 639], [], [72], [648], [137], [119], [548, 851], [610], [475], [487], [72], [], [559], [858], [935], [731], [455], [], [973], [395], [786], [263], [734], [], [308], [728, 412], [256], [289], [79], [349], [461], [591], [72, 815], [], [408], [54], [634], [601, 578], [70], [671], [166], [439], [869, 841, 523], [72], [923], [327], [651], [856], [427, 756], [989], [834, 982, 906], [], [551], [389, 983], [559], [75], [75], [902], [830], [102], [369], [921], [551], [], [70], [366], [769], [107], [517], [314], [272], [434], [238, 239], [607], [58], [8, 7], [832], [220], [182], [975, 980, 703], [978], [869, 617], [378], [748], [248], [431], [866], [960], [659], [468, 919], [953, 954], [930], [873], [40, 46], [518], [466], [833], [408], [923], [937], [], [508], [314], [734], [696], [956], [615], [320], [946], [196], [914], [123], [903], [34], [56], [213], [512], [208], [99], [372], [205], [677], [786], [], [788], [772], [94], [99], [783, 677, 463], [], [555], [770, 836, 837, 733, 862, 610], [882], [937, 938], [592], [11], [], [13], [736, 515], [418, 767], [197], [914], [524], [233], [882], [], [], [315], [83], [788, 502], [124], [979], [320], [169], [491], [861], [784], [893], [517, 540], [340], [501], [52], [514], [72], [366], [961], [224, 208], [702], [275], [], [267], [421], [54], [963], [275], [756], [316], [945], [606], [198], [177], [928], [612], [497, 663], [587, 784], [], [375], [75], [709], [678, 638, 523, 818, 819], [360], [442], [330, 331], [566], [150], [], [], [], [8, 7], [557, 663, 442], [706, 421, 970], [458], [51], [2, 3], [702], [659, 923], [553], [8], [17], [17], [880], [734, 407], [273], [933], [953], [891], [464], [237], [860], [669], [857], [2], [448, 858], [869], [69, 110], [350], [273], [73], [], [727], [506], [306], [91], [], [181], [926], [17], [24], [545], [957], [845], [104], [513], [53, 759], [777], [847], [187], [378], [696], [940], [200], [155], [409], [229], [123], [850], [723], [578], [247], [847], [956], [51], [890], [907], [], [646], [182], [12], [958], [980], [172, 173], [999, 499, 700], [844], [21], [811], [830], [512], [531], [236], [581, 479, 511], [542], [565], [169], [], [453], [900], [], [740], [235], [192], [371], [475], [121], [126], [50], [161], [240], [421, 976, 978], [422], [172], [803], [], [673, 526, 527, 782, 664, 508], [230], [479], [978, 515], [841, 501], [545], [758], [4], [123], [329], [503], [966], [281], [209], [401], [687], [483], [30], [949], [873, 839], [974], [576], [514], [988], [173], [], [164], [991], [882], [609], [756], [], [], [936], [113, 125], [453], [], [471], [67], [242], [257, 850], [141], [571], [321], [631], [586], [902], [793], [378], [608, 421, 869], [520, 669], [748], [121], [84, 7], [396], [670], [453], [797], [917], [746], [608, 972], [421, 506], [997], [910], [257], [802], [688], [210], [905, 859], [337], [753], [519], [750], [625], [476], [651, 527, 664], [683], [962, 923], [800], [802], [874], [853], [625], [585], [93], [928], [407], [955], [807], [54], [], [402, 836, 837], [494], [87], [756], [], [244], [522], [347], [692], [886], [182], [864, 867], [884], [985], [914, 484, 780], [635], [304, 302], [18], [], [610], [440], [808, 968, 504], [850], [698, 483], [469, 926], [], [518, 568, 570], [575], [928, 762, 923, 927], [106], [977, 638, 639], [770], [519], [542, 559, 541], [456, 733], [], [617], [235], [200], [280], [842, 879, 977, 978], [191], [740], [553, 750, 831, 894], [576], [983], [962, 923], [217], [199], [7], [828], [656], [217], [23], [47], [439], [152, 155], [400, 667], [18], [197], [631], [442, 494], [235], [377], [], [966, 572], [777], [528], [238], [997, 947], [183], [133], [861], [394], [425], [389], [13], [294], [243], [69], [850], [56], [143], [360], [547], [462], [], [552], [611], [322], [572], [494], [197], [833], [708], [548, 851, 632], [918], [124], [459], [149], [361], [520], [458], [270], [186, 193], [667], [675, 850, 757], [453], [833], [716], [190], [], [30], [949, 954], [211], [834, 517, 906, 630, 671], [374], [], [670, 518], [450], [914], [39], [261], [], [463], [], [100], [488, 679], [995], [760], [230, 231], [110], [], [251], [], [814], [490, 600], [38], [683], [994], [553], [673, 508], [277], [839], [564, 669], [920], [483], [551, 629], [757], [217], [877], [60], [785], [533], [1], [401], [214], [853], [126], [295], [318], [892], [719], [462], [124], [240], [516], [535], [149], [521], [152], [393], [562], [195], [962, 933, 923], [419], [1], [103], [423], [824], [582], [780], [370], [228], [581], [456], [], [984], [], [997, 947], [114], [837, 841], [333], [490, 524, 461, 787], [889], [858], [93], [6, 983], [], [656], [986], [991], [812], [608, 465, 597], [857], [311], [652], [610], [445], [246], [231], [673, 664, 526, 527, 632, 508], [221], [], [149], [304], [], [], [285], [354], [966], [78], [], [31], [500], [617], [665], [946], [604], [130], [246], [464], [237], [339], [50], [809, 923], [859], [], [], [581], [550], [], [898, 585], [201], [701], [274], [12], [153], [12], [], [345], [], [368], [225], [], [9], [41], [527, 782, 916, 664], [932], [981], [776], [363], [239], [694], [], [232], [905], [669, 564], [850], [195], [179], [328], [849], [167], [539], [173], [166], [829], [680], [145], [37], [268], [523], [394], [718, 975], [779], [567], [377], [670], [965], [139], [472, 693], [355], [538], [167], [841, 501], [212], [788, 795], [918], [897], [610], [718, 888], [726], [158], [145], [868], [], [361], [654], [327], [869], [417], [305], [350], [578, 689], [879], [401], [241], [937], [600], [284], [537], [172], [494], [408, 414, 465, 608], [695], [696], [525], [805], [961, 909], [627], [949], [647], [35, 37], [911, 658, 824, 568], [944, 946], [923], [346], [457, 834], [349], [79], [], [612], [104], [104], [596, 284], [835], [614], [568], [322], [301], [265], [758], [866], [829], [358], [977, 978], [906], [24], [571], [334], [785], [694], [299], [], [654], [722], [511, 479], [272], [271], [409], [515], [6], [927], [337], [708, 557, 538], [997], [673, 664, 526, 527, 782, 632, 508], [895], [353], [], [385, 101], [236], [174], [214], [642], [932], [440], [904], [903], [766], [975], [11], [283], [416], [792], [36], [35, 37], [544, 521, 910, 926], [598], [578], [281], [990], [110], [391], [859], [], [959], [693], [688], [588], [497], [753], [350], [44], [529], [760], [945], [303], [985], [51], [], [111], [412], [708], [179], [52], [581], [852], [734], [884], [608, 610, 836, 837, 557], [625], [711], [960], [936, 938], [807, 637], [226], [], [276], [195], [863], [457], [88], [], [760], [180], [593, 650], [543], [654], [939, 943], [698], [956], [594], [841, 911], [], [694], [496], [544], [198], [693], [956], [243], [102], [118], [783], [248, 250], [189], [5], [479], [507], [438], [973], [168], [434], [814, 913], [214], [349], [817], [726], [821], [585], [9], [908, 895], [333], [334], [], [580], [201], [386], [985, 716], [195, 159], [430], [546, 776, 650, 819, 632], [207], [261], [209], [895], [358], [321], [681, 620, 951], [333], [711], [286], [445], [293], [880, 430], [], [818], [996], [327], [573], [526], [843], [713], [847], [179], [268], [248, 250], [337], [177], [968], [688], [652], [962], [383], [220], [815], [810, 878], [146], [39], [455], [52], [141], [463], [828], [981], [787], [497], [620], [786], [615], [240, 238], [893], [30], [486], [825], [418], [649], [64, 55], [779], [48], [621], [159], [570], [43], [539], [], [], [], [945], [392], [606], [208, 250], [538], [949], [91], [207], [985], [951], [580], [79], [259], [645], [826], [581, 751, 817, 479], [640], [47], [453, 454, 624], [896, 435], [725], [], [384], [121], [], [234, 214], [894], [991], [315], [374], [], [], [614], [569], [497], [605], [339], [], [378], [82], [], [576], [610], [905, 532, 441, 572, 834, 966], [416], [780], [129], [], [386], [573], [628], [853], [982], [786], [672, 970], [908], [325], [331], [380], [551], [487], [], [859], [882, 613], [125], [245], [379], [561], [840], [867], [437], [52], [646], [536], [382], [647], [323], [], [175], [874], [578, 903, 689, 885], [535], [937], [462], [433], [189], [654], [592], [357], [94], [341, 703], [468, 919, 920], [377], [148], [362], [14], [326], [319], [659], [857], [681, 620, 508], [849], [841, 608, 636], [289], [785], [779], [870], [], [302], [], [373], [29], [486], [201], [239], [735], [954], [143], [563], [48], [807], [430], [571], [345, 690], [690], [129], [399], [393], [181], [391], [907, 478], [400], [647], [544], [], [871], [697], [263], [774], [916], [708], [509], [135], [812], [385], [214], [285], [76], [261], [390], [590], [595], [397], [936], [168], [525], [], [502], [914], [449], [750], [471], [528], [19], [966], [879], [38, 44], [121], [837, 441], [801], [893], [], [793], [104], [873], [144, 977], [313], [267], [204], [868, 923], [488], [236], [334], [26], [427], [621], [715, 764], [692], [104], [627], [578, 903, 601], [595], [921], [785], [204], [759], [721], [214], [330], [564], [565], [59], [], [489], [515], [23], [191], [125], [629], [578], [514, 788], [580], [171], [444], [681, 620, 508], [215], [289], [742], [175], [821], [826], [93], [241], [], [719], [62], [11], [995], [497], [77], [162], [], [494, 442], [357, 337], [497], [977], [990], [363], [506], [264, 263], [103], [609], [671], [548, 905, 851, 831, 598], [306], [], [48], [445], [875], [387], [731], [361], [], [132], [82], [923, 924], [257], [945], [843], [819], [481], [147], [292], [968, 651, 504], [971, 815], [76, 568], [245], [82], [870], [671], [], [46], [463], [845], [944], [12], [602], [483], [4], [182], [958], [900], [301], [335], [734], [515], [428], [789], [481, 482], [902], [234, 852], [417], [802], [655, 500], [363], [354], [64, 55], [281], [796], [150], [668], [618, 284], [144], [159], [194], [345], [414], [482], [296], [446], [814], [516, 601], [425, 730], [534, 729], [729], [868, 923], [813], [475], [129], [740], [573], [437], [760], [792], [873], [644, 470], [279], [907], [434], [229], [610, 655], [795], [185], [521], [232], [672, 570], [165], [902, 769, 726], [649, 979], [400, 667], [788], [812], [715], [237], [747], [608, 728, 824, 630, 414], [39, 48], [424, 423], [590, 487], [291], [771], [15], [485], [836], [297], [38], [967], [329], [138], [739], [518, 652, 691, 570], [867], [608, 459], [804], [665], [515, 906], [9], [919], [111], [], [923], [5], [421], [533, 539], [674], [828], [836, 837], [963, 567], [399], [545], [892], [381], [597, 763], [473], [540], [248, 250], [80], [612], [806], [31], [965], [823], [446], [346], [921], [817], [195], [479], [725], [518], [467], [634], [968], [921], [141], [284], [546, 650, 402], [923], [454], [296], [171], [865], [276], [132], [970], [970, 980], [443], [653], [66, 68], [874], [259], [300], [445], [580], [738], [], [889], [904], [252], [], [897], [8, 7], [168, 205], [960], [235, 242], [510], [839], [752], [958], [436], [543], [797], [442, 538], [537], [7], [491], [160], [659, 438, 647], [872, 759, 622, 732, 414], [402, 703], [876], [465], [453, 454], [800], [757], [626], [912, 716], [880], [720], [880], [248, 249], [801], [452], [265], [379], [841, 447], [108, 991], [862], [394], [715], [812], [32], [452, 433], [678], [8], [79], [747], [316], [48], [], [232, 760], [648, 720], [588], [74], [563], [970, 518, 671], [972, 858], [566], [996], [596], [335], [476], [83], [513], [868], [], [968, 849, 725, 504], [892], [309, 984], [496], [673, 742, 664, 526, 527, 508], [632], [40, 46], [], [366], [570], [11], [691], [], [427], [850], [446], [434], [48], [], [20], [796], [467], [528], [363], [871], [112], [222], [872], [434], [561], [238], [962, 692], [713], [41], [338], [847], [943], [15], [774], [610], [148], [497, 442], [84], [836, 837, 678], [130], [885], [288], [340], [844], [654], [213], [974], [849], [419], [669], [35], [280], [323], [142], [157], [64], [553], [931], [379], [357], [466], [646], [967], [377], [256], [283], [289], [486], [], [722], [850], [], [92], [], [330], [378], [538], [151], [], [122], [6], [443], [670], [672, 471], [946], [38], [224], [752], [444], [420], [906], [372], [755], [480], [490], [613], [259], [578, 639], [646], [793], [235], [], [737], [777], [584], [553], [822], [388], [585], [862], [523], [745], [582, 941, 728], [82], [56], [195, 697], [801, 570], [787], [885], [740], [122], [618], [389], [153, 204], [563], [190], [610, 487], [967], [822, 542], [399], [565], [649], [696], [298, 299], [964, 951], [207], [26], [206], [635], [739], [523], [512], [385], [487], [500], [675], [38], [777], [934], [777], [624, 283, 453, 454], [805], [960, 967, 968], [859, 868, 521, 651], [337], [621], [169], [515, 680], [863], [886], [626], [406], [630], [45], [365], [512], [333], [415], [909, 926, 968, 504], [495], [886], [91], [105], [273], [421], [829], [153], [417], [510], [519], [979], [941], [569], [992], [263], [948], [819], [936], [], [84], [750], [139], [716], [395], [677], [949], [], [968, 504], [509], [378], [423], [305], [451], [59], [968, 504], [206], [32], [506, 421], [24], [140], [804], [715], [581, 656, 436, 479], [312, 311], [938, 923, 935], [684], [316], [94], [988], [42], [908, 404, 895], [908], [963], [252], [322], [900, 540, 812], [], [426], [180], [821], [], [502], [739], [261, 174], [650], [494], [581, 479, 817], [35], [90], [591], [432], [613], [626], [102], [489], [411], [168], [627], [834, 458], [903, 558], [], [372], [900], [49], [206], [766], [53], [783], [265], [71], [812], [136], [589], [61], [], [64, 59], [69], [710], [129], [], [496], [15], [911, 474], [659], [120], [], [432], [428], [140], [801], [217], [669], [994], [330, 332], [999, 281, 700], [958], [12], [608], [487, 402], [548, 851], [334], [750, 721], [241], [624, 453, 454], [392], [736], [301], [441, 572], [386, 101], [], [581, 436, 479], [810, 878], [568], [106], [482], [850], [28], [770], [1], [843], [655], [94], [464, 597], [741], [693], [468], [660], [917], [329], [], [654], [871], [390], [342], [], [572, 966], [950], [120], [146], [302], [], [519], [], [], [197], [505], [155], [825], [188, 189], [96], [237], [726], [325], [229], [507], [457, 834], [93], [], [260], [930], [510], [346], [983], [395], [317], [289], [554], [34], [713, 742], [992], [162], [211, 159], [401], [88], [559], [760], [484], [636], [309], [14], [78], [725, 901], [378], [431], [267], [223], [423, 424, 589], [973], [681, 810, 620], [618, 469], [], [167], [383], [117], [], [302], [479, 436], [389], [663], [346], [323], [822], [126], [432], [524], [994], [968], [], [355], [562], [420, 683, 875], [789], [847], [60], [842, 638], [720], [724, 536], [373], [398], [780], [673, 620, 664, 526, 527, 846, 632, 508], [540], [616], [104], [873], [417], [436], [277, 278], [668], [945], [184, 191], [682, 708], [225], [], [546], [674], [146], [580], [903], [665], [821], [682], [216], [684, 784], [571], [621], [287], [120], [774], [849], [223], [498], [608], [193, 194, 187], [982], [1], [771], [882], [469], [], [388], [344], [377], [610], [816], [621], [940, 463], [435], [515], [603], [402, 559, 836], [450], [], [800], [628], [865], [610], [], [15], [762], [775], [539], [531], [185], [579], [482], [398], [419], [976], [650], [771], [491], [910], [69], [207], [939], [], [100], [134], [506, 421], [249], [525], [171], [999, 861], [287], [497, 884], [], [249, 250], [600], [765], [609], [216], [788, 831], [210], [781], [923, 550, 967, 968, 762], [781], [198], [673], [235], [684], [429], [828], [86], [869], [215], [209], [435, 151], [397], [430], [791], [187], [436], [849], [603, 764], [144], [591], [808], [793], [909, 827, 926], [272], [], [80], [313], [923], [251], [53], [430], [119], [562, 825], [499], [919, 733], [359], [57], [820], [131], [330], [507], [781], [975, 703], [286], [761], [231], [841, 885, 630, 636], [128], [713], [780, 724], [604], [], [307], [880], [955], [910, 729, 828], [338], [928], [], [494], [340], [822, 577], [500], [859], [202], [975, 562], [633], [856], [210], [834, 836, 837, 650, 906, 819], [], [658], [366], [634], [160], [134], [277, 278], [155], [570], [102], [27], [421], [50], [401], [785], [906], [288], [487], [966, 572], [671], [788], [759], [377], [690], [816], [655], [72], [748], [592], [241], [893], [560], [18], [246], [901], [270], [782, 664, 830], [414], [819], [196, 198], [122], [839], [622, 759], [456], [278], [724], [333], [664, 971], [610, 841], [498], [965], [409], [241, 238], [136], [114], [453, 553, 894], [8], [869], [932], [587], [519, 950], [354], [648], [], [489, 22], [903], [442], [987, 998], [44], [795], [265], [933], [911], [748], [23], [396], [795], [1], [802], [], [], [479], [81], [525], [836, 837, 841, 978, 501], [626], [356], [610], [470], [666], [846], [91], [137], [], [529], [569], [993], [452], [616], [940], [293], [351], [604], [244], [551], [47], [354], [481], [800], [455, 440], [711], [23], [5], [700, 999], [148], [536], [886], [368], [246], [468], [672], [879], [171], [541, 62], [714], [28], [169], [993], [17], [442, 497, 858], [839], [679, 721], [160], [845], [251], [898], [423], [480], [581, 468], [500], [396], [883, 572], [431], [956], [361], [53], [817], [49], [729], [522], [], [939], [338], [391], [965], [625], [884, 406], [774], [546, 776, 158], [839, 718], [458], [213], [48], [950], [478], [431, 697], [34], [352], [703], [931], [830], [968, 504], [], [938], [320], [195], [121], [774, 977, 978], [437], [563], [26], [362], [16], [328], [841], [673, 526, 527, 782, 664, 508], [469], [13], [463], [14], [922], [231], [26], [921, 445], [], [22], [996], [222], [440, 737, 455], [232], [133], [607], [293], [117], [343], [476], [291], [565], [521], [825], [724], [295], [219, 220], [364], [258], [], [483], [], [710], [474, 911], [538], [64, 55], [], [539], [573], [603], [], [393], [923], [934], [922], [469], [871], [], [402], [474, 799], [616], [544], [50], [], [414], [595, 866], [825], [], [131], [515], [351], [297], [976], [577], [764], [903], [699], [335], [229], [666], [444], [168], [560], [847], [], [286], [], [6], [64], [218], [747], [669], [287], [825], [], [370], [957], [662], [875], [963], [165], [260], [646], [778], [197], [753], [996], [930], [453, 742, 681, 620], [677], [518], [63], [346], [517], [610], [672, 797], [276], [721], [383], [571], [787], [735], [75], [834, 681, 906, 526], [345, 346, 730], [54], [443], [597], [652], [770], [212], [116], [368], [388], [87], [690], [368], [854], [117], [], [105], [457, 834], [93], [], [342], [96], [834], [406], [17], [798], [866], [930, 415], [471], [574], [83], [698], [799], [24], [208], [459, 445], [946], [981], [887], [732], [687], [68], [966, 572], [999], [478], [263], [417], [244], [128], [974], [580], [515], [2], [893], [532], [56], [169], [714], [617, 691, 570], [366], [141], [38, 45], [309], [731, 861], [957], [845], [], [732], [411], [668], [850], [747], [565], [989], [508], [322], [547], [50], [752], [455], [806, 630], [103], [752, 852], [483], [845], [56], [427], [10], [881], [426], [300], [864], [184, 191], [316], [158], [557, 718], [253], [550], [260], [638, 639], [250], [842, 814, 977, 978, 693, 445, 639], [366], [], [388], [237, 158], [252], [743], [391], [816], [76], [399], [897, 285], [441], [], [6], [98], [289], [653, 493], [914], [696], [863], [701], [100], [825], [977, 978], [965], [384], [70], [605], [937, 962, 935], [979], [22], [669], [899], [64, 59], [640], [345, 347], [354], [491], [29], [141], [963], [27], [563], [250], [155], [236], [793], [969], [739], [780, 914], [125], [813, 567], [920, 779], [429, 463], [303], [665, 518], [12], [673, 810, 527, 664, 508], [370], [429], [793], [809], [16], [276], [], [679], [748], [323], [204], [201], [784], [286], [138], [303], [192, 185], [774], [], [669], [288], [489], [659], [588], [912], [735], [611], [99], [], [938], [358, 359], [218], [807], [907], [550], [36, 37], [834, 655], [904], [919], [699], [840], [698], [578, 819], [592], [767], [518, 670], [117], [258], [], [592], [256], [], [666], [265, 267], [833], [602], [474], [541], [614, 894], [760], [241], [507], [557, 22], [854], [418], [260], [673, 892, 681, 620, 526, 508], [269], [203], [277], [491], [48], [738, 999, 905, 700], [455], [239], [642], [236], [178], [403], [], [25], [546, 819], [834, 906], [776], [755], [816], [338], [778], [89], [], [560], [], [665], [939, 943], [914], [29], [683], [130], [0], [], [57], [335], [190], [971], [294], [175], [955], [524, 461], [583], [], [346], [157], [134], [], [112], [987, 998, 809, 923, 925], [90], [], [39], [345, 690], [678], [175], [749], [149], [813, 910, 926], [965], [101], [491], [122], [954], [434, 797], [311], [679], [597], [], [362], [786], [767], [27], [751], [724], [409], [694], [724, 536], [904], [197], [692, 790, 509], [], [901], [554], [928, 930, 923], [865], [65], [789], [958], [427], [927], [950], [274], [379, 381], [656], [320], [132], [855], [10], [41], [938], [553], [557], [897, 651, 760], [839], [811], [692, 760, 700], [616, 830], [593, 650], [610], [366], [885], [835], [291], [543], [448], [435], [486], [679], [750], [919], [734], [], [534], [964], [82], [], [287], [294], [714], [784], [991], [103], [925], [226], [63], [214], [578], [872, 681, 620, 622, 759, 414], [738], [135], [434], [610], [907, 440], [703], [112], [], [772], [606], [137], [162, 167], [744, 657], [], [277, 278], [321], [763], [104], [466], [303], [238], [726], [358], [216], [112], [], [32], [70], [594], [392], [159], [12], [206], [238, 216], [536], [791], [190], [674], [223], [610, 402], [44, 26], [539], [479], [81], [194, 203], [247, 215], [880], [17], [794], [], [], [420], [896], [], [409], [42], [114, 947], [433, 460, 975, 977], [710], [989], [745], [907, 440], [261], [303], [657], [518], [565], [614], [847], [607], [866], [371], [676, 199], [726], [478], [490], [700, 999], [978], [836, 837, 619], [305], [], [768], [648, 631], [265], [399], [523], [], [896, 648], [], [410], [913], [211], [512], [522], [336, 337], [681, 620, 632], [159], [307], [], [944], [808, 638, 639], [731], [796], [20], [392], [571], [576], [518, 830], [873], [789], [928], [311], [24], [858], [974], [422], [241], [729], [569], [494], [684], [387], [746], [45], [95], [582], [819, 854], [380], [521], [252], [504], [], [439, 541, 542], [174], [630], [937], [349], [542], [577], [465], [239], [378], [568], [218], [969], [610, 898], [844], [975, 703], [479, 817], [999, 434], [103], [865, 850], [210], [244], [881], [127], [426], [728, 790], [763], [903], [280], [744, 884], [301], [931], [822], [127], [256], [48], [418, 629], [352], [736], [343], [733], [405], [685], [638, 639], [808], [207], [722], [992], [985], [850], [506], [31], [], [739], [601], [344], [190], [876, 435], [810, 878], [673, 419], [850], [460, 975, 536], [874], [103], [852], [750, 242, 831], [176], [992], [895], [785], [281], [994], [378], [622], [374], [140], [414], [952], [678], [51], [321], [898], [586], [858], [602], [843], [440, 441], [285], [], [553, 493], [699], [109], [945], [948], [746], [293], [217], [223], [474], [42], [955], [332], [424, 423], [], [913], [678], [972], [131], [34], [850], [857], [619, 750, 846, 721], [769], [], [28], [742], [766], [836, 638, 639], [238], [744, 657], [233], [], [762, 923, 959], [], [135], [645], [964, 923], [559], [609], [78], [894], [800], [803], [636], [469], [167], [196], [247], [711], [275], [659, 959, 762, 923], [138], [730], [695], [992], [88], [], [407], [41, 44], [988], [239], [932], [152], [678], [156], [615], [601], [295], [925], [735], [639], [683], [822], [732], [], [665], [651], [859], [619, 846], [500, 825], [736], [388], [346], [183], [943], [152], [443], [479], [52], [150], [174], [911], [828], [281, 282, 539], [56], [595], [49], [699], [589], [817, 573], [80], [538], [130], [], [315], [917], [766], [498], [678], [617, 823, 153], [619, 846, 750, 721], [154], [930], [96], [289], [737, 455], [874], [308], [884], [898, 455, 680, 711, 968, 473, 826], [], [578], [795], [218], [693, 472], [375], [311], [137], [755], [566], [], [107], [606], [540], [774], [510], [911, 824], [392], [], [233], [570], [462], [88], [893], [763], [926], [142], [877], [371], [673, 681], [479], [975, 977], [163], [196, 837, 198, 836], [265], [416], [377], [256], [148], [397], [571], [876, 435], [380], [561], [243], [834], [932], [150], [585], [688], [382], [0], [322], [388], [946], [75], [473], [458], [375], [660], [687], [882], [583], [967, 968], [527], [255], [], [604], [937, 942], [], [249], [680], [250], [243], [62], [791], [62], [154], [73], [596], [754], [47], [], [488, 841, 843], [37], [18], [288, 290], [], [244], [224], [237], [12], [], [624, 453], [443], [727], [], [384], [327], [472], [257], [944], [787], [889, 486], [977, 978, 445], [334], [], [157], [412], [], [892], [26], [40], [815], [603], [265], [977, 978], [16], [547], [352], [49], [339], [608, 610], [349], [742], [401], [495], [], [509], [814], [146], [604], [341], [602], [578], [702], [996], [107], [95], [736, 515], [577, 641], [116], [44, 26], [276], [279], [558], [386], [748, 600], [133], [242], [616], [379], [850], [349], [552], [635], [384], [292], [798], [457], [995], [], [429], [109], [814], [895], [80], [], [723], [335], [810, 878], [449], [245], [159], [907], [209], [933], [80], [762, 959], [690], [728], [184], [522], [109], [208], [551], [984], [982], [138], [], [891], [], [428, 792], [51], [416], [636], [750, 721], [100], [114], [109], [670], [727], [511], [754], [300], [724], [703], [636], [481, 485, 632], [], [189], [460, 437], [621], [513], [150], [755], [875], [351], [759], [301], [202], [198], [324], [144], [119, 120], [171], [971], [620], [656], [305], [907], [113], [865], [270], [345], [706], [980], [], [479], [416], [180], [93], [199], [105], [94], [677, 587], [185], [], [394], [352], [550], [908], [31], [147], [884, 406], [928, 850], [557], [528], [148], [4], [278], [474], [919, 733], [650], [465], [279], [512], [841], [439], [56], [349], [], [747], [271], [740], [916], [112, 506], [100], [449], [319], [375], [513, 579, 881], [542], [300], [220], [496], [866], [645], [107], [816], [506], [32], [472], [850], [330, 331], [598], [653], [360], [179], [172], [175], [984], [806], [970, 915], [579], [544, 926], [226], [401], [117], [372], [], [335], [951], [750, 721], [491], [856], [165, 234], [743, 905], [898, 585], [566, 439], [488, 843], [987, 998], [987, 998], [899], [132], [571], [778], [543], [88], [924], [767], [569], [55, 59], [113], [542], [704], [44], [884, 532, 762, 923, 572], [459], [750], [29], [152, 157], [61], [], [437], [863], [875], [164], [722], [785], [927], [], [751], [364], [864], [250], [700], [554], [830], [794], [365], [219], [], [650, 558], [], [237, 180], [], [773], [295], [413], [177], [914], [563], [569], [303], [921], [], [670], [140], [738, 957], [274], [785, 180], [26], [311], [8], [945, 939, 943], [450], [754], [228], [239], [566], [561], [486, 889], [237], [874], [362], [264, 263], [662], [], [977], [199], [254, 262], [289], [304], [839, 718], [248, 250], [804], [900], [364], [182], [284, 861], [421], [65], [445], [916], [26], [709], [955], [135], [630], [421], [919], [217], [5], [790], [237], [997], [686], [31], [460], [88], [738, 421], [296], [45], [470], [825], [], [323], [956], [570], [352], [442, 494], [366], [311], [749], [87], [479, 817, 511], [894], [868, 470, 923], [213], [981], [347], [533], [483], [724, 536], [76], [395], [903], [367], [], [293], [780], [909], [342], [955], [803], [768], [], [948], [414, 478], [701], [777, 623], [758], [367], [543, 422], [708], [514], [488, 695], [692, 917], [836, 837, 977, 978], [915], [966], [437], [207], [85], [341], [232], [654], [263], [779], [394], [476], [], [367], [643], [741], [883], [412], [327], [758], [291], [936], [739], [560], [778], [141], [153], [890], [207], [734], [846, 619], [896, 999], [979], [570], [903], [109], [868, 987], [], [93], [890], [], [489, 15], [140], [570], [512], [770], [74], [529], [233], [669], [281], [72, 815], [312], [410], [440], [363], [231], [110], [992], [786], [765], [], [578], [619, 858], [351], [619], [905, 495], [857], [518, 652, 691, 570], [253], [799], [129], [686], [916], [100], [26], [299], [617], [745], [214], [], [577], [967], [963], [64, 55], [538], [22], [296], [709], [454, 652], [604], [428], [482], [53], [696], [544], [819], [546, 650, 819, 822, 542], [463, 925], [382], [], [], [362], [8], [726], [625, 554], [771], [717, 733], [767], [356], [554], [293], [396], [684], [235], [552, 733], [932], [3], [679], [507], [203], [398], [943, 945], [470], [50], [662], [936], [114], [508], [574], [846], [125], [628], [637], [358], [56], [], [576], [906], [309, 410], [873], [388], [728], [119], [864], [], [911], [239], [938], [745], [580], [576], [90], [405], [695], [215], [], [600], [519], [868, 532, 762, 923, 572], [436], [465], [372], [423], [878], [853], [696], [93], [976], [53], [360], [955], [942], [679], [], [252], [959], [426], [680], [585], [749], [393], [283], [601], [70], [], [448], [247], [711], [854], [638, 639], [507], [32], [805], [957], [795], [807], [838, 631], [960], [489], [820], [489], [204], [241, 238], [802], [364], [871], [228], [790], [174], [690], [], [540], [466], [], [886], [66], [481, 482], [734], [371], [785], [279], [636], [518], [167], [582], [679], [13], [915], [552], [878], [552], [489, 273], [617, 823], [111], [582, 790], [505], [314], [711], [419], [267], [719], [786], [838], [298, 357], [89], [13], [68], [441], [2, 3], [514], [64], [332], [547], [185, 186], [], [73], [643], [386, 101], [], [752], [647], [], [470], [343], [302], [181], [493], [831], [394], [39, 47], [232], [949], [638, 639], [745], [485, 761], [834, 630, 637], [224, 852, 205], [26], [992], [186], [769, 587], [579, 881], [850, 854], [507], [814], [19], [632, 851, 548], [875], [168, 159], [317], [912], [732], [747], [464], [566], [235], [105], [593], [71], [575], [218], [254], [167], [110], [267], [87], [172], [49, 50], [966, 572], [870], [64], [], [418, 767], [579], [538], [388], [651], [465], [166], [325], [574], [681, 810, 620, 508], [543], [978], [76], [538], [806], [993], [], [964], [104], [204], [696], [370], [610], [949, 647], [208], [558, 699, 541], [894], [164], [763], [428], [485], [514], [220], [211], [98], [399, 501], [114], [749, 542], [32, 30], [780], [395], [333], [626], [488], [841, 523, 412], [433], [566], [82], [], [145], [465], [652, 764], [66, 68], [643], [968], [896, 725], [122], [515, 869, 763], [967], [27], [121], [200], [308], [113], [243], [874], [997], [173], [444], [91], [145], [744, 812, 657], [43], [555], [555], [372], [545], [617, 823, 487], [368], [266], [419], [901], [470], [610], [608, 748], [3], [], [], [910], [386, 101], [486], [336], [760], [130], [513, 776, 875], [976], [132], [541, 542], [], [309], [407], [500], [101], [174], [535], [228], [794], [299], [906], [762, 554], [24], [115], [299], [], [809, 532, 923, 925, 926], [78], [652], [], [666], [451], [391], [784], [243], [924], [655], [], [609], [191], [607], [636], [318], [908, 404], [338], [57], [480], [374], [923], [505], [671, 898, 535], [682, 562], [70], [814], [548], [514], [478], [353], [185], [48], [328, 109], [436], [], [250], [398], [374], [385], [293], [48], [509], [462], [423], [981], [932, 415], [920], [796], [346], [247, 159], [550], [146], [652], [2], [497], [693], [256], [996], [277], [241], [423, 424, 831], [663], [462], [261], [213], [769], [440], [], [640], [228], [8], [450], [101], [948, 950, 957], [48], [57], [608, 523], [405], [805], [369], [133], [467], [], [232], [675, 208], [], [870], [322], [872, 622, 759], [123], [623], [49], [977, 978], [220], [877], [778], [22], [165], [719], [372], [95], [123], [337], [889], [776], [115], [574], [217], [938], [973], [887], [168, 178], [291], [888], [469, 919], [515], [669], [576, 693, 954], [913], [866], [375], [9], [236], [24], [369], [952], [923, 809, 947], [122], [584], [397], [806, 559, 463, 610], [84], [818], [], [394], [778], [619, 846, 721, 831], [212], [754], [245], [654], [244], [250], [156], [562], [933], [202], [910, 567], [764, 413], [], [427, 756], [155], [197, 199], [334], [24], [118], [110], [397], [420], [244], [640], [933], [228], [659, 952], [582, 680, 791], [463], [92], [138], [692, 960, 582], [77], [939], [38], [842, 433], [381], [174], [431], [987, 938, 923], [440], [971], [560], [424], [92], [508], [839], [698], [558], [729, 495], [711], [669], [811], [84], [744, 657], [426], [662], [26], [960, 931, 415], [799], [964, 813], [651], [813], [874], [366], [], [183], [738], [878], [975], [916], [149], [923], [451], [944], [761], [836, 837, 610, 870], [], [249], [960], [168], [610], [834, 588], [996], [747], [738], [892], [145], [426], [987, 998], [205, 213], [546, 650, 819], [239], [781], [673, 664, 526, 527, 782, 632, 508], [127], [726], [117], [562], [653], [404], [476], [9], [288], [531], [172, 177], [513, 715, 439], [586], [364], [453], [133], [180], [899, 619, 849], [553, 728], [836, 837, 885], [474], [858], [692], [252], [161], [525], [737], [487], [686], [73, 74], [339], [979], [810, 878], [230, 231], [426], [687], [835], [187], [998], [546], [37], [593], [990], [367], [508], [526], [36], [217], [], [473], [242], [207], [963], [750, 721], [563], [281, 282], [], [678], [742], [208], [18], [218], [212], [728], [367], [74], [520], [890], [570], [692], [275], [971], [428], [408], [442], [274], [702], [131], [849, 505], [994], [400, 667], [216], [501], [453, 624], [729], [844], [397], [], [], [], [987], [459], [173], [513], [650], [609], [581, 656], [865], [647, 659], [544], [870], [137], [522], [681, 620], [867], [817], [300], [675], [205], [463], [223], [], [52], [830], [443], [431], [893], [512], [461], [402], [41], [257], [750, 846, 721], [69], [127], [700], [759], [608], [384], [937], [298], [492], [362], [14], [958], [705], [827], [613], [427], [783], [673, 742, 526, 527, 782, 664, 508], [376], [577], [569], [894], [384], [262], [556], [162], [394], [898], [439], [48], [998], [188], [700], [459], [933], [985], [828], [399], [396], [], [801], [411], [769], [198], [829], [493], [632], [751, 479], [211], [222], [163], [979], [594], [189], [557], [927], [], [783], [114], [49], [885], [490, 524, 461], [893], [872], [128], [488], [], [472, 693], [694], [150], [796], [22], [608, 873, 414], [867], [372], [711], [900], [204], [175], [606], [392], [283], [692], [821], [], [20], [255], [880], [105], [710], [], [737], [183], [], [399], [462], [963], [816], [783], [38], [20], [809, 925], [18], [489], [809, 659, 925], [619, 846, 818], [916], [257], [526, 539, 588, 738, 883], [815], [360], [128], [608, 515], [138], [415], [987, 998], [499], [216], [], [804], [878], [505], [242], [598], [56], [865], [166, 167], [544], [677], [370], [558, 889], [487], [28], [678], [713, 742], [324, 946], [73, 74], [747], [584], [96], [382], [578], [161], [291], [940], [129], [929], [749], [], [349], [454], [44, 634], [362], [473], [552], [798], [87], [953], [676, 597], [643], [47], [915], [968, 534, 504], [896], [435, 876], [879], [563], [871], [], [59], [682], [645, 735], [], [487], [737], [], [43], [210], [103], [584], [595], [834, 906], [274], [], [860], [], [], [977, 978], [928, 659, 949, 927], [574], [630], [901, 725], [555], [503], [397], [414], [717], [727], [503, 828], [631], [783], [795, 862], [457], [27], [447], [365], [342], [], [48], [216], [724], [840], [934], [111, 114], [255], [544, 909, 469, 926], [93], [245], [563], [347], [814], [278], [810, 878], [185, 193], [313], [465], [358], [752], [457], [204], [5], [601], [937], [818], [490], [632], [559], [67, 54], [987, 998], [787], [741, 885], [], [221, 206], [252], [52], [546], [666], [749], [196], [724], [963], [], [955], [321], [223], [63], [759], [442, 497, 409], [47], [42, 44], [412], [637], [974], [388], [328], [162], [292], [825], [692], [192], [], [519, 478], [375], [918], [147], [992], [29], [173], [61, 62], [709], [889], [685], [109], [321], [580], [754], [], [315], [159], [772], [693], [349], [607], [], [699], [118], [305], [126], [], [], [606], [769], [387], [220], [55], [], [516], [470], [75], [48], [947], [126], [361], [494], [392], [780, 914, 536], [277], [268], [635], [274], [397], [394], [586], [703], [458], [402], [], [143], [949, 923], [177], [892], [478], [500], [451], [820], [958], [15], [113], [532, 762, 923, 572], [5], [995], [530], [258], [974], [661], [731], [140], [975], [421, 825], [863], [180], [739], [709], [548], [821], [653, 535], [866], [555], [765], [448], [336], [147], [207], [], [229], [67], [720], [822, 541, 542], [750], [651], [], [703], [953], [652, 847, 471], [612], [481, 485, 592, 605], [18], [681, 810, 620, 508], [59], [113], [524, 461], [977, 978], [261], [819, 541, 542], [153], [403], [910], [541, 542], [316], [558, 917, 921], [845, 638], [509], [768], [477], [704], [72], [470], [41], [775, 842, 977, 978, 445], [236, 237], [55], [153], [], [184, 202, 191], [442], [], [20], [920], [328], [23], [77], [994], [654], [489], [547], [], [308], [], [472], [64], [991], [], [723], [649], [99, 100], [970, 795], [681, 620], [727], [785], [486], [106], [], [137], [102], [705, 466, 799], [647], [], [395], [2], [61], [845], [894], [647], [843], [823], [472, 693], [336], [127], [], [153, 204], [], [685], [149], [851, 532, 831], [929, 227], [781], [329], [987, 998], [387], [721], [119], [502], [802], [373], [523], [398], [896, 999, 281, 700], [372], [369], [675], [261], [944, 946], [725, 572], [785], [461], [229], [568], [130], [59], [367], [752, 852], [358], [456], [555], [320], [957], [716], [846], [9], [], [630], [149], [], [515, 836, 559], [839], [198], [], [103], [696], [774, 614, 879], [157], [841, 825], [895], [], [476], [415], [509], [], [552], [70], [856], [36], [294], [225], [649], [840], [184], [489], [210], [133], [196], [307], [896, 876, 435], [694], [136], [710], [336], [400, 857, 667], [271, 277], [228], [699], [], [536], [347], [216, 716, 220], [203], [822, 542], [275], [714], [828], [571], [137], [6], [654], [679, 459], [663], [187], [260], [464], [670], [72], [612], [985], [5, 6], [471], [], [206], [244], [524], [971], [659], [642], [598], [264], [714], [156], [420], [420, 650, 402, 818, 819, 889], [129], [223], [903, 501], [479, 511], [612], [713], [720], [452], [283], [120], [836, 453, 837], [521, 962], [748, 636], [919], [251], [972, 23], [481], [594], [579], [171], [859], [769, 767], [26], [625], [306], [913], [236], [679], [], [152], [611], [], [490], [476], [376], [840], [249], [953], [938], [872], [507], [202, 189], [947, 997], [464], [627], [326], [865], [388], [], [870], [777, 596, 597, 763], [971], [197, 183], [811], [], [181], [1], [51], [194], [566], [855], [805], [635], [452], [58], [716], [752], [264], [345], [143], [619, 846], [441], [39], [179], [193], [917, 921], [538], [231], [466], [169], [776], [64], [484], [258], [275], [977, 978], [706, 423, 532, 923], [173], [277], [361], [536], [718, 510], [587], [859], [430], [977, 978, 853], [506, 733], [337], [986], [351], [679], [533], [666], [337], [350], [50], [968, 504], [852], [837, 703, 921], [674], [215], [755], [311], [88], [15], [253], [553], [616], [790], [963], [717], [822], [23], [], [786], [], [403], [], [732], [725], [72, 815], [], [394], [0], [333], [339], [461], [145], [903], [500], [977, 978], [23], [561], [921], [607], [708], [291], [292], [682], [617], [278], [957], [206, 221], [668], [40], [293], [594], [655], [344], [475], [142], [160], [469], [108], [780], [641], [229], [96], [88], [411], [249, 537], [849], [773], [108], [740, 587, 784, 477], [600, 823], [554], [770, 898, 649], [280], [248, 249, 250], [288], [340], [809, 943, 499], [972], [626], [255], [479], [396], [592], [169], [912, 339], [57], [586], [665], [687], [533], [850], [243], [], [956], [702], [408], [], [622], [778], [657], [429], [138], [455], [927], [985], [242, 703], [204], [0], [78], [677], [87], [421], [567], [706, 879], [140], [141], [159], [754], [113, 125], [790], [453, 740], [355], [491], [524], [5], [290], [139], [708], [917], [], [698], [609], [73], [545], [399], [7], [166], [347], [970], [790], [253], [440], [86], [954], [444], [902], [652], [37], [71], [338], [661], [790], [802], [], [455], [12], [394], [871], [828], [531], [852, 187], [740], [681, 810, 620, 508], [152], [834, 457, 906], [659], [], [122], [785], [484, 871], [362], [647], [199], [770], [859], [937], [440], [421], [424], [984], [660], [443], [759], [353], [665], [701], [137], [61], [784], [391], [], [311], [890], [812], [580], [571], [385], [237], [307], [376], [], [670], [821], [352], [328], [913], [836, 703, 796], [216], [908], [], [160, 177], [136], [650], [290], [604], [529], [581], [805], [595], [368], [462], [953], [456, 341], [395], [437], [567], [492], [972], [271], [158], [273, 274], [], [548, 598], [112], [798], [524], [412], [314], [995], [512], [261], [681, 620, 527, 664, 508], [176], [522], [521], [52, 60], [286], [344], [309], [763], [173], [209], [278], [752], [], [900], [721], [923], [992], [891], [339], [569], [0], [190], [168], [380], [401], [13], [426], [342], [276], [673, 681, 526, 527, 664, 508], [770], [500], [489, 507], [375], [855, 828], [409, 892], [198], [335], [682], [835], [606], [499], [916], [907, 499, 411], [701], [640], [797], [815], [19], [520], [36, 37], [956], [169], [0], [54], [365], [962], [878], [854], [568], [629], [300], [744, 657], [728, 545], [366], [572], [923], [132], [992], [650, 558], [0], [218], [], [953], [496], [20], [502], [154], [482, 605], [165], [343], [991], [434], [], [518], [977, 978], [965, 440], [892], [677], [24], [249], [818, 437], [288], [91], [6], [619, 818], [612], [688], [601], [819], [923, 868], [], [221], [514], [631], [957], [489, 695], [731, 861, 999], [753], [262], [744, 657], [753], [919], [156], [147], [683, 699], [730], [771], [464], [315], [121], [962, 935], [209], [715, 524, 461], [779], [970], [263], [556], [995], [606], [673, 526, 527, 664, 508], [140], [540], [390, 973], [4], [379], [76], [957], [267], [626], [992], [526, 720], [158], [640], [211, 159], [405], [383], [879, 412], [272], [], [213], [828], [252], [570], [223], [112], [602], [457], [37], [125], [398], [477], [201], [903, 689, 601], [799], [375], [57], [515, 413], [744, 657], [], [697, 610], [538, 668], [674], [69], [428], [131], [508], [278], [898], [205], [643], [], [37], [964], [7], [379], [588], [834, 532, 505], [755], [548, 553, 527], [986], [484], [5], [370], [696], [], [400, 667], [267], [3, 147, 149], [186], [], [890], [416], [681, 620, 916, 664], [], [651], [116], [396], [235], [17], [92], [404], [504], [270], [492, 519], [643], [162], [939, 582], [643, 903], [720], [175], [197, 233], [927], [987], [834, 906], [342], [660], [], [136], [869, 655, 630, 539], [239], [795], [74, 815], [701], [374], [], [87], [], [134], [82], [420], [464, 763], [758], [485, 685, 475, 511], [158], [645], [396], [465], [366], [438], [154], [437], [271], [948], [53], [335], [995], [83], [915], [245], [251, 246], [546], [], [198], [95], [488], [763], [911, 701], [283], [837, 978, 890], [979], [], [650], [831], [], [990], [251], [887, 501, 439], [269], [852], [540], [573, 479], [959], [487], [99], [376], [], [550], [763], [8], [25], [396], [263], [424], [455], [965], [320], [731], [172], [320], [302], [896, 804, 434], [557, 472], [906], [644], [485, 592], [640], [340], [195], [310], [181], [127], [386], [842, 977], [721], [], [195, 179], [145], [191], [375], [931, 950, 954, 923], [], [847], [92], [601], [566], [851], [705], [113], [897], [360], [615], [666], [526, 765], [230], [606], [849, 505, 859], [7], [162], [112], [176], [148], [467], [725, 872], [26], [103], [141, 976], [268], [25], [935], [836, 837, 630], [27], [438], [82], [625], [], [382], [281], [599], [570], [479], [41], [230], [742], [], [788], [62], [769, 398], [146], [515], [453, 606], [39, 119], [211], [520, 669], [583], [377], [481, 482], [191], [804], [497], [843], [229], [343], [], [550], [241, 238], [195], [170, 177], [419], [139], [79], [565], [], [355], [310], [564], [898, 414, 608], [], [741], [406], [816], [846], [349], [669], [112], [131], [824], [888, 705], [6], [673, 526, 527, 782, 664, 508], [776, 650], [721, 831], [], [134], [182], [689, 819, 578, 488, 885], [888], [449], [140, 142], [760], [628], [984], [396], [913], [915], [], [100], [801], [], [204], [746], [216], [532], [501], [456], [473], [716], [], [200], [588], [997], [690], [697, 443, 828], [904], [669], [621], [170], [706, 879, 401, 762], [247], [259], [929], [220], [516], [25, 28], [569], [91], [398], [810, 508], [229], [957], [], [], [554], [192], [700], [570], [492], [675, 478], [614], [654], [736], [869, 671], [652], [372], [948], [403, 536], [674], [805], [454, 921], [445], [363], [16], [], [928, 949, 927], [253], [88], [208], [561], [839], [629], [842, 445], [252], [], [36, 37], [], [571], [], [815], [528], [354], [615], [81], [980], [884], [371], [11], [380], [], [606], [713], [207], [544], [796], [102], [902], [99], [24], [387], [886], [773], [370], [836, 970, 414], [201], [455], [764, 413], [917], [84], [246], [72], [534, 729], [780, 724], [88], [178], [321], [911, 533], [426], [232], [632], [], [154], [133], [729], [630], [809], [89], [218, 156], [804], [701], [644], [775], [832], [238], [362], [797], [584], [359], [668], [977, 978, 445], [622, 759], [], [], [958], [268], [34], [62], [443], [618, 809, 659], [547], [133], [208], [597], [810, 664, 527, 782, 508], [346], [283, 750], [735], [760], [440, 574], [866], [], [549], [802], [44, 60], [146], [260], [115], [40], [313], [930], [769, 587], [474], [957], [734], [301], [469], [807], [281], [289], [143], [290], [368], [589], [814], [792], [722], [], [583], [], [265], [], [666], [970, 795], [621], [26], [223], [451], [196, 198], [707], [313], [619, 750, 846, 721], [305], [29], [382], [340], [180, 243], [739], [977, 638, 639], [546], [514], [352], [368], [347], [770], [425], [608, 610], [685], [514], [811], [], [], [582], [], [475], [952], [928], [784], [607], [336], [945], [96], [785], [297, 295], [545], [4], [64], [44], [18], [801, 397, 983], [609, 977, 978], [208], [252], [358], [423], [130], [704], [424], [143], [286], [107], [93], [], [350], [866], [100], [719], [], [137], [129], [958], [], [809, 762, 923, 926], [170, 177], [855], [543], [803], [626], [248], [717], [450], [895], [178], [971], [423, 424], [923, 960], [530], [384], [422], [24], [370], [400, 667], [324], [984], [654], [302], [690, 345], [640], [184], [722], [805], [860], [100], [971], [141, 142], [159], [], [273], [394], [826], [709], [784], [428], [198], [286], [969], [221], [851, 548], [120], [358], [645], [939, 940, 943, 950], [543], [132], [159], [537], [234], [602], [51], [], [639], [330], [261], [533], [], [500], [926], [191], [346], [173], [], [3], [280, 278], [393], [374], [386], [791], [143], [422], [237], [755], [127], [410], [913], [176], [], [509], [85, 86], [927], [903, 526, 528, 782], [891], [971], [], [112], [985], [156], [188], [332], [487], [326], [744, 657, 403], [933], [556], [134], [206], [786], [235], [685], [957], [965], [255], [862], [827], [25], [779], [637], [542], [896, 434, 861], [495], [112], [344], [750, 564], [201], [632], [417], [19], [822], [441], [758], [352], [681, 620, 508], [840, 463], [], [144], [105], [134], [867], [57], [], [548, 851, 598, 632], [985], [628], [37], [648], [405], [332], [938], [319], [320], [71], [944], [936], [48], [95], [568], [441], [810], [586], [396], [8], [156], [45], [685], [734], [775], [167], [203], [822], [39], [111], [288], [638, 639], [463], [140], [802], [604], [975], [769, 418, 709], [896], [375], [247], [860], [52], [561], [], [943], [744], [814], [411], [317], [516, 520, 431], [63], [510], [386], [], [313], [859], [576], [469], [251], [863], [592], [447], [], [420], [8], [697], [873], [798], [365], [], [117, 62], [726], [606], [560], [], [692, 567], [969], [267, 852], [177], [410], [781], [77], [580], [670], [234, 165], [974], [61], [310], [828], [], [749], [607], [831], [954], [153], [577], [17], [280], [386, 101], [618], [263], [247], [984], [575], [105], [166], [912], [634], [581, 479, 656], [203], [26], [226], [774, 470], [788], [90], [516], [548], [220], [], [556], [725], [328], [525], [667], [238, 240], [875], [892], [934], [17], [612], [474, 911], [57], [914], [419], [490], [], [997], [294], [909], [214], [778], [772], [922], [30], [136], [153], [195], [415], [315], [435], [178], [828], [383], [277, 278], [207], [821], [712], [408], [], [536], [681, 620, 603], [898], [0, 133], [868, 415], [135], [209], [12], [251], [113], [537], [], [857], [541], [351], [806], [], [614], [553], [45], [382], [790, 998], [510], [497, 663], [526, 782, 851], [206], [536], [786], [257, 222], [939, 945], [838], [547, 820], [470], [701], [576], [917], [14], [], [736], [464], [966, 907], [979], [688], [548], [562], [686], [], [553, 851], [628], [14], [487], [215], [145], [183], [227], [839], [408], [968, 504], [988], [870], [1], [627], [905], [922], [766], [529, 692], [271], [852], [546, 453], [237], [259], [629], [655], [998, 987, 575], [515], [229], [427, 756], [869, 433], [650, 851, 541], [205], [757], [940], [159], [37], [845], [97], [284], [773], [140, 142], [838], [10], [373], [49], [492, 786], [91], [177], [146], [614], [779], [], [976], [458], [275], [791], [883], [775], [11], [334], [303], [120], [935], [], [792], [441], [285], [387], [568], [162], [83], [132], [678], [305], [684], [127], [701], [421, 818, 506], [836, 837, 552], [327], [325], [623], [189], [712], [638, 639], [284], [697], [838, 680, 631], [958], [758], [355], [907, 692], [12], [896, 434], [113], [137], [939, 943], [803], [245], [], [886], [986], [808], [377], [581, 479], [13], [24], [758], [898], [417, 701], [750], [28], [434], [991], [66], [257], [], [543], [617], [937], [904, 969], [289], [419], [472], [609, 586, 652], [333, 335, 760], [88], [393], [941], [697], [759], [368], [417, 869, 501], [320], [834, 977, 978, 982], [438], [275], [877], [520], [208], [245], [], [514, 664, 655], [311], [987], [462], [418], [399], [794, 799], [249], [18], [957], [76], [400, 667], [986], [653], [80], [615], [1], [458], [690], [468], [], [], [591], [152], [409, 826], [563], [750, 721], [939, 943], [196], [58], [48], [203], [], [518], [922], [35], [714], [], [665], [754], [210], [687], [851, 548], [198], [210, 852], [890], [127], [559, 594], [689, 443], [832], [487], [444], [55], [430], [663], [425], [808, 977, 978, 445], [], [377], [387], [916], [533], [], [], [828], [611], [884, 538], [697], [758], [316], [197], [392], [557, 751, 733, 479], [425], [715], [769], [410], [94], [391], [638, 639], [581, 479, 661], [821], [267], [365], [587, 499], [476], [584], [939], [820], [923], [39], [187], [947], [62], [654, 656], [884], [338], [557, 562], [938], [345], [32], [9], [438], [801], [404], [894, 281, 285], [896], [809, 659, 762], [346], [51], [4, 394], [586], [861], [455], [433, 793], [947], [874], [307], [445], [267], [493, 526], [953], [328], [949], [], [141], [386], [234, 165], [955], [967, 968], [667], [], [583], [162, 167], [180], [944], [959], [], [729], [], [106], [51], [646], [670], [698], [586], [120], [], [980], [730], [159], [973], [383], [713], [635], [], [281], [734], [938], [528], [315], [911], [598], [747], [178], [480], [925], [946], [546, 402, 819], [629], [], [970], [174], [689], [431], [867], [34], [760, 827], [466], [530], [131], [972], [28], [511], [475], [305], [712], [512], [950], [], [], [623], [605], [253], [809, 909, 926], [267], [10], [555], [466], [668], [225], [700, 999], [610, 823], [801, 973, 983], [259], [825], [683], [116], [350], [209], [327], [510], [406], [844], [644], [743], [], [519], [281], [681, 620], [385], [85], [759], [747], [766], [196, 198], [224, 223], [198], [559], [188], [66, 68], [744, 657], [], [919], [761], [756], [244], [543], [703], [719], [628], [217], [529, 219], [210], [487], [393, 108], [190], [127], [443], [296], [940], [431], [296], [744, 655, 657], [387], [804], [], [790], [710], [785], [531], [984], [667], [766], [], [218], [560], [843], [49], [638, 639], [9], [553], [233], [890, 445], [15], [], [484], [497], [782, 664, 810], [154], [787], [314, 861], [621], [730], [321], [673, 681, 810, 620, 526, 664, 508], [760], [706], [494], [591], [906], [382], [182], [239], [792], [487], [514], [696], [632], [], [946], [803], [792], [450], [], [185], [489], [], [73, 77], [529, 728], [501, 887], [650], [155], [629], [888], [132, 211], [425], [98], [77], [852], [645], [637], [956], [687], [25], [446], [632], [579], [505], [697], [286], [751], [390], [49, 50], [907], [450], [349], [], [782, 664], [456], [406], [274], [489], [331], [476], [825], [756], [877], [926], [], [], [523], [143], [254], [587], [868, 415], [387], [452], [716], [592], [366], [371], [594], [864, 586], [831, 967, 968, 608, 504], [885], [247], [546, 650, 819], [19], [355], [994], [769, 709], [223], [467], [584], [411, 678, 868], [107], [58], [698], [532, 762, 923, 572], [974], [], [521], [399], [412], [384, 375], [841], [20], [654], [844], [271], [331], [522], [499, 600], [39, 44], [314], [22], [736], [715], [759], [840], [729], [905, 532], [177, 490], [841], [845, 470], [], [640], [850, 823], [160], [471], [35, 49], [906], [79], [717, 581, 479], [801], [430], [934], [40, 44], [992], [894], [873], [37], [711], [80], [543], [107], [], [721], [732, 759], [330], [597, 763], [319], [548, 556, 851], [573], [224], [194], [538], [686], [384], [160], [414], [721], [392], [874], [], [592], [645], [280], [948, 949, 923], [260], [868, 923], [228], [881], [982], [771], [748], [], [740], [307], [708], [489, 852], [], [210, 211], [515], [531], [], [824], [], [680], [215], [984], [572], [148], [967, 923], [654], [707], [253], [], [746], [684], [333], [584], [185], [747], [635], [411], [455], [893], [165], [581, 518, 479, 661], [963], [], [877], [768], [139], [410, 309, 599], [137], [], [681, 620, 526], [644], [], [283], [113], [320], [283], [10], [], [632], [385], [664, 526, 527, 632], [631], [850], [537], [451], [611], [268], [634], [96], [149], [318], [61], [281], [427], [642], [291], [604], [], [991], [437], [254], [212], [995], [488, 439], [946], [857], [750], [840], [644], [378], [778], [], [108], [150], [59], [554, 628], [369], [993], [61], [342], [343], [44], [977, 978], [833], [451], [721, 831], [258], [544, 813, 910, 926, 469, 827], [750, 915], [143], [72], [612], [181], [12, 957], [198], [379], [745], [749], [206], [145], [515, 204], [486, 889], [668], [533], [573], [678, 518], [608, 872], [121], [119], [582], [43], [322], [562], [], [216], [697], [315], [921], [618, 623, 499], [188], [], [277], [305], [997], [], [977, 978], [889], [], [768], [359], [48], [840, 463], [356], [136], [981, 429], [780], [904], [145], [372], [555], [531], [332], [868], [832], [814], [548], [616], [423], [134], [317], [168], [616], [653], [439], [825], [421], [828], [27], [883], [987, 998], [397], [793], [418, 709], [], [542], [102], [40], [103], [27], [743], [448], [414], [], [664], [119], [199], [420], [940], [255], [281], [323], [383], [483], [255], [550], [874], [], [36], [637], [193, 187], [696, 806], [721], [471], [819, 822], [868, 923, 118], [40], [488, 843], [919], [325], [825], [341], [184], [264], [737, 907, 760, 440], [309], [404], [55], [491], [8], [531], [575], [912], [324], [168], [134], [13], [992], [683], [307], [855], [706, 559, 976], [], [618], [407], [842, 433], [269], [724], [90], [161], [715], [780, 914], [474], [476], [143], [736], [238], [476], [759, 475], [558], [268], [849], [151, 158], [232], [866], [526], [801, 691, 983, 570], [], [57], [279], [197], [103], [248], [418], [360], [403], [385, 386], [361], [], [109], [89], [721], [358, 359], [706, 846, 789, 765], [816], [360], [391], [256], [470], [748], [952], [0], [], [387], [71], [92], [674], [707, 709, 528], [], [936], [240, 241], [49, 50], [905], [369], [854], [385], [438], [19], [520], [223], [588], [363], [780], [150], [374], [333], [204], [939], [553], [716, 853], [47], [821], [918], [504, 957], [781], [], [731], [], [978], [755], [641], [], [432], [673, 681, 620], [813], [581, 479], [25], [737, 455], [784], [368], [], [506], [753], [917, 921], [773], [71], [894], [], [610, 543], [331], [554], [991], [44, 26], [66], [260], [849], [135], [785], [732, 759], [869], [418], [32], [630], [796], [970], [421], [], [659], [454, 917], [170], [563], [802], [500], [95], [255], [23], [852], [982], [39], [397], [239], [225], [701], [], [903, 691], [759], [72, 815], [518, 671], [518, 671], [16], [948], [], [484], [711], [615], [779, 414], [984], [38], [197], [855], [162], [908], [117], [944], [487], [953], [949], [243, 254], [431], [333], [560], [364], [354], [748, 667], [171], [127], [626], [640], [959], [535], [446], [], [904], [999, 700], [776, 683, 889], [774, 655, 831, 502], [263], [132], [441], [802], [342], [865, 207], [323], [96], [652, 413], [615], [], [815], [140, 142], [159], [317], [107], [], [182], [961], [], [4], [702], [673, 453, 526, 527, 664], [178], [923], [308], [191], [747], [], [911, 735], [453], [86], [170], [133], [142], [7], [], [403], [135], [884], [944], [336], [945], [], [880], [927], [24], [520], [27], [407], [492], [393], [16], [531], [970], [209], [489], [365], [647, 659], [958], [64], [727], [116], [574], [8], [225], [161], [489, 919], [99], [440], [], [872, 622, 759], [755], [956], [896], [941], [33], [], [17], [294], [42], [449, 975], [794], [874], [683], [121], [706], [742], [911, 533], [264], [963], [752], [564], [734], [561], [280], [932], [227, 805], [906], [], [147], [721], [540], [965], [673, 526, 527, 846, 831, 664, 508], [156], [29], [425], [325], [359], [535], [834, 906], [527, 664, 508], [], [366], [], [109, 973], [838], [570], [433], [143], [92], [735], [239], [874], [957], [170], [254], [400, 667], [721], [229], [405], [766], [18], [330], [515, 752], [422], [956], [], [], [74, 815], [888], [908, 895], [265], [363], [770], [670], [323], [794], [39], [40], [20], [369], [944], [831], [368], [942], [121], [406], [525], [284], [731], [37], [66, 68], [392, 973], [738, 427], [652, 413], [317], [918], [286], [822], [704], [860], [42], [808], [288, 290], [390], [577], [453, 799], [697], [638, 639], [868, 964], [783], [44], [], [773], [89], [151], [158, 263], [], [957], [902], [888], [732], [825], [472], [323], [490], [708, 682], [974], [530], [647], [258], [818], [], [224], [418], [528, 707], [396], [896], [667], [429], [298], [574], [540], [180], [137], [119], [167], [588], [920], [324], [291, 292], [459], [365], [235], [987, 998], [612], [147], [363], [103], [631], [339], [318], [476], [384], [603], [95], [805], [832], [818, 729], [683, 579, 731], [534], [670], [153], [726], [688], [433], [359], [310], [627], [659, 949, 923], [513, 776], [80], [583], [], [277], [874], [423], [789], [811], [79], [436, 581, 479], [350], [969, 504], [392], [69], [821], [625], [393], [74, 815], [], [411], [833], [144], [108], [644], [291], [14], [602], [653], [901], [26], [115], [612], [618, 666], [800], [], [609], [28], [441], [859], [449], [25], [806], [752], [30], [896], [], [867], [738], [310], [429], [748], [552, 716], [195], [601], [952], [691], [73], [641], [410], [192], [547], [210], [578, 982], [634], [467], [83], [451], [44], [210, 164], [692], [566], [737, 582], [710], [395], [966, 948, 923, 572], [104], [], [232], [211], [570], [232], [40], [862], [79], [345, 690], [213], [749], [812], [828], [358], [], [76], [291], [], [654], [351], [826], [245], [162], [425], [72], [550], [825], [32, 31], [971], [295], [493], [151], [], [327], [872, 759], [286], [834, 906], [342], [833], [292], [352], [284], [563], [607], [433, 793, 638, 639], [629], [513, 543], [306], [889], [222], [513], [223], [152], [273], [157], [443, 841], [532], [155], [363], [353], [235], [868], [406], [453, 454], [906], [781], [712, 719], [205], [273], [35], [797], [153], [554], [748], [320], [321], [908, 895], [810, 878], [524, 461], [], [], [97], [766], [324], [880], [5], [318], [999, 247], [558], [682, 708, 562], [81], [485], [371], [], [685], [167], [221], [827], [429], [591], [723], [168], [841], [771], [715], [249], [426], [776], [], [913], [209, 703], [77], [487], [], [280], [410], [453, 589], [869], [604], [702], [748], [993], [755, 733], [317], [444], [82], [440], [763], [876, 435, 282], [909], [646], [650, 402], [399], [488], [], [802], [732], [839, 718, 821], [572], [832], [], [], [581], [696], [13], [494], [434], [946], [301], [389], [863], [127], [735], [], [82], [534], [73], [522, 281], [791], [341], [329], [514], [614], [107], [79], [645], [964], [911, 735], [483, 975], [922], [716, 309, 599], [518], [155], [779], [888], [909, 987], [223], [98], [839], [480], [360], [164], [900], [703], [944], [418], [715], [102], [532, 411, 931, 933], [449], [841], [317], [313], [757], [336], [341], [], [94], [200, 155], [690], [], [], [306], [], [989], [348], [435], [376], [], [652, 764, 413, 734], [642], [883], [597], [780], [322], [649], [], [1], [13], [475], [], [130], [709], [529, 631], [242], [120], [681], [652, 413], [179], [447], [48], [673, 681, 526, 527, 664, 508], [888], [789], [584], [], [896, 414, 487], [528], [447], [762], [963], [893], [818, 610], [460], [774], [], [84], [891], [942], [673, 681, 526, 782, 664, 508], [240], [769], [884], [777], [491, 477], [285], [869], [732], [475], [918, 281], [892], [684], [800], [577], [641], [470], [424], [453], [602], [301], [294], [755], [731], [759], [61, 62], [794], [769, 302], [422], [708], [450], [350], [124], [326], [982], [479, 660, 511], [662, 719], [574], [887, 501], [152], [579], [627], [578, 689], [235], [538, 668], [548, 851, 632], [418, 845], [0], [596], [403], [34], [831], [376], [561], [359], [733], [890], [87], [202], [397], [67, 68], [205], [777], [992], [631], [295], [868], [582], [684], [205], [], [], [639], [432, 683], [462], [928, 960], [716], [419], [80], [432], [189], [577], [888, 821], [796], [792], [637], [606], [], [524, 461], [], [849, 883], [], [709], [265], [857], [213], [460], [162, 164], [377], [], [588, 790], [942, 952], [406], [994], [417], [798], [719], [258], [557, 914], [], [611], [773], [13], [752], [263], [621], [432], [471], [932], [706], [625], [213], [916], [813, 567], [597, 763], [747], [533], [632], [156], [862], [829], [971], [557], [289], [638, 639], [413], [], [400], [906], [234], [759], [37], [595], [99], [676], [843], [475], [116], [638, 639], [780], [518, 958, 671], [910], [812], [543], [489, 207], [616], [310, 301], [956], [692, 968], [938], [317], [950], [960, 868, 845, 927, 415], [63], [823], [403], [993], [329], [484], [486], [704], [113], [344], [953], [44], [552], [84], [80], [316], [987, 998], [918], [489, 315], [749], [459], [], [954], [17], [638], [613], [352], [612], [323], [397], [905, 846, 725], [241], [557, 497], [873], [125], [492], [911], [333, 151], [883], [527, 916, 664], [173], [798], [30], [320], [935], [625], [219], [39], [198], [652], [666], [387], [157], [919], [960, 967, 968, 504, 923], [560], [102], [138], [365], [923], [888], [208], [253], [650], [284], [783, 784], [556], [150], [0, 389, 758], [22], [395], [763], [199], [], [122], [740], [704], [537], [146], [], [429], [90], [772], [443], [196, 198], [531], [], [195], [796], [984], [], [696], [709], [543], [235], [375], [481], [690], [639], [593], [337], [544, 469], [957], [878], [141], [825], [941], [949], [857], [655, 721, 831], [410], [66, 68], [253], [624], [85], [116], [583], [248, 249], [707], [578], [45], [273], [32], [948], [922], [398], [167], [645], [224], [392], [664, 526, 782], [938, 923], [395], [544], [963], [903], [248, 249], [537], [382], [31], [828], [274], [270], [971], [367], [797], [267], [737], [843, 977, 978], [357], [6], [723], [975], [172], [404], [421], [452], [588, 790], [38], [315], [324], [987], [105], [770], [679], [], [66, 68, 54], [888], [553], [476], [910, 948], [673], [836, 837, 906], [497], [361], [860], [893], [440], [759], [218], [744, 657], [513, 875], [153], [928, 960, 923], [], [309], [724], [], [352], [156], [197, 199], [714], [56], [209], [110], [45], [815], [738], [91], [248, 537], [137], [599], [673, 453, 553, 526, 527, 664], [634], [947], [90], [324], [274], [824], [222], [542], [984], [748, 636], [545], [871], [], [444], [216, 219, 214], [581, 511], [3], [61], [150], [52], [108], [564], [681, 620, 284], [341], [570], [749], [133], [281, 282], [340], [752, 852], [48], [291], [723], [865], [346], [712], [621], [579, 881], [432, 566, 683], [174], [844], [291], [66], [266], [574], [], [69], [382], [649], [992], [774, 655], [416], [199], [42], [903, 786], [652, 764, 413], [616], [658, 533], [631], [949, 990], [106], [672, 797], [654], [133], [851, 548, 453], [281], [], [930], [256], [104], [746], [531], [382], [528], [403], [457, 834], [955], [976, 972, 437], [424], [849], [707], [349], [155], [184], [430], [782, 916, 664, 508], [586], [288], [460], [273], [133], [472], [289], [869, 454, 824], [334], [601, 578], [417, 971], [352], [81], [288], [873], [413], [334], [418], [171], [474], [113], [425], [137], [783], [422], [291], [603], [475], [673, 526, 527, 664], [525], [31], [71], [248, 250], [], [508], [57], [841], [137], [138], [252], [677], [578, 846, 689, 601], [956], [27], [], [466], [954], [576], [252], [724], [], [795], [544], [953], [954], [923, 470], [933], [123], [984], [286], [992], [733], [193], [810, 508], [893], [321], [703], [519], [443], [687], [482], [967], [252], [190], [756], [475], [461], [135], [755], [636], [299], [416], [112], [966, 883, 572], [172], [873], [], [800], [175, 184], [498], [98], [914], [656], [689], [172], [572], [479, 661], [657], [366], [949], [340], [107], [322], [721], [421], [0], [571], [532, 762], [899, 725], [295], [95], [486], [443], [147], [553], [939], [606], [188], [184], [479], [139], [909, 827, 926], [652, 465], [69], [641], [145], [218], [898], [320], [194], [8, 7], [778], [148], [529], [806], [636], [], [882], [645], [931], [], [643], [737, 455], [333], [388], [694], [455, 440], [836, 837], [4], [801], [], [201], [814], [281], [542], [42], [132], [645], [], [323], [30], [677], [454], [836, 837, 869, 636], [933], [419], [110], [969], [208], [545], [375], [467], [], [455], [899, 868], [550], [437], [723], [735], [224], [56], [724], [336, 337], [917], [953], [468], [183], [], [88], [622], [25], [899, 505], [543], [896], [484], [972], [966, 907, 572], [592], [882], [540], [936, 939, 943, 945], [], [436], [96], [632, 605], [297], [250], [182], [433, 445], [930], [173], [472, 693], [265], [187], [466], [578], [702], [23], [497, 442, 858], [256], [129], [337], [383], [954], [935, 910, 659], [40, 46], [726], [905, 526, 664, 831, 846, 721, 851, 750, 894], [792], [439], [955], [316], [996], [853], [985], [], [574], [], [934], [496, 245], [907, 532, 762], [128], [327], [588, 606], [752], [503], [172], [949], [177], [738, 580], [448], [729], [759], [15], [949, 950, 923, 957], [873], [833], [133], [434, 435], [248], [796, 911], [852], [], [688], [361], [], [370, 375], [517, 718], [968, 969], [444, 518], [575], [82], [], [], [112], [472], [], [476], [], [312], [191], [447], [486], [320], [417, 575], [676, 263], [806], [358, 359], [521], [429], [987, 335], [217], [238], [724], [875], [612], [453, 881], [199], [915], [], [330, 331], [950], [529], [870], [164], [864], [822, 541, 542], [931], [194], [73], [225], [448], [471], [379], [718, 839], [121], [729, 534], [476], [601], [259], [43], [903], [349], [], [], [374], [413], [572], [388], [], [949, 950], [716], [698], [67], [35], [241], [884], [298], [213], [655], [], [251, 212], [240, 241], [141], [244], [370], [944], [515, 238, 596], [34], [460, 975], [769], [277], [807], [912], [273], [957], [988], [710, 767], [696], [942, 658], [984], [39], [535], [988], [400, 667], [656, 475], [321], [27], [875], [497], [64], [530, 479], [414], [559], [888], [223], [314], [912, 425], [655], [107], [622, 784], [119], [673], [139], [], [], [850], [930, 934], [874, 757], [136], [112], [], [651], [193, 187], [603], [382], [780], [776, 819], [904], [], [283], [920], [270], [846], [637], [889], [976], [579, 881], [609], [961], [508], [436], [582], [802], [449, 718], [515, 552, 834], [10], [], [], [223], [288, 290], [47], [43], [], [866], [435], [797], [307], [995], [192], [70], [37], [367], [965], [702], [276], [194], [343], [19], [654], [496], [241, 238], [269], [515], [646], [], [143], [302], [111], [740, 783], [557], [629], [488, 679], [476], [464], [26], [464], [388], [234], [279], [685], [841, 728], [362], [174], [862], [720], [88], [763], [451], [512], [434], [585, 589], [16], [968, 659], [848], [908, 895], [787], [167], [591], [927, 928], [], [4], [1], [196], [455], [215], [545], [620, 499], [603], [451], [], [], [532], [737], [338], [296], [300], [73], [692, 772], [815], [106], [235], [660], [240], [343], [886], [265], [320], [172], [], [438], [886], [688], [546, 650, 402, 819], [884], [829], [610], [969, 508], [555], [697], [759, 872], [426], [610, 841, 697], [592], [277], [457], [235], [569], [614], [481], [215, 216], [752], [229], [204], [908], [572], [952], [249], [703], [832, 979], [364], [14], [383], [971], [821], [572, 415], [405], [615], [826], [634], [218], [42], [533], [645, 733], [206], [654], [207], [420], [489], [705], [287], [775], [235], [995], [121], [630], [558], [709], [697], [832], [898, 455], [813], [856, 958], [453], [], [454], [340], [281], [101], [148], [278], [908], [387], [570], [389], [], [412], [115], [305], [830], [836, 837], [802], [60], [915], [747], [872], [282], [154], [], [296], [295], [], [608, 882], [964], [288], [582, 791], [150], [402, 546], [446], [229], [87], [779], [651], [581], [752], [421], [871], [381], [633], [507], [646], [769], [438], [506], [401], [613], [832], [147], [573], [608, 824], [999], [987], [923], [487], [881], [236], [276], [], [40], [228], [486], [452, 245], [987, 998], [398], [632], [688], [854], [268], [62], [428], [884, 406], [376], [203], [800], [297], [235, 172], [581, 479], [764], [405, 839], [583], [798], [669], [759], [315, 462], [331], [402], [393], [616], [], [603], [], [28], [492], [522], [49], [713], [800], [973], [381], [962, 923], [307], [109], [], [759], [975, 703], [267], [962, 935], [94], [], [808], [449], [813], [248, 250], [500], [548], [128], [211], [21], [637], [], [478], [870], [993], [69], [715], [493], [925], [263], [861], [292], [485, 592], [789], [129], [86], [623], [566], [939], [868, 923, 572], [218], [57], [658], [870], [349], [393], [453, 463], [543], [554], [330], [220], [218], [855], [293], [665], [420], [788], [237, 158], [875], [673, 681, 526, 782, 664], [654, 757], [959, 762, 923], [448], [921], [499], [289], [884], [488], [], [198], [985], [777], [921], [], [250], [369], [], [], [443], [245], [608, 474], [685], [280], [255], [261], [673, 681, 620, 697], [], [413], [410, 309, 599], [750, 721, 414], [21], [338], [524, 461], [946], [353], [488, 695], [987, 567, 923], [154], [27], [382], [769], [583], [584], [726], [659], [484], [103], [120], [756], [453, 624, 765], [475], [326], [441], [397], [345], [472], [141], [385, 386], [836, 837, 678, 977, 978], [158], [873], [651], [968], [883], [], [31], [486], [871], [221], [867], [496], [496], [934], [11], [632], [244], [21], [806], [512, 623], [53], [619, 846], [756], [842, 445], [523], [87], [748], [463], [20], [443], [797, 282], [463], [962, 935], [335, 703], [85], [687], [679], [434], [783], [957], [887], [221], [9, 876, 435], [987, 998], [292], [359], [672], [431], [199], [409], [], [739], [907, 572, 966], [225], [], [321], [211], [346], [656], [942], [322], [129], [725], [581, 479, 817], [518, 570], [218], [429], [968], [244], [373], [22], [878], [421, 428, 834, 869, 501], [453, 454, 624], [38], [11], [28], [48], [837, 806], [836, 837], [649], [808, 978], [13], [254], [261], [375], [403], [972], [148], [383], [692, 478], [942], [248], [679], [240], [792], [608, 799], [560], [568], [492], [874], [721], [234, 236], [579], [36], [808, 822], [769, 35], [518], [227], [976], [940], [628], [], [578], [264], [77], [619, 846], [916], [589], [305], [595], [686], [868], [], [867], [892], [9], [326], [181], [851], [836, 837, 608], [819, 608], [740], [331], [416], [], [538, 668], [427], [149], [117], [923], [840, 462], [662], [383], [517, 488, 600], [515], [644], [748], [98], [435], [832], [912], [899, 725], [519], [933, 923], [853, 762], [305], [330], [], [32], [263, 264], [638, 639], [688], [270], [], [], [177], [515], [325], [], [805], [554], [12], [275], [275], [185], [631], [547], [513, 683], [666], [809, 967, 968], [219, 836, 837], [119], [84], [113], [578], [162], [727], [354], [607], [721, 831], [322], [256], [79], [871], [294], [560], [46, 47], [21], [35], [315], [659, 809], [59], [211], [169], [54], [834], [145], [780], [810, 878], [986], [682], [10], [617, 845], [], [281], [342], [], [587, 677], [246], [938], [784], [353], [54], [242], [381], [613], [303], [119], [199], [362], [911, 796], [924], [533], [921], [208, 211], [441], [21], [794], [94], [717], [571], [421], [619], [545, 846], [326], [829], [179, 180], [916], [723], [754], [579, 881], [234], [197], [978, 445], [953], [748], [517, 554, 625, 536, 510], [999], [513], [654], [12], [129], [650, 401, 402, 818, 819, 632], [833], [92], [], [], [191], [484], [344], [654, 656, 479], [235], [659], [536, 403], [402], [804, 631], [959], [849], [], [246], [665], [650, 593], [672], [248], [662], [], [294], [], [3], [975, 693, 472], [676], [261], [507], [223], [699], [422], [65], [932], [283, 478], [836, 837, 869, 650, 818, 819], [645], [992], [502, 539], [949], [], [258], [409, 437], [113], [13], [336], [265], [170], [179], [139], [836, 837], [579], [13], [1], [794], [143], [784], [609], [856], [937], [691], [89], [748], [896], [252], [120], [428, 954], [557, 701], [333], [517, 536], [640, 562], [677], [299], [40, 44], [896], [313], [792], [683, 432], [192], [], [546], [380], [518], [419, 617, 823], [661, 479], [], [610, 602], [721], [345], [], [721, 831, 281], [770, 703], [300], [354], [272], [890], [813], [264], [325], [738], [859], [747], [], [221], [100], [], [647], [735], [830], [821, 839], [348], [], [652, 764], [203], [68], [715], [723], [545], [414, 893], [955], [121], [952], [38, 44], [232], [275], [711], [], [513], [], [132], [], [589], [939, 943, 945], [525], [981], [565], [52], [655], [128, 127], [454, 919], [78], [836, 837], [689, 601], [139], [237], [913], [504], [8], [806, 655], [], [94], [207], [996, 109], [650, 402, 819], [580], [641], [673], [72], [118], [983], [524, 652, 465], [612], [254], [1], [790], [401], [941], [591], [3], [474], [570], [634], [554], [574], [488, 975], [357], [], [], [930], [431], [184, 189, 191], [81], [612], [950], [879], [957], [877], [992], [650, 402, 819], [386, 101], [630], [161], [983], [254], [194], [6], [293], [960], [822, 541], [874], [140], [393], [994], [434], [510], [590], [341], [968, 725, 504], [515, 610, 714, 402], [905, 532, 831, 799], [254], [836, 837, 445], [37], [281], [930, 868, 441, 762, 923], [36], [992], [915], [512], [615], [653, 728], [459], [852, 219], [], [281], [966, 503], [407], [532, 789], [812], [103], [910], [610], [940, 942], [485, 553, 632], [575], [450], [], [274], [66], [269, 272], [364], [740], [22], [237, 158], [717], [494], [416, 602], [951, 122], [307], [399], [998], [968, 849], [256, 205], [489, 93], [271], [257, 222], [0], [809], [801], [605], [695], [916], [760], [434, 756, 793], [757], [63], [483], [185], [201], [528], [61], [905], [529], [385], [136], [482], [448], [], [36], [90], [275], [800], [764], [602], [], [504], [], [762, 559], [245], [650, 558, 819], [353, 351], [53], [221], [17], [], [940, 941, 942], [193], [544], [699], [], [626], [372], [220], [225], [], [441], [527, 782, 664], [530], [88], [834, 906], [826], [62], [67, 68], [478], [978], [582], [673, 664, 527], [], [427], [899], [714, 402], [107], [884, 406], [412], [676], [283], [810, 878], [800], [281], [122], [390], [988], [918], [], [99], [325], [546, 650, 402, 819], [74], [287], [169], [160], [771], [53], [610], [169], [479, 751, 879, 817], [525], [440], [141], [150], [136], [708], [], [823], [239], [123], [740], [170], [166], [982], [58], [106], [89], [728, 858], [685], [581], [661], [569], [250], [564], [713], [401], [301], [533], [775], [478], [752, 852], [785], [423, 424, 585, 589, 526, 782, 851, 664], [769, 515], [], [866, 595], [695], [206, 221], [513, 875], [106], [476], [4], [251], [939], [921], [437], [774], [359], [248], [880], [242], [748], [63], [837, 639], [174], [251], [265], [89], [469], [547, 565], [420], [988], [763, 597], [254], [42], [857], [54], [181], [967, 504], [107], [240, 239], [705], [154], [524], [993], [696], [905], [45], [640], [247], [835], [661], [551, 629], [700], [778], [118], [910], [488, 778, 600], [417], [690, 984, 345], [128], [530], [677, 783], [25], [876, 589, 207, 435], [146], [11], [271, 277], [593], [791], [673], [589], [794], [660], [518, 830], [270], [399], [], [862], [566], [832], [78], [282], [412, 335], [705], [474], [106], [557], [311], [569], [234], [215], [788], [133], [252, 262], [825], [], [513], [677], [777], [985], [204], [532, 572], [955], [29], [896, 804], [781], [367], [724], [13], [738, 580], [], [794], [], [487, 761], [314], [716], [541, 542], [699], [20], [], [389], [569], [923, 965], [608, 770], [554], [166], [225], [244], [62], [], [478], [463], [732], [595], [211], [584], [943], [30], [917], [726], [838], [808], [932, 478], [855], [541], [], [], [781, 557], [271], [803], [656], [445], [], [336], [210], [53], [609, 479], [319], [521], [415], [244], [11], [119], [233], [], [485, 754, 632], [776, 819], [462], [134], [419], [22], [309], [27], [511], [502], [681, 620, 526, 527, 782, 664, 508], [524, 461], [417], [610], [975], [951], [755], [510], [192, 463], [53], [603], [84], [161], [877], [971], [855], [343], [297], [168], [318], [214], [881], [453, 454, 624], [892], [717], [497], [320], [695], [104], [406], [991], [363], [825], [], [16], [], [791], [833], [155], [818], [515, 870], [684], [757], [367], [413], [], [194], [327], [306], [886], [752, 852], [954], [993], [382], [807], [311, 312], [96], [53], [827], [330], [338], [865], [694], [588], [25], [483, 979, 825], [848], [807], [525], [195], [22], [136], [774], [816], [231], [866], [567, 827], [], [7], [982], [343], [933], [958], [700], [921], [143], [709], [157], [680, 805], [223], [574], [133], [932], [721, 831], [], [852], [13], [155], [407], [535], [629], [750], [67], [245], [68], [220, 213], [521, 813, 909, 910, 567, 926], [625], [71], [809, 762, 923, 926], [673, 810, 508], [], [342], [217], [71], [785], [325], [990], [114], [589], [118], [277], [304], [738], [866], [572], [994, 116, 126], [13], [654], [], [529], [973], [696], [252], [899], [268], [190], [911], [544], [256], [426], [488, 826], [805], [624], [612], [], [142], [148], [720], [974], [748, 636], [376], [628], [92], [501], [866, 595], [110], [409, 892], [328], [341], [417, 616], [896, 861], [155], [711], [424], [939, 940, 941, 942, 943], [526], [411], [8, 84], [63], [485], [582], [547], [827], [928, 659], [321], [962, 923], [252], [488], [751], [22], [749], [723], [397], [21], [695], [609, 660], [803], [966], [640], [514], [252], [756], [489], [373], [500], [581, 479, 511], [923, 964], [430], [370], [971], [412], [917], [898], [283], [128], [302], [385], [], [655], [856, 958], [144], [653], [182], [988], [], [474], [433, 639], [905, 283], [583], [25], [333], [161], [348], [495], [836, 837, 906, 656, 785], [873], [405], [309, 599], [616, 843], [814], [645], [604], [223], [248, 250], [576], [102], [729], [275], [43], [64, 59], [523], [387], [991], [93], [246], [], [], [517], [453], [908, 812, 404], [835], [618], [107], [129], [575], [462], [765], [208], [311, 312], [960], [403, 536], [814], [376], [713], [991], [302], [329], [217], [], [40, 46], [199], [105], [753], [670], [482], [363], [516, 520], [777], [484, 871], [479, 817], [208], [604], [230], [381], [474], [909], [984], [799], [441], [76], [669], [339], [441], [380], [924], [40], [825], [323], [950], [45], [800], [617, 720, 823], [234], [33], [39], [182], [832], [234], [287], [481, 626], [698], [431], [666], [806, 911, 658], [349], [9], [641], [57], [335], [253], [774], [865, 850], [473], [15], [506], [450], [372], [344], [832], [230, 231], [361], [783], [387], [92], [732], [936], [995], [], [625], [33], [892], [346], [712], [308], [175], [970, 795, 796], [75], [235], [132], [15], [287], [448], [302], [555], [118], [590, 605], [339], [339], [759], [498], [950, 951], [252], [433, 638, 639], [134], [535], [236], [740], [934], [701], [430], [970], [940], [555], [160], [505], [624, 453, 454], [337], [308, 309], [361], [418], [470], [977], [347], [750, 533], [708], [249], [643], [928, 960], [778], [373], [260], [432], [947], [865], [558], [307], [162], [109], [455, 760, 440], [440], [450], [], [423, 424, 585], [97], [79], [], [580], [469], [435], [545], [387], [673, 526, 527, 782, 664, 508], [404], [737, 898], [467], [], [709], [251], [660], [], [829], [518], [532, 470], [508], [357], [465], [42], [], [199, 588], [904], [393], [470], [546, 841], [212], [479], [489], [586, 652], [143], [797], [260], [858], [814], [674], [], [63], [106], [788], [905], [572], [424, 423], [695], [628], [62], [], [2], [38], [], [711, 721], [232], [64], [769], [794], [608, 610, 559], [833], [190], [98], [898], [862], [456], [798], [319], [892], [228], [108], [706], [402], [208], [233], [810, 508], [], [], [705], [828], [744, 657], [378], [75], [795], [254], [916], [690, 958, 345], [852], [553], [369], [232, 264], [793, 794], [269], [649], [532], [534], [431], [874], [114], [392], [562], [453], [432], [797], [756], [903, 585], [573], [722], [748], [553], [243], [750, 721], [499], [297], [897, 971], [645], [275], [666], [], [780], [773], [567], [286], [347], [77], [581, 479, 656], [250], [847], [910], [106], [937], [261], [355], [625], [149], [656], [505], [959], [808], [712], [996], [493], [421], [915], [264, 263], [], [487], [869], [867, 675], [615, 890], [467], [739], [833], [594], [618], [226], [313], [219], [399], [59, 64], [295], [683, 558, 432, 566], [371], [742], [242], [809, 532, 762, 923, 959], [424, 423], [520], [340], [], [205], [78], [712], [246], [327], [914], [605], [], [144], [788, 502], [879], [408, 575], [63], [136], [601], [447], [760], [486], [568], [178, 282], [], [963], [499], [560], [858], [779], [134], [572], [673, 526, 527, 664], [879, 689], [576], [803], [514, 515, 655], [993], [63], [894], [896, 495], [940, 942], [610], [964], [899], [869], [738], [453, 917, 921], [333], [163], [590], [976], [752], [619, 846, 721, 892, 831], [205], [806, 655, 630, 502], [918], [308], [], [776], [483], [570, 518], [354], [192], [407], [544], [443], [], [], [195], [973], [171], [580], [205], [344], [291], [568], [75], [734], [483], [298, 63], [712], [70], [704], [530], [417], [388], [602], [659], [422], [524], [20], [560], [529], [422], [544, 909, 762], [16], [559], [990], [101], [562], [313], [522], [658], [387], [932], [330], [610], [854], [914], [759], [], [373], [539], [439], [533], [252], [912], [261, 174], [248, 250], [689, 594, 601], [535], [431], [724], [656, 784], [100], [332], [416], [259], [268], [142], [962, 923], [982], [121], [961, 923], [592], [483], [180], [836, 837], [], [685], [408], [322], [695], [843], [], [], [195], [182], [133], [581, 479, 436, 535, 511], [420], [269], [30], [739], [811], [191], [], [352, 351], [5], [529], [928], [214], [214], [994], [153], [729], [], [936], [125], [37], [123], [550], [243], [541, 542], [849], [659], [125], [902], [936], [], [], [898, 918], [767], [], [971], [40, 46], [55], [130], [6], [879], [284], [214], [222], [402], [392], [], [215, 218], [237], [556], [380], [342], [757], [], [881, 486], [175], [330], [749], [38], [669], [993], [597], [48], [826], [923, 926], [52], [277], [479], [347], [966], [946], [544, 827], [691], [137, 146], [384], [663], [95], [197, 183], [185], [957], [784], [283], [535], [292], [238], [80], [466], [148], [705, 547], [673, 526, 527, 782, 664, 508], [883], [808], [300], [279], [432], [323], [53], [481], [836, 638, 639], [102], [821], [357], [393], [471], [447], [838], [451], [766], [950], [586, 977], [652], [724, 733], [705], [268], [897], [831], [804], [60, 62], [], [953], [740, 359], [926], [480], [993], [950], [867], [79], [486], [831, 282], [277], [], [255], [919], [799], [647], [168], [899, 901], [108], [228], [348], [805], [884], [934], [53], [426], [268], [994], [8], [849, 504, 505], [338], [110], [130], [354], [427], [711], [161], [156, 285], [505], [84], [839], [512], [884], [545], [118], [546], [715, 524, 787], [], [886], [514], [388], [41, 44], [91], [915], [916], [513, 650, 819], [563], [], [324], [909, 926], [152], [158], [170], [383], [831], [909, 849], [8], [375], [414], [], [119, 120], [69], [230, 231], [912, 716], [325], [59], [46], [268], [951], [666], [106], [], [685], [588], [992], [721], [798], [715], [458], [], [402], [95], [53], [560], [440, 441, 455], [], [374], [327], [128], [478], [513, 439], [746], [510], [526, 844, 742], [483], [280], [265], [932], [518], [499], [62], [203], [212], [318], [], [310], [291], [815], [695], [635], [70, 904], [485, 592], [803, 228], [293], [267], [917], [141], [52], [812], [351], [545], [24], [796], [485, 530], [480], [608], [530], [744, 657], [724], [498], [143], [570], [693, 472], [560], [194], [999, 281, 700], [783, 784], [676], [919], [727], [550], [573], [109, 973], [327], [], [787], [963], [425], [505], [368], [74, 815], [], [498, 854], [822], [258], [731], [861], [138], [626], [551], [312], [305], [372], [393], [321], [806, 831], [345], [185], [972], [269], [520, 669], [550], [379], [], [532], [818], [592], [697], [107], [21], [377], [445, 638, 639], [831], [472], [6], [], [852], [779], [472, 693], [224], [809, 659, 923], [732], [842, 638, 639], [155], [650], [303], [582, 519, 950], [731, 861], [34], [], [801, 445], [822], [155], [366], [815], [376], [593], [311], [55], [895], [750], [105], [839], [545], [626], [179], [423], [561], [596, 639], [636], [352], [152], [774], [371], [991], [844], [688], [840], [914], [850], [28], [640], [389], [137], [929], [204], [632], [245], [868, 923], [970, 795], [876], [762], [418, 487, 620], [996], [424], [803], [21], [409], [849], [158], [452, 911], [307], [331], [377], [651], [215], [658, 911], [867], [201, 254], [118], [914], [343], [894], [340], [925], [364], [], [279], [410], [424], [907], [146], [612], [669], [], [196], [674], [476], [4], [389, 391], [72], [927], [975], [157], [148], [], [476], [367], [970, 795], [494, 497, 442, 858], [658], [192], [332], [69], [497], [601], [2, 814], [978], [], [165], [673, 526, 527, 782, 664, 508], [807], [639], [199], [642], [340], [135], [446], [541], [363], [451], [309], [], [104], [487, 810, 590], [218], [492], [862], [905], [529, 977, 978], [333], [194], [], [650, 401, 402, 546, 559, 818, 819, 889], [545], [307], [609], [517], [205], [45], [477], [716], [36], [940], [17], [677], [244], [581, 479, 511], [409, 892], [656], [791], [777], [147], [195], [219], [516], [546], [735], [954], [227], [359], [902], [216], [783], [471], [13], [161], [938], [427], [2], [66], [393], [10], [45], [783], [257], [520], [], [354], [479], [415], [771], [977, 978], [448], [502], [350], [741], [513], [361], [480, 886], [741, 884], [7], [329, 973], [161], [31], [936], [631], [738], [160], [403], [248, 250], [165], [979], [346], [847], [635, 767], [374], [739], [350], [763], [927], [813, 567], [700], [20], [292], [9], [960, 470, 923], [], [19], [], [318], [434], [803], [28], [879], [502], [554], [484], [630], [532, 923], [390], [123], [872], [678], [782, 664], [655], [851], [767], [479, 511], [519], [97], [144], [302], [231], [407], [602], [629], [96], [103], [805], [332], [865], [214], [384], [753], [895], [214], [951], [699], [255], [625], [421, 841], [292], [948], [731], [823], [728], [937], [118], [714], [551], [98], [903, 617], [87], [190], [878], [410], [611], [230, 231], [274], [513], [578, 834, 982], [234, 805], [154], [572], [983], [650, 541], [190], [379], [963], [], [794], [419], [445], [447], [408], [719], [900], [206], [260], [552], [859], [750], [928], [242], [602, 638, 639], [511, 479], [183], [462], [806], [962], [351], [756], [729], [416], [], [910], [778, 467], [570], [498], [427], [283, 284], [6], [65], [673, 526, 527, 782, 664, 508], [555], [175], [281], [236], [], [626], [508], [824], [535], [900], [673, 526, 527, 916, 664, 508], [980], [964], [910], [765], [920, 733], [141], [479], [466], [254], [411], [430], [404], [586, 437, 408], [956], [284], [121], [], [567, 411], [161], [953], [211], [116], [416], [13], [], [279], [866], [395], [203], [13], [466], [843], [254], [603], [572], [707], [507], [523, 830], [176], [388], [198], [709], [439], [258], [11], [367], [513], [189], [736], [573], [936], [969, 440, 572], [69], [836, 837, 842, 445], [846], [778], [107], [693], [495], [270], [942], [593], [742], [134], [336], [344], [572], [929, 912], [132], [341, 342], [416], [418], [361], [], [704, 656, 479], [891], [999, 692], [173], [269], [568], [858], [35, 37], [847], [314], [977, 978], [673, 526, 527, 782, 664, 508], [807], [747], [37], [706], [987], [612], [500], [867], [], [355], [444], [670], [873], [940, 941, 942], [927], [53], [567], [422], [650, 402], [900], [318], [778], [509], [726], [583], [404], [217], [124], [767], [383], [759], [720], [129], [], [408], [679], [968], [133], [], [], [], [766], [], [22], [425], [220], [897, 651, 760], [385], [346], [924], [62], [576], [454], [118], [832], [492, 493, 495], [379], [997], [192], [712], [842, 433, 638, 639], [697], [300], [720], [736], [400, 667], [965], [843], [779], [566], [682, 562], [403], [4], [], [291], [968], [5], [132], [405], [], [545], [843, 445], [6], [898], [140], [286], [559], [102], [], [172], [798], [78], [81], [70], [523, 869], [33], [], [194], [191], [973, 983], [891], [576], [977, 978], [], [525], [386], [76], [692], [905], [986], [587], [488, 679], [652, 413], [776], [328, 108], [658], [], [880], [842], [198], [915], [400], [457, 834], [], [328, 116], [588, 790], [649], [307], [570], [774], [303], [754], [274], [317], [192], [322], [435, 876], [183], [525], [770], [976], [743], [721], [535], [749], [444], [756], [473], [518], [67], [56], [95], [], [974], [780], [754, 605], [840], [583], [3], [], [784], [923, 964], [963], [908, 404], [411], [586], [456], [774], [79], [577], [61], [52], [991], [559], [582, 851], [700], [813], [111], [436], [483, 958], [967], [571], [917, 413], [522], [243], [992], [952], [145], [973], [798], [473], [749], [94], [], [47], [841, 918], [374], [152, 155], [680], [698, 538], [96], [417], [99], [738, 559], [912], [809, 923, 924], [499], [416], [616], [699], [332], [743], [233], [64], [489], [751, 468, 479], [701], [91], [964], [], [967, 968], [217], [452], [], [836, 837], [64], [357], [874], [236], [789], [187], [365], [195], [9], [778], [484], [28], [170], [], [753], [90], [684], [681, 620], [144], [106], [601], [141], [688], [46], [756], [195], [896], [148], [691], [309], [763], [307], [152], [], [5], [836, 837], [543], [], [732], [323], [219], [91], [879, 977, 978], [282], [154], [941], [351], [], [22], [503], [992], [122], [891], [74], [390], [43], [126], [304], [69], [71], [407], [195], [488, 600], [935], [56], [825], [975, 977, 979], [903], [271, 280], [182], [594], [23], [331], [879], [597], [987, 998], [199], [977, 978, 728], [300], [943], [834, 906], [], [792], [280], [811], [914], [545], [288], [179], [701], [411], [120], [448], [607], [506, 421], [687], [59], [74], [733], [767], [], [87], [278], [], [304], [], [174], [936], [408], [153], [245], [551], [156], [934], [606], [657], [791], [], [716], [142], [315], [], [409], [270], [434, 794], [57], [532], [979], [502], [774], [917], [616], [12], [39], [923], [594], [421], [77], [836, 837, 844], [494], [824, 474], [518, 665], [962, 923], [735], [148], [876, 435], [844], [158], [903], [763], [178], [439], [540], [992], [], [431], [94], [48], [909], [849], [233], [588, 790], [310], [354], [829], [11], [789], [712], [650, 819], [975, 671], [348], [889], [694], [892], [354, 349, 350], [880], [117], [901], [365], [842, 879, 977, 978], [224], [581, 479, 717], [587, 677], [679, 435, 578], [969], [856], [478], [168], [688], [], [274], [], [749], [984], [492], [128], [361], [453], [473], [292], [283], [100], [668], [644], [34], [11], [859], [416], [995], [945], [140], [366], [7], [345], [695], [24], [450], [699], [994], [675], [564], [731], [260], [658], [20], [184], [33], [460, 718, 150], [375], [360], [366], [810, 878], [735], [576], [116], [145], [670, 518], [405, 839], [309, 917, 599], [567, 827], [588], [712], [], [595], [988], [820], [451], [110], [490], [565], [442], [918], [200], [786], [261], [573], [521], [294], [448], [71], [386, 101], [548], [760], [585], [587, 784, 596, 477], [896, 804, 999, 794, 861], [12], [681, 620], [563], [185, 186], [595], [867], [474], [332], [215, 218], [], [661], [301], [500], [337], [997], [435, 876], [888], [43], [], [309], [567], [], [101], [85], [410], [758], [160], [896], [993], [939], [802, 518], [], [435], [332], [552], [76], [282, 797], [256], [834, 906], [692, 950], [658], [978, 824], [732], [709], [905, 589, 740], [875], [636], [406], [947], [896], [487, 681, 620, 916, 508], [334], [130], [513, 776, 683, 875], [0], [980], [411], [417], [871], [141], [], [558], [876, 435], [], [523], [210], [71], [59], [535], [726], [675, 580, 608, 889], [862], [490], [914], [858, 445], [603], [854, 406], [], [849], [638, 639], [610, 836, 837], [680, 750, 697], [349], [813], [689, 887], [545], [295], [589], [7], [656], [888], [], [194], [573], [164], [332], [420], [994, 114, 947], [939], [439], [729], [440], [66, 67], [356], [474], [], [696], [387], [842, 977, 978], [778], [261], [836, 837], [200], [867, 864], [677], [419], [990], [98], [739], [72], [359], [214], [977], [682], [836, 837], [], [407], [734], [224], [219], [], [52], [103], [716], [717], [916], [140], [912], [663], [911], [270], [335], [], [659, 923], [240], [759], [832], [975], [990], [427], [756, 792], [345], [799], [381], [287], [529, 823], [333], [681, 620, 526], [819], [617], [58], [239], [134], [666], [846, 750], [673, 664, 526, 527, 632, 508], [265], [418, 709], [297], [], [134], [349], [194], [538], [114], [458, 703], [755], [934, 692, 948], [559], [396], [57], [64, 55], [226], [977, 978], [208], [562], [306], [780], [135], [997], [481], [500], [406, 892], [237], [494], [738], [314], [424], [], [688], [139], [881], [217, 215], [564], [2], [256], [115], [302, 306], [225], [366], [578, 552, 689, 982], [547], [696], [31], [619, 846], [934], [619, 846], [308], [950, 954], [26], [411], [668], [400, 667], [], [545], [673, 526, 527, 782, 664, 508], [371], [227, 232], [350], [70], [283], [99], [365], [405], [12], [844], [107], [964], [360], [765], [596], [784], [418], [515, 230], [867, 569], [896, 804, 794, 861], [941], [], [922], [624], [761], [386], [641], [575], [693], [658, 760], [358], [615], [], [352], [714], [417], [111], [], [563], [297, 295], [417], [565], [674], [973], [967, 968, 504, 923], [561], [398], [449], [], [390], [281], [628], [531], [270], [533], [153], [608, 474], [807], [737], [528], [548], [742, 681, 620, 526], [11], [522], [277], [166], [893], [], [51], [4], [597], [422], [145], [232], [138], [884], [978, 611], [769], [625], [880], [392], [476], [658], [327], [524, 461], [557, 538, 698], [312], [358], [557], [904, 905], [431], [269, 272], [560], [299], [582, 948, 951], [784, 587, 477, 740], [606], [67], [970], [518], [809], [787], [24], [], [239], [888], [462], [431], [], [242], [], [708], [263], [261], [46], [617], [390], [921], [42], [881], [999], [447], [351], [418], [660, 436], [218], [349], [782, 664, 508], [70], [270], [728], [53], [593, 650], [103], [975, 693, 472], [94], [], [863], [770, 539], [989], [947], [5], [864], [121], [610], [215], [720], [511], [670], [915], [296], [778, 485], [183], [516, 905, 526, 493], [330], [788, 630], [741, 399], [4], [333], [733], [89], [536, 913, 724], [63], [706, 519, 428, 716], [283], [301], [617], [44], [899], [925], [907], [772], [987, 998], [959], [670], [435], [425], [354], [299], [257, 222], [248, 250], [581], [517], [750, 564, 669], [193], [729], [793], [800], [424], [41], [475], [659], [149], [659], [605], [277], [354], [701], [528], [281], [720], [349], [54], [710], [286], [4], [460], [418, 709, 767], [272], [281], [611], [236], [548, 493, 851], [423], [162, 676], [720], [], [520], [], [233], [867], [213], [827], [634], [489, 638, 639], [690, 345], [242], [494], [646], [672], [224], [85], [44], [553], [583], [103, 395], [344], [135], [770], [892], [251], [656, 879], [365], [578, 689], [605], [441], [772], [347], [900, 756], [746], [915], [390], [960], [269], [210], [489, 219], [959], [896], [625], [], [432], [236], [645], [670], [738], [911], [], [652, 465, 597, 413], [900], [296], [333], [468, 603], [239], [], [40, 46], [], [], [309], [576], [66, 68], [54], [277], [910], [551], [860], [581], [10], [829], [974], [414], [316], [520], [638], [281], [], [773], [343], [83], [], [], [], [670], [656], [122], [179], [506], [839, 405], [335], [964], [237], [543, 433, 445, 638, 639], [500], [529], [577], [497, 538], [690], [895], [70], [188], [791], [159], [757], [294], [297], [29], [911], [716, 757], [116], [292], [32], [234], [838, 720, 631], [991], [], [956], [758], [209], [656, 479], [481, 482], [615], [640], [889], [444], [941], [857], [452, 911], [514, 515], [28], [11], [519], [198], [725], [497], [], [996], [170], [935], [176], [10], [779], [35, 37], [728], [203], [962, 923], [119], [349], [384], [110], [805], [365], [75], [536], [938, 935], [496], [], [554], [721], [202], [125], [109], [854], [146], [232], [476], [498], [309], [504], [237], [686], [244], [145, 148], [236], [217], [], [878], [482, 548, 851, 598, 632], [354], [292], [744, 908], [213], [697], [877], [965], [863], [302], [642], [220], [923], [283], [], [722], [618], [661], [152], [64, 55], [851], [822], [525], [363], [186], [654, 757], [], [338], [511], [963], [608], [831], [926], [106], [655], [523], [294], [44], [94], [], [840], [638, 639], [936], [148], [69], [563], [97], [552], [37], [311], [], [583], [42, 44], [817], [589], [576], [318], [198], [400, 667], [979], [468, 479], [109], [897], [632], [357], [555], [372], [447], [762, 853], [976], [554], [162], [834, 652, 906], [225], [797], [708], [978], [624], [819, 541], [319], [], [275], [707], [184], [250], [681, 810, 620], [737], [939], [265, 267], [700], [570], [728], [13], [156], [907, 966], [952], [685], [422], [301], [131], [437], [865], [411], [259], [], [553], [433], [809], [208, 243], [299], [311], [744, 657], [267], [], [986], [34, 977], [548, 850, 851], [632], [64], [548], [110], [372], [828], [996], [611], [355, 489], [184], [64, 55], [273], [], [419], [], [193], [425], [562], [289], [359], [160], [513], [124], [937], [452], [610], [908, 895], [281], [965], [396], [973], [335], [387], [875], [642], [52], [486], [698], [], [361], [189], [901], [635], [238], [94], [25], [574], [639], [492], [], [822], [643], [], [505], [709], [157], [406], [194], [488], [610, 759, 794], [541, 542], [985], [105], [291], [744, 657], [832], [217], [989], [307], [147], [592], [170], [612], [108], [306], [314], [41, 46], [34], [324], [7], [31], [239], [753], [557, 733], [902], [324], [336], [720], [703], [378], [650], [652], [18], [578, 216], [763, 597], [827], [], [769], [673, 526, 527, 782, 664, 508], [683], [488, 616, 887], [681, 620], [234, 214], [267], [341, 342], [], [], [670, 655, 414], [298], [322], [681, 810, 620, 508], [939, 945], [576], [671], [], [806, 630], [27], [805], [149], [62], [518], [308], [615], [393, 973], [455], [422], [487], [379], [276], [17], [497], [217, 212], [4], [], [109], [779], [713], [841, 731], [16], [153], [988], [507], [40], [400, 667], [65], [679], [982], [428], [728], [522], [100], [358], [497], [594], [667], [], [42], [2, 3], [], [722], [247], [915], [26], [981], [79, 630], [298], [], [501], [614, 584], [], [79], [497], [733, 557], [589, 639], [553], [594], [821], [896, 910, 608], [670], [375], [524], [211], [983], [892], [172], [85], [318], [409, 892], [256], [405], [682], [517], [744, 652, 657, 471], [], [], [56], [992], [579], [917], [499], [195], [823], [966, 572], [67], [661], [], [205], [20], [632], [272], [582, 937, 938], [193], [596], [870, 825], [912, 348], [688], [285], [234, 236], [725], [944, 946], [184], [957], [453], [401], [320, 319], [657], [975], [139], [900], [948], [787], [756], [32, 26], [], [75], [460], [518], [501, 885], [564], [643], [635], [529], [77], [627], [378], [119], [858], [497], [575], [241, 238], [], [334], [976], [989], [774], [433], [617], [552], [248, 250], [961], [1], [884], [262], [438], [641], [686], [486], [239], [625], [533], [879], [193, 201], [423, 424], [421], [186], [208], [786], [968], [693], [140], [422], [713], [953], [623], [360], [958], [2], [263], [251], [169], [839], [72, 815], [672], [404], [169], [919], [215], [933], [550], [], [43], [162, 168], [136], [664], [244], [418], [396], [756], [604], [636], [28], [208], [942], [39, 43], [951], [19], [591, 850], [358, 359], [701], [512, 907, 950, 951, 954, 572], [111], [518], [17], [986], [554], [634], [20], [88], [882], [903], [128], [570], [421], [667], [210], [513], [], [122], [866], [177, 170], [663], [160], [378], [512, 473], [], [932], [149], [955], [], [548, 651, 831], [195], [765], [], [560], [], [199], [836, 837, 748], [578, 689, 885], [742], [51], [619, 818], [329], [853], [586], [], [41], [84], [129], [485, 592], [933], [926, 544], [309, 599], [987, 998], [243], [952], [662], [834, 906], [395], [996], [], [624, 453], [429], [298], [488, 858], [841, 823], [185], [745, 851, 598], [529], [525], [], [176], [608], [847], [429], [950], [385, 386], [816], [108], [326], [691], [977], [671], [219], [2], [], [166], [605], [52], [], [246], [243], [164], [362], [315], [584], [224], [], [542], [770, 841, 970], [679], [583], [528], [543], [742], [], [879], [664], [327], [301], [800], [209], [], [], [829], [608, 514, 610, 655], [119], [31], [316], [387], [487], [638, 639], [80], [950, 954], [348], [966, 720, 572], [171], [761], [531], [507], [255], [717, 479], [70], [797, 765], [], [212], [118], [187], [890], [781], [202], [123], [551], [273], [797], [448], [821], [769], [321], [463], [407], [144], [911], [44], [818], [554], [966, 907], [138], [427], [865, 610], [660, 799], [568], [529, 478], [951, 725], [27], [284], [332], [254], [281, 282], [422, 747], [521], [516, 520], [805, 261], [2, 3], [192], [5], [146], [406], [264, 263], [], [458], [854], [500], [608, 514, 515], [991], [778], [100], [293], [479], [996], [936], [340], [781], [765], [64, 55], [800], [453, 454, 624], [520], [287], [821, 839], [311, 312], [37], [376], [940], [535], [163], [182], [29], [768], [337], [], [973], [420], [], [596], [990], [536], [611], [396], [682], [932], [87], [], [801], [315], [743], [478, 722], [910], [929], [518, 414], [94], [92], [81], [47], [740], [593], [], [492], [164], [668], [332], [487], [596], [304], [244], [], [968], [155], [59, 916, 55], [330], [697], [904], [295], [29], [225], [746], [77], [238], [880], [100], [], [581], [521], [805], [67], [469], [172], [271], [937, 938], [370], [575], [495], [430], [75], [514], [557], [524], [563], [312, 311], [], [], [745], [374], [706], [621], [565], [428], [492], [644], [16], [269], [619], [273], [882], [334], [140, 142], [850, 282], [937], [770], [587, 784], [205], [983], [], [540], [284], [198, 199], [], [187], [399], [582, 948, 949, 950, 954], [215], [976], [], [783], [869], [539], [930, 582, 415], [39, 26], [337], [435], [361], [325], [677], [618, 926], [910], [57], [425], [912], [908], [578, 982, 571], [], [900], [371], [931], [940], [920], [505], [339], [], [581, 479, 717], [386, 101], [939], [280], [536, 628], [454, 655], [], [868, 951, 923], [892], [752, 852], [217], [952], [29], [448], [341], [211], [677, 587], [], [409, 892], [120], [186, 193], [62], [], [], [20, 13], [539], [744, 657], [413], [], [351], [], [11], [470], [326], [799], [849, 850], [567], [430], [301], [316], [222], [919], [969, 470, 923], [425], [182], [443], [301], [566], [299], [55], [299], [822], [842], [554], [575], [101], [994], [337], [309], [736, 762], [], [238], [518, 665], [313, 315], [875], [845], [816], [943, 953], [769], [393, 108], [83], [113], [557], [453], [242], [713], [], [133], [751, 979, 479], [211], [5], [100], [210], [567], [278], [333], [755], [765], [613, 810, 508], [942], [892], [740], [852], [181], [82], [], [310, 504], [956], [373], [49, 50], [635], [485, 754], [522], [], [458], [684], [571], [995], [], [571], [209], [755], [0], [226], [612], [540], [197, 198], [785], [572], [379], [], [833], [546, 650, 819], [626], [903], [806, 610], [282], [], [484], [943], [39], [801, 983], [888], [365], [926], [256], [897], [48], [718, 821], [220], [861], [433], [849], [854], [711, 631], [31], [682], [381], [81], [190], [442, 663], [218], [522], [926], [986], [185], [726], [362], [539], [638, 639], [581, 479], [863], [343], [697], [925], [565], [940], [618, 923], [641], [], [972, 825], [], [339], [992], [], [185], [914], [197], [717], [], [832], [76], [93], [], [718], [294], [844], [753], [], [668], [838], [232], [303], [176], [224], [125], [319], [64, 59], [75], [360], [204], [42], [913], [552], [909], [330], [471], [758], [156], [265, 267], [898], [857], [51], [145], [374], [928], [509], [12], [525], [894], [946], [], [840], [923], [804], [886, 440, 860], [661], [606], [789], [909, 987, 926], [841], [519], [176], [316], [177], [66, 68], [808, 515], [531], [388, 872], [243], [135], [684], [242, 159], [872], [606], [296, 427, 756], [678, 487, 854], [883], [904], [803], [520, 529], [581, 656, 479], [], [754], [749], [764], [372], [693], [549], [], [447], [143], [463], [25], [922], [160], [726], [992], [453, 454, 624, 402], [], [302], [765, 706], [812], [645], [140], [301], [159], [488], [307], [142], [449, 858, 733], [41], [836, 747], [272], [659], [177], [236], [664], [18], [772], [679], [654], [565], [549], [383], [728, 478], [970], [959], [735], [952], [15], [434], [687], [871], [217], [825], [358], [109], [495], [30], [853, 645], [805], [207], [165, 234], [894], [536], [215], [312], [392], [776], [610, 47], [505], [75], [393], [173], [720], [531], [], [487, 681, 590], [942], [129], [886], [284], [409], [298], [928], [724], [737], [604], [0], [0], [640], [232, 151], [410], [591], [680], [], [421], [717, 733, 479], [], [363], [210], [13], [219], [755], [263], [147], [287], [115], [491], [448], [780], [249, 250], [926], [], [761], [692], [303], [972], [836, 837, 958], [40, 46], [710], [293], [979], [173], [257], [681, 620], [749], [488], [288], [916], [941], [], [792], [154], [691], [], [], [640], [759], [611], [118], [], [63], [193, 235, 852], [871], [19], [400, 667], [896, 804, 999, 905, 861], [80], [433], [608, 414], [245], [880], [185], [292], [169], [85], [902], [], [567], [962], [649, 977, 978], [269], [427], [482], [382], [488, 723], [638], [505], [959], [364], [805], [497], [587, 596], [457, 834], [977, 150], [], [743], [145], [73, 77], [578, 689, 601], [168, 159], [830], [109], [766], [130], [763], [448], [993], [788], [491], [738, 944], [375], [435], [700, 999], [79], [146], [447], [269], [622], [420], [510], [578, 689], [283], [417], [673, 508], [186], [619, 846], [], [925], [467], [468], [180], [879, 912], [578, 601], [688], [102], [553], [483], [218, 156], [387], [196, 198], [487], [738, 428], [689], [323], [591], [], [9], [871], [749], [950, 951], [466], [615], [314], [615, 597], [609], [316], [488], [184], [128, 856], [669], [615], [249], [56, 472], [], [520], [189, 190], [822], [361], [537], [394], [417], [527], [242, 243], [], [385], [697], [158], [732], [172], [755], [], [132], [984], [550], [453, 454, 526], [910], [230], [771], [278], [31], [536], [586], [715], [909, 926], [97], [327], [122], [759], [157], [162], [], [732], [933], [649], [763], [788], [29], [598], [568], [422], [896, 804, 838, 585, 631], [822], [192, 193], [713], [586], [807], [75], [322], [120], [472], [737, 455], [588], [173, 958], [19], [349], [286], [701], [692], [194], [649], [769], [390, 395], [987, 935, 923], [47], [62], [570], [983], [130], [100], [519], [619, 846], [619, 846], [161], [768], [214], [254], [90], [234], [694], [311], [720], [], [780], [], [397], [], [349], [704], [628], [332], [337], [793], [757], [865, 850], [270], [], [989], [], [], [51], [49], [187], [254], [178], [], [245], [424], [13], [766], [584], [409, 892], [116], [17], [19], [613], [454], [751], [157], [994], [951], [111, 52], [997], [672], [77], [345], [581, 479], [30], [476], [587], [189], [550], [22], [0], [456], [200], [], [704], [49], [532, 923, 572], [], [313], [379], [420], [], [258], [28], [253], [606], [968, 504], [915], [950], [403], [535, 671], [378], [376], [565], [495], [], [414], [303], [546], [406, 887], [113], [105], [518], [164], [789, 539], [990], [938], [347], [740], [53], [172], [90], [59], [466], [906], [933], [53], [444], [140], [769, 709, 710, 767], [193], [230, 231], [561], [306], [], [614], [439, 764], [118], [808], [], [268], [577], [652, 413], [529], [367, 369], [], [492], [24], [681, 620], [137], [978], [627], [549], [136], [], [777], [182], [362], [329], [671], [1], [112], [883], [987], [703], [], [], [786], [536], [867], [104], [928], [235], [862], [828], [427], [929], [23], [958], [549], [43], [342], [971], [814], [140], [575], [552], [301], [676, 197], [430], [608, 977, 978], [303], [235], [544], [645], [807], [110], [114], [836, 976], [454], [419], [642], [581, 479, 817], [591], [79], [856], [177], [930, 844], [765], [496], [478], [231], [773], [97], [674], [991], [375], [102], [486, 650, 558, 819], [85], [109], [573], [78], [479], [401], [846], [268], [301], [892], [466], [], [497], [908], [577, 488], [308], [506], [497], [939, 943], [455], [977], [988], [89], [508], [554], [128], [30], [316], [12], [687], [423, 424], [], [553, 493], [19], [52], [76], [690], [872, 841], [553], [514], [548, 851], [374], [878], [896], [238], [45], [989], [763], [418, 720, 872, 759, 622], [18], [590], [684], [957], [673, 681, 526, 527, 782, 664, 508], [270, 279], [985], [895], [535], [129], [653], [932], [90], [331], [131], [346], [495], [495], [386, 101], [167, 212], [109, 828], [59], [293], [765], [217], [668], [653], [352], [118], [], [652, 413], [698], [568], [793], [932], [413, 670], [641], [822], [620, 508], [], [743], [202], [480], [981], [569], [61], [701], [417], [958], [535], [293], [], [753], [352], [609], [355], [553], [976], [292], [], [910], [509], [716, 637], [468], [858], [85], [511], [18], [692], [351], [382], [844], [939], [816], [], [704], [678], [342], [425], [194], [386], [153], [118], [799], [600], [452], [287], [630], [309], [613], [87], [647], [721], [578, 982, 703], [755], [475], [721], [19], [548], [869], [959], [57], [886], [453], [411], [302, 305], [923], [696, 463], [123], [109], [982], [818], [611], [152], [406], [745], [592], [950, 951], [442, 494], [593], [297, 295], [671], [42, 44], [994], [538], [556], [584], [92], [269], [938], [278], [64], [670], [364], [0], [], [844], [958], [813, 910, 954], [749], [881], [725], [743], [171, 172], [168], [372], [931, 790, 415], [908, 404], [251], [], [369], [58], [436, 479], [762, 532], [], [951], [30, 31], [715], [894], [867], [716], [], [440, 412], [513, 875, 822], [], [970, 795], [347], [937, 567], [427], [595], [915], [344], [679], [572, 966], [234], [288], [338], [654], [221, 206], [37], [986], [883], [312], [663], [387], [435], [294], [577], [], [649], [769], [837], [308], [570], [913], [779], [753], [955], [277], [363], [], [547, 820], [608, 597, 763], [850], [], [62], [287], [413], [], [155], [80], [908, 895], [407], [489, 781], [], [53], [435, 876], [460], [731], [558], [], [601], [186], [502], [140, 142], [535], [514], [489], [542], [87], [], [37], [319], [655], [339], [894], [579, 432, 819], [582], [173], [360, 337, 357], [340], [939, 943], [568], [932, 868], [865], [87], [916], [41], [387], [981], [818, 884], [849], [116], [352], [292], [147], [72], [536], [515, 764], [614, 966, 532, 762, 923, 572], [892], [715], [], [424], [327], [670], [673, 664, 526, 527, 508], [39, 46], [732], [383], [], [550], [320], [62], [], [617], [], [186], [963], [660], [96], [446], [393, 108], [3], [512], [709], [294], [], [295], [760], [561], [650, 479, 608, 609, 610], [839], [704], [117], [971], [188], [162], [30], [515], [547, 820], [439], [112], [521, 926], [797], [738], [129], [748], [], [821], [438], [], [939, 940], [355], [824], [629], [], [147], [472], [376], [782], [884], [639], [424], [981], [69], [701], [608, 824], [130], [30], [737, 920, 762], [526, 786], [666], [571], [132], [709, 696], [430], [758], [261], [428], [], [], [550], [], [875, 819], [644], [222], [221], [490], [101], [457, 617, 712, 633], [616], [311], [178], [430], [495], [995], [492], [], [512], [996], [537], [771], [894], [], [860], [709], [187], [264], [225], [483], [478], [933], [218], [915], [190], [754], [980], [], [405], [68], [557], [650], [496], [795], [779], [511], [138], [344], [748], [157], [], [184], [769, 418, 767], [240, 241, 238], [147], [893], [360], [391], [298], [806, 655], [156], [573], [], [410, 309, 599], [929], [240, 238], [619, 846], [617, 823], [625], [108, 991], [718], [626], [219], [691, 570, 958], [867], [512, 473], [638, 639], [439], [99], [926], [242, 243], [112], [397], [708, 682, 458, 439], [962, 659, 923], [719], [542], [853], [802], [107], [725], [132], [404], [420], [44], [373], [825], [583], [61], [475], [793], [920], [82], [67], [722], [168, 159], [298], [502], [861], [815], [311], [599], [111], [893], [908, 895], [371], [332], [557], [192], [346], [87], [25], [737], [534], [], [167], [937], [607], [156], [663], [169], [], [144], [899], [974], [684], [24], [575], [], [682], [286], [], [49, 50], [420], [635], [], [435], [806, 630], [16], [118], [352], [42], [14], [673, 674], [548], [755], [16], [145], [673, 742, 526, 527, 782, 664, 508], [979], [615], [404], [], [867], [259], [906], [800, 903, 552], [806], [15], [969], [807], [153], [625, 724], [852], [624], [12], [717], [261], [445], [203], [872, 759], [], [228], [711], [948], [825], [], [796], [861], [518, 842], [278, 280], [466], [327, 123], [363], [548, 851, 632], [588], [756], [579], [263], [577], [52], [722], [715], [554], [45], [110], [546, 714, 402], [922], [902], [608], [673, 968, 526, 504, 508], [], [255], [173], [986], [382], [568], [496], [87], [293], [468, 919], [608], [416], [372], [979], [376], [121], [815], [451], [768], [32, 30], [265], [715, 744], [114], [405], [652, 413], [704], [427], [229], [977, 775], [853], [809, 618, 659, 925], [750, 917, 697, 921], [171], [654], [951], [480], [], [973], [894], [354], [52], [341], [738], [793], [241], [96], [742], [677], [849], [396], [996], [572], [215], [295], [395], [679], [274], [245], [118], [816], [435, 631], [21], [892], [560], [], [144], [834, 906], [914], [533], [199], [576], [432], [71], [982], [186], [641], [165], [293], [391], [], [251], [902], [937, 939, 943, 950, 951, 954], [510], [290], [399, 728], [278], [587], [600], [397], [951], [248], [216], [625], [676], [], [840], [215], [900], [47], [167], [391], [698], [787], [302], [165], [604], [496], [290], [801], [715], [508], [516, 520], [39], [624, 453, 454], [903], [788], [373], [801, 329, 842], [679], [110], [430], [], [301], [289], [942], [705], [206], [810, 508], [985], [979], [246], [922], [820], [485, 754], [], [146], [269], [591, 434], [570], [], [49], [310], [455], [31], [658, 911], [198], [259], [943, 931, 933], [525], [438], [513], [691], [744, 657], [649, 487], [193], [535], [809, 909, 923, 926], [814], [635], [135], [953, 954], [465], [260, 232], [242], [685], [610, 836, 837], [516], [948], [373], [797], [], [61], [912], [897], [763], [], [191], [532], [931], [975], [162], [494], [644], [737], [629], [791], [801], [466], [532, 762], [716], [], [525], [339], [542], [521], [175], [339], [999, 159], [267], [326], [892], [880], [561], [131], [836, 837, 841, 610], [953], [218], [4], [581], [432], [470], [208], [4], [831], [668], [113], [107], [690], [579], [995], [106], [407], [425], [405], [538], [118], [368], [78], [434], [808, 642], [], [], [967], [331], [], [267], [234, 165], [199], [387], [444], [892], [883], [899], [41], [978], [104], [211], [51], [608, 630], [488], [648], [873], [199], [], [630], [127], [], [88], [363], [536], [888], [239], [802, 621], [483], [752], [532], [218], [564], [884], [655], [637], [38], [877], [877], [170], [611], [969, 659], [214], [320], [808], [692], [419], [591], [132], [167, 173], [434], [99, 100], [927], [95], [], [112], [449], [], [301], [74, 815, 309], [332], [508], [116], [20], [632, 851, 548], [81], [916], [15], [725], [194], [208], [77], [677], [355], [136], [779], [375], [298], [135], [212], [866], [410], [867], [190], [349], [507], [199], [140], [356], [222], [614], [615], [391], [964], [792], [353, 343], [851], [37], [831], [390], [980], [693], [93], [986], [471], [419], [], [371], [353], [238], [744], [], [192, 185], [729], [103], [768], [264, 171], [589], [994], [673, 664, 526, 527, 632, 761, 508], [286], [305], [733], [], [483], [237], [67], [], [379], [33], [7], [476], [378], [588], [746], [726], [234], [664, 851], [428], [116], [914], [759], [], [983], [172], [27], [410, 309, 599], [148], [285], [234, 177], [], [792, 834, 630], [89], [158], [752, 852], [741], [836, 837], [158], [378], [152], [669], [369, 381], [601], [231], [648, 720], [690], [608], [210], [344], [733], [610], [699], [512], [481], [], [340], [569], [], [], [731], [316], [44], [239], [455], [261, 230], [765], [], [945], [808], [], [662], [206, 221], [661], [650], [247], [810, 878], [606], [886], [208], [44], [], [133], [248], [679], [188], [], [587, 784, 477], [638, 639], [908, 404], [389], [503], [428], [303], [9], [994], [995], [162, 167], [501], [688], [974], [693], [923, 982, 762], [445], [563], [402, 546], [997, 947], [406], [144], [476], [354], [], [307], [518, 671], [65], [459], [831], [707], [15], [159], [129], [79], [207], [716], [483], [198], [171], [896, 804], [392], [223], [197], [961, 659], [258], [672, 797], [834, 457, 527, 664, 508], [410], [205], [775, 699], [486], [510], [806, 911, 496], [183], [524], [893], [829], [376], [11], [317], [976, 977, 978], [272], [529], [161], [727], [904], [474], [314], [780, 724], [935], [354], [863], [987, 998], [95], [], [948, 949], [], [836, 638, 639], [571], [49], [342], [178], [], [195], [292], [801], [515, 808], [191], [879], [235], [574], [593], [66], [505], [225], [], [907, 966], [625], [180], [466], [639], [380], [426], [945], [37], [161, 162], [103], [751], [611], [936], [759], [701], [943], [629], [714], [389], [224], [815], [601], [819], [655], [301], [408], [740], [831], [282], [984], [], [389], [564], [25], [960], [474], [688], [957], [97], [312], [443], [846], [941], [262], [492], [985], [414, 608], [507], [578, 495, 601], [275], [205], [588], [193, 187], [89], [224], [890], [497], [583], [239], [990], [367], [], [543], [480], [989], [520], [484], [249], [593], [349], [344], [897, 799], [968, 504], [901], [829], [508], [821], [364], [165], [871], [480], [212], [], [499], [617], [400, 667], [222], [338], [413], [], [290], [], [897], [], [397], [286], [721, 831], [952], [112], [582], [558, 541, 542], [], [483], [449], [], [980], [332], [136], [56], [716], [690, 345], [835], [768], [558, 432, 889], [141], [444], [270], [637], [749], [123], [572], [538, 727], [952], [600], [33], [419], [286], [186], [397], [797], [495], [997], [692, 623], [805], [2], [609], [793], [698], [991], [217], [259], [583], [273], [900], [500], [857], [461], [996], [7], [3, 147], [110], [752], [355], [757], [99], [646], [719], [378], [293], [773], [2, 3], [531], [896, 651, 827], [774, 608, 610], [288, 290], [716], [], [673, 526, 527, 782, 664, 508], [418], [803], [768], [348], [640], [365], [220], [402], [378], [], [948], [], [635], [291], [944], [730], [1], [308], [112], [165], [616], [254], [707], [532, 762, 572], [305], [209], [], [679], [733, 858], [], [965, 923], [800], [604], [104, 489], [441], [436], [465, 597, 734], [280], [164, 165], [480], [997], [402], [70], [767], [454], [171], [391], [282, 539], [474], [526, 527, 664, 508], [533], [595], [573], [511], [908], [176], [915], [197, 199], [530, 409], [], [810, 878], [783], [666], [538], [435], [850], [609], [71, 119], [], [], [671], [411], [535], [395], [231], [234], [249], [666], [888], [610], [997, 947], [314], [167], [557], [315], [473], [968, 504], [502], [3], [409, 892], [335], [859], [238], [581], [748], [450], [397], [737, 455, 440], [], [284], [727], [556, 827], [171], [480], [35], [384], [556], [940], [611], [447], [806], [463], [994], [594], [909, 567, 478], [999], [226], [35, 876], [73, 77], [127], [889], [69], [435], [237, 158], [466], [766], [308], [759], [994], [774, 655, 825], [698], [124], [538], [731], [484, 871], [30], [561], [441], [161], [832], [769], [898, 836, 837], [880, 518], [392], [51], [659, 923, 928, 945, 959], [280], [207], [429], [314], [566], [451], [547], [686], [972], [442], [473], [851, 633], [882], [235, 676], [157], [927], [972], [658, 824], [206], [960], [597], [], [620, 508], [460], [473], [718, 975, 437], [947], [615], [336], [815], [974], [707], [858], [849], [398], [780, 914], [363], [239], [908], [514, 788], [147], [25], [547], [697], [131], [600], [354], [165], [772], [572], [175], [399], [719], [338], [300], [655, 630], [968], [337, 943], [581, 479], [899], [815], [424], [330, 331], [48], [515, 420], [952], [288], [771], [341], [842], [562], [989], [], [730], [892], [324], [268], [974], [571], [550], [651, 412, 60, 868, 616], [770], [233], [758], [863], [618], [730], [842], [404], [264], [453], [272], [342], [294], [239], [114], [487], [824, 678], [608], [927], [969], [642], [], [542], [453], [880], [436], [355], [787], [128], [999, 700], [627], [581, 479, 817], [], [614], [873], [548], [543], [858], [465], [57], [29], [442, 858], [233], [988], [323], [255], [90], [630], [738], [170], [456], [7], [52], [868, 651, 659], [560], [685, 785], [], [383], [273], [339], [425], [609], [624], [968, 911, 849, 505], [74], [617], [966, 572], [317], [289], [610], [517, 600], [788], [989], [171], [11], [911, 658], [334], [187], [791], [458], [86], [], [333], [288], [949], [619, 846, 851], [641], [248], [733], [180], [667], [674], [639], [667], [230], [75], [479], [231], [747], [591], [157], [172], [410], [906], [677], [766], [], [420], [483], [], [26], [902], [113], [989], [270, 272], [597], [799], [86], [19], [456], [857], [396], [962, 923], [952], [500], [321], [526], [41], [679], [467], [334], [460], [573], [892], [607], [841], [470], [382], [918], [879], [133], [316], [581, 751, 468, 895, 479], [591], [545], [806, 459], [289], [784], [582], [130], [311], [214], [259], [932], [251], [358, 359], [], [470], [], [], [], [], [804, 503], [606], [32], [703], [612], [407], [305], [602], [681, 810, 620, 526, 508], [900], [], [339], [418], [433], [765], [], [618], [609], [932], [937], [535], [869], [981], [610], [122], [627], [], [118], [542], [175], [295], [692, 487], [56], [599], [793], [765], [23], [323], [551, 748, 629], [801, 570], [], [342], [69], [540], [259], [998], [], [797], [252], [568], [834], [], [96], [82], [486], [471], [320], [702], [921], [525], [], [690], [51], [113], [865], [919], [498], [], [325], [297], [606], [611], [496], [858], [136], [740, 756], [681, 620, 664, 526, 527, 632, 508], [548, 851], [652, 413], [886], [423], [857], [218, 156], [925], [], [353], [236], [216], [786], [488], [171, 172], [], [], [116], [666, 924], [649], [615], [686], [296], [242], [228], [668], [940], [891], [819], [279], [712], [459], [822], [777], [276], [702], [898], [884], [326], [472], [630], [932], [453], [130], [917], [], [555], [173], [973], [225], [931], [683, 594], [], [380], [192], [966], [138], [908], [53], [], [74], [144], [814], [516], [73], [845], [770, 608, 610], [298], [618], [104], [289], [850, 855], [484], [579], [57], [708, 887], [320], [929], [603], [109, 973], [5], [73], [668], [615, 652, 465, 413], [568], [649], [], [869], [105], [531], [135], [963], [366], [852], [468], [701], [740, 519], [985], [332], [524], [346], [336], [178], [2], [506], [300], [83], [251], [435, 151, 156], [853], [196], [434], [405], [911], [789], [251], [660, 557], [143], [306], [428], [], [619], [978, 638, 639], [156], [622], [387], [928, 960], [908], [508], [850], [436], [822], [298], [952], [408], [], [47], [573], [79], [168, 159], [633], [], [297, 295], [], [22], [], [], [512], [308], [433, 638, 639], [177], [32], [], [51], [105], [], [908], [189], [453, 454, 624], [816], [626], [975], [170], [825], [801, 838, 570], [749], [480], [510], [270], [476], [941], [900], [972, 437], [474], [170], [703], [330], [617, 823], [648], [910, 567], [953], [306], [104], [548, 453, 553, 851], [458], [309, 599], [273, 274], [341], [727], [149], [956], [477, 868, 623], [495], [792], [899], [674], [676], [677], [7], [], [72, 74], [90], [860], [677], [779], [750, 211], [868], [78], [189], [527], [253], [291], [385], [434], [687], [146, 147], [41], [548], [110], [757], [221], [692], [812, 908, 404], [834, 806, 630], [257, 222], [611], [831], [983], [281], [354], [650, 526], [355], [281], [33], [652, 465, 570, 413], [515], [385], [547], [614], [], [144], [169], [845], [915], [244], [], [40, 46], [662], [184], [958], [355], [304], [212], [63], [722], [819], [308], [882], [533], [467, 341], [659, 923], [250], [852], [], [979], [212], [939], [999, 905, 700], [610, 678], [226], [14], [99], [30], [751, 479], [453], [318], [830], [971, 502], [777, 524, 461, 596], [978, 445], [646], [911], [744, 657, 812], [257], [898], [275], [131], [547], [], [626], [335], [981], [410], [266], [343], [783], [434], [140, 142], [], [445], [557, 468, 733], [592], [738], [364], [508], [877], [448], [377], [233], [376], [627], [], [973], [997, 947], [575], [], [], [277], [351], [746], [836, 837, 605], [788], [284], [996], [542], [487], [550], [508], [69], [886], [528], [83], [583], [841], [673, 681, 620, 526, 527, 664, 508], [197], [540], [774, 977], [902], [863], [], [], [205], [], [881], [729], [463], [968, 504, 505], [271, 274], [191], [864], [], [264], [901], [], [762], [843], [853], [822, 541, 542], [], [214], [69], [264], [706], [418], [56], [53], [383], [504], [869, 445, 638], [461], [213], [], [709], [879], [554], [93], [333], [308], [958], [738], [479], [50], [861], [615], [833], [], [987, 998], [805], [870], [], [700], [611], [], [279], [492, 630], [487], [293], [460, 975, 437, 733], [685], [], [410], [854], [196, 198], [594], [656], [677, 587], [450], [858], [561], [773], [407], [691], [32], [490], [343], [769], [276], [144], [621], [452, 911, 658], [453, 885], [169], [308], [296], [407], [595], [453, 454, 921], [816], [476], [933], [576], [563], [369], [615], [842, 977, 978], [290], [440], [347], [206, 221], [785], [20], [919, 920], [488, 679, 714], [967, 968, 504], [814], [317], [681, 810, 620], [41], [190], [791], [431], [315], [766], [294], [942], [563], [788], [784, 923], [207], [113], [722], [111], [756], [475], [573], [520], [170, 177], [], [847], [929], [200, 155], [227], [674], [734], [52], [537, 248], [], [296], [738], [515], [760], [709], [928, 868, 923, 927], [253], [26], [611], [835], [], [305], [642], [188], [482], [], [852], [167], [352], [652], [379], [464], [649], [531], [446], [677], [887], [744, 657, 733], [], [330], [953], [589], [4], [831], [808], [616], [324], [457, 834, 906], [851], [838], [733], [], [155, 204], [794], [29], [709], [249], [364], [421], [583], [1], [820], [151], [341], [521], [296], [], [94], [572], [683], [536], [591], [532, 760], [383], [858], [7], [801, 983], [38, 44], [312, 314], [383], [79], [651], [323], [642, 542], [161], [494, 7], [70, 123], [556], [315], [990], [610, 750, 564, 697], [443, 411], [161], [19], [741], [586], [660], [263], [265], [400], [111], [610, 836, 837], [990], [976, 978], [709], [279], [295], [555], [158], [768, 610], [554], [408], [261], [211], [664], [502], [394], [439], [], [12], [893], [880], [338], [349], [656, 791], [79, 988], [574], [925], [604], [653], [966], [71], [], [721, 750], [], [], [265], [243], [89], [354], [], [], [260], [812], [298], [617], [427, 509], [792], [511], [365], [450], [503], [852], [851], [404], [757], [655], [756], [546, 650, 819, 542], [161], [118], [406], [42], [65], [484], [672], [825], [53], [914], [937], [756], [941], [769, 777], [498], [241, 238], [311], [90], [162], [534], [952], [185], [647], [393, 973], [141], [590], [433], [862], [394], [309], [987], [274], [616], [884, 406], [68], [617, 823], [324], [981, 429], [949, 951], [72], [973], [797], [920], [127], [363], [659], [], [132], [550], [705, 547], [46, 47], [50], [81, 82], [514], [239], [484, 871], [890], [932], [219], [284], [673, 664, 526, 527, 508], [48], [802], [68], [], [777], [954], [425], [775], [696], [450], [834, 906], [846], [544], [599, 951], [15], [835], [136], [205], [929], [931, 587, 792], [328], [829], [919], [984], [976], [453, 409], [396], [547], [683], [565], [260], [116], [187], [423], [697], [671], [54], [], [544], [308], [938], [190], [887, 406], [910], [649], [893], [367], [564], [327], [672], [441], [], [839], [313], [584], [203], [304], [560], [364], [948], [929], [309], [799], [565], [19], [630], [445], [607], [125], [746, 622], [634], [49], [362], [854], [840], [538], [869, 636], [817, 511, 479], [491], [118], [231], [519, 478], [230], [177], [141], [185], [791, 582], [80, 136], [286], [441], [], [517], [284], [421, 539], [83], [985, 324], [], [395], [21], [650, 822], [44, 26], [705, 489], [701], [351], [183], [771], [757], [679], [739], [992, 947], [565], [147], [270], [982], [21], [892], [], [745], [449], [776], [287], [163, 168], [965], [904, 981], [694], [777, 531, 587, 487], [835], [460], [604], [480], [72], [367], [260], [771], [20], [742], [814], [815], [476], [572], [67], [213], [824], [168], [163], [556], [761], [23], [90], [745], [619, 846], [80], [241], [96, 904], [709, 767], [532, 953, 762, 923], [471], [759], [407], [429], [419, 741], [390], [581], [908, 895], [834], [245], [162], [424, 423], [40], [283], [215], [446], [435], [126], [785], [997], [29], [183], [139], [428], [453, 526], [483], [909], [119, 120], [981], [574], [513], [], [154], [1], [248, 249, 250], [835], [], [557, 762, 733, 670], [280], [576], [310], [265, 266], [687], [122], [801, 973, 983], [676], [840], [567], [], [909], [350], [389], [142], [185], [296], [994], [652], [341], [169], [366], [579], [863], [185], [185], [119], [485], [796], [459, 445], [431], [625, 724, 540], [1], [164], [305, 302], [419], [407], [881], [931], [609], [216], [791], [185, 189], [977, 978], [], [500], [916], [218], [407], [778, 526], [631], [242], [489, 695], [882], [488, 671], [728], [982], [360], [177], [983], [354], [324], [463], [734], [513], [479, 661], [659], [899, 647], [702], [280], [492], [68], [655], [565], [410], [182], [560], [668], [207], [367], [549], [772], [], [674], [586], [132], [868, 966, 923], [472], [550], [882], [674], [687], [911, 824], [480, 707], [534], [525], [410, 599], [596], [145], [10], [548], [521], [223], [648], [814], [480], [643], [618, 813, 910], [872, 652, 413], [532], [401], [194], [518, 465, 597, 413], [849], [513], [10], [659], [34], [512], [96], [56], [513, 776, 875, 541], [520], [770, 788, 630, 502], [624], [84], [30], [330], [732], [466], [89], [866, 958], [116], [968, 504], [568, 765], [], [154], [449], [631], [996], [162], [884, 406], [642], [129], [970, 349], [814], [378], [560], [324], [510], [641], [581, 479], [351], [31], [556], [443], [537], [616], [898], [353], [79], [571], [902, 488], [964], [955], [], [418, 563], [945], [112], [], [730], [220], [384], [158], [610], [210], [966, 907, 572], [878], [125], [362], [119, 39], [722], [466], [286], [815], [150], [93], [898, 455], [368], [542], [363], [425], [703], [721], [583], [311], [232, 249], [866, 595], [], [243], [415], [73, 815], [902], [913], [33], [772, 488], [806], [368], [499], [54], [183], [480, 478], [864], [275], [], [593], [293], [666, 924], [850], [614, 696], [819, 854], [456], [495], [546], [560], [22], [217], [28], [616], [993], [974], [925], [218], [], [28], [69], [605], [832], [612], [512], [], [999], [62], [447], [994], [276], [489, 236], [812], [643], [921], [408], [], [], [292], [278], [286], [913], [957], [992, 528], [], [871], [249], [236], [417], [874], [38], [21], [505], [200, 204, 155], [115], [798], [230, 231], [895], [144], [288, 290], [455], [288], [488, 679], [102], [40], [587], [387], [315], [324], [375], [592], [64], [911, 658], [526], [218], [], [978, 638, 639], [539], [], [680, 697], [16], [317], [772], [675], [873], [86], [592], [47], [], [124], [619], [605], [942], [954, 950], [423, 424], [666], [475], [645], [863], [22], [442, 663, 858], [689, 601], [524], [321], [49], [528], [905], [742], [614, 697], [921], [533], [459], [894, 759], [521], [608], [104], [665], [915], [601], [135], [], [253], [356], [897, 851], [], [63], [791], [689], [24], [429], [136], [532], [373], [383], [80], [373], [874, 829], [638, 639], [748], [948, 950, 951], [177], [407], [379], [740], [349], [176], [353], [301], [626], [716], [236], [472], [310], [567], [661], [667], [650, 828], [467], [974], [51], [], [460, 974], [897], [153], [492], [386, 101], [221], [239], [556], [819, 854], [973], [251], [818, 920], [792], [409], [532, 831], [355], [708, 884], [205], [548, 526, 851, 532], [816], [470], [766], [881], [476], [579], [212], [910, 567], [950], [653], [282], [238, 240, 241], [62], [732], [668], [942], [999, 434, 861], [909], [55], [500], [217], [184], [969, 987], [240, 241], [914], [484], [32], [288], [290], [253], [63], [416], [999, 794], [261, 254], [336], [777], [312], [325], [], [245], [990], [231], [537], [774], [180], [582], [271, 277], [573], [455], [], [657], [50], [385], [], [15], [918], [118], [339], [816], [403], [549], [861], [820], [372], [230], [470], [670], [128], [569], [529], [317], [415], [], [553], [], [456], [], [986], [473], [730], [936], [237, 151], [388], [452], [120], [], [672], [260], [630], [685], [922], [931], [938], [], [103], [661], [94], [402], [577], [384], [613], [799], [768], [889], [748], [], [35], [680, 470], [704], [807], [], [], [499], [786], [28], [14], [468], [678], [396], [596], [83], [405], [574, 575], [551], [453], [957], [875], [666], [551], [305], [178], [926], [965], [235], [], [990], [967, 968], [464, 763, 597], [173], [654], [4], [819, 541, 542], [341], [660], [991], [145], [372], [58], [375], [119], [24], [388], [78], [959], [137], [434], [98], [676], [389], [209, 850], [84], [682], [707], [524, 461], [654, 656, 792], [236], [99], [365], [757], [954, 651], [210, 211], [256], [162], [895], [423], [216], [366], [201], [673, 742, 526, 527, 664, 508], [706], [211], [315], [426], [], [209, 805], [255], [654, 733], [], [866], [504], [645], [449, 976], [459, 655], [], [255], [681], [777], [321], [666], [401], [119], [801, 836, 842, 433, 638, 639], [548], [550], [261], [], [869, 652], [], [913], [596], [], [608, 610, 836, 837], [], [986], [845], [], [594], [608, 610, 903], [865], [54], [534], [297, 369], [391, 801, 983], [601], [746], [784], [996], [486], [673, 681, 810, 620, 508], [558], [620], [614], [82], [834, 650, 906], [609, 860], [903, 836, 837, 465, 501, 763], [534], [762], [300], [227], [483], [193], [441, 572], [343], [814], [8, 7], [650], [449, 975], [133], [819, 854], [863], [256], [65], [518], [683], [938], [449], [425], [921], [740], [186], [720], [681, 620], [393], [697, 589], [169], [886], [153], [712], [968, 504], [95], [205], [59], [673, 526, 527, 662, 664, 508], [137], [658], [5], [918], [719], [], [949, 923], [744, 657], [961], [862], [378], [694], [815], [505], [], [86], [268], [397], [375], [306], [742], [902], [778], [605], [252], [518], [196], [863], [581], [388], [232], [378], [947], [764, 413], [251], [475], [], [57], [50], [933], [321], [690], [329], [500], [854], [679], [393], [882], [595], [942], [144], [549], [976], [424, 423], [317], [], [825, 858, 958], [502], [740, 459], [309, 599], [632], [378], [311], [40, 44], [12], [647], [78], [260], [788], [464, 950, 954], [493], [644], [992], [160], [891], [399], [567], [836, 837], [604], [293], [836, 837], [223], [449], [289], [171], [742], [191, 189], [153], [467], [720], [353], [987], [907, 892], [643], [829], [924], [624, 453], [546], [374], [419], [980], [793], [640], [611], [350], [91], [588, 790], [488, 679], [867], [], [573], [809], [708], [378], [252], [130], [168, 211], [740], [824], [816], [382], [329], [987, 998], [42], [536, 517, 510], [149], [288, 290], [337], [334], [901], [521], [], [667], [518], [64], [100], [823], [], [310], [617], [197], [693], [548, 664, 526, 851], [], [547], [], [41, 44], [707, 528], [306], [262], [922], [], [32, 30], [331], [951], [428], [618, 659, 926], [479], [64, 55], [385], [448], [680], [882], [536], [832], [346], [82], [380], [981, 429], [791], [940], [920], [181], [258], [806, 630], [477], [721], [329], [509], [195], [455], [544], [], [222], [929], [516], [383], [43], [814], [472, 693], [652], [13], [528], [419], [300], [207], [417], [140], [581], [70], [746], [61], [579], [703], [88], [680], [778], [159], [330], [178], [809, 659, 923], [621], [265, 266], [], [710], [], [487, 681, 620, 281], [994], [144], [313], [382], [63], [], [524, 461], [38], [400, 667], [336], [943, 923], [869], [303], [486], [265], [479], [838], [967], [929], [579], [578, 689, 562, 601], [186], [878], [395], [801, 983], [352, 351], [541], [283], [235], [111], [842, 978], [898], [389], [144], [711], [65], [386], [947, 997], [382], [707, 484, 914], [468], [581, 734, 479], [643], [767], [546], [756], [607], [336], [755], [630], [619], [985], [578], [546, 650, 819], [277, 278], [929], [613], [592], [820], [313], [250], [604], [740], [319], [391], [366], [327], [45], [248], [560], [507], [908, 404], [859], [605], [55], [410], [522], [92], [195], [314], [], [909, 469], [902], [812], [259, 526], [726], [513], [962], [976, 150], [986], [349], [273], [], [965], [923], [683], [673, 681, 620, 526, 527, 664, 508], [269], [700], [468], [28], [], [679, 488], [601], [383], [347], [416], [762], [763], [518, 616], [44], [970], [116], [], [835], [808], [614], [6], [], [353], [351], [406], [382], [881], [643], [232, 267], [717], [863], [757], [], [326], [101, 386], [308], [548, 851, 598, 632], [346], [923, 959], [271], [771], [864], [561], [563], [682, 698], [487], [125], [543], [432], [543], [110], [968, 849], [890], [399], [524, 461], [381], [], [973], [165], [393], [648], [758], [271], [530], [804, 631], [], [542], [222], [922], [785], [109], [495, 532, 729], [599], [239], [304], [138], [], [266, 570], [137], [617], [], [949], [299], [579, 881], [327, 328, 112], [99], [503], [954], [780], [806], [683, 819], [310], [813], [962], [107], [488, 695], [990], [621], [770], [21], [66, 68], [361], [132], [83], [888], [912], [834, 755], [304], [400], [864], [296], [649], [83], [568, 869], [418], [532], [296], [393], [527, 664], [187], [564], [926], [394], [154], [453, 454], [730], [278], [879], [919], [], [354], [202], [1], [28], [802], [264], [553, 526], [989], [581], [984], [810, 508], [195], [163], [65, 973], [383], [315], [512], [293], [824], [629], [223], [673, 742, 681, 620, 526, 527, 664, 508], [420], [139], [46], [330], [325], [910], [832], [782, 851], [129], [237], [301], [500], [854], [180], [774], [955], [507], [898, 711], [486], [935], [524, 461], [226], [405], [554], [435, 876], [901], [532, 762, 923, 572], [800], [300], [82], [973], [18], [893], [584], [913], [902], [156], [296], [247], [798], [653], [755], [893], [405], [534, 729], [796], [611], [457], [327], [56], [700], [680], [889], [806], [322], [825], [412], [36], [33], [673, 619, 526, 527, 782, 846, 664, 508], [407], [994], [564], [907], [847], [406], [225], [324], [806], [393], [122], [501, 568], [640], [155], [708], [331], [312], [309, 599], [41], [174], [604], [707], [286], [972, 976], [760], [946], [930], [849], [558], [589], [594], [60], [817, 479], [342], [580], [651], [56], [175], [733], [665], [7], [445], [444], [385], [376], [721, 636, 831], [690, 471], [258], [843], [725], [575, 479], [172], [954], [577], [70], [373], [409], [198], [774, 655, 703], [770, 543], [512], [619, 846], [610], [783], [907, 883, 532], [245], [857], [30], [508], [545], [269], [967, 504], [232], [223], [640], [], [192, 185, 186], [275], [45], [463], [392], [209], [337], [947], [], [100], [221], [685], [458], [771], [914], [14], [878], [325], [737], [281], [308, 79], [380], [585], [601], [281], [896, 435, 794], [761], [23], [666], [642], [155], [375], [681, 810, 620, 508], [525], [82], [995], [973], [415], [155], [912], [], [809], [895], [781], [147], [16], [860], [830], [239], [82], [297], [297], [29], [916], [82], [487], [808], [739], [921], [495, 532, 725], [496, 765], [164], [514], [357], [174], [559], [820], [477], [661], [436], [834, 630], [448], [248], [27], [540], [523, 414], [175, 189], [1], [985], [128], [646], [235], [722], [553], [661], [801], [940], [90], [], [586], [356], [341], [981], [579, 401, 881], [318], [72, 815], [71], [661], [756], [310], [293], [354], [438], [181], [23], [828], [989], [578, 982], [467], [289], [595], [569], [788], [370], [44], [241], [660, 733], [741], [], [800], [669], [850], [973, 983], [673, 681, 620, 526, 664], [348], [448], [592], [890], [81], [845, 720, 692], [341], [507], [954], [367], [364], [158], [697], [35], [520, 516], [727], [243], [489, 270], [546, 650, 819, 542], [566], [75], [615], [140], [706, 765], [236], [472], [83], [987, 998], [533], [], [319], [658], [832], [111], [605], [543], [973, 801, 983], [124], [365], [320], [616], [526, 527, 782, 664, 673, 508], [], [736], [447], [621], [830], [979], [145], [420], [653], [357], [355], [], [109], [], [298], [612], [642], [], [15], [479, 511], [42], [7], [897], [794], [705, 547], [571], [428], [233], [916, 664], [681, 620, 508], [46], [522], [229], [124], [609], [924], [399, 501], [156], [926], [258], [688], [808], [411], [751, 479], [510], [651], [302], [851], [], [864], [787], [103], [652], [], [], [40], [280], [606], [836, 837, 869], [868, 987, 809, 923], [975], [850], [551, 629], [729], [975, 703], [155, 204], [887], [981, 781], [703], [920, 717], [920, 414], [872, 818, 759], [816], [673], [669], [339], [636], [498], [392], [545], [592], [34], [38], [481, 453, 485, 632], [966], [429], [], [388], [], [836, 837, 775], [617], [464], [255], [375], [115], [195, 790], [479, 656], [213], [603], [711], [293], [822, 871], [35], [273], [875], [314], [], [86], [144], [856], [548, 851, 598, 632, 281, 285], [908, 718, 888], [659], [572, 966], [213], [849], [905], [215], [805], [872], [496], [766], [713], [36], [304], [821], [724], [182], [88], [652], [846], [150], [375], [71], [311], [725], [189, 191], [97], [542], [650, 818, 819, 822], [], [689, 501], [909, 926], [400, 667], [214], [103], [132], [191, 189], [950, 951], [259], [489], [577], [769], [617, 731, 823], [113], [927], [456], [103], [528], [], [], [203], [673, 508], [222], [822], [59], [270], [300], [111], [455, 907, 440], [766], [298], [835], [711], [670], [264, 253], [762, 532], [222], [589], [901], [15], [63], [424], [714], [292], [232, 217], [807, 654], [130], [984], [919], [928, 949], [129], [757], [371], [394], [84], [738], [421], [980], [341, 719], [388], [454, 487, 728], [229], [856], [495], [275], [812], [], [636], [64], [], [152], [95], [649], [92], [92], [710], [], [439], [908], [616], [694], [890], [822, 542], [770, 478], [270], [], [], [688], [578, 601, 982], [772], [243], [180], [482], [804], [417], [134], [526], [838], [987, 998], [486], [800], [33], [48], [904], [567, 827], [645], [236], [223], [910], [798], [842], [697], [904], [784], [56], [442], [949], [273], [67, 68], [948], [], [56], [152], [511, 479], [135], [], [548, 851], [228], [701], [451], [322], [209, 805], [520], [218], [173, 180], [437], [56], [14], [775], [871], [75], [], [920], [499, 955], [997], [874], [958], [], [613, 526, 527, 664], [858], [182, 185], [401], [238, 239], [156], [49, 50], [591], [730], [33], [682], [115, 327], [469], [66, 68], [174], [], [404], [134], [636], [284], [995], [], [571], [946], [642], [517], [457], [258], [601], [50], [903], [590], [175], [649], [551], [654], [3], [], [], [642], [769], [690], [753], [981], [440, 441, 572], [581], [877], [43], [593], [372], [197], [727], [347], [275], [887], [211, 210], [834, 906, 762, 638], [344], [773], [719], [], [856], [252], [439, 461, 465], [849, 505], [715, 251], [789], [659, 760], [967], [505], [], [511], [34, 977, 978], [765], [233], [132], [539], [175], [736], [893], [119], [22], [447, 600], [], [829], [459, 445], [555, 652], [620, 681, 470], [772, 679], [463], [208, 282], [785], [121], [195, 151], [466], [939], [828], [643], [664, 527, 761], [123], [674], [715, 764], [77, 319], [85], [834], [677], [801, 842, 433, 983], [951], [537], [722], [104], [713], [954], [267], [154], [678], [443], [247], [945], [814], [495], [], [701], [590], [946], [996], [], [59], [137], [230, 231], [], [659], [923], [591], [713], [795], [328], [], [656, 479], [735], [201], [485], [923], [298], [31], [624, 453, 454], [759], [994], [234], [431], [922], [562, 663, 442], [528], [149], [208], [115], [699], [660], [452, 793], [634], [118], [672], [], [779], [999], [190], [192], [858], [171], [], [], [143], [146], [518], [877], [87], [263], [104], [742, 553], [356], [346], [767], [295, 297], [485, 664, 526, 527, 851, 632], [499], [576], [529], [774, 655, 836, 837, 636], [618], [156], [133], [793], [796], [24], [], [41], [251], [196], [696], [884, 406], [], [309, 599], [579], [892], [124], [460, 718, 468, 733], [515], [618], [997], [260], [280], [12], [714], [904], [879], [41], [149, 150], [], [], [145], [685], [311], [800], [817, 751, 479], [369], [723], [896], [734], [356], [88], [692], [633], [957], [393], [862], [905], [578, 585], [172], [566], [126], [515], [323], [113], [230], [814], [688], [250], [191], [70], [318], [429], [84], [584], [81], [511, 479], [29], [308], [147], [682], [669], [243], [934, 567], [904], [858], [331], [750, 726], [906], [440], [939], [164], [91], [28], [154], [740, 477], [882], [366], [574], [], [699], [661], [662], [521], [472, 693], [155], [896], [774, 655], [931], [461], [327], [915], [89], [734], [246, 159], [488], [358], [546, 921], [49], [788], [], [446], [59], [919], [], [63], [505], [478], [], [832], [178], [64], [528], [363], [674], [427, 756], [752, 852], [456], [356], [], [822], [581, 479], [690], [], [864], [997], [849], [35], [33], [233], [915], [470], [987], [697], [195, 245], [719], [857], [248, 249, 250], [896, 859, 495, 827], [281], [668], [808], [198], [177, 170, 676], [104], [598], [477], [735], [135], [415], [361], [5], [86], [], [156], [600, 769], [777, 623], [], [385], [992], [314], [986], [964], [684], [642, 542], [710], [349], [267], [194], [400], [659], [565], [945, 943], [], [279], [12], [860], [466], [769, 455], [274], [967], [74], [281], [576], [915], [821], [619, 846], [52], [602], [911], [455], [993], [], [386], [218, 215], [841], [971], [267], [378], [166], [977, 978], [], [382], [474], [717], [946, 309], [], [385], [252], [977, 978], [909], [29], [137], [554], [564], [670], [67], [137], [612], [], [183], [25], [751], [46], [146], [], [803], [854], [75], [], [611], [498], [329], [276], [309], [723], [255], [334], [568], [263], [131], [456], [63], [73, 74, 815], [802], [557, 442], [585, 838], [605], [834, 906], [996], [776], [564], [349], [393], [832], [], [395], [673, 681, 526, 527, 664, 508], [20], [711, 563], [256, 676], [404], [235, 658], [196, 198], [907, 572, 966], [322], [982], [349], [175], [109], [896], [761], [514, 788], [400, 667], [879], [434], [], [859, 651, 760, 827], [], [695], [585], [851], [245], [], [430], [479], [663], [723], [648], [257, 249, 222], [276], [178], [774], [690], [937], [923], [802], [191], [220], [306], [508], [54], [237], [785], [452], [349], [914], [], [], [581, 479], [136], [214], [951], [178], [943], [455], [24], [105], [497], [298], [333], [596, 763, 764], [], [918], [227], [576], [557], [331], [905], [458], [489], [709], [490], [547], [611], [306], [905], [967, 968], [79], [944], [323], [199], [819, 566], [734], [633], [680], [942], [410], [342], [950], [827], [503], [339], [624, 453], [236], [134], [150], [879], [670, 628], [367, 379], [4], [801], [246], [], [103], [638, 639], [28], [150], [923], [855], [323], [52], [289], [895], [950], [], [2, 148], [473], [750, 282], [789], [630], [459], [717], [83], [55], [83], [842, 457], [168, 159], [738], [741], [724], [243], [655, 445, 638, 639], [701], [64], [786], [532, 762], [323], [504], [265], [360], [600, 825], [403], [945], [89], [361], [673, 508], [170], [706], [570], [481], [13], [488, 843], [898], [22], [340], [714], [444], [696], [219], [416], [742], [718, 536], [960], [65], [939, 943], [770, 806], [570], [968, 504, 415], [], [91], [821], [39], [503], [616], [834, 522], [844], [507], [430], [577], [93], [168], [640, 868], [649, 825], [45], [207], [641], [473], [12], [325], [192], [712, 790], [467], [526, 786], [], [881], [958], [164, 166, 167], [], [814, 970, 484], [685], [181], [830], [610, 838], [451], [181], [180], [756], [103], [320], [683], [2, 3], [553], [14], [306], [831, 968, 846, 619, 504], [394], [703], [926], [756], [379], [458], [336], [853], [267], [141], [679], [25], [273], [165], [69], [809], [113], [114], [148], [], [340], [137], [291, 340], [149], [9], [574], [781], [834, 400, 667], [196], [], [954], [436], [695], [945], [767], [350], [140], [698], [292], [810, 878], [315], [243], [774], [780], [], [232], [723], [993], [351], [6, 842], [658], [838, 434], [], [40], [77], [492], [48, 49], [23], [], [512], [161], [121], [351], [], [748], [32], [184, 189], [812], [315], [274], [106], [684], [367], [577], [121], [628], [444], [281, 282], [263, 230], [724], [213], [678], [388], [573, 518], [679], [682], [424], [930, 963, 868, 923, 813, 415], [473], [886], [421], [300], [908], [174], [529], [172], [614], [726], [605], [225], [453], [497, 406], [936, 909, 926], [791], [243], [66], [337], [684], [767], [299], [840], [74], [834, 630], [188], [971], [382], [669], [276], [30], [787], [166], [989], [347], [661, 479], [470], [625], [908, 404], [358], [519, 907], [147], [205, 197], [528], [480], [734], [549], [421], [588], [170], [229], [885], [826], [570], [596], [539], [908], [425], [934], [700], [82], [118], [184], [43], [87], [487], [80], [426], [221], [89], [529], [475], [601], [341, 342], [142], [553], [788, 502], [428], [], [162], [490], [419, 720], [339], [40, 46], [215], [44], [965], [299], [721], [888], [730], [530], [459], [96], [481, 482], [63], [855], [342], [562], [489], [857], [589], [590], [316], [763], [335], [412], [72], [550], [425, 912], [943], [575], [96], [332], [536], [285], [], [917], [563], [921], [385], [754], [132], [183], [834], [327], [962], [230], [393], [189], [339], [918], [977], [272], [914, 536], [98], [510], [273], [116], [510], [521], [707], [341], [488, 843], [886], [555], [200, 244], [76], [365], [609], [], [898], [564], [79], [994], [993], [78], [207], [522], [249], [14], [998], [8], [10], [], [2, 3], [], [298], [710], [501], [973, 991], [331], [41, 26], [690], [], [644], [128], [660], [602], [524, 461], [186], [685], [428], [384], [754], [386], [72], [911, 824], [], [488], [397], [155], [980], [208], [], [], [436], [594], [79], [491], [956], [777], [395], [788], [777], [112], [751], [838, 692], [200], [688], [26], [350], [582, 412], [905], [143], [685], [790], [803], [424], [970, 979], [845], [438], [87], [836, 837], [130], [466], [604], [726], [558], [468], [820], [836, 837, 617], [745], [294], [949, 923], [185], [366], [184], [265], [625], [987], [359], [108], [], [443], [323], [610, 899], [911], [245], [952], [180, 435], [732], [], [378], [815], [213], [806], [429, 981], [709], [744, 657], [556], [238], [548, 851], [179], [], [254], [72], [814], [263], [523, 728], [977, 978, 853], [547], [120], [7], [127], [154], [223], [39], [656], [192, 852], [192], [0], [112], [209], [538], [54], [78], [916], [362], [688], [561], [256], [], [468, 718, 839], [58], [14], [693], [842], [530], [209, 210], [860], [869], [737, 455], [537], [228], [118], [907, 818], [689], [792], [704], [688], [385], [736], [897], [823], [895], [986], [375], [200], [336], [280], [609], [596], [119], [93], [228], [119], [836, 837], [692, 943], [9], [427], [614], [558], [205], [610, 796], [941], [787, 524, 461], [250], [781], [145], [664], [884], [251], [770], [], [], [], [482], [950], [477], [437], [], [], [775], [], [481], [206], [966], [298], [86], [750], [696], [967, 968], [743], [376], [531], [818, 862], [562], [951, 503, 572], [559, 799], [842], [644], [301], [774, 414, 842, 464, 978], [349], [252], [34], [348], [361], [57], [154], [], [934, 415], [261], [], [879, 344], [478], [], [207], [698], [970, 979], [565], [900], [632], [453], [358, 359], [481], [], [46], [393], [43], [363], [359], [921], [678], [515, 880], [746], [721], [37], [670], [859], [311], [46], [426], [73], [44, 26], [611], [136], [281], [172], [489, 10], [622], [69], [895], [231], [35], [422], [687, 406], [616], [47], [353], [99], [581], [760], [514, 774, 523, 655], [636], [110], [918], [547], [206], [511], [306], [919], [650], [838], [606], [555], [], [210, 164], [], [834], [157], [480], [259], [852], [769], [559], [216], [], [244], [], [949], [246], [652], [593], [418], [344], [], [495], [730], [275], [151, 508, 158], [244], [437], [932], [40, 46], [836, 837, 841, 970], [279], [890], [522], [32], [49], [241, 238], [641], [646], [548, 851], [], [166], [10], [699], [613], [170], [795], [535], [369, 379], [136], [196], [387], [362], [600], [9], [281], [], [404], [177], [192], [874], [], [281], [640], [231], [128, 135], [540], [707], [636], [], [], [532], [94], [996], [310], [241, 238], [948], [259], [376], [356], [953], [89], [396], [513], [870], [915], [292], [163, 168], [297], [271, 272, 273], [906], [322], [261], [607], [], [104], [67], [985], [810, 878], [992], [215], [298], [315], [283], [463], [647, 828], [770], [728, 735], [213], [301], [314], [674], [779], [400, 667], [720], [564], [700], [733, 919, 920], [640], [964], [90], [574], [248], [772], [939, 942, 948], [], [13], [736], [377], [673, 681, 620, 664, 526, 527, 782, 508], [503], [31], [472], [754], [479, 817], [219], [772, 711], [384], [892], [404], [286], [115], [130], [988], [439], [1], [], [285], [711], [524, 461], [448], [483], [528], [172], [515], [951], [608, 487, 824, 502], [], [851, 892], [934, 923], [258], [515, 643], [], [673, 592], [], [881], [302, 303], [697], [945], [198], [880], [20], [758], [306], [283], [936, 923], [612], [743], [50], [502], [673, 810, 526, 527, 782, 664, 508], [518, 465, 597, 413], [285], [19], [518], [293], [185], [773], [503], [251], [908, 895], [537], [], [715, 524, 461, 883], [], [], [343], [722], [667], [286], [280], [], [225], [518], [236], [487], [989], [463, 758], [25], [353], [607], [801, 983], [758], [809], [539], [161], [313], [], [12], [209], [973], [17], [705, 547], [143], [948], [171], [685], [125], [836, 837, 650, 819], [], [75], [], [746], [953], [113], [843], [279], [928], [749], [761], [600], [738, 580], [165], [604], [161], [333], [66], [524], [745], [84], [674], [55], [353, 350], [142], [722], [747], [582, 617, 728], [801], [617, 845], [236], [68], [507], [4], [905, 750, 846], [419], [998], [141], [118], [476], [736], [357], [947], [929], [731, 762], [489], [106], [282], [928, 960, 966, 923, 572], [610, 731], [728], [888], [649], [869], [], [340], [832], [987, 121], [], [19], [604], [303], [4], [700], [541], [662], [168, 210], [136], [679], [607], [], [787], [18], [489], [623], [744, 657, 517], [394], [89], [462], [934], [345, 690], [910], [604], [449], [645], [645], [801], [84], [804], [834, 655, 975, 630], [168], [18], [690, 346], [161], [425], [775], [608, 584], [292], [260], [24], [158], [248, 249], [964], [77], [642], [95], [20], [805], [961], [884], [96], [551], [732], [424], [771], [965], [551], [500], [829], [181], [887], [866], [999, 218, 700], [831], [538], [676], [981], [102], [43], [312], [469], [702], [188, 189], [901], [611], [738], [510], [164], [819], [912], [142], [832], [48], [646], [811], [81], [965], [460], [866], [32], [511, 479], [577], [671, 444], [92, 95], [371], [404], [76], [971], [294], [694], [988], [530, 619, 846], [344], [417], [52], [364], [], [886], [90], [299], [489, 600], [861, 435, 285], [991], [151], [610, 903], [286], [948, 572], [557, 733], [690], [582, 879, 692, 954, 955], [684], [820], [425], [376], [410], [404], [759, 447], [377], [814], [795], [738], [181], [263], [50], [619], [256], [909], [252], [641], [801], [673, 526, 527, 664, 508], [173], [949], [], [800], [962, 923], [478], [123], [722], [135], [369], [28], [323], [132], [316], [69], [175], [656], [987], [85], [889, 486], [738], [340], [331], [], [196], [214], [144], [], [610], [932], [962, 923], [280], [252], [188, 190], [532], [676], [360], [], [300], [412], [589], [879, 775], [538, 727], [615], [574], [617], [435, 789], [654], [981, 429], [746], [6], [856], [187], [578], [177], [402], [489], [108], [642], [847], [288, 290], [], [173], [241], [249], [288], [395], [33], [247], [958], [923, 806, 936], [632], [258], [43], [881], [803], [455], [585], [], [586, 652], [291], [0], [991], [842, 977, 978], [], [356], [254], [], [779], [688], [668], [677], [217], [327], [976, 978], [254], [316], [497], [44], [373], [177], [647], [11], [363], [162], [54], [114], [75], [32, 28], [660], [61, 62], [929], [352], [561], [9], [491], [137], [696], [267], [98], [464], [210], [], [259], [892], [350], [995], [743], [426], [44], [264], [585], [744, 657], [691], [669], [357], [892], [944], [230, 231], [711], [], [322], [407], [798], [948], [54], [329], [52], [986], [], [745], [236], [873], [682], [772], [682], [705], [498], [846], [], [], [393], [672], [717, 479], [436], [743], [765], [253], [608], [425], [148], [334], [193, 187], [0], [988], [201], [258], [680], [783], [808], [805], [177], [94], [788], [858], [952], [701], [62], [787], [349], [600, 894], [200, 175], [425], [], [564], [351], [433], [169, 172], [611], [19], [110], [923, 925], [271], [695], [607], [972], [44], [674], [673, 526, 527, 664, 508], [222], [547], [809], [], [937], [423], [631], [966, 459, 445], [299], [449], [], [357], [], [343], [770], [105], [515], [809], [88], [515], [128], [630], [999, 191], [379], [750, 281], [746], [245], [102], [839, 975], [877], [884], [917, 453, 454], [391], [81], [330, 331], [], [168, 159], [], [479], [587], [509], [72], [574], [299], [922], [711], [337], [113], [182], [725], [988], [346], [452, 968, 504], [626, 893], [316], [638, 639], [880], [641], [922], [933, 923], [96, 489, 93], [587], [892], [300], [281, 283], [31], [248], [829], [192], [], [403], [767], [40, 489, 46], [521], [382], [84], [966, 907], [656, 627, 468], [810], [492, 750, 831, 414], [929], [486], [967, 968, 504], [281], [376], [504], [], [873], [418], [608], [553, 493], [443], [752, 852], [604], [110], [306], [850], [955], [953], [262], [531], [189], [279], [677], [90], [209], [742, 662], [211], [737], [64], [785], [681, 810, 620], [611, 954], [203], [845, 966], [714], [793], [491], [904], [474], [309], [731], [854], [211], [671, 535], [], [877], [768, 414], [822], [683], [462], [975], [529], [620], [497, 538], [263, 231], [681, 620], [283], [364], [535], [889], [145], [159], [746], [301, 310], [198], [240], [889], [416], [469], [839, 718, 978, 821], [23], [553], [796], [970, 671], [962, 937, 923, 959], [698], [499], [166], [932], [689, 601], [545], [96], [], [323], [925], [278], [95], [309], [500], [222], [896, 999, 861], [488], [324], [593], [], [463], [613], [63], [180], [685], [637], [38], [341], [542], [343], [988], [656], [130], [681, 620], [963], [648], [308], [939], [125], [301], [791], [569], [425], [309, 599], [529], [228], [431], [182], [178], [450], [153], [419], [145], [301], [459, 655, 638, 639], [788], [908, 895], [719], [221], [546, 650, 819], [826], [988], [91], [382], [689], [335], [720], [548], [159], [260], [223], [259], [972], [87], [555], [], [326], [874], [71], [679], [53], [367], [69], [703], [766], [556], [714], [512], [418], [376], [68], [834, 400], [924], [320], [908, 913, 404, 977, 978], [809], [843], [560], [835], [610, 836, 837], [768], [765], [879], [365], [678], [207], [373], [896], [820], [874], [490], [81], [708], [], [762, 868, 659, 532, 470, 923, 924], [787], [138], [192], [203], [731], [836, 837, 839, 460, 718], [928], [562], [791, 254], [20], [938], [287], [330], [628], [471], [174], [513], [684], [630], [360], [590], [200], [344], [934, 959, 923], [656], [330], [562], [963], [515, 652], [881], [186], [352], [37], [809, 925], [926], [], [825, 706], [538, 698], [531], [987, 998], [526, 782, 664], [159], [382], [230], [587], [970, 795], [706], [182], [], [349], [41], [72], [215], [433, 638, 639], [103], [616], [409], [207], [950], [423], [453], [564], [844], [911], [833], [496], [945], [106], [631], [912], [15], [812, 908, 404], [580], [957], [836, 837, 630], [872], [974], [956], [738], [775], [721], [218], [738], [], [772], [6], [632], [543], [], [206], [806], [816], [98], [122], [912], [221], [422], [186], [376], [923, 700], [358, 359], [795, 799], [36], [305], [774], [530], [137], [515], [447], [306], [299], [338], [695], [404], [988], [148], [342], [243], [771], [51], [325], [311], [199, 251], [420], [155, 157], [349], [281], [734], [649], [473], [892], [510], [194], [314], [391], [72], [622, 759], [578, 834, 457, 982], [662], [95], [861], [865], [], [681, 620, 526, 508], [748], [832], [435], [782, 664], [], [637], [251], [], [276], [137], [654], [159], [818], [230], [537], [880], [413], [68], [605], [927], [354, 680], [863], [9], [39], [428], [941], [658], [793], [571], [652, 625, 447], [139, 141], [153], [434, 823], [820], [995], [46], [502], [737], [319], [859], [248], [746], [829], [969], [649], [319], [884], [297], [450], [237], [439], [426], [989], [177], [993], [489], [795], [128], [154], [513, 566], [811], [775], [367], [], [547], [679], [375], [91], [730, 603], [411], [96], [912], [307], [62], [591, 659], [783], [3, 983], [505], [832], [727], [330], [581, 479, 436, 511], [646], [738, 532], [942], [248], [839], [926], [643, 876, 435], [117], [317], [681, 620, 526, 664, 508], [116], [660], [981], [74, 77], [482], [], [968, 923], [872, 622, 759, 414], [870], [673, 527, 782, 664, 508], [64, 59], [161], [738], [994], [13], [119], [365], [157], [198], [193], [793], [977, 978, 472], [526, 495, 786], [962, 923, 935], [125], [3], [235], [497], [786], [810, 333, 508], [578], [845], [291], [], [257], [805], [472], [], [375], [443], [], [507], [924, 965], [774], [93], [514], [10, 11, 14], [934], [947], [443], [437], [367], [837], [514], [126], [549], [373], [623], [851], [670], [636], [468], [149], [416], [863], [203], [448], [908, 404], [30], [548, 782, 851, 598, 632], [2], [776], [487, 590], [607], [751, 479], [927], [43], [761], [407], [602], [168], [258], [920, 919], [931], [958], [955], [75], [7], [141], [], [191], [273], [75], [460], [496], [398], [], [262], [667], [63], [645], [712], [776], [], [723], [988], [673, 527, 664, 508], [713], [355], [487, 531], [454], [978, 222], [559], [800], [687], [737], [222], [384], [940], [], [272], [543], [103], [51], [777, 787], [590], [465], [926], [452], [597], [610], [227], [981], [749], [751], [331], [222], [940, 942], [956], [608, 681, 620], [592], [346], [663], [205], [684], [178], [607], [44], [47], [954], [602], [411], [813], [133], [871], [43], [58], [140], [511], [576], [606], [368], [741], [368], [587], [15], [724], [], [876, 435], [898, 680], [72], [879], [776], [385, 907], [900], [909, 926], [445], [21], [], [725], [437], [6], [896], [990], [498], [], [116], [932], [369], [234], [881], [311], [], [491], [682], [267], [220], [734], [279], [148], [997], [], [385, 386], [844], [801], [129], [709], [822], [495], [987, 998], [675], [852], [], [], [], [218], [470], [], [584], [315], [515, 819], [136], [780, 977, 914, 978], [636], [941], [941], [65], [657, 475], [152], [900], [799], [956], [957], [525], [45], [903, 689, 501, 887], [547], [853], [726], [810, 878], [784], [632], [841, 794], [852], [337], [992], [353], [598], [797], [889], [121], [701], [321], [562], [943], [452], [129], [610], [466], [0], [98], [581, 717], [228], [4], [555], [844], [528], [3], [487], [898], [277], [393], [342], [929], [896], [943], [], [211], [898], [590], [], [11], [726], [866], [990], [873], [610], [893], [952], [407], [885], [327], [359], [], [], [165], [449], [174], [281], [804], [176], [975], [757], [530], [397], [875], [619], [516], [687], [627], [243], [220], [], [131], [205], [], [470], [253], [307], [593], [62], [987, 998], [861], [907, 440, 572], [594], [449], [], [897], [619, 846], [755], [82], [510], [754], [613], [], [635], [183], [277], [363], [928], [321], [728, 936], [307], [292], [20], [835], [488, 616], [956], [301], [255], [538], [355], [866, 853], [546, 650, 818, 819], [300, 302], [306], [393], [804], [925], [794], [868, 931, 968, 532, 504], [427], [410], [], [801, 983, 570], [363], [941], [385], [812], [876, 435, 794], [681, 620, 285], [142], [], [551], [581], [253], [749], [453], [102], [899, 505], [679], [83], [310], [255], [608, 515], [923, 572], [99], [509], [445, 638], [679], [479, 751], [200], [89], [338], [744, 586, 657, 408], [820], [849], [992], [33], [139], [733], [896, 861], [938], [138], [674, 333], [610], [496], [290], [640], [499], [853], [], [944], [53], [576], [270], [636], [79], [], [201], [884, 406, 857], [127], [568], [], [785], [], [987, 998], [806, 975, 445], [835, 733], [258], [789], [658], [182], [739], [], [986], [767], [326], [762, 572], [229], [112], [685], [373], [873], [], [333], [659], [133], [165], [675, 757], [855], [451], [692, 509], [655, 843], [8], [56], [332, 478], [979], [505], [473], [202, 189], [672], [660], [334], [460], [769, 77, 815, 798], [293], [], [995], [65], [934], [690], [568], [317], [340], [850], [399], [10], [29], [544], [], [746], [352], [221], [717], [396], [315], [875], [720], [557], [92], [17], [441, 572], [455], [303], [834, 906], [442], [65], [534], [684], [974], [96], [889], [679], [857], [856], [679], [831], [40], [569], [412], [125], [322], [], [352], [991], [401], [440], [259], [751], [441, 932], [391], [421], [162], [226], [228, 229], [281, 282], [708, 682], [516, 431], [786], [200], [550], [500], [803], [523], [970], [781], [397], [669], [673, 508], [143], [113], [271, 277], [889], [932], [472], [569], [645], [], [783], [673, 526, 527, 782, 664, 508], [131], [884], [204], [195], [570], [225], [904], [14], [184], [566], [7], [987, 998], [575], [693, 472], [28], [635], [155], [29], [842], [987], [34], [217], [407], [773, 455], [557], [994], [77], [271], [94], [650], [], [827], [449], [299], [75], [809, 942, 659], [821], [418, 709, 838, 767], [336], [757], [779], [786], [49, 50], [688], [817, 511, 479], [165], [67], [145], [407], [369], [216], [58], [695], [239], [622], [19], [740], [], [213], [576], [], [906, 834, 630], [812], [], [485], [456], [851], [10], [549], [773], [143], [28], [218], [840], [86], [], [], [195], [], [337], [254], [935], [561], [599], [651], [613], [11], [75], [862], [], [47], [506], [904], [740, 756], [917, 921], [920], [912], [77], [286], [], [126], [274], [24], [20], [904], [16], [0], [144], [248], [502], [687], [357], [336], [518, 671, 444], [11], [242], [274], [523, 721], [161], [711], [521, 618, 651, 813, 827], [388], [84], [62], [687], [374], [], [504], [216, 219], [158], [216], [672], [559, 818, 819], [], [962, 923], [72], [636], [863], [325], [421, 632], [], [162], [691], [975], [652], [113], [36], [899], [288], [328], [896], [579], [555], [486, 889], [719], [223], [19, 13], [781], [608], [314], [43], [943], [566], [994], [125], [388], [479, 817], [727], [318], [518], [574], [867], [540], [506], [882], [300], [613], [66], [865, 850], [973], [157], [727], [750, 591], [], [398], [198], [602], [259], [512], [905, 854], [36, 37], [420], [162], [564, 750], [382], [95], [244], [715], [596], [247], [409], [], [890], [581], [736], [360], [4], [154], [286], [598], [96], [739], [30], [765], [806, 630], [21], [334], [343], [402], [3], [149], [803], [872, 453], [177], [203], [410], [511], [997], [199], [281], [128], [246], [520], [405], [164], [866], [468], [95], [634, 858], [206, 221], [780, 914, 921], [276], [955], [420], [270], [881], [], [40, 46], [249], [772], [478], [857], [637], [675], [419], [426], [259], [353], [185], [178], [554], [602], [354], [241, 238], [639], [3], [761], [288], [755], [], [264], [19], [937, 938], [306], [416], [168], [880], [], [447], [191], [69], [705, 547], [704], [218], [552], [662], [940, 941, 942], [173, 251], [], [121], [178], [914], [971], [206], [610, 890], [719], [31], [159], [619, 846], [225], [610, 465], [113], [281], [], [113], [212], [], [612], [300], [702], [819], [674], [513, 776, 819], [335], [498], [870], [702], [63], [204, 153], [730], [635], [996], [803], [131], [803], [977], [111], [], [792], [357, 358], [681, 819, 620], [], [965], [307], [50], [408], [826], [92], [879], [910, 567, 926], [513], [867], [514, 515, 898, 808], [100], [570, 691, 652], [489], [418], [387], [866], [350], [870], [420], [166], [540], [345], [819, 818, 632], [417], [640], [662], [914], [650, 541, 558, 819], [68], [707, 637], [557, 919], [96], [902], [172], [902], [587], [447], [959], [507], [132], [789], [342], [66], [875, 566, 541], [764], [51], [390], [791], [416], [517], [896], [], [18], [985, 309], [515, 469], [39], [395], [809, 959], [833, 913], [947], [126], [850], [813], [723], [73], [544], [165], [187], [886], [], [37], [147], [912, 824, 447], [864], [842], [], [723], [72], [539], [633], [609], [220], [489], [418], [555], [430], [113], [439], [221], [727], [616], [272, 280], [], [428, 195], [863], [530], [], [251], [], [979], [579], [306], [619, 846], [939], [751], [676], [281], [974], [859], [547], [703], [769], [888], [61], [], [218], [496], [392], [88], [904], [856], [323], [281], [804], [491], [122], [408], [809, 925], [785], [164], [], [968, 721], [259], [284], [11], [], [491], [147], [449], [504], [952], [488, 695], [661], [242, 243, 805], [102], [139], [2], [], [785], [251], [174], [425, 858], [489], [836, 837], [958], [44], [348], [266, 219, 156], [193], [24], [167], [518, 444], [970, 976], [766], [862], [733], [], [951], [934], [450], [], [649], [150], [955], [94], [135], [], [522], [641], [459, 978, 445], [836, 837], [606], [980], [95], [46, 59], [], [], [386], [287], [518], [], [578, 903, 689], [102], [186], [685], [252], [736], [179], [322], [475], [866], [], [427], [278], [602], [582, 950, 790, 953, 954], [120], [372], [641], [910], [626], [448], [803], [983], [319], [3], [202], [658], [528], [956], [], [500], [722], [759], [770, 788], [90], [892], [], [350], [188], [920], [576], [760], [908], [215, 218], [621], [407], [208], [610, 841], [526, 882, 606], [964], [534], [344], [726], [81], [83], [266, 267], [2, 3], [855], [201, 589], [654, 475], [234, 795], [72], [947], [], [426, 635], [16], [681, 620], [379], [765], [736], [888, 821], [27], [152], [53], [540], [903], [85], [64], [95], [834], [786], [908], [243], [253, 273], [479, 436], [74], [652, 847], [417], [711], [583], [639], [], [], [923], [131], [316], [510], [193], [372], [140], [770, 788], [842, 433, 639], [625], [], [34], [22], [259], [744], [878], [472], [470], [216], [690], [179], [30], [288], [518, 491], [694], [522], [1], [320], [809, 659], [850], [95], [529], [204], [890], [93], [865], [868, 495, 572], [546, 650, 664, 527, 819], [946], [629], [815], [661, 479], [488], [311], [130], [781], [90], [93], [250], [239], [684], [137], [94], [707], [570], [572], [268], [673], [449], [198], [787], [618, 926], [965], [930, 934, 923], [333], [344], [128, 131], [464, 787], [], [462], [382], [176], [441, 572], [861], [81], [509, 582], [713], [120], [858], [621], [263, 236], [248, 249], [345], [762], [57], [12], [703], [150], [734], [881], [866], [416, 602], [267], [840], [400, 667], [62], [399], [], [17], [426], [81], [127], [445], [88], [981], [912], [109], [673, 526, 527, 664, 508], [220], [693], [740], [699], [], [182], [213], [201], [243], [], [376], [535], [275], [958], [605, 526, 784, 477], [240, 241, 238], [973], [459], [225], [564], [846], [275], [86], [363, 501], [640], [512], [564], [355], [968, 505], [738], [636], [630], [142], [10], [], [315], [387], [931], [992, 997, 947], [543], [258], [610], [668], [404], [], [50], [922], [923, 122], [574], [741], [456], [967, 968, 504], [543], [156], [770, 788, 916], [646], [35], [488, 600], [673, 904, 905, 526, 527, 664, 508], [796], [646], [393, 108], [226], [777, 524, 461, 787], [827], [920], [989], [30], [165], [361], [524, 461], [], [387], [432], [], [385, 101], [489, 368], [355], [705], [148], [549], [995], [], [123], [384], [916], [95], [652, 764], [396], [807], [], [992], [783], [299], [529], [958], [211], [961], [87], [232], [369], [664], [130], [], [444], [515], [894], [453, 831], [790], [660], [668], [919], [], [14], [327], [297, 295], [898], [102], [905, 794], [39], [217], [194], [869], [40], [475], [8], [927], [], [108], [588], [638, 639], [745], [232], [11], [], [875], [443], [245], [], [820], [], [577], [277], [494], [], [542, 822], [444, 637], [907], [], [423], [45], [105], [530], [352], [754], [675], [141], [476], [], [681, 620], [683], [388], [111], [497, 663], [171], [139], [530], [189], [125], [804], [994], [581, 479], [939, 943], [553, 493], [], [459], [872], [316], [], [289], [125], [131], [422], [617], [946], [336], [], [963], [539], [960], [812], [727], [128], [150], [127], [472], [936, 909, 926], [263, 253], [448], [923, 968, 849, 762, 828], [77], [416], [890], [311], [709, 767], [417], [479, 661], [216], [407], [138], [], [903], [805], [405], [989], [330], [16], [480], [519], [], [610, 589], [216], [], [810, 508], [216], [588], [938], [604], [341], [82], [651], [847], [], [67], [409, 892], [582, 936, 940], [333], [111], [], [432], [993], [178], [234], [750, 721], [341], [645], [449], [608, 744, 841], [975, 447], [349], [515, 665], [0], [511], [34], [638, 639], [911], [841], [741, 539], [299], [508], [62], [819], [981], [518, 665, 671], [955], [484, 914, 821], [782, 664, 281], [430], [905, 799], [], [131], [192], [48], [726], [92], [155], [362], [510], [607], [588], [238, 241], [187], [508], [862], [873], [911], [842], [809], [538], [866], [733], [977, 978], [], [499], [809, 923, 925], [403], [532], [901], [], [209], [35], [844], [232], [507], [299], [497], [111], [563], [680], [995], [403], [633], [340], [804], [], [517], [139], [936], [452], [17], [609], [247], [], [672], [560], [102], [356], [498, 919], [403], [], [143], [820], [324], [739], [479], [85], [330], [558], [], [433, 842, 639], [340], [67], [90], [318], [4], [532], [76], [544], [403], [764], [], [874], [537], [365], [45], [494], [95], [581, 661, 479], [145], [777, 623, 499], [429], [554], [8], [268], [140], [], [343], [787], [522], [398], [276], [864], [313], [974], [781], [217], [], [892], [364], [180], [44], [587, 784], [923], [676], [], [896], [586], [606], [770, 806, 608, 610], [804], [228], [336], [739], [432], [], [16], [73], [707], [916], [291], [279], [267, 265], [53], [825], [962], [807], [399, 501], [812], [995], [640], [139], [320], [245], [891], [540], [696, 477], [955], [738], [636], [528], [545], [316], [619, 846], [838, 551, 711, 629, 631], [], [53], [761], [491], [768], [701], [489], [468], [355], [24], [726], [812], [245], [55], [896], [332], [938], [614], [356], [56], [311], [317], [494], [150], [720], [139], [486], [118], [], [744, 657], [74], [794], [903], [], [23], [772, 679, 488], [104], [437], [602], [753], [456], [389], [908], [687], [22], [748], [682], [451], [894], [919], [308], [792], [161], [383], [681, 620, 526, 916], [915], [], [401], [439, 873], [235], [754], [662], [621], [821], [33], [847], [433], [585], [], [526, 673, 508], [482, 754], [552], [386, 101], [974], [825], [248, 249], [538, 698], [183], [46], [647, 845, 438], [240, 238], [874], [], [932], [763], [608], [17], [842, 459], [955], [758], [990], [38], [354], [853], [], [997], [212], [702], [745, 572], [], [696], [635], [449], [10], [91], [194], [873], [847], [250], [91], [989], [679], [784], [146], [255], [631, 838], [688], [13], [971], [157], [879], [], [165], [836, 837], [], [561], [458], [739], [], [869], [490], [806, 911, 502], [807], [], [], [40, 46], [560], [22], [568, 824, 869], [519, 907], [712], [144], [], [236], [858], [552], [146], [239], [256, 234], [], [957], [704], [791], [567, 926], [827], [377], [], [910], [160], [601, 578], [260], [542], [690], [146], [777], [651], [159], [371], [189], [64], [683], [814], [416], [717], [773, 659], [940], [465, 597, 630, 413], [468], [636], [145], [348], [398], [530], [869, 824], [880], [12], [933], [381], [146], [802], [127], [153], [968, 504], [814], [894], [637], [55], [359], [641], [635], [396], [537], [], [41, 44, 26], [937], [318], [12], [890], [266], [808, 836, 837], [624], [538], [575], [959], [10], [632], [72], [918, 721, 608, 750], [548], [740], [], [321], [661], [38], [991], [444], [573], [205], [619], [667], [807], [602], [757], [205], [], [67], [710], [145], [181], [64, 55], [619, 846, 721, 831], [100], [261], [28], [900], [552, 903], [772], [513, 776, 822, 541, 542], [897], [936], [140], [600], [], [329], [603], [642], [135], [658], [184], [416], [283], [950], [570], [655, 806], [794], [], [954], [921], [563], [], [554], [830], [277], [121], [839], [93], [711], [], [77], [818], [794, 861], [946], [208], [927], [211], [647], [693], [868], [267], [404], [979], [132], [120], [193], [653], [569], [489], [983], [770], [272], [752], [845], [448], [396], [742], [728], [], [321], [], [621], [291], [575], [243, 254], [820], [421, 693], [315], [589], [207], [274], [356], [730], [869], [619, 846, 721, 883, 831], [284], [311], [673, 526, 527, 664, 508], [424, 423], [886], [733], [724], [489, 444], [41], [324], [69], [376], [835], [323], [479], [6], [754], [452, 151], [204, 155], [], [320], [481], [337], [859], [324], [245], [619, 846], [865], [], [717], [459], [86], [118], [355], [], [525], [], [398], [570], [389], [422], [343], [74], [148], [211], [846], [126], [682], [923, 924], [], [293], [263], [699], [491], [], [42], [146], [408], [931], [655, 752, 852], [], [115], [657], [223], [881, 579, 889], [332], [962, 659], [558], [865], [295], [434], [572], [95], [108], [98], [846], [156], [337], [819], [750], [], [648], [], [195], [627], [180], [856], [975, 977, 472], [123], [289, 293], [109], [749], [177], [684], [584], [546, 650, 402, 818, 819], [], [472], [698, 538], [52], [587], [535], [375], [240, 241, 238], [922], [869], [673, 681, 526, 527, 782, 664, 508], [470], [847, 403], [714, 402], [608], [481, 482], [6], [418, 918], [], [90], [496], [903], [174], [], [281], [673, 810, 526, 527, 782, 664, 508], [640, 919, 841, 468, 728, 608], [358], [203], [421], [754, 632], [990], [686], [460], [844], [150], [258], [71], [446], [40, 44], [419], [865], [318], [722], [364], [585], [], [466], [914], [211], [858], [868], [230], [715], [339], [], [696], [482], [84], [909, 910, 926], [581, 479, 436], [], [], [], [226], [861], [882], [341], [792], [], [827], [360], [438], [318], [2], [229], [999, 435, 861], [275], [103], [672], [286], [98], [408], [942], [679], [35], [688], [79], [171], [232, 852], [22], [654], [436], [182], [950], [688], [816], [222], [773], [472], [296], [951], [517, 540], [911, 735], [383], [173], [41], [962], [467], [846], [664], [233], [905, 869], [82], [692], [475], [928, 960], [699], [741, 735], [378], [209], [569], [808], [589], [4], [166], [922], [952], [839], [770], [857], [174], [261], [406], [740, 783], [264], [41], [556], [448], [242], [680], [744, 657], [420], [824, 474, 911], [675], [50], [568, 248], [352, 353], [984, 425, 853], [777], [768], [265], [894], [], [619, 846, 470], [793], [12, 14], [967, 968, 504, 923], [823], [61], [419], [569], [656, 858], [431], [315], [508], [746], [453, 454, 624], [654], [74, 815], [444], [3, 4], [74], [199], [35], [232], [231], [524, 461], [111], [256, 218], [994], [], [810, 590], [964], [806, 870, 843, 850], [211], [519], [452], [637], [198], [946], [821], [508], [217], [873], [258, 279], [790], [672], [578], [614], [281], [594], [654], [465, 597], [51], [504], [106], [22], [821], [45], [516], [524, 461, 787], [694], [], [], [363], [767], [39], [7], [585], [647], [722], [510], [457], [174], [439], [919], [516], [215], [119], [233], [245], [871, 536], [929], [946], [71], [842, 445], [281], [123], [58], [497], [205], [], [438], [279], [710], [897], [912], [512], [689], [], [879, 614], [181], [388], [761], [509], [188], [537], [439], [112, 977, 978], [687], [975, 703], [], [773], [859], [14], [552], [190], [549], [500], [385], [524, 461], [802], [332], [49], [397], [913], [945], [176], [198], [26], [], [107], [], [868, 849, 504], [101], [847], [809, 924], [247], [736], [813], [385, 862], [142], [585], [4], [971], [730], [707], [445], [821], [795], [168], [780], [295], [581, 479, 436], [790], [361], [587, 792], [875], [675], [481], [104], [5], [941, 923], [454, 911, 474], [], [262], [456, 970, 445, 638], [508], [981, 429], [707], [475], [325], [851], [292], [412], [], [907, 440], [755], [495], [486], [941], [601, 578, 982], [206], [371], [896, 861], [686], [923], [672, 899, 469, 827], [420], [440, 441], [], [797], [596], [], [354], [944], [464, 676], [338], [462], [930], [731], [680], [679], [938], [413], [438], [455, 600], [162, 167], [164, 166], [813, 567], [921], [7], [106], [321], [897], [131], [921], [110], [453, 454, 559], [737], [259], [71], [690, 345], [144], [453], [370], [267], [640], [968, 504], [941], [411], [695], [225], [205], [10], [704], [72], [876, 435], [307], [650], [987, 923], [455], [728], [734], [680], [497], [877], [317], [591, 868], [595], [635], [852], [987, 998], [654], [970], [417], [56], [479, 511], [280], [256], [394], [422, 559], [205], [962, 923], [], [123], [991], [891], [416], [761], [983], [871], [981, 429], [291], [603], [5, 6], [595], [723], [544], [2], [873], [668], [], [], [898], [458], [880], [962, 467, 499], [179], [340], [515], [729], [700, 999], [245], [97], [330], [655], [629], [919], [71], [421], [519, 907], [977, 978, 445], [], [391], [230], [645], [], [283], [518, 671], [866], [31], [], [], [678], [521], [458], [150], [486], [], [347], [645], [], [466], [288], [745], [702], [562], [618, 909], [719], [918], [335], [344], [575], [499], [602], [952], [520, 680, 431, 529, 850, 443], [], [933], [874], [387], [234], [51], [61], [165, 187], [87], [], [61], [383], [194], [373], [193], [866], [470], [570], [257, 258, 489], [269], [14], [115], [393], [], [772], [937], [625], [673, 553, 526, 527, 664, 508], [979], [10], [511], [916], [388], [279], [], [523], [2], [902, 488], [768], [], [157], [24], [950], [944], [230, 231], [337], [612], [846], [215], [625], [529], [258], [985], [769, 798], [769, 114], [443], [205], [15], [578, 885], [683, 875, 558], [800], [281], [889], [434], [770], [519], [508], [673, 664, 526, 527, 508], [325], [803], [760, 415], [360], [743], [640], [729], [573], [731], [91], [], [301], [], [145], [931], [816], [723], [], [669], [941], [810], [730], [811, 281], [605], [22], [945], [678], [911, 658], [751], [], [292], [520, 697], [480], [230], [705], [536], [327], [232], [624], [110], [301], [889], [23], [429], [668], [337], [110], [864], [910], [448], [807], [723], [58], [105], [439], [199], [96], [746], [769, 606], [429], [], [650], [312, 311], [824], [866], [995], [554], [898], [577], [980], [768], [570], [850, 911], [10], [444], [977], [177], [443], [911], [352], [], [24], [708], [170], [860], [56], [936], [5], [318], [589], [648], [937], [668, 538, 607], [692], [836, 879, 822], [270], [543], [228], [923, 947], [933], [567], [920], [907], [880, 972], [615, 543], [568], [320], [927], [957], [329], [88], [104, 489], [461], [591], [896], [338], [971], [608, 518, 734, 465, 413], [797], [969], [999], [129], [373], [159], [366], [844], [647], [482], [142], [983], [129], [205], [245], [717], [52], [908, 404, 895], [], [453, 850], [473], [808], [332], [858], [448], [668], [700], [829], [795], [21, 127], [197, 199, 836, 837], [281, 282], [904], [763], [681, 620, 508], [256], [51], [612], [805], [155], [439], [373], [908], [546, 650, 819], [138], [111], [502, 539], [562], [702], [753], [304], [425], [828, 845], [307], [872, 759], [941], [923, 907, 532, 470, 762, 572], [], [169], [588], [33], [498], [557, 733], [107], [546, 889], [490], [597], [139], [806, 655], [778], [673], [], [287], [97], [332], [463], [33, 983], [636], [486], [183], [950, 951], [], [822, 542], [56], [723], [], [39], [240, 241], [696], [864], [921, 917], [977, 978], [868, 588, 692], [160], [824, 775], [790], [49], [761], [7], [235], [803, 637], [276], [584], [71], [756], [645], [629, 508], [774], [858], [53], [750], [836, 837, 906], [38, 45], [640], [856], [602], [225], [953], [484], [466], [769], [491], [489], [326], [71], [331], [66], [302], [434], [], [409, 531], [511], [745], [519], [114], [], [429], [418], [334], [318], [162], [182], [614, 818], [225], [740, 783, 477], [80], [], [14], [499], [591], [497, 884], [568], [100], [894], [486], [354], [], [521, 926], [514, 515, 597, 763, 445], [924], [63], [477], [676, 173], [888, 718, 839], [277, 278], [60], [], [716, 13], [913], [207], [375], [652, 465, 830], [340], [156], [154], [253], [251], [861], [277], [785], [317], [514, 655], [], [617, 823], [483], [382], [613], [48], [777], [812], [502], [198], [263], [306], [37], [35], [184, 191], [801], [262], [485], [], [576], [150], [700, 950], [333], [30], [23], [130], [50], [619, 750, 846, 721], [677], [249], [557], [35], [108], [], [400, 667], [960, 868], [348], [649], [830], [996], [670], [660], [494], [851], [662], [751, 479], [675], [851], [454, 917], [227], [747], [56], [332], [214], [930], [127], [987, 998], [921], [66, 68], [], [283], [784], [386], [996], [744, 657], [652, 465, 413], [239], [296], [359], [945], [876, 435, 282], [651], [], [509], [124], [66], [], [981], [572], [334], [127], [319], [900], [29], [327], [28], [382], [344], [731], [399], [680, 898], [156], [995], [161], [78], [367], [494], [774, 464], [951], [480], [81], [252], [464], [532, 453], [52], [], [735], [], [301], [354], [338], [653, 665], [482, 485], [992], [562], [676], [], [219], [570], [542], [974], [713], [538, 727], [801, 107], [725, 505], [937], [891], [], [290], [513, 875, 819], [850], [755], [866], [687], [344], [441, 572], [924], [237], [903], [93], [92], [350], [923, 951, 762], [162], [267], [335, 845], [], [411], [774], [357], [137], [581, 586], [608, 464], [411], [660], [162, 166], [810, 878], [937], [661], [558], [168], [89], [732, 622, 759], [235], [247], [384], [845], [871], [686], [993], [196], [345], [548], [404], [391], [174], [686], [755], [14], [143], [779], [914], [2], [930], [538], [912, 825], [478, 239], [478], [], [75], [922], [401], [730], [399, 840, 462, 741], [971], [32], [40, 46], [791], [525], [685], [672], [863], [754], [366], [205], [580], [202], [474], [416], [598], [635], [986], [914], [897], [607], [453, 454, 624], [757], [11], [960, 928], [136], [], [747], [311], [784, 587, 740, 477], [249], [326], [], [], [337, 360], [823], [58], [], [189], [936], [886], [762], [402, 593], [], [4], [851], [944], [708], [845], [164], [945], [256], [53], [821], [455], [918], [119], [55], [462], [20], [857], [650, 402, 819], [646], [197], [439], [752], [774, 412, 671, 836, 837, 733], [8], [670], [845], [617, 515, 860], [802], [853], [32], [650, 683], [139], [487], [401], [168], [82], [877], [781, 409], [305], [652, 830, 764, 413], [853], [723], [534, 729], [578, 876, 689, 435, 794], [858, 807], [884], [353], [218], [451], [879], [504, 968], [196, 198], [], [458], [805], [21], [864], [589], [384], [652, 465], [881], [458], [], [659], [847], [813], [923], [506], [198], [103], [912], [854], [674], [673, 664, 526, 527, 632, 508], [0], [84], [183], [5], [37], [840, 462], [478], [270], [541], [81], [927], [810, 878], [677], [471], [649], [416], [929, 509], [251], [], [366], [335], [464], [625], [20], [776, 650], [561], [379], [559], [415], [139], [757], [142], [569], [], [201], [895], [576], [663], [491], [64], [39], [185, 182], [866], [844], [326], [530], [322], [407], [548], [579], [84], [717, 751, 479], [680], [812], [940], [284], [250], [484], [677], [297], [880, 731], [368], [291], [7], [296], [731, 861], [15], [31], [], [783], [431], [244], [16], [377], [639], [628], [908, 404], [185], [730], [660], [362], [647, 969], [519], [323], [978], [509], [721], [], [], [608], [309], [591], [316], [484], [], [496], [836, 837, 853, 762], [976], [922], [956], [619, 818], [422], [103], [624, 453], [871], [326], [270], [986], [478], [907, 440], [843], [685], [311], [426], [792], [764], [908], [280], [280], [], [503], [865, 509], [637], [672], [153], [110], [45], [595], [995], [916], [923], [], [375], [376], [219], [735], [], [406, 857], [], [963], [586], [148], [199], [56], [287], [473], [937], [449], [861], [195], [707], [584], [497], [514, 689], [704], [538], [533], [904], [692], [76], [286], [], [783], [216], [189], [25], [500], [102], [821], [795], [737, 455, 907, 440], [862], [760], [377], [179], [637], [999, 648], [685], [511, 479], [393], [390], [275], [626], [337], [464], [310], [968, 504], [116], [222], [272], [747], [845], [815], [40], [30], [402, 819], [966], [], [580], [873], [580], [448, 494], [957], [893], [557], [139, 140], [], [628, 536], [324], [578], [203], [757], [609], [947], [321], [945], [485], [610], [472, 693], [653, 463], [544, 909, 849, 469], [172], [118], [319], [518], [837, 678], [694], [962, 923], [957], [938], [422], [525], [], [135], [890], [224], [923], [100], [967], [42], [926], [566], [724], [114], [249], [], [913], [407], [804], [528], [254], [480], [441], [207], [607], [357], [85], [396], [694], [543], [875], [519, 956], [257], [873], [5, 6], [553], [105], [268], [], [304], [866], [157], [775], [896], [599], [528], [71], [351], [636], [464], [99], [336], [17], [39], [770], [882], [], [72], [659], [661], [836, 837, 487], [], [6], [352], [861], [307], [328], [341], [735], [733], [], [152], [732, 759], [924], [717], [867], [229], [], [662], [757], [577], [309], [581, 479], [724], [766], [842, 433], [587], [923], [645], [229], [685], [732], [340], [530], [352], [865], [826], [820], [853], [495], [475, 15], [25], [534], [822, 542], [311], [337, 334], [907, 499, 470], [749], [347], [260], [412], [442], [199], [834, 487], [498], [65, 56], [764], [789], [], [766], [811], [660, 757], [650, 402], [562], [968, 504], [353], [244], [570], [438], [795], [198], [298], [838, 551, 629, 631], [21], [90], [248], [17], [532, 762, 923], [669], [413], [716], [85], [467], [861], [893], [317], [803], [225], [426, 685], [410], [925], [], [185], [814], [351], [578, 452, 689, 538, 601], [974], [80], [343], [496, 529, 411], [84], [884], [433, 639], [322], [927], [550], [651], [512], [940], [988], [790], [791], [909, 567], [638, 639], [367], [400, 667], [], [25], [736], [474, 452], [95], [822], [90], [119, 39], [242], [86], [638, 639], [504, 850], [596], [54], [], [320], [773, 532, 923, 572, 762], [737], [916], [287], [168], [375], [129], [959], [546, 650, 818, 819, 542], [816], [597], [558], [551], [], [], [553], [603], [466], [], [], [80], [27], [162], [434], [82], [222], [532], [15], [730], [595], [382], [785, 464], [881], [753], [76], [112], [204], [], [618, 813], [350], [506], [947], [130], [278], [932], [338], [41], [401], [285], [32], [829], [156], [190], [226], [340], [327], [365], [498], [435, 794], [619, 846], [611], [910], [262], [905], [], [524], [503], [659], [558], [795], [807], [761], [984], [947, 125], [112], [299], [84], [122], [847], [847], [472], [219], [864, 586, 652, 413], [650, 568, 608], [44], [952], [149], [89], [583], [565], [145], [], [806], [31], [232], [703], [858], [73, 74, 815], [644], [70], [745, 620], [513, 875], [685], [173], [840, 587, 758], [836, 837, 842], [479], [742, 620, 664, 527, 508], [798], [79], [746], [198], [316], [727], [252, 262], [258], [597], [302], [859], [932], [637], [761], [209], [297], [442], [993], [32, 152], [350], [989], [815], [432], [779], [], [1], [880], [578, 834, 836, 837, 458], [163], [506], [804], [672], [110], [143], [934], [566], [214], [911, 253, 735], [524, 461, 958], [525, 718, 437], [], [518], [119], [177], [400, 667], [295], [], [789], [234], [929], [638, 639], [597], [937], [494], [257], [62], [], [347], [369], [924], [539], [397], [317], [126], [580], [550, 968], [810, 878], [255], [576, 536], [459], [188], [], [33], [723], [594], [435, 58], [39], [85], [199], [888], [883, 739], [409], [147], [478], [462], [592], [716], [342], [143], [], [494], [74], [666], [464], [218], [411], [365], [900], [247], [754], [174], [515, 790, 636], [868], [12], [535], [887], [300], [39], [938], [427], [287], [203], [52], [94], [361], [317], [793], [935], [928], [977], [431], [776], [61], [505], [51], [63], [71], [116], [914, 536], [672], [], [401], [495, 532], [205, 478], [449, 975], [951], [671], [344], [806], [330], [697], [281], [615], [333], [528], [699], [651, 827], [812], [], [603], [], [337], [457], [948, 950, 954], [808, 842, 977, 978], [], [618, 813], [417], [60], [801], [453], [132], [582], [332], [114], [324], [489, 134], [260], [825], [], [968, 762], [775], [474], [], [87], [702], [579], [544, 827, 469], [], [344], [968], [667], [261], [988], [593], [931], [688], [438, 728], [845], [694], [843], [715, 652], [], [170], [979], [378], [], [582, 936, 943], [872, 759], [740], [378], [108], [127], [935], [203], [931, 933], [351], [254], [915], [633], [967], [429], [751], [268], [10], [983], [578, 982, 601], [744, 657], [556], [970], [268], [105], [464, 597], [482, 632], [104], [255], [569], [582], [272], [], [115], [399, 501], [133], [548], [241], [796], [111], [371], [891], [797], [957], [345], [666], [342], [159], [608, 117], [562], [608, 610], [260], [393], [296], [682], [608, 774, 788], [148], [776], [], [537], [203], [207], [765], [517, 821, 536, 510], [459, 434], [478], [683], [495], [875], [683, 566], [233], [985], [511], [710], [959], [973], [988], [673, 526, 527, 782, 664, 508], [235], [424], [206], [224], [539], [396], [945], [281, 285], [884, 406], [702], [542, 541], [605], [484, 814], [774], [601], [9], [652], [950], [993], [374], [603], [616], [206], [586], [930], [647], [343], [269], [328], [156], [153], [], [484, 871], [385, 101], [885], [], [794], [], [291], [664, 782, 662], [981], [410], [47], [364], [290], [708, 517], [852], [115], [916], [528], [115], [754], [459, 608], [360], [], [322], [872, 652, 447], [551], [751, 479], [97], [185, 153, 187], [202], [966], [971], [597], [599], [77], [72], [839], [629], [111], [718], [698], [223], [934], [360], [993], [632, 818, 819], [364], [984], [770, 806], [728], [528], [581], [322], [77], [894], [445], [869], [384], [617, 823], [], [38, 26], [160], [479], [250, 220, 248], [276], [901], [923], [308], [342], [], [838, 711, 648, 585, 631], [], [], [279], [78], [97], [], [746], [532], [688], [568, 831], [599, 955], [109, 973], [357], [919], [466], [908], [339], [573], [643], [715, 524, 461, 787], [301], [677], [], [143], [158], [451], [139], [700], [436], [774, 681, 620, 750, 721, 846], [704], [369], [936], [736], [901], [287], [], [835], [638, 639], [442], [734], [329, 397], [], [310], [970, 518, 671], [110], [580], [709, 710], [735], [265], [565], [560], [43], [282, 478], [800], [388], [177], [275], [340], [766], [290], [196], [148], [865, 850], [63], [157], [825], [240, 241], [920], [], [752], [694], [870], [770, 488, 843], [160], [700, 999], [], [958], [387], [556], [737], [76], [456], [701], [81], [942], [262], [61], [992], [545], [77], [262], [783], [548, 869, 655, 851], [367], [373], [115], [399], [], [], [565], [446], [129], [6], [748], [417], [970], [358], [815], [], [767], [71], [290], [909, 926], [788], [416], [399, 824, 600], [696], [358], [905, 750, 721], [272], [920, 829], [558], [854], [248], [160], [323], [622, 759], [870], [796], [318], [775], [140], [614, 887], [954, 950], [581, 479, 717], [784, 740], [571], [116], [519], [136], [355], [75], [956], [88], [491], [288], [874], [228], [559], [293], [241], [500], [486], [943], [350], [407], [146], [], [47], [99], [303], [402], [879], [], [51], [160], [573], [457], [842, 463], [872, 420], [221], [389], [527, 782, 916, 664, 508], [826], [382], [], [125], [581, 436, 479], [97], [254], [802], [499], [977, 978], [660], [629], [432], [261], [193, 153], [242], [838], [], [698], [257], [923], [222], [157], [570], [112], [359], [451], [292], [513, 776, 683, 875, 822, 541, 542], [378], [496], [775], [879], [836, 837], [752], [723], [724], [202], [295], [447], [801, 842], [185], [810, 878], [93], [380], [984], [964], [122], [384], [151], [], [528], [989], [612], [704], [220], [768], [86], [100], [573], [2, 3], [959], [], [459], [994], [498, 598], [286], [303], [276], [341], [14], [953], [856], [248], [797], [350], [903], [760], [103], [413], [608, 770, 414], [936], [840], [134], [34, 978], [302], [211], [597], [852], [135], [552], [356], [927], [214], [164], [292], [41], [477], [769], [709], [], [488], [500], [640], [918], [483], [117], [95], [897], [884], [853], [99], [472, 693], [213], [202], [592], [14], [767], [875], [228], [], [277], [608, 481, 482], [243], [204], [132], [875], [126], [439], [724, 536], [528], [962], [400, 667], [312], [477], [267], [716], [569], [339], [819, 541], [809, 618, 925], [193], [], [711], [967, 968, 923], [779], [533], [330], [], [], [668], [736], [262], [136], [379], [], [671], [281, 285], [955], [573], [968, 504], [331], [132], [784], [592], [621], [215], [172], [458], [150], [303], [799], [], [654], [515], [49], [490], [15], [223], [262], [682], [301], [592], [635], [291], [718, 628, 540], [625], [360], [716], [752], [20], [623, 795], [421], [618, 659], [122], [183], [232], [221], [], [399], [704], [19], [], [568], [317], [542], [822], [561, 950], [968], [719], [151], [], [679], [386], [581, 479, 511], [485], [], [946], [642], [368], [25], [239], [472], [550, 967, 968], [647], [368], [83], [854], [801], [], [772, 748], [118], [87], [873], [772], [114], [935], [218], [], [464], [966, 907, 572], [2], [622], [449], [961], [777, 499], [691], [69], [622, 759], [221], [257], [28], [328], [826], [821], [15], [73], [24], [357], [957], [29], [438], [521], [134], [866], [147], [187], [], [289], [671], [138], [26], [], [758], [738, 211], [617, 823], [613], [777], [217], [], [458], [772], [953], [835], [], [64, 55], [942], [327], [392], [871], [858], [810, 508], [833], [786], [924], [779], [586], [612], [402], [318], [842], [782], [], [673, 526, 527, 782, 664, 508], [501], [536], [153], [928], [819], [2, 3], [55], [138], [57], [661], [659], [173], [683], [655], [114], [669], [357], [887, 857], [277], [114], [616], [145], [355], [607], [2, 3], [385, 101], [859], [94], [813, 909], [896], [875], [652], [0, 389, 758], [984], [], [388], [74, 815], [11], [785], [540], [904], [], [860], [397], [810, 878], [489], [299], [171], [325], [546], [659], [555], [600], [437], [936], [353], [528], [739], [839], [727], [967], [121], [638, 639], [], [980], [196, 197, 198, 199], [258], [714], [], [729], [927], [67], [322], [579], [342], [8], [904, 905], [767], [40, 911, 27], [935], [296], [738], [882], [15], [439], [164], [580], [77], [331, 332, 338], [432], [150], [292], [188], [563], [391], [522], [492], [353], [804, 844], [660], [668], [619], [262], [661], [165], [683], [454, 624], [403], [201], [341], [90], [669], [474], [199], [942], [], [310], [859], [889], [482], [863], [925], [910], [], [491], [350], [183], [795], [586], [260], [681, 620], [265, 266], [439], [735], [32], [984], [], [668], [494], [278], [290], [292], [884], [785], [488], [833], [362], [], [128], [204], [583], [18], [127], [738, 968, 505], [99], [478], [155], [439], [111], [377], [976], [174], [836, 837, 459, 445], [466], [917], [12], [145], [883], [57], [898], [935], [918, 762, 923], [769], [], [130], [335], [760], [376], [937], [224, 223], [130], [621], [], [30], [497], [593], [], [658], [32, 28], [116, 126], [357], [277], [129], [407], [368], [515], [11], [408], [], [103], [57], [865], [506], [849], [770], [827], [730], [207], [562], [159], [184], [976], [74], [737, 651], [333], [309], [203], [533], [994], [25], [467], [771], [897], [332], [584], [269], [673, 527, 664, 508], [618, 562], [581, 479, 717], [454], [204], [267], [346], [706, 532], [959], [885], [434], [643], [142], [249], [505], [99], [341], [805], [], [373], [394], [789], [988], [870], [], [306], [790, 126], [793, 259], [115], [264], [510], [70], [772], [154, 478], [], [755], [36], [638, 639], [523], [765], [335], [911], [119], [], [169], [617], [276], [143], [310], [550], [228], [809], [357], [812], [565], [273], [457, 834], [64], [502], [336], [899, 521, 532, 412], [235], [696], [499], [175], [16], [165], [537], [783], [284], [606], [], [483], [], [935], [854], [917], [555], [444], [867], [578, 982], [633, 316], [714], [719], [25, 28], [280], [305], [], [793], [42], [587], [160], [261], [736], [281, 285], [687], [776], [918], [], [534, 729], [497], [987, 998], [352, 353], [661], [332], [143], [], [397], [495, 692], [655, 630, 474], [42], [979], [982, 703], [506], [672], [135], [4], [963], [205], [836, 837, 919], [364], [112], [645], [802], [481, 453], [691], [604], [633], [990], [160], [747], [425], [650], [73], [], [870], [954, 955, 953, 923], [628], [968], [41], [143], [420], [917], [142], [790], [988], [329], [568], [491], [954], [677], [7, 8], [609], [252], [527, 782, 673, 475], [800], [377], [439], [549], [213], [0], [76], [162], [905], [253], [971], [362], [913], [900], [290], [842, 693, 472, 445], [336], [774], [301], [621], [453, 454], [238], [43], [96], [], [989], [487, 620], [881], [761], [970, 795], [736], [80], [455], [651], [858], [228], [867, 919], [932], [401], [631], [827], [771], [999, 700], [651, 760], [875], [242, 243], [651, 631], [85], [165], [141, 142], [615], [244], [28], [575], [59], [700, 999], [928, 923, 960], [338], [557], [267], [868], [354], [601], [685], [520], [933, 934], [88], [714], [181], [459], [711], [762], [860, 919], [358], [13], [96], [472], [165], [694], [519], [], [839], [], [618, 813, 910, 532], [67], [80], [20], [113], [515, 695], [341], [608], [41], [18], [252], [738], [406], [980], [384], [838], [474], [161, 162, 167], [49], [], [84], [149], [406], [], [652, 413], [352], [760], [40], [82], [581, 479], [734], [57], [676], [115], [12], [363], [144], [733], [921], [945, 948, 950, 953], [449, 975], [127], [844], [986], [281], [471], [310], [273], [153, 203], [473], [258], [256], [1], [225], [426], [869, 879], [502], [227], [405], [59], [968, 504], [895], [444], [11], [770], [18], [893], [351], [50], [507], [775], [695], [592], [339], [748, 911, 692], [166], [515, 775], [916], [250], [214], [174], [552], [23], [432], [942], [257, 222], [], [130], [999, 700], [236], [395], [947], [637], [313], [141, 142], [818, 819, 854], [673, 487, 810], [480], [416, 638, 639], [699, 541, 542], [659], [966, 572], [806], [934], [518, 671], [220], [490], [276], [81], [682, 458], [805], [], [815], [581], [515], [543], [751], [142], [880], [2], [634], [792], [], [], [684], [665, 670], [763], [153], [296], [568], [203], [992], [741], [157], [], [737], [570, 830], [663], [496], [735], [88], [879], [], [993], [797], [385], [], [430], [3], [465], [67], [410], [795], [605], [823], [35], [873], [251], [866], [535, 479], [990], [992], [255], [984], [659], [866], [670], [69], [], [524, 787, 915], [882], [389], [991], [], [544], [564], [896, 804], [855], [984], [692], [298], [594], [557], [372], [652, 413], [528], [562], [743], [213], [937], [916], [191], [229], [923], [980], [], [630], [411], [695], [411], [895], [602], [68], [132], [51], [198], [710], [799, 831], [844], [1], [580], [798], [972], [64, 59], [375], [434], [10], [951], [220], [898], [195, 805], [60], [847], [551, 629], [964], [379], [986], [842], [205], [594], [191], [225], [229], [894], [794, 435], [611], [891], [99], [646], [941], [385], [358, 173], [774], [837, 836, 733], [], [703], [560], [268], [974], [150], [114], [], [390, 973], [216], [753], [131], [682], [822], [666], [416], [725], [291], [270], [212], [905], [567], [345, 690], [149], [920], [777], [94], [974], [760], [427], [723], [16], [528], [178], [562], [459, 543], [888], [280], [], [215], [], [740], [317], [709], [539], [239], [969, 692], [], [25], [736], [529, 830, 610], [63], [841, 697], [274], [63], [834, 869], [760], [396], [476], [71], [401], [382], [468], [923, 521, 762, 926], [357], [832], [977, 638, 639], [404], [11], [5], [433, 638, 639], [160], [941], [], [165], [247], [434], [576], [892], [259, 462], [938, 939, 943], [75], [619], [373, 463], [538, 668], [497, 884, 406], [892], [190], [392], [615], [30], [37], [364], [616], [414, 518, 535], [821], [487], [538], [], [817], [31], [977, 978], [646], [502], [434], [641], [355], [961], [64, 55], [752, 852], [382], [470], [253], [150], [110], [5], [195], [399, 636], [], [45], [816], [806, 630], [402], [987, 998], [617], [190], [626], [720], [6], [547], [980], [911, 539], [862], [208], [518, 489, 671], [], [640], [107], [917, 921], [90], [138], [508], [193, 186], [113], [118], [88], [520], [179], [98], [132], [196], [265, 267], [106], [76], [33], [180], [120], [848], [724], [404], [170], [], [584], [847], [644], [774], [28], [302], [819, 546], [399], [70], [769, 798], [578, 982], [831], [367], [919], [135], [161, 168], [455], [94], [944], [174], [616], [776], [], [115], [867], [733], [644], [849, 285], [955], [866], [78], [255], [911, 533], [532], [97], [153], [638, 639], [911], [439, 570, 764], [433], [847], [893], [855], [], [335], [302], [477], [543], [446], [333], [354], [940], [314], [560], [126], [358], [6], [553], [], [692, 886], [311], [], [251], [841, 759], [32, 30], [], [833], [518], [233], [21], [348], [296], [873], [748], [355, 489], [762], [853], [137], [495], [610], [279], [563], [707], [], [821, 703, 839, 975], [970, 979], [102], [601], [291], [637], [121], [317], [963], [95], [364], [838, 487, 459, 445, 638], [307], [512, 473], [224, 214], [475], [870], [23], [866], [], [156], [151], [336], [66], [901], [], [229], [757], [117], [221], [521, 809, 909, 987, 926], [844], [287], [404], [524], [756], [629], [], [], [309], [799], [173], [216], [448], [619, 846], [953], [13], [140], [], [768, 836, 842], [561], [573, 518], [629], [594, 982], [398], [68], [588, 790], [204, 185], [836, 837], [685], [279], [350], [688], [271], [55], [70], [645], [673, 526, 527, 664, 508], [607], [162], [97], [985], [515, 643], [139], [942], [278], [553], [291], [749], [], [], [205], [632], [827], [982], [701], [809, 925], [194], [881], [683, 432, 566], [182], [819], [142], [178], [989], [37], [421, 525, 975], [260], [305], [566], [846], [628], [556], [706, 789, 539, 799], [379], [254], [418], [369], [254], [770], [709], [353], [834, 457, 630], [], [360], [270], [950], [928, 868, 923], [760], [761], [23], [262], [194], [795], [31], [68], [252], [735], [358, 359], [682, 781], [725], [96], [763], [533], [809], [206], [873], [392], [798], [208, 179], [307], [606], [834, 515, 836, 837, 906], [628], [231, 156], [742, 872], [405], [651, 760, 827], [541], [802], [178], [70], [455], [292], [819, 854], [995], [393, 983], [775], [280], [13], [3], [946], [204], [], [136], [213], [470], [344], [596], [382], [748, 636], [909], [793], [186], [141], [616], [548, 851, 598, 632], [150], [], [693], [275], [740, 519], [224, 223], [], [], [622], [75], [720], [928, 960, 923], [772], [340], [819], [378], [804, 469], [789, 421], [273], [852, 186], [644], [], [301], [236], [9], [621], [15], [96], [48], [296], [222], [281], [715, 652, 764, 413], [249, 250], [549], [207], [860], [373], [80], [863], [312, 311], [552], [763], [494], [55], [562], [38], [131], [517], [276], [472, 693], [], [372], [566], [], [445], [495], [741], [823], [89], [549], [33], [288], [350], [753], [0], [979], [540], [921], [985], [], [194], [216], [866], [737], [779, 506], [802], [928], [416], [614], [713, 742], [218], [164], [951], [810, 878], [874], [435], [850, 732, 759], [729], [796], [734], [521], [698], [526, 453, 454, 608, 740], [], [182], [166], [102], [225, 465], [960], [896], [188], [989], [313], [322], [610, 862], [396], [327], [744, 657], [928, 960, 868, 415], [], [240, 238], [286], [557], [654], [929], [358], [302], [905], [989], [307], [578, 689], [943], [213], [933], [], [827], [694], [705], [360], [710], [341, 342], [836, 837], [538], [780], [205], [762, 923, 122], [70], [], [48], [273], [835], [809, 925], [448], [747], [220], [850], [187], [825], [472, 693], [79], [593], [719], [], [316], [723], [203], [398], [736], [581, 733, 479], [790, 588], [946], [86], [500], [474], [386, 101], [602], [836, 837], [131], [353], [18], [928], [329, 842], [705, 547], [681, 620, 526, 916, 906], [801], [274, 271], [], [713], [], [], [619, 883], [972], [614, 887], [313], [287], [829], [432], [355], [541], [40], [543], [648], [261], [459, 978, 445], [843], [572, 966], [487], [43], [], [964], [229], [254], [138], [870], [827, 849], [332], [247], [148], [434, 912], [599], [731], [100], [], [538], [498], [82], [671], [153], [875], [422], [72], [840], [548], [586, 864], [891], [930, 868, 967, 968, 504], [308], [301, 918], [128], [62], [750], [], [133], [720], [194], [13], [481], [575], [954, 943], [180], [78], [814], [42], [], [221], [301], [], [67], [258], [730], [3], [355], [240], [284], [879], [513], [690], [695], [280], [716], [300], [912], [574], [205], [131], [847], [843], [348], [800], [674], [658], [608, 869], [734], [459], [714], [295], [723], [699], [489], [607], [148], [809], [69], [347], [866], [203, 156], [412], [225], [35], [488], [16], [951], [], [293], [253], [189], [809, 926], [934, 923], [906], [509], [485], [517], [410], [772, 679, 488], [448], [526], [358], [721, 761, 831], [324], [536], [991], [892, 409], [613], [577], [47], [349], [406], [810, 655, 508], [461], [843], [594], [670], [], [483], [471], [248, 249], [668], [46], [392], [948], [], [694], [794], [562], [858, 467], [723], [902, 488], [650], [218, 215], [], [], [292], [40], [948, 572], [71], [918], [517], [146], [642], [181], [868, 923, 968, 725], [809, 659, 729], [819], [520], [440], [258], [792], [308], [795], [701], [304], [70], [518], [619, 846], [165], [276], [364], [392], [698], [930, 931], [105], [], [188], [221], [315], [169], [428], [77], [], [596], [288], [710, 767], [957], [553, 526], [58], [861], [305], [], [612], [619, 846], [907], [611], [152], [44], [456], [3], [814], [362], [896], [866], [523], [489, 274], [844], [905, 789], [], [917], [442], [], [199], [], [11], [686], [485, 685, 754], [334], [293], [505], [], [232, 852], [0, 758], [388], [189], [307], [], [], [375], [424, 423], [518], [38], [617], [111], [421], [752], [725], [908, 895], [107, 108], [291], [386], [707], [44], [578, 689], [114], [73, 74], [166], [668], [421], [259], [601], [908], [428], [881], [836, 837], [198], [302], [], [545], [226], [], [240, 241, 238], [834, 906], [235], [532], [517, 554, 536], [1], [445, 977, 236], [301], [675], [453, 454], [395, 758], [24], [263], [965], [301], [684], [558], [755], [684], [769, 633], [739], [151], [996, 309], [263], [154, 155], [928, 960], [], [613], [979], [813, 501], [779], [458], [728], [681, 620, 526], [319], [], [4], [131], [12], [182], [568], [608, 836, 837, 655, 636], [992], [802], [936, 943], [279], [34], [283], [540], [810], [364], [928], [283], [571], [521], [968, 504], [525], [370], [200, 155, 204], [481], [851], [396], [382], [652, 413], [], [232], [278], [625], [924], [342], [242], [829], [577], [264], [435], [440], [771, 507], [616], [674], [56], [472], [], [457], [466], [714, 542], [], [254], [162], [703], [395], [], [267], [140], [147], [303], [916], [616, 695], [971], [559, 764, 413], [835], [803], [469], [29], [341], [310], [], [9], [704], [270], [459], [3], [517, 839, 718], [756], [517, 975, 977, 536], [], [858], [], [947], [703], [228], [294], [963], [394], [864], [915], [979], [253], [380], [896], [117], [], [583], [836, 837], [794], [310], [701], [101], [552], [705, 888], [687], [15], [627], [], [552], [48], [364], [428], [471], [221], [549], [813, 910], [732], [279], [456], [711], [770], [28], [132], [826], [920], [344], [374], [237], [496], [], [96], [622], [503], [910, 659], [171], [585], [135], [393], [266], [669], [], [], [859], [66], [989], [569], [242], [962, 813, 827], [716], [746], [761], [346], [439], [113], [463, 412], [497, 442], [452, 689], [205], [673, 742, 681, 526, 527, 662, 664, 508], [741], [440], [874], [727], [660], [127], [0], [180, 195], [311], [], [525], [442, 494], [353], [453, 818], [786], [100], [240, 241, 238], [916], [160], [757], [164], [293], [654], [476], [919], [926], [713], [783], [262], [388], [829], [902], [438], [], [282], [521], [364], [177], [833], [658], [596], [215, 218], [576], [358], [752], [424, 423], [223], [78], [859], [605], [193], [156], [841], [82], [643], [77], [403], [173], [514, 836, 837], [], [420], [111], [33], [56], [249], [88], [830], [673, 478], [199], [136], [814], [591], [128], [], [984], [158], [372], [205, 750, 721], [555], [824, 633], [833], [125], [693], [589], [216], [571], [681, 491], [269, 249], [206], [602], [363], [538, 668], [155], [], [352], [389, 567], [], [4], [207], [616, 625, 724], [953], [], [300], [551], [586], [81], [190], [97], [104], [362], [714], [550], [160], [949], [883], [759], [989], [628], [741], [884], [803], [142], [95], [945], [208], [567, 827, 926], [204], [819], [654, 671], [55], [449], [235], [450], [793], [240, 241], [], [417], [436], [22], [2], [37], [886], [618], [277], [642, 462], [317], [733], [349], [754], [796], [425], [908, 404], [314], [416, 638], [8], [518], [893], [], [671], [574], [908, 895], [300], [224], [], [341], [292], [972, 976], [971], [918], [578, 689, 501, 885], [846], [444], [938], [], [471], [317], [657], [898], [836, 869], [302], [48], [175], [949], [728], [681, 620, 478], [14], [645], [141], [399], [614], [359], [], [920], [865, 411], [28], [758], [976], [318], [971], [409], [677], [500], [556], [279], [], [178], [616, 494], [206], [], [988], [673, 681, 810, 620, 527, 782, 664, 508], [928, 923], [439], [71], [37], [853], [881], [172], [170], [595], [156], [889, 541], [491], [45], [906], [866], [649], [901], [232, 249], [753], [149], [511], [895], [465], [590], [376], [545], [39], [364], [476], [782, 664], [3], [63], [599], [684], [69], [311], [681, 620, 508], [127], [611], [27], [667], [726], [865], [630], [135], [545], [838], [343], [49], [], [624], [123], [418], [205], [883], [993], [243], [766], [53], [151], [31], [215], [427], [213], [880], [208], [], [475], [621], [526, 673, 681, 620], [], [104], [578, 654], [490], [235], [702], [720], [832], [732], [528], [999, 861], [503], [639], [745], [362], [238], [731], [738], [204], [966, 907], [598], [719], [11], [444], [667], [215], [151], [407], [985], [50], [314], [], [216], [954], [], [962], [108, 973], [294], [], [945], [317], [16, 19], [388], [788], [806], [23], [883], [210], [836, 837], [929], [525], [], [301], [534], [959], [], [836, 775, 655], [461], [127], [822], [800], [996], [524, 461], [597], [169], [857], [36], [101], [21], [570], [255], [185], [635], [836, 457], [926], [470], [71], [851, 548], [290], [250], [489, 251], [], [333], [373], [820], [175], [], [453, 493], [318], [], [547], [165], [653], [911, 824, 474], [695], [395], [123], [430], [334], [657], [908, 814], [258, 259], [596], [523, 664], [834, 906], [188], [829], [563], [14], [724, 536], [235], [687], [147], [154], [936], [69], [760], [593], [606], [682], [114], [646], [857], [538, 185, 975], [897, 651, 760], [880], [112, 125], [922], [881], [662], [831, 721, 608], [661], [684], [391], [859], [518], [574], [902, 488], [967, 968, 504], [268], [529, 667], [61], [373], [873], [183], [785], [], [], [882], [929], [577], [434], [143], [804], [381], [], [], [436], [306], [953], [749], [367], [479], [522], [16], [815], [36], [58], [85], [610, 770, 862], [927], [58], [651], [954], [864], [830], [298], [212], [], [262], [987], [665], [558, 593, 819], [873], [276], [35, 36], [467], [956], [713], [753], [948], [231], [564], [899, 532, 725], [69], [947], [869], [423], [86], [838, 631], [2], [416, 702], [816], [825], [696], [925], [177], [35], [40, 46], [176], [242], [473], [], [], [115], [162, 167], [92], [682], [], [177], [], [34], [990], [968, 809, 849, 659, 923], [842], [430], [162, 166], [505, 899], [602], [907], [582], [488, 679, 455], [], [941], [780], [681, 620, 760, 508], [750], [190], [761, 831], [98], [], [513, 439], [543], [], [578, 982, 601], [949], [382], [149], [199], [235], [704], [], [794], [892], [784], [143], [268], [274], [138], [455, 440, 444], [171], [694], [779], [899], [883], [813, 942], [821], [230, 231], [], [296], [581], [98], [365], [387], [213], [756], [286], [56], [514], [300], [446], [650], [24], [357], [826], [673, 553, 526, 527, 782, 664, 508], [896, 897, 827], [475], [388], [574], [929], [992], [941], [648], [810, 508], [301], [761], [182], [294], [102], [356], [], [352], [430], [957], [9], [191], [419], [369], [207], [825], [28], [307], [996], [141], [119], [997, 947], [300], [617, 823], [59], [303], [368], [333], [130], [83, 883], [901], [336], [396, 973], [780], [784, 792, 477], [], [], [908, 404, 895], [625], [369], [125], [743], [300], [131], [678], [865], [168, 159], [666], [56], [70], [436, 581, 479], [574], [530], [728, 412], [374], [], [300], [716], [304], [791, 582], [265, 266], [482], [152], [811], [42], [971], [697, 823], [956], [451], [685], [20], [290], [709, 710, 526, 692], [73], [71], [455], [707], [62], [185], [545], [844], [933], [796], [405], [14], [783], [377], [979], [], [], [451], [230], [], [680], [811], [988], [400, 667], [179], [879], [587], [690], [428], [384], [366], [727], [923], [518, 671], [586], [905], [54], [223], [836, 837, 445], [565], [328, 973, 991], [212], [179], [782, 851, 664], [562], [703], [340], [302], [501], [13], [758], [229], [855], [122], [525], [430], [978], [233], [824], [360], [67], [461], [292], [464], [949, 927], [939, 943], [552], [222], [106], [346], [487], [256], [623], [202], [992], [502], [837, 433, 445], [329], [754], [520], [117], [642], [39, 47, 978], [619, 846], [889], [30], [92], [426], [231], [442], [], [373], [323], [894], [], [], [84], [738], [790], [604], [869], [846], [581], [518, 880], [], [791], [99, 8, 730], [626], [587], [673, 742, 664, 526, 527, 782, 508], [53], [489, 981], [387], [985], [286], [76], [110], [619, 846], [595], [388], [434, 533], [826], [745], [], [363], [879], [19], [768], [31], [475], [419, 648, 720], [938], [646], [320], [730], [240, 248], [910], [83], [900], [903], [942], [254], [910], [943, 923], [152], [775, 459], [96], [426], [216], [787], [339], [], [87], [44, 26], [3], [920], [181], [368], [858], [36], [825, 409, 892], [521], [921], [115], [911, 796], [616, 87], [832], [935, 923], [], [539], [105], [581, 479, 511], [228], [615], [290], [89, 951], [515], [500], [11], [527], [321], [603], [96], [94], [246], [57], [8, 7], [342], [14], [967, 968, 923], [150], [624], [575], [8], [854], [], [], [483], [124], [921, 667], [976], [], [510], [424, 423], [127], [197, 205], [403], [874], [658], [770, 788], [213], [773], [256], [744, 657], [675], [711], [595], [], [203], [849], [], [], [673, 742, 620, 526, 527, 664, 508], [513, 903], [551], [564], [358], [176], [839, 821], [925], [388], [354], [350], [253], [399, 501], [561], [598], [794], [804], [820], [929], [123], [529], [407], [64], [515, 593], [823], [366], [896], [907, 572], [], [], [596], [453, 454, 905, 750], [992], [169], [190], [557, 692, 509], [], [1], [968, 659], [], [805], [463], [187], [911, 636], [774], [], [976], [497], [999, 861], [636], [693, 472], [], [571], [971], [523], [548], [38], [808], [915], [652, 683], [1], [614], [261], [75], [929, 245], [], [206], [311], [923, 71, 868], [47], [], [538], [984], [608, 514], [230], [372], [549, 742], [981], [949], [196], [641, 642], [521], [267], [919, 858], [823], [297], [405], [289], [674], [410], [2], [758], [233], [199], [915], [407], [610], [99], [332], [723], [970, 979], [326], [897], [226], [898, 681, 620], [306], [248, 249], [], [900], [644], [774], [763], [8], [813, 910], [868], [108], [190], [516, 431], [839], [358], [], [612], [22], [914, 484], [258], [26], [384], [190], [810, 878], [954], [], [699], [902], [721], [959], [214], [177], [129], [232], [909, 827], [436], [781], [911, 658], [], [560], [], [82], [979], [897], [412], [800], [683], [98], [109], [311], [635], [686], [929], [320], [778], [53], [10], [683], [980], [97], [987, 998], [883], [], [970], [575], [177], [394], [948], [914], [125], [971], [374], [396], [703], [449, 979], [122], [550, 967, 968, 505], [], [198], [654], [596], [933, 934], [352], [608, 806], [579], [681, 810, 620, 508], [23], [317], [585], [877], [836, 837, 971], [6], [747], [375], [], [172], [481, 482], [173], [66, 68], [770], [777, 623], [386, 101], [36], [242, 243], [686], [472], [86], [219], [868, 949, 953], [905, 919], [336], [952], [40], [337], [2, 3], [224], [237], [588, 610, 492, 636], [114], [441, 572], [169], [637], [768, 560], [963, 966, 762, 923], [809, 659], [503], [], [792], [777], [], [472], [422], [416], [431], [731], [877], [395], [76], [6], [767], [314], [635], [196], [934], [360], [783], [344], [710], [164], [267], [294], [807], [571], [343], [359], [922, 918], [840], [640], [642], [484], [116], [170], [456], [267], [350], [], [132], [129], [71], [407], [88], [992], [488, 600], [626], [919], [513, 650, 819], [538], [732], [342], [701], [391, 758], [836, 837, 842, 445], [935], [927], [507], [923], [892], [205], [520], [96], [171], [675, 671], [800], [], [492], [518, 691, 570], [106], [62], [988], [463, 696], [], [], [116], [509], [834], [], [713], [425], [568], [492], [39], [631], [785], [908, 895], [124], [963, 335], [390], [969, 474], [221], [241], [876, 435], [199], [763, 597], [681, 620, 508], [162], [278], [], [940], [672], [193], [311], [814, 977, 978], [275], [952], [416], [136], [], [150], [387], [940], [448], [350], [967], [974], [120], [], [514], [723], [310], [287], [536], [234], [894], [52], [213], [842], [898], [], [810, 878], [608, 836, 837, 841], [193], [256], [923], [391], [617], [269], [663], [545], [], [], [608], [762, 532], [146], [297], [578, 630, 982, 601], [26], [390], [128], [189], [], [880, 414, 671], [914], [383], [17], [50], [512], [], [694], [248, 250], [252], [458], [162], [511], [600], [459], [961], [553, 446], [472], [673, 664, 526, 527, 632, 508], [522], [351], [421], [679], [360], [918], [914], [], [500], [418, 709, 710], [597], [974], [122], [976], [938], [92], [751], [509], [386], [109], [539], [277], [309], [802], [132], [143], [], [865, 968], [773], [962], [447], [], [805], [778], [737], [285], [992], [636], [44], [477], [607], [127], [71], [470], [250], [], [], [518, 665, 671], [771], [841, 610], [273], [694], [997], [366], [230], [72], [245], [238, 241], [653], [313], [879], [62], [911, 533], [390], [843], [18], [160], [988], [965], [812], [350], [813], [930, 934], [1], [689], [786], [351], [934], [403], [676, 597], [45], [456, 777, 623, 787], [367], [274], [568], [299], [679], [563], [327], [650], [829], [679], [633], [996], [644], [422], [131, 134], [719], [], [923], [17], [929], [416], [311], [708], [679], [467, 766], [898, 596], [11], [345, 690], [289], [673, 526, 527, 782, 664, 508], [], [705, 460, 975], [159], [712], [288, 290], [594], [274, 277], [732], [808, 515], [426], [75], [174], [864], [175], [902], [612], [332], [780], [372], [802], [], [809, 923], [507], [299], [228], [718, 821], [763], [858], [867], [789], [38, 44, 463, 26], [654], [], [578, 601, 415], [747], [269], [995], [466], [935], [579], [56], [546, 650, 819], [62], [483], [272], [608], [450], [776], [295], [677], [110], [708, 862], [70], [192], [428], [529], [791], [505], [447], [321], [156], [658], [724], [299], [898, 664, 527, 782, 508], [149], [144], [664, 508], [736], [78], [218], [234], [715], [789], [19], [462, 734], [514], [611], [926], [175, 185], [], [791], [], [116], [703], [440], [569], [626], [728], [581, 874], [404], [37], [405], [], [969], [713], [526, 664, 508], [933], [], [546, 486, 650, 402, 819, 541], [921], [471], [150], [666], [], [258, 270], [458], [419], [233], [746, 455], [403], [489], [227], [952], [533], [854], [132], [17], [23], [814], [114], [], [825], [205], [993], [581], [390], [445], [832], [89], [110], [711], [496], [226, 698], [911], [9], [252], [836, 837, 123], [112], [759], [263], [11], [724], [647], [693], [159], [814, 975], [711, 631], [322], [881], [27], [575], [823], [342], [137], [288], [422, 543], [304], [640], [613], [371], [24], [739], [440, 831, 455, 721, 737], [472, 693], [99], [586], [568], [], [735], [584], [299], [480], [225], [487], [23], [144], [673, 681, 620, 508], [69], [794], [717], [], [544], [447], [476], [735], [887], [484], [78], [835, 858], [251], [634], [363], [397], [685], [809, 925], [283], [543], [935], [643], [513], [521], [30], [31], [412], [957], [], [440], [394, 758], [223], [872, 745, 761], [292], [647], [326], [792], [758], [8, 7], [561], [604], [557], [47], [725], [942], [327], [267], [987, 924], [488], [956], [347], [135], [817], [819], [530, 531, 409, 892], [489], [155], [859], [420], [359], [298], [553], [608], [456], [349], [178], [578, 601], [217], [950], [673, 526, 527, 664, 508], [496], [920], [368], [772], [32], [518, 671], [742], [476], [], [993], [677, 587, 783], [659], [750, 189], [216], [626], [823], [105], [394], [505], [899], [100], [], [663], [94], [301], [551], [482, 754, 761], [], [755], [249], [71], [11], [673, 526, 527, 664, 508], [235], [847], [], [962, 923], [816], [150], [], [257], [161], [819, 601], [551], [424, 423], [892], [512], [723], [298], [884], [908, 404], [812], [119], [171], [968, 849], [265], [346], [853], [745], [313], [911, 824], [921], [763], [913], [600], [260], [973, 991], [884], [49], [625], [651], [203], [136], [307], [40, 46], [634], [488], [248, 250], [853], [820], [288, 293], [802], [601], [100], [679], [], [875], [168], [111], [961], [452, 911], [], [727], [588], [376], [239], [39], [84], [658], [497, 442], [], [24], [320], [755], [890], [236], [875], [559], [5], [438], [205], [796], [929], [547], [99], [431], [88], [847], [369], [25], [565], [674], [31], [], [383], [349], [101], [944], [476], [494], [10], [328], [159], [505], [563], [680], [83], [679], [140], [258], [768], [335], [122], [125], [876], [371], [65], [661], [829], [945], [618, 910], [578, 457, 689, 982, 601], [778], [785], [741], [923], [546, 650, 818, 819], [589], [40], [798], [148], [876], [], [66], [], [551], [], [713, 742], [990], [], [549, 616], [604], [50], [918], [673, 742, 620, 664, 526, 527, 632, 508], [784], [562], [411, 849, 762], [], [], [299], [874], [744, 657], [968], [904], [84], [533], [200, 232], [18], [469], [], [484], [622], [232], [398], [65], [680, 529], [69], [857], [908, 404], [85], [990], [239], [905, 750, 894, 799], [869], [82], [861], [872, 759], [572], [796], [572], [901, 907], [431], [722], [621], [], [252], [987], [487], [9], [480], [117], [310, 314], [681, 620], [10, 15], [977], [124], [91], [818], [827], [232], [964], [], [283], [14], [435], [220], [155], [152], [666], [805], [642, 542], [822], [579, 875], [205], [534], [515], [401], [744, 657], [691], [801], [548, 851], [22], [181], [141], [736], [42], [28], [431], [339], [152], [916], [581, 479], [74], [182], [], [280, 985], [578], [687], [], [262], [162], [299], [386, 101], [451], [869], [673, 664, 526, 527, 632, 508], [844, 539], [431], [297], [65], [369], [45], [486, 889], [568], [940], [], [], [260], [405], [353], [450], [104], [825], [144], [99], [], [93], [956], [27], [452, 911], [157], [62], [344], [493], [225], [195], [181], [538], [], [728], [975, 616], [631], [421], [805], [380], [204], [616, 600], [258], [95], [398], [364], [518], [], [847], [570], [890, 445], [548, 851, 831, 598], [798], [623], [731], [581, 479, 817, 511], [5, 390, 973], [195], [824, 834], [673, 526, 527, 664, 508], [366], [864], [214], [882], [991], [239, 222], [766], [54], [744], [17], [155], [757], [153], [183], [223], [980], [451], [805], [472], [326], [5], [179], [107], [518, 880], [350], [339], [626], [489, 919, 412], [666], [932], [295], [890], [417], [101], [631], [141], [234], [382], [959], [6], [293], [871], [90], [224], [874], [97], [354], [633], [454], [331], [948, 950, 951], [486], [383], [604], [996], [998, 987], [936], [570], [392], [255], [694], [308], [311], [337], [359], [901], [571], [495], [881], [423], [334], [289], [741], [309, 599], [19], [109], [653], [929], [581, 734], [455], [167], [125], [102], [722], [40, 46], [443], [937], [371], [341], [867], [463], [882], [773], [111, 52], [54], [82], [244], [601], [39], [481, 482], [638, 639], [449, 718, 733], [716], [738, 559], [652], [331], [236], [147], [765], [], [932], [110], [654], [669], [29], [420], [69], [69], [524, 461], [918], [251], [], [281, 283], [139], [627, 479], [79], [736], [872, 949], [488, 535], [126], [716], [409], [909, 910], [81], [210], [21], [92], [22], [], [26], [650], [102], [], [404], [33], [], [845], [33, 973], [471], [898, 605], [425], [255], [117], [], [962], [], [198], [246], [421, 506], [683], [877], [66, 68], [756], [196], [821], [603], [626], [136], [181], [752, 852], [533], [95], [488], [549], [531], [282], [358], [703], [152], [749], [696], [89], [564, 750], [392], [914], [18], [457], [867], [602], [825], [705, 547, 733], [190], [281], [661], [27], [488], [941, 923], [445], [864], [945], [], [724], [905], [229], [530], [82], [948], [342], [887], [397], [354], [497], [143], [669], [119], [368], [360], [17], [], [52], [968, 849], [235], [401], [581, 479, 436], [899], [890], [314], [662], [421], [975], [376], [851], [], [234], [543], [], [937], [395, 758], [537], [367], [8, 7], [553], [850], [395], [292], [736], [772], [771], [75], [54, 60], [330], [754], [399], [967, 968, 504], [], [241], [322], [115], [681, 810, 620, 662], [820], [466], [444], [], [278], [477], [673, 526, 527, 664, 508], [582, 998, 987], [148], [], [785], [497], [537], [461], [900], [927], [], [621], [25], [106], [153], [128], [233], [10], [268], [284], [], [397], [], [107], [610, 976], [191], [717], [931], [718], [528], [326], [728, 458], [241], [42, 44], [676], [966, 907], [149], [703], [561], [852], [238], [100], [851, 532, 825], [324], [450], [552], [852], [549, 633], [162, 166, 167], [417, 975], [535], [483], [], [72], [55], [849, 505], [], [581], [619], [809], [912], [], [279], [259], [530], [386, 101], [432], [907], [514, 841, 608, 610, 630, 636], [310], [162, 167], [251, 246], [753], [935], [863], [945], [946, 322], [38], [277], [231], [652], [227], [494], [688], [832], [743], [592], [365], [169], [679], [742], [487], [405], [975], [481, 482], [71], [291], [340], [937, 923], [557], [849], [961], [729], [], [568], [341], [849], [760], [], [260], [254], [759], [934], [847], [418], [931], [846, 526], [952], [943], [], [179], [58], [960], [320], [293], [462], [297], [240, 241], [16], [520], [295], [488], [323], [512, 473], [438], [39], [732], [602], [721], [31], [247], [621], [308], [45], [], [86], [470, 736], [581, 479, 817, 511], [899], [118], [641], [459], [101], [98], [368], [139], [690], [186], [205, 246], [582, 951], [35, 37], [518, 665], [754], [195], [402], [576], [418, 709], [733], [159], [892], [100], [44, 26], [903], [801], [263], [734], [672], [997], [918], [992], [273], [913], [322], [426], [298], [869, 879], [66], [872, 759], [212], [452], [578], [456], [886], [93], [671], [248, 250], [572], [131], [62], [52], [153, 155], [718, 821], [546], [189], [28], [418], [32], [20], [21], [829], [157], [854], [201], [515], [795], [382], [955], [369, 381], [300], [297], [97], [566], [225], [115], [774, 731, 861], [314], [501], [207], [985], [675], [832], [833], [], [479], [287], [700], [536], [336], [392], [], [405], [867], [741], [603], [951, 949, 950, 954, 923], [119], [942], [460], [522], [800], [708], [456], [91], [104], [70], [886], [73, 815], [208], [75], [440], [100], [582], [821], [314], [363], [661], [94], [651], [], [386], [140, 142], [188], [597], [324], [281], [31], [992], [672], [365], [569], [174], [348, 349], [991], [604], [], [158], [629], [], [603], [789], [568, 715, 716], [385], [983], [197], [725], [38], [884], [784, 477], [386], [], [30], [567], [779], [27], [481, 482], [958], [852, 752], [591], [680], [760], [523, 655, 765], [721, 750], [673, 681, 620, 526, 527, 664, 508], [125], [716, 912], [411], [712], [429], [850], [747], [472], [269], [149], [739], [489], [], [886], [278], [706], [614], [134], [678], [833], [680, 910, 659, 828], [267], [900], [662], [403], [147], [847], [65], [169], [], [662], [293], [392], [205, 589], [435], [271], [75], [979], [501], [238], [262], [662], [794], [949], [404], [923], [564], [734], [903], [323], [358, 359], [380], [382], [504], [76], [117], [48], [619, 846], [289], [973], [463], [877], [719], [931], [907, 572], [667], [6, 983], [500], [218], [], [937, 567], [361], [], [432], [636], [374], [], [565], [544, 672, 596], [520], [670, 518], [652], [197], [500], [30], [39], [92], [189, 175], [733], [], [458], [], [737], [295], [810], [506], [652, 413], [424, 423], [117], [428], [455], [95], [458], [659, 666], [305], [521], [239], [775, 842, 616], [355], [908], [755], [72], [293], [330], [907, 966], [764], [707], [627], [952], [614, 887], [789], [183], [347], [441], [], [867], [694], [637], [454], [174], [896, 804], [247], [851], [185], [985], [239], [608, 836, 837, 582], [127], [], [114], [], [552], [10], [683], [70], [], [512], [820], [162, 168], [247], [845], [457], [852], [924], [685], [842, 879, 977, 978, 445, 638, 639], [], [580], [383], [385], [250], [444], [3], [801, 433, 793], [152], [162], [393], [280], [943, 923], [562], [339], [496], [636], [203], [921, 446], [392], [], [682], [57], [179], [262], [586, 652, 413], [578, 903, 689, 885], [], [388], [347], [806, 630], [228], [494], [279], [600], [739], [131], [232], [205], [], [610, 487, 655], [674], [661], [253], [115], [842, 638, 639], [569], [649], [64, 55], [400, 667], [201], [801], [277], [49], [40, 46], [928], [287], [500], [267], [850], [674], [834], [411], [19], [758], [438], [954], [769], [964], [918], [880], [734], [555], [539], [816], [919], [339], [967, 968, 504], [213], [425, 858], [789, 799], [759], [614], [4], [401], [959], [196], [678, 487], [389], [175], [42], [275], [26], [48], [790], [764], [762], [89], [294], [667], [755], [999], [726], [847], [127], [834, 906], [774], [816], [395], [647], [853], [345], [17], [712], [628], [923, 934], [868], [800], [480], [930, 934, 936], [934], [295], [520, 516], [181], [572], [522], [894], [703], [159], [], [924], [883], [435, 794], [757], [196], [867], [22], [729], [430], [165, 852], [137], [724], [63], [324], [127], [], [4], [], [869], [256, 244], [552], [529], [171], [317], [140], [548], [750], [928, 923, 960, 927], [304], [896], [319], [974], [96], [595], [640], [320], [134], [460], [297], [65], [441], [307], [570], [343], [953], [350], [560], [195], [678], [557], [518], [], [645], [367], [576], [852], [147], [207, 219], [497], [238, 241], [748, 414], [145, 146], [235], [393], [32, 30], [559], [966, 441], [], [375], [814, 977], [107], [], [921], [710], [909, 926], [207], [834, 630, 703], [190], [466], [846], [19], [247], [283], [315], [334], [986], [], [832], [11], [57], [673, 526, 527, 782, 664, 282, 508], [513], [284], [69], [292], [], [769, 773], [185], [161, 785], [603], [516, 520, 697], [248], [514], [679, 327], [241, 238], [254], [495], [468], [312], [368], [700], [72, 815], [318], [539], [772], [263], [524], [151], [889], [656, 479], [135], [903, 689], [619, 846], [653], [951], [623], [901], [79], [32, 31], [249], [], [], [336], [377], [162], [], [234], [679], [673, 553, 526, 527, 782, 664, 508], [102], [411], [892], [437], [225], [629], [101], [582, 519, 939, 943], [868], [700], [923, 934, 933], [389], [742], [843], [98], [9], [981], [112, 327], [710], [567], [292], [], [803, 866], [205], [572], [471], [678], [473], [560], [85], [588], [105], [17], [176], [], [524, 461], [887], [488, 718, 536], [644], [555], [], [404], [813, 910, 659], [824], [582], [48], [88], [980], [85], [955], [825], [183], [756], [395], [530], [163], [845], [132], [715], [139], [679], [549], [484], [489], [445, 638], [944], [581], [325], [40, 46], [310], [812], [850], [76], [483], [950], [854], [447], [874], [276], [710], [857], [161], [32, 30, 31], [360], [816], [1], [883], [298], [836, 837, 655, 879], [], [921], [884], [778], [754], [482], [715], [525], [927], [898, 784], [], [725], [122], [699], [403], [24], [76], [191], [761], [534], [238, 240], [526, 527, 782, 664], [], [3], [794], [174], [716], [569], [342], [261], [245], [284], [771], [662], [974], [147], [531], [768], [646], [234], [], [641], [912], [493], [975, 822, 541, 542], [752], [212, 217], [18], [353], [653], [512], [141], [388], [57], [398], [486], [836, 837], [540], [119], [901], [], [974], [357], [913], [158], [554], [105], [634], [703], [625], [299], [66, 68], [915], [115], [591], [251], [459, 445], [378], [814], [908], [188], [674], [980], [430], [940], [672], [102], [628], [323], [464], [718], [721], [15], [], [973, 108], [214], [401], [758], [390], [960], [439], [948, 957], [92], [869, 818], [621], [240, 239], [], [301], [], [25], [679], [664, 851], [319], [463], [972, 500], [332], [411], [909], [510], [524, 461], [91], [734], [], [384], [202], [81], [268], [470, 406], [509], [894], [922], [851, 548], [604], [424, 922], [658], [515, 808, 639], [995], [386, 101], [389], [825], [589], [991], [636], [866], [884], [794], [86], [449], [849], [553], [], [384], [31], [935, 937, 923], [701], [397], [972], [531], [130], [729], [891], [275], [17], [164], [], [563], [205], [575], [774], [828], [532, 762], [], [386], [482], [903], [602], [312], [257], [886], [531], [344], [161], [338], [779], [264], [340], [203], [893], [131], [958], [940], [258], [689], [29], [207], [484], [], [57], [427], [291], [], [717, 656, 436, 479], [781], [24], [513], [947, 997, 114], [720], [480], [364], [499], [47], [], [265], [802], [598], [119], [69], [916], [240, 241], [785], [593], [132], [60], [640], [997], [492], [159], [184], [505], [264], [645], [435, 876], [680], [396], [594], [919], [324, 325], [], [245, 254], [579], [551], [92], [624, 453], [], [438], [853], [826], [297], [669], [], [874], [384], [558], [682], [117], [572], [990], [42], [606], [437], [681, 810, 620], [], [87], [496], [0], [41], [632], [776], [526, 786], [627], [], [728], [562], [539], [385], [73, 815], [47], [259], [59], [48], [120], [669], [528], [322], [37], [458], [281], [950], [912], [781], [673, 613, 761, 605], [256], [214], [896], [], [518], [292], [], [318], [958], [162], [195], [800], [43], [439], [], [628], [428], [952], [41], [453, 454], [184], [123], [956, 957], [498], [935], [324], [651], [525], [704], [457], [844], [754], [], [810], [754], [107], [849], [532, 398], [791], [], [582, 790], [315], [520], [874], [138], [448], [491], [], [223], [748], [112], [213], [242], [137], [260], [523], [182], [305, 306], [868], [365], [700, 999], [636], [128], [268], [252], [694], [241, 238], [246, 251], [98], [426], [522], [948], [514], [371, 373], [487], [56], [329], [502], [456, 652], [139], [520], [833], [724], [318], [499], [148], [108], [384, 383], [305], [36], [234], [437], [73], [125], [315], [132], [373], [67], [615], [361], [919], [667, 151], [870], [90], [901], [331], [955], [766], [], [], [962, 923, 935], [136], [43], [37], [33], [178], [244], [886], [], [714], [727], [704], [435, 876], [221], [543], [126], [384], [325], [91], [498], [291], [335], [603], [], [201], [510], [666], [649], [483], [948], [232], [551], [198], [751, 479], [763], [513], [], [259], [560], [473], [877], [421, 904, 905], [], [783], [969], [468], [5], [811], [316], [35], [617], [907, 440], [408], [533], [687], [641], [963], [], [209], [782, 664], [213, 248], [899], [672], [645], [987, 998], [270], [679], [779], [849], [330], [618, 909, 828], [973], [614], [], [828], [495], [69], [624, 453, 454], [753], [623], [547], [362], [848, 632], [428], [708, 458], [893], [936], [699], [702], [228], [626], [868, 967, 968, 504], [], [], [871], [897], [481, 482], [379], [633], [904], [455], [287], [262], [432], [308], [985], [489, 733, 919], [49], [989], [316], [117], [471], [519, 907, 440], [544, 909, 828], [917, 921], [172], [697], [267], [], [140], [587, 596], [443, 836, 837], [921], [], [57], [350], [838, 631], [568], [59], [205], [310], [242], [309], [535], [518], [323], [325], [263], [20], [582, 938], [240], [279], [219], [191], [126], [466], [683, 558], [603], [988], [551], [458, 708], [131], [210], [650], [322], [783], [477], [219], [981], [2], [196], [427], [628], [304], [], [], [113], [419], [746], [34], [836, 837, 656, 785], [48], [767], [630], [892], [882], [457], [], [386, 101], [60], [5], [72], [900], [614], [717, 479], [749], [813], [563], [440], [169], [385, 101], [514, 948, 836, 837, 852, 489, 636], [388], [100], [379], [456], [400, 667], [999, 893], [809, 925], [351], [834, 906], [224, 223], [206, 221], [660], [688], [], [209], [396], [549], [], [721], [942, 923], [352], [578], [769, 71], [805], [599], [585], [639], [767], [849, 505], [581, 479], [841, 610], [313], [746], [834, 585], [839], [468], [53], [418, 709, 710, 767], [929, 968], [], [62], [783], [528], [132], [194], [137], [337], [941], [544], [594], [400, 667], [712], [], [250], [824], [], [72], [327], [714], [380], [], [577], [371], [900], [93], [111], [223], [486], [749], [637], [428], [98], [211], [], [695], [815], [890], [15], [868, 505], [891], [73], [617, 823], [], [941], [301], [681, 620], [44, 48], [668], [923], [607], [684], [322], [980], [928], [892], [572], [888], [76], [873], [518], [], [400], [136], [114], [310], [911], [599], [806], [257], [516, 431], [27], [965], [], [87], [660], [24], [540], [462], [340], [48], [], [7], [774], [624, 453], [322], [177, 170], [46], [605], [931], [], [323], [478], [148], [738], [217], [603], [908, 895], [262], [796], [517, 733], [9], [458], [997], [781], [92], [531], [], [543], [15], [548], [759], [343], [530], [335], [385], [395], [136], [105], [8], [892], [839, 718], [860], [507, 695], [664], [467], [706], [938], [735], [8, 7], [651], [72], [279], [], [921, 917], [295], [191], [996], [848, 632], [263], [609, 500], [728, 281], [280], [277], [378], [52], [588, 692, 415], [], [949], [73], [283], [182], [601], [306], [395], [40, 46], [122], [425], [862], [777], [195], [99], [539], [604], [329], [976, 979], [852], [], [659], [126], [289], [654], [551], [611], [579, 881], [563], [728], [315], [792], [931], [114], [902], [372], [424, 423], [205, 653], [149], [792], [121], [540], [], [274], [514], [128], [399], [903], [], [646], [883], [942], [734], [669], [2], [588], [615], [966], [935], [837, 518, 671], [559], [778], [], [677], [237], [645], [59], [802, 518], [251, 575], [911], [352], [619], [510], [571], [357], [330], [347], [389, 395], [300], [414], [449, 975], [85], [597], [207], [938], [11], [911], [933], [173], [823], [440], [194], [315], [308], [470], [53], [52], [491], [909, 926], [136], [118], [658], [608, 869, 824], [945], [918], [96], [242], [392], [426], [168], [989], [348, 825], [39], [638, 639], [], [350], [746], [50], [84], [650], [274], [991], [599], [295], [], [417], [317], [253], [645], [193, 187], [452, 911], [825], [406], [651, 187], [19], [932], [27], [494], [834, 906, 982], [316], [479, 511], [123], [72], [106], [514], [361], [160], [539], [54], [682, 538], [219], [162], [218], [811], [109], [312, 311], [], [452], [793], [], [488, 843], [299], [350], [289], [203], [834, 906], [572], [707], [351], [855], [866], [996], [159], [840], [948], [690], [592], [801, 570], [165], [18], [696], [655], [480], [580], [694], [707], [715], [340], [736, 681, 620], [727], [422], [208], [], [632], [142], [733], [62], [], [4], [288], [791], [838, 711], [650], [348], [790], [625], [272], [669], [208], [], [58], [525], [193], [378], [798], [565], [781], [344], [61], [293], [13], [782, 851], [239], [409], [794], [938], [944], [865], [388], [202, 189], [322], [194], [430], [371], [172], [546, 650, 819], [2, 3], [912], [394], [622, 759], [312], [945], [801, 983], [903, 789], [985], [162], [397], [769, 622], [], [331], [574], [141], [649], [567], [], [718, 637], [61], [85], [487], [578, 854], [57], [328], [583], [863], [566], [375], [], [], [240], [990], [277, 278], [625], [961], [], [969], [503, 572], [949], [508], [866], [381], [560], [27], [72], [338], [466], [375], [227], [352], [603], [137], [265], [754], [892], [589], [573], [286], [325], [754], [539], [613], [987, 923], [787], [959], [63], [192], [83], [507], [489, 86], [869], [738, 580], [385], [196], [924], [], [610], [], [414], [536, 484, 871], [538], [168, 211, 159], [143], [132], [961, 659], [858], [371], [292], [2, 3], [902], [301], [544], [100], [675], [335], [92], [309], [737], [418], [522], [907], [842], [769], [232], [482], [70], [866], [576], [732], [480], [146], [324], [574], [699], [82], [540], [591], [479], [409, 892], [], [940], [127], [29], [255], [], [282], [655, 570], [313], [30], [963], [], [213, 205], [661], [13], [741], [93], [366], [974], [329], [387], [790], [435], [328], [911, 533, 539], [564], [263], [183], [944], [98], [578, 982], [952], [656, 784, 477], [353], [786], [372], [], [142], [369], [14], [284], [540], [], [243], [976], [224, 805, 223], [], [78], [420], [687], [55], [285], [736], [203, 246], [521], [911], [320], [769], [132], [258], [891], [650], [809, 618], [514, 763, 445], [905, 493], [295], [230, 231], [74], [], [877], [770], [267], [40, 46], [521], [889], [80], [140, 142], [817], [268], [129], [69], [459, 445], [24], [176], [487], [714], [], [576], [135], [517], [929], [599], [347], [117], [802], [732], [868], [49, 50], [788], [85], [741], [642], [239], [471], [443], [481], [232], [153], [790], [826], [], [], [83], [937], [], [750], [533], [581], [], [560], [619, 844, 846, 761], [98], [514, 515], [752], [825], [75], [493], [371], [29], [328], [234], [738], [32], [644, 470], [630], [786], [354], [407], [33], [239], [], [79], [368], [166], [836, 837], [626], [916], [322], [733, 862], [205], [622, 179, 245], [781], [659, 923, 925, 809, 950], [], [190], [595], [369], [858], [861], [432], [517], [51], [836, 837, 975], [159], [682], [985], [578, 601], [645], [301], [444, 671], [326], [344], [943, 923], [], [147], [856], [597], [508], [261], [187], [722], [344], [451], [], [311, 312], [121], [535], [315], [891], [432], [448], [], [362], [209], [494], [488], [135], [217], [442], [176], [94], [276], [107], [], [793], [826], [], [880], [914], [14], [62], [567, 827], [], [828], [907], [275], [937], [851], [933], [73], [930, 415], [531], [920], [167], [422], [482], [721], [406], [], [774], [426], [438], [967, 968, 911, 504], [578, 834, 982], [382], [858], [112], [340], [169], [891], [146], [162, 167], [273], [716], [227], [662, 632, 761], [], [642], [2], [532], [638, 639], [561], [347], [400, 667], [731], [175], [582, 728], [908, 404], [67, 54], [9, 489], [805], [], [627, 654], [749], [138], [652, 465, 792, 413], [577], [180], [205], [185], [437], [302], [886], [368], [], [439], [771], [], [93], [187], [], [15], [554], [324], [], [274], [721], [883], [28], [233], [544, 909, 827], [766], [44], [320], [247], [500, 286], [], [355], [779], [681, 620, 526, 508], [453], [897], [148], [478], [658], [825], [984], [11], [399], [823], [140], [127], [309], [763, 597], [898], [675], [61], [210], [194], [997], [339], [], [962], [374], [801, 836, 445], [986], [871], [109], [619], [115], [116], [452], [751], [205], [896, 804], [382], [998], [506, 117], [656], [464], [779], [784], [289], [905, 619, 846, 831], [309, 599], [394], [10], [824, 735], [900], [683], [780, 976, 914, 405], [], [711], [371], [643], [205], [534], [290], [582], [115], [379], [221], [951], [820], [], [224], [879, 977], [159], [608, 999, 861], [523], [636], [717], [324], [759], [944], [365], [955], [996], [613], [34], [866], [579, 421], [270], [953], [538], [437], [163], [571], [], [822, 542], [86], [], [574], [681, 526, 664, 761], [608, 515, 788], [338, 333], [93], [522], [946], [560], [652, 872], [542], [944], [936], [422], [], [319], [183], [996], [157], [28], [515], [85], [187], [181], [257], [696], [106], [203], [871], [554], [19], [902], [782, 664], [901], [741], [179], [22, 23], [508], [597], [767], [389], [616], [559], [860], [510], [345], [904], [107], [481], [410], [], [588], [], [], [987, 998], [], [213], [84], [647, 968, 809, 659], [63], [368], [], [227], [700], [72], [145], [876, 435], [130], [779], [], [702], [], [489, 85], [364], [719], [658], [933], [76], [943, 692, 963, 868], [951], [172], [837, 454], [276], [622], [453, 454, 553, 917], [164], [839, 660], [271], [301], [509], [591], [13], [444], [144, 540], [801], [157], [576], [788], [18], [397], [863], [842], [196], [731], [854], [800], [153], [487], [561], [394], [460], [], [], [393, 108], [825], [442], [830, 691], [980], [140], [405], [564], [695], [191], [], [332], [13], [], [93], [234, 236], [555, 734], [169], [573], [854], [805], [405], [], [602], [256], [261], [999], [778], [879], [880, 879], [985], [262], [252], [516], [630], [31], [31], [66], [66], [202], [333], [650], [254], [428], [129], [257], [749], [79], [816], [376], [367], [344], [55], [440], [618, 813, 909, 827], [991], [74, 815], [772], [159], [712], [870], [581, 479, 511], [491], [987], [363], [336], [537], [231], [604], [862], [300], [529], [30], [948], [651], [9], [845], [673, 526, 527, 664, 508], [352, 351], [74], [234], [905, 831], [707], [441], [565], [764], [58], [291], [6], [671, 518, 535], [477], [385], [683], [44], [833], [21], [87], [], [55], [194], [713], [194], [83], [452], [830], [590], [643], [845], [613], [288, 290], [221], [362], [939], [], [882], [682], [582, 950, 951], [225], [326], [414], [158], [65], [181], [], [375], [], [710], [6], [313], [256], [673, 613, 681, 620, 526, 527, 662, 632, 508], [419], [98], [780], [805], [898], [52], [836, 837, 552, 459], [961], [97], [995], [574], [576], [304], [664, 782, 527], [559], [185], [687], [352], [81], [581], [173], [836, 837, 850], [584], [473], [896, 567], [306], [574], [], [900], [], [168], [114], [424], [], [34], [], [795], [661, 479], [], [113], [783], [], [911, 533, 539], [468], [834, 650, 851], [739], [104], [480], [781], [988], [518], [], [981], [952], [450], [446], [], [703], [370], [188], [505, 827], [844], [984], [362], [], [532], [82], [748], [497], [532], [], [677], [569], [257], [246], [349], [862], [372], [645, 733], [247], [], [907, 720], [379], [287], [65, 395], [524, 461, 728], [], [250], [847], [], [301], [851], [], [187], [844], [535], [335], [398], [323], [453], [528], [520], [948], [222], [305], [230], [157], [281, 282], [], [351], [35], [112], [673, 527, 761, 664, 633], [682], [943], [715, 524, 461], [896], [], [861], [422], [628], [217], [922], [12], [321], [777], [87], [768], [126], [284], [65], [139], [31], [497, 557], [307], [619, 818], [745], [706], [688], [915], [279], [130], [822], [609], [], [552], [567, 926], [959], [716], [300], [916], [920], [622], [145], [977, 978], [], [272], [892], [506], [125], [615], [872], [702], [272], [466], [758], [738, 580, 428], [658, 911], [923], [387], [863], [556], [202], [991], [485, 632], [886], [87], [565], [801], [162], [390], [360], [161], [144], [], [875], [771], [457], [836, 837, 785], [153], [433], [481, 482], [834], [96], [462], [21], [471], [773], [440, 455], [231], [88], [684], [572], [576], [379], [984], [484], [7], [407], [787], [231], [941], [592], [919], [581, 654], [657], [957], [881], [258], [337], [111], [999, 861], [930], [104], [542], [497], [673, 664, 526, 527, 508], [23], [251], [917], [862], [64], [526, 664, 508], [404], [160], [123], [381], [], [843, 702], [971], [289], [799], [753], [711], [303], [480], [72, 815], [215], [581], [887], [748], [453], [786], [273, 274], [], [985], [], [807], [970, 980], [2], [426], [720], [99], [628], [], [635], [781], [612, 879], [547], [51], [14], [570], [152], [308], [908, 404], [386], [763], [955], [], [157], [68], [], [194], [495], [232], [927], [495], [577], [829], [269], [956], [680], [236], [], [49], [682], [138], [], [884], [722], [361], [255], [530, 844], [273], [958], [357], [206], [741], [785], [535], [372], [391], [355], [289], [912], [493], [851], [195], [4], [622], [808], [855], [564], [394], [485], [301], [713], [763, 597], [379], [265], [183], [166, 958], [787, 501], [113], [29], [477], [240, 241, 238], [203], [907, 910, 532, 923, 924, 936, 966, 762], [130], [548, 782, 851, 598, 664, 889], [434], [939, 943], [717], [955], [76], [735], [561], [222], [636], [146], [48], [714, 539], [994], [415], [860], [856], [659], [421, 882], [114], [628, 536], [475], [], [], [683], [284], [288], [372], [515], [599], [384], [990], [288], [19], [58], [514, 836, 837, 703], [], [884], [930], [98], [486], [370], [231], [977], [840], [973], [277], [380], [676], [41], [934], [], [646], [569], [310], [971], [390], [710], [791], [597, 763], [], [378], [186], [654], [496], [431], [376], [834, 457], [588, 285], [], [691, 638, 639], [704], [82], [576], [850], [779], [353], [319], [542], [954, 950], [123], [636], [699, 541], [617], [678], [443], [58], [666], [77], [106], [460, 557, 718, 814], [734], [955], [561], [426], [947], [294], [414, 703, 841, 608], [944], [471], [111], [155], [286], [724], [893], [538], [641], [423, 424], [430], [], [680], [373], [304], [450], [58], [602], [637], [174], [800], [23], [722], [289], [756], [448, 853], [287], [683], [644], [463], [977, 978], [881], [300], [524, 461], [855], [], [111], [514, 792], [651, 700], [], [320], [485, 848], [621], [577], [405], [988], [938], [481], [880], [], [603], [33], [673, 742, 664, 526, 527, 782, 632, 508], [90], [], [714], [221], [708], [], [70], [512], [814], [281], [], [993], [218], [490], [347], [164], [957], [968, 918], [565], [595, 958], [815], [884, 406], [608, 610, 836, 837], [86], [945], [903], [671], [535], [398], [781], [239], [756], [768], [854], [455], [106], [387], [983], [383], [274], [682], [], [908, 404], [581, 479, 817], [913], [507], [771], [675, 478], [172], [672], [91], [154], [98], [948], [565], [728], [298], [268], [335], [434, 435], [223], [85, 86], [850, 791], [682], [256], [416], [292], [968], [376], [581], [], [781], [], [], [776], [810, 878], [162], [], [812], [913], [957], [970], [297], [615], [425], [2], [321], [190], [770], [602], [440], [394], [88], [144, 127], [604], [], [462], [9], [654], [155], [], [481, 482], [591], [574], [274], [329], [968, 618], [123], [905], [319], [546], [296], [623], [173, 176], [868, 923, 659, 532], [375], [452], [394], [525], [358, 359], [], [73, 77], [497], [998], [], [418], [105], [647], [437], [218], [636], [559], [300], [762], [620, 594], [], [459, 445, 638], [868, 438], [985], [906], [948, 572, 849], [189], [749], [720], [241], [692, 948, 950, 951], [269], [478], [462], [437], [45], [896, 435, 861], [635], [733], [670], [], [206], [455], [329], [678], [19], [547], [419], [], [724], [212], [852], [20], [661], [989], [919], [369], [626], [650, 818, 819, 632], [101], [422], [116], [691], [496], [907, 760], [314], [122, 123], [983], [89], [892], [494], [371], [769, 911], [414, 455, 631], [542], [], [], [254], [85], [796], [973, 991], [777], [45], [31], [380], [458], [337], [950], [770], [498], [762], [979, 972], [242, 243], [952], [], [658], [328], [901], [200], [634], [414], [292], [776], [868], [357], [742, 728], [134], [85], [553], [198], [729], [28], [88], [314], [160], [], [799], [510], [913], [707], [205], [204, 155], [553, 621, 882], [152], [349], [619, 846], [56], [667, 263], [801, 983], [653], [269], [429, 981], [42], [448], [], [853], [444], [776], [847], [870], [159], [], [494], [66], [148], [], [162], [507], [31], [670], [811], [257], [198], [863], [958], [776], [], [321], [986], [322], [940], [712], [825], [518], [501, 568], [195], [287], [340], [796], [836, 837, 775, 759, 445], [551], [162, 167], [819], [424], [489], [32], [793], [37], [236], [710, 767], [777], [591], [], [433], [459], [886], [380], [834, 982], [532], [434, 631], [878], [308, 309], [194], [586, 847], [284], [418], [33], [234], [647], [834, 570], [105], [99], [146], [122], [], [97], [429], [], [539], [996], [216], [811], [894], [77], [749], [66], [524, 461], [], [650], [668], [790], [93], [179], [313], [889], [524], [713], [489, 381], [843], [343], [272], [412], [16], [679], [777], [94], [680], [290], [279], [], [719], [], [117], [270], [693, 472, 445], [], [8], [841], [822], [523], [102], [712], [467], [343], [838], [602], [478], [86], [461, 465], [426], [626], [742], [752, 852], [786], [92], [288], [189], [908], [425], [192], [27], [257], [986], [836, 837, 793], [460], [311], [870], [115], [579], [29], [], [810, 878], [911], [2], [877], [189], [321], [347], [], [321], [854], [459], [205], [670], [911], [681, 810, 620, 508], [599], [943], [931], [985], [425], [], [191], [7], [23], [800], [876], [813], [231, 232], [831], [967, 504], [716, 573], [961], [277], [241], [900], [225], [378], [922, 441, 762], [587], [240, 241], [820], [236], [312, 311], [149], [518, 671], [896], [594], [962, 923], [949], [256, 220], [868], [], [874], [159], [936], [226], [782, 851], [849], [110], [373], [989], [543], [533, 824, 735], [181], [436], [], [488, 679], [381], [10], [245], [269], [81], [995], [968], [359], [904, 905, 831], [789], [647], [303], [23], [609], [650, 906, 834, 632], [340], [458], [861], [296], [193], [2], [581, 479, 717], [170], [768], [361], [917], [612], [901, 427], [979], [125], [90], [390], [346], [881], [98], [547], [974], [234], [188], [35], [298], [369], [683, 432], [771], [757], [436], [778, 943], [910, 659], [697], [236, 237], [500], [49], [979], [524, 461], [489, 429, 981], [653], [381], [400, 667], [434], [590], [], [904, 309], [107], [457, 869], [805], [661], [324], [217], [441, 572], [914, 780], [174], [759], [64, 55], [88], [], [605], [188, 189], [], [727], [198], [190], [497], [236], [310], [675], [42], [723], [187, 201], [944], [895], [809], [722], [143], [400, 667], [810, 620, 526, 508], [44], [221], [365], [930, 588], [346], [836, 837], [276], [925], [811, 753], [381], [40], [121], [908, 895], [732], [470], [763, 597], [816], [997, 947], [365], [122], [152], [611], [517, 733], [136], [673, 526, 527, 664, 508], [123], [819], [879], [], [13], [], [711], [845], [208], [96, 489], [110], [533], [950], [518, 671], [564], [219], [729], [156], [296], [913], [435], [195], [487], [704], [23], [109, 973], [47], [48], [748, 893], [48], [276], [487], [830], [49, 50], [307], [888], [449, 853], [], [40], [984], [272], [370], [196], [790], [489, 59], [76], [911, 658], [73], [727], [672], [851], [981], [883, 942], [], [336], [], [861], [444], [540], [927], [352], [375], [78], [902], [], [688], [546, 650, 402, 818, 819], [504, 850], [343], [480, 608, 539, 799], [166], [857], [495], [993], [], [40, 41, 44, 46], [70], [738], [], [632], [752, 852], [], [192], [179], [466], [670, 518], [732], [], [262], [45], [255], [513, 650], [676, 488], [19], [389], [223], [167], [659], [179], [346], [883], [459, 445], [98], [425], [], [354], [483], [], [279], [843], [735, 223], [783], [191], [], [820], [548, 664, 851, 632], [225, 235], [437], [162], [275], [617, 501], [312], [766], [105], [109], [697, 470], [334], [585], [], [513], [518, 429], [547], [54], [612], [574], [765], [391], [496], [831], [872], [0, 391, 758], [841], [], [922], [134], [355], [325], [523], [0], [893], [605], [], [759], [244], [933], [465], [514, 788], [49], [189], [894], [358, 359], [233], [], [501], [851], [702], [808], [507], [515, 451], [703, 578, 601], [816], [640], [390], [82], [774], [230], [599], [293], [120], [787], [830, 836, 837, 610], [948], [45], [323], [842], [19], [978], [904], [481, 482], [945], [866], [], [899], [232, 231], [756], [467], [], [757], [444], [502], [603], [18], [265], [671], [767, 692], [183], [729], [246], [959], [442], [997, 947], [473], [357], [439], [695], [197], [272, 62, 67], [450], [302, 314], [14], [207], [257], [627], [673, 526, 527, 782, 664, 508], [181], [573], [520], [257], [], [62], [698, 538], [565], [371], [], [52], [351], [94], [774, 608, 610], [995], [149], [340], [963], [975, 979], [489, 429], [], [336], [256], [790], [305], [900], [], [130], [617], [2], [299], [191], [985, 309], [656], [], [972], [489, 429, 981], [928], [980], [560], [580], [98], [789], [473], [987, 998], [651, 655], [305], [739], [614], [430], [402], [42], [659], [631], [588, 850], [722], [828], [3], [], [107], [786], [616], [993], [949], [851], [84], [922], [616], [988], [682], [], [769], [595], [914], [433], [], [370], [535], [757], [240, 241, 238], [938], [], [983], [842, 433, 445], [640], [], [834, 906, 630], [331], [920], [859], [825], [529], [875], [132], [62], [714], [571], [536, 403], [334], [], [], [37], [983], [845], [807, 561], [376], [382], [606], [560], [], [7], [], [315], [98], [673, 526, 527, 664, 508], [913], [711], [76], [], [550], [117], [224], [3], [], [197], [405], [771], [584], [623, 563], [], [317], [557], [987, 998], [566], [237], [421], [248], [0], [514], [916], [], [384], [793], [554], [593], [480], [433, 639], [24], [977], [422], [165], [316], [11], [608, 836, 837, 869, 464], [777, 490, 461, 464], [489], [385], [616], [271], [552, 619, 493, 846], [744, 657], [742], [812], [480], [286], [325], [549], [38], [299], [677], [491], [269], [528], [112], [286], [265], [440], [314], [513], [384], [608], [], [], [149], [342], [726], [403, 895], [457], [331, 478], [230, 222], [944], [362], [619], [581], [33], [783], [42], [352], [424], [444], [385, 386], [109], [802], [409, 892], [509], [923, 926], [955], [59], [], [108], [], [491], [752], [90], [835], [], [498], [174], [52], [127], [695], [449], [779], [601], [887, 884, 406], [121], [678], [44], [916], [38], [702], [937], [868], [391], [], [811], [470], [677], [619, 846], [9], [743], [809, 926], [0, 515, 853], [636], [], [337], [4], [630], [472], [910], [741], [98], [138], [545], [302], [132], [680], [870], [76], [384], [8], [], [651], [], [192], [644], [521, 659, 950], [627], [73, 74, 815], [897], [49], [632], [299], [653], [283], [670], [770, 478], [929], [715], [382], [37], [6], [542], [713], [335], [441], [577], [146], [968], [10], [856], [], [593, 541], [140], [3, 6], [940, 943, 948], [], [850, 765], [726], [70], [575], [681, 841, 620], [763, 413], [], [789], [57], [125], [128], [268], [307], [710], [701], [210], [354], [313, 315], [962, 923], [658], [724], [718], [], [288, 290], [3], [], [942], [451], [528], [398], [109, 973], [70], [421], [624], [367], [], [981, 429], [607], [64], [22], [471], [164], [6], [225], [], [908, 404], [605], [423], [], [], [18], [313], [640], [55], [642], [243], [37], [483], [800], [736], [351], [492], [843], [771], [169], [111], [895], [653], [18], [145], [], [483], [578, 885], [656], [575, 479], [130], [319], [342], [0], [], [297, 295], [608], [193], [810], [486], [], [], [840], [653], [467, 499], [1], [524], [971], [835], [288], [894], [85], [155], [763], [168], [608, 728], [174], [241], [623], [448], [0], [484], [966], [550], [], [720], [650, 818, 819], [540], [480], [946], [], [985], [707], [], [835], [325], [603], [21], [719], [122], [443], [117], [654], [876, 435], [259], [340], [847], [659], [305], [976], [185], [84], [311], [37], [771], [265, 266], [518], [149], [], [418], [363], [123], [642], [618], [559], [280], [228], [882], [558], [464, 608, 610], [666], [586], [147], [907, 671], [3], [242], [552], [640], [744, 657], [18], [629], [890], [921, 917], [768], [], [988], [613], [438], [560], [305], [236], [920], [78], [936], [769, 77], [579], [711], [768], [17], [383], [9], [628], [215], [528], [869, 742, 526, 655, 630], [346], [], [389], [275], [584], [383], [479, 817], [517], [604], [780], [677, 587], [485, 685], [319], [980], [152, 155], [567], [726], [761], [673, 681, 526, 527, 664, 508], [326], [489, 747], [744, 657], [544, 964, 926], [940], [247], [740, 477], [], [121], [699], [387], [548, 613, 664, 526, 527, 851], [606], [320, 985], [778], [911], [546, 650, 819], [460], [363], [492], [225, 419], [878], [305], [], [175], [130], [428], [776, 439], [314], [], [650, 822, 542], [471], [281], [2], [193], [475], [112], [141], [873], [350], [574], [745], [286], [655], [137], [310], [766], [974], [680], [539], [913], [342], [941], [256], [881], [396], [645], [180], [86], [], [597], [805, 205], [870], [336], [238], [789], [618], [750], [395], [422], [308], [518], [], [517], [607], [941], [749], [546, 402], [964, 987], [210], [903], [], [380], [224], [717], [693], [342, 343], [381], [910], [273], [581, 479, 436, 511], [241], [1], [632], [113], [581, 479, 817, 511], [836, 837], [], [617], [325], [334], [514, 876, 435], [636], [67], [138], [514, 515, 655, 958], [985], [960], [857], [730], [263], [643], [672], [], [964], [954], [838], [681, 620], [773], [807], [37], [417], [380], [866], [666, 924], [316], [12], [102], [], [652], [968, 504], [592], [915, 853], [834, 630], [759], [578, 894], [822], [68], [428], [681, 620], [629], [8, 792, 958], [158], [827], [789], [149], [21], [257, 258], [618], [432, 683], [900], [183], [452, 850, 610], [144], [126], [852], [795], [168], [67, 68], [292], [410], [100], [825], [660], [309], [195], [467, 125], [330], [479, 436], [387], [481], [495], [566], [480], [704], [], [777], [314], [178], [750, 564], [748], [655], [758], [492], [412], [356], [762], [548], [147], [122], [153], [9], [151], [832], [10], [12], [739], [47], [355], [914], [398], [725], [182], [284], [87], [309], [610, 758], [839], [344], [199], [573], [672], [854], [101], [783, 535], [69], [306], [], [75], [948], [610, 836, 837], [291], [948], [49, 679], [820], [400], [462], [19], [232], [267], [922], [171], [133], [744, 657], [361], [815], [259], [28], [372], [937], [234], [847], [474], [649], [779], [731], [694], [950, 951], [920], [115], [6], [777, 764], [150], [224, 235], [419], [834, 906], [587], [713], [384], [807], [615, 890], [979], [159], [593, 650], [735], [37], [244], [119], [551], [896], [861], [326], [190], [376], [], [905, 846, 721, 831], [146], [360], [485, 848, 851, 632], [594], [127], [694], [152], [48], [495], [21], [960, 470], [758], [203], [], [], [988], [152], [559], [829], [704], [646], [], [294], [809, 923], [50], [68], [937], [569], [521], [58], [768], [73, 74], [515], [694], [814, 977, 978], [], [974], [775], [727], [242], [644], [603], [75], [835], [], [345], [49], [92], [459], [137], [294], [647, 967, 606], [968], [204], [879], [831], [471], [643, 881], [112], [967], [328], [781], [338], [61], [856], [578, 982], [976, 972], [41, 44, 26], [118, 119], [939, 943], [149, 150], [898], [503], [231], [940], [615], [431], [696], [880], [596], [833], [916], [768], [], [951], [162, 230], [996], [185], [911, 658], [103], [668], [821], [495], [509], [158], [560], [876, 912, 435], [937], [705, 825], [999], [930], [67], [938], [479], [585], [756], [621], [923, 499], [690, 345], [681, 620], [773], [869], [869], [311], [56], [], [673, 742, 664, 526, 527, 782, 632, 508], [739], [969], [867], [208], [862], [804], [840], [54], [495, 725], [685], [474], [585, 655], [761], [150], [12], [451], [477], [47], [494], [857], [719], [972], [742, 713, 664, 526], [535], [766], [847], [956], [825], [794], [934, 478], [665], [840], [751], [822], [581, 479], [], [858], [401], [272], [169], [977, 978], [870], [107], [853], [785], [204], [942], [17], [177], [492], [608, 903, 841], [444], [502], [723, 549], [927], [336], [], [444], [133], [191], [95], [596], [924], [947], [816, 911], [166], [981, 429], [777], [90], [537], [680], [820], [209], [139], [953], [696], [205], [674], [926], [], [171, 237], [770, 788], [70], [452], [560], [94], [715], [597, 413, 671], [32], [574], [252], [27], [814, 693], [871], [299], [907, 440], [122], [243], [526], [186], [578, 834, 523, 906, 630], [28], [882], [846], [980], [301], [111], [495], [320], [70, 985], [778], [], [561], [780, 975], [501], [837, 670], [723], [391], [93], [243], [47], [233], [63], [650], [991], [805], [866, 730], [427], [192], [360], [15], [273], [575], [407], [916], [74], [], [354], [828], [451], [236], [758], [170], [], [825], [419], [79], [97], [779], [626], [820], [108], [932], [655], [703], [920], [503], [557], [988], [804], [937], [314], [431], [773], [138], [945], [507], [599], [], [], [896], [970, 979], [919], [840], [474], [637], [120], [489, 791], [721], [313], [380], [577], [809], [980], [698], [780], [796, 837, 836], [992], [610, 697], [938, 942, 943], [967, 504], [34], [258], [917], [187], [87], [175], [68], [60], [19], [403], [], [713], [867], [647], [140, 94], [865, 692], [], [376], [261], [787], [217], [440], [761], [102], [901], [], [763], [131], [952], [386], [128], [200], [955], [522], [268], [690, 345], [741], [43], [704, 581, 919], [770], [250], [235, 465], [], [851], [794], [926], [628], [744, 657], [546], [], [977], [130], [373], [940], [872], [258], [997, 623, 696], [119], [840], [458], [835, 855], [520], [], [812], [680], [142], [128, 144], [101], [], [329], [398], [50], [636], [335], [509], [693], [199], [242], [807], [], [610, 770, 862, 733], [592], [337], [386, 101], [110], [], [123], [22], [254], [91], [], [999], [679], [695], [769, 418, 709, 600], [44], [469], [896, 999, 861], [49], [331], [169], [887], [737], [349], [348], [220], [581, 479], [846], [608, 806], [27], [568], [], [281], [312], [101], [90], [39], [494], [44], [189], [746], [662], [63], [282], [292], [], [286], [166, 167], [621], [890], [581, 479], [196, 198], [89], [513], [281], [355], [96], [719], [417], [952], [670], [255], [928, 960], [651, 760], [551, 629, 696], [119], [688], [], [301], [992], [738], [450], [726], [501], [723], [255], [177], [703], [293], [114], [842, 529, 562], [364], [810, 508], [867, 675], [996], [344], [649], [312, 311], [525], [321], [321], [385], [325], [455], [621], [933], [146], [150], [566], [], [826], [], [584], [564], [936], [970], [342], [85], [], [], [871], [279], [108], [28], [808], [932], [232, 231], [457], [344], [740], [926], [421, 765], [249], [670, 415], [526, 400], [431], [], [967, 968, 923], [383], [363], [176], [363], [164], [235], [651], [392, 393, 108, 973], [318], [95], [615], [574], [367], [73], [512], [863], [301], [308], [766], [531], [891], [879], [166], [333], [207], [400, 667], [589], [363], [], [204], [872], [959], [231], [574], [344], [398], [132], [13], [517], [986], [836, 837], [139], [], [462], [127], [513, 875], [549, 968, 504], [22], [894], [813, 659], [549], [682], [526, 787], [770, 605], [436, 733], [288], [459, 445, 638], [228, 265], [51], [367], [561], [308], [868, 954], [928, 927], [296], [401, 881], [67], [749], [297, 295], [7], [722], [216], [681, 810, 620, 508], [645], [548], [306], [79], [662], [722], [430], [756], [638], [378], [760], [507], [844], [923], [840], [666], [900], [618, 926], [221], [], [510], [], [928], [974], [643, 692, 478], [807], [50], [950], [923], [60, 68], [861], [398], [646], [144], [146], [728], [690, 345], [204], [206], [370], [960], [983], [945], [371], [329], [67], [817, 511, 479], [968, 504], [33], [], [676], [513], [155], [373], [198], [820], [134], [770], [588], [362], [64], [847], [474], [866], [581, 817, 479], [10], [255], [512], [933], [430], [631], [108], [367], [317], [603], [999], [621], [484, 871], [915], [983], [375], [186], [195], [287], [340], [56], [975, 497], [560], [295], [987], [206], [861], [770], [969, 659], [292], [506], [188], [784], [397], [300], [815], [349, 350], [419], [174], [573], [6], [926], [897], [], [895], [678], [520, 516], [701], [899, 849], [167], [866, 730], [652, 764, 413], [644], [137], [874], [494], [557, 602, 733], [721], [636], [923, 960], [128], [817, 511], [611], [869], [31], [409], [297, 295], [997], [562], [521], [897], [499], [452], [492], [388], [], [], [449], [394], [173], [920], [285], [584], [813, 910], [891], [711], [144], [222], [813, 909, 910], [351], [633], [273], [362], [638, 639], [261], [489], [225], [196], [335], [], [148], [966], [713], [40, 44], [203], [555], [806], [630], [474], [18], [764], [651], [], [198], [512], [164], [644, 720], [112], [181], [709], [582, 953], [813], [609, 586, 413], [601], [], [], [82], [168], [453, 454], [37], [73, 74, 815], [67], [159], [], [], [324], [718], [311], [534], [976], [230, 231], [607], [476], [400, 667], [274], [765], [814], [143], [109], [806], [701], [433], [], [171], [41], [582, 950, 954], [581, 661, 479], [560], [497], [815], [341, 342], [753], [248], [102], [680], [262], [738, 633], [157], [329], [516, 850], [821], [715], [8], [], [569], [426], [946], [770], [333], [754], [839, 978], [275], [486, 819, 889], [321], [461], [123], [453, 885, 887], [827], [139], [281], [276], [241], [], [836, 837], [611, 207], [948], [696], [317], [77], [614, 879], [684], [707], [479], [618], [851], [680], [553], [138], [362], [927], [381], [47], [989], [920], [359], [793], [881], [890], [81], [608, 615, 792], [244], [652], [347], [984], [681, 620, 508], [581, 717, 479], [377], [720], [258], [194], [784], [478], [451], [660], [416], [308], [914], [532], [412], [662], [361], [688], [985], [121], [754], [863], [577], [231], [443], [200], [104], [203], [189, 191], [547], [673], [209], [621], [105], [450], [752], [810, 878], [], [300], [149], [73], [840], [946], [447], [464, 608], [234], [], [783], [739], [979, 525], [292], [971], [145], [608], [256], [926], [408], [691], [273], [360], [434, 533], [835], [326], [299], [679], [852], [59], [594], [616], [151], [308], [557], [529], [212], [729], [907, 440], [868], [], [971], [661], [], [244], [307], [974], [46], [226], [748], [563], [128], [535], [882], [830], [623], [200], [404], [995], [326], [489, 395], [288], [652, 847, 465, 413], [18], [140], [886], [278], [], [643, 759], [373], [933], [294], [830], [737], [723], [75], [140], [172], [], [234], [838, 631], [625], [690], [677], [261], [76], [161], [943], [61], [487], [851], [162, 166], [555, 475], [354], [], [987, 998], [309], [372], [686], [], [187], [95], [936], [339], [716, 765], [95], [527, 592, 782, 664, 508], [980], [627], [], [86], [311], [214], [692], [548], [690, 345], [406], [908, 404, 812], [892], [850], [431], [950, 951], [465, 652, 413], [570], [], [95], [46], [299], [984], [835], [625], [623], [589], [946], [584], [254], [753], [679], [864], [379], [755], [909], [70], [84], [904], [520, 850], [382], [122], [2], [484, 814], [639], [222, 207], [6], [733, 920], [745], [422], [797], [861], [107], [587], [], [714], [921], [811], [624, 453], [726], [], [928, 960, 954, 572], [712], [173, 253], [650, 402, 818, 819, 632], [995], [686], [962], [681, 620, 664, 508, 477], [803], [306], [620, 526, 664, 508], [982], [324], [971, 724], [920], [440], [405], [440], [954], [417], [581, 734], [974], [791], [369], [581], [423], [637], [990], [858], [791], [400, 667, 733], [818, 872, 622, 759], [9], [748], [328], [670, 518], [250], [326], [531], [673, 526, 527, 664, 508], [139], [469], [317], [352], [704], [694], [148], [74], [935], [130], [987, 998], [136], [813], [259, 265, 153], [465, 763], [38], [928, 960], [628], [248, 250], [471], [476], [41], [432], [188], [715], [801, 983], [135], [283], [607], [935, 567, 923], [], [], [840], [963], [245], [128], [297], [344], [749], [249], [], [126], [419], [], [861], [195], [357], [770, 811], [617, 823], [86], [839], [679], [992], [], [558, 402, 699], [628], [628], [673], [358], [485, 754], [346, 351], [905, 825], [487], [100], [820], [673, 664, 526, 527, 632, 508], [769], [582], [815], [999], [651], [113], [823, 836], [851], [467], [727], [151], [410], [], [], [54], [907, 532, 440, 966, 762], [2], [514], [447], [], [555], [458], [], [], [634], [277, 278], [59], [946], [336], [], [378], [237], [938], [810, 878], [95], [961], [81], [19], [629], [], [539], [538], [245], [693], [290], [339], [49, 50], [999, 281, 861], [], [32], [47], [859, 521, 651, 760], [693, 472], [639], [713], [616], [], [510], [210], [79], [], [783], [655], [236], [550], [953], [744, 657], [929], [894], [253], [851], [732], [659, 809], [], [415], [205], [188], [], [210], [717, 581, 479], [529], [185, 186], [897], [999, 700], [275], [130], [206], [293], [531], [776], [538], [360], [863], [57], [407], [148], [6], [760], [855], [167], [778], [68], [91], [801], [45], [2], [792], [35], [863], [683], [146], [163], [519], [899, 951], [205], [489], [367], [], [151, 188], [874], [546, 650, 402, 818, 819], [619, 314], [831], [377], [282], [279], [272], [161], [73], [775], [554], [602], [149], [782, 851], [373], [297], [384], [535], [785], [347], [175], [853], [14], [472], [275], [608, 806, 841, 831], [658], [609], [888], [48], [322], [284], [457], [969, 470], [383], [955], [259], [603], [705], [2], [307], [531], [229], [487], [760], [247], [286], [862], [483], [685], [721], [624], [66], [674], [137], [517], [22], [739], [519], [274], [744, 657], [], [980, 975], [307], [600], [868, 968, 504], [882], [996], [953], [41], [770], [270, 279], [281, 282], [], [611], [373], [506], [882], [428], [516], [448], [138], [733], [743], [406], [679], [708, 975], [384], [859], [213], [888], [502], [150], [646], [], [981], [], [651, 813, 567, 827], [939, 943], [20], [902], [846], [64], [573], [651, 567, 760], [605], [638, 639], [779], [711], [458, 708], [162], [778], [75], [259], [872], [552, 515], [659, 937], [199], [659], [184], [61, 62], [518, 671], [123], [110], [308], [635], [993], [912], [613], [385, 386], [583], [889], [849, 505], [125], [662], [147], [334], [841], [244], [950], [842, 977, 978], [], [358], [193], [741, 687, 884, 406], [312], [153], [224], [349], [947], [203], [264], [185], [454], [693], [79], [421], [144], [968], [45], [258], [625], [200], [985, 301], [610], [579], [913], [867], [579, 582], [931], [259], [564], [900], [987, 998], [864], [81], [813], [528], [626], [770], [883], [257], [732], [54], [338], [836, 837, 841], [792, 428], [272], [413], [804], [922], [546, 650, 402, 819, 541], [], [441], [852], [316], [277], [457], [605], [658], [40], [515], [], [755], [25], [992], [809, 925], [887], [898, 680], [877], [16], [506], [230, 231], [796], [615], [324], [918], [333], [374], [392], [545], [760], [640], [359], [], [763, 597], [112], [190], [294], [791], [496], [64], [], [225], [646], [129], [908, 895], [], [486], [167], [651], [905], [736], [594], [], [206], [294], [], [145], [593], [72], [], [13], [138], [834], [326], [770], [222], [155], [375], [560, 768], [433], [907], [248, 250], [794], [15], [824], [810, 878], [549], [], [295], [710, 809], [481, 482], [176], [206], [981], [83], [499, 923], [434], [775], [977, 842, 978], [866], [43], [], [291], [951], [531], [848], [840], [370], [393], [], [767], [818], [314], [768], [806], [347], [263, 151], [493], [496], [268], [173], [195], [786], [], [873], [816], [447], [910, 567], [22], [758], [696], [190], [207], [573], [2], [377], [546], [986], [], [200], [868, 813], [857], [766], [972, 976], [], [], [281], [622, 759], [966], [684], [546, 819], [433], [85], [807], [269], [38], [426], [49, 50], [819], [942], [585], [743], [207], [206], [642], [816], [519], [316], [762, 532], [205], [], [28], [845], [539, 741], [0], [847], [99], [510], [836, 837], [866], [], [], [15], [500], [115], [719], [903], [123], [703, 463, 738], [659], [], [29], [872], [767], [372], [195], [191], [252], [546, 819], [659], [284], [487], [28], [165], [726], [355], [272], [879], [271], [600], [], [241], [8, 912], [958], [472], [105], [810, 878], [313], [562], [870], [259], [744, 657, 812], [392], [814], [608, 770], [888], [98], [333], [725], [233], [447], [139], [717], [82], [540], [77], [329], [333], [244], [517, 625], [325], [639], [789], [115], [536], [965], [840, 462], [389], [284], [882], [896], [588, 948], [933], [711], [360], [756], [508], [95], [636], [276], [420], [962, 987, 923], [207], [796], [660, 557], [32, 31], [923], [646], [980], [82], [958], [85], [244], [182], [294], [804], [697], [366], [479, 535], [999], [824], [], [724], [92], [232], [877], [946], [], [496], [812], [985], [813, 567], [662], [883], [100], [359], [444], [771], [426], [917], [811], [775, 977, 978], [983], [871], [322], [187], [940], [8], [343], [207], [859], [630], [155], [306], [322], [681, 620, 526], [69], [59], [336], [393, 327], [93], [174], [170], [68], [206], [85], [477], [185], [112], [934], [463], [730], [650, 819, 822, 632, 542], [562], [870], [977], [928, 923], [451], [168], [898, 655], [14], [89, 414], [715], [775], [734], [765], [38], [681, 620, 526, 846, 632, 508], [396], [951], [815], [], [149], [597], [594], [546, 650, 819], [354], [266, 267], [488, 695, 508], [363], [455], [247], [813, 910], [55], [471], [249], [536], [2, 3, 973], [503], [288], [795, 970], [673, 681, 620, 526, 527, 664, 508], [85], [47], [160], [722], [452], [655], [201], [788, 502], [648], [643], [477], [203], [42], [210], [23], [], [342], [741], [77], [], [113], [704], [501], [721, 697], [534, 729], [382], [89], [], [161], [303], [579, 881], [38], [137], [908, 404], [661], [496], [333], [217], [924], [899, 868, 968, 809, 463, 659], [609, 465, 413], [728], [50], [937], [369], [630], [778], [153], [968, 504], [], [459], [581, 479], [578], [304, 301], [899], [22], [863], [384], [308], [619, 846], [471], [], [334], [679], [382], [87], [460, 718, 975, 977, 978], [499], [842, 977, 978], [842], [649], [26], [761], [738, 825], [460], [157], [719], [864], [585], [634], [88], [618, 809, 926], [161], [933, 923], [195], [950], [243], [395], [879], [285], [991], [333], [934], [648, 760], [992], [907, 440], [578], [250], [176], [570], [80], [879], [23], [51], [700, 999], [290], [91], [208], [596], [814], [764], [77], [480, 785, 731, 414], [366], [411], [330], [836, 837, 774, 655], [557], [56], [240], [119], [695], [586], [669], [331], [361], [526, 527, 664, 508], [671], [37], [382], [105], [458], [768], [658], [518, 671], [281], [], [], [72], [22], [921], [132], [369], [547], [41, 48], [], [248, 250], [783], [282], [350], [608, 792], [584], [], [933], [], [385, 386, 101], [], [], [83], [921, 917], [], [369], [972], [92], [], [623, 923], [382], [738, 580], [593], [], [347], [647, 968, 532], [902], [514, 515, 476, 765], [476], [308], [390], [954], [790, 952, 954], [957], [616, 972], [935], [138], [224], [37], [320], [381], [425], [216], [923, 572], [441, 572], [891], [627], [715, 652, 764], [791], [187], [980], [834, 869, 906], [36], [581], [145], [989], [818], [427], [728], [216], [888], [131], [903], [427, 756], [261], [36], [544, 909], [], [], [447], [418], [537], [], [337], [293], [917], [437], [247], [489, 275, 276], [923], [805], [512], [346], [847], [871], [82], [190], [465, 597, 728], [892, 721], [347], [682], [641], [858], [5, 6], [652, 465, 413], [944], [864], [562], [295], [300], [439], [888], [135], [40], [218], [548], [763], [168, 159], [82], [0], [88], [900], [417], [673], [984], [437], [400], [479], [931], [257], [558], [400], [511, 479], [287], [935, 469, 923], [695], [385, 386], [294], [633], [882], [539], [854], [151], [52], [641, 808], [716], [329], [226], [823], [3], [953], [141], [], [648], [], [332], [907], [160], [308], [758], [522], [219], [806], [842], [602], [22], [258], [734], [520], [148], [252], [248], [348], [17], [916], [793], [659], [617, 823], [], [650, 401, 819], [178], [32], [944], [], [757], [634], [23], [15], [239], [471], [697], [419], [151, 158], [941], [746], [24], [553], [481, 482], [773], [700], [18], [391], [757], [480], [680], [42], [66, 68], [873], [], [117], [], [232], [], [331], [], [274], [129], [804], [454], [538], [654], [], [411], [797], [259], [236], [443], [657], [211], [55], [936], [25], [140], [643], [836, 837], [22], [936], [809, 925], [453], [997, 947], [410], [697], [], [], [617, 438], [118], [995], [387], [801], [777], [989], [562], [472], [348], [513], [720], [755], [215], [939], [865], [], [893], [761], [582], [277], [113], [110], [772], [794], [709], [521, 947], [739], [347], [656], [83], [898], [164], [490], [], [684], [304], [72], [839], [552], [472, 693], [86], [422], [977, 978], [947], [490], [910], [], [346], [39, 47], [312, 311], [703], [270], [600], [720], [15], [890], [986], [563], [447], [976], [839], [440], [217], [404], [461], [153], [863], [349], [902], [898], [836, 837, 617, 789], [132], [268], [490], [], [866, 596], [486, 559], [541], [716], [28], [], [198], [498], [5], [768], [546], [188], [920, 475], [260], [634], [772], [776, 819], [559], [928, 927], [747], [728], [579, 881], [567], [241], [695], [78], [161], [115], [157], [561], [183], [164], [413], [27], [116], [489, 815], [381], [], [610, 430], [251], [462], [], [738], [605], [573], [605], [702], [13], [291], [22], [343], [991], [], [123], [198], [23], [276], [40], [679], [230], [104], [840], [70], [209], [332], [926], [947], [628], [291], [222, 257], [652, 413], [292], [975], [289], [798], [641], [673, 418, 526, 527, 664, 508], [570], [998, 939, 943], [380], [209], [173], [189], [299], [630], [181], [245], [], [291], [829], [956], [176], [575], [324], [4, 391], [915], [464, 597, 763], [83], [740], [52], [713], [205], [504, 441, 572], [], [], [138], [681, 810, 620], [761], [777], [109, 973], [], [541], [223], [613], [180], [512, 623], [540], [154], [], [], [217], [594], [903], [], [465, 796], [964], [923], [], [], [896, 804, 631], [398], [523], [550], [917], [840], [574], [608, 796, 806, 478], [704], [572, 966], [357, 958], [597], [399], [84], [], [364], [40], [429], [436], [920], [163], [680], [2], [557], [190], [156], [722], [571], [894], [439], [756], [871], [198], [564], [438], [373], [149], [232], [391], [269], [933], [721], [], [151], [151], [248, 539], [814], [866, 595], [655], [421], [698], [454], [568], [865], [267], [183], [553, 493], [281], [], [237], [721], [477, 587, 784], [333], [663], [382], [296], [652, 764, 413], [951], [987, 998], [270], [996], [952], [620, 662], [929], [369], [79], [118], [], [359], [697], [761], [29], [617, 438], [37], [222], [233], [106], [76], [36], [53], [310], [608, 515, 610, 841], [283], [], [795], [19], [290], [326], [], [36], [290], [118], [293], [506], [989], [996], [366], [], [], [746], [391], [834, 655], [73, 77], [782, 664], [255], [85], [953], [316], [123], [919, 860], [347], [178], [274], [84], [], [418, 709, 748, 563], [323], [632], [724, 536], [841], [402], [638, 639], [25], [345, 730], [588], [874], [], [363], [130], [532], [673, 526, 527, 782, 664, 508], [707], [401], [576], [413], [0], [603], [674, 630], [197], [828], [978, 437], [], [498], [298], [325], [], [413, 439], [863], [97], [680], [89, 284, 799], [97], [709], [573], [368], [805], [284], [683], [222], [411, 828], [659], [86], [633], [642], [792], [459], [155, 204], [], [756], [798], [673], [], [338], [296], [178], [462], [843], [187, 201], [218], [117], [169], [711], [], [389, 391], [634], [713], [330], [553], [772, 869, 488, 464], [122], [523], [625], [54], [402], [889], [692], [29], [356, 359], [578, 515, 689, 982, 601], [97], [213], [98], [729], [], [459, 445], [20], [358], [], [950], [485], [169], [240], [548], [891], [650, 819], [125], [], [184], [588], [476], [666], [140], [754], [559], [937], [385], [913], [643, 906], [], [718], [516, 669], [673, 504, 508], [50], [596], [866, 803], [135], [496], [667], [486], [211], [18], [387], [563], [931], [142], [767], [310], [910, 411], [448, 489], [245], [64, 55], [439], [64], [157], [240], [578], [922], [288], [842, 523, 433, 795], [808], [108], [934], [861], [209], [517, 540], [112], [769], [423], [652], [], [187, 201], [839], [22], [130], [289], [746], [780], [447], [995], [780, 914], [888], [179, 180], [], [27], [], [373], [879], [536], [582, 936, 939, 943], [146], [518], [659, 949, 950], [218], [], [475], [684], [820], [75], [], [960, 968], [49], [650], [173], [], [565], [405], [690], [345], [652, 822, 541, 542], [889], [343], [], [944], [300], [784], [780, 724], [768], [514], [], [35], [741], [], [983], [83], [906], [518], [229], [487, 590], [218], [864], [91], [147], [617, 823], [237], [920], [866], [469], [746], [581], [892], [], [911], [962], [89], [], [154], [487], [714], [378], [627], [515, 348], [247], [343], [18], [529], [], [142], [739], [332], [491], [517], [926], [220], [930], [926], [977, 978], [581, 479, 817, 511], [974, 468], [912, 977, 978], [606], [577], [40], [464], [488, 600], [], [784], [492], [996], [589], [439], [650, 632], [438], [588, 790], [251], [780], [130], [319], [521], [543], [357], [137], [622, 759], [399], [689], [], [240, 238], [608, 681, 620], [752], [39], [116], [263], [842], [522], [684], [], [], [665], [713], [], [], [791, 582], [850], [336], [823], [971], [588, 813, 910], [9], [227], [945], [307], [194], [578, 689, 601, 831], [379], [726], [695], [800], [831], [802], [131], [71], [686], [485, 848], [352], [501], [810, 878, 658], [185], [765], [18], [496], [209], [437], [698, 483], [964], [103], [276], [388], [243], [841, 911], [578, 982], [228], [799], [773], [741], [575], [15], [424, 919], [581, 479], [], [296], [203], [586], [62], [888], [227], [695], [771], [40, 46], [335, 412], [486], [637, 879], [8], [42], [854], [136], [39, 47], [325], [299], [609], [231], [577], [233], [814], [382], [978], [472, 693], [524, 461], [], [355], [], [979, 821], [537], [249, 250], [], [965], [398], [553], [850], [811], [804], [83], [613], [680], [94], [803, 586], [56], [608, 610, 841], [407], [151], [18], [615], [489, 818], [889, 831], [], [390], [741], [712, 126], [821], [471], [63], [578, 982], [983], [762], [275], [396], [459, 445], [], [172, 173], [148], [834, 522], [472], [], [578, 689, 601], [901], [539], [378], [239], [], [], [894], [897, 534, 729], [532], [896], [522], [459], [439], [344], [691], [372], [875], [513, 776, 875], [5, 6], [], [314], [198], [14], [42], [429], [], [555], [832], [986], [591], [359], [311], [446], [349], [222], [518, 671], [602], [290], [399], [682], [413], [750], [351], [568], [792], [], [581, 479], [389], [842, 977, 978], [31], [577], [996], [592], [821], [117], [140, 142], [], [431], [81], [759], [618, 813, 910], [523], [914, 780], [66, 54], [379], [672], [293], [567], [29], [673, 664, 526, 527, 782, 508], [], [189], [731], [745], [899], [156], [240, 241], [], [17], [77, 815], [806], [76], [596], [580, 807], [581, 717], [905], [117], [865], [897], [893], [431], [928, 923], [588], [454], [490, 524, 787], [497, 406], [563], [783], [646], [82], [44], [416], [339], [669], [8], [220], [722], [255], [494], [230], [826, 488], [273], [181], [349], [391], [995], [265, 266], [283], [57], [810, 651, 508], [518], [170], [913], [436], [], [464], [], [619, 846], [203], [138], [421], [], [], [564], [213], [736], [125], [789], [], [744], [899], [575], [483], [516, 520, 721], [470], [82], [489], [258], [330], [53], [291], [303], [730], [52], [229], [75], [854], [330], [702], [781], [325], [612], [515, 841], [211], [727], [668], [818], [775], [831], [649], [4], [107], [420], [900], [], [751, 479], [257], [750], [894], [949], [628], [410], [533], [874], [745], [293], [224], [896, 804, 711, 585, 631], [28], [422], [810], [619, 846], [254], [967], [583], [541], [618], [281], [697], [638, 639], [479], [316], [582, 936], [452], [470], [738], [172], [868], [206], [], [417], [364], [131], [464], [514], [104], [667], [325], [864], [664], [110], [539], [69], [747], [941], [503], [], [565], [338], [720], [215], [409, 892], [989], [606], [871, 913], [], [860], [421], [683], [144], [957], [596], [211, 243], [218], [], [904, 281, 282], [289], [376], [569], [417, 557, 562], [258], [505], [673, 526, 527, 782, 664, 508], [530], [449], [], [860], [865, 692], [946], [694], [656], [353], [984], [258, 222], [465], [], [636], [867], [94], [], [403], [379], [455], [206], [722], [230], [303], [922], [705, 547], [600, 517], [334], [392, 109], [627], [270], [159], [711], [101], [884], [404], [492], [335], [288], [], [699], [245], [650, 819], [617], [233], [316], [153], [778], [624], [905], [728], [], [143], [727], [640], [331], [541], [27], [46, 47], [987, 998], [322], [633], [879], [847], [892], [108], [78], [669], [191], [414], [], [400, 667], [845], [88], [], [533], [522], [683], [395], [398, 529], [343], [131], [347], [321], [503], [199, 197], [182], [281], [711], [509], [172, 173], [41], [349], [685], [86], [270], [281], [156], [616], [979], [69], [967], [732], [578], [614, 879], [867], [923], [753], [168, 159], [565], [114], [870], [14], [313], [298], [903, 584], [], [515, 910], [269], [927], [459], [793], [198], [213], [366], [544], [546], [930], [649], [77], [409], [469], [614], [66], [965], [537], [454], [179], [83], [350], [179], [771], [517], [581, 479, 817, 511], [390], [766], [], [467], [519], [896, 281], [357], [114], [2, 3], [403], [843], [978], [474], [40], [33], [151], [269], [543], [293], [770, 774, 655], [362], [772, 679], [250], [425], [723], [530], [193], [], [955], [561], [581, 489, 479], [], [40], [777, 623, 542], [961], [917], [819], [664], [], [672], [758], [566], [53], [910], [764], [574], [207], [], [946], [756], [242], [809, 910, 925], [419], [918], [727], [903], [634], [], [615, 652, 465, 413], [], [628], [168, 159], [877], [109], [811], [579], [638, 639], [594], [888], [753], [93], [], [884], [234], [509], [224], [450], [373], [152], [701], [632], [344], [849], [42], [843], [602], [33, 973], [909, 659, 951], [409, 892], [987], [400], [], [455], [492, 857], [618, 567], [644], [494, 442], [430], [646], [514], [962], [306], [868, 968, 923], [44], [872], [765], [707], [836, 837, 842], [175], [554], [], [995], [], [293], [], [448], [57], [920], [], [213, 852], [999], [247, 151], [372], [471], [386, 101], [441], [924], [144], [58], [368], [767], [480], [258], [861], [], [189], [431], [376], [816], [315], [346], [397], [40], [577], [], [424, 423], [], [402, 889], [692], [183], [273], [805], [877], [746], [427], [581], [793], [961, 910, 659], [896], [372], [599], [840, 462], [515, 824], [744, 657], [986], [333], [453, 831], [674], [236, 852], [764], [131], [], [386], [814], [976], [547], [322], [323], [968], [466], [713], [481, 482], [944], [237], [708], [535], [295], [559], [481], [532], [], [358, 359], [151], [258], [748, 600], [659], [624, 453, 454], [999], [788], [666], [103], [855], [57], [472], [275], [83], [841], [], [344], [10], [947], [97], [685], [250], [995], [410], [429, 527, 916, 664], [], [84], [581, 436, 479], [], [156], [459], [98], [300], [8], [751], [614], [644], [53], [402], [616], [759], [], [], [427], [749], [91], [229], [], [91], [710], [], [220], [318], [6], [468], [836, 837], [771], [587], [282], [], [669], [258], [127], [631], [857], [679, 616], [737, 898, 886], [], [48], [772], [108], [789], [433, 842], [123], [481, 482], [161, 195], [609], [562], [979], [644], [908], [968], [733, 557], [897], [572], [893], [355], [578, 654, 982], [813], [227], [82], [403], [462], [], [], [271], [655], [765], [750], [], [32], [468, 479], [109], [51], [579, 881], [], [701], [928, 923, 960], [403], [219], [232], [402], [64, 55], [551], [], [], [554], [626], [863], [849], [0], [870], [754, 507], [407], [747], [15], [939], [330], [233], [905, 619], [982], [315, 311], [802], [987, 926, 998], [252], [489], [154], [498], [346], [566], [917, 794], [85], [287], [456], [], [719], [870], [638, 639], [738], [775, 819, 842, 602], [901], [730], [868, 532, 923, 572], [835], [826], [766], [117], [274], [9], [831], [479, 436], [49], [770, 518, 414, 842, 978], [], [84], [611], [], [683], [215], [474], [340], [], [224], [839], [544, 521, 926], [68], [836, 837, 869], [924], [672], [219], [957], [129], [720], [626], [222], [107], [190], [853], [654], [715], [389, 390, 395], [311], [928], [822], [909, 544, 336, 469], [954], [309], [763, 764], [573], [886], [325], [], [86], [192], [36], [366], [926], [131], [49], [545], [42], [210], [710], [11], [338], [657, 812], [491], [484], [872], [82], [596], [603], [599], [102], [333], [364], [365], [366], [71], [16], [37], [890], [832], [872], [175], [647], [], [482], [756], [393], [375], [496], [943], [616], [562], [690], [616], [], [562], [373], [743], [40, 46], [88], [819, 822], [33], [880], [157], [], [848], [831], [], [941], [866], [53], [140], [134], [830], [367], [922], [691, 692], [673, 681, 620, 526, 782, 664], [247], [827], [736], [546], [743], [260], [770, 774, 655], [160], [270], [171], [52], [540], [], [372], [468], [], [647], [875], [896, 553, 493, 894], [63], [330], [63], [338], [136], [802], [450], [514], [582], [192], [533], [189], [952], [855], [755], [48], [28], [396], [302], [100], [345, 475], [], [], [], [193], [57], [8, 7], [773], [481], [391], [723], [357], [952], [40], [975, 976], [], [], [495, 894], [440], [260], [712], [880], [518], [689], [147], [433], [110], [136], [479], [177], [121], [383], [970, 976, 979], [64], [554], [554], [845], [829], [874, 654], [963], [551], [], [418], [270], [328], [495], [150], [449], [191], [801], [500], [302], [193], [], [991], [211], [540], [315], [335], [327], [449], [388], [114], [672], [133], [538, 668], [776, 513], [625], [949], [412], [992], [793], [], [41], [814], [881], [186], [246], [497], [346], [662], [264], [384], [703], [259], [874], [467], [33], [601], [644], [528], [228], [944], [430], [311], [], [68], [87], [937], [364], [512], [748], [354], [283], [268], [512], [339], [918], [582], [573], [781], [171], [419, 823, 845], [392], [592], [901], [6], [19], [778], [18], [262, 243], [562], [], [159], [786], [], [835], [], [750], [162], [602], [585], [830], [701], [960], [497], [698], [736], [275], [909], [686], [999, 700], [824], [849], [296], [294], [], [116], [320], [], [755], [379], [71], [576], [962, 532, 923], [59], [718], [254], [882], [983], [], [463], [951], [993], [972, 500], [263], [738, 939], [92], [901], [671], [303], [842], [65], [29], [256], [49], [632], [883], [393], [652, 691, 895], [852], [93], [805], [53], [430], [626], [123], [892], [184, 170], [167], [209], [296], [987], [646], [320], [], [273], [832], [414], [34], [729], [340], [38], [136], [501], [335], [480], [103], [321], [849], [241], [726], [847], [], [836, 837], [240], [3], [76], [848], [651], [615, 465], [574], [656], [57], [594], [915], [362], [608, 515], [272], [457], [822], [888], [297], [640], [449], [425, 716], [517], [734], [440], [862], [], [12], [792], [738, 723], [773], [621, 412], [571], [], [479, 817], [1, 728], [], [22], [699], [857], [64], [66, 68], [6], [739], [], [619], [559], [240, 241, 238], [244], [921], [671], [166], [930], [568], [860], [821], [994], [255], [352], [646], [783], [786], [319], [358], [591], [923], [250], [23], [207, 692], [934], [269], [172], [834, 451, 457], [436], [692], [224], [451], [738, 580], [223], [815], [], [678], [443], [671], [946], [361], [432], [278], [], [349], [309], [269], [435, 876], [321], [738, 716], [315], [868, 968, 849, 505, 828], [], [386], [159], [361], [983], [874], [980], [849], [103], [236], [669], [201], [583], [941], [681, 810, 620], [505], [393, 108, 973], [671], [988], [538, 727], [277, 278], [471], [265, 266], [634], [745], [696], [578, 971, 982], [607], [582, 950], [437], [644], [543], [974], [], [894], [274], [126], [261], [947], [401], [100], [876, 445], [754, 632], [356], [289], [106], [676, 570], [569], [486], [385, 865], [650, 819], [973, 123], [809], [768], [227], [537], [444], [551], [760], [], [61], [908, 404, 812], [576], [734], [104], [], [19], [110], [], [83], [827, 534, 411], [350], [424, 423], [348], [973], [744, 657, 812], [382], [953], [911, 474, 894, 735], [324], [567], [], [420], [155], [], [841], [834, 906, 907], [505], [804], [286], [967, 441], [162], [128], [239], [6], [894], [123], [903], [478], [729], [], [99], [517], [677, 587], [2], [559], [437], [6], [651], [660, 757], [105], [872], [532], [119], [862], [583], [155], [316], [162, 882], [549], [809, 925], [235, 434], [440, 441, 455], [597], [86], [259], [450], [120], [8], [456, 872], [290], [723], [959], [756], [713], [631], [243], [962], [77], [], [714], [399], [940], [634], [986], [530], [98], [196], [360], [935], [148], [917], [606], [139], [973], [370], [446], [734], [529], [704, 444], [], [250], [41], [897], [193], [401], [821], [195, 811], [946], [819], [302], [251], [681, 620, 761, 508], [636], [273], [388], [911], [292], [546, 650, 818, 819], [993], [897], [487, 635], [384], [218, 215], [309], [258], [859], [221], [202], [462], [70], [997], [514, 655, 824], [463], [467], [732], [492], [368], [], [329, 126], [685], [408], [186], [700, 999], [647], [728, 703], [672], [492], [482], [928, 659, 949], [626], [715], [339], [581, 717, 479], [328], [431], [824], [247], [488], [279], [903, 650, 819, 851], [101], [692], [553], [35], [89], [888], [328], [580], [481], [278], [748], [40], [], [], [814], [722], [123], [410], [90], [874], [538, 727], [866, 595], [901], [276], [999, 700, 861], [508], [296], [654], [640], [226, 170], [651], [], [102], [433], [659], [], [614], [40], [278], [311], [852], [740], [135], [934], [139], [], [513, 875, 566], [382], [117], [734], [984], [592], [], [896, 804, 648, 861], [792], [353], [579], [947], [369], [879], [941, 942], [543], [521], [], [831], [890], [976], [840, 882], [763], [481], [273], [864], [221], [322], [705, 850], [521, 809, 827, 926], [284, 453], [993], [912], [728], [343], [], [575], [], [178], [400, 667], [670], [431], [], [955], [148], [329, 126], [836, 837, 869], [757], [68, 58], [775], [625], [129], [331], [138], [661], [969], [], [320], [621], [893], [603], [223], [505], [773], [], [913], [573, 479], [314, 126], [459, 445], [], [693], [805], [360], [913], [171], [615], [40], [785], [868, 968, 504], [72], [388], [23], [417], [793], [581, 479], [992], [853], [], [882], [317], [834, 630], [428], [503], [], [833], [569], [292], [309, 599], [938], [940], [695], [786], [104], [218], [314], [777], [398], [773], [498], [269], [], [175], [438, 728], [963], [475], [857], [912, 348], [], [138], [644], [851], [929, 452], [135], [116], [76], [31], [192], [271], [412], [790], [711], [205], [366], [995], [311], [627], [987], [581, 479], [], [321], [], [715], [], [357], [214], [840], [247], [], [191], [714, 679], [928], [140], [80], [232, 247], [606], [610], [486], [800], [568], [747], [527, 916, 664, 508], [288], [255], [915], [782, 664], [453, 454, 624], [463], [983], [583], [324], [652], [145], [385], [728, 636], [695], [295], [692], [209], [526, 799], [], [260], [204], [114], [228], [675], [782, 664], [347], [34], [780], [397], [314], [], [78], [114], [637], [865], [727], [], [417], [], [491], [891], [], [810, 878], [530], [262], [607], [531, 692], [391], [883], [104], [614], [453], [907, 440], [916], [254], [966], [], [502], [9], [659], [107], [953], [105], [749], [79], [376], [601], [861], [690], [942], [140], [638, 639], [326], [433], [515, 402], [342], [484], [915], [366], [883], [716], [983], [660], [673, 742, 526, 527, 782, 664, 508], [797], [343], [894], [558], [970], [548, 851, 598, 632], [830], [481], [945], [546, 402, 819], [991], [927], [521], [309], [133], [414], [327], [413], [70], [352], [160], [462], [918], [673, 526, 527, 664, 508], [711], [264], [274], [424, 423], [653], [335], [754], [465, 413], [], [544], [747], [893], [463], [869, 885, 568, 894], [433, 691, 983, 570], [594], [706], [647, 332], [441], [], [836, 837], [530], [84], [943], [829], [], [760], [], [396], [984], [629], [180], [229], [172], [520], [], [39], [207], [281], [356, 358], [297], [841], [106], [776], [], [225], [312, 311], [343], [405], [362], [993], [770, 842, 610], [870], [698], [220], [983], [424], [400, 667], [434], [748], [], [376], [203], [929], [887], [86], [], [47], [856], [575], [948], [751], [700, 999], [], [205], [284], [121], [442], [235], [622, 759], [541, 542], [537], [681, 620, 526, 527, 782, 664, 508], [991], [525], [926], [87], [72], [], [588, 790], [788], [375], [547], [739], [604], [777], [208], [], [236], [65], [132], [159], [], [276], [997], [129], [647], [637], [], [21], [489, 429, 981], [849], [868, 923], [208], [284], [960, 827], [773], [652, 413], [484, 871], [138], [613], [149], [358, 359], [454], [364], [429], [653], [677, 783], [308], [654], [850], [896], [146], [914], [45], [27], [690], [918], [734], [855], [423], [288], [33], [66, 68], [958], [481, 605], [581, 479], [990], [789], [948], [376], [279], [649], [588], [136], [244], [191], [472], [304], [], [320, 319], [629], [83], [265], [933], [259], [854], [736], [799], [284], [505], [172], [299], [543], [], [456, 489], [256], [], [205], [72], [903], [188], [85], [71], [545], [612], [982], [616], [475, 815], [505], [894], [815, 126], [776], [], [117], [180], [76], [], [858], [518], [622], [745, 851, 598], [946, 309], [445], [92], [127], [294], [472, 693], [570], [808, 879], [], [547], [595], [886], [551], [31], [966, 907, 572], [385], [214], [97], [491], [71], [652], [182], [505, 827], [152], [548], [661], [896, 943], [170], [165, 237], [671], [993], [258], [619], [619, 846, 504], [796], [798], [40], [649], [244], [912], [326], [280], [434], [36], [234], [958], [541, 542], [960], [659], [791], [908], [6, 976], [714], [150], [242], [187], [238], [987, 998, 463], [608, 652, 465, 597, 413], [650, 541, 819, 822], [395], [677], [329], [82], [404], [997, 947], [471], [58], [44], [33], [931], [333], [304], [974], [], [559], [280], [905, 721, 831], [555], [384], [82], [860], [592], [], [642], [995], [570], [923], [315], [762, 923], [513, 875], [868, 923, 521, 809, 926], [257], [801], [211], [580], [798], [227], [359], [746], [566], [660, 977, 978], [489], [247], [555, 247], [453], [565], [531], [762], [652], [43], [253], [443], [544, 469], [323], [702], [319], [485, 632], [820], [751, 573, 479], [972], [339], [15], [116], [111], [31], [989], [159], [973], [128], [525], [692, 790], [66], [565], [30], [212], [638], [], [456], [485, 851, 632], [225], [253], [807], [607], [467], [6], [641], [881, 579], [297], [492], [554], [418], [860], [379], [537], [67], [169], [673, 681, 620, 905, 526, 508], [803], [853], [751, 479], [757], [642], [], [194, 175], [984, 985], [562], [915], [675], [937], [71], [61], [288], [592], [711], [106], [59], [], [477], [873], [860], [79], [496], [435], [], [], [185], [331], [493], [232], [637], [31], [172], [469, 567, 505], [659], [670], [657], [193], [944], [559], [937, 941], [460, 437], [924], [326], [589], [228], [682], [907, 440], [764, 413], [7], [168], [570], [673, 681, 810, 620], [167], [12], [229], [907], [89], [896, 285], [514], [621], [], [391, 758], [], [670, 518], [671], [185], [599], [343], [326], [624, 884], [594], [306], [965], [581], [210], [410], [90], [485], [261], [584], [798], [141], [280], [51], [774], [320], [358, 360], [260], [456], [49], [810, 508], [551, 629, 631], [621], [295], [946], [], [821, 444], [606], [331], [711], [591], [], [333], [227], [329], [37], [948], [906, 834, 501, 630], [388], [789], [638, 639], [636], [203, 186], [246], [638, 639], [494], [110], [136], [154], [626], [866, 661], [484], [620, 681], [85], [425], [151], [94], [24], [380], [594], [590], [144], [488, 778, 600], [463], [49, 50], [193], [132], [201], [137, 975], [431, 281], [867, 517, 536, 510], [34], [], [218], [84], [97], [933], [320, 319], [599], [709], [698], [818], [255], [814], [905], [211], [711], [782, 851], [409, 892], [], [809, 923], [585], [588, 790], [554], [970], [34], [117], [673, 526, 527, 664, 508], [470], [101], [96], [371, 382], [228], [335], [414], [327], [126], [265], [], [618], [720], [803], [357], [582], [], [], [713], [851], [479], [431], [548], [721, 831], [330], [842, 764], [591], [236], [589], [505], [106], [228], [503], [713], [331], [651], [222], [149], [], [284], [810, 878], [707], [150], [467], [547], [850], [964], [586], [630], [180], [708], [342], [66], [], [874], [558], [], [195], [950], [20], [524, 461], [645], [514, 655], [169], [504], [612], [733], [965], [157], [382], [212, 251], [40, 46], [476], [166], [578, 982], [394], [187], [449, 536], [19], [752, 852], [809], [825], [447], [745], [208], [545], [407], [670, 518], [802], [941], [140], [200], [267], [73, 74], [985], [593], [], [387], [238], [826], [741, 697], [721], [642], [167], [930], [915], [585], [573], [546], [310], [927], [538, 668], [71], [887], [810, 878], [551, 629], [351], [44], [623, 784], [738], [160], [561], [164], [461], [136], [284], [86], [], [93], [], [835], [755], [57], [537], [243, 254], [923, 959], [248, 250], [], [], [], [974], [295], [90], [975, 698], [979], [719], [900], [710], [302], [449, 536, 557, 733], [383], [434, 435], [579], [276], [773], [280], [649], [338], [824, 735], [865], [431, 850], [144], [834, 435], [305], [978], [211], [538], [406], [676], [677], [389], [765], [819], [564], [992], [718], [792], [347], [870], [874], [371], [267], [795], [421, 981], [758], [33], [856], [60], [382], [985], [500], [605], [979], [770], [375], [6], [666], [884], [300], [702], [274], [789], [877], [479], [], [673, 681, 620, 526], [643], [340], [732], [842, 433, 638, 639], [145], [809], [], [849], [687], [397], [237], [839], [763], [487, 590], [222], [801], [616], [294], [482], [327], [532, 762], [], [881, 579], [807], [926], [781], [836, 837], [534], [869], [356], [514, 836, 837, 869, 501, 636], [924], [574], [494], [401], [588], [825], [266, 267], [7], [349], [635], [484], [893], [652, 847], [], [345, 690, 462, 463], [743], [619, 846], [842], [], [211], [9], [], [], [910], [309], [139], [906], [73], [930, 907, 470], [934, 923], [40, 46], [759], [152], [397], [936], [22], [], [963], [773], [630], [352], [954], [684], [918], [10], [191], [653], [242, 243], [], [561], [88], [145], [198], [147], [43], [773], [913], [23], [43], [264, 263], [915], [60], [930, 931, 415], [740], [84], [68], [479], [652, 465, 413], [745], [253], [828], [], [699], [254], [702], [41], [922], [457], [379], [83], [479, 511], [160], [796], [203], [447], [494], [770], [944], [839], [834, 836, 837, 457], [871], [236], [62], [184], [260], [153], [715], [144], [176], [], [966, 532, 470, 762, 923, 572], [262], [578, 903], [760], [605], [797], [64], [154], [570], [872, 759], [301], [659], [294], [575], [990], [552], [31], [336], [884], [954], [758], [901], [], [315], [873], [549], [406], [517], [151], [223], [920, 405], [898], [616, 913], [416, 602], [227], [918], [215], [565], [841], [991], [962], [648], [769], [214], [168], [483], [504], [284], [593], [337], [966, 907], [415], [665], [968, 532, 762, 923], [283], [98], [457], [], [690, 345], [468], [114], [608, 836, 837], [382], [344], [877], [569], [608, 617, 438], [459, 445], [211], [383], [977], [], [60], [171, 173], [280], [735], [949], [414], [792], [327], [343], [45], [830, 678], [127], [784], [327], [438], [949], [641], [252], [993], [340], [773], [111], [956], [656], [257], [803], [104], [673, 742, 526, 527, 782, 664, 508], [995], [379], [814], [673, 742, 508, 526, 664, 782, 412], [798], [635], [582, 631], [30], [822], [512], [689], [888], [349], [533], [537], [940], [537], [399], [429], [334], [694], [14], [52], [677], [99], [62], [412], [469], [834, 650, 402], [471], [199], [89], [321], [976, 977, 978], [46], [638, 639], [712], [401], [362], [450], [349], [805], [45], [433], [566], [987, 998], [85], [945], [928, 923, 960], [160], [217], [17], [659], [798], [769, 533, 824], [890], [], [359], [663], [179], [485], [353], [962], [51], [294], [], [309], [94], [483], [984], [964], [716], [500], [726], [718], [], [582, 519, 945, 948, 950], [272], [714], [894], [418], [723], [933, 923], [282], [974], [530], [962, 813, 567, 505, 827], [176], [627], [836, 875], [], [363], [], [852], [19], [177, 172], [926], [739], [348], [507], [362], [400], [991], [605], [66], [409], [383], [622, 759], [2, 3], [963], [478, 592], [580], [581, 479, 627], [845], [49], [216], [984], [148], [], [729], [385, 716], [425], [990], [622], [809, 618, 926, 959], [790], [182, 607], [534], [], [560], [350], [], [376], [92], [699], [801], [671], [417], [90], [484], [916], [572], [57], [877], [625], [479], [810, 508], [262], [118], [426], [159], [1], [905], [283], [508], [553], [879, 638, 639], [724], [389], [332], [250], [739], [475], [192], [91], [715, 652], [438], [396], [61], [401], [362], [920], [533], [327], [517], [145], [364], [572], [771], [689, 578], [518], [821], [296], [107], [582, 939, 940, 943], [297], [148], [829], [608], [916], [793, 830], [226], [941], [178], [845], [665], [159], [497], [535], [641], [839], [366], [514], [758], [673, 664, 526, 527, 782, 508], [756], [800], [855], [518], [], [], [], [905], [722], [319], [744, 652, 847, 657], [805], [771], [753, 282], [713], [872, 622, 759], [347], [808], [606], [530], [867], [76], [977, 978], [958], [850], [], [], [174], [707], [604], [424, 423, 636], [702], [559], [343], [662], [404, 895], [502], [931], [268, 179], [849], [418], [909, 923, 926], [501, 665], [18], [424], [423], [291], [568], [581], [708], [481], [187], [803, 555], [192], [595], [491], [737, 455], [], [641], [782, 664, 281, 285], [93], [783], [], [603], [731], [713], [], [84], [268], [567], [556], [618], [568, 655], [901], [321], [155], [981, 429], [692], [159], [318], [866, 575], [669], [201], [181], [968], [668], [641], [942], [263], [98], [958], [143], [681, 620, 526], [869], [927], [437], [662], [537], [358], [270], [248], [833, 913], [685], [419, 719], [404], [923, 934, 933], [928, 572], [], [695], [], [486], [962], [563], [26], [758], [752], [336], [752], [610], [95], [104], [], [633], [400, 667], [495], [533], [192], [8], [224], [594], [533], [884], [909, 532, 883], [518], [482], [194], [168, 159], [841, 894], [105], [31], [984], [678], [652], [669], [737, 901, 440], [682], [857], [310], [], [738, 834, 906], [], [326], [93], [913], [427], [583], [372], [878], [375], [242], [418], [643, 454, 917], [15], [962], [397], [316], [548], [520], [93], [468], [548, 851, 789, 632], [101], [38], [446], [481, 482], [], [568, 748], [440], [473], [150], [488], [95], [431], [578], [64], [510], [895], [], [597], [724], [399], [334], [35], [951], [288], [182], [177], [417], [820], [205], [], [654], [415], [123], [201], [207, 208], [], [241], [204], [615], [511, 581, 479], [512], [], [494], [89], [276], [], [713], [850], [999, 700], [699], [571], [453, 606], [732], [754], [285], [452], [], [139], [15], [755], [240], [851], [812], [723], [65], [139], [753], [221, 206], [581, 717], [972], [306], [339], [653], [80], [422], [390], [521], [514], [], [182], [611], [542], [342], [646], [311], [], [230, 478], [316], [402], [858], [612], [645], [330], [544, 521], [497], [584], [521], [607], [531], [], [593], [813], [100], [157], [364], [616], [521], [724], [440, 441], [199], [241, 238], [890], [523], [532], [585], [263], [662], [687], [349], [751], [90], [237], [781], [909, 828, 926], [168], [880], [956], [619], [486, 401], [523], [603], [846, 883, 532], [632], [187], [433, 693], [579, 881], [770, 979], [469], [718], [64], [589], [202], [238], [293], [229], [863], [], [416], [922], [892], [418], [573, 479], [515], [262], [958], [55], [303], [787], [529, 793, 831], [926], [], [141], [902], [9], [], [948], [845, 531], [746], [423, 424, 892], [462], [318], [314], [920], [759], [995], [484], [275, 276], [658], [541], [831], [690, 346], [205], [583], [424], [29], [87], [824], [18], [521], [513, 683, 558, 432], [451], [361], [745], [162], [316], [100], [438], [861], [666], [770], [605], [543], [129], [528], [782, 664], [583], [722], [724], [959], [177, 170], [888], [495], [189], [109], [54], [243], [531], [473], [659], [809, 969], [14], [594], [67], [193, 191], [58], [770], [208], [547], [232], [834, 836, 837, 906], [762], [423], [877], [274], [163], [928], [347], [54], [589], [407], [671], [740], [553, 493], [391], [962, 987, 923], [133], [836, 837, 629], [353], [], [554], [192], [633], [855], [232, 250], [307], [531], [713], [64], [311], [490], [62], [329], [694], [587], [102], [259], [378], [627], [], [49], [421], [82], [547], [203], [], [626], [993], [888, 839], [566], [62], [272], [891], [450], [319], [], [163], [985], [668, 562], [961], [681, 620, 526], [296], [], [428], [802], [930, 966, 907], [192], [522], [736], [240, 241, 238, 239], [314], [933], [], [552, 283], [535], [9], [387], [638, 639], [875], [519], [], [443], [], [], [704], [453], [811], [383], [116], [474], [205], [425], [632], [152], [], [160], [935], [334], [932], [705, 537, 248], [79], [981, 429], [723], [681, 620, 526, 664, 508], [349], [841], [860], [806], [], [406], [39], [389], [155], [238], [984], [654], [413], [676, 246], [872], [532], [885], [723], [111], [264], [546, 818, 819, 541], [426, 635], [454], [75], [98], [205, 246], [270], [992], [537], [510], [843], [271], [892], [321], [750], [565], [750, 735], [847], [924], [51], [575], [142], [574], [203], [683], [44], [626], [490], [208], [589], [878], [377], [799], [11], [275], [115], [265], [692], [321], [938], [496], [200, 244], [285], [], [179], [217], [616], [], [660], [698, 538], [708], [672], [664, 851], [131], [204], [362], [582, 943], [219], [868, 935, 809, 923], [273], [402], [571], [603], [626], [546, 402, 819], [957], [], [827], [496], [946], [187], [881], [281], [995], [475], [280], [146], [551], [425], [892], [618], [], [34], [390, 149], [758], [595, 730], [960], [307], [87], [819], [765], [727], [269], [175], [673, 681, 268, 620, 508], [683], [355], [841], [353], [262], [195], [383], [810, 878], [203], [328], [899], [733], [827], [367], [718], [986], [605], [757, 535], [618, 909, 827], [907, 440], [4], [521], [923], [], [674], [491], [758], [243], [806], [23], [679], [573], [816], [780, 914], [466], [644], [188], [], [873], [619], [419], [884], [567], [259, 261], [735], [801], [118], [424, 589], [521, 618, 809], [910], [181], [204], [], [741, 765], [44], [612], [313], [531], [529], [377], [902], [973], [921, 917], [934], [339], [803], [609], [820], [119], [676], [505], [110], [540], [682], [271], [488], [843], [629], [174], [651, 504], [], [874], [701], [667], [27], [577], [201], [31], [979], [927], [836, 837, 970], [435, 281], [918], [526], [38], [857], [476], [605], [628], [539, 316], [572], [233], [771], [666], [867], [596], [], [164], [388], [992], [412], [802], [988], [877], [268], [523], [87], [517, 600], [513, 650, 819], [], [569], [970], [219], [86], [320, 319], [44], [436], [962, 923], [2], [178], [424, 423], [853], [525], [], [589], [93], [190], [931, 868], [901], [722], [], [794], [809, 923, 925], [905], [821, 693], [224], [374], [775], [98], [886], [752], [139], [578, 585, 982], [22], [57], [460, 437], [810, 878], [287], [988], [451], [587], [361], [459, 445], [479], [822, 542], [100], [], [647], [574], [546], [], [604], [629], [557], [683, 558], [654, 734], [170], [629], [397], [297], [333], [252], [597], [823], [324], [421], [277], [834, 432], [858], [280], [430], [392], [941], [548, 851], [494], [158], [], [515], [89], [583], [266], [719], [467, 499], [264], [628], [788], [], [9], [569], [182], [162], [764, 413], [43], [760], [], [364], [920], [871], [351], [45], [], [591], [], [115], [141], [32], [516, 431, 797], [987, 998], [40], [686], [613], [352, 138], [576], [451], [539], [557], [908], [235], [142], [90], [659, 700], [300], [343], [], [409, 826], [718], [557], [826], [725], [522], [602], [63], [827], [406], [], [481], [777], [345, 730], [270, 279], [923], [327], [387], [779], [113], [867], [467], [989], [203], [108], [372], [474], [508], [760, 737, 886], [776], [61], [83], [220], [54], [721], [195], [765], [355], [644, 470], [93], [597], [763], [135], [608], [230, 232], [889], [376], [184], [], [111], [17], [364], [826], [53], [496], [797], [263], [505], [105], [717, 733], [639], [681, 620, 508], [762], [], [755], [49, 50], [897], [450], [240], [850], [693, 472], [880], [672], [217], [337], [948], [142], [989], [740, 440], [156], [591], [950], [204], [697], [234], [], [297], [926], [978], [25, 28], [324], [385], [454], [762], [673, 664, 526, 527, 508], [7, 8], [342], [159], [592], [806], [818], [613], [950], [900], [142], [878], [462], [501], [25], [915], [942], [373], [109], [87], [953], [364], [487, 619, 526, 846, 504], [62], [849], [605], [390], [4], [153], [340], [836, 837], [899], [606], [288], [102], [174], [587, 784, 477], [791], [557, 858, 738], [237], [405, 538, 603], [913], [436], [951], [10, 15], [208], [671], [670], [823], [154], [366], [40], [880], [672], [244], [392], [740], [830], [], [932], [992], [650], [811], [478], [624, 453, 454], [280], [15], [631], [351], [279], [963, 966, 532, 762, 923, 572], [902], [912, 716], [974], [387], [608, 741], [670], [111], [738], [286], [738], [944], [54], [294], [652, 764], [723], [112], [361, 759, 794], [], [246], [777], [777, 499], [19], [462], [92], [564], [109], [449], [254], [727], [428], [168], [415], [590], [479], [615], [66], [524, 461], [602], [990], [990], [], [733, 127], [983], [573], [474], [147], [], [539], [468, 407], [981], [309], [996], [160], [373], [663], [620, 508], [466], [85], [660], [792], [865, 850], [242, 180], [281], [502], [789], [524], [803], [682], [104], [729], [], [228], [259], [252], [339], [417, 866, 595], [208], [], [776, 650, 819], [57], [], [608], [643], [], [232, 248], [738], [90], [808], [820], [999], [640], [610], [611], [294], [617], [], [834, 906, 893], [784], [334], [403], [931], [389], [289], [188], [], [], [707], [987, 998], [503], [576], [524, 461], [619, 846], [338], [524], [], [267], [449], [15, 91], [277], [111], [73, 815], [613], [383], [143], [496], [968, 504], [849, 827], [365], [239], [666], [109], [550, 521, 651], [888], [77], [], [661], [968, 114, 504], [512], [672, 970], [490], [748], [272], [658], [962, 942], [373], [463], [140], [809, 567], [568, 825, 608], [620, 508], [], [560], [932, 415], [853], [745], [713], [981, 429], [679, 488, 695], [106], [536, 540, 510], [578, 689, 982], [50], [524, 461, 715], [263], [560], [525], [117], [732], [826], [137], [284], [608, 423], [64], [795], [], [185], [571], [89], [210], [339], [244], [151], [670], [711], [101], [50], [213], [715, 524], [708], [676, 269], [534], [479, 751], [], [520], [440], [977], [], [948], [], [70], [890], [489], [358], [868], [823], [171], [921, 764], [779], [887, 497, 406], [967], [370], [780], [10], [714], [890], [81], [92], [785], [587, 477], [737, 582, 440], [416], [138], [452], [444], [532], [9], [986], [667], [395], [897], [423], [89], [339], [764], [709, 836, 837, 767], [672], [370], [618, 469], [10], [991], [971], [67], [616], [281, 282], [659], [909], [832], [834, 906, 400], [837, 582, 954], [927], [699], [458], [110], [867], [], [690, 345], [335], [], [150], [221], [580], [308], [544], [271], [176], [316], [102], [], [346], [234], [714], [552], [828], [813], [26], [], [269], [232], [522], [437], [249], [708], [], [836, 542, 822], [600], [446], [125], [857], [278], [], [418], [655], [162], [477], [623], [970], [508], [697, 478], [756], [985], [], [593], [338], [13], [57], [230, 231], [649], [987, 943], [], [860], [193], [290], [318], [675], [360], [436, 479], [], [589], [238], [772, 488], [481], [947], [441], [770, 674], [491], [5], [86], [424], [100], [537], [332], [596], [783], [43], [563], [117], [305], [259], [869, 457], [687], [988], [186], [804], [99], [213], [554], [933], [400, 667], [318], [652], [619], [], [123], [988], [829], [280], [223], [578], [818], [534], [230], [552], [673], [672, 669], [698], [308], [144], [211], [222], [916], [8], [234], [301], [321], [8], [487], [44, 633], [346], [514], [640], [803], [882], [571], [820], [494], [673, 620, 527, 664, 508], [70], [519], [166], [582], [590], [19], [316], [524, 461], [80], [724], [931], [], [127], [888], [756], [458], [688], [4], [20], [773], [398], [203], [395], [795, 615], [735], [905], [23], [631], [772], [555], [263], [64], [796], [467], [727, 538], [222], [], [], [277], [358], [471], [328], [832], [289], [741], [399], [112], [867], [10], [22], [832], [234], [647, 332], [896, 804], [], [241, 238], [], [326], [523], [], [12], [65, 973], [477], [370], [681, 620, 526, 664], [267], [728], [834], [615], [920], [553], [201], [822], [789], [710], [], [715], [387], [458], [418, 623], [95], [898, 762, 572], [485, 526], [363], [380], [74], [538, 858], [392], [769, 438], [389], [930], [563], [426], [29], [798], [844], [696], [470], [194], [383], [], [922], [198], [880], [543], [291], [40, 46], [953], [980], [297], [310], [183], [849], [174], [], [433], [679], [835], [725], [546, 806], [156], [235], [727], [418], [260], [529], [517], [21], [553], [97], [771], [780], [945], [], [388], [822], [605], [891], [207], [], [319], [943], [672], [643, 903], [905, 532, 799], [208], [292], [478], [156], [], [89], [883], [545], [875], [448, 637], [230], [520], [184], [190], [561], [965], [317], [759], [35, 37], [], [99], [993], [2], [868], [692], [76], [244], [169], [646], [903], [], [205], [772], [185], [145], [80], [936], [236], [21], [263], [873], [696], [960, 910], [582], [994], [], [464], [193, 189], [419], [486], [342], [831], [199], [1], [735], [], [807], [809, 925], [572], [677, 587, 783, 784], [251], [778], [311], [325], [777], [768], [143], [311], [45], [], [420], [609], [961, 499, 728], [644], [881], [913], [130], [16], [472], [836, 837, 445], [862], [675], [187], [896], [884, 501], [695], [610], [391], [696], [867], [779], [167], [904], [812], [761], [652, 597, 764, 413], [835], [], [735], [126], [634], [998], [927], [0], [540], [659, 556, 827], [101], [48], [586], [811], [187], [131], [442], [576], [484, 536], [842], [738], [393], [367], [], [973], [284], [467], [58], [38], [985], [720], [644], [90], [97], [260], [38], [915], [479], [561], [616], [497, 406, 857], [68], [595], [344], [303], [490], [59], [842], [829], [584], [356], [544], [673], [80], [60], [253, 846], [504], [188], [902], [834, 906], [329], [624], [0], [795], [865], [697, 610], [641], [389], [547], [20], [235, 174], [754], [], [608], [165], [381], [0], [978], [658], [650, 402, 819], [209], [432], [561], [241], [], [426], [117], [295], [662], [382], [236], [637], [394], [793], [358], [544], [305, 302], [165], [427, 756], [181], [918], [645], [585], [808], [69], [993], [303], [135], [165], [87], [324], [679, 455], [814], [198], [918], [223], [240, 238], [370], [462], [979], [29], [4], [122], [], [338], [411], [211], [772], [557], [879, 242, 850], [531], [688], [5], [251], [761], [158], [491], [591], [384], [225], [571], [113], [259], [], [18, 86], [815], [955], [133], [294], [63], [795, 703], [483], [265], [910], [292], [140], [905], [270, 207], [535], [205], [603], [537], [804], [553], [165], [654], [155], [164], [], [996], [913], [971], [42], [714], [182], [54], [240, 241, 238, 239], [938], [744, 657], [908, 404], [240, 241], [318], [784], [185], [591], [424], [920], [375], [492], [471], [687, 406], [238, 241], [501], [], [327], [774], [41], [718], [], [133], [89], [736], [79], [627, 795], [], [768], [417], [769, 418, 772, 623], [595], [], [753, 894], [135], [416], [77], [63], [495], [766], [], [972, 825], [892], [997, 947], [588], [895], [692], [952], [54], [938], [909], [288, 290], [732], [892, 409], [383], [297], [], [731, 861], [64], [80], [98], [766, 341], [204], [257, 222], [524, 461], [933], [648], [242], [329], [478], [355, 912], [535], [35], [311], [884], [464], [760], [527, 664, 508], [], [453], [386], [800], [191], [716, 765], [329], [698], [578, 982], [851, 548], [33], [710], [14], [161], [105], [73], [854], [410], [102], [], [], [136], [137], [841], [310], [400, 667], [47], [506], [572], [270], [85], [764], [692, 969, 588, 728], [21, 22], [325], [798], [33], [141], [109], [673, 681, 620, 526, 527, 664], [794], [500], [567], [335], [506], [829], [33, 983], [45], [965], [550], [447], [510], [933], [976], [109], [643], [987, 998], [400, 667], [371], [686], [25], [], [864], [37], [681, 620], [196], [744], [473], [849], [612], [542], [675], [58], [], [612], [253], [805], [], [368], [412], [647], [768], [93], [260], [], [200], [277, 278], [775], [902], [382], [36], [357], [198], [568], [374], [171], [105], [762], [474], [166], [], [846], [855], [25], [727], [893], [432], [820], [801], [962, 923], [405], [721], [2], [911], [16], [652, 465], [], [741], [849, 725], [571], [582], [122], [555], [909, 567], [957], [360], [38], [332], [760, 664], [855], [644], [930], [591], [610], [66], [728], [524, 461], [511], [253], [769], [224], [694], [817, 479], [595], [949, 953], [692], [683, 558], [212], [294], [615], [626], [441], [57], [233], [], [363], [821], [], [], [149], [], [207], [842, 500], [679], [756], [64], [676], [399], [710], [852], [548], [946], [320], [884], [389, 391], [404], [945], [485], [392], [], [83], [648], [864], [466], [25], [], [748], [450], [239], [113], [666], [755], [91, 14], [0], [323], [393, 108], [547], [809, 923, 926], [52], [42], [428, 670], [9], [471], [736], [476], [685], [458, 401], [420], [300], [], [625], [986], [553, 493, 883], [915], [164], [122], [], [545], [42], [780], [963, 964, 567, 572], [17], [565], [458], [761, 223], [669], [95], [], [224], [886], [27], [196], [353, 372], [782, 664, 810, 508], [456], [860], [217], [183], [281], [975], [71], [763, 597], [634], [881], [937, 923, 963], [857], [738, 949], [527, 664, 508], [92], [21], [716], [229], [67], [384], [752], [], [544], [98], [983], [273], [881], [400, 667], [754], [680], [139], [], [329, 108], [554], [756], [544], [173], [394], [506], [986], [140], [768], [776], [799], [865], [], [481], [272], [880], [810, 878], [532], [125], [350], [39], [950], [852], [41], [911], [528], [759, 622], [700], [844], [477], [90], [554, 628], [720], [652], [737, 455, 760, 440], [499], [104], [], [964], [459], [557], [41], [795], [], [67, 58], [833], [322], [490], [948], [964], [507], [429], [926], [917], [84], [716], [716], [411], [74], [707], [642], [472], [280], [61, 62], [262], [342], [618], [7], [670], [341, 342], [841], [622, 759, 478], [195], [236, 237], [], [517], [226], [357], [864, 717], [938], [450, 462], [39], [134], [763], [83], [900], [323], [353], [739], [19], [668], [317], [865], [], [222], [896], [19], [], [654], [319], [463], [30], [905], [879], [27], [548, 851], [168], [122], [977], [882], [67], [949, 953], [96], [584], [57], [716], [711], [], [533], [420, 559], [232], [849], [866], [793], [836, 837, 151], [981], [385, 101], [581, 818], [162, 167], [396], [367], [281], [964], [898], [530], [619, 750, 846, 721], [143], [], [509], [52], [206], [552], [574], [707, 886], [275], [429], [448], [512], [515], [], [709], [226], [543], [477], [973], [544], [853], [265], [812], [306], [], [519], [640], [62], [59], [392], [548], [827], [372], [364], [835], [5, 6], [297], [0], [], [328], [497], [946], [721], [138], [593], [904], [93], [862], [769], [403], [487], [969], [488, 635], [898], [53], [39], [358, 359], [686], [666], [493], [391], [771], [7], [864, 919, 733], [124], [380], [928, 923, 960], [78], [174], [230, 231], [437], [127], [88], [608, 718, 975], [178], [135], [66], [64, 55], [484], [], [586], [975], [327], [543], [789], [179], [43], [518, 671], [497], [113], [238], [354, 676], [968], [289], [891], [849, 725], [389], [791], [652, 465], [554], [457, 338], [722], [22], [382], [891], [948], [377], [686], [985, 324], [374], [284], [915], [], [954], [561], [711], [710], [], [789], [], [480], [171], [382], [628], [893], [115], [642], [488], [368], [256], [636], [158], [714], [], [726], [504, 985], [], [137], [668], [581], [133], [962, 923], [631], [708, 698, 671], [125], [907, 440], [772], [86], [], [118], [288, 290], [487], [438], [50], [28], [379], [108], [], [696], [83], [626], [253], [673, 681, 620, 664, 526, 527, 508], [112], [396], [770], [865, 850], [152], [847], [936], [22], [593], [776], [562], [769], [549], [339], [793, 697], [41], [654], [], [863], [888], [370], [962, 762, 966, 532, 923, 572], [146], [489], [51], [755], [491], [526], [940], [9], [383], [575], [181], [347], [496], [783], [513, 683, 875, 558], [600], [789], [960, 923], [529], [372], [815], [295], [566], [189], [845], [170], [589], [377], [], [750, 655], [139], [684], [595], [869, 618, 824], [842, 445], [517], [223], [903], [833], [800], [250], [], [], [454], [163, 168], [299], [432], [719], [417], [62], [980], [575], [], [850, 220], [156], [298], [367], [167], [194], [407], [547], [481], [36, 58], [91], [700, 999], [203], [633, 937, 333], [354], [678, 636], [315], [187, 700], [948], [849], [543], [807], [351], [918], [328], [453, 633], [834, 906, 630], [802, 518], [677], [520], [236, 237], [924], [129], [21], [595, 866], [832], [], [], [646], [182], [46], [367], [985], [995], [760], [384], [556], [722], [], [412], [], [10], [354], [168], [545, 589, 861], [96], [25], [101], [150], [225], [472, 693], [235], [194], [294], [491], [109], [416], [150], [249], [140], [285], [867], [787], [886], [986], [437], [244], [482, 754], [52], [497], [], [811], [305], [368], [302], [160], [290], [469], [], [531], [565], [677], [933], [656], [756], [223], [834, 906], [13], [582, 692, 790], [983], [889], [], [92], [35], [254], [685], [552], [578], [504], [781], [430], [696], [690], [928], [898, 836, 837, 774, 842, 502], [288], [560], [208], [453], [153], [995], [562], [216], [267], [523], [252], [566], [893], [467, 341], [108], [72], [545], [597], [10], [659], [475], [228], [736], [807], [883, 532, 762, 923, 572], [930], [355], [562], [847], [872, 447], [], [365], [64], [], [271], [145], [613], [325], [261], [654], [670], [301], [412], [994], [747], [470], [], [404], [859], [682, 562], [853], [997], [232], [78], [399], [922], [], [946], [371], [855], [615], [734], [601, 578, 689], [212], [], [864], [165], [47], [113], [418], [741], [735], [738, 944], [742], [789], [651], [572], [142], [299], [110], [502], [916], [171], [484], [673, 526, 527, 664, 508], [738], [823], [235], [97], [990], [595], [459], [930], [104], [555], [594], [624, 454], [126], [569], [827], [1], [343], [18], [], [139], [643, 474], [420], [458], [], [853], [], [886], [698], [939, 943], [812], [342], [74], [132], [82], [279], [228], [802], [947], [425], [844], [399], [25], [381], [394], [63], [297], [], [477], [21], [552, 151], [135], [338], [424, 423], [482], [876, 435], [524, 461, 501], [498], [178], [84], [602], [328], [900], [103], [703, 323, 998], [281], [588], [145], [441], [440], [1], [450], [404], [680], [864, 627], [231], [122], [29], [900], [97], [624], [546], [171, 268], [894], [887, 406], [508], [25, 28], [723], [671], [148], [269], [889], [514, 464], [557], [709, 748], [419], [198], [160], [166], [836, 837], [188, 189], [68], [359], [462, 792], [], [160], [454, 917], [487], [762], [583], [97], [46], [630], [877], [652], [109], [400, 667], [110], [254], [754], [253], [296], [293], [359], [448], [117], [99], [267], [606], [990], [11], [531], [79], [507], [802], [719], [488], [], [798], [953], [323], [398], [130], [226], [311], [65], [287], [901], [144], [361], [218], [650], [673, 681, 620, 526, 527, 664, 508], [130], [621], [739], [577], [465, 413], [530], [106], [122], [491, 634], [68], [256], [688], [836, 837, 869], [307], [758], [573], [687], [641], [792], [], [855], [99], [564], [309], [913], [700, 999], [451], [725, 505], [5, 6], [431], [420], [713], [190], [], [548, 851], [630], [722], [28], [646], [606], [428], [587, 784, 477], [91], [959], [718], [626], [668], [476], [500], [920], [555], [284], [524, 461], [33], [89], [991], [99], [188], [221], [476], [274], [607], [184], [304], [], [165], [299], [153, 266], [457, 920], [20], [75], [766], [489], [162], [376], [108], [818], [630], [535], [899, 725, 572], [630], [910], [833], [], [412], [], [893], [589], [938], [783], [384], [], [333], [716], [262], [701], [249], [240, 241], [221], [369], [], [133], [378], [437], [131], [698], [921, 692, 917], [623, 917], [619, 846, 721, 831], [889], [441], [549, 692], [70], [459], [784, 587], [147], [841], [318], [627], [343], [507], [489, 243], [391, 758], [911], [736], [884], [883], [991], [618], [758], [754], [873], [39], [379], [518], [261], [830], [569], [], [21], [451], [291], [72], [753], [489], [802], [531], [674], [698], [832], [157], [47], [], [888], [406], [778], [515, 836, 837], [694], [596], [], [424], [907, 470], [573], [225], [56], [850, 760], [465], [684], [850, 765], [950, 951], [365], [881], [43], [], [108], [61, 62], [952], [92], [82], [913], [503], [567], [589], [481], [246], [756], [53], [599], [793], [200], [244, 537], [58], [178], [904], [363], [988], [616], [126], [], [551], [83], [632], [400], [442], [], [70], [81], [716], [311], [391], [335], [965], [], [433], [685], [334], [343], [474], [395], [180], [14], [977, 978, 437], [761], [247], [152], [221], [973], [355], [341, 572], [374], [661], [412], [977], [558], [742], [133], [], [259], [895], [442], [105], [117], [530], [216], [847], [772], [805], [849], [], [44], [824], [298], [983], [340], [960, 931, 923], [903], [353], [162], [], [364], [843, 602], [348], [494], [485, 632], [402], [100], [352], [704], [4], [51], [855], [732], [176], [214], [], [849, 505], [107], [79], [730], [185], [757], [13], [844], [708], [624, 453, 454], [319], [79], [527, 592, 664], [215, 218], [943], [250], [992], [519], [533], [986], [922], [610], [633, 769], [21], [475], [309], [716], [42], [560], [222], [796], [514, 515], [325], [498], [216], [497], [591, 721, 885], [839], [378], [612], [893], [653], [956], [], [878], [374], [417], [569], [], [686], [328], [], [], [688], [725], [423], [], [65], [711], [761], [643], [987, 998], [720], [543], [], [303], [], [389], [235], [1], [86], [760], [38], [9], [612], [785], [780], [80], [50], [103], [939, 943, 945], [564, 750], [854], [857], [253], [113], [981], [178], [470], [119], [210, 852], [448, 637], [882], [526, 784], [651], [], [878], [351], [33], [771], [578], [735], [681, 620, 508], [], [4], [107], [311], [71], [270], [967, 504], [102], [246], [699], [408], [940], [], [510], [578, 689, 601], [182], [], [881], [946], [186], [683], [517, 540, 510], [946], [508], [630], [281], [323], [155], [297], [], [619, 846], [555], [882], [], [992], [613], [843], [796], [733, 541, 542], [546, 650, 402, 818, 819], [133], [465], [85], [436], [16], [731], [119], [441], [457, 834], [252], [529, 667], [982], [909, 567, 827], [619, 750, 846, 721], [360], [726], [822], [190], [108], [637], [417], [90], [172], [836, 837], [339], [764], [804], [90], [30], [234], [331], [600], [506], [960, 582], [419], [797], [620], [173], [744, 657], [135], [863], [813], [935], [824], [494, 442], [261], [787], [], [191], [781], [372], [753], [526], [148], [963, 945], [375], [770, 788], [296], [854], [908, 895], [488], [439], [121], [314], [101], [275], [618], [558], [582, 937, 938], [404, 895], [386, 101], [305], [733], [165, 234], [608, 428], [396], [], [88], [430], [625], [594, 579], [74], [309], [638, 639], [], [298, 63], [622], [821], [658], [617], [348, 349], [1], [694], [695], [809, 926], [785], [244], [951], [520, 431], [487, 605], [606], [406], [199], [624], [76], [609], [743], [933], [131], [548, 598, 632], [836, 837, 655], [762], [553], [254], [178], [197], [553], [88], [555], [6], [514, 515], [245, 183], [15], [488, 679], [], [717], [920], [267], [989], [999], [634], [313], [400, 667], [366], [839], [635], [851, 632], [713], [597], [71], [435], [888], [457, 834, 906], [787], [292], [400, 667], [808], [176], [975], [106], [748], [487, 590], [104], [30], [973], [818], [20], [866], [], [514, 655], [643, 306], [251], [518, 652, 465, 413], [597], [565], [407], [738], [21], [814], [883], [956], [365, 379], [431], [312], [872], [695], [621], [928], [187], [199], [625], [578], [179], [750, 414], [263], [972], [51], [367], [], [402, 881], [961, 963, 964], [655], [852], [887], [891], [809, 925, 923], [], [458], [702], [144], [], [205], [579], [708, 596], [114], [45], [717], [426], [821], [588, 790], [890], [33], [392], [325], [738], [145], [800], [511], [12], [518], [272], [398], [560], [853], [868, 532, 441, 762, 923], [], [88], [741], [563], [267], [545, 745, 619, 818, 831], [607], [970, 795], [795], [313], [701], [763], [169], [839], [351], [641], [], [833], [26], [], [644], [], [318], [517], [986], [], [], [321], [895], [7], [800], [454], [233], [850, 211], [153], [874], [740], [20], [323], [573], [946], [133], [207], [889], [492], [371], [905], [811], [576], [218], [562], [], [713], [920], [495], [346], [530], [294], [8], [343], [253], [713], [194], [959], [903], [661], [321], [245], [890], [694], [141, 142], [813], [270], [322, 946], [333], [714, 402], [], [486], [418, 563], [602], [456], [328], [956], [701], [], [691], [774], [824], [836, 837, 979], [141], [489], [557], [825], [382], [765], [476], [780], [476], [933], [697], [], [388], [945], [738, 653], [799], [358], [945], [446], [548, 664, 526, 527, 508], [277], [826], [350], [616], [244], [], [56], [644, 470], [44], [708], [351], [742], [989], [485], [767], [586], [306], [873], [236], [352], [567], [968, 504], [788], [18], [954], [404], [965], [728], [34], [], [990], [586], [205, 174, 223], [420], [415], [], [761], [649], [552], [972], [898, 692], [60], [974], [411], [699], [659], [271], [945, 939, 943], [53], [382], [76], [730], [944], [462], [573], [346], [328], [827], [153, 265], [315], [776], [908, 895], [578, 650, 818], [770], [452], [683], [319], [329], [747], [], [885], [], [713], [315], [10], [455], [119], [661], [744, 657], [901], [963], [533], [515, 655, 818, 731, 608, 630], [805], [555], [363], [513, 875, 402], [120], [391], [751, 479], [], [110], [245], [761], [682], [], [693], [301, 304], [403], [320], [462, 655], [495], [820], [481], [46, 47], [891], [656], [], [479], [156], [10], [666], [637], [563], [261], [264], [106], [895], [905, 619, 846, 831], [72, 815], [], [282], [851], [109], [304], [738], [634], [695], [400], [659, 940, 813], [780], [643, 570], [596], [938], [], [318], [495], [36], [790], [], [518, 665], [101], [487], [772, 949], [75], [994], [177], [929, 338], [313, 414], [517, 540], [865, 850], [287], [365], [631], [910], [822], [845], [554], [874, 779, 920], [24], [824], [763, 597], [953], [352], [650], [91], [51], [758], [102], [271], [481, 482], [929], [182], [234], [111], [154], [955], [162], [653], [150], [70], [514, 652], [604], [661], [635], [962], [211], [195], [603], [892], [], [772], [322], [838, 551, 629], [993], [393], [582, 945], [322], [349], [997, 588, 947, 790], [451], [583], [703], [167], [128], [136], [466], [34], [964, 937, 945], [683], [605], [625], [553], [405], [252], [789], [784], [846], [770, 543], [949], [145], [547, 716], [301], [90], [896, 905, 435], [499], [252], [896], [206], [814, 977, 978], [594], [369], [770, 830, 608], [442], [703], [100], [980], [66], [890], [715, 524, 461], [329], [827, 926], [28], [608, 489], [578, 689, 703], [8], [963], [224], [], [132], [674], [641], [740], [452], [301], [], [835, 708], [770, 791, 480, 502], [465], [684], [898], [972], [947], [635], [74], [], [334], [205, 213], [312], [883], [602], [222], [303], [299], [773], [305], [255], [923, 928], [665, 671], [], [364], [524], [296], [197], [336], [945], [386], [313], [942], [826], [823], [506], [357], [644, 532], [458], [376], [642], [194], [181], [], [45], [296], [118], [19], [386], [604], [752], [404], [66], [678], [572], [618], [147], [690], [295], [5], [245], [552], [683, 558, 432, 566], [152, 155], [748], [257], [588], [781], [244], [553], [731], [358, 359], [622, 759], [618], [38], [12, 475], [710], [662], [566], [919], [], [206], [92], [851], [], [246], [957], [224, 223], [29], [892], [433], [673, 929, 681, 620, 526], [12], [994], [781], [92], [555, 570], [195], [692], [955], [284], [812], [272], [137], [741], [902], [972], [162], [929], [875], [914], [949, 927], [146], [735], [297], [24], [896, 435, 794], [405], [16], [], [575], [276], [824, 836, 837], [190], [325], [800], [292], [341], [], [718, 975, 536], [950], [979], [853], [449], [226], [132], [], [900], [422], [832], [388], [699], [759], [96], [0], [], [831], [997], [489, 733], [], [432], [672], [51], [44], [710], [503], [559], [357], [904], [272], [866], [33, 35], [962, 935, 937, 923], [364], [300], [912, 339], [533], [762, 884], [863], [95], [829], [573], [822], [288], [89], [], [251], [920], [200, 204], [130], [], [864, 479], [8], [750, 564], [577], [533], [], [33], [680], [429], [67, 68], [681, 620], [97], [977], [157], [], [523], [34], [681, 810, 620, 508], [338], [699], [142], [746], [812], [951], [88], [349], [431], [911], [107], [475], [766], [674, 333], [162], [647], [384], [819], [122], [754], [907], [153], [652, 764], [342], [406], [430], [56], [25], [], [252], [897], [302], [365], [108], [788, 502], [365], [28], [680], [863], [955], [68], [433], [], [539], [566], [212], [893], [76], [508], [479, 817], [742], [255], [267], [], [815], [920], [230], [637], [465], [516, 520], [876, 435, 794], [750], [], [572], [489], [668], [798], [306], [619, 846], [929], [774, 788, 502], [236, 165], [636], [666], [154], [532], [491], [765], [220], [115], [952], [135], [889, 486], [], [403], [792], [], [144], [94], [146], [554], [688], [118], [768], [517, 847], [640], [197], [], [69], [327], [790], [17], [199], [628], [135], [226], [933, 923], [735], [432], [286], [698], [189], [554], [346], [252], [433, 639], [292], [828], [849], [995], [], [292], [652], [884, 406], [241], [680], [275], [905, 750, 721], [713], [373], [399], [487], [897], [659, 969], [102], [289], [477], [216], [651], [868], [930], [247], [319], [673], [235], [829], [524, 461], [75], [735], [111], [591], [], [886], [711], [922], [318], [629], [797], [434], [867], [989], [203], [], [328], [318], [823], [770], [421], [251], [802], [938], [890], [553, 493], [173], [394], [914], [489], [262], [12], [274], [216], [278], [803], [592], [546, 402], [654], [25], [], [839], [347], [615], [662], [706], [840], [886], [535, 479], [472], [513], [871], [882], [352], [880], [607], [975], [25], [898], [977, 978], [], [39], [146], [219], [517], [], [528], [477], [721], [371], [192], [300], [], [820], [], [], [31], [629], [822], [614], [239], [820], [210], [615], [685], [], [836, 837, 879, 535], [197], [], [663], [356], [540], [273], [276], [299], [263], [291], [887], [768], [76], [466], [513], [863], [51], [850], [347], [256], [218], [490], [239], [581, 751, 479], [574], [819], [478], [], [655], [685], [75], [545], [358], [987], [265], [738, 470], [786], [226], [702], [535], [165], [977, 978], [346], [218, 215], [224], [928, 923, 960], [907, 440], [133], [735], [50], [827], [752, 852], [891], [327], [386], [51], [96], [838], [802], [20], [129], [514], [475], [581, 656, 475, 479], [], [928, 712], [488, 695], [338], [], [119], [604], [802], [617], [640], [523], [515], [518], [306], [414], [829], [403], [64, 55], [138], [4], [598], [232, 239], [949], [406], [361], [704], [756, 412], [629], [], [968, 967], [748, 636], [197, 198, 199], [738], [790], [251], [166], [78], [332], [527], [941], [502], [878], [492], [9], [82], [966, 907], [783], [806], [453, 454, 526, 527, 782, 664], [127], [190], [], [723], [656, 475, 479], [674], [650], [184], [117], [649], [418], [659], [354], [770], [681, 620, 526, 527, 782, 664, 508], [876], [], [704], [728], [267], [741], [257, 222], [542], [213], [937], [513, 776, 875], [402], [], [599], [983], [240, 241], [], [], [188, 190], [134], [322], [12], [896], [128], [470, 862], [668], [350], [608], [], [230], [], [], [843], [467], [872, 622, 759], [720], [], [106], [14], [399], [257, 222], [373], [223], [144], [800], [129], [434], [983, 801], [335], [9, 340], [953], [751, 479], [588], [972], [47], [303], [990], [547], [637], [686], [517], [530], [918], [834, 906], [963], [820], [318], [379], [983], [815], [780], [839], [272], [210], [740, 783, 784], [321], [570], [661], [593], [84], [581, 661, 479], [611], [730], [868, 567], [794], [348], [906], [70], [], [11], [674], [872], [666], [72], [805], [290], [289], [357], [392], [206], [859], [86], [237], [638, 639], [140], [493], [136], [990], [577], [728, 412], [689], [14], [806], [544], [139], [560, 981], [194], [844], [428], [692], [366], [682], [320, 319], [883], [838, 631], [894], [622], [191], [94], [67], [992], [103], [603], [43], [881], [278], [348], [804], [746], [262], [218], [619, 532, 846], [522], [389], [757], [300], [860], [781], [692], [210], [349], [], [472], [660], [398], [489], [], [523], [251], [], [386, 101], [847], [202], [896], [608], [979], [911], [959], [], [997], [51], [335], [731], [148], [693, 919, 472, 733], [450], [731], [984], [847], [71], [223], [142], [955], [], [], [576], [684], [438, 126], [739], [328], [890], [778], [496], [131], [923], [734], [374], [244], [673], [499], [700], [986], [964, 923], [92], [81], [836, 593], [326], [49, 50], [14], [250], [793], [391], [937], [210, 178], [823], [753], [122], [11], [435, 876], [1], [933], [263, 247], [719], [708], [761], [], [644], [766], [961], [774], [693], [738], [646, 884, 406], [533], [373], [], [712], [], [231], [604], [148], [595], [], [1], [905, 789, 799], [727], [804, 896], [842, 978], [986], [769], [532, 762], [434], [636], [205], [504, 968, 254], [532, 495], [132], [583], [619], [992], [783], [904, 905, 968, 610, 504], [294], [456], [444], [], [56], [140], [478], [3], [784, 499], [336], [639], [304], [319], [692], [379], [759], [738, 580], [788], [857], [114], [464, 608, 610], [192, 186], [791], [905], [85], [128], [38], [782, 851, 664], [584], [690], [72], [217], [160], [428], [959], [653], [491], [391], [923], [234], [757], [41], [169], [902], [790], [992], [553], [720], [795, 796], [], [575], [985], [604], [460], [934], [783], [368], [296], [792], [608, 610, 531], [67], [630], [721], [688], [651], [225], [648], [391], [468], [8, 7], [696], [371], [190], [882], [55], [859], [985], [22], [595], [326], [189], [228], [772], [635], [677], [915], [0], [774], [273], [208], [435], [197], [985], [922], [571], [66, 68], [295], [247], [740], [986], [934], [747], [631], [], [570, 691], [780], [524], [73, 815], [35], [988], [879], [623], [31], [918], [258], [757], [768], [2, 3], [671], [744, 657], [959], [177], [434], [827], [354], [587], [635], [168, 211], [833], [398], [761], [732], [222], [127], [52, 111], [291], [368], [107], [700], [351], [752], [335], [834], [454], [154], [872], [767], [334], [893, 446], [555], [830], [661], [428], [180], [479], [529], [603], [242], [320], [310], [349], [268], [840], [256], [955], [], [892], [423], [], [102], [514, 655], [421], [536, 718, 814, 977, 978], [83], [506], [777, 623], [977], [490], [400, 667], [404], [197], [229], [25], [425], [], [764, 597], [477], [584, 523], [], [42], [970, 795, 796], [745], [854], [864], [129], [831], [136], [939], [], [339], [470], [918], [319], [580], [769], [990], [188, 189], [9], [851], [460], [96], [893], [933], [968], [908, 404], [421, 825], [923], [519], [], [642], [28], [811], [110], [481], [102], [797], [868], [762, 934], [375], [], [581, 479, 874, 751], [876], [267], [40], [545], [495, 532], [30], [352], [433], [413], [872, 764], [365], [], [322], [719], [650], [], [212], [517], [863], [325], [], [791], [275], [562], [854], [168], [606], [19], [862], [], [175], [619], [], [252], [868, 415], [669], [526], [132], [310], [786], [618, 926], [708], [901], [109], [774], [151], [544, 909], [370], [62], [960, 954], [954], [628], [2], [52], [306], [963, 809, 923], [146], [803], [673, 681, 620, 526, 664, 508], [774], [], [235], [334], [779, 654], [617], [10, 478], [123], [7], [64, 55], [580], [], [841], [458], [46], [512], [221], [229, 200], [111], [443], [171], [376], [991], [178], [740], [165], [636], [257, 222], [319], [347], [], [641], [691], [177], [495], [875, 671], [540], [850], [923, 959], [516, 750, 431], [896, 804, 905, 700, 799], [891], [162], [393], [105], [217], [934, 923], [358], [125], [702], [469, 919], [131], [654], [897], [143], [439], [166], [632, 733], [630], [907, 440], [677], [614], [80], [], [446], [463], [214], [792], [874], [258], [810, 878], [25], [255], [990], [522], [507], [993], [217], [827], [890], [6], [769, 695], [488, 695], [872], [510], [803], [305], [35], [898, 671], [277], [174], [655], [87], [], [758], [385], [930, 868, 968, 923], [971], [451], [226], [543], [330], [770, 788, 630], [421], [760, 827], [345], [292], [330], [197], [477], [], [603], [238], [132], [305], [335], [789, 799], [171], [212], [604], [420], [818, 819], [529, 669], [269], [460], [277], [479, 817, 475], [682], [116], [661, 479], [299], [674], [650], [727], [582, 941, 951], [469], [572, 966], [938], [61], [834], [87], [451], [127], [32], [427], [614], [533], [345], [512], [607], [366], [171], [809, 618, 923], [219], [256], [], [912], [673, 526, 527, 782, 664, 508], [104], [348], [50], [253], [746], [], [903], [131, 134], [641], [822, 887], [581], [], [879, 977], [163], [294], [617], [290], [708], [678], [29], [234], [99], [], [215], [548, 664, 851, 894], [247], [707], [924], [891], [720], [923, 924], [744, 657], [888], [188], [768], [809, 925], [412], [715], [115], [948], [621], [328], [49, 50], [178], [449, 975], [833], [365], [], [965], [719], [652, 733], [518, 444], [840], [307], [760], [816], [771], [522], [289], [385], [766], [673, 526, 527, 782, 664, 508], [], [659, 923, 926], [51], [990], [253], [854], [391], [852], [891], [834, 895], [625], [373, 377], [155], [851, 921], [], [191], [452], [113], [600, 116, 126], [851], [433], [157], [], [97], [239], [323], [746], [48], [158], [703], [784, 508], [849], [386, 101], [299], [817], [722], [440], [408], [674], [868], [871], [736], [246], [985], [829], [410], [], [119, 121], [412], [320], [393], [], [843], [966], [884, 538], [63], [713], [774, 788], [748], [792], [893], [847], [782, 664], [464], [962, 932, 923], [530, 719], [788], [323], [109], [373], [434], [739], [431], [76], [859], [608, 602], [430], [755], [288], [933], [786], [567], [536], [], [291], [72], [848, 632], [138], [767], [509], [287], [255], [179], [896, 794, 861], [], [131], [438], [950], [587, 813, 910], [538, 668], [486, 594, 501], [479], [51], [816], [930], [238], [321], [992], [614], [642], [487], [329], [], [653], [653], [327], [797], [435, 876], [251], [891], [357], [452], [61], [176], [279], [515, 808], [576], [696], [143], [108], [217], [997], [581, 479, 717], [650], [809], [808], [], [934], [22], [679], [890], [275], [73, 77], [726], [869, 975], [549, 623], [838], [652], [67], [64], [484, 536, 628], [590], [357], [442], [965], [442, 494], [975], [651, 909, 827], [618, 926], [468], [96], [], [987, 998], [655], [650], [204], [840], [396], [806], [349], [899, 647, 849, 505], [872], [698], [809, 910], [870], [10], [822, 541, 542], [242], [548, 485, 851, 632], [], [], [241], [403], [327], [], [], [413], [537], [349, 350], [759], [612], [84], [1], [212], [783], [806], [], [588], [892], [955], [594], [891], [82], [673, 810, 527, 508], [672], [119], [417], [712], [626], [48], [372], [162], [339], [954, 951], [921], [557], [56], [812], [302], [717], [295], [159], [], [747], [1], [356], [458], [512], [102], [922], [], [309, 599], [644], [983], [255], [], [276], [488], [292], [894], [509], [665], [44], [359], [30], [312], [24], [167], [424], [218], [272], [947], [723], [35], [781], [672], [], [262], [995], [43], [201], [248], [670], [733], [1, 124], [492], [], [757], [124], [831], [829], [546, 650, 819], [84], [911], [183], [873], [20], [476], [475], [208], [435], [665], [817], [834, 683], [956], [640], [109], [579, 881], [752, 852], [89], [543], [332], [926], [], [539, 741], [991], [493], [440], [518], [442], [719], [425], [880], [397], [963], [840, 462, 463], [641], [751], [804], [923, 928, 291, 737], [35], [349, 350], [638, 639], [336], [923], [760], [621], [945], [133], [1], [886], [437], [265, 266], [971], [827, 840], [812], [256], [977], [442, 437], [302], [62], [434], [231], [149], [], [872], [603], [245], [270], [50], [581], [428], [721, 285, 831], [467], [412], [395, 758], [330], [391], [634], [325], [494], [169], [518, 570], [143], [511], [849], [454], [671], [515, 420], [673, 526, 527, 782, 664, 508], [883], [812], [248, 249, 537], [160], [199], [748], [530], [190], [103], [163], [117], [892], [], [616, 159], [400, 667], [796], [703], [335], [834], [673, 742, 664, 526, 527, 632, 508], [33], [849, 505], [], [15], [602], [172], [], [], [298], [37], [130], [527, 664], [], [465], [838], [294], [581, 717, 479], [746], [743], [220], [572], [], [451, 679], [931], [843], [794], [641], [154], [148], [75], [16], [790], [216], [612, 741], [873], [810, 878], [162, 166], [786], [259], [789], [484, 628], [710, 767], [224, 223], [423, 424], [658], [670], [162], [], [547], [294], [63], [926], [591], [227, 235], [437], [763, 597], [161, 676], [342], [698], [928, 659, 923], [8], [205], [788, 502], [804], [537], [464], [826], [874, 555], [248], [583], [408], [616], [304], [185], [682], [520], [169], [769], [40], [562], [463, 434], [753], [207], [676, 248], [], [995], [871], [568], [169], [990], [840], [522], [335], [346], [479], [215], [515], [858], [230], [967], [546], [673, 526, 527, 664, 508], [940, 941, 942], [797], [939], [160], [963], [658], [251, 805], [982, 439], [524, 461], [253], [979], [277], [540], [], [407], [783, 784], [583], [544, 827], [239], [160], [245], [419], [331], [25], [22], [988], [243], [], [458], [455], [116], [986], [899, 505], [268], [416], [640], [420], [354], [739], [111], [384], [616], [810, 878], [541, 542], [910], [480], [897], [], [780], [629], [866], [185], [], [966], [898, 195], [588], [238, 207], [738], [65], [222], [646], [391, 758], [100], [521], [252], [535], [884], [232, 761], [497], [881], [457, 667], [823], [577], [330], [602], [], [725, 505], [879], [522], [49], [813], [239], [886], [347], [208], [294], [320], [87], [715, 652, 671], [929], [212], [94], [533], [903], [812], [921, 917], [583], [748], [295], [372], [], [361], [108, 973], [], [455], [49, 50], [987, 998], [919, 733], [282], [274, 277], [367], [430], [44], [81], [399], [24], [120], [357], [531], [101], [644], [283], [], [], [982], [355]] \ No newline at end of file diff --git a/pytorch-image-models/timm/data/_info/imagenet_synset_to_definition.txt b/pytorch-image-models/timm/data/_info/imagenet_synset_to_definition.txt new file mode 100644 index 0000000000000000000000000000000000000000..cf41b1ef4a43b370517a78a0a2e65ae873bcbff8 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet_synset_to_definition.txt @@ -0,0 +1,21844 @@ +n00004475 a living thing that has (or can develop) the ability to act or function independently +n00005787 organisms (plants and animals) that live at or near the bottom of a sea +n00006024 an organism that depends on complex organic substances for nutrition +n00006484 (biology) the basic structural and functional unit of all organisms; they may exist as independent units of life (as in monads) or may form colonies or tissues as in higher plants and animals +n00007846 a human being +n00015388 a living organism characterized by voluntary movement +n00017222 (botany) a living organism lacking the power of locomotion +n00021265 any substance that can be metabolized by an animal to give energy and build tissue +n00021939 a man-made object taken as a whole +n00120010 the act of hopping; jumping upward or forward (especially on one foot) +n00141669 the act of reporting your presence (as at an airport or a hotel) +n00288000 maneuvers of a horse in response to body signals by the rider +n00288190 a light leap by a horse in which both hind legs leave the ground before the forelegs come down +n00288384 a cadenced trot executed by the horse in one spot +n00324978 walking on a tightrope or slack rope +n00326094 the sport or pastime of scaling rock masses on mountain sides (especially with the help of ropes and special equipment) +n00433458 a sport that necessarily involves body contact between opposing players +n00433661 a sport that is played outdoors +n00433802 a sport that involves exercises intended to display strength and balance and agility +n00434075 the gymnastic moves of an acrobat +n00439826 participating in athletic sports performed on a running track or on the field associated with it +n00440039 the act of participating in an athletic competition involving running on a track +n00440218 the act of participating in an athletic competition in which you must jump +n00440382 the act of jumping as far as possible from a running start +n00440509 the act of jumping as high as possible over a horizontal bar +n00440643 jumping over the bar backwards and head first +n00440747 a sport in which participants must travel on skis +n00440941 the sport of skiing across the countryside (rather than downhill) +n00441073 the act of performing a jump on skis from a high ramp overhanging a snow covered slope +n00441824 sports that involve bodies of water +n00442115 the act of swimming +n00442437 the act of swimming +n00442847 a brief swim in water +n00442981 a headlong plunge into water +n00443231 the act of someone who floats on the water +n00443375 a floating position with the face down and arms stretched forward +n00443517 a dive in which the abdomen bears the main force of impact with the water +n00443692 diving into the water from a steep overhanging cliff +n00443803 a dive in which the diver somersaults before entering the water +n00443917 a dive in which the diver throws the feet forward to complete a full backward somersault and enters the water feet first and facing away from the diving board +n00444142 a dive in which the diver throws the feet forward and up to complete a half backward somersault and enters the water facing the diving board +n00444340 a dive in which the diver bends to touch the ankles before straightening out +n00444490 a dive in which the diver arches the back with arms outstretched before entering the water +n00444651 underwater swimming without any more breathing equipment than a snorkel +n00444846 skin diving with scuba apparatus +n00444937 skin diving with a snorkel +n00445055 the sport of riding a surfboard toward the shore on the crest of a wave +n00445226 skiing on water while being towed by a motorboat +n00445351 the act of rowing as a sport +n00445685 rowing by a single oarsman in a racing shell +n00445802 fighting with the fists +n00446311 boxing for money +n00446411 boxing at close quarters +n00446493 a boxing or wrestling match +n00446632 a boxing tactic: pretending to be trapped against the ropes while your opponent wears himself out throwing punches +n00446804 making the motions of attack and defense with the fists and arms; a part of training for a boxer +n00446980 the sport of shooting arrows with a bow +n00447073 the sport of riding on a sled or sleigh +n00447221 riding on a long light sled with low handrails +n00447361 riding a light one-man toboggan +n00447463 riding on a bobsled +n00447540 the sport of hand-to-hand struggle between unarmed contestants who try to throw each other down +n00447957 a style of wrestling where the wrestlers are forbidden to tackle or trip or use holds below the waist +n00448126 wrestling for money +n00448232 a Japanese form of wrestling; you lose if you are forced out of a small ring or if any part of your body (other than your feet) touches the ground +n00448466 the sport of gliding on skates +n00448640 skating on ice +n00448748 ice skating where the skates trace outlines of selected figures +n00448872 skating using Rollerblades +n00448958 skating on wheels +n00449054 the sport of skating on a skateboard +n00449168 competitive skating on speed skates (usually around an oval course) +n00449295 the sport of engaging in contests of speed +n00449517 the sport of racing automobiles +n00449695 the sport of racing boats +n00449796 racing in high-speed motor boats +n00449892 the sport of racing camels +n00449977 the sport of racing greyhounds +n00450070 the sport of racing horses +n00450335 the sport of siting on the back of a horse while controlling its movements +n00450700 a sport that tests horsemanship +n00450866 a sport in which people ride across country on ponies +n00450998 riding horses in competitions over set courses to demonstrate skill in jumping over obstacles +n00451186 riding horses across country over obstructions to demonstrate horsemanship +n00451370 the sport of traveling on a bicycle or motorcycle +n00451563 riding a bicycle +n00451635 riding a motorcycle +n00451768 bicycling or motorcycling on sand dunes +n00451866 sport that involves killing animals (especially hunting) +n00452034 the activity at a bullfight +n00452152 participation in the sport of matching gamecocks in a cockfight +n00452293 the pursuit and killing or capture of wild animals regarded as a sport +n00452734 a hunt in which beaters force the game to flee in the direction of the hunter +n00452864 hunting rabbits with beagles +n00453126 hunting with dogs (usually greyhounds) that are trained to chase game (such as hares) by sight instead of by scent +n00453313 hunting deer +n00453396 hunting ducks +n00453478 mounted hunters follow hounds in pursuit of a fox +n00453631 the sport of hunting wild boar with spears +n00453935 the act of someone who fishes as a diversion +n00454237 fishing with a hook and line (and usually a pole) +n00454395 angling with an artificial fly as a lure +n00454493 angling by drawing a baited line through the water +n00454624 the act of throwing a fishing line out over the water by means of a rod and reel +n00454855 the single-handed rod casting of a relatively heavy (artificial) bait +n00454983 casting an artificial fly as a lure +n00455076 a cast that falls beyond the intended spot +n00455173 casting (artificial) bait far out into the ocean (up to 200 yards) with the waves breaking around you +n00456465 a game played in daylight +n00463246 a game involving athletic activity +n00463543 a game played on an ice rink by two opposing teams of six skaters each who try to knock a flat round puck into the opponents' goal with angled sticks +n00464277 a game with two players who use rackets to strike a ball that is tethered to the top of a pole; the object is to wrap the string around the pole +n00464478 a game played in a swimming pool by two teams of swimmers who try to throw an inflated ball into the opponents' goal +n00464651 an athletic game that is played outdoors +n00464894 a game played on a large open course with 9 or 18 holes; the object is use as few strokes as possible in playing all the holes +n00466273 playing golf for money +n00466377 the activity of playing 18 holes of golf +n00466524 golf scoring by total strokes taken +n00466630 golf scoring by holes won +n00466712 a novelty version of golf played with golf balls and putters on a miniature course featuring many obstacles +n00466880 a game in which players hit a wooden ball through a series of hoops; the winner is the first to traverse all the hoops and hit a peg +n00467320 a game in which iron rings (or open iron rings) are thrown at a stake in the ground in the hope of encircling it +n00467536 a game in which players use long sticks to shove wooden disks onto the scoring area marked on a smooth surface +n00467719 an outdoor game played on a field of specified dimensions +n00467995 a game resembling ice hockey that is played on an open field; two opposing teams use curved sticks try to drive a ball into the opponents' net +n00468299 a simple version of hockey played by children on the streets (or on ice or on a field) using a ball or can as the puck +n00468480 any of various games played with a ball (round or oval) in which two teams try to kick or carry or propel the ball into each other's goal +n00469651 a game played by two teams of 11 players on a rectangular field 100 yards long; teams try to get possession of the ball and advance it across the opponents goal line in a series of (running or passing) plays +n00470554 football played for pay +n00470682 a version of American football in which the ball carrier is touched rather than tackled +n00470830 a traditional Irish game resembling hockey; played by two teams of 15 players each +n00470966 a form of football played with an oval ball +n00471437 a field game played with a ball (especially baseball) +n00471613 a ball game played with a bat and ball between two teams of nine players; teams take turns at bat trying to score runs +n00474568 the game of baseball +n00474657 playing baseball for money +n00474769 baseball as distinguished from softball +n00474881 a game in which a pitcher does not allow any opposing player to reach base +n00475014 a game in which a pitcher allows the opposing team no hits +n00475142 a game in which a pitcher allows the opposing team only one hit +n00475273 a game in which a pitcher allows the opposing team only 2 hits +n00475403 a game in which a pitcher allows the opposing team only 3 hits +n00475535 a game in which a pitcher allows the opposing team 4 hits +n00475661 a game in which a pitcher allows the opposing team 5 hits +n00475787 a game closely resembling baseball that is played on a smaller diamond and with a ball that is larger and softer +n00476140 an English ball game similar to baseball +n00476235 a form of baseball played in the streets with a rubber ball and broomstick handle +n00476389 a game played with a ball and bat by two teams of 11 players; teams take turns trying to score runs +n00477392 a game invented by American Indians; now played by two teams who use long-handled rackets to catch and carry and throw the ball toward the opponents' goal +n00477639 a game similar to field hockey but played on horseback using long-handled mallets and a wooden ball +n00477827 a game using a leather ball six feet in diameter; the two side try to push it across the opponents' goal +n00478262 a football game in which two teams of 11 players try to kick or head a ball into the opponents' goal +n00479076 an athletic game played on a court +n00479440 a game played in a walled court or against a single wall by two or four players who strike a rubber ball with their hands +n00479616 a game played on a handball court with short-handled rackets +n00479734 a game resembling handball; played on a court with a front wall and two side walls +n00479887 a game played in an enclosed court by two or four players who strike the ball with long-handled rackets +n00480211 a game in which two teams hit an inflated ball over a high net using their hands +n00480366 a Basque or Spanish game played in a court with a ball and a wickerwork racket +n00480508 a game played on a court with light long-handled rackets used to volley a shuttlecock over a net +n00480885 an ancient racket game +n00480993 a game played on a court by two opposing teams of 5 players; points are scored by throwing the ball through an elevated horizontal hoop +n00481803 playing basketball for money +n00481938 game played mainly on board ocean liners; players toss a ring back and forth over a net that is stretched across a small court +n00482122 a team game that resembles basketball; a soccer ball is to be thrown so that it passes through a ring on the top of a post +n00482298 a game played with rackets by two or four players who hit a ball back and forth over a net that divides the court +n00483205 playing tennis for money +n00483313 tennis played with one person on each side +n00483409 badminton played with one person on each side +n00483508 tennis played with two players on each side +n00483605 badminton played with two players on each side +n00483705 an ancient form of tennis played in a four-walled court +n00483848 an Italian game similar to tennis +n00523513 an active diversion requiring physical exertion and competition +n00812526 the act of grasping +n00825773 a sport adapted from jujitsu (using principles of not resisting) and similar to wrestling; developed in Japan +n00887544 a sport that involves competition between teams of players +n01035504 the traditional Passover supper of Jesus with his disciples on the eve of his crucifixion +n01035667 (Judaism) the ceremonial dinner on the first night (or both nights) of Passover +n01055165 the act of encamping and living in tents in a camp +n01314388 any unwanted and destructive insect or other animal that attacks food or crops or livestock etc. +n01314663 a regional term for `creature' (especially for domestic animals) +n01314781 an animal that creeps or crawls (such as worms or spiders or insects) +n01314910 a person or other animal that moves abruptly and rapidly +n01315213 an animal that makes short high-pitched sounds +n01315330 an animal that has a body temperature that is relatively constant and independent of the environmental temperature +n01315581 an animal whose body temperature varies with the temperature of its surroundings; any animal except birds and mammals +n01315805 any animal that lives and grazes in the grassy open land of western North America (especially horses, cattle, sheep) +n01316422 any animal that feeds on refuse and other decaying organic matter +n01316579 a fish that lives and feeds on the bottom of a body of water +n01316734 a scavenger that feeds low on the food chain +n01316949 an animal trained for and used for heavy labor +n01317089 an animal such as a donkey or ox or elephant used for transporting loads or doing other heavy work +n01317294 an animal used for pulling heavy loads +n01317391 an animal (such as a mule or burro or horse) used to carry loads +n01317541 any of various animals that have been tamed and made fit for a human environment +n01317813 an animal being fattened or suitable for fattening +n01317916 an animal that feeds on a particular source of food +n01318053 a domestic animal (especially a young steer or heifer) kept as stock until fattened or matured and suitable for a breeding establishment +n01318279 any recently hatched animal (especially birds) +n01318381 a single domestic animal +n01318478 an animal (especially birds and fish) that travels between different habitats at particular times of the year +n01318660 an animal (especially birds and arthropods and reptiles) that periodically shed their outer layer (feathers or cuticle or skin or hair) +n01318894 a domesticated animal kept for companionship or amusement +n01319001 a person or other animal having powers of endurance or perseverance +n01319187 a creature (especially a whale) that has been prevented from attaining full growth +n01319467 any of numerous animals inhabiting the sea including e.g. fishes and molluscs and many mammals +n01319685 unwanted marine creatures that are caught in the nets while fishing for another species +n01320872 an animal that produces gametes (ova) that can be fertilized by male gametes (spermatozoa) +n01321123 female of certain aquatic animals e.g. octopus or lobster +n01321230 an animal that produces gametes (spermatozoa) that can fertilize female gametes (ova) +n01321456 any mature animal +n01321579 any immature animal +n01321770 a young animal without a mother +n01321854 any immature mammal +n01322221 a very young mammal +n01322343 young of any of various canines such as a dog or wolf +n01322508 a young wolf +n01322604 a young dog +n01322685 the young of certain carnivorous mammals such as the bear or wolf or lion +n01322898 a young lion +n01322983 a young bear +n01323068 a young tiger +n01323155 young of any of various fur-bearing animals +n01323261 a young mammal that has not been weaned +n01323355 male parent of an animal especially a domestic animal such as a horse +n01323493 female parent of an animal especially domestic livestock +n01323599 a pedigreed animal of unmixed lineage; used especially of horses +n01323781 any creature of exceptional size +n01324305 an animal that has undergone mutation +n01324431 any animal that feeds on flesh +n01324610 any animal that feeds chiefly on grass and other plants +n01324799 any organism that feeds mainly on insects +n01324916 an animal having teeth consolidated with the summit of the alveolar ridge without sockets +n01325060 an animal having teeth fused with the inner surface of the alveolar ridge without sockets +n01326291 any organism of microscopic size +n01327909 a hybrid produced by crossing parents that are homozygous except for a single gene locus that has two alleles (as in Mendel's experiments with garden peas) +n01329186 a large heterogeneous group of RNA viruses divisible into groups on the basis of the virions; they have been recovered from arthropods, bats, and rodents; most are borne by arthropods; they are linked by the epidemiologic concept of transmission between vertebrate hosts by arthropod vectors (mosquitoes, ticks, sandflies, midges, etc.) that feed on blood; they can cause mild fevers, hepatitis, hemorrhagic fever, and encephalitis +n01330126 any of a group of viruses including those that in humans cause upper respiratory infections or infectious pinkeye +n01330497 animal viruses belonging to the family Arenaviridae +n01332181 a filovirus that causes Marburg disease; carried by animals; can be used as a bioweapon +n01333082 a family of arborviruses carried by arthropods +n01333483 an animal virus that causes vesicular stomatitis +n01333610 a family of arboviruses carried by arthropods +n01334217 a type of smallpox virus that has a fatality rate of up to 25 percent +n01334690 the smallest of viruses; a plant virus with its RNA arranged in a circular chromosome without a protein coat +n01335218 a bacteriophage that infects the bacterium Escherichia coli +n01337191 a group of viruses including those causing mumps and measles +n01337734 the virus causing poliomyelitis +n01338685 any of the animal viruses that cause painful blisters on the skin +n01339083 a herpes virus that causes oral herpes +n01339336 a herpes virus that causes shingles +n01339471 a herpes virus that causes chickenpox and shingles +n01339801 any of a group of herpes viruses that enlarge epithelial cells and can cause birth defects; can affect humans with impaired immunological systems +n01340014 the member of the herpes virus family that is responsible for chickenpox +n01340522 a virus the can initiate various kinds of tumors in mice +n01340785 a neurotropic non-arbovirus of the family Rhabdoviridae that causes rabies +n01340935 any of a group of non-arboviruses including the rotavirus causing infant enteritis +n01341090 the reovirus causing infant enteritis +n01342269 organisms that typically reproduce by asexual budding or fission and whose nutritional mode is absorption or photosynthesis or chemosynthesis +n01347583 considered ancient life forms that evolved separately from bacteria and blue-green algae +n01349735 a rodlike bacterium (especially any of the rod-shaped or branched bacteria in the root nodules of nitrogen-fixing plants) +n01350226 a species of bacillus that causes anthrax in humans and in animals (cattle and swine and sheep and rabbits and mice and guinea pigs); can be used a bioweapon +n01350701 a bacillus bacterium that causes the plague; aerosolized bacteria can be used as a bioweapon +n01351170 an aerobic Gram-negative coccobacillus that causes brucellosis; can be used as a bioweapon +n01351315 any flagellated aerobic bacteria having a spirally twisted rodlike form +n01357328 anaerobic bacterium producing botulin the toxin that causes botulism +n01357507 anaerobic Gram-positive rod bacterium that produces epsilon toxin; can be used as a bioweapon +n01358572 predominantly photosynthetic prokaryotic organisms containing a blue pigment in addition to chlorophyll; occur singly or in colonies in diverse habitats; important as phytoplankton +n01359762 large colonial bacterium common in tropical open-ocean waters; important in carbon and nitrogen fixation +n01362336 soil bacteria that convert nitrites to nitrates +n01363719 spirally twisted elongate rodlike bacteria usually living in stagnant water +n01365474 a genus of Gram-negative aerobic bacteria that occur as pathogens and parasite in many animals (including humans) +n01365885 the pus-producing bacterium that causes gonorrhea +n01366700 a species of bacterium that causes diphtheria +n01367772 rod-shaped Gram-negative bacteria; most occur normally or pathogenically in intestines of humans and other animals +n01368672 a genus of nonmotile rod-shaped Gram-negative enterobacteria; some cause respiratory and other infections +n01369358 a form of salmonella that causes food poisoning in humans +n01369484 a form of salmonella that causes typhoid fever +n01374703 any of the nitrobacteria that oxidize nitrites into nitrates +n01374846 any of the nitrobacteria that oxidize ammonia into nitrites +n01375204 any bacteria (some of which are pathogenic for humans and animals) belonging to the order Actinomycetales +n01376237 aerobic bacteria (some of which produce the antibiotic streptomycin) +n01376437 source of the antibiotic erythromycin +n01376543 source of the antibiotic streptomycin +n01377278 cause of tuberculosis +n01377510 bacteria that produce pus +n01377694 any of various rod-shaped Gram-negative bacteria +n01378545 bacteria that form colonies in self-produced slime; inhabit moist soils or decaying plant matter or animal waste +n01379389 spherical Gram-positive parasitic bacteria that tend to form irregular colonies; some cause boils or septicemia or infections +n01380610 Gram-positive bacteria usually occurring in pairs +n01380754 bacterium causing pneumonia in mice and humans +n01381044 spherical Gram-positive bacteria occurring in pairs or chains; cause e.g. scarlet fever and tonsillitis +n01382033 parasitic or free-living bacteria; many pathogenic to humans and other animals +n01384084 unicellular algae +n01384164 animal constituent of plankton; mainly small crustaceans and fish larvae +n01384687 an animal or plant that lives in or on a host (another animal or plant); it obtains nourishment from the host without benefiting or killing the host +n01385017 any of various parasites that live in the internal organs of animals (especially intestinal worms) +n01385330 any external parasitic organism (as fleas) +n01386007 any disease-producing agent (especially a virus or bacterium or other microorganism) +n01386182 either of two different animal or plant species living in close association but not interdependent +n01386354 an organism such as an insect that habitually shares the nest of a species of ant +n01387065 any of the unicellular protists +n01389507 any of diverse minute acellular or unicellular organisms usually nonphotosynthetic +n01390123 protozoa that move and capture food by forming pseudopods +n01390763 protozoa with spherical bodies and stiff radiating pseudopods +n01392275 any ameba of the genus Endamoeba +n01392380 naked freshwater or marine or parasitic protozoa that form temporary pseudopods for feeding and locomotion +n01393486 marine protozoan having a rounded shell with spiny processes +n01394040 any of various rhizopods of the order Testacea characterized by having a shell +n01394492 an amoeba-like protozoan with a chitinous shell resembling an umbrella +n01394771 a protozoan with an ovoid shell of cemented sand grains +n01395254 a protozoan with a microscopic appendage extending from the surface of the cell +n01396048 any member of the genus Paramecium +n01396617 any of several trumpet-shaped ciliate protozoans that are members of the genus Stentor +n01397114 primitive chlorophyll-containing mainly aquatic eukaryotic organisms lacking true stems and roots and leaves +n01397690 an edible seaweed with a mild flavor +n01397871 any of various seaweeds that grow underwater in shallow beds +n01400247 algae having the pigments chlorophyll and carotene and xanthophyll +n01400391 any alga of the division Chrysophyta with its chlorophyll masked by yellow pigment +n01402600 algae having the chlorophyll masked by brown and yellow pigments +n01403457 large brown seaweeds having fluted leathery fronds +n01404365 any of various algae of the family Fucaceae +n01404495 a fossilized cast or impression of algae of the order Fucales +n01405007 any member of the genus Fucus +n01405616 similar to and found with black rockweed +n01407798 algae that are clear green in color; often growing on wet ricks or damp wood or the surface of stagnant water +n01410457 free-floating freshwater green algae +n01411450 any alga of the genus Chlorella +n01412694 any of various submerged aquatic algae of the genus Chara having nodes with whorled filamentlike branches; usually encrusted with calcium carbonate deposits +n01413457 freshwater green algae +n01414216 any of various red algae having graceful rose to purple fronds (e.g. dulse or carrageen) +n01415626 an organism with cells characteristic of all life forms except primitive microorganisms such as bacteria; i.e. an organism with `good' or membrane-bound nuclei in its cells +n01415920 a unicellular organism having cells lacking membrane-bound nuclei; bacteria are the prime example but also included are blue-green algae and actinomycetes and mycoplasma +n01416213 one of the distinct individuals forming a colonial animal such as a bryozoan or hydrozoan +n01418498 flagellate protozoan that causes leishmaniasis +n01418620 flagellate protozoan lacking photosynthesis and other plant-like characteristics +n01419332 flagellates with several flagella +n01419573 a flagellate that is the cause of the frequently fatal fish disease costiasis +n01419888 a suspected cause of diarrhea in humans +n01421333 common in fresh and salt water appearing along the shore as algal blooms +n01421807 parasitic spore-forming protozoan +n01422185 one of the minute active bodies into which sporozoans divide in one stage of their life cycle +n01422335 a sporozoan in the active feeding stage of its life cycle +n01422450 a cell that arises from the asexual division of a parent sporozoan during its life cycle +n01423302 parasitic on the digestive epithelium of vertebrates and higher invertebrates +n01423617 vermiform protozoans parasitic in insects and other invertebrates +n01424420 parasitic protozoan of the genus Plasmodium that causes malaria in humans +n01425223 parasitic in birds +n01427399 parasite of arthropods and fishes that invade and destroy host cells +n01429172 in some classifications considered a superorder comprising the Cypriniformes and the Siluriformes +n01438208 a soft-finned fish of the order Cypriniformes +n01438581 slender freshwater fishes of Eurasia and Africa resembling catfishes +n01439121 soft-finned mainly freshwater fishes typically having toothless jaws and cycloid scales +n01439514 any of various freshwater fish of the family Cyprinidae +n01439808 large Old World freshwater bottom-feeding fish introduced into Europe from Asia; inhabits ponds and sluggish streams and often raised for food; introduced into United States where it has become a pest +n01440160 scaleless domestic carp +n01440242 domestic carp with some large shining scales +n01440467 European freshwater fish having a flattened body and silvery scales; of little value as food +n01440764 freshwater dace-like game fish of Europe and western Asia noted for ability to survive outside water +n01441117 small European freshwater fish with a slender bluish-green body +n01441272 European freshwater game fish with a thick spindle-shaped body +n01441425 any of numerous small silvery North American cyprinid fishes especially of the genus Notropis +n01441910 the common North American shiner +n01442450 European freshwater food fish having a greenish back +n01442710 European freshwater fish resembling the roach +n01442972 very small European freshwater fish common in gravelly streams +n01443243 small slender European freshwater fish often used as bait by anglers +n01443537 small golden or orange-red freshwater fishes of Eurasia used as pond or aquarium fishes +n01443831 European carp closely resembling wild goldfish +n01444339 eel-shaped freshwater fish of South America having electric organs in its body +n01444783 a cypriniform fish of the family Catostomidae +n01445429 any of several large suckers of the Mississippi valley +n01445593 fish of the lower Mississippi +n01445857 widely distributed in warm clear shallow streams +n01446152 North American sucker with reddish fins +n01446589 any member of the family Cyprinodontidae +n01446760 small mostly marine warm-water carp-like schooling fishes; used as bait or aquarium fishes or in mosquito control +n01447139 silver-and-black killifish of saltwater marshes along the Atlantic coast of the United States +n01447331 black-barred fish of bays and coastal marshes of the Atlantic and Gulf Coast of the United States +n01447658 found in small streams of tropical America; often kept in aquariums; usually hermaphroditic +n01447946 a fish with a dark-blue back and whitish sides with red stripes; found in swamps and streams of Florida +n01448291 freshwater fish of Central America having a long swordlike tail; popular aquarium fish +n01448594 small freshwater fish of South America and the West Indies; often kept in aquariums +n01448951 small usually brightly-colored viviparous surface-feeding fishes of fresh or brackish warm waters; often used in mosquito control +n01449374 silvery topminnow with rows of black spots of tropical North America and West Indies; important in mosquito control +n01449712 small stocky Mexican fish; popular aquarium fish +n01449980 popular aquarium fish +n01450661 very small, brightly colored (especially red) nocturnal fishes of shallow waters or tropical reefs; they make sounds like a squirrel's bark +n01450950 on reefs from Bermuda and Florida to northern South America +n01451115 a squirrelfish found from South Carolina to Bermuda and Gulf of Mexico +n01451295 bright red fish of West Indies and Bermuda +n01451426 the larger squirrelfishes +n01451863 fish having a luminous organ beneath eye; of warm waters of the western Pacific and Puerto Rico +n01452345 fish of deep dark waters having a light organ below each eye +n01453087 European dory +n01453475 fish with a projecting snout +n01453742 fish with large eyes and long snouts +n01454545 slender tropical fish with a long tubular snout and bony plates instead of scales +n01454856 small (2-4 inches) pugnacious mostly scaleless spiny-backed fishes of northern fresh and littoral waters having elaborate courtship; subjects of much research +n01455317 of rivers and coastal regions +n01455461 confined to rivers +n01455778 fish with long tubular snout and slim body covered with bony plates +n01456137 small (4 inches) fish found off the Florida Gulf Coast +n01456454 a fish 8 inches long; found from eastern Florida to western Caribbean +n01456756 small fish with horse-like heads bent sharply downward and curled tails; swim in upright position +n01457082 small bottom-dwelling fish of warm seas having a compressed body and a long snout with a toothless mouth +n01457407 slender tropical shallow-water East Indian fish covered with transparent plates +n01457852 tropical Atlantic fish with a long snout; swims snout down +n01458746 thin protective membrane in some protozoa +n01458842 an animal organism in the early stages of growth and differentiation that in higher forms merge into fetal stages but in lower forms terminate in commencement of larval life +n01459791 an unborn or unhatched vertebrate in the later stages of development showing the main recognizable features of the mature animal +n01460303 a human fetus whose weight is less than 0.5 kilogram when removed or expelled from the mother's body +n01461315 the mass of eggs deposited by fish or amphibians or molluscs +n01461646 early stage of an embryo produced by cleavage of an ovum; a liquid-filled sphere whose wall is composed of a single layer of cells; during this stage (about eight days after fertilization) implantation in the wall of the uterus occurs +n01462042 the blastula of a placental mammal in which some differentiation of cells has occurred +n01462544 double-walled stage of the embryo resulting from invagination of the blastula; the outer layer of cells is the ectoderm and the inner layer differentiates into the mesoderm and endoderm +n01462803 a solid mass of blastomeres that forms when the zygote splits; develops into the blastula +n01464844 nutritive material of an ovum stored for the nutrition of an embryo (especially the yellow mass of a bird or reptile egg) +n01466257 any animal of the phylum Chordata having a notochord or spinal column +n01467336 fish-like animals having a notochord rather than a true spinal column +n01467804 small translucent lancet-shaped burrowing marine animal; primitive forerunner of the vertebrates +n01468238 primitive marine animal having a saclike unsegmented body and a urochord that is conspicuous in the larva +n01468712 minute sedentary marine invertebrate having a saclike body with siphons through which water enters and leaves +n01469103 ascidian that can contract its body and eject streams of water +n01469723 minute floating marine tunicate having a transparent body with an opening at each end +n01470145 free-swimming oceanic tunicate with a barrel-shaped transparent body +n01470479 any member of the class Larvacea +n01470733 free-swimming tadpole-shaped pelagic tunicate resembling larvae of other tunicates +n01470895 free-swimming larva of ascidians; they have a tail like a tadpole that contains the notochord +n01471682 animals having a bony or cartilaginous skeleton with a segmented spinal column and a large brain enclosed in a skull or cranium +n01472303 higher vertebrates (reptiles, birds and mammals) possessing an amnion during development +n01472502 any member of the Amniota +n01473806 animal living wholly or chiefly in or on water +n01474283 eel-shaped vertebrate without jaws or paired appendages including the cyclostomes and some extinct forms +n01474864 extinct fish-like jawless vertebrate having a heavily armored body; of the Paleozoic +n01475232 extinct jawless fish with the anterior part of the body covered with bony plates; of the Silurian and Devonian +n01475940 extinct small freshwater jawless fish usually having a heterocercal tail and an armored head; of the Silurian and Devonian +n01476418 small (2 inches long) extinct eellike fish with a finned tail and a notochord and having cone-shaped teeth containing cellular bone; late Cambrian to late Triassic; possible predecessor of the cyclostomes +n01477080 primitive aquatic vertebrate +n01477525 primitive eellike freshwater or anadromous cyclostome having round sucking mouth with a rasping tongue +n01477875 large anadromous lamprey sometimes used as food; destructive of native fish fauna in the Great Lakes +n01478511 eellike cyclostome having a tongue with horny teeth in a round mouth surrounded by eight tentacles; feeds on dead or trapped fishes by boring into their bodies +n01478969 typical hagfish +n01479213 a fossil hagfish of the genus Eptatretus +n01479820 a vertebrate animal possessing true jaws +n01480106 fish-like vertebrate with bony plates on head and upper body; dominant in seas and rivers during the Devonian; considered the earliest vertebrate with jaws +n01480516 fishes in which the skeleton may be calcified but not ossified +n01480880 fish with high compressed head and a body tapering off into a long tail +n01481331 a deep-sea fish with a tapering body, smooth skin, and long threadlike tail +n01481498 large European chimaera +n01482071 any of numerous fishes of the class Chondrichthyes characterized by a cartilaginous skeleton and placoid scales: sharks; rays; skates +n01482330 any of numerous elongate mostly marine carnivorous fishes with heterocercal caudal fins and tough skin covered with small toothlike scales +n01483021 large primitive shark widely distributed in warm seas +n01483522 fierce pelagic and oceanic sharks +n01483830 voracious pointed-nose shark of northern Atlantic and Pacific +n01484097 powerful mackerel shark of the Atlantic and Pacific +n01484285 very swift active bluish shark found worldwide in warm waters; important game fish +n01484447 similar to shortfin mako but darker blue +n01484562 common blue-grey shark of southwest Pacific; sport and food fish +n01484850 large aggressive shark widespread in warm seas; known to attack humans +n01485479 large harmless plankton-eating northern shark; often swims slowly or floats at the sea surface +n01486010 large pelagic shark of warm seas with a whiplike tail used to round up small fish on which to feed +n01486540 shark of the western Pacific with flattened body and mottled skin +n01486838 small bottom-dwelling shark of warm shallow waters on both coasts of North America and South America and from southeast Asia to Australia +n01487506 shallow-water shark with sharp jagged teeth found on both sides of Atlantic; sometimes dangerous to swimmers +n01488038 large spotted shark of warm surface waters worldwide; resembles a whale and feeds chiefly on plankton +n01488918 any of numerous sharks from small relatively harmless bottom-dwellers to large dangerous oceanic and coastal species +n01489501 a most common shark in temperate and tropical coastal waters worldwide; heavy-bodied and dangerous +n01489709 most common grey shark along coasts of middle Atlantic states; sluggish and occasionally caught by fishermen +n01489920 widely distributed shallow-water shark with fins seemingly dipped in ink +n01490112 large deep-water shark with white-tipped dorsal fin; worldwide distribution; most dangerous shark +n01490360 relatively slender blue-grey shark; nearly worldwide in tropical and temperate waters +n01490670 common shallow-water schooling shark of the Atlantic from North Carolina to Brazil and off west Africa; dangerous +n01491006 slender cosmopolitan, pelagic shark; blue body shades to white belly; dangerous especially during maritime disasters +n01491361 large dangerous warm-water shark with striped or spotted body +n01491661 Pacific shark valued for its fins (used by Chinese in soup) and liver (rich in vitamin A) +n01491874 any of several small sharks +n01492357 small bottom-dwelling shark found along both Atlantic coasts +n01492569 smooth dogfish of European coastal waters +n01492708 found along the Atlantic coast of the Americas +n01492860 found from the northern Gulf of Mexico to Brazil +n01493146 smooth dogfish of Pacific and Indian Oceans and Red Sea having white-tipped dorsal and caudal fins +n01493541 small bottom-dwelling dogfishes +n01493829 destructive dogfish of the Atlantic coastal waters of America and Europe; widely used in anatomy classes +n01494041 dogfish of Pacific coast of North America +n01494475 medium-sized live-bearing shark with eyes at either end of a flattened hammer-shaped head; worldwide in warm waters; can be dangerous +n01494757 fished for the hides and vitamin-rich liver +n01494882 fished for the hide and vitamin-rich liver +n01495006 small harmless hammerhead having a spade-shaped head; abundant in bays and estuaries +n01495493 sharks with broad flat bodies and winglike pectoral fins but that swim the way sharks do +n01495701 cartilaginous fishes having horizontally flattened bodies and enlarged winglike pectoral fins with gills on the underside; most swim by moving the pectoral fins +n01496331 any sluggish bottom-dwelling ray of the order Torpediniformes having a rounded body and electric organs on each side of the head capable of emitting strong electric discharges +n01497118 primitive ray with sharp teeth on each edge of a long flattened snout +n01497413 commonly found in tropical bays and estuaries; not aggressive +n01497738 primitive tropical bottom-dwelling ray with a guitar-shaped body +n01498041 large venomous ray with large barbed spines near the base of a thin whiplike tail capable of inflicting severe wounds +n01498406 one of the largest stingrays; found from Cape Cod to Cape Hatteras +n01498699 a stingray with a short tail and a broad fin +n01498989 powerful free-swimming tropical ray noted for `soaring' by flapping winglike fins; usually harmless but has venomous tissue near base of the tail as in stingrays +n01499396 ray with back covered with white or yellow spots; widely distributed in warm seas +n01499732 large ray found along eastern coast of North America +n01500091 extremely large pelagic tropical ray that feeds on plankton and small fishes; usually harmless but its size make it dangerous if harpooned +n01500476 largest manta (to 22 feet across wings); found worldwide but common in Gulf of Mexico and along southern coasts of United States; primarily oceanic +n01500854 small manta (to 4 feet) that travels in schools +n01501160 large edible rays having a long snout and thick tail with pectoral fins continuous with the head; swim by undulating the edges of the pectoral fins +n01501641 common European skate used as food +n01501777 most plentiful skate in North American inshore waters in summer; to 21 inches +n01501948 cold-water bottom fish with spines on the back; to 40 inches +n01502101 one of the largest skates (to 5 feet); an active skate easy to hook +n01503061 warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings +n01503976 small bird; adults talking to children sometimes use these words to refer to small birds +n01504179 young bird that has just fledged or become capable of flying +n01504344 young bird not yet fledged +n01514668 adult male bird +n01514752 a cock bred and trained for fighting +n01514859 adult female bird +n01514926 a bird that has built (or is building) a nest +n01515078 any bird associated with night: owl; nightingale; nighthawk; etc +n01515217 any bird that cries at night +n01515303 any bird that migrates seasonally +n01516212 extinct primitive toothed bird of the Jurassic period having a long feathered tail and hollow bones; usually considered the most primitive of all birds +n01517389 extinct primitive toothed bird with a long feathered tail and three free clawed digits on each wing +n01517565 flightless birds having flat breastbones lacking a keel for attachment of flight muscles: ostriches; cassowaries; emus; moas; rheas; kiwis; elephant birds +n01517966 birds having keeled breastbones for attachment of flight muscles +n01518878 fast-running African flightless bird with two-toed feet; largest living bird +n01519563 large black flightless bird of Australia and New Guinea having a horny head crest +n01519873 large Australian flightless bird similar to the ostrich but smaller +n01520576 nocturnal flightless bird of New Zealand having a long neck and stout legs; only surviving representative of the order Apterygiformes +n01521399 larger of two tall fast-running flightless birds similar to ostriches but three-toed; found from Brazil to Patagonia +n01521756 smaller of two tall fast-running flightless birds similar to ostriches but three-toed; found from Peru to Strait of Magellan +n01522450 huge (to 9 ft.) extinct flightless bird of Madagascar +n01523105 extinct flightless bird of New Zealand +n01524359 perching birds mostly small and living near the ground with feet having 4 toes arranged to allow for gripping the perch; most are songbirds; hatchlings are helpless +n01524761 chiefly arboreal birds especially of the order Coraciiformes +n01525720 passerine bird having specialized vocal apparatus +n01526521 any bird having a musical call +n01526766 Australasian bird with tongue and bill adapted for extracting nectar +n01527194 small sparrow-like songbird of mountainous regions of Eurasia +n01527347 small brownish European songbird +n01527617 any of numerous predominantly Old World birds noted for their singing +n01527917 brown-speckled European lark noted for singing while hovering at a great height +n01528396 Old World bird having a very long tail that jerks up and down as it walks +n01528654 a songbird that lives mainly on the ground in open country; has streaky brown plumage +n01528845 a common pipit that is brown above and white below; widely distributed in northern and central Europe and in Asia +n01529672 any of numerous small songbirds with short stout bills adapted for crushing seeds +n01530439 small European finch with a cheerful song +n01530575 Eurasian finch +n01531178 small European finch having a crimson face and yellow-and-black wings +n01531344 small Old World finch whose male has a red breast and forehead +n01531512 small yellow-and-black Eurasian finch with a sharp beak +n01531639 South American species of scarlet finch with black head and wings and tail +n01531811 small siskin-like finch with a red crown and a rosy breast and rump +n01531971 small siskin-like finch with a red crown +n01532325 American finch whose male has yellow body plumage in summer +n01532511 small finch of North American coniferous forests +n01532829 small finch originally of the western United States and Mexico +n01533000 North American finch having a raspberry-red head and breast and rump +n01533339 any of several small Old World finches +n01533481 native to the Canary Islands and Azores; popular usually yellow cage bird noted for its song +n01533651 any of various brown and yellow finches of parts of Europe +n01533893 finch with a bill whose tips cross when closed +n01534155 common European finch mostly black and white with red throat and breast +n01534433 small North American finch seen chiefly in winter +n01534582 common North American junco having grey plumage and eyes with dark brown irises +n01534762 sparrow-like North American finches +n01535140 common North American finch noted for its evening song +n01535469 common North American finch with a white patch on the throat and black-and-white striped crown +n01535690 finch with black-and-white striped crown +n01536035 small North American finch common in urban areas +n01536186 common North American finch of brushy pasturelands +n01536334 finch common in winter in the northern U.S. +n01536644 small songbird common in North America +n01536780 North American finch of marshy area +n01537134 any of numerous seed-eating songbirds of Europe or North America +n01537544 small deep blue North American bunting +n01537895 brownish Old World bunting often eaten as a delicacy +n01538059 European bunting inhabiting marshy areas +n01538200 European bunting the male being bright yellow +n01538362 common in Russia and Siberia +n01538630 white Arctic bunting +n01538955 small bright-colored tropical American songbird with a curved bill for sucking nectar +n01539272 any of several honeycreepers +n01539573 any of several small dull-colored singing birds feeding on seeds or insects +n01539925 small hardy brown-and-grey bird native to Europe +n01540090 Eurasian sparrow smaller than the house sparrow +n01540233 any of various finches of Europe or America having a massive and powerful bill +n01540566 North American grosbeak +n01540832 a common large finch of Eurasia +n01541102 large grosbeak of coniferous forests of Old and New Worlds +n01541386 crested thick-billed North American finch having bright red plumage in the male +n01541760 crested grey-and-red bird of southwest United States and Mexico +n01541922 any of numerous long-tailed American finches +n01542168 common towhee of eastern North America +n01542433 towhee of the Rocky Mountains +n01542786 finch-like African and Asian colonial birds noted for their elaborately woven nests +n01543175 common Indian weaverbird +n01543383 mostly black African weaverbird +n01543632 small finch-like Indonesian weaverbird that frequents rice fields +n01543936 red Asian weaverbirds often kept as cage birds +n01544208 usually brightly-colored Australian weaverbirds; often kept as cage birds +n01544389 small Australian weaverbird with markings like a zebra's +n01544704 small to medium-sized finches of the Hawaiian islands +n01545574 Australian bird that resembles a pheasant; the courting male displays long tail feathers in a lyre shape +n01546039 small fast-running Australian bird resembling a wren and frequenting brush or scrub +n01546506 small birds of the Old World tropics having bright plumage and short wide bills +n01546921 a passerine bird of the suborder Tyranni +n01547832 large American birds that characteristically catch insects on the wing +n01548301 large American flycatcher +n01548492 a kingbird seen in western United States; head and back are pale grey and the breast is yellowish and the tail is black +n01548694 a kingbird seen in the southwestern United States; largely grey with a yellow abdomen +n01548865 a kingbird that breeds in North America and winters in tropical America; distinguished by a white band on the tip of the tail +n01549053 a kingbird that breeds in the southeastern United States and winters in tropical America; similar to but larger than the eastern kingbird +n01549430 small olive-colored woodland flycatchers of eastern North America +n01549641 small flycatcher of western North America +n01549886 small dun-colored North American flycatcher +n01550172 tropical American flycatcher found as far north as southern Texas and Arizona; adult male has bright scarlet and black plumage +n01550761 passerine bird of New World tropics +n01551080 tropical bird of northern South America the male having brilliant red or orange plumage and an erectile disklike crest +n01551300 bird of the Andes similar to Rupicola rupicola +n01551711 any of numerous small bright-colored birds of Central America and South America having short bills and elaborate courtship behavior +n01552034 any of several tropical American birds of the genus Procnias having a bell-like call +n01552333 black tropical American bird having a large overhanging crest and long feathered wattle +n01552813 small brownish South American birds that build oven-shaped clay nests +n01553142 any of various dull-colored South American birds that feeding on ants some following army ant swarms +n01553527 a kind of antbird +n01553762 antbirds superficially resembling shrikes +n01554017 a kind of antbird +n01554448 any of numerous South American and Central American birds with a curved bill and stiffened tail feathers that climb and feed like woodpeckers +n01555004 any bird of the genus Pitta; brilliantly colored chiefly terrestrial birds with short wings and tail and stout bills +n01555305 grey flycatcher of the southwestern United States and Mexico and Central America having a long forked tail and white breast and salmon and scarlet markings +n01555809 any of a large group of small songbirds that feed on insects taken on the wing +n01556182 common European woodland flycatcher with greyish-brown plumage +n01556514 Australian and southeastern Asian birds with a melodious whistling call +n01557185 songbirds characteristically having brownish upper plumage with a spotted breast +n01557962 large European thrush that feeds on mistletoe berries +n01558149 common Old World thrush noted for its song +n01558307 medium-sized Eurasian thrush seen chiefly in winter +n01558461 small European thrush having reddish flanks +n01558594 common black European thrush +n01558765 European thrush common in rocky areas; the male has blackish plumage with a white band around the neck +n01558993 large American thrush having a rust-red breast and abdomen +n01559160 robin of Mexico and Central America +n01559477 North American thrush noted for its complex and appealing song +n01559639 tawny brown North American thrush noted for its song +n01559804 large thrush common in eastern American woodlands; noted for its melodious song +n01560105 European songbird noted for its melodious nocturnal song +n01560280 large nightingale of eastern Europe +n01560419 nightingale spoken of in Persian poetry +n01560636 songbirds having a chattering call +n01560793 common European chat with black plumage and a reddish-brown breast +n01560935 brown-and-buff European songbird of grassy meadows +n01561181 a dull grey North American thrush noted for its beautiful song +n01561452 European songbird with a reddish breast and tail; related to Old World robins +n01561732 small songbird of northern America and Eurasia having a distinctive white rump +n01562014 blue North American songbird +n01562265 small Old World songbird with a reddish breast +n01562451 songbird of northern Europe and Asia +n01563128 a small active songbird +n01563449 very small North American and South American warblers +n01563746 small birds resembling warblers but having some of the habits of titmice +n01563945 European kinglet with a black-bordered yellow crown patch +n01564101 American golden-crested kinglet +n01564217 American kinglet with a notable song and in the male a red crown patch +n01564394 small active brownish or greyish Old World birds +n01564773 small brownish-grey warbler with a black crown +n01564914 greyish-brown Old World warbler with a white throat and underparts +n01565078 Old World warbler similar to the greater whitethroat but smaller +n01565345 European woodland warbler with dull yellow plumage +n01565599 small European warbler that breeds among reeds and wedges and winters in Africa +n01565930 small Asiatic and African bird; constructs nests like those of tailorbirds +n01566207 tropical Asian warbler that stitches leaves together to form and conceal its nest +n01566645 any of various insectivorous Old World birds with a loud incessant song; in some classifications considered members of the family Muscicapidae +n01567133 small bright-colored American songbird with a weak unmusical song +n01567678 small grey-blue wood warbler with yellow throat and breast; of eastern North America +n01567879 yellow wood warbler with a black crown +n01568132 any of numerous American wood warblers that feed on insects caught on the wing +n01568294 flycatching warbler of eastern North America the male having bright orange on sides and wings and tail +n01568720 North American wood warbler; olive green and yellow striped with black +n01568892 yellow-throated American wood warbler +n01569060 black-and-white North American wood warbler having an orange-and-black head and throat +n01569262 common warbler of western North America +n01569423 similar to Audubon's warbler +n01569566 North American warbler having a black-and-white head +n01569836 birds having a chattering call +n01569971 American warbler noted for imitating songs of other birds +n01570267 American warbler; builds a dome-shaped nest on the ground +n01570421 brownish North American warbler found near streams +n01570676 small olive-colored American warblers with yellow breast and throat +n01570839 an American warbler +n01571410 velvety black Australian bird of paradise with green and purple iridescence on head and tail +n01571904 American songbird; male is black and orange or yellow +n01572328 a kind of New World oriole +n01572489 eastern subspecies of northern oriole +n01572654 western subspecies of northern oriole +n01572782 the male is chestnut-and-black +n01573074 North American songbirds having a yellow breast +n01573240 a meadowlark of eastern North America +n01573360 a meadowlark of western North America +n01573627 black-and-red or black-and-yellow orioles of the American tropics +n01573898 migratory American songbird +n01574045 any bird of the family Icteridae whose male is black or predominantly black +n01574390 long-tailed American blackbird having iridescent black plumage +n01574560 eastern United States grackle +n01574801 North American blackbird whose bluish-black plumage is rusty-edged in the fall +n01575117 North American blackbird that follows cattle and lays eggs in other birds' nests +n01575401 North American blackbird with scarlet patches on the wings +n01575745 mostly tropical songbird; the male is usually bright orange and black +n01576076 bright yellow songbird with black wings +n01576358 greenish-yellow Australian oriole feeding chiefly on figs and other fruits +n01576695 gregarious birds native to the Old World +n01577035 gregarious bird having plumage with dark metallic gloss; builds nests around dwellings and other structures; naturalized worldwide +n01577458 glossy black bird with pink back and abdomen; chiefly Asian +n01577659 tropical Asian starlings +n01577941 dark brown crested bird of southeastern Asia +n01578180 glossy black Asiatic starling often taught to mimic speech +n01578575 birds of the crow family +n01579028 black birds having a raucous call +n01579149 common crow of North America +n01579260 large black bird with a straight bill and long wedge-shaped tail +n01579410 common gregarious Old World bird about the size and color of the American crow +n01579578 common black-and-grey Eurasian bird noted for thievery +n01579729 a European corvine bird of small or medium size with red legs and glossy black plumage +n01580077 crested largely blue bird +n01580379 a European jay +n01580490 fawn-colored jay with black-and-white crest and blue-and-black wings +n01580772 a North American jay +n01580870 common jay of eastern North America; bright blue with grey breast +n01581166 a jay of northern North America with black-capped head and no crest; noted for boldness in thievery +n01581434 a Canada jay with a white head; widely distributed from Montana to Arizona +n01581730 speckled birds that feed on nuts +n01581874 Old World nutcracker +n01581984 nutcracker of the western United States +n01582220 long-tailed black-and-white crow that utters a raucous chattering call +n01582398 a common magpie of Eurasia +n01582498 a magpie of Rocky Mountains in North America +n01582856 black-and-white oscine birds that resemble magpies +n01583209 large carnivorous Australian bird with the shrike-like habit of impaling prey on thorns +n01583495 bluish black fruit-eating bird with a bell-like call +n01583828 crow-sized black-and-white bird; a good mimic often caged +n01584225 any of several small active brown birds of the northern hemisphere with short upright tails; they feed on insects +n01584695 small wren of coniferous forests of northern hemisphere +n01584853 common American wren that nests around houses +n01585121 a wren of the genus Cistothorus that frequents marshes +n01585287 American wren that inhabits tall reed beds +n01585422 small American wren inhabiting wet sedgy meadows +n01585715 wren inhabiting badlands and mesa country of western United States and Mexico +n01586020 large United States wren with a musical call +n01586374 large harsh-voiced American wren of arid regions of the United States southwest and Mexico +n01586941 long-tailed grey-and-white songbird of the southern United States able to mimic songs of other birds +n01587278 mockingbird of Mexico +n01587526 North American songbird whose call resembles a cat's mewing +n01587834 thrush-like American songbird able to mimic other birdsongs +n01588002 common large songbird of eastern United States having reddish-brown plumage +n01588431 birds of New Zealand that resemble wrens +n01588725 short-tailed bird resembling a wren +n01588996 small green-and-bronze bird +n01589286 any of various small insectivorous birds of the northern hemisphere that climb up a tree trunk supporting themselves on stiff tail feathers and their feet +n01589718 a common creeper in North America with a down-curved bill +n01589893 common European brown-and-buff tree creeper with down-curved bill +n01590220 crimson-and-grey songbird that inhabits town walls and mountain cliffs of southern Eurasia and northern Africa +n01591005 a kind of nuthatch +n01591123 bluish-grey nuthatch with reddish breast; of northern coniferous forests +n01591301 bluish-grey nuthatch with black head and white breast; of eastern North America +n01591697 small insectivorous birds +n01592084 any of various small grey-and-black songbirds of North America +n01592257 chickadee having a dark crown +n01592387 crested titmouse of eastern and midwestern United States +n01592540 southern United States chickadee similar to the blackcap but smaller +n01592694 widely distributed European titmouse with bright cobalt blue wings and tail and crown of the head +n01593028 active grey titmice of western North America +n01593282 small brown bird of California resembling a wren +n01593553 very small yellow-headed titmouse of western North America +n01594004 fruit-eating mostly brilliant blue songbird of the East Indies +n01594372 small long-winged songbird noted for swift graceful flight and the regularity of its migrations +n01594787 common swallow of North America and Europe that nests in barns etc. +n01594968 North American swallow that lives in colonies and builds bottle-shaped mud nests on cliffs and walls +n01595168 of Australia and Polynesia; nests in tree cavities +n01595450 bluish-green-and-white North American swallow; nests in tree cavities +n01595624 any of various swallows with squarish or slightly forked tail and long pointed wings; migrate around Martinmas +n01595974 common small European martin that builds nests under the eaves of houses +n01596273 swallow of the northern hemisphere that nests in tunnels dug in clay or sand banks +n01596608 large North American martin of which the male is blue-black +n01597022 Australasian and Asiatic bird related to the shrikes and resembling a swallow +n01597336 any of numerous New World woodland birds having brightly colored males +n01597737 the male is bright red with black wings and tail +n01597906 of western North America; male is black and yellow and orange-red +n01598074 of middle and southern United States; male is deep rose-red the female mostly yellow +n01598271 common tanager of southwestern United States and Mexico +n01598588 any of numerous Old World birds having a strong hooked bill that feed on smaller animals +n01598988 shrikes that impale their prey on thorns +n01599159 a common European butcherbird +n01599269 a butcherbird of northern North America +n01599388 a butcherbird of western North America; grey with white underparts +n01599556 a common shrike of southeastern United States having black bands around the eyes +n01599741 a shrike of central North America; winters in Texas and the southern Mississippi valley +n01600085 an African shrike +n01600341 a kind of bush shrike +n01600657 any of various birds of the Australian region whose males build ornamented structures resembling bowers in order to attract females +n01601068 of southeast Australia; male is glossy violet blue; female is light grey-green +n01601410 large bowerbird of northern Australia +n01601694 small stocky diving bird without webbed feet; frequents fast-flowing streams and feeds along the bottom +n01602080 a water ouzel of Europe +n01602209 a water ouzel of western North America +n01602630 any of various small insectivorous American birds chiefly olive-grey in color +n01602832 of northern North America having red irises and an olive-grey body with white underparts +n01603000 of eastern North America having a bluish-grey head and mostly green body +n01603152 common vireo of northeastern North America with bluish slaty-grey head +n01603600 brown velvety-plumaged songbirds of the northern hemisphere having crested heads and red waxy wing tips +n01603812 widely distributed over temperate North America +n01603953 large waxwing of northern North America; similar to but larger than the cedar waxwing +n01604330 any of numerous carnivorous birds that hunt and kill other animals +n01604968 in some classifications an alternative name for the Falconiformes +n01605630 diurnal bird of prey typically having short rounded wings and a long tail +n01606097 an unfledged or nestling hawk +n01606177 male hawk especially male peregrine or gyrfalcon +n01606522 large hawk of Eurasia and North America used in falconry +n01606672 small hawk of Eurasia and northern Africa +n01606809 bluish-grey North American hawk having a darting flight +n01606978 nontechnical term for any hawks said to prey on poultry +n01607309 any hawk of the genus Buteo +n01607429 dark brown American hawk species having a reddish-brown tail +n01607600 large hawk of the northern hemisphere that feeds chiefly on small rodents and is beneficial to farmers +n01607812 North American hawk with reddish brown shoulders +n01607962 the common European short-winged hawk +n01608265 Old World hawk that feeds on bee larvae and small rodents and reptiles +n01608432 any of several small graceful hawks of the family Accipitridae having long pointed wings and feeding on insects and small animals +n01608814 dark Old World kite feeding chiefly on carrion +n01609062 graceful North American black-and-white kite +n01609391 grey-and-white American kite of warm and tropical regions +n01609751 hawks that hunt over meadows and marshes and prey on small terrestrial animals +n01609956 Old World harrier frequenting marshy regions +n01610100 brownish European harrier +n01610226 common harrier of North America and Europe; nests in marshes and open land +n01610552 any of numerous large Old World hawks intermediate in some respects between typical hawks and typical eagles +n01610955 diurnal birds of prey having long pointed powerful wings adapted for swift flight +n01611472 a widely distributed falcon formerly used in falconry +n01611674 female falcon especially a female peregrine falcon +n01611800 large and rare Arctic falcon having white and dark color phases +n01611969 small Old World falcon that hovers in the air against a wind +n01612122 small North American falcon +n01612275 small falcon of Europe and America having dark plumage with black-barred tail; used in falconry +n01612476 small Old World falcon formerly trained and flown at small birds +n01612628 any of various long-legged carrion-eating hawks of South America and Central America +n01612955 widespread from southern United States to Central America; rusty black with black-and-white breast and tail +n01613177 South American caracara +n01613294 any of various large keen-sighted diurnal birds of prey noted for their broad wings and strong soaring flight +n01613615 a bird that is still young +n01613807 a young eagle +n01614038 large black-and-white crested eagle of tropical America +n01614343 large eagle of mountainous regions of the northern hemisphere having a golden-brown head and neck +n01614556 brownish eagle of Africa and parts of Asia +n01614925 a large eagle of North America that has a white head and dark wings and body +n01615121 any of various large eagles that usually feed on fish +n01615303 found on coasts of the northwestern Pacific +n01615458 bulky greyish-brown eagle with a short wedge-shaped white tail; of Europe and Greenland +n01615703 of southeast Europe and central Asia +n01616086 large harmless hawk found worldwide that feeds on fish and builds a bulky nest often occupied for years +n01616318 any of various large diurnal birds of prey having naked heads and weak claws and feeding chiefly on carrion +n01616551 in some classifications considered the family comprising the Old World vultures which are more often included in the family Accipitridae +n01616764 any of several large vultures of Africa and Eurasia +n01617095 large vulture of southern Europe and northern Africa having pale plumage with black wings +n01617443 the largest Eurasian bird of prey; having black feathers hanging around the bill +n01617766 small mostly white vulture of Africa and southern Eurasia +n01618082 of southern Eurasia and northern Africa +n01618503 large long-legged African bird of prey that feeds on reptiles +n01618922 large birds of prey superficially similar to Old World vultures +n01619310 a New World vulture that is common in South America and Central America and the southern United States +n01619536 the largest flying birds in the western hemisphere +n01619835 large vulture of the high Andes having black plumage and white neck ruff +n01620135 North American condor; chiefly dull black; almost extinct +n01620414 American vulture smaller than the turkey buzzard +n01620735 large black-and-white vulture of South America and Central America; have colorful wattles and wartlike protuberances on head and neck +n01621127 nocturnal bird of prey with hawk-like beak and claws and large head with front-facing eyes +n01621635 young owl +n01622120 small European owl +n01622352 large owls having prominent ear tufts +n01622483 brown North American horned owl +n01622779 large dish-faced owl of northern North America and western Eurasia +n01622959 reddish-brown European owl having a round head with black eyes +n01623110 large owl of eastern North America having its breast and abdomen streaked with brown +n01623425 small North American owl having hornlike tufts of feathers whose call sounds like a quavering whistle +n01623615 any owl that has a screeching cry +n01623706 any of several small owls having ear tufts and a whistling call +n01623880 a large owl of North America found in forests from British Columbia to central Mexico; has dark brown plumage and a heavily spotted chest +n01624115 European scops owl +n01624212 Asian scops owl +n01624305 any owl that hoots as distinct from screeching +n01624537 grey-and-white diurnal hawk-like owl of northern parts of the northern hemisphere +n01624833 slender European owl of coniferous forests with long ear tufts +n01625121 almost extinct owl of New Zealand +n01625562 mottled buff and white owl often inhabiting barns and other structures; important in rodent control +n01627424 cold-blooded vertebrate typically living on land but breeding in water; aquatic larvae undergo metamorphosis into adult form +n01628331 early tetrapod amphibian found in Greenland +n01628770 amphibians that resemble lizards +n01629276 any of various typically terrestrial amphibians that resemble lizards and that return to water only to breed +n01629819 a kind of European salamander +n01629962 European salamander having dark skin with usually yellow spots +n01630148 ovoviviparous amphibian of the Alps +n01630284 small usually bright-colored semiaquatic salamanders of North America and Europe and northern Asia +n01630670 small semiaquatic salamander +n01630901 red terrestrial form of a common North American newt +n01631175 any of several rough-skinned newts found in western North America +n01631354 newt of humid coast from Alaska to southern California +n01631512 newt that is similar to Taricha granulosa in characteristics and habitat +n01631663 a newt in its terrestrial stage of development +n01632047 small to moderate-sized terrestrial or semiaquatic New World salamander +n01632308 brownish-black burrowing salamander of southeastern United States +n01632458 glossy black North American salamander with yellow spots +n01632601 widely distributed brown or black North American salamander with vertical yellowish blotches +n01632777 larval salamander of mountain lakes of Mexico that usually lives without metamorphosing +n01632952 any of several large aquatic salamanders +n01633406 large salamander of North American rivers and streams +n01633781 large (up to more than three feet) edible salamander of Asia +n01634227 European aquatic salamander with permanent external gills that lives in caves +n01634522 aquatic North American salamander with red feathery external gills +n01635027 salamanders found near cold streams throughout the year +n01635176 large (to 7 inches) salamander of western North America +n01635480 small large-eyed semiaquatic salamander of the United States Northwest +n01636127 mostly terrestrial salamanders that breathe through their thin moist skin; lay eggs in moist places on land; rarely enter water +n01636352 common salamander of eastern North America +n01636510 salamander of the Pacific coast of North America +n01636829 common North American salamander mottled with dull brown or greyish-black +n01637112 any of several North American salamanders adapted for climbing with well-developed limbs and long somewhat squared-off toes +n01637338 yellow-spotted brown salamander of California woodlands +n01637615 any of several small slim salamanders of the Pacific coast of the United States +n01637932 any of several salamanders with webbed toes and very long extensile tongues; excellent climbers that move with ease over smooth rock surfaces +n01638194 primarily a cave dweller in the Mount Shasta area +n01638329 similar to Shasta salamander; lives in cliff crevices and taluses +n01638722 aquatic eel-shaped salamander having two pairs of very small feet; of still muddy waters in the southern United States +n01639187 eellike aquatic North American salamander with small forelimbs and no hind limbs; have permanent external gills +n01639765 any of various tailless stout-bodied amphibians with long hind limbs for leaping; semiaquatic and terrestrial species +n01640846 insectivorous usually semiaquatic web-footed amphibian with smooth moist skin and long hind legs +n01641206 wide-ranging light-brown frog of moist North American woodlands especially spruce +n01641391 common North American green or brownish frog having white-edged dark oval spots +n01641577 largest North American frog; highly aquatic with a deep-pitched voice +n01641739 similar to bullfrog; found in or near marshes and ponds; of United States and Canada +n01641930 mountain frog found near water; of United States Northwest to California +n01642097 largest living frog; up to a foot and weighing up to 10 lbs; Africa +n01642257 a meadow frog of eastern North America +n01642391 Mexican frog found within a jump or two of water +n01642539 a common semiterrestrial European frog +n01642943 toothed frogs: terrestrial or aquatic or arboreal +n01643255 small terrestrial frog of tropical America +n01643507 of southwest United States and Mexico; call is like a dog's bark +n01643896 large toothed frog of South America and Central America resembling the bullfrog +n01644373 any of various Old World arboreal frogs distinguished from true frogs by adhesive suckers on the toes +n01644900 western North American frog with a taillike copulatory organ +n01645466 primitive New Zealand frog with four unwebbed toes on forefeet and five on hind feet +n01645776 tailless amphibian similar to a frog but more terrestrial and having drier warty skin +n01646292 any toad of the genus Bufo +n01646388 largest known toad species; native to Central America; valuable destroyer of insect pests +n01646555 common toad of Europe +n01646648 common brownish-yellow short-legged toad of western Europe; runs rather than hops +n01646802 common toad of America +n01646902 Eurasian toad with variable chiefly green coloring +n01647033 small green or yellow-green toad with small black bars and stripes +n01647180 of high Sierra Nevada meadows and forest borders +n01647303 nocturnal burrowing toad of mesquite woodland and prairies of the United States southwest +n01647466 a uniformly warty stocky toad of washes and streams of semiarid southwestern United States +n01647640 of a great variety of habitats from southern Alaska to Baja California west of the Rockies +n01648139 European toad whose male carries the fertilized eggs wrapped around its hind legs until they hatch +n01648356 similar in habit to Alytes obstetricians +n01648620 toad of central and eastern Europe having red or orange patches mixed with black on its underside +n01649170 a burrowing toad of the northern hemisphere with a horny spade-like projection on each hind foot +n01649412 this spadefoot toad live in California +n01649556 this spadefoot toad lives in the southwestern United States +n01649726 this spadefoot toad lives in plains and hills and river bottoms in areas of low rainfall east of the Rocky Mountains +n01650167 arboreal amphibians usually having adhesive disks at the tip of each toe; of southeast Asia and Australia and America +n01650690 a small brown tree toad having a shrill call heard near wetlands of eastern United States and Canada in early spring +n01650901 the most commonly heard frog on the Pacific coast of America +n01651059 a small chiefly ground dweller that stays within easy jumping distance of water; of United States southwest and northern Mexico +n01651285 a form of tree toad +n01651487 either of two frogs with a clicking call +n01651641 a cricket frog of eastern and central United States +n01651778 a cricket frog of eastern United States +n01652026 any of several small North American frogs having a loud call +n01652297 terrestrial burrowing nocturnal frog of grassy terrain and scrub forests having very hard upper surface of head; of the United States southwest +n01653026 small secretive toad with smooth tough skin of central and western North America +n01653223 small toad of southeastern United States +n01653509 mostly of Central America +n01653773 almost completely aquatic frog native to Africa and Panama and northern South America +n01654083 a South American toad; incubates its young in pits in the skin of its back +n01654637 a tongueless frog native to Africa; established in the United States as result of release of laboratory and aquarium animals +n01654863 a South American toad +n01655344 any of the small slender limbless burrowing wormlike amphibians of the order Gymnophiona; inhabit moist soil in tropical regions +n01661091 any cold-blooded vertebrate of the class Reptilia including tortoises, turtles, snakes, lizards, alligators, crocodiles, and extinct forms +n01661592 primitive reptile having no opening in the temporal region of the skull; all extinct except turtles +n01661818 reptile having a pair of openings in the skull behind each eye +n01662060 used in former classifications to include all living reptiles except turtles; superseded by the two subclasses Lepidosauria and Archosauria +n01662622 a reptile of the order Chelonia +n01662784 any of various aquatic and land reptiles having a bony shell and flipper-like limbs for swimming +n01663401 any of various large turtles with limbs modified into flippers; widely distributed in warm seas +n01663782 large tropical turtle with greenish flesh used for turtle soup +n01664065 very large carnivorous sea turtle; wide-ranging in warm open seas +n01664369 a marine turtle +n01664492 grey sea turtle of the Atlantic and Gulf Coasts of North America +n01664674 olive-colored sea turtle of tropical Pacific and Indian and the southern Atlantic oceans +n01664990 pugnacious tropical sea turtle with a hawk-like beak; source of food and the best tortoiseshell +n01665541 wide-ranging marine turtle with flexible leathery carapace; largest living turtle +n01665932 large aggressive freshwater turtle with powerful jaws +n01666228 large-headed turtle with powerful hooked jaws found in or near water; prone to bite +n01666585 large species having three ridges on its back; found in southeastern United States +n01667114 bottom-dwelling freshwater turtle inhabiting muddy rivers of North America and Central America +n01667432 small freshwater turtle having a strong musky odor +n01667778 any of various edible North American web-footed turtles living in fresh or brackish water +n01668091 of marshes along Atlantic and Gulf Coasts of United States +n01668436 freshwater turtle of Chesapeake Bay tributaries having red markings on the lower shell +n01668665 freshwater turtle of United States and South America; frequently raised commercially; some young sold as pets +n01668892 large river turtle of the southern United States and northern Mexico +n01669191 chiefly terrestrial turtle of North America; shell can be closed tightly +n01669372 primarily a prairie turtle of western United States and northern Mexico +n01669654 freshwater turtles having bright yellow and red markings; common in the eastern United States +n01670092 usually herbivorous land turtles having clawed elephant-like limbs; worldwide in arid area except Australia and Antarctica +n01670535 small land tortoise of southern Europe +n01670802 very large tortoises of the Galapagos and Seychelles islands +n01671125 burrowing edible land tortoise of southeastern North America +n01671479 burrowing tortoise of the arid western United States and northern Mexico; may be reclassified as a member of genus Xerobates +n01671705 close relative to the desert tortoise; may be reclassified as a member of genus Xerobates +n01672032 voracious aquatic turtle with a flat flexible shell covered by a leathery skin; can inflict painful bites +n01672432 river turtle of western United States with a warty shell; prefers quiet water +n01672611 river turtle of Mississippi basin; prefers running water +n01673282 only extant member of the order Rhynchocephalia of large spiny lizard-like diapsid reptiles of coastal islands off New Zealand +n01674216 any of various reptiles of the suborder Sauria which includes lizards; in former classifications included also the crocodiles and dinosaurs +n01674464 relatively long-bodied reptile with usually two pairs of legs and a tapering tail +n01674990 any of various small chiefly tropical and usually nocturnal insectivorous terrestrial lizards typically with immovable eyelids; completely harmless +n01675352 a gecko that has membranous expansions along the sides of its body and limbs and tail that enable it to glide short distances +n01675722 any of several geckos with dark bands across the body and differing from typical geckos in having movable eyelids; of United States southwest and Florida Gulf Coast +n01676755 lizards of the New World and Madagascar and some Pacific islands; typically having a long tail and bright throat patch in males +n01677366 large herbivorous tropical American arboreal lizards with a spiny crest along the back; used as human food in Central America and South America +n01677747 shore-dwelling seaweed-eating lizard of the Galapagos Islands +n01678043 small long-tailed lizard of arid areas of southwestern United States and northwestern Mexico +n01678343 a herbivorous lizard that lives among rocks in the arid parts of southwestern United States and Mexico +n01678657 swift lizard with long black-banded tail and long legs; of deserts of United States and Mexico +n01679005 with long pointed scales around toes; of deserts of United States and Mexico +n01679307 any of several slender lizards without external ear openings: of plains of western United States and Mexico +n01679626 any of several robust long-tailed lizards with collars of two dark bands; of central and western United States and northern Mexico +n01679962 any of several large lizards with many dark spots; of western United States and northern Mexico +n01680264 any of numerous lizards with overlapping ridged pointed scales; of North America and Central America +n01680478 spiny lizard often seen basking on fences in the United States and northern Mexico +n01680655 common western lizard; seen on logs or rocks +n01680813 small active lizard of United States and north to British Columbia +n01680983 a ground dweller that prefers open ground and scattered low bushes; of United States west between Rocky and Sierra Nevada Mountains +n01681328 one of the most abundant lizards in the arid western United States +n01681653 a climbing lizard of western United States and northern Mexico +n01681940 insectivorous lizard with hornlike spines on the head and spiny scales on the body; of western North America +n01682172 of arid and semiarid open country +n01682435 small crested arboreal lizard able to run on its hind legs; of tropical America +n01682714 small arboreal tropical American insectivorous lizards with the ability to change skin color +n01683201 a lizard of the genus Amphisbaena; harmless wormlike limbless lizard of warm or tropical regions having concealed eyes and ears and a short blunt tail +n01683558 small secretive nocturnal lizard of southwestern North America and Cuba; bear live young +n01684133 alert agile lizard with reduced limbs and an elongated body covered with shiny scales; more dependent on moisture than most lizards; found in tropical regions worldwide +n01684578 found in western North American grasslands and open woodlands +n01684741 frequents oak and pine habitats in rocky mountainous areas of United States southwest and Mexico +n01685439 tropical New World lizard with a long tail and large rectangular scales on the belly and a long tail +n01685808 any of numerous very agile and alert New World lizards +n01686044 very swift lizard of eastern and central United States +n01686220 having distinct longitudinal stripes: of Colorado Plateau from Arizona to western Colorado +n01686403 having longitudinal stripes overlaid with light spots; upland lizard of United States southwest and Mexico +n01686609 active lizard having a network of dusky dark markings; of semiarid areas from Oregon and Idaho to Baja California +n01686808 markings are darker and more marked than in western whiptail; from southeastern Colorado to eastern Chihuahua +n01687128 large (to 3 feet) blackish yellow-banded South American lizard; raid henhouses; used as food +n01687290 crocodile-like lizard of South America having powerful jaws for crushing snails and mussels +n01687665 a lizard of the family Agamidae +n01687978 small terrestrial lizard of warm regions of the Old World +n01688243 large arboreal insectivorous Australian lizard with a ruff of skin around the neck +n01688961 any lizard of the genus Moloch +n01689081 desert lizard that feeds on ants +n01689411 any of a small family of lizards widely distributed in warm areas; all are harmless and useful as destroyers of e.g. slugs and insects +n01689811 slim short-limbed lizard having a distinctive fold on each side that permits expansion; of western North America +n01690149 small burrowing legless European lizard with tiny eyes; popularly believed to be blind +n01690466 snakelike lizard of Europe and Asia and North America with vestigial hind limbs and the ability to regenerate its long fragile tail +n01691217 degenerate wormlike burrowing lizard of California closely related to alligator lizards +n01691652 a stout-bodied pleurodont lizard of Borneo +n01691951 any of two or three large heavy-bodied lizards; only known venomous lizards +n01692333 large orange and black lizard of southwestern United States; not dangerous unless molested +n01692523 lizard with black and yellowish beadlike scales; of western Mexico +n01692864 Old World terrestrial lizard +n01693175 a common and widely distributed lizard of Europe and central Asia +n01693334 a common Eurasian lizard about a foot long +n01693783 lizard of Africa and Madagascar able to change skin color and having a projectile tongue +n01694178 a chameleon found in Africa +n01694311 a kind of chameleon +n01694709 any of various large tropical carnivorous lizards of Africa and Asia and Australia; fabled to warn of crocodiles +n01694955 destroys crocodile eggs +n01695060 the largest lizard in the world (10 feet); found on Indonesian islands +n01696633 extant archosaurian reptile +n01697178 large voracious aquatic reptile having a long snout with massive jaws and sharp teeth and a body covered with bony plates; of sluggish tropical waters +n01697457 a dangerous crocodile widely distributed in Africa +n01697611 estuarine crocodile of eastern Asia and Pacific islands +n01697749 a variety of crocodile +n01697978 crocodile of southeast Asia similar to but smaller than the gavial +n01698434 either of two amphibious reptiles related to crocodiles but with shorter broader snouts +n01698640 large alligator of the southeastern United States +n01698782 small alligator of the Yangtze valley of China having unwebbed digits +n01699040 a semiaquatic reptile of Central and South America that resembles an alligator but has a more heavily armored belly +n01699254 caiman with bony ridges about the eyes; found from southern Mexico to Argentina +n01699675 large fish-eating Indian crocodilian with a long slender snout +n01701551 dinosaurs having bony armour +n01701859 herbivorous ornithischian dinosaur with a row of bony plates along its back and a spiked tail probably used as a weapon +n01702256 having the back covered with thick bony plates; thought to have walked with a sprawling gait resembling a lizard's +n01702479 heavily armored and highly spiked dinosaur with semi-upright posture +n01703011 bipedal herbivorous dinosaurs with bony crowns +n01703161 bipedal herbivore having 10 inches of bone atop its head; largest boneheaded dinosaur ever found +n01703569 any of several four-footed herbivorous dinosaurs with enormous beaked skulls; of the late Cretaceous in North America and Mongolia +n01704103 small horned dinosaur +n01704323 huge ceratopsian dinosaur having three horns and the neck heavily armored with a very solid frill +n01704626 an unusual ceratopsian dinosaur having many large spikes around the edge of its bony frill and a long nose horn; late Cretaceous +n01705010 primitive dinosaur actually lacking horns and having only the beginning of a frill; long hind limbs and short forelimbs; may have been bipedal +n01705591 bipedal herbivorous dinosaur +n01705934 any of numerous large bipedal ornithischian dinosaurs having a horny duck-like bill and webbed feet; may have been partly aquatic +n01707294 large duck-billed dinosaur of the Cretaceous period +n01708106 herbivorous or carnivorous dinosaur having a three-pronged pelvis like that of a crocodile +n01708998 very large herbivorous dinosaur of the Jurassic and Cretaceous having a small head a long neck and tail and five-toed limbs; largest known land animal +n01709484 huge quadrupedal herbivorous dinosaur common in North America in the late Jurassic +n01709876 a dinosaur that could grow to be as tall as a building five stories tall +n01710177 a huge quadrupedal herbivore with long neck and tail; of late Jurassic in western North America +n01711160 huge herbivorous dinosaur of Cretaceous found in Argentina +n01712008 any of numerous carnivorous dinosaurs of the Triassic to Cretaceous with short forelimbs that walked or ran on strong hind legs +n01712752 primitive medium-sized theropod; swift-running bipedal carnivorous dinosaur having grasping hands with sharp claws and a short horn between the nostrils; Jurassic in North America +n01713170 one of the oldest known dinosaurs; late Triassic; cannibalistic +n01713764 large carnivorous bipedal dinosaur having enormous teeth with knifelike serrations; may have been a scavenger rather than an active predator; later Cretaceous period in North America +n01714231 late Jurassic carnivorous dinosaur; similar to but somewhat smaller than tyrannosaurus +n01715888 lightly built medium-sized dinosaur having extremely long limbs and necks with small heads and big brains and large eyes +n01717016 advanced carnivorous theropod +n01717229 advanced carnivorous theropod +n01717467 small active carnivore that probably fed on protoceratops; possibly related more closely to birds than to other dinosaurs +n01718096 swift agile wolf-sized bipedal dinosaur having a large curved claw on each hind foot; of the Cretaceous +n01718414 large (20-ft) and swift carnivorous dinosaur having an upright slashing claw 15 inches long on each hind foot; early Cretaceous +n01719403 extinct reptile having a single pair of lateral temporal openings in the skull +n01721174 a kind of therapsid +n01721898 large primitive reptile having a tall spinal sail; of the Permian or late Paleozoic in Europe and North America +n01722670 carnivorous dinosaur of the Permian in North America having a crest or dorsal sail +n01722998 an extinct reptile of the Jurassic and Cretaceous having a bird-like beak and membranous wings supported by the very long fourth digit of each forelimb +n01723579 extinct flying reptile +n01724231 any of several marine reptiles of the Mesozoic having a body like a porpoise with dorsal and tail fins and paddle-shaped limbs +n01724840 ichthyosaurs of the Jurassic +n01725086 an ichthyosaur of the genus Stenopterygius +n01725713 extinct marine reptile with a small head on a long neck a short tail and four paddle-shaped limbs; of the Jurassic and Cretaceous +n01726203 extinct marine reptile with longer more slender limbs than plesiosaurs and less completely modified for swimming +n01726692 limbless scaly elongate reptile; some are venomous +n01727646 mostly harmless temperate-to-tropical terrestrial or arboreal or aquatic snakes +n01728266 any of various harmless North American snakes that were formerly believed to take tail in mouth and roll along like a hoop +n01728572 small reddish wormlike snake of eastern United States +n01728920 any of numerous small nonvenomous North American snakes with a yellow or orange ring around the neck +n01729322 harmless North American snake with upturned nose; may spread its head and neck or play dead when disturbed +n01729672 any of various pale blotched snakes with a blunt snout of southwestern North America +n01729977 either of two North American chiefly insectivorous snakes that are green in color +n01730185 of western and central United States +n01730307 of southern and eastern United States +n01730563 any of numerous African colubrid snakes +n01730812 slender fast-moving North American snakes +n01730960 blackish racer of the eastern United States that grows to six feet +n01731137 bluish-green blacksnake found from Ohio to Texas +n01731277 slender fast-moving Eurasian snake +n01731545 any of several small fast-moving snakes with long whiplike tails +n01731764 a whipsnake of southern United States and Mexico; tail resembles a braided whip +n01731941 a whipsnake of scrublands and rocky hillsides +n01732093 both terrestrial and arboreal snake of United States southwest +n01732244 any of various nonvenomous rodent-eating snakes of North America and Asia +n01732614 large harmless snake of southeastern United States; often on farms +n01732789 large harmless shiny black North American snake +n01732989 large North American snake +n01733214 enter buildings in pursuit of prey +n01733466 nocturnal burrowing snake of western United States with shiny tan scales +n01733757 any of several large harmless rodent-eating North American burrowing snakes +n01733957 bull snake of western North America that invades rodent burrows +n01734104 any of several bull snakes of eastern and southeastern United States found chiefly in pine woods; now threatened +n01734418 any of numerous nonvenomous North American constrictors; feed on other snakes and small mammals +n01734637 widespread in United States except northern regions; black or brown with yellow bands +n01734808 nonvenomous tan and brown king snake with an arrow-shaped occipital spot; southeastern ones have red stripes like coral snakes +n01735189 any of numerous nonvenomous longitudinally-striped viviparous North American and Central American snakes +n01735439 a garter snake that is widespread in North America +n01735577 slender yellow-striped North American garter snake; prefers wet places +n01735728 yellow- or reddish-striped snake of temperate woodlands and grasslands to tropics +n01736032 secretive snake of city dumps and parks as well as prairies and open woods; feeds on earthworms; of central United States +n01736375 small shy brightly-ringed terrestrial snake of arid or semiarid areas of western North America +n01736796 in some classifications placed in genus Haldea; small reddish-grey snake of eastern North America +n01737021 any of various mostly harmless snakes that live in or near water +n01737472 in some classifications placed in the genus Nerodia; western United States snake that seldom ventures far from water +n01737728 any of numerous North American water snakes inhabiting fresh waters +n01737875 harmless European snake with a bright yellow collar; common in England +n01738065 a small harmless grass snake +n01738306 harmless woodland snake of southeastern United States +n01738601 small North American burrowing snake +n01738731 a sand snake of southwestern United States; lives in fine to coarse sand or loamy soil in which it `swims'; banding resembles that of coral snakes +n01739094 small secretive ground-living snake; found from central United States to Argentina +n01739381 slender arboreal snake found from southern Arizona to Bolivia +n01739647 mildly venomous snake with a lyre-shaped mark on the head; found in rocky areas from southwestern United States to Central America +n01739871 of desert regions of southwestern North America +n01740131 nocturnal prowler of western United States and Mexico +n01740551 wormlike burrowing snake of warm regions having vestigial eyes +n01740885 burrows among roots of shrubs and beneath rocks in desert and rocky hillside areas and beach sand of western United States +n01741232 large dark-blue nonvenomous snake that invades burrows; found in southern North America and Mexico +n01741442 a variety of indigo snake +n01741562 any of various large nonvenomous snakes that kill their prey by crushing it in its coils +n01741943 any of several chiefly tropical constrictors with vestigial hind limbs +n01742172 very large boa of tropical America and West Indies +n01742447 boa of grasslands and woodlands of western North America; looks and feels like rubber with tail and head of similar shape +n01742821 boa of rocky desert of southwestern United States +n01743086 large arboreal boa of tropical South America +n01743605 large Old World boas +n01743936 Australian python with a variegated pattern on its back +n01744100 of southeast Asia and East Indies; the largest snake in the world +n01744270 very large python of southeast Asia +n01744401 very large python of tropical and southern Africa +n01744555 a python having the color of amethyst +n01745125 any of numerous venomous fanged snakes of warmer parts of both hemispheres +n01745484 any of several venomous New World snakes brilliantly banded in red and black and either yellow or white; widely distributed in South America and Central America +n01745902 ranges from Central America to southeastern United States +n01746191 ranges from Central America to southwestern United States +n01746359 any of various venomous elapid snakes of Asia and Africa and Australia +n01746952 small widely distributed arboreal snake of southern Africa banded in black and orange +n01747285 small venomous but harmless snake marked with black-and-white on red +n01747589 venomous but sluggish reddish-brown snake of Australia +n01747885 venomous Asiatic and African elapid snakes that can expand the skin of the neck into a hood +n01748264 a cobra of tropical Africa and Asia +n01748389 cobra used by the Pharaohs as a symbol of their power over life and death +n01748686 aggressive cobra widely distributed in Africa; rarely bites but spits venom that may cause blindness +n01748906 large cobra of southeastern Asia and the East Indies; the largest venomous snake; sometimes placed in genus Naja +n01749244 highly venomous snake of southern Africa able to spit venom up to seven feet +n01749582 arboreal snake of central and southern Africa whose bite is often fatal +n01749742 a highly venomous southern African mamba dreaded because of its quickness and readiness to bite +n01749939 green phase of the black mamba +n01750167 venomous Australian snake resembling an adder +n01750437 highly venomous brown-and-yellow snake of Australia and Tasmania +n01750743 large semiaquatic snake of Australia; black above with red belly +n01751036 brightly colored venomous but nonaggressive snake of southeastern Asia and Malay peninsula +n01751215 sluggish krait banded with black and yellow +n01751472 large highly venomous snake of northeastern Australia +n01751748 any of numerous venomous aquatic viviparous snakes having a fin-like tail; of warm littoral seas; feed on fish which they immobilize with quick-acting venom +n01752165 venomous Old World snakes characterized by hollow venom-conducting fangs in the upper jaw +n01752585 small terrestrial viper common in northern Eurasia +n01752736 of southern Europe; similar to but smaller than the adder +n01753032 large African viper that inflates its body when alarmed +n01753180 large heavy-bodied brilliantly marked and extremely venomous west African viper +n01753488 highly venomous viper of northern Africa and southwestern Asia having a horny spine above each eye +n01753959 New World vipers with hollow fangs and a heat-sensitive pit on each side of the head +n01754370 common coppery brown pit viper of upland eastern United States +n01754533 venomous semiaquatic snake of swamps in southern United States +n01754876 pit viper with horny segments at the end of the tail that rattle when shaken +n01755581 large deadly rattlesnake with diamond-shaped markings +n01755740 widely distributed in rugged ground of eastern United States +n01755952 southern variety +n01756089 widely distributed between the Mississippi and the Rockies +n01756291 small pale-colored desert rattlesnake of southwestern United States; body moves in an s-shaped curve +n01756508 largest and most dangerous North American snake; of southwestern United States and Mexico +n01756733 mountain rock dweller of Mexico and most southern parts of United States southwest +n01756916 having irregularly cross-banded back; of arid foothills and canyons of southern Arizona and Mexico +n01757115 extremely dangerous; most common in areas of scattered scrubby growth; from Mojave Desert to western Texas and into Mexico +n01757343 markings vary but usually harmonize with background; of southwestern Arizona and Baja California +n01757677 pygmy rattlesnake found in moist areas from the Great Lakes to Mexico; feeds on mice and small amphibians +n01757901 small pygmy rattlesnake +n01758141 large extremely venomous pit viper of Central America and South America +n01758757 the dead body of an animal especially one slaughtered and dressed for food +n01758895 the dead and rotting body of an animal; unfit for human food +n01767661 invertebrate having jointed limbs and a segmented body with an exoskeleton made of chitin +n01768244 an extinct arthropod that was abundant in Paleozoic times; had an exoskeleton divided into three parts +n01769347 air-breathing arthropods characterized by simple eyes and four pairs of legs +n01770081 spiderlike arachnid with a small rounded body and very long thin legs +n01770393 arachnid of warm dry regions having a long segmented tail ending in a venomous stinger +n01770795 small nonvenomous arachnid resembling a tailless scorpion +n01771100 minute arachnid sometimes found in old papers +n01771417 nonvenomous arachnid that resembles a scorpion and that has a long thin tail without a stinger +n01771766 large whip-scorpion of Mexico and southern United States that emits a vinegary odor when alarmed +n01772222 predatory arachnid with eight legs, two poison fangs, two feelers, and usually two silk-spinning organs at the back end of the body; they spin silk to make cocoons for eggs or traps for prey +n01772664 a spider that spins a circular (or near circular) web +n01773157 a widely distributed North American garden spider +n01773549 an orange and tan spider with darkly banded legs that spins an orb web daily +n01773797 a spider common in European gardens +n01774097 spider having a comb-like row of bristles on each hind foot +n01774384 venomous New World spider; the female is black with an hourglass-shaped red mark on the underside of the abdomen +n01774750 large hairy tropical spider with fangs that can inflict painful but not highly venomous bites +n01775062 ground spider that hunts its prey instead of using a web +n01775370 large southern European spider once thought to be the cause of tarantism (uncontrollable bodily movement) +n01775730 American spider that constructs a silk-lined nest with a hinged lid +n01776192 mite or tick +n01776313 any of two families of small parasitic arachnids with barbed proboscis; feed on blood of warm-blooded animals +n01776705 ticks having a hard shield on the back and mouth parts that project from the head +n01777304 a northeastern tick now recognized as same species as Ixodes scapularis +n01777467 a tick that usually does not bite humans; transmits Lyme disease spirochete to dusky-footed wood rats +n01777649 a tick that feeds on dusky-footed wood rat and bites humans; principal vector for Lyme disease in western United States especially northern California +n01777909 parasitic on mice of genus Peromyscus and bites humans; principal vector for Lyme disease in eastern United States (especially New England); northern form was for a time known as Ixodes dammini (deer tick) +n01778217 parasitic on sheep and cattle as well as humans; can transmit looping ill in sheep (acute viral disease of the nervous system); a vector for Lyme disease spirochete +n01778487 bites humans; a vector for Lyme disease spirochete +n01778621 usually does not bite humans; transmits Lyme disease spirochete to cottontail rabbits and wood rats +n01778801 usually does not bite humans; transmits Lyme disease spirochete to cottontail rabbits and wood rats +n01779148 common tick that can transmit Rocky Mountain spotted fever and tularemia +n01779463 tick lacking a dorsal shield and having mouth parts on the under side of the head +n01779629 any of numerous very small to minute arachnids often infesting animals or plants or stored foods +n01779939 a mite that spins a web +n01780142 very small free-living arachnid that is parasitic on animals or plants; related to ticks +n01780426 mite that in all stages feeds on other arthropods +n01780696 mite that as nymph and adult feeds on early stages of small arthropods but whose larvae are parasitic on terrestrial vertebrates +n01781071 larval mite that sucks the blood of vertebrates including human beings causing intense irritation +n01781570 any of several mites of the order Acarina +n01781698 whitish mites that attack the skin of humans and other animals +n01781875 any of several varieties of mite that burrow into plants and cause a reddish-brown discoloration on the leaves or fruit +n01782209 web-spinning mite that attacks garden plants and fruit trees +n01782516 small web-spinning mite; a serious orchard pest +n01783017 general term for any terrestrial arthropod having an elongated body composed of many similar segments: e.g. centipedes and millipedes +n01783706 minute arthropod often infesting the underground parts of truck-garden and greenhouse crops +n01784293 an arthropod of the division Tardigrada +n01784675 chiefly nocturnal predacious arthropod having a flattened body of 15 to 173 segments each with a pair of legs, the foremost pair being modified as prehensors +n01785667 long-legged centipede common in damp places as e.g. cellars +n01786646 any of numerous herbivorous nonpoisonous arthropods having a cylindrical body of 20 to 100 or more segments most with two pairs of legs +n01787006 any of various small spiderlike marine arthropods having small thin bodies and long slender legs +n01787191 used in some classifications; includes the orders Xiphosura and Eurypterida +n01787835 large marine arthropod of the Atlantic coast of North America having a domed carapace that is shaped like a horseshoe and a stiff pointed tail; a living fossil related to the wood louse +n01788291 horseshoe crab of the coast of eastern Asia +n01788579 large extinct scorpion-like arthropod considered related to horseshoe crabs +n01788864 wormlike arthropod having two pairs of hooks at the sides of the mouth; parasitic in nasal sinuses of mammals +n01789386 heavy-bodied largely ground-feeding domestic or game birds +n01789740 a domesticated gallinaceous bird thought to be descended from the red jungle fowl +n01790171 an English breed of large domestic fowl having five toes (the hind toe doubled) +n01790304 an American breed of domestic fowl +n01790398 English breed of compact domestic fowl; raised primarily to crossbreed to produce roasters +n01790557 small plump hybrid developed by crossbreeding Plymouth Rock and Cornish fowl +n01790711 any of several breeds reared for cockfighting +n01790812 Asian breed of large fowl with dense plumage and feathered legs +n01791107 small Asiatic wild bird; believed to be ancestral to domestic fowl +n01791314 male jungle fowl +n01791388 female jungle fowl +n01791463 a jungle fowl of southeastern Asia that is considered ancestral to the domestic fowl +n01791625 a domestic fowl bred for flesh or eggs; believed to have been developed from the red jungle fowl +n01791954 any of various small breeds of fowl +n01792042 young bird especially of domestic fowl +n01792158 adult male chicken +n01792429 a young domestic cock; not older than one year +n01792530 castrated male chicken +n01792640 adult female chicken +n01792808 a hen that has just laid an egg and emits a shrill squawk +n01792955 a domestic hen ready to brood +n01793085 a hen with chicks +n01793159 a hen that lays eggs +n01793249 young hen usually less than a year old +n01793340 a young chicken having tender meat +n01793435 American breed of heavy-bodied brownish-red general-purpose chicken +n01793565 American breed of chicken having barred grey plumage raised for meat and brown eggs +n01793715 English breed of large chickens with white skin +n01794158 large gallinaceous bird with fan-shaped tail; widely domesticated for food +n01794344 male turkey +n01794651 wild turkey of Central America and northern South America +n01795088 popular game bird having a plump body and feathered legs and feet +n01795545 grouse of which the male is bluish-black +n01795735 large northern European grouse that is black with a lyre-shaped tail +n01795900 a black grouse of western Asia +n01796019 male black grouse +n01796105 female black grouse +n01796340 large Arctic and subarctic grouse with feathered feet and usually white winter plumage +n01796519 reddish-brown grouse of upland moors of Great Britain +n01796729 female red grouse +n01797020 large black Old World grouse +n01797307 North American grouse that feeds on evergreen buds and needles +n01797601 large grouse of sagebrush regions of North America +n01797886 valued as a game bird in eastern United States and Canada +n01798168 large grouse of prairies and open forests of western North America +n01798484 brown mottled North American grouse of western prairies +n01798706 the most common variety of prairie chicken +n01798839 a smaller prairie chicken of western Texas +n01798979 extinct prairie chicken +n01799302 any of several large turkey-like game birds of the family Cracidae; native to jungles of tropical America; resembling the curassows and valued as food +n01799679 large crested arboreal game bird of warm parts of the Americas having long legs and tails; highly esteemed as game and food +n01800195 a kind of guan +n01800424 slender arboreal guan resembling a wild turkey; native to Central America and Mexico; highly regarded as game birds +n01800633 of Mexico and Texas +n01801088 large-footed short-winged birds of Australasia; build mounds of decaying vegetation to incubate eggs +n01801479 Australian mound bird; incubates eggs naturally in sandy mounds +n01801672 adult female mallee fowl +n01801876 black megapode of wooded regions of Australia and New Guinea +n01802159 Celebes megapode that lays eggs in holes in sandy beaches +n01802721 a kind of game bird in the family Phasianidae +n01803078 large long-tailed gallinaceous bird native to the Old World but introduced elsewhere +n01803362 common pheasant having bright plumage and a white neck ring +n01803641 both sexes are brightly colored +n01803893 large brilliantly patterned East Indian pheasant +n01804163 brightly colored crested pheasant of mountains of western and central Asia +n01804478 a popular North American game bird; named for its call +n01804653 a favorite game bird of eastern and central United States +n01804921 small game bird with a rounded body and small tail +n01805070 the typical Old World quail +n01805321 brilliantly colored pheasant of southern Asia +n01805801 very large terrestrial southeast Asian pheasant often raised as an ornamental bird +n01806061 a young peafowl +n01806143 male peafowl; having a crested head and very large fanlike tail marked with iridescent eyes or spots +n01806297 female peafowl +n01806364 peafowl of India and Ceylon +n01806467 peafowl of southeast Asia +n01806567 small gallinaceous game birds +n01806847 plump chunky bird of coastal California and Oregon +n01807105 brilliantly colored Asian pheasant having wattles and two fleshy processes on the head +n01807496 small Old World gallinaceous game birds +n01807828 common European partridge +n01808140 common western European partridge with red legs +n01808291 of mountainous areas of southern Europe +n01808596 California partridge; slightly larger than the California quail +n01809106 a west African bird having dark plumage mottled with white; native to Africa but raised for food in many parts of the world +n01809371 female guinea fowl +n01809752 crested ill-smelling South American bird whose young have claws on the first and second digits of the wings +n01810268 heavy-bodied small-winged South American game bird resembling a gallinaceous bird but related to the ratite birds +n01810700 a cosmopolitan order of land birds having small heads and short legs with four unwebbed toes +n01811243 extinct heavy flightless bird of Mauritius related to pigeons +n01811909 wild and domesticated birds having a heavy body and short legs +n01812187 one of a breed of pigeon that enlarge their crop until their breast is puffed out +n01812337 any of numerous small pigeons +n01812662 pale grey Eurasian pigeon having black-striped wings from which most domestic species are descended +n01812866 wild pigeon of western North America; often mistaken for the now extinct passenger pigeon +n01813088 Eurasian pigeon with white patches on wings and neck +n01813385 any of several Old World wild doves +n01813532 the common European wild dove noted for its plaintive cooing +n01813658 greyish Old World turtledove with a black band around the neck; often caged +n01813948 small Australian dove +n01814217 wild dove of the United States having a mournful call +n01814370 domesticated pigeon raised for sport or food +n01814549 an unfledged pigeon +n01814620 fancy domestic pigeon having blue-and-white plumage and heavily muffed feet +n01814755 pigeon that executes backward somersaults in flight or on the ground +n01814921 pigeon trained to return home +n01815036 a homing pigeon used to carry messages +n01815270 gregarious North American migratory pigeon now extinct +n01815601 pigeon-like bird of arid regions of the Old World having long pointed wings and tail and precocial downy young +n01816017 sandgrouse of India +n01816140 sandgrouse of Europe and Africa having elongated middle tail feathers +n01816474 Eurasiatic sandgrouse with a black patch on the belly +n01816887 usually brightly colored zygodactyl tropical birds with short hooked beaks and the ability to mimic sounds +n01817263 an archaic term for a parrot +n01817346 a tame parrot +n01817953 commonly domesticated grey parrot with red-and-black tail and white face; native to equatorial Africa +n01818299 mainly green tropical American parrots +n01818515 long-tailed brilliantly colored parrot of Central America and South America; among the largest and showiest of parrots +n01818832 large brownish-green New Zealand parrot +n01819115 white or light-colored crested parrot of the Australian region; often kept as cage birds +n01819313 white cockatoo with a yellow erectile crest +n01819465 white Australian cockatoo with roseate tinged plumage +n01819734 small grey Australian parrot with a yellow crested head +n01820052 small African parrot noted for showing affection for their mates +n01820348 small brightly colored Australasian parrots having a brush-tipped tongue for feeding on nectar and soft fruits +n01820546 any of various small lories +n01820801 lorikeet with a colorful coat +n01821076 a kind of lorikeet +n01821203 any of numerous small slender long-tailed parrots +n01821554 extinct parakeet whose range extended far into the United States +n01821869 small Australian parakeet usually light green with black and yellow markings in the wild but bred in many colors +n01822300 African parakeet +n01822602 birds having zygodactyl feet (except for the touracos) +n01823013 any of numerous European and North American birds having pointed wings and a long tail +n01823414 common cuckoo of Europe having a distinctive two-note call; lays eggs in the nests of other birds +n01823740 North American cuckoo; builds a nest and rears its own young +n01824035 speedy largely terrestrial bird found from California and Mexico to Texas +n01824344 black tropical American cuckoo +n01824575 Old World ground-living cuckoo having a long dagger-like hind claw +n01824749 common coucal of India and China +n01825278 large brightly crested bird of Africa +n01825930 chiefly short-legged arboreal nonpasserine birds that nest in holes +n01826364 Old World bird that tumbles or rolls in flight; related to kingfishers +n01826680 common European blue-and-green roller with a reddish-brown back +n01826844 Madagascan roller with terrestrial and crepuscular habits that feeds on e.g. insects and worms +n01827403 nonpasserine large-headed bird with a short tail and long sharp bill; usually crested and bright-colored; feed mostly on fish +n01827793 small kingfisher with greenish-blue and orange plumage +n01828096 greyish-blue North American kingfisher with a chestnut band on its chest +n01828556 Australian kingfisher having a loud cackling cry +n01828970 colorful chiefly tropical Old World bird having a strong graceful flight; feeds on especially bees +n01829413 bird of tropical Africa and Asia having a very large bill surmounted by a bony protuberance; related to kingfishers +n01829869 any of several crested Old World birds with a slender downward-curved bill +n01830042 pinkish-brown hoopoe with black-and-white wings +n01830479 tropical African bird having metallic blackish plumage but no crest +n01830915 tropical American bird resembling a blue jay and having greenish and bluish plumage +n01831360 tiny insectivorous West Indian bird having red-and-green plumage and a long straight bill +n01831712 nonpasserine bird having long wings and weak feet; spends much of its time in flight +n01832167 a small bird that resembles a swallow and is noted for its rapid flight +n01832493 common European bird with a shrieking call that nests chiefly about eaves of buildings or on cliffs +n01832813 American swift that nests in e.g. unused chimneys +n01833112 swift of eastern Asia; produces the edible bird's nest +n01833415 birds of southeast Asia and East Indies differing from true swifts in having upright crests and nesting in trees +n01833805 tiny American bird having brilliant iridescent plumage and long slender bills; wings are specialized for vibrating flight +n01834177 a kind of hummingbird +n01834540 any of various South American hummingbirds with a sharp pointed bill +n01835276 mainly crepuscular or nocturnal nonpasserine birds with mottled greyish-brown plumage and large eyes; feed on insects +n01835769 Old World goatsucker +n01835918 large whippoorwill-like bird of the southern United States +n01836087 American nocturnal goatsucker with grey-and-white plumage +n01836673 goatsucker of western North America +n01837072 insectivorous bird of Australia and southeastern Asia having a wide frog-like mouth +n01837526 nocturnal fruit-eating bird of South America that has fatty young yielding an oil that is used instead of butter +n01838038 any of numerous nonpasserine insectivorous climbing birds usually having strong bills for boring wood +n01838598 bird with strong claws and a stiff tail adapted for climbing and a hard chisel-like bill for boring into wood for insects +n01839086 woodpecker of Europe and western Asia +n01839330 small North American woodpecker with black and white plumage and a small bill +n01839598 North American woodpecker +n01839750 large flicker of eastern North America with a red neck and yellow undersurface to wings and tail +n01839949 southwestern United States bird like the yellow-shafted flicker but lacking the red neck +n01840120 western United States bird with red undersurface to wings and tail +n01840412 large black-and-white woodpecker of southern United States and Cuba having an ivory bill; nearly extinct +n01840775 black-and-white North American woodpecker having a red head and neck +n01841102 small American woodpecker that feeds on sap from e.g. apple and maple trees +n01841288 eastern North American sapsucker having a pale yellow abdomen +n01841441 western North American sapsucker +n01841679 Old World woodpecker with a peculiar habit of twisting the neck +n01841943 small woodpeckers of South America and Africa and East Indies having soft rounded tail feathers +n01842235 small brightly colored stout-billed tropical bird having short weak wings +n01842504 brownish tropical American bird having a large head with fluffed out feathers +n01842788 small bird of tropical Africa and Asia; feeds on beeswax and honey and larvae +n01843065 tropical American insectivorous bird having a long sharp bill and iridescent green or bronze plumage +n01843383 brilliantly colored arboreal fruit-eating bird of tropical America having a very large thin-walled beak +n01843719 small toucan +n01844231 forest bird of warm regions of the New World having brilliant lustrous plumage and long tails +n01844551 large trogon of Central America and South America having golden-green and scarlet plumage +n01844746 very rare Central American bird; the national bird of Guatemala +n01844917 wading and swimming and diving birds of either fresh or salt water +n01845132 freshwater aquatic bird +n01845477 chiefly web-footed swimming birds +n01846331 small wild or domesticated web-footed broad-billed swimming bird usually having a depressed body and short legs +n01847000 adult male of a wild or domestic duck +n01847089 child's word for a duck +n01847170 young duck +n01847253 any of various ducks of especially bays and estuaries that dive for their food +n01847407 any of numerous shallow-water ducks that feed by upending and dabbling +n01847806 wild dabbling duck from which domestic ducks are descended; widely distributed +n01847978 a dusky duck of northeastern United States and Canada +n01848123 any of various small short-necked dabbling river ducks of Europe and America +n01848323 common teal of Eurasia and North America +n01848453 American teal +n01848555 small Eurasian teal +n01848648 freshwater duck of Eurasia and northern Africa related to mallards and teals +n01848840 a widgeon the male of which has a white crown +n01848976 freshwater duck of the northern hemisphere having a broad flat bill +n01849157 long-necked river duck of the Old and New Worlds having elongated central tail feathers +n01849466 Old World gooselike duck slightly larger than a mallard with variegated mostly black-and-white plumage and a red bill +n01849676 female sheldrake +n01849863 reddish-brown stiff-tailed duck of North America and northern South America +n01850192 small North American diving duck; males have bushy head plumage +n01850373 large-headed swift-flying diving duck of Arctic regions +n01850553 North American goldeneye diving duck +n01850873 North American wild duck valued for sport and food +n01851038 heavy-bodied Old World diving duck having a grey-and-black body and reddish head +n01851207 North American diving duck with a grey-and-black body and reddish-brown head +n01851375 diving ducks of North America having a bluish-grey bill +n01851573 large scaup of North America having a greenish iridescence on the head of the male +n01851731 common scaup of North America; males have purplish heads +n01851895 an undomesticated duck (especially a mallard) +n01852142 showy North American duck that nests in hollow trees +n01852329 male wood duck +n01852400 showy crested Asiatic duck; often domesticated +n01852671 large crested wild duck of Central America and South America; widely domesticated +n01852861 any of various large diving ducks found along the seacoast: eider; scoter; merganser +n01853195 duck of the northern hemisphere much valued for the fine soft down of the females +n01853498 large black diving duck of northern parts of the northern hemisphere +n01853666 a variety of scoter +n01853870 a common long-tailed sea duck of the northern parts of the United States +n01854415 large crested fish-eating diving duck having a slender hooked bill with serrated edges +n01854700 common merganser of Europe and North America +n01854838 common North American diving duck considered a variety of the European goosander +n01855032 widely distributed merganser of America and Europe +n01855188 smallest merganser and most expert diver; found in northern Eurasia +n01855476 small North American duck with a high circular crest on the male's head +n01855672 web-footed long-necked typically gregarious migratory aquatic birds usually larger and less aquatic than ducks +n01856072 young goose +n01856155 mature male goose +n01856380 very large wild goose of northeast Asia; interbreeds freely with the greylag +n01856553 common grey wild goose of Europe; ancestor of many domestic breeds +n01856890 North American wild goose having dark plumage in summer but white in winter +n01857079 blue goose in the white color phase +n01857325 small dark geese that breed in the north and migrate southward +n01857512 the best known variety of brant goose +n01857632 common greyish-brown wild goose of North America with a loud, trumpeting call +n01857851 European goose smaller than the brant; breeds in the far north +n01858281 large white South American bird intermediate in some respects between ducks and swans +n01858441 stately heavy-bodied aquatic bird with very long neck and usually white plumage as adult +n01858780 adult male swan +n01858845 female swan +n01858906 a young swan +n01859190 soundless Eurasian swan; commonly domesticated +n01859325 common Old World swan noted for its whooping call +n01859496 swan that nests in tundra regions of the New and Old Worlds +n01859689 North American subspecies of tundra swan having a soft whistling note +n01859852 Eurasian subspecies of tundra swan; smaller than the whooper +n01860002 large pure white wild swan of western North America having a sonorous cry +n01860187 large Australian swan having black plumage and a red bill +n01860497 gooselike aquatic bird of South America having a harsh trumpeting call +n01860864 screamer having a hornlike process projecting from the forehead +n01861148 distinguished from the horned screamer by a feathery crest on the back of the head +n01861330 largest crested screamer; native to southern Brazil and Argentina +n01861778 any warm-blooded vertebrate having the skin more or less covered with hair; young are born alive except for the small subclass of monotremes and nourished with milk +n01862399 animals that nourish their young with milk +n01871265 any mammal with prominent tusks (especially an elephant or wild boar) +n01871543 primitive oviparous mammals found only in Australia and Tasmania and New Guinea +n01871875 the most primitive mammals comprising the only extant members of the subclass Prototheria +n01872401 a burrowing monotreme mammal covered with spines and having a long snout and claws for hunting ants and termites; native to Australia +n01872772 a burrowing monotreme mammal covered with spines and having a long snout and claws for hunting ants and termites; native to New Guinea +n01873310 small densely furred aquatic monotreme of Australia and Tasmania having a broad bill and tail and webbed feet; only species in the family Ornithorhynchidae +n01874434 mammals of which the females have a pouch (the marsupium) containing the teats where the young are fed and carried +n01874928 nocturnal arboreal marsupial having a naked prehensile tail found from southern North America to northern South America +n01875313 omnivorous opossum of the eastern United States; noted for feigning death when in danger; esteemed as food in some areas; considered same species as the crab-eating opossum of South America +n01875610 South American opossum +n01876034 terrestrial marsupials of southern South America that resemble shrews +n01876326 any of various agile ratlike terrestrial marsupials of Australia and adjacent islands; insectivorous and herbivorous +n01876667 bandicoot with leathery ears like a rabbit +n01877134 any of several herbivorous leaping marsupials of Australia and New Guinea having large powerful hind legs and a long thick tail +n01877606 very large greyish-brown Australian kangaroo formerly abundant in open wooded areas +n01877812 any of various small or medium-sized kangaroos; often brightly colored +n01878061 a small wallaby having a height of 30 inches +n01878335 small Australian wallaby that resembles a hare and has persistent teeth +n01878639 small wallabies with a horny nail on the tip of the tail +n01878929 slender long-legged Australian wallabies living in caves and rocky areas +n01879217 small reddish-brown wallabies of scrubby areas of Australia and New Guinea +n01879509 arboreal wallabies of New Guinea and northern Australia having hind and forelegs of similar length +n01879837 small kangaroo of northeastern Australia +n01880152 any of several rabbit-sized ratlike Australian kangaroos +n01880473 Australian rat kangaroos +n01880716 short-nosed rat kangaroo +n01880813 brush-tailed rat kangaroo +n01881171 small furry Australian arboreal marsupials having long usually prehensile tails +n01881564 woolly-haired monkey-like arboreal marsupial of New Guinea and northern Australia +n01881857 bushy-tailed phalanger +n01882125 nocturnal phalangers that move with gliding leaps using parachute-like folds of skin along the sides of the body +n01882714 sluggish tailless Australian arboreal marsupial with grey furry ears and coat; feeds on eucalyptus leaves and bark +n01883070 burrowing herbivorous Australian marsupials about the size of a badger +n01883513 small carnivorous nocturnal marsupials of Australia and Tasmania +n01883920 any of several more or less arboreal marsupials somewhat resembling martens +n01884104 a variety of dasyure +n01884203 carnivorous arboreal cat-like marsupials of Australia and Tasmania +n01884476 rare doglike carnivorous marsupial of Tasmania having stripes on its back; probably extinct +n01884834 small ferocious carnivorous marsupial having a mostly black coat and long tail +n01885158 any of numerous small sharp-nosed insectivorous marsupials superficially resembling mice or rats +n01885498 small Australian marsupial having long snout and strong claws for feeding on termites; nearly extinct +n01886045 small burrowing Australian marsupial that resembles a mole +n01886756 mammals having a placenta; all mammals except monotremes and marsupials +n01887474 any animals kept for use or profit +n01887623 mature male of various mammals of which the female is called `cow'; e.g. whales or elephants or especially cattle +n01887787 mature female of mammals of which the male is called `bull' +n01887896 young of domestic cattle +n01888045 young of various large placental mammals e.g. whale or giraffe or elephant or buffalo +n01888181 an animal in its second year +n01888264 mature male of various mammals (especially deer or antelope) +n01888411 mature female of mammals of which the male is called `buck' +n01889074 small insect-eating mainly nocturnal terrestrial or fossorial mammals +n01889520 small velvety-furred burrowing mammal having small eyes and fossorial forefeet +n01889849 amphibious mole of eastern North America having pink fleshy tentacles around the nose +n01890144 mole of eastern North America +n01890564 mole of southern Africa having iridescent guard hairs mixed with the underfur +n01890860 slender mole having a long snout and tail +n01891013 shrew mole of eastern Asia +n01891274 greyish-black shrew mole of the United States and Canada +n01891633 small mouselike mammal with a long snout; related to moles +n01892030 common American shrew +n01892145 commonest shrew of moist habitats in North America +n01892385 North American shrew with tail less than half its body length +n01892551 any of several small semiaquatic shrews usually living near swift-flowing streams +n01892744 water shrew of North America +n01893021 widely distributed Old World water shrew +n01893164 a type of water shrew +n01893399 small brown shrew of grassy regions of eastern United States +n01893825 small nocturnal Old World mammal covered with both hair and protective spines +n01894207 small often spiny insectivorous mammal of Madagascar; resembles a hedgehog +n01894522 prolific animal that feeds chiefly on earthworms +n01894956 amphibious African insectivorous mammal that resembles an otter +n01896844 down of the eider duck +n01897257 a supplementary feather (usually small) on the underside of the base of the shaft of some feathers in some birds +n01897426 one of the long curved tail feathers of a rooster +n01897536 feathers covering the body of an adult bird and determining its shape +n01897667 tuft of small stiff feathers on the first digit of a bird's wing +n01898593 a long narrow feather on the back (saddle) of a domestic fowl +n01899894 the mane of a horse +n01900150 a filamentous projection or process on an organism +n01903234 a protective structure resembling a scale +n01903346 large bony or horny plate as on an armadillo or turtle or the underside of a snake +n01903498 hard plate or element of the exoskeleton of some arthropods +n01904029 (zoology) the part of a turtle's shell forming its underside +n01904806 a shell of a scallop +n01904886 a shell of an oyster +n01905321 outer sheath of the pupa of certain insects +n01905661 any animal lacking a backbone or notochord; the term is not used as a scientific classification +n01906749 primitive multicellular marine animal whose porous body is supported by a fibrous skeletal framework; usually occurs in sessile colonies +n01907287 any of the flagellated cells in sponges having a collar of cytoplasm around the flagellum; they maintain a flow of water through the body +n01907738 a siliceous sponge (with glassy spicules) of the class Hyalospongiae +n01908042 a deep-water marine sponge having a cylindrical skeleton of intricate glassy latticework; found in the waters of the East Indies and the eastern coast of Asia +n01908958 any animal of the subkingdom Metazoa; all animals except protozoans and sponges +n01909422 radially symmetrical animals having saclike bodies with only one opening and tentacles with stinging structures; they occur in polyp and medusa forms +n01909788 the flat ciliated free-swimming larva of hydrozoan coelenterates +n01909906 one of two forms that coelenterates take (e.g. a hydra or coral): usually sedentary with a hollow cylindrical body usually with a ring of tentacles around the mouth +n01910252 one of two forms that coelenterates take: it is the free-swimming sexual phase in the life cycle of a coelenterate; in this phase it has a gelatinous umbrella-shaped body and tentacles +n01910747 any of numerous usually marine and free-swimming coelenterates that constitute the sexually reproductive forms of hydrozoans and scyphozoans +n01911063 any of various usually free-swimming marine coelenterates having a gelatinous medusoid stage as the dominant phase of its life cycle +n01911403 a type of jellyfish +n01911839 colonial coelenterates having the polyp phase dominant +n01912152 small tubular solitary freshwater hydrozoan polyp +n01912454 a floating or swimming oceanic colony of polyps often transparent or showily colored +n01912809 small creatures resembling pieces of fuzzy rope; each with a cluster of swimming bells serving as the head and long elastic tentacles for drawing in prey +n01913166 large siphonophore having a bladderlike float and stinging tentacles +n01913346 colonial siphonophore of up to 130 ft long +n01913440 large siphonophore of up to 50 ft long +n01914163 sessile marine coelenterates including solitary and colonial polyps; the medusoid phase is entirely suppressed +n01914609 marine polyps that resemble flowers but have oral rings of tentacles; differ from corals in forming no hard skeleton +n01914830 any sea anemone or related animal +n01915700 fleshy featherlike warm-water colonies +n01915811 marine colonial polyp characterized by a calcareous skeleton; masses in a variety of shapes often forming reefs +n01916187 corals having a horny or calcareous branching skeleton +n01916388 corals forming featherlike colonies +n01916481 corals having a treelike or fan-shaped horny skeleton +n01916588 corals of especially the Mediterranean having pink or red color used for ornaments and jewelry +n01916925 corals having calcareous skeletons aggregations of which form reefs and islands +n01917289 massive reef-building coral having a convoluted and furrowed surface +n01917611 large branching coral resembling antlers +n01917882 flattened disk-shaped stony coral (usually solitary and unattached) +n01918744 biradially symmetrical hermaphroditic solitary marine animals resembling jellyfishes having for locomotion eight rows of cilia arranged like teeth in a comb +n01919385 delicately iridescent thimble-shaped ctenophores +n01920051 ctenophore have long tentacles and flattened body +n01920438 ctenophore having a rounded body with longitudinal rows of cilia +n01921059 ctenophore having a ribbon-shaped iridescent gelatinous body +n01922303 any of numerous relatively small elongated soft-bodied animals especially of the phyla Annelida and Chaetognatha and Nematoda and Nemertea and Platyhelminthes; also many insect larvae +n01922717 worm that is parasitic on the intestines of vertebrates especially roundworms and tapeworms and flukes +n01922948 a larva of a woodborer +n01923025 any of various insects or larvae or mollusks that bore into wood +n01923404 any of various worms living parasitically in intestines of vertebrates having a retractile proboscis covered with many hooked spines +n01923890 any worm of the Chaetognatha; transparent marine worm with horizontal lateral and caudal fins and a row of movable curved spines at each side of the mouth +n01924800 encysted saclike larva of the tapeworm +n01924916 parasitic or free-living worms having a flattened body +n01925270 free-swimming mostly freshwater flatworms; popular in laboratory studies for the ability to regenerate lost parts +n01925695 parasitic flatworms having external suckers for attaching to a host +n01925916 tadpole-shaped parasitic larva of a trematode worm; tail disappears in adult stage +n01926379 flatworm parasitic in liver and bile ducts of domestic animals and humans +n01926689 fluke that is parasitic on humans and swine; common in eastern Asia +n01927159 flatworms parasitic in the blood vessels of mammals +n01927456 ribbonlike flatworms that are parasitic in the intestines of humans and other vertebrates +n01927928 tapeworms whose larvae are parasitic in humans and domestic animals +n01928215 tapeworms parasitic in humans which uses the pig as its intermediate host +n01928517 soft unsegmented marine worms that have a threadlike proboscis and the ability to stretch and contract +n01928865 slender animal with tentacles and a tubelike outer covering; lives on the deep ocean bottom +n01929186 minute aquatic multicellular organisms having a ciliated wheel-like organ for feeding and locomotion; constituents of freshwater plankton +n01930112 unsegmented worms with elongated rounded body pointed at both ends; mostly free-living but some are parasitic +n01930852 intestinal parasite of humans and pigs +n01931140 intestinal parasite of domestic fowl +n01931520 small threadlike worm infesting human intestines and rectum especially in children +n01931714 any of various small free-living plant-parasitic roundworms +n01932151 minute eelworm that feeds on organisms that cause fermentation in e.g. vinegar +n01932936 parasitic nematode occurring in the intestines of pigs and rats and human beings and producing larvae that form cysts in skeletal muscles +n01933151 parasitic bloodsucking roundworms having hooked mouth parts to fasten to the intestinal wall of human and other hosts +n01933478 slender threadlike roundworms living in the blood and tissues of vertebrates; transmitted as larvae by biting insects +n01933988 parasitic roundworm of India and Africa that lives in the abdomen or beneath the skin of humans and other vertebrates +n01934440 worms with cylindrical bodies segmented both internally and externally +n01934844 small primitive marine worm lacking external segmentation and resembling polychaete larvae +n01935176 hermaphroditic terrestrial and aquatic annelids having bristles borne singly along the length of the body +n01935395 terrestrial worm that burrows into and helps aerate soil; often surfaces when the ground is cool or wet; used as bait by anglers +n01936391 chiefly marine annelids possessing both sexes and having paired appendages (parapodia) bearing bristles +n01936671 marine worms having a row of tufted gills along each side of the back; often used for fishing bait +n01936858 any of several large worms having a broad flattened body with a mat of coarse hairs covering the back +n01937579 a segmented marine worm with bright red body; often used for bait +n01937909 carnivorous or bloodsucking aquatic or terrestrial worms typically having a sucker at each end +n01938454 large European freshwater leech formerly used for bloodletting +n01938735 any of several large freshwater leeches +n01940736 invertebrate having a soft unsegmented body usually enclosed in a shell +n01941223 burrowing marine mollusk +n01941340 any of various seashore mollusks having a tapering tubular shell open at each end and a foot pointed like a spade for burrowing +n01942177 a class of mollusks typically having a one-piece coiled shell and flattened muscular foot with a head bearing stalked eyes +n01942869 any of various large edible marine gastropods of the genus Haliotis having an ear-shaped shell with pearly interior +n01943087 an abalone found near the Channel Islands +n01943541 any of numerous tropical marine snails that as adults have the outer lip of the aperture produced into a series of long curved spines +n01943899 any of various edible tropical marine gastropods of the genus Strombus having a brightly-colored spiral shell with large outer lip +n01944118 a large variety of conch +n01944390 freshwater or marine or terrestrial gastropod mollusk usually having an external enclosing spiral shell +n01944812 one of the chief edible snails +n01944955 any of several inedible snails of the genus Helix; often destructive pests +n01945143 serious garden pest having a brown shell with paler zigzag markings; nearly cosmopolitan in distribution +n01945340 a kind of garden snail +n01945685 any of various terrestrial gastropods having an elongated slimy body and no external shell +n01945845 any of several creeping marine gastropods with a spirally coiled shell: whelks; tritons; moon shells; neritids +n01946277 operculate seasnail of coastal waters with a short spiral shell +n01946630 a neritid gastropod having a short smooth or spirally ridged shell with thick usually toothed outer lip and toothed operculum +n01946827 gastropod having reddish toothlike projections around the shell opening; of the Caribbean area +n01947139 ornately marked and brightly colored snails of brackish waters +n01947396 large carnivorous marine gastropods of coastal waters and intertidal regions having a strong snail-like shell +n01947997 marine gastropods having smooth rounded shells that form short spires +n01948446 edible marine gastropod +n01948573 any of various usually marine gastropods with low conical shells; found clinging to rocks in littoral areas +n01949085 marine limpet +n01949499 marine limpet having a conical shell with an opening at the apex +n01949973 minute conical gastropod superficially resembling a limpet but living and feeding on freshwater plants +n01950731 any of various marine gastropods of the suborder Nudibranchia having a shell-less and often beautifully colored body +n01951274 naked marine gastropod having a soft body with reduced internal shell and two pairs of ear-like tentacles +n01951613 a kind of sea slug +n01952029 marine gastropod mollusk having a very small thin shell +n01952712 any member of the genus Physa +n01953361 any of numerous tropical marine gastropods of the genus Cypraea having highly polished usually brightly marked shells +n01953594 cowrie whose shell is used for money in parts of the southern Pacific and in parts of Africa +n01953762 cowrie whose shell is used for ornament +n01954516 deep-water wormlike mollusks lacking calcareous plates on the body but having fine slimy spicules on the covering mantle +n01955084 primitive elongated bilaterally symmetrical marine mollusk having a mantle covered with eight calcareous plates +n01955933 marine or freshwater mollusks having a soft body with platelike gills enclosed within two shells hinged together +n01956344 a young oyster or other bivalve +n01956481 burrowing marine mollusk living on sand or mud; the shell closes with viselike firmness +n01956764 the shell of a marine organism +n01957335 an edible clam with thin oval-shaped shell found in coastal regions of the United States and Europe +n01958038 an edible American clam; the heavy shells were used as money by some American Indians +n01958346 a young quahog +n01958435 a half-grown quahog +n01958531 a large edible clam found burrowing deeply in sandy mud along the Pacific coast of North America; weighs up to six pounds; has siphons that can extend to several feet and cannot be withdrawn into the shell +n01959029 marine clam having a long narrow curved thin shell +n01959492 a large clam inhabiting reefs in the southern Pacific and weighing up to 500 pounds +n01959985 common edible, burrowing European bivalve mollusk that has a strong, rounded shell with radiating ribs +n01960177 common edible European cockle +n01960459 marine mollusks having a rough irregular shell; found on the sea bed mostly in coastal waters +n01961234 a large oyster native to Japan and introduced along the Pacific coast of the United States; a candidate for introduction in Chesapeake Bay +n01961600 common edible oyster of Atlantic coast of North America +n01961985 tropical marine bivalve found chiefly off eastern Asia and Pacific coast of North America and Central America; a major source of pearls +n01962506 thin-shelled bivalve having the right valve deeply notched +n01962788 marine bivalve common in Philippine coastal waters characterized by a large thin flat translucent shell +n01963317 marine bivalve mollusk having a heavy toothed shell with a deep boat-like inner surface +n01963479 red-blooded clam +n01963571 marine or freshwater bivalve mollusk that lives attached to rocks etc. +n01964049 marine bivalve mollusk having a dark elongated shell; live attached to solid objects especially in intertidal zones +n01964271 a mussel with a dark shell that lives attached to rocks +n01964441 bivalve mollusk abundant in rivers of central United States +n01964957 the pearly lining of the dark shells is a source of mother-of-pearl +n01965252 mussel with thin fragile shells having only rudimentary hinge teeth +n01965529 inch long mollusk imported accidentally from Europe; clogs utility inlet pipes and feeds on edible freshwater mussels +n01965889 edible marine bivalve having a fluted fan-shaped shell that swim by expelling water from the shell in a series of snapping motions +n01966377 a small scallop inhabiting shallow waters and mud flats of the Atlantic coast of North America +n01966586 a large scallop inhabiting deep waters of the Atlantic coast of North America +n01967094 wormlike marine bivalve that bores into wooden piers and ships by means of drill-like shells +n01967308 typical shipworm +n01967963 marine bivalve that bores into rock or clay or wood by means of saw-like shells +n01968315 marine mollusk characterized by well-developed head and eyes and sucker-bearing tentacles +n01968897 cephalopod of the Indian and Pacific oceans having a spiral shell with pale pearly partitions +n01969726 a cephalopod with eight arms but lacking an internal shell +n01970164 bottom-living cephalopod having a soft oval body with eight long tentacles +n01970667 cephalopod mollusk of warm seas whose females have delicate papery spiral shells +n01971094 cephalopods having eight short tentacles plus two long ones +n01971280 widely distributed fast-moving ten-armed cephalopod mollusk having a long tapered body with triangular tail fins +n01971620 somewhat flattened cylindrical squid +n01971850 extremely active cylindrical squid with short strong arms and large rhombic terminal fins +n01972131 largest mollusk known about but never seen (to 60 feet long) +n01972541 ten-armed oval-bodied cephalopod with narrow fins as long as the body and a large calcareous internal shell +n01973148 a small tropical cephalopod of the genus Spirula having prominent eyes and short arms and a many-chambered shell coiled in a flat spiral +n01974773 any mainly aquatic arthropod usually having a segmented body and chitinous exoskeleton +n01975687 a major subclass of crustaceans +n01976146 crustaceans characteristically having five pairs of locomotor appendages each joined to a segment of the thorax +n01976868 typical crabs +n01976957 decapod having eyes on short stalks and a broad flattened carapace with a small abdomen folded under the thorax and pincers +n01977485 large edible crab of the southern coast of the United States (particularly Florida) +n01978010 edible crab that has not recently molted and so has a hard shell +n01978136 edible crab that has recently molted and not yet formed its new shell +n01978287 small edible crab of Pacific coast of North America +n01978455 crab of eastern coast of North America +n01978587 large red deep-water crab of the eastern coast of North America +n01978930 marine crab with some legs flattened and fringed for swimming +n01979269 crab of the English coasts +n01979526 brightly spotted crab of sandy beaches of the Atlantic coast of the United States +n01979874 bluish edible crab of Atlantic and Gulf Coasts of North America +n01980166 burrowing crab of American coastal regions having one claw much enlarged in the male +n01980655 tiny soft-bodied crab living commensally in the mantles of certain bivalve mollusks +n01981276 large edible crab of northern Pacific waters especially along the coasts of Alaska and Japan +n01981702 any of numerous crabs with very long legs and small triangular bodies +n01982068 a large spider crab of Europe +n01982347 very large deep-water Japanese crab +n01982650 any of several edible marine crustaceans of the families Homaridae and Nephropsidae and Palinuridae +n01983048 large edible marine crustaceans having large pincers on the first pair of legs +n01983481 lobster of Atlantic coast of America +n01983674 lobster of Atlantic coast of Europe +n01983829 small lobster of southern Africa +n01984245 edible European lobster resembling the American lobster but slenderer +n01984695 large edible marine crustacean having a spiny carapace but lacking the large pincers of true lobsters +n01985128 small freshwater decapod crustacean that resembles a lobster +n01985493 small crayfish of Europe and Asia and western North America +n01985797 common large crayfishes of eastern North America +n01986214 small soft-bodied marine crustaceans living in cast-off shells of gastropods +n01986806 small slender-bodied chiefly marine decapod crustaceans with a long tail and single pair of pincers; many species are edible +n01987076 small shrimp that makes a snapping noise with one of their enlarged chelae +n01987545 shrimp-like decapod crustacean having two pairs of pincers; most are edible +n01987727 large (a foot or more) edible freshwater prawn common in Australian rivers +n01988203 edible tropical and warm-water prawn +n01988701 shrimp-like planktonic crustaceans; major source of food for e.g. baleen whales +n01988869 food for jellyfish +n01989516 shrimp-like crustaceans whose females carry eggs and young in a pouch between the legs +n01989869 a kind of crustacean +n01990007 tropical marine burrowing crustaceans with large grasping appendages +n01990516 a kind of mantis shrimp +n01990800 any of various small terrestrial or aquatic crustaceans with seven pairs of legs adapted for crawling +n01991028 any of various small terrestrial isopods having a flat elliptical segmented body; found in damp habitats +n01991520 small terrestrial isopod with a convex segmented body that can roll up into a ball +n01992262 terrestrial isopod having an oval segmented body (a shape like a sow) +n01992423 marine isopod crustacean +n01992773 a kind of malacostracan crustacean +n01993525 small amphipod crustacean having a grotesque form suggestive of the praying mantis; found chiefly on seaweed +n01993830 amphipod crustacean parasitic on cetaceans +n01994910 minute freshwater crustacean having a round body enclosed in a transparent shell; moves about like a flea by means of hairy branched antennae +n01995514 small freshwater branchiopod having a transparent body with many appendages; swims on its back +n01995686 common to saline lakes +n01996280 a kind of branchiopod crustacean +n01996585 minute marine or freshwater crustaceans usually having six pairs of limbs on the thorax; some abundant in plankton and others parasitic on fish +n01997119 minute free-swimming freshwater copepod having a large median eye and pear-shaped body and long antennae used in swimming; important in some food chains and as intermediate hosts of parasitic worms that affect man e.g. Guinea worms +n01997825 tiny marine and freshwater crustaceans with a shrimp-like body enclosed in a bivalve shell +n01998183 marine crustaceans with feathery food-catching appendages; free-swimming as larvae; as adults form a hard shell and live attached to submerged surfaces +n01998741 barnacle that attaches to rocks especially in intertidal zones +n01999186 stalked barnacle that attaches to ship bottoms or floating timbers +n01999767 any of numerous velvety-skinned wormlike carnivorous animals common in tropical forests having characteristics of both arthropods and annelid worms +n02000954 any of many long-legged birds that wade in water in search of food +n02002075 large mostly Old World wading birds typically having white-and-black plumage +n02002556 the common stork of Europe; white with black wing feathers and a red bill +n02002724 Old World stork that is glossy black above and white below +n02003037 large Indian stork with a military gait +n02003204 large African black-and-white carrion-eating stork; its downy underwing feathers are used to trim garments +n02003577 stork with a grooved bill whose upper and lower parts touch only at the base and tip +n02003839 large white stork of warm regions of the world especially America +n02004131 large black-and-white stork of tropical Africa; its red bill has a black band around the middle +n02004492 large mostly white Australian stork +n02004855 an American stork that resembles the true ibises in having a downward-curved bill; inhabits wooded swamps of New World tropics +n02005399 large stork-like bird of the valley of the White Nile with a broad bill suggesting a wooden shoe +n02005790 wading birds of warm regions having long slender down-curved bills +n02006063 any of several Old World birds of the genus Ibis +n02006364 African ibis venerated by ancient Egyptians +n02006656 wading birds having a long flat bill with a tip like a spoon +n02006985 pure white crested spoonbill of southern Eurasia and northeastern Africa +n02007284 tropical rose-colored New World spoonbill +n02007558 large pink to scarlet web-footed wading bird with down-bent bill; inhabits brackish lakes +n02008041 grey or white wading bird with long neck and long legs and (usually) long bill +n02008497 large American heron having bluish-grey plumage +n02008643 large white heron of Florida and the Florida Keys +n02008796 any of various usually white herons having long plumes during breeding season +n02009229 small bluish-grey heron of the western hemisphere +n02009380 small New World egret +n02009508 Old World egret +n02009750 widely distributed Old World white egret +n02009912 a common egret of the genus Egretta found in America; it is a variety of the Old World white egret Casmerodius albus +n02010272 small white egret widely distributed in warm regions often found around grazing animals +n02010453 nocturnal or crepuscular herons +n02010728 night heron of both Old and New Worlds +n02011016 North American night heron +n02011281 tropical American heron related to night herons +n02011460 relatively small compact tawny-brown heron with nocturnal habits and a booming cry; found in marshes +n02011805 a kind of bittern +n02011943 a kind of bittern +n02012185 small American bittern +n02012849 large long-necked wading bird of marshes and plains in many parts of the world +n02013177 rare North American crane having black-and-white plumage and a trumpeting call +n02013567 wading bird of South America and Central America +n02013706 wading bird of Florida, Cuba and Jamaica having a drooping bill and a distinctive wailing call +n02014237 Brazilian Cariama; sole representative of the genus Cariama +n02014524 Argentinian Cariama +n02014941 any of numerous widely distributed small wading birds of the family Rallidae having short wings and very long toes for running on soft mud +n02015357 flightless New Zealand rail of thievish disposition having short wings each with a spur used in fighting +n02015554 any of several short-billed Old World rails +n02015797 common Eurasian rail that frequents grain fields +n02016066 Eurasian rail of swamps and marshes +n02016358 any of various small aquatic birds of the genus Gallinula distinguished from rails by a frontal shield and a resemblance to domestic hens +n02016659 North American dark bluish-grey gallinule +n02016816 black gallinule that inhabits ponds and lakes +n02016956 gallinules with showy purplish plumage +n02017213 purple gallinule of southern Europe +n02017475 American purple gallinule +n02017725 flightless New Zealand birds similar to gallinules +n02018027 slate-black slow-flying birds somewhat resembling ducks +n02018207 a coot found in North America +n02018368 a coot found in Eurasia +n02018795 large heavy-bodied chiefly terrestrial game bird capable of powerful swift flight; classified with wading birds but frequents grassy steppes +n02019190 largest European land bird +n02019438 popular Australian game bird +n02019929 small quail-like terrestrial bird of southern Eurasia and northern Africa that lacks a hind toe; classified with wading birds but inhabits grassy plains +n02020219 a variety of button quail having stripes +n02020578 small Australian bird related to the button quail; classified as wading bird but inhabits plains +n02021050 large gregarious crane-like bird of the forests of South America having glossy black plumage and a loud prolonged cry; easily domesticated +n02021281 trumpeter of Brazil and Guiana; often kept to protect poultry in Brazil +n02021795 a bird that frequents coastal waters and the open ocean: gulls; pelicans; gannets; cormorants; albatrosses; petrels; etc. +n02022684 any of numerous wading birds that frequent mostly seashores and estuaries +n02023341 any of numerous chiefly shorebirds of relatively compact build having straight bills and large pointed wings; closely related to the sandpipers +n02023855 small plover of eastern North America +n02023992 American plover of inland waters and fields having a distinctive cry +n02024185 rare plover of upland areas of Eurasia +n02024479 plovers of Europe and America having the backs marked with golden-yellow spots +n02024763 large crested Old World plover having wattles and spurs +n02025043 migratory shorebirds of the plover family that turn over stones in searching for food +n02025239 common Arctic turnstone that winters in South America and Australia +n02025389 common turnstone of the Pacific coast of North America +n02026059 any of numerous usually small wading birds having a slender bill and piping call; closely related to the plovers +n02026629 sandpiper-like shorebird of Pacific coasts of North America and South America +n02026948 a variety of sandpiper +n02027075 common North American sandpiper +n02027357 smallest American sandpiper +n02027492 small common sandpiper that breeds in northern or Arctic regions and winters in southern United States or Mediterranean regions +n02027897 large European sandpiper with greenish legs +n02028035 a common Old World wading bird with long red legs +n02028175 either of two North American shorebird with yellow legs +n02028342 a variety of yellowlegs +n02028451 a variety of yellowlegs +n02028727 American sandpiper that inflates its chest when courting +n02028900 a sandpiper that breeds in the Arctic and winters in the southern hemisphere +n02029087 Old World sandpiper with a curved bill like a curlew +n02029378 small sandpiper that breeds in the Arctic and migrates southward along sandy coasts in most of world +n02029706 large plover-like sandpiper of North American fields and uplands +n02030035 common Eurasian sandpiper; the male has an erectile neck ruff in breeding season +n02030224 female ruff +n02030287 any of several long-legged shorebirds having a loud whistling cry +n02030568 tattler of Pacific coastal regions +n02030837 large North American shorebird of eastern and Gulf Coasts +n02030996 game bird of the sandpiper family that resembles a snipe +n02031298 short-legged long-billed migratory Old World woodcock +n02031585 small long-billed woodcock; prized as a game bird +n02031934 Old or New World straight-billed game bird of the sandpiper family; of marshy areas; similar to the woodcocks +n02032222 common snipe of Eurasia and Africa +n02032355 American snipe +n02032480 Old World snipe larger and darker than the whole snipe +n02032769 a small short-billed Old World snipe +n02033041 shorebird of the sandpiper family that resembles a snipe +n02033208 a dowitcher with a grey back +n02033324 a dowitcher with a red breast +n02033561 large migratory shorebirds of the sandpiper family; closely related to woodcocks but having a down-curved bill +n02033779 common Eurasian curlew +n02033882 New World curlew that breeds in northern North America +n02034129 large wading bird that resembles a curlew; has a long slightly upturned bill +n02034295 New World godwit +n02034661 long-legged three-toed black-and-white wading bird of inland ponds and marshes or brackish lagoons +n02034971 stilt of southwestern United States to northern South America having black plumage extending from the head down the back of the neck +n02035210 stilt of Europe and Africa and Asia having mostly white plumage but with black wings +n02035402 stilt of the southwest Pacific including Australia and New Zealand having mostly white plumage but with black wings and nape of neck +n02035656 blackish stilt of New Zealand sometimes considered a color phase of the white-headed stilt +n02036053 long-legged three-toed wading bird of brackish marshes of Australia +n02036228 web-footed Australian stilt with reddish-brown pectoral markings +n02036711 long-legged web-footed black-and-white shorebird with slender upward-curving bill +n02037110 black-and-white shorebird with stout legs and bill; feed on oysters etc. +n02037464 small sandpiper-like shorebird having lobate toes and being good swimmers; breed in the Arctic and winter in the tropics +n02037869 phalarope of northern oceans and lakes +n02038141 breeds in Arctic regions of Old and New Worlds; large flocks often seen far out at sea +n02038466 breeds on the northern great plains of Canada +n02038993 Old World shorebird with long pointed wings and short legs; closely related to the coursers +n02039171 swift-footed terrestrial plover-like bird of southern Asia and Africa; related to the pratincoles +n02039497 courser of desert and semidesert regions of the Old World +n02039780 African courser that feeds on insect parasites on crocodiles +n02040266 large-headed large-eyed crepuscular or nocturnal shorebird of the Old World and tropical America having a thickened knee joint +n02040505 gull family; skimmer family; jaeger family; auk family +n02041085 long-winged web-footed aquatic bird of the gull family +n02041246 mostly white aquatic bird having long pointed wings and short legs +n02041678 the common gull of Eurasia and northeastern North America +n02041875 white gull having a black back and wings +n02042046 large gull of the northern hemisphere +n02042180 small black-headed European gull +n02042472 white Arctic gull; migrates as far south as England and New Brunswick +n02042759 small pearl-grey gull of northern regions; nests on cliffs and has a rudimentary hind toe +n02043063 small slender gull having narrow wings and a forked tail +n02043333 common tern of Eurasia and America having white black and grey plumage +n02043808 gull-like seabird that flies along the surface of the water with an elongated lower mandible immersed to skim out food +n02044178 rapacious seabird that pursues weaker birds to make them drop their prey +n02044517 a variety of jaeger +n02044778 gull-like jaeger of northern seas +n02044908 large brown skua of the northern Atlantic +n02045369 black-and-white short-necked web-footed diving bird of northern seas +n02045596 any of several small auks of the northern Pacific coasts +n02045864 black-and-white northern Atlantic auk having a compressed sharp-edged bill +n02046171 small short-billed auk abundant in Arctic regions +n02046759 small black or brown speckled auks of northern seas +n02046939 northern Atlantic guillemot +n02047045 northern Pacific guillemot +n02047260 black-and-white diving bird of northern seas +n02047411 the most frequent variety of murre +n02047517 a variety of murre +n02047614 any of two genera of northern seabirds having short necks and brightly colored compressed bills +n02047975 common puffin of the northern Atlantic +n02048115 northern Pacific puffin +n02048353 northern Pacific puffin having a large yellow plume over each eye +n02048698 seabirds of the order Gaviiformes +n02049088 large somewhat primitive fish-eating diving bird of the northern hemisphere having webbed feet placed far back; related to the grebes +n02049532 aquatic birds related to the loons +n02050004 small compact-bodied almost completely aquatic bird that builds floating nests; similar to loons but smaller and with lobate rather than webbed feet +n02050313 large Old World grebe with black ear tufts +n02050442 large stocky grebe of circumpolar regions having a dark neck +n02050586 small grebe with yellow ear tufts and a black neck; found in Eurasia and southern Africa as well as western United States +n02050809 small European grebe +n02051059 American grebe having a black-banded whitish bill +n02051474 large fish-eating seabird with four-toed webbed feet +n02051845 large long-winged warm-water seabird having a large bill with a distensible pouch for fish +n02052204 large American pelican; white with black wing feathers +n02052365 similar to American white pelican +n02052775 long-billed warm-water seabird with wide wingspan and forked tail +n02053083 large heavily built seabird with a long stout bill noted for its plunging dives for fish +n02053425 very large white gannet with black wing tips +n02053584 small tropical gannet having a bright bill or bright feet or both +n02054036 large voracious dark-colored long-necked seabird with a distensible pouch for holding fish; used in Asia to catch fish +n02054502 fish-eating bird of warm inland waters having a long flexible neck and slender sharp-pointed bill +n02054711 blackish New World snakebird of swampy regions +n02055107 mostly white web-footed tropical seabird often found far from land +n02055658 flightless cold-water seabirds: penguins +n02055803 short-legged flightless birds of cold southern especially Antarctic regions having webbed feet and wings modified as flippers +n02056228 medium-sized penguins occurring in large colonies on the Adelie Coast of Antarctica +n02056570 large penguin on islands bordering the Antarctic Circle +n02056728 the largest penguin; an Antarctic penguin +n02057035 small penguin of South America and southern Africa with a braying call +n02057330 small penguin of the Falkland Islands and New Zealand +n02057731 bird of the open seas +n02057898 large long-winged bird with hooked bill and tubular nostrils that wanders the open seas +n02058221 large web-footed birds of the southern hemisphere having long narrow wings; noted for powerful gliding flight +n02058594 very large albatross; white with wide black wings +n02058747 a variety of albatross with black feet +n02059162 relatively small long-winged tube-nosed bird that flies far from land +n02059541 large black petrel of southern seas having a white mark on the chin +n02059852 large brownish petrel chiefly of Antarctic seas +n02060133 heavy short-tailed oceanic bird of polar regions +n02060411 long-winged oceanic bird that in flight skims close to the waves +n02060569 small black-and-white shearwater common in the northeastern Atlantic +n02060889 any of various small petrels having dark plumage with paler underparts +n02061217 sooty black petrel with white markings; of the northern Atlantic and Mediterranean +n02061560 medium-sized storm petrel +n02061853 any of several small diving birds of southern hemisphere seas; somewhat resemble auks +n02062017 whales and dolphins; manatees and dugongs; walruses; seals +n02062430 large aquatic carnivorous mammal with fin-like forelimbs no hind limbs, including: whales; dolphins; porpoises; narwhals +n02062744 any of the larger cetacean mammals having a streamlined body and breathing through a blowhole on the head +n02063224 whale with plates of whalebone along the upper jaw for filtering plankton from the water +n02063662 large Arctic whalebone whale; allegedly the `right' whale to hunt because of its valuable whalebone and oil +n02064000 large-mouthed Arctic whale +n02064338 any of several baleen whales of the family Balaenopteridae having longitudinal grooves on the throat and a small pointed dorsal fin +n02064816 largest mammal ever known; bluish-grey migratory whalebone whale mostly of southern hemisphere +n02065026 large flat-headed whalebone whale having deep furrows along the throat; of Atlantic and Pacific +n02065263 similar to but smaller than the finback whale +n02065407 small finback of coastal waters of Atlantic and Pacific +n02065726 large whalebone whale with long flippers noted for arching or humping its back as it dives +n02066245 medium-sized greyish-black whale of the northern Pacific +n02066707 any of several whales having simple conical teeth and feeding on fish etc. +n02067240 large whale with a large cavity in the head containing spermaceti and oil; also a source of ambergris +n02067603 small sperm whale of warm waters of both coasts of North America +n02067768 very small (to 8 feet) sperm whale of central coasts of Atlantic and Pacific +n02068206 any of several whales inhabiting all oceans and having beaklike jaws with vestigial teeth in the upper jaw +n02068541 northern Atlantic beaked whale with a bulbous forehead +n02068974 any of various small toothed whales with a beaklike snout; larger than porpoises +n02069412 black-and-white dolphin that leaps high out of the water +n02069701 any of several dolphins with rounded forehead and well-developed beak; chiefly of northern Atlantic and Mediterranean +n02069974 the most common dolphin of northern Atlantic and Mediterranean; often kept captive and trained to perform +n02070174 a bottlenose dolphin found in the Pacific Ocean +n02070430 any of several small gregarious cetacean mammals having a blunt snout and many teeth +n02070624 the common porpoise of the northern Atlantic and Pacific +n02070776 a short porpoise that lives in the Gulf of California; an endangered species +n02071028 slaty-grey blunt-nosed dolphin common in northern seas +n02071294 predatory black-and-white toothed whale with large dorsal fin; common in cold seas +n02071636 small dark-colored whale of the Atlantic coast of the United States; the largest male acts as pilot or leader for the school +n02072040 any of several long-snouted usually freshwater dolphins of South America and southern Asia +n02072493 small Arctic whale the male having a long spiral ivory tusk +n02072798 small northern whale that is white when adult +n02073250 any of two families of large herbivorous aquatic mammals with paddle-shaped tails and flipper-like forelimbs and no hind limbs +n02073831 sirenian mammal of tropical coastal waters of America; the flat tail is rounded +n02074367 sirenian tusked mammal found from eastern Africa to Australia; the flat tail is bilobate +n02074726 extinct large sirenian mammal formerly found near the Asiatic coast of the Bering Sea +n02075296 a terrestrial or aquatic flesh-eating mammal +n02075612 an animal that feeds on both animal and vegetable substances +n02075927 aquatic carnivorous mammal having a streamlined body specialized for swimming with limbs modified as flippers +n02076196 any of numerous marine mammals that come on shore to breed; chiefly of cold regions +n02076402 silvery grey Antarctic seal subsisting on crustaceans +n02076779 pinniped mammal having external ear flaps and hind limbs used for locomotion on land; valued for its soft underfur +n02077152 eared seal of the southern hemisphere; the thick soft underfur is the source of sealskin +n02077384 a fur seal of the Pacific coast of California and southward +n02077658 an eared seal of the northern Pacific +n02077787 of Pacific coast from Alaska southward to California +n02077923 any of several large eared seals of the northern Pacific related to fur seals but lacking their valuable coat +n02078292 of the southern coast of South America +n02078574 often trained as a show animal +n02078738 a variety of sea lion found in Australia +n02079005 largest sea lion; of the northern Pacific +n02079389 any of several seals lacking external ear flaps and having a stiff hairlike coat with hind limbs reduced to swimming flippers +n02079851 small spotted seal of coastal waters of the northern hemisphere +n02080146 common Arctic seal; the young are all white +n02080415 either of two large northern Atlantic earless seals having snouts like trunks +n02080713 medium-sized greyish to yellow seal with bristles each side of muzzle; of the Arctic Ocean +n02081060 medium-sized blackish-grey seal with large inflatable sac on the head; of Arctic and northern Atlantic waters +n02081571 either of two large northern marine mammals having ivory tusks and tough hide over thick blubber +n02081798 a walrus of northern Atlantic and Arctic waters +n02081927 a walrus of the Bering Sea and northern Pacific +n02082056 in some classifications considered a suborder of Carnivora +n02082190 terrestrial carnivores; having toes separated to the base: dogs; cats; bears; badgers; raccoons +n02082791 nocturnal burrowing mammal of the grasslands of Africa that feeds on termites; sole extant representative of the order Tubulidentata +n02083346 any of various fissiped mammals with nonretractile claws and typically long muzzles +n02083672 female of any member of the dog family +n02083780 a bitch used for breeding +n02084071 a member of the genus Canis (probably descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in many breeds +n02084732 informal terms for dogs +n02084861 an inferior dog or one of mixed breed +n02085019 a nervous belligerent little mongrel dog +n02085118 ownerless half-wild mongrel dog common around Asian villages especially India +n02085272 a dog small and tame enough to be held in the lap +n02085374 any of several breeds of very small dogs kept purely as pets +n02085620 an old breed of tiny short-haired dog with protruding eyes from Mexico held to antedate Aztec civilization +n02085782 breed of toy dogs originating in Japan having a silky black-and-white or red-and-white coat +n02085936 breed of toy dogs having a long straight silky white coat +n02086079 a Chinese breed of small short-legged dogs with a long silky coat and broad flat muzzle +n02086240 a Chinese breed of small dog similar to a Pekingese +n02086346 a very small spaniel +n02086478 British breed having a long silky coat and rounded head with a short upturned muzzle +n02086646 red-and-white variety of English toy spaniel +n02086753 a toy English spaniel with a black-and-tan coat; named after Charles II who popularized it +n02086910 small slender toy spaniel with erect ears and a black-spotted brown to white coat +n02087046 a small active dog +n02087122 a dog used in hunting game +n02087314 a dog trained for coursing +n02087394 a powerful short-haired African hunting dog having a crest of reversed hair along the spine +n02087551 any of several breeds of dog used for hunting typically having large drooping ears +n02088094 tall graceful breed of hound with a long silky coat; native to the Near East +n02088238 smooth-haired breed of hound with short legs and long ears +n02088364 a small short-legged smooth-coated breed of hound +n02088466 a breed of large powerful hound of European origin having very acute smell and used in tracking +n02088632 a very fast American hound; white mottled with bluish grey +n02088745 large hound used in hunting wild boars +n02088839 any of several breeds of hound developed for hunting raccoons +n02088992 any dog trained to hunt raccoons +n02089078 American breed of large powerful hound dogs used for hunting raccoons and other game +n02089232 small long-bodied short-legged German breed of dog having a short sleek coat and long drooping ears; suited for following game into burrows +n02089468 informal term +n02089555 medium-sized glossy-coated hounds developed for hunting foxes +n02089725 an American breed of foxhounds used for hunting both in packs and individually +n02089867 an American breed of foxhound +n02089973 an English breed slightly larger than the American foxhounds originally used to hunt in packs +n02090129 a hound that resembles a foxhound but is smaller; used to hunt rabbits +n02090253 a brindle-coated American hound used in hunting bears and wild boars +n02090379 a speedy red or red-and-tan American hound +n02090475 the largest breed of dogs; formerly used to hunt wolves +n02090622 tall fast-moving dog breed +n02090721 large breed of hound with a rough thick coat +n02090827 a tall slender dog of an ancient breed noted for swiftness and keen sight; used as a racing dog +n02091032 a toy dog developed from the greyhound +n02091134 small slender dog of greyhound type developed in England +n02091244 breed of slender agile medium-sized hound found chiefly in the Balearic Islands; said to have been bred originally by the Pharaohs of ancient Egypt +n02091467 breed of compact medium-sized dog with a heavy grey coat developed in Norway for hunting elk +n02091635 hardy British hound having long pendulous ears and a thick coarse shaggy coat with an oily undercoat; bred for hunting otters +n02091831 old breed of tall swift keen-eyed hunting dogs resembling greyhounds; from Egypt and southwestern Asia +n02092002 very large and tall rough-coated dog bred for hunting deer; known as the royal dog of Scotland +n02092173 a large heavy hound formerly used in hunting stags and other large game; similar to but larger than a foxhound +n02092339 large breed of hound having a smooth greyish coat; originated in Germany +n02092468 any of several usually small short-bodied breeds originally trained to hunt animals living underground +n02093056 a powerful short-haired terrier originated in England by crossing the bulldog with terriers +n02093256 English breed of strong stocky dog having a broad skull and smooth coat +n02093428 American breed of muscular terriers with a short close-lying stiff coat +n02093647 a light terrier groomed to resemble a lamb +n02093754 small rough-coated terrier of British origin +n02093859 an Irish breed of medium-sized terriers with a silky blue-grey coat +n02093991 medium-sized breed with a wiry brown coat; developed in Ireland +n02094114 English breed of small terrier with a straight wiry grizzled coat and dropped ears +n02094258 English breed of small short-legged terrier with a straight wiry red or grey or black-and-tan coat and erect ears +n02094433 very small breed having a long glossy coat of bluish-grey and tan +n02094562 any of several breeds of terrier developed to catch rats +n02094721 a breed of short-haired rat terrier with a black-and-tan coat that was developed in Manchester, England +n02094931 breed of small Manchester terrier +n02095050 small lively black-and-white terriers formerly used to dig out foxes +n02095212 a fox terrier with smooth hair +n02095314 a fox terrier with wiry hair +n02095412 a terrier with wiry hair +n02095570 breed of wire-haired terrier originally from the Lake District of England and used for hunting +n02095727 wire-haired terrier resembling Airedales but smaller; developed in Wales for hunting +n02095889 a wire-haired terrier with short legs that was first bred in Sealyham +n02096051 breed of large wiry-coated terrier bred in Yorkshire +n02096177 small rough-haired breed of terrier from Scotland +n02096294 small greyish wire-haired breed of terrier from Australia similar to the cairn +n02096437 a breed of small terrier with long wiry coat and drooping ears +n02096585 small pug-faced American terrier breed having a smooth brindle or black coat with white markings +n02096756 old German breed of sturdy black or greyish wire-haired terriers having a blunt muzzle ranging in size from fairly small to very large; used as ratters and guard dogs or police dogs +n02097047 a small schnauzer +n02097130 a large schnauzer +n02097209 a medium-sized schnauzer +n02097298 old Scottish breed of small long-haired usually black terrier with erect tail and ears +n02097474 breed of medium-sized terriers bred in Tibet resembling Old English sheepdogs with fluffy curled tails +n02097658 Australian breed of toy dogs having a silky blue coat +n02097786 Scottish breed of terrier with shaggy hair and long low body with short legs; native to the Isle of Skye +n02097967 selectively bred small Skye terrier with erect ears and a long silky coat +n02098105 Irish breed of medium-sized terrier with an abundant coat any shade of wheat and very hairy head and muzzle +n02098286 small white long-coated terrier developed in Scotland +n02098413 a breed of terrier having a long heavy coat raised in Tibet as watchdogs +n02098550 a dog trained to work with sportsmen when they hunt with guns +n02098806 a gun dog trained to locate or retrieve birds +n02098906 a dog accustomed to water and usually trained to retrieve waterfowl +n02099029 a dog with heavy water-resistant coat that can be trained to retrieve game +n02099267 an English breed having a shiny black or liver-colored coat; retrieves game from land or water +n02099429 an English breed having a tightly curled black or liver-colored coat; retrieves game from land or water +n02099601 an English breed having a long silky golden coat +n02099712 breed originally from Labrador having a short black or golden-brown coat +n02099849 American breed having a short thick oily coat ranging from brown to light tan +n02099997 a strong slender smooth-haired dog of Spanish origin having a white coat with brown or black patches; scents out and points to game +n02100236 liver or liver-and-white hunting dog developed in Germany; 3/4 pointer and 1/4 bloodhound +n02100399 a long-haired dog formerly trained to crouch on finding game but now to point +n02100583 Hungarian hunting dog resembling the Weimaraner but having a rich deep red coat +n02100735 an English breed having a plumed tail and a soft silky coat that is chiefly white +n02100877 an Irish breed with a chestnut-brown or mahogany-red coat +n02101006 a Scottish breed with a black-and-tan coat +n02101108 any of several breeds of small to medium-sized gun dogs with a long silky coat and long frilled ears +n02101388 tall active short-tailed French breed of bird dog having a usually smooth orange- or liver-and-white coat +n02101556 a thickset spaniel with longish silky hair +n02101670 large usually black hunting and retrieving spaniel with a dense flat or slightly wavy coat; cross between cocker and Sussex spaniel +n02101861 a large spaniel with wavy silky coat usually black or liver and white +n02102040 a breed having typically a black-and-white coat +n02102177 a red-and-white breed slightly smaller than the English springer spaniel +n02102318 a small breed with wavy silky hair; originally developed in England +n02102480 an English breed with short legs and a golden liver-colored coat +n02102605 any dog of two large curly-coated breeds used for hunting waterfowl +n02102806 breed of medium-sized spaniels originating in America having chocolate or liver-colored curly coat +n02102973 breed of large spaniels developed in Ireland having a heavy coat of liver-colored curls and a topknot of long curls and a nearly hairless tail +n02103181 breed of medium-sized long-headed dogs with downy undercoat and harsh wiry outer coat; originated in Holland but largely developed in France +n02103406 any of several breeds of usually large powerful dogs bred to work as draft animals and guard and guide dogs +n02103841 a dog trained to guard property +n02104029 long-established Hungarian breed of tall light-footed but sturdy white dog; used also as a hunting dog +n02104184 a watchdog trained to attack on command +n02104280 a dog trained to guard a house +n02104365 breed of small stocky black dogs originally used as watchdogs on boats in the Netherlands and Belgium +n02104523 any of various usually long-haired breeds of dog reared to herd and guard sheep +n02104882 hardy working dog developed in Belgium for herding sheep +n02105056 black-coated sheepdog with a heavily plumed tail +n02105162 fawn-colored short-haired sheepdog +n02105251 old French breed of large strong usually black dogs having a long tail and long wavy and slightly stiff coat +n02105412 an Australian sheepdog with pointed ears +n02105505 Hungarian breed of large powerful shaggy-coated white dog; used also as guard dog +n02105641 large sheepdog with a profuse shaggy bluish-grey-and-white coat and short tail; believed to trace back to the Roman occupation of Britain +n02105855 a small sheepdog resembling a collie that was developed in the Shetland Islands +n02106030 a silky-coated sheepdog with a long ruff and long narrow head developed in Scotland +n02106166 developed in the area between Scotland and England usually having a black coat with white on the head and tip of tail used for herding both sheep and cattle +n02106382 rough-coated breed used originally in Belgium for herding and guarding cattle +n02106550 German breed of large vigorous short-haired cattle dogs +n02106662 breed of large shepherd dogs used in police work and as a guide for the blind +n02106854 any dog trained to assist police especially in tracking +n02106966 any of three breeds of dogs whose ears and tail are usually cropped +n02107142 medium large breed of dog of German origin with a glossy black and tan coat; used as a watchdog +n02107312 small German version of a Doberman pinscher +n02107420 any of four Swiss breeds +n02107574 the largest of the four Swiss breeds +n02107683 large powerful long-haired black-coated Swiss dog with deep tan or russet markings on legs and white blaze and feet and chest marking; formerly used for draft +n02107908 a smaller of the four Swiss breeds +n02108000 the smallest of the Sennenhunde +n02108089 a breed of stocky medium-sized short-haired dog with a brindled coat and square-jawed muzzle developed in Germany +n02108254 an old breed of powerful deep-chested smooth-coated dog used chiefly as a watchdog and guard dog +n02108422 large powerful breed developed by crossing the bulldog and the mastiff +n02108551 very large powerful rough-coated dog native to central Asia +n02108672 a sturdy thickset short-haired breed with a large head and strong undershot lower jaw; developed originally in England for bull baiting +n02108915 small stocky version of the bulldog having a sleek coat and square head +n02109047 very large powerful smooth-coated breed of dog +n02109150 a dog trained to guide the blind +n02109256 (trademark) a guide dog trained to guide a blind person +n02109391 dog trained to assist the deaf by signaling the occurrence of certain sounds +n02109525 a Swiss alpine breed of large powerful dog with a thick coat of hair used as a rescue dog +n02109687 a dog that can alert or assist people with seizure disorders +n02109811 a dog trained to draw a sled usually in a team +n02109961 breed of heavy-coated Arctic sled dog +n02110063 breed of sled dog developed in Alaska +n02110185 breed of sled dog developed in northeastern Siberia; they resemble the larger Alaskan malamutes +n02110341 a large breed having a smooth white coat with black or brown spots; originated in Dalmatia +n02110532 a brown-spotted dalmatian +n02110627 European breed of small dog resembling a terrier with dark wiry hair and a tufted muzzle +n02110806 small smooth-haired breed of African origin having a tightly curled tail and the inability to bark +n02110958 small compact smooth-coated breed of Asiatic origin having a tightly curled tail and broad flat wrinkled muzzle +n02111129 a large dog (usually with a golden coat) produced by crossing a St Bernard and a Newfoundland +n02111277 a breed of very large heavy dogs with a thick coarse usually black coat; highly intelligent dogs and vigorous swimmers; developed in Newfoundland +n02111500 bred of large heavy-coated white dogs resembling the Newfoundland +n02111626 any of various stocky heavy-coated breeds of dogs native to northern regions having pointed muzzles and erect ears with a curled furry tail +n02111889 Siberian breed of white or cream-colored dog of the spitz family +n02112018 breed of very small compact long-haired dogs of the spitz type +n02112137 breed of medium-sized dogs with a thick coat and fluffy curled tails and distinctive blue-black tongues; believed to have originated in northern China +n02112350 a spitz-like dog having a shaggy greyish coat and tightly curled tail originating in Holland +n02112497 breed of various very small compact wiry-coated dogs of Belgian origin having a short bearded muzzle +n02112706 a variety of Brussels griffon having a short smooth coat +n02112826 either of two Welsh breeds of long-bodied short-legged dogs with erect ears and a fox-like head +n02113023 the smaller and straight-legged variety of corgi having pointed ears and a short tail +n02113186 slightly bowlegged variety of corgi having rounded ears and a long tail +n02113335 an intelligent dog with a heavy curly solid-colored coat that is usually clipped; an old breed sometimes trained as sporting dogs or as performing dogs +n02113624 the breed of very small poodles +n02113712 a breed of small poodles +n02113799 a breed or medium-sized poodles +n02113892 the largest breed of poodle +n02113978 any of an old breed of small nearly hairless dogs of Mexico +n02114100 any of various predatory carnivorous canine mammals of North America and Eurasia that usually hunt in packs +n02114367 a wolf with a brindled grey coat living in forested northern regions of North America +n02114548 wolf of Arctic North America having white fur and a black-tipped tail +n02114712 reddish-grey wolf of southwestern North America +n02114855 small wolf native to western North America +n02115012 offspring of a coyote and a dog +n02115096 Old World nocturnal canine mammal closely related to the dog; smaller than a wolf; sometimes hunts in a pack but usually singly or as a member of a pair +n02115335 any of various undomesticated mammals of the family Canidae that are thought to resemble domestic dogs as distinguished from jackals or wolves +n02115641 wolflike yellowish-brown wild dog of Australia +n02115913 fierce wild dog of the forests of central and southeast Asia that hunts in packs +n02116185 wild dog of northern South America +n02116450 small wild dog of eastern Asia having facial markings like those of a raccoon +n02116738 a powerful doglike mammal of southern and eastern Africa that hunts in large packs; now rare in settled area +n02117135 doglike nocturnal mammal of Africa and southern Asia that feeds chiefly on carrion +n02117512 of northern Africa and Arabia and India +n02117646 of southern Africa +n02117900 African hyena noted for its distinctive howl +n02118176 striped hyena of southeast Africa that feeds chiefly on insects +n02118333 alert carnivorous mammal with pointed muzzle and ears and a bushy tail; most are predators that do not hunt in packs +n02118643 a female fox +n02118707 a conventional name for a fox used in tales following usage in the old epic `Reynard the Fox' +n02119022 the common Old World fox; having reddish-brown fur; commonly considered a single circumpolar species +n02119247 red fox in the color phase when its pelt is mostly black +n02119359 red fox in the color phase when its pelt is tipped with white +n02119477 New World fox; often considered the same species as the Old World fox +n02119634 small grey fox of the plains of western North America +n02119789 small grey fox of southwestern United States; may be a subspecies of Vulpes velox +n02120079 thickly-furred fox of Arctic regions; brownish in summer and white in winter +n02120278 a variety of Arctic fox having a pale grey winter coat +n02120505 dark grey American fox; from Central America through southern United States +n02120997 any of various lithe-bodied roundheaded fissiped mammals, many with retractile claws +n02121620 feline mammal usually having thick soft fur and no ability to roar: domestic cats; wildcats +n02121808 any domesticated member of the genus Felis +n02122298 informal terms referring to a domestic cat +n02122430 a cat proficient at mousing +n02122510 a homeless cat +n02122580 an animal that has strayed (especially a domestic animal) +n02122725 male cat +n02122810 a castrated tomcat +n02122878 female cat +n02122948 young domestic cat +n02123045 a cat with a grey or tawny coat mottled with black +n02123159 a cat having a striped coat +n02123242 a cat having black and cream-colored and yellowish markings +n02123394 a long-haired breed of cat +n02123478 a long-haired breed of cat similar to the Persian cat +n02123597 a slender short-haired blue-eyed breed of cat having a pale coat with dark ears paws face and tail tip +n02123785 Siamese cat having a bluish cream-colored body and dark grey points +n02123917 a short-haired breed with body similar to the Siamese cat but having a solid dark brown or grey coat +n02124075 a domestic cat of Egypt +n02124157 a term applied indiscriminately in the United States to any short-haired bluish-grey cat +n02124313 a small slender short-haired breed of African origin having brownish fur with a reddish undercoat +n02124484 a short-haired tailless breed of cat believed to originate on the Isle of Man +n02124623 any small or medium-sized cat resembling the domestic cat and living in the wild +n02125010 a desert wildcat +n02125081 bushy-tailed wildcat of Europe that resembles the domestic cat and is regarded as the ancestor of the domestic cat +n02125311 large American feline resembling a lion +n02125494 nocturnal wildcat of Central America and South America having a dark-spotted buff-brown coat +n02125689 long-bodied long-tailed tropical American wildcat +n02125872 widely distributed wildcat of Africa and Asia Minor +n02126028 small Asiatic wildcat +n02126139 slender long-legged African wildcat having large untufted ears and tawny black-spotted coat +n02126317 small spotted wildcat of southern Asia and Malaysia +n02126640 small spotted wildcat found from Texas to Brazil +n02126787 small wildcat of the mountains of Siberia and Tibet and Mongolia +n02127052 short-tailed wildcats with usually tufted ears; valued for their fur +n02127292 of northern Eurasia +n02127381 of northern North America +n02127482 small lynx of North America +n02127586 of southern Europe +n02127678 of deserts of northern Africa and southern Asia +n02127808 any of several large cats typically able to roar and living in the wild +n02128385 large feline of African and Asian forests usually having a tawny coat with black spots +n02128598 female leopard +n02128669 a leopard in the black color phase +n02128757 large feline of upland central Asia having long thick whitish fur +n02128925 a large spotted feline of tropical America similar to the leopard; in some classifications considered a member of the genus Felis +n02129165 large gregarious predatory feline of Africa and India having a tawny coat with a shaggy mane in the male +n02129463 a female lion +n02129530 a small or young lion +n02129604 large feline of forests in most of Asia having a tawny coat with black stripes; endangered +n02129837 southern short-haired tiger +n02129923 a female tiger +n02129991 offspring of a male lion and a female tiger +n02130086 offspring of a male tiger and a female lion +n02130308 long-legged spotted cat of Africa and southwestern Asia having nonretractile claws; the swiftest mammal; can be trained to run down game +n02130545 any of many extinct cats of the Old and New Worlds having long swordlike upper canine teeth; from the Oligocene through the Pleistocene +n02130925 North American sabertooth; culmination of sabertooth development +n02131653 massive plantigrade carnivorous or omnivorous mammals with long shaggy coats and strong claws +n02132136 large ferocious bear of Eurasia +n02132320 a conventional name for a bear used in tales following usage in the old epic `Reynard the Fox' +n02132466 yellowish-grey Syrian brown bear +n02132580 powerful brownish-yellow bear of the uplands of western North America +n02132788 brown bear of coastal Alaska and British Columbia +n02133161 brown to black North American bear; smaller and less ferocious than the brown bear +n02133400 reddish-brown color phase of the American black bear +n02133704 bear with a black coat living in central and eastern Asia +n02134084 white bear of Arctic regions +n02134418 common coarse-haired long-snouted bear of south-central Asia +n02134971 small cat-like predatory mammals of warmer parts of the Old World +n02135220 cat-like mammal typically secreting musk used in perfumes +n02135610 common civet of India and southeast Asia +n02135844 a common civet of southeast Asia +n02136103 arboreal civet of Asia having a long prehensile tail and shaggy black hair +n02136285 large primitive cat-like carnivores inhabiting forests of Madagascar +n02136452 largest carnivore of Madagascar; intermediate in some respects between cats and civets +n02136794 civet of Madagascar +n02137015 agile Old World viverrine having a spotted coat and long ringed tail +n02137302 an East Indian civet +n02137549 agile grizzled Old World viverrine; preys on snakes and rodents +n02137722 keen-sighted viverrine of southern Asia about the size of a ferret; often domesticated +n02137888 northern African mongoose; in ancient times thought to devour crocodile eggs +n02138169 spotted or striped arboreal civet of southeast Asia and East Indies +n02138441 a mongoose-like viverrine of South Africa having a face like a lemur and only four toes +n02138647 a meerkat with a thin and elongated tail +n02138777 burrowing diurnal meerkat of southern Africa; often kept as a pet +n02139199 nocturnal mouselike mammal with forelimbs modified to form membranous wings and anatomical adaptations for echolocation by which they navigate +n02139671 large Old World bat of warm and tropical regions that feeds on fruit +n02140049 large bat with a head that resembles the head of a fox +n02140179 a variety of fruit bat +n02140268 a variety of fruit bat +n02140491 any of various fruit bats of the genus Nyctimene distinguished by nostrils drawn out into diverging tubes +n02140858 a variety of fruit eating bat +n02141306 typically having large ears and feeding primarily on insects; worldwide in distribution +n02141611 a carnivorous bat with ears like a mouse +n02141713 bat having a leaflike flap at the end of the nose; especially of the families Phyllostomatidae and Rhinolophidae and Hipposideridae +n02142407 large-eared greyish bat of southern California and northwestern Mexico +n02142734 New World bat with a pointed nose leaf; found from southern United States to Paraguay +n02142898 a variety of leaf-nosed bat +n02143142 small-eared Mexican bat with a long slender nose +n02143439 a bat of the family Rhinolophidae having a horseshoe-shaped leaf on the nose +n02143891 any of numerous bats of the family Hipposideridae of northwest Africa or Philippines or Australia having a horseshoe-shaped leaf on the nose +n02144251 a common bat of northwestern Australia having orange or yellow fur +n02144593 any New or Old World carnivorous bat erroneously thought to suck blood but in fact feeding on insects +n02144936 large carnivorous Old World bat with very large ears +n02145424 a variety of carnivorous bat +n02145910 common Eurasian bat with white-tipped hairs in its coat +n02146201 North American bat of a brick or rusty red color with hairs tipped with white +n02146371 any of numerous medium to small insectivorous bats found worldwide in caves and trees and buildings +n02146700 the small common North American bat; widely distributed +n02146879 small bat of southwest United States that lives in caves etc. +n02147173 rather large North American brown bat; widely distributed +n02147328 common brown bat of Europe +n02147591 drab yellowish big-eared bat that lives in caves +n02147947 small European brown bat +n02148088 one of the smallest bats of eastern North America +n02148512 a large bat of the southwestern United States having spots and enormous ears +n02148835 any of various Old or New World bats having very long ears +n02148991 bat of western North America having extremely large ears +n02149420 small swift insectivorous bat with leathery ears and a long tail; common in warm regions +n02149653 the common freetail bat of southern United States having short velvety fur; migrates southward for winter +n02149861 small brown bat of California and northern Mexico +n02150134 a soft-furred chocolate-brown bat with folded ears and small wings; often runs along the ground +n02150482 any of various tropical American bats of the family Desmodontidae that bite mammals and birds to feed on their blood +n02150885 mouse-sized bat of tropical Central America and South America having sharp incisor and canine teeth; feeds on the blood of birds and mammals +n02151230 similar in size and habits to Desmodus rotundus; of tropical America including southern California and Texas +n02152740 any animal that lives by preying on other animals +n02152881 animal hunted or caught for food +n02152991 animal hunted for food or sport +n02153109 large animals that are hunted for sport +n02153203 any bird (as grouse or pheasant) that is hunted for sport +n02153809 a burrowing mammal having limbs adapted for digging +n02156732 a vertebrate animal having four feet or legs or leglike appendages +n02156871 an animal especially a mammal having four limbs specialized for walking +n02157206 an animal having six feet +n02157285 an animal with two feet +n02159955 small air-breathing arthropod +n02160947 an insect that lives in a colony with other insects of the same species +n02161225 insects that undergo complete metamorphosis +n02161338 an insect that strips the leaves from plants +n02161457 an insect that carries pollen from one flower to another +n02161588 any of various insects that deposit their eggs in plants causing galls in which the larvae feed +n02162561 any of various mecopterous insects of the family Panorpidae of the northern hemisphere having a long beak and long antennae; males have a tail like that of a scorpion except it is not venomous +n02163008 any of various mecopterous insects of the family Bittacidae +n02163297 any of numerous minute wingless primitive insects possessing a special abdominal appendage that allows the characteristic nearly perpetual springing pattern; found in soil rich in organic debris or on the surface of snow or water +n02164464 insect having biting mouthparts and front wings modified to form horny covers overlying the membranous rear wings +n02165105 active usually bright-colored beetle that preys on other insects +n02165456 small round bright-colored and spotted beetle that usually feeds on aphids and other insect pests +n02165877 red ladybug with a black spot on each wing +n02166229 introduced into the United States from Mexico; feeds on the foliage of the bean plant +n02166567 a variety of ladybug +n02166826 native to Australia; introduced elsewhere to control scale insects +n02167151 predacious shining black or metallic terrestrial beetle that destroys many injurious insects +n02167505 beetle that ejects audibly a pungent vapor when disturbed +n02167820 any beetle of the genus Calosoma +n02167944 large metallic blue-green beetle that preys on caterpillars; found in North America +n02168245 nocturnal beetle common in warm regions having luminescent abdominal organs +n02168427 the luminous larva or wingless grub-like female of a firefly +n02168699 long-bodied beetle having very long antennae +n02169023 any of several beetles whose larvae bore holes in dead or dying trees especially conifers +n02169218 large beetle whose larvae bore holes in pine trees +n02169497 brightly colored beetle that feeds on plant leaves; larvae infest roots and stems +n02169705 any small leaf beetle having enlarged hind legs and capable of jumping +n02169974 black-and-yellow beetle that feeds in adult and larval stages on potato leaves; originally of eastern Rocky Mountains; now worldwide +n02170400 small beetle whose larvae are household pests feeding on woolen fabrics +n02170599 a small black and red and white carpet beetle +n02170738 a carpet beetle that is solid black in color +n02170993 predacious on other insects; usually brightly colored or metallic +n02171164 European beetle; infests beehives +n02171453 beetle having antennae with hard platelike terminal segments +n02171869 any of numerous species of stout-bodied beetles having heads with horny spikes +n02172182 any of numerous beetles that roll balls of dung on which they feed and in which they lay eggs +n02172518 scarabaeid beetle considered divine by ancient Egyptians +n02172678 any of various dung beetles +n02172761 Old World dung beetle that flies with a droning sound +n02172870 any of various large usually brown North American leaf-eating beetles common in late spring; the larvae feed on roots of grasses etc. +n02173113 large greenish June beetle of southern United States +n02173373 small metallic green and brown beetle native to eastern Asia; serious plant pest in North America +n02173784 introduced into United States from the Orient; larvae feed on roots of sugarcane and other grasses +n02174001 any of various large chiefly tropical beetles having horns on the head; pest on coconuts +n02174355 any of various beetles of the family (or subfamily) Melolonthidae +n02174659 any of various large European beetles destructive to vegetation as both larvae and adult +n02175014 common North American beetle: larvae feed on roots and adults on leaves and flowers of e.g. rose bushes or apple trees or grape vines +n02175569 a common metallic green European beetle: larvae feed on plant roots and adults on leaves and flowers of e.g. roses +n02175916 a kind of lamellicorn beetle; the male has branched mandibles resembling antlers +n02176261 any of various widely distributed beetles +n02176439 able to right itself when on its back by flipping into the air with a clicking sound +n02176747 tropical American click beetle having bright luminous spots +n02176916 wormlike larva of various elaterid beetles; feeds on roots of many crop plants +n02177196 any of numerous aquatic beetles usually having a smooth oval body and flattened hind legs for swimming +n02177506 aquatic beetle that circles rapidly on the water surface +n02177775 bores through wood making a ticking sound popularly thought to presage death +n02177972 any of several families of mostly small beetles that feed on plants and plant products; especially snout beetles and seed beetles +n02178411 small weevil having a prolonged snout; destructive to e.g. grains and nuts +n02178717 greyish weevil that lays its eggs in cotton bolls destroying the cotton +n02179012 beetle that produces a secretion that blisters the skin +n02179192 any of various beetles that exude an oily substance from the leg joints that deters enemies +n02179340 green beetle of southern Europe +n02179891 a vector of the fungus causing Dutch elm disease +n02180233 small beetle that bores tunnels in the bark and wood of trees; related to weevils +n02180427 small beetle that likes to bore through the bark of spruce trees and eat the cambium which eventually kills the tree +n02180875 active beetle typically having predatory or scavenging habits +n02181235 sluggish hard-bodied black terrestrial weevil whose larvae feed on e.g. decaying plant material or grain +n02181477 the larva of beetles of the family Tenebrionidae +n02181724 an insect that infests flour and stored grains +n02182045 a small beetle that infests the seeds of legumes +n02182355 larvae live in and feed on seeds of the pea plant +n02182642 larvae live in and feed on growing or stored beans +n02182930 brown weevil that infests stored grain especially rice +n02183096 a beetle from China that has been found in the United States and is a threat to hardwood trees; lives inside the tree; no natural predators in the United States +n02183507 any of a small order of slender typically tropical insects that nest in colonies in silken tunnels that they spin +n02183857 wingless usually flattened bloodsucking insect parasitic on warm-blooded animals +n02184473 head or body louse +n02184589 infests the head and body of humans +n02184720 a parasitic louse that infests the body of human beings +n02185167 a louse that infests the pubic region of the human body +n02185481 wingless insect with mouth parts adapted for biting; mostly parasitic on birds +n02186153 any wingless bloodsucking parasitic insect noted for ability to leap +n02186717 the most common flea attacking humans +n02187150 flea that attacks dogs and cats +n02187279 flea that breeds chiefly on cats and dogs and rats +n02187554 small tropical flea; the fertile female burrows under the skin of the host including humans +n02187900 parasitic on especially the heads of chickens +n02188699 insects having usually a single pair of functional wings (anterior pair) with the posterior pair reduced to small knobbed structures and mouth parts adapted for sucking or lapping or piercing +n02189363 fragile mosquito-like flies that produce galls on plants +n02189670 small fly whose larvae damage wheat and other grains +n02190166 two-winged insects characterized by active flight +n02190790 common fly that frequents human habitations and spreads many diseases +n02191273 bloodsucking African fly; transmits sleeping sickness etc. +n02191773 large usually hairy metallic blue or green fly; lays eggs in carrion or dung or wounds +n02191979 blowfly with iridescent blue body; makes a loud buzzing noise in flight +n02192252 blowfly with brilliant coppery green body +n02192513 fly whose larvae feed on carrion or the flesh of living animals +n02192814 bristly fly whose larvae live parasitically in caterpillars and other insects; important in control of noxious insects +n02193009 any of various large flies that annoy livestock +n02193163 stout-bodied hairy dipterous fly whose larvae are parasites on humans and other mammals +n02194249 large tropical American fly; parasitic on humans and other mammals +n02194750 larvae are parasitic on sheep +n02195091 hairy bee-like fly whose larvae produce lumpy abscesses (warbles) under the skin of cattle +n02195526 large swift fly the female of which sucks blood of various animals +n02195819 hairy nectar-eating fly that resembles a bee; larvae are parasitic on larvae of bees and related insects +n02196119 swift predatory fly having a strong body like a bee with the proboscis hardened for sucking juices of other insects captured on the wing +n02196344 any of numerous small insects whose larvae feed on fruits +n02196896 larvae bore into and feed on apples +n02197185 small black-and-white fly that damages citrus and other fruits by implanting eggs that hatch inside the fruit +n02197689 small fruit fly used by Thomas Hunt Morgan in studying basic mechanisms of inheritance +n02197877 flies whose larvae feed on pickles and imperfectly sealed preserves +n02198129 any of various small moths or dipterous flies whose larvae burrow into and feed on leaf tissue especially of the family Gracilariidae +n02198532 bloodsucking dipterous fly parasitic on birds and mammals +n02198859 winged fly parasitic on horses +n02199170 wingless fly that is an external parasite on sheep and cattle +n02199502 small black European fly introduced into North America; sucks blood from cattle especially at the base of the horn +n02200198 two-winged insect whose female has a long proboscis to pierce the skin and suck the blood of humans and animals +n02200509 larva of a mosquito +n02200630 (British usage) mosquito +n02200850 mosquito that transmits yellow fever and dengue +n02201000 striped native of Japan thriving in southwestern and midwestern United States and spreading to the Caribbean; potential carrier of serious diseases +n02201497 any mosquito of the genus Anopheles +n02201626 transmits the malaria parasite +n02202006 common house mosquito +n02202124 widespread tropical mosquito that transmits filarial worms +n02202287 any of various small biting flies: midges; biting midges; black flies; sand flies +n02202678 minute two-winged insect that sucks the blood of mammals and birds and other insects +n02203152 minute two-winged mosquito-like fly lacking biting mouthparts; appear in dancing swarms especially near water +n02203592 mosquito-like insect whose larvae feed on fungi or decaying vegetation +n02203978 a fly of the family Psychodidae +n02204249 any of various small dipterous flies; bloodsucking females can transmit sandfly fever and leishmaniasis +n02204722 minute blackish gregarious flies destructive to mushrooms and seedlings +n02204907 larva of fungus gnat that feed on cereals and other grains; they march in large companies in regular order when the food is exhausted +n02205219 long-legged slender flies that resemble large mosquitoes but do not bite +n02205673 small blackish stout-bodied biting fly having aquatic larvae; sucks the blood of birds as well as humans and other mammals +n02206270 insects having two pairs of membranous wings and an ovipositor specialized for stinging or piercing +n02206856 any of numerous hairy-bodied insects including social and solitary species +n02207179 stingless male bee in a colony of social bees (especially honeybees) whose sole function is to mate with the queen +n02207345 fertile egg-laying female bee +n02207449 sterile member of a colony of social insects that forages for food and cares for the larvae +n02207647 a wingless sterile ant or termite having a large head and powerful jaws adapted for defending the colony +n02207805 sterile bee specialized to collect food and maintain the hive +n02208280 social bee often domesticated for the honey it produces +n02208498 a strain of bees that originated in Brazil in the 1950s as a cross between an aggressive African bee and a honeybee; retains most of the traits of the African bee; now spread as far north as Texas +n02208848 dark-colored ill-tempered honeybee supposedly of German origin +n02208979 greyish highly productive European honeybee that has a quiet disposition +n02209111 yellowish honeybee resembling the Carniolan bee in its habits +n02209354 large solitary bee that lays eggs in tunnels bored into wood or plant stems +n02209624 robust hairy social bee of temperate regions +n02209964 a bee that is parasitic in the nests of bumblebees +n02210427 a bee that is a member of the genus Andrena +n02210921 a common solitary bee important for pollinating alfalfa in the western United States +n02211444 bee that cuts rounded pieces from leaves and flowers to line its nest +n02211627 any of numerous solitary bees that build nests of hardened mud and sand +n02211896 solitary bee that builds nests of mud or pebbles cemented together and attached to a plant +n02212062 social or solitary hymenopterans typically having a slender body with the abdomen attached by a narrow stalk and having a formidable sting +n02212602 mostly social nest-building wasps +n02212958 any of several social wasps that construct nests of a substance like paper +n02213107 large stinging paper wasp +n02213239 European hornet introduced into the United States +n02213543 a variety of vespid wasp +n02213663 North American hornet +n02213788 small yellow-marked social wasp commonly nesting in the ground +n02214096 a variety of paper wasp +n02214341 any of various solitary wasps that construct nests of hardened mud for their young +n02214499 any of various solitary wasps that construct vase-shaped cells of mud for their eggs +n02214660 a family of wasps +n02214773 a solitary wasp of the family Mutillidae; the body has a coat of brightly colored velvety hair and the females are wingless +n02215161 any of various solitary wasps +n02215621 solitary wasp that constructs nests of hardened mud or clay for the young +n02215770 solitary wasp that digs nests in the soil and stocks them with paralyzed insects for the larvae +n02216211 large black or rust-colored wasp that preys on cicadas +n02216365 wasp that constructs mud cells on a solid base in which females place eggs laid in paralyzed insect larvae +n02216740 small solitary wasp that produces galls on oaks and other plants +n02217563 any of various tiny insects whose larvae are parasites on eggs and larvae of other insects; many are beneficial in destroying injurious insects +n02217839 larva of chalcid flies injurious to the straw of wheat and other grains +n02218134 a variety of chalcid fly +n02218371 hymenopterous insect that resembles a wasp and whose larvae are parasitic on caterpillars and other insect larvae +n02218713 insect whose female has a saw-like ovipositor for inserting eggs into the leaf or stem tissue of a host plant +n02219015 small black sawfly native to Europe but established in eastern United States; larvae mine the leaves of birches causing serious defoliation +n02219486 social insect living in organized colonies; characteristically the males and fertile queen have wings during breeding season; wingless sterile females are the workers +n02220055 small red ant of warm regions; a common household pest +n02220225 tiny glossy black ant; nests outdoors but invades houses for food +n02220518 tropical nomadic ant that preys mainly on other insects +n02220804 ant that nests in decaying wood in which it bores tunnels for depositing eggs +n02221083 omnivorous ant of tropical and subtropical America that can inflict a painful sting +n02221414 reddish-brown European ant typically living in anthills in woodlands +n02221571 any of various ants captured as larvae and enslaved by another species +n02221715 an ant frequently enslaved +n02221820 an ant that attacks colonies of other ant species and carries off the young to be reared as slave ants +n02222035 slave-making ant widely distributed over the northern hemisphere +n02222321 any of the large fierce Australian ants of the genus Myrmecia +n02222582 small reddish slave-making ant species +n02223266 whitish soft-bodied ant-like social insect that feeds on wood +n02223520 any of various termites that live in and feed on dry wood that is not connected with the soil +n02224023 destructive European termite +n02224713 Australian termite; sole living species of Mastotermes; called a living fossil; apparent missing link between cockroaches and termites +n02225081 extinct termite found in amber in the Dominican Republic +n02225798 extremely destructive dry-wood termite of warm regions +n02226183 any of various insects having leathery forewings and membranous hind wings and chewing mouthparts +n02226429 terrestrial plant-eating insect with hind legs adapted for leaping +n02226821 grasshopper with short antennae +n02226970 migratory grasshoppers of warm regions having short antennae +n02227247 Old World locust that travels in vast swarms stripping large areas of vegetation +n02227604 serious pest of grain-growing and range areas of central and western United States +n02227966 grasshoppers with long threadlike antennae and well-developed stridulating organs on the forewings of the male +n02228341 large green long-horned grasshopper of North America; males produce shrill sounds by rubbing together special organs on the forewings +n02228697 large dark wingless cricket-like katydid of arid parts of western United States +n02229156 large wingless nocturnal grasshopper that burrows in loose soil along the Pacific coast of the United States +n02229544 leaping insect; male makes chirping noises by rubbing the forewings together +n02229765 digs in moist soil and feeds on plant roots +n02230023 lives in human dwellings; naturalized in parts of America +n02230187 common American black cricket; attacks crops and also enters dwellings +n02230480 pale arboreal American cricket noted for loud stridulation +n02230634 pale yellowish tree cricket widely distributed in North America +n02231052 large cylindrical or flattened mostly tropical insects with long strong legs that feed on plants; walking sticks and leaf insects +n02231487 any of various mostly tropical insects having long twiglike bodies +n02231803 a variety of stick insect +n02232223 tropical insect having a flattened leaflike body; common in southern Asia and the East Indies +n02233338 any of numerous chiefly nocturnal insects; some are domestic pests +n02233943 dark brown cockroach originally from orient now nearly cosmopolitan in distribution +n02234355 large reddish brown free-flying cockroach originally from southern United States but now widely distributed +n02234570 widely distributed in warm countries +n02234848 small light-brown cockroach brought to United States from Europe; a common household pest +n02235205 large tropical American cockroaches +n02236044 predacious long-bodied large-eyed insect of warm regions; rests with forelimbs raised as in prayer +n02236241 the common mantis +n02236355 general term for any insect or similar creeping or crawling invertebrate +n02236896 insects with sucking mouthparts and forewings thickened and leathery at the base; usually show incomplete metamorphosis +n02237424 small bright-colored insect that feeds on plant juices +n02237581 a variety of leaf bug +n02237868 yellow or orange leaf bug with four black stripes down the back; widespread in central and eastern North America +n02238235 vector of viral plant diseases +n02238358 widespread plant and fruit pest +n02238594 small bug having body and wings covered with a lacy network of raised lines +n02238887 a true bug: usually bright-colored; pest of cultivated crops and some fruit trees +n02239192 small black-and-white insect that feeds on cereal grasses +n02239528 a true bug +n02239774 large black American bug that sucks sap of vines of the gourd family +n02240068 large sap-sucking bug with leaflike expansions on the legs +n02240517 bug of temperate regions that infests especially beds and feeds on human blood +n02241008 predaceous aquatic insect that swims on its back and may inflict painful bites +n02241426 any of various insects of the order Hemiptera and especially of the suborder Heteroptera +n02241569 true bugs: insects whose forewings are membranous but have leathery tips +n02241799 a true bug: large aquatic bug adapted to living in or on the surface of water +n02242137 large water bug with piercing and sucking mouthparts; feeds on young fishes +n02242455 long-legged aquatic insect having the front legs fitted for seizing and holding prey and the abdomen extended by a long breathing tube +n02243209 carnivorous aquatic bug having paddle-like hind legs +n02243562 long-legged bug that skims about on the surface of water +n02243878 a variety of water strider +n02244173 a true bug: long-legged predacious bug living mostly on other insects; a few suck blood of mammals +n02244515 large bloodsucking bug +n02244797 large predatory North American bug that sucks the blood of other insects +n02245111 a true bug: brightly colored bug that can exude a stain +n02245443 a true bug: bug that damages and stains the lint of developing cotton +n02246011 insects having membranous forewings and hind wings +n02246628 minute insect that feeds on plant juices; related to scale insects +n02246941 whitefly that attacks citrus trees +n02247216 whitefly that inhabits greenhouses +n02247511 a variety of whitefly +n02247655 a strain of pest accidentally imported into Florida from the Middle East then spread to California where it is a very serious pest feeding on almost all vegetable crops and poinsettias +n02248062 feeds primarily on cotton +n02248368 scale insects and mealybugs +n02248510 small homopterous insect that usually lives and feeds on plants and secretes a protective waxy covering +n02248887 an insect active in all stages +n02249134 pest on citrus trees +n02249515 insect having a firm covering of wax especially in the female +n02249809 small east Asian insect naturalized in the United States that damages fruit trees +n02250280 Mexican red scale insect that feeds on cacti; the source of a red dye +n02250822 scalelike plant-eating insect coated with a powdery waxy secretion; destructive especially of fruit trees +n02251067 destructive especially to citrus +n02251233 Asiatic insect introduced accidentally into United States; pest on citrus and apple trees +n02251593 feeds on a wide variety of cultivated plants but especially destructive to citrus +n02251775 any of several small insects especially aphids that feed by sucking the juices from plants +n02252226 any of various small plant-sucking insects +n02252799 bright green aphid; feeds on and causes curling of apple leaves +n02252972 blackish aphid that infests e.g. beans and sugar beets +n02253127 greenish aphid; pest on garden and crop plants +n02253264 yellowish green aphid that is especially destructive to peaches +n02253494 excretes a honeylike substance eaten by ants +n02253715 secretes a waxy substance like a mass of fine curly white cotton or woolly threads +n02253913 primarily a bark feeder on aerial parts and roots of apple and other trees +n02254246 attacks alders +n02254697 any of various insects that feed and form galls on conifers +n02254901 a variety of adelgid +n02255023 a variety of adelgid +n02255391 an insect that feeds on hemlocks; its egg sacs are small fuzzy white balls like artificial snow on a Christmas tree +n02256172 small active cicada-like insect with hind legs adapted for leaping; feeds on plant juices +n02256656 stout-bodied insect with large membranous wings; male has drum-like organs for producing a high-pitched drone +n02257003 its distinctive song is heard during July and August +n02257284 North American cicada; appears in great numbers at infrequent intervals because the nymphs take 13 to 17 years to mature +n02257715 small leaping herbivorous insect that lives in a mass of protective froth which it and its larvae secrete +n02257985 a variety of spittlebug +n02258198 North American insect that severely damages grasses +n02258508 North American insect that attacks pines +n02258629 feeds on pines in northern United States +n02259212 small leaping insect that sucks the juices of plants +n02259377 related to the leafhoppers and spittlebugs but rarely damages cultivated plants +n02259708 small leaping insect that sucks juices of branches and twigs +n02259987 large brightly marked tropical insect with a process like a snout that was formerly thought to emit light +n02260421 small soft-bodied insect with chewing mouthparts and either no wings or two pairs +n02260863 small winged insect living on the bark and leaves of trees and feeding on e.g. fungi and decaying plant matter +n02261063 any of several insects living on the bark of plants +n02261419 minute wingless psocopterous insects injurious to books and papers +n02261757 a variety of booklouse +n02262178 short-lived insect +n02262449 slender insect with delicate membranous wings having an aquatic larval stage and terrestrial adult stage usually lasting less than two days +n02262803 primitive winged insect with a flattened body; used as bait by fishermen; aquatic gilled larvae are carnivorous and live beneath stones +n02263378 insect having biting mouthparts and four large membranous wings with netlike veins +n02264021 winged insect resembling a dragonfly; the larvae (doodlebugs) dig conical pits where they wait to catch e.g. ants +n02264232 the larva of any of several insects +n02264363 any of two families of insects with gauzy wings (Chrysopidae and Hemerobiidae); larvae feed on insect pests such as aphids +n02264591 carnivorous larva of lacewing flies +n02264885 pale green unpleasant-smelling lacewing fly having carnivorous larvae +n02265330 small dark-colored lacewing fly +n02266050 large soft-bodied insect having long slender mandibles in the male; aquatic larvae often used as bait +n02266269 large brown aquatic larva of the dobsonfly; used as fishing bait +n02266421 similar to but smaller than the dobsonfly; larvae are used as fishing bait +n02266864 dark-colored insect having predaceous aquatic larvae +n02267208 predatory insect of western North America having a long necklike prothorax +n02267483 insect that resembles a mantis; larvae are parasites in the nests of spiders and wasps +n02268148 large primitive predatory aquatic insect having two pairs of membranous wings +n02268443 slender-bodied non-stinging insect having iridescent wings that are outspread at rest; adults and nymphs feed on mosquitoes etc. +n02268853 slender non-stinging insect similar to but smaller than the dragonfly but having wings folded when at rest +n02269196 caddis fly +n02269340 small moth-like insect having two pairs of hairy membranous wings and aquatic larvae +n02269522 insect larva that constructs a protective case around its body +n02269657 larva of the caddis fly; constructs a case of silk covered with sand or plant debris +n02270011 primitive wingless insects: bristletail +n02270200 small wingless insect with a long bristlelike tail +n02270623 silver-grey wingless insect found in houses feeding on book bindings and starched clothing +n02270945 lives in warm moist areas e.g. around furnaces +n02271222 wingless insect living in dark moist places as under dead tree trunks; they make erratic leaps when disturbed +n02271570 an insect of the order Thysanoptera +n02271897 any of various small to minute sucking insects with narrow feathery wings if any; they feed on plant sap and many are destructive +n02272286 injurious to growing tobacco and peanuts +n02272552 injurious to onion plants and sometimes tobacco +n02272871 any of numerous insects of the order Dermaptera having elongate bodies and slender many-jointed antennae and a pair of large pincers at the rear of the abdomen +n02273392 sometimes destructive to cultivated bulbs +n02274024 insect that in the adult state has four wings more or less covered with tiny scales +n02274259 diurnal insect typically having a slender body with knobbed antennae and broad colorful wings +n02274822 medium to large butterflies found worldwide typically having brightly colored wings and much-reduced nonfunctional forelegs carried folded on the breast +n02275560 of temperate regions; having dark purple wings with yellow borders +n02275773 brilliantly colored; larvae feed on nettles +n02276078 American butterfly having dark brown wings with white and golden orange spots +n02276258 any of several brightly colored butterflies +n02276355 of temperate Europe and Asia; having black wings with red and white markings +n02276749 Eurasian butterfly with brown wings and white markings +n02276902 North American butterfly with blue-black wings crossed by a broad white band +n02277094 similar to the banded purple but with red spots on underwing surfaces +n02277268 showy American butterfly resembling the monarch but smaller +n02277422 nymphalid butterfly having angular notches on the outer edges of the forewings +n02277742 any of various butterflies belonging to the family Satyridae +n02278024 anglewing butterfly with a comma-shaped mark on the underside of each hind wing +n02278210 butterfly with brownish wings marked with black and silver +n02278463 butterfly with silver spots on the underside of the hind wings +n02278839 large richly colored butterfly +n02278980 large European butterfly the male of which has wings shaded with purple +n02279257 European butterfly having reddish-brown wings each marked with a purple eyespot +n02279637 large tropical butterfly with degenerate forelegs and an unpleasant taste +n02279972 large migratory American butterfly having deep orange wings with black and white markings; the larvae feed on milkweed +n02280458 any of numerous pale-colored butterflies having three pairs of well-developed legs +n02280649 white butterfly whose larvae (cabbageworms) feed on cabbage +n02281015 small widely distributed form +n02281136 Old World form of cabbage butterfly +n02281267 common North American form of cabbage butterfly +n02281406 any of numerous yellow or orange butterflies +n02281787 any of various butterflies of the family Lycaenidae +n02282257 any of numerous small butterflies of the family Lycaenidae +n02282385 any of various small butterflies of the family Lycaenidae having coppery wings +n02282553 common copper butterfly of central and eastern North America +n02282903 small butterflies having striped markings under the wings +n02283077 larvae are pests of various economic plants +n02283201 typically crepuscular or nocturnal insect having a stout body and feathery or hairlike antennae +n02283617 any of various moths that have powdery wings +n02283951 any of numerous small moths having lightly fringed wings; larvae are leaf rollers or live in fruits and galls +n02284224 moth whose larvae form nests by rolling and tying leaves with spun silk +n02284611 small Indian moth infesting e.g. tea and coffee plants +n02284884 California moth whose larvae live in especially oranges +n02285179 a small grey moth whose larvae live in apples and English walnuts +n02285548 dull-colored moth whose larvae have tufts of hair on the body and feed on the leaves of many deciduous trees +n02285801 larva of a tussock moth +n02286089 European moth introduced into North America; a serious pest of shade trees +n02286425 small brown and white European moth introduced into eastern United States; pest of various shade and fruit trees +n02286654 white furry-bodied European moth with a yellow tail tuft +n02287004 slender-bodied broad-winged moth whose larvae are called measuring worms +n02287352 moth whose larvae are spring cankerworms +n02287622 North American moth with grey-winged males and wingless females; larvae are fall cankerworms +n02287799 green caterpillar of a geometrid moth; pest of various fruit and shade trees +n02287987 variably colored looper; larva of Paleacrita vernata +n02288122 green or brown white-striped looper; larva of Alsophila pometaria +n02288268 small hairless caterpillar having legs on only its front and rear segments; mostly larvae of moths of the family Geometridae +n02288789 usually tropical slender-bodied long-legged moth whose larvae are crop pests +n02289307 moth whose larvae live in and feed on bee honeycombs +n02289610 native to Europe; in America the larvae bore into the stem and crown of corn and other plants +n02289988 small moth whose larvae damage stored grain and flour +n02290340 small moth whose larvae feed on tobacco and other dried plant products +n02290664 a moth whose larvae feed on and mat together with webbing various stored products of vegetable origin +n02290870 moth whose larvae attack dried fruits and cereal products +n02291220 small dull-colored moth with chewing mouthparts +n02291572 small yellowish moths whose larvae feed on wool or fur +n02291748 any of several small yellowish or buff-colored moths whose larvae eat organic matter e.g. woolens +n02292085 the larvae live in tubes of its food material fastened with silk that it spins +n02292401 moth that forms a web in which it lives +n02292692 larvae feed on carpets and other woolens +n02293352 small slender-winged moths whose larvae are agricultural pests +n02293868 moth whose larvae feed on grain +n02294097 small moth whose larvae feed on kernels of stored grains +n02294407 greyish-brown moth whose larva is the potato tuberworm +n02294577 larva of potato moth; mines in leaves and stems of e.g. potatoes and tobacco +n02295064 usually dull-colored medium-sized nocturnal moth; the usually smooth-bodied larvae are destructive agricultural pests +n02295390 North American moth whose larvae feed on young plant stems cutting them off at the ground +n02295870 moth having dull forewings and brightly colored hind wings +n02296021 moth having dull forewings and red-marked hind wings +n02296276 European moth with white antler-like markings on the forewings; the larvae damage pastures and grasslands +n02296612 medium-sized moth whose larvae are corn earworms +n02296912 larvae (of a noctuid moth) that travel in large groups and destroy grains and alfalfa in the midwestern states +n02297294 moth whose destructive larvae travel in multitudes +n02297442 noctuid moth larvae that travel in multitudes destroying especially grass and grain +n02297819 moth whose larvae are beet armyworms +n02297938 moth larva that eats foliage of beets and other vegetables +n02298095 moth whose larvae are fall armyworms +n02298218 larva of a migratory American noctuid moth; destroys grasses and small grains +n02298541 any of various moths with long narrow forewings capable of powerful flight and hovering over flowers to feed +n02299039 moth whose larvae are tobacco hornworms +n02299157 large green white-striped hawkmoth larva that feeds on tobacco and related plants; similar to tomato hornworm +n02299378 moth whose larvae are tomato hornworms +n02299505 large green white-striped hawkmoth larva that feeds on tomato and potato plants; similar to tobacco hornworm +n02299846 European hawkmoth with markings on the back resembling a human skull +n02300173 moderate-sized Asiatic moth whose larvae feed on mulberry leaves and produce silk +n02300554 stocky creamy-white Asiatic moth found almost entirely under human care; the source of most of the silk commerce +n02300797 the commercially bred hairless white caterpillar of the domestic silkworm moth which spins a cocoon that can be processed to yield silk fiber; the principal source of commercial silk +n02301452 large brightly colored and usually tropical moth; larvae spin silken cocoons +n02301935 large moth of temperate forests of Eurasia having heavily scaled transparent wings +n02302244 large American moth having yellow wings with purplish or brownish markings; larvae feed on e.g. maple and pine trees +n02302459 any silkworm moth of the family Saturniidae +n02302620 larva of a saturniid moth; spins a large amount of strong silk in constructing its cocoon +n02302969 large pale-green American moth with long-tailed hind wings and a yellow crescent-shaped mark on each forewing +n02303284 North American silkworm moth; larvae feed on the leaves of forest trees +n02303585 large Asiatic moth introduced into the United States; larvae feed on the ailanthus +n02303777 large green silkworm of the cynthia moth +n02304036 large yellow American moth having a large eyelike spot on each hind wing; the larvae have stinging spines +n02304432 very large yellowish-brown American silkworm moth with large eyespots on hind wings; larvae feed on fruit and shade trees +n02304657 a Chinese moth that produces a brownish silk +n02304797 oriental moth that produces brownish silk +n02305085 giant saturniid moth widespread in Asia; sometimes cultured for silk +n02305407 stout-bodied broad-winged moth with conspicuously striped or spotted wings; larvae are hairy caterpillars +n02305636 medium-sized moth with long richly colored and intricately patterned wings; larvae are called woolly bears +n02305929 large red-and-black European moth; larvae feed on leaves of ragwort; introduced into United States to control ragwort +n02306433 medium-sized stout-bodied neutral-colored moths with comb-like antennae +n02306825 moth having nonfunctional mouthparts as adults; larvae feed on tree foliage and spin egg-shaped cocoons +n02307176 moth whose larvae are tent caterpillars +n02307325 the larvae of moths that build and live in communal silken webs in orchard and shade trees +n02307515 moth whose gregarious larvae spin webs resembling carpets +n02307681 larvae of a gregarious North American moth that spins a web resembling a carpet rather than a tent; serious defoliator of deciduous trees +n02307910 medium-sized hairy moths; larvae are lappet caterpillars +n02308033 larva of a lappet moth +n02308139 several gregarious moth larvae that spin webs over foliage on which they feed +n02308471 a variety of moth that spins a web in which it lives +n02308618 moth whose larvae are fall webworms +n02308735 a variety of webworm +n02309120 a variety of webworm +n02309242 an insect or other arthropod between molts +n02309337 a wormlike and often brightly colored and hairy or spiny larva of a butterfly or moth +n02309841 larva of the European corn borer moth; a serious pest of maize +n02310000 any of various moth caterpillars that destroy cotton bolls +n02310149 larvae of a gelechiid moth introduced from Asia; feeds on the seeds of cotton bolls +n02310334 larva of a noctuid moth; highly destructive to especially corn and cotton and tomato crops +n02310585 toxic green larva of a cabbage butterfly +n02310717 caterpillar of numerous moths characterized by a dense coat of woolly hairs; feed on plants and some are destructive pests +n02310941 larva of moth of the family Arctiidae +n02311060 the immature free-living form of most invertebrates and amphibians and fish which at hatching from the egg is fundamentally unlike its parent and must metamorphose +n02311617 a larva of an insect with incomplete metamorphosis (as the dragonfly or mayfly) +n02311748 slender transparent larva of eels and certain fishes +n02312006 a soft thick wormlike larva of certain beetles and other insects +n02312175 the larva of the housefly and blowfly commonly found in decaying organic matter +n02312325 tough-skinned larva of certain crane flies +n02312427 an insect in the inactive stage of development (when it is not feeding) intermediate between larva and adult +n02312640 pupa of a moth or butterfly enclosed in a cocoon +n02312912 an adult insect produced after metamorphosis +n02313008 the only fertile female in a colony of social insects such as bees and ants and termites; its function is to lay eggs +n02313360 hermaphrodite wormlike animal living in mud of the sea bottom +n02313709 sessile aquatic animal forming mossy colonies of small polyps each having a curved or circular ridge bearing tentacles; attach to stones or seaweed and reproduce by budding +n02315487 marine animal with bivalve shell having a pair of arms bearing tentacles for capturing food; found worldwide +n02315821 small unsegmented marine worm that when disturbed retracts its anterior portion into the body giving the appearance of a peanut +n02316707 marine invertebrates with tube feet and five-part radially symmetrical bodies +n02317335 echinoderms characterized by five arms extending from a central disk +n02317781 an animal resembling a starfish with fragile whiplike arms radiating from a small central disc +n02318167 any starfish-like animal of the genera Euryale or Astrophyton or Gorgonocephalus having slender complexly branched interlacing arms radiating from a central disc +n02318687 a variety of basket star +n02319095 shallow-water echinoderms having soft bodies enclosed in thin spiny globular shells +n02319308 a sea urchin that can be eaten +n02319555 flattened disklike sea urchins that live on sandy bottoms +n02319829 sea urchin having a heart-shaped body in a rigid spiny shell +n02320127 primitive echinoderms having five or more feathery arms radiating from a central disk +n02320465 crinoid with delicate radiating arms and a stalked body attached to a hard surface +n02321170 free-swimming stalkless crinoid with ten feathery arms; found on muddy sea bottoms +n02321529 echinoderm having a flexible sausage-shaped body, tentacles surrounding the mouth and tube feet; free-living mud feeders +n02322047 of warm coasts from Australia to Asia; used as food especially by Chinese +n02322992 in former classifications considered a suborder of Rodentia coextensive with the order Lagomorpha: gnawing animals +n02323449 relative large gnawing animals; distinguished from rodents by having two pairs of upper incisors specialized for gnawing +n02323902 rabbits and hares +n02324045 any of various burrowing animals of the family Leporidae having long ears and short tails; some domesticated and raised for pets or food +n02324431 the long ears of a rabbit +n02324514 castrated male rabbit +n02324587 (usually informal) especially a young rabbit +n02324850 common greyish-brown burrowing animal native to southern Europe and northern Africa but introduced elsewhere; widely domesticated and developed in various colors and for various needs; young are born naked and helpless +n02325366 common small rabbit of North America having greyish or brownish fur and a tail with a white underside; a host for Ixodes pacificus and Ixodes scapularis (Lyme disease ticks) +n02325722 widely distributed in United States except northwest and far west regions +n02325884 a wood rabbit of southeastern United States swamps and lowlands +n02326074 a wood rabbit of marshy coastal areas from North Carolina to Florida +n02326432 swift timid long-eared mammal larger than a rabbit having a divided upper lip and long hind legs; young born furred and with open eyes +n02326763 a young hare especially one in its first year +n02326862 large hare introduced in North America; does not turn white in winter +n02327028 large hare of western North America +n02327175 largest hare of northern plains and western mountains of United States; brownish-grey in summer and pale grey in winter; tail nearly always all white +n02327435 the common jackrabbit of grasslands and open areas of western United States; has large black-tipped ears and black streak on the tail +n02327656 a large hare of northern North America; it is almost completely white in winter +n02327842 large large-footed North American hare; white in winter +n02328009 red breed of domestic rabbits; hybrid between Old World rabbit and hare +n02328150 domestic breed of rabbit with long white silky hair +n02328429 small short-eared burrowing mammal of rocky uplands of Asia and western North America +n02328820 North American pika +n02328942 similar to little chief hare and may be same species +n02329401 relatively small placental mammals having a single pair of constantly growing incisor teeth specialized for gnawing +n02330245 any of numerous small rodents typically resembling diminutive rats having pointed snouts and small ears on elongated bodies with slender usually hairless tails +n02331046 any of various long-tailed rodents similar to but larger than a mouse +n02331309 any of various rodents with cheek pouches +n02331842 a rodent that is a member of the family Muridae +n02332156 brownish-grey Old World mouse now a common household pest worldwide +n02332447 small reddish-brown Eurasian mouse inhabiting e.g. cornfields +n02332755 any nocturnal Old World mouse of the genus Apodemus inhabiting woods and fields and gardens +n02332954 a mouse with a genetic defect that prevents them from growing hair and also prevents them from immunologically rejecting human cells and tissues; widely used in preclinical trials +n02333190 nocturnal yellowish-brown mouse inhabiting woods and fields and gardens +n02333546 common domestic rat; serious pest worldwide +n02333733 brown rat that infests wharves +n02333819 brown rat commonly found in sewers +n02333909 common household pest originally from Asia that has spread worldwide +n02334201 burrowing scaly-tailed rat of India and Ceylon +n02334460 large Australian rat with hind legs adapted for leaping +n02334728 leaping rodent of Australian desert areas +n02335127 any of various amphibious rats +n02335231 amphibious rat of Australia and New Guinea +n02336011 a variety of rodent +n02336275 any of several small greyish New World mice inhabiting e.g. grain fields +n02336641 any of various New World woodland mice +n02336826 American woodland mouse with white feet and underparts +n02337001 brownish New World mouse; most widely distributed member of the genus +n02337171 burrowing mouse of desert areas of southwestern United States +n02337332 large dark mouse of southeastern United States +n02337598 very small dark greyish brown mouse resembling a house mouse; of Texas and Mexico +n02337902 insectivorous mouse of western North America +n02338145 beaver-like aquatic rodent of North America with dark glossy brown fur +n02338449 of Florida wetlands +n02338722 destructive long-haired burrowing rat of southern North America and Central America +n02338901 any of various small short-tailed rodents of the northern hemisphere having soft fur grey above and white below with furred tails and large ears; some are hosts for Ixodes pacificus and Ixodes scapularis (Lyme disease ticks) +n02339282 a wood rat with dusky feet +n02339376 any of various small mouselike rodents of the family Cricetidae (especially of genus Microtus) having a stout short-tailed body and inconspicuous ears and inhabiting fields or meadows +n02339922 any of several bushy-tailed rodents of the genus Neotoma of western North America; hoards food and other objects +n02340186 host to Lyme disease tick (Ixodes pacificus) in northern California +n02340358 large greyish-brown wood rat of the southeastern United States +n02340640 hardy agile rat of grassy marshes of Mexico and the southeastern United States +n02340930 short-tailed glossy-furred burrowing vole of the eastern United States +n02341288 widely distributed in grasslands of northern United States and Canada +n02341475 of western North America +n02341616 typical vole of the extended prairie region of central United States and southern Canada +n02341974 common large Eurasian vole +n02342250 any of several voles of mountainous regions of Eurasia and America +n02342534 any of several vole-like terrestrial or arboreal rodents of cold forested regions of Canada and western United States +n02342885 short-tailed Old World burrowing rodent with large cheek pouches +n02343058 a variety of hamster common to Europe and Asia +n02343320 small light-colored hamster often kept as a pet +n02343772 small Old World burrowing desert rodent with long soft pale fur and hind legs adapted for leaping +n02344175 gerbil of northern Africa +n02344270 a gerbil that is popular as a pet +n02344408 southern European gerbil +n02344528 any of various short-tailed furry-footed rodents of circumpolar distribution +n02344918 notable for mass migrations even into the sea where many drown +n02345078 of northwestern Canada and Alaska +n02345340 Old World lemming +n02345600 North American lemming having a white winter coat and some claws much enlarged +n02345774 of northern Canada +n02345997 of low bogs and meadows of northeastern and central United States and southern Canada +n02346170 of wet alpine and subalpine meadows of Canada and Alaska +n02346627 relatively large rodents with sharp erectile bristles mingled with the fur +n02346998 terrestrial porcupine +n02347274 porcupine with a tuft of large beaded bristles on the tail +n02347573 porcupine of Borneo and Sumatra having short spines and a long tail +n02347744 arboreal porcupine +n02348173 porcupine of northeastern North America with barbed spines concealed in the coarse fur; often gnaws buildings for salt and grease +n02348788 any of various small nocturnal burrowing desert rodents with cheek pouches and long hind legs and tail +n02349205 small pale yellowish soft-furred rodent of southwestern United States and Mexico +n02349390 small rodent of open areas of United States plains states +n02349557 large stiff-haired rodent of shortgrass prairies of United States +n02349847 large pocket mouse of Mexico +n02350105 any of various leaping rodents of desert regions of North America and Mexico; largest members of the family Heteromyidae +n02350357 most widely distributed kangaroo rat: plains and mountain areas of central and western United States +n02350670 small silky-haired pouched rodent; similar to but smaller than kangaroo rats +n02350989 any of several primitive mouselike rodents with long hind legs and no cheek pouches; of woodlands of Eurasia and North America +n02351343 widely distributed in northeastern and central United States and Canada +n02351870 mouselike jumping rodent +n02352002 small nocturnal jumping rodent with long hind legs; of arid parts of Asia and northern Africa +n02352290 a variety of jerboa +n02352591 small furry-tailed squirrel-like Old World rodent that becomes torpid in cold weather +n02352932 large European dormouse +n02353172 a variety of dormouse +n02353411 dormouse of southern Europe and northern Africa +n02353861 burrowing rodent of the family Geomyidae having large external cheek pouches; of Central America and southwestern North America +n02354162 gopher of chiefly grasslands of central North America +n02354320 gopher of Alabama and Georgia and Florida +n02354621 of valleys and mountain meadows of western United States +n02354781 greyish to brown gopher of western and central United States +n02355227 a kind of arboreal rodent having a long bushy tail +n02355477 any typical arboreal squirrel +n02356381 common medium-large squirrel of eastern North America; now introduced into England +n02356612 large grey squirrel of far western areas of United States +n02356798 exceptionally large arboreal squirrel of eastern United States +n02356977 fox squirrel or grey squirrel in the black color phase +n02357111 common reddish-brown squirrel of Europe and parts of Asia +n02357401 of northern United States and Canada +n02357585 far western United States counterpart of the red squirrel +n02357911 small ground squirrel of western United States +n02358091 any of various terrestrial burrowing rodents of Old and New Worlds; often destroy crops +n02358390 common black-striped reddish-brown ground squirrel of western North America; resembles a large chipmunk +n02358584 rather large central Eurasian ground squirrel +n02358712 of sagebrush and grassland areas of western United States and Canada +n02358890 large grey ground squirrel of rocky areas of the southwestern United States +n02359047 large ground squirrel of the North American far north +n02359324 any of several rodents of North American prairies living in large complex burrows having a barking cry +n02359556 tail is black tipped +n02359667 tail is white tipped +n02359915 small striped semiterrestrial eastern American squirrel with cheek pouches +n02360282 a burrowing ground squirrel of western America and Asia; has cheek pouches and a light and dark stripe running down the body +n02360480 terrestrial Siberian squirrel +n02360781 New World flying squirrels +n02360933 small large-eyed nocturnal flying squirrel of eastern United States +n02361090 large flying squirrel; chiefly of Canada +n02361337 stocky coarse-furred burrowing rodent with a short bushy tail found throughout the northern hemisphere; hibernates in winter +n02361587 reddish brown North American marmot +n02361706 large North American mountain marmot +n02361850 heavy-bodied yellowish-brown marmot of rocky areas of western North America +n02362194 nocturnal rodent of Asia having furry folds of skin between forelegs and hind legs enabling it to move by gliding leaps +n02363005 large semiaquatic rodent with webbed hind feet and a broad flat tail; construct complex dams and underwater lodges +n02363245 a European variety of beaver +n02363351 a variety of beaver found in almost all areas of North America except Florida +n02363996 bulky nocturnal burrowing rodent of uplands of the Pacific coast of North America; the most primitive living rodent +n02364520 short-tailed rough-haired South American rodent +n02364673 stout-bodied nearly tailless domesticated cavy; often kept as a pet and widely used in research +n02364840 South American cavy; possibly ancestral to the domestic guinea pig +n02365108 hare-like rodent of the pampas of Argentina +n02365480 pig-sized tailless South American amphibious rodent with partly webbed feet; largest living rodent +n02366002 agile long-legged rabbit-sized rodent of Central America and South America and the West Indies; valued as food +n02366301 large burrowing rodent of South America and Central America; highly esteemed as food +n02366579 rodent of mountains of western South America +n02366959 aquatic South American rodent resembling a small beaver; bred for its fur +n02367492 small rodent with soft pearly grey fur; native to the Andes but bred in captivity for fur +n02367812 a rodent native to the mountains of Chile and Peru and now bred in captivity +n02368116 gregarious burrowing rodent larger than the chinchillas +n02368399 ratlike rodent with soft fur and large ears of the Andes +n02368821 furry short-limbed tailless rodent resembling a true mole in habits and appearance; of eastern Europe and Middle East +n02369293 African rodent resembling a mole in habits and appearance +n02369555 small nearly naked African mole rat of desert areas +n02369680 fetal-looking colonial rodent of East Africa; neither mole nor rat; they feed on tubers and have a social structure similar to that of honeybees and termites +n02369935 an especially large mole rat and the only member of a colony of naked mole rats to bear offspring which are sired by only a few males +n02370137 colonial mole rat of western Africa; similar to naked mole rat +n02370525 in former classifications a major division of Mammalia comprising all hoofed mammals; now divided into the orders Perissodactyla (odd-toed ungulates) and Artiodactyla (even-toed ungulates) +n02370806 any of a number of mammals with hooves that are superficially similar but not necessarily closely related taxonomically +n02371344 a mammal having nails or claws +n02372140 a variety of dinocerate +n02372584 any of several small ungulate mammals of Africa and Asia with rodent-like incisors and feet with hooflike toes +n02372952 hyrax that lives in rocky areas +n02373336 placental mammals having hooves with an odd number of toes on each foot +n02374149 hoofed mammals having slender legs and a flat coat with a narrow mane along the back of the neck +n02374451 solid-hoofed herbivorous quadruped domesticated since prehistoric times +n02375302 a horse having a brownish coat thickly sprinkled with white or gray +n02375438 a horse stabled with another or one of several horses owned by the same person +n02375757 a word for horse used by children or in adult slang +n02375862 earliest horse; extinct primitive dog-sized four-toed Eocene animal +n02376542 a young horse +n02376679 a young female horse under the age of four +n02376791 a young male horse under the age of four +n02376918 the male of species Equus caballus +n02377063 a colt with undescended testicles +n02377181 uncastrated adult male horse +n02377291 adult male horse kept for breeding +n02377388 castrated male horse +n02377480 female equine animal +n02377603 a female horse used for breeding +n02377703 a lightweight horse kept for riding only +n02378149 a fresh horse especially (formerly) to replace one killed or injured in battle +n02378299 especially a light saddle horse for a woman +n02378415 horse used in war +n02378541 horse trained for battle +n02378625 formerly a strong swift horse ridden into battle +n02378755 (literary) a spirited horse for state or war +n02378870 a mettlesome or fiery horse +n02378969 a saddle horse used for transportation rather than sport etc. +n02379081 a light saddle horse trained for herding cattle +n02379183 a small powerful horse originally bred for sprinting in quarter-mile races in Virginia +n02379329 an American breed of small compact saddle horses +n02379430 a horse marked by stamina and trained to move at a fast running walk +n02379630 a high-stepping horse originating in Kentucky +n02379743 a hardy breed of saddle horse developed in western North America and characteristically having a spotted rump +n02379908 a spirited graceful and intelligent riding horse native to Arabia +n02380052 a compact and sturdy saddle horse that is bred and trained in Vienna; smart and docile and excellent for dressage +n02380335 a range horse of the western United States +n02380464 a small agile horse specially bred and trained for playing polo +n02380583 small hardy range horse of the western plains descended from horses brought by the Spanish +n02380745 an unbroken or imperfectly broken mustang +n02380875 a wild horse that is vicious and difficult or impossible to break in +n02381004 horse of a light yellowish dun color with dark mane and tail +n02381119 an emaciated horse likely soon to become carrion and so attractive to crows +n02381261 horse of a dull brownish grey color +n02381364 horse of a light gray or whitish color +n02381460 undomesticated or feral domestic horse +n02381609 European wild horse extinct since the early 20th century +n02381831 wild horse of central Asia that resembles an ass; now endangered +n02382039 a small native range horse +n02382132 a horse kept for hire +n02382204 an old or over-worked horse +n02382338 a horse used to pull a plow +n02382437 any of various breeds of small gentle horses usually less than five feet high at the shoulder +n02382635 breed of very small pony with long shaggy mane and tail +n02382750 breed of small ponies originally from Wales +n02382850 stocky breed of pony with a fawn-colored nose +n02382948 a horse bred for racing +n02383231 a racehorse belonging to a breed that originated from a cross between Arabian stallions and English mares +n02384741 a horse trained to run in steeplechases +n02384858 an animal that races +n02385002 an animal that wins in a contest of speed +n02385098 an informal term for a racehorse +n02385214 a racehorse considered one year old until the second Jan. 1 following its birth +n02385580 a racehorse about which little is known +n02385676 a racehorse that runs well on a muddy racetrack +n02385776 a horse that fails to run in a race for which it has been entered +n02385898 a horse behind which a hunter hides while stalking game +n02386014 horse used for pulling vehicles +n02386141 stocky short-legged harness horse +n02386224 a compact breed of harness horse +n02386310 a horse used for plowing and hauling and other heavy labor +n02386496 horse adapted for drawing heavy loads +n02386746 a workhorse used as a pack animal +n02386853 draft horse kept for pulling carts +n02386968 heavy feathered-legged breed of draft horse originally from Scotland +n02387093 one of a breed of grey or black draft horses originally used in France to draw heavy coaches or artillery +n02387254 a quiet plodding workhorse +n02387346 British breed of large heavy draft horse +n02387452 a draft horse harnessed alongside the shaft or pole of a vehicle +n02387722 a horse kept at an inn or post house for use by mail carriers or for rent to travelers +n02387887 strong draft horse for drawing coaches +n02387983 a horse trained to a special gait in which both feet on one side leave the ground together +n02388143 a horse used to set the pace in racing +n02388276 a horse trained to trot; especially a horse trained for harness racing +n02388453 the horse having a starting position next to the inside rail in a harness race +n02388588 a horse trained to lift its feet high off the ground while walking or trotting +n02388735 a dark golden-brown or reddish-brown horse +n02388832 a solid dark brown horse +n02388917 a horse of a moderate reddish-brown color +n02389026 a horse of a brownish orange to light brown color +n02389128 a horse of light tan or golden color with cream-colored or white mane and tail +n02389261 a spotted or calico horse or pony +n02389346 hardy and sure-footed animal smaller and with longer ears than the horse +n02389559 domestic beast of burden descended from the African wild ass; patient but stubborn +n02389779 small donkey used as a pack animal +n02389865 British informal for donkey +n02389943 male donkey +n02390015 female donkey +n02390101 hybrid offspring of a male donkey and a female horse; usually sterile +n02390258 hybrid offspring of a male horse and a female donkey or ass; usually sterile +n02390454 any of several equine mammals of Asia and northeast Africa +n02390640 a wild ass of Africa +n02390738 wild ass of Tibet and Mongolia +n02390834 Asiatic wild ass +n02390938 Mongolian wild ass +n02391049 any of several fleet black-and-white striped African equines +n02391234 of the plains of central and eastern Africa +n02391373 narrow-striped nearly extinct zebra of southern Africa +n02391508 zebra with less continuous stripes +n02391617 mammal of South Africa that resembled a zebra; extinct since late 19th century +n02391994 massive powerful herbivorous odd-toed ungulate of southeast Asia and Africa having very thick skin and one or two horns on the snout +n02392434 having one horn +n02392555 extinct thick-haired species of Arctic regions +n02392824 large light-grey African rhinoceros having two horns; endangered; sometimes placed in genus Diceros +n02393161 African rhino; in danger of extinction +n02393580 large inoffensive chiefly nocturnal ungulate of tropical America and southeast Asia having a heavy body and fleshy snout +n02393807 a tapir found in South America and Central America +n02393940 a tapir found in Malaya and Sumatra +n02394477 placental mammal having hooves with an even number of functional toes on each foot +n02395003 stout-bodied short-legged omnivorous animals +n02395406 domestic swine +n02395694 a young pig +n02395855 an unweaned piglet +n02395931 a pig fattened to provide meat +n02396014 an uncastrated male hog +n02396088 an adult female hog +n02396157 a mongrel hog with a thin body and long legs and a ridged back; a wild or semi-wild descendant of improved breeds; found chiefly in the southeastern United States +n02396427 Old World wild swine having a narrow body and prominent tusks from which most domestic swine come; introduced in United States +n02396796 Indonesian wild pig with enormous curved canine teeth +n02397096 African wild swine with warty protuberances on the face and large protruding tusks +n02397529 nocturnal gregarious pig-like wild animals of North America and South America +n02397744 dark grey peccary with an indistinct white collar; of semi desert areas of Mexico and southwestern United States +n02397987 blackish peccary with whitish cheeks; larger than the collared peccary +n02398521 massive thick-skinned herbivorous animal living in or around rivers of tropical Africa +n02399000 any of various cud-chewing hoofed mammals having a stomach divided into four (occasionally three) compartments +n02401031 hollow-horned ruminants +n02402010 any of various members of the genus Bos +n02402175 any of various wild bovines especially of the genera Bos or closely related Bibos +n02402425 domesticated bovine animals as a group regardless of sex or age +n02403003 an adult castrated bull of the genus Bos; especially Bos taurus +n02403153 yearling heifer or bullock +n02403231 castrated bull +n02403325 uncastrated adult male of domestic cattle +n02403454 female of domestic cattle +n02403740 young cow +n02403820 young bull +n02403920 motherless calf in a range herd of cattle +n02404028 an unbranded range animal (especially a stray calf); belongs to the first person who puts a brand on it +n02404186 cattle that are reared for their meat +n02404432 long-horned beef cattle formerly common in southwestern United States +n02404573 any of several breeds of Indian cattle; especially a large American heat and tick resistant greyish humped breed evolved in the Gulf States by interbreeding Indian cattle and now used chiefly for crossbreeding +n02404906 domesticated ox having a humped back and long horns and a large dewlap; used chiefly as a draft animal in India and east Asia +n02405101 large recently extinct long-horned European wild ox; considered one of the ancestors of domestic cattle +n02405302 large long-haired wild ox of Tibet often domesticated +n02405440 wild ox of the Malay Archipelago +n02405577 a breed of dual-purpose cattle developed in Wales +n02405692 hornless short-haired breed of beef and dairy cattle +n02405799 Brahman and shorthorn crossbreed of red cattle; hardy in hot regions +n02405929 black hornless breed from Scotland +n02406046 tall large-horned humped cattle of South Africa; used for meat or draft +n02406174 cattle that are reared for their milk +n02406432 hardy breed of dairy cattle from Ayr, Scotland +n02406533 large hardy brown breed of dairy cattle from Switzerland +n02406647 large white or cream-colored breed from France +n02406749 a breed of diary cattle developed on the island of Jersey +n02406859 red dual-purpose cattle of English origin +n02406952 a variety of cattle produced by crossbreeding with a superior breed +n02407071 English breed of short-horned cattle +n02407172 breed evolved from shorthorn beef cattle +n02407276 breed of hardy black chiefly beef cattle native to Scotland +n02407390 a breed of dairy cattle from northern Holland +n02407521 breed of dairy cattle from the island of Guernsey +n02407625 hardy English breed of dairy cattle raised extensively in United States +n02407763 hardy breed of cattle resulting from crossing domestic cattle with the American buffalo; yields leaner beef than conventional breeds +n02407959 any of several Old World animals resembling oxen including, e.g., water buffalo; Cape buffalo +n02408429 an Asian buffalo that is often domesticated for use as a draft animal +n02408660 upland buffalo of eastern Asia where true water buffaloes do not thrive; used for draft and milk +n02408817 water buffalo of the Philippines +n02409038 small buffalo of the Celebes having small straight horns +n02409202 small buffalo of Mindoro in the Philippines +n02409508 large often savage buffalo of southern Africa having upward-curving horns; mostly in game reserves +n02409870 genus of Asiatic wild oxen +n02410011 wild ox of mountainous areas of eastern India +n02410141 ox of southeast Asia sometimes considered a domesticated breed of the gaur +n02410509 any of several large humped bovids having shaggy manes and large heads and short horns +n02410702 large shaggy-haired brown bison of North American plains +n02410900 European bison having a smaller and higher head than the North American bison +n02411206 large shaggy-coated bovid mammal of Canada and Greenland; intermediate in size and anatomy between an ox and a sheep +n02411705 woolly usually horned ruminant mammal related to the goat +n02411999 female sheep +n02412080 uncastrated adult male sheep +n02412210 male sheep especially a castrated one +n02412440 young sheep +n02412629 a very young lamb +n02412700 child's word for a sheep or lamb +n02412787 a sheep up to the age of one year; one yet to be sheared +n02412909 two-year-old sheep +n02412977 a karakul lamb +n02413050 sheep with a black coat +n02413131 any of various breeds raised for wool or edible meat or skin +n02413484 sheep with long wool originating in the Cotswold Hills +n02413593 British breed of hornless dark-faced domestic sheep +n02413717 long-wooled mutton sheep originally from Lincolnshire +n02413824 horned sheep of Devon; valued for mutton +n02413917 hardy hornless sheep of the Cheviot Hills noted for its short thick wool +n02414043 hardy coarse-haired sheep of central Asia; lambs are valued for their soft curly black fur +n02414209 a domestic long-wool sheep +n02414290 white sheep originating in Spain and producing a heavy fleece of exceptional quality +n02414442 hardy sheep developed from the merino producing both good mutton and fine wool +n02414578 undomesticated sheep +n02414763 wild sheep of semidesert regions in central Asia +n02414904 Asiatic wild sheep with exceptionally large horns; sometimes considered a variety of the argali (or Ovis ammon) +n02415130 bearded reddish sheep of southern Asia +n02415253 large white wild sheep of northwestern Canada and Alaska +n02415435 any wild sheep inhabiting mountainous regions +n02415577 wild sheep of mountainous regions of western North America having massive curled horns +n02415829 wild mountain sheep of Corsica and Sardinia +n02416104 wild sheep of northern Africa +n02416519 any of numerous agile ruminants related to sheep but having a beard and straight horns +n02416820 young goat +n02416880 male goat +n02416964 female goat +n02417070 any of various breeds of goat raised for milk or meat or wool +n02417242 Himalayan goat having a silky undercoat highly prized as cashmere wool +n02417387 a domestic breed of goat raised for its long silky hair which is the true mohair +n02417534 undomesticated goat +n02417663 wild goat of Iran and adjacent regions +n02417785 large Himalayan goat with large spiraled horns +n02417914 wild goat of mountain areas of Eurasia and northern Africa having large recurved horns +n02418064 bovid related to goats but having antelope-like features: mountain goats; gorals; serows; chamois; gnu goats +n02418465 sure-footed mammal of mountainous northwestern North America +n02418770 small goat antelope with small conical horns; of southern Asian mountains +n02419056 short-horned dark-coated goat antelope of mountain areas of southern and southeastern Asia +n02419336 hoofed mammal of mountains of Eurasia having upright horns with backward-hooked tips +n02419634 large heavily built goat antelope of eastern Himalayan area +n02419796 graceful Old World ruminant with long legs and horns directed upward and backward; includes gazelles; springboks; impalas; addax; gerenuks; blackbucks; dik-diks +n02420509 common Indian antelope with a dark back and spiral horns +n02420828 slender East African antelope with slim neck and backward-curving horns +n02421136 large antelope with lightly spiraled horns of desert regions of northern Africa +n02421449 large African antelope having a head with horns like an ox and a long tufted tail +n02421792 any of several small antelopes of eastern Africa of the genus Madoqua; the size of a large rabbit +n02422106 a large African antelope with lyre-shaped horns that curve backward +n02422391 a large South African antelope; considered the swiftest hoofed mammal +n02422699 African antelope with ridged curved horns; moves with enormous leaps +n02423022 small swift graceful antelope of Africa and Asia having lustrous eyes +n02423218 East African gazelle; the smallest gazelle +n02423362 a kind of gazelle +n02423589 a South African gazelle noted for springing lightly into the air +n02424085 large forest antelope of central Africa having a reddish-brown coat with white stripes and spiral horns +n02424305 either of two spiral-horned antelopes of the African bush +n02424486 a variety of kudu +n02424589 a smaller variety of kudu +n02424695 any of several antelopes of the genus Tragelaphus having striped markings resembling a harness +n02424909 spiral-horned South African antelope with a fringe of white hairs along back and neck +n02425086 shaggy antelope of mountains of Ethiopia +n02425228 antelope with white markings like a harness and twisted horns +n02425532 large Indian antelope; male is blue-grey with white markings; female is brownish with no horns +n02425887 large black East African antelope with sharp backward-curving horns +n02426176 goat-like antelope of central Eurasia having a stubby nose like a proboscis +n02426481 small plains antelope of southeastern Africa +n02426813 either of two large African antelopes of the genus Taurotragus having short spirally twisted horns in both sexes +n02427032 dark fawn-colored eland of southern and eastern Africa +n02427183 large dark striped eland of western equatorial Africa +n02427470 an orange-brown antelope of southeast Africa +n02427576 tawny-colored African antelope inhabiting wet grassy plains; a threatened species +n02427724 any of several large African antelopes of the genus Kobus having curved ridged horns and frequenting e.g. swamps and rivers +n02428089 an African antelope closely related to the waterbuck +n02428349 large African antelope with long straight nearly upright horns +n02428508 large South African oryx with a broad black band along its flanks +n02428842 cow-like creature with the glossy coat of a horse and the agility of a goat and the long horns of an antelope; characterized as a cow that lives the life of a goat +n02429456 fleet antelope-like ruminant of western North American plains with small branched horns +n02430045 distinguished from Bovidae by the male's having solid deciduous antlers +n02430559 adult male deer +n02430643 stag with antlers of 12 or more branches +n02430748 male deer in his second year +n02430830 a young deer +n02431122 common deer of temperate Europe and Asia +n02431337 a male deer, especially an adult male red deer +n02431441 a female deer, especially an adult female red deer +n02431542 male red deer in its second year +n02431628 a deer of southern Asia with antlers that have three tines +n02431785 large North American deer with large much-branched antlers in the male +n02431976 small deer of Japan with slightly forked antlers +n02432291 common North American deer; tail has a white underside +n02432511 long-eared deer of western North America with two-pronged antlers +n02432704 mule deer of western Rocky Mountains +n02432983 large northern deer with enormous flattened antlers in the male; called `elk' in Europe and `moose' in North America +n02433318 small Eurasian deer +n02433546 small graceful deer of Eurasian woodlands having small forked antlers +n02433729 male roe deer +n02433925 Arctic deer with large antlers in both sexes; called `reindeer' in Eurasia and `caribou' in North America +n02434190 any of several large caribou living in coniferous forests of southern Canada; in some classifications included in the species Rangifer tarandus +n02434415 of tundra of northern Canada; in some classifications included in the species Rangifer tarandus +n02434712 small South American deer with unbranched antlers +n02434954 small Asian deer with small antlers and a cry like a bark +n02435216 small heavy-limbed upland deer of central Asia; male secretes valued musk +n02435517 large Chinese deer surviving only in domesticated herds +n02435853 very small hornless deer-like ruminant of tropical Asia and west Africa +n02436224 small chevrotain of southeastern Asia +n02436353 chevrotain somewhat larger than the kanchil; found in India and Malaya +n02436645 largest chevrotain; of marshy areas of west Africa +n02437136 cud-chewing mammal used as a draft or saddle animal in desert regions +n02437312 one-humped camel of the hot deserts of northern Africa and southwestern Asia +n02437482 two-humped camel of the cold deserts of central Asia +n02437616 wild or domesticated South American cud-chewing animal related to camels but smaller and lacking a hump +n02437971 used in the Andes as a beast of burden and source of wool; considered a domesticated variety of the guanaco +n02438173 wild llama +n02438272 domesticated llama with long silky fleece; believed to be a domesticated variety of the guanaco +n02438580 small wild cud-chewing Andean animal similar to the guanaco but smaller; valued for its fleecy undercoat +n02439033 tallest living quadruped; having a spotted coat and small horns and very long neck and legs; of savannahs of tropical Africa +n02439398 similar to the giraffe but smaller with much shorter neck and stripe on the legs +n02441326 fissiped fur-bearing carnivorous mammals +n02441942 small carnivorous mammal with short legs and elongated body and neck +n02442172 mustelid of northern hemisphere in its white winter coat +n02442336 the ermine in its brown summer coat with black-tipped tail +n02442446 of Canada and northeastern United States +n02442572 of Europe +n02442668 the common American weasel distinguished by large size and black-tipped tail +n02442845 slender-bodied semiaquatic mammal having partially webbed feet; valued for its fur +n02443015 usually rich dark brown +n02443114 dark brown mustelid of woodlands of Eurasia that gives off an unpleasant odor when threatened +n02443346 domesticated albino variety of the European polecat bred for hunting rats and rabbits +n02443484 musteline mammal of prairie regions of United States; nearly extinct +n02443808 southern African weasel +n02443959 small slender burrowing muishond with white top of the head +n02444251 ferret-sized muishond often tamed +n02444819 freshwater carnivorous mammal having webbed and clawed feet and dark brown fur +n02445004 sociable aquatic animal widely distributed along streams and lake borders in North America +n02445171 otter found in Europe and Asia +n02445394 large marine otter of northern Pacific coasts having very thick dark brown fur +n02445715 American musteline mammal typically ejecting an intensely malodorous fluid when startled; in some classifications put in a separate subfamily Mephitinae +n02446206 most common and widespread North American skunk +n02446352 of Mexico and southernmost parts of southwestern United States +n02446645 large naked-muzzled skunk with white back and tail; of southwestern North America and Mexico +n02447021 small skunk with a marbled black and white coat; of United States and Mexico +n02447366 sturdy carnivorous burrowing mammal with strong claws; widely distributed in the northern hemisphere +n02447762 a variety of badger native to America +n02448060 a variety of badger native to Europe and Asia +n02448318 nocturnal badger-like carnivore of wooded regions of Africa and southern Asia +n02448633 small ferret-like badger of southeast Asia +n02448885 southeast Asian badger with a snout like a pig +n02449183 stocky shaggy-coated North American carnivorous mammal +n02449350 musteline mammal of northern Eurasia +n02449699 carnivore of Central America and South America resembling a weasel with a greyish-white back and dark underparts +n02450034 agile slender-bodied arboreal mustelids somewhat larger than weasels +n02450295 dark brown marten of northern Eurasian coniferous forests +n02450426 marten of northern Asian forests having luxuriant dark brown fur +n02450561 valued for its fur +n02450677 Eurasian marten having a brown coat with pale breast and throat +n02450829 large dark brown North American arboreal carnivorous mammal +n02451125 large yellow and black marten of southern China and Burma +n02451415 long-tailed arboreal mustelid of Central America and South America +n02451575 animals that exist only in fiction (usually in children's stories) +n02453108 any of various nonruminant hoofed mammals having very thick skin: elephant; rhinoceros; hippopotamus +n02453611 primitive terrestrial mammal with few if any teeth; of tropical Central America and South America +n02454379 burrowing chiefly nocturnal mammal with body covered with strong horny plates +n02454794 having nine hinged bands of bony plates; ranges from Texas to Paraguay +n02455135 South American armadillo with three bands of bony plates +n02455428 naked-tailed armadillo of tropical South America +n02455720 Argentine armadillo with six movable bands and hairy underparts +n02456008 about three feet long exclusive of tail +n02456275 very small Argentine armadillo with pale silky hair and pink plates on head and neck +n02456962 any of several slow-moving arboreal mammals of South America and Central America; they hang from branches back downward and feed on leaves and fruits +n02457408 a sloth that has three long claws on each forefoot and each hindfoot +n02457945 relatively small fast-moving sloth with two long claws on each front foot +n02458135 a sloth of Central America that has two long claws on each forefoot and three long claws on each hindfoot +n02458517 a large extinct ground sloth +n02459190 a variety of extinct edentate +n02460009 any of several tropical American mammals of the family Myrmecophagidae which lack teeth and feed on ants and termites +n02460451 large shaggy-haired toothless anteater with long tongue and powerful claws; of South America +n02460817 squirrel-sized South American toothless anteater with long silky golden fur +n02461128 small toothless anteater with prehensile tail and four-clawed forelimbs; of tropical South America and Central America +n02461830 toothless mammal of southern Africa and Asia having a body covered with horny scales and a long snout for feeding on ants and termites +n02462213 margin between the skin of the pastern and the horn of the hoof +n02469248 a feather covering the shoulder of a bird +n02469472 a larval frog or toad +n02469914 any placental mammal of the order Primates; has good eyesight and flexible hands and feet +n02470238 an ape or monkey +n02470325 any of various primates with short tails or no tail at all +n02470709 any member of the suborder Anthropoidea including monkeys and apes and hominids +n02470899 any tailless ape of the families Pongidae and Hylobatidae +n02471300 a primate of the superfamily Hominoidea +n02471762 a primate of the family Hominidae +n02472293 any living or extinct member of the family Hominidae characterized by superior intelligence, articulate speech, and erect carriage +n02472987 all of the living human inhabitants of the earth +n02473307 extinct species of primitive hominid with upright stature but small brain +n02473554 former genus of primitive apelike men now Homo erectus +n02473720 fossil remains found in Java; formerly called Pithecanthropus erectus +n02473857 fossils found near Beijing, China; they were lost during World War II +n02473983 genus to which Peking man was formerly assigned +n02474110 extinct primitive hominid of late Pleistocene; Java; formerly Javanthropus +n02474282 former genus of primitive man; now Homo soloensis: comprises Solo man +n02474605 extinct species of upright East African hominid having some advanced humanlike characteristics +n02474777 the only surviving hominid; species to which modern man belongs; bipedal primate having language and ability to make and use complex tools; brain volume at least 1400 cc +n02475078 extinct robust human of Middle Paleolithic in Europe and western Asia +n02475358 extinct human of Upper Paleolithic in Europe +n02475669 subspecies of Homo sapiens; includes all modern races +n02476219 any of several extinct humanlike bipedal primates with relatively small brains of the genus Australopithecus; from 1 to 4 million years ago +n02476567 fossils found in Ethiopia; from 3.5 to 4 million years ago +n02476870 gracile hominid of southern Africa; from about 3 million years ago +n02477028 large-toothed hominid of eastern Africa; from 1 to 2 million years ago +n02477187 genus to which Australopithecus boisei was formerly assigned +n02477329 large-toothed hominid of southern Africa; from 1.5 to 2 million years ago; formerly Paranthropus +n02477516 former classification for Australopithecus robustus +n02477782 fossil primates found in India +n02478239 fossil hominoids from northern central Hungary; late Miocene +n02478875 an anthropoid ape of the genus Proconsul +n02479332 extinct primate of about 38 million years ago; fossils found in Egypt +n02480153 any of the large anthropoid apes of the family Pongidae +n02480495 large long-armed ape of Borneo and Sumatra having arboreal habits +n02480855 largest anthropoid ape; terrestrial and vegetarian; of forests of central west Africa +n02481103 a kind of gorilla +n02481235 a kind of gorilla +n02481366 gorilla of Kivu highlands +n02481500 an adult male gorilla with grey hairs across the back +n02481823 intelligent somewhat arboreal ape of equatorial African forests +n02482060 masked or pale-faced chimpanzees of western Africa; distantly related to the eastern and central chimpanzees; possibly a distinct species +n02482286 long-haired chimpanzees of east-central Africa; closely related to the central chimpanzees +n02482474 black-faced chimpanzees of central Africa; closely related to eastern chimpanzees +n02482650 small chimpanzee of swamp forests in Zaire; a threatened species +n02483092 gibbons and siamangs +n02483362 smallest and most perfectly anthropoid arboreal ape having long arms and no tail; of southern Asia and East Indies +n02483708 large black gibbon of Sumatra having the 2nd and 3rd toes partially united by a web +n02484322 any of various long-tailed primates (excluding the prosimians) +n02484473 of Africa or Arabia or Asia; having nonprehensile tails and nostrils close together +n02484975 small slender African monkey having long hind limbs and tail and long hair around the face +n02485225 smallest guenon monkey; of swampy central and west African forests +n02485371 white and olive green East African monkey with long white tufts of hair beside the face +n02485536 South African monkey with black face and hands +n02485688 common savannah monkey with greenish-grey back and yellow tail +n02485988 large agile arboreal monkey with long limbs and tail and white upper eyelids +n02486261 reddish long-tailed monkey of west Africa +n02486410 large terrestrial monkeys having doglike muzzles +n02486657 greyish baboon of southern and eastern Africa +n02486908 baboon of west Africa with a bright red and blue muzzle and blue hindquarters +n02487079 similar to the mandrill but smaller and less brightly colored +n02487347 short-tailed monkey of rocky regions of Asia and Africa +n02487547 of southern Asia; used in medical research +n02487675 Indian macaque with a bonnet-like tuft of hair +n02487847 tailless macaque of rocky cliffs and forests of northwestern Africa and Gibraltar +n02488003 monkey of southeast Asia, Borneo and the Philippines +n02488291 slender long-tailed monkey of Asia +n02488415 langur of southern Asia; regarded as sacred in India +n02488702 arboreal monkey of western and central Africa with long silky fur and reduced thumbs +n02488894 a colobus monkey with a reddish brown coat and white silky fringes down both sides of the body +n02489166 Borneo monkey having a long bulbous nose +n02489589 hairy-faced arboreal monkeys having widely separated nostrils and long usually prehensile tails +n02490219 small soft-furred South American and Central American monkey with claws instead of nails +n02490597 a marmoset +n02490811 the smallest monkey; of tropical forests of the Amazon +n02491107 small South American marmoset with silky fur and long nonprehensile tail +n02491329 golden South American monkey with long soft hair forming a mane +n02491474 South American tamarin with a tufted head +n02492035 monkey of Central America and South America having thick hair on the head that resembles a monk's cowl +n02492356 nocturnal monkey of Central America and South America with large eyes and thick fur +n02492660 monkey of tropical South American forests having a loud howling cry +n02492948 small arboreal monkey of tropical South America with long hair and bushy nonprehensile tail +n02493224 medium-sized tree-dwelling monkey of the Amazon basin; only New World monkey with a short tail +n02493509 small South American monkeys with long beautiful fur and long nonprehensile tail +n02493793 arboreal monkey of tropical America with long slender legs and long prehensile tail +n02494079 small long-tailed monkey of Central American and South America with greenish fur and black muzzle +n02494383 large monkeys with dark skin and woolly fur of the Amazon and Orinoco basins +n02495242 insectivorous arboreal mammal of southeast Asia that resembles a squirrel with large eyes and long sharp snout +n02496052 primitive primates having large ears and eyes and characterized by nocturnal habits +n02496913 large-eyed arboreal prosimian having foxy faces and long furry tails +n02497673 small lemur having its tail barred with black +n02498153 nocturnal lemur with long bony fingers and rodent-like incisor teeth closely related to the lemurs +n02498743 slim-bodied lemur of southern India and Sri Lanka +n02499022 stocky lemur of southeastern Asia +n02499316 a kind of lemur +n02499568 a kind of lemur +n02499808 agile long-tailed nocturnal African lemur with dense woolly fur and large eyes and ears +n02500267 large short-tailed lemur of Madagascar having thick silky fur in black and white and fawn +n02500596 nocturnal indris with thick grey-brown fur and a long tail +n02501583 nocturnal arboreal primate of Indonesia and the Philippines having huge eyes and digits ending in pads to facilitate climbing; the only primate that spurns all plant material as food living entirely on insects and small vertebrates +n02501923 a variety of tarsier +n02502006 a variety of tarsier +n02502514 arboreal nocturnal mammal of southeast Asia and the Philippines resembling a lemur and having a fold of skin on each side from neck to tail that is used for long gliding leaps +n02502807 a variety of flying lemur +n02503127 massive herbivorous mammals having tusks and a long trunk +n02503517 five-toed pachyderm +n02503756 a wild and vicious elephant separated from the herd +n02504013 Asian elephant having smaller ears and tusks primarily in the male +n02504458 an elephant native to Africa having enormous flapping ears and ivory tusks +n02504770 any of numerous extinct elephants widely distributed in the Pleistocene; extremely large with hairy coats and long upcurved tusks +n02505063 very hairy mammoth common in colder portions of the northern hemisphere +n02505238 a variety of mammoth +n02505485 largest known mammoth; of America +n02505998 extinct elephant-like mammal that flourished worldwide from Miocene through Pleistocene times; differ from mammoths in the form of the molar teeth +n02506947 an animal that walks with the entire sole of the foot touching the ground as e.g. bears and human beings +n02507148 an animal that walks so that only the toes touch the ground as e.g. dogs and cats and horses +n02507649 plantigrade carnivorous mammals +n02508021 an omnivorous nocturnal mammal native to North America and Central America +n02508213 North American raccoon +n02508346 a South American raccoon +n02508742 raccoon-like omnivorous mammal of Mexico and the southwestern United States having a long bushy tail with black and white rings +n02509197 arboreal fruit-eating mammal of tropical America with a long prehensile tail +n02509515 omnivorous mammal of Central America and South America +n02509815 reddish-brown Old World raccoon-like carnivore; in some classifications considered unrelated to the giant pandas +n02510455 large black-and-white herbivorous mammal of bamboo forests of China and Tibet; in some classifications considered a member of the bear family or of a separate family Ailuropodidae +n02511730 a bird that twitters +n02512053 any of various mostly cold-blooded aquatic vertebrates usually having scales and breathing through gills +n02512752 a young or small fish +n02512830 any fish providing sport for the angler +n02512938 any fish used for food by human beings +n02513248 any fish useless for food or sport or even as bait +n02513355 fish that live on the sea bottom (particularly the commercially important gadoid fish like cod and haddock, or flatfish like flounder) +n02513560 a fish that is young +n02513727 the young of various fishes +n02513805 any of various fishes that carry their eggs and their young in their mouths +n02513939 a female fish at spawning time +n02514041 a large marine food fish common on the coasts of Australia, New Zealand, and southern Africa +n02515214 any fish of the order Crossopterygii; most known only in fossil form +n02515713 fish thought to have been extinct since the Cretaceous period but found in 1938 off the coast of Africa +n02516188 air-breathing fish having an elongated body and fleshy paired fins; certain species construct mucus-lined mud coverings in which to survive drought +n02516776 extinct lungfish +n02517442 any of numerous mostly freshwater bottom-living fishes of Eurasia and North America with barbels like whiskers around the mouth +n02517938 Old World freshwater catfishes having naked skin and a long anal fin more or less merged with the eellike caudal fin +n02518324 large elongated catfish of central and eastern Europe +n02518622 freshwater catfish of the Nile and tropical central Africa having an electric organ +n02519148 any of several common freshwater catfishes of the United States +n02519340 catfish common in eastern United States +n02519472 freshwater catfish of eastern United States +n02519686 freshwater food fish common throughout central United States +n02519862 a large catfish of the Mississippi valley +n02520147 large catfish of central United States having a flattened head and projecting jaw +n02520525 South American catfish having the body covered with bony plates +n02520810 any of numerous marine fishes most of which are mouthbreeders; not used for food +n02521646 a soft-finned fish of the family Gadidae +n02522399 major food fish of Arctic and cold-temperate waters +n02522637 young codfish +n02522722 one of the world's most important commercial fishes +n02522866 closely related to Atlantic cod +n02523110 a food fish of the Atlantic waters of Europe resembling the cod; sometimes placed in genus Gadus +n02523427 elongate freshwater cod of northern Europe and Asia and North America having barbels around its mouth +n02523877 important food fish on both sides of the Atlantic; related to cod but usually smaller +n02524202 important food and game fish of northern seas (especially the northern Atlantic); related to cod +n02524524 any of several marine food fishes related to cod +n02524659 found off Atlantic coast of North America +n02524928 American hakes +n02525382 large edible marine fish of northern coastal waters; related to cod +n02525703 deep-sea fish with a large head and body and long tapering tail +n02526121 voracious snakelike marine or freshwater fishes with smooth slimy usually scaleless skin and having a continuous vertical fin but no ventral fins +n02526425 young eel +n02526818 eels that live in fresh water as adults but return to sea to spawn; found in Europe and America; marketed both fresh and smoked +n02527057 New Zealand eel +n02527271 family of brightly colored voracious eels of warm coastal waters; generally nonaggressive to humans but larger species are dangerous if provoked +n02527622 large dark-colored scaleless marine eel found in temperate and tropical coastal waters; some used for food +n02528163 a bony fish of the subclass Teleostei +n02529293 fish of sandy areas of western Pacific and Indian oceans having an angular snout for burrowing into sand +n02529772 any of numerous soft-finned schooling food fishes of shallow waters of northern seas +n02530052 the edible young of especially herrings and sprats and smelts +n02530188 the young of a herring or sprat or similar fish +n02530421 herring-like food fishes that migrate from the sea to fresh water to spawn +n02530637 shad of Atlantic coast of North America; naturalized to Pacific coast +n02530831 shad that spawns in streams of the Mississippi drainage; very similar to Alosa sapidissima +n02530999 European shad +n02531114 shad-like food fish that runs rivers to spawn; often salted or smoked; sometimes placed in genus Pomolobus +n02531625 shad-like North American marine fishes used for fish meal and oil and fertilizer +n02532028 commercially important food fish of northern waters of both Atlantic and Pacific +n02532272 important food fish; found in enormous shoals in the northern Atlantic +n02532451 important food fish of the northern Pacific +n02532602 any of various small edible herring or related food fishes frequently canned +n02532786 any of various young herrings (other than brislings) canned as sardines in Norway +n02532918 small herring processed like a sardine +n02533209 small fishes found in great schools along coasts of Europe; smaller and rounder than herring +n02533545 small pilchards common off the pacific coast of North America +n02533834 small herring-like plankton-eating fishes often canned whole or as paste; abundant in tropical waters worldwide +n02534165 esteemed for its flavor; usually preserved or used for sauces and relishes +n02534559 soft-finned fishes of cold and temperate waters +n02534734 any of various large food and game fishes of northern waters; usually migrate from salt to fresh water to spawn +n02535080 a young salmon up to 2 years old +n02535163 female salmon that has recently spawned +n02535258 male salmon that has recently spawned +n02535537 found in northern coastal Atlantic waters or tributaries; adults do not die after spawning +n02535759 Atlantic salmon confined to lakes of New England and southeastern Canada +n02536165 small salmon with red flesh; found in rivers and tributaries of the northern Pacific and valued as food; adults die after spawning +n02536456 large Pacific salmon valued as food; adults die after spawning +n02536864 small salmon of northern Pacific coasts and the Great Lakes +n02537085 any of various game and food fishes of cool fresh waters mostly smaller than typical salmons +n02537319 speckled trout of European rivers; introduced in North America +n02537525 found in Pacific coastal waters and streams from lower California to Alaska +n02537716 silvery marine variety of brown trout that migrates to fresh water to spawn +n02538010 large fork-tailed trout of lakes of Canada and the northern United States +n02538216 North American freshwater trout; introduced in Europe +n02538406 any of several small trout-like fish of the genus Salvelinus +n02538562 small trout of northern waters; landlocked populations in Quebec and northern New England +n02538985 silvery herring-like freshwater food fish of cold lakes of the northern hemisphere +n02539424 found in the Great Lakes and north to Alaska +n02539573 important food fish of cold deep lakes of North America +n02539894 a whitefish with a bronze back; of northern North America and Siberia +n02540412 small trout-like silvery marine or freshwater food fishes of cold northern waters +n02540983 the common smelt of Europe +n02541257 very small northern fish; forage for sea birds and marine mammals and other fishes +n02541687 large silvery game fish of warm Atlantic coastal waters especially off Florida +n02542017 game fish resembling the tarpon but smaller +n02542432 slender silvery marine fish found in tropical mud flats and mangrove lagoons +n02542958 any of various small silver-scaled salmon-like marine fishes +n02543255 small fish having rows of luminous organs along each side; some surface at night +n02543565 tropical fishes with large mouths in lizard-like heads; found worldwide +n02544274 large elongate scaleless oceanic fishes with sharp teeth and a long dorsal fin that resembles a sail +n02545841 large elliptical brightly colored deep-sea fish of Atlantic and Pacific and Mediterranean +n02546028 from Nova Scotia to West Indies and Gulf of Mexico +n02546331 marine fish having a long compressed ribbonlike body +n02546627 deep-sea ribbonfish +n02547014 thin deep-water tropical fish 20 to 30 feet long having a red dorsal fin +n02547733 bottom-dweller of warm western Atlantic coastal waters having a flattened scaleless body that crawls about on fleshy pectoral and pelvic fins +n02548247 fishes having large mouths with a wormlike filament attached for luring prey +n02548689 bottom-dwelling fish having scaleless slimy skin and a broad thick head with a wide mouth +n02548884 a variety of toadfish +n02549248 fish having a frog-like mouth with a lure on the snout +n02549376 small fantastically formed and colored fishes found among masses of sargassum +n02549989 elongate European surface-dwelling predacious fishes with long toothed jaws; abundant in coastal waters +n02550203 found in warm waters of western Atlantic +n02550460 tropical marine fishes having enlarged winglike fins used for brief gliding flight +n02550655 having only pectoral fins enlarged +n02551134 tropical and subtropical marine and freshwater fishes having an elongated body and long protruding lower jaw +n02551668 slender long-beaked fish of temperate Atlantic waters +n02552171 a teleost fish with fins that are supported by sharp inflexible rays +n02553028 food fish of the northern Pacific related to greenlings +n02554730 any of numerous spiny-finned fishes of the order Perciformes +n02555863 any of numerous spiny-finned fishes of various families of the order Perciformes +n02556373 a small perch of India whose gills are modified to allow it to breathe air; has spiny pectoral fins that enable it to travel on land +n02556846 spiny-finned freshwater food and game fishes +n02557182 North American perch +n02557318 a perch native to Europe +n02557591 any of several pike-like fishes of the perch family +n02557749 pike-like freshwater perches +n02557909 variety inhabiting the Great Lakes +n02558206 a small snail-eating perch of the Tennessee River +n02558860 elongate compressed somewhat eel-shaped fishes +n02559144 deep-sea fishes +n02559383 found living within the alimentary canals of e.g. sea cucumbers or between the shells of pearl oysters in or near shallow seagrass beds +n02559862 a kind of percoid fish +n02560110 large tropical American food and game fishes of coastal and brackish waters; resemble pike +n02561108 any of several elongate long-snouted freshwater game and food fishes widely distributed in cooler parts of the northern hemisphere +n02561381 voracious piscivorous pike of waters of northern hemisphere +n02561514 large (60 to 80 pounds) sport fish of North America +n02561661 any of several North American species of small pike +n02561803 common in quiet waters of eastern United States +n02561937 small but gamy pickerel of Atlantic coastal states +n02562315 small carnivorous freshwater percoid fishes of North America usually having a laterally compressed body and metallic luster: crappies; black bass; bluegills; pumpkinseed +n02562796 small sunfishes of central United States rivers +n02562971 a crappie that is black +n02563079 a crappie that is white +n02563182 any of various usually edible freshwater percoid fishes having compressed bodies and shiny scales; especially (but not exclusively) of the genus Lepomis +n02563648 small brilliantly colored North American sunfish +n02563792 important edible sunfish of eastern and central United States +n02563949 inhabits streams from South Carolina to Florida; esteemed panfish +n02564270 North American food and game fish +n02564403 game and food fish of upper Mississippi and Great Lakes +n02564720 widely distributed and highly prized American freshwater game fishes (sunfish family) +n02564935 a variety of black bass +n02565072 a variety of black bass; the angle of the jaw falls below the eye +n02565324 a large black bass; the angle of the jaw falls behind the eye +n02565573 nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes +n02566109 marine food sport fishes mainly of warm coastal waters +n02566489 small silvery food and game fish of eastern United States streams +n02566665 North American freshwater bass resembling the larger marine striped bass +n02567334 small marine fish with black mouth and gill cavity +n02567633 a kind of sea bass +n02568087 marine food and game fish with dark longitudinal stripes; migrates upriver to spawn; sometimes placed in the genus Morone +n02568447 brown fish of the Atlantic and Mediterranean found around rocks and shipwrecks +n02568959 usually solitary bottom sea basses of warm seas +n02569484 any of several mostly spotted fishes that resemble groupers +n02569631 found around rocky coasts or on reefs +n02569905 deep-sea fish of tropical Atlantic +n02570164 large dark grouper with a thick head and rough scales +n02570484 fishes with slimy mucus-covered skin; found in the warm Atlantic coastal waters of America +n02570838 small to medium-sized shallow-water fishes of the Pacific coast of North America +n02571167 Pacific coast fish +n02571652 red fishes of American coastal tropical waters having very large eyes and rough scales +n02571810 brightly colored carnivorous fish of western Atlantic and West Indies waters +n02572196 small red fishes of coral reefs and inshore tropical waters +n02572484 a cardinalfish found in tropical Atlantic coastal waters +n02573249 yellow-spotted violet food fish of warm deep waters +n02573704 bluish warm-water marine food and game fish that follow schools of small fishes into shallow waters +n02574271 large dark-striped tropical food and game fish related to remoras; found worldwide in coastal to open waters +n02574910 marine fishes with a flattened elongated body and a sucking disk on the head for attaching to large fish or moving objects +n02575325 remoras found attached to sharks +n02575590 large blue Pacific remora that attaches to whales and dolphins +n02576223 a percoid fish of the family Carangidae +n02576575 any of several fast-swimming predacious fishes of tropical to warm temperate seas +n02576906 fish of western Atlantic and Gulf of Mexico +n02577041 fish of western Atlantic and Gulf of Mexico +n02577164 fish of western Atlantic: Cape Cod to Brazil +n02577403 streamlined cigar-shaped jack; good game fish +n02577662 any of several New World tropical fishes having tiny embedded scales +n02577952 fish having greatly elongated front rays on dorsal and anal fins +n02578233 any of several silvery marine fishes with very flat bodies +n02578454 similar to moonfish but with eyes high on the truncated forehead +n02578771 any of several amber to coppery fork-tailed warm-water carangid fishes +n02578928 game fish of southern California and Mexico having a yellow tail fin +n02579303 large game fish of Australia and New Zealand +n02579557 any of several deep-bodied food fishes of western Atlantic and Gulf of Mexico +n02579762 found in coastal waters New England to Brazil except clear waters of West Indies +n02579928 large game fish; found in waters of the West Indies +n02580336 any of a number of fishes of the family Carangidae +n02580679 a California food fish +n02580830 large elongated compressed food fish of the Atlantic waters of Europe +n02581108 of Atlantic coastal waters; commonly used for bait +n02581482 small silvery fish; Nova Scotia to Brazil +n02581642 small fusiform fish of western Atlantic +n02581957 large slender food and game fish widely distributed in warm seas (especially around Hawaii) +n02582220 the more common dolphinfish valued as food; about six feet long +n02582349 a kind of dolphinfish +n02582721 deep-bodied sooty-black pelagic spiny-finned fish of the northern Atlantic and northern Pacific; valued for food +n02583567 any freshwater fish of the family Characinidae +n02583890 brightly colored tropical freshwater fishes +n02584145 small bright red and blue aquarium fish from streams in Brazil and Colombia +n02584449 small voraciously carnivorous freshwater fishes of South America that attack and destroy living animals +n02585872 freshwater fishes of tropical America and Africa and Asia similar to American sunfishes; some are food fishes; many small ones are popular in aquariums +n02586238 important food fish of the Nile and other rivers of Africa and Asia Minor +n02586543 any of several large sharp-toothed marine food and sport fishes of the family Lutjanidae of mainly tropical coastal waters +n02587051 an esteemed food fish with pinkish red head and body; common in the Atlantic coastal waters of North America and the Gulf of Mexico +n02587300 found in shallow waters off the coast of Florida +n02587479 similar to and often marketed as `red snapper' +n02587618 food fish of warm Caribbean and Atlantic waters +n02587877 superior food fish of the tropical Atlantic and Caribbean with broad yellow stripe along the sides and on the tail +n02588286 medium-sized tropical marine food fishes that utter grunting sounds when caught +n02588794 a grunt with a red mouth that is found from Florida to Brazil +n02588945 a kind of grunt +n02589062 found off the West Indies and Florida +n02589196 of warm Atlantic waters +n02589316 a grunt found from Florida to Brazil and Gulf of Mexico +n02589623 black and gold grunt found from Bermuda to Caribbean to Brazil +n02589796 dusky grey food fish found from Louisiana and Florida southward +n02590094 found from Long Island southward +n02590495 spiny-finned food fishes of warm waters having well-developed teeth +n02590702 any of numerous marine percoid fishes especially (but not exclusively) of the family Sparidae +n02590987 important deep-bodied food and sport fish of warm and tropical coastal waters; found worldwide +n02591330 food fish of the Mediterranean and Atlantic coasts of Europe and America +n02591613 food fish of European coastal waters +n02591911 sea bream of warm Atlantic waters +n02592055 large (up to 20 lbs) food fish of the eastern coast of the United States and Mexico +n02592371 similar to sea bream; small spiny-finned fish found in bays along the southeastern coast of the United States +n02592734 from Florida and Bahamas to Brazil +n02593019 Australian food fish having a pinkish body with blue spots +n02593191 important dark-colored edible food and game fish of Australia +n02593453 found in Atlantic coastal waters of North America from South Carolina to Maine; esteemed as a panfish +n02593679 porgy of southern Atlantic coastal waters of North America +n02594250 widely distributed family of carnivorous percoid fishes having a large air bladder used to produce sound +n02594942 a kind of drumfish +n02595056 black-and-white drumfish with an erect elongated dorsal fin +n02595339 small silvery drumfish often mistaken for white perch; found along coasts of United States from New York to Mexico +n02595702 large edible fish found off coast of United States from Massachusetts to Mexico +n02596067 large important food fish of Australia; almost indistinguishable from the maigre +n02596252 large European marine food fish +n02596381 any of several fishes that make a croaking noise +n02596720 a silvery-bodied croaker with dark markings and tiny barbels +n02597004 a fish of the Pacific coast of North America +n02597367 any of several food fishes of North American coastal waters +n02597608 any of several food and game fishes of the drum family indigenous to warm Atlantic waters of the North American coast +n02597818 whiting of the southeastern coast of North America +n02597972 whiting of the east coast of United States; closely resembles king whiting +n02598134 bluish-grey whiting of California coast +n02598573 small silvery marine food fish found off California +n02598878 silvery and bluish drumfish of shallow California coastal waters +n02599052 any of several sciaenid fishes of North American coastal waters +n02599347 food and game fish of North American coastal waters with a mouth from which hooks easily tear out +n02599557 weakfish of southern Atlantic and Gulf Coasts of United States +n02599958 bottom dwelling marine warm water fishes with two barbels on the chin +n02600298 brightly colored tropical fishes with chin barbels +n02600503 body bright scarlet with 2 yellow to reddish strips on side +n02600798 schooling goatfish; greyish with yellow stripe +n02601344 freshwater or coastal food fishes a spindle-shaped body; found worldwide +n02601767 most important commercial mullet in eastern United States +n02601921 silvery mullet of Atlantic and Pacific coasts +n02602059 similar to the striped mullet and takes its place in the Caribbean region +n02602405 small fishes having a silver stripe along each side; abundant along the Atlantic coast of the United States +n02602760 a relatively large silversides of the Pacific coast of North America (known to reach 18 inches in length) +n02603317 any voracious marine fish of the genus Sphyraena having an elongated cylindrical body and large mouth with projecting lower jaw and long strong teeth +n02603540 large (up to 6 ft) greyish-brown barracuda highly regarded as a food and sport fish; may be dangerous to swimmers +n02603862 little-known nocturnal fish of warm shallow seas with an oblong compressed body +n02604157 schooling fishes mostly of Indian and western Pacific oceans; two species in western Atlantic +n02604480 food and game fish around Bermuda and Florida; often follow ships +n02604954 deep-bodied disk-shaped food fish of warmer western Atlantic coastal waters +n02605316 small usually brilliantly colored tropical marine fishes having narrow deep bodies with large broad fins; found worldwide +n02605703 any fish of the genus Chaetodon +n02605936 a butterfly fish of the genus Pomacanthus +n02606052 gold and black butterflyfish found from West Indies to Brazil +n02606384 small brilliantly colored tropical marine fishes of coral reefs +n02606751 a blue and yellow damselfish of Bermuda and Florida and the West Indies +n02607072 live associated with sea anemones +n02607201 an anemone fish of the genus Amphiprion +n02607470 large blue-grey black-striped damselfish; nearly worldwide +n02607862 chiefly tropical marine fishes with fleshy lips and powerful teeth; usually brightly colored +n02608284 found around the Great Barrier Reef +n02608547 large wrasse of western Atlantic; head of male resembles a pig's snout +n02608860 small wrasse of tropical Atlantic +n02608996 bluish and bronze wrasse; found from Florida keys to Brazil +n02609302 small Atlantic wrasse the male of which has a brilliant blue head +n02609823 a kind of razor fish +n02610066 large dark-colored food fish of the Atlantic coast of North America +n02610373 common in north Atlantic coastal waters of the United States +n02610664 gaudy tropical fishes with parrotlike beaks formed by fusion of teeth +n02610980 mullet-like tropical marine fishes having pectoral fins with long threadlike rays +n02611561 small large-mouthed tropical marine fishes common along sandy bottoms; males brood egg balls in their mouths; popular aquarium fishes +n02611898 heavy-bodied marine bottom-lurkers with eyes on flattened top of the head +n02612167 small pallid fishes of shoal tropical waters of North America and South America having eyes on stalks atop head; they burrow in sand to await prey +n02613181 small usually scaleless fishes with comb-like teeth living about rocky shores; are territorial and live in holes between rocks +n02613572 European scaleless blenny +n02613820 inhabits both coasts of tropical Atlantic +n02614140 mostly small blennioid fishes of coral reefs and seagrass beds +n02614482 tropical American fishes; males are aggressively defensive of their territory +n02614653 found from Florida to Cuba +n02614978 small eellike fishes common in shallow waters of the northern Atlantic +n02615298 slippery scaleless food fish of the northern Atlantic coastal waters +n02616128 eellike fishes found in subarctic coastal waters +n02616397 eellike Atlantic bottom fish with large almost vertical mouth +n02616851 large ferocious northern deep-sea food fishes with strong teeth and no pelvic fins +n02617537 an eelpout of northern Europe that is viviparous +n02618094 common along northeastern coast of North America +n02618513 very small silvery eellike schooling fishes that burrow into sandy beaches +n02618827 small often brightly colored scaleless marine bottom-dwellers; found in tropical and warm temperate waters of Europe and America +n02619165 small spiny-finned fish of coastal or brackish waters having a large head and elongated tapering body having the ventral fins modified as a sucker +n02619550 found in tropical coastal regions of Africa and Asia; able to move on land on strong pectoral fins +n02619861 tropical fish that resembles a goby and rests quietly on the bottom in shallow water +n02620167 pallid bottom-dwelling flat-headed fish with large eyes and a duck-like snout +n02620578 any of several small freshwater fishes that catch insects by squirting water at them and knocking them into the water; found in Indonesia and Australia +n02621258 brightly colored coral-reef fish with knifelike spines at the tail +n02621908 snake mackerels; elongated marine fishes with oily flesh; resembles mackerels; found worldwide +n02622249 predatory tropical fishes with jutting jaws and strong teeth +n02622547 large snake mackerel with rings like spectacles around its eyes +n02622712 very large deep-water snake mackerel +n02622955 long-bodied marine fishes having a long whiplike scaleless body and sharp teeth; closely related to snake mackerel +n02623445 important marine food and game fishes found in all tropical and temperate seas; some are at least partially endothermic and can thrive in colder waters +n02624167 any of various fishes of the family Scombridae +n02624551 important food fish of the northern Atlantic and Mediterranean; its body is greenish-blue with dark bars and small if any scales +n02624807 medium-sized mackerel of temperate Atlantic and Gulf of Mexico +n02624987 small mackerel found nearly worldwide +n02625258 large fast-moving predacious food and game fish; found worldwide +n02625612 any of several large marine food fishes of the genus Scomberomorus +n02625851 large mackerel with long pointed snout; important food and game fish of the eastern Atlantic coast southward to Brazil +n02626089 a large commercially important mackerel of the Atlantic coastal waters of North America +n02626265 large edible mackerel of temperate United States coastal Atlantic waters +n02626471 a Spanish mackerel of western North America +n02626762 any very large marine food and game fish of the genus Thunnus; related to mackerel; chiefly of warm waters +n02627037 large pelagic tuna the source of most canned tuna; reaches 93 pounds and has long pectoral fins; found worldwide in tropical and temperate waters +n02627292 largest tuna; to 1500 pounds; of mostly temperate seas: feed in polar regions but breed in tropics +n02627532 may reach 400 pounds; worldwide in tropics +n02627835 any of various scombroid fishes intermediate in size and characteristics between mackerels and tunas +n02628062 medium-sized tuna-like food fish of warm Atlantic and Pacific waters; less valued than tuna +n02628259 common bonito of Pacific coast of the Americas; its dark oily flesh cans well +n02628600 oceanic schooling tuna of considerable value in Pacific but less in Atlantic; reaches 75 pounds; very similar to if not the same as oceanic bonito +n02629230 fish whose flesh is dried and flaked for Japanese cookery; may be same species as skipjack tuna +n02629716 large toothless marine food fish with a long swordlike upper jaw; not completely cold-blooded i.e. they are able to warm their brains and eyes: worldwide in warm waters but feed on cold ocean floor coming to surface at night +n02630281 large pelagic game fish having an elongated upper jaw and long dorsal fin that resembles a sail +n02630615 a kind of sailfish +n02630739 giant warm-water game fish having a prolonged and rounded toothless upper jaw +n02631041 large long-jawed oceanic sport fishes; related to sailfishes and spearfishes; not completely cold-blooded i.e. able to warm their brains and eyes +n02631330 largest marlin; may reach 2000 pounds; found worldwide in warm seas +n02631475 large game fish in the Pacific Ocean; may reach 1000 pounds +n02631628 Pacific food and game fish marked with dark blue vertical stripes +n02631775 small marlin (to 180 pounds) of western Atlantic +n02632039 any of several large vigorous pelagic fishes resembling sailfishes but with first dorsal fin much reduced; worldwide but rare +n02632494 large silvery fish found worldwide in warm seas but nowhere common; resembles a whale and feeds on plankton +n02633422 small food fish of Atlantic coast +n02633677 smaller than Florida pompano; common in West Indies +n02633977 butterfish up to a foot long of Atlantic waters from Chesapeake Bay to Argentina +n02634545 larger butterfishes of the western Atlantic from the New York area to the northern Gulf of Mexico +n02635154 blackish fish of New England waters +n02635580 very small (to 3 inches) flattened marine fish with a sucking disc on the abdomen for clinging to rocks etc. +n02636170 large food fish of warm waters worldwide having long anal and dorsal fins that with a caudal fin suggest a three-lobed tail +n02636405 tripletail found from Cape Cod to northern South America +n02636550 tripletail found in the Pacific +n02636854 small silvery schooling fishes with protrusible mouths found in warm coastal waters +n02637179 popular panfish from Bermuda and Gulf of Mexico to Brazil +n02637475 silvery mojarra found along sandy shores of the western Atlantic +n02637977 a small fish of the genus Sillago; excellent food fish +n02638596 primitive fishes having thick bony scales with a shiny covering +n02639087 primitive long-bodied carnivorous freshwater fish with a very long dorsal fin; found in sluggish waters of North America +n02639605 primitive fish of the Mississippi valley having a long paddle-shaped snout +n02639922 fish of larger rivers of China similar to the Mississippi paddlefish +n02640242 large primitive fishes valued for their flesh and roe; widely distributed in the North Temperate Zone +n02640626 food and game fish of marine and fresh waters of northwestern coast of North America +n02640857 valuable source of caviar and isinglass; found in Black and Caspian seas +n02641379 primitive predaceous North American fish covered with hard scales and having long jaws with needlelike teeth +n02642107 fishes having the head armored with bony plates +n02642644 any of numerous carnivorous usually bottom-dwelling warm-water marine fishes found worldwide but most abundant in the Pacific +n02643112 marine fishes having a tapering body with an armored head and venomous spines +n02643316 a kind of scorpionfish +n02643566 brightly striped fish of the tropical Pacific having elongated spiny fins +n02643836 venomous tropical marine fish resembling a piece of rock +n02644113 marine food fish found among rocks along the northern coasts of Europe and America +n02644360 a rockfish of the Pacific coastal waters of North America +n02644501 a commercially important fish of the Pacific coast of North America +n02644665 a large fish of the Pacific coast of North America +n02644817 large fish of northern Atlantic coasts of America and Europe +n02645538 freshwater sculpin with a large flattened bony-plated head with hornlike spines +n02645691 small freshwater sculpin of Europe and North America +n02645953 large sculpin of western Atlantic; inflates itself when caught +n02646667 clumsy soft thick-bodied northern Atlantic fish with pelvic fins fused into a sucker; edible roe used for caviar +n02646892 any of several very small lumpfishes +n02648035 northern Atlantic sea poacher +n02648625 food fish of the northern Pacific +n02648916 common food and sport fish of western coast of North America +n02649218 greenling with whitish body marked with black bands +n02649546 food fish of the Indonesian region of the Pacific; resembles gurnards +n02650050 bottom-dwelling coastal fishes with spiny armored heads and fingerlike pectoral fins used for crawling along the sea bottom +n02650413 a kind of gurnard +n02650541 American gurnard; mostly found in bays and estuaries +n02651060 large searobin; found from Nova Scotia to Florida +n02652132 tropical fish with huge fanlike pectoral fins for underwater gliding; unrelated to searobins +n02652668 tropical marine fishes having the teeth fused into a beak and thick skin covered with bony plates or spines +n02653145 any of numerous compressed deep-bodied tropical fishes with sandpapery skin and erectile spines in the first dorsal fin +n02653497 tropical Atlantic fish +n02653786 narrow flattened warm-water fishes with leathery skin and a long file-like dorsal spine +n02654112 any of several brightly colored tropical filefishes +n02654425 any of numerous small tropical fishes having body and head encased in bony plates +n02654745 trunkfish having hornlike spines over the eyes +n02655020 any of numerous marine fishes whose elongated spiny body can inflate itself with water or air to form a globe; several species contain a potent nerve poison; closely related to spiny puffers +n02655523 puffers having rigid or erectile spines +n02655848 spines become erect when the body is inflated; worldwide in warm waters +n02656032 similar to but smaller than porcupinefish +n02656301 any of several fishes having rigid flattened spines +n02656670 among the largest bony fish; pelagic fish having an oval compressed body with high dorsal and anal fins and caudal fin reduced to a rudder-like lobe; worldwide in warm waters +n02656969 caudal fin has a central projection +n02657368 any of several families of fishes having flattened bodies that swim along the sea floor on one side of the body with both eyes on the upper side +n02657694 any of various European and non-European marine flatfish +n02658079 flounders with both eyes on the right side of the head +n02658531 large European food fish +n02658811 important food fish of Europe +n02659176 American flounder having a yellowish tail +n02659478 important American food fish in the winter +n02659808 European flatfish highly valued as food +n02660091 large American food fish +n02660208 marine food fish of the northern Atlantic or northern Pacific; the largest flatfish and one of the largest teleost fishes +n02660519 largest United States flatfish +n02660640 a righteye flounder found in the Pacific +n02661017 flatfishes with both eyes on the left side of the head +n02661473 flounder of southern United States +n02661618 flounder of eastern coast of North America +n02662239 a lefteye flounder found in coastal waters from New England to Brazil +n02662397 a whiff found in waters from the Bahamas and northern Gulf of Mexico to Brazil +n02662559 small food fishes of the Pacific coast of North America +n02662825 very thin translucent flounder of the Atlantic coast of North America +n02662993 European food fish +n02663211 a large brownish European flatfish +n02663485 left-eyed marine flatfish whose tail tapers to a point; of little commercial value +n02663849 right-eyed flatfish; many are valued as food; most common in warm seas especially European +n02664285 highly valued as food +n02664642 popular pale brown food flatfish of the Pacific coast of North America +n02665250 useless as food; in coastal streams from Maine to Texas and Panama +n02665985 a fabric woven from goat hair and camel hair +n02666196 a calculator that performs arithmetic functions by manually sliding counters on rods or in grooves +n02666501 a ship abandoned on the high seas +n02666624 the battery used to heat the filaments of a vacuum tube +n02666943 a building where animals are butchered +n02667093 (Arabic) a loose black robe from head to toe; traditionally worn by Muslim women +n02667244 a condenser having 2 or 3 lenses with wide aperture for use in microscopes +n02667379 a monastery ruled by an abbot +n02667478 a convent ruled by an abbess +n02667576 a church associated with a monastery or convent +n02667693 a surveying instrument consisting of a spirit level and a sighting tube; used to measure the angle of inclination of a line from the observer to the target +n02668393 a tool or machine used for wearing down or smoothing or polishing +n02668613 a primitive stone artifact (usually made of sandstone) used as an abrader +n02669295 a masonry support that touches and directly receives thrust or pressure of an arch or bridge +n02669442 an arch supported by an abutment +n02669534 a costume worn on formal occasions by the faculty or students of a university or college +n02669723 a gown worn by academics or judges +n02670186 a valve that regulates the supply of fuel to the engine +n02670382 a scientific instrument that increases the kinetic energy of charged particles +n02670683 a pedal that controls the throttle valve +n02670935 an instrument for measuring the acceleration of aircraft or rockets +n02671780 clothing that is worn or carried, but not part of your main clothing +n02672152 a lens implant containing a hinge that allows for both near and far vision (thus mimicking the natural lens of a young person) +n02672371 living quarters provided for public convenience +n02672831 a portable box-shaped free-reed instrument; the reeds are made to vibrate by air from the bellows controlled by the player +n02675077 a disk coated with cellulose acetate +n02675219 a fabric made from fibers of cellulose acetate +n02675522 a compound lens system that forms an image free from chromatic aberration +n02676097 a delay line based on the time of propagation of sound waves +n02676261 a device for amplifying or transmitting sound +n02676566 sound is not amplified by electrical means +n02676670 a modem that converts electrical signals to telephone tones and back again +n02676938 the citadel in ancient Greek towns +n02677028 a synthetic fabric +n02677136 used especially by artists +n02677436 an instrument for measuring the intensity of electromagnetic radiation (usually by the photochemical effect) +n02677718 the operating part that transmits power to a mechanism +n02678010 a type of LCD screen used for some portable computers; there is a separate circuit for each pixel +n02678384 a mechanism that puts something into automatic action +n02678897 device that enables something to be used in a way different from that for which it was intended or makes different pieces of apparatus compatible +n02679142 a machine that adds numbers +n02679257 a calculator that performs simple arithmetic functions +n02679961 a printer that automatically prints addresses on letters for mailing +n02680110 bandage consisting of a medical dressing of plain absorbent gauze held in place by a plastic or fabric tape coated with adhesive +n02680512 a nearly horizontal passage from the surface into a mine +n02680638 a hotel room that shares a wall with another hotel room +n02680754 can be changed to different settings +n02681392 sun-dried brick; used in hot dry climates +n02682311 an edge tool used to cut and shape wood +n02682407 a harp having strings tuned in unison; they sound when wind passes over them +n02682569 an apparatus for exposing something to the air (as sewage) +n02682811 a torpedo designed to be launched from an airplane +n02682922 a dispenser that holds a substance under pressure and that can release it as a fine spray (usually by means of a propellant gas) +n02683183 a trademark for a loosely woven cotton fabric that is used to make shirts and underwear +n02683323 a blanket knitted or crocheted in strips or squares; sometimes used as a shawl +n02683454 a wig that gives the appearance of an Afro hairdo +n02683558 a device injects fuel into a hot exhaust for extra thrust +n02683791 a fragrant lotion for a man's face after shaving +n02684248 pottery that is veined and mottled to resemble agate +n02684356 a device that causes material to gather into rounded balls +n02684515 ornamental tagged cord or braid on the shoulder of a uniform +n02684649 metal or plastic sheath over the end of a shoelace or ribbon +n02684962 a place of assembly for the people in ancient Greece +n02685082 a long plume (especially one of egret feathers) worn on a hat or a piece of jewelry in the shape of a plume +n02685253 an airfoil that controls lateral motion +n02685365 a safety restraint in an automobile; the bag inflates on collision and prevents the driver or passenger from being thrown forward +n02685701 a vehicular brake that operates by compressed air; especially for heavy vehicles +n02685995 an atomizer to spray paint by means of compressed air +n02686121 a subsonic jet airliner operated over short distances +n02686227 a compressor that takes in air at atmospheric pressure and delivers it at a higher pressure +n02686379 a system that keeps air cool and dry +n02686568 a vehicle that can fly +n02687172 a large warship that carries planes and has a long flat deck for takeoffs and landings +n02687423 the engine that powers and aircraft +n02687682 a mechanical device using confined air to absorb the shock of motion +n02687821 a large structure at an airport where aircraft can be stored and maintained +n02687992 a place where planes take off and land +n02688273 a filter that removes dust from the air that passes through it +n02688443 a device that provides reactive force when in motion relative to the surrounding air; can lift or control a plane in flight +n02689144 the framework and covering of an airplane or rocket (excluding the engines) +n02689274 a gun that propels a projectile by compressed air +n02689434 a hammer driven by compressed air +n02689748 a pneumatic horn +n02689819 a warm cupboard where you put newly washed clothes until they are completely dry +n02690373 a commercial airplane that carries passengers +n02690715 a mailer for airmail +n02691156 an aircraft that has a fixed wing and is powered by propellers or jets +n02692086 a propeller that rotates to push against air +n02692232 an airfield equipped with control tower and hangars as well as accommodations for passengers and cargo +n02692513 a pump that moves air in or out of something +n02692680 a shipboard radar that searches for aircraft +n02692877 a steerable self-propelled aircraft +n02693246 a terminal that serves air travelers or air freight +n02693413 a missile designed to be launched from one airplane at another +n02693540 a missile designed to be launched from an airplane at a target on the ground +n02694045 part of a church divided laterally from the nave proper by rows of pillars or columns +n02694279 (Arabian Nights) a magical lamp from which Aladdin summoned a genie +n02694426 a device that signals the occurrence of some undesirable event +n02694662 a clock that wakes a sleeper at some preset time +n02694966 a white linen liturgical vestment with sleeves; worn by priests +n02695627 any of various Spanish fortresses or palaces built by the Moors +n02695762 thermometer consisting of a glass capillary tube marked with degrees Celsius or Fahrenheit and containing alcohol which rises or falls as it expands or contracts with changes in temperature +n02696165 a tavern where ale is sold +n02696246 an obsolete kind of container used for distillation; two retorts connected by a tube +n02696569 device for measuring pain caused by pressure +n02696843 surveying instrument used with a plane table for drawing lines of sight on a distant object and for measuring angles +n02697022 surveying instrument consisting of the upper movable part of a theodolite including the telescope and its attachments +n02697221 women's clothing that has a fitted top and a flared skirt that is widest at the hemline +n02697576 a screw with a hexagonal hole in the head +n02697675 a wrench for Allen screws +n02697876 a wrench with a v-shaped jaw and serrations on one side (resembles the open jaws of an alligator) +n02698244 a tray for collecting the offering from a congregation +n02698473 a thin glossy fabric made of the wool of the Lama pacos, or made of a rayon or cotton imitation of that wool +n02698634 a stout staff with a metal point; used by mountain climbers +n02699494 a raised structure on which gifts or sacrifices to a god are made +n02699629 the table in Christian churches where communion is given +n02699770 a painted or carved screen placed above and behind an altar or communion table +n02699915 an instrument that measures the altitude and azimuth of celestial bodies; used in navigation +n02700064 an old term for an electric generator that produces alternating current (especially in automobiles) +n02700258 an instrument that measures the height above ground; used in navigation +n02700895 a violin made by Nicolo Amati or a member of his family +n02701002 a vehicle that takes people to and from hospitals +n02701260 area reserved for persons leading the responsive `amens' +n02701730 a free-reed instrument in which air is drawn in through reeds by suction bellows +n02702989 a meter that measures the flow of electrical current in amperes +n02703124 an atomic clock based on vibrational frequency of the nitrogen atom in the ammonia molecule +n02703275 projectiles to be fired from a gun +n02704645 an airplane designed to take off and land on water +n02704792 a flat-bottomed motor vehicle that can travel on land or water +n02704949 an oval large stadium with tiers of seats; an arena in which contests and spectacles are held +n02705201 a sloping gallery with seats for spectators (as in an operating room or theater) +n02705429 an ancient jar with two handles and a narrow neck; used to hold oil or wine +n02705944 electronic equipment that increases strength of signals passing through it +n02706221 a flask that has two handles; used by Romans for wines or oils +n02706806 an arcade featuring coin-operated game machines +n02708093 a clock that displays the time of day by the position of hands on a dial +n02708224 a computer that represents information by variable quantities (e.g., positions or voltages) +n02708433 a watch that represents time by the position of hands on a dial +n02708555 a beam balance of great precision used in quantitative chemical analysis +n02708711 an instrument that performs analyses +n02708885 a distorted projection or perspective; especially an image distorted in such a way that it becomes visible only when viewed in a special manner +n02709101 compound lens or lens system designed to be free of astigmatism and able to form approximately point images +n02709367 a mechanical device that prevents a vessel from moving +n02709637 the chain or rope that attaches an anchor to a vessel +n02709763 a light in the rigging of a ship that is riding at anchor +n02709908 a circuit in a computer that fires only when all of its inputs fire +n02710044 metal supports for logs in a fireplace +n02710201 an automaton that resembles a human being +n02710324 a chamber having very little reverberation +n02710429 a gauge for recording the speed and direction of wind +n02710600 a barometer that measures pressure without using fluids +n02711237 a series of X rays representing the action of the heart and its blood vessels after the injection of a radiopaque substance +n02711780 a modified microscope used to study capillary vessels +n02712545 an L-shaped metal bracket +n02712643 a bulldozer with an angled moldboard to push earth to one side +n02713003 a brace worn to strengthen the ankle +n02713218 a sock that reaches just above the ankle +n02713364 a shoe for a child or woman that has a strap around the ankle +n02713496 an elephant goad with a sharp spike and a hook +n02714315 a positively charged electrode by which electrons leave an electrical device +n02714535 the negatively charged terminal of a voltaic cell or storage battery that supplies current +n02714751 an electronic device that answers the telephone and records messages +n02715229 an electrical device that sends or receives radio or television signals +n02715513 a large entrance or reception room or area +n02715712 artillery designed to shoot upward at airplanes +n02716626 a defensive missile designed to shoot down incoming intercontinental ballistic missiles +n02720048 a paint used to protect against the accumulation of barnacles etc. on underwater surfaces +n02720576 worn by fliers and astronauts to counteract the forces of gravity and acceleration +n02721813 a piece of ornamented cloth that protects the back of a chair from hair oils +n02723165 an astringent substance applied to the skin to reduce perspiration +n02724722 a shipboard system to fire rockets at submarines +n02725872 a heavy block of iron or steel on which hot metals are shaped by hammering +n02726017 the traditional dress of Vietnamese women consisting of a tunic with long sleeves and panels front and back; the tunic is worn over trousers +n02726210 the great hall in ancient Persian palaces +n02726305 a suite of rooms usually on one floor of an apartment house +n02726681 a building that is divided into apartments +n02727016 an man-made opening; usually small +n02727141 a device that controls amount of light admitted +n02727426 a shed containing a number of beehives +n02727825 equipment designed to serve a specific function +n02728440 clothing in general +n02729222 a handcart from which apples and other fruit are sold in the street +n02729837 durable goods for home or office use +n02729965 a device or control that is very useful for a particular job +n02730265 a device for applying a substance +n02730568 (usually plural) furnishings and equipment (especially for a ship or hotel) +n02730930 a garment of cloth or leather or plastic that is tied about the waist and worn to protect your clothing +n02731251 (usually used in the plural) a cord used to tie an apron at the waist +n02731398 a domed or vaulted recess or projection on a building especially the east end of a church; usually contains the altar +n02731629 a device (trade name Aqua-Lung) that lets divers breathe under water; scuba is an acronym for self-contained underwater breathing apparatus +n02731900 a board that is pulled by a speedboat as a person stands on it and skims over the top of the water +n02732072 a tank or pool or bowl filled with water for keeping live fish and underwater animals +n02732572 an ornament that interlaces simulated foliage in an intricate design +n02732827 a framework that supports climbing plants +n02733213 a structure composed of a series of arches supported by columns +n02733524 (architecture) a masonry construction (usually curved) for spanning an opening and supporting the weight above it +n02734725 an architectural product or work +n02734835 the lowest part of an entablature; rests immediately on the capitals of the columns +n02735268 a support for the arch of the foot +n02735361 a lamp that produces light when electric current flows across the gap between two electrodes +n02735538 a waterproof overshoe that protects shoes from water or snow +n02735688 a part of a structure having some specific characteristic or function +n02736396 a passageway between buildings or giving access to a basement +n02736798 a sock knitted or woven with an argyle design (usually used in the plural) +n02737351 a boat built by Noah to save his family and animals from the flood +n02737660 the part of an armchair or sofa that supports the elbow and forearm of a seated person +n02738031 weaponry used by military or naval force +n02738271 coil in which voltage is induced by motion through a magnetic field +n02738449 a band worn around the upper arm +n02738535 chair with a support on each side for arms +n02738741 a medieval helmet with a visor and a neck guard +n02738859 a pad worn by football players and hockey goalkeepers +n02738978 a hole through which you put your arm and where a sleeve can be attached +n02739123 (archeology) a bracelet worn around the wrist or arm +n02739427 a band worn around the arm for decoration +n02739550 a large wardrobe or cabinet; originally used for storing weapons +n02739668 protective covering made of metal and used in combat +n02739889 a military combat vehicle on wheels with light armor (and usually a machine gun) +n02740061 an armor-plated truck with strong doors and locks used to transport money or valuables +n02740300 (military) an armored vehicle (usually equipped with caterpillar treads) that is used to transport infantry +n02740533 a vehicle that is protected by armor plate +n02740764 specially hardened steel plate used to protect fortifications or vehicles from enemy fire +n02741367 a place where arms are manufactured +n02741475 a support for the arm +n02742070 an obsolete firearm with a long barrel +n02742194 an arrangement of aerials spaced to give desired directional characteristics +n02742322 especially fine or decorative clothing +n02742468 a restraint that slows airplanes as they land on the flight deck of an aircraft carrier +n02742753 a projectile with a straight thin shaft and an arrowhead on one end and stabilizing vanes on the other; intended to be shot from a bow +n02743426 all the weapons and equipment that a country has +n02744323 a major or main route +n02744844 an X ray of a joint after the injection of a contrast medium +n02744961 a type of endoscope that is inserted into a joint for visual examination +n02745492 a pump that replaces the natural heart +n02745611 a navigational instrument based on a gyroscope; it artificially provides a simulated horizon for the pilot +n02745816 a metal or plastic part that is surgically implanted to replace a natural joint (possibly elbow or wrist but usually hip or knee) +n02746008 a machine that uses dialysis to remove impurities and waste products from the bloodstream before returning the blood to the patient's body +n02746225 a synthetic covering with two layers used experimentally to treat burn victims +n02746365 large but transportable armament +n02746595 a shell fired by artillery +n02746683 a factory loft that has been converted into an artist's workroom and living area +n02746978 a school specializing in art +n02747063 a cravat with wide square ends; secured with an ornamental pin +n02747177 a bin that holds rubbish until it is collected +n02747672 a receptacle fitted beneath the grate in which ashes collect and are removed +n02747802 a receptacle for the ash from smokers' cigars or cigarettes +n02748183 a short-handled device with a globe containing a sponge; used for sprinkling holy water +n02748359 the basin or other vessel that holds holy water in Roman Catholic Churches +n02748491 a pump that draws air or another gas through a liquid +n02749169 a powdered form of aspirin +n02749292 an armored vehicle with the chassis of a tank (but no turret) and a large gun; used as an antitank weapon and to support infantry +n02749479 any of the automatic rifles or semiautomatic rifles with large magazines designed for military use +n02749670 the slender spear of the Bantu-speaking people of Africa +n02749790 a group of machine parts that fit together to form a self-contained unit +n02749953 a unit consisting of components that have been fitted together +n02750070 a hall where many people can congregate +n02750169 a factory where manufactured parts are assembled into a finished product +n02750320 an arrangement of coils used in sensitive electrical instruments; the coils are arranged to give zero resultant external magnetic field when a current passes through them and to have zero electromotive force induced in them by an external magnetic field +n02750652 has a moving magnet and astatic coils arranged to cancel the effect of the Earth's magnetic field +n02751067 a transparent dome on top of an airplane where the navigator can make celestial observations +n02751215 an early form of sextant +n02751295 any telescope designed to collect and record electromagnetic radiation from cosmic sources +n02751490 a satellite equipped with a telescope to observe infrared radiation +n02752199 a place where reading materials are available +n02752496 a sock worn for athletic events +n02752615 a support for the genitals worn by men engaging in strenuous exercise +n02752810 a figure of a man used as a supporting column +n02752917 an instrument that measures rate of evaporation of water +n02753044 a nuclear weapon in which enormous energy is released by nuclear fission (splitting the nuclei of a heavy element like uranium 235 or plutonium 239) +n02753394 a timepiece that derives its time scale from the vibration of atoms or molecules +n02753710 a nuclear reactor that uses controlled nuclear fission to generate energy +n02754103 a dispenser that turns a liquid (such as perfume) into a fine mist +n02754656 the central area in a building; open to the sky +n02755140 a shallow and rectangular briefcase +n02755352 a connection that fastens things together +n02755529 a military submarine designed and armed to attack enemy shipping +n02755675 an electrical device for attenuating the strength of an electrical signal +n02755823 (architecture) a low wall at the top of the entablature; hides the roof +n02755984 a fan that blows heated air out of the attic of a building +n02756098 clothing of a distinctive style or for a particular occasion +n02756854 an amplifier that increases the amplitude of reproduced sound +n02756977 a cassette for audiotape +n02757061 compact discs used to reproduce sound (voice and music) +n02757337 an instrument used to measure the sensitivity of hearing +n02757462 a system of electronic equipment for recording or reproducing sound +n02757714 magnetic tape for use in recording sound +n02757810 a tape recording of sound +n02757927 materials using sight or sound to present information +n02758134 the area of a theater or concert hall where the audience sits +n02758490 hand tool for boring holes +n02758863 an expressway in a German-speaking country +n02758960 a device for heating substances above their boiling point; used to manufacture chemicals or to sterilize surgical instruments +n02759257 an optical device for focussing a camera or other instrument automatically +n02759387 an aircraft that is supported in flight by unpowered rotating horizontal wings (or blades); forward propulsion is provided by a conventional propeller +n02759700 a hypodermic syringe to use in injecting yourself with a liquid +n02759963 a firearm that reloads itself +n02760099 a cafeteria where food is served from machines +n02760199 a vending machine from which you can get food +n02760298 a choke that automatically controls the flow of air to the carburetor +n02760429 a firearm that reloads itself and keeps firing until the trigger is released +n02760658 a pistol that will keep firing until the ammunition is gone or the trigger is released +n02760855 light machine gun +n02761034 a transmission that automatically changes the gears according to the speed of the car +n02761206 equipment used to achieve automatic control or operation +n02761392 a mechanism that can move automatically +n02761557 the engine that propels an automobile +n02761696 a factory where automobiles are manufactured +n02761834 a device on an automobile for making a warning noise +n02762169 a navigational device that automatically keeps ships or planes or spacecraft on a steady course +n02762371 a radiogram produced by radiation emitted by the specimen being photographed +n02762508 an expressway in an Italian-speaking country +n02762725 (nautical) an extra boiler (as a ship's boiler that is used while the ship is in port) +n02762909 (nautical) a small engine (as one used on board ships to operate a windlass) +n02763083 a supplementary pump available if needed +n02763198 a submarine for research purposes +n02763306 a data storage device that is not the main memory of a computer +n02763604 a building where birds are kept +n02763714 a pointed tool for marking surfaces or for punching small holes +n02763901 a canopy made of canvas to shelter people or things from rain or sun +n02764044 an edge tool with a heavy bladed head mounted across a handle +n02764398 the handle of an ax +n02764505 the cutting head of an ax +n02764614 the center around which something rotates +n02764779 a shaft on which a wheel rotates +n02764935 an iron bar that serves as an axletree +n02765028 a dead axle on a carriage or wagon that has terminal spindles on which the wheels revolve +n02766168 a woman's headscarf folded into a triangle and tied under the chin; worn by Russian peasant women +n02766320 a small bed for babies; enclosed by sides to prevent the baby from falling +n02766534 a small vehicle with four wheels in which a baby or child is pushed around +n02766792 a small grand piano +n02767038 powder used to prevent a baby's diaper from chafing +n02767147 a shoe designed to be worn by infants +n02767433 a support that you can lean against while sitting +n02767665 the part of a garment that covers the back of your body +n02767956 any of the seats occupied by backbenchers in the House of Commons +n02768114 a board used to support the back of someone or something +n02768226 a raised vertical board with basket attached; used to play basketball +n02768433 the part of a network that connects other networks together +n02768655 a brace worn to support the back +n02768973 the board on which backgammon is played +n02769075 (computer science) the area of the screen in graphical user interfaces against which icons and windows appear +n02769290 an excavator whose shovel bucket is attached to a hinged boom and is drawn backward to move earth +n02769669 lighting from behind +n02769748 a bag carried by a strap on your back or shoulder +n02769963 a tent that can be carried in a backpack +n02770078 plate armor protecting the back; worn as part of a cuirass +n02770211 a porch for the back door +n02770585 a handsaw that is stiffened by metal reinforcement along the upper edge +n02770721 a long-handled scratcher for scratching your back +n02770830 a seat at the back of a vehicle (especially the seat at the back of an automobile) +n02771004 the typewriter key used for back spacing +n02771166 a second staircase at the rear of a building +n02771286 a stay that supports the back of something +n02771547 (baseball) a fence or screen (as behind home plate) to prevent the ball from traveling out of the playing field +n02771750 a sword with only one cutting edge +n02772101 a computer system for making backups +n02772435 the court on which badminton is played +n02772554 equipment for playing the game of badminton +n02772700 a light long-handled racket used by badminton players +n02773037 a flexible container with a single opening +n02773838 a portable rectangular container for carrying clothes +n02774152 a container used for carrying money and small personal items or accessories (especially by women) +n02774630 cases used to carry belongings when traveling +n02774921 the portable equipment and supplies of an army +n02775039 a railway car where passengers' bags are carried +n02775178 an area in an airport where arriving passengers can collect the luggage that has been carried in the hold of the aircraft +n02775483 a tubular wind instrument; the player blows air into a bag and squeezes it out through the drone +n02775689 the outer defensive wall that surrounds the outer courtyard of a castle +n02775813 the outer courtyard of a castle +n02775897 a temporary bridge designed for rapid construction +n02776007 a large pan that is filled with hot water; smaller pans containing food can be set in the larger pan to keep food warm or to cook food slowly +n02776205 something used to lure fish or other animals into danger so they can be trapped or killed +n02776505 a bright green fabric napped to resemble felt; used to cover gaming tables +n02776631 a workplace where baked goods (breads and cakes and pastries) are produced or sold +n02776825 a cap that is close-fitting and woolen and covers all of the head but the face +n02776978 a stringed instrument that has a triangular body and three strings +n02777100 a scale for weighing; depends on pull of gravity +n02777292 a gymnastic apparatus used by women gymnasts +n02777402 a wheel that regulates the rate of movement in a machine; especially a wheel oscillating against the hairspring of a timepiece to regulate its beat +n02777638 a cotton knit fabric used for underwear +n02777734 a platform projecting from the wall of a building and surrounded by a balustrade or railing or parapet +n02777927 an upper floor projecting from the rear over the main floor in an auditorium +n02778131 ornamented canopy supported by columns or suspended from a roof or projected from a wall (as over an altar) +n02778294 a wide (ornamented) belt worn over the right shoulder to support a sword or bugle by the left hip +n02778456 a large bundle bound for storage or transport +n02778588 wire used to make bales +n02778669 round object that is hit or thrown or kicked in games +n02779435 a spherical object used as a plaything +n02779609 heavy iron ball attached to a prisoner by a chain +n02779719 a joint that can rotate within a socket +n02779971 an electrical device for starting and regulating fluorescent and discharge lamps +n02780315 bearings containing small metal balls +n02780445 a general purpose cartridge having a primer and a ball and a full charge of powder +n02780588 floating ball that controls level in a water tank +n02780704 a suit or dress for formal occasions +n02780815 very short skirt worn by ballerinas +n02781121 the most formal gown; worn to a ball +n02781213 a moving-coil galvanometer that measures electric charge +n02781338 a missile that is guided in the first part of its flight but falls freely as it approaches target +n02781517 a physical pendulum consisting of a large mass suspended from a rod; when it is struck by a projectile its displacement is used to measure the projectile's velocity +n02781764 a medical instrument that measures the mechanical force of cardiac contractions and the amount of blood passing through the heart during a specified period by measuring the recoil of the body as blood is pumped from the ventricles +n02782093 large tough nonrigid bag filled with gas or heated air +n02782432 a bomb carried by a balloon +n02782602 any light loose sail +n02782681 a box where voters deposit their ballots +n02782778 a facility in which ball games are played (especially baseball games) +n02783035 a hammer with one round and one flat end; used in working metal +n02783161 a pen that has a small metal ball as the point of transfer of ink to paper +n02783324 large room used mainly for dancing +n02783459 any valve that checks flow by the seating of a ball +n02783900 a light raft made of balsa +n02783994 one of a number of closely spaced supports for a railing +n02784124 a ship designed to transport bananas +n02784998 a restraint put around something to hold it together +n02785648 a piece of soft material that covers and protects an injured part of the body +n02786058 trade name for an adhesive bandage to cover small cuts or blisters +n02786198 large and brightly colored handkerchief; often used as a neckerchief +n02786331 a light cylindrical box for holding light articles of attire (especially hats) +n02786463 a decorated dart that is implanted in the neck or shoulders of the bull during a bull fight +n02786611 a broad cartridge belt worn over the shoulder by soldiers +n02786736 a type of concertina popular in South America +n02786837 an endless saw consisting of a toothed metal band that is driven around two wheels +n02787120 a large ornate wagon for carrying a musical band +n02787269 a metal pipe filled with explosive, used to detonate land mines or to clear a path through barbed wire +n02787435 cheap showy jewelry or ornament on clothing +n02787622 a stringed instrument of the guitar family that has long neck and circular body +n02788021 long strip of cloth or paper used for decoration or advertising +n02788148 a railing at the side of a staircase or balcony to prevent people from falling +n02788386 an upholstered bench +n02788462 a loose fitting jacket; originally worn in India +n02788572 bowl for baptismal water +n02788689 a rigid piece of metal or wood; usually used as a fastening or obstruction or weapon +n02789487 a counter where you can obtain food or drink +n02790669 a rack to hold meat for cooking over hot charcoal usually out of doors +n02790823 strong wire with barbs at regular intervals used to prevent passage +n02790996 a bar to which heavy discs are attached at each end; used in weightlifting +n02791124 a large fixed adjustable chair in which barbers seat their customers +n02791270 a shop where men can get their hair cut +n02791532 a gun carriage elevated so that the gun can be fired over the parapet +n02791665 a tower that is part of a defensive structure (such as a castle) +n02791795 a bit for horses that is a solid bar of metal +n02792409 a vessel (such as a yacht) that can be chartered without a captain or crew or provisions +n02792552 a flatbottom boat for carrying heavy loads (especially on canals) +n02792948 a long pole used to propel or guide a barge +n02793089 the second lowest brass wind instrument +n02793199 a sailing ship with 3 (or more) masts +n02793296 a magnet in the form of a bar with magnetic poles at each end +n02793414 a catcher's mask with bars +n02793495 an outlying farm building for storing grain or animal feed and housing farm animals +n02793684 an opaque adjustable flap on a lamp fixture; used in photography to cut off light from particular areas +n02793842 the large sliding door of a barn +n02793930 a yard adjoining a barn +n02794008 a recording barometer; automatically records on paper the variations in atmospheric pressure +n02794156 an instrument that measures atmospheric pressure +n02794368 a knife resembling a cleaver; used in the Philippines +n02794474 a horse-drawn carriage having four wheels; has an outside seat for the driver and facing inside seats for two couples and a folding top +n02794664 an impact printer that uses a bar to carry the type slugs +n02794779 a building or group of buildings used to house military personnel +n02794972 an elongated tethered balloon or blimp with cables or net suspended from it to deter enemy planes that are flying low +n02795169 a cylindrical container that holds liquids +n02795528 a tube through which a bullet travels when a gun is fired +n02795670 a cheap drinking and dancing establishment +n02795783 a knot used for tying fishing leaders together; the ends of the two leaders are wrapped around each other two or three times +n02795978 a musical instrument that makes music by rotation of a cylinder studded with pegs +n02796207 the simplest form of vault; a single continuous arch +n02796318 a pin for holding women's hair in place +n02796412 a barrier (usually thrown up hastily) to impede the advance of an enemy +n02796623 a structure or object that impedes free movement +n02796995 a room or establishment where alcoholic drinks are served over a counter +n02797295 a cart for carrying small loads; has handles and one or more wheels +n02797535 a structure or device in which one end is counterbalanced by the other (on the principle of the seesaw) +n02797692 a support or foundation +n02797881 a place that the runner must touch before scoring +n02799071 a ball used in playing baseball +n02799175 an implement used in baseball by the batter +n02799323 a cap with a bill +n02799897 equipment used in playing baseball +n02800213 the handwear used by fielders in playing baseball +n02800497 the lowermost portion of a structure partly or wholly below ground level; often used for storage +n02800675 the ground floor facade or interior in Renaissance architecture +n02800940 a shipboard missile system +n02801047 a Roman building used for public administration +n02801184 an early Christian church designed like a Roman basilica; or a Roman Catholic church or cathedral accorded certain privileges +n02801450 ancient brass cannon +n02801525 a bowl-shaped vessel; usually used for holding food or liquids +n02801823 a medieval steel helmet +n02801938 a container that is usually woven and has handles +n02802215 horizontal circular metal hoop supporting a net through which players try to throw the basketball +n02802426 an inflated ball used in playing basketball +n02802544 the court on which basketball is played +n02802721 sports equipment used in playing basketball +n02802990 a cloth woven of two or more threads interlaced to suggest the weave of a basket +n02803349 the member with the lowest range of a family of musical instruments +n02803539 a large clarinet whose range is an octave below the B-flat clarinet +n02803666 a large drum with two heads; makes a sound of indefinite but very low pitch +n02803809 a tenor clarinet; pitched in the key of F below the B-flat clarinet +n02803934 largest and lowest member of the violin family +n02804123 the guitar with six strings that has the lowest pitch +n02804252 the lowest brass wind instrument +n02804414 a basket (usually hooded) used as a baby's bed +n02804515 a perambulator that resembles a bassinet +n02804610 a double-reed instrument; the tenor of the oboe family +n02805283 a tube with a rubber bulb used to take up and release melted fat or gravy in order to moisten roasting meat +n02805845 a cudgel used to give someone a beating on the soles of the feet +n02805983 projecting part of a rampart or other fortification +n02806088 a stronghold into which people could go for shelter during a battle +n02806379 a club used for hitting a ball in various games +n02806530 a vessel containing liquid in which something is immersed (as to process it or to maintain it at a constant temperature or to lubricate it) +n02806762 a wheelchair usually pushed by an attendant, as at a spa +n02806875 a building containing public baths +n02806992 a building containing dressing rooms for bathers +n02807133 a tight-fitting cap that keeps hair dry while swimming +n02807523 a scented oil added to your bath water +n02807616 a loose-fitting robe of towelling; worn after a bath or swim +n02807731 a room (as in a residence) containing a bathtub or shower and usually a washbasin and toilet +n02808185 a preparation that softens or scents a bath +n02808304 a large towel; to dry yourself after a bath +n02808440 a relatively large open container that you fill with water and use to wash the body +n02808829 navigable deep diving vessel for underwater exploration +n02808968 spherical deep diving apparatus (lowered by a cable) for underwater exploration +n02809105 a dyed fabric; a removable wax is used where the dye is not wanted +n02809241 a thin plain-weave cotton or linen fabric; used for shirts or dresses +n02809364 a thin tapered rod used by a conductor to lead an orchestra or choir +n02809491 a hollow cylinder passed from runner to runner in a relay race +n02809605 a hollow metal rod that is wielded or twirled by a drum major or drum majorette +n02809736 a short staff carried by some officials to symbolize an office or an authority +n02810139 a ram used to break down doors of fortified buildings +n02810270 an area on a baseball diamond (on either side of home plate) marked by lines within which the batter must stand when at bat +n02810471 a device that produces electricity; may have several primary or secondary cells arranged in parallel or series +n02810782 a series of stamps operated in one mortar for crushing ores +n02811059 a movable screen placed behind home base to catch balls during batting practice +n02811204 a glove worn by batters in baseball to give a firmer grip on the bat +n02811350 a helmet worn by the batter in baseball +n02811468 a broadax used as a weapon +n02811618 a cruiser of maximum speed and firepower +n02811719 a military uniform designed for field service +n02811936 a rampart built around the top of a castle with regular gaps for firing arrows or guns +n02812201 large and heavily armoured warship +n02812342 an arrangement of sights that makes possible the rapid aiming of a firearm at short ranges +n02812631 a compartment in an aircraft used for some specific purpose +n02812785 a compartment on a ship between decks; often used as a hospital +n02812949 a knife that can be fixed to the end of a rifle and used as a weapon +n02813252 an aromatic liquid originally obtained by distilling the leaves of the bayberry tree with rum +n02813399 a window that sticks out from the outside wall of a house +n02813544 a shop where a variety of goods are sold +n02813645 a street of small shops (especially in Orient) +n02813752 a portable rocket launcher used by infantrymen as an antitank weapon +n02813981 battery for supplying a constant positive voltage to the plate of a vacuum tube +n02814116 an air gun in which BBs are propelled by compressed air +n02814338 a house built on or near a beach +n02814428 very large towel to dry yourself after swimming +n02814533 a car that has a long body and rear door with space behind rear seat +n02814774 clothing to be worn at a beach +n02814860 a tower with a light that gives warning of shoals to passing ships +n02815478 a plane with a concave blade for making moulding with beadwork +n02815749 a cup (usually without a handle) +n02815834 a flatbottomed jar made of glass or plastic; used for chemistry +n02815950 long thick piece of wood or metal or concrete, etc., used in construction +n02816494 a balance consisting of a lever with two equal arms and a pan suspended from each arm +n02816656 a small cloth bag filled with dried beans; thrown in games +n02816768 a small skullcap; formerly worn by schoolboys and college freshmen +n02817031 a rotating support placed between moving parts to allow them to move easily +n02817251 a rein designed to keep the horse's head in the desired position +n02817386 any wall supporting a floor or the roof of a building +n02817516 tall hat; worn by some British soldiers on ceremonial occasions +n02817650 an implement for beating +n02817799 a musical instrument that sounds by means of a vibrating reed +n02818135 a hat made with the fur of a beaver (or similar material) +n02818254 a movable piece of armor on a medieval helmet used to protect the lower face +n02818687 a mercury thermometer that measures small differences or changes in temperature +n02818832 a piece of furniture that provides a place to sleep +n02819697 a foundation of earth or rock supporting a road or railroad track +n02820085 an overnight boardinghouse with breakfast +n02820210 coverings that are used on a bed +n02820556 a heavy corded fabric similar to corduroy; used for clothing +n02820675 a lightweight jacket worn over bedclothes (as when sitting in bed) +n02821202 a shallow vessel used by a bedridden patient for defecation and urination +n02821415 any of 4 vertical supports at the corners of a bedstead +n02821543 bedding rolled up for carrying +n02821627 a room used primarily for sleeping +n02821943 furniture intended for use in a bedroom +n02822064 a furnished sitting room with sleeping accommodations (and some plumbing) +n02822220 decorative cover for a bed +n02822399 (usually plural) one of the springs holding up the mattress of a bed +n02822579 the framework of a bed +n02822762 a photograph of a muscular man in minimal attire +n02822865 a man-made receptacle that houses a swarm of bees +n02823124 an electronic device that generates a series of beeps when the person carrying it is being paged +n02823335 a barrel that holds beer +n02823428 a bottle that holds beer +n02823510 a can that holds beer +n02823586 tavern with an outdoor area (usually resembling a garden) where beer and other alcoholic drinks are served +n02823750 a relatively large glass for serving beer +n02823848 a hall or barroom featuring beer and (usually) entertainment +n02823964 a drip mat placed under a glass of beer +n02824058 a mug intended for serving beer +n02824152 a wood or metal bar to which a rope can be secured (as on a ship or in mountain climbing) +n02824319 a room (often at the top of a tower) where bells are hung +n02824448 a hollow device made of metal that makes a ringing sound when struck +n02825153 a round arch resting on corbels +n02825240 a stoneware drinking jug with a long neck; decorated with a caricature of Cardinal Bellarmine (17th century) +n02825442 trousers with legs that flare; worn by sailors; absurdly wide hems were fashionable in the 1960s +n02825657 a small shelter for bells; has a gable or shed roof +n02825872 a foundry where bells are cast +n02825961 an extension of a gable that serves as a bell cote +n02826068 a bell-shaped glass cover used to protect and display delicate objects or to cover scientific apparatus or to contain gases +n02826259 a mechanical device that blows a strong current of air; used to make a fire burn more fiercely or to sound a musical instrument +n02826459 a handle or cord that is pulled to ring a doorbell or a servant's bell etc. +n02826589 a button that is pushed to ring a bell +n02826683 a seat that has a bell shape (on some 18th century chairs) +n02826812 a bell-shaped tent +n02826886 a tower that supports or shelters a bell +n02827148 a cloth band that is worn around the waist (as on infants until the navel has healed) +n02827606 a band to tie or buckle around the body (usually at the waist) +n02828115 ammunition (usually of small caliber) loaded in flexible linked strips for use in a machine gun +n02828299 the buckle used to fasten a belt +n02828427 the material of which belts are made +n02828884 a long seat for more than one person +n02829246 a clamp used to hold work in place on a workbench +n02829353 any of various stops on a workbench against which work can be pushed (as while chiseling or planing) +n02829510 lathe mounted on a workbench +n02829596 a small punch press mounted on a workbench +n02830157 a tool for bending +n02831237 a cap with no brim or bill; made of soft cloth +n02831335 a limousine with a glass partition between the front and back seats +n02831595 short pants that end at the knee +n02831724 a bed on a ship or train; usually in tiers +n02831894 a broom made of twigs tied together on a long handle +n02831998 a refractory-lined furnace used to convert pig iron into steel by the Bessemer process +n02833040 a house of worship (especially one for sailors) +n02833140 a licensed bookmaker's shop that is not at the race track +n02833275 a cyclotron that accelerates protons up to several billion electron volts +n02833403 a hand tool consisting of two rules that are hinged together so you can draw or measure angles of any size +n02833793 gears that mesh at an angle +n02834027 the ordinary clarinet with a middle range +n02834397 top part of an apron; covering the chest +n02834506 an attractive outfit +n02834642 a cocked hat with the brim turned up to form two points +n02834778 a wheeled vehicle that has two wheels and is moved by foot pedals +n02835271 a bicycle with two sets of pedals and two seats +n02835412 a chain that transmits the power from the pedals to the rear wheel of a bicycle +n02835551 a clip worn around a cyclist's ankles that keeps trousers from becoming caught in the bicycle chain +n02835724 a small pump that fills bicycle tires with air +n02835829 a rack for parking bicycles +n02835915 a seat for the rider of a bicycle +n02836035 the wheel of a bicycle +n02836174 a basin for washing genitals and anal area +n02836268 a stand to support a corpse or a coffin prior to burial +n02836392 a coffin along with its stand +n02836513 an interior door +n02836607 eyeglasses having two focal lengths, one for near vision and the other for far vision +n02836900 a reliable and deadly 15,000-pound fragmentation bomb that explodes just above ground with a large radius; the largest conventional bomb in existence; used in Afghanistan +n02837134 the large display board at the New York Stock Exchange that reports on stocks traded on the exchange +n02837567 the middle part of a slack rope (as distinguished from its ends) +n02837789 a woman's very brief bathing suit +n02837887 small and tight-fitting underpants; worn by women +n02838014 where the sides of the vessel curve in to form the bottom +n02838178 either of two lengthwise fins attached along the outside of a ship's bilge; reduces rolling +n02838345 a pump to remove bilgewater +n02838577 (nautical) a well where seepage drains to be pumped away +n02838728 a brim that projects to the front to shade the eyes +n02838958 a long-handled saw with a curved blade +n02839110 large outdoor signboard +n02839351 ball used in playing billiards +n02839592 a room in which billiards is played +n02839910 a container; usually has a lid +n02840134 something used to tie or bind +n02840245 holds loose papers or magazines +n02840515 a workshop where books are bound +n02840619 the protective covering on the front, back, and spine of a book +n02841063 a plastic bag used to line a trash or garbage bin +n02841187 a nonmagnetic housing for a ship's compass (usually in front of the helm) +n02841315 an optical instrument designed for simultaneous use by both eyes +n02841506 a light microscope adapted to the use of both eyes +n02841641 a microchip that uses tiny strands of DNA to latch onto and quickly recognize thousands of genes at a time; intended for use in a biological environment +n02841847 a loose one-piece garment worn to protect the wearer against dangerous biological or chemical agents +n02842133 a kind of early movie projector +n02842573 old fashioned airplane; has two wings one above the other +n02842809 a switch consisting of a twig or a bundle of twigs from a birch tree; used to hit people as punishment +n02843029 a canoe made with the bark of a birch tree +n02843158 an ornamental basin (usually in a garden) for birds to bathe in +n02843276 a cage in which a bird can be kept +n02843465 a device for imitating a birdcall +n02843553 an outdoor device that supplies food for wild birds +n02843684 a shelter for birds +n02843777 small lead shot for shotgun shells +n02843909 a stiff cap with ridges across the crown; worn by Roman Catholic clergy +n02844056 (chess) a piece that can be moved diagonally over unoccupied squares of the same color +n02844214 a small informal restaurant; serves wine +n02844307 the cutting part of a drill; usually pointed and threaded and is replaceable in a brace or bitstock or drill press +n02844714 piece of metal held in horse's mouth by reins and used to control the horse while riding +n02845130 a removable dental appliance that is worn in the palate for diagnostic or therapeutic purposes +n02845293 a dental X-ray film that can be held in place by the teeth during radiography +n02845985 a protective coating of asphalt and filter used on structural metals that are exposed to weathering +n02846141 black clothing (worn as a sign of mourning) +n02846260 (board games) the darker pieces +n02846511 sheet of slate; for writing with chalk +n02846619 an eraser that removes chalk marks from blackboard +n02846733 equipment that records information about the performance of an aircraft during flight +n02846874 the makeup (usually burnt cork) used by a performer in order to imitate a Negro +n02847461 a piece of metal covered by leather with a flexible handle; used for hitting people +n02847631 a black bow tie worn with a dinner jacket +n02847852 a wash that colors a surface black +n02848118 a bag that fills with air +n02848216 the flat part of a tool or weapon that (usually) has a cutting edge +n02848523 flat surface that rotates and pushes against air or water +n02848806 the part of the skate that slides on the ice +n02848921 a cartridge containing an explosive charge but no bullet +n02849154 bedding that keeps a person warm in bed +n02849885 a furnace for smelting of iron from iron oxide ores; combustion is intensified by a blast of air +n02850060 a small tube filled with detonating substances; used to detonate high explosives +n02850358 lightweight single-breasted jacket; often striped in the colors of a club or school +n02850732 an electrically powered mixer with whirling blades that mix or chop or liquefy foods +n02850950 a small nonrigid airship used for observation or as a barrage balloon +n02851099 a protective covering that keeps things out or hinders sight +n02851795 a curve or bend in the road that you cannot see around as you are driving +n02851939 a cloth used to cover the eyes +n02852043 flashy, ostentatious jewelry +n02852173 a light that flashes on and off; used as a signal or to send messages +n02852360 packaging in which a product is sealed between a cardboard backing and clear plastic cover +n02853016 housing in a large building that is divided into separate units +n02853218 prevents access or progress +n02853336 a ship that runs through or around a naval blockade +n02853745 pulley blocks with associated rope or cable +n02853870 a large bomb used to demolish extensive areas (as a city block) +n02854378 a stronghold that is reinforced for protection from enemy fire; with apertures for defensive fire +n02854532 a small plane used on end grains of wood +n02854630 a motor vehicle equipped to collect blood donations +n02854739 underpants worn by women +n02854926 a top worn by women +n02855089 a device that produces a current of air +n02855390 a burner that mixes air and gas to produce a very hot flame +n02855701 a high shoe with laces over the tongue +n02855793 a club used as a weapon +n02855925 blue clothing +n02856013 a blue poker chip with the highest value +n02856237 a short musket of wide bore with a flared muzzle +n02856362 a file with parallel edges +n02857365 a structure of boards +n02857477 a private house that provides accommodations and meals for paying guests +n02857644 a room where a committee meets (such as the board of directors of a company) +n02857907 the boarding that surrounds an ice hockey rink +n02858304 a small vessel for travel on water +n02859184 a stiff hat made of straw with a flat crown +n02859343 pole-handled hook used to pull or push boats +n02859443 a shed at the edge of a river or lake; used to store boats +n02859557 a seat consisting of a board and a rope; used while working aloft or over the side of a ship +n02859729 a train taking passengers to or from a port +n02859955 a place where boats are built or maintained or stored +n02860415 a winder around which thread or tape or film or other flexible materials can be wound +n02860640 a flat wire hairpin whose prongs press tightly together; used to hold bobbed hair in place +n02860847 a long racing sled (for 2 or more people) with a steering mechanism +n02861022 formerly two short sleds coupled together +n02861147 wooden ball that is bowled in the Italian game of bocce +n02861286 a small Hispanic shop selling wine and groceries +n02861387 part of a dress above the waist +n02861509 a blunt needle for threading ribbon through loops +n02861658 a small sharp-pointed tool for punching holes in leather or fabric +n02861777 formerly a long hairpin; usually with an ornamental head +n02861886 the external structure of a vehicle +n02862048 armor that protects the wearer's whole body +n02862916 lotion applied to the body after bathing +n02863014 a one-piece tight-fitting undergarment for women that covers the torso (and may have sleeves and legs) +n02863176 plethysmograph consisting of a chamber surrounding the entire body; used in studies of respiration +n02863340 a pad worn by hockey goalkeeper +n02863426 the exterior body of a motor vehicle +n02863536 an automatic double-barreled antiaircraft gun +n02863638 an unidentified (and possibly enemy) aircraft +n02863750 sealed vessel where water is converted to steam +n02864122 a nuclear reactor that uses water as a coolant and moderator; the water boils in the reactor core and the steam produced can drive a steam turbine +n02864504 a short jacket; worn mostly by women +n02864593 a strong post (as on a wharf or quay or ship for attaching mooring lines) +n02864987 long heavy knife with a single edge; of Philippine origin +n02865351 a cord fastened around the neck with an ornamental clasp and worn as a necktie +n02865665 a screw that screws into a nut to form a fastener +n02865931 the part of a lock that is engaged or withdrawn with a key +n02866106 a sliding bar in a breech-loading firearm that ejects an empty cartridge and replaces it and closes the breech +n02866386 an implement for cutting bolts +n02866578 an explosive device fused to explode under specific conditions +n02867401 a twilled fabric used for dresses; the warp is silk and the weft is worsted +n02867592 strong sealed vessel for measuring heat of combustion +n02867715 a military aircraft that drops bombs during flight +n02867966 a jacket gathered into a band at the waist +n02868240 one of the smaller bombs that are released from a cluster bomb +n02868429 a device on an aircraft for carrying bombs +n02868546 an explosive bomb or artillery shell +n02868638 a chamber (often underground) reinforced against bombing and provided with food and living facilities; used during air raids +n02868975 a small porous bowl made of bone ash used in assaying to separate precious metals from e.g. lead +n02869155 fine porcelain that contains bone ash +n02869249 a percussion instrument consisting of a pair of hollow pieces of wood or bone (usually held between the thumb and fingers) that are made to click together (as by Spanish dancers) in rhythm with the dance +n02869563 any wheeled vehicle that is dilapidated and uncomfortable +n02869737 a small drum; played with the hands +n02869837 a hat tied under the chin +n02870526 a number of sheets (ticket or stamps etc.) bound together on one edge +n02870676 a bag in which students carry their books +n02870772 a bookbinder's workshop; a place for binding books +n02870880 a piece of furniture with shelves for storing books +n02871005 a support placed at the end of a row of books to keep them upright (on a shelf or table) +n02871147 a marker (a piece of paper or ribbon) placed between the pages of a book to mark the reader's place +n02871314 a van with shelves of books; serves as a mobile library or bookstore +n02871439 a shelf on which to keep books +n02871525 a shop where books are sold +n02871631 any of various more-or-less horizontal spars or poles used to extend the foot of a sail or for handling cargo or in mooring +n02871824 a pole carrying an overhead microphone projected over a film or tv set +n02871963 a curved piece of wood; when properly thrown will return to thrower +n02872333 the first stage of a multistage rocket +n02872529 an amplifier for restoring the strength of a transmitted signal +n02872752 footwear that covers the whole foot and lower leg +n02873520 protective casing for something that resembles a leg +n02873623 camp for training military recruits +n02873733 a slipper that is soft and wool (for babies) +n02873839 small area set off by walls for special use +n02874086 a small shop at a fair; for selling goods or entertainment +n02874214 a table (in a restaurant or bar) surrounded by two high-backed benches +n02874336 protective stockings worn with or in place of boots +n02874442 has V-shaped notch for pulling off boots +n02874537 a long lace for fastening boots +n02874642 the part of a boot above the instep +n02874750 a strap that is looped and sewn to the top of a boot for pulling it on +n02875436 a drill for penetrating rock +n02875626 an ionization chamber lined with boron or filled with boron trifluoride gas for counting low velocity neutrons +n02875948 formerly a British reform school for youths considered too young to send to prison +n02876084 cloth that covers the chest or breasts +n02876326 a rocking chair that has a high spindle back and a decorative top panel +n02876457 a wine bottle made of leather +n02876657 a glass or plastic vessel used for storing drinks or other liquids; typically cylindrical without handles and with a narrow neck that can be plugged or capped +n02877266 a vessel fitted with a flexible teat and filled with milk or formula; used as a substitute for breast feeding infants and very young children +n02877513 a place where bottles can be deposited for recycling +n02877642 a cylindrical brush on a thin shaft that is used to clean bottles +n02877765 a cap that seals a bottle +n02877962 an opener for removing caps or corks from bottles +n02878107 a plant where beverages are put into bottles with caps +n02878222 a cargo ship +n02878425 a fabric of uneven yarn that has an uneven knobby effect +n02878534 a lady's bedroom or private sitting room +n02878628 an inlaid furniture decoration; tortoiseshell and yellow and white metal form scrolls in cabinetwork +n02878796 an antipersonnel land mine +n02879087 an arrangement of flowers that is usually given as a present +n02879309 a shop that sells women's clothes and jewelry +n02879422 a flower that is worn in a buttonhole +n02879517 a slightly curved piece of resilient wood with taut horsehair strands; used in playing certain stringed instruments +n02879718 a weapon for shooting arrows, composed of a curved piece of resilient wood with a taut cord to propel the arrow +n02880189 a knot with two loops and loose ends; used to tie shoelaces +n02880393 a weapon consisting of arrows and the bow to shoot them +n02880546 stringed instruments that are played with a bow +n02880842 a stout hunting knife with a single edge +n02880940 a dish that is round and open at the top for serving foods +n02881193 a round vessel that is open at the top; used chiefly for holding food or liquids +n02881546 a wooden ball (with flattened sides so that it rolls on a curved course) used in the game of lawn bowling +n02881757 a felt hat that is round and hard with a narrow brim +n02881906 a loop knot that neither slips nor jams +n02882190 a building that contains several alleys for bowling +n02882301 a large ball with finger holes used in the sport of bowling +n02882483 equipment used in bowling +n02882647 a club-shaped wooden object used in bowling; set up in triangular groups of ten as the target +n02882894 a special shoe worn when bowling +n02883004 a spar projecting from the bow of a vessel +n02883101 the string of an archer's bow +n02883205 a man's tie that ties in a bow +n02883344 a (usually rectangular) container; may have a lid +n02884225 private area in a theater or grandstand where a small group can watch the performance +n02884450 the driver's seat on a coach +n02884859 a beam built up from boards; has a hollow rectangular cross section +n02884994 a simple camera shaped like a rectangular box +n02885108 a freight car with roof and sliding doors in the sides +n02885233 a short coat that hangs loosely from the shoulders +n02885338 equipment used in boxing +n02885462 boxing equipment consisting of big and padded coverings for the fists of the fighters; worn for the sport of boxing +n02885882 the office where tickets of admission are sold +n02886321 a coiled bedspring in a frame that is covered with cloth +n02886434 a wrench with a closed loop (a socket) that fits over a nut or bolt head +n02886599 a structural member used to stiffen a framework +n02887079 an appliance that corrects dental irregularities +n02887209 a support that steadies or strengthens something else +n02887489 elastic straps that hold trousers up (usually used in the plural) +n02887832 a drill consisting of a bit and a brace to hold and turn it +n02887970 jewelry worn around the wrist for decoration +n02888270 a protective covering for the wrist or arm that is used in archery and fencing and other sports +n02888429 a wrench shaped like a brace (has a handle shaped like a crank) and a socket head +n02888569 a support projecting from a wall (as to hold a shelf) +n02888898 an awl for making small holes for brads or small screws +n02889425 a restraint used to slow or stop a vehicle +n02889646 anything that slows or hinders a process +n02889856 a band that can be tightened around a shaft to stop its rotation +n02889996 a cylinder that contains brake fluid that is compressed by a piston +n02890188 a disk or plate that is fixed to the wheel; pressure is applied to it by the brake pads +n02890351 a hollow cast-iron cylinder attached to the wheel that forms part of the brakes +n02890513 the lining on the brake shoes that comes in contact with the brake drum +n02890662 one of the pads that apply friction to both sides of the brake disk +n02890804 foot pedal that moves a piston in the master brake cylinder +n02890940 a restraint provided when the brake linings are moved hydraulically against the brake drum to retard the wheel's rotation +n02891188 a braking device consisting of a combination of interacting parts that work to slow a motor vehicle +n02891788 a wind instrument that consists of a brass tube (usually of variable length) that is blown by means of a cup-shaped or funnel-shaped mouthpiece +n02892201 a memorial made of brass +n02892304 an ornament or utensil made of brass +n02892392 armor plate that protects the arm +n02892499 a small restaurant serving beer and wine as well as food; usually cheap +n02892626 (formerly) a golfing wood with a face more elevated that a driver but less than a spoon +n02892767 an undergarment worn by women to support their breasts +n02892948 a small metal weapon; worn over the knuckles on the back of the hand +n02893269 a partition (often temporary) of planks or cloth that is used to control ventilation in a mine +n02893418 large metal container in which coal or charcoal is burned; warms people who must stay outside for long times +n02893608 a basket for serving bread +n02893692 a container used to keep bread or cake in +n02893941 a knife used to cut bread +n02894024 an article that is fragile and easily broken +n02894158 a place for light meals (usually near a kitchen) +n02894337 a table where breakfast is eaten +n02894605 a protective structure of stone or concrete; extends from shore into the water to prevent a beach from washing away +n02894847 a portable drill with a plate that is pressed against the chest to force the drill point into the work +n02895008 an implant for cosmetic purposes to replace a breast that has been surgically removed +n02895154 armor plate that protects the chest; the front part of a cuirass +n02895328 a pocket inside of a man's coat +n02895438 a device that measures chemicals (especially the alcohol content) in a person's expired breath +n02896074 a metal block in breech-loading firearms that is withdrawn to insert a cartridge and replaced to close the breech before firing +n02896294 a garment that provides covering for the loins +n02896442 trousers ending above the knee +n02896694 a life buoy in the form of a ring with short breeches for support; used to transfer people from a ship +n02896856 a gun that is loaded at the breech +n02896949 a nuclear reactor that produces more fissile material than it burns +n02897097 a submachine gun operated by gas pressure; used by the British in World War II +n02897389 a combination brewery and restaurant; beer is brewed for consumption on the premises and served along with food +n02897820 rectangular block of clay baked by the sun or in a kiln; used as a building or paving material +n02898093 a kiln for making bricks +n02898173 a hammer used in laying bricks +n02898269 a trowel used in masonry +n02898369 masonry done with bricks and mortar +n02898585 a gown worn by the bride at a wedding +n02898711 a structure that allows people or vehicles to cross an obstacle such as a river or canal or railway etc. +n02899439 the link between two lenses; rests on the nose +n02900160 headgear for a horse; includes a headstall and bit and reins to give the rider or driver control +n02900459 a path suitable for riding or leading horses (but not for cars) +n02900594 a bit resembling a snaffle bit; used with a separate curb +n02900705 a case with a handle; for carrying papers or files or books +n02900857 a bomb consisting of an explosive and timer hidden inside a briefcase +n02900987 a portable computer housed in a box that resembles a briefcase +n02901114 short tight-fitting underpants (trade name Jockey shorts) +n02901259 a penal institution (especially on board a ship) +n02901377 two-masted sailing vessel square-rigged on both masts +n02901481 a medieval coat of chain mail consisting of metal rings sewn onto leather or cloth +n02901620 two-masted sailing vessel square-rigged on the foremast and fore-and-aft rigged on the mainmast +n02901793 a pomade to make the hair manageable and lustrous +n02901901 a code name for a small computerized heat-seeking missile that was supposed to intercept and destroy enemy missiles +n02902079 a circular projection that sticks outward from the crown of a hat +n02902687 a brush that is made with the short stiff hairs of an animal or plant +n02902816 informal term for breeches +n02902916 an arrow with a wide barbed head +n02903006 a large ax with a broad cutting blade +n02903126 a small spit or skewer +n02903204 a mechanical device for scattering something (seed or fertilizer or sand etc.) in all directions +n02903727 a closely woven silk or synthetic fabric with a narrow crosswise rib +n02903852 a densely textured woolen fabric with a lustrous finish +n02904109 a short-handled hatchet with a broad blade opposite a hammerhead +n02904233 a carpet woven on a wide loom to obviate the need for seams +n02904505 all of the armament that is fired from one side of a warship +n02904640 a sword with a broad blade and (usually) two cutting edges; used to cut rather than stab +n02904803 thick heavy expensive material with a raised pattern +n02904927 a thick and heavy shoe +n02905036 an oven or part of a stove used for broiling +n02905152 an arch with a gap at the apex; the gap is usually filled with some decoration +n02905886 a slender tubular instrument used to examine the bronchial tubes +n02906734 a cleaning implement for sweeping; bundle of straws or twigs attached to a long handle +n02906963 a small room for storing brooms and other cleaning equipment +n02907082 the handle of a broom +n02907296 light carriage; pulled by a single horse +n02907391 a portable .30 caliber automatic rifle operated by gas pressure and fed by cartridges from a magazine; used by United States troops in World War I and in World War II and in the Korean War +n02907656 a belt-fed machine gun capable of firing more than 500 rounds per minute; used by United States troops in World War II and the Korean War +n02907873 a row house built of brownstone; reddish brown in color +n02908123 a woman's short housecoat or wrapper +n02908217 an implement that has hairs or bristles firmly set into a handle +n02908773 a carpet with a strong linen warp and a heavy pile of colored woolen yarns drawn up in uncut loops to form a pattern +n02908951 fine lace with a raised or applique design +n02909053 a dome-shaped covering made of transparent glass or plastic +n02909165 an instrument that records the tracks of ionizing particles +n02909285 a kind of ink-jet printer +n02909706 an open horse-drawn carriage with four wheels; has a seat attached to a flexible board between the two axles +n02909870 a roughly cylindrical vessel that is open at the top +n02910145 a low single seat as in cars or planes +n02910241 (formerly) a cheap saloon selling liquor by the bucket +n02910353 fastener that fastens together two ends of a belt or strap; often has loose prong +n02910542 a coarse cotton fabric stiffened with glue; used in bookbinding and to stiffen clothing +n02910701 a saw that is set in a frame in the shape of an H; used with both hands to cut wood that is held in a sawbuck +n02910864 breeches made of buckskin +n02910964 an implement consisting of soft material mounted on a block; used for polishing (as in manicuring) +n02911332 a power tool used to buff surfaces +n02911485 (computer science) a part of RAM used for temporary storage of data that is waiting to be sent to a device; used to compensate for differences in the rate of flow of data between components of a computer system +n02912065 a piece of furniture that stands at the side of a dining room; has shelves and drawers +n02912319 a wheel that is covered with soft material +n02912557 a small lightweight carriage; drawn by a single horse +n02912894 a brass instrument without valves; used for military calls and fanfares +n02913152 a structure that has a roof and walls and stands more or less permanently in one place +n02914991 a whole structure (as a building) made up of interconnected or related structures +n02915904 a clip with a spring that closes the metal jaws +n02916065 a wrench designed to provide a firm grip on something +n02916179 large powerful tractor; a large blade in front flattens areas of ground +n02916350 a projectile that is fired from a gun +n02916936 a vest capable of resisting the impact of a bullet +n02917067 a high-speed passenger train +n02917377 a portable loudspeaker with built-in microphone and amplifier +n02917521 gold or silver in bars or ingots +n02917607 a small carpenter's plane with the cutting edge near the front +n02917742 a large cell where prisoners (people awaiting trial or sentence or refugees or illegal immigrants) are confined together temporarily +n02917964 a place on a baseball field where relief pitchers can warm up during a game +n02918112 a stadium where bullfights take place +n02918330 a fencelike structure around a deck (usually plural) +n02918455 a small boat that ferries supplies and commodities for sale to a larger ship at anchor +n02918595 a mechanical device consisting of bars at either end of a vehicle to absorb shock and prevent serious damage +n02918831 a glass filled to the brim (especially as a toast) +n02918964 a small low-powered electrically powered vehicle driven on a special platform where there are many others to be dodged +n02919148 vertical bars attached to a bumper to prevent locking bumpers with another vehicle +n02919308 a jack for lifting a motor vehicle by the bumper +n02919414 a package of several things tied together for carrying or storing +n02919648 a plug used to close a hole in a barrel or flask +n02919792 a small house with a single story +n02919890 an elasticized rope +n02919976 a hole in a barrel or cask; used to fill or empty it +n02920083 a rough bed (as at a campsite) +n02920164 a long trough for feeding cattle +n02920259 beds built one above the other +n02920369 a hazard on a golf course +n02920503 a fortification of earth; mostly or entirely below ground +n02920658 a large container for storing fuel +n02921029 a gas burner used in laboratories; has an air valve to regulate the mixture of gas and air +n02921195 a loosely woven fabric used for flags, etc. +n02921292 small bit used in dentistry or surgery +n02921406 a lightweight belted raincoat typically made of tan gabardine with a distinctive tartan lining; named for the original manufacturer +n02921592 measuring instrument consisting of a graduated glass tube with a tap at the bottom; used for titration +n02921756 a warning device that is tripped off by the occurrence of a burglary +n02921884 a chamber that is used as a grave +n02922159 cloth used to cover a corpse in preparation for burial +n02922292 (archeology) a heap of earth placed over prehistoric tombs +n02922461 a chisel of tempered steel with a sharp point; used for engraving +n02922578 a loose garment (usually with veiled holes for the eyes) worn by Muslim women especially in India and Pakistan +n02922798 coarse jute fabric +n02922877 a bag into which secret documents are placed before being burned +n02923129 an apparatus for burning fuel (or refuse) +n02923535 a long hooded cloak woven of wool in one piece; worn by Arabs and Moors +n02923682 a fully automatic pistol; a small submachine gun +n02923915 rotary file for smoothing rough edges left on a workpiece +n02924116 a vehicle carrying many passengers; used for public transport +n02925009 a basket large enough to hold a bushel +n02925107 a cylindrical metal lining used to reduce friction +n02925385 a loose fitting jacket; resembles a shirt with four patch pockets and a belt +n02925519 a suit of clothes traditionally worn by businessmen +n02925666 a boot reaching halfway up to the knee +n02926426 a close-fitting and strapless top without sleeves that is worn by women either as lingerie or for evening dress +n02926591 a framework worn at the back below the waist for giving fullness to a woman's skirt +n02927053 a large sharp knife for cutting or trimming meat +n02927161 a shop in which meat and poultry (and sometimes fish) are sold +n02927764 a small dish (often with a cover) for holding butter at the table +n02927887 a valve in a carburetor that consists of a disc that turns and acts as a throttle +n02928049 a small knife with a dull blade; for cutting or spreading butter +n02928299 a hinge mortised flush into the edge of the door and jamb +n02928413 a joint made by fastening ends together without overlapping +n02928608 a round fastener sewn to shirts and coats etc to fit through buttonholes +n02929184 a hook for pulling a button through a buttonhole +n02929289 a support usually of stone or brick; supports the wall of a building +n02929462 a blunt arrow without a barb; an arrow used for target practice +n02929582 a butt joint that is welded +n02929923 a small jet-propelled winged missile that carries a bomb +n02930080 a signaling device that makes a buzzing sound +n02930214 trademark for men's underwear +n02930339 a capacitor that provides low impedance over certain (high) frequencies +n02930645 a side road little traveled (as in the countryside) +n02930766 a car driven by a person whose job is to take passengers where they want to go in exchange for money +n02931013 small two-wheeled horse-drawn carriage; with two seats and a folding hood +n02931148 a compartment at the front of a motor vehicle or locomotive where driver sits +n02931294 a small tent used as a dressing room beside the sea or a swimming pool +n02931417 a spot that is open late at night and that provides entertainment (as singers or dancers) as well as dancing and food and drink +n02931836 a heavy wooden pole (such as the trunk of a young fir) that is tossed as a test of strength (in the Highlands of northern Scotland) +n02932019 the enclosed compartment of an aircraft or spacecraft where passengers are carried +n02932400 a small house built of wood; usually in a wooded area +n02932523 a car on a freight train for use of the train crew; usually the last car on the train +n02932693 a class of accommodations on a ship or train or plane that are less expensive than first class accommodations +n02932891 a large motorboat that has a cabin and plumbing and other conveniences necessary for living on board +n02933112 a piece of furniture resembling a cupboard with doors and shelves and drawers; for storage or display +n02933340 housing for electronic instruments, as radio or television +n02933462 a storage compartment for clothes and valuables; usually it has a lock +n02933649 woodwork finished by hand by a cabinetmaker +n02933750 a liner with cabins for passengers +n02933990 a television system that transmits over cables +n02934168 a conductor for transmitting electrical or optical signals or electric power +n02934451 a conveyance for passengers or freight on a cable railway +n02935017 (computer science) RAM memory that is set aside as a specialized buffer storage that is continually updated; used to optimize data transfers between system elements with different characteristics +n02935387 a can for storing tea +n02935490 an atomic clock based on the energy difference between two states of the caesium nucleus in a magnetic field +n02935658 a small restaurant where drinks and snacks are sold +n02935891 a restaurant where you serve yourself and pay a cashier +n02936176 a tray for carrying your food in a cafeteria +n02936281 informal British term for a cafe +n02936402 a (cotton or silk) cloak with full sleeves and sash reaching down to the ankles; worn by men in the Levant +n02936570 a woman's dress style that imitates the caftan cloaks worn by men in the Near East +n02936714 an enclosure made or wire or metal bars in which birds or animals can be kept +n02936921 the net that is the goal in ice hockey +n02937010 lightweight parka; waterproof +n02937336 a two-wheeled military vehicle carrying artillery ammunition +n02937958 the folding hood of a horse-drawn carriage +n02938218 a shoe covering the ankle; worn by ancient Romans +n02938321 a water-base paint containing zinc oxide and glue and coloring; used as a wash for walls and ceilings +n02938886 a small machine that is used for mathematical calculations +n02939185 a very large pot that is used for boiling +n02939763 coarse cloth with a bright print +n02939866 an instrument for measuring the distance between two points (often used in the plural) +n02940289 a bulletin board backstage in a theater +n02940385 a center equipped to handle a large volume of telephone calls (especially for taking orders or serving customers) +n02940570 a small display that will show you the telephone number of the party calling you +n02940706 a musical instrument consisting of a series of steam whistles played from a keyboard +n02941095 a measuring instrument that determines quantities of heat +n02941228 a high-crowned black cap (usually made of felt or sheepskin) worn by men in Turkey and Iran and the Caucasus +n02941845 a medieval hood of mail suspended from a basinet to protect the head and neck +n02942015 an arch with a straight horizontal extrados and a slightly arched intrados +n02942147 a finely woven white linen +n02942349 a portable television camera and videocassette recorder +n02942460 a soft tan cloth made with the hair of a camel +n02942699 equipment for taking photographs (usually consisting of a lightproof box with a lens at one end and light-sensitive film at the other) +n02943241 a lens that focuses the image in a camera +n02943465 an optical device consisting of an attachment that enables an observer to view simultaneously the image and a drawing surface for sketching it +n02943686 a darkened enclosure in which images of outside objects are projected through a small aperture or lens onto a facing surface +n02943871 a tripod used to support a camera +n02943964 a loose shirt or tunic; originally worn in the Middle Ages +n02944075 a short negligee +n02944146 a short sleeveless undergarment for women +n02944256 a fabric of Asian origin; originally made of silk and camel's hair +n02944459 device or stratagem for concealment or deceit +n02944579 fabric dyed with splotches of green and brown and black and tan; intended to make the wearer of a garment made of this fabric hard to distinguish from the background +n02944826 temporary living quarters specially built by the army for soldiers +n02945161 temporary lodgings in the country for travelers or vacationers +n02945813 shelter for persons displaced by war or political oppression or for religious beliefs +n02945964 a broad-brimmed felt hat with a high crown; formerly worn by the United States Army and Marine personnel +n02946127 a bell tower; usually stands alone unattached to a building +n02946270 a light folding chair +n02946348 a recreational vehicle equipped for camping out while traveling +n02946509 a trailer equipped for occupancy (especially for holiday trips) +n02946753 a folding stool +n02946824 has cams attached to it +n02946921 airtight sealed metal container for food or drink or paint etc. +n02947212 long and narrow strip of water made for boats or for irrigation +n02947660 a long boat that carries freight and is narrow enough to be used in canals +n02947818 branched candlestick; ornamental; has several lights +n02947977 a miniature camera with a fast lens +n02948072 stick of wax with a wick in the middle +n02948293 a bowling pin that is thin by comparison with a tenpin +n02948403 an implement with a small cup at the end of a handle; used to extinguish the flame of a candle +n02948557 a holder with sockets for candles +n02948834 loops of soft yarn are cut to give a tufted pattern +n02948942 a thermometer used to determine the temperature of candy syrups during cooking +n02949084 a stiff switch used to hit students as punishment +n02949202 a stick that people can lean on to help them walk +n02949356 an instrument of punishment formerly used in China for petty criminals; consists of a heavy wooden collar enclosing the neck and arms +n02949542 metal container for storing dry foods such as tea or flour +n02950018 a factory where food is canned +n02950120 a small can +n02950186 a wooden bucket +n02950256 a large artillery gun that is usually on wheels +n02950482 heavy automatic gun fired from an airplane +n02950632 (Middle Ages) a cylindrical piece of armor plate to protect the arm +n02950826 heavy gun fired from a tank +n02950943 a solid projectile that in former times was fired from a cannon +n02951358 small and light boat; pointed at both ends; propelled with a paddle +n02951585 a device for cutting cans open +n02951703 a jar used in ancient Egypt to contain entrails of an embalmed body +n02951843 a covering (usually of cloth) that serves as a roof to shelter an area from the weather +n02952109 the umbrellalike part of a parachute that fills with air +n02952237 the transparent covering of an aircraft cockpit +n02952374 a flask for carrying water; used by soldiers or travelers +n02952485 restaurant in a factory; where workers can eat +n02952585 a recreation room in an institution +n02952674 a restaurant outside; often for soldiers or policemen +n02952798 sells food and personal items to personnel at an institution or school or camp etc. +n02952935 a peavey having a hook instead of a spike; used for handling logs +n02953056 projecting horizontal beam fixed at one end only +n02953197 bridge constructed of two cantilevers that meet in the middle +n02953455 the back of a saddle seat +n02953552 a soft thick crinkled dress crepe; heavier than crepe de Chine +n02953673 a heavy, closely woven fabric (used for clothing or chairs or sails or tents) +n02953850 the mat that forms the floor of the ring in which boxers or professional wrestlers compete +n02954163 a tent made of canvas fabric +n02954340 a tight-fitting headdress +n02954938 a top (as for a bottle) +n02955065 something serving as a cover or protection +n02955247 an electrical device characterized by its capacity to store an electric charge +n02955540 stable gear consisting of a decorated covering for a horse, especially (formerly) for a warhorse +n02955767 a sleeveless garment like a cloak but shorter +n02956393 a warship of the first rank in size and armament +n02956699 a building occupied by a state legislature +n02956795 a bottle opener to pry off caps +n02956883 a long cloak with a hood that can be pulled over the head +n02957008 a long overcoat with a hood that can be pulled over the head +n02957135 a threaded screw for machine parts; screws into a tapped hole +n02957252 a windlass rotated in a horizontal plane around a vertical axis; used on ships for weighing anchor or raising heavy sails +n02957427 a stone that forms the top of wall or building +n02957755 a small container +n02957862 a wooden armchair with a saddle seat and a low back that has vertical spindles +n02958343 a motor vehicle with four wheels; usually propelled by an internal combustion engine +n02959942 a wheeled vehicle adapted to the rails of railroad +n02960352 where passengers ride up and down +n02960690 an oblong metal ring with a spring clip; used in mountaineering to attach a rope to a piton or to connect two ropes +n02960903 a bottle with a stopper; for serving wine or water +n02961035 an inn in some eastern countries with a large courtyard that provides accommodation for caravans +n02961225 a lead-acid storage battery in a motor vehicle; usually a 12-volt battery of six cells; the heart of the car's electrical system +n02961451 light automatic rifle +n02961544 a bomb placed in a car and wired to explode when the ignition is started or by remote control or by a timing device +n02961947 has carbon electrodes +n02962061 a large bottle for holding corrosive liquids; usually cushioned in a special container +n02962200 mixes air with gasoline vapor prior to explosion +n02962414 a trailer that can be loaded with new cars for delivery to sales agencies +n02962843 a small case for carrying business cards +n02962938 a piece of electronic equipment for continual observation of the function of the heart +n02963159 knitted jacket that is fastened up the front with buttons or a zipper +n02963302 an alphabetical listing of items (e.g., books in a library) with a separate card for each item +n02963503 medical instrument that records electric currents associated with contractions of the heart +n02963692 a directional microphone with a cardioid pattern of sensitivity +n02963821 the door of a car +n02963987 a room for gambling on card games +n02964075 a small light table with folding legs; can be folded for storage +n02964196 a table for playing cards (as in a casino) +n02964295 a ferry that transports motor vehicles +n02964634 the space in a ship or aircraft for storing cargo +n02964843 a large container for freight +n02964934 door used to load or unload cargo +n02965024 hatch opening into the cargo compartment +n02965122 a helicopter that carries cargo +n02965216 a liner that carries cargo +n02965300 a ship designed to carry cargo +n02965529 set of bells hung in a bell tower +n02965783 a mirror that the driver of a car can use +n02966068 a luxurious carriage suitable for nobility in the 16th and 17th century +n02966193 a large, rotating machine with seats for children to ride or amusement +n02966545 a hammer with a cleft at one end for pulling nails +n02966687 a set of carpenter's tools +n02966786 a straight bar of light metal with a spirit level in it +n02966942 a short-handled mallet with a wooden head used to strike a chisel or wedge +n02967081 a rule used by a carpenter +n02967170 a steel square used by carpenters; larger than a try square +n02967294 traveling bag made of carpet; widely used in 19th century +n02967407 implement for beating dust out of carpets +n02967540 a loom for weaving carpeting +n02967626 a pad placed under a carpet +n02967782 a cleaning implement with revolving brushes that pick up dirt as the implement is pushed over a carpet +n02967991 used to nail down carpets +n02968074 garage for one or two cars consisting of a flat roof supported on poles +n02968210 a large galleon sailed in the Mediterranean as a merchantman +n02968333 small individual study area in a library +n02968473 a vehicle with wheels drawn by one or more horses +n02969010 a machine part that carries something else +n02969163 a roundheaded bolt for timber; threaded along part of the shank; inserted into holes already drilled +n02969323 one of the two sides of a motorway where traffic travels in one direction only usually in two or three lanes +n02969527 a wrench designed for use with carriage bolts +n02969634 a knot used to connect the ends of two large ropes or hawsers +n02969886 a rack attached to a vehicle; for carrying luggage or skis or the like +n02970408 a capacious bag or basket +n02970534 box-shaped baby bed with handles (for a baby to sleep in while being carried) +n02970685 a seat in a car +n02970849 a heavy open wagon usually having two wheels and drawn by an animal +n02971167 a tire consisting of a rubber ring around the rim of an automobile wheel +n02971356 a box made of cardboard; opens by flaps on top +n02971473 a cartridge (usually with paper casing) +n02971579 a train that transports passengers and their automobiles +n02971691 ammunition consisting of a cylindrical casing containing an explosive charge and a bullet; fired from a rifle or handgun +n02971940 an electro-acoustic transducer that is the part of the arm of a record player that holds the needle and that is removable +n02972397 a broad belt with loops or pockets for holding ammunition +n02972714 a mechanism in a firearm that pulls an empty shell case out of the chamber and passes it to the ejector +n02972934 a fuse cased in a tube +n02973017 a metal frame or container holding cartridges; can be inserted into an automatic gun +n02973236 a wheel that has wooden spokes and a metal rim +n02973805 a large fork used in carving cooked meat +n02973904 a large knife used to carve cooked meat +n02974003 a wheel that has a tire and rim and hubcap; used to propel the car +n02974348 a supporting column carved in the shape of a person +n02974454 an apparatus used to liquefy air or oxygen etc. +n02974565 a number of transformers in series; provides a high-voltage source +n02974697 a portable container for carrying several objects +n02975212 a glass container used to store and display items in a shop or museum or home +n02975589 (printing) the receptacle in which a compositor has his type, which is divided into compartments for the different letters, spaces, or numbers +n02975994 a water-base paint made with a protein precipitated from milk +n02976123 a knife with a fixed blade that is carried in a sheath +n02976249 a metal blade with a handle; used as cutlery +n02976350 a window sash that is hinged (usually on one side) +n02976455 a window with one or more casements +n02976552 military barracks in a garrison town +n02976641 a metallic cylinder packed with shot and used as ammunition in a firearm +n02976815 a counter at a large party where you can purchase drinks by the glass +n02976939 a strongbox for holding cash +n02977058 an unattended machine (outside some banks) that dispenses money when a personal coded card is used +n02977330 a soft fabric made from the wool of the Cashmere goat +n02977438 a cashbox with an adding machine to register transactions; used in shops to add up the bill +n02977619 the enclosing frame around a door or window opening +n02977936 a public building for gambling and entertainment +n02978055 small and often ornate box for holding jewels or other valuables +n02978205 (15-16th century) any armor for the head; usually ornate without a visor +n02978367 a light open casque without a visor or beaver +n02978478 a reflecting telescope that has a paraboloidal primary mirror and a hyperboloidal secondary mirror; light is brought to a focus through an aperture in the center of the primary mirror +n02978753 large deep dish in which food can be cooked and served +n02978881 a container that holds a magnetic tape used for recording or playing sound or video +n02979074 a tape deck for playing and recording cassette tapes +n02979186 electronic equipment for playing cassettes +n02979290 a recorder for recording or playing cassettes +n02979399 a cassette that contains magnetic tape +n02979516 a black garment reaching down to the ankles; worn by priests or choristers +n02979836 bandage consisting of a firm covering (often made of plaster of Paris) that immobilizes broken bones while they heal +n02980036 a pivoting roller attached to the bottom of furniture or trucks or portable machines to make them movable +n02980203 a shaker with a perforated top for sprinkling powdered sugar +n02980441 a large building formerly occupied by a ruler and fortified against attack +n02980625 (chess) the piece that can move any number of unoccupied squares in a direction parallel to the sides of the chessboard +n02981024 an underground tunnel with recesses where bodies were buried (as in ancient Rome) +n02981198 a decorated bier on which a coffin rests in state during a funeral +n02981321 a converter that uses a platinum-iridium catalyst to oxidize pollutants and carbon monoxide into carbon dioxide and water; an antipollution device on an automotive exhaust system +n02981565 a chemical reactor for converting oils with high boiling points into fuels with lower boiling points in the presence of a catalyst +n02981792 a sailboat with two parallel hulls held together by single deck +n02981911 an engine that provided medieval artillery used during sieges; a heavy war engine for hurling large stones and other missiles +n02982232 a device that launches aircraft from a warship +n02982416 a sailboat with a single mast set far forward +n02982515 a receptacle for cat excrement +n02982599 a fastener that fastens or locks a door or window +n02983072 an enclosure or receptacle for odds and ends +n02983189 a mask to protect the face of the catcher in baseball +n02983357 a structure in which water is collected (especially a natural drainage area) +n02983507 a large tracked vehicle that is propelled by two endless metal belts; frequently used for moving earth in construction and farm work +n02983904 a throne that is the official chair of a bishop +n02984061 any large and important church +n02984203 the principal Christian church building of a bishop's diocese +n02984469 a thin flexible tube inserted into the body to permit introduction or withdrawal of fluids or to keep the passageway open +n02984699 a negatively charged electrode that is the source of electrons entering an electrical device +n02985137 a vacuum tube in which a hot cathode emits a beam of electrons that pass through a high voltage anode and are focused or deflected before hitting a phosphorescent screen +n02985606 a whip with nine knotted cords +n02985828 a hitch in the middle of rope that has two eyes into which tackle can be hooked +n02985963 a bottle that holds catsup +n02986066 a freight car for transporting cattle +n02986160 a bridge over a ditch consisting of parallel metal bars that allow pedestrians and vehicles to pass, but not cattle +n02986348 a cargo ship for the transport of livestock +n02987047 an instrument or substance used to destroy tissue for medical reasons (eg removal of a wart) by burning it with a hot iron or an electric current or a caustic or by freezing it +n02987379 a soft felt hat with a wide flexible brim +n02987492 a stout sword with a curved blade and thick back +n02987706 a concave molding shaped like a quarter circle in cross section +n02987823 a wall formed of two thicknesses of masonry with a space between them +n02987950 battery used to maintain the grid potential in a vacuum tube +n02988066 a clamp in the shape of the letter C +n02988156 a drive that reads a compact disc and that is connected to an audio system +n02988304 a stand-alone piece of electronic equipment that either has its own display or attaches to a television set +n02988486 a compact disc on which you can write only once and thereafter is read-only memory +n02988679 a compact disk that is used with a computer (rather than with an audio system); a large amount of digital information can be stored and accessed but it cannot be altered by the user +n02988963 a drive that is connected to a computer and on which a CD-ROM can be `played' +n02989099 a chest made of cedar +n02990373 the overhead upper surface of a covered space +n02990758 a musical instrument consisting of graduated steel plates that are struck by hammers activated by a keyboard +n02991048 a device that delivers an electric current as the result of a chemical reaction +n02991302 a room where a prisoner is kept +n02991847 storage space where wines are stored +n02992032 a division of a prison (usually consisting of several cells) +n02992211 a large stringed instrument; seated player holds it upright while playing +n02992368 a transparent paperlike product that is impervious to moisture and used to wrap candy or cigarettes etc. +n02992529 a hand-held mobile radiotelephone for use in an area divided into small sections, each with its own short-range transmitter/receiver +n02992795 transparent or semitransparent adhesive tape (trade names Scotch tape and Sellotape) used for sealing or attaching or mending +n02993194 a monument built to honor people whose remains are interred elsewhere or whose remains cannot be recovered +n02993368 a container for burning incense (especially one that is swung on a chain in a religious ritual) +n02993546 a building dedicated to a particular activity +n02994573 a tool with a conical point that is used to make indentations in metal (especially to mark points for drilling) +n02994743 a thermometer calibrated in degrees centigrade +n02995345 (computer science) the part of a computer (a microprocessor chip) that does most of the data processing +n02995871 a pump that use centrifugal force to discharge fluid into a pipe +n02995998 an apparatus that uses centrifugal force to separate particles from a suspension +n02997391 an artifact made of hard brittle material produced from nonmetallic minerals by firing at high temperatures +n02997607 utensils made from ceramic material +n02997910 a bowl for holding breakfast cereal +n02998003 a paper box in which breakfast cereals are sold +n02998107 a waterproof waxed cloth once used as a shroud +n02998563 a covered cistern; waste water and sewage flow into it +n02998696 (Yiddish) an inexpensive showy trinket +n02998841 a cloth used as a head covering (and veil and shawl) by Muslim and Hindu women +n02999138 a metal pan over a heater; used to cook or to keep things warm at the table +n02999410 a series of (usually metal) rings or links fitted into one another to make a flexible ligament +n02999936 anything that acts as a restraint +n03000134 a fence of steel wires woven into a diamond pattern +n03000247 (Middle Ages) flexible armor made of interlinked metal rings +n03000530 an impact printer that carries the type slugs by links of a revolving chain +n03000684 portable power saw; teeth linked to form an endless chain +n03001115 one of a chain of retail stores under the same management and selling the same merchandise +n03001282 a pipe wrench used for turning large pipes; an adjustable chain circles the pipe with its ends connected to the head whose teeth engage the pipe +n03001540 another name for chain tongs +n03001627 a seat for one person, with a support for the back +n03002096 a particular seat in an orchestra +n03002210 a ceremonial chair for an exalted or powerful person +n03002341 a ski lift on which riders (skiers or sightseers) are seated and carried up or down a mountainside; seats are hung from an endless overhead cable +n03002555 a carriage consisting of two wheels and a calash top; drawn by a single horse +n03002711 a long chair; for reclining +n03002816 a Swiss house with a sloping roof and wide eaves or a house built in this style +n03002948 a bowl-shaped drinking vessel; especially the Eucharistic cup +n03003091 a piece of calcite or a similar substance, usually in the shape of a crayon, that is used to write or draw on blackboards or other flat surfaces +n03003633 a soft lightweight fabric (usually printed) +n03004275 a receptacle for urination or defecation in the bedroom +n03004409 a lightweight fabric woven with white threads across a colored warp +n03004531 a bit that is used for beveling +n03004620 a plane that makes a beveled edge +n03004713 a piece of chamois used for washing windows or cars +n03004824 area around the altar of a church for the clergy and choir; often enclosed by a lattice or railing +n03005033 a government building housing the office of a chancellor +n03005147 an office of archives for public or ecclesiastic records; a court of public records +n03005285 branched lighting fixture; often ornate; hangs from the ceiling +n03005515 candles and other commodities sold by a chandler +n03005619 medieval plate armor to protect a horse's head +n03006626 reed pipe with finger holes on which the melody is played +n03006788 a chapel endowed for singing Masses for the soul of the donor +n03006903 (usually in the plural) leather leggings without a seat; joined by a belt; often have flared outer flaps; worn over trousers by cowboys to protect their legs +n03007130 a place of worship that has its own altar +n03007297 a house used as a residence by a chapter of a fraternity +n03007444 a building attached to a monastery or cathedral; used as a meeting place for the chapter +n03007591 a printer that prints a single character at a time +n03008177 a delicatessen that specializes in meats +n03008817 an accelerator in which high-energy ions escape from plasma following charge exchange +n03008976 a device for charging or recharging batteries +n03009111 a light four-wheel horse-drawn ceremonial carriage +n03009269 a two-wheeled horse-drawn battle vehicle; used in war and races in ancient Egypt and Greece and Rome +n03009794 a vault or building where corpses or bones are deposited +n03010473 the skeleton of a motor vehicle consisting of a steel frame supported on springs that holds the body and motor +n03010656 a metal mounting for the circuit components of an electronic device +n03010795 a long sleeveless vestment worn by a priest when celebrating Mass +n03010915 an impressive country house (or castle) in France +n03011018 a chain formerly worn at the waist by women; for carrying a purse or bunch of keys etc. +n03011355 one of the flat round pieces used in playing the game of checkers +n03011741 a counter in a supermarket where you pay for your purchases +n03012013 either of two straps of a bridle that connect the bit to the headpiece +n03012159 tray on which cheeses are served +n03012373 a coarse loosely woven cotton gauze; originally used to wrap cheeses +n03012499 a kitchen utensil (board or handle) with a wire for cutting cheese +n03012644 a press for shaping cheese curd +n03012734 a bomb laden with chemical agents that are released when the bomb explodes +n03012897 an industrial plant where chemicals are produced +n03013006 an apparatus for holding substances that are undergoing a chemical reaction +n03013438 a loose-fitting dress hanging straight from the shoulders without a waist +n03013580 a woman's sleeveless undergarment +n03013850 a heavy fabric woven with chenille cord; used in rugs and bedspreads +n03014440 any of 16 white and 16 black pieces used in playing the game of chess +n03014705 box with a lid; used for storage; usually large and sturdy +n03015149 an overstuffed davenport with upright armrests +n03015254 furniture with drawers for keeping clothes +n03015478 protective garment consisting of a pad worn in baseball by catchers and by football players +n03015631 defensive structure consisting of a movable obstacle composed of barbed wire or spikes attached to a wooden frame; used to obstruct cavalry +n03015851 a full length mirror mounted in a frame in which it can be tilted +n03016209 a movable barrier used in motor racing; sometimes placed before a dangerous corner to reduce speed as cars pass in single file +n03016389 a farm building for housing poultry +n03016609 a galvanized wire network with a hexagonal mesh; used to build fences +n03016737 an enclosed yard for keeping poultry +n03016868 a sheer fabric of silk or rayon +n03016953 a tall elegant chest of drawers +n03017070 a bedroom for a child +n03017168 a percussion instrument consisting of a set of tuned bells that are struck with a hammer; used as an orchestral instrument +n03017698 walls that project out from the wall of a room and surround the chimney base +n03017835 a corner by a fireplace +n03018209 high quality porcelain originally made only in China +n03018349 a cabinet (usually with glass doors) for storing and displaying china +n03018614 a thick twilled fabric of wool and cotton +n03018712 a collapsible paper lantern in bright colors; used for decorative purposes +n03018848 intricate or ingenious puzzle consisting of boxes within boxes +n03019198 a horizontal bar on which you can chin yourself +n03019304 a coarse twilled cotton fabric frequently used for uniforms +n03019434 trousers made with chino cloth +n03019685 a rest on which a violinist can place the chin +n03019806 a strap attached to a hat; passes under the chin and holds the hat in place +n03019938 a brightly printed and glazed cotton fabric +n03020034 electronic equipment consisting of a small crystal of a silicon semiconductor fabricated to carry out a number of electronic functions in an integrated circuit +n03020416 a small disk-shaped counter used to represent money when gambling +n03020692 an edge tool with a flat steel blade with a cutting edge +n03021228 a short mantle or cape fastened at the shoulder; worn by men in ancient Greece +n03024064 the area occupied by singers; the part of the chancel between sanctuary and nave +n03024233 a gallery in a church occupied by the choir +n03024333 a valve that controls the flow of air into the carburetor of a gasoline engine +n03024518 a coil of low resistance and high inductance used in electrical circuits to pass direct current and attenuate alternating current +n03025070 British slang (dated) for a prison +n03025165 a child's word for locomotive +n03025250 a woman's shoe with a very high thick sole +n03025886 a stringed instrument of the group including harps, lutes, lyres, and zithers +n03026506 a stocking that is filled with small Christmas presents +n03026907 an accurate timer for recording time +n03027001 an accurate clock (especially used in navigation) +n03027108 an instrument for accurate measurements of small intervals of time +n03027250 a holding device consisting of adjustable jaws that center a workpiece in a lathe or center a tool in a drill +n03027505 a wagon equipped with a cookstove and provisions (for cowboys) +n03027625 a shoe that comes up to the ankle and is laced through two or three pairs of eyelets; often made of suede +n03028079 a place for public (especially Christian) worship +n03028596 a bell in a church tower (usually sounded to summon people to church) +n03028785 a fanciful hat of the kind worn by Black women for Sunday worship +n03029066 can opener that has a triangular pointed end that pierces the tops of cans +n03029197 the tower of a church +n03029296 tight trousers worn by people from the Indian subcontinent (typically with a kameez or kurta) +n03029445 a vessel in which cream is agitated to separate butterfat from buttermilk +n03029925 a press that is used to extract the juice from apples +n03030262 a narrow paper band around a cigar +n03030353 a box for holding cigars +n03030557 an implement for cutting the tip off of a cigar +n03030880 small part of a cigarette that is left after smoking +n03031012 a small flat case for holding cigarettes; can be carried in a purse or a pocket +n03031152 a tube that holds a cigarette while it is being smoked +n03031422 a lighter for cigars or cigarettes +n03031756 stable gear consisting of a band around a horse's belly that holds the saddle in place +n03032252 a theater where films are shown +n03032453 an ornamental carving consisting of five arcs arranged in a circle +n03032811 any circular or rotating mechanism +n03033267 decorated metal band worn around the head +n03033362 an electrical device that provides a path for electrical current to flow +n03033986 a printed circuit that can be inserted into expansion slots in a computer to increase the computer's capabilities +n03034244 a device that trips like a switch and opens the circuit when overloaded +n03034405 electronic equipment consisting of a system of circuits +n03034516 a plane with a flexible face that can plane concave or convex surfaces +n03034663 a power saw that has a steel disk with cutting teeth on the periphery; rotates on a spindle +n03035252 a canvas tent to house the audience at a circus performance +n03035510 an artificial reservoir for storing liquids; especially an underground tank for storing rainwater +n03035715 a tank that holds the water used to flush a toilet +n03035832 a 16th century musical instrument resembling a guitar with a pear-shaped soundbox and wire strings +n03036022 a building that houses administrative offices of a municipal government +n03036149 painting depicting a city or urban area +n03036244 an urban university in a large city +n03036341 civilian garb as opposed to a military uniform +n03036469 ordinary clothing as distinguished from uniforms, work clothes, clerical garb, etc. +n03036701 a simple valve with a hinge on one side; allows fluid to flow in only one direction +n03036866 a device (generally used by carpenters) that holds things firmly together +n03037108 a dredging bucket with hinges like the shell of a clam +n03037228 metal striker that hangs inside a bell and makes a sound by hitting the side +n03037404 photographic equipment used to synchronize sound and motion picture; boards held in front of a movie camera are banged together +n03037590 a closed carriage with four wheels and seats for four passengers +n03037709 a single-reed instrument with a straight tube +n03038041 a form of voltaic cell once used as a standard for electromotive force +n03038281 a fastener (as a buckle or hook) that is used to hold two things together +n03038480 a large knife with one or more folding blades +n03038685 a room in a school where lessons take place +n03038870 an early stringed instrument like a piano but with more delicate sound +n03039015 a stringed instrument that has a keyboard +n03039259 target used in skeet or trapshooting +n03039353 an antipersonnel land mine whose blast is aimed at the oncoming enemy +n03039493 a large double-edged broadsword; formerly used by Scottish Highlanders +n03039827 shop where dry cleaning is done +n03039947 any of a large class of implements used for cleaning +n03040229 a pad used as a cleaning implement +n03040376 a room that is virtually free of dust or bacteria; used in laboratory work and in assembly or repair of precision equipment +n03040836 a road on which you are not allowed to stop (unless you have a breakdown) +n03041114 a fastener (usually with two projecting horns) around which a rope can be secured +n03041265 a metal or leather projection (as from the sole of a shoe); prevents slipping +n03041449 shoes with leather or metal projections on the soles +n03041632 a butcher's knife having a large square blade +n03041810 part of an interior wall rising above the adjacent roof with windows admitting light +n03042139 a coupler shaped like the letter U with holes through each end so a bolt or pin can pass through the holes to complete the coupling; used to attach a drawbar to a plow or wagon or trailer etc. +n03042384 the cords used to suspend a hammock +n03042490 a rock and adobe dwelling built on sheltered ledges in the sides of a cliff +n03042697 a framework of bars or logs for children to climb on +n03042829 the flattened part of a nail or bolt or rivet +n03042984 a small slip noose made with seizing +n03043173 a tool used to clinch nails or bolts or rivets +n03043274 a healthcare facility for outpatient care +n03043423 a mercury thermometer designed to measure the temperature of the human body; graduated to cover a range a few degrees on either side of the normal body temperature +n03043693 a hard brick used as a paving stone +n03043798 an instrument used by surveyors in order to measure an angle of inclination or elevation +n03043958 any of various small fasteners used to hold loose articles together +n03044671 a short piece of wire with alligator clips on both ends +n03044801 a device (as an earring, sunglasses, microphone etc.) that is attached by clips +n03044934 scissors for cutting hair or finger nails (often used in the plural) +n03045074 shears for cutting grass or shrubbery (often used in the plural) +n03045228 a fast sailing ship used in former times +n03045337 a loose outer garment +n03045698 anything that covers or conceals +n03045800 a room where coats and other articles can be left temporarily +n03046029 a woman's close-fitting hat that resembles a helmet +n03046133 a low transparent cover put over young plants to protect them from cold +n03046257 a timepiece that shows the time of day +n03046802 a physical pendulum used to regulate a clockwork mechanism +n03046921 a radio that includes a clock that can be set to turn it on automatically +n03047052 a tower with a large clock visible high up on an outside face +n03047171 any mechanism of geared wheels that is driven by a coiled spring; resembles the works of a mechanical clock +n03047690 footwear usually with wooden soles +n03047799 enamelware in which colored areas are separated by thin metal strips +n03047941 a courtyard with covered walks (as in religious institutions) +n03048883 a complete electrical circuit around which current flows or a signal circulates +n03049066 a television system that is not used for broadcasting but is connected by cables to designated monitors (as in a factory or theater) +n03049326 a control system with a feedback loop that is active +n03049457 a small private room for study or prayer +n03049782 a photographic lens with a short focal length used to take pictures at short ranges +n03049924 a flat woolen cap with a stiff peak +n03050026 a covering made of cloth +n03050453 a brush used for cleaning clothing +n03050546 a closet where clothes are stored +n03050655 a dryer that dries clothes wet from washing +n03050864 a hamper that holds dirty clothes to be washed or wet clothes to be dried +n03051041 a framework on which to hang clothes (as for drying) +n03051249 wood or plastic fastener; for holding clothes on a clothesline +n03051396 an upright pole with pegs or hooks on which to hang clothing +n03051540 a covering designed to be worn on a person's body +n03052464 a store where men's clothes are sold +n03052917 a short nail with a flat head; used to attach sheet metal to wood +n03053047 a knot used to fasten a line temporarily to a post or spar +n03053976 railroad car having a bar and tables and lounge chairs +n03054491 a room used for the activities of a club +n03054605 bomb consisting of a canister that is dropped from a plane and that opens to release a cluster of bomblets (usually fragmentation bombs) over a wide area +n03054901 a coupling that connects or disconnects driving and driven parts of a driving mechanism +n03055159 a pedal or lever that engages or disengages a rotating shaft and a driving mechanism +n03055418 a woman's strapless purse that is carried in the hand +n03055670 a carriage pulled by four horses with one driver +n03055857 a small building for housing coaches and carriages and other vehicles +n03056097 freight car with fixed sides and no roof; for transporting coal +n03056215 a chute for coal +n03056288 a shed for storing coal +n03056493 a hand shovel for shoveling coal +n03056583 a raised framework around a hatchway on a ship to keep water out +n03056873 a brake on a bicycle that engages with reverse pressure on the pedals +n03057021 an outer garment that has sleeves and covers the body from shoulder down; worn outdoors +n03057541 a button on a coat +n03057636 a closet for storing outerwear +n03057724 a dress that is tailored like a coat and buttons up the front +n03057841 a short close-fitting coat +n03057920 a hanger that is shaped like a person's shoulders and used to hang garments on +n03058107 a thin layer covering something +n03058603 a heavy fabric suitable for coats +n03058949 a layer of paint covering something else +n03059103 a rack with hooks for temporarily holding coats and hats +n03059236 the loose back flap of a coat that hangs below the waist +n03059366 a transmission line for high-frequency signals +n03059685 a dense elaborate spider web that is more efficient than the orb web +n03059934 a fabric so delicate and transparent as to resemble a web of a spider +n03060728 a high-voltage machine in which rectifiers charge capacitors that discharge and drive charged particles through an accelerating tube +n03061050 hat with opposing brims turned up and caught together to form points +n03061211 anything used as a toy horse (such as a rocking horse or one knee of an adult) +n03061345 a small light flimsy boat +n03061505 compartment where the pilot sits while flying the aircraft +n03061674 seat where the driver sits while driving a racing car +n03061819 a pit for cockfights +n03061893 a cap worn by court jesters; adorned with a strip of red +n03062015 a dress suitable for formal occasions +n03062122 a barroom in a hotel or restaurant where cocktails are served +n03062245 a shaker for mixing cocktails +n03062336 a small casserole in which individual portions can be cooked and served +n03062651 (15th-16th century) a flap for the crotch of men's tight-fitting breeches +n03062798 optical device used to follow the path of a celestial body and reflect its light into a telescope; has a movable and a fixed mirror +n03062985 a can for storing ground coffee +n03063073 a cup from which coffee is drunk +n03063199 filter (usually of paper) that passes the coffee and retains the coffee grounds +n03063338 a kitchen appliance for brewing coffee automatically +n03063485 a mill that grinds roasted coffee beans +n03063599 a mug intended for serving coffee +n03063689 tall pot in which coffee is brewed +n03063834 a stand (usually movable) selling hot coffee and food (especially at night) +n03063968 low table where magazines can be placed and coffee or cocktails are served +n03064250 an urn in which coffee is made and kept hot +n03064350 a chest especially for storing valuables +n03064562 a still consisting of an apparatus for the fractional distillation of ethanol from fermentation on an industrial scale +n03064758 box in which a corpse is buried or cremated +n03064935 tooth on the rim of gear wheel +n03065243 a skullcap worn by nuns under a veil or by soldiers under a hood of mail or formerly by British sergeants-at-law +n03065424 a structure consisting of something wound in a continuous series of loops +n03065708 reactor consisting of a spiral of insulated wire that introduces inductance into a circuit +n03066232 a transformer that supplies high voltage to spark plugs in a gasoline engine +n03066359 a spring in the shape of a coil +n03066464 the part of a slot machine that serves as a receptacle for the coins +n03066849 bowl-shaped strainer; used to wash or drain foods +n03067093 a cathode that is a source of electrons without being heated +n03067212 narrow chisel made of steel; used to cut stone or bricks +n03067339 a cream used cosmetically (mostly by women) for softening and cleaning the skin +n03067518 protective covering consisting of a wooden frame with a glass top in which small plants are protected from the cold +n03068181 a band that fits around the neck and is usually folded over +n03068998 anything worn or placed about the neck +n03069752 a complex of buildings in which an institution of higher education is housed +n03070059 a cone-shaped chuck used for holding cylindrical pieces in a lathe +n03070193 an accelerator in which two beams of particles are forced to collide head on +n03070396 a workplace consisting of a coal mine plus all the buildings and equipment connected with it +n03070587 optical device consisting of a tube containing a convex achromatic lens at one end and a slit at the other with the slit at the focus of the lens; light rays leave the slit as a parallel beam +n03070854 a small telescope attached to a large telescope to use in setting the line of the larger one +n03071021 a perfumed liquid made of essential oils and alcohol +n03071160 structure consisting of a row of evenly spaced columns +n03071288 an elongated fiberoptic endoscope for examining the entire colon from cecum to rectum +n03071552 a measuring instrument used in colorimetric analysis to determine the quantity of a substance from the color it yields with specific reagents +n03072056 a distinguishing emblem +n03072201 a television that transmits images in color +n03072440 a television tube that displays images in full color +n03072682 a wash of whitewash or other water-base paint tinted with a colored pigment +n03073296 a kind of revolver +n03073384 a sharp steel wedge that precedes the plow and cuts vertically through the soil +n03073545 a sepulchral vault or other structure having recesses in the walls to receive cinerary urns +n03073694 a niche for a funeral urn containing the ashes of the cremated dead +n03073977 (architecture) a tall vertical cylindrical structure standing upright and used to support a structure +n03074380 a vertical cylindrical structure standing alone and not supporting anything (such as a monument) +n03074855 a flat device with narrow pointed teeth on one edge; disentangles or arranges hair +n03075097 any of several tools for straightening fibers +n03075248 a machine that separates and straightens the fibers of cotton or wool +n03075370 lock that can be opened only by turning dials in a special sequence +n03075500 a woodworking plane that has interchangeable cutters of various shapes +n03075634 harvester that heads and threshes and cleans grain while moving across the field +n03075768 device used for an infant to suck or bite on +n03075946 a space module in which astronauts can live and control the spacecraft and communicate with earth +n03076411 a retail store that sells equipment and provisions (usually to military personnel) +n03076623 a snack bar in a film studio +n03076708 articles of commerce +n03077442 an ax with a long handle and a head that has one cutting edge and one blunt side +n03077616 a sitting room (usually at school or university) +n03077741 an artificial satellite that relays signals back to earth; moves in a geostationary orbit +n03078287 a system for communicating +n03078506 a center where the members of a community can gather for social or cultural activities +n03078670 switch for reversing the direction of an electric current +n03078802 a passenger train that is ridden primarily by passengers who travel regularly from one place to another +n03078995 a small cosmetics case with a mirror; to be carried in a woman's purse +n03079136 a small and economical car +n03079230 a digitally encoded recording on an optical disk that is smaller than a phonograph record; played back by a laser +n03079494 recording equipment for making compact disks +n03079616 a stairway or ladder that leads from one deck to another on a ship +n03079741 a partitioned section, chamber, or separate room within a larger enclosed area +n03080309 a space into which an area is subdivided +n03080497 navigational instrument for finding directions +n03080633 drafting instrument used for drawing circles +n03080731 compass in the form of a card that rotates so that 0 degrees or North points to magnetic north +n03080904 a handsaw with a narrow triangular blade for cutting curves +n03081859 an enclosure of residences and other building (especially in the Orient) +n03081986 a lens system consisting of two or more lenses on the same axis +n03082127 a pair of levers hinged at the fulcrum +n03082280 light microscope that has two converging lens systems: the objective and the eyepiece +n03082450 a cloth pad or dressing (with or without medication) applied firmly to some part of the body (to relieve discomfort or reduce fever) +n03082656 bandage that stops the flow of blood from an artery by applying pressure +n03082807 a mechanical device that compresses gasses +n03082979 a machine for performing calculations automatically +n03084420 a circuit that is part of a computer +n03084834 a tomograph that constructs a 3-D model of an object by combining parallel planes +n03085013 a keyboard that is a data input device for computers; arrangement of keys is modelled after the typewriter keyboard +n03085219 a device that displays signals on a computer screen +n03085333 (computer science) a network of computers +n03085602 a screen used to display the output of a computer to the user +n03085781 a store that sells computers to the small businessperson or personal user +n03085915 a system of one or more computers and associated software with common storage +n03086183 a penal camp where political prisoners or prisoners of war are confined (usually under harsh conditions) +n03086457 a grand piano suitable for concert performances +n03086580 a hall where concerts are given +n03086670 free-reed instrument played like an accordion by pushing its ends together to force air through the reeds +n03086868 coiled barbed wire used as an obstacle +n03087069 a machine with a large revolving drum in which cement is mixed with other materials to make concrete +n03087245 vacuum pump used to obtain a high vacuum +n03087366 lens used to concentrate light on an object +n03087521 a hollow coil that condenses by abstracting heat +n03087643 an apparatus that converts vapor into liquid +n03087816 microphone consisting of a capacitor with one plate fixed and the other forming the diaphragm moved by sound waves +n03088389 housing consisting of a complex of dwelling units (as an apartment house) in which each unit is individually owned +n03088580 one of the dwelling units in a condominium +n03088707 a device designed to transmit electricity, heat, etc. +n03089477 a friction clutch in which the frictional surfaces are cone-shaped +n03089624 a confectioner's shop +n03089753 a center where conferences can be conducted +n03089879 a room in which a conference can be held +n03090000 the table that conferees sit around as they hold a meeting +n03090172 a booth where a priest sits to hear confessions +n03090437 a map projection in which a small area is rendered in its true shape +n03090710 an ankle high shoe with elastic gussets in the sides +n03090856 a map projection of the globe onto a cone with its point over one of the earth's poles +n03091044 a rod that transmits motion (especially one that connects a rotating wheel to a reciprocating shaft) +n03091223 a hotel room that shares a wall with an adjoining room and is connected by a private door +n03091374 an instrumentality that connects +n03091907 a raised bridge on a submarine; often used for entering and exiting +n03092053 an armored pilothouse on a warship +n03092166 a greenhouse in which plants are arranged in a pleasing manner +n03092314 a schoolhouse with special facilities for fine arts +n03092476 an ornamental scroll-shaped bracket (especially one used to support a wall fixture) +n03092656 a scientific instrument consisting of displays and an input device that an operator can use to monitor and control a system (especially a computer system) +n03092883 a small table fixed to a wall or designed to stand against a wall +n03093427 diplomatic building that serves as the residence or workplace of a consul +n03093792 (electronics) a junction where things (as two electrical conductors) touch or are in physical contact +n03094159 a thin curved glass or plastic lens designed to fit over the cornea in order to correct vision or to deliver medication +n03094503 any object that can be used to hold things (especially a large metal boxlike object of standardized dimensions that can be loaded from one form of transport to another) +n03095699 a cargo ship designed to hold containerized cargoes +n03095965 (physics) a system designed to prevent the accidental release of radioactive material from a reactor +n03096439 the bassoon that is the largest instrument in the oboe family +n03096960 a mechanism that controls the operation of a machine +n03097362 the operational center for a group of related activities +n03097535 a feedback circuit that subtracts from the input +n03097673 (computer science) the key on a computer keyboard that is used (in combination with some other key) to type control characters +n03098140 electrical device consisting of a flat insulated surface that contains switches and dials and meters for controlling other electrical devices +n03098515 a steel or aluminum rod that can be moved up or down to control the rate of the nuclear reaction +n03098688 a room housing control equipment (as in a recording studio) +n03098806 a system for controlling the operation of another system +n03098959 a tower with an elevated workspace enclosed in glass for the visual observation of aircraft around an airport +n03099147 a space heater that transfers heat to the surrounding air by convection +n03099274 a store selling a limited variety of food and pharmaceutical items; open long hours for the convenience of customers +n03099454 a religious residence especially for nuns +n03099622 a building for religious assembly (especially Nonconformists, e.g., Quakers) +n03099771 lens such that a beam of light passing through it is brought to a point or focus +n03099945 a device for changing one substance or form or state into another +n03100240 a car that has top that can be folded or removed +n03100346 a sofa that can be converted into a bed +n03100490 something that serves as a means of transportation +n03100897 a moving belt that transports objects (as in a factory) +n03101156 a utensil for cooking +n03101302 a fire for cooking +n03101375 a detached or outdoor shelter for cooking +n03101517 a kitchen utensil used to cut a sheet of cookie dough into desired shapes before baking +n03101664 a jar in which cookies are kept (and sometimes money is hidden) +n03101796 a cooking utensil consisting of a flat rectangular metal sheet used for baking cookies or biscuits +n03101986 a kitchen utensil made of material that does not melt easily; used for cooking +n03102371 a stove for cooking (especially a wood- or coal-burning kitchen stove) +n03102516 a cooling system that uses a fluid to transfer heat from one place to another +n03102654 a refrigerator for cooling liquids +n03102859 a mechanism for keeping something cool +n03103128 equipment in a motor vehicle that cools the engine +n03103396 a cooling system used in industry to cool hot water (by partial evaporation) before reusing it as a coolant +n03103563 a raccoon cap with the tail hanging down the back +n03103904 a long cloak; worn by a priest or bishop on ceremonial occasions +n03104019 a handsaw with a taut thin blade; used for cutting small curves in wood +n03104512 utensils made with copper +n03105088 mechanical device used in printing; holds the copy for the compositor +n03105214 a dish in the form of a scallop shell +n03105306 a small rounded boat made of hides stretched over a wicker frame; still used in some parts of Great Britain +n03105467 (architecture) a triangular bracket of brick or stone (usually of slight extent) +n03105645 (architecture) an arch constructed of masonry courses that are corbelled until they meet +n03105810 (architecture) a step on the top of a gable wall +n03105974 (architecture) a gable having corbie-steps or corbel steps +n03106722 a cut pile fabric with vertical ribs; usually made of cotton +n03106898 a light insulated conductor for household use +n03107046 the ropes in the rigging of a ship +n03107488 cotton trousers made of corduroy cloth +n03107716 a bar of magnetic material (as soft iron) that passes through a coil and serves to increase the inductance of the coil +n03108455 a hollow drilling bit that is the cutting part of a core drill; allows core samples to be taken +n03108624 a drill that removes a cylindrical core from the drill hole +n03108759 a device for removing the core from apples +n03108853 the plug in the mouth of a bottle (especially a wine bottle) +n03109033 a machine that is used to put corks in bottles +n03109150 a bottle opener that pulls corks +n03109253 a crib for storing and drying ears of corn +n03109693 (architecture) solid exterior angle of a building; especially one formed by a cornerstone +n03109881 an interior angle formed by two meeting walls +n03110202 a square post supporting a structural member at the corner of a building +n03110669 a brass musical instrument with a brilliant tone; has a narrow tube and a flared bell and is played by means of valves +n03111041 the topmost projecting part of an entablature +n03111177 a molding at the corner between the ceiling and the top of a wall +n03111296 a decorative framework to conceal curtain fixtures at the top of a window casing +n03111690 a penal institution maintained by the government +n03112240 a small strip of corrugated steel with sharp points on one side; hammered across wood joints in rough carpentry +n03112719 a piece of body armor for the trunk; usually consists of a breastplate and back piece +n03112869 a woman's close-fitting foundation garment +n03113152 a toiletry designed to beautify the body +n03113505 a large proton synchrotron; uses frequency modulation of an electric field to accelerate protons +n03113657 the attire worn in a play or at a fancy dress ball +n03113835 the attire characteristic of a country or a time or a social class +n03114041 unusual or period attire not characteristic of or appropriate to the time and place +n03114236 the prevalent fashion of dress (including accessories and hair style as well as garments) +n03114379 a padded cloth covering to keep a teapot warm +n03114504 a small bed that folds up for storage or transport +n03114743 a tent providing shelter for a family +n03114839 fastener consisting of a wedge or pin inserted through a slot to hold two other pieces together +n03115014 a cotter consisting of a split pin that is secured (after passing through a hole) by splitting the ends apart +n03115180 fabric woven from cotton fibers +n03115400 a stout cotton fabric with nap on only one side +n03115663 a textile mill for making cotton textiles +n03115762 a narrow bed on which a patient lies during psychiatric or psychoanalytic treatment +n03115897 a flat coat of paint or varnish used by artists as a primer +n03116008 a compartment on a European passenger train; contains 4 to 6 berths for sleeping +n03116163 a reflecting telescope so constructed that the light is led to a plate holder or spectrograph +n03116530 table consisting of a horizontal surface over which business is transacted +n03116767 a calculator that keeps a record of the number of times something happens +n03117199 game equipment (as a piece of wood, plastic, or ivory) used for keeping a count or reserving a space in various card or board games +n03117642 a bit for enlarging the upper part of a hole +n03118346 a measuring instrument for counting individual ionizing events +n03118969 a house (usually large and impressive) on an estate in the country +n03119203 a retail store serving a sparsely populated region; usually stocked with a wide variety of merchandise +n03119396 a car with two doors and front seats and a luggage compartment +n03119510 a mechanical device that serves to connect the ends of adjacent objects +n03120198 an area wholly or partly surrounded by walls or buildings +n03120491 a specially marked horizontal area within which a game is played +n03120778 a room in which a lawcourt sits +n03121040 the residence of a sovereign or nobleman +n03121190 an acrylic fabric resembling wool +n03121298 a building that houses judicial courts +n03121431 a government building that houses the offices of a county government +n03121897 a loose-fitting protective garment that is worn over other clothing +n03122073 a bridge whose passageway is protected by a roof and enclosing sides +n03122202 a litter with a cover for privacy +n03122295 a large wagon with broad wheels and an arched canvas top; used by the United States pioneers to cross the prairies in the 19th century +n03122748 an artifact that covers something else (usually to protect or shelter or conceal it) +n03123553 a decorative bedspread (usually quilted) +n03123666 covering consisting of a plate used to cover over or close in a chamber or receptacle +n03123809 a barn for cows +n03123917 a bell hung around the neck of cow so that the cow can be easily located +n03124043 a boot with a high arch and fancy stitching; worn by American cowboys +n03124170 a hat with a wide brim and a soft crown; worn by American ranch hands +n03124313 a heavy flexible whip braided from leather made from the hide of a cow +n03124474 a loose hood or hooded robe (as worn by a monk) +n03124590 a pen for cattle +n03125057 the main circuit board for a computer +n03125588 glazed china with a network of fine cracks on the surface +n03125729 a baby bed with sides and rockers +n03125870 a vehicle designed for navigation in or on water or air or through outer space +n03126090 a strip of metal with ends bent at right angles; used to hold masonry together +n03126385 an iron spike attached to the shoe to prevent slipping on ice when walking or climbing +n03126580 a hinged pair of curved iron bars; used to raise heavy objects +n03126707 lifts and moves heavy objects; lifting tackle is suspended from a pivoted boom that rotates around a vertical axis +n03126927 an instrument for measuring skull sizes +n03127024 a hand tool consisting of a rotating shaft with parallel handle +n03127203 housing for a crankshaft +n03127408 a rotating shaft driven by (or driving) a crank +n03127531 a strong protective barrier that is erected around a racetrack or in the middle of a dual-lane highway in order to reduce the likelihood of severe accidents +n03127747 a padded helmet worn by people riding bicycles or motorcycles; protects the head in case of accidents +n03127925 a rugged box (usually made of wood); used for shipping +n03128085 neckwear worn in a slipknot with long ends overlapping vertically in front +n03128248 writing implement consisting of a colored stick of composition wax used for writing and drawing +n03128427 a patchwork quilt without a design +n03128519 toiletry consisting of any of various substances in the form of a thick liquid that have a soothing and moisturizing effect when applied to the skin +n03129001 a small pitcher for serving cream +n03129471 a hospital where foundlings (infant children of unknown parents) are taken in and cared for +n03129636 a representation of Christ's nativity in the stable at Bethlehem +n03129753 a kind of sideboard or buffet +n03129848 a wicker basket used by anglers to hold fish +n03130066 a furnace where a corpse can be burned and reduced to ashes +n03130233 a mortuary where corpses are cremated +n03130563 a soft thin light fabric with a crinkled surface +n03130761 a very thin crepe of silk or silklike fabric +n03130866 an adjustable wrench designed to fit hexagonal nuts with the adjusting screw built into the head of the wrench +n03131193 an unglazed heavy fabric; brightly printed; used for slipcovers and draperies +n03131574 baby bed with high sides made of slats +n03131669 a bin or granary for storing grains +n03131967 the ball used in playing cricket +n03132076 the club used in playing cricket +n03132261 sports equipment used in playing cricket +n03132438 fastener consisting of a metal ring for lining a small hole to permit the attachment of cords or lines +n03132666 a stiff coarse fabric used to stiffen hats or clothing +n03132776 a full stiff petticoat made of crinoline fabric +n03133050 a needle with a hook on the end; used in crocheting +n03133415 an earthen jar (made of baked clay) +n03133878 an electric cooker that maintains a relatively low temperature +n03134118 a long staff with one end being hook shaped +n03134232 electromagnetic radiometer consisting of a small paddlewheel that rotates when placed in daylight +n03134394 the original gas-discharge cathode-ray tube +n03134739 a wooden ball used in playing croquet +n03134853 sports equipment used in playing croquet +n03135030 a mallet used to strike the ball in croquet +n03135532 a wooden structure consisting of an upright post with a transverse piece +n03135656 long thin horizontal crosspiece between two vertical posts +n03135788 game equipment consisting of a horizontal bar to be jumped or vaulted over +n03135917 a horizontal bar that goes across something +n03136051 any of the seats in the House of Commons used by members who do not vote regularly with either the government or the Opposition +n03136254 a rock drill having cruciform cutting edges; used in mining +n03136369 a bow fixed transversely on a wooden stock grooved to direct the arrow (quarrel) +n03136504 handsaw that cuts at right angles to the grain (or major axis) +n03137473 the lowermost sail on a mizzenmast +n03137579 a transverse brace +n03138128 a small tool or hooklike implement +n03138217 a small rake used by a croupier to move chips around on the table +n03138344 a heavy iron lever with one end forged into a wedge +n03138669 an ornamental jeweled headdress signifying sovereignty +n03139089 (dentistry) dental appliance consisting of an artificial crown for a broken or decayed tooth +n03139464 regalia (jewelry and other paraphernalia) worn by a sovereign on state occasions +n03139640 a lens made of optical crown glass +n03139998 platform for a lookout at or near the top of a mast +n03140126 a vessel made of material that does not melt easily; used for high temperature chemical reactions +n03140292 representation of the cross on which Jesus died +n03140431 bottle that holds wine or oil or vinegar for the table +n03140546 a stand for cruets containing various condiments +n03140652 control mechanism for keeping an automobile at a set speed +n03140771 an unmanned aircraft that is a self-contained bomb +n03140900 a large fast warship; smaller than a battleship and larger than a destroyer +n03141065 a car in which policemen cruise the streets; equipped with radiotelephonic communications to headquarters +n03141327 a passenger ship used commercially for pleasure cruises +n03141455 a strap from the back of a saddle passing under the horse's tail; prevents saddle from slipping forward +n03141612 small jar; holds liquid (oil or water) +n03141702 a device that crushes something +n03141823 a wooden or metal staff that fits under the armpit and reaches to the ground; used by disabled person while walking +n03142099 a thermometer designed to measure low temperatures +n03142205 a measuring instrument for measuring freezing and melting points +n03142325 a thermostat that operates at very low temperatures +n03142431 a cellar or vault or underground burial chamber (especially beneath a church) +n03142679 a protective cover that protects the face of a watch +n03143400 a detector consisting of a fine wire in contact with a galena crystal; acts as a rectifier +n03143572 a microphone in which sound waves vibrate a piezoelectric crystal that generates a varying voltage +n03143754 an oscillator that produces electrical oscillations at a frequency determined by the physical characteristics of a piezoelectric quartz crystal +n03144156 an early radio receiver using a crystal detector +n03144873 body armor that protects the elbow +n03144982 an instrument of punishment consisting of a chair in which offenders were ducked in water +n03145147 clock that announces the hours with a sound like the call of the cuckoo +n03145277 the galley or pantry of a small ship +n03145384 a club that is used as a weapon +n03145522 sports implement consisting of a tapering rod used to strike a cue ball in pool or billiards +n03145719 the ball that the billiard player or pool player strikes with his cue +n03145843 the lap consisting of a turned-back hem encircling the end of the sleeve or leg +n03146219 medieval body armor that covers the chest and back +n03146342 armor plate that protects the thigh +n03146449 a passage with access only at one end +n03146560 a specialized endoscope for visually examining a woman's pelvic organs +n03146687 a gutter in a roof +n03146777 a divided skirt +n03146846 a farm implement used to break up the surface of the soil (for aeration and weed control and conservation of moisture) +n03147084 a medieval musket +n03147156 a heavy cannon with a long barrel used in the 16th and 17th centuries +n03147280 a transverse and totally enclosed drain under a road or railway +n03147509 a small open container usually used for drinking; usually has a handle +n03148324 a small room (or recess) or cabinet used for storage space +n03148518 hook (usually on the underside of a shelf) for hanging cups +n03148727 a roof in the form of a dome +n03148808 a vertical cylindrical furnace for melting iron for casting +n03149135 a horse's bit with an attached chain or strap to check the horse +n03149401 a roof with two or more slopes on each side of the ridge +n03149686 a paving stone forming part of a curb +n03149810 a surgical instrument shaped like a scoop to remove tissue from a bodily cavity +n03150232 a mechanical device consisting of a cylindrical tube around which the hair is wound to curl it +n03150511 a cylindrical metal home appliance that heats a lock of hair that has been curled around it +n03150661 a square comb with rows of small teeth; used to curry horses +n03150795 (computer science) indicator consisting of a movable spot of light (an icon) on a visual display; moving it allows the user to point to commands or screen positions +n03151077 hanging cloth used as a blind (especially for a window) +n03152303 a government building where customs are collected and where ships are cleared to enter or leave the country +n03152951 a representation (drawing or model) of something in which the outside is omitted to reveal the inner parts +n03153246 a short heavy curved sword with one edge; formerly used by sailors +n03153585 a device that terminates the flow in a pipe +n03153948 a switch that interrupts an electric circuit in the event of an overload +n03154073 a cutting implement; a tool for cutting +n03154316 a sailing vessel with a single mast set further back than the mast of a sloop +n03154446 a tool used for cutting or slicing +n03154616 a room where films or tapes are edited (by cutting out unwanted parts) +n03154745 a low stool; formerly in Scotland, a seat in a church where an offender was publicly rebuked +n03154895 embroidery in which the design is outlined in a buttonhole stitch and the intervening material is cut away +n03155178 a cafe whose customers sit at computer terminals and log on to the internet while they eat and drink +n03155502 a primitive style of masonry characterized by use of massive stones of irregular shape and size +n03155915 a writing implement with a small toothed wheel that cuts small holes in a stencil +n03156071 an accelerator that imparts energies of several million electron-volts to rapidly moving particles +n03156279 a cylindrical container for oxygen or compressed air +n03156405 a chamber within which piston moves +n03156767 a lock in which a cylinder rotates to move a bolt; tumblers are pins; inserting the key lifts and aligns the pins to free the cylinder to rotate +n03157348 a percussion instrument consisting of a concave brass disk; makes a loud crashing sound when hit with a drumstick or when two are struck together +n03158186 Russian country house +n03158414 a kind of polyester fabric +n03158668 the section of a pedestal between the base and the surbase +n03158796 a plane for making a dado groove +n03158885 a short knife with a pointed blade used for piercing or stabbing +n03159535 a farm where dairy products are produced +n03159640 a platform raised above the surrounding level to give prominence to the person on it +n03160001 a wheel around which is a set of print characters that make a typing impression on paper +n03160186 a printer that uses a daisy print wheel +n03160309 a barrier constructed to contain the flow of water or to keep out the sea +n03160740 a fabric of linen or cotton or silk or wool with a reversible pattern woven into it +n03161016 a device that dampens or moistens something +n03161450 a device that decreases the amplitude of electronic, mechanical, acoustical, or aerodynamic oscillations +n03161893 damper consisting of a small felted block that drops onto a piano string to stop its vibration +n03162297 a lantern with a single opening and a sliding panel that can be closed to conceal the light +n03162460 a room in which photographs are developed +n03162556 a long needle with an eye large enough for heavy darning or embroidery thread +n03162714 a tapered tuck made in dressmaking +n03162818 a small narrow pointed missile that is thrown or shot +n03163222 instrument panel on an automobile or airplane containing dials and controls +n03163381 a loose and brightly colored African shirt +n03163488 a mechanical damper; the vibrating part is attached to a piston that moves in a chamber filled with liquid +n03163798 converter for changing information from one code to another +n03163973 a device that can be used to insert data into a computer or other computational device +n03164192 a multiplexer that permits two or more data sources to share a common transmission medium +n03164344 system consisting of the network of all communication channels used within an organization +n03164605 a large sofa usually convertible into a bed +n03164722 a small decorative writing desk +n03164929 a crane-like device (usually one of a pair) for suspending or lowering equipment (as a lifeboat) +n03165096 an armless couch; a seat by day and a bed by night +n03165211 an accounting journal as a physical object +n03165466 a nursery for the supervision of preschool children while the parents work +n03165616 a school building without boarding facilities +n03165823 an axle that carries a wheel but without power to drive it +n03165955 (nautical) a round hardwood disk with holes and a grooved perimeter used to tighten a shroud +n03166120 a train or bus or taxi traveling empty +n03166514 the official residence of a dean +n03166600 the bed on which a person dies +n03166685 a concentration camp where prisoners are likely to die or be killed +n03166809 the cellblock in a prison where those condemned to death await execution +n03166951 a bell rung to announce a death +n03167153 the car seat beside the driver of an automobile; believed to be the most dangerous place to sit in a car in case of an accident +n03167978 street name for a packet of illegal drugs +n03168107 a porch that resembles the deck on a ship +n03168217 a folding chair for use outdoors; a wooden frame supports a length of canvas +n03168543 a superstructure on the upper deck of a ship +n03168663 (paper making) a frame used to form paper pulp into sheets +n03168774 rough edge left by a deckle on handmade paper or produced artificially on machine-made paper +n03168933 an instrument for measuring magnetic declination +n03169063 a machine that converts a coded text into ordinary language +n03169176 a low-cut neckline on a woman's dress +n03170292 art produced by decorating a surface with cutouts and then coating it with several layers of varnish or lacquer +n03170459 (computer science) a file server that can be used only as a file server +n03170635 electric refrigerator (trade name Deepfreeze) in which food is frozen and stored for long periods of time +n03170872 a tight-fitting hat with visors front and back; formerly worn by hunters +n03171228 the weaponry available for the defense of a region +n03171356 a structure used to defend against attack +n03171635 an electronic device that administers an electric shock of preset voltage to the heart through the chest wall in an attempt to restore the normal rhythm of the heart during ventricular fibrillation +n03171910 the arrangement of defensive fortifications to protect against enemy fire +n03172038 a device intended to turn aside the flow of something (water or air or smoke etc) +n03172738 a mechanism that automatically delays the release of a camera shutter for a fixed period of time so that the photographer can appear in the picture +n03172965 a circuit designed to introduce a calculated delay into the transmission of a signal +n03173270 a style of glazed earthenware; usually white with blue decoration +n03173387 a shop selling ready-to-eat food products +n03173929 a van suitable for delivering goods or services to customers +n03174079 an airplane with wings that give it the appearance of an isosceles triangle +n03174450 large bottle with a short narrow neck; often has small handles at neck and is enclosed in wickerwork +n03174731 small coffee cup; for serving black coffee +n03175081 a room that is comfortable and secluded +n03175189 a coarse durable twill-weave cotton fabric +n03175301 a measuring instrument for determining density or specific gravity +n03175457 a measuring instrument for determining optical or photographic density +n03175604 a device to repair teeth or replace missing teeth +n03175843 a soft thread for cleaning the spaces between the teeth +n03175983 an implant that replaces a natural tooth +n03176238 a high speed drill that dentists use to cut into teeth +n03176386 a dental appliance that artificially replaces missing teeth +n03176594 a toiletry applied to the skin in order to mask unpleasant odors +n03176763 a large retail store organized into departments offering a variety of merchandise; commonly part of a retail chain +n03177059 lounge where passengers can await departure +n03177165 a cosmetic for temporary removal of undesired hair +n03177708 a device used by physician to press a part down or aside +n03178000 navigational instrument used to measure the depth of a body of water (as by ultrasound or radar) +n03178173 a gauge for measuring the depth of grooves or holes or other concavities +n03178430 a simple crane having lifting tackle slung from a boom +n03178538 a framework erected over an oil well to allow drill tubes to be raised and lowered +n03178674 a pocket pistol of large caliber with a short barrel +n03179701 a piece of furniture with a writing surface and usually drawers or other compartments +n03179910 a telephone set that sits on a desk or table +n03180011 a personal computer small enough to fit conveniently in an individual workspace +n03180384 a spoon larger than a teaspoon and smaller than a tablespoon +n03180504 a small fast lightly armored but heavily armed warship +n03180732 warship smaller than a destroyer; designed to escort fleets or convoys +n03180865 a house that stands alone +n03180969 any device that receives a signal or stimulus (as heat or pressure or light or motion etc.) and responds to it in a distinctive manner +n03181293 electronic equipment that detects the presence of radio signals or radioactivity +n03181667 an institution where juvenile offenders can be held temporarily (usually under the supervision of a juvenile court) +n03182140 a fuse containing an explosive +n03182232 a mechanical or electrical explosive device or a small amount of explosive; can be used to initiate the reaction of a disrupting explosive +n03182912 photographic equipment consisting of a chemical solution for developing film +n03183080 an instrumentality invented for a particular purpose +n03185868 vacuum flask that holds liquid air or helium for scientific experiments +n03186199 a long loincloth worn by Hindu men +n03186285 a lateen-rigged sailing vessel used by Arabs +n03186818 a disc on a telephone that is rotated a fixed distance for each number called +n03187037 the circular graduated indicator on various measuring instruments +n03187153 the control on a radio or television set that is used for tuning +n03187268 (computer science) a small temporary window in a graphical user interface that appears in order to request information from the user; after the information has been provided the user dismisses the box with `okay' or `cancel' +n03187595 a telephone with a dial for registering the number to be called +n03187751 a medical instrument for separating substances in solution by unequal diffusion through semipermeable membranes +n03188290 fabric covered with glittering ornaments such as sequins or rhinestones +n03188531 garment consisting of a folded cloth drawn up between the legs and fastened at the waist; worn by infants to catch excrement +n03188725 a fabric (usually cotton or linen) with a distinctive woven pattern of small repeated figures +n03188871 a foghorn that makes a signal consisting of two tones +n03189083 a mechanical device in a camera that controls size of aperture of the lens +n03189311 electro-acoustic transducer that vibrates to receive or produce sound waves +n03189818 a medical instrument for local heating of bodily tissues for medical purposes +n03190458 a wooden hand tool with a pointed end; used to make holes in the ground for planting seeds or bulbs +n03191286 a small container (open at one end) in which dice are shaken by hand and from which they are thrown +n03191451 a mechanical device used for dicing food +n03191561 a man's detachable insert (usually starched) to simulate the front of a shirt +n03191776 a small third seat in the back of an old-fashioned two-seater +n03192543 a tape recorder that records and reproduces dictation +n03192907 a cutting tool that is fitted into a diestock and used for cutting male (external) screw threads on screws or bolts or pipes or rods +n03193107 an internal-combustion engine that burns heavy oil +n03193260 a locomotive driven by the electric current generated by a diesel engine +n03193423 a locomotive driven by a hydraulic transmission system powered by a diesel engine +n03193597 a locomotive driven by a diesel engine +n03193754 a device that holds the dies that cut external threads on metal cylinders +n03194170 an analog computer designed to solve differential equations +n03194297 a bevel gear that permits rotation of two shafts at different speeds; used on the rear axle of automobiles to allow wheels to rotate at different speeds on curves +n03194812 optical device that distributes the light of a lamp evenly +n03194992 baffle that distributes sound waves evenly +n03195332 autoclave consisting of a vessel in which plant or animal materials are digested +n03195485 temporary living quarters +n03195799 device for converting digital signals into analogue signals +n03195959 a digital tape recording of sound +n03196062 a camera that encodes an image digitally and store it for later reproduction +n03196217 a clock that displays the time of day digitally +n03196324 a computer that represents information by numerical (binary) digits +n03196598 a display that gives the information in the form of characters (numbers or letters) +n03196990 a generic name for digital lines that are provided by telephone companies to their local subscribers and that carry data at high speeds +n03197201 an electronic voltmeter that gives readings in digits +n03197337 a watch with a digital display +n03197446 device for converting analogue signals into digital signals +n03198223 a surgical instrument that is used to dilate or distend an opening or an organ +n03198500 a vibrating device that substitutes for an erect penis to provide vaginal stimulation +n03199358 a strong cotton fabric with a raised pattern; used for bedcovers and curtains +n03199488 a rheostat that varies the current through an electric light in order to control the level of illumination +n03199647 a restaurant that resembles a dining car +n03199775 a small area off of a kitchen that is used for dining +n03199901 a small boat of shallow draft with cross thwarts for seats and rowlocks for oars with which it is propelled +n03200231 an area arranged for dining +n03200357 a passenger car where food is served in transit +n03200539 a large room at a college or university; used especially for dining +n03200701 a room used for dining +n03200906 furniture intended for use in a dining room +n03201035 dining-room furniture consisting of a table on which meals can be served +n03201208 a table at which meals are served +n03201529 a bell rung to announce that dinner has been served +n03201638 a gown for evening wear +n03201776 semiformal evening dress for men +n03201895 a large napkin used when dinner is served +n03201996 a pail in which a workman carries his lunch or dinner +n03202354 the dining table where dinner is served and eaten +n03202481 a theater at which dinner is included in the price of admission +n03202760 a semiconductor that consists of a p-n junction +n03202940 a thermionic tube having two electrodes; used as a rectifier +n03203089 a candle that is made by repeated dipping in a pool of wax or tallow +n03203806 government building in which diplomats live or work +n03204134 an aerial half a wavelength long consisting of two rods connected to a transmission line at the center +n03204306 a ladle that has a cup with a long handle +n03204436 a graduated rod dipped into a container to indicate the fluid level +n03204558 (computer science) one of a set of small on-off switches mounted in computer hardware; used in place of jumpers to configure the machine for a user +n03204955 an antenna that transmits or receives signals only in a narrow angle +n03205143 a microphone that is designed to receive sound from a particular direction +n03205304 radio; determines the direction of incoming radio waves +n03205458 a relatively long dagger with a straight blade +n03205574 a dress with a tight bodice and full skirt +n03205669 a full skirt with a gathered waistband +n03205903 an atom bomb that leaves considerable radioactive contamination +n03206023 a lamp that generates light by a discharge between two electrodes in a gas +n03206158 a pipe through which fluids can be discharged +n03206282 a public dance hall for dancing to recorded popular music +n03206405 a sales outlet offering goods at a discounted price +n03206602 a disk used in throwing competitions +n03206718 any attire that modifies the appearance in order to conceal the wearer's identity +n03206908 a piece of dishware normally used as a container for holding or serving food +n03207305 directional antenna consisting of a parabolic reflector for microwave or radio frequency radiation +n03207548 large pan for washing dishes +n03207630 a rack for holding dishes as dishwater drains off of them +n03207743 a cloth for washing dishes +n03207835 a towel for drying dishes +n03207941 a machine for washing dishes +n03208556 a flat circular plate +n03208938 hydraulic brake in which friction is applied to both sides of a spinning disk by the brake pads +n03209359 a friction clutch in which the frictional surfaces are disks +n03209477 (computer science) a circuit or chip that translates commands into a form that can control a hard disk drive +n03209666 computer hardware that holds and spins a magnetic or optical disk and reads and writes information on it +n03209910 a small plastic magnetic disk enclosed in a stiff envelope with a radial slit; used to store data or programs for a microcomputer +n03210245 a harrow with a series of disks set on edge at an angle +n03210372 case consisting of an oblong container (usually having a lock) for carrying dispatches or other valuables +n03210552 clinic where medicine and medical supplies are dispensed +n03210683 a container so designed that the contents can be used in prescribed amounts +n03211117 an electronic device that represents information in visual form +n03211413 (computer science) an electronic device that converts information in memory to video output to a display +n03211616 a vertical surface on which information can be displayed to public view +n03211789 a window of a store facing onto the street; used to display merchandise for sale in the store +n03212114 a kitchen appliance for disposing of garbage +n03212247 a high explosive that is used to damage the target that is under attack +n03212406 the staff on which wool or flax is wound before spinning +n03212811 a plant and works where alcoholic drinks are made by distillation +n03213014 electrical device that distributes voltage to the spark plugs of a gasoline engine in the order of the firing sequence +n03213361 the cam inside the distributor that rotates to contact spark plug terminals in the correct order +n03213538 the cap of the distributor that holds in place the wires from the distributor to the spark plugs +n03213715 the housing that supports the distributor cam +n03213826 a contact in the distributor; as the rotor turns its projecting arm contacts them and current flows to the spark plugs +n03214253 a long narrow excavation in the earth +n03214450 a spade with a long handle for digging narrow ditches +n03214582 kit used by sailors and soldiers +n03214966 a long backless sofa (usually with pillows against a wall) +n03215076 a Muslim council chamber or law court +n03215191 a bomber that releases its bombs during a steep dive toward the target +n03215337 a lens such that a parallel beam of light passing through it is caused to diverge or spread out +n03215508 a highway divided down the middle by a barrier that separates traffic going in different directions +n03215749 a drafting instrument resembling a compass that is used for dividing lines into equal segments or for transferring measurements +n03215930 diving apparatus for underwater work; has an open bottom and is supplied with compressed air +n03216199 forked stick that is said to dip down to indicate underground water or oil +n03216402 a weighted and hermetically sealed garment supplied with air; worn by underwater divers +n03216562 a large metal pot (12 gallon camp kettle) for cooking; used in military camps +n03216710 a disposable cup made of paper; for holding drinks +n03216828 landing in a harbor next to a pier where ships are loaded and unloaded or repaired; may have gates to let water in or out +n03217653 a fine smooth soft woolen fabric +n03217739 a cart drawn by a dog +n03217889 a bag for food that a customer did not eat at a restaurant; the transparent pretense is that the food is taken home to feed the customer's dog +n03218198 a sled pulled by dogs +n03218446 a wrench with a handle shaped like a crank +n03219010 a small round piece of linen placed under a dish or bowl +n03219135 a small replica of a person; used as a toy +n03219483 a house so small that it is likened to a child's plaything +n03219612 conveyance consisting of a wheeled platform for moving heavy objects +n03219859 a woman's cloak with dolman sleeves +n03219966 a hussar's jacket worn over the shoulders +n03220095 a sleeve with a large armhole and tight cuff +n03220237 a prehistoric megalithic tomb typically having two large upright stones and a capstone +n03220513 a hemispherical roof +n03220692 a stadium that has a roof +n03221059 a mask covering the upper part of the face but with holes for the eyes +n03221351 (computer science) an electronic device that must be attached to a computer in order for it to use protected software +n03221540 a short thick jacket; often worn by workmen +n03221720 a swinging or sliding barrier that will close the entrance to a room or building or vehicle +n03222176 a room that is entered via a door +n03222318 a structure where people live or work (usually ordered along a street or road) +n03222516 a push button at an outer door that gives a ringing or buzzing signal when pushed +n03222722 the frame that supports a door +n03222857 a jamb for a door +n03223162 a lock on an exterior door +n03223299 a mat placed outside an exterior door for wiping the shoes before entering +n03223441 a nail with a large head; formerly used to decorate doors +n03223553 a nameplate fastened to a door; indicates the person who works or lives there +n03223686 the sill of a door; a horizontal piece of wood or stone that forms the bottom of a doorway and offers support when passing through a doorway +n03223923 a stop that keeps open doors from moving +n03224490 radar that uses the Doppler shift to measure velocity +n03224603 a gabled extension built out from a sloping roof to accommodate a vertical window +n03224753 the window in a gabled extension built to accommodate a window +n03224893 a college or university building containing living quarters for students +n03225108 a large sleeping room containing several beds +n03225458 a measuring instrument for measuring doses of ionizing radiation (X-rays or radioactivity) +n03225616 an ornamental hanging of rich fabric hung behind the altar of a church or at the sides of a chancel +n03225777 a printer that represents each character as a pattern of dots from a dot matrix +n03225988 a bed wide enough to accommodate two sleepers +n03226090 an ax that has cutting edges on both sides of the head +n03226254 two saucepans, one fitting inside the other +n03226375 a jacket having fronts that overlap enough for two separate rows of buttons +n03226538 a suit with a double-breasted jacket +n03226880 two vertical doors that meet in the middle of the door frame when closed +n03227010 a window with two panes of glass and a space between them; reduces heat and noise transmission through the window +n03227184 a window having two sashes that slide up and down +n03227317 a knit fabric similar to jersey that is made with two sets of needles producing a double thickness joined by interlocking stitches +n03227721 an electronic device that doubles the voltage or the frequency of an input signal +n03227856 a pair of joined reeds that vibrate together to produce the sound in some woodwinds +n03228016 a woodwind that has a pair of joined reeds that vibrate together +n03228254 a man's close-fitting jacket; worn during the Renaissance +n03228365 a crossbar on a wagon or carriage to which two whiffletrees are attached in order to harness two horses abreast +n03228533 a small syringe with detachable nozzles; used for vaginal lavage and enemas +n03228692 a birdhouse for pigeons +n03228796 a medicinal powder made essentially of ipecac and opium; formerly used to relieve pain and induce perspiration +n03228967 a mortise joint formed by interlocking tenons and mortises +n03229115 a woodworking plane designed to make the grooves for dovetail joints +n03229244 a fastener that is inserted into holes in two adjacent pieces and holds them together +n03229526 the front half of the stage (as seen from the audience) +n03231160 an instrument used by a draftsman in making drawings +n03231368 a worktable with adjustable top +n03231819 a sniper rifle with a telescopic sight +n03232309 a ditch for carrying off excess water or sewage +n03232417 a system of watercourses or drains for carrying off excess water +n03232543 a filter in a sink drain; traps debris but passes water +n03232815 a removable plug for holding water in a tub or basin +n03232923 a sterile covering arranged over a patient's body during a medical examination or during surgery in order to reduce the possibility of contamination +n03233123 cloth gracefully draped and arranged in loose folds +n03233624 a strong metal bar bearing a hook to attach something to be pulled +n03233744 a bridge that can be raised to block passage or to allow boats or ships to pass beneath it +n03233905 a boxlike container in a piece of furniture; made so as to slide in and out +n03234164 underpants worn by men +n03234952 colored chalks used by artists +n03235042 a formal room where visitors can be received and entertained +n03235180 a private compartment on a sleeping car with three bunks and a toilet +n03235327 a woodworker's knife to shave surfaces +n03235796 a bag that is closed at the top with a drawstring +n03235979 a low heavy horse cart without sides; used for haulage +n03236093 battleship that has big guns all of the same caliber +n03236217 a power shovel to remove material from a channel or riverbed +n03236423 a barge (or a vessel resembling a barge) that is used for dredging +n03236580 a bucket for lifting material from a channel or riverbed +n03236735 a one-piece garment for a woman; has skirt and bodice +n03237212 a dress uniform for formal occasions +n03237340 a cabinet with shelves +n03237416 a man's hat with a tall crown; usually covered with silk or with beaver fur +n03237639 a cloth covering for a wound or sore +n03237839 a small piece of luggage for carrying brushes and bottles and toilet articles while traveling +n03237992 a robe worn before dressing or while lounging +n03238131 a room in which you can change clothes +n03238286 a woman's loose jacket; worn while dressing +n03238586 low table with mirror or mirrors where one sits while dressing or applying makeup +n03238762 a rack used primarily to display dresses for sale in a store +n03238879 a man's white shirt (with a starch front) for evening wear (usually with a tuxedo) +n03239054 formalwear consisting of full evening dress for men +n03239259 a military uniform worn on formal occasions +n03239607 a large fishnet supported by floats; it drifts with the current +n03239726 a tool with a sharp point and cutting edges for making holes in hard materials (usually rotating rapidly or by repeated blows) +n03240140 a rotating power drill powered by an electric motor +n03240683 drilling rig consisting of an offshore platform (floating or fixed to the sea bed) from which many oil wells can be bored radially +n03240892 a machine tool with a separate, upright stand; an electric drill is pressed into the work automatically or with a hand lever +n03241093 rig used in drilling for oil or gas +n03241335 a public fountain to provide a jet of drinking water +n03241496 a vessel intended for drinking +n03241903 a downward hanging loop in a line that runs to a building +n03242120 a small mat placed under a glass to protect a surface from condensation +n03242264 pan under a refrigerator for collecting liquid waste +n03242390 pan for catching drippings under roasting meat +n03242506 a coffeepot for making drip coffee +n03242995 a mechanism by which force or power is transmitted in a machine +n03243218 (computer science) a device that writes data onto or reads data from a storage medium +n03243625 mechanism that transmits power from the engine to the driving wheels of a motor vehicle +n03244047 a golf club (a wood) with a near vertical face that is used for hitting long shots from the tee +n03244231 a rotating shaft that transmits power from the engine to the point of application +n03244388 a road leading up to a private house +n03244775 (golf) the long iron with the most nearly vertical face +n03244919 a wheel that drives a motor vehicle (transforms torque into a tractive force) +n03245271 a parachute used to decelerate an object that is moving rapidly +n03245421 a small parachute that pulls the main parachute from its storage pack +n03245724 a pipe of the bagpipe that is tuned to produce a single continuous tone +n03245889 an aircraft without a pilot that is operated by remote control +n03246197 a blunt pointed arch drawn from two centers within the span +n03246312 a large piece of cloth laid over the floor or furniture while a room is being painted +n03246454 a curtain that can be lowered and raised onto a stage from the flies; often used as background scenery +n03246653 device for making large forgings +n03246933 a table that has a drop-leaf to enlarge its surface +n03247083 pipet consisting of a small tube with a vacuum bulb at one end for drawing liquid in and releasing it a drop at a time +n03247351 an open horse-drawn carriage with four wheels; formerly used in Poland and Russia +n03247495 a stonemason's chisel with a broad edge for dressing stone +n03248835 a rug made of a coarse fabric having a cotton warp and a wool filling +n03249342 a retail shop where medicine and other articles are sold +n03249569 a musical percussion instrument; usually consists of a hollow cylinder with a membrane stretched across each end +n03249956 a cylindrical metal container used for shipping or storage of liquids +n03250089 hydraulic brake in which friction is applied to the inside of a spinning drum by the brake shoe +n03250279 a membrane that is stretched taut over a drum +n03250405 a line printer in which the type is mounted on a rotating drum that contains a full character set for each printing position +n03250588 a power tool used for sanding wood; an endless loop of sandpaper is moved at high speed by an electric motor +n03250847 a stick used for playing a drum +n03250952 a voltaic battery consisting of two or more dry cells +n03251100 an ordinary thermometer with a dry bulb; used to measure the air temperature +n03251280 a small Leclanche cell containing no free liquid; the electrolyte is a paste and the negative zinc pole forms the container of the cell; used in flashlights, portable radios, etc. +n03251533 a large dock from which water can be pumped out; used for building ships or for repairing a ship below its waterline +n03251766 an appliance that removes moisture +n03251932 a fly (fisherman's lure) that skims the surface of the water +n03252231 a kiln for drying and seasoning lumber +n03252324 masonry without mortar +n03252422 a steel needle for engraving without acid on a bare copper plate +n03252637 a stone wall made with stones fitted together without mortar +n03252787 a type of passive matrix display in which the top and bottom half of the screen are refreshed simultaneously +n03253071 a heavy cotton fabric of plain weave; used for clothing and tents +n03253187 a boardwalk laid across muddy ground +n03253279 a bowling pin that is short and squat by comparison with a tenpin +n03253714 a clay pipe with a short stem +n03253796 a coarse heavy woolen fabric +n03253886 a large cylindrical bag of heavy cloth; for carrying personal belongings +n03254046 a warm coat made of duffel; usually has a hood and fastens with toggles +n03254189 either of two low shelters on either side of a baseball diamond where the players and coaches sit during the game +n03254374 a canoe made by hollowing out and shaping a large log +n03254625 the organ stop having a tone of soft sweet string quality +n03254737 a trapezoidal zither whose metal strings are struck with light hammers +n03254862 a stringed instrument used in American folk music; an elliptical body and a fretted fingerboard and three strings +n03255030 an exercising weight; two spheres connected by a short bar that serves as a handle +n03255167 a bomb that falls because of gravity and is not guided to a target +n03255322 a small elevator used to convey food (or other goods) from one floor of a building to another +n03255488 a soft-nosed small-arms bullet that expands when it hits a target and causes a gaping wound +n03255899 a cart that can be tilted to empty contents without handling +n03256032 a container designed to receive and transport and dump waste +n03256166 truck whose contents can be emptied without handling; the front end of the platform can be pneumatically raised so that the load is discharged by gravity +n03256472 a surveyor's level having a short telescope fixed to a horizontally rotating table and a spirit level +n03256631 a cone-shaped paper hat formerly placed on the head of slow or lazy pupils +n03256788 a recreational vehicle with large tires used on beaches or sand dunes +n03256928 a dark cell (usually underground) where prisoners can be confined +n03257065 an apartment having rooms on two floors that are connected by a staircase +n03257210 a house with two units sharing a common wall +n03257586 apparatus that makes copies of typed, written or drawn material +n03258192 a bag into which dirt is sucked by a vacuum cleaner +n03258330 a piece of cloth used for dusting +n03258456 a removable plastic protective covering for a piece of equipment +n03258577 a large piece of cloth used to cover furniture that is not in use for a long period +n03258905 a dry swab for dusting floors +n03259009 a short-handled receptacle into which dust can be swept +n03259280 an oven consisting of a metal box for cooking in front of a fire +n03259401 iron or earthenware cooking pot; used for stews +n03259505 housing that someone is living in +n03260206 a workshop where dyeing is done +n03260504 generator consisting of a coil (the armature) that rotates between the poles of an electromagnet (the field magnet) causing a current to flow in the armature +n03260733 measuring instrument designed to measure power +n03260849 a chair designed by Charles Eames; originally made of molded plywood; seat and back shaped to fit the human body +n03261019 one of two flaps attached to a cap to keep the ears warm +n03261263 a radar that is part of an early warning system +n03261395 a network of radar installations designed to detect enemy missiles or aircraft while there is still time to intercept them +n03261603 either of a pair of ear coverings (usually connected by a headband) that are worn to keep the ears warm in cold weather +n03261776 electro-acoustic transducer for converting electric signals into sounds; it is held over or inserted into the ear +n03262072 a plug of cotton, wax, or rubber that is fitted into the ear canal for protection against the entry of water or loud noise +n03262248 an earphone that is inserted into the ear canal +n03262519 ceramic ware made of porous clay fired at low heat +n03262717 an earthen rampart +n03262809 an upright tripod for displaying something (usually an artist's canvas) +n03262932 a comfortable upholstered armchair +n03263076 the overhang at the lower edge of a roof +n03263338 attire that is appropriate to wear in a church +n03263640 ovolo molding between the shaft and the abacus of a Doric column +n03263758 a sonograph that creates an image of the heart and its abnormalities +n03264906 garden tool for cutting grass around the edges of a yard +n03265032 any cutting tool with a sharp cutting edge (as a chisel or knife or plane or gouge) +n03265754 a furnished apartment with a kitchenette and bathroom +n03266195 a decorative molding; a series of egg-shaped figures alternating with another shape +n03266371 a mixer for beating eggs or whipping cream +n03266620 a sandglass that runs for three minutes; used to time the boiling of eggs +n03266749 a soft quilt usually filled with the down of the eider +n03267113 a black pool ball bearing the number 8; should be the last to go in certain pool games +n03267468 a pilot's seat in an airplane that can be forcibly ejected in the case of an emergency; then the pilot descends by parachute +n03267696 a fabric made of yarns containing an elastic material +n03267821 a bandage containing stretchable material that can apply local pressure +n03268142 an elastic adhesive bandage for covering cuts or wounds +n03268311 the part of a sleeve that covers the elbow joint +n03268645 protective garment consisting of a pad worn over the elbow by football and hockey players +n03268790 a car that is powered by electricity +n03268918 a cable that provides an electrical connection for telephone or television or power stations +n03269073 contact that allows current to pass from one conductor to another +n03269203 converter that converts alternating current into direct current or vice versa +n03269401 a device that produces or is powered by electricity +n03270165 equipment in a motor vehicle that provides electricity to start the engine and ignite the fuel and operate the lights and windshield wiper and heater and air conditioner and radio +n03270695 a bell activated by the magnetic effect of an electric current +n03270854 a blanket containing and electric heating element that can be controlled to the desired temperature by a rheostat +n03271030 an instrument of execution by electrocution; resembles an ordinary seat for one person +n03271260 a clock using a small electric motor +n03271376 an electric lamp in which the light comes from an electric discharge between two electrodes in a glass tube +n03271574 a fan run by an electric motor +n03271765 a frying pan heated by electricity +n03271865 any furnace in which the heat is provided by an electric current +n03272010 a guitar whose sound is amplified by electrical means +n03272125 a hammer driven by electric motor +n03272239 a small electric space heater +n03272383 a lamp powered by electricity +n03272562 a locomotive that is powered by an electric motor +n03272810 a meter for measuring the amount of electric power used +n03272940 a food mixer powered by an electric motor +n03273061 a motor that converts electricity to mechanical work +n03273551 (music) an electronic simulation of a pipe organ +n03273740 a kitchen range in which the heat for cooking is provided by electric power +n03273913 a refrigerator in which the coolant is pumped around by an electric motor +n03274265 a toothbrush with an electric motor in the handle that vibrates the head of the brush +n03274435 a typewriter powered by an electric motor +n03274561 a transducer that converts electrical to acoustic energy or vice versa +n03274796 a conductor used to make electrical contact with some part of a circuit +n03275125 measuring instrument that uses the interaction of the magnetic fields of two coils to measure current or voltage or power +n03275311 medical instrument that records electric currents generated by the brain +n03275566 an apparatus for the electrical transmission of pictures +n03275681 a fixed capacitor consisting of two electrodes separated by an electrolyte +n03275864 a cell containing an electrolyte in which an applied voltage causes a reaction to occur that would not occur otherwise (such as the breakdown of water into hydrogen and oxygen) +n03276179 a temporary magnet made by coiling wire around an iron core; when current flows in the coil the iron becomes a magnet +n03276696 meter to measure electrostatic voltage differences; draws no current from the source +n03276839 a medical instrument that records the electrical waves associated with the activity of skeletal muscles +n03277004 collider that consists of an accelerator that collides electrons and positrons +n03277149 the electrode that is the source of electrons in a cathode-ray tube or electron microscope; consists of a cathode that emits a stream of electrons and the electrostatic or electromagnetic apparatus that focuses it +n03277459 a balance that generates a current proportional to the displacement of the pan +n03277602 (telecommunication) converter for converting a signal from one frequency to another +n03277771 a device that accomplishes its purpose electronically +n03278248 equipment that involves the controlled conduction of electrons (especially in a gas or vacuum or semiconductor) +n03278914 an electronic monitor that monitors fetal heartbeat and the mother's uterine contractions during childbirth +n03279153 a musical instrument that generates sounds electronically +n03279364 a voltmeter whose sensitivity is increased by amplification +n03279508 a microscope that is similar in purpose to a light microscope but achieves much greater resolving power by using a parallel beam of electrons to illuminate the object instead of a beam of light +n03279804 a vacuum tube that amplifies a flow of electrons +n03279918 a simple electrostatic generator that generates repeated charges of static electricity +n03280216 measuring instrument that detects electric charge; two gold leaves diverge owing to repulsion of charges with like sign +n03280394 electrical device that produces a high voltage by building up a charge of static electricity +n03280644 a printer that uses an electric charge to deposit toner on paper +n03281145 lifting device consisting of a platform or cage that is raised and lowered mechanically in a vertical shaft in order to move people from one floor to another in a building +n03281524 the airfoil on the tailplane of an aircraft that makes it ascend or descend +n03281673 a vertical shaft in a building to permit the passage of an elevator from floor to floor +n03282060 a long artificial mound of stone or earth; built to hold back water or to support a road or as protection +n03282295 a diplomatic building where ambassadors live or work +n03282401 a superfluous ornament +n03283221 a room in a hospital or clinic staffed and equipped to provide emergency care to persons requiring immediate medical treatment +n03283413 a basin used by bedridden patients for vomiting +n03283827 the electrode in a transistor where electrons originate +n03284308 a container that has been emptied +n03284482 a light-sensitive coating on paper or film; consists of fine grains of silver bromide suspended in a gelatin +n03284743 any smooth glossy coating that resembles ceramic glaze +n03284886 a paint that dries to a hard glossy finish +n03284981 cooking utensil of enameled iron +n03285578 a paint consisting of pigment mixed with melted beeswax; it is fixed with heat after application +n03285730 an X ray of the brain made by replacing spinal fluid with a gas (usually oxygen) to improve contrast +n03285912 a structure consisting of an area that has been enclosed for some purpose +n03286572 a long slender medical instrument for examining the interior of a bodily organ or performing minor surgery +n03287351 a device that supplies electrical energy +n03287733 motor that converts thermal energy to mechanical work +n03288003 an instrument or machine that is used in warfare, such as a battering ram, catapult, artillery piece, etc. +n03288500 a room (as on a ship) in which the engine is located +n03288643 machinery consisting of engines collectively +n03288742 a double-reed woodwind instrument similar to an oboe but lower in pitch +n03288886 a saddle having a steel cantle and pommel and no horn +n03289660 photographic equipment consisting of an optical projector used to enlarge a photograph +n03289985 a coordinated outfit (set of clothing) +n03290096 colors flown by a ship to show its nationality +n03290195 (architecture) the structure consisting of the part of a classical temple above the columns between a capital and the roof +n03290653 a wall unit containing sound and television systems +n03291413 a hand shovel carried by infantrymen for digging trenches +n03291551 an entrenched fortification; a position protected by trenches +n03291741 any wrapper or covering +n03291819 a flat (usually rectangular) container for a letter, thin package, etc. +n03291963 the bag containing the gas in a balloon +n03292085 a crude stone artifact (as a chipped flint); possibly the earliest tools +n03292362 armor plate that protects the shoulder +n03292475 a fencing sword similar to a foil but with a heavier blade +n03292603 a large table centerpiece with branching holders for fruit or sweets or flowers +n03292736 a system of epicyclic gears in which at least one wheel axis itself revolves about another fixed axis +n03292960 an optical projector that gives images of both transparent and opaque objects +n03293095 a mixture of resins and waxes to remove cosmetically undesirable hair; mixture is applied hot to the surface and after cooling is pulled away taking the hairs with it +n03293741 electronic equipment that reduces frequency distortion +n03293863 a telescope whose mounting has only two axes of motion, one parallel to the Earth's axis and the other one at right angles to it +n03294048 an instrumentality needed for an undertaking or to perform a service +n03294604 (computer science) a read-only memory chip that can be erased by ultraviolet light and programmed again with new data +n03294833 an implement used to erase something +n03295012 a right-angled optical prism used to turn an inverted image upright +n03295140 a structure that has been erected +n03295246 a conical flask with a wide base and narrow neck +n03295928 hatchway that provides a means of escape in an emergency +n03296081 mechanical device that regulates movement +n03296217 gear that engages a rocking lever +n03296328 a steep artificial slope in front of a fortification +n03296478 a shield; especially one displaying a coat of arms +n03296963 an optical instrument for examining the inside of the esophagus +n03297103 a sandal with a sole made of rope or rubber and a cloth upper part +n03297226 a trellis on which ornamental shrub or fruit tree is trained to grow flat +n03297495 a coffee maker that forces live steam under pressure through dark roasted coffee grounds +n03297644 a cafe where espresso is served +n03297735 a public or private structure (business or governmental or educational) including buildings and equipment for business or residence +n03298089 a small (and usually shabby) cafe selling wine and beer and coffee +n03298352 a transdermal patch that allows estradiol to be absorbed into the blood stream; used in treating estrogen deficiency and in hormone replacement therapy +n03298716 a piece of furniture with open shelves for displaying small ornaments +n03298858 a soft cotton or worsted fabric with an open mesh; used for curtains or clothing etc. +n03299406 an etched plate made with the use of acid +n03300216 a type of network technology for local area networks; coaxial cable carries radio frequency signals between computers at a rate of 10 megabits per second +n03300443 any of several types of coaxial cable used in ethernets +n03301175 a jacket hanging to the waist and cut square at the bottom +n03301291 small ornamental ladies' bag for small articles +n03301389 measuring instrument consisting of a graduated glass tube for measuring volume changes in chemical reactions between gases +n03301568 a bass horn (brass wind instrument) that is the tenor of the tuba family +n03301833 a cooling system that cools by evaporation +n03301940 a handbag used with evening wear +n03302671 an exercise device resembling a stationary bike +n03302790 a device designed to provide exercise for the user +n03302938 system consisting of the parts of an engine through which burned gases or steam are discharged +n03303217 a fan that moves air out of an enclosure +n03303669 a valve through which burned gases from a cylinder escape into the exhaust manifold +n03303831 a large hall for holding exhibitions +n03304197 a guided missile developed by the French government for use against ships +n03304323 a bit with a cutting blade that can be adjusted to different sizes +n03304465 a bolt that has an attachment that expands as the bolt is driven into a surface +n03305300 a rapid automatic system to detect plastic explosives in passengers' luggage using X-ray technology and computers; designed for use in airports +n03305522 device that bursts with sudden violence from internal energy +n03305953 a system for screening luggage in airports; an agent passes a swab around or inside luggage and then runs the swab through a machine that can detect trace amounts of explosives +n03306385 public transport consisting of a fast train or bus that makes only a few scheduled stops +n03306869 an additional telephone set that is connected to the same telephone line +n03307037 an electric cord used to extend the length of a power cord +n03307573 a heat engine in which ignition occurs outside the chamber (cylinder or turbine) in which heat is converted to mechanical energy +n03307792 a drive with its own power supply and fan mounted outside the computer system enclosure and connected to the computer by a cable +n03308152 an instrument for extracting tight-fitting components +n03308481 makeup provided by a cosmetic pencil that is used to darken the eyebrows +n03308614 a small vessel with a rim curved to fit the orbit of the eye; use to apply medicated or cleansing solution to the eyeball +n03309110 makeup applied to emphasize the shape of the eyes +n03309356 a protective cloth covering for an injured eye +n03309465 combination of lenses at the viewing end of optical instruments +n03309687 makeup consisting of a cosmetic substance used to darken the eyes +n03309808 artifact made by weaving or felting or knitting or crocheting natural or synthetic fibers +n03313333 the face or front of a building +n03314227 face mask consisting of a strong wire mesh on the front of football helmets +n03314378 mask that provides a protective covering for the face in such sports as baseball or football or hockey +n03314608 a protective covering for the front of a machine or device (as a door lock or computer component) +n03314780 cosmetic powder for the face +n03314884 a piece of more-or-less transparent material that covers the face +n03315644 a protective covering that protects the outside of a building +n03315805 a lining applied to the edge of a garment for ornamentation or strengthening +n03315990 an ornamental coating to a building +n03316105 duplicator that transmits the copy by wire or radio +n03316406 a plant consisting of one or more buildings with facilities for manufacturing +n03316873 a whaling ship equipped to process whale products at sea +n03317233 a bundle of sticks and branches bound together +n03317510 the stitch that ties a group of parallel threads together in fagoting +n03317673 a thermometer calibrated in degrees Fahrenheit +n03317788 glazed earthenware decorated with opaque colors +n03317889 a ribbed woven fabric of silk or rayon or cotton +n03318136 a pulley-block used to guide a rope forming part of a ship's rigging to avoid chafing +n03318294 a small colored light used for decoration (especially at Christmas) +n03318865 a short broad slightly convex medieval sword with a sharp point +n03318983 the hinged protective covering that protects the keyboard of a piano when it is not being played +n03319167 a shelter to protect occupants from the fallout from an atomic bomb +n03319457 a mask worn as part of a masquerade costume +n03319576 a removable denture +n03319745 a recreation room in a private house +n03320046 a device for creating a current of air by movement of a surface or surfaces +n03320262 a belt driven by the crankshaft that drives a fan that pulls air through the radiator +n03320421 blade of a rotating fan +n03320519 a costume worn as a disguise at a masquerade party +n03320845 a small flag used by surveyors or soldiers to mark a position +n03320959 a semicircular window over a door or window; usually has sash bars like the ribs of a fan +n03321103 a jet engine in which a fan driven by a turbine provides extra air to the burner and gives extra thrust +n03321419 an airplane propelled by a fanjet engine +n03321563 a waist pack worn with the pouch in back +n03321843 the carved tracery on fan vaulting +n03321954 an elaborate system of vaulting in which the ribs diverge like fans +n03322570 a building on a farm +n03322704 an open-air marketplace for farm products +n03322836 house for a farmer and family +n03322940 a machine used in farming +n03323096 a farm together with its buildings +n03323211 an area adjacent to farm buildings +n03323319 a hoop worn beneath a skirt to extend it horizontally; worn by European women in the 16th and 17th centuries +n03323703 restraint that attaches to something or holds something in place +n03324629 nuclear reactor in which nuclear fissions are caused by fast neutrons because little or no moderator is used +n03324814 a health spa that specializes in helping people lose weight +n03324928 military uniform worn by military personnel when doing menial labor +n03325088 a regulator for controlling the flow of a liquid from a reservoir +n03325288 a piece of armor plate below the breastplate +n03325403 an upholstered armchair +n03325584 a long thin fluffy scarf of feathers or fur +n03325691 a thin tapering edge +n03325941 a hat made of felt with a creased crown +n03326073 a circuit that feeds back some of the output to the input of a system +n03326371 a building where livestock are fattened for market +n03326475 seam made by turning under or folding together and stitching the seamed materials to avoid rough edges +n03326660 rim (or part of the rim) into which spokes are inserted +n03326795 a fabric made of compressed matted animal fibers +n03326948 a pen with a writing tip made of felt (trade name Magic Marker) +n03327133 a fast narrow sailing ship of the Mediterranean +n03327234 a barrier that serves to enclose an area +n03327553 a face mask made of fine mesh that is worn over a fencer's face +n03327691 a sword used in the sport of fencing +n03327841 a barrier that surrounds the wheels of a vehicle to block splashing water or mud +n03328201 an inclined metal frame at the front of a locomotive to clear the track +n03329302 a vertical rotating mechanism consisting of a large wheel with suspended seats that remain upright as the wheel rotates; provides a ride at an amusement park +n03329536 a metal cap or band placed on a wooden pole to prevent splitting +n03329663 a boat that transports people or vehicles across a body of water and operates on a regular schedule +n03330002 a switch (a stick or cane or flat paddle) used to punish children +n03330665 a curtain of fabric draped and bound at intervals to form graceful curves +n03330792 a stethoscope placed on the pregnant woman's abdomen to listen for the fetal heartbeat +n03330947 a shackle for the ankles or feet +n03331077 a felt cap (usually red) for a man; shaped like a flat-topped cone with a tassel that hangs from the crown +n03331244 a leatherlike material made by compressing layers of paper or cloth +n03331599 a cable made of optical fibers that can transmit large amounts of information at the speed of light +n03332005 a flexible medical instrument involving fiber optics that is used to examine internal organs +n03332173 a lightweight triangular scarf worn by a woman +n03332271 a bow used in playing the violin +n03332393 movable artillery (other than antiaircraft) used by armies in the field (especially for direct support of front-line troops) +n03332591 the electric coil around a field magnet that produces the magneto motive force to set up the flux in an electric machine +n03332784 a transistor in which most current flows in a channel whose effective resistance can be controlled by a transverse electric field +n03332989 electron microscope used to observe the surface structure of a solid +n03333129 a small refracting telescope +n03333252 ball used in playing field hockey +n03333349 a temporary military hospital near the battle lines +n03333610 a building for indoor sports +n03333711 the lens that is farthest from the eye in an optical device with more than one lens +n03333851 a magnet that provides a magnetic field in a dynamo or electric motor +n03334017 an early form of color TV in which successive fields are scanned in three primary colors +n03334291 a canvas tent for use in the field +n03334382 a temporary fortification built by troops in the field +n03334492 a small high-pitched flute similar to a piccolo; has a shrill tone and is used chiefly to accompany drums in a marching band +n03334912 an extra car wheel and tire for a four-wheel vehicle +n03335030 a high-speed military or naval airplane designed to destroy enemy aircraft in the air +n03335333 a fixed chair from which a saltwater angler can fight a hooked fish +n03335461 a covering consisting of anything intended to conceal something regarded as shameful +n03335846 a knot having the shape of the numeral 8; tied in a rope that has been passed through a hole or pulley and that prevents the rope from coming loose +n03336168 a loom for weaving figured fabrics +n03336282 an ice skate worn for figure skating; has a slightly curved blade and a row of jagged points at the front of the blade +n03336575 a thin wire (usually tungsten) that is heated white hot by the passage of an electric current +n03336742 a bobbin used in spinning silk into thread +n03336839 a steel hand tool with small sharp teeth on some or all of its surfaces; used for smoothing wood or metal +n03337140 office furniture consisting of a container for keeping papers in order +n03337383 folder that holds papers together in a filing cabinet +n03337494 (computer science) a digital computer that provides workstations on a network with controlled access to shared resources +n03337822 delicate and intricate ornamentation (usually in gold or silver or other fine twisted wire) +n03338287 (dentistry) a dental appliance consisting of any of various substances (as metal or plastic) inserted into a prepared cavity in a tooth +n03338821 photographic material consisting of a base of celluloid covered with a photographic emulsion; used to make negatives or transparencies +n03339296 a thin sheet of (usually plastic and usually transparent) material used to wrap or cover things +n03339529 a mechanism for advancing film in a camera or projector +n03339643 device that removes something from whatever passes through it +n03340009 an electrical device that alters the frequency spectrum of signals passing through it +n03340723 optical device that helps a user to find the target of interest +n03340923 elaborate or showy attire and accessories +n03341035 a comb with teeth set close together +n03341153 one of the parts of a glove that provides covering for a finger or thumb +n03341297 a narrow strip of wood on the neck of some stringed instruments (violin or cello or guitar etc) where the strings are held against the wood with the fingers +n03341606 small bowl for rinsing the fingers at table +n03342015 paint that has the consistency of jelly +n03342127 a painting produced by spreading paint with the fingers +n03342262 a flat protective covering (on a door or wall etc) to prevent soiling by dirty fingers +n03342432 a sheath worn to protect a finger +n03342657 the final coating of plaster applied to walls and ceilings +n03342863 the final coat of paint +n03342961 a race car that finishes a race +n03343047 a metal plate projecting from the keel of a shallow vessel to give it greater lateral stability +n03343234 a wooden plug forming a flue pipe (as the mouthpiece of a recorder) +n03343354 a tubular wind instrument with 8 finger holes and a fipple mouthpiece +n03343560 a fireplace in which a relatively small fire is burning +n03343737 an alarm that is tripped off by fire or smoke +n03343853 a portable gun +n03344305 a bell rung to give a fire alarm +n03344393 a boat equipped to fight fires on ships or along a waterfront +n03344509 a furnace (as on a steam locomotive) in which fuel is burned +n03344642 brick made of fire clay; used for lining e.g. furnaces and chimneys +n03344784 naval radar that controls the delivery of fire on a military target +n03344935 naval weaponry consisting of a system for controlling the delivery of fire on a military target +n03345487 any of various large trucks that carry firemen and equipment to the site of a fire +n03345837 a manually operated device for extinguishing small fires +n03346135 metal fireside implements +n03346289 an ax that has a long handle and a head with one cutting edge and a point on the other side +n03346455 an open recess in a wall at the base of a chimney where a fire can be built +n03347037 a metal screen before an open fire for protection (especially against flying sparks) +n03347472 tongs for taking hold of burning coals +n03347617 a watchtower where a lookout is posted to watch for fires +n03348142 (computing) a security system consisting of a combination of hardware and software that limits the exposure of a computer or computer network to attack from crackers; commonly used on local area networks that are connected to the internet +n03348868 chamber that is the part of a gun that receives the charge +n03349020 striker that ignites the charge by striking the primer +n03349296 a small wooden keg +n03349367 a chisel with a thin blade for woodworking +n03349469 kit consisting of a set of bandages and medicines for giving first aid +n03349599 a station providing emergency care or treatment before regular medical aid can be obtained +n03349771 the base that must be touched first by a base runner in baseball +n03349892 the most expensive accommodations on a ship or train or plane +n03350204 a transparent bowl in which small fish are kept +n03350352 a knot for tying a line to a spar or ring +n03350456 a knot for tying the ends of two lines together +n03350602 (angling) any bright artificial bait consisting of plastic or metal mounted with hooks and trimmed with feathers +n03351151 a sharp barbed hook for catching fish +n03351262 a vessel for fishing; often has a well to keep the catch alive +n03351434 gear used in fishing +n03351979 a rod of wood or steel or fiberglass that is used in fishing to extend the fishing line +n03352232 a butt joint formed by bolting fish plates to the sides of two rails or beams +n03352366 a small table knife with a spatula blade used for eating fish +n03352628 a net that will enclose fish when it is pulled in +n03352961 a food turner with a broad blade used for turning or serving fish or other food that is cooked in a frying pan +n03353281 any of the items furnishing or equipping a room (especially built-in furniture) +n03353951 a varnish dissolved in alcohol and sprayed over pictures to prevent smudging +n03354207 a house or other dwelling in need of repair (usually offered for sale at a low price) +n03354903 emblem usually consisting of a rectangular piece of cloth of distinctive design +n03355468 a small fipple flute with four finger holes and two thumb holes +n03355768 a large metal or pottery vessel with a handle and spout; used to hold alcoholic beverages (usually wine) +n03355925 a tall staff or pole on which a flag is raised +n03356038 the ship that carries the commander of a fleet and flies his flag +n03356279 an implement consisting of handle with a free swinging stick at the end; used in manual threshing +n03356446 a flaming torch (such as are used in processions at night) +n03356559 a weapon that squirts ignited fuel for several yards +n03356858 a projection used for strength or for attaching to another object +n03356982 a soft light woolen fabric; used for clothing +n03357081 (usually in the plural) trousers made of flannel or gabardine or tweed or white cloth +n03357267 a cotton fabric imitating flannel +n03357716 a movable airfoil that is part of an aircraft wing; used to increase lift or drag +n03358172 a lamp for providing momentary light to take a photograph +n03358380 a bright patch of color used for decoration or identification +n03358726 a camera with a photoflash attachment +n03358841 an electrical device that automatically turns a lamp on and off (as for an advertising display) +n03359137 a small portable battery-powered electric lamp +n03359285 a small dry battery containing dry cells; used to power flashlights +n03359436 nonvolatile storage that can be electrically erased and programmed anew +n03359566 bottle that has a narrow neck +n03360133 an arch with mutually supporting voussoirs that has a straight horizontal extrados and intrados +n03360300 an open truck bed or trailer with no sides; used to carry large heavy objects +n03360431 a printing press where the type is carried on a flat bed under a cylinder that holds paper and rolls over the type +n03360622 a bench on which a weightlifter lies to do exercises +n03360731 freight car without permanent sides or roof +n03361109 a file with two flat surfaces +n03361297 a tiny flat +n03361380 a type of video display that is thin and flat; commonly used in laptop computers +n03361550 footwear (shoes or slippers) with no heel (or a very low heel) +n03361683 a screwdriver with a flat wedge-shaped tip that fits into a slot in the head of a screw +n03362639 a soft bulky fabric with deep pile; used chiefly for clothing +n03362771 a submarine carrying ballistic missiles +n03362890 (heraldry) charge consisting of a conventionalized representation of an iris +n03363363 simulator consisting of a machine on the ground that simulates the conditions of flying a plane +n03363549 an obsolete gunlock that has flint embedded in the hammer; the flint makes a spark that ignites the charge +n03363749 a muzzle loader that had a flintlock type of gunlock +n03364008 a backless sandal held to the foot by a thong between the big toe and the second toe +n03364156 a shoe for swimming; the paddle-like front is an aid in swimming (especially underwater) +n03364599 a hand tool with a flat face used for smoothing and finishing the surface of plaster or cement or stucco +n03364937 dry dock that can be submerged under a vessel and then raised +n03365231 a seaplane equipped with pontoons for landing or taking off from water +n03365374 light that is a source of artificial illumination having a broad beam; used in photography +n03365592 the inside lower horizontal surface (as of a room, hallway, tent, or other structure) +n03365991 a structure consisting of a room or set of rooms at a single position along a vertical scale +n03366464 the legislative hall where members debate and vote and conduct other business +n03366721 the floor of an automobile +n03366823 a covering for a floor +n03366974 joist that supports a floor +n03367059 a lamp that stands on the floor +n03367321 a cheap lodging house +n03367410 a shop where flowers and ornamental plants are sold +n03367545 a soft loosely twisted thread used in embroidery +n03367875 the floating wreckage of a ship +n03367969 a bin for holding flour +n03368048 a mill for grinding grain into flour +n03368352 a bed in which flowers are growing +n03369276 a brass instrument resembling a cornet but with a wider bore +n03369407 an automotive power coupling +n03369512 a kind of fluid coupling in which the flywheel is the driving rotor +n03369866 watercourse that consists of an open artificial chute filled with water for power or for carrying logs +n03370387 lamp consisting of a tube coated on the inside with a fluorescent material; mercury vapor in the tube emits ultraviolet radiation that is converted to visible radiation by the fluorescent material +n03370646 an X-ray machine that combines an X-ray source and a fluorescent screen to enable direct observation +n03371875 a toilet that is cleaned of waste by the flow of water through it +n03372029 a high-pitched woodwind instrument; a slender tube closed at one end with finger holes on one end and an opening near the closed end across which the breath is blown +n03372549 a tall narrow wineglass +n03372822 an applicator for applying flux (as in soldering) +n03372933 meter that measures magnetic flux by the current it generates in a coil +n03373237 fisherman's lure consisting of a fishhook decorated to look like an insect +n03373611 a large seaplane that floats with its fuselage in the water rather than on pontoons +n03373943 a buttress that stands apart from the main structure and connected to it by an arch +n03374102 (Asian folktale) an imaginary carpet that will fly people anywhere they wish to go +n03374282 the outermost of two or more jibs +n03374372 a long flexible fishing rod used in fly fishing +n03374473 a tent with a fly front +n03374570 a trap for catching flies +n03374649 regulator consisting of a heavy wheel that stores kinetic energy and smooths the operation of a reciprocating engine +n03374838 short chain or ribbon attaching a pocket watch to a man's vest +n03375171 a warning device consisting of a horn that generates a loud low tone +n03375329 headlight that provides strong beam for use in foggy weather +n03375575 a light slender flexible sword tipped by a button +n03376159 a pen for sheep +n03376279 covering that is folded over to protect the contents +n03376595 a chair that can be folded flat for storage +n03376771 an interior door that opens by folding back in sections (rather than by swinging on hinges) +n03376938 a saw with a toothed blade that folds into a handle (the way a pocketknife folds) +n03378005 an area (as in a shopping mall) where fast food is sold (usually around a common eating area) +n03378174 a kitchen appliance with interchangeable blades; used for shredding or blending or chopping or slicing food +n03378342 a hamper for packing and transporting food +n03378442 a support resembling a pedal extremity +n03378593 film that has been shot +n03378765 the inflated oblong ball used in playing American football +n03379051 a padded helmet with a face mask to protect the head of football players +n03379204 a stadium where football games are held +n03379343 a small bathtub for warming or washing or disinfecting the feet +n03379719 hydraulic brake operated by pressing on a foot pedal +n03379828 a bridge designed for pedestrians +n03379989 a place providing support for the foot in standing or climbing +n03380301 a trunk for storing personal possessions; usually kept at the foot of a bed (as in a barracks) +n03380647 a ruler one foot long +n03380724 a low seat or a stool to rest the feet of a seated person +n03380867 covering for a person's feet +n03381126 clothing worn on a person's feet +n03381231 an extractor consisting of a pair of pincers used in medical treatment (especially for the delivery of babies) +n03381450 pump used to force a liquid up and expel it under pressure +n03381565 sailing vessel with a fore-and-aft rig +n03381776 any sail not set on a yard and whose normal position is in a fore-and-aft direction +n03382104 living quarters consisting of a superstructure in the bow of a merchant ship where the crew is housed +n03382292 the outer or front court of a building or of a group of buildings +n03382413 the deck between the bridge and the forecastle +n03382533 the part of a book that faces inward when the book is shelved; the part opposite the spine +n03382708 (computer science) a window for an active application +n03382856 the mast nearest the bow in vessels with two or more masts +n03382969 a carpenter's plane intermediate between a jack plane and a jointer plane +n03383099 the lowest sail on the foremast of a square-rigged vessel +n03383211 an adjustable stay from the foremast to the deck or bowsprit; controls the bending of the mast +n03383378 a platform at the head of a foremast +n03383468 the topmast next above the foremast +n03383562 the topsail on a foremast +n03383821 furnace consisting of a special hearth where metal is heated before shaping +n03384167 an agricultural tool used for lifting or digging; has a handle and metal prongs +n03384352 a small industrial vehicle with a power operated forked platform in front that can be inserted under loads to lift and move them +n03384891 attire to wear on formal occasions in the evening +n03385295 any of various plastic laminates containing melamine +n03385557 defensive structure consisting of walls or mounds built around a stronghold to strengthen it +n03386011 a fortified defensive structure +n03386343 a .45-caliber pistol +n03386544 pendulum with a long wire; can swing in any direction; the change in the swing plane demonstrates the earth's rotation +n03386726 a light plain-weave or twill-weave silk or silklike fabric (usually with a printed design) +n03386870 protective garment that is intended to keep the wearer dry and warm in bad weather +n03387323 a woman's undergarment worn to give shape to the contours of the body +n03387653 factory where metal castings are produced +n03388043 a structure from which an artificially produced jet of water arises +n03388183 a pen that is supplied with ink from a reservoir in its barrel +n03388323 a long necktie that is tied in a slipknot with one end hanging in front of the other +n03388549 a bed with posts at the four corners that can be used to support a canopy or curtains +n03388711 an artillery gun that throws a shot weighing four pounds +n03388990 an internal-combustion engine in which an explosive mixture is drawn into the cylinder on the first stroke and is compressed and ignited on the second stroke; work is done on the third stroke and the products of combustion are exhausted on the fourth stroke +n03389611 a transmission that provides power directly to all four wheels of a motor vehicle +n03389761 a motor vehicle with a four-wheel drive transmission system +n03389889 a hackney carriage with four wheels +n03389983 a light shotgun used for fowling +n03390075 a small dugout with a pit for individual shelter against enemy fire +n03390327 a bomb with only 10 to 20 per cent explosive and the remainder consisting of casings designed to break into many small high-velocity fragments; most effective against troops and vehicles +n03390673 a basket for holding dried fruit (especially raisins or figs) +n03390786 sloping or horizontal rampart of pointed stakes +n03390983 a framework that supports and protects a picture or a mirror +n03391301 the framework for a pair of eyeglasses +n03391613 (computer science) a buffer that stores the contents of an image pixel by pixel +n03391770 a structure supporting or containing something +n03392648 a type of hydroelectric turbine +n03392741 a machine that automatically stamps letters or packages passing through it and computes the total charge +n03393017 a public house that is not controlled by a brewery and so is free to sell different brands of beer and ale +n03393199 a reed that does not fit closely over the aperture +n03393324 a wind instrument with a free reed +n03393761 a clutch (as on the rear wheel of a bicycle) that allows wheels to turn freely (as in coasting) +n03393912 a railway car that carries freight +n03394149 an elevator designed for carrying freight +n03394272 a long-distance express freight train between industrial centers and seaports with facilities for rapid loading and unloading of goods +n03394480 a railroad train consisting of freight cars +n03394649 a light door with transparent or glazed panels extending the full length +n03394916 a brass musical instrument consisting of a conical tube that is coiled into a spiral and played by means of valves +n03395256 a varnish for wood consisting of shellac dissolved in alcohol +n03395401 a mansard roof with sides that are nearly perpendicular +n03395514 a French door situated in an exterior wall of a building +n03395859 lens composed of a number of small lenses arranged to make a lightweight lens of large diameter and short focal length +n03396074 a small bar of metal across the fingerboard of a musical instrument; when the string is stopped by a finger at the metal bar it will produce a note of the desired pitch +n03396580 a monastery of friars +n03396654 a clutch in which one part turns the other by the friction between them +n03396997 a heavy woolen fabric with a long nap +n03397087 an architectural ornament consisting of a horizontal sculptured band between the architrave and the cornice +n03397266 a United States warship larger than a destroyer and smaller than a cruiser +n03397412 a medium size square-rigged warship of the 18th and 19th centuries +n03397532 a strip of pleated material used as a decoration or a trim +n03397947 a light, plastic disk about 10 inches in diameter; propelled with a flip of the wrist for recreation or competition +n03398153 a habit worn by clerics +n03398228 a man's coat having knee-length skirts front and back; worn in the 19th century +n03399579 an adornment worn on the forehead +n03399677 a porch for the front door +n03399761 a projector for digital input +n03399971 a coin-operated gambling machine that produces random combinations of symbols (usually pictures of different fruits) on rotating dials; certain combinations win money for the player +n03400231 a pan used for frying foods +n03400972 a filter in the fuel line that screens out dirt and rust particles from the fuel +n03401129 an indicator of the amount of fuel remaining in a vehicle +n03401279 mechanical system to inject atomized fuel directly into the cylinders of an internal-combustion engine; avoids the need for a carburetor +n03401721 equipment in a motor vehicle or aircraft that delivers fuel to the engine +n03402188 the naval or military uniform that is specified by regulations to be worn on ceremonial occasions +n03402369 a lead bullet that is covered with a jacket of a harder metal (usually copper) +n03402511 a long skirt gathered at the waist +n03402785 a device that generates a gas for the purpose of disinfecting or eradicating pests +n03402941 a mortuary where those who knew the deceased can come to pay their last respects +n03403643 a conically shaped utensil having a narrow tube at the small end; used to channel the flow of substances into a container with a small mouth +n03404012 an ambulance used to transport patients to a mental hospital +n03404149 a garment made of the dressed hairy coat of a mammal +n03404251 a coat made of fur +n03404360 a hat made of fur +n03404449 an enclosed chamber in which heat is produced to heat buildings, destroy refuse, smelt or refine ores, etc. +n03404900 lining consisting of material with a high melting point; used to line the inside walls of a furnace +n03405111 a room (usually in the basement of a building) that contains a furnace for heating the building +n03405265 (usually plural) the instrumentalities (furniture and appliances and other movable accessories including curtains and rugs) that make a home (or other area) livable +n03405595 (usually plural) accessory wearing apparel +n03405725 furnishings that make a room or other area ready for occupancy +n03406759 a neckpiece made of fur +n03406966 a long shallow trench in the ground (especially one made by a plow) +n03407369 an electrical device that can interrupt the flow of electrical current when it is overloaded +n03407865 a spirally grooved spindle in a clock that counteracts the diminishing power of the uncoiling mainspring +n03408054 the central body of an airplane that is designed to accommodate the crew and passengers (or cargo) +n03408264 a light flintlock musket +n03408340 a strong cotton and linen fabric with a slight nap +n03408444 mattress consisting of a pad of cotton batting that is used for sleeping on the floor or on a raised frame +n03409297 a firm durable fabric with a twill weave +n03409393 the vertical triangular wall between the sloping ends of gable roof +n03409591 a double sloping roof with a ridge and gables at each end +n03409920 appliances collectively +n03410022 an iron hook with a handle; used for landing large fish +n03410147 a spar rising aft from a mast to support the head of a quadrilateral fore-and-aft sail +n03410303 a sharp metal spike or spur that is fastened to the leg of a gamecock +n03410423 a quadrilateral fore-and-aft sail suspended from a gaff +n03410571 a triangular fore-and-aft sail with its foot along the gaff and its luff on the topmast +n03410740 restraint put into a person's mouth to prevent speaking or shouting +n03410938 legging consisting of a cloth or leather covering for the leg from the knee to the ankle +n03411079 a shoe covering the ankle with elastic gores in the sides +n03411208 a type of refracting telescope that is no longer used in astronomy +n03411339 a large square-rigged sailing ship with three or more masts; used by the Spanish for commerce and war from the 15th to 18th centuries +n03411927 a long usually narrow room used for some specific purpose +n03412058 a room or series of rooms where works of art are exhibited +n03412220 the area for food preparation on a ship +n03412387 the kitchen area for food preparation on an airliner +n03412511 (classical antiquity) a crescent-shaped seagoing vessel propelled by oars +n03412906 an instrument of execution consisting of a wooden frame from which a condemned person is executed by hanging +n03413124 alternative terms for gallows +n03413264 meter for detecting or comparing or measuring small electric currents +n03413428 a public building in which a variety of games of chance can be played (operated as a business) +n03413684 a gable roof with two slopes on each side and the lower slope being steeper +n03413828 the game equipment needed in order to play a particular game +n03414029 a canvas or leather bag for carrying game (especially birds) killed by a hunter +n03414162 equipment or apparatus used in playing a game +n03414676 a table used for gambling; may be equipped with a gameboard and slots for chips +n03415252 colloquial terms for an umbrella +n03415486 a temporary bridge for getting on and off a vessel at dockside +n03415626 a power saw that has several parallel blades making simultaneous cuts +n03415749 a temporary passageway of planks (as over mud on a building site) +n03415868 the convergence of two parallel railroad tracks in a narrow place; the inner rails cross and run parallel and then diverge so a train remains on its own tracks at all times +n03416094 a framework of steel bars raised on side supports to bridge over or around something; can display railway signals above several tracks or can support a traveling crane etc. +n03416489 an outbuilding (or part of a building) for housing automobiles +n03416640 a repair shop where cars and trucks are serviced and repaired +n03416775 a semiautomatic rifle +n03416900 a receptacle where waste can be discarded +n03417042 a truck for collecting domestic refuse +n03417202 the first wale laid next to the keel of a wooden ship +n03417345 a plot of ground where plants are cultivated +n03417749 a yard or lawn adjoining a house +n03417970 a rake used by gardeners +n03418158 a spade used by gardeners +n03418242 used for working in gardens or yards +n03418402 a trowel used by gardeners +n03418618 a spout that terminates in a grotesquely carved figure of a person or animal +n03418749 a loose high-necked blouse with long sleeves; styled after the red flannel shirts worn by Garibaldi's soldiers +n03418915 a press for extracting juice from garlic +n03419014 an article of clothing +n03420345 a suitcase that unfolds to be hung up +n03420801 a wedge-shaped wool or cotton cap; worn as part of a uniform +n03420935 an instrument of execution for execution by strangulation +n03421117 a band (usually elastic) worn around the leg to hold up a stocking (or around the arm to hold up a sleeve) +n03421324 a wide belt of elastic with straps hanging from it; worn by women to hold up stockings +n03421485 a knitting stitch that results in a pattern of horizontal ridges formed by knitting both sides (instead of purling one side) +n03421669 a car with relatively low fuel efficiency +n03421768 (military) bomb consisting of an explosive projectile filled with a toxic gas that is released when the bomb explodes +n03421960 a pipe with one or more burners projecting from a wall +n03422072 burner such that combustible gas issues from a nozzle to form a steady flame +n03422484 a nuclear reactor using gas as a coolant +n03422589 a tube in which an electric discharge takes place through a gas +n03422771 an internal-combustion engine similar to a gasoline engine but using natural gas instead of gasoline vapor +n03423099 a device to convey illuminating gas from the pipe to the gas burner +n03423224 a furnace that burns gas +n03423306 a gun that fires gas shells +n03423479 a heater that burns gas for heat +n03423568 a large gas-tight spherical or cylindrical tank for holding gas to be used as fuel +n03423719 seal consisting of a ring for packing pistons or sealing a pipe joint +n03423877 a lamp that burns illuminating gas +n03424204 a maser in which microwave radiation interacts with gas molecules +n03424325 a protective mask with a filter; protects the face and lungs against poisonous gases +n03424489 a meter for measuring the amount of gas flowing through a particular pipe +n03424630 an internal-combustion engine that burns gasoline; most automobiles are driven by gasoline engines +n03424862 gauge that indicates the amount of gasoline left in the gasoline tank of a vehicle +n03425241 a domestic oven fueled by gas +n03425325 a cremation chamber fueled by gas +n03425413 a pump in a service station that draws gasoline from underground storage tanks +n03425595 a range with gas rings and an oven for cooking with gas +n03425769 gas burner consisting of a circular metal pipe with several small holes through which gas can escape to be burned +n03426134 a tank for holding gasoline to supply a vehicle +n03426285 thermometer that measures temperature by changes in the pressure of a gas kept at constant volume +n03426462 a type of endoscope for visually examining the stomach +n03426574 turbine that converts the chemical energy of a liquid fuel into mechanical energy by internal combustion; gaseous products of the fuel (which is burned in compressed air) are expanded through a turbine +n03426871 a ship powered by a gas turbine +n03427202 a gangster's pistol +n03427296 a movable barrier in a fence or wall +n03428090 a house built at a gateway; usually the gatekeeper's residence +n03428226 a drop-leaf table with the drop-leaves supported by hinged legs +n03428349 either of two posts that bound a gate +n03429003 a skirt whose fabric is drawn together around the waist +n03429137 an early form of machine gun having several barrels that fire in sequence as they are rotated +n03429288 a measuring instrument for measuring and indicating a quantity such as the thickness of wire or the amount of rain etc. +n03429682 a glove with long sleeve +n03429771 a glove of armored leather; protects the hand +n03429914 a net of transparent fabric with a loose open weave +n03430091 (medicine) bleached cotton cloth of plain weave used for bandages and dressings +n03430313 a small mallet used by a presiding officer or a judge +n03430418 a small roofed building affording shade and rest +n03430551 a toothed wheel that engages another toothed mechanism in order to change the speed or direction of transmitted motion +n03430959 equipment consisting of miscellaneous articles needed for a particular operation or sport etc. +n03431243 a mechanism for transmitting motion for some specific purpose (as the steering gear of a vehicle) +n03431570 the shell (metal casing) in which a train of gears is sealed +n03431745 wheelwork consisting of a connected set of rotating gears by which force is transmitted or motion or torque is changed +n03432061 a set of gears +n03432129 a mechanical device for engaging and disengaging gears +n03432360 counter tube that detects ionizing radiations +n03432509 an ionization chamber contained in a tube in a Geiger counter +n03433247 a microchip that holds DNA probes that form half of the DNA double helix and can recognize DNA from samples being tested +n03433637 a large bomb (500 to 2,000 pounds that is 50% explosive) whose explosion creates a blast and whose metal casing creates some fragmentation effect +n03433877 engine that converts mechanical energy into electrical energy by electromagnetic induction +n03434188 an apparatus that produces a vapor or gas +n03434285 an electronic device for producing a signal voltage +n03434830 black academic gown widely used by Protestant clergymen +n03435593 a lightweight dome constructed of interlocking polygons; invented by R. Buckminster Fuller +n03435743 a thin silk dress material +n03435991 a horse-drawn carriage in India +n03436075 stairway in India leading down to a landing on the water +n03436182 a portable stereo +n03436417 a shop that sells miscellaneous articles appropriate as gifts +n03436549 ornamental wrapping for gifts +n03436656 small two-wheeled horse-drawn carriage; with two seats and no hood +n03436772 tender that is a light ship's boat; often for personal use of captain +n03436891 long and light rowing boat; especially for racing +n03436990 a cluster of hooks (without barbs) that is drawn through a school of fish to hook their bodies; used when fish are not biting +n03437184 the meeting place of a medieval guild +n03437295 a flat fishnet suspended vertically in the water to entangle fish by their gills +n03437430 a coating of gold or of something that looks like gold +n03437581 an appliance that allows an object (such as a ship's compass) to remain horizontal even as its support tips +n03437741 a clothing fabric in a plaid weave +n03437829 an ornate candle holder; often with a mirror +n03437941 a beam made usually of steel; a main support in a structure +n03438071 a band of material around the waist that strengthens a skirt or trousers +n03438257 a container for holding liquids while drinking +n03438661 glassware collectively +n03438780 a tool for cutting glass +n03438863 a case for carrying spectacles +n03439348 a parsonage (especially one provided for the holder of a benefice) +n03439631 a Scottish cap with straight sides and a crease along the top from front to back; worn by Highlanders as part of military dress +n03439814 aircraft supported only by the dynamic action of air against its surfaces +n03440216 a navigational system involving satellites and computers that can determine the latitude and longitude of a receiver on Earth by computing the time difference for signals from different satellites to reach the receiver +n03440682 a percussion instrument consisting of a set of graduated metal bars mounted on a frame and played with small hammers +n03440876 a small locker at the stern of a boat or between decks of a ship +n03441112 handwear: covers the hand and wrist +n03441345 compartment on the dashboard of a car +n03441465 a gas-discharge tube with a hot cathode; used in stroboscopes +n03441582 a gas-discharge tube consisting of a cold cathode and a diode in a tube filled with gas; the color of the glow depends on the particular gas +n03442288 carvings or engravings (especially on precious stones) +n03442487 the art of engraving on precious stones +n03442597 indicator provided by the stationary arm whose shadow indicates the time on the sundial +n03442756 game equipment consisting of the place toward which players of a game try to advance a ball or puck in order to score points +n03443005 (sports) the area immediately in front of the goal +n03443149 one of a pair of posts (usually joined by a crossbar) that are set up as a goal at each end of a playing field +n03443371 a drinking glass with a base and stem +n03443543 (in India and Malaysia) a warehouse +n03443912 tight-fitting spectacles worn to protect the eyes +n03444034 a small low motor vehicle with four wheels and an open framework; used for racing +n03445326 a thin plating of gold on something +n03445617 golf equipment consisting of a bag for carrying golf clubs and balls +n03445777 a small hard ball used in playing golf; dimpled to reduce wind resistance +n03445924 a small motor vehicle in which golfers can ride between shots +n03446070 golf equipment used by a golfer to hit a golf ball +n03446268 (golf) the head of the club which strikes the ball +n03446832 sports equipment used in playing golf +n03447075 a glove worn by golfers to give a firm grip on the handle of the golf club +n03447358 a grotesque black doll +n03447447 long narrow flat-bottomed boat propelled by sculling; traditionally used on canals of Venice +n03447721 a percussion instrument consisting of a metal plate that is struck with a softheaded drumstick +n03447894 direction finder that determines the angular direction of incoming radio signals +n03448031 an intricate knot tied by Gordius, the king of Phrygia, and cut by the sword of Alexander the Great after he heard that whoever undid it would become ruler of Asia +n03448590 armor plate that protects the neck +n03448696 a gauze fabric with an extremely fine texture +n03448956 a pointed arch; usually has a joint (instead of a keystone) at the apex +n03449217 an opaque watercolor prepared with gum +n03449309 and edge tool with a blade like a trough for cutting channels or grooves +n03449451 bottle made from the dried shell of a bottle gourd +n03449564 a building that houses a branch of government +n03449858 an office where government employees work +n03450230 a woman's dress, usually with a close-fitting bodice and a long flared skirt, often worn on formal occasions +n03450516 outerwear consisting of a long flowing garment used for official or ceremonial occasions +n03450734 protective garment worn by surgeons during operations +n03450881 a mechanical device for gripping an object +n03450974 a container from which a person draws a wrapped item at random without knowing the contents +n03451120 a bar attached parallel to a wall to provide a handgrip for steadying yourself +n03451253 cup to be passed around for the final toast after a meal +n03451365 a crossing that uses an underpass or overpass +n03451711 a cylindrical graduate +n03451798 a rude decoration inscribed on rocks or walls +n03452267 an antique record player; the sound of the vibrating needle is amplified acoustically +n03452449 a storehouse for threshed grain or animal feed +n03452594 a pendulum clock enclosed in a tall narrow case +n03452741 a piano with the strings on a horizontal harp-shaped frame; usually supported by three legs +n03453231 a kind of stone-grey enamelware +n03453320 a reef knot crossed the wrong way and therefore insecure +n03453443 an arbor where grapes are grown +n03454110 a light anchor for small boats +n03454211 a tool consisting of several hooks for grasping and holding; often thrown with a rope +n03454442 a skirt made of long blades of grass +n03454536 a frame of iron bars to hold a fire +n03454707 a barrier that has parallel or crossed bars blocking a passage but admitting air +n03454885 utensil with sharp perforations for shredding foods (as vegetables or cheese) +n03455355 a tool used by an engraver +n03455488 a stone that is used to mark a grave +n03455642 a measuring instrument for measuring variations in the gravitational field of the earth +n03455802 an intaglio print produced by gravure +n03456024 a dish (often boat-shaped) for serving gravy or sauce +n03456186 clothing that is a grey color +n03456299 a hand-operated pump that resembles a revolver; forces grease into parts of a machine +n03456447 a greasy substance used as makeup by actors +n03456548 a small restaurant specializing in short-order fried foods +n03456665 a heavy coat worn over clothes in winter +n03457008 the principal hall in a castle or mansion; can be used for dining or entertainment +n03457451 armor plate that protects legs below the knee +n03457686 a greengrocer's grocery store +n03457902 a building with glass walls and roof; for the cultivation and exhibition of plants under controlled conditions +n03458271 a small explosive bomb thrown by hand or fired from a missile +n03458422 a cooking utensil of parallel metal bars; used to grill fish or meat +n03459328 cooking utensil consisting of a flat heated surface (as on top of a stove) on which food is cooked +n03459591 a framework of metal bars used as a partition or a grate +n03459775 grating that admits cooling air to car's radiator +n03459914 a restaurant where food is cooked on a grill +n03460040 a machine tool that polishes metal +n03460147 a wheel composed of abrasive material; used for grinding +n03460297 a revolving stone shaped like a disk; used to grind or sharpen or polish edge tools +n03460455 a small suitcase +n03460899 a mill for grinding grain (especially the customer's own grain) +n03461288 a sack for holding customer's groceries +n03461385 a marketplace where groceries are sold +n03461651 a coarse fabric of silk mixed with wool or mohair and often stiffened with gum +n03461882 two barrel vaults intersecting at right angles +n03461988 a device that makes grooves by cutting or punching +n03462110 a silk or silklike fabric with crosswise ribs +n03462315 a needlepoint stitch covering two horizontal and two vertical threads +n03462747 a connection between an electrical device and a large conducting body, such as the earth (which is taken to be at zero voltage) +n03462972 bait scattered on the water to attract fish +n03463185 a communication system for sending continuous radio messages to an airplane pilot who is making a ground-controlled approach to landing +n03463381 the floor of a building that is at or nearest to the level of the ground around the building +n03463666 a waterproofed piece of cloth spread on the ground (as under a tent) to protect from moisture +n03464053 minimal clothing worn by stripteasers; a narrow strip of fabric that covers the pubic area, passes between the thighs, and is supported by a waistband +n03464467 a device designed to prevent injury or accidents +n03464628 a boat that is on guard duty (as in a harbor) around a fleet of warships +n03464952 a room used by soldiers on guard +n03465040 a cell in which soldiers who are prisoners are confined +n03465151 a warship (at anchor or under way) required to maintain a higher degree of readiness than others in its squadron +n03465320 the car on a train that is occupied by the guard +n03465426 a small round table +n03465500 a violin made by a member of the Guarneri family +n03465605 a house separate from the main house; for housing guests +n03465718 a bedroom that is kept for the use of guests +n03465818 a system of equipment for automatically guiding the path of a vehicle (especially a missile) +n03466162 a rocket-propelled missile whose path can be controlled during flight either by radio signals or by internal homing devices +n03466493 a cruiser that carries guided missiles +n03466600 a frigate that carries guided missiles +n03466839 the hall of a guild or corporation +n03466947 an architectural decoration formed by two intersecting wavy bands +n03467068 instrument of execution that consists of a weighted blade between two vertical poles; used for beheading people +n03467254 a short blouse with sleeves that is worn under a jumper or pinafore dress +n03467380 a piece of starched cloth covering the shoulders of a nun's habit +n03467517 a stringed instrument usually having six strings; played by strumming or plucking +n03467796 a plectrum used to pluck a guitar +n03467887 a Russian prison camp for political prisoners +n03467984 a weapon that discharges a missile at high velocity (especially from a metal tube or barrel) +n03468570 a small shallow-draft boat carrying mounted guns; used by costal patrols +n03468696 a framework on which a gun is mounted for firing +n03468821 a case for storing a gun +n03469031 an emplacement for a gun +n03469175 a self-contained weapons platform housing guns and capable of rotation +n03469493 the action that ignites the charge in a firearm +n03469832 guns collectively +n03469903 a bag made of burlap +n03470005 a ballistic pendulum consisting of a suspended gun; the velocity of a projectile in the bore of a gun can be measured by the recoil when the gun is discharged +n03470222 military quarters of midshipmen and junior officers on a British warship +n03470387 a sight used for aiming a gun +n03470629 lever that activates the firing mechanism of a gun +n03470948 a metal stretcher with wheels +n03471030 an oil well with a strong natural flow so that pumping is not necessary +n03471190 a piece of material used to strengthen or enlarge a garment +n03471347 a metal plate used to strengthen a joist +n03471779 a cable, wire, or rope that is used to brace something (especially a tent) +n03472232 sports equipment used in gymnastic exercises +n03472535 a canvas shoe with a pliable rubber sole +n03472672 clothes prescribed for wear while participating in gymnastic exercise +n03472796 a sleeveless tunic worn by English girls as part of a school uniform +n03472937 a taxicab that cruises for customers although it is licensed only to respond to calls +n03473078 a compass that does not depend on magnetism but uses a gyroscope instead +n03473227 rotating mechanism in the form of a universally mounted spinning wheel that offers resistance to turns in any direction +n03473465 a stabilizer consisting of a heavy gyroscope that spins on a vertical axis; reduces side-to-side rolling of a ship or plane +n03473817 (Middle Ages) a light sleeveless coat of chain mail worn under the hauberk +n03473966 a distinctive attire worn by a member of a religious order +n03474167 attire that is typically worn by a horseback rider (especially a woman's attire) +n03474352 the main house on a ranch or large estate +n03474779 saw used with one hand for cutting metal +n03474896 the handle of a weapon or tool +n03475581 a brush used to groom a person's hair +n03475674 cloth woven from horsehair or camelhair; used for upholstery or stiffening in garments +n03475823 a toiletry for the hair +n03475961 a small net that some women wear over their hair to keep it in place +n03476083 a covering or bunch of human or artificial hair used for disguise or adornment +n03476313 a double pronged pin used to hold women's hair in place +n03476542 an uncomfortable shirt made of coarse animal hair; worn next to the skin as a penance +n03476684 a decorative hinged clip that girls and women put in their hair to hold it in place +n03476991 toiletry consisting of a commercial preparation that is sprayed on the hair to hold it in place +n03477143 a fine spiral spring that regulates the movement of the balance wheel in a timepiece +n03477303 a gun trigger that responds with little pressure +n03477410 a pike fitted with an ax head +n03477512 book binding in which the spine and part of the sides are bound in one material and the rest in another +n03477773 a hatchet with a broad blade on one end and a hammer head of the other +n03477902 a knot used to fasten a rope temporarily to an object; usually tied double +n03478589 a motor vehicle propelled by half tracks; frequently used by the military +n03478756 a large building for meetings or entertainment +n03478907 a large room for gatherings or entertainment +n03479121 a large building used by a college or university for teaching or research +n03479266 a building containing trophies honoring famous people +n03479397 a university dormitory +n03479502 a piece of furniture where coats and hats and umbrellas can be hung; usually has a mirror +n03480579 a woman's top that fastens behind the back and neck leaving the back and arms uncovered +n03480719 rope or canvas headgear for a horse, with a rope for leading +n03480973 stable gear consisting of either of two curved supports that are attached to the collar of a draft horse and that hold the traces +n03481172 a hand tool with a heavy rigid head and a handle; used to deliver an impulsive force by striking +n03481521 a power tool for drilling rocks +n03482001 a heavy metal sphere attached to a flexible wire; used in the hammer throw +n03482128 the striking part of a hammer +n03482252 a hanging bed of canvas or rope netting (usually suspended between two trees); swings easily +n03482405 a basket usually with a cover +n03482523 a rotating pointer on the face of a timepiece +n03482877 a small rubber ball used in playing the game of handball +n03483086 a rectangular frame with handles at both ends; carried by two people +n03483230 a bell that is held in the hand +n03483316 a hand-held electric blower that can blow warm air onto the hair; used for styling hair +n03483531 a bow drawn by hand as distinguished from a crossbow +n03483637 a brake operated by hand; usually operates by mechanical linkage +n03483823 a calculator small enough to hold in the hand or carry in a pocket +n03483971 a small railroad car propelled by hand or by a small motor +n03484083 wheeled vehicle that can be pushed by a person; may have one or two or four wheels +n03484487 moisturizing cream for the hands +n03484576 shackle that consists of a metal loop that can be locked around the wrist; usually used in pairs +n03484809 a small portable drill held and operated by hand +n03484931 light microscope consisting of a single convex lens that is used to produce an enlarged image +n03485198 a mirror intended to be held in the hand +n03485309 a grenade designed to be thrown by hand +n03485407 a portable battery-powered computer small enough to be carried in your pocket +n03485575 an appendage to hold onto +n03485794 a square piece of cloth used for wiping the eyes or nose or as a costume accessory +n03487090 the shaped bar used to steer a bicycle +n03487331 a loom powered by hand +n03487444 lotion used to soften the hands +n03487533 luggage that is light enough to be carried by hand +n03487642 outgrown garment passed down from one person to another +n03487774 a lawn mower that is operated by hand +n03487886 a pump worked by hand +n03488111 a support for the hand +n03488188 a saw used with one hand for cutting wood +n03488438 telephone set with the mouthpiece and earpiece mounted on a single handle +n03488603 a shovel that is operated by hand +n03488784 a metal bar (or length of pipe) used as a lever +n03488887 a stamp (usually made of rubber) for imprinting a mark or design by hand +n03489048 a hand-operated lever that controls the throttle valve +n03489162 a tool used with workers' hands +n03490006 a small towel used to dry the hands or face +n03490119 a handcart that has a frame with two low wheels and a ledge at the bottom and handles at the top; used to move crates or other heavy objects +n03490324 clothing for the hands +n03490449 control consisting of a wheel whose rim serves as the handle by which a part is operated +n03490649 a wheel worked by hand +n03490784 an airplane with a bad maintenance record +n03490884 anything from which something can be hung +n03491032 a glider resembling a large kite; the rider hangs from it while descending from a height +n03491724 a rope that is used by a hangman to execute persons who have been condemned to death by hanging +n03491988 a coil of rope or wool or yarn +n03492087 a two-wheeled horse-drawn covered carriage with the driver's seat above and behind the passengers +n03492250 a place of refuge and comfort and security +n03492542 a rigid magnetic disk mounted permanently in a drive unit +n03492922 a lightweight protective helmet (plastic or metal) worn by construction workers +n03493219 a car that resembles a convertible but has a fixed rigid top +n03493792 instrumentalities (tools or implements) made of metal +n03493911 a store selling hardware +n03494278 a small rectangular free-reed instrument having a row of free reeds set back in air holes and played by blowing into the desired hole +n03494537 a free-reed instrument in which air is forced through the reeds by bellows +n03494706 stable gear consisting of an arrangement of leather straps fitted to a draft animal so that it can be attached to and pull a cart +n03495039 a support consisting of an arrangement of straps for holding something to the body (especially one supporting a person suspended from a parachute) +n03495258 a chordophone that has a triangular frame consisting of a sounding board and a pillar and a curved neck; the strings stretched between the neck and the soundbox are plucked with the fingers +n03495570 a pair of curved vertical supports for a lampshade +n03495671 a spear with a shaft and barbed point for throwing; used for catching large fish or whales; a strong line is attached to it +n03495941 a cannon or similar gun that fires harpoons +n03496183 a cylindrical log with a device that registers distance +n03496296 a clavier with strings that are plucked by plectra mounted on pivots +n03496486 a loosely woven tweed made in the Outer Hebrides +n03496612 a cultivator that pulverizes or smooths the soil +n03496892 farm machine that gathers a food crop from the fields +n03497100 an inexpensive restaurant +n03497352 a fastener for a door or lid; a hinged metal plate is fitted over a staple and is locked with a pin or padlock +n03497657 headdress that protects the head from bad weather; has shaped crown and usually a brim +n03498441 a round piece of luggage for carrying hats +n03498536 a movable barrier covering a hatchway +n03498662 a sloping rear car door that is lifted to open +n03498781 a car having a hatchback door +n03498866 a comb for separating flax fibers +n03498962 a small ax with a short handle used with one hand (usually to chop wood) +n03499354 a long sturdy pin used by women to secure a hat to their hair +n03499468 a long (usually sleeveless) tunic of chain mail formerly worn as defensive armor +n03499907 guitar whose steel strings are twanged while being pressed with a movable steel bar for a glissando effect +n03500090 the hole that an anchor rope passes through +n03500209 large heavy rope for nautical use +n03500295 a knot uniting the ends of two lines +n03500389 a bale of hay +n03500457 a long-handled fork for turning or lifting hay +n03500557 a loft in a barn where hay is stored +n03500699 a farm machine that treats hay to cause more rapid and even drying +n03500838 a frame attached to a wagon to increase the amount of hay it can carry +n03500971 a rack that holds hay for feeding livestock +n03501152 an obstacle on a golf course +n03501288 a projection out from one end +n03501520 (nautical) a toilet on board a boat or ship +n03501614 the striking part of a tool +n03502200 a vertical board or panel forming the head of a bedstead +n03502331 a garment that covers the head and face +n03502509 clothing for the head +n03502777 a machine that cuts the heads off grain and moves them into a wagon +n03502897 a framing member crossing and supporting the ends of joists, studs, or rafters so as to transfer their weight to parallel joists, studs, or rafters +n03503097 brick that is laid sideways at the top of a wall +n03503233 horizontal beam used as a finishing piece over a door or window +n03503358 a mooring line that secures the bow of a boat or ship to a wharf +n03503477 a gasket to seal a cylinder head +n03503567 a gate upstream from a lock or canal that is used to control the flow of water at the upper end +n03503718 stable gear consisting of any part of a harness that fits about the horse's head +n03503997 a powerful light with reflector; attached to the front of an automobile or locomotive +n03504205 a protective helmet for the head +n03504293 the front bowling pin in the triangular arrangement of ten pins +n03504723 (usually plural) the office that serves as the administrative center of an enterprise +n03505015 a waterway that feeds water to a mill or water wheel or turbine +n03505133 a rest for the head +n03505383 any sail set forward of the foremast of a vessel +n03505504 a kerchief worn over the head and tied under the chin +n03505667 receiver consisting of a pair of headphones +n03505764 a shop specializing in articles of interest to drug users +n03506028 the band that is the part of a bridle that fits around a horse's head +n03506184 the stationary support in a machine or power tool that supports and drives a revolving part (as a chuck or the spindle on a lathe) +n03506370 a place of business with equipment and facilities for exercising and improving physical fitness +n03506560 a conical acoustic device formerly used to direct sound to the ear of a hearing-impaired person +n03506727 an electronic device that amplifies sound and is worn to compensate for poor hearing +n03506880 a vehicle for carrying a coffin to a church or a cemetery; formerly drawn by horses but now usually a motor vehicle +n03507241 home symbolized as a part of the fireplace +n03507458 a rug spread out in front of a fireplace +n03507658 a pump to maintain circulation during heart surgery; diverts blood from the heart and oxygenates it and then pumps it through the body +n03507963 any engine that makes use of heat to do work +n03508101 device that heats water or supplies warmth to a room +n03508485 device that transfers heat from one liquid to another without allowing them to mix +n03508881 heater consisting of electrical heating elements contained in a flexible pad +n03509394 electric heater consisting of a high-power incandescent lamp that emits infrared radiation +n03509608 apparatus that extracts heat from a liquid that is at a higher temperature than its surroundings; can be used to transfer heat from a reservoir outside in order to heat a building +n03509843 a missile with a guidance system that directs it toward targets emitting infrared radiation (as the emissions of a jet engine) +n03510072 a protective covering that protects a spacecraft from overheating on reentry +n03510244 a metal conductor specially designed to conduct (and radiate) heat +n03510384 a large medieval helmet supported on the shoulders +n03510487 a bar used as a lever (as in twisting rope) +n03510583 a non-buoyant aircraft that requires a source of power to hold it aloft and to propel it +n03510866 an oboe pitched an octave below the ordinary oboe +n03510987 duplicator consisting of a gelatin plate from which ink can be taken to make a copy +n03511175 a fence formed by a row of closely planted shrubs or bushes +n03511333 a garden tool for trimming hedges +n03512030 a tuba that coils over the shoulder of the musician +n03512147 an aircraft without wings that obtains its lift from the rotation of overhead blades +n03512452 an apparatus for sending telegraphic messages by using a mirror to turn the sun's rays off and on +n03512624 an instrument used to measure the angular separation of two stars that are too far apart to be included in the field of view of an ordinary telescope +n03512911 steering mechanism for a vessel; a mechanical device by which a vessel is steered +n03513137 a protective headgear made of hard material to resist blows +n03513376 armor plate that protects the head +n03514129 a measuring instrument to determine (usually by centrifugation) the relative amounts of corpuscles and plasma in the blood +n03514340 a stitch used in sewing hems on skirts and dresses +n03514451 a surgical instrument that stops bleeding by clamping the blood vessel +n03514693 a stitch in which parallel threads are drawn and exposed threads are caught together in groups +n03514894 a roost for hens at night +n03515338 emblem indicating the right of a person to bear arms +n03515934 the abode of a hermit +n03516266 a twilled fabric with a herringbone pattern +n03516367 a pattern of columns of short parallel lines with all the lines in one column sloping one way and lines in adjacent columns sloping the other way; it is used in weaving, masonry, parquetry, embroidery +n03516647 a reflecting telescope with the mirror slightly tilted to throw the image to the side where it can be viewed +n03516844 (19th century) a man's high tasseled boot +n03516996 a radio receiver that combines a locally generated frequency with the carrier frequency to produce a supersonic signal that is demodulated and amplified +n03517509 a portable brazier that burns charcoal and has a grill for cooking +n03517647 an area where you can be alone +n03517760 equipment for the reproduction of sound with high fidelity +n03517899 the main altar in a church +n03517982 a cannon that can be fired at a high elevation for relatively short ranges +n03518135 a tall glass for serving highballs +n03518230 a high diving board +n03518305 a tall chest of drawers divided into two sections and supported on four legs +n03518445 a chair for feeding a very young child; has four long legs and a footrest and a detachable tray +n03518631 a forward gear with a gear ratio that gives the greatest vehicle velocity for a given engine speed +n03518829 cymbals that are operated by a foot pedal +n03518943 a fluorescent marker used to mark important passages in a text +n03519081 a cosmetic used to highlight the eyes or cheekbones +n03519226 a filter that passes frequencies above a certain value and attenuates frequencies below that value +n03519387 tower consisting of a multistoried building of offices or apartments +n03519674 a dining table in a dining-hall raised on a platform; seats are reserved for distinguished persons +n03519848 a handloom in which the warp is carried vertically; for weaving tapestry +n03520493 a headscarf worn by Muslim women; conceals the hair and neck and usually has a face veil that covers the face +n03521076 a joint that holds two parts together so that one can swing relative to the other +n03521431 the gatepost on which the gate is hung +n03521544 a very high boot; used especially for fishing +n03521675 a flask that holds spirits +n03521771 protective garment consisting of a pad worn by football and hockey players +n03521899 a pocket in rear of trousers +n03522003 a stadium for horse shows or horse races +n03522100 a roof having sloping ends as well as sloping sides +n03522634 a knot that can be undone by pulling against the strain that holds it; a temporary knot +n03522863 a connection between a vehicle and the load that it pulls +n03522990 a fixed post with a ring to which a horse can be hitched to prevent it from straying +n03523134 a fixed horizontal rail to which a horse can be hitched to prevent it from straying +n03523398 a hard steel edge tool used to cut gears +n03523506 a long skirt very narrow below the knees, worn between 1910 and 1914 +n03523987 an ice skate worn for playing hockey; has a short blade and a strong boot to protect the feet and ankles +n03524150 sports implement consisting of a stick used by hockey players to move the puck +n03524287 an open box attached to a long pole handle; bricks or mortar are carried on the shoulder +n03524425 (physics) scientific instrument that traces the path of a charged particle +n03524574 a tool with a flat blade attached at right angles to a long handle +n03524745 the handle of a hoe +n03524976 a large cask especially one holding 63 gals +n03525074 lifting device for raising heavy or cumbersome objects +n03525252 a cell in a jail or prison +n03525454 a holding device +n03525693 a jail in a courthouse where accused persons can be confined during a trial +n03525827 a device for holding something +n03526062 a pen where livestock is temporarily confined +n03527149 silverware serving dishes +n03527444 a sheath (usually leather) for carrying a handgun +n03527565 a belt with loops or slots for carrying small hand tools +n03527675 (Judaism) sanctuary comprised of the innermost chamber of the Tabernacle in the temple of Solomon where the Ark of the Covenant was kept +n03528100 an institution where people are cared for +n03528263 an appliance that does a particular job in the home +n03528523 a computer intended for use in the home +n03528901 (baseball) base consisting of a rubber slab where the batter stands; it must be touched by a base runner in order to score +n03529175 a classroom in which all students in a particular grade (or in a division of a grade) meet at certain times under the supervision of a teacher who takes attendance and does other administrative business +n03529444 a rough loosely woven fabric originally made with yarn that was spun at home +n03529629 dwelling that is usually a farmhouse and adjoining land +n03529860 television and video equipment designed to reproduce in the home the experience of being in a movie theater +n03530189 a torpedo that is guided to its target (as by the sound of a ship's engines) +n03530511 a whetstone made of fine gritstone; used for sharpening razors +n03530642 a framework of hexagonal cells resembling the honeycomb built by bees +n03530910 protective covering consisting of a metal part that covers the engine +n03531281 a headdress that protects the head and face +n03531447 the folding roof of a carriage +n03531546 metal covering leading to a vent that exhausts smoke or fumes +n03531691 (falconry) a leather covering for a hawk's head +n03531982 a catch that holds the hood of a car shut +n03532342 a curved or bent implement for suspending or pulling something +n03532672 a mechanical device that is curved or bent to suspend or hold or pull something +n03532919 a catch for locking a door +n03533014 an oriental tobacco pipe with a long flexible tube connected to a container where the smoke is cooled by passing through water +n03533392 a kind of fastener used on clothing +n03533486 a system of components assembled together for a particular purpose +n03533654 a device providing a connection between a power source and a user +n03533845 a wrench with a hook that fits over a nut or bolt head +n03534580 a skirt stiffened with hoops +n03534695 slang for a jail +n03534776 a kind of vacuum cleaner +n03535024 chest for storage of clothing (trousseau) and household goods in anticipation of marriage +n03535284 funnel-shaped receptacle; contents pass by gravity into a receptacle below +n03535647 a loosely woven coarse fabric of cotton or linen; used in clothing +n03535780 gymnastic apparatus consisting of a bar supported in a horizontal position by uprights at both ends +n03536122 the horizontal airfoil of an aircraft's tail assembly that is fixed and to which the elevator is hinged +n03536568 the horizontal stabilizer and elevator in the tail assembly of an aircraft +n03536761 an alarm device that makes a loud warning sound +n03537085 a noisemaker (as at parties or games) that makes a loud noise when you blow through it +n03537241 a device having the shape of a horn +n03537412 a button that you press to activate the horn of an automobile +n03537550 an ancient (now obsolete) single-reed woodwind; usually made of bone +n03538037 a padded gymnastic apparatus on legs +n03538179 a conveyance (railroad car or trailer) for transporting racehorses +n03538300 an early form of streetcar that was drawn by horses +n03538406 heavy cart; drawn by a horse; used for farm work +n03538542 a cloth for the trapping of a horse +n03538634 a wheeled vehicle drawn by one or more horses +n03538817 a fabric made from fibers taken from the mane or tail of horses; used for upholstery +n03538957 a wig made of horsehair +n03539103 an early term for an automobile +n03539293 a large pistol (usually in a holster) formerly carried by horsemen +n03539433 U-shaped plate nailed to underside of horse's hoof +n03539546 game equipment consisting of an open ring of iron used in playing horseshoes +n03539678 a trail for horses +n03539754 a whip for controlling horses +n03540090 man's close-fitting garment of the 16th and 17th centuries covering the legs and reaching up to the waist; worn with a doublet +n03540267 socks and stockings and tights collectively (the British include underwear) +n03540476 a lodging for travelers (especially one kept by a monastic order) +n03540595 a health facility where patients receive treatment +n03540914 a single bed with a frame in three sections so the head or middle or foot can be raised as required +n03541091 a room in a hospital for the care of patients +n03541269 a ship built to serve as a hospital; used for wounded in wartime +n03541393 a military train built to transport wounded troops to a hospital +n03541537 inexpensive supervised lodging (especially for youths on bicycling trips) +n03541696 a hotel providing overnight lodging for travelers +n03541923 balloon for travel through the air in a basket suspended below a large bag of heated air +n03542333 a building where travelers can pay for lodging and meals and other services +n03542605 a building that houses both a hotel and a casino +n03542727 a business establishment that combines a casino and a hotel +n03542860 a bedroom (usually with bath) in a hotel +n03543012 a direct telephone line between two officials +n03543112 skin-tight very short pants worn by young women as an outer garment +n03543254 a portable electric appliance for heating or cooking or keeping food warm +n03543394 a car modified to increase its speed and acceleration +n03543511 a lively entertainment spot +n03543603 a very large tub (large enough for more than one bather) filled with hot water +n03543735 a stoppered receptacle (usually made of rubber) that is to be filled with hot water and used for warming a bed or parts of the body +n03543945 textile with a pattern of small broken or jagged checks +n03544143 a sandglass that runs for sixty minutes +n03544238 the shorter hand of a clock that points to the hours +n03544360 a dwelling that serves as living quarters for one or more families +n03545150 a building in which something is sheltered or located +n03545470 a barge that is designed and equipped for use as a dwelling +n03545585 lights that illuminate the audience's part of a theater or other auditorium +n03545756 an unstable construction with playing cards +n03545961 (formerly) a jail or other place of detention for persons convicted of minor offences +n03546112 paint used to cover the exterior woodwork of a house +n03546235 the roof of a house +n03546340 structures collectively in which people are housed +n03547054 small crude shelter used as a dwelling +n03547229 a craft capable of moving over water or land on a cushion of air created by jet engines +n03547397 a (usually canopied) seat for riding on the back of a camel or elephant +n03547530 a sandal with flat heels and an upper of woven leather straps +n03547861 a system of air transportation in which local airports offer air transportation to a central airport where long-distance flights are available +n03548086 cap that fits over the hub of a wheel +n03548195 toweling consisting of coarse absorbent cotton or linen fabric +n03548320 a woman's fitted jacket +n03548402 plaything consisting of a tubular plastic hoop for swinging around the hips +n03548533 a ship that has been wrecked and abandoned +n03548626 the frame or body of ship +n03548930 a vestment worn by a priest at High Mass in the Roman Catholic Church; a silk shawl +n03549199 a high mobility, multipurpose, military vehicle with four-wheel drive +n03549350 a watch with a hinged metal lid to protect the crystal +n03549473 a large sharp knife with a handle shaped to fit the grip +n03549589 a light movable barrier that competitors must leap over in certain races +n03549732 a deck at the top of a passenger ship +n03549897 an oil lamp with a glass chimney and perforated metal lid to protect the flame from high winds; candlestick with a glass chimney +n03550153 temporary military shelter +n03550289 a cage (usually made of wood and wire mesh) for small animals +n03550420 an encampment of huts (chiefly military) +n03551084 brake system in which a brake pedal moves a piston in the master cylinder; brake fluid then applies great force to the brake pads or shoes +n03551395 press in which a force applied by a piston to a small area is transmitted through water to another piston having a large area +n03551582 a water pump that uses the kinetic energy of flowing water to force a small fraction of that water to a reservoir at a higher level +n03551790 a mechanism operated by the resistance offered or the pressure transmitted when a liquid is forced through a small opening or tube +n03552001 a transmission that depends on a hydraulic system +n03552449 turbine consisting of a large and efficient version of a water wheel used to drive an electric generator +n03552749 a speedboat that is equipped with winglike structures that lift it so that it skims the water at high speeds +n03553019 a device consisting of a flat or curved piece (as a metal plate) so that its surface reacts to the water it is passing through +n03553248 a nuclear weapon that releases atomic energy by union of light (hydrogen) nuclei at high temperatures to form helium +n03553486 a measuring instrument for determining the specific gravity of a liquid or solid +n03554375 a wet and dry bulb hygrometer +n03554460 measuring instrument for measuring the relative humidity of the atmosphere +n03554645 hygrometer that shows variations in the relative humidity of the atmosphere +n03555006 a large chamber in which the oxygen pressure is above normal for the atmosphere; used in treating breathing disorders or carbon monoxide poisoning +n03555217 a roller coaster that goes up 200 feet or higher and can catapult riders from 0 to 70 mph in 4 seconds by motors originally designed to launch rockets +n03555426 a huge supermarket (usually built on the outskirts of a town) +n03555564 a hollow needle +n03555662 a piston syringe that is fitted with a hypodermic needle for giving injections +n03555862 an altimeter that uses the boiling point of water to determine land elevation +n03555996 X ray of the uterus and Fallopian tubes; usually done in diagnosing infertility (to see if there any blockages) +n03556173 girder having a cross section resembling the letter `I' +n03556679 an ax used by mountain climbers for cutting footholds in ice +n03556811 a sailing vessel with runners and a cross-shaped frame; suitable for traveling over ice +n03556992 a ship with a reinforced bow to break up ice and keep channels open for navigation +n03557270 a teaspoon with a long handle +n03557360 an ice rink for playing ice hockey +n03557590 an electric refrigerator to supply ice cubes +n03557692 an appliance included in some electric refrigerators for making ice cubes +n03557840 a waterproof bag filled with ice: applied to the body (especially the head) to cool or reduce swelling +n03558007 pick consisting of a steel rod with a sharp point; used for breaking up blocks of ice +n03558176 a rink with a floor of ice for ice hockey or ice skating +n03558404 skate consisting of a boot with a steel blade fitted to the sole +n03558633 tongs for lifting blocks of ice +n03558739 a tray for making cubes of ice in a refrigerator +n03559373 the first practical television-camera for picture pickup; invented in 1923 by Vladimir Kosma Zworykin +n03559531 a likeness of a person's face constructed from descriptions given to police; uses a set of transparencies of various facial features that can be combined to build up a picture of the person sought +n03559999 a pulley on a shaft that presses against a guide belt to guide or tighten it +n03560430 an Eskimo hut; usually built of blocks (of sod or snow) in the shape of a dome +n03560860 an induction coil that converts current from a battery into the high-voltage current required by spark plugs +n03561047 a key that operates the ignition switch of an automotive engine +n03561169 switch that operates a solenoid that closes a circuit to operate the starter +n03561573 a hostel for pilgrims in Turkey +n03562565 a bandage of cloth impregnated with a substance (e.g., plaster of Paris) that hardens soon after it is applied +n03563200 a printer that prints by mechanical impacts +n03563460 the blade of a rotor (as in the compressor of a jet engine) +n03563710 a prosthesis placed permanently in tissue +n03563967 instrumentation (a piece of equipment or tool) used to effect an end +n03564849 (dentistry) an imprint of the teeth and gums in wax or plaster +n03565288 a device produced by pressure on a surface +n03565565 an explosive device that is improvised +n03565710 a turbine that is driven by jets direct against the blades +n03565830 a wood or metal receptacle placed on your desk to hold your incoming material +n03565991 a bomb that is designed to start fires; is most effective against flammable targets (such as fuel) +n03566193 a furnace for incinerating (especially to dispose of refuse) +n03566329 a simple machine for elevating objects; consists of plane surface that makes an acute angle with the horizontal +n03566555 a measuring instrument for measuring the angle of magnetic dip (as from an airplane) +n03566730 an instrument showing the angle that an aircraft makes with the horizon +n03566860 a decorative coating of contrasting material that is applied to a surface as an inlay or overlay +n03567066 apparatus consisting of a box designed to maintain a constant temperature by the use of a thermostat; used for chicks or premature infants +n03567635 (computer science) a register used to determine the address of an operand +n03567788 a large sailing ship that was engaged in the British trade with India +n03567912 a bottle-shaped club used in exercises +n03568117 a device for showing the operating condition of some system +n03568818 a coil for producing a high voltage from a low-voltage source +n03569014 an electrical device (typically a conducting coil) that introduces inductance into a circuit +n03569174 a canal that is operated by one or more industries +n03569293 a system to control a plane or spacecraft; uses inertial forces +n03569494 an air pump operated by hand to inflate something (as a tire) +n03571280 a dispenser that produces a chemical vapor to be inhaled in order to relieve nasal congestion +n03571439 a contrivance for injecting (e.g., water into the boiler of a steam engine or particles into an accelerator etc.) +n03571625 a bottle of ink +n03571853 an eraser that removes ink marks +n03571942 a printer that produces characters by projecting electrically charged droplets of ink +n03572107 a linen tape used for trimming as a decoration +n03572205 a tray or stand for writing implements and containers for ink +n03572321 a small well holding writing ink into which a pen can be dipped +n03572631 (dentistry) a filling consisting of a solid substance (as gold or porcelain) fitted to a cavity in a tooth and cemented into place +n03573574 caliper for measuring inside dimensions (the size of a cavity or hole); points on its legs curve outward +n03573848 the inner sole of a shoe or boot where the foot rests +n03574243 the part of a shoe or stocking that covers the arch of the foot +n03574416 medical apparatus that puts a liquid into a cavity drop by drop +n03574555 an establishment consisting of a building or complex of buildings where an organization for the promotion of some cause is situated +n03574816 a device that requires skill for proper use +n03575958 an instrument designed and used to punish a condemned person +n03576215 an instrument of punishment designed and used to inflict torture on the condemned person +n03576443 glyptic art consisting of a sunken or depressed engraving or carving on a stone or gem (as opposed to cameo) +n03576955 a valve that controls the flow of fluid through an intake +n03577090 a microelectronic computer circuit incorporated into a chip or semiconductor; a whole system rather than a single component +n03577312 a measuring instrument for measuring the area of an irregular plane figure +n03577474 a computer network similar to but separate from the internet; devoted to the dissemination of information to and for the Intelligence Community +n03577672 a fast maneuverable fighter plane designed to intercept enemy aircraft +n03577818 a junction of highways on different levels that permits traffic to move from one to another without crossing traffic streams +n03578055 a communication system linking different rooms within a building or ship etc +n03578251 a ballistic missile that is capable of traveling from one continent to another +n03578656 (computer science) computer circuit consisting of the hardware and associated circuitry that links one device with another (especially a computer and a hard disk drive or other peripherals) +n03578981 any measuring instrument that uses interference patterns to make accurate measurements of waves +n03579538 a door that closes off rooms within a building +n03579982 a heat engine in which combustion occurs inside the engine rather than in a separate furnace; heat expands a gas that either moves a piston or turns a gas turbine +n03580518 a drive mounted inside of a computer +n03580615 a computer network consisting of a worldwide network of computer networks that use the TCP/IP network protocols to facilitate data transmission and exchange +n03580845 a telephonic intercommunication system linking different rooms in a building or ship etc +n03580990 a device for automatically interrupting an electric current +n03581125 a junction where one street or road crosses another +n03581531 small opening between things +n03581897 an artificial lens that is implanted into the eye of someone to replace a damaged natural lens or someone who has had a cataract removed +n03582508 X-ray picture of the kidneys and ureters after injection of a radiopaque dye +n03582959 an electrical converter that converts direct current into alternating current +n03583419 a type of reaction-propulsion engine to propel rockets in space; a stream of positive ions is accelerated to a high velocity by an electric field +n03583621 a measuring instrument that measures the amount of ionizing radiation +n03584254 (trademark) a pocket-sized device used to play music files +n03584400 (trademark) an iPod that can also play video files +n03584829 home appliance consisting of a flat metal base that is heated and used to smooth cloth +n03585073 a golf club that has a relatively narrow metal head +n03585337 implement used to brand live stock +n03585438 metal shackles; for hands or legs +n03585551 a wooden warship of the 19th century that is plated with iron or steel armor +n03585682 a foundry where cast iron is produced +n03585778 (c. 1840) an early term for a locomotive +n03585875 garments (clothes or linens) that are to be (or have been) ironed +n03586219 respirator that produces alternations in air pressure in a chamber surrounding a patient's chest to force air into and out of the lungs thus providing artificial respiration +n03586631 the merchandise that is sold in an ironmonger's shop +n03586911 the workplace where iron is smelted or where iron goods are made +n03587205 a ditch to supply dry land with water artificially +n03588216 a voluminous cotton outer garment (usually white) traditionally worn by Muslim women of northern Africa and the Middle East; covers the entire body +n03588841 a ruffle on the front of a woman's blouse or a man's shirt +n03588951 tool for exerting pressure or lifting +n03589313 game equipment consisting of one of several small six-pointed metal pieces that are picked up while bouncing a ball in the game of jacks +n03589513 an electrical device consisting of a connector socket designed for the insertion of a plug +n03589672 a small ball at which players aim in lawn bowling +n03589791 a short coat +n03590306 an outer wrapping or casing +n03590475 the tough metal shell casing for certain kinds of ammunition +n03590588 plaything consisting of a toy clown that jumps out of a box when the lid is opened +n03590841 lantern carved from a pumpkin +n03590932 a carpenter's plane for rough finishing +n03591116 (nautical) a hanging ladder of ropes or chains supporting wooden or metal rungs or steps +n03591313 a lightweight cotton cloth with a smooth and slightly stiff finish; used for clothing and bandages +n03591592 a loom with an attachment for forming openings for the passage of the shuttle between the warp threads; used in weaving figured fabrics +n03591798 a highly figured fabric woven on a Jacquard loom +n03591901 a flap along the edge of a garment; used in medieval clothing +n03592245 a correctional institution used to detain persons who are in the lawful custody of the government (either accused persons awaiting trial or convicted persons serving a sentence) +n03592669 a shutter made of angled slats +n03592773 upright consisting of a vertical side member of a door or window frame +n03592931 a transmitter used to broadcast electronic jamming +n03593122 a jar for holding jellies or preserves +n03593222 lacquer with a durable glossy black finish, originally from the orient +n03593526 a vessel (usually cylindrical) with a wide mouth and without handles +n03593862 a kind of artificial heart that has been used with some success +n03594010 an open two-wheeled one-horse cart formerly widely used in Ireland +n03594148 a spear thrown as a weapon or in competitive field events +n03594277 holding device consisting of one or both of the opposing parts of a tool that close to hold an object +n03594523 hydraulic tool inserted into a wrecked vehicle and used to pry the wreckage apart in order to provide access to people trapped inside +n03594734 (usually plural) close-fitting trousers of heavy denim for manual work or casual wear +n03594945 a car suitable for traveling over rough terrain +n03595055 a loose cloak with a hood; worn in the Middle East and northern Africa +n03595264 a tight sleeveless and collarless jacket (often made of leather) worn by men in former times +n03595409 a large wine bottle (holds 4/5 of a gallon) +n03595523 a slightly elastic machine-knit fabric +n03595614 a close-fitting pullover shirt +n03595860 an airplane powered by one or more jet engines +n03596099 an extendible bridge for loading passengers onto large commercial airplanes; provides protected access to the plane from the gate +n03596285 a gas turbine produces a stream of hot gas that propels a jet plane by reaction propulsion +n03596543 a large jet plane that carries passengers +n03597147 an optical instrument used by jewelers; has one or more lenses and is used to view features not readily seen +n03597317 a headdress adorned with jewels +n03597916 a small lyre-shaped musical instrument that is placed between the teeth and played by twanging a wire tongue while changing the shape of the mouth cavity +n03598151 any triangular fore-and-aft sail (set forward of the foremast) +n03598299 a spar that extends the bowsprit +n03598385 a device that holds a piece of machine work and guides the tools operating on it +n03598515 a fisherman's lure with one or more hooks that is jerked up and down in the water +n03598646 any small mast on a sailing vessel; especially the mizzenmast of a yawl +n03598783 fine-toothed power saw with a narrow blade; used to cut curved outlines +n03598930 a puzzle that requires you to reassemble a picture that has been mounted on a stiff base and cut into interlocking pieces +n03599486 a small two-wheeled cart for one passenger; pulled by one person +n03599964 a government office in a town where information about available jobs is displayed and where unemployment benefits are administered +n03600285 flared trousers ending at the calves; worn with riding boots +n03600475 a short riding boot that fastens with a buckle at the side +n03600722 fine woodwork done by a joiner +n03600977 junction by which parts or objects are joined together +n03601442 a pinpoint bomb guidance device that can be strapped to a gravity bomb thus converting dumb bombs into smart bombs +n03601638 a long carpenter's plane used to shape the edges of boards so they will fit together +n03601840 beam used to support floors or roofs +n03602081 a yawl used by a ship's sailors for general work +n03602194 a large drinking bowl +n03602365 a Chinese temple or shrine for idol worship +n03602686 the bearing of a journal +n03602790 metal housing for a journal bearing +n03602883 a manual control consisting of a vertical handle that can move freely in two directions; used as an input device to computers or to devices controlled by computers +n03603442 a structure of vertical and horizontal rods where children can climb and play +n03603594 any of various Chinese boats with a high poop and lugsails +n03603722 a large bottle with a narrow mouth +n03604156 a cabinet containing an automatic record player; records are played by inserting a coin +n03604311 a very large jet plane +n03604400 a sleeveless dress resembling an apron; worn over other clothing +n03604536 a loose jacket or blouse worn by workmen +n03604629 a small connector used to make temporary electrical connections +n03604763 a coverall worn by children +n03604843 a jumper that consists of a short piece of wire +n03605417 a folding seat in an automobile +n03605504 one-piece uniform worn by parachutists +n03605598 one-piece garment fashioned after a parachutist's uniform +n03605722 the place where two or more things come together +n03605915 something that joins or connects +n03606106 a junction unit for connecting 2 cables without the need for plugs +n03606251 a shop that sells cheap secondhand goods +n03606347 an enclosure within a courtroom for the jury +n03606465 a temporary mast to replace one that has broken off +n03607029 a carved doll wearing the costume of a particular Pueblo spirit; usually presented to a child as a gift +n03607186 an Arab headdress consisting of a square piece of cloth folded into a triangle and fastened over the crown by an agal +n03607527 a cap that is wrapped around by a turban and worn by Muslim religious elders +n03607659 a type of submachine gun made in Russia +n03607923 a long tunic worn by many people from the Indian subcontinent (usually with a salwar or churidars) +n03608504 (Swahili) a long garment (usually white) with long sleeves; worn by men in East Africa +n03609147 measures thermal conductivity +n03609235 a small canoe consisting of a light frame made watertight with animal skins; used by Eskimos +n03609397 a toy wind instrument that has a membrane that makes a sound when you hum into the mouthpiece +n03609542 one of the main longitudinal beams (or plates) of the hull of a vessel; can extend vertically into the water to provide lateral stability +n03609786 river boat with a shallow draught and a keel but no sails; used to carry freight; moved by rowing or punting or towing +n03609959 a longitudinal beam connected to the keel of ship to strengthen it +n03610098 the main tower within the walls of a medieval castle or fortress +n03610418 small cask or barrel +n03610524 outbuilding that serves as a shelter for a dog +n03610682 a cap with a flat circular top and a visor +n03610836 medical instrument to examine the cornea in order to detect irregularities in its anterior surface +n03610992 a square scarf that is folded into a triangle and worn over the head or about the neck +n03612010 a sailing vessel with two masts; the mizzen is forward of the rudderpost +n03612814 a metal pot for stewing or boiling; usually has a lid +n03612965 a large hemispherical brass or copper percussion instrument with a drumhead that can be tuned by adjusting the tension on it +n03613294 metal device shaped in such a way that when it is inserted into the appropriate lock the lock's mechanism can be rotated +n03613592 a lever (as in a keyboard) that actuates a mechanism when depressed +n03614007 device consisting of a set of keys on a piano or organ or typewriter or typesetting machine or computer or the like +n03614383 a buffer that keeps track of key strokes until the computer is ready to respond to them +n03614532 a musical instrument that is played by means of a keyboard +n03614782 the hole where a key is inserted +n03614887 a handsaw with a long narrow blade for cutting short radius curves; similar to a compass saw +n03615300 a coarse homespun cotton cloth made in India +n03615406 a sturdy twilled cloth of a yellowish brown color used especially for military uniforms +n03615563 a military uniform made of khaki fabric +n03615655 a headscarf worn by observant Muslim women that hangs down to just above the waist +n03615790 a curved steel knife with a razor-sharp edge used in combat by the Gurkhas; has cultural and religious significance in Nepal +n03616091 pleat in back of a straight skirt to allow ease in walking +n03616225 scientific instrument consisting of an electronic circuit that permits only voltage pulses of predetermined height to pass +n03616428 a swiveling metal rod attached to a bicycle or motorcycle or other two-wheeled vehicle; the rod lies horizontally when not in use but can be kicked into a vertical position as a support to hold the vehicle upright when it is not being ridden +n03616763 a starter (as on a motorcycle) that is activated with the foot and the weight of the body +n03616979 a glove made of fine soft leather (as kidskin) +n03617095 a furnace for firing or burning or drying such things as porcelain or bricks +n03617312 a knee-length pleated tartan skirt worn by men as part of the traditional dress in the Highlands of northern Scotland +n03617480 a loose robe; imitated from robes originally worn by Japanese +n03617594 a cathode-ray tube in a television receiver; translates the received signal into a picture on a luminescent screen +n03617834 a device invented by Edison that gave an impression of movement as an endless loop of film moved continuously over a light source with a rapid shutter; precursor of the modern motion picture +n03618101 (chess) the weakest but the most important piece +n03618339 a checker that has been moved to the opponent's first row where it is promoted to a piece that is free to move either forward or backward +n03618546 bolt that provides a steering joint in a motor vehicle +n03618678 post connecting the crossbeam to the apex of a triangular truss +n03618797 a laboratory apparatus for producing a gas (usually hydrogen sulfide) by the action of a liquid on a solid without heating +n03618982 a Scottish church +n03619050 a ceremonial four-inch curved dagger that Sikh men and women are obliged to wear at all times +n03619196 a long dress worn by women +n03619275 a garment resembling a tunic that was worn by men in the Middle Ages +n03619396 gear consisting of a set of articles or tools for a specified purpose +n03619650 a case for containing a set of articles +n03619793 a knapsack (usually for a soldier) +n03619890 a room equipped for preparing meals +n03620052 a home appliance used in preparing food +n03620353 small kitchen +n03620967 a table in the kitchen +n03621049 a utensil used in preparing food +n03621377 hardware utensils for use in a kitchen +n03621694 a barrage balloon with lobes at one end that keep it headed into the wind +n03622058 a kind of loud horn formerly used on motor vehicles +n03622401 carbon arc lamp that emits an intense light used in producing films +n03622526 an electron tube used to generate or amplify electromagnetic radiation in the microwave region by velocity modulation +n03622839 a brace worn to strengthen the knee +n03622931 a sock or stocking that reaches up to just below the knees +n03623198 protective garment consisting of a pad worn by football or baseball or hockey players +n03623338 armor plate that protects the knee +n03623556 edge tool used as a cutting instrument; has a pointed blade with a sharp edge and a handle +n03624134 a weapon with a handle and blade with a sharp point +n03624400 the blade of a knife +n03624767 a chessman shaped to resemble the head of a horse; can move two squares horizontally and one vertically (or vice versa) +n03625355 a fabric made by knitting +n03625539 a textile machine that makes knitted fabrics +n03625646 needle consisting of a slender rod with pointed ends; usually used in pairs +n03625943 knitted clothing +n03626115 a circular rounded projection or protuberance +n03626272 an ornament in the shape of a ball on the hilt of a sword or dagger +n03626418 a small knob +n03626502 a short wooden club with a heavy knob on one end; used by aborigines in southern Africa +n03626760 a device (usually metal and ornamental) attached by a hinge to a door +n03627232 any of various fastenings formed by looping and tying a rope (or cord) upon itself or to another rope or to another object +n03627954 a joint allowing movement in one plane only +n03628071 a cosmetic preparation used by women in Egypt and Arabia to darken the edges of their eyelids +n03628215 Japanese stringed instrument that resembles a zither; has a rectangular wooden sounding board and usually 13 silk strings that are plucked with the fingers +n03628421 a pen for livestock in southern Africa +n03628511 citadel of a Russian town +n03628728 a Malayan dagger with a wavy blade +n03628831 a Renaissance woodwind with a double reed and a curving tube (crooked horn) +n03628984 a measuring instrument used to measure the speed of sound +n03629100 an oriental rug woven by Kurds that is noted for fine colors and durability +n03629231 a loose collarless shirt worn by many people on the Indian subcontinent (usually with a salwar or churidars or pyjama) +n03629520 a shallow drinking cup with two handles; used in ancient Greece +n03629643 scientific instrument consisting of a rotating drum holding paper on which a stylus traces a continuous record (as of breathing or blood pressure) +n03630262 a workbench in a laboratory +n03630383 a light coat worn to protect clothing from substances used while working in a laboratory +n03631177 a delicate decorative fabric woven in an open web of symmetrical patterns +n03631811 a hard glossy coating +n03631922 a decorative work made of wood and covered with lacquer and often inlaid with ivory or precious metals +n03632100 ball used in playing lacrosse +n03632577 the backrest of a chair that consists of two uprights with connecting slats +n03632729 a chair with a ladder-back +n03632852 a fire engine carrying ladders +n03632963 a woman's restroom in a public (or semipublic) building +n03633091 a spoon-shaped vessel with a long handle; frequently used to transfer liquids from one container to another +n03633341 a small chapel in a church; dedicated to the Virgin Mary +n03633632 an Australian percussion instrument used for playing bush music; a long stick with bottle caps nailed loosely to it; played by hitting it with a stick or banging it on the ground +n03633886 a heavy woodscrew with a square or hexagonal head that is driven in with a wrench +n03634034 dwelling built on piles in or near a lake; specifically in prehistoric villages +n03634899 support column consisting of a steel cylinder filled with concrete +n03635032 a monastery for lamas +n03635108 short and decorative hanging for a shelf edge or top of a window casing +n03635330 a fabric interwoven with threads of metal +n03635516 a clean room free of all extraneous particles; used in fabricating microprocessors +n03635668 a sheet of material made by bonding two or more sheets or layers +n03635932 a layered structure +n03636248 an artificial source of visible illumination +n03636649 a piece of furniture holding one or more electric light bulbs +n03637027 housing that holds a lamp (as in a movie projector) +n03637181 a metal post supporting an outdoor lamp (such as a streetlight) +n03637318 a protective ornamental shade used to screen a light bulb from direct view +n03637480 a veranda or roofed patio often furnished and used as a living room +n03637787 an acutely pointed Gothic arch, like a lance +n03637898 a narrow window having a lancet arch and without tracery +n03638014 a four-wheel covered carriage with a roof divided into two parts (front and back) that can be let down separately +n03638180 a space vehicle that is designed to land on the moon or another planet +n03638623 naval craft designed for putting ashore troops and equipment +n03638743 a flap on the underside of the wing that is lowered to slow the plane for landing +n03638883 an undercarriage that supports the weight of the plane when it is on the ground +n03639077 a bag-shaped fishnet on a long handle to take a captured fish from the water +n03639230 one of two parts of the landing gear of a helicopter +n03639497 a telephone line that travels over terrestrial circuits +n03639675 an explosive mine hidden underground; explodes when stepped on or driven over +n03639880 a government office where business relating to public lands is transacted +n03640850 an emollient containing wool fat (a fatty substance obtained from the wool of sheep) +n03640988 light in a transparent protective case +n03641569 a cord with an attached hook that is used to fire certain types of cannon +n03641947 the part of a piece of clothing that covers the thighs +n03642144 a slender endoscope inserted through an incision in the abdominal wall in order to examine the abdominal organs or to perform minor surgery +n03642341 writing board used on the lap as a table or desk +n03642444 lap at the front of a coat; continuation of the coat collar +n03642573 joint made by overlapping two ends and joining them together +n03642806 a portable computer small enough to use in your lap +n03643149 a medical instrument for examining the larynx +n03643253 an acronym for light amplification by stimulated emission of radiation; an optical device that produces an intense monochromatic beam of coherent light +n03643491 a smart bomb that seeks the laser light reflected off of the target and uses it to correct its descent +n03643737 electrostatic printer that focuses a laser beam to form images that are transferred to paper electrostatically +n03643907 leather strip that forms the flexible part of a whip +n03644073 rope that is used for fastening something to something else +n03644378 a long noosed rope used to catch animals +n03644858 catch for fastening a door or gate; a bar that can be lowered or slid into a groove +n03645011 spring-loaded doorlock that can only be opened from the outside with a key +n03645168 a leather strap or thong used to attach a sandal or shoe to the foot +n03645290 key for raising or drawing back a latch or opening an outside door +n03645577 a triangular fore-and-aft sail used especially in the Mediterranean +n03646020 a water-base paint that has a latex binder +n03646148 a narrow thin strip of wood used as backing for plaster or to make latticework +n03646296 machine tool for shaping metal or wood; the workpiece turns about a horizontal axis against a fixed tool +n03646809 a public toilet in a military area +n03646916 framework consisting of an ornamental design made of strips of wood or metal +n03647423 a motorboat with an open deck or a half deck +n03647520 armament in the form of a device capable of launching a rocket +n03648219 garments or white goods that can be cleaned by laundering +n03648431 handcart for moving a load of laundry +n03648667 van that picks up and delivers laundry +n03649003 a skirt consisting of a rectangle of calico or printed cotton; worn by Polynesians (especially Samoans) +n03649161 jeweled pendant worn on a chain around the neck +n03649288 (Old Testament) large basin used by a priest in an ancient Jewish temple to perform ritual ablutions +n03649674 chair left outside for use on a lawn or in a garden +n03649797 furniture intended for use on a lawn or in a garden +n03649909 garden tool for mowing grass on lawns +n03650551 kit consisting of a complete outfit (clothing and accessories) for a new baby +n03651388 a battery with lead electrodes with dilute sulphuric acid as the electrolyte; each cell generates about 2 volts +n03651605 wire connecting an antenna to a receiver or a transmitter to a transmission line +n03651843 rein to direct the horse's head left or right +n03652100 pencil that has graphite as the marking substance +n03652389 long narrow spring consisting of several layers of metal springs bracketed together +n03652729 rough shelter whose roof has only one slope +n03652826 tent that is attached to the side of a building +n03652932 restraint consisting of a rope (or light chain) used to restrain an animal +n03653110 fabric made to look like leather +n03653220 implement consisting of a strip of leather +n03653454 voltaic cell that produces approximately 1.5 volts +n03653583 desk or stand with a slanted top used to hold a text at the proper height for a lecturer +n03653740 classroom where lectures are given +n03653833 leather shorts often worn with suspenders; worn especially by men and boys in Bavaria +n03653975 top rail of a fence or balustrade +n03654576 a cloth covering consisting of the part of a pair of trousers that covers a person's leg +n03654826 one of the supports for a piece of furniture +n03655072 a garment covering the leg (usually extending from the knee to the ankle) +n03655470 an electrostatic capacitor of historical interest +n03655720 informal clothing designed to be worn when you are relaxing +n03656484 a transparent optical device used to converge or diverge transmitted light and to form images +n03656957 electronic equipment that uses a magnetic or electric field in order to focus a beam of electrons +n03657121 cap used to keep lens free of dust when not in use +n03657239 a clear plastic lens that is implanted in the eye; usually done when the natural lens has been removed in a cataract operation +n03657511 a tight-fitting garment of stretchy material that covers the body from the shoulders to the thighs (and may have long sleeves or legs reaching down to the ankles); worn by ballet dancers and acrobats for practice or performance +n03658102 case for carrying letters +n03658185 dull knife used to cut open the envelopes in which letters are mailed or to slit uncut pages of books +n03658635 an embankment that is built in order to prevent a river from overflowing +n03658858 indicator that establishes the horizontal when a bubble is centered in a tube of liquid +n03659292 a rigid bar pivoted about a fulcrum +n03659686 a flat metal tumbler in a lever lock +n03659809 a simple machine that gives a mechanical advantage when given a fulcrum +n03659950 a lock whose tumblers are levers that must be raised to a given position so that the bolt can move +n03660124 a popular brand of jeans +n03660562 a slow cargo ship built during World War II +n03660909 a room where books are kept +n03661043 a building that houses a collection of books and other materials +n03661340 a movable top or cover (hinged or separate) for closing the opening at the top of a box, chest, jar, pan, etc. +n03662301 a condenser: during distillation the vapor passes through a tube that is cooled by water +n03662452 a polygraph that records bodily changes sometimes associated with lying +n03662601 a strong sea boat designed to rescue people from a sinking ship +n03662719 a life preserver in the form of a ring of buoyant material +n03662887 life preserver consisting of a sleeveless jacket of buoyant or inflatable design +n03663433 life assurance office +n03663531 rescue equipment consisting of a buoyant belt or jacket to keep a person from drowning +n03663910 medical equipment that assists or replaces important bodily functions and so enables a patient to live who otherwise might not survive +n03664159 equipment that makes life possible in otherwise deadly environmental conditions +n03664675 a device for lifting heavy loads +n03664840 pump used to lift rather than force a liquid up +n03664943 any connection or unifying bond +n03665232 a metal band used to attach a reed to the mouthpiece of a clarinet or saxophone +n03665366 any device serving as a source of illumination +n03665851 a rifle or pistol +n03665924 electric lamp consisting of a transparent or translucent glass housing containing a wire filament (usually tungsten) that emits light when heated by electricity +n03666238 wiring that provides power to electric lights +n03666362 diode such that light emitted at a p-n junction is proportional to the bias current; color depends on the material used +n03666591 a device for lighting or igniting fuel or charges or fires +n03666917 aircraft supported by its own buoyancy +n03667060 a transparent filter that reduces the light (or some wavelengths of the light) passing through it +n03667235 apparatus for supplying artificial light effects for the stage or a film +n03667552 a submachine gun not greater than .30 millimeter +n03667664 photographic equipment that measures the intensity of light +n03667829 microscope consisting of an optical instrument that magnifies the image of an object +n03668067 a metallic conductor that is attached to a high point and leads to the ground; protects the building from destruction by lightning +n03668279 (computer science) a pointer that when pointed at a computer display senses whether or not the spot is illuminated +n03668488 a ship equipped like a lighthouse and anchored where a permanent lighthouse would be impracticable +n03668803 a type of inflatable air mattress +n03669245 a two-wheeled horse-drawn vehicle used to pull a field gun or caisson +n03669534 a kiln used to reduce naturally occurring forms of calcium carbonate to lime +n03669886 (electronics) a nonlinear electronic circuit whose output is limited in amplitude; used to limit the instantaneous amplitude of a waveform (to clip off the peaks of a waveform) +n03670208 large luxurious car; usually driven by a chauffeur +n03671914 ions are accelerated along a linear path by voltage differences on electrodes along the path +n03672521 a fabric woven with fibers from the flax plant +n03672827 printer that serves as an output device on a computer; prints a whole line of characters at a time +n03673027 a large commercial ship (especially one that carries passengers on a regular schedule) +n03673270 a piece of cloth that is used as the inside surface of a garment +n03673450 women's underwear and nightclothes +n03673767 a protective covering that protects an inside surface +n03674270 an interconnecting circuit between two or more locations for the purpose of transmitting and receiving data +n03674440 a mechanical system of rods or springs or pivots that transmits power or motion +n03674731 an early form of flight simulator +n03674842 a design carved in relief into a block of linoleum +n03675076 a knife having a short stiff blade with a curved point used for cutting linoleum +n03675235 a typesetting machine operated from a keyboard that casts an entire line as a single slug of metal +n03675445 a rough fabric of linen warp and wool or cotton woof +n03675558 a stick about a meter long with a point on one end (to stick in the ground) and a forked head on the other end (to hold a lighted match); formerly used to fire cannons +n03675907 a type of forceps +n03676087 makeup that makes the lips shiny +n03676483 makeup that is used to color the lips +n03676623 a small glass for serving a small amount of liqueur (typically after dinner) +n03676759 a digital display that uses liquid crystal cells that change reflectivity in an applied electric field; used for portable computer displays and watches etc. +n03677115 a nuclear reactor using liquid metal as a coolant +n03677682 a fabric woven with lisle thread +n03677766 moldboard plow with a double moldboard designed to move dirt to either side of a central furrow +n03678558 bin (usually in or outside a public building) into which the public can put rubbish +n03678729 a small theater for experimental drama or collegiate or community groups +n03678879 the axle of a self-propelled vehicle that provides the driving power +n03679384 housing available for people to live in +n03679712 a room in a private house or establishment where people can sit and talk and relax +n03680248 electrical device to which electrical power is delivered +n03680355 a low leather step-in shoe; the top resembles a moccasin but it has a broad flat heel +n03680512 a car that is lent as a replacement for one that is under repair +n03680734 a rounded projection that is part of a larger structure +n03680858 trap for catching lobsters +n03680942 public transport consisting of a bus or train that stops at all stations or stops +n03681477 a local computer network for communication between computers; especially a network connecting computers and word processors and other electronic office equipment to create a communication system between offices +n03681813 an oscillator whose output heterodynes with the incoming radio signal to produce sum and difference tones +n03682380 a battle-ax formerly used by Scottish Highlanders +n03682487 a fastener fitted to a door or drawer to keep it firmly closed +n03682877 a restraint incorporated into the ignition switch to prevent the use of a vehicle by persons who do not have the key +n03683079 enclosure consisting of a section of canal that can be closed to control the water level; used to raise or lower vessels that pass through it +n03683341 a mechanism that detonates the charge of a gun +n03683457 a system of locks in a canal or waterway +n03683606 a fastener that locks or closes +n03683708 a room (as at an athletic facility or workplace) where you can change clothes and which contains lockers for the temporary storage of your clothing and personal possessions +n03683995 a small ornamental case; usually contains a picture or a lock of hair and is worn on a necklace +n03684143 a gate that can be locked +n03684224 pliers that can be locked in place +n03684489 washer that prevents a nut from loosening +n03684611 machine stitch in which the top thread interlocks with the bobbin thread +n03684740 jail in a local police station +n03684823 a wheeled vehicle consisting of a self-propelled engine that is used to draw trains along railway tracks +n03685307 any of various Native American dwellings +n03685486 a small (rustic) house used as a temporary shelter +n03685640 small house at the entrance to the grounds of a country mansion; usually occupied by a gatekeeper or gardener +n03685820 a house where rooms are rented +n03686130 floor consisting of open space at the top of a house just below roof; often used for storage +n03686363 a raised shelter in which pigeons are kept +n03686470 floor consisting of a large unpartitioned space over a factory or warehouse or other commercial space +n03686924 a cabin built with logs +n03687137 a roofed arcade or gallery with open sides stretching along the front or side of a building; often at an upper level +n03687928 a powerful wooden bow drawn by hand; usually 5-6 feet long; used in medieval England +n03688066 an iron with a long shaft and a steep face; for hitting long low shots +n03688192 warm underwear with long legs +n03688405 a sleeve extending from shoulder to wrist +n03688504 a long swivel cannon formerly used by the navy +n03688605 trousers reaching to the foot +n03688707 an undergarment with shirt and drawers in one piece +n03688832 a mirror; usually a ladies' dressing mirror +n03688943 a structure commanding a wide view of its surroundings +n03689157 a textile machine for weaving yarn into a textile +n03689570 any of various knots used to make a fixed loop in a rope +n03690168 eyeglasses that are held to the eyes with a long handle +n03690279 a cross with two crossbars, one above and one below the midpoint of the vertical, the lower longer than the upper +n03690473 a large truck designed to carry heavy loads; usually without sides +n03690851 a globular water bottle used in Asia +n03690938 any of various cosmetic preparations that are applied to the skin +n03691459 electro-acoustic transducer that converts electrical signals into sounds loud enough to be heard at a distance +n03691817 a room (as in a hotel or airport) with seating where people can wait +n03692004 an article of clothing designed for comfort and leisure wear +n03692136 a man's soft jacket usually with a tie belt; worn at home +n03692272 pajamas worn while lounging +n03692379 clothing suitable for relaxation +n03692522 small magnifying glass (usually set in an eyepiece) used by jewelers and horologists +n03692842 a window with glass louvers +n03693293 a stylized or decorative knot used as an emblem of love +n03693474 small sofa that seats two people +n03693707 a large drinking vessel (usually with two handles) that people drink out of in turn at a banquet +n03693860 a low chest or table with drawers and supported on four legs +n03694196 a filter that passes frequencies below a certain value and attenuates frequencies above that value +n03694356 a handloom in which the warp is carried horizontally; for weaving tapestry +n03694639 a long-playing phonograph record; designed to be played at 33.3 rpm +n03694761 a square plate bearing the letter L that is attached to both ends of a car to indicate that the driver is a learner +n03694949 hole in a platform on a mast through which a sailor can climb without going out on the shrouds +n03695122 mechanical system of lubricating internal combustion engines in which a pump forces oil into the engine bearings +n03695452 (nautical) the forward edge of a fore-and-aft sail that is next to the mast +n03695616 a projecting piece that is used to lift or support or turn something +n03695753 a racing sled for one or two people +n03695857 a German semiautomatic pistol +n03695957 carrier (as behind a bicycle seat) for luggage +n03696065 compartment in an automobile that carries luggage or shopping or tools +n03696301 carrier for holding luggage above the seats of a train or on top of a car +n03696445 small fishing boat rigged with one or more lugsails +n03696568 a sail with four corners that is hoisted from a yard that is oblique to the mast +n03696746 a wrench with jaws that have projecting lugs to engage the object that is to be rotated +n03696909 a short warm outer jacket +n03697007 a mill for dressing logs and lumber +n03697366 a spacecraft that carries astronauts from the command module to the surface of the moon and back +n03697552 a restaurant (in a facility) where lunch can be purchased +n03697812 temporary fortification like a detached bastion +n03697913 a long piece of brightly colored cloth (cotton or silk) used as clothing (a skirt or loincloth or sash etc.) in India and Pakistan and Burma +n03698123 a crescent-shaped metal ornament of the Bronze Age +n03698226 pottery with a metallic sheen produced by adding metallic oxides to the glaze +n03698360 chordophone consisting of a plucked instrument having a pear-shaped body, a usually bent neck, and a fretted fingerboard +n03698604 a liner equipped for sumptuous living +n03698723 a public hall for lectures and concerts +n03698815 a roofed gate to a churchyard, formerly used as a temporary shelter for the bier during funerals +n03699280 a harp used by ancient Greeks for accompaniment +n03699591 a large heavy knife used in Central and South America as a weapon or for cutting vegetation +n03699754 a projecting parapet supported by corbels on a medieval castle; has openings through which stones or boiling water could be dropped on an enemy +n03699975 any mechanical or electrical device that transmits or modifies energy to perform or assist in the performance of human tasks +n03700963 a device for overcoming resistance at one point by applying force at some other point +n03701191 a bolt with a square or hexagonal head on one end and a threaded shaft on the other end; tightened with a wrench; used to connect metal parts +n03701391 a rapidly firing automatic gun (often mounted) +n03701640 machines or machine systems collectively +n03701790 a screw used either with a nut or with a tapped hole; slotted head can be driven by a screwdriver +n03702248 a powered machine for cutting or shaping or finishing metals or other materials +n03702440 a vise with two parallel iron jaws and a wide opening below +n03702582 speedometer for measuring the speed of an aircraft relative to the speed of sound +n03703075 a heavy woolen cloth heavily napped and felted, often with a plaid design +n03703203 a flat-bottomed boat used on upper Great Lakes +n03703463 a short plaid coat made of made of thick woolen material +n03703590 a lightweight waterproof (usually rubberized) fabric +n03703730 a relatively coarse lace; made by weaving and knotting cords +n03703862 a light patterned cotton cloth +n03703945 an inflatable life jacket +n03704549 a rack for displaying magazines +n03704834 an early form of slide projector +n03705379 (physics) a device that attracts iron and produces a magnetic field +n03705808 container consisting of any configuration of magnetic fields used to contain a plasma during controlled thermonuclear reactions +n03706229 compass based on an indicator (as a magnetic needle) that points to the magnetic north +n03706415 (computer science) a computer memory consisting of an array of magnetic cores; now superseded by semiconductor memories +n03706653 (computer science) a memory device consisting of a flat disk covered with a magnetic coating on which information is stored +n03706939 an electromagnet (as on a tape recorder) that converts electrical variations into magnetic variations that can be stored on a surface and later retrieved +n03707171 (nautical) a marine mine that is detonated by a mechanism that responds to magnetic material (as the steel hull of a ship) +n03707372 a slender magnet suspended in a magnetic compass on a mounting with little friction; used to indicate the direction of the earth's magnetic pole +n03707597 recorder consisting of equipment for making records on magnetic media +n03707766 a short strip of magnetic tape attached to a credit card or debit card; it contains data that will tell a reading device who you are and what your account number is, etc. +n03708036 memory device consisting of a long thin plastic strip coated with iron oxide; used to record audio or video signals or to store computer information +n03708425 a small dynamo with a secondary winding that produces a high voltage enabling a spark to jump between the poles of a spark plug in a gasoline engine +n03708843 a meter to compare strengths of magnetic fields +n03708962 a diode vacuum tube in which the flow of electrons from a central cathode to a cylindrical anode is controlled by crossed magnetic and electric fields; used mainly in microwave oscillators +n03709206 a scientific instrument that magnifies an image +n03709363 a large wine bottle for liquor or wine +n03709545 a rolling hitch similar to a clove hitch +n03709644 a conveyance that transports the letters and packages that are conveyed by the postal system +n03709823 letter carrier's shoulder bag +n03709960 pouch used in the shipment of mail +n03710079 a boat for carrying mail +n03710193 a private box for delivery of mail +n03710294 a railway car in which mail is transported and sorted +n03710421 a drop where mail can be deposited +n03710528 a container for something to be mailed +n03710637 tights for dancers or gymnasts +n03710721 a woman's one-piece bathing suit +n03710937 a sorter for sorting mail according to the address +n03711044 a train that carries mail +n03711711 a large digital computer serving 100-400 users and occupying a special air-conditioned room +n03711999 the chief mast of a sailing vessel with two or more masts +n03712111 rotor consisting of large rotating airfoils on a single-rotor helicopter that produce the lift to support the helicopter in the air +n03712337 the lowermost sail on the mainmast +n03712444 the most important spring in a mechanical device (especially a clock or watch); as it uncoils it drives the mechanism +n03712887 the topmast next above the mainmast +n03712981 a topsail set on the mainmast +n03713069 yard for a square mainsail +n03713151 a small house +n03713436 highly decorated earthenware with a glaze of tin oxide +n03714235 cosmetics applied to the face to improve or change your appearance +n03715114 reflecting telescope in which the aberration of the concave mirror is reduced by a meniscus lens +n03715275 a cane made from the stem of a rattan palm +n03715386 a tool resembling a hammer but with a large head (usually wooden); used to drive wedges or ram down paving stones or for crushing or beating or flattening or smoothing +n03715669 a light drumstick with a rounded head that is used to strike such percussion instruments as chimes, kettledrums, marimbas, glockenspiels, etc. +n03715892 a sports implement with a long handle and a head like a hammer; used in sports (polo or croquet) to hit a ball +n03716228 X-ray film of the soft tissue of the breast +n03716887 an early type of mandolin +n03716966 a stringed instrument related to the lute, usually played with a plectrum +n03717131 a container (usually in a barn or stable) from which cattle or horses feed +n03717285 clothes dryer for drying and ironing laundry by passing it between two heavy heated rollers +n03717447 a hole (usually with a flush cover) through which a person can gain access to an underground structure +n03717622 a flush iron cover for a manhole (as in a street) +n03718212 a warship intended for combat +n03718335 a pressure gauge for comparing pressures of a gas +n03718458 the mansion of a lord or wealthy person +n03718581 the large room of a manor or castle +n03718699 a man-portable surface-to-air missile +n03718789 a hip roof having two slopes on each side +n03718935 the residence of a clergyman (especially a Presbyterian clergyman) +n03719053 a large and imposing house +n03719343 shelf that projects from wall above fireplace +n03719560 short cape worn by women +n03719743 a woman's silk or lace scarf +n03720005 a light weight jacket with a high collar; worn by Mao Zedong and the Chinese people during his regime +n03720163 a diagrammatic representation of the earth's surface (or part of it) +n03720665 an assembly plant in Mexico (near the United States border); parts are shipped into Mexico and the finished product is shipped back across the border +n03720891 a percussion instrument consisting of a hollow gourd containing pebbles or beans; often played in pairs +n03721047 a small ball of glass that is used in various games +n03721252 equipage for marching +n03721384 a percussion instrument with wooden bars tuned to produce a chromatic scale and with resonators; played with small mallets +n03721590 a fancy dock for small yachts and cabin cruisers +n03722007 a writing implement for making a mark +n03722288 an area in a town where a public mercantile establishment is set up +n03722646 a pointed iron hand tool that is used to separate strands of a rope or cable (as in splicing) +n03722944 a dress crepe; similar to Canton crepe +n03723153 permanent canopy over an entrance of a hotel etc. +n03723267 inlaid veneers are fitted together to form a design or picture that is then used to ornament furniture +n03723439 the bed shared by a newly wed couple +n03723781 a circular masonry fort for coastal defence +n03723885 a harness strap that connects the nose piece to the girth; prevents the horse from throwing back its head +n03724066 makeup that is used to darken and thicken the eye lashes +n03724176 an acronym for microwave amplification by stimulated emission of radiation; an amplifier that works on the same principle as a laser and emits coherent microwave radiation +n03724417 a kitchen utensil used for mashing (e.g. potatoes) +n03724538 middle-distance iron +n03724623 iron with a lofted face for hitting high shots to the green +n03724756 (Islam) a Muslim place of worship +n03724870 a covering to disguise or conceal the face +n03725035 a protective covering worn over the face +n03725506 a type of fiberboard +n03725600 a glass jar with an air-tight screw top; used in home canning +n03725717 structure built of stone or brick by a mason +n03725869 a level longer than a carpenter's level +n03726116 a business establishment that offers therapeutic massage +n03726233 a place where illicit sex is available under the guise of therapeutic massage +n03726371 a mass spectrometer that produces a graphical representation of the mass spectrum +n03726516 spectroscope for obtaining a mass spectrum by deflecting ions into a thin slit and measuring the ion current with an electrometer +n03726760 a vertical spar for supporting sails +n03726993 any sturdy upright pole +n03727067 an ancient Egyptian mud-brick tomb with a rectangular base and sloping sides and flat roof +n03727465 the principal bedroom in a house; usually occupied by the head of the household +n03727605 the most outstanding work of a creative artist or craftsman +n03727837 a thick flat pad used as a floor covering +n03727946 sports equipment consisting of a piece of thick padding on the floor for gymnastic sports +n03728437 lighter consisting of a thin piece of wood or cardboard tipped with combustible chemical; ignites with friction +n03728982 a burning piece of wood or cardboard +n03729131 a board that has a groove cut into one edge and a tongue cut into the other so they fit tightly together (as in a floor) +n03729308 a small folder of paper safety matches +n03729402 a box for holding matches +n03729482 an early style of musket; a slow-burning wick would be lowered into a hole in the breech to ignite the charge +n03729647 a plane having cutters designed to make the tongues and grooves on the edges of matchboards +n03729826 a short thin stick of wood used in making matches +n03729951 things needed for doing or making something +n03730153 equipment and supplies of a military force +n03730334 a hospital that provides care for women during pregnancy and childbirth and for newborn infants +n03730494 a hospital ward that provides care for women during pregnancy and childbirth and for newborn infants +n03730655 mold used in the production of phonograph records, type, or other relief surface +n03730788 a kind of stopper knot +n03730893 a covering of coarse fabric (usually of straw or hemp) +n03731019 a kind of pick that is used for digging; has a flat blade set at right angles to the handle +n03731483 bedclothes that provide a cover for a mattress +n03731695 a heavy long-handled hammer used to drive stakes or wedges +n03731882 a long stick that a painter uses to support the hand holding the brush +n03732020 trademark for a repeating rifle or pistol +n03732114 a large burial chamber, usually above ground +n03732458 a long skirt ending below the calf +n03732543 an obsolete water-cooled machine gun having a single barrel +n03732658 thermometer that records the highest and lowest temperatures reached during a period of time +n03733131 a vertical pole or post decorated with streamers that can be held by dancers celebrating May Day +n03733281 complex system of paths or tunnels in which it is easy to get lost +n03733465 a large hardwood drinking bowl +n03733547 an instrumentality for accomplishing some end +n03733644 a container of some standard capacity that is used to obtain fixed amounts of a substance +n03733805 graduated cup used to measure liquid or granular ingredients +n03733925 instrument that shows the extent or amount or quantity or degree of something +n03735637 measuring instrument having a sequence of marks at regular intervals; used as a reference in making measurements +n03735963 counter where meats are displayed for sale +n03736064 a mill for grinding meat +n03736147 a strong pointed hook from which the carcasses of animals are hung +n03736269 a small house (on a farm) where meat is stored +n03736372 a safe for storing meat +n03736470 a thermometer that is inserted into the center of a roast (with the top away from the heat source); used to measure how well done the meat is +n03736970 mechanism consisting of a device that works on mechanical principles +n03738066 a mechanically operated piano that uses a roll of perforated paper to activate the keys +n03738241 a system of elements that interact on mechanical principles +n03738472 device consisting of a piece of machinery; has moving parts that perform some function +n03739518 building where medicine is practiced +n03739693 instrument used in the practice of medicine +n03742019 heavy ball used in physical training +n03742115 cabinet that holds medicines and toiletries +n03742238 the computer-based telephone system of the United States National Library of Medicine that provides rapid linkage to MEDLARS +n03743016 memorial consisting of a very large stone forming part of a prehistoric structure (especially in western Europe) +n03743279 a cone-shaped acoustic device held to the mouth to intensify and direct the human voice +n03743902 a structure erected to commemorate persons or events +n03744276 an electronic memory device +n03744684 a RAM microchip that can be plugged into a computer to provide additional memory +n03744840 a device that preserves information for retrieval +n03745146 the facility where wild animals are housed for exhibition +n03745487 garments that must be repaired +n03745571 a tall upright megalith; found primarily in England and northern France +n03746005 (Judaism) a candelabrum with nine branches; used during the Hanukkah festival +n03746155 (Judaism) a candelabrum with seven branches used in ceremonies to symbolize the seven days of Creation +n03746330 clothing that is designed for men to wear +n03746486 a public toilet for men +n03748162 a place of business for retailing goods +n03749504 barometer that shows pressure by the height of a column of mercury +n03749634 a primary cell consisting of a zinc anode and a cathode of mercury oxide and an electrolyte of potassium hydroxide +n03749807 thermometer consisting of mercury contained in a bulb at the bottom of a graduated sealed glass capillary tube marked in degrees Celsius or Fahrenheit; mercury expands with a rise in temperature causing a thin thread of mercury to rise in the tube +n03750206 ultraviolet lamp that emits a strong bluish light (rich in ultraviolet radiation) as electric current passes through mercury vapor +n03750437 the golden covering of the ark of the covenant +n03750614 a solid section between two crenels in a crenelated battlement +n03751065 a (large) military dining room where service personnel eat or relax +n03751269 waist-length jacket tapering to a point at the back; worn by officers in the mess for formal dinners +n03751458 kit containing a metal dish and eating utensils; used by soldiers and campers +n03751590 (law) a dwelling house and its adjacent buildings and the adjacent land used by the household +n03751757 detector that gives a signal when it detects the presence of metal; used to detect the presence of stray bits of metal in food products or to find buried metal +n03752071 a fabric made of a yarn that is partly or entirely of metal +n03752185 screw made of metal +n03752398 golf wood with a metal head instead of the traditional wooden head +n03752922 a small unmanned balloon set aloft to observe atmospheric conditions +n03753077 any of various measuring instruments for measuring a quantity +n03753514 a rule one meter long (usually marked off in centimeters and millimeters) +n03757604 clicking pendulum indicates the exact tempo of a piece of music +n03758089 intermediate floor just above the ground floor +n03758220 first or lowest balcony +n03758894 balance for weighing very small objects +n03758992 a small brewery; consumption of the product is mainly elsewhere +n03759243 small sheet of microfilm on which many pages of material have been photographed; a magnification system is used to read the material +n03759432 film on which materials are photographed at greatly reduced size; useful for storage; a magnification system is used to read the material +n03759661 caliper for measuring small distances +n03759954 device for converting sound waves into electrical energy +n03760310 integrated circuit semiconductor chip that performs the bulk of the processing and controls the parts of a system +n03760671 magnifier of the image of small objects +n03760944 scientific instrument that cuts thin slices of something for microscopic examination +n03761084 kitchen appliance that cooks food by passing an electromagnetic wave through it; heat results from the absorption of energy by the water molecules in the food +n03761588 diathermy machine that uses microwave radiation as the source of heat +n03761731 linear accelerator that uses microwaves +n03762238 blouse with a sailor collar +n03762332 long iron with a nearly vertical face +n03762434 (Islam) a niche in the wall of a mosque that indicates the direction of Mecca +n03762602 (Islam) a design in the shape of niche in a Muslim prayer rug; during worship the niche must be pointed toward Mecca +n03762982 hospital for soldiers and other military personnel +n03763727 living quarters for personnel on a military post +n03763968 prescribed identifying uniform for soldiers +n03764276 vehicle used by the armed forces +n03764606 snack bar that sells milk drinks and light refreshments (such as ice cream) +n03764736 large can for transporting milk +n03764822 a van (typically powered by electricity) with an open side that is used to deliver milk to houses +n03764995 machine consisting of a suction apparatus for milking cows mechanically +n03765128 low three-legged stool with a half round seat; used to sit on while milking a cow +n03765467 wagon for delivering milk +n03765561 machinery that processes materials by grinding or crushing +n03765934 dam to make a millpond to provide power for a water mill +n03766044 machine tool in which metal that is secured to a carriage is fed against rotating cutters that shape it +n03766218 a sensitive ammeter graduated in milliamperes +n03766322 hats for women; the wares sold by a milliner +n03766508 shop selling women's hats +n03766600 corrugated edge of a coin +n03766697 sensitive voltmeter that can measure voltage in millivolts +n03766935 one of a pair of heavy flat disk-shaped stones that are rotated against one another to grind the grain +n03767112 any load that is difficult to carry +n03767203 water wheel that is used to drive machinery in a mill +n03767459 a rotary duplicator that uses a stencil through which ink is pressed (trade mark Roneo) +n03767745 slender tower with balconies +n03767966 a kitchen utensil that cuts or chops food (especially meat) into small pieces +n03768132 explosive device that explodes on contact; designed to destroy vehicles or ships or to kill or maim personnel +n03768683 detector consisting of an electromagnetic device; used to locate explosive mines +n03768823 ship equipped for laying marine mines +n03768916 excavation consisting of a vertical or sloping passageway for finding or mining ore or for ventilating a mine +n03769610 sideboard with compartments for holding bottles +n03769722 small motorcycle with a low frame and small wheels and elevated handlebars +n03769881 a light bus (4 to 10 passengers) +n03770085 a car that is even smaller than a subcompact car +n03770224 a digital computer of medium size +n03770316 building where the business of a government department is transacted +n03770439 a very short skirt +n03770520 submersible vessel for one or two persons; for naval operations or underwater exploration +n03770679 a small box-shaped passenger van; usually has removable seats; used as a family car +n03770834 trimming on ceremonial robes consisting of white or light grey fur +n03770954 fur coat made from the soft lustrous fur of minks +n03772077 any of certain cathedrals and large churches; originally connected to a monastery +n03772269 a plant where money is coined by authority of the government +n03772584 points to the minutes +n03772674 a strategic weapon system using a guided missile of intercontinental range; missiles are equipped with nuclear warheads and dispersed in hardened silos +n03773035 polished surface that forms images by reflecting light +n03773504 a rocket carrying a warhead of conventional or nuclear explosives; may be ballistic or directed by remote control +n03773835 naval weaponry providing a defense system +n03774327 hand tool for guiding handsaws in making crosscuts or miter joints +n03774461 joint that forms a corner; usually both sides are bevelled at a 45-degree angle to form a 90-degree corner +n03775071 glove that encases the thumb separately and the other four fingers together +n03775199 a kitchen utensil that is used for mixing foods +n03775388 electronic equipment that mixes two or more input signals to give a single output signal +n03775546 bowl used with an electric mixer +n03775636 single faucet for separate hot and cold water pipes +n03775747 fore-and-aft sail set on the mizzenmast +n03775847 third mast from the bow in a vessel having three or more masts; the after and shorter mast of a yawl, ketch, or dandy +n03776167 large high frilly cap with a full crown; formerly worn indoors by women +n03776460 a large house trailer that can be connected to utilities and can be parked in one place and used as permanent housing +n03776877 soft leather shoe; originally worn by Native Americans +n03776997 full-scale working model of something built for study or testing or display +n03777126 modern convenience; the appliances and conveniences characteristic of a modern house +n03777568 the first widely available automobile powered by a gasoline engine; mass-produced by Henry Ford from 1908 to 1927 +n03777754 (from a combination of MOdulate and DEModulate) electronic equipment consisting of a device used to connect computers by a telephone line +n03778459 (architecture) one of a set of ornamental brackets under a cornice +n03778817 computer circuit consisting of an assembly of electronic components (as of computer hardware) +n03779000 detachable compartment of a spacecraft +n03779128 fabric made with yarn made from the silky hair of the Angora goat +n03779246 silk fabric with a wavy surface pattern +n03779370 container into which liquid is poured to create a given shape when it hardens +n03779884 wedge formed by the curved part of a steel plow blade that turns the furrow +n03780047 plow that has a moldboard +n03780799 a durable cotton fabric with a velvety nap +n03781055 a crude incendiary bomb made of a bottle filled with flammable liquid and fitted with a rag wick +n03781244 the residence of a religious community +n03781467 a long loose habit worn by monks in a monastery +n03781594 a drawstring bag for holding money +n03781683 belt with a concealed section for holding money +n03781787 a piece of electronic equipment that keeps track of the operation of a system continuously and warns of trouble +n03782006 electronic equipment that is used to check the quality or content of electronic transmissions +n03782190 display produced by a device that takes signals and displays them on a television screen or a computer monitor +n03782794 adjustable wrench that has one fixed and one adjustable jaw +n03782929 a heavy cloth in basket weave +n03783304 painting done in a range of tones of a single color +n03783430 lens for correcting defective vision in one eye; held in place by facial muscles +n03783575 a lens with a single focus that is used after cataract surgery to provide clear distance vision +n03783873 an airplane with a single wing +n03784139 a typesetting machine operated from a keyboard that sets separate characters +n03784270 (Roman Catholic Church) a vessel (usually of gold or silver) in which the consecrated Host is exposed for adoration +n03784793 a tower for mooring airships +n03784896 a round arch that widens before rounding off +n03785016 a motorbike that can be pedaled or driven by a low-powered gasoline engine +n03785142 the handle of a mop +n03785237 a thick velvety synthetic fabric used for carpets and soft upholstery +n03785499 a building (or room) where dead bodies are kept before burial or cremation +n03785721 a metal helmet worn by common soldiers in the 16th century +n03786096 a woman's informal dress for housework +n03786194 formal attire for men during the daytime +n03786313 a sitting room used during the daylight hours +n03786621 an armchair with an adjustable back +n03786715 a muzzle-loading high-angle gun with a short barrel that fires shells at high elevations for a short range +n03786901 a bowl-shaped vessel in which substances can be ground and mixed with a pestle +n03787032 an academic cap with a flat square with a tassel on top +n03787523 a joint made by inserting tenon on one piece into mortise holes in the other +n03788047 transducer formed by the light-sensitive surface on a television camera tube +n03788195 (Islam) a Muslim place of worship that usually has a minaret +n03788365 a fine net or screen (especially around beds) to protect against mosquitos +n03788498 a motor hotel +n03788601 a sleeping room in a motel +n03788914 a woman's loose unbelted dress +n03789171 a camera that takes a sequence of photographs that can give the illusion of motion when viewed in rapid succession +n03789400 photographic film several hundred feet long and wound on a spool; to be used in a movie camera +n03789603 a multicolored woolen fabric woven of mixed threads in 14th to 17th century England +n03789794 a garment made of motley (especially a court jester's costume) +n03789946 machine that converts other forms of energy into mechanical energy and so imparts motion +n03790230 a boat propelled by an internal-combustion engine +n03790512 a motor vehicle with two wheels and a strong frame +n03790755 a hotel for motorists; provides direct access from rooms to parking area +n03790953 a wheelchair propelled by a motor +n03791053 a wheeled vehicle with small wheels and a low-powered gasoline engine geared to the rear wheel +n03791235 a self-propelled wheeled vehicle that does not run on rails +n03792048 structure consisting of an artificial heap or bank usually of earth or stones +n03792334 (baseball) the slight elevation on which the pitcher stands +n03792526 a mounting consisting of a piece of metal (as in a ring or other jewelry) that holds a gem in place +n03792782 a bicycle with a sturdy frame and fat tires; originally designed for riding in mountainous country +n03792972 a lightweight tent with a floor; flaps close with a zipper +n03793489 a hand-operated electronic device that controls the coordinates of a cursor on your computer screen as you move it around on a pad; on the bottom of the device is a ball that rolls on the surface of the pad +n03793850 a push button on the mouse +n03794056 a trap for catching mice +n03794136 toiletry consisting of an aerosol foam used in hair styling +n03794798 the aperture of a wind instrument into which the player blows directly +n03795123 an acoustic device; the part of a telephone into which a person speaks +n03795269 (especially boxing) equipment that protects an athlete's mouth +n03795758 the driving and regulating parts of a mechanism (as of a watch or clock) +n03795976 projects successive frames from a reel of film to create moving pictures +n03796181 a galvanometer that is operated by the force exerted by an electric current flowing in a movable coil suspended in a magnetic field +n03796401 a van used for moving home or office furniture +n03796522 a brick made from baked mud +n03796605 a curved piece above the wheel of a bicycle or motorcycle to protect the rider from water or mud thrown up by the wheels +n03796848 a reed hut in the marshlands of Iraq; rare since the marshes were drained +n03796974 a warm tubular covering for the hands +n03797062 a kiln with an inner chamber for firing things at a low temperature +n03797182 a scarf worn around the neck +n03797264 civilian dress worn by a person who is entitled to wear a military uniform +n03797390 with handle and usually cylindrical +n03797896 a protective covering of rotting vegetable matter spread to reduce evaporation and soil erosion +n03798061 a slipper that has no fitting around the heel +n03798442 a recorder with two or more channels; makes continuous records of two or more signals simultaneously +n03798610 a plane with two or more engines +n03798982 a movie theater than has several different auditoriums in the same building +n03799113 a device that can interleave two or more activities +n03799240 a computer that uses two or more processing units under integrated control +n03799375 a rocket having two or more rocket engines (each with its own fuel) that are fired in succession and jettisoned when the fuel is exhausted +n03799610 military supplies +n03799876 a bed that can be folded or swung into a cabinet when not being used +n03800371 a small bagpipe formerly popular in France +n03800485 a small simple oboe +n03800563 a depository for collecting and displaying objects having scientific or historical or artistic value +n03800772 an anchor used for semipermanent moorings; has a bowl-shaped head that will dig in however it falls +n03800933 any of various devices or contrivances that can be used to produce musical tones or sounds +n03801353 produces music by means of pins on a revolving cylinder that strike the tuned teeth of a comb-like metal plate +n03801533 a theater in which vaudeville is staged +n03801671 a school specializing in music +n03801760 a light stand for holding sheets of printed music +n03801880 a stool for piano players; usually adjustable in height +n03802007 a muzzle-loading shoulder gun with a long barrel; formerly used by infantrymen +n03802228 a solid projectile that is shot by a musket +n03802393 plain-woven cotton fabric +n03802643 a drinking cup with a bar inside the rim to keep a man's mustache out of the drink +n03802800 a plaster containing powdered black mustard; applied to the skin as a counterirritant or rubefacient +n03802973 a device used to soften the tone of a musical instrument +n03803116 an obsolete firearm that was loaded through the muzzle +n03803284 a leather or wire restraint that fits over an animal's snout (especially a dog's nose and jaws) and prevents it from eating or biting +n03803780 X-ray film of the spinal cord and spinal nerve roots and subarachnoid space +n03804211 a streamlined enclosure for an aircraft engine +n03804744 a thin pointed piece of metal that is hammered into materials as a fastener +n03805180 a brush used to clean a person's fingernails +n03805280 a small flat file for shaping the nails +n03805374 flattened boss on the end of nail opposite to the point +n03805503 something resembling the head of a nail that is used as an ornamental device +n03805725 a cosmetic lacquer that dries quickly and that is applied to the nails to color them or make them shiny +n03805933 a soft lightweight muslin used especially for babies +n03807334 a set of graduated rods formerly used to do multiplication and division by a method invented by John Napier +n03809211 an aromatic ointment used in antiquity +n03809312 a commercial airliner with a single aisle +n03809603 corduroy with narrow ribs +n03809686 a vestibule leading to the nave of a church +n03809802 portico at the west end of an early Christian basilica or church +n03810412 a tube inserted into the trachea through the nose and pharynx; used to deliver oxygen +n03810952 memorial consisting of a structure or natural landmark of historic interest; set aside by national government for preservation and public enjoyment +n03811295 a submarine that is propelled by nuclear power +n03811444 a system that provides information useful in determining the position and course of a ship or aircraft +n03811847 equipment for a navy +n03811965 naval weaponry consisting of a large gun carried on a warship +n03812263 naval weaponry consisting of a missile carried on a warship +n03812382 naval equipment consisting of a shipboard radar +n03812789 a shipboard system for collecting and displaying tactical data +n03812924 weaponry for warships +n03813078 the central area of a church +n03813176 an instrument used for navigating +n03813946 a very large wine bottle holding the equivalent of 20 normal bottles of wine; used especially for display +n03814528 a band around the collar of a garment +n03814639 a brace worn to steady the neck +n03814727 an ornamental white cravat +n03814817 a kerchief worn around the neck +n03814906 jewelry consisting of a cord or chain (often bearing gems) worn about the neck as an ornament (especially by women) +n03815149 decoration worn about the neck (fur piece or tight necklace) as an ornament +n03815278 the line formed by the edge of a garment around the neck +n03815482 an article of apparel worn about the neck +n03815615 neckwear consisting of a long narrow piece of material worn (mostly by men) under a collar and tied in knot at the front +n03816005 articles of clothing worn about the neck +n03816136 a sharp pointed implement (usually steel) +n03816394 a slender pointer for indicating the reading on the scale of a measuring instrument +n03816530 small pliers with long thin jaws for fine work +n03816849 a creation created or assembled by needle and thread +n03817191 a piece of photographic film showing an image with light and shade or colors reversed +n03817331 the pole of a magnet that points toward the south when the magnet is suspended freely +n03817522 the terminal of a battery that is connected to the negative plate +n03817647 a loose dressing gown for women +n03818001 a stone tool from the Neolithic Age +n03818343 a lamp consisting of a small gas-discharge tube containing neon at low pressure; luminescence is produced by the action of currents at high frequencies that are wrapped a few turns around the tube +n03819047 a measuring instrument that uses a grid for measuring the altitude, direction, and velocity of movement of clouds +n03819336 furniture pieces made to fit close together +n03819448 device consisting of an artificial egg left in a nest to induce hens to lay their eggs in it +n03819595 an open fabric of string or rope or wire woven together at regular intervals +n03819994 a trap made of netting to catch fish or birds or insects +n03820154 game equipment consisting of a strip of netting dividing the playing area in tennis or badminton +n03820318 a goal lined with netting (as in soccer or hockey) +n03820728 (electronics) a system of interconnected electronic components or circuits +n03820950 a system of intersecting lines or channels +n03821145 atom bomb that produces lethal neutrons with less blast +n03821424 the central pillar of a circular staircase +n03821518 the post at the top or bottom of a flight of stairs; it supports the handrail +n03822171 the physical object that is the product of a newspaper publisher +n03822361 a reading room (in a library or club) where newspapers and other periodicals can be read +n03822504 an office in which news is processed by a newspaper or news agency or television or radio station +n03822656 a stall where newspapers and other periodicals are sold +n03822767 reflecting telescope in which the image is viewed through an eyepiece perpendicular to main axis +n03823111 the writing point of a pen +n03823216 an iron with considerable loft +n03823312 a rechargeable battery with a nickel cathode and a cadmium anode; often used in emergency systems because of its low discharge rate when not in use +n03823673 a storage battery having a nickel oxide cathode and an iron anode with an electrolyte of potassium hydroxide; each cell gives about 1.2 volts +n03823906 optical device that produces plane-polarized light +n03824197 a doorbell to be used at night +n03824284 a cloth cap worn in bed +n03824381 lingerie consisting of a loose dress designed to be worn in bed by women +n03824589 doorlock operated by a knob on the inside and a key on the outside +n03824713 light (as a candle or small bulb) that burns in a bedroom at night (as for children or invalids) +n03824999 nightclothes worn by men +n03825080 garments designed to be worn in bed +n03825271 a bowling pin of the type used in playing ninepins or (in England) skittles +n03825442 ball used to knock down ninepins +n03825673 a fine strong sheer silky fabric made of silk or rayon or nylon +n03825788 a flexible cap on a baby's feeding bottle or pacifier +n03825913 a rubber or plastic shield to protect the nipples of nursing women +n03826039 a face veil covering the lower part of the face (up to the eyes) worn by observant Muslim women +n03826186 a prefabricated hut of corrugated iron having a semicircular cross section +n03827420 rough brick masonry used to fill in the gaps in a wooden frame +n03827536 a device (such as a clapper or bell or horn) used to make a loud noise at a celebration +n03828020 a passenger car for passengers who want to avoid tobacco smoke +n03829340 computer storage that is not lost when the power is turned off +n03829857 loose-fitting single-breasted jacket +n03829954 a water wheel with buckets attached to the rim; used to raise water for transfer to an irrigation channel +n03831203 a canvas bag that is used to feed an animal (such as a horse); covers the muzzle and fastens at the top of the head +n03831382 a strap that is the part of a bridle that goes over the animal's nose +n03831757 a flute that is played by blowing through the nostrils (used in some Asian countries) +n03832144 a wheel located under the nose of an airplane that is part of the plane's landing gear +n03832673 a small compact portable computer +n03833907 ship whose motive power comes from the energy of a nuclear reactor +n03834040 (physics) any of several kinds of apparatus that maintain and control a nuclear reaction for the production of energy or artificial elements +n03834472 a rocket engine in which a nuclear reactor is used to heat a propellant +n03834604 a weapon of mass destruction whose explosive power derives from a nuclear reaction +n03835197 a painting of a naked human figure +n03835729 an embroidered rug made from a coarse Indian felt +n03835941 a long loose habit worn by nuns in a convent +n03836062 a child's room for a baby +n03836451 a fastener made by screwing a nut onto a threaded bolt +n03836602 a compound lever used to crack nuts open +n03836906 a synthetic fabric +n03836976 women's stockings made from a sheer material (nylon or rayon or silk) +n03837422 an implement used to propel or steer a boat +n03837606 a kiln for drying hops +n03837698 a building containing an oast (a kiln for drying hops); usually has a conical or pyramidal roof +n03837869 a stone pillar having a rectangular cross section tapering towards a pyramidal top +n03838024 the billiard ball that is intended to be the first ball struck by the cue ball +n03838298 the lens or system of lenses in a telescope or microscope that is nearest the object being viewed +n03838748 a bandage in which successive turns proceed obliquely up or down a limb +n03838899 a slender double-reed instrument; a woodwind with a conical bore and a double-reed mouthpiece +n03839172 an alto oboe; precursor of the English horn +n03839276 an oboe pitched a minor third lower than the ordinary oboe; used to perform baroque music +n03839424 lookout consisting of a dome-shaped observatory +n03839671 a building designed and equipped to observe astronomical phenomena +n03839795 an obstruction that stands in the way (and must be removed or surmounted or circumvented) +n03840327 a prosthesis used to close an opening (as to close an opening of the hard palate in cases of cleft palate) +n03840681 egg-shaped terra cotta wind instrument with a mouthpiece and finger holes +n03840823 a measuring instrument for measuring angles to a celestial body; similar to a sextant but with 45 degree calibration +n03841011 caliper having the points on its legs both curve in the same direction +n03841143 a meter that shows mileage traversed +n03841290 a circular or oval window; 17th or 18th century French architecture +n03841666 place of business where professional or clerical duties are performed +n03842012 a building containing offices where work is done +n03842156 furniture intended for use in an office +n03842276 a mess for the exclusive use of officers +n03842377 electronic equipment not in direct communication (or under the control of) the central processing unit +n03842585 a molding that (in section) has the shape of an S with the convex part above and the concave part below +n03842754 a pointed arch having an S-shape on both sides +n03842986 a meter for measuring electrical resistance in ohms +n03843092 oil paint containing pigment that is used by an artist +n03843316 a can with a long nozzle to apply oil to machinery +n03843438 cloth treated on one side with a drying oil or synthetic resin +n03843555 a filter that removes impurities from the oil used to lubricate an internal-combustion engine +n03843883 heater that burns oil (as kerosine) for heating or cooking +n03844045 a lamp that burns oil (as kerosine) for light +n03844233 paint in which a drying oil is the vehicle +n03844550 a pump that keeps a supply of oil on moving parts +n03844673 a refinery for petroleum +n03844815 a macintosh made from cotton fabric treated with oil and pigment to make it waterproof +n03844965 a thin film of oil floating on top of water (especially crude oil spilled from a ship) +n03845107 a whetstone for use with oil +n03845190 a cargo ship designed to carry crude oil in bulk +n03845990 necktie indicating the school the wearer attended +n03846100 a cloth of an olive-brown color used for military uniforms +n03846234 military uniform of the United States Army; made from cloth of a dull olive color +n03846431 a seated statue of the supreme god of ancient Greek mythology created for the temple at Olympia; the statue was 40 feet tall and rested on a base that was 12 feet high +n03846677 pan for cooking omelets +n03846772 an antenna that sends or receives signals equally in all directions +n03846970 a navigational system consisting of a network of radio beacons that provide aircraft with information about exact position and bearing +n03847471 a dome that is shaped like a bulb; characteristic of Russian and Byzantine church architecture +n03847823 a public marketplace where food and merchandise is sold +n03848033 an incomplete electrical circuit in which no current flows +n03848168 a wrench having parallel jaws at fixed separation (often on both ends of the handle) +n03848348 a hand tool used for opening sealed containers (bottles or cans) +n03848537 a furnace for making steel in which the steel is placed on a shallow hearth and flames of burning gas and hot air play over it +n03849275 a woodworking plane designed to cut rabbets +n03849412 rear gunsight having an open notch instead of a peephole or telescope +n03849679 ornamental work (such as embroidery or latticework) having a pattern of openings +n03849814 a building where musical dramas are performed +n03849943 a large cloak worn over evening clothes +n03850053 binocular microscope used in surgery to provide a clear view of small and inaccessible parts of the body (as in microsurgery) +n03850245 a room in a hospital equipped for the performance of surgical operations +n03850492 table on which the patient lies during a surgical operation +n03850613 medical instrument for examining the retina of the eye +n03851341 a device for producing or controlling light +n03851787 a disk coated with plastic that can store digital data as tiny pits etched in the surface; is read with a laser that scans the surface +n03852280 an instrument designed to aid vision +n03852544 a pyrometer that uses the color of the light emitted by a hot object +n03852688 an astronomical telescope designed to collect and record light from cosmic sources +n03853291 lowered area in front of a stage where an orchestra accompanies the performers +n03853924 an early bicycle with a very large front wheel and small back wheel +n03854065 wind instrument whose sound is produced by means of pipes arranged in sets supplied with air from a bellows and controlled from a large complex musical keyboard +n03854421 a sheer stiff muslin +n03854506 a self-luminous diode (it glows when an electrical field is applied to the electrodes) that does not require backlighting or diffusers +n03854722 a gallery occupied by a church organ +n03854815 the flues and stops on a pipe organ +n03855214 a fabric made of silk or a silklike fabric that resembles organdy +n03855333 a projecting bay window corbeled or cantilevered out from a wall +n03855464 a red or orange-red flag used as a standard by early French kings +n03855604 a gasket consisting of a flat ring of rubber or plastic; used to seal a joint against high pressure +n03855756 an acrylic fiber or the lightweight crease-resistant fabric made with Orlon yarns +n03855908 the fourth or lowest deck +n03856012 a public institution for the care of orphans +n03856335 a richly embroidered edging on an ecclesiastical vestment +n03856465 planetarium consisting of an apparatus that illustrates the relative positions and motions of bodies in the solar system by rotation and revolution of balls moved by wheelwork; sometimes incorporated in a clock +n03856728 a now obsolete picture pickup tube in a television camera; electrons emitted from a photoemissive surface in proportion to the intensity of the incident light are focused onto the target causing secondary emission of electrons +n03857026 a photographic film sensitive to green and blue and violet light +n03857156 heavier-than-air craft that is propelled by the flapping of wings +n03857291 an ophthalmoscope with a layer of water to neutralize the refraction of the cornea +n03857687 a device for making a record of the wave forms of fluctuating voltages or currents +n03857828 electronic equipment that provides visual images of varying electrical quantities +n03858085 any receptacle for the burial of human bones +n03858183 medical instrument consisting of a magnifying lens and light; used for examining the external ear (the auditory meatus and especially the tympanic membrane) +n03858418 thick cushion used as a seat +n03858533 a dungeon with the only entrance or exit being a trap door in the ceiling +n03858837 a wood or metal receptacle placed on your desk to hold your outgoing material +n03859000 internal-combustion engine that mounts at stern of small boat +n03859170 a motorboat with an outboard motor +n03859280 a building that is subordinate to and separate from a main building +n03859495 clothing for use outdoors +n03859608 the outlet of a river or drain or other source of water +n03859958 a set of clothing (with accessories) +n03860234 a shop that provides equipment for some specific purpose +n03860404 a small outbuilding with a bench having holes through which a user can defecate +n03861048 electronic or electromechanical equipment connected to a computer and used to transfer data out of the computer in the form of text, images, sounds, or other media +n03861271 a stabilizer for a canoe; spars attach to a shaped log or float parallel to the hull +n03861430 a seagoing canoe (as in South Pacific) with an outrigger to prevent it from upsetting +n03861596 caliper for measuring outside dimensions; points on its legs curve inward +n03861842 car mirror that reflects the view at side and behind car +n03862379 subsidiary defensive structure lying outside the main fortified area +n03862676 kitchen appliance used for baking or roasting +n03862862 a thermometer that registers the temperature inside an oven +n03863108 (usually plural) work clothing consisting of denim trousers (usually with a bib and shoulder straps) +n03863262 a loose protective coverall or smock worn over ordinary clothing for dirty work +n03863657 an additional protective coating (as of paint or varnish) +n03863783 a high gear used at high speeds to maintain the driving speed with less output power +n03863923 a garment worn over other garments +n03864139 a simple small knot (often used as part of other knots) +n03864356 projection that extends beyond or hangs over something else +n03864692 a projector operated by a speaker; projects the image over the speaker's head +n03865288 a shelf over a mantelpiece +n03865371 a small traveling bag to carry clothing and accessories for staying overnight +n03865557 bridge formed by the upper level of a crossing of two highways at different levels +n03865820 a manually operated device to correct the operation of an automatic device +n03865949 footwear that protects your shoes from water or snow or cold +n03866082 an outer skirt worn over another skirt +n03867854 a wooden framework bent in the shape of a U; its upper ends are attached to the horizontal yoke and the loop goes around the neck of an ox +n03868044 general term for an ancient and prestigious and privileged university (especially Oxford University or Cambridge University) +n03868242 a cart that is drawn by an ox +n03868324 an oval or round dormer window +n03868406 a low shoe laced over the instep +n03868643 a measuring instrument that measures the oxygen in arterial blood +n03868763 a blowtorch that burns oxyacetylene +n03868863 a breathing device that is placed over the mouth and nose; supplies oxygen from an attached storage tank +n03869838 a bar (as in a restaurant) that specializes in oysters prepared in different ways +n03869976 a workplace where oysters are bred and grown +n03870105 a high-performance car that leads a parade of competing cars through the pace lap and then pulls off the course +n03870290 an implanted electronic device that takes over the function of the natural cardiac pacemaker +n03870546 a convenient package or parcel (as of cigarettes or film) +n03870672 a bundle (especially one carried on the back) +n03870980 a cream that cleanses and tones the skin +n03871083 a wrapped container +n03871371 a store that sells alcoholic beverages for consumption elsewhere +n03871524 material used to make packages +n03871628 a small package or bundle +n03871724 a large crate in which goods are packed for shipment or storage +n03871860 a plant where livestock are slaughtered and processed and packed as meat products +n03872016 a building where foodstuffs are processed and packed +n03872167 a large needle used to sew up canvas packages +n03872273 a saddle for pack animals to which loads can be attached +n03873416 a short light oar used without an oarlock to propel a canoe or small boat +n03873699 a blade of a paddle wheel or water wheel +n03873848 small wooden bat with a flat surface; used for hitting balls in various games +n03873996 a wooden covering for the upper part of a paddlewheel +n03874138 a steam vessel propelled by paddle wheels +n03874293 a large wheel fitted with paddles and driven by an engine in order to propel a boat +n03874487 pen where racehorses are saddled and paraded before a race +n03874599 a detachable lock; has a hinged shackle that can be passed through the staple of a hasp or the links in a chain and then snapped shut +n03874823 a printer that prints one page at a time +n03875218 a substance used as a coating to protect or decorate a surface (especially a mixture of pigment suspended in a liquid); dries to form a hard coating +n03875806 a capsule filled with water-soluble dye used as a projectile in playing the game of paintball +n03875955 an air gun used in the game of paintball; designed to simulate a semiautomatic +n03876111 a box containing a collection of cubes or tubes of artists' paint +n03876231 a brush used as an applicator (to apply paint) +n03877351 a soft wool fabric with a colorful swirled pattern of curved shapes +n03877472 (usually plural) loose-fitting nightclothes worn for sleeping or lounging; have a jacket top and trousers +n03877674 a pair of loose trousers tied by a drawstring around the waist; worn by men and women in some Asian countries +n03877845 official residence of an exalted person (as a sovereign) +n03878066 a large and stately mansion +n03878211 a large ornate exhibition hall +n03878294 a closed litter carried on the shoulders of four bearers +n03878418 a stone tool from the Paleolithic age +n03878511 a public place in ancient Greece or Rome devoted to the training of wrestlers and other athletes +n03878674 board that provides a flat surface on which artists mix paints and the range of colors used +n03878828 a spatula used by artists for mixing or applying or scraping off oil paints +n03878963 fortification consisting of a strong fence made of stakes driven into the ground +n03879456 a hand tool with a flat blade used by potters for mixing and shaping clay +n03879705 one of the rounded armor plates at the armpits of a suit of armor +n03880032 cloak or mantle worn by men in ancient Rome +n03880129 (Roman Catholic Church) vestment consisting of a band encircling the shoulders with two lappets hanging in front and back +n03880323 shallow container made of metal +n03880531 cooking utensil consisting of a wide metal vessel +n03881305 turner for serving or turning pancakes +n03881404 photographic film sensitive to light of all colors (including red) +n03881534 a police cruiser +n03882611 a panel or section of panels in a wall or door +n03882960 the handle of a pan +n03883054 a button to push in order to summon help in case of an emergency +n03883385 a large basket (usually one of a pair) carried by a beast of burden or on by a person +n03883524 either of a pair of bags or boxes hung over the rear wheel of a vehicle (as a bicycle) +n03883664 a small pan or cup (usually of tin) +n03883773 a circular prison with cells distributed around a central surveillance station; proposed by Jeremy Bentham in 1791 +n03883944 an area where everything is visible +n03884397 a primitive wind instrument consisting of several parallel pipes bound together +n03884554 trousers worn in former times +n03884639 a large moving van (especially one used for moving furniture) +n03884778 (antiquity) a temple to all the gods +n03884926 a monument commemorating a nation's dead heroes +n03885028 short underpants for women or children (usually used in the plural) +n03885194 any fabric used to make trousers +n03885293 the leg of a pair of trousers +n03885410 mechanical device used to copy a figure or plan on a different scale +n03885535 a small storeroom for storing foods or wines +n03885669 a pair of pants and a matching jacket worn by women +n03885788 a woman's undergarment that combines a girdle and panties +n03885904 a woman's tights consisting of underpants and stockings +n03886053 an armored vehicle or tank +n03886641 a chain made of loops of colored paper; used to decorate a room +n03886762 a wire or plastic clip for holding sheets of paper together +n03886940 a cutting implement for cutting sheets of paper to the desired size +n03887185 a fastener for holding a sheet of paper in place +n03887330 a device for inserting sheets of paper into a printer or typewriter +n03887512 a mill where paper is manufactured +n03887697 a disposable towel made of absorbent paper +n03887899 a parabolic reflector for light radiation +n03888022 a concave reflector used to produce a parallel beam when the source is placed at its focus or to focus an incoming parallel beam +n03888257 rescue equipment consisting of a device that fills with air and retards your fall +n03888605 gymnastic apparatus consisting of two parallel wooden rods supported on uprights +n03888808 a closed circuit in which the current divides into two or more paths before recombining to complete the circuit +n03888998 an interface between a computer and a printer where the computer sends multiple bits of information to the printer simultaneously +n03889397 a stout straight knife used in Malaysia and Indonesia +n03889503 fortification consisting of a low wall +n03889626 a low wall along the edge of a roof or balcony +n03889726 parachute that will lift a person up into the air when it is towed by a motorboat or a car +n03889871 a handheld collapsible source of shade +n03890093 a small sharp knife used in paring fruits or vegetables +n03890233 a tall slender glass with a short stem in which parfait is served +n03890358 ornamental plasterwork +n03890514 computer that registers bets and divides the total amount bet among those who won +n03891051 a kind of heavy jacket (`windcheater' is a British term) +n03891251 a bench in a public park +n03891332 a coin-operated timer located next to a parking space; depositing money into it entitles you to park your car there for a specified length of time +n03891538 reception room in an inn or club where visitors can be received +n03892178 a floor made of parquetry +n03892425 a patterned wood inlay used to cover a floor +n03892557 an official residence provided by a church for its parson or vicar or rector +n03892728 a sturdy rectangular table with block legs at the four corners; the top and the legs are the same width +n03893935 a denture replacing one or more teeth in a dental arch +n03894051 a chamber in which particles can be made visible +n03894379 a vertical structure that divides or separates (as a wall divides one room from another) +n03894677 a bin for holding spare parts +n03894933 a telephone line serving two or more subscribers +n03895038 a wall erected on the line between two properties and shared by both owners +n03895170 a courtyard or portico in front of a building (especially a cathedral) +n03895866 a railcar where passengers ride +n03896103 a ship built to carry passengers +n03896233 a train that carries passengers +n03896419 a van that carries passengers +n03896526 a mounting for a picture using gummed tape +n03896628 a type of LCD display used for some portable computers; parallel wires run both vertically and horizontally and pixels are turned on when the wires intersecting at that pixel are both energized +n03896984 key that secures entrance everywhere +n03897130 an opening that resembles a window between two rooms (especially a shelved opening between a kitchen and dining room that is used to pass dishes) +n03897634 a serving cart for displaying pastry desserts to restaurant patrons +n03897943 a piece of cloth used as decoration or to mend or cover a hole +n03898129 a length of wire that has a plug at each end; used to make connections at a patchboard +n03898271 a heavy perfume made from the patchouli plant +n03898395 a flat pocket sewn to the outside of a garment +n03898633 a quilt made by sewing patches of different materials together +n03898787 a cigar-shaped log with rotary fins that measure the ship's speed +n03899100 a type of lift having a chain of open compartments that move continually in an endless loop so that (agile) passengers can step on or off at each floor +n03899612 a fine coating of oxide on the surface of a metal +n03899768 usually paved outdoor area adjoining a residence +n03899933 a bakery specializing in French pastry +n03900028 a scarf worn by Sikh men +n03900194 a vessel assigned to patrol an area +n03900301 a pan for cooking patties or pasties +n03900393 a setting with precious stones so closely set that no metal shows +n03900979 large and often sumptuous tent +n03901229 a machine for laying pavement +n03901338 (Middle Ages) a large heavy oblong shield protecting the whole body; originally carried but sometimes set up in permanent position +n03901750 (chess) the least powerful piece; moves only forward and captures only to the side; it can be promoted to a more powerful piece if it reaches the 8th rank +n03901974 a shop where loans are made with personal property as security +n03902125 a coin-operated telephone +n03902220 a removable circuit board for a personal computer; fits into a slot in the mother board +n03902482 a grove of peach trees +n03902756 a sailor's heavy woolen double-breasted jacket +n03903133 a stout lever with a sharp spike; used for handling logs +n03903290 an adornment worn on the chest or breast +n03903424 a lever that is operated with the foot +n03903733 snug trousers ending at the calves; worn by women and girls +n03903868 an architectural support or base (as for a column or statue) +n03904060 a table supported by a single central column +n03904183 street crossing where pedestrians have right of way; often marked in some way (especially with diagonal stripes) +n03904433 a tricycle (usually propelled by pedalling); used in the Orient for transporting passengers for hire +n03904657 a triangular gable between a horizontal entablature and a sloping roof +n03904782 measuring instrument for recording the number of steps taken in walking +n03904909 a device for peeling vegetables or fruits +n03905361 rear gunsight having an adjustable eyepiece with a small aperture through which the front sight and the target are aligned +n03905540 a wooden pin pushed or driven into a surface +n03905730 a holder attached to the gunwale of a boat that holds the oar in place and acts as a fulcrum for rowing +n03905947 regulator that can be turned to regulate the pitch of the strings of a stringed instrument +n03906106 a prosthesis that replaces a missing leg +n03906224 a board perforated with regularly spaced holes into which pegs can be fitted +n03906463 a bit with a bar mouthpiece that is designed to combine a curb and snaffle +n03906590 an acronym for pedestrian light control; a pedestrian crossing with traffic lights that are controlled by pedestrians +n03906789 a sleeveless cape that is lined or trimmed with fur +n03906894 measuring instrument for performing pelvimetry +n03906997 a writing implement with a point from which ink flows +n03907475 a penal institution where prisoners are exiled (often located on an island from which escape is difficult or impossible) +n03907654 an institution where persons are confined for punishment and to protect the public +n03907908 (ice hockey) an enclosed bench to the side of an ice-hockey rink for players who are serving time penalties +n03908111 a drawing executed with pen and ink +n03908204 a thin cylindrical pointed writing implement; a rod of marking substance encased in wood +n03908456 a cosmetic in a long thin stick; designed to be applied to a particular part of the face +n03908618 a box for holding pencils +n03908714 a rotary implement for sharpening the point on pencils +n03909020 an earring with a pendant ornament +n03909160 an apparatus consisting of an object mounted so that it swings freely under the influence of gravity +n03909406 a clock regulated by a pendulum +n03909516 (18th century) a watch with a balance wheel having a fake pendulum attached to it +n03909658 a bomb with about 30% explosive and a casing designed to penetrate hardened targets before the explosive detonates +n03911406 an implant that creates an artificial erection +n03911513 a correctional institution for those convicted of major crimes +n03911658 a small pocketknife; originally used to cut quill pens +n03911767 a small flashlight resembling a fountain pen +n03911866 a long flag; often tapering +n03912218 an inexpensive fipple flute +n03912821 an apartment located on the top floors of a building +n03913343 a thermionic tube having five electrodes +n03913930 a garment worn by women in ancient Greece; cloth caught at the shoulders and draped in folds to the waist +n03914106 a flared ruffle attached to the waistline of a dress or jacket or blouse +n03914337 a mill for grinding pepper +n03914438 a shaker with a perforated top for sprinkling ground pepper +n03914583 a nonlethal aerosol spray made with the pepper derivative oleoresin capiscum; used to cause temporary blindness and incapacitate an attacker; also used as a bear deterrent +n03914831 a fine closely woven cotton fabric +n03915118 a coffeepot in which boiling water ascends through a central tube and filters back down through a basket of ground coffee beans +n03915320 a detonator that explodes when struck +n03915437 a musical instrument in which the sound is produced by one object striking another +n03915900 a line of small holes for tearing at a particular place +n03916031 a toiletry that emits and diffuses a fragrant odor +n03916289 an establishment where perfumes are made +n03916385 store where perfumes are sold +n03916470 perfumes in general +n03916720 (computer science) electronic equipment connected by cable to the CPU of a computer +n03917048 an optical instrument that provides a view of an otherwise obstructed field +n03917198 a colonnade surrounding a building or enclosing a court +n03917327 a wig for men that was fashionable in the 17th and 18th centuries +n03917814 a fabric that has been chemically processed to resist wrinkles and hold its shape +n03918074 a machine that can continue to do work indefinitely without drawing energy from some external source; impossible under the law of conservation of energy +n03918480 a small digital computer based on a microprocessor and designed to be used by one person at a time +n03918737 a lightweight consumer electronic device that looks like a hand-held computer but instead performs specific tasks; can serve as a diary or a personal database or a telephone or an alarm clock etc. +n03919096 a military vehicle (usually armored) for transporting military personnel and their equipment +n03919289 a club-shaped hand tool for grinding and mixing substances in a mortar +n03919430 a heavy tool of stone or iron (usually with a flat base and a handle) that is used to grind and mix material (as grain or drugs or pigments) against a slab of stone +n03919808 regulator consisting of a small cock or faucet or valve for letting out air or releasing compression or draining +n03920288 a shallow dish used to culture bacteria +n03920384 gauze saturated with petrolatum +n03920641 a shop where pet animals can be purchased +n03920737 undergarment worn under a skirt +n03920867 long bench with backs; used in church by the congregation +n03923379 a small bottle that contains a drug (especially a sealed sterile container for injection by needle) +n03923564 a screw with a special head having crossed slots +n03923692 a screwdriver for use with Phillips screws +n03923918 a stylus that formerly made sound by following a groove in a phonograph record +n03924069 sound recording consisting of a disk with a continuous groove; used to reproduce music by rotating while a phonograph needle tracks in the groove +n03924407 a cathode that emits electrons when illuminated +n03924532 surgical instrument containing a laser for use in photocoagulation +n03924679 a copier that uses photographic methods of making copies +n03926148 equipment used by a photographer +n03926412 light-sensitive paper on which photograph can be printed +n03926876 measuring instrument for measuring the luminous intensity of a source by comparing it (visually or photoelectrically) with a standard source +n03927091 a photograph taken with the help of a microscope +n03927299 a duplicating machine that makes quick positive or negative copies directly on the surface of prepared paper +n03927539 a photocopy made on a Photostat machine +n03927792 pendulum consisting of an actual object allowed to rotate freely around a horizontal axis +n03928116 a keyboard instrument that is played by depressing keys that cause hammers to strike tuned strings and produce sounds +n03928589 action consisting of a system of levers that move a felt hammer to strike the strings when a key is depressed +n03928814 a bank of keys on a musical instrument +n03928994 thin steel wire of high tensile strength +n03929091 a small flute; pitched an octave above the standard flute +n03929202 a heavy iron tool with a wooden handle and a curved head that is pointed on both ends +n03929443 a thin sharp implement used for removing unwanted material +n03929660 a small thin device (of metal or plastic or ivory) used to pluck a stringed instrument +n03929855 a spiked helmet worn by German soldiers +n03930229 a boat serving as a picket +n03930313 a fence made of upright pickets +n03930431 a ship serving as a picket +n03930515 a barrel holding vinegar in which cucumbers are pickled +n03930630 a light truck with an open body and low sides and a tailboard +n03931044 a visual representation (of an object or scene or person or abstraction) produced on a surface +n03931765 a framework in which a picture is mounted +n03931885 a woman's dressy hat with a wide brim +n03931980 rail fixed to a wall for hanging pictures +n03932080 a large window with a single pane (usually overlooking a view) +n03932670 a separate part consisting of fabric +n03933391 lodging for occasional or secondary use +n03933933 a support for two adjacent bridge spans +n03934042 (architecture) a vertical supporting structure (as a portion of wall between two doors or windows) +n03934229 an arch supported on piers +n03934311 a large mirror between two windows +n03934565 a low table set below a pier glass +n03934656 a representation of the Virgin Mary mourning over the dead body of Jesus +n03934890 a measuring instrument for measuring high pressures +n03935116 mold consisting of a bed of sand in which pig iron is cast +n03935234 a farm where pigs are raised or kept +n03935335 a child's coin bank (often shaped like a pig) +n03935883 a rectangular column that usually projects about a third of its width from the wall to which it is attached +n03936269 a column of wood or steel or concrete that is driven into the ground to provide support for a structure +n03936466 a machine that drives piling into the ground +n03937543 a small bottle for holding pills +n03937835 a small round woman's hat +n03937931 a seat behind the rider of a horse or motorbike etc. +n03938037 a wooden instrument of punishment on a post with holes for the wrists and neck; offenders were locked in and so exposed to public scorn +n03938244 a cushion to support the head of a sleeping person +n03938401 a cast-iron or steel block for supporting a journal or bearing +n03938522 a handmade lace worked on a pillow with threads wound on bobbins; the pattern is marked out on the pillow by pins +n03938725 bed linen consisting of a decorative cover for a pillow +n03939062 a small bit that drills a first hole to guide a larger drill +n03939178 a boat to carry pilots to and from large ships +n03939281 small auxiliary gas burner that provides a flame to ignite a larger gas burner +n03939440 a thick blue cloth used to make overcoats and coats for sailors etc +n03939565 a locomotive that precedes a train to check the track +n03939677 an enclosed compartment from which a vessel can be navigated +n03939844 indicator consisting of a light to indicate whether power is on or a motor is in operation +n03940256 a small slender (often pointed) piece of wood or metal used to support or fasten or attach things +n03940894 flagpole used to mark the position of the hole on a golf green +n03941013 cylindrical tumblers consisting of two parts that are held in place by springs; when they are aligned with a key the bolt can be thrown +n03941231 plaything consisting of a container filled with toys and candy; suspended from a height for blindfolded children to break with sticks +n03941417 game equipment on which pinball is played +n03941586 spectacles clipped to the nose by a spring +n03941684 a hand tool for holding consisting of a compound lever for grasping +n03941887 a lever with a pointed projection that serves as a fulcrum; used to roll heavy wheels +n03942028 a variety of clip for holding pin curls +n03942600 a pen where stray animals are confined +n03942813 light hollow ball used in playing table tennis +n03942920 the head of a pin +n03943115 a gear with a small number of teeth designed to mesh with a larger wheel or rack +n03943266 (architecture) a slender upright spire at the top of a buttress of tower +n03943623 small puncture (as if made by a pin) +n03943714 a very thin stripe (especially a white stripe on a dark fabric) +n03943833 a fabric with very thin stripes +n03943920 a suit made from a fabric with very thin stripes +n03944024 a pin or bolt forming the pivot of a hinge +n03944138 a toy consisting of vanes of colored paper or plastic that is pinned to a stick and spins when it is pointed into the wind +n03944341 a wheel that has numerous pins that are set at right angles to its rim +n03945459 a small fipple flute that is played with the left hand while the right hand is free to beat a tabor +n03945615 a tubular wind instrument +n03945817 a small homemade bomb usually contained in a metal pipe +n03945928 cleaning implement consisting of a flexible tufted wire that is used to clean a pipe stem +n03946076 a hand tool for cutting pipe +n03946162 fitting consisting of threaded pieces of pipe for joining pipes together +n03947111 measuring instrument consisting of a graduated glass tube used to measure or transfer precise volumes of a liquid by drawing the liquid up into the tube +n03947343 a clamp for holding pipe that is to be cut or threaded +n03947466 adjustable wrench for gripping and turning a pipe; has two serrated jaws that are adjusted to grip the pipe +n03947798 tightly woven fabric with raised cords +n03947888 a ship that is manned by pirates +n03948242 a ski run densely packed with snow +n03948459 a firearm that is held and fired with one hand +n03948830 a handle (as of a gun or saw) shaped like the butt of a pistol +n03948950 mechanical device that has a plunging or thrusting motion +n03949145 seal consisting of a split metal ring that seals the gap between a piston and the cylinder wall +n03949317 connecting rod that moves or is moved by a piston +n03949761 (auto racing) an area at the side of a racetrack where the race cars are serviced and refueled +n03950228 an open vessel with a handle and a spout for pouring +n03950359 a long-handled hand tool with sharp widely spaced prongs for lifting and pitching hay +n03950537 a wedge used to loft the golf ball over obstacles +n03950647 a small pipe sounding a tone of standard frequency; used to establish the starting pitch for unaccompanied singing +n03950899 a lightweight hat worn in tropical countries for protection from the sun +n03951068 a metal spike with a hole for a rope; mountaineers drive it into ice or rock to use as a hold +n03951213 measuring instrument consisting of a combined Pitot tube and static tube that measures total and static pressure; used in aircraft to measure airspeed +n03951453 measuring instrument consisting of a right-angled tube with an open end that is directed in opposition to the flow of a fluid and used to measure the velocity of fluid flow +n03951800 a large two-handed saw formerly used to cut logs into planks; one man stood above the log and the other in a pit below +n03951971 axis consisting of a short shaft that supports something that turns +n03952150 a window that opens by pivoting either horizontally or vertically +n03952576 a shop where pizzas are made and sold +n03953020 an establishment (a factory or an assembly plant or retail store or warehouse etc.) where business is conducted, goods are made or stored or processed or where services are rendered +n03953416 any building where congregations gather for prayer +n03953901 a piece of cloth sewn under an opening +n03954393 a flat metal disk ready for stamping as a coin +n03954731 a carpenter's hand tool with an adjustable blade for smoothing or shaping wood +n03955296 a power tool for smoothing or shaping wood +n03955489 a seat on a commercial airliner +n03955809 an apparatus or model for representing the solar systems +n03955941 an optical device for projecting images of celestial bodies and other astronomical phenomena onto the inner surface of a hemispherical dome +n03956157 a building housing an instrument for projecting the positions of the planets onto a domed ceiling +n03956331 an outer gear that revolves about a central sun gear of an epicyclic train +n03956531 a bed of boards (without a mattress) +n03956623 (nautical) a covering or flooring constructed of planks (as on a ship) +n03956785 a notebook for recording appointments and things to be done, etc. +n03956922 buildings for carrying on industrial labor +n03957315 a decorative pot for house plants +n03957420 adhesive tape used in dressing wounds +n03957762 wallboard with a gypsum plaster core bonded to layers of paper or fiberboard; used instead of plaster or wallboard to make interior walls +n03957991 a trowel used to spread and smooth plaster +n03958227 a bag made of thin plastic material +n03958338 a bomb made of plastic explosive +n03958630 a laminate made by bonding plastic layers +n03958752 wrapping consisting of a very thin transparent sheet of plastic +n03959014 a metal breastplate that was worn under a coat of mail +n03959123 the front of man's dress shirt +n03959227 the ornamental front of a woman's bodice or shirt +n03959701 a metal sheathing of uniform thickness (such as the shield attached to an artillery piece to protect the gunners) +n03960374 a shallow receptacle for collection in church +n03960490 structural member consisting of a horizontal beam that provides bearing and anchorage +n03961394 the roller on a typewriter against which the keys strike +n03961630 work table of a machine tool +n03961711 a rack for holding plates to dry after they have been washed +n03961828 rail or narrow shelf fixed to a wall to display plates +n03961939 a raised horizontal surface +n03962525 any military structure or vehicle bearing weapons +n03962685 the combination of a particular computer and a particular operating system +n03962852 a bed without springs +n03962932 rocking chair on a stationary base +n03963028 a thin coating of metal deposited on a surface +n03963198 a large shallow dish used for serving food +n03963294 electronic equipment comprising the part of a tape recorder that reproduces the recorded material +n03963483 a box for a child's toys and personal things (especially at a boarding school) +n03963645 yard consisting of an outdoor area for children's play +n03964495 a portable enclosure in which babies may be left to play +n03964611 a sports outfit for women or children; usually consists of shorts and a blouse +n03965456 mercantile establishment consisting of a carefully landscaped complex of shops representing leading merchandisers; usually includes restaurants and a convenient parking area; a modern version of the traditional marketplace +n03965907 any of various types of fold formed by doubling fabric back upon itself and then pressing or stitching into shape +n03966206 an enclosed space in which the air pressure is higher than outside +n03966325 a measuring instrument for measuring changes in volume of a part or organ or whole body (usually resulting from fluctuations in the amount of blood it contains) +n03966582 a small thin metal plate held against the body and struck with a plexor in percussive examinations +n03966751 (medicine) a small hammer with a rubber head used in percussive examinations of the chest and in testing reflexes +n03966976 a gripping hand tool with two hinged arms and (usually) serrated jaws +n03967270 a light gym shoe with a rubber sole and a canvas top +n03967396 an instrument (usually driven by a computer) for drawing graphs or pictures +n03967562 a farm tool having one or more heavy blades to break the soil and cut a furrow prior to sowing +n03967942 blockage consisting of an object designed to fill a hole tightly +n03968293 an electrical device with two or three pins that is inserted in a socket to make an electrical connection +n03968479 a fuse with a thread that screws into a socket +n03968581 a hole into which a plug fits (especially a hole where water drains away) +n03968728 the metal bob of a plumb line +n03969510 a carpenter's level with a plumb line at right angles to it +n03970156 hand tool consisting of a stick with a rubber suction cup at one end; used to clean clogged drains +n03970363 men's baggy knickers hanging below the knees; formerly worn for sports (especially golf) +n03970546 a fabric with a nap that is longer and softer than velvet +n03971218 a laminate made of thin layers of wood +n03971321 a power drill powered by compressed air +n03971960 the junction between a p-type semiconductor and an n-type semiconductor +n03972146 a junction transistor having an n-type semiconductor between a p-type semiconductor that serves as an emitter and a p-type semiconductor that serves as a collector +n03972372 a cooking vessel designed to poach food (such as fish or eggs) +n03972524 a small pouch inside a garment for carrying small articles +n03973003 a small battleship built to conform with treaty limitations on tonnage and armament (from 1925 to 1930) +n03973285 a small comb suitable for carrying in a pocket +n03973402 a flap that covers the access to a pocket +n03973520 a handkerchief that is carried in a pocket +n03973628 a knife with a blade that folds into the handle; suitable for carrying in the pocket +n03973839 a watch that is carried in a small watch pocket +n03973945 a detachable container of fuel on an airplane +n03974070 plaything consisting of a pole with foot rests and a strong spring; propelled by jumping +n03974915 a lightweight photographic camera with an autofocus +n03975035 an arch with a pointed apex; characteristic of Gothic architecture +n03975657 a trowel used to fill and finish masonry joints with mortar or cement +n03975788 lace worked with a needle in a buttonhole stitch on a paper pattern +n03975926 fire iron consisting of a metal rod with a handle; used to stir a fire +n03976105 an optical device used to measure the rotation of the plane of vibration of polarized light +n03976268 (trade mark) a plastic film that can polarize a beam of light; often used in sunglasses to eliminate glare +n03976467 a camera that develops and produces a positive print within seconds +n03976657 a long (usually round) rod of wood or metal or plastic +n03977158 a long fiberglass sports implement used for pole vaulting +n03977266 a battle ax used in the Middle Ages; a long handled ax and a pick +n03977430 an ax used to slaughter cattle; has a hammer opposite the blade +n03977592 a boat used by harbor police +n03977966 van used by police to transport prisoners +n03978421 a temporary booth in a polling place which people enter to cast their votes +n03978575 wooden ball that is struck with mallets in playing polo +n03978686 a mallet used to strike the ball in polo +n03978815 a woman's dress with a tight bodice and an overskirt drawn back to reveal a colorful underskirt +n03978966 a shirt with short sleeves designed for comfort and casual wear +n03979377 any of a large class of synthetic fabrics +n03979492 a medical instrument that records several physiological processes simultaneously (e.g., pulse rate and blood pressure and respiration and perspiration) +n03980026 hairdressing consisting of a perfumed oil or ointment +n03980478 a gymnastic horse with a cylindrical body covered with leather and two upright handles (pommels) near the center; held upright by two steel supports, one at each end +n03980874 a blanket-like cloak with a hole in the center for the head +n03980986 a soft thin cloth woven from raw silk (or an imitation) +n03981094 a dagger with a slender blade +n03981340 the vestments and other insignia of a pontiff (especially a bishop) +n03981566 (nautical) a floating structure (as a flat-bottomed boat) that serves as a dock or to support a bridge +n03981760 a temporary bridge built over a series of pontoons +n03981924 a cart with an underslung axle and two seats +n03982232 ball used in playing pool +n03982331 a room with pool tables where pool is played +n03982430 game equipment consisting of a heavy table on which pool is played +n03982642 an exposed partial weather deck on the stern superstructure of a ship +n03982767 box for collecting alms, especially one in a church +n03982895 an establishment maintained at public expense in order to provide housing for the poor and homeless +n03983396 a bottle for holding soft drinks +n03983499 plaything consisting of a toy gun that makes a popping sound +n03983612 a ribbed fabric used in clothing and upholstery +n03983712 a container for cooking popcorn +n03983928 a mushroom-shaped valve that rises perpendicularly from its seat; commonly used in internal-combustion engines +n03984125 a small tent that is easy to carry and quick to set up +n03984234 ceramic ware made of a more or less translucent ceramic +n03984381 a structure attached to the exterior of a building often forming a covered entrance +n03984643 man's hat with a low, flat crown and a snap brim +n03984759 a shallow metal bowl (usually with a handle) +n03985069 a small light typewriter; usually with a case in which it can be carried +n03985232 a personal computer that can easily be carried by hand +n03985441 a circular saw that is portable and is operated with a hand grip +n03985881 gate consisting of an iron or wooden grating that hangs in the entry to a castle or fortified town; can be lowered to prevent passage +n03986071 canopy extending out from a building entrance to shelter those getting in and out of vehicles +n03986224 a carriage entrance passing through a building to an enclosed courtyard +n03986355 a large, flat, thin case for carrying loose papers or drawings or maps; usually leather +n03986562 a window in a ship or airplane +n03986704 a porch or entrance to a building consisting of a covered and often columned area +n03986857 a heavy curtain hung across a doorway +n03986949 a large travelling bag made of stiff leather +n03987266 a camera with a portrait lens +n03987376 a compound camera lens with a relatively high aperture +n03987674 the pole of a magnet that points toward the north when the magnet is suspended freely +n03987865 the terminal of a battery that is connected to the positive plate +n03987990 a tomograph that produces cross-sectional X-rays of metabolic processes in the body +n03988170 an upright consisting of a piece of timber or metal fixed firmly in an upright position +n03988758 meter for bulk mailings that imprints correct prepaid postage on pieces of mail and records the total charge +n03988926 a structure consisting of vertical beams (posts) supporting a horizontal beam (lintel) +n03989199 closed horse-drawn carriage with four wheels; formerly used to transport passengers and mail +n03989349 a small gate in the rear of a fort or castle +n03989447 a commissary on a United States Army post +n03989665 a shovel used to sink postholes +n03989777 wind instrument used by postilions of the 18th and 19th centuries +n03989898 an inn for exchanging post horses and accommodating riders +n03990474 metal or earthenware cooking vessel that is usually round and deep; often has a handle and lid +n03991062 a container in which plants are cultivated +n03991202 a bulbous stove in which wood or coal is burned +n03991321 something that seems impressive but in fact lacks substance +n03991443 resistors connected in series across a voltage source; used to obtain a desired fraction of the voltage +n03991646 a resistor with three terminals, the third being an adjustable center terminal; used to adjust voltages in radios and TV sets +n03991837 a measuring instrument for measuring direct current electromotive forces +n03992325 a jar of mixed flower petals and spices used as perfume +n03992436 a shard of pottery +n03992509 a horizontal rotating wheel holding the clay being shaped by a potter +n03992703 ceramic ware made from clay and baked in a kiln +n03992975 a pot that holds 2 quarts +n03993053 toilet consisting of a small seat used by young children +n03993180 a small or medium size container for holding or carrying things +n03993403 a medical dressing consisting of a soft heated mass of meal or clay that is spread on a cloth and applied to the skin to treat inflamed areas or improve circulation etc. +n03993703 a public enclosure for stray or unlicensed dogs +n03993878 trap consisting of an arrangement of nets directing fish into an enclosure +n03994008 any of various cosmetic or medical preparations dispensed in the form of a pulverized powder +n03994297 ammunition consisting of gunpowder and bullets for muskets +n03994417 a substance such that one to three tablespoons dissolved in a glass of warm water is a homemade emetic +n03994614 container for carrying gunpowder; made of the hollow horn of an animal +n03994757 keg (usually made of metal) for gunpowder or blasting powder +n03995018 a brake on an automobile that magnifies a small force applied to the brake pedal into a proportionately larger force applied to slow or stop the vehicle +n03995265 a cord to conduct power to an electrical appliance +n03995372 a power tool for drilling holes into hard materials +n03995535 cable used to distribute electricity +n03995661 a loom operated mechanically +n03995856 a lawn mower powered by a gasoline motor +n03996004 a device for converting a power supply to a voltage required by particular equipment +n03996145 a power tool for cutting wood +n03996416 a machine for excavating +n03996849 automotive steering where engineer power amplifies the torque applied to the steering wheel +n03997274 a device that transfers power from an engine (as in a tractor or other motor vehicle) to another piece of equipment (as to a pump or jackhammer) +n03997484 a tool driven by a motor +n03997875 the tent of an ancient Roman general +n03998194 a small rug used by Muslims during their devotions +n03998333 (Judaism) a shawl with a ritually knotted fringe at each corner; worn by Jews at morning prayer +n03998673 removes dust particles from gases by electrostatic precipitation +n03999064 a prefabricated structure +n03999160 building reserved for the officiating clergy +n03999621 room in which a monarch or other great person receives guests, assemblies, etc. +n03999992 any machine that exerts pressure to form or shape or cut materials or extract liquids or compress solids +n04000311 a machine used for printing +n04000480 clamp to prevent wooden rackets from warping when not in use +n04000592 box reserved for reporters (as at a sports event) +n04000716 an area (sometimes in a balcony) set aside for reporters (especially in a legislative hall) +n04000998 the greatest amount of sail that a ship can carry safely +n04001132 cabin consisting of the pressurized section of an aircraft or spacecraft +n04001265 autoclave for cooking at temperatures above the boiling point of water +n04001397 a dome-shaped building that is pressurized +n04001499 gauge for measuring and indicating fluid pressure +n04001661 a nuclear reactor that uses water as a coolant and moderator; the steam produced can drive a steam turbine +n04001845 protective garment consisting of an inflatable suit for space or high altitude flying +n04002262 a sharp metal spike to hold a candle +n04002371 low bench for kneeling on +n04002629 coil forming the part of an electrical circuit such that changing current in it induces a current in a neighboring circuit +n04003241 a portable paraffin cooking stove; used by campers +n04003359 a man's double-breasted frock coat +n04003856 a fabric with a dyed pattern pressed onto it (usually by engraved rollers) +n04004099 a buffer that stores data until the printer is ready +n04004210 computer circuit consisting of an electronic sub-assembly; copper conductors are laminated on an insulating board or card and circuit components are inserted into holes and dip soldered +n04004475 a machine that prints +n04004767 (computer science) an output device that prints the results of data processing +n04004990 a cable between a computer and a printer +n04005197 religious residence in a monastery governed by a prior or a convent governed by a prioress +n04005630 a correctional institution where persons are confined while on trial or for punishment +n04005912 a camp for prisoners of war +n04006067 a privately owned warship commissioned to prey on the commercial shipping or warships of an enemy nation +n04006227 a telephone line serving a single subscriber +n04006330 hedge of privet plants +n04006411 a flexible slender surgical instrument with a blunt end that is used to explore wounds or body cavities +n04007415 an endoscope for examining the rectum +n04007664 a pointed instrument that is used to prod into a state of motion +n04008385 mechanical system in a factory whereby an article is conveyed through sites at which successive operations are performed on it +n04008634 a weapon that is forcibly thrown or projected at a targets but is not self-propelled +n04009552 an optical instrument that projects an enlarged image onto a screen +n04009801 an optical device for projecting a beam of light +n04009923 a rope fitted with a hook and used for towing a gun carriage +n04010057 a knot in the rope used to drag a gun carriage +n04010779 a device that displays words for people to read +n04010927 a pointed projection +n04011827 a mechanical device that rotates to push against air or water +n04012084 an airplane that is driven by a propeller +n04012482 an airplane with an external propeller that is driven by a turbojet engine +n04012665 counter tube whose output pulse is proportional to number of ions produced +n04013060 a system that provides a propelling or driving force +n04013176 the wall that separates the stage from the auditorium in a modern theater +n04013600 the arch over the opening in the proscenium wall +n04013729 corrective consisting of a replacement for a part of the body +n04014297 a covering that is intend to protect from damage or injury +n04015204 clothing that is intended to protect the wearer from injury +n04015786 a collider that collides beams of protons and antiprotons +n04015908 drafting instrument used to draw or measure angles +n04016240 a long-handled pruning saw with a curved blade at the end and sometimes a clipper; used to prune small trees +n04016479 a knife with a curved or hooked blade +n04016576 a handsaw used for pruning trees +n04016684 shears with strong blades used for light pruning of woody plants +n04016846 an ancient stringed instrument similar to the lyre or zither but having a trapezoidal sounding board under the strings +n04017571 a hygrometer consisting of a dry-bulb thermometer and a wet-bulb thermometer; their difference indicates the dryness of the surrounding air +n04017807 a small fast unarmored and lightly armed torpedo boat; P(atrol) T(orpedo) boat +n04018155 an electronic amplification system used as a communication system in public areas +n04018399 tavern consisting of a building with a bar and public rooms; often provides light meals +n04018667 a toilet that is available to the public +n04019101 conveyance for passengers or mail or freight +n04019335 structures (such as highways or schools or bridges or docks) constructed at government expense for public use +n04019541 a vulcanized rubber disk 3 inches in diameter that is used instead of a ball in ice hockey +n04019696 a device used for pulling something +n04019881 a device (as a decorative loop of cord or fabric) for holding or drawing something back +n04020087 a chain (usually with a handle at the end) that is pulled in order to operate some mechanism (e.g. to flush a toilet) +n04020298 a simple machine consisting of a wheel with a groove in which a rope can run to change the direction or point of application of a force applied to the rope +n04020744 designated paved area beside a main road where cars can stop temporarily +n04020912 luxurious passenger car; for day or night travel +n04021028 a sweater that is put on by pulling it over the head +n04021164 cleaning implement consisting of an oily rag attached by a cord to a weight; is pulled through the barrel of a rifle or handgun to clean it +n04021362 an electronic counter that counts the number of electric pulses +n04021503 a generator of single or multiple voltage pulses; usually adjustable for pulse rate +n04021704 a circuit that times pulses +n04021798 a mechanical device that moves fluid or gas by pressure or suction +n04022332 a low-cut shoe without fastenings +n04022434 action mechanism in a modern rifle or shotgun; a back and forward motion of a sliding lever ejects the empty shell case and cocks the firearm and loads a new round +n04022708 a house where pumps (e.g. to irrigate) are installed and operated +n04022866 a pump house at a spa where medicinal waters are pumped and where patrons gather +n04023021 a type of pliers +n04023119 an enclosure in the middle of a ship's hold that protects the ship's pumps +n04023249 a tool for making holes or indentations +n04023422 a small board full of holes; each hole contains a slip of paper with symbols printed on it; a gambler pays a small sum for the privilege of pushing out a slip in the hope of obtaining one that entitles him to a prize +n04023695 a large bowl for serving beverages; usually with a ladle +n04023962 an inflated ball or bag that is suspended and punched for training in boxing +n04024137 punch consisting of pliers for perforating paper or leather +n04024274 a power driven press used to shape metal parts +n04024862 a small light basket used as a measure for fruits +n04024983 an open flat-bottomed boat used in shallow waters and propelled by a long pole +n04025508 a wedge-shaped tent; usually without a floor or windows +n04025633 a screen used in India to separate women from men or strangers +n04026053 an apparatus for removing impurities +n04026180 a basic knitting stitch +n04026417 a small bag for carrying money +n04026813 a bicycle that must be pedaled +n04026918 a wide broom that is pushed ahead of the sweeper +n04027023 an electrical switch operated by pressing +n04027367 a radio receiver that can be tuned by pressing buttons +n04027706 a sandal attached to the foot by a thong over the toes +n04027820 a small gasoline engine (as on motor boat) +n04027935 a strip of cloth wound around the leg to form legging; used by soldiers in World War I +n04028074 the iron normally used on the putting green +n04028221 a spatula used to mix or apply putty +n04028315 a game that tests your ingenuity +n04028581 a large vertical steel tower supporting high-tension power lines +n04028764 a tower for guiding pilots or marking the turning point in a race +n04029416 a large tent shaped like a pyramid; can hold half a dozen people +n04029647 a design produced by pyrography +n04029734 a thermometer designed to measure high temperatures +n04029913 a pyrometer consisting of a series of cones that melt at different temperatures +n04030054 a thermostat that operates at very high temperatures +n04030161 any receptacle in which wafers for the Eucharist are kept +n04030274 a chest in which coins from the mint are held to await assay +n04030414 a small box used by ancient Greeks to hold medicines +n04030518 a rectangular area surrounded on all sides by buildings +n04030846 a measuring instrument for measuring altitude of heavenly bodies +n04030965 a stereophonic sound recording or reproducing system using four separate channels +n04031884 living accommodations (especially those assigned to military personnel) +n04032509 a long stout staff used as a weapon +n04032603 a stamp mill for stamping quartz +n04032936 a mercury-vapor lamp that is enclosed in a quartz container instead of a glass container +n04033287 (chess) the most powerful piece +n04033425 one of four face cards in a deck bearing a picture of a queen +n04033557 vertical tie post in a roof truss +n04033801 a primitive stone mill for grinding corn by hand +n04033901 pen made from a bird's feather +n04033995 bedding made of two layers of cloth filled with stuffing and stitched together +n04034262 a bedspread constructed like a thin quilt +n04034367 a material used for making a quilt, or a quilted fabric +n04035231 calculator consisting of a cord with attached cords; used by ancient Peruvians for calculating and keeping records +n04035634 a molding having a small groove in it +n04035748 whip with a leather thong at the end +n04035836 case for holding arrows +n04035912 the keystone of an arch +n04036155 game equipment consisting of a ring of iron or circle of rope used in playing the game of quoits +n04036303 the standard typewriter keyboard; the keys for Q, W, E, R, T, and Y are the first six from the left on the top row of letter keys +n04036776 a rectangular groove made to hold two pieces together +n04036963 a joint formed by fitting together two rabbeted boards +n04037076 an indoor TV antenna; consists of two extendible rods that form a V +n04037220 a hutch for rabbits +n04037298 a small sloop having the keep of a knockabout but with finer lines and carrying more sail +n04037443 a fast car that competes in races +n04037873 a canal for a current of water +n04037964 a boat propelled by oarsmen and designed for racing +n04038231 a light narrow racing boat for two or more oarsmen +n04038338 a shell for a single oarsman +n04038440 a support for displaying various articles +n04038727 framework for holding objects +n04039041 an instrument of torture that stretches or disjoints or mutilates victims +n04039209 a wheel gear (the pinion) meshes with a toothed rack; converts rotary to reciprocating motion (and vice versa) +n04039381 a sports implement (usually consisting of a handle and an oval frame with a tightly interlaced network of strings) used to strike a ball (or shuttlecock) in various games +n04039742 the ball used in playing the game of racquetball +n04039848 measuring instrument in which the echo of a pulse of microwave radiation is used to detect and locate distant objects +n04040247 pneumatic tire that has radial-ply casing +n04040373 an internal-combustion engine having cylinders arranged radially around a central crankcase +n04040540 a pyrometer for estimating the temperature of distant sources of heat; radiation is focussed on a thermojunction connected in circuit with a galvanometer +n04040759 a mechanism consisting of a metal honeycomb through which hot fluids circulate; heat is transferred from the fluid through the honeycomb to the airstream that is created either by the motion of the vehicle or by a fan +n04041069 heater consisting of a series of pipes for circulating steam or hot water to heat rooms or buildings +n04041243 cap on the opening in the top of a radiator through which a coolant liquid can be added +n04041408 a flexible hose between the radiator and the engine block +n04041544 a communication system based on broadcasting electromagnetic waves +n04041747 omnidirectional antenna comprising the part of a radio receiver by means of which radio signals are received +n04042076 a chassis for a radio receiver +n04042204 a direction finder that gives a bearing by determining the direction of incoming radio signals +n04042358 a photographic image produced on a radiosensitive surface by radiation other than visible light (especially by X-rays or gamma rays) +n04042632 radio telescope that uses interference patterns from two antennas instead of a parabolic antenna +n04042795 a two-way radio communication system (usually microwave); part of a more extensive telecommunication network +n04042985 meter to detect and measure radiant energy (electromagnetic or acoustic) +n04043168 radiometer that is extremely sensitive +n04043411 electronic equipment consisting of a combination of a radio receiver and a record player +n04043733 an electronic receiver that detects and demodulates and amplifies transmitted signals +n04044307 the use of radio to send telegraphic messages (usually by Morse code) +n04044498 a telephone that communicates by radio waves rather than along cables +n04044716 astronomical telescope that picks up electromagnetic radiations in the radio-frequency range from extraterrestrial sources +n04044955 equipment used to treat diseases with x-rays or radioactivity +n04045085 transmitter that is the part of a radio system that transmits signals +n04045255 a housing for a radar antenna; transparent to radio waves +n04045397 a flat float (usually made of logs or planks) that can be used for transport or as a platform for swimmers +n04045644 one of several parallel sloping beams that support a roof +n04045787 a foundation (usually on soft ground) consisting of an extended layer of reinforced concrete +n04045941 a small piece of cloth or paper +n04046091 a bag in which rags are kept +n04046277 a garment (coat or sweater) that has raglan sleeves +n04046400 a sleeve that extends in one piece to the neckline of a coat or sweater with seams from the armhole to the neck +n04046590 a horizontal bar (usually of wood or metal) +n04046974 a fence (usually made of split logs laid across each other at an angle) +n04047139 a railroad depot in a theater of operations where military supplies are unloaded for distribution +n04047401 a barrier consisting of a horizontal bar and supports +n04047733 material for making rails or rails collectively +n04047834 a bed on which railroad track is laid +n04048441 a tunnel through which the railroad track runs +n04049303 a barrel used as a cistern to hold rainwater +n04049405 a water-resistant coat +n04049585 gauge consisting of an instrument to measure the quantity of precipitation +n04049753 a percussion instrument that is made from a dried cactus branch that is hollowed out and filled with small pebbles and capped at both ends; makes the sound of falling rain when tilted; origin was in Chile where tribesmen used it in ceremonies to bring rain +n04050066 a long-handled tool with a row of teeth at its head; used to move leaves or loosen soil +n04050313 the handle of a rake +n04050600 (computer science) a virtual drive that is created by setting aside part of the random-access memory to use as if it were a group of sectors +n04050933 a small fireproof dish used for baking and serving individual portions +n04051269 a simple type of jet engine; must be launched at high speed +n04051439 a tool for driving something with force +n04051549 an inclined surface connecting two levels +n04051705 an arch whose support is higher on one side than on the other +n04051825 an embankment built around a space for defensive purposes +n04052235 a rod used to ram the charge into a muzzle-loading firearm +n04052346 a rod used to clean the barrel of a firearm +n04052442 farm consisting of a large tract of land along with facilities needed to raise livestock (especially cattle) +n04052658 a one story house with a low pitched roof +n04052757 the most common computer memory which can be used by programs to perform necessary tasks while the computer is on; an integrated circuit memory chip allows information to be stored or accessed in any order and all storage locations are equally accessible +n04053508 a measuring instrument (acoustic or optical or electronic) for finding the distance of an object +n04053677 exhaust hood over a kitchen range +n04053767 surveying instrument consisting of a straight rod painted in bands of alternate red and white each one foot wide; used for sightings by surveyors +n04054361 a straight sword with a narrow blade and two edges +n04054566 (plural) rare collector's items +n04054670 a coarse file with sharp pointed projections +n04055180 mechanical device consisting of a toothed wheel or rack engaged with a pawl that permits it to move in only one direction +n04055447 toothed wheel held in place by a pawl or detent and turned by a lever +n04055700 a tavern below street level featuring beer; originally a German restaurant in the basement of city hall +n04055861 (nautical) a small horizontal rope between the shrouds of a sailing ship; they form a ladder for climbing aloft +n04056073 a thin round file shaped like the tail of a rat +n04056180 a switch made from the stems of the rattan palms +n04056413 a trap for catching rats +n04056932 a synthetic silklike fabric +n04057047 edge tool used in shaving +n04057215 a blade that has very sharp edge +n04057435 a jet or rocket engine based on a form of aerodynamic propulsion in which the vehicle emits a high-speed stream +n04057673 a turbine with blades arranged to develop torque from gradual decrease of steam pressure from inlet to exhaust +n04057846 an electrical device used to introduce reactance into a circuit +n04057981 a lamp that provides light for reading +n04058096 a room set aside for reading +n04058239 (computer science) memory whose contents can be accessed and read but cannot be changed +n04058486 a memory chip providing read-only memory +n04058594 an electronic device the displays information is a visual form +n04058721 (computer science) a tiny electromagnetic coil and metal pole used to write and read magnetic patterns on a disk +n04059157 ready-made clothing +n04059298 the main memory in a virtual memory system +n04059399 a drill that is used to shape or enlarge holes +n04059516 a squeezer with a conical ridged center that is used for squeezing juice from citrus fruit +n04059947 car mirror that reflects the view out of the rear window +n04060198 an alcohol thermometer calibrated in degrees Reaumur +n04060448 a long woolen or linen scarf covering the head and shoulders (also used as a sling for holding a baby); traditionally worn by Latin-American women +n04060647 set that receives radio or tv signals +n04060904 a container that is used to put or keep things in +n04061681 a counter (as in a hotel) where guests are received +n04061793 a room for receiving and entertaining visitors (as in a private house or hotel) +n04061969 an enclosure that is set back or indented +n04062179 an internal-combustion engine in which the crankshaft is turned by pistons moving up and down in cylinders +n04062428 an armchair whose back can be lowered and foot can be raised to allow the sitter to recline in it +n04062644 a military airplane used to gain information about an enemy +n04062807 fast armored military vehicle with four-wheel drive and open top +n04063154 an automatic mechanical device on a record player that causes new records to be played without manual intervention +n04063373 equipment for making records +n04063868 a storage device on which information (sounds or images) have been recorded +n04064213 audio system for recoding sound +n04064401 machine in which rotating records cause a stylus to vibrate and the vibrations are amplified acoustically or electronically +n04064747 a sleeve for storing a phonograph record +n04064862 a hospital room for the care of patients immediately after surgery +n04065272 a motorized wheeled vehicle used for camping or other recreational activities +n04065464 a room equipped for informal entertaining +n04065789 a bin for depositing things to be recycled +n04065909 a plant for reprocessing used or abandoned materials +n04066023 (British informal) a provincial British university of relatively recent founding; distinguished from Oxford University and Cambridge University +n04066270 a strip of red carpeting laid down for dignitaries to walk on +n04066388 an entrenched stronghold or refuge +n04066476 (military) a temporary or supplementary fortification; typically square or polygonal without flanking defenses +n04066767 gearing that reduces an input speed to a slower output speed +n04067143 organ pipe with a vibrating reed +n04067231 an organ stop with the tone of a reed instrument +n04067353 a square knot used in a reef line +n04067472 winder consisting of a revolving spool with a handle; attached to a fishing rod +n04067658 a roll of photographic film holding a series of frames to be projected by a movie projector +n04067818 a communal dining-hall (usually in a monastery) +n04067921 a long narrow dining table supported by a stretcher between two trestles +n04068441 an industrial plant for purifying a crude substance +n04068601 optical telescope consisting of a large concave mirror that produces an image that is magnified by the eyepiece +n04069166 a meter that measures the reflectance of a surface +n04069276 device that reflects radiation +n04069434 camera that allows the photographer to view and focus the exact scene being photographed +n04069582 condenser such that vapor over a boiling liquid is condensed and flows back into the vessel to prevent its contents from boiling dry +n04069777 correctional institution for the detention and discipline and training of young or first offenders +n04070003 an apparatus that reforms the molecular structure of hydrocarbons to produce richer fuel +n04070207 optical telescope that has a large convex lens that produces an image that is viewed through the eyepiece +n04070415 measuring instrument for measuring the refractive index of a substance +n04070545 a cooling system for chilling or freezing (usually for preservative purposes) +n04070727 white goods in which food can be stored at low temperatures +n04070964 a freight car that is equipped with refrigeration system +n04071102 a shelter from danger or hardship +n04071263 paraphernalia indicative of royalty (or other high office) +n04071393 the military uniform and insignia of a regiment +n04072193 any of various controls or devices for regulating or controlling fluid flow, pressure, temperature, etc. +n04072551 one of a pair of long straps (usually connected to the bit or the headpiece) used to control a horse +n04072960 electrical device such that current flowing through it in one circuit can switch on and off a current in a second circuit +n04073425 a device that when pressed will release part of a mechanism +n04073948 residence that is a place of religious seclusion (such as a monastery) +n04074185 a container where religious relics are stored or displayed (especially relics of saints) +n04074963 a device that can be used to control a machine or apparatus from a distance +n04075291 a terminal connected to a computer by a data link +n04075468 a hard disk that can be removed from the disk drive; removal prevents unauthorized use +n04075715 a coat of stucco applied to a masonry wall +n04075813 a fabric with prominent rounded crosswise ribs +n04075916 a shop specializing in repairs and maintenance +n04076052 (electronics) electronic device that amplifies a signal before transmitting it again +n04076284 a firearm that can fire several rounds without reloading +n04076713 a burial vault (usually for some famous person) +n04077430 an audio system that can reproduce and amplify signals to produce sound +n04077594 cannon that provides plate armor for the upper arm +n04077734 equipment used to rescue passengers in case of emergency +n04077889 a center where research is done +n04078002 a network of fine lines used by astronomers as a reference for measurements on star photographs +n04078574 tank used for collecting and storing a liquid (as water or oil) +n04078955 device for resetting instruments or controls +n04079106 a push button that you press to activate the reset mechanism +n04079244 the official house or establishment of an important person (as a sovereign or president) +n04079603 pyrometer that measures high temperatures by the resistance in a heated wire +n04079933 an electrical device that resists the flow of electrical current +n04080138 any system that resonates +n04080454 a hollow chamber whose dimensions allow the resonant oscillation of electromagnetic or acoustic waves +n04080705 a fashionable hotel usually in a resort area +n04080833 a breathing device for administering long-term artificial respiration +n04081281 a building where people go to eat +n04081699 a building used for shelter by travelers (especially in areas where there are no hotels) +n04081844 a device that retards something's motion +n04082344 a breathing apparatus used for resuscitation by forcing oxygen into the lungs of a person who has undergone asphyxia or arrest of respiration +n04082562 a dental appliance that holds teeth (or a prosthesis) in position after orthodontic treatment +n04082710 a wall that is built to resist lateral pressure (especially a wall built to prevent the advance of a mass of earth) +n04082886 a network of fine lines, dots, cross hairs, or wires in the focal plane of the eyepiece of an optical instrument +n04083113 an arrangement resembling a net or network +n04083309 a woman's drawstring handbag; usually made of net or beading or brocade; used in 18th and 19th centuries +n04083649 a vessel where substances are distilled or decomposed by heat +n04083800 surgical instrument that holds back the edges of a surgical incision +n04084517 the key on electric typewriters or computer keyboards that causes a carriage return and a line feed +n04084682 a furnace in which the material that is being treated is heated indirectly by flames that are directed at the roof and walls of the furnace +n04084889 a lapel on a woman's garment; turned back to show the reverse side +n04085017 the gears by which the motion of a machine can be reversed +n04085574 a garment (especially a coat) that can be worn inside out (with either side of the cloth showing) +n04085873 a facing (usually masonry) that supports an embankment +n04086066 a barrier against explosives +n04086273 a pistol with a revolving cylinder (usually having six chambers for bullets) +n04086446 a door consisting of four orthogonal partitions that rotate about a central pivot; a door designed to equalize the air pressure in tall buildings +n04086663 an instrument for measuring the flow of liquids (especially arterial blood) +n04086794 resistor for regulating current +n04086937 medical instrument consisting of a mirror mounted at an angle on a rod; used to examine the nasal passages (through the nasopharynx) +n04087126 support resembling the rib of an animal +n04087432 a ribbon used as a decoration +n04087709 vault that resembles a groined vault but has ribbed arches +n04087826 a framework of ribs +n04088229 building complex in a continuous row along a road +n04088343 a type of pliers +n04088441 a kitchen utensil used for ricing soft foods by extruding them through small holes +n04088696 a coarse sieve (as for gravel) +n04088797 a mechanical device that you ride for amusement or excitement +n04089152 a beam laid along the edge where two sloping sides of a roof meet at the top; provides an attachment for the upper ends of rafters +n04089376 either of a pair of lifelines running alongside the bowsprit of a ship +n04089666 a boot without laces that is worn for riding horses; part of a riding habit +n04089836 a short whip with a thong at the end and a handle for opening gates +n04089976 a power mower you can ride on +n04090263 a shoulder firearm with a long barrel and a rifled bore +n04090548 a bullet designed to be fired from a rifle; no longer made spherical in shape +n04090781 a grenade that is thrown from a launching device attached to the barrel of a rifle +n04091097 gear (including necessary machinery) for a particular enterprise +n04091466 a long slender pointed sable brush used by artists +n04091584 a sailing vessel with a specified rig +n04091693 gear consisting of ropes etc. supporting a ship's masts and sails +n04092168 a person's costume (especially if bizarre) +n04093157 a small ring +n04093223 gymnastic apparatus consisting of a pair of heavy metal circles (usually covered with leather) suspended by ropes; used for gymnastic exercises +n04093625 building that contains a surface for ice skating or roller skating +n04093775 a firearm designed to disperse rioters rather than to inflict serious injury or death +n04093915 a cord that is pulled to open a parachute from its pack during a descent +n04094060 a cord that is pulled to open the gasbag of a balloon wide enough to release gas and so causes the balloon to descend +n04094250 a steel lever with one end formed into a ripping chisel and the other a gooseneck with a claw for pulling nails +n04094438 a long chisel with a slightly bent cutting end; used for heavy prying or cleaning mortises +n04094608 a handsaw for cutting with the grain of the wood +n04094720 structural member consisting of the vertical part of a stair or step +n04094859 a vertical pipe in a building +n04095109 an ostentatiously elegant hotel +n04095210 a boat used on rivers or to ply a river +n04095342 heavy pin having a head at one end and the other end being hammered flat after being passed through holes in the pieces that are fastened together +n04095577 a machine for driving rivets +n04095938 metal tweezers used by marijuana smokers to hold a roach +n04096066 an open way (generally public) for travel or transportation +n04096733 a bed supporting a road +n04096848 a barrier set up by police to stop traffic on a street or road in order to catch a fugitive or inspect traffic etc. +n04097085 an inn (usually outside city limits on a main road) providing meals and liquor and dancing and (sometimes) gambling +n04097373 an open automobile having a front seat and a rumble seat +n04097622 a road (especially that part of a road) over which vehicles travel +n04097760 a special cooking pan for roasting +n04097866 any loose flowing garment +n04098169 equipment used in robotics +n04098260 optical device that produces plane-polarized ultraviolet light +n04098399 a drill bit that has hardened rotating rollers +n04098513 a curved support that permits the supported object to rock to and fro +n04098795 a trough that can be rocked back and forth; used by gold miners to shake auriferous earth in water in order to separate the gold +n04099003 a lever pivoted at the center; used especially to push a valve down in an internal-combustion engine +n04099175 a jet engine containing its own propellant and driven by reaction propulsion +n04099429 any vehicle self-propelled by a rocket engine +n04099969 a chair mounted on rockers +n04100174 a long thin implement made of metal or wood +n04100519 an enclosure for cattle that have been rounded up +n04101375 photographic film rolled up inside a container to protect it from light +n04101497 a cylinder that revolves +n04101701 a small wheel without spokes (as on a roller skate) +n04101860 bandage consisting of a strip of sterile fabric (of variable width) rolled into a cylinder to facilitate application +n04102037 a shoe with a line of rollers fixed to the sole +n04102162 (trademark) an in-line skate +n04102285 a window shade that rolls up out of the way +n04102406 elevated railway in an amusement park (usually with sharp curves and steep inclines) +n04102618 a shoe with pairs of rollers fixed to the sole +n04102760 a towel with the ends sewn together, hung on a roller +n04102872 photographic film wound on a spool +n04102962 a hitch for fastening a line to a spar or another rope +n04103094 steel mill where metal is rolled into sheets and bars +n04103206 utensil consisting of a cylinder (usually of wood) with a handle at each end; used to roll out dough +n04103364 collection of wheeled vehicles owned by a railroad or motor carrier +n04103665 a woman's foundation garment rolled on to the hips +n04103769 a dispenser of a liquid cosmetic (such as a deodorant) having a revolving ball as an applicator +n04103918 a method of transport (as a ferry or train or plane) that vehicles roll onto at the beginning and roll off of at the destination +n04104147 (trademark) a desktop rotary card index with removable cards; usually used for names, addresses, and telephone numbers +n04104384 a round arch drawn from a single center +n04104500 a building constructed by the ancient Romans +n04104770 a one-piece garment for children to wear at play; the lower part is shaped like bloomers +n04104925 a screen in a church; separates the nave from the choir or chancel +n04105068 a protective covering that covers or forms the top of a building +n04105438 protective covering on top of a motor vehicle +n04105704 material used to construct a roof +n04105893 an area within a building enclosed by walls and floor and ceiling +n04107598 a small private compartment for one on a sleeping car +n04107743 light that provides general illumination for a room +n04107984 a shelter with perches for fowl or other birds +n04108268 a strong line +n04108822 a bridge consisting of ropes +n04108999 a ski tow offering only a moving rope to hold onto +n04110068 perfume consisting of water scented with oil of roses +n04110178 circular window filled with tracery +n04110281 a bag filled with rosin; used by baseball pitchers to improve their grip on the ball +n04110439 (computer science) the actuator that moves a read/write head to the proper data track +n04110654 an internal-combustion engine in which power is transmitted directly to rotating components +n04110841 a printing press for printing from a revolving cylinder +n04110955 a mechanism that rotates +n04111190 a revolving rod that transmits power or motion +n04111414 a restaurant that specializes in roasted and barbecued meats +n04111531 an oven or broiler equipped with a rotating spit on which meat cooks as it turns +n04111668 rotating mechanism consisting of an assembly of rotating airfoils +n04111962 the rotating armature of a motor or generator +n04112147 the revolving bar of a distributor +n04112252 the long airfoil that rotates to provide the lift that supports a helicopter in the air +n04112430 the axis around which the major rotor of a helicopter turns +n04112579 a large circular room +n04112654 a building having a circular plan and a dome +n04112752 makeup consisting of a pink or red powder applied to the cheeks +n04112921 a rough preliminary model +n04113038 a roll of coins wrapped in paper +n04113194 a wheel with teeth for making a row of perforations +n04113316 the ball used to play roulette +n04113406 game equipment consisting of a wheel with slots that is used for gambling; the wheel rotates horizontally and players bet on which slot the roulette ball will stop in +n04113641 a charge of ammunition for a single shot +n04113765 an arch formed in a continuous curve; characteristic of Roman architecture +n04113968 a spherical flask with a narrow neck +n04114069 round piece of armor plate that protects the armpit +n04114301 a file with a circular cross section; used to file the inside of holes +n04114428 workplace consisting of a circular building for repairing locomotives +n04114719 a power tool with a shaped cutter; used in carpentry for cutting grooves +n04114844 (computer science) a device that forwards data packets between computer networks +n04114996 a woodworking plane with a narrow cutting head that will make grooves with smooth bottoms +n04115144 a small spiked wheel at the end of a spur +n04115256 a house that is one of a row of identical houses situated side by side and sharing common walls +n04115456 a rowboat +n04115542 an arch that is formed with more than one concentric row of voussoirs +n04115802 a sail set next above the topgallant on a royal mast +n04115996 topmast immediately above the topgallant mast +n04116098 a narrow band of elastic rubber used to hold things (such as papers) together +n04116294 a high boot made of rubber +n04116389 a bullet made of hard rubber; designed for use in crowd control +n04116512 an eraser made of rubber (or of a synthetic material with properties similar to rubber); commonly mounted at one end of a pencil +n04117216 (nautical) steering mechanism consisting of a hinged vertical plate mounted at the stern of a vessel +n04117464 a hinged vertical airfoil mounted at the tail of an aircraft and used to make horizontal course changes +n04117639 the vertical blade on a rudder +n04118021 floor covering consisting of a piece of thick heavy fabric (usually with nap or pile) +n04118538 inflated oval ball used in playing rugby +n04118635 a ruined building +n04118776 measuring stick consisting of a strip of wood or metal or plastic with a straight edge that is used for drawing straight lines and measuring lengths +n04119091 a servant's seat (or luggage compartment) in the rear of a carriage +n04119230 a folding outside seat in the back of some early cars +n04119360 a large drinking glass (ovoid bowl on a stem) for drinking toasts +n04119478 a recreation room for noisy activities (parties or children's play etc) +n04119630 a fork-like spoon with a cutting edge; coined by Edward Lear +n04119751 one of the crosspieces that form the steps of a ladder +n04120489 a light comfortable shoe designed for running +n04120695 a matching jacket and pants worn by joggers and made of fabric that absorbs perspiration +n04120842 a strip of level paved surface where planes can take off and land +n04121228 a tallow candle with a rush stem as the wick +n04121342 a reddish brown homespun fabric +n04121426 a shag rug made in Sweden +n04121511 a fencing sword with a v-shaped blade and a slightly curved handle +n04121728 a portable power saw with a reciprocating blade; can be used with a variety of blades depending on the application and kind of cut; generally have a plate that rides on the surface that is being cut +n04122262 a scarf (or trimming) made of sable +n04122349 an artist's brush made of sable hairs +n04122492 a fur coat made of sable furs +n04122578 a shoe carved from a single block of wood +n04122685 a small soft bag containing perfumed powder; used to perfume items in a drawer or chest +n04122825 a bag made of paper or plastic for holding customer's purchases +n04123026 a woman's full loose hiplength jacket +n04123123 a medieval musical instrument resembling a trombone +n04123228 a coarse cloth resembling sacking +n04123317 a garment made of coarse sacking; formerly worn as an indication of remorse +n04123448 man's hiplength coat with a straight back; the jacket of a suit +n04123567 coarse fabric used for bags or sacks +n04123740 a seat for the rider of a horse or camel +n04124098 a large bag (or pair of bags) hung over a saddle +n04124202 stable gear consisting of a blanket placed under the saddle +n04124370 an oxford with a saddle of contrasting color +n04124488 workshop where a saddler works +n04124573 a chair seat that is slightly concave and sometimes has a thickened ridge in the center +n04124887 a decorative overcast or running stitch, especially in a contrasting color +n04125021 strongbox where valuables can be safely kept +n04125116 a ventilated or refrigerated cupboard for securing provisions from pests +n04125257 a fireproof metal strongbox (usually in a bank) for storing valuables +n04125541 a house used as a hiding place or refuge by members of certain organizations +n04125692 an undecorated arch that is included in order to strengthen or support a construction +n04125853 belt attaching you to some object as a restraint in order to prevent you from getting hurt +n04126066 bicycle that has two wheels of equal size; pedals are connected to the rear wheel by a multiplying gear +n04126244 a bolt that cannot be moved from outside the door or gate +n04126541 a fireproof theater curtain to be dropped in case of fire +n04126659 a slow-burning fuse consisting of a tube or cord filled or saturated with combustible matter; used to ignite detonators from a distance +n04126852 an oil lamp that will not ignite flammable gases (methane) +n04126980 a paper match that strikes only on a specially prepared surface +n04127117 a large strong net to catch circus acrobats who fall or jump from a trapeze +n04127249 a pin in the form of a clasp; has a guard so the point of the pin will not stick the user +n04127395 a railing placed alongside a stairway or road for safety +n04127521 a razor with a guard to prevent deep cuts in the skin +n04127633 a valve in a container in which pressure can build up (as a steam boiler); it opens automatically when the pressure reaches a dangerous level +n04127904 a large piece of fabric (usually canvas fabric) by means of which wind is used to propel a sailing vessel +n04128413 any structure that resembles a sail +n04128499 a small sailing vessel; usually with a single mast +n04128710 a strong fabric (such as cotton canvas) used for making sails and tents +n04128837 a vessel that is powered by the wind; often having several masts +n04129490 a warship that was powered by sails and equipped with many heavy guns; not built after the middle of the 19th century +n04129688 a cap worn by sailors +n04129766 a boy's ensemble; copied from a sailor's uniform +n04130143 a bar where diners can assemble a salad to their own taste +n04130257 a large bowl for mixing and serving a salad +n04130566 a hydrometer that determines the concentration of salt solutions by measuring their density +n04130907 a light medieval helmet with a slit for vision +n04131015 elegant sitting room where guests are received +n04131113 gallery where works of art can be displayed +n04131208 a shop where hairdressers and beauticians work +n04131368 a type of house built in New England; has two stories in front and one behind +n04131499 a small container for holding salt at the dining table +n04131690 a shaker with a perforated top for sprinkling salt +n04131811 a plant where salt is produced commercially +n04131929 a tray (or large plate) for serving food or drinks; usually made of silver +n04132158 a pair of light loose trousers with a tight fit around the ankles; worn by women from the Indian subcontinent (usually with a kameez) +n04132465 leather belt supported by a strap over the right shoulder +n04132603 a Japanese stringed instrument resembling a banjo with a long neck and three strings and a fretted fingerboard and a rectangular soundbox; played with a plectrum +n04132829 a heavy silk fabric (often woven with silver or gold threads); used to make clothing in the Middle Ages +n04132985 a metal urn with a spigot at the base; used in Russia to boil water for tea +n04133114 an Asian skiff usually propelled by two oars +n04133789 a shoe consisting of a sole fastened by straps to the foot +n04134008 a bag filled with sand; used as a weapon or to build walls or as ballast +n04134170 a tool that throws out a blast of steam laden with sand; used to clean or grind hard surfaces +n04134523 mold consisting of a box with sand shaped to mold metal +n04134632 timepiece in which the passage of time is indicated by the flow of sand from one transparent container to another through a narrow passage +n04135024 a wedge used to get out of sand traps +n04135118 signboard consisting of two hinged boards that hang front and back from the shoulders of a walker and are used to display advertisements +n04135315 a disposable absorbent pad (trade name Kotex); worn to absorb menstrual flow +n04135710 a thin plastic film made of saran (trade name Saran Wrap) that sticks to itself; used for wrapping food +n04135933 a fine soft silk fabric often used for linings +n04136045 a stone coffin (usually bearing sculpture or inscriptions) +n04136161 a dress worn primarily by Hindu women; consists of several yards of light material that is draped around the body +n04136333 a loose skirt consisting of brightly colored fabric wrapped around the body; worn by both women and men in the South Pacific +n04136510 a framework that holds the panes of a window in the window frame +n04136800 a lock attached to the sashes of a double hung window that can fix both in the shut position +n04137089 a window with (usually two) sashes that slide vertically to let in air +n04137217 luggage consisting of a small case with a flat bottom and (usually) a shoulder strap +n04137355 a cotton fabric with a satiny finish +n04137444 man-made equipment that orbits around the earth or the moon +n04137773 a receiver on a communications satellite +n04137897 a television system in which the signal is transmitted to an orbiting satellite that receives the signal and amplifies it and transmits it back to earth +n04138131 a transmitter on a communications satellite +n04138261 a smooth fabric of silk or rayon; has a glossy face and a dull back +n04138869 a cheap handgun that is easily obtained +n04138977 a deep pan with a handle; used for stewing or boiling +n04139140 a cooking pot that has handles on either side and tight fitting lid; used for stewing or boiling +n04139395 a Finnish steam bath; steam is produced by pouring water over heated rocks +n04139859 a container (usually with a slot in the top) for keeping money at home +n04140064 hand tool having a toothed blade for cutting +n04140539 a shotgun with short barrels +n04140631 a framework for holding wood that is being sawed +n04140777 a large sawing machine +n04140853 a tool used to bend each alternate sawtooth at a slight angle outward +n04141076 a single-reed woodwind with a conical bore +n04141198 any of a family of brass wind instruments that resemble a bugle with valves +n04141327 a sheath for a sword or dagger or bayonet +n04141712 a system of scaffolds +n04141838 an indicator having a graduated sequence of marks +n04141975 a measuring instrument for weighing; shows amount of mass +n04142175 an electronic pulse counter used to count pulses that occur too rapidly to be recorded individually +n04142327 a ladder used to scale walls (as in an attack) +n04142434 a thin straight surgical knife used in dissection and surgery +n04142731 a radio receiver that moves automatically across some selected range of frequencies looking for some signal or condition +n04142999 a radar dish that rotates or oscillates in order to scan a broad area +n04143140 an electronic device that generates a digital representation of an image for data input to a computer +n04143365 an upright in house framing +n04143897 a garment worn around the head or neck or shoulders for warmth or decoration +n04144241 a joint made by notching the ends of two pieces of timber or metal so that they will lock together end-to-end +n04144539 a small rug; several can be used in a room +n04144651 a graver used to scoop out broad areas when engraving wood or metal +n04145863 reflecting telescope that has plate that corrects for aberration so a wide area of sky can be photographed +n04146050 a building where young people receive education +n04146343 a bag for carrying school books and supplies +n04146504 a bell rung to announce beginning or ending of class +n04146614 a bus used to transport children to or from school +n04146862 a ship used to train students as sailors +n04146976 establishment including the plant and equipment for providing education from kindergarten through high school +n04147183 sailing vessel used in former times +n04147291 a large beer glass +n04147495 an instrument used by scientists +n04147793 a curved oriental saber; the edge is on the convex side of the blade +n04147916 counter tube in which light flashes when exposed to ionizing radiation +n04148054 an edge tool having two crossed pivoting blades +n04148285 a measuring instrument that measures the hardness of materials by penetrating them with a stylus that has a diamond point +n04148464 an arch that supports part of the wall +n04148579 a decorative wall bracket for holding candles or other sources of light +n04148703 a candle or flaming torch secured in a sconce +n04149083 a large ladle +n04149374 child's two-wheeled vehicle operated by foot +n04149813 a large board for displaying the score of a contest (and some other information) +n04150153 a small abrasive cleaning pad used for scouring pots and pans +n04150273 a barge carrying bulk materials in an open hold +n04150371 any of various flat-bottomed boats with sloping ends +n04150980 any of various hand tools for scraping +n04151108 a device used for scratching +n04151581 a protective covering consisting of netting; can be mounted in a frame +n04151940 a covering that serves to conceal or shelter something +n04152387 partition consisting of a decorative frame or panel that serves to divide a space +n04152593 the display that is electronically created on the surface of the large end of a cathode-ray tube +n04153025 a door that consists of a frame holding metallic or plastic netting; used to allow ventilation and to keep insects from entering a building through the open door +n04153330 fabric of metal or plastic mesh +n04153751 a fastener with a tapered threaded shank and a slotted head +n04154152 a propeller with several angled blades that rotates to push against water or air +n04154340 a simple machine of the inclined-plane type consisting of a spirally threaded cylindrical rod that engages with a similarly threaded hole +n04154565 a hand tool for driving screws; has a tip that fits into the head of a screw +n04154753 a woodscrew having its shank bent into a ring +n04154854 a wrench for turning a screw +n04154938 the raised helical rib going around a screw +n04155068 the top of a container that must be screwed off and on +n04155177 adjustable wrench that has one jaw that can be adjusted by turning a screw +n04155457 a sharp-pointed awl for marking wood or metal to be cut +n04155625 a firm open-weave fabric used for a curtain in the theater +n04155735 a carving (or engraving) on whalebone, whale ivory, walrus tusk, etc., usually by American whalers +n04155889 a room in a monastery that is set aside for writing or copying manuscripts +n04156040 a purifier that removes impurities from a gas +n04156140 a brush with short stiff bristles for heavy cleaning +n04156297 a narrow woodworking plane used to cut away excess stock +n04156411 a lightweight flexible sandal with a sturdy sole; worn as play shoes by children and as sportswear by adults +n04156591 a hoe that is used by pushing rather than pulling +n04156814 each of a pair of short oars that are used by a single oarsman +n04156946 a long oar that is mounted at the stern of a boat and moved left and right to propel the boat forward +n04157099 a small room (in large old British houses) next to the kitchen; where kitchen utensils are cleaned and kept and other rough household jobs are done +n04157320 a three-dimensional work of plastic art +n04158002 container for coal; shaped to permit pouring the coal onto the fire +n04158138 an ancient Greek drinking cup; two handles and footed base +n04158250 an edge tool for cutting grass; has a long handle that must be held with both hands and a curved blade that moves parallel to the ground +n04158672 a cylindrical drawstring bag used by sailors to hold their clothing and other gear +n04158807 a boat that is seaworthy; that is adapted to the open seas +n04158956 a sailor's storage chest for personal property +n04160036 fastener consisting of a resinous composition that is plastic when warm; used for sealing documents and parcels and letters +n04160261 a garment (as a jacket or coat or robe) made of sealskin +n04160372 joint consisting of a line formed by joining two pieces +n04160586 an airplane that can land on or take off from water +n04160847 a light source with reflectors that projects a beam of light in a particular direction +n04161010 a hot iron used to destroy tissue +n04161358 any support where you can sit (especially the part of a chair or bench etc. on which you sit) +n04161981 furniture that is designed for sitting on +n04162433 the cloth covering for the buttocks +n04162706 a safety belt used in a car or plane to hold you in your seat in case of an accident +n04163530 small pruning shears with a spring that holds the handles open and a single blade that closes against a flat surface +n04164002 coil such that current is induced in it by passing a current through the primary coil +n04164199 rearmost or uppermost area in the balcony containing the least expensive seats +n04164406 the base that must be touched second by a base runner in baseball +n04164757 hand marking seconds on a timepiece +n04164868 a desk used for writing +n04165409 a piece of furniture made up of sections that can be arranged individually or together +n04165675 a blanket (or toy) that a child carries around in order to reduce anxiety +n04165945 an electrical device that sets off an alarm when someone tries to break in +n04166111 (computing) a system that enforces boundaries between computer networks +n04166281 a car that is closed and that has front and rear seats and two or four doors +n04166436 a closed litter for one passenger +n04167346 a mechanical device that sows grass seed or grain evenly over the ground +n04167489 a missile equipped with a device that is attracted toward some kind of emission (heat or light or sound or radio waves) +n04167661 a light puckered fabric (usually striped) +n04168084 a shallow arch; an arch that is less than a semicircle +n04168199 (trademark) a self-balancing personal transportation device with two wheels; can operate in any level pedestrian environment +n04168472 a glass for beer +n04168541 a large fishnet that hangs vertically, with floats at the top and weights at the bottom +n04168840 a measuring instrument for detecting and measuring the intensity and direction and duration of movements of the ground (as an earthquake) +n04169437 a switch that is used to select among alternatives +n04169597 a photoelectric cell that uses a strip of selenium +n04170037 a wheeled vehicle that carries in itself a means of propulsion +n04170384 a thermometer that records the temperature automatically +n04170515 an electric starting motor that automatically starts an internal-combustion engine +n04170694 a system consisting of a generator and a motor so connected that the motor will assume the same relative position as the generator; the generator and the motor are synchronized +n04170933 the edge of a fabric that is woven so that it will not ravel or fray +n04171208 an apparatus for visual signaling with lights or mechanically moving arms +n04171459 an autoloader that fires only one shot at each pull of the trigger +n04171629 a pistol that is a semiautomatic firearm capable of loading and firing continuously +n04171831 a conductor made with semiconducting material +n04172107 a dwelling that is attached to something on only one side +n04172230 a paint that dries with a finish between glossy and flat +n04172342 a trailer having wheels only in the rear; the front is supported by the towing vehicle +n04172512 flat braided cordage that is used on ships +n04172607 a measuring instrument for measuring the light sensitivity of film over a range of exposures +n04172776 a small shelter with an open front to protect a sentry from the weather +n04172904 a garment that can be purchased separately and worn in combinations with other garments +n04173046 large tank where solid matter or sewage is disintegrated by bacteria +n04173172 film consisting of a succession of related shots that develop a given subject in a movie +n04173511 (chemistry) an apparatus that can determine the sequence of monomers in a polymer +n04173907 a long brightly colored shawl; worn mainly by Mexican men +n04174026 a twilled woolen fabric +n04174101 a sewing machine that overcasts the raw edges of a fabric with a V-shaped stitch +n04174234 an interface (commonly used for modems and mice and some printers) that transmits data a bit at a time +n04174500 an obsolete bass cornet; resembles a snake +n04174705 a single notch in a row of notches +n04175039 utensil used in serving food or drink +n04175147 (computer science) a computer that provides client stations with access to files and printers as shared resources to a computer network +n04175574 a recreational center for servicemen +n04176068 a handcart for serving food +n04176190 a dish used for serving food +n04176295 control system that converts a small mechanical motion into one requiring much greater power; may include a negative feedback system +n04176528 any electronic equipment that receives or transmits radio or tv signals +n04177041 a gun that is set to fire on any intruder that comes in contact with the wire that sets it off +n04177329 a screw (often without a head) that fits into the boss or hub of a wheel or cam etc. and prevents motion of the part relative to the shaft on which it is mounted +n04177545 a screw that is used to adjust the tension on a spring +n04177654 a try square with an adjustable sliding head +n04177755 a small sofa +n04177820 a long wooden bench with a back +n04177931 a center in an underprivileged area that provides community services +n04178190 a shellac based phonograph record that played at 78 revolutions per minute +n04178329 impressive monuments created in the ancient world that were regarded with awe +n04178668 a plant for disposing of sewage +n04179126 a waste pipe that carries away sewage or surface water +n04179712 a workbasket in which sewing materials can be stored +n04179824 a kit of articles used in sewing +n04179913 a textile machine used as a home appliance for sewing +n04180063 a needle used in sewing to pull thread through cloth +n04180229 a room set aside for sewing +n04180888 a measuring instrument for measuring the angular distance between celestial objects; resembles an octant +n04181083 a ceramic or mural decoration made by scratching off a surface layer to reveal the ground +n04181228 a restraint that confines or restricts freedom (especially something used to tie down or restrain a prisoner) +n04181561 a U-shaped bar; the open end can be passed through chain links and closed with a bar +n04181718 protective covering that protects something from direct sunlight +n04182152 a shallow rectangular box with a transparent front used to protect and display small items (jewelry, coins, etc.) +n04182322 a long rod or pole (especially the handle of an implement or the body of a weapon like a spear or arrow) +n04183217 a rug with long pile +n04183329 a container in which something can be shaken +n04183957 cylinder forming the part of a bolt between the thread and the head +n04184095 cylinder forming a long narrow part of something +n04184316 a heavy silk fabric with a rough surface (or a cotton imitation) +n04184435 a machine tool for shaping metal or wood +n04184600 a tool for shaping metal +n04184880 a smooth crisp fabric +n04185071 any implement that is used to make something (an edge or a point) sharper +n04185529 a pen with indelible ink that will write on any surface +n04185804 a razor powered by an electric motor +n04185946 a brush used to apply lather prior to shaving +n04186051 toiletry consisting of a preparation of soap and fatty acids that forms a rich lather for softening the beard before shaving +n04186268 toiletry consisting of a liquid preparation containing many small bubbles that soften the beard before shaving +n04186455 cloak consisting of an oblong piece of cloth used to cover the head and shoulders +n04186624 a medieval oboe +n04186848 large scissors with strong blades +n04187061 a protective covering (as for a knife or sword) +n04187233 protective covering consisting, for example, of a layer of boards applied to the studs and joists of a building to strengthen it and serve as a foundation for a weatherproof exterior +n04187547 an outbuilding with a single story; used for shelter or storage +n04187751 a bell hung round the neck of a sheep so that the sheep can be easily located +n04187885 a knot for shortening a line +n04187970 a coat made of sheepskin +n04188064 farm devoted to raising sheep +n04188179 bed linen consisting of a large rectangular piece of cotton or linen cloth; used in pairs +n04189092 a hitch used for temporarily tying a rope to the middle of another rope (or to an eye) +n04189282 fabric from which bed sheets are made +n04189651 a pile in a row of piles driven side by side to retain earth or prevent seepage +n04189816 a kind of plasterboard +n04190052 a support that consists of a horizontal surface for holding objects +n04190376 a bracket to support a shelf +n04190464 ammunition consisting of a cylindrical metal casing containing an explosive charge and a projectile; fired from a large gun +n04190747 the housing or outer covering of something +n04190997 a very light narrow racing boat +n04191150 a thin varnish made by dissolving lac in ethanol; used to finish wood +n04191595 a structure that provides privacy and protection from danger +n04191943 protective covering that provides protection from the weather +n04192238 temporary housing for homeless or displaced persons +n04192361 a workshop that offers jobs to members of the physically or developmentally disabled population +n04192521 a furniture style that originated in England around 1800; simple in design with straight lines and classical ornamentation +n04192698 armor carried on the arm to intercept blows +n04192858 a protective covering or structure +n04193179 shield consisting of an arrangement of metal mesh or plates designed to protect electronic equipment from ambient electromagnetic interference +n04193377 the key on the typewriter keyboard that shifts from lower-case letters to upper-case letters +n04193742 a cudgel made of hardwood (usually oak or blackthorn) +n04193883 a thin wedge of material (wood or metal or stone) for driving into crevices +n04194009 a small signboard outside the office of a lawyer or doctor, e.g. +n04194127 a stiff protective garment worn by hockey players or a catcher in baseball to protect the shins +n04194289 a vessel that carries passengers or freight +n04196080 a system designed to work as a coherent entity on board a naval ship +n04196502 conveyance provided by the ships belonging to one country or industry +n04196803 a room where goods are packaged and shipped +n04196925 a shipboard system consisting of an acoustic detection system that is towed behind the ship +n04197110 a wrecked ship (or a part of one) +n04197391 a garment worn on the upper half of the body +n04197781 a button on a shirt +n04197878 a dress that is tailored like a shirt and has buttons all the way down the front +n04198015 the front of a shirt (usually the part not covered by a jacket) +n04198233 any of various fabrics used to make men's shirts +n04198355 the sleeve of a shirt +n04198453 fabric forming the tail of a shirt +n04198562 a blouse with buttons down the front +n04198722 a knife used as a weapon +n04198797 a mechanical damper; absorbs energy of sudden impulses +n04199027 footwear shaped to fit the foot (below the ankle) with a flexible upper of leather or plastic and a sole and heel of heavier material +n04200000 (card games) a case from which playing cards are dealt one at a time +n04200258 an oblong rectangular (usually cardboard) box designed to hold a pair of shoes +n04200537 a device used for easing the foot into a shoe +n04200800 a shop where shoes are sold +n04200908 a wooden or metal device that is inserted into a shoe to preserve its shape when it is not being worn +n04201064 an ancient musical horn made from the horn of a ram; used in ancient times by the Israelites to sound a warning or a summons; used in synagogues today on solemn occasions +n04201297 a translucent screen made of a wooden frame covered with rice paper +n04201733 another name for a station wagon +n04202142 a small country house used by hunters during the shooting season +n04202282 device that resembles a spiked walking stick but the top opens into a seat +n04202417 a mercantile establishment for the retail sale of goods or services +n04203356 a bell attached to the door of a small shop; warns the proprietor that a customer has entered the shop +n04204081 a bag made of plastic or strong paper (often with handles); used to transport goods after shopping +n04204238 a handbasket used to carry goods while shopping +n04204347 a handcart that holds groceries or other goods while shopping +n04204755 accidental contact between two points in an electric circuit that have a potential difference +n04205062 an iron with a short shaft and pitched face; for hitting short high shots +n04205318 trousers that end at or above the knee +n04205505 a sleeve extending from the shoulder to the elbow +n04205613 a diathermy machine that uses short wave radiation as the source of heat +n04206070 sports equipment consisting of a heavy metal ball used in the shot put +n04206225 a small glass adequate to hold a single swallow of whiskey +n04206356 firearm that is a double-barreled smoothbore shoulder weapon for firing shot at short ranges +n04206570 a shell containing lead shot; used in shotguns +n04206790 tower of a kind once used to make shot; molten lead was poured through a sieve and dropped into water +n04207151 the part of a garment that covers or fits over the shoulder +n04207343 a large handbag that can be carried by a strap looped over the shoulder +n04207596 an arch consisting of a horizontal lintel supported at each end by corbels that project into the aperture +n04207763 a holster worn over your shoulder so a gun can be concealed under your jacket +n04207903 protective garment consisting of a hard rounded pad worn by football players to protect their shoulders +n04208065 patch worn on the shoulder of a military uniform to indicate rank +n04208210 a hand tool for lifting loose material; consists of a curved container or scoop and a handle +n04208427 a fire iron consisting of a small shovel used to scoop coals or ashes in a fireplace +n04208582 a stiff broad-brimmed hat with the brim turned up at the sides and projecting in front; worn by some clergymen in Britain +n04208760 a river steamboat on which theatrical performances could be given (especially on the Mississippi River) +n04208936 a plumbing fixture that sprays water over you +n04209133 a tight cap worn to keep hair dry while showering +n04209239 a curtain that keeps water from splashing out of the shower area +n04209509 a room with several showers +n04209613 booth for washing yourself, usually in a bathroom +n04209811 an area where merchandise (such as cars) can be displayed +n04210012 shell containing lead pellets that explodes in flight +n04210120 a device that shreds documents (usually in order to prevent the wrong people from reading them) +n04210288 a vessel engaged in shrimping +n04210390 a place of worship hallowed by association with some sacred thing or person +n04210591 the clinging transparent plastic film that is used to shrinkwrap something +n04210858 implant consisting of a tube made of plastic or rubber; for draining fluids within the body +n04211001 a conductor having low resistance in parallel with another device to divert a fraction of the current +n04211219 a small locomotive used to move cars around but not to make trips +n04211356 a hinged blind for a window +n04211528 a mechanical device on a camera that opens and closes to control the time of a photographic exposure +n04211857 bobbin that passes the weft thread between the warp threads +n04211970 public transport that consists of a bus or train or airplane that plies back and forth between two points +n04212165 shuttle consisting of a bus that travels between two points +n04212282 badminton equipment consisting of a ball of cork or rubber with a crown of feathers +n04212467 a helicopter that shuttles back and forth +n04212810 a light conical canvas tent erected on a tripod with ventilation at the top +n04213105 (nautical) a room for the treatment of the sick or injured (as on a ship) +n04213264 the bed on which a sick person lies +n04213353 an edge tool for cutting grass or crops; has a curved blade and a short handle +n04213530 a room to which a sick person is confined +n04214046 a board that forms part of the side of a bed or crib +n04214282 conveyance consisting of a small carrier attached to the side of a motorcycle +n04214413 a small chapel off the side aisle of a church +n04214649 light carried by a boat that indicates the boat's direction; vessels at night carry a red light on the port bow and a green light on the starboard bow +n04215153 a saddle for a woman; rider sits with both feet on the same side of the horse +n04215402 walk consisting of a paved area for pedestrians; usually beside a street or roadway +n04215588 a wall that forms the side of a structure +n04215800 a paddle steamer having a paddle wheel on each side +n04215910 air-to-air missile with infrared homing device +n04216634 a strainer for separating lumps from powdered material or grading particles +n04216860 a household sieve (as for flour) +n04216963 an optical instrument for aiding the eye in aiming, as on a firearm or surveying instrument +n04217387 an endoscope (a flexible fiberoptic probe) for examining the sigmoid colon +n04217546 a building from which signals are sent to control the movements of railway trains +n04217718 a device used to send signals +n04217882 structure displaying a board on which advertisements can be posted +n04218564 a tubular acoustic device inserted in the exhaust system that is designed to reduce noise +n04218921 a small receptacle with a handle and a hinged lid; used for collecting crumbs or ashes +n04219185 a vacuum coffee maker +n04219424 a fabric made from the fine threads produced by certain insect larvae +n04219580 the brightly colored garments of a jockey; emblematic of the stable +n04220250 a cylindrical tower used for storing silage +n04220805 a thin layer of silver deposited on something +n04221076 a drawing made on specially prepared paper with an instrument having a silver tip (15th and 16th centuries) +n04221673 a hypothetical pendulum suspended by a weightless frictionless thread of constant length +n04221823 a machine that simulates an environment for the purpose of training or research +n04222210 a bed for one occupant +n04222307 a jacket having fronts that overlap only enough for a single row of buttons +n04222470 a suit having a single-breasted jacket +n04222723 a propeller plane with a single propeller +n04222847 a beating-reed instrument with a single reed (as a clarinet or saxophone) +n04223066 a helicopter having a single rotor +n04223170 a stick used instead of a sword for fencing +n04223299 a collarless men's undergarment for the upper part of the body +n04224395 an acoustic device producing a loud often wailing sound as a signal or warning +n04224543 a ship that is one of two or more similar ships built at the same time +n04224842 a stringed instrument of India; has a long neck and movable frets; has 6 or 7 metal strings for playing and usually 13 resonating strings +n04225031 a bathtub in which your buttocks and hips are immersed as if you were sitting in a chair and you bathe in a sitting position +n04225222 a carton containing six bottles or cans +n04225729 sports equipment that is worn on the feet to enable the wearer to glide along and to be propelled by the alternate actions of the legs +n04225987 a board with wheels that is ridden in a standing or crouching position and propelled by foot +n04226322 a brace that extends from the rear of the keel to support the rudderpost +n04226464 coils of worsted yarn +n04226537 the internal supporting structure that gives an artifact its shape +n04226826 a passkey with much of the bit filed away so that it can open different locks +n04226962 a domed beehive made of twisted straw +n04227050 a large round wicker basket (used on farms) +n04227144 preliminary drawing for later elaboration +n04227519 an implement for sketching +n04227787 an arch whose jambs are not at right angles with the face +n04227900 a long pin for holding meat in position while it is being roasted +n04228054 narrow wood or metal or plastic runners used in pairs for gliding over snow +n04228215 one of a pair of mechanical devices that are attached to a ski and that will grip a ski boot; the bindings should release in case of a fall +n04228422 a vehicle resembling a bicycle but having skis instead of wheels; the rider wears short skis for balancing +n04228581 a stiff boot that is fastened to a ski with a ski binding +n04228693 a close-fitting woolen cap; often has a tapering tail with a tassel +n04229007 a tractor used to haul logs over rough terrain +n04229107 a crash helmet +n04229480 any of various small boats propelled by oars or by sails or by a motor +n04229620 a steep downward ramp from which skiers jump +n04229737 a hotel at a ski resort +n04229816 a woolen face mask to protect the face from cold while skiing on snow +n04229959 a cooking utensil used to skim fat from the surface of liquids +n04230387 a parka to be worn while skiing +n04230487 an airplane equipped with skis so it can land on a snowfield +n04230603 a pole with metal points used as an aid in skiing +n04230707 a carrier for holding skis on top of a vehicle +n04230808 a garment hanging from the waist; worn mainly by girls and women +n04231272 cloth covering that forms the part of a garment below the waist +n04231693 a powered conveyance that carries skiers up a hill +n04231905 men's underwear consisting of cotton T-shirt and shorts +n04232153 rounded brimless cap fitting the crown of the head +n04232312 an elevated box for viewing events at a sports stadium +n04232437 a hook that is imagined to be suspended from the sky +n04232800 a window in a roof to admit daylight +n04233027 the sail above the royal on a square-rigger +n04233124 a very tall building with many stories +n04233295 an elevated walkway between buildings (usually enclosed) +n04233715 (usually in the plural) pants for casual wear +n04233832 casual dress consisting of slacks and matching jacket +n04234160 a weapon (a sword or dagger) used for slashing +n04234260 a pocket in a garment (usually below the waist) to which access is provided by a vertical or diagonal slit in the outside of the garment +n04234455 a thin strip (wood or metal) +n04234670 (formerly) a writing tablet made of slate +n04234763 a pencil of soft slate (or soapstone) used for writing on a slate +n04234887 a roof covered with slate +n04235291 a vehicle mounted on runners and pulled by horses or dogs; for transportation over snow +n04235646 a piece of furniture that can be opened up into a bed +n04235771 pajamas with feet; worn by children +n04235860 large padded bag designed to be slept in outdoors; usually rolls up like a bedroll +n04236001 a passenger car that has berths for sleeping +n04236377 the part of a garment that is attached at the armhole and that provides a cloth covering for the arm +n04236702 small case into which an object fits +n04236809 a bed with solid headboard and footboard that roll outward at the top +n04236935 a bell attached to a sleigh, or to the harness of a horse that is pulling a sleigh +n04237174 iron bar used to loosen and rake clinkers out of furnaces +n04237287 knife especially designed for slicing particular foods, as cheese +n04237423 a machine for cutting; usually with a revolving blade +n04238128 plaything consisting of a sloping chute down which children can slide +n04238321 a fastener for locking together two toothed edges by means of a sliding tab +n04238617 projector that projects an enlarged image of a slide onto a screen +n04238763 analog computer consisting of a handheld instrument used for rapid calculations; have been replaced by pocket calculators +n04238953 valve that opens and closes a passageway by sliding over a port +n04239074 a door that opens by sliding instead of swinging +n04239218 rower's seat that slides fore and aft +n04239333 a window that open by sliding horizontally +n04239436 bandage to support an injured forearm; consisting of a wide triangular piece of cloth hanging from around the neck +n04239639 a simple weapon consisting of a looped strap in which a projectile is whirled and then released +n04239786 a shoe that has a strap that wraps around the heel +n04239900 dispenser consisting of a tubular ring around the propeller hub of an airplane through which antifreeze solution is spread over the blades +n04240434 a friction clutch that will slip when the torque is too great +n04240752 a removable fitted cloth covering for upholstered furniture +n04240867 pliers with a joint adjustable to two positions in order to increase the opening of the jaws +n04241042 a knot at the end of a cord or rope that can slip along the cord or rope around which it is made +n04241249 an article of clothing (garment or shoe) that is easily slipped on or off +n04241394 low footwear that can be slipped on and off easily; usually worn indoors +n04241573 connection consisting of a metal ring on a rotating part of a machine; provides a continuous electrical connection through brushes on stationary contacts +n04242084 (ophthalmology) a lamp that emits a narrow but intense beam of light that enables an ophthalmologist, using a microscope, to view the retina and optic nerve +n04242315 narrow trench for shelter in battle +n04242408 a sailing vessel with a single mast set about one third of the boat's length aft of the bow +n04242587 a sailing or steam warship having cannons on only one deck +n04242704 a bowl into which the dregs of teacups and coffee cups are emptied at the table +n04243003 a large pail used to receive waste water from a washbasin or chamber pot +n04243142 cheap clothing (as formerly issued to sailors in Britain) +n04243251 a store that sells cheap ready-made clothing +n04243546 a slot machine that is used for gambling +n04243941 a machine that is operated by the insertion of a coin in a slot +n04244379 conduit that carries a rapid flow of water controlled by a sluicegate +n04244847 a sailing ship (usually rigged like a sloop or cutter) used in fishing and sailing along the coast +n04244997 a boat that is small +n04245218 interface consisting of a standard port between a computer and its peripherals that is used in some computers +n04245412 a ship that is small +n04245508 personal items conforming to regulations that are sold aboard ship or at a naval base and charged to the person's pay +n04245847 a bomb that can be guided (by a laser beam or radio) to its target +n04246060 a bottle containing smelling salts +n04246271 embroidery consisting of ornamental needlework on a garment that is made by gathering the cloth tightly in stitches +n04246459 a bomb that gives off thick smoke when it explodes; used to make a smoke screen or to mark a position +n04246731 a small house where smoke is used to cure meat or fish +n04246855 a passenger car for passengers who wish to smoke +n04247011 (military) screen consisting of a cloud of smoke that obscures movements +n04247440 room in a hotel or club set apart for smokers +n04247544 a firearm that has no rifling +n04247630 a small plane for finish work +n04247736 usually inexpensive bar +n04247876 a simple jointed bit for a horse; without a curb +n04248209 a fastener used on clothing; fastens with a snapping sound +n04248396 a brim that can be turned up and down on opposite sides +n04248507 a hat with a snap brim +n04248851 a trap for birds or small mammals; often has a slip noose +n04249415 a small drum with two heads and a snare stretched across the lower head +n04249582 a pulley-block that can be opened to receive the bight of a rope +n04249882 a globular glass with a small top; used for serving brandy +n04250224 an extremely powerful rifle developed for the military; capable of destroying light armored vehicles and aircraft more than a mile away +n04250473 (plural) hand shears for cutting sheet metal +n04250599 a kind of snowmobile +n04250692 an ornamental net in the shape of a bag that confines a woman's hair; pins or ties at the back of the head +n04250850 air passage provided by a retractable device containing intake and exhaust pipes; permits a submarine to stay submerged for extended periods of time +n04251144 breathing device consisting of a bent tube fitting into a swimmer's mouth and extending above the surface; allows swimmer to breathe while face down in the water +n04251701 a mound or heap of snow +n04251791 a board that resembles a broad ski or a small surfboard; used in a standing position to slide down snow-covered slopes +n04252077 tracked vehicle for travel on snow having skis in front +n04252225 a vehicle used to push snow from roads +n04252331 a device to help you walk on deep snow; a lightweight frame shaped like a racquet is strengthened with cross pieces and contains a network of thongs; one is worn on each foot +n04252560 a child's overgarment for cold weather +n04252653 a machine that removes snow by scooping it up and throwing it forcefully through a chute +n04253057 a small ornamental box for carrying snuff in your pocket +n04253168 a cone-shaped implement with a handle; for extinguishing candles +n04253304 scissors for cropping and holding the snuff of a candlewick +n04253931 a crate for packing soap +n04254009 a bathroom or kitchen fixture for holding a bar of soap +n04254120 dispenser of liquid soap +n04254450 a cleaning pad containing soap +n04254680 an inflated ball used in playing soccer +n04254777 hosiery consisting of a cloth covering for the foot; worn inside the shoe; reaches to between the ankle and the knee +n04255163 receptacle where something (a pipe or probe or end of a bone) is inserted +n04255346 a wrench with a handle onto which sockets of different sizes can be fitted +n04255499 a plain plinth that supports a wall +n04255586 a can for holding soft drinks +n04255670 an apparatus for dispensing soda water +n04255768 a counter where ice cream and sodas and sundaes are prepared and served +n04255899 a house built of sod or adobe laid in horizontal courses +n04256318 lamp in which an electric current passed through a tube of sodium vapor makes a yellow light; used is street lighting +n04256520 an upholstered seat for more than one person +n04256758 the underside of a part of a building (such as an arch or overhang or beam etc.) +n04256891 ball used in playing softball +n04257223 a pedal on a piano that moves the action closer to the strings and so soften the sound +n04257684 drain that conveys liquid waste from toilets, etc. +n04257790 electrical device consisting of a large array of connected solar cells +n04257986 a cell that converts solar energy into electrical energy +n04258138 a concave mirror that concentrates the rays of the sun; can produce high temperatures +n04258333 a heater that makes direct use of solar energy +n04258438 a house designed to use solar radiation for heating; usually has large areas of glass in front of heat-absorbing materials +n04258618 a telescope designed to make observations of the sun +n04258732 a system that converts sunlight into heat +n04258859 a hand tool with a heatable tip; used to melt and apply solder +n04259202 a coil of wire around an iron core; becomes a magnet when current passes through the coil +n04259468 armor plate that protects the foot; consists of mail with a solid toe and heel +n04259630 a straw hat with a tall crown and broad brim; worn in American southwest and in Mexico +n04260192 depth finder for determining depth of water or a submerged object by means of ultrasound waves +n04260364 an image of a structure that is produced by ultrasonography (reflections of high-frequency sound waves); used to observe fetal growth or to study bodily organs +n04260589 an instrument that uses the differential transmission and reflection of ultrasonic waves in order to provide an image of a bodily organ +n04261116 a machine for sorting things (such as punched cards or letters) into classes +n04261281 an open-air market in an Arabian city +n04261369 contact (the part of a bell) against which the clapper strikes +n04261506 a resonating chamber in a musical instrument (as the body of a violin) +n04261638 a movie camera that records sounds in synchrony with the visual images +n04261767 a device for making soundings +n04261868 motion-picture film with sound effects and dialogue recorded on it +n04262161 (music) resonator consisting of a thin board whose vibrations reinforce the sound of the instrument +n04262530 a research rocket used to obtain information about the atmosphere at various altitudes +n04262678 a recording of acoustic signals +n04262869 a spectrograph for acoustic spectra +n04263257 a bowl for serving soup +n04263336 a ladle for serving soup +n04263502 a spoon with a rounded bowl for eating soup +n04263760 any device serving as a source of visible electromagnetic radiation +n04263950 an organ stop resulting in a soft muted sound +n04264134 a narrow braid used as a decorative trimming +n04264233 a long cassock with buttons down the front; worn by Roman Catholic priests +n04264361 waterproof hat with wide slanting brim longer in back than in front +n04264485 soybeans bought or sold at an agreed price for delivery at a specified future date +n04264628 the bar-shaped typewriter key that introduces spaces when used +n04264765 a spacecraft designed to transport people and support human life in outer space +n04264914 a craft capable of traveling in outer space; technically, a satellite around the sun +n04265275 heater consisting of a self-contained (usually portable) unit to warm a room +n04265428 a helmet worn by astronauts while in outer space +n04265904 a rocket powerful enough to travel into outer space +n04266014 a reusable spacecraft with wings for a controlled descent through the Earth's atmosphere +n04266162 a manned artificial satellite in a fixed orbit designed for scientific research +n04266375 a pressure suit worn by astronauts while in outer space +n04266486 a sturdy hand shovel that can be pushed into the earth with the foot +n04266849 a thin bit with a center point and cutting edges on either side +n04266968 a complicated highway interchange with multiple overpasses +n04267091 a German machine gun +n04267165 an elastic synthetic fabric +n04267246 an approximately triangular surface area between two adjacent arches and the horizontal plane above them +n04267435 a fore-and-aft sail set on the aftermost lower mast (usually the mizzenmast) of a vessel +n04267577 a stout rounded pole of wood or metal used to support rigging +n04267985 a horizontal pipe having fine holes drilled throughout its length so as to deliver a spray of water +n04268142 a wire net to stop sparks from an open fireplace or smokestack +n04268275 electrical device to reduce sparking when electrical contacts are opened or closed +n04268418 an instrument that detects ionizing radiation from elementary particles +n04268565 an induction coil used to create sparks +n04268799 a component of an ignition system; consists of two shaped electrodes and the space between them +n04269086 (on early automobiles) a lever mounted on the steering column and used to adjust the timing of the ignition +n04269270 electrical device that fits into the cylinder head of an internal-combustion engine and ignites the gas by means of an electric spark +n04269502 a wrench for removing or tightening spark plugs into the cylinder head of an internal combustion engine +n04269668 an early radio transmitter using a discharge across a spark gap as the source of its power +n04269822 a cloth covering (a legging) that covers the instep and ankles +n04269944 a hand tool with a thin flexible blade used to mix or spread soft substances +n04270147 a turner with a narrow flexible blade +n04270371 a telephone with a microphone and loudspeaker; can be used without picking up a handset; several people can participate in a call at the same time +n04270576 a trumpet-shaped acoustic device to intensify and direct the human voice; formerly held to the ear by a hard-of-hearing person +n04270891 a long pointed rod used as a tool or weapon +n04271148 an implement with a shaft and barbed point used for catching fish +n04271531 a store that sells only one kind of merchandise +n04271793 a bottle for holding urine specimens +n04271891 an elaborate and remarkable display on a lavish scale +n04272054 optical instrument consisting of a frame that holds a pair of lenses for correcting defective vision +n04272389 a woman's pump with medium heel; usually in contrasting colors for toe and heel +n04272782 a spectroscope by which spectra can be photographed +n04272928 a photometer for comparing two light radiations wavelength by wavelength +n04273064 an optical instrument for spectrographic analysis +n04273285 a medical instrument for dilating a bodily passage or cavity in order to examine the interior +n04273569 a fast motorboat +n04273659 a hindrance to speeding created by a crosswise ridge in the surface of a roadway +n04273796 a meter fixed to a vehicle that measures and displays its speed +n04273972 an ice skate with a long blade; worn for racing +n04274686 a measuring instrument for measuring the curvature of a surface +n04274985 a pressure gauge for measuring blood pressure +n04275093 a mill for grinding spices +n04275175 a rack for displaying containers filled with spices +n04275283 a skillet made of cast iron +n04275548 a web resembling the webs spun by spiders +n04275661 sports equipment consisting of a sharp point on the sole of a shoe worn by athletes +n04275904 a large stout nail +n04277352 a stick or pin used to twist the yarn in spinning +n04277493 any of various rotating shafts that serve as axes for larger rotating parts +n04277669 a piece of wood that has been turned on a lathe; used as a baluster, chair leg, etc. +n04277826 a clothes dryer that uses centrifugal motion to dry the clothes that are put into it +n04278247 early model harpsichord with only one string per note +n04278353 a small and compactly built upright piano +n04278447 a large and usually triangular headsail; carried by a yacht as a headsail when running before the wind +n04278605 fisherman's lure; revolves when drawn through the water +n04278932 spinning machine that draws, twists, and winds yarn +n04279063 an early spinning machine with multiple spindles +n04279172 a textile machine for spinning yarn and thread +n04279353 a fishing rod designed for casting a spinning lure +n04279462 a small domestic spinning machine with a single spindle that is driven by hand or foot +n04279858 an oblique bandage in which successive turns overlap preceding turns +n04279987 a screwdriver with a ratchet (so the blade turns in only one direction) and a spiral in the handle (so the blade rotates) with downward pressure on the handle +n04280259 a spring that is wound like a spiral +n04280373 a lamp that burns a volatile liquid fuel such as alcohol +n04280487 a stove that burns a volatile liquid fuel such as alcohol +n04280845 a measuring instrument for measuring the vital capacity of the lungs +n04280970 a skewer for holding meat over a fire +n04281260 a receptacle for spit (usually in a public place) +n04281375 protective covering consisting of a panel to protect people from the splashing water or mud etc. +n04281571 a protective covering over or beside a wheel to protect the upper part of a vehicle from splashes of mud +n04281998 a junction where two things (as paper or film or magnetic tape) have been joined together +n04282231 a mechanical device for joining two pieces of paper or film or magnetic tape +n04282494 an orthopedic mechanical device used to immobilize and protect a part of the body (as a broken leg) +n04282872 a rail that is split from a log +n04282992 a brand of fine English porcelain +n04283096 a hinged airfoil on the upper surface of an aircraft wing that is raised to reduce lift and increase drag +n04283255 an airfoil mounted on the rear of a car to reduce lift at high speeds +n04283378 support consisting of a radial member of a wheel joining the hub to the rim +n04283585 a small plane that has a handle on each side of its blade; used for shaping or smoothing cylindrical wooden surfaces (originally wheel spokes) +n04283784 any soft porous fabric (especially in a loose honeycomb weave) +n04283905 a wet mop with a sponge as the absorbent +n04284002 a piece of cutlery with a shallow bowl-shaped container and a handle; used to stir or serve or take up food +n04284341 formerly a golfing wood with an elevated face +n04284438 trademark for a plastic eating utensil that has both tines and a bowl like a spoon +n04284572 a fur or leather pouch worn at the front of the kilt as part of the traditional dress of Scottish Highlanders +n04284869 a maneuverable kite controlled by two lines and flown with both hands +n04285008 a small low car with a high-powered engine; usually seats two persons +n04285146 equipment needed to participate in a particular sport +n04285622 an implement used in a sport +n04285803 attire worn for sport or for casual wear +n04285965 a high-performance four-wheel drive car built on a truck chassis +n04286128 a business establishment for entertainment +n04286575 a lamp that produces a strong beam of light to illuminate a restricted area; used to focus attention of a stage performer +n04286960 each of the welds made by welding at a separate point +n04287351 an oil well that is spouting +n04287451 a chock or bar wedged under a wheel or between the spokes to prevent a vehicle from rolling down an incline +n04287747 an applicator resembling a gun for applying liquid substances (as paint) in the form of a spray +n04287898 paint applied with a spray gun +n04287986 a hand tool for spreading something +n04288165 an ornament that resembles a spray of leaves or flowers +n04288272 a metal elastic device that returns to its shape or position when pushed or pulled or pressed +n04288533 a balance that measure weight by the tension on a helical spring +n04288673 a flexible board for jumping upward +n04289027 mechanical device that attaches to a garden hose for watering lawn or garden +n04289195 a system for extinguishing fires; water from a network of overhead pipes is released through nozzles that open automatically with the rise in temperature +n04289449 a light spar that crosses a fore-and-aft sail diagonally +n04289576 a fore-and-aft sail extended by a sprit +n04289690 thin wheel with teeth that engage with a chain +n04289827 roller that has teeth on the rims to pull film or paper through +n04290079 (nautical) small stuff consisting of a lightweight rope made of several rope yarns loosely wound together +n04290259 a sharp prod fixed to a rider's heel and used to urge a horse onward +n04290507 gear wheels that mesh in the same plane +n04290615 a Russian artificial satellite +n04290762 a satellite with sensors to detect nuclear explosions +n04291069 a room in a police station where members of the force assemble for roll call and duty assignments +n04291242 a hand tool consisting of two straight arms at right angles; used to construct or test right angles +n04291759 a double knot made of two half hitches and used to join the ends of two cords +n04291992 a square-rigged sailing ship +n04292080 a four-sided sail set beneath a horizontal yard suspended at the middle from a mast +n04292221 rubber ball used in playing squash +n04292414 a small racket with a long handle used for playing squash +n04292572 the loudspeaker on an intercom or public address system +n04292921 T-shaped cleaning implement with a rubber edge across the top; drawn across a surface to remove water (as in washing windows) +n04293119 a kitchen utensil for squeezing juice from fruit +n04293258 an electric circuit that cuts off a receiver when the signal becomes weaker than the noise +n04293744 a small arch built across the interior angle of two walls (usually to support a spire) +n04294212 a device for making something stable +n04294426 airfoil consisting of a device for stabilizing an aircraft +n04294614 a rigid metal bar between the front suspensions and between the rear suspensions of cars and trucks; serves to stabilize the chassis +n04294879 a farm building for housing horses or other livestock +n04295081 gear for a horse +n04295353 accommodation for animals (especially for horses) +n04295571 storage space in a library consisting of an extensive arrangement of bookshelves where most of the books are stored +n04295777 a base or platform on which hay or corn is stacked +n04295881 a large structure for open-air sports or entertainments +n04296562 a large platform on which people can stand and can be seen by an audience +n04297098 a large coach-and-four formerly used to carry passengers and mail on regular routes between towns +n04297750 a window made of stained glass +n04297847 a strip of carpet for laying on stairs +n04298053 a rod that holds a stair-carpet in the angle between two steps +n04298661 a vertical well around which there is a stairway +n04298765 a strong wooden or metal post with a point at one end so it can be driven into the ground +n04299215 a booth where articles are displayed for sale +n04299370 a compartment in a stable where a single animal is confined and fed +n04299963 a block or die used to imprint a mark or design +n04300358 a mill in which ore is crushed with stamps +n04300509 a power tool that stamps +n04300643 any vertical post or rod used as a support +n04301000 a small table for holding articles of various kinds +n04301242 an upright pole or beam (especially one used as a support) +n04301474 a primary cell used as a standard of electromotive force +n04301760 a transmission that is operated manually with a gear lever and a clutch pedal +n04302200 a large printing press that exerts pressure vertically +n04302863 a light open horse-drawn carriage with two or four wheels and one seat +n04302988 a steam-powered automobile +n04303095 paper fastener consisting of a short length of U-shaped wire that can fasten papers together +n04303258 a short U-shaped wire nail for securing cables +n04303357 a hand-held machine for driving staples home +n04303497 a machine that inserts staples into sheets of paper in order to fasten them together +n04304215 a spacecraft designed to carry a crew into interstellar space (especially in science fiction) +n04304375 an electric motor for starting an engine +n04304680 a movable barrier on the starting line of a race course +n04305016 an electric furnace in which an electric arc provides the source of heat for making steel +n04305210 a government building in which a state legislature meets +n04305323 a mansion that is (or formerly was) occupied by an aristocratic family +n04305471 a prison maintained by a state of the U.S. +n04305572 a guest cabin +n04305947 a measuring instrument used to measure static pressure in a stream of fluid +n04306080 a facility equipped with special equipment and personnel for a particular purpose +n04306592 mechanical device consisting of the stationary part of a motor or generator in or around which the rotor revolves +n04306847 a sculpture representing a human or animal +n04307419 (nautical) brace consisting of a heavy rope or wire cable used as a support for a mast or spar +n04307767 a fore-and-aft sail set on a stay (as between two masts) +n04307878 a restaurant that specializes in steaks +n04307986 a sharp table knife used in eating steak +n04308084 an aircraft designed in accordance with technology that makes detection by radar difficult +n04308273 a bomber that is difficult to detect by radar +n04308397 a fighter that is difficult to detect by radar; is built for precise targeting and uses laser-guided bombs +n04308583 a room that can be filled with steam in which people bathe; `vapour bath' is a British term +n04308807 a boat propelled by a steam engine +n04308915 the chamber from which steam is distributed to a cylinder +n04309049 external-combustion engine in which heat is used to raise steam which either turns a turbine or forces a piston to move up and down in a cylinder +n04309348 a ship powered by one or more steam engines +n04309548 a cooking utensil that can be used to cook food by steaming it +n04309833 a pressing iron that can emit steam +n04310018 a locomotive powered by a steam engine +n04310157 vehicle equipped with heavy wide smooth rollers for compacting roads and pavements +n04310507 a power shovel that is driven by steam +n04310604 turbine in which steam strikes blades and makes them turn +n04310721 a whistle in which the sound is produced by steam; usually attached to a steam boiler +n04310904 knife sharpener consisting of a ridged steel rod +n04311004 a steel bridge constructed in the form of an arch +n04311174 a concave percussion instrument made from the metal top of an oil drum; has an array of flattened areas that produce different tones when struck (of Caribbean origin) +n04311595 a factory where steel is made +n04312020 abrader consisting of a pad of steel wool used for polishing or smoothing +n04312154 a portable balance consisting of a pivoted bar with arms of unequal length +n04312432 a tall tower that forms the superstructure of a building (usually a church or temple) and that tapers to a point at the top +n04312654 the cheapest accommodations on a passenger ship +n04312756 a gear that couples the steering wheel to the steering linkage of a motor vehicle +n04312916 mechanism consisting of a system of rods and levers connected to the front wheels of a motor vehicle; the steering gear pushes it left or right which swivels the front wheels, causing the vehicle to turn +n04313220 a mechanism by which something is steered (especially a motor vehicle) +n04313503 a handwheel that is used for steering +n04313628 an ancient upright stone slab bearing markings +n04314107 a watch that is wound by turning a knob at the stem +n04314216 a sheet of material (metal, plastic, cardboard, waxed paper, silk, etc.) that has been perforated with a pattern (printing or a design); ink or paint can pass through the perforations to create the printed pattern on the surface below +n04314522 a lightweight British submachine gun +n04314632 a machine for typewriting shorthand characters +n04314914 support consisting of a place to rest the foot while ascending or descending a stairway +n04315342 a transformer that reduces voltage +n04315713 a stool that has one or two steps that fold under the seat +n04315828 a transformer that increases voltage +n04315948 reproducer in which two microphones feed two or more loudspeakers to give a three-dimensional effect to the sound +n04316498 an optical device for viewing stereoscopic photographs +n04316815 a naval gun able to fire astern at a ship in chase +n04316924 (nautical) the principal upright timber at the stern of a vessel +n04317063 a paddle steamer having the paddle wheel in the stern +n04317175 a medical instrument for listening to the sounds generated inside the body +n04317325 a saucepan used for stewing +n04317420 an implement consisting of a length of wood +n04317833 a long thin implement resembling a length of wood +n04317976 a lever used by a pilot to control the ailerons and elevators of an airplane +n04318131 a long implement (usually made of wood) that is shaped so that hockey or polo players can hit a puck or ball +n04318787 an upright that is a member in a door or window frame +n04318892 a small dagger with a tapered blade +n04318982 an apparatus used for the distillation of liquids; consists of a vessel in which a substance is vaporized by heat and a condenser where the vapor is condensed +n04319545 a pantry or storeroom connected with the kitchen (especially in a large house) for preparing tea and beverages and for storing liquors and preserves and tea etc +n04319774 a large pipe wrench with L-shaped adjustable jaws that tighten as pressure on the handle is increased +n04319937 one of two stout poles with foot rests in the middle; used for walking high above the ground +n04320405 a portable low altitude surface-to-air missile system using infrared guidance and an impact fuse; fired from the shoulder +n04320598 a small bomb designed to give off a foul odor when it explodes +n04320871 an implement used for stirring +n04320973 support consisting of metal loops into which rider's feet go +n04321121 a hand-operated reciprocating pump; used in fighting fires +n04321453 a short straight stick of wood +n04322026 the handle of a handgun or the butt end of a rifle or shotgun or part of the support of a machine gun or artillery gun +n04322531 fortification consisting of a fence made of a line of stout posts set firmly for defense +n04322692 boxcar with latticed sides; for transporting livestock +n04322801 a racing car with the basic chassis of a commercially available car +n04323519 knit used especially for infants' wear and undergarments +n04323819 close-fitting hosiery to cover the foot and leg; come in matched pairs (usually used in the plural) +n04324120 any equipment constantly used as part of a profession or occupation +n04324297 a pot used for preparing soup stock +n04324387 storeroom for storing goods and supplies used in a business +n04324515 a former instrument of punishment consisting of a heavy timber frame with holes in which the feet (and sometimes the hands) of an offender could be locked +n04325041 an ornamented saddle used by cowboys; has a high horn to hold the lariat +n04325208 enclosed yard where cattle, pigs, horses, or sheep are kept temporarily +n04325704 a wide scarf worn about their shoulders by women +n04325804 garment consisting of a V-shaped panel of stiff material worn over the chest and stomach in the 16th century +n04325968 a suction pump used to remove the contents of the stomach +n04326547 a fence built of rough stones; used to separate fields +n04326676 ceramic ware that is fired in high heat and vitrified and nonporous +n04326799 masonry done with stone +n04326896 a simple seat without a back or arms +n04327204 small porch or set of steps at the front entrance of a house +n04327544 an acid bath used to stop the action of a developer +n04327682 faucet consisting of a rotating device for regulating flow of a liquid +n04328054 a knot that prevents a rope from passing through a hole +n04328186 a timepiece that can be started or stopped for exact timing (as of a race) +n04328329 a voltaic battery that stores electric charge +n04328580 a cell that can be recharged +n04328703 container consisting of a set of magnets set in a doughnut-shaped ring around which charged particles from an accelerator can be kept circulating until they are used +n04328946 the area in any structure that provides space for storage +n04329477 a room in which things are stored +n04329681 an underground shelter where you can go until a storm passes +n04329834 an extra outer door for protection against severe weather or winter +n04329958 a window outside an ordinary window to protect against severe weather or winter +n04330109 basin for holy water +n04330189 an archaic drinking vessel +n04330267 any heating apparatus +n04330340 a kitchen appliance used for cooking food +n04330669 a small machine bolt +n04330746 chimney consisting of a metal pipe of large diameter that is used to connect a stove to a flue +n04330896 plate iron that is thinner than tank iron +n04330998 a violin made by Antonio Stradivari or a member of his family +n04331277 a straight-backed chair without arms +n04331443 hand tool consisting of a flat rigid rectangular bar (metal or wood) that can be used to draw straight lines (or test their straightness) +n04331639 a device for straightening +n04331765 a rock drill with flutes that are straight +n04331892 pin consisting of a short straight stiff piece of wire with a pointed end; used to fasten pieces of cloth or paper together +n04332074 a razor with a straight cutting edge enclosed in a case that forms a handle when the razor is opened for use +n04332243 a filter to retain larger pieces while smaller pieces and liquids pass through +n04332580 a garment similar to a jacket that is used to bind the arms tightly against the body as a means of restraining a violent person +n04332987 whip consisting of a strip of leather used in flogging +n04333129 an elongated leather strip (or a strip of similar material) for binding things together or holding something in position +n04333869 a hinge with two long straps; one strap is fastened to the surface of a moving part (e.g., a door or lid) and the other is fastened to the adjacent stationary frame +n04334105 a woman's garment that exposes the shoulders and has no shoulder straps +n04334365 an artificial fly that has wings extending back beyond the crook of the fishhook +n04334504 a streamlined train +n04334599 a thoroughfare (usually including sidewalks) that is lined with buildings +n04335209 the part of a thoroughfare between the sidewalks; the part of the thoroughfare on which vehicles travel +n04335435 a wheeled vehicle that runs on rails and is propelled by electricity +n04335693 ordinary clothing suitable for public appearances (as opposed to costumes or sports apparel or work clothes etc.) +n04335886 a lamp supported on a lamppost; for illuminating a street +n04336792 a litter for transporting people who are ill or wounded or dead; usually consists of a sheet of canvas stretched between two poles +n04337157 a wooden framework on which canvas is stretched and fixed for oil painting +n04337287 trousers made of a stretchy fabric +n04337503 a tool or rod used to level off grain or other granular material that is heaped in a measure +n04337650 an implement for sharpening scythes +n04338517 a musical instrument in which taut strings provide the source of sound +n04338963 a long horizontal timber to connect uprights +n04339062 brace consisting of a longitudinal member to strengthen a fuselage or hull +n04339191 a very narrow necktie usually tied in a bow +n04339638 thin piece of wood or metal +n04339879 light consisting of long tubes (instead of bulbs) that provide the illumination +n04340019 a mercantile establishment consisting of a row of various stores and business and restaurants along a road or busy street; usually opening on a parking lot +n04340521 scientific instrument that provides a flashing light synchronized with the periodic movement of an object; can make moving object appear stationary +n04340750 a strongly made box for holding money or valuables; can be locked +n04340935 a strongly fortified defensive structure +n04341133 a burglarproof and fireproof room in which valuables are kept +n04341288 a leather strap used to sharpen razors +n04341414 support that is a constituent part of any structure or building +n04341686 a thing constructed; a complex entity constructed of many parts +n04343511 a center for student activities at a college or university +n04343630 a reading lamp with a flexible neck; used on a desk +n04343740 a building on a college campus dedicated to social and organizational activities of the student body +n04344003 a small permanent magnet in a metal container; when the magnet clicks against the container it indicates that the magnet is directly over an iron nail that holds the wallboard to a stud +n04344734 an apartment with a living space and a bathroom and a small kitchen +n04344873 convertible consisting of an upholstered couch that can be converted into a double bed +n04345028 a room used for reading and writing and studying +n04345201 a classroom reserved for study +n04345787 a nut used to tighten a stuffing box +n04346003 (cricket) any of three upright wooden posts that form the wicket +n04346157 a weapon designed to disable a victim temporarily by delivering a nonlethal high-voltage electric shock +n04346328 a dome-shaped shrine erected by Buddhists +n04346428 a pen for swine +n04346511 a pointed tool for writing or drawing or engraving +n04346679 a sharp pointed device attached to the cartridge of a record player +n04346855 a unit assembled separately but designed to fit with other units in a manufactured product +n04347119 a car smaller than a compact car +n04347519 machine gun that is a portable automatic firearm +n04347754 a submersible warship usually armed with torpedoes +n04348070 a torpedo designed to be launched from a submarine +n04348184 a warship designed to operate under water +n04348359 an apparatus intended for use under water +n04348988 a machine that subtracts numbers +n04349189 a token that is used to pay for entry to the subway system +n04349306 a train that runs in a subway system +n04349401 a loudspeaker that is designed to reproduce very low bass frequencies +n04349913 a cup-shaped device (made of rubber, glass, or plastic) that produces a partial vacuum; used to adhere or draw something to a surface +n04350104 a pump for raising fluids by suction +n04350235 a bathhouse for hot air baths or steam baths +n04350458 a fabric made to resemble suede leather +n04350581 a dish in which sugar is served +n04350688 a refinery for sugar +n04350769 a spoon for serving sugar; often made in the shape of a seashell +n04350905 a set of garments (usually including a jacket and trousers or skirt) for outerwear all of the same fabric and color +n04351550 apartment consisting of a series of connected rooms used as a living unit (as in a hotel) +n04351699 a fabric used for suits +n04353573 a light two-wheeled vehicle for one person; drawn by one horse +n04354026 a country house (usually located in the country) that provides a cool place to live in the summer +n04354182 the circular ring in which Sumo wrestlers compete +n04354387 an oil reservoir in an internal combustion engine +n04354487 a suction pump for removing liquid from a sump +n04354589 a large bonnet that shades the face; worn by girls and women +n04355115 the best attire you have which is worn to church on Sunday +n04355267 an unroofed deck +n04355338 timepiece that indicates the daylight hours by the shadow that the gnomon casts on a calibrated dial +n04355511 a light loose sleeveless summer dress with a wide neckline and thin shoulder straps that expose the arms and shoulders +n04355684 miscellaneous objects too numerous or too small to be specified +n04355821 the central gear in an epicyclic train +n04355933 a convex lens that focuses the rays of the sun; used to start a fire +n04356056 spectacles that are darkened or polarized to protect the eyes from the glare of the sun +n04356595 a hat with a broad brim that protects the face from direct exposure to the sun +n04356772 a mercury-vapor lamp used in medical or cosmetic treatments +n04356925 a room enclosed largely with glass and affording exposure to the sun +n04357121 an automobile roof having a sliding or raisable panel +n04357314 a cream spread on the skin; contains a chemical (as PABA) to filter out ultraviolet light and so protect from sunburn +n04357531 a child's garment consisting of a brief top and shorts +n04357930 compressor that forces increased oxygen into the cylinders of an internal-combustion engine +n04358117 a mainframe computer that is one of the most powerful available at a given time +n04358256 a collider that operates at very low temperatures +n04358491 an extensive electronic network (such as the internet) used for the rapid transfer of sound and video and graphics in digital form +n04358707 a large self-service grocery store selling groceries and dairy products and household goods +n04358874 structure consisting of the part of a ship above the main deck +n04359034 the largest class of oil tankers +n04359124 usually a small luxurious nightclub +n04359217 walking stick made from the wood of an American tropical vine +n04359335 a mechanical device for holding something and supplying it as needed +n04359500 a closet for storing supplies +n04359589 any device that bears the weight of another thing +n04360501 supporting structure that holds up or provides a foundation +n04360798 a column that supports a heavy weight +n04360914 elasticized stocking intended to reduce pressure on the veins of the leg (as in case of varicose veins) +n04361095 a structure that serves to support something +n04361260 a tower that serves to support something +n04361937 a tunic worn over a knight's armor +n04362624 gauge consisting of a scriber mounted on an adjustable stand; used to test the accuracy of plane surfaces +n04362821 a ski tow that pulls skiers up a slope without lifting them off the ground +n04362972 a naval radar to search for surface targets +n04363082 a warship that operates on the surface of the water +n04363210 a guided missile fired from land or shipboard against an airborne target +n04363412 the shipboard system that fires missiles at aircraft +n04363671 a boat that can be launched or landed in heavy surf +n04363777 a loose outer coat usually of rich material +n04363874 any of several knots used in tying stitches or ligatures +n04363991 a room where a doctor or dentist can be consulted +n04364160 electrical device inserted in a power line to protect equipment from sudden fluctuations in current +n04364397 a loosely woven cotton dressing for incisions made during surgery +n04364545 a medical instrument used in surgery +n04364827 a very sharp knife used in surgery +n04364994 a loose-fitting white ecclesiastical vestment with wide sleeves +n04365112 a light four-wheeled horse-drawn carriage; has two or four seats +n04365229 a man's overcoat in the style of a frock coat +n04365328 a closed-circuit television system used to maintain close observation of a person or group +n04365484 an instrument used by surveyors +n04365751 surveying instrument consisting basically of a small telescope with an attached spirit level rotating around a vertical axis; for measuring relative heights of land +n04366033 a bar where sushi is served +n04366116 a mechanical system of springs or shock absorbers connecting the wheels and axles to the chassis of a wheeled vehicle +n04366367 a bridge that has a roadway supported by cables that are anchored at both ends +n04366832 a bandage of elastic fabric applied to uplift a dependant part (as the scrotum or a pendulous breast) +n04367011 a pedal on a piano that lifts the dampers from the strings and so allows them to continue vibrating +n04367371 a seam used in surgery +n04367480 cleaning implement consisting of absorbent material fastened to a handle; for cleaning floors +n04367746 implement consisting of a small piece of cotton that is used to apply medication or cleanse a wound or obtain a specimen of a secretion +n04367950 a garment (a gown or narrow strips of cloth) for an infant +n04368109 a bundle containing the personal belongings of a swagman +n04368235 an iron block cut with holes and grooves to assist in cold working metal +n04368365 a short cane or stick covered with leather and carried by army officers +n04368496 a man's full-dress jacket with two long tapering tails at the back +n04368695 an amphibious vehicle typically having four-wheel drive and a raised body +n04368840 soft woolen fabric used especially for baby clothes +n04369025 an enveloping bandage +n04369282 an implement with a flat part (of mesh or plastic) and a long handle; used to kill insects +n04369485 a porous bag (usually of canvas) that holds water and cools it by evaporation +n04369618 a band of fabric or leather sewn inside the crown of a hat +n04370048 a crocheted or knitted garment covering the upper part of the body +n04370288 loose-fitting trousers with elastic cuffs; worn by athletes +n04370456 cotton knit pullover with long sleeves worn during athletic activity +n04370600 factory where workers do piecework for poor pay and are prevented from forming unions; common in the clothing industry +n04370774 garment consisting of sweat pants and a sweatshirt +n04370955 a long oar used in an open boat +n04371050 a second hand that is mounted on the same center as the hour and minute hand and is read on the minutes +n04371430 swimsuit worn by men while swimming +n04371563 tight fitting garment worn for swimming +n04371774 mechanical device used as a plaything to support someone swinging back and forth +n04371979 a door that swings on a double hinge; opens in either direction +n04372370 control consisting of a mechanical or electrical or electronic device for making or breaking or changing the connections in a circuit +n04373089 a pocketknife with a blade that springs open at the press of a button +n04373428 a locomotive for switching rolling stock in a railroad yard +n04373563 a coupling (as in a chain) that has one end that turns on a headed pin +n04373704 a chair that swivels on its base +n04373795 a small stick used to stir mixed drinks +n04373894 a cutting or thrusting weapon that has a long metal blade and a hilt with a hand guard +n04374315 a cane concealing a sword or dagger +n04374521 a wrench with an S-shaped handle +n04374735 (Judaism) the place of worship for a Jewish congregation +n04374907 cyclotron that achieves relativistic velocities by modulating the frequency of the accelerating electric field +n04375080 a device used in photography to synchronize the peak of a flash with the opening of the camera shutter +n04375241 an automotive system for shifting gears in which the gears revolve at the same speed and so shift smoothly +n04375405 electrical converter consisting of a synchronous machine that converts alternating to direct current or vice versa +n04375615 electric motor in which the speed of rotation is proportional to the frequency of the A.C. power +n04375775 cyclotron in which the electric field is maintained at a constant frequency +n04375926 an instrument that indicates whether two periodic motions are synchronous (especially an instrument that enables a pilot to synchronize the propellers of a plane that has two or more engines) +n04376400 (music) an electronic instrument (usually played with a keyboard) that generates and modifies sounds electronically and can imitate a variety of other musical instruments +n04376876 a medical instrument used to inject or withdraw fluids +n04377057 instrumentality that combines interrelated interacting artifacts designed to work as a coherent entity +n04378489 a short sleeveless outer tunic emblazoned with a coat of arms; worn by a knight over his armor or by a herald +n04378651 (Judaism) a portable sanctuary in which the Jews carried the Ark of the Covenant on their exodus +n04378956 a sock with a separation for the big toe; worn with thong sandals by the Japanese +n04379096 the key on a typewriter or a word processor that causes a tabulation +n04379243 a piece of furniture having a smooth flat top that is usually supported by one or more vertical legs +n04379964 a piece of furniture with tableware for a meal laid out on it +n04380255 a fork for eating at a dining table +n04380346 a knife used for eating at dining table +n04380533 a lamp that sits on a table +n04380916 a circular saw mounted under a table or bench so that the blade of the saw projects up through a slot +n04381073 a spoon larger than a dessert spoon; used for serving +n04381450 a chair with an arm that has been widened for writing +n04381587 a table used for playing table tennis +n04381724 paddle used to play table tennis +n04381860 the top horizontal work surface of a table +n04381994 articles for use at the table (dishes and silverware and glassware) +n04382334 a small drum with one head of soft calfskin +n04382438 a low stool in the shape of a drum +n04382537 scientific instrument used by psychologists; presents visual stimuli for brief exposures +n04382695 a tachometer that produces a graphical record of its readings; used to record the speed and duration of trips in a motor vehicle +n04382880 measuring instrument for indicating speed of rotation +n04383015 a theodolite designed for rapid measurements +n04383130 a short nail with a sharp point and a large head +n04383301 a light hammer that is used to drive tacks +n04383839 a crisp smooth lustrous fabric +n04383923 the railing around the stern of a ship +n04384593 a gate at the rear of a vehicle; can be lowered for loading +n04384910 lamp (usually red) mounted at the rear of a motor vehicle +n04385079 custom-made clothing +n04385157 chalk used by tailors to make temporary marks on cloth +n04385536 a pipe carrying fumes from the muffler to the rear of a car +n04385799 rotor consisting of a rotating airfoil on the tail of a single-rotor helicopter; keeps the helicopter from spinning in the direction opposite to the rotation of the main rotor +n04386051 support consisting of the movable part of a lathe that slides along the bed in alignment with the headstock and is locked into position to support the free end of the workpiece +n04386456 any of various devices for reducing slack (as in a sewing machine) or taking up motion (as in a loom) +n04386664 a winged sandal (as worn by Hermes in Graeco-Roman art) +n04386792 a toilet powder made of purified talc and usually scented; absorbs excess moisture +n04387095 a woolen cap of Scottish origin +n04387201 a drum +n04387261 a frame made of two hoops; used for embroidering +n04387400 a shallow drum with a single drumhead and with metallic disks in the sides +n04387531 plain-woven (often glazed) fabric of wool or wool and cotton used especially formerly for linings and garments and curtains +n04387706 a tool for tamping (e.g., for tamping tobacco into a pipe bowl or a charge into a drill hole etc.) +n04387932 tampon used to absorb menstrual flow +n04388040 plug for the muzzle of a gun to keep out dust and moisture +n04388162 plug of cotton or other absorbent material; inserted into wound or body cavity to absorb exuded fluids (especially blood) +n04388473 a clay oven used in northern India and Pakistan +n04388574 a Chinese puzzle consisting of a square divided into seven pieces that must be arranged to match particular designs +n04388743 a large (usually metallic) vessel for holding gases or liquids +n04389033 an enclosed armored military vehicle; has a cannon and moves on caterpillar treads +n04389430 large drinking vessel with one handle +n04389521 a freight car that transports liquids or gases in bulk +n04389718 an armored vehicle equipped with an antitank gun and capable of high speeds +n04389854 a locomotive that carries its own fuel and water; no tender is needed +n04389999 an airplane constructed to transport chemicals that can be dropped in order to fight a forest fire +n04390483 a shell fired by the cannon on a tank +n04390577 a tight-fitting sleeveless shirt with wide shoulder straps and low neck and no front opening; often worn over a shirt or blouse +n04390873 a loudspeaker +n04390977 a plug for a bunghole in a cask +n04391445 a paperlike cloth made in the South Pacific by pounding tapa bark +n04391838 a recording made on magnetic tape +n04392113 measuring instrument consisting of a narrow strip (cloth or metal) marked in inches or centimeters and used for measuring lengths +n04392526 electronic equipment for making or playing magnetic tapes (but without amplifiers or speakers); a component in an audio system +n04392764 a mechanism that transports magnetic tape across the read/write heads of a tape playback/recorder +n04392985 electronic equipment for playing back magnetic tapes +n04393095 a magnetic recorder using magnetic tape +n04393301 a file with converging edges +n04393549 a heavy textile with a woven design; used for curtains and upholstery +n04393808 a lever that is moved in order to tap something else +n04393913 a wrench for turning a tap to create an internal screw thread +n04394031 (chemical analysis) a counterweight used in chemical analysis; consists of an empty container that counterbalances the weight of the container holding chemicals +n04394261 sports equipment consisting of an object set up for a marksman or archer to aim at +n04394421 a shipboard system for the detection and identification and location of a target with enough detail to permit effective weapon employment +n04394630 a paved surface having compressed layers of broken rocks held together with tar +n04395024 waterproofed canvas +n04395106 a cloth having a crisscross design +n04395332 one of two pieces of armor plate hanging from the fauld to protect the upper thighs +n04395651 a design on the skin made by tattooing +n04395875 a building with a bar that is licensed to sell alcoholic drinks +n04396226 a leather strap for punishing children +n04396335 a meter in a taxi that registers the fare (based on the length of the ride) +n04396650 a surface lift where riders hold a bar and are pulled up the hill on their skis +n04396808 small paper bag holding a measure of tea +n04396902 a kitchen utensil consisting of a perforated metal ball for making tea +n04397027 serving cart for serving tea or light refreshments +n04397168 chest for storing or transporting tea +n04397261 materials and equipment used in teaching +n04397452 a cup from which tea is drunk +n04397645 a long loose-fitting gown formerly popular for wear at afternoon tea +n04397768 kettle for boiling water to make tea +n04397860 a covered spoon with perforations +n04398044 pot for brewing tea; usually has a spout and handle +n04398497 a restaurant where tea and light meals are available +n04398688 a small spoon used for stirring tea or coffee; holds about one fluid dram +n04398834 a device to keep back tea leaves when pouring a cup of tea +n04398951 a small table for serving afternoon tea +n04399046 a tray that accommodates a tea service +n04399158 an urn in which tea is brewed and from which it is served +n04399382 plaything consisting of a child's toy bear (usually plush and stuffed with soft materials) +n04399537 a short peg put into the ground to hold a golf ball off the ground +n04399846 a hinge that looks like the letter T when it is opened; similar to a strap hinge except that one strap has been replaced by half of a butt hinge that can be mortised flush into the stationary frame +n04400109 a building that houses telecommunications equipment +n04400289 a communication system for communicating at a distance +n04400499 apparatus used to communicate at a distance over a wire (usually in Morse code) +n04400737 key consisting of a lever that sends a telegraph signal when it is depressed and the circuit is closed +n04400899 any scientific instrument for observing events at a distance and transmitting the information back to the observer +n04401088 electronic equipment that converts sound into electrical signals that can be transmitted over distances and then converts received signals back into sounds +n04401578 electric bell that rings to signal a call +n04401680 booth for using a telephone +n04401828 the telephone wire that connects to the handset +n04401949 a jack for plugging in a telephone +n04402057 a telephone connection +n04402342 a plug for connecting a telephone +n04402449 tall pole supporting telephone wires +n04402580 earphone that converts electrical signals into sounds +n04402746 a communication system that transmits sound between distant points +n04402984 the wire that carries telegraph and telephone signals +n04403413 a camera lens that magnifies the image +n04403524 a prompter for television performers +n04403638 a magnifier of images of distant objects +n04403925 gunsight consisting of a telescope on a firearm for use as a sight +n04404072 a thermometer that registers the temperature at some distant point +n04404200 a character printer connected to a telegraph that operates like a typewriter +n04404412 a telecommunication system that transmits images of objects (stationary or moving) between distant points +n04404817 an omnidirectional antenna tuned to the broadcast frequencies assigned to television +n04404997 television equipment consisting of a lens system that focuses an image on a photosensitive mosaic that is scanned by an electron beam +n04405540 electronic equipment that broadcasts or receives electromagnetic waves representing images and sound +n04405762 monitor used in a studio for monitoring the program being broadcast +n04405907 an electronic device that receives television signals and displays them on a screen +n04406239 a room set aside for viewing television +n04406552 transmitter that is part of a television system +n04406687 one of the conveyances (or cars) in a telpherage +n04406817 a transportation system in which cars (telphers) are suspended from cables and operated on electricity +n04407257 pigment mixed with water-soluble glutinous materials such as size and egg yolk +n04407435 place of worship consisting of an edifice for the worship of a deity +n04407686 an edifice devoted to special or exalted purposes +n04408871 a connection intended to be used for a limited time +n04409011 ship that usually provides supplies to other ships +n04409128 a boat for communication between ship and shore +n04409279 car attached to a locomotive to carry fuel and water +n04409384 a run-down apartment house barely meeting minimal standards +n04409515 ball about the size of a fist used in playing tennis +n04409625 a camp where tennis is taught +n04409806 a racket used to play tennis +n04409911 a projection at the end of a piece of wood that is shaped to fit into a mortise and form a mortise joint +n04410086 any of various drums with small heads +n04410365 a tenor bassoon; pitched a fifth higher than the ordinary bassoon +n04410485 a nail 3 inches long +n04410565 one of the bottle-shaped pins used in bowling +n04410663 a manometer for measuring vapor pressure +n04410760 a measuring instrument for measuring the surface tension of a liquid +n04410886 a measuring instrument for measuring the tension in a wire or fiber or beam +n04411019 a measuring instrument for measuring the moisture content of soil +n04411264 a portable shelter (usually of canvas stretched over supporting poles and fastened to the ground with ropes and pegs) +n04411835 a framework with hooks used for stretching and drying cloth +n04411966 one of a series of hooks used to hold cloth on a tenter +n04412097 flap consisting of a piece of canvas that can be drawn back to provide entrance to a tent +n04412300 a peg driven into the ground to hold a rope supporting a tent +n04412416 a Native American tent; usually of conical shape +n04413151 a contact on an electrical device (such as a battery) at which electric current enters or leaves +n04413419 electronic equipment consisting of a device providing access to a computer; has a keyboard and display +n04413969 a house that is part of a terrace +n04414101 a hard unglazed brownish-red earthenware +n04414199 a vivarium in which selected living plants are kept and observed +n04414319 earthenware made from the reddish-brown clay found on the Aegean island of Lemnos +n04414476 a pile fabric (usually cotton) with uncut loops on both sides; used to make bath towels and bath robes +n04414675 a step-up transformer with an air core; used to produce high voltages at high frequencies +n04414909 a small square tile of stone or glass used in making mosaics +n04415257 equipment required to perform a test +n04415663 a rocket fired for test purposes +n04415815 a room in which tests are conducted +n04416005 a movable protective covering that provided protection from above; used by Roman troops when approaching the walls of a besieged fortification +n04416901 a figure consisting of four stylized human arms or legs (or bent lines) radiating from a center +n04417086 a thermionic tube having four electrodes +n04417180 a machine for making textiles +n04417361 a factory for making textiles +n04417672 a house roof made with a plant material (as straw) +n04417809 a building where theatrical performances or motion-picture shows can be presented +n04418357 a hanging cloth that conceals the stage from the view of the audience; rises or parts at the beginning and descends or closes between acts and at the end of a performance +n04418644 any of various lights used in a theater +n04419073 a surveying instrument for measuring horizontal and vertical angles, consisting of a small telescope mounted on a tripod +n04419642 an electronic musical instrument; melodies can be played by moving the right hand between two rods that serve as antennas to control pitch; the left hand controls phrasing +n04419868 a printer that produces characters by applying heat to special paper that is sensitive to heat +n04420024 a nuclear reactor in which nuclear fissions are caused by neutrons that are slowed down by a moderator +n04420720 a kind of thermometer consisting of two wires of different metals that are joined at both ends; one junction is at the temperature to be measured and the other is held at a fixed lower temperature; the current generated in the circuit is proportional to the temperature difference +n04421083 a thermometer that uses thermoelectric current to measure temperature +n04421258 a thermometer that records temperature variations on a graph as a function of time +n04421417 medical instrument that uses an infrared camera to reveal temperature variations on the surface of the body +n04421582 a hydrometer that includes a thermometer +n04421740 a junction between two dissimilar metals across which a voltage appears +n04421872 measuring instrument for measuring temperature +n04422409 a nuclear reactor that uses controlled nuclear fusion to generate energy +n04422566 a kind of thermometer for measuring heat radiation; consists of several thermocouple junctions in series +n04422727 vacuum flask that preserves temperature of hot or cold drinks +n04422875 a regulator for automatically regulating temperature by starting or stopping the supply of heat +n04423552 protective garment consisting of a pad worn over the thighs by football players +n04423687 one of two shafts extending from the body of a cart or carriage on either side of the animal that pulls it +n04423845 a small metal cap to protect the finger while sewing; can be used as a small container +n04424692 shears with one serrate blade; used for thinning hair +n04425804 the base that must be touched third by a base runner in baseball +n04425977 the third from the lowest forward ratio gear in the gear box of a motor vehicle +n04426184 a rail through which electric current is supplied to an electric locomotive +n04426316 a thin strip of leather; often used to lash things together +n04426427 underpants resembling a G-string; worn by women especially under very tight pants +n04427216 a round arch whose inner curve is drawn with circles having three centers +n04427473 any ship having three decks +n04427559 radar that will report altitude as well as azimuth and distance of a target +n04427715 a business suit consisting of a jacket and vest and trousers +n04427857 the spine and much of the sides are a different material from the rest of the cover +n04428008 an electric switch that has three terminals; used to control a circuit from two different locations +n04428191 a farm machine for separating seeds or grain from the husks and straw +n04428382 a floor or ground area for threshing or treading out grain +n04428634 a shop that sells secondhand goods at reduced prices +n04429038 protective garment worn by hockey goalkeeper and catcher in baseball +n04429376 the chair of state for a monarch, bishop, etc. +n04430475 a bearing designed to take thrusts parallel to the axis of revolution +n04430605 a small rocket engine that provides the thrust needed to maneuver a spacecraft +n04430896 the part of a glove that provides a covering for the thumb +n04431025 a finger hole made to fit the thumb (as in a bowling ball) +n04431436 screw designed to be turned with the thumb and fingers +n04431648 protective covering for an injured thumb +n04431745 a tack for attaching papers to a bulletin board or drawing board +n04431925 a noisemaker that makes a sound like thunder +n04432043 a crosspiece spreading the gunnels of a boat; used as a seat in a rowboat +n04432203 a jeweled headdress worn by women on formal occasions +n04432662 a strong fabric used for mattress and pillow covers +n04432785 a small coil in series with the anode of a vacuum tube and coupled to the grid to provide feedback +n04433377 a horizontal beam used to prevent two other structural members from spreading apart or separating +n04433585 one of the cross braces that support the rails on a railway track +n04434207 a rack for storing ties +n04434531 either of two rods that link the steering gear to the front wheels +n04434932 skintight knit hose covering the body from the waist to the feet worn by acrobats and dancers and as stockings by women and girls +n04435180 a flat thin rectangular slab (as of fired clay or rubber or linoleum) used to cover surfaces +n04435552 a cutter (tool for cutting) for floor tiles +n04435653 a roof made of fired clay tiles +n04435759 lever used to turn the rudder on a boat +n04435870 a device for emptying a cask by tilting it without disturbing the dregs +n04436012 a pedestal table whose top is hinged so that it can be tilted to a vertical position +n04436185 a beam made of wood +n04436329 a post made of wood +n04436401 a hitch used to secure a rope to a log or spar; often supplemented by a half hitch +n04436542 small hand drum similar to a tambourine; formerly carried by itinerant jugglers +n04436832 a bomb that has a detonating mechanism that can be set to go off at a particular time +n04436992 container for preserving historical records to be discovered at some future time +n04437276 clock used to record the hours that people work +n04437380 chronoscope for measuring the time difference between two events +n04437670 a fuse made to burn for a given time (especially to explode a bomb) +n04437953 a measuring instrument or device for keeping time +n04438304 a timepiece that measures a time interval and signals its end +n04438507 a regulator that activates or deactivates a mechanism at set times +n04438643 a switch set to operate at a desired time +n04438897 a vessel (box, can, pan, etc.) made of tinplate and used mainly in baking +n04439505 a box for holding tinder +n04439585 prong on a fork or pitchfork or antler +n04439712 foil made of tin or an alloy of tin and lead +n04440597 a woman's fur shoulder cape with hanging ends; often consisting of the whole fur of a fox or marten +n04440963 chain attached to wheels to increase traction on ice or snow +n04441093 hand tool consisting of a lever that is used to force the casing of a pneumatic tire onto a steel wheel +n04441528 a hat (Cockney rhyming slang: `tit for tat' rhymes with `hat') +n04441662 barn originally built to hold tithes paid in kind and common in England +n04441790 an apparatus for performing a titration +n04442312 a kitchen appliance (usually electric) for toasting bread +n04442441 kitchen appliance consisting of a small electric oven for toasting or warming food +n04442582 long-handled fork for cooking or toasting frankfurters or bread etc. (especially over an open fire) +n04442741 a rack for holding slices of toast +n04443164 a pouch for carrying pipe tobacco +n04443257 a shop that sells pipes and pipe tobacco and cigars and cigarettes +n04443433 a long narrow sled without runners; boards curve upward in front +n04443766 a drinking mug in the shape of a stout man wearing a three-cornered hat +n04444121 a bell used to sound an alarm +n04444218 the part of footwear that provides a covering for the toes +n04444749 a protective leather or steel cover for the toe of a boot or shoe, reinforcing or decorating it +n04444953 a small foothold used in climbing +n04445040 a one-piece cloak worn by men in ancient Rome +n04445154 (ancient Rome) a toga worn by a youth as a symbol of manhood and citizenship +n04445327 a fastener consisting of a peg or pin or crosspiece that is inserted into an eye at the end of a rope or a chain or a cable in order to fasten it to something (as another rope or chain or cable) +n04445610 a fastener consisting of a threaded bolt and a hinged spring-loaded toggle; used to fasten objects to hollow walls +n04445782 a joint made by two arms attached by a pivot; used to apply pressure at the two ends by straightening the joint +n04445952 a hinged switch that can assume either of two positions +n04446162 informal terms for clothing +n04446276 a room or building equipped with one or more toilets +n04446844 a waterproof bag for holding bathrooms items (soap and toothpaste etc.) when you are travelling +n04447028 the bowl of a toilet that can be flushed with water +n04447156 a kit for carrying toilet articles while traveling +n04447276 a fine powder for spreading on the body (as after bathing) +n04447443 artifacts used in making your toilet (washing and taking care of your body) +n04447861 the hinged seat on a toilet +n04448070 a perfumed liquid lighter than cologne +n04448185 a doughnut-shaped chamber used in fusion research; a plasma is heated and confined in a magnetic bottle +n04448361 a metal or plastic disk that can be redeemed or used in designated slot machines +n04449290 a booth at a tollgate where the toll collector collects tolls +n04449449 a bridge where toll is charged for crossing +n04449550 a gate or bar across a toll bridge or toll road which is lifted when the toll is paid +n04449700 a telephone line for long-distance calls +n04449966 weapon consisting of a fighting ax; used by North American Indians +n04450133 a .45-caliber submachine gun +n04450243 X-ray machine in which a computer builds a detailed image of a particular plane through an object from multiple X-ray measurements +n04450465 mechanical device consisting of a light balanced arm that carries the cartridge +n04450640 a lotion for cleansing the skin and contracting the pores +n04450749 any of various devices for taking hold of objects; usually have two hinged legs with handles above and pointed hooks below +n04450994 the flap of material under the laces of a shoe or boot +n04451139 a mortise joint made by fitting a projection on the edge of one board into a matching groove on another board +n04451318 a thin depressor used to press the tongue down during an examination of the mouth and throat +n04451636 measuring instrument for measuring tension or pressure (especially for measuring intraocular pressure in testing for glaucoma) +n04451818 an implement used in the practice of a vocation +n04452528 a bag in which tools are carried +n04452615 a box or chest or cabinet for holding hand tools +n04452757 a shed for storing tools +n04452848 something resembling the tooth of an animal +n04453037 one of a number of uniform projections on a gear +n04453156 small brush; has long handle; used to clean teeth +n04453390 pick consisting of a small strip of wood or plastic; used to pick food from between the teeth +n04453666 a garment (especially for women) that extends from the shoulders to the waist or hips +n04453910 covering for a hole (especially a hole in the top of a container) +n04454654 a mast fixed to the head of a topmast on a square-rigged vessel +n04454792 a sail set on a yard of a topgallant mast +n04454908 a garden having shrubs clipped or trimmed into decorative shapes especially of animals +n04455048 headdress consisting of a decorative ribbon or bow worn in the hair +n04455250 the mast next above a lower mast and topmost in a fore-and-aft rig +n04455579 a woman's short coat +n04455652 a sail (or either of a pair of sails) immediately above the lowermost sail of a mast and supported by a topmast +n04456011 a tall white hat with a pouched crown; worn by chefs +n04456115 a light usually carried in the hand; consists of some flammable substance +n04456472 armament consisting of a long cylindrical self-propelled underwater projectile that detonates on contact with a target +n04456734 a small explosive device that is placed on a railroad track and fires when a train runs over it; the sound of the explosion warns the engineer of danger ahead +n04457157 an explosive device that is set off in an oil well (or a gas well) to start or to increase the flow of oil (or gas) +n04457326 small high-speed warship designed for torpedo attacks in coastal waters +n04457474 small destroyer that was the forerunner of modern destroyers; designed to destroy torpedo boats +n04457638 a tube near the waterline of a vessel through which a torpedo is fired +n04457767 converter for transmitting and amplifying torque (especially by hydraulic means) +n04457910 a wrench that has a gauge that indicates the amount of torque being applied +n04458201 a room in which torture is inflicted +n04458633 a tribal emblem consisting of a pillar carved and painted with totemic figures; erected by Indian tribes of the northwest Pacific coast +n04458843 a computer display that enables the user to interact with the computer by touching areas on the screen +n04459018 a small hairpiece to cover partial baldness +n04459122 large open car seating four with folding top +n04459243 inexpensive accommodations on a ship or train +n04459362 a rectangular piece of absorbent cloth (or paper) for drying or wiping +n04459610 any of various fabrics (linen or cotton) used to make towels +n04459773 a rack consisting of one or more bars on which towels can be hung +n04459909 a horizontal bar a few inches from a wall for holding towels +n04460130 a structure taller than its diameter; can stand alone or be attached to a larger building +n04461437 a government building that houses administrative offices of a town government +n04461570 a path along a canal or river used by animals towing boats +n04461696 a truck equipped to hoist and pull wrecked cars (or to remove cars from no-parking zones) +n04461879 a device regarded as providing amusement +n04462011 chest for storage of toys +n04462240 shop where toys are sold +n04462576 a screening device for traces of explosives; used at airline terminals +n04463679 a bar or pair of parallel bars of rolled steel making the railway along which railroad cars or other vehicles can roll +n04464125 a groove on a phonograph recording +n04464615 an electronic device consisting of a rotatable ball in a housing; used to position the cursor and move images on a computer screen +n04464852 a self-propelled vehicle that moves on tracks +n04465050 one of many houses of similar design constructed together on a tract of land +n04465203 housing consisting of similar houses constructed together on a tract of land +n04465358 steam-powered locomotive for drawing heavy loads along surfaces other than tracks +n04465501 a wheeled vehicle with large wheels; used in farming and other applications +n04465666 a truck that has a cab but no body; used for pulling large trailers or vans +n04466871 a lightweight motorcycle equipped with rugged tires and suspension; an off-road motorcycle designed for riding cross country or over unpaved ground +n04467099 a wheeled vehicle that can be pulled by a car or truck and is equipped for occupancy +n04467307 a large transport conveyance designed to be pulled by a truck or tractor +n04467506 a camp where space for house trailers can be rented; utilities are generally provided +n04467665 a truck consisting of a tractor and trailer together +n04467899 the rear edge of an airfoil +n04468005 public transport provided by a line of railway cars coupled together and drawn by a locomotive +n04469003 the track on which trams or streetcars run +n04469251 an adjustable pothook set in a fireplace +n04469514 gymnastic apparatus consisting of a strong canvas sheet attached with springs to a metal frame; used for tumbling +n04469684 a commercial steamer for hire; one having no regular schedule +n04469813 a conveyance that transports passengers or freight in carriers suspended from cables and supported by a series of towers +n04470741 a medicated adhesive pad placed on the skin for absorption of a time released dose of medication into the bloodstream +n04471148 structure forming the transverse part of a cruciform church; crosses the nave at right angles +n04471315 an electrical device by which alternating current of one voltage is changed to another voltage +n04471632 a semiconductor device capable of amplification +n04471912 a telescope mounted on an axis running east and west and used to time the transit of a celestial body across the meridian +n04472243 the gears that transmit power from an automobile engine via the driveshaft to the live axle +n04472563 rotating shaft that transmits rotary motion from the engine to the differential +n04472726 set used to broadcast radio or tv signals +n04472961 a horizontal crosspiece across a window or separating a door from a window over it +n04473108 a window above a door that is usually hinged to a horizontal crosspiece over the door +n04473275 electrical device designed to receive a specific signal and automatically transmit a specific reply +n04473884 a crane for moving material with dispatch as in loading and unloading ships +n04474035 a long truck for carrying motor vehicles +n04474187 a ship for carrying soldiers or military equipment +n04474466 a device in which something (usually an animal) can be caught and penned +n04475309 a hinged or sliding door in a floor or ceiling +n04475411 a swing used by circus acrobats +n04475496 a horizontal beam that extends across something +n04475631 a small lightweight iron that can be carried while traveling +n04475749 a conical fishnet dragged through the water at great depths +n04475900 a long fishing line with many shorter lines and hooks attached to it (usually suspended between buoys) +n04476116 a fishing boat that uses a trawl net or dragnet to catch fish +n04476259 an open receptacle for holding or displaying or serving articles or food +n04476526 table linen consisting of a small cloth for a tray +n04476831 structural member consisting of the horizontal part of a stair or step +n04476972 the part (as of a wheel or shoe) that makes contact with the ground +n04477219 a mill that is powered by men or animals walking on a circular belt or climbing steps +n04477387 an exercise device consisting of an endless belt on which a person can walk or jog without changing place +n04477548 a chest filled with valuables +n04477725 a 16th-century ship loaded with treasure +n04478066 a wooden peg that is used to fasten timbers in shipbuilding; water causes the peg to swell and hold the timbers fast +n04478383 a pointed arch having cusps in the intrados on either side of the apex +n04478512 latticework used to support climbing plants +n04478657 a ditch dug as a fortification having a parapet of the excavated earth +n04479046 a military style raincoat; belted with deep pockets +n04479287 a knife with a double-edged blade for hand-to-hand fighting +n04479405 a drill for cutting circular holes around a center +n04479526 a surgical instrument used to remove sections of bone from the skull +n04479694 sawhorses used in pairs to support a horizontal tabletop +n04479823 a supporting tower used to support a bridge +n04479939 a bridge supported by trestlework +n04480033 a table supported on trestles +n04480141 a supporting structure composed of a system of connected trestles; for a bridge or pier or scaffold e.g. +n04480303 tight-fitting trousers; usually of tartan +n04480527 a balloon sent up to test air currents +n04480853 a percussion instrument consisting of a metal bar bent in the shape of an open triangle +n04480995 any of various triangular drafting instruments used to draw straight lines at specified angles +n04481524 a dining table with couches along three sides in ancient Rome +n04481642 a dining room (especially a dining room containing a dining table with couches along three sides) +n04482177 cocked hat with the brim turned up to form three points +n04482297 a knitted fabric or one resembling knitting +n04482393 a vehicle with three wheels that is moved by foot pedals +n04482975 a spear with three prongs +n04483073 a device that activates or releases or causes something to happen +n04483307 a fast sailboat with 3 parallel hulls +n04483925 a machine that trims timber +n04484024 an arch built between trimmers in a floor (to support the weight of a hearth) +n04484432 a thermionic vacuum tube having three electrodes; fluctuations of the charge on the grid control the flow from cathode to anode which makes amplification possible +n04485082 a three-legged rack used for support +n04485423 art consisting of a painting or carving (especially an altarpiece) on three panels (usually hinged together) +n04485586 a wire stretched close to the ground that activates something (a trap or camera or weapon) when tripped over +n04485750 ancient Greek or Roman galley or warship having three tiers of oars on each side +n04485884 a figure consisting of three stylized human arms or legs (or three bent lines) radiating from a center +n04486054 a monumental archway; usually they are built to commemorate some notable victory +n04486213 a stand with short feet used under a hot dish on a table +n04486322 a three-legged metal stand for supporting a cooking vessel in a hearth +n04486616 a Russian carriage pulled by three horses abreast +n04486934 a fisherman's lure that is used in trolling +n04487081 a passenger bus with an electric motor that draws power from overhead wires +n04487394 a brass instrument consisting of a long tube whose length can be varied by a U-shaped slide +n04487724 any land or sea or air vehicle designed to carry troops +n04487894 ship for transporting troops +n04488202 a case in which to display trophies +n04488427 a long narrow shallow receptacle +n04488530 a garment (or part of a garment) designed for or relating to trousers +n04488742 a cuff on the bottoms of trouser legs +n04488857 a home appliance in which trousers can be hung and the wrinkles pressed out +n04489008 (usually in the plural) a garment extending from the waist to the knee or ankle, covering each leg separately +n04489695 the personal outfit of a bride; clothes and accessories and linens +n04489817 a small hand tool with a handle and flat metal blade; used for scooping or spreading plaster or similar materials +n04490091 an automotive vehicle suitable for hauling +n04491312 a conical squinch +n04491388 a short stout club used primarily by policemen +n04491638 a low bed to be slid under a higher bed +n04491769 luggage consisting of a large strong case used when traveling or for storage +n04491934 puffed breeches of the 16th and 17th centuries usually worn over hose +n04492060 hinged lid for a trunk +n04492157 a telephone line connecting two exchanges directly +n04492375 a framework of beams (rafters, posts, struts) forming a rigid structure that supports a roof or bridge or other structure +n04492749 a bridge supported by trusses +n04493109 a square having a metal ruler set at right angles to another straight piece +n04493259 a square used by draftsmen to draw parallel lines +n04493381 a large open vessel for holding or storing liquids +n04494204 electronic device consisting of a system of electrodes arranged in an evacuated glass or metal envelope +n04495051 a box for storing eatables (especially at boarding school) +n04495183 a detachable yoke of linen or lace worn over the breast of a low-cut dress +n04495310 a bag used for carrying food +n04495450 a candy store in Great Britain +n04495555 a low elliptical or pointed arch; usually drawn from four centers +n04495698 a scarf worn around the head by Muslim women in Malaysia; conceals the hair but not the face +n04495843 a powerful small boat designed to pull or push larger ships +n04496614 a fine (often starched) net used for veils or tutus or gowns +n04496726 a clothes dryer that spins wet clothes inside a cylinder with heated air +n04496872 a glass with a flat bottom but no handle or stem; originally had a round bottom +n04497249 a farm dumpcart for carrying dung; carts of this type were used to carry prisoners to the guillotine during the French Revolution +n04497442 a large cask especially one holding a volume equivalent to 2 butts or 252 gals +n04497570 any of a variety of loose fitting cloaks extending to the hips or knees +n04497801 a metal implement with two prongs that gives a fixed tone when struck; used to tune musical instruments +n04498275 tent that is an Eskimo summer dwelling +n04498389 a traditional Muslim headdress consisting of a long scarf wrapped around the head +n04498523 rotary engine in which the kinetic energy of a moving fluid is converted into mechanical energy by causing a bladed rotor to rotate +n04498873 generator consisting of a steam turbine coupled to an electric generator for the production of electric power +n04499062 large deep serving dish with a cover; for serving soups and stews +n04499300 a steam room where facilities are available for a bath followed by a shower and massage +n04499446 a bath towel with rough loose pile +n04499554 an ornamental knot that resembles a small turban +n04499810 an oblong metal coupling with a swivel at one end and an internal thread at the other into which a threaded rod can be screwed in order to form a unit that can be adjusted for length or tension +n04500060 cooking utensil having a flat flexible part and a long handle; used for turning or serving food +n04500390 workshop where objects are made on a lathe +n04501127 (from 16th to 19th centuries) gates set across a road to prevent passage until a toll had been paid +n04501281 a roasting spit that can be turned +n04501370 a gate consisting of a post that acts as a pivot for rotating arms; set in a passageway for controlling the persons entering +n04501550 a circular horizontal platform that rotates a phonograph record while it is being played +n04501837 a revolving tray placed on a dining table +n04501947 a small tower extending above a building +n04502059 a clock with more than one dial to show the time in all directions from a tower +n04502197 a sweater or jersey with a high close-fitting collar +n04502502 thick woolen fabric used for clothing; originated in Scotland +n04502670 a loudspeaker that reproduces higher audio frequency sounds +n04502851 a .22 caliber firearm (pistol or rifle) +n04502989 a .22-caliber pistol +n04503073 a .22-caliber rifle +n04503155 a cloth with parallel diagonal lines or ribs +n04503269 a weave used to produce the effect of parallel diagonal ribs +n04503413 one of a pair of identical beds +n04503499 a jet plane propelled by two jet engines +n04503593 a bit or drill having deep helical grooves +n04503705 a timber measuring (slightly under) 2 inches by 4 inches in cross section +n04504038 a tent designed for occupancy by two persons +n04504141 a business suit consisting of a matching jacket and skirt or trousers +n04504770 a printer that sets textual material in type +n04505036 hand-operated character printer for printing written messages one character at a time +n04505345 a carriage for carrying a sheet of paper +n04505470 a keyboard for manually entering characters to be printed +n04505888 soft green felt hat with a feather or brush cockade +n04506289 a small guitar having four strings +n04506402 loose long overcoat of heavy fabric; usually belted +n04506506 a high speed centrifuge used to determine the relative molecular masses of large molecules in high polymers and proteins +n04506688 light microscope that uses scattered light to show particles too small to see with ordinary microscopes +n04506895 a synthetic suede cloth +n04506994 any source of illumination that emits ultraviolet radiation +n04507155 a lightweight handheld collapsible canopy +n04507326 a small tent with a single supporting pole and radiating metal ribs +n04507453 framework that serves as a support for the body of a vehicle +n04507689 seal consisting of a coating of a tar or rubberlike material on the underside of a motor vehicle to retard corrosion +n04508163 a garment worn under other garments +n04508489 an undergarment that covers the body from the waist no further than to the thighs; usually worn next to the skin +n04508949 undergarment worn next to the skin and under the outer garments +n04509171 women's underwear +n04509260 a pair of parallel bars set at different heights; used in women's gymnastics +n04509417 a vehicle with a single wheel that is driven by pedals +n04509592 clothing of distinctive design worn by members of a particular group as a means of identification +n04510706 coupling that connects two rotating shafts allowing freedom of movement in all directions +n04511002 establishment where a seat of higher learning is housed, including administrative and living quarters as well as facilities for research and teaching +n04513827 covering (padding and springs and webbing and fabric) on a piece of furniture +n04513998 the fabric used in upholstering +n04514095 any of several very heavy and sometimes curved sewing needles used by upholsterers +n04514241 a brassiere that lifts and supports the breasts +n04514648 the higher of two berths +n04515003 a piano with a vertical sounding board +n04515444 a tool used to thicken or spread metal (the end of a bar or a rivet etc.) by forging or hammering or swaging +n04515729 the part of a building above the ground floor +n04515890 a vessel that holds water for washing the hands +n04516116 a large vase that usually has a pedestal or feet +n04516214 a large pot for making coffee or tea +n04516354 a car that has been previously owned; not a new car +n04516672 an implement for practical use (especially in a household) +n04517211 a type of submachine gun that is designed and manufactured in Israel +n04517408 a dwelling (a second home) where you live while you are on vacation +n04517823 an electrical home appliance that cleans by suction +n04517999 a chamber from which nearly all matter (especially air) has been removed +n04518132 flask with double walls separated by vacuum; used to maintain substances at high or low temperatures +n04518343 a gauge for indicating negative atmospheric pressure +n04518643 a type of bobbin lace with floral patterns +n04518764 a small overnight bag for short trips +n04519153 control consisting of a mechanical device for controlling the flow of a fluid +n04519536 device in a brass wind instrument for varying the length of the air column to alter the pitch of a tone +n04519728 internal-combustion engine having both inlet and exhaust valves located in the cylinder head +n04519887 cannon of plate armor protecting the forearm +n04520170 a truck with an enclosed cargo space +n04520382 a camper equipped with living quarters +n04520784 a fin attached to the tail of an arrow, bomb or missile in order to stabilize or guide it +n04520962 a device that puts out a substance in the form of a vapor (especially for medicinal inhalation) +n04521571 propeller for which the angle of the blades is adjustable +n04521863 a measuring instrument for measuring variations in a magnetic field +n04521987 a coating that provides a hard, lustrous, transparent finish to a surface +n04522168 an open jar of glass or porcelain used as an ornament or to hold flowers +n04523525 an arched brick or stone ceiling or roof +n04523831 a strongroom or compartment (often made of steel) for safekeeping of valuables +n04524142 a gymnastic horse without pommels and with one end elongated; used lengthwise for vaulting +n04524313 a conveyance that transports people or objects +n04524594 nylon fabric used as a fastening +n04524716 any of several early bicycles with pedals on the front wheel +n04524941 heavy fabric that resembles velvet +n04525038 a silky densely piled fabric with a plain back +n04525191 a usually cotton fabric with a short pile imitating velvet +n04525305 a slot machine for selling goods +n04525417 coating consisting of a thin layer of superior wood glued to a base of inferior wood +n04525584 a window blind made of horizontal strips that overlap when closed +n04525821 a diagram that uses circles to represent mathematical or logical sets pictorially inside a rectangle (the universal set); elements that are common to more than one set are represented by intersections of the circles +n04526520 a mechanical system in a building that provides fresh air +n04526800 a shaft in a building; serves as an air passage for ventilation +n04526964 a device (such as a fan) that introduces fresh air or expels foul air +n04527648 a porch along the outside of a building (sometimes partly enclosed) +n04528079 a green patina that forms on copper or brass or bronze that has been exposed to the air or water for long periods of time +n04528968 a caliper with a vernier scale for very fine measurements +n04529108 a small movable scale that slides along a main scale; the small scale is calibrated to indicate fractional divisions of the main scale +n04529681 a file in which records are stored upright on one edge +n04529962 a stabilizer that is part of the vertical tail structure of an airplane +n04530283 the vertical airfoil in the tail assembly of an aircraft +n04530456 a pistol for firing Very-light flares +n04530566 a craft designed for water transportation +n04531098 an object used as a container (especially for liquids) +n04531873 a man's sleeveless garment worn underneath a coat +n04532022 an archaic term for clothing +n04532106 gown (especially ceremonial garments) worn by the clergy +n04532398 a small pocket in a man's vest +n04532504 a room in a church where sacred vessels and vestments are kept or meetings are held +n04532670 bridge consisting of a series of arches supported by piers used to carry a road (or railroad) over a valley +n04532831 a percussion instrument similar to a xylophone but having metal bars and rotating disks in the resonators that produce a vibrato sound +n04533042 mechanical device that produces vibratory motion; used for massage +n04533199 a mechanical device that vibrates +n04533499 a brand of gramophone +n04533594 a soft wool fabric made from the fleece of the vicuna +n04533700 a cassette for videotape +n04533802 a magnetic tape recorder for recording (and playing back) TV programs +n04533946 a digital recording (as of a movie) on an optical disk that can be played on a computer or a television set +n04534127 a recording of both the visual and audible components (especially one containing a recording of a movie or television program) +n04534359 a relatively wide magnetic tape for use in recording visual images and associated sound +n04534520 a video recording made on magnetic tape +n04534895 a candle lighted by a worshiper in a church +n04535252 pretentious and luxurious country residence with extensive grounds +n04535370 country house in ancient Rome consisting of residential quarters and farm buildings around a courtyard +n04535524 detached or semidetached suburban house +n04536153 any of a family of bowed stringed instruments that preceded the violin family +n04536335 a bowed stringed instrument slightly larger than a violin, tuned a fifth lower +n04536465 a member of the viol family with approximately the range of a viola +n04536595 viol that is the bass member of the viol family with approximately the range of the cello +n04536765 viol that is the tenor of the viol family +n04536866 bowed stringed instrument that is the highest member of the violin family; this instrument has four strings and a hollow body and an unfretted fingerboard and is played with a bow +n04537436 a legless rectangular harpsichord; played (usually by women) in the 16th and 17th centuries +n04538249 a measuring instrument for measuring viscosity +n04538403 a rayon fabric made from viscose (cellulose xanthate) fibers +n04538552 a holding device attached to a workbench; has two jaws to hold workpiece firmly in place +n04538878 a piece of armor plate (with eye slits) fixed or hinged to a medieval helmet to protect the face +n04539053 (British) British term for video display +n04539203 an indoor enclosure for keeping and raising living animals and plants and observing them under natural conditions +n04539407 a fabric made from a twilled mixture of cotton and wool +n04539794 a light semitransparent fabric +n04540053 an inflated ball used in playing volleyball +n04540255 the high net that separates the two teams and over which the volleyball must pass +n04540397 a transformer whose voltage ratio of transformation can be adjusted +n04540761 an electric cell that generates an electromotive force by an irreversible conversion of chemical to electrical energy; cannot be recharged +n04541136 battery consisting of voltaic cells arranged in series; the earliest electric battery devised by Volta +n04541320 meter that measures the potential difference between two points +n04541662 an entrance to an amphitheater or stadium +n04541777 any digital computer incorporating the ideas of stored programs and serial counters that were proposed in 1946 by von Neumann and his colleagues +n04541987 a booth in which a person can cast a private vote +n04542095 a mechanical device for recording and counting votes mechanically +n04542329 wedge-shaped stone building block used in constructing an arch or vault +n04542474 an organ stop producing a gentle tremolo effect +n04542595 an organ reed stop producing tones imitative of the human voice +n04542715 waterproof hip boots (sometimes extending to the chest) worn by anglers +n04542858 a shallow pool for children +n04542943 a kitchen appliance for baking waffles; the appliance usually consists of two indented metal pans hinged together so that they create a pattern on the waffle +n04543158 any of various kinds of wheeled vehicles drawn by an animal or a tractor +n04543509 a child's four-wheeled toy cart sometimes used for coasting +n04543636 a metal hoop forming the tread of a wheel +n04543772 a wheel of a wagon +n04543924 large open farm wagon +n04543996 wooden panels that can be used to line the walls of a room +n04544325 a wainscoted wall (or wainscoted walls collectively) +n04544450 a small pouch (usually with a zipper) that attaches to a belt and is worn around the waist +n04545305 an enclosing framework on casters or wheels; helps babies learn to walk +n04545471 a light enclosing framework (trade name Zimmer) with rubber castors or wheels and handles; helps invalids or the handicapped or the aged to walk +n04545748 a shoe designed for comfortable walking +n04545858 small portable radio link (receiver and transmitter) +n04545984 a small room large enough to admit entrance +n04546081 a light comfortable shoe designed for vigorous walking +n04546194 a stick carried in the hand for support in walking +n04546340 (trademark) a pocket-sized stereo system with light weight earphones +n04546595 an apartment in a building without an elevator +n04546855 an architectural partition with a height and length greater than its thickness; used to divide or enclose an area or to support another structure +n04547592 a masonry fence (as around an estate or garden) +n04548280 a clock mounted on a wall +n04548362 a pocket-size case for holding papers and paper money +n04549028 a canvas tent with four vertical walls +n04549122 a piece of furniture having several units that stands against one wall of a room +n04549629 a rod used by a magician or water diviner +n04549721 a rotary engine that is a four-stroke internal-combustion engine without reciprocating parts +n04549919 block forming a division of a hospital (or a suite of rooms) shared by patients who need a similar kind of care +n04550184 a tall piece of furniture that provides storage space for clothes; has a door and rails or hooks for hanging clothes +n04550676 military quarters for dining and recreation for officers of a warship (except the captain) +n04551055 a storehouse for goods and merchandise +n04551833 a long-handled covered pan holding live coals to warm a bed +n04552097 full ceremonial regalia +n04552348 an aircraft designed and used for combat +n04552551 a room where strategic decisions are made (especially for military or political campaigns) +n04552696 a government ship that is available for waging war +n04553389 a thin coat of water-base paint +n04553561 a fabric treated to be easily washable and to require no ironing +n04553703 a basin for washing the hands (`wash-hand basin' is a British expression) +n04554211 protective covering consisting of a broad plank along a gunwale to keep water from splashing over the side +n04554406 device consisting of a corrugated surface to scrub clothes on +n04554684 a home appliance for washing clothes and linens automatically +n04554871 seal consisting of a flat disk placed to prevent leakage +n04554998 a building or outbuilding where laundry is done +n04555291 a lavatory (particularly a lavatory in a public place) +n04555400 furniture consisting of a table or stand to hold a basin and pitcher of water for washing: `wash-hand stand' is a British term +n04555600 a tub in which clothes or linens can be washed +n04555700 a container with an open top; for discarded paper and other rubbish +n04555897 a small portable timepiece +n04556408 a knitted dark blue wool cap worn by seamen in cold or stormy weather +n04556533 the metal case in which the works of a watch are housed +n04556664 laboratory glassware; a shallow glass dish used as an evaporating surface or to cover a beaker +n04556948 an observation tower for a lookout to watch over prisoners or watch for fires or enemies +n04557308 paint in which water is used as the vehicle +n04557522 a bed with a mattress made of strong plastic that is filled with water +n04557648 a bottle for holding water +n04557751 a butt set on end to contain water especially to store rainwater +n04558059 cart with a tank for water (especially with fresh water for sale) +n04558199 chute with flowing water down which toboggans and inner tubes and people slide into a pool +n04558478 a toilet in Britain +n04558804 a water-base paint (with water-soluble pigments); used by artists +n04559023 nuclear reactor using water as a coolant +n04559166 a device for cooling and dispensing drinking water +n04559451 a faucet for drawing water from a pipe or cask +n04559620 a filter to remove impurities from the water supply +n04559730 gauge for indicating the level of water in e.g. a tank or boiler or reservoir +n04559910 a glass for drinking water +n04559994 hazard provided by ponds of water that the golfer must avoid +n04560113 a heater and storage tank to supply heated water +n04560292 a container with a handle and a spout with a perforated nozzle; used to sprinkle water over plants +n04560502 water cart with a tank and sprinkler for sprinkling roads +n04560619 a container filled with water that surrounds a machine to cool it; especially that surrounding the cylinder block of an engine +n04560804 a jug that holds water +n04560882 a pool or stream in a steeplechase or similar contest +n04561010 a water gauge that shows the level by showing the surface of the water in a trough or U-shaped tube +n04561287 meter for measuring the quantity of water passing through a particular outlet +n04561422 a mill powered by a water wheel +n04561734 any fabric impervious to water +n04561857 a coating capable of making a surface waterproof +n04561965 the pump in the cooling system of an automobile that cause the water to circulate +n04562122 a motorboat resembling a motor scooter +n04562262 broad ski for skimming over water towed by a speedboat +n04562496 a channel through which water is discharged (especially one used for drainage from the gutters of a roof) +n04562935 a large reservoir for water +n04563020 a wagon that carries water (as for troops or work gangs or to sprinkle down dusty dirt roads in the summertime) +n04563204 a wheel that rotates by direct action of water; a simple turbine +n04563413 a wheel with buckets attached to its rim; raises water from a stream or pond +n04563560 a life preserver consisting of a connected pair of inflatable bags that fit under a person's arms and provide buoyancy; used by children learning to swim +n04563790 workplace where water is stored and purified and distributed for a community +n04564278 an instrument for measuring in watts the flow of power in an electrical circuit +n04564581 an effigy (usually of a famous person) made of wax +n04565039 structure consisting of a sloping way down to the water from the place where ships are built or repaired +n04565375 any instrument or instrumentality used in fighting or hunting +n04566257 weapons considered collectively +n04566561 military vehicle that is a light truck designed to carry mortars or machine guns and their crews +n04566756 weathervane with a vane in the form of a rooster +n04567098 a simple barometer for indicating changes in atmospheric pressure +n04567593 a satellite that transmits frequent picture of the earth below +n04567746 an oceangoing vessel equipped to make meteorological observations +n04568069 mechanical device attached to an elevated structure; rotates freely to show the direction of the wind +n04568557 an intricate trap that entangles or ensnares its victim +n04568713 a fabric (especially a fabric in the process of being woven) +n04568841 a strong fabric woven in strips +n04569063 a digital camera designed to take digital photographs and transmit them over the internet +n04569520 something solid that is usable as an inclined plane (shaped like a V) that can be pushed between two things to separate them +n04569822 (golf) an iron with considerable loft and a broad sole +n04570118 a shoe with a wedge heel +n04570214 a type of pottery made by Josiah Wedgwood and his successors; typically has a classical decoration in white on a blue background +n04570416 a hand tool for removing weeds +n04570532 a black garment (dress) worn by a widow as a sign of mourning +n04570815 a small suitcase to carry clothing and accessories for a weekend trip +n04570958 platform scale flush with a roadway for weighing vehicles and cattle etc +n04571292 sports equipment used in calisthenic exercises and weightlifting; it is not attached to anything and is raised and lowered by use of the hands and arms +n04571566 a low dam built across a stream to raise its level or divert its flow +n04571686 a fence or wattle built across a stream to catch or retain fish +n04571800 a wheeled vehicle carrying information and gifts from local merchants for new residents in an area +n04571958 a metal joint formed by softening with heat and fusing or hammering together +n04572121 a mask that you wear for protection when doing welding +n04572235 an assembly of parts welded together +n04572935 a cavity or vessel used to contain liquid +n04573045 a structure built over a well +n04573281 a raised or strengthened seam +n04573379 a standard voltaic cell (trademark Weston) +n04573513 a bar for mixing drinks that has a sink with running water +n04573625 a thermometer with a bulb that is covered with moist muslin; used in a psychrometer to measure humidity +n04573832 a primary voltaic cell having a liquid electrolyte +n04573937 fisherman's fly that floats under the surface of the water +n04574067 a close-fitting garment made of a permeable material; worn in cold water (as by skin divers) to retain body heat +n04574348 a long narrow boat designed for quick turning and use in rough seas +n04574471 a ship engaged in whale fishing +n04574606 a gun (or device resembling a gun) for discharging a projectile (especially a harpoon) at a whale +n04574999 a simple machine consisting of a circular frame with spokes (or a solid disc) that can rotate on a shaft or axle (as in vehicles or other machines) +n04575723 a circular helm to control the rudder of a vessel +n04575824 hoist so arranged that a rope unwinding from a wheel is wound onto a cylindrical drum or shaft coaxial with the wheel +n04576002 a movable chair mounted on large wheels; for invalids or those who cannot walk; frequently propelled by the occupant +n04576211 a vehicle that moves on wheels and usually has a container for transporting things or people +n04576971 mechanical device including an arrangement of wheel in a machine (especially a train of gears) +n04577139 light rowboat for use in racing or for transporting goods and passengers in inland waters and harbors +n04577293 sailing barge used especially in East Anglia +n04577426 a flat stone for sharpening edged tools or knives +n04577567 a crossbar that is attached to the traces of a draft horse and to the vehicle or implement that the horse is pulling +n04577769 an instrument with a handle and a flexible lash that is used for whipping +n04578112 a strong worsted or cotton fabric with a diagonal rib +n04578329 post formerly used in public to which offenders are tied to be whipped +n04578559 a sewing stitch passing over an edge diagonally +n04578708 a revolving mechanism +n04578801 a small short-handled broom used to brush clothes +n04578934 a mixer incorporating a coil of wires; used for whipping eggs or cream +n04579056 a bottle for holding whiskey +n04579145 a jug that contains whiskey +n04579230 a space beneath a dome or arch in which sounds produced at certain points are clearly audible at certain distant points +n04579432 acoustic device that forces air or steam against an edge or into a cavity and so produces a loud shrill sound +n04579667 a small wind instrument that produces a whistling sound by blowing into it +n04579986 (board games) the lighter pieces +n04580493 large electrical home appliances (refrigerators or washing machines etc.) that are typically finished in white enamel +n04581102 wash consisting of lime and size in water; used for whitening walls and other surfaces +n04581595 a building where prostitutes are available +n04581829 a loosely woven cord (in a candle or oil lamp) that draws fuel by capillary action up into the flame +n04582205 work made of interlaced slender branches (especially willow branches) +n04582349 a basket made of wickerwork +n04582771 a small arch used as croquet equipment +n04582869 cricket equipment consisting of a set of three stumps topped by crosspieces; used in playing cricket +n04583022 a lodge consisting of a frame covered with matting or brush; used by nomadic American Indians in the southwestern United States +n04583212 a camera lens having a wider than normal angle of view (and usually a short focal length); produces an image that is foreshortened in the center and increasingly distorted in the periphery +n04583620 a commercial airliner with two aisles +n04583888 corduroy with wide ribs +n04583967 a lookout atop a coastal house +n04584056 (trademark) a hollow plastic ball with cutouts +n04584207 hairpiece covering the head and made of real or synthetic hair +n04584373 a Native American lodge frequently having an oval shape and covered with bark or hides +n04585128 a carpet woven on a Jacquard loom with loops like a Brussels carpet but having the loops cut to form a close velvety pile +n04585318 headdress of cloth; worn over the head and around the neck and ears by medieval women +n04585456 a plain or twilled fabric of wool and cotton used especially for warm shirts or skirts and pajamas +n04585626 cotton flannelette with a nap on both sides +n04585745 lifting device consisting of a horizontal cylinder turned by a crank on which a cable or rope winds +n04585980 a shoulder rifle +n04586072 hedge or fence of trees designed to lessen the force of the wind and reduce erosion +n04586581 mechanical device used to wind another device that is driven by a spring (as a clock) +n04586932 a musical instrument in which the sound is produced by an enclosed column of air that is moved by the breath +n04587327 a large sailing ship +n04587404 generator that extracts usable energy from winds +n04587559 a mill that is powered by the wind +n04587648 a framework of wood or metal that contains a glass windowpane and is built into a wall or roof to admit light or air +n04588739 (computer science) a rectangular part of a computer screen that contains a display different from the rest of the screen +n04589190 a blind for privacy or to keep out light +n04589325 a long narrow box for growing plants on a windowsill +n04589434 an envelope with a transparent panel that reveals the address on the enclosure +n04589593 the framework that supports a window +n04589890 screen to keep insects from entering a building through the open window +n04590021 a bench or similar seat built into a window recess +n04590129 an opaque window blind that can cover or uncover a window +n04590263 the sill of a window; the horizontal member at the bottom of the window frame +n04590553 transparent screen (as of glass) to protect occupants of a vehicle +n04590746 a mechanical device that cleans the windshield +n04590933 straight chair having a shaped seat and a back of many spindles +n04591056 a wide triangular slipknot for tying a tie +n04591157 a wide necktie worn in a loose bow +n04591249 weather vane shaped like a T and located at an airfield +n04591359 a structure resembling a tunnel where air is blown at known velocities for testing parts of aircraft +n04591517 a turbine that is driven by the wind +n04591631 a bar that serves only wine +n04591713 a bottle for holding wine +n04591887 a bucket of ice used to chill a bottle of wine +n04592005 a barrel that holds wine +n04592099 a glass that has a stem and in which wine is served +n04592356 a press that is used to extract the juice from grapes +n04592465 distillery where wine is made +n04592596 an animal skin (usually a goatskin) that forms a bag and is used to hold and dispense wine +n04592741 one of the horizontal airfoils on either side of the fuselage of an airplane +n04593077 easy chair having wings on each side of a high back +n04593185 a threaded nut with winglike projections for thumb and forefinger leverage in turning +n04593376 a decorative toecap having a point extending toward the throat of the shoe +n04593524 a shoe having a wing-tip toecap +n04593629 blind consisting of a leather eyepatch sewn to the side of the halter that prevents a horse from seeing something on either side +n04593866 contact consisting of a conducting arm that rotates over a series of fixed contacts and comes to rest on an outlet +n04594114 electric motor that moves the windshield wiper +n04594218 ligament made of metal and used to fasten things or make cages or fences etc +n04594489 a metal conductor that carries electricity over a distance +n04594742 fabric woven of metallic wire +n04594828 an edge tool used in cutting wire +n04594919 gauge for measuring the diameter of wire +n04595028 a local area network that uses high frequency radio signals to transmit and receive data over distances of a few hundred feet; uses ethernet protocol +n04595285 an impact printer in which each character is represented by a pattern of dots made by wires or styli +n04595501 an early type of magnetic recorder using iron wire +n04595611 a hand tool used by electricians to remove insulation from the cut end of an insulated wire +n04595762 mesh netting made of wires +n04595855 a circuit of wires for the distribution of electricity +n04596116 a magical cap that secures whatever one wishes for +n04596492 a box enclosure for a witness when testifying +n04596742 pan with a convex bottom; used for frying in Chinese cooking +n04596852 clothing that is designed for women to wear +n04597066 a golf club with a long shaft used to hit long shots; originally made with a wooden head +n04597309 a carving created by carving wood +n04597400 a chisel for working wood; it is either struck with a mallet or pushed by hand +n04597804 ware for domestic use made of wood +n04597913 a spoon made of wood +n04598136 a metal screw that tapers to a point so that it can be driven into wood with a screwdriver +n04598318 a shed for storing firewood or garden tools +n04598416 a vise with jaws that are padded in order to hold lumber without denting it +n04598582 any wind instrument other than the brass instruments +n04598965 the yarn woven across the warp yarn in weaving +n04599124 a loudspeaker that reproduces lower audio frequency sounds +n04599235 a fabric made from the hair of sheep +n04600312 container for holding implements and materials for work (especially for sewing) +n04600486 a strong worktable for a carpenter or mechanic +n04600912 clothing worn for doing manual labor +n04601041 a county jail that holds prisoners for periods up to 18 months +n04601159 a poorhouse where able-bodied poor are compelled to labor +n04601938 work consisting of a piece of metal being machined +n04602762 room where work is done +n04602840 the internal mechanism of a device +n04602956 heavy-duty shirts worn for manual or physical work +n04603399 a desktop digital computer that is conventionally considered to be more powerful than a microcomputer +n04603729 a table designed for a particular task +n04603872 heavy-duty clothes for manual or physical work +n04604276 computer network consisting of a collection of internet sites that offer text and graphics and sound and animation resources through the hypertext transfer protocol +n04604644 rail fence consisting of a zigzag of interlocking rails +n04604806 gear consisting of a shaft with screw thread (the worm) that meshes with a toothed wheel (the worm wheel); changes the direction of the axis of rotary motion +n04605057 gear with the thread of a worm +n04605163 a woolen fabric with a hard textured surface and no nap; woven of worsted yarns "he wore a worsted suit" +n04605321 a tightly twisted woolen yarn spun from long-staple wool +n04605446 cloak that is folded or wrapped around a person +n04605572 a garment (as a dress or coat) with a full length opening; adjusts to the body by wrapping around +n04605726 the covering (usually paper or cellophane) in which something is wrapped +n04606251 a ship that has been destroyed at sea +n04606574 a hand tool that is used to hold or twist a nut or bolt +n04607035 a mat on which wrestling matches are conducted +n04607242 a clothes dryer consisting of two rollers between which the wet clothes are squeezed +n04607640 protective garment consisting of a pad worn by football players +n04607759 pin joining a piston to a connecting rod +n04607869 a watch that is worn strapped to the wrist +n04607982 an arm of a tablet-armed chair; widened to provide a writing surface +n04608329 a desk for writing (usually with a sloping top) +n04608435 a portable case containing writing materials and having a writing surface +n04608567 an implement that is used to write +n04608809 a page printer that uses the xerographic process +n04608923 a duplicator (trade mark Xerox) that copies graphic matter by the action of light on an electrically charged photoconductive insulating surface in which the latent image is developed with a resinous powder +n04609531 photographic film used to make X-ray pictures +n04609651 an apparatus that provides a source of X rays +n04609811 a vacuum tube containing a metal target onto which a beam of electrons is directed at high energy for the generation of X rays +n04610013 an expensive vessel propelled by sail or power and used for cruising or racing +n04610176 a light folding armchair for outdoor use +n04610274 a sharply directional antenna +n04610503 an enclosure for animals (as chicken or livestock) +n04610676 a long horizontal spar tapered at the end and used to support and spread a square sail or lateen +n04611351 either end of the yard of a square-rigged ship +n04611795 (football) a marker indicating the yard line +n04611916 a ruler or tape that is three feet long +n04612026 a skullcap worn by religious Jews (especially at prayer) +n04612159 the face veil worn by Muslim women +n04612257 a long Turkish knife with a curved blade having a single edge +n04612373 a sailing vessel with two masts; a small mizzen is aft of the rudderpost +n04612504 a ship's small boat (usually rowed by 4 or 6 oars) +n04612840 stable gear that joins two draft animals at the neck so they can work together as a team +n04613015 fabric comprising a fitted part at the top of a garment +n04613158 a connection (like a clamp or vise) between two things so they move together +n04613696 a circular domed dwelling that is portable and self-supporting; originally used by nomadic Mongol and Turkic people of central Asia but now used as inexpensive alternative or temporary housing +n04613939 the trademark for a machine that smooths the ice in an ice-skating rink +n04614505 the sight setting that will cause a projectile to hit the center of the target with no wind blowing +n04614655 a rectangular tiered temple or terraced mound erected by the ancient Assyrians and Babylonians +n04614844 one of a pair of small metallic cymbals worn on the thumb and middle finger; used in belly dancing in rhythm with the dance +n04615149 a crude homemade pistol +n04615226 a musical stringed instrument with strings stretched over a flat sounding board; it is laid flat and played with a plectrum and with fingers +n04615644 a flashy suit of extreme cut +n04682018 graded markings that indicate light or shaded areas in a drawing or painting +n04950713 the direction, texture, or pattern of fibers found in wood or leather or stone or in a woven fabric +n04950952 texture produced by the fibers in wood +n04951071 a texture like that of wood +n04951186 a texture like that of marble +n04951373 the visual effect of illumination on objects or scenes as created in pictures +n04951716 an indication of radiant light drawn around the head of a saint +n04951875 lightness created by sunlight +n04953296 a spatially localized brightness +n04953678 the visual property of something having a milky brightness and a play of colors from the surface +n04955160 the property of being smooth and shiny +n04957356 any of three pigments from which all colors can be obtained by mixing +n04957589 any of three primary colors of light from which all colors can be obtained by additive mixing +n04958634 the visual property of being without chromatic color +n04958865 an irregular arrangement of patches of color +n04959061 an absence of normal pigmentation especially in the skin (as in albinism) or in red blood cells +n04959230 a quality of a given color that differs slightly from another color +n04959672 a color that has hue +n04960277 the quality or state of the achromatic color of least lightness (bearing the least resemblance to white) +n04960582 a very dark black +n04961062 a very light white +n04961331 a shade of white the color of bleached bones +n04961691 a neutral achromatic color midway between white and black +n04962062 a light shade of grey +n04962240 a very dark grey color +n04963111 a blood-red color +n04963307 a bright orange-red color produced in cotton cloth with alizarine dye +n04963588 a deep and vivid red color +n04963740 a red color that reflects little light +n04964001 a dark purplish-red color +n04964799 a dark purplish-red color +n04964878 a dark purplish-red to dark brownish-red color +n04965179 orange color or pigment; any of a range of colors between red and yellow +n04965451 an orange color closer to red than to yellow +n04965661 yellow color or pigment; the chromatic color resembling the hue of sunflowers or ripe lemons +n04966543 a strong yellow color +n04966941 a variable yellow tint; dull yellow, often diluted with white +n04967191 green color or pigment; resembling the color of growing grass +n04967561 the property of being somewhat green +n04967674 the property of a moderate green color resembling the waters of the sea +n04967801 the color of sage leaves +n04967882 dark to moderate or greyish green +n04968056 the green color of an emerald +n04968139 a color that is lighter and greener than olive +n04968749 a light green color varying from bluish green to yellowish green +n04968895 blue color or pigment; resembling the color of the clear sky in the daytime +n04969242 a light shade of blue +n04969540 a greyish blue color +n04969798 a shade of blue tinged with green +n04969952 a shade of blue tinged with purple +n04970059 a purple color or pigment +n04970312 a vivid purplish-red color +n04970398 a blue-violet color +n04970470 a pale purple color +n04970631 a shade of purple tinged with red +n04970916 a light shade of red +n04971211 a pink or reddish-pink color +n04971313 a dusty pink color +n04972350 the brown color of chestnuts +n04972451 a medium brown to dark-brown color +n04972801 a brown that is light but unsaturated +n04973020 a light brown the color of topaz +n04973291 a very light brown +n04973386 a shade of brown with a tinge of red +n04973585 a bright reddish-brown color +n04973669 a reddish-brown color resembling the color of polished copper +n04973816 a reddish-brown color resembling the red soil used as body paint by American Indians +n04974145 a color varying from dark purplish brown to dark red +n04974340 a yellow-green color of low brightness and saturation +n04974859 a vivid blue to purple-blue color +n04975739 either one of two chromatic colors that when mixed together give white (in the case of lights) or grey (in the case of pigments) +n04976319 coloration of living tissues by pigment +n04976952 the coloring of a person's face +n04977412 a healthy reddish complexion +n04978561 a color produced by a pattern of differently colored dots that together simulate the desired color +n04979002 conspicuous coloration or markings of an animal serving to warn off predators +n04979307 coloring that conceals or disguises an animal's shape +n04981658 a characteristic sound +n05102764 the center of the circle of curvature +n05218119 the dead body of a human being +n05233741 small indentation in the middle of the lower jawbone +n05235879 a riblike supporting or strengthening part of an animal or plant +n05238282 a natural protective body covering and site of the sense of touch +n05239437 a piece of skin taken from a donor area and surgically grafted at the site of an injury or burn +n05241218 any of the cells making up the epidermis +n05241485 a cell in the basal layer of the epidermis that produces melanin under the control of the melanocyte-stimulating hormone +n05241662 a cell in the germinal layer of the skin (the prickle-cell layer); has many spines and radiating processes +n05242070 an epithelial cell that is shaped like a column; some have cilia +n05242239 any of various columnar epithelial cells in the central nervous system that develop into neuroglia +n05242928 an epithelial cell that is flat like a plate and form a single layer of epithelial tissue +n05244421 a plaque consisting of tangles of amyloid protein in nervous tissue (a pathological mark of Alzheimer's disease) +n05244755 a film of mucus and bacteria deposited on the teeth that encourages the development of dental caries +n05244934 a patch of skin that is discolored but not usually elevated; caused by various diseases +n05245192 a small brownish spot (of the pigment melanin) on the skin +n05257476 a woman's hairstyle in which the hair gives a puffy appearance +n05257967 a fat sausage-shaped curl +n05258051 a lock of hair growing (or falling) over the forehead +n05258627 a spiral curl plastered on the forehead or cheek +n05259914 a plait of braided hair +n05260127 a smooth hair style with the ends of the hair curled inward +n05260240 a hair style in which the front hair is swept up from the forehead +n05261310 hair resembling thatched roofing material +n05262422 slang for a mustache +n05262534 a large bushy moustache (with hair growing sometimes down the sides of the mouth) +n05262698 a bushy droopy mustache +n05263183 short stiff hairs growing on a man's face when he has not shaved for a few days +n05263316 a short pointed beard (named after the artist Anthony Vandyke) +n05263448 a small patch of facial hair just below the lower lip and above the chin +n05265736 alimentary tract smear of material obtained from the esophagus +n05266096 alimentary tract smear of material obtained from the duodenum +n05266879 a bit of tissue or blood or urine that is taken for diagnostic purposes +n05278922 (anatomy) a point or small area +n05279953 the concavity in the head of the scapula that receives the head of the humerus to form the shoulder joint +n05282652 a gap or vacant space between two teeth +n05285623 the fatty network of connective tissue that fills the cavities of bones +n05302499 the opening through which food is taken in and vocalizations emerge +n05314075 either of the corners of the eye where the upper and lower eyelids meet +n05399034 produced by mammary glands of female mammals for feeding their young +n05399243 milk secreted by a woman who has recently given birth +n05399356 milky fluid secreted for the first day or two after parturition +n05418717 a blood vessel that carries blood from the capillaries toward the heart +n05427346 a nerve cell whose body is outside the central nervous system +n05442594 the sex chromosome that is present in both sexes: singly in males and doubly in females +n05447757 a cell of an embryo +n05448704 a precursor of leukocytes that normally occurs only in bone marrow +n05448827 an erythroblast having granules of ferritin +n05449196 mature bone cell +n05449661 abnormally large red blood cell (associated with pernicious anemia) +n05449959 blood cells that engulf and digest bacteria and fungi; an important part of the body's defense system +n05450617 a macrophage that is found in connective tissue +n05451099 a phagocyte that does not circulate in the blood but is fixed in the liver or spleen or bone marrow etc. +n05451384 an agranulocytic leukocyte that normally makes up a quarter of the white blood cell count but increases in the presence of infection +n05453412 a large immature monocyte normally found in bone marrow +n05453657 the chief phagocytic leukocyte; stains with either basic or acid dyes +n05453815 a neutrophil that ingests small things (as bacteria) +n05454833 an abnormal red blood cell that has a crescent shape and an abnormal form of hemoglobin +n05454978 an abnormal red blood cell containing granules of iron not bound in hemoglobin +n05455113 an abnormal spherical red blood cell +n05458173 mature ovum after penetration by sperm but before the formation of a zygote +n05458576 a female gametocyte that develops into an ovum after two meiotic divisions +n05459101 an immature gamete produced by a spermatocyte; develops into a spermatozoon +n05459457 a cell in the testes that secretes the hormone testosterone +n05459769 an elongated contractile cell in striated muscle tissue +n05460759 cells of the smooth muscles +n05464534 small gaps in the myelin sheath of medullated axons +n05467054 sustentacular tissue that surrounds and supports neurons in the central nervous system; glial and neural cells together compose the tissue of the central nervous system +n05467758 comparatively large neuroglial cell +n05468098 a kind of astrocyte found in the grey matter +n05468739 a cell of the oligodendroglia +n05469664 special nerve endings in the muscles and tendons and other organs that respond to stimuli regarding the position and movement of the body +n05469861 short fiber that conducts toward the cell body of the neuron +n05475397 a nerve fiber that carries impulses toward the central nervous system +n05482922 a space in the meninges beneath the arachnoid membrane and above the pia mater that contains the cerebrospinal fluid +n05486510 the layer of unmyelinated neurons (the grey matter) forming the cortex of the cerebrum +n05491154 the cortex of the kidney containing the glomeruli and the convoluted tubules +n05526957 a fold of skin covering the tip of the penis +n05538625 the upper part of the human body or the front part of the body in animals; contains the face and brains +n05539947 the skin that covers the top of the head +n05541509 either prominence of the frontal bone above each orbit +n05542893 an immovable joint (especially between the bones of the skull) +n05545879 the large opening at the base of the cranium through which the spinal cord passes +n05571341 the junction between the esophagus and the stomach epithelium +n05578095 the back part of the human foot +n05581932 the dead skin at the base of a fingernail or toenail +n05584746 a loose narrow strip of skin near the base of a fingernail; tearing it produces a painful sore that is easily infected +n05586759 the exterior protective or supporting structure or shell of many animals (especially invertebrates) including bony or horny parts such as nails or scales or hoofs +n05604434 a wall of the abdomen +n05716342 a distinctive tart flavor characteristic of lemons +n06008896 one of the fixed reference lines of a coordinate system +n06209940 an extensive mental viewpoint +n06254669 a means or instrumentality for storing or communicating information +n06255081 a medium for the expression or achievement of something +n06255613 a medium for written communication +n06259898 a path over which electrical signals can pass +n06262567 a medium that disseminates moving pictures +n06262943 the film industry +n06263202 a press not restricted or controlled by government censorship regarding politics or ideology +n06263369 the print media responsible for gathering and publishing news in the form of newspapers or magazines +n06263609 a medium that disseminates printed matter +n06263762 a medium for storing information +n06263895 any storage medium in which different patterns of magnetization are used to represent stored bits or bytes of information +n06266417 newspapers and magazines collectively +n06266633 British journalism +n06266710 journalism that presents a story primarily through the use of pictures +n06266878 photography of newsworthy events +n06266973 printed material (text and pictures) produced by an intaglio printing process in a rotary press +n06267145 a daily or weekly publication on folded sheets; contains news and articles and advertisements +n06267564 a newspaper that is published every day +n06267655 a newspaper or official journal +n06267758 a newspaper written and published by students in a school +n06267893 newspaper with half-size pages +n06267991 sensationalist journalism +n06271778 (often plural) systems used in transmitting messages over a distance electronically +n06272290 transmitting speech at a distance +n06272612 a computerized system for answering and routing telephone calls; telephone messages can be recorded and stored and relayed +n06272803 a telephone connection +n06273207 a return call +n06273294 a telephone call that the receiving party is asked to pay for +n06273414 lets you transfer your incoming calls to any telephone that you can dial direct +n06273555 a telephone call to a radio station or a television station in which the caller participates in the on-going program +n06273743 a way of letting you know that someone else is calling when you are using your telephone +n06273890 a hostile telephone call (from a crank) +n06273986 a telephone call made within a local calling area +n06274092 a telephone call made outside the local calling area +n06274292 a long-distance telephone call at charges above a local rate +n06274546 a telephone call that you request be made a specific time in order to wake you up at that time (especially in hotels) +n06274760 a way of adding a third party to your conversation without the assistance of a telephone operator +n06274921 communicating at a distance by electric transmission over wire +n06275095 a telegram sent abroad +n06275353 transmission by radio waves +n06275471 telegraphy that uses transmission by radio rather than by wire +n06276501 telephony that uses transmission by radio rather than by wire +n06276697 taking part in a radio or tv program +n06276902 a system for distributing radio or tv programs +n06277025 communicates two or more signals over a common channel +n06277135 medium for communication +n06277280 broadcasting visual images of stationary or moving objects +n06278338 television that is transmitted over cable directly to the receiver +n06278475 a television system that has more than the usual number of lines per frame so its pictures show more detail +n06281040 quality or fidelity of a received broadcast +n06281175 the detection that a signal is being received +n06340977 a Hebrew title of respect for a wise and highly educated man +n06359193 a computer connected to the internet that maintains a series of web pages on the World Wide Web +n06359467 a site on the internet where a number of users can communicate in real time (typically one dedicated to a particular topic) +n06359657 a site that the owner positions as an entrance to other sites on the internet +n06415688 a small notebook for rough notes +n06417096 (Roman Catholic Church) a book of prayers to be recited daily certain priests and members of religious orders +n06418693 a reference book containing words (usually with their meanings) +n06419354 an abridged dictionary of a size convenient to hold in the hand +n06423496 a handbook of tables used to facilitate computation +n06470073 writing that provides information (especially information of an official nature) +n06591815 one or more recordings issued together; originally released on 12-inch phonograph records (usually with attractive record covers) and later on cassette audiotape and compact disc +n06592078 an album whose recordings are unified by some theme (instrumental or lyrical or narrative or compositional) +n06592281 albums of rock music that aspired to the status of art; first appeared in the 1960s +n06592421 concept album compiling a performer's work or work supporting some worthy cause +n06595351 a periodic publication containing pictures and stories and articles of interest to those who purchase it or subscribe to it +n06596179 (British) a magazine that is printed in color and circulated with a newspaper (especially on weekends) +n06596364 a magazine devoted to comic strips +n06596474 a magazine devoted to reports of current events; usually published weekly +n06596607 an inexpensive magazine printed on poor quality paper +n06596727 a magazine printed on good quality paper +n06596845 a magazine published for and read by members of a particular trade group +n06613686 a form of entertainment that enacts a story by sound and a sequence of images giving the illusion of continuous movement +n06614901 a scene that is filmed but is not used in the final editing of the film +n06616216 a movie featuring shooting and violence +n06618653 a low-budget Western movie produced by a European (especially an Italian) film company +n06625062 a letter from the pope sent to all Roman Catholic bishops throughout the world +n06785654 a puzzle in which words corresponding to numbered clues are to be found and written in to squares in the puzzle +n06793231 a public display of a message +n06794110 a sign visible from the street +n06874185 a visual signal to control the flow of traffic at intersections +n06883725 the official emblem of the Nazi Party and the Third Reich; a cross with the arms bent at right angles in a clockwise direction +n06892775 a performance of music by players or singers not involving theatrical staging +n06998748 photographs or other visual representations in a printed publication +n07005523 the enhanced response of an antenna in a given direction as indicated by a loop in its radiation pattern +n07248320 a paper jacket for a book; a jacket on which promotional information is usually printed +n07273802 a mound of stones piled up as a memorial or to mark a boundary or path +n07461050 an equestrian competition; the first day is dressage; the second is cross-country jumping; the third is stadium jumping +n07556406 food that is simply prepared and gives a sense of wellbeing; typically food with a high sugar or carbohydrate content that is associated with childhood or with home cooking +n07556637 any substance that can be used as food +n07556872 eatables (especially sweets) +n07556970 part of a meal served at one time +n07557165 something considered choice to eat +n07557434 a particular item of prepared food +n07560193 inexpensive food (hamburgers or chicken or milkshakes) prepared and served quickly +n07560331 food to be eaten with the fingers +n07560422 solid and liquid nourishment taken into the body through the mouth +n07560542 food that fulfills the requirements of Jewish dietary law +n07560652 the food and drink that are regularly served or consumed +n07560903 the usual food and drink consumed by an organism (person or animal) +n07561112 a prescribed selection of foods +n07561590 a regulated daily food allowance +n07561848 a diet that contains adequate amounts of all the necessary nutrients required for healthy growth and activity +n07562017 a diet of foods that are not irritating +n07562172 a diet of fluids with minimal residues (fat-free broth or strained fruit juices or gelatin); cannot be used for more than one day postoperative +n07562379 a diet designed to help control the symptoms of diabetes +n07562495 something added to complete a diet or to make up for a dietary deficiency +n07562651 a diet of foods high in starch that increases carbohydrate reserves in muscles +n07562881 a reducing diet that enjoys temporary popularity +n07562984 diet prescribed to treat celiac disease; eliminates such foods as wheat and rye and oats and beans and cabbage and turnips and cucumbers that are rich in gluten +n07563207 a diet high in plant and animal proteins; used to treat malnutrition or to increase muscle mass +n07563366 a diet designed to patients with vitamin deficiencies +n07563642 diet prescribed for bedridden or convalescent people; does not include fried or highly seasoned foods +n07563800 a diet of foods that can be served in liquid or strained form (plus custards or puddings); prescribed after certain kinds of surgery +n07564008 a diet that is low on calories +n07564101 a diet containing limited amounts of fat and stressing foods high in carbohydrates; used in treatment of some gallbladder conditions +n07564292 a diet that limits the intake of salt (sodium chloride); often used in treating hypertension or edema or certain other disorders +n07564515 a diet consisting chiefly of beans and whole grains +n07564629 a diet designed to help you lose weight (especially fat) +n07564796 a diet that does not require chewing; advised for those with intestinal disorders +n07564971 a diet excluding all meat and fish +n07565083 the dishes making up a meal +n07565161 informal terms for a meal +n07565259 food or meals in general +n07565608 a meal eaten in a mess hall by service personnel +n07565725 the food allowance for one day (especially for service personnel) +n07565945 rations issued for United States troops in the field +n07566092 a small package of emergency rations; issued to United States troops in World War II +n07566231 a canned field ration issued by the United States Army +n07566340 a substance that can be used or prepared for use as food +n07566863 foodstuff rich in natural starch (especially potatoes, rice, bread) +n07567039 flour or meal or grain used in baking bread +n07567139 a digestible substance used to give color to food +n07567390 a concentrated form of a foodstuff; the bulk is reduced by removing water +n07567611 a concentrated form of tomatoes +n07567707 coarsely ground foodstuff; especially seeds of various cereal grasses or pulse +n07567980 coarsely ground grain in the form of pellets (as for pet food) +n07568095 coarsely ground corn +n07568241 fine meal made from cereal grain especially wheat; often used as a cooked cereal or in puddings +n07568389 meal made from ground matzos +n07568502 meal made from rolled or ground oats +n07568625 meal made from dried peas +n07568818 coarse, indigestible plant food low in nutrients; its bulk stimulates intestinal peristalsis +n07568991 food prepared from the husks of cereal grains +n07569106 fine powdery foodstuff obtained by grinding and sifting the meal of a cereal grain +n07569423 flour that does not contain a raising agent +n07569543 flour prepared from wheat +n07569644 flour made by grinding the entire wheat berry including the bran; (`whole meal flour' is British usage) +n07569873 meal made from soybeans +n07570021 milled product of durum wheat (or other hard wheat) used in pasta +n07570530 a feed consisting primarily of corn gluten +n07570720 a source of materials to nourish the body +n07572353 a stock or supply of foods +n07572616 a supply of food especially for a household +n07572858 food preserved by freezing +n07572957 food preserved by canning +n07573103 meat preserved in a can or tin +n07573347 a canned meat made largely from pork +n07573453 food preserved by dehydration +n07573563 a substantial and nourishing meal +n07573696 the food served and eaten at one time +n07574176 whatever happens to be available especially when offered to an unexpected guest or when brought by guests and shared by all +n07574426 a light meal or repast +n07574504 snacks and drinks served as a light meal +n07574602 the first meal of the day (usually in the morning) +n07574780 a breakfast that usually includes a roll and coffee or tea +n07574923 combination breakfast and lunch; usually served in late morning +n07575076 a midday meal +n07575226 lunch (usually at a restaurant) where business is discussed and the cost is charged as a business expense +n07575392 substantial early evening meal including tea +n07575510 a light midafternoon meal of tea and sandwiches or cakes +n07575726 the main meal of the day served in the evening or at midday +n07575984 a light evening meal; served in early evening if dinner is at midday or served late in the evening at bedtime +n07576182 a meal set out on a buffet at which guests help themselves +n07576438 any informal meal eaten outside or on an excursion +n07576577 an informal meal cooked and eaten outdoors +n07576781 a cookout in which food is cooked over an open fire; especially a whole animal carcass roasted on a spit +n07576969 a cookout at the seashore where clams and fish and other foods are cooked--usually on heated stones covered with seaweed +n07577144 a cookout where fried fish is the main course +n07577374 a light informal meal +n07577538 (Yiddish) a snack or light meal +n07577657 a large satisfying meal +n07577772 a meal consisting of a sandwich of bread and cheese and a salad +n07577918 a snack taken during a break in the work day +n07578093 a meal that is well prepared and greatly enjoyed +n07579575 the principal dish of a meal +n07579688 the most important dish of a meal +n07579787 a main course served on a plate +n07579917 a dish of marinated vegetables and meat or fish; served with rice +n07580053 a dish that is served with, but is subordinate to, a main course +n07580253 a dish or meal given prominence in e.g. a restaurant +n07580359 food cooked and served in a casserole +n07580470 chicken cooked and served in a casserole +n07580592 chicken casserole prepared with tomatoes and mushrooms and herbs in the Italian style +n07581249 a course of appetizers in an Italian meal +n07581346 food or drink to stimulate the appetite (usually served before a meal or as the first course) +n07581607 an appetizer consisting usually of a thin slice of bread or toast spread with caviar or cheese or other savory food +n07581775 an appetizer served as a first course at a meal +n07581931 a mixture of sliced or diced fruits +n07582027 a cocktail of cold cooked crabmeat and a sauce +n07582152 a cocktail of cold cooked shrimp and a sauce +n07582277 a dish served as an appetizer before the main meal +n07582441 spicy or savory condiment +n07582609 tasty mixture or liquid into which bite-sized foods are dipped +n07582811 a dip made of cooked beans +n07582892 a dip made of cheeses +n07582970 a dip made of clams and soft cream cheese +n07583066 a dip made of mashed avocado mixed with chopped onions and other seasonings +n07583197 liquid food especially of meat or fish or vegetable stock often containing pieces of solid food +n07583865 the soup that a restaurant is featuring on a given day +n07583978 soup that contains small noodles in the shape of letters of the alphabet +n07584110 clear soup usually of beef or veal or chicken +n07584228 a tomato-flavored consomme; often served chilled +n07584332 a thick cream soup made from shellfish +n07584423 a Russian or Polish soup usually containing beet juice as a foundation +n07584593 a thin soup of meat or fish or vegetable stock +n07584859 used to feed infants +n07584938 a clear seasoned broth +n07585015 a stock made with beef +n07585107 a stock made with chicken +n07585208 liquid in which meat and vegetables are simmered; used as a basis for e.g. soups or sauces +n07585474 a cube of dehydrated stock +n07585557 soup made from chicken broth +n07585644 soup made from chicken boiled with leeks +n07585758 a soup made with chopped tomatoes and onions and cucumbers and peppers and herbs; served cold +n07585906 a soup or stew thickened with okra pods +n07585997 a clear soup garnished with julienne vegetables +n07586099 soup cooked in a large pot +n07586179 soup made from a calf's head or other meat in imitation of green turtle soup +n07586318 a soup of eastern India that is flavored with curry; prepared with a meat or chicken base +n07586485 a soup made from the skinned tail of an ox +n07586604 a thick soup made of dried peas (usually made into a puree) +n07586718 a soup made with vegetables and tripe and seasoned with peppercorns; often contains dumplings +n07586894 soup made with a variety of vegetables +n07587023 thick (often creamy) soup +n07587111 a stew of vegetables and (sometimes) meat +n07587206 soup usually made of the flesh of green turtles +n07587331 made by stirring beaten eggs into a simmering broth +n07587441 a thick soup or stew made with milk and bacon and onions and potatoes +n07587618 chowder containing corn +n07587700 chowder containing clams +n07587819 a chowder made with clams and tomatoes and other vegetables and seasonings +n07587962 a thick chowder made with clams and potatoes and onions and salt pork and milk +n07588111 chowder containing fish +n07588193 a soup with won ton dumplings +n07588299 made of stock and split peas with onions carrots and celery +n07588419 made of fresh green peas and stock with shredded lettuce onion and celery +n07588574 made of stock and lentils with onions carrots and celery +n07588688 a thick soup made from beef or mutton with vegetables and pearl barley +n07588817 a creamy potato soup flavored with leeks and onions; usually served cold +n07588947 food prepared by stewing especially meat or fish with vegetables +n07589458 a Polish stew of cabbage and meat +n07589543 spicy southern specialty: chicken (or small game) with corn and tomatoes and lima beans and okra and onions and potatoes +n07589724 thick spicy stew of whatever meat and whatever vegetables are available; southern United States +n07589872 a gathering at which burgoo stew is served +n07589967 Spanish version of burgoo +n07590068 Irish version of burgoo +n07590177 thick stew made of rice and chicken and small game; southern U.S. +n07590320 a rich meat stew highly seasoned with paprika +n07590502 a stew (or thick soup) made with meat and vegetables +n07590611 a stew of meat and potatoes cooked in a tightly covered pot +n07590752 meat is browned before stewing +n07590841 made with sauerkraut and caraway seeds and served with sour cream +n07590974 made of lamb or pork +n07591049 meat (especially mutton) stewed with potatoes and onions +n07591162 oysters in cream +n07591236 diced lobster meat in milk or cream +n07591330 a stew of meat and vegetables and hardtack that is eaten by sailors +n07591473 a stew made with fish +n07591586 highly seasoned Mediterranean soup or stew made of several kinds of fish and shellfish with tomatoes and onions or leeks and seasoned with saffron and garlic and herbs +n07591813 highly seasoned soup or stew made of freshwater fishes (eel, carp, perch) with wine and stock +n07591961 saffron-flavored dish made of rice with shellfish and chicken +n07592094 pieces of chicken or other meat stewed in gravy with e.g. carrots and onions and served with noodles or dumplings +n07592317 a stew made with chicken +n07592400 a stew made with turkey +n07592481 a stew made with beef +n07592656 well-seasoned stew of meat and vegetables +n07592768 a vegetable stew; usually made with tomatoes, eggplant, zucchini, peppers, onion, and seasonings +n07592922 ragout of game in a rich sauce +n07593004 traditional French stew of vegetables and beef +n07593107 a thin stew of meat and vegetables +n07593199 an assortment of foods starting with herring or smoked eel or salmon etc with bread and butter; then cheeses and eggs and pickled vegetables and aspics; finally hot foods; served as a buffet meal +n07593471 a choice or delicious dish +n07593774 a commercial preparation containing most of the ingredients for a dish +n07593972 a commercial mix for making brownies +n07594066 a commercial mix for making a cake +n07594155 a commercial mix for making lemonade +n07594250 a commercially prepared mixture of flour and salt and a leavening agent +n07594737 a small tasty bit of food +n07594840 an aromatic or spicy dish served at the end of dinner or as an hors d'oeuvre +n07595051 a savory jelly made with gelatin obtained by boiling calves' feet +n07595180 burnt sugar; used to color and flavor food +n07595368 refined sugar molded into rectangular shapes convenient as single servings +n07595649 sugar from sugarcane used as sweetening agent +n07595751 very finely granulated sugar that was formerly sprinkled from a castor +n07595914 sugar granulated into a fine powder +n07596046 sugar in the form of small grains +n07596160 finely powdered sugar used to make icing +n07596362 dextrose used as sweetening agent +n07596452 unrefined or only partly refined sugar +n07596566 light brown cane sugar; originally from Guyana +n07596684 a food rich in sugar +n07596967 candy and other sweets considered collectively +n07597145 preserved or candied fruit +n07597263 a sweetened delicacy (as a preserve or pastry) +n07597365 a rich sweet made of flavored sugar and often combined with fruit or nuts +n07598256 a candy shaped as a bar +n07598529 a bar of candy made with carob powder +n07598622 a British sweet made with molasses and butter and almonds +n07598734 candy that is brittle +n07598928 a brittle transparent candy made by melting and cooling cane sugar +n07599068 a British candy flavored with brandy +n07599161 a large round hard candy +n07599242 a hard candy with lemon flavor and a yellow color and (usually) the shape of a lemon +n07599383 round piece of tart hard candy +n07599468 round flat candy +n07599554 a patty flavored with peppermint +n07599649 a candy that usually has a center of fondant or fruit or nuts coated in chocolate +n07599783 caramelized sugar cooled in thin sheets +n07599911 brittle containing peanuts +n07599998 a preparation (usually made of sweetened chicle) for chewing +n07600177 a ball of chewing gum with a coating of colored sugar +n07600285 a kind of chewing gum that can be blown into bubbles +n07600394 a hard brittle candy made with butter and brown sugar +n07600506 fruit cooked in sugar syrup and encrusted with a sugar crystals +n07600696 an apple that is covered with a candy-like substance (usually caramelized sugar) +n07600895 strips of gingerroot cooked in sugar syrup and coated with sugar +n07601025 strips of grapefruit peel cooked in sugar syrup and coated with sugar +n07601175 strips of lemon peel cooked in sugar and coated with sugar +n07601290 strips of orange peel cooked in sugar and coated with sugar +n07601407 strips of citrus peel cooked in a sugar syrup +n07601572 a hard candy in the shape of a rod (usually with stripes) +n07601686 a small yellow and white candy shaped to resemble a kernel of corn +n07601809 firm chewy candy made from caramelized sugar and butter and milk +n07602650 the sweet central portion of a piece of candy that is enclosed in chocolate or some other covering +n07604956 candy containing a fruit or nut +n07605040 a candy made by spinning sugar that has been boiled to a high temperature +n07605198 sugar-coated nut or fruit piece +n07605282 silvery candy beads used for decorating cakes +n07605380 candy made of a thick creamy sugar paste +n07605474 soft creamy candy +n07605597 fudge made with chocolate or cocoa +n07605693 white creamy fudge made with egg whites +n07605804 fudge made with brown sugar and butter and milk and nuts +n07605944 a jellied candy coated with sugar crystals +n07606058 chewy fruit-flavored jellied candy (sometimes medicated to soothe a sore throat) +n07606191 a crisp candy made with honey +n07606278 a candy that is flavored with a mint oil +n07606419 a candy that is flavored with an extract of the horehound plant +n07606538 a candy flavored with peppermint oil +n07606669 sugar-glazed jellied candy +n07606764 any of several bite-sized candies +n07606933 a candy kiss that resembles toffee +n07607027 a kiss made of sugar and egg white and baked slowly +n07607138 a kiss that consists of a conical bite-sized piece of chocolate +n07607361 a black candy flavored with the dried root of the licorice plant +n07607492 a candy shaped like a small lifesaver +n07607605 hard candy on a stick +n07607707 a small aromatic or medicated candy +n07607832 a scented lozenge used to sweeten the breath (e.g. to conceal the odor of tobacco) +n07607967 a medicated lozenge used to soothe the throat +n07608098 spongy confection made of gelatin and sugar and corn syrup and dusted with powdered sugar +n07608245 almond paste and egg whites +n07608339 nuts or fruit pieces in a sugar paste +n07608429 a bar of nougat candy often dipped in chocolate +n07608533 paste of nuts and sugar on a pastry base cut into bars +n07608641 bar of peanuts in taffy +n07608721 popcorn combined with a thick sugar or molasses or caramel syrup and formed into balls +n07608866 cookie-sized candy made of brown sugar and butter and pecans +n07608980 sugar in large hard clear crystals on a string +n07609083 hard bright-colored stick candy (typically flavored with peppermint) +n07609215 made by boiling pure sugar until it hardens +n07609316 any of various small sugary candies +n07609407 chewy candy of sugar or syrup boiled until thick and pulled until glossy +n07609549 taffy made of molasses +n07609632 creamy chocolate candy +n07609728 a jellied candy typically flavored with rose water +n07609840 a dish served as the last course of a meal +n07610295 (classical mythology) the food and drink of the gods; mortals who ate it became immortal +n07610502 fruit dessert made of oranges and bananas with shredded coconut +n07610620 cake covered with ice cream and meringue browned quickly in an oven +n07610746 sweet almond-flavored milk pudding thickened with gelatin or cornstarch; usually molded +n07610890 a mold lined with cake or crumbs and filled with fruit or whipped cream or custard +n07611046 dessert of stewed or baked fruit +n07611148 dessert made by baking fruit wrapped in pastry +n07611267 open pastry filled with fruit or custard +n07611358 any of various desserts prepared by freezing +n07611733 dessert made of sweetened milk coagulated with rennet +n07611839 a light creamy dish made from fish or meat and set with gelatin +n07611991 a rich, frothy, creamy dessert made with whipped egg whites and heavy cream +n07612137 a dessert consisting of a meringue base or cup filled with fruit and whipped cream +n07612273 ice cream and peaches with a liqueur +n07612367 a dessert made of sugar and stiffly beaten egg whites or cream and usually flavored with fruit +n07612530 dessert made of prune puree and whipped cream +n07612632 any of various soft sweet desserts thickened usually with flour and baked or boiled or steamed +n07612996 (British) the dessert course of a meal (`pud' is used informally) +n07613158 sweetened cream beaten with wine or liquor +n07613266 an Italian dessert consisting of layers of sponge cake soaked with coffee and brandy or liqueur layered with mascarpone cheese and topped with grated chocolate +n07613480 a cold pudding made of layers of sponge cake spread with fruit or jelly; may be decorated with nuts, cream, or chocolate +n07613671 a trifle soaked in wine and decorated with almonds and candied fruit +n07613815 fruit-flavored dessert (trade mark Jell-O) made from a commercially prepared gelatin powder +n07614103 apples wrapped in pastry and baked +n07614198 a frozen dessert with fruit flavoring (especially one containing no milk) +n07614348 an ice containing no milk but having a mushy consistency; usually made from fruit juice +n07614500 frozen dessert containing cream and sugar and flavoring +n07614730 ice cream in a crisp conical wafer +n07614825 ice cream flavored with chocolate +n07615052 a block of ice cream with 3 or 4 layers of different colors and flavors +n07615190 ice cream flavored with fresh peaches +n07615289 a frozen dessert made primarily of fruit juice and sugar, but also containing milk or egg-white or gelatin +n07615460 ice cream flavored with fresh strawberries +n07615569 ice cream containing chopped candied fruits +n07615671 ice cream flavored with vanilla extract +n07615774 ice cream or water ice on a small wooden stick +n07615954 similar to ice cream but made of milk +n07616046 a soft frozen dessert of sweetened flavored yogurt +n07616174 ball of crushed ice with fruit syrup +n07616265 ball of ice cream covered with coconut and usually chocolate sauce +n07616386 layers of ice cream and syrup and whipped cream +n07616487 ice cream served with a topping +n07616590 a dessert of sliced fruit and ice cream covered with whipped cream and cherries and nuts +n07616748 a banana split lengthwise and topped with scoops of ice cream and sauces and nuts and whipped cream +n07616906 a chilled dessert consisting of a mixture of custard and nuts and (sometimes) liquor +n07617051 dessert resembling ice cream but with a boiled custard base +n07617188 any of various soft thick unsweetened baked dishes +n07617344 a bland custard or pudding especially of oatmeal +n07617447 mousse made with fish +n07617526 mousse made with chicken +n07617611 dessert mousse made with chocolate +n07617708 a rich steamed or boiled pudding that resembles cake +n07617839 pudding made with grated carrots +n07617932 pudding made of corn and cream and egg +n07618029 a pudding cooked by steaming +n07618119 a stiff flour pudding steamed or boiled usually and containing e.g. currants and raisins and citron +n07618281 sweet vanilla flavored custard-like pudding usually thickened with flour rather than eggs +n07618432 sweet chocolate flavored custard-like pudding usually thickened with flour rather than eggs +n07618587 baked pudding of apples and breadcrumbs +n07618684 a rich frozen pudding made of chopped chestnuts and maraschino cherries and candied fruits and liqueur or rum +n07618871 a pudding made with strained split peas mixed with egg +n07619004 sweetened mixture of milk and eggs baked or boiled or frozen +n07619208 baked custard topped with caramel +n07619301 custard sauce flavored with vanilla or a liqueur +n07619409 custard sprinkled with sugar and broiled +n07619508 a custard containing fruit +n07619881 granular preparation of cassava starch used to thicken especially puddings +n07620047 sweet pudding thickened with tapioca +n07620145 pudding made of suet pastry spread with jam or fruit and rolled up and baked or steamed +n07620327 a sweet or savory pudding made with suet and steamed or boiled +n07620597 a rich custard set with gelatin +n07620689 cherry preserved in true or imitation maraschino liqueur +n07621264 colored beads of sugar used as a topping on e.g. candies and cookies +n07621497 light foamy custard-like dessert served hot or chilled +n07621618 something (such as parsley) added to a dish for flavor or decoration +n07623136 a dough of flour and water and shortening +n07624466 a dish made by folding a piece of pastry over a filling +n07624666 turnover with an apple filling +n07624757 (Yiddish) a baked or fried turnover filled with potato or meat or cheese; often eaten as a snack +n07624924 small fruit or meat turnover baked or fried +n07625061 small turnover of Indian origin filled with vegetables or meat and fried and served hot +n07625324 individual serving of minced e.g. meat or fish in a rich creamy sauce baked in a small pastry mold or timbale shell +n07627931 dough used for very light flaky rich pastries +n07628068 tissue thin sheets of pastry used especially in Greek dishes +n07628181 batter for making light hollow cases to hold various fillings +n07631926 ice cream molded to look like a cake +n07639069 a small ring-shaped friedcake +n07641928 a fried ball or patty of flaked fish and mashed potatoes +n07642361 a long fillet of fish breaded and fried +n07642471 fruit preserved by cooking with sugar +n07642742 thick dark spicy puree of apples +n07642833 a Chinese preserve of mixed fruits and ginger +n07642933 preserve of crushed fruit +n07643026 a conserve with a thick consistency; made with lemons and butter and eggs and sugar +n07643200 made with strawberries +n07643306 a preserve made of the jelled juice of fruit +n07643474 jelly made from apple juice +n07643577 a tart apple jelly made from crab apples +n07643679 jelly made from grape juice +n07643764 a preserve made of the pulp and rind of citrus fruits +n07643891 marmalade made from oranges +n07643981 an edible jelly (sweet or pungent) made with gelatin and used as a dessert or salad base or a coating for foods +n07644244 jellied dessert made with gelatin and fruit juice or water +n07648913 crisp spicy chicken wings +n07648997 chicken wings cooked in barbecue sauce +n07650792 soft semiliquid food +n07650903 food chopped into small bits +n07651025 food prepared by cooking and straining or processed in a blender +n07654148 meat that has been barbecued or grilled in a highly seasoned sauce +n07654298 an Indian dish made with highly seasoned rice and meat or fish or vegetables +n07655067 lightly sauteed veal cutlets spread with a Soubise sauce and liver paste then sprinkled with grated Parmesan and baked briefly +n07655263 a dish of sauteed food +n07663899 small flat mass of chopped food +n07665438 sauteed veal cutlet in a breadcrumb-and-cheese coating served with tomato sauce +n07666176 thin slices of veal stuffed with cheese and ham and then sauteed +n07672914 a spread made chiefly from vegetable oils and used as a substitute for butter +n07678586 spiced mixture of chopped raisins and apples and other ingredients with or without meat +n07678729 a mixture of seasoned ingredients used to stuff meats and vegetables +n07678953 stuffing for turkey +n07679034 stuffing made with oysters +n07679140 mixture of ground raw chicken and mushrooms with pistachios and truffles and onions and parsley and lots of butter and bound with eggs +n07679356 food made from dough of flour or meal and usually raised with yeast or baking powder and then baked +n07680168 a yeast-raised bread made of white flour and cornmeal and molasses +n07680313 a small loaf or roll of soft bread +n07680416 a rich currant cake or bun +n07680517 a crisp stick-shaped roll; often served with soup +n07680655 a long slender crusty breadstick +n07680761 dark steamed bread made of cornmeal wheat and flour with molasses and soda and milk or water +n07680932 small rounded bread either plain or sweet +n07681264 sweetened buns to be eaten with tea +n07681355 bread containing caraway seeds +n07681450 (Judaism) a loaf of white bread containing eggs and leavened with yeast; often formed into braided loaves and glazed with eggs before baking +n07681691 bread flavored with cinnamon often containing raisins +n07681805 bread made with cracked wheat that has been ground fine +n07681926 a thin crisp wafer made of flour and water with or without leavening and shortening; unsweetened or semisweet +n07682197 a small piece of toasted or fried bread; served in soup or salads +n07682316 bread made with whole wheat flour +n07682477 round, raised muffin cooked on a griddle; usually split and toasted before being eaten +n07682624 any of various breads made from usually unleavened dough +n07682808 French or Italian bread sliced and spread with garlic butter then crisped in the oven +n07682952 bread made with gluten flour +n07683039 bread made of graham (whole wheat) flour +n07683138 a technical name for the bread used in the service of Mass or Holy Communion +n07683265 the thin wafer-like bread of Scandinavia +n07683360 a flat bread made of oat or barley flour; common in New England and Scotland +n07683490 flat pancake-like bread cooked on a griddle +n07683617 usually small round bread that can open into a pocket for filling +n07683786 a shaped mass of baked bread that is usually sliced before eating +n07684084 a loaf of French bread +n07684164 brittle flat bread eaten at Passover +n07684289 leavened bread baked in a clay oven in India; usually shaped like a teardrop +n07684422 bread containing finely minced onions +n07684517 bread containing raisins +n07684600 breads made with a leavening agent that permits immediate baking +n07684938 moist bread containing banana pulp +n07685031 bread containing chopped dates +n07685118 bread containing chopped dates and nuts +n07685218 bread containing chopped nuts +n07685303 thin flat unleavened cake of baked oatmeal +n07685399 round loaf made with soda and buttermilk; often containing caraway seeds and raisins +n07685546 usually cooked in a skillet over an open fire: especially cornbread with ham bits and sometimes Irish soda bread +n07685730 any of various breads made entirely or partly with rye flour +n07685918 bread made of coarse rye flour +n07686021 (Judaism) bread made with rye flour; usually contains caraway seeds +n07686202 a rye bread made with molasses or brown sugar +n07686299 a moist aromatic yeast-raised bread made with rye flour and molasses and orange rind +n07686461 white wheat bread raised by a salt-tolerant bacterium in a mixture of salt and either cornmeal or potato pulp +n07686634 a crisp bread of fine white flour +n07686720 made with a starter of a small amount of dough in which fermentation is active +n07686873 slices of bread that have been toasted +n07687053 thin disk of unleavened bread used in a religious service (especially in the celebration of the Eucharist) +n07687211 bread made with finely ground and usually bleached wheat flour +n07687381 narrow French stick loaf +n07687469 a crusty sourdough bread often baked in long slender tapered loaves or baguettes +n07687626 unsweetened yeast-raised bread made without shortening and baked in long thick loaves with tapered ends +n07687789 bread made primarily of cornmeal +n07688021 baked in a pan or on a griddle (southern and midland) +n07688130 cornbread usually containing ham or bacon bits and cooked in a skillet +n07688265 corn bread wrapped in cabbage leaves and baked in hot ashes (southern) +n07688412 thin usually unleavened johnnycake made of cornmeal; originally baked on the blade of a hoe over an open fire (southern) +n07688624 cornbread often made without milk or eggs and baked or fried (southern) +n07688757 small oval cake of corn bread baked or fried (chiefly southern) +n07688898 deep-fried cornbread ball (southern) +n07689003 cornbread usually cooked pancake-style on a griddle (chiefly New England) +n07689217 form of johnnycake +n07689313 soft bread made of cornmeal and sometimes rice or hominy; must be served with a spoon (chiefly southern) +n07689490 buttered toast with sugar and cinnamon (and nutmeg and grated lemon peel) +n07689624 buttered toast with sugar and grated orange rind and a little orange juice +n07689757 very thin crisp brown toast +n07689842 slice of sweet raised bread baked again until it is brown and hard and crisp +n07690019 a long bun shaped to hold a frankfurter +n07690152 a round bun shaped to hold a hamburger patty +n07690273 a sweet quick bread baked in a cup-shaped pan +n07690431 muffin containing bran +n07690511 cornbread muffin +n07690585 light puffy bread made of a puff batter and traditionally baked in the pan with roast beef +n07690739 light hollow muffin made of a puff batter (individual Yorkshire pudding) baked in a deep muffin cup +n07690892 small biscuit (rich with cream and eggs) cut into diamonds or sticks and baked in an oven or (especially originally) on a griddle +n07691091 a scone made by dropping a spoonful of batter on a griddle +n07691237 moderately sweet raised roll containing spices and raisins and citron and decorated with a cross-shaped sugar glaze +n07691539 a light roll rich with eggs and butter and somewhat sweet +n07691650 very rich flaky crescent-shaped roll +n07691758 yeast-raised roll with a hard crust +n07691863 yeast-raised roll with a soft crust +n07691954 rounded raised poppy-seed roll made of a square piece of dough by folding the corners in to the center +n07692114 yeast-raised dinner roll made by folding a disk of dough before baking +n07692248 yeast-raised dinner roll made by baking three small balls of dough in each cup of a muffin pan +n07692405 yeast-raised roll flavored with onion +n07692517 flat crusty-bottomed onion roll +n07692614 any of numerous yeast-raised sweet rolls with our without raisins or nuts or spices or a glaze +n07692887 almond-flavored yeast-raised pastry shaped in an irregular semicircle resembling a bear's claw +n07693048 rolled dough spread with cinnamon and sugar (and raisins) then sliced before baking +n07693223 rolled dough spread with sugar and nuts then sliced and baked in muffin tins with honey or sugar and butter in the bottom +n07693439 pinwheel-shaped rolls spread with cinnamon and sugar and filled with e.g. jam before baking +n07693590 light sweet yeast-raised roll usually filled with fruits or cheese +n07693725 (Yiddish) glazed yeast-raised doughnut-shaped roll with hard crust +n07693889 bagel flavored with onion +n07693972 small round bread leavened with baking-powder or soda +n07694169 biscuit made from dough rolled and cut +n07694403 leavened with baking powder +n07694516 very tender biscuit partially leavened with buttermilk and soda +n07694659 very short biscuit dough baked as individual biscuits or a round loaf; served with sweetened fruit and usually whipped cream +n07694839 very hard unsalted biscuit or bread; a former ship's staple +n07695187 a cracker sprinkled with salt before baking +n07695284 unsweetened cracker leavened slightly with soda and cream of tartar +n07695410 a small dry usually round cracker +n07695504 a thin flour-and-water biscuit usually made without shortening; often served with cheese +n07695652 semisweet whole-wheat cracker +n07695742 glazed and salted cracker typically in the shape of a loose knot +n07695878 a pretzel made of soft bread +n07695965 two (or more) slices of bread with a filling between them +n07696403 a serving consisting of a sandwich or sandwiches with garnishes +n07696527 a sandwich +n07696625 a sandwich made with a filling of sliced ham +n07696728 a sandwich made with a filling of sliced chicken +n07696839 made with three slices of usually toasted bread +n07696977 sandwich without a covering slice of bread +n07697100 a sandwich consisting of a fried cake of minced beef served on a bun, often with other ingredients +n07697313 a hamburger with melted cheese on it +n07697408 a sandwich that resembles a hamburger but made with tuna instead of beef +n07697537 a frankfurter served hot on a bun +n07697699 ground beef (not a patty) cooked in a spicy sauce and served on a bun +n07697825 a large sandwich made of a long crusty roll split lengthwise and filled with meats and cheese (and tomato and onion and lettuce and condiments); different names are used in different sections of the United States +n07698250 a Greek sandwich: sliced roast lamb with onion and tomato stuffed into pita bread +n07698401 sandwich filled with slices of bacon and tomato with lettuce +n07698543 a hot sandwich with corned beef and Swiss cheese and sauerkraut on rye bread +n07698672 a sandwich made from a western omelet +n07698782 a sandwich in which the filling is rolled up in a soft tortilla +n07700003 spaghetti served with a tomato sauce +n07703889 sweetened porridge made of tapioca or flour or oatmeal cooked quickly in milk or water +n07704054 a thin porridge (usually oatmeal or cornmeal) +n07704205 a Chinese rice gruel eaten for breakfast +n07704305 a thin porridge or soup (usually oatmeal and water flavored with meat) +n07705931 edible reproductive body of a seed plant especially one having sweet flesh +n07707451 edible seeds or roots or stems or leaves or bulbs or tubers or nonsweet fruits of any of numerous herbaceous plant +n07708124 a vegetable cut into thin strips (usually used as a garnish) +n07708398 an uncooked vegetable +n07708512 raw vegetables cut into bite-sized strips and served with a dip +n07708685 celery stalks cut into small sticks +n07708798 the seedpod of a leguminous plant (such as peas or beans or lentils) +n07709046 edible seeds of various pod-bearing plants (peas or beans or lentils etc.) +n07709172 any of various herbaceous plants whose leaves or stems or flowers are cooked and used for food or seasoning +n07709333 any of various leafy plants or their leaves and stems eaten as vegetables +n07709701 succulent and aromatic young dark green leaves used in Chinese and Vietnamese and Japanese cooking +n07709881 cheeselike food made of curdled soybean milk +n07710007 any of several fruits of plants of the family Solanaceae; especially of the genera Solanum, Capsicum, and Lycopersicon +n07710283 any of various fleshy edible underground roots or tubers +n07710616 an edible tuber native to South America; a staple food of Ireland +n07710952 potato that has been cooked by baking it in an oven +n07711080 strips of potato fried in deep fat +n07711232 sliced pieces of potato fried in a pan until brown and crisp +n07711371 a baked potato served with the jacket on +n07711569 potato that has been peeled and boiled and then mashed +n07711683 crisp fried potato peeling +n07711799 similar to the common potato +n07711907 edible tuberous root of various yam plants of the genus Dioscorea grown in the tropics world-wide for food +n07712063 the edible tuberous root of the sweet potato vine which is grown widely in warm regions of the United States +n07712267 sweet potato with deep orange flesh that remains moist when baked +n07712382 food for light meals or for eating between meals +n07712559 a thin crisp slice of potato fried in deep fat +n07712748 thin piece of cornmeal dough fried +n07712856 a small piece of tortilla +n07712959 a tortilla chip topped with cheese and chili-pepper and broiled +n07713074 egg-shaped vegetable having a shiny skin typically dark purple but occasionally white or yellow +n07713267 long pinkish sour leafstalks usually eaten cooked and sweetened +n07713395 a vegetable of the mustard family: especially mustard greens; various cabbages; broccoli; cauliflower; brussels sprouts +n07713763 leaves eaten as cooked greens +n07713895 any of various types of cabbage +n07714078 coarse curly-leafed cabbage +n07714188 kale that has smooth leaves +n07714287 elongated head of crisp celery-like stalks and light green leaves +n07714448 elongated head of dark green leaves on thick white stalks +n07714571 any of several varieties of cabbage having a large compact globular head; may be steamed or boiled or stir-fried or used raw in coleslaw +n07714802 compact head of purplish-red leaves +n07714895 head of soft crinkly leaves +n07714990 branched green undeveloped flower heads +n07715103 compact head of white undeveloped flowers +n07715221 the small edible cabbage-like buds growing along a stalk of the brussels sprout plant +n07715407 slightly bitter dark green leaves and clustered flower buds +n07715561 edible fruit of a squash plant; eaten as a vegetable +n07715721 any of various fruits of the gourd family that mature during the summer; eaten while immature and before seeds and rind harden +n07716034 squash having yellow skin and yellowish flesh and usually elongated neck +n07716203 yellow squash with a thin curved neck and somewhat warty skin +n07716358 small cucumber-shaped vegetable marrow; typically dark green +n07716504 large elongated squash with creamy to deep green skins +n07716649 squash resembling zucchini +n07716750 round greenish-white squash having one face flattened with a scalloped edge +n07716906 medium-sized oval squash with flesh in the form of strings that resemble spaghetti +n07717070 any of various fruits of the gourd family with thick rinds and edible yellow to orange flesh that mature in the fall and can be stored for several months +n07717410 small dark green or yellow ribbed squash with yellow to orange flesh +n07717556 buff-colored squash with a long usually straight neck and sweet orange flesh +n07717714 large football-shaped winter squash with a warty grey-green rind +n07717858 large squash shaped somewhat like a turban usually with a rounded central portion protruding from the blossom end +n07718068 drum-shaped squash with dark green rind marked in silver or grey +n07718195 globose or ovoid squash with striped grey and green warty rind +n07718329 a squash with a hard rind and an elongated curved neck +n07718472 cylindrical green fruit with thin green rind and white flesh eaten as a vegetable; related to melons +n07718671 small prickly cucumber +n07718747 a thistlelike flower head with edible fleshy leaves and heart +n07718920 the tender fleshy center of the immature artichoke flower +n07719058 sunflower tuber eaten raw or boiled or sliced thin and fried as Saratoga chips +n07719213 edible young shoots of the asparagus plant +n07719330 edible young shoots of bamboo +n07719437 a newly grown bud (especially from a germinating seed) +n07719616 any of various sprouted beans: especially mung beans or lentils or edible soybeans +n07719756 sprouted alfalfa seeds +n07719839 round red root vegetable +n07719980 young leaves of the beetroot +n07720084 white-rooted beet grown as a source of sugar +n07720185 cultivated as feed for livestock +n07720277 long succulent whitish stalks with large green leaves +n07720442 sweet and hot varieties of fruits of plants of the genus Capsicum +n07720615 large mild crisp thick-walled capsicum peppers usually bell-shaped or somewhat oblong; commonly used in salads +n07720875 large bell-shaped sweet pepper in green or red or yellow or orange or black varieties +n07721018 a sweet pepper that becomes red when ripe +n07721118 round sweet pepper +n07721195 fully ripened sweet red pepper; usually cooked +n07721325 any of various pungent capsicum fruits +n07721456 very hot and finely tapering pepper of special pungency +n07721678 hot green or red pepper of southwestern United States and Mexico +n07721833 a ripe jalapeno that has been dried for use in cooking +n07721942 a long and often twisted hot red pepper +n07722052 very hot red peppers; usually long and thin; some very small +n07722217 an aromatic flavorful vegetable +n07722390 mild flat onion grown in warm areas +n07722485 a young onion before the bulb has enlarged; eaten in salads +n07722666 sweet-flavored onion grown in Georgia +n07722763 large mild and succulent onion; often eaten raw +n07722888 flat mild onion having purplish tunics; used as garnish on hamburgers and salads +n07723039 related to onions; white cylindrical bulb and flat dark-green leaves +n07723177 small mild-flavored onion-like or garlic-like clustered bulbs used for seasoning +n07723330 greens suitable for eating uncooked as in salads +n07723559 leaves of any of various plants of Lactuca sativa +n07723753 lettuce with relatively soft leaves in a loose head; easily broken or bruised +n07723968 lettuce with delicate and relatively crunchy leaves +n07724078 lettuce with relatively crisp leaves +n07724173 lettuce with relatively soft leaves +n07724269 lettuce with crisp tightly packed light-green leaves in a firm head +n07724492 lettuce with long dark-green leaves in a loosely packed elongated head +n07724654 lettuce with loosely curled leaves that do not form a compact head +n07724819 leaves having celery-like stems eaten raw or cooked +n07724943 any of various edible seeds of plants of the family Leguminosae used for food +n07725158 Old World tropical bean +n07725255 round flat seed of the lentil plant used for food +n07725376 seed of a pea plant used for food +n07725531 fresh pea +n07725663 a variety of large pea that is commonly processed and sold in cans +n07725789 green peas with flat edible pods +n07725888 green peas with edible pods that are very crisp and not flat +n07726009 dried hulled pea; used in soup +n07726095 large white roundish Asiatic legume; usually dried +n07726230 small highly nutritious seed of the tropical pigeon-pea plant +n07726386 coarse small-seeded pea often used as food when young and tender +n07726525 marrowfat peas that have been soaked overnight and then boiled; served with fish and chips +n07726672 eaten fresh as shell beans or dried +n07726796 any of numerous beans eaten either fresh or dried +n07727048 large dark red bean; usually dried +n07727140 white-seeded bean; usually dried +n07727252 mottled or spotted bean of southwestern United States; usually dried +n07727377 Mexican bean; usually dried +n07727458 black-seeded bean of South America; usually dried +n07727578 beans eaten before they are ripe as opposed to dried +n07727741 a French bean variety with light-colored seeds; usually dried +n07727868 immature bean pod eaten as a vegetable +n07728053 tender green beans without strings that easily snap into sections +n07728181 green beans with strings that must be removed +n07728284 flat-podded green bean +n07728391 long bean pods usually sliced into half-inch lengths; a favorite in Britain +n07728585 very small and slender green bean +n07728708 snap beans with yellow pods +n07728804 unripe beans removed from the pod before cooking +n07729000 broad flat beans simmered gently; never eaten raw +n07729142 relatively large lima beans +n07729225 small flat green bean similar to lima beans +n07729384 shell beans cooked as lima beans +n07729485 the most highly proteinaceous vegetable known; the fruit of the soybean plant is used in a variety of foods and as fodder (especially as a replacement for animal protein) +n07729828 seeds shelled and cooked as lima beans +n07729926 seeds used as livestock feed +n07730033 only parts eaten are roots and especially stalks (blanched and used as celery); related to artichokes +n07730207 orange root; important source of carotene +n07730320 a stick of carrot eaten raw +n07730406 stalks eaten raw or cooked or used as seasoning +n07730562 any of several types of commercially grown celery having green stalks +n07730708 thickened edible aromatic root of a variety of celery plant +n07730855 crisp spiky leaves with somewhat bitter taste +n07731006 prized variety of chicory having globose heads of red leaves +n07731122 a drink resembling coffee that is sometimes substituted for it +n07731284 root of the chicory plant roasted and ground to substitute for or adulterate coffee +n07731436 trade mark for a coffee substitute invented by C. W. Post and made with chicory and roasted grains +n07731587 variety of endive having leaves with irregular frilled edges +n07731767 young broad-leaved endive plant deprived of light to form a narrow whitish head +n07731952 ears of corn that can be prepared and served for human food +n07732168 corn that can be eaten as a vegetable while still young and soft +n07732302 hulled corn with the bran and germ removed +n07732433 hominy prepared by bleaching in lye +n07732525 hominy prepared by milling to pellets of medium size +n07732636 small kernels of corn exploded by heat +n07732747 pungent leaves of any of numerous cruciferous herbs +n07732904 cresses that grow in clear ponds and streams +n07733005 cress cultivated for salads and garnishes +n07733124 cress cultivated for winter salads +n07733217 edible leaves of the common dandelion collected from the wild; used in salads and in making wine +n07733394 long mucilaginous green pods; may be simmered or sauteed but used especially in soups and stews +n07733567 fleshy turnip-shaped edible stem of the kohlrabi plant +n07733712 leaves collected from the wild +n07733847 leafy greens collected from the wild and used as a substitute for spinach +n07734017 mildly acid red or yellow pulpy fruit eaten as a vegetable +n07734183 any of several large tomatoes with thick flesh +n07734292 small red to yellow tomatoes +n07734417 a kind of cherry tomato that is frequently used in cooking rather than eaten raw +n07734555 small edible yellow to purple tomato-like fruit enclosed in a bladderlike husk +n07734744 fleshy body of any of numerous edible fungi +n07734879 mushrooms stuffed with any of numerous mixtures of e.g. meats or nuts or seafood or spinach +n07735052 either of two long roots eaten cooked +n07735179 long white salsify +n07735294 long black salsify +n07735404 whitish edible root; eaten cooked +n07735510 usually large pulpy deep-yellow round fruit of the squash family maturing in late summer or early autumn +n07735687 pungent fleshy edible root +n07735803 root of any of several members of the mustard family +n07735981 white root of a turnip plant +n07736087 the large yellow root of a rutabaga plant used as food +n07736256 tender leaves of young white turnips +n07736371 large sour-tasting arrowhead-shaped leaves used in salads and sauces +n07736527 greens having small tart oval to pointed leaves; preferred to common sorrel for salads +n07736692 dark green leaves; eaten cooked or raw in salads +n07736813 tropical starchy tuberous root +n07736971 edible subterranean fungus of the genus Tuber +n07737081 a hard-shelled seed consisting of an edible kernel or meat enclosed in a woody or leathery shell +n07737594 nut tasting like roasted chestnuts; a staple food of Australian aborigines +n07737745 pod of the peanut vine containing usually 2 nuts or seeds; `groundnut' and `monkey nut' are British terms +n07738105 fruit (especially peach) whose flesh does not adhere to the pit +n07738224 fruit (especially peach) whose flesh adheres strongly to the pit +n07739035 fruit that has fallen from the tree +n07739125 fruit with red or yellow or green skin and sweet to tart crisp whitish flesh +n07739344 small sour apple; suitable for preserving +n07739506 an apple used primarily for eating raw without cooking +n07739923 an American eating apple with red or yellow and red skin +n07740033 large apple with a red skin +n07740115 a yellow Pippin with distinctive flavor +n07740220 variety of sweet eating apples +n07740342 a sweet eating apple with yellow skin +n07740461 a sweet eating apple with bright red skin; most widely grown apple worldwide +n07740597 an eating apple that somewhat resembles a McIntosh; used as both an eating and a cooking apple +n07740744 yellow apple that ripens in late autumn; eaten raw +n07740855 red late-ripening apple; primarily eaten raw +n07740954 early-ripening apple popular in the northeastern United States; primarily eaten raw but suitable for applesauce +n07741138 similar to McIntosh; juicy and late-ripening +n07741235 large late-ripening apple with skin striped with yellow and red +n07741357 any of several varieties of apples with red skins +n07741461 any of numerous superior eating apples with yellow or greenish yellow skin flushed with red +n07741623 used primarily as eating apples +n07741706 apple grown chiefly in the Shenandoah Valley +n07741804 crisp apple with dark red skin +n07741888 crisp tart apple; good for eating raw and suitable for cooking +n07742012 an apple used primarily in cooking for pies and applesauce etc +n07742224 very large cooking apple +n07742313 apple with a green skin and hard tart flesh +n07742415 apple used primarily in cooking +n07742513 apple used primarily in cooking +n07742605 large red apple used primarily for baking +n07742704 any of numerous small and pulpy edible fruits; used as desserts or in making jams and jellies and preserves +n07743224 blue-black berries similar to American blueberries +n07743384 blue-black berry similar to blueberries and bilberries of the eastern United States +n07743544 sweet edible dark-blue berries of either low-growing or high-growing blueberry plants +n07743723 spicy red berrylike fruit; source of wintergreen oil +n07743902 very tart red berry used for sauce or juice +n07744057 tart red berries similar to American cranberries but smaller +n07744246 any of several tart red or black berries used primarily for jellies and jams +n07744430 currant-like berry used primarily in jams and jellies +n07744559 small black berries used in jams and jellies +n07744682 small red berries used primarily in jams and jellies +n07744811 large sweet black or very dark purple edible aggregate fruit of any of various bushes of the genus Rubus +n07745046 large raspberry-flavored fruit; cross between blackberries and raspberries +n07745197 blackberry-like fruits of any of several trailing blackberry bushes +n07745357 large red variety of the dewberry +n07745466 red or black edible aggregate berries usually smaller than the related blackberries +n07745661 edible purple or red berries +n07745940 sweet fleshy red fruit +n07746038 small edible dark purple to black berry with large pits; southern United States +n07746186 orange fruit resembling a plum; edible when fully ripe +n07746334 acid red or yellow cherry-like fruit of a tropical American shrub very rich in vitamin C +n07746551 deeply ridged yellow-brown tropical fruit; used raw as a vegetable or in salad or when fully ripe as a dessert +n07746749 tropical cylindrical fruit resembling a pinecone with pineapple-banana flavor +n07746910 edible scarlet plumlike fruit of a South African plant +n07747055 any of numerous fruits of the genus Citrus having thick rind and juicy pulp; grown in warm regions +n07747607 round yellow to orange fruit of any of several citrus trees +n07747811 large sweet easily-peeled Florida fruit with deep orange rind +n07747951 a somewhat flat reddish-orange loose skinned citrus of China +n07748157 a mandarin orange of a deep reddish orange color and few seeds +n07748276 medium-sized largely seedless mandarin orange with thin smooth skin +n07748416 any of various deep orange mandarins grown in the United States and southern Africa +n07748574 large sweet juicy hybrid between tangerine and grapefruit having a thick wrinkled skin +n07748753 highly acidic orange used especially in marmalade +n07748912 orange with sweet juicy pulp; often has a thin skin +n07749095 sweet almost seedless orange of Israel +n07749192 seedless orange enclosing a small secondary fruit at the apex +n07749312 variety of sweet orange cultivated extensively in Florida and California +n07749446 small oval citrus fruit with thin sweet rind and very acid pulp +n07749582 yellow oval fruit with juicy acidic flesh +n07749731 the green acidic fruit of any of various lime trees +n07749870 small yellow-green limes of southern Florida +n07749969 large yellow fruit with somewhat acid juicy pulp; usual serving consists of a half +n07750146 large pear-shaped fruit similar to grapefruit but with coarse dry pulp +n07750299 more aromatic and acid tasting than oranges; used in beverages and marmalade +n07750449 large lemonlike fruit with thick aromatic rind; usually preserved +n07750586 oval-shaped edible seed of the almond tree +n07750736 an almond covered with a sugar coating that is hard and flavored and colored +n07750872 downy yellow to rosy-colored fruit resembling a small peach +n07751004 downy juicy fruit with sweet yellowish or whitish flesh +n07751148 a variety or mutation of the peach that has a smooth skin +n07751280 highly colored edible fruit of pitahaya cactus having bright red juice; often as large as a peach +n07751451 any of numerous varieties of small to medium-sized round or oval fruit having a smooth skin and a single pit +n07751737 dark purple plum of the damson tree +n07751858 sweet green or greenish-yellow variety of plum +n07751977 small dark purple fruit used especially in jams and pies +n07752109 small sour dark purple fruit of especially the Allegheny plum bush +n07752264 a large red plum served as dessert +n07752377 fruit preserved by drying +n07752514 apricots preserved by drying +n07752602 dried plum +n07752664 dried grape +n07752782 dried seedless grape +n07752874 seeded grape that has been dried +n07752966 small dried seedless raisin grown in the Mediterranean region and California; used in cooking +n07753113 fleshy sweet pear-shaped yellowish or purple multiple fruit eaten fresh or preserved or dried +n07753275 large sweet fleshy tropical fruit with a terminal tuft of stiff leaves; widely cultivated +n07753448 West Indian fruit resembling the mango; often pickled +n07753592 elongated crescent-shaped yellow fruit with soft sweet flesh +n07753743 egg-shaped tropical fruit of certain passionflower vines; used for sherbets and confectionery and drinks +n07753980 the egg-shaped edible fruit of tropical American vines related to passionflowers +n07754155 apple-sized passion fruit of the West Indies +n07754279 the edible yellow fruit of the Jamaica honeysuckle +n07754451 a large round seedless or seeded fruit with a texture like bread; eaten boiled or baked or roasted or ground into flour; the roasted seeds resemble chestnuts +n07754684 immense East Indian fruit resembling breadfruit; it contains an edible pulp and nutritious seeds that are commonly roasted +n07754894 seed of the cacao tree; ground roasted beans are source of chocolate +n07755089 powder of ground roasted cacao beans with most of the fat removed +n07755262 ovoid orange-yellow mealy sweet fruit of Florida and West Indies +n07755411 any of numerous fruits of the gourd family having a hard rind and sweet juicy flesh +n07755619 a bite of melon cut as a sphere +n07755707 the fruit of a muskmelon vine; any of several sweet melons related to cucumbers +n07755929 the fruit of a cantaloup vine; small to medium-sized melon with yellowish flesh +n07756096 the fruit of the winter melon vine; a green melon with pale green to orange flesh that keeps well +n07756325 the fruit of a variety of winter melon vine; a large smooth greenish-white melon with pale green flesh +n07756499 the fruit of a variety of winter melon vine; a large green melon with orange flesh +n07756641 the fruit of a variety of muskmelon vine; a melon with netlike markings and deep green flesh +n07756838 melon having yellowish rind and whitish flesh +n07756951 large oblong or roundish melon with a hard green rind and sweet watery red or occasionally yellowish pulp +n07757132 a red fruit with a single hard stone +n07757312 any of several fruits of cultivated cherry trees that have sweet flesh +n07757511 dark red or blackish sweet cherry +n07757602 large heart-shaped sweet cherry with soft flesh +n07757753 heart cherry with dark flesh and skin cherry +n07757874 Mexican black cherry +n07757990 acid cherries used for pies and preserves +n07758125 pale red sour cherry with colorless or nearly colorless juice +n07758260 cultivated sour cherry with dark-colored skin and juice +n07758407 plum-shaped whitish to almost black fruit used for preserves; tropical American +n07758582 any of various small cucumbers pickled whole +n07758680 any of various juicy fruit of the genus Vitis with green or purple skins; grow in clusters +n07758950 purplish-black wild grape of the eastern United States with tough skins that slip easily from the flesh; cultivated in many varieties +n07759194 slipskin grape; a purple table grape of the northeastern United States +n07759324 slipskin grape; a reddish American table grape +n07759424 dull-purple grape of southern United States +n07759576 amber-green muscadine grape of southeastern United States +n07759691 a grape whose skin slips readily from the pulp +n07759816 grape from a cultivated variety of the common grape vine of Europe +n07760070 red table grape of California +n07760153 sweet aromatic grape used for raisins and wine +n07760297 dark reddish-purple table grape of California +n07760395 pale yellow seedless grape used for raisins and wine +n07760501 variety of wine grape originally grown in Hungary; the prototype of vinifera grapes +n07760673 purplish-red table grape +n07760755 seedless green table grape of California +n07760859 the fruit of any of several tropical American trees of the genus Annona having soft edible pulp +n07761141 large tropical fruit with leathery skin and soft pulp; related to custard apples +n07761309 large spiny tropical fruit with tart pulp related to custard apples +n07761611 sweet pulpy tropical fruit with thick scaly rind and shiny black seeds +n07761777 whitish tropical fruit with a pinkish tinge related to custard apples; grown in the southern United States +n07761954 ovoid yellow fruit with very fragrant peach-colored flesh; related to custard apples +n07762114 fruit with yellow flesh; related to custard apples +n07762244 large oval melon-like tropical fruit with yellowish flesh +n07762373 South African fruit smelling and tasting like apricots; used for pickles and preserves +n07762534 maroon-purple gooseberry-like fruit of India having tart-sweet purple pulp used especially for preserves +n07762740 red pear-shaped tropical fruit with poisonous seeds; flesh is poisonous when unripe or overripe +n07762913 huge fruit native to southeastern Asia `smelling like Hell and tasting like Heaven'; seeds are roasted and eaten like nuts +n07763107 dark-green kiwi-sized tropical fruit with white flesh; used chiefly for jellies and preserves +n07763290 round one-inch Caribbean fruit with green leathery skin and sweet juicy translucent pulp; eaten like grapes +n07763483 a succulent orange-sized tropical fruit with a thick rind +n07763629 fuzzy brown egg-shaped fruit with slightly tart green flesh +n07763792 yellow olive-sized semitropical fruit with a large free stone and relatively little flesh; used for jellies +n07763987 two- to three-inch tropical fruit with juicy flesh suggestive of both peaches and pineapples +n07764155 large oval tropical fruit having smooth skin, juicy aromatic pulp, and a large hairy seed +n07764315 tropical fruit with a rough brownish skin and very sweet brownish pulp +n07764486 brown oval fruit flesh makes excellent sherbet +n07764630 large tropical seed pod with very tangy pulp that is eaten fresh or cooked with rice and fish or preserved for curries and chutneys +n07764847 a pear-shaped tropical fruit with green or blackish skin and rich yellowish pulp enclosing a single large seed +n07765073 sweet edible fruit of the date palm with a single long woody seed +n07765208 berrylike fruit of an elder used for e.g. wines and jellies +n07765361 tropical fruit having yellow skin and pink pulp; eaten fresh or used for e.g. jellies +n07765517 purplish tropical fruit +n07765612 yellow oval tropical fruit +n07765728 fruit of the wild plum of southern United States +n07765862 tough-skinned purple grapelike tropical fruit grown in Brazil +n07765999 dark red plumlike fruit of Old World buckthorn trees +n07766173 Chinese fruit having a thin brittle shell enclosing a sweet jellylike pulp and a single seed; often dried +n07766409 Asian fruit similar to litchi +n07766530 globular or ovoid tropical fruit with thick russet leathery rind and juicy yellow or reddish flesh +n07766723 tropical fruit from the Philippines having a mass of small seeds embedded in sweetish white pulp +n07766891 crabapple-like fruit used for preserves +n07767002 a South African globular fruit with brown leathery skin and pithy flesh having a sweet-acid taste +n07767171 sweet usually dark purple blackberry-like fruit of any of several mulberry trees of the genus Morus +n07767344 one-seeded fruit of the European olive tree usually pickled and used as a relish +n07767549 olives picked ripe and cured in brine then dried or pickled or preserved canned or in oil +n07767709 olives picked green and pickled in brine; infrequently stuffed with e.g. pimento +n07767847 sweet juicy gritty-textured fruit available in many varieties +n07768068 greenish-yellow pear +n07768139 a pear with firm flesh and a green skin +n07768230 juicy yellow pear +n07768318 small yellowish- to reddish-brown pear +n07768423 starchy banana-like fruit; eaten (always cooked) as a staple vegetable throughout the tropics +n07768590 hybrid between plum and apricot +n07768694 large globular fruit having many seeds with juicy red pulp in a tough brownish-red rind +n07768858 round or pear-shaped spiny fruit of any of various prickly pear cacti +n07769102 small yellow to orange fruit of the Barbados gooseberry cactus used in desserts and preserves and jellies +n07769306 red Australian fruit; used for dessert or in jam +n07769465 edible nutlike seed of the quandong fruit +n07769584 aromatic acid-tasting pear-shaped fruit used in preserves +n07769731 pleasantly acid bright red oval Malayan fruit covered with soft spines +n07769886 fruit of an East Indian tree similar to the rambutan but sweeter +n07770034 fragrant oval yellowish tropical fruit used in jellies and confections +n07770180 acid gritty-textured fruit +n07770439 African gourd-like fruit with edible pulp +n07770571 many are used as seasoning +n07770763 the edible seed of a pumpkin +n07770869 seed of betel palm; chewed with leaves of the betel pepper and lime as a digestive stimulant and narcotic in southeastern Asia +n07771082 small sweet triangular nut of any of various beech trees +n07771212 nut of any of various walnut trees having a wrinkled two-lobed seed with a hard shell +n07771405 American walnut having a very hard and thick woody shell +n07771539 nut with a wrinkled two-lobed seed and hard but relatively thin shell; widely used in cooking +n07771731 three-sided tropical American nut with white oily meat and hard brown shell +n07771891 oily egg-shaped nut of an American tree of the walnut family +n07772026 a large nutlike seed of a South American tree +n07772147 kidney-shaped nut edible only when roasted +n07772274 edible nut of any of various chestnut trees of the genus Castanea +n07772413 small nut of either of two small chestnut trees of the southern United States; resembles a hazelnut +n07772788 nut of any of several trees of the genus Corylus +n07772935 large hard-shelled oval nut with a fibrous husk containing thick white meat surrounding a central cavity filled (when fresh) with fluid or milk +n07773428 clear to whitish fluid from within a fresh coconut +n07774182 nut of Brazilian or West Indian palms +n07774295 small hard-shelled nut of North American hickory trees especially the shagbark hickories +n07774479 a flavoring extracted from the kola nut +n07774596 nutlike seed with sweet and crisp white meat +n07774719 smooth brown oval nut of south central United States +n07774842 edible seed of any of several nut pines especially some pinons of southwestern North America +n07775050 nut of Mediterranean trees having an edible green kernel +n07775197 edible seed of sunflowers; used as food and poultry feed and as a source of oil +n07783827 paste made primarily of anchovies; used in sauces and spreads +n07785487 a pickled herring filet that has been rolled or wrapped around a pickle +n07800091 food for domestic livestock +n07800487 a concentrated feed for cattle; processed in the form of blocks or cakes +n07800636 feed given to young animals isolated in a creep +n07800740 coarse food (especially for livestock) composed of entire plants or the leaves and stalks of a cereal crop +n07801007 grain grown for cattle feed +n07801091 bulky food like grass or hay for browsing or grazing horses or cattle +n07801342 fodder harvested while green and kept succulent by partial fermentation as in a silo +n07801508 mass of e.g. linseed or cottonseed or soybean from which the oil has been pressed; used as food for livestock +n07801709 ground oil cake +n07801779 leguminous plant grown for hay or forage +n07801892 a bean plant cultivated for use animal fodder +n07802026 grass mowed and cured for use as fodder +n07802152 a grass grown for hay +n07802246 the dried stalks and leaves of a field crop (especially corn) used as animal fodder after the grain has been harvested +n07802417 foodstuff prepared from the starchy grains of cereal grasses +n07802767 grain intended to be or that has been ground +n07802863 the hulled and crushed grain of various cereals +n07802963 small seed of any of various annual cereal grasses especially Setaria italica +n07803093 a grain of barley +n07803213 barley ground into small round pellets +n07803310 grain ground into flour +n07803408 parched crushed wheat +n07803545 grains of common wheat; sometimes cooked whole or cracked as cereal; usually ground into flour +n07803779 grains of wheat that have been crushed into small pieces +n07803895 heavy and filling (and usually starchy) food +n07803992 embryo of the wheat kernel; removed before milling and eaten as a source of vitamins +n07804152 seed of the annual grass Avena sativa (spoken of primarily in the plural as `oats') +n07804323 grains used as food either unpolished or more often polished +n07804543 unpolished rice retaining the yellowish-brown outer layer +n07804657 having husk or outer brown layers removed +n07804771 grains of aquatic grass of North America +n07804900 rice in the husk either gathered or still in the field +n07805006 wet feed (especially for pigs) consisting of mostly kitchen waste mixed with water or skimmed or sour milk +n07805254 mixture of ground animal feeds +n07805389 dry mash for poultry +n07805478 food of a ruminant regurgitated to be chewed again +n07805594 food given to birds; usually mixed seeds +n07805731 food prepared for animal pets +n07805966 food prepared for dogs +n07806043 food prepared for cats +n07806120 a mixture of seeds used to feed caged birds +n07806221 food mixtures either arranged on a plate or tossed and served with a moist dressing; usually consisting of or including greens +n07806633 salad tossed with a dressing +n07806774 tossed salad composed primarily of salad greens +n07806879 typically having fried croutons and dressing made with a raw egg +n07807002 cooked meats and eggs and vegetables usually arranged in rows around the plate and dressed with a salad dressing +n07807171 typically containing tomatoes and anchovies and garnished with black olives and capers +n07807317 containing meat or chicken or cheese in addition to greens and vegetables +n07807472 the combination salad prepared as a particular chef's specialty +n07807594 any of various salads having chopped potatoes as the base +n07807710 a salad having any of various pastas as the base +n07807834 having macaroni as the base +n07807922 salad composed of fruits +n07808022 typically made of apples and celery with nuts or raisins and dressed with mayonnaise +n07808166 lettuce and crabmeat dressed with sauce Louis +n07808268 based on pickled herring +n07808352 salad composed primarily of chopped canned tuna fish +n07808479 salad composed primarily of chopped chicken meat +n07808587 basically shredded cabbage +n07808675 savory jelly based on fish or meat stock used as a mold for meats or vegetables +n07808806 salad of meats or vegetables in gelatin +n07808904 a finely chopped salad with tomatoes and parsley and mint and scallions and bulgur wheat +n07809096 food that is a component of a mixture in cooking +n07809368 something added to food primarily for the savor it imparts +n07810531 a cube of evaporated seasoned meat extract +n07810907 a preparation (a sauce or relish or spice) to enhance flavor or enjoyment +n07811416 aromatic potherb used in cookery for its savory qualities +n07812046 a mixture of finely chopped fresh herbs +n07812184 any of a variety of pungent aromatic vegetable substances used for flavoring food +n07812662 an aromatic oil obtained from the spearmint plant +n07812790 fragrant yellow oil obtained from the lemon peel +n07812913 oil or flavoring obtained from the creeping wintergreen or teaberry plant +n07813107 white crystalline form of especially sodium chloride used to season and preserve food +n07813324 ground celery seed and salt +n07813495 ground dried onion and salt +n07813579 combination of salt and vegetable extracts and spices and monosodium glutamate +n07813717 crystals of citric acid used as seasoning +n07813833 Chinese seasoning made by grinding star anise and fennel and pepper and cloves and cinnamon +n07814007 ground dried berrylike fruit of a West Indian allspice tree; suggesting combined flavors of cinnamon and nutmeg and cloves +n07814203 spice from the dried aromatic bark of the Ceylon cinnamon tree; used as rolled strips or ground +n07814390 dried rolled strips of cinnamon bark +n07814487 spice from dried unopened flower bud of the clove tree; used whole or ground +n07814634 aromatic seeds of the cumin herb of the carrot family +n07814790 fennel seeds are ground and used as a spice or as an ingredient of a spice mixture +n07814925 pungent rhizome of the common ginger plant; used fresh as a seasoning especially in Asian cookery +n07815163 dried ground gingerroot +n07815294 spice made from the dried fleshy covering of the nutmeg seed +n07815424 hard aromatic seed of the nutmeg tree used as spice when grated or ground +n07815588 pungent seasoning from the berry of the common pepper plant of East India; use whole or ground +n07815839 pepper that is ground from whole peppercorns with husks on +n07815956 pepper ground from husked peppercorns +n07816052 dried root bark of the sassafras tree +n07816164 leaves of the common basil; used fresh or dried +n07816296 dried leaf of the bay laurel +n07816398 an herb whose leaves are used to flavor sauces and punches; young leaves can be eaten in salads or cooked +n07816575 bitter leaves used sparingly in salads; dried flowers used in soups and tisanes +n07816726 leaves used sparingly in soups and stews +n07816839 fresh ferny parsley-like leaves used as a garnish with chicken and veal and omelets and green salads and spinach +n07817024 cylindrical leaves used fresh as a mild onion-flavored seasoning +n07817160 leaves make a popular tisane; young leaves used in salads or cooked +n07817315 parsley-like herb used as seasoning or garnish +n07817465 dried coriander seeds used whole or ground +n07817599 leaves used sparingly (because of bitter overtones) in sauces and soups and stuffings +n07817758 leaves used for seasoning +n07817871 aromatic bulbous stem base eaten cooked or raw in salads +n07818029 aromatic anis-scented seeds +n07818133 aromatic seeds used as seasoning especially in curry +n07818277 aromatic bulb used as seasoning +n07818422 one of the small bulblets that can be split off of the axis of a larger garlic bulb +n07818572 large flat leaves used as chive is used +n07818689 lemony leaves used for a tisane or in soups or fruit punches +n07818825 stalks eaten like celery or candied like angelica; seeds used for flavoring or pickled like capers +n07818995 pungent leaves used as seasoning with meats and fowl and in stews and soups and omelets +n07819166 the leaves of a mint plant used fresh or candied +n07819303 black or white seeds ground to make mustard pastes or powders +n07819480 pungent powder or paste prepared from ground mustard seeds +n07819682 very hot prepared mustard +n07819769 flowers and seeds and leaves all used as flavorings +n07819896 aromatic herb with flat or crinkly leaves that are cut finely and used to garnish food +n07820036 leaves sometimes used for salad +n07820145 extremely pungent leaves used fresh or dried as seasoning for especially meats +n07820297 leaves sometimes used for flavoring fruit or claret cup but should be used with great caution: can cause irritation like poison ivy +n07820497 aromatic fresh or dried grey-green leaves used widely as seasoning for meats and fowl and game etc +n07820683 fresh leaves used in omelets and fritters and with lamb +n07820814 either of two aromatic herbs of the mint family +n07820960 herb with delicately flavored leaves with many uses +n07821107 resinous leaves used in stews and stuffings and meat loaf +n07821260 fragrant dark green leaves used to flavor May wine +n07821404 fresh ferny leaves and green seeds used as garnish in salads and cold vegetables; dried seeds used in confectionery and liqueurs +n07821610 fresh leaves (or leaves preserved in vinegar) used as seasoning +n07821758 leaves can be used as seasoning for almost any meat and stews and stuffings and vegetables +n07821919 ground dried rhizome of the turmeric plant used as seasoning +n07822053 pickled flower buds used as a pungent relish in various dishes and sauces +n07822197 thick spicy sauce made from tomatoes +n07822323 aromatic seeds used as seasoning like cinnamon and cloves especially in pickles and barbecue sauces +n07822518 ground pods and seeds of pungent red peppers of the genus Capsicum +n07822687 powder made of ground chili peppers mixed with e.g. cumin and garlic and oregano +n07822845 tomatoes and onions and peppers (sweet or hot) simmered with vinegar and sugar and various seasonings +n07823105 a spicy condiment made of chopped fruits or vegetables cooked in vinegar and sugar with ginger and spices +n07823280 pungent bottled sauce for steak +n07823369 spicy tomato-based sauce for tacos +n07823460 spicy sauce of tomatoes and onions and chili peppers to accompany Mexican foods +n07823591 sweetened diluted vinegar with chopped mint leaves +n07823698 sauce made of cranberries and sugar +n07823814 pungent blend of cumin and ground coriander seed and turmeric and other spices +n07823951 (East Indian cookery) a pungent dish of vegetables or meats flavored with curry powder and usually eaten with rice +n07824191 curry made with lamb +n07824268 a thick sweet and pungent Chinese condiment +n07824383 grated horseradish root +n07824502 mixtures of vinegar or wine and oil with various spices and seasonings; used for soaking foods before cooking +n07824702 a mild powdered seasoning made from dried pimientos +n07824863 a mild seasoning made from a variety of pimiento grown in Spain +n07824988 vegetables (especially cucumbers) preserved in brine or vinegar +n07825194 pickle preserved in brine or vinegar flavored with dill seed +n07825399 thinly sliced sweet pickles +n07825496 relish of chopped (usually sweet) pickles +n07825597 relish of chopped pickled cucumbers and green peppers and onion +n07825717 pickle cured in brine and preserved in sugar and vinegar +n07825850 puree of stewed apples usually sweetened and spiced +n07825972 thin sauce made of fermented soy beans +n07826091 very spicy sauce (trade name Tabasco) made from fully-aged red peppers +n07826250 thick concentrated tomato puree +n07826340 aromatic stems or leaves or roots of Angelica Archangelica +n07826453 candied stalks of the angelica plant +n07826544 flavoring made from almonds macerated in alcohol +n07826653 liquorice-flavored seeds, used medicinally and in cooking and liquors +n07826930 anise-scented star-shaped fruit or seed used in Asian cooking and medicine +n07827130 berrylike cone of a common juniper; used in making gin +n07827284 dried pungent stigmas of the Old World saffron crocus +n07827410 small oval seeds of the sesame plant +n07827554 aromatic seeds of the caraway plant; used widely as seasoning +n07827750 small grey seed of a poppy flower; used whole or ground in baked items +n07827896 aromatic threadlike foliage of the dill plant used as seasoning +n07828041 seed of the dill plant used as seasoning +n07828156 seed of the celery plant used as seasoning +n07828275 a flavoring made from (or imitating) lemons +n07828378 white crystalline compound used as a food additive to enhance flavor; often used in Chinese cooking +n07828642 long bean-like fruit; seeds are used as flavoring +n07828987 sour-tasting liquid produced usually by oxidation of the alcohol in wine or cider and used as a condiment or food preservative +n07829248 vinegar made from cider +n07829331 vinegar made from wine +n07829412 flavorful relish or dressing or topping served as an accompaniment to food +n07830493 made of white sauce and mashed anchovies +n07830593 a pungent peppery sauce +n07830690 butter and sugar creamed together with brandy or other flavoring and served with rich puddings +n07830841 creamy white sauce with horseradish and mustard +n07830986 sauce for pasta; contains mushrooms and ham and chopped vegetables and beef and tomato paste +n07831146 sauce for pasta; contains eggs and bacon or ham and grated cheese +n07831267 sauce made with a puree of tomatoes (or strained tomatoes) with savory vegetables and other seasonings; can be used on pasta +n07831450 mayonnaise with chopped pickles and sometimes capers and shallots and parsley and hard-cooked egg; sauce for seafood especially fried fish +n07831663 white or veloute sauce with wine and stock variously seasoned with onions and herbs; for fish or meat +n07831821 brown sauce with mushrooms and red wine or Madeira +n07831955 creamy white sauce made with bread instead of flour and seasoned with cloves and onion +n07832099 for Chinese dishes: plum preserves and chutney +n07832202 for Chinese dishes: peach preserves and chutney +n07832307 for Chinese dishes: apricot preserves and chutney +n07832416 a sauce typically served with pasta; contains crushed basil leaves and garlic and pine nuts and Parmesan cheese in olive oil +n07832592 veloute sauce seasoned with chopped chervil, chives, tarragon, shallots and capers +n07832741 a mayonnaise sauce flavored with herbs and mustard and capers; served with e.g. salad and cold meat +n07832902 savory dressings for salads; basically of two kinds: either the thin French or vinaigrette type or the creamy mayonnaise type +n07833333 mayonnaise and heavy cream combined with chopped green pepper and green onion seasoned with chili sauce and Worcestershire sauce and lemon juice +n07833535 creamy dressing containing crumbled blue cheese +n07833672 vinaigrette containing crumbled Roquefort or blue cheese +n07833816 oil and vinegar with mustard and garlic +n07833951 vinaigrette with chili sauce and chopped watercress +n07834065 vinaigrette and mashed anchovies +n07834160 a vinaigrette with garlic and herbs: oregano and basil and dill +n07834286 half mayonnaise and half vinaigrette seasoned with minced garlic and mashed anchovies and grated Parmesan cheese; especially good for combination salads +n07834507 egg yolks and oil and vinegar +n07834618 mayonnaise with tarragon or dill and chopped watercress and spinach or cucumber +n07834774 garlic mayonnaise +n07834872 mayonnaise with horseradish grated onion and chili sauce or catsup; sometimes with caviar added +n07835051 a creamy salad dressing resembling mayonnaise +n07835173 mayonnaise with chili sauce or catsup and minced olives and peppers and hard-cooked egg +n07835331 spicy sweet and sour sauce usually based on catsup or chili sauce +n07835457 eggs and butter with lemon juice +n07835547 a sauce like hollandaise but made with white wine and tarragon and shallots instead of lemon juice +n07835701 butter creamed with white wine and shallots and parsley +n07835823 brown sauce with beef marrow and red wine +n07835921 reduced red wine with onions and parsley and thyme and butter +n07836077 bouillon or beef stock thickened with butter and flour roux and variously seasoned with herbs or Worcestershire etc. +n07836269 brown sauce with tomatoes and a caramelized mixture of minced carrots and onions and celery seasoned with Madeira +n07836456 a sauce based on soy sauce +n07836600 a white sauce of fat, broth, and vegetables (used especially with braised meat) +n07836731 white sauce with grated cheese +n07836838 sauce made with unsweetened chocolate or cocoa and sugar and water +n07837002 thick chocolate sauce served hot +n07837110 usually catsup with horseradish and lemon juice +n07837234 butter creamed with parsley and tarragon and beef extract +n07837362 milk thickened with a butter and flour roux +n07837545 white sauce made with cream +n07837630 onion-flavored creamy cheese sauce with egg yolk and grated cheese +n07837755 sauce Espagnole with extra beef stock simmered down and seasoned with dry wine or sherry +n07837912 the seasoned but not thickened juices that drip from cooking meats; often a little water is added +n07838073 a sauce made by adding stock, flour, or other ingredients to the juice and fat that drips from cooking meats +n07838233 any of numerous sauces for spaghetti or other kinds of pasta +n07838441 sauce for pasta; contains tomatoes and garlic and herbs +n07838551 spicy sauce often containing chocolate +n07838659 brown sauce and tomato puree with onions and mushrooms and dry white wine +n07838811 brown sauce and sauteed mushrooms +n07838905 sauce of prepared mustard thinned with vinegar and vegetable oil with sugar and seasonings +n07839055 white sauce with whipping cream and shrimp butter +n07839172 veloute sauce with sauteed chopped onion and paprika and cream +n07839312 for venison: brown sauce with sauteed vegetables and trimmings and marinade and plenty of pepper +n07839478 a mixture of fat and flour heated and used as a basis for sauces +n07839593 veloute or brown sauce with sauteed chopped onion and dry white wine and sour cream +n07839730 veloute sauce with sauteed chopped onions and whipping cream +n07839864 brown sauce with sauteed chopped onions and parsley and dry white wine or vinegar +n07840027 white sauce made with stock instead of milk +n07840124 egg-thickened veloute +n07840219 allemande sauce with capers +n07840304 allemande sauce with chopped parsley +n07840395 allemande sauce with curry powder and coconut milk instead of stock +n07840520 a savory sauce of vinegar and soy sauce and spices +n07840672 white liquid obtained from compressing fresh coconut meat +n07840804 oval reproductive body of a fowl (especially a hen) used as food +n07841037 the white part of an egg; the nutritive and protective gelatinous substance surrounding the yolk consisting mainly of albumin dissolved in water +n07841345 the yellow spherical part of an egg that is surrounded by the albumen +n07841495 egg cooked briefly in the shell in gently boiling water +n07841639 an egg boiled gently until both the white and the yolk solidify +n07841800 a colored hard-boiled egg used to celebrate Easter +n07841907 an egg-shaped candy used to celebrate Easter +n07842044 egg-shaped chocolate candy +n07842130 egg-shaped candy +n07842202 egg cooked in gently boiling water +n07842308 eggs beaten and cooked to a soft firm consistency while stirring +n07842433 halved hard-cooked egg with the yolk mashed with mayonnaise and seasonings and returned to the white +n07842605 egg cooked individually in cream or butter in a small ramekin +n07842753 beaten eggs or an egg mixture cooked until just set; may be folded around e.g. ham or cheese or jelly +n07842972 eggs beaten with milk or cream and cooked until set +n07843117 omelet cooked quickly and slid onto a plate +n07843220 souffle-like omelet made by beating and adding the whites separately +n07843348 a firm omelet that has diced ham and peppers and onions +n07843464 light fluffy dish of egg yolks and stiffly beaten egg whites mixed with e.g. cheese or fish or fruit +n07843636 eggs cooked by sauteing in oil or butter; sometimes turned and cooked on both sides +n07843775 milk and butter and cheese +n07844042 a white nutritious liquid secreted by mammals and used as food by human beings +n07844604 any of several nutritive milklike liquids +n07844786 milk that has turned sour +n07844867 a milk substitute containing soybean flour and water; used in some infant formulas and in making tofu +n07845087 a liquid food for infants +n07845166 milk that has been exposed briefly to high temperatures to destroy microorganisms and prevent fermentation +n07845335 milk obtained from dairy cows +n07845421 the milk of a yak +n07845495 the milk of a goat +n07845571 milk fermented by bacteria; used to treat gastrointestinal disorders +n07845702 unpasteurized milk +n07845775 milk heated almost to boiling +n07845863 milk with the fat particles broken up and dispersed uniformly so the cream will not rise +n07846014 milk from dairies regulated by an authorized medical milk commission +n07846143 dehydrated milk +n07846274 dehydrated skimmed milk +n07846359 milk concentrated by evaporation +n07846471 sweetened evaporated milk +n07846557 milk from which the cream has been skimmed +n07846688 milk from which some of the cream has been removed +n07846802 milk from which no constituent (such as fat) has been removed +n07846938 milk from which some of the cream has been removed +n07847047 residue from making butter from sour raw milk; or pasteurized milk curdled by adding a culture +n07847198 the part of milk containing the butterfat +n07847453 thick cream made from scalded milk +n07847585 cream with a fat content of 48% or more +n07847706 half milk and half light cream; contains 10% to 18% butterfat +n07847827 contains more than 36% butterfat +n07847917 cream that has at least 18% butterfat +n07848093 artificially soured light cream +n07848196 cream that has enough butterfat (30% to 36%) to be whipped +n07848338 an edible emulsion of fat globules made by churning milk or cream; for cooking and table use +n07848771 butter made clear by heating and removing the sediment of milk solids +n07848936 clarified butter used in Indian cookery +n07849026 clarified butter browned slowly and seasoned with vinegar or lemon juice and capers +n07849186 clarified butter browned slowly and seasoned with lemon juice and parsley +n07849336 a custard-like food made from curdled milk +n07849506 yogurt with sweetened blueberries or blueberry jam +n07849619 an Indian side dish of yogurt and chopped cucumbers and spices +n07849733 watery part of milk produced when raw milk sours and coagulates +n07849912 coagulated milk; used to make cheese +n07850083 a coagulated liquid resembling milk curd +n07850219 raw milk that has soured and thickened +n07850329 a solid food prepared from the pressed curd of milk +n07851054 (usually plural) a part of a fruit or vegetable that is pared or cut off; especially the skin or peel +n07851298 soft unripened cheese made of sweet milk and cream +n07851443 fresh soft French cheese containing at least 60% fat +n07851554 soft mild Italian cream cheese +n07851641 fresh soft French cheese containing at least 72% fat +n07851767 mild white cheese made from curds of soured skim milk +n07851926 made by blending several lots of cheese +n07852045 cheese containing a blue mold +n07852229 English blue cheese +n07852302 French blue cheese +n07852376 Italian blue cheese +n07852452 blue cheese of Denmark +n07852532 blue cheese of Bavaria +n07852614 soft creamy white cheese; milder than Camembert +n07852712 semisoft sweet American cheese from whole milk in a brick form +n07852833 rich soft creamy French cheese +n07852919 hard smooth-textured cheese; originally made in Cheddar in southwestern England +n07853125 informal names for American cheddar +n07853232 a mild yellow English cheese with a crumbly texture +n07853345 a smooth firm mild orange-red cheese +n07853445 mild yellow Dutch cheese made in balls encased in a red covering +n07853560 made from goats' milk +n07853648 mild cream-colored Dutch cheese shaped in balls +n07853762 hard or semihard cheese grated +n07853852 any cheese originally molded by hand +n07853946 a soft cheese with a strong odor and flavor +n07854066 a soft white cheese with a very strong pungent odor and flavor +n07854184 mild white Italian cheese +n07854266 semisoft pale-yellow cheese +n07854348 hard dry sharp-flavored Italian cheese; often grated +n07854455 fresh unripened cheese of a smooth texture made from pasteurized milk, a starter, and rennet +n07854614 soft Italian cheese like cottage cheese +n07854707 cheese formed in long strings twisted together +n07854813 hard pale yellow cheese with many holes from Switzerland +n07854982 Swiss cheese with large holes +n07855105 Swiss cheese with small holes +n07855188 a hard green Swiss cheese made with skim-milk curd and flavored with clover +n07855317 trademark: soft processed American cheese +n07855413 ground nuts blended with a little butter +n07855510 a spread made from ground peanuts +n07855603 a very sweet white spread resembling marshmallow candy +n07855721 butter blended with minced onion +n07855812 butter blended with mashed pimento +n07855907 butter blended with chopped shrimp or seasoned with essence from shrimp shells +n07856045 butter blended with chopped lobster or seasoned with essence from lobster shells +n07856186 butter made from yaks' milk +n07856270 a tasty mixture to be spread on bread or crackers or used in preparing other dishes +n07856756 spread made of cheese mixed with butter or cream or cream cheese and seasonings +n07856895 butter blended with mashed anchovies +n07856992 a paste of fish or shellfish +n07857076 butter seasoned with mashed garlic +n07857170 a thick paste made from fermented soybeans and barley or rice malt; used in Japanese cooking to make soups or sauces +n07857356 the thick green root of the wasabi plant that the Japanese use in cooking and that tastes like strong horseradish; in powder or paste form it is often eaten with raw fish +n07857598 for preparing snails: butter seasoned with shallots and garlic and parsley +n07857731 a thick spread made from mashed chickpeas, tahini, lemon juice and garlic; used especially as a dip for pita; originated in the Middle East +n07857959 liver or meat or fowl finely minced or ground and variously seasoned +n07858114 a pate made from duck liver +n07858197 a pate made from goose liver (marinated in Cognac) and truffles +n07858336 a spread consisting of capers and black olives and anchovies made into a puree with olive oil +n07858484 a thick Middle Eastern paste made from ground sesame seeds +n07858595 something added to foods to make them taste sweeter +n07858841 an artificial sweetener made from aspartic acid; used as a calorie-free sweetener +n07858978 a sweet yellow liquid produced by bees +n07859142 a crystalline substance 500 times sweeter than sugar; used as a calorie-free sweetener +n07859284 a white crystalline carbohydrate used as a sweetener and preservative +n07859583 a thick sweet sticky liquid +n07859796 sugar and water and sometimes corn syrup boiled together; used as sweetening especially in drinks +n07859951 thick dark syrup produced by boiling down juice from sugar cane; especially during sugar refining +n07860103 made from juice of sweet sorghum +n07860208 a pale cane syrup +n07860331 thin syrup made from pomegranate juice; used in mixed drinks +n07860447 made by concentrating sap from sugar maples +n07860548 syrup prepared from corn +n07860629 (Old Testament) food that God gave the Israelites during the Exodus +n07860805 a liquid or semiliquid mixture, as of flour, eggs, and milk, used in cooking +n07860988 a flour mixture stiff enough to knead or roll +n07861158 any of various doughs for bread +n07861247 batter for making pancakes +n07861334 batter for making fritters +n07861557 chicken and onions and mushrooms braised in red wine and seasonings +n07861681 chicken cooked in a sauce made with tomatoes, garlic, and olive oil +n07861813 rice and chicken cooked together with or without other ingredients and variously seasoned +n07861983 a Cantonese dish of chicken and sauteed vegetables +n07862095 rice and chicken cooked together Spanish style; highly seasoned especially with saffron +n07862244 eggs (fried or scrambled) served with bacon +n07862348 baked or roasted with a spicy sauce +n07862461 beef and mushrooms and onions stewed in red wine and seasonings +n07862611 rare-roasted beef tenderloin coated with mushroom paste in puff pastry +n07862770 a Russian dish made with patties of ground meat (mixed with onions and bread and milk) and served with a sauce of sour cream +n07862946 corned beef simmered with onions and cabbage and usually other vegetables +n07863107 dried navy beans baked slowly with molasses and salt pork +n07863229 leftover cabbage fried with cooked potatoes and sometimes meat +n07863374 a dish that contains pasta as its main ingredient +n07863547 tubular pasta filled with meat or cheese +n07863644 beef stewed in beer seasoned with garlic and served with boiled potatoes +n07863802 puffy dish of cheese and eggs (whites beaten separately) and white sauce +n07863935 braised chicken with onions and mushrooms in a wine and tomato sauce +n07864065 thin slices of chicken stuffed with cheese and ham and then sauteed +n07864198 chicken fried than oven-baked and served with milk gravy +n07864317 chicken simmered in broth with onions and paprika then mixed with sour cream +n07864475 chicken prepared in a cream sauce with mushrooms and served over pasta; usually topped with cheese +n07864638 a pasta dish with cream sauce and mushrooms +n07864756 pounded chicken cutlets rolled around butter (that has been seasoned with herbs) and then covered with crumbs and fried +n07864934 ground beef and chili peppers or chili powder often with tomatoes and kidney beans +n07865105 a hotdog with chili con carne on it +n07865196 meat or fish stir-fried with vegetables (e.g., celery, onions, peppers or bean sprouts) seasoned with ginger and garlic and soy sauce; served with rice; created in the United States and frequently served in Chinese restaurants there +n07865484 chop suey served with fried noodles +n07865575 usually made of flaked salt cod and mashed potatoes +n07865700 seafood served in a scallop shell +n07865788 scallops in white wine sauce served in scallop shells +n07866015 minced cooked meats (or vegetables) in thick white sauce; breaded and deep-fried +n07866151 a dish of minced meat topped with mashed potatoes +n07866277 minced cooked meat or fish coated in egg and breadcrumbs and fried in deep fat +n07866409 well-seasoned rice (with nuts or currants or minced lamb) simmered or braised in stock +n07866571 omelet containing onions and celery and chopped meat or fish +n07866723 minced vegetables and meat wrapped in a pancake and fried +n07866868 toasted English muffin topped with ham and a poached egg (or an oyster) and hollandaise sauce +n07867021 tortilla with meat filling baked in tomato sauce seasoned with chili +n07867164 small croquette of mashed chick peas or fava beans seasoned with sesame seeds +n07867324 fried fish and french-fried potatoes +n07867421 hot cheese or chocolate melted to the consistency of a sauce into which bread or fruits are dipped +n07867616 fondue made of cheese melted in wine for dipping bread and sometimes fruits +n07867751 fondue made of chocolate melted with milk or cream for dipping fruits +n07867883 cubes of meat or seafood cooked in hot oil and then dipped in any of various sauces +n07868045 cubes of beef cooked in hot oil and then dipped in various tasty sauces +n07868200 bread slice dipped in egg and milk and fried; topped with sugar or fruit or syrup +n07868340 boiled rice mixed with scallions and minced pork or shrimp and quickly scrambled with eggs +n07868508 Italian omelet with diced vegetables and meats; cooked until bottom is set then inverted into another pan to cook the top +n07868684 hind legs of frogs used as food; resemble chicken and cooked as chicken +n07868830 boned poultry stuffed then cooked and covered with aspic; served cold +n07868955 well-seasoned balls of ground fish and eggs and crushed crumbs simmered in fish stock +n07869111 made of sheep's or calf's viscera minced with oatmeal and suet and onions and boiled in the animal's stomach +n07869291 eggs (scrambled or fried) served with ham +n07869391 chopped meat mixed with potatoes and browned +n07869522 hash made with corned beef +n07869611 spicy Creole dish of rice and ham, sausage, chicken, or shellfish with tomatoes, peppers, onions, and celery +n07869775 cubes of meat marinated and cooked on a skewer usually with vegetables +n07869937 a dish of rice and hard-boiled eggs and cooked flaked fish +n07870069 made of lamb +n07870167 baked dish of layers of lasagna pasta with sauce and cheese and meat or vegetables +n07870313 seafood in Newburg sauce served on toast or rice +n07870478 lobster in Newburg sauce served on buttered toast or rice +n07870620 shrimp in Newburg sauce usually served in a rice ring +n07870734 lobster butter and cream and egg yolks seasoned with onions and sherry or Madeira +n07870894 diced lobster mixed with Mornay sauce placed back in the shell and sprinkled with grated cheese and browned +n07871065 dried cod soaked in a lye solution before boiling to give it a gelatinous consistency +n07871234 macaroni prepared in a cheese sauce +n07871335 mixed diced fruits or vegetables; hot or cold +n07871436 ground meat formed into a ball and fried or simmered in broth +n07871588 meat patties rolled in rice and simmered in a tomato sauce +n07871720 meatballs simmered in stock +n07871810 a baked loaf of ground meat +n07872593 casserole of eggplant and ground lamb with onion and tomatoes bound with white sauce and beaten eggs +n07872748 sliced veal knuckle or shin bone cooked with olive oil and wine and tomatoes and served with rice or vegetables +n07873057 very tender and very nutritious tissue from marrowbones +n07873198 a dish of roast pheasant served in a manner characteristic of expensive restaurants +n07873348 small frankfurters wrapped in biscuit dough and baked +n07873464 rice cooked in well-seasoned broth with onions or celery and usually poultry or game or shellfish and sometimes tomatoes +n07873679 pilaf made with bulgur wheat instead of rice and usually without meat +n07873807 Italian open pie made of thin bread dough spread with a spiced mixture of e.g. tomato sauce and cheese +n07874063 tomato and cheese pizza with sausage +n07874159 tomato and cheese pizza with pepperoni +n07874259 pizza with lots of cheese +n07874343 tomato and cheese pizza with anchovies +n07874441 pizza made with a thick crust +n07874531 Hawaiian dish of taro root pounded to a paste and often allowed to ferment +n07874674 dried beans cooked with pork and tomato sauce +n07874780 soft food made by boiling oatmeal or other meal or legumes in water or milk until thick +n07874995 porridge made of rolled oats +n07875086 thick gruel +n07875152 deep-dish meat and vegetable pie or a meat stew with dumplings +n07875267 dish originating in Indonesia; a wide variety of foods and sauces are served with rice +n07875436 rice cooked with broth and sprinkled with grated cheese +n07875560 a dish consisting of a slice of meat that is rolled around a filling and cooked +n07875693 flaked fish baked in a loaf with bread crumbs and various seasonings +n07875835 fish loaf made with flaked salmon +n07875926 ground beef patty usually with a sauce +n07876026 pot roast marinated several days in seasoned vinegar before cooking; usually served with potato dumplings +n07876189 shredded cabbage fermented in brine +n07876281 sauteed cutlets (usually veal or poultry) that have been pounded thin and coated with flour +n07876460 thin sauteed cutlets of veal +n07876550 large shrimp sauteed in oil or butter and garlic +n07876651 hard-cooked egg encased in sausage meat then breaded and deep-fried +n07876775 creamy scrambled eggs on toast spread with anchovy paste +n07876893 scraps of meat (usually pork) boiled with cornmeal and shaped into loaves for slicing and frying +n07877187 spaghetti with meatballs in a tomato sauce +n07877299 spicy rice with tomatoes and onions and green peppers +n07877675 ground beef mixed with raw egg and e.g. onions and capers and anchovies; eaten raw +n07877849 strips of steak sauteed with green peppers and onions +n07877961 steak covered with crushed peppercorns pan-broiled and served with brandy-and-butter sauce +n07878145 sauteed strips of beef and mushrooms in sour cream sauce served with noodles +n07878283 parboiled head of cabbage scooped out and filled with a hash of chopped e.g. beef or ham and baked; served with tomato or cheese sauce +n07878479 (Judaism) roasted fowl intestines with a seasoned filling of matzo meal and suet +n07878647 parboiled green peppers stuffed usually with rice and meat and baked briefly +n07878785 tomato cases filled with various mixtures and baked briefly +n07878926 tomato cases filled with various salad mixtures and served cold +n07879072 fresh corn and lima beans with butter or cream +n07879174 thin beef strips (or chicken or pork) cooked briefly at the table with onions and greens and soy sauce +n07879350 very thinly sliced raw fish +n07879450 rice (with raw fish) wrapped in seaweed +n07879560 steak braised in tomato and onion mixture +n07879659 corn and cornmeal dough stuffed with a meat mixture then wrapped in corn husks and steamed +n07879821 a meat mixture covered with cornbread topping that resembles a Mexican dish +n07879953 vegetables and seafood dipped in batter and deep-fried +n07880080 beef or chicken or seafood marinated in spicy soy sauce and grilled or broiled +n07880213 a pate or fancy meatloaf baked in an earthenware casserole +n07880325 cheese melted with ale or beer served over toast +n07880458 deep-fried breaded veal cutlets +n07880751 a tortilla rolled cupped around a filling +n07880880 a taco with a chicken filling +n07880968 a flour tortilla folded around a filling +n07881117 a burrito with a beef filling +n07881205 a tortilla that is filled with cheese and heated +n07881404 a flat tortilla with various fillings piled on it +n07881525 a flat tortilla topped with refried beans +n07881625 dried beans cooked and mashed and then fried in lard with various seasonings +n07881800 any liquid suitable for drinking +n07882420 any thin watery drink +n07882497 any foodstuff made by combining different ingredients +n07882886 a commercially prepared mixture of dry ingredients +n07883031 a food mixture used to fill pastry or sandwiches etc. +n07883156 a sweet filling made of prunes or apricots +n07883251 a medicinal or magical or poisonous beverage +n07883384 a substance believed to cure all ills +n07883510 a hypothetical substance believed to maintain life indefinitely; once sought by alchemists +n07883661 a drink credited with magical power; can make the one who takes it love the one who gave it +n07884567 a liquor or brew containing alcohol as the active agent +n07885705 a mixture containing half alcohol by volume at 60 degrees Fahrenheit +n07886057 an alcoholic beverage (especially beer) made at home +n07886176 an illicitly distilled (and usually inferior) alcoholic liquor +n07886317 an alcoholic drink made from the aromatic roots of the kava shrub +n07886463 alcoholic beverage taken before a meal as an appetizer +n07886572 drink made by steeping and boiling and fermenting rather than distilling +n07886849 a general name for alcoholic beverages made by fermenting a cereal (or mixture of cereals) flavored with hops +n07887099 beer drawn from a keg +n07887192 a dysphemism for beer (especially for lager that effervesces) +n07887304 a dark lager produced in Munich since the 10th century; has a distinctive taste of malt +n07887461 a very strong lager traditionally brewed in the fall and aged through the winter for consumption in the spring +n07887634 a general term for beer made with bottom fermenting yeast (usually by decoction mashing); originally it was brewed in March or April and matured until September +n07887967 lager with reduced alcohol content +n07888058 a strong lager made originally in Germany for the Oktoberfest celebration; sweet and copper-colored +n07888229 a pale lager with strong flavor of hops; first brewed in the Bohemian town of Pilsen +n07888378 unlicensed drinking establishment +n07888465 a general name for beers made from wheat by top fermentation; usually very pale and cloudy and effervescent +n07888816 a German wheat beer of bock strength +n07888909 a cereal grain (usually barley) that is kiln-dried after having been germinated by soaking in water; used especially in brewing and distilling +n07889193 unfermented or fermenting malt +n07889274 a lager of high alcohol content; by law it is considered too alcoholic to be sold as lager or beer +n07889510 a general name for beer made with a top fermenting yeast; in some of the United States an ale is (by law) a brew of more than 4% alcohol by volume +n07889814 English term for a dry sharp-tasting ale with strong flavor of hops (usually on draft) +n07889990 a strong dark English ale +n07890068 an amber colored ale brewed with pale malts; similar to bitter but drier and lighter +n07890226 a very dark sweet ale brewed from roasted unmalted barley +n07890352 a strong very dark heavy-bodied ale made from pale malt and roasted unmalted barley and (often) caramel malt with hops +n07890540 a kind of bitter stout +n07890617 fermented beverage resembling beer but made from rye or barley +n07890750 made of fermented honey and water +n07890890 spiced or medicated mead +n07890970 honey diluted in water; becomes mead when fermented +n07891095 wine mixed with honey +n07891189 drink that resembles beer but with less than 1/2 percent alcohol +n07891309 carbonated slightly alcoholic drink flavored with fermented ginger +n07891433 Japanese alcoholic beverage made from fermented rice; usually served hot +n07891726 fermented juice (of grapes especially) +n07892418 a season's yield of wine from a vineyard +n07892512 wine having a red color derived from skins of dark-colored grapes +n07892813 pale yellowish wine made from white grapes or red grapes with skins removed before fermentation +n07893253 pinkish table wine from red grapes whose skins were removed after fermentation began +n07893425 used in a communion service +n07893528 effervescent wine +n07893642 a white sparkling wine either produced in Champagne or resembling that produced there +n07893792 pink sparkling wine originally from Germany +n07893891 red table wine from the Burgundy region of France (or any similar wine made elsewhere) +n07894102 dry fruity light red wine drunk within a few months after it is made; from the Beaujolais district in southeastern France +n07894298 red Bordeaux wine from the Medoc district of southwestern France +n07894451 a sweet white wine from the Canary Islands +n07894551 dry white table wine of Chablis, France or a wine resembling it +n07894703 a white Burgundy wine +n07894799 dry white table wine resembling Chablis but made from Chardonnay grapes +n07894965 dry red California table wine made from purple Pinot grapes +n07895100 dry white California table wine made from white Pinot grapes +n07895237 any of several red or white wines produced around Bordeaux, France or wines resembling them +n07895435 dry red Bordeaux or Bordeaux-like wine +n07895595 dry red Italian table wine from the Chianti region of Tuscany +n07895710 superior Bordeaux type of red wine +n07895839 dry red wine made from a grape grown widely in Bordeaux and California +n07895962 a California wine +n07896060 any of various wines produced in California +n07896165 a wine from southeastern France on the Mediterranean coast +n07896287 still sweet wine often served with dessert or after a meal +n07896422 (trademark) a sweet aromatic French wine (red or white) used chiefly as an aperitif +n07896560 inexpensive wine sold in large bottles or jugs +n07896661 fine Burgundy wine usually white and dry +n07896765 German white wine from the Moselle valley or a similar wine made elsewhere +n07896893 dry white wine from the Loire valley in France +n07896994 a cheap wine of inferior quality +n07897116 Greek wine flavored with resin +n07897200 any of several white wines from the Rhine River valley in Germany (`hock' is British usage) +n07897438 fragrant dry or sweet white wine from the Rhine valley or a similar wine from California +n07897600 a sweetened Rhenish wine (especially one from Hesse in western Germany) +n07897750 any of various wines from the Rhone River valley in France +n07897865 dry red table wine from the Rioja region of northern Spain +n07897975 any of various light dry strong white wine from Spain and Canary Islands (including sherry) +n07898117 full-bodied red wine from around the town of Saint Emilion in Bordeaux +n07898247 dry white Italian wine from Verona +n07898333 dry fruity red wine from California +n07898443 semisweet golden-colored table or dessert wine from around Bordeaux in France; similar wine from California +n07898617 sweet wine from grapes partially sun-dried on the vine or on straw mats +n07898745 wine containing not more than 14 percent alcohol usually served with a meal +n07898895 Hungarian wine made from Tokay grapes +n07899003 cheap French table wine of unspecified origin +n07899108 any of several white wines flavored with aromatic herbs; used as aperitifs or in mixed drinks +n07899292 sweet dark amber variety +n07899434 dry pale amber variety +n07899533 made in California and the Loire valley in France +n07899660 a dry white Italian wine made from Verdicchio grapes +n07899769 a dry white French wine (either still or sparkling) made in the Loire valley +n07899899 a sweet white French wine +n07899976 a wine that is a blend of several varieties of grapes with no one grape predominating; a wine that does not carry the name of any specific grape +n07900225 a wine made principally from one grape and carrying the name of that grape +n07900406 wine to which alcohol (usually grape brandy) has been added +n07900616 an amber dessert wine from the Madeira Islands +n07900734 sweet Madeira wine +n07900825 sweet dark-red dessert wine originally from Portugal +n07900958 dry to sweet amber wine from the Jerez region of southern Spain or similar wines produced elsewhere; usually drunk as an aperitif +n07901355 dark sweet or semisweet dessert wine from Sicily +n07901457 wine from muscat grapes +n07901587 an alcoholic beverage that is distilled rather than fermented +n07902121 nonflavored alcohol of 95 percent or 190 proof used for blending with straight whiskies and in making gin and liqueurs +n07902336 strong distilled liquor or brandy +n07902443 strong coarse brandy +n07902520 whiskey illegally distilled from a corn mash +n07902698 homemade gin especially that made illegally +n07902799 Scandinavian liquor usually flavored with caraway seeds +n07902937 any of various strong liquors distilled from the fermented sap of toddy palms or from fermented molasses +n07903101 alcoholic liquor flavored with bitter herbs and roots +n07903208 distilled from wine or fermented fruit juice +n07903543 distilled from hard cider +n07903643 dry apple brandy made in Normandy +n07903731 dry brandy distilled in the Armagnac district of France +n07903841 high quality grape brandy distilled in the Cognac district of France +n07903962 Italian brandy made from residue of grapes after pressing +n07904072 from fermented juice of black morello cherries +n07904293 a colorless plum brandy popular in the Balkans +n07904395 strong liquor flavored with juniper berries +n07904637 gin flavored with sloes (fruit of the blackthorn) +n07904760 gin made in the Netherlands +n07904865 rum cut with water +n07904934 a Greek liquor flavored with anise +n07905038 liquor distilled from fermented molasses +n07905296 dark rum from Guyana +n07905386 heavy pungent rum from Jamaica +n07905474 any of various strong liquors especially a Dutch spirit distilled from potatoes +n07905618 fermented Mexican drink from juice of various agave plants especially the maguey +n07905770 a colorless Mexican liquor distilled from fermented juices of certain desert plants of the genus Agavaceae (especially the century plant) +n07905979 Mexican liquor made from fermented juices of an agave plant +n07906111 unaged colorless liquor originating in Russia +n07906284 a liquor made from fermented mash of grain +n07906572 mixture of two or more whiskeys or of a whiskey and neutral spirits +n07906718 whiskey distilled from a mash of corn and malt and rye and aged in charred oak barrels +n07906877 whiskey distilled from a mash of not less than 80 percent corn +n07907037 any strong spirits (such as strong whisky or rum) +n07907161 whiskey made in Ireland chiefly from barley +n07907342 unlawfully distilled Irish whiskey +n07907429 whiskey distilled from rye or rye and malt +n07907548 whiskey distilled in Scotland; especially whiskey made from malted barley in a pot still +n07907831 any whiskey distilled from sour mash +n07907943 strong highly flavored sweet liquor usually drunk after a meal +n07908411 strong green liqueur flavored with wormwood and anise +n07908567 an Italian almond liqueur +n07908647 liquorice-flavored usually colorless sweet liqueur made from aniseed +n07908812 a French liqueur originally made by Benedictine monks +n07908923 aromatic green or yellow liqueur flavored with orange peel and hyssop and peppermint oils; made at monastery near Grenoble, France +n07909129 coffee-flavored liqueur +n07909231 sweet liqueur flavored with vanilla and cacao beans +n07909362 sweet green or white mint-flavored liqueur +n07909504 strawberry-flavored liqueur +n07909593 a sweet Scotch whisky liqueur +n07909714 golden Italian liqueur flavored with herbs +n07909811 liqueur flavored with orange +n07909954 flavored with sour orange peel +n07910048 type of curacao having higher alcoholic content +n07910152 an orange-flavored French liqueur +n07910245 liqueur flavored with caraway seed or cumin +n07910379 distilled from fermented juice of bitter wild marasca cherries +n07910538 similar to absinthe but containing no wormwood +n07910656 (registered trademark) a liqueur flavored with anise +n07910799 small drink served after dinner (especially several liqueurs poured carefully so as to remain in separate layers) +n07910970 coffee-flavored liqueur made in Mexico +n07911061 sweet liqueur made from wine and brandy flavored with plum or peach or apricot kernels and bitter almonds +n07911249 an Italian liqueur made with elderberries and flavored with licorice +n07911371 made of two or more ingredients +n07911677 a short mixed drink +n07912093 South African mixed drink made by mixing ice cream with whisky +n07912211 a mixed drink made of alcoholic liquor mixed with water or a carbonated beverage and served in a tall glass +n07913180 club soda or fruit juice used to mix with alcohol +n07913300 port wine mulled with oranges and cloves +n07913393 a cocktail made with vodka and spicy tomato juice +n07913537 a Bloody Mary made without alcohol +n07913644 a cocktail made with vodka and beef bouillon or consomme +n07913774 tall sweetened iced drink of wine or liquor with fruit +n07913882 tall iced drink of liquor (usually gin) with fruit juice +n07914006 an iced drink especially white wine and fruit juice +n07914128 a drink that refreshes +n07914271 a thick smooth drink consisting of fresh fruit pureed with ice cream or yoghurt or milk +n07914413 a cocktail made with rum and lime or lemon juice +n07914586 daiquiri with crushed strawberries +n07914686 a daiquiri made without alcohol +n07914777 a mixed drink made of wine mixed with a sparkling water +n07914887 hot or cold alcoholic mixed drink containing a beaten egg +n07914995 a cocktail made of gin or vodka and lime juice +n07915094 gin and quinine water +n07915213 a cocktail made of creme de menthe and cream (sometimes with creme de cacao) +n07915366 a cocktail made of vodka or gin and orange juice and Galliano +n07915491 bourbon and sugar and mint over crushed ice +n07915618 a cocktail made with whiskey and sweet vermouth with a dash of bitters +n07915800 a manhattan cocktail made with Scotch whiskey +n07915918 a cocktail made of tequila and triple sec with lime and lemon juice +n07916041 a cocktail made of gin (or vodka) with dry vermouth +n07916183 a cocktail made of gin and sweet vermouth +n07916319 martini made with vodka rather than gin +n07916437 a cocktail made of whiskey and bitters and sugar with fruit slices +n07916582 a cocktail made of gin and brandy with lemon juice and grenadine shaken with an egg white and ice +n07917133 a cocktail made with bourbon with bitters and Pernod and sugar served with lemon peel +n07917272 a cocktail made with vodka and orange juice +n07917392 a cocktail made of orange liqueur with lemon juice and brandy +n07917507 a highball with Scotch malt whiskey and club soda +n07917618 a highball with liquor and water with sugar and lemon or lime juice +n07917791 a sling made with brandy +n07917874 a sling made with gin +n07917951 a sling made with rum +n07918028 a cocktail made of a liquor (especially whiskey or gin) mixed with lemon or lime juice and sugar +n07918193 a sour made with whiskey +n07918309 a cocktail made of made of creme de menthe and brandy +n07918706 any of various tall frothy mixed drinks made usually of rum and lime juice and sugar shaken with ice +n07918879 a mixed drink made of liquor and water with sugar and spices and served hot +n07919165 several kinds of rum with fruit juice and usually apricot liqueur +n07919310 an effervescent beverage (usually alcoholic) +n07919441 sweetened coffee with Irish whiskey and whipped cream +n07919572 equal parts of coffee and hot milk +n07919665 small cup of strong black coffee without milk or cream +n07919787 coffee with the caffeine removed +n07919894 coffee made by passing boiling water through a perforated container packed with finely ground coffee +n07920052 strong black coffee brewed by forcing hot water under pressure through finely ground coffee beans +n07920222 strong espresso coffee with a topping of frothed steamed milk +n07920349 equal parts of espresso and hot milk topped with cinnamon and nutmeg and usually whipped cream +n07920540 a strong sweetened coffee served over ice with cream +n07920663 dehydrated coffee that can be made into a drink by adding hot water +n07920872 a superior dark coffee made from beans from Arabia +n07920989 a flavoring made from coffee mixed with chocolate +n07921090 a flavoring made by boiling down the juice of the bitter cassava; used in West Indian cooking +n07921239 a drink made from pulverized coffee beans; usually sweetened +n07921360 milk flavored with chocolate syrup +n07921455 a beverage made from juice pressed from apples +n07921615 alcoholic drink from fermented cider; `cider' and `cyder' are European (especially British) usages for the fermented beverage +n07921834 strong cider (as made in western England) +n07921948 unfermented cider +n07922041 sweet cider heated with spices and citrus fruit +n07922147 a fermented and often effervescent beverage made from juice of pears; similar in taste to hard cider +n07922512 any alcoholic beverage of inferior quality +n07922607 an amount of an alcoholic drink (usually liquor) that is poured or gulped +n07922764 a beverage made from cocoa powder and milk and sugar; usually drunk hot +n07922955 cocoa of superior quality +n07923748 the liquid part that can be extracted from plant or animal tissue by squeezing or cooking +n07924033 drink produced by squeezing or crushing fruit +n07924276 fruit juice especially when undiluted +n07924366 the juice of apples +n07924443 the juice of cranberries (always diluted and sweetened) +n07924560 the juice of grapes +n07924655 grape juice before or during fermentation +n07924747 the juice of grapefruits +n07924834 bottled or freshly squeezed juice of oranges +n07924955 orange juice that has been concentrated and frozen +n07925116 the juice of pineapples (usually bottled or canned) +n07925229 usually freshly squeezed juice of lemons +n07925327 usually freshly squeezed juice of limes +n07925423 juice from papayas +n07925500 the juice of tomatoes (usually bottled or canned) +n07925608 usually freshly squeezed juice of carrots +n07925708 brand name for canned mixed vegetable juices +n07925808 an alcoholic beverage made from fermented mare's milk; made originally by nomads of central Asia +n07925966 a sweetened beverage of diluted fruit juice +n07926250 sweetened beverage of diluted lemon juice +n07926346 sweetened beverage of lime juice and water +n07926442 sweetened beverage of diluted orange juice +n07926540 powder made of dried milk and malted cereals +n07926785 South American tea-like drink made from leaves of a South American holly called mate +n07926920 wine heated with sugar and spices and often citrus fruit +n07927070 wine and hot water with sugar and lemon juice and nutmeg +n07927197 nonalcoholic beverage (usually carbonated) +n07927512 a sweet drink containing carbonated water and flavoring +n07927716 carbonated drink containing an extract from bark of birch trees +n07927836 tart lemon-flavored carbonated drink +n07927931 carbonated drink flavored with extract from kola nuts (`dope' is a southernism in the United States) +n07928163 sweet carbonated drink flavored with vanilla +n07928264 made of milk and flavored syrup with soda water +n07928367 ginger-flavored carbonated drink +n07928488 orange-flavored carbonated drink +n07928578 carbonated drink with fruit syrup and a little phosphoric acid +n07928696 Coca Cola is a trademarked cola +n07928790 Pepsi Cola is a trademarked cola +n07928887 carbonated drink containing extracts of roots and herbs +n07928998 carbonated drink flavored with an extract from sarsaparilla root or with birch oil and sassafras +n07929172 lime- or lemon-flavored carbonated water containing quinine +n07929351 a seed of the coffee tree; ground to make coffee +n07929519 a beverage consisting of an infusion of ground coffee beans +n07929940 black coffee with Cognac and lemon peel and sugar +n07930062 a punch made of fruit juices mixed with water or soda water (with or without alcohol) +n07930205 a punch made of spirits and milk and sugar and spices +n07930315 a mixed drink containing champagne and orange juice +n07930433 a mixed drink made of pineapple juice and coconut cream and rum +n07930554 an iced mixed drink usually containing alcohol and prepared for multiple servings; normally served in a punch bowl +n07930864 a punch served in a pitcher instead of a punch bowl +n07931001 a punch containing a sparkling wine +n07931096 a punch made of claret and brandy with lemon juice and sugar and sometimes sherry or curacao and fresh fruit +n07931280 a punch made of sweetened ale or wine heated with spices and roasted apples; especially at Christmas +n07931452 a cocktail made of rum and lime or lemon juice with sugar and sometimes bitters +n07931612 a cocktail made with vodka, coffee liqueur, and milk or cream +n07931733 a punch made of rum and brandy and water or tea sweetened with sugar syrup +n07931870 a punch made of Moselle and sugar and sparkling water or champagne flavored with sweet woodruff +n07932039 a punch made of sweetened milk or cream mixed with eggs and usually alcoholic liquor +n07932323 a drink resembling beer; made from fermented cassava juice +n07932454 a brew made by fermenting molasses and other sugars with the sap of spruce trees (sometimes with malt) +n07932614 a mixed drink made of sweetened lime juice and soda water usually with liquor +n07932762 a rickey made with gin +n07932841 dried leaves of the tea shrub; used to make tea +n07933154 a measured amount of tea in a bag for an individual serving of tea +n07933274 a beverage made by steeping tea leaves in water +n07933530 a beverage that resembles tea but is not made from tea leaves +n07933652 a beverage for children containing hot water and milk and sugar and a small amount of tea +n07933799 a cup of tea +n07933891 tea-like drink made of leaves of various herbs +n07934032 infusion of e.g. dried or fresh flowers or leaves +n07934152 tea-like drink made from camomile leaves and flowers +n07934282 strong tea served over ice +n07934373 tea made by exposing tea leaves steeped in water to the direct rays of the sun; usually served with ice +n07934530 fermented tea leaves +n07934678 black tea grown in China +n07934800 a fine variety of black tea grown in northern India +n07934908 a superior grade of black tea; grown in India and Sri Lanka and Java +n07935043 a fine quality of black tea native to China +n07935152 tea leaves that have been steamed and dried without fermenting +n07935288 a Chinese green tea with twisted leaves +n07935379 Chinese tea leaves that have been partially fermented before being dried +n07935504 a liquid necessary for the life of most animals and plants +n07935737 drinking water (often spring water) that is put into bottles and offered for sale +n07935878 pure natural water from a stream or brook; often distinguished from soda water +n07936015 water from a spring +n07936093 water sweetened with sugar +n07936263 water suitable for drinking +n07936459 water served ice-cold or with ice +n07936548 effervescent beverage artificially charged with carbon dioxide +n07936745 water naturally or artificially impregnated with mineral salts or gasses; often effervescent; often used therapeutically +n07936979 naturally effervescent mineral water +n07937069 sparkling mineral water from springs at Vichy, France or water similar to it +n07937344 food that will decay rapidly if not refrigerated +n07937461 a spicy dish that originated in northern Africa; consists of pasta steamed with a meat and vegetable stew +n07937621 a cheese dish made with egg and bread crumbs that is baked and served in individual fireproof dishes +n07938007 a pill or tablet containing several vitamins +n07938149 a pill containing one or more vitamins; taken as a dietary supplement +n07938313 food traditionally eaten by African-Americans in the South +n07938594 a dish or dessert that is formed in or on a mold +n07942152 (plural) any group of human beings (men or women or children) collectively +n07951464 several things grouped together or considered as a whole +n07954211 a collection of rules or prescribed standards on the basis of which decisions are made +n07977870 a collection of literary documents or records kept for reference or borrowing +n08079613 a team of professional baseball players who play and travel together +n08182379 a large number of things or people considered together +n08238463 a body of students who are taught together +n08242223 a small group of indispensable persons or things +n08249459 a group of musicians playing brass and woodwind and percussion instruments +n08253141 a party of people assembled for dancing +n08256735 a party of people at a wedding +n08376250 a series of things depending on each other as if linked together +n08385989 a meeting of influential people to conduct business while eating breakfast +n08492354 any habitation at a high altitude +n08492461 the marketplace in ancient Greece +n08494231 a commercially operated park with stalls and shows for amusement +n08495908 apoapsis in solar orbit; the point in the orbit of a planet or comet that is at the greatest distance from the sun +n08496334 (golf) the part of the fairway leading onto the green +n08500819 the part of outer space within the solar system +n08500989 the space between stars +n08501887 the space between galaxies +n08505018 a large wilderness area +n08506347 a region much like a desert but usually located between a desert and the surrounding regions +n08511017 (nautical) at the ends of the transverse deck beams of a vessel +n08517010 a defensive post at the end of a bridge nearest to the enemy +n08517676 a place on a bus route where buses stop to discharge and take on passengers +n08518171 a site where people on holiday can pitch a tent +n08519299 a storage site (such as a small reservoir) that delays the flow of water downstream +n08521623 a tract of land used for burials +n08523340 point where the hairline meets the midpoint of the forehead +n08524735 a large and densely populated urban area; may include several independent administrative districts +n08539072 the central area or commercial center of a town or city +n08539276 outlying areas (as of a city or town) +n08540532 one of the administrative divisions of a large city +n08547468 a pasture for cows +n08547544 the top line of a hill, mountain, or wave +n08551296 a diocese of the Eastern Orthodox Church +n08554440 a residential district located on the outskirts of a city +n08555333 a wealthy residential suburb +n08555710 low space beneath a floor of a building; gives workers access to wiring or plumbing +n08558770 the domain ruled by a sheik +n08558963 any address at which you dwell more than temporarily +n08559155 (law) the residence where you have your permanent home or principal establishment and to where, whenever you are absent, you intend to return; every person is compelled to have one and only one domicile at a time +n08560295 a holiday resort offering ranch activities (riding and camping) +n08569482 a rural area where farming is practiced +n08571275 (sports) the middle part of a playing field (as in football or lacrosse) +n08571642 a narrow field that has been cleared to check the spread of a prairie fire or forest fire +n08571898 an open-air street market for inexpensive or secondhand articles +n08573674 the line along which opposing armies face each other +n08573842 an accumulation of refuse and discarded matter +n08578517 a region including the bottom of the sea and the littoral zones +n08579266 a district where gold is mined +n08579352 a field where grain is grown +n08580944 a position some distance below the top of a mast to which a flag is lowered in mourning or to signal distress +n08583292 the line formed by the lower edge of a skirt or coat +n08583455 a breeding ground for herons; a heron rookery +n08583554 the line formed by the lower edge of hip-length garment +n08583682 the line formed by measuring the hip at its greatest part +n08584914 a small unpretentious out-of-the-way place +n08586978 a field where junk is collected and stored for resale +n08589670 an isogram connecting points of equal magnetic inclination +n08596076 the region of the shore of a lake or sea or ocean +n08597579 either of two points where the lines of force of the Earth's magnetic field are vertical +n08598301 land where grass or grasslike vegetation grows and is the dominant form of plant life +n08598568 a place that attracts many visitors +n08599174 a meridian that passes through the observer's zenith +n08599292 meridian at zero degree longitude from which east and west are reckoned (usually the Greenwich longitude in England) +n08611339 the center point on a shield +n08611421 a space where automobiles are not allowed to park +n08613733 where the air is unconfined +n08614632 an open area for holding fairs or exhibitions or circuses +n08616050 a field covered with grass or herbage and suitable for grazing by livestock +n08618831 periapsis in solar orbit; the point in the orbit of a planet or comet where it is nearest to the sun +n08619112 periapsis in orbit around the moon +n08623676 the specific site in the body where an infection originates +n08628141 an older or native quarter of many cities in northern Africa; the quarter in which the citadel is located +n08633683 the area of a city (such as a harbor or dockyard) alongside a body of water +n08640531 a hotel located in a resort area +n08640739 an area where many people go for recreation +n08640962 the part of a golf course bordering the fairway where the grass is not cut short +n08643267 (India) a place of religious retreat for Hindus +n08644045 (nautical) a place of refuge (as for a ship) +n08645104 an uncultivated region covered with scrub vegetation +n08645212 an area of open or forested country +n08645318 a tract of open rolling country (especially upland) +n08647264 the yard associated with a school +n08648917 a place that is frequently exhibited and visited for its historical interest or natural beauty +n08649711 space by the side of a bed (especially the bed of a sick or dying person) +n08651104 a line that marks the side boundary of a playing field +n08652376 a resort with lodging and facilities for skiing +n08658309 a layer in a soil profile +n08658918 a layer of rock with a particular composition (especially of fossils); for dating the stratum +n08659242 a seam of coal +n08659331 the part of a coal seam that is being cut +n08659446 a geographic region (land or sea) under which something valuable is found +n08659861 a region rich in petroleum deposits (especially one with producing oil wells) +n08661878 the part of the Earth's surface between the Arctic Circle and the Tropic of Cancer or between the Antarctic Circle and the Tropic of Capricorn; characterized by temperate climate +n08662427 level space where heavy guns can be mounted behind the parapet at the top of a rampart +n08663051 the limit of a nation's territorial waters +n08663703 the top of a desk +n08663860 the upper part of anything +n08673039 a native village in Malaysia +n08674344 regions adjacent to the tropics +n08676253 an urban area in a Spanish-speaking country +n08677424 elevated open grassland in southern Africa +n08677801 the highest point (of something) +n08678783 a line corresponding to the surface of the water when the vessel is afloat on an even keel; often painted on the hull of a ship +n08679167 a line marking the highest level reached +n08679269 a line marking the lowest level reached +n08679562 the watershed of a continent (especially the watershed of North America formed by a series of mountain ridges extending from Alaska to Mexico) +n08685188 a belt-shaped region in the heavens on either side to the ecliptic; divided into 12 constellations or signs for astrological purposes +n08782627 an island in the Aegean Sea +n08896327 country or territory ruled by a sultan +n09032191 one of the cantons of Switzerland +n09186592 the deep sea (2000 meters or more) where there is no light +n09189157 the lofty nest of a bird of prey (such as a hawk or eagle) +n09191635 a bubble of air +n09193551 a flat resulting from repeated deposits of alluvial material by running water +n09193705 any high mountain +n09194227 a glacier that moves down from a high valley +n09199101 a mound of earth made by ants as they dig their nest +n09201998 underground bed or layer yielding ground water for wells and springs etc +n09203827 a group of many islands in a large body of water +n09205509 a sharp narrow ridge found in rugged mountains +n09206896 a stream or brook +n09206985 an upward slope or grade (as in a road) +n09208496 (astronomy) a cluster of stars (or a small constellation) +n09209025 the lower layer of the crust +n09210862 an island consisting of a circular coral reef surrounding a lagoon +n09213434 a long ridge or pile +n09213565 sloping land (especially the slope beside a body of water) +n09214060 a submerged (or partly submerged) ridge in a river or along a shore +n09214269 a pit where wood or charcoal is burned to make a bed of hot coals suitable for barbecuing meat +n09214916 a long coral reef near and parallel to the shore +n09215023 any of the elementary particles having a mass equal to or greater than that of a proton and that participate in strong interactions; a hadron with a baryon number of +1 +n09215437 a natural depression in the surface of the land often with a lake at the bottom of it +n09217230 an area of sand sloping down to the water of a sea or lake +n09218315 a structure of small hexagonal cells constructed from beeswax by bees and used to store honey and larvae +n09218494 something to which a mountain climber's rope can be secured +n09218641 a mountain or tall hill +n09219233 a narrow ledge or shelf typically at the top or bottom of a slope +n09223487 a calculus formed in the bladder +n09224725 a high steep bank (usually formed by river erosion) +n09226869 a pit created to provide earth that can be used as fill at another site +n09228055 a slope or hillside +n09229709 a hollow globule of gas (e.g., air or carbon dioxide) +n09230041 a hole made by an animal, usually for shelter +n09230202 a hill that rises abruptly from the surrounding region; has a flat top and sloping sides +n09231117 a large crater caused by the violent explosion of a volcano that collapses into a depression +n09233446 a ravine formed by a river in an area with little rainfall +n09233603 the steeply sloping side of a canyon +n09238926 a geological formation consisting of an underground enclosure with access from the surface of the ground or from the sea +n09239302 a large cave or a large chamber in a cave +n09242389 a deep opening in the earth's surface +n09245515 a steep-walled semicircular basin in a mountain; may contain a lake +n09246464 a steep high face of rock +n09247410 a visible mass of water or ice particles suspended at a considerable altitude +n09248153 a slope down which sleds may coast +n09248399 land in a coastal area +n09249034 a pass between mountain peaks +n09249155 a crater that has collected cosmic material hitting the earth +n09251407 (astronomy) a relatively small extraterrestrial body consisting of a frozen mass that travels around the sun in a highly elliptical orbit +n09255070 a glacier that spreads out from a central mass of ice +n09256479 a reef consisting of coral consolidated into limestone +n09257843 small or narrow cave in the side of a cliff or mountain +n09259025 a steep rugged rock or cliff +n09259219 a bowl-shaped depression formed by the impact of a meteorite or bomb +n09260907 arable land that is worked by plowing and sowing and raising crops +n09262690 an open river valley (in a hilly area) +n09263912 a narrow pass (especially one between mountains) +n09264803 a low triangular area of alluvial deposits where a river divides before entering a larger body of water +n09265620 a downward slope or bend +n09266604 a domed rock formation where a core of rock has moved upward and pierced through the more brittle overlying strata +n09267854 a piece of turf dug out of a lawn or fairway (by an animals hooves or a golf club) +n09268007 (golf) the cavity left when a piece of turf is cut from the ground by the club head in making a stroke +n09269341 (usually plural) a rolling treeless highland with little soil +n09269472 the downward slope of a hill +n09269882 a gully that is shallower than a ravine +n09270160 the nest of a squirrel +n09270657 a mound of glacial drift +n09270735 a ridge of sand created by the wind; found in deserts or near lakes and oceans +n09274152 a long steep slope or cliff at the edge of a plateau or ridge; usually formed by erosion +n09274305 (geology) a long winding ridge of post glacial gravel and other sediment; deposited by meltwater from glaciers or ice sheets +n09279986 a ball of fire (such as the sun or a ball-shaped discharge of lightning) +n09281252 a red dwarf star in which luminosity can change several magnitudes in a few minutes +n09282208 the ground on which people and animals move about +n09283193 any inanimate object (as a towel or money or clothing or dishes or books or toys etc.) that can transmit infectious agents from one person to another +n09283405 a relatively low hill on the lower slope of a mountain +n09283514 the lower wall of an inclined fault +n09283767 land forming the forward margin of something +n09283866 the part of the seashore between the highwater mark and the low-water mark +n09287415 a particle that mediates the interaction of two elementary particles +n09287968 (geology) the geological features of the earth +n09288635 a spring that discharges hot water and steam +n09289331 a slowly moving mass of ice +n09289596 a narrow secluded valley (in the mountains) +n09290350 a hole in the ground made by gophers +n09290444 a deep ravine (usually with a river running through it) +n09294877 a small cave (usually with attractive features) +n09295210 a small iceberg or ice floe just large enough to be hazardous for shipping +n09295946 a narrow gorge with a stream running through it +n09300306 deep ditch cut by running water (especially after a prolonged downpour) +n09300905 many objects thrown forcefully through the air +n09302616 elevated (e.g., mountainous) land +n09303008 a local and well-defined elevation of the land +n09303528 the side or slope of a hill +n09304750 a depression hollowed out of solid matter +n09305031 a small valley between mountains +n09305898 a natural spring of water at a temperature of 70 F or above +n09308572 a large mass of ice floating at sea; usually broken off of a polar glacier +n09308743 a mass of ice and snow that permanently covers a large area of land (e.g., the polar regions or a mountain peak) +n09309046 a large flat mass of ice (larger than an ice floe) floating at sea +n09309168 a flat mass of ice (smaller than an ice field) floating at sea +n09309292 a large mass of ice +n09310616 a geological fault in which one side is above the other +n09315159 a particle that is electrically charged (positive or negative); an atom or molecule or group that has lost or gained one or more electrons +n09319604 a relatively narrow strip of land (with water on both sides) connecting two larger land areas +n09325824 a calculus formed in the kidney +n09326662 a small natural hill +n09327077 a small hill rising up from the African veld +n09327538 a disk-shaped region of minor planets outside the orbit of Neptune +n09330378 the bottom of a lake +n09331251 land bordering a lake +n09332890 the shore of a lake +n09335693 the seacoast first sighted on a voyage (or flight over water) +n09335809 a low area that has been filled in +n09336555 the foam resulting from excessive sweating (as on a horse) +n09337048 an accidental hole that allows something (fluid or light etc.) to enter or escape +n09337253 a projecting ridge on a mountain or submerged under water +n09338013 an elementary particle that participates in weak interactions; has a baryon number of 0 +n09339810 the solid part of the earth consisting of the crust and outer mantle +n09344198 low level country +n09344324 a crater on the Earth's Moon +n09344724 a flat-bottomed volcanic crater that was formed by an explosion; often filled with water +n09348460 a block of the earth's crust bounded by faults and shifted to form peaks of a mountain range +n09349648 a bend or curve, as in a stream or river +n09351905 flat tableland with steep edges +n09352849 stony or metallic object that is the remains of a meteoroid that has reached the earth's surface +n09353815 a fossil that must be studied microscopically +n09354511 the middle of a stream +n09357346 a mound of earth made by moles while burrowing +n09357447 a geological formation in which all strata are inclined in the same direction +n09359803 a land mass that projects well above its surroundings; higher than a hill +n09361517 the side or slope of a mountain +n09362316 the point where a stream issues into a larger body of water +n09362945 a term used in Scottish names of promontories +n09366017 a sunken or depressed geological formation +n09366317 a raised or elevated geological formation +n09375606 a ravine or gully in southern Asia +n09376198 a large body of water constituting a principal part of the hydrosphere +n09376526 the bottom of a sea or ocean +n09376786 land bordering an ocean +n09381242 the part of a rock formation that appears above the surface of the surrounding land +n09382099 the land inside an oxbow bend in a river +n09384106 a meteorite composed principally of olivine and metallic iron +n09389867 a hole made in something +n09391386 the intensely luminous surface of a star (especially the sun) +n09391644 a gentle slope leading from the base of a mountain to a region of flat land +n09391774 a type of glaciation characteristic of Alaska; large valley glaciers meet to form an almost stagnant sheet of ice +n09392402 an area planted with pine trees or related conifers +n09393524 the beach at a seaside resort +n09393605 extensive tract of level open land +n09396465 a promontory extending out into a large body of water +n09396608 a glacier near the Arctic or Antarctic poles +n09398076 a pit or hole produced by wear or weathering (especially in a road surface) +n09398677 a very steep cliff +n09399592 a natural elevation (especially a rocky one that juts out into the sea) +n09400584 calculus in a salivary gland +n09400987 a degenerate neutron star; small and extremely dense; rotates very fast and emits regular pulses of polarized radiation +n09402944 a pit filled with loose wet sand into which objects are sucked down +n09403086 a hole in the ground as a nest made by wild rabbits +n09403211 any object that radiates energy +n09403427 an arc of colored light in the sky caused by refraction of the sun's rays by rain +n09403734 a series of hills or mountains +n09405078 land suitable for grazing livestock +n09405787 a deep narrow steep-sided valley (especially one formed by running water) +n09406793 a submerged ridge of rock or coral near the surface of the water +n09409512 a long narrow natural elevation or striation +n09409752 a long narrow range of hills +n09410224 a valley with steep sides; formed by a rift in the earth's crust +n09411189 woodlands along the banks of stream or river +n09411295 one of a series of small ridges produced in sand by water currents or by wind +n09415584 the bank of a river +n09415671 a channel occupied (or formerly occupied) by a river +n09416076 a lump or mass of hard consolidated mineral matter +n09416890 the inner top surface of a covered area or hollow space +n09421031 a shallow basin in a desert region; contains salt and gypsum that was deposited by an evaporated salt lake +n09421799 a submerged bank of sand near a shore or in a river; can be exposed at low tide +n09421951 a bar of sand +n09422190 a large pit in sandy ground from which sand is dug +n09422631 a low area where waste is buried between layers of earth +n09425019 a pit over which lumber is positioned to be sawed by two men with a long two-handed saw +n09425344 (geology) flat elevated land with poor soil and little vegetation that is scarred by dry channels of glacial origin (especially in eastern Washington) +n09428293 the shore of a sea or ocean +n09428628 the shore of a sea or ocean regarded as a resort +n09429630 a long and tall sand dune with a sharp crest; common in the Sahara +n09432283 a rigid covering that envelops an object +n09432990 something that shines (with emitted or reflected light) +n09433312 a sandbank in a stretch of water that is visible at low tide +n09433442 the land along the edge of a body of water +n09433839 a boundary line between land and water +n09435739 a depression in the ground communicating with a subterranean passage (especially in limestone) and formed by solution or by collapse of a cavern roof +n09436444 a snow-covered slope for skiing +n09436708 the atmosphere and outer space as viewed from the earth +n09437454 an elevated geological formation +n09438844 a covering of snow (as on a mountain peak) +n09438940 a mass of snow heaped up by the wind +n09439032 a permanent wide expanse of snow +n09439213 the froth produced by soaps or detergents +n09442595 a narrow strip of land that juts out into the sea +n09443281 the trail left by a person or an animal; what the hunter follows in pursuing game +n09443641 foam or froth on the sea +n09444783 any celestial body visible (as a point of light) from the Earth at night +n09445008 a steep place (as on a hill) +n09445289 extensive plain without trees (associated with eastern Russia and Siberia) +n09447666 a poetic term for a shore (as the area periodically covered and uncovered by the tides) +n09448690 a channel occupied (or formerly occupied) by a stream +n09450163 the star that is the source of light and heat for the planets in the solar system +n09451237 a star that explodes and becomes extremely luminous in the process +n09452291 a low area (especially a marshy area between ridges) +n09452395 low land that is seasonally flooded; has more woody plants than a marsh and better drainage than a bog +n09452760 a rounded elevation (especially one on an ocean floor) +n09453008 a relatively flat highland +n09454153 a sloping mass of loose rocks at the base of a cliff +n09454412 a twisted and tangled mass that is highly interwoven +n09454744 a natural accumulation of bitumens at the surface of the earth; often acts as a trap for animals whose bones are thus preserved +n09456207 a level shelf of land interrupting a declivity (with steep slopes above and below) +n09457979 a basin that is full of water at high tide +n09458269 land near the sea that is overflowed by the tide +n09459979 a high rocky hill +n09460046 a prominent rock or pile of rocks on a hill +n09461069 a multiple star in the constellation of Orion +n09462600 the lowest atmospheric layer; from 4 to 11 miles high (depending on latitude) +n09463226 a vast treeless plain in the Arctic regions where the subsoil is permanently frozen +n09464486 an object that emits or reflects light in an intermittent flickering manner +n09466678 the upward slope of a hill +n09467696 a urinary stone +n09468604 a long depression in the surface of the land that usually contains a river +n09470027 indirect transmission of an infectious agent that occurs when a vehicle (or fomite) touches a person's body or is ingested +n09470222 a layer of ore between layers of rock +n09472413 a bowl-shaped geological formation at the top of a volcano +n09472597 a mountain formed by volcanic material +n09474010 gully or streambed in northern Africa and the Middle East that remains dry except during rainy season +n09474412 a vertical (or almost vertical) smooth rock face (as of a cave or mountain) +n09474765 a series of connected underground tunnels occupied by rabbits +n09475044 habitation for wasps or hornets +n09475179 natural or artificial channel through which water flows +n09475925 land bordering a body of water +n09476123 underground surface below which the ground is wholly saturated with water +n09478210 any of various hard colored rocks (especially rocks consisting of chert or basalt) +n09480959 fossil trail of a worm +n09481120 (geology) a piece of rock of different origin from the igneous rock in which it is embedded +n09493983 (Greek mythology) a sorceress who detained Odysseus on her island and turned his men into swine +n09495962 winged monster with the head of an eagle and the body of a lion +n09505153 a leader in religious or sacred affairs +n09537660 any expected deliverer +n09556121 (Roman mythology) a vestal virgin who became the mother by Mars of the twins Romulus and Remus +n09605110 a reference to yourself or myself etc.; `take care of number one' means to put your own interests first +n09606009 a person who enjoys taking risks +n09606527 a person who is unusual +n09607630 a person who is appointed to a job or position +n09607782 someone engaged in a dangerous but potentially rewarding adventure +n09607903 a Jew of eastern European or German descent +n09608709 a person who helps people or institutions (especially with financial help) +n09610255 a person unable to distinguish differences in hue +n09610405 a person who holds no title +n09611722 someone appointed by a court to assume responsibility for the interests of a minor or incompetent person +n09612700 an investor who deliberately decides to go against the prevailing wisdom of other investors +n09613118 an Italian farmer +n09613191 a person who participates in competitions +n09613690 one of two or more signers of the same document (as a treaty or declaration) +n09615336 a participant in a formal discussion +n09616573 a specialist in wine making +n09616922 a person who tries to please or amuse +n09617161 an orator who delivers eulogies or panegyrics +n09617435 a former gambler +n09617577 a research worker who conducts experiments +n09617696 a person who enjoys testing innovative ideas +n09618760 someone who expounds and interprets or explains +n09618880 a former president +n09618957 a part of a person that is used to refer to a person +n09619168 a person who belongs to the sex that can have babies +n09619452 a worker who performs the last step in a manufacturing process +n09620078 a person who inhabits a particular place +n09620794 an indigenous person who was born in a particular place +n09621232 a person born in a particular place or country +n09622049 a young person, not fully developed +n09622302 a person who loves someone or is loved by someone +n09624168 a person who belongs to the sex that cannot have babies +n09624559 a negotiator who acts as a link between parties +n09624899 a woman who is a mediator +n09625401 a person who owes allegiance to that nation +n09626238 a person who is of equal standing with another in a group +n09627807 the winner of a lottery +n09627906 a person who receives something +n09629065 a person addicted to religion or a religious zealot +n09629246 a person who enjoys sensuality +n09629752 a person who changes location +n09631129 a person who for some reason is not wanted or welcome +n09632274 a person who lacks technical training +n09632518 a person who works at a specific occupation +n09633969 a person who transgresses moral or civil law +n09635534 an African who is Black +n09635635 a white native of Cape Province who is a descendant of Dutch settlers and who speaks Afrikaans +n09635973 (according to Nazi doctrine) a Caucasian person of Nordic descent (and not a Jew) +n09636339 a person with dark skin who comes from Africa (or whose ancestors came from Africa) +n09637339 a woman who is Black +n09638454 an offspring of a black and a white parent +n09638875 a member of the Caucasoid race +n09639382 a member of the Sunni Muslim people living in northwestern Caucasia +n09639919 a member of a group of Semitic-speaking peoples of the Middle East and northern Africa +n09640327 an inhabitant of ancient Chaldea +n09640715 a member of an ancient warlike people living in Elam east of Babylonia as early as 3000 BC +n09641002 a man who is White +n09641578 a white person of Anglo-Saxon ancestry who belongs to a Protestant denomination +n09643799 (slang) a disparaging term for an Asian person (especially for North Vietnamese soldiers in the Vietnam War) +n09644152 a member of the nomadic peoples of Mongolia +n09644657 a member of the Mongolian people of central Asia who invaded Russia in the 13th century +n09648743 a member of any of various Indian peoples of central Mexico +n09648911 a member of the Nahuatl people who established an empire in Mexico that was overthrown by Cortes in 1519 +n09649067 a member of an early Mesoamerican civilization centered around Veracruz that flourished between 1300 and 400 BC +n09650729 a member of the Siouan people of southeastern Mississippi +n09650839 a member of a warlike group of Algonquians living in the northwestern plains +n09650989 a member of a group of Siouan people who constituted a division of the Teton Sioux +n09651123 a group of Plains Indians formerly living in what is now North and South Dakota and Nebraska and Kansas and Arkansas and Louisiana and Oklahoma and Texas +n09651968 a member of a North American Indian people living on the western plains (now living in Oklahoma and Montana) +n09652149 a member of the Muskhogean people formerly living in northern Mississippi +n09653144 a member of a North American Indian people living around the mouth of the Colorado River +n09653438 a member of the Shoshonean people who formerly lived between Wyoming and the Mexican border but are now chiefly in Oklahoma +n09654079 any member of the Creek Confederacy (especially the Muskogee) formerly living in Georgia and Alabama but now chiefly in Oklahoma +n09654518 a member of an Algonquian people formerly living in New Jersey and New York and parts of Delaware and Pennsylvania +n09654898 a member of a North American Indian people of southern California +n09655213 a member of a North American Indian people living on the California coast near Monterey +n09655466 a member of the Caddo people of northeastern Texas +n09656077 a member of a North American Indian people of Cataract Canyon in Arizona +n09657206 a member of the Siouan people who constituted a division of the Teton Sioux and who formerly lived in the western Dakotas; they were prominent in resisting the white encroachment into the northern Great Plains +n09657748 a member of the Siouan people formerly living in Iowa and Minnesota and Missouri +n09658254 a member of the North American Indian people of Oregon +n09658398 a member of a North American Indian people of southeastern California and northwestern Mexico +n09658815 a member of a Mayan people of north central Guatemala +n09658921 a member of a Caddo people formerly living in north central Texas +n09659039 a member of the Algonquian people formerly inhabiting southern Wisconsin and northern Illinois +n09659188 a member of a North American Indian people living in northern Baja California +n09660010 a member of the Algonquian people of northeastern Maine and New Brunswick +n09660240 a member of a North American Indian people of the Gila river valley in Arizona +n09661873 a member of the Algonquian people formerly living in the Hudson valley and eastward to the Housatonic +n09662038 a member of any of the peoples formerly living in southeastern United States and speaking Muskhogean languages +n09662661 a member of an Athapaskan people that migrated to Arizona and New Mexico and Utah +n09662951 a member of the Wakashan people living on Vancouver Island and in the Cape Flattery region of northwestern Washington +n09663248 a member of the Siouan people who constituted a division of the Teton Sioux and who formerly inhabited the Black Hills of western South Dakota +n09663786 a member of the Siouan people formerly living in Missouri in the valleys of the Missouri and Osage rivers; oil was found on Osage lands early in the 20th century +n09663999 a member of the Iroquoian people formerly living east of Lake Ontario +n09664556 a member of either of two Shoshonean peoples (northern Paiute and southern Paiute) related to the Aztecs and living in the southwestern United States +n09664908 a member of the Algonquian people related to the Malecite and living in northeastern Maine and New Brunswick +n09665367 a member of the Algonquian people belonging to the Abnaki confederacy and living in the Penobscot valley in northern Maine +n09665545 a member of a North American Indian people speaking one of the Penutian languages +n09666349 a member of the Algonquian people originally of Michigan and Wisconsin +n09666476 a member of the Algonquian people who formerly lived in eastern Virginia +n09666883 a deified spirit of the Pueblo people +n09667358 a member of a group of North American Indians speaking a Salishan language and living on the northwest coast of North America +n09668199 a member of a North American Indian people who lived in Oregon along the Columbia river and its tributaries in Washington and northern Idaho +n09668437 a member of the Indian people of northern California and southern Oregon +n09668562 a member of the Algonquian people formerly living along the Tennessee river +n09668988 a member of a group of Siouan people who constituted a division of the Teton Sioux +n09669631 a member of the large western branch of Sioux people which was made up of several groups that lived on the plains +n09670280 a member of a group of peoples of Mexico +n09670521 a member of the Taracahitian people of north central Mexico +n09670909 a member of an Iroquois people who formerly lived in North Carolina and then moved to New York State and joined the Iroquois +n09671089 a member of the Siouan people of Virginia and North Carolina +n09672590 a member of an extinct North American Indian people who lived in northern California +n09672725 a member of a North American Indian people of central Arizona +n09672840 a member of the North American Indian people of the San Joaquin Valley +n09673091 a member of the North American Indian people of Arizona and adjacent Mexico and California +n09674412 a member of an agricultural people in southeastern India +n09674786 a member of a formerly tribal people now living in south central India +n09675045 a member of the Dravidian people living in southeastern India +n09675673 a member of a pastoral people living in the Nilgiri Hills of southern India +n09675799 a member of a Dravidian people living on the southwestern coast of India +n09675922 a member of the people of Gujarat +n09676021 a member of the people of Kashmir +n09676247 a member of the majority people of Punjab in northwestern India +n09676884 any member of the people of eastern Europe or Asian Russia who speak a Slavonic language +n09677427 adherent of Anabaptism +n09678747 a member of Christian denomination that expects the imminent advent of Christ +n09679028 a Christian as contrasted with a Jew +n09679170 a person who is not a member of one's own religion; used in this sense by Mormons and Hindus +n09679925 a member of a Catholic church +n09680908 a member of the church formed in the 19th century by German Catholics who refused to accept the infallibility of the Pope +n09681107 a member of the Uniat Church +n09681234 a member of the Coptic Church +n09681973 a woman who is a Jew +n09683180 a Muslim who is involved in a jihad +n09683757 one who follows the teachings of Buddha +n09683924 an adherent of the doctrines of Zen Buddhism +n09684082 an adherent of Mahayana Buddhism +n09684901 a Hindu religious teacher; used as a title of respect +n09685233 worshipper of Krishna and member of the International Society for Krishna Consciousness +n09685806 a believer in Shintoism +n09686262 a person of mixed European and African descent +n09686401 a person of mixed European and Asian descent +n09688233 a Gaelic-speaking Celt in Ireland or Scotland or the Isle of Man +n09688804 a member of the ancient Germanic peoples who spread from the Rhine into the Roman Empire in the 4th century +n09689435 a native or inhabitant of Afghanistan +n09689958 a native or inhabitant of Albania +n09690083 a native or inhabitant of Algeria +n09690208 any member of the peoples speaking a language in the Altaic language group +n09690496 a native or inhabitant of Andorra +n09690621 a native or inhabitant of Angola +n09690864 a native or inhabitant of the island of Anguilla in the West Indies +n09691604 a native or inhabitant of Austria +n09691729 a native or inhabitant of the Bahamas +n09691858 a native or inhabitant of Bahrain +n09692125 a member of a subgroup of people who inhabit Lesotho +n09692915 a member of a pastoral Bantu people living in Namibia, Botswana, and Angola +n09693244 a member of a Bantu people in southeastern Congo +n09693982 a native or inhabitant of Barbados +n09694664 a native or inhabitant of Bolivia +n09694771 a native or inhabitant of Borneo +n09695019 a native or inhabitant of Rio de Janeiro +n09695132 a member of the South American Indian people living in Brazil and Paraguay +n09695514 a native or inhabitant of Brunei +n09695620 a native or inhabitant of Bulgaria +n09695979 a native or inhabitant of Byelorussia +n09696456 a native or inhabitant of Cameroon +n09696585 a native or inhabitant of Canada +n09696763 a Canadian descended from early French settlers and whose native language is French +n09697401 a native or inhabitant of Central America +n09697986 a native or inhabitant of Chile +n09698644 a native or inhabitant of the Republic of the Congo +n09699020 a native or inhabitant of Cyprus +n09699642 a native or inhabitant of Denmark +n09700125 a native or inhabitant of Djibouti +n09700964 a native or inhabitant of Great Britain +n09701148 a native or inhabitant of England +n09701833 a woman who is a native or inhabitant of England +n09702134 a person of Anglo-Saxon (especially British) descent whose native tongue is English and whose culture is strongly influenced by English culture as in WASP for `White Anglo-Saxon Protestant' +n09702673 a member of a Germanic people who conquered England and merged with the Saxons and Jutes to become Anglo-Saxons +n09703101 an inhabitant of Wessex +n09703344 a member of a Germanic people who invaded northern Italy in the 6th century +n09703485 a man of English descent +n09703708 a resident of Cambridge +n09703809 a man who is a native or inhabitant of Cornwall +n09703932 a woman who is a native or resident of Cornwall +n09704057 a resident of Lancaster +n09704157 a member (or supporter) of the house of Lancaster +n09704283 a native of Newcastle-upon-Tyne +n09705003 a native or resident of Oxford +n09705124 a native or inhabitant of Ethiopia +n09705671 a member of the Semitic speaking people of northern Ethiopia +n09705784 a native or inhabitant of Eritrea +n09706029 a native or inhabitant of Finland +n09706255 a member of a Finnish people living in the northwestern Urals in Russia +n09707061 a member of the Livonian-speaking people of Latvia +n09707289 a native or inhabitant of Lithuania +n09707735 one of the people of mixed Ostyak and Samoyed origin in Siberia +n09708750 a native or resident of Paris +n09708889 a female native or resident of Paris +n09709531 a person descended from French ancestors in southern United States (especially Louisiana) +n09709673 a person of European descent born in the West Indies or Latin America +n09710041 a native or inhabitant of Gabon +n09710164 a native or inhabitant of Greece +n09710886 a member of one of four linguistic divisions of the prehistoric Greeks +n09711132 a resident of Athens +n09711435 a resident of Laconia +n09712324 a native or inhabitant of Guyana +n09712448 a native or inhabitant of Haiti +n09712696 a member of a people inhabiting the northern Malay Peninsula and Malaysia and parts of the western Malay Archipelago +n09712967 a member of the predominantly Muslim people in the southern Philippines +n09713108 a native or inhabitant of Holland +n09714120 a native or inhabitant of Iceland +n09714694 a native or inhabitant of Iraq +n09715165 a man who is a native or inhabitant of Ireland +n09715303 a woman who is a native or inhabitant of Ireland +n09715427 a resident of Dublin +n09716047 a native or inhabitant of Italy +n09716933 a resident of modern Rome +n09717233 a member of an ancient Oscan-speaking people of the central Apennines north of Rome who were conquered and assimilated into the Roman state in 290 BC +n09718217 a native or inhabitant of Japan +n09718811 a native or inhabitant of Jordan +n09718936 a native or inhabitant of Korea who speaks the Korean language +n09719309 a native or inhabitant of Kenya +n09719794 a member of a Buddhist people inhabiting the area of the Mekong River in Laos and Thailand and speaking the Lao language; related to the Thais +n09720033 a member of an indigenous nomadic people living in northern Scandinavia and herding reindeer +n09720256 a native of Latin America +n09720595 a native or inhabitant of Lebanon +n09720702 (formerly) a native or inhabitant of the Levant +n09720842 a native or inhabitant of Liberia +n09721244 a native or inhabitant of Luxembourg +n09721444 a native or inhabitant of Macedon +n09722064 a Malaysian from Sabah +n09722658 a native or inhabitant of Mexico +n09722817 a person of Mexican descent +n09723067 a Mexican (or person of Mexican descent) living in the United States +n09723819 a native or inhabitant of Namibia +n09723944 a native or inhabitant of Nauru +n09724234 a member of Hindu people descended from brahmins and Rajputs who live in Nepal +n09724533 a native or inhabitant of New Zealand +n09724656 a native or inhabitant of Nicaragua +n09724785 a native or inhabitant of Nigeria +n09725000 a member of a Negroid people living chiefly in northern Nigeria +n09725229 a native or inhabitant of North America +n09725546 a native or inhabitant of Nova Scotia +n09725653 a native or inhabitant of Oman +n09725772 a native or inhabitant of Pakistan +n09725935 a member of a Dravidian people living in Pakistan +n09726621 a member of a native Indian group in South America +n09726811 a member of an American Indian peoples of northeastern South America and the Lesser Antilles +n09727440 a native or inhabitant of the Philippines +n09727826 a native or inhabitant of Polynesia +n09728137 a native or inhabitant of Qatar +n09728285 a native or inhabitant of Romania +n09729062 a resident of Moscow +n09729156 a native or inhabitant of Georgia in Asia +n09730077 a native or inhabitant of Sarawak +n09730204 an inhabitant of Scandinavia +n09730824 a native or inhabitant of Senegal +n09731343 a native of Slovenia +n09731436 a native or inhabitant of South Africa +n09731571 a native or inhabitant of South America +n09732170 a native or inhabitant of Sudan +n09733459 a native or inhabitant of Syria +n09733793 a native or inhabitant of Tahiti +n09734185 a native or inhabitant of Tanzania +n09734450 a native or inhabitant of Tibet +n09734535 a native or inhabitant of Togo +n09734639 a member of a nomadic Berber people of the Sahara +n09735258 any member of the peoples speaking a Turkic language +n09735654 a member of a people of Turkic speech living in the Volga region in eastern Russia +n09736485 a member of a Turkic people living in Turkmenistan and neighboring areas +n09736798 a member of a Turkic people of Uzbekistan and neighboring areas +n09736945 a native or inhabitant of Uganda +n09737050 a native or inhabitant of the Ukraine +n09737161 a member of a Turkic people of northeastern Siberia (mainly in the Lena river basin) +n09737453 a member of the Tungus speaking people of Mongolian race who are a nomadic people widely spread over eastern Siberia; related to the Manchu +n09738121 a member of the largest ethnic group in southeastern Nigeria +n09738400 a native or inhabitant of a North American or Central American or South American country +n09740724 an American who was born in Britain or one whose ancestors were British +n09741074 a member or descendant of any of the aboriginal peoples of Alaska +n09741331 a native or resident of Arkansas +n09741722 a native or resident of the Carolinas +n09741816 a native or resident of Colorado +n09741904 a native or resident of Connecticut +n09741999 a native or resident of Delaware +n09742101 a native or resident of Florida +n09742315 an American who was born in Germany or whose ancestors were German +n09742927 a native or resident of Illinois +n09743487 a native or resident of Maine +n09743601 a native or resident of Maryland +n09743792 a native or resident of Minnesota +n09744161 a native or resident of Nebraska +n09744346 a native or resident of New Hampshire +n09744462 a native of resident of New Jersey +n09744679 a native or resident of New York (especially of New York City) +n09744834 a native or resident of North Carolina +n09745229 a native or resident of Oregon +n09745324 a native or resident of Pennsylvania +n09745834 a native or resident of Texas +n09745933 a native or resident of Utah +n09746936 a native or inhabitant of Uruguay +n09747191 a native or inhabitant of Vietnam +n09747495 a native or inhabitant of Gambia +n09748101 a native or inhabitant of the former republic of East Germany +n09748408 an inhabitant of Berlin +n09748648 a German inhabitant of Prussia +n09748889 a native or inhabitant of Ghana +n09749386 a native or inhabitant of Guinea +n09750282 a native or inhabitant of Papua New Guinea or New Guinea +n09750641 a member of the French-speaking people living in Belgium +n09750770 a native or inhabitant of Yemen +n09750891 a native or inhabitant of Yugoslavia +n09751076 a member of a Slavic people who settled in Serbia and neighboring areas in the 6th and 7th centuries +n09751496 a member of the Negroid people of southern South Africa +n09751622 a native or inhabitant of Zaire +n09751895 a native or inhabitant of Zimbabwe +n09752023 a member of the tall Negroid people of eastern South Africa; some live in KwaZulu-Natal under the traditional clan system but many now work in the cities +n09752519 (astrology) a person who is born while the sun is in Gemini +n09753348 (astrology) a person who is born while the sun is in Sagittarius +n09753792 (astrology) a person who is born while the sun is in Pisces +n09754152 a French abbot +n09754217 the superior of a group of nuns +n09754633 one who gives up or relinquishes or renounces something +n09754907 one who shortens or abridges or condenses a written work +n09755086 one who makes abstracts or summarizes information +n09755241 a fugitive who runs away and hides to avoid arrest or prosecution +n09755555 someone who grants absolution +n09755788 a novice learning the rudiments of some subject +n09755893 one whose behavior departs substantially from the norm of a group +n09756049 one who helps or encourages or incites another +n09756195 a signer of a 1679 address to Charles II in which those who petitioned for the reconvening of parliament were condemned and abhorred +n09756961 a person who is loathsome or disgusting +n09757449 a person who descends down a nearly vertical face by using a doubled rope that is wrapped around the body and attached to some high point +n09758173 someone who practices self denial as a spiritual discipline +n09758885 an administrator in a college or university +n09759501 someone elected to honorary membership in an academy +n09760290 a person who procures or advises or commands the commission of a felony but who is not present at its perpetration +n09760609 one paid to accompany or assist or live with another +n09760913 a person who provides musical accompaniment (usually on a piano) +n09761068 a person who joins with another in carrying out some plan (especially an unethical or illegal plan) +n09761753 someone in charge of a client's account for an advertising agency or brokerage or other service business +n09762011 a defendant in a criminal proceeding +n09762385 someone who imputes guilt or blame +n09763272 someone who takes LSD +n09763784 a person with whom you are acquainted +n09764201 a person who acquires something (usually permanently) +n09764598 an acrobat who performs in the air (as on a rope or trapeze) +n09764732 the case officer designated to perform an act during a clandestine operation (especially in a hostile area) +n09764900 a person who is a participating member of an organization +n09765118 a citizen who takes an active role in the community (as in crime prevention and neighborhood watch) +n09765278 a theatrical performer +n09767197 a person who acts and gets things done +n09769076 someone who is so ardently devoted to something that it resembles an addiction +n09769525 a discussant who offers an example or a reason or a proof +n09769929 one who investigates insurance claims or claims for damages and recommends an effective settlement +n09770179 an officer who acts as military assistant to a more senior officer +n09770359 a general's adjutant; chief administrative officer +n09771435 someone who admires a young woman +n09772330 someone (such as a child) who has been adopted +n09772746 someone who commits adultery or fornication +n09772930 a woman adulterer +n09773962 someone whose business is advertising +n09774167 someone who receives advice +n09774783 a person who pleads for a cause or propounds an idea +n09775907 an engineer concerned with the design and construction of aircraft +n09776346 a subordinate or subsidiary associate; a person who is affiliated with another or with an organization +n09776642 an affluent person; a person who is financially well off +n09776807 a serious devotee of some particular music genre or musical performer +n09777870 a sergeant of the lowest rank in the military +n09778266 an operative serving as a penetration into an intelligence target +n09778537 an unpleasant person who is annoying or exasperating +n09778783 one who agitates; a political troublemaker +n09778927 a person who claims that they cannot have true knowledge about the existence of God (but does not deny that God might exist) +n09779124 someone who is doubtful or noncommittal about something +n09779280 someone involved in a contest or battle (as in an agon) +n09779461 a newspaper columnist who answers questions and offers advice on personal problems to people who write in +n09779790 someone concerned with the science or art or business of cultivating the soil +n09780395 a military attache who is a commissioned or warrant officer in an air force +n09780828 an officer in the airforce +n09780984 a flighty scatterbrained simpleton +n09781398 someone who travels by airplane +n09781504 a person who alarms others needlessly +n09781650 a person with congenital albinism: white hair and milky skin; eyes are usually pink +n09782167 a person who drinks alcohol to excess habitually +n09782397 a member of a municipal legislative body (as a city council) +n09782855 a person with alexia +n09783537 someone to whom the title of property is transferred +n09783776 someone from whom the title of property is transferred +n09783884 a person who can read but is disinclined to derive information from literary sources +n09784043 a mathematician whose specialty is algebra +n09784160 someone who communicates in allegories +n09784564 a speaker or writer who makes use of alliteration +n09785236 an official in a British hospital who looks after the social and material needs of the patients +n09785659 a mountain climber who specializes in difficult climbs +n09785891 a boy serving as an acolyte +n09786115 a singer whose voice lies in the alto clef +n09787534 a diplomat of the highest rank; accredited as representative from one country to another +n09787765 an informal representative +n09788073 an attacker who waits in a concealed position to launch a surprise attack +n09788237 an adviser to the court on some matter of law who is not a party to the case; usually someone who wants to influence the outcome of a lawsuit involving matters of wide public interest +n09789150 someone who adheres to the doctrine that ordinary moral distinctions are invalid +n09789566 someone who has had a limb removed by amputation +n09789898 someone who looks for analogies or who reasons by analogy +n09790047 an illiterate person who does not know the alphabet +n09790482 someone who is skilled at analyzing data +n09791014 an analyst of conditions affecting a particular industry +n09791419 someone skilled in planning marketing campaigns +n09791816 an advocate of anarchism +n09792125 a detested person +n09792555 someone from whom you are descended (but usually more remote than a grandparent) +n09792969 a television reporter who coordinates a broadcast to which several correspondents contribute +n09793141 a person who lived in ancient times +n09793352 a person skilled in telling anecdotes +n09793946 a fisherman who uses a hook and line +n09794550 the technician who produces animated cartoons +n09794668 one who accepts the doctrine of animism +n09795010 a commentator who writes notes to a text +n09795124 reads news, commercials on radio or television +n09795334 someone who proclaims a message publicly +n09796809 a person who is opposed (to an action or policy or practice etc.) +n09796974 a person who is opposed to the United States and its policies +n09797742 someone who hates and would persecute Jews +n09797873 a soldier in the Australian and New Zealand army corps during World War I +n09797998 a person assumed to have been raised by apes +n09798096 someone afflicted by aphakia; someone lacking the natural lenses of the eyes +n09800469 the party who appeals a decision of a lower court +n09800964 an official who is appointed +n09801102 a person who seizes or arrests (especially a person who seizes or arrests in the name of justice) +n09801275 the butt of a prank played on April 1st +n09801533 an ambitious and aspiring young person +n09802445 a person who is fully aware of something and understands it +n09802641 someone who takes for his or her own use (especially without permission) +n09802951 a scholar who specializes in Arab languages and culture +n09804230 a person who archaizes +n09805151 a bishop of highest rank +n09805324 a person who is expert in the use of a bow and arrow +n09805475 someone who creates plans to be used in making something (such as buildings) +n09806944 a person in charge of collecting and cataloguing archives +n09807075 a senior clergyman and dignitary +n09808080 a follower of Aristotle or an adherent of Aristotelianism +n09808591 a nobleman entitled to bear heraldic arms +n09809279 a military attache who is a commissioned or warrant officer in an army +n09809538 a member of the military who is trained in engineering and construction work +n09809749 an officer in the armed forces +n09809925 a musician who adapts a composition for particular voices or instruments or for another style of performance +n09810166 someone who arrives (or has arrived) +n09811568 a person afflicted with arthritis +n09811712 someone who pronounces words +n09811852 a serviceman in the artillery +n09813219 a person who poses for a painter or sculptor +n09814252 an analyst who assays (performs chemical tests on) metals +n09814381 someone who is a member of a legislative assembly +n09814488 a woman assemblyman +n09814567 a person who assents +n09814660 someone who claims to speak the truth +n09815455 (law) the party to whom something is assigned (e.g., someone to whom a right or property is legally transferred) +n09815790 a person who contributes to the fulfillment of a need or furtherance of an effort or purpose +n09816654 a teacher or lower rank than an associate professor +n09816771 a person who joins with others in some activity or endeavor +n09817174 a person with subordinate membership in a society, institution, or commercial enterprise +n09817386 a teacher lower in rank than a full professor but higher than an assistant professor +n09818022 a person trained to travel in a spacecraft +n09819477 a scientist knowledgeable about cosmography +n09820044 someone who denies the existence of god +n09820263 a person trained to compete in sports +n09821831 someone who waits on or tends to or attends to the needs of another +n09822830 the chief law officer of a country or state +n09823153 a student who attends a course but does not take it for credit +n09823287 (ancient Rome) a religious official who interpreted omens to guide public policy +n09823502 the sister of your father or mother; the wife of your uncle +n09823832 a foreign girl serving as an au pair +n09824135 a person who behaves in a tyrannical manner +n09824609 (usually plural) persons who exercise (administrative) control over others +n09825096 an authority who authorizes (people or actions) +n09825750 someone whose occupation is repairing and maintaining automobiles +n09826204 someone who operates an aircraft +n09826605 a woman aviator +n09826821 (in India) a native nursemaid who looks after children +n09827246 used as a Hindi courtesy title; equivalent to English `Mr' +n09827363 (slang) sometimes used as a term of address for attractive young women +n09828216 an unborn child; a human fetus +n09828403 a member of the baby boom generation in the 1950s +n09828988 someone who runs an establishment that houses and cares for babies for a fee +n09830194 (football) a person who plays in the backfield +n09830400 a member of the House of Commons who is not a party leader +n09830629 a hiker who wears a backpack +n09830759 an expert adviser involved in making important decisions but usually lacking official status +n09830926 someone who is willing to trade favors or services for mutual advantage +n09831962 a person who does harm to others +n09832456 a worthless or immoral woman +n09832633 a homeless woman who carries all her possessions with her in shopping bags +n09832978 the agent to whom property involved in a bailment is delivered +n09833111 an officer of the court who is employed to execute writs and processes and make arrests etc. +n09833275 the person who delivers personal property (goods or money) in trust to the bailee in a bailment +n09833441 a child: son or daughter +n09833536 someone who bakes bread or cake +n09833751 an acrobat who balances himself in difficult positions +n09833997 a person who refuses to comply +n09834258 a demanding woman who destroys men's confidence +n09834378 (football) the player who is carrying (and trying to advance) the ball on an offensive play +n09834699 a trained dancer who is a member of a ballet company +n09834885 a man who directs and teaches and rehearses dancers for a ballet company +n09835017 a woman who directs and teaches and rehearses dancers for a ballet company +n09835153 a ballet enthusiast +n09835230 a team athlete who is skilled at stealing or catching the ball +n09835348 someone who flies a balloon +n09835506 an athlete who plays baseball +n09836160 someone who fights bulls +n09836343 the bullfighter who implants decorated darts (banderillas) into the neck or shoulders of the bull during a bull fight +n09836519 the principal bullfighter who is appointed to make the final passes and kill the bull +n09836786 the horseman who pricks the bull with a lance early in the bullfight to goad the bull and to make it keep its head low +n09837459 a player in a band (especially a military band) +n09837720 the person in charge of the bank in a gambling game +n09838295 a robber of banks +n09838370 someone who has insufficient assets to cover their debts +n09838621 weighs 115-126 pounds +n09839702 a female bartender +n09840217 a very wealthy or powerful businessman +n09840435 a British peer of the lowest rank +n09840520 a nobleman (in various countries) of varying rank +n09841188 an employee who mixes and serves alcoholic drinks at a bar +n09841515 a coach of baseball players +n09841696 a baseball player on the team at bat who is on base (or attempting to reach a base) +n09842047 an athlete who plays basketball +n09842288 someone skilled in weaving baskets +n09842395 early Amerindians related to the Pueblo; known for skill in making baskets +n09842528 an adult male singer with the lowest voice +n09842823 the illegitimate offspring of unmarried parents +n09843443 (baseball) a boy who takes care of bats and other baseball equipment +n09843602 a person who takes a bath +n09843716 an orderly assigned to serve a British military officer +n09843824 someone who twirls a baton +n09844457 a native or an inhabitant of Bavaria +n09844898 a person who is paid to pray for the soul of another +n09845401 a person who diverts suspicion from someone (especially a woman who accompanies a male homosexual in order to conceal his homosexuality) +n09845849 a member of the beat generation; a nonconformist in dress and behavior +n09846142 someone who gives you advice about your personal appearance +n09846469 a member of a nomadic tribe of Arabs +n09846586 someone suffering from enuresis; someone who urinates while asleep in bed +n09846755 a farmer who keeps bees for their honey +n09846894 someone whose favorite drink is beer or ale +n09847267 a man who is a beggar +n09847344 a woman who is a beggar +n09847543 a woman of advanced age +n09848110 one who believes in the existence of a god or gods +n09848489 a supporter who accepts something as true +n09849167 a person who casts metal bells +n09849990 a newly married man (especially one who has long been a bachelor) +n09850760 one of the ancient Norse warriors legendary for working themselves into a frenzy before a battle and fighting with reckless savagery and insane fury +n09850974 an enemy who lays siege to your position +n09851165 the person who is most outstanding or excellent; someone who tops all others +n09851575 the person to whom you are engaged +n09853541 an authoritarian leader and invader of privacy +n09853645 a prejudiced person who is intolerant of any opinions differing from his own +n09853881 an important influential person +n09854218 an older sister +n09854421 someone who plays billiards +n09854915 someone with special training in biochemistry +n09855433 someone who writes an account of a person's life +n09856401 a person with a strong interest in birds +n09856671 a baby born; an offspring +n09856827 a social reformer who advocates birth control and family planning +n09857007 a person who is sexually attracted to both sexes +n09858165 a person who attained the rank of expert in the martial arts (judo or karate) +n09858299 a criminal who extorts money from someone by threatening to expose embarrassing information about them +n09858733 an activist member of a largely American group of Blacks called the Nation of Islam +n09859152 a smith who forges and shapes iron with a hammer and anvil +n09859285 a dashing young man +n09859684 a worker who bleaches (cloth or flour etc.) +n09859975 a participant in a blind date (someone you meet for the first time when you have a date with them) +n09861287 a person dressed all in blue (as a soldier or sailor) +n09861599 a woman having literary or intellectual interests +n09861863 a person who builds boats +n09861946 someone who drives or rides in a boat +n09862183 a petty officer on a merchant ship who controls the work of other seamen +n09862621 an informal term for a British policeman +n09863031 someone who escorts and protects a prominent person +n09863339 (British slang) a scientist or technician engaged in military research +n09863749 emotionally charged terms used to refer to extreme radicals or revolutionaries +n09863936 a Russian member of the left-wing majority group that followed Lenin and eventually became the Russian communist party +n09864632 an entertainer who has a sensational effect +n09864968 a male bound to serve without wages +n09865068 a female slave +n09865162 a female bound to serve without wages +n09865398 someone bound to labor without wages +n09865672 a book salesman +n09865744 a worker whose trade is binding books +n09866115 someone who records the transactions of a business +n09866354 a maker of books; someone who edits or publishes or binds books +n09866559 someone who spends a great deal of time reading +n09866661 a thief who steals goods that are in a store +n09866817 a person who polishes shoes and boots +n09866922 someone who makes or sells illegal liquor +n09867069 a maker of boots +n09867154 an inhabitant of a border area (especially the border between Scotland and England) +n09867311 someone who patrols the borders of a country +n09868270 a biologist specializing in the study of plants +n09868782 an opportunist who profits from the misfortunes of others +n09868899 a visitor of a city boulevard (especially in Paris) +n09869317 a hunter who kills predatory wild animals in order to collect a bounty +n09869447 someone who pursues fugitives or criminals for whom a reward is offered +n09869578 a member of the European royal family that ruled France +n09870096 a cricketer who delivers the ball to the batsman in cricket +n09871095 a boxer noted for an ability to deliver hard punches +n09871229 a male child (a familiar term of address to a boy) +n09871681 a boy who is a member of the Boy Scouts +n09871867 a man who is considered naive +n09871952 an extremely talented young male person +n09872066 a very boastful and talkative person +n09872557 a member of the highest of the four Hindu varnas +n09873348 a fighter (especially one who participates in brawls) +n09873473 one whose earnings are the primary source of support for their dependents +n09873769 someone who swims the breaststroke +n09873899 a person who breeds animals +n09874428 a good fellow; helpful and trustworthy +n09874725 a woman participant in her own marriage ceremony +n09874862 an unmarried woman who attends the bride at a wedding +n09875025 an operative who acts as a courier or go-between from a case officer to a secret agent in a hostile area +n09875979 a journalist who broadcasts on radio or television +n09876701 (Roman Catholic Church) a title given to a monk and used as form of address +n09877288 a brother by marriage +n09877587 a viewer who looks around casually without seeking anything in particular +n09877750 a native or resident of Birmingham, England +n09877951 a close friend who accompanies his buddies in their activities +n09878921 an investor with an optimistic market outlook; an investor who expects prices to rise and so buys now for resale later +n09879552 a hired thug +n09880189 a young waitress in a nightclub whose costume includes the tail and ears of a rabbit +n09880741 a thief who enters a building with intent to steal +n09881265 the treasurer at a college or university +n09881358 a restaurant attendant who sets tables and assists waiters and clears away dirty dishes +n09881895 the newspaper editor responsible for business news +n09883047 a traveler whose expenses are paid by the business he works for +n09883452 a person (or thing) that breaks up or overpowers something +n09883807 a person who meddles in the affairs of others +n09885059 a meddler who tends to butt in +n09885866 a woodworker who specializes in making furniture +n09886403 an attendant who carries the golf clubs for a player +n09886540 a military trainee (as at a military academy) +n09888635 a person who announces the changes of steps during a dance +n09889065 a female prostitute who can be hired by telephone +n09889170 someone skilled in penmanship +n09889691 a politician who is running for public office +n09889941 someone living temporarily in a tent or lodge for recreation +n09890192 a follower who is not a member of an ingroup +n09890749 someone who is considered for something (for an office or prize or honor etc.) +n09891730 a specialist in canon law +n09892262 a conservative advocate of capitalism +n09892513 a dining-room attendant who is in charge of the waiters and the seating of customers +n09892693 the pilot in charge of an airship +n09893191 an officer holding a rank below a major but above a lieutenant +n09893344 the leader of a group of people +n09893502 an animal that is confined +n09893600 a person held in the grip of a strong emotion or passion +n09894143 (Roman Catholic Church) one of a group of more than 100 prominent bishops in the Sacred College who advise the Pope and elect new Popes +n09894445 a specialist in cardiology; a specialist in the structure and function and disorders of the heart +n09894654 someone who plays (or knows how to play) card games +n09894909 a professional card player who makes a living by cheating at card games +n09895222 a professional who is intent on furthering his or her career by any possible means and often at the expense of their own integrity +n09895480 a man who is a careerist +n09895561 a person who is responsible for attending to the needs of a child or dependent adult +n09895701 a custodian who is hired to take care of something (property or a person) +n09895902 an official who performs the duties of an office temporarily +n09896170 someone who parodies in an exaggerated manner +n09896311 a musician who plays a carillon +n09896401 a singer of carols +n09896685 a woodworker who makes or repairs wooden objects +n09896826 someone who constantly criticizes in a petty way +n09898020 a follower of Cartesian thought +n09899289 a person responsible for receiving payments for goods and services (as in a shop or restaurant) +n09899671 someone injured or killed in an accident +n09899782 someone injured or killed or captured or missing in a military engagement +n09899929 someone whose reasoning is subtle and often specious +n09901337 one who instructs catechumens in preparation for baptism (especially one using a catechism) +n09901502 a new convert being taught the principles of Christianity by a catechist +n09901642 someone who provides food and service (as for a party) +n09901786 the ecclesiastical title of the leaders of the Nestorian and Armenian churches +n09901921 a person who breeds and cares for cats +n09902128 a royalist supporter of Charles I during the English Civil War +n09902353 a soldier mounted on horseback +n09902731 someone who lives in a cave +n09902851 an officiating priest celebrating the Eucharist +n09902954 a person who is celebrating +n09903153 a widely known person +n09903501 someone who plays a violoncello +n09903639 a person who is authorized to read publications or correspondence or to watch theatrical performances and suppress in whole or in part anything considered obscene or politically unacceptable +n09903936 someone who censures or condemns +n09904208 someone who is at least 100 years old +n09904837 a person who takes a position in the political center +n09905050 (ancient Rome) the leader of 100 soldiers +n09905185 an accountant who has passed certain examinations and met all other statutory and licensing requirements of a United States state to be certified by that state +n09905530 (Yiddish) an attractive, unconventional woman +n09906293 a maid who is employed to clean and care for bedrooms (now primarily in hotels) +n09906449 a changeable or inconstant person +n09906704 someone who has won first place in a competition +n09907804 a retail dealer in provisions and supplies +n09908769 a chaplain in a prison +n09909660 a worker whose job is to make charcoal +n09909929 the official temporarily in charge of a diplomatic mission in the absence of the ambassador +n09910222 the driver of a chariot +n09910374 a person who charms others (usually by personal attractiveness) +n09910556 a British or Canadian accountant who is a member of a professional body that has a royal charter +n09910840 a stock market analyst who tries to predict market trends from graphs of recent prices of securities +n09911226 a human female employed to do housework +n09912431 a man with a chauvinistic belief in the inferiority of women +n09912681 a miserly person +n09912907 a native or inhabitant of Chechnya +n09912995 one who checks the correctness of something +n09913329 a spectator who shouts encouragement +n09913455 someone who leads the cheers by spectators at a sporting event +n09913593 an enthusiastic and vocal supporter +n09915434 Egyptian Pharaoh of the 27th century BC who commissioned the Great Pyramid at Giza +n09915651 a chess player of great skill +n09916348 the corporate executive responsible for the operations of the firm; reports to a board of directors; may appoint other managers (including a president) +n09917214 the senior officer of a service of the armed forces +n09917345 a person with the senior noncommissioned naval rank +n09917481 a member of the British Cabinet +n09917593 a young person of either sex +n09918248 a human offspring (son or daughter) of any age +n09918554 an immature childish person +n09918867 a prodigy whose talents are recognized at an early age +n09919061 someone who cleans soot from chimneys +n09919200 a therapist who practices chiropractic +n09919451 a dismissive term for a girl who is immature or who lacks respect +n09919899 an unfortunate person who is unable to perform effectively because of nervous tension or agitation +n09920106 (ancient Greece) leader of a group or festival; leader of a chorus +n09920283 someone who creates new dances +n09920901 a woman who dances in a chorus line +n09921034 one who is the object of choice; who is given preference +n09923003 a guide who conducts and informs sightseers +n09923186 a smoker of cigars +n09923418 a person of no influence +n09923561 an acrobat who performs acrobatic feats in a circus +n09923673 a native or naturalized member of a state or other political community +n09923996 the newspaper editor in charge of editing local news +n09924106 an important municipal official +n09924195 a financier who works in one of the banks in the City of London +n09924313 a city dweller with sophisticated manners and clothing +n09924437 a leader in municipal affairs +n09924996 a leader of the political movement dedicated to securing equal opportunity for members of minority groups +n09927089 someone whose occupation is cleaning +n09927451 a member of the clergy and a spiritual leader of the Christian Church +n09928136 a clergyman or other person in religious orders +n09928451 an employee who performs clerical work (e.g., keeps records or accounts) +n09928845 an intellectual who is ostentatiously and irritatingly knowledgeable +n09929202 someone who is expert in climatology +n09929298 someone who climbs as a sport; especially someone who climbs mountains +n09929577 a practitioner (of medicine or psychology) who does clinical work instead of laboratory experiments +n09930257 (baseball) a relief pitcher who can protect a lead in the last inning or two of the game +n09930628 a negative term for a homosexual man who chooses not to reveal his sexual orientation +n09930876 a person who amuses others by ridiculous behavior +n09931165 a rude or vulgar fool +n09931418 a person who gives private instruction (as in singing, acting, etc.) +n09931640 (sports) someone in charge of training an athlete or a team +n09932098 an assistant baseball coach in charge of pitchers +n09932336 a man who drives a coach (or carriage) +n09932508 someone who works in a coal mine +n09932788 a member of a coastguard +n09933020 Australian term for a pal +n09933098 a person who makes or repairs shoes +n09933842 used affectionately to refer to an eccentric but amusing old man +n09933972 one of two or more beneficiaries of the same benefit +n09934337 a subordinate who performs an important but routine function +n09934488 a cognitive scientist who studies the neurophysiological foundations of mental phenomena +n09934774 a man hairdresser +n09935107 someone who is a source of new words or new expressions +n09935434 an associate in an activity or endeavor or sphere of common interest +n09936825 an Irish girl +n09936892 a student enrolled in a college or university +n09937056 a student (or former student) at a college or university +n09937688 a resident of a colony +n09937802 a believer in colonialism +n09937903 someone who helps to found a colony +n09938080 a lyric soprano who specializes in coloratura vocal music +n09938449 a ceremonial escort for the (regimental) colors +n09938991 a person of exceptional importance and reputation +n09940725 an actor in a comedy +n09940818 a female comedian +n09941089 someone with a promising future +n09941571 a commissioned naval officer who ranks above a lieutenant commander and below a captain +n09941787 the officer who holds the supreme command +n09941964 an officer in command of a military unit +n09942697 an official of the Communist Party who was assigned to teach party principles to a military unit +n09942970 a military officer holding a commission +n09943239 a commissioned officer in the Army or Air Force or Marine Corps +n09943811 a government administrator +n09944022 a member of a commission +n09944160 a member of a committee +n09944430 a woman who is a member of a committee +n09945021 a commissioned naval officer who ranks above a captain and below a rear admiral; the lowest grade of admiral +n09945223 a person entitled to receive Communion +n09945319 a socialist who advocates communism +n09945603 a member of the communist party +n09945745 someone who travels regularly from home in a suburb to work in a city +n09946814 British term for someone who introduces television acts or cabarets etc +n09947127 someone makes things complex +n09950457 a person with a compulsive disposition; someone who feels compelled to do certain things +n09950728 someone trained in computer science and linguistics who uses computers for natural language processing +n09951070 a scientist who specializes in the theory of computation and the design of computers +n09951274 a person who uses computers for work or entertainment or communication or business +n09951524 a fellow member of the Communist Party +n09951616 someone who attends concerts +n09952163 someone who tries to bring peace +n09953052 the person who collects fares on a public conveyance +n09953350 someone who makes candies and other sweets +n09953615 a supporter of the Confederate States of America +n09954355 a priest who hears confession and gives absolution +n09954639 someone to whom private matters are confided +n09955406 a believer in the teachings of Confucius +n09955944 informal abbreviation of `representative' +n09956578 someone who is victorious by force of arms +n09957523 a member of a Conservative Party +n09958133 a Protestant in England who is not a member of the Church of England +n09958292 a Protestant who is a follower of Anglicanism +n09958447 the person to whom merchandise is delivered over +n09958569 the person who delivers over or commits merchandise +n09959142 a lawman with less authority and jurisdiction than a sheriff +n09959658 an artist of the school of constructivism +n09960688 someone (a person or firm) who contracts to build things +n09961198 a woman singer having a contralto voice +n09961331 a writer whose work is published in a newspaper or magazine or as part of a book +n09961469 someone with a compulsive desire to exert control over situations and people +n09961605 a person who is recovering from illness +n09961739 the member of a group whose duty it is to convene meetings +n09962966 a person serving a sentence in a jail or prison +n09964202 a relief pilot on an airplane +n09964411 someone who copies the words or behavior of another +n09965515 someone having the same religion as another person +n09965787 a defensive football player stationed outside the linebackers +n09966470 a supporter of corporatism +n09966554 someone who communicates by means of letters +n09967063 someone who sells or applies cosmetics +n09967406 a sophisticated person who has travelled in many countries +n09967555 a member of a Slavic people living in southern European Russia and Ukraine and adjacent parts of Asia and noted for their horsemanship and military skill; they formed an elite cavalry corps in czarist Russia +n09967816 a specialist in the systematic recording and analysis of the costs incident to production +n09967967 one of two actors who are given equal status as stars in a play or film +n09968259 someone who designs or supplies costumes (as for a play or masquerade) +n09968652 a medieval English villein +n09968741 a peasant farmer in the Scottish Highlands +n09968845 someone who gives advice about problems +n09970088 someone who attempts to prevent terrorism +n09970192 a spy who works against enemy espionage +n09970402 female equivalent of a count or earl +n09970822 a negotiator willing to compromise +n09971273 a woman who lives in the country and has country ways +n09971385 an advisor employed by the government to assist people in rural areas with methods of farming and home economics +n09971839 an attendant at the court of a sovereign +n09972010 the child of your aunt or uncle +n09972458 a very pretty girl who works as a photographer's model +n09972587 a large unpleasant woman +n09974648 a skilled worker who practices some trade or handicraft +n09975425 a creator of great skill in the manual arts +n09976024 a gambler who plays the game of craps +n09976283 someone deranged and possibly dangerous +n09976429 a human being; `wight' is an archaic term +n09976728 a person to whom money is owed by a debtor; someone to whom an obligation exists +n09976917 someone unpleasantly strange or eccentric +n09978442 a specialist in criminology +n09979321 anyone who expresses a reasoned judgment of something +n09979913 a very wealthy man +n09980458 someone who questions a witness carefully (especially about testimony given earlier) +n09980805 a voter who is registered as a member of one political party but who votes in the primary of another party +n09980985 someone who collects and pays bets at a gaming table +n09981092 a male heir apparent to a throne +n09981278 the wife of a crown prince +n09981540 decoder skilled in the analysis of codes and cryptograms +n09981939 a junior Boy Scout +n09982152 a man whose wife committed adultery +n09982525 a member of an unorthodox cult who generally lives outside of conventional society under the direction of a charismatic leader +n09983314 a Mexican woman who practices healing techniques inherited from the Mayans +n09983572 a person authorized to conduct religious worship +n09983889 the custodian of a collection (as a museum or library) +n09984960 a foreign purchaser who buys goods outright for resale +n09985470 someone who carves the meat +n09985809 a writer of science fiction set in a lawless subculture of an oppressive society dominated by computer technology +n09985978 a human being whose body has been taken over in whole or in part by electromechanical devices +n09986450 a performer on the cymbals +n09986700 a member of a group of ancient Greek philosophers who advocated the doctrine that virtue is the only good and that the essence of virtue is self-control +n09986904 a geneticist who specializes in the cellular components associated with heredity +n09987045 a biologist who studies the structure and function of cells +n09987161 a person having great power +n09987239 a male monarch or emperor (especially of Russia prior to 1917) +n09988063 an informal term for a father; probably derived from baby talk +n09988311 a man who works in a dairy +n09988493 chief lama and once ruler of Tibet +n09988703 someone who wastes time +n09989502 a performer who dances professionally +n09990415 a person who participates in a social gathering arranged for dancing (as a ball) +n09990690 someone who does clog dancing +n09990777 a professional teacher of dancing +n09991740 a political candidate who is not well known but could win unexpectedly +n09991867 a special loved one +n09992538 a participant in a date +n09992837 a female human offspring +n09993252 someone who takes more time than necessary; someone who lags behind +n09993651 a schoolchild at a boarding school who has meals at school but sleeps at home +n09994400 a laborer who works by the day; for daily wages +n09994673 a Protestant layman who assists the minister +n09994808 a woman deacon +n09994878 a dead shot +n09995829 someone skilled at informal chitchat +n09996039 someone who withdraws from a social group or environment +n09996304 a nonenterprising person who is not paying his way +n09996481 a person with a severe auditory impairment +n09997622 a person who owes a creditor; someone who has the obligation of paying a debt +n09998788 a member of a ship's crew who performs manual labor +n09999135 one who attacks the reputation of another by slander or libel +n10000294 a contractor concerned with the development and manufacture of systems of defense +n10000459 a person who believes that God created the universe and then abandoned it +n10000787 a person appointed or elected to represent others +n10001217 someone employed to make deliveries +n10001481 a political leader who seeks support by appealing to popular passions and prejudices +n10001764 a person with great powers and abilities +n10002257 a scientist who studies the growth and density of populations and their vital statistics +n10002760 someone who participates in a public display of group feeling +n10003476 a woman who supervises a den of Cub Scouts +n10004718 the head of a department +n10005006 a person who has deposited money in a bank or similar institution +n10005934 a member of the lower chamber of a legislative assembly (such as in France) +n10006177 a doctor who specializes in the physiology and pathology of the skin +n10006748 someone who descends +n10007684 a ballplayer who is designated to bat in place of the pitcher +n10007809 a person who devises plots or intrigues +n10007995 a hotel receptionist +n10008123 a military officer who is not assigned to active duty +n10008254 the police sergeant on duty in a police station +n10009162 some held in custody +n10009276 a police officer who investigates crimes +n10009484 an investigator engaged or employed in obtaining information not easily available to the public +n10009671 one who disparages or belittles the worth of something +n10010062 someone who develops real estate (especially someone who prepares a site for residential or commercial use) +n10010243 an ideological defector from the party line (especially from orthodox communism) +n10010632 someone to whom property (especially realty) is devised by will +n10010767 someone who devises real property in a will +n10010864 someone who eats greedily or voraciously +n10011360 a logician skilled in dialectic +n10011486 someone who keeps a diary or journal +n10012484 a specialist in the study of nutrition +n10013811 a bishop having jurisdiction over a diocese +n10015215 someone who supervises the actors and directs the action in the production of a show +n10015485 member of a board of directors +n10015792 a middle-aged man with lecherous inclinations +n10015897 someone who refuses to believe (as in a divinity) +n10017272 a person who announces and plays popular recorded music +n10017422 employee of a transportation company who controls the departures of vehicles according to weather conditions and in the interest of efficient service +n10018747 a painter who introduces distortions +n10018861 someone who markets merchandise +n10019072 an official prosecutor for a judicial district +n10019187 a manager who supervises the sales activity for a district +n10019406 someone who dives (into water) +n10020366 a divorced woman or a woman who is separated from her husband +n10020533 a woman who was formerly a particular man's wife +n10020670 a lawyer specializing in actions for divorce or annulment +n10020807 a teacher at some universities +n10020890 a licensed medical practitioner +n10022908 someone whose style is out of fashion +n10023264 formerly the chief magistrate in the republics of Venice and Genoa +n10023506 someone who prevents you from enjoying something that they themselves have no need for +n10023656 a stubborn person of arbitrary or arrogant opinions +n10024025 an adult with a long narrow head +n10024362 a person (not necessarily a spouse) with whom you cohabit and share a long-term sexual relationship +n10024937 a native or inhabitant of the Dominican Republic +n10025060 a clergyman; especially a settled minister or parson +n10025295 the head of an organized crime family +n10025391 an adherent of Donatism +n10025635 an Italian woman of rank +n10026976 someone who sleeps in any convenient place +n10027246 someone who closely resembles a famous person (especially an actor) +n10027590 a person who says one thing and does another +n10028402 a person who is destitute +n10028541 a woman who is the senior member of a group +n10029068 an artist skilled at drawing +n10030277 someone who writes plays +n10032987 someone who is dreaming +n10033412 someone who makes or mends dresses +n10033572 someone who models dresses +n10033663 a person who dribbles +n10033888 a basketball player who is dribbling the ball to advance it +n10034201 a person who drinks alcoholic beverages (especially to excess) +n10034614 a person who drinks liquids +n10035952 a narcotics addict +n10036266 a person who takes drugs +n10036444 a pre-Christian priest among the Celts of ancient Gaul and Britain and Ireland +n10036692 a female drum major +n10036929 someone who plays a drum +n10037080 someone who is intoxicated +n10037385 a chronic drinker +n10037588 an adherent of an esoteric monotheistic religious sect living in the relative security of the mountains of Syria and Lebanon who believes that Al-hakim was an incarnation of God +n10037922 a reformer who opposes the use of intoxicating beverages +n10038119 a nurse who cares for but does not suckle an infant +n10038409 the wife of a duke or a woman holding ducal title in her own right +n10038620 a British peer of the highest rank +n10039271 an incompetent or clumsy person +n10039946 a basketball player who is able to make dunk shots +n10040240 a counselor who admonishes frankly and sternly +n10040698 a person suffering from indigestion +n10040945 an alert and energetic person +n10041373 a British peer ranking below a marquess and above a viscount +n10041887 someone who earn wages in return for their labor +n10042690 a secret listener to private conversations +n10042845 a person with an unusual or odd personality +n10043024 someone who selects according to the eclectic method +n10043491 an economist who uses statistical and mathematical methods +n10043643 an expert in the science of economics +n10044682 a person with a thin body +n10044879 a person responsible for the editorial aspects of publication; the person who determines the final content of a text (especially of a newspaper or magazine) +n10047199 a self-centered person with little regard for others +n10047459 a conceited and self-centered person +n10048117 a man who ejaculates semen +n10048367 any of various church officers +n10048612 any influential person whose advice is highly respected +n10048836 official who won the office in a free election +n10049363 a person who installs or repairs electrical or telephone lines +n10050043 the author of a mournful poem lamenting the dead +n10050880 a public speaker trained in voice production and gesture and delivery +n10051026 someone who frees others from bondage +n10051761 a physician who specializes in embryology +n10051861 a professor or minister who is retired from assigned duties +n10051975 someone who leaves one country to settle in another +n10052694 someone sent on a mission to represent the interests of someone else +n10053439 a woman emperor or the wife of an emperor +n10053808 a worker who is hired to perform a job +n10054657 a person or firm that employs workers +n10055297 a female sorcerer or magician +n10055410 a woman who is considered to be dangerously seductive +n10055566 a person who compiles information for encyclopedias +n10055730 a heavy person with a soft and rounded body +n10055847 an armed adversary (especially a member of an opposing military force) +n10056103 someone who imparts energy and vitality and spirit to other people +n10056611 a man at one end of a row of people +n10056719 a man at one end of line of performers in a minstrel show; carries on humorous dialogue with the interlocutor +n10057271 a person who transfers his ownership interest in something by signing a check or negotiable security +n10058411 a person who delights in having or using or experiencing something +n10058962 a female enlisted person in the armed forces +n10059067 someone who appreciates wine +n10060075 one who enters a competition +n10060175 someone who enters +n10060352 someone who organizes a business venture and assumes the risk for it +n10061043 a diplomat having less authority than an ambassador +n10061195 a person who is trained in or engaged in enzymology +n10061431 a bishop or metropolitan in charge of an eparchy in the Eastern Church +n10061882 a medical scientist who studies the transmission and control of epidemic diseases +n10062042 an inferior imitator of some distinguished writer or artist of musician +n10062176 a person who has epilepsy +n10062275 a member of the Episcopal church +n10062492 a personal attendant of the British royal family +n10062594 an official charged with the care of the horses of princes or nobles +n10062716 an erotic person +n10062905 someone who escapes +n10062996 a person who escapes into a world of fantasy +n10063635 a member of a people inhabiting the Arctic (northern Canada or Greenland or Alaska or eastern Siberia); the Algonquians called them Eskimo (`eaters of raw flesh') but they call themselves the Inuit (`the people') +n10063919 someone employed to spy on another country or business competitor +n10064831 a worker skilled in giving beauty treatments (manicures and facials etc.) +n10064977 someone who etches +n10065758 an anthropologist who studies ethnology +n10066206 a student enrolled in (or graduated from) Eton College +n10066314 a lexicographer who specializes in etymology +n10067011 a preacher of the Christian gospel +n10067305 (when capitalized) any of the spiritual leaders who are assumed to be authors of the Gospels in the New Testament: Matthew, Mark, Luke, and John +n10067600 someone who plans social events as a profession (usually for government or corporate officials) +n10067968 an investigator who observes carefully +n10068234 someone who administers a test to determine your qualifications +n10068425 a viceroy who governed a large province in the Roman Empire +n10069296 a performer (usually of musical works) +n10069981 a secretary having administrative duties and responsibilities +n10070108 a vice president holding executive power +n10070377 a woman executor +n10070449 a person skilled in exegesis (especially of religious texts) +n10070563 someone who organizes an exhibit for others to see +n10070711 someone who deliberately behaves in such a way as to attract attention +n10071332 a person who is voluntarily absent from home or country +n10071557 a philosopher who emphasizes freedom of choice and personal responsibility but who regards human existence in a hostile universe as unexplainable +n10072054 someone who practices exorcism +n10074249 a person who was formerly a spouse +n10074578 a nonresident doctor or medical student; connected with a hospital but not living there +n10074735 a person who holds extreme views +n10074841 (psychology) a person concerned more with practical realities than with inner thoughts and feelings +n10075299 a spectator who can describe what happened +n10075693 someone who makes progress easier +n10076224 a generous benefactor +n10076483 a Spanish member of General Franco's political party +n10076604 a person who breeds and trains hawks and who follows the sport of falconry +n10076957 someone who falsifies +n10077106 a person attached to the household of a high official (as a pope or bishop) who renders service in return for support +n10077593 an ardent follower and admirer +n10077879 a person motivated by irrational enthusiasm (as for a cause) +n10078131 a person having a strong liking for something +n10078719 a boy who has grown up on a farm +n10078806 a person who operates a farm +n10079399 a hired hand on a farm +n10079893 an adherent of fascism or other right-wing authoritarian views +n10080117 an Italian fascist under Mussolini +n10080508 anyone who submits to the belief that they are powerless to change their destiny +n10080869 a male parent (also used as a term of address to your father) +n10081204 `Father' is a term of address for priests in some churches (especially the Roman Catholic Church or the Orthodox Catholic Church); `Padre' is frequently used in the military +n10081842 a man (often a powerful or influential man) who arouses emotions usually felt for your real father and with whom you identify psychologically +n10082043 the father of your spouse +n10082299 an excessively polite and well-dressed boy +n10082423 a member of a group of French painters who followed fauvism +n10082562 a United States politician favored mainly in his or her home state +n10082687 a professional boxer who weighs between 123 and 126 pounds +n10082997 an advocate of federalism +n10083677 a communist sympathizer (but not a member of the Communist Party) +n10083823 a woman who is an aristocrat +n10084043 a child who is female +n10084295 a youthful female person +n10085101 a dealer in stolen property +n10085869 a man who is engaged to be married +n10086383 a member of the cricket team that is fielding rather than batting +n10086744 a football official +n10087434 a military or naval pilot of fighter planes +n10087736 a party who files a notice with a law court +n10088200 the person who directs the making of a film +n10090745 someone who comes upon something after searching +n10091349 the head of a fire department +n10091450 a performer who pretends to swallow fire +n10091564 a belligerent grouch +n10091651 a member of a fire department who tries to extinguish fires +n10091861 an official who is responsible for the prevention and investigation of fires +n10091997 someone who walks barefoot on burning coals +n10092488 (baseball) the person who plays first base +n10092643 the offspring who came first in the order of birth +n10092794 the wife of a chief executive +n10092978 a commissioned officer in the Army or Air Force or Marines ranking above a 2nd lieutenant and below a captain +n10093167 someone convicted for the first time +n10093475 a sergeant in the Army above the rank of staff sergeant and below master sergeant +n10093818 someone who sells fish +n10094320 a person who whips himself as a religious penance +n10094584 a senior naval officer above the rank of captain +n10094782 a slick spokesperson who can turn any criticism to the advantage of their employer +n10095265 a back stationed wide of the scrimmage line; used as a pass receiver +n10095420 a young woman in the 1920s who flaunted her unconventional conduct and dress +n10095769 an associate who shares an apartment with you +n10095869 a person who uses flattery +n10096126 a female fool +n10096508 a medical officer specializing in aviation medicine +n10097262 an employee of a retail store who supervises sales personnel and helps with customer problems +n10097477 someone who is unsuccessful +n10097590 a native or resident of Florence, Italy +n10097842 a young girl who carries flowers in a (wedding) procession +n10097995 a woman who sells flowers in the street +n10098245 someone who plays the flute +n10098388 a debtor who flees to avoid paying +n10098517 an amateur boxer who weighs no more than 112 pounds +n10098624 weighs no more than 115 pounds +n10098710 a personal enemy +n10098862 someone who does folk dances +n10099002 a folk writer who composes in verse +n10099375 a person who accepts the leadership of another +n10101308 a football player who has achieved a reputation for success +n10101634 an athlete who plays American football +n10101981 a man employed as a servant in a large establishment (as a palace) to run errands and do chores +n10102800 the founder of a family +n10103155 a woman ancestor +n10103228 a spy for a foreign country +n10103921 someone who is excluded from or is not a member of a group +n10104064 a person who exercises control and makes decisions +n10104487 a man who is foreperson of a jury +n10104756 someone trained in forestry +n10104888 a woman in charge of a group of workers +n10105085 someone who makes copies illegally +n10105733 the person who plays the position of forward in certain games, such as basketball, soccer, or hockey +n10105906 your foster brother is a male who is not a son of your parents but who is raised by your parents +n10106387 a man who is a foster parent +n10106509 a woman who is a foster parent and raises another's child +n10106995 your foster sister is a female who is not a daughter of your parents but who is raised by your parents +n10107173 someone who is raised as a son although not related by birth +n10107303 a person who founds or establishes some institution +n10108018 a woman founder +n10108089 someone who has run the mile in less that 4 minutes +n10108464 someone who writes a new law or plan +n10108832 a person who hates France and everything French +n10109443 a person or animal that is markedly unusual or deformed +n10109662 someone acting freely or even irresponsibly +n10109826 (sports) a professional athlete who is free to sign a contract to play for any team +n10110093 one of an interracial group of civil rights activists who rode buses through parts of the South in order to protest racial segregation +n10110731 someone who gratifies physical appetites (especially for food and drink) with more than the usual freedom +n10110893 someone who takes advantage of the generosity of others +n10111358 an advocate of unrestricted international trade +n10111779 a person who follows the basic theories or practices of Sigmund Freud +n10111903 a male member of a religious order that originally relied solely on alms +n10112129 a male religious living in a cloister and devoting himself to contemplation and prayer and work +n10113249 a woman who lives on the frontier +n10113583 a person used as a cover for some questionable activity +n10113869 someone who masturbates by rubbing against another person (as in a crowd) +n10114476 a stupid despised man +n10114550 someone who engages in sexual intercourse +n10114662 a conservative who is old-fashioned or dull in attitude or appearance +n10115430 (football) the running back who plays the fullback position on the offensive team +n10115946 an acrobat who performs on a tightrope or slack rope +n10116370 a supporter of fundamentalism +n10116478 someone who solicits financial contributions +n10116702 a theologian who believes that the Scripture prophecies of the Apocalypse (the Book of Revelation) will be fulfilled in the future +n10117017 a person who delights in designing or building or using gadgets +n10117267 someone who writes comic material for public performers +n10117415 a comedian who uses gags +n10117739 a person who gains weight +n10117851 alliterative term for girl (or woman) +n10118301 a disreputable or clumsy man +n10118743 a musician who performs upon the viola da gamba +n10118844 a person who wagers money on the outcome of games or sporting events +n10119609 a girl of impish appeal +n10120330 someone employed to collect and dispose of refuse +n10120671 someone employed to work in a garden +n10121026 someone who cuts cloth etc. to measure in making garments +n10121246 someone who kills by strangling +n10121714 someone employed by a gas company +n10121800 a physician who specializes in diseases of the gastrointestinal tract +n10122300 a person who gathers +n10122531 a spectator who stares stupidly without intelligent awareness +n10123122 a French policeman +n10123844 a general officer of the highest rank +n10126177 someone who originates or causes or initiates something +n10126424 a biologist who specializes in genetics +n10126708 a natural father or mother +n10127186 informal abbreviation of `gentleman' +n10127689 a specialist in geology +n10128519 a geologist who uses physical principles to study the properties of the earth +n10128748 a writer who gives the credit of authorship to someone else +n10129338 the idealized American girl of the 1890s as pictured by C. D. Gibson +n10129825 a young woman +n10130686 a girl or young woman with whom a man is romantically involved +n10130877 any female friend +n10131151 an extremely talented young female person +n10131268 a member of the moderate republican party that was in power during the French Revolution; the Girondists were overthrown by their more radical rivals the Jacobins +n10131590 a Spanish male Gypsy +n10131815 (ancient Rome) a professional combatant or a captive who entertained the public by engaging in mortal combat +n10132035 someone skilled in blowing bottles from molten glass +n10132502 someone who gathers something in small pieces (e.g. information) slowly and carefully +n10134178 a person who tends a flock of goats +n10134396 an infant who is sponsored by an adult (the godparent) at baptism +n10134760 any man who serves as a sponsor for a child at baptism +n10134982 a person who sponsors someone (the godchild) at baptism +n10135129 a male godchild +n10135197 an employee whose duties include running errands +n10135297 a zealously energetic person (especially a salesman) +n10136615 an artisan who makes jewelry and other objects out of gold +n10136959 someone who plays the game of golf +n10137825 a (Venetian) boatman who propels a gondola +n10138369 any person who is on your side +n10138472 a white male Southerner with an unpretentious convivial manner and conservative or intolerant attitudes and a strong sense of fellowship with and loyalty to other members of his peer group +n10139077 a person who voluntarily offers help or sympathy in times of trouble +n10139651 a journalist who writes a column of gossip about celebrities +n10140051 an attacker who gouges out the antagonist's eye +n10140597 a governor of high rank +n10140683 an unpleasant person who grabs inconsiderately +n10140783 a judge who assigns grades to something +n10140929 someone who has completed the course of study (including hospital practice) at a nurses training school +n10141364 a linguist who specializes in the study of grammar and syntax +n10141732 a female grandchild +n10142166 a middle-aged or elderly woman who is stylish and highly respected +n10142391 the father of your father or mother +n10142537 director of the court of Inquisition (especially in Spain and Portugal) +n10142747 the mother of your father or mother +n10142946 a player of exceptional or world class skill in chess or bridge +n10143172 a parent of your father or mother +n10143595 a recipient of a grant +n10143725 a person who grants or gives something +n10144338 a man who is divorced from (or separated from) his wife +n10145239 an aunt of your father or mother +n10145340 a child of your grandson or granddaughter +n10145480 a daughter of your grandson or granddaughter +n10145590 a mother of your grandparent +n10145774 a parent of your grandparent +n10145902 a son of your grandson or granddaughter +n10146002 a son of your niece or nephew +n10146104 a daughter of your niece or nephew +n10146416 a soldier who is a member of the United States Army Special Forces +n10146816 an infantryman equipped with grenades +n10146927 a person who greets +n10147121 a Latin American (disparaging) term for foreigners (especially Americans and Englishmen) +n10147262 a person who grins +n10147710 a retail merchant who sells foodstuffs (and some household supplies) +n10147935 a man who has recently been married +n10148035 a man participant in his own marriage ceremony +n10148305 a bad-tempered person +n10148825 a commissioned officer (especially one in the Royal Air Force) equivalent in rank to a colonel in the army +n10149436 a person who grunts +n10149867 someone who guards prisoners +n10150071 a person who keeps watch over something or someone +n10150794 a person who guesses +n10150940 a visitor to whom hospitality is extended +n10151133 a customer of a hotel or restaurant etc. +n10151261 the person in whose honor a gathering is held +n10151367 a person with temporary permission to work in another country +n10151570 someone who shows the way by leading or advising +n10151760 a musician who plays the guitar +n10152306 a noncommissioned officer ranking above a staff sergeant in the marines +n10152616 a Hindu or Buddhist religious leader and spiritual teacher +n10152763 a recognized leader in some field or of some movement +n10153155 (British slang) boss +n10153414 an informal term for a youth or man +n10153594 an athlete who is skilled in gymnastics +n10153865 someone who spends all leisure time playing sports or working out in a gymnasium or health spa +n10154013 a specialist in gynecology +n10154186 a member of a people with dark skin and hair who speak Romany and who traditionally live by seasonal work and fortunetelling; they are believed to have originated in northern India but now are living on all continents (but mostly in Europe, North Africa, and North America) +n10154601 one who works hard at boring tasks +n10155222 a programmer who breaks into computer systems in order to steal or change or destroy information as a form of cyber-terrorism +n10155600 an intense bargainer +n10155849 someone who cuts or beautifies hair +n10156629 a Muslim physician +n10156831 a member of a people of southeastern China (especially Hong Kong, Canton, and Taiwan) who migrated from the north in the 12th century +n10157016 a guard who carries a halberd (as a symbol of his duty) +n10157128 (football) the running back who plays the offensive halfback position +n10157271 one of siblings who have only one parent in common +n10158506 a member of the crew of a ship +n10159045 one who trains or exhibits animals +n10159289 a man skilled in various odd jobs and other small tasks +n10159533 a rider of a hang glider +n10160188 a conservative who is uncompromising +n10160280 a clown or buffoon (after the Harlequin character in the commedia dell'arte) +n10160412 a mediator who brings one thing into harmonious agreement with another +n10161622 a user of hashish +n10162016 a professional killer +n10162194 a person who hates +n10162354 someone who makes and sells hats +n10164025 the head of a tribe or clan +n10164233 presiding officer of a school +n10164492 the person in charge of nursing in a medical institution +n10165448 someone who listens attentively +n10166189 a charming person who is irresponsible in emotional relationships +n10166394 a person who does not acknowledge your god +n10167152 a wrestler who weighs more than 214 pounds +n10167361 an actor who plays villainous roles +n10167565 someone who tries to embarrass you with gibes and questions and objections +n10167838 someone who counterbalances one transaction (as a bet) against another in order to protect against loss +n10168012 a respondent who avoids giving a clear direct answer +n10168183 someone motivated by desires for sensual pleasures +n10168584 a person who is entitled by law or by the terms of a will to inherit the estate of another +n10168837 an heir whose right to an inheritance cannot be defeated if that person outlives the ancestor +n10169147 a female heir +n10169241 a person who expects to inherit but whose right can be defeated by the birth of a nearer relative +n10169419 a rowdy or mischievous person (usually a young man) +n10169796 the person who steers a ship +n10170060 a newly hired employee +n10170681 a doctor who specializes in diseases of the blood and blood-forming organs +n10170866 a person who has hemiplegia (is paralyzed on one side of the body) +n10171219 (formal) a person who announces important news +n10171456 a therapist who heals by the use of herbs +n10171567 someone who drives a herd +n10172080 one having both male and female sexual characteristics and organs; at birth an unambiguous assignment of male or female cannot be made +n10173410 a woman possessing heroic qualities or a woman who has performed heroic deeds +n10173579 someone addicted to heroin +n10173665 someone who worships heroes +n10173771 a German man; used before the name as a title equivalent to Mr in English +n10174253 a corrupt politician +n10174330 a person of intellectual or erudite tastes +n10174445 a senior diplomat from one country to another who is assigned ambassadorial rank +n10174589 a person of great ability and ambition +n10174695 a native of the Highlands of Scotland +n10174971 an arrogant or conceited person of importance +n10175248 a preeminent authority or major proponent of a movement or doctrine +n10175725 someone who uses force to take over a vehicle (especially an airplane) in order to reach an alternative destination +n10176913 a person who works only for money +n10177150 a person who is an authority on history and who studies it and writes about it +n10178077 a person who travels by getting free rides from passing vehicles +n10178216 someone who hits +n10179069 a person who pursues an activity in their spare time for pleasure +n10180580 a negotiator who hopes to gain concessions by refusing to come to terms +n10180791 an official who remains in office after his term +n10180923 an armed thief +n10181445 a male friend from your neighborhood or hometown +n10181547 a fellow male member of a youth gang +n10181799 someone buying a house +n10181878 a fellow female member of a youth gang +n10182190 someone unfortunate without housing +n10182402 a practitioner of homeopathy +n10183347 a wife who has married a man with whom she has been living for some time (especially if she is pregnant at the time) +n10183931 an escort for a distinguished guest or for the casket at a military funeral +n10184505 (rugby) the player in the middle of the front row of the scrum who tries to capture the ball with the foot +n10185148 a person who hopes +n10185483 a musician who plays a horn (especially a French horn) +n10185793 a man skilled in equitation +n10186068 a hard bargainer +n10186143 a woman horseman +n10186216 a cowboy who takes care of the saddle horses +n10186350 an expert in the science of cultivating plants (fruit or flowers or vegetables or ornamental plants) +n10186686 a chaplain in a hospital +n10186774 the owner or manager of an inn +n10187130 a person who invites guests to a social event (such as a party in his or her own home) and who is responsible for them while they are there +n10187491 a woman host +n10187990 an owner or manager of hotels +n10188715 a servant who is employed to perform domestic task in a household +n10188856 teacher in charge of a school boardinghouse +n10188957 someone who resides in the same house with you +n10189278 a physician (especially an intern) who lives in a hospital and cares for hospitalized patients under the supervision of the medical staff of the hospital +n10189597 a custodian who lives in and cares for a house while the regular occupant is away (usually without an exchange of money) +n10190122 a commissioner in charge of public housing +n10190516 a seller of shoddy goods +n10191001 a person who hugs +n10191388 an advocate of the principles of humanism; someone concerned with the interests and welfare of humans +n10191613 someone devoted to the promotion of human welfare and to social reforms +n10192839 a well-built sexually attractive man +n10193650 a woman hunter +n10194231 a man who was formerly a certain woman's husband +n10194775 a geologist skilled in hydrology +n10195056 a person with hyperopia; a farsighted person +n10195155 a person who has abnormally high blood pressure +n10195261 a person who induces hypnosis +n10195593 a person who professes beliefs and opinions that he or she does not hold in order to conceal his or her real feelings or motives +n10196404 someone who cuts and delivers ice +n10196725 someone who attacks cherished ideas or traditional institutions +n10197392 an advocate of some ideology +n10198437 someone who is adored blindly and excessively +n10198832 a lover blind with admiration and devotion +n10199251 (Islam) the man who leads prayers in a mosque; for Shiites an imam is a recognized authority on Islamic theology and law and a spiritual guide +n10200246 a believer in imperialism +n10200781 a person whose actions and opinions strongly influence the course of events +n10202225 a man with whom you are in love or have an intimate relationship +n10202624 the official who holds an office +n10202763 a person whose disease is incurable +n10203949 a person inducted into an organization or social group +n10204177 someone who manages or has significant financial interest in an industrial enterprise +n10204833 a person who murders an infant +n10205231 one of lesser rank or station or quality +n10205344 an inhabitant of Hell +n10205457 (baseball) a person who plays a position in the infield +n10205714 an intruder (as troops) with hostile intent +n10206173 one who reveals confidential information in return for money +n10206506 an artless innocent young girl (especially as portrayed on the stage) +n10206629 an actress who specializes in playing the role of an artless innocent young girl +n10207077 a person of great and varied learning +n10207169 a relative by marriage +n10208189 a private detective +n10208847 a high ranking police officer +n10208950 a military officer responsible for investigations +n10209082 a person who initiates a course of action +n10209731 an agent who sells insurance +n10210137 a person who takes part in an armed rebellion against the constituted authority (especially in the hope of improving conditions) +n10210512 a government analyst of information about an enemy or potential enemy +n10210648 a person who specializes in designing architectural interiors and their furnishings +n10210911 a person who takes part in a conversation +n10211036 the performer in the middle of a minstrel line who engages the others in talk +n10211666 a chess player who has been awarded the highest title by an international chess organization +n10211830 a member of a socialist or communist international +n10212231 a specialist in internal medicine +n10212501 someone who mediates between speakers of different languages +n10212780 someone who uses art to represent something +n10213034 (law) a party who interposes in a pending proceeding +n10213429 (psychology) a person who tends to shrink from social contacts and to become preoccupied with their own thoughts +n10214062 someone who enters by force in order to conquer +n10214390 an official who can invalidate or nullify +n10215623 someone who investigates +n10216106 someone who commits capital in order to gain financial returns +n10216403 someone who watches examination candidates to prevent cheating +n10217208 someone who is indifferent or hostile to religion +n10218043 a student or graduate at an Ivy League school +n10218164 a person able to do a variety of different jobs acceptably well +n10218292 a follower of Andrew Jackson or his ideas +n10219240 an unknown or fictitious woman who is a party to legal proceedings +n10219453 a loyal supporter +n10219879 a member of an Indo-European people widely scattered throughout the northwest of the Indian subcontinent and consisting of Muslims and Hindus and Sikhs +n10220080 a native or inhabitant of Java +n10220924 someone with two personalities - one good and one evil +n10221312 a professional clown employed to entertain a king or nobleman in the Middle Ages +n10221520 a member of the Jesuit order +n10222170 a shameless impudent scheming woman +n10222259 a woman who jilts a lover +n10222497 someone who buys large quantities of goods and resells to merchants rather than to the ultimate customers +n10222716 an applicant who is being considered for a job +n10223069 someone whose comfort is actually discouraging +n10223177 someone employed to ride horses in horse races +n10223606 an unknown or fictitious man who is a party to legal proceedings +n10224578 a writer for newspapers and magazines +n10225219 a public official authorized to decide questions brought before a court of justice +n10225931 an officer assigned to the judge advocate general +n10226413 a performer who juggles objects and performs tricks of manual dexterity +n10227166 a follower or advocate of Carl Jung's theories +n10227266 the younger of two persons +n10227393 a third-year undergraduate +n10227490 a son who has the same first name as his father +n10227698 weighs no more than 130 pounds +n10227793 weighs no more than 154 pounds +n10227985 a legal scholar versed in civil law or the law of nations +n10228278 someone who serves (or waits to be called to serve) on a jury +n10228468 a local magistrate with limited powers +n10228592 formerly a high judicial officer +n10228712 a masked dancer during a Pueblo religious ceremony who is thought to embody some particular spirit +n10229883 a musician who plays a keyboard instrument +n10230216 one of the Turkish viceroys who ruled Egypt between 1867 and 1914 +n10233248 an important person who can bring leaders to power through the exercise of political influence +n10235024 a competitor who holds a preeminent position +n10235269 Counsel to the Crown when the British monarch is a king +n10235385 a barrister selected to serve as counsel to the British ruler +n10236304 a person having kinship with another or others +n10236521 one related on the mother's side +n10236842 a person with unusual sexual tastes +n10237069 a female relative +n10237196 someone who kisses +n10237464 help hired to work in the kitchen +n10237556 an enlisted person who is assigned to assist the cooks +n10237676 a member of the Ku Klux Klan +n10237799 someone with an irrational urge to steal in the absence of an economic motive +n10238272 a person in a kneeling position +n10238375 originally a person of noble birth trained to arms and chivalry; today in Great Britain a person honored by the sovereign for personal merit +n10239928 (Yiddish) a big shot who knows it and acts that way; a boastful immoderate person +n10240082 a person who knows or apprehends +n10240235 someone who thinks he knows everything and refuses to accept advice or information from others +n10240417 a member of a kolkhoz +n10240821 a member of the royal or warrior Hindu caste +n10241024 an assistant (often the father of the soon-to-be-born child) who provides support for a woman in labor by encouraging her to use techniques learned in childbirth-preparation classes +n10241300 someone who works with their hands; someone engaged in manual labor +n10242328 a member of the British Labour Party +n10243137 a polite name for any woman +n10243273 a lady appointed to attend to a queen or princess +n10243483 a maid who is a lady's personal attendant +n10243664 a Tibetan or Mongolian priest of Lamaism +n10243872 a sweet innocent mild-mannered person (especially a child) +n10244108 an elected official still in office but not slated to continue +n10244359 (when gas was used for streetlights) a person who lights and extinguishes streetlights +n10244913 a person who administers a landed estate +n10245029 a count who had jurisdiction over a large territory in medieval Germany +n10245341 an inexperienced sailor; a sailor on the first voyage +n10245507 a person who lives and works on land +n10245639 a holder or proprietor of land +n10245863 someone who arranges features of the landscape or garden attractively +n10246317 a cross-country skier +n10246395 a person who languishes +n10246703 an expert on precious stones and the art of cutting and engraving them +n10247358 a girl or young woman who is unmarried +n10247880 a person who is a member of those peoples whose languages derived from Latin +n10248008 an inhabitant of ancient Latium +n10248198 a person who is broad-minded and tolerant (especially in standards of religious belief and conduct) +n10248377 believer in imminent approach of the millennium; practitioner of active evangelism +n10249191 a solicitor in Scotland +n10249270 a maker of laws; someone who gives a code of laws +n10249459 an officer of the law +n10249869 a student in law school +n10249950 a professional person authorized to practice law; conducts lawsuits or gives legal advice +n10250712 a layman who is authorized by the bishop to read parts of the service in an Anglican or Episcopal church +n10251329 a lazy person +n10251612 a surreptitious informant +n10252075 a tenant who holds a lease +n10252222 a public lecturer at certain universities +n10252354 someone who reads the lessons in a church service; someone ordained in a minor order of the Roman Catholic Church +n10252547 someone who lectures professionally +n10253122 a person who uses the left hand with greater skill than the right +n10253296 a personal representative with legal standing (as by power of attorney or the executor of a will) +n10253479 a member of a legation +n10253611 someone to whom a legacy is bequeathed +n10253703 a soldier who is a member of a legion (especially the French Foreign Legion) +n10255459 an athlete who has earned a letter in a school sport +n10257221 someone who releases people from captivity or bondage +n10258602 an official who can issue a license or give authoritative permission (especially one who licenses publications) +n10258786 holds a license (degree) from a (European) university +n10259348 a commissioned military officer +n10259780 a commissioned officer in the United States Army or Air Force or Marines holding a rank above major and below colonel +n10259997 a commissioned officer in the Navy ranking above a lieutenant and below a commander +n10260473 an officer holding a commissioned rank in the United States Navy or United States Coast Guard; below lieutenant and above ensign +n10260706 a living person +n10260800 an attendant employed at a beach or pool to protect swimmers from accidents +n10261211 a tenant whose legal right to retain possession of buildings or lands lasts as long as they (or some other person) live +n10261511 an amateur boxer who weighs no more than 106 pounds +n10261624 a professional boxer who weighs between 169 and 175 pounds +n10261862 an amateur boxer who weighs no more than 179 pounds +n10262343 a woman inconstant in love +n10262445 a professional boxer who weighs between 131 and 135 pounds +n10262561 a wrestler who weighs 139-154 pounds +n10262655 an amateur boxer who weighs no more than 132 pounds +n10262880 a very small person (resembling a Lilliputian) +n10263146 a specialist in the study of freshwater ponds and lakes +n10263411 one of the players on the line of scrimmage +n10263790 a commissioned officer with combat units (not a staff officer or a supply officer) +n10265281 someone who tries to attract social lions as guests +n10265801 a speaker who lisps +n10265891 assessor who makes out the tax lists +n10266016 a critic of literature +n10266328 a person who can read and write +n10266848 (law) a party to a lawsuit; someone involved in litigation +n10267166 a person who litters public places with refuse +n10267311 a younger brother +n10267865 a younger sister +n10268629 someone who is employed to persuade legislators to vote for legislation that favors the lobbyist's employer +n10269199 someone who makes or repairs locks +n10269289 someone (physician or clergyman) who substitutes temporarily for another member of the same profession +n10271677 a titled peer of the realm +n10272782 a gambler who loses a bet +n10272913 a contestant who loses the contest +n10273064 a person with a record of failing; someone who loses consistently +n10274173 a successful womanizer; a man who behaves selfishly in his sexual relationships with women +n10274318 a person who causes trouble by speaking indiscreetly +n10274815 an undergraduate who is not yet a senior +n10275249 a native of the Lowlands of Scotland +n10275395 a person who is loyal to their allegiance (especially in times of revolt) +n10275848 any opponent of technological progress +n10276045 a person who fells trees +n10276477 a taxonomist who classifies organisms into large groups on the basis of major characteristics +n10276942 an archaic term for a lunatic +n10277027 a person with a mania for setting things on fire +n10277638 a musician who plays the lute +n10277815 follower of Lutheranism +n10277912 a person who writes the words for songs +n10278456 an official who carries a mace of office +n10279018 a craftsman skilled in operating machine tools +n10279778 title used for a married Frenchwoman +n10280034 an unnaturally frenzied or distraught woman +n10280130 an artist of consummate skill +n10280598 a reformed prostitute +n10280674 someone who performs magic tricks to amuse an audience +n10281546 a magician or sorcerer of ancient times +n10281770 a great rani; a princess in India or the wife of a maharaja +n10281896 (Hinduism) term of respect for a brahmin sage +n10282482 an unmarried girl (especially a virgin) +n10282672 a female domestic +n10283170 a commissioned military officer in the United States Army or Air Force or Marines; below lieutenant colonel and above captain +n10283366 a university student who is studying a particular field as the principal subject +n10283546 the chief steward or butler of a great household +n10284064 a person who makes things +n10284871 a newcomer to Hawaii +n10284965 a person who is discontented or disgusted +n10286282 the leader of a town or community in some parts of Asia Minor and the Indian subcontinent +n10286539 someone shirking their duty by feigning illness or incapacity +n10286749 a believer in Malthusian theory +n10288964 any handsome young man +n10289039 the generic use of the word to refer to any human being +n10289176 a male subordinate +n10289462 a woman manager +n10289766 any high government official or bureaucrat +n10290422 a person skilled in maneuvering +n10290541 a person who has an obsession with or excessive enthusiasm for something +n10290813 an adherent of Manichaeism +n10290919 a beautician who cleans and trims and polishes the fingernails +n10291110 a person who handles things manually +n10291469 a heavily armed and mounted soldier in medieval times +n10291822 someone inclined to act first and think later +n10291942 a man devoted to literary or scholarly activities +n10292316 someone who manufactures something +n10293332 walks with regular or stately step +n10293590 a noblewoman ranking below a duchess and above a countess +n10293861 a German nobleman ranking above a count (corresponding in rank to a British marquess) +n10294020 the military governor of a frontier province in medieval Germany +n10294139 a member of the United States Marine Corps +n10295371 a British peer ranking below a duke and above an earl +n10295479 nobleman (in various countries) ranking above a count +n10296176 (in some countries) a military officer of highest rank +n10296444 someone who demands exact conformity to rules and forms +n10297234 a person or animal that is adopted by a team or other group as a symbolic figure +n10297367 someone who obtains pleasure from receiving punishment +n10297531 a craftsman who works with stone or brick +n10297841 a participant in a masquerade +n10298202 a male massager +n10298271 a female massager +n10298647 directs the work of others +n10298912 an officer who is licensed to command a merchant ship +n10299125 the senior petty officer; responsible for discipline aboard ship +n10299250 a person who acts as host at formal occasions (makes an introductory speech and introduces other speakers) +n10299700 a person who practices masturbation +n10299875 someone who arranges (or tries to arrange) marriages for others +n10300041 the officer below the master on a commercial ship +n10300154 informal term for a friend of the same sex +n10300303 the partner of an animal (especially a sexual partner) +n10300500 an informal use of the Latin word for mother; sometimes used by British schoolboys or used facetiously +n10300654 a person judged suitable for admission or employment +n10300829 someone who thinks that nothing exists but physical matter +n10302576 a female head of a family or tribe +n10302700 a feisty older woman with a big bosom (as drawn in cartoons) +n10302905 someone who has been admitted to a college or university +n10303037 a married woman (usually middle-aged with children) who is staid and dignified +n10303814 the head of a city government +n10304086 the wife of a mayor +n10304650 a person trained to design and construct machines +n10304914 (golf) the winner at medal play of a tournament +n10305635 a medical practitioner in the armed forces +n10305802 someone who practices medicine +n10306004 a scientist who studies disease processes +n10306279 someone who serves as an intermediary between the living and the dead +n10306496 a pathological egotist +n10306595 someone subject to melancholia +n10306890 an eastern Christian in Egypt or Syria who adheres to the Orthodox faith as defined by the council of Chalcedon in 451 and as accepted by the Byzantine emperor +n10307114 a worker who melts substances (metal or wax etc.) +n10308066 a person who is not a member +n10308168 a member of a governing board +n10308275 a member of a clan +n10308504 a person who learns by rote +n10308653 a follower of Mendelism +n10308732 a skilled worker who mends or repairs things +n10310783 a member of one of the various peoples inhabiting Mesoamerica +n10311506 (nautical) an associate with whom you share meals in the same mess (as on a ship) +n10311661 a woman of mixed racial ancestry (especially mixed European and Native American ancestry) +n10312287 a specialist who studies processes in the earth's atmosphere that cause weather conditions +n10312491 policewoman who is assigned to write parking tickets +n10312600 a follower of Wesleyanism as practiced by the Methodist Church +n10313000 a person in western Canada who is of Caucasian and American Indian ancestry +n10313239 in the Eastern Orthodox Church this title is given to a position between bishop and patriarch; equivalent to archbishop in western Christianity +n10313441 a soprano with a voice between soprano and contralto +n10313724 an economist who specializes in microeconomics +n10314054 a man who is roughly between 45 and 65 years old +n10314182 someone who is neither a highbrow nor a lowbrow +n10314517 an amateur boxer who weighs no more than 165 pounds +n10314836 a woman skilled in aiding the delivery of babies +n10315217 the emperor of Japan; when regarded as a religious leader the emperor is called tenno +n10315456 a native or inhabitant of Milan +n10315561 a runner in a one-mile race +n10315730 a braggart soldier (a stock figure in comedy) +n10316360 an attache who is a specialist in military matters +n10316527 a chaplain in one of the military services +n10316862 a leader of military forces +n10317007 any person in the armed services who holds a position of authority or command +n10317500 a member of the military police who polices soldiers and guards prisoners +n10317963 the responsible official at a mill that is under absentee ownership +n10318293 a workman in a mill or factory +n10318607 a woman millionaire +n10318686 a workman who designs or erects mills and milling machinery +n10319313 someone (usually in totalitarian countries) who is assigned to watch over foreign visitors +n10320484 an engineer concerned with the construction and operation of mines +n10320863 a person appointed to a high office in the government +n10321126 someone who serves as a minister +n10321340 a player on a minor-league baseball team +n10321632 an American militiaman prior to and during the American Revolution +n10321882 someone who dislikes people in general +n10322238 someone unable to adapt to their circumstances +n10323634 a woman master who directs the work of others +n10323752 an adulterous woman; a woman who has an ongoing extramarital sexual relationship with a man +n10323999 a person whose ancestors belonged to two or more races +n10324560 a person who poses for a photographer or painter or sculptor +n10325549 someone who shows impressive and stylish excellence +n10325774 a person who creates models +n10326776 a moderator who makes less extreme or uncompromising +n10327143 a biologist who studies the structure and activity of macromolecules essential to life +n10327987 a native or inhabitant of Monaco +n10328123 an advocate of the theory that economic fluctuations are caused by increases or decreases in the supply of money +n10328328 someone whose main interest in life is moneymaking +n10328437 someone who is successful in accumulating wealth +n10328696 a member of the Mongoloid race +n10328941 a person who knows only one language +n10329035 an entertainer who performs alone +n10330593 a person who holds a second job (usually after hours) +n10330931 a philosopher who specializes in morals and moral problems +n10331098 a learned fool +n10331167 someone who does a morris dance +n10331258 an enemy who wants to kill you +n10331347 the person who accepts a mortgage +n10331841 one whose business is the management of funerals +n10332110 a marauder and plunderer (originally operating in the bogs between England and Scotland) +n10332385 a woman who has given birth to a child (also used as a term of address to your mother) +n10332861 a term of address for a mother superior +n10332953 a term of address for an elderly woman +n10333044 a woman who evokes the feelings usually reserved for a mother +n10333165 a person who cares for the needs of others (especially in an overprotective or interfering way) +n10333317 the mother of your spouse +n10333439 a boy excessively attached to his mother; lacking normal masculine interests +n10333601 a daughter who is favored by and similar to her mother +n10333838 a policeman who rides a motorcycle (and who checks the speeds of motorists) +n10334009 a traveler who rides a motorcycle +n10334461 prehistoric Amerindians who built altar mounds +n10334782 a flamboyant deceiver; one who attracts customers with tricks or jokes +n10335246 a person who is feeling grief (as grieving over someone who has died) +n10335801 a spokesperson (as a lawyer) +n10335931 someone who moves +n10336411 someone who goes to see movies +n10336904 formerly an itinerant peddler of muffins +n10337488 a neutral or uncommitted person (especially in politics) +n10338231 a Muslim trained in the doctrine and law of Islam; the head of a mosque +n10338391 a chewer who makes a munching noise +n10339179 a woman murderer +n10339251 someone suspected of committing murder +n10339717 a traveler who drives (or travels with) a dog team +n10340312 someone who plays a musical instrument (as a profession) +n10341243 a student of musicology +n10341343 someone who teaches music +n10341446 a foot soldier armed with a musket +n10341573 a Muslim woman +n10341955 a person who mutilates or destroys or disfigures or cripples +n10342180 someone who is openly rebellious and refuses to obey authorities (especially seamen or soldiers) +n10342367 a deaf person who is unable to speak +n10342543 a person who speaks softly and indistinctly +n10342893 someone who muzzles animals +n10342992 a native or inhabitant of ancient Mycenae +n10343088 a botanist who specializes in the study of fungi +n10343355 a person with myopia; a nearsighted person +n10343449 a follower who carries out orders without question +n10343554 someone who believes in the existence of realities beyond human comprehension +n10343869 an expert on mythology +n10344121 a naive or inexperienced person +n10344203 a worker who attaches something by nailing it +n10344319 an insipid weakling who is foolishly sentimental +n10344656 someone who pretends that famous people are his/her friends +n10344774 a person who gives a name or names +n10345015 your grandmother +n10345100 a woman who is the custodian of children +n10345302 a lawman concerned with narcotics violations +n10345422 someone in love with themselves +n10345659 an informer or spy working for the police +n10346015 an advocate of national independence of or a strong national government +n10347204 a professional dancing girl in India +n10347446 naval officer in command of a fleet of warships +n10348526 a member of a Naval Special Warfare unit who is trained for unconventional warfare +n10349243 someone who systematically obstructs some action that others want to take +n10349750 an early name for any Christian +n10349836 a member of a group of Jews who (during the early history of the Christian Church) accepted Jesus as the Messiah; they accepted the Gospel According to Matthew but rejected the Epistles of St. Paul and continued to follow Jewish law and celebrate Jewish holidays; they were later declared heretic by the Church of Rome +n10350220 a German member of Adolf Hitler's political party +n10350774 (Yiddish) a timid unfortunate simpleton +n10351064 a lover who necks +n10353016 a baby from birth to four weeks +n10353355 a son of your brother or sister +n10353928 a specialist in neurobiology +n10354265 a medical specialist in the nervous system and the disorders affecting it +n10354754 someone who does surgery on the nervous system (especially the brain) +n10355142 one who does not side with any party in a war or dispute +n10355306 an advocate of neutrality in international affairs +n10355449 any new participant in some activity +n10355688 a recent arrival +n10355806 a supporter of the economic policies in the United States known as the New Deal +n10356450 the editor of a newspaper +n10356877 someone who reads out broadcast news bulletin +n10357012 a follower of Isaac Newton +n10357613 a daughter of your brother or sister +n10357737 a selfish person who is unwilling to give or spend +n10358032 a porter on duty during the night +n10358124 member of a secret mounted band in United States South after the American Civil War; committed acts of intimidation and revenge +n10358575 someone who objects to siting something in their own neighborhood but does not object to it being sited elsewhere; an acronym for not in my backyard +n10359117 an observant Muslim woman who covers her face and hands when in public or in the presence of any man outside her immediate family +n10359422 someone who makes small and unjustified criticisms +n10359546 winner of a Nobel prize +n10359659 an undercover agent who is given no official cover +n10360366 someone who has announced they are not a candidate; especially a politician who has announced that he or she is not a candidate for some political office +n10360747 a military officer appointed from enlisted personnel +n10361060 a person is not easily classified and not very interesting +n10361194 a person who is not a driver +n10361296 a person who does not participate +n10361525 a person regarded as nonexistent and having no rights; a person whose existence is systematically ignored (especially for ideological or political reasons) +n10362003 someone who does not live in a particular place +n10362319 a person who does not smoke tobacco +n10362557 a member of the American Baptist Convention +n10363445 someone who takes notice +n10363573 one who writes novels +n10364198 someone who has entered a religious order but has not taken final vows +n10364502 a chemist who specializes in nuclear chemistry +n10365514 someone who nudges; someone who gives a gentle push +n10366145 (obstetrics) a woman who has never give birth to a child +n10366276 a mathematician specializing in number theory +n10366966 one skilled in caring for young children or the sick (usually under the supervision of a physician) +n10368291 an infant considered in relation to its nurse +n10368528 a voluptuously beautiful young woman +n10368624 a sexually attractive young woman +n10368711 a person seized by nympholepsy +n10368798 a woman with abnormal sexual desires +n10369095 a woman oarsman +n10369317 a musician who plays the oboe +n10369417 a person who is deliberately vague +n10369528 an expert who observes and comments on something +n10369699 a physician specializing in obstetrics +n10369955 a member of a military force who is residing in a conquered foreign country +n10370381 a believer in occultism; someone versed in the occult arts +n10370955 a connoisseur of fine wines; a grape nut +n10371052 someone who presents something to another for acceptance or rejection +n10371221 the person who holds an office +n10371330 a young man who is employed to do odd jobs in a business office +n10371450 someone who is appointed or elected to an office and who holds a position of trust +n10373390 a clergyman who officiates at a religious ceremony or service +n10373525 any federal law-enforcement officer +n10374541 a worker who produces or sells petroleum +n10374849 a powerful person in the oil business +n10374943 an old person who receives an old-age pension +n10375052 a vivacious elderly man +n10375314 your own wife +n10375402 an informal term for your father +n10376523 an elderly person +n10376890 an elderly man +n10377021 a woman who is old +n10377185 one of the rulers in an oligarchy +n10377291 an athlete who participates in the Olympic games +n10377542 a person who eats all kinds of foods +n10377633 a specialist in oncology +n10378026 someone who looks on +n10378113 one who practices onomancy +n10378780 someone who owns or operates a business +n10379376 a person who places expediency above principle +n10380126 a person disposed to take a favorable view of things +n10380499 a member of a society founded in Ireland in 1795 to uphold Protestantism and the British sovereign +n10380672 a person who delivers a speech or oration +n10381804 a male hospital attendant who has general duties that do not involve the medical treatment of patients +n10381981 a soldier who serves as an attendant to a superior officer +n10382157 the first sergeant of a company; duties formerly included the conveyance of orders +n10382302 a person being ordained +n10382480 a clergyman appointed to prepare condemned prisoners for death +n10382710 a street musician who plays a hand organ or hurdy-gurdy +n10382825 a person who plays an organ +n10383094 an employee who sacrifices his own individuality for the good of an organization +n10383237 a person who brings order and organization to an enterprise +n10383505 someone who enlists workers to join a union +n10383816 someone who creates new things +n10384214 a zoologist who studies birds +n10384392 a child who has lost both parents +n10384496 someone or something who lacks support or care or supervision +n10385566 a therapist who manipulates the skeleton and muscles +n10386196 someone who is excellent at something +n10386754 a woman who spends time outdoors (e.g., hunting and fishing) +n10386874 a fielder in cricket who is stationed in the outfield +n10386984 (baseball) a person who plays in the outfield +n10387196 the person who plays right field +n10387324 (baseball) a pitcher who throws with the right hand +n10387836 a person who lives away from his place of work +n10389865 an occupant who owns the home that he/she lives in +n10389976 a Japanese supervisor +n10390600 a collector of miscellaneous useless objects +n10390698 an employer who exploits Italian immigrants in the U.S. +n10390807 an owner or proprietor of an inn in Italy +n10391416 a boy who is employed to run errands +n10393909 a worker who is employed to cover objects with paint +n10394434 a member of the Paleo-American peoples who were the earliest human inhabitants of North America and South America during the late Pleistocene epoch +n10394786 a specialist in paleontology +n10395073 one of the mourners carrying the coffin at a funeral +n10395209 fortuneteller who predicts your future by the lines on your palms +n10395390 someone who pampers or spoils by excessive indulgence +n10395828 the lama next in rank to the Dalai Lama +n10396106 a member of a panel +n10396337 a beggar who approaches strangers asking for money +n10396727 a freelance photographer who pursues celebrities trying to take candid photographs of them to sell to newspapers or magazines +n10396908 a boy who sells or delivers newspapers +n10397001 one whose occupation is decorating walls with wallpaper +n10397142 someone who passes bad checks or counterfeit paper money +n10397392 an American Indian infant +n10399130 a medieval cleric who raised money for the church by selling papal indulgences +n10400003 a person afflicted with paresis (partial paralysis) +n10400108 a member of a parish +n10400205 a commissioner in charge of public parks +n10400437 an elected member of the British Parliament: a member of the House of Commons +n10400618 a person who is employed to look after the affairs of businesses that are affected by legislation of the British Parliament +n10400998 mimics literary or musical style for comic effect +n10401204 someone who kills his or her parent +n10401331 a copycat who does not understand the words or acts being imitated +n10401639 someone who has or gives or receives a part or a share +n10402709 someone who works less than the customary or standard time +n10402824 a person involved in legal proceedings +n10403633 a member of a political party who follows strictly the party line +n10403876 a traveler riding in a vehicle (a boat or bus or car or plane or train etc) who is not operating it +n10404426 a student who passes an examination +n10404998 a workman who pastes +n10405540 an informal use of the Latin word for father; sometimes used by British schoolboys or used facetiously +n10405694 a person who requires medical care +n10406266 a man who is older and higher in rank than yourself +n10406391 any of the early biblical characters regarded as fathers of the human race +n10406765 the male head of family or tribe +n10407310 one who loves and defends his or her country +n10407954 someone who supports or champions something +n10408809 someone who makes patterns (as for sewing or carpentry or metalworking) +n10409459 a person who lends money at interest in exchange for personal property that is deposited as security +n10409752 a person who pays money for something +n10410246 a member of a military force that is assigned (often with international sanction) to preserve peace in a trouble area +n10410996 one of a (chiefly European) class of agricultural laborers +n10411356 a person who pays more attention to formal rules and book learning than they merit +n10411551 someone who travels about selling his wares (as on the streets or at carnivals) +n10411867 a man who has sex (usually sodomy) with a boy as the passive partner +n10414239 a person who studies the theory and practice of prison management +n10414768 an athlete who competes in a pentathlon +n10414865 any member of a Pentecostal religious body +n10415037 a musician who plays percussion instruments +n10416567 a dentist specializing in diseases of the gums and other structure surrounding the teeth +n10417288 a member of a Kurdish guerilla organization that fights for a free Kurdish state +n10417424 a person of considerable prominence +n10417551 a person who manages the affairs of another +n10417682 another word for person; a person not meriting identification +n10417843 a diplomat who is acceptable to the government to which he is sent +n10417969 a diplomat who is unacceptable to the government to which he is sent +n10418101 a person who represents an abstract quality +n10418735 a person who perspires +n10419047 a person whose behavior deviates from what is acceptable especially in sexual behavior +n10419472 a person who expects the worst +n10419630 a persistently annoying person +n10419785 a boyish or immature man; after the boy in Barrie's play who never grows up +n10420031 one praying humbly for something +n10420277 a member of a petit jury +n10420507 someone left in charge of pets while their owners are away from home +n10420649 a lover who gently fondles and caresses the loved one +n10421016 the title of the ancient Egyptian kings +n10421470 a health professional trained in the art of preparing and dispensing drugs +n10421956 someone who makes charitable donations intended to increase human well-being +n10422405 a collector and student of postage stamps +n10425946 a wise person who is calm and rational; someone who lives a life of reason with equanimity +n10426454 a specialist in phonetics +n10426630 a specialist in phonology +n10427223 a journalist who presents a story primarily through the use of photographs +n10427359 someone who practices photometry +n10427764 therapist who treats injury or dysfunction with exercises and other physical treatments of the disorder +n10428004 a scientist trained in physics +n10431122 a person who makes pianos +n10431625 a person who chooses or selects out +n10432189 a person who is picnicking +n10432441 someone who journeys in foreign lands +n10432875 a unpleasant or tiresome person +n10432957 a prominent supporter +n10433077 a consumer of amphetamine pills +n10433452 a person qualified to guide ships through difficult waters going into or out of a harbor +n10433610 a supposedly primitive man later proven to be a hoax +n10433737 someone who procures customers for whores (in England they call a pimp a ponce) +n10435169 a smoker who uses a pipe +n10435251 someone who is small and insignificant +n10435716 a person who urinates +n10435988 (baseball) the person who does the pitching +n10436334 an aggressive salesman who uses a fast line of talk to sell something +n10437014 a disparaging term for an appointee +n10437137 a miner who extracts minerals from a placer by washing or dredging +n10437262 someone who uses another person's words or ideas as if they were his own +n10437698 an inhabitant of a plains region (especially the Great Plains of North America) +n10438172 a person who makes plans +n10438619 the owner or manager of a plantation +n10438842 a worker skilled in applying plaster +n10439373 a blond whose hair is a pale silvery (often artificially colored) blond +n10439523 a bore who makes excessive use of platitudes +n10439727 a man devoted to the pursuit of pleasure +n10439851 a person who participates in or is skilled at some game +n10441037 a companion at play +n10441124 a pleasing entertainer +n10441694 someone who makes or gives a pledge +n10441962 a diplomat who is fully authorized to represent his or her government +n10442093 someone who plies a trade +n10442232 someone who moves slowly +n10442417 someone who works slowly and monotonously for long hours +n10442573 a clerk who marks data on a chart +n10443032 a craftsman who installs and repairs pipes and fixtures and appliances +n10443659 a philosopher who believes that no single explanation can account for all the phenomena of nature +n10443830 a cleric who holds more than one benefice at a time +n10444194 a writer of poems (the term is usually reserved for writers of good poetry) +n10448322 a policeman stationed at an intersection to direct traffic +n10448455 a woman who is the forefront of an important enterprise +n10449664 a person who holds an insurance policy; usually, the client in whose name an insurance policy is written +n10450038 someone who is imprisoned because of their political views +n10450161 a social scientist specializing in the study of government +n10450303 a person active in party politics +n10451450 a schemer who tries to gain advantage in an organization in sly or underhanded ways +n10451590 someone who conducts surveys of public opinion +n10451858 a person or organization that causes pollution of the environment +n10453184 someone who shoots pool +n10455619 a painter or drawer of portraits +n10456070 a woman poseur +n10456138 someone who emphasizes observable facts and excludes metaphysical speculation about origins or ultimate causes +n10456696 a scholar or researcher who is involved in academic study beyond the level of a doctoral degree +n10457214 a female poster child +n10457444 someone who assumes or takes something for granted as the basis of an argument +n10457903 a citizen who does not hold any official or public position +n10458111 a thinker who focuses on the problem as stated and tries to synthesize information and knowledge to achieve a solution +n10458356 an advocate of full legal protection for embryos and fetuses; someone opposed to legalized induced abortion +n10458596 an expert in prosthetics +n10459882 one submitting a request or application especially one seeking admission into a religious order +n10460033 a worker in an inn or public house who serves customers and does various chores +n10461060 a dealer in poultry and poultry products +n10462588 (computing) a computer user who needs the fastest and most powerful computers available +n10462751 a worker at a power station +n10462860 someone who practices a learned profession +n10464052 someone who prays to God +n10464542 teacher at a university or college (especially at Cambridge or Oxford) +n10464711 one who precedes you in time (as in holding a position or office) +n10464870 a bidder in bridge who makes a preemptive bid +n10465002 someone who acquires land by preemption +n10465451 an infant that is born prior to 37 weeks of gestation +n10465831 an elder in the Presbyterian Church +n10466198 an advocate who presents a person (as for an award or a degree or an introduction etc.) +n10466564 a theologian who believes that the Scripture prophecies of the Apocalypse (the Book of Revelation) are being fulfilled at the present time +n10466918 someone who keeps safe from harm or danger +n10467179 the chief executive of a republic +n10467395 the person who holds the office of head of state of the United States government +n10468750 the head administrative officer of a college or university +n10469611 someone employed to arrange publicity (for a firm or a public figure) +n10469874 a photographer who works for a newspaper +n10470779 a clergyman in Christian churches who has the authority to perform or administer various religious rites; one of the Holy Orders +n10471640 a leading female ballet dancer +n10471732 a distinguished female operatic singer; a female operatic star +n10471859 a vain and temperamental person +n10472129 (obstetrics) a woman who is pregnant for the first time +n10472447 an achondroplastic dwarf whose small size is the result of a genetic defect; body parts and mental and sexual development are normal +n10473453 a suitor who fulfills the dreams of his beloved +n10473562 a prince who is the husband of a reigning female sovereign +n10473789 a petty or insignificant prince who rules some unimportant principality +n10473917 the male heir apparent of the British sovereign +n10474064 a female member of a royal family other than the queen (especially the daughter of a sovereign) +n10474343 the eldest daughter of a British sovereign +n10474446 the major party to a financial transaction at a stock exchange; buys and sells for his own account +n10474645 the educator who has executive authority for a school +n10475835 someone who sells etchings and engravings etc. +n10475940 the head of a religious order; in an abbey the prior is next below the abbot +n10476467 an enlisted man of the lowest rank in the Army or Marines +n10477713 a nurse in training who is undergoing a trial period +n10477955 someone who processes things (foods or photographs or applicants etc.) +n10478118 someone who personally delivers a process (a writ compelling attendance in court) or court papers to the defendant +n10478293 a provincial governor of consular rank in the Roman Republic and Roman Empire +n10478462 an official in a modern colony who has considerable administrative power +n10478827 a doctor specializing in diseases of the rectum and anus +n10478960 someone who supervises (an examination) +n10479135 (ancient Rome) someone employed by the Roman Emperor to manage finance and taxes +n10479328 someone who obtains or acquires +n10481167 someone who sells stock shares at a profit +n10481268 a person who designs and writes and tests computer programs +n10482054 a person who makes a promise +n10482220 someone who is an active supporter and advocate +n10482587 (law) one who promulgates laws (announces a law as a way of putting it into execution) +n10482921 a person who disseminates messages calculated to assist some cause or some government +n10483138 someone who spreads the news +n10483395 member of the stage crew in charge of properties +n10483799 a woman prophet +n10483890 someone who speaks by divine inspiration; someone who is an interpreter of the will of God +n10484858 a government official who conducts criminal prosecutions on behalf of the state +n10485298 someone who explores an area for mineral deposits +n10485883 an advocate of protectionism +n10486166 a woman protege +n10486236 a zoologist who studies protozoans +n10486561 the supervisor of the military police +n10487182 a worker who thins out and trims trees and shrubs +n10487363 a composer of sacred songs +n10487592 a sociologist who studies election trends +n10488016 a physician who specializes in psychiatry +n10488309 a person apparently sensitive to things beyond the natural range of perception +n10488656 a person (usually a psychologist but sometimes a linguist) who studies the psychological basis of human language +n10489426 a psychologist trained in psychophysics +n10490421 the keeper of a public house +n10491998 a short fat person +n10492086 a woman in childbirth or shortly thereafter +n10492727 a person on whom another person vents their anger +n10493199 (football) a person who kicks the football by dropping it from the hands and contacting it with the foot before it hits the ground +n10493419 someone who propels a boat with a pole +n10493685 one who operates puppets or marionettes +n10493835 an inexperienced young person +n10493922 an agent who purchases goods or services for another +n10494195 someone who adheres to strict religious principles; someone opposed to sensual pleasures +n10494373 a member of a group of English Protestants who in the 16th and 17th centuries thought that the Protestant Reformation under Elizabeth was incomplete and advocated the simplification and regulation of forms of worship +n10495167 a person who pursues some plan or goal +n10495421 someone who pushes +n10495555 an unlicensed dealer in illegal drugs +n10495756 one who intrudes or pushes himself forward +n10496393 (Yiddish) a fool; an idiot +n10496489 any member of various peoples having an average height of less than five feet +n10497135 an Islamic judge +n10497534 a person who is paralyzed in both arms and both legs +n10497645 one of four children born at the same time from the same pregnancy +n10498046 one who quakes and trembles with (or as with) fear +n10498699 an unspecified person +n10498816 (football) the person who plays quarterback +n10498986 an army officer who provides clothing and subsistence for troops +n10499110 a staff officer in charge of supplies for a whole army +n10499232 a native or inhabitant of Quebec (especially one who speaks French) +n10499355 a female sovereign ruler +n10499631 the sovereign ruler of England +n10499857 the wife or widow of a king +n10500217 something personified as a woman who is considered the best or most important of her kind +n10500419 the wife of a reigning king +n10500603 a queen dowager who is mother of the reigning sovereign +n10500824 Counsel to the Crown when the British monarch is a queen +n10500942 the host or chairman of a radio or tv quiz show or panel game +n10501453 someone able to acquire new knowledge and skills rapidly and easily +n10501635 a religious mystic who follows quietism +n10502046 a person who gives up too easily +n10502329 spiritual leader of a Jewish congregation; qualified to expound and apply Jewish law +n10502950 a person with a prejudiced belief that one race is superior to others +n10503818 a biologist who studies the effects of radiation on living organisms +n10504090 a scientist trained in radiological technology +n10504206 a medical specialist who uses radioactive substances and X-rays in the treatment of disease +n10505347 American Indian medicine man who attempt to make it rain +n10505613 a bridge partner who increases the partner's bid +n10505732 a prince or king in India +n10505942 a dissolute man in fashionable society +n10506336 a harshly demanding overseer +n10506544 a hired hand on a ranch +n10506915 a commissioned officer who has been promoted from enlisted status +n10507070 someone who rants and raves; speaks in a violent or loud manner +n10507380 someone who is suspected of committing rape +n10507482 someone who performs rap music +n10507565 a recorder appointed by a committee to prepare reports of the meetings +n10507692 a rare or unique person +n10508141 a person who pays local rates (especially a householder) +n10508379 an inexperienced and untrained recruit +n10508710 a person who enjoys reading +n10509063 someone who teaches students to read +n10509161 a philosopher who believes that universals are real and exist independently of anyone thinking of them +n10509810 a person who is authorized to act as an agent for the sale of land +n10510245 an admiral junior to a vice admiral +n10510974 the tennis player who receives the serve +n10511771 someone who recites from memory +n10512201 any new member or supporter (as in the armed forces) +n10512372 a recently enlisted soldier +n10512708 someone who supplies members or employees +n10512859 a sergeant deputized to enlist recruits +n10513509 a member of the military police in Britain +n10513823 someone who has red hair +n10513938 a poor White person in the southern United States +n10514051 a dancer of reels +n10514121 a person who enacts a role in an event that occurred earlier +n10514255 a person whose case has been referred to a specialist or professional group +n10514429 (sports) the chief official (as in boxing or American football) who is expected to ensure fair play +n10514784 one whose work is to refine a specific thing +n10515863 liberal Jew who tries to adapt all aspects of Judaism to modern circumstances +n10516527 a graduate nurse who has passed examinations for registration +n10517137 a person employed to keep a record of the owners of stocks and bonds issued by the company +n10517283 holder of a British professorship created by a royal patron +n10518349 a person who reduces the intensity (e.g., of fears) and calms and pacifies +n10519126 one retired from society for religious reasons +n10519494 leader of a religious order +n10519984 someone who works for a company that moves furniture +n10520286 a modern scholar who is in a position to acquire more than superficial knowledge about many different interests +n10520544 someone who rebels and becomes an outlaw +n10520964 someone whose income is from property rents or bond interest and other investments +n10521100 a skilled worker whose job is to repair things +n10521662 a person who investigates and reports or edits news stories +n10521853 a female newsperson +n10522035 a person who represents others +n10522324 a person without moral scruples +n10522759 someone who saves something from danger or violence +n10523341 a member of a military reserve +n10524076 the representative of Puerto Rico in the United States House of Representatives +n10524223 a person who respects someone or something; usually used in the negative +n10524869 the proprietor of a restaurant +n10525134 a person who directs and restrains +n10525436 a merchant who sells goods at retail +n10525617 someone who has retired from active working +n10525878 the official in each electorate who holds the election and returns the results +n10526534 a person who returns after a lengthy absence +n10527147 a Communist who tries to rewrite Marxism to justify a retreat from the revolutionary position +n10527334 a radical supporter of political or social revolution +n10528023 a physician specializing in rheumatic diseases +n10528148 a primitive hominid resembling Neanderthal man but living in Africa +n10528493 a writer who composes rhymes; a maker of poor verses (usually used as terms of contempt for minor or inferior poets) +n10529231 a person who possesses great material wealth +n10530150 a traveler who actively rides a vehicle (as a bicycle or motorcycle) +n10530383 someone who teaches horsemanship +n10530571 a soldier whose weapon is a rifle +n10530959 a person who uses the right hand more skillfully than the left +n10531109 the most helpful assistant +n10531445 a contestant entered in a competition under false pretenses +n10531838 a person who leads (especially in illicit activities) +n10533874 a workman who is employed to repair roads +n10533983 someone who communicates vocally in a very loud voice +n10536134 an engineer who builds and tests rockets +n10536274 a clever thinker +n10536416 a famous singer of rock music +n10537708 a member of the imperial family that ruled Russia +n10537906 an artist of the Romantic Movement or someone influenced by Romanticism +n10538629 a craftsman who makes ropes +n10538733 a cowboy who uses a lasso to rope cattle or horses +n10538853 a decoy who lures customers into a gambling establishment (especially one with a fixed game) +n10539015 an acrobat who performs on a rope stretched at some height above the ground +n10539160 (a literary reference to) a pretty young girl +n10539278 a member of a secret 17th-century society of philosophers and scholars versed in mystical and metaphysical and alchemical lore +n10540114 colloquial term for a member of the Royal Canadian Mounted Police +n10540252 a member of the volunteer cavalry regiment led by Theodore Roosevelt in the Spanish-American War (1898) +n10540656 a brachycephalic person +n10541833 a person who exercises authority over civilian affairs +n10542608 a person who is employed to deliver messages or documents +n10542761 someone who travels on foot by running +n10542888 a trained athlete who competes in foot races +n10543161 (football) a back on the offensive team (a fullback or halfback) who tries to advance the ball by carrying it on plays from the line of scrimmage +n10543937 someone who migrates as part of a rush to a new gold field or a new territory +n10544232 an unsophisticated country person +n10544748 someone who commits sabotage or deliberately causes wrecks +n10545792 someone who obtains pleasure from inflicting pain or others +n10546428 the ship's officer in charge of navigation +n10546633 any member of a ship's crew +n10548419 a woman salesperson +n10548537 a man salesperson +n10548681 a person employed to represent a business and to sell its merchandise (as to customers in a store or to customers who are visited) +n10549510 someone who salvages +n10550252 a person with advertising boards hanging from the shoulders +n10550369 a traditional Zulu healer and respected elder +n10550468 a married male American Indian +n10551576 a military engineer who does sapping (digging trenches or undermining fortifications) +n10552393 the Scots' term for an English person +n10553140 a governor of a province in ancient Persia +n10553235 someone who walks at a leisurely pace +n10554024 a person who performs in the operettas of Gilbert and Sullivan +n10554141 one who is employed to saw wood +n10554846 someone who buys something and resells it at a price far above the initial cost +n10555059 a person who spreads malicious gossip +n10555430 a reckless and unprincipled reprobate +n10556033 a painter of theatrical scenery +n10556518 a planner who draws up a personal scheme of action +n10556704 someone who is afflicted with schizophrenia +n10556825 (Yiddish) a dolt who is a habitual bungler +n10557246 (slang) a merchant who deals in shoddy or inferior merchandise +n10557854 a learned person (especially in the humanities); someone who by long study has gained mastery in one or more disciplines +n10559009 a scholar who writes explanatory notes on an author (especially an ancient commentator on a classical author) +n10559288 a young person attending school (up through senior high school) +n10559508 a friend who attends the same school +n10559683 a scholar in one of the universities of the Middle Ages; versed in scholasticism +n10559996 any person (or institution) who acts as an educator +n10560106 an acquaintance that you go to school with +n10560637 a person with advanced knowledge of one or more sciences +n10561222 a descendent or heir +n10561320 someone who jeers or mocks or treats something with contempt or calls out in derision +n10561736 one who habitually ignores the law and does not answer court summonses +n10562135 an official who records the score during the progress of a game +n10562283 a logger who marks trees to be felled +n10562509 someone who travels widely and energetically +n10562968 someone employed to discover and recruit talented persons (especially in the worlds of entertainment or sports) +n10563314 the leader of a troop of Scouts +n10563403 a rapid mover; someone who scrambles +n10563711 a person who scratches to relieve an itch +n10564098 an actor who plays a role in a film +n10565502 someone who examines votes at an election +n10565667 an underwater diver who uses scuba gear +n10566072 an artist who creates sculptures +n10567613 a Boy Scout enrolled in programs for water activities +n10567722 a worker who finds employment only in certain seasons +n10567848 a cook who uses seasonings +n10568200 (baseball) the person who plays second base +n10568358 a child of a first cousin +n10568443 someone who endorses a motion or petition as a necessary preliminary to a discussion or vote +n10568608 someone who serves in a subordinate capacity or plays a secondary role +n10568915 someone who relieves a commander +n10569011 a commissioned officer in the Army or Air Force or Marine Corps holding the lowest rank +n10569179 a person of second-rate ability or value +n10570019 a person who is head of an administrative department of government +n10570704 the person who holds the secretaryship of the Department of Agriculture +n10571907 the person who holds the secretaryship of the Department of Health and Human Services +n10572706 the person who holds the secretaryship of the Department of State +n10572889 the person who holds the secretaryship of the Interior Department +n10573957 a member of a sect +n10574311 a laborer assigned to a section gang +n10574538 an advocate of secularism; someone who believes that religion should be excluded from government and education +n10574840 an adviser about alarm systems to prevent burglaries +n10575463 one of the outstanding players in a tournament +n10575594 a person who seeds clouds +n10575787 someone making a search or inquiry +n10576223 someone who is or has been segregated +n10576316 someone who believes the races should be kept apart +n10576676 an elected member of a board of officials who run New England towns +n10576818 an elected member of a board of officials who run New England towns +n10576962 a person who is unusually selfish +n10577182 an energetic person with unusual initiative +n10577284 someone who promotes or exchanges goods or services for money +n10577710 someone who sells goods (on commission) for others +n10577820 a specialist in the study of meaning +n10578021 one of four competitors remaining in a tournament by elimination +n10578162 a student at a seminary (especially a Roman Catholic seminary) +n10578471 a member of a senate +n10578656 the intended recipient of a message +n10579062 an undergraduate student during the year preceding graduation +n10579549 the ranking vice president in a firm that has more than one +n10580030 an advocate of secession or separation from a larger group (such as an established church or a national union) +n10580437 someone whose age is in the seventies +n10580535 (Middle Ages) a person who is bound to the land and owned by the feudal lord +n10581648 a serial killer whose murders occur within a brief period of time +n10581890 an English barrister of the highest rank +n10582604 (court games) the player who serves to start a point +n10582746 someone who serves in the armed forces; a member of a military force +n10583387 a person who settles in a new colony or moves into new country +n10583790 a clerk in a betting shop who calculates the winnings +n10585077 a person (especially a celebrity) who is well-known for their sexual attractiveness +n10585217 an officer of the church who is in charge of sacred objects +n10585628 Arabic term for holy martyrs; applied by Palestinians to suicide bombers +n10586166 a Shakespearean scholar +n10586265 a kidnapper who drugs men and takes them for compulsory service aboard a ship +n10586444 small farmers and tenants +n10586903 an adult male who shaves +n10586998 an admirer of G. B. Shaw or his works +n10588074 a timid defenseless simpleton who is readily preyed upon +n10588357 the leader of an Arab village or family +n10588724 a worker who puts things (as books) on shelves +n10588965 a clergyman who watches over a group of people +n10589666 a contractor who buys old ships and breaks them up for scrap +n10590146 an associate on the same ship with you +n10590239 someone who owns a ship or a share in a ship +n10590452 the agent of a shipowner +n10590903 a maker of shirts +n10591072 a hereditary military dictator of Japan; the shoguns ruled Japan until the revolution of 1867-68 +n10591811 a compulsive shopper +n10592049 a young female shop assistant +n10592811 a union member who is elected to represent fellow workers in negotiating with management +n10593521 an athlete who competes in the shot put +n10594147 a scolding nagging bad-tempered woman +n10594523 the card player who shuffles the cards +n10594857 a person (especially a lawyer or politician) who uses unscrupulous or unethical methods +n10595164 a person's brother or sister +n10595647 a person suffering from an illness +n10596517 a performer who reads without preparation or prior acquaintance (as in music) +n10596899 someone who communicates by signals +n10597505 someone who can use sign language to communicate +n10597745 used as an Italian courtesy title; can be prefixed to the name or used separately +n10597889 an Italian title of address equivalent to Mrs. when used before a name +n10598013 an Italian title of respect for a man; equivalent to the English `sir'; used separately (not prefixed to his name) +n10598181 an Italian courtesy title for an unmarried woman; equivalent to `Miss', it is either used alone or before a name +n10598459 a partner (who usually provides capital) whose association with the enterprise is not public knowledge +n10598904 a person with confused ideas; incapable of serious thought +n10599215 a smiler whose smile is silly and self-conscious and sometimes coy +n10599806 a person who sings +n10601234 a student of Chinese history and language and culture +n10601362 a drinker who sips +n10602119 formerly a contemptuous term of address to an inferior man or boy; often used in anger +n10602470 (Roman Catholic Church) a title given to a nun (and used as a form of address) +n10602985 a female person who has the same parents as another person +n10603528 one who hesitates (usually out of fear) +n10603851 a musician who plays the sitar +n10604275 a student in the sixth form +n10604380 someone who skates on a skateboard +n10604634 someone who habitually doubts accepted beliefs +n10604880 someone who draws sketches +n10604979 a worker who uses a skid to move logs +n10605253 someone who skis +n10605737 a naked swimmer +n10607291 an underwater swimmer equipped with a face mask and foot fins and either a snorkel or an air cylinder +n10607478 a young person who belongs to a British or American group that shave their heads and gather at rock concerts or engage in white supremacist demonstrations +n10609092 someone who slashes another person +n10609198 a dirty untidy woman +n10610465 a rester who is sleeping +n10610850 a spy or saboteur or terrorist planted in an enemy country who lives there as a law-abiding citizen until activated by a prearranged signal +n10611267 a person who is sleeping soundly +n10611613 a detective who follows a trail +n10612210 a coarse obnoxious person +n10612373 someone who coins and uses slogans to promote a cause +n10612518 a dealer in cheap ready-made clothing +n10613996 a very attractive or seductive looking woman +n10614507 a smiler whose smile is offensively self-satisfied +n10614629 someone who works metal (especially by hammering it when it is hot and malleable) +n10615179 someone with an assured and ingratiating manner +n10615334 someone who imports or exports without paying duties +n10616578 a person who sneezes +n10617024 a person regarded as arrogant and annoying +n10617193 a spy who makes uninvited inquiries into the private affairs of others +n10617397 someone who snores while sleeping +n10618234 a journalist who specializes in sentimental stories +n10618342 an athlete who plays soccer +n10618465 an anthropologist who studies such cultural phenomena as kinship systems +n10618685 someone seeking social prominence by obsequious behavior +n10618848 a political advocate of socialism +n10619492 a person who takes part in social activities +n10619642 someone expert in the study of human society and its personal relationships +n10619888 a personal secretary who handles your social correspondence and appointments +n10620212 an adherent of the teachings of Socinus; a Christian who rejects the divinity of Christ and the Trinity and original sin; influenced the development of Unitarian theology +n10620586 a linguist who studies the social and cultural factors that influence linguistic communication +n10620758 a social scientist who studies the institutions and development of human society +n10621294 someone who works at a soda fountain +n10621400 a member of a sodality +n10621514 someone who engages in anal copulation (especially a male who engages in anal copulation with another male) +n10622053 an enlisted man or woman who serves in an army +n10624074 a male human offspring +n10624310 a person who sings +n10624437 a woman songster (especially of popular songs) +n10624540 a composer of words or music for popular songs +n10625860 one who practices magic or sorcery +n10626630 someone who is peevish or disgruntled +n10627252 someone for whom you have a deep affinity +n10628097 a member of the Southern Baptist Convention +n10628644 a nation's ruler or head of state usually by hereditary right +n10629329 an astronaut who is active outside a spacecraft in outer space +n10629647 an American whose first language is Spanish +n10629939 a boxer who spars with another boxer who is training for an important fight +n10630093 a person suffering from spastic paralysis +n10630188 someone who expresses in language; someone who talks (especially someone who delivers a public speech or someone especially garrulous) +n10631131 a speaker of a particular language who has spoken that language since earliest childhood +n10631309 the presiding officer of a deliberative assembly +n10631654 a writer who composes speeches for others to deliver +n10632576 practices one branch of medicine +n10633298 someone who draws up specifications giving details (as for obtaining a patent) +n10633450 a close observer; someone who looks at something (such as an exhibition of some kind) +n10634464 a therapist who treats speech defects and disorders +n10634849 an ice-skater who races competitively; usually around an oval course +n10634990 an orator who can hold his listeners spellbound +n10635788 an inscrutable person who keeps his thoughts and intentions secret +n10636488 an elderly unmarried woman +n10637483 (football) an offensive end who lines up at a distance from the other linemen +n10638922 someone who engages in sports +n10639238 (Maine colloquial) a temporary summer resident of Maine +n10639359 someone who enjoys outdoor activities +n10639637 an announcer who reads sports news or describes sporting events +n10639817 the newspaper editor responsible for sports news +n10641223 a child +n10642596 someone who does square dancing +n10642705 a frank and honest person +n10643095 someone who settles on land without right or title +n10643837 an English country landowner +n10643937 young nobleman attendant on a knight +n10644598 an employee who is a member of a staff of workers (especially a member of the staff that works for the President of the United States) +n10645017 a noncommissioned officer ranking above corporal and below sergeant first class in the Army or Marines or above airman 1st class in the Air Force +n10645223 someone who supervises the actors and directs the action in the production of a stage show +n10646032 a worker who stains (wood or fabric) +n10646140 someone entrusted to hold the stakes for two or more persons betting against one another; must deliver the stakes to the winner +n10646433 someone who stalks game +n10646641 a candidate put forward to divide the Opposition or to mask the true candidate +n10646780 someone who speaks with involuntary pauses and repetitions +n10646942 someone who walks with a heavy noisy gait or who stamps on the ground +n10647745 someone who stands in a place where one might otherwise sit (as a spectator who uses standing room in a theater or a passenger on a crowded bus or train) +n10648237 someone who takes the place of another (as when things get dangerous or difficult) +n10648696 an actor who plays a principal role +n10649197 a young (film) actress who is publicized as a future star +n10649308 the official who signals the beginning of a race or competition +n10650162 a man who is a respected leader in national or international affairs +n10652605 the treasurer for a state government +n10652703 a merchant who sells writing materials and office supplies +n10654015 someone skilled in the transcription of speech (especially dictation) +n10654211 a speaker with an unusually loud voice +n10654321 a brother who has only one parent in common with you +n10654827 the wife of your father by a subsequent marriage +n10654932 the spouse of your parent by a subsequent marriage +n10655169 a laborer who loads and unloads vessels in a port +n10655442 someone who manages property or other affairs for someone else +n10655594 an attendant on an airplane +n10655730 the ship's officer who is in charge of provisions and dining arrangements +n10655986 someone who insists on something +n10656120 an ordinary man +n10656223 a person who stifles or smothers or suppresses +n10656969 (United Kingdom) a paid magistrate (appointed by the Home Secretary) dealing with police cases +n10657306 a garmentmaker who performs the finishing steps +n10657556 one who deals only with brokers or other jobbers +n10657835 someone who buys and sells stock shares +n10658304 one (as a retailer or distributor) that stocks goods +n10659042 a laborer who tends fires (as on a coal-fired train or steamship) +n10659762 a person who carries himself or herself with the head and shoulders habitually bent forward +n10660128 a private detective employed by a merchant to stop pilferage +n10660621 a combat pilot who strafes the enemy +n10660883 a performer who acts as stooge to a comedian +n10661002 anyone who does not belong in the environment in which they are found +n10661216 an individual that one is not acquainted with +n10661563 an expert in strategy (especially in warfare) +n10661732 a member of a work gang who supervises the other workers +n10663315 a prostitute who attracts customers by walking the streets +n10663549 one who helps carry a stretcher +n10665302 a person who struggles with difficulties or with great effort +n10665587 a man who is virile and sexually active +n10665698 a learner who is enrolled in an educational institution +n10666752 a second-rate prize fighter +n10667477 an artist who is a master of a particular style +n10667709 a British commissioned army officer below the rank of captain +n10667863 someone who enters into a subcontract with the primary contractor +n10668450 someone who overcomes and establishes ascendancy and control by force or persuasion +n10668666 a person who is subjected to experimental or other observational procedures; someone who is an object of investigation +n10669991 an assistant subject to the authority or control of another +n10671042 an athlete who plays only when a starter on the team is replaced +n10671613 a person who inherits some title or office +n10671736 a person who follows next in order +n10671898 someone who gives help in times of need or distress or difficulty +n10672371 a Muslim who represents the mystical dimension of Islam; a Muslim who seeks direct experience of Allah; mainly in Iran +n10672540 an assistant or subordinate bishop of a diocese +n10672662 a woman advocate of women's right to vote (especially a militant advocate in the United Kingdom at the beginning of the 20th century) +n10673296 a wealthy older man who gives a young person expensive gifts in return for friendship or intimacy +n10673776 a terrorist who blows himself up in order to kill or injure other people +n10674130 a man who courts a woman +n10674713 a wrestler who participates in sumo (a Japanese form of wrestling) +n10675010 someone who basks in the sunshine in order to get a suntan +n10675142 a tramp who habitually arrives at sundown +n10675609 an amateur boxer who weighs more than 201 pounds +n10676018 one of greater rank or station or quality +n10676434 an informal term for a mother who can combine childcare and full-time employment +n10676569 a minor actor in crowd scenes +n10678937 the most important person in an organization +n10679174 a physician who specializes in surgery +n10679503 the senior medical officer in an Army or Navy +n10679610 the head of the United States Public Health Service +n10679723 a captor who uses surprise to capture the victim +n10680609 an engineer who determines the boundaries and elevations of land or structures +n10680796 someone who conducts a statistical survey +n10681194 one who lives through affliction +n10681557 a supplier of victuals or supplies to an army +n10682713 an employee who sweeps (floors or streets etc.) +n10682953 a person loved by another person +n10683675 a person who engages freely in promiscuous sex +n10684146 a person who administers punishment by wielding a switch or whip +n10684630 an insignificant student who is ridiculed as being affected or boringly studious +n10684827 a person who tries to please someone in order to gain a personal advantage +n10685398 a slender graceful young woman +n10686073 someone who shares your feelings or opinions and hopes that you will be successful +n10686517 a composer of symphonies +n10686694 a musician who plays syncopated jazz music (usually in a dance band) +n10686885 one appointed to represent a city or university or corporation in business transactions +n10688356 a person who is skilled at planning tactics +n10688811 someone who appends or joins one thing to another +n10689306 (American football) the person who plays tailback +n10690268 one who keeps a tally of quantity or weight of goods produced or shipped or received +n10690421 one who sells goods on the installment plan +n10690648 a soldier who drives a tank +n10691318 someone who wiretaps a telephone or telegraph wire +n10691937 a hypocrite who pretends to religious piety (after the protagonist in a play by Moliere) +n10692090 (sometimes used ironically) a man of great strength and agility (after the hero of a series of novels by Edgar Rice Burroughs) +n10692482 someone who samples food or drink for its quality +n10692883 an official who evaluates property for the purpose of taxing it +n10693235 a bureaucrat who levies taxes +n10693334 a woman employed to dance with patrons who pay a fee for each dance +n10693824 a biologist who specializes in the classification of organisms into groups on the basis of their structure and origin and behavior +n10694258 a person whose occupation is teaching +n10694939 a graduate student with teaching responsibilities +n10695450 a reckless and impetuous person +n10696101 a noncommissioned officer ranking below a master sergeant in the air force or marines +n10696508 someone known for high skill in some intellectual or artistic technique +n10697135 a tough youth of 1950's and 1960's wearing Edwardian style clothes +n10697282 a total abstainer +n10698368 someone who reports news stories via television +n10699558 someone who temporizes; someone who tries to gain time or who waits for a favorable time +n10699752 a person who tempts others +n10699981 infant born at a gestational age between 37 and 42 completed weeks +n10700105 one who works strenuously +n10700201 someone who pays rent to use land or a building or a car that is owned by someone else +n10700640 a holder of buildings or lands by any kind of title (as ownership or lease) +n10700963 an inexperienced person (especially someone inexperienced in outdoor living) +n10701180 an athlete who plays tennis +n10701644 someone who earns a living playing or teaching tennis +n10701962 a musician who plays the tenor saxophone +n10702167 a person who serves a specified term +n10702615 a person who inspires fear or dread +n10703221 a woman who is pregnant for the third time +n10703336 a person who makes a will +n10703480 a female testator +n10703692 someone who is tested (as by an intelligence test or an academic examination) +n10704238 a baby conceived by fertilization that occurs outside the mother's body; the woman's ova are removed and mixed with sperm in a culture medium - if fertilization occurs the blastocyte is implanted in the woman's uterus +n10704712 a member of the Texas state highway patrol; formerly a mounted lawman who maintained order on the frontier +n10704886 a man ranking above an ordinary freeman and below a noble in Anglo-Saxon England (especially one who gave military service in exchange for land) +n10705448 someone who produces theatrical performances +n10705615 someone who is learned in theology or who speculates about theology +n10706812 someone who theorizes (especially in science or art) +n10707134 a believer in theosophy +n10707233 a person skilled in a particular type of therapy +n10707707 a native or inhabitant of Thessalonica +n10708292 an important intellectual +n10708454 someone who exercises the mind (usually in an effort to reach a decision) +n10709529 someone who projects something (especially by a rapid motion of the arm) +n10710171 an acolyte who carries a thurible +n10710259 someone who is paid to admit only those who have purchased tickets +n10710778 (football) an offensive end who lines up close to the tackle +n10710913 a worker who lays tile +n10711483 (sports) an official who keeps track of the time elapsed +n10711766 a native or inhabitant of Timor +n10712229 an unskilled person who tries to fix or mend +n10712374 someone who makes or repairs tinware +n10712474 a hairdresser who tints hair +n10712690 someone who drinks liquor repeatedly in small quantities +n10712835 one who sells advice about gambling or speculation (especially at the racetrack) +n10713254 a special law-enforcement agent of the United States Treasury +n10713686 the person who proposes toasts and introduces speakers at a banquet +n10713843 a woman toastmaster +n10714195 someone who rides a toboggan +n10715030 a girl who behaves in a boyish manner +n10715347 someone skilled in making or repairing tools +n10715789 a leader in a campaign or movement +n10716576 an American who favored the British side during the American Revolution +n10716864 a member of political party in Great Britain that has been known as the Conservative Party since 1832; was the opposition party to the Whigs +n10717055 someone who throws lightly (as with the palm upward) +n10717196 terms of abuse for a masturbator +n10717337 an adherent of totalitarian principles or totalitarian government +n10718131 someone who travels for pleasure +n10718349 someone who advertises for customers in an especially brazen way +n10718509 someone who buys tickets to an event in order to resell them at a profit +n10718665 a comrade (especially in Russian communism) +n10718952 a person with light blond hair +n10719036 the official who keeps a town's records +n10719132 (formerly) an official who made public announcements +n10719267 a resident of a town or city +n10719807 one who studies the nature and effects of poisons and their treatment +n10720197 a star runner +n10720453 someone who purchases and maintains an inventory of goods to be sold +n10720964 a worker who belongs to a trade union +n10721124 one who adheres to traditional views +n10721321 a policeman who controls the flow of automobile traffic +n10721612 an actor who specializes in tragic roles +n10721708 a writer (especially a playwright) who writes tragedies +n10721819 an actress who specializes in tragic roles +n10722029 the person responsible for driving a herd of cattle +n10722575 one who trains other persons or animals +n10722965 someone who betrays his country by committing treason +n10723230 female traitor +n10723597 someone who conducts or carries on business or negotiations +n10724132 someone who represents the sounds of speech in phonetic notation +n10724372 someone who transfers or is transferred from one position to another +n10724570 (law) someone to whom a title or property is conveyed +n10725280 a person who translates written messages from one language to another +n10726031 someone who adopts the dress or manner or sexual role of the opposite sex +n10726786 a salesman who travels to call on customers +n10727016 someone who moves or passes across +n10727171 a fisherman who use a trawl net +n10727458 the British cabinet minister responsible for economic strategy +n10728117 someone who digs trenches +n10728233 someone who popularizes a new fashion +n10728624 someone who lives in a tribe +n10728998 one who tries +n10729330 one who behaves lightly or not seriously +n10730542 a mounted policeman +n10730728 a state police officer +n10731013 radicals who support Trotsky's theory that socialism must be established throughout the world by continuing revolution +n10731732 one who is absent from school without permission +n10732010 a musician who plays the trumpet or cornet +n10732521 a convict who is considered trustworthy and granted special privileges +n10732854 a member of the dynasty that ruled England +n10732967 a gymnast who performs rolls and somersaults and twists etc. +n10733820 learns from a tutor +n10734394 either of two offspring born at the same time from the same pregnancy +n10734741 someone who deceives a lover or spouse by carrying on a sexual relationship with somebody else +n10734891 a native of Yorkshire +n10734963 a person who plays the kettledrums +n10735173 someone paid to operate a typewriter +n10735298 a cruel and oppressive dictator +n10735984 an official at a baseball game +n10737103 an actor able to replace a regular performer when required +n10737264 one whose presence is undesirable +n10738111 a person who rides a unicycle +n10738215 an advocate of unilateralism +n10738670 adherent of Unitarianism +n10738871 adherent of Arminianism +n10739135 a person whose type O Rh-negative blood may be safely transfused into persons with other blood types +n10739297 an expert on the UNIX operating system +n10739391 an unidentified soldier whose body is honored as a memorial +n10740594 an unexpected winner; someone who defeats the favorite competitor +n10740732 a selfish actor who upstages the other actors +n10740868 a person who has suddenly risen to a higher economic status but has not gained social acceptance of others in that class +n10741152 an arrogant or presumptuous person +n10741367 poor and often mischievous city child +n10741493 a specialist in urology +n10742005 a female usher +n10742111 an official stationed at the entrance of a courtroom or legislative chamber +n10742546 one who wrongfully or illegally seizes and holds the place of another +n10742997 a baseball player valued for the ability to play at several positions +n10743124 someone who puts to good use +n10743356 an idealistic (but usually impractical) social reformer +n10744078 a husband who murders his wife +n10744164 someone on vacation; someone who is devoting time to pleasure or relaxation rather than to work +n10745006 the student with the best grades who usually delivers the valedictory address at commencement +n10745770 a girl who grew up in the tract housing in the San Fernando Valley +n10746931 an athlete who jumps over a high crossbar with the aid of a long pole +n10747119 eater of fruits and grains and nuts; someone who eats no meat or fish or (often) any animal products +n10747424 a strict vegetarian; someone who eats no animal or dairy products at all +n10747548 someone who regards with deep respect or reverence +n10747965 a speculator who makes money available for innovative projects (especially in high technology) +n10748142 a merchant who undertakes a trading venture (especially a venture that sends goods overseas) +n10748506 an irritating or obnoxious person +n10748620 an important or influential (and often overbearing) person +n10749928 a musician who plays the vibraphone +n10750031 a Roman Catholic priest who acts for another higher-ranking clergyman +n10750188 (Church of England) a clergyman appointed to act as priest of a parish +n10750640 (Roman Catholic Church) an administrative deputy who assists a bishop +n10751026 a deputy or assistant to someone bearing the title of chancellor +n10751152 someone appointed by a ruler as an administrative deputy +n10751265 an executive officer ranking immediately below a president; may serve in the president's place under certain circumstances +n10751710 a regent's deputy +n10752480 a person who is tricked or swindled +n10753061 a person who lived during the reign of Victoria +n10753182 an innkeeper (especially British) +n10753339 member of a vigilance committee +n10753442 one who has lived in a village most of their life +n10753989 a person who harvests grapes for making wine +n10754189 someone who sells wine +n10754281 someone who assaults others sexually +n10754449 someone who violates the law +n10755080 a musician who plays the viola +n10755164 a noisy or scolding or domineering woman +n10755394 a specialist in virology +n10755648 a member of the most numerous indigenous people of the Philippines +n10756061 a wife or widow of a viscount +n10756148 (in various countries) a son or younger brother or a count +n10756261 a member of the western group of Goths who sacked Rome and created a kingdom in present-day Spain and southern France +n10756641 a person given to fanciful speculations and enthusiasms with little regard for what is actually possible +n10756837 an important or distinguished visitor +n10757050 a professor visiting another college or university to teach for a limited time +n10757492 one whose prevailing mental imagery is visual +n10758337 a malicious woman with a fierce temper +n10758445 a high official in a Muslim government (especially in the Ottoman Empire) +n10758949 someone who regulates the tone of organ pipes +n10759151 a person who performs voluntary work +n10759331 (military) a person who freely enlists for service +n10759982 a priest or priestess (or consecrated worshipper) in a non-Christian religion or cult +n10760199 one bound by vows to a religion or life of worship or service +n10760622 (law) a person called into court to defend a title +n10760951 someone who makes a solemn promise to do something or behave in a certain way +n10761190 a traveler to a distant land (especially one who travels by sea) +n10761326 a viewer who enjoys seeing the sex acts or sex organs of others +n10761519 someone who vulcanizes rubber to improve its strength and resiliency +n10762212 someone who speaks or writes in a vague and evasive manner +n10762480 a follower of the theories or an admirer of the music of Richard Wagner +n10763075 a homeless child especially one forsaken or orphaned +n10763245 a mourner who utters long loud high-pitched cries +n10763383 a person whose occupation is to serve at table (as in a restaurant) +n10763620 a woman waiter +n10764465 a union representative who visits workers at their jobs to see whether agreements are observed +n10764622 plays a small part in a dramatic production +n10764719 usually in combination: person in charge of or employed at a particular thing +n10765305 a silly and inept person; someone who is regarded as stupid +n10765587 a dancer who waltzes +n10765679 someone who leads a wandering unsettled life +n10765885 a legendary Jew condemned to roam the world for mocking Jesus at the Crucifixion +n10766260 lewd or lascivious woman +n10768148 a customer to whom a warrant or guarantee is given +n10768272 a recipient of a warrant issued by a court in the United States +n10768903 someone who washes things for a living +n10769084 operates industrial washing machine +n10769188 a working woman who takes in washing +n10769321 someone who enjoys riotous drinking +n10769459 someone who dissipates resources self-indulgently +n10771066 a member of the women's reserve of the United States Navy; originally organized during World War II but now no longer a separate branch +n10772092 predicts the weather +n10772580 a reservist who fulfills the military obligation on weekends +n10772937 a farmhand hired to remove weeds +n10773665 joins pieces of metal by welding them together +n10773800 a case for a welfare worker +n10774329 an inhabitant of a western area; especially of the U.S. +n10774756 a resident of the west side of Manhattan in New York City +n10775003 a workman who wets the work in a manufacturing process +n10775128 a seaman who works on a ship that hunts whales +n10776052 a supporter of the American Revolution +n10776339 a person given to excessive complaints and crying and whining +n10776887 huntsman's assistant in managing the hounds +n10777299 one who speaks in a whisper +n10778044 a clown whose face is covered with white make-up +n10778148 a Roman Catholic friar wearing the white cloak of the Carmelite order; mendicant preachers +n10778711 a Roman Catholic friar or monk belonging to one of the Augustinian monastic orders +n10778999 someone (or something) expected to achieve great success in a given field +n10779610 a person who believes that the white race is or should be supreme +n10779897 a pimp who procures whores +n10779995 a prostitute's customer +n10780284 a woman whose husband is dead especially one who has not remarried +n10780632 a married woman; a man's partner in marriage +n10781236 one who can't stay still (especially a child) +n10781817 a person who lacks confidence, is irresolute and wishy-washy +n10782362 (RAF rank) one who is next below a group captain +n10782471 (sports) player in wing position +n10782791 a gambler who wins a bet +n10782940 the contestant who wins the contest +n10783240 someone who decorates shop windows +n10783539 a person who winks +n10783646 a worker who wipes +n10783734 a worker who installs and repairs electric wiring +n10784113 an upstart who makes conceited, sardonic, insolent comments +n10784544 someone who is believed to heal through magical powers +n10784922 a student who withdraws from the educational institution in which he or she was enrolled +n10785480 an authority who withdraws permission +n10787470 an adult female person (as opposed to a man) +n10788852 a female person who plays a significant role (wife or mistress or girlfriend) in the life of a particular man +n10789415 a man who is unusually successful at an early age +n10789709 someone who is curious about something +n10791115 a young woman who is employed +n10791221 an employee who performs manual or industrial labor +n10791820 a fellow worker +n10791890 a person absorbed by the concerns and interests and pleasures of the present world +n10792335 someone who admires too much to recognize faults +n10792506 an important, honorable person (word is often used humorously) +n10792856 someone who demolishes or dismantles buildings as a job +n10793570 someone who makes or repairs something (usually used in combination) +n10793799 a candidate for public office whose name does not appear on the ballot and so must be written on the ballot by the voters +n10794014 writes (books or stories or articles or the like) professionally (for pay) +n10801561 a student enrolled in (or graduated from) Winchester College +n10801802 a Japanese gangster +n10802507 a military recruit who is assigned menial tasks +n10802621 member of an international gang of Jamaican criminals who sell drugs and violence +n10802953 worker in a railway yard +n10803031 a railroad employer who is in charge of a railway yard +n10803282 (Yiddish) a woman who talks too much; a gossip unable to keep a secret; a woman who spreads rumors and scandal +n10803978 one who practices yoga and has achieved a high level of spiritual insight +n10804287 a teenager or a young adult male +n10804636 a young radical who agitates for reform +n10804732 a member of one or more of the insurgent groups in Turkey in the late 19th century who rebelled against the absolutism of Ottoman rule +n10805501 a Jewish supporter of Zionism +n10806113 the chief person responsible for a zoological garden +n10994097 French diplomat who in 1793 tried to draw the United States into the war between France and England (1763-1834) +n11100798 United States diplomat who recommended a policy of containment in dealing with Soviet aggression (1904-2005) +n11196627 British writer of short stories (1870-1916) +n11242849 British philosopher (born in Austria) who argued that scientific theories can never be proved to be true, but are tested by attempts to falsify them (1902-1994) +n11318824 Irish writer of the horror novel about Dracula (1847-1912) +n11346873 United States physicist who developed the laser and maser principles for producing high-intensity radiation (1915-) +n11448153 a windstorm that lifts up clouds of dust or sand +n11487732 a bright spot on the parhelic circle; caused by diffraction by ice crystals +n11508382 precipitation falling from clouds in the form of ice crystals +n11511327 a bright spot on a planet +n11524451 a persistent and widespread unusual weather condition (especially of unusual temperatures) +n11530008 microscopic plants; bacteria are often considered to be microflora +n11531193 a wild uncultivated plant (especially a wild apple or crabapple tree) +n11531334 a plant that tends to climb and on occasion can grow like a vine +n11532682 cuplike structure around the base of the stalk of certain fungi +n11533212 the fruiting body of a basidiomycete which bears its spores on special cells +n11533999 a part of a plant (e.g., a leaf) that has been modified to provide protection for insects or mites or fungi +n11536567 a plant that reproduces or is reproduced by apomixis +n11536673 a plant that lives in or on water +n11537327 any of numerous plants of the division Bryophyta +n11539289 a moss in which the main axis is terminated by the archegonium (and hence the capsule) +n11542137 any of various pale or ashy mosses of the genus Sphagnum whose decomposed remains form peat +n11542640 any of numerous small green nonvascular plants of the class Hepaticopsida growing in wet places and resembling green seaweeds or leafy mosses +n11544015 a common liverwort +n11545350 Carboniferous fossil fern characterized by a regular arrangement of the leaflets resembling a comb +n11545524 plants having vascular tissue and reproducing by spores +n11545714 any of numerous flowerless and seedless vascular plants having true roots from a rhizome and fronds that uncurl upward; reproduce by spores +n11547562 pteridophytes of other classes than Filicopsida +n11547855 a small usually single-celled asexual reproductive body produced by many nonflowering plants and fungi and some bacteria and protozoans and that are capable of developing into a new individual without sexual fusion +n11548728 a nonmotile spore of red algae +n11548870 thick-walled asexual resting spore of certain fungi and algae +n11549009 an asexually produced fungal spore formed on a conidiophore +n11549245 a thick-walled sexual spore that develops from a fertilized oosphere in some algae and fungi +n11549779 one of the four asexual spores produced within a sporangium +n11549895 an asexual spore of some algae and fungi that moves by means of flagella +n11552133 formerly recognized taxonomic group including all flowerless and seedless plants that reproduce by means of spores: ferns, mosses, algae, fungi +n11552386 plant that reproduces by means of seeds not spores +n11552594 young plant or tree grown from a seed +n11552806 (botany) a plant that completes its entire life cycle within the space of a year +n11552976 (botany) a plant having a life cycle that normally takes two seasons from germination to death to complete; flowering biennials usually bloom and fruit in the second season +n11553240 (botany) a plant lasting for three seasons or more +n11553522 a plant that grows in a moist habitat +n11596108 plants of the class Gymnospermae having seeds not enclosed in an ovary +n11597657 small tropical tree with tiered branches and divaricate branchlets having broad glossy dark green leaves; exploited for its edible young leaves and seeds that provide a fine flour +n11598287 a shrub that is cultivated by Arabs for its leaves which are chewed or used to make tea +n11598686 jointed and nearly leafless desert shrub having reduced scalelike leaves and reddish fleshy seeds +n11598886 Chinese ephedra yielding ephedrine +n11599324 curious plant of arid regions of southwestern Africa having a yard-high and yard-wide trunk like a turnip with a deep taproot and two large persistent woody straplike leaves growing from the base; living relic of a flora long disappeared; some may be 700-5000 years old +n11600372 any tropical gymnosperm of the order Cycadales; having unbranched stems with a crown of fernlike leaves +n11601177 dwarf palmlike cycad of Japan that yields sago +n11601333 southeastern Indian cycad with palmlike foliage +n11601918 any of various cycads of the genus Zamia; among the smallest and most verdant cycads +n11602091 small tough woody zamia of Florida and West Indies and Cuba; roots and half-buried stems yield an arrowroot +n11602478 a small cycad of the genus Ceratozamia having a short scaly woody trunk and fernlike foliage and woody cones; Mexico +n11602873 any cycad of the genus Dioon; handsome palmlike cycads with robust crowns of leaves and rugged trunks +n11603246 any of numerous cycads of the genus Encephalartos having stout cylindrical trunks and a terminal crown of long often spiny pinnate leaves +n11603462 South African cycad; the farinaceous pith of the fruit used as food +n11603835 any treelike cycad of the genus Macrozamia having erect trunks and pinnate leaves and large cones with sometimes edible nuts; Australia +n11604046 large attractive palmlike evergreen cycad of New South Wales +n11608250 a coniferous tree +n11609475 any of several low-growing pines of western North America +n11609684 any of several pinons bearing edible nutlike seeds +n11609862 a small two-needled or three-needled pinon of Mexico and southern Texas +n11610047 small compact two-needled pinon of southwestern United States; important as a nut pine +n11610215 pinon of southwestern United States having solitary needles and often many stems; important as a nut pine +n11610437 two-needled or three-needled pinon mostly of northwestern California coast +n11610602 very small tree similar to Rocky mountain pinon but having a single needle per fascicle; similar to Parry's pinyon in range +n11610823 five-needled pinon of southern California and northern Baja California having (sometimes three-needled or four-needled showing hybridization from Pinus californiarum) +n11611087 large two-needled pine of southeastern United States with light soft wood +n11611233 large two-needled timber pine of southeastern Europe +n11611356 large three-needled pine of the eastern United States and southeastern Canada; closely related to the pond pine +n11611561 large three-needled pine of sandy swamps of southeastern United States; needles longer than those of the northern pitch pine +n11611758 medium-sized two-needled pine of southern Europe having a spreading crown; widely cultivated for its sweet seeds that resemble almonds +n11612018 large five-needled European pine; yields cembra nuts and a resinous exudate +n11612235 the seed of the Swiss pine +n11612349 low shrubby pine of central Europe with short bright green needles in bunches of two +n11612575 small slow-growing pine of western United States similar to the bristlecone pine; chocolate brown bark in plates and short needles in bunches of 5; crown conic but becoming rough and twisted; oldest plant in the world growing to 5000 years in cold semidesert mountain tops +n11612923 any of several five-needled pines with white wood and smooth usually light grey bark when young; especially the eastern white pine +n11613219 tall-growing pine of eastern North America; bark is brown with longitudinal fissures when mature; valued as a timber tree +n11613459 tall pine of western North America with stout blue-green needles; bark is grey-brown with rectangular plates when mature +n11613692 medium-size pine of northwestern Mexico; bark is dark brown and furrowed when mature +n11613867 western North American pine with long needles and very flexible limbs and dark-grey furrowed bark +n11614039 small pine of western North America; having smooth grey-white bark and soft brittle wood; similar to limber pine +n11614250 any of various pines having yellow wood +n11614420 common and widely distributed tall timber pine of western North America having dark green needles in bunches of 2 to 5 and thick bark with dark brown plates when mature +n11614713 tall symmetrical pine of western North America having long blue-green needles in bunches of 3 and elongated cones on spreading somewhat pendulous branches; sometimes classified as a variety of ponderosa pine +n11615026 shrubby two-needled pine of coastal northwestern United States; red to yellow-brown bark fissured into small squares +n11615259 tall subspecies of lodgepole pine +n11615387 tall spreading three-needled pine of southeastern United States having reddish-brown fissured bark and a full bushy upper head +n11615607 slender medium-sized two-needled pine of eastern North America; with yellow-green needles and scaly grey to red-brown fissured bark +n11615812 any of several pines that prefer or endure moist situations such as loblolly pine or longleaf pine +n11615967 large three-needled pine of southeastern United States having very long needles and gnarled twisted limbs; bark is red-brown deeply ridged; an important timber tree +n11616260 large pine of southern United States having short needles in bunches of 2-3 and red-brown bark when mature +n11616486 pine of eastern North America having long needles in bunches of two and reddish bark +n11616662 medium large two-needled pine of northern Europe and Asia having flaking red-brown bark +n11616852 common small shrubby pine of the eastern United States having straggling often twisted or branches and short needles in bunches of 2 +n11617090 tall California pine with long needles in bunches of 3, a dense crown, and dark brown deeply fissured bark +n11617272 small slow-growing upland pine of western United States (Rocky Mountains) having dense branches with fissured rust-brown bark and short needles in bunches of 5 and thorn-tipped cone scales; among the oldest living things some over 4500 years old +n11617631 a small two-needled upland pine of the eastern United States (Appalachians) having dark brown flaking bark and thorn-tipped cone scales +n11617878 medium-sized three-needled pine of the Pacific coast of the United States having a prominent knob on each scale of the cone +n11618079 pine native to Japan and Korea having a wide-spreading irregular crown when mature; grown as an ornamental +n11618290 large Japanese ornamental having long needles in bunches of 2; widely planted in United States because of its resistance to salt and smog +n11618525 medium-sized five-needled pine of southwestern California having long cylindrical cones +n11618861 any of numerous conifers of the genus Larix all having deciduous needlelike leaves +n11619227 medium-sized larch of Canada and northern United States including Alaska having a broad conic crown and rust-brown scaly bark +n11619455 tall larch of western North America have pale green sharply pointed leaves and oblong cones; an important timber tree +n11619687 medium-sized larch of the Rocky Mountains; closely related to Larix occidentalis +n11619845 tall European tree having a slender conic crown, flat needlelike leaves, and hairy cone scales +n11620016 medium-sized larch of northeastern Russia and Siberia having narrowly conic crown and soft narrow bright-green leaves; used in cultivation +n11620389 Chinese deciduous conifer resembling a larch with golden yellow leaves +n11620673 any of various evergreen trees of the genus Abies; chiefly of upland areas +n11621029 any of various true firs having leaves white or silvery white beneath +n11621281 medium to tall fir of western North America having a conic crown and branches in tiers; leaves smell of orange when crushed +n11621547 tall timber tree of central and southern Europe having a regular crown and grey bark +n11621727 medium to tall fir of central to western United States having a narrow erect crown and soft wood +n11621950 medium-sized fir of northeastern North America; leaves smell of balsam when crushed; much used for pulpwood and Christmas trees +n11622184 small fast-growing but short-lived fir of southern Alleghenies similar to balsam fir but with very short leaves +n11622368 lofty fir of the Pacific coast of northwestern America having long curving branches and deep green leaves +n11622591 medium-tall timber tree of the Rocky Mountains having a narrowly conic to columnar crown +n11622771 a pyramidal fir of southwestern California having spiny pointed leaves and cone scales with long spines +n11623105 any cedar of the genus Cedrus +n11623815 cedar of Lebanon and northwestern Syria that attains great age and height +n11623967 tall East Indian cedar having spreading branches with nodding tips; highly valued for its appearance as well as its timber +n11624192 tall Algerian evergreen of Atlas mountains with blue-green leaves; widely planted as an ornamental +n11624531 any coniferous tree of the genus Picea +n11625003 tall pyramidal spruce native to northern Europe having dark green foliage on spreading branches with pendulous branchlets and long pendulous cones +n11625223 medium-sized spruce of California and Oregon having pendulous branches +n11625391 tall spruce of Rocky Mountains and British Columbia with blue-green needles and acutely conic crown; wood used for rough lumber and boxes +n11625632 medium-sized spruce of northeastern North America having short blue-green leaves and slender cones +n11625804 small spruce of boggy areas of northeastern North America having spreading branches with dense foliage; inferior wood +n11626010 tall spruce of northern Europe and Asia; resembles Norway spruce +n11626152 a large spruce that grows only along the northwestern coast of the United States and Canada; has sharp stiff needles and thin bark; the wood has a high ratio of strength to weight +n11626409 evergreen tree of the Caucasus and Asia Minor used as an ornamental having pendulous branchlets +n11626585 tall spruce with blue-green needles and dense conic crown; older trees become columnar with lower branches sweeping downward +n11626826 medium-sized spruce of eastern North America; chief lumber spruce of the area; source of pulpwood +n11627168 an evergreen tree +n11627512 common forest tree of the eastern United States and Canada; used especially for pulpwood +n11627714 medium-sized evergreen of southeastern United States having spreading branches and widely diverging cone scales +n11627908 large evergreen of western United States; wood much harder than Canadian hemlock +n11628087 tall evergreen of western North America; commercially important timber tree +n11628456 tall evergreen timber tree of western North America having resinous wood and short needles +n11628793 lofty douglas fir of northwestern North America having short needles and egg-shaped cones +n11629047 douglas fir of California having cones 4-8 inches long +n11629354 Chinese evergreen conifer discovered in 1955; not yet cultivated elsewhere +n11630017 any of numerous trees of the family Cupressaceae that resemble cedars +n11630489 any of numerous evergreen conifers of the genus Cupressus of north temperate regions having dark scalelike leaves and rounded cones +n11631159 small sometimes shrubby tree native to California; often used as an ornamental; in some classification systems includes the pygmy cypress and the Santa Cruz cypress +n11631405 rare small cypress native to northern California; sometimes considered the same species as gowen cypress +n11631619 rare California cypress taller than but closely related to gowen cypress and sometimes considered the same species +n11631854 Arizona timber tree with bluish silvery foliage +n11631985 relatively low wide-spreading endemic on Guadalupe Island; cultivated for its bluish foliage +n11632167 tall California cypress endemic on Monterey Bay; widely used for ornament as well as reforestation and shelterbelt planting +n11632376 tall spreading evergreen found in Mexico having drooping branches; believed to have been introduced into Portugal from Goa +n11632619 tall Eurasian cypress with thin grey bark and ascending branches +n11632929 evergreen of Tasmanian mountains having sharp-pointed leaves that curve inward +n11633284 a small South American evergreen having coppery bark and pretty foliage +n11634736 tall tree of the Pacific coast of North America having foliage like cypress and cinnamon-red bark +n11635152 slow-growing medium-sized cedar of east coast of the United States; resembles American arborvitae +n11635433 large timber tree of western North America with trunk diameter to 12 feet and height to 200 feet +n11635830 tall evergreen of the Pacific coast of North America often cultivated for ornament +n11636204 tall evergreen of Japan and China yielding valuable soft wood +n11636835 berrylike fruit of a plant of the genus Juniperus especially the berrylike cone of the common juniper +n11639084 any of several attractive trees of southwestern South America and New Zealand and New Caledonia having glossy evergreen leaves and scented wood +n11639306 New Zealand timber tree resembling the cypress +n11639445 evergreen tree of New Zealand resembling the kawaka +n11640132 large fast-growing Chinese monoecious tree having flat bright-green deciduous leaves and small globular cones; commonly cultivated in United States as an ornamental; known as a fossil before being discovered in China +n11643835 any of several Asian and North American conifers of the genera Thuja and Thujopsis +n11644046 large valuable arborvitae of northwestern United States +n11644226 small evergreen of eastern North America having tiny scalelike leaves on flattened branchlets +n11644462 Asiatic shrub or small tree widely planted in United States and Europe; in some classifications assigned to its own genus +n11644872 slow-growing medium-large Japanese evergreen used as an ornamental +n11645163 Asiatic conifers resembling firs +n11645590 newly discovered (1994) pine thought to have been long extinct; Australia; genus and species names not yet assigned +n11645914 any of several tall South American or Australian trees with large cones and edible seeds +n11646167 large Chilean evergreen conifer having intertwined branches and bearing edible nuts +n11646344 evergreen of Australia and Norfolk Island in the South Pacific +n11646517 very tall evergreen of New Caledonia and the New Hebrides similar to norfolk island pine +n11646694 Australian conifer bearing two-inch seeds tasting like roasted chestnuts; among the aborigines the tree is hereditary property protected by law +n11646955 pine of Australia and New Guinea; yields a valuable light even-textured wood +n11647306 any of various trees of the genus Agathis; yield dammar resin +n11647703 tall timber tree of New Zealand having white straight-grained wood +n11647868 native to the Moluccas and Philippines; a source of dammar resin +n11648039 Australian timber tree resembling the kauri but having wood much lighter in weight and softer +n11648268 New Zealand tree with glossy leaves and scaly reddish-brown bark +n11648776 any of several evergreen trees and shrubs of eastern Asia resembling yew and having large seeds enclosed in a fleshy envelope; sometimes cultivated as ornamentals +n11649150 California evergreen having a fruit resembling a nutmeg but with a strong turpentine flavor +n11649359 rare small evergreen of northern Florida; its glossy green leaves have an unpleasant fetid smell when crushed +n11649878 Australasian evergreen conifer having a graceful head of foliage resembling celery that is composed of phyllodes borne in the axils of scalelike leaves +n11650160 medium tall celery pine of Tasmania +n11650307 medium tall celery pine of New Zealand +n11650430 small shrubby celery pine of New Zealand +n11650558 any of various trees having yellowish wood or yielding a yellow extract +n11650759 any of various gymnospermous trees having yellow wood +n11652039 any evergreen in the southern hemisphere of the genus Podocarpus having a pulpy fruit with one hard seed +n11652217 West Indian evergreen with medium to long leaves +n11652376 large Australian tree with straight-grained yellow wood that turns brown on exposure +n11652578 South African tree or shrub having a rounded crown +n11652753 erect or shrubby tree of Africa having ridged dark grey bark and rigid glossy medium to long leaves +n11652966 low wide-spreading coniferous shrub of New Zealand mountains +n11653126 valuable timber tree of New Zealand yielding hard reddish wood used for furniture and bridges and wharves +n11653570 medium-sized tree of South Africa +n11653904 New Zealand evergreen valued for its light easily worked wood +n11654293 tall New Zealand timber tree +n11654438 New Zealand silver pine of conical habit with long slender flexuous branches; adapted to cold wet summers and high altitudes +n11654984 small tropical rain forest tree of Indonesia and Malaysia +n11655152 a rain forest tree or shrub of New Caledonia having a conic crown and pale green sickle-shaped leaves; host species for the rare parasite yew +n11655592 New Zealand shrub +n11655974 timber tree of New Zealand having shiny white wood +n11656123 Tasmanian timber tree with yellow aromatic wavy-grained wood used for carving and ship building; sometimes placed in genus Dacrydium +n11656549 about the hardiest Podocarpaceae species; prostrate spreading shrub similar to mountain rimu; mountains of southern Chile +n11656771 low-growing to prostrate shrub with slender trailing branches; New Zealand +n11657585 medium-sized tree having glossy lanceolate leaves; southern China to Taiwan and southern Japan +n11658331 New Zealand conifer used for lumber; the dark wood is used for interior carpentry +n11658544 conifer of Australia and New Zealand +n11658709 South American evergreen tree or shrub +n11659248 small yew having attractive foliage and partially weeping branches cultivated as an ornamental; mountains of southern Chile +n11659627 a large fast-growing monoecious tropical evergreen tree having large glossy lanceolate leaves; of rain forests of Sumatra and Philippines to northern Queensland +n11660300 tall evergreen having a symmetrical spreading crown and needles growing in whorls that resemble umbrellas at ends of twigs +n11661372 any of numerous evergreen trees or shrubs having red cup-shaped berries and flattened needlelike leaves +n11661909 predominant yew in Europe; extraordinarily long-lived and slow growing; one of the oldest species in the world +n11662128 small or medium irregularly branched tree of the Pacific coast of North America; yields fine hard close-grained wood +n11662371 shrubby hardy evergreen of China and Japan having lustrous dark green foliage; cultivated in the eastern United States +n11662585 small bushy yew of northern Florida having spreading branches and very narrow leaves +n11662937 large yew native to New Caledonia; cultivated in eastern Australia and New Zealand and Hawaii +n11663263 yew of southeastern China, differing from the Old World yew in having white berries +n11664418 deciduous dioecious Chinese tree having fan-shaped leaves and fleshy yellow seeds; exists almost exclusively in cultivation especially as an ornamental street tree +n11665372 plants having seeds in a closed ovary +n11666854 flowering plant with two cotyledons; the stem grows by deposit on its outside +n11668117 a monocotyledonous flowering plant; the stem grows by deposits on its inside +n11669786 a diminutive flower (especially one that is part of a composite flower) +n11669921 a plant cultivated for its blooms or blossoms +n11672269 a flower that blooms in a particular way +n11672400 wild or uncultivated flowering plant +n11674019 flower having no petals +n11674332 the flowering part of a plant or arrangement of flowers on a stalk +n11675025 the bud of a rose +n11675404 the crown of the stamen in plants of the genus Asclepias +n11675738 a coherent mass of pollen grains (as in orchids) +n11676500 the female ovule-bearing part of a flower composed of ovary and style and stigma +n11676743 the enlarged receptacle in which the pistil is borne +n11676850 the stalk of a pistil that raises it above the receptacle +n11677485 an enlargement at the base of the style in some Umbelliferae +n11677902 a slender stalk that furnishes an axis for a carpel +n11678010 the stalk of a corn plant +n11678299 the stalk of a leaflet +n11678377 a carpel with one seed; one of a pair split apart at maturity +n11679378 minute opening in the wall of an ovule through which the pollen tube enters +n11680457 (botany) a slender tubular outgrowth from a spore in germination +n11680596 (botany) a slender tubular outgrowth from a pollen grain when deposited on the stigma for a flower; it penetrates the style and conveys the male gametes to the ovule +n11682659 small asexual reproductive structure in e.g. liverworts and mosses that detaches from the parent and develops into a new individual +n11683216 the seed-producing cone of a cypress tree +n11683838 a gland (often a protuberance or depression) that secretes nectar +n11684264 the ripened and variously modified walls of a plant ovary +n11684499 outermost layer of the pericarp of fruits as the skin of a peach or grape +n11684654 the middle layer of a pericarp +n11685091 a small hard seed found in some fruits +n11685621 narrow elongated seed capsule peculiar to the family Cruciferae +n11686195 a reduced or scarcely developed leaf at the start of a plant's life (i.e., cotyledons) or in the early stages of leaf development +n11686652 the nutritive tissue outside the sac containing the embryo in some seeds +n11686780 a plant that bears fruit once and dies +n11686912 the spore-producing individual or phase in the life cycle of a plant having alternation of generations +n11687071 the gamete-bearing individual or phase in the life cycle of a plant having alternation of generations +n11687432 a plant structure that produces megaspores +n11687789 smaller of the two types of spore produced in heterosporous plants; develops in the pollen sac into a male gametophyte +n11687964 a plant structure that produces microspores +n11688069 in non-flowering plants, a sporophyll that bears only microsporangia +n11688378 primitive cell or group of cells from which a mother cell develops +n11689197 hard shiny grey seed of a bonduc tree; used for making e.g. jewelry +n11689367 hard pearly seeds of an Asiatic grass; often used as beads +n11689483 any of several seeds that yield oil +n11689678 the toxic seed of the castor-oil plant; source of castor oil +n11689815 seed of cotton plants; source of cottonseed oil +n11689957 seed of candlenut tree; source of soil used in varnishes +n11690088 the stone seed of a peach +n11690254 the cuplike or ringlike or tubular structure of a flower which bears the sepals and stamens and calyx (as in Rosaceae) +n11690455 part of the perianth that is usually brightly colored +n11691046 (botany) the whorl of petals of a flower that collectively form an inner floral envelope or layer of the perianth +n11691857 (botany) either of the two parts of a bilabiate corolla or calyx +n11692265 collective term for the outer parts of a flower consisting of the calyx and corolla and enclosing the stamens and pistils +n11692792 pappus of a thistle consisting of silky featherlike hairs attached to the seed-like fruit of a thistle +n11693981 any of several tropical American trees bearing fruit with soft edible pulp +n11694300 small tropical American tree bearing round or oblong fruit +n11694469 tropical American tree grown in southern United States having a whitish pink-tinged fruit +n11694664 small tropical American tree bearing large succulent slightly acid fruit +n11694866 small tropical American tree bearing a bristly heart-shaped acid tropical fruit +n11695085 tropical American tree bearing sweet pulpy fruit with thick scaly rind and shiny black seeds +n11695285 small evergreen tree of tropical America with edible fruit; used chiefly as grafting stock +n11695599 small tree native to the eastern United States having oblong leaves and fleshy fruit +n11695974 evergreen Asian tree with aromatic greenish-yellow flowers yielding a volatile oil; widely grown in the tropics as an ornamental +n11696450 source of most of the lancewood of commerce +n11696935 tropical west African evergreen tree bearing pungent aromatic seeds used as a condiment and in folk medicine +n11697560 any of numerous plants of the genus Berberis having prickly stems and yellow flowers followed by small red berries +n11697802 deciduous shrub of eastern North America whose leaves turn scarlet in autumn and having racemes of yellow flowers followed by ellipsoid glossy red berries +n11698042 upright deciduous European shrub widely naturalized in United States having clusters of juicy berries +n11698245 compact deciduous shrub having persistent red berries; widespread in cultivation especially for hedges +n11699442 ornamental evergreen shrub of Pacific coast of North America having dark green pinnate leaves and racemes of yellow flowers followed by blue-black berries +n11699751 small shrub with grey-green leaves and yellow flowers followed by glaucous blue berries +n11700058 North American herb with poisonous root stock and edible though insipid fruit +n11700279 edible but insipid fruit of the May apple plant +n11700864 deciduous shrubs having aromatic bark; eastern China; southwestern and eastern United States +n11701066 hardy shrub of southeastern United States having clove-scented wood and fragrant red-brown flowers +n11701302 straggling aromatic shrub of southwestern United States having fragrant brown flowers +n11702713 rapidly growing deciduous tree of low mountainsides of China and Japan; grown as an ornamental for its dark blue-green candy-scented foliage that becomes yellow to scarlet in autumn +n11703669 any of various aromatic trees of the laurel family +n11704093 small Mediterranean evergreen tree with small blackish berries and glossy aromatic leaves used for flavoring in cooking; also used by ancient Greeks to crown victors +n11704620 large evergreen tree of warm regions whose aromatic wood yields camphor +n11704791 tropical Asian tree with aromatic yellowish-brown bark; source of the spice cinnamon +n11705171 Chinese tree with aromatic bark; yields a less desirable cinnamon than Ceylon cinnamon +n11705387 aromatic bark of the cassia-bark tree; less desirable as a spice than Ceylon cinnamon bark +n11705573 tropical southeast Asian tree with aromatic bark; yields a bark used medicinally +n11705776 aromatic bark of Saigon cinnamon used medicinally as a carminative +n11706325 deciduous shrub of the eastern United States having highly aromatic leaves and bark and yellow flowers followed by scarlet or yellow berries +n11706761 tropical American tree bearing large pulpy green fruits +n11706942 small tree of southern United States having dark red heartwood +n11707229 yellowwood tree with brittle wood and aromatic leaves and bark; source of sassafras oil; widely distributed in eastern North America +n11707827 Pacific coast tree having aromatic foliage and small umbellate flowers followed by olivelike fruit; yields a hard tough wood +n11708658 any of several evergreen shrubs and small trees of the genus Illicium +n11708857 small shrubby tree with purple flowers; found in wet soils of southeastern United States +n11709045 small shrubby tree of Japan and Taiwan; flowers are not fragrant +n11709205 small tree of China and Vietnam bearing anise-scented star-shaped fruit used in food and medicinally as a carminative +n11709674 any shrub or tree of the genus Magnolia; valued for their longevity and exquisite fragrant blooms +n11710136 evergreen tree of southern United States having large stiff glossy leaves and huge white sweet-smelling flowers +n11710393 small deciduous tree of eastern North America having creamy white flowers and large leaves in formations like umbrellas at the ends of branches +n11710658 small erect deciduous tree with large leaves in coiled formations at branch tips +n11710827 American deciduous magnolia having large leaves and fruit like a small cucumber +n11710987 large deciduous shrub or tree of southeastern United States having huge leaves in dense false whorls and large creamy flowers tinged purple toward the base +n11711289 large deciduous shrub or small tree having large open rosy to purplish flowers; native to Asia; prized as an ornamental in eastern North America +n11711537 deciduous shrubby magnolia from Japan having fragrant white starlike flowers blooming before leaves unfold; grown as an ornamental in United States +n11711764 shrub or small tree having rather small fragrant white flowers; abundant in southeastern United States +n11711971 a genus of flowering tree of the family Magnoliaceae found from Malay to southern China +n11712282 tall North American deciduous timber tree having large tulip-shaped greenish yellow flowers and conelike fruit; yields soft white woods used especially for cabinet work +n11713164 plant of the family Menispermaceae having red or black fruit with crescent- or ring-shaped seeds +n11713370 a woody vine of eastern North America having large oval leaves and small white flowers and purple to blue-black fruits +n11713763 woody vine of southeastern United States resembling the common moonseed but having red fruits +n11714382 East Indian tree widely cultivated in the tropics for its aromatic seed; source of two spices: nutmeg and mace +n11715430 a water lily having large leaves and showy fragrant flowers that float on the water; of temperate and tropical regions +n11715678 a water lily with white flowers +n11716698 of flowing waters of the southeastern United States; may form obstructive mats in streams +n11717399 native to eastern Asia; widely cultivated for its large pink or white flowers +n11717577 water lily of eastern North America having pale yellow blossoms and edible globular nutlike seeds +n11718296 common aquatic plant of eastern North America having floating and submerged leaves and white yellow-spotted flowers +n11718681 aquatic plant with floating oval leaves and purple flowers; in lakes and slow-moving streams; suitable for aquariums +n11719286 any of numerous plants widely cultivated for their showy single or double red or pink or white flowers +n11720353 any of various plants of the genus Ranunculus +n11720643 perennial European buttercup with yellow spring flowers widely naturalized especially in eastern North America +n11720891 plant of ponds and slow streams having submerged and floating leaves and white flowers; Europe and North America +n11721337 perennial herb native to Europe but naturalized elsewhere having heart-shaped leaves and yellow flowers resembling buttercups; its tuberous roots have been used as a poultice to relieve piles +n11721642 semiaquatic Eurasian perennial crowfoot with leaves shaped like spears; naturalized in New Zealand +n11722036 semiaquatic European crowfoot with leaves shaped like spears +n11722342 perennial of western North America +n11722466 perennial European herb with long creeping stolons +n11722621 annual herb growing in marshy places +n11722982 any of various usually poisonous plants of the genus Aconitum having tuberous roots and palmately lobed leaves and blue or white flowers +n11723227 a poisonous herb native to northern Europe having hooded blue-purple flowers; the dried leaves and roots yield aconite +n11723452 poisonous Eurasian perennial herb with broad rounded leaves and yellow flowers and fibrous rootstock +n11723770 a plant of the genus Actaea having acrid poisonous berries +n11723986 a poisonous berry of a plant of the genus Actaea +n11724109 North American perennial herb with alternately compound leaves and racemes of small white flowers followed by bright red oval poisonous berries +n11724660 Eurasian herb cultivated for its deep red flowers with dark centers +n11725015 any woodland plant of the genus Anemone grown for its beautiful flowers and whorls of dissected leaves +n11725311 silky-foliaged herb of the Rocky Mountains with bluish-white flowers +n11725480 common summer-flowering woodland herb of Labrador to Colorado +n11725623 a common North American anemone with cylindrical fruit clusters resembling thimbles +n11725821 European anemone with solitary white flowers common in deciduous woodlands +n11725973 common anemone of eastern North America with solitary pink-tinged white flowers +n11726145 thimbleweed of northern North America +n11726269 Eurasian herb with solitary nodding fragrant white flowers +n11726433 thimbleweed of central and eastern North America +n11726707 woodland flower native to eastern North America having cup-shaped flowers reminiscent of anemone but more delicate +n11727091 a plant of the genus Aquilegia having irregular showy spurred flowers; north temperate regions especially mountains +n11727358 columbine of eastern North America having long-spurred red flowers +n11727540 columbine of the Rocky Mountains having long-spurred blue flowers +n11727738 common European columbine having variously colored (white or blue to purple or red) short-spurred flowers; naturalized in United States +n11728099 swamp plant of Europe and North America having bright yellow flowers resembling buttercups +n11728769 bugbane of the eastern United States having erect racemes of white flowers +n11728945 North American bugbane found from Maine and Ontario to Wisconsin and south to Georgia +n11729142 bugbane of Siberia and eastern Asia having ill-smelling green-white flowers +n11729478 any of various ornamental climbing plants of the genus Clematis usually having showy flowers +n11729860 erect clematis of Florida having pink to purple flowers +n11730015 climber of southern United States having bluish-purple flowers +n11730458 Chinese clematis with serrate leaves and large yellow flowers +n11730602 woody vine of Texas having showy solitary nodding scarlet flowers +n11730750 woody vine of the southern United States having purple or blue flowers with leathery recurved sepals +n11730933 scandent subshrub of southeastern United States having large red-purple bell-shaped flowers with leathery recurved sepals +n11731157 common climber of eastern North America that sprawls over other plants and bears numerous panicles of small creamy white flowers +n11731659 climber of northeastern North America having waxy purplish-blue flowers +n11732052 low-growing perennial of North America woodlands having trifoliate leaves and yellow rootstock and white flowers +n11732567 commonly cultivated larkspur of southern Europe having unbranched spikelike racemes of blue or sometimes purplish or pinkish flowers; sometime placed in genus Delphinium +n11733054 any plant of the genus Delphinium having palmately divided leaves and showy spikes of variously colored spurred flowers; some contain extremely poisonous substances +n11733312 any of numerous cultivated plants of the genus Delphinium +n11733548 small Old World perennial herb grown for its bright yellow flowers which appear in early spring often before snow is gone +n11734493 slightly hairy perennial having deep green leathery leaves and flowers that are ultimately purplish-green +n11734698 deciduous plant with large deep green pedate leaves and nodding saucer-shaped green flowers +n11735053 any of several plants of the genus Hepatica having three-lobed leaves and white or pinkish flowers in early spring; of moist and mossy subalpine woodland areas of north temperate regions +n11735570 perennial herb of northeastern United States having a thick knotted yellow rootstock and large rounded leaves +n11735977 slender erect perennial of eastern North America having tuberous roots and pink-tinged white flowers; resembles meadow rue +n11736362 spectacular perennial native of wet montane grasslands of Peru; formerly included in genus Ranunculus +n11736694 any plant of the genus Nigella +n11736851 European garden plant having finely cut leaves and white or pale blue flowers +n11737009 nigella of Spain and southern France +n11737125 herb of the Mediterranean region having pungent seeds used like those of caraway +n11737534 any plant of the genus Pulsatilla; sometimes included in genus Anemone +n11738547 any of various herbs of the genus Thalictrum; sometimes rhizomatous or tuberous perennials found in damp shady places and meadows or stream banks; have lacy foliage and clouds of small purple or yellow flowers +n11738997 tall perennial of the eastern United States having large basal leaves and white summer flowers +n11739365 any of several plants of the genus Trollius having globose yellow flowers +n11739978 South American evergreen tree yielding winter's bark and a light soft wood similar to basswood +n11740414 evergreen shrub or small tree whose foliage is conspicuously blotched with red and yellow and having small black fruits +n11741175 bog shrub of north temperate zone having bitter-tasting fragrant leaves +n11741350 any shrub or small tree of the genus Myrica with aromatic foliage and small wax-coated berries +n11741575 evergreen aromatic shrubby tree of southeastern United States having small hard berries thickly coated with white wax used for candles +n11741797 deciduous aromatic shrub of eastern North America with grey-green wax-coated berries +n11742310 deciduous shrub of eastern North America with sweet scented fernlike leaves and tiny white flowers +n11742878 very small deciduous dioecious tree or shrub of damp habitats in southeastern United States having extremely light wood +n11744011 rush of Australia +n11744108 low-growing annual rush of damp low-lying ground; nearly cosmopolitan +n11744471 tufted wiry rush of wide distribution +n11745817 any of various trees or shrubs having mottled or striped wood +n11746600 tropical American and east African tree with strikingly marked hardwood used in cabinetwork +n11747468 an erect or climbing bean or pea plant of the family Leguminosae +n11748002 the fruit or seed of any of various bean or pea plants consisting of a case that splits along both sides when ripe and having the seeds attach to one side of the case +n11748811 underground pod of the peanut vine +n11749112 West Indian tree yielding a fine grade of green ebony +n11749603 Brazilian tree with handsomely marked wood +n11750173 fragrant black nutlike seeds of the tonka bean tree; used in perfumes and medicines and as a substitute for vanilla +n11750508 West Indian locust tree having pinnate leaves and panicles of large white or purplish flowers; yields very hard tough wood +n11750989 erect annual or biennial plant grown extensively especially for hay and soil improvement +n11751765 either of two Australian plants of the genus Swainsona that are poisonous to sheep +n11751974 erect or trailing perennial of eastern Australia having axillary racemes of blue to purple or red flowers +n11752578 a plant of the genus Trifolium +n11752798 European mountain clover with fragrant usually pink flowers +n11752937 clover native to Ireland with yellowish flowers; often considered the true or original shamrock +n11753143 southern European annual with spiky heads of crimson flower; extensively cultivated in United States for forage +n11753355 erect to decumbent short-lived perennial having red-purple to pink flowers; the most commonly grown forage clover +n11753562 clover of western United States +n11753700 creeping European clover having white to pink flowers and bright green leaves; naturalized in United States; widely grown for forage +n11754893 any of various tropical shrubs or trees of the genus Mimosa having usually yellow flowers and compound leaves +n11756092 any of various spiny trees or shrubs of the genus Acacia +n11756329 source of a wood mentioned frequently in the Bible; probably a species of genus Acacia +n11756669 any of various Australasian trees yielding slender poles suitable for wattle +n11756870 Australian tree that yields tanning materials +n11757017 scrubby Australian acacia having extremely foul-smelling blossoms +n11757190 East Indian spiny tree having twice-pinnate leaves and yellow flowers followed by flat pods; source of black catechu +n11757653 evergreen Australasian tree having white or silvery bark and young leaves and yellow flowers +n11757851 tropical American thorny shrub or small tree; fragrant yellow flowers used in making perfumery +n11758122 tall Australian acacia yielding highly valued black timber +n11758276 shrubby Australian tree having clusters of fragrant golden yellow flowers; widely cultivated as an ornamental +n11758483 African tree supposed to mark healthful regions +n11758799 East Indian tree with racemes of yellow-white flowers; cultivated as an ornamental +n11759224 any of numerous trees of the genus Albizia +n11759404 attractive domed or flat-topped Asiatic tree having bipinnate leaves and flowers with long silky stamens +n11759609 large spreading Old World tree having large leaves and globose clusters of greenish-yellow flowers and long seed pods that clatter in the wind +n11759853 large ornamental tropical American tree with bipinnate leaves and globose clusters of flowers with crimson stamens and seed pods that are eaten by cattle +n11760785 any of various shrubs and small trees valued for their fine foliage and attractive spreading habit and clustered white to deep pink or red flowers +n11761202 tropical South American tree having a wide-spreading crown of bipinnate leaves and coiled ear-shaped fruits; grown for shade and ornament as well as valuable timber +n11761650 any tree or shrub of the genus Inga having pinnate leaves and showy usually white flowers; cultivated as ornamentals +n11761836 ornamental evergreen tree with masses of white flowers; tropical and subtropical America +n11762018 tropical tree of Central America and West Indies and Puerto Rico having spikes of white flowers; used as shade for coffee plantations +n11762433 low scrubby tree of tropical and subtropical North America having white flowers tinged with yellow resembling mimosa and long flattened pods +n11762927 a tree of the West Indies and Florida and Mexico; resembles tamarind and has long flat pods +n11763142 West Indian tree yielding a hard dark brown wood resembling mahogany in texture and value +n11763625 any of several Old World tropical trees of the genus Parkia having heads of red or yellow flowers followed by pods usually containing edible seeds and pulp +n11763874 tall evergreen rain forest tree with wide-spreading crown having yellow-white flowers; grown as an ornamental in parks and large gardens +n11764478 common thorny tropical American tree having terminal racemes of yellow flowers followed by sickle-shaped or circinate edible pods and yielding good timber and a yellow dye and mucilaginous gum +n11764814 erect shrub with small if any spines having racemes of white to yellow flowers followed by curved pointed pods and black shiny seeds; West Indies and Florida +n11765568 thorny deep-rooted drought-resistant shrub native to southwestern United States and Mexico bearing pods rich in sugar and important as livestock feed; tends to form extensive thickets +n11766046 mesquite pod used in tanning and dyeing +n11766189 shrub or small tree of southwestern United States and northwestern Mexico having spirally twisted pods +n11766432 spirally twisted sweet pod of screwbean mesquite that is used for fodder or ground into meal for feed +n11767354 any of several poisonous perennial plants of the genus Apocynum having acrid milky juice and bell-shaped white or pink flowers and a very bitter root +n11767877 Canadian dogbane yielding a tough fiber used as cordage by Native Americans; used in folk medicine for pain or inflammation in joints +n11768816 evergreen shrub or tree of South Africa +n11769176 South African shrub having a swollen succulent stem and bearing showy pink and white flowers after the leaves fall; popular as an ornamental in tropics +n11769621 a plant of the genus Allamanda having large showy funnel-shaped flowers in terminal cymes +n11769803 vigorous evergreen climbing plant of South America having glossy leathery foliage and golden yellow flowers +n11770256 evergreen tree of eastern Asia and Philippines having large leathery leaves and small green-white flowers in compact cymes; bark formerly used medicinally +n11771147 evergreen woody twiner with large glossy leaves and showy corymbs of fragrant white trumpet-shaped flowers +n11771539 a shrub of the genus Carissa having fragrant white flowers and plumlike red to purple-black fruits +n11771746 South African shrub having forked spines and plumlike fruit; frequently used as hedging +n11771924 very large closely branched South African shrub having forked bright green spines and shiny leaves +n11772408 commonly cultivated Old World woody herb having large pinkish to red flowers +n11772879 tropical Asian tree with hard white wood and bark formerly used as a remedy for dysentery and diarrhea +n11773408 shrubby climber having glossy leaves and white funnel-shaped flowers with yellow throats +n11773628 woody vine of Argentina grown as an ornamental for its glossy leaves and racemes of large fragrant funnel-shaped creamy-white flowers +n11773987 an ornamental but poisonous flowering shrub having narrow evergreen leaves and clusters of fragrant white to pink or red flowers: native to East Indies but widely cultivated in warm regions +n11774513 any of various tropical American deciduous shrubs or trees of the genus Plumeria having milky sap and showy fragrant funnel-shaped variously colored flowers +n11774972 tall sparingly branched conical tree having large fragrant yellow flowers with white centers +n11775340 any shrub or small tree of the genus Rauwolfia having leaves in whorls and cymose flowers; yield substances used medicinally especially as emetics or purgatives or antihypertensives +n11775626 East Indian climbing shrub with twisted limbs and roots resembling serpents +n11776234 plant that is a source of strophanthin +n11777080 tropical American shrub or small tree having glossy dark green leaves and fragrant saffron yellow to orange or peach- colored flowers; all parts highly poisonous +n11778092 widely cultivated as a groundcover for its dark green shiny leaves and usually blue-violet flowers +n11778257 plant having variegated foliage and used for window boxes +n11779300 any plant of the family Araceae; have small flowers massed on a spadix surrounded by a large spathe +n11780148 common European arum with lanceolate spathe and short purple spadix; emerges in early spring; source of a starch called arum +n11780424 ornamental plant of Middle East cultivated for its dark purple spathe +n11781176 the aromatic root of the sweet flag used medicinally +n11782036 any plant of the genus Alocasia having large showy basal leaves and boat-shaped spathe and reddish berries +n11782266 large evergreen with extremely large erect or spreading leaves; cultivated widely in tropics for its edible rhizome and shoots; used in wet warm regions as a stately ornamental +n11782761 any plant of the genus Amorphophallus +n11782878 putrid-smelling aroid of southeastern Asia (especially the Philippines) grown for its edible tuber +n11783162 foul-smelling somewhat fleshy tropical plant of southeastern Asia cultivated for its edible corms or in the greenhouse for its large leaves and showy dark red spathe surrounding a large spadix +n11783920 any of various tropical American plants cultivated for their showy foliage and flowers +n11784126 commonly cultivated anthurium having bright scarlet spathe and spadix +n11784497 common American spring-flowering woodland herb having sheathing leaves and an upright club-shaped spadix with overarching green and purple spathe producing scarlet berries +n11785276 tuberous perennial having a cowl-shaped maroon or violet-black spathe; Mediterranean; Canaries; Azores +n11785668 any plant of the genus Caladium cultivated for their ornamental foliage variously patterned in white or pink or red +n11785875 most popular caladium; cultivated in many varieties since the late 19th century +n11786131 plant of wetlands and bogs of temperate regions having small greenish flowers partly enclosed in a white spathe and red berries +n11786539 herb of the Pacific islands grown throughout the tropics for its edible root and in temperate areas as an ornamental for its large glossy leaves +n11786843 edible starchy tuberous root of taro plants +n11787190 any plant of the genus Cryptocoryne; evergreen perennials growing in fresh or brackish water; tropical Asia +n11788039 any plant of the genus Dracontium; strongly malodorous tropical American plants usually with gigantic leaves +n11788727 evergreen liana widely cultivated for its variegated foliage +n11789066 clump-forming deciduous perennial swamp plant of western North America similar to Symplocarpus foetidus but having a yellow spathe +n11789438 any plant of the genus Monstera; often grown as houseplants +n11789589 tropical American vine having roots that hang like cords and cylindrical fruit with a pineapple and banana flavor +n11789962 any plant of the genus Nephthytis +n11790089 tropical rhizomatous plant cultivated as an ornamental for its large sagittate leaves +n11790788 an aquatic plant of the genus Peltandra; North America +n11790936 perennial herb of the eastern United States having arrowhead-shaped leaves and an elongate pointed spathe and green berries +n11791341 often grown as a houseplant +n11791569 pantropical floating plant forming a rosette of wedge-shaped leaves; a widespread weed in rivers and lakes +n11792029 any of various tropical lianas of the genus Scindapsus +n11792341 any of various plants of the genus Spathiphyllum having a white or green spathe and a spike of fragrant flowers and often cultivated as an ornamental +n11792742 deciduous perennial low-growing fetid swamp plant of eastern North America having minute flowers enclosed in a mottled greenish or purple cowl-shaped spathe +n11793403 tropical American aroid having edible tubers that are cooked and eaten like yams or potatoes +n11793779 South African plant widely cultivated for its showy pure white spathe and yellow spadix +n11794024 calla having a rose-colored spathe +n11794139 any of several callas of the genus Zantedeschia having yellow spathes +n11794519 any small or minute aquatic plant of the family Lemnaceae that float on or near the surface of shallow ponds +n11795049 of temperate regions except eastern Asia and Australia +n11795216 cosmopolitan in temperate regions except North America +n11795580 cosmopolitan except South America and New Zealand and some oceanic islands +n11796005 any of various aquatic plants of the genus Wolffia; throughout warmer regions of the world +n11796188 smallest flowering plants known; of the Americas +n11797321 any of various plants of the genus Aralia; often aromatic plants having compound leaves and small umbellate flowers +n11797508 small deciduous clump-forming tree or shrub of eastern United States +n11797981 unarmed woody rhizomatous perennial plant distinguished from wild sarsaparilla by more aromatic roots and panicled umbels; southeastern North America to Mexico +n11798270 bristly herb of eastern and central North America having black fruit and medicinal bark +n11798496 deciduous clump-forming Asian shrub or small tree; adventive in the eastern United States +n11798688 similar to American angelica tree but less prickly; China +n11798978 Old World vine with lobed evergreen leaves and black berrylike fruits +n11799331 small roundheaded New Zealand tree having large resinous leaves and panicles of green-white flowers +n11799732 Chinese herb with palmately compound leaves and small greenish flowers and forked aromatic roots believed to have medicinal powers +n11800236 aromatic root of ginseng plants +n11800565 erect evergreen shrub or small tree of Australia and northern New Guinea having palmately compound leaves +n11801392 creeping plant having curving flowers thought to resemble fetuses; native to Europe; naturalized Great Britain and eastern North America +n11801665 hardy deciduous vine having large leaves and flowers with the calyx tube curved like the bowl of a pipe +n11801891 birthwort of the eastern United States woodlands +n11802410 deciduous low-growing perennial of Canada and eastern and central United States +n11802586 evergreen low-growing perennial having mottled green and silvery-grey heart-shaped pungent leaves; Virginia to South Carolina +n11802800 wild ginger having persistent heart-shaped pungent leaves; West Virginia to Alabama +n11802995 thick creeping evergreen herb of western Europe +n11805255 a plant of the family Caryophyllaceae +n11805544 European annual having large trumpet-shaped reddish-purple flowers and poisonous seed; a common weed in grainfields and beside roadways; naturalized in America +n11805956 low-growing chiefly perennial plant usually with small white flowers suitable for e.g. rock gardens +n11806219 boreal or alpine sandwort +n11806369 deep-rooted perennial of southeastern United States +n11806521 perennial succulent herb with small solitary axillary or terminal flowers +n11806679 low perennial tufted plant of southeastern North America +n11806814 Eurasian annual sprawling plant naturalized throughout North America +n11807108 any of various plants related to the common chickweed +n11807525 chickweed with hairy silver-grey leaves and rather large white flowers +n11807696 widespread in the Arctic and on mountains in Europe +n11807979 any of various flowers of plants of the genus Dianthus cultivated for their fragrant flowers +n11808299 Eurasian pink widely cultivated for its flat-topped dense clusters of varicolored flowers +n11808468 Eurasian plant with pink to purple-red spice-scented usually double flowers; widely cultivated in many varieties and many colors +n11808721 Chinese pink with deeply toothed rose-lilac flowers with a purplish eye; usually raised as an annual +n11808932 a flowering variety of China pink distinguished by jagged-edged petals +n11809094 low-growing loosely mat-forming Eurasian pink with a single pale pink flower with a crimson center +n11809271 mat-forming perennial of central Europe with large fragrant pink or red flowers +n11809437 much-branched pink with flowers in clusters; closely related to sweet William +n11809594 European pink cultivated for its very fragrant pink or rosy flowers +n11809754 Eurasian perennial pink having fragrant lilac or rose flowers with deeply fringed margins +n11810030 spiny-leaved perennial herb of southern Europe having terminal clusters of small flowers +n11810358 tall plant with small lance-shaped leaves and numerous tiny white or pink flowers +n11811059 glabrous annual with slender taproot and clusters of white flowers; western Europe especially western Mediterranean and Atlantic coastal areas +n11811473 mostly perennial herbs with sticky stems that catch insects; widespread in north temperate zone +n11811706 common perennial native to Europe and western Asia having usually pink flowers with ragged petals +n11811921 Eurasian garden perennial having scarlet flowers in dense terminal heads +n11812094 an old cottage garden plant of southeastern Europe widely cultivated for its attractive white woolly foliage and showy crimson flowers +n11812910 low-growing herb having clusters of small white four-petaled flowers +n11813077 loosely matted plant with moss-like foliage studded with tiny starry four-petaled white blossoms; mountains of central and southern Europe +n11814584 plant of European origin having pink or white flowers and leaves yielding a detergent when bruised +n11814996 widely distributed low-growing Eurasian herb having narrow leaves and inconspicuous green flowers +n11815491 any plant of the genus Silene +n11815721 tuft- or mat-forming dwarf perennial of Arctic regions of western and central Europe and North America +n11815918 perennial of eastern and central North America having short-stalked pink or white flowers in hairy clusters +n11816121 biennial European catchfly having red or pink flowers; sometimes placed in genus Lychnis +n11816336 bluish-green herb having sticky stems and clusters of large evening-opening white flowers with much-inflated calyx; sometimes placed in genus Lychnis +n11816649 perennial herb of eastern North America, having red flowers with narrow notched petals +n11816829 perennial of Arctic Europe having large white flowers with inflated calyx +n11817160 small European weed with whorled leaves and white flowers +n11817501 prostrate weedy herb with tiny pink flowers; widespread throughout Europe and Asia on sand dunes and heath and coastal cliffs; naturalized in eastern North America +n11817914 any of various plants of the genus Stellaria +n11818069 a common low-growing annual garden weed with small white flowers; cosmopolitan; so-called because it is eaten by chickens +n11818636 European annual with pale rose-colored flowers; cultivated flower or self-sown grainfield weed; introduced in North America; sometimes classified as a soapwort +n11819509 low-growing South African succulent plant having a capsular fruit containing edible pulp +n11819912 low-growing showy succulent annual of South Africa having white or pink or red or orange flowers and spatulate leaves covered in papillae that resemble small crystals +n11820965 any of several South African plants of the genus Mesembryanthemum cultivated for showy pink or white flowers +n11821184 Old World annual widely naturalized in warm regions having white flowers and fleshy foliage covered with hairs that resemble ice +n11822300 coarse sprawling Australasian plant with red or yellow flowers; cultivated for its edible young shoots and succulent leaves +n11823043 any of various plants of the genus Amaranthus having dense plumes of green or red flowers; often cultivated for food +n11823305 seed of amaranth plants used as a native cereal in Central and South America +n11823436 bushy plant of western United States +n11823756 tall showy tropical American annual having hairy stems and long spikes of usually red flowers above leaves deeply flushed with purple; seeds often used as cereal +n11824146 leaves sometimes used as potherbs; seeds used as cereal; southern United States to Central America; India and China +n11824344 erect annual of tropical central Asia and Africa having a pair of divergent spines at most leaf nodes +n11824747 prolific South American aquatic weed having grasslike leaves and short spikes of white flowers; clogs waterways with dense floating masses +n11825351 garden annual with featherlike spikes of red or yellow flowers +n11825749 any of various plants of the genus Froelichia found in sandy soils and on rocky slopes in warmer regions of America; grown for their spikes of woolly white flowers +n11826198 tropical American herb having rose to red or purple flowers that can be dried without losing color +n11826569 any plant of the genus Iresine having colored foliage +n11827541 low-growing strong-smelling coastal shrub of warm parts of the New World having unisexual flowers in conelike spikes and thick succulent leaves +n11828577 common weedy European plant introduced into North America; often used as a potherb +n11828973 European plant naturalized in North America; often collected from the wild as a potherb +n11829205 Eurasian aromatic oak-leaved goosefoot with many yellow-green flowers; naturalized North America +n11829672 annual European plant with spikes of greenish flowers and leaves that are white and hairy on the underside; common as a weed in North America +n11829922 herb considered fatal to swine +n11830045 European annual with coarsely dentate leaves; widespread in United States and southern Canada +n11830252 common Eurasian weed; naturalized in United States +n11830400 European goosefoot with strong-scented foliage; adventive in eastern North America +n11830714 any of various herbaceous plants of the genus Atriplex that thrive in deserts and salt marshes +n11830906 any of various shrubby plants of the genus Atriplex that thrive in dry alkaline soil +n11831100 Asiatic plant resembling spinach often used as a potherb; naturalized in Europe and North America +n11831297 handsome low saltbush of arid southwestern United States and Mexico having blue-green prickly-edged leaves often used for Christmas decoration +n11831521 spiny shrub with silvery-scurfy foliage of alkaline plains of southwestern United States and Mexico +n11832214 biennial Eurasian plant usually having a swollen edible root; widely cultivated as a food crop +n11832480 beet having a massively swollen red root; widely grown for human consumption +n11832671 beet lacking swollen root; grown as a vegetable for its edible leaves and stalks +n11832899 beet with a large yellowish root; grown chiefly as cattle feed +n11833373 bushy annual weed of central North America having greenish flowers and winged seeds +n11833749 a coarse annual herb introduced into North America from Siberia; dangerous to sheep and cattle on western rangelands because of its high oxalate content +n11834272 fleshy maritime plant having fleshy stems with rudimentary scalelike leaves and small spikes of minute flowers; formerly used in making glass +n11834654 bushy plant of Old World salt marshes and sea beaches having prickly leaves; burned to produce a crude soda ash +n11834890 prickly bushy Eurasian plant; a troublesome weed in central and western United States +n11835251 low hardy much-branched spiny shrub common in alkaline soils of western America +n11836327 viscid branched perennial of the southwestern United States and northern Mexico having tuberous roots and deep red flowers +n11836722 any of various plants of the genus Abronia of western North America and Mexico having flowers resembling verbena +n11837204 taller than Abronia elliptica and having night-blooming flowers +n11837351 plant having hemispherical heads of yellow trumpet-shaped flowers; found in coastal dunes from California to British Columbia +n11837562 plant having hemispherical heads of wine-red flowers; found in coastal dunes from California to Mexico +n11837743 prostrate herb having heads of deep pink to white flowers; found in coastal dunes from British Columbia to Baja California +n11837970 soft-haired sticky plant with heads of bright pink trumpet-shaped flowers; found in sandy desert soil; after ample rains may carpet miles of desert with pink from the southwestern United States to northern Mexico +n11838413 trailing plant having crowded clusters of 3 brilliant deep pink flowers resembling a single flower blooming near the ground; found in dry gravelly or sandy soil; southwestern United States and Mexico +n11838916 any of several South American ornamental woody vines of the genus Bougainvillea having brilliant red or purple flower bracts; widely grown in warm regions +n11839460 a plant of the genus Mirabilis +n11839568 any of several plants of the genus Mirabilis having flowers that open in late afternoon +n11839823 common garden plant of North America having fragrant red or purple or yellow or white flowers that open in late afternoon +n11840067 California four o'clock with purple-red flowers +n11840246 leafy wildflower having fragrant slender white or pale pink trumpet-shaped flowers; southwestern United States and northern Mexico +n11840476 wildflower having vibrant deep pink tubular evening-blooming flowers; found in sandy and desert areas from southern California to southern Colorado and into Mexico +n11840764 leafy wildflower with lavender-pink flowers that open in the evening and remain through cool part of the next day; found in open woods or brush in mountains of southern Colorado to Arizona and into Mexico +n11841247 small spiny West Indian tree +n11843441 commonly cultivated tropical American cactus having slender creeping stems and very large showy crimson flowers that bloom for several days +n11844371 extremely large treelike cactus of desert regions of southwestern United States having a thick columnar sparsely branched trunk bearing white flowers and edible red pulpy fruit +n11844892 any of several cacti of the genus Cereus +n11845557 any cactus of the genus Echinocactus; strongly ribbed and very spiny; southwestern United States to Brazil +n11845793 cactus of the genus Echinocactus having stout sharp spines +n11845913 large cactus of east central Mexico having golden to pale yellow flowers and spines +n11846312 cactus of the genus Echinocereus +n11846425 a stout cylindrical cactus of the southwest United States and adjacent Mexico +n11846765 any cactus of the genus Epiphyllum having flattened jointed irregularly branching stems and showy tubular flowers +n11847169 a cactus of the genus Ferocactus: unbranched barrel-shaped cactus having deep ribs with numerous spines and usually large funnel-shaped flowers followed by dry fruits +n11848479 any of several cacti of the genus Hylocereus +n11848867 tall treelike Mexican cactus with edible red fruit +n11849271 a small spineless globe-shaped cactus; source of mescal buttons +n11849467 the button-shaped top of the mescal cactus; a source of psilocybin +n11849871 any cactus of the genus Mammillaria +n11849983 a low tuberculate cactus with white feathery spines; northeastern Mexico +n11850521 arborescent cactus of western Mexico bearing a small oblong edible berrylike fruit +n11850918 small clustering cactus of southwestern United States; a threatened species +n11851258 any of several cacti of the genus Nopalea resembling prickly pears +n11851578 cacti having spiny flat joints and oval fruit that is edible in some species; often used as food for stock +n11851839 arborescent cacti having very spiny cylindrical stem segments; southwestern United States and Mexico +n11852028 cactus having yellow flowers and purple fruits +n11852148 tropical American prickly pear of Jamaica +n11852531 West Indian woody climber with spiny stems and numerous fragrant white flowers in panicles followed by small yellow to orange fruits +n11853079 a plant of the genus Rhipsalis +n11853356 epiphytic cactus of Brazilian ancestry widely cultivated as a houseplant having jointed flat segments and usually rose-purple flowers that bloom in winter +n11853813 any of several night-blooming cacti of the genus Selenicereus +n11854479 South American jointed cactus with usually red flowers; often cultivated as a houseplant; sometimes classified as genus Schlumbergera +n11855274 perennial of the genus Phytolacca +n11855435 pokeweed of southeastern Asia and China +n11855553 tall coarse perennial American herb having small white flowers followed by blackish-red berries on long drooping racemes; young fleshy stems are edible; berries and root are poisonous +n11855842 fast-growing herbaceous evergreen tree of South America having a broad trunk with high water content and dark green oval leaves +n11856573 bushy houseplant having white to pale pink flowers followed by racemes of scarlet berries; tropical Americas +n11857696 a plant of the genus Portulaca having pink or red or purple or white ephemeral flowers +n11857875 widely cultivated in many varieties for its fleshy moss-like foliage and profusion of brightly colored flowers +n11858077 weedy trailing mat-forming herb with bright yellow flowers cultivated for its edible mildly acid leaves eaten raw or cooked especially in Indian and Greek and Middle Eastern cuisine; cosmopolitan +n11858703 a plant of the genus Calandrinia +n11858814 succulent carpet-forming plant having small brilliant reddish-pink flowers; southwestern United States +n11859275 similar to Claytonia virginica but having usually pink flowers; eastern North America +n11859472 small slender plant having one pair of succulent leaves at the middle of the stem and a loose raceme of white or pink or rose bowl-shaped flowers and an edible corm +n11859737 small cormous perennial grown for its low rosette of succulent foliage and racemes of pink-tinged white flowers; eastern North America +n11860208 evergreen perennial having a dense basal rosette of long spatula-shaped leaves and panicles of pink or white-and-red-striped or pink-purple flowers; found on cliffs and in rock crevices in mountains of southwestern Oregon and northern California +n11860555 showy succulent ground-hugging plant of Rocky Mountains regions having deep to pale pink flowers and fleshy farinaceous roots; the Montana state flower +n11861238 succulent plant with mostly basal leaves; stem bears 1 pair of broadly ovate or heart-shaped leaves and a loose raceme of 3-10 white flowers; western North America +n11861487 small Indian lettuce of northern regions +n11861641 a floating or creeping Indian lettuce having terminal racemes of pale rose flowers; wet areas at high elevations of western North America +n11861853 succulent herb sometimes grown as a salad or pot herb; grows on dunes and waste ground of Pacific coast of North America +n11862835 plant with fleshy roots and erect stems with narrow succulent leaves and one reddish-orange flower in each upper leaf axil; southwestern United States; Indians once cooked the fleshy roots +n11863467 low plant with crowded narrow succulent leaves and fairly large deep pink axillary flowers that seem to sit on the ground; southwestern United States +n11863877 erect plant with tuberous roots and terminal panicles of red to yellow flowers; southwestern North America to Central America; widely introduced elsewhere +n11865071 any of numerous plants of the genus Capparis +n11865276 small Australian tree bearing edible fruit resembling the pomegranate +n11865429 shrub of southern Florida to West Indies +n11865574 shrub or small tree of southern Florida to Central and South America +n11865874 prostrate spiny shrub of the Mediterranean region cultivated for its greenish flower buds which are pickled +n11866248 any of various often strong-smelling plants of the genus Cleome having showy spider-shaped flowers +n11866706 plant of western North America having trifoliate leaves and white or pink spider-shaped flowers; sometimes used as an ornamental +n11867311 strong-scented herb common in southern United States covered with intermixed gland and hairs +n11868814 any of various plants of the family Cruciferae +n11869351 any of various plants of the family Cruciferae with edible leaves that have a pungent taste +n11869689 any of several water-loving cresses +n11870044 any Old World herb of the genus Aethionema; native of sunny limestone habitats +n11870418 European herb that smells like garlic +n11870747 any garden plant of the genus Alyssum having clusters of small yellow or white flowers +n11871059 small grey Asiatic desert plant bearing minute white flowers that rolls up when dry and expands when moist +n11871496 a small invasive self-pollinating weed with small white flowers; much studied by plant geneticists; the first higher plant whose complete genome sequence was described +n11871748 a small noninvasive cross-pollinating plant with white flowers; closely related to Arabidopsis thaliana +n11872146 any of several rock-loving cresses of the genus Arabis +n11872324 North American rock cress having very long curved pods +n11872658 or genus Arabis: erect cress widely distributed throughout Europe +n11873182 the root of the horseradish plant; it is grated or ground and used for seasoning +n11873612 any plant of the genus Barbarea: yellow-flowered Eurasian cresses; widely cultivated for winter salad +n11874081 noxious cress with yellow flowers; sometimes placed in genus Sisymbrium +n11874423 tall European annual with downy grey-green foliage and dense heads of small white flowers followed by hairy pods; naturalized in North America; sometimes a troublesome weed +n11874878 plant of southeastern Europe having yellow flowers like those of mustard and pods with open valves resembling bucklers +n11875523 wild original of cultivated cabbages; common in western coastal Europe +n11875691 any of various cultivars of the genus Brassica oleracea grown for their edible leaves or flowers +n11875938 any of various cultivated cabbage plants having a short thick stalk and large compact head of edible usually green leaves +n11876204 cabbage plant with a compact head of crinkled leaves +n11876432 plant grown for its stout stalks of edible small green heads resembling diminutive cabbages +n11876634 a plant having a large edible head of crowded white flower buds +n11876803 plant with dense clusters of tight green flower buds +n11877193 variety of kale having smooth leaves +n11877283 plant cultivated for its enlarged fleshy turnip-shaped edible stem +n11877473 any of several widely cultivated plants having edible roots +n11877646 widely cultivated plant having a large fleshy edible white or yellow root +n11877860 a cruciferous plant with a thick bulbous edible yellow root +n11878101 plant grown for its pungent edible leafy shoots +n11878283 any of several cruciferous plants of the genus Brassica +n11878633 Asiatic mustard used as a potherb +n11879054 Asiatic plant grown for its cluster of edible white stalks with dark green leaves +n11879722 Eurasian plant cultivated for its seed and as a forage crop +n11879895 seed of rape plants; source of an edible oil +n11881189 white-flowered annual European herb bearing triangular notched pods; nearly cosmopolitan as an introduced weed +n11882074 a bitter cress of Europe and America +n11882237 European bittercress having a knotted white rootstock +n11882426 North American herb with pungent scaly or toothed roots +n11882636 mat-forming perennial found in cold springs of the eastern United States +n11882821 small white-flowered cress common in wet places in eastern North America +n11882972 small perennial herb of cooler regions of North America with racemose purple flowers +n11883328 perennial of southern Europe having clusters of fragrant flowers of all colors especially yellow and orange; often naturalized on old walls or cliffs; sometimes placed in genus Erysimum +n11883628 any of several western American plants of the genus Cheiranthus having large yellow flowers +n11883945 a widely distributed Arctic cress reputed to have value in treatment or prevention of scurvy; a concentrated source of vitamin C +n11884384 perennial of coastal sands and shingles of northern Europe and Baltic and Black Seas having racemes of small white flowers and large fleshy blue-green leaves often used as potherbs +n11884967 North American herb with bitter-tasting pinnate leaves resembling those of tansy +n11885856 any of numerous low-growing cushion-forming plants of the genus Draba having rosette-forming leaves and terminal racemes of small flowers with scapose or leafy stems; fruit is a dehiscent oblong or linear silique +n11887119 any of numerous plants of the genus Erysimum having fragrant yellow or orange or brownish flowers +n11887310 any of several North American plants of the genus Erysimum having large yellow flowers +n11887476 showy erect biennial or short-lived perennial cultivated for its terminal racemes of orange-yellow flowers; sometimes placed in genus Cheiranthus +n11887750 biennial or short-lived perennial prairie rocket having orange-yellow flowers; western North America to Minnesota and Kansas; sometimes placed in genus Cheiranthus +n11888061 slender yellow-flowered European mustard often troublesome as a weed; formerly used as an anthelmintic +n11888424 any of various South African herbs and subshrubs cultivated for long showy racemes of bright blue flowers with white eyes +n11888800 long cultivated herb having flowers whose scent is more pronounced in the evening; naturalized throughout Europe to Siberia and into North America +n11889205 perennial stellate and hairy herb with small yellow flowers of mountains of southern Europe; sometimes placed in genus Sisymbrium +n11889619 any of various flowering plants of the genus Iberis cultivated for their showy clusters of white to red or purple flowers; native to Mediterranean region +n11890022 any of several herbs of the genus Isatis +n11890150 European biennial formerly grown for the blue coloring matter yielded by its leaves +n11890884 any of several hairy North American herbs having yellow racemose flowers and inflated pods +n11891175 perennial European plant having clusters of small fragrant usually white flowers; widely grown in gardens +n11892029 any of various ornamental flowering plants of the genus Malcolmia +n11892181 erect branching herb cultivated for its loose racemes of fragrant white or pink or red or lilac flowers; native to sands and sea cliffs of southwestern Greece and southern Albania +n11892637 any of several Old World plants cultivated for their brightly colored flowers +n11892817 European plant with racemes of sweet-scented flowers; widely cultivated as an ornamental +n11893640 any of several plants of the genus Physaria having racemose yellow flowers and inflated pods +n11893916 small tufted perennial herb of mountains of central and southern Europe having very small flowers of usually leafless stems; sometimes placed in genus Lepidium +n11894327 a cruciferous plant of the genus Raphanus having a pungent edible root +n11894558 Eurasian weed having yellow or mauve or white flowers and podlike fruits +n11894770 Eurasian plant widely cultivated for its edible pungent root usually eaten raw +n11895092 radish of Japan with a long hard durable root eaten raw or cooked +n11895472 annual or biennial cress growing in damp places sometimes used in salads or as a potherb; troublesome weed in some localities +n11895714 perennial herb found on streams and riversides throughout Europe except extreme north and Mediterranean; sometimes placed in genus Nasturtium +n11896141 a dainty South American annual having deeply pinnatifid leaves and racemes of fringed almond-scented purple-white flowers +n11896722 weedy Eurasian plant often a pest in grain fields +n11897116 stiffly branching Old World annual with pale yellow flowers; widely naturalized in North America; formerly used medicinally +n11897466 perennial of southwestern United States having leathery blue-green pinnatifid leaves and thick plumelike spikes of yellow flowers; sometimes placed in genus Cleome +n11898639 any of several plants of the genus Thlaspi +n11898775 foetid Eurasian weed having round flat pods; naturalized throughout North America +n11899223 annual herb having pinnatifid basal leaves and slender racemes of small white flowers followed by one-seeded winged silicles +n11899762 annual or perennial herbs with inflated seed pods; some placed in genus Lesquerella +n11899921 a Japanese plant of the family Cruciferae with a thick green root +n11900569 annual or biennial or perennial herbs having showy flowers +n11901294 Old World alpine poppy with white or yellow to orange flowers +n11901452 showy annual of California with red flowers +n11901597 annual Old World poppy with orange-red flowers and bristly fruit +n11901759 subarctic perennial poppy of both hemispheres having fragrant white or yellow to orange or peach flowers +n11901977 commonly cultivated Asiatic perennial poppy having stiff heavily haired leaves and bright scarlet or pink to orange flowers +n11902200 annual European poppy common in grain fields and often cultivated +n11902389 southwestern Asian herb with greyish leaves and white or reddish flowers; source of opium +n11902709 any plant of the genus Argemone having large white or yellow flowers and prickly leaves and stems and pods; chiefly of tropical America +n11902982 annual herb with prickly stems and large yellow flowers; southern United States to West Indies and Mexico +n11903333 small Central American tree having loose racemes of purple-tinted green flowers +n11903671 perennial herb with branched woody stock and bright yellow flowers +n11904109 a plant of the genus Corydalis with beautiful compound foliage and spurred tubular flowers +n11904274 annual vine with decompound leaves and racemes of yellow and pink flowers +n11905392 of Pacific coast of North America; widely cultivated for its yellow to red flowers +n11905749 yellow-flowered Eurasian glaucous herb naturalized in along sandy shores in eastern North America +n11906127 native of Mexican highlands grown for its glossy clear yellow flowers and blue-grey finely dissected foliage +n11906514 herb of China and Japan widely cultivated for its plumelike panicles of creamy white flowers +n11906917 Chinese perennial having mauve-pink to bright sky blue flowers in drooping cymes +n11907100 widely cultivated west European plant with showy pale yellow flowers +n11907405 California plant with small pale yellow flowers +n11907689 tall branching subshrub of California and Mexico often cultivated for its silvery-blue foliage and large fragrant white flowers +n11908549 California wild poppy with bright red flowers +n11908846 perennial herb native to woodland of the eastern United States having yellow flowers +n11909864 vine with feathery leaves and white or pinkish flowers; sometimes placed in genus Fumaria +n11910271 garden plant having deep-pink drooping heart-shaped flowers +n11910460 delicate spring-flowering plant of the eastern United States having white flowers with double spurs +n11910666 American plant with cream-colored flowers and tuberous roots resembling kernels of corn +n11915214 considered the most highly evolved dicotyledonous plants, characterized by florets arranged in dense heads that resemble single flowers +n11915658 any of several plants having leaves so arranged on the axis as to indicate the cardinal points of the compass +n11915899 any of various plants of various genera of the family Compositae having flowers that can be dried without loss of form or color +n11916467 any of several plants of the genus Achillea native to Europe and having small white flowers in flat-topped flower heads +n11916696 ubiquitous strong-scented mat-forming Eurasian herb of wasteland, hedgerow or pasture having narrow serrate leaves and small usually white florets; widely naturalized in North America +n11917407 flower of southwestern Australia having bright pink daisylike papery flowers; grown for drying +n11917835 American herb having flat-topped clusters of small white flower heads; reputedly a cause of trembles and milk sickness; sometimes placed in genus Eupatorium +n11918286 any plant of the genus Ageratum having opposite leaves and small heads of blue or white flowers +n11918473 small tender herb grown for its fluffy brushlike blue to lavender blooms +n11918808 Asian plant widely grown for its sweetly fragrant pink flowers; sometimes placed in genus Centaurea +n11919447 any of numerous chiefly North American weedy plants constituting the genus Ambrosia that produce highly allergenic pollen responsible for much hay fever and asthma +n11919761 annual weed with finely divided foliage and spikes of green flowers; common in North America; introduced elsewhere accidentally +n11919975 a coarse annual with some leaves deeply and palmately three-cleft or five-cleft +n11920133 coarse perennial ragweed with creeping roots of dry barren lands of southwestern United States and Mexico +n11920498 any plant of the genus Ammobium having yellow flowers and silvery foliage +n11920663 Australian plant widely cultivated for its beautiful silvery-white blooms with bright yellow centers on long winged stems +n11920998 a small Mediterranean plant containing a volatile oil once used to relieve toothache +n11921395 an American everlasting having foliage with soft wooly hairs and corymbose heads with pearly white bracts +n11921792 any plant of the genus Andryala having milky sap and heads of bright yellow flowers +n11922661 a variety of pussytoes +n11922755 a variety of pussytoes +n11922839 a variety of pussytoes +n11922926 a variety of cat's foot +n11923174 widespread rank-smelling weed having white-rayed flower heads with yellow discs +n11923397 Eurasian perennial herb with hairy divided leaves and yellow flowers; naturalized in North America +n11923637 European white-flowered weed naturalized in North America +n11924014 tiny grey woolly tufted annual with small golden-yellow flower heads; southeastern California to northwestern Arizona and southwestern Utah; sometimes placed in genus Eriophyllum +n11924445 any of several erect biennial herbs of temperate Eurasia having stout taproots and producing burs +n11924849 burdock having heart-shaped leaves found in open woodland, hedgerows and rough grassland of Europe (except extreme N) and Asia Minor; sometimes cultivated for medicinal and culinary use +n11925303 any of several plants of the genus Arctotis having daisylike flowers +n11925450 bushy perennial of South Africa with white or violet flowers; in its native region often clothes entire valley sides in a sheet of color +n11925898 perennial subshrub of the Canary Islands having usually pale yellow daisylike flowers; often included in genus Chrysanthemum +n11926365 low-growing plant found only in volcanic craters on Hawaii having rosettes of narrow pointed silver-green leaves and clusters of profuse red-purple flowers on a tall stem +n11926833 any of various rhizomatous usually perennial plants of the genus Arnica +n11926976 wildflower with heart-shaped leaves and broad yellow flower heads; of alpine areas west of the Rockies from Alaska to southern California +n11927215 herb of pasture and open woodland throughout most of Europe and western Asia having orange-yellow daisylike flower heads that when dried are used as a stimulant and to treat bruises and swellings +n11927740 small European herb with small yellow flowers +n11928352 any of various composite shrubs or herbs of the genus Artemisia having aromatic green or greyish foliage +n11928858 any of several weedy composite plants of the genus Artemisia +n11929743 wormwood of southeastern Europe to Iran +n11930038 European wormwood similar to common wormwood in its properties +n11930203 aromatic perennial of southeastern Russia +n11930353 silver-haired shrub of central and southern United States and Mexico; a troublesome weed on rangelands +n11930571 silky-leaved aromatic perennial of dry northern parts of the northern hemisphere; has tawny florets +n11930788 perennial cottony-white herb of southwestern United States +n11930994 European wormwood; minor source of absinthe +n11931135 a perennial that is valuable as sheep forage in the United States +n11931540 European tufted aromatic perennial herb having hairy red or purple stems and dark green leaves downy white below and red-brown florets +n11931918 any of various chiefly fall-blooming herbs of the genus Aster with showy daisylike flowers +n11932745 any of several asters of eastern North America usually growing in woods +n11932927 North American perennial with apparently whorled leaves and showy white purple-tinged flowers +n11933099 common North American perennial with heathlike foliage and small white flower heads +n11933257 perennial wood aster of eastern North America +n11933387 rhizomatous perennial wood aster of eastern North America with white flowers +n11933546 stiff perennial of the eastern United States having small linear leaves and numerous tiny white flower heads +n11933728 common much-branched North American perennial with heathlike foliage and small starry white flowers +n11933903 perennial of western North America having white flowers +n11934041 wiry tufted perennial of the eastern United States with stiff erect rough stems, linear leaves and large violet flowers +n11934239 early-flowering perennial of southern and southeastern Europe with flower heads resembling those of goldenrod +n11934463 tufted perennial wood aster of North America; naturalized in Europe +n11934616 common perennial of eastern North America having showy purplish flowers; a parent of the Michaelmas daisy +n11934807 North American perennial herb having small autumn-blooming purple or pink or white flowers; widely naturalized in Europe +n11935027 tufted rigid North American perennial with loose clusters of white flowers +n11935187 perennial of southeastern United States having usually blue flowers +n11935330 a common European aster that grows in salt marshes +n11935469 violet-flowered perennial aster of central United States having solitary heads +n11935627 a variety of aster +n11935715 a variety of aster +n11935794 a variety of aster +n11935877 a variety of aster +n11935953 a variety of aster +n11936027 a variety of aster +n11936113 a variety of aster +n11936199 a variety of aster +n11936287 a variety of aster +n11936369 a variety of aster +n11936448 a variety of aster +n11936539 a variety of aster +n11936624 a variety of aster +n11936707 a variety of aster +n11936782 a variety of aster +n11936864 a variety of aster +n11936946 a variety of aster +n11937023 a variety of aster +n11937102 a variety of aster +n11937195 a variety of aster +n11937278 a variety of aster +n11937360 a variety of aster +n11937446 a variety of aster +n11937692 low spreading tropical American shrub with long slender leaves used to make a mildly stimulating drink resembling tea; sometimes placed in genus Eupatorium +n11938556 California shrub with slender leafy shoots that are important browse for mule deer +n11939180 a plant of the genus Balsamorhiza having downy leaves in a basal rosette and yellow flowers and long balsam-scented taproots +n11939491 any of numerous composite plants having flower heads with well-developed ray flowers usually arranged in a single whorl +n11939699 low-growing Eurasian plant with yellow central disc flowers and pinkish-white outer ray flowers +n11940006 any of several plants of the genus Bidens having yellow flowers and prickly fruits that cling to fur and clothing +n11940349 common bur marigold of the eastern United States +n11940599 North American bur marigold with large flowers +n11940750 bur marigold of temperate Eurasia +n11941094 a variety of knapweed +n11941478 any of various autumn-flowering perennials having white or pink to purple flowers that resemble asters; wild in moist soils from New Jersey to Florida and Texas +n11941924 western Australian annual much cultivated for its flower heads with white or bluish to violet or variegated rays +n11942659 hairy Eurasian perennial having deep yellow daisies on lax willowy stems; found in the wild in open woodland and on rocky slopes +n11943133 any of various plants of the genus Cacalia having leaves resembling those of plantain +n11943407 any of numerous chiefly annual herbs of the genus Calendula widely cultivated for their yellow or orange flowers; often used for medicinal and culinary purposes +n11943660 the common European annual marigold +n11943992 valued for their beautiful flowers in a wide range of clear bright colors; grown primarily for cutting +n11944196 any of numerous plants of the family Compositae and especially of the genera Carduus and Cirsium and Onopordum having prickly-edged leaves +n11944751 European biennial introduced in North America having flower heads in crowded clusters at ends of branches +n11944954 Eurasian perennial naturalized in eastern North America having very spiny white cottony foliage and nodding musky crimson flower heads; valuable source of nectar +n11945367 a thistle of the genus Carlina +n11945514 stemless perennial having large flowers with white or purple-brown florets nestled in a rosette of long spiny leaves hairy beneath; of alpine regions of southern and eastern Europe +n11945783 Eurasian thistle growing in sand dunes and dry chalky soils +n11946051 thistlelike Eurasian plant widely grown for its red or orange flower heads and seeds that yield a valuable oil +n11946313 seed of the safflower +n11946727 any of several plants of the genus Catananche having long-stalked heads of blue or yellow flowers +n11946918 south European plant having dark-eyed flowers with flat blue rays +n11947251 any plant of the genus Centaurea +n11947629 a plant having leaves and stems covered with down that resembles dust +n11947802 an annual Eurasian plant cultivated in North America having showy heads of blue or purple or pink or white flowers +n11948044 Mediterranean annual or biennial herb having pinkish to purple flowers surrounded by spine-tipped scales; naturalized in America +n11948264 any of various plants of the genus Centaurea having purple thistlelike flowers +n11948469 perennial of mountains of Iran and Iraq; cultivated for its fragrant rose-pink flowers +n11948864 tall European perennial having purple flower heads +n11949015 European weed having a winged stem and hairy leaves; adventive in the eastern United States +n11949402 Eurasian plant with apple-scented foliage and white-rayed flowers and feathery leaves used medicinally; in some classification systems placed in genus Anthemis +n11949857 any of several United States plants having long stalks of funnel-shaped white or yellow flowers +n11950345 any of numerous perennial Old World herbs having showy brightly colored flower heads of the genera Chrysanthemum, Argyranthemum, Dendranthema, Tanacetum; widely cultivated +n11950686 European herb with bright yellow flowers; a common weed in grain fields +n11950877 shrubby annual of the Mediterranean region with yellowish-white flowers +n11951052 grown for its succulent edible leaves used in Asian cooking +n11951511 any of several shrubby herbs or subshrubs of the genus Chrysopsis having bright golden-yellow flower heads that resemble asters; throughout much of United States and into Canada +n11951820 perennial golden aster of southeastern United States +n11952346 any of various much-branched yellow-flowered shrubs of the genus Chrysothamnus; western North America +n11952541 pleasantly aromatic shrub having erect slender flexible hairy branches and dense clusters of small yellow flowers covering vast areas of western alkali plains and affording a retreat for jackrabbits; source of a yellow dye used by the Navajo +n11953038 perennial Old World herb having rayed flower heads with blue florets cultivated for its root and its heads of crisp edible leaves used in salads +n11953339 widely cultivated herb with leaves valued as salad green; either curly serrated leaves or broad flat ones that are usually blanched +n11953610 the dried root of the chicory plant: used as a coffee substitute +n11953884 any of numerous biennial to perennial herbs with handsome purple or yellow or occasionally white flower heads +n11954161 European thistle naturalized in United States and Canada where it is a pernicious weed +n11954345 stout North American thistle with purplish-pink flower heads +n11954484 thistle of western North America having white woolly leaves +n11954642 woolly thistle of western and central Europe and Balkan Peninsula +n11954798 perennial stoloniferous thistle of northern Europe with lanceolate basal leaves and usually solitary heads of reddish-purple flowers +n11955040 of central and southwestern Europe +n11955153 European thistle with rather large heads and prickly leaves; extensively naturalized as a weed in the United States +n11955532 annual of Mediterranean to Portugal having hairy stems and minutely spiny-toothed leaves and large heads of yellow flowers +n11955896 rhizomatous plant of central and southeastern United States and West Indies having large showy heads of clear blue flowers; sometimes placed in genus Eupatorium +n11956348 common North American weed with linear leaves and small discoid heads of yellowish flowers; widely naturalized throughout temperate regions; sometimes placed in genus Erigeron +n11956850 any of numerous plants of the genus Coreopsis having a profusion of showy usually yellow daisylike flowers over long periods; North and South America +n11957317 large treelike shrub having feathery leaves and clusters of large yellow flower heads; coastal southern California +n11957514 stout herb with flowers one to a stalk; ornamental developed from a Mexican wildflower +n11957678 North American annual widely cultivated for its yellow flowers with purple-red to brownish centers; in some classifications placed in a subgenus Calliopsis +n11958080 any of various mostly Mexican herbs of the genus Cosmos having radiate heads of variously colored flowers and pinnate leaves; popular fall-blooming annuals +n11958499 South African herb with golden-yellow globose flower heads; naturalized in moist areas along coast of California; cultivated as an ornamental +n11958888 any of various plants of the genus Craspedia grown for their downy foliage and globose heads of golden flowers; Australia and New Zealand +n11959259 any of various plants of the genus Crepis having loose heads of yellow flowers on top of a long branched leafy stem; northern hemisphere +n11959632 Mediterranean thistlelike plant widely cultivated for its large edible flower head +n11959862 southern European plant having spiny leaves and purple flowers cultivated for its edible leafstalks and roots +n11960245 any of several plants of or developed from the species Dahlia pinnata having tuberous roots and showy rayed variously colored flower heads; native to the mountains of Mexico and Central America and Colombia +n11960673 South African succulent evergreen twining climber with yellow flowers grown primarily as a houseplant for its foliage; sometimes placed in genus Senecio +n11961100 of China +n11961446 any of several South African plants grown for the profusion of usually yellow daisylike flowers and mounds of aromatic foliage +n11961871 any of several herbs of the genus Doronicum having alternate often clasping stem leaves cultivated for their long stalks of yellow flower heads +n11962272 any of various perennials of the eastern United States having thick rough leaves and long-stalked showy flowers with drooping rays and a conelike center +n11962667 any of various plants of the genus Echinops having prickly leaves and dense globose heads of bluish flowers +n11962994 any plant of the genus Elephantopus having heads of blue or purple flowers; America +n11963572 tropical Asiatic annual cultivated for its small tassel-shaped heads of scarlet flowers +n11963932 fragrant rounded shrub of southwestern United States and adjacent Mexico having brittle stems and small crowded blue-green leaves and yellow flowers; produces a resin used in incense and varnish and in folk medicine +n11964446 herb having a basal cluster of grey-green leaves and leafless stalks each with a solitary broad yellow flower head; desert areas Idaho to Arizona +n11964848 common erect hairy perennial of plains and prairies of southern and central United States having flowers that resemble sunflowers +n11965218 an American weedy plant with small white or greenish flowers +n11965627 any of several North American plants of the genus Erigeron having daisylike flowers; formerly believed to repel fleas +n11965962 widespread weed with pale purple-blue flowers +n11966083 widely naturalized white-flowered North American herb +n11966215 mat-forming herb of Turkestan with nearly double orange-yellow flowers +n11966385 well-branched plant with hairy leaves and stems each with a solitary flower head with narrow white or pink or lavender rays; western North America +n11966617 slightly succulent perennial with basal leaves and hairy sticky stems each bearing a solitary flower head with narrow pink or lavender rays; coastal bluffs Oregon to southern California +n11966896 especially pretty plant having a delicate fringe of threadlike rays around flower heads having very slender white or pink rays; United States and Canada +n11967142 common perennial of eastern North America having flowers with usually violet-purple rays +n11967315 plant having branching leafy stems each branch with an especially showy solitary flower head with many narrow pink or lavender or white rays; northwestern United States mountains +n11967744 any plant of the genus Eriophyllum +n11967878 greyish woolly leafy perennial with branched stems ending in leafless stalks bearing golden-yellow flower heads; dry areas western North America +n11968519 weedy plant of southeastern United States having divided leaves and long clusters of greenish flowers +n11968704 North American herb having whorled leaves and terminal clusters of small pinkish or purple flower heads +n11968931 perennial herb of southeastern United States having white-rayed flower heads; formerly used as in folk medicine +n11969166 North American herb having whorled leaves and terminal clusters of flowers spotted with purple +n11969607 hairy South African or Australian subshrub that has daisylike flowers with blue rays +n11969806 softly hairy South African herb having flowers with bright blue rays +n11970101 any plant of the genus Filago having capitate clusters of small woolly flower heads +n11970298 (literally an undutiful herb) a variety of cotton rose +n11970586 any plant of western America of the genus Gaillardia having hairy leaves and long-stalked flowers in hot vibrant colors from golden yellow and copper to rich burgundy +n11971248 any plant of the genus Gazania valued for their showy daisy flowers +n11971406 decumbent South African perennial with short densely leafy stems and orange flower rays with black eyespots at base +n11971783 African or Asiatic herbs with daisylike flowers +n11971927 widely cultivated South African perennial having flower heads with orange to flame-colored rays +n11972291 slender hairy plant with few leaves and golden-yellow flower heads; sandy desert areas of southeastern California to southwestern Utah and western Arizona and northwestern Mexico +n11972759 any of numerous plants of the genus Gnaphalium having flowers that can be dried without loss of form or color +n11972959 weedy perennial of north temperate regions having woolly foliage and dirty white flowers in a leafy spike +n11973341 any of various western American plants of the genus Grindelia having resinous leaves and stems formerly used medicinally; often poisonous to livestock +n11973634 perennial gumweed of California and Baja California +n11973749 perennial gumweed of western and central North America +n11974373 similar to Gutierrezia sarothrae but with flower heads having fewer rays and disk flowers +n11974557 low-growing sticky subshrub of southwestern United States having narrow linear leaves on many slender branches and hundreds of tiny yellow flower heads +n11974888 annual of southwestern United States having rigid woody branches with sticky foliage and yellow flowers +n11975254 Javanese foliage plant grown for their handsome velvety leaves with violet-purple hairs +n11976170 a plant of the genus Haplopappus +n11976314 annual of southern United States and Mexico having bristly leaves and pale yellow flowers +n11976511 slender perennial of western North America having weakly bristly leaves and yellow flower heads +n11976933 western American shrubs having white felted foliage and yellow flowers that become red-purple +n11977303 any of various plants of the genus Helenium characteristically causing sneezing +n11977660 stout perennial herb of western United States having flower heads with drooping orange-yellow rays; causes spewing sickness in sheep +n11977887 a sneezeweed of southwestern United States especially southern California +n11978233 any plant of the genus Helianthus having large flower heads with dark disk florets and showy yellow rays +n11978551 sunflower of eastern North America having narrow leaves and found in bogs +n11978713 annual sunflower grown for silage and for its seeds which are a source of oil; common throughout United States and much of North America +n11978961 very tall American perennial of central and the eastern United States to Canada having edible tuberous roots +n11979187 tall rough-leaved perennial with a few large flower heads; central United States +n11979354 tall perennial of central United States to Canada having golden-yellow flowers +n11979527 similar to the common sunflower with slender usually branching stems common in central United States +n11979715 tall perennial with hairy stems and leaves; widely cultivated for its large irregular edible tubers +n11979964 edible tuber of the Jerusalem artichoke +n11980318 Australian plant naturalized in Spain having flowers of lemon yellow to deep gold; the frequent choice of those who love dried flowers +n11980682 any North American shrubby perennial herb of the genus Heliopsis having large yellow daisylike flowers +n11981192 any of various plants of the genus Helipterum +n11981475 hairy perennial with yellow flower heads in branched clusters; found almost everywhere in dry places from Canada to west central and western United States; sometimes placed in genus Chrysopsis +n11982115 any of numerous often hairy plants of the genus Hieracium having yellow or orange flowers that resemble the dandelion +n11982545 a hawkweed with a rosette of purple-veined basal leaves; Canada to northern Georgia and Kentucky +n11982939 rhizomatous herb with purple-red flowers suitable for groundcover; sometimes placed in genus Tussilago +n11983375 low tufted plant having hairy stems each topped by a flower head with short narrow yellow rays; northwestern United States +n11983606 similar to but smaller than alpine hulsea +n11984144 European weed widely naturalized in North America having yellow flower heads and leaves resembling a cat's ears +n11984542 any plant of the genus Inula +n11985053 any of various coarse shrubby plants of the genus Iva with small greenish flowers; common in moist areas (as coastal salt marshes) of eastern and central North America +n11985321 tall annual marsh elder common in moist rich soil in central North America that can cause contact dermatitis; produces much pollen that is a major cause of hay fever +n11985739 any small branched yellow-flowered North American herb of the genus Krigia +n11985903 small yellow-flowered herb resembling dandelions of central and southeastern United States +n11986511 annual or perennial garden plant having succulent leaves used in salads; widely grown +n11986729 lettuce with long dark-green spoon-shaped leaves +n11987126 distinguished by leaves having curled or incised leaves forming a loose rosette that does not develop into a compact head +n11987349 lettuce valued especially for its edible stems +n11987511 European annual wild lettuce having prickly stems; a troublesome weed in parts of United States +n11988132 small slender woolly annual with very narrow opposite leaves and branches bearing solitary golden-yellow flower heads; southwestern Oregon to Baja California and Arizona; often cultivated +n11988596 California annual having flower heads with yellow rays tipped with white +n11988893 any of various common wildflowers of the genus Leontodon; of temperate Eurasia to Mediterranean regions +n11989087 fall-blooming European herb with a yellow flower; naturalized in the United States +n11989393 alpine perennial plant native to Europe having leaves covered with whitish down and small flower heads held in stars of glistening whitish bracts +n11989869 tall leafy-stemmed Eurasian perennial with white flowers; widely naturalized; often placed in genus Chrysanthemum +n11990167 similar to oxeye daisy +n11990313 hybrid garden flower derived from Chrysanthemum maximum and Chrysanthemum lacustre having large white flower heads resembling oxeye daisies; often placed in the genus Chrysanthemum +n11990627 perennial of Portugal similar to the oxeye daisy +n11990920 perennial herb closely resembling European edelweiss; New Zealand +n11991263 any of various North American plants of the genus Liatris having racemes or panicles of small discoid flower heads +n11991549 herb with many stems bearing narrow slender wands of crowded rose-lavender flowers; central United States and Canada to Texas and northern Mexico +n11991777 perennial of southeastern and central United States having very dense spikes of purple flowers; often cultivated for cut flowers +n11992479 Texas annual with coarsely pinnatifid leaves; cultivated for its showy radiate yellow flower heads +n11992806 shrub of southwestern Mediterranean region having yellow daisylike flowers +n11993203 wild aster with fernlike leaves and flower heads with very narrow bright purple rays; Alberta to Texas and Mexico +n11993444 wild aster having leafy stems and flower heads with narrow bright reddish-lavender or purple rays; western Colorado to Arizona +n11993675 wild aster having greyish leafy stems and flower heads with narrow pale lavender or violet rays; of rocky desert slopes California to Arizona and Utah +n11994150 any of various resinous glandular plants of the genus Madia; of western North and South America +n11995092 annual Eurasian herb similar in fragrance and medicinal uses to chamomile though taste is more bitter and effect is considered inferior +n11995396 annual aromatic weed of Pacific coastal areas (United States and northeastern Asia) having bristle-pointed leaves and rayless yellow flowers +n11996251 herb of tropical America having vanilla-scented flowers; climbs up trees +n11996677 any of various plants of the genus Mutisia +n11997032 a plant of the genus Nabalus +n11997160 herb of northeastern North America having drooping clusters of yellowish-white flowers; sometimes placed in genus Prenanthes +n11997969 any of various mostly Australian attractively shaped shrubs of the genus Olearia grown for their handsome and sometimes fragrant evergreen foliage and profusion of daisy flowers with white or purple or blue rays +n11998492 bushy New Zealand shrub cultivated for its fragrant white flower heads +n11998888 biennial Eurasian white hairy thistle having pale purple flowers; naturalized in North America +n11999278 a South African plant of the genus Othonna having smooth often fleshy leaves and heads of yellow flowers +n11999656 shrub with white woolly branches and woolly leaves having fragrant flowers forming long sprays; flowers suitable for drying; sometimes placed in genus Helichrysum +n12000191 any of several yellow-flowered plants of the genus Packera; often placed in genus Senecio +n12001294 stout perennial herb of the eastern United States with whitish flowers; leaves traditionally used by Catawba Indians to treat burns +n12001707 herb of Canary Islands widely cultivated for its blue or purple or red or variegated daisylike flowers +n12001924 herb derived from Pericallis cruenta and widely cultivated in a variety of profusely flowering forms with florets from white to pink to red or purple or violet or blue +n12002428 small Eurasian herb having broad leaves and lilac-pink rayless flowers; found in moist areas +n12002651 European herb with vanilla-scented white-pink flowers +n12002826 American sweet-scented herb +n12003167 widespread European weed with spiny tongue-shaped leaves and yellow flowers; naturalized in United States +n12003696 any of various plants of the genus Pilosella +n12004120 European hawkweed having soft hairy leaves; sometimes placed in genus Hieracium +n12004547 any plant of the genus Piqueria or the closely related genus Stevia +n12004987 herb of central and southern Europe having purple florets +n12005656 hairy perennial Eurasian herb with yellow daisylike flowers reputed to destroy or drive away fleas +n12006306 perennial prostrate mat-forming herb with hoary woolly foliage +n12006766 a wildflower of the genus Ratibida +n12006930 coneflower with flower heads resembling a Mexican hat with a tall red-brown disk and drooping yellow or yellow and red-brown rays; grows in the great plains along base of Rocky Mountains +n12007196 plant similar to the Mexican hat coneflower; from British Columbia to New Mexico +n12007406 coneflower of central to southwestern United States +n12007766 Australian annual everlasting having light pink nodding flower heads; sometimes placed in genus Helipterum +n12008252 any of various plants of the genus Rudbeckia cultivated for their large usually yellow daisies with prominent central cones +n12008487 the state flower of Maryland; of central and southeastern United States; having daisylike flowers with dark centers and yellow to orange rays +n12008749 tall leafy plant with erect branches ending in large yellow flower heads with downward-arching rays; grow in Rocky Mountains south to Arizona and east to the Atlantic coast +n12009047 very tall branching herb with showy much-doubled yellow flower heads +n12009420 branching aromatic Mediterranean shrub with woolly stems and leaves and yellow flowers +n12009792 low-branching leafy annual with flower heads resembling zinnias; found in southwestern United States and Mexico to Guatemala +n12010628 any of several spiny Mediterranean herbs of the genus Scolymus having yellow flower heads +n12010815 a golden thistle of southwestern Europe cultivated for its edible sweet roots and edible leaves and stalks; its yellow flowers are used as a substitute for saffron +n12011370 plant with erect leafy stems bearing clusters of rayless yellow flower heads on bent individual stalks; moist regions of southwestern United States +n12011620 stiff much-branched perennial of the Mediterranean region having very white woolly stems and leaves +n12012111 American ragwort with yellow flowers +n12012253 widespread European weed having yellow daisylike flowers; sometimes an obnoxious weed and toxic to cattle if consumed in quantity +n12012510 perennial with sharply toothed triangular leaves on leafy stems bearing a cluster of yellow flower heads; moist places in mountains of western North America +n12013035 perennial south European herb having narrow entire leaves and solitary yellow flower heads and long black edible roots shaped like carrots +n12013511 herb having corymbose white-rayed flowers with scaly bracts and silky indehiscent fruits +n12013701 a variety of white-topped aster +n12014085 low much-branched perennial of western United States having silvery leaves; an important browse and shelter plant +n12014355 plants of western and northern European coasts +n12014923 European perennial whose serrate leaves yield a yellow dye +n12015221 North American perennial having a resinous odor and yellow flowers +n12015525 tall Old World biennial thistle with large clasping white-blotched leaves and purple flower heads; naturalized in California and South America +n12015959 any of numerous chiefly summer-blooming and fall-blooming North American plants especially of the genus Solidago +n12016434 plant of eastern North America having creamy white flowers +n12016567 large North American goldenrod having showy clusters of yellow flowers on arching branches; often a weed +n12016777 similar to meadow goldenrod but usually smaller +n12016914 goldenrod similar to narrow goldenrod but having bristly hairs on edges of leaf stalks; mountainous regions of western America +n12017127 a dyer's weed of Canada and the eastern United States having yellow flowers sometimes used in dyeing +n12017326 goldenrod of eastern America having aromatic leaves from which a medicinal tea is made +n12017511 eastern North American herb whose yellow flowers are (or were) used in dyeing +n12017664 vigorous showy goldenrod common along eastern coast and Gulf Coast of North America +n12017853 western American goldenrod with long narrow clusters of small yellow flowers +n12018014 a variety of goldenrod +n12018100 a variety of goldenrod +n12018188 a variety of goldenrod +n12018271 a variety of goldenrod +n12018363 a variety of goldenrod +n12018447 a variety of goldenrod +n12018530 a variety of goldenrod +n12018760 any of several Old World coarse prickly-leaved shrubs and subshrubs having milky juice and yellow flowers; widely naturalized; often noxious weeds in cultivated soil +n12019035 annual Eurasian sow thistle with soft spiny leaves and rayed yellow flower heads +n12019827 any plant of the genus Stevia or the closely related genus Piqueria having glutinous foliage and white or purplish flowers; Central and South America +n12020184 erect perennial of southeastern United States having large heads of usually blue flowers +n12020507 any of various tropical American plants of the genus Tagetes widely cultivated for their showy yellow or orange flowers +n12020736 a stout branching annual with large yellow to orange flower heads; Mexico and Central America +n12020941 strong-scented bushy annual with orange or yellow flower heads marked with red; Mexico and Guatemala +n12022054 spring-flowering garden perennial of Asiatic origin having finely divided aromatic leaves and white to pink-purple flowers; source of an insecticide; sometimes placed in genus Chrysanthemum +n12022382 white-flowered pyrethrum of Balkan area whose pinnate leaves are white and silky-hairy below; source of an insecticide; sometimes placed in genus Chrysanthemum +n12022821 lightly hairy rhizomatous perennial having aromatic feathery leaves and stems bearing open clusters of small buttonlike yellow flowers; sand dunes of Pacific coast of North America +n12023108 bushy aromatic European perennial herb having clusters of buttonlike white-rayed flower heads; valued traditionally for medicinal uses; sometimes placed in genus Chrysanthemum +n12023407 shrubby perennial of the Canary Islands having white flowers and leaves and hairy stems covered with dustlike down; sometimes placed in genus Chrysanthemum +n12023726 common perennial aromatic herb native to Eurasia having buttonlike yellow flower heads and bitter-tasting pinnate leaves sometimes used medicinally +n12024176 any of several herbs of the genus Taraxacum having long tap roots and deeply notched leaves and bright yellow flowers followed by fluffy seed balls +n12024445 Eurasian plant widely naturalized as a weed in North America; used as salad greens and to make wine +n12024690 the foliage of the dandelion plant +n12024805 perennial dandelion native to Kazakhstan cultivated for its fleshy roots that have high rubber content +n12025220 perennial having tufted basal leaves and short leafless stalks each bearing a solitary yellow flower head; dry hillsides and plains of west central North America +n12026018 any plant of the genus Tithonia; tall coarse herbs or shrubs of Mexico to Panama having large flower heads resembling sunflowers with yellow disc florets and golden-yellow to orange-scarlet rays +n12026476 dwarf tufted nearly stemless herb having a rosette of woolly leaves and large white-rayed flower heads and bristly achenes; central Canada and United States west to Arizona +n12026981 European perennial naturalized throughout United States having hollow stems with a few long narrow tapered leaves and each bearing a solitary pale yellow flower +n12027222 Mediterranean biennial herb with long-stemmed heads of purple ray flowers and milky sap and long edible root; naturalized throughout United States +n12027658 weedy European annual with yellow flowers; naturalized in United States +n12028424 ubiquitous European annual weed with white flowers and finely divided leaves naturalized and sometimes cultivated in eastern North America; sometimes included in genus Matricaria +n12029039 low densely tufted perennial herb of Turkey having small white flowers; used as a ground cover in dry places; sometimes included in genus Matricaria +n12029635 perennial herb with large rounded leaves resembling a colt's foot and yellow flowers appearing before the leaves do; native to Europe but now nearly cosmopolitan; used medicinally especially formerly +n12030092 any of various plants of the genus Ursinia grown for their yellow- or orange- or white-rayed flowers +n12030654 any plant of the genus Verbesina having clustered white or yellow flower heads +n12030908 perennial herb with showy yellow flowers; the eastern United States +n12031139 coarse greyish-green annual yellow-flowered herb; southwestern United States to Mexico +n12031388 perennial herb with yellow flowers; southern and south central United States +n12031547 tall perennial herb having clusters of white flowers; the eastern United States +n12031927 any of various plants of the genus Vernonia of tropical and warm regions of especially North America that take their name from their loose heads of purple to rose flowers that quickly take on a rusty hue +n12032429 balsamic-resinous herb with clumps of lanceolate leaves and stout leafy stems ending in large deep yellow flowers on long stalks; northwestern United States +n12032686 herb with basal leaves and leafy hairy stems bearing solitary flower heads with white or pale cream-colored rays; northwestern United States +n12033139 any coarse weed of the genus Xanthium having spiny burrs +n12033504 any plant of the genus Xeranthemum native to southern Europe having chaffy or silvery flower heads with purplish tubular flowers +n12033709 mostly widely cultivated species of everlasting flowers having usually purple flowers; southern Europe to Iran; naturalized elsewhere +n12034141 any of various plants of the genus Zinnia cultivated for their variously and brightly colored flower heads +n12034384 subshrub with slender woolly stems and long narrow leaves and flower heads with white rays; southern United States and northern Mexico +n12034594 subshrub having short leafy stems and numerous small flower heads with nearly round yellow-orange rays; Arizona south to Mexico and east to Kansas +n12035631 biennial of southwestern United States having white stems and toothed leaves that is grown for its large pale yellow flowers that open in early morning +n12035907 annual grown especially for its fragrant golden nocturnal flowers +n12036067 small dry indehiscent fruit with the seed distinct from the fruit wall +n12036226 a winged often one-seed indehiscent fruit as of the ash or elm or maple +n12036939 any of various plants of the genus Campanula having blue or white bell-shaped flowers +n12037499 erect European herb with creeping rootstocks and nodding spikelike racemes of blue to violet flowers +n12037691 European biennial widely cultivated for its blue or violet or white flowers +n12038038 annual or perennial of eastern North America with long spikes of blue or white flowers +n12038208 bellflower common in marshes of eastern North America having lanceolate linear leaves and small whitish flowers +n12038406 bellflower of Europe to temperate Asia having dense spikes of violet-blue to white flowers +n12038585 perennial European bellflower with racemose white or blue flowers +n12038760 bellflower of southeastern Europe +n12038898 bellflower of Europe and Asia and North Africa having bluish flowers and an edible tuberous root used with the leaves in salad +n12039317 European perennial bellflower that grows in clumps with spreading stems and blue or white flowers +n12041446 any of numerous plants of the orchid family usually having flowers of unusual shapes and beautiful colors +n12043444 any of various deciduous terrestrial orchids having fleshy tubers and flowers in erect terminal racemes +n12043673 Eurasian orchid with showy pink or purple flowers in a loose spike +n12043836 Mediterranean orchid having usually purple flowers with a fan-shaped spotted or striped rose-red lip +n12044041 North American orchid having a spike of violet-purple flowers mixed with white; sepals and petals form a hood +n12044467 any orchid of the genus Aerides +n12044784 any of various spectacular orchids of the genus Angraecum having dark green leathery leaves and usually nocturnally scented white or ivory flowers +n12045157 any of several delicate Asiatic orchids grown especially for their velvety leaves with metallic white or gold veining +n12045514 North American orchid bearing a single leaf and yellowish-brown flowers +n12045860 any of several bog orchids of the genus Arethusa having 1 or 2 showy flowers +n12046028 a bog orchid with usually a solitary fragrant magenta pink blossom with a wide gaping corolla; Canada +n12046428 any of various orchids of the genus Bletia having pseudobulbs and erect leafless racemes of large purple or pink flowers +n12046815 Japanese orchid with white-striped leaves and slender erect racemes of rose to magenta flowers; often cultivated; sometimes placed in genus Bletia +n12047345 any of various tropical American orchids with usually solitary fleshy leaves and showy white to green nocturnally fragrant blossoms solitary or in racemes of up to 7 +n12047884 South American orchid with spiderlike pale-yellow to pale-green flowers +n12048056 Central American orchid having spiderlike flowers with prominent green warts +n12048399 any of various orchids of the genus Caladenia +n12048928 any of various showy orchids of the genus Calanthe having white or yellow or rose-colored flowers and broad leaves folded lengthwise +n12049282 an orchid +n12049562 rare north temperate bog orchid bearing a solitary white to pink flower marked with purple at the tip of an erect reddish stalk above 1 basal leaf +n12050533 any orchid of the genus Cattleya characterized by a three-lobed lip enclosing the column; among the most popular and most extravagantly beautiful orchids known +n12050959 any of several orchids of the genus Cephalanthera +n12051103 orchid of Mediterranean and Asia having a lax spike of bright rose-pink flowers +n12051514 orchid of northeastern United States with magenta-pink flowers having funnel-shaped lip; sometimes placed in genus Pogonia +n12051792 orchid of central and northern South America having 1- to 3-blossomed racemes of large showy rose-colored flowers; sometimes placed in genus Pogonia +n12052267 orchid with broad ovate leaves and long-bracted green very irregular flowers +n12052447 orchid having hooded long-bracted green to yellow-green flowers suffused with purple +n12052787 any of various orchids of the genus Coelogyne with: clusters of fragrant lacy snow-white flowers; salmon-pink solitary flowers; chainlike racemes of topaz and chocolate brown flowers; spikes of delicate white spice-scented flowers; emerald green flowers marked with blue-black +n12053405 a wildflower of the genus Corallorhiza growing from a hard mass of rhizomes associated with a fungus that aids in absorbing nutrients from the forest floor +n12053690 common coral root having yellowish- or reddish- or purplish-brown leafless stems bearing loose racemes of similarly colored flowers with white purple-spotted lips; Guatemala to Canada +n12053962 nearly leafless wildflower with erect reddish-purple stems bearing racemes of pale pinkish and brownish-striped flowers; western Canada to Mexico +n12054195 plant having clumps of nearly leafless pale yellowish to greenish stems bearing similarly colored flowers with white lower lips; northern New Mexico north through South Dakota and Washington to Alaska +n12055073 any of several orchids of the genus Cycnoches having slender arching columns of flowers suggesting the neck of a swan +n12055516 any of various plants of the genus Cymbidium having narrow leaves and a long drooping cluster of numerous showy and variously colored boat-shaped flowers; extensively hybridized and cultivated as houseplants and important florists' flowers +n12056099 a plant or flower of the genus Cypripedium +n12056217 any of several chiefly American wildflowers having an inflated pouchlike lip; difficult or impossible to cultivate in the garden +n12056601 once common rose pink woodland orchid of eastern North America +n12056758 pale pink wild orchid of northeastern America having an inflated pouchlike lip +n12056990 orchid of northern North America having a brownish-green flower and red-and-white lip suggestive of a ram's head +n12057211 maroon to purple-brown orchid with yellow lip; Europe, North America and Japan +n12057447 plant of eastern and central North America having slightly fragrant purple-marked greenish-yellow flowers +n12057660 often having many yellow-green orchids with white pouches growing along streams and seeps of southwestern Oregon and northern California +n12057895 clusters of several short stems each having 2 broad leaves and 2-4 drooping brownish to greenish flowers with pouches mottled with purple; British Columbia to central California and northern Colorado +n12058192 leafy plant having a few stems in a clump with 1 white and dull purple flower in each upper leaf axil; Alaska to northern California and Wyoming +n12058630 any of several orchids of the genus Dactylorhiza having fingerlike tuberous roots; Europe and Mediterranean region +n12058822 European orchid having lanceolate leaves spotted purple and pink to white or mauve flowers spotted or lined deep red or purple +n12059314 a plant of the genus Dendrobium having stems like cane and usually showy racemose flowers +n12059625 any orchid of the genus Disa; beautiful orchids with dark green leaves and usually hooded flowers; much prized as emblematic flowers in their native regions +n12060546 waxy white nearly leafless plant with stems in clusters and racemes of white flowers; northwestern United States to northern California and east to Idaho +n12061104 Mexican epiphytic orchid with glaucous grey-green leaves and lemon- to golden-yellow flowers appearing only partially opened; sometimes placed in genus Cattleya +n12061380 orchid of Florida and the Bahamas having showy brightly colored flowers; sometimes placed in genus Epidendrum +n12061614 Mexican epiphytic orchid having pale green or yellow-green flowers with white purple-veined lip +n12062105 any of various orchids of the genus Epidendrum +n12062468 any of various orchids of the genus Epipactis +n12062626 European orchid with spikes of green and pinkish or purplish flowers +n12062781 orchid growing along streams or ponds of western North America having leafy stems and 1 greenish-brown and pinkish flower in the axil of each upper leaf +n12063211 orchid having blue to purple flowers with tongue-shaped or strap-shaped protuberances (calli) at the lip base +n12063639 any of several small temperate and tropical orchids having mottled or striped leaves and spikes of small yellowish-white flowers in a twisted raceme +n12064389 European orchid having dense spikes of fragrant pink or lilac or red flowers with conspicuous spurs +n12064591 similar to Gymnadenia conopsea but with smaller flowers on shorter stems and having much shorter spurs +n12065316 any of several summer-flowering American orchids distinguished by a fringed or lacerated lip +n12065649 any of several green orchids of the genus Habenaria +n12065777 any of several American wildflowers with a kidney-shaped lip +n12066018 orchid with spikes of many fragrant white flowers on erect leafy stems; of wet or boggy ground through most of the West and northern North America +n12066261 bog orchid of eastern North America with a spike of pure white fringed flowers +n12066451 slender inland rein orchid similar to coastal rein orchid but with pale greenish-yellow flowers +n12066630 North American orchid similar to Habenaria psycodes with larger paler flowers +n12066821 stout orchid of central California to northern Washington having racemes of white fragrant bilaterally symmetrical flowers +n12067029 a long-spurred orchid with base leaves and petals converging under the upper sepal +n12067193 fringed orchid of the eastern United States having a greenish flower with the lip deeply lacerated +n12067433 orchid of boggy or wet lands of north central United States having racemes of very fragrant creamy or greenish white flowers +n12067672 slender fringed orchid of eastern North America having white flowers +n12067817 orchid having a raceme of large greenish-white flowers on a single flower stalk growing between two elliptic or round basal leaves lying on the ground; from northern Oregon and Montana across Canada to the eastern United States +n12068138 orchid of northeastern and alpine eastern North America closely related to the purple fringed orchids but having rosy-purple or violet flowers with denticulate leaf divisions +n12068432 North American orchid with clusters of fragrant purple fringed flowers +n12068615 similar to coastal rein orchid but with smaller flowers; Alaska to Baja California and east to the Dakotas and Colorado +n12069009 orchid with yellowish-brown flowers with dark veins; southeastern Arizona to the eastern United States +n12069217 orchid with slender nearly leafless reddish-brown stems with loose racemes of reddish-brown flowers; of open brushy woods of southeastern Arizona and central Texas +n12069679 an orchid of the genus Himantoglossum +n12070016 any of various spectacular plants of the genus Laelia having showy flowers in many colors +n12070381 an orchid of the genus Liparis having few leaves and usually fairly small yellow-green or dull purple flowers in terminal racemes +n12070583 an orchid of the genus Liparis having a pair of leaves +n12070712 small terrestrial orchid of eastern North America and Europe having two nearly basal leaves and dull yellow-green racemose flowers +n12071259 small orchid with two elliptic leaves and a slender raceme of small green flowers; western North America +n12071477 orchid having two triangular leaves and a short lax raceme of green to rust-colored flowers with the lip flushed mauve; Europe and Asia and North America and Greenland +n12071744 orchid having a pair of ovate leaves and a long slender raceme of green flowers sometimes tinged red-brown; Europe to central Asia +n12072210 North American orchid having a solitary leaf and flowers with threadlike petals +n12072722 any of numerous orchids of the genus Masdevallia; tufted evergreen often diminutive plants whose flowers in a remarkable range of colors usually resemble a tricorn with sepals fused at the base to form a tube +n12073217 any of numerous orchids of the genus Maxillaria often cultivated for their large brilliantly colored solitary flowers +n12073554 any of various orchids of the genus Miltonia having solitary or loosely racemose showy broadly spreading flowers +n12073991 any of numerous and diverse orchids of the genus Odontoglossum having racemes of few to many showy usually large flowers in many colors +n12074408 any orchid of the genus Oncidium: characterized by slender branching sprays of small yellow and brown flowers; often grown as houseplants +n12074867 European orchid whose flowers resemble bumble bees in shape and color +n12075010 European orchid whose flowers resemble flies +n12075151 any of several European orchids of the genus Ophrys +n12075299 spring-blooming spider orchid having a flower with yellow or green or pink sepals and a broad brown velvety lip +n12075830 any of various orchids of the genus Paphiopedilum having slender flower stalks bearing 1 to several waxy flowers with pouchlike lips +n12076223 an orchid of the genus Phaius having large plicate leaves and racemes of showy flowers +n12076577 any of various orchids of the genus Phalaenopsis having often drooping glossy broad obovate or oval leaves usually dark green flushed purple or mottled grey and silver +n12076852 orchid having large elliptic to obovate fleshy leaves and fragrant pink-and-white flowers dotted with red +n12077244 any of various orchids of the genus Pholidota having numerous white to brown flowers in spiraling racemes clothed in slightly inflated bracts and resembling a rattlesnake's tail +n12077944 south European orchid having fragrant greenish-white flowers; sometimes placed in genus Habenaria +n12078172 south European orchid with dark green flowers that are larger and less fragrant than Platanthera bifolia; sometimes placed in genus Habenaria +n12078451 of central North America; a threatened species +n12078747 an orchid of the genus Plectorrhiza having tangled roots and long wiry stems bearing lax racemes of small fragrant green flowers +n12079120 any of several dwarf orchids of the genus Pleione bearing one or two solitary white or pink to magenta or occasionally yellow flowers with slender stalks +n12079523 any of numerous small tufted orchids of the genus Pleurothallis having leathery to fleshy leaves and racemes of 1 to many small flowers +n12079963 any hardy bog orchid of the genus Pogonia: terrestrial orchids having slender rootstocks and erect stems bearing one or a few leaves and a solitary terminal flower +n12080395 any orchid of the genus Psychopsis: spectacular large tiger-striped orchids +n12080588 orchid of South and Central America having flowers similar to but smaller than Psychopsis papilio; sometimes placed in genus Oncidium +n12080820 orchid of South America and Trinidad having large yellow and reddish-brown flowers; sometimes placed in genus Oncidium +n12081215 any of numerous orchids of the genus Pterostylis having leaves in a basal rosette and green flowers often striped purple or brown or red with the dorsal sepal incurved to form a hood +n12081649 any of various orchids of the genus Rhyncostylis having pink- to purple-marked white flowers in a dense cylindrical raceme +n12082131 diminutive Australian orchid with loose racemes of fragrant white flowers with purple and orange markings on the lip +n12083113 any of various showy orchids of the genus Sobralia having leafy stems and bright-colored solitary or racemose flowers similar to those of genus Cattleya +n12083591 an orchid of the genus Spiranthes having slender often twisted spikes of white flowers +n12083847 an orchid of the genus Spiranthes having tall erect densely flowered spiraling clusters of creamy white vanilla-scented flowers; widely distributed especially in low damp places of eastern and central North America +n12084158 orchid having dense clusters of gently spiraling creamy white flowers with 2 upper petals forming a hood; western North America +n12084400 similar to Spiranthes romanzoffiana;States +n12084555 European orchid having shorter racemes of strongly spiraling snow-white flowers +n12084890 any of various orchids of the genus Stanhopea having a single large leaf and loose racemes of large fragrant flowers of various colors; Mexico to Brazil +n12085267 any of various small tropical American orchids of the genus Stelis having long slender racemes of numerous small to minute flowers +n12085664 any of several dwarf creeping orchids with small bizarre insect-like hairy flowers on slender stalks +n12086012 any of numerous showy orchids of the genus Vanda having many large flowers in loose racemes +n12086192 famous orchid of northern India having large pale to deep lilac-blue flowers +n12086539 any of numerous climbing plants of the genus Vanilla having fleshy leaves and clusters of large waxy highly fragrant white or green or topaz flowers +n12086778 a climbing orchid bearing a podlike fruit yielding vanilla beans; widely cultivated from Florida southward throughout tropical America +n12087961 any of a number of tropical vines of the genus Dioscorea many having edible tuberous roots +n12088223 edible tuber of any of several yams +n12088327 grown in Australasia and Polynesia for its large root with fine edible white flesh +n12088495 hardy Chinese vine naturalized in United States and cultivated as an ornamental climber for its glossy heart-shaped cinnamon-scented leaves and in the tropics for its edible tubers +n12088909 South African vine having a massive rootstock covered with deeply fissured bark +n12089320 having a rhizome formerly dried and used to treat rheumatism or liver disorders +n12089496 tropical American yam with small yellow edible tubers +n12089846 common European twining vine with tuberous roots and cordate leaves and red berries +n12090890 any of numerous short-stemmed plants of the genus Primula having tufted basal leaves and showy flowers clustered in umbels or heads +n12091213 plant of western and southern Europe widely cultivated for its pale yellow flowers +n12091377 early spring flower common in British isles having fragrant yellow or sometimes purple flowers +n12091550 Eurasian primrose with yellow flowers clustered in a one-sided umbel +n12091697 cultivated Asiatic primrose +n12091953 florists' primroses; considered a complex hybrid derived from oxlip, cowslip, and common primrose +n12092262 any of several plants of the genus Anagallis +n12092417 herb with scarlet or white or purple blossoms that close at approach of rainy weather +n12092629 small creeping European herb having delicate pink flowers +n12092930 weedy plant having short dry chafflike leaves +n12093329 Mediterranean plant widely cultivated as a houseplant for its showy dark green leaves splotched with silver and nodding white or pink to reddish flowers with reflexed petals +n12093600 common wild European cyclamen with pink flowers +n12093885 a small fleshy herb common along North American seashores and in brackish marshes having pink or white flowers +n12094244 a plant of the genus Hottonia +n12094401 a featherfoil of the eastern United States with submerged spongy inflated flower stalks and white flowers +n12094612 featherfoil of Europe and western Asia having submerged and floating leaves and violet flowers +n12095020 any of various herbs and subshrubs of the genus Lysimachia +n12095281 a variety of the loosestrife herb +n12095412 trailing European evergreen with yellow flowers +n12095543 of North America +n12095647 a loosestrife vine +n12095934 North American plant with spikes of yellow flowers, found in wet places +n12096089 common North American yellow-flowered plant +n12096395 a white-flowered aquatic plant of the genus Samolus +n12096563 water pimpernel of Europe to China +n12096674 American water pimpernel +n12097396 shrub with coral-red berries; Japan to northern India +n12097556 tropical American shrub or small tree with brown wood and dark berries +n12098403 any plumbaginaceous plant of the genus Plumbago +n12098524 a plant of the genus Plumbago with blue flowers +n12098827 any of numerous sun-loving low-growing evergreens of the genus Armeria having round heads of pink or white flowers +n12099342 any of various plants of the genus Limonium of temperate salt marshes having spikes of white or mauve flowers +n12100187 West Indian shrub or small tree having leathery saponaceous leaves and extremely hard wood +n12101870 cosmopolitan herbaceous or woody plants with hollow jointed stems and long narrow leaves +n12102133 narrow-leaved green herbage: grown as lawns; used as pasture for grazing animals; cut and dried as hay +n12103680 any of various grasses of moderate height which covered the undisturbed prairie in the United States; includes most of the forage grasses of the temperate zone +n12103894 any of various grasses that are short and can tolerate drought conditions; common on the dry upland plains just east of the Rocky Mountains +n12104104 any of various grasses or sedges having sword-shaped leaves with sharp edges +n12104238 any of various grasses that are tall and that flourish with abundant moisture +n12104501 succulent herbaceous vegetation of pasture land +n12104734 European grass naturalized as a weed in North America; sharp-pointed seeds cause injury when eaten by livestock +n12105125 a grass of the genus Agropyron +n12105353 Eurasian grass grown in United States great plains area for forage and erosion control +n12105828 a wheatgrass with straight terminal awns on the flowering glumes +n12105981 valuable forage grass of western United States +n12106134 Asiatic grass introduced into United States rangelands for pasture and fodder +n12106323 North American grass cultivated in western United States as excellent forage crop +n12107002 common grass with slender stems and narrow leaves +n12107191 Spanish grass with light feathery panicles grown for dried bouquets +n12107710 stout erect perennial grass of northern parts of Old World having silky flowering spikes; widely cultivated for pasture and hay; naturalized in North America +n12107970 grasses of the genera Alopecurus and Setaria having dense silky or bristly brushlike flowering spikes +n12108432 any of several grasses of the genus Andropogon; used in broom making +n12108613 tall tufted grass of southeastern United States +n12108871 coarse perennial Eurasian grass resembling oat; found on roadside verges and rough grassland and in hay meadows; introduced in North America for forage +n12109365 used by Maoris for thatching +n12109827 annual grass of Europe and North Africa; grains used as food and fodder (referred to primarily in the plural: `oats') +n12110085 widely cultivated in temperate regions for its edible grains +n12110236 common in meadows and pastures +n12110352 oat of southern Europe and southwestern Asia +n12110475 Mediterranean oat held to be progenitor of modern cultivated oat +n12110778 any of various woodland and meadow grasses of the genus Bromus; native to temperate regions +n12111238 weedy annual native to Europe but widely distributed as a weed especially in wheat +n12111627 annual grass of Europe and temperate Asia +n12112008 pasture grass of plains of South America and western North America +n12112337 a pasture grass (especially of western coastal regions of North America) +n12112609 short grass growing on dry plains of central United States (where buffalo roam) +n12112918 any of various tall perennial grasses of the genus Calamagrostis having feathery plumes; natives of marshland fens and wet woodlands of temperate northern hemisphere +n12113195 a variety of reed grass +n12113323 tall Australian reedlike grass sometimes used for hay +n12113657 a grass of the genus Cenchrus +n12114010 erect tussock-forming perennial bur grass used particularly in South Africa and Australia for pasture and forage +n12114590 perennial grass of South Africa introduced into United States; cultivated as forage grass in dry regions +n12115180 tall perennial grass of pampas of South America having silvery plumes and growing in large dense clumps +n12116058 perennial grass having stems 3 to 4 feet high; used especially in Africa and India for pasture and hay +n12116429 widely grown stout Old World hay and pasture grass +n12116734 a creeping grass with spikes like fingers +n12117017 grasses with creeping stems that root freely; a pest in lawns +n12117235 a weed +n12117326 a European forage grass grown for hay; a naturalized weed in United States +n12117695 a coarse annual panic grass; a cosmopolitan weed; occasionally used for hay or grazing +n12117912 coarse annual grass cultivated in Japan and southeastern Asia for its edible seeds and for forage; important wildlife food in United States +n12118414 coarse annual grass having fingerlike spikes of flowers; native to Old World tropics; a naturalized weed elsewhere +n12118661 East Indian cereal grass whose seed yield a somewhat bitter flour, a staple in the Orient +n12119099 a grass of the genus Elymus +n12119238 any of several grasses of the genus Elymus +n12119390 stout perennial grass of western North America +n12119539 a dune grass of the Pacific seacoast used as a sand binder +n12119717 North American wild rye +n12120347 an African grass economically important as a cereal grass (yielding white flour of good quality) as well as for forage and hay +n12120578 perennial South African grass having densely clumped flimsy stems; introduced into United States especially for erosion control +n12121033 a reedlike grass of the genus Erianthus having large plumes +n12121187 grass often cultivated for its long white-ribbed leaves and large plumes resembling those of pampas grass +n12121610 grass with wide flat leaves cultivated in Europe and America for permanent pasture and hay and for lawns +n12122442 a pasture grass of moist places throughout North America +n12122725 tall European perennial grass having a velvety stem; naturalized in United States and used for forage +n12122918 European perennial grass with soft velvety foliage +n12123648 a grain of barley +n12123741 European annual grass often found as a weed in waste ground especially along roadsides and hedgerows +n12124172 annual barley native to western North America and widespread in southern United States and tropical America +n12124627 any of several annual or perennial Eurasian grasses +n12124818 European perennial grass widely cultivated for pasture and hay and as a lawn grass +n12125001 European grass much used for hay and in United States also for turf and green manure +n12125183 weedy annual grass often occurs in grainfields and other cultivated land; seeds sometimes considered poisonous +n12125584 slender branching American grass of some value for grazing in central United States +n12126084 yields the staple food of 50 percent of world's population +n12126360 any grass of the genus Oryzopsis +n12126736 perennial mountain rice native to Mediterranean region and introduced into North America +n12127460 grass of western America used for hay +n12127575 extensively cultivated in Europe and Asia for its grain and in United States sometimes for forage +n12127768 annual weedy grass used for hay +n12128071 tall tufted perennial tropical American grass naturalized as pasture and forage grass in southern United States +n12128306 perennial tropical American grass used as pasture grass in arid areas of the Gulf States +n12128490 low-growing weedy grass with spikelets along the leaf stems +n12129134 tall perennial ornamental grass with long nodding flower plumes of tropical Africa and Asia +n12129738 perennial grass of marshy meadows and ditches having broad leaves; Europe and North America +n12129986 Canary Islands grass; seeds used as feed for caged birds +n12130549 grass with long cylindrical spikes grown in northern United States and Europe for hay +n12131405 any of various grasses of the genus Poa +n12131550 any of various grasses that thrive in the presence of abundant moisture +n12132092 slender European grass of shady places; grown also in northeastern America and temperate Asia +n12132956 sugarcanes representing the highest development of the species; characterized by large juicy stalks with soft rinds and high sugar content +n12133151 tough Asiatic grass whose culms are used for ropes and baskets +n12133462 handsome hardy North American grass with foliage turning pale bronze in autumn +n12133682 tall grass with smooth bluish leaf sheaths grown for hay in the United States +n12134025 hardy annual cereal grass widely cultivated in northern Europe where its grain is the chief ingredient of black bread and in North America for forage and soil improvement +n12134486 grasses of grasslands and woodlands having large gracefully arching spikes with long bristles beneath each spikelet +n12134695 two species of coarse annual foxtails that are naturalized weeds in United States +n12134836 common weedy and bristly grass found in nearly all temperate areas +n12135049 European foxtail naturalized in North America; often a troublesome weed +n12135576 millet having orange to reddish grains in long bristly spikes +n12135729 millet having yellow grains in large drooping spikes +n12135898 any of various small-grained annual cereal and forage grasses of the genera Panicum, Echinochloa, Setaria, Sorghum, and Eleusine +n12136392 the stem of various climbing palms of the genus Calamus and related genera used to make wickerwork and furniture and canes +n12136581 stem of the rattan palm used for making canes and umbrella handles +n12136720 tall woody perennial grasses with hollow slender stems especially of the genera Arundo and Phragmites +n12137120 economically important Old World tropical cereal grass +n12137569 any of several sorghums cultivated primarily for grain +n12137791 sorghums of dry regions of Asia and North Africa +n12137954 a Sudanese sorghum having exceptionally large soft white grains +n12138110 Sudanese sorghums having white seeds; one variety grown in southwestern United States +n12138248 sorghums of China and Manchuria having small white or brown grains (used for food) and dry pithy stalks (used for fodder, fuel and thatching) +n12138444 small drought-resistant sorghums having large yellow or whitish grains +n12138578 sorghum having slender dry stalks and small hard grains; introduced into United States from India +n12139196 tall grasses grown for the elongated stiff-branched panicle used for brooms and brushes +n12139575 any of several perennial grasses of the genus Spartina; some important as coastal soil binders +n12139793 tall reedlike grass common in salt meadows +n12139921 North American cordgrass having leaves with dry membranous margins and glumes with long awns +n12140511 grass native to West Indies but common in southern United States having tufted wiry stems often infested with a dark fungus +n12140759 erect smooth grass of sandy places in eastern North America +n12140903 grass having wiry stems and sheathed panicles +n12141167 low mat-forming grass of southern United States and tropical America; grown as a lawn grass +n12141385 a cereal grass +n12141495 grass whose starchy grains are used as food: wheat; rice; rye; oats; maize; buckwheat; millet +n12142085 annual or biennial grass having erect flower spikes and light brown grains +n12142357 a grain of wheat +n12142450 wheat with hard dark-colored kernels high in gluten and used for bread and pasta; grown especially in southern Russia, North Africa, and northern central North America +n12143065 hardy wheat grown mostly in Europe for livestock feed +n12143215 hard red wheat grown especially in Russia and Germany; in United States as stock feed +n12143405 found wild in Palestine; held to be prototype of cultivated wheat +n12143676 tall annual cereal grass bearing kernels on large ears: widely cultivated in America in many varieties; the principal cereal in Mexico and Central and South America since pre-Columbian times +n12144313 an ear of corn +n12144580 the dried grains or kernels or corn used as animal feed or ground for meal +n12144987 corn whose kernels contain both hard and soft starch and become indented at maturity +n12145148 corn having kernels with a hard outer layer enclosing the soft endosperm +n12145477 corn having small ears and kernels that burst when exposed to dry heat +n12146311 any of several creeping grasses of the genus Zoysia +n12146488 lawn grass common in the Philippines; grown also in United States +n12146654 lawn grass common in China and Japan; grown also in United States +n12147226 woody tropical grass having hollow woody stems; mature canes used for construction and furniture +n12147835 extremely vigorous bamboo having thin-walled culms striped green and yellow; so widely cultivated that native area is uncertain +n12148757 immense tropical southeast Asian bamboo with tough hollow culms that resemble tree trunks +n12150722 African sedge widely cultivated as an ornamental water plant for its terminal umbrellalike cluster of slender grasslike leaves +n12150969 European sedge having small edible nutlike tubers +n12151170 European sedge having rough-edged leaves and spikelets of reddish flowers and aromatic roots +n12151615 a widely distributed perennial sedge having small edible nutlike tubers +n12152031 European maritime sedge naturalized along Atlantic coast of United States; rootstock has properties of sarsaparilla +n12152251 tufted sedge of temperate regions; nearly cosmopolitan +n12152532 any sedge of the genus Eriophorum; north temperate bog plants with tufted spikes +n12152722 having densely tufted white cottony or downlike glumes +n12153033 widely distributed North American sedge having rigid olive green stems +n12153224 sedge of eastern North America having numerous clustered woolly spikelets +n12153580 a sedge of the genus Eleocharis +n12153741 Chinese sedge yielding edible bulb-shaped tubers +n12153914 fine-leaved aquatic spike rush; popular as aerator for aquariums +n12154114 cylindrical-stemmed sedge +n12154773 any of various Old World tropical palmlike trees having huge prop roots and edible conelike fruits and leaves like pineapple leaves +n12155009 Polynesian screw pine +n12155583 tall erect herbs with sword-shaped leaves; cosmopolitan in fresh and salt marshes +n12155773 tall marsh plant with cylindrical seed heads that explode when mature shedding large quantities of down; its long flat leaves are used for making mats and chair seats; of North America, Europe, Asia and North Africa +n12156679 marsh plant having elongated linear leaves and round prickly fruit +n12156819 dry seed-like fruit produced by the cereal grasses: e.g. wheat, barley, Indian corn +n12157056 a single whole grain of a cereal +n12157179 the seed of the cereal grass +n12157769 any vine of the family Cucurbitaceae that bears fruits with hard rinds +n12158031 any of numerous inedible fruits with hard rinds +n12158443 a coarse vine widely cultivated for its large pulpy round orange fruit with firm orange skin and numerous seeds; subspecies of Cucurbita pepo include the summer squashes and a few autumn squashes +n12158798 any of numerous annual trailing plants of the genus Cucurbita grown for their fleshy edible fruits +n12159055 any of various usually bushy plants producing fruit that is eaten while immature and before the rind or seeds harden +n12159388 any of various squash plants grown for their yellow fruits with somewhat elongated necks +n12159555 any of various squash plants grown for their elongated fruit with smooth dark green skin and whitish flesh +n12159804 marrow squash plant whose fruit are eaten when small +n12159942 squash plant having dark green fruit with skin mottled with light green or yellow +n12160125 squash plant having flattened round fruit with a scalloped edge; usually greenish white +n12160303 squash plant bearing oval fruit with smooth yellowish skin and tender stranded flesh resembling spaghetti +n12160490 any of various plants of the species Cucurbita maxima and Cucurbita moschata producing squashes that have hard rinds and mature in the fall +n12160857 squash plant bearing small acorn-shaped fruits having yellow flesh and dark green or yellow rind with longitudinal ridges +n12161056 any of several winter squash plants producing large greyish-green football-shaped fruit with a rough warty rind +n12161285 squash plants bearing hard-shelled fruit shaped somewhat like a turban with a rounded central portion protruding from the end opposite the stem +n12161577 plant bearing somewhat drum-shaped fruit having dark green rind with greyish markings +n12161744 plant bearing buff-colored squash having somewhat bottle-shaped fruit with fine-textured edible flesh and a smooth thin rind +n12161969 any of various plants bearing squash having hard rinds and elongated recurved necks +n12162181 plant bearing squash having globose to ovoid fruit with variously striped grey and green and white warty rinds +n12162425 perennial vine of dry parts of central and southwestern United States and Mexico having small hard mottled green inedible fruit +n12162758 small hard green-and-white inedible fruit of the prairie gourd plant +n12163035 a vine of the genus Bryonia having large leaves and small flowers and yielding acrid juice with emetic and purgative properties +n12163279 white-flowered vine having thick roots and bearing small black berries; Europe to Iran +n12164363 any of several varieties of vine whose fruit has a netted rind and edible flesh and a musky smell +n12164656 a variety of muskmelon vine having fruit with a tan rind and orange flesh +n12164881 any of a variety of muskmelon vines having fruit with a smooth white rind and white or greenish flesh that does not have a musky smell +n12165170 a muskmelon vine with fruit that has a thin reticulated rind and sweet green flesh +n12165384 a melon vine of the genus Cucumis; cultivated from earliest times for its cylindrical green fruit +n12165758 Mediterranean vine having oblong fruit that when ripe expels its seeds and juice violently when touched +n12166128 Old World climbing plant with hard-shelled bottle-shaped gourds as fruits +n12166424 any of several tropical annual climbers having large yellow flowers and edible young fruits; grown commercially for the mature fruit's dried fibrous interior that is used as a sponge +n12166793 the loofah climber that has cylindrical fruit +n12166929 loofah of Pakistan; widely cultivated throughout tropics +n12167075 the dried fibrous part of the fruit of a plant of the genus Luffa; used as a washing sponge or strainer +n12167436 a tropical Old World flowering vine with red or orange warty fruit +n12167602 tropical Old World vine with yellow-orange fruit +n12168565 any plant or flower of the genus Lobelia +n12169099 erect perennial aquatic herb of Europe and North America having submerged spongy leaves and pendulous racemes of blue flowers above the water +n12170585 any of various plants of the family Malvaceae +n12171098 erect Old World perennial with faintly musk-scented foliage and white or pink flowers; adventive in United States +n12171316 annual Old World plant with clusters of pink or white flowers; naturalized in United States +n12171966 tall coarse annual of Old World tropics widely cultivated in southern United States and West Indies for its long mucilaginous green pods used as basis for soups and stews; sometimes placed in genus Hibiscus +n12172364 long green edible beaked pods of the okra plant +n12172481 bushy herb of tropical Asia grown for its yellow or pink to scarlet blooms that resemble the hibiscus +n12172906 an ornamental plant of the genus Abutilon having leaves that resemble maple leaves +n12173069 tall annual herb or subshrub of tropical Asia having velvety leaves and yellow flowers and yielding a strong fiber; naturalized in southeastern Europe and United States +n12173664 any of various tall plants of the genus Alcea; native to the Middle East but widely naturalized and cultivated for its very large variously colored flowers +n12173912 plant with terminal racemes of showy white to pink or purple flowers; the English cottage garden hollyhock +n12174311 any of various plants of the genus Althaea; similar to but having smaller flowers than genus Alcea +n12174521 European perennial plant naturalized in United States having triangular ovate leaves and lilac-pink flowers +n12174926 a plant of the genus Callirhoe having palmately cleft leaves and white to red or purple flowers borne throughout the summer +n12175181 perennial poppy mallow of United States southern plains states having rose-red or rose-purple flowers +n12175370 hairy perennial of central United States having round deeply lobed leaves and loose panicles of large crimson-purple or cherry-red flowers +n12175598 densely hairy perennial having mostly triangular basal leaves and rose-purple flowers in panicled clusters +n12176453 small bushy tree grown on islands of the Caribbean and off the Atlantic coast of the southern United States; yields cotton with unusually long silky fibers +n12176709 Old World annual having heart-shaped leaves and large seeds with short greyish lint removed with difficulty; considered an ancestor of modern short-staple cottons +n12176953 native tropical American plant now cultivated in the United States yielding short-staple cotton +n12177129 cotton with long rough hairy fibers +n12177455 shrub of southern Arizona and Mexico +n12178129 valuable fiber plant of East Indies now widespread in cultivation +n12178780 Australian tree with acid foliage +n12178896 showy shrub of salt marshes of the eastern United States having large rose-colored flowers +n12179122 Chinese shrub or small tree having white or pink flowers becoming deep red at night; widely cultivated; naturalized in southeastern United States +n12179632 East Indian sparsely prickly annual herb or perennial subshrub widely cultivated for its fleshy calyxes used in tarts and jelly and for its bast fiber +n12180168 shrubby tree widely distributed along tropical shores; yields a light tough wood used for canoe outriggers and a fiber used for cordage and caulk; often cultivated for ornament +n12180456 annual weedy herb with ephemeral yellow purple-eyed flowers; Old World tropics; naturalized as a weed in North America +n12180885 small tree or shrub of New Zealand having a profusion of axillary clusters of honey-scented paper-white flowers and whose bark is used for cordage +n12181352 a rare mallow found only in Illinois resembling the common hollyhock and having pale rose-mauve flowers; sometimes placed in genus Sphaeralcea +n12181612 perennial of northwestern United States and western Canada resembling a hollyhock and having white or pink flowers +n12182049 any of various plants of the genus Kosteletzya predominantly of coastal habitats; grown for their flowers that resemble hibiscus +n12182276 subshrub of southeastern United States to New York +n12183026 shrub of coastal ranges of California and Baja California having hairy branches and spikes of numerous mauve flowers; sometimes placed in genus Sphaeralcea +n12183452 western Mediterranean annual having deep purple-red flowers subtended by 3 large cordate bracts +n12183816 an American plant of the genus Malvastrum +n12184095 any of various plants of the genus Malvaviscus having brilliant bell-shaped drooping flowers like incompletely opened hibiscus flowers +n12184468 tall coarse American herb having palmate leaves and numerous small white dioecious flowers; found wild in most alluvial soils of eastern and central United States +n12184912 any of various evergreen plants of the genus Pavonia having white or yellow or purple flowers +n12185254 deciduous New Zealand tree whose inner bark yields a strong fiber that resembles flax and is called New Zealand cotton +n12185859 southern and western Australian shrub with unlobed or shallowly lobed toothed leaves and purple flowers; sometimes placed in genus Hibiscus +n12186352 tall handsome perennial herb of southeastern United States having maplelike leaves and white flowers +n12186554 herb widely distributed in tropics and subtropics used for forage and medicinally as a demulcent and having a fine soft bast stronger than jute; sometimes an aggressive weed +n12186839 tropical American weed having pale yellow or orange flowers naturalized in southern United States +n12187247 perennial purple-flowered wild mallow of western North America that is also cultivated +n12187663 genus of coarse herbs and subshrubs of arid North and South America having pink or scarlet flowers and globose fruits +n12187891 false mallow of western United States having racemose red flowers; sometimes placed in genus Malvastrum +n12188289 any of various trees yielding variously colored woods similar to true tulipwood +n12188635 pantropical tree of usually seacoasts sometimes cultivated as an ornamental for its rounded heart-shaped leaves and showy yellow and purple flowers; yields valuable pink to dark red close-grained wood and oil from its seeds +n12189429 East Indian silk cotton tree yielding fibers inferior to kapok +n12189779 Australian tree having an agreeably acid fruit that resembles a gourd +n12189987 African tree having an exceedingly thick trunk and fruit that resembles a gourd and has an edible pulp called monkey bread +n12190410 massive tropical tree with deep ridges on its massive trunk and bearing large pods of seeds covered with silky floss; source of the silky kapok fiber +n12190869 tree of southeastern Asia having edible oval fruit with a hard spiny rind +n12191240 evergreen tree with large leathery leaves and large pink to orange flowers; considered a link plant between families Bombacaceae and Sterculiaceae +n12192132 tree of Mexico to Guatemala having densely hairy flowers with long narrow petals clustered at ends of branches before leaves appear +n12192877 Australian tree having hard white timber and glossy green leaves with white flowers followed by one-seeded glossy blue fruit +n12193334 the fruit of the Brisbane quandong tree +n12193665 graceful deciduous shrub or small tree having attractive foliage and small red berries that turn black at maturity and are used for making wine +n12194147 a fast-growing tropical American evergreen having white flowers and white fleshy edible fruit; bark yields a silky fiber used in cordage and wood is valuable for staves +n12194613 West Indian timber tree having very hard wood +n12195391 any tree of the genus Sterculia +n12195533 large deciduous tree native to Panama and from which the country takes its name; having densely leafy crown and naked trunk +n12195734 large tree of Old World tropics having foul-smelling orange-red blossoms followed by red pods enclosing oil-rich seeds sometimes used as food +n12196129 an Australian tree of the genus Brachychiton +n12196336 south Australian tree having panicles of brilliant scarlet flowers +n12196527 north Australian tree having white flowers and broad leaves +n12196694 widely distributed tree of eastern Australia yielding a tough durable fiber and soft light attractively grained wood; foliage is an important emergency food for cattle +n12196954 large tree of Queensland having cream-colored flowers blotched with red inside; sometimes placed in genus Sterculia +n12197359 tree bearing large brown nuts containing e.g. caffeine; source of cola extract +n12197601 bitter brown seed containing caffein; source of cola extract +n12198286 deciduous tree widely grown in southern United States as an ornamental for its handsome maplelike foliage and long racemes of yellow-green flowers followed by curious leaflike pods +n12198793 any of several handsome evergreen shrubs of California and northern Mexico having downy lobed leaves and showy yellow flowers +n12199266 a tree or shrub of the genus Helicteres +n12199399 East Indian shrub often cultivated for its hairy leaves and orange-red flowers +n12199790 large tree of Australasia +n12199982 large evergreen tree of India and Burma whose leaves are silvery beneath +n12200143 small tree of coastal regions of Old World tropics whose leaves are silvery beneath +n12200504 African shrub having decumbent stems and slender yellow honey-scented flowers either solitary or in pairs +n12200905 Indian tree having fragrant nocturnal white flowers and yielding a reddish wood used for planking; often grown as an ornamental or shade tree +n12201331 Australian timber tree +n12201580 tropical American tree producing cacao beans +n12201938 large west African tree having large palmately lobed leaves and axillary cymose panicles of small white flowers and one-winged seeds; yields soft white to pale yellow wood +n12202936 any of various deciduous trees of the genus Tilia with heart-shaped leaves and drooping cymose clusters of yellowish often fragrant flowers; several yield valuable timber +n12203529 large American shade tree with large dark green leaves and rounded crown +n12203699 large spreading European linden with small dark green leaves; often cultivated as an ornamental +n12203896 American basswood of the Allegheny region +n12204032 medium-sized tree of Japan used as an ornamental +n12204175 large tree native to eastern Europe and Asia Minor having leaves with white tomentum on the under side; widely cultivated as an ornamental +n12204730 any of various plants of the genus Corchorus having large leaves and cymose clusters of yellow flowers; a source of jute +n12205460 large shrub of South Africa having many conspicuously hairy branches with large hairy leaves and clusters of conspicuous white flowers +n12205694 a plant lacking a permanent woody stem; many are flowering garden plants or potherbs; some having medicinal properties; some are pests +n12214789 any tropical African shrub of the genus Protea having alternate rigid leaves and dense colorful flower heads resembling cones +n12215022 South African shrub whose flowers when open are cup-shaped resembling artichokes +n12215210 Australian shrub whose flowers yield honey copiously +n12215579 any shrub or tree of the genus Banksia having alternate leathery leaves apetalous yellow flowers often in showy heads and conelike fruit with winged seeds +n12215824 shrubby tree with silky foliage and spikes of cylindrical yellow nectarous flowers +n12216215 any of various shrubs of the genus Conospermum with panicles of mostly white woolly flowers +n12216628 grown for outstanding display of brilliant usually scarlet-crimson flowers; Andes +n12216968 Chilean shrub bearing coral-red fruit with an edible seed resembling a hazelnut +n12217453 any shrub or tree of the genus Grevillea +n12217851 tall shrub with cylindrical racemes of red flowers and pinnatifid leaves silky and grey beneath; eastern Australia +n12218274 medium to tall fast-growing tree with orange flowers and feathery bipinnate leaves silky-hairy beneath; eastern Australia +n12218490 tree yielding hard heavy reddish wood +n12218868 tall straggling shrub with large globose crimson-yellow flowers; western Australia +n12219668 slender elegant tree of New Zealand having racemes of red flowers and yielding valuable mottled red timber +n12220019 erect bushy shrub of eastern Australia having terminal clusters of red flowers yielding much nectar +n12220496 small South African tree with long silvery silky foliage +n12220829 any of various ornamental evergreens of the genus Lomatia having attractive fragrant flowers +n12221191 any tree of the genus Macadamia +n12221368 medium-sized tree of eastern Australia having creamy-white flowers +n12221522 small Australian tree with racemes of pink flowers; widely cultivated (especially in Hawaii) for its sweet edible nuts +n12221801 bushy tree with pink to purple flowers +n12222090 Australian tree having alternate simple leaves (when young they are pinnate with prickly toothed margins) and slender axillary spikes of white flowers +n12222493 any of numerous shrubs and small trees having hard narrow leaves and long-lasting yellow or white flowers followed by small edible but insipid fruits +n12222900 eastern Australian tree widely cultivated as a shade tree and for its glossy leaves and circular clusters of showy red to orange-scarlet flowers +n12223160 tree or tall shrub with shiny leaves and umbels of fragrant creamy-white flowers; yields hard heavy reddish wood +n12223569 tall shrub of eastern Australia having oblanceolate to obovate leaves and red flowers in compact racemes +n12223764 straggling shrub with narrow leaves and conspicuous red flowers in dense globular racemes +n12224978 any of various trees and shrubs of the genus Casuarina having jointed stems and whorls of scalelike leaves; some yield heavy hardwood +n12225222 any of several Australian trees of the genus Casuarina +n12225349 any of several Australian trees of the genus Casuarina yielding heavy hard red wood used in cabinetwork +n12225563 common Australian tree widely grown as an ornamental in tropical regions; yields heavy hard red wood +n12226932 a low evergreen shrub of the family Ericaceae; has small bell-shaped pink or purple flowers +n12227658 evergreen treelike Mediterranean shrub having fragrant white flowers in large terminal panicles and hard woody roots used to make tobacco pipes +n12227909 hard woody root of the briar Erica arborea +n12228229 dwarf European shrub with very early blooming bell-shaped red flowers +n12228387 common low European shrub with purple-red flowers +n12228689 bushy shrub having pink to white flowers; common on the moors of Cornwall and in southwestern Europe; cultivated elsewhere +n12228886 erect dense shrub native to western Iberian peninsula having profuse white or pink flowers; naturalized in southwestern England +n12229111 South African shrub grown for its profusion of white flowers +n12229651 wiry evergreen shrub having pendent clusters of white or pink flowers; of wet acidic areas in Arctic and Canada to northeastern United States +n12229887 erect to procumbent evergreen shrub having pendent clusters of white or pink flowers; of sphagnum peat bogs and other wet acidic areas in northern Europe +n12230540 evergreen tree of the Pacific coast of North America having glossy leathery leaves and orange-red edible berries; wood used for furniture and bark for tanning +n12230794 small evergreen European shrubby tree bearing many-seeded scarlet berries that are edible but bland; of Ireland, southern Europe, Asia Minor +n12231192 chiefly evergreen subshrubs of northern to Arctic areas +n12231709 deciduous creeping shrub bright red in autumn having black or blue-black berries; alpine and circumpolar +n12232114 erect California shrub having leaves with heart-shaped lobes at the base +n12232280 erect treelike shrub forming dense thickets and having drooping panicles of white or pink flowers and red berrylike drupes; California +n12232851 small evergreen mat-forming shrub of southern Europe and Asia Minor having stiff stems and terminal clusters of small bell-shaped flowers +n12233249 procumbent Old World mat-forming evergreen shrub with racemes of pinkish-white flowers +n12234318 north temperate bog shrub with evergreen leathery leaves and small white cylindrical flowers +n12234669 low straggling evergreen shrub of western Europe represented by several varieties with flowers from white to rose-purple +n12235051 low-growing evergreen shrub of eastern North America with leathery leaves and clusters of fragrant pink or white flowers +n12235479 slow-growing procumbent evergreen shrublet of northern North America and Japan having white flowers and numerous white fleshy rough and hairy seeds +n12236160 small evergreen shrub of Pacific coast of North America having edible dark purple grape-sized berries +n12236546 any of several shrubs of the genus Gaylussacia bearing small berries resembling blueberries +n12236768 low shrub of the eastern United States bearing shiny black edible fruit; best known of the huckleberries +n12236977 huckleberry of the eastern United States with pink flowers and sweet blue fruit +n12237152 creeping evergreen shrub of southeastern United States having small shiny boxlike leaves and flavorless berries +n12237486 any plant of the genus Kalmia +n12237641 a North American evergreen shrub having glossy leaves and white or rose-colored flowers +n12237855 laurel of bogs of northwestern United States having small purple flowers and pale leaves that are glaucous beneath +n12238756 a Rocky Mountain shrub similar to Ledum groenlandicum +n12238913 bog shrub of northern and central Europe and eastern Siberia to Korea and Japan +n12239240 low-growing evergreen shrub of New Jersey to Florida grown for its many white star-shaped flowers and glossy foliage +n12239647 any plant of the genus Leucothoe; grown for their beautiful white flowers; glossy foliage contains a poisonous substance similar to that found in genus Kalmia +n12239880 fast-growing evergreen shrub of southeastern United States having arching interlaced branches and racemes of white flowers +n12240150 bushy deciduous shrub of the eastern United States with long racemes of pinkish flowers +n12240477 creeping mat-forming evergreen shrub of high mountain regions of northern hemisphere grown for its rose-pink flowers +n12240965 deciduous shrub of coastal plain of the eastern United States having nodding pinkish-white flowers; poisonous to stock +n12241192 deciduous much-branched shrub with dense downy panicles of small bell-shaped white flowers +n12241426 showy evergreen shrub of southeastern United States with shiny leaves and angled branches and clusters of pink to reddish flowers that resemble an umbel +n12241880 straggling shrub of northwestern North America having foliage with a bluish tinge and umbels of small bell-shaped flowers +n12242123 low shrub of the eastern United States with downy twigs +n12242409 deciduous shrubby tree of eastern North America having deeply fissured bark and sprays of small fragrant white flowers and sour-tasting leaves +n12242850 small shrub with tiny evergreen leaves and pink or purple flowers; Alpine summits and high ground in Asia and Europe and United States +n12243109 semi-prostrate evergreen herb of western United States +n12243693 ornamental evergreen shrub of southeastern United States having small white bell-shaped flowers +n12244153 any shrub of the genus Rhododendron: evergreen shrubs or small shrubby trees having leathery leaves and showy clusters of campanulate (bell-shaped) flowers +n12244458 medium-sized rhododendron of Pacific coast of North America having large rosy brown-spotted flowers +n12244650 late-spring-blooming rhododendron of eastern North America having rosy to pink-purple flowers +n12244819 shrub growing in swamps throughout the eastern United States and having small white to pinkish flowers resembling honeysuckle +n12245319 any of numerous ornamental shrubs grown for their showy flowers of various colors +n12245695 any of numerous shrubs of genus Vaccinium bearing cranberries +n12245885 trailing red-fruited plant +n12246037 small red-fruited trailing cranberry of Arctic and cool regions of the northern hemisphere +n12246232 any of numerous shrubs of the genus Vaccinium bearing blueberries +n12246773 shrub or small tree of eastern United States having black inedible berries +n12246941 low-growing deciduous shrub of northeastern North America having flowers in compact racemes and bearing sweet dark blue berries +n12247202 shrub of southeastern United States grown commercially especially for canning industry +n12247407 low-growing tufted deciduous shrub of northern and alpine North America having pink to coral-red flowers followed by sweet blue berries +n12247963 shrub of the eastern United States having shining evergreen leaves and bluish-black fruit +n12248141 stiff bushy evergreen shrub of western North America having sour black berries and glossy green foliage used in floral arrangements +n12248359 erect blueberry of western United States having solitary flowers and somewhat sour berries +n12248574 erect European blueberry having solitary flowers and blue-black berries +n12248780 an evergreen shrub with leathery leaves +n12248941 low deciduous shrub of the eastern United States bearing dark blue sweet berries +n12249122 shrub of northwestern North America bearing red berries +n12249294 small branching blueberry common in marshy areas of the eastern United States having greenish or yellowish unpalatable berries reputedly eaten by deer +n12249542 low evergreen shrub of high north temperate regions of Europe and Asia and America bearing red edible berries +n12251001 any boreal low-growing evergreen plant of the genus Diapensia +n12251278 tufted evergreen perennial herb having spikes of tiny white flowers and glossy green round to heart-shaped leaves that become coppery to maroon or purplish in fall +n12251740 creeping evergreen shrub having narrow overlapping leaves and early white star-shaped flowers; of the pine barrens of New Jersey and the Carolinas +n12252168 any plant of the genus Shortia; evergreen perennial herbs with smooth leathery basal leaves and showy white solitary flowers +n12252383 plant of southeastern United States having solitary white funnel-shaped flowers flushed with pink and large glossy green leaves that turn bronze-red in fall +n12252866 any heathlike plant of the family Epacridaceae; most are of the Australian region +n12253229 any heathlike evergreen shrub of the genus Epacris grown for their showy and crowded spikes of small bell-shaped or tubular flowers +n12253487 spindly upright shrub of southern Australia and Tasmania having white to rose or purple-red flowers +n12253664 small erect shrub of Australia and Tasmania with fragrant ivory flowers +n12253835 small shrub of southern and western Australia having pinkish to rosy purple tubular flowers +n12254168 small prostrate or ascending shrub having scarlet flowers and succulent fruit resembling cranberries; sometimes placed in genus Styphelia +n12255225 heathlike shrub of southwestern Australia grown for its sharply scented foliage and pink flowers followed by pentagonal fruit +n12256112 any of several evergreen perennials of the genus Pyrola +n12256325 evergreen of eastern North America with leathery leaves and numerous white flowers +n12256522 the common wintergreen having many-flowered racemes of pink-tinged white flowers; Europe and North America +n12256708 North American evergreen with small pinkish bell-shaped flowers and oblong leaves used formerly for shinplasters +n12256920 evergreen with rounded leaves and very fragrant creamy-white flowers; widely distributed in northern parts of Old and New Worlds +n12257570 any of several plants of the genus Chimaphila +n12257725 Eurasian herb with white or pinkish flowers in a terminal corymb +n12258101 delicate evergreen dwarf herb of north temperate regions having a solitary white terminal flower; sometimes placed in genus Pyrola +n12258885 small waxy white or pinkish-white saprophytic woodland plant having scalelike leaves and a nodding flower; turns black with age +n12259316 fleshy tawny or reddish saprophytic herb resembling the Indian pipe and growing in woodland humus of eastern North America; in some classifications placed in a separate genus Hypopitys +n12260799 any of several large deciduous trees with rounded spreading crowns and smooth grey bark and small sweet edible triangular nuts enclosed in burs; north temperate regions +n12261359 large European beech with minutely-toothed leaves; widely planted as an ornamental in North America +n12261571 variety of European beech with shining purple or copper-colored leaves +n12261808 North American forest tree with light green leaves and edible nuts +n12262018 variety of European beech with pendulous limbs +n12262185 a beech native to Japan having soft light yellowish-brown wood +n12262553 any of several attractive deciduous trees yellow-brown in autumn; yield a hard wood and edible nuts in a prickly bur +n12263038 large tree found from Maine to Alabama +n12263204 wild or cultivated throughout southern Europe, northwestern Africa and southwestern Asia +n12263410 a small tree with small sweet nuts; wild or naturalized in Korea and China +n12263588 a spreading tree of Japan that has a short trunk +n12263738 shrubby chestnut tree of southeastern United States having small edible nuts +n12263987 shrubby tree closely related to the Allegheny chinkapin but with larger leaves; southern midwestern United States +n12264512 a tree of the genus Castanopsis +n12264786 small ornamental evergreen tree of Pacific Coast whose glossy yellow-green leaves are yellow beneath; bears edible nuts +n12265083 evergreen shrub similar to golden chinkapin; mountains of California +n12265394 evergreen tree of the Pacific coast area having large leathery leaves; yields tanbark +n12265600 small evergreen tree of China and Japan +n12266217 any of various beeches of the southern hemisphere having small usually evergreen leaves +n12266528 large evergreen tree of Tasmania +n12266644 Chilean evergreen whose leafy boughs are used for thatching +n12266796 any of several tall New Zealand trees of the genus Nothofagus; some yield useful timber +n12266984 New Zealand beech with usually pale silvery bark +n12267133 tall deciduous South American tree +n12267265 large Chilean timber tree yielding coarse lumber +n12267411 New Zealand forest tree +n12267534 tall New Zealand tree yielding very hard wood +n12267677 fruit of the oak tree: a smooth thin-walled nut in a woody cup-shaped base +n12267931 cup-shaped structure of hardened bracts at the base of an acorn +n12268246 a deciduous tree of the genus Quercus; has acorns and lobed leaves +n12269241 any of several American evergreen oaks +n12269406 highly variable often shrubby evergreen oak of coastal zone of western North America having small thick usually spiny-toothed dark-green leaves +n12269652 any of numerous Old World and American oaks having 6 to 8 stamens in each floret, acorns that mature in one year and leaf veins that never extend beyond the margin of the leaf +n12270027 large slow-growing deciduous tree of the eastern United States having stout spreading branches and leaves with usually 7 rounded lobes; yields strong and durable hard wood +n12270278 semi-evergreen shrub or small tree of Arizona and New Mexico having acorns with hemispherical cups +n12270460 large deciduous oak of the eastern United States with a flaky bark and leaves that have fewer lobes than other white oaks; yields heavy strong wood used in construction; thrives in wet soil +n12270741 large deciduous tree of central and southern Europe and Asia Minor having lanceolate leaves with spiked lobes +n12270946 medium-sized evergreen of southwestern United States and northwestern Mexico with oblong leathery often spiny-edged leaves +n12271187 medium-large deciduous tree with a thick trunk found in the eastern United States and southern Canada and having close-grained wood and deeply seven-lobed leaves turning scarlet in autumn +n12271451 small to medium deciduous oak of east central North America; leaves have sharply pointed lobes +n12271643 any of numerous American oaks having 4 stamens in each floret, acorns requiring two years to mature and leaf veins usually extending beyond the leaf margin to form points or bristles +n12271933 large round-topped deciduous tree with spreading branches having narrow falcate leaves with deeply sinuate lobes and wood similar to that of northern red oaks; New Jersey to Illinois and southward +n12272239 small deciduous tree of western North America with crooked branches and pale grey bark +n12272432 evergreen oak of southern Europe having leaves somewhat resembling those of holly; yields a hard wood +n12272735 shrubby oak of southeastern United States usually forming dense thickets +n12272883 small deciduous tree of eastern and central United States having leaves that shine like laurel; wood is used in western states for shingles +n12273114 small semi-evergreen shrubby tree of southeastern United States having hairy young branchlets and leaves narrowing to a slender bristly point +n12273344 large deciduous tree of the Pacific coast having deeply parted bristle-tipped leaves +n12273515 small slow-growing deciduous shrubby tree of dry sandy barrens of southeastern United States having leaves with bristle-tipped lobes resembling turkey's toes +n12273768 large nearly semi-evergreen oak of southeastern United States; thrives in damp soil +n12273939 tall graceful deciduous California oak having leathery leaves and slender pointed acorns +n12274151 medium-large deciduous timber tree of central and southern United States; acorns deeply immersed in the cup and mature in first year +n12274358 medium to large deciduous oak of central and eastern North America with ovoid acorns deeply immersed in large fringed cups; yields tough close-grained wood +n12274630 any of various chiefly American small shrubby oaks often a dominant form on thin dry soils sometimes forming dense thickets +n12274863 a common scrubby deciduous tree of central and southeastern United States having dark bark and broad three-lobed (club-shaped) leaves; tends to form dense thickets +n12275131 medium to large deciduous tree of moist areas of southeastern United States similar to the basket oak +n12275317 oak with moderately light fine-grained wood; Japan +n12275489 an oak having leaves resembling those of chestnut trees +n12275675 medium-sized deciduous tree of the eastern United States that yields a strong durable wood +n12275888 small evergreen shrub or tree of southeastern United States; often forms almost impenetrable thickets in sandy coastal areas +n12276110 relatively tall deciduous water oak of southeastern United States often cultivated as a shade tree; thrives in wet soil +n12276314 similar to the pin oak; grows in damp sites in Mississippi River basin +n12276477 deciduous European oak valued for its tough elastic wood +n12276628 medium to large deciduous tree of the eastern United States; its durable wood is used as timber or split and woven into baskets or chair seats +n12276872 fast-growing medium to large pyramidal deciduous tree of northeastern United States and southeastern Canada having deeply pinnatifid leaves that turn bright red in autumn; thrives in damp soil +n12277150 medium to large deciduous oak of the eastern United States having long lanceolate leaves and soft strong wood +n12277334 deciduous shrubby tree of northeastern and central United States having a sweet edible nut and often forming dense thickets +n12277578 medium to large deciduous European oak having smooth leaves with rounded lobes; yields hard strong light-colored wood +n12277800 large symmetrical deciduous tree with rounded crown widely distributed in eastern North America; has large leaves with triangular spiny tipped lobes and coarse-grained wood less durable than that of white oaks +n12278107 large deciduous red oak of southern and eastern United States having large seven-lobed to nine-lobed elliptical leaves, large acorns and medium hard coarse-grained wood +n12278371 small deciduous tree of eastern and central United States having dark green lyrate pinnatifid leaves and tough moisture-resistant wood used especially for fence posts +n12278650 medium-sized evergreen oak of southern Europe and northern Africa having thick corky bark that is periodically stripped to yield commercial cork +n12278865 small deciduous tree having the trunk branched almost from the base with spreading branches; Texas and southern Oklahoma +n12279060 a low spreading or prostrate shrub of southwestern United States with small acorns and leaves resembling those of the huckleberry +n12279293 medium to large deciduous tree of China, Japan, and Korea having thick corky bark +n12279458 medium to large deciduous timber tree of the eastern United States and southeastern Canada having dark outer bark and yellow inner bark used for tanning; broad five-lobed leaves are bristle-tipped +n12279772 medium-sized evergreen native to eastern North America to the east coast of Mexico; often cultivated as shade tree for it wide-spreading crown; extremely hard tough durable wood once used in shipbuilding +n12280060 a small shrubby evergreen tree of western North America similar to the coast live oak but occurring chiefly in foothills of mountain ranges removed from the coast; an important part of the chaparral +n12280364 nuts of forest trees (as beechnuts and acorns) accumulated on the ground +n12281241 any betulaceous tree or shrub of the genus Betula having a thin peeling bark +n12281788 tree of eastern North America with thin lustrous yellow or grey bark +n12281974 small American birch with peeling white bark often worked into e.g. baskets or toy canoes +n12282235 medium-sized birch of eastern North America having white or pale grey bark and valueless wood; occurs often as a second-growth forest tree +n12282527 European birch with silvery white peeling bark and markedly drooping branches +n12282737 European birch with dull white to pale brown bark and somewhat drooping hairy branches +n12282933 birch of swamps and river bottoms throughout the eastern United States having reddish-brown bark +n12283147 common birch of the eastern United States having spicy brown bark yielding a volatile oil and hard dark wood used for furniture +n12283395 Alaskan birch with white to pale brown bark +n12283542 birch of western United States resembling the paper birch but having brownish bark +n12283790 small shrub of colder parts of North America and Greenland +n12284262 north temperate shrubs or trees having toothed leaves and conelike fruit; bark is used in tanning and dyeing and the wood is rot-resistant +n12284821 medium-sized tree with brown-black bark and woody fruiting catkins; leaves are hairy beneath +n12285049 native to Europe but introduced in America +n12285195 shrub or small tree of southeastern United States having soft light brown wood +n12285369 tree of western United States +n12285512 large tree of Pacific coast of North America having hard red wood much used for furniture +n12285705 common shrub of Canada and northeastern United States having shoots scattered with rust-colored down +n12285900 common shrub of the eastern United States with smooth bark +n12286068 shrub of mountainous areas of Europe +n12286197 North American shrub with light green leaves and winged nuts +n12286826 any of several trees or shrubs of the genus Carpinus +n12286988 medium-sized Old World tree with smooth grey bark and leaves like beech that turn yellow-orange in autumn +n12287195 tree or large shrub with grey bark and blue-green leaves that turn red-orange in autumn +n12287642 any of several trees resembling hornbeams with fruiting clusters resembling hops +n12287836 medium-sized hop hornbeam of southern Europe and Asia Minor +n12288005 medium-sized hop hornbeam of eastern North America +n12288823 any of several shrubs or small trees of the genus Corylus bearing edible nuts enclosed in a leafy husk +n12289310 nut-bearing shrub of eastern North America +n12289433 small nut-bearing tree much grown in Europe +n12289585 hazel of western United States with conspicuous beaklike involucres on the nuts +n12290748 any of various plants of the genus Centaurium +n12290975 erect plant with small clusters of pink trumpet-shaped flowers of southwestern United States +n12291143 common European glabrous annual centaury with flowers in dense cymes +n12291459 a variety of centaury found at the seaside +n12291671 a slender variety of centaury +n12291959 one of the most handsome prairie wildflowers having large erect bell-shaped bluish flowers; of moist places in prairies and fields from eastern Colorado and Nebraska south to New Mexico and Texas +n12292463 perennial cultivated especially as a houseplant for its fragrant bluish to dark lavender flowers +n12292877 any of various tall perennial herbs constituting the genus Frasera; widely distributed in warm dry upland areas of California, Oregon, and Washington +n12293723 any of various plants of the family Gentianaceae especially the genera Gentiana and Gentianella and Gentianopsis +n12294124 low-growing alpine plant cultivated for its dark glossy green leaves in basal rosettes and showy solitary bell-shaped blue flowers +n12294331 gentian of eastern North America having tubular blue or white flowers that open little if at all +n12294542 tufted sometimes sprawling perennial with blue flowers spotted with green; western North America +n12294723 similar to Gentiana andrewsii but with larger flowers +n12294871 robust European perennial having clusters of yellow flowers +n12295033 perennial Eurasian gentian with sky-blue funnel-shaped flowers of damp open heaths +n12295237 erect perennial of wet woodlands of North America having leaves and flower buds resembling those of soapwort +n12295429 a perennial marsh gentian of eastern North America +n12295796 gentian of eastern North America having clusters of bristly blue flowers +n12296045 gentian of Europe and China having creamy white flowers with fringed corollas +n12296432 any of various herbs of the genus Gentianopsis having the margins of the corolla lobes fringed; sometimes included in genus Gentiana +n12296735 tall widely distributed fringed gentian of eastern North America having violet-blue or white fringed flowers +n12296929 medium-tall fringed gentian with pale-blue to blue-purple flowers; circumboreal in distribution +n12297110 small blue-flowered fringed gentian of east central North America +n12297280 small blue-flowered fringed gentian of western United States (Rocky Mountains) especially around hot springs in Yellowstone National Park +n12297507 small blue-flowered fringed gentian of Sierra Nevada mountains +n12297846 any of various plants of the genus Halenia having flowers with spurred lobes +n12298165 any of various plants of the genus Sabbatia having usually pink cymose flowers; occur from acid bogs to brackish marshes +n12299640 glabrous or pubescent evergreen shrub or tree of the genus Salvadora; twigs are fibrous and in some parts of the world are bound together in clusters and used as a toothbrush; shoots are used as camel fodder; plant ash provides salt +n12300840 a tree of the genus Olea cultivated for its fruit +n12301180 evergreen tree cultivated in the Mediterranean region since antiquity and now elsewhere; has edible shiny black fruits +n12301445 small ovoid fruit of the European olive tree; important food and source of oil +n12301613 northern Zealand tree having dense hard light-brown wood +n12301766 small New Zealand tree having red pulpy one-seeded fruit +n12302071 any of various small decorative flowering trees or shrubs of the genus Chionanthus +n12302248 small bushy tree of southeastern United States having profuse clusters of white flowers +n12302565 any plant of the genus Forestiera +n12303083 any of various early blooming oleaceous shrubs of the genus Forsythia; native to eastern Asia and southern Europe but widely cultivated for their branches of bright yellow bell-shaped flowers +n12303462 any of various deciduous pinnate-leaved ornamental or timber trees of the genus Fraxinus +n12304115 spreading American ash with leaves pale green or silvery beneath and having hard brownish wood +n12304286 small ash of swampy areas of southeastern United States +n12304420 shrubby ash of southwestern United States having fragrant white flowers +n12304703 tall ash of Europe to the Caucasus having leaves shiny dark-green above and pale downy beneath +n12304899 timber tree of western North America yielding hard light wood; closely related to the red ash +n12305089 vigorous spreading North American tree having dark brown heavy wood; leaves turn gold in autumn +n12305293 southern Mediterranean ash having fragrant white flowers in dense panicles and yielding manna +n12305475 smallish American tree with velvety branchlets and lower leaf surfaces +n12305654 a variety of red ash having glossy branchlets and lower leaf surfaces +n12305819 ash of central and southern United States with bluish-green foliage and hard brown wood +n12305986 low-growing ash of Texas +n12306089 timber tree of central and southeastern United States having hairy branchlets and a swollen trunk base +n12306270 small shrubby ash of southwestern United States and northwestern Mexico +n12306717 any of several shrubs and vines of the genus Jasminum chiefly native to Asia +n12306938 evergreen rambling yellow-flowered shrub of western China +n12307076 deciduous rambling shrub widely cultivated for its winter-blooming yellow flowers +n12307240 a climbing deciduous shrub with fragrant white or yellow or red flowers used in perfume and to flavor tea +n12307756 any of various Old World shrubs having smooth entire leaves and terminal panicles of small white flowers followed by small black berries; many used for hedges +n12308112 eastern Asian shrub cultivated especially for its persistent foliage +n12308447 evergreen shrub of Japan and Korea having small dark leaves and flowers in loose panicles; related to but smaller than Chinese privet +n12308907 small deciduous shrub having graceful arching branches and luxuriant foliage +n12309277 deciduous semi-evergreen shrub used for hedges +n12309630 small tree of southern United States having panicles of dull white flowers followed by dark purple fruits +n12310021 evergreen shrub with white flowers and olivelike fruits +n12310349 any of various plants of the genus Syringa having large panicles of usually fragrant flowers +n12310638 robust upright shrub of mountains of northern India having oblong-elliptic leaves and pale lilac or white malodorous flowers +n12311045 small densely branching Asiatic shrub having lanceolate leaves and panicles of fragrant lilac flowers +n12311224 small tree of Japan having narrow pointed leaves and creamy-white flowers +n12311413 lilac of northern China having ovate leaves and profuse early summer rose-lilac flowers +n12311579 large European lilac naturalized in North America having heart-shaped ovate leaves and large panicles of highly fragrant lilac or white flowers +n12312110 any of various plants of the family Haemodoraceae; roots contain a deep red coloring matter +n12312728 sedgelike spring-flowering herb having clustered flowers covered with woolly hairs; Australia +n12315060 common shrub of eastern North America having small yellow flowers after the leaves have fallen +n12315245 fragrant shrub of lower Mississippi valley having very small flowers from midwinter to spring +n12315598 any of several Asiatic deciduous shrubs cultivated for their nodding racemes of yellow flowers that appear before the leaves +n12315999 any of several deciduous low-growing shrubs of the genus Fothergilla having showy brushlike spikes of white flowers in spring and fiery red and orange autumn color; grows from Alabama to the Allegheny Mountains +n12316444 any tree of the genus Liquidambar +n12316572 a North American tree of the genus Liquidambar having prickly spherical fruit clusters and fragrant sap +n12317296 a small slow-growing deciduous tree of northern Iran having a low domed shape +n12318378 any of various trees of the genus Juglans +n12318782 medium-sized tree with somewhat aromatic compound leaves and edible nuts +n12318965 North American walnut tree having light-brown wood and edible nuts; source of a light-brown dye +n12319204 North American walnut tree with hard dark wood and edible nut +n12319414 Eurasian walnut valued for its large edible nut and its hard richly figured wood; widely cultivated +n12320010 American hardwood tree bearing edible nuts +n12320414 hickory of southern United States having many narrow leaflets and rather bitter nuts +n12320627 an American hickory tree having bitter nuts +n12320806 hickory of the eastern United States having a leaves with 7 or 9 leaflets and thin-shelled very bitter nuts +n12321077 tree of southern United States and Mexico cultivated for its nuts +n12321395 hickory of the eastern United States resembling the shagbark but having a much larger nut +n12321669 hickory of southern United States and Mexico having hard nutmeg-shaped nuts +n12321873 North American hickory having loose grey shaggy bark and edible nuts +n12322099 smooth-barked North American hickory with 7 to 9 leaflets bearing a hard-shelled edible nut +n12322501 any tree of the genus Pterocarya; fruit is a small winged nutlet; Caucasus to southeastern Asia +n12322699 medium-sized Caucasian much-branched tree distinguished from other walnut trees by its winged fruit +n12323665 an Indian tree of the family Combretaceae that is a source of timber and gum +n12324056 any of numerous shrubs or small trees of the genus Combretum having spikes of small flowers +n12324222 ornamental African shrub or climber with red flowers +n12324388 small deciduous tree of the Transvaal having spikes of yellow flowers +n12324558 small South African tree having creamy yellow fragrant flowers usually growing on stream banks +n12324906 evergreen tree or shrub with fruit resembling buttons and yielding heavy hard compact wood +n12325234 shrub to moderately large tree that grows in brackish water along the seacoasts of western Africa and tropical America; locally important as a source of tannin +n12325787 any of several shrubs of the genus Elaeagnus having silver-white twigs and yellow flowers followed by olivelike fruits +n12327022 an aquatic plant of the genus Myriophyllum having feathery underwater leaves and small inconspicuous flowers +n12327528 West Indian tree bearing edible fruit resembling mango +n12327846 tall South American tree bearing brazil nuts +n12328398 any of numerous herbs and subshrubs of the genus Lythrum +n12328567 marsh herb with a long spike of purple flowers; originally of Europe but now rampant in eastern United States +n12328801 annual with small solitary pink flowers; originally of Europe but widely naturalized in moist areas +n12329260 ornamental shrub from eastern India commonly planted in the southern United States +n12329473 native to Asia, Australia, and East Indies, where it provides timber called pyinma; used elsewhere as an ornamental for its large showy flowers +n12330239 trees and shrubs +n12330469 any evergreen shrub or tree of the genus Myrtus +n12330587 European shrub with white or rosy flowers followed by black berries +n12330891 West Indian tree; source of bay rum +n12331066 aromatic West Indian tree that produces allspice berries +n12331263 tropical American tree having small white flowers and aromatic berries +n12331655 Australian tree with sour red fruit +n12331788 tree of extreme southern Florida and West Indies having thin scaly bark and aromatic fruits and seeds and yielding hard heavy close-grained zebrawood +n12332030 Brazilian tree with spicy red fruit; often cultivated in California and Florida +n12332218 tropical tree of the East Indies cultivated for its edible fruit +n12332555 South American shrub having edible greenish plumlike fruit +n12333053 small evergreen tropical tree native to Brazil and West Indies but introduced into southern United States; grown in Brazil for its edible tough-skinned purple grapelike fruit that grows all along the branches +n12333530 small tropical American shrubby tree; widely cultivated in warm regions for its sweet globular yellow fruit +n12333771 small tropical shrubby tree bearing small yellowish fruit +n12333961 small tropical shrubby tree bearing deep red oval fruit +n12334153 South American tree having fruit similar to the true guava +n12334293 any of various trees of the genera Eucalyptus or Liquidambar or Nyssa that are sources of gum +n12334891 a tree of the genus Eucalyptus +n12335483 any of several Australian gum trees growing on moist or alluvial soil +n12335664 any of several low-growing Australian eucalypts +n12335800 any of several Australian eucalypts having fibrous inner bark +n12335937 any of several Australian eucalypts having the bark smooth except at or near the base of the trunk +n12336092 red gum tree of Tasmania +n12336224 very large red gum tree +n12336333 somewhat crooked red gum tree growing chiefly along rivers; has durable reddish lumber used in heavy construction +n12336586 medium-sized swamp gum of New South Wales and Victoria +n12336727 small to medium-sized tree of Australia and Tasmania having smooth white to light-grey bark shedding in patches or strips +n12336973 tall timber tree with hard heavy pinkish or light brown wood +n12337131 small shrubby mallee +n12337246 stringybark having white wood +n12337391 large tree with dark compact bark on lower trunk but smooth and white above; yields lumber similar to that of European or American ashes +n12337617 tall fast-growing timber tree with leaves containing a medicinal oil; young leaves are bluish +n12337800 very tall tree of Queensland and New South Wales +n12337922 small to medium-sized tree of Tasmania +n12338034 medium-sized tree of southern Australia +n12338146 large gum tree with mottled bark +n12338258 similar to but smaller than the spotted gum and having lemon-scented leaves +n12338454 a small mallee with rough dark-colored bark toward the butt; yields a red eucalyptus kino gum +n12338655 tall tree of Queensland and New South Wales and Victoria +n12338796 tree having wood similar to the alpine ash; tallest tree in Australia and tallest hardwood in the world +n12338979 tall tree yielding a false manna +n12339526 moderate sized very symmetrical red-flowered evergreen widely cultivated in the tropics for its flower buds which are source of cloves +n12339831 aromatic flower bud of a clove tree; yields a spice +n12340383 any of several gum trees of swampy areas of North America +n12340581 columnar swamp tree of southeastern to midwestern North America yielding pale soft easily worked wood +n12340755 columnar tree of eastern North America having horizontal limbs and small leaves that emerge late in spring and have brilliant color in early fall +n12341542 any of several erect perennial rhizomatous herbs of the genus Circaea having white flowers that open at dawn; northern hemisphere +n12341931 tall evening primrose with inconspicuous flowers +n12342299 a plant of the genus Epilobium having pink or yellow flowers and seeds with silky hairs +n12342498 tall North American perennial with creeping rootstocks and narrow leaves and spikes of pinkish-purple flowers occurring in great abundance in burned-over areas or recent clearings; an important honey plant +n12342852 shrublet of southwestern United States to Mexico having brilliant scarlet flowers +n12343480 any of various tropical shrubs widely cultivated for their showy drooping purplish or reddish or white flowers; Central and South America and New Zealand and Tahiti +n12343753 erect or climbing shrub of Brazil with deep pink to red flowers +n12344283 any of several plants of the family Onagraceae +n12344483 a coarse biennial of eastern North America with yellow flowers that open in the evening; naturalized in Europe +n12344700 a day-flowering biennial or perennial of the genus Oenothera +n12344837 evening-opening primrose of south central United States +n12345280 shrub or small tree native to southwestern Asia having large red many-seeded fruit +n12345899 a tropical tree or shrub bearing fruit that germinates while still on the tree and having numerous prop roots that eventually form an impenetrable mass and are important in land building +n12346578 any of several ornamental shrubs with shiny mostly evergreen leaves and clusters of small bell-shaped flowers +n12346813 widely cultivated low evergreen shrub with dense clusters of fragrant pink to deep rose flowers +n12346986 bushy Eurasian shrub with glossy leathery oblong leaves and yellow-green flowers +n12347158 small European deciduous shrub with fragrant lilac-colored flowers followed by red berries on highly toxic twigs +n12349315 evergreen spreading shrub of India and southeastern Asia having large purple flowers +n12349711 a beautiful tropical evergreen epiphytic shrub grown for its lush foliage and huge panicles of pink flowers; Philippines +n12350032 any of several plants of the genus Rhexia usually having pink-purple to magenta flowers; eastern North America +n12350758 any plant of the genus Canna having large sheathing leaves and clusters of large showy flowers +n12351091 canna grown especially for its edible rootstock from which arrowroot starch is obtained +n12351790 white-flowered West Indian plant whose root yields arrowroot starch +n12352287 any of several tropical and subtropical treelike herbs of the genus Musa having a terminal crown of large entire leaves and usually bearing hanging clusters of elongated fruits +n12352639 low-growing Asian banana tree cultivated especially in the West Indies for its clusters of edible yellow fruit +n12352844 Asiatic banana plant cultivated especially as a foliage plant in Japan +n12352990 a banana tree bearing hanging clusters of edible angular greenish starchy fruits; tropics and subtropics +n12353203 widely cultivated species of banana trees bearing compact hanging clusters of commercially important edible yellow fruit +n12353431 Philippine banana tree having leafstalks that yield Manila hemp used for rope and paper etc +n12353754 large evergreen arborescent herb having huge paddle-shaped leaves and bearing inedible fruit that resemble bananas but edible young flower shoots; sometimes placed in genus Musa +n12355760 perennial plants having thick branching aromatic rhizomes and leafy reedlike stems +n12356023 tropical Asian plant widely cultivated for its pungent root; source of gingerroot and powdered ginger +n12356395 widely cultivated tropical plant of India having yellow flowers and a large aromatic deep yellow rhizome; source of a condiment and a yellow dye +n12356960 southeastern Asian perennial with aromatic roots +n12357485 cultivated for its shining oblong leaves and arching clusters of white flowers with pink shading and crinkled yellow lips with variegated magenta stripes +n12357968 West African plant bearing pungent peppery seeds +n12358293 rhizomatous herb of India having aromatic seeds used as seasoning +n12360108 any of numerous plants of the genus Begonia grown for their attractive glossy asymmetrical leaves and colorful flowers in usually terminal cymes or racemes +n12360534 any of numerous begonias having fibrous rather than tuberous or rhizomatous roots +n12360684 any of numerous begonias having large tuberous roots +n12360817 any of numerous begonias having prominent shaggy creeping stems or rhizomes +n12360958 hybrid winter-blooming begonia grown for its many large pink flowers +n12361135 South American fibrous-rooted begonias having prominent basal leaf lobes suggesting angels' wings and racemes of coral-red flowers +n12361560 rhizomatous begonia with roundish fleshy leaves reddish colored beneath +n12361754 rhizomatous begonia having leaves with pointed lobes suggestive of stars and pink flowers +n12361946 any of numerous usually rhizomatous hybrid begonias derived from an East Indian plant having rough-textured leaves patterned in silver and bronze and purple and red-brown with inconspicuous flowers +n12362274 hybrid fibrous-rooted begonia having broad-ovate green to bronze-red leaves and small clusters of white or pink or red flowers; widely used as a bedding plant +n12362514 semi-tuberous begonia having peltate leaves and rose-pink flowers; Yemen +n12362668 any of numerous hybrid begonias having tuberous roots and variously colored flowers +n12363301 any of several evergreen trees or shrubs of the genus Dillenia grown for their foliage and nodding flowers resembling magnolias which are followed by fruit that is used in curries and jellies and preserves +n12363768 any of several Australasian evergreen vines widely cultivated in warm regions for their large bright yellow single flowers +n12364604 any of several East Indian trees of the genus Calophyllum having shiny leathery leaves and lightweight hard wood +n12364940 West Indian tree having racemes of fragrant white flowers and yielding a durable timber and resinous juice +n12365158 valuable timber tree of Panama +n12365285 tropical American tree; valued for its hard durable wood +n12365462 East Indian tree having racemes of fragrant white flowers; coastal areas southern India to Malaysia +n12365900 an aromatic tree of the genus Clusia having large white or yellow or pink flowers +n12366053 a West Indies clusia having fig-shaped fruit +n12366186 epiphytic clusia of British Guiana +n12366313 a common tropical American clusia having solitary white or rose flowers +n12366675 East Indian tree with thick leathery leaves and edible fruit +n12366870 low spreading tree of Indonesia yielding an orange to brown gum resin (gamboge) used as a pigment when powdered +n12367611 any of numerous plants of the genus Hypericum having yellow flowers and transparently dotted leaves; traditionally gathered on St John's eve to ward off evil +n12368028 deciduous bushy Eurasian shrub with golden yellow flowers and reddish-purple fruits from which a soothing salve is made in Spain +n12368257 perennial shrub having large star-shaped yellow flowers in narrowly pyramidal cymes +n12368451 creeping evergreen shrub with bright yellow star-shaped summer flowers; useful as ground cover +n12369066 low shrubby plant having yellow flowers with four petals arranged in a cross; Bermuda and southeastern United States to West Indies and eastern Mexico +n12369309 yellow-flowered perennial common in fields and waste places but a weed in rangelands +n12369476 stiff shrub having oblong entire leaves and dense cymes of yellow flowers +n12369665 European perennial St John's wort; Ireland and France to western Siberia +n12369845 perennial marsh herb with pink to mauve flowers; southeastern United States +n12370174 tropical American tree having edible fruit with a leathery rind +n12370549 handsome East Indian evergreen tree often planted as an ornamental for its fragrant white flowers that yield a perfume; source of very heavy hardwood used for railroad ties +n12371202 climbing Asiatic vine having long finely serrate leaves and racemes of white flowers followed by greenish-yellow edible fruit +n12371439 climbing vine native to China; cultivated in New Zealand for its fuzzy edible fruit with green meat +n12371704 ornamental vine of eastern Asia having yellow edible fruit and leaves with silver-white markings +n12372233 large evergreen shrub or small tree having white aromatic bark and leathery leaves and small purple to red flowers in terminal cymes +n12373100 tropical American shrub or small tree having huge deeply palmately cleft leaves and large oblong yellow fruit +n12373739 large South American evergreen tree trifoliate leaves and drupes with nutlike seeds used as food and a source of cooking oil +n12374418 small shrubs of scrub and dry woodland regions of southern Europe and North Africa; grown for their showy flowers and soft often downy and aromatic evergreen foliage +n12374705 compact white pubescent shrub of southwestern Europe having pink flowers +n12374862 shrub having white flowers and viscid stems and leaves yielding a fragrant oleoresin used in perfumes especially as a fixative +n12375769 perennial of the eastern United States having early solitary yellow flowers followed by late petalless flowers; so-called because ice crystals form on it during first frosts +n12377198 tree of the family Dipterocarpaceae +n12377494 valuable Philippine timber tree +n12378249 small shrubby tree of Madagascar cultivated in tropical regions as a hedge plant and for its deep red acid fruits resembling small plums +n12378753 vigorous South African spiny shrub grown for its round yellow juicy edible fruits +n12378963 a small shrubby spiny tree cultivated for its maroon-purple fruit with sweet purple pulp tasting like gooseberries; Sri Lanka and India +n12379531 East Indian tree with oily seeds yield chaulmoogra oil used to treat leprosy +n12380761 large much-branched shrub grown primarily for its evergreen foliage +n12381511 any of several resinous trees or shrubs often burned for light +n12382233 candlewood of Mexico and southwestern California having tall columnar stems and bearing honey-scented creamy yellow flowers +n12382875 shrub with narrow-elliptic glossy evergreen leaves and yellow flowers with leathery petaloid sepals +n12383737 Brazilian passionflower cultivated for its deep purple fruit +n12383894 considered best for fruit +n12384037 tropical American passionflower yielding the large granadilla fruit +n12384227 of southern United States; having an insipid berry the size of a hen egg +n12384375 West Indian passionflower; cultivated for its yellow edible fruit +n12384569 cultivated for fruit +n12384680 West Indian passionflower with edible apple-sized fruit +n12384839 tropical American passion flower with finely dissected bracts; stems malodorous when crushed +n12385429 any plant of the genus Reseda +n12385566 Mediterranean woody annual widely cultivated for its dense terminal spikelike clusters greenish or yellowish white flowers having an intense spicy fragrance +n12385830 European mignonette cultivated as a source of yellow dye; naturalized in North America +n12386945 Eurasian shrub resembling the tamarisk +n12387103 plant growing naturally in very salty soil +n12387633 any of the numerous plants of the genus Viola +n12387839 any of numerous low-growing violas with small flowers +n12388143 common Old World viola with creamy often violet-tinged flowers +n12388293 violet of eastern North America having pale violet to white flowers +n12388858 Old World leafy-stemmed blue-flowered violet +n12388989 European viola with an unusually long corolla spur +n12389130 violet of Pacific coast of North America having white petals tinged with yellow and deep violet +n12389501 common violet of the eastern United States with large pale blue or purple flowers resembling pansies +n12389727 violet of eastern North America having softly pubescent leaves and stems and clear yellow flowers with brown-purple veins +n12389932 violet of eastern North America having lilac-purple flowers with a long slender spur +n12390099 leafy-stemmed violet of eastern North America having large white or creamy flowers faintly marked with purple +n12390314 common European violet that grows in woods and hedgerows +n12392070 any of numerous plants having stinging hairs that cause skin irritation on contact (especially of the genus Urtica or family Urticaceae) +n12392549 perennial Eurasian nettle established in North America having broad coarsely toothed leaves with copious stinging hairs +n12392765 annual European nettle with stinging foliage and small clusters of green flowers +n12393269 tall perennial herb of tropical Asia with dark green leaves; cultivated for the fiber from its woody stems that resembles flax +n12394118 American perennial herb found in rich woods and provided with stinging hairs; provides fibers used for textiles +n12394328 any of several tall Australian trees of the genus Laportea +n12394638 herb that grows in crevices having long narrow leaves and small pink apetalous flowers +n12395068 a plants of the genus Pilea having drooping green flower clusters and smooth translucent stems and leaves +n12395289 tropical American stingless nettle that discharges its pollen explosively +n12395463 low stingless nettle of Central and South America having velvety brownish-green toothed leaves and clusters of small green flowers +n12395906 Australian plant of genus Pipturus whose fiber is used in making cloth +n12396091 Hawaiian tree of genus Pipturus having a bark (tapa) from which tapa cloth is made +n12396924 any plant of the genus Cannabis; a coarse bushy annual with palmate leaves and clusters of small green flowers; yields tough fibers and narcotic drugs +n12397431 source of e.g. bhang and hashish as well as fiber +n12399132 any of several trees of the genus Morus having edible fruit that resembles the blackberry +n12399384 Asiatic mulberry with white to pale red fruit; leaves used to feed silkworms +n12399534 European mulberry having dark foliage and fruit +n12399656 North American mulberry having dark purple edible fruit +n12399899 small shrubby deciduous yellowwood tree of south central United States having spines, glossy dark green leaves and an inedible fruit that resembles an orange; its hard orange-colored wood used for bows by Native Americans; frequently planted as boundary hedge +n12400489 native to Pacific islands and having edible fruit with a texture like bread +n12400720 East Indian tree cultivated for its immense edible fruit and seeds +n12400924 Philippine tree similar to the breadfruit tree bearing edible fruit +n12401335 any moraceous tree of the tropical genus Ficus; produces a closed pear-shaped receptacle that becomes fleshy and edible when mature +n12401684 Mediterranean tree widely cultivated for its edible fruit +n12401893 wild variety of the common fig used to facilitate pollination of certain figs +n12402051 a strangler tree native to southern Florida and West Indies; begins as an epiphyte eventually developing many thick aerial roots and covering enormous areas +n12402348 East Indian tree that puts out aerial shoots that grow down into the soil forming additional trunks +n12402596 fig tree of India noted for great size and longevity; lacks the prop roots of the banyan; regarded as sacred by Buddhists +n12402840 large tropical Asian tree frequently dwarfed as a houseplant; source of Assam rubber +n12403075 shrub or small tree often grown as a houseplant having foliage like mistletoe +n12403276 Australian tree resembling the banyan often planted for ornament; introduced into South Africa for brushwood +n12403513 thick-branched wide-spreading tree of Africa and adjacent southwestern Asia often buttressed with branches rising from near the ground; produces cluster of edible but inferior figs on short leafless twigs; the biblical sycamore +n12403994 shrubby Asiatic tree having bark (tapa) that resembles cloth; grown as a shade tree in Europe and America; male flowers are pendulous catkins and female are urn-shaped followed by small orange-red aggregate berries +n12404729 tropical American tree with large peltate leaves and hollow stems +n12405714 any of various trees of the genus Ulmus: important timber or shade trees +n12406304 North American elm having twigs and young branches with prominent corky projections +n12406488 large ornamental tree with graceful gradually spreading branches common in eastern North America +n12406715 European elm with lustrous smooth leaves used as an ornamental +n12406902 elm of southern United States and Mexico having spreading pendulous corky branches +n12407079 Eurasian elm often planted as a shade tree +n12407222 any of various hybrid ornamental European shade trees ranging from dwarf to tall +n12407396 erect vigorous hybrid ornamental elm tree +n12407545 Eurasian elm closely resembling the American elm; thrives in a moist environment +n12407715 small fast-growing tree native to Asia; widely grown as shelterbelts and hedges +n12407890 broad spreading rough-leaved elm common throughout Europe and planted elsewhere +n12408077 fast-growing shrubby Asian tree naturalized in United States for shelter or ornament +n12408280 North American elm having rough leaves that are red when opening; yields a hard wood +n12408466 a variety of the English elm with erect branches and broader leaves +n12408717 autumn-flowering elm of southeastern United States +n12408873 tall widely distributed elm of eastern North America +n12409231 any of various trees of the genus Celtis having inconspicuous flowers and small berrylike fruits +n12409470 bright green deciduous shade tree of southern Europe +n12409651 large deciduous shade tree of southern United States with small deep purple berries +n12409840 deciduous shade tree with small black berries; southern United States; yields soft yellowish wood +n12411461 any bulbous plant of the family Iridaceae +n12412355 any of numerous wild or cultivated irises with hairlike structures on the falls (the drooping sepals) +n12412606 any of numerous wild or cultivated irises having no hairs on the drooping sepals (the falls) +n12412987 fragrant rootstock of various irises especially Florentine iris; used in perfumes and medicines +n12413165 low-growing summer-flowering iris of northeastern United States +n12413301 bulbous Spanish iris with red-violet flowers +n12413419 German iris having large white flowers with lavender-tinged falls and a fragrant rhizome +n12413642 iris with purple flowers and foul-smelling leaves; southern and western Europe and North Africa +n12413880 a large iris with purple or white flowers, native to central and southern Europe +n12414035 iris native to Japan having large showy flowers +n12414159 iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica +n12414329 European iris having soft lilac-blue flowers +n12414449 bulbous iris native to Asia Minor cultivated for its pale lilac-colored flowers +n12414818 bulbous Spanish iris having blue flowers +n12414932 low-growing spring-flowering American iris with bright blue-lilac flowers +n12415595 bulbous iris of western Mediterranean region having usually violet-purple flowers +n12416073 garden plant whose capsule discloses when ripe a mass of seeds resembling a blackberry +n12416423 any of numerous low-growing plants of the genus Crocus having slender grasslike leaves and white or yellow or purple flowers; native chiefly to the Mediterranean region but widely cultivated +n12416703 Old World crocus having purple or white flowers with aromatic pungent orange stigmas used in flavoring food +n12417836 any of several South African plants of the genus Ixia having grasslike leaves and clusters of showy variously colored lily-like flowers; widely cultivated +n12418221 plant with grasslike foliage and delicate blue flowers +n12418507 a showy often-cultivated plant with tawny yellow often purple-spotted flowers +n12419037 bulbous plant having showy white to reddish flowers +n12419878 tropical vine having pink-and-yellow flowers spotted purple and edible roots sometimes boiled as a potato substitute; West Indies to northern South America +n12420124 tropical vine having umbels of small purple flowers and edible roots sometimes boiled as a potato substitute; Colombia +n12420535 any of various deciduous or evergreen herbs of the genus Haemanthus; South Africa and Namibia +n12420722 spectacular plant having large prostrate leaves barred in reddish-purple and flowers with a clump of long yellow stamens in a coral-red cup of fleshy bracts; South Africa +n12421137 amaryllis of tropical America often cultivated as a houseplant for its showy white to red flowers +n12421467 bulbous plant having erect linear leaves and showy yellow or white flowers either solitary or in clusters +n12421683 any of numerous varieties of Narcissus plants having showy often yellow flowers with a trumpet-shaped central crown +n12421917 widely cultivated ornamental plant native to southern Europe but naturalized elsewhere having fragrant yellow or white clustered flowers +n12422129 often used colloquially for any yellow daffodil +n12422559 Mexican bulbous herb cultivated for its handsome bright red solitary flower +n12425281 plant growing from a bulb or corm or rhizome or tuber +n12426623 Japanese lily with golden rays +n12426749 common lily of the eastern United States having nodding yellow or reddish flowers spotted with brown +n12427184 lily of southeastern United States having cup-shaped flowers with deep yellow to scarlet recurved petals +n12427391 lily of western North America with showy orange-red purple-spotted flowers +n12427566 east Asian perennial having large reddish-orange black-spotted flowers with reflexed petals +n12427757 tall lily have large white trumpet-shaped flowers that bloom in the spring +n12427946 orange-flowered lily of Pacific coast of United States +n12428076 lily with small dull purple flowers of northwestern Europe and northwestern Asia +n12428242 lily of central North America having recurved orange-red flowers with deep crimson spots +n12428412 lily of western United States having orange-red to crimson maroon-spotted flowers +n12428747 lily of the eastern United States with orange to red maroon-spotted flowers +n12429352 African plant with bright green evergreen leaves and umbels of many usually deep violet-blue flowers +n12430198 any of several perennials of the genus Aletris having grasslike leaves and bitter roots reputed to cure colic +n12430471 colicroot having a scurfy or granuliferous perianth and white flowers; southeastern United States +n12430675 colicroot with yellow-bracted racemose flowers; smaller than Aletris farinosa; southeastern United States +n12431434 bulbous plants having a characteristic pungent onion odor +n12432069 a common North American wild onion with a strong onion odor and an umbel of pink flowers atop a leafless stalk; British Columbia to California and Arizona and east to Wyoming and Colorado +n12432356 coarse Old World perennial having a large bulb and tall stalk of greenish purple-tinged flowers; widely naturalized +n12432574 North American bulbous plant +n12432707 Eurasian bulbous plant +n12433081 the bulb of an onion plant +n12433178 type of onion plant producing small clustered mild-flavored bulbs used as seasoning +n12433769 widely distributed North American wild onion with white to rose flowers +n12433952 Asiatic onion with slender bulbs; used as early green onions +n12434106 onion with white to deep red tunic; California +n12434483 European onion with white flowers +n12434634 leek producing bulbils instead of flowers; Russia and Iran +n12434775 bulbous herb of southern Europe widely naturalized; bulb breaks up into separate strong-flavored cloves +n12434985 European leek cultivated and used like leeks +n12435152 perennial having hollow cylindrical leaves used for seasoning +n12435486 pungent Old World wild onion +n12435649 pungent Old World weedy plant +n12435777 a plant of eastern Asia; larger than Allium schoenoprasum +n12435965 Old World leek with a spherical bulb +n12436090 European leek naturalized in Great Britain; leaves are triangular +n12436907 much-branched South African plant with reddish prickly succulent leaves +n12437513 a plant of the genus Kniphofia having long grasslike leaves and tall scapes of red or yellow drooping flowers +n12437769 clump-forming plant of South Africa with spikes of scarlet flowers +n12437930 widely cultivated hybrid poker plant +n12439154 all parts of plant are highly toxic; bulb pounded and used as a fly poison; sometimes placed in subfamily Melanthiaceae +n12439830 plant having basal grasslike leaves and a narrow open cluster of starlike yellowish-orange flowers atop a leafless stalk; southwestern United States; only species of Anthericum growing in North America +n12441183 plant whose succulent young shoots are cooked and eaten as a vegetable +n12441390 a fernlike plant native to South Africa +n12441552 fragile twining plant of South Africa with bright green flattened stems and glossy foliage popular as a floral decoration +n12441958 any of various chiefly Mediterranean plants of the genera Asphodeline and Asphodelus having linear leaves and racemes of white or pink or yellow flowers +n12442548 asphodel having erect smooth unbranched stem either flexuous or straight +n12443323 evergreen perennial with large handsome basal leaves; grown primarily as a foliage houseplant +n12443736 half-hardy Mexican herb cultivated for its drooping terminal umbels of showy red-and-white flowers +n12444095 any of several plants of the genus Blandfordia having large orange or crimson flowers +n12444898 much-branched leafless twining South African herb cultivated as an ornamental for its bright green stems growing from large aboveground bulbs +n12446200 any of several plants of the genus Calochortus having tulip-shaped flowers with 3 sepals and 3 petals; southwestern United States and Mexico +n12446519 any of several plants of the genus Calochortus having egg-shaped flowers +n12446737 any of several plants of the genus Calochortus having flowers with petals shaped like cat's ears +n12446908 globe lily having open branched clusters of egg-shaped white flowers; southern California +n12447121 globe lily having open branched clusters of clear yellow egg-shaped flowers; northern California +n12447346 globe lily with deep rose-pink or purple egg-shaped flowers on flexuous stems; western slopes of Sierra Nevada in San Joaquin Valley +n12447581 small plant with slender bent stems bearing branched clusters of a few white star-shaped flowers with petals shaped like cat's ears; southeastern Washington and northeastern Oregon to Montana +n12447891 mariposa with clusters of bell-shaped vermilion or orange or yellow flowers atop short stems; southern California to Arizona and Mexico +n12448136 mariposa having clusters of a few large deep yellow bell-shaped flowers atop slender stems; California coastal ranges +n12448361 mariposa having loose clusters of one to three handsome lilac flowers resembling umbels atop stout erect stems; arid northwestern North America east of Cascade Mountains from southern British Columbia to northern California +n12448700 perennial plant having clusters of one to four showy white bell-shaped flowers atop erect unbranched stems; edible bulbs useful in times of scarcity; eastern Montana and western North Dakota south to northern Arizona and northwestern New Mexico +n12449296 any of several plants of the genus Camassia; North and South America +n12449526 plant having a large edible bulb and linear basal leaves and racemes of light to deep violet-blue star-shaped flowers on tall green scapes; western North America +n12449784 camas found to the west of Cascade Mountains +n12449934 eastern camas; eastern and central North America +n12450344 perennial woodland spring-flowering plant; widely cultivated +n12450607 North American dogtooth having solitary white flowers with yellow centers and blue or pink exteriors +n12450840 eastern North American dogtooth having solitary yellow flowers marked with brown or purple and spotted interiors +n12451070 sturdy European dogtooth with rose to mauve flowers; cultivated in many varieties +n12451240 California dogtooth violet with creamy white flowers sometimes yellow-tinged +n12451399 dogtooth violet of western North America having bright yellow flowers +n12451566 perennial herb having large white flowers marked with orange; found near the snow line in the northwestern United States +n12451915 any liliaceous plant of the genus Fritillaria having nodding variously colored flowers +n12452256 herb of northwestern America having green-and-purple bell-shaped flowers +n12452480 herb of southwestern United States having dark purple bell-shaped flowers mottled with green +n12452673 a malodorous California herb with bell-shaped flowers; a common weed in grainfields +n12452836 Eurasian herb with a cluster of leaves and orange-red bell-shaped flowers at the top of the stem +n12453018 California herb with white conic or bell-shaped flowers usually tinged with green +n12453186 Eurasian checkered lily with pendant flowers usually veined and checkered with purple or maroon on a pale ground and shaped like the bells carried by lepers in medieval times; widely grown as an ornamental +n12453714 California herb with pinkish purple flowers +n12453857 western United States herb with scarlet and yellow narrow bell-shaped flowers +n12454159 any of numerous perennial bulbous herbs having linear or broadly lanceolate leaves and usually a single showy flower +n12454436 small early blooming tulip +n12454556 Eurasian tulip with small flowers blotched at the base +n12454705 tall late blooming tulip +n12454793 any of several long-stemmed tulips that flower in May; have egg-shaped variously colored flowers +n12454949 any of several very tall, late blooming tulips bearing large squarish flowers on sturdy stems +n12455950 any plant of the genus Gloriosa of tropical Africa and Asia; a perennial herb climbing by means of tendrils at leaf tips having showy yellow to red or purple flowers; all parts are poisonous +n12457091 a day lily with yellow flowers +n12458550 widely grown for its fragrance and its white, pink, blue, or purplish flowers +n12458713 hyacinth with loosely flowered spikes, several growing from one bulb +n12458874 southern African herb with white bell-shaped flowers +n12459629 any of several perennial plants of the genus Ornithogalum native to the Mediterranean and having star-shaped flowers +n12460146 Old World star of Bethlehem having edible young shoots +n12460697 any of various early flowering spring hyacinths native to Eurasia having dense spikes of rounded blue flowers resembling bunches of small grapes +n12460957 prolific species having particularly beautiful dark blue flowers +n12461109 large beautiful Mediterranean species having sterile bluish-violet flowers with fringed corollas forming a tuft above the fertile flowers +n12461466 an Old World plant of the genus Scilla having narrow basal leaves and pink or blue or white racemose flowers +n12461673 European scilla with small blue or purple flowers +n12462032 a plant of the genus Tofieldia having linear chiefly basal leaves and small spicate flowers +n12462221 false asphodel having spikes of white flowers; of mountainous regions of Europe +n12462582 having dense spikes of small white flowers and yielding a bulb with medicinal properties +n12462805 bulb of the sea squill, which is sliced, dried, and used as an expectorant +n12463134 shrub with stiff flattened stems resembling leaves (cladophylls); used for making brooms +n12463743 either of two herbaceous rushlike bog plants having small yellow flowers and grasslike leaves; north temperate regions +n12463975 of western Europe: Scandinavia to northern Spain and Portugal +n12464128 of the eastern United States: New Jersey to South Carolina +n12464476 perennial herbs of the lily family having thick toxic rhizomes +n12464649 North American plant having large leaves and yellowish green flowers growing in racemes; yields a toxic alkaloid used medicinally +n12465557 plant of western North America having woody rhizomes and tufts of stiff grasslike basal leaves and spikes of creamy white flowers +n12466727 any of various plants of the genus Zigadenus having glaucous leaves and terminal racemes of mostly white flowers; all are poisonous +n12467018 plant of western North America having grasslike leaves and greenish-white flowers +n12467197 plant of eastern and central North America having creamy white flowers tinged with brown or purple; poisonous especially to grazing animals +n12467433 a common perennial death camas; Tennessee to Kansas to Texas +n12467592 plant of western North America to Mexico; poisonous especially to grazing animals +n12468545 trillium of central United States having dark purple sessile flowers +n12468719 a low perennial white-flowered trillium found in the southeastern United States +n12469517 European herb with yellow-green flowers resembling and closely related to the trilliums; reputed to be poisonous +n12470092 any of various prickly climbing plants of the tropical American genus Smilax having aromatic roots and heart-shaped leaves +n12470512 a very prickly woody vine of the eastern United States growing in tangled masses having tough round stems with shiny leathery leaves and small greenish flowers followed by clusters of inedible shiny black berries +n12470907 creeping or climbing evergreen having spiny zigzag stems with shiny leaves and racemes of pale-green flowers; Canary Islands to southern Europe and Ethiopia and India +n12472024 any temperate liliaceous plant of the genus Clintonia having broad basal leaves and white or yellowish or purplish flowers followed by blue or black berries +n12473608 small two-leaved herb of the northern United States and parts of Canada having racemes of small fragrant white flowers +n12473840 small white-flowered plant of western Europe to Japan +n12474167 any of several plants of the genus Polygonatum having paired drooping yellowish-green flowers and a thick rootstock with scars shaped like Solomon's seal +n12474418 North American perennial herb with smooth foliage and drooping tubular greenish flowers +n12475035 any of various plants of the genus Uvularia having yellowish drooping bell-shaped flowers +n12475242 plant of southern and southeastern United States grown for its yellow flowers that can be dried +n12475774 perennial herb of East Indies to Polynesia and Australia; cultivated for its large edible root yielding Otaheite arrowroot starch +n12476510 tropical American plants with basal rosettes of fibrous sword-shaped leaves and flowers in tall spikes; some cultivated for ornament or for fiber +n12477163 widely cultivated American monocarpic plant with greenish-white flowers on a tall stalk; blooms only after ten to twenty years and then dies +n12477401 Mexican or West Indian plant with large fleshy leaves yielding a stiff fiber used in e.g. rope +n12477583 Philippine plant yielding a hard fibre used in making coarse twine +n12477747 Mexican plant used especially for making pulque which is the source of the colorless Mexican liquor, mescal +n12477983 Mexican plant used especially for making tequila +n12478768 elegant tree having either a single trunk or a branching trunk each with terminal clusters of long narrow leaves and large panicles of fragrant white, yellow or red flowers; New Zealand +n12479537 an agave that is often cultivated for its decorative foliage +n12480456 a tuberous Mexican herb having grasslike leaves and cultivated for its spikes of highly fragrant lily-like waxy white flowers +n12480895 grown as a houseplant for its mottled fleshy sword-shaped leaves or as a source of fiber +n12481150 bowstring hemp of South Africa +n12481289 plant having thick fibrous leaves transversely banded in light and dark green +n12481458 stemless plant having narrow rigid leaves often cultivated as a houseplant +n12482437 a stiff yucca with a short trunk; found in the southern United States and tropical America; has rigid spine-tipped leaves and clusters of white flowers +n12482668 tall yucca of the southwestern United States and Mexico having a woody stem and stiff swordlike pointed leaves and a large cluster of white flowers +n12482893 a large branched arborescent yucca of southwestern United States having short leaves and clustered greenish white flowers +n12483282 tall arborescent yucca of southwestern United States +n12483427 yucca with long stiff leaves having filamentlike appendages +n12483625 yucca of west central United States having a clump of basal grasslike leaves and a central stalk with a terminal raceme of small whitish flowers +n12483841 yucca of southeastern United States similar to the Spanish bayonets but with shorter trunk and smoother leaves +n12484244 yucca of southwestern United States and Mexico with a tall spike of creamy white flowers +n12484784 perennial plant of Europe and America having racemes of white or purplish flowers and intensely bitter trifoliate leaves; often rooting at water margin and spreading across the surface +n12485653 tropical shrub having clusters of white or violet or yellow flowers +n12485981 poisonous woody evergreen vine of southeastern United States having fragrant yellow funnel-shaped flowers +n12486574 plant of the genus Linum that is cultivated for its seeds and for the fibers of its stem +n12487058 dark brown highly poisonous seed of the calabar-bean vine; source of physostigmine and used in native witchcraft +n12488454 tropical tree with large prickly pods of seeds that resemble beans and are used for jewelry and rosaries +n12488709 small thornless tree or shrub of tropical America whose seed pods are a source of tannin +n12489046 spreading thorny shrub of tropical Asia bearing large erect racemes of red-marked yellow flowers +n12489676 thornless tree yielding heavy wood +n12489815 a tropical flowering shrub having bright orange or red flowers; sometimes placed in genus Poinciana +n12490490 East Indian timber tree with hard durable wood used especially for tea boxes +n12491017 small East Indian tree having orchid-like flowers and hard dark wood +n12491435 small shrubby African tree having compound leaves and racemes of small fragrant green flowers +n12491826 any of various trees or shrubs of the genus Cassia having pinnately compound leaves and usually yellow flowers followed by long seedpods +n12492106 deciduous or semi-evergreen tree having scented sepia to yellow flowers in drooping racemes and pods whose pulp is used medicinally; tropical Asia and Central and South America and Australia +n12492460 tropical American semi-evergreen tree having erect racemes of pink or rose-colored flowers; used as an ornamental +n12492682 deciduous ornamental hybrid of southeastern Asia and Hawaii having racemes of flowers ranging in color from cream-colored to orange and red +n12492900 East Indian tree having long pods containing a black cathartic pulp used as a horse medicine +n12493208 evergreen Mediterranean tree with edible pods; the biblical carob +n12493426 long pod containing small beans and sweetish edible pulp; used as animal feed and source of a chocolate substitute +n12493868 a thorny shrub of the genus Cercidium that grows in dry parts of the southwestern United States and adjacent Mexico; has smooth light green bark and racemes of yellow flowers and small leaves +n12494794 showy tropical tree or shrub native to Madagascar; widely planted in tropical regions for its immense racemes of scarlet and orange flowers; sometimes placed in genus Poinciana +n12495146 any of various hardwood trees of the family Leguminosae +n12495670 honey locust of swamps and bottomlands of southern United States having short oval pods; yields dark heavy wood +n12495895 tall usually spiny North American tree having small greenish-white flowers in drooping racemes followed by long twisting seed pods; yields very hard durable reddish-brown wood; introduced to temperate Old World +n12496427 handsome tree of central and eastern North America having large bipinnate leaves and green-white flowers followed by large woody brown pods whose seeds are used as a coffee substitute +n12496949 spiny shrub or small tree of Central America and West Indies having bipinnate leaves and racemes of small bright yellow flowers and yielding a hard brown or brownish-red heartwood used in preparing a black dye +n12497669 large shrub or shrubby tree having sharp spines and pinnate leaves with small deciduous leaflets and sweet-scented racemose yellow-orange flowers; grown as ornamentals or hedging or emergency food for livestock; tropical America but naturalized in southern United States +n12498055 densely branched spiny tree of southwestern United States having showy yellow flowers and blue-green bark; sometimes placed in genus Cercidium +n12498457 erect shrub having large trifoliate leaves and dense clusters of yellow flowers followed by poisonous seeds; Yugoslavia; sometimes placed in genus Cytisus +n12499163 any of various plants of the genus Senna having pinnately compound leaves and showy usually yellow flowers; many are used medicinally +n12499757 evergreen Indian shrub with vivid yellow flowers whose bark is used in tanning; sometimes placed in genus Cassia +n12499979 erect shrub having racemes of tawny yellow flowers; the dried leaves are used medicinally as a cathartic; sometimes placed in genus Cassia +n12500309 North American perennial herb; leaves are used medicinally; sometimes placed in genus Cassia +n12500518 cosmopolitan tropical herb or subshrub with yellow flowers and slender curved pods; a weed; sometimes placed in genus Cassia +n12500751 very leafy malodorous tropical weedy shrub whose seeds have been used as an adulterant for coffee; sometimes classified in genus Cassia +n12501202 long-lived tropical evergreen tree with a spreading crown and feathery evergreen foliage and fragrant flowers yielding hard yellowish wood and long pods with edible chocolate-colored acidic pulp +n12504570 an erect to spreading hairy shrub of the Pacific coast of the United States having racemes of red to indigo flowers +n12504783 dense shrub of moist riverbanks and flood plains of the eastern United States having attractive fragrant foliage and dense racemes of dark purple flowers +n12505253 vine widely distributed in eastern North America producing racemes of purple to maroon flowers and abundant (usually subterranean) edible one-seeded pods resembling peanuts +n12506181 any of several tropical American trees of the genus Andira +n12506341 tree with shaggy unpleasant-smelling toxic bark and yielding strong durable wood; bark and seeds used as a purgative and vermifuge and narcotic +n12506991 perennial Eurasian herb having heads of red or yellow flowers and common in meadows and pastures; formerly used medicinally for kidney disorders +n12507379 a North American vine with fragrant blossoms and edible tubers; important food crop of Native Americans +n12507823 South African shrub having flat acuminate leaves and yellow flowers; leaves are aromatic when dried and used to make an herbal tea +n12508309 any of various plants of the genus Astragalus +n12508618 perennial of mountainous areas of Eurasia and North America +n12508762 perennial of southern and western Europe having dense racemes of purple or violet flowers +n12509109 small shrubby African tree with hard wood used as a dyewood yielding a red dye +n12509476 any of several plants of the genus Baptisia +n12509665 wild indigo of the eastern United States having racemes of blue flowers +n12509821 erect or spreading herb having racemes of creamy white flowers; the eastern United States +n12509993 much-branched erect herb with bright yellow flowers; distributed from Massachusetts to Florida +n12510343 East Indian tree bearing a profusion of intense vermilion velvet-textured blooms and yielding a yellow dye +n12510774 tropical woody herb with showy yellow flowers and flat pods; much cultivated in the tropics +n12511488 twining tropical Old World plant bearing long pods usually with red or brown beans; long cultivated in Orient for food +n12511856 any plant of the genus Caragana having even-pinnate leaves and mostly yellow flowers followed by seeds in a linear pod +n12512095 large spiny shrub of eastern Asia having clusters of yellow flowers; often cultivated in shelterbelts and hedges +n12512294 shrub with dark-green glossy foliage and solitary pale yellow flowers; northern China +n12512674 Australian tree having pinnate leaves and orange-yellow flowers followed by large woody pods containing 3 or 4 seeds that resemble chestnuts; yields dark strong wood +n12513172 large-flowered weakly twining or prostrate vine of New Jersey to tropical eastern North America, sometimes cultivated for its purple and white flowers +n12513613 small tree of the eastern Mediterranean having abundant purplish-red flowers growing on old wood directly from stems and appearing before the leaves: widely cultivated in mild regions; wood valuable for veneers +n12513933 small shrubby tree of eastern North America similar to the Judas tree having usually pink flowers; found in damp sheltered underwood +n12514138 shrub of western United States having pink or crimson flowers; often forms thickets +n12514592 shrub of Canary Islands having bristle-tipped oblanceolate leaves; used as cattle fodder +n12514992 small shrubby tree of New Zealand having weeping branches and racemes of white to violet flowers followed by woolly indehiscent two-seeded pods +n12515393 any of several small shrubs or twining vines having entire or lobed leaves and racemes of yellow to orange-red flowers; Australia +n12515711 Asiatic herb cultivated for its short pods with one or two edible seeds +n12515925 the seed of the chickpea plant +n12516165 small handsome roundheaded deciduous tree having showy white flowers in terminal clusters and heavy hardwood yielding yellow dye +n12516584 any of various shrubs or vines of the genus Clianthus having compound leaves and pea-like red flowers in drooping racemes +n12516828 sprawling shrubby perennial noted for its scarlet black-marked flowers; widely distributed in dry parts of Australia +n12517077 evergreen shrub with scarlet to white clawlike or beaklike flowers; New Zealand +n12517445 large-flowered wild twining vine of southeastern and central United States having pale blue flowers +n12517642 vine of tropical Asia having pinnate leaves and bright blue flowers with yellow centers +n12518013 erect tropical Asian shrub whose small lateral leaflets rotate on their axes and jerk up and down under the influence of sunshine +n12518481 yellow-flowered European shrub cultivated for its succession of yellow flowers and very inflated bladdery pods and as a source of wildlife food +n12519089 European herb resembling vetch; naturalized in the eastern United States; having umbels of pink-and-white flowers and sharp-angled pods +n12519563 any of various plants of the genus Crotalaria having inflated pods within which the seeds rattle; used for pasture and green-manure crops +n12520406 drought-tolerant herb grown for forage and for its seed which yield a gum used as a thickening agent or sizing material +n12521186 low European broom having trifoliate leaves and yellowish-white flowers +n12521394 deciduous erect spreading broom native to western Europe; widely cultivated for its rich yellow flowers +n12522188 any of those hardwood trees of the genus Dalbergia that yield rosewood--valuable cabinet woods of a dark red or purplish color streaked and variegated with black +n12522678 East Indian tree having a useful dark purple wood +n12522894 East Indian tree whose leaves are used for fodder; yields a compact dark brown durable timber used in shipbuilding and making railroad ties +n12523141 Brazilian tree yielding a handsome cabinet wood +n12523475 an important Brazilian timber tree yielding a heavy hard dark-colored wood streaked with black +n12523850 a valuable timber tree of tropical South America +n12524188 any of several hardwood trees yielding very dark-colored wood +n12525168 any of several spiny shrubs of the genus Daviesia having yellow flowers and triangular seeds; Australia +n12525513 any of various usually woody vines of the genus Derris of tropical Asia whose roots yield the insecticide rotenone; several are sources of native fish and arrow poisons +n12525753 woody vine having bright green leaves and racemes of rose-tinted white flowers; the swollen roots contain rotenone +n12526178 perennial herb of North American prairies having dense heads of small white flowers +n12526516 any of various tropical and subtropical plants having trifoliate leaves and rough sticky pod sections or loments +n12526754 West Indian forage plant cultivated in southern United States as forage and to improve soil +n12527081 South African evergreen partly woody vine grown for its clusters of rosy purple flowers followed by edible pods like snap beans; also grown as green manure; sometimes placed in genus Dolichos +n12527738 any of various shrubs or shrubby trees of the genus Erythrina having trifoliate leaves and racemes of scarlet to coral red flowers and black seeds; cultivated as an ornamental +n12528109 small semi-evergreen broad-spreading tree of eastern South Africa with orange-scarlet flowers and small coral-red seeds; yields a light soft wood used for fence posts or shingles +n12528382 deciduous shrub having racemes of deep red flowers and black-spotted red seeds +n12528549 small South American spiny tree with dark crimson and scarlet flowers solitary or clustered +n12528768 small semi-evergreen tree of South Africa having dense clusters of clear scarlet flowers and red seeds +n12528974 small to medium-sized thorny tree of tropical Asia and northern Australia having dense clusters of scarlet or crimson flowers and black seeds +n12529220 prickly Australian coral tree having soft spongy wood +n12529500 tall bushy European perennial grown for its pinnate foliage and slender spikes of blue flowers; sometimes used medicinally +n12529905 any of various Australian evergreen shrubs of the genus Gastrolobium having whorled compound leaves poisonous to livestock and showy yellow to deep reddish-orange flowers followed by two-seeded pods +n12530629 erect shrub of southwestern Europe having racemes of golden yellow flowers +n12530818 small Eurasian shrub having clusters of yellow flowers that yield a dye; common as a weed in Britain and the United States; sometimes grown as an ornamental +n12531328 thorny shrub or small tree common in central Argentina having small orange or yellow flowers followed by edible berries +n12531727 any of several small deciduous trees valued for their dark wood and dense racemes of nectar-rich pink flowers grown in great profusion on arching branches; roots and bark and leaves and seeds are poisonous +n12532564 a source of oil; used for forage and soil improvement and as food +n12532886 deep-rooted coarse-textured plant native to the Mediterranean region having blue flowers and pinnately compound leaves; widely cultivated in Europe for its long thick sweet roots +n12533190 North American plant similar to true licorice and having a root with similar properties +n12533437 root of licorice used in flavoring e.g. candy and liqueurs and medicines +n12534208 vigorous climber of the forests of western Australia; grown for their dense racemes of attractive bright rose-purple flowers +n12534625 perennial of western United States having racemes of pink to purple flowers followed by flat pods that separate into nearly orbicular joints +n12534862 perennial of southern Europe cultivated for forage and for its nectar-rich pink flowers that make it an important honey crop +n12536291 shrub of West Indies and South America that is a source of indigo dye +n12537253 hairy trailing or prostrate western Australian vine with bright scarlet-pink flowers +n12537569 perennial twining vine of Old World tropics having trifoliate leaves and racemes of fragrant purple pea-like flowers followed by maroon pods of edible seeds; grown as an ornamental and as a vegetable on the Indian subcontinent; sometimes placed in genus Dolichos +n12538209 an ornamental shrub or tree of the genus Laburnum +n12539074 any of various small plants of the genus Lathyrus; climb usually by means of tendrils +n12539306 any of various plants of the family Leguminosae that usually grow like vines +n12539832 any of several perennial vines of the genus Lathyrus +n12540250 wild pea of seashores of north temperate zone having tough roots and purple flowers and useful as a sand binder +n12540647 annual European vetch with red flowers +n12540966 scrambling perennial of damp or marshy areas of Eurasia and North America with purplish flowers +n12541157 scrambling perennial Eurasian wild pea having yellowish flowers and compressed seed pods; cultivated for forage +n12541403 European annual grown for forage; seeds used for food in India and for stock elsewhere +n12542043 North African annual resembling the sweet pea having showy but odorless flowers +n12542240 European herb bearing small tubers used for food and in Scotland to flavor whiskey +n12543186 Asian shrub having conspicuous racemose rose-purple flowers widely used as an ornamental and in erosion control and as a source of feed for wild birds +n12543455 an annual of tropical Asia naturalized in United States +n12543639 annual native to Korea but widely cultivated for forage and hay in hot dry regions +n12543826 perennial widely planted as for forage and as hay crop especially on poor land +n12544240 widely cultivated Eurasian annual herb grown for its edible flattened seeds that are cooked like peas and also ground into meal and for its leafy stalks that are used as fodder +n12544539 the fruit or seed of a lentil plant +n12545232 North American annual with red or rose-colored flowers +n12545635 European forage plant having claw-shaped pods introduced in America +n12545865 sprawling European annual having a 4-winged edible pod +n12546183 any plant of the genus Lupinus; bearing erect spikes of usually purplish-blue flowers +n12546420 white-flowered Eurasian herb widely cultivated for forage and erosion control +n12546617 evergreen shrub of the Pacific coast of the United States having showy yellow or blue flowers; naturalized in Australia +n12546962 stout perennial of eastern and central North America having palmate leaves and showy racemose blue flowers +n12547215 low-growing annual herb of southwestern United States (Texas) having silky foliage and blue flowers; a leading cause of livestock poisoning in the southwestern United States +n12547503 closely resembles Lupinus subcarnosus; southwestern United States (Texas) +n12548280 any of several Old World herbs of the genus Medicago having small flowers and trifoliate compound leaves +n12548564 evergreen shrub of southern European highlands having downy foliage and a succession of yellow flowers throughout the summer followed by curious snail-shaped pods +n12548804 European medic naturalized in North America having yellow flowers and sickle-shaped pods +n12549005 an annual of the Mediterranean area having spiny seed pods and leaves with dark spots +n12549192 prostrate European herb with small yellow flowers and curved black pods; naturalized in North America +n12549420 important European leguminous forage plant with trifoliate leaves and blue-violet flowers grown widely as a pasture and hay crop +n12549799 any of several tropical trees or shrubs yielding showy streaked dark reddish or chocolate-colored wood +n12550210 any of several erect or climbing woody plants of the genus Mucuna; widespread in tropics of both hemispheres +n12550408 the annual woody vine of Asia having long clusters of purplish flowers and densely hairy pods; cultivated in southern United States for green manure and grazing +n12551173 medium-sized tropical American tree yielding tolu balsam and a fragrant hard wood used for high-grade furniture and cabinetwork +n12551457 tree of South and Central America yielding an aromatic balsam +n12552309 Eurasian perennial herb having pale pink flowers and curved pods; naturalized in Britain and North America grasslands on calcareous soils; important forage crop and source of honey in Britain +n12552893 European woody plant having pink flowers and unifoliate leaves and long tough roots; spreads by underground runners +n12553742 small tree of West Indies and northeastern Venezuela having large oblong pointed leaflets and panicles of purple flowers; seeds are black or scarlet with black spots +n12554029 West Indian tree similar to Ormosia monosperma but larger and having smaller leaflets and smaller seeds +n12554526 any of several leguminous plants of western North America causing locoism in livestock +n12554729 tufted locoweed of southwestern United States having purple or pink to white flowers +n12554911 any plant that breaks away from its roots in autumn and is driven by the wind as a light rolling mass +n12555255 Central American twining plant with edible roots and pods; large tubers are eaten raw or cooked especially when young and young pods must be thoroughly cooked; pods and seeds also yield rotenone and oils +n12555859 trailing trifoliate Asiatic and African herb having cobalt blue flowers +n12556656 a climbing bean plant that will climb a wall or tree or trellis +n12557064 the common bean plant grown for the beans rather than the pods (especially a variety with large red kidney-shaped beans) +n12557438 a French variety of green bean plant bearing light-colored beans +n12557556 a common bean plant grown for its edible golden pod +n12557681 tropical American bean with red flowers and mottled black beans similar to Phaseolus vulgaris but perennial; a preferred food bean in Great Britain +n12558230 bush or tall-growing bean plant having large flat edible seeds +n12558425 bush bean plant cultivated especially in southern United States having small flat edible seeds +n12558680 twining plant of southwestern United States and Mexico having roundish white or yellow or brown or black beans +n12559044 spiny evergreen xerophytic shrub having showy rose and purple flowers and forming dense thickets; of dry rocky mountain slopes of California +n12559518 small tree of West Indies and Florida having large odd-pinnate leaves and panicles of red-striped purple to white flowers followed by decorative curly winged seedpods; yields fish poisons +n12560282 the fruit or seed of a pea plant +n12560621 the flattened to cylindric inflated multi-seeded fruit of the common pea plant +n12560775 a variety of pea plant producing peas having soft thick edible pods lacking the fibrous inner lining of the common pea +n12561169 variety of pea plant producing peas having crisp rounded edible pods +n12561309 variety of pea plant native to the Mediterranean region and North Africa and widely grown especially for forage +n12561594 seed of the field pea plant +n12562141 low spreading evergreen shrub of southern Australia having triangular to somewhat heart-shaped foliage and orange-yellow flowers followed by flat winged pods +n12562577 any of several tropical American trees some yielding economically important timber +n12562785 large tree of Trinidad and Guyana having odd-pinnate leaves and violet-scented axillary racemes of yellow flowers and long smooth pods; grown as a specimen in parks and large gardens +n12563045 large erect shrub of Colombia having large odd-pinnate leaves with large leaflets and axillary racemes of fragrant yellow flowers +n12563702 evergreen Asiatic tree having glossy pinnate leaves and racemose creamy-white scented flowers; used as a shade tree +n12564083 a tuberous twining annual vine bearing clusters of purplish flowers and pods with four jagged wings; Old World tropics +n12564613 densely hairy perennial of central North America having edible tuberous roots +n12565102 deciduous South African tree having large odd-pinnate leaves and profuse fragrant orange-yellow flowers; yields a red juice and heavy strong durable wood +n12565912 East Indian tree yielding a resin or extract often used medicinally and in e.g. tanning +n12566331 tree of India and East Indies yielding a hard fragrant timber prized for cabinetwork and dark red heartwood used as a dyewood +n12566954 fast-growing vine from eastern Asia having tuberous starchy roots and hairy trifoliate leaves and racemes of purple flowers followed by long hairy pods containing many seeds; grown for fodder and forage and root starch; widespread in the southern United States +n12567950 large shrub or small tree of the eastern United States having bristly stems and large clusters of pink flowers +n12568186 large thorny tree of eastern and central United States having pinnately compound leaves and drooping racemes of white flowers; widely naturalized in many varieties in temperate regions +n12568649 small rough-barked locust of southeastern United States having racemes of pink flowers and glutinous branches and seeds +n12569037 small Dominican tree bearing masses of large crimson flowers before the fine pinnate foliage emerges +n12569616 tall-growing annual of southwestern United States widely grown as green manure; yields a strong tough bast fiber formerly used by Indians for cordage +n12569851 a softwood tree with lax racemes of usually red or pink flowers; tropical Australia and Asia; naturalized in southern Florida and West Indies +n12570394 handsome roundheaded deciduous tree having compound dark green leaves and profuse panicles of fragrant creamy-white flowers; China and Japan +n12570703 shrub or small tree having pinnate leaves poisonous to livestock and dense racemes of intensely fragrant blue flowers and red beans +n12570972 shrub or small tree of New Zealand and Chile having pendulous racemes of tubular golden-yellow flowers; yields a hard strong wood +n12571781 vigorous Philippine evergreen twining liana; grown for spectacular festoons of green flowers that resemble lobster claws +n12572546 a plant of the genus Tephrosia having pinnate leaves and white or purplish flowers and flat hairy pods +n12572759 East Indian shrub +n12572858 perennial subshrub of eastern North America having downy leaves yellowish and rose flowers and; source of rotenone +n12573256 any of various plants of the genus Thermopsis having trifoliate leaves and yellow or purple racemose flowers +n12573474 western United States bushy herb having yellow pea-like flowers +n12573647 eastern United States bush pea +n12573911 semi-evergreen South American tree with odd-pinnate leaves and golden yellow flowers cultivated as an ornamental +n12574320 Old World herb related to fenugreek +n12574470 annual herb or southern Europe and eastern Asia having off-white flowers and aromatic seeds used medicinally and in curry +n12574866 very spiny and dense evergreen shrub with fragrant golden-yellow flowers; common throughout western Europe +n12575322 any of various climbing plants of the genus Vicia having pinnately compound leaves that terminate in tendrils and small variously colored flowers; includes valuable forage and soil-building plants +n12575812 common perennial climber of temperate regions of Eurasia and North America having dense elongate clusters of flowers +n12576323 seed of the broad-bean plant +n12576451 European perennial toxic vetch +n12576695 European purple-flowered with slender stems; occurs as a weed in hedges +n12577362 East Indian legume having hairy foliage and small yellow flowers followed by cylindrical pods; used especially in India for food and forage and as a soil conditioner; sometimes placed in genus Phaseolus +n12577895 perennial tropical American vine cultivated for its racemes of showy yellow and purple flowers having the corolla keel coiled like a snail shell; sometimes placed in genus Phaseolus +n12578255 erect bushy annual widely cultivated in warm regions of India and Indonesia and United States for forage and especially its edible seeds; chief source of bean sprouts used in Chinese cookery; sometimes placed in genus Phaseolus +n12578626 sprawling Old World annual cultivated especially in southern United States for food and forage and green manure +n12578916 fruit or seed of the cowpea plant +n12579038 South American bean having very long succulent pods +n12579404 Australian leafless shrub resembling broom and having small yellow flowers +n12579822 tree with odd-pinnate leaves and racemes of fragrant pink to purple flowers +n12580012 fast-growing roundheaded tree with fragrant white to deep rose flowers; planted as an ornamental +n12580654 having flowers of pink to mauve or violet-blue +n12580786 having deep purple flowers +n12580896 an eastern United States native resembling the cultivated Japanese wisteria having pale purple-lilac flowers +n12581110 a wisteria of China having white flowers +n12582231 any plant of the family Palmae having an unbranched trunk crowned by large pinnate or palmate leaves +n12582665 any of various tropical Asian palm trees the trunks of which yield sago +n12582846 palm having pinnate or featherlike leaves +n12583126 palm having palmate or fan-shaped leaves +n12583401 any of several low-growing palms with fan-shaped leaves +n12583681 tropical American palm having edible nuts and yielding a useful fiber +n12583855 tropical American feather palm having a swollen spiny trunk and edible nuts +n12584191 any of several tall tropical palms native to southeastern Asia having egg-shaped nuts +n12584365 southeastern Asian palm bearing betel nuts (scarlet or orange single-seeded fruit with a fibrous husk) +n12584715 Malaysian feather palm with base densely clothed with fibers; yields a sweet sap used in wine and trunk pith yields sago +n12585137 Brazilian palm yielding fibers used in making ropes, mats, and brushes +n12585373 nut having a hard hazel-brown shell used like vegetable ivory +n12585629 tall fan palm of Africa and India and Malaysia yielding a hard wood and sweet sap that is a source of palm wine and sugar; leaves used for thatching and weaving +n12586298 any tropical Asian palm of the genus Calamus; light tough stems are a source of rattan canes +n12586499 climbing palm of Sri Lanka and southern India remarkable for the great length of the stems which are used for malacca canes +n12586725 tall scrambling spiny palm of northeastern Queensland, Australia +n12586989 attractive East Indian palm having distinctive bipinnate foliage +n12587132 fishtail palm of India to Malay Peninsula; sap yields a brown sugar (jaggery) and trunk pith yields sago +n12587487 palm of the Andes yielding a resinous wax which is mixed with tallow to make candles +n12587803 tall palm tree bearing coconuts as fruits; widely planted throughout the tropics +n12588320 Brazilian fan palm having an edible root; source of a useful leaf fiber and a brittle yellowish wax +n12588780 South American palm yielding a wax similar to carnauba wax +n12589142 any of several tropical American palms bearing corozo nuts +n12589458 large-leaved palm of Malay to Philippines and northern Australia; leaves used for thatching or plaiting into containers +n12589687 fan palms of the southern United States and the Caribbean region +n12589841 tall palm of southern India and Sri Lanka with gigantic leaves used as umbrellas and fans or cut into strips for writing paper +n12590232 pinnate-leaved palms of the genus Elaeis having dense clusters of crowded flowers and bright red fruit and yielding high quality palm oils +n12590499 oil palm of Africa +n12590600 palm of Central and South America +n12590715 seed of any oil palm +n12591017 Brazilian palm of genus Euterpe whose leaf buds are eaten like cabbage when young +n12591351 Australian palm with leaf buds that are edible when young +n12591702 Malaysian palm whose pithy trunk yields sago--a starch used as a food thickener and fabric stiffener; Malaya to Fiji +n12592058 any creeping semiaquatic feather palm of the genus Nipa found in mangrove swamps and tidal estuaries; its sap is used for a liquor; leaves are used for thatch; fruit has edible seeds +n12592544 tall feather palm of northern Brazil with hard-shelled nuts yielding valuable oil and a kind of vegetable ivory +n12592839 hard-shelled nut of the babassu palm +n12593122 tropical American feather palm whose large nuts yield valuable oil and a kind of vegetable ivory +n12593341 nut of the cohune palm having hard white shells like those of ivory nuts +n12593994 tall tropical feather palm tree native to Syria bearing sweet edible fruit +n12594324 a stemless palm tree of Brazil and Peru bearing ivory nuts +n12594989 a large feather palm of Africa and Madagascar having very long pinnatisect fronds yielding a strong commercially important fiber from its leafstalks +n12595699 a palm of the genus Raffia +n12595964 any of several small palms of the genus Rhapis; cultivated as houseplants +n12596148 small graceful palm with reedlike stems and leaf bases clothed with loose coarse fibers +n12596345 Chinese lady palm with more slender stems and finer sheath fibers than Rhapis excelsa +n12596709 tall feather palm of southern Florida and Cuba +n12596849 West Indian palm with leaf buds that are edible when young +n12597134 low-growing fan-leaved palm of coastal southern United States having edible leaf buds +n12597466 small hardy clump-forming spiny palm of southern United States +n12597798 small palm of southern Florida and West Indies closely resembling the silvertop palmetto +n12598027 small stocky fan palm of southern Florida and Cuba +n12599185 an Old World plantain with long narrow ribbed leaves widely established in temperate regions +n12599435 common European perennial naturalized worldwide; a troublesome weed +n12599661 widely distributed Old World perennial naturalized in North America having finely hairy leaves and inconspicuous white fragrant flowers +n12599874 plantain of Mediterranean regions whose seeds swell and become gelatinous when moist and are used as a mild laxative +n12600095 North American plantain having reddish leafstalks and broad leaves +n12600267 North American annual or biennial with long soft hairs on the leaves +n12601494 a member of the genus Fagopyrum; annual Asian plant with clusters of small pinkish white flowers and small edible triangular seeds which are used whole or ground into flour +n12601805 annual with broadly ovate leaves and slender drooping spikes of crimson flowers; southeastern Asia and Australia; naturalized in North America +n12602262 any plant of the genus Eriogonum with small clustered flowers +n12602434 late blooming perennial plant of shale barrens of Virginia having flowers in flat-topped clusters +n12602612 low-growing shrub with spreading branches and flowers in loose heads; desert regions of western United States (California to Utah) +n12602980 plants having long green or reddish acidic leafstalks growing in basal clumps; stems (and only the stems) are edible when cooked; leaves are poisonous +n12603273 Asian herb (Himalayas) +n12603449 long cultivated hybrid of Rheum palmatum; stems often cooked in pies or as sauce or preserves +n12603672 long used for laxative properties +n12604228 European sorrel with large slightly acidic sagittate leaves grown throughout north temperate zone for salad and spring greens +n12604460 small plant having pleasantly acid-tasting arrow-shaped leaves; common in dry places +n12604639 European dock with broad obtuse leaves and bitter rootstock common as a weed in North America +n12604845 low perennial with small silvery-green ovate to hastate leaves +n12605683 any of several rushlike plants, especially of the pine barrens of southern United States +n12606438 any plant of the genus Commelina +n12606545 any plant of the family Commelinaceae +n12607456 a tropical American plant bearing a large fleshy edible fruit with a terminal tuft of stiff leaves; widely cultivated in the tropics +n12609379 aquatic perennial of North America and Ireland and Hebrides having translucent green leaves in a basal spiral and dense buttonlike racemes of minute white flowers +n12610328 a tropical floating aquatic plant having spikes of large blue flowers; troublesome in clogging waterways especially in southern United States +n12610740 grassy-leaved North American aquatic plant with yellow star-shaped blossoms +n12611640 submerged aquatic plant having narrow leaves and small flowers; of fresh or brackish water +n12612170 marsh plant having clusters of small white or pinkish flowers and broad pointed or rounded leaves +n12612811 a variety of water plantain +n12613706 submersed plant with whorled lanceolate leaves and solitary axillary flowers; Old World plant naturalized in southern United States and clogging Florida's waterways +n12614096 American plant with roundish heart-shaped or kidney-shaped leaves; usually rooted in muddy bottoms of ponds and ditches +n12614477 a weedy aquatic plant of genus Elodea +n12614625 North American waterweed; widely naturalized in Europe +n12615232 submerged aquatic plant with ribbonlike leaves; Old World and Australia +n12615710 any of several submerged or floating freshwater perennial aquatic weeds belonging to the family Potamogetonaceae +n12616248 European herb naturalized in the eastern United States and California +n12616630 pondweed with floating leaves; of northern United States and Europe +n12616996 very similar to Potamogeton; of western Africa, Asia, and Europe +n12617559 tufted perennial found in shallow water or marshland; sometimes poisons livestock +n12618146 found in still or slow-moving fresh or brackish water; useful to oxygenate cool water ponds and aquaria +n12618727 submerged marine plant with very long narrow leaves found in abundance along North Atlantic coasts +n12620196 any of many shrubs of the genus Rosa that bear roses +n12620546 the fruit of a rose plant +n12620969 Chinese evergreen climbing rose with yellow or white single flowers +n12621410 large hardy very fragrant pink rose; cultivated in Asia Minor as source of attar of roses; parent of many hybrids +n12621619 Eurasian rose with prickly stems and fragrant leaves and bright pink flowers followed by scarlet hips +n12621945 Chinese climbing rose with fragrant white blossoms +n12622297 rose native to Mediterranean region having curved or climbing branches and loose clusters of musky-scented flowers +n12622875 a plant of the genus Agrimonia having spikelike clusters of small yellow flowers +n12623077 erect perennial Old World herb of dry grassy habitats +n12623211 fragrant European perennial herb found at woodland margins on moist soils +n12623818 shrub or small tree of northwestern North America having fragrant creamy white flowers and small waxy purple-red fruits +n12624381 Asiatic ornamental shrub with spiny branches and pink or red blossoms +n12624568 deciduous thorny shrub native to Japan having red blossoms +n12625003 small tropical American tree bearing edible plumlike fruit +n12625383 any shrub of the genus Cotoneaster: erect or creeping shrubs having richly colored autumn foliage and many small white to pinkish flowers followed by tiny red or black fruits +n12625670 climbing evergreen shrub with white flowers and red berries; often used as ground cover +n12625823 deciduous flat-growing shrub with a fanned herringbone pattern and having reddish flowers and orange-red berries; used as a ground cover +n12626674 southern United States hawthorn with pinnately lobed leaves +n12626878 common shrub or small tree of the eastern United States having few thorns and white flowers in corymbs followed by bright orange-red berries +n12627119 erect and almost thornless American hawthorn with somewhat pear-shaped berries +n12627347 eastern United States hawthorn with long straight thorns +n12627526 hawthorn of southern United States bearing a juicy, acidic, scarlet fruit that is often used in jellies or preserves +n12628356 American red-fruited hawthorn with stems and leaves densely covered with short woolly hairs +n12628705 American red-fruited hawthorn with dense corymbs of pink-red flowers +n12628986 small Asian tree with pinkish flowers and pear-shaped fruit; widely cultivated +n12629305 creeping evergreen shrub with large white flowers; widely distributed in northern portions of Eurasia and North America +n12629666 evergreen tree of warm regions having fuzzy yellow olive-sized fruit with a large free stone; native to China and Japan +n12630763 wild strawberry of western United States and South America; source of many varieties of cultivated strawberries +n12630999 North American wild strawberry with sweet scarlet fruit; a source of many cultivated strawberries +n12631331 any of various perennials of the genus Geum having usually pinnate basal leaves and variously colored flowers +n12631637 erect subshrub with deep yellow flowers; Europe and Asia and North America +n12631932 hairy yellow-flowered plant of eastern Asia and North America +n12632335 North American perennial with hairy basal pinnate leaves and purple flowers and plume-tipped fruits +n12632733 avens of Virginia having pale or greenish yellow flowers +n12633061 ornamental evergreen treelike shrub of the Pacific coast of the United States having large white flowers and red berrylike fruits; often placed in genus Photinia +n12633638 any tree of the genus Malus especially those bearing firm rounded edible fruits +n12633994 native Eurasian tree widely cultivated in many varieties for its firm rounded edible fruits +n12634211 any of numerous wild apple trees usually with small acidic fruit +n12634429 any of numerous varieties of crab apples cultivated for their small acidic (usually bright red) fruit used for preserves or as ornamentals for their blossoms +n12634734 Asian wild crab apple cultivated in many varieties for it small acid usually red fruit used for preserving +n12634986 wild crab apple native to Europe; a chief ancestor of cultivated apples +n12635151 medium-sized tree of the eastern United States having pink blossoms and small yellow fruit +n12635359 small tree or shrub of western United States having white blossoms and tiny yellow or red fruit +n12635532 small tree or shrub of southeastern United States; cultivated as an ornamental for its rose-colored blossoms +n12635744 wild crab apple of western United States with fragrant pink flowers +n12635955 derived from the Iowa crab and cultivated for its large double pink blossoms +n12636224 small deciduous Eurasian tree cultivated for its fruit that resemble crab apples +n12636885 any of a numerous plants grown for their five-petaled flowers; abundant in temperate regions; alleged to have medicinal properties +n12637123 low-growing perennial having leaves silvery beneath; northern United States; Europe; Asia +n12637485 European garden herb with purple-tinged flowers and leaves that are sometimes used for salads +n12638218 any of several trees producing edible oval fruit having a smooth skin and a single hard stone +n12638556 an uncultivated plum tree or shrub +n12638753 wild plum of northeastern United States having dark purple fruits with yellow flesh +n12638964 wild plum trees of eastern and central North America having red-orange fruit with yellow flesh +n12639168 small native American shrubby tree bearing small edible yellow to reddish fruit +n12639376 seacoast shrub of northeastern North America having showy white blossoms and edible purple fruit +n12639584 any of various widely distributed plums grown in the cooler temperate areas +n12639736 small wild or half-domesticated Eurasian plum bearing small ovoid fruit in clusters +n12639910 plum tree long cultivated for its edible fruit +n12640081 small tree of southwestern United States having purplish-red fruit sometimes cultivated as an ornamental for its large leaves +n12640284 small tree native to northeastern North America having oblong orange-red fruit +n12640435 hybrid produced by crossing Prunus domestica and Prunus armeniaca +n12640607 Asian tree having clusters of usually white blossoms and edible fruit resembling the peach +n12640839 Japanese ornamental tree with fragrant white or pink blossoms and small yellow fruits +n12641007 temperate zone tree bearing downy yellow to rosy fruits +n12641180 small hybrid apricot of Asia and Asia Minor having purplish twigs and white flowers following by inferior purple fruit +n12641413 any of numerous trees and shrubs producing a small fleshy round fruit with a single hard stone; many also produce a valuable hardwood +n12641931 an uncultivated cherry tree +n12642090 the fruit of the wild cherry tree +n12642200 large Eurasian tree producing small dark bitter fruit in the wild but edible sweet fruit under cultivation +n12642435 any of several cultivated sweet cherries having sweet juicy heart-shaped fruits +n12642600 wild or seedling sweet cherry used as stock for grafting +n12642964 Mexican black cherry tree having edible fruit +n12643113 small flowering evergreen tree of southern United States +n12643313 small Asiatic tree bearing edible red or yellow fruit +n12643473 rather small Eurasian tree producing red to black acid edible fruit +n12643688 any of several cultivated sour cherry trees bearing pale red fruit with colorless juice +n12643877 any of several cultivated sour cherry trees bearing fruit with dark skin and juice +n12644283 small bitter fruit of the marasca cherry tree from whose juice maraschino liqueur is made +n12644902 any of several small bushy trees having pink or white blossoms and usually bearing nuts +n12645174 small bushy deciduous tree native to Asia and North Africa having pretty pink blossoms and highly prized edible nuts enclosed in a hard green hull; cultivated in southern Australia and California +n12645530 almond trees having white blossoms and poisonous nuts yielding an oil used for flavoring and for medicinal purposes +n12646072 variety of large almond from Malaga, Spain; used in confectionery +n12646197 small Chinese shrub with smooth unfurrowed dark red fruit grown especially for its red or pink or white flowers +n12646397 California evergreen wild plum with spiny leathery leaves and white flowers +n12646605 shrubby Japanese cherry tree having pale pink blossoms +n12646740 woody oriental plant with smooth unfurrowed red fruit grown especially for its white or pale pink blossoms +n12646950 frequently cultivated Eurasian evergreen shrub or small tree having showy clusters of white flowers and glossy foliage and yielding oil similar to bitter almond oil +n12647231 evergreen shrub or small tree found on Catalina Island (California) +n12647376 any of several small-fruited cherry trees frequented or fed on by birds +n12647560 small European cherry tree closely resembling the American chokecherry +n12647787 small cherry much liked by birds +n12647893 small shrubby North American wild cherry with small bright red acid fruit +n12648045 cultivated in temperate regions +n12648196 variety or mutation of the peach bearing fruit with smooth skin and (usually) yellow flesh +n12648424 small straggling American cherry growing on sandy soil and having minute scarcely edible purplish-black fruit +n12648693 small tree of China and Japan bearing large yellow to red plums usually somewhat inferior to European plums in flavor +n12648888 large North American wild cherry with round black sour edible fruit +n12649065 any of several shrubs or trees of the genus Prunus cultivated for their showy white or pink single or double blossoms +n12649317 ornamental tree with inedible fruits widely cultivated in many varieties for its white blossoms +n12649539 ornamental tree with inedible fruit widely cultivated in many varieties for its pink blossoms +n12649866 shrub of the Pacific coast of the United States bearing small red insipid fruit +n12650038 shrub or tree native to Japan cultivated as an ornamental for its rose-pink flowers +n12650229 Asiatic shrub cultivated for its rosy red flowers +n12650379 deciduous Chinese shrub or small tree with often trilobed leaves grown for its pink-white flowers +n12650556 a common wild cherry of eastern North America having small bitter black berries favored by birds +n12650805 the fruit of the chokecherry tree +n12650915 chokecherry of western United States +n12651229 any of various thorny shrubs of the genus Pyracantha bearing small white flowers followed by hard red or orange-red berries +n12651611 Old World tree having sweet gritty-textured juicy fruit; widely cultivated in many varieties +n12651821 tree bearing edible fruit +n12653218 any prickly shrub of the genus Rubus bearing edible aggregate fruits +n12653436 stout-stemmed trailing shrub of New Zealand that scrambles over other growth +n12653633 European trailing bramble with red berrylike fruits +n12654227 stiff shrubby blackberry of the eastern United States (Connecticut to Florida) +n12654857 cultivated hybrid bramble of California having large dark wine-red fruit with a flavor resembling raspberries +n12655062 red-fruited bramble native from Oregon to Baja California +n12655245 North American dewberry +n12655351 of eastern North America +n12655498 of southern North America +n12655605 of eastern North America +n12655726 creeping European bramble bearing dewberries +n12655869 woody brambles bearing usually red but sometimes black or yellow fruits that separate from the receptacle when ripe and are rounder and smaller than blackberries +n12656369 the common European raspberry; fruit red or orange +n12656528 red raspberry of North America +n12656685 raspberry native to eastern North America having black thimble-shaped fruit +n12656909 large erect red-flowered raspberry of western North America having large pinkish-orange berries +n12657082 white-flowered raspberry of western North America and northern Mexico with thimble-shaped orange berries +n12657755 raspberry of China and Japan having pale pink flowers grown for ornament and for the small red acid fruits +n12658118 any of various trees of the genus Sorbus +n12658308 Eurasian tree with orange-red berrylike fruits +n12658481 decorative red berrylike fruit of a rowan tree +n12658603 a variety of mountain ash +n12658715 an ash of the western coast of North America +n12658846 medium-sized European tree resembling the rowan but bearing edible fruit +n12659064 European tree bearing edible small speckled brown fruit +n12659356 any rosaceous plant of the genus Spiraea; has sprays of small white or pink flowers +n12659539 shrub having copious small white flowers in spring +n12660601 any of numerous trees or shrubs or vines of the family Rubiaceae +n12661045 perennial East Indian creeping or climbing herb used for dye in the orient +n12661227 Eurasian herb having small yellow flowers and red roots formerly an important source of the dye alizarin +n12661538 any plant of the genus Asperula +n12662074 source of a tough elastic wood +n12662379 evergreen climbing shrub of southern Florida and West Indies grown for its racemes of fragrant white to creamy flowers followed by globose white succulent berries +n12662772 any of several small trees and shrubs native to the tropical Old World yielding coffee beans +n12663023 shrubby tree of northeastern tropical Africa widely cultivated in tropical or near tropical regions for its seed which form most of the commercial coffee +n12663254 small tree of West Africa +n12663359 native to West Africa but grown in Java and elsewhere; resistant to coffee rust +n12663804 any of several trees of the genus Cinchona +n12664005 Colombian tree; source of Cartagena bark (a cinchona bark) +n12664187 Peruvian shrub or small tree having large glossy leaves and cymes of fragrant yellow to green or red flowers; cultivated for its medicinal bark +n12664469 small tree of Ecuador and Peru having very large glossy leaves and large panicles of fragrant pink flowers; cultivated for its medicinal bark +n12664710 medicinal bark of cinchona trees; source of quinine and quinidine +n12665048 any of several plants of the genus Galium +n12665271 Old World fragrant stoloniferous perennial having small white flowers and narrow leaves used as flavoring and in sachets; widely cultivated as a ground cover; in some classifications placed in genus Asperula +n12665659 North American stoloniferous perennial having white flowers; sometimes used as an ornamental +n12665857 common yellow-flowered perennial bedstraw; North America and Europe and Asia +n12666050 bedstraw with sweetish roots +n12666159 annual having the stem beset with curved prickles; North America and Europe and Asia +n12666369 Eurasian herb with ample panicles of small white flowers; naturalized in North America +n12666965 evergreen shrub widely cultivated for its large fragrant waxlike white flowers and glossy leaves +n12667406 any tree of the genus Genipa bearing yellow flowers and edible fruit with a thick rind +n12667582 tree of the West Indies and northern South America bearing succulent edible orange-sized fruit +n12667964 any of several flowering tropical or subtropical shrubs of the genus Hamelia +n12668131 handsome shrub with showy orange to scarlet or crimson flowers; Florida and West Indies to Mexico and Brazil +n12669803 South African evergreen having hard tough wood +n12670334 a stout spreading or semi-climbing tropical shrub with round brownish-red warty fruit; Africa +n12670758 small deciduous tree of southern Africa having edible fruit +n12670962 shrubby tree of Madagascar occasionally cultivated for its edible apple-shaped fruit +n12671651 any of various deciduous or evergreen ornamental shrubs of the genus Abelia having opposite simple leaves and cymes of small white or pink or purplish flowers; Asia and Mexico +n12672289 bush honeysuckle of southeastern United States having large crowded clusters of sulfur-yellow flowers +n12673588 similar to the twinflower of northern Europe and Asia +n12674120 shrub or vine of the genus Lonicera +n12674685 erect deciduous North American shrub with yellow-white flowers +n12674895 deciduous climbing shrub with fragrant yellow-white flowers in axillary whorls +n12675299 climbing deciduous shrub with fragrant yellow (later orange) flowers in terminal whorls; southeastern United States +n12675515 twining deciduous shrub with hairy leaves and spikes of yellow-orange flowers; northeastern America +n12675876 an Asiatic trailing evergreen honeysuckle with half-evergreen leaves and fragrant white flowers turning yellow with age; has become a weed in some areas +n12676134 a variety of Japanese honeysuckle that grows like a vine; established as an aggressive escape in southeastern United States +n12676370 a grey deciduous honeysuckle shrub paired white flowers turning yellow; Japan +n12676534 European twining honeysuckle with fragrant red and yellow-white flowers +n12676703 evergreen North American honeysuckle vine having coral-red or orange flowers +n12677120 cultivated Eurasian shrub with twin yellowish-white flowers and scarlet fruit +n12677331 a variety of fly honeysuckle +n12677612 deciduous shrub of western North America having spikes of pink flowers followed by round white berries +n12677841 North American deciduous shrub cultivated for it abundant clusters of coral-red berrylike fruits +n12678794 shrub or small tree of western United States having white flowers and blue berries; fruit used in wines and jellies +n12679023 dwarf herbaceous elder of Europe having pink flowers and a nauseous odor +n12679432 common North American shrub or small tree +n12679593 Eurasian shrub +n12679876 coarse weedy American perennial herb with large usually perfoliate leaves and purple or dull red flowers +n12680402 deciduous North American shrub or small tree having three-lobed leaves and red berries +n12680652 vigorous deciduous European treelike shrub common along waysides; red berries turn black +n12680864 deciduous thicket-forming Old World shrub with clusters of white flowers and small bright red berries +n12681376 closely related to southern arrow wood; grows in the eastern United States from Maine to Ohio and Georgia +n12681579 upright deciduous shrub having frosted dark-blue fruit; east and east central North America +n12681893 deciduous shrub widely cultivated for its white or pink or red flowers +n12682411 any of several herbs of the genus Dipsacus native to the Old World having flower heads surrounded by spiny bracts +n12682668 teasel with lilac flowers native to Old World but naturalized in North America; dried flower heads used to raise a nap on woolen cloth +n12682882 similar to the common teasel and similarly used; widespread in Europe and North Africa and western Asia; naturalized in United States +n12683096 European teasel with white to pink flowers; naturalized in United States +n12683407 any of various plants of the genus Scabiosa +n12683571 Old World annual having fragrant purple to deep crimson flower heads; naturalized in United States +n12683791 perennial having bluish-lilac flowers; introduced in the eastern United States +n12684379 North American annual plant with usually yellow or orange flowers; grows chiefly on wet rather acid soil +n12685431 any of numerous plants of the family Geraniaceae +n12685831 any of numerous geraniums of the genus Geranium +n12686077 common wild geranium of eastern North America with deeply parted leaves and rose-purple flowers +n12686274 tall perennial cranesbill with paired violet-blue axillary flowers; native to northern parts of Old World and naturalized in North America +n12686496 geranium of western North America having branched clusters of white or pale pink flowers +n12686676 a sticky low herb with small reddish-purple flowers; widespread in the northern hemisphere +n12686877 geranium of western North America having pinkish-purple flowers in open clusters +n12687044 western geranium with small pink flowers; a common weed on lawns and in vacant lots +n12687462 any of several southern African geraniums having fragrant three-lobed to five-lobed leaves and pink flowers +n12687698 an upright geranium having scalloped leaves with a broad color zone inside the margin and white or pink or red flowers +n12687957 a commonly cultivated trailing South American plant with peltate leaves and rosy flowers +n12688187 geranium with round fragrant leaves and small white flowers +n12688372 a common garden geranium with lemon-scented foliage +n12688716 any of various plants of the genus Erodium +n12689305 low annual European herb naturalized in America; similar to alfilaria +n12690653 any of various tropical trees of the family Burseraceae yielding fragrant gums or resins that are burned as incense +n12691428 small tree or shrub of the southwestern United States having a spicy odor and odd-pinnate leaves and small clusters of white flowers +n12691661 tropical American tree yielding a reddish resin used in cements and varnishes +n12692024 tree yielding an aromatic gum resin burned as incense +n12692160 East Indian tree yielding a resin used medicinally and burned as incense +n12692521 small evergreen tree of Africa and Asia; leaves have a strong aromatic odor when bruised +n12692714 tree of eastern Africa and Asia yielding myrrh +n12693244 tropical American tree +n12693352 tropical American tree +n12693865 any of several aquatic plants having a star-shaped rosette of floating leaves; America, Europe and Asia +n12694486 tropical American shrub bearing edible acid red fruit resembling cherries +n12695144 any of various tropical timber trees of the family Meliaceae especially the genus Swietinia valued for their hard yellowish- to reddish-brown wood that is readily worked and takes a high polish +n12695975 tree of northern India and China having purple blossoms and small inedible yellow fruits; naturalized in the southern United States as a shade tree +n12696492 large semi-evergreen tree of the East Indies; trunk exudes a tenacious gum; bitter bark used as a tonic; seeds yield an aromatic oil; sometimes placed in genus Melia +n12696830 seed of neem trees; source of pesticides and fertilizer and medicinal products +n12697152 tropical American tree yielding fragrant wood used especially for boxes +n12697514 East Indian tree with valuable hard lustrous yellowish wood +n12698027 African tree having rather lightweight cedar-scented wood varying in color from pink to reddish brown +n12698435 any of various timber trees of the genus Flindersia +n12698598 tall Australian timber tree yielding tough hard wood used for staves etc +n12698774 Australian timber tree whose bark yields a poison +n12699031 African tree having hard heavy odorless wood +n12699301 East Indian tree bearing an edible yellow berry +n12699922 mahogany tree of West Indies +n12700088 an important Central American mahogany tree +n12700357 Philippine timber tree having hard red fragrant wood +n12702124 large Costa Rican tree having light-colored wood suitable for cabinetry; similar to the African lepidobotrys in wood structure as well as in fruit and flowers and leaves and seeds; often classified in other families +n12703190 Eurasian plant with heart-shaped trifoliate leaves and white purple-veined flowers +n12703383 South African bulbous wood sorrel with showy yellow flowers +n12703557 creeping much-branched mat-forming weed; cosmopolitan +n12703716 short-stemmed South African plant with bluish flowers +n12703856 perennial herb of eastern North America with palmately compound leaves and usually rose-purple flowers +n12704041 South American wood sorrel cultivated for its edible tubers +n12704343 East Indian tree bearing deeply ridged yellow-brown fruit +n12704513 East Indian evergreen tree bearing very acid fruit +n12705013 any of various plants of the genus Polygala +n12705220 perennial bushy herb of central and southern United States having white flowers with green centers and often purple crest; similar to Seneca snakeroot +n12705458 bog plant of pine barrens of southeastern United States having spikes of irregular yellow-orange flowers +n12705698 common trailing perennial milkwort of eastern North America having leaves like wintergreen and usually rosy-purple flowers with winged sepals +n12705978 eastern North American plant having a terminal cluster of small white flowers and medicinal roots +n12706410 small European perennial with numerous branches having racemes of blue, pink or white flowers; formerly reputed to promote human lactation +n12707199 European strong-scented perennial herb with grey-green bitter-tasting leaves; an irritant similar to poison ivy +n12707781 any of numerous tropical usually thorny evergreen trees of the genus Citrus having leathery evergreen leaves and widely cultivated for their juicy edible fruits having leathery aromatic rinds +n12708293 any citrus tree bearing oranges +n12708654 any of various common orange trees yielding sour or bitter fruit; used as grafting stock +n12708941 small tree with pear-shaped fruit whose oil is used in perfumery; Italy +n12709103 southeastern Asian tree producing large fruits resembling grapefruits +n12709349 thorny evergreen small tree or shrub of India widely cultivated for its large lemonlike fruits that have thick warty rind +n12709688 citrus tree bearing large round edible fruit having a thick yellow rind and juicy somewhat acid pulp +n12709901 shrub or small tree having flattened globose fruit with very sweet aromatic pulp and thin yellow-orange to flame-orange rind that is loose and easily removed; native to southeastern Asia +n12710295 a variety of mandarin orange +n12710415 a variety of mandarin orange that is grown around the Mediterranean and in South Africa +n12710577 a variety of mandarin orange +n12710693 probably native to southern China; widely cultivated as source of table and juice oranges +n12710917 large citrus tree having large sweet deep orange fruit that is easily peeled; widely cultivated in Florida +n12711182 hybrid between grapefruit and mandarin orange; cultivated especially in Florida +n12711398 hybrid between mandarin orange and lemon having very acid fruit with orange peel +n12711596 a small evergreen tree that originated in Asia but is widely cultivated for its fruit +n12711817 lemon tree having fruit with a somewhat insipid sweetish pulp +n12711984 any of various related trees bearing limes +n12712320 more aromatic and acidic than oranges +n12712626 Eurasian perennial herb with white flowers that emit flammable vapor in hot weather +n12713063 any of several trees or shrubs of the genus Fortunella bearing small orange-colored edible fruits with thick sweet-flavored skin and sour pulp +n12713358 shrub bearing round-fruited kumquats +n12713521 shrub bearing oval-fruited kumquats +n12713866 deciduous tree of China and Manchuria having a turpentine aroma and handsome compound leaves turning yellow in autumn and deeply fissured corky bark +n12714254 small fast-growing spiny deciduous Chinese orange tree bearing sweetly scented flowers and decorative but inedible fruit: used as a stock in grafting and for hedges +n12714755 any of a number of trees or shrubs of the genus Zanthoxylum having spiny branches +n12714949 small deciduous aromatic shrub (or tree) having spiny branches and yellowish flowers; eastern North America +n12715195 densely spiny ornamental of southeastern United States and West Indies +n12715914 any of various trees or shrubs of the family Simaroubaceae having wood and bark with a bitter taste +n12716400 tree of the Amazon valley yielding a light brittle timber locally regarded as resistant to insect attack +n12716594 medium to large tree of tropical North and South America having odd-pinnate leaves and long panicles of small pale yellow flowers followed by scarlet fruits +n12717072 any of several deciduous Asian trees of the genus Ailanthus +n12717224 deciduous rapidly growing tree of China with foliage like sumac and sweetish fetid flowers; widely planted in United States as a street tree because of its resistance to pollution +n12717644 African tree with edible yellow fruit resembling mangos; valued for its oil-rich seed and hardy green wood that resists termites +n12718074 small African deciduous tree with spreading crown having leaves clustered toward ends of branches and clusters of creamy flowers resembling lilacs +n12718483 West Indian tree yielding the drug Jamaica quassia +n12718995 handsome South American shrub or small tree having bright scarlet flowers and yielding a valuable fine-grained yellowish wood; yields the bitter drug quassia from its wood and bark +n12719684 any tropical American plant of the genus Tropaeolum having pungent juice and long-spurred yellow to red flowers +n12719944 strong-growing annual climber having large flowers of all shades of orange from orange-red to yellowish orange and seeds that are pickled and used like capers +n12720200 annual with deep yellow flowers smaller than the common garden nasturtium +n12720354 a climber having flowers that are the color of canaries +n12721122 perennial shrub of the eastern Mediterranean region and southwestern Asia having flowers whose buds are used as capers +n12721477 South American tree of dry interior regions of Argentina and Paraguay having resinous heartwood used for incense +n12722071 small evergreen tree of Caribbean and southern Central America to northern South America; a source of lignum vitae wood, hardest of commercial timbers, and a medicinal resin +n12723062 desert shrub of southwestern United States and New Mexico having persistent resinous aromatic foliage and small yellow flowers +n12723610 tropical annual procumbent poisonous subshrub having fruit that splits into five spiny nutlets; serious pasture weed +n12724942 any of numerous deciduous trees and shrubs of the genus Salix +n12725521 any of various willows having pliable twigs used in basketry and furniture +n12725738 large willow tree of Eurasia and North Africa having greyish canescent leaves and grey bark +n12725940 North American willow with greyish silky pubescent leaves that usually blacken in drying +n12726159 European willow having greyish leaves and yellow-orange twigs used in basketry +n12726357 Eurasian willow tree having greyish leaves and ascending branches +n12726528 low creeping shrub of Arctic Europe and America +n12726670 willow with long drooping branches and slender leaves native to China; widely cultivated as an ornamental +n12726902 hybrid willow usually not strongly weeping in habit +n12727101 small willow of eastern North America having greyish leaves and silky catkins that come before the leaves +n12727301 any of several Old World shrubby broad-leaved willows having large catkins; some are important sources for tanbark and charcoal +n12727518 much-branched Old World willow having large catkins and relatively large broad leaves +n12727729 willow of the western United States with leaves like those of peach or almond trees +n12727960 Old World willow with light green leaves cultivated for use in basketry +n12728164 North American shrub with whitish canescent leaves +n12728322 large willow tree with stiff branches that are easily broken +n12728508 slender shrubby willow of dry areas of North America +n12728656 widely distributed boreal shrubby willow with partially underground creeping stems and bright green glossy leaves +n12728864 Eurasian shrubby willow with whitish tomentose twigs +n12729023 shrubby willow of the western United States +n12729164 common North American shrub with shiny lanceolate leaves +n12729315 North American shrubby willow having dark bark and linear leaves growing close to streams and lakes +n12729521 European willow tree with shining leathery leaves; widely naturalized in the eastern United States +n12729729 Eurasian osier having reddish or purple twigs and bark rich in tannin +n12729950 small shrubby tree of eastern North America having leaves exuding an odor of balsam when crushed +n12730143 small trailing bush of Europe and Asia having straggling branches with silky green leaves of which several varieties are cultivated +n12730370 small shrubby tree of western North America (Alaska to Oregon) +n12730544 willow shrub of dry places in the eastern United States having long narrow leaves canescent beneath +n12730776 dwarf prostrate mat-forming shrub of Arctic and alpine regions of North America and Greenland having deep green elliptic leaves that taper toward the base +n12731029 willow with long flexible twigs used in basketry +n12731401 any of numerous trees of north temperate regions having light soft wood and flowers borne in catkins +n12731835 poplar of northeastern North America with broad heart-shaped leaves +n12732009 a poplar that is widely cultivated in the United States; has white bark and leaves with whitish undersurfaces +n12732252 large rapidly growing poplar with faintly lobed dentate leaves grey on the lower surface; native to Europe but introduced and naturalized elsewhere +n12732491 large European poplar +n12732605 distinguished by its columnar fastigiate shape and erect branches +n12732756 any of several North American trees of the genus Populus having a tuft of cottony hairs on the seed +n12732966 a common poplar of eastern and central United States; cultivated in United States for its rapid growth and luxuriant foliage and in Europe for timber +n12733218 cottonwood of western North America with dark green leaves shining above and rusty or silvery beneath +n12733428 North American poplar with large rounded scalloped leaves and brownish bark and wood +n12733647 any of several trees of the genus Populus having leaves on flattened stalks so that they flutter in the lightest wind +n12733870 Old World aspen with a broad much-branched crown; northwestern Europe and Siberia to North Africa +n12734070 slender aspen native to North America +n12734215 aspen with a narrow crown; eastern North America +n12735160 parasitic tree of Indonesia and Malaysia having fragrant close-grained yellowish heartwood with insect repelling properties and used, e.g., for making chests +n12736603 Australian tree with edible flesh and edible nutlike seed +n12736999 shrub of southeastern United States parasitic on roots of hemlocks having sparse spikes of greenish flowers and pulpy drupes +n12737383 in some classification includes Viscaceae: parasitic or hemiparasitic shrublets or shrubs or small trees of tropical and temperate regions; attach to hosts by haustoria +n12737898 shrub of central and southeastern Europe; partially parasitic on beeches, chestnuts and oaks +n12738259 small herb with scalelike leaves on reddish-brown stems and berrylike fruits; parasitic on spruce and larch trees +n12739332 Old World parasitic shrub having branching greenish stems with leathery leaves and waxy white glutinous berries; the traditional mistletoe of Christmas +n12739966 the traditional mistletoe of Christmas in America: grows on deciduous trees and can severely weaken the host plant +n12740967 a small Hawaiian tree with hard dark wood +n12741222 a tree of the genus Sapindus whose fruit is rich in saponin +n12741586 deciduous tree of southwestern United States having pulpy fruit containing saponin +n12741792 evergreen of tropical America having pulpy fruit containing saponin which was used as soap by Native Americans +n12742290 widely cultivated in tropical and subtropical regions for its fragrant flowers and colorful fruits; introduced in Jamaica by William Bligh +n12742741 tendril-climbing vine +n12742878 herbaceous vine of tropical America and Africa +n12743009 woody perennial climbing plant with large ornamental seed pods that resemble balloons; tropical India and Africa and America +n12743352 tree of southeastern Asia to Australia grown primarily for its sweet edible fruit resembling litchi nuts; sometimes placed in genera Euphorbia or Nephelium +n12743823 any of various tree of the genus Harpullia +n12743976 fast-growing tree of India and East Indies yielding a wood used especially for building +n12744142 Australian tree yielding a variegated tulipwood +n12744387 Chinese tree cultivated especially in Philippines and India for its edible fruit; sometimes placed in genus Nephelium +n12744850 tropical American tree bearing a small edible fruit with green leathery skin and sweet juicy translucent pulp +n12745386 Malayan tree bearing spiny red fruit +n12745564 East Indian fruit tree bearing fruit similar to but sweeter than that of the rambutan +n12746884 any plant of the genus Pachysandra; low-growing evergreen herbs or subshrubs having dentate leaves and used as ground cover +n12747120 low semi-evergreen perennial herb having small spikes of white or pinkish flowers; native to southern United States but grown elsewhere +n12748248 twining shrub of North America having yellow capsules enclosing scarlet seeds +n12749049 any shrubby trees or woody vines of the genus Euonymus having showy usually reddish berries +n12749456 bushy deciduous shrub with branches having thin wide corky longitudinal wings; brilliant red in autumn; northeastern Asia to central China +n12749679 deciduous shrub having purple capsules enclosing scarlet seeds +n12749852 upright deciduous plant with crimson pods and seeds; the eastern United States from New York to Florida and Texas +n12750076 broad and bushy Asiatic twining shrub with pinkish fruit; many subspecies or varieties +n12750767 shrub or small tree of southeastern United States to West Indies and Brazil; grown for the slender racemes of white flowers and orange and crimson foliage +n12751172 tree of low-lying coastal areas of southeastern United States having glossy leaves and racemes of fragrant white flowers +n12751675 a low evergreen shrub with small purple flowers and black berrylike fruit +n12752205 any of numerous trees or shrubs of the genus Acer bearing winged seeds in pairs; north temperate zone +n12753007 a common North American maple tree; five-lobed leaves are light green above and silvery white beneath; source of hard close-grained but brittle light-brown wood +n12753245 maple of eastern and central North America having three-lobed to five-lobed leaves and hard close-grained wood much used for cabinet work especially the curly-grained form; sap is chief source of maple syrup and maple sugar; many subspecies +n12753573 maple of eastern and central America; five-lobed leaves turn scarlet and yellow in autumn +n12753762 maple of eastern North America with striped bark and large two-lobed leaves clear yellow in autumn +n12754003 maple of western North America having large 5-lobed leaves orange in autumn +n12754174 small maple of northwestern North America +n12754311 small shrubby maple of eastern North America; scarlet in autumn +n12754468 small maple of northwestern North America having prostrate stems that root freely and form dense thickets +n12754648 shrubby Eurasian maple often used as a hedge +n12754781 a large Eurasian maple tree naturalized in North America; five-lobed leaves yellow in autumn; cultivated in many varieties +n12754981 Eurasian maple tree with pale grey bark that peels in flakes like that of a sycamore tree; leaves with five ovate lobes yellow in autumn +n12755225 common shade tree of eastern and central United States +n12755387 maple of the Pacific coast of the United States; fruits are white when mature +n12755559 small shrubby Japanese plant with leaves having 5 to 7 acuminate lobes; yellow in autumn +n12755727 leaves deeply incised and bright red in autumn; Japan +n12755876 ornamental shrub or small tree of Japan and Korea with deeply incised leaves; cultivated in many varieties +n12756457 any tree or shrub of the genus Ilex having red berries and shiny evergreen leaves with prickly edges +n12757115 dense rounded evergreen shrub of China having spiny leaves; widely cultivated as an ornamental +n12757303 deciduous shrub of southeastern and central United States +n12757458 evergreen holly of eastern North America with oblong leathery leaves and small black berries +n12757668 South American holly; leaves used in making a drink like tea +n12757816 an evergreen tree +n12757930 an evergreen shrub +n12758014 an evergreen shrub +n12758099 an evergreen shrub +n12758176 a holly tree +n12758250 a holly shrub +n12758325 a holly tree +n12758399 a holly shrub +n12758471 a holly shrub +n12758555 a holly shrub +n12759273 tropical American evergreen tree bearing kidney-shaped nuts that are edible only when roasted +n12759668 tall tropical American timber tree especially abundant in eastern Brazil; yields hard strong durable zebrawood with straight grain and dark strips on a pinkish to yellowish ground; widely used for veneer and furniture and heavy construction +n12760539 Old World shrub having large plumes of yellowish feathery flowers resembling puffs of smoke +n12760875 small aromatic evergreen shrub of California having paniculate leaves and whitish berries; in some classifications included in genus Rhus +n12761284 large evergreen tropical tree cultivated for its large oval fruit +n12761702 small tree of southern Europe and Asia Minor bearing small hard-shelled nuts +n12761905 a Mediterranean tree yielding Chian turpentine +n12762049 an evergreen shrub of the Mediterranean region that is cultivated for its resin +n12762405 evergreen of Australia yielding a dark yellow wood +n12762896 a shrub or tree of the genus Rhus (usually limited to the non-poisonous members of the genus) +n12763529 common nonpoisonous shrub of eastern North America with waxy compound leaves and green paniculate flowers followed by red berries +n12764008 evergreen shrub of southeastern United States with spikes of reddish yellow flowers and glandular hairy fruits +n12764202 deciduous shrubby tree or eastern North America with compound leaves that turn brilliant red in fall and dense panicles of greenish yellow flowers followed by crimson acidic berries +n12764507 deciduous shrub of California with unpleasantly scented usually trifoliate leaves and edible fruit +n12764978 small resinous tree or shrub of Brazil +n12765115 small Peruvian evergreen with broad rounded head and slender pendant branches with attractive clusters of greenish flowers followed by clusters of rose-pink fruits +n12765402 small Brazilian evergreen resinous tree or shrub having dark green leaflets and white flowers followed by bright red fruit; used as a street tree and lawn specimen +n12765846 tropical American tree having edible yellow fruit +n12766043 common tropical American shrub or small tree with purplish fruit +n12766595 smooth American swamp shrub with pinnate leaves and greenish flowers followed by greenish white berries; yields an irritating oil +n12766869 climbing plant common in eastern and central United States with ternate leaves and greenish flowers followed by white berries; yields an irritating oil that causes a rash on contact +n12767208 poisonous shrub of the Pacific coast of North America that causes a rash on contact +n12767423 poisonous shrub of southeastern United States causing a rash on contact +n12767648 small Asiatic tree yielding a toxic exudate from which lacquer is obtained +n12768369 tree having palmate leaves and large clusters of white to red flowers followed by brown shiny inedible seeds +n12768682 the inedible nutlike seed of the horse chestnut +n12768809 a tall and often cultivated buckeye of the central United States +n12768933 a buckeye with scaly grey bark that is found in the central United States +n12769065 a spreading shrub with pink flowers; found in southeastern United States +n12769219 a shrub buckeye of southern United States +n12769318 a buckeye marked by different colors or tints +n12770529 tropical tree of southern Asia having hard dark-colored heartwood used in cabinetwork +n12770892 large Asiatic tree having hard marbled zebrawood +n12771085 hard marbled wood +n12771192 any of several tropical trees of the genus Diospyros +n12771390 small deciduous Asiatic tree bearing large red or orange edible astringent fruit +n12771597 medium-sized tree of dry woodlands in the southern and eastern United States bearing yellow or orange very astringent fruit that is edible when fully ripe +n12771890 an Asiatic persimmon tree cultivated for its small yellow or purplish-black edible fruit much valued by Afghan tribes +n12772753 any shrub or small tree of the genus Bumelia +n12772908 shrubby thorny deciduous tree of southeastern United States with white flowers and small black drupaceous fruit +n12773142 deciduous tree of southeastern United States and Mexico +n12773651 evergreen tree of West Indies and Central America having edible purple fruit star-shaped in cross section and dark green leaves with golden silky undersides +n12773917 tropical American timber tree with dark hard heavy wood and small plumlike purple fruit +n12774299 a tropical hardwood tree yielding balata gum and heavy red timber +n12774641 large tropical American evergreen yielding chicle gum and edible fruit; sometimes placed in genus Achras +n12775070 one of several East Indian trees yielding gutta-percha +n12775393 one of several East Indian trees yielding gutta-percha +n12775717 tropical tree of Florida and West Indies yielding edible fruit +n12775919 tropical American tree having wood like mahogany and sweet edible egg-shaped fruit; in some classifications placed in the genus Calocarpum +n12776558 small yellowwood tree of southern United States having small fragrant white flowers; leaves and bark yield a yellow dye +n12776774 deciduous shrub of eastern Asia bearing decorative bright blue fruit +n12777436 any shrub or small tree of the genus Styrax having fragrant bell-shaped flowers that hang below the dark green foliage +n12777680 small tree native to Japan +n12777778 shrubby tree of China and Japan +n12777892 styrax of southwestern United States; a threatened species +n12778398 medium-sized tree of West Virginia to Florida and Texas +n12778605 plants adapted to attract and capture and digest primarily insects but also other small animals +n12779603 any of several insectivorous herbs of the order Sarraceniales +n12779851 perennial bog herb having dark red flowers and decumbent broadly winged pitchers forming a rosette; of northeastern North America and naturalized in Europe especially Ireland +n12780325 yellow-flowered pitcher plant of southeastern United States having trumpet-shaped leaves with the orifice covered with an arched hood +n12780563 pitcher plant of southeastern United States having erect yellow trumpet-shaped pitchers with wide mouths and erect lids +n12781940 any of several tropical carnivorous shrubs or woody herbs of the genus Nepenthes +n12782530 any of various bog plants of the genus Drosera having leaves covered with sticky hairs that trap and digest insects; cosmopolitan in distribution +n12782915 carnivorous plant of coastal plains of the Carolinas having sensitive hinged marginally bristled leaf blades that close and entrap insects +n12783316 floating aquatic carnivorous perennial of central and southern Europe, Africa, Asia, Australia having whorls of 6 to 9 leaves ending in hinged lobes for capturing e.g. water fleas +n12783730 perennial of dry habitats whose leaves have glandular hairs that secrete adhesive and digestive fluid for capture and digestion of insects; Portugal, southern Spain and Morocco +n12784371 either of 2 species of the genus Roridula; South African viscid perennial low-growing woody shrubs +n12784889 a carnivorous perennial herb having a green pitcher and hinged lid both with red edges; western Australia +n12785724 any of various plants of the genus Sedum +n12785889 any of various northern temperate plants of the genus Sedum having fleshy leaves and red or yellow or white flowers +n12786273 Eurasian mountain plant with fleshy pink-tipped leaves and a cluster of yellow flowers +n12786464 perennial northern temperate plant with toothed leaves and heads of small purplish-white flowers +n12786836 perennial subshrub of Tenerife having leaves in rosettes resembling pinwheels +n12787364 Australian tree or shrub with red flowers; often used in Christmas decoration +n12788854 deciduous shrub bearing roundheaded flower clusters opening green and aging to pink or blue +n12789054 deciduous shrub or small tree with pyramidal flower clusters +n12789554 California evergreen shrub having glossy opposite leaves and terminal clusters of a few fragrant white flowers +n12789977 woody climber of southeastern United States having white flowers in compound terminal clusters +n12790430 any of various shrubs of the genus Deutzia having usually toothed opposite leaves and shredding bark and white or pink flowers in loose terminal clusters +n12791064 any of various chiefly deciduous ornamental shrubs of the genus Philadelphus having white sweet-scented flowers, single or in clusters; widely grown in temperate regions +n12791329 large hardy shrub with showy and strongly fragrant creamy-white flowers in short terminal racemes +n12793015 any of various plants of the genus Saxifraga +n12793284 tufted evergreen perennial having ciliate leaves and yellow corymbose flowers often spotted orange +n12793494 rosette-forming perennial having compact panicles of white flowers; Europe +n12793695 tufted or mat-forming perennial of mountains of Europe; cultivated for its white flowers +n12793886 saxifrage having loose clusters of white flowers on hairy stems growing from a cluster of basal leaves; moist slopes of western North America +n12794135 plants forming dense cushions with bright reddish-lavender flowers; rocky areas of Europe and Asia and western North America +n12794367 small often mat-forming alpine plant having small starlike white flowers; Europe +n12794568 eastern Asiatic saxifrage with racemes of small red-and-white flowers; spreads by numerous creeping stolons +n12794985 any plant of the genus Astilbe having compound leaves and showy panicles of tiny colorful flowers +n12795209 North American astilbe with panicles of creamy white flowers +n12795352 mat-forming evergreen Asiatic plant with finely cut leaves and small pink to burgundy flowers; grown as ground cover +n12795555 a Japanese shrub that resembles members of the genus Spiraea; widely cultivated in many varieties for its dense panicles of flowers in many colors; often forced by florists for Easter blooming +n12796022 any plant of the genus Bergenia; valued as an evergreen ground cover and for the spring blossoms +n12796385 plant with leaves mostly at the base and openly branched clusters of small white flowers; western North America +n12796849 any of various low aquatic herbs of the genus Chrysosplenium +n12797368 rhizomatous perennial herb with large dramatic peltate leaves and white to bright pink flowers in round heads on leafless stems; colonizes stream banks in the Sierra Nevada in California +n12797860 Chilean evergreen shrub having delicate spikes of small white flowers +n12798284 any of several herbs of the genus Heuchera +n12798910 perennial plant of the western United States having bright red flowers in feathery spikes; used as an ornamental +n12799269 plant with basal leathery elliptic leaves and erect leafless flower stalks each bearing a dense roundish cluster of tiny white flowers; moist places of northwestern North America to Oregon and Idaho +n12799776 California perennial herb cultivated for its racemose white flowers with widely spreading petals; sometimes placed in genus Tellima +n12800049 plant with mostly basal leaves and slender open racemes of white or pale pink flowers; prairies and open forest of northwestern United States to British Columbia and Alberta +n12800586 any of various rhizomatous perennial herbs of the genus Mitella having a capsule resembling a bishop's miter +n12801072 small plant with leaves in a basal cluster and tiny greenish flowers in slender racemes; northwestern North America to California and Colorado +n12801520 any of various usually evergreen bog plants of the genus Parnassia having broad smooth basal leaves and a single pale flower resembling a buttercup +n12801781 plant having ovate leaves in a basal rosette and white starlike flowers netted with green +n12801966 bog plant with broadly heart-shaped basal leaves and cream-colored or white saucer-shaped flowers with fringed petals; west of Rocky Mountains from Alaska to New Mexico +n12803226 plant growing in clumps with mostly basal leaves and cream-colored or pale pink fringed flowers in several long racemes; Alaska to coastal central California and east to Idaho +n12803754 stoloniferous white-flowered spring-blooming woodland plant +n12803958 plant with tiny white flowers hanging in loose clusters on leafy stems; moist woods from Alaska to central California and east to Montana +n12804352 vigorous perennial herb with flowers in erect racemes and having young plants develop at the junction of a leaf blade and the leafstalk +n12805146 any of various deciduous shrubs of the genus Ribes bearing currants +n12805561 widely cultivated current bearing edible black aromatic berries +n12805762 garden currant bearing small white berries +n12806015 spiny Eurasian shrub having greenish purple-tinged flowers and ovoid yellow-green or red-purple berries +n12806732 any of several trees of the genus Platanus having thin pale bark that scales off in small plates and lobed leaves and ball-shaped heads of fruits +n12807251 very large fast-growing tree much planted as a street tree +n12807409 very large spreading plane tree of eastern and central North America to Mexico +n12807624 large tree of southeastern Europe to Asia Minor +n12807773 tall tree of Baja California having deciduous bark and large alternate palmately lobed leaves and ball-shaped clusters of flowers +n12808007 medium-sized tree of Arizona and adjacent regions having deeply lobed leaves and collective fruits in groups of 3 to 5 +n12809868 erect or spreading perennial of the eastern United States +n12810007 perennial erect herb with white flowers; circumboreal +n12810151 tall herb of the Rocky Mountains having sticky leaves and an offensive smell +n12810595 any polemoniaceous plant of the genus Phlox; chiefly North American; cultivated for their clusters of flowers +n12811027 low tufted perennial phlox with needlelike evergreen leaves and pink or white flowers; native to United States and widely cultivated as a ground cover +n12811713 small California annual with white flowers +n12812235 any plant of the genus Acanthus having large spiny leaves and spikes or white or purplish flowers; native to Mediterranean region but widely cultivated +n12812478 widely cultivated southern European acanthus with whitish purple-veined flowers +n12812801 tropical Old World shrub having purple or red tubular flowers and leaf markings resembling the profile of a human face +n12813189 tropical African climbing plant having yellow flowers with a dark purple center +n12814643 tree of the genus Catalpa with large leaves and white flowers followed by long slender pods +n12814857 catalpa tree of southern United States +n12814960 catalpa tree of central United States +n12815198 evergreen shrubby tree resembling a willow of dry regions of southwestern North America having showy purplish flowers and long seed pods +n12815668 tropical American evergreen that produces large round gourds +n12815838 round gourd of the calabash tree +n12816508 hairy blue-flowered European annual herb long used in herbal medicine and eaten raw as salad greens or cooked like spinach +n12816942 annual of western United States with coiled spikes of yellow-orange coiled flowers +n12817464 any of various Old World herbs of the genus Anchusa having one-sided clusters of trumpet-shaped flowers +n12817694 perennial or biennial herb cultivated for its delicate usually blue flowers +n12817855 anchusa of southern Africa having blue flowers with white throats +n12818004 anchusa of southern Africa having blue to red-purple flowers +n12818346 large tropical American tree of the genus Cordia grown for its abundant creamy white flowers and valuable wood +n12818601 tropical American timber tree +n12818966 biennial east Asian herb grown for its usually bright blue flowers +n12819141 biennial shrub of Europe and western Asia having coarse tongue-shaped leaves and dark reddish-purple flowers +n12819354 perennial shrub of North America having coarse tongue-shaped leaves and pale-blue to purple flowers +n12819728 a coarse prickly European weed with spikes of blue flowers; naturalized in United States +n12820113 Eurasian and North American plants having small prickly nutlets that stick to clothing +n12820669 European perennial branching plant; occurs in hedgerows and at the edge of woodlands +n12820853 perennial plant of eastern North America having hairy foliage yielding a red or yellow pigment +n12821505 smooth erect herb of eastern North America having entire leaves and showy blue flowers that are pink in bud +n12821895 small biennial to perennial herb of Europe, northern Africa and western Asia having blue, purple or white flowers +n12822115 small perennial herb having bright blue or white flowers +n12822466 any of several North American perennial herbs with hairy foliage and small yellowish or greenish flowers +n12822769 perennial herbs of Europe and Iran; make rapidly growing groundcover for shaded areas +n12822955 European herb having small white, pink or purple flowers; naturalized as a weed in North America +n12823717 any of numerous plants of the genus Convolvulus +n12823859 any of several vines of the genera Convolvulus and Calystegia having a twining habit +n12824053 weakly climbing European perennial with white or pink flowers; naturalized in North America and an invasive weed +n12824289 twining plant of Asia Minor having cream-colored to purple flowers and long thick roots yielding a cathartic resin +n12824735 any of various twining shrubs of the genus Argyreia having silvery leaves and showy purple flowers +n12825497 a leafless annual parasitic vine of the genus Cuscuta having whitish or yellow filamentous stems; obtain nourishment through haustoria +n12826143 a creeping perennial herb with hairy stems and orbicular to reniform leaves and small white to greenish flowers; used as a grass substitute in warm regions +n12827270 tropical American annual climber having red (sometimes white) flowers and finely dissected leaves; naturalized in United States and elsewhere +n12827537 pantropical climber having white fragrant nocturnal flowers +n12827907 tropical American prostrate or climbing herbaceous perennial having an enormous starchy root; sometimes held to be source of the sweet potato +n12828220 annual herb having scarlet flowers; the eastern United States +n12828379 a morning glory with long roots of western United States +n12828520 tropical American morning glory +n12828791 annual Old World tropical climbing herb distinguished by wide color range and frilled or double flowers +n12828977 hybrid from Ipomoea nil +n12829582 any of numerous tropical or subtropical small shrubs or treelets or epiphytic vines of the family Gesneriaceae: African violet; Cape primroses; gloxinia +n12829975 any plant of the genus Gesneria +n12830222 any plant of the genus Achimenes having showy bell-shaped flowers that resemble gloxinias +n12830568 a plant of the genus Aeschynanthus having somewhat red or orange flowers and seeds having distinctive hairs at base and apex +n12831141 low-growing creeping perennial of Central America having deeply fringed white flowers; sometimes placed in genus Episcia +n12831535 tropical plant having thick hairy somewhat toothed leaves and solitary or clustered yellow to scarlet flowers; many cultivated for their flowers and ornamental foliage +n12831932 any plant of the genus Episcia; usually creeping and stoloniferous and of cascading habit; grown for their colorful foliage and flowers +n12832315 any of several plants of the genera Gloxinia or Sinningia (greenhouse gloxinias) having showy bell-shaped flowers +n12832538 herb of Colombia to Peru having pale purple flowers +n12832822 shrubby herb cultivated for their soft velvety foliage and showy scarlet flowers +n12833149 tropical African plant cultivated as a houseplant for its violet or white or pink flowers +n12833985 any of various plants of the genus Streptocarpus having leaves in a basal rosette and flowers like primroses +n12834190 any of various African plants of the genus Streptocarpus widely cultivated especially as houseplants for their showy blue or purple flowers +n12834798 any of several plants of the genus Hydrophyllum +n12834938 showy perennial herb with white flowers; leaves sometimes used as edible greens in southeastern United States +n12835331 viscid herb of arid or desert habitats of southwestern United States having pendulous yellow flowers +n12835766 viscid evergreen shrub of western United States with white to deep lilac flowers; the sticky aromatic leaves are used in treating bronchial and pulmonary illnesses +n12836212 any plant of the genus Nemophila +n12836337 delicate California annual having blue flowers marked with dark spots +n12836508 California annual having white flowers with a deep purple blotch on each petal +n12836862 any plant of the genus Phacelia +n12837052 annual of southern California with intricately branched stems and lax cymes of aromatic deep blue bell-shaped flowers +n12837259 desert plant of southern California with blue or violet tubular flowers in terminal racemes +n12837466 hairy annual of California to Mexico with crowded cymes of small blue to lilac or mauve flowers +n12837803 straggling California annual herb with deep purple or violet flowers; sometimes placed in genus Nemophila +n12839574 fragrant European mint having clusters of small violet-and-white flowers; naturalized especially in eastern North America +n12839979 any of a number of aromatic plants of the genus Agastache +n12840168 erect perennial with stout stems and yellow-green flowers; southern Canada and southeastern United States +n12840362 much-branched North American herb with an odor like fennel +n12840502 erect perennial of Mexico having rose to crimson flowers +n12840749 any of various low-growing annual or perennial evergreen herbs native to Eurasia; used for ground cover +n12841007 low rhizomatous European carpeting plant having spikes of blue flowers; naturalized in parts of United States +n12841193 upright rhizomatous perennial with bright blue flowers; southern Europe +n12841354 European evergreen carpeting perennial +n12842302 American herb of genus Blephilia with more or less hairy leaves and clusters of purplish or bluish flowers +n12842519 a variety of wood mint +n12842642 a variety of wood mint +n12842887 perennial aromatic herbs growing in hedgerows or scrub or open woodlands from western Europe to central Asia and in North America +n12843144 mint-scented perennial of central and southern Europe +n12843316 aromatic herb with large pink flowers; southern and southeastern Europe; Anatolia; northern Iran +n12843557 low-growing strongly aromatic perennial herb of southern Europe to Great Britain; naturalized in United States +n12843970 aromatic herb having heads of small pink or whitish flowers; widely distributed in United States, Europe and Asia +n12844409 erect perennial strong-scented with serrate pointed leaves and a loose panicle of yellowish flowers; the eastern United States +n12844939 any of various Old World tropical plants of the genus Coleus having multicolored decorative leaves and spikes of blue flowers +n12845187 an aromatic fleshy herb of India and Ceylon to South Africa; sometimes placed in genus Plectranthus +n12845413 perennial aromatic herb of southeastern Asia having large usually bright-colored or blotched leaves and spikes of blue-violet flowers; sometimes placed in genus Solenostemon +n12845908 small shrub of Apalachicola River area in southeastern United States having highly aromatic pinkish flowers; a threatened species +n12846335 American herb having sharply serrate lanceolate leaves and spikes of blue to violet flowers +n12846690 any of various aromatic herbs of the genus Elsholtzia having blue or purple flowers in one-sided spikes +n12847008 coarse bristly Eurasian plant with white or reddish flowers and foliage resembling that of a nettle; common as a weed in United States +n12847374 trailing European aromatic plant of the mint family having rounded leaves and small purplish flowers often grown in hanging baskets; naturalized in North America; sometimes placed in genus Nepeta +n12847927 erect hairy branching American herb having purple-blue flowers; yields an essential oil used as an insect repellent and sometimes in folk medicine +n12848499 a European mint with aromatic and pungent leaves used in perfumery and as a seasoning in cookery; often cultivated as a remedy for bruises; yields hyssop oil +n12849061 any of various plants of the genus Lamium having clusters of small usually purplish flowers with two lips +n12849279 European dead nettle with white flowers +n12849416 Eurasian plant having toothed leaves and small two-lipped white or purplish-red flowers +n12849952 aromatic Mediterranean shrub widely cultivated for its lilac flowers which are dried and used in sachets +n12850168 shrubby greyish lavender of southwestern Europe having usually reddish-purple flowers +n12850336 Mediterranean plant with pale purple flowers that yields spike lavender oil +n12850906 relatively nontoxic South African herb smoked like tobacco +n12851094 pantropical herb having whorls of striking lipped flowers; naturalized in United States +n12851469 bitter Old World herb of hedgerows and woodland margins having toothed leaves and white or pale pink flowers +n12851860 California plant with woolly stems and leaves and large white flowers +n12852234 a mildly narcotic and astringent aromatic herb having small whitish flowers; eastern United States +n12852428 aromatic perennial herb of United States +n12852570 hairy Eurasian herb with two-lipped white flowers +n12853080 any of various fragrant aromatic herbs of the genus Origanum used as seasonings +n12853287 aromatic Eurasian perennial +n12853482 aromatic European plant native to Mediterranean and Turkey; not widespread in Europe +n12854048 any of various aromatic herbs of the genus Marrubium +n12854193 European aromatic herb with hairy leaves and numerous white flowers in axillary cymes; leaves yield a bitter extract use medicinally and as flavoring +n12854600 bushy perennial Old World mint having small white or yellowish flowers and fragrant lemon-flavored leaves; a garden escapee in northern Europe and North America +n12855365 European mint naturalized in United States +n12855494 a European mint that thrives in wet places; has a perfume like that of the bergamot orange; naturalized in eastern North America +n12855710 mint with leaves having perfume like that of the bergamot orange +n12855886 a coarse Old World wild water mint having long leaves and spikelike clusters of flowers; naturalized in the eastern United States +n12856091 herb with downy leaves and small purple or white flowers that yields a pungent oil used as a flavoring +n12856287 common garden herb having clusters of small purplish flowers and yielding an oil used as a flavoring +n12856479 mint with apple-scented stems of southern and western Europe; naturalized in United States +n12856680 Eurasian perennial mint have small lilac-blue flowers and ovate leaves; yields an aromatic oil +n12857204 trailing perennial evergreen herb of northwestern United States with small white flowers; used medicinally +n12857779 aromatic annual with a tall stems of small whitish flowers enclosed in a greatly enlarged saucer-shaped or bell-shaped calyx +n12858150 any of various aromatic herbs of the genus Monarda +n12858397 perennial aromatic herb of eastern North America having variously colored tubular flowers in dense showy heads +n12858618 tall erect perennial or annual having lanceolate leaves and heads of purple-spotted creamy flowers; many subspecies grown from eastern to southwestern United States and in Mexico +n12858871 perennial herb of North America +n12858987 an annual horsemint of central and western United States and northern Mexico +n12859153 annual of southern United States +n12859272 perennial herb of North America (New York to Illinois and mountains of Alaska) having aromatic leaves and clusters of yellowish-pink balls +n12859679 fragrant California annual herb having lanceolate leaves and clusters of rose-purple flowers +n12859986 hairy aromatic perennial herb having whorls of small white purple-spotted flowers in a terminal spike; used in the past as a domestic remedy; strongly attractive to cats +n12860365 any of several Old World tropical aromatic annual or perennial herbs of the genus Ocimum +n12860978 plant grown for its ornamental red or purple foliage +n12861345 any of various plants of the genus Phlomis; grown primarily for their dense whorls of lipped flowers and attractive foliage +n12861541 a spreading subshrub of Mediterranean regions cultivated for dense axillary whorls of purple or yellow flowers +n12861892 any of various plants of the genus Physostegia having sessile linear to oblong leaves and showy white or rose or lavender flowers +n12862512 any of various ornamental plants of the genus Plectranthus +n12862828 small East Indian shrubby mint; fragrant oil from its leaves is used in perfumes +n12863234 decumbent blue-flowered European perennial thought to possess healing properties; naturalized throughout North America +n12863624 any of a number of perennial herbs of the genus Pycnanthemum; eastern North America and California +n12864160 widely cultivated for its fragrant grey-green leaves used in cooking and in perfumery +n12865037 stout Mediterranean sage with white or pink or violet flowers; yields oil used as a flavoring and in perfumery +n12865562 silvery-leaved California herb with purple flowers +n12865708 sage of eastern United States +n12865824 shrubby plant with aromatic greyish-green leaves used as a cooking herb +n12866002 tall perennial Old World salvia with violet-blue flowers; found in open grasslands +n12866162 aromatic herb of southern Europe; cultivated in Great Britain as a potherb and widely as an ornamental +n12866333 California erect and sparsely branched perennial +n12866459 an herb from Oaxaca that has a powerful hallucinogenic effect; the active ingredient is salvinorin +n12866635 Eurasian sage with blue flowers and foliage like verbena; naturalized in United States +n12866968 any of several aromatic herbs or subshrubs of the genus Satureja having spikes of flowers attractive to bees +n12867184 erect annual herb with oval leaves and pink flowers; used to flavor e.g. meats or soups or salads; southeastern Europe and naturalized elsewhere +n12867449 erect perennial subshrub having pink or white flowers and leathery leaves with a flavor of thyme; southern Europe +n12867826 a herbaceous plant of the genus Scutellaria which has a calyx that, when inverted, resembles a helmet with its visor raised +n12868019 an American mint that yields a resinous exudate used especially formerly as an antispasmodic +n12868880 foul-smelling perennial Eurasiatic herb with a green creeping rhizome +n12869061 perennial herb with an odorless rhizome widespread in moist places in northern hemisphere +n12869478 any of various plants of the genus Teucrium +n12869668 subshrub with serrate leaves and cream-colored to pink or purple flowers in spikelike racemes; North America +n12870048 Mediterranean germander having small hairy leaves and reddish purple flowers; attractive to cats +n12870225 European germander with one-sided racemes of yellow flowers; naturalized in North America +n12870535 any of various mints of the genus Thymus +n12870682 common aromatic garden perennial native to the western Mediterranean; used in seasonings and formerly as medicine +n12870891 aromatic dwarf shrub common on banks and hillsides in Europe; naturalized in United States +n12871272 any of several plants of the genus Trichostema having whorls of small blue flowers +n12871696 aromatic plant of western United States +n12871859 aromatic plant of the eastern United States +n12872458 any of numerous aquatic carnivorous plants of the genus Utricularia some of whose leaves are modified as small urn-shaped bladders that trap minute aquatic animals +n12872914 any of numerous carnivorous bog plants of the genus Pinguicula having showy purple or yellow or white flowers and a rosette of basal leaves coated with a sticky secretion to trap small insects +n12873341 rootless carnivorous swamp plants having at the base of the stem a rosette of foliage and leaves consisting of slender tubes swollen in the middle to form traps; each tube passes into two long spirally twisted arms with stiff hairs +n12873984 sprawling annual or perennial herb of Central America and West Indies having creamy-white to red-purple bell-shaped flowers followed by unusual horned fruit +n12875269 annual of southern United States to Mexico having large whitish or yellowish flowers mottled with purple and a long curving beak +n12875697 alternatively placed in genus Martynia +n12875861 a herbaceous plant of the genus Proboscidea +n12876899 any of numerous tall coarse woodland plants of the genus Scrophularia +n12877244 a garden plant of the genus Antirrhinum having showy white or yellow or crimson flowers resembling the face of a dragon +n12877493 California plant with slender racemes of white flowers +n12877637 southwestern United States plant with yellow flowers on stems that twist and twine through other vegetation +n12877838 perennial native to the Mediterranean but widely cultivated for its purple or pink flowers +n12878169 a plant of the genus Besseya having fluffy spikes of flowers +n12878325 small pale plant with dense spikes of pale bluish-violet flowers; of high cold meadows from Wyoming and Utah to New Mexico +n12878784 multi-stemmed North American annual having solitary axillary dark golden-yellow flowers resembling those of the foxglove; sometimes placed in genus Gerardia +n12879068 sparsely branched North American perennial with terminal racemes of bright yellow flowers resembling those of the foxglove; sometimes placed in genus Gerardia +n12879527 any garden plant of the genus Calceolaria having flowers with large inflated slipper-shaped lower lip +n12879963 any of various plants of the genus Castilleja having dense spikes of hooded flowers with brightly colored bracts +n12880244 most common paintbrush of western United States dry lands; having erect stems ending in dense spikes of bright orange to red flowers +n12880462 wildflower of western North America having ragged clusters of crimson or scarlet flowers +n12880638 hairy plant with pinkish flowers; Great Plains to northern Mexico +n12880799 plant of moist highland meadows having ragged clusters of pale yellow flowers +n12881105 showy perennial of marshlands of eastern and central North America having waxy lanceolate leaves and flower with lower part creamy white and upper parts pale pink to deep purple +n12881913 small widely branching western plant with tiny blue-and-white flowers; British Columbia to Ontario and south to California and Colorado +n12882158 eastern United States plant with whorls of blue-and-white flowers +n12882779 any of several plants of the genus Digitalis +n12882945 tall leafy European biennial or perennial having spectacular clusters of large tubular pink-purple flowers; leaves yield drug digitalis and are poisonous to livestock +n12883265 European yellow-flowered foxglove +n12883628 any plant of the genus Gerardia +n12884100 North American plant having racemes of blue-violet flowers +n12884260 common European perennial having showy yellow and orange flowers; a naturalized weed in North America +n12885045 plant of southwestern United States having long open clusters of scarlet flowers with yellow hairs on lower lip +n12885265 plant with bright red tubular flowers in long narrow clusters near tips of erect stems; coastal ranges from central California southward +n12885510 low branching dark green shrub with bunches of brick-red flowers at ends of branches; coastal ranges and foothills of northern California +n12885754 erect plant with blue-violet flowers in rings near tips of stems; Idaho to Utah and Wyoming +n12886185 stems in clumps with cream-colored flowers; found from Washington to Wyoming and southward to California and Utah +n12886402 low plant with light blue and violet flowers in short clusters near tips of stems; Nevada to Utah +n12886600 low bushy plant with large showy pale lavender or blue-violet flowers in narrow clusters at ends of stems +n12886831 plant having small narrow leaves and blue-violet flowers in long open clusters; Utah and Colorado to New Mexico and Arizona +n12887293 fragrant puffed-up white to reddish-pink flowers in long narrow clusters on erect stems; Arizona to New Mexico and Utah +n12887532 erect stems with pinkish-lavender flowers in long interrupted clusters; Arizona +n12887713 one of the West's most beautiful wildflowers; large brilliant pink or rose flowers in many racemes above thick mats of stems and leaves; ledges and cliffs from Washington to California +n12888016 plant with whorls of small dark blue-violet flowers; Washington to Wyoming and south to California and Colorado +n12888234 whorls of deep blue to dark purple flowers at tips of erect leafy stems; moist places from British Columbia to Oregon +n12888457 wine and lavender to purple and black flowers in several clusters on the upper half of leafy stems; Montana south through the Rocky Mountains to Arizona and New Mexico +n12889219 European mullein with smooth leaves and large yellow or purplish flowers; naturalized as a weed in North America +n12889412 densely hairy Eurasian herb with racemose white flowers; naturalized in North America +n12889579 Eurasian mullein with showy purple or pink flowers +n12889713 tall-stalked very woolly mullein with densely packed yellow flowers; ancient Greeks and Romans dipped the stalks in tallow for funeral torches +n12890265 any plant of the genus Veronica +n12890490 European plant with minute axillary blue flowers on long stalks; widely naturalized in America +n12890685 plant of western North America and northeastern Asia having prostrate stems with dense racemes of pale violet to lilac flowers +n12890928 erect or procumbent blue-flowered annual found in waste places of Europe and America +n12891093 European plant having low-lying stems with blue flowers; sparsely naturalized in North America +n12891305 Old World plant with axillary racemes of blue-and-white flowers +n12891469 plant of wet places in Eurasia and America +n12891643 common hairy European perennial with pale blue or lilac flowers in axillary racemes +n12891824 North American annual with small white flowers widely naturalized as a weed in South America and Europe +n12892013 perennial decumbent herb having small opposite leaves and racemes of blue flowers; throughout Eurasia and the New World +n12893463 any of numerous shrubs or herbs or vines of the genus Solanum; most are poisonous though many bear edible fruit +n12893993 coarse prickly weed having pale yellow flowers and yellow berrylike fruit; common throughout southern and eastern United States +n12895298 woolly-stemmed biennial arborescent shrub of tropical Africa and southern Asia having silvery-white prickly branches, clusters of blue or white flowers, and bright red berries resembling holly berries +n12895811 copiously branched vine of Brazil having deciduous leaves and white flowers tinged with blue +n12896615 improved garden variety of black nightshade having small edible orange or black berries +n12897118 small perennial shrub cultivated in uplands of South America for its edible bright orange fruits resembling tomatoes or oranges +n12897788 vine of Costa Rica sparsely armed with hooklike spines and having large lilac-blue flowers +n12897999 South American shrub or small tree widely cultivated in the tropics; not a true potato +n12898342 perennial Eurasian herb with reddish bell-shaped flowers and shining black berries; extensively grown in United States; roots and leaves yield atropine +n12898774 any of several herbs of the genus Browallia cultivated for their blue or violet or white flowers +n12899166 West Indian shrub with fragrant showy yellowish-white flowers +n12899537 a South American plant that is cultivated for its large fragrant trumpet-shaped flowers +n12899752 South American plant cultivated for its very large nocturnally fragrant trumpet-shaped flowers +n12899971 arborescent South American shrub having very large orange-red flowers +n12900783 plant bearing erect pungent conical red or yellow or purple fruits; sometimes grown as an ornamental +n12901724 plant bearing very small and very hot oblong red fruits; includes wild forms native to tropical America; thought to be ancestral to the sweet pepper and many hot peppers +n12902466 West Indian evergreen shrub having clusters of funnel-shaped white flowers that are fragrant by day +n12902662 West Indian evergreen shrub having clusters of funnel-shaped yellow-white flowers that are fragrant by night +n12903014 South American arborescent shrub having pale pink blossoms followed by egg-shaped reddish-brown edible fruit somewhat resembling a tomato in flavor +n12903367 any of several plants of the genus Datura +n12903503 intensely poisonous tall coarse annual tropical weed having rank-smelling foliage, large white or violet trumpet-shaped flowers and prickly fruits +n12903964 Peruvian shrub with small pink to lavender tubular flowers; leaves yield a tonic and diuretic +n12904314 poisonous fetid Old World herb having sticky hairy leaves and yellow-brown flowers; yields hyoscyamine and scopolamine +n12904562 poisonous herb whose leaves are a source of hyoscyamine +n12904938 any of various shrubs or vines of the genus Lycium with showy flowers and bright berries +n12905135 deciduous erect or spreading shrub with spiny branches and violet-purple flowers followed by orange-red berries; southeastern Europe to China +n12905412 spiny evergreen shrub of southeastern United States having spreading branches usually blue or mauve flowers and red berries +n12906214 an Italian variety of cherry tomato that is shaped like a plum +n12906498 a plant of southern Europe and North Africa having purple flowers, yellow fruits and a forked root formerly thought to have magical powers +n12906771 the root of the mandrake plant; used medicinally or as a narcotic +n12907057 coarse South American herb grown for its blue-and-white flowers followed by a bladderlike fruit enclosing a dry berry +n12907671 South American ornamental perennial having nocturnally fragrant greenish-white flowers +n12907857 tall erect South American herb with large ovate leaves and terminal clusters of tubular white or pink flowers; cultivated for its leaves +n12908093 tobacco plant of South America and Mexico +n12908645 any of various plants of the genus Nierembergia having upturned bell-shaped flowers +n12908854 prostrate woody South American herb with white tubular flowers often tinged with blue or rose +n12909421 any of numerous tropical herbs having fluted funnel-shaped flowers +n12909614 annual herb having large nocturnally fragrant white flowers +n12909759 herb or small shrublet having solitary violet to rose-red flowers +n12909917 hybrids of Petunia axillaris and Petunia integrifolia: a complex group of petunias having single or double flowers in colors from white to purple +n12911079 annual of tropical South America having edible purple fruits +n12911264 stout hairy annual of eastern North America with sweet yellow fruits +n12911440 annual of Mexico and southern United States having edible purplish viscid fruit resembling small tomatoes +n12911673 Mexican annual naturalized in eastern North America having yellow to purple edible fruit resembling small tomatoes +n12911914 found on sea beaches from Virginia to South America having greenish-yellow flowers and orange or yellow berries +n12912274 weedy vine of Argentina having solitary white flowers followed by egg-shaped white or yellow fruit +n12912670 any plant of the genus Salpiglossis +n12912801 Chilean herb having velvety funnel-shaped yellowish or violet flowers with long tonguelike styles at the corolla throat +n12913144 any plant of the genus Schizanthus having finely divided leaves and showy variegated flowers +n12913524 herb that is a source of scopolamine +n12913791 Mexican evergreen climbing plant having large solitary funnel-shaped fragrant yellow flowers with purple-brown ridges in the throat +n12914923 any of numerous tropical or subtropical American plants of the genus Verbena grown for their showy spikes of variously colored flowers +n12915140 a flowering shrub +n12915568 a mangrove of the West Indies and the southern Florida coast; occurs in dense thickets and has numerous short roots that bend up from the ground +n12915811 a small to medium-sized tree growing in brackish water especially along the shores of the southwestern Pacific +n12916179 an Australian tree resembling the black mangrove of the West Indies and Florida +n12916511 tall East Indian timber tree now planted in western Africa and tropical America for its hard durable wood +n12917901 any of numerous plants of the genus Euphorbia; usually having milky often poisonous juice +n12918609 not unattractive European weed whose flowers turn toward the sun +n12918810 an Old World spurge introduced as a weed in the eastern United States +n12918991 African dwarf succulent perennial shrub with numerous slender drooping branches +n12919195 common perennial United States spurge having showy white petallike bracts +n12919403 annual spurge of western United States having showy white-bracted flower clusters and very poisonous milk +n12919646 Old World perennial having foliage resembling cypress; naturalized as a weed in the United States +n12919847 tall European perennial naturalized and troublesome as a weed in eastern North America +n12920043 much-branched hirsute weed native to northeastern North America +n12920204 tropical American plant having poisonous milk and showy tapering usually scarlet petallike leaves surrounding small yellow flowers +n12920521 showy poinsettia found from the southern United States to Peru +n12920719 poinsettia of United States and eastern Mexico; often confused with Euphorbia heterophylla +n12920955 European perennial herb with greenish yellow terminal flower clusters +n12921315 European erect or depressed annual weedy spurge adventive in northeastern United States +n12921499 Mexican shrub often cultivated for its scarlet-bracted flowers +n12921660 small tree of dry open parts of southern Africa having erect angled branches suggesting candelabra +n12921868 somewhat climbing bushy spurge of Madagascar having long woody spiny stems with few leaves and flowers with scarlet bracts +n12922119 an annual weed of northeastern North America with dentate leaves +n12922458 weedy herb of eastern North America +n12922763 tropical Asiatic shrub; source of croton oil +n12923108 West Indian shrub with aromatic bark +n12923257 aromatic bark of cascarilla; used as a tonic and for making incense +n12924623 large shrub of tropical Africa and Asia having large palmate leaves and spiny capsules containing seeds that are the source of castor oil and ricin; widely naturalized throughout the tropics +n12925179 a stinging herb of tropical America +n12925583 small tropical American tree yielding purple dye and a tanning extract and bearing physic nuts containing a purgative oil that is poisonous in large quantities +n12926039 deciduous tree of the Amazon and Orinoco Rivers having leathery leaves and fragrant yellow-white flowers; it yields a milky juice that is the chief source of commercial rubber +n12926480 any of several plants of the genus Manihot having fleshy roots yielding a nutritious starch +n12926689 cassava with long tuberous edible roots and soft brittle stems; used especially to make cassiri (an intoxicating drink) and tapioca +n12927013 cassava root eaten as a staple food after drying and leaching; source of tapioca +n12927194 South American plant with roots used as a vegetable and herbage used for stock feed +n12927494 large tree native to southeastern Asia; the nuts yield oil used in varnishes; nut kernels strung together are used locally as candles +n12927758 Chinese tree bearing seeds that yield tung oil +n12928071 any of several tropical American shrubby succulent plants resembling cacti but having foot-shaped bracts +n12928307 wax-coated Mexican shrub related to Euphorbia antisyphilitica +n12928491 low tropical American shrub having powerful emetic properties +n12928819 seed of Mexican shrubs of the genus Sebastiana containing the larva of a moth whose movements cause the bean to jerk or tumble +n12929403 any of several shrubs or small evergreen trees having solitary white or pink or reddish flowers +n12929600 greenhouse shrub with glossy green leaves and showy fragrant rose-like flowers; cultivated in many varieties +n12930778 any of numerous aromatic herbs of the family Umbelliferae +n12930951 any of various uncultivated umbelliferous plants with foliage resembling that of carrots or parsley +n12931231 European weed naturalized in America that resembles parsley but causes nausea and poisoning when eaten +n12931542 aromatic Old World herb having aromatic threadlike foliage and seeds used as seasoning +n12931906 any of various tall and stout herbs of the genus Angelica having pinnately compound leaves and small white or greenish flowers in compound umbels +n12932173 a biennial cultivated herb; its stems are candied and eaten and its roots are used medicinally +n12932365 European herb with compound leaves and white flowers; adventive on Cape Breton Island +n12932706 aromatic annual Old World herb cultivated for its finely divided and often curly leaves for use especially in soups and salads +n12932966 coarse erect biennial Old World herb introduced as a weed in eastern North America +n12933274 herb of Europe and temperate Asia +n12934036 any plant of the genus Astrantia +n12934174 European herb with aromatic roots and leaves in a basal tuft and showy compound umbels of white to rosy flowers +n12934479 a Eurasian plant with small white flowers yielding caraway seed +n12934685 a caraway with whorled leaves +n12934985 tall erect highly poisonous Eurasiatic perennial herb locally abundant in marshy areas +n12935166 tall biennial water hemlock of northeastern North America having purple-spotted stems and clusters of extremely poisonous tuberous roots resembling small sweet potatoes +n12935609 large branching biennial herb native to Eurasia and Africa and adventive in North America having large fernlike leaves and white flowers; usually found in damp habitats; all parts extremely poisonous +n12936155 a common European plant having edible tubers with the flavor of roasted chestnuts +n12936826 dwarf Mediterranean annual long cultivated for its aromatic seeds +n12937130 a widely naturalized Eurasian herb with finely cut foliage and white compound umbels of small white or yellowish flowers and thin yellowish roots +n12938081 any plant of the genus Eryngium +n12938193 European evergreen eryngo with twisted spiny leaves naturalized on United States east coast; roots formerly used as an aphrodisiac +n12938445 coarse prickly perennial eryngo with aromatic roots; southeastern United States; often confused with rattlesnake master +n12938667 coarse prickly perennial eryngo of United States thought to cure rattlesnake bite +n12939104 any of several aromatic herbs having edible seeds and leaves and stems +n12939282 strongly aromatic with a smell of aniseed; leaves and seeds used for seasoning +n12939479 grown especially for its edible aromatic bulbous stem base +n12939874 tall coarse plant having thick stems and cluster of white to purple flowers +n12940226 herb native to southern Europe; cultivated for its edible stalks and foliage and seeds +n12940609 European herb with soft ferny leaves and white flowers +n12941220 European poisonous herb with fibrous roots +n12941536 a strong-scented plant cultivated for its edible root +n12941717 European biennial having a long fusiform root that has been made palatable through cultivation +n12942025 biennial weed in Europe and America having large pinnate leaves and yellow flowers and a bitter and somewhat poisonous root; the ancestor of cultivated parsnip +n12942395 annual or perennial herb with aromatic leaves +n12942572 a variety of parsley having flat leaves +n12942729 parsley with smooth leaves and enlarged edible taproot resembling a savory parsnip +n12943049 native to Egypt but cultivated widely for its aromatic seeds and the oil from them used medicinally and as a flavoring in cookery +n12943443 a plant of the genus Sanicula having palmately compound leaves and unisexual flowers in panicled umbels followed by bristly fruit; reputed to have healing powers +n12943912 sanicle of northwestern United States and British Columbia having yellow or red or purple flowers +n12944095 sanicle of Europe and Asia having white to pale pink flowers +n12945177 stout white-flowered perennial found wild in shallow fresh water; northern United States and Asia +n12945366 large stout white-flowered perennial found wild in shallow fresh water; Europe +n12945549 an Asiatic herb cultivated in Europe for its sweet edible tuberous root +n12946849 a tree of shrub of the genus Cornus often having showy bracts resembling flowers +n12947313 deciduous tree; celebrated for its large white or pink bracts and stunning autumn color that is followed by red berries +n12947544 common North American shrub with reddish purple twigs and white flowers +n12947756 shrub of eastern North America closely resembling silky cornel +n12947895 shrub of eastern North America having purplish stems and blue fruit +n12948053 European deciduous shrub turning red in autumn having dull white flowers +n12948251 creeping perennial herb distinguished by red berries and clustered leaf whorls at the tips of shoots; Greenland to Alaska +n12948495 deciduous European shrub or small tree having bright red fruit +n12949160 South American shrub or small tree having long shining evergreen leaves and panicles of green or yellow flowers +n12949361 small New Zealand broadleaf evergreen tree often cultivated in warm regions as an ornamental +n12950126 a plant of the genus Valeriana having lobed or dissected leaves and cymose white or pink flowers +n12950314 tall rhizomatous plant having very fragrant flowers and rhizomes used medicinally +n12950796 widely cultivated as a salad crop and pot herb; often a weed +n12951146 European herb with small fragrant crimson or white spurred flowers +n12951835 any fern of the genus Hymenophyllum growing in tropical humid regions and having translucent leaves +n12952165 any fern of the genus Trichomanes having large pinnatifid often translucent fronds; most are epiphytic on tree branches and twigs or terrestrial on mossy banks +n12952469 a variety of bristle fern +n12952590 large stout fern of extreme western Europe +n12952717 large fern of New Zealand having kidney-shaped fronds +n12953206 any fern of the genus Osmunda: large ferns with creeping rhizomes; naked sporangia are on modified fronds that resemble flower clusters +n12953484 large deeply rooted fern of worldwide distribution with upright bipinnate compound tufted fronds +n12953712 North American fern having tall erect pinnate fronds and a few sporogenous pinnae at or near the center of the fertile fronds +n12954353 New Zealand with pinnate fronds and a densely woolly stalks; sometimes included in genus Todea +n12954799 fern of rain forests of tropical Australia and New Zealand and South Africa +n12955414 rare small fern of northeastern North America having numerous slender spiraling fronds and forming dense tufts +n12955840 fern of Florida and West Indies and Central America with rhizome densely clad in grown hairs +n12956170 any of several ferns of the genus Lygodium that climb by twining +n12956367 delicate fern of the eastern United States having a twining stem and palmately-lobed sterile fronds and forked fertile fronds +n12956588 tropical fern widespread in Old World; naturalized in Jamaica and Florida +n12956922 sweetly scented African fern with narrow bipinnate fronds +n12957608 any of several water ferns of the genus Marsilea having four leaflets +n12957803 Australian clover fern +n12957924 water fern of Europe and Asia and the eastern United States distinguished by four leaflets resembling clover leaves +n12958261 European water fern found around margins of bodies of water or in wet acid soil having small globose sporocarps +n12958615 small latex-containing aquatic fern of southern Brazil +n12959074 free-floating aquatic ferns +n12959538 small free-floating aquatic fern from the eastern United States to tropical America; naturalized in western and southern Europe +n12960378 ferns with fertile spikes shaped like a snake's tongue +n12960552 epiphytic fern with straplike usually twisted fronds of tropical Asia and Polynesia and America +n12960863 a fern of the genus Botrychium having a fertile frond bearing small grapelike clusters of spore cases +n12961242 of North America and Eurasia +n12961393 European fern with leathery and sparsely hairy fronds +n12961536 American fern whose clustered sporangia resemble a snake's rattle +n12961879 Australasian fern with clusters of sporangia on stems of fertile fronds +n12963628 any of various fungi of the genus Erysiphe producing powdery conidia on the host surface +n12964920 fungus causing Dutch elm disease +n12965626 a fungus that infects various cereal plants forming compact black masses of branching filaments that replace many grains of the plant; source of medicinally important alkaloids and of lysergic acid +n12965951 a sclerotium or hardened mass of mycelium +n12966804 fungus causing black root rot in apples +n12966945 the fruiting bodies of the fungi of the genus Xylaria +n12968136 any fungus of the genus Sclerotinia; some causing brown rot diseases in plants +n12968309 a variety of sclerotinia +n12969131 any of various fungi of the genus Scleroderma having hard-skinned subterranean fruiting bodies resembling truffles +n12969425 an earthball fungus that is a dingy brownish yellow and a dark purplish interior; the peridium is covered with a pattern of small warts +n12969670 an earthball with a smooth upper surface that is at first buried in sand; the top of the fruiting body opens up to form segments like the ray of an umbel +n12969927 an earthball with a peridium that is firm dry and smooth when young but developing cracks when mature; pale orange-yellow when young and reddish brown at maturity +n12970193 a variety of gastromycete +n12970293 a variety of Podaxaceae +n12970733 mushroom of the genus Tulostoma that resembles a puffball +n12971400 any of various fungi of the family Rhizopogonaceae having subterranean fruiting bodies similar to the truffle +n12971804 a large whitish Rhizopogon that becomes greyish brown in maturity +n12972136 a fungus with a round yellow to orange fruiting body that is found on the surface of the ground or partially buried; has a distinctive sterile column extending into the spore-bearing tissue +n12973443 any mold of the genus Mucor +n12973791 any of various rot causing fungi of the genus Rhizopus +n12973937 a mold of the genus Rhizopus +n12974987 a naked mass of protoplasm having characteristics of both plants and animals; sometimes classified as protoctists +n12975804 a slime mold of the class Myxomycetes +n12976198 differing from true slime molds in being cellular and nucleate throughout the life cycle +n12976554 any slime mold of the genus Dictostylium +n12978076 an aquatic fungus of genus Synchytriaceae that is parasitic on pond scum +n12979316 fungus causing potato wart disease in potato tubers +n12979829 a fungus that attacks living fish and tadpoles and spawn causing white fungus disease: a coating of white hyphae on especially peripheral parts (as fins) +n12980080 parasitic or saprobic organisms living chiefly in fresh water or moist soil +n12980840 any of various fungi of the family Peronosporaceae parasitic on e.g. grapes and potatoes and melons +n12981086 fungus causing a serious disease in tobacco plants characterized by bluish-grey mildew on undersides of leaves +n12981301 fungus causing a downy mildew on onions +n12981443 fungus causing a downy mildew on growing tobacco +n12981954 fungus causing a disease characterized by a white powdery mass of conidia +n12982468 any fungus of the genus Pythium +n12982590 fungus causing damping off disease in seedlings +n12982915 causes brown rot gummosis in citrus fruits +n12983048 fungus causing late blight in solanaceous plants especially tomatoes and potatoes +n12983654 a fungus resembling slime mold that causes swellings or distortions of the roots of cabbages and related plants +n12983873 a type of ascomycetous fungus +n12983961 a type of ascomycetous fungus +n12984267 a common name for a variety of Sarcosomataceae +n12984489 a common name for a variety of Sarcosomataceae +n12984595 a common name for a variety of Sarcosomataceae +n12985420 any of various highly prized edible subterranean fungi of the genus Tuber; grow naturally in southwestern Europe +n12985773 a club-shaped coral fungus +n12985857 any of numerous fungi of the family Clavariaceae often brightly colored that grow in often intricately branched clusters like coral +n12986227 a fungus of the family Hydnaceae +n12987056 any thallophytic plant of the division Lichenes; occur as crusty patches or bushy growths on tree trunks or rocks or bare ground etc. +n12987423 a lichen in which the fungus component is an ascomycete +n12987535 a lichen in which the fungus component is a basidiomycete +n12988158 any lichen of the genus Lecanora; some used in dyeing; some used for food +n12988341 any of several Old World partially crustaceous or shrubby lecanoras that roll up and are blown about over African and Arabian deserts and used as food by people and animals +n12988572 any of various lecanoras that yield the dye archil +n12989007 a source of the dye archil and of litmus +n12989938 greenish grey pendulous lichen growing on trees +n12990597 any of several lichens of the genus Alectoria having a thallus consisting of filaments resembling hair +n12991184 an erect greyish branching lichen of Arctic and even some north temperate regions constituting the chief food for reindeer and caribou and sometimes being eaten by humans +n12991837 any of several lichens of the genus Parmelia from which reddish brown or purple dyes are made +n12992177 lichen with branched flattened partly erect thallus that grows in mountainous and Arctic regions; used as a medicine or food for humans and livestock; a source of glycerol +n12992868 an organism of the kingdom Fungi lacking chlorophyll and feeding on organic matter; ranging from unicellular or multicellular organisms to spore-bearing syncytia +n12994892 the basidium of various fungi +n12995601 any of numerous fungi of the division Eumycota +n12997654 any of various fungi of the subdivision Basidiomycota +n12997919 any of various fleshy fungi of the subdivision Basidiomycota consisting of a cap at the end of a stem arising from an underground mycelium +n12998815 a saprophytic fungus of the order Agaricales having an umbrellalike cap with gills on the underside +n13000891 mushrooms and related fleshy fungi (including toadstools, puffballs, morels, coral fungi, etc.) +n13001041 common name for an edible agaric (contrasting with the inedible toadstool) +n13001206 common name for an inedible or poisonous agaric (contrasting with the edible mushroom) +n13001366 coarse edible mushroom with a hollow stem and a broad white cap +n13001529 common edible mushroom found naturally in moist open soil; the cultivated mushroom of commerce +n13001930 edible east Asian mushroom having a golden or dark brown to blackish cap and an inedible stipe +n13002209 a fungus with a scaly cap and white flesh and a ring on the stalk (with scales below the ring); odor reminiscent of licorice +n13002750 widely distributed edible mushroom resembling the fly agaric +n13002925 agaric often confused with the death cup +n13003061 poisonous (but rarely fatal) woodland fungus having a scarlet cap with white warts and white gills +n13003254 extremely poisonous usually white fungus with a prominent cup-shaped base; differs from edible Agaricus only in its white gills +n13003522 yellowish edible agaric that usually turns red when touched +n13003712 fungus similar to Amanita phalloides +n13004423 widely distributed edible mushroom rich yellow in color with a smooth cap and a pleasant apricot aroma +n13004640 a mildly poisonous fungus with a fruiting body shaped like a hollow trumpet +n13004826 an edible agaric with a brown fruiting body that is often compound +n13004992 mushroom with a distinctive pink to vermillion fruiting body +n13005329 a large poisonous agaric with orange caps and narrow clustered stalks; the gills are luminescent +n13005984 having a cap that melts into an inky fluid after spores have matured +n13006171 common edible mushroom having an elongated shaggy white cap and black spores +n13006631 edible mushroom +n13006894 mushroom that grows in a fairy ring +n13007034 a ring of fungi marking the periphery of the perennial underground growth of the mycelium +n13007417 edible agaric with a soft greyish cap growing in shelving masses on dead wood +n13007629 red luminescent mushroom of Europe +n13008157 a fungus with a smooth orange cap and yellow gills and pale yellow stalk +n13008315 a beautiful yellow gilled fungus found from Alaska south along the coast +n13008485 a large fungus with whitish scales on the cap and remnants of the veil hanging from the cap; the stalk is thick and hard +n13008689 a fungus with a yellow cap covered with fine scales as is the stalk +n13008839 a fungus that grows in clusters on the ground; cap is brownish orange with a surface that is smooth and slightly sticky; whitish gills and a cylindrical brown stalk +n13009085 one of the most important fungi cultivated in Japan +n13009244 a gilled fungus having yellow slimy caps with conspicuous tawny scales on the caps and stalks +n13009429 a gilled fungus with a cap and stalk that are conspicuously scaly with upright scales; gills develop a greenish tinge with age +n13009656 a pale buff fungus with tawny scales +n13010694 a gilled fungus with a long stalk and a yellow slimy cap from which fragments of the broken veil hang; gills are initially white but become dark brown as spores are released +n13010951 a gilled fungus with a large slimy purple or olive cap; gills become purple with age; the stalk is long and richly decorated with pieces of the white sheath that extends up to a ring +n13011221 a large gilled fungus with a broad cap and a long stalk; the cap is dark brown; the white gills turn dark purplish brown with age; edible and choice +n13011595 a basidiomycete with gills +n13012253 a deadly poisonous agaric; a large cap that is first white (livid or lead-colored) and then turns yellowish or tan +n13012469 an agaric with a dark brown conical cap; fruits in early spring +n13012973 a poisonous agaric with a fibrillose cap and brown scales on a white ground color; cap can reach a diameter of 30 cm; often forms `fairy rings' +n13013534 any fungus of the genus Lepiota +n13013764 edible long-stalked mushroom with white flesh and gills and spores; found in open woodlands in autumn +n13013965 an agaric regarded as poisonous +n13014097 an agaric with greyish white fruiting body and gills that change from pink to dingy red +n13014265 an agaric with a large cap with brown scales and a thick stalk +n13014409 an agaric with a pallid cap and a stalk that is enlarged near the base +n13014581 an agaric with a relatively small pink to red cap and white gills and stalk +n13014741 an agaric with a ragged stalk and a soft floccose cap +n13014879 a white agaric that tends to cluster and has a club-shaped base +n13015509 fungus causing pink disease in citrus and coffee and rubber trees etc +n13015688 fungus causing bottom rot in lettuce +n13016076 fungus causing a disease in potatoes characterized by black scurfy spots on the tubers +n13016289 fungus causing a disease in coffee and some other tropical plants +n13017102 edible agaric that is pale lilac when young; has a smooth moist cap +n13017240 an edible agaric that fruits in great clusters (especially in sandy soil under cottonwood trees) +n13017439 a mildly poisonous agaric with a viscid reddish brown cap and white gills and stalk +n13017610 an agaric with a cap that is coated with dark fibrils in the center and has yellowish margins +n13017789 an edible agaric with yellow gills and a viscid yellow cap that has a brownish center +n13017979 a poisonous white agaric +n13018088 a poisonous agaric having a pale cap with fine grey fibrils +n13018232 an agaric with a cap that is densely covered with reddish fibrils and pale gills and stalk +n13018407 an orange tan agaric whose gills become brown by maturity; has a strong odor and taste +n13018906 a parasite on various trees +n13019496 an agaric with a brilliant scarlet cap and a slender stalk +n13019643 an edible agaric found in piles of hardwood sawdust; the caps are black and coarsely wrinkled +n13019835 a small edible agaric with a slender stalk; usually found on rotting hardwoods +n13020191 small tropical and subtropical edible mushroom having a white cap and long stem; an expensive delicacy in China and other Asian countries where it is grown commercially +n13020481 a mushroom with a dry yellowish to white fibrillose cap +n13020964 an agaric with a flat cap that is greyish or yellowish brown with pallid gills and a stalk that bulges toward the base +n13021166 a small poisonous agaric; has a dry white cap with crowded gills and a short stalk +n13021332 a fungus with a cap that is creamy grey when young and turns brown with age and a whitish stalk that stains yellow when handled +n13021543 a large white agaric; edible but not palatable +n13021689 an edible agaric with large silky white caps and thick stalks +n13021867 an edible white agaric that fruits in dense clusters; the gills are narrow and crowded and the stalk is fleshy and unpolished +n13022210 an edible agaric that is available in early spring or late fall when few other mushrooms are; has a viscid smooth orange to brown cap and a velvety stalk that turns black in maturity and pallid gills; often occur in clusters +n13022709 the vegetative part of a fungus consisting of a mass of branching threadlike hyphae +n13022903 compact usually dark-colored mass of hardened mycelium constituting a vegetative food-storage body in various true fungi; detaches when mature and can give rise to new growth +n13023134 any of various ascomycetous fungi in which the spores are formed in a sac or ascus +n13024012 any fungus of the class Ascomycetes (or subdivision Ascomycota) in which the spores are formed inside an ascus +n13024500 any of various mushrooms of the class Ascomycetes +n13024653 a variety of grainy club mushrooms +n13025647 any of various single-celled fungi that reproduce asexually by budding or division +n13025854 used as a leaven in baking and brewing +n13026015 used in making wine +n13027557 a mold causing aspergillosis in birds and man +n13027879 fungus causing brown root rot in plants of the pea and potato and cucumber families +n13028611 any fungus that is a member of the subclass Discomycetes +n13028937 a discomycete that develops in clusters of slippery rubbery gelatinous fruiting bodies that are dingy yellow to tan in color +n13029122 a discomycete that is 3-8 cm high with an orange to yellow fertile portion and white or pinkish stalks often half in and half out of the water +n13029326 a discomycete that is a harbinger of spring; the fruiting body is thin and tough and saucer-shaped (about the size of quarter to a half dollar) with a deep bright red upper surface and a whitish exterior +n13029610 an early spring variety of discomycete with yellow to orange yellow lining of the cup +n13029760 a discomycete with bright orange cup-shaped or saucer-shaped fruiting bodies and pale orange exteriors +n13030337 apothecium of a fungus of the family Pezizaceae +n13030616 a discomycetous fungus of the genus Peziza; the fragile fruiting body is a ghostly white but stains yellow when broken; favors strongly alkaline habitats +n13030852 a scarlet European fungus with cup-shaped ascocarp +n13031193 an urn-shaped discomycete with a nearly black interior +n13031323 the cup-shaped fruiting body of this discomycete has a jellylike interior and a short stalk +n13031474 the fruiting bodies of this discomycete have a firm texture and long retain their cup shape; the pale brown interior blends with the color of dead leaves +n13032115 any of various edible mushrooms of the genus Morchella having a brownish spongelike cap +n13032381 an edible and choice morel with a globular to elongate head with an irregular pattern of pits and ridges +n13032618 an edible morel with a cup-shaped or saucer-shaped fruiting body can be up to 20 cm wide; the fertile surface inside the cup has wrinkles radiating from the center; can be easily confused with inedible mushrooms +n13032923 a morel whose fertile portion resembles a bell and is attached to the stipe only at the top +n13033134 resembles a thimble on a finger; the surface of the fertile portion is folded into wrinkles that extend from the top down; fruiting begins in spring before the leaves are out on the trees +n13033396 a morel with a fertile portion that has a relatively smooth surface; the stalk is fragile +n13033577 a morel whose pitted fertile body is attached to the stalk with little free skirt around it; the fertile body is grey when young and black in old age +n13033879 a delicious morel with a conic fertile portion having deep and irregular pits +n13034062 a morel with the ridged and pitted fertile portion attached to the stipe for about half its length +n13034555 a fungus composed of several apothecia that look like elongated rabbit ears; the sterile surface is dark brown and warty; the fertile surface is smooth and pinkish orange +n13034788 a fungus with a long solid stalk embedded in soil and a yellow-brown head shaped like a cauliflower +n13035241 a fungus of the family Helvellaceae +n13035389 a large fungus of the family Helvellaceae +n13035707 any fungus of the genus Helvella having the ascocarps stalked or pleated or often in folds +n13035925 a helvella with a saddle-shaped fertile part and creamy color; the stalk is fluted and pitted +n13036116 a helvella with a cup-shaped fertile body having a brown interior; the stalk is creamy white and heavily ribbed +n13036312 a helvella with an irregularly convoluted cap that is dark brown when young and becomes dull grey with age; the lower surface of the cap is smooth and pale grey; the stalk is thick and deeply fluted +n13036804 any fungus of the genus Discina +n13037406 any fungus of the genus Gyromitra +n13037585 a gyromitra with a brown puffed up fertile part and a thick fluted stalk; found under conifers in California +n13037805 a gyromitra with a brown puffed up fertile part and a rosy pink fluted stalk and smooth round spores; found on hardwood slash east of the Great Plains +n13038068 a poisonous gyromitra; the surface of the fertile body is smooth at first and becomes progressively undulating and wrinkled (but never truly pitted); color varies from dull yellow to brown +n13038376 a poisonous fungus; saddle-shaped and dull yellow to brown fertile part is relatively even +n13038577 a lorchel with deep brownish red fertile part and white stalk +n13038744 a gyromitra with a large irregular stalk and fertile part that is yellow to brown and wrinkled; has early fruiting time +n13039349 any fungus of the class Gasteromycetes +n13040303 any of various ill-smelling brown-capped fungi of the order Phallales +n13040629 a common fungus formerly used in preparing a salve for rheumatism +n13040796 this stinkhorn has a cap with a granulose surface at the apex and smells like decaying flesh +n13041312 a stinkhorn having a stalk without a cap; the slimy gleba is simply plastered on its surface near the apex where winged insects can find it +n13041943 a gasteromycete with a leathery stalk and a fruiting body that is globose and has a pale yellow spore case +n13042134 a gasteromycete with a leathery stalk and a fruiting body this globose and has a red spore case +n13042316 a gasteromycete with a leathery stalk and a fruiting body with a thin gelatinous spore case and elliptical spores +n13042982 a stinkhorn of genus Pseudocolus; the fruiting body first resembles a small puffball that soon splits open to form a stalk with tapering arms that arch and taper to a common point +n13043926 any of various fungi of the family Lycoperdaceae whose round fruiting body discharges a cloud of spores when mature +n13044375 huge edible puffball up to 2 feet diameter and 25 pounds in weight +n13044778 any fungus of the family Geastraceae; in form suggesting a puffball whose outer peridium splits into the shape of a star +n13045210 an earthstar with a bluish spore sac and a purplish brown gleba; at maturity the outer layer splits into rays that bend backward and elevate the spore sac +n13045594 a fungus similar to an earthstar except that it does not open up; the spore mass is brown at maturity with a column of sterile tissue extending up into it +n13045975 the largest earthstar; the fruiting body can measure 15 cm across when the rays are expanded +n13046130 a common species of earthstar widely distributed in sandy soil; the gleba is a pale tan +n13046669 any of various fungi of the family Nidulariaceae having a cup-shaped body containing several egg-shaped structure enclosing the spores +n13047862 a species of Gastrocybe fungus that has a conic cap and a thin stalk; at first the stalk is upright but as it matures the stalk bends over and then downward; the cap then gelatinizes and a slimy mass containing the spores falls to the ground as the stalk collapses +n13048447 a small fungus with a fragile cap that cracks to expose the white context and a white stalk that is practically enclosed by the cap +n13049953 woody pore fungi; any fungus of the family Polyporaceae or family Boletaceae having the spore-bearing surface within tubes or pores; the fruiting bodies are usually woody at maturity and persistent +n13050397 a woody fungus that forms shelflike sporophores on tree trunks and wood structures +n13050705 a rare fungus having a large (up to 14 inches wide) yellow fruiting body with multiple individual caps and a broad central stalk and a fragrant odor +n13050940 a fungus with a whitish often circular cap and a white pore surface and small pores and a white central stalk; found under conifers; edible but not popular +n13051346 a gilled polypore with a large cap (up to 15 inches in diameter) and a broad stalk; edible when young and tender +n13052014 a pore fungus with a whitish cottony soft cap found on conifer logs in forests at high elevation in the western United States and adjacent Canada +n13052248 a fungus with a whitish kidney-shaped cap and elongated pores; causes white rot in dead hardwoods +n13052670 large greyish-brown edible fungus forming a mass of overlapping caps that somewhat resembles a hen at the base of trees +n13052931 a fungus with a lateral stalk (when there is a stalk) and a scaly cap that becomes nearly black in maturity; widely distributed in the northern hemisphere +n13053608 a popular edible fungus with a cap the color of liver or raw meat; abundant in southeastern United States +n13054073 fungus used in the preparation of punk for fuses +n13054560 any fungus of the family Boletaceae +n13055423 a fungus convex cap and a dingy yellow under surface and a dry stalk +n13055577 an edible and choice fungus; has a convex cap that is slightly viscid when fresh and moist but soon dries and a thick bulbous tan stalk +n13055792 a fungus with a red cap and a red coarsely reticulate stalk +n13055949 a poisonous fungus with a dingy yellow cap and orange red undersurface and a cylindrical reticulate stalk +n13056135 a fungus that is edible when young and fresh; has a dark brown convex cap with a yellow to greenish under surface and reddish stalk +n13056349 a fungus that has an off-white cap when it is young but later becomes dingy brown and a stalk of the same color; the under surface of the cap (the tubes) a pale greenish yellow +n13056607 a beautiful but poisonous bolete; has a brown cap with a scarlet pore surface and a thick reticulate stalk +n13056799 an edible fungus with a broadly convex blackish brown cap and a pore surface that is yellow when young and darkens with age; stalk is thick and enlarges toward the base +n13057054 a fungus with a rusty red cap and a white pore surface that becomes yellow with age and a pale yellow stalk +n13057242 a fungus with a velvety stalk and usually a dingy brown cap; injured areas turn blue instantly +n13057422 an edible (but not choice) fungus found on soil under hardwoods; has a dry convex cap with whitish under surface and a reticulate stalk +n13057639 an edible and choice fungus that has a brown cap with greenish yellow under surface and a stalk that become dull red with age +n13058037 an edible fungus with a pinkish purple cap and stalk and a pore surface that is yellow with large angular pores that become like gills in maturity +n13058272 an edible fungus with a broadly convex brown cap and a whitish pore surface and stalk +n13058608 an edible fungus with a dark reddish brown cap and a wide light tan stalk that expands toward the base +n13059298 a short squat edible fungus with a reddish brown cap and white stalk; fruits under pines in the spring +n13059657 edible mild-tasting mushroom found in coniferous woodlands of eastern North America +n13060017 a fungus with a long coarsely shaggy reticulate stalk and a rimose areolate cap surface +n13060190 any fungus of the order Tremellales or Auriculariales whose fruiting body is jellylike in consistency when fresh +n13061172 popular in China and Japan and Taiwan; gelatinous mushrooms; most are dried +n13061348 a yellow jelly fungus +n13061471 a jelly fungus with a fruiting body 5-15 cm broad and gelatinous in consistency; resembles a bunch of leaf lettuce; mostly water and brownish in color +n13061704 a jelly fungus with an erect whitish fruiting body and a highly variable shape (sometimes resembling coral fungi) +n13062421 widely distributed edible fungus shaped like a human ear and growing on decaying wood +n13063269 any of various fungi causing rust disease in plants +n13063514 fruiting body of some rust fungi bearing chains of aeciospores +n13064111 fungus causing flax rust +n13064457 fungus causing white pine blister rust and having a complex life cycle requiring a plant of genus Ribes as alternate host +n13065089 rust fungus that attacks wheat +n13065514 rust fungus causing rust spots on apples and pears etc +n13066129 any fungus of the order Ustilaginales +n13066448 a smut fungus causing a smut disease of grains in which the spore masses are covered or held together by the grain membranes +n13066979 a smut fungus of the genus Ustilago causing a smut disease of grains in which the entire head is transformed into a dusty mass of spores +n13067191 a smut fungus attacking Indian corn +n13067330 a common smut attacking Indian corn causing greyish white swellings that rupture to expose a black spore mass +n13067532 genus of smut fungus +n13067672 smut fungus attacking heads of corn or sorghum and causing a covered smut +n13068255 fungus that destroys kernels of wheat by replacing them with greasy masses of smelly spores +n13068434 similar to Tilletia caries +n13068735 smut fungus causing blackish blisters on scales and leaves of onions; especially destructive to seedlings +n13068917 a smut fungus causing a smut in cereals and other grasses that chiefly affects leaves and stems and is characterized chains of sori within the plant tissue that later rupture releasing black masses of spores +n13069224 fungus affecting leaves and stems of wheat +n13069773 fungus that frequently encircles twigs and branches of various trees especially citrus trees in southern United States +n13070308 any fungus of the family Hygrophoraceae having gills that are more or less waxy in appearance +n13070875 a fungus having an acutely conic cap and dry stalks +n13071371 a fungus with a white convex cap and arcuate white gills and a stalk that tapers toward the base +n13071553 a fungus with a broadly convex cap that is cream color with a tint of blue over the margin; waxy gills are bluish green to blue-grey; a short stalk tapers abruptly at the base +n13071815 a fungus with a drab squamulose cap and grey-brown squamules over the white background of the stalk and waxy grey-white gills +n13072031 a fungus with a slightly viscid cap; cap and gills are reddish brown and the stalk is grey +n13072209 a grey fungus frequently found near melting snow banks +n13072350 a fungus with a viscid purplish red cap and stalk; found under spruce and other conifers +n13072528 an edible fungus with a reddish cap and close pale gills and dry stalk; found under hardwoods +n13072706 an edible fungus with a large white cap and a dry stalk and white gills +n13072863 a fungus having a brownish sticky cap with a white margin and white gills and an odor of raw potatoes +n13073055 a small fungus with orange cap and yellow gills found in sphagnum bogs +n13073703 a fungus with a small brown convex cap with a depressed disc; waxy wine-colored gills and a brown stalk; fruits in or near melting snow banks in the western mountains of North America +n13074619 a fungus with large tawny caps and pale cinnamon gills and a red band of veil around the stalk; usually found near birch trees +n13074814 an edible fungus with a slimy viscid cap that is initially yellow but turns olive and then tawny; flesh is lavender +n13075020 a fungus with a viscid wrinkled tawny cap; the stalk has a basal bulb that diminishes as the stalk elongates; the gills are dark violet at first but soon turn brown +n13075272 a poisonous fungus with a bright yellow brown cap and a long cinnamon colored stalk +n13075441 a fungus with a reddish purple cap having a smooth slimy surface; close violet gills; all parts stain dark purple when bruised +n13075684 a fungus with a dry brown cap and rusty red gills and a yellowish stalk +n13075847 a fungus with a sticky lavender cap and stalk that whitish above and covered with a silky lavender sheath +n13076041 a fungus that is violet overall with a squamulose cap +n13076405 a fungus with a brownish orange fruiting body and a ring near the top of the stalk; the taste is bitter and the flesh contains psilocybin and psilocin +n13076643 a poisonous fungus with a dry cap and a cortina that does not leave much of a ring on the robust stalk +n13076831 a giant fungus of the Pacific Northwest; has a very thick stalk and the cortina leaves a ring high up on the stalk +n13077033 a fungus that produces a superficial growth on various kinds of damp or decaying organic matter +n13077295 a fungus that produces a superficial (usually white) growth on organic matter +n13078021 a fungus of the genus Verticillium +n13079073 any of the yeastlike imperfect fungi of the genus Monilia +n13079419 any of the yeastlike imperfect fungi of the genus Candida +n13079567 a parasitic fungus that can infect the mouth or the skin or the intestines or the vagina +n13080306 any of various yeastlike budding fungi of the genus Blastomyces; cause disease in humans and other animals +n13080866 fungus causing yellow spot (a sugarcane disease in Australia) +n13081229 fungus causing green smut in rice +n13081999 a fungus causing dry rot +n13082568 any fungus now or formerly belonging to the form genus Rhizoctinia +n13083023 any of a variety of plants grown indoors for decorative purposes +n13083461 an ornamental plant suitable for planting in a flowerbed +n13084184 a plant adapted to arid conditions and characterized by fleshy water-storing tissues that act as water reservoirs +n13084834 a variety of a plant developed from a natural species and maintained under cultivation +n13085113 any plant that crowds out cultivated plants +n13085747 usually used in combination: `liverwort'; `milkwort'; `whorlywort' +n13090018 a thorny stem or twig +n13090871 fleshy and usually brightly colored cover of some seeds that develops from the ovule stalk and partially or entirely envelopes the seed +n13091620 leaf in ferns and mosses that bears the sporangia +n13091774 organ containing or producing spores +n13091982 stalk bearing one or more sporangia +n13092078 saclike structure in which ascospores are formed through sexual reproduction of ascomycetes +n13092240 sexually produced fungal spore formed within an ascus +n13092385 one of a string of thick walled vegetative resting cells formed by some algae and fungi +n13092987 a sporangium that arises from a group of epidermal cells +n13093275 a sporangium containing four asexual spores +n13093629 cell or organ in which gametes develop +n13094145 cluster of sporangia usually on underside of a fern frond +n13094273 a spore-producing structure in certain lichens and fungi +n13095013 membrane of the young sporophore of various mushrooms extending from the margin of the cap to the stem and is ruptured by growth; represented in mature mushroom by an annulus around the stem and sometimes a cortina on the margin of the cap +n13096779 woody tissue +n13098515 a sheet of vascular tissue separating the vascular bundles +n13098962 (botany) tissue that conducts synthesized food substances (e.g., from leaves) to parts where needed; consists primarily of sieve tubes +n13099833 a plant having foliage that persists and remains green throughout the year +n13099999 a plant having foliage that is shed annually at the end of the growing season +n13100156 a plant that when touched or ingested in sufficient quantity can be harmful or fatal to an organism +n13100677 a plant with a weak stem that derives support from climbing, twining, or creeping along a surface +n13102648 any plant (as ivy or periwinkle) that grows by creeping +n13102775 slender stem-like structure by which some twining plants attach themselves to an object for support +n13103023 a plant that climbs by its adventitious roots e.g. ivy +n13103660 a category in some early taxonomies +n13103750 having the shape or characteristics of a tree +n13103877 a dead tree that is still standing, usually in an undisturbed forest +n13104059 a tall perennial woody plant having a main trunk and branches forming a distinct elevated crown; includes both gymnosperms and angiosperms +n13107694 any tree that is valued as a source of lumber or timber +n13107807 a small tree +n13107891 tree (as opposed to shrub) +n13108131 any of several trees having seedpods as fruits +n13108323 a tree with limbs cut back to promote a more bushy growth of foliage +n13108481 young tree +n13108545 a tree planted or valued chiefly for its shade from sunlight +n13108662 any tree of the division Gymnospermophyta +n13108841 any gymnospermous tree or shrub bearing cones +n13109733 any tree having seeds and ovules contained in the ovary +n13110915 tree bearing edible nuts +n13111174 tree bearing aromatic bark or berries +n13111340 any of several trees having leaves or bark used to allay fever or thought to indicate regions free of fever +n13111504 the base part of a tree that remains standing after the tree has been felled +n13111881 a dwarfed ornamental tree or shrub grown in a tray or shallow pot +n13112035 a dwarfed evergreen conifer or shrub shaped to have flat-topped asymmetrical branches and grown in a container +n13112201 an artificial plant resembling a bonsai +n13118330 a low shrub +n13118707 low-growing woody shrub or perennial with woody base +n13119870 any of various rough thorny shrubs or vines +n13120211 a woody climbing usually tropical plant +n13120958 a perennial plant that propagates by underground bulbs or tubers or corms +n13121104 plant adapted for life with a limited supply of water; compare hydrophyte and mesophyte +n13121349 land plant growing in surroundings having an average supply of water; compare xerophyte and hydrophyte +n13122364 a semiaquatic plant that grows in soft wet land; most are monocots: sedge, sphagnum, grasses, cattails, etc; possibly heath +n13123309 a plant that is an epiphyte for part of its life +n13123431 an epiphytic vine or tree whose aerial roots extend down the trunk of a supporting tree and coalesce around it eventually strangling the tree +n13123841 plant that grows on rocks or stony soil and derives nourishment from the atmosphere +n13124358 an organism that lives in and derives its nourishment from organic matter in stagnant or foul water +n13124654 plant capable of synthesizing its own food from simple organic substances +n13125117 (botany) the usually underground organ that lacks buds or leaves or nodes; absorbs water and mineral salts; usually it anchors the plant to the ground +n13126050 (botany) main root of a plant growing straight downward from the stem +n13126856 a root that grows from and supports the stem above the ground in plants such as mangroves +n13127001 a plant structure resembling a leaf +n13127303 root or part of a root used for plant propagation; especially that part of a grafted plant that supplies the roots +n13127666 cuttings of plants set in the ground to grow as hawthorn for hedges or vines +n13127843 a horizontal branch from the base of plant that produces new plants from buds at its tips +n13128278 plant growing from a tuber +n13128582 a horizontal plant stem with shoots above and roots below serving as a reproductive structure +n13128976 axis of a compound leaf or compound inflorescence +n13129078 woody stem of palms and tree ferns +n13130014 a flattened stem resembling and functioning as a leaf +n13130161 enlarged tip of a stem that bears the floral parts +n13130726 erect leafless flower stalk growing directly from the ground as in a tulip +n13131028 flat-topped or rounded inflorescence characteristic of the family Umbelliferae in which the individual flower stalks arise from about the same point; youngest flowers are at the center +n13131618 the slender stem that supports the blade of a leaf +n13132034 stalk bearing an inflorescence or solitary flower +n13132156 a small stalk bearing a single flower of an inflorescence; an ultimate division of a common peduncle +n13132338 an inflorescence consisting of a cluster of flowers +n13132486 usually elongate cluster of flowers along the main stem in which the flowers at the base open first +n13132656 compound raceme or branched cluster of flowers +n13132756 a dense flower cluster (as of the lilac or horse chestnut) in which the main axis is racemose and the branches are cymose +n13132940 more or less flat-topped cluster of flowers in which the central or terminal flower opens first +n13133140 a small cyme, generally with few flowers +n13133233 a compacted or sessile cyme +n13133316 a cyme with flowers or branches alternating in opposite ranks +n13133613 fruiting spike of a cereal plant especially corn +n13133932 the fleshy axis of a spike often surrounded by a spathe +n13134302 plant growing from a bulb +n13134531 small bulb or bulb-shaped growth arising from the leaf axil or in the place of flowers +n13134844 plant growing from a corm +n13134947 the ripened reproductive body of a seed plant +n13135692 a diminutive fruit, especially one that is part of a multiple fruit +n13135832 a small hard fruit +n13136316 any of various seeds or fruits that are beans or resemble beans +n13136556 usually large hard-shelled seed +n13136781 a small nut +n13137010 the inner and usually edible part of a seed or grain or nut or fruit stone +n13137225 the fleshy multiple fruit of the fig consisting of an enlarged hollow receptacle containing numerous fruitlets +n13137409 a small fruit having any of various structures, e.g., simple (grape or blueberry) or aggregate (blackberry or raspberry) +n13137672 fruit consisting of many individual small fruits or drupes derived from separate ovaries within a common receptacle: e.g. blackberry; raspberry; pineapple +n13137951 an indehiscent fruit derived from a single ovary having one or many seeds within a fleshy wall or pericarp: e.g. grape; tomato; cranberry +n13138155 one of the small drupes making up an aggregate or multiple fruit like a blackberry +n13138308 fleshy indehiscent fruit with a single seed: e.g. almond; peach; plum; cherry; elderberry; olive; jujube +n13138658 a small part of an aggregate fruit that resembles a drupe +n13138842 a fleshy fruit (apple or pear or related fruits) having seed chambers and an outer fleshy part +n13139055 a several-seeded dehiscent fruit as e.g. of a leguminous plant +n13139321 seedpods that are constricted between the seeds and that break apart when mature into single-seeded segments +n13139482 fruit of such plants as the plantain; a capsule whose upper part falls off when the seeds are released +n13139647 outer membranous covering of some fruits or seeds +n13139837 the husk of an ear of corn +n13140049 the vessel that contains the seeds of a plant (not the seeds themselves) +n13140367 fruit containing much fleshy tissue besides that of the ripened ovary; as apple or strawberry +n13141141 a shrub or shrubby tree of the genus Rhamnus; fruits are source of yellow dyes or pigments +n13141415 fruit of various buckthorns yielding dyes or pigments +n13141564 shrubby tree of the Pacific coast of the United States; yields cascara sagrada +n13141797 dried bark of the cascara buckthorn used as a laxative +n13141972 deciduous shrub of eastern and central United States having black berrylike fruit; golden-yellow in autumn +n13142182 evergreen shrub of western United States bearing small red or black fruits +n13142504 small spiny evergreen shrub of western United States and Mexico with minute flowers and bright red berries +n13142907 any of several small to medium-sized trees of Florida and West Indies with thin scaly bark and heavy dark heartwood +n13143285 spiny tree having dark red edible fruits +n13143758 thorny Eurasian shrub with dry woody winged fruit +n13144084 Australian tree grown especially for ornament and its fine-grained wood and bearing edible nuts +n13145040 native grape of northeastern United States; origin of many cultivated varieties e.g. Concord grapes +n13145250 native grape of southeastern United States; origin of many cultivated varieties +n13145444 common European grape cultivated in many varieties; chief source of Old World wine and table grapes +n13146403 white wine grape; grown especially in California for making wines resembling those from Chablis, France +n13146583 small blue-black grape of Medoc region of France highly prized in winemaking +n13146928 white wine grape grown in California +n13147153 white grape grown especially in the valley the Loire in France +n13147270 white grape grown in Europe and California +n13147386 small black grape grown chiefly in California; transplanted from Europe +n13147532 white grape grown especially in California and the lower Loire valley of France +n13147689 used to make malmsey wine +n13147918 a variety of white wine grape grown in Italy +n13148208 Asiatic vine with three-lobed leaves and purple berries +n13148384 common North American vine with compound leaves and bluish-black berrylike fruit +n13149296 any of various shrubby vines of the genus Piper +n13149970 Asian pepper plant whose dried leaves are chewed with betel nut (seed of the betel palm) by southeast Asians +n13150378 spicy fruit of the cubeb vine; when dried and crushed is used medicinally or in perfumery and sometimes smoked in cigarettes +n13150592 a dry dehiscent fruit that at maturity splits into two or more parts each with a single seed +n13150894 any of various plants of the genus Peperomia; grown primarily for their often succulent foliage +n13151082 grown as a houseplant for its silvery striped fleshy foliage; South America +n13152339 stoloniferous herb of southwestern United States and Mexico having a pungent rootstock and small spicate flowers with white bracts suggesting an anemone +n13154388 division of a usually pinnately divided leaf +n13154494 compound leaf of a fern or palm or cycad +n13154841 a modified leaf or leaflike part just below and protecting an inflorescence +n13155095 a small bract +n13155305 a highly conspicuous bract or bract pair or ring of bracts at the base of an inflorescence +n13155611 small dry membranous bract found in inflorescences of Gramineae and Cyperaceae +n13156986 a leaf resembling an open hand; having lobes radiating from a common point +n13157137 a leaf resembling a feather; having the leaflets on each side of a common axis +n13157346 a pinnate leaf having two pairs of leaflets +n13157481 a leaf having divisions that are themselves compound +n13157684 a leaf narrowing to a slender point +n13157971 a simple leaf shaped like a capital delta +n13158167 a sword-shaped leaf; as of iris +n13158512 a long slender leaf +n13158605 a simple leaf having curvature suggestive of a lyre +n13158714 a simple leaf having a rounded or blunt tip +n13158815 a leaf having a rounded apex and tapering base +n13159357 a fiddle-shaped leaf +n13159691 a simple kidney-shaped leaf +n13159890 spatula-shaped leaf; having a broad rounded apex and narrow base +n13160116 a pinnate leaf with a pair of leaflets at the apex +n13160254 a pinnate leaf with a single leaflet at the apex +n13160365 a leaf having the radiating lobes each deeply cleft or divided +n13160604 a leaf having a scalloped margin +n13160831 a leaf having a toothed margin +n13160938 a leaf having a finely toothed margin; minutely dentate +n13161151 a leaf having a jagged margin as though gnawed +n13161254 a leaf having incised margins with the lobes or teeth curved toward the base; as a dandelion leaf +n13161904 a leaf having prickly margins +n13163553 a branch or a part of a tree that is dead +n13163649 stems of beans and peas and potatoes and grasses collectively as used for thatching and bedding +n13163991 a small branch or division of a branch (especially a terminal division); usually applied to branches of the current or preceding year +n13164501 flexible twig of a willow tree +n13170840 large scrambling fern forming large patches to 18 feet high; Pacific region and China +n13171210 large Australasian fern with fanlike repeatedly forked fronds; sometimes placed in genus Gleichenia +n13171797 aquatic fern of tropical America often used in aquariums +n13172923 any of numerous ferns of the genus Polypodium +n13173132 fern having rootstock of a sweetish flavor +n13173259 fern growing on rocks or tree trunks and having fronds greyish and scurfy below; Americas and South Africa +n13173488 stiff leathery-leaved fern of western North America having ovate fronds parted to the midrib +n13173697 chiefly lithophytic or epiphytic fern of North America and east Asia +n13173882 mat-forming lithophytic or terrestrial fern with creeping rootstocks and large pinnatifid fronds found throughout North America and Europe and Africa and east Asia +n13174354 epiphytic fern with large fronds; Taiwan and Philippines +n13174670 fern with long narrow strap-shaped leaves +n13174823 common epiphytic or sometimes terrestrial fern having pale yellow-green strap-shaped leaves; Florida to West Indies and Mexico and south to Uruguay +n13175682 giant epiphytic or lithophytic fern; Asia to Polynesia and Australia +n13176363 epiphytic ferns with long rhizomes; tropical America +n13176714 tropical Africa to Australasia and Polynesia +n13177048 tropical American fern with brown scaly rhizomes cultivated for its large deeply lobed deep bluish-green fronds; sometimes placed in genus Polypodium +n13177529 any of various tropical ferns of the genus Platycerium having large flat lobed fronds often resembling the antlers of a stag +n13177768 fern of Peru and Bolivia +n13177884 commonly cultivated fern of Australia and southeastern Asia and Polynesia +n13178284 east Asian fern having fronds shaped like tongues; sometimes placed in genus Cyclophorus +n13178707 small epiphytic fern of South America with tuberous swellings along rhizomes +n13179056 plant that affords shelter or food to ants that live in symbiotic relations with it +n13179804 epiphytic fern found in lowland forests of tropical America +n13180534 any of various chiefly rock-inhabiting ferns of the genus Asplenium +n13180875 spleenwort of Europe and Africa and Asia having pinnate fronds and yielding an astringent +n13181055 tropical Old World or Australian epiphytic fern frequently forming tufts in tree crotches +n13181244 common North American fern with polished black stripes +n13181406 fern of tropical America: from southern United States to West Indies and Mexico to Brazil +n13181811 ferns having lanceolate fronds that root at the tip +n13182164 a small fern with slim green fronds; widely distributed in cool parts of northern hemisphere +n13182338 a spleenwort of eastern North America +n13182799 a spleenwort of eastern and southern United States +n13182937 a spleenwort of western Europe +n13183056 Eurasian fern with simple lanceolate fronds +n13183489 small European fern with chaffy leathery fronds +n13184394 a fern thought to resemble a millipede +n13185269 fern with erect fronds of Europe and western North America; often cultivated for deer browse +n13185658 any fern of the genus Doodia having pinnate fronds with sharply dentate pinnae +n13186388 a fern of the genus Woodwardia having the sori in chainlike rows +n13186546 North American fern +n13187367 a showy tree fern of New Zealand and Australia having a crown of pinnated fronds with whitish undersides +n13188096 any fern of the genus Davallia; having scaly creeping rhizomes +n13188268 either of two ferns of the genus Davallia having a soft grey hairy rootstock +n13188462 fern of the Canary Islands and Madeira +n13188767 feathery fern of tropical Asia and Malaysia +n13190060 fern of southeastern Asia; not hardy in cold temperate regions +n13190747 of Australia and Tasmania; often cultivated; hardy in cool climates +n13191148 Asiatic tree fern having dense matted hairs sometimes used as a styptic +n13191620 resembles Pteridium aquilinum; of Queensland, Australia +n13191884 a terrestrial tree fern of South America +n13192625 any of various ferns of the genera Dryopteris or Polystichum or Lastreopsis having somewhat shield-shaped coverings on the sori +n13193143 European shield fern +n13193269 fern or northern Eurasia and North America having fragrant fronds +n13193466 North American fern with a blackish lustrous stipe +n13193642 any of various ferns of the genus Dryopteris +n13193856 fern of North America and Europe whose rhizomes and stalks yield an oleoresin used to expel tapeworms +n13194036 North American fern with evergreen fronds +n13194212 a fern of the genus Dryopteris +n13194572 most widely grown fern of the genus Athyrium for its delicate foliage +n13194758 a lady fern with deeply cut leaf segments; found in the Rocky Mountains +n13194918 North American fern with narrow fronds on yellowish leafstalks +n13195341 tropical Old World fern having glossy fronds suggestive of holly; sometimes placed in genus Polystichum +n13195761 any fern of the genus Cystopteris characterized by a hooded indusium or bladderlike membrane covering the sori +n13196003 delicate fern widely distributed in North America and European having thin pinnatifid fronds with brittle stems +n13196234 fern of rocky mountainous areas of hemisphere +n13196369 North American fern often bearing bulbils on the leaflets +n13196738 fern with elongate silvery outgrowths enclosing the developing spores +n13197274 bright blue-green fern widely distributed especially in damp acid woodlands of temperate northern hemisphere +n13197507 yellow-green fern of rocky areas of northern hemisphere +n13198054 tall fern of northern temperate regions having graceful arched fronds and sporophylls resembling ostrich plumes +n13198482 tropical American terrestrial fern with leathery lanceolate fronds; sometimes placed in genus Polybotrya +n13198914 beautiful spreading fern of eastern North America and eastern Asia naturalized in western Europe; pinnately divided fronds show a slight tendency to fold when touched; pinnules enclose groups of sori in beadlike lobes +n13199717 North American evergreen fern having pinnate leaves and dense clusters of lance-shaped fronds +n13199970 any of various ferns of the genus Polystichum having fronds with texture and gloss like holly +n13200193 North American fern whose more or less evergreen leathery fronds are covered with pale brown chafflike scales +n13200542 North American fern +n13200651 European shield fern cultivated in many varieties +n13200986 widely distributed fern of tropical southern hemisphere having leathery pinnatifid fronds +n13201423 Jamaican fern having round buttonlike bulbils +n13201566 fern of tropical Asia having round buttonlike bulbils +n13201969 any fern of the genus Woodsia +n13202125 a common rock-inhabiting fern of northern temperate regions having rusty-brown stipes and lanceolate pinnate fronds +n13202355 slender fern of northern North America with shining chestnut-colored stipes and bipinnate fronds with usually distinct marginal sori +n13202602 rock-inhabiting fern of Arctic and subarctic Europe to eastern Asia +n13205058 a sword fern with arching or drooping pinnate fronds; a popular houseplant +n13205249 tropical American fern cultivated for its finely divided greyish-green foliage; West Indies and southern Mexico to Peru and Brazil +n13206178 stout tropical swamp fern (especially tropical America) having large fronds with golden yellow sporangia covering the undersides +n13206817 any of various small to large terrestrial ferns of the genus Adiantum having delicate palmately branched fronds +n13207094 delicate maidenhair fern with slender shining black leaf stalks; cosmopolitan +n13207335 hardy palmately branched North American fern with divergent recurved branches borne on lustrous dark reddish stipes +n13207572 delicate endemic Bermudian fern with creeping rootstock +n13207736 tropical American fern with broad pinnae; widely cultivated +n13207923 named for a country house in Barbados where it was discovered +n13208302 small short-lived fern of Central and South America +n13208705 any of various terrestrial ferns of the genus Cheilanthes; cosmopolitan in arid and semiarid temperate or tropical regions +n13208965 southeastern United States to northern Mexico and Jamaica +n13209129 small tufted fern of northwestern America +n13209270 small North American evergreen fern whose stipes and lower frond surfaces are densely wooly +n13209460 lip fern of Texas to Oklahoma and Colorado and Arizona and Mexico having tall erect tufted fronds +n13209808 fast-growing sturdy Japanese fern; cultivated for their attractive broad dark-green pinnate fronds +n13210350 rock-inhabiting fern of northern North America growing in massive tufts and having fronds resembling parsley +n13210597 fern of Europe and Asia Minor having short slender rhizome and densely tufted bright green fronds resembling parsley +n13211020 tropical American fern with coarsely lobed to palmatifid fronds +n13211790 any of several small lithophytic ferns of tropical and warm temperate regions +n13212025 evergreen fern of California and Baja California +n13212175 very short shallowly creeping North American fern usually growing on cliffs or walls and having dark glossy leaf axes +n13212379 cliff brake of California and Baja California having purple-brown leafstalks +n13212559 fern of New Zealand and Australia having trailing fronds with dark green buttonlike leaflets +n13213066 fern of southern tropical Africa having fronds with white undersides +n13213397 tropical American fern having fronds with light golden undersides +n13213577 fern of West Indies and South America having fronds with bright golden-yellow undersides +n13214217 cultivated in many varieties as houseplants +n13214340 Asiatic fern introduced in America +n13214485 fern of North Africa and Azores and Canary Islands +n13215258 large Australasian evergreen fern with an edible rhizome sometimes used as a vegetable by indigenous people +n13215586 highly variable species of very large primitive ferns of the Pacific tropical areas with high rainfall +n13217005 pantropical epiphytic or terrestrial whisk fern with usually dull yellow branches and minute leaves; America; Japan; Australia +n13219422 perennial rushlike flowerless herbs with jointed hollow stems and narrow toothlike leaves that spread by creeping rhizomes; tend to become weedy; common in northern hemisphere; some in Africa and South America +n13219833 of Eurasia and Greenland and North America +n13219976 Eurasia; northern North America to Virginia +n13220122 evergreen erect horsetail with rough-edged stems; formerly used for scouring utensils +n13220355 scouring-rush horsetail widely distributed in wet or boggy areas of northern hemisphere +n13220525 Eurasia except southern Russia; northern North America +n13220663 northern North America; Greenland; northern and central Europe +n13221529 primitive evergreen moss-like plant with spores in club-shaped strobiles +n13222877 a variety of club moss +n13222985 a variety of club moss +n13223090 of northern Europe and America; resembling a miniature fir +n13223588 a variety of club moss +n13223710 a variety of club moss +n13223843 ground pine thickly covered with bristly leaves; widely distributed in barren sandy or peaty moist coastal regions of eastern and southeastern United States +n13224673 any of numerous fern allies of the genus Selaginella +n13224922 spikemoss forming dense mats; eastern North America +n13225244 prostrate spikemoss; California +n13225365 densely tufted fern ally of southwestern United States to Peru; curls up in a tight ball when dry and expands and grows under moist conditions +n13225617 occurs widely in Florida +n13226320 any of several spore-bearing aquatic or marsh plants having short rhizomes and leaves resembling quills; worldwide except Polynesia +n13226871 any club-shaped fungus of the genus Geoglossum +n13228017 fern of northeastern North America +n13228536 any of several tropical ferns of the genus Christella having thin brittle fronds +n13229543 common European mountain fern having fragrant lemon or balsam scented fronds +n13229951 slender shield fern of moist woods of eastern North America; sometimes placed in genus Dryopteris +n13230190 delicate feathery shield fern of the eastern United States; sometimes placed in genus Thelypteris +n13230662 any fern of the genus Phegopteris having deeply cut triangular fronds +n13230843 beech fern of North American woodlands having straw-colored stripes +n13231078 beech fern of North America and Eurasia +n13231678 any of several fungi of the genus Armillaria that form brown stringy rhizomorphs and cause destructive rot of the roots of some trees such as apples or maples +n13231919 fungus with a brown cap and white gills and a membranous ring halfway up the stalk +n13232106 a large white mushroom that develops brown stains as it ages; gills are white; odor is spicy and aromatic; collected commercially for oriental cooking the Pacific Northwest +n13232363 a large fungus with viscid cap that dries and turns brown with age; gills are off-white +n13232779 a honey-colored edible mushroom commonly associated with the roots of trees in late summer and fall; do not eat raw +n13233727 any of numerous plants of the genus Asclepias having milky juice and pods that split open releasing seeds with downy tufts +n13234114 tall herb with leafless white waxy stems and whitish starlike flowers; southwestern United States +n13234519 milkweed of the eastern United States with leaves resembling those of pokeweed +n13234678 densely branching perennial of the eastern United States with white to crimson or purple flowers +n13234857 milkweed of central North America; a threatened species +n13235011 perennial of eastern North America having pink-purple flowers +n13235159 milkweed of southern North America having large starry purple and pink flowers +n13235319 milkweed of southwestern United States and Mexico; poisonous to livestock +n13235503 erect perennial of eastern and southern United States having showy orange flowers +n13235766 milkweed of the eastern United States with narrow leaves in whorls and greenish-white flowers +n13236100 robust twining shrub having racemes of fragrant white or pink flowers with flat spreading terminal petals that trap nocturnal moths and hold them until dawn +n13237188 succulent climber of southern Asia with umbels of pink and white star-shaped flowers +n13237508 deciduous climber for arches and fences having ill-scented but interesting flowers and poisonous yellow fruits; cultivated for its dark shining foliage; southeastern Europe to Asia Minor +n13238375 any of various plants of the genus Stapelia having succulent leafless toothed stems resembling cacti and large foul-smelling (often star-shaped) flowers +n13238654 stapelia of Cape Province having mostly dark red-brown flowers with flat starlike corollas +n13238988 any of various evergreen climbing shrubs of the genus Stephanotis having fragrant waxy flowers +n13239177 twining woody vine of Madagascar having thick dark waxy evergreen leaves and clusters of large fragrant waxy white flowers along the stems; widely cultivated in warm regions +n13239736 twining vine with hairy foliage and dark purplish-brown flowers +n13239921 a plant spore formed by two similar sexual cells +n13240362 the biblical tree in the Garden of Eden whose forbidden fruit was tasted by Adam and Eve +n13252672 a place where oranges are grown; a plantation of orange trees in warm climes or a greenhouse in cooler areas +n13354021 your personal financial means +n13555775 a coarse term for defecation +n13579829 the amount of wood in an area as measured in cords +n13650447 a unit of length equal to 3 feet; defined as 91.44 centimeters; originally taken to be the average length of a stride +n13653902 the most extreme possible amount or value +n13862407 any of the various shape that leaves of plants can assume +n13862552 a figure whose sides are all equal +n13862780 a combination of points and lines and planes that form a visible palpable shape +n13863020 a figure formed by a set of straight lines or light rays meeting at a point +n13863186 a two-dimensional shape +n13863473 a three-dimensional shape +n13863771 a length (straight or curved) without breadth or thickness; the trace of a moving point +n13864035 anything with a round shape resembling a teardrop +n13864153 a shape that curves or bulges outward +n13864965 a shape that curves or bends inward +n13865298 a solid bounded by a cylindrical surface and two parallel planes (the bases) +n13865483 a shape that is curved and without sharp angles +n13865904 a plane figure with rounded sides curving inward at the top and intersecting at the bottom; conventionally used on playing cards and valentines +n13866144 a closed plane figure bounded by straight sides +n13866626 a polygon such that no side extended cuts any other side or vertex; it can be cut by a straight line in at most two points +n13866827 a polygon such that there is a straight line that cuts it in four or more points +n13867005 a polygon with one or more reentrant angles +n13867492 an ill-defined or arbitrary shape +n13868248 a curve (such as a circle) having no endpoints +n13868371 a closed curve that does not intersect itself +n13868515 a double curve resembling the letter S +n13868944 an undulating curve +n13869045 the exterior curve of an arch +n13869547 a sharp curve or crook; a shape resembling a hook +n13869788 a curve that is tangent to each of a family of curves +n13869896 a bend or curve (especially in a coastline) +n13871717 a straight line connecting the center of a circle with two points on its perimeter (or the center of a sphere with two points on its surface) +n13872592 a shape whose base is a circle and whose sides taper up to a point +n13872822 a conical shape with a wider and a narrower opening at the two ends +n13873361 a plane figure that deviates from a square or circle due to elongation +n13873502 ellipse in which the two axes are of equal length; a plane curve generated by one point moving at a constant distance from a fixed point +n13873917 something approximating the shape of a circle +n13874073 a circle dividing a sphere or other surface into two usually equal and symmetrical parts +n13874558 one of a series of rounded projections (or the notches between them) formed by curves along an edge (as the edge of a leaf or piece of cloth or the margin of a shell or a shriveled red blood cell observed in a hypertonic solution etc.) +n13875392 a toroidal shape +n13875571 anything with a round or oval shape (formed by a curve that is closed and does not intersect itself) +n13875884 a loop in a rope +n13876561 a curve that lies on the surface of a cylinder or cone and cuts the element at a constant angle +n13877547 a straight line joining the apex and a point on the base +n13877667 a straight line running the length of the cylinder +n13878306 a closed plane curve resulting from the intersection of a circular cone and a plane cutting completely through it +n13879049 a square-shaped object +n13879320 a three-sided polygon +n13879816 a triangle whose interior angles are all acute +n13880199 a triangle with two equal sides +n13880415 a triangle that contains an obtuse interior angle +n13880551 a triangle with one right angle +n13880704 a triangle with no two sides of equal length +n13880994 (mathematics) one of a set of parallel geometric figures (parallel lines or planes) +n13881512 a quadrilateral with two parallel sides +n13881644 a plane figure with 5 or more points; often used as an emblem +n13882201 a five-sided polygon +n13882276 a six-sided polygon +n13882487 a seven-sided polygon +n13882563 an eight-sided polygon +n13882639 a nine-sided polygon +n13882713 a polygon with 10 sides and 10 angles +n13882961 a parallelogram with four equal sides; an oblique-angled equilateral parallelogram +n13883603 a figure on the surface of a sphere bounded by arcs of 3 or more great circles +n13883763 a spherical polygon formed by the arcs of 3 great circles +n13884261 a polyhedron any plane section of which is a convex polygon +n13884384 a polyhedron some of whose plane sections are concave polygons +n13884930 a rectangular parallelepiped +n13885011 a prism whose bases are quadrangles +n13886260 the shape of a bell +n13888491 the angular separation between two objects as perceived by an observer +n13889066 the angular distance of a point in an orbit past the point of periapsis measured in degrees +n13889331 an angle formed at the intersection of the arcs of two great circles +n13891547 the angle between a refracted ray and a line perpendicular to the surface between the two media at the point of refraction +n13891937 an angle less than 90 degrees but more than 0 degrees +n13893786 a long narrow furrow cut either by a natural process (such as erosion) or by a tool (as e.g. a groove in a phonograph record) +n13894154 a groove or furrow (especially one in soft earth caused by wheels) +n13894434 something that bulges out or is protuberant or projects from its surroundings +n13895262 a part that bulges deeply +n13896100 something curved in shape +n13896217 any shape resembling the curved shape of the moon in its first or last quarters +n13897198 a surface whose plane sections are all ellipses or circles +n13897528 the side of a right triangle opposite the right angle +n13897996 equality of distribution +n13898207 a symmetrical arrangement of the parts of a thing +n13898315 balance among the parts of something +n13898645 a shape that is generated by rotating an ellipse around one of its axes +n13899735 a small sphere +n13900287 the doughnut-shaped object enclosed by a torus +n13900422 anything that approximates the shape of a column or tower +n13901211 a bulging cylindrical shape; hollow with flat ends +n13901321 a hollow cylindrical shape +n13901423 a small sphere +n13901490 a small round soft mass (as of chewed food) +n13901858 a drop of dew +n13902048 any long raised strip +n13902336 the shape of a raised edge of a more or less circular object +n13902793 a convex shape that narrows toward a point +n13903079 a line determining the limits of an area +n13905121 (anatomy) a notch or small hollow +n13905275 a V-shaped indentation +n13905792 a slight depression in the smoothness of a surface +n13906484 the lines that form patterns on the skin (especially on the fingertips and the palms of the hands and the soles of the feet) +n13906669 a facial wrinkle associated with frowning +n13906767 a crease on the palm; its length is said by palmists to indicate how long you will live +n13906936 a crease on the palm; palmists say it indicates your emotional nature +n13907272 a long narrow depression in a surface +n13908201 a split or indentation in something (as the palate or chin) +n13908580 a line generated by a point on one figure rolling around a second figure +n13911045 a connecting point at which several lines come together +n13912260 a figure that branches from a single root +n13912540 a tree diagram showing a reconstruction of the transmission of manuscripts of a literary work +n13914141 (biology) a branching or armlike part of an animal +n13914265 the region of the angle formed by the junction of two branches +n13914608 a three-dimensional shape with six square or rectangular sides +n13915023 an egg-shaped object +n13915113 any polyhedron having four plane faces +n13915209 any polyhedron having five plane faces +n13915305 any polyhedron having six plane faces +n13915999 any one of five solids whose faces are congruent regular polygons and whose polyhedral angles are all congruent +n13916363 the space enclosed by three or more planes that intersect in a vertex +n13916721 a hexahedron with six equal squares as faces +n13917690 a frustum formed from a pyramid +n13917785 a frustum formed from a cone +n13918274 any projection that resembles the tail of an animal +n13918387 any long thin projection that is transient +n13918717 a polyhedron whose faces are trapeziums +n13919547 any shape that is triangular in cross section +n13919919 a projection or ridge that suggests a keel +n13926786 a particular situation +n14131950 viral diseases causing eruptions of the skin or mucous membrane +n14175579 a sexually transmitted infection caused by bacteria of the genus Chlamydia +n14564779 a difficult or awkward situation +n14582716 a substance needed only in small amounts for normal body function (e.g., vitamins or minerals) +n14583400 a semiliquid mass of partially digested food that passes from the stomach through the pyloric sphincter into the duodenum +n14585392 pollen of the ragweed plant is a common allergen +n14592309 a fine cloth made from pineapple fibers +n14603798 a tear gas that is stronger than CN gas but wears off faster; can be deployed by grenades or cluster bombs; can cause skin burns and fatal pulmonary edema +n14633206 an abundant nonmetallic tetravalent element occurring in three allotropic forms: amorphous carbon and graphite and diamond; occurs in all organic compounds +n14685296 a carbonaceous material obtained by heating wood or other organic matter in the absence of air +n14696793 material consisting of the aggregate of minerals like those making up the Earth's crust +n14698884 rock fragments and pebbles +n14714645 a potent carcinogen from the fungus Aspergillus; can be produced and stored for use as a bioweapon +n14720833 a potent form of vitamin E obtained from germ oils or by synthesis +n14765422 the pelt of a leopard +n14785065 building material consisting of bricks laid with mortar between them +n14786943 used to wrap around pipes or boilers or laid in attics to prevent loss of heat +n14804958 a cement that hardens under water; made by heating limestone and clay in a kiln and pulverizing the result +n14810561 a B-complex vitamin that is a constituent of lecithin; essential in the metabolism of fat +n14820180 a strong hard building material composed of sand and gravel and cement and water +n14821852 glass fibers spun and massed into bundles resembling wool +n14844693 the part of the earth's surface consisting of humus and disintegrated rock +n14853210 a powerful chemical explosive that produces gas at a very high rate +n14858292 rubbish carelessly dropped or left about (especially in public places) +n14867545 ground dried fish used as fertilizer and as feed for domestic livestock +n14891255 a mixture used by Byzantine Greeks that was often shot at adversaries; catches fire when wetted +n14899328 (bacteriology) a nutrient substance (solid or liquid) that is used to cultivate micro-organisms +n14900184 any culture medium that uses agar as the gelling agent +n14900342 a culture medium containing whole blood as the nutrient +n14908027 a tile shaped so as to cover the hip of a hip roof +n14909584 a red transparent variety of zircon used as a gemstone +n14914945 the anion OH having one oxygen and one hydrogen atom +n14915184 water frozen in the solid state +n14919819 an optically inactive alcohol that is a component of the vitamin B complex +n14938389 a floor covering +n14941787 mineral water containing lithium salts +n14942411 a permanent magnet consisting of magnetite that possess polarity and has the power to attract as well as to be attracted magnetically +n14973585 a vitamin of the vitamin B complex that performs an important role in the oxidation of fats and carbohydrates and certain amino acids; occurs in many foods +n14974264 a material made of cellulose pulp derived mainly from wood or rags or certain grasses +n14975598 paper made from the papyrus plant by cutting it in strips and pressing it flat; used by ancient Egyptians and Greeks and Romans +n14976759 a roofing tile with a S-shape; laid so that curves overlap +n14976871 a black bituminous material used for paving roads or other areas; usually spread over crushed rock +n14977188 a paving material of tar and broken stone; mixed in a factory and shaped during paving +n14977504 material used to pave an area +n14992287 a mixture of lime or gypsum with sand and water; hardens into a smooth solid; used to cover walls and ceilings +n14993378 a gas that is poisonous to breath or contact; used in chemical warfare +n15005577 a decorative tile that is bent in cross section; used to cover the ridge of a roof +n15006012 a coarse plaster for the surface of external walls +n15019030 a loose material consisting of grains of rock or coral +n15048888 powder (containing gypsum plaster and glue) that when mixed with water forms a plastic paste used to fill cracks and holes in plaster +n15060326 a substance similar to stucco but exclusively applied to masonry walls +n15060688 building material consisting of interwoven rods and twigs covered with clay +n15062057 a plaster now made mostly from Portland cement and sand and lime; applied while soft to cover exterior walls or surfaces +n15067877 a gas that makes the eyes fill with tears but does not damage them; used in dispersing crowds +n15075141 a soft thin absorbent paper for use in toilets +n15086247 the seed of flax used as a source of oil +n15089258 any of a group of organic substances essential in small quantities to normal metabolism +n15089472 any vitamin that is soluble in fats +n15089645 any vitamin that is soluble in water +n15089803 any of several fat-soluble vitamins essential for normal vision; prevents night blindness or inflammation or dryness of the eyes +n15090065 an unsaturated alcohol that occurs in marine fish-liver oils and is synthesized biologically from carotene +n15090238 a viscous alcohol that is less active in mammals than is vitamin A1 +n15090742 originally thought to be a single vitamin but now separated into several B vitamins +n15091129 a B vitamin that prevents beriberi; maintains appetite and growth +n15091304 a B vitamin that is used to treat pernicious anemia +n15091473 a B vitamin that prevents skin lesions and weight loss +n15091669 a B vitamin that is essential for metabolism of amino acids and starch +n15091846 a B vitamin that is essential for cell growth and reproduction +n15092059 a B vitamin essential for the normal function of the nervous system and the gastrointestinal tract +n15092227 a fat-soluble vitamin that prevents rickets +n15092409 a fat-soluble vitamin that is essential for normal reproduction; an important antioxidant that neutralizes free radicals in the body +n15092650 a B vitamin that aids in body growth +n15092751 a fat-soluble vitamin that helps in the clotting of blood +n15092942 a form of vitamin K +n15093049 a form of vitamin K +n15093137 a vitamin that maintains the resistance of cell and capillary walls to permeation +n15093298 a vitamin found in fresh fruits (especially citrus fruits) and vegetables; prevents scurvy +n15102359 planks collectively; a quantity of planks +n15102455 a cheap hard material made from wood chips that are pressed together and bound with synthetic resin +n15102894 a hole in a board where a knot came out diff --git a/pytorch-image-models/timm/data/_info/imagenet_synset_to_lemma.txt b/pytorch-image-models/timm/data/_info/imagenet_synset_to_lemma.txt new file mode 100644 index 0000000000000000000000000000000000000000..0c950b6a365a6ed6bee2563fe3084294c7930004 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet_synset_to_lemma.txt @@ -0,0 +1,21844 @@ +n00004475 organism, being +n00005787 benthos +n00006024 heterotroph +n00006484 cell +n00007846 person, individual, someone, somebody, mortal, soul +n00015388 animal, animate being, beast, brute, creature, fauna +n00017222 plant, flora, plant life +n00021265 food, nutrient +n00021939 artifact, artefact +n00120010 hop +n00141669 check-in +n00288000 dressage +n00288190 curvet, vaulting +n00288384 piaffe +n00324978 funambulism, tightrope walking +n00326094 rock climbing +n00433458 contact sport +n00433661 outdoor sport, field sport +n00433802 gymnastics, gymnastic exercise +n00434075 acrobatics, tumbling +n00439826 track and field +n00440039 track, running +n00440218 jumping +n00440382 broad jump, long jump +n00440509 high jump +n00440643 Fosbury flop +n00440747 skiing +n00440941 cross-country skiing +n00441073 ski jumping +n00441824 water sport, aquatics +n00442115 swimming, swim +n00442437 bathe +n00442847 dip, plunge +n00442981 dive, diving +n00443231 floating, natation +n00443375 dead-man's float, prone float +n00443517 belly flop, belly flopper, belly whop, belly whopper +n00443692 cliff diving +n00443803 flip +n00443917 gainer, full gainer +n00444142 half gainer +n00444340 jackknife +n00444490 swan dive, swallow dive +n00444651 skin diving, skin-dive +n00444846 scuba diving +n00444937 snorkeling, snorkel diving +n00445055 surfing, surfboarding, surfriding +n00445226 water-skiing +n00445351 rowing, row +n00445685 sculling +n00445802 boxing, pugilism, fisticuffs +n00446311 professional boxing +n00446411 in-fighting +n00446493 fight +n00446632 rope-a-dope +n00446804 spar, sparring +n00446980 archery +n00447073 sledding +n00447221 tobogganing +n00447361 luging +n00447463 bobsledding +n00447540 wrestling, rassling, grappling +n00447957 Greco-Roman wrestling +n00448126 professional wrestling +n00448232 sumo +n00448466 skating +n00448640 ice skating +n00448748 figure skating +n00448872 rollerblading +n00448958 roller skating +n00449054 skateboarding +n00449168 speed skating +n00449295 racing +n00449517 auto racing, car racing +n00449695 boat racing +n00449796 hydroplane racing +n00449892 camel racing +n00449977 greyhound racing +n00450070 horse racing +n00450335 riding, horseback riding, equitation +n00450700 equestrian sport +n00450866 pony-trekking +n00450998 showjumping, stadium jumping +n00451186 cross-country riding, cross-country jumping +n00451370 cycling +n00451563 bicycling +n00451635 motorcycling +n00451768 dune cycling +n00451866 blood sport +n00452034 bullfighting, tauromachy +n00452152 cockfighting +n00452293 hunt, hunting +n00452734 battue +n00452864 beagling +n00453126 coursing +n00453313 deer hunting, deer hunt +n00453396 ducking, duck hunting +n00453478 fox hunting, foxhunt +n00453631 pigsticking +n00453935 fishing, sportfishing +n00454237 angling +n00454395 fly-fishing +n00454493 troll, trolling +n00454624 casting, cast +n00454855 bait casting +n00454983 fly casting +n00455076 overcast +n00455173 surf casting, surf fishing +n00456465 day game +n00463246 athletic game +n00463543 ice hockey, hockey, hockey game +n00464277 tetherball +n00464478 water polo +n00464651 outdoor game +n00464894 golf, golf game +n00466273 professional golf +n00466377 round of golf, round +n00466524 medal play, stroke play +n00466630 match play +n00466712 miniature golf +n00466880 croquet +n00467320 quoits, horseshoes +n00467536 shuffleboard, shovelboard +n00467719 field game +n00467995 field hockey, hockey +n00468299 shinny, shinney +n00468480 football, football game +n00469651 American football, American football game +n00470554 professional football +n00470682 touch football +n00470830 hurling +n00470966 rugby, rugby football, rugger +n00471437 ball game, ballgame +n00471613 baseball, baseball game +n00474568 ball +n00474657 professional baseball +n00474769 hardball +n00474881 perfect game +n00475014 no-hit game, no-hitter +n00475142 one-hitter, 1-hitter +n00475273 two-hitter, 2-hitter +n00475403 three-hitter, 3-hitter +n00475535 four-hitter, 4-hitter +n00475661 five-hitter, 5-hitter +n00475787 softball, softball game +n00476140 rounders +n00476235 stickball, stickball game +n00476389 cricket +n00477392 lacrosse +n00477639 polo +n00477827 pushball +n00478262 soccer, association football +n00479076 court game +n00479440 handball +n00479616 racquetball +n00479734 fives +n00479887 squash, squash racquets, squash rackets +n00480211 volleyball, volleyball game +n00480366 jai alai, pelota +n00480508 badminton +n00480885 battledore, battledore and shuttlecock +n00480993 basketball, basketball game, hoops +n00481803 professional basketball +n00481938 deck tennis +n00482122 netball +n00482298 tennis, lawn tennis +n00483205 professional tennis +n00483313 singles +n00483409 singles +n00483508 doubles +n00483605 doubles +n00483705 royal tennis, real tennis, court tennis +n00483848 pallone +n00523513 sport, athletics +n00812526 clasp, clench, clutch, clutches, grasp, grip, hold +n00825773 judo +n00887544 team sport +n01035504 Last Supper, Lord's Supper +n01035667 Seder, Passover supper +n01055165 camping, encampment, bivouacking, tenting +n01314388 pest +n01314663 critter +n01314781 creepy-crawly +n01314910 darter +n01315213 peeper +n01315330 homeotherm, homoiotherm, homotherm +n01315581 poikilotherm, ectotherm +n01315805 range animal +n01316422 scavenger +n01316579 bottom-feeder, bottom-dweller +n01316734 bottom-feeder +n01316949 work animal +n01317089 beast of burden, jument +n01317294 draft animal +n01317391 pack animal, sumpter +n01317541 domestic animal, domesticated animal +n01317813 feeder +n01317916 feeder +n01318053 stocker +n01318279 hatchling +n01318381 head +n01318478 migrator +n01318660 molter, moulter +n01318894 pet +n01319001 stayer +n01319187 stunt +n01319467 marine animal, marine creature, sea animal, sea creature +n01319685 by-catch, bycatch +n01320872 female +n01321123 hen +n01321230 male +n01321456 adult +n01321579 young, offspring +n01321770 orphan +n01321854 young mammal +n01322221 baby +n01322343 pup, whelp +n01322508 wolf pup, wolf cub +n01322604 puppy +n01322685 cub, young carnivore +n01322898 lion cub +n01322983 bear cub +n01323068 tiger cub +n01323155 kit +n01323261 suckling +n01323355 sire +n01323493 dam +n01323599 thoroughbred, purebred, pureblood +n01323781 giant +n01324305 mutant +n01324431 carnivore +n01324610 herbivore +n01324799 insectivore +n01324916 acrodont +n01325060 pleurodont +n01326291 microorganism, micro-organism +n01327909 monohybrid +n01329186 arbovirus, arborvirus +n01330126 adenovirus +n01330497 arenavirus +n01332181 Marburg virus +n01333082 Arenaviridae +n01333483 vesiculovirus +n01333610 Reoviridae +n01334217 variola major, variola major virus +n01334690 viroid, virusoid +n01335218 coliphage +n01337191 paramyxovirus +n01337734 poliovirus +n01338685 herpes, herpes virus +n01339083 herpes simplex 1, HS1, HSV-1, HSV-I +n01339336 herpes zoster, herpes zoster virus +n01339471 herpes varicella zoster, herpes varicella zoster virus +n01339801 cytomegalovirus, CMV +n01340014 varicella zoster virus +n01340522 polyoma, polyoma virus +n01340785 lyssavirus +n01340935 reovirus +n01341090 rotavirus +n01342269 moneran, moneron +n01347583 archaebacteria, archaebacterium, archaeobacteria, archeobacteria +n01349735 bacteroid +n01350226 Bacillus anthracis, anthrax bacillus +n01350701 Yersinia pestis +n01351170 Brucella +n01351315 spirillum, spirilla +n01357328 botulinus, botulinum, Clostridium botulinum +n01357507 clostridium perfringens +n01358572 cyanobacteria, blue-green algae +n01359762 trichodesmium +n01362336 nitric bacteria, nitrobacteria +n01363719 spirillum +n01365474 Francisella, genus Francisella +n01365885 gonococcus, Neisseria gonorrhoeae +n01366700 Corynebacterium diphtheriae, C. diphtheriae, Klebs-Loeffler bacillus +n01367772 enteric bacteria, enterobacteria, enterics, entric +n01368672 klebsiella +n01369358 Salmonella typhimurium +n01369484 typhoid bacillus, Salmonella typhosa, Salmonella typhi +n01374703 nitrate bacterium, nitric bacterium +n01374846 nitrite bacterium, nitrous bacterium +n01375204 actinomycete +n01376237 streptomyces +n01376437 Streptomyces erythreus +n01376543 Streptomyces griseus +n01377278 tubercle bacillus, Mycobacterium tuberculosis +n01377510 pus-forming bacteria +n01377694 streptobacillus +n01378545 myxobacteria, myxobacterium, myxobacter, gliding bacteria, slime bacteria +n01379389 staphylococcus, staphylococci, staph +n01380610 diplococcus +n01380754 pneumococcus, Diplococcus pneumoniae +n01381044 streptococcus, streptococci, strep +n01382033 spirochete, spirochaete +n01384084 planktonic algae +n01384164 zooplankton +n01384687 parasite +n01385017 endoparasite, entoparasite, entozoan, entozoon, endozoan +n01385330 ectoparasite, ectozoan, ectozoon, epizoan, epizoon +n01386007 pathogen +n01386182 commensal +n01386354 myrmecophile +n01387065 protoctist +n01389507 protozoan, protozoon +n01390123 sarcodinian, sarcodine +n01390763 heliozoan +n01392275 endameba +n01392380 ameba, amoeba +n01393486 globigerina +n01394040 testacean +n01394492 arcella +n01394771 difflugia +n01395254 ciliate, ciliated protozoan, ciliophoran +n01396048 paramecium, paramecia +n01396617 stentor +n01397114 alga, algae +n01397690 arame +n01397871 seagrass +n01400247 golden algae +n01400391 yellow-green algae +n01402600 brown algae +n01403457 kelp +n01404365 fucoid, fucoid algae +n01404495 fucoid +n01405007 fucus +n01405616 bladderwrack, Ascophyllum nodosum +n01407798 green algae, chlorophyte +n01410457 pond scum +n01411450 chlorella +n01412694 stonewort +n01413457 desmid +n01414216 sea moss +n01415626 eukaryote, eucaryote +n01415920 prokaryote, procaryote +n01416213 zooid +n01418498 Leishmania, genus Leishmania +n01418620 zoomastigote, zooflagellate +n01419332 polymastigote +n01419573 costia, Costia necatrix +n01419888 giardia +n01421333 cryptomonad, cryptophyte +n01421807 sporozoan +n01422185 sporozoite +n01422335 trophozoite +n01422450 merozoite +n01423302 coccidium, eimeria +n01423617 gregarine +n01424420 plasmodium, Plasmodium vivax, malaria parasite +n01425223 leucocytozoan, leucocytozoon +n01427399 microsporidian +n01429172 Ostariophysi, order Ostariophysi +n01438208 cypriniform fish +n01438581 loach +n01439121 cyprinid, cyprinid fish +n01439514 carp +n01439808 domestic carp, Cyprinus carpio +n01440160 leather carp +n01440242 mirror carp +n01440467 European bream, Abramis brama +n01440764 tench, Tinca tinca +n01441117 dace, Leuciscus leuciscus +n01441272 chub, Leuciscus cephalus +n01441425 shiner +n01441910 common shiner, silversides, Notropis cornutus +n01442450 roach, Rutilus rutilus +n01442710 rudd, Scardinius erythrophthalmus +n01442972 minnow, Phoxinus phoxinus +n01443243 gudgeon, Gobio gobio +n01443537 goldfish, Carassius auratus +n01443831 crucian carp, Carassius carassius, Carassius vulgaris +n01444339 electric eel, Electrophorus electric +n01444783 catostomid +n01445429 buffalo fish, buffalofish +n01445593 black buffalo, Ictiobus niger +n01445857 hog sucker, hog molly, Hypentelium nigricans +n01446152 redhorse, redhorse sucker +n01446589 cyprinodont +n01446760 killifish +n01447139 mummichog, Fundulus heteroclitus +n01447331 striped killifish, mayfish, may fish, Fundulus majalis +n01447658 rivulus +n01447946 flagfish, American flagfish, Jordanella floridae +n01448291 swordtail, helleri, topminnow, Xyphophorus helleri +n01448594 guppy, rainbow fish, Lebistes reticulatus +n01448951 topminnow, poeciliid fish, poeciliid, live-bearer +n01449374 mosquitofish, Gambusia affinis +n01449712 platy, Platypoecilus maculatus +n01449980 mollie, molly +n01450661 squirrelfish +n01450950 reef squirrelfish, Holocentrus coruscus +n01451115 deepwater squirrelfish, Holocentrus bullisi +n01451295 Holocentrus ascensionis +n01451426 soldierfish, soldier-fish +n01451863 anomalops, flashlight fish +n01452345 flashlight fish, Photoblepharon palpebratus +n01453087 John Dory, Zeus faber +n01453475 boarfish, Capros aper +n01453742 boarfish +n01454545 cornetfish +n01454856 stickleback, prickleback +n01455317 three-spined stickleback, Gasterosteus aculeatus +n01455461 ten-spined stickleback, Gasterosteus pungitius +n01455778 pipefish, needlefish +n01456137 dwarf pipefish, Syngnathus hildebrandi +n01456454 deepwater pipefish, Cosmocampus profundus +n01456756 seahorse, sea horse +n01457082 snipefish, bellows fish +n01457407 shrimpfish, shrimp-fish +n01457852 trumpetfish, Aulostomus maculatus +n01458746 pellicle +n01458842 embryo, conceptus, fertilized egg +n01459791 fetus, foetus +n01460303 abortus +n01461315 spawn +n01461646 blastula, blastosphere +n01462042 blastocyst, blastodermic vessicle +n01462544 gastrula +n01462803 morula +n01464844 yolk, vitellus +n01466257 chordate +n01467336 cephalochordate +n01467804 lancelet, amphioxus +n01468238 tunicate, urochordate, urochord +n01468712 ascidian +n01469103 sea squirt +n01469723 salp, salpa +n01470145 doliolum +n01470479 larvacean +n01470733 appendicularia +n01470895 ascidian tadpole +n01471682 vertebrate, craniate +n01472303 Amniota +n01472502 amniote +n01473806 aquatic vertebrate +n01474283 jawless vertebrate, jawless fish, agnathan +n01474864 ostracoderm +n01475232 heterostracan +n01475940 anaspid +n01476418 conodont +n01477080 cyclostome +n01477525 lamprey, lamprey eel, lamper eel +n01477875 sea lamprey, Petromyzon marinus +n01478511 hagfish, hag, slime eels +n01478969 Myxine glutinosa +n01479213 eptatretus +n01479820 gnathostome +n01480106 placoderm +n01480516 cartilaginous fish, chondrichthian +n01480880 holocephalan, holocephalian +n01481331 chimaera +n01481498 rabbitfish, Chimaera monstrosa +n01482071 elasmobranch, selachian +n01482330 shark +n01483021 cow shark, six-gilled shark, Hexanchus griseus +n01483522 mackerel shark +n01483830 porbeagle, Lamna nasus +n01484097 mako, mako shark +n01484285 shortfin mako, Isurus oxyrhincus +n01484447 longfin mako, Isurus paucus +n01484562 bonito shark, blue pointed, Isurus glaucus +n01484850 great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias +n01485479 basking shark, Cetorhinus maximus +n01486010 thresher, thrasher, thresher shark, fox shark, Alopius vulpinus +n01486540 carpet shark, Orectolobus barbatus +n01486838 nurse shark, Ginglymostoma cirratum +n01487506 sand tiger, sand shark, Carcharias taurus, Odontaspis taurus +n01488038 whale shark, Rhincodon typus +n01488918 requiem shark +n01489501 bull shark, cub shark, Carcharhinus leucas +n01489709 sandbar shark, Carcharhinus plumbeus +n01489920 blacktip shark, sandbar shark, Carcharhinus limbatus +n01490112 whitetip shark, oceanic whitetip shark, white-tipped shark, Carcharinus longimanus +n01490360 dusky shark, Carcharhinus obscurus +n01490670 lemon shark, Negaprion brevirostris +n01491006 blue shark, great blue shark, Prionace glauca +n01491361 tiger shark, Galeocerdo cuvieri +n01491661 soupfin shark, soupfin, soup-fin, Galeorhinus zyopterus +n01491874 dogfish +n01492357 smooth dogfish +n01492569 smoothhound, smoothhound shark, Mustelus mustelus +n01492708 American smooth dogfish, Mustelus canis +n01492860 Florida smoothhound, Mustelus norrisi +n01493146 whitetip shark, reef whitetip shark, Triaenodon obseus +n01493541 spiny dogfish +n01493829 Atlantic spiny dogfish, Squalus acanthias +n01494041 Pacific spiny dogfish, Squalus suckleyi +n01494475 hammerhead, hammerhead shark +n01494757 smooth hammerhead, Sphyrna zygaena +n01494882 smalleye hammerhead, Sphyrna tudes +n01495006 shovelhead, bonnethead, bonnet shark, Sphyrna tiburo +n01495493 angel shark, angelfish, Squatina squatina, monkfish +n01495701 ray +n01496331 electric ray, crampfish, numbfish, torpedo +n01497118 sawfish +n01497413 smalltooth sawfish, Pristis pectinatus +n01497738 guitarfish +n01498041 stingray +n01498406 roughtail stingray, Dasyatis centroura +n01498699 butterfly ray +n01498989 eagle ray +n01499396 spotted eagle ray, spotted ray, Aetobatus narinari +n01499732 cownose ray, cow-nosed ray, Rhinoptera bonasus +n01500091 manta, manta ray, devilfish +n01500476 Atlantic manta, Manta birostris +n01500854 devil ray, Mobula hypostoma +n01501160 skate +n01501641 grey skate, gray skate, Raja batis +n01501777 little skate, Raja erinacea +n01501948 thorny skate, Raja radiata +n01502101 barndoor skate, Raja laevis +n01503061 bird +n01503976 dickeybird, dickey-bird, dickybird, dicky-bird +n01504179 fledgling, fledgeling +n01504344 nestling, baby bird +n01514668 cock +n01514752 gamecock, fighting cock +n01514859 hen +n01514926 nester +n01515078 night bird +n01515217 night raven +n01515303 bird of passage +n01516212 archaeopteryx, archeopteryx, Archaeopteryx lithographica +n01517389 archaeornis +n01517565 ratite, ratite bird, flightless bird +n01517966 carinate, carinate bird, flying bird +n01518878 ostrich, Struthio camelus +n01519563 cassowary +n01519873 emu, Dromaius novaehollandiae, Emu novaehollandiae +n01520576 kiwi, apteryx +n01521399 rhea, Rhea americana +n01521756 rhea, nandu, Pterocnemia pennata +n01522450 elephant bird, aepyornis +n01523105 moa +n01524359 passerine, passeriform bird +n01524761 nonpasserine bird +n01525720 oscine, oscine bird +n01526521 songbird, songster +n01526766 honey eater, honeysucker +n01527194 accentor +n01527347 hedge sparrow, sparrow, dunnock, Prunella modularis +n01527617 lark +n01527917 skylark, Alauda arvensis +n01528396 wagtail +n01528654 pipit, titlark, lark +n01528845 meadow pipit, Anthus pratensis +n01529672 finch +n01530439 chaffinch, Fringilla coelebs +n01530575 brambling, Fringilla montifringilla +n01531178 goldfinch, Carduelis carduelis +n01531344 linnet, lintwhite, Carduelis cannabina +n01531512 siskin, Carduelis spinus +n01531639 red siskin, Carduelis cucullata +n01531811 redpoll, Carduelis flammea +n01531971 redpoll, Carduelis hornemanni +n01532325 New World goldfinch, goldfinch, yellowbird, Spinus tristis +n01532511 pine siskin, pine finch, Spinus pinus +n01532829 house finch, linnet, Carpodacus mexicanus +n01533000 purple finch, Carpodacus purpureus +n01533339 canary, canary bird +n01533481 common canary, Serinus canaria +n01533651 serin +n01533893 crossbill, Loxia curvirostra +n01534155 bullfinch, Pyrrhula pyrrhula +n01534433 junco, snowbird +n01534582 dark-eyed junco, slate-colored junco, Junco hyemalis +n01534762 New World sparrow +n01535140 vesper sparrow, grass finch, Pooecetes gramineus +n01535469 white-throated sparrow, whitethroat, Zonotrichia albicollis +n01535690 white-crowned sparrow, Zonotrichia leucophrys +n01536035 chipping sparrow, Spizella passerina +n01536186 field sparrow, Spizella pusilla +n01536334 tree sparrow, Spizella arborea +n01536644 song sparrow, Melospiza melodia +n01536780 swamp sparrow, Melospiza georgiana +n01537134 bunting +n01537544 indigo bunting, indigo finch, indigo bird, Passerina cyanea +n01537895 ortolan, ortolan bunting, Emberiza hortulana +n01538059 reed bunting, Emberiza schoeniclus +n01538200 yellowhammer, yellow bunting, Emberiza citrinella +n01538362 yellow-breasted bunting, Emberiza aureola +n01538630 snow bunting, snowbird, snowflake, Plectrophenax nivalis +n01538955 honeycreeper +n01539272 banana quit +n01539573 sparrow, true sparrow +n01539925 English sparrow, house sparrow, Passer domesticus +n01540090 tree sparrow, Passer montanus +n01540233 grosbeak, grossbeak +n01540566 evening grosbeak, Hesperiphona vespertina +n01540832 hawfinch, Coccothraustes coccothraustes +n01541102 pine grosbeak, Pinicola enucleator +n01541386 cardinal, cardinal grosbeak, Richmondena Cardinalis, Cardinalis cardinalis, redbird +n01541760 pyrrhuloxia, Pyrrhuloxia sinuata +n01541922 towhee +n01542168 chewink, cheewink, Pipilo erythrophthalmus +n01542433 green-tailed towhee, Chlorura chlorura +n01542786 weaver, weaverbird, weaver finch +n01543175 baya, Ploceus philippinus +n01543383 whydah, whidah, widow bird +n01543632 Java sparrow, Java finch, ricebird, Padda oryzivora +n01543936 avadavat, amadavat +n01544208 grassfinch, grass finch +n01544389 zebra finch, Poephila castanotis +n01544704 honeycreeper, Hawaiian honeycreeper +n01545574 lyrebird +n01546039 scrubbird, scrub-bird, scrub bird +n01546506 broadbill +n01546921 tyrannid +n01547832 New World flycatcher, flycatcher, tyrant flycatcher, tyrant bird +n01548301 kingbird, Tyrannus tyrannus +n01548492 Arkansas kingbird, western kingbird +n01548694 Cassin's kingbird, Tyrannus vociferans +n01548865 eastern kingbird +n01549053 grey kingbird, gray kingbird, petchary, Tyrannus domenicensis domenicensis +n01549430 pewee, peewee, peewit, pewit, wood pewee, Contopus virens +n01549641 western wood pewee, Contopus sordidulus +n01549886 phoebe, phoebe bird, Sayornis phoebe +n01550172 vermillion flycatcher, firebird, Pyrocephalus rubinus mexicanus +n01550761 cotinga, chatterer +n01551080 cock of the rock, Rupicola rupicola +n01551300 cock of the rock, Rupicola peruviana +n01551711 manakin +n01552034 bellbird +n01552333 umbrella bird, Cephalopterus ornatus +n01552813 ovenbird +n01553142 antbird, ant bird +n01553527 ant thrush +n01553762 ant shrike +n01554017 spotted antbird, Hylophylax naevioides +n01554448 woodhewer, woodcreeper, wood-creeper, tree creeper +n01555004 pitta +n01555305 scissortail, scissortailed flycatcher, Muscivora-forficata +n01555809 Old World flycatcher, true flycatcher, flycatcher +n01556182 spotted flycatcher, Muscicapa striata, Muscicapa grisola +n01556514 thickhead, whistler +n01557185 thrush +n01557962 missel thrush, mistle thrush, mistletoe thrush, Turdus viscivorus +n01558149 song thrush, mavis, throstle, Turdus philomelos +n01558307 fieldfare, snowbird, Turdus pilaris +n01558461 redwing, Turdus iliacus +n01558594 blackbird, merl, merle, ouzel, ousel, European blackbird, Turdus merula +n01558765 ring ouzel, ring blackbird, ring thrush, Turdus torquatus +n01558993 robin, American robin, Turdus migratorius +n01559160 clay-colored robin, Turdus greyi +n01559477 hermit thrush, Hylocichla guttata +n01559639 veery, Wilson's thrush, Hylocichla fuscescens +n01559804 wood thrush, Hylocichla mustelina +n01560105 nightingale, Luscinia megarhynchos +n01560280 thrush nightingale, Luscinia luscinia +n01560419 bulbul +n01560636 Old World chat, chat +n01560793 stonechat, Saxicola torquata +n01560935 whinchat, Saxicola rubetra +n01561181 solitaire +n01561452 redstart, redtail +n01561732 wheatear +n01562014 bluebird +n01562265 robin, redbreast, robin redbreast, Old World robin, Erithacus rubecola +n01562451 bluethroat, Erithacus svecicus +n01563128 warbler +n01563449 gnatcatcher +n01563746 kinglet +n01563945 goldcrest, golden-crested kinglet, Regulus regulus +n01564101 gold-crowned kinglet, Regulus satrata +n01564217 ruby-crowned kinglet, ruby-crowned wren, Regulus calendula +n01564394 Old World warbler, true warbler +n01564773 blackcap, Silvia atricapilla +n01564914 greater whitethroat, whitethroat, Sylvia communis +n01565078 lesser whitethroat, whitethroat, Sylvia curruca +n01565345 wood warbler, Phylloscopus sibilatrix +n01565599 sedge warbler, sedge bird, sedge wren, reedbird, Acrocephalus schoenobaenus +n01565930 wren warbler +n01566207 tailorbird, Orthotomus sutorius +n01566645 babbler, cackler +n01567133 New World warbler, wood warbler +n01567678 parula warbler, northern parula, Parula americana +n01567879 Wilson's warbler, Wilson's blackcap, Wilsonia pusilla +n01568132 flycatching warbler +n01568294 American redstart, redstart, Setophaga ruticilla +n01568720 Cape May warbler, Dendroica tigrina +n01568892 yellow warbler, golden warbler, yellowbird, Dendroica petechia +n01569060 Blackburn, Blackburnian warbler, Dendroica fusca +n01569262 Audubon's warbler, Audubon warbler, Dendroica auduboni +n01569423 myrtle warbler, myrtle bird, Dendroica coronata +n01569566 blackpoll, Dendroica striate +n01569836 New World chat, chat +n01569971 yellow-breasted chat, Icteria virens +n01570267 ovenbird, Seiurus aurocapillus +n01570421 water thrush +n01570676 yellowthroat +n01570839 common yellowthroat, Maryland yellowthroat, Geothlypis trichas +n01571410 riflebird, Ptloris paradisea +n01571904 New World oriole, American oriole, oriole +n01572328 northern oriole, Icterus galbula +n01572489 Baltimore oriole, Baltimore bird, hangbird, firebird, Icterus galbula galbula +n01572654 Bullock's oriole, Icterus galbula bullockii +n01572782 orchard oriole, Icterus spurius +n01573074 meadowlark, lark +n01573240 eastern meadowlark, Sturnella magna +n01573360 western meadowlark, Sturnella neglecta +n01573627 cacique, cazique +n01573898 bobolink, ricebird, reedbird, Dolichonyx oryzivorus +n01574045 New World blackbird, blackbird +n01574390 grackle, crow blackbird +n01574560 purple grackle, Quiscalus quiscula +n01574801 rusty blackbird, rusty grackle, Euphagus carilonus +n01575117 cowbird +n01575401 red-winged blackbird, redwing, Agelaius phoeniceus +n01575745 Old World oriole, oriole +n01576076 golden oriole, Oriolus oriolus +n01576358 fig-bird +n01576695 starling +n01577035 common starling, Sturnus vulgaris +n01577458 rose-colored starling, rose-colored pastor, Pastor sturnus, Pastor roseus +n01577659 myna, mynah, mina, minah, myna bird, mynah bird +n01577941 crested myna, Acridotheres tristis +n01578180 hill myna, Indian grackle, grackle, Gracula religiosa +n01578575 corvine bird +n01579028 crow +n01579149 American crow, Corvus brachyrhyncos +n01579260 raven, Corvus corax +n01579410 rook, Corvus frugilegus +n01579578 jackdaw, daw, Corvus monedula +n01579729 chough +n01580077 jay +n01580379 Old World jay +n01580490 common European jay, Garullus garullus +n01580772 New World jay +n01580870 blue jay, jaybird, Cyanocitta cristata +n01581166 Canada jay, grey jay, gray jay, camp robber, whisker jack, Perisoreus canadensis +n01581434 Rocky Mountain jay, Perisoreus canadensis capitalis +n01581730 nutcracker +n01581874 common nutcracker, Nucifraga caryocatactes +n01581984 Clark's nutcracker, Nucifraga columbiana +n01582220 magpie +n01582398 European magpie, Pica pica +n01582498 American magpie, Pica pica hudsonia +n01582856 Australian magpie +n01583209 butcherbird +n01583495 currawong, bell magpie +n01583828 piping crow, piping crow-shrike, Gymnorhina tibicen +n01584225 wren, jenny wren +n01584695 winter wren, Troglodytes troglodytes +n01584853 house wren, Troglodytes aedon +n01585121 marsh wren +n01585287 long-billed marsh wren, Cistothorus palustris +n01585422 sedge wren, short-billed marsh wren, Cistothorus platensis +n01585715 rock wren, Salpinctes obsoletus +n01586020 Carolina wren, Thryothorus ludovicianus +n01586374 cactus wren +n01586941 mockingbird, mocker, Mimus polyglotktos +n01587278 blue mockingbird, Melanotis caerulescens +n01587526 catbird, grey catbird, gray catbird, Dumetella carolinensis +n01587834 thrasher, mocking thrush +n01588002 brown thrasher, brown thrush, Toxostoma rufums +n01588431 New Zealand wren +n01588725 rock wren, Xenicus gilviventris +n01588996 rifleman bird, Acanthisitta chloris +n01589286 creeper, tree creeper +n01589718 brown creeper, American creeper, Certhia americana +n01589893 European creeper, Certhia familiaris +n01590220 wall creeper, tichodrome, Tichodroma muriaria +n01591005 European nuthatch, Sitta europaea +n01591123 red-breasted nuthatch, Sitta canadensis +n01591301 white-breasted nuthatch, Sitta carolinensis +n01591697 titmouse, tit +n01592084 chickadee +n01592257 black-capped chickadee, blackcap, Parus atricapillus +n01592387 tufted titmouse, Parus bicolor +n01592540 Carolina chickadee, Parus carolinensis +n01592694 blue tit, tomtit, Parus caeruleus +n01593028 bushtit, bush tit +n01593282 wren-tit, Chamaea fasciata +n01593553 verdin, Auriparus flaviceps +n01594004 fairy bluebird, bluebird +n01594372 swallow +n01594787 barn swallow, chimney swallow, Hirundo rustica +n01594968 cliff swallow, Hirundo pyrrhonota +n01595168 tree swallow, tree martin, Hirundo nigricans +n01595450 white-bellied swallow, tree swallow, Iridoprocne bicolor +n01595624 martin +n01595974 house martin, Delichon urbica +n01596273 bank martin, bank swallow, sand martin, Riparia riparia +n01596608 purple martin, Progne subis +n01597022 wood swallow, swallow shrike +n01597336 tanager +n01597737 scarlet tanager, Piranga olivacea, redbird, firebird +n01597906 western tanager, Piranga ludoviciana +n01598074 summer tanager, summer redbird, Piranga rubra +n01598271 hepatic tanager, Piranga flava hepatica +n01598588 shrike +n01598988 butcherbird +n01599159 European shrike, Lanius excubitor +n01599269 northern shrike, Lanius borealis +n01599388 white-rumped shrike, Lanius ludovicianus excubitorides +n01599556 loggerhead shrike, Lanius lucovicianus +n01599741 migrant shrike, Lanius ludovicianus migrans +n01600085 bush shrike +n01600341 black-fronted bush shrike, Chlorophoneus nigrifrons +n01600657 bowerbird, catbird +n01601068 satin bowerbird, satin bird, Ptilonorhynchus violaceus +n01601410 great bowerbird, Chlamydera nuchalis +n01601694 water ouzel, dipper +n01602080 European water ouzel, Cinclus aquaticus +n01602209 American water ouzel, Cinclus mexicanus +n01602630 vireo +n01602832 red-eyed vireo, Vireo olivaceous +n01603000 solitary vireo, Vireo solitarius +n01603152 blue-headed vireo, Vireo solitarius solitarius +n01603600 waxwing +n01603812 cedar waxwing, cedarbird, Bombycilla cedrorun +n01603953 Bohemian waxwing, Bombycilla garrulus +n01604330 bird of prey, raptor, raptorial bird +n01604968 Accipitriformes, order Accipitriformes +n01605630 hawk +n01606097 eyas +n01606177 tiercel, tercel, tercelet +n01606522 goshawk, Accipiter gentilis +n01606672 sparrow hawk, Accipiter nisus +n01606809 Cooper's hawk, blue darter, Accipiter cooperii +n01606978 chicken hawk, hen hawk +n01607309 buteonine +n01607429 redtail, red-tailed hawk, Buteo jamaicensis +n01607600 rough-legged hawk, roughleg, Buteo lagopus +n01607812 red-shouldered hawk, Buteo lineatus +n01607962 buzzard, Buteo buteo +n01608265 honey buzzard, Pernis apivorus +n01608432 kite +n01608814 black kite, Milvus migrans +n01609062 swallow-tailed kite, swallow-tailed hawk, Elanoides forficatus +n01609391 white-tailed kite, Elanus leucurus +n01609751 harrier +n01609956 marsh harrier, Circus Aeruginosus +n01610100 Montagu's harrier, Circus pygargus +n01610226 marsh hawk, northern harrier, hen harrier, Circus cyaneus +n01610552 harrier eagle, short-toed eagle +n01610955 falcon +n01611472 peregrine, peregrine falcon, Falco peregrinus +n01611674 falcon-gentle, falcon-gentil +n01611800 gyrfalcon, gerfalcon, Falco rusticolus +n01611969 kestrel, Falco tinnunculus +n01612122 sparrow hawk, American kestrel, kestrel, Falco sparverius +n01612275 pigeon hawk, merlin, Falco columbarius +n01612476 hobby, Falco subbuteo +n01612628 caracara +n01612955 Audubon's caracara, Polyborus cheriway audubonii +n01613177 carancha, Polyborus plancus +n01613294 eagle, bird of Jove +n01613615 young bird +n01613807 eaglet +n01614038 harpy, harpy eagle, Harpia harpyja +n01614343 golden eagle, Aquila chrysaetos +n01614556 tawny eagle, Aquila rapax +n01614925 bald eagle, American eagle, Haliaeetus leucocephalus +n01615121 sea eagle +n01615303 Kamchatkan sea eagle, Stellar's sea eagle, Haliaeetus pelagicus +n01615458 ern, erne, grey sea eagle, gray sea eagle, European sea eagle, white-tailed sea eagle, Haliatus albicilla +n01615703 fishing eagle, Haliaeetus leucorhyphus +n01616086 osprey, fish hawk, fish eagle, sea eagle, Pandion haliaetus +n01616318 vulture +n01616551 Aegypiidae, family Aegypiidae +n01616764 Old World vulture +n01617095 griffon vulture, griffon, Gyps fulvus +n01617443 bearded vulture, lammergeier, lammergeyer, Gypaetus barbatus +n01617766 Egyptian vulture, Pharaoh's chicken, Neophron percnopterus +n01618082 black vulture, Aegypius monachus +n01618503 secretary bird, Sagittarius serpentarius +n01618922 New World vulture, cathartid +n01619310 buzzard, turkey buzzard, turkey vulture, Cathartes aura +n01619536 condor +n01619835 Andean condor, Vultur gryphus +n01620135 California condor, Gymnogyps californianus +n01620414 black vulture, carrion crow, Coragyps atratus +n01620735 king vulture, Sarcorhamphus papa +n01621127 owl, bird of Minerva, bird of night, hooter +n01621635 owlet +n01622120 little owl, Athene noctua +n01622352 horned owl +n01622483 great horned owl, Bubo virginianus +n01622779 great grey owl, great gray owl, Strix nebulosa +n01622959 tawny owl, Strix aluco +n01623110 barred owl, Strix varia +n01623425 screech owl, Otus asio +n01623615 screech owl +n01623706 scops owl +n01623880 spotted owl, Strix occidentalis +n01624115 Old World scops owl, Otus scops +n01624212 Oriental scops owl, Otus sunia +n01624305 hoot owl +n01624537 hawk owl, Surnia ulula +n01624833 long-eared owl, Asio otus +n01625121 laughing owl, laughing jackass, Sceloglaux albifacies +n01625562 barn owl, Tyto alba +n01627424 amphibian +n01628331 Ichyostega +n01628770 urodele, caudate +n01629276 salamander +n01629819 European fire salamander, Salamandra salamandra +n01629962 spotted salamander, fire salamander, Salamandra maculosa +n01630148 alpine salamander, Salamandra atra +n01630284 newt, triton +n01630670 common newt, Triturus vulgaris +n01630901 red eft, Notophthalmus viridescens +n01631175 Pacific newt +n01631354 rough-skinned newt, Taricha granulosa +n01631512 California newt, Taricha torosa +n01631663 eft +n01632047 ambystomid, ambystomid salamander +n01632308 mole salamander, Ambystoma talpoideum +n01632458 spotted salamander, Ambystoma maculatum +n01632601 tiger salamander, Ambystoma tigrinum +n01632777 axolotl, mud puppy, Ambystoma mexicanum +n01632952 waterdog +n01633406 hellbender, mud puppy, Cryptobranchus alleganiensis +n01633781 giant salamander, Megalobatrachus maximus +n01634227 olm, Proteus anguinus +n01634522 mud puppy, Necturus maculosus +n01635027 dicamptodon, dicamptodontid +n01635176 Pacific giant salamander, Dicamptodon ensatus +n01635480 olympic salamander, Rhyacotriton olympicus +n01636127 lungless salamander, plethodont +n01636352 eastern red-backed salamander, Plethodon cinereus +n01636510 western red-backed salamander, Plethodon vehiculum +n01636829 dusky salamander +n01637112 climbing salamander +n01637338 arboreal salamander, Aneides lugubris +n01637615 slender salamander, worm salamander +n01637932 web-toed salamander +n01638194 Shasta salamander, Hydromantes shastae +n01638329 limestone salamander, Hydromantes brunus +n01638722 amphiuma, congo snake, congo eel, blind eel +n01639187 siren +n01639765 frog, toad, toad frog, anuran, batrachian, salientian +n01640846 true frog, ranid +n01641206 wood-frog, wood frog, Rana sylvatica +n01641391 leopard frog, spring frog, Rana pipiens +n01641577 bullfrog, Rana catesbeiana +n01641739 green frog, spring frog, Rana clamitans +n01641930 cascades frog, Rana cascadae +n01642097 goliath frog, Rana goliath +n01642257 pickerel frog, Rana palustris +n01642391 tarahumara frog, Rana tarahumarae +n01642539 grass frog, Rana temporaria +n01642943 leptodactylid frog, leptodactylid +n01643255 robber frog +n01643507 barking frog, robber frog, Hylactophryne augusti +n01643896 crapaud, South American bullfrog, Leptodactylus pentadactylus +n01644373 tree frog, tree-frog +n01644900 tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui +n01645466 Liopelma hamiltoni +n01645776 true toad +n01646292 bufo +n01646388 agua, agua toad, Bufo marinus +n01646555 European toad, Bufo bufo +n01646648 natterjack, Bufo calamita +n01646802 American toad, Bufo americanus +n01646902 Eurasian green toad, Bufo viridis +n01647033 American green toad, Bufo debilis +n01647180 Yosemite toad, Bufo canorus +n01647303 Texas toad, Bufo speciosus +n01647466 southwestern toad, Bufo microscaphus +n01647640 western toad, Bufo boreas +n01648139 obstetrical toad, midwife toad, Alytes obstetricans +n01648356 midwife toad, Alytes cisternasi +n01648620 fire-bellied toad, Bombina bombina +n01649170 spadefoot, spadefoot toad +n01649412 western spadefoot, Scaphiopus hammondii +n01649556 southern spadefoot, Scaphiopus multiplicatus +n01649726 plains spadefoot, Scaphiopus bombifrons +n01650167 tree toad, tree frog, tree-frog +n01650690 spring peeper, Hyla crucifer +n01650901 Pacific tree toad, Hyla regilla +n01651059 canyon treefrog, Hyla arenicolor +n01651285 chameleon tree frog +n01651487 cricket frog +n01651641 northern cricket frog, Acris crepitans +n01651778 eastern cricket frog, Acris gryllus +n01652026 chorus frog +n01652297 lowland burrowing treefrog, northern casque-headed frog, Pternohyla fodiens +n01653026 western narrow-mouthed toad, Gastrophryne olivacea +n01653223 eastern narrow-mouthed toad, Gastrophryne carolinensis +n01653509 sheep frog +n01653773 tongueless frog +n01654083 Surinam toad, Pipa pipa, Pipa americana +n01654637 African clawed frog, Xenopus laevis +n01654863 South American poison toad +n01655344 caecilian, blindworm +n01661091 reptile, reptilian +n01661592 anapsid, anapsid reptile +n01661818 diapsid, diapsid reptile +n01662060 Diapsida, subclass Diapsida +n01662622 chelonian, chelonian reptile +n01662784 turtle +n01663401 sea turtle, marine turtle +n01663782 green turtle, Chelonia mydas +n01664065 loggerhead, loggerhead turtle, Caretta caretta +n01664369 ridley +n01664492 Atlantic ridley, bastard ridley, bastard turtle, Lepidochelys kempii +n01664674 Pacific ridley, olive ridley, Lepidochelys olivacea +n01664990 hawksbill turtle, hawksbill, hawkbill, tortoiseshell turtle, Eretmochelys imbricata +n01665541 leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea +n01665932 snapping turtle +n01666228 common snapping turtle, snapper, Chelydra serpentina +n01666585 alligator snapping turtle, alligator snapper, Macroclemys temmincki +n01667114 mud turtle +n01667432 musk turtle, stinkpot +n01667778 terrapin +n01668091 diamondback terrapin, Malaclemys centrata +n01668436 red-bellied terrapin, red-bellied turtle, redbelly, Pseudemys rubriventris +n01668665 slider, yellow-bellied terrapin, Pseudemys scripta +n01668892 cooter, river cooter, Pseudemys concinna +n01669191 box turtle, box tortoise +n01669372 Western box turtle, Terrapene ornata +n01669654 painted turtle, painted terrapin, painted tortoise, Chrysemys picta +n01670092 tortoise +n01670535 European tortoise, Testudo graeca +n01670802 giant tortoise +n01671125 gopher tortoise, gopher turtle, gopher, Gopherus polypemus +n01671479 desert tortoise, Gopherus agassizii +n01671705 Texas tortoise +n01672032 soft-shelled turtle, pancake turtle +n01672432 spiny softshell, Trionyx spiniferus +n01672611 smooth softshell, Trionyx muticus +n01673282 tuatara, Sphenodon punctatum +n01674216 saurian +n01674464 lizard +n01674990 gecko +n01675352 flying gecko, fringed gecko, Ptychozoon homalocephalum +n01675722 banded gecko +n01676755 iguanid, iguanid lizard +n01677366 common iguana, iguana, Iguana iguana +n01677747 marine iguana, Amblyrhynchus cristatus +n01678043 desert iguana, Dipsosaurus dorsalis +n01678343 chuckwalla, Sauromalus obesus +n01678657 zebra-tailed lizard, gridiron-tailed lizard, Callisaurus draconoides +n01679005 fringe-toed lizard, Uma notata +n01679307 earless lizard +n01679626 collared lizard +n01679962 leopard lizard +n01680264 spiny lizard +n01680478 fence lizard +n01680655 western fence lizard, swift, blue-belly, Sceloporus occidentalis +n01680813 eastern fence lizard, pine lizard, Sceloporus undulatus +n01680983 sagebrush lizard, Sceloporus graciosus +n01681328 side-blotched lizard, sand lizard, Uta stansburiana +n01681653 tree lizard, Urosaurus ornatus +n01681940 horned lizard, horned toad, horny frog +n01682172 Texas horned lizard, Phrynosoma cornutum +n01682435 basilisk +n01682714 American chameleon, anole, Anolis carolinensis +n01683201 worm lizard +n01683558 night lizard +n01684133 skink, scincid, scincid lizard +n01684578 western skink, Eumeces skiltonianus +n01684741 mountain skink, Eumeces callicephalus +n01685439 teiid lizard, teiid +n01685808 whiptail, whiptail lizard +n01686044 racerunner, race runner, six-lined racerunner, Cnemidophorus sexlineatus +n01686220 plateau striped whiptail, Cnemidophorus velox +n01686403 Chihuahuan spotted whiptail, Cnemidophorus exsanguis +n01686609 western whiptail, Cnemidophorus tigris +n01686808 checkered whiptail, Cnemidophorus tesselatus +n01687128 teju +n01687290 caiman lizard +n01687665 agamid, agamid lizard +n01687978 agama +n01688243 frilled lizard, Chlamydosaurus kingi +n01688961 moloch +n01689081 mountain devil, spiny lizard, Moloch horridus +n01689411 anguid lizard +n01689811 alligator lizard +n01690149 blindworm, slowworm, Anguis fragilis +n01690466 glass lizard, glass snake, joint snake +n01691217 legless lizard +n01691652 Lanthanotus borneensis +n01691951 venomous lizard +n01692333 Gila monster, Heloderma suspectum +n01692523 beaded lizard, Mexican beaded lizard, Heloderma horridum +n01692864 lacertid lizard, lacertid +n01693175 sand lizard, Lacerta agilis +n01693334 green lizard, Lacerta viridis +n01693783 chameleon, chamaeleon +n01694178 African chameleon, Chamaeleo chamaeleon +n01694311 horned chameleon, Chamaeleo oweni +n01694709 monitor, monitor lizard, varan +n01694955 African monitor, Varanus niloticus +n01695060 Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis +n01696633 crocodilian reptile, crocodilian +n01697178 crocodile +n01697457 African crocodile, Nile crocodile, Crocodylus niloticus +n01697611 Asian crocodile, Crocodylus porosus +n01697749 Morlett's crocodile +n01697978 false gavial, Tomistoma schlegeli +n01698434 alligator, gator +n01698640 American alligator, Alligator mississipiensis +n01698782 Chinese alligator, Alligator sinensis +n01699040 caiman, cayman +n01699254 spectacled caiman, Caiman sclerops +n01699675 gavial, Gavialis gangeticus +n01701551 armored dinosaur +n01701859 stegosaur, stegosaurus, Stegosaur stenops +n01702256 ankylosaur, ankylosaurus +n01702479 Edmontonia +n01703011 bone-headed dinosaur +n01703161 pachycephalosaur, pachycephalosaurus +n01703569 ceratopsian, horned dinosaur +n01704103 protoceratops +n01704323 triceratops +n01704626 styracosaur, styracosaurus +n01705010 psittacosaur, psittacosaurus +n01705591 ornithopod, ornithopod dinosaur +n01705934 hadrosaur, hadrosaurus, duck-billed dinosaur +n01707294 trachodon, trachodont +n01708106 saurischian, saurischian dinosaur +n01708998 sauropod, sauropod dinosaur +n01709484 apatosaur, apatosaurus, brontosaur, brontosaurus, thunder lizard, Apatosaurus excelsus +n01709876 barosaur, barosaurus +n01710177 diplodocus +n01711160 argentinosaur +n01712008 theropod, theropod dinosaur, bird-footed dinosaur +n01712752 ceratosaur, ceratosaurus +n01713170 coelophysis +n01713764 tyrannosaur, tyrannosaurus, Tyrannosaurus rex +n01714231 allosaur, allosaurus +n01715888 ornithomimid +n01717016 maniraptor +n01717229 oviraptorid +n01717467 velociraptor +n01718096 deinonychus +n01718414 utahraptor, superslasher +n01719403 synapsid, synapsid reptile +n01721174 dicynodont +n01721898 pelycosaur +n01722670 dimetrodon +n01722998 pterosaur, flying reptile +n01723579 pterodactyl +n01724231 ichthyosaur +n01724840 ichthyosaurus +n01725086 stenopterygius, Stenopterygius quadrisicissus +n01725713 plesiosaur, plesiosaurus +n01726203 nothosaur +n01726692 snake, serpent, ophidian +n01727646 colubrid snake, colubrid +n01728266 hoop snake +n01728572 thunder snake, worm snake, Carphophis amoenus +n01728920 ringneck snake, ring-necked snake, ring snake +n01729322 hognose snake, puff adder, sand viper +n01729672 leaf-nosed snake +n01729977 green snake, grass snake +n01730185 smooth green snake, Opheodrys vernalis +n01730307 rough green snake, Opheodrys aestivus +n01730563 green snake +n01730812 racer +n01730960 blacksnake, black racer, Coluber constrictor +n01731137 blue racer, Coluber constrictor flaviventris +n01731277 horseshoe whipsnake, Coluber hippocrepis +n01731545 whip-snake, whip snake, whipsnake +n01731764 coachwhip, coachwhip snake, Masticophis flagellum +n01731941 California whipsnake, striped racer, Masticophis lateralis +n01732093 Sonoran whipsnake, Masticophis bilineatus +n01732244 rat snake +n01732614 corn snake, red rat snake, Elaphe guttata +n01732789 black rat snake, blacksnake, pilot blacksnake, mountain blacksnake, Elaphe obsoleta +n01732989 chicken snake +n01733214 Indian rat snake, Ptyas mucosus +n01733466 glossy snake, Arizona elegans +n01733757 bull snake, bull-snake +n01733957 gopher snake, Pituophis melanoleucus +n01734104 pine snake +n01734418 king snake, kingsnake +n01734637 common kingsnake, Lampropeltis getulus +n01734808 milk snake, house snake, milk adder, checkered adder, Lampropeltis triangulum +n01735189 garter snake, grass snake +n01735439 common garter snake, Thamnophis sirtalis +n01735577 ribbon snake, Thamnophis sauritus +n01735728 Western ribbon snake, Thamnophis proximus +n01736032 lined snake, Tropidoclonion lineatum +n01736375 ground snake, Sonora semiannulata +n01736796 eastern ground snake, Potamophis striatula, Haldea striatula +n01737021 water snake +n01737472 common water snake, banded water snake, Natrix sipedon, Nerodia sipedon +n01737728 water moccasin +n01737875 grass snake, ring snake, ringed snake, Natrix natrix +n01738065 viperine grass snake, Natrix maura +n01738306 red-bellied snake, Storeria occipitamaculata +n01738601 sand snake +n01738731 banded sand snake, Chilomeniscus cinctus +n01739094 black-headed snake +n01739381 vine snake +n01739647 lyre snake +n01739871 Sonoran lyre snake, Trimorphodon lambda +n01740131 night snake, Hypsiglena torquata +n01740551 blind snake, worm snake +n01740885 western blind snake, Leptotyphlops humilis +n01741232 indigo snake, gopher snake, Drymarchon corais +n01741442 eastern indigo snake, Drymarchon corais couperi +n01741562 constrictor +n01741943 boa +n01742172 boa constrictor, Constrictor constrictor +n01742447 rubber boa, tow-headed snake, Charina bottae +n01742821 rosy boa, Lichanura trivirgata +n01743086 anaconda, Eunectes murinus +n01743605 python +n01743936 carpet snake, Python variegatus, Morelia spilotes variegatus +n01744100 reticulated python, Python reticulatus +n01744270 Indian python, Python molurus +n01744401 rock python, rock snake, Python sebae +n01744555 amethystine python +n01745125 elapid, elapid snake +n01745484 coral snake, harlequin-snake, New World coral snake +n01745902 eastern coral snake, Micrurus fulvius +n01746191 western coral snake, Micruroides euryxanthus +n01746359 coral snake, Old World coral snake +n01746952 African coral snake, Aspidelaps lubricus +n01747285 Australian coral snake, Rhynchoelaps australis +n01747589 copperhead, Denisonia superba +n01747885 cobra +n01748264 Indian cobra, Naja naja +n01748389 asp, Egyptian cobra, Naja haje +n01748686 black-necked cobra, spitting cobra, Naja nigricollis +n01748906 hamadryad, king cobra, Ophiophagus hannah, Naja hannah +n01749244 ringhals, rinkhals, spitting snake, Hemachatus haemachatus +n01749582 mamba +n01749742 black mamba, Dendroaspis augusticeps +n01749939 green mamba +n01750167 death adder, Acanthophis antarcticus +n01750437 tiger snake, Notechis scutatus +n01750743 Australian blacksnake, Pseudechis porphyriacus +n01751036 krait +n01751215 banded krait, banded adder, Bungarus fasciatus +n01751472 taipan, Oxyuranus scutellatus +n01751748 sea snake +n01752165 viper +n01752585 adder, common viper, Vipera berus +n01752736 asp, asp viper, Vipera aspis +n01753032 puff adder, Bitis arietans +n01753180 gaboon viper, Bitis gabonica +n01753488 horned viper, cerastes, sand viper, horned asp, Cerastes cornutus +n01753959 pit viper +n01754370 copperhead, Agkistrodon contortrix +n01754533 water moccasin, cottonmouth, cottonmouth moccasin, Agkistrodon piscivorus +n01754876 rattlesnake, rattler +n01755581 diamondback, diamondback rattlesnake, Crotalus adamanteus +n01755740 timber rattlesnake, banded rattlesnake, Crotalus horridus horridus +n01755952 canebrake rattlesnake, canebrake rattler, Crotalus horridus atricaudatus +n01756089 prairie rattlesnake, prairie rattler, Western rattlesnake, Crotalus viridis +n01756291 sidewinder, horned rattlesnake, Crotalus cerastes +n01756508 Western diamondback, Western diamondback rattlesnake, Crotalus atrox +n01756733 rock rattlesnake, Crotalus lepidus +n01756916 tiger rattlesnake, Crotalus tigris +n01757115 Mojave rattlesnake, Crotalus scutulatus +n01757343 speckled rattlesnake, Crotalus mitchellii +n01757677 massasauga, massasauga rattler, Sistrurus catenatus +n01757901 ground rattler, massasauga, Sistrurus miliaris +n01758141 fer-de-lance, Bothrops atrops +n01758757 carcase, carcass +n01758895 carrion +n01767661 arthropod +n01768244 trilobite +n01769347 arachnid, arachnoid +n01770081 harvestman, daddy longlegs, Phalangium opilio +n01770393 scorpion +n01770795 false scorpion, pseudoscorpion +n01771100 book scorpion, Chelifer cancroides +n01771417 whip-scorpion, whip scorpion +n01771766 vinegarroon, Mastigoproctus giganteus +n01772222 spider +n01772664 orb-weaving spider +n01773157 black and gold garden spider, Argiope aurantia +n01773549 barn spider, Araneus cavaticus +n01773797 garden spider, Aranea diademata +n01774097 comb-footed spider, theridiid +n01774384 black widow, Latrodectus mactans +n01774750 tarantula +n01775062 wolf spider, hunting spider +n01775370 European wolf spider, tarantula, Lycosa tarentula +n01775730 trap-door spider +n01776192 acarine +n01776313 tick +n01776705 hard tick, ixodid +n01777304 Ixodes dammini, deer tick +n01777467 Ixodes neotomae +n01777649 Ixodes pacificus, western black-legged tick +n01777909 Ixodes scapularis, black-legged tick +n01778217 sheep-tick, sheep tick, Ixodes ricinus +n01778487 Ixodes persulcatus +n01778621 Ixodes dentatus +n01778801 Ixodes spinipalpis +n01779148 wood tick, American dog tick, Dermacentor variabilis +n01779463 soft tick, argasid +n01779629 mite +n01779939 web-spinning mite +n01780142 acarid +n01780426 trombidiid +n01780696 trombiculid +n01781071 harvest mite, chigger, jigger, redbug +n01781570 acarus, genus Acarus +n01781698 itch mite, sarcoptid +n01781875 rust mite +n01782209 spider mite, tetranychid +n01782516 red spider, red spider mite, Panonychus ulmi +n01783017 myriapod +n01783706 garden centipede, garden symphilid, symphilid, Scutigerella immaculata +n01784293 tardigrade +n01784675 centipede +n01785667 house centipede, Scutigera coleoptrata +n01786646 millipede, millepede, milliped +n01787006 sea spider, pycnogonid +n01787191 Merostomata, class Merostomata +n01787835 horseshoe crab, king crab, Limulus polyphemus, Xiphosurus polyphemus +n01788291 Asian horseshoe crab +n01788579 eurypterid +n01788864 tongue worm, pentastomid +n01789386 gallinaceous bird, gallinacean +n01789740 domestic fowl, fowl, poultry +n01790171 Dorking +n01790304 Plymouth Rock +n01790398 Cornish, Cornish fowl +n01790557 Rock Cornish +n01790711 game fowl +n01790812 cochin, cochin china +n01791107 jungle fowl, gallina +n01791314 jungle cock +n01791388 jungle hen +n01791463 red jungle fowl, Gallus gallus +n01791625 chicken, Gallus gallus +n01791954 bantam +n01792042 chick, biddy +n01792158 cock, rooster +n01792429 cockerel +n01792530 capon +n01792640 hen, biddy +n01792808 cackler +n01792955 brood hen, broody, broody hen, setting hen, sitter +n01793085 mother hen +n01793159 layer +n01793249 pullet +n01793340 spring chicken +n01793435 Rhode Island red +n01793565 Dominique, Dominick +n01793715 Orpington +n01794158 turkey, Meleagris gallopavo +n01794344 turkey cock, gobbler, tom, tom turkey +n01794651 ocellated turkey, Agriocharis ocellata +n01795088 grouse +n01795545 black grouse +n01795735 European black grouse, heathfowl, Lyrurus tetrix +n01795900 Asian black grouse, Lyrurus mlokosiewiczi +n01796019 blackcock, black cock +n01796105 greyhen, grayhen, grey hen, gray hen, heath hen +n01796340 ptarmigan +n01796519 red grouse, moorfowl, moorbird, moor-bird, moorgame, Lagopus scoticus +n01796729 moorhen +n01797020 capercaillie, capercailzie, horse of the wood, Tetrao urogallus +n01797307 spruce grouse, Canachites canadensis +n01797601 sage grouse, sage hen, Centrocercus urophasianus +n01797886 ruffed grouse, partridge, Bonasa umbellus +n01798168 sharp-tailed grouse, sprigtail, sprig tail, Pedioecetes phasianellus +n01798484 prairie chicken, prairie grouse, prairie fowl +n01798706 greater prairie chicken, Tympanuchus cupido +n01798839 lesser prairie chicken, Tympanuchus pallidicinctus +n01798979 heath hen, Tympanuchus cupido cupido +n01799302 guan +n01799679 curassow +n01800195 piping guan +n01800424 chachalaca +n01800633 Texas chachalaca, Ortilis vetula macalli +n01801088 megapode, mound bird, mound-bird, mound builder, scrub fowl +n01801479 mallee fowl, leipoa, lowan, Leipoa ocellata +n01801672 mallee hen +n01801876 brush turkey, Alectura lathami +n01802159 maleo, Macrocephalon maleo +n01802721 phasianid +n01803078 pheasant +n01803362 ring-necked pheasant, Phasianus colchicus +n01803641 afropavo, Congo peafowl, Afropavo congensis +n01803893 argus, argus pheasant +n01804163 golden pheasant, Chrysolophus pictus +n01804478 bobwhite, bobwhite quail, partridge +n01804653 northern bobwhite, Colinus virginianus +n01804921 Old World quail +n01805070 migratory quail, Coturnix coturnix, Coturnix communis +n01805321 monal, monaul +n01805801 peafowl, bird of Juno +n01806061 peachick, pea-chick +n01806143 peacock +n01806297 peahen +n01806364 blue peafowl, Pavo cristatus +n01806467 green peafowl, Pavo muticus +n01806567 quail +n01806847 California quail, Lofortyx californicus +n01807105 tragopan +n01807496 partridge +n01807828 Hungarian partridge, grey partridge, gray partridge, Perdix perdix +n01808140 red-legged partridge, Alectoris ruffa +n01808291 Greek partridge, rock partridge, Alectoris graeca +n01808596 mountain quail, mountain partridge, Oreortyx picta palmeri +n01809106 guinea fowl, guinea, Numida meleagris +n01809371 guinea hen +n01809752 hoatzin, hoactzin, stinkbird, Opisthocomus hoazin +n01810268 tinamou, partridge +n01810700 columbiform bird +n01811243 dodo, Raphus cucullatus +n01811909 pigeon +n01812187 pouter pigeon, pouter +n01812337 dove +n01812662 rock dove, rock pigeon, Columba livia +n01812866 band-tailed pigeon, band-tail pigeon, bandtail, Columba fasciata +n01813088 wood pigeon, ringdove, cushat, Columba palumbus +n01813385 turtledove +n01813532 Streptopelia turtur +n01813658 ringdove, Streptopelia risoria +n01813948 Australian turtledove, turtledove, Stictopelia cuneata +n01814217 mourning dove, Zenaidura macroura +n01814370 domestic pigeon +n01814549 squab +n01814620 fairy swallow +n01814755 roller, tumbler, tumbler pigeon +n01814921 homing pigeon, homer +n01815036 carrier pigeon +n01815270 passenger pigeon, Ectopistes migratorius +n01815601 sandgrouse, sand grouse +n01816017 painted sandgrouse, Pterocles indicus +n01816140 pin-tailed sandgrouse, pin-tailed grouse, Pterocles alchata +n01816474 pallas's sandgrouse, Syrrhaptes paradoxus +n01816887 parrot +n01817263 popinjay +n01817346 poll, poll parrot +n01817953 African grey, African gray, Psittacus erithacus +n01818299 amazon +n01818515 macaw +n01818832 kea, Nestor notabilis +n01819115 cockatoo +n01819313 sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita +n01819465 pink cockatoo, Kakatoe leadbeateri +n01819734 cockateel, cockatiel, cockatoo parrot, Nymphicus hollandicus +n01820052 lovebird +n01820348 lory +n01820546 lorikeet +n01820801 varied Lorikeet, Glossopsitta versicolor +n01821076 rainbow lorikeet, Trichoglossus moluccanus +n01821203 parakeet, parrakeet, parroket, paraquet, paroquet, parroquet +n01821554 Carolina parakeet, Conuropsis carolinensis +n01821869 budgerigar, budgereegah, budgerygah, budgie, grass parakeet, lovebird, shell parakeet, Melopsittacus undulatus +n01822300 ring-necked parakeet, Psittacula krameri +n01822602 cuculiform bird +n01823013 cuckoo +n01823414 European cuckoo, Cuculus canorus +n01823740 black-billed cuckoo, Coccyzus erythropthalmus +n01824035 roadrunner, chaparral cock, Geococcyx californianus +n01824344 ani +n01824575 coucal +n01824749 crow pheasant, Centropus sinensis +n01825278 touraco, turaco, turacou, turakoo +n01825930 coraciiform bird +n01826364 roller +n01826680 European roller, Coracias garrulus +n01826844 ground roller +n01827403 kingfisher +n01827793 Eurasian kingfisher, Alcedo atthis +n01828096 belted kingfisher, Ceryle alcyon +n01828556 kookaburra, laughing jackass, Dacelo gigas +n01828970 bee eater +n01829413 hornbill +n01829869 hoopoe, hoopoo +n01830042 Euopean hoopoe, Upupa epops +n01830479 wood hoopoe +n01830915 motmot, momot +n01831360 tody +n01831712 apodiform bird +n01832167 swift +n01832493 European swift, Apus apus +n01832813 chimney swift, chimney swallow, Chateura pelagica +n01833112 swiftlet, Collocalia inexpectata +n01833415 tree swift, crested swift +n01833805 hummingbird +n01834177 Archilochus colubris +n01834540 thornbill +n01835276 goatsucker, nightjar, caprimulgid +n01835769 European goatsucker, European nightjar, Caprimulgus europaeus +n01835918 chuck-will's-widow, Caprimulgus carolinensis +n01836087 whippoorwill, Caprimulgus vociferus +n01836673 poorwill, Phalaenoptilus nuttallii +n01837072 frogmouth +n01837526 oilbird, guacharo, Steatornis caripensis +n01838038 piciform bird +n01838598 woodpecker, peckerwood, pecker +n01839086 green woodpecker, Picus viridis +n01839330 downy woodpecker +n01839598 flicker +n01839750 yellow-shafted flicker, Colaptes auratus, yellowhammer +n01839949 gilded flicker, Colaptes chrysoides +n01840120 red-shafted flicker, Colaptes caper collaris +n01840412 ivorybill, ivory-billed woodpecker, Campephilus principalis +n01840775 redheaded woodpecker, redhead, Melanerpes erythrocephalus +n01841102 sapsucker +n01841288 yellow-bellied sapsucker, Sphyrapicus varius +n01841441 red-breasted sapsucker, Sphyrapicus varius ruber +n01841679 wryneck +n01841943 piculet +n01842235 barbet +n01842504 puffbird +n01842788 honey guide +n01843065 jacamar +n01843383 toucan +n01843719 toucanet +n01844231 trogon +n01844551 quetzal, quetzal bird +n01844746 resplendent quetzel, resplendent trogon, Pharomacrus mocino +n01844917 aquatic bird +n01845132 waterfowl, water bird, waterbird +n01845477 anseriform bird +n01846331 duck +n01847000 drake +n01847089 quack-quack +n01847170 duckling +n01847253 diving duck +n01847407 dabbling duck, dabbler +n01847806 mallard, Anas platyrhynchos +n01847978 black duck, Anas rubripes +n01848123 teal +n01848323 greenwing, green-winged teal, Anas crecca +n01848453 bluewing, blue-winged teal, Anas discors +n01848555 garganey, Anas querquedula +n01848648 widgeon, wigeon, Anas penelope +n01848840 American widgeon, baldpate, Anas americana +n01848976 shoveler, shoveller, broadbill, Anas clypeata +n01849157 pintail, pin-tailed duck, Anas acuta +n01849466 sheldrake +n01849676 shelduck +n01849863 ruddy duck, Oxyura jamaicensis +n01850192 bufflehead, butterball, dipper, Bucephela albeola +n01850373 goldeneye, whistler, Bucephela clangula +n01850553 Barrow's goldeneye, Bucephala islandica +n01850873 canvasback, canvasback duck, Aythya valisineria +n01851038 pochard, Aythya ferina +n01851207 redhead, Aythya americana +n01851375 scaup, scaup duck, bluebill, broadbill +n01851573 greater scaup, Aythya marila +n01851731 lesser scaup, lesser scaup duck, lake duck, Aythya affinis +n01851895 wild duck +n01852142 wood duck, summer duck, wood widgeon, Aix sponsa +n01852329 wood drake +n01852400 mandarin duck, Aix galericulata +n01852671 muscovy duck, musk duck, Cairina moschata +n01852861 sea duck +n01853195 eider, eider duck +n01853498 scoter, scooter +n01853666 common scoter, Melanitta nigra +n01853870 old squaw, oldwife, Clangula hyemalis +n01854415 merganser, fish duck, sawbill, sheldrake +n01854700 goosander, Mergus merganser +n01854838 American merganser, Mergus merganser americanus +n01855032 red-breasted merganser, Mergus serrator +n01855188 smew, Mergus albellus +n01855476 hooded merganser, hooded sheldrake, Lophodytes cucullatus +n01855672 goose +n01856072 gosling +n01856155 gander +n01856380 Chinese goose, Anser cygnoides +n01856553 greylag, graylag, greylag goose, graylag goose, Anser anser +n01856890 blue goose, Chen caerulescens +n01857079 snow goose +n01857325 brant, brant goose, brent, brent goose +n01857512 common brant goose, Branta bernicla +n01857632 honker, Canada goose, Canadian goose, Branta canadensis +n01857851 barnacle goose, barnacle, Branta leucopsis +n01858281 coscoroba +n01858441 swan +n01858780 cob +n01858845 pen +n01858906 cygnet +n01859190 mute swan, Cygnus olor +n01859325 whooper, whooper swan, Cygnus cygnus +n01859496 tundra swan, Cygnus columbianus +n01859689 whistling swan, Cygnus columbianus columbianus +n01859852 Bewick's swan, Cygnus columbianus bewickii +n01860002 trumpeter, trumpeter swan, Cygnus buccinator +n01860187 black swan, Cygnus atratus +n01860497 screamer +n01860864 horned screamer, Anhima cornuta +n01861148 crested screamer +n01861330 chaja, Chauna torquata +n01861778 mammal, mammalian +n01862399 female mammal +n01871265 tusker +n01871543 prototherian +n01871875 monotreme, egg-laying mammal +n01872401 echidna, spiny anteater, anteater +n01872772 echidna, spiny anteater, anteater +n01873310 platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus +n01874434 marsupial, pouched mammal +n01874928 opossum, possum +n01875313 common opossum, Didelphis virginiana, Didelphis marsupialis +n01875610 crab-eating opossum +n01876034 opossum rat +n01876326 bandicoot +n01876667 rabbit-eared bandicoot, rabbit bandicoot, bilby, Macrotis lagotis +n01877134 kangaroo +n01877606 giant kangaroo, great grey kangaroo, Macropus giganteus +n01877812 wallaby, brush kangaroo +n01878061 common wallaby, Macropus agiles +n01878335 hare wallaby, kangaroo hare +n01878639 nail-tailed wallaby, nail-tailed kangaroo +n01878929 rock wallaby, rock kangaroo +n01879217 pademelon, paddymelon +n01879509 tree wallaby, tree kangaroo +n01879837 musk kangaroo, Hypsiprymnodon moschatus +n01880152 rat kangaroo, kangaroo rat +n01880473 potoroo +n01880716 bettong +n01880813 jerboa kangaroo, kangaroo jerboa +n01881171 phalanger, opossum, possum +n01881564 cuscus +n01881857 brush-tailed phalanger, Trichosurus vulpecula +n01882125 flying phalanger, flying opossum, flying squirrel +n01882714 koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus +n01883070 wombat +n01883513 dasyurid marsupial, dasyurid +n01883920 dasyure +n01884104 eastern dasyure, Dasyurus quoll +n01884203 native cat, Dasyurus viverrinus +n01884476 thylacine, Tasmanian wolf, Tasmanian tiger, Thylacinus cynocephalus +n01884834 Tasmanian devil, ursine dasyure, Sarcophilus hariisi +n01885158 pouched mouse, marsupial mouse, marsupial rat +n01885498 numbat, banded anteater, anteater, Myrmecobius fasciatus +n01886045 pouched mole, marsupial mole, Notoryctus typhlops +n01886756 placental, placental mammal, eutherian, eutherian mammal +n01887474 livestock, stock, farm animal +n01887623 bull +n01887787 cow +n01887896 calf +n01888045 calf +n01888181 yearling +n01888264 buck +n01888411 doe +n01889074 insectivore +n01889520 mole +n01889849 starnose mole, star-nosed mole, Condylura cristata +n01890144 brewer's mole, hair-tailed mole, Parascalops breweri +n01890564 golden mole +n01890860 shrew mole +n01891013 Asiatic shrew mole, Uropsilus soricipes +n01891274 American shrew mole, Neurotrichus gibbsii +n01891633 shrew, shrewmouse +n01892030 common shrew, Sorex araneus +n01892145 masked shrew, Sorex cinereus +n01892385 short-tailed shrew, Blarina brevicauda +n01892551 water shrew +n01892744 American water shrew, Sorex palustris +n01893021 European water shrew, Neomys fodiens +n01893164 Mediterranean water shrew, Neomys anomalus +n01893399 least shrew, Cryptotis parva +n01893825 hedgehog, Erinaceus europaeus, Erinaceus europeaeus +n01894207 tenrec, tendrac +n01894522 tailless tenrec, Tenrec ecaudatus +n01894956 otter shrew, potamogale, Potamogale velox +n01896844 eiderdown +n01897257 aftershaft +n01897426 sickle feather +n01897536 contour feather +n01897667 bastard wing, alula, spurious wing +n01898593 saddle hackle, saddle feather +n01899894 encolure +n01900150 hair +n01903234 squama +n01903346 scute +n01903498 sclerite +n01904029 plastron +n01904806 scallop shell +n01904886 oyster shell +n01905321 theca +n01905661 invertebrate +n01906749 sponge, poriferan, parazoan +n01907287 choanocyte, collar cell +n01907738 glass sponge +n01908042 Venus's flower basket +n01908958 metazoan +n01909422 coelenterate, cnidarian +n01909788 planula +n01909906 polyp +n01910252 medusa, medusoid, medusan +n01910747 jellyfish +n01911063 scyphozoan +n01911403 Chrysaora quinquecirrha +n01911839 hydrozoan, hydroid +n01912152 hydra +n01912454 siphonophore +n01912809 nanomia +n01913166 Portuguese man-of-war, man-of-war, jellyfish +n01913346 praya +n01913440 apolemia +n01914163 anthozoan, actinozoan +n01914609 sea anemone, anemone +n01914830 actinia, actinian, actiniarian +n01915700 sea pen +n01915811 coral +n01916187 gorgonian, gorgonian coral +n01916388 sea feather +n01916481 sea fan +n01916588 red coral +n01916925 stony coral, madrepore, madriporian coral +n01917289 brain coral +n01917611 staghorn coral, stag's-horn coral +n01917882 mushroom coral +n01918744 ctenophore, comb jelly +n01919385 beroe +n01920051 platyctenean +n01920438 sea gooseberry +n01921059 Venus's girdle, Cestum veneris +n01922303 worm +n01922717 helminth, parasitic worm +n01922948 woodworm +n01923025 woodborer, borer +n01923404 acanthocephalan, spiny-headed worm +n01923890 arrowworm, chaetognath +n01924800 bladder worm +n01924916 flatworm, platyhelminth +n01925270 planarian, planaria +n01925695 fluke, trematode, trematode worm +n01925916 cercaria +n01926379 liver fluke, Fasciola hepatica +n01926689 Fasciolopsis buski +n01927159 schistosome, blood fluke +n01927456 tapeworm, cestode +n01927928 echinococcus +n01928215 taenia +n01928517 ribbon worm, nemertean, nemertine, proboscis worm +n01928865 beard worm, pogonophoran +n01929186 rotifer +n01930112 nematode, nematode worm, roundworm +n01930852 common roundworm, Ascaris lumbricoides +n01931140 chicken roundworm, Ascaridia galli +n01931520 pinworm, threadworm, Enterobius vermicularis +n01931714 eelworm +n01932151 vinegar eel, vinegar worm, Anguillula aceti, Turbatrix aceti +n01932936 trichina, Trichinella spiralis +n01933151 hookworm +n01933478 filaria +n01933988 Guinea worm, Dracunculus medinensis +n01934440 annelid, annelid worm, segmented worm +n01934844 archiannelid +n01935176 oligochaete, oligochaete worm +n01935395 earthworm, angleworm, fishworm, fishing worm, wiggler, nightwalker, nightcrawler, crawler, dew worm, red worm +n01936391 polychaete, polychete, polychaete worm, polychete worm +n01936671 lugworm, lug, lobworm +n01936858 sea mouse +n01937579 bloodworm +n01937909 leech, bloodsucker, hirudinean +n01938454 medicinal leech, Hirudo medicinalis +n01938735 horseleech +n01940736 mollusk, mollusc, shellfish +n01941223 scaphopod +n01941340 tooth shell, tusk shell +n01942177 gastropod, univalve +n01942869 abalone, ear-shell +n01943087 ormer, sea-ear, Haliotis tuberculata +n01943541 scorpion shell +n01943899 conch +n01944118 giant conch, Strombus gigas +n01944390 snail +n01944812 edible snail, Helix pomatia +n01944955 garden snail +n01945143 brown snail, Helix aspersa +n01945340 Helix hortensis +n01945685 slug +n01945845 seasnail +n01946277 neritid, neritid gastropod +n01946630 nerita +n01946827 bleeding tooth, Nerita peloronta +n01947139 neritina +n01947396 whelk +n01947997 moon shell, moonshell +n01948446 periwinkle, winkle +n01948573 limpet +n01949085 common limpet, Patella vulgata +n01949499 keyhole limpet, Fissurella apertura, Diodora apertura +n01949973 river limpet, freshwater limpet, Ancylus fluviatilis +n01950731 sea slug, nudibranch +n01951274 sea hare, Aplysia punctata +n01951613 Hermissenda crassicornis +n01952029 bubble shell +n01952712 physa +n01953361 cowrie, cowry +n01953594 money cowrie, Cypraea moneta +n01953762 tiger cowrie, Cypraea tigris +n01954516 solenogaster, aplacophoran +n01955084 chiton, coat-of-mail shell, sea cradle, polyplacophore +n01955933 bivalve, pelecypod, lamellibranch +n01956344 spat +n01956481 clam +n01956764 seashell +n01957335 soft-shell clam, steamer, steamer clam, long-neck clam, Mya arenaria +n01958038 quahog, quahaug, hard-shell clam, hard clam, round clam, Venus mercenaria, Mercenaria mercenaria +n01958346 littleneck, littleneck clam +n01958435 cherrystone, cherrystone clam +n01958531 geoduck +n01959029 razor clam, jackknife clam, knife-handle +n01959492 giant clam, Tridacna gigas +n01959985 cockle +n01960177 edible cockle, Cardium edule +n01960459 oyster +n01961234 Japanese oyster, Ostrea gigas +n01961600 Virginia oyster +n01961985 pearl oyster, Pinctada margaritifera +n01962506 saddle oyster, Anomia ephippium +n01962788 window oyster, windowpane oyster, capiz, Placuna placenta +n01963317 ark shell +n01963479 blood clam +n01963571 mussel +n01964049 marine mussel, mytilid +n01964271 edible mussel, Mytilus edulis +n01964441 freshwater mussel, freshwater clam +n01964957 pearly-shelled mussel +n01965252 thin-shelled mussel +n01965529 zebra mussel, Dreissena polymorpha +n01965889 scallop, scollop, escallop +n01966377 bay scallop, Pecten irradians +n01966586 sea scallop, giant scallop, Pecten magellanicus +n01967094 shipworm, teredinid +n01967308 teredo +n01967963 piddock +n01968315 cephalopod, cephalopod mollusk +n01968897 chambered nautilus, pearly nautilus, nautilus +n01969726 octopod +n01970164 octopus, devilfish +n01970667 paper nautilus, nautilus, Argonaut, Argonauta argo +n01971094 decapod +n01971280 squid +n01971620 loligo +n01971850 ommastrephes +n01972131 architeuthis, giant squid +n01972541 cuttlefish, cuttle +n01973148 spirula, Spirula peronii +n01974773 crustacean +n01975687 malacostracan crustacean +n01976146 decapod crustacean, decapod +n01976868 brachyuran +n01976957 crab +n01977485 stone crab, Menippe mercenaria +n01978010 hard-shell crab +n01978136 soft-shell crab, soft-shelled crab +n01978287 Dungeness crab, Cancer magister +n01978455 rock crab, Cancer irroratus +n01978587 Jonah crab, Cancer borealis +n01978930 swimming crab +n01979269 English lady crab, Portunus puber +n01979526 American lady crab, lady crab, calico crab, Ovalipes ocellatus +n01979874 blue crab, Callinectes sapidus +n01980166 fiddler crab +n01980655 pea crab +n01981276 king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica +n01981702 spider crab +n01982068 European spider crab, king crab, Maja squinado +n01982347 giant crab, Macrocheira kaempferi +n01982650 lobster +n01983048 true lobster +n01983481 American lobster, Northern lobster, Maine lobster, Homarus americanus +n01983674 European lobster, Homarus vulgaris +n01983829 Cape lobster, Homarus capensis +n01984245 Norway lobster, Nephrops norvegicus +n01984695 spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish +n01985128 crayfish, crawfish, crawdad, crawdaddy +n01985493 Old World crayfish, ecrevisse +n01985797 American crayfish +n01986214 hermit crab +n01986806 shrimp +n01987076 snapping shrimp, pistol shrimp +n01987545 prawn +n01987727 long-clawed prawn, river prawn, Palaemon australis +n01988203 tropical prawn +n01988701 krill +n01988869 Euphausia pacifica +n01989516 opossum shrimp +n01989869 stomatopod, stomatopod crustacean +n01990007 mantis shrimp, mantis crab +n01990516 squilla, mantis prawn +n01990800 isopod +n01991028 woodlouse, slater +n01991520 pill bug +n01992262 sow bug +n01992423 sea louse, sea slater +n01992773 amphipod +n01993525 skeleton shrimp +n01993830 whale louse +n01994910 daphnia, water flea +n01995514 fairy shrimp +n01995686 brine shrimp, Artemia salina +n01996280 tadpole shrimp +n01996585 copepod, copepod crustacean +n01997119 cyclops, water flea +n01997825 seed shrimp, mussel shrimp, ostracod +n01998183 barnacle, cirriped, cirripede +n01998741 acorn barnacle, rock barnacle, Balanus balanoides +n01999186 goose barnacle, gooseneck barnacle, Lepas fascicularis +n01999767 onychophoran, velvet worm, peripatus +n02000954 wading bird, wader +n02002075 stork +n02002556 white stork, Ciconia ciconia +n02002724 black stork, Ciconia nigra +n02003037 adjutant bird, adjutant, adjutant stork, Leptoptilus dubius +n02003204 marabou, marabout, marabou stork, Leptoptilus crumeniferus +n02003577 openbill +n02003839 jabiru, Jabiru mycteria +n02004131 saddlebill, jabiru, Ephippiorhynchus senegalensis +n02004492 policeman bird, black-necked stork, jabiru, Xenorhyncus asiaticus +n02004855 wood ibis, wood stork, flinthead, Mycteria americana +n02005399 shoebill, shoebird, Balaeniceps rex +n02005790 ibis +n02006063 wood ibis, wood stork, Ibis ibis +n02006364 sacred ibis, Threskiornis aethiopica +n02006656 spoonbill +n02006985 common spoonbill, Platalea leucorodia +n02007284 roseate spoonbill, Ajaia ajaja +n02007558 flamingo +n02008041 heron +n02008497 great blue heron, Ardea herodius +n02008643 great white heron, Ardea occidentalis +n02008796 egret +n02009229 little blue heron, Egretta caerulea +n02009380 snowy egret, snowy heron, Egretta thula +n02009508 little egret, Egretta garzetta +n02009750 great white heron, Casmerodius albus +n02009912 American egret, great white heron, Egretta albus +n02010272 cattle egret, Bubulcus ibis +n02010453 night heron, night raven +n02010728 black-crowned night heron, Nycticorax nycticorax +n02011016 yellow-crowned night heron, Nyctanassa violacea +n02011281 boatbill, boat-billed heron, broadbill, Cochlearius cochlearius +n02011460 bittern +n02011805 American bittern, stake driver, Botaurus lentiginosus +n02011943 European bittern, Botaurus stellaris +n02012185 least bittern, Ixobrychus exilis +n02012849 crane +n02013177 whooping crane, whooper, Grus americana +n02013567 courlan, Aramus guarauna +n02013706 limpkin, Aramus pictus +n02014237 crested cariama, seriema, Cariama cristata +n02014524 chunga, seriema, Chunga burmeisteri +n02014941 rail +n02015357 weka, maori hen, wood hen +n02015554 crake +n02015797 corncrake, land rail, Crex crex +n02016066 spotted crake, Porzana porzana +n02016358 gallinule, marsh hen, water hen, swamphen +n02016659 Florida gallinule, Gallinula chloropus cachinnans +n02016816 moorhen, Gallinula chloropus +n02016956 purple gallinule +n02017213 European gallinule, Porphyrio porphyrio +n02017475 American gallinule, Porphyrula martinica +n02017725 notornis, takahe, Notornis mantelli +n02018027 coot +n02018207 American coot, marsh hen, mud hen, water hen, Fulica americana +n02018368 Old World coot, Fulica atra +n02018795 bustard +n02019190 great bustard, Otis tarda +n02019438 plain turkey, Choriotis australis +n02019929 button quail, button-quail, bustard quail, hemipode +n02020219 striped button quail, Turnix sylvatica +n02020578 plain wanderer, Pedionomus torquatus +n02021050 trumpeter +n02021281 Brazilian trumpeter, Psophia crepitans +n02021795 seabird, sea bird, seafowl +n02022684 shorebird, shore bird, limicoline bird +n02023341 plover +n02023855 piping plover, Charadrius melodus +n02023992 killdeer, kildeer, killdeer plover, Charadrius vociferus +n02024185 dotterel, dotrel, Charadrius morinellus, Eudromias morinellus +n02024479 golden plover +n02024763 lapwing, green plover, peewit, pewit +n02025043 turnstone +n02025239 ruddy turnstone, Arenaria interpres +n02025389 black turnstone, Arenaria-Melanocephala +n02026059 sandpiper +n02026629 surfbird, Aphriza virgata +n02026948 European sandpiper, Actitis hypoleucos +n02027075 spotted sandpiper, Actitis macularia +n02027357 least sandpiper, stint, Erolia minutilla +n02027492 red-backed sandpiper, dunlin, Erolia alpina +n02027897 greenshank, Tringa nebularia +n02028035 redshank, Tringa totanus +n02028175 yellowlegs +n02028342 greater yellowlegs, Tringa melanoleuca +n02028451 lesser yellowlegs, Tringa flavipes +n02028727 pectoral sandpiper, jacksnipe, Calidris melanotos +n02028900 knot, greyback, grayback, Calidris canutus +n02029087 curlew sandpiper, Calidris Ferruginea +n02029378 sanderling, Crocethia alba +n02029706 upland sandpiper, upland plover, Bartramian sandpiper, Bartramia longicauda +n02030035 ruff, Philomachus pugnax +n02030224 reeve +n02030287 tattler +n02030568 Polynesian tattler, Heteroscelus incanus +n02030837 willet, Catoptrophorus semipalmatus +n02030996 woodcock +n02031298 Eurasian woodcock, Scolopax rusticola +n02031585 American woodcock, woodcock snipe, Philohela minor +n02031934 snipe +n02032222 whole snipe, Gallinago gallinago +n02032355 Wilson's snipe, Gallinago gallinago delicata +n02032480 great snipe, woodcock snipe, Gallinago media +n02032769 jacksnipe, half snipe, Limnocryptes minima +n02033041 dowitcher +n02033208 greyback, grayback, Limnodromus griseus +n02033324 red-breasted snipe, Limnodromus scolopaceus +n02033561 curlew +n02033779 European curlew, Numenius arquata +n02033882 Eskimo curlew, Numenius borealis +n02034129 godwit +n02034295 Hudsonian godwit, Limosa haemastica +n02034661 stilt, stiltbird, longlegs, long-legs, stilt plover, Himantopus stilt +n02034971 black-necked stilt, Himantopus mexicanus +n02035210 black-winged stilt, Himantopus himantopus +n02035402 white-headed stilt, Himantopus himantopus leucocephalus +n02035656 kaki, Himantopus novae-zelandiae +n02036053 stilt, Australian stilt +n02036228 banded stilt, Cladorhyncus leucocephalum +n02036711 avocet +n02037110 oystercatcher, oyster catcher +n02037464 phalarope +n02037869 red phalarope, Phalaropus fulicarius +n02038141 northern phalarope, Lobipes lobatus +n02038466 Wilson's phalarope, Steganopus tricolor +n02038993 pratincole, glareole +n02039171 courser +n02039497 cream-colored courser, Cursorius cursor +n02039780 crocodile bird, Pluvianus aegyptius +n02040266 stone curlew, thick-knee, Burhinus oedicnemus +n02040505 coastal diving bird +n02041085 larid +n02041246 gull, seagull, sea gull +n02041678 mew, mew gull, sea mew, Larus canus +n02041875 black-backed gull, great black-backed gull, cob, Larus marinus +n02042046 herring gull, Larus argentatus +n02042180 laughing gull, blackcap, pewit, pewit gull, Larus ridibundus +n02042472 ivory gull, Pagophila eburnea +n02042759 kittiwake +n02043063 tern +n02043333 sea swallow, Sterna hirundo +n02043808 skimmer +n02044178 jaeger +n02044517 parasitic jaeger, arctic skua, Stercorarius parasiticus +n02044778 skua, bonxie +n02044908 great skua, Catharacta skua +n02045369 auk +n02045596 auklet +n02045864 razorbill, razor-billed auk, Alca torda +n02046171 little auk, dovekie, Plautus alle +n02046759 guillemot +n02046939 black guillemot, Cepphus grylle +n02047045 pigeon guillemot, Cepphus columba +n02047260 murre +n02047411 common murre, Uria aalge +n02047517 thick-billed murre, Uria lomvia +n02047614 puffin +n02047975 Atlantic puffin, Fratercula arctica +n02048115 horned puffin, Fratercula corniculata +n02048353 tufted puffin, Lunda cirrhata +n02048698 gaviiform seabird +n02049088 loon, diver +n02049532 podicipitiform seabird +n02050004 grebe +n02050313 great crested grebe, Podiceps cristatus +n02050442 red-necked grebe, Podiceps grisegena +n02050586 black-necked grebe, eared grebe, Podiceps nigricollis +n02050809 dabchick, little grebe, Podiceps ruficollis +n02051059 pied-billed grebe, Podilymbus podiceps +n02051474 pelecaniform seabird +n02051845 pelican +n02052204 white pelican, Pelecanus erythrorhynchos +n02052365 Old world white pelican, Pelecanus onocrotalus +n02052775 frigate bird, man-of-war bird +n02053083 gannet +n02053425 solan, solan goose, solant goose, Sula bassana +n02053584 booby +n02054036 cormorant, Phalacrocorax carbo +n02054502 snakebird, anhinga, darter +n02054711 water turkey, Anhinga anhinga +n02055107 tropic bird, tropicbird, boatswain bird +n02055658 sphenisciform seabird +n02055803 penguin +n02056228 Adelie, Adelie penguin, Pygoscelis adeliae +n02056570 king penguin, Aptenodytes patagonica +n02056728 emperor penguin, Aptenodytes forsteri +n02057035 jackass penguin, Spheniscus demersus +n02057330 rock hopper, crested penguin +n02057731 pelagic bird, oceanic bird +n02057898 procellariiform seabird +n02058221 albatross, mollymawk +n02058594 wandering albatross, Diomedea exulans +n02058747 black-footed albatross, gooney, gooney bird, goonie, goony, Diomedea nigripes +n02059162 petrel +n02059541 white-chinned petrel, Procellaria aequinoctialis +n02059852 giant petrel, giant fulmar, Macronectes giganteus +n02060133 fulmar, fulmar petrel, Fulmarus glacialis +n02060411 shearwater +n02060569 Manx shearwater, Puffinus puffinus +n02060889 storm petrel +n02061217 stormy petrel, northern storm petrel, Hydrobates pelagicus +n02061560 Mother Carey's chicken, Mother Carey's hen, Oceanites oceanicus +n02061853 diving petrel +n02062017 aquatic mammal +n02062430 cetacean, cetacean mammal, blower +n02062744 whale +n02063224 baleen whale, whalebone whale +n02063662 right whale +n02064000 bowhead, bowhead whale, Greenland whale, Balaena mysticetus +n02064338 rorqual, razorback +n02064816 blue whale, sulfur bottom, Balaenoptera musculus +n02065026 finback, finback whale, fin whale, common rorqual, Balaenoptera physalus +n02065263 sei whale, Balaenoptera borealis +n02065407 lesser rorqual, piked whale, minke whale, Balaenoptera acutorostrata +n02065726 humpback, humpback whale, Megaptera novaeangliae +n02066245 grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus +n02066707 toothed whale +n02067240 sperm whale, cachalot, black whale, Physeter catodon +n02067603 pygmy sperm whale, Kogia breviceps +n02067768 dwarf sperm whale, Kogia simus +n02068206 beaked whale +n02068541 bottle-nosed whale, bottlenose whale, bottlenose, Hyperoodon ampullatus +n02068974 dolphin +n02069412 common dolphin, Delphinus delphis +n02069701 bottlenose dolphin, bottle-nosed dolphin, bottlenose +n02069974 Atlantic bottlenose dolphin, Tursiops truncatus +n02070174 Pacific bottlenose dolphin, Tursiops gilli +n02070430 porpoise +n02070624 harbor porpoise, herring hog, Phocoena phocoena +n02070776 vaquita, Phocoena sinus +n02071028 grampus, Grampus griseus +n02071294 killer whale, killer, orca, grampus, sea wolf, Orcinus orca +n02071636 pilot whale, black whale, common blackfish, blackfish, Globicephala melaena +n02072040 river dolphin +n02072493 narwhal, narwal, narwhale, Monodon monoceros +n02072798 white whale, beluga, Delphinapterus leucas +n02073250 sea cow, sirenian mammal, sirenian +n02073831 manatee, Trichechus manatus +n02074367 dugong, Dugong dugon +n02074726 Steller's sea cow, Hydrodamalis gigas +n02075296 carnivore +n02075612 omnivore +n02075927 pinniped mammal, pinniped, pinnatiped +n02076196 seal +n02076402 crabeater seal, crab-eating seal +n02076779 eared seal +n02077152 fur seal +n02077384 guadalupe fur seal, Arctocephalus philippi +n02077658 fur seal +n02077787 Alaska fur seal, Callorhinus ursinus +n02077923 sea lion +n02078292 South American sea lion, Otaria Byronia +n02078574 California sea lion, Zalophus californianus, Zalophus californicus +n02078738 Australian sea lion, Zalophus lobatus +n02079005 Steller sea lion, Steller's sea lion, Eumetopias jubatus +n02079389 earless seal, true seal, hair seal +n02079851 harbor seal, common seal, Phoca vitulina +n02080146 harp seal, Pagophilus groenlandicus +n02080415 elephant seal, sea elephant +n02080713 bearded seal, squareflipper square flipper, Erignathus barbatus +n02081060 hooded seal, bladdernose, Cystophora cristata +n02081571 walrus, seahorse, sea horse +n02081798 Atlantic walrus, Odobenus rosmarus +n02081927 Pacific walrus, Odobenus divergens +n02082056 Fissipedia +n02082190 fissiped mammal, fissiped +n02082791 aardvark, ant bear, anteater, Orycteropus afer +n02083346 canine, canid +n02083672 bitch +n02083780 brood bitch +n02084071 dog, domestic dog, Canis familiaris +n02084732 pooch, doggie, doggy, barker, bow-wow +n02084861 cur, mongrel, mutt +n02085019 feist, fice +n02085118 pariah dog, pye-dog, pie-dog +n02085272 lapdog +n02085374 toy dog, toy +n02085620 Chihuahua +n02085782 Japanese spaniel +n02085936 Maltese dog, Maltese terrier, Maltese +n02086079 Pekinese, Pekingese, Peke +n02086240 Shih-Tzu +n02086346 toy spaniel +n02086478 English toy spaniel +n02086646 Blenheim spaniel +n02086753 King Charles spaniel +n02086910 papillon +n02087046 toy terrier +n02087122 hunting dog +n02087314 courser +n02087394 Rhodesian ridgeback +n02087551 hound, hound dog +n02088094 Afghan hound, Afghan +n02088238 basset, basset hound +n02088364 beagle +n02088466 bloodhound, sleuthhound +n02088632 bluetick +n02088745 boarhound +n02088839 coonhound +n02088992 coondog +n02089078 black-and-tan coonhound +n02089232 dachshund, dachsie, badger dog +n02089468 sausage dog, sausage hound +n02089555 foxhound +n02089725 American foxhound +n02089867 Walker hound, Walker foxhound +n02089973 English foxhound +n02090129 harrier +n02090253 Plott hound +n02090379 redbone +n02090475 wolfhound +n02090622 borzoi, Russian wolfhound +n02090721 Irish wolfhound +n02090827 greyhound +n02091032 Italian greyhound +n02091134 whippet +n02091244 Ibizan hound, Ibizan Podenco +n02091467 Norwegian elkhound, elkhound +n02091635 otterhound, otter hound +n02091831 Saluki, gazelle hound +n02092002 Scottish deerhound, deerhound +n02092173 staghound +n02092339 Weimaraner +n02092468 terrier +n02093056 bullterrier, bull terrier +n02093256 Staffordshire bullterrier, Staffordshire bull terrier +n02093428 American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier +n02093647 Bedlington terrier +n02093754 Border terrier +n02093859 Kerry blue terrier +n02093991 Irish terrier +n02094114 Norfolk terrier +n02094258 Norwich terrier +n02094433 Yorkshire terrier +n02094562 rat terrier, ratter +n02094721 Manchester terrier, black-and-tan terrier +n02094931 toy Manchester, toy Manchester terrier +n02095050 fox terrier +n02095212 smooth-haired fox terrier +n02095314 wire-haired fox terrier +n02095412 wirehair, wirehaired terrier, wire-haired terrier +n02095570 Lakeland terrier +n02095727 Welsh terrier +n02095889 Sealyham terrier, Sealyham +n02096051 Airedale, Airedale terrier +n02096177 cairn, cairn terrier +n02096294 Australian terrier +n02096437 Dandie Dinmont, Dandie Dinmont terrier +n02096585 Boston bull, Boston terrier +n02096756 schnauzer +n02097047 miniature schnauzer +n02097130 giant schnauzer +n02097209 standard schnauzer +n02097298 Scotch terrier, Scottish terrier, Scottie +n02097474 Tibetan terrier, chrysanthemum dog +n02097658 silky terrier, Sydney silky +n02097786 Skye terrier +n02097967 Clydesdale terrier +n02098105 soft-coated wheaten terrier +n02098286 West Highland white terrier +n02098413 Lhasa, Lhasa apso +n02098550 sporting dog, gun dog +n02098806 bird dog +n02098906 water dog +n02099029 retriever +n02099267 flat-coated retriever +n02099429 curly-coated retriever +n02099601 golden retriever +n02099712 Labrador retriever +n02099849 Chesapeake Bay retriever +n02099997 pointer, Spanish pointer +n02100236 German short-haired pointer +n02100399 setter +n02100583 vizsla, Hungarian pointer +n02100735 English setter +n02100877 Irish setter, red setter +n02101006 Gordon setter +n02101108 spaniel +n02101388 Brittany spaniel +n02101556 clumber, clumber spaniel +n02101670 field spaniel +n02101861 springer spaniel, springer +n02102040 English springer, English springer spaniel +n02102177 Welsh springer spaniel +n02102318 cocker spaniel, English cocker spaniel, cocker +n02102480 Sussex spaniel +n02102605 water spaniel +n02102806 American water spaniel +n02102973 Irish water spaniel +n02103181 griffon, wire-haired pointing griffon +n02103406 working dog +n02103841 watchdog, guard dog +n02104029 kuvasz +n02104184 attack dog +n02104280 housedog +n02104365 schipperke +n02104523 shepherd dog, sheepdog, sheep dog +n02104882 Belgian sheepdog, Belgian shepherd +n02105056 groenendael +n02105162 malinois +n02105251 briard +n02105412 kelpie +n02105505 komondor +n02105641 Old English sheepdog, bobtail +n02105855 Shetland sheepdog, Shetland sheep dog, Shetland +n02106030 collie +n02106166 Border collie +n02106382 Bouvier des Flandres, Bouviers des Flandres +n02106550 Rottweiler +n02106662 German shepherd, German shepherd dog, German police dog, alsatian +n02106854 police dog +n02106966 pinscher +n02107142 Doberman, Doberman pinscher +n02107312 miniature pinscher +n02107420 Sennenhunde +n02107574 Greater Swiss Mountain dog +n02107683 Bernese mountain dog +n02107908 Appenzeller +n02108000 EntleBucher +n02108089 boxer +n02108254 mastiff +n02108422 bull mastiff +n02108551 Tibetan mastiff +n02108672 bulldog, English bulldog +n02108915 French bulldog +n02109047 Great Dane +n02109150 guide dog +n02109256 Seeing Eye dog +n02109391 hearing dog +n02109525 Saint Bernard, St Bernard +n02109687 seizure-alert dog +n02109811 sled dog, sledge dog +n02109961 Eskimo dog, husky +n02110063 malamute, malemute, Alaskan malamute +n02110185 Siberian husky +n02110341 dalmatian, coach dog, carriage dog +n02110532 liver-spotted dalmatian +n02110627 affenpinscher, monkey pinscher, monkey dog +n02110806 basenji +n02110958 pug, pug-dog +n02111129 Leonberg +n02111277 Newfoundland, Newfoundland dog +n02111500 Great Pyrenees +n02111626 spitz +n02111889 Samoyed, Samoyede +n02112018 Pomeranian +n02112137 chow, chow chow +n02112350 keeshond +n02112497 griffon, Brussels griffon, Belgian griffon +n02112706 Brabancon griffon +n02112826 corgi, Welsh corgi +n02113023 Pembroke, Pembroke Welsh corgi +n02113186 Cardigan, Cardigan Welsh corgi +n02113335 poodle, poodle dog +n02113624 toy poodle +n02113712 miniature poodle +n02113799 standard poodle +n02113892 large poodle +n02113978 Mexican hairless +n02114100 wolf +n02114367 timber wolf, grey wolf, gray wolf, Canis lupus +n02114548 white wolf, Arctic wolf, Canis lupus tundrarum +n02114712 red wolf, maned wolf, Canis rufus, Canis niger +n02114855 coyote, prairie wolf, brush wolf, Canis latrans +n02115012 coydog +n02115096 jackal, Canis aureus +n02115335 wild dog +n02115641 dingo, warrigal, warragal, Canis dingo +n02115913 dhole, Cuon alpinus +n02116185 crab-eating dog, crab-eating fox, Dusicyon cancrivorus +n02116450 raccoon dog, Nyctereutes procyonides +n02116738 African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus +n02117135 hyena, hyaena +n02117512 striped hyena, Hyaena hyaena +n02117646 brown hyena, strand wolf, Hyaena brunnea +n02117900 spotted hyena, laughing hyena, Crocuta crocuta +n02118176 aardwolf, Proteles cristata +n02118333 fox +n02118643 vixen +n02118707 Reynard +n02119022 red fox, Vulpes vulpes +n02119247 black fox +n02119359 silver fox +n02119477 red fox, Vulpes fulva +n02119634 kit fox, prairie fox, Vulpes velox +n02119789 kit fox, Vulpes macrotis +n02120079 Arctic fox, white fox, Alopex lagopus +n02120278 blue fox +n02120505 grey fox, gray fox, Urocyon cinereoargenteus +n02120997 feline, felid +n02121620 cat, true cat +n02121808 domestic cat, house cat, Felis domesticus, Felis catus +n02122298 kitty, kitty-cat, puss, pussy, pussycat +n02122430 mouser +n02122510 alley cat +n02122580 stray +n02122725 tom, tomcat +n02122810 gib +n02122878 tabby, queen +n02122948 kitten, kitty +n02123045 tabby, tabby cat +n02123159 tiger cat +n02123242 tortoiseshell, tortoiseshell-cat, calico cat +n02123394 Persian cat +n02123478 Angora, Angora cat +n02123597 Siamese cat, Siamese +n02123785 blue point Siamese +n02123917 Burmese cat +n02124075 Egyptian cat +n02124157 Maltese, Maltese cat +n02124313 Abyssinian, Abyssinian cat +n02124484 Manx, Manx cat +n02124623 wildcat +n02125010 sand cat +n02125081 European wildcat, catamountain, Felis silvestris +n02125311 cougar, puma, catamount, mountain lion, painter, panther, Felis concolor +n02125494 ocelot, panther cat, Felis pardalis +n02125689 jaguarundi, jaguarundi cat, jaguarondi, eyra, Felis yagouaroundi +n02125872 kaffir cat, caffer cat, Felis ocreata +n02126028 jungle cat, Felis chaus +n02126139 serval, Felis serval +n02126317 leopard cat, Felis bengalensis +n02126640 margay, margay cat, Felis wiedi +n02126787 manul, Pallas's cat, Felis manul +n02127052 lynx, catamount +n02127292 common lynx, Lynx lynx +n02127381 Canada lynx, Lynx canadensis +n02127482 bobcat, bay lynx, Lynx rufus +n02127586 spotted lynx, Lynx pardina +n02127678 caracal, desert lynx, Lynx caracal +n02127808 big cat, cat +n02128385 leopard, Panthera pardus +n02128598 leopardess +n02128669 panther +n02128757 snow leopard, ounce, Panthera uncia +n02128925 jaguar, panther, Panthera onca, Felis onca +n02129165 lion, king of beasts, Panthera leo +n02129463 lioness +n02129530 lionet +n02129604 tiger, Panthera tigris +n02129837 Bengal tiger +n02129923 tigress +n02129991 liger +n02130086 tiglon, tigon +n02130308 cheetah, chetah, Acinonyx jubatus +n02130545 saber-toothed tiger, sabertooth +n02130925 Smiledon californicus +n02131653 bear +n02132136 brown bear, bruin, Ursus arctos +n02132320 bruin +n02132466 Syrian bear, Ursus arctos syriacus +n02132580 grizzly, grizzly bear, silvertip, silver-tip, Ursus horribilis, Ursus arctos horribilis +n02132788 Alaskan brown bear, Kodiak bear, Kodiak, Ursus middendorffi, Ursus arctos middendorffi +n02133161 American black bear, black bear, Ursus americanus, Euarctos americanus +n02133400 cinnamon bear +n02133704 Asiatic black bear, black bear, Ursus thibetanus, Selenarctos thibetanus +n02134084 ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus +n02134418 sloth bear, Melursus ursinus, Ursus ursinus +n02134971 viverrine, viverrine mammal +n02135220 civet, civet cat +n02135610 large civet, Viverra zibetha +n02135844 small civet, Viverricula indica, Viverricula malaccensis +n02136103 binturong, bearcat, Arctictis bintourong +n02136285 Cryptoprocta, genus Cryptoprocta +n02136452 fossa, fossa cat, Cryptoprocta ferox +n02136794 fanaloka, Fossa fossa +n02137015 genet, Genetta genetta +n02137302 banded palm civet, Hemigalus hardwickii +n02137549 mongoose +n02137722 Indian mongoose, Herpestes nyula +n02137888 ichneumon, Herpestes ichneumon +n02138169 palm cat, palm civet +n02138441 meerkat, mierkat +n02138647 slender-tailed meerkat, Suricata suricatta +n02138777 suricate, Suricata tetradactyla +n02139199 bat, chiropteran +n02139671 fruit bat, megabat +n02140049 flying fox +n02140179 Pteropus capestratus +n02140268 Pteropus hypomelanus +n02140491 harpy, harpy bat, tube-nosed bat, tube-nosed fruit bat +n02140858 Cynopterus sphinx +n02141306 carnivorous bat, microbat +n02141611 mouse-eared bat +n02141713 leafnose bat, leaf-nosed bat +n02142407 macrotus, Macrotus californicus +n02142734 spearnose bat +n02142898 Phyllostomus hastatus +n02143142 hognose bat, Choeronycteris mexicana +n02143439 horseshoe bat +n02143891 horseshoe bat +n02144251 orange bat, orange horseshoe bat, Rhinonicteris aurantius +n02144593 false vampire, false vampire bat +n02144936 big-eared bat, Megaderma lyra +n02145424 vespertilian bat, vespertilionid +n02145910 frosted bat, Vespertilio murinus +n02146201 red bat, Lasiurus borealis +n02146371 brown bat +n02146700 little brown bat, little brown myotis, Myotis leucifugus +n02146879 cave myotis, Myotis velifer +n02147173 big brown bat, Eptesicus fuscus +n02147328 serotine, European brown bat, Eptesicus serotinus +n02147591 pallid bat, cave bat, Antrozous pallidus +n02147947 pipistrelle, pipistrel, Pipistrellus pipistrellus +n02148088 eastern pipistrel, Pipistrellus subflavus +n02148512 jackass bat, spotted bat, Euderma maculata +n02148835 long-eared bat +n02148991 western big-eared bat, Plecotus townsendi +n02149420 freetail, free-tailed bat, freetailed bat +n02149653 guano bat, Mexican freetail bat, Tadarida brasiliensis +n02149861 pocketed bat, pocketed freetail bat, Tadirida femorosacca +n02150134 mastiff bat +n02150482 vampire bat, true vampire bat +n02150885 Desmodus rotundus +n02151230 hairy-legged vampire bat, Diphylla ecaudata +n02152740 predator, predatory animal +n02152881 prey, quarry +n02152991 game +n02153109 big game +n02153203 game bird +n02153809 fossorial mammal +n02156732 tetrapod +n02156871 quadruped +n02157206 hexapod +n02157285 biped +n02159955 insect +n02160947 social insect +n02161225 holometabola, metabola +n02161338 defoliator +n02161457 pollinator +n02161588 gallfly +n02162561 scorpion fly +n02163008 hanging fly +n02163297 collembolan, springtail +n02164464 beetle +n02165105 tiger beetle +n02165456 ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle +n02165877 two-spotted ladybug, Adalia bipunctata +n02166229 Mexican bean beetle, bean beetle, Epilachna varivestis +n02166567 Hippodamia convergens +n02166826 vedalia, Rodolia cardinalis +n02167151 ground beetle, carabid beetle +n02167505 bombardier beetle +n02167820 calosoma +n02167944 searcher, searcher beetle, Calosoma scrutator +n02168245 firefly, lightning bug +n02168427 glowworm +n02168699 long-horned beetle, longicorn, longicorn beetle +n02169023 sawyer, sawyer beetle +n02169218 pine sawyer +n02169497 leaf beetle, chrysomelid +n02169705 flea beetle +n02169974 Colorado potato beetle, Colorado beetle, potato bug, potato beetle, Leptinotarsa decemlineata +n02170400 carpet beetle, carpet bug +n02170599 buffalo carpet beetle, Anthrenus scrophulariae +n02170738 black carpet beetle +n02170993 clerid beetle, clerid +n02171164 bee beetle +n02171453 lamellicorn beetle +n02171869 scarabaeid beetle, scarabaeid, scarabaean +n02172182 dung beetle +n02172518 scarab, scarabaeus, Scarabaeus sacer +n02172678 tumblebug +n02172761 dorbeetle +n02172870 June beetle, June bug, May bug, May beetle +n02173113 green June beetle, figeater +n02173373 Japanese beetle, Popillia japonica +n02173784 Oriental beetle, Asiatic beetle, Anomala orientalis +n02174001 rhinoceros beetle +n02174355 melolonthid beetle +n02174659 cockchafer, May bug, May beetle, Melolontha melolontha +n02175014 rose chafer, rose bug, Macrodactylus subspinosus +n02175569 rose chafer, rose beetle, Cetonia aurata +n02175916 stag beetle +n02176261 elaterid beetle, elater, elaterid +n02176439 click beetle, skipjack, snapping beetle +n02176747 firefly, fire beetle, Pyrophorus noctiluca +n02176916 wireworm +n02177196 water beetle +n02177506 whirligig beetle +n02177775 deathwatch beetle, deathwatch, Xestobium rufovillosum +n02177972 weevil +n02178411 snout beetle +n02178717 boll weevil, Anthonomus grandis +n02179012 blister beetle, meloid +n02179192 oil beetle +n02179340 Spanish fly +n02179891 Dutch-elm beetle, Scolytus multistriatus +n02180233 bark beetle +n02180427 spruce bark beetle, Dendroctonus rufipennis +n02180875 rove beetle +n02181235 darkling beetle, darkling groung beetle, tenebrionid +n02181477 mealworm +n02181724 flour beetle, flour weevil +n02182045 seed beetle, seed weevil +n02182355 pea weevil, Bruchus pisorum +n02182642 bean weevil, Acanthoscelides obtectus +n02182930 rice weevil, black weevil, Sitophylus oryzae +n02183096 Asian longhorned beetle, Anoplophora glabripennis +n02183507 web spinner +n02183857 louse, sucking louse +n02184473 common louse, Pediculus humanus +n02184589 head louse, Pediculus capitis +n02184720 body louse, cootie, Pediculus corporis +n02185167 crab louse, pubic louse, crab, Phthirius pubis +n02185481 bird louse, biting louse, louse +n02186153 flea +n02186717 Pulex irritans +n02187150 dog flea, Ctenocephalides canis +n02187279 cat flea, Ctenocephalides felis +n02187554 chigoe, chigger, chigoe flea, Tunga penetrans +n02187900 sticktight, sticktight flea, Echidnophaga gallinacea +n02188699 dipterous insect, two-winged insects, dipteran, dipteron +n02189363 gall midge, gallfly, gall gnat +n02189670 Hessian fly, Mayetiola destructor +n02190166 fly +n02190790 housefly, house fly, Musca domestica +n02191273 tsetse fly, tsetse, tzetze fly, tzetze, glossina +n02191773 blowfly, blow fly +n02191979 bluebottle, Calliphora vicina +n02192252 greenbottle, greenbottle fly +n02192513 flesh fly, Sarcophaga carnaria +n02192814 tachina fly +n02193009 gadfly +n02193163 botfly +n02194249 human botfly, Dermatobia hominis +n02194750 sheep botfly, sheep gadfly, Oestrus ovis +n02195091 warble fly +n02195526 horsefly, cleg, clegg, horse fly +n02195819 bee fly +n02196119 robber fly, bee killer +n02196344 fruit fly, pomace fly +n02196896 apple maggot, railroad worm, Rhagoletis pomonella +n02197185 Mediterranean fruit fly, medfly, Ceratitis capitata +n02197689 drosophila, Drosophila melanogaster +n02197877 vinegar fly +n02198129 leaf miner, leaf-miner +n02198532 louse fly, hippoboscid +n02198859 horse tick, horsefly, Hippobosca equina +n02199170 sheep ked, sheep-tick, sheep tick, Melophagus Ovinus +n02199502 horn fly, Haematobia irritans +n02200198 mosquito +n02200509 wiggler, wriggler +n02200630 gnat +n02200850 yellow-fever mosquito, Aedes aegypti +n02201000 Asian tiger mosquito, Aedes albopictus +n02201497 anopheline +n02201626 malarial mosquito, malaria mosquito +n02202006 common mosquito, Culex pipiens +n02202124 Culex quinquefasciatus, Culex fatigans +n02202287 gnat +n02202678 punkie, punky, punkey, no-see-um, biting midge +n02203152 midge +n02203592 fungus gnat +n02203978 psychodid +n02204249 sand fly, sandfly, Phlebotomus papatasii +n02204722 fungus gnat, sciara, sciarid +n02204907 armyworm +n02205219 crane fly, daddy longlegs +n02205673 blackfly, black fly, buffalo gnat +n02206270 hymenopterous insect, hymenopteran, hymenopteron, hymenopter +n02206856 bee +n02207179 drone +n02207345 queen bee +n02207449 worker +n02207647 soldier +n02207805 worker bee +n02208280 honeybee, Apis mellifera +n02208498 Africanized bee, Africanized honey bee, killer bee, Apis mellifera scutellata, Apis mellifera adansonii +n02208848 black bee, German bee +n02208979 Carniolan bee +n02209111 Italian bee +n02209354 carpenter bee +n02209624 bumblebee, humblebee +n02209964 cuckoo-bumblebee +n02210427 andrena, andrenid, mining bee +n02210921 Nomia melanderi, alkali bee +n02211444 leaf-cutting bee, leaf-cutter, leaf-cutter bee +n02211627 mason bee +n02211896 potter bee +n02212062 wasp +n02212602 vespid, vespid wasp +n02212958 paper wasp +n02213107 hornet +n02213239 giant hornet, Vespa crabro +n02213543 common wasp, Vespula vulgaris +n02213663 bald-faced hornet, white-faced hornet, Vespula maculata +n02213788 yellow jacket, yellow hornet, Vespula maculifrons +n02214096 Polistes annularis +n02214341 mason wasp +n02214499 potter wasp +n02214660 Mutillidae, family Mutillidae +n02214773 velvet ant +n02215161 sphecoid wasp, sphecoid +n02215621 mason wasp +n02215770 digger wasp +n02216211 cicada killer, Sphecius speciosis +n02216365 mud dauber +n02216740 gall wasp, gallfly, cynipid wasp, cynipid gall wasp +n02217563 chalcid fly, chalcidfly, chalcid, chalcid wasp +n02217839 strawworm, jointworm +n02218134 chalcis fly +n02218371 ichneumon fly +n02218713 sawfly +n02219015 birch leaf miner, Fenusa pusilla +n02219486 ant, emmet, pismire +n02220055 pharaoh ant, pharaoh's ant, Monomorium pharaonis +n02220225 little black ant, Monomorium minimum +n02220518 army ant, driver ant, legionary ant +n02220804 carpenter ant +n02221083 fire ant +n02221414 wood ant, Formica rufa +n02221571 slave ant +n02221715 Formica fusca +n02221820 slave-making ant, slave-maker +n02222035 sanguinary ant, Formica sanguinea +n02222321 bulldog ant +n02222582 Amazon ant, Polyergus rufescens +n02223266 termite, white ant +n02223520 dry-wood termite +n02224023 Reticulitermes lucifugus +n02224713 Mastotermes darwiniensis +n02225081 Mastotermes electrodominicus +n02225798 powder-post termite, Cryptotermes brevis +n02226183 orthopterous insect, orthopteron, orthopteran +n02226429 grasshopper, hopper +n02226821 short-horned grasshopper, acridid +n02226970 locust +n02227247 migratory locust, Locusta migratoria +n02227604 migratory grasshopper +n02227966 long-horned grasshopper, tettigoniid +n02228341 katydid +n02228697 mormon cricket, Anabrus simplex +n02229156 sand cricket, Jerusalem cricket, Stenopelmatus fuscus +n02229544 cricket +n02229765 mole cricket +n02230023 European house cricket, Acheta domestica +n02230187 field cricket, Acheta assimilis +n02230480 tree cricket +n02230634 snowy tree cricket, Oecanthus fultoni +n02231052 phasmid, phasmid insect +n02231487 walking stick, walkingstick, stick insect +n02231803 diapheromera, Diapheromera femorata +n02232223 walking leaf, leaf insect +n02233338 cockroach, roach +n02233943 oriental cockroach, oriental roach, Asiatic cockroach, blackbeetle, Blatta orientalis +n02234355 American cockroach, Periplaneta americana +n02234570 Australian cockroach, Periplaneta australasiae +n02234848 German cockroach, Croton bug, crotonbug, water bug, Blattella germanica +n02235205 giant cockroach +n02236044 mantis, mantid +n02236241 praying mantis, praying mantid, Mantis religioso +n02236355 bug +n02236896 hemipterous insect, bug, hemipteran, hemipteron +n02237424 leaf bug, plant bug +n02237581 mirid bug, mirid, capsid +n02237868 four-lined plant bug, four-lined leaf bug, Poecilocapsus lineatus +n02238235 lygus bug +n02238358 tarnished plant bug, Lygus lineolaris +n02238594 lace bug +n02238887 lygaeid, lygaeid bug +n02239192 chinch bug, Blissus leucopterus +n02239528 coreid bug, coreid +n02239774 squash bug, Anasa tristis +n02240068 leaf-footed bug, leaf-foot bug +n02240517 bedbug, bed bug, chinch, Cimex lectularius +n02241008 backswimmer, Notonecta undulata +n02241426 true bug +n02241569 heteropterous insect +n02241799 water bug +n02242137 giant water bug +n02242455 water scorpion +n02243209 water boatman, boat bug +n02243562 water strider, pond-skater, water skater +n02243878 common pond-skater, Gerris lacustris +n02244173 assassin bug, reduviid +n02244515 conenose, cone-nosed bug, conenose bug, big bedbug, kissing bug +n02244797 wheel bug, Arilus cristatus +n02245111 firebug +n02245443 cotton stainer +n02246011 homopterous insect, homopteran +n02246628 whitefly +n02246941 citrus whitefly, Dialeurodes citri +n02247216 greenhouse whitefly, Trialeurodes vaporariorum +n02247511 sweet-potato whitefly +n02247655 superbug, Bemisia tabaci, poinsettia strain +n02248062 cotton strain +n02248368 coccid insect +n02248510 scale insect +n02248887 soft scale +n02249134 brown soft scale, Coccus hesperidum +n02249515 armored scale +n02249809 San Jose scale, Aspidiotus perniciosus +n02250280 cochineal insect, cochineal, Dactylopius coccus +n02250822 mealybug, mealy bug +n02251067 citrophilous mealybug, citrophilus mealybug, Pseudococcus fragilis +n02251233 Comstock mealybug, Comstock's mealybug, Pseudococcus comstocki +n02251593 citrus mealybug, Planococcus citri +n02251775 plant louse, louse +n02252226 aphid +n02252799 apple aphid, green apple aphid, Aphis pomi +n02252972 blackfly, bean aphid, Aphis fabae +n02253127 greenfly +n02253264 green peach aphid +n02253494 ant cow +n02253715 woolly aphid, woolly plant louse +n02253913 woolly apple aphid, American blight, Eriosoma lanigerum +n02254246 woolly alder aphid, Prociphilus tessellatus +n02254697 adelgid +n02254901 balsam woolly aphid, Adelges piceae +n02255023 spruce gall aphid, Adelges abietis +n02255391 woolly adelgid +n02256172 jumping plant louse, psylla, psyllid +n02256656 cicada, cicala +n02257003 dog-day cicada, harvest fly +n02257284 seventeen-year locust, periodical cicada, Magicicada septendecim +n02257715 spittle insect, spittlebug +n02257985 froghopper +n02258198 meadow spittlebug, Philaenus spumarius +n02258508 pine spittlebug +n02258629 Saratoga spittlebug, Aphrophora saratogensis +n02259212 leafhopper +n02259377 plant hopper, planthopper +n02259708 treehopper +n02259987 lantern fly, lantern-fly +n02260421 psocopterous insect +n02260863 psocid +n02261063 bark-louse, bark louse +n02261419 booklouse, book louse, deathwatch, Liposcelis divinatorius +n02261757 common booklouse, Trogium pulsatorium +n02262178 ephemerid, ephemeropteran +n02262449 mayfly, dayfly, shadfly +n02262803 stonefly, stone fly, plecopteran +n02263378 neuropteron, neuropteran, neuropterous insect +n02264021 ant lion, antlion, antlion fly +n02264232 doodlebug, ant lion, antlion +n02264363 lacewing, lacewing fly +n02264591 aphid lion, aphis lion +n02264885 green lacewing, chrysopid, stink fly +n02265330 brown lacewing, hemerobiid, hemerobiid fly +n02266050 dobson, dobsonfly, dobson fly, Corydalus cornutus +n02266269 hellgrammiate, dobson +n02266421 fish fly, fish-fly +n02266864 alderfly, alder fly, Sialis lutaria +n02267208 snakefly +n02267483 mantispid +n02268148 odonate +n02268443 dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk +n02268853 damselfly +n02269196 trichopterous insect, trichopteran, trichopteron +n02269340 caddis fly, caddis-fly, caddice fly, caddice-fly +n02269522 caseworm +n02269657 caddisworm, strawworm +n02270011 thysanuran insect, thysanuron +n02270200 bristletail +n02270623 silverfish, Lepisma saccharina +n02270945 firebrat, Thermobia domestica +n02271222 jumping bristletail, machilid +n02271570 thysanopter, thysanopteron, thysanopterous insect +n02271897 thrips, thrip, thripid +n02272286 tobacco thrips, Frankliniella fusca +n02272552 onion thrips, onion louse, Thrips tobaci +n02272871 earwig +n02273392 common European earwig, Forficula auricularia +n02274024 lepidopterous insect, lepidopteron, lepidopteran +n02274259 butterfly +n02274822 nymphalid, nymphalid butterfly, brush-footed butterfly, four-footed butterfly +n02275560 mourning cloak, mourning cloak butterfly, Camberwell beauty, Nymphalis antiopa +n02275773 tortoiseshell, tortoiseshell butterfly +n02276078 painted beauty, Vanessa virginiensis +n02276258 admiral +n02276355 red admiral, Vanessa atalanta +n02276749 white admiral, Limenitis camilla +n02276902 banded purple, white admiral, Limenitis arthemis +n02277094 red-spotted purple, Limenitis astyanax +n02277268 viceroy, Limenitis archippus +n02277422 anglewing +n02277742 ringlet, ringlet butterfly +n02278024 comma, comma butterfly, Polygonia comma +n02278210 fritillary +n02278463 silverspot +n02278839 emperor butterfly, emperor +n02278980 purple emperor, Apatura iris +n02279257 peacock, peacock butterfly, Inachis io +n02279637 danaid, danaid butterfly +n02279972 monarch, monarch butterfly, milkweed butterfly, Danaus plexippus +n02280458 pierid, pierid butterfly +n02280649 cabbage butterfly +n02281015 small white, Pieris rapae +n02281136 large white, Pieris brassicae +n02281267 southern cabbage butterfly, Pieris protodice +n02281406 sulphur butterfly, sulfur butterfly +n02281787 lycaenid, lycaenid butterfly +n02282257 blue +n02282385 copper +n02282553 American copper, Lycaena hypophlaeas +n02282903 hairstreak, hairstreak butterfly +n02283077 Strymon melinus +n02283201 moth +n02283617 moth miller, miller +n02283951 tortricid, tortricid moth +n02284224 leaf roller, leaf-roller +n02284611 tea tortrix, tortrix, Homona coffearia +n02284884 orange tortrix, tortrix, Argyrotaenia citrana +n02285179 codling moth, codlin moth, Carpocapsa pomonella +n02285548 lymantriid, tussock moth +n02285801 tussock caterpillar +n02286089 gypsy moth, gipsy moth, Lymantria dispar +n02286425 browntail, brown-tail moth, Euproctis phaeorrhoea +n02286654 gold-tail moth, Euproctis chrysorrhoea +n02287004 geometrid, geometrid moth +n02287352 Paleacrita vernata +n02287622 Alsophila pometaria +n02287799 cankerworm +n02287987 spring cankerworm +n02288122 fall cankerworm +n02288268 measuring worm, inchworm, looper +n02288789 pyralid, pyralid moth +n02289307 bee moth, wax moth, Galleria mellonella +n02289610 corn borer, European corn borer moth, corn borer moth, Pyrausta nubilalis +n02289988 Mediterranean flour moth, Anagasta kuehniella +n02290340 tobacco moth, cacao moth, Ephestia elutella +n02290664 almond moth, fig moth, Cadra cautella +n02290870 raisin moth, Cadra figulilella +n02291220 tineoid, tineoid moth +n02291572 tineid, tineid moth +n02291748 clothes moth +n02292085 casemaking clothes moth, Tinea pellionella +n02292401 webbing clothes moth, webbing moth, Tineola bisselliella +n02292692 carpet moth, tapestry moth, Trichophaga tapetzella +n02293352 gelechiid, gelechiid moth +n02293868 grain moth +n02294097 angoumois moth, angoumois grain moth, Sitotroga cerealella +n02294407 potato moth, potato tuber moth, splitworm, Phthorimaea operculella +n02294577 potato tuberworm, Phthorimaea operculella +n02295064 noctuid moth, noctuid, owlet moth +n02295390 cutworm +n02295870 underwing +n02296021 red underwing, Catocala nupta +n02296276 antler moth, Cerapteryx graminis +n02296612 heliothis moth, Heliothis zia +n02296912 army cutworm, Chorizagrotis auxiliaris +n02297294 armyworm, Pseudaletia unipuncta +n02297442 armyworm, army worm, Pseudaletia unipuncta +n02297819 Spodoptera exigua +n02297938 beet armyworm, Spodoptera exigua +n02298095 Spodoptera frugiperda +n02298218 fall armyworm, Spodoptera frugiperda +n02298541 hawkmoth, hawk moth, sphingid, sphinx moth, hummingbird moth +n02299039 Manduca sexta +n02299157 tobacco hornworm, tomato worm, Manduca sexta +n02299378 Manduca quinquemaculata +n02299505 tomato hornworm, potato worm, Manduca quinquemaculata +n02299846 death's-head moth, Acherontia atropos +n02300173 bombycid, bombycid moth, silkworm moth +n02300554 domestic silkworm moth, domesticated silkworm moth, Bombyx mori +n02300797 silkworm +n02301452 saturniid, saturniid moth +n02301935 emperor, emperor moth, Saturnia pavonia +n02302244 imperial moth, Eacles imperialis +n02302459 giant silkworm moth, silkworm moth +n02302620 silkworm, giant silkworm, wild wilkworm +n02302969 luna moth, Actias luna +n02303284 cecropia, cecropia moth, Hyalophora cecropia +n02303585 cynthia moth, Samia cynthia, Samia walkeri +n02303777 ailanthus silkworm, Samia cynthia +n02304036 io moth, Automeris io +n02304432 polyphemus moth, Antheraea polyphemus +n02304657 pernyi moth, Antheraea pernyi +n02304797 tussah, tusseh, tussur, tussore, tusser, Antheraea mylitta +n02305085 atlas moth, Atticus atlas +n02305407 arctiid, arctiid moth +n02305636 tiger moth +n02305929 cinnabar, cinnabar moth, Callimorpha jacobeae +n02306433 lasiocampid, lasiocampid moth +n02306825 eggar, egger +n02307176 tent-caterpillar moth, Malacosoma americana +n02307325 tent caterpillar +n02307515 tent-caterpillar moth, Malacosoma disstria +n02307681 forest tent caterpillar, Malacosoma disstria +n02307910 lappet, lappet moth +n02308033 lappet caterpillar +n02308139 webworm +n02308471 webworm moth +n02308618 Hyphantria cunea +n02308735 fall webworm, Hyphantria cunea +n02309120 garden webworm, Loxostege similalis +n02309242 instar +n02309337 caterpillar +n02309841 corn borer, Pyrausta nubilalis +n02310000 bollworm +n02310149 pink bollworm, Gelechia gossypiella +n02310334 corn earworm, cotton bollworm, tomato fruitworm, tobacco budworm, vetchworm, Heliothis zia +n02310585 cabbageworm, Pieris rapae +n02310717 woolly bear, woolly bear caterpillar +n02310941 woolly bear moth +n02311060 larva +n02311617 nymph +n02311748 leptocephalus +n02312006 grub +n02312175 maggot +n02312325 leatherjacket +n02312427 pupa +n02312640 chrysalis +n02312912 imago +n02313008 queen +n02313360 phoronid +n02313709 bryozoan, polyzoan, sea mat, sea moss, moss animal +n02315487 brachiopod, lamp shell, lampshell +n02315821 peanut worm, sipunculid +n02316707 echinoderm +n02317335 starfish, sea star +n02317781 brittle star, brittle-star, serpent star +n02318167 basket star, basket fish +n02318687 Astrophyton muricatum +n02319095 sea urchin +n02319308 edible sea urchin, Echinus esculentus +n02319555 sand dollar +n02319829 heart urchin +n02320127 crinoid +n02320465 sea lily +n02321170 feather star, comatulid +n02321529 sea cucumber, holothurian +n02322047 trepang, Holothuria edulis +n02322992 Duplicidentata +n02323449 lagomorph, gnawing mammal +n02323902 leporid, leporid mammal +n02324045 rabbit, coney, cony +n02324431 rabbit ears +n02324514 lapin +n02324587 bunny, bunny rabbit +n02324850 European rabbit, Old World rabbit, Oryctolagus cuniculus +n02325366 wood rabbit, cottontail, cottontail rabbit +n02325722 eastern cottontail, Sylvilagus floridanus +n02325884 swamp rabbit, canecutter, swamp hare, Sylvilagus aquaticus +n02326074 marsh hare, swamp rabbit, Sylvilagus palustris +n02326432 hare +n02326763 leveret +n02326862 European hare, Lepus europaeus +n02327028 jackrabbit +n02327175 white-tailed jackrabbit, whitetail jackrabbit, Lepus townsendi +n02327435 blacktail jackrabbit, Lepus californicus +n02327656 polar hare, Arctic hare, Lepus arcticus +n02327842 snowshoe hare, snowshoe rabbit, varying hare, Lepus americanus +n02328009 Belgian hare, leporide +n02328150 Angora, Angora rabbit +n02328429 pika, mouse hare, rock rabbit, coney, cony +n02328820 little chief hare, Ochotona princeps +n02328942 collared pika, Ochotona collaris +n02329401 rodent, gnawer +n02330245 mouse +n02331046 rat +n02331309 pocket rat +n02331842 murine +n02332156 house mouse, Mus musculus +n02332447 harvest mouse, Micromyx minutus +n02332755 field mouse, fieldmouse +n02332954 nude mouse +n02333190 European wood mouse, Apodemus sylvaticus +n02333546 brown rat, Norway rat, Rattus norvegicus +n02333733 wharf rat +n02333819 sewer rat +n02333909 black rat, roof rat, Rattus rattus +n02334201 bandicoot rat, mole rat +n02334460 jerboa rat +n02334728 kangaroo mouse +n02335127 water rat +n02335231 beaver rat +n02336011 New World mouse +n02336275 American harvest mouse, harvest mouse +n02336641 wood mouse +n02336826 white-footed mouse, vesper mouse, Peromyscus leucopus +n02337001 deer mouse, Peromyscus maniculatus +n02337171 cactus mouse, Peromyscus eremicus +n02337332 cotton mouse, Peromyscus gossypinus +n02337598 pygmy mouse, Baiomys taylori +n02337902 grasshopper mouse +n02338145 muskrat, musquash, Ondatra zibethica +n02338449 round-tailed muskrat, Florida water rat, Neofiber alleni +n02338722 cotton rat, Sigmodon hispidus +n02338901 wood rat, wood-rat +n02339282 dusky-footed wood rat +n02339376 vole, field mouse +n02339922 packrat, pack rat, trade rat, bushytail woodrat, Neotoma cinerea +n02340186 dusky-footed woodrat, Neotoma fuscipes +n02340358 eastern woodrat, Neotoma floridana +n02340640 rice rat, Oryzomys palustris +n02340930 pine vole, pine mouse, Pitymys pinetorum +n02341288 meadow vole, meadow mouse, Microtus pennsylvaticus +n02341475 water vole, Richardson vole, Microtus richardsoni +n02341616 prairie vole, Microtus ochrogaster +n02341974 water vole, water rat, Arvicola amphibius +n02342250 red-backed mouse, redback vole +n02342534 phenacomys +n02342885 hamster +n02343058 Eurasian hamster, Cricetus cricetus +n02343320 golden hamster, Syrian hamster, Mesocricetus auratus +n02343772 gerbil, gerbille +n02344175 jird +n02344270 tamarisk gerbil, Meriones unguiculatus +n02344408 sand rat, Meriones longifrons +n02344528 lemming +n02344918 European lemming, Lemmus lemmus +n02345078 brown lemming, Lemmus trimucronatus +n02345340 grey lemming, gray lemming, red-backed lemming +n02345600 pied lemming +n02345774 Hudson bay collared lemming, Dicrostonyx hudsonius +n02345997 southern bog lemming, Synaptomys cooperi +n02346170 northern bog lemming, Synaptomys borealis +n02346627 porcupine, hedgehog +n02346998 Old World porcupine +n02347274 brush-tailed porcupine, brush-tail porcupine +n02347573 long-tailed porcupine, Trichys lipura +n02347744 New World porcupine +n02348173 Canada porcupine, Erethizon dorsatum +n02348788 pocket mouse +n02349205 silky pocket mouse, Perognathus flavus +n02349390 plains pocket mouse, Perognathus flavescens +n02349557 hispid pocket mouse, Perognathus hispidus +n02349847 Mexican pocket mouse, Liomys irroratus +n02350105 kangaroo rat, desert rat, Dipodomys phillipsii +n02350357 Ord kangaroo rat, Dipodomys ordi +n02350670 kangaroo mouse, dwarf pocket rat +n02350989 jumping mouse +n02351343 meadow jumping mouse, Zapus hudsonius +n02351870 jerboa +n02352002 typical jerboa +n02352290 Jaculus jaculus +n02352591 dormouse +n02352932 loir, Glis glis +n02353172 hazel mouse, Muscardinus avellanarius +n02353411 lerot +n02353861 gopher, pocket gopher, pouched rat +n02354162 plains pocket gopher, Geomys bursarius +n02354320 southeastern pocket gopher, Geomys pinetis +n02354621 valley pocket gopher, Thomomys bottae +n02354781 northern pocket gopher, Thomomys talpoides +n02355227 squirrel +n02355477 tree squirrel +n02356381 eastern grey squirrel, eastern gray squirrel, cat squirrel, Sciurus carolinensis +n02356612 western grey squirrel, western gray squirrel, Sciurus griseus +n02356798 fox squirrel, eastern fox squirrel, Sciurus niger +n02356977 black squirrel +n02357111 red squirrel, cat squirrel, Sciurus vulgaris +n02357401 American red squirrel, spruce squirrel, red squirrel, Sciurus hudsonicus, Tamiasciurus hudsonicus +n02357585 chickeree, Douglas squirrel, Tamiasciurus douglasi +n02357911 antelope squirrel, whitetail antelope squirrel, antelope chipmunk, Citellus leucurus +n02358091 ground squirrel, gopher, spermophile +n02358390 mantled ground squirrel, Citellus lateralis +n02358584 suslik, souslik, Citellus citellus +n02358712 flickertail, Richardson ground squirrel, Citellus richardsoni +n02358890 rock squirrel, Citellus variegatus +n02359047 Arctic ground squirrel, parka squirrel, Citellus parryi +n02359324 prairie dog, prairie marmot +n02359556 blacktail prairie dog, Cynomys ludovicianus +n02359667 whitetail prairie dog, Cynomys gunnisoni +n02359915 eastern chipmunk, hackee, striped squirrel, ground squirrel, Tamias striatus +n02360282 chipmunk +n02360480 baronduki, baranduki, barunduki, burunduki, Eutamius asiaticus, Eutamius sibiricus +n02360781 American flying squirrel +n02360933 southern flying squirrel, Glaucomys volans +n02361090 northern flying squirrel, Glaucomys sabrinus +n02361337 marmot +n02361587 groundhog, woodchuck, Marmota monax +n02361706 hoary marmot, whistler, whistling marmot, Marmota caligata +n02361850 yellowbelly marmot, rockchuck, Marmota flaviventris +n02362194 Asiatic flying squirrel +n02363005 beaver +n02363245 Old World beaver, Castor fiber +n02363351 New World beaver, Castor canadensis +n02363996 mountain beaver, sewellel, Aplodontia rufa +n02364520 cavy +n02364673 guinea pig, Cavia cobaya +n02364840 aperea, wild cavy, Cavia porcellus +n02365108 mara, Dolichotis patagonum +n02365480 capybara, capibara, Hydrochoerus hydrochaeris +n02366002 agouti, Dasyprocta aguti +n02366301 paca, Cuniculus paca +n02366579 mountain paca +n02366959 coypu, nutria, Myocastor coypus +n02367492 chinchilla, Chinchilla laniger +n02367812 mountain chinchilla, mountain viscacha +n02368116 viscacha, chinchillon, Lagostomus maximus +n02368399 abrocome, chinchilla rat, rat chinchilla +n02368821 mole rat +n02369293 mole rat +n02369555 sand rat +n02369680 naked mole rat +n02369935 queen, queen mole rat +n02370137 Damaraland mole rat +n02370525 Ungulata +n02370806 ungulate, hoofed mammal +n02371344 unguiculate, unguiculate mammal +n02372140 dinoceras, uintathere +n02372584 hyrax, coney, cony, dassie, das +n02372952 rock hyrax, rock rabbit, Procavia capensis +n02373336 odd-toed ungulate, perissodactyl, perissodactyl mammal +n02374149 equine, equid +n02374451 horse, Equus caballus +n02375302 roan +n02375438 stablemate, stable companion +n02375757 gee-gee +n02375862 eohippus, dawn horse +n02376542 foal +n02376679 filly +n02376791 colt +n02376918 male horse +n02377063 ridgeling, ridgling, ridgel, ridgil +n02377181 stallion, entire +n02377291 stud, studhorse +n02377388 gelding +n02377480 mare, female horse +n02377603 broodmare, stud mare +n02377703 saddle horse, riding horse, mount +n02378149 remount +n02378299 palfrey +n02378415 warhorse +n02378541 cavalry horse +n02378625 charger, courser +n02378755 steed +n02378870 prancer +n02378969 hack +n02379081 cow pony +n02379183 quarter horse +n02379329 Morgan +n02379430 Tennessee walker, Tennessee walking horse, Walking horse, Plantation walking horse +n02379630 American saddle horse +n02379743 Appaloosa +n02379908 Arabian, Arab +n02380052 Lippizan, Lipizzan, Lippizaner +n02380335 pony +n02380464 polo pony +n02380583 mustang +n02380745 bronco, bronc, broncho +n02380875 bucking bronco +n02381004 buckskin +n02381119 crowbait, crow-bait +n02381261 dun +n02381364 grey, gray +n02381460 wild horse +n02381609 tarpan, Equus caballus gomelini +n02381831 Przewalski's horse, Przevalski's horse, Equus caballus przewalskii, Equus caballus przevalskii +n02382039 cayuse, Indian pony +n02382132 hack +n02382204 hack, jade, nag, plug +n02382338 plow horse, plough horse +n02382437 pony +n02382635 Shetland pony +n02382750 Welsh pony +n02382850 Exmoor +n02382948 racehorse, race horse, bangtail +n02383231 thoroughbred +n02384741 steeplechaser +n02384858 racer +n02385002 finisher +n02385098 pony +n02385214 yearling +n02385580 dark horse +n02385676 mudder +n02385776 nonstarter +n02385898 stalking-horse +n02386014 harness horse +n02386141 cob +n02386224 hackney +n02386310 workhorse +n02386496 draft horse, draught horse, dray horse +n02386746 packhorse +n02386853 carthorse, cart horse, drayhorse +n02386968 Clydesdale +n02387093 Percheron +n02387254 farm horse, dobbin +n02387346 shire, shire horse +n02387452 pole horse, poler +n02387722 post horse, post-horse, poster +n02387887 coach horse +n02387983 pacer +n02388143 pacer, pacemaker, pacesetter +n02388276 trotting horse, trotter +n02388453 pole horse +n02388588 stepper, high stepper +n02388735 chestnut +n02388832 liver chestnut +n02388917 bay +n02389026 sorrel +n02389128 palomino +n02389261 pinto +n02389346 ass +n02389559 domestic ass, donkey, Equus asinus +n02389779 burro +n02389865 moke +n02389943 jack, jackass +n02390015 jennet, jenny, jenny ass +n02390101 mule +n02390258 hinny +n02390454 wild ass +n02390640 African wild ass, Equus asinus +n02390738 kiang, Equus kiang +n02390834 onager, Equus hemionus +n02390938 chigetai, dziggetai, Equus hemionus hemionus +n02391049 zebra +n02391234 common zebra, Burchell's zebra, Equus Burchelli +n02391373 mountain zebra, Equus zebra zebra +n02391508 grevy's zebra, Equus grevyi +n02391617 quagga, Equus quagga +n02391994 rhinoceros, rhino +n02392434 Indian rhinoceros, Rhinoceros unicornis +n02392555 woolly rhinoceros, Rhinoceros antiquitatis +n02392824 white rhinoceros, Ceratotherium simum, Diceros simus +n02393161 black rhinoceros, Diceros bicornis +n02393580 tapir +n02393807 New World tapir, Tapirus terrestris +n02393940 Malayan tapir, Indian tapir, Tapirus indicus +n02394477 even-toed ungulate, artiodactyl, artiodactyl mammal +n02395003 swine +n02395406 hog, pig, grunter, squealer, Sus scrofa +n02395694 piglet, piggy, shoat, shote +n02395855 sucking pig +n02395931 porker +n02396014 boar +n02396088 sow +n02396157 razorback, razorback hog, razorbacked hog +n02396427 wild boar, boar, Sus scrofa +n02396796 babirusa, babiroussa, babirussa, Babyrousa Babyrussa +n02397096 warthog +n02397529 peccary, musk hog +n02397744 collared peccary, javelina, Tayassu angulatus, Tayassu tajacu, Peccari angulatus +n02397987 white-lipped peccary, Tayassu pecari +n02398521 hippopotamus, hippo, river horse, Hippopotamus amphibius +n02399000 ruminant +n02401031 bovid +n02402010 bovine +n02402175 ox, wild ox +n02402425 cattle, cows, kine, oxen, Bos taurus +n02403003 ox +n02403153 stirk +n02403231 bullock, steer +n02403325 bull +n02403454 cow, moo-cow +n02403740 heifer +n02403820 bullock +n02403920 dogie, dogy, leppy +n02404028 maverick +n02404186 beef, beef cattle +n02404432 longhorn, Texas longhorn +n02404573 Brahman, Brahma, Brahmin, Bos indicus +n02404906 zebu +n02405101 aurochs, urus, Bos primigenius +n02405302 yak, Bos grunniens +n02405440 banteng, banting, tsine, Bos banteng +n02405577 Welsh, Welsh Black +n02405692 red poll +n02405799 Santa Gertrudis +n02405929 Aberdeen Angus, Angus, black Angus +n02406046 Africander +n02406174 dairy cattle, dairy cow, milch cow, milk cow, milcher, milker +n02406432 Ayrshire +n02406533 Brown Swiss +n02406647 Charolais +n02406749 Jersey +n02406859 Devon +n02406952 grade +n02407071 Durham, shorthorn +n02407172 milking shorthorn +n02407276 Galloway +n02407390 Friesian, Holstein, Holstein-Friesian +n02407521 Guernsey +n02407625 Hereford, whiteface +n02407763 cattalo, beefalo +n02407959 Old World buffalo, buffalo +n02408429 water buffalo, water ox, Asiatic buffalo, Bubalus bubalis +n02408660 Indian buffalo +n02408817 carabao +n02409038 anoa, dwarf buffalo, Anoa depressicornis +n02409202 tamarau, tamarao, Bubalus mindorensis, Anoa mindorensis +n02409508 Cape buffalo, Synercus caffer +n02409870 Asian wild ox +n02410011 gaur, Bibos gaurus +n02410141 gayal, mithan, Bibos frontalis +n02410509 bison +n02410702 American bison, American buffalo, buffalo, Bison bison +n02410900 wisent, aurochs, Bison bonasus +n02411206 musk ox, musk sheep, Ovibos moschatus +n02411705 sheep +n02411999 ewe +n02412080 ram, tup +n02412210 wether +n02412440 lamb +n02412629 lambkin +n02412700 baa-lamb +n02412787 hog, hogget, hogg +n02412909 teg +n02412977 Persian lamb +n02413050 black sheep +n02413131 domestic sheep, Ovis aries +n02413484 Cotswold +n02413593 Hampshire, Hampshire down +n02413717 Lincoln +n02413824 Exmoor +n02413917 Cheviot +n02414043 broadtail, caracul, karakul +n02414209 longwool +n02414290 merino, merino sheep +n02414442 Rambouillet +n02414578 wild sheep +n02414763 argali, argal, Ovis ammon +n02414904 Marco Polo sheep, Marco Polo's sheep, Ovis poli +n02415130 urial, Ovis vignei +n02415253 Dall sheep, Dall's sheep, white sheep, Ovis montana dalli +n02415435 mountain sheep +n02415577 bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis +n02415829 mouflon, moufflon, Ovis musimon +n02416104 aoudad, arui, audad, Barbary sheep, maned sheep, Ammotragus lervia +n02416519 goat, caprine animal +n02416820 kid +n02416880 billy, billy goat, he-goat +n02416964 nanny, nanny-goat, she-goat +n02417070 domestic goat, Capra hircus +n02417242 Cashmere goat, Kashmir goat +n02417387 Angora, Angora goat +n02417534 wild goat +n02417663 bezoar goat, pasang, Capra aegagrus +n02417785 markhor, markhoor, Capra falconeri +n02417914 ibex, Capra ibex +n02418064 goat antelope +n02418465 mountain goat, Rocky Mountain goat, Oreamnos americanus +n02418770 goral, Naemorhedus goral +n02419056 serow +n02419336 chamois, Rupicapra rupicapra +n02419634 takin, gnu goat, Budorcas taxicolor +n02419796 antelope +n02420509 blackbuck, black buck, Antilope cervicapra +n02420828 gerenuk, Litocranius walleri +n02421136 addax, Addax nasomaculatus +n02421449 gnu, wildebeest +n02421792 dik-dik +n02422106 hartebeest +n02422391 sassaby, topi, Damaliscus lunatus +n02422699 impala, Aepyceros melampus +n02423022 gazelle +n02423218 Thomson's gazelle, Gazella thomsoni +n02423362 Gazella subgutturosa +n02423589 springbok, springbuck, Antidorcas marsupialis, Antidorcas euchore +n02424085 bongo, Tragelaphus eurycerus, Boocercus eurycerus +n02424305 kudu, koodoo, koudou +n02424486 greater kudu, Tragelaphus strepsiceros +n02424589 lesser kudu, Tragelaphus imberbis +n02424695 harnessed antelope +n02424909 nyala, Tragelaphus angasi +n02425086 mountain nyala, Tragelaphus buxtoni +n02425228 bushbuck, guib, Tragelaphus scriptus +n02425532 nilgai, nylghai, nylghau, blue bull, Boselaphus tragocamelus +n02425887 sable antelope, Hippotragus niger +n02426176 saiga, Saiga tatarica +n02426481 steenbok, steinbok, Raphicerus campestris +n02426813 eland +n02427032 common eland, Taurotragus oryx +n02427183 giant eland, Taurotragus derbianus +n02427470 kob, Kobus kob +n02427576 lechwe, Kobus leche +n02427724 waterbuck +n02428089 puku, Adenota vardoni +n02428349 oryx, pasang +n02428508 gemsbok, gemsbuck, Oryx gazella +n02428842 forest goat, spindle horn, Pseudoryx nghetinhensis +n02429456 pronghorn, prongbuck, pronghorn antelope, American antelope, Antilocapra americana +n02430045 deer, cervid +n02430559 stag +n02430643 royal, royal stag +n02430748 pricket +n02430830 fawn +n02431122 red deer, elk, American elk, wapiti, Cervus elaphus +n02431337 hart, stag +n02431441 hind +n02431542 brocket +n02431628 sambar, sambur, Cervus unicolor +n02431785 wapiti, elk, American elk, Cervus elaphus canadensis +n02431976 Japanese deer, sika, Cervus nipon, Cervus sika +n02432291 Virginia deer, white tail, whitetail, white-tailed deer, whitetail deer, Odocoileus Virginianus +n02432511 mule deer, burro deer, Odocoileus hemionus +n02432704 black-tailed deer, blacktail deer, blacktail, Odocoileus hemionus columbianus +n02432983 elk, European elk, moose, Alces alces +n02433318 fallow deer, Dama dama +n02433546 roe deer, Capreolus capreolus +n02433729 roebuck +n02433925 caribou, reindeer, Greenland caribou, Rangifer tarandus +n02434190 woodland caribou, Rangifer caribou +n02434415 barren ground caribou, Rangifer arcticus +n02434712 brocket +n02434954 muntjac, barking deer +n02435216 musk deer, Moschus moschiferus +n02435517 pere david's deer, elaphure, Elaphurus davidianus +n02435853 chevrotain, mouse deer +n02436224 kanchil, Tragulus kanchil +n02436353 napu, Tragulus Javanicus +n02436645 water chevrotain, water deer, Hyemoschus aquaticus +n02437136 camel +n02437312 Arabian camel, dromedary, Camelus dromedarius +n02437482 Bactrian camel, Camelus bactrianus +n02437616 llama +n02437971 domestic llama, Lama peruana +n02438173 guanaco, Lama guanicoe +n02438272 alpaca, Lama pacos +n02438580 vicuna, Vicugna vicugna +n02439033 giraffe, camelopard, Giraffa camelopardalis +n02439398 okapi, Okapia johnstoni +n02441326 musteline mammal, mustelid, musteline +n02441942 weasel +n02442172 ermine, shorttail weasel, Mustela erminea +n02442336 stoat +n02442446 New World least weasel, Mustela rixosa +n02442572 Old World least weasel, Mustela nivalis +n02442668 longtail weasel, long-tailed weasel, Mustela frenata +n02442845 mink +n02443015 American mink, Mustela vison +n02443114 polecat, fitch, foulmart, foumart, Mustela putorius +n02443346 ferret +n02443484 black-footed ferret, ferret, Mustela nigripes +n02443808 muishond +n02443959 snake muishond, Poecilogale albinucha +n02444251 striped muishond, Ictonyx striata +n02444819 otter +n02445004 river otter, Lutra canadensis +n02445171 Eurasian otter, Lutra lutra +n02445394 sea otter, Enhydra lutris +n02445715 skunk, polecat, wood pussy +n02446206 striped skunk, Mephitis mephitis +n02446352 hooded skunk, Mephitis macroura +n02446645 hog-nosed skunk, hognosed skunk, badger skunk, rooter skunk, Conepatus leuconotus +n02447021 spotted skunk, little spotted skunk, Spilogale putorius +n02447366 badger +n02447762 American badger, Taxidea taxus +n02448060 Eurasian badger, Meles meles +n02448318 ratel, honey badger, Mellivora capensis +n02448633 ferret badger +n02448885 hog badger, hog-nosed badger, sand badger, Arctonyx collaris +n02449183 wolverine, carcajou, skunk bear, Gulo luscus +n02449350 glutton, Gulo gulo, wolverine +n02449699 grison, Grison vittatus, Galictis vittatus +n02450034 marten, marten cat +n02450295 pine marten, Martes martes +n02450426 sable, Martes zibellina +n02450561 American marten, American sable, Martes americana +n02450677 stone marten, beech marten, Martes foina +n02450829 fisher, pekan, fisher cat, black cat, Martes pennanti +n02451125 yellow-throated marten, Charronia flavigula +n02451415 tayra, taira, Eira barbara +n02451575 fictional animal +n02453108 pachyderm +n02453611 edentate +n02454379 armadillo +n02454794 peba, nine-banded armadillo, Texas armadillo, Dasypus novemcinctus +n02455135 apar, three-banded armadillo, Tolypeutes tricinctus +n02455428 tatouay, cabassous, Cabassous unicinctus +n02455720 peludo, poyou, Euphractus sexcinctus +n02456008 giant armadillo, tatou, tatu, Priodontes giganteus +n02456275 pichiciago, pichiciego, fairy armadillo, chlamyphore, Chlamyphorus truncatus +n02456962 sloth, tree sloth +n02457408 three-toed sloth, ai, Bradypus tridactylus +n02457945 two-toed sloth, unau, unai, Choloepus didactylus +n02458135 two-toed sloth, unau, unai, Choloepus hoffmanni +n02458517 megatherian, megatheriid, megatherian mammal +n02459190 mylodontid +n02460009 anteater, New World anteater +n02460451 ant bear, giant anteater, great anteater, tamanoir, Myrmecophaga jubata +n02460817 silky anteater, two-toed anteater, Cyclopes didactylus +n02461128 tamandua, tamandu, lesser anteater, Tamandua tetradactyla +n02461830 pangolin, scaly anteater, anteater +n02462213 coronet +n02469248 scapular +n02469472 tadpole, polliwog, pollywog +n02469914 primate +n02470238 simian +n02470325 ape +n02470709 anthropoid +n02470899 anthropoid ape +n02471300 hominoid +n02471762 hominid +n02472293 homo, man, human being, human +n02472987 world, human race, humanity, humankind, human beings, humans, mankind, man +n02473307 Homo erectus +n02473554 Pithecanthropus, Pithecanthropus erectus, genus Pithecanthropus +n02473720 Java man, Trinil man +n02473857 Peking man +n02473983 Sinanthropus, genus Sinanthropus +n02474110 Homo soloensis +n02474282 Javanthropus, genus Javanthropus +n02474605 Homo habilis +n02474777 Homo sapiens +n02475078 Neandertal man, Neanderthal man, Neandertal, Neanderthal, Homo sapiens neanderthalensis +n02475358 Cro-magnon +n02475669 Homo sapiens sapiens, modern man +n02476219 australopithecine +n02476567 Australopithecus afarensis +n02476870 Australopithecus africanus +n02477028 Australopithecus boisei +n02477187 Zinjanthropus, genus Zinjanthropus +n02477329 Australopithecus robustus +n02477516 Paranthropus, genus Paranthropus +n02477782 Sivapithecus +n02478239 rudapithecus, Dryopithecus Rudapithecus hungaricus +n02478875 proconsul +n02479332 Aegyptopithecus +n02480153 great ape, pongid +n02480495 orangutan, orang, orangutang, Pongo pygmaeus +n02480855 gorilla, Gorilla gorilla +n02481103 western lowland gorilla, Gorilla gorilla gorilla +n02481235 eastern lowland gorilla, Gorilla gorilla grauri +n02481366 mountain gorilla, Gorilla gorilla beringei +n02481500 silverback +n02481823 chimpanzee, chimp, Pan troglodytes +n02482060 western chimpanzee, Pan troglodytes verus +n02482286 eastern chimpanzee, Pan troglodytes schweinfurthii +n02482474 central chimpanzee, Pan troglodytes troglodytes +n02482650 pygmy chimpanzee, bonobo, Pan paniscus +n02483092 lesser ape +n02483362 gibbon, Hylobates lar +n02483708 siamang, Hylobates syndactylus, Symphalangus syndactylus +n02484322 monkey +n02484473 Old World monkey, catarrhine +n02484975 guenon, guenon monkey +n02485225 talapoin, Cercopithecus talapoin +n02485371 grivet, Cercopithecus aethiops +n02485536 vervet, vervet monkey, Cercopithecus aethiops pygerythrus +n02485688 green monkey, African green monkey, Cercopithecus aethiops sabaeus +n02485988 mangabey +n02486261 patas, hussar monkey, Erythrocebus patas +n02486410 baboon +n02486657 chacma, chacma baboon, Papio ursinus +n02486908 mandrill, Mandrillus sphinx +n02487079 drill, Mandrillus leucophaeus +n02487347 macaque +n02487547 rhesus, rhesus monkey, Macaca mulatta +n02487675 bonnet macaque, bonnet monkey, capped macaque, crown monkey, Macaca radiata +n02487847 Barbary ape, Macaca sylvana +n02488003 crab-eating macaque, croo monkey, Macaca irus +n02488291 langur +n02488415 entellus, hanuman, Presbytes entellus, Semnopithecus entellus +n02488702 colobus, colobus monkey +n02488894 guereza, Colobus guereza +n02489166 proboscis monkey, Nasalis larvatus +n02489589 New World monkey, platyrrhine, platyrrhinian +n02490219 marmoset +n02490597 true marmoset +n02490811 pygmy marmoset, Cebuella pygmaea +n02491107 tamarin, lion monkey, lion marmoset, leoncita +n02491329 silky tamarin, Leontocebus rosalia +n02491474 pinche, Leontocebus oedipus +n02492035 capuchin, ringtail, Cebus capucinus +n02492356 douroucouli, Aotus trivirgatus +n02492660 howler monkey, howler +n02492948 saki +n02493224 uakari +n02493509 titi, titi monkey +n02493793 spider monkey, Ateles geoffroyi +n02494079 squirrel monkey, Saimiri sciureus +n02494383 woolly monkey +n02495242 tree shrew +n02496052 prosimian +n02496913 lemur +n02497673 Madagascar cat, ring-tailed lemur, Lemur catta +n02498153 aye-aye, Daubentonia madagascariensis +n02498743 slender loris, Loris gracilis +n02499022 slow loris, Nycticebus tardigradua, Nycticebus pygmaeus +n02499316 potto, kinkajou, Perodicticus potto +n02499568 angwantibo, golden potto, Arctocebus calabarensis +n02499808 galago, bushbaby, bush baby +n02500267 indri, indris, Indri indri, Indri brevicaudatus +n02500596 woolly indris, Avahi laniger +n02501583 tarsier +n02501923 Tarsius syrichta +n02502006 Tarsius glis +n02502514 flying lemur, flying cat, colugo +n02502807 Cynocephalus variegatus +n02503127 proboscidean, proboscidian +n02503517 elephant +n02503756 rogue elephant +n02504013 Indian elephant, Elephas maximus +n02504458 African elephant, Loxodonta africana +n02504770 mammoth +n02505063 woolly mammoth, northern mammoth, Mammuthus primigenius +n02505238 columbian mammoth, Mammuthus columbi +n02505485 imperial mammoth, imperial elephant, Archidiskidon imperator +n02505998 mastodon, mastodont +n02506947 plantigrade mammal, plantigrade +n02507148 digitigrade mammal, digitigrade +n02507649 procyonid +n02508021 raccoon, racoon +n02508213 common raccoon, common racoon, coon, ringtail, Procyon lotor +n02508346 crab-eating raccoon, Procyon cancrivorus +n02508742 bassarisk, cacomistle, cacomixle, coon cat, raccoon fox, ringtail, ring-tailed cat, civet cat, miner's cat, Bassariscus astutus +n02509197 kinkajou, honey bear, potto, Potos flavus, Potos caudivolvulus +n02509515 coati, coati-mondi, coati-mundi, coon cat, Nasua narica +n02509815 lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens +n02510455 giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca +n02511730 twitterer +n02512053 fish +n02512752 fingerling +n02512830 game fish, sport fish +n02512938 food fish +n02513248 rough fish +n02513355 groundfish, bottom fish +n02513560 young fish +n02513727 parr +n02513805 mouthbreeder +n02513939 spawner +n02514041 barracouta, snoek +n02515214 crossopterygian, lobefin, lobe-finned fish +n02515713 coelacanth, Latimeria chalumnae +n02516188 lungfish +n02516776 ceratodus +n02517442 catfish, siluriform fish +n02517938 silurid, silurid fish +n02518324 European catfish, sheatfish, Silurus glanis +n02518622 electric catfish, Malopterurus electricus +n02519148 bullhead, bullhead catfish +n02519340 horned pout, hornpout, pout, Ameiurus Melas +n02519472 brown bullhead +n02519686 channel catfish, channel cat, Ictalurus punctatus +n02519862 blue catfish, blue cat, blue channel catfish, blue channel cat +n02520147 flathead catfish, mudcat, goujon, shovelnose catfish, spoonbill catfish, Pylodictus olivaris +n02520525 armored catfish +n02520810 sea catfish +n02521646 gadoid, gadoid fish +n02522399 cod, codfish +n02522637 codling +n02522722 Atlantic cod, Gadus morhua +n02522866 Pacific cod, Alaska cod, Gadus macrocephalus +n02523110 whiting, Merlangus merlangus, Gadus merlangus +n02523427 burbot, eelpout, ling, cusk, Lota lota +n02523877 haddock, Melanogrammus aeglefinus +n02524202 pollack, pollock, Pollachius pollachius +n02524524 hake +n02524659 silver hake, Merluccius bilinearis, whiting +n02524928 ling +n02525382 cusk, torsk, Brosme brosme +n02525703 grenadier, rattail, rattail fish +n02526121 eel +n02526425 elver +n02526818 common eel, freshwater eel +n02527057 tuna, Anguilla sucklandii +n02527271 moray, moray eel +n02527622 conger, conger eel +n02528163 teleost fish, teleost, teleostan +n02529293 beaked salmon, sandfish, Gonorhynchus gonorhynchus +n02529772 clupeid fish, clupeid +n02530052 whitebait +n02530188 brit, britt +n02530421 shad +n02530637 common American shad, Alosa sapidissima +n02530831 river shad, Alosa chrysocloris +n02530999 allice shad, allis shad, allice, allis, Alosa alosa +n02531114 alewife, Alosa pseudoharengus, Pomolobus pseudoharengus +n02531625 menhaden, Brevoortia tyrannis +n02532028 herring, Clupea harangus +n02532272 Atlantic herring, Clupea harengus harengus +n02532451 Pacific herring, Clupea harengus pallasii +n02532602 sardine +n02532786 sild +n02532918 brisling, sprat, Clupea sprattus +n02533209 pilchard, sardine, Sardina pilchardus +n02533545 Pacific sardine, Sardinops caerulea +n02533834 anchovy +n02534165 mediterranean anchovy, Engraulis encrasicholus +n02534559 salmonid +n02534734 salmon +n02535080 parr +n02535163 blackfish +n02535258 redfish +n02535537 Atlantic salmon, Salmo salar +n02535759 landlocked salmon, lake salmon +n02536165 sockeye, sockeye salmon, red salmon, blueback salmon, Oncorhynchus nerka +n02536456 chinook, chinook salmon, king salmon, quinnat salmon, Oncorhynchus tshawytscha +n02536864 coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch +n02537085 trout +n02537319 brown trout, salmon trout, Salmo trutta +n02537525 rainbow trout, Salmo gairdneri +n02537716 sea trout +n02538010 lake trout, salmon trout, Salvelinus namaycush +n02538216 brook trout, speckled trout, Salvelinus fontinalis +n02538406 char, charr +n02538562 Arctic char, Salvelinus alpinus +n02538985 whitefish +n02539424 lake whitefish, Coregonus clupeaformis +n02539573 cisco, lake herring, Coregonus artedi +n02539894 round whitefish, Menominee whitefish, Prosopium cylindraceum +n02540412 smelt +n02540983 sparling, European smelt, Osmerus eperlanus +n02541257 capelin, capelan, caplin +n02541687 tarpon, Tarpon atlanticus +n02542017 ladyfish, tenpounder, Elops saurus +n02542432 bonefish, Albula vulpes +n02542958 argentine +n02543255 lanternfish +n02543565 lizardfish, snakefish, snake-fish +n02544274 lancetfish, lancet fish, wolffish +n02545841 opah, moonfish, Lampris regius +n02546028 New World opah, Lampris guttatus +n02546331 ribbonfish +n02546627 dealfish, Trachipterus arcticus +n02547014 oarfish, king of the herring, ribbonfish, Regalecus glesne +n02547733 batfish +n02548247 goosefish, angler, anglerfish, angler fish, monkfish, lotte, allmouth, Lophius Americanus +n02548689 toadfish, Opsanus tau +n02548884 oyster fish, oyster-fish, oysterfish +n02549248 frogfish +n02549376 sargassum fish +n02549989 needlefish, gar, billfish +n02550203 timucu +n02550460 flying fish +n02550655 monoplane flying fish, two-wing flying fish +n02551134 halfbeak +n02551668 saury, billfish, Scomberesox saurus +n02552171 spiny-finned fish, acanthopterygian +n02553028 lingcod, Ophiodon elongatus +n02554730 percoid fish, percoid, percoidean +n02555863 perch +n02556373 climbing perch, Anabas testudineus, A. testudineus +n02556846 perch +n02557182 yellow perch, Perca flavescens +n02557318 European perch, Perca fluviatilis +n02557591 pike-perch, pike perch +n02557749 walleye, walleyed pike, jack salmon, dory, Stizostedion vitreum +n02557909 blue pike, blue pickerel, blue pikeperch, blue walleye, Strizostedion vitreum glaucum +n02558206 snail darter, Percina tanasi +n02558860 cusk-eel +n02559144 brotula +n02559383 pearlfish, pearl-fish +n02559862 robalo +n02560110 snook +n02561108 pike +n02561381 northern pike, Esox lucius +n02561514 muskellunge, Esox masquinongy +n02561661 pickerel +n02561803 chain pickerel, chain pike, Esox niger +n02561937 redfin pickerel, barred pickerel, Esox americanus +n02562315 sunfish, centrarchid +n02562796 crappie +n02562971 black crappie, Pomoxis nigromaculatus +n02563079 white crappie, Pomoxis annularis +n02563182 freshwater bream, bream +n02563648 pumpkinseed, Lepomis gibbosus +n02563792 bluegill, Lepomis macrochirus +n02563949 spotted sunfish, stumpknocker, Lepomis punctatus +n02564270 freshwater bass +n02564403 rock bass, rock sunfish, Ambloplites rupestris +n02564720 black bass +n02564935 Kentucky black bass, spotted black bass, Micropterus pseudoplites +n02565072 smallmouth, smallmouth bass, smallmouthed bass, smallmouth black bass, smallmouthed black bass, Micropterus dolomieu +n02565324 largemouth, largemouth bass, largemouthed bass, largemouth black bass, largemouthed black bass, Micropterus salmoides +n02565573 bass +n02566109 serranid fish, serranid +n02566489 white perch, silver perch, Morone americana +n02566665 yellow bass, Morone interrupta +n02567334 blackmouth bass, Synagrops bellus +n02567633 rock sea bass, rock bass, Centropristis philadelphica +n02568087 striped bass, striper, Roccus saxatilis, rockfish +n02568447 stone bass, wreckfish, Polyprion americanus +n02568959 grouper +n02569484 hind +n02569631 rock hind, Epinephelus adscensionis +n02569905 creole-fish, Paranthias furcifer +n02570164 jewfish, Mycteroperca bonaci +n02570484 soapfish +n02570838 surfperch, surffish, surf fish +n02571167 rainbow seaperch, rainbow perch, Hipsurus caryi +n02571652 bigeye +n02571810 catalufa, Priacanthus arenatus +n02572196 cardinalfish +n02572484 flame fish, flamefish, Apogon maculatus +n02573249 tilefish, Lopholatilus chamaeleonticeps +n02573704 bluefish, Pomatomus saltatrix +n02574271 cobia, Rachycentron canadum, sergeant fish +n02574910 remora, suckerfish, sucking fish +n02575325 sharksucker, Echeneis naucrates +n02575590 whale sucker, whalesucker, Remilegia australis +n02576223 carangid fish, carangid +n02576575 jack +n02576906 crevalle jack, jack crevalle, Caranx hippos +n02577041 yellow jack, Caranx bartholomaei +n02577164 runner, blue runner, Caranx crysos +n02577403 rainbow runner, Elagatis bipinnulata +n02577662 leatherjacket, leatherjack +n02577952 threadfish, thread-fish, Alectis ciliaris +n02578233 moonfish, Atlantic moonfish, horsefish, horsehead, horse-head, dollarfish, Selene setapinnis +n02578454 lookdown, lookdown fish, Selene vomer +n02578771 amberjack, amberfish +n02578928 yellowtail, Seriola dorsalis +n02579303 kingfish, Seriola grandis +n02579557 pompano +n02579762 Florida pompano, Trachinotus carolinus +n02579928 permit, Trachinotus falcatus +n02580336 scad +n02580679 horse mackerel, jack mackerel, Spanish mackerel, saurel, Trachurus symmetricus +n02580830 horse mackerel, saurel, Trachurus trachurus +n02581108 bigeye scad, big-eyed scad, goggle-eye, Selar crumenophthalmus +n02581482 mackerel scad, mackerel shad, Decapterus macarellus +n02581642 round scad, cigarfish, quiaquia, Decapterus punctatus +n02581957 dolphinfish, dolphin, mahimahi +n02582220 Coryphaena hippurus +n02582349 Coryphaena equisetis +n02582721 pomfret, Brama raii +n02583567 characin, characin fish, characid +n02583890 tetra +n02584145 cardinal tetra, Paracheirodon axelrodi +n02584449 piranha, pirana, caribe +n02585872 cichlid, cichlid fish +n02586238 bolti, Tilapia nilotica +n02586543 snapper +n02587051 red snapper, Lutjanus blackfordi +n02587300 grey snapper, gray snapper, mangrove snapper, Lutjanus griseus +n02587479 mutton snapper, muttonfish, Lutjanus analis +n02587618 schoolmaster, Lutjanus apodus +n02587877 yellowtail, yellowtail snapper, Ocyurus chrysurus +n02588286 grunt +n02588794 margate, Haemulon album +n02588945 Spanish grunt, Haemulon macrostomum +n02589062 tomtate, Haemulon aurolineatum +n02589196 cottonwick, Haemulon malanurum +n02589316 sailor's-choice, sailors choice, Haemulon parra +n02589623 porkfish, pork-fish, Anisotremus virginicus +n02589796 pompon, black margate, Anisotremus surinamensis +n02590094 pigfish, hogfish, Orthopristis chrysopterus +n02590495 sparid, sparid fish +n02590702 sea bream, bream +n02590987 porgy +n02591330 red porgy, Pagrus pagrus +n02591613 European sea bream, Pagellus centrodontus +n02591911 Atlantic sea bream, Archosargus rhomboidalis +n02592055 sheepshead, Archosargus probatocephalus +n02592371 pinfish, sailor's-choice, squirrelfish, Lagodon rhomboides +n02592734 sheepshead porgy, Calamus penna +n02593019 snapper, Chrysophrys auratus +n02593191 black bream, Chrysophrys australis +n02593453 scup, northern porgy, northern scup, Stenotomus chrysops +n02593679 scup, southern porgy, southern scup, Stenotomus aculeatus +n02594250 sciaenid fish, sciaenid +n02594942 striped drum, Equetus pulcher +n02595056 jackknife-fish, Equetus lanceolatus +n02595339 silver perch, mademoiselle, Bairdiella chrysoura +n02595702 red drum, channel bass, redfish, Sciaenops ocellatus +n02596067 mulloway, jewfish, Sciaena antarctica +n02596252 maigre, maiger, Sciaena aquila +n02596381 croaker +n02596720 Atlantic croaker, Micropogonias undulatus +n02597004 yellowfin croaker, surffish, surf fish, Umbrina roncador +n02597367 whiting +n02597608 kingfish +n02597818 king whiting, Menticirrhus americanus +n02597972 northern whiting, Menticirrhus saxatilis +n02598134 corbina, Menticirrhus undulatus +n02598573 white croaker, chenfish, kingfish, Genyonemus lineatus +n02598878 white croaker, queenfish, Seriphus politus +n02599052 sea trout +n02599347 weakfish, Cynoscion regalis +n02599557 spotted weakfish, spotted sea trout, spotted squeateague, Cynoscion nebulosus +n02599958 mullet +n02600298 goatfish, red mullet, surmullet, Mullus surmuletus +n02600503 red goatfish, Mullus auratus +n02600798 yellow goatfish, Mulloidichthys martinicus +n02601344 mullet, grey mullet, gray mullet +n02601767 striped mullet, Mugil cephalus +n02601921 white mullet, Mugil curema +n02602059 liza, Mugil liza +n02602405 silversides, silverside +n02602760 jacksmelt, Atherinopsis californiensis +n02603317 barracuda +n02603540 great barracuda, Sphyraena barracuda +n02603862 sweeper +n02604157 sea chub +n02604480 Bermuda chub, rudderfish, Kyphosus sectatrix +n02604954 spadefish, angelfish, Chaetodipterus faber +n02605316 butterfly fish +n02605703 chaetodon +n02605936 angelfish +n02606052 rock beauty, Holocanthus tricolor +n02606384 damselfish, demoiselle +n02606751 beaugregory, Pomacentrus leucostictus +n02607072 anemone fish +n02607201 clown anemone fish, Amphiprion percula +n02607470 sergeant major, Abudefduf saxatilis +n02607862 wrasse +n02608284 pigfish, giant pigfish, Achoerodus gouldii +n02608547 hogfish, hog snapper, Lachnolaimus maximus +n02608860 slippery dick, Halicoeres bivittatus +n02608996 puddingwife, pudding-wife, Halicoeres radiatus +n02609302 bluehead, Thalassoma bifasciatum +n02609823 pearly razorfish, Hemipteronatus novacula +n02610066 tautog, blackfish, Tautoga onitis +n02610373 cunner, bergall, Tautogolabrus adspersus +n02610664 parrotfish, polly fish, pollyfish +n02610980 threadfin +n02611561 jawfish +n02611898 stargazer +n02612167 sand stargazer +n02613181 blenny, combtooth blenny +n02613572 shanny, Blennius pholis +n02613820 Molly Miller, Scartella cristata +n02614140 clinid, clinid fish +n02614482 pikeblenny +n02614653 bluethroat pikeblenny, Chaenopsis ocellata +n02614978 gunnel, bracketed blenny +n02615298 rock gunnel, butterfish, Pholis gunnellus +n02616128 eelblenny +n02616397 wrymouth, ghostfish, Cryptacanthodes maculatus +n02616851 wolffish, wolf fish, catfish +n02617537 viviparous eelpout, Zoarces viviparus +n02618094 ocean pout, Macrozoarces americanus +n02618513 sand lance, sand launce, sand eel, launce +n02618827 dragonet +n02619165 goby, gudgeon +n02619550 mudskipper, mudspringer +n02619861 sleeper, sleeper goby +n02620167 flathead +n02620578 archerfish, Toxotes jaculatrix +n02621258 surgeonfish +n02621908 gempylid +n02622249 snake mackerel, Gempylus serpens +n02622547 escolar, Lepidocybium flavobrunneum +n02622712 oilfish, Ruvettus pretiosus +n02622955 cutlassfish, frost fish, hairtail +n02623445 scombroid, scombroid fish +n02624167 mackerel +n02624551 common mackerel, shiner, Scomber scombrus +n02624807 Spanish mackerel, Scomber colias +n02624987 chub mackerel, tinker, Scomber japonicus +n02625258 wahoo, Acanthocybium solandri +n02625612 Spanish mackerel +n02625851 king mackerel, cavalla, cero, Scomberomorus cavalla +n02626089 Scomberomorus maculatus +n02626265 cero, pintado, kingfish, Scomberomorus regalis +n02626471 sierra, Scomberomorus sierra +n02626762 tuna, tunny +n02627037 albacore, long-fin tunny, Thunnus alalunga +n02627292 bluefin, bluefin tuna, horse mackerel, Thunnus thynnus +n02627532 yellowfin, yellowfin tuna, Thunnus albacares +n02627835 bonito +n02628062 skipjack, Atlantic bonito, Sarda sarda +n02628259 Chile bonito, Chilean bonito, Pacific bonito, Sarda chiliensis +n02628600 skipjack, skipjack tuna, Euthynnus pelamis +n02629230 bonito, oceanic bonito, Katsuwonus pelamis +n02629716 swordfish, Xiphias gladius +n02630281 sailfish +n02630615 Atlantic sailfish, Istiophorus albicans +n02630739 billfish +n02631041 marlin +n02631330 blue marlin, Makaira nigricans +n02631475 black marlin, Makaira mazara, Makaira marlina +n02631628 striped marlin, Makaira mitsukurii +n02631775 white marlin, Makaira albida +n02632039 spearfish +n02632494 louvar, Luvarus imperialis +n02633422 dollarfish, Poronotus triacanthus +n02633677 palometa, California pompano, Palometa simillima +n02633977 harvestfish, Paprilus alepidotus +n02634545 driftfish +n02635154 barrelfish, black rudderfish, Hyperglyphe perciformis +n02635580 clingfish +n02636170 tripletail +n02636405 Atlantic tripletail, Lobotes surinamensis +n02636550 Pacific tripletail, Lobotes pacificus +n02636854 mojarra +n02637179 yellowfin mojarra, Gerres cinereus +n02637475 silver jenny, Eucinostomus gula +n02637977 whiting +n02638596 ganoid, ganoid fish +n02639087 bowfin, grindle, dogfish, Amia calva +n02639605 paddlefish, duckbill, Polyodon spathula +n02639922 Chinese paddlefish, Psephurus gladis +n02640242 sturgeon +n02640626 Pacific sturgeon, white sturgeon, Sacramento sturgeon, Acipenser transmontanus +n02640857 beluga, hausen, white sturgeon, Acipenser huso +n02641379 gar, garfish, garpike, billfish, Lepisosteus osseus +n02642107 scorpaenoid, scorpaenoid fish +n02642644 scorpaenid, scorpaenid fish +n02643112 scorpionfish, scorpion fish, sea scorpion +n02643316 plumed scorpionfish, Scorpaena grandicornis +n02643566 lionfish +n02643836 stonefish, Synanceja verrucosa +n02644113 rockfish +n02644360 copper rockfish, Sebastodes caurinus +n02644501 vermillion rockfish, rasher, Sebastodes miniatus +n02644665 red rockfish, Sebastodes ruberrimus +n02644817 rosefish, ocean perch, Sebastodes marinus +n02645538 bullhead +n02645691 miller's-thumb +n02645953 sea raven, Hemitripterus americanus +n02646667 lumpfish, Cyclopterus lumpus +n02646892 lumpsucker +n02648035 pogge, armed bullhead, Agonus cataphractus +n02648625 greenling +n02648916 kelp greenling, Hexagrammos decagrammus +n02649218 painted greenling, convict fish, convictfish, Oxylebius pictus +n02649546 flathead +n02650050 gurnard +n02650413 tub gurnard, yellow gurnard, Trigla lucerna +n02650541 sea robin, searobin +n02651060 northern sea robin, Prionotus carolinus +n02652132 flying gurnard, flying robin, butterflyfish +n02652668 plectognath, plectognath fish +n02653145 triggerfish +n02653497 queen triggerfish, Bessy cerca, oldwench, oldwife, Balistes vetula +n02653786 filefish +n02654112 leatherjacket, leatherfish +n02654425 boxfish, trunkfish +n02654745 cowfish, Lactophrys quadricornis +n02655020 puffer, pufferfish, blowfish, globefish +n02655523 spiny puffer +n02655848 porcupinefish, porcupine fish, Diodon hystrix +n02656032 balloonfish, Diodon holocanthus +n02656301 burrfish +n02656670 ocean sunfish, sunfish, mola, headfish +n02656969 sharptail mola, Mola lanceolata +n02657368 flatfish +n02657694 flounder +n02658079 righteye flounder, righteyed flounder +n02658531 plaice, Pleuronectes platessa +n02658811 European flatfish, Platichthys flesus +n02659176 yellowtail flounder, Limanda ferruginea +n02659478 winter flounder, blackback flounder, lemon sole, Pseudopleuronectes americanus +n02659808 lemon sole, Microstomus kitt +n02660091 American plaice, Hippoglossoides platessoides +n02660208 halibut, holibut +n02660519 Atlantic halibut, Hippoglossus hippoglossus +n02660640 Pacific halibut, Hippoglossus stenolepsis +n02661017 lefteye flounder, lefteyed flounder +n02661473 southern flounder, Paralichthys lethostigmus +n02661618 summer flounder, Paralichthys dentatus +n02662239 whiff +n02662397 horned whiff, Citharichthys cornutus +n02662559 sand dab +n02662825 windowpane, Scophthalmus aquosus +n02662993 brill, Scophthalmus rhombus +n02663211 turbot, Psetta maxima +n02663485 tonguefish, tongue-fish +n02663849 sole +n02664285 European sole, Solea solea +n02664642 English sole, lemon sole, Parophrys vitulus +n02665250 hogchoker, Trinectes maculatus +n02665985 aba +n02666196 abacus +n02666501 abandoned ship, derelict +n02666624 A battery +n02666943 abattoir, butchery, shambles, slaughterhouse +n02667093 abaya +n02667244 Abbe condenser +n02667379 abbey +n02667478 abbey +n02667576 abbey +n02667693 Abney level +n02668393 abrader, abradant +n02668613 abrading stone +n02669295 abutment +n02669442 abutment arch +n02669534 academic costume +n02669723 academic gown, academic robe, judge's robe +n02670186 accelerator, throttle, throttle valve +n02670382 accelerator, particle accelerator, atom smasher +n02670683 accelerator, accelerator pedal, gas pedal, gas, throttle, gun +n02670935 accelerometer +n02671780 accessory, accoutrement, accouterment +n02672152 accommodating lens implant, accommodating IOL +n02672371 accommodation +n02672831 accordion, piano accordion, squeeze box +n02675077 acetate disk, phonograph recording disk +n02675219 acetate rayon, acetate +n02675522 achromatic lens +n02676097 acoustic delay line, sonic delay line +n02676261 acoustic device +n02676566 acoustic guitar +n02676670 acoustic modem +n02676938 acropolis +n02677028 acrylic +n02677136 acrylic, acrylic paint +n02677436 actinometer +n02677718 action, action mechanism +n02678010 active matrix screen +n02678384 actuator +n02678897 adapter, adaptor +n02679142 adder +n02679257 adding machine, totalizer, totaliser +n02679961 addressing machine, Addressograph +n02680110 adhesive bandage +n02680512 adit +n02680638 adjoining room +n02680754 adjustable wrench, adjustable spanner +n02681392 adobe, adobe brick +n02682311 adz, adze +n02682407 aeolian harp, aeolian lyre, wind harp +n02682569 aerator +n02682811 aerial torpedo +n02682922 aerosol, aerosol container, aerosol can, aerosol bomb, spray can +n02683183 Aertex +n02683323 afghan +n02683454 Afro-wig +n02683558 afterburner +n02683791 after-shave, after-shave lotion +n02684248 agateware +n02684356 agglomerator +n02684515 aglet, aiglet, aiguilette +n02684649 aglet, aiglet +n02684962 agora, public square +n02685082 aigrette, aigret +n02685253 aileron +n02685365 air bag +n02685701 airbrake +n02685995 airbrush +n02686121 airbus +n02686227 air compressor +n02686379 air conditioner, air conditioning +n02686568 aircraft +n02687172 aircraft carrier, carrier, flattop, attack aircraft carrier +n02687423 aircraft engine +n02687682 air cushion, air spring +n02687821 airdock, hangar, repair shed +n02687992 airfield, landing field, flying field, field +n02688273 air filter, air cleaner +n02688443 airfoil, aerofoil, control surface, surface +n02689144 airframe +n02689274 air gun, airgun, air rifle +n02689434 air hammer, jackhammer, pneumatic hammer +n02689748 air horn +n02689819 airing cupboard +n02690373 airliner +n02690715 airmailer +n02691156 airplane, aeroplane, plane +n02692086 airplane propeller, airscrew, prop +n02692232 airport, airdrome, aerodrome, drome +n02692513 air pump, vacuum pump +n02692680 air search radar +n02692877 airship, dirigible +n02693246 air terminal, airport terminal +n02693413 air-to-air missile +n02693540 air-to-ground missile, air-to-surface missile +n02694045 aisle +n02694279 Aladdin's lamp +n02694426 alarm, warning device, alarm system +n02694662 alarm clock, alarm +n02694966 alb +n02695627 alcazar +n02695762 alcohol thermometer, alcohol-in-glass thermometer +n02696165 alehouse +n02696246 alembic +n02696569 algometer +n02696843 alidade, alidad +n02697022 alidade, alidad +n02697221 A-line +n02697576 Allen screw +n02697675 Allen wrench +n02697876 alligator wrench +n02698244 alms dish, alms tray +n02698473 alpaca +n02698634 alpenstock +n02699494 altar +n02699629 altar, communion table, Lord's table +n02699770 altarpiece, reredos +n02699915 altazimuth +n02700064 alternator +n02700258 altimeter +n02700895 Amati +n02701002 ambulance +n02701260 amen corner +n02701730 American organ +n02702989 ammeter +n02703124 ammonia clock +n02703275 ammunition, ammo +n02704645 amphibian, amphibious aircraft +n02704792 amphibian, amphibious vehicle +n02704949 amphitheater, amphitheatre, coliseum +n02705201 amphitheater, amphitheatre +n02705429 amphora +n02705944 amplifier +n02706221 ampulla +n02706806 amusement arcade +n02708093 analog clock +n02708224 analog computer, analogue computer +n02708433 analog watch +n02708555 analytical balance, chemical balance +n02708711 analyzer, analyser +n02708885 anamorphosis, anamorphism +n02709101 anastigmat +n02709367 anchor, ground tackle +n02709637 anchor chain, anchor rope +n02709763 anchor light, riding light, riding lamp +n02709908 AND circuit, AND gate +n02710044 andiron, firedog, dog, dog-iron +n02710201 android, humanoid, mechanical man +n02710324 anechoic chamber +n02710429 anemometer, wind gauge, wind gage +n02710600 aneroid barometer, aneroid +n02711237 angiocardiogram +n02711780 angioscope +n02712545 angle bracket, angle iron +n02712643 angledozer +n02713003 ankle brace +n02713218 anklet, anklets, bobbysock, bobbysocks +n02713364 anklet +n02713496 ankus +n02714315 anode +n02714535 anode +n02714751 answering machine +n02715229 antenna, aerial, transmitting aerial +n02715513 anteroom, antechamber, entrance hall, hall, foyer, lobby, vestibule +n02715712 antiaircraft, antiaircraft gun, flak, flack, pom-pom, ack-ack, ack-ack gun +n02716626 antiballistic missile, ABM +n02720048 antifouling paint +n02720576 anti-G suit, G suit +n02721813 antimacassar +n02723165 antiperspirant +n02724722 anti-submarine rocket +n02725872 anvil +n02726017 ao dai +n02726210 apadana +n02726305 apartment, flat +n02726681 apartment building, apartment house +n02727016 aperture +n02727141 aperture +n02727426 apiary, bee house +n02727825 apparatus, setup +n02728440 apparel, wearing apparel, dress, clothes +n02729222 applecart +n02729837 appliance +n02729965 appliance, contraption, contrivance, convenience, gadget, gizmo, gismo, widget +n02730265 applicator, applier +n02730568 appointment, fitting +n02730930 apron +n02731251 apron string +n02731398 apse, apsis +n02731629 aqualung, Aqua-Lung, scuba +n02731900 aquaplane +n02732072 aquarium, fish tank, marine museum +n02732572 arabesque +n02732827 arbor, arbour, bower, pergola +n02733213 arcade, colonnade +n02733524 arch +n02734725 architecture +n02734835 architrave +n02735268 arch support +n02735361 arc lamp, arc light +n02735538 arctic, galosh, golosh, rubber, gumshoe +n02735688 area +n02736396 areaway +n02736798 argyle, argyll +n02737351 ark +n02737660 arm +n02738031 armament +n02738271 armature +n02738449 armband +n02738535 armchair +n02738741 armet +n02738859 arm guard, arm pad +n02738978 armhole +n02739123 armilla +n02739427 armlet, arm band +n02739550 armoire +n02739668 armor, armour +n02739889 armored car, armoured car +n02740061 armored car, armoured car +n02740300 armored personnel carrier, armoured personnel carrier, APC +n02740533 armored vehicle, armoured vehicle +n02740764 armor plate, armour plate, armor plating, plate armor, plate armour +n02741367 armory, armoury, arsenal +n02741475 armrest +n02742070 arquebus, harquebus, hackbut, hagbut +n02742194 array +n02742322 array, raiment, regalia +n02742468 arrester, arrester hook +n02742753 arrow +n02743426 arsenal, armory, armoury +n02744323 arterial road +n02744844 arthrogram +n02744961 arthroscope +n02745492 artificial heart +n02745611 artificial horizon, gyro horizon, flight indicator +n02745816 artificial joint +n02746008 artificial kidney, hemodialyzer +n02746225 artificial skin +n02746365 artillery, heavy weapon, gun, ordnance +n02746595 artillery shell +n02746683 artist's loft +n02746978 art school +n02747063 ascot +n02747177 ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin +n02747672 ash-pan +n02747802 ashtray +n02748183 aspergill, aspersorium +n02748359 aspersorium +n02748491 aspirator +n02749169 aspirin powder, headache powder +n02749292 assault gun +n02749479 assault rifle, assault gun +n02749670 assegai, assagai +n02749790 assembly +n02749953 assembly +n02750070 assembly hall +n02750169 assembly plant +n02750320 astatic coils +n02750652 astatic galvanometer +n02751067 astrodome +n02751215 astrolabe +n02751295 astronomical telescope +n02751490 astronomy satellite +n02752199 athenaeum, atheneum +n02752496 athletic sock, sweat sock, varsity sock +n02752615 athletic supporter, supporter, suspensor, jockstrap, jock +n02752810 atlas, telamon +n02752917 atmometer, evaporometer +n02753044 atom bomb, atomic bomb, A-bomb, fission bomb, plutonium bomb +n02753394 atomic clock +n02753710 atomic pile, atomic reactor, pile, chain reactor +n02754103 atomizer, atomiser, spray, sprayer, nebulizer, nebuliser +n02754656 atrium +n02755140 attache case, attache +n02755352 attachment, bond +n02755529 attack submarine +n02755675 attenuator +n02755823 attic +n02755984 attic fan +n02756098 attire, garb, dress +n02756854 audio amplifier +n02756977 audiocassette +n02757061 audio CD, audio compact disc +n02757337 audiometer, sonometer +n02757462 audio system, sound system +n02757714 audiotape +n02757810 audiotape +n02757927 audiovisual, audiovisual aid +n02758134 auditorium +n02758490 auger, gimlet, screw auger, wimble +n02758863 autobahn +n02758960 autoclave, sterilizer, steriliser +n02759257 autofocus +n02759387 autogiro, autogyro, gyroplane +n02759700 autoinjector +n02759963 autoloader, self-loader +n02760099 automat +n02760199 automat +n02760298 automatic choke +n02760429 automatic firearm, automatic gun, automatic weapon +n02760658 automatic pistol, automatic +n02760855 automatic rifle, automatic, machine rifle +n02761034 automatic transmission, automatic drive +n02761206 automation +n02761392 automaton, robot, golem +n02761557 automobile engine +n02761696 automobile factory, auto factory, car factory +n02761834 automobile horn, car horn, motor horn, horn, hooter +n02762169 autopilot, automatic pilot, robot pilot +n02762371 autoradiograph +n02762508 autostrada +n02762725 auxiliary boiler, donkey boiler +n02762909 auxiliary engine, donkey engine +n02763083 auxiliary pump, donkey pump +n02763198 auxiliary research submarine +n02763306 auxiliary storage, external storage, secondary storage +n02763604 aviary, bird sanctuary, volary +n02763714 awl +n02763901 awning, sunshade, sunblind +n02764044 ax, axe +n02764398 ax handle, axe handle +n02764505 ax head, axe head +n02764614 axis, axis of rotation +n02764779 axle +n02764935 axle bar +n02765028 axletree +n02766168 babushka +n02766320 baby bed, baby's bed +n02766534 baby buggy, baby carriage, carriage, perambulator, pram, stroller, go-cart, pushchair, pusher +n02766792 baby grand, baby grand piano, parlor grand, parlor grand piano, parlour grand, parlour grand piano +n02767038 baby powder +n02767147 baby shoe +n02767433 back, backrest +n02767665 back +n02767956 backbench +n02768114 backboard +n02768226 backboard, basketball backboard +n02768433 backbone +n02768655 back brace +n02768973 backgammon board +n02769075 background, desktop, screen background +n02769290 backhoe +n02769669 backlighting +n02769748 backpack, back pack, knapsack, packsack, rucksack, haversack +n02769963 backpacking tent, pack tent +n02770078 backplate +n02770211 back porch +n02770585 backsaw, back saw +n02770721 backscratcher +n02770830 backseat +n02771004 backspace key, backspace, backspacer +n02771166 backstairs +n02771286 backstay +n02771547 backstop +n02771750 backsword +n02772101 backup system +n02772435 badminton court +n02772554 badminton equipment +n02772700 badminton racket, badminton racquet, battledore +n02773037 bag +n02773838 bag, traveling bag, travelling bag, grip, suitcase +n02774152 bag, handbag, pocketbook, purse +n02774630 baggage, luggage +n02774921 baggage +n02775039 baggage car, luggage van +n02775178 baggage claim +n02775483 bagpipe +n02775689 bailey +n02775813 bailey +n02775897 Bailey bridge +n02776007 bain-marie +n02776205 bait, decoy, lure +n02776505 baize +n02776631 bakery, bakeshop, bakehouse +n02776825 balaclava, balaclava helmet +n02776978 balalaika +n02777100 balance +n02777292 balance beam, beam +n02777402 balance wheel, balance +n02777638 balbriggan +n02777734 balcony +n02777927 balcony +n02778131 baldachin +n02778294 baldric, baldrick +n02778456 bale +n02778588 baling wire +n02778669 ball +n02779435 ball +n02779609 ball and chain +n02779719 ball-and-socket joint +n02779971 ballast, light ballast +n02780315 ball bearing, needle bearing, roller bearing +n02780445 ball cartridge +n02780588 ballcock, ball cock +n02780704 balldress +n02780815 ballet skirt, tutu +n02781121 ball gown +n02781213 ballistic galvanometer +n02781338 ballistic missile +n02781517 ballistic pendulum +n02781764 ballistocardiograph, cardiograph +n02782093 balloon +n02782432 balloon bomb, Fugo +n02782602 balloon sail +n02782681 ballot box +n02782778 ballpark, park +n02783035 ball-peen hammer +n02783161 ballpoint, ballpoint pen, ballpen, Biro +n02783324 ballroom, dance hall, dance palace +n02783459 ball valve +n02783900 balsa raft, Kon Tiki +n02783994 baluster +n02784124 banana boat +n02784998 band +n02785648 bandage, patch +n02786058 Band Aid +n02786198 bandanna, bandana +n02786331 bandbox +n02786463 banderilla +n02786611 bandoleer, bandolier +n02786736 bandoneon +n02786837 bandsaw, band saw +n02787120 bandwagon +n02787269 bangalore torpedo +n02787435 bangle, bauble, gaud, gewgaw, novelty, fallal, trinket +n02787622 banjo +n02788021 banner, streamer +n02788148 bannister, banister, balustrade, balusters, handrail +n02788386 banquette +n02788462 banyan, banian +n02788572 baptismal font, baptistry, baptistery, font +n02788689 bar +n02789487 bar +n02790669 barbecue, barbeque +n02790823 barbed wire, barbwire +n02790996 barbell +n02791124 barber chair +n02791270 barbershop +n02791532 barbette carriage +n02791665 barbican, barbacan +n02791795 bar bit +n02792409 bareboat +n02792552 barge, flatboat, hoy, lighter +n02792948 barge pole +n02793089 baritone, baritone horn +n02793199 bark, barque +n02793296 bar magnet +n02793414 bar mask +n02793495 barn +n02793684 barndoor +n02793842 barn door +n02793930 barnyard +n02794008 barograph +n02794156 barometer +n02794368 barong +n02794474 barouche +n02794664 bar printer +n02794779 barrack +n02794972 barrage balloon +n02795169 barrel, cask +n02795528 barrel, gun barrel +n02795670 barrelhouse, honky-tonk +n02795783 barrel knot, blood knot +n02795978 barrel organ, grind organ, hand organ, hurdy gurdy, hurdy-gurdy, street organ +n02796207 barrel vault +n02796318 barrette +n02796412 barricade +n02796623 barrier +n02796995 barroom, bar, saloon, ginmill, taproom +n02797295 barrow, garden cart, lawn cart, wheelbarrow +n02797535 bascule +n02797692 base, pedestal, stand +n02797881 base, bag +n02799071 baseball +n02799175 baseball bat, lumber +n02799323 baseball cap, jockey cap, golf cap +n02799897 baseball equipment +n02800213 baseball glove, glove, baseball mitt, mitt +n02800497 basement, cellar +n02800675 basement +n02800940 basic point defense missile system +n02801047 basilica, Roman basilica +n02801184 basilica +n02801450 basilisk +n02801525 basin +n02801823 basinet +n02801938 basket, handbasket +n02802215 basket, basketball hoop, hoop +n02802426 basketball +n02802544 basketball court +n02802721 basketball equipment +n02802990 basket weave +n02803349 bass +n02803539 bass clarinet +n02803666 bass drum, gran casa +n02803809 basset horn +n02803934 bass fiddle, bass viol, bull fiddle, double bass, contrabass, string bass +n02804123 bass guitar +n02804252 bass horn, sousaphone, tuba +n02804414 bassinet +n02804515 bassinet +n02804610 bassoon +n02805283 baster +n02805845 bastinado +n02805983 bastion +n02806088 bastion, citadel +n02806379 bat +n02806530 bath +n02806762 bath chair +n02806875 bathhouse, bagnio +n02806992 bathhouse, bathing machine +n02807133 bathing cap, swimming cap +n02807523 bath oil +n02807616 bathrobe +n02807731 bathroom, bath +n02808185 bath salts +n02808304 bath towel +n02808440 bathtub, bathing tub, bath, tub +n02808829 bathyscaphe, bathyscaph, bathyscape +n02808968 bathysphere +n02809105 batik +n02809241 batiste +n02809364 baton, wand +n02809491 baton +n02809605 baton +n02809736 baton +n02810139 battering ram +n02810270 batter's box +n02810471 battery, electric battery +n02810782 battery, stamp battery +n02811059 batting cage, cage +n02811204 batting glove +n02811350 batting helmet +n02811468 battle-ax, battle-axe +n02811618 battle cruiser +n02811719 battle dress +n02811936 battlement, crenelation, crenellation +n02812201 battleship, battlewagon +n02812342 battle sight, battlesight +n02812631 bay +n02812785 bay +n02812949 bayonet +n02813252 bay rum +n02813399 bay window, bow window +n02813544 bazaar, bazar +n02813645 bazaar, bazar +n02813752 bazooka +n02813981 B battery +n02814116 BB gun +n02814338 beach house +n02814428 beach towel +n02814533 beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon +n02814774 beachwear +n02814860 beacon, lighthouse, beacon light, pharos +n02815478 beading plane +n02815749 beaker +n02815834 beaker +n02815950 beam +n02816494 beam balance +n02816656 beanbag +n02816768 beanie, beany +n02817031 bearing +n02817251 bearing rein, checkrein +n02817386 bearing wall +n02817516 bearskin, busby, shako +n02817650 beater +n02817799 beating-reed instrument, reed instrument, reed +n02818135 beaver, castor +n02818254 beaver +n02818687 Beckman thermometer +n02818832 bed +n02819697 bed +n02820085 bed and breakfast, bed-and-breakfast +n02820210 bedclothes, bed clothing, bedding +n02820556 Bedford cord +n02820675 bed jacket +n02821202 bedpan +n02821415 bedpost +n02821543 bedroll +n02821627 bedroom, sleeping room, sleeping accommodation, chamber, bedchamber +n02821943 bedroom furniture +n02822064 bedsitting room, bedsitter, bedsit +n02822220 bedspread, bedcover, bed cover, bed covering, counterpane, spread +n02822399 bedspring +n02822579 bedstead, bedframe +n02822762 beefcake +n02822865 beehive, hive +n02823124 beeper, pager +n02823335 beer barrel, beer keg +n02823428 beer bottle +n02823510 beer can +n02823586 beer garden +n02823750 beer glass +n02823848 beer hall +n02823964 beer mat +n02824058 beer mug, stein +n02824152 belaying pin +n02824319 belfry +n02824448 bell +n02825153 bell arch +n02825240 bellarmine, longbeard, long-beard, greybeard +n02825442 bellbottom trousers, bell-bottoms, bellbottom pants +n02825657 bell cote, bell cot +n02825872 bell foundry +n02825961 bell gable +n02826068 bell jar, bell glass +n02826259 bellows +n02826459 bellpull +n02826589 bell push +n02826683 bell seat, balloon seat +n02826812 bell tent +n02826886 bell tower +n02827148 bellyband +n02827606 belt +n02828115 belt, belt ammunition, belted ammunition +n02828299 belt buckle +n02828427 belting +n02828884 bench +n02829246 bench clamp +n02829353 bench hook +n02829510 bench lathe +n02829596 bench press +n02830157 bender +n02831237 beret +n02831335 berlin +n02831595 Bermuda shorts, Jamaica shorts +n02831724 berth, bunk, built in bed +n02831894 besom +n02831998 Bessemer converter +n02833040 bethel +n02833140 betting shop +n02833275 bevatron +n02833403 bevel, bevel square +n02833793 bevel gear, pinion and crown wheel, pinion and ring gear +n02834027 B-flat clarinet, licorice stick +n02834397 bib +n02834506 bib-and-tucker +n02834642 bicorn, bicorne +n02834778 bicycle, bike, wheel, cycle +n02835271 bicycle-built-for-two, tandem bicycle, tandem +n02835412 bicycle chain +n02835551 bicycle clip, trouser clip +n02835724 bicycle pump +n02835829 bicycle rack +n02835915 bicycle seat, saddle +n02836035 bicycle wheel +n02836174 bidet +n02836268 bier +n02836392 bier +n02836513 bi-fold door +n02836607 bifocals +n02836900 Big Blue, BLU-82 +n02837134 big board +n02837567 bight +n02837789 bikini, two-piece +n02837887 bikini pants +n02838014 bilge +n02838178 bilge keel +n02838345 bilge pump +n02838577 bilge well +n02838728 bill, peak, eyeshade, visor, vizor +n02838958 bill, billhook +n02839110 billboard, hoarding +n02839351 billiard ball +n02839592 billiard room, billiard saloon, billiard parlor, billiard parlour, billiard hall +n02839910 bin +n02840134 binder, ligature +n02840245 binder, ring-binder +n02840515 bindery +n02840619 binding, book binding, cover, back +n02841063 bin liner +n02841187 binnacle +n02841315 binoculars, field glasses, opera glasses +n02841506 binocular microscope +n02841641 biochip +n02841847 biohazard suit +n02842133 bioscope +n02842573 biplane +n02842809 birch, birch rod +n02843029 birchbark canoe, birchbark, birch bark +n02843158 birdbath +n02843276 birdcage +n02843465 birdcall +n02843553 bird feeder, birdfeeder, feeder +n02843684 birdhouse +n02843777 bird shot, buckshot, duck shot +n02843909 biretta, berretta, birretta +n02844056 bishop +n02844214 bistro +n02844307 bit +n02844714 bit +n02845130 bite plate, biteplate +n02845293 bitewing +n02845985 bitumastic +n02846141 black +n02846260 black +n02846511 blackboard, chalkboard +n02846619 blackboard eraser +n02846733 black box +n02846874 blackface +n02847461 blackjack, cosh, sap +n02847631 black tie +n02847852 blackwash +n02848118 bladder +n02848216 blade +n02848523 blade, vane +n02848806 blade +n02848921 blank, dummy, blank shell +n02849154 blanket, cover +n02849885 blast furnace +n02850060 blasting cap +n02850358 blazer, sport jacket, sport coat, sports jacket, sports coat +n02850732 blender, liquidizer, liquidiser +n02850950 blimp, sausage balloon, sausage +n02851099 blind, screen +n02851795 blind curve, blind bend +n02851939 blindfold +n02852043 bling, bling bling +n02852173 blinker, flasher +n02852360 blister pack, bubble pack +n02853016 block +n02853218 blockade +n02853336 blockade-runner +n02853745 block and tackle +n02853870 blockbuster +n02854378 blockhouse +n02854532 block plane +n02854630 bloodmobile +n02854739 bloomers, pants, drawers, knickers +n02854926 blouse +n02855089 blower +n02855390 blowtorch, torch, blowlamp +n02855701 blucher +n02855793 bludgeon +n02855925 blue +n02856013 blue chip +n02856237 blunderbuss +n02856362 blunt file +n02857365 boarding +n02857477 boarding house, boardinghouse +n02857644 boardroom, council chamber +n02857907 boards +n02858304 boat +n02859184 boater, leghorn, Panama, Panama hat, sailor, skimmer, straw hat +n02859343 boat hook +n02859443 boathouse +n02859557 boatswain's chair, bosun's chair +n02859729 boat train +n02859955 boatyard +n02860415 bobbin, spool, reel +n02860640 bobby pin, hairgrip, grip +n02860847 bobsled, bobsleigh, bob +n02861022 bobsled, bobsleigh +n02861147 bocce ball, bocci ball, boccie ball +n02861286 bodega +n02861387 bodice +n02861509 bodkin, threader +n02861658 bodkin +n02861777 bodkin +n02861886 body +n02862048 body armor, body armour, suit of armor, suit of armour, coat of mail, cataphract +n02862916 body lotion +n02863014 body stocking +n02863176 body plethysmograph +n02863340 body pad +n02863426 bodywork +n02863536 Bofors gun +n02863638 bogy, bogie, bogey +n02863750 boiler, steam boiler +n02864122 boiling water reactor, BWR +n02864504 bolero +n02864593 bollard, bitt +n02864987 bolo, bolo knife +n02865351 bolo tie, bolo, bola tie, bola +n02865665 bolt +n02865931 bolt, deadbolt +n02866106 bolt +n02866386 bolt cutter +n02866578 bomb +n02867401 bombazine +n02867592 bomb calorimeter, bomb +n02867715 bomber +n02867966 bomber jacket +n02868240 bomblet, cluster bomblet +n02868429 bomb rack +n02868546 bombshell +n02868638 bomb shelter, air-raid shelter, bombproof +n02868975 bone-ash cup, cupel, refractory pot +n02869155 bone china +n02869249 bones, castanets, clappers, finger cymbals +n02869563 boneshaker +n02869737 bongo, bongo drum +n02869837 bonnet, poke bonnet +n02870526 book +n02870676 book bag +n02870772 bookbindery +n02870880 bookcase +n02871005 bookend +n02871147 bookmark, bookmarker +n02871314 bookmobile +n02871439 bookshelf +n02871525 bookshop, bookstore, bookstall +n02871631 boom +n02871824 boom, microphone boom +n02871963 boomerang, throwing stick, throw stick +n02872333 booster, booster rocket, booster unit, takeoff booster, takeoff rocket +n02872529 booster, booster amplifier, booster station, relay link, relay station, relay transmitter +n02872752 boot +n02873520 boot +n02873623 boot camp +n02873733 bootee, bootie +n02873839 booth, cubicle, stall, kiosk +n02874086 booth +n02874214 booth +n02874336 boothose +n02874442 bootjack +n02874537 bootlace +n02874642 bootleg +n02874750 bootstrap +n02875436 bore bit, borer, rock drill, stone drill +n02875626 boron chamber +n02875948 borstal +n02876084 bosom +n02876326 Boston rocker +n02876457 bota +n02876657 bottle +n02877266 bottle, feeding bottle, nursing bottle +n02877513 bottle bank +n02877642 bottlebrush +n02877765 bottlecap +n02877962 bottle opener +n02878107 bottling plant +n02878222 bottom, freighter, merchantman, merchant ship +n02878425 boucle +n02878534 boudoir +n02878628 boulle, boule, buhl +n02878796 bouncing betty +n02879087 bouquet, corsage, posy, nosegay +n02879309 boutique, dress shop +n02879422 boutonniere +n02879517 bow +n02879718 bow +n02880189 bow, bowknot +n02880393 bow and arrow +n02880546 bowed stringed instrument, string +n02880842 Bowie knife +n02880940 bowl +n02881193 bowl +n02881546 bowl +n02881757 bowler hat, bowler, derby hat, derby, plug hat +n02881906 bowline, bowline knot +n02882190 bowling alley +n02882301 bowling ball, bowl +n02882483 bowling equipment +n02882647 bowling pin, pin +n02882894 bowling shoe +n02883004 bowsprit +n02883101 bowstring +n02883205 bow tie, bow-tie, bowtie +n02883344 box +n02884225 box, loge +n02884450 box, box seat +n02884859 box beam, box girder +n02884994 box camera, box Kodak +n02885108 boxcar +n02885233 box coat +n02885338 boxing equipment +n02885462 boxing glove, glove +n02885882 box office, ticket office, ticket booth +n02886321 box spring +n02886434 box wrench, box end wrench +n02886599 brace, bracing +n02887079 brace, braces, orthodontic braces +n02887209 brace +n02887489 brace, suspender, gallus +n02887832 brace and bit +n02887970 bracelet, bangle +n02888270 bracer, armguard +n02888429 brace wrench +n02888569 bracket, wall bracket +n02888898 bradawl, pricker +n02889425 brake +n02889646 brake +n02889856 brake band +n02889996 brake cylinder, hydraulic brake cylinder, master cylinder +n02890188 brake disk +n02890351 brake drum, drum +n02890513 brake lining +n02890662 brake pad +n02890804 brake pedal +n02890940 brake shoe, shoe, skid +n02891188 brake system, brakes +n02891788 brass, brass instrument +n02892201 brass, memorial tablet, plaque +n02892304 brass +n02892392 brassard +n02892499 brasserie +n02892626 brassie +n02892767 brassiere, bra, bandeau +n02892948 brass knucks, knucks, brass knuckles, knuckles, knuckle duster +n02893269 brattice +n02893418 brazier, brasier +n02893608 breadbasket +n02893692 bread-bin, breadbox +n02893941 bread knife +n02894024 breakable +n02894158 breakfast area, breakfast nook +n02894337 breakfast table +n02894605 breakwater, groin, groyne, mole, bulwark, seawall, jetty +n02894847 breast drill +n02895008 breast implant +n02895154 breastplate, aegis, egis +n02895328 breast pocket +n02895438 breathalyzer, breathalyser +n02896074 breechblock, breech closer +n02896294 breechcloth, breechclout, loincloth +n02896442 breeches, knee breeches, knee pants, knickerbockers, knickers +n02896694 breeches buoy +n02896856 breechloader +n02896949 breeder reactor +n02897097 Bren, Bren gun +n02897389 brewpub +n02897820 brick +n02898093 brickkiln +n02898173 bricklayer's hammer +n02898269 brick trowel, mason's trowel +n02898369 brickwork +n02898585 bridal gown, wedding gown, wedding dress +n02898711 bridge, span +n02899439 bridge, nosepiece +n02900160 bridle +n02900459 bridle path, bridle road +n02900594 bridoon +n02900705 briefcase +n02900857 briefcase bomb +n02900987 briefcase computer +n02901114 briefs, Jockey shorts +n02901259 brig +n02901377 brig +n02901481 brigandine +n02901620 brigantine, hermaphrodite brig +n02901793 brilliantine +n02901901 brilliant pebble +n02902079 brim +n02902687 bristle brush +n02902816 britches +n02902916 broad arrow +n02903006 broadax, broadaxe +n02903126 brochette +n02903204 broadcaster, spreader +n02903727 broadcloth +n02903852 broadcloth +n02904109 broad hatchet +n02904233 broadloom +n02904505 broadside +n02904640 broadsword +n02904803 brocade +n02904927 brogan, brogue, clodhopper, work shoe +n02905036 broiler +n02905152 broken arch +n02905886 bronchoscope +n02906734 broom +n02906963 broom closet +n02907082 broomstick, broom handle +n02907296 brougham +n02907391 Browning automatic rifle, BAR +n02907656 Browning machine gun, Peacemaker +n02907873 brownstone +n02908123 brunch coat +n02908217 brush +n02908773 Brussels carpet +n02908951 Brussels lace +n02909053 bubble +n02909165 bubble chamber +n02909285 bubble jet printer, bubble-jet printer, bubblejet +n02909706 buckboard +n02909870 bucket, pail +n02910145 bucket seat +n02910241 bucket shop +n02910353 buckle +n02910542 buckram +n02910701 bucksaw +n02910864 buckskins +n02910964 buff, buffer +n02911332 buffer, polisher +n02911485 buffer, buffer storage, buffer store +n02912065 buffet, counter, sideboard +n02912319 buffing wheel +n02912557 buggy, roadster +n02912894 bugle +n02913152 building, edifice +n02914991 building complex, complex +n02915904 bulldog clip, alligator clip +n02916065 bulldog wrench +n02916179 bulldozer, dozer +n02916350 bullet, slug +n02916936 bulletproof vest +n02917067 bullet train, bullet +n02917377 bullhorn, loud hailer, loud-hailer +n02917521 bullion +n02917607 bullnose, bullnosed plane +n02917742 bullpen, detention cell, detention centre +n02917964 bullpen +n02918112 bullring +n02918330 bulwark +n02918455 bumboat +n02918595 bumper +n02918831 bumper +n02918964 bumper car, Dodgem +n02919148 bumper guard +n02919308 bumper jack +n02919414 bundle, sheaf +n02919648 bung, spile +n02919792 bungalow, cottage +n02919890 bungee, bungee cord +n02919976 bunghole +n02920083 bunk +n02920164 bunk, feed bunk +n02920259 bunk bed, bunk +n02920369 bunker, sand trap, trap +n02920503 bunker, dugout +n02920658 bunker +n02921029 bunsen burner, bunsen, etna +n02921195 bunting +n02921292 bur, burr +n02921406 Burberry +n02921592 burette, buret +n02921756 burglar alarm +n02921884 burial chamber, sepulcher, sepulchre, sepulture +n02922159 burial garment +n02922292 burial mound, grave mound, barrow, tumulus +n02922461 burin +n02922578 burqa, burka +n02922798 burlap, gunny +n02922877 burn bag +n02923129 burner +n02923535 burnous, burnoose, burnouse +n02923682 burp gun, machine pistol +n02923915 burr +n02924116 bus, autobus, coach, charabanc, double-decker, jitney, motorbus, motorcoach, omnibus, passenger vehicle +n02925009 bushel basket +n02925107 bushing, cylindrical lining +n02925385 bush jacket +n02925519 business suit +n02925666 buskin, combat boot, desert boot, half boot, top boot +n02926426 bustier +n02926591 bustle +n02927053 butcher knife +n02927161 butcher shop, meat market +n02927764 butter dish +n02927887 butterfly valve +n02928049 butter knife +n02928299 butt hinge +n02928413 butt joint, butt +n02928608 button +n02929184 buttonhook +n02929289 buttress, buttressing +n02929462 butt shaft +n02929582 butt weld, butt-weld +n02929923 buzz bomb, robot bomb, flying bomb, doodlebug, V-1 +n02930080 buzzer +n02930214 BVD, BVD's +n02930339 bypass condenser, bypass capacitor +n02930645 byway, bypath, byroad +n02930766 cab, hack, taxi, taxicab +n02931013 cab, cabriolet +n02931148 cab +n02931294 cabana +n02931417 cabaret, nightclub, night club, club, nightspot +n02931836 caber +n02932019 cabin +n02932400 cabin +n02932523 cabin car, caboose +n02932693 cabin class, second class, economy class +n02932891 cabin cruiser, cruiser, pleasure boat, pleasure craft +n02933112 cabinet +n02933340 cabinet, console +n02933462 cabinet, locker, storage locker +n02933649 cabinetwork +n02933750 cabin liner +n02933990 cable, cable television, cable system, cable television service +n02934168 cable, line, transmission line +n02934451 cable car, car +n02935017 cache, memory cache +n02935387 caddy, tea caddy +n02935490 caesium clock +n02935658 cafe, coffeehouse, coffee shop, coffee bar +n02935891 cafeteria +n02936176 cafeteria tray +n02936281 caff +n02936402 caftan, kaftan +n02936570 caftan, kaftan +n02936714 cage, coop +n02936921 cage +n02937010 cagoule +n02937336 caisson +n02937958 calash, caleche, calash top +n02938218 calceus +n02938321 calcimine +n02938886 calculator, calculating machine +n02939185 caldron, cauldron +n02939763 calico +n02939866 caliper, calliper +n02940289 call-board +n02940385 call center, call centre +n02940570 caller ID +n02940706 calliope, steam organ +n02941095 calorimeter +n02941228 calpac, calpack, kalpac +n02941845 camail, aventail, ventail +n02942015 camber arch +n02942147 cambric +n02942349 camcorder +n02942460 camel's hair, camelhair +n02942699 camera, photographic camera +n02943241 camera lens, optical lens +n02943465 camera lucida +n02943686 camera obscura +n02943871 camera tripod +n02943964 camise +n02944075 camisole +n02944146 camisole, underbodice +n02944256 camlet +n02944459 camouflage +n02944579 camouflage, camo +n02944826 camp, encampment, cantonment, bivouac +n02945161 camp +n02945813 camp, refugee camp +n02945964 campaign hat +n02946127 campanile, belfry +n02946270 camp chair +n02946348 camper, camping bus, motor home +n02946509 camper trailer +n02946753 campstool +n02946824 camshaft +n02946921 can, tin, tin can +n02947212 canal +n02947660 canal boat, narrow boat, narrowboat +n02947818 candelabrum, candelabra +n02947977 candid camera +n02948072 candle, taper, wax light +n02948293 candlepin +n02948403 candlesnuffer +n02948557 candlestick, candle holder +n02948834 candlewick +n02948942 candy thermometer +n02949084 cane +n02949202 cane +n02949356 cangue +n02949542 canister, cannister, tin +n02950018 cannery +n02950120 cannikin +n02950186 cannikin +n02950256 cannon +n02950482 cannon +n02950632 cannon +n02950826 cannon +n02950943 cannonball, cannon ball, round shot +n02951358 canoe +n02951585 can opener, tin opener +n02951703 canopic jar, canopic vase +n02951843 canopy +n02952109 canopy +n02952237 canopy +n02952374 canteen +n02952485 canteen +n02952585 canteen +n02952674 canteen, mobile canteen +n02952798 canteen +n02952935 cant hook +n02953056 cantilever +n02953197 cantilever bridge +n02953455 cantle +n02953552 Canton crepe +n02953673 canvas, canvass +n02953850 canvas, canvass +n02954163 canvas tent, canvas, canvass +n02954340 cap +n02954938 cap +n02955065 cap +n02955247 capacitor, capacitance, condenser, electrical condenser +n02955540 caparison, trapping, housing +n02955767 cape, mantle +n02956393 capital ship +n02956699 capitol +n02956795 cap opener +n02956883 capote, hooded cloak +n02957008 capote, hooded coat +n02957135 cap screw +n02957252 capstan +n02957427 capstone, copestone, coping stone, stretcher +n02957755 capsule +n02957862 captain's chair +n02958343 car, auto, automobile, machine, motorcar +n02959942 car, railcar, railway car, railroad car +n02960352 car, elevator car +n02960690 carabiner, karabiner, snap ring +n02960903 carafe, decanter +n02961035 caravansary, caravanserai, khan, caravan inn +n02961225 car battery, automobile battery +n02961451 carbine +n02961544 car bomb +n02961947 carbon arc lamp, carbon arc +n02962061 carboy +n02962200 carburetor, carburettor +n02962414 car carrier +n02962843 cardcase +n02962938 cardiac monitor, heart monitor +n02963159 cardigan +n02963302 card index, card catalog, card catalogue +n02963503 cardiograph, electrocardiograph +n02963692 cardioid microphone +n02963821 car door +n02963987 cardroom +n02964075 card table +n02964196 card table +n02964295 car-ferry +n02964634 cargo area, cargo deck, cargo hold, hold, storage area +n02964843 cargo container +n02964934 cargo door +n02965024 cargo hatch +n02965122 cargo helicopter +n02965216 cargo liner +n02965300 cargo ship, cargo vessel +n02965529 carillon +n02965783 car mirror +n02966068 caroche +n02966193 carousel, carrousel, merry-go-round, roundabout, whirligig +n02966545 carpenter's hammer, claw hammer, clawhammer +n02966687 carpenter's kit, tool kit +n02966786 carpenter's level +n02966942 carpenter's mallet +n02967081 carpenter's rule +n02967170 carpenter's square +n02967294 carpetbag +n02967407 carpet beater, rug beater +n02967540 carpet loom +n02967626 carpet pad, rug pad, underlay, underlayment +n02967782 carpet sweeper, sweeper +n02967991 carpet tack +n02968074 carport, car port +n02968210 carrack, carack +n02968333 carrel, carrell, cubicle, stall +n02968473 carriage, equipage, rig +n02969010 carriage +n02969163 carriage bolt +n02969323 carriageway +n02969527 carriage wrench +n02969634 carrick bend +n02969886 carrier +n02970408 carryall, holdall, tote, tote bag +n02970534 carrycot +n02970685 car seat +n02970849 cart +n02971167 car tire, automobile tire, auto tire, rubber tire +n02971356 carton +n02971473 cartouche, cartouch +n02971579 car train +n02971691 cartridge +n02971940 cartridge, pickup +n02972397 cartridge belt +n02972714 cartridge extractor, cartridge remover, extractor +n02972934 cartridge fuse +n02973017 cartridge holder, cartridge clip, clip, magazine +n02973236 cartwheel +n02973805 carving fork +n02973904 carving knife +n02974003 car wheel +n02974348 caryatid +n02974454 cascade liquefier +n02974565 cascade transformer +n02974697 case +n02975212 case, display case, showcase, vitrine +n02975589 case, compositor's case, typesetter's case +n02975994 casein paint, casein +n02976123 case knife, sheath knife +n02976249 case knife +n02976350 casement +n02976455 casement window +n02976552 casern +n02976641 case shot, canister, canister shot +n02976815 cash bar +n02976939 cashbox, money box, till +n02977058 cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM +n02977330 cashmere +n02977438 cash register, register +n02977619 casing, case +n02977936 casino, gambling casino +n02978055 casket, jewel casket +n02978205 casque +n02978367 casquet, casquetel +n02978478 Cassegrainian telescope, Gregorian telescope +n02978753 casserole +n02978881 cassette +n02979074 cassette deck +n02979186 cassette player +n02979290 cassette recorder +n02979399 cassette tape +n02979516 cassock +n02979836 cast, plaster cast, plaster bandage +n02980036 caster, castor +n02980203 caster, castor +n02980441 castle +n02980625 castle, rook +n02981024 catacomb +n02981198 catafalque +n02981321 catalytic converter +n02981565 catalytic cracker, cat cracker +n02981792 catamaran +n02981911 catapult, arbalest, arbalist, ballista, bricole, mangonel, onager, trebuchet, trebucket +n02982232 catapult, launcher +n02982416 catboat +n02982515 cat box +n02982599 catch +n02983072 catchall +n02983189 catcher's mask +n02983357 catchment +n02983507 Caterpillar, cat +n02983904 cathedra, bishop's throne +n02984061 cathedral +n02984203 cathedral, duomo +n02984469 catheter +n02984699 cathode +n02985137 cathode-ray tube, CRT +n02985606 cat-o'-nine-tails, cat +n02985828 cat's-paw +n02985963 catsup bottle, ketchup bottle +n02986066 cattle car +n02986160 cattle guard, cattle grid +n02986348 cattleship, cattle boat +n02987047 cautery, cauterant +n02987379 cavalier hat, slouch hat +n02987492 cavalry sword, saber, sabre +n02987706 cavetto +n02987823 cavity wall +n02987950 C battery +n02988066 C-clamp +n02988156 CD drive +n02988304 CD player +n02988486 CD-R, compact disc recordable, CD-WO, compact disc write-once +n02988679 CD-ROM, compact disc read-only memory +n02988963 CD-ROM drive +n02989099 cedar chest +n02990373 ceiling +n02990758 celesta +n02991048 cell, electric cell +n02991302 cell, jail cell, prison cell +n02991847 cellar, wine cellar +n02992032 cellblock, ward +n02992211 cello, violoncello +n02992368 cellophane +n02992529 cellular telephone, cellular phone, cellphone, cell, mobile phone +n02992795 cellulose tape, Scotch tape, Sellotape +n02993194 cenotaph, empty tomb +n02993368 censer, thurible +n02993546 center, centre +n02994573 center punch +n02994743 Centigrade thermometer +n02995345 central processing unit, CPU, C.P.U., central processor, processor, mainframe +n02995871 centrifugal pump +n02995998 centrifuge, extractor, separator +n02997391 ceramic +n02997607 ceramic ware +n02997910 cereal bowl +n02998003 cereal box +n02998107 cerecloth +n02998563 cesspool, cesspit, sink, sump +n02998696 chachka, tsatske, tshatshke, tchotchke +n02998841 chador, chadar, chaddar, chuddar +n02999138 chafing dish +n02999410 chain +n02999936 chain +n03000134 chainlink fence +n03000247 chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour +n03000530 chain printer +n03000684 chain saw, chainsaw +n03001115 chain store +n03001282 chain tongs +n03001540 chain wrench +n03001627 chair +n03002096 chair +n03002210 chair of state +n03002341 chairlift, chair lift +n03002555 chaise, shay +n03002711 chaise longue, chaise, daybed +n03002816 chalet +n03002948 chalice, goblet +n03003091 chalk +n03003633 challis +n03004275 chamberpot, potty, thunder mug +n03004409 chambray +n03004531 chamfer bit +n03004620 chamfer plane +n03004713 chamois cloth +n03004824 chancel, sanctuary, bema +n03005033 chancellery +n03005147 chancery +n03005285 chandelier, pendant, pendent +n03005515 chandlery +n03005619 chanfron, chamfron, testiere, frontstall, front-stall +n03006626 chanter, melody pipe +n03006788 chantry +n03006903 chap +n03007130 chapel +n03007297 chapterhouse, fraternity house, frat house +n03007444 chapterhouse +n03007591 character printer, character-at-a-time printer, serial printer +n03008177 charcuterie +n03008817 charge-exchange accelerator +n03008976 charger, battery charger +n03009111 chariot +n03009269 chariot +n03009794 charnel house, charnel +n03010473 chassis +n03010656 chassis +n03010795 chasuble +n03010915 chateau +n03011018 chatelaine +n03011355 checker, chequer +n03011741 checkout, checkout counter +n03012013 cheekpiece +n03012159 cheeseboard, cheese tray +n03012373 cheesecloth +n03012499 cheese cutter +n03012644 cheese press +n03012734 chemical bomb, gas bomb +n03012897 chemical plant +n03013006 chemical reactor +n03013438 chemise, sack, shift +n03013580 chemise, shimmy, shift, slip, teddy +n03013850 chenille +n03014440 chessman, chess piece +n03014705 chest +n03015149 chesterfield +n03015254 chest of drawers, chest, bureau, dresser +n03015478 chest protector +n03015631 cheval-de-frise, chevaux-de-frise +n03015851 cheval glass +n03016209 chicane +n03016389 chicken coop, coop, hencoop, henhouse +n03016609 chicken wire +n03016737 chicken yard, hen yard, chicken run, fowl run +n03016868 chiffon +n03016953 chiffonier, commode +n03017070 child's room +n03017168 chime, bell, gong +n03017698 chimney breast +n03017835 chimney corner, inglenook +n03018209 china +n03018349 china cabinet, china closet +n03018614 chinchilla +n03018712 Chinese lantern +n03018848 Chinese puzzle +n03019198 chinning bar +n03019304 chino +n03019434 chino +n03019685 chin rest +n03019806 chin strap +n03019938 chintz +n03020034 chip, microchip, micro chip, silicon chip, microprocessor chip +n03020416 chip, poker chip +n03020692 chisel +n03021228 chlamys +n03024064 choir +n03024233 choir loft +n03024333 choke +n03024518 choke, choke coil, choking coil +n03025070 chokey, choky +n03025165 choo-choo +n03025250 chopine, platform +n03025886 chordophone +n03026506 Christmas stocking +n03026907 chronograph +n03027001 chronometer +n03027108 chronoscope +n03027250 chuck +n03027505 chuck wagon +n03027625 chukka, chukka boot +n03028079 church, church building +n03028596 church bell +n03028785 church hat +n03029066 church key +n03029197 church tower +n03029296 churidars +n03029445 churn, butter churn +n03029925 ciderpress +n03030262 cigar band +n03030353 cigar box +n03030557 cigar cutter +n03030880 cigarette butt +n03031012 cigarette case +n03031152 cigarette holder +n03031422 cigar lighter, cigarette lighter, pocket lighter +n03031756 cinch, girth +n03032252 cinema, movie theater, movie theatre, movie house, picture palace +n03032453 cinquefoil +n03032811 circle, round +n03033267 circlet +n03033362 circuit, electrical circuit, electric circuit +n03033986 circuit board, circuit card, board, card, plug-in, add-in +n03034244 circuit breaker, breaker +n03034405 circuitry +n03034516 circular plane, compass plane +n03034663 circular saw, buzz saw +n03035252 circus tent, big top, round top, top +n03035510 cistern +n03035715 cistern, water tank +n03035832 cittern, cithern, cither, citole, gittern +n03036022 city hall +n03036149 cityscape +n03036244 city university +n03036341 civies, civvies +n03036469 civilian clothing, civilian dress, civilian garb, plain clothes +n03036701 clack valve, clack, clapper valve +n03036866 clamp, clinch +n03037108 clamshell, grapple +n03037228 clapper, tongue +n03037404 clapperboard +n03037590 clarence +n03037709 clarinet +n03038041 Clark cell, Clark standard cell +n03038281 clasp +n03038480 clasp knife, jackknife +n03038685 classroom, schoolroom +n03038870 clavichord +n03039015 clavier, Klavier +n03039259 clay pigeon +n03039353 claymore mine, claymore +n03039493 claymore +n03039827 cleaners, dry cleaners +n03039947 cleaning implement, cleaning device, cleaning equipment +n03040229 cleaning pad +n03040376 clean room, white room +n03040836 clearway +n03041114 cleat +n03041265 cleat +n03041449 cleats +n03041632 cleaver, meat cleaver, chopper +n03041810 clerestory, clearstory +n03042139 clevis +n03042384 clews +n03042490 cliff dwelling +n03042697 climbing frame +n03042829 clinch +n03042984 clinch, clench +n03043173 clincher +n03043274 clinic +n03043423 clinical thermometer, mercury-in-glass clinical thermometer +n03043693 clinker, clinker brick +n03043798 clinometer, inclinometer +n03043958 clip +n03044671 clip lead +n03044801 clip-on +n03044934 clipper +n03045074 clipper +n03045228 clipper, clipper ship +n03045337 cloak +n03045698 cloak +n03045800 cloakroom, coatroom +n03046029 cloche +n03046133 cloche +n03046257 clock +n03046802 clock pendulum +n03046921 clock radio +n03047052 clock tower +n03047171 clockwork +n03047690 clog, geta, patten, sabot +n03047799 cloisonne +n03047941 cloister +n03048883 closed circuit, loop +n03049066 closed-circuit television +n03049326 closed loop, closed-loop system +n03049457 closet +n03049782 closeup lens +n03049924 cloth cap, flat cap +n03050026 cloth covering +n03050453 clothesbrush +n03050546 clothes closet, clothespress +n03050655 clothes dryer, clothes drier +n03050864 clothes hamper, laundry basket, clothes basket, voider +n03051041 clotheshorse +n03051249 clothespin, clothes pin, clothes peg +n03051396 clothes tree, coat tree, coat stand +n03051540 clothing, article of clothing, vesture, wear, wearable, habiliment +n03052464 clothing store, haberdashery, haberdashery store, mens store +n03052917 clout nail, clout +n03053047 clove hitch +n03053976 club car, lounge car +n03054491 clubroom +n03054605 cluster bomb +n03054901 clutch +n03055159 clutch, clutch pedal +n03055418 clutch bag, clutch +n03055670 coach, four-in-hand, coach-and-four +n03055857 coach house, carriage house, remise +n03056097 coal car +n03056215 coal chute +n03056288 coal house +n03056493 coal shovel +n03056583 coaming +n03056873 coaster brake +n03057021 coat +n03057541 coat button +n03057636 coat closet +n03057724 coatdress +n03057841 coatee +n03057920 coat hanger, clothes hanger, dress hanger +n03058107 coating, coat +n03058603 coating +n03058949 coat of paint +n03059103 coatrack, coat rack, hatrack +n03059236 coattail +n03059366 coaxial cable, coax, coax cable +n03059685 cobweb +n03059934 cobweb +n03060728 Cockcroft and Walton accelerator, Cockcroft-Walton accelerator, Cockcroft and Walton voltage multiplier, Cockcroft-Walton voltage multiplier +n03061050 cocked hat +n03061211 cockhorse +n03061345 cockleshell +n03061505 cockpit +n03061674 cockpit +n03061819 cockpit +n03061893 cockscomb, coxcomb +n03062015 cocktail dress, sheath +n03062122 cocktail lounge +n03062245 cocktail shaker +n03062336 cocotte +n03062651 codpiece +n03062798 coelostat +n03062985 coffee can +n03063073 coffee cup +n03063199 coffee filter +n03063338 coffee maker +n03063485 coffee mill, coffee grinder +n03063599 coffee mug +n03063689 coffeepot +n03063834 coffee stall +n03063968 coffee table, cocktail table +n03064250 coffee urn +n03064350 coffer +n03064562 Coffey still +n03064758 coffin, casket +n03064935 cog, sprocket +n03065243 coif +n03065424 coil, spiral, volute, whorl, helix +n03065708 coil +n03066232 coil +n03066359 coil spring, volute spring +n03066464 coin box +n03066849 colander, cullender +n03067093 cold cathode +n03067212 cold chisel, set chisel +n03067339 cold cream, coldcream, face cream, vanishing cream +n03067518 cold frame +n03068181 collar, neckband +n03068998 collar +n03069752 college +n03070059 collet, collet chuck +n03070193 collider +n03070396 colliery, pit +n03070587 collimator +n03070854 collimator +n03071021 cologne, cologne water, eau de cologne +n03071160 colonnade +n03071288 colonoscope +n03071552 colorimeter, tintometer +n03072056 colors, colours +n03072201 color television, colour television, color television system, colour television system, color TV, colour TV +n03072440 color tube, colour tube, color television tube, colour television tube, color TV tube, colour TV tube +n03072682 color wash, colour wash +n03073296 Colt +n03073384 colter, coulter +n03073545 columbarium +n03073694 columbarium, cinerarium +n03073977 column, pillar +n03074380 column, pillar +n03074855 comb +n03075097 comb +n03075248 comber +n03075370 combination lock +n03075500 combination plane +n03075634 combine +n03075768 comforter, pacifier, baby's dummy, teething ring +n03075946 command module +n03076411 commissary +n03076623 commissary +n03076708 commodity, trade good, good +n03077442 common ax, common axe, Dayton ax, Dayton axe +n03077616 common room +n03077741 communications satellite +n03078287 communication system +n03078506 community center, civic center +n03078670 commutator +n03078802 commuter, commuter train +n03078995 compact, powder compact +n03079136 compact, compact car +n03079230 compact disk, compact disc, CD +n03079494 compact-disk burner, CD burner +n03079616 companionway +n03079741 compartment +n03080309 compartment +n03080497 compass +n03080633 compass +n03080731 compass card, mariner's compass +n03080904 compass saw +n03081859 compound +n03081986 compound lens +n03082127 compound lever +n03082280 compound microscope +n03082450 compress +n03082656 compression bandage, tourniquet +n03082807 compressor +n03082979 computer, computing machine, computing device, data processor, electronic computer, information processing system +n03084420 computer circuit +n03084834 computerized axial tomography scanner, CAT scanner +n03085013 computer keyboard, keypad +n03085219 computer monitor +n03085333 computer network +n03085602 computer screen, computer display +n03085781 computer store +n03085915 computer system, computing system, automatic data processing system, ADP system, ADPS +n03086183 concentration camp, stockade +n03086457 concert grand, concert piano +n03086580 concert hall +n03086670 concertina +n03086868 concertina +n03087069 concrete mixer, cement mixer +n03087245 condensation pump, diffusion pump +n03087366 condenser, optical condenser +n03087521 condenser +n03087643 condenser +n03087816 condenser microphone, capacitor microphone +n03088389 condominium +n03088580 condominium, condo +n03088707 conductor +n03089477 cone clutch, cone friction clutch +n03089624 confectionery, confectionary, candy store +n03089753 conference center, conference house +n03089879 conference room +n03090000 conference table, council table, council board +n03090172 confessional +n03090437 conformal projection, orthomorphic projection +n03090710 congress boot, congress shoe, congress gaiter +n03090856 conic projection, conical projection +n03091044 connecting rod +n03091223 connecting room +n03091374 connection, connexion, connector, connecter, connective +n03091907 conning tower +n03092053 conning tower +n03092166 conservatory, hothouse, indoor garden +n03092314 conservatory, conservatoire +n03092476 console +n03092656 console +n03092883 console table, console +n03093427 consulate +n03093792 contact, tangency +n03094159 contact, contact lens +n03094503 container +n03095699 container ship, containership, container vessel +n03095965 containment +n03096439 contrabassoon, contrafagotto, double bassoon +n03096960 control, controller +n03097362 control center +n03097535 control circuit, negative feedback circuit +n03097673 control key, command key +n03098140 control panel, instrument panel, control board, board, panel +n03098515 control rod +n03098688 control room +n03098806 control system +n03098959 control tower +n03099147 convector +n03099274 convenience store +n03099454 convent +n03099622 conventicle, meetinghouse +n03099771 converging lens, convex lens +n03099945 converter, convertor +n03100240 convertible +n03100346 convertible, sofa bed +n03100490 conveyance, transport +n03100897 conveyer belt, conveyor belt, conveyer, conveyor, transporter +n03101156 cooker +n03101302 cookfire +n03101375 cookhouse +n03101517 cookie cutter +n03101664 cookie jar, cooky jar +n03101796 cookie sheet, baking tray +n03101986 cooking utensil, cookware +n03102371 cookstove +n03102516 coolant system +n03102654 cooler, ice chest +n03102859 cooling system, cooling +n03103128 cooling system, engine cooling system +n03103396 cooling tower +n03103563 coonskin cap, coonskin +n03103904 cope +n03104019 coping saw +n03104512 copperware +n03105088 copyholder +n03105214 coquille +n03105306 coracle +n03105467 corbel, truss +n03105645 corbel arch +n03105810 corbel step, corbie-step, corbiestep, crow step +n03105974 corbie gable +n03106722 cord, corduroy +n03106898 cord, electric cord +n03107046 cordage +n03107488 cords, corduroys +n03107716 core +n03108455 core bit +n03108624 core drill +n03108759 corer +n03108853 cork, bottle cork +n03109033 corker +n03109150 corkscrew, bottle screw +n03109253 corncrib +n03109693 corner, quoin +n03109881 corner, nook +n03110202 corner post +n03110669 cornet, horn, trumpet, trump +n03111041 cornice +n03111177 cornice +n03111296 cornice, valance, valance board, pelmet +n03111690 correctional institution +n03112240 corrugated fastener, wiggle nail +n03112719 corselet, corslet +n03112869 corset, girdle, stays +n03113152 cosmetic +n03113505 cosmotron +n03113657 costume +n03113835 costume +n03114041 costume +n03114236 costume +n03114379 cosy, tea cosy, cozy, tea cozy +n03114504 cot, camp bed +n03114743 cottage tent +n03114839 cotter, cottar +n03115014 cotter pin +n03115180 cotton +n03115400 cotton flannel, Canton flannel +n03115663 cotton mill +n03115762 couch +n03115897 couch +n03116008 couchette +n03116163 coude telescope, coude system +n03116530 counter +n03116767 counter, tabulator +n03117199 counter +n03117642 counterbore, countersink, countersink bit +n03118346 counter tube +n03118969 country house +n03119203 country store, general store, trading post +n03119396 coupe +n03119510 coupling, coupler +n03120198 court, courtyard +n03120491 court +n03120778 court, courtroom +n03121040 court +n03121190 Courtelle +n03121298 courthouse +n03121431 courthouse +n03121897 coverall +n03122073 covered bridge +n03122202 covered couch +n03122295 covered wagon, Conestoga wagon, Conestoga, prairie wagon, prairie schooner +n03122748 covering +n03123553 coverlet +n03123666 cover plate +n03123809 cowbarn, cowshed, cow barn, cowhouse, byre +n03123917 cowbell +n03124043 cowboy boot +n03124170 cowboy hat, ten-gallon hat +n03124313 cowhide +n03124474 cowl +n03124590 cow pen, cattle pen, corral +n03125057 CPU board, mother board +n03125588 crackle, crackleware, crackle china +n03125729 cradle +n03125870 craft +n03126090 cramp, cramp iron +n03126385 crampon, crampoon, climbing iron, climber +n03126580 crampon, crampoon +n03126707 crane +n03126927 craniometer +n03127024 crank, starter +n03127203 crankcase +n03127408 crankshaft +n03127531 crash barrier +n03127747 crash helmet +n03127925 crate +n03128085 cravat +n03128248 crayon, wax crayon +n03128427 crazy quilt +n03128519 cream, ointment, emollient +n03129001 cream pitcher, creamer +n03129471 creche, foundling hospital +n03129636 creche +n03129753 credenza, credence +n03129848 creel +n03130066 crematory, crematorium, cremation chamber +n03130233 crematory, crematorium +n03130563 crepe, crape +n03130761 crepe de Chine +n03130866 crescent wrench +n03131193 cretonne +n03131574 crib, cot +n03131669 crib +n03131967 cricket ball +n03132076 cricket bat, bat +n03132261 cricket equipment +n03132438 cringle, eyelet, loop, grommet, grummet +n03132666 crinoline +n03132776 crinoline +n03133050 crochet needle, crochet hook +n03133415 crock, earthenware jar +n03133878 Crock Pot +n03134118 crook, shepherd's crook +n03134232 Crookes radiometer +n03134394 Crookes tube +n03134739 croquet ball +n03134853 croquet equipment +n03135030 croquet mallet +n03135532 cross +n03135656 crossbar +n03135788 crossbar +n03135917 crossbar +n03136051 crossbench +n03136254 cross bit +n03136369 crossbow +n03136504 crosscut saw, crosscut handsaw, cutoff saw +n03137473 crossjack, mizzen course +n03137579 crosspiece +n03138128 crotchet +n03138217 croupier's rake +n03138344 crowbar, wrecking bar, pry, pry bar +n03138669 crown, diadem +n03139089 crown, crownwork, jacket, jacket crown, cap +n03139464 crown jewels +n03139640 crown lens +n03139998 crow's nest +n03140126 crucible, melting pot +n03140292 crucifix, rood, rood-tree +n03140431 cruet, crewet +n03140546 cruet-stand +n03140652 cruise control +n03140771 cruise missile +n03140900 cruiser +n03141065 cruiser, police cruiser, patrol car, police car, prowl car, squad car +n03141327 cruise ship, cruise liner +n03141455 crupper +n03141612 cruse +n03141702 crusher +n03141823 crutch +n03142099 cryometer +n03142205 cryoscope +n03142325 cryostat +n03142431 crypt +n03142679 crystal, watch crystal, watch glass +n03143400 crystal detector +n03143572 crystal microphone +n03143754 crystal oscillator, quartz oscillator +n03144156 crystal set +n03144873 cubitiere +n03144982 cucking stool, ducking stool +n03145147 cuckoo clock +n03145277 cuddy +n03145384 cudgel +n03145522 cue, cue stick, pool cue, pool stick +n03145719 cue ball +n03145843 cuff, turnup +n03146219 cuirass +n03146342 cuisse +n03146449 cul, cul de sac, dead end +n03146560 culdoscope +n03146687 cullis +n03146777 culotte +n03146846 cultivator, tiller +n03147084 culverin +n03147156 culverin +n03147280 culvert +n03147509 cup +n03148324 cupboard, closet +n03148518 cup hook +n03148727 cupola +n03148808 cupola +n03149135 curb, curb bit +n03149401 curb roof +n03149686 curbstone, kerbstone +n03149810 curette, curet +n03150232 curler, hair curler, roller, crimper +n03150511 curling iron +n03150661 currycomb +n03150795 cursor, pointer +n03151077 curtain, drape, drapery, mantle, pall +n03152303 customhouse, customshouse +n03152951 cutaway, cutaway drawing, cutaway model +n03153246 cutlas, cutlass +n03153585 cutoff +n03153948 cutout +n03154073 cutter, cutlery, cutting tool +n03154316 cutter +n03154446 cutting implement +n03154616 cutting room +n03154745 cutty stool +n03154895 cutwork +n03155178 cybercafe +n03155502 cyclopean masonry +n03155915 cyclostyle +n03156071 cyclotron +n03156279 cylinder +n03156405 cylinder, piston chamber +n03156767 cylinder lock +n03157348 cymbal +n03158186 dacha +n03158414 Dacron, Terylene +n03158668 dado +n03158796 dado plane +n03158885 dagger, sticker +n03159535 dairy, dairy farm +n03159640 dais, podium, pulpit, rostrum, ambo, stump, soapbox +n03160001 daisy print wheel, daisy wheel +n03160186 daisywheel printer +n03160309 dam, dike, dyke +n03160740 damask +n03161016 dampener, moistener +n03161450 damper, muffler +n03161893 damper block, piano damper +n03162297 dark lantern, bull's-eye +n03162460 darkroom +n03162556 darning needle, embroidery needle +n03162714 dart +n03162818 dart +n03163222 dashboard, fascia +n03163381 dashiki, daishiki +n03163488 dash-pot +n03163798 data converter +n03163973 data input device, input device +n03164192 data multiplexer +n03164344 data system, information system +n03164605 davenport +n03164722 davenport +n03164929 davit +n03165096 daybed, divan bed +n03165211 daybook, ledger +n03165466 day nursery, day care center +n03165616 day school +n03165823 dead axle +n03165955 deadeye +n03166120 deadhead +n03166514 deanery +n03166600 deathbed +n03166685 death camp +n03166809 death house, death row +n03166951 death knell, death bell +n03167153 death seat +n03167978 deck +n03168107 deck +n03168217 deck chair, beach chair +n03168543 deck-house +n03168663 deckle +n03168774 deckle edge, deckle +n03168933 declinometer, transit declinometer +n03169063 decoder +n03169176 decolletage +n03170292 decoupage +n03170459 dedicated file server +n03170635 deep-freeze, Deepfreeze, deep freezer, freezer +n03170872 deerstalker +n03171228 defense system, defence system +n03171356 defensive structure, defense, defence +n03171635 defibrillator +n03171910 defilade +n03172038 deflector +n03172738 delayed action +n03172965 delay line +n03173270 delft +n03173387 delicatessen, deli, food shop +n03173929 delivery truck, delivery van, panel truck +n03174079 delta wing +n03174450 demijohn +n03174731 demitasse +n03175081 den +n03175189 denim, dungaree, jean +n03175301 densimeter, densitometer +n03175457 densitometer +n03175604 dental appliance +n03175843 dental floss, floss +n03175983 dental implant +n03176238 dentist's drill, burr drill +n03176386 denture, dental plate, plate +n03176594 deodorant, deodourant +n03176763 department store, emporium +n03177059 departure lounge +n03177165 depilatory, depilator, epilator +n03177708 depressor +n03178000 depth finder +n03178173 depth gauge, depth gage +n03178430 derrick +n03178538 derrick +n03178674 derringer +n03179701 desk +n03179910 desk phone +n03180011 desktop computer +n03180384 dessert spoon +n03180504 destroyer, guided missile destroyer +n03180732 destroyer escort +n03180865 detached house, single dwelling +n03180969 detector, sensor, sensing element +n03181293 detector +n03181667 detention home, detention house, house of detention, detention camp +n03182140 detonating fuse +n03182232 detonator, detonating device, cap +n03182912 developer +n03183080 device +n03185868 Dewar flask, Dewar +n03186199 dhoti +n03186285 dhow +n03186818 dial, telephone dial +n03187037 dial +n03187153 dial +n03187268 dialog box, panel +n03187595 dial telephone, dial phone +n03187751 dialyzer, dialysis machine +n03188290 diamante +n03188531 diaper, nappy, napkin +n03188725 diaper +n03188871 diaphone +n03189083 diaphragm, stop +n03189311 diaphragm +n03189818 diathermy machine +n03190458 dibble, dibber +n03191286 dice cup, dice box +n03191451 dicer +n03191561 dickey, dickie, dicky, shirtfront +n03191776 dickey, dickie, dicky, dickey-seat, dickie-seat, dicky-seat +n03192543 Dictaphone +n03192907 die +n03193107 diesel, diesel engine, diesel motor +n03193260 diesel-electric locomotive, diesel-electric +n03193423 diesel-hydraulic locomotive, diesel-hydraulic +n03193597 diesel locomotive +n03193754 diestock +n03194170 differential analyzer +n03194297 differential gear, differential +n03194812 diffuser, diffusor +n03194992 diffuser, diffusor +n03195332 digester +n03195485 diggings, digs, domiciliation, lodgings, pad +n03195799 digital-analog converter, digital-to-analog converter +n03195959 digital audiotape, DAT +n03196062 digital camera +n03196217 digital clock +n03196324 digital computer +n03196598 digital display, alphanumeric display +n03196990 digital subscriber line, DSL +n03197201 digital voltmeter +n03197337 digital watch +n03197446 digitizer, digitiser, analog-digital converter, analog-to-digital converter +n03198223 dilator, dilater +n03198500 dildo +n03199358 dimity +n03199488 dimmer +n03199647 diner +n03199775 dinette +n03199901 dinghy, dory, rowboat +n03200231 dining area +n03200357 dining car, diner, dining compartment, buffet car +n03200539 dining-hall +n03200701 dining room, dining-room +n03200906 dining-room furniture +n03201035 dining-room table +n03201208 dining table, board +n03201529 dinner bell +n03201638 dinner dress, dinner gown, formal, evening gown +n03201776 dinner jacket, tux, tuxedo, black tie +n03201895 dinner napkin +n03201996 dinner pail, dinner bucket +n03202354 dinner table +n03202481 dinner theater, dinner theatre +n03202760 diode, semiconductor diode, junction rectifier, crystal rectifier +n03202940 diode, rectifying tube, rectifying valve +n03203089 dip +n03203806 diplomatic building +n03204134 dipole, dipole antenna +n03204306 dipper +n03204436 dipstick +n03204558 DIP switch, dual inline package switch +n03204955 directional antenna +n03205143 directional microphone +n03205304 direction finder +n03205458 dirk +n03205574 dirndl +n03205669 dirndl +n03205903 dirty bomb +n03206023 discharge lamp +n03206158 discharge pipe +n03206282 disco, discotheque +n03206405 discount house, discount store, discounter, wholesale house +n03206602 discus, saucer +n03206718 disguise +n03206908 dish +n03207305 dish, dish aerial, dish antenna, saucer +n03207548 dishpan +n03207630 dish rack +n03207743 dishrag, dishcloth +n03207835 dishtowel, dish towel, tea towel +n03207941 dishwasher, dish washer, dishwashing machine +n03208556 disk, disc +n03208938 disk brake, disc brake +n03209359 disk clutch +n03209477 disk controller +n03209666 disk drive, disc drive, hard drive, Winchester drive +n03209910 diskette, floppy, floppy disk +n03210245 disk harrow, disc harrow +n03210372 dispatch case, dispatch box +n03210552 dispensary +n03210683 dispenser +n03211117 display, video display +n03211413 display adapter, display adaptor +n03211616 display panel, display board, board +n03211789 display window, shop window, shopwindow, show window +n03212114 disposal, electric pig, garbage disposal +n03212247 disrupting explosive, bursting explosive +n03212406 distaff +n03212811 distillery, still +n03213014 distributor, distributer, electrical distributor +n03213361 distributor cam +n03213538 distributor cap +n03213715 distributor housing +n03213826 distributor point, breaker point, point +n03214253 ditch +n03214450 ditch spade, long-handled spade +n03214582 ditty bag +n03214966 divan +n03215076 divan, diwan +n03215191 dive bomber +n03215337 diverging lens, concave lens +n03215508 divided highway, dual carriageway +n03215749 divider +n03215930 diving bell +n03216199 divining rod, dowser, dowsing rod, waterfinder, water finder +n03216402 diving suit, diving dress +n03216562 dixie +n03216710 Dixie cup, paper cup +n03216828 dock, dockage, docking facility +n03217653 doeskin +n03217739 dogcart +n03217889 doggie bag, doggy bag +n03218198 dogsled, dog sled, dog sleigh +n03218446 dog wrench +n03219010 doily, doyley, doyly +n03219135 doll, dolly +n03219483 dollhouse, doll's house +n03219612 dolly +n03219859 dolman +n03219966 dolman, dolman jacket +n03220095 dolman sleeve +n03220237 dolmen, cromlech, portal tomb +n03220513 dome +n03220692 dome, domed stadium, covered stadium +n03221059 domino, half mask, eye mask +n03221351 dongle +n03221540 donkey jacket +n03221720 door +n03222176 door +n03222318 door +n03222516 doorbell, bell, buzzer +n03222722 doorframe, doorcase +n03222857 doorjamb, doorpost +n03223162 doorlock +n03223299 doormat, welcome mat +n03223441 doornail +n03223553 doorplate +n03223686 doorsill, doorstep, threshold +n03223923 doorstop, doorstopper +n03224490 Doppler radar +n03224603 dormer, dormer window +n03224753 dormer window +n03224893 dormitory, dorm, residence hall, hall, student residence +n03225108 dormitory, dormitory room, dorm room +n03225458 dosemeter, dosimeter +n03225616 dossal, dossel +n03225777 dot matrix printer, matrix printer, dot printer +n03225988 double bed +n03226090 double-bitted ax, double-bitted axe, Western ax, Western axe +n03226254 double boiler, double saucepan +n03226375 double-breasted jacket +n03226538 double-breasted suit +n03226880 double door +n03227010 double glazing +n03227184 double-hung window +n03227317 double knit +n03227721 doubler +n03227856 double reed +n03228016 double-reed instrument, double reed +n03228254 doublet +n03228365 doubletree +n03228533 douche, douche bag +n03228692 dovecote, columbarium, columbary +n03228796 Dover's powder +n03228967 dovetail, dovetail joint +n03229115 dovetail plane +n03229244 dowel, dowel pin, joggle +n03229526 downstage +n03231160 drafting instrument +n03231368 drafting table, drawing table +n03231819 Dragunov +n03232309 drainage ditch +n03232417 drainage system +n03232543 drain basket +n03232815 drainplug +n03232923 drape +n03233123 drapery +n03233624 drawbar +n03233744 drawbridge, lift bridge +n03233905 drawer +n03234164 drawers, underdrawers, shorts, boxers, boxershorts +n03234952 drawing chalk +n03235042 drawing room, withdrawing room +n03235180 drawing room +n03235327 drawknife, drawshave +n03235796 drawstring bag +n03235979 dray, camion +n03236093 dreadnought, dreadnaught +n03236217 dredge +n03236423 dredger +n03236580 dredging bucket +n03236735 dress, frock +n03237212 dress blues, dress whites +n03237340 dresser +n03237416 dress hat, high hat, opera hat, silk hat, stovepipe, top hat, topper, beaver +n03237639 dressing, medical dressing +n03237839 dressing case +n03237992 dressing gown, robe-de-chambre, lounging robe +n03238131 dressing room +n03238286 dressing sack, dressing sacque +n03238586 dressing table, dresser, vanity, toilet table +n03238762 dress rack +n03238879 dress shirt, evening shirt +n03239054 dress suit, full dress, tailcoat, tail coat, tails, white tie, white tie and tails +n03239259 dress uniform +n03239607 drift net +n03239726 drill +n03240140 electric drill +n03240683 drilling platform, offshore rig +n03240892 drill press +n03241093 drill rig, drilling rig, oilrig, oil rig +n03241335 drinking fountain, water fountain, bubbler +n03241496 drinking vessel +n03241903 drip loop +n03242120 drip mat +n03242264 drip pan +n03242390 dripping pan, drip pan +n03242506 drip pot +n03242995 drive +n03243218 drive +n03243625 drive line, drive line system +n03244047 driver, number one wood +n03244231 driveshaft +n03244388 driveway, drive, private road +n03244775 driving iron, one iron +n03244919 driving wheel +n03245271 drogue, drogue chute, drogue parachute +n03245421 drogue parachute +n03245724 drone, drone pipe, bourdon +n03245889 drone, pilotless aircraft, radio-controlled aircraft +n03246197 drop arch +n03246312 drop cloth +n03246454 drop curtain, drop cloth, drop +n03246653 drop forge, drop hammer, drop press +n03246933 drop-leaf table +n03247083 dropper, eye dropper +n03247351 droshky, drosky +n03247495 drove, drove chisel +n03248835 drugget +n03249342 drugstore, apothecary's shop, chemist's, chemist's shop, pharmacy +n03249569 drum, membranophone, tympan +n03249956 drum, metal drum +n03250089 drum brake +n03250279 drumhead, head +n03250405 drum printer +n03250588 drum sander, electric sander, sander, smoother +n03250847 drumstick +n03250952 dry battery +n03251100 dry-bulb thermometer +n03251280 dry cell +n03251533 dry dock, drydock, graving dock +n03251766 dryer, drier +n03251932 dry fly +n03252231 dry kiln +n03252324 dry masonry +n03252422 dry point +n03252637 dry wall, dry-stone wall +n03252787 dual scan display +n03253071 duck +n03253187 duckboard +n03253279 duckpin +n03253714 dudeen +n03253796 duffel, duffle +n03253886 duffel bag, duffle bag, duffel, duffle +n03254046 duffel coat, duffle coat +n03254189 dugout +n03254374 dugout canoe, dugout, pirogue +n03254625 dulciana +n03254737 dulcimer +n03254862 dulcimer +n03255030 dumbbell +n03255167 dumb bomb, gravity bomb +n03255322 dumbwaiter, food elevator +n03255488 dumdum, dumdum bullet +n03255899 dumpcart +n03256032 Dumpster +n03256166 dump truck, dumper, tipper truck, tipper lorry, tip truck, tipper +n03256472 Dumpy level +n03256631 dunce cap, dunce's cap, fool's cap +n03256788 dune buggy, beach buggy +n03256928 dungeon +n03257065 duplex apartment, duplex +n03257210 duplex house, duplex, semidetached house +n03257586 duplicator, copier +n03258192 dust bag, vacuum bag +n03258330 dustcloth, dustrag, duster +n03258456 dust cover +n03258577 dust cover, dust sheet +n03258905 dustmop, dust mop, dry mop +n03259009 dustpan +n03259280 Dutch oven +n03259401 Dutch oven +n03259505 dwelling, home, domicile, abode, habitation, dwelling house +n03260206 dye-works +n03260504 dynamo +n03260733 dynamometer, ergometer +n03260849 Eames chair +n03261019 earflap, earlap +n03261263 early warning radar +n03261395 early warning system +n03261603 earmuff +n03261776 earphone, earpiece, headphone, phone +n03262072 earplug +n03262248 earplug +n03262519 earthenware +n03262717 earthwork +n03262809 easel +n03262932 easy chair, lounge chair, overstuffed chair +n03263076 eaves +n03263338 ecclesiastical attire, ecclesiastical robe +n03263640 echinus +n03263758 echocardiograph +n03264906 edger +n03265032 edge tool +n03265754 efficiency apartment +n03266195 egg-and-dart, egg-and-anchor, egg-and-tongue +n03266371 eggbeater, eggwhisk +n03266620 egg timer +n03266749 eiderdown, duvet, continental quilt +n03267113 eight ball +n03267468 ejection seat, ejector seat, capsule +n03267696 elastic +n03267821 elastic bandage +n03268142 Elastoplast +n03268311 elbow +n03268645 elbow pad +n03268790 electric, electric automobile, electric car +n03268918 electrical cable +n03269073 electrical contact +n03269203 electrical converter +n03269401 electrical device +n03270165 electrical system +n03270695 electric bell +n03270854 electric blanket +n03271030 electric chair, chair, death chair, hot seat +n03271260 electric clock +n03271376 electric-discharge lamp, gas-discharge lamp +n03271574 electric fan, blower +n03271765 electric frying pan +n03271865 electric furnace +n03272010 electric guitar +n03272125 electric hammer +n03272239 electric heater, electric fire +n03272383 electric lamp +n03272562 electric locomotive +n03272810 electric meter, power meter +n03272940 electric mixer +n03273061 electric motor +n03273551 electric organ, electronic organ, Hammond organ, organ +n03273740 electric range +n03273913 electric refrigerator, fridge +n03274265 electric toothbrush +n03274435 electric typewriter +n03274561 electro-acoustic transducer +n03274796 electrode +n03275125 electrodynamometer +n03275311 electroencephalograph +n03275566 electrograph +n03275681 electrolytic, electrolytic capacitor, electrolytic condenser +n03275864 electrolytic cell +n03276179 electromagnet +n03276696 electrometer +n03276839 electromyograph +n03277004 electron accelerator +n03277149 electron gun +n03277459 electronic balance +n03277602 electronic converter +n03277771 electronic device +n03278248 electronic equipment +n03278914 electronic fetal monitor, electronic foetal monitor, fetal monitor, foetal monitor +n03279153 electronic instrument, electronic musical instrument +n03279364 electronic voltmeter +n03279508 electron microscope +n03279804 electron multiplier +n03279918 electrophorus +n03280216 electroscope +n03280394 electrostatic generator, electrostatic machine, Wimshurst machine, Van de Graaff generator +n03280644 electrostatic printer +n03281145 elevator, lift +n03281524 elevator +n03281673 elevator shaft +n03282060 embankment +n03282295 embassy +n03282401 embellishment +n03283221 emergency room, ER +n03283413 emesis basin +n03283827 emitter +n03284308 empty +n03284482 emulsion, photographic emulsion +n03284743 enamel +n03284886 enamel +n03284981 enamelware +n03285578 encaustic +n03285730 encephalogram, pneumoencephalogram +n03285912 enclosure +n03286572 endoscope +n03287351 energizer, energiser +n03287733 engine +n03288003 engine +n03288500 engineering, engine room +n03288643 enginery +n03288742 English horn, cor anglais +n03288886 English saddle, English cavalry saddle +n03289660 enlarger +n03289985 ensemble +n03290096 ensign +n03290195 entablature +n03290653 entertainment center +n03291413 entrenching tool, trenching spade +n03291551 entrenchment, intrenchment +n03291741 envelope +n03291819 envelope +n03291963 envelope, gasbag +n03292085 eolith +n03292362 epauliere +n03292475 epee +n03292603 epergne +n03292736 epicyclic train, epicyclic gear train +n03292960 epidiascope +n03293095 epilating wax +n03293741 equalizer, equaliser +n03293863 equatorial +n03294048 equipment +n03294604 erasable programmable read-only memory, EPROM +n03294833 eraser +n03295012 erecting prism +n03295140 erection +n03295246 Erlenmeyer flask +n03295928 escape hatch +n03296081 escapement +n03296217 escape wheel +n03296328 escarpment, escarp, scarp, protective embankment +n03296478 escutcheon, scutcheon +n03296963 esophagoscope, oesophagoscope +n03297103 espadrille +n03297226 espalier +n03297495 espresso maker +n03297644 espresso shop +n03297735 establishment +n03298089 estaminet +n03298352 estradiol patch +n03298716 etagere +n03298858 etamine, etamin +n03299406 etching +n03300216 ethernet +n03300443 ethernet cable +n03301175 Eton jacket +n03301291 etui +n03301389 eudiometer +n03301568 euphonium +n03301833 evaporative cooler +n03301940 evening bag +n03302671 exercise bike, exercycle +n03302790 exercise device +n03302938 exhaust, exhaust system +n03303217 exhaust fan +n03303669 exhaust valve +n03303831 exhibition hall, exhibition area +n03304197 Exocet +n03304323 expansion bit, expansive bit +n03304465 expansion bolt +n03305300 explosive detection system, EDS +n03305522 explosive device +n03305953 explosive trace detection, ETD +n03306385 express, limited +n03306869 extension, telephone extension, extension phone +n03307037 extension cord +n03307573 external-combustion engine +n03307792 external drive +n03308152 extractor +n03308481 eyebrow pencil +n03308614 eyecup, eyebath, eye cup +n03309110 eyeliner +n03309356 eyepatch, patch +n03309465 eyepiece, ocular +n03309687 eyeshadow +n03309808 fabric, cloth, material, textile +n03313333 facade, frontage, frontal +n03314227 face guard +n03314378 face mask +n03314608 faceplate +n03314780 face powder +n03314884 face veil +n03315644 facing, cladding +n03315805 facing +n03315990 facing, veneer +n03316105 facsimile, facsimile machine, fax +n03316406 factory, mill, manufacturing plant, manufactory +n03316873 factory ship +n03317233 fagot, faggot +n03317510 fagot stitch, faggot stitch +n03317673 Fahrenheit thermometer +n03317788 faience +n03317889 faille +n03318136 fairlead +n03318294 fairy light +n03318865 falchion +n03318983 fallboard, fall-board +n03319167 fallout shelter +n03319457 false face +n03319576 false teeth +n03319745 family room +n03320046 fan +n03320262 fan belt +n03320421 fan blade +n03320519 fancy dress, masquerade, masquerade costume +n03320845 fanion +n03320959 fanlight +n03321103 fanjet, fan-jet, fanjet engine, turbojet, turbojet engine, turbofan, turbofan engine +n03321419 fanjet, fan-jet, turbofan, turbojet +n03321563 fanny pack, butt pack +n03321843 fan tracery +n03321954 fan vaulting +n03322570 farm building +n03322704 farmer's market, green market, greenmarket +n03322836 farmhouse +n03322940 farm machine +n03323096 farmplace, farm-place, farmstead +n03323211 farmyard +n03323319 farthingale +n03323703 fastener, fastening, holdfast, fixing +n03324629 fast reactor +n03324814 fat farm +n03324928 fatigues +n03325088 faucet, spigot +n03325288 fauld +n03325403 fauteuil +n03325584 feather boa, boa +n03325691 featheredge +n03325941 fedora, felt hat, homburg, Stetson, trilby +n03326073 feedback circuit, feedback loop +n03326371 feedlot +n03326475 fell, felled seam +n03326660 felloe, felly +n03326795 felt +n03326948 felt-tip pen, felt-tipped pen, felt tip, Magic Marker +n03327133 felucca +n03327234 fence, fencing +n03327553 fencing mask, fencer's mask +n03327691 fencing sword +n03327841 fender, wing +n03328201 fender, buffer, cowcatcher, pilot +n03329302 Ferris wheel +n03329536 ferrule, collet +n03329663 ferry, ferryboat +n03330002 ferule +n03330665 festoon +n03330792 fetoscope, foetoscope +n03330947 fetter, hobble +n03331077 fez, tarboosh +n03331244 fiber, fibre, vulcanized fiber +n03331599 fiber optic cable, fibre optic cable +n03332005 fiberscope +n03332173 fichu +n03332271 fiddlestick, violin bow +n03332393 field artillery, field gun +n03332591 field coil, field winding +n03332784 field-effect transistor, FET +n03332989 field-emission microscope +n03333129 field glass, glass, spyglass +n03333252 field hockey ball +n03333349 field hospital +n03333610 field house, sports arena +n03333711 field lens +n03333851 field magnet +n03334017 field-sequential color television, field-sequential color TV, field-sequential color television system, field-sequential color TV system +n03334291 field tent +n03334382 fieldwork +n03334492 fife +n03334912 fifth wheel, spare +n03335030 fighter, fighter aircraft, attack aircraft +n03335333 fighting chair +n03335461 fig leaf +n03335846 figure eight, figure of eight +n03336168 figure loom, figured-fabric loom +n03336282 figure skate +n03336575 filament +n03336742 filature +n03336839 file +n03337140 file, file cabinet, filing cabinet +n03337383 file folder +n03337494 file server +n03337822 filigree, filagree, fillagree +n03338287 filling +n03338821 film, photographic film +n03339296 film, plastic film +n03339529 film advance +n03339643 filter +n03340009 filter +n03340723 finder, viewfinder, view finder +n03340923 finery +n03341035 fine-tooth comb, fine-toothed comb +n03341153 finger +n03341297 fingerboard +n03341606 finger bowl +n03342015 finger paint, fingerpaint +n03342127 finger-painting +n03342262 finger plate, escutcheon, scutcheon +n03342432 fingerstall, cot +n03342657 finish coat, finishing coat +n03342863 finish coat, finishing coat +n03342961 finisher +n03343047 fin keel +n03343234 fipple +n03343354 fipple flute, fipple pipe, recorder, vertical flute +n03343560 fire +n03343737 fire alarm, smoke alarm +n03343853 firearm, piece, small-arm +n03344305 fire bell +n03344393 fireboat +n03344509 firebox +n03344642 firebrick +n03344784 fire control radar +n03344935 fire control system +n03345487 fire engine, fire truck +n03345837 fire extinguisher, extinguisher, asphyxiator +n03346135 fire iron +n03346289 fireman's ax, fireman's axe +n03346455 fireplace, hearth, open fireplace +n03347037 fire screen, fireguard +n03347472 fire tongs, coal tongs +n03347617 fire tower +n03348142 firewall +n03348868 firing chamber, gun chamber +n03349020 firing pin +n03349296 firkin +n03349367 firmer chisel +n03349469 first-aid kit +n03349599 first-aid station +n03349771 first base +n03349892 first class +n03350204 fishbowl, fish bowl, goldfish bowl +n03350352 fisherman's bend +n03350456 fisherman's knot, true lover's knot, truelove knot +n03350602 fisherman's lure, fish lure +n03351151 fishhook +n03351262 fishing boat, fishing smack, fishing vessel +n03351434 fishing gear, tackle, fishing tackle, fishing rig, rig +n03351979 fishing rod, fishing pole +n03352232 fish joint +n03352366 fish knife +n03352628 fishnet, fishing net +n03352961 fish slice +n03353281 fitment +n03353951 fixative +n03354207 fixer-upper +n03354903 flag +n03355468 flageolet, treble recorder, shepherd's pipe +n03355768 flagon +n03355925 flagpole, flagstaff +n03356038 flagship +n03356279 flail +n03356446 flambeau +n03356559 flamethrower +n03356858 flange, rim +n03356982 flannel +n03357081 flannel, gabardine, tweed, white +n03357267 flannelette +n03357716 flap, flaps +n03358172 flash, photoflash, flash lamp, flashgun, flashbulb, flash bulb +n03358380 flash +n03358726 flash camera +n03358841 flasher +n03359137 flashlight, torch +n03359285 flashlight battery +n03359436 flash memory +n03359566 flask +n03360133 flat arch, straight arch +n03360300 flatbed +n03360431 flatbed press, cylinder press +n03360622 flat bench +n03360731 flatcar, flatbed, flat +n03361109 flat file +n03361297 flatlet +n03361380 flat panel display, FPD +n03361550 flats +n03361683 flat tip screwdriver +n03362639 fleece +n03362771 fleet ballistic missile submarine +n03362890 fleur-de-lis, fleur-de-lys +n03363363 flight simulator, trainer +n03363549 flintlock +n03363749 flintlock, firelock +n03364008 flip-flop, thong +n03364156 flipper, fin +n03364599 float, plasterer's float +n03364937 floating dock, floating dry dock +n03365231 floatplane, pontoon plane +n03365374 flood, floodlight, flood lamp, photoflood +n03365592 floor, flooring +n03365991 floor, level, storey, story +n03366464 floor +n03366721 floorboard +n03366823 floor cover, floor covering +n03366974 floor joist +n03367059 floor lamp +n03367321 flophouse, dosshouse +n03367410 florist, florist shop, flower store +n03367545 floss +n03367875 flotsam, jetsam +n03367969 flour bin +n03368048 flour mill +n03368352 flowerbed, flower bed, bed of flowers +n03369276 flugelhorn, fluegelhorn +n03369407 fluid drive +n03369512 fluid flywheel +n03369866 flume +n03370387 fluorescent lamp +n03370646 fluoroscope, roentgenoscope +n03371875 flush toilet, lavatory +n03372029 flute, transverse flute +n03372549 flute, flute glass, champagne flute +n03372822 flux applicator +n03372933 fluxmeter +n03373237 fly +n03373611 flying boat +n03373943 flying buttress, arc-boutant +n03374102 flying carpet +n03374282 flying jib +n03374372 fly rod +n03374473 fly tent +n03374570 flytrap +n03374649 flywheel +n03374838 fob, watch chain, watch guard +n03375171 foghorn +n03375329 foglamp +n03375575 foil +n03376159 fold, sheepfold, sheep pen, sheepcote +n03376279 folder +n03376595 folding chair +n03376771 folding door, accordion door +n03376938 folding saw +n03378005 food court +n03378174 food processor +n03378342 food hamper +n03378442 foot +n03378593 footage +n03378765 football +n03379051 football helmet +n03379204 football stadium +n03379343 footbath +n03379719 foot brake +n03379828 footbridge, overcrossing, pedestrian bridge +n03379989 foothold, footing +n03380301 footlocker, locker +n03380647 foot rule +n03380724 footstool, footrest, ottoman, tuffet +n03380867 footwear, footgear +n03381126 footwear +n03381231 forceps +n03381450 force pump +n03381565 fore-and-after +n03381776 fore-and-aft sail +n03382104 forecastle, fo'c'sle +n03382292 forecourt +n03382413 foredeck +n03382533 fore edge, foredge +n03382708 foreground +n03382856 foremast +n03382969 fore plane +n03383099 foresail +n03383211 forestay +n03383378 foretop +n03383468 fore-topmast +n03383562 fore-topsail +n03383821 forge +n03384167 fork +n03384352 forklift +n03384891 formalwear, eveningwear, evening dress, evening clothes +n03385295 Formica +n03385557 fortification, munition +n03386011 fortress, fort +n03386343 forty-five +n03386544 Foucault pendulum +n03386726 foulard +n03386870 foul-weather gear +n03387323 foundation garment, foundation +n03387653 foundry, metalworks +n03388043 fountain +n03388183 fountain pen +n03388323 four-in-hand +n03388549 four-poster +n03388711 four-pounder +n03388990 four-stroke engine, four-stroke internal-combustion engine +n03389611 four-wheel drive, 4WD +n03389761 four-wheel drive, 4WD +n03389889 four-wheeler +n03389983 fowling piece +n03390075 foxhole, fox hole +n03390327 fragmentation bomb, antipersonnel bomb, anti-personnel bomb, daisy cutter +n03390673 frail +n03390786 fraise +n03390983 frame, framing +n03391301 frame +n03391613 frame buffer +n03391770 framework +n03392648 Francis turbine +n03392741 franking machine +n03393017 free house +n03393199 free-reed +n03393324 free-reed instrument +n03393761 freewheel +n03393912 freight car +n03394149 freight elevator, service elevator +n03394272 freight liner, liner train +n03394480 freight train, rattler +n03394649 French door +n03394916 French horn, horn +n03395256 French polish, French polish shellac +n03395401 French roof +n03395514 French window +n03395859 Fresnel lens +n03396074 fret +n03396580 friary +n03396654 friction clutch +n03396997 frieze +n03397087 frieze +n03397266 frigate +n03397412 frigate +n03397532 frill, flounce, ruffle, furbelow +n03397947 Frisbee +n03398153 frock +n03398228 frock coat +n03399579 frontlet, frontal +n03399677 front porch +n03399761 front projector +n03399971 fruit machine +n03400231 frying pan, frypan, skillet +n03400972 fuel filter +n03401129 fuel gauge, fuel indicator +n03401279 fuel injection, fuel injection system +n03401721 fuel system +n03402188 full-dress uniform +n03402369 full metal jacket +n03402511 full skirt +n03402785 fumigator +n03402941 funeral home, funeral parlor, funeral parlour, funeral chapel, funeral church, funeral-residence +n03403643 funnel +n03404012 funny wagon +n03404149 fur +n03404251 fur coat +n03404360 fur hat +n03404449 furnace +n03404900 furnace lining, refractory +n03405111 furnace room +n03405265 furnishing +n03405595 furnishing, trappings +n03405725 furniture, piece of furniture, article of furniture +n03406759 fur-piece +n03406966 furrow +n03407369 fuse, electrical fuse, safety fuse +n03407865 fusee drive, fusee +n03408054 fuselage +n03408264 fusil +n03408340 fustian +n03408444 futon +n03409297 gabardine +n03409393 gable, gable end, gable wall +n03409591 gable roof, saddle roof, saddleback, saddleback roof +n03409920 gadgetry +n03410022 gaff +n03410147 gaff +n03410303 gaff +n03410423 gaffsail, gaff-headed sail +n03410571 gaff topsail, fore-and-aft topsail +n03410740 gag, muzzle +n03410938 gaiter +n03411079 gaiter +n03411208 Galilean telescope +n03411339 galleon +n03411927 gallery +n03412058 gallery, art gallery, picture gallery +n03412220 galley, ship's galley, caboose, cookhouse +n03412387 galley +n03412511 galley +n03412906 gallows +n03413124 gallows tree, gallows-tree, gibbet, gallous +n03413264 galvanometer +n03413428 gambling house, gambling den, gambling hell, gaming house +n03413684 gambrel, gambrel roof +n03413828 game +n03414029 gamebag +n03414162 game equipment +n03414676 gaming table +n03415252 gamp, brolly +n03415486 gangplank, gangboard, gangway +n03415626 gangsaw +n03415749 gangway +n03415868 gantlet +n03416094 gantry, gauntry +n03416489 garage +n03416640 garage, service department +n03416775 Garand rifle, Garand, M-1, M-1 rifle +n03416900 garbage +n03417042 garbage truck, dustcart +n03417202 garboard, garboard plank, garboard strake +n03417345 garden +n03417749 garden +n03417970 garden rake +n03418158 garden spade +n03418242 garden tool, lawn tool +n03418402 garden trowel +n03418618 gargoyle +n03418749 garibaldi +n03418915 garlic press +n03419014 garment +n03420345 garment bag +n03420801 garrison cap, overseas cap +n03420935 garrote, garotte, garrotte, iron collar +n03421117 garter, supporter +n03421324 garter belt, suspender belt +n03421485 garter stitch +n03421669 gas guzzler +n03421768 gas shell +n03421960 gas bracket +n03422072 gas burner, gas jet +n03422484 gas-cooled reactor +n03422589 gas-discharge tube +n03422771 gas engine +n03423099 gas fixture +n03423224 gas furnace +n03423306 gas gun +n03423479 gas heater +n03423568 gas holder, gasometer +n03423719 gasket +n03423877 gas lamp +n03424204 gas maser +n03424325 gasmask, respirator, gas helmet +n03424489 gas meter, gasometer +n03424630 gasoline engine, petrol engine +n03424862 gasoline gauge, gasoline gage, gas gauge, gas gage, petrol gauge, petrol gage +n03425241 gas oven +n03425325 gas oven +n03425413 gas pump, gasoline pump, petrol pump, island dispenser +n03425595 gas range, gas stove, gas cooker +n03425769 gas ring +n03426134 gas tank, gasoline tank, petrol tank +n03426285 gas thermometer, air thermometer +n03426462 gastroscope +n03426574 gas turbine +n03426871 gas-turbine ship +n03427202 gat, rod +n03427296 gate +n03428090 gatehouse +n03428226 gateleg table +n03428349 gatepost +n03429003 gathered skirt +n03429137 Gatling gun +n03429288 gauge, gage +n03429682 gauntlet, gantlet +n03429771 gauntlet, gantlet, metal glove +n03429914 gauze, netting, veiling +n03430091 gauze, gauze bandage +n03430313 gavel +n03430418 gazebo, summerhouse +n03430551 gear, gear wheel, geared wheel, cogwheel +n03430959 gear, paraphernalia, appurtenance +n03431243 gear, gear mechanism +n03431570 gearbox, gear box, gear case +n03431745 gearing, gear, geartrain, power train, train +n03432061 gearset +n03432129 gearshift, gearstick, shifter, gear lever +n03432360 Geiger counter, Geiger-Muller counter +n03432509 Geiger tube, Geiger-Muller tube +n03433247 gene chip, DNA chip +n03433637 general-purpose bomb, GP bomb +n03433877 generator +n03434188 generator +n03434285 generator +n03434830 Geneva gown +n03435593 geodesic dome +n03435743 georgette +n03435991 gharry +n03436075 ghat +n03436182 ghetto blaster, boom box +n03436417 gift shop, novelty shop +n03436549 gift wrapping +n03436656 gig +n03436772 gig +n03436891 gig +n03436990 gig +n03437184 gildhall +n03437295 gill net +n03437430 gilt, gilding +n03437581 gimbal +n03437741 gingham +n03437829 girandole, girandola +n03437941 girder +n03438071 girdle, cincture, sash, waistband, waistcloth +n03438257 glass, drinking glass +n03438661 glass +n03438780 glass cutter +n03438863 glasses case +n03439348 glebe house +n03439631 Glengarry +n03439814 glider, sailplane +n03440216 Global Positioning System, GPS +n03440682 glockenspiel, orchestral bells +n03440876 glory hole, lazaretto +n03441112 glove +n03441345 glove compartment +n03441465 glow lamp +n03441582 glow tube +n03442288 glyptic art, glyptography +n03442487 glyptics, lithoglyptics +n03442597 gnomon +n03442756 goal +n03443005 goalmouth +n03443149 goalpost +n03443371 goblet +n03443543 godown +n03443912 goggles +n03444034 go-kart +n03445326 gold plate +n03445617 golf bag +n03445777 golf ball +n03445924 golfcart, golf cart +n03446070 golf club, golf-club, club +n03446268 golf-club head, club head, club-head, clubhead +n03446832 golf equipment +n03447075 golf glove +n03447358 golliwog, golliwogg +n03447447 gondola +n03447721 gong, tam-tam +n03447894 goniometer +n03448031 Gordian knot +n03448590 gorget +n03448696 gossamer +n03448956 Gothic arch +n03449217 gouache +n03449309 gouge +n03449451 gourd, calabash +n03449564 government building +n03449858 government office +n03450230 gown +n03450516 gown, robe +n03450734 gown, surgical gown, scrubs +n03450881 grab +n03450974 grab bag +n03451120 grab bar +n03451253 grace cup +n03451365 grade separation +n03451711 graduated cylinder +n03451798 graffito, graffiti +n03452267 gramophone, acoustic gramophone +n03452449 granary, garner +n03452594 grandfather clock, longcase clock +n03452741 grand piano, grand +n03453231 graniteware +n03453320 granny knot, granny +n03453443 grape arbor, grape arbour +n03454110 grapnel, grapnel anchor +n03454211 grapnel, grapple, grappler, grappling hook, grappling iron +n03454442 grass skirt +n03454536 grate, grating +n03454707 grate, grating +n03454885 grater +n03455355 graver, graving tool, pointel, pointrel +n03455488 gravestone, headstone, tombstone +n03455642 gravimeter, gravity meter +n03455802 gravure, photogravure, heliogravure +n03456024 gravy boat, gravy holder, sauceboat, boat +n03456186 grey, gray +n03456299 grease-gun, gun +n03456447 greasepaint +n03456548 greasy spoon +n03456665 greatcoat, overcoat, topcoat +n03457008 great hall +n03457451 greave, jambeau +n03457686 greengrocery +n03457902 greenhouse, nursery, glasshouse +n03458271 grenade +n03458422 grid, gridiron +n03459328 griddle +n03459591 grill, grille, grillwork +n03459775 grille, radiator grille +n03459914 grillroom, grill +n03460040 grinder +n03460147 grinding wheel, emery wheel +n03460297 grindstone +n03460455 gripsack +n03460899 gristmill +n03461288 grocery bag +n03461385 grocery store, grocery, food market, market +n03461651 grogram +n03461882 groined vault +n03461988 groover +n03462110 grosgrain +n03462315 gros point +n03462747 ground, earth +n03462972 ground bait +n03463185 ground control +n03463381 ground floor, first floor, ground level +n03463666 groundsheet, ground cloth +n03464053 G-string, thong +n03464467 guard, safety, safety device +n03464628 guard boat +n03464952 guardroom +n03465040 guardroom +n03465151 guard ship +n03465320 guard's van +n03465426 gueridon +n03465500 Guarnerius +n03465605 guesthouse +n03465718 guestroom +n03465818 guidance system, guidance device +n03466162 guided missile +n03466493 guided missile cruiser +n03466600 guided missile frigate +n03466839 guildhall +n03466947 guilloche +n03467068 guillotine +n03467254 guimpe +n03467380 guimpe +n03467517 guitar +n03467796 guitar pick +n03467887 gulag +n03467984 gun +n03468570 gunboat +n03468696 gun carriage +n03468821 gun case +n03469031 gun emplacement, weapons emplacement +n03469175 gun enclosure, gun turret, turret +n03469493 gunlock, firing mechanism +n03469832 gunnery +n03469903 gunnysack, gunny sack, burlap bag +n03470005 gun pendulum +n03470222 gun room +n03470387 gunsight, gun-sight +n03470629 gun trigger, trigger +n03470948 gurney +n03471030 gusher +n03471190 gusset, inset +n03471347 gusset, gusset plate +n03471779 guy, guy cable, guy wire, guy rope +n03472232 gymnastic apparatus, exerciser +n03472535 gym shoe, sneaker, tennis shoe +n03472672 gym suit +n03472796 gymslip +n03472937 gypsy cab +n03473078 gyrocompass +n03473227 gyroscope, gyro +n03473465 gyrostabilizer, gyrostabiliser +n03473817 habergeon +n03473966 habit +n03474167 habit, riding habit +n03474352 hacienda +n03474779 hacksaw, hack saw, metal saw +n03474896 haft, helve +n03475581 hairbrush +n03475674 haircloth, hair +n03475823 hairdressing, hair tonic, hair oil, hair grease +n03475961 hairnet +n03476083 hairpiece, false hair, postiche +n03476313 hairpin +n03476542 hair shirt +n03476684 hair slide +n03476991 hair spray +n03477143 hairspring +n03477303 hair trigger +n03477410 halberd +n03477512 half binding +n03477773 half hatchet +n03477902 half hitch +n03478589 half track +n03478756 hall +n03478907 hall +n03479121 hall +n03479266 Hall of Fame +n03479397 hall of residence +n03479502 hallstand +n03480579 halter +n03480719 halter, hackamore +n03480973 hame +n03481172 hammer +n03481521 hammer, power hammer +n03482001 hammer +n03482128 hammerhead +n03482252 hammock, sack +n03482405 hamper +n03482523 hand +n03482877 handball +n03483086 handbarrow +n03483230 handbell +n03483316 hand blower, blow dryer, blow drier, hair dryer, hair drier +n03483531 handbow +n03483637 hand brake, emergency, emergency brake, parking brake +n03483823 hand calculator, pocket calculator +n03483971 handcar +n03484083 handcart, pushcart, cart, go-cart +n03484487 hand cream +n03484576 handcuff, cuff, handlock, manacle +n03484809 hand drill, handheld drill +n03484931 hand glass, simple microscope, magnifying glass +n03485198 hand glass, hand mirror +n03485309 hand grenade +n03485407 hand-held computer, hand-held microcomputer +n03485575 handhold +n03485794 handkerchief, hankie, hanky, hankey +n03487090 handlebar +n03487331 handloom +n03487444 hand lotion +n03487533 hand luggage +n03487642 hand-me-down +n03487774 hand mower +n03487886 hand pump +n03488111 handrest +n03488188 handsaw, hand saw, carpenter's saw +n03488438 handset, French telephone +n03488603 hand shovel +n03488784 handspike +n03488887 handstamp, rubber stamp +n03489048 hand throttle +n03489162 hand tool +n03490006 hand towel, face towel +n03490119 hand truck, truck +n03490324 handwear, hand wear +n03490449 handwheel +n03490649 handwheel +n03490784 hangar queen +n03490884 hanger +n03491032 hang glider +n03491724 hangman's rope, hangman's halter, halter, hemp, hempen necktie +n03491988 hank +n03492087 hansom, hansom cab +n03492250 harbor, harbour +n03492542 hard disc, hard disk, fixed disk +n03492922 hard hat, tin hat, safety hat +n03493219 hardtop +n03493792 hardware, ironware +n03493911 hardware store, ironmonger, ironmonger's shop +n03494278 harmonica, mouth organ, harp, mouth harp +n03494537 harmonium, organ, reed organ +n03494706 harness +n03495039 harness +n03495258 harp +n03495570 harp +n03495671 harpoon +n03495941 harpoon gun +n03496183 harpoon log +n03496296 harpsichord, cembalo +n03496486 Harris Tweed +n03496612 harrow +n03496892 harvester, reaper +n03497100 hash house +n03497352 hasp +n03497657 hat, chapeau, lid +n03498441 hatbox +n03498536 hatch +n03498662 hatchback, hatchback door +n03498781 hatchback +n03498866 hatchel, heckle +n03498962 hatchet +n03499354 hatpin +n03499468 hauberk, byrnie +n03499907 Hawaiian guitar, steel guitar +n03500090 hawse, hawsehole, hawsepipe +n03500209 hawser +n03500295 hawser bend +n03500389 hay bale +n03500457 hayfork +n03500557 hayloft, haymow, mow +n03500699 haymaker, hay conditioner +n03500838 hayrack, hayrig +n03500971 hayrack +n03501152 hazard +n03501288 head +n03501520 head +n03501614 head +n03502200 headboard +n03502331 head covering, veil +n03502509 headdress, headgear +n03502777 header +n03502897 header +n03503097 header, coping, cope +n03503233 header, lintel +n03503358 headfast +n03503477 head gasket +n03503567 head gate +n03503718 headgear +n03503997 headlight, headlamp +n03504205 headpiece +n03504293 headpin, kingpin +n03504723 headquarters, central office, main office, home office, home base +n03505015 headrace +n03505133 headrest +n03505383 headsail +n03505504 headscarf +n03505667 headset +n03505764 head shop +n03506028 headstall, headpiece +n03506184 headstock +n03506370 health spa, spa, health club +n03506560 hearing aid, ear trumpet +n03506727 hearing aid, deaf-aid +n03506880 hearse +n03507241 hearth, fireside +n03507458 hearthrug +n03507658 heart-lung machine +n03507963 heat engine +n03508101 heater, warmer +n03508485 heat exchanger +n03508881 heating pad, hot pad +n03509394 heat lamp, infrared lamp +n03509608 heat pump +n03509843 heat-seeking missile +n03510072 heat shield +n03510244 heat sink +n03510384 heaume +n03510487 heaver +n03510583 heavier-than-air craft +n03510866 heckelphone, basset oboe +n03510987 hectograph, heliotype +n03511175 hedge, hedgerow +n03511333 hedge trimmer +n03512030 helicon, bombardon +n03512147 helicopter, chopper, whirlybird, eggbeater +n03512452 heliograph +n03512624 heliometer +n03512911 helm +n03513137 helmet +n03513376 helmet +n03514129 hematocrit, haematocrit +n03514340 hemming-stitch +n03514451 hemostat, haemostat +n03514693 hemstitch, hemstitching +n03514894 henroost +n03515338 heraldry +n03515934 hermitage +n03516266 herringbone +n03516367 herringbone, herringbone pattern +n03516647 Herschelian telescope, off-axis reflector +n03516844 Hessian boot, hessian, jackboot, Wellington, Wellington boot +n03516996 heterodyne receiver, superheterodyne receiver, superhet +n03517509 hibachi +n03517647 hideaway, retreat +n03517760 hi-fi, high fidelity sound system +n03517899 high altar +n03517982 high-angle gun +n03518135 highball glass +n03518230 highboard +n03518305 highboy, tallboy +n03518445 highchair, feeding chair +n03518631 high gear, high +n03518829 high-hat cymbal, high hat +n03518943 highlighter +n03519081 highlighter +n03519226 high-pass filter +n03519387 high-rise, tower block +n03519674 high table +n03519848 high-warp loom +n03520493 hijab +n03521076 hinge, flexible joint +n03521431 hinging post, swinging post +n03521544 hip boot, thigh boot +n03521675 hipflask, pocket flask +n03521771 hip pad +n03521899 hip pocket +n03522003 hippodrome +n03522100 hip roof, hipped roof +n03522634 hitch +n03522863 hitch +n03522990 hitching post +n03523134 hitchrack, hitching bar +n03523398 hob +n03523506 hobble skirt +n03523987 hockey skate +n03524150 hockey stick +n03524287 hod +n03524425 hodoscope +n03524574 hoe +n03524745 hoe handle +n03524976 hogshead +n03525074 hoist +n03525252 hold, keep +n03525454 holder +n03525693 holding cell +n03525827 holding device +n03526062 holding pen, holding paddock, holding yard +n03527149 hollowware, holloware +n03527444 holster +n03527565 holster +n03527675 holy of holies, sanctum sanctorum +n03528100 home, nursing home, rest home +n03528263 home appliance, household appliance +n03528523 home computer +n03528901 home plate, home base, home, plate +n03529175 home room, homeroom +n03529444 homespun +n03529629 homestead +n03529860 home theater, home theatre +n03530189 homing torpedo +n03530511 hone +n03530642 honeycomb +n03530910 hood, bonnet, cowl, cowling +n03531281 hood +n03531447 hood +n03531546 hood, exhaust hood +n03531691 hood +n03531982 hood latch +n03532342 hook +n03532672 hook, claw +n03532919 hook +n03533014 hookah, narghile, nargileh, sheesha, shisha, chicha, calean, kalian, water pipe, hubble-bubble, hubbly-bubbly +n03533392 hook and eye +n03533486 hookup, assemblage +n03533654 hookup +n03533845 hook wrench, hook spanner +n03534580 hoopskirt, crinoline +n03534695 hoosegow, hoosgow +n03534776 Hoover +n03535024 hope chest, wedding chest +n03535284 hopper +n03535647 hopsacking, hopsack +n03535780 horizontal bar, high bar +n03536122 horizontal stabilizer, horizontal stabiliser, tailplane +n03536568 horizontal tail +n03536761 horn +n03537085 horn +n03537241 horn +n03537412 horn button +n03537550 hornpipe, pibgorn, stockhorn +n03538037 horse, gymnastic horse +n03538179 horsebox +n03538300 horsecar +n03538406 horse cart, horse-cart +n03538542 horsecloth +n03538634 horse-drawn vehicle +n03538817 horsehair +n03538957 horsehair wig +n03539103 horseless carriage +n03539293 horse pistol, horse-pistol +n03539433 horseshoe, shoe +n03539546 horseshoe +n03539678 horse-trail +n03539754 horsewhip +n03540090 hose +n03540267 hosiery, hose +n03540476 hospice +n03540595 hospital, infirmary +n03540914 hospital bed +n03541091 hospital room +n03541269 hospital ship +n03541393 hospital train +n03541537 hostel, youth hostel, student lodging +n03541696 hostel, hostelry, inn, lodge, auberge +n03541923 hot-air balloon +n03542333 hotel +n03542605 hotel-casino, casino-hotel +n03542727 hotel-casino, casino-hotel +n03542860 hotel room +n03543012 hot line +n03543112 hot pants +n03543254 hot plate, hotplate +n03543394 hot rod, hot-rod +n03543511 hot spot, hotspot +n03543603 hot tub +n03543735 hot-water bottle, hot-water bag +n03543945 houndstooth check, hound's-tooth check, dogstooth check, dogs-tooth check, dog's-tooth check +n03544143 hourglass +n03544238 hour hand, little hand +n03544360 house +n03545150 house +n03545470 houseboat +n03545585 houselights +n03545756 house of cards, cardhouse, card-house, cardcastle +n03545961 house of correction +n03546112 house paint, housepaint +n03546235 housetop +n03546340 housing, lodging, living accommodations +n03547054 hovel, hut, hutch, shack, shanty +n03547229 hovercraft, ground-effect machine +n03547397 howdah, houdah +n03547530 huarache, huaraches +n03547861 hub-and-spoke, hub-and-spoke system +n03548086 hubcap +n03548195 huck, huckaback +n03548320 hug-me-tight +n03548402 hula-hoop +n03548533 hulk +n03548626 hull +n03548930 humeral veil, veil +n03549199 Humvee, Hum-Vee +n03549350 hunter, hunting watch +n03549473 hunting knife +n03549589 hurdle +n03549732 hurricane deck, hurricane roof, promenade deck, awning deck +n03549897 hurricane lamp, hurricane lantern, tornado lantern, storm lantern, storm lamp +n03550153 hut, army hut, field hut +n03550289 hutch +n03550420 hutment +n03551084 hydraulic brake, hydraulic brakes +n03551395 hydraulic press +n03551582 hydraulic pump, hydraulic ram +n03551790 hydraulic system +n03552001 hydraulic transmission, hydraulic transmission system +n03552449 hydroelectric turbine +n03552749 hydrofoil, hydroplane +n03553019 hydrofoil, foil +n03553248 hydrogen bomb, H-bomb, fusion bomb, thermonuclear bomb +n03553486 hydrometer, gravimeter +n03554375 hygrodeik +n03554460 hygrometer +n03554645 hygroscope +n03555006 hyperbaric chamber +n03555217 hypercoaster +n03555426 hypermarket +n03555564 hypodermic needle +n03555662 hypodermic syringe, hypodermic, hypo +n03555862 hypsometer +n03555996 hysterosalpingogram +n03556173 I-beam +n03556679 ice ax, ice axe, piolet +n03556811 iceboat, ice yacht, scooter +n03556992 icebreaker, iceboat +n03557270 iced-tea spoon +n03557360 ice hockey rink, ice-hockey rink +n03557590 ice machine +n03557692 ice maker +n03557840 ice pack, ice bag +n03558007 icepick, ice pick +n03558176 ice rink, ice-skating rink, ice +n03558404 ice skate +n03558633 ice tongs +n03558739 icetray +n03559373 iconoscope +n03559531 Identikit, Identikit picture +n03559999 idle pulley, idler pulley, idle wheel +n03560430 igloo, iglu +n03560860 ignition coil +n03561047 ignition key +n03561169 ignition switch +n03561573 imaret +n03562565 immovable bandage +n03563200 impact printer +n03563460 impeller +n03563710 implant +n03563967 implement +n03564849 impression +n03565288 imprint +n03565565 improvised explosive device, I.E.D., IED +n03565710 impulse turbine +n03565830 in-basket, in-tray +n03565991 incendiary bomb, incendiary, firebomb +n03566193 incinerator +n03566329 inclined plane +n03566555 inclinometer, dip circle +n03566730 inclinometer +n03566860 incrustation, encrustation +n03567066 incubator, brooder +n03567635 index register +n03567788 Indiaman +n03567912 Indian club +n03568117 indicator +n03568818 induction coil +n03569014 inductor, inductance +n03569174 industrial watercourse +n03569293 inertial guidance system, inertial navigation system +n03569494 inflater, inflator +n03571280 inhaler, inhalator +n03571439 injector +n03571625 ink bottle, inkpot +n03571853 ink eraser +n03571942 ink-jet printer +n03572107 inkle +n03572205 inkstand +n03572321 inkwell, inkstand +n03572631 inlay +n03573574 inside caliper +n03573848 insole, innersole +n03574243 instep +n03574416 instillator +n03574555 institution +n03574816 instrument +n03575958 instrument of punishment +n03576215 instrument of torture +n03576443 intaglio, diaglyph +n03576955 intake valve +n03577090 integrated circuit, microcircuit +n03577312 integrator, planimeter +n03577474 Intelnet +n03577672 interceptor +n03577818 interchange +n03578055 intercommunication system, intercom +n03578251 intercontinental ballistic missile, ICBM +n03578656 interface, port +n03578981 interferometer +n03579538 interior door +n03579982 internal-combustion engine, ICE +n03580518 internal drive +n03580615 internet, net, cyberspace +n03580845 interphone +n03580990 interrupter +n03581125 intersection, crossroad, crossway, crossing, carrefour +n03581531 interstice +n03581897 intraocular lens +n03582508 intravenous pyelogram, IVP +n03582959 inverter +n03583419 ion engine +n03583621 ionization chamber, ionization tube +n03584254 iPod +n03584400 video iPod +n03584829 iron, smoothing iron +n03585073 iron +n03585337 iron, branding iron +n03585438 irons, chains +n03585551 ironclad +n03585682 iron foundry +n03585778 iron horse +n03585875 ironing +n03586219 iron lung +n03586631 ironmongery +n03586911 ironworks +n03587205 irrigation ditch +n03588216 izar +n03588841 jabot +n03588951 jack +n03589313 jack, jackstones +n03589513 jack +n03589672 jack +n03589791 jacket +n03590306 jacket +n03590475 jacket +n03590588 jack-in-the-box +n03590841 jack-o'-lantern +n03590932 jack plane +n03591116 Jacob's ladder, jack ladder, pilot ladder +n03591313 jaconet +n03591592 Jacquard loom, Jacquard +n03591798 jacquard +n03591901 jag, dag +n03592245 jail, jailhouse, gaol, clink, slammer, poky, pokey +n03592669 jalousie +n03592773 jamb +n03592931 jammer +n03593122 jampot, jamjar +n03593222 japan +n03593526 jar +n03593862 Jarvik heart, Jarvik artificial heart +n03594010 jaunting car, jaunty car +n03594148 javelin +n03594277 jaw +n03594523 Jaws of Life +n03594734 jean, blue jean, denim +n03594945 jeep, landrover +n03595055 jellaba +n03595264 jerkin +n03595409 jeroboam, double-magnum +n03595523 jersey +n03595614 jersey, T-shirt, tee shirt +n03595860 jet, jet plane, jet-propelled plane +n03596099 jet bridge +n03596285 jet engine +n03596543 jetliner +n03597147 jeweler's glass +n03597317 jewelled headdress, jeweled headdress +n03597916 jew's harp, jews' harp, mouth bow +n03598151 jib +n03598299 jibboom +n03598385 jig +n03598515 jig +n03598646 jiggermast, jigger +n03598783 jigsaw, scroll saw, fretsaw +n03598930 jigsaw puzzle +n03599486 jinrikisha, ricksha, rickshaw +n03599964 jobcentre +n03600285 jodhpurs, jodhpur breeches, riding breeches +n03600475 jodhpur, jodhpur boot, jodhpur shoe +n03600722 joinery +n03600977 joint +n03601442 Joint Direct Attack Munition, JDAM +n03601638 jointer, jointer plane, jointing plane, long plane +n03601840 joist +n03602081 jolly boat, jolly +n03602194 jorum +n03602365 joss house +n03602686 journal bearing +n03602790 journal box +n03602883 joystick +n03603442 jungle gym +n03603594 junk +n03603722 jug +n03604156 jukebox, nickelodeon +n03604311 jumbojet, jumbo jet +n03604400 jumper, pinafore, pinny +n03604536 jumper +n03604629 jumper +n03604763 jumper +n03604843 jumper cable, jumper lead, lead, booster cable +n03605417 jump seat +n03605504 jump suit +n03605598 jump suit, jumpsuit +n03605722 junction +n03605915 junction, conjunction +n03606106 junction barrier, barrier strip +n03606251 junk shop +n03606347 jury box +n03606465 jury mast +n03607029 kachina +n03607186 kaffiyeh +n03607527 kalansuwa +n03607659 Kalashnikov +n03607923 kameez +n03608504 kanzu +n03609147 katharometer +n03609235 kayak +n03609397 kazoo +n03609542 keel +n03609786 keelboat +n03609959 keelson +n03610098 keep, donjon, dungeon +n03610418 keg +n03610524 kennel, doghouse, dog house +n03610682 kepi, peaked cap, service cap, yachting cap +n03610836 keratoscope +n03610992 kerchief +n03612010 ketch +n03612814 kettle, boiler +n03612965 kettle, kettledrum, tympanum, tympani, timpani +n03613294 key +n03613592 key +n03614007 keyboard +n03614383 keyboard buffer +n03614532 keyboard instrument +n03614782 keyhole +n03614887 keyhole saw +n03615300 khadi, khaddar +n03615406 khaki +n03615563 khakis +n03615655 khimar +n03615790 khukuri +n03616091 kick pleat +n03616225 kicksorter, pulse height analyzer +n03616428 kickstand +n03616763 kick starter, kick start +n03616979 kid glove, suede glove +n03617095 kiln +n03617312 kilt +n03617480 kimono +n03617594 kinescope, picture tube, television tube +n03617834 Kinetoscope +n03618101 king +n03618339 king +n03618546 kingbolt, kingpin, swivel pin +n03618678 king post +n03618797 Kipp's apparatus +n03618982 kirk +n03619050 kirpan +n03619196 kirtle +n03619275 kirtle +n03619396 kit, outfit +n03619650 kit +n03619793 kitbag, kit bag +n03619890 kitchen +n03620052 kitchen appliance +n03620353 kitchenette +n03620967 kitchen table +n03621049 kitchen utensil +n03621377 kitchenware +n03621694 kite balloon +n03622058 klaxon, claxon +n03622401 klieg light +n03622526 klystron +n03622839 knee brace +n03622931 knee-high, knee-hi +n03623198 knee pad +n03623338 knee piece +n03623556 knife +n03624134 knife +n03624400 knife blade +n03624767 knight, horse +n03625355 knit +n03625539 knitting machine +n03625646 knitting needle +n03625943 knitwear +n03626115 knob, boss +n03626272 knob, pommel +n03626418 knobble +n03626502 knobkerrie, knobkerry +n03626760 knocker, doorknocker, rapper +n03627232 knot +n03627954 knuckle joint, hinge joint +n03628071 kohl +n03628215 koto +n03628421 kraal +n03628511 kremlin +n03628728 kris, creese, crease +n03628831 krummhorn, crumhorn, cromorne +n03628984 Kundt's tube +n03629100 Kurdistan +n03629231 kurta +n03629520 kylix, cylix +n03629643 kymograph, cymograph +n03630262 lab bench, laboratory bench +n03630383 lab coat, laboratory coat +n03631177 lace +n03631811 lacquer +n03631922 lacquerware +n03632100 lacrosse ball +n03632577 ladder-back +n03632729 ladder-back, ladder-back chair +n03632852 ladder truck, aerial ladder truck +n03632963 ladies' room, powder room +n03633091 ladle +n03633341 lady chapel +n03633632 lagerphone +n03633886 lag screw, lag bolt +n03634034 lake dwelling, pile dwelling +n03634899 lally, lally column +n03635032 lamasery +n03635108 lambrequin +n03635330 lame +n03635516 laminar flow clean room +n03635668 laminate +n03635932 lamination +n03636248 lamp +n03636649 lamp +n03637027 lamp house, lamphouse, lamp housing +n03637181 lamppost +n03637318 lampshade, lamp shade +n03637480 lanai +n03637787 lancet arch, lancet +n03637898 lancet window +n03638014 landau +n03638180 lander +n03638623 landing craft +n03638743 landing flap +n03638883 landing gear +n03639077 landing net +n03639230 landing skid +n03639497 land line, landline +n03639675 land mine, ground-emplaced mine, booby trap +n03639880 land office +n03640850 lanolin +n03640988 lantern +n03641569 lanyard, laniard +n03641947 lap, lap covering +n03642144 laparoscope +n03642341 lapboard +n03642444 lapel +n03642573 lap joint, splice +n03642806 laptop, laptop computer +n03643149 laryngoscope +n03643253 laser, optical maser +n03643491 laser-guided bomb, LGB +n03643737 laser printer +n03643907 lash, thong +n03644073 lashing +n03644378 lasso, lariat, riata, reata +n03644858 latch +n03645011 latch, door latch +n03645168 latchet +n03645290 latchkey +n03645577 lateen, lateen sail +n03646020 latex paint, latex, rubber-base paint +n03646148 lath +n03646296 lathe +n03646809 latrine +n03646916 lattice, latticework, fretwork +n03647423 launch +n03647520 launcher, rocket launcher +n03648219 laundry, wash, washing, washables +n03648431 laundry cart +n03648667 laundry truck +n03649003 lavalava +n03649161 lavaliere, lavalier, lavalliere +n03649288 laver +n03649674 lawn chair, garden chair +n03649797 lawn furniture +n03649909 lawn mower, mower +n03650551 layette +n03651388 lead-acid battery, lead-acid accumulator +n03651605 lead-in +n03651843 leading rein +n03652100 lead pencil +n03652389 leaf spring +n03652729 lean-to +n03652826 lean-to tent +n03652932 leash, tether, lead +n03653110 leatherette, imitation leather +n03653220 leather strip +n03653454 Leclanche cell +n03653583 lectern, reading desk +n03653740 lecture room +n03653833 lederhosen +n03653975 ledger board +n03654576 leg +n03654826 leg +n03655072 legging, leging, leg covering +n03655470 Leiden jar, Leyden jar +n03655720 leisure wear +n03656484 lens, lense, lens system +n03656957 lens, electron lens +n03657121 lens cap, lens cover +n03657239 lens implant, interocular lens implant, IOL +n03657511 leotard, unitard, body suit, cat suit +n03658102 letter case +n03658185 letter opener, paper knife, paperknife +n03658635 levee +n03658858 level, spirit level +n03659292 lever +n03659686 lever, lever tumbler +n03659809 lever +n03659950 lever lock +n03660124 Levi's, levis +n03660562 Liberty ship +n03660909 library +n03661043 library +n03661340 lid +n03662301 Liebig condenser +n03662452 lie detector +n03662601 lifeboat +n03662719 life buoy, lifesaver, life belt, life ring +n03662887 life jacket, life vest, cork jacket +n03663433 life office +n03663531 life preserver, preserver, flotation device +n03663910 life-support system, life support +n03664159 life-support system, life support +n03664675 lifting device +n03664840 lift pump +n03664943 ligament +n03665232 ligature +n03665366 light, light source +n03665851 light arm +n03665924 light bulb, lightbulb, bulb, incandescent lamp, electric light, electric-light bulb +n03666238 light circuit, lighting circuit +n03666362 light-emitting diode, LED +n03666591 lighter, light, igniter, ignitor +n03666917 lighter-than-air craft +n03667060 light filter, diffusing screen +n03667235 lighting +n03667552 light machine gun +n03667664 light meter, exposure meter, photometer +n03667829 light microscope +n03668067 lightning rod, lightning conductor +n03668279 light pen, electronic stylus +n03668488 lightship +n03668803 Lilo +n03669245 limber +n03669534 limekiln +n03669886 limiter, clipper +n03670208 limousine, limo +n03671914 linear accelerator, linac +n03672521 linen +n03672827 line printer, line-at-a-time printer +n03673027 liner, ocean liner +n03673270 liner, lining +n03673450 lingerie, intimate apparel +n03673767 lining, liner +n03674270 link, data link +n03674440 linkage +n03674731 Link trainer +n03674842 linocut +n03675076 linoleum knife, linoleum cutter +n03675235 Linotype, Linotype machine +n03675445 linsey-woolsey +n03675558 linstock +n03675907 lion-jaw forceps +n03676087 lip-gloss +n03676483 lipstick, lip rouge +n03676623 liqueur glass +n03676759 liquid crystal display, LCD +n03677115 liquid metal reactor +n03677682 lisle +n03677766 lister, lister plow, lister plough, middlebreaker, middle buster +n03678558 litterbin, litter basket, litter-basket +n03678729 little theater, little theatre +n03678879 live axle, driving axle +n03679384 living quarters, quarters +n03679712 living room, living-room, sitting room, front room, parlor, parlour +n03680248 load +n03680355 Loafer +n03680512 loaner +n03680734 lobe +n03680858 lobster pot +n03680942 local +n03681477 local area network, LAN +n03681813 local oscillator, heterodyne oscillator +n03682380 Lochaber ax +n03682487 lock +n03682877 lock, ignition lock +n03683079 lock, lock chamber +n03683341 lock +n03683457 lockage +n03683606 locker +n03683708 locker room +n03683995 locket +n03684143 lock-gate +n03684224 locking pliers +n03684489 lockring, lock ring, lock washer +n03684611 lockstitch +n03684740 lockup +n03684823 locomotive, engine, locomotive engine, railway locomotive +n03685307 lodge, indian lodge +n03685486 lodge, hunting lodge +n03685640 lodge +n03685820 lodging house, rooming house +n03686130 loft, attic, garret +n03686363 loft, pigeon loft +n03686470 loft +n03686924 log cabin +n03687137 loggia +n03687928 longbow +n03688066 long iron +n03688192 long johns +n03688405 long sleeve +n03688504 long tom +n03688605 long trousers, long pants +n03688707 long underwear, union suit +n03688832 looking glass, glass +n03688943 lookout, observation tower, lookout station, observatory +n03689157 loom +n03689570 loop knot +n03690168 lorgnette +n03690279 Lorraine cross, cross of Lorraine +n03690473 lorry, camion +n03690851 lota +n03690938 lotion +n03691459 loudspeaker, speaker, speaker unit, loudspeaker system, speaker system +n03691817 lounge, waiting room, waiting area +n03692004 lounger +n03692136 lounging jacket, smoking jacket +n03692272 lounging pajama, lounging pyjama +n03692379 loungewear +n03692522 loupe, jeweler's loupe +n03692842 louvered window, jalousie +n03693293 love knot, lovers' knot, lover's knot, true lovers' knot, true lover's knot +n03693474 love seat, loveseat, tete-a-tete, vis-a-vis +n03693707 loving cup +n03693860 lowboy +n03694196 low-pass filter +n03694356 low-warp-loom +n03694639 LP, L-P +n03694761 L-plate +n03694949 lubber's hole +n03695122 lubricating system, force-feed lubricating system, force feed, pressure-feed lubricating system, pressure feed +n03695452 luff +n03695616 lug +n03695753 luge +n03695857 Luger +n03695957 luggage carrier +n03696065 luggage compartment, automobile trunk, trunk +n03696301 luggage rack, roof rack +n03696445 lugger +n03696568 lugsail, lug +n03696746 lug wrench +n03696909 lumberjack, lumber jacket +n03697007 lumbermill, sawmill +n03697366 lunar excursion module, lunar module, LEM +n03697552 lunchroom +n03697812 lunette +n03697913 lungi, lungyi, longyi +n03698123 lunula +n03698226 lusterware +n03698360 lute +n03698604 luxury liner, express luxury liner +n03698723 lyceum +n03698815 lychgate, lichgate +n03699280 lyre +n03699591 machete, matchet, panga +n03699754 machicolation +n03699975 machine +n03700963 machine, simple machine +n03701191 machine bolt +n03701391 machine gun +n03701640 machinery +n03701790 machine screw +n03702248 machine tool +n03702440 machinist's vise, metalworking vise +n03702582 machmeter +n03703075 mackinaw +n03703203 mackinaw, Mackinaw boat +n03703463 mackinaw, Mackinaw coat +n03703590 mackintosh, macintosh +n03703730 macrame +n03703862 madras +n03703945 Mae West, air jacket +n03704549 magazine rack +n03704834 magic lantern +n03705379 magnet +n03705808 magnetic bottle +n03706229 magnetic compass +n03706415 magnetic core memory, core memory +n03706653 magnetic disk, magnetic disc, disk, disc +n03706939 magnetic head +n03707171 magnetic mine +n03707372 magnetic needle +n03707597 magnetic recorder +n03707766 magnetic stripe +n03708036 magnetic tape, mag tape, tape +n03708425 magneto, magnetoelectric machine +n03708843 magnetometer, gaussmeter +n03708962 magnetron +n03709206 magnifier +n03709363 magnum +n03709545 magnus hitch +n03709644 mail +n03709823 mailbag, postbag +n03709960 mailbag, mail pouch +n03710079 mailboat, mail boat, packet, packet boat +n03710193 mailbox, letter box +n03710294 mail car +n03710421 maildrop +n03710528 mailer +n03710637 maillot +n03710721 maillot, tank suit +n03710937 mailsorter +n03711044 mail train +n03711711 mainframe, mainframe computer +n03711999 mainmast +n03712111 main rotor +n03712337 mainsail +n03712444 mainspring +n03712887 main-topmast +n03712981 main-topsail +n03713069 main yard +n03713151 maisonette, maisonnette +n03713436 majolica, maiolica +n03714235 makeup, make-up, war paint +n03715114 Maksutov telescope +n03715275 malacca, malacca cane +n03715386 mallet, beetle +n03715669 mallet, hammer +n03715892 mallet +n03716228 mammogram +n03716887 mandola +n03716966 mandolin +n03717131 manger, trough +n03717285 mangle +n03717447 manhole +n03717622 manhole cover +n03718212 man-of-war, ship of the line +n03718335 manometer +n03718458 manor, manor house +n03718581 manor hall, hall +n03718699 MANPAD +n03718789 mansard, mansard roof +n03718935 manse +n03719053 mansion, mansion house, manse, hall, residence +n03719343 mantel, mantelpiece, mantle, mantlepiece, chimneypiece +n03719560 mantelet, mantilla +n03719743 mantilla +n03720005 Mao jacket +n03720163 map +n03720665 maquiladora +n03720891 maraca +n03721047 marble +n03721252 marching order +n03721384 marimba, xylophone +n03721590 marina +n03722007 marker +n03722288 marketplace, market place, mart, market +n03722646 marlinespike, marlinspike, marlingspike +n03722944 marocain, crepe marocain +n03723153 marquee, marquise +n03723267 marquetry, marqueterie +n03723439 marriage bed +n03723781 martello tower +n03723885 martingale +n03724066 mascara +n03724176 maser +n03724417 masher +n03724538 mashie, five iron +n03724623 mashie niblick, seven iron +n03724756 masjid, musjid +n03724870 mask +n03725035 mask +n03725506 Masonite +n03725600 Mason jar +n03725717 masonry +n03725869 mason's level +n03726116 massage parlor +n03726233 massage parlor +n03726371 mass spectrograph +n03726516 mass spectrometer, spectrometer +n03726760 mast +n03726993 mast +n03727067 mastaba, mastabah +n03727465 master bedroom +n03727605 masterpiece, chef-d'oeuvre +n03727837 mat +n03727946 mat, gym mat +n03728437 match, lucifer, friction match +n03728982 match +n03729131 matchboard +n03729308 matchbook +n03729402 matchbox +n03729482 matchlock +n03729647 match plane, tonguing and grooving plane +n03729826 matchstick +n03729951 material +n03730153 materiel, equipage +n03730334 maternity hospital +n03730494 maternity ward +n03730655 matrix +n03730788 Matthew Walker, Matthew Walker knot +n03730893 matting +n03731019 mattock +n03731483 mattress cover +n03731695 maul, sledge, sledgehammer +n03731882 maulstick, mahlstick +n03732020 Mauser +n03732114 mausoleum +n03732458 maxi +n03732543 Maxim gun +n03732658 maximum and minimum thermometer +n03733131 maypole +n03733281 maze, labyrinth +n03733465 mazer +n03733547 means +n03733644 measure +n03733805 measuring cup +n03733925 measuring instrument, measuring system, measuring device +n03735637 measuring stick, measure, measuring rod +n03735963 meat counter +n03736064 meat grinder +n03736147 meat hook +n03736269 meat house +n03736372 meat safe +n03736470 meat thermometer +n03736970 mechanical device +n03738066 mechanical piano, Pianola, player piano +n03738241 mechanical system +n03738472 mechanism +n03739518 medical building, health facility, healthcare facility +n03739693 medical instrument +n03742019 medicine ball +n03742115 medicine chest, medicine cabinet +n03742238 MEDLINE +n03743016 megalith, megalithic structure +n03743279 megaphone +n03743902 memorial, monument +n03744276 memory, computer memory, storage, computer storage, store, memory board +n03744684 memory chip +n03744840 memory device, storage device +n03745146 menagerie, zoo, zoological garden +n03745487 mending +n03745571 menhir, standing stone +n03746005 menorah +n03746155 Menorah +n03746330 man's clothing +n03746486 men's room, men's +n03748162 mercantile establishment, retail store, sales outlet, outlet +n03749504 mercury barometer +n03749634 mercury cell +n03749807 mercury thermometer, mercury-in-glass thermometer +n03750206 mercury-vapor lamp +n03750437 mercy seat +n03750614 merlon +n03751065 mess, mess hall +n03751269 mess jacket, monkey jacket, shell jacket +n03751458 mess kit +n03751590 messuage +n03751757 metal detector +n03752071 metallic +n03752185 metal screw +n03752398 metal wood +n03752922 meteorological balloon +n03753077 meter +n03753514 meterstick, metrestick +n03757604 metronome +n03758089 mezzanine, mezzanine floor, entresol +n03758220 mezzanine, first balcony +n03758894 microbalance +n03758992 microbrewery +n03759243 microfiche +n03759432 microfilm +n03759661 micrometer, micrometer gauge, micrometer caliper +n03759954 microphone, mike +n03760310 microprocessor +n03760671 microscope +n03760944 microtome +n03761084 microwave, microwave oven +n03761588 microwave diathermy machine +n03761731 microwave linear accelerator +n03762238 middy, middy blouse +n03762332 midiron, two iron +n03762434 mihrab +n03762602 mihrab +n03762982 military hospital +n03763727 military quarters +n03763968 military uniform +n03764276 military vehicle +n03764606 milk bar +n03764736 milk can +n03764822 milk float +n03764995 milking machine +n03765128 milking stool +n03765467 milk wagon, milkwagon +n03765561 mill, grinder, milling machinery +n03765934 milldam +n03766044 miller, milling machine +n03766218 milliammeter +n03766322 millinery, woman's hat +n03766508 millinery, hat shop +n03766600 milling +n03766697 millivoltmeter +n03766935 millstone +n03767112 millstone +n03767203 millwheel, mill wheel +n03767459 mimeograph, mimeo, mimeograph machine, Roneo, Roneograph +n03767745 minaret +n03767966 mincer, mincing machine +n03768132 mine +n03768683 mine detector +n03768823 minelayer +n03768916 mineshaft +n03769610 minibar, cellaret +n03769722 minibike, motorbike +n03769881 minibus +n03770085 minicar +n03770224 minicomputer +n03770316 ministry +n03770439 miniskirt, mini +n03770520 minisub, minisubmarine +n03770679 minivan +n03770834 miniver +n03770954 mink, mink coat +n03772077 minster +n03772269 mint +n03772584 minute hand, big hand +n03772674 Minuteman +n03773035 mirror +n03773504 missile +n03773835 missile defense system, missile defence system +n03774327 miter box, mitre box +n03774461 miter joint, mitre joint, miter, mitre +n03775071 mitten +n03775199 mixer +n03775388 mixer +n03775546 mixing bowl +n03775636 mixing faucet +n03775747 mizzen, mizen +n03775847 mizzenmast, mizenmast, mizzen, mizen +n03776167 mobcap +n03776460 mobile home, manufactured home +n03776877 moccasin, mocassin +n03776997 mock-up +n03777126 mod con +n03777568 Model T +n03777754 modem +n03778459 modillion +n03778817 module +n03779000 module +n03779128 mohair +n03779246 moire, watered-silk +n03779370 mold, mould, cast +n03779884 moldboard, mouldboard +n03780047 moldboard plow, mouldboard plough +n03780799 moleskin +n03781055 Molotov cocktail, petrol bomb, gasoline bomb +n03781244 monastery +n03781467 monastic habit +n03781594 moneybag +n03781683 money belt +n03781787 monitor +n03782006 monitor +n03782190 monitor, monitoring device +n03782794 monkey-wrench, monkey wrench +n03782929 monk's cloth +n03783304 monochrome +n03783430 monocle, eyeglass +n03783575 monofocal lens implant, monofocal IOL +n03783873 monoplane +n03784139 monotype +n03784270 monstrance, ostensorium +n03784793 mooring tower, mooring mast +n03784896 Moorish arch, horseshoe arch +n03785016 moped +n03785142 mop handle +n03785237 moquette +n03785499 morgue, mortuary, dead room +n03785721 morion, cabasset +n03786096 morning dress +n03786194 morning dress +n03786313 morning room +n03786621 Morris chair +n03786715 mortar, howitzer, trench mortar +n03786901 mortar +n03787032 mortarboard +n03787523 mortise joint, mortise-and-tenon joint +n03788047 mosaic +n03788195 mosque +n03788365 mosquito net +n03788498 motel +n03788601 motel room +n03788914 Mother Hubbard, muumuu +n03789171 motion-picture camera, movie camera, cine-camera +n03789400 motion-picture film, movie film, cine-film +n03789603 motley +n03789794 motley +n03789946 motor +n03790230 motorboat, powerboat +n03790512 motorcycle, bike +n03790755 motor hotel, motor inn, motor lodge, tourist court, court +n03790953 motorized wheelchair +n03791053 motor scooter, scooter +n03791235 motor vehicle, automotive vehicle +n03792048 mound, hill +n03792334 mound, hill, pitcher's mound +n03792526 mount, setting +n03792782 mountain bike, all-terrain bike, off-roader +n03792972 mountain tent +n03793489 mouse, computer mouse +n03793850 mouse button +n03794056 mousetrap +n03794136 mousse, hair mousse, hair gel +n03794798 mouthpiece, embouchure +n03795123 mouthpiece +n03795269 mouthpiece, gumshield +n03795758 movement +n03795976 movie projector, cine projector, film projector +n03796181 moving-coil galvanometer +n03796401 moving van +n03796522 mud brick +n03796605 mudguard, splash guard, splash-guard +n03796848 mudhif +n03796974 muff +n03797062 muffle +n03797182 muffler +n03797264 mufti +n03797390 mug +n03797896 mulch +n03798061 mule, scuff +n03798442 multichannel recorder +n03798610 multiengine airplane, multiengine plane +n03798982 multiplex +n03799113 multiplexer +n03799240 multiprocessor +n03799375 multistage rocket, step rocket +n03799610 munition, ordnance, ordnance store +n03799876 Murphy bed +n03800371 musette, shepherd's pipe +n03800485 musette pipe +n03800563 museum +n03800772 mushroom anchor +n03800933 musical instrument, instrument +n03801353 music box, musical box +n03801533 music hall, vaudeville theater, vaudeville theatre +n03801671 music school +n03801760 music stand, music rack +n03801880 music stool, piano stool +n03802007 musket +n03802228 musket ball, ball +n03802393 muslin +n03802643 mustache cup, moustache cup +n03802800 mustard plaster, sinapism +n03802973 mute +n03803116 muzzle loader +n03803284 muzzle +n03803780 myelogram +n03804211 nacelle +n03804744 nail +n03805180 nailbrush +n03805280 nailfile +n03805374 nailhead +n03805503 nailhead +n03805725 nail polish, nail enamel, nail varnish +n03805933 nainsook +n03807334 Napier's bones, Napier's rods +n03809211 nard, spikenard +n03809312 narrowbody aircraft, narrow-body aircraft, narrow-body +n03809603 narrow wale +n03809686 narthex +n03809802 narthex +n03810412 nasotracheal tube +n03810952 national monument +n03811295 nautilus, nuclear submarine, nuclear-powered submarine +n03811444 navigational system +n03811847 naval equipment +n03811965 naval gun +n03812263 naval missile +n03812382 naval radar +n03812789 naval tactical data system +n03812924 naval weaponry +n03813078 nave +n03813176 navigational instrument +n03813946 nebuchadnezzar +n03814528 neckband +n03814639 neck brace +n03814727 neckcloth, stock +n03814817 neckerchief +n03814906 necklace +n03815149 necklet +n03815278 neckline +n03815482 neckpiece +n03815615 necktie, tie +n03816005 neckwear +n03816136 needle +n03816394 needle +n03816530 needlenose pliers +n03816849 needlework, needlecraft +n03817191 negative +n03817331 negative magnetic pole, negative pole, south-seeking pole +n03817522 negative pole +n03817647 negligee, neglige, peignoir, wrapper, housecoat +n03818001 neolith +n03818343 neon lamp, neon induction lamp, neon tube +n03819047 nephoscope +n03819336 nest +n03819448 nest egg +n03819595 net, network, mesh, meshing, meshwork +n03819994 net +n03820154 net +n03820318 net +n03820728 network, electronic network +n03820950 network +n03821145 neutron bomb +n03821424 newel +n03821518 newel post, newel +n03822171 newspaper, paper +n03822361 newsroom +n03822504 newsroom +n03822656 newsstand +n03822767 Newtonian telescope, Newtonian reflector +n03823111 nib, pen nib +n03823216 niblick, nine iron +n03823312 nicad, nickel-cadmium accumulator +n03823673 nickel-iron battery, nickel-iron accumulator +n03823906 Nicol prism +n03824197 night bell +n03824284 nightcap +n03824381 nightgown, gown, nightie, night-robe, nightdress +n03824589 night latch +n03824713 night-light +n03824999 nightshirt +n03825080 nightwear, sleepwear, nightclothes +n03825271 ninepin, skittle, skittle pin +n03825442 ninepin ball, skittle ball +n03825673 ninon +n03825788 nipple +n03825913 nipple shield +n03826039 niqab +n03826186 Nissen hut, Quonset hut +n03827420 nogging +n03827536 noisemaker +n03828020 nonsmoker, nonsmoking car +n03829340 non-volatile storage, nonvolatile storage +n03829857 Norfolk jacket +n03829954 noria +n03831203 nosebag, feedbag +n03831382 noseband, nosepiece +n03831757 nose flute +n03832144 nosewheel +n03832673 notebook, notebook computer +n03833907 nuclear-powered ship +n03834040 nuclear reactor, reactor +n03834472 nuclear rocket +n03834604 nuclear weapon, atomic weapon +n03835197 nude, nude painting +n03835729 numdah, numdah rug, nammad +n03835941 nun's habit +n03836062 nursery, baby's room +n03836451 nut and bolt +n03836602 nutcracker +n03836906 nylon +n03836976 nylons, nylon stocking, rayons, rayon stocking, silk stocking +n03837422 oar +n03837606 oast +n03837698 oast house +n03837869 obelisk +n03838024 object ball +n03838298 objective, objective lens, object lens, object glass +n03838748 oblique bandage +n03838899 oboe, hautboy, hautbois +n03839172 oboe da caccia +n03839276 oboe d'amore +n03839424 observation dome +n03839671 observatory +n03839795 obstacle +n03840327 obturator +n03840681 ocarina, sweet potato +n03840823 octant +n03841011 odd-leg caliper +n03841143 odometer, hodometer, mileometer, milometer +n03841290 oeil de boeuf +n03841666 office, business office +n03842012 office building, office block +n03842156 office furniture +n03842276 officer's mess +n03842377 off-line equipment, auxiliary equipment +n03842585 ogee, cyma reversa +n03842754 ogee arch, keel arch +n03842986 ohmmeter +n03843092 oil, oil color, oil colour +n03843316 oilcan +n03843438 oilcloth +n03843555 oil filter +n03843883 oil heater, oilstove, kerosene heater, kerosine heater +n03844045 oil lamp, kerosene lamp, kerosine lamp +n03844233 oil paint +n03844550 oil pump +n03844673 oil refinery, petroleum refinery +n03844815 oilskin, slicker +n03844965 oil slick +n03845107 oilstone +n03845190 oil tanker, oiler, tanker, tank ship +n03845990 old school tie +n03846100 olive drab +n03846234 olive drab, olive-drab uniform +n03846431 Olympian Zeus +n03846677 omelet pan, omelette pan +n03846772 omnidirectional antenna, nondirectional antenna +n03846970 omnirange, omnidirectional range, omnidirectional radio range +n03847471 onion dome +n03847823 open-air market, open-air marketplace, market square +n03848033 open circuit +n03848168 open-end wrench, tappet wrench +n03848348 opener +n03848537 open-hearth furnace +n03849275 openside plane, rabbet plane +n03849412 open sight +n03849679 openwork +n03849814 opera, opera house +n03849943 opera cloak, opera hood +n03850053 operating microscope +n03850245 operating room, OR, operating theater, operating theatre, surgery +n03850492 operating table +n03850613 ophthalmoscope +n03851341 optical device +n03851787 optical disk, optical disc +n03852280 optical instrument +n03852544 optical pyrometer, pyroscope +n03852688 optical telescope +n03853291 orchestra pit, pit +n03853924 ordinary, ordinary bicycle +n03854065 organ, pipe organ +n03854421 organdy, organdie +n03854506 organic light-emitting diode, OLED +n03854722 organ loft +n03854815 organ pipe, pipe, pipework +n03855214 organza +n03855333 oriel, oriel window +n03855464 oriflamme +n03855604 O ring +n03855756 Orlon +n03855908 orlop deck, orlop, fourth deck +n03856012 orphanage, orphans' asylum +n03856335 orphrey +n03856465 orrery +n03856728 orthicon, image orthicon +n03857026 orthochromatic film +n03857156 orthopter, ornithopter +n03857291 orthoscope +n03857687 oscillograph +n03857828 oscilloscope, scope, cathode-ray oscilloscope, CRO +n03858085 ossuary +n03858183 otoscope, auriscope, auroscope +n03858418 ottoman, pouf, pouffe, puff, hassock +n03858533 oubliette +n03858837 out-basket, out-tray +n03859000 outboard motor, outboard +n03859170 outboard motorboat, outboard +n03859280 outbuilding +n03859495 outerwear, overclothes +n03859608 outfall +n03859958 outfit, getup, rig, turnout +n03860234 outfitter +n03860404 outhouse, privy, earth-closet, jakes +n03861048 output device +n03861271 outrigger +n03861430 outrigger canoe +n03861596 outside caliper +n03861842 outside mirror +n03862379 outwork +n03862676 oven +n03862862 oven thermometer +n03863108 overall +n03863262 overall, boilersuit, boilers suit +n03863657 overcoat, overcoating +n03863783 overdrive +n03863923 overgarment, outer garment +n03864139 overhand knot +n03864356 overhang +n03864692 overhead projector +n03865288 overmantel +n03865371 overnighter, overnight bag, overnight case +n03865557 overpass, flyover +n03865820 override +n03865949 overshoe +n03866082 overskirt +n03867854 oxbow +n03868044 Oxbridge +n03868242 oxcart +n03868324 oxeye +n03868406 oxford +n03868643 oximeter +n03868763 oxyacetylene torch +n03868863 oxygen mask +n03869838 oyster bar +n03869976 oyster bed, oyster bank, oyster park +n03870105 pace car +n03870290 pacemaker, artificial pacemaker +n03870546 pack +n03870672 pack +n03870980 pack, face pack +n03871083 package, parcel +n03871371 package store, liquor store, off-licence +n03871524 packaging +n03871628 packet +n03871724 packing box, packing case +n03871860 packinghouse, packing plant +n03872016 packinghouse +n03872167 packing needle +n03872273 packsaddle +n03873416 paddle, boat paddle +n03873699 paddle +n03873848 paddle +n03873996 paddle box, paddle-box +n03874138 paddle steamer, paddle-wheeler +n03874293 paddlewheel, paddle wheel +n03874487 paddock +n03874599 padlock +n03874823 page printer, page-at-a-time printer +n03875218 paint, pigment +n03875806 paintball +n03875955 paintball gun +n03876111 paintbox +n03876231 paintbrush +n03877351 paisley +n03877472 pajama, pyjama, pj's, jammies +n03877674 pajama, pyjama +n03877845 palace +n03878066 palace, castle +n03878211 palace +n03878294 palanquin, palankeen +n03878418 paleolith +n03878511 palestra, palaestra +n03878674 palette, pallet +n03878828 palette knife +n03878963 palisade +n03879456 pallet +n03879705 pallette, palette +n03880032 pallium +n03880129 pallium +n03880323 pan +n03880531 pan, cooking pan +n03881305 pancake turner +n03881404 panchromatic film +n03881534 panda car +n03882611 paneling, panelling, pane +n03882960 panhandle +n03883054 panic button +n03883385 pannier +n03883524 pannier +n03883664 pannikin +n03883773 panopticon +n03883944 panopticon +n03884397 panpipe, pandean pipe, syrinx +n03884554 pantaloon +n03884639 pantechnicon +n03884778 pantheon +n03884926 pantheon +n03885028 pantie, panty, scanty, step-in +n03885194 panting, trousering +n03885293 pant leg, trouser leg +n03885410 pantograph +n03885535 pantry, larder, buttery +n03885669 pants suit, pantsuit +n03885788 panty girdle +n03885904 pantyhose +n03886053 panzer +n03886641 paper chain +n03886762 paper clip, paperclip, gem clip +n03886940 paper cutter +n03887185 paper fastener +n03887330 paper feed +n03887512 paper mill +n03887697 paper towel +n03887899 parabolic mirror +n03888022 parabolic reflector, paraboloid reflector +n03888257 parachute, chute +n03888605 parallel bars, bars +n03888808 parallel circuit, shunt circuit +n03888998 parallel interface, parallel port +n03889397 parang +n03889503 parapet, breastwork +n03889626 parapet +n03889726 parasail +n03889871 parasol, sunshade +n03890093 parer, paring knife +n03890233 parfait glass +n03890358 pargeting, pargetting, pargetry +n03890514 pari-mutuel machine, totalizer, totaliser, totalizator, totalisator +n03891051 parka, windbreaker, windcheater, anorak +n03891251 park bench +n03891332 parking meter +n03891538 parlor, parlour +n03892178 parquet, parquet floor +n03892425 parquetry, parqueterie +n03892557 parsonage, vicarage, rectory +n03892728 Parsons table +n03893935 partial denture +n03894051 particle detector +n03894379 partition, divider +n03894677 parts bin +n03894933 party line +n03895038 party wall +n03895170 parvis +n03895866 passenger car, coach, carriage +n03896103 passenger ship +n03896233 passenger train +n03896419 passenger van +n03896526 passe-partout +n03896628 passive matrix display +n03896984 passkey, passe-partout, master key, master +n03897130 pass-through +n03897634 pastry cart +n03897943 patch +n03898129 patchcord +n03898271 patchouli, patchouly, pachouli +n03898395 patch pocket +n03898633 patchwork, patchwork quilt +n03898787 patent log, screw log, taffrail log +n03899100 paternoster +n03899612 patina +n03899768 patio, terrace +n03899933 patisserie +n03900028 patka +n03900194 patrol boat, patrol ship +n03900301 patty-pan +n03900393 pave +n03900979 pavilion, marquee +n03901229 pavior, paviour, paving machine +n03901338 pavis, pavise +n03901750 pawn +n03901974 pawnbroker's shop, pawnshop, loan office +n03902125 pay-phone, pay-station +n03902220 PC board +n03902482 peach orchard +n03902756 pea jacket, peacoat +n03903133 peavey, peavy, cant dog, dog hook +n03903290 pectoral, pectoral medallion +n03903424 pedal, treadle, foot pedal, foot lever +n03903733 pedal pusher, toreador pants +n03903868 pedestal, plinth, footstall +n03904060 pedestal table +n03904183 pedestrian crossing, zebra crossing +n03904433 pedicab, cycle rickshaw +n03904657 pediment +n03904782 pedometer +n03904909 peeler +n03905361 peep sight +n03905540 peg, nog +n03905730 peg, pin, thole, tholepin, rowlock, oarlock +n03905947 peg +n03906106 peg, wooden leg, leg, pegleg +n03906224 pegboard +n03906463 Pelham +n03906590 pelican crossing +n03906789 pelisse +n03906894 pelvimeter +n03906997 pen +n03907475 penal colony +n03907654 penal institution, penal facility +n03907908 penalty box +n03908111 pen-and-ink +n03908204 pencil +n03908456 pencil +n03908618 pencil box, pencil case +n03908714 pencil sharpener +n03909020 pendant earring, drop earring, eardrop +n03909160 pendulum +n03909406 pendulum clock +n03909516 pendulum watch +n03909658 penetration bomb +n03911406 penile implant +n03911513 penitentiary, pen +n03911658 penknife +n03911767 penlight +n03911866 pennant, pennon, streamer, waft +n03912218 pennywhistle, tin whistle, whistle +n03912821 penthouse +n03913343 pentode +n03913930 peplos, peplus, peplum +n03914106 peplum +n03914337 pepper mill, pepper grinder +n03914438 pepper shaker, pepper box, pepper pot +n03914583 pepper spray +n03914831 percale +n03915118 percolator +n03915320 percussion cap +n03915437 percussion instrument, percussive instrument +n03915900 perforation +n03916031 perfume, essence +n03916289 perfumery +n03916385 perfumery +n03916470 perfumery +n03916720 peripheral, computer peripheral, peripheral device +n03917048 periscope +n03917198 peristyle +n03917327 periwig, peruke +n03917814 permanent press, durable press +n03918074 perpetual motion machine +n03918480 personal computer, PC, microcomputer +n03918737 personal digital assistant, PDA, personal organizer, personal organiser, organizer, organiser +n03919096 personnel carrier +n03919289 pestle +n03919430 pestle, muller, pounder +n03919808 petcock +n03920288 Petri dish +n03920384 petrolatum gauze +n03920641 pet shop +n03920737 petticoat, half-slip, underskirt +n03920867 pew, church bench +n03923379 phial, vial, ampule, ampul, ampoule +n03923564 Phillips screw +n03923692 Phillips screwdriver +n03923918 phonograph needle, needle +n03924069 phonograph record, phonograph recording, record, disk, disc, platter +n03924407 photocathode +n03924532 photocoagulator +n03924679 photocopier +n03926148 photographic equipment +n03926412 photographic paper, photographic material +n03926876 photometer +n03927091 photomicrograph +n03927299 Photostat, Photostat machine +n03927539 photostat +n03927792 physical pendulum, compound pendulum +n03928116 piano, pianoforte, forte-piano +n03928589 piano action +n03928814 piano keyboard, fingerboard, clavier +n03928994 piano wire +n03929091 piccolo +n03929202 pick, pickax, pickaxe +n03929443 pick +n03929660 pick, plectrum, plectron +n03929855 pickelhaube +n03930229 picket boat +n03930313 picket fence, paling +n03930431 picket ship +n03930515 pickle barrel +n03930630 pickup, pickup truck +n03931044 picture, image, icon, ikon +n03931765 picture frame +n03931885 picture hat +n03931980 picture rail +n03932080 picture window +n03932670 piece of cloth, piece of material +n03933391 pied-a-terre +n03933933 pier +n03934042 pier +n03934229 pier arch +n03934311 pier glass, pier mirror +n03934565 pier table +n03934656 pieta +n03934890 piezometer +n03935116 pig bed, pig +n03935234 piggery, pig farm +n03935335 piggy bank, penny bank +n03935883 pilaster +n03936269 pile, spile, piling, stilt +n03936466 pile driver +n03937543 pill bottle +n03937835 pillbox, toque, turban +n03937931 pillion +n03938037 pillory +n03938244 pillow +n03938401 pillow block +n03938522 pillow lace, bobbin lace +n03938725 pillow sham +n03939062 pilot bit +n03939178 pilot boat +n03939281 pilot burner, pilot light, pilot +n03939440 pilot cloth +n03939565 pilot engine +n03939677 pilothouse, wheelhouse +n03939844 pilot light, pilot lamp, indicator lamp +n03940256 pin +n03940894 pin, flag +n03941013 pin, pin tumbler +n03941231 pinata +n03941417 pinball machine, pin table +n03941586 pince-nez +n03941684 pincer, pair of pincers, tweezer, pair of tweezers +n03941887 pinch bar +n03942028 pincurl clip +n03942600 pinfold +n03942813 ping-pong ball +n03942920 pinhead +n03943115 pinion +n03943266 pinnacle +n03943623 pinprick +n03943714 pinstripe +n03943833 pinstripe +n03943920 pinstripe +n03944024 pintle +n03944138 pinwheel, pinwheel wind collector +n03944341 pinwheel +n03945459 tabor pipe +n03945615 pipe +n03945817 pipe bomb +n03945928 pipe cleaner +n03946076 pipe cutter +n03946162 pipefitting, pipe fitting +n03947111 pipet, pipette +n03947343 pipe vise, pipe clamp +n03947466 pipe wrench, tube wrench +n03947798 pique +n03947888 pirate, pirate ship +n03948242 piste +n03948459 pistol, handgun, side arm, shooting iron +n03948830 pistol grip +n03948950 piston, plunger +n03949145 piston ring +n03949317 piston rod +n03949761 pit +n03950228 pitcher, ewer +n03950359 pitchfork +n03950537 pitching wedge +n03950647 pitch pipe +n03950899 pith hat, pith helmet, sun helmet, topee, topi +n03951068 piton +n03951213 Pitot-static tube, Pitot head, Pitot tube +n03951453 Pitot tube, Pitot +n03951800 pitsaw +n03951971 pivot, pin +n03952150 pivoting window +n03952576 pizzeria, pizza shop, pizza parlor +n03953020 place of business, business establishment +n03953416 place of worship, house of prayer, house of God, house of worship +n03953901 placket +n03954393 planchet, coin blank +n03954731 plane, carpenter's plane, woodworking plane +n03955296 plane, planer, planing machine +n03955489 plane seat +n03955809 planetarium +n03955941 planetarium +n03956157 planetarium +n03956331 planetary gear, epicyclic gear, planet wheel, planet gear +n03956531 plank-bed +n03956623 planking +n03956785 planner +n03956922 plant, works, industrial plant +n03957315 planter +n03957420 plaster, adhesive plaster, sticking plaster +n03957762 plasterboard, gypsum board +n03957991 plastering trowel +n03958227 plastic bag +n03958338 plastic bomb +n03958630 plastic laminate +n03958752 plastic wrap +n03959014 plastron +n03959123 plastron +n03959227 plastron +n03959701 plate, scale, shell +n03960374 plate, collection plate +n03960490 plate +n03961394 platen +n03961630 platen +n03961711 plate rack +n03961828 plate rail +n03961939 platform +n03962525 platform, weapons platform +n03962685 platform +n03962852 platform bed +n03962932 platform rocker +n03963028 plating, metal plating +n03963198 platter +n03963294 playback +n03963483 playbox, play-box +n03963645 playground +n03964495 playpen, pen +n03964611 playsuit +n03965456 plaza, mall, center, shopping mall, shopping center, shopping centre +n03965907 pleat, plait +n03966206 plenum +n03966325 plethysmograph +n03966582 pleximeter, plessimeter +n03966751 plexor, plessor, percussor +n03966976 pliers, pair of pliers, plyers +n03967270 plimsoll +n03967396 plotter +n03967562 plow, plough +n03967942 plug, stopper, stopple +n03968293 plug, male plug +n03968479 plug fuse +n03968581 plughole +n03968728 plumb bob, plumb, plummet +n03969510 plumb level +n03970156 plunger, plumber's helper +n03970363 plus fours +n03970546 plush +n03971218 plywood, plyboard +n03971321 pneumatic drill +n03971960 p-n junction +n03972146 p-n-p transistor +n03972372 poacher +n03972524 pocket +n03973003 pocket battleship +n03973285 pocketcomb, pocket comb +n03973402 pocket flap +n03973520 pocket-handkerchief +n03973628 pocketknife, pocket knife +n03973839 pocket watch +n03973945 pod, fuel pod +n03974070 pogo stick +n03974915 point-and-shoot camera +n03975035 pointed arch +n03975657 pointing trowel +n03975788 point lace, needlepoint +n03975926 poker, stove poker, fire hook, salamander +n03976105 polarimeter, polariscope +n03976268 Polaroid +n03976467 Polaroid camera, Polaroid Land camera +n03976657 pole +n03977158 pole +n03977266 poleax, poleaxe +n03977430 poleax, poleaxe +n03977592 police boat +n03977966 police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria +n03978421 polling booth +n03978575 polo ball +n03978686 polo mallet, polo stick +n03978815 polonaise +n03978966 polo shirt, sport shirt +n03979377 polyester +n03979492 polygraph +n03980026 pomade, pomatum +n03980478 pommel horse, side horse +n03980874 poncho +n03980986 pongee +n03981094 poniard, bodkin +n03981340 pontifical +n03981566 pontoon +n03981760 pontoon bridge, bateau bridge, floating bridge +n03981924 pony cart, ponycart, donkey cart, tub-cart +n03982232 pool ball +n03982331 poolroom +n03982430 pool table, billiard table, snooker table +n03982642 poop deck +n03982767 poor box, alms box, mite box +n03982895 poorhouse +n03983396 pop bottle, soda bottle +n03983499 popgun +n03983612 poplin +n03983712 popper +n03983928 poppet, poppet valve +n03984125 pop tent +n03984234 porcelain +n03984381 porch +n03984643 porkpie, porkpie hat +n03984759 porringer +n03985069 portable +n03985232 portable computer +n03985441 portable circular saw, portable saw +n03985881 portcullis +n03986071 porte-cochere +n03986224 porte-cochere +n03986355 portfolio +n03986562 porthole +n03986704 portico +n03986857 portiere +n03986949 portmanteau, Gladstone, Gladstone bag +n03987266 portrait camera +n03987376 portrait lens +n03987674 positive pole, positive magnetic pole, north-seeking pole +n03987865 positive pole +n03987990 positron emission tomography scanner, PET scanner +n03988170 post +n03988758 postage meter +n03988926 post and lintel +n03989199 post chaise +n03989349 postern +n03989447 post exchange, PX +n03989665 posthole digger, post-hole digger +n03989777 post horn +n03989898 posthouse, post house +n03990474 pot +n03991062 pot, flowerpot +n03991202 potbelly, potbelly stove +n03991321 Potemkin village +n03991443 potential divider, voltage divider +n03991646 potentiometer, pot +n03991837 potentiometer +n03992325 potpourri +n03992436 potsherd +n03992509 potter's wheel +n03992703 pottery, clayware +n03992975 pottle +n03993053 potty seat, potty chair +n03993180 pouch +n03993403 poultice, cataplasm, plaster +n03993703 pound, dog pound +n03993878 pound net +n03994008 powder +n03994297 powder and shot +n03994417 powdered mustard, dry mustard +n03994614 powder horn, powder flask +n03994757 powder keg +n03995018 power brake +n03995265 power cord +n03995372 power drill +n03995535 power line, power cable +n03995661 power loom +n03995856 power mower, motor mower +n03996004 power pack +n03996145 power saw, saw, sawing machine +n03996416 power shovel, excavator, digger, shovel +n03996849 power steering, power-assisted steering +n03997274 power takeoff, PTO +n03997484 power tool +n03997875 praetorium, pretorium +n03998194 prayer rug, prayer mat +n03998333 prayer shawl, tallith, tallis +n03998673 precipitator, electrostatic precipitator, Cottrell precipitator +n03999064 prefab +n03999160 presbytery +n03999621 presence chamber +n03999992 press, mechanical press +n04000311 press, printing press +n04000480 press +n04000592 press box +n04000716 press gallery +n04000998 press of sail, press of canvas +n04001132 pressure cabin +n04001265 pressure cooker +n04001397 pressure dome +n04001499 pressure gauge, pressure gage +n04001661 pressurized water reactor, PWR +n04001845 pressure suit +n04002262 pricket +n04002371 prie-dieu +n04002629 primary coil, primary winding, primary +n04003241 Primus stove, Primus +n04003359 Prince Albert +n04003856 print +n04004099 print buffer +n04004210 printed circuit +n04004475 printer, printing machine +n04004767 printer +n04004990 printer cable +n04005197 priory +n04005630 prison, prison house +n04005912 prison camp, internment camp, prisoner of war camp, POW camp +n04006067 privateer +n04006227 private line +n04006330 privet hedge +n04006411 probe +n04007415 proctoscope +n04007664 prod, goad +n04008385 production line, assembly line, line +n04008634 projectile, missile +n04009552 projector +n04009801 projector +n04009923 prolonge +n04010057 prolonge knot, sailor's breastplate +n04010779 prompter, autocue +n04010927 prong +n04011827 propeller, propellor +n04012084 propeller plane +n04012482 propjet, turboprop, turbo-propeller plane +n04012665 proportional counter tube, proportional counter +n04013060 propulsion system +n04013176 proscenium, proscenium wall +n04013600 proscenium arch +n04013729 prosthesis, prosthetic device +n04014297 protective covering, protective cover, protection +n04015204 protective garment +n04015786 proton accelerator +n04015908 protractor +n04016240 pruner, pruning hook, lopper +n04016479 pruning knife +n04016576 pruning saw +n04016684 pruning shears +n04016846 psaltery +n04017571 psychrometer +n04017807 PT boat, mosquito boat, mosquito craft, motor torpedo boat +n04018155 public address system, P.A. system, PA system, P.A., PA +n04018399 public house, pub, saloon, pothouse, gin mill, taphouse +n04018667 public toilet, comfort station, public convenience, convenience, public lavatory, restroom, toilet facility, wash room +n04019101 public transport +n04019335 public works +n04019541 puck, hockey puck +n04019696 pull +n04019881 pullback, tieback +n04020087 pull chain +n04020298 pulley, pulley-block, pulley block, block +n04020744 pull-off, rest area, rest stop, layby, lay-by +n04020912 Pullman, Pullman car +n04021028 pullover, slipover +n04021164 pull-through +n04021362 pulse counter +n04021503 pulse generator +n04021704 pulse timing circuit +n04021798 pump +n04022332 pump +n04022434 pump action, slide action +n04022708 pump house, pumping station +n04022866 pump room +n04023021 pump-type pliers +n04023119 pump well +n04023249 punch, puncher +n04023422 punchboard +n04023695 punch bowl +n04023962 punching bag, punch bag, punching ball, punchball +n04024137 punch pliers +n04024274 punch press +n04024862 punnet +n04024983 punt +n04025508 pup tent, shelter tent +n04025633 purdah +n04026053 purifier +n04026180 purl, purl stitch +n04026417 purse +n04026813 push-bike +n04026918 push broom +n04027023 push button, push, button +n04027367 push-button radio +n04027706 pusher, zori +n04027820 put-put +n04027935 puttee +n04028074 putter, putting iron +n04028221 putty knife +n04028315 puzzle +n04028581 pylon, power pylon +n04028764 pylon +n04029416 pyramidal tent +n04029647 pyrograph +n04029734 pyrometer +n04029913 pyrometric cone +n04030054 pyrostat +n04030161 pyx, pix +n04030274 pyx, pix, pyx chest, pix chest +n04030414 pyxis +n04030518 quad, quadrangle +n04030846 quadrant +n04030965 quadraphony, quadraphonic system, quadriphonic system +n04031884 quartering +n04032509 quarterstaff +n04032603 quartz battery, quartz mill +n04032936 quartz lamp +n04033287 queen +n04033425 queen +n04033557 queen post +n04033801 quern +n04033901 quill, quill pen +n04033995 quilt, comforter, comfort, puff +n04034262 quilted bedspread +n04034367 quilting +n04035231 quipu +n04035634 quirk molding, quirk moulding +n04035748 quirt +n04035836 quiver +n04035912 quoin, coign, coigne +n04036155 quoit +n04036303 QWERTY keyboard +n04036776 rabbet, rebate +n04036963 rabbet joint +n04037076 rabbit ears +n04037220 rabbit hutch +n04037298 raceabout +n04037443 racer, race car, racing car +n04037873 raceway, race +n04037964 racing boat +n04038231 racing gig +n04038338 racing skiff, single shell +n04038440 rack, stand +n04038727 rack +n04039041 rack, wheel +n04039209 rack and pinion +n04039381 racket, racquet +n04039742 racquetball +n04039848 radar, microwave radar, radio detection and ranging, radiolocation +n04040247 radial, radial tire, radial-ply tire +n04040373 radial engine, rotary engine +n04040540 radiation pyrometer +n04040759 radiator +n04041069 radiator +n04041243 radiator cap +n04041408 radiator hose +n04041544 radio, wireless +n04041747 radio antenna, radio aerial +n04042076 radio chassis +n04042204 radio compass +n04042358 radiogram, radiograph, shadowgraph, skiagraph, skiagram +n04042632 radio interferometer +n04042795 radio link, link +n04042985 radiometer +n04043168 radiomicrometer +n04043411 radio-phonograph, radio-gramophone +n04043733 radio receiver, receiving set, radio set, radio, tuner, wireless +n04044307 radiotelegraph, radiotelegraphy, wireless telegraph, wireless telegraphy +n04044498 radiotelephone, radiophone, wireless telephone +n04044716 radio telescope, radio reflector +n04044955 radiotherapy equipment +n04045085 radio transmitter +n04045255 radome, radar dome +n04045397 raft +n04045644 rafter, balk, baulk +n04045787 raft foundation +n04045941 rag, shred, tag, tag end, tatter +n04046091 ragbag +n04046277 raglan +n04046400 raglan sleeve +n04046590 rail +n04046974 rail fence +n04047139 railhead +n04047401 railing, rail +n04047733 railing +n04047834 railroad bed +n04048441 railroad tunnel +n04049303 rain barrel +n04049405 raincoat, waterproof +n04049585 rain gauge, rain gage, pluviometer, udometer +n04049753 rain stick +n04050066 rake +n04050313 rake handle +n04050600 RAM disk +n04050933 ramekin, ramequin +n04051269 ramjet, ramjet engine, atherodyde, athodyd, flying drainpipe +n04051439 rammer +n04051549 ramp, incline +n04051705 rampant arch +n04051825 rampart, bulwark, wall +n04052235 ramrod +n04052346 ramrod +n04052442 ranch, spread, cattle ranch, cattle farm +n04052658 ranch house +n04052757 random-access memory, random access memory, random memory, RAM, read/write memory +n04053508 rangefinder, range finder +n04053677 range hood +n04053767 range pole, ranging pole, flagpole +n04054361 rapier, tuck +n04054566 rariora +n04054670 rasp, wood file +n04055180 ratchet, rachet, ratch +n04055447 ratchet wheel +n04055700 rathskeller +n04055861 ratline, ratlin +n04056073 rat-tail file +n04056180 rattan, ratan +n04056413 rattrap +n04056932 rayon +n04057047 razor +n04057215 razorblade +n04057435 reaction-propulsion engine, reaction engine +n04057673 reaction turbine +n04057846 reactor +n04057981 reading lamp +n04058096 reading room +n04058239 read-only memory, ROM, read-only storage, fixed storage +n04058486 read-only memory chip +n04058594 readout, read-out +n04058721 read/write head, head +n04059157 ready-to-wear +n04059298 real storage +n04059399 reamer +n04059516 reamer, juicer, juice reamer +n04059947 rearview mirror +n04060198 Reaumur thermometer +n04060448 rebozo +n04060647 receiver, receiving system +n04060904 receptacle +n04061681 reception desk +n04061793 reception room +n04061969 recess, niche +n04062179 reciprocating engine +n04062428 recliner, reclining chair, lounger +n04062644 reconnaissance plane +n04062807 reconnaissance vehicle, scout car +n04063154 record changer, auto-changer, changer +n04063373 recorder, recording equipment, recording machine +n04063868 recording +n04064213 recording system +n04064401 record player, phonograph +n04064747 record sleeve, record cover +n04064862 recovery room +n04065272 recreational vehicle, RV, R.V. +n04065464 recreation room, rec room +n04065789 recycling bin +n04065909 recycling plant +n04066023 redbrick university +n04066270 red carpet +n04066388 redoubt +n04066476 redoubt +n04066767 reduction gear +n04067143 reed pipe +n04067231 reed stop +n04067353 reef knot, flat knot +n04067472 reel +n04067658 reel +n04067818 refectory +n04067921 refectory table +n04068441 refinery +n04068601 reflecting telescope, reflector +n04069166 reflectometer +n04069276 reflector +n04069434 reflex camera +n04069582 reflux condenser +n04069777 reformatory, reform school, training school +n04070003 reformer +n04070207 refracting telescope +n04070415 refractometer +n04070545 refrigeration system +n04070727 refrigerator, icebox +n04070964 refrigerator car +n04071102 refuge, sanctuary, asylum +n04071263 regalia +n04071393 regimentals +n04072193 regulator +n04072551 rein +n04072960 relay, electrical relay +n04073425 release, button +n04073948 religious residence, cloister +n04074185 reliquary +n04074963 remote control, remote +n04075291 remote terminal, link-attached terminal, remote station, link-attached station +n04075468 removable disk +n04075715 rendering +n04075813 rep, repp +n04075916 repair shop, fix-it shop +n04076052 repeater +n04076284 repeating firearm, repeater +n04076713 repository, monument +n04077430 reproducer +n04077594 rerebrace, upper cannon +n04077734 rescue equipment +n04077889 research center, research facility +n04078002 reseau +n04078574 reservoir +n04078955 reset +n04079106 reset button +n04079244 residence +n04079603 resistance pyrometer +n04079933 resistor, resistance +n04080138 resonator +n04080454 resonator, cavity resonator, resonating chamber +n04080705 resort hotel, spa +n04080833 respirator, inhalator +n04081281 restaurant, eating house, eating place, eatery +n04081699 rest house +n04081844 restraint, constraint +n04082344 resuscitator +n04082562 retainer +n04082710 retaining wall +n04082886 reticle, reticule, graticule +n04083113 reticulation +n04083309 reticule +n04083649 retort +n04083800 retractor +n04084517 return key, return +n04084682 reverberatory furnace +n04084889 revers, revere +n04085017 reverse, reverse gear +n04085574 reversible +n04085873 revetment, revetement, stone facing +n04086066 revetment +n04086273 revolver, six-gun, six-shooter +n04086446 revolving door, revolver +n04086663 rheometer +n04086794 rheostat, variable resistor +n04086937 rhinoscope +n04087126 rib +n04087432 riband, ribband +n04087709 ribbed vault +n04087826 ribbing +n04088229 ribbon development +n04088343 rib joint pliers +n04088441 ricer +n04088696 riddle +n04088797 ride +n04089152 ridge, ridgepole, rooftree +n04089376 ridge rope +n04089666 riding boot +n04089836 riding crop, hunting crop +n04089976 riding mower +n04090263 rifle +n04090548 rifle ball +n04090781 rifle grenade +n04091097 rig +n04091466 rigger, rigger brush +n04091584 rigger +n04091693 rigging, tackle +n04092168 rigout +n04093157 ringlet +n04093223 rings +n04093625 rink, skating rink +n04093775 riot gun +n04093915 ripcord +n04094060 ripcord +n04094250 ripping bar +n04094438 ripping chisel +n04094608 ripsaw, splitsaw +n04094720 riser +n04094859 riser, riser pipe, riser pipeline, riser main +n04095109 Ritz +n04095210 river boat +n04095342 rivet +n04095577 riveting machine, riveter, rivetter +n04095938 roach clip, roach holder +n04096066 road, route +n04096733 roadbed +n04096848 roadblock, barricade +n04097085 roadhouse +n04097373 roadster, runabout, two-seater +n04097622 roadway +n04097760 roaster +n04097866 robe +n04098169 robotics equipment +n04098260 Rochon prism, Wollaston prism +n04098399 rock bit, roller bit +n04098513 rocker +n04098795 rocker, cradle +n04099003 rocker arm, valve rocker +n04099175 rocket, rocket engine +n04099429 rocket, projectile +n04099969 rocking chair, rocker +n04100174 rod +n04100519 rodeo +n04101375 roll +n04101497 roller +n04101701 roller +n04101860 roller bandage +n04102037 in-line skate +n04102162 Rollerblade +n04102285 roller blind +n04102406 roller coaster, big dipper, chute-the-chute +n04102618 roller skate +n04102760 roller towel +n04102872 roll film +n04102962 rolling hitch +n04103094 rolling mill +n04103206 rolling pin +n04103364 rolling stock +n04103665 roll-on +n04103769 roll-on +n04103918 roll-on roll-off +n04104147 Rolodex +n04104384 Roman arch, semicircular arch +n04104500 Roman building +n04104770 romper, romper suit +n04104925 rood screen +n04105068 roof +n04105438 roof +n04105704 roofing +n04105893 room +n04107598 roomette +n04107743 room light +n04107984 roost +n04108268 rope +n04108822 rope bridge +n04108999 rope tow +n04110068 rose water +n04110178 rose window, rosette +n04110281 rosin bag +n04110439 rotary actuator, positioner +n04110654 rotary engine +n04110841 rotary press +n04110955 rotating mechanism +n04111190 rotating shaft, shaft +n04111414 rotisserie +n04111531 rotisserie +n04111668 rotor +n04111962 rotor, rotor coil +n04112147 rotor +n04112252 rotor blade, rotary wing +n04112430 rotor head, rotor shaft +n04112579 rotunda +n04112654 rotunda +n04112752 rouge, paint, blusher +n04112921 roughcast +n04113038 rouleau +n04113194 roulette, toothed wheel +n04113316 roulette ball +n04113406 roulette wheel, wheel +n04113641 round, unit of ammunition, one shot +n04113765 round arch +n04113968 round-bottom flask +n04114069 roundel +n04114301 round file +n04114428 roundhouse +n04114719 router +n04114844 router +n04114996 router plane +n04115144 rowel +n04115256 row house, town house +n04115456 rowing boat +n04115542 rowlock arch +n04115802 royal +n04115996 royal mast +n04116098 rubber band, elastic band, elastic +n04116294 rubber boot, gum boot +n04116389 rubber bullet +n04116512 rubber eraser, rubber, pencil eraser +n04117216 rudder +n04117464 rudder +n04117639 rudder blade +n04118021 rug, carpet, carpeting +n04118538 rugby ball +n04118635 ruin +n04118776 rule, ruler +n04119091 rumble +n04119230 rumble seat +n04119360 rummer +n04119478 rumpus room, playroom, game room +n04119630 runcible spoon +n04119751 rundle, spoke, rung +n04120489 running shoe +n04120695 running suit +n04120842 runway +n04121228 rushlight, rush candle +n04121342 russet +n04121426 rya, rya rug +n04121511 saber, sabre +n04121728 saber saw, jigsaw, reciprocating saw +n04122262 sable +n04122349 sable, sable brush, sable's hair pencil +n04122492 sable coat +n04122578 sabot, wooden shoe +n04122685 sachet +n04122825 sack, poke, paper bag, carrier bag +n04123026 sack, sacque +n04123123 sackbut +n04123228 sackcloth +n04123317 sackcloth +n04123448 sack coat +n04123567 sacking, bagging +n04123740 saddle +n04124098 saddlebag +n04124202 saddle blanket, saddlecloth, horse blanket +n04124370 saddle oxford, saddle shoe +n04124488 saddlery +n04124573 saddle seat +n04124887 saddle stitch +n04125021 safe +n04125116 safe +n04125257 safe-deposit, safe-deposit box, safety-deposit, safety deposit box, deposit box, lockbox +n04125541 safe house +n04125692 safety arch +n04125853 safety belt, life belt, safety harness +n04126066 safety bicycle, safety bike +n04126244 safety bolt, safety lock +n04126541 safety curtain +n04126659 safety fuse +n04126852 safety lamp, Davy lamp +n04126980 safety match, book matches +n04127117 safety net +n04127249 safety pin +n04127395 safety rail, guardrail +n04127521 safety razor +n04127633 safety valve, relief valve, escape valve, escape cock, escape +n04127904 sail, canvas, canvass, sheet +n04128413 sail +n04128499 sailboat, sailing boat +n04128710 sailcloth +n04128837 sailing vessel, sailing ship +n04129490 sailing warship +n04129688 sailor cap +n04129766 sailor suit +n04130143 salad bar +n04130257 salad bowl +n04130566 salinometer +n04130907 sallet, salade +n04131015 salon +n04131113 salon +n04131208 salon, beauty salon, beauty parlor, beauty parlour, beauty shop +n04131368 saltbox +n04131499 saltcellar +n04131690 saltshaker, salt shaker +n04131811 saltworks +n04131929 salver +n04132158 salwar, shalwar +n04132465 Sam Browne belt +n04132603 samisen, shamisen +n04132829 samite +n04132985 samovar +n04133114 sampan +n04133789 sandal +n04134008 sandbag +n04134170 sandblaster +n04134523 sandbox +n04134632 sandglass +n04135024 sand wedge +n04135118 sandwich board +n04135315 sanitary napkin, sanitary towel, Kotex +n04135710 cling film, clingfilm, Saran Wrap +n04135933 sarcenet, sarsenet +n04136045 sarcophagus +n04136161 sari, saree +n04136333 sarong +n04136510 sash, window sash +n04136800 sash fastener, sash lock, window lock +n04137089 sash window +n04137217 satchel +n04137355 sateen +n04137444 satellite, artificial satellite, orbiter +n04137773 satellite receiver +n04137897 satellite television, satellite TV +n04138131 satellite transmitter +n04138261 satin +n04138869 Saturday night special +n04138977 saucepan +n04139140 saucepot +n04139395 sauna, sweat room +n04139859 savings bank, coin bank, money box, bank +n04140064 saw +n04140539 sawed-off shotgun +n04140631 sawhorse, horse, sawbuck, buck +n04140777 sawmill +n04140853 saw set +n04141076 sax, saxophone +n04141198 saxhorn +n04141327 scabbard +n04141712 scaffolding, staging +n04141838 scale +n04141975 scale, weighing machine +n04142175 scaler +n04142327 scaling ladder +n04142434 scalpel +n04142731 scanner, electronic scanner +n04142999 scanner +n04143140 scanner, digital scanner, image scanner +n04143365 scantling, stud +n04143897 scarf +n04144241 scarf joint, scarf +n04144539 scatter rug, throw rug +n04144651 scauper, scorper +n04145863 Schmidt telescope, Schmidt camera +n04146050 school, schoolhouse +n04146343 schoolbag +n04146504 school bell +n04146614 school bus +n04146862 school ship, training ship +n04146976 school system +n04147183 schooner +n04147291 schooner +n04147495 scientific instrument +n04147793 scimitar +n04147916 scintillation counter +n04148054 scissors, pair of scissors +n04148285 sclerometer +n04148464 scoinson arch, sconcheon arch +n04148579 sconce +n04148703 sconce +n04149083 scoop +n04149374 scooter +n04149813 scoreboard +n04150153 scouring pad +n04150273 scow +n04150371 scow +n04150980 scraper +n04151108 scratcher +n04151581 screen +n04151940 screen, cover, covert, concealment +n04152387 screen +n04152593 screen, CRT screen +n04153025 screen door, screen +n04153330 screening +n04153751 screw +n04154152 screw, screw propeller +n04154340 screw +n04154565 screwdriver +n04154753 screw eye +n04154854 screw key +n04154938 screw thread, thread +n04155068 screwtop +n04155177 screw wrench +n04155457 scriber, scribe, scratch awl +n04155625 scrim +n04155735 scrimshaw +n04155889 scriptorium +n04156040 scrubber +n04156140 scrub brush, scrubbing brush, scrubber +n04156297 scrub plane +n04156411 scuffer +n04156591 scuffle, scuffle hoe, Dutch hoe +n04156814 scull +n04156946 scull +n04157099 scullery +n04157320 sculpture +n04158002 scuttle, coal scuttle +n04158138 scyphus +n04158250 scythe +n04158672 seabag +n04158807 sea boat +n04158956 sea chest +n04160036 sealing wax, seal +n04160261 sealskin +n04160372 seam +n04160586 seaplane, hydroplane +n04160847 searchlight +n04161010 searing iron +n04161358 seat +n04161981 seat +n04162433 seat +n04162706 seat belt, seatbelt +n04163530 secateurs +n04164002 secondary coil, secondary winding, secondary +n04164199 second balcony, family circle, upper balcony, peanut gallery +n04164406 second base +n04164757 second hand +n04164868 secretary, writing table, escritoire, secretaire +n04165409 sectional +n04165675 security blanket +n04165945 security system, security measure, security +n04166111 security system +n04166281 sedan, saloon +n04166436 sedan, sedan chair +n04167346 seeder +n04167489 seeker +n04167661 seersucker +n04168084 segmental arch +n04168199 Segway, Segway Human Transporter, Segway HT +n04168472 seidel +n04168541 seine +n04168840 seismograph +n04169437 selector, selector switch +n04169597 selenium cell +n04170037 self-propelled vehicle +n04170384 self-registering thermometer +n04170515 self-starter +n04170694 selsyn, synchro +n04170933 selvage, selvedge +n04171208 semaphore +n04171459 semiautomatic firearm +n04171629 semiautomatic pistol, semiautomatic +n04171831 semiconductor device, semiconductor unit, semiconductor +n04172107 semi-detached house +n04172230 semigloss +n04172342 semitrailer, semi +n04172512 sennit +n04172607 sensitometer +n04172776 sentry box +n04172904 separate +n04173046 septic tank +n04173172 sequence, episode +n04173511 sequencer, sequenator +n04173907 serape, sarape +n04174026 serge +n04174101 serger +n04174234 serial port +n04174500 serpent +n04174705 serration +n04175039 server +n04175147 server, host +n04175574 service club +n04176068 serving cart +n04176190 serving dish +n04176295 servo, servomechanism, servosystem +n04176528 set +n04177041 set gun, spring gun +n04177329 setscrew +n04177545 setscrew +n04177654 set square +n04177755 settee +n04177820 settle, settee +n04177931 settlement house +n04178190 seventy-eight, 78 +n04178329 Seven Wonders of the Ancient World, Seven Wonders of the World +n04178668 sewage disposal plant, disposal plant +n04179126 sewer, sewerage, cloaca +n04179712 sewing basket +n04179824 sewing kit +n04179913 sewing machine +n04180063 sewing needle +n04180229 sewing room +n04180888 sextant +n04181083 sgraffito +n04181228 shackle, bond, hamper, trammel +n04181561 shackle +n04181718 shade +n04182152 shadow box +n04182322 shaft +n04183217 shag rug +n04183329 shaker +n04183957 shank +n04184095 shank, stem +n04184316 shantung +n04184435 shaper, shaping machine +n04184600 shaping tool +n04184880 sharkskin +n04185071 sharpener +n04185529 Sharpie +n04185804 shaver, electric shaver, electric razor +n04185946 shaving brush +n04186051 shaving cream, shaving soap +n04186268 shaving foam +n04186455 shawl +n04186624 shawm +n04186848 shears +n04187061 sheath +n04187233 sheathing, overlay, overlayer +n04187547 shed +n04187751 sheep bell +n04187885 sheepshank +n04187970 sheepskin coat, afghan +n04188064 sheepwalk, sheeprun +n04188179 sheet, bed sheet +n04189092 sheet bend, becket bend, weaver's knot, weaver's hitch +n04189282 sheeting +n04189651 sheet pile, sheath pile, sheet piling +n04189816 Sheetrock +n04190052 shelf +n04190376 shelf bracket +n04190464 shell +n04190747 shell, case, casing +n04190997 shell, racing shell +n04191150 shellac, shellac varnish +n04191595 shelter +n04191943 shelter +n04192238 shelter +n04192361 sheltered workshop +n04192521 Sheraton +n04192698 shield, buckler +n04192858 shield +n04193179 shielding +n04193377 shift key, shift +n04193742 shillelagh, shillalah +n04193883 shim +n04194009 shingle +n04194127 shin guard, shinpad +n04194289 ship +n04196080 shipboard system +n04196502 shipping, cargo ships, merchant marine, merchant vessels +n04196803 shipping room +n04196925 ship-towed long-range acoustic detection system +n04197110 shipwreck +n04197391 shirt +n04197781 shirt button +n04197878 shirtdress +n04198015 shirtfront +n04198233 shirting +n04198355 shirtsleeve +n04198453 shirttail +n04198562 shirtwaist, shirtwaister +n04198722 shiv +n04198797 shock absorber, shock, cushion +n04199027 shoe +n04200000 shoe +n04200258 shoebox +n04200537 shoehorn +n04200800 shoe shop, shoe-shop, shoe store +n04200908 shoetree +n04201064 shofar, shophar +n04201297 shoji +n04201733 shooting brake +n04202142 shooting lodge, shooting box +n04202282 shooting stick +n04202417 shop, store +n04203356 shop bell +n04204081 shopping bag +n04204238 shopping basket +n04204347 shopping cart +n04204755 short circuit, short +n04205062 short iron +n04205318 short pants, shorts, trunks +n04205505 short sleeve +n04205613 shortwave diathermy machine +n04206070 shot +n04206225 shot glass, jigger, pony +n04206356 shotgun, scattergun +n04206570 shotgun shell +n04206790 shot tower +n04207151 shoulder +n04207343 shoulder bag +n04207596 shouldered arch +n04207763 shoulder holster +n04207903 shoulder pad +n04208065 shoulder patch +n04208210 shovel +n04208427 shovel +n04208582 shovel hat +n04208760 showboat +n04208936 shower +n04209133 shower cap +n04209239 shower curtain +n04209509 shower room +n04209613 shower stall, shower bath +n04209811 showroom, salesroom, saleroom +n04210012 shrapnel +n04210120 shredder +n04210288 shrimper +n04210390 shrine +n04210591 shrink-wrap +n04210858 shunt +n04211001 shunt, electrical shunt, bypass +n04211219 shunter +n04211356 shutter +n04211528 shutter +n04211857 shuttle +n04211970 shuttle +n04212165 shuttle bus +n04212282 shuttlecock, bird, birdie, shuttle +n04212467 shuttle helicopter +n04212810 Sibley tent +n04213105 sickbay, sick berth +n04213264 sickbed +n04213353 sickle, reaping hook, reap hook +n04213530 sickroom +n04214046 sideboard +n04214282 sidecar +n04214413 side chapel +n04214649 sidelight, running light +n04215153 sidesaddle +n04215402 sidewalk, pavement +n04215588 sidewall +n04215800 side-wheeler +n04215910 sidewinder +n04216634 sieve, screen +n04216860 sifter +n04216963 sights +n04217387 sigmoidoscope, flexible sigmoidoscope +n04217546 signal box, signal tower +n04217718 signaling device +n04217882 signboard, sign +n04218564 silencer, muffler +n04218921 silent butler +n04219185 Silex +n04219424 silk +n04219580 silks +n04220250 silo +n04220805 silver plate +n04221076 silverpoint +n04221673 simple pendulum +n04221823 simulator +n04222210 single bed +n04222307 single-breasted jacket +n04222470 single-breasted suit +n04222723 single prop, single-propeller plane +n04222847 single-reed instrument, single-reed woodwind +n04223066 single-rotor helicopter +n04223170 singlestick, fencing stick, backsword +n04223299 singlet, vest, undershirt +n04224395 siren +n04224543 sister ship +n04224842 sitar +n04225031 sitz bath, hip bath +n04225222 six-pack, six pack, sixpack +n04225729 skate +n04225987 skateboard +n04226322 skeg +n04226464 skein +n04226537 skeleton, skeletal frame, frame, underframe +n04226826 skeleton key +n04226962 skep +n04227050 skep +n04227144 sketch, study +n04227519 sketcher +n04227787 skew arch +n04227900 skewer +n04228054 ski +n04228215 ski binding, binding +n04228422 skibob +n04228581 ski boot +n04228693 ski cap, stocking cap, toboggan cap +n04229007 skidder +n04229107 skid lid +n04229480 skiff +n04229620 ski jump +n04229737 ski lodge +n04229816 ski mask +n04229959 skimmer +n04230387 ski parka, ski jacket +n04230487 ski-plane +n04230603 ski pole +n04230707 ski rack +n04230808 skirt +n04231272 skirt +n04231693 ski tow, ski lift, lift +n04231905 Skivvies +n04232153 skullcap +n04232312 skybox +n04232437 skyhook +n04232800 skylight, fanlight +n04233027 skysail +n04233124 skyscraper +n04233295 skywalk +n04233715 slacks +n04233832 slack suit +n04234160 slasher +n04234260 slash pocket +n04234455 slat, spline +n04234670 slate +n04234763 slate pencil +n04234887 slate roof +n04235291 sled, sledge, sleigh +n04235646 sleeper +n04235771 sleeper +n04235860 sleeping bag +n04236001 sleeping car, sleeper, wagon-lit +n04236377 sleeve, arm +n04236702 sleeve +n04236809 sleigh bed +n04236935 sleigh bell, cascabel +n04237174 slice bar +n04237287 slicer +n04237423 slicer +n04238128 slide, playground slide, sliding board +n04238321 slide fastener, zip, zipper, zip fastener +n04238617 slide projector +n04238763 slide rule, slipstick +n04238953 slide valve +n04239074 sliding door +n04239218 sliding seat +n04239333 sliding window +n04239436 sling, scarf bandage, triangular bandage +n04239639 sling +n04239786 slingback, sling +n04239900 slinger ring +n04240434 slip clutch, slip friction clutch +n04240752 slipcover +n04240867 slip-joint pliers +n04241042 slipknot +n04241249 slip-on +n04241394 slipper, carpet slipper +n04241573 slip ring +n04242084 slit lamp +n04242315 slit trench +n04242408 sloop +n04242587 sloop of war +n04242704 slop basin, slop bowl +n04243003 slop pail, slop jar +n04243142 slops +n04243251 slopshop, slopseller's shop +n04243546 slot, one-armed bandit +n04243941 slot machine, coin machine +n04244379 sluice, sluiceway, penstock +n04244847 smack +n04244997 small boat +n04245218 small computer system interface, SCSI +n04245412 small ship +n04245508 small stores +n04245847 smart bomb +n04246060 smelling bottle +n04246271 smocking +n04246459 smoke bomb, smoke grenade +n04246731 smokehouse, meat house +n04246855 smoker, smoking car, smoking carriage, smoking compartment +n04247011 smoke screen, smokescreen +n04247440 smoking room +n04247544 smoothbore +n04247630 smooth plane, smoothing plane +n04247736 snack bar, snack counter, buffet +n04247876 snaffle, snaffle bit +n04248209 snap, snap fastener, press stud +n04248396 snap brim +n04248507 snap-brim hat +n04248851 snare, gin, noose +n04249415 snare drum, snare, side drum +n04249582 snatch block +n04249882 snifter, brandy snifter, brandy glass +n04250224 sniper rifle, precision rifle +n04250473 snips, tinsnips +n04250599 Sno-cat +n04250692 snood +n04250850 snorkel, schnorkel, schnorchel, snorkel breather, breather +n04251144 snorkel +n04251701 snowbank, snow bank +n04251791 snowboard +n04252077 snowmobile +n04252225 snowplow, snowplough +n04252331 snowshoe +n04252560 snowsuit +n04252653 snow thrower, snow blower +n04253057 snuffbox +n04253168 snuffer +n04253304 snuffers +n04253931 soapbox +n04254009 soap dish +n04254120 soap dispenser +n04254450 soap pad +n04254680 soccer ball +n04254777 sock +n04255163 socket +n04255346 socket wrench +n04255499 socle +n04255586 soda can +n04255670 soda fountain +n04255768 soda fountain +n04255899 sod house, soddy, adobe house +n04256318 sodium-vapor lamp, sodium-vapour lamp +n04256520 sofa, couch, lounge +n04256758 soffit +n04256891 softball, playground ball +n04257223 soft pedal +n04257684 soil pipe +n04257790 solar array, solar battery, solar panel +n04257986 solar cell, photovoltaic cell +n04258138 solar dish, solar collector, solar furnace +n04258333 solar heater +n04258438 solar house +n04258618 solar telescope +n04258732 solar thermal system +n04258859 soldering iron +n04259202 solenoid +n04259468 solleret, sabaton +n04259630 sombrero +n04260192 sonic depth finder, fathometer +n04260364 sonogram, echogram +n04260589 sonograph +n04261116 sorter +n04261281 souk +n04261369 sound bow +n04261506 soundbox, body +n04261638 sound camera +n04261767 sounder +n04261868 sound film +n04262161 sounding board, soundboard +n04262530 sounding rocket +n04262678 sound recording, audio recording, audio +n04262869 sound spectrograph +n04263257 soup bowl +n04263336 soup ladle +n04263502 soupspoon, soup spoon +n04263760 source of illumination +n04263950 sourdine +n04264134 soutache +n04264233 soutane +n04264361 sou'wester +n04264485 soybean future +n04264628 space bar +n04264765 space capsule, capsule +n04264914 spacecraft, ballistic capsule, space vehicle +n04265275 space heater +n04265428 space helmet +n04265904 space rocket +n04266014 space shuttle +n04266162 space station, space platform, space laboratory +n04266375 spacesuit +n04266486 spade +n04266849 spade bit +n04266968 spaghetti junction +n04267091 Spandau +n04267165 spandex +n04267246 spandrel, spandril +n04267435 spanker +n04267577 spar +n04267985 sparge pipe +n04268142 spark arrester, sparker +n04268275 spark arrester +n04268418 spark chamber, spark counter +n04268565 spark coil +n04268799 spark gap +n04269086 spark lever +n04269270 spark plug, sparking plug, plug +n04269502 sparkplug wrench +n04269668 spark transmitter +n04269822 spat, gaiter +n04269944 spatula +n04270147 spatula +n04270371 speakerphone +n04270576 speaking trumpet +n04270891 spear, lance, shaft +n04271148 spear, gig, fizgig, fishgig, lance +n04271531 specialty store +n04271793 specimen bottle +n04271891 spectacle +n04272054 spectacles, specs, eyeglasses, glasses +n04272389 spectator pump, spectator +n04272782 spectrograph +n04272928 spectrophotometer +n04273064 spectroscope, prism spectroscope +n04273285 speculum +n04273569 speedboat +n04273659 speed bump +n04273796 speedometer, speed indicator +n04273972 speed skate, racing skate +n04274686 spherometer +n04274985 sphygmomanometer +n04275093 spicemill +n04275175 spice rack +n04275283 spider +n04275548 spider web, spider's web +n04275661 spike +n04275904 spike +n04277352 spindle +n04277493 spindle, mandrel, mandril, arbor +n04277669 spindle +n04277826 spin dryer, spin drier +n04278247 spinet +n04278353 spinet +n04278447 spinnaker +n04278605 spinner +n04278932 spinning frame +n04279063 spinning jenny +n04279172 spinning machine +n04279353 spinning rod +n04279462 spinning wheel +n04279858 spiral bandage +n04279987 spiral ratchet screwdriver, ratchet screwdriver +n04280259 spiral spring +n04280373 spirit lamp +n04280487 spirit stove +n04280845 spirometer +n04280970 spit +n04281260 spittoon, cuspidor +n04281375 splashboard, splasher, dashboard +n04281571 splasher +n04281998 splice, splicing +n04282231 splicer +n04282494 splint +n04282872 split rail, fence rail +n04282992 Spode +n04283096 spoiler +n04283255 spoiler +n04283378 spoke, wheel spoke, radius +n04283585 spokeshave +n04283784 sponge cloth +n04283905 sponge mop +n04284002 spoon +n04284341 spoon +n04284438 Spork +n04284572 sporran +n04284869 sport kite, stunt kite +n04285008 sports car, sport car +n04285146 sports equipment +n04285622 sports implement +n04285803 sportswear, athletic wear, activewear +n04285965 sport utility, sport utility vehicle, S.U.V., SUV +n04286128 spot +n04286575 spotlight, spot +n04286960 spot weld, spot-weld +n04287351 spouter +n04287451 sprag +n04287747 spray gun +n04287898 spray paint +n04287986 spreader +n04288165 sprig +n04288272 spring +n04288533 spring balance, spring scale +n04288673 springboard +n04289027 sprinkler +n04289195 sprinkler system +n04289449 sprit +n04289576 spritsail +n04289690 sprocket, sprocket wheel +n04289827 sprocket +n04290079 spun yarn +n04290259 spur, gad +n04290507 spur gear, spur wheel +n04290615 sputnik +n04290762 spy satellite +n04291069 squad room +n04291242 square +n04291759 square knot +n04291992 square-rigger +n04292080 square sail +n04292221 squash ball +n04292414 squash racket, squash racquet, bat +n04292572 squawk box, squawker, intercom speaker +n04292921 squeegee +n04293119 squeezer +n04293258 squelch circuit, squelch, squelcher +n04293744 squinch +n04294212 stabilizer, stabiliser +n04294426 stabilizer +n04294614 stabilizer bar, anti-sway bar +n04294879 stable, stalls, horse barn +n04295081 stable gear, saddlery, tack +n04295353 stabling +n04295571 stacks +n04295777 staddle +n04295881 stadium, bowl, arena, sports stadium +n04296562 stage +n04297098 stagecoach, stage +n04297750 stained-glass window +n04297847 stair-carpet +n04298053 stair-rod +n04298661 stairwell +n04298765 stake +n04299215 stall, stand, sales booth +n04299370 stall +n04299963 stamp +n04300358 stamp mill, stamping mill +n04300509 stamping machine, stamper +n04300643 stanchion +n04301000 stand +n04301242 standard +n04301474 standard cell +n04301760 standard transmission, stick shift +n04302200 standing press +n04302863 stanhope +n04302988 Stanley Steamer +n04303095 staple +n04303258 staple +n04303357 staple gun, staplegun, tacker +n04303497 stapler, stapling machine +n04304215 starship, spaceship +n04304375 starter, starter motor, starting motor +n04304680 starting gate, starting stall +n04305016 Stassano furnace, electric-arc furnace +n04305210 Statehouse +n04305323 stately home +n04305471 state prison +n04305572 stateroom +n04305947 static tube +n04306080 station +n04306592 stator, stator coil +n04306847 statue +n04307419 stay +n04307767 staysail +n04307878 steakhouse, chophouse +n04307986 steak knife +n04308084 stealth aircraft +n04308273 stealth bomber +n04308397 stealth fighter +n04308583 steam bath, steam room, vapor bath, vapour bath +n04308807 steamboat +n04308915 steam chest +n04309049 steam engine +n04309348 steamer, steamship +n04309548 steamer +n04309833 steam iron +n04310018 steam locomotive +n04310157 steamroller, road roller +n04310507 steam shovel +n04310604 steam turbine +n04310721 steam whistle +n04310904 steel +n04311004 steel arch bridge +n04311174 steel drum +n04311595 steel mill, steelworks, steel plant, steel factory +n04312020 steel-wool pad +n04312154 steelyard, lever scale, beam scale +n04312432 steeple, spire +n04312654 steerage +n04312756 steering gear +n04312916 steering linkage +n04313220 steering system, steering mechanism +n04313503 steering wheel, wheel +n04313628 stele, stela +n04314107 stem-winder +n04314216 stencil +n04314522 Sten gun +n04314632 stenograph +n04314914 step, stair +n04315342 step-down transformer +n04315713 step stool +n04315828 step-up transformer +n04315948 stereo, stereophony, stereo system, stereophonic system +n04316498 stereoscope +n04316815 stern chaser +n04316924 sternpost +n04317063 sternwheeler +n04317175 stethoscope +n04317325 stewing pan, stewpan +n04317420 stick +n04317833 stick +n04317976 stick, control stick, joystick +n04318131 stick +n04318787 stile +n04318892 stiletto +n04318982 still +n04319545 stillroom, still room +n04319774 Stillson wrench +n04319937 stilt +n04320405 Stinger +n04320598 stink bomb, stench bomb +n04320871 stirrer +n04320973 stirrup, stirrup iron +n04321121 stirrup pump +n04321453 stob +n04322026 stock, gunstock +n04322531 stockade +n04322692 stockcar +n04322801 stock car +n04323519 stockinet, stockinette +n04323819 stocking +n04324120 stock-in-trade +n04324297 stockpot +n04324387 stockroom, stock room +n04324515 stocks +n04325041 stock saddle, Western saddle +n04325208 stockyard +n04325704 stole +n04325804 stomacher +n04325968 stomach pump +n04326547 stone wall +n04326676 stoneware +n04326799 stonework +n04326896 stool +n04327204 stoop, stoep +n04327544 stop bath, short-stop, short-stop bath +n04327682 stopcock, cock, turncock +n04328054 stopper knot +n04328186 stopwatch, stop watch +n04328329 storage battery, accumulator +n04328580 storage cell, secondary cell +n04328703 storage ring +n04328946 storage space +n04329477 storeroom, storage room, stowage +n04329681 storm cellar, cyclone cellar, tornado cellar +n04329834 storm door +n04329958 storm window, storm sash +n04330109 stoup, stoop +n04330189 stoup +n04330267 stove +n04330340 stove, kitchen stove, range, kitchen range, cooking stove +n04330669 stove bolt +n04330746 stovepipe +n04330896 stovepipe iron +n04330998 Stradavarius, Strad +n04331277 straight chair, side chair +n04331443 straightedge +n04331639 straightener +n04331765 straight flute, straight-fluted drill +n04331892 straight pin +n04332074 straight razor +n04332243 strainer +n04332580 straitjacket, straightjacket +n04332987 strap +n04333129 strap +n04333869 strap hinge, joint hinge +n04334105 strapless +n04334365 streamer fly +n04334504 streamliner +n04334599 street +n04335209 street +n04335435 streetcar, tram, tramcar, trolley, trolley car +n04335693 street clothes +n04335886 streetlight, street lamp +n04336792 stretcher +n04337157 stretcher +n04337287 stretch pants +n04337503 strickle +n04337650 strickle +n04338517 stringed instrument +n04338963 stringer +n04339062 stringer +n04339191 string tie +n04339638 strip +n04339879 strip lighting +n04340019 strip mall +n04340521 stroboscope, strobe, strobe light +n04340750 strongbox, deedbox +n04340935 stronghold, fastness +n04341133 strongroom +n04341288 strop +n04341414 structural member +n04341686 structure, construction +n04343511 student center +n04343630 student lamp +n04343740 student union +n04344003 stud finder +n04344734 studio apartment, studio +n04344873 studio couch, day bed +n04345028 study +n04345201 study hall +n04345787 stuffing nut, packing nut +n04346003 stump +n04346157 stun gun, stun baton +n04346328 stupa, tope +n04346428 sty, pigsty, pigpen +n04346511 stylus, style +n04346679 stylus +n04346855 sub-assembly +n04347119 subcompact, subcompact car +n04347519 submachine gun +n04347754 submarine, pigboat, sub, U-boat +n04348070 submarine torpedo +n04348184 submersible, submersible warship +n04348359 submersible +n04348988 subtracter +n04349189 subway token +n04349306 subway train +n04349401 subwoofer +n04349913 suction cup +n04350104 suction pump +n04350235 sudatorium, sudatory +n04350458 suede cloth, suede +n04350581 sugar bowl +n04350688 sugar refinery +n04350769 sugar spoon, sugar shell +n04350905 suit, suit of clothes +n04351550 suite, rooms +n04351699 suiting +n04353573 sulky +n04354026 summer house +n04354182 sumo ring +n04354387 sump +n04354487 sump pump +n04354589 sunbonnet +n04355115 Sunday best, Sunday clothes +n04355267 sun deck +n04355338 sundial +n04355511 sundress +n04355684 sundries +n04355821 sun gear +n04355933 sunglass +n04356056 sunglasses, dark glasses, shades +n04356595 sunhat, sun hat +n04356772 sunlamp, sun lamp, sunray lamp, sun-ray lamp +n04356925 sun parlor, sun parlour, sun porch, sunporch, sunroom, sun lounge, solarium +n04357121 sunroof, sunshine-roof +n04357314 sunscreen, sunblock, sun blocker +n04357531 sunsuit +n04357930 supercharger +n04358117 supercomputer +n04358256 superconducting supercollider +n04358491 superhighway, information superhighway +n04358707 supermarket +n04358874 superstructure +n04359034 supertanker +n04359124 supper club +n04359217 supplejack +n04359335 supply chamber +n04359500 supply closet +n04359589 support +n04360501 support +n04360798 support column +n04360914 support hose, support stocking +n04361095 supporting structure +n04361260 supporting tower +n04361937 surcoat +n04362624 surface gauge, surface gage, scribing block +n04362821 surface lift +n04362972 surface search radar +n04363082 surface ship +n04363210 surface-to-air missile, SAM +n04363412 surface-to-air missile system +n04363671 surfboat +n04363777 surcoat +n04363874 surgeon's knot +n04363991 surgery +n04364160 surge suppressor, surge protector, spike suppressor, spike arrester, lightning arrester +n04364397 surgical dressing +n04364545 surgical instrument +n04364827 surgical knife +n04364994 surplice +n04365112 surrey +n04365229 surtout +n04365328 surveillance system +n04365484 surveying instrument, surveyor's instrument +n04365751 surveyor's level +n04366033 sushi bar +n04366116 suspension, suspension system +n04366367 suspension bridge +n04366832 suspensory, suspensory bandage +n04367011 sustaining pedal, loud pedal +n04367371 suture, surgical seam +n04367480 swab, swob, mop +n04367746 swab +n04367950 swaddling clothes, swaddling bands +n04368109 swag +n04368235 swage block +n04368365 swagger stick +n04368496 swallow-tailed coat, swallowtail, morning coat +n04368695 swamp buggy, marsh buggy +n04368840 swan's down +n04369025 swathe, wrapping +n04369282 swatter, flyswatter, flyswat +n04369485 sweat bag +n04369618 sweatband +n04370048 sweater, jumper +n04370288 sweat pants, sweatpants +n04370456 sweatshirt +n04370600 sweatshop +n04370774 sweat suit, sweatsuit, sweats, workout suit +n04370955 sweep, sweep oar +n04371050 sweep hand, sweep-second +n04371430 swimming trunks, bathing trunks +n04371563 swimsuit, swimwear, bathing suit, swimming costume, bathing costume +n04371774 swing +n04371979 swing door, swinging door +n04372370 switch, electric switch, electrical switch +n04373089 switchblade, switchblade knife, flick-knife, flick knife +n04373428 switch engine, donkey engine +n04373563 swivel +n04373704 swivel chair +n04373795 swizzle stick +n04373894 sword, blade, brand, steel +n04374315 sword cane, sword stick +n04374521 S wrench +n04374735 synagogue, temple, tabernacle +n04374907 synchrocyclotron +n04375080 synchroflash +n04375241 synchromesh +n04375405 synchronous converter, rotary, rotary converter +n04375615 synchronous motor +n04375775 synchrotron +n04375926 synchroscope, synchronoscope, synchronizer, synchroniser +n04376400 synthesizer, synthesiser +n04376876 syringe +n04377057 system +n04378489 tabard +n04378651 Tabernacle +n04378956 tabi, tabis +n04379096 tab key, tab +n04379243 table +n04379964 table +n04380255 tablefork +n04380346 table knife +n04380533 table lamp +n04380916 table saw +n04381073 tablespoon +n04381450 tablet-armed chair +n04381587 table-tennis table, ping-pong table, pingpong table +n04381724 table-tennis racquet, table-tennis bat, pingpong paddle +n04381860 tabletop +n04381994 tableware +n04382334 tabor, tabour +n04382438 taboret, tabouret +n04382537 tachistoscope, t-scope +n04382695 tachograph +n04382880 tachometer, tach +n04383015 tachymeter, tacheometer +n04383130 tack +n04383301 tack hammer +n04383839 taffeta +n04383923 taffrail +n04384593 tailgate, tailboard +n04384910 taillight, tail lamp, rear light, rear lamp +n04385079 tailor-made +n04385157 tailor's chalk +n04385536 tailpipe +n04385799 tail rotor, anti-torque rotor +n04386051 tailstock +n04386456 take-up +n04386664 talaria +n04386792 talcum, talcum powder +n04387095 tam, tam-o'-shanter, tammy +n04387201 tambour +n04387261 tambour, embroidery frame, embroidery hoop +n04387400 tambourine +n04387531 tammy +n04387706 tamp, tamper, tamping bar +n04387932 Tampax +n04388040 tampion, tompion +n04388162 tampon +n04388473 tandoor +n04388574 tangram +n04388743 tank, storage tank +n04389033 tank, army tank, armored combat vehicle, armoured combat vehicle +n04389430 tankard +n04389521 tank car, tank +n04389718 tank destroyer +n04389854 tank engine, tank locomotive +n04389999 tanker plane +n04390483 tank shell +n04390577 tank top +n04390873 tannoy +n04390977 tap, spigot +n04391445 tapa, tappa +n04391838 tape, tape recording, taping +n04392113 tape, tapeline, tape measure +n04392526 tape deck +n04392764 tape drive, tape transport, transport +n04392985 tape player +n04393095 tape recorder, tape machine +n04393301 taper file +n04393549 tapestry, tapis +n04393808 tappet +n04393913 tap wrench +n04394031 tare +n04394261 target, butt +n04394421 target acquisition system +n04394630 tarmacadam, tarmac, macadam +n04395024 tarpaulin, tarp +n04395106 tartan, plaid +n04395332 tasset, tasse +n04395651 tattoo +n04395875 tavern, tap house +n04396226 tawse +n04396335 taximeter +n04396650 T-bar lift, T-bar, Alpine lift +n04396808 tea bag +n04396902 tea ball +n04397027 tea cart, teacart, tea trolley, tea wagon +n04397168 tea chest +n04397261 teaching aid +n04397452 teacup +n04397645 tea gown +n04397768 teakettle +n04397860 tea maker +n04398044 teapot +n04398497 teashop, teahouse, tearoom, tea parlor, tea parlour +n04398688 teaspoon +n04398834 tea-strainer +n04398951 tea table +n04399046 tea tray +n04399158 tea urn +n04399382 teddy, teddy bear +n04399537 tee, golf tee +n04399846 tee hinge, T hinge +n04400109 telecom hotel, telco building +n04400289 telecommunication system, telecom system, telecommunication equipment, telecom equipment +n04400499 telegraph, telegraphy +n04400737 telegraph key +n04400899 telemeter +n04401088 telephone, phone, telephone set +n04401578 telephone bell +n04401680 telephone booth, phone booth, call box, telephone box, telephone kiosk +n04401828 telephone cord, phone cord +n04401949 telephone jack, phone jack +n04402057 telephone line, phone line, telephone circuit, subscriber line, line +n04402342 telephone plug, phone plug +n04402449 telephone pole, telegraph pole, telegraph post +n04402580 telephone receiver, receiver +n04402746 telephone system, phone system +n04402984 telephone wire, telephone line, telegraph wire, telegraph line +n04403413 telephoto lens, zoom lens +n04403524 Teleprompter +n04403638 telescope, scope +n04403925 telescopic sight, telescope sight +n04404072 telethermometer +n04404200 teletypewriter, teleprinter, teletype machine, telex, telex machine +n04404412 television, television system +n04404817 television antenna, tv-antenna +n04404997 television camera, tv camera, camera +n04405540 television equipment, video equipment +n04405762 television monitor, tv monitor +n04405907 television receiver, television, television set, tv, tv set, idiot box, boob tube, telly, goggle box +n04406239 television room, tv room +n04406552 television transmitter +n04406687 telpher, telfer +n04406817 telpherage, telferage +n04407257 tempera, poster paint, poster color, poster colour +n04407435 temple +n04407686 temple +n04408871 temporary hookup, patch +n04409011 tender, supply ship +n04409128 tender, ship's boat, pinnace, cutter +n04409279 tender +n04409384 tenement, tenement house +n04409515 tennis ball +n04409625 tennis camp +n04409806 tennis racket, tennis racquet +n04409911 tenon +n04410086 tenor drum, tom-tom +n04410365 tenoroon +n04410485 tenpenny nail +n04410565 tenpin +n04410663 tensimeter +n04410760 tensiometer +n04410886 tensiometer +n04411019 tensiometer +n04411264 tent, collapsible shelter +n04411835 tenter +n04411966 tenterhook +n04412097 tent-fly, rainfly, fly sheet, fly, tent flap +n04412300 tent peg +n04412416 tepee, tipi, teepee +n04413151 terminal, pole +n04413419 terminal +n04413969 terraced house +n04414101 terra cotta +n04414199 terrarium +n04414319 terra sigillata, Samian ware +n04414476 terry, terry cloth, terrycloth +n04414675 Tesla coil +n04414909 tessera +n04415257 test equipment +n04415663 test rocket, research rocket, test instrument vehicle +n04415815 test room, testing room +n04416005 testudo +n04416901 tetraskelion, tetraskele +n04417086 tetrode +n04417180 textile machine +n04417361 textile mill +n04417672 thatch, thatched roof +n04417809 theater, theatre, house +n04418357 theater curtain, theatre curtain +n04418644 theater light +n04419073 theodolite, transit +n04419642 theremin +n04419868 thermal printer +n04420024 thermal reactor +n04420720 thermocouple, thermocouple junction +n04421083 thermoelectric thermometer, thermel, electric thermometer +n04421258 thermograph, thermometrograph +n04421417 thermograph +n04421582 thermohydrometer, thermogravimeter +n04421740 thermojunction +n04421872 thermometer +n04422409 thermonuclear reactor, fusion reactor +n04422566 thermopile +n04422727 thermos, thermos bottle, thermos flask +n04422875 thermostat, thermoregulator +n04423552 thigh pad +n04423687 thill +n04423845 thimble +n04424692 thinning shears +n04425804 third base, third +n04425977 third gear, third +n04426184 third rail +n04426316 thong +n04426427 thong +n04427216 three-centered arch, basket-handle arch +n04427473 three-decker +n04427559 three-dimensional radar, 3d radar +n04427715 three-piece suit +n04427857 three-quarter binding +n04428008 three-way switch, three-point switch +n04428191 thresher, thrasher, threshing machine +n04428382 threshing floor +n04428634 thriftshop, second-hand store +n04429038 throat protector +n04429376 throne +n04430475 thrust bearing +n04430605 thruster +n04430896 thumb +n04431025 thumbhole +n04431436 thumbscrew +n04431648 thumbstall +n04431745 thumbtack, drawing pin, pushpin +n04431925 thunderer +n04432043 thwart, cross thwart +n04432203 tiara +n04432662 ticking +n04432785 tickler coil +n04433377 tie, tie beam +n04433585 tie, railroad tie, crosstie, sleeper +n04434207 tie rack +n04434531 tie rod +n04434932 tights, leotards +n04435180 tile +n04435552 tile cutter +n04435653 tile roof +n04435759 tiller +n04435870 tilter +n04436012 tilt-top table, tip-top table, tip table +n04436185 timber +n04436329 timber +n04436401 timber hitch +n04436542 timbrel +n04436832 time bomb, infernal machine +n04436992 time capsule +n04437276 time clock +n04437380 time-delay measuring instrument, time-delay measuring system +n04437670 time-fuse +n04437953 timepiece, timekeeper, horologe +n04438304 timer +n04438507 timer +n04438643 time-switch +n04438897 tin +n04439505 tinderbox +n04439585 tine +n04439712 tinfoil, tin foil +n04440597 tippet +n04440963 tire chain, snow chain +n04441093 tire iron, tire tool +n04441528 titfer +n04441662 tithe barn +n04441790 titrator +n04442312 toaster +n04442441 toaster oven +n04442582 toasting fork +n04442741 toastrack +n04443164 tobacco pouch +n04443257 tobacco shop, tobacconist shop, tobacconist +n04443433 toboggan +n04443766 toby, toby jug, toby fillpot jug +n04444121 tocsin, warning bell +n04444218 toe +n04444749 toecap +n04444953 toehold +n04445040 toga +n04445154 toga virilis +n04445327 toggle +n04445610 toggle bolt +n04445782 toggle joint +n04445952 toggle switch, toggle, on-off switch, on/off switch +n04446162 togs, threads, duds +n04446276 toilet, lavatory, lav, can, john, privy, bathroom +n04446844 toilet bag, sponge bag +n04447028 toilet bowl +n04447156 toilet kit, travel kit +n04447276 toilet powder, bath powder, dusting powder +n04447443 toiletry, toilet articles +n04447861 toilet seat +n04448070 toilet water, eau de toilette +n04448185 tokamak +n04448361 token +n04449290 tollbooth, tolbooth, tollhouse +n04449449 toll bridge +n04449550 tollgate, tollbar +n04449700 toll line +n04449966 tomahawk, hatchet +n04450133 Tommy gun, Thompson submachine gun +n04450243 tomograph +n04450465 tone arm, pickup, pickup arm +n04450640 toner +n04450749 tongs, pair of tongs +n04450994 tongue +n04451139 tongue and groove joint +n04451318 tongue depressor +n04451636 tonometer +n04451818 tool +n04452528 tool bag +n04452615 toolbox, tool chest, tool cabinet, tool case +n04452757 toolshed, toolhouse +n04452848 tooth +n04453037 tooth +n04453156 toothbrush +n04453390 toothpick +n04453666 top +n04453910 top, cover +n04454654 topgallant, topgallant mast +n04454792 topgallant, topgallant sail +n04454908 topiary +n04455048 topknot +n04455250 topmast +n04455579 topper +n04455652 topsail +n04456011 toque +n04456115 torch +n04456472 torpedo +n04456734 torpedo +n04457157 torpedo +n04457326 torpedo boat +n04457474 torpedo-boat destroyer +n04457638 torpedo tube +n04457767 torque converter +n04457910 torque wrench +n04458201 torture chamber +n04458633 totem pole +n04458843 touch screen, touchscreen +n04459018 toupee, toupe +n04459122 touring car, phaeton, tourer +n04459243 tourist class, third class +n04459362 towel +n04459610 toweling, towelling +n04459773 towel rack, towel horse +n04459909 towel rail, towel bar +n04460130 tower +n04461437 town hall +n04461570 towpath, towing path +n04461696 tow truck, tow car, wrecker +n04461879 toy +n04462011 toy box, toy chest +n04462240 toyshop +n04462576 trace detector +n04463679 track, rail, rails, runway +n04464125 track +n04464615 trackball +n04464852 tracked vehicle +n04465050 tract house +n04465203 tract housing +n04465358 traction engine +n04465501 tractor +n04465666 tractor +n04466871 trail bike, dirt bike, scrambler +n04467099 trailer, house trailer +n04467307 trailer +n04467506 trailer camp, trailer park +n04467665 trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi +n04467899 trailing edge +n04468005 train, railroad train +n04469003 tramline, tramway, streetcar track +n04469251 trammel +n04469514 trampoline +n04469684 tramp steamer, tramp +n04469813 tramway, tram, aerial tramway, cable tramway, ropeway +n04470741 transdermal patch, skin patch +n04471148 transept +n04471315 transformer +n04471632 transistor, junction transistor, electronic transistor +n04471912 transit instrument +n04472243 transmission, transmission system +n04472563 transmission shaft +n04472726 transmitter, sender +n04472961 transom, traverse +n04473108 transom, transom window, fanlight +n04473275 transponder +n04473884 transporter +n04474035 transporter, car transporter +n04474187 transport ship +n04474466 trap +n04475309 trap door +n04475411 trapeze +n04475496 trave, traverse, crossbeam, crosspiece +n04475631 travel iron +n04475749 trawl, dragnet, trawl net +n04475900 trawl, trawl line, spiller, setline, trotline +n04476116 trawler, dragger +n04476259 tray +n04476526 tray cloth +n04476831 tread +n04476972 tread +n04477219 treadmill, treadwheel, tread-wheel +n04477387 treadmill +n04477548 treasure chest +n04477725 treasure ship +n04478066 treenail, trenail, trunnel +n04478383 trefoil arch +n04478512 trellis, treillage +n04478657 trench +n04479046 trench coat +n04479287 trench knife +n04479405 trepan +n04479526 trepan, trephine +n04479694 trestle +n04479823 trestle +n04479939 trestle bridge +n04480033 trestle table +n04480141 trestlework +n04480303 trews +n04480527 trial balloon +n04480853 triangle +n04480995 triangle +n04481524 triclinium +n04481642 triclinium +n04482177 tricorn, tricorne +n04482297 tricot +n04482393 tricycle, trike, velocipede +n04482975 trident +n04483073 trigger +n04483307 trimaran +n04483925 trimmer +n04484024 trimmer arch +n04484432 triode +n04485082 tripod +n04485423 triptych +n04485586 trip wire +n04485750 trireme +n04485884 triskelion, triskele +n04486054 triumphal arch +n04486213 trivet +n04486322 trivet +n04486616 troika +n04486934 troll +n04487081 trolleybus, trolley coach, trackless trolley +n04487394 trombone +n04487724 troop carrier, troop transport +n04487894 troopship +n04488202 trophy case +n04488427 trough +n04488530 trouser +n04488742 trouser cuff +n04488857 trouser press, pants presser +n04489008 trouser, pant +n04489695 trousseau +n04489817 trowel +n04490091 truck, motortruck +n04491312 trumpet arch +n04491388 truncheon, nightstick, baton, billy, billystick, billy club +n04491638 trundle bed, trundle, truckle bed, truckle +n04491769 trunk +n04491934 trunk hose +n04492060 trunk lid +n04492157 trunk line +n04492375 truss +n04492749 truss bridge +n04493109 try square +n04493259 T-square +n04493381 tub, vat +n04494204 tube, vacuum tube, thermionic vacuum tube, thermionic tube, electron tube, thermionic valve +n04495051 tuck box +n04495183 tucker +n04495310 tucker-bag +n04495450 tuck shop +n04495555 Tudor arch, four-centered arch +n04495698 tudung +n04495843 tugboat, tug, towboat, tower +n04496614 tulle +n04496726 tumble-dryer, tumble drier +n04496872 tumbler +n04497249 tumbrel, tumbril +n04497442 tun +n04497570 tunic +n04497801 tuning fork +n04498275 tupik, tupek, sealskin tent +n04498389 turban +n04498523 turbine +n04498873 turbogenerator +n04499062 tureen +n04499300 Turkish bath +n04499446 Turkish towel, terry towel +n04499554 Turk's head +n04499810 turnbuckle +n04500060 turner, food turner +n04500390 turnery +n04501127 turnpike +n04501281 turnspit +n04501370 turnstile +n04501550 turntable +n04501837 turntable, lazy Susan +n04501947 turret +n04502059 turret clock +n04502197 turtleneck, turtle, polo-neck +n04502502 tweed +n04502670 tweeter +n04502851 twenty-two, .22 +n04502989 twenty-two pistol +n04503073 twenty-two rifle +n04503155 twill +n04503269 twill, twill weave +n04503413 twin bed +n04503499 twinjet +n04503593 twist bit, twist drill +n04503705 two-by-four +n04504038 two-man tent +n04504141 two-piece, two-piece suit, lounge suit +n04504770 typesetting machine +n04505036 typewriter +n04505345 typewriter carriage +n04505470 typewriter keyboard +n04505888 tyrolean, tirolean +n04506289 uke, ukulele +n04506402 ulster +n04506506 ultracentrifuge +n04506688 ultramicroscope, dark-field microscope +n04506895 Ultrasuede +n04506994 ultraviolet lamp, ultraviolet source +n04507155 umbrella +n04507326 umbrella tent +n04507453 undercarriage +n04507689 undercoat, underseal +n04508163 undergarment, unmentionable +n04508489 underpants +n04508949 underwear, underclothes, underclothing +n04509171 undies +n04509260 uneven parallel bars, uneven bars +n04509417 unicycle, monocycle +n04509592 uniform +n04510706 universal joint, universal +n04511002 university +n04513827 upholstery +n04513998 upholstery material +n04514095 upholstery needle +n04514241 uplift +n04514648 upper berth, upper +n04515003 upright, upright piano +n04515444 upset, swage +n04515729 upstairs +n04515890 urceole +n04516116 urn +n04516214 urn +n04516354 used-car, secondhand car +n04516672 utensil +n04517211 Uzi +n04517408 vacation home +n04517823 vacuum, vacuum cleaner +n04517999 vacuum chamber +n04518132 vacuum flask, vacuum bottle +n04518343 vacuum gauge, vacuum gage +n04518643 Valenciennes, Valenciennes lace +n04518764 valise +n04519153 valve +n04519536 valve +n04519728 valve-in-head engine +n04519887 vambrace, lower cannon +n04520170 van +n04520382 van, caravan +n04520784 vane +n04520962 vaporizer, vaporiser +n04521571 variable-pitch propeller +n04521863 variometer +n04521987 varnish +n04522168 vase +n04523525 vault +n04523831 vault, bank vault +n04524142 vaulting horse, long horse, buck +n04524313 vehicle +n04524594 Velcro +n04524716 velocipede +n04524941 velour, velours +n04525038 velvet +n04525191 velveteen +n04525305 vending machine +n04525417 veneer, veneering +n04525584 Venetian blind +n04525821 Venn diagram, Venn's diagram +n04526520 ventilation, ventilation system, ventilating system +n04526800 ventilation shaft +n04526964 ventilator +n04527648 veranda, verandah, gallery +n04528079 verdigris +n04528968 vernier caliper, vernier micrometer +n04529108 vernier scale, vernier +n04529681 vertical file +n04529962 vertical stabilizer, vertical stabiliser, vertical fin, tail fin, tailfin +n04530283 vertical tail +n04530456 Very pistol, Verey pistol +n04530566 vessel, watercraft +n04531098 vessel +n04531873 vest, waistcoat +n04532022 vestiture +n04532106 vestment +n04532398 vest pocket +n04532504 vestry, sacristy +n04532670 viaduct +n04532831 vibraphone, vibraharp, vibes +n04533042 vibrator +n04533199 vibrator +n04533499 Victrola +n04533594 vicuna +n04533700 videocassette +n04533802 videocassette recorder, VCR +n04533946 videodisk, videodisc, DVD +n04534127 video recording, video +n04534359 videotape +n04534520 videotape +n04534895 vigil light, vigil candle +n04535252 villa +n04535370 villa +n04535524 villa +n04536153 viol +n04536335 viola +n04536465 viola da braccio +n04536595 viola da gamba, gamba, bass viol +n04536765 viola d'amore +n04536866 violin, fiddle +n04537436 virginal, pair of virginals +n04538249 viscometer, viscosimeter +n04538403 viscose rayon, viscose +n04538552 vise, bench vise +n04538878 visor, vizor +n04539053 visual display unit, VDU +n04539203 vivarium +n04539407 Viyella +n04539794 voile +n04540053 volleyball +n04540255 volleyball net +n04540397 voltage regulator +n04540761 voltaic cell, galvanic cell, primary cell +n04541136 voltaic pile, pile, galvanic pile +n04541320 voltmeter +n04541662 vomitory +n04541777 von Neumann machine +n04541987 voting booth +n04542095 voting machine +n04542329 voussoir +n04542474 vox angelica, voix celeste +n04542595 vox humana +n04542715 waders +n04542858 wading pool +n04542943 waffle iron +n04543158 wagon, waggon +n04543509 wagon, coaster wagon +n04543636 wagon tire +n04543772 wagon wheel +n04543924 wain +n04543996 wainscot, wainscoting, wainscotting +n04544325 wainscoting, wainscotting +n04544450 waist pack, belt bag +n04545305 walker, baby-walker, go-cart +n04545471 walker, Zimmer, Zimmer frame +n04545748 walker +n04545858 walkie-talkie, walky-talky +n04545984 walk-in +n04546081 walking shoe +n04546194 walking stick +n04546340 Walkman +n04546595 walk-up apartment, walk-up +n04546855 wall +n04547592 wall +n04548280 wall clock +n04548362 wallet, billfold, notecase, pocketbook +n04549028 wall tent +n04549122 wall unit +n04549629 wand +n04549721 Wankel engine, Wankel rotary engine, epitrochoidal engine +n04549919 ward, hospital ward +n04550184 wardrobe, closet, press +n04550676 wardroom +n04551055 warehouse, storage warehouse +n04551833 warming pan +n04552097 war paint +n04552348 warplane, military plane +n04552551 war room +n04552696 warship, war vessel, combat ship +n04553389 wash +n04553561 wash-and-wear +n04553703 washbasin, handbasin, washbowl, lavabo, wash-hand basin +n04554211 washboard, splashboard +n04554406 washboard +n04554684 washer, automatic washer, washing machine +n04554871 washer +n04554998 washhouse +n04555291 washroom +n04555400 washstand, wash-hand stand +n04555600 washtub +n04555700 wastepaper basket, waste-paper basket, wastebasket, waste basket, circular file +n04555897 watch, ticker +n04556408 watch cap +n04556533 watch case +n04556664 watch glass +n04556948 watchtower +n04557308 water-base paint +n04557522 water bed +n04557648 water bottle +n04557751 water butt +n04558059 water cart +n04558199 water chute +n04558478 water closet, closet, W.C., loo +n04558804 watercolor, water-color, watercolour, water-colour +n04559023 water-cooled reactor +n04559166 water cooler +n04559451 water faucet, water tap, tap, hydrant +n04559620 water filter +n04559730 water gauge, water gage, water glass +n04559910 water glass +n04559994 water hazard +n04560113 water heater, hot-water heater, hot-water tank +n04560292 watering can, watering pot +n04560502 watering cart +n04560619 water jacket +n04560804 water jug +n04560882 water jump +n04561010 water level +n04561287 water meter +n04561422 water mill +n04561734 waterproof +n04561857 waterproofing +n04561965 water pump +n04562122 water scooter, sea scooter, scooter +n04562262 water ski +n04562496 waterspout +n04562935 water tower +n04563020 water wagon, water waggon +n04563204 waterwheel, water wheel +n04563413 waterwheel, water wheel +n04563560 water wings +n04563790 waterworks +n04564278 wattmeter +n04564581 waxwork, wax figure +n04565039 ways, shipway, slipway +n04565375 weapon, arm, weapon system +n04566257 weaponry, arms, implements of war, weapons system, munition +n04566561 weapons carrier +n04566756 weathercock +n04567098 weatherglass +n04567593 weather satellite, meteorological satellite +n04567746 weather ship +n04568069 weathervane, weather vane, vane, wind vane +n04568557 web, entanglement +n04568713 web +n04568841 webbing +n04569063 webcam +n04569520 wedge +n04569822 wedge +n04570118 wedgie +n04570214 Wedgwood +n04570416 weeder, weed-whacker +n04570532 weeds, widow's weeds +n04570815 weekender +n04570958 weighbridge +n04571292 weight, free weight, exercising weight +n04571566 weir +n04571686 weir +n04571800 welcome wagon +n04571958 weld +n04572121 welder's mask +n04572235 weldment +n04572935 well +n04573045 wellhead +n04573281 welt +n04573379 Weston cell, cadmium cell +n04573513 wet bar +n04573625 wet-bulb thermometer +n04573832 wet cell +n04573937 wet fly +n04574067 wet suit +n04574348 whaleboat +n04574471 whaler, whaling ship +n04574606 whaling gun +n04574999 wheel +n04575723 wheel +n04575824 wheel and axle +n04576002 wheelchair +n04576211 wheeled vehicle +n04576971 wheelwork +n04577139 wherry +n04577293 wherry, Norfolk wherry +n04577426 whetstone +n04577567 whiffletree, whippletree, swingletree +n04577769 whip +n04578112 whipcord +n04578329 whipping post +n04578559 whipstitch, whipping, whipstitching +n04578708 whirler +n04578801 whisk, whisk broom +n04578934 whisk +n04579056 whiskey bottle +n04579145 whiskey jug +n04579230 whispering gallery, whispering dome +n04579432 whistle +n04579667 whistle +n04579986 white +n04580493 white goods +n04581102 whitewash +n04581595 whorehouse, brothel, bordello, bagnio, house of prostitution, house of ill repute, bawdyhouse, cathouse, sporting house +n04581829 wick, taper +n04582205 wicker, wickerwork, caning +n04582349 wicker basket +n04582771 wicket, hoop +n04582869 wicket +n04583022 wickiup, wikiup +n04583212 wide-angle lens, fisheye lens +n04583620 widebody aircraft, wide-body aircraft, wide-body, twin-aisle airplane +n04583888 wide wale +n04583967 widow's walk +n04584056 Wiffle, Wiffle Ball +n04584207 wig +n04584373 wigwam +n04585128 Wilton, Wilton carpet +n04585318 wimple +n04585456 wincey +n04585626 winceyette +n04585745 winch, windlass +n04585980 Winchester +n04586072 windbreak, shelterbelt +n04586581 winder, key +n04586932 wind instrument, wind +n04587327 windjammer +n04587404 windmill, aerogenerator, wind generator +n04587559 windmill +n04587648 window +n04588739 window +n04589190 window blind +n04589325 window box +n04589434 window envelope +n04589593 window frame +n04589890 window screen +n04590021 window seat +n04590129 window shade +n04590263 windowsill +n04590553 windshield, windscreen +n04590746 windshield wiper, windscreen wiper, wiper, wiper blade +n04590933 Windsor chair +n04591056 Windsor knot +n04591157 Windsor tie +n04591249 wind tee +n04591359 wind tunnel +n04591517 wind turbine +n04591631 wine bar +n04591713 wine bottle +n04591887 wine bucket, wine cooler +n04592005 wine cask, wine barrel +n04592099 wineglass +n04592356 winepress +n04592465 winery, wine maker +n04592596 wineskin +n04592741 wing +n04593077 wing chair +n04593185 wing nut, wing-nut, wing screw, butterfly nut, thumbnut +n04593376 wing tip +n04593524 wing tip +n04593629 winker, blinker, blinder +n04593866 wiper, wiper arm, contact arm +n04594114 wiper motor +n04594218 wire +n04594489 wire, conducting wire +n04594742 wire cloth +n04594828 wire cutter +n04594919 wire gauge, wire gage +n04595028 wireless local area network, WLAN, wireless fidelity, WiFi +n04595285 wire matrix printer, wire printer, stylus printer +n04595501 wire recorder +n04595611 wire stripper +n04595762 wirework, grillwork +n04595855 wiring +n04596116 wishing cap +n04596492 witness box, witness stand +n04596742 wok +n04596852 woman's clothing +n04597066 wood +n04597309 woodcarving +n04597400 wood chisel +n04597804 woodenware +n04597913 wooden spoon +n04598136 woodscrew +n04598318 woodshed +n04598416 wood vise, woodworking vise, shoulder vise +n04598582 woodwind, woodwind instrument, wood +n04598965 woof, weft, filling, pick +n04599124 woofer +n04599235 wool, woolen, woollen +n04600312 workbasket, workbox, workbag +n04600486 workbench, work bench, bench +n04600912 work-clothing, work-clothes +n04601041 workhouse +n04601159 workhouse +n04601938 workpiece +n04602762 workroom +n04602840 works, workings +n04602956 work-shirt +n04603399 workstation +n04603729 worktable, work table +n04603872 workwear +n04604276 World Wide Web, WWW, web +n04604644 worm fence, snake fence, snake-rail fence, Virginia fence +n04604806 worm gear +n04605057 worm wheel +n04605163 worsted +n04605321 worsted, worsted yarn +n04605446 wrap, wrapper +n04605572 wraparound +n04605726 wrapping, wrap, wrapper +n04606251 wreck +n04606574 wrench, spanner +n04607035 wrestling mat +n04607242 wringer +n04607640 wrist pad +n04607759 wrist pin, gudgeon pin +n04607869 wristwatch, wrist watch +n04607982 writing arm +n04608329 writing desk +n04608435 writing desk +n04608567 writing implement +n04608809 xerographic printer +n04608923 Xerox, xerographic copier, Xerox machine +n04609531 X-ray film +n04609651 X-ray machine +n04609811 X-ray tube +n04610013 yacht, racing yacht +n04610176 yacht chair +n04610274 yagi, Yagi aerial +n04610503 yard +n04610676 yard +n04611351 yardarm +n04611795 yard marker +n04611916 yardstick, yard measure +n04612026 yarmulke, yarmulka, yarmelke +n04612159 yashmak, yashmac +n04612257 yataghan +n04612373 yawl, dandy +n04612504 yawl +n04612840 yoke +n04613015 yoke +n04613158 yoke, coupling +n04613696 yurt +n04613939 Zamboni +n04614505 zero +n04614655 ziggurat, zikkurat, zikurat +n04614844 zill +n04615149 zip gun +n04615226 zither, cither, zithern +n04615644 zoot suit +n04682018 shading +n04950713 grain +n04950952 wood grain, woodgrain, woodiness +n04951071 graining, woodgraining +n04951186 marbleization, marbleisation, marbleizing, marbleising +n04951373 light, lightness +n04951716 aura, aureole, halo, nimbus, glory, gloriole +n04951875 sunniness +n04953296 glint +n04953678 opalescence, iridescence +n04955160 polish, gloss, glossiness, burnish +n04957356 primary color for pigments, primary colour for pigments +n04957589 primary color for light, primary colour for light +n04958634 colorlessness, colourlessness, achromatism, achromaticity +n04958865 mottle +n04959061 achromia +n04959230 shade, tint, tincture, tone +n04959672 chromatic color, chromatic colour, spectral color, spectral colour +n04960277 black, blackness, inkiness +n04960582 coal black, ebony, jet black, pitch black, sable, soot black +n04961062 alabaster +n04961331 bone, ivory, pearl, off-white +n04961691 gray, grayness, grey, greyness +n04962062 ash grey, ash gray, silver, silver grey, silver gray +n04962240 charcoal, charcoal grey, charcoal gray, oxford grey, oxford gray +n04963111 sanguine +n04963307 Turkey red, alizarine red +n04963588 crimson, ruby, deep red +n04963740 dark red +n04964001 claret +n04964799 fuschia +n04964878 maroon +n04965179 orange, orangeness +n04965451 reddish orange +n04965661 yellow, yellowness +n04966543 gamboge, lemon, lemon yellow, maize +n04966941 pale yellow, straw, wheat +n04967191 green, greenness, viridity +n04967561 greenishness +n04967674 sea green +n04967801 sage green +n04967882 bottle green +n04968056 emerald +n04968139 olive green, olive-green +n04968749 jade green, jade +n04968895 blue, blueness +n04969242 azure, cerulean, sapphire, lazuline, sky-blue +n04969540 steel blue +n04969798 greenish blue, aqua, aquamarine, turquoise, cobalt blue, peacock blue +n04969952 purplish blue, royal blue +n04970059 purple, purpleness +n04970312 Tyrian purple +n04970398 indigo +n04970470 lavender +n04970631 reddish purple, royal purple +n04970916 pink +n04971211 carnation +n04971313 rose, rosiness +n04972350 chestnut +n04972451 chocolate, coffee, deep brown, umber, burnt umber +n04972801 light brown +n04973020 tan, topaz +n04973291 beige, ecru +n04973386 reddish brown, sepia, burnt sienna, Venetian red, mahogany +n04973585 brick red +n04973669 copper, copper color +n04973816 Indian red +n04974145 puce +n04974340 olive +n04974859 ultramarine +n04975739 complementary color, complementary +n04976319 pigmentation +n04976952 complexion, skin color, skin colour +n04977412 ruddiness, rosiness +n04978561 nonsolid color, nonsolid colour, dithered color, dithered colour +n04979002 aposematic coloration, warning coloration +n04979307 cryptic coloration +n04981658 ring +n05102764 center of curvature, centre of curvature +n05218119 cadaver, corpse, stiff, clay, remains +n05233741 mandibular notch +n05235879 rib +n05238282 skin, tegument, cutis +n05239437 skin graft +n05241218 epidermal cell +n05241485 melanocyte +n05241662 prickle cell +n05242070 columnar cell, columnar epithelial cell +n05242239 spongioblast +n05242928 squamous cell +n05244421 amyloid plaque, amyloid protein plaque +n05244755 dental plaque, bacterial plaque +n05244934 macule, macula +n05245192 freckle, lentigo +n05257476 bouffant +n05257967 sausage curl +n05258051 forelock +n05258627 spit curl, kiss curl +n05259914 pigtail +n05260127 pageboy +n05260240 pompadour +n05261310 thatch +n05262422 soup-strainer, toothbrush +n05262534 mustachio, moustachio, handle-bars +n05262698 walrus mustache, walrus moustache +n05263183 stubble +n05263316 vandyke beard, vandyke +n05263448 soul patch, Attilio +n05265736 esophageal smear +n05266096 paraduodenal smear, duodenal smear +n05266879 specimen +n05278922 punctum +n05279953 glenoid fossa, glenoid cavity +n05282652 diastema +n05285623 marrow, bone marrow +n05302499 mouth, oral cavity, oral fissure, rima oris +n05314075 canthus +n05399034 milk +n05399243 mother's milk +n05399356 colostrum, foremilk +n05418717 vein, vena, venous blood vessel +n05427346 ganglion cell, gangliocyte +n05442594 X chromosome +n05447757 embryonic cell, formative cell +n05448704 myeloblast +n05448827 sideroblast +n05449196 osteocyte +n05449661 megalocyte, macrocyte +n05449959 leukocyte, leucocyte, white blood cell, white cell, white blood corpuscle, white corpuscle, WBC +n05450617 histiocyte +n05451099 fixed phagocyte +n05451384 lymphocyte, lymph cell +n05453412 monoblast +n05453657 neutrophil, neutrophile +n05453815 microphage +n05454833 sickle cell +n05454978 siderocyte +n05455113 spherocyte +n05458173 ootid +n05458576 oocyte +n05459101 spermatid +n05459457 Leydig cell, Leydig's cell +n05459769 striated muscle cell, striated muscle fiber +n05460759 smooth muscle cell +n05464534 Ranvier's nodes, nodes of Ranvier +n05467054 neuroglia, glia +n05467758 astrocyte +n05468098 protoplasmic astrocyte +n05468739 oligodendrocyte +n05469664 proprioceptor +n05469861 dendrite +n05475397 sensory fiber, afferent fiber +n05482922 subarachnoid space +n05486510 cerebral cortex, cerebral mantle, pallium, cortex +n05491154 renal cortex +n05526957 prepuce, foreskin +n05538625 head, caput +n05539947 scalp +n05541509 frontal eminence +n05542893 suture, sutura, fibrous joint +n05545879 foramen magnum +n05571341 esophagogastric junction, oesophagogastric junction +n05578095 heel +n05581932 cuticle +n05584746 hangnail, agnail +n05586759 exoskeleton +n05604434 abdominal wall +n05716342 lemon +n06008896 coordinate axis +n06209940 landscape +n06254669 medium +n06255081 vehicle +n06255613 paper +n06259898 channel, transmission channel +n06262567 film, cinema, celluloid +n06262943 silver screen +n06263202 free press +n06263369 press, public press +n06263609 print media +n06263762 storage medium, data-storage medium +n06263895 magnetic storage medium, magnetic medium, magnetic storage +n06266417 journalism, news media +n06266633 Fleet Street +n06266710 photojournalism +n06266878 news photography +n06266973 rotogravure +n06267145 newspaper, paper +n06267564 daily +n06267655 gazette +n06267758 school newspaper, school paper +n06267893 tabloid, rag, sheet +n06267991 yellow journalism, tabloid, tab +n06271778 telecommunication, telecom +n06272290 telephone, telephony +n06272612 voice mail, voicemail +n06272803 call, phone call, telephone call +n06273207 call-back +n06273294 collect call +n06273414 call forwarding +n06273555 call-in +n06273743 call waiting +n06273890 crank call +n06273986 local call +n06274092 long distance, long-distance call, trunk call +n06274292 toll call +n06274546 wake-up call +n06274760 three-way calling +n06274921 telegraphy +n06275095 cable, cablegram, overseas telegram +n06275353 wireless +n06275471 radiotelegraph, radiotelegraphy, wireless telegraphy +n06276501 radiotelephone, radiotelephony, wireless telephone +n06276697 broadcasting +n06276902 Rediffusion +n06277025 multiplex +n06277135 radio, radiocommunication, wireless +n06277280 television, telecasting, TV, video +n06278338 cable television, cable +n06278475 high-definition television, HDTV +n06281040 reception +n06281175 signal detection, detection +n06340977 Hakham +n06359193 web site, website, internet site, site +n06359467 chat room, chatroom +n06359657 portal site, portal +n06415688 jotter +n06417096 breviary +n06418693 wordbook +n06419354 desk dictionary, collegiate dictionary +n06423496 reckoner, ready reckoner +n06470073 document, written document, papers +n06591815 album, record album +n06592078 concept album +n06592281 rock opera +n06592421 tribute album, benefit album +n06595351 magazine, mag +n06596179 colour supplement +n06596364 comic book +n06596474 news magazine +n06596607 pulp, pulp magazine +n06596727 slick, slick magazine, glossy +n06596845 trade magazine +n06613686 movie, film, picture, moving picture, moving-picture show, motion picture, motion-picture show, picture show, pic, flick +n06614901 outtake +n06616216 shoot-'em-up +n06618653 spaghetti Western +n06625062 encyclical, encyclical letter +n06785654 crossword puzzle, crossword +n06793231 sign +n06794110 street sign +n06874185 traffic light, traffic signal, stoplight +n06883725 swastika, Hakenkreuz +n06892775 concert +n06998748 artwork, art, graphics, nontextual matter +n07005523 lobe +n07248320 book jacket, dust cover, dust jacket, dust wrapper +n07273802 cairn +n07461050 three-day event +n07556406 comfort food +n07556637 comestible, edible, eatable, pabulum, victual, victuals +n07556872 tuck +n07556970 course +n07557165 dainty, delicacy, goody, kickshaw, treat +n07557434 dish +n07560193 fast food +n07560331 finger food +n07560422 ingesta +n07560542 kosher +n07560652 fare +n07560903 diet +n07561112 diet +n07561590 dietary +n07561848 balanced diet +n07562017 bland diet, ulcer diet +n07562172 clear liquid diet +n07562379 diabetic diet +n07562495 dietary supplement +n07562651 carbohydrate loading, carbo loading +n07562881 fad diet +n07562984 gluten-free diet +n07563207 high-protein diet +n07563366 high-vitamin diet, vitamin-deficiency diet +n07563642 light diet +n07563800 liquid diet +n07564008 low-calorie diet +n07564101 low-fat diet +n07564292 low-sodium diet, low-salt diet, salt-free diet +n07564515 macrobiotic diet +n07564629 reducing diet, obesity diet +n07564796 soft diet, pap, spoon food +n07564971 vegetarianism +n07565083 menu +n07565161 chow, chuck, eats, grub +n07565259 board, table +n07565608 mess +n07565725 ration +n07565945 field ration +n07566092 K ration +n07566231 C-ration +n07566340 foodstuff, food product +n07566863 starches +n07567039 breadstuff +n07567139 coloring, colouring, food coloring, food colouring, food color, food colour +n07567390 concentrate +n07567611 tomato concentrate +n07567707 meal +n07567980 kibble +n07568095 cornmeal, Indian meal +n07568241 farina +n07568389 matzo meal, matzoh meal, matzah meal +n07568502 oatmeal, rolled oats +n07568625 pea flour +n07568818 roughage, fiber +n07568991 bran +n07569106 flour +n07569423 plain flour +n07569543 wheat flour +n07569644 whole wheat flour, graham flour, graham, whole meal flour +n07569873 soybean meal, soybean flour, soy flour +n07570021 semolina +n07570530 corn gluten feed +n07570720 nutriment, nourishment, nutrition, sustenance, aliment, alimentation, victuals +n07572353 commissariat, provisions, provender, viands, victuals +n07572616 larder +n07572858 frozen food, frozen foods +n07572957 canned food, canned foods, canned goods, tinned goods +n07573103 canned meat, tinned meat +n07573347 Spam +n07573453 dehydrated food, dehydrated foods +n07573563 square meal +n07573696 meal, repast +n07574176 potluck +n07574426 refection +n07574504 refreshment +n07574602 breakfast +n07574780 continental breakfast, petit dejeuner +n07574923 brunch +n07575076 lunch, luncheon, tiffin, dejeuner +n07575226 business lunch +n07575392 high tea +n07575510 tea, afternoon tea, teatime +n07575726 dinner +n07575984 supper +n07576182 buffet +n07576438 picnic +n07576577 cookout +n07576781 barbecue, barbeque +n07576969 clambake +n07577144 fish fry +n07577374 bite, collation, snack +n07577538 nosh +n07577657 nosh-up +n07577772 ploughman's lunch +n07577918 coffee break, tea break +n07578093 banquet, feast, spread +n07579575 entree, main course +n07579688 piece de resistance +n07579787 plate +n07579917 adobo +n07580053 side dish, side order, entremets +n07580253 special +n07580359 casserole +n07580470 chicken casserole +n07580592 chicken cacciatore, chicken cacciatora, hunter's chicken +n07581249 antipasto +n07581346 appetizer, appetiser, starter +n07581607 canape +n07581775 cocktail +n07581931 fruit cocktail +n07582027 crab cocktail +n07582152 shrimp cocktail +n07582277 hors d'oeuvre +n07582441 relish +n07582609 dip +n07582811 bean dip +n07582892 cheese dip +n07582970 clam dip +n07583066 guacamole +n07583197 soup +n07583865 soup du jour +n07583978 alphabet soup +n07584110 consomme +n07584228 madrilene +n07584332 bisque +n07584423 borsch, borsh, borscht, borsht, borshch, bortsch +n07584593 broth +n07584859 barley water +n07584938 bouillon +n07585015 beef broth, beef stock +n07585107 chicken broth, chicken stock +n07585208 broth, stock +n07585474 stock cube +n07585557 chicken soup +n07585644 cock-a-leekie, cocky-leeky +n07585758 gazpacho +n07585906 gumbo +n07585997 julienne +n07586099 marmite +n07586179 mock turtle soup +n07586318 mulligatawny +n07586485 oxtail soup +n07586604 pea soup +n07586718 pepper pot, Philadelphia pepper pot +n07586894 petite marmite, minestrone, vegetable soup +n07587023 potage, pottage +n07587111 pottage +n07587206 turtle soup, green turtle soup +n07587331 eggdrop soup +n07587441 chowder +n07587618 corn chowder +n07587700 clam chowder +n07587819 Manhattan clam chowder +n07587962 New England clam chowder +n07588111 fish chowder +n07588193 won ton, wonton, wonton soup +n07588299 split-pea soup +n07588419 green pea soup, potage St. Germain +n07588574 lentil soup +n07588688 Scotch broth +n07588817 vichyssoise +n07588947 stew +n07589458 bigos +n07589543 Brunswick stew +n07589724 burgoo +n07589872 burgoo +n07589967 olla podrida, Spanish burgoo +n07590068 mulligan stew, mulligan, Irish burgoo +n07590177 purloo, chicken purloo, poilu +n07590320 goulash, Hungarian goulash, gulyas +n07590502 hotchpotch +n07590611 hot pot, hotpot +n07590752 beef goulash +n07590841 pork-and-veal goulash +n07590974 porkholt +n07591049 Irish stew +n07591162 oyster stew +n07591236 lobster stew +n07591330 lobscouse, lobscuse, scouse +n07591473 fish stew +n07591586 bouillabaisse +n07591813 matelote +n07591961 paella +n07592094 fricassee +n07592317 chicken stew +n07592400 turkey stew +n07592481 beef stew +n07592656 ragout +n07592768 ratatouille +n07592922 salmi +n07593004 pot-au-feu +n07593107 slumgullion +n07593199 smorgasbord +n07593471 viand +n07593774 ready-mix +n07593972 brownie mix +n07594066 cake mix +n07594155 lemonade mix +n07594250 self-rising flour, self-raising flour +n07594737 choice morsel, tidbit, titbit +n07594840 savory, savoury +n07595051 calf's-foot jelly +n07595180 caramel, caramelized sugar +n07595368 lump sugar +n07595649 cane sugar +n07595751 castor sugar, caster sugar +n07595914 powdered sugar +n07596046 granulated sugar +n07596160 icing sugar +n07596362 corn sugar +n07596452 brown sugar +n07596566 demerara, demerara sugar +n07596684 sweet, confection +n07596967 confectionery +n07597145 confiture +n07597263 sweetmeat +n07597365 candy, confect +n07598256 candy bar +n07598529 carob bar +n07598622 hardbake +n07598734 hard candy +n07598928 barley-sugar, barley candy +n07599068 brandyball +n07599161 jawbreaker +n07599242 lemon drop +n07599383 sourball +n07599468 patty +n07599554 peppermint patty +n07599649 bonbon +n07599783 brittle, toffee, toffy +n07599911 peanut brittle +n07599998 chewing gum, gum +n07600177 gum ball +n07600285 bubble gum +n07600394 butterscotch +n07600506 candied fruit, succade, crystallized fruit +n07600696 candied apple, candy apple, taffy apple, caramel apple, toffee apple +n07600895 crystallized ginger +n07601025 grapefruit peel +n07601175 lemon peel +n07601290 orange peel +n07601407 candied citrus peel +n07601572 candy cane +n07601686 candy corn +n07601809 caramel +n07602650 center, centre +n07604956 comfit +n07605040 cotton candy, spun sugar, candyfloss +n07605198 dragee +n07605282 dragee +n07605380 fondant +n07605474 fudge +n07605597 chocolate fudge +n07605693 divinity, divinity fudge +n07605804 penuche, penoche, panoche, panocha +n07605944 gumdrop +n07606058 jujube +n07606191 honey crisp +n07606278 mint, mint candy +n07606419 horehound +n07606538 peppermint, peppermint candy +n07606669 jelly bean, jelly egg +n07606764 kiss, candy kiss +n07606933 molasses kiss +n07607027 meringue kiss +n07607138 chocolate kiss +n07607361 licorice, liquorice +n07607492 Life Saver +n07607605 lollipop, sucker, all-day sucker +n07607707 lozenge +n07607832 cachou +n07607967 cough drop, troche, pastille, pastil +n07608098 marshmallow +n07608245 marzipan, marchpane +n07608339 nougat +n07608429 nougat bar +n07608533 nut bar +n07608641 peanut bar +n07608721 popcorn ball +n07608866 praline +n07608980 rock candy +n07609083 rock candy, rock +n07609215 sugar candy +n07609316 sugarplum +n07609407 taffy +n07609549 molasses taffy +n07609632 truffle, chocolate truffle +n07609728 Turkish Delight +n07609840 dessert, sweet, afters +n07610295 ambrosia, nectar +n07610502 ambrosia +n07610620 baked Alaska +n07610746 blancmange +n07610890 charlotte +n07611046 compote, fruit compote +n07611148 dumpling +n07611267 flan +n07611358 frozen dessert +n07611733 junket +n07611839 mousse +n07611991 mousse +n07612137 pavlova +n07612273 peach melba +n07612367 whip +n07612530 prune whip +n07612632 pudding +n07612996 pudding, pud +n07613158 syllabub, sillabub +n07613266 tiramisu +n07613480 trifle +n07613671 tipsy cake +n07613815 jello, Jell-O +n07614103 apple dumpling +n07614198 ice, frappe +n07614348 water ice, sorbet +n07614500 ice cream, icecream +n07614730 ice-cream cone +n07614825 chocolate ice cream +n07615052 Neapolitan ice cream +n07615190 peach ice cream +n07615289 sherbert, sherbet +n07615460 strawberry ice cream +n07615569 tutti-frutti +n07615671 vanilla ice cream +n07615774 ice lolly, lolly, lollipop, popsicle +n07615954 ice milk +n07616046 frozen yogurt +n07616174 snowball +n07616265 snowball +n07616386 parfait +n07616487 ice-cream sundae, sundae +n07616590 split +n07616748 banana split +n07616906 frozen pudding +n07617051 frozen custard, soft ice cream +n07617188 pudding +n07617344 flummery +n07617447 fish mousse +n07617526 chicken mousse +n07617611 chocolate mousse +n07617708 plum pudding, Christmas pudding +n07617839 carrot pudding +n07617932 corn pudding +n07618029 steamed pudding +n07618119 duff, plum duff +n07618281 vanilla pudding +n07618432 chocolate pudding +n07618587 brown Betty +n07618684 Nesselrode, Nesselrode pudding +n07618871 pease pudding +n07619004 custard +n07619208 creme caramel +n07619301 creme anglais +n07619409 creme brulee +n07619508 fruit custard +n07619881 tapioca +n07620047 tapioca pudding +n07620145 roly-poly, roly-poly pudding +n07620327 suet pudding +n07620597 Bavarian cream +n07620689 maraschino, maraschino cherry +n07621264 nonpareil +n07621497 zabaglione, sabayon +n07621618 garnish +n07623136 pastry, pastry dough +n07624466 turnover +n07624666 apple turnover +n07624757 knish +n07624924 pirogi, piroshki, pirozhki +n07625061 samosa +n07625324 timbale +n07627931 puff paste, pate feuillete +n07628068 phyllo +n07628181 puff batter, pouf paste, pate a choux +n07631926 ice-cream cake, icebox cake +n07639069 doughnut, donut, sinker +n07641928 fish cake, fish ball +n07642361 fish stick, fish finger +n07642471 conserve, preserve, conserves, preserves +n07642742 apple butter +n07642833 chowchow +n07642933 jam +n07643026 lemon curd, lemon cheese +n07643200 strawberry jam, strawberry preserves +n07643306 jelly +n07643474 apple jelly +n07643577 crabapple jelly +n07643679 grape jelly +n07643764 marmalade +n07643891 orange marmalade +n07643981 gelatin, jelly +n07644244 gelatin dessert +n07648913 buffalo wing +n07648997 barbecued wing +n07650792 mess +n07650903 mince +n07651025 puree +n07654148 barbecue, barbeque +n07654298 biryani, biriani +n07655067 escalope de veau Orloff +n07655263 saute +n07663899 patty, cake +n07665438 veal parmesan, veal parmigiana +n07666176 veal cordon bleu +n07672914 margarine, margarin, oleo, oleomargarine, marge +n07678586 mincemeat +n07678729 stuffing, dressing +n07678953 turkey stuffing +n07679034 oyster stuffing, oyster dressing +n07679140 forcemeat, farce +n07679356 bread, breadstuff, staff of life +n07680168 anadama bread +n07680313 bap +n07680416 barmbrack +n07680517 breadstick, bread-stick +n07680655 grissino +n07680761 brown bread, Boston brown bread +n07680932 bun, roll +n07681264 tea bread +n07681355 caraway seed bread +n07681450 challah, hallah +n07681691 cinnamon bread +n07681805 cracked-wheat bread +n07681926 cracker +n07682197 crouton +n07682316 dark bread, whole wheat bread, whole meal bread, brown bread +n07682477 English muffin +n07682624 flatbread +n07682808 garlic bread +n07682952 gluten bread +n07683039 graham bread +n07683138 Host +n07683265 flatbrod +n07683360 bannock +n07683490 chapatti, chapati +n07683617 pita, pocket bread +n07683786 loaf of bread, loaf +n07684084 French loaf +n07684164 matzo, matzoh, matzah, unleavened bread +n07684289 nan, naan +n07684422 onion bread +n07684517 raisin bread +n07684600 quick bread +n07684938 banana bread +n07685031 date bread +n07685118 date-nut bread +n07685218 nut bread +n07685303 oatcake +n07685399 Irish soda bread +n07685546 skillet bread, fry bread +n07685730 rye bread +n07685918 black bread, pumpernickel +n07686021 Jewish rye bread, Jewish rye +n07686202 limpa +n07686299 Swedish rye bread, Swedish rye +n07686461 salt-rising bread +n07686634 simnel +n07686720 sour bread, sourdough bread +n07686873 toast +n07687053 wafer +n07687211 white bread, light bread +n07687381 baguet, baguette +n07687469 French bread +n07687626 Italian bread +n07687789 cornbread +n07688021 corn cake +n07688130 skillet corn bread +n07688265 ashcake, ash cake, corn tash +n07688412 hoecake +n07688624 cornpone, pone +n07688757 corn dab, corn dodger, dodger +n07688898 hush puppy, hushpuppy +n07689003 johnnycake, johnny cake, journey cake +n07689217 Shawnee cake +n07689313 spoon bread, batter bread +n07689490 cinnamon toast +n07689624 orange toast +n07689757 Melba toast +n07689842 zwieback, rusk, Brussels biscuit, twice-baked bread +n07690019 frankfurter bun, hotdog bun +n07690152 hamburger bun, hamburger roll +n07690273 muffin, gem +n07690431 bran muffin +n07690511 corn muffin +n07690585 Yorkshire pudding +n07690739 popover +n07690892 scone +n07691091 drop scone, griddlecake, Scotch pancake +n07691237 cross bun, hot cross bun +n07691539 brioche +n07691650 crescent roll, croissant +n07691758 hard roll, Vienna roll +n07691863 soft roll +n07691954 kaiser roll +n07692114 Parker House roll +n07692248 clover-leaf roll +n07692405 onion roll +n07692517 bialy, bialystoker +n07692614 sweet roll, coffee roll +n07692887 bear claw, bear paw +n07693048 cinnamon roll, cinnamon bun, cinnamon snail +n07693223 honey bun, sticky bun, caramel bun, schnecken +n07693439 pinwheel roll +n07693590 danish, danish pastry +n07693725 bagel, beigel +n07693889 onion bagel +n07693972 biscuit +n07694169 rolled biscuit +n07694403 baking-powder biscuit +n07694516 buttermilk biscuit, soda biscuit +n07694659 shortcake +n07694839 hardtack, pilot biscuit, pilot bread, sea biscuit, ship biscuit +n07695187 saltine +n07695284 soda cracker +n07695410 oyster cracker +n07695504 water biscuit +n07695652 graham cracker +n07695742 pretzel +n07695878 soft pretzel +n07695965 sandwich +n07696403 sandwich plate +n07696527 butty +n07696625 ham sandwich +n07696728 chicken sandwich +n07696839 club sandwich, three-decker, triple-decker +n07696977 open-face sandwich, open sandwich +n07697100 hamburger, beefburger, burger +n07697313 cheeseburger +n07697408 tunaburger +n07697537 hotdog, hot dog, red hot +n07697699 Sloppy Joe +n07697825 bomber, grinder, hero, hero sandwich, hoagie, hoagy, Cuban sandwich, Italian sandwich, poor boy, sub, submarine, submarine sandwich, torpedo, wedge, zep +n07698250 gyro +n07698401 bacon-lettuce-tomato sandwich, BLT +n07698543 Reuben +n07698672 western, western sandwich +n07698782 wrap +n07700003 spaghetti +n07703889 hasty pudding +n07704054 gruel +n07704205 congee, jook +n07704305 skilly +n07705931 edible fruit +n07707451 vegetable, veggie, veg +n07708124 julienne, julienne vegetable +n07708398 raw vegetable, rabbit food +n07708512 crudites +n07708685 celery stick +n07708798 legume +n07709046 pulse +n07709172 potherb +n07709333 greens, green, leafy vegetable +n07709701 chop-suey greens +n07709881 bean curd, tofu +n07710007 solanaceous vegetable +n07710283 root vegetable +n07710616 potato, white potato, Irish potato, murphy, spud, tater +n07710952 baked potato +n07711080 french fries, french-fried potatoes, fries, chips +n07711232 home fries, home-fried potatoes +n07711371 jacket potato +n07711569 mashed potato +n07711683 potato skin, potato peel, potato peelings +n07711799 Uruguay potato +n07711907 yam +n07712063 sweet potato +n07712267 yam +n07712382 snack food +n07712559 chip, crisp, potato chip, Saratoga chip +n07712748 corn chip +n07712856 tortilla chip +n07712959 nacho +n07713074 eggplant, aubergine, mad apple +n07713267 pieplant, rhubarb +n07713395 cruciferous vegetable +n07713763 mustard, mustard greens, leaf mustard, Indian mustard +n07713895 cabbage, chou +n07714078 kale, kail, cole +n07714188 collards, collard greens +n07714287 Chinese cabbage, celery cabbage, Chinese celery +n07714448 bok choy, bok choi +n07714571 head cabbage +n07714802 red cabbage +n07714895 savoy cabbage, savoy +n07714990 broccoli +n07715103 cauliflower +n07715221 brussels sprouts +n07715407 broccoli rabe, broccoli raab +n07715561 squash +n07715721 summer squash +n07716034 yellow squash +n07716203 crookneck, crookneck squash, summer crookneck +n07716358 zucchini, courgette +n07716504 marrow, vegetable marrow +n07716649 cocozelle +n07716750 pattypan squash +n07716906 spaghetti squash +n07717070 winter squash +n07717410 acorn squash +n07717556 butternut squash +n07717714 hubbard squash +n07717858 turban squash +n07718068 buttercup squash +n07718195 cushaw +n07718329 winter crookneck squash +n07718472 cucumber, cuke +n07718671 gherkin +n07718747 artichoke, globe artichoke +n07718920 artichoke heart +n07719058 Jerusalem artichoke, sunchoke +n07719213 asparagus +n07719330 bamboo shoot +n07719437 sprout +n07719616 bean sprout +n07719756 alfalfa sprout +n07719839 beet, beetroot +n07719980 beet green +n07720084 sugar beet +n07720185 mangel-wurzel +n07720277 chard, Swiss chard, spinach beet, leaf beet +n07720442 pepper +n07720615 sweet pepper +n07720875 bell pepper +n07721018 green pepper +n07721118 globe pepper +n07721195 pimento, pimiento +n07721325 hot pepper +n07721456 chili, chili pepper, chilli, chilly, chile +n07721678 jalapeno, jalapeno pepper +n07721833 chipotle +n07721942 cayenne, cayenne pepper +n07722052 tabasco, red pepper +n07722217 onion +n07722390 Bermuda onion +n07722485 green onion, spring onion, scallion +n07722666 Vidalia onion +n07722763 Spanish onion +n07722888 purple onion, red onion +n07723039 leek +n07723177 shallot +n07723330 salad green, salad greens +n07723559 lettuce +n07723753 butterhead lettuce +n07723968 buttercrunch +n07724078 Bibb lettuce +n07724173 Boston lettuce +n07724269 crisphead lettuce, iceberg lettuce, iceberg +n07724492 cos, cos lettuce, romaine, romaine lettuce +n07724654 leaf lettuce, loose-leaf lettuce +n07724819 celtuce +n07724943 bean, edible bean +n07725158 goa bean +n07725255 lentil +n07725376 pea +n07725531 green pea, garden pea +n07725663 marrowfat pea +n07725789 snow pea, sugar pea +n07725888 sugar snap pea +n07726009 split-pea +n07726095 chickpea, garbanzo +n07726230 cajan pea, pigeon pea, dahl +n07726386 field pea +n07726525 mushy peas +n07726672 black-eyed pea, cowpea +n07726796 common bean +n07727048 kidney bean +n07727140 navy bean, pea bean, white bean +n07727252 pinto bean +n07727377 frijole +n07727458 black bean, turtle bean +n07727578 fresh bean +n07727741 flageolet, haricot +n07727868 green bean +n07728053 snap bean, snap +n07728181 string bean +n07728284 Kentucky wonder, Kentucky wonder bean +n07728391 scarlet runner, scarlet runner bean, runner bean, English runner bean +n07728585 haricot vert, haricots verts, French bean +n07728708 wax bean, yellow bean +n07728804 shell bean +n07729000 lima bean +n07729142 Fordhooks +n07729225 sieva bean, butter bean, butterbean, civet bean +n07729384 fava bean, broad bean +n07729485 soy, soybean, soya, soya bean +n07729828 green soybean +n07729926 field soybean +n07730033 cardoon +n07730207 carrot +n07730320 carrot stick +n07730406 celery +n07730562 pascal celery, Paschal celery +n07730708 celeriac, celery root +n07730855 chicory, curly endive +n07731006 radicchio +n07731122 coffee substitute +n07731284 chicory, chicory root +n07731436 Postum +n07731587 chicory escarole, endive, escarole +n07731767 Belgian endive, French endive, witloof +n07731952 corn, edible corn +n07732168 sweet corn, green corn +n07732302 hominy +n07732433 lye hominy +n07732525 pearl hominy +n07732636 popcorn +n07732747 cress +n07732904 watercress +n07733005 garden cress +n07733124 winter cress +n07733217 dandelion green +n07733394 gumbo, okra +n07733567 kohlrabi, turnip cabbage +n07733712 lamb's-quarter, pigweed, wild spinach +n07733847 wild spinach +n07734017 tomato +n07734183 beefsteak tomato +n07734292 cherry tomato +n07734417 plum tomato +n07734555 tomatillo, husk tomato, Mexican husk tomato +n07734744 mushroom +n07734879 stuffed mushroom +n07735052 salsify +n07735179 oyster plant, vegetable oyster +n07735294 scorzonera, black salsify +n07735404 parsnip +n07735510 pumpkin +n07735687 radish +n07735803 turnip +n07735981 white turnip +n07736087 rutabaga, swede, swedish turnip, yellow turnip +n07736256 turnip greens +n07736371 sorrel, common sorrel +n07736527 French sorrel +n07736692 spinach +n07736813 taro, taro root, cocoyam, dasheen, edda +n07736971 truffle, earthnut +n07737081 edible nut +n07737594 bunya bunya +n07737745 peanut, earthnut, goober, goober pea, groundnut, monkey nut +n07738105 freestone +n07738224 cling, clingstone +n07739035 windfall +n07739125 apple +n07739344 crab apple, crabapple +n07739506 eating apple, dessert apple +n07739923 Baldwin +n07740033 Cortland +n07740115 Cox's Orange Pippin +n07740220 Delicious +n07740342 Golden Delicious, Yellow Delicious +n07740461 Red Delicious +n07740597 Empire +n07740744 Grimes' golden +n07740855 Jonathan +n07740954 McIntosh +n07741138 Macoun +n07741235 Northern Spy +n07741357 Pearmain +n07741461 Pippin +n07741623 Prima +n07741706 Stayman +n07741804 Winesap +n07741888 Stayman Winesap +n07742012 cooking apple +n07742224 Bramley's Seedling +n07742313 Granny Smith +n07742415 Lane's Prince Albert +n07742513 Newtown Wonder +n07742605 Rome Beauty +n07742704 berry +n07743224 bilberry, whortleberry, European blueberry +n07743384 huckleberry +n07743544 blueberry +n07743723 wintergreen, boxberry, checkerberry, teaberry, spiceberry +n07743902 cranberry +n07744057 lingonberry, mountain cranberry, cowberry, lowbush cranberry +n07744246 currant +n07744430 gooseberry +n07744559 black currant +n07744682 red currant +n07744811 blackberry +n07745046 boysenberry +n07745197 dewberry +n07745357 loganberry +n07745466 raspberry +n07745661 saskatoon, serviceberry, shadberry, juneberry +n07745940 strawberry +n07746038 sugarberry, hackberry +n07746186 persimmon +n07746334 acerola, barbados cherry, surinam cherry, West Indian cherry +n07746551 carambola, star fruit +n07746749 ceriman, monstera +n07746910 carissa plum, natal plum +n07747055 citrus, citrus fruit, citrous fruit +n07747607 orange +n07747811 temple orange +n07747951 mandarin, mandarin orange +n07748157 clementine +n07748276 satsuma +n07748416 tangerine +n07748574 tangelo, ugli, ugli fruit +n07748753 bitter orange, Seville orange, sour orange +n07748912 sweet orange +n07749095 Jaffa orange +n07749192 navel orange +n07749312 Valencia orange +n07749446 kumquat +n07749582 lemon +n07749731 lime +n07749870 key lime +n07749969 grapefruit +n07750146 pomelo, shaddock +n07750299 citrange +n07750449 citron +n07750586 almond +n07750736 Jordan almond +n07750872 apricot +n07751004 peach +n07751148 nectarine +n07751280 pitahaya +n07751451 plum +n07751737 damson, damson plum +n07751858 greengage, greengage plum +n07751977 beach plum +n07752109 sloe +n07752264 Victoria plum +n07752377 dried fruit +n07752514 dried apricot +n07752602 prune +n07752664 raisin +n07752782 seedless raisin, sultana +n07752874 seeded raisin +n07752966 currant +n07753113 fig +n07753275 pineapple, ananas +n07753448 anchovy pear, river pear +n07753592 banana +n07753743 passion fruit +n07753980 granadilla +n07754155 sweet calabash +n07754279 bell apple, sweet cup, water lemon, yellow granadilla +n07754451 breadfruit +n07754684 jackfruit, jak, jack +n07754894 cacao bean, cocoa bean +n07755089 cocoa +n07755262 canistel, eggfruit +n07755411 melon +n07755619 melon ball +n07755707 muskmelon, sweet melon +n07755929 cantaloup, cantaloupe +n07756096 winter melon +n07756325 honeydew, honeydew melon +n07756499 Persian melon +n07756641 net melon, netted melon, nutmeg melon +n07756838 casaba, casaba melon +n07756951 watermelon +n07757132 cherry +n07757312 sweet cherry, black cherry +n07757511 bing cherry +n07757602 heart cherry, oxheart, oxheart cherry +n07757753 blackheart, blackheart cherry +n07757874 capulin, Mexican black cherry +n07757990 sour cherry +n07758125 amarelle +n07758260 morello +n07758407 cocoa plum, coco plum, icaco +n07758582 gherkin +n07758680 grape +n07758950 fox grape +n07759194 Concord grape +n07759324 Catawba +n07759424 muscadine, bullace grape +n07759576 scuppernong +n07759691 slipskin grape +n07759816 vinifera grape +n07760070 emperor +n07760153 muscat, muscatel, muscat grape +n07760297 ribier +n07760395 sultana +n07760501 Tokay +n07760673 flame tokay +n07760755 Thompson Seedless +n07760859 custard apple +n07761141 cherimoya, cherimolla +n07761309 soursop, guanabana +n07761611 sweetsop, annon, sugar apple +n07761777 ilama +n07761954 pond apple +n07762114 papaw, pawpaw +n07762244 papaya +n07762373 kai apple +n07762534 ketembilla, kitembilla, kitambilla +n07762740 ackee, akee +n07762913 durian +n07763107 feijoa, pineapple guava +n07763290 genip, Spanish lime +n07763483 genipap, genipap fruit +n07763629 kiwi, kiwi fruit, Chinese gooseberry +n07763792 loquat, Japanese plum +n07763987 mangosteen +n07764155 mango +n07764315 sapodilla, sapodilla plum, sapota +n07764486 sapote, mammee, marmalade plum +n07764630 tamarind, tamarindo +n07764847 avocado, alligator pear, avocado pear, aguacate +n07765073 date +n07765208 elderberry +n07765361 guava +n07765517 mombin +n07765612 hog plum, yellow mombin +n07765728 hog plum, wild plum +n07765862 jaboticaba +n07765999 jujube, Chinese date, Chinese jujube +n07766173 litchi, litchi nut, litchee, lichi, leechee, lichee, lychee +n07766409 longanberry, dragon's eye +n07766530 mamey, mammee, mammee apple +n07766723 marang +n07766891 medlar +n07767002 medlar +n07767171 mulberry +n07767344 olive +n07767549 black olive, ripe olive +n07767709 green olive +n07767847 pear +n07768068 bosc +n07768139 anjou +n07768230 bartlett, bartlett pear +n07768318 seckel, seckel pear +n07768423 plantain +n07768590 plumcot +n07768694 pomegranate +n07768858 prickly pear +n07769102 Barbados gooseberry, blade apple +n07769306 quandong, quandang, quantong, native peach +n07769465 quandong nut +n07769584 quince +n07769731 rambutan, rambotan +n07769886 pulasan, pulassan +n07770034 rose apple +n07770180 sorb, sorb apple +n07770439 sour gourd, monkey bread +n07770571 edible seed +n07770763 pumpkin seed +n07770869 betel nut, areca nut +n07771082 beechnut +n07771212 walnut +n07771405 black walnut +n07771539 English walnut +n07771731 brazil nut, brazil +n07771891 butternut +n07772026 souari nut +n07772147 cashew, cashew nut +n07772274 chestnut +n07772413 chincapin, chinkapin, chinquapin +n07772788 hazelnut, filbert, cobnut, cob +n07772935 coconut, cocoanut +n07773428 coconut milk, coconut water +n07774182 grugru nut +n07774295 hickory nut +n07774479 cola extract +n07774596 macadamia nut +n07774719 pecan +n07774842 pine nut, pignolia, pinon nut +n07775050 pistachio, pistachio nut +n07775197 sunflower seed +n07783827 anchovy paste +n07785487 rollmops +n07800091 feed, provender +n07800487 cattle cake +n07800636 creep feed +n07800740 fodder +n07801007 feed grain +n07801091 eatage, forage, pasture, pasturage, grass +n07801342 silage, ensilage +n07801508 oil cake +n07801709 oil meal +n07801779 alfalfa +n07801892 broad bean, horse bean +n07802026 hay +n07802152 timothy +n07802246 stover +n07802417 grain, food grain, cereal +n07802767 grist +n07802863 groats +n07802963 millet +n07803093 barley, barleycorn +n07803213 pearl barley +n07803310 buckwheat +n07803408 bulgur, bulghur, bulgur wheat +n07803545 wheat, wheat berry +n07803779 cracked wheat +n07803895 stodge +n07803992 wheat germ +n07804152 oat +n07804323 rice +n07804543 brown rice +n07804657 white rice, polished rice +n07804771 wild rice, Indian rice +n07804900 paddy +n07805006 slop, slops, swill, pigswill, pigwash +n07805254 mash +n07805389 chicken feed, scratch +n07805478 cud, rechewed food +n07805594 bird feed, bird food, birdseed +n07805731 petfood, pet-food, pet food +n07805966 dog food +n07806043 cat food +n07806120 canary seed +n07806221 salad +n07806633 tossed salad +n07806774 green salad +n07806879 Caesar salad +n07807002 salmagundi +n07807171 salad nicoise +n07807317 combination salad +n07807472 chef's salad +n07807594 potato salad +n07807710 pasta salad +n07807834 macaroni salad +n07807922 fruit salad +n07808022 Waldorf salad +n07808166 crab Louis +n07808268 herring salad +n07808352 tuna fish salad, tuna salad +n07808479 chicken salad +n07808587 coleslaw, slaw +n07808675 aspic +n07808806 molded salad +n07808904 tabbouleh, tabooli +n07809096 ingredient, fixings +n07809368 flavorer, flavourer, flavoring, flavouring, seasoner, seasoning +n07810531 bouillon cube +n07810907 condiment +n07811416 herb +n07812046 fines herbes +n07812184 spice +n07812662 spearmint oil +n07812790 lemon oil +n07812913 wintergreen oil, oil of wintergreen +n07813107 salt, table salt, common salt +n07813324 celery salt +n07813495 onion salt +n07813579 seasoned salt +n07813717 sour salt +n07813833 five spice powder +n07814007 allspice +n07814203 cinnamon +n07814390 stick cinnamon +n07814487 clove +n07814634 cumin, cumin seed +n07814790 fennel +n07814925 ginger, gingerroot +n07815163 ginger, powdered ginger +n07815294 mace +n07815424 nutmeg +n07815588 pepper, peppercorn +n07815839 black pepper +n07815956 white pepper +n07816052 sassafras +n07816164 basil, sweet basil +n07816296 bay leaf +n07816398 borage +n07816575 hyssop +n07816726 caraway +n07816839 chervil +n07817024 chives +n07817160 comfrey, healing herb +n07817315 coriander, Chinese parsley, cilantro +n07817465 coriander, coriander seed +n07817599 costmary +n07817758 fennel, common fennel +n07817871 fennel, Florence fennel, finocchio +n07818029 fennel seed +n07818133 fenugreek, fenugreek seed +n07818277 garlic, ail +n07818422 clove, garlic clove +n07818572 garlic chive +n07818689 lemon balm +n07818825 lovage +n07818995 marjoram, oregano +n07819166 mint +n07819303 mustard seed +n07819480 mustard, table mustard +n07819682 Chinese mustard +n07819769 nasturtium +n07819896 parsley +n07820036 salad burnet +n07820145 rosemary +n07820297 rue +n07820497 sage +n07820683 clary sage +n07820814 savory, savoury +n07820960 summer savory, summer savoury +n07821107 winter savory, winter savoury +n07821260 sweet woodruff, waldmeister +n07821404 sweet cicely +n07821610 tarragon, estragon +n07821758 thyme +n07821919 turmeric +n07822053 caper +n07822197 catsup, ketchup, cetchup, tomato ketchup +n07822323 cardamom, cardamon, cardamum +n07822518 cayenne, cayenne pepper, red pepper +n07822687 chili powder +n07822845 chili sauce +n07823105 chutney, Indian relish +n07823280 steak sauce +n07823369 taco sauce +n07823460 salsa +n07823591 mint sauce +n07823698 cranberry sauce +n07823814 curry powder +n07823951 curry +n07824191 lamb curry +n07824268 duck sauce, hoisin sauce +n07824383 horseradish +n07824502 marinade +n07824702 paprika +n07824863 Spanish paprika +n07824988 pickle +n07825194 dill pickle +n07825399 bread and butter pickle +n07825496 pickle relish +n07825597 piccalilli +n07825717 sweet pickle +n07825850 applesauce, apple sauce +n07825972 soy sauce, soy +n07826091 Tabasco, Tabasco sauce +n07826250 tomato paste +n07826340 angelica +n07826453 angelica +n07826544 almond extract +n07826653 anise, aniseed, anise seed +n07826930 Chinese anise, star anise, star aniseed +n07827130 juniper berries +n07827284 saffron +n07827410 sesame seed, benniseed +n07827554 caraway seed +n07827750 poppy seed +n07827896 dill, dill weed +n07828041 dill seed +n07828156 celery seed +n07828275 lemon extract +n07828378 monosodium glutamate, MSG +n07828642 vanilla bean +n07828987 vinegar, acetum +n07829248 cider vinegar +n07829331 wine vinegar +n07829412 sauce +n07830493 anchovy sauce +n07830593 hot sauce +n07830690 hard sauce +n07830841 horseradish sauce, sauce Albert +n07830986 bolognese pasta sauce +n07831146 carbonara +n07831267 tomato sauce +n07831450 tartare sauce, tartar sauce +n07831663 wine sauce +n07831821 marchand de vin, mushroom wine sauce +n07831955 bread sauce +n07832099 plum sauce +n07832202 peach sauce +n07832307 apricot sauce +n07832416 pesto +n07832592 ravigote, ravigotte +n07832741 remoulade sauce +n07832902 dressing, salad dressing +n07833333 sauce Louis +n07833535 bleu cheese dressing, blue cheese dressing +n07833672 blue cheese dressing, Roquefort dressing +n07833816 French dressing, vinaigrette, sauce vinaigrette +n07833951 Lorenzo dressing +n07834065 anchovy dressing +n07834160 Italian dressing +n07834286 half-and-half dressing +n07834507 mayonnaise, mayo +n07834618 green mayonnaise, sauce verte +n07834774 aioli, aioli sauce, garlic sauce +n07834872 Russian dressing, Russian mayonnaise +n07835051 salad cream +n07835173 Thousand Island dressing +n07835331 barbecue sauce +n07835457 hollandaise +n07835547 bearnaise +n07835701 Bercy, Bercy butter +n07835823 bordelaise +n07835921 bourguignon, bourguignon sauce, Burgundy sauce +n07836077 brown sauce, sauce Espagnole +n07836269 Espagnole, sauce Espagnole +n07836456 Chinese brown sauce, brown sauce +n07836600 blanc +n07836731 cheese sauce +n07836838 chocolate sauce, chocolate syrup +n07837002 hot-fudge sauce, fudge sauce +n07837110 cocktail sauce, seafood sauce +n07837234 Colbert, Colbert butter +n07837362 white sauce, bechamel sauce, bechamel +n07837545 cream sauce +n07837630 Mornay sauce +n07837755 demiglace, demi-glaze +n07837912 gravy, pan gravy +n07838073 gravy +n07838233 spaghetti sauce, pasta sauce +n07838441 marinara +n07838551 mole +n07838659 hunter's sauce, sauce chausseur +n07838811 mushroom sauce +n07838905 mustard sauce +n07839055 Nantua, shrimp sauce +n07839172 Hungarian sauce, paprika sauce +n07839312 pepper sauce, Poivrade +n07839478 roux +n07839593 Smitane +n07839730 Soubise, white onion sauce +n07839864 Lyonnaise sauce, brown onion sauce +n07840027 veloute +n07840124 allemande, allemande sauce +n07840219 caper sauce +n07840304 poulette +n07840395 curry sauce +n07840520 Worcester sauce, Worcestershire, Worcestershire sauce +n07840672 coconut milk, coconut cream +n07840804 egg, eggs +n07841037 egg white, white, albumen, ovalbumin +n07841345 egg yolk, yolk +n07841495 boiled egg, coddled egg +n07841639 hard-boiled egg, hard-cooked egg +n07841800 Easter egg +n07841907 Easter egg +n07842044 chocolate egg +n07842130 candy egg +n07842202 poached egg, dropped egg +n07842308 scrambled eggs +n07842433 deviled egg, stuffed egg +n07842605 shirred egg, baked egg, egg en cocotte +n07842753 omelet, omelette +n07842972 firm omelet +n07843117 French omelet +n07843220 fluffy omelet +n07843348 western omelet +n07843464 souffle +n07843636 fried egg +n07843775 dairy product +n07844042 milk +n07844604 milk +n07844786 sour milk +n07844867 soya milk, soybean milk, soymilk +n07845087 formula +n07845166 pasteurized milk +n07845335 cows' milk +n07845421 yak's milk +n07845495 goats' milk +n07845571 acidophilus milk +n07845702 raw milk +n07845775 scalded milk +n07845863 homogenized milk +n07846014 certified milk +n07846143 powdered milk, dry milk, dried milk, milk powder +n07846274 nonfat dry milk +n07846359 evaporated milk +n07846471 condensed milk +n07846557 skim milk, skimmed milk +n07846688 semi-skimmed milk +n07846802 whole milk +n07846938 low-fat milk +n07847047 buttermilk +n07847198 cream +n07847453 clotted cream, Devonshire cream +n07847585 double creme, heavy whipping cream +n07847706 half-and-half +n07847827 heavy cream +n07847917 light cream, coffee cream, single cream +n07848093 sour cream, soured cream +n07848196 whipping cream, light whipping cream +n07848338 butter +n07848771 clarified butter, drawn butter +n07848936 ghee +n07849026 brown butter, beurre noisette +n07849186 Meuniere butter, lemon butter +n07849336 yogurt, yoghurt, yoghourt +n07849506 blueberry yogurt +n07849619 raita +n07849733 whey +n07849912 curd +n07850083 curd +n07850219 clabber +n07850329 cheese +n07851054 paring +n07851298 cream cheese +n07851443 double cream +n07851554 mascarpone +n07851641 triple cream, triple creme +n07851767 cottage cheese, pot cheese, farm cheese, farmer's cheese +n07851926 process cheese, processed cheese +n07852045 bleu, blue cheese +n07852229 Stilton +n07852302 Roquefort +n07852376 gorgonzola +n07852452 Danish blue +n07852532 Bavarian blue +n07852614 Brie +n07852712 brick cheese +n07852833 Camembert +n07852919 cheddar, cheddar cheese, Armerican cheddar, American cheese +n07853125 rat cheese, store cheese +n07853232 Cheshire cheese +n07853345 double Gloucester +n07853445 Edam +n07853560 goat cheese, chevre +n07853648 Gouda, Gouda cheese +n07853762 grated cheese +n07853852 hand cheese +n07853946 Liederkranz +n07854066 Limburger +n07854184 mozzarella +n07854266 Muenster +n07854348 Parmesan +n07854455 quark cheese, quark +n07854614 ricotta +n07854707 string cheese +n07854813 Swiss cheese +n07854982 Emmenthal, Emmental, Emmenthaler, Emmentaler +n07855105 Gruyere +n07855188 sapsago +n07855317 Velveeta +n07855413 nut butter +n07855510 peanut butter +n07855603 marshmallow fluff +n07855721 onion butter +n07855812 pimento butter +n07855907 shrimp butter +n07856045 lobster butter +n07856186 yak butter +n07856270 spread, paste +n07856756 cheese spread +n07856895 anchovy butter +n07856992 fishpaste +n07857076 garlic butter +n07857170 miso +n07857356 wasabi +n07857598 snail butter +n07857731 hummus, humus, hommos, hoummos, humous +n07857959 pate +n07858114 duck pate +n07858197 foie gras, pate de foie gras +n07858336 tapenade +n07858484 tahini +n07858595 sweetening, sweetener +n07858841 aspartame +n07858978 honey +n07859142 saccharin +n07859284 sugar, refined sugar +n07859583 syrup, sirup +n07859796 sugar syrup +n07859951 molasses +n07860103 sorghum, sorghum molasses +n07860208 treacle, golden syrup +n07860331 grenadine +n07860447 maple syrup +n07860548 corn syrup +n07860629 miraculous food, manna, manna from heaven +n07860805 batter +n07860988 dough +n07861158 bread dough +n07861247 pancake batter +n07861334 fritter batter +n07861557 coq au vin +n07861681 chicken provencale +n07861813 chicken and rice +n07861983 moo goo gai pan +n07862095 arroz con pollo +n07862244 bacon and eggs +n07862348 barbecued spareribs, spareribs +n07862461 beef Bourguignonne, boeuf Bourguignonne +n07862611 beef Wellington, filet de boeuf en croute +n07862770 bitok +n07862946 boiled dinner, New England boiled dinner +n07863107 Boston baked beans +n07863229 bubble and squeak +n07863374 pasta +n07863547 cannelloni +n07863644 carbonnade flamande, Belgian beef stew +n07863802 cheese souffle +n07863935 chicken Marengo +n07864065 chicken cordon bleu +n07864198 Maryland chicken +n07864317 chicken paprika, chicken paprikash +n07864475 chicken Tetrazzini +n07864638 Tetrazzini +n07864756 chicken Kiev +n07864934 chili, chili con carne +n07865105 chili dog +n07865196 chop suey +n07865484 chow mein +n07865575 codfish ball, codfish cake +n07865700 coquille +n07865788 coquilles Saint-Jacques +n07866015 croquette +n07866151 cottage pie +n07866277 rissole +n07866409 dolmas, stuffed grape leaves +n07866571 egg foo yong, egg fu yung +n07866723 egg roll, spring roll +n07866868 eggs Benedict +n07867021 enchilada +n07867164 falafel, felafel +n07867324 fish and chips +n07867421 fondue, fondu +n07867616 cheese fondue +n07867751 chocolate fondue +n07867883 fondue, fondu +n07868045 beef fondue, boeuf fondu bourguignon +n07868200 French toast +n07868340 fried rice, Chinese fried rice +n07868508 frittata +n07868684 frog legs +n07868830 galantine +n07868955 gefilte fish, fish ball +n07869111 haggis +n07869291 ham and eggs +n07869391 hash +n07869522 corned beef hash +n07869611 jambalaya +n07869775 kabob, kebab, shish kebab +n07869937 kedgeree +n07870069 souvlaki, souvlakia +n07870167 lasagna, lasagne +n07870313 seafood Newburg +n07870478 lobster Newburg, lobster a la Newburg +n07870620 shrimp Newburg +n07870734 Newburg sauce +n07870894 lobster thermidor +n07871065 lutefisk, lutfisk +n07871234 macaroni and cheese +n07871335 macedoine +n07871436 meatball +n07871588 porcupine ball, porcupines +n07871720 Swedish meatball +n07871810 meat loaf, meatloaf +n07872593 moussaka +n07872748 osso buco +n07873057 marrow, bone marrow +n07873198 pheasant under glass +n07873348 pigs in blankets +n07873464 pilaf, pilaff, pilau, pilaw +n07873679 bulgur pilaf +n07873807 pizza, pizza pie +n07874063 sausage pizza +n07874159 pepperoni pizza +n07874259 cheese pizza +n07874343 anchovy pizza +n07874441 Sicilian pizza +n07874531 poi +n07874674 pork and beans +n07874780 porridge +n07874995 oatmeal, burgoo +n07875086 loblolly +n07875152 potpie +n07875267 rijsttaffel, rijstaffel, rijstafel +n07875436 risotto, Italian rice +n07875560 roulade +n07875693 fish loaf +n07875835 salmon loaf +n07875926 Salisbury steak +n07876026 sauerbraten +n07876189 sauerkraut +n07876281 scallopine, scallopini +n07876460 veal scallopini +n07876550 scampi +n07876651 Scotch egg +n07876775 Scotch woodcock +n07876893 scrapple +n07877187 spaghetti and meatballs +n07877299 Spanish rice +n07877675 steak tartare, tartar steak, cannibal mound +n07877849 pepper steak +n07877961 steak au poivre, peppered steak, pepper steak +n07878145 beef Stroganoff +n07878283 stuffed cabbage +n07878479 kishke, stuffed derma +n07878647 stuffed peppers +n07878785 stuffed tomato, hot stuffed tomato +n07878926 stuffed tomato, cold stuffed tomato +n07879072 succotash +n07879174 sukiyaki +n07879350 sashimi +n07879450 sushi +n07879560 Swiss steak +n07879659 tamale +n07879821 tamale pie +n07879953 tempura +n07880080 teriyaki +n07880213 terrine +n07880325 Welsh rarebit, Welsh rabbit, rarebit +n07880458 schnitzel, Wiener schnitzel +n07880751 taco +n07880880 chicken taco +n07880968 burrito +n07881117 beef burrito +n07881205 quesadilla +n07881404 tostada +n07881525 bean tostada +n07881625 refried beans, frijoles refritos +n07881800 beverage, drink, drinkable, potable +n07882420 wish-wash +n07882497 concoction, mixture, intermixture +n07882886 mix, premix +n07883031 filling +n07883156 lekvar +n07883251 potion +n07883384 elixir +n07883510 elixir of life +n07883661 philter, philtre, love-potion, love-philter, love-philtre +n07884567 alcohol, alcoholic drink, alcoholic beverage, intoxicant, inebriant +n07885705 proof spirit +n07886057 home brew, homebrew +n07886176 hooch, hootch +n07886317 kava, kavakava +n07886463 aperitif +n07886572 brew, brewage +n07886849 beer +n07887099 draft beer, draught beer +n07887192 suds +n07887304 Munich beer, Munchener +n07887461 bock, bock beer +n07887634 lager, lager beer +n07887967 light beer +n07888058 Oktoberfest, Octoberfest +n07888229 Pilsner, Pilsener +n07888378 shebeen +n07888465 Weissbier, white beer, wheat beer +n07888816 Weizenbock +n07888909 malt +n07889193 wort +n07889274 malt, malt liquor +n07889510 ale +n07889814 bitter +n07889990 Burton +n07890068 pale ale +n07890226 porter, porter's beer +n07890352 stout +n07890540 Guinness +n07890617 kvass +n07890750 mead +n07890890 metheglin +n07890970 hydromel +n07891095 oenomel +n07891189 near beer +n07891309 ginger beer +n07891433 sake, saki, rice beer +n07891726 wine, vino +n07892418 vintage +n07892512 red wine +n07892813 white wine +n07893253 blush wine, pink wine, rose, rose wine +n07893425 altar wine, sacramental wine +n07893528 sparkling wine +n07893642 champagne, bubbly +n07893792 cold duck +n07893891 Burgundy, Burgundy wine +n07894102 Beaujolais +n07894298 Medoc +n07894451 Canary wine +n07894551 Chablis, white Burgundy +n07894703 Montrachet +n07894799 Chardonnay, Pinot Chardonnay +n07894965 Pinot noir +n07895100 Pinot blanc +n07895237 Bordeaux, Bordeaux wine +n07895435 claret, red Bordeaux +n07895595 Chianti +n07895710 Cabernet, Cabernet Sauvignon +n07895839 Merlot +n07895962 Sauvignon blanc +n07896060 California wine +n07896165 Cotes de Provence +n07896287 dessert wine +n07896422 Dubonnet +n07896560 jug wine +n07896661 macon, maconnais +n07896765 Moselle +n07896893 Muscadet +n07896994 plonk +n07897116 retsina +n07897200 Rhine wine, Rhenish, hock +n07897438 Riesling +n07897600 liebfraumilch +n07897750 Rhone wine +n07897865 Rioja +n07897975 sack +n07898117 Saint Emilion +n07898247 Soave +n07898333 zinfandel +n07898443 Sauterne, Sauternes +n07898617 straw wine +n07898745 table wine +n07898895 Tokay +n07899003 vin ordinaire +n07899108 vermouth +n07899292 sweet vermouth, Italian vermouth +n07899434 dry vermouth, French vermouth +n07899533 Chenin blanc +n07899660 Verdicchio +n07899769 Vouvray +n07899899 Yquem +n07899976 generic, generic wine +n07900225 varietal, varietal wine +n07900406 fortified wine +n07900616 Madeira +n07900734 malmsey +n07900825 port, port wine +n07900958 sherry +n07901355 Marsala +n07901457 muscat, muscatel, muscadel, muscadelle +n07901587 liquor, spirits, booze, hard drink, hard liquor, John Barleycorn, strong drink +n07902121 neutral spirits, ethyl alcohol +n07902336 aqua vitae, ardent spirits +n07902443 eau de vie +n07902520 moonshine, bootleg, corn liquor +n07902698 bathtub gin +n07902799 aquavit, akvavit +n07902937 arrack, arak +n07903101 bitters +n07903208 brandy +n07903543 applejack +n07903643 Calvados +n07903731 Armagnac +n07903841 Cognac +n07903962 grappa +n07904072 kirsch +n07904293 slivovitz +n07904395 gin +n07904637 sloe gin +n07904760 geneva, Holland gin, Hollands +n07904865 grog +n07904934 ouzo +n07905038 rum +n07905296 demerara, demerara rum +n07905386 Jamaica rum +n07905474 schnapps, schnaps +n07905618 pulque +n07905770 mescal +n07905979 tequila +n07906111 vodka +n07906284 whiskey, whisky +n07906572 blended whiskey, blended whisky +n07906718 bourbon +n07906877 corn whiskey, corn whisky, corn +n07907037 firewater +n07907161 Irish, Irish whiskey, Irish whisky +n07907342 poteen +n07907429 rye, rye whiskey, rye whisky +n07907548 Scotch, Scotch whiskey, Scotch whisky, malt whiskey, malt whisky, Scotch malt whiskey, Scotch malt whisky +n07907831 sour mash, sour mash whiskey +n07907943 liqueur, cordial +n07908411 absinth, absinthe +n07908567 amaretto +n07908647 anisette, anisette de Bordeaux +n07908812 benedictine +n07908923 Chartreuse +n07909129 coffee liqueur +n07909231 creme de cacao +n07909362 creme de menthe +n07909504 creme de fraise +n07909593 Drambuie +n07909714 Galliano +n07909811 orange liqueur +n07909954 curacao, curacoa +n07910048 triple sec +n07910152 Grand Marnier +n07910245 kummel +n07910379 maraschino, maraschino liqueur +n07910538 pastis +n07910656 Pernod +n07910799 pousse-cafe +n07910970 Kahlua +n07911061 ratafia, ratafee +n07911249 sambuca +n07911371 mixed drink +n07911677 cocktail +n07912093 Dom Pedro +n07912211 highball +n07913180 mixer +n07913300 bishop +n07913393 Bloody Mary +n07913537 Virgin Mary, bloody shame +n07913644 bullshot +n07913774 cobbler +n07913882 collins, Tom Collins +n07914006 cooler +n07914128 refresher +n07914271 smoothie +n07914413 daiquiri, rum cocktail +n07914586 strawberry daiquiri +n07914686 NADA daiquiri +n07914777 spritzer +n07914887 flip +n07914995 gimlet +n07915094 gin and tonic +n07915213 grasshopper +n07915366 Harvey Wallbanger +n07915491 julep, mint julep +n07915618 manhattan +n07915800 Rob Roy +n07915918 margarita +n07916041 martini +n07916183 gin and it +n07916319 vodka martini +n07916437 old fashioned +n07916582 pink lady +n07917133 Sazerac +n07917272 screwdriver +n07917392 sidecar +n07917507 Scotch and soda +n07917618 sling +n07917791 brandy sling +n07917874 gin sling +n07917951 rum sling +n07918028 sour +n07918193 whiskey sour, whisky sour +n07918309 stinger +n07918706 swizzle +n07918879 hot toddy, toddy +n07919165 zombie, zombi +n07919310 fizz +n07919441 Irish coffee +n07919572 cafe au lait +n07919665 cafe noir, demitasse +n07919787 decaffeinated coffee, decaf +n07919894 drip coffee +n07920052 espresso +n07920222 caffe latte, latte +n07920349 cappuccino, cappuccino coffee, coffee cappuccino +n07920540 iced coffee, ice coffee +n07920663 instant coffee +n07920872 mocha, mocha coffee +n07920989 mocha +n07921090 cassareep +n07921239 Turkish coffee +n07921360 chocolate milk +n07921455 cider, cyder +n07921615 hard cider +n07921834 scrumpy +n07921948 sweet cider +n07922041 mulled cider +n07922147 perry +n07922512 rotgut +n07922607 slug +n07922764 cocoa, chocolate, hot chocolate, drinking chocolate +n07922955 criollo +n07923748 juice +n07924033 fruit juice, fruit crush +n07924276 nectar +n07924366 apple juice +n07924443 cranberry juice +n07924560 grape juice +n07924655 must +n07924747 grapefruit juice +n07924834 orange juice +n07924955 frozen orange juice, orange-juice concentrate +n07925116 pineapple juice +n07925229 lemon juice +n07925327 lime juice +n07925423 papaya juice +n07925500 tomato juice +n07925608 carrot juice +n07925708 V-8 juice +n07925808 koumiss, kumis +n07925966 fruit drink, ade +n07926250 lemonade +n07926346 limeade +n07926442 orangeade +n07926540 malted milk +n07926785 mate +n07926920 mulled wine +n07927070 negus +n07927197 soft drink +n07927512 pop, soda, soda pop, soda water, tonic +n07927716 birch beer +n07927836 bitter lemon +n07927931 cola, dope +n07928163 cream soda +n07928264 egg cream +n07928367 ginger ale, ginger pop +n07928488 orange soda +n07928578 phosphate +n07928696 Coca Cola, Coke +n07928790 Pepsi, Pepsi Cola +n07928887 root beer +n07928998 sarsaparilla +n07929172 tonic, tonic water, quinine water +n07929351 coffee bean, coffee berry, coffee +n07929519 coffee, java +n07929940 cafe royale, coffee royal +n07930062 fruit punch +n07930205 milk punch +n07930315 mimosa, buck's fizz +n07930433 pina colada +n07930554 punch +n07930864 cup +n07931001 champagne cup +n07931096 claret cup +n07931280 wassail +n07931452 planter's punch +n07931612 White Russian +n07931733 fish house punch +n07931870 May wine +n07932039 eggnog +n07932323 cassiri +n07932454 spruce beer +n07932614 rickey +n07932762 gin rickey +n07932841 tea, tea leaf +n07933154 tea bag +n07933274 tea +n07933530 tea-like drink +n07933652 cambric tea +n07933799 cuppa, cupper +n07933891 herb tea, herbal tea, herbal +n07934032 tisane +n07934152 camomile tea +n07934282 ice tea, iced tea +n07934373 sun tea +n07934530 black tea +n07934678 congou, congo, congou tea, English breakfast tea +n07934800 Darjeeling +n07934908 orange pekoe, pekoe +n07935043 souchong, soochong +n07935152 green tea +n07935288 hyson +n07935379 oolong +n07935504 water +n07935737 bottled water +n07935878 branch water +n07936015 spring water +n07936093 sugar water +n07936263 drinking water +n07936459 ice water +n07936548 soda water, carbonated water, club soda, seltzer, sparkling water +n07936745 mineral water +n07936979 seltzer +n07937069 Vichy water +n07937344 perishable, spoilable +n07937461 couscous +n07937621 ramekin, ramequin +n07938007 multivitamin, multivitamin pill +n07938149 vitamin pill +n07938313 soul food +n07938594 mold, mould +n07942152 people +n07951464 collection, aggregation, accumulation, assemblage +n07954211 book, rule book +n07977870 library +n08079613 baseball club, ball club, club, nine +n08182379 crowd +n08238463 class, form, grade, course +n08242223 core, nucleus, core group +n08249459 concert band, military band +n08253141 dance +n08256735 wedding, wedding party +n08376250 chain, concatenation +n08385989 power breakfast +n08492354 aerie, aery, eyrie, eyry +n08492461 agora +n08494231 amusement park, funfair, pleasure ground +n08495908 aphelion +n08496334 apron +n08500819 interplanetary space +n08500989 interstellar space +n08501887 intergalactic space +n08505018 bush +n08506347 semidesert +n08511017 beam-ends +n08517010 bridgehead +n08517676 bus stop +n08518171 campsite, campground, camping site, camping ground, bivouac, encampment, camping area +n08519299 detention basin +n08521623 cemetery, graveyard, burial site, burial ground, burying ground, memorial park, necropolis +n08523340 trichion, crinion +n08524735 city, metropolis, urban center +n08539072 business district, downtown +n08539276 outskirts +n08540532 borough +n08547468 cow pasture +n08547544 crest +n08551296 eparchy, exarchate +n08554440 suburb, suburbia, suburban area +n08555333 stockbroker belt +n08555710 crawlspace, crawl space +n08558770 sheikdom, sheikhdom +n08558963 residence, abode +n08559155 domicile, legal residence +n08560295 dude ranch +n08569482 farmland, farming area +n08571275 midfield +n08571642 firebreak, fireguard +n08571898 flea market +n08573674 battlefront, front, front line +n08573842 garbage heap, junk heap, rubbish heap, scrapheap, trash heap, junk pile, trash pile, refuse heap +n08578517 benthos, benthic division, benthonic zone +n08579266 goldfield +n08579352 grainfield, grain field +n08580944 half-mast, half-staff +n08583292 hemline +n08583455 heronry +n08583554 hipline +n08583682 hipline +n08584914 hole-in-the-wall +n08586978 junkyard +n08589670 isoclinic line, isoclinal +n08596076 littoral, litoral, littoral zone, sands +n08597579 magnetic pole +n08598301 grassland +n08598568 mecca +n08599174 observer's meridian +n08599292 prime meridian +n08611339 nombril +n08611421 no-parking zone +n08613733 outdoors, out-of-doors, open air, open +n08614632 fairground +n08616050 pasture, pastureland, grazing land, lea, ley +n08618831 perihelion +n08619112 periselene, perilune +n08623676 locus of infection +n08628141 kasbah, casbah +n08633683 waterfront +n08640531 resort, resort hotel, holiday resort +n08640739 resort area, playground, vacation spot +n08640962 rough +n08643267 ashram +n08644045 harborage, harbourage +n08645104 scrubland +n08645212 weald +n08645318 wold +n08647264 schoolyard +n08648917 showplace +n08649711 bedside +n08651104 sideline, out of bounds +n08652376 ski resort +n08658309 soil horizon +n08658918 geological horizon +n08659242 coal seam +n08659331 coalface +n08659446 field +n08659861 oilfield +n08661878 Temperate Zone +n08662427 terreplein +n08663051 three-mile limit +n08663703 desktop +n08663860 top +n08673039 kampong, campong +n08674344 subtropics, semitropics +n08676253 barrio +n08677424 veld, veldt +n08677801 vertex, peak, apex, acme +n08678783 waterline, water line, water level +n08679167 high-water mark +n08679269 low-water mark +n08679562 continental divide +n08685188 zodiac +n08782627 Aegean island +n08896327 sultanate +n09032191 Swiss canton +n09186592 abyssal zone +n09189157 aerie, aery, eyrie, eyry +n09191635 air bubble +n09193551 alluvial flat, alluvial plain +n09193705 alp +n09194227 Alpine glacier, Alpine type of glacier +n09199101 anthill, formicary +n09201998 aquifer +n09203827 archipelago +n09205509 arete +n09206896 arroyo +n09206985 ascent, acclivity, rise, raise, climb, upgrade +n09208496 asterism +n09209025 asthenosphere +n09210862 atoll +n09213434 bank +n09213565 bank +n09214060 bar +n09214269 barbecue pit +n09214916 barrier reef +n09215023 baryon, heavy particle +n09215437 basin +n09217230 beach +n09218315 honeycomb +n09218494 belay +n09218641 ben +n09219233 berm +n09223487 bladder stone, cystolith +n09224725 bluff +n09226869 borrow pit +n09228055 brae +n09229709 bubble +n09230041 burrow, tunnel +n09230202 butte +n09231117 caldera +n09233446 canyon, canon +n09233603 canyonside +n09238926 cave +n09239302 cavern +n09242389 chasm +n09245515 cirque, corrie, cwm +n09246464 cliff, drop, drop-off +n09247410 cloud +n09248153 coast +n09248399 coastland +n09249034 col, gap +n09249155 collector +n09251407 comet +n09255070 continental glacier +n09256479 coral reef +n09257843 cove +n09259025 crag +n09259219 crater +n09260907 cultivated land, farmland, plowland, ploughland, tilled land, tillage, tilth +n09262690 dale +n09263912 defile, gorge +n09264803 delta +n09265620 descent, declivity, fall, decline, declination, declension, downslope +n09266604 diapir +n09267854 divot +n09268007 divot +n09269341 down +n09269472 downhill +n09269882 draw +n09270160 drey +n09270657 drumlin +n09270735 dune, sand dune +n09274152 escarpment, scarp +n09274305 esker +n09279986 fireball +n09281252 flare star +n09282208 floor +n09283193 fomite, vehicle +n09283405 foothill +n09283514 footwall +n09283767 foreland +n09283866 foreshore +n09287415 gauge boson +n09287968 geological formation, formation +n09288635 geyser +n09289331 glacier +n09289596 glen +n09290350 gopher hole +n09290444 gorge +n09294877 grotto, grot +n09295210 growler +n09295946 gulch, flume +n09300306 gully +n09300905 hail +n09302616 highland, upland +n09303008 hill +n09303528 hillside +n09304750 hole, hollow +n09305031 hollow, holler +n09305898 hot spring, thermal spring +n09308572 iceberg, berg +n09308743 icecap, ice cap +n09309046 ice field +n09309168 ice floe, floe +n09309292 ice mass +n09310616 inclined fault +n09315159 ion +n09319604 isthmus +n09325824 kidney stone, urinary calculus, nephrolith, renal calculus +n09326662 knoll, mound, hillock, hummock, hammock +n09327077 kopje, koppie +n09327538 Kuiper belt, Edgeworth-Kuiper belt +n09330378 lake bed, lake bottom +n09331251 lakefront +n09332890 lakeside, lakeshore +n09335693 landfall +n09335809 landfill +n09336555 lather +n09337048 leak +n09337253 ledge, shelf +n09338013 lepton +n09339810 lithosphere, geosphere +n09344198 lowland +n09344324 lunar crater +n09344724 maar +n09348460 massif +n09349648 meander +n09351905 mesa, table +n09352849 meteorite +n09353815 microfossil +n09354511 midstream +n09357346 molehill +n09357447 monocline +n09359803 mountain, mount +n09361517 mountainside, versant +n09362316 mouth +n09362945 mull +n09366017 natural depression, depression +n09366317 natural elevation, elevation +n09375606 nullah +n09376198 ocean +n09376526 ocean floor, sea floor, ocean bottom, seabed, sea bottom, Davy Jones's locker, Davy Jones +n09376786 oceanfront +n09381242 outcrop, outcropping, rock outcrop +n09382099 oxbow +n09384106 pallasite +n09389867 perforation +n09391386 photosphere +n09391644 piedmont +n09391774 Piedmont glacier, Piedmont type of glacier +n09392402 pinetum +n09393524 plage +n09393605 plain, field, champaign +n09396465 point +n09396608 polar glacier +n09398076 pothole, chuckhole +n09398677 precipice +n09399592 promontory, headland, head, foreland +n09400584 ptyalith +n09400987 pulsar +n09402944 quicksand +n09403086 rabbit burrow, rabbit hole +n09403211 radiator +n09403427 rainbow +n09403734 range, mountain range, range of mountains, chain, mountain chain, chain of mountains +n09405078 rangeland +n09405787 ravine +n09406793 reef +n09409512 ridge +n09409752 ridge, ridgeline +n09410224 rift valley +n09411189 riparian forest +n09411295 ripple mark +n09415584 riverbank, riverside +n09415671 riverbed, river bottom +n09416076 rock, stone +n09416890 roof +n09421031 saltpan +n09421799 sandbank +n09421951 sandbar, sand bar +n09422190 sandpit +n09422631 sanitary landfill +n09425019 sawpit +n09425344 scablands +n09428293 seashore, coast, seacoast, sea-coast +n09428628 seaside, seaboard +n09429630 seif dune +n09432283 shell +n09432990 shiner +n09433312 shoal +n09433442 shore +n09433839 shoreline +n09435739 sinkhole, sink, swallow hole +n09436444 ski slope +n09436708 sky +n09437454 slope, incline, side +n09438844 snowcap +n09438940 snowdrift +n09439032 snowfield +n09439213 soapsuds, suds, lather +n09442595 spit, tongue +n09443281 spoor +n09443641 spume +n09444783 star +n09445008 steep +n09445289 steppe +n09447666 strand +n09448690 streambed, creek bed +n09450163 sun, Sun +n09451237 supernova +n09452291 swale +n09452395 swamp, swampland +n09452760 swell +n09453008 tableland, plateau +n09454153 talus, scree +n09454412 tangle +n09454744 tar pit +n09456207 terrace, bench +n09457979 tidal basin +n09458269 tideland +n09459979 tor +n09460046 tor +n09461069 Trapezium +n09462600 troposphere +n09463226 tundra +n09464486 twinkler +n09466678 uphill +n09467696 urolith +n09468604 valley, vale +n09470027 vehicle-borne transmission +n09470222 vein, mineral vein +n09472413 volcanic crater, crater +n09472597 volcano +n09474010 wadi +n09474412 wall +n09474765 warren, rabbit warren +n09475044 wasp's nest, wasps' nest, hornet's nest, hornets' nest +n09475179 watercourse +n09475925 waterside +n09476123 water table, water level, groundwater level +n09478210 whinstone, whin +n09480959 wormcast +n09481120 xenolith +n09493983 Circe +n09495962 gryphon, griffin, griffon +n09505153 spiritual leader +n09537660 messiah, christ +n09556121 Rhea Silvia, Rea Silvia +n09605110 number one +n09606009 adventurer, venturer +n09606527 anomaly, unusual person +n09607630 appointee, appointment +n09607782 argonaut +n09607903 Ashkenazi +n09608709 benefactor, helper +n09610255 color-blind person +n09610405 commoner, common man, common person +n09611722 conservator +n09612700 contrarian +n09613118 contadino +n09613191 contestant +n09613690 cosigner, cosignatory +n09615336 discussant +n09616573 enologist, oenologist, fermentologist +n09616922 entertainer +n09617161 eulogist, panegyrist +n09617435 ex-gambler +n09617577 experimenter +n09617696 experimenter +n09618760 exponent +n09618880 ex-president +n09618957 face +n09619168 female, female person +n09619452 finisher +n09620078 inhabitant, habitant, dweller, denizen, indweller +n09620794 native, indigen, indigene, aborigine, aboriginal +n09621232 native +n09622049 juvenile, juvenile person +n09622302 lover +n09624168 male, male person +n09624559 mediator, go-between, intermediator, intermediary, intercessor +n09624899 mediatrix +n09625401 national, subject +n09626238 peer, equal, match, compeer +n09627807 prize winner, lottery winner +n09627906 recipient, receiver +n09629065 religionist +n09629246 sensualist +n09629752 traveler, traveller +n09631129 unwelcome person, persona non grata +n09632274 unskilled person +n09632518 worker +n09633969 wrongdoer, offender +n09635534 Black African +n09635635 Afrikaner, Afrikander, Boer +n09635973 Aryan +n09636339 Black, Black person, blackamoor, Negro, Negroid +n09637339 Black woman +n09638454 mulatto +n09638875 White, White person, Caucasian +n09639382 Circassian +n09639919 Semite +n09640327 Chaldean, Chaldaean, Chaldee +n09640715 Elamite +n09641002 white man +n09641578 WASP, white Anglo-Saxon Protestant +n09643799 gook, slant-eye +n09644152 Mongol, Mongolian +n09644657 Tatar, Tartar, Mongol Tatar +n09648743 Nahuatl +n09648911 Aztec +n09649067 Olmec +n09650729 Biloxi +n09650839 Blackfoot +n09650989 Brule +n09651123 Caddo +n09651968 Cheyenne +n09652149 Chickasaw +n09653144 Cocopa, Cocopah +n09653438 Comanche +n09654079 Creek +n09654518 Delaware +n09654898 Diegueno +n09655213 Esselen +n09655466 Eyeish +n09656077 Havasupai +n09657206 Hunkpapa +n09657748 Iowa, Ioway +n09658254 Kalapooia, Kalapuya, Calapooya, Calapuya +n09658398 Kamia +n09658815 Kekchi +n09658921 Kichai +n09659039 Kickapoo +n09659188 Kiliwa, Kiliwi +n09660010 Malecite +n09660240 Maricopa +n09661873 Mohican, Mahican +n09662038 Muskhogean, Muskogean +n09662661 Navaho, Navajo +n09662951 Nootka +n09663248 Oglala, Ogalala +n09663786 Osage +n09663999 Oneida +n09664556 Paiute, Piute +n09664908 Passamaquody +n09665367 Penobscot +n09665545 Penutian +n09666349 Potawatomi +n09666476 Powhatan +n09666883 kachina +n09667358 Salish +n09668199 Shahaptian, Sahaptin, Sahaptino +n09668437 Shasta +n09668562 Shawnee +n09668988 Sihasapa +n09669631 Teton, Lakota, Teton Sioux, Teton Dakota +n09670280 Taracahitian +n09670521 Tarahumara +n09670909 Tuscarora +n09671089 Tutelo +n09672590 Yana +n09672725 Yavapai +n09672840 Yokuts +n09673091 Yuma +n09674412 Gadaba +n09674786 Kolam +n09675045 Kui +n09675673 Toda +n09675799 Tulu +n09675922 Gujarati, Gujerati +n09676021 Kashmiri +n09676247 Punjabi, Panjabi +n09676884 Slav +n09677427 Anabaptist +n09678747 Adventist, Second Adventist +n09679028 gentile, non-Jew, goy +n09679170 gentile +n09679925 Catholic +n09680908 Old Catholic +n09681107 Uniat, Uniate, Uniate Christian +n09681234 Copt +n09681973 Jewess +n09683180 Jihadist +n09683757 Buddhist +n09683924 Zen Buddhist +n09684082 Mahayanist +n09684901 swami +n09685233 Hare Krishna +n09685806 Shintoist +n09686262 Eurafrican +n09686401 Eurasian +n09688233 Gael +n09688804 Frank +n09689435 Afghan, Afghanistani +n09689958 Albanian +n09690083 Algerian +n09690208 Altaic +n09690496 Andorran +n09690621 Angolan +n09690864 Anguillan +n09691604 Austrian +n09691729 Bahamian +n09691858 Bahraini, Bahreini +n09692125 Basotho +n09692915 Herero +n09693244 Luba, Chiluba +n09693982 Barbadian +n09694664 Bolivian +n09694771 Bornean +n09695019 Carioca +n09695132 Tupi +n09695514 Bruneian +n09695620 Bulgarian +n09695979 Byelorussian, Belorussian, White Russian +n09696456 Cameroonian +n09696585 Canadian +n09696763 French Canadian +n09697401 Central American +n09697986 Chilean +n09698644 Congolese +n09699020 Cypriot, Cypriote, Cyprian +n09699642 Dane +n09700125 Djiboutian +n09700964 Britisher, Briton, Brit +n09701148 English person +n09701833 Englishwoman +n09702134 Anglo-Saxon +n09702673 Angle +n09703101 West Saxon +n09703344 Lombard, Langobard +n09703485 limey, John Bull +n09703708 Cantabrigian +n09703809 Cornishman +n09703932 Cornishwoman +n09704057 Lancastrian +n09704157 Lancastrian +n09704283 Geordie +n09705003 Oxonian +n09705124 Ethiopian +n09705671 Amhara +n09705784 Eritrean +n09706029 Finn +n09706255 Komi +n09707061 Livonian +n09707289 Lithuanian +n09707735 Selkup, Ostyak-Samoyed +n09708750 Parisian +n09708889 Parisienne +n09709531 Creole +n09709673 Creole +n09710041 Gabonese +n09710164 Greek, Hellene +n09710886 Dorian +n09711132 Athenian +n09711435 Laconian +n09712324 Guyanese +n09712448 Haitian +n09712696 Malay, Malayan +n09712967 Moro +n09713108 Netherlander, Dutchman, Hollander +n09714120 Icelander +n09714694 Iraqi, Iraki +n09715165 Irishman +n09715303 Irishwoman +n09715427 Dubliner +n09716047 Italian +n09716933 Roman +n09717233 Sabine +n09718217 Japanese, Nipponese +n09718811 Jordanian +n09718936 Korean +n09719309 Kenyan +n09719794 Lao, Laotian +n09720033 Lapp, Lapplander, Sami, Saami, Same, Saame +n09720256 Latin American, Latino +n09720595 Lebanese +n09720702 Levantine +n09720842 Liberian +n09721244 Luxemburger, Luxembourger +n09721444 Macedonian +n09722064 Sabahan +n09722658 Mexican +n09722817 Chicano +n09723067 Mexican-American, Mexicano +n09723819 Namibian +n09723944 Nauruan +n09724234 Gurkha +n09724533 New Zealander, Kiwi +n09724656 Nicaraguan +n09724785 Nigerian +n09725000 Hausa, Haussa +n09725229 North American +n09725546 Nova Scotian, bluenose +n09725653 Omani +n09725772 Pakistani +n09725935 Brahui +n09726621 South American Indian +n09726811 Carib, Carib Indian +n09727440 Filipino +n09727826 Polynesian +n09728137 Qatari, Katari +n09728285 Romanian, Rumanian +n09729062 Muscovite +n09729156 Georgian +n09730077 Sarawakian +n09730204 Scandinavian, Norse, Northman +n09730824 Senegalese +n09731343 Slovene +n09731436 South African +n09731571 South American +n09732170 Sudanese +n09733459 Syrian +n09733793 Tahitian +n09734185 Tanzanian +n09734450 Tibetan +n09734535 Togolese +n09734639 Tuareg +n09735258 Turki +n09735654 Chuvash +n09736485 Turkoman, Turkmen, Turcoman +n09736798 Uzbek, Uzbeg, Uzbak, Usbek, Usbeg +n09736945 Ugandan +n09737050 Ukranian +n09737161 Yakut +n09737453 Tungus, Evenk +n09738121 Igbo +n09738400 American +n09740724 Anglo-American +n09741074 Alaska Native, Alaskan Native, Native Alaskan +n09741331 Arkansan, Arkansawyer +n09741722 Carolinian +n09741816 Coloradan +n09741904 Connecticuter +n09741999 Delawarean, Delawarian +n09742101 Floridian +n09742315 German American +n09742927 Illinoisan +n09743487 Mainer, Down Easter +n09743601 Marylander +n09743792 Minnesotan, Gopher +n09744161 Nebraskan, Cornhusker +n09744346 New Hampshirite, Granite Stater +n09744462 New Jerseyan, New Jerseyite, Garden Stater +n09744679 New Yorker +n09744834 North Carolinian, Tarheel +n09745229 Oregonian, Beaver +n09745324 Pennsylvanian, Keystone Stater +n09745834 Texan +n09745933 Utahan +n09746936 Uruguayan +n09747191 Vietnamese, Annamese +n09747495 Gambian +n09748101 East German +n09748408 Berliner +n09748648 Prussian +n09748889 Ghanian +n09749386 Guinean +n09750282 Papuan +n09750641 Walloon +n09750770 Yemeni +n09750891 Yugoslav, Jugoslav, Yugoslavian, Jugoslavian +n09751076 Serbian, Serb +n09751496 Xhosa +n09751622 Zairese, Zairean +n09751895 Zimbabwean +n09752023 Zulu +n09752519 Gemini, Twin +n09753348 Sagittarius, Archer +n09753792 Pisces, Fish +n09754152 abbe +n09754217 abbess, mother superior, prioress +n09754633 abnegator +n09754907 abridger, abbreviator +n09755086 abstractor, abstracter +n09755241 absconder +n09755555 absolver +n09755788 abecedarian +n09755893 aberrant +n09756049 abettor, abetter +n09756195 abhorrer +n09756961 abomination +n09757449 abseiler, rappeller +n09758173 abstainer, ascetic +n09758885 academic administrator +n09759501 academician +n09760290 accessory before the fact +n09760609 companion +n09760913 accompanist, accompanyist +n09761068 accomplice, confederate +n09761753 account executive, account representative, registered representative, customer's broker, customer's man +n09762011 accused +n09762385 accuser +n09763272 acid head +n09763784 acquaintance, friend +n09764201 acquirer +n09764598 aerialist +n09764732 action officer +n09764900 active +n09765118 active citizen +n09765278 actor, histrion, player, thespian, role player +n09767197 actor, doer, worker +n09769076 addict, nut, freak, junkie, junky +n09769525 adducer +n09769929 adjuster, adjustor, claims adjuster, claims adjustor, claim agent +n09770179 adjutant, aide, aide-de-camp +n09770359 adjutant general +n09771435 admirer, adorer +n09772330 adoptee +n09772746 adulterer, fornicator +n09772930 adulteress, fornicatress, hussy, jade, loose woman, slut, strumpet, trollop +n09773962 advertiser, advertizer, adman +n09774167 advisee +n09774783 advocate, advocator, proponent, exponent +n09775907 aeronautical engineer +n09776346 affiliate +n09776642 affluent +n09776807 aficionado +n09777870 buck sergeant +n09778266 agent-in-place +n09778537 aggravator, annoyance +n09778783 agitator, fomenter +n09778927 agnostic +n09779124 agnostic, doubter +n09779280 agonist +n09779461 agony aunt +n09779790 agriculturist, agriculturalist, cultivator, grower, raiser +n09780395 air attache +n09780828 air force officer, commander +n09780984 airhead +n09781398 air traveler, air traveller +n09781504 alarmist +n09781650 albino +n09782167 alcoholic, alky, dipsomaniac, boozer, lush, soaker, souse +n09782397 alderman +n09782855 alexic +n09783537 alienee, grantee +n09783776 alienor +n09783884 aliterate, aliterate person +n09784043 algebraist +n09784160 allegorizer, allegoriser +n09784564 alliterator +n09785236 almoner, medical social worker +n09785659 alpinist +n09785891 altar boy +n09786115 alto +n09787534 ambassador, embassador +n09787765 ambassador +n09788073 ambusher +n09788237 amicus curiae, friend of the court +n09789150 amoralist +n09789566 amputee +n09789898 analogist +n09790047 analphabet, analphabetic +n09790482 analyst +n09791014 industry analyst +n09791419 market strategist +n09791816 anarchist, nihilist, syndicalist +n09792125 anathema, bete noire +n09792555 ancestor, ascendant, ascendent, antecedent, root +n09792969 anchor, anchorman, anchorperson +n09793141 ancient +n09793352 anecdotist, raconteur +n09793946 angler, troller +n09794550 animator +n09794668 animist +n09795010 annotator +n09795124 announcer +n09795334 announcer +n09796809 anti +n09796974 anti-American +n09797742 anti-Semite, Jew-baiter +n09797873 Anzac +n09797998 ape-man +n09798096 aphakic +n09800469 appellant, plaintiff in error +n09800964 appointee +n09801102 apprehender +n09801275 April fool +n09801533 aspirant, aspirer, hopeful, wannabe, wannabee +n09802445 appreciator +n09802641 appropriator +n09802951 Arabist +n09804230 archaist +n09805151 archbishop +n09805324 archer, bowman +n09805475 architect, designer +n09806944 archivist +n09807075 archpriest, hierarch, high priest, prelate, primate +n09808080 Aristotelian, Aristotelean, Peripatetic +n09808591 armiger +n09809279 army attache +n09809538 army engineer, military engineer +n09809749 army officer +n09809925 arranger, adapter, transcriber +n09810166 arrival, arriver, comer +n09811568 arthritic +n09811712 articulator +n09811852 artilleryman, cannoneer, gunner, machine gunner +n09813219 artist's model, sitter +n09814252 assayer +n09814381 assemblyman +n09814488 assemblywoman +n09814567 assenter +n09814660 asserter, declarer, affirmer, asseverator, avower +n09815455 assignee +n09815790 assistant, helper, help, supporter +n09816654 assistant professor +n09816771 associate +n09817174 associate +n09817386 associate professor +n09818022 astronaut, spaceman, cosmonaut +n09819477 cosmographer, cosmographist +n09820044 atheist +n09820263 athlete, jock +n09821831 attendant, attender, tender +n09822830 attorney general +n09823153 auditor +n09823287 augur, auspex +n09823502 aunt, auntie, aunty +n09823832 au pair girl +n09824135 authoritarian, dictator +n09824609 authority +n09825096 authorizer, authoriser +n09825750 automobile mechanic, auto-mechanic, car-mechanic, mechanic, grease monkey +n09826204 aviator, aeronaut, airman, flier, flyer +n09826605 aviatrix, airwoman, aviatress +n09826821 ayah +n09827246 babu, baboo +n09827363 baby, babe, sister +n09828216 baby +n09828403 baby boomer, boomer +n09828988 baby farmer +n09830194 back +n09830400 backbencher +n09830629 backpacker, packer +n09830759 backroom boy, brain truster +n09830926 backscratcher +n09831962 bad person +n09832456 baggage +n09832633 bag lady +n09832978 bailee +n09833111 bailiff +n09833275 bailor +n09833441 bairn +n09833536 baker, bread maker +n09833751 balancer +n09833997 balker, baulker, noncompliant +n09834258 ball-buster, ball-breaker +n09834378 ball carrier, runner +n09834699 ballet dancer +n09834885 ballet master +n09835017 ballet mistress +n09835153 balletomane +n09835230 ball hawk +n09835348 balloonist +n09835506 ballplayer, baseball player +n09836160 bullfighter, toreador +n09836343 banderillero +n09836519 matador +n09836786 picador +n09837459 bandsman +n09837720 banker +n09838295 bank robber +n09838370 bankrupt, insolvent +n09838621 bantamweight +n09839702 barmaid +n09840217 baron, big businessman, business leader, king, magnate, mogul, power, top executive, tycoon +n09840435 baron +n09840520 baron +n09841188 bartender, barman, barkeep, barkeeper, mixologist +n09841515 baseball coach, baseball manager +n09841696 base runner, runner +n09842047 basketball player, basketeer, cager +n09842288 basketweaver, basketmaker +n09842395 Basket Maker +n09842528 bass, basso +n09842823 bastard, by-blow, love child, illegitimate child, illegitimate, whoreson +n09843443 bat boy +n09843602 bather +n09843716 batman +n09843824 baton twirler, twirler +n09844457 Bavarian +n09844898 beadsman, bedesman +n09845401 beard +n09845849 beatnik, beat +n09846142 beauty consultant +n09846469 Bedouin, Beduin +n09846586 bedwetter, bed wetter, wetter +n09846755 beekeeper, apiarist, apiculturist +n09846894 beer drinker, ale drinker +n09847267 beggarman +n09847344 beggarwoman +n09847543 beldam, beldame +n09848110 theist +n09848489 believer, truster +n09849167 bell founder +n09849990 benedick, benedict +n09850760 berserker, berserk +n09850974 besieger +n09851165 best, topper +n09851575 betrothed +n09853541 Big Brother +n09853645 bigot +n09853881 big shot, big gun, big wheel, big cheese, big deal, big enchilada, big fish, head honcho +n09854218 big sister +n09854421 billiard player +n09854915 biochemist +n09855433 biographer +n09856401 bird fancier +n09856671 birth +n09856827 birth-control campaigner, birth-control reformer +n09857007 bisexual, bisexual person +n09858165 black belt +n09858299 blackmailer, extortioner, extortionist +n09858733 Black Muslim +n09859152 blacksmith +n09859285 blade +n09859684 bleacher +n09859975 blind date +n09861287 bluecoat +n09861599 bluestocking, bas bleu +n09861863 boatbuilder +n09861946 boatman, boater, waterman +n09862183 boatswain, bos'n, bo's'n, bosun, bo'sun +n09862621 bobby +n09863031 bodyguard, escort +n09863339 boffin +n09863749 Bolshevik, Marxist, red, bolshie, bolshy +n09863936 Bolshevik, Bolshevist +n09864632 bombshell +n09864968 bondman, bondsman +n09865068 bondwoman, bondswoman, bondmaid +n09865162 bondwoman, bondswoman, bondmaid +n09865398 bond servant +n09865672 book agent +n09865744 bookbinder +n09866115 bookkeeper +n09866354 bookmaker +n09866559 bookworm +n09866661 booster, shoplifter, lifter +n09866817 bootblack, shoeblack +n09866922 bootlegger, moonshiner +n09867069 bootmaker, boot maker +n09867154 borderer +n09867311 border patrolman +n09868270 botanist, phytologist, plant scientist +n09868782 bottom feeder +n09868899 boulevardier +n09869317 bounty hunter +n09869447 bounty hunter +n09869578 Bourbon +n09870096 bowler +n09871095 slugger, slogger +n09871229 cub, lad, laddie, sonny, sonny boy +n09871681 Boy Scout +n09871867 boy scout +n09871952 boy wonder +n09872066 bragger, braggart, boaster, blowhard, line-shooter, vaunter +n09872557 brahman, brahmin +n09873348 brawler +n09873473 breadwinner +n09873769 breaststroker +n09873899 breeder, stock breeder +n09874428 brick +n09874725 bride +n09874862 bridesmaid, maid of honor +n09875025 bridge agent +n09875979 broadcast journalist +n09876701 Brother +n09877288 brother-in-law +n09877587 browser +n09877750 Brummie, Brummy +n09877951 buddy, brother, chum, crony, pal, sidekick +n09878921 bull +n09879552 bully +n09880189 bunny, bunny girl +n09880741 burglar +n09881265 bursar +n09881358 busboy, waiter's assistant +n09881895 business editor +n09883047 business traveler +n09883452 buster +n09883807 busybody, nosy-parker, nosey-parker, quidnunc +n09885059 buttinsky +n09885866 cabinetmaker, furniture maker +n09886403 caddie, golf caddie +n09886540 cadet, plebe +n09888635 caller, caller-out +n09889065 call girl +n09889170 calligrapher, calligraphist +n09889691 campaigner, candidate, nominee +n09889941 camper +n09890192 camp follower +n09890749 candidate, prospect +n09891730 canonist +n09892262 capitalist +n09892513 captain, headwaiter, maitre d'hotel, maitre d' +n09892693 captain, senior pilot +n09893191 captain +n09893344 captain, chieftain +n09893502 captive +n09893600 captive +n09894143 cardinal +n09894445 cardiologist, heart specialist, heart surgeon +n09894654 card player +n09894909 cardsharp, card sharp, cardsharper, card sharper, sharper, sharpie, sharpy, card shark +n09895222 careerist +n09895480 career man +n09895561 caregiver +n09895701 caretaker +n09895902 caretaker +n09896170 caricaturist +n09896311 carillonneur +n09896401 caroler, caroller +n09896685 carpenter +n09896826 carper, niggler +n09898020 Cartesian +n09899289 cashier +n09899671 casualty, injured party +n09899782 casualty +n09899929 casuist, sophist +n09901337 catechist +n09901502 catechumen, neophyte +n09901642 caterer +n09901786 Catholicos +n09901921 cat fancier +n09902128 Cavalier, Royalist +n09902353 cavalryman, trooper +n09902731 caveman, cave man, cave dweller, troglodyte +n09902851 celebrant +n09902954 celebrant, celebrator, celebrater +n09903153 celebrity, famous person +n09903501 cellist, violoncellist +n09903639 censor +n09903936 censor +n09904208 centenarian +n09904837 centrist, middle of the roader, moderate, moderationist +n09905050 centurion +n09905185 certified public accountant, CPA +n09905530 chachka, tsatske, tshatshke, tchotchke, tchotchkeleh +n09906293 chambermaid, fille de chambre +n09906449 chameleon +n09906704 champion, champ, title-holder +n09907804 chandler +n09908769 prison chaplain +n09909660 charcoal burner +n09909929 charge d'affaires +n09910222 charioteer +n09910374 charmer, beguiler +n09910556 chartered accountant +n09910840 chartist, technical analyst +n09911226 charwoman, char, cleaning woman, cleaning lady, woman +n09912431 male chauvinist, sexist +n09912681 cheapskate, tightwad +n09912907 Chechen +n09912995 checker +n09913329 cheerer +n09913455 cheerleader +n09913593 cheerleader +n09915434 Cheops, Khufu +n09915651 chess master +n09916348 chief executive officer, CEO, chief operating officer +n09917214 chief of staff +n09917345 chief petty officer +n09917481 Chief Secretary +n09917593 child, kid, youngster, minor, shaver, nipper, small fry, tiddler, tike, tyke, fry, nestling +n09918248 child, kid +n09918554 child, baby +n09918867 child prodigy, infant prodigy, wonder child +n09919061 chimneysweeper, chimneysweep, sweep +n09919200 chiropractor +n09919451 chit +n09919899 choker +n09920106 choragus +n09920283 choreographer +n09920901 chorus girl, showgirl, chorine +n09921034 chosen +n09923003 cicerone +n09923186 cigar smoker +n09923418 cipher, cypher, nobody, nonentity +n09923561 circus acrobat +n09923673 citizen +n09923996 city editor +n09924106 city father +n09924195 city man +n09924313 city slicker, city boy +n09924437 civic leader, civil leader +n09924996 civil rights leader, civil rights worker, civil rights activist +n09927089 cleaner +n09927451 clergyman, reverend, man of the cloth +n09928136 cleric, churchman, divine, ecclesiastic +n09928451 clerk +n09928845 clever Dick, clever clogs +n09929202 climatologist +n09929298 climber +n09929577 clinician +n09930257 closer, finisher +n09930628 closet queen +n09930876 clown, buffoon, goof, goofball, merry andrew +n09931165 clown, buffoon +n09931418 coach, private instructor, tutor +n09931640 coach, manager, handler +n09932098 pitching coach +n09932336 coachman +n09932508 coal miner, collier, pitman +n09932788 coastguardsman +n09933020 cobber +n09933098 cobbler, shoemaker +n09933842 codger, old codger +n09933972 co-beneficiary +n09934337 cog +n09934488 cognitive neuroscientist +n09934774 coiffeur +n09935107 coiner +n09935434 collaborator, cooperator, partner, pardner +n09936825 colleen +n09936892 college student, university student +n09937056 collegian, college man, college boy +n09937688 colonial +n09937802 colonialist +n09937903 colonizer, coloniser +n09938080 coloratura, coloratura soprano +n09938449 color guard +n09938991 colossus, behemoth, giant, heavyweight, titan +n09940725 comedian +n09940818 comedienne +n09941089 comer +n09941571 commander +n09941787 commander in chief, generalissimo +n09941964 commanding officer, commandant, commander +n09942697 commissar, political commissar +n09942970 commissioned officer +n09943239 commissioned military officer +n09943811 commissioner +n09944022 commissioner +n09944160 committee member +n09944430 committeewoman +n09945021 commodore +n09945223 communicant +n09945319 communist, commie +n09945603 Communist +n09945745 commuter +n09946814 compere +n09947127 complexifier +n09950457 compulsive +n09950728 computational linguist +n09951070 computer scientist +n09951274 computer user +n09951524 Comrade +n09951616 concert-goer, music lover +n09952163 conciliator, make-peace, pacifier, peacemaker, reconciler +n09953052 conductor +n09953350 confectioner, candymaker +n09953615 Confederate +n09954355 confessor +n09954639 confidant, intimate +n09955406 Confucian, Confucianist +n09955944 rep +n09956578 conqueror, vanquisher +n09957523 Conservative +n09958133 Nonconformist, chapelgoer +n09958292 Anglican +n09958447 consignee +n09958569 consigner, consignor +n09959142 constable +n09959658 constructivist +n09960688 contractor +n09961198 contralto +n09961331 contributor +n09961469 control freak +n09961605 convalescent +n09961739 convener +n09962966 convict, con, inmate, yard bird, yardbird +n09964202 copilot, co-pilot +n09964411 copycat, imitator, emulator, ape, aper +n09965515 coreligionist +n09965787 cornerback +n09966470 corporatist +n09966554 correspondent, letter writer +n09967063 cosmetician +n09967406 cosmopolitan, cosmopolite +n09967555 Cossack +n09967816 cost accountant +n09967967 co-star +n09968259 costumier, costumer, costume designer +n09968652 cotter, cottier +n09968741 cotter, cottar +n09968845 counselor, counsellor +n09970088 counterterrorist +n09970192 counterspy, mole +n09970402 countess +n09970822 compromiser +n09971273 countrywoman +n09971385 county agent, agricultural agent, extension agent +n09971839 courtier +n09972010 cousin, first cousin, cousin-german, full cousin +n09972458 cover girl, pin-up, lovely +n09972587 cow +n09974648 craftsman, artisan, journeyman, artificer +n09975425 craftsman, crafter +n09976024 crapshooter +n09976283 crazy, loony, looney, nutcase, weirdo +n09976429 creature, wight +n09976728 creditor +n09976917 creep, weirdo, weirdie, weirdy, spook +n09978442 criminologist +n09979321 critic +n09979913 Croesus +n09980458 cross-examiner, cross-questioner +n09980805 crossover voter, crossover +n09980985 croupier +n09981092 crown prince +n09981278 crown princess +n09981540 cryptanalyst, cryptographer, cryptologist +n09981939 Cub Scout +n09982152 cuckold +n09982525 cultist +n09983314 curandera +n09983572 curate, minister of religion, minister, parson, pastor, rector +n09983889 curator, conservator +n09984960 customer agent +n09985470 cutter, carver +n09985809 cyberpunk +n09985978 cyborg, bionic man, bionic woman +n09986450 cymbalist +n09986700 Cynic +n09986904 cytogeneticist +n09987045 cytologist +n09987161 czar +n09987239 czar, tsar, tzar +n09988063 dad, dada, daddy, pa, papa, pappa, pop +n09988311 dairyman +n09988493 Dalai Lama, Grand Lama +n09988703 dallier, dillydallier, dilly-dallier, mope, lounger +n09989502 dancer, professional dancer, terpsichorean +n09990415 dancer, social dancer +n09990690 clog dancer +n09990777 dancing-master, dance master +n09991740 dark horse +n09991867 darling, favorite, favourite, pet, dearie, deary, ducky +n09992538 date, escort +n09992837 daughter, girl +n09993252 dawdler, drone, laggard, lagger, trailer, poke +n09993651 day boarder +n09994400 day laborer, day labourer +n09994673 deacon, Protestant deacon +n09994808 deaconess +n09994878 deadeye +n09995829 deipnosophist +n09996039 dropout +n09996304 deadhead +n09996481 deaf person +n09997622 debtor, debitor +n09998788 deckhand, roustabout +n09999135 defamer, maligner, slanderer, vilifier, libeler, backbiter, traducer +n10000294 defense contractor +n10000459 deist, freethinker +n10000787 delegate +n10001217 deliveryman, delivery boy, deliverer +n10001481 demagogue, demagog, rabble-rouser +n10001764 demigod, superman, Ubermensch +n10002257 demographer, demographist, population scientist +n10002760 demonstrator, protester +n10003476 den mother +n10004718 department head +n10005006 depositor +n10005934 deputy +n10006177 dermatologist, skin doctor +n10006748 descender +n10007684 designated hitter +n10007809 designer, intriguer +n10007995 desk clerk, hotel desk clerk, hotel clerk +n10008123 desk officer +n10008254 desk sergeant, deskman, station keeper +n10009162 detainee, political detainee +n10009276 detective, investigator, tec, police detective +n10009484 detective +n10009671 detractor, disparager, depreciator, knocker +n10010062 developer +n10010243 deviationist +n10010632 devisee +n10010767 devisor +n10010864 devourer +n10011360 dialectician +n10011486 diarist, diary keeper, journalist +n10012484 dietician, dietitian, nutritionist +n10013811 diocesan +n10015215 director, theater director, theatre director +n10015485 director +n10015792 dirty old man +n10015897 disbeliever, nonbeliever, unbeliever +n10017272 disk jockey, disc jockey, dj +n10017422 dispatcher +n10018747 distortionist +n10018861 distributor, distributer +n10019072 district attorney, DA +n10019187 district manager +n10019406 diver, plunger +n10020366 divorcee, grass widow +n10020533 ex-wife, ex +n10020670 divorce lawyer +n10020807 docent +n10020890 doctor, doc, physician, MD, Dr., medico +n10022908 dodo, fogy, fogey, fossil +n10023264 doge +n10023506 dog in the manger +n10023656 dogmatist, doctrinaire +n10024025 dolichocephalic +n10024362 domestic partner, significant other, spousal equivalent, spouse equivalent +n10024937 Dominican +n10025060 dominus, dominie, domine, dominee +n10025295 don, father +n10025391 Donatist +n10025635 donna +n10026976 dosser, street person +n10027246 double, image, look-alike +n10027590 double-crosser, double-dealer, two-timer, betrayer, traitor +n10028402 down-and-out +n10028541 doyenne +n10029068 draftsman, drawer +n10030277 dramatist, playwright +n10032987 dreamer +n10033412 dressmaker, modiste, needlewoman, seamstress, sempstress +n10033572 dressmaker's model +n10033663 dribbler, driveller, slobberer, drooler +n10033888 dribbler +n10034201 drinker, imbiber, toper, juicer +n10034614 drinker +n10035952 drug addict, junkie, junky +n10036266 drug user, substance abuser, user +n10036444 Druid +n10036692 drum majorette, majorette +n10036929 drummer +n10037080 drunk +n10037385 drunkard, drunk, rummy, sot, inebriate, wino +n10037588 Druze, Druse +n10037922 dry, prohibitionist +n10038119 dry nurse +n10038409 duchess +n10038620 duke +n10039271 duffer +n10039946 dunker +n10040240 Dutch uncle +n10040698 dyspeptic +n10040945 eager beaver, busy bee, live wire, sharpie, sharpy +n10041373 earl +n10041887 earner, wage earner +n10042690 eavesdropper +n10042845 eccentric, eccentric person, flake, oddball, geek +n10043024 eclectic, eclecticist +n10043491 econometrician, econometrist +n10043643 economist, economic expert +n10044682 ectomorph +n10044879 editor, editor in chief +n10047199 egocentric, egoist +n10047459 egotist, egoist, swellhead +n10048117 ejaculator +n10048367 elder +n10048612 elder statesman +n10048836 elected official +n10049363 electrician, lineman, linesman +n10050043 elegist +n10050880 elocutionist +n10051026 emancipator, manumitter +n10051761 embryologist +n10051861 emeritus +n10051975 emigrant, emigre, emigree, outgoer +n10052694 emissary, envoy +n10053439 empress +n10053808 employee +n10054657 employer +n10055297 enchantress, witch +n10055410 enchantress, temptress, siren, Delilah, femme fatale +n10055566 encyclopedist, encyclopaedist +n10055730 endomorph +n10055847 enemy, foe, foeman, opposition +n10056103 energizer, energiser, vitalizer, vitaliser, animator +n10056611 end man +n10056719 end man, corner man +n10057271 endorser, indorser +n10058411 enjoyer +n10058962 enlisted woman +n10059067 enophile, oenophile +n10060075 entrant +n10060175 entrant +n10060352 entrepreneur, enterpriser +n10061043 envoy, envoy extraordinary, minister plenipotentiary +n10061195 enzymologist +n10061431 eparch +n10061882 epidemiologist +n10062042 epigone, epigon +n10062176 epileptic +n10062275 Episcopalian +n10062492 equerry +n10062594 equerry +n10062716 erotic +n10062905 escapee +n10062996 escapist, dreamer, wishful thinker +n10063635 Eskimo, Esquimau, Inuit +n10063919 espionage agent +n10064831 esthetician, aesthetician +n10064977 etcher +n10065758 ethnologist +n10066206 Etonian +n10066314 etymologist +n10067011 evangelist, revivalist, gospeler, gospeller +n10067305 Evangelist +n10067600 event planner +n10067968 examiner, inspector +n10068234 examiner, tester, quizzer +n10068425 exarch +n10069296 executant +n10069981 executive secretary +n10070108 executive vice president +n10070377 executrix +n10070449 exegete +n10070563 exhibitor, exhibitioner, shower +n10070711 exhibitionist, show-off +n10071332 exile, expatriate, expat +n10071557 existentialist, existentialist philosopher, existential philosopher +n10072054 exorcist, exorciser +n10074249 ex-spouse +n10074578 extern, medical extern +n10074735 extremist +n10074841 extrovert, extravert +n10075299 eyewitness +n10075693 facilitator +n10076224 fairy godmother +n10076483 falangist, phalangist +n10076604 falconer, hawker +n10076957 falsifier +n10077106 familiar +n10077593 fan, buff, devotee, lover +n10077879 fanatic, fiend +n10078131 fancier, enthusiast +n10078719 farm boy +n10078806 farmer, husbandman, granger, sodbuster +n10079399 farmhand, fieldhand, field hand, farm worker +n10079893 fascist +n10080117 fascista +n10080508 fatalist, determinist, predestinarian, predestinationist +n10080869 father, male parent, begetter +n10081204 Father, Padre +n10081842 father-figure +n10082043 father-in-law +n10082299 Fauntleroy, Little Lord Fauntleroy +n10082423 Fauve, fauvist +n10082562 favorite son +n10082687 featherweight +n10082997 federalist +n10083677 fellow traveler, fellow traveller +n10083823 female aristocrat +n10084043 female offspring +n10084295 female child, girl, little girl +n10085101 fence +n10085869 fiance, groom-to-be +n10086383 fielder, fieldsman +n10086744 field judge +n10087434 fighter pilot +n10087736 filer +n10088200 film director, director +n10090745 finder +n10091349 fire chief, fire marshal +n10091450 fire-eater, fire-swallower +n10091564 fire-eater, hothead +n10091651 fireman, firefighter, fire fighter, fire-eater +n10091861 fire marshall +n10091997 fire walker +n10092488 first baseman, first sacker +n10092643 firstborn, eldest +n10092794 first lady +n10092978 first lieutenant, 1st lieutenant +n10093167 first offender +n10093475 first sergeant, sergeant first class +n10093818 fishmonger, fishwife +n10094320 flagellant +n10094584 flag officer +n10094782 flak catcher, flak, flack catcher, flack +n10095265 flanker back, flanker +n10095420 flapper +n10095769 flatmate +n10095869 flatterer, adulator +n10096126 flibbertigibbet, foolish woman +n10096508 flight surgeon +n10097262 floorwalker, shopwalker +n10097477 flop, dud, washout +n10097590 Florentine +n10097842 flower girl +n10097995 flower girl +n10098245 flutist, flautist, flute player +n10098388 fly-by-night +n10098517 flyweight +n10098624 flyweight +n10098710 foe, enemy +n10098862 folk dancer +n10099002 folk poet +n10099375 follower +n10101308 football hero +n10101634 football player, footballer +n10101981 footman +n10102800 forefather, father, sire +n10103155 foremother +n10103228 foreign agent +n10103921 foreigner, outsider +n10104064 boss +n10104487 foreman +n10104756 forester, tree farmer, arboriculturist +n10104888 forewoman +n10105085 forger, counterfeiter +n10105733 forward +n10105906 foster-brother, foster brother +n10106387 foster-father, foster father +n10106509 foster-mother, foster mother +n10106995 foster-sister, foster sister +n10107173 foster-son, foster son +n10107303 founder, beginner, founding father, father +n10108018 foundress +n10108089 four-minute man +n10108464 framer +n10108832 Francophobe +n10109443 freak, monster, monstrosity, lusus naturae +n10109662 free agent, free spirit, freewheeler +n10109826 free agent +n10110093 freedom rider +n10110731 free-liver +n10110893 freeloader +n10111358 free trader +n10111779 Freudian +n10111903 friar, mendicant +n10112129 monk, monastic +n10113249 frontierswoman +n10113583 front man, front, figurehead, nominal head, straw man, strawman +n10113869 frotteur +n10114476 fucker +n10114550 fucker +n10114662 fuddy-duddy +n10115430 fullback +n10115946 funambulist, tightrope walker +n10116370 fundamentalist +n10116478 fundraiser +n10116702 futurist +n10117017 gadgeteer +n10117267 gagman, gagster, gagwriter +n10117415 gagman, standup comedian +n10117739 gainer, weight gainer +n10117851 gal +n10118301 galoot +n10118743 gambist +n10118844 gambler +n10119609 gamine +n10120330 garbage man, garbageman, garbage collector, garbage carter, garbage hauler, refuse collector, dustman +n10120671 gardener +n10121026 garment cutter +n10121246 garroter, garrotter, strangler, throttler, choker +n10121714 gasman +n10121800 gastroenterologist +n10122300 gatherer +n10122531 gawker +n10123122 gendarme +n10123844 general, full general +n10126177 generator, source, author +n10126424 geneticist +n10126708 genitor +n10127186 gent +n10127689 geologist +n10128519 geophysicist +n10128748 ghostwriter, ghost +n10129338 Gibson girl +n10129825 girl, miss, missy, young lady, young woman, fille +n10130686 girlfriend, girl, lady friend +n10130877 girlfriend +n10131151 girl wonder +n10131268 Girondist, Girondin +n10131590 gitano +n10131815 gladiator +n10132035 glassblower +n10132502 gleaner +n10134178 goat herder, goatherd +n10134396 godchild +n10134760 godfather +n10134982 godparent +n10135129 godson +n10135197 gofer +n10135297 goffer, gopher +n10136615 goldsmith, goldworker, gold-worker +n10136959 golfer, golf player, linksman +n10137825 gondolier, gondoliere +n10138369 good guy +n10138472 good old boy, good ole boy, good ol' boy +n10139077 good Samaritan +n10139651 gossip columnist +n10140051 gouger +n10140597 governor general +n10140683 grabber +n10140783 grader +n10140929 graduate nurse, trained nurse +n10141364 grammarian, syntactician +n10141732 granddaughter +n10142166 grande dame +n10142391 grandfather, gramps, granddad, grandad, granddaddy, grandpa +n10142537 Grand Inquisitor +n10142747 grandma, grandmother, granny, grannie, gran, nan, nanna +n10142946 grandmaster +n10143172 grandparent +n10143595 grantee +n10143725 granter +n10144338 grass widower, divorced man +n10145239 great-aunt, grandaunt +n10145340 great grandchild +n10145480 great granddaughter +n10145590 great grandmother +n10145774 great grandparent +n10145902 great grandson +n10146002 great-nephew, grandnephew +n10146104 great-niece, grandniece +n10146416 Green Beret +n10146816 grenadier, grenade thrower +n10146927 greeter, saluter, welcomer +n10147121 gringo +n10147262 grinner +n10147710 grocer +n10147935 groom, bridegroom +n10148035 groom, bridegroom +n10148305 grouch, grump, crank, churl, crosspatch +n10148825 group captain +n10149436 grunter +n10149867 prison guard, jailer, jailor, gaoler, screw, turnkey +n10150071 guard +n10150794 guesser +n10150940 guest, invitee +n10151133 guest +n10151261 guest of honor +n10151367 guest worker, guestworker +n10151570 guide +n10151760 guitarist, guitar player +n10152306 gunnery sergeant +n10152616 guru +n10152763 guru +n10153155 guvnor +n10153414 guy, cat, hombre, bozo +n10153594 gymnast +n10153865 gym rat +n10154013 gynecologist, gynaecologist, woman's doctor +n10154186 Gypsy, Gipsy, Romany, Rommany, Romani, Roma, Bohemian +n10154601 hack, drudge, hacker +n10155222 hacker, cyber-terrorist, cyberpunk +n10155600 haggler +n10155849 hairdresser, hairstylist, stylist, styler +n10156629 hakim, hakeem +n10156831 Hakka +n10157016 halberdier +n10157128 halfback +n10157271 half blood +n10158506 hand +n10159045 animal trainer, handler +n10159289 handyman, jack of all trades, odd-job man +n10159533 hang glider +n10160188 hardliner +n10160280 harlequin +n10160412 harmonizer, harmoniser +n10161622 hash head +n10162016 hatchet man, iceman +n10162194 hater +n10162354 hatmaker, hatter, milliner, modiste +n10164025 headman, tribal chief, chieftain, chief +n10164233 headmaster, schoolmaster, master +n10164492 head nurse +n10165448 hearer, listener, auditor, attender +n10166189 heartbreaker +n10166394 heathen, pagan, gentile, infidel +n10167152 heavyweight +n10167361 heavy +n10167565 heckler, badgerer +n10167838 hedger +n10168012 hedger, equivocator, tergiversator +n10168183 hedonist, pagan, pleasure seeker +n10168584 heir, inheritor, heritor +n10168837 heir apparent +n10169147 heiress, inheritress, inheritrix +n10169241 heir presumptive +n10169419 hellion, heller, devil +n10169796 helmsman, steersman, steerer +n10170060 hire +n10170681 hematologist, haematologist +n10170866 hemiplegic +n10171219 herald, trumpeter +n10171456 herbalist, herb doctor +n10171567 herder, herdsman, drover +n10172080 hermaphrodite, intersex, gynandromorph, androgyne, epicene, epicene person +n10173410 heroine +n10173579 heroin addict +n10173665 hero worshiper, hero worshipper +n10173771 Herr +n10174253 highbinder +n10174330 highbrow +n10174445 high commissioner +n10174589 highflier, highflyer +n10174695 Highlander, Scottish Highlander, Highland Scot +n10174971 high-muck-a-muck, pooh-bah +n10175248 high priest +n10175725 highjacker, hijacker +n10176913 hireling, pensionary +n10177150 historian, historiographer +n10178077 hitchhiker +n10178216 hitter, striker +n10179069 hobbyist +n10180580 holdout +n10180791 holdover, hangover +n10180923 holdup man, stickup man +n10181445 homeboy +n10181547 homeboy +n10181799 home buyer +n10181878 homegirl +n10182190 homeless, homeless person +n10182402 homeopath, homoeopath +n10183347 honest woman +n10183931 honor guard, guard of honor +n10184505 hooker +n10185148 hoper +n10185483 hornist +n10185793 horseman, equestrian, horseback rider +n10186068 horse trader +n10186143 horsewoman +n10186216 horse wrangler, wrangler +n10186350 horticulturist, plantsman +n10186686 hospital chaplain +n10186774 host, innkeeper, boniface +n10187130 host +n10187491 hostess +n10187990 hotelier, hotelkeeper, hotel manager, hotelman, hosteller +n10188715 housekeeper +n10188856 housemaster +n10188957 housemate +n10189278 house physician, resident, resident physician +n10189597 house sitter +n10190122 housing commissioner +n10190516 huckster, cheap-jack +n10191001 hugger +n10191388 humanist, humanitarian +n10191613 humanitarian, do-gooder, improver +n10192839 hunk +n10193650 huntress +n10194231 ex-husband, ex +n10194775 hydrologist +n10195056 hyperope +n10195155 hypertensive +n10195261 hypnotist, hypnotizer, hypnotiser, mesmerist, mesmerizer +n10195593 hypocrite, dissembler, dissimulator, phony, phoney, pretender +n10196404 iceman +n10196725 iconoclast +n10197392 ideologist, ideologue +n10198437 idol, matinee idol +n10198832 idolizer, idoliser +n10199251 imam, imaum +n10200246 imperialist +n10200781 important person, influential person, personage +n10202225 inamorato +n10202624 incumbent, officeholder +n10202763 incurable +n10203949 inductee +n10204177 industrialist +n10204833 infanticide +n10205231 inferior +n10205344 infernal +n10205457 infielder +n10205714 infiltrator +n10206173 informer, betrayer, rat, squealer, blabber +n10206506 ingenue +n10206629 ingenue +n10207077 polymath +n10207169 in-law, relative-in-law +n10208189 inquiry agent +n10208847 inspector +n10208950 inspector general +n10209082 instigator, initiator +n10209731 insurance broker, insurance agent, general agent, underwriter +n10210137 insurgent, insurrectionist, freedom fighter, rebel +n10210512 intelligence analyst +n10210648 interior designer, designer, interior decorator, house decorator, room decorator, decorator +n10210911 interlocutor, conversational partner +n10211036 interlocutor, middleman +n10211666 International Grandmaster +n10211830 internationalist +n10212231 internist +n10212501 interpreter, translator +n10212780 interpreter +n10213034 intervenor +n10213429 introvert +n10214062 invader, encroacher +n10214390 invalidator, voider, nullifier +n10215623 investigator +n10216106 investor +n10216403 invigilator +n10217208 irreligionist +n10218043 Ivy Leaguer +n10218164 Jack of all trades +n10218292 Jacksonian +n10219240 Jane Doe +n10219453 janissary +n10219879 Jat +n10220080 Javanese, Javan +n10220924 Jekyll and Hyde +n10221312 jester, fool, motley fool +n10221520 Jesuit +n10222170 jezebel +n10222259 jilt +n10222497 jobber, middleman, wholesaler +n10222716 job candidate +n10223069 Job's comforter +n10223177 jockey +n10223606 John Doe +n10224578 journalist +n10225219 judge, justice, jurist +n10225931 judge advocate +n10226413 juggler +n10227166 Jungian +n10227266 junior +n10227393 junior +n10227490 Junior, Jr, Jnr +n10227698 junior lightweight +n10227793 junior middleweight +n10227985 jurist, legal expert +n10228278 juror, juryman, jurywoman +n10228468 justice of the peace +n10228592 justiciar, justiciary +n10228712 kachina +n10229883 keyboardist +n10230216 Khedive +n10233248 kingmaker +n10235024 king, queen, world-beater +n10235269 King's Counsel +n10235385 Counsel to the Crown +n10236304 kin, kinsperson, family +n10236521 enate, matrikin, matrilineal kin, matrisib, matrilineal sib +n10236842 kink +n10237069 kinswoman +n10237196 kisser, osculator +n10237464 kitchen help +n10237556 kitchen police, KP +n10237676 Klansman, Ku Kluxer, Kluxer +n10237799 kleptomaniac +n10238272 kneeler +n10238375 knight +n10239928 knocker +n10240082 knower, apprehender +n10240235 know-it-all, know-all +n10240417 kolkhoznik +n10240821 Kshatriya +n10241024 labor coach, birthing coach, doula, monitrice +n10241300 laborer, manual laborer, labourer, jack +n10242328 Labourite +n10243137 lady +n10243273 lady-in-waiting +n10243483 lady's maid +n10243664 lama +n10243872 lamb, dear +n10244108 lame duck +n10244359 lamplighter +n10244913 land agent +n10245029 landgrave +n10245341 landlubber, lubber, landsman +n10245507 landlubber, landsman, landman +n10245639 landowner, landholder, property owner +n10245863 landscape architect, landscape gardener, landscaper, landscapist +n10246317 langlaufer +n10246395 languisher +n10246703 lapidary, lapidarist +n10247358 lass, lassie, young girl, jeune fille +n10247880 Latin +n10248008 Latin +n10248198 latitudinarian +n10248377 Jehovah's Witness +n10249191 law agent +n10249270 lawgiver, lawmaker +n10249459 lawman, law officer, peace officer +n10249869 law student +n10249950 lawyer, attorney +n10250712 lay reader +n10251329 lazybones +n10251612 leaker +n10252075 leaseholder, lessee +n10252222 lector, lecturer, reader +n10252354 lector, reader +n10252547 lecturer +n10253122 left-hander, lefty, southpaw +n10253296 legal representative +n10253479 legate, official emissary +n10253611 legatee +n10253703 legionnaire, legionary +n10255459 letterman +n10257221 liberator +n10258602 licenser +n10258786 licentiate +n10259348 lieutenant +n10259780 lieutenant colonel, light colonel +n10259997 lieutenant commander +n10260473 lieutenant junior grade, lieutenant JG +n10260706 life +n10260800 lifeguard, lifesaver +n10261211 life tenant +n10261511 light flyweight +n10261624 light heavyweight, cruiserweight +n10261862 light heavyweight +n10262343 light-o'-love, light-of-love +n10262445 lightweight +n10262561 lightweight +n10262655 lightweight +n10262880 lilliputian +n10263146 limnologist +n10263411 lineman +n10263790 line officer +n10265281 lion-hunter +n10265801 lisper +n10265891 lister +n10266016 literary critic +n10266328 literate, literate person +n10266848 litigant, litigator +n10267166 litterer, litterbug, litter lout +n10267311 little brother +n10267865 little sister +n10268629 lobbyist +n10269199 locksmith +n10269289 locum tenens, locum +n10271677 Lord, noble, nobleman +n10272782 loser +n10272913 loser, also-ran +n10273064 failure, loser, nonstarter, unsuccessful person +n10274173 Lothario +n10274318 loudmouth, blusterer +n10274815 lowerclassman, underclassman +n10275249 Lowlander, Scottish Lowlander, Lowland Scot +n10275395 loyalist, stalwart +n10275848 Luddite +n10276045 lumberman, lumberjack, logger, feller, faller +n10276477 lumper +n10276942 bedlamite +n10277027 pyromaniac +n10277638 lutist, lutanist, lutenist +n10277815 Lutheran +n10277912 lyricist, lyrist +n10278456 macebearer, mace, macer +n10279018 machinist, mechanic, shop mechanic +n10279778 madame +n10280034 maenad +n10280130 maestro, master +n10280598 magdalen +n10280674 magician, prestidigitator, conjurer, conjuror, illusionist +n10281546 magus +n10281770 maharani, maharanee +n10281896 mahatma +n10282482 maid, maiden +n10282672 maid, maidservant, housemaid, amah +n10283170 major +n10283366 major +n10283546 major-domo, seneschal +n10284064 maker, shaper +n10284871 malahini +n10284965 malcontent +n10286282 malik +n10286539 malingerer, skulker, shammer +n10286749 Malthusian +n10288964 adonis +n10289039 man +n10289176 man +n10289462 manageress +n10289766 mandarin +n10290422 maneuverer, manoeuvrer +n10290541 maniac +n10290813 Manichaean, Manichean, Manichee +n10290919 manicurist +n10291110 manipulator +n10291469 man-at-arms +n10291822 man of action, man of deeds +n10291942 man of letters +n10292316 manufacturer, producer +n10293332 marcher, parader +n10293590 marchioness, marquise +n10293861 margrave +n10294020 margrave +n10294139 Marine, devil dog, leatherneck, shipboard soldier +n10295371 marquess +n10295479 marquis, marquess +n10296176 marshal, marshall +n10296444 martinet, disciplinarian, moralist +n10297234 mascot +n10297367 masochist +n10297531 mason, stonemason +n10297841 masquerader, masker, masquer +n10298202 masseur +n10298271 masseuse +n10298647 master +n10298912 master, captain, sea captain, skipper +n10299125 master-at-arms +n10299250 master of ceremonies, emcee, host +n10299700 masturbator, onanist +n10299875 matchmaker, matcher, marriage broker +n10300041 mate, first mate +n10300154 mate +n10300303 mate +n10300500 mater +n10300654 material +n10300829 materialist +n10302576 matriarch, materfamilias +n10302700 matriarch +n10302905 matriculate +n10303037 matron +n10303814 mayor, city manager +n10304086 mayoress +n10304650 mechanical engineer +n10304914 medalist, medallist, medal winner +n10305635 medical officer, medic +n10305802 medical practitioner, medical man +n10306004 medical scientist +n10306279 medium, spiritualist, sensitive +n10306496 megalomaniac +n10306595 melancholic, melancholiac +n10306890 Melkite, Melchite +n10307114 melter +n10308066 nonmember +n10308168 board member +n10308275 clansman, clanswoman, clan member +n10308504 memorizer, memoriser +n10308653 Mendelian +n10308732 mender, repairer, fixer +n10310783 Mesoamerican +n10311506 messmate +n10311661 mestiza +n10312287 meteorologist +n10312491 meter maid +n10312600 Methodist +n10313000 Metis +n10313239 metropolitan +n10313441 mezzo-soprano, mezzo +n10313724 microeconomist, microeconomic expert +n10314054 middle-aged man +n10314182 middlebrow +n10314517 middleweight +n10314836 midwife, accoucheuse +n10315217 mikado, tenno +n10315456 Milanese +n10315561 miler +n10315730 miles gloriosus +n10316360 military attache +n10316527 military chaplain, padre, Holy Joe, sky pilot +n10316862 military leader +n10317007 military officer, officer +n10317500 military policeman, MP +n10317963 mill agent +n10318293 mill-hand, factory worker +n10318607 millionairess +n10318686 millwright +n10319313 minder +n10320484 mining engineer +n10320863 minister, government minister +n10321126 ministrant +n10321340 minor leaguer, bush leaguer +n10321632 Minuteman +n10321882 misanthrope, misanthropist +n10322238 misfit +n10323634 mistress +n10323752 mistress, kept woman, fancy woman +n10323999 mixed-blood +n10324560 model, poser +n10325549 class act +n10325774 modeler, modeller +n10326776 modifier +n10327143 molecular biologist +n10327987 Monegasque, Monacan +n10328123 monetarist +n10328328 moneygrubber +n10328437 moneymaker +n10328696 Mongoloid +n10328941 monolingual +n10329035 monologist +n10330593 moonlighter +n10330931 moralist +n10331098 morosoph +n10331167 morris dancer +n10331258 mortal enemy +n10331347 mortgagee, mortgage holder +n10331841 mortician, undertaker, funeral undertaker, funeral director +n10332110 moss-trooper +n10332385 mother, female parent +n10332861 mother +n10332953 mother +n10333044 mother figure +n10333165 mother hen +n10333317 mother-in-law +n10333439 mother's boy, mamma's boy, mama's boy +n10333601 mother's daughter +n10333838 motorcycle cop, motorcycle policeman, speed cop +n10334009 motorcyclist +n10334461 Mound Builder +n10334782 mountebank, charlatan +n10335246 mourner, griever, sorrower, lamenter +n10335801 mouthpiece, mouth +n10335931 mover +n10336411 moviegoer, motion-picture fan +n10336904 muffin man +n10337488 mugwump, independent, fencesitter +n10338231 Mullah, Mollah, Mulla +n10338391 muncher +n10339179 murderess +n10339251 murder suspect +n10339717 musher +n10340312 musician, instrumentalist, player +n10341243 musicologist +n10341343 music teacher +n10341446 musketeer +n10341573 Muslimah +n10341955 mutilator, maimer, mangler +n10342180 mutineer +n10342367 mute, deaf-mute, deaf-and-dumb person +n10342543 mutterer, mumbler, murmurer +n10342893 muzzler +n10342992 Mycenaen +n10343088 mycologist +n10343355 myope +n10343449 myrmidon +n10343554 mystic, religious mystic +n10343869 mythologist +n10344121 naif +n10344203 nailer +n10344319 namby-pamby +n10344656 name dropper +n10344774 namer +n10345015 nan +n10345100 nanny, nursemaid, nurse +n10345302 narc, nark, narcotics agent +n10345422 narcissist, narcist +n10345659 nark, copper's nark +n10346015 nationalist +n10347204 nautch girl +n10347446 naval commander +n10348526 Navy SEAL, SEAL +n10349243 obstructionist, obstructor, obstructer, resister, thwarter +n10349750 Nazarene +n10349836 Nazarene, Ebionite +n10350220 Nazi, German Nazi +n10350774 nebbish, nebbech +n10351064 necker +n10353016 neonate, newborn, newborn infant, newborn baby +n10353355 nephew +n10353928 neurobiologist +n10354265 neurologist, brain doctor +n10354754 neurosurgeon, brain surgeon +n10355142 neutral +n10355306 neutralist +n10355449 newcomer, fledgling, fledgeling, starter, neophyte, freshman, newbie, entrant +n10355688 newcomer +n10355806 New Dealer +n10356450 newspaper editor +n10356877 newsreader, news reader +n10357012 Newtonian +n10357613 niece +n10357737 niggard, skinflint, scrooge, churl +n10358032 night porter +n10358124 night rider, nightrider +n10358575 NIMBY +n10359117 niqaabi +n10359422 nitpicker +n10359546 Nobelist, Nobel Laureate +n10359659 NOC +n10360366 noncandidate +n10360747 noncommissioned officer, noncom, enlisted officer +n10361060 nondescript +n10361194 nondriver +n10361296 nonparticipant +n10361525 nonperson, unperson +n10362003 nonresident +n10362319 nonsmoker +n10362557 Northern Baptist +n10363445 noticer +n10363573 novelist +n10364198 novitiate, novice +n10364502 nuclear chemist, radiochemist +n10365514 nudger +n10366145 nullipara +n10366276 number theorist +n10366966 nurse +n10368291 nursling, nurseling, suckling +n10368528 nymph, houri +n10368624 nymphet +n10368711 nympholept +n10368798 nymphomaniac, nympho +n10369095 oarswoman +n10369317 oboist +n10369417 obscurantist +n10369528 observer, commentator +n10369699 obstetrician, accoucheur +n10369955 occupier +n10370381 occultist +n10370955 wine lover +n10371052 offerer, offeror +n10371221 office-bearer +n10371330 office boy +n10371450 officeholder, officer +n10373390 officiant +n10373525 Federal, Fed, federal official +n10374541 oilman +n10374849 oil tycoon +n10374943 old-age pensioner +n10375052 old boy +n10375314 old lady +n10375402 old man +n10376523 oldster, old person, senior citizen, golden ager +n10376890 old-timer, oldtimer, gaffer, old geezer, antique +n10377021 old woman +n10377185 oligarch +n10377291 Olympian +n10377542 omnivore +n10377633 oncologist +n10378026 onlooker, looker-on +n10378113 onomancer +n10378780 operator +n10379376 opportunist, self-seeker +n10380126 optimist +n10380499 Orangeman +n10380672 orator, speechmaker, rhetorician, public speaker, speechifier +n10381804 orderly, hospital attendant +n10381981 orderly +n10382157 orderly sergeant +n10382302 ordinand +n10382480 ordinary +n10382710 organ-grinder +n10382825 organist +n10383094 organization man +n10383237 organizer, organiser, arranger +n10383505 organizer, organiser, labor organizer +n10383816 originator, conceiver, mastermind +n10384214 ornithologist, bird watcher +n10384392 orphan +n10384496 orphan +n10385566 osteopath, osteopathist +n10386196 out-and-outer +n10386754 outdoorswoman +n10386874 outfielder +n10386984 outfielder +n10387196 right fielder +n10387324 right-handed pitcher, right-hander +n10387836 outlier +n10389865 owner-occupier +n10389976 oyabun +n10390600 packrat +n10390698 padrone +n10390807 padrone +n10391416 page, pageboy +n10393909 painter +n10394434 Paleo-American, Paleo-Amerind, Paleo-Indian +n10394786 paleontologist, palaeontologist, fossilist +n10395073 pallbearer, bearer +n10395209 palmist, palmister, chiromancer +n10395390 pamperer, spoiler, coddler, mollycoddler +n10395828 Panchen Lama +n10396106 panelist, panellist +n10396337 panhandler +n10396727 paparazzo +n10396908 paperboy +n10397001 paperhanger, paperer +n10397142 paperhanger +n10397392 papoose, pappoose +n10399130 pardoner +n10400003 paretic +n10400108 parishioner +n10400205 park commissioner +n10400437 Parliamentarian, Member of Parliament +n10400618 parliamentary agent +n10400998 parodist, lampooner +n10401204 parricide +n10401331 parrot +n10401639 partaker, sharer +n10402709 part-timer +n10402824 party +n10403633 party man, party liner +n10403876 passenger, rider +n10404426 passer +n10404998 paster +n10405540 pater +n10405694 patient +n10406266 patriarch +n10406391 patriarch +n10406765 patriarch, paterfamilias +n10407310 patriot, nationalist +n10407954 patron, sponsor, supporter +n10408809 patternmaker +n10409459 pawnbroker +n10409752 payer, remunerator +n10410246 peacekeeper +n10410996 peasant +n10411356 pedant, bookworm, scholastic +n10411551 peddler, pedlar, packman, hawker, pitchman +n10411867 pederast, paederast, child molester +n10414239 penologist +n10414768 pentathlete +n10414865 Pentecostal, Pentecostalist +n10415037 percussionist +n10416567 periodontist +n10417288 peshmerga +n10417424 personality +n10417551 personal representative +n10417682 personage +n10417843 persona grata +n10417969 persona non grata +n10418101 personification +n10418735 perspirer, sweater +n10419047 pervert, deviant, deviate, degenerate +n10419472 pessimist +n10419630 pest, blighter, cuss, pesterer, gadfly +n10419785 Peter Pan +n10420031 petitioner, suppliant, supplicant, requester +n10420277 petit juror, petty juror +n10420507 pet sitter, critter sitter +n10420649 petter, fondler +n10421016 Pharaoh, Pharaoh of Egypt +n10421470 pharmacist, druggist, chemist, apothecary, pill pusher, pill roller +n10421956 philanthropist, altruist +n10422405 philatelist, stamp collector +n10425946 philosopher +n10426454 phonetician +n10426630 phonologist +n10427223 photojournalist +n10427359 photometrist, photometrician +n10427764 physical therapist, physiotherapist +n10428004 physicist +n10431122 piano maker +n10431625 picker, chooser, selector +n10432189 picnicker, picknicker +n10432441 pilgrim +n10432875 pill +n10432957 pillar, mainstay +n10433077 pill head +n10433452 pilot +n10433610 Piltdown man, Piltdown hoax +n10433737 pimp, procurer, panderer, pander, pandar, fancy man, ponce +n10435169 pipe smoker +n10435251 pip-squeak, squirt, small fry +n10435716 pisser, urinator +n10435988 pitcher, hurler, twirler +n10436334 pitchman +n10437014 placeman, placeseeker +n10437137 placer miner +n10437262 plagiarist, plagiarizer, plagiariser, literary pirate, pirate +n10437698 plainsman +n10438172 planner, contriver, deviser +n10438619 planter, plantation owner +n10438842 plasterer +n10439373 platinum blond, platinum blonde +n10439523 platitudinarian +n10439727 playboy, man-about-town, Corinthian +n10439851 player, participant +n10441037 playmate, playfellow +n10441124 pleaser +n10441694 pledger +n10441962 plenipotentiary +n10442093 plier, plyer +n10442232 plodder, slowpoke, stick-in-the-mud, slowcoach +n10442417 plodder, slogger +n10442573 plotter, mapper +n10443032 plumber, pipe fitter +n10443659 pluralist +n10443830 pluralist +n10444194 poet +n10448322 pointsman +n10448455 point woman +n10449664 policyholder +n10450038 political prisoner +n10450161 political scientist +n10450303 politician, politico, pol, political leader +n10451450 politician +n10451590 pollster, poll taker, headcounter, canvasser +n10451858 polluter, defiler +n10453184 pool player +n10455619 portraitist, portrait painter, portrayer, limner +n10456070 poseuse +n10456138 positivist, rationalist +n10456696 postdoc, post doc +n10457214 poster girl +n10457444 postulator +n10457903 private citizen +n10458111 problem solver, solver, convergent thinker +n10458356 pro-lifer +n10458596 prosthetist +n10459882 postulant +n10460033 potboy, potman +n10461060 poultryman, poulterer +n10462588 power user +n10462751 power worker, power-station worker +n10462860 practitioner, practician +n10464052 prayer, supplicant +n10464542 preceptor, don +n10464711 predecessor +n10464870 preemptor, pre-emptor +n10465002 preemptor, pre-emptor +n10465451 premature baby, preterm baby, premature infant, preterm infant, preemie, premie +n10465831 presbyter +n10466198 presenter, sponsor +n10466564 presentist +n10466918 preserver +n10467179 president +n10467395 President of the United States, United States President, President, Chief Executive +n10468750 president, prexy +n10469611 press agent, publicity man, public relations man, PR man +n10469874 press photographer +n10470779 priest +n10471640 prima ballerina +n10471732 prima donna, diva +n10471859 prima donna +n10472129 primigravida, gravida I +n10472447 primordial dwarf, hypoplastic dwarf, true dwarf, normal dwarf +n10473453 prince charming +n10473562 prince consort +n10473789 princeling +n10473917 Prince of Wales +n10474064 princess +n10474343 princess royal +n10474446 principal, dealer +n10474645 principal, school principal, head teacher, head +n10475835 print seller +n10475940 prior +n10476467 private, buck private, common soldier +n10477713 probationer, student nurse +n10477955 processor +n10478118 process-server +n10478293 proconsul +n10478462 proconsul +n10478827 proctologist +n10478960 proctor, monitor +n10479135 procurator +n10479328 procurer, securer +n10481167 profit taker +n10481268 programmer, computer programmer, coder, software engineer +n10482054 promiser, promisor +n10482220 promoter, booster, plugger +n10482587 promulgator +n10482921 propagandist +n10483138 propagator, disseminator +n10483395 property man, propman, property master +n10483799 prophetess +n10483890 prophet +n10484858 prosecutor, public prosecutor, prosecuting officer, prosecuting attorney +n10485298 prospector +n10485883 protectionist +n10486166 protegee +n10486236 protozoologist +n10486561 provost marshal +n10487182 pruner, trimmer +n10487363 psalmist +n10487592 psephologist +n10488016 psychiatrist, head-shrinker, shrink +n10488309 psychic +n10488656 psycholinguist +n10489426 psychophysicist +n10490421 publican, tavern keeper +n10491998 pudge +n10492086 puerpera +n10492727 punching bag +n10493199 punter +n10493419 punter +n10493685 puppeteer +n10493835 puppy, pup +n10493922 purchasing agent +n10494195 puritan +n10494373 Puritan +n10495167 pursuer +n10495421 pusher, shover +n10495555 pusher, drug peddler, peddler, drug dealer, drug trafficker +n10495756 pusher, thruster +n10496393 putz +n10496489 Pygmy, Pigmy +n10497135 qadi +n10497534 quadriplegic +n10497645 quadruplet, quad +n10498046 quaker, trembler +n10498699 quarter +n10498816 quarterback, signal caller, field general +n10498986 quartermaster +n10499110 quartermaster general +n10499232 Quebecois +n10499355 queen, queen regnant, female monarch +n10499631 Queen of England +n10499857 queen +n10500217 queen +n10500419 queen consort +n10500603 queen mother +n10500824 Queen's Counsel +n10500942 question master, quizmaster +n10501453 quick study, sponge +n10501635 quietist +n10502046 quitter +n10502329 rabbi +n10502950 racist, racialist +n10503818 radiobiologist +n10504090 radiologic technologist +n10504206 radiologist, radiotherapist +n10505347 rainmaker +n10505613 raiser +n10505732 raja, rajah +n10505942 rake, rakehell, profligate, rip, blood, roue +n10506336 ramrod +n10506544 ranch hand +n10506915 ranker +n10507070 ranter, raver +n10507380 rape suspect +n10507482 rapper +n10507565 rapporteur +n10507692 rare bird, rara avis +n10508141 ratepayer +n10508379 raw recruit +n10508710 reader +n10509063 reading teacher +n10509161 realist +n10509810 real estate broker, real estate agent, estate agent, land agent, house agent +n10510245 rear admiral +n10510974 receiver +n10511771 reciter +n10512201 recruit, enlistee +n10512372 recruit, military recruit +n10512708 recruiter +n10512859 recruiting-sergeant +n10513509 redcap +n10513823 redhead, redheader, red-header, carrottop +n10513938 redneck, cracker +n10514051 reeler +n10514121 reenactor +n10514255 referral +n10514429 referee, ref +n10514784 refiner +n10515863 Reform Jew +n10516527 registered nurse, RN +n10517137 registrar +n10517283 Regius professor +n10518349 reliever, allayer, comforter +n10519126 anchorite, hermit +n10519494 religious leader +n10519984 remover +n10520286 Renaissance man, generalist +n10520544 renegade +n10520964 rentier +n10521100 repairman, maintenance man, service man +n10521662 reporter, newsman, newsperson +n10521853 newswoman +n10522035 representative +n10522324 reprobate, miscreant +n10522759 rescuer, recoverer, saver +n10523341 reservist +n10524076 resident commissioner +n10524223 respecter +n10524869 restaurateur, restauranter +n10525134 restrainer, controller +n10525436 retailer, retail merchant +n10525617 retiree, retired person +n10525878 returning officer +n10526534 revenant +n10527147 revisionist +n10527334 revolutionist, revolutionary, subversive, subverter +n10528023 rheumatologist +n10528148 Rhodesian man, Homo rhodesiensis +n10528493 rhymer, rhymester, versifier, poetizer, poetiser +n10529231 rich person, wealthy person, have +n10530150 rider +n10530383 riding master +n10530571 rifleman +n10530959 right-hander, right hander, righthander +n10531109 right-hand man, chief assistant, man Friday +n10531445 ringer +n10531838 ringleader +n10533874 roadman, road mender +n10533983 roarer, bawler, bellower, screamer, screecher, shouter, yeller +n10536134 rocket engineer, rocket scientist +n10536274 rocket scientist +n10536416 rock star +n10537708 Romanov, Romanoff +n10537906 romanticist, romantic +n10538629 ropemaker, rope-maker, roper +n10538733 roper +n10538853 roper +n10539015 ropewalker, ropedancer +n10539160 rosebud +n10539278 Rosicrucian +n10540114 Mountie +n10540252 Rough Rider +n10540656 roundhead +n10541833 civil authority, civil officer +n10542608 runner +n10542761 runner +n10542888 runner +n10543161 running back +n10543937 rusher +n10544232 rustic +n10544748 saboteur, wrecker, diversionist +n10545792 sadist +n10546428 sailing master, navigator +n10546633 sailor, crewman +n10548419 salesgirl, saleswoman, saleslady +n10548537 salesman +n10548681 salesperson, sales representative, sales rep +n10549510 salvager, salvor +n10550252 sandwichman +n10550369 sangoma +n10550468 sannup +n10551576 sapper +n10552393 Sassenach +n10553140 satrap +n10553235 saunterer, stroller, ambler +n10554024 Savoyard +n10554141 sawyer +n10554846 scalper +n10555059 scandalmonger +n10555430 scapegrace, black sheep +n10556033 scene painter +n10556518 schemer, plotter +n10556704 schizophrenic +n10556825 schlemiel, shlemiel +n10557246 schlockmeister, shlockmeister +n10557854 scholar, scholarly person, bookman, student +n10559009 scholiast +n10559288 schoolchild, school-age child, pupil +n10559508 schoolfriend +n10559683 Schoolman, medieval Schoolman +n10559996 schoolmaster +n10560106 schoolmate, classmate, schoolfellow, class fellow +n10560637 scientist +n10561222 scion +n10561320 scoffer, flouter, mocker, jeerer +n10561736 scofflaw +n10562135 scorekeeper, scorer +n10562283 scorer +n10562509 scourer +n10562968 scout, talent scout +n10563314 scoutmaster +n10563403 scrambler +n10563711 scratcher +n10564098 screen actor, movie actor +n10565502 scrutineer, canvasser +n10565667 scuba diver +n10566072 sculptor, sculpturer, carver, statue maker +n10567613 Sea Scout +n10567722 seasonal worker, seasonal +n10567848 seasoner +n10568200 second baseman, second sacker +n10568358 second cousin +n10568443 seconder +n10568608 second fiddle, second banana +n10568915 second-in-command +n10569011 second lieutenant, 2nd lieutenant +n10569179 second-rater, mediocrity +n10570019 secretary +n10570704 Secretary of Agriculture, Agriculture Secretary +n10571907 Secretary of Health and Human Services +n10572706 Secretary of State +n10572889 Secretary of the Interior, Interior Secretary +n10573957 sectarian, sectary, sectarist +n10574311 section hand +n10574538 secularist +n10574840 security consultant +n10575463 seeded player, seed +n10575594 seeder, cloud seeder +n10575787 seeker, searcher, quester +n10576223 segregate +n10576316 segregator, segregationist +n10576676 selectman +n10576818 selectwoman +n10576962 selfish person +n10577182 self-starter +n10577284 seller, marketer, vender, vendor, trafficker +n10577710 selling agent +n10577820 semanticist, semiotician +n10578021 semifinalist +n10578162 seminarian, seminarist +n10578471 senator +n10578656 sendee +n10579062 senior +n10579549 senior vice president +n10580030 separatist, separationist +n10580437 septuagenarian +n10580535 serf, helot, villein +n10581648 spree killer +n10581890 serjeant-at-law, serjeant, sergeant-at-law, sergeant +n10582604 server +n10582746 serviceman, military man, man, military personnel +n10583387 settler, colonist +n10583790 settler +n10585077 sex symbol +n10585217 sexton, sacristan +n10585628 shaheed +n10586166 Shakespearian, Shakespearean +n10586265 shanghaier, seizer +n10586444 sharecropper, cropper, sharecrop farmer +n10586903 shaver +n10586998 Shavian +n10588074 sheep +n10588357 sheik, tribal sheik, sheikh, tribal sheikh, Arab chief +n10588724 shelver +n10588965 shepherd +n10589666 ship-breaker +n10590146 shipmate +n10590239 shipowner +n10590452 shipping agent +n10590903 shirtmaker +n10591072 shogun +n10591811 shopaholic +n10592049 shop girl +n10592811 shop steward, steward +n10593521 shot putter +n10594147 shrew, termagant +n10594523 shuffler +n10594857 shyster, pettifogger +n10595164 sibling, sib +n10595647 sick person, diseased person, sufferer +n10596517 sightreader +n10596899 signaler, signaller +n10597505 signer +n10597745 signor, signior +n10597889 signora +n10598013 signore +n10598181 signorina +n10598459 silent partner, sleeping partner +n10598904 addle-head, addlehead, loon, birdbrain +n10599215 simperer +n10599806 singer, vocalist, vocalizer, vocaliser +n10601234 Sinologist +n10601362 sipper +n10602119 sirrah +n10602470 Sister +n10602985 sister, sis +n10603528 waverer, vacillator, hesitator, hesitater +n10603851 sitar player +n10604275 sixth-former +n10604380 skateboarder +n10604634 skeptic, sceptic, doubter +n10604880 sketcher +n10604979 skidder +n10605253 skier +n10605737 skinny-dipper +n10607291 skin-diver, aquanaut +n10607478 skinhead +n10609092 slasher +n10609198 slattern, slut, slovenly woman, trollop +n10610465 sleeper, slumberer +n10610850 sleeper +n10611267 sleeping beauty +n10611613 sleuth, sleuthhound +n10612210 slob, sloven, pig, slovenly person +n10612373 sloganeer +n10612518 slopseller, slop-seller +n10613996 smasher, stunner, knockout, beauty, ravisher, sweetheart, peach, lulu, looker, mantrap, dish +n10614507 smirker +n10614629 smith, metalworker +n10615179 smoothie, smoothy, sweet talker, charmer +n10615334 smuggler, runner, contrabandist, moon curser, moon-curser +n10616578 sneezer +n10617024 snob, prig, snot, snoot +n10617193 snoop, snooper +n10617397 snorer +n10618234 sob sister +n10618342 soccer player +n10618465 social anthropologist, cultural anthropologist +n10618685 social climber, climber +n10618848 socialist +n10619492 socializer, socialiser +n10619642 social scientist +n10619888 social secretary +n10620212 Socinian +n10620586 sociolinguist +n10620758 sociologist +n10621294 soda jerk, soda jerker +n10621400 sodalist +n10621514 sodomite, sodomist, sod, bugger +n10622053 soldier +n10624074 son, boy +n10624310 songster +n10624437 songstress +n10624540 songwriter, songster, ballad maker +n10625860 sorcerer, magician, wizard, necromancer, thaumaturge, thaumaturgist +n10626630 sorehead +n10627252 soul mate +n10628097 Southern Baptist +n10628644 sovereign, crowned head, monarch +n10629329 spacewalker +n10629647 Spanish American, Hispanic American, Hispanic +n10629939 sparring partner, sparring mate +n10630093 spastic +n10630188 speaker, talker, utterer, verbalizer, verbaliser +n10631131 native speaker +n10631309 Speaker +n10631654 speechwriter +n10632576 specialist, medical specialist +n10633298 specifier +n10633450 spectator, witness, viewer, watcher, looker +n10634464 speech therapist +n10634849 speedskater, speed skater +n10634990 spellbinder +n10635788 sphinx +n10636488 spinster, old maid +n10637483 split end +n10638922 sport, sportsman, sportswoman +n10639238 sport, summercater +n10639359 sporting man, outdoor man +n10639637 sports announcer, sportscaster, sports commentator +n10639817 sports editor +n10641223 sprog +n10642596 square dancer +n10642705 square shooter, straight shooter, straight arrow +n10643095 squatter +n10643837 squire +n10643937 squire +n10644598 staff member, staffer +n10645017 staff sergeant +n10645223 stage director +n10646032 stainer +n10646140 stakeholder +n10646433 stalker +n10646641 stalking-horse +n10646780 stammerer, stutterer +n10646942 stamper, stomper, tramper, trampler +n10647745 standee +n10648237 stand-in, substitute, relief, reliever, backup, backup man, fill-in +n10648696 star, principal, lead +n10649197 starlet +n10649308 starter, dispatcher +n10650162 statesman, solon, national leader +n10652605 state treasurer +n10652703 stationer, stationery seller +n10654015 stenographer, amanuensis, shorthand typist +n10654211 stentor +n10654321 stepbrother, half-brother, half brother +n10654827 stepmother +n10654932 stepparent +n10655169 stevedore, loader, longshoreman, docker, dockhand, dock worker, dockworker, dock-walloper, lumper +n10655442 steward +n10655594 steward, flight attendant +n10655730 steward +n10655986 stickler +n10656120 stiff +n10656223 stifler, smotherer +n10656969 stipendiary, stipendiary magistrate +n10657306 stitcher +n10657556 stockjobber +n10657835 stock trader +n10658304 stockist +n10659042 stoker, fireman +n10659762 stooper +n10660128 store detective +n10660621 strafer +n10660883 straight man, second banana +n10661002 stranger, alien, unknown +n10661216 stranger +n10661563 strategist, strategian +n10661732 straw boss, assistant foreman +n10663315 streetwalker, street girl, hooker, hustler, floozy, floozie, slattern +n10663549 stretcher-bearer, litter-bearer +n10665302 struggler +n10665587 stud, he-man, macho-man +n10665698 student, pupil, educatee +n10666752 stumblebum, palooka +n10667477 stylist +n10667709 subaltern +n10667863 subcontractor +n10668450 subduer, surmounter, overcomer +n10668666 subject, case, guinea pig +n10669991 subordinate, subsidiary, underling, foot soldier +n10671042 substitute, reserve, second-stringer +n10671613 successor, heir +n10671736 successor, replacement +n10671898 succorer, succourer +n10672371 Sufi +n10672540 suffragan, suffragan bishop +n10672662 suffragette +n10673296 sugar daddy +n10673776 suicide bomber +n10674130 suitor, suer, wooer +n10674713 sumo wrestler +n10675010 sunbather +n10675142 sundowner +n10675609 super heavyweight +n10676018 superior, higher-up, superordinate +n10676434 supermom +n10676569 supernumerary, spear carrier, extra +n10678937 supremo +n10679174 surgeon, operating surgeon, sawbones +n10679503 Surgeon General +n10679610 Surgeon General +n10679723 surpriser +n10680609 surveyor +n10680796 surveyor +n10681194 survivor, subsister +n10681557 sutler, victualer, victualler, provisioner +n10682713 sweeper +n10682953 sweetheart, sweetie, steady, truelove +n10683675 swinger, tramp +n10684146 switcher, whipper +n10684630 swot, grind, nerd, wonk, dweeb +n10684827 sycophant, toady, crawler, lackey, ass-kisser +n10685398 sylph +n10686073 sympathizer, sympathiser, well-wisher +n10686517 symphonist +n10686694 syncopator +n10686885 syndic +n10688356 tactician +n10688811 tagger +n10689306 tailback +n10690268 tallyman, tally clerk +n10690421 tallyman +n10690648 tanker, tank driver +n10691318 tapper, wiretapper, phone tapper +n10691937 Tartuffe, Tartufe +n10692090 Tarzan +n10692482 taster, taste tester, taste-tester, sampler +n10692883 tax assessor, assessor +n10693235 taxer +n10693334 taxi dancer +n10693824 taxonomist, taxonomer, systematist +n10694258 teacher, instructor +n10694939 teaching fellow +n10695450 tearaway +n10696101 technical sergeant +n10696508 technician +n10697135 Ted, Teddy boy +n10697282 teetotaler, teetotaller, teetotalist +n10698368 television reporter, television newscaster, TV reporter, TV newsman +n10699558 temporizer, temporiser +n10699752 tempter +n10699981 term infant +n10700105 toiler +n10700201 tenant, renter +n10700640 tenant +n10700963 tenderfoot +n10701180 tennis player +n10701644 tennis pro, professional tennis player +n10701962 tenor saxophonist, tenorist +n10702167 termer +n10702615 terror, scourge, threat +n10703221 tertigravida, gravida III +n10703336 testator, testate +n10703480 testatrix +n10703692 testee, examinee +n10704238 test-tube baby +n10704712 Texas Ranger, Ranger +n10704886 thane +n10705448 theatrical producer +n10705615 theologian, theologist, theologizer, theologiser +n10706812 theorist, theoretician, theorizer, theoriser, idealogue +n10707134 theosophist +n10707233 therapist, healer +n10707707 Thessalonian +n10708292 thinker, creative thinker, mind +n10708454 thinker +n10709529 thrower +n10710171 thurifer +n10710259 ticket collector, ticket taker +n10710778 tight end +n10710913 tiler +n10711483 timekeeper, timer +n10711766 Timorese +n10712229 tinkerer, fiddler +n10712374 tinsmith, tinner +n10712474 tinter +n10712690 tippler, social drinker +n10712835 tipster, tout +n10713254 T-man +n10713686 toastmaster, symposiarch +n10713843 toast mistress +n10714195 tobogganist +n10715030 tomboy, romp, hoyden +n10715347 toolmaker +n10715789 torchbearer +n10716576 Tory +n10716864 Tory +n10717055 tosser +n10717196 tosser, jerk-off, wanker +n10717337 totalitarian +n10718131 tourist, tourer, holidaymaker +n10718349 tout, touter +n10718509 tout, ticket tout +n10718665 tovarich, tovarisch +n10718952 towhead +n10719036 town clerk +n10719132 town crier, crier +n10719267 townsman, towner +n10719807 toxicologist +n10720197 track star +n10720453 trader, bargainer, dealer, monger +n10720964 trade unionist, unionist, union member +n10721124 traditionalist, diehard +n10721321 traffic cop +n10721612 tragedian +n10721708 tragedian +n10721819 tragedienne +n10722029 trail boss +n10722575 trainer +n10722965 traitor, treasonist +n10723230 traitress +n10723597 transactor +n10724132 transcriber +n10724372 transfer, transferee +n10724570 transferee +n10725280 translator, transcriber +n10726031 transvestite, cross-dresser +n10726786 traveling salesman, travelling salesman, commercial traveler, commercial traveller, roadman, bagman +n10727016 traverser +n10727171 trawler +n10727458 Treasury, First Lord of the Treasury +n10728117 trencher +n10728233 trend-setter, taste-maker, fashion arbiter +n10728624 tribesman +n10728998 trier, attempter, essayer +n10729330 trifler +n10730542 trooper +n10730728 trooper, state trooper +n10731013 Trotskyite, Trotskyist, Trot +n10731732 truant, hooky player +n10732010 trumpeter, cornetist +n10732521 trusty +n10732854 Tudor +n10732967 tumbler +n10733820 tutee +n10734394 twin +n10734741 two-timer +n10734891 Tyke +n10734963 tympanist, timpanist +n10735173 typist +n10735298 tyrant, autocrat, despot +n10735984 umpire, ump +n10737103 understudy, standby +n10737264 undesirable +n10738111 unicyclist +n10738215 unilateralist +n10738670 Unitarian +n10738871 Arminian +n10739135 universal donor +n10739297 UNIX guru +n10739391 Unknown Soldier +n10740594 upsetter +n10740732 upstager +n10740868 upstart, parvenu, nouveau-riche, arriviste +n10741152 upstart +n10741367 urchin +n10741493 urologist +n10742005 usherette +n10742111 usher, doorkeeper +n10742546 usurper, supplanter +n10742997 utility man +n10743124 utilizer, utiliser +n10743356 Utopian +n10744078 uxoricide +n10744164 vacationer, vacationist +n10745006 valedictorian, valedictory speaker +n10745770 valley girl +n10746931 vaulter, pole vaulter, pole jumper +n10747119 vegetarian +n10747424 vegan +n10747548 venerator +n10747965 venture capitalist +n10748142 venturer, merchant-venturer +n10748506 vermin, varmint +n10748620 very important person, VIP, high-up, dignitary, panjandrum, high muckamuck +n10749928 vibist, vibraphonist +n10750031 vicar +n10750188 vicar +n10750640 vicar-general +n10751026 vice chancellor +n10751152 vicegerent +n10751265 vice president, V.P. +n10751710 vice-regent +n10752480 victim, dupe +n10753061 Victorian +n10753182 victualer, victualler +n10753339 vigilante, vigilance man +n10753442 villager +n10753989 vintager +n10754189 vintner, wine merchant +n10754281 violator, debaucher, ravisher +n10754449 violator, lawbreaker, law offender +n10755080 violist +n10755164 virago +n10755394 virologist +n10755648 Visayan, Bisayan +n10756061 viscountess +n10756148 viscount +n10756261 Visigoth +n10756641 visionary +n10756837 visiting fireman +n10757050 visiting professor +n10757492 visualizer, visualiser +n10758337 vixen, harpy, hellcat +n10758445 vizier +n10758949 voicer +n10759151 volunteer, unpaid worker +n10759331 volunteer, military volunteer, voluntary +n10759982 votary +n10760199 votary +n10760622 vouchee +n10760951 vower +n10761190 voyager +n10761326 voyeur, Peeping Tom, peeper +n10761519 vulcanizer, vulcaniser +n10762212 waffler +n10762480 Wagnerian +n10763075 waif, street child +n10763245 wailer +n10763383 waiter, server +n10763620 waitress +n10764465 walking delegate +n10764622 walk-on +n10764719 wallah +n10765305 wally +n10765587 waltzer +n10765679 wanderer, roamer, rover, bird of passage +n10765885 Wandering Jew +n10766260 wanton +n10768148 warrantee +n10768272 warrantee +n10768903 washer +n10769084 washerman, laundryman +n10769188 washwoman, washerwoman, laundrywoman, laundress +n10769321 wassailer, carouser +n10769459 wastrel, waster +n10771066 Wave +n10772092 weatherman, weather forecaster +n10772580 weekend warrior +n10772937 weeder +n10773665 welder +n10773800 welfare case, charity case +n10774329 westerner +n10774756 West-sider +n10775003 wetter +n10775128 whaler +n10776052 Whig +n10776339 whiner, complainer, moaner, sniveller, crybaby, bellyacher, grumbler, squawker +n10776887 whipper-in +n10777299 whisperer +n10778044 whiteface +n10778148 Carmelite, White Friar +n10778711 Augustinian +n10778999 white hope, great white hope +n10779610 white supremacist +n10779897 whoremaster, whoremonger +n10779995 whoremaster, whoremonger, john, trick +n10780284 widow, widow woman +n10780632 wife, married woman +n10781236 wiggler, wriggler, squirmer +n10781817 wimp, chicken, crybaby +n10782362 wing commander +n10782471 winger +n10782791 winner +n10782940 winner, victor +n10783240 window dresser, window trimmer +n10783539 winker +n10783646 wiper +n10783734 wireman, wirer +n10784113 wise guy, smart aleck, wiseacre, wisenheimer, weisenheimer +n10784544 witch doctor +n10784922 withdrawer +n10785480 withdrawer +n10787470 woman, adult female +n10788852 woman +n10789415 wonder boy, golden boy +n10789709 wonderer +n10791115 working girl +n10791221 workman, workingman, working man, working person +n10791820 workmate +n10791890 worldling +n10792335 worshiper, worshipper +n10792506 worthy +n10792856 wrecker +n10793570 wright +n10793799 write-in candidate, write-in +n10794014 writer, author +n10801561 Wykehamist +n10801802 yakuza +n10802507 yard bird, yardbird +n10802621 yardie +n10802953 yardman +n10803031 yardmaster, trainmaster, train dispatcher +n10803282 yenta +n10803978 yogi +n10804287 young buck, young man +n10804636 young Turk +n10804732 Young Turk +n10805501 Zionist +n10806113 zoo keeper +n10994097 Genet, Edmund Charles Edouard Genet, Citizen Genet +n11100798 Kennan, George F. Kennan, George Frost Kennan +n11196627 Munro, H. H. Munro, Hector Hugh Munro, Saki +n11242849 Popper, Karl Popper, Sir Karl Raimund Popper +n11318824 Stoker, Bram Stoker, Abraham Stoker +n11346873 Townes, Charles Townes, Charles Hard Townes +n11448153 dust storm, duster, sandstorm, sirocco +n11487732 parhelion, mock sun, sundog +n11508382 snow, snowfall +n11511327 facula +n11524451 wave +n11530008 microflora +n11531193 wilding +n11531334 semi-climber +n11532682 volva +n11533212 basidiocarp +n11533999 domatium +n11536567 apomict +n11536673 aquatic +n11537327 bryophyte, nonvascular plant +n11539289 acrocarp, acrocarpous moss +n11542137 sphagnum, sphagnum moss, peat moss, bog moss +n11542640 liverwort, hepatic +n11544015 hepatica, Marchantia polymorpha +n11545350 pecopteris +n11545524 pteridophyte, nonflowering plant +n11545714 fern +n11547562 fern ally +n11547855 spore +n11548728 carpospore +n11548870 chlamydospore +n11549009 conidium, conidiospore +n11549245 oospore +n11549779 tetraspore +n11549895 zoospore +n11552133 cryptogam +n11552386 spermatophyte, phanerogam, seed plant +n11552594 seedling +n11552806 annual +n11552976 biennial +n11553240 perennial +n11553522 hygrophyte +n11596108 gymnosperm +n11597657 gnetum, Gnetum gnemon +n11598287 Catha edulis +n11598686 ephedra, joint fir +n11598886 mahuang, Ephedra sinica +n11599324 welwitschia, Welwitschia mirabilis +n11600372 cycad +n11601177 sago palm, Cycas revoluta +n11601333 false sago, fern palm, Cycas circinalis +n11601918 zamia +n11602091 coontie, Florida arrowroot, Seminole bread, Zamia pumila +n11602478 ceratozamia +n11602873 dioon +n11603246 encephalartos +n11603462 kaffir bread, Encephalartos caffer +n11603835 macrozamia +n11604046 burrawong, Macrozamia communis, Macrozamia spiralis +n11608250 pine, pine tree, true pine +n11609475 pinon, pinyon +n11609684 nut pine +n11609862 pinon pine, Mexican nut pine, Pinus cembroides +n11610047 Rocky mountain pinon, Pinus edulis +n11610215 single-leaf, single-leaf pine, single-leaf pinyon, Pinus monophylla +n11610437 bishop pine, bishop's pine, Pinus muricata +n11610602 California single-leaf pinyon, Pinus californiarum +n11610823 Parry's pinyon, Pinus quadrifolia, Pinus parryana +n11611087 spruce pine, Pinus glabra +n11611233 black pine, Pinus nigra +n11611356 pitch pine, northern pitch pine, Pinus rigida +n11611561 pond pine, Pinus serotina +n11611758 stone pine, umbrella pine, European nut pine, Pinus pinea +n11612018 Swiss pine, Swiss stone pine, arolla pine, cembra nut tree, Pinus cembra +n11612235 cembra nut, cedar nut +n11612349 Swiss mountain pine, mountain pine, dwarf mountain pine, mugho pine, mugo pine, Pinus mugo +n11612575 ancient pine, Pinus longaeva +n11612923 white pine +n11613219 American white pine, eastern white pine, weymouth pine, Pinus strobus +n11613459 western white pine, silver pine, mountain pine, Pinus monticola +n11613692 southwestern white pine, Pinus strobiformis +n11613867 limber pine, Pinus flexilis +n11614039 whitebark pine, whitebarked pine, Pinus albicaulis +n11614250 yellow pine +n11614420 ponderosa, ponderosa pine, western yellow pine, bull pine, Pinus ponderosa +n11614713 Jeffrey pine, Jeffrey's pine, black pine, Pinus jeffreyi +n11615026 shore pine, lodgepole, lodgepole pine, spruce pine, Pinus contorta +n11615259 Sierra lodgepole pine, Pinus contorta murrayana +n11615387 loblolly pine, frankincense pine, Pinus taeda +n11615607 jack pine, Pinus banksiana +n11615812 swamp pine +n11615967 longleaf pine, pitch pine, southern yellow pine, Georgia pine, Pinus palustris +n11616260 shortleaf pine, short-leaf pine, shortleaf yellow pine, Pinus echinata +n11616486 red pine, Canadian red pine, Pinus resinosa +n11616662 Scotch pine, Scots pine, Scotch fir, Pinus sylvestris +n11616852 scrub pine, Virginia pine, Jersey pine, Pinus virginiana +n11617090 Monterey pine, Pinus radiata +n11617272 bristlecone pine, Rocky Mountain bristlecone pine, Pinus aristata +n11617631 table-mountain pine, prickly pine, hickory pine, Pinus pungens +n11617878 knobcone pine, Pinus attenuata +n11618079 Japanese red pine, Japanese table pine, Pinus densiflora +n11618290 Japanese black pine, black pine, Pinus thunbergii +n11618525 Torrey pine, Torrey's pine, soledad pine, grey-leaf pine, sabine pine, Pinus torreyana +n11618861 larch, larch tree +n11619227 American larch, tamarack, black larch, Larix laricina +n11619455 western larch, western tamarack, Oregon larch, Larix occidentalis +n11619687 subalpine larch, Larix lyallii +n11619845 European larch, Larix decidua +n11620016 Siberian larch, Larix siberica, Larix russica +n11620389 golden larch, Pseudolarix amabilis +n11620673 fir, fir tree, true fir +n11621029 silver fir +n11621281 amabilis fir, white fir, Pacific silver fir, red silver fir, Christmas tree, Abies amabilis +n11621547 European silver fir, Christmas tree, Abies alba +n11621727 white fir, Colorado fir, California white fir, Abies concolor, Abies lowiana +n11621950 balsam fir, balm of Gilead, Canada balsam, Abies balsamea +n11622184 Fraser fir, Abies fraseri +n11622368 lowland fir, lowland white fir, giant fir, grand fir, Abies grandis +n11622591 Alpine fir, subalpine fir, Abies lasiocarpa +n11622771 Santa Lucia fir, bristlecone fir, Abies bracteata, Abies venusta +n11623105 cedar, cedar tree, true cedar +n11623815 cedar of Lebanon, Cedrus libani +n11623967 deodar, deodar cedar, Himalayan cedar, Cedrus deodara +n11624192 Atlas cedar, Cedrus atlantica +n11624531 spruce +n11625003 Norway spruce, Picea abies +n11625223 weeping spruce, Brewer's spruce, Picea breweriana +n11625391 Engelmann spruce, Engelmann's spruce, Picea engelmannii +n11625632 white spruce, Picea glauca +n11625804 black spruce, Picea mariana, spruce pine +n11626010 Siberian spruce, Picea obovata +n11626152 Sitka spruce, Picea sitchensis +n11626409 oriental spruce, Picea orientalis +n11626585 Colorado spruce, Colorado blue spruce, silver spruce, Picea pungens +n11626826 red spruce, eastern spruce, yellow spruce, Picea rubens +n11627168 hemlock, hemlock tree +n11627512 eastern hemlock, Canadian hemlock, spruce pine, Tsuga canadensis +n11627714 Carolina hemlock, Tsuga caroliniana +n11627908 mountain hemlock, black hemlock, Tsuga mertensiana +n11628087 western hemlock, Pacific hemlock, west coast hemlock, Tsuga heterophylla +n11628456 douglas fir +n11628793 green douglas fir, douglas spruce, douglas pine, douglas hemlock, Oregon fir, Oregon pine, Pseudotsuga menziesii +n11629047 big-cone spruce, big-cone douglas fir, Pseudotsuga macrocarpa +n11629354 Cathaya +n11630017 cedar, cedar tree +n11630489 cypress, cypress tree +n11631159 gowen cypress, Cupressus goveniana +n11631405 pygmy cypress, Cupressus pigmaea, Cupressus goveniana pigmaea +n11631619 Santa Cruz cypress, Cupressus abramsiana, Cupressus goveniana abramsiana +n11631854 Arizona cypress, Cupressus arizonica +n11631985 Guadalupe cypress, Cupressus guadalupensis +n11632167 Monterey cypress, Cupressus macrocarpa +n11632376 Mexican cypress, cedar of Goa, Portuguese cypress, Cupressus lusitanica +n11632619 Italian cypress, Mediterranean cypress, Cupressus sempervirens +n11632929 King William pine, Athrotaxis selaginoides +n11633284 Chilean cedar, Austrocedrus chilensis +n11634736 incense cedar, red cedar, Calocedrus decurrens, Libocedrus decurrens +n11635152 southern white cedar, coast white cedar, Atlantic white cedar, white cypress, white cedar, Chamaecyparis thyoides +n11635433 Oregon cedar, Port Orford cedar, Lawson's cypress, Lawson's cedar, Chamaecyparis lawsoniana +n11635830 yellow cypress, yellow cedar, Nootka cypress, Alaska cedar, Chamaecyparis nootkatensis +n11636204 Japanese cedar, Japan cedar, sugi, Cryptomeria japonica +n11636835 juniper berry +n11639084 incense cedar +n11639306 kawaka, Libocedrus plumosa +n11639445 pahautea, Libocedrus bidwillii, mountain pine +n11640132 metasequoia, dawn redwood, Metasequoia glyptostrodoides +n11643835 arborvitae +n11644046 western red cedar, red cedar, canoe cedar, Thuja plicata +n11644226 American arborvitae, northern white cedar, white cedar, Thuja occidentalis +n11644462 Oriental arborvitae, Thuja orientalis, Platycladus orientalis +n11644872 hiba arborvitae, Thujopsis dolobrata +n11645163 keteleeria +n11645590 Wollemi pine +n11645914 araucaria +n11646167 monkey puzzle, chile pine, Araucaria araucana +n11646344 norfolk island pine, Araucaria heterophylla, Araucaria excelsa +n11646517 new caledonian pine, Araucaria columnaris +n11646694 bunya bunya, bunya bunya tree, Araucaria bidwillii +n11646955 hoop pine, Moreton Bay pine, Araucaria cunninghamii +n11647306 kauri pine, dammar pine +n11647703 kauri, kaury, Agathis australis +n11647868 amboina pine, amboyna pine, Agathis dammara, Agathis alba +n11648039 dundathu pine, queensland kauri, smooth bark kauri, Agathis robusta +n11648268 red kauri, Agathis lanceolata +n11648776 plum-yew +n11649150 California nutmeg, nutmeg-yew, Torreya californica +n11649359 stinking cedar, stinking yew, Torrey tree, Torreya taxifolia +n11649878 celery pine +n11650160 celery top pine, celery-topped pine, Phyllocladus asplenifolius +n11650307 tanekaha, Phyllocladus trichomanoides +n11650430 Alpine celery pine, Phyllocladus alpinus +n11650558 yellowwood, yellowwood tree +n11650759 gymnospermous yellowwood +n11652039 podocarp +n11652217 yacca, yacca podocarp, Podocarpus coriaceus +n11652376 brown pine, Rockingham podocarp, Podocarpus elatus +n11652578 cape yellowwood, African yellowwood, Podocarpus elongatus +n11652753 South-African yellowwood, Podocarpus latifolius +n11652966 alpine totara, Podocarpus nivalis +n11653126 totara, Podocarpus totara +n11653570 common yellowwood, bastard yellowwood, Afrocarpus falcata +n11653904 kahikatea, New Zealand Dacryberry, New Zealand white pine, Dacrycarpus dacrydioides, Podocarpus dacrydioides +n11654293 rimu, imou pine, red pine, Dacrydium cupressinum +n11654438 tarwood, tar-wood, Dacrydium colensoi +n11654984 common sickle pine, Falcatifolium falciforme +n11655152 yellow-leaf sickle pine, Falcatifolium taxoides +n11655592 tarwood, tar-wood, New Zealand mountain pine, Halocarpus bidwilli, Dacrydium bidwilli +n11655974 westland pine, silver pine, Lagarostrobus colensoi +n11656123 huon pine, Lagarostrobus franklinii, Dacrydium franklinii +n11656549 Chilean rimu, Lepidothamnus fonkii +n11656771 mountain rimu, Lepidothamnus laxifolius, Dacridium laxifolius +n11657585 nagi, Nageia nagi +n11658331 miro, black pine, Prumnopitys ferruginea, Podocarpus ferruginea +n11658544 matai, black pine, Prumnopitys taxifolia, Podocarpus spicata +n11658709 plum-fruited yew, Prumnopitys andina, Prumnopitys elegans +n11659248 Prince Albert yew, Prince Albert's yew, Saxe-gothea conspicua +n11659627 Sundacarpus amara, Prumnopitys amara, Podocarpus amara +n11660300 Japanese umbrella pine, Sciadopitys verticillata +n11661372 yew +n11661909 Old World yew, English yew, Taxus baccata +n11662128 Pacific yew, California yew, western yew, Taxus brevifolia +n11662371 Japanese yew, Taxus cuspidata +n11662585 Florida yew, Taxus floridana +n11662937 New Caledonian yew, Austrotaxus spicata +n11663263 white-berry yew, Pseudotaxus chienii +n11664418 ginkgo, gingko, maidenhair tree, Ginkgo biloba +n11665372 angiosperm, flowering plant +n11666854 dicot, dicotyledon, magnoliopsid, exogen +n11668117 monocot, monocotyledon, liliopsid, endogen +n11669786 floret, floweret +n11669921 flower +n11672269 bloomer +n11672400 wildflower, wild flower +n11674019 apetalous flower +n11674332 inflorescence +n11675025 rosebud +n11675404 gynostegium +n11675738 pollinium +n11676500 pistil +n11676743 gynobase +n11676850 gynophore +n11677485 stylopodium +n11677902 carpophore +n11678010 cornstalk, corn stalk +n11678299 petiolule +n11678377 mericarp +n11679378 micropyle +n11680457 germ tube +n11680596 pollen tube +n11682659 gemma +n11683216 galbulus +n11683838 nectary, honey gland +n11684264 pericarp, seed vessel +n11684499 epicarp, exocarp +n11684654 mesocarp +n11685091 pip +n11685621 silique, siliqua +n11686195 cataphyll +n11686652 perisperm +n11686780 monocarp, monocarpic plant, monocarpous plant +n11686912 sporophyte +n11687071 gametophyte +n11687432 megasporangium, macrosporangium +n11687789 microspore +n11687964 microsporangium +n11688069 microsporophyll +n11688378 archespore, archesporium +n11689197 bonduc nut, nicker nut, nicker seed +n11689367 Job's tears +n11689483 oilseed, oil-rich seed +n11689678 castor bean +n11689815 cottonseed +n11689957 candlenut +n11690088 peach pit +n11690254 hypanthium, floral cup, calyx tube +n11690455 petal, flower petal +n11691046 corolla +n11691857 lip +n11692265 perianth, chlamys, floral envelope, perigone, perigonium +n11692792 thistledown +n11693981 custard apple, custard apple tree +n11694300 cherimoya, cherimoya tree, Annona cherimola +n11694469 ilama, ilama tree, Annona diversifolia +n11694664 soursop, prickly custard apple, soursop tree, Annona muricata +n11694866 bullock's heart, bullock's heart tree, bullock heart, Annona reticulata +n11695085 sweetsop, sweetsop tree, Annona squamosa +n11695285 pond apple, pond-apple tree, Annona glabra +n11695599 pawpaw, papaw, papaw tree, Asimina triloba +n11695974 ilang-ilang, ylang-ylang, Cananga odorata +n11696450 lancewood, lancewood tree, Oxandra lanceolata +n11696935 Guinea pepper, negro pepper, Xylopia aethiopica +n11697560 barberry +n11697802 American barberry, Berberis canadensis +n11698042 common barberry, European barberry, Berberis vulgaris +n11698245 Japanese barberry, Berberis thunbergii +n11699442 Oregon grape, Oregon holly grape, hollygrape, mountain grape, holly-leaves barberry, Mahonia aquifolium +n11699751 Oregon grape, Mahonia nervosa +n11700058 mayapple, May apple, wild mandrake, Podophyllum peltatum +n11700279 May apple +n11700864 allspice +n11701066 Carolina allspice, strawberry shrub, strawberry bush, sweet shrub, Calycanthus floridus +n11701302 spicebush, California allspice, Calycanthus occidentalis +n11702713 katsura tree, Cercidiphyllum japonicum +n11703669 laurel +n11704093 true laurel, bay, bay laurel, bay tree, Laurus nobilis +n11704620 camphor tree, Cinnamomum camphora +n11704791 cinnamon, Ceylon cinnamon, Ceylon cinnamon tree, Cinnamomum zeylanicum +n11705171 cassia, cassia-bark tree, Cinnamomum cassia +n11705387 cassia bark, Chinese cinnamon +n11705573 Saigon cinnamon, Cinnamomum loureirii +n11705776 cinnamon bark +n11706325 spicebush, spice bush, American spicebush, Benjamin bush, Lindera benzoin, Benzoin odoriferum +n11706761 avocado, avocado tree, Persea Americana +n11706942 laurel-tree, red bay, Persea borbonia +n11707229 sassafras, sassafras tree, Sassafras albidum +n11707827 California laurel, California bay tree, Oregon myrtle, pepperwood, spice tree, sassafras laurel, California olive, mountain laurel, Umbellularia californica +n11708658 anise tree +n11708857 purple anise, Illicium floridanum +n11709045 star anise, Illicium anisatum +n11709205 star anise, Chinese anise, Illicium verum +n11709674 magnolia +n11710136 southern magnolia, evergreen magnolia, large-flowering magnolia, bull bay, Magnolia grandiflora +n11710393 umbrella tree, umbrella magnolia, elkwood, elk-wood, Magnolia tripetala +n11710658 earleaved umbrella tree, Magnolia fraseri +n11710827 cucumber tree, Magnolia acuminata +n11710987 large-leaved magnolia, large-leaved cucumber tree, great-leaved macrophylla, Magnolia macrophylla +n11711289 saucer magnolia, Chinese magnolia, Magnolia soulangiana +n11711537 star magnolia, Magnolia stellata +n11711764 sweet bay, swamp bay, swamp laurel, Magnolia virginiana +n11711971 manglietia, genus Manglietia +n11712282 tulip tree, tulip poplar, yellow poplar, canary whitewood, Liriodendron tulipifera +n11713164 moonseed +n11713370 common moonseed, Canada moonseed, yellow parilla, Menispermum canadense +n11713763 Carolina moonseed, Cocculus carolinus +n11714382 nutmeg, nutmeg tree, Myristica fragrans +n11715430 water nymph, fragrant water lily, pond lily, Nymphaea odorata +n11715678 European white lily, Nymphaea alba +n11716698 southern spatterdock, Nuphar sagittifolium +n11717399 lotus, Indian lotus, sacred lotus, Nelumbo nucifera +n11717577 water chinquapin, American lotus, yanquapin, Nelumbo lutea +n11718296 water-shield, fanwort, Cabomba caroliniana +n11718681 water-shield, Brasenia schreberi, water-target +n11719286 peony, paeony +n11720353 buttercup, butterflower, butter-flower, crowfoot, goldcup, kingcup +n11720643 meadow buttercup, tall buttercup, tall crowfoot, tall field buttercup, Ranunculus acris +n11720891 water crowfoot, water buttercup, Ranunculus aquatilis +n11721337 lesser celandine, pilewort, Ranunculus ficaria +n11721642 lesser spearwort, Ranunculus flammula +n11722036 greater spearwort, Ranunculus lingua +n11722342 western buttercup, Ranunculus occidentalis +n11722466 creeping buttercup, creeping crowfoot, Ranunculus repens +n11722621 cursed crowfoot, celery-leaved buttercup, Ranunculus sceleratus +n11722982 aconite +n11723227 monkshood, helmetflower, helmet flower, Aconitum napellus +n11723452 wolfsbane, wolfbane, wolf's bane, Aconitum lycoctonum +n11723770 baneberry, cohosh, herb Christopher +n11723986 baneberry +n11724109 red baneberry, redberry, red-berry, snakeberry, Actaea rubra +n11724660 pheasant's-eye, Adonis annua +n11725015 anemone, windflower +n11725311 Alpine anemone, mountain anemone, Anemone tetonensis +n11725480 Canada anemone, Anemone Canadensis +n11725623 thimbleweed, Anemone cylindrica +n11725821 wood anemone, Anemone nemorosa +n11725973 wood anemone, snowdrop, Anemone quinquefolia +n11726145 longheaded thimbleweed, Anemone riparia +n11726269 snowdrop anemone, snowdrop windflower, Anemone sylvestris +n11726433 Virginia thimbleweed, Anemone virginiana +n11726707 rue anemone, Anemonella thalictroides +n11727091 columbine, aquilegia, aquilege +n11727358 meeting house, honeysuckle, Aquilegia canadensis +n11727540 blue columbine, Aquilegia caerulea, Aquilegia scopulorum calcarea +n11727738 granny's bonnets, Aquilegia vulgaris +n11728099 marsh marigold, kingcup, meadow bright, May blob, cowslip, water dragon, Caltha palustris +n11728769 American bugbane, summer cohosh, Cimicifuga americana +n11728945 black cohosh, black snakeroot, rattle-top, Cimicifuga racemosa +n11729142 fetid bugbane, foetid bugbane, Cimicifuga foetida +n11729478 clematis +n11729860 pine hyacinth, Clematis baldwinii, Viorna baldwinii +n11730015 blue jasmine, blue jessamine, curly clematis, marsh clematis, Clematis crispa +n11730458 golden clematis, Clematis tangutica +n11730602 scarlet clematis, Clematis texensis +n11730750 leather flower, Clematis versicolor +n11730933 leather flower, vase-fine, vase vine, Clematis viorna +n11731157 virgin's bower, old man's beard, devil's darning needle, Clematis virginiana +n11731659 purple clematis, purple virgin's bower, mountain clematis, Clematis verticillaris +n11732052 goldthread, golden thread, Coptis groenlandica, Coptis trifolia groenlandica +n11732567 rocket larkspur, Consolida ambigua, Delphinium ajacis +n11733054 delphinium +n11733312 larkspur +n11733548 winter aconite, Eranthis hyemalis +n11734493 lenten rose, black hellebore, Helleborus orientalis +n11734698 green hellebore, Helleborus viridis +n11735053 hepatica, liverleaf +n11735570 goldenseal, golden seal, yellow root, turmeric root, Hydrastis Canadensis +n11735977 false rue anemone, false rue, Isopyrum biternatum +n11736362 giant buttercup, Laccopetalum giganteum +n11736694 nigella +n11736851 love-in-a-mist, Nigella damascena +n11737009 fennel flower, Nigella hispanica +n11737125 black caraway, nutmeg flower, Roman coriander, Nigella sativa +n11737534 pasqueflower, pasque flower +n11738547 meadow rue +n11738997 false bugbane, Trautvetteria carolinensis +n11739365 globeflower, globe flower +n11739978 winter's bark, winter's bark tree, Drimys winteri +n11740414 pepper shrub, Pseudowintera colorata, Wintera colorata +n11741175 sweet gale, Scotch gale, Myrica gale +n11741350 wax myrtle +n11741575 bay myrtle, puckerbush, Myrica cerifera +n11741797 bayberry, candleberry, swamp candleberry, waxberry, Myrica pensylvanica +n11742310 sweet fern, Comptonia peregrina, Comptonia asplenifolia +n11742878 corkwood, corkwood tree, Leitneria floridana +n11744011 jointed rush, Juncus articulatus +n11744108 toad rush, Juncus bufonius +n11744471 slender rush, Juncus tenuis +n11745817 zebrawood, zebrawood tree +n11746600 Connarus guianensis +n11747468 legume, leguminous plant +n11748002 legume +n11748811 peanut +n11749112 granadilla tree, granadillo, Brya ebenus +n11749603 arariba, Centrolobium robustum +n11750173 tonka bean, coumara nut +n11750508 courbaril, Hymenaea courbaril +n11750989 melilotus, melilot, sweet clover +n11751765 darling pea, poison bush +n11751974 smooth darling pea, Swainsona galegifolia +n11752578 clover, trefoil +n11752798 alpine clover, Trifolium alpinum +n11752937 hop clover, shamrock, lesser yellow trefoil, Trifolium dubium +n11753143 crimson clover, Italian clover, Trifolium incarnatum +n11753355 red clover, purple clover, Trifolium pratense +n11753562 buffalo clover, Trifolium reflexum, Trifolium stoloniferum +n11753700 white clover, dutch clover, shamrock, Trifolium repens +n11754893 mimosa +n11756092 acacia +n11756329 shittah, shittah tree +n11756669 wattle +n11756870 black wattle, Acacia auriculiformis +n11757017 gidgee, stinking wattle, Acacia cambegei +n11757190 catechu, Jerusalem thorn, Acacia catechu +n11757653 silver wattle, mimosa, Acacia dealbata +n11757851 huisache, cassie, mimosa bush, sweet wattle, sweet acacia, scented wattle, flame tree, Acacia farnesiana +n11758122 lightwood, Acacia melanoxylon +n11758276 golden wattle, Acacia pycnantha +n11758483 fever tree, Acacia xanthophloea +n11758799 coralwood, coral-wood, red sandalwood, Barbados pride, peacock flower fence, Adenanthera pavonina +n11759224 albizzia, albizia +n11759404 silk tree, Albizia julibrissin, Albizzia julibrissin +n11759609 siris, siris tree, Albizia lebbeck, Albizzia lebbeck +n11759853 rain tree, saman, monkeypod, monkey pod, zaman, zamang, Albizia saman +n11760785 calliandra +n11761202 conacaste, elephant's ear, Enterolobium cyclocarpa +n11761650 inga +n11761836 ice-cream bean, Inga edulis +n11762018 guama, Inga laurina +n11762433 lead tree, white popinac, Leucaena glauca, Leucaena leucocephala +n11762927 wild tamarind, Lysiloma latisiliqua, Lysiloma bahamensis +n11763142 sabicu, Lysiloma sabicu +n11763625 nitta tree +n11763874 Parkia javanica +n11764478 manila tamarind, camachile, huamachil, wild tamarind, Pithecellobium dulce +n11764814 cat's-claw, catclaw, black bead, Pithecellodium unguis-cati +n11765568 honey mesquite, Western honey mesquite, Prosopis glandulosa +n11766046 algarroba, algarrobilla, algarobilla +n11766189 screw bean, screwbean, tornillo, screwbean mesquite, Prosopis pubescens +n11766432 screw bean +n11767354 dogbane +n11767877 Indian hemp, rheumatism weed, Apocynum cannabinum +n11768816 bushman's poison, ordeal tree, Acocanthera oppositifolia, Acocanthera venenata +n11769176 impala lily, mock azalia, desert rose, kudu lily, Adenium obesum, Adenium multiflorum +n11769621 allamanda +n11769803 common allamanda, golden trumpet, Allamanda cathartica +n11770256 dita, dita bark, devil tree, Alstonia scholaris +n11771147 Nepal trumpet flower, Easter lily vine, Beaumontia grandiflora +n11771539 carissa +n11771746 hedge thorn, natal plum, Carissa bispinosa +n11771924 natal plum, amatungulu, Carissa macrocarpa, Carissa grandiflora +n11772408 periwinkle, rose periwinkle, Madagascar periwinkle, old maid, Cape periwinkle, red periwinkle, cayenne jasmine, Catharanthus roseus, Vinca rosea +n11772879 ivory tree, conessi, kurchi, kurchee, Holarrhena pubescens, Holarrhena antidysenterica +n11773408 white dipladenia, Mandevilla boliviensis, Dipladenia boliviensis +n11773628 Chilean jasmine, Mandevilla laxa +n11773987 oleander, rose bay, Nerium oleander +n11774513 frangipani, frangipanni +n11774972 West Indian jasmine, pagoda tree, Plumeria alba +n11775340 rauwolfia, rauvolfia +n11775626 snakewood, Rauwolfia serpentina +n11776234 Strophanthus kombe +n11777080 yellow oleander, Thevetia peruviana, Thevetia neriifolia +n11778092 myrtle, Vinca minor +n11778257 large periwinkle, Vinca major +n11779300 arum, aroid +n11780148 cuckoopint, lords-and-ladies, jack-in-the-pulpit, Arum maculatum +n11780424 black calla, Arum palaestinum +n11781176 calamus +n11782036 alocasia, elephant's ear, elephant ear +n11782266 giant taro, Alocasia macrorrhiza +n11782761 amorphophallus +n11782878 pungapung, telingo potato, elephant yam, Amorphophallus paeonifolius, Amorphophallus campanulatus +n11783162 devil's tongue, snake palm, umbrella arum, Amorphophallus rivieri +n11783920 anthurium, tailflower, tail-flower +n11784126 flamingo flower, flamingo plant, Anthurium andraeanum, Anthurium scherzerianum +n11784497 jack-in-the-pulpit, Indian turnip, wake-robin, Arisaema triphyllum, Arisaema atrorubens +n11785276 friar's-cowl, Arisarum vulgare +n11785668 caladium +n11785875 Caladium bicolor +n11786131 wild calla, water arum, Calla palustris +n11786539 taro, taro plant, dalo, dasheen, Colocasia esculenta +n11786843 taro, cocoyam, dasheen, eddo +n11787190 cryptocoryne, water trumpet +n11788039 dracontium +n11788727 golden pothos, pothos, ivy arum, Epipremnum aureum, Scindapsus aureus +n11789066 skunk cabbage, Lysichiton americanum +n11789438 monstera +n11789589 ceriman, Monstera deliciosa +n11789962 nephthytis +n11790089 Nephthytis afzelii +n11790788 arrow arum +n11790936 green arrow arum, tuckahoe, Peltandra virginica +n11791341 philodendron +n11791569 pistia, water lettuce, water cabbage, Pistia stratiotes, Pistia stratoites +n11792029 pothos +n11792341 spathiphyllum, peace lily, spathe flower +n11792742 skunk cabbage, polecat weed, foetid pothos, Symplocarpus foetidus +n11793403 yautia, tannia, spoonflower, malanga, Xanthosoma sagittifolium, Xanthosoma atrovirens +n11793779 calla lily, calla, arum lily, Zantedeschia aethiopica +n11794024 pink calla, Zantedeschia rehmanii +n11794139 golden calla +n11794519 duckweed +n11795049 common duckweed, lesser duckweed, Lemna minor +n11795216 star-duckweed, Lemna trisulca +n11795580 great duckweed, water flaxseed, Spirodela polyrrhiza +n11796005 watermeal +n11796188 common wolffia, Wolffia columbiana +n11797321 aralia +n11797508 American angelica tree, devil's walking stick, Hercules'-club, Aralia spinosa +n11797981 American spikenard, petty morel, life-of-man, Aralia racemosa +n11798270 bristly sarsaparilla, bristly sarsparilla, dwarf elder, Aralia hispida +n11798496 Japanese angelica tree, Aralia elata +n11798688 Chinese angelica, Chinese angelica tree, Aralia stipulata +n11798978 ivy, common ivy, English ivy, Hedera helix +n11799331 puka, Meryta sinclairii +n11799732 ginseng, nin-sin, Panax ginseng, Panax schinseng, Panax pseudoginseng +n11800236 ginseng +n11800565 umbrella tree, Schefflera actinophylla, Brassaia actinophylla +n11801392 birthwort, Aristolochia clematitis +n11801665 Dutchman's-pipe, pipe vine, Aristolochia macrophylla, Aristolochia durior +n11801891 Virginia snakeroot, Virginia serpentaria, Virginia serpentary, Aristolochia serpentaria +n11802410 Canada ginger, black snakeroot, Asarum canadense +n11802586 heartleaf, heart-leaf, Asarum virginicum +n11802800 heartleaf, heart-leaf, Asarum shuttleworthii +n11802995 asarabacca, Asarum europaeum +n11805255 caryophyllaceous plant +n11805544 corn cockle, corn campion, crown-of-the-field, Agrostemma githago +n11805956 sandwort +n11806219 mountain sandwort, mountain starwort, mountain daisy, Arenaria groenlandica +n11806369 pine-barren sandwort, longroot, Arenaria caroliniana +n11806521 seabeach sandwort, Arenaria peploides +n11806679 rock sandwort, Arenaria stricta +n11806814 thyme-leaved sandwort, Arenaria serpyllifolia +n11807108 mouse-ear chickweed, mouse eared chickweed, mouse ear, clammy chickweed, chickweed +n11807525 snow-in-summer, love-in-a-mist, Cerastium tomentosum +n11807696 Alpine mouse-ear, Arctic mouse-ear, Cerastium alpinum +n11807979 pink, garden pink +n11808299 sweet William, Dianthus barbatus +n11808468 carnation, clove pink, gillyflower, Dianthus caryophyllus +n11808721 china pink, rainbow pink, Dianthus chinensis +n11808932 Japanese pink, Dianthus chinensis heddewigii +n11809094 maiden pink, Dianthus deltoides +n11809271 cheddar pink, Diangus gratianopolitanus +n11809437 button pink, Dianthus latifolius +n11809594 cottage pink, grass pink, Dianthus plumarius +n11809754 fringed pink, Dianthus supurbus +n11810030 drypis +n11810358 baby's breath, babies'-breath, Gypsophila paniculata +n11811059 coral necklace, Illecebrum verticullatum +n11811473 lychnis, catchfly +n11811706 ragged robin, cuckoo flower, Lychnis flos-cuculi, Lychins floscuculi +n11811921 scarlet lychnis, maltese cross, Lychins chalcedonica +n11812094 mullein pink, rose campion, gardener's delight, dusty miller, Lychnis coronaria +n11812910 sandwort, Moehringia lateriflora +n11813077 sandwort, Moehringia mucosa +n11814584 soapwort, hedge pink, bouncing Bet, bouncing Bess, Saponaria officinalis +n11814996 knawel, knawe, Scleranthus annuus +n11815491 silene, campion, catchfly +n11815721 moss campion, Silene acaulis +n11815918 wild pink, Silene caroliniana +n11816121 red campion, red bird's eye, Silene dioica, Lychnis dioica +n11816336 white campion, evening lychnis, white cockle, bladder campion, Silene latifolia, Lychnis alba +n11816649 fire pink, Silene virginica +n11816829 bladder campion, Silene uniflora, Silene vulgaris +n11817160 corn spurry, corn spurrey, Spergula arvensis +n11817501 sand spurry, sea spurry, Spergularia rubra +n11817914 chickweed +n11818069 common chickweed, Stellaria media +n11818636 cowherb, cow cockle, Vaccaria hispanica, Vaccaria pyramidata, Saponaria vaccaria +n11819509 Hottentot fig, Hottentot's fig, sour fig, Carpobrotus edulis, Mesembryanthemum edule +n11819912 livingstone daisy, Dorotheanthus bellidiformis +n11820965 fig marigold, pebble plant +n11821184 ice plant, icicle plant, Mesembryanthemum crystallinum +n11822300 New Zealand spinach, Tetragonia tetragonioides, Tetragonia expansa +n11823043 amaranth +n11823305 amaranth +n11823436 tumbleweed, Amaranthus albus, Amaranthus graecizans +n11823756 prince's-feather, gentleman's-cane, prince's-plume, red amaranth, purple amaranth, Amaranthus cruentus, Amaranthus hybridus hypochondriacus, Amaranthus hybridus erythrostachys +n11824146 pigweed, Amaranthus hypochondriacus +n11824344 thorny amaranth, Amaranthus spinosus +n11824747 alligator weed, alligator grass, Alternanthera philoxeroides +n11825351 cockscomb, common cockscomb, Celosia cristata, Celosia argentea cristata +n11825749 cottonweed +n11826198 globe amaranth, bachelor's button, Gomphrena globosa +n11826569 bloodleaf +n11827541 saltwort, Batis maritima +n11828577 lamb's-quarters, pigweed, wild spinach, Chenopodium album +n11828973 good-king-henry, allgood, fat hen, wild spinach, Chenopodium bonus-henricus +n11829205 Jerusalem oak, feather geranium, Mexican tea, Chenopodium botrys, Atriplex mexicana +n11829672 oak-leaved goosefoot, oakleaf goosefoot, Chenopodium glaucum +n11829922 sowbane, red goosefoot, Chenopodium hybridum +n11830045 nettle-leaved goosefoot, nettleleaf goosefoot, Chenopodium murale +n11830252 red goosefoot, French spinach, Chenopodium rubrum +n11830400 stinking goosefoot, Chenopodium vulvaria +n11830714 orach, orache +n11830906 saltbush +n11831100 garden orache, mountain spinach, Atriplex hortensis +n11831297 desert holly, Atriplex hymenelytra +n11831521 quail bush, quail brush, white thistle, Atriplex lentiformis +n11832214 beet, common beet, Beta vulgaris +n11832480 beetroot, Beta vulgaris rubra +n11832671 chard, Swiss chard, spinach beet, leaf beet, chard plant, Beta vulgaris cicla +n11832899 mangel-wurzel, mangold-wurzel, mangold, Beta vulgaris vulgaris +n11833373 winged pigweed, tumbleweed, Cycloloma atriplicifolium +n11833749 halogeton, Halogeton glomeratus +n11834272 glasswort, samphire, Salicornia europaea +n11834654 saltwort, barilla, glasswort, kali, kelpwort, Salsola kali, Salsola soda +n11834890 Russian thistle, Russian tumbleweed, Russian cactus, tumbleweed, Salsola kali tenuifolia +n11835251 greasewood, black greasewood, Sarcobatus vermiculatus +n11836327 scarlet musk flower, Nyctaginia capitata +n11836722 sand verbena +n11837204 sweet sand verbena, Abronia fragrans +n11837351 yellow sand verbena, Abronia latifolia +n11837562 beach pancake, Abronia maritima +n11837743 beach sand verbena, pink sand verbena, Abronia umbellata +n11837970 desert sand verbena, Abronia villosa +n11838413 trailing four o'clock, trailing windmills, Allionia incarnata +n11838916 bougainvillea +n11839460 umbrellawort +n11839568 four o'clock +n11839823 common four-o'clock, marvel-of-Peru, Mirabilis jalapa, Mirabilis uniflora +n11840067 California four o'clock, Mirabilis laevis, Mirabilis californica +n11840246 sweet four o'clock, maravilla, Mirabilis longiflora +n11840476 desert four o'clock, Colorado four o'clock, maravilla, Mirabilis multiflora +n11840764 mountain four o'clock, Mirabilis oblongifolia +n11841247 cockspur, Pisonia aculeata +n11843441 rattail cactus, rat's-tail cactus, Aporocactus flagelliformis +n11844371 saguaro, sahuaro, Carnegiea gigantea +n11844892 night-blooming cereus +n11845557 echinocactus, barrel cactus +n11845793 hedgehog cactus +n11845913 golden barrel cactus, Echinocactus grusonii +n11846312 hedgehog cereus +n11846425 rainbow cactus +n11846765 epiphyllum, orchid cactus +n11847169 barrel cactus +n11848479 night-blooming cereus +n11848867 chichipe, Lemaireocereus chichipe +n11849271 mescal, mezcal, peyote, Lophophora williamsii +n11849467 mescal button, sacred mushroom, magic mushroom +n11849871 mammillaria +n11849983 feather ball, Mammillaria plumosa +n11850521 garambulla, garambulla cactus, Myrtillocactus geometrizans +n11850918 Knowlton's cactus, Pediocactus knowltonii +n11851258 nopal +n11851578 prickly pear, prickly pear cactus +n11851839 cholla, Opuntia cholla +n11852028 nopal, Opuntia lindheimeri +n11852148 tuna, Opuntia tuna +n11852531 Barbados gooseberry, Barbados-gooseberry vine, Pereskia aculeata +n11853079 mistletoe cactus +n11853356 Christmas cactus, Schlumbergera buckleyi, Schlumbergera baridgesii +n11853813 night-blooming cereus +n11854479 crab cactus, Thanksgiving cactus, Zygocactus truncatus, Schlumbergera truncatus +n11855274 pokeweed +n11855435 Indian poke, Phytolacca acinosa +n11855553 poke, pigeon berry, garget, scoke, Phytolacca americana +n11855842 ombu, bella sombra, Phytolacca dioica +n11856573 bloodberry, blood berry, rougeberry, rouge plant, Rivina humilis +n11857696 portulaca +n11857875 rose moss, sun plant, Portulaca grandiflora +n11858077 common purslane, pussley, pussly, verdolagas, Portulaca oleracea +n11858703 rock purslane +n11858814 red maids, redmaids, Calandrinia ciliata +n11859275 Carolina spring beauty, Claytonia caroliniana +n11859472 spring beauty, Clatonia lanceolata +n11859737 Virginia spring beauty, Claytonia virginica +n11860208 siskiyou lewisia, Lewisia cotyledon +n11860555 bitterroot, Lewisia rediviva +n11861238 broad-leaved montia, Montia cordifolia +n11861487 blinks, blinking chickweed, water chickweed, Montia lamprosperma +n11861641 toad lily, Montia chamissoi +n11861853 winter purslane, miner's lettuce, Cuban spinach, Montia perfoliata +n11862835 flame flower, flame-flower, flameflower, Talinum aurantiacum +n11863467 pigmy talinum, Talinum brevifolium +n11863877 jewels-of-opar, Talinum paniculatum +n11865071 caper +n11865276 native pomegranate, Capparis arborea +n11865429 caper tree, Jamaica caper tree, Capparis cynophallophora +n11865574 caper tree, bay-leaved caper, Capparis flexuosa +n11865874 common caper, Capparis spinosa +n11866248 spiderflower, cleome +n11866706 Rocky Mountain bee plant, stinking clover, Cleome serrulata +n11867311 clammyweed, Polanisia graveolens, Polanisia dodecandra +n11868814 crucifer, cruciferous plant +n11869351 cress, cress plant +n11869689 watercress +n11870044 stonecress, stone cress +n11870418 garlic mustard, hedge garlic, sauce-alone, jack-by-the-hedge, Alliaria officinalis +n11870747 alyssum, madwort +n11871059 rose of Jericho, resurrection plant, Anastatica hierochuntica +n11871496 Arabidopsis thaliana, mouse-ear cress +n11871748 Arabidopsis lyrata +n11872146 rock cress, rockcress +n11872324 sicklepod, Arabis Canadensis +n11872658 tower mustard, tower cress, Turritis glabra, Arabis glabra +n11873182 horseradish, horseradish root +n11873612 winter cress, St. Barbara's herb, scurvy grass +n11874081 yellow rocket, rockcress, rocket cress, Barbarea vulgaris, Sisymbrium barbarea +n11874423 hoary alison, hoary alyssum, Berteroa incana +n11874878 buckler mustard, Biscutalla laevigata +n11875523 wild cabbage, Brassica oleracea +n11875691 cabbage, cultivated cabbage, Brassica oleracea +n11875938 head cabbage, head cabbage plant, Brassica oleracea capitata +n11876204 savoy cabbage +n11876432 brussels sprout, Brassica oleracea gemmifera +n11876634 cauliflower, Brassica oleracea botrytis +n11876803 broccoli, Brassica oleracea italica +n11877193 collard +n11877283 kohlrabi, Brassica oleracea gongylodes +n11877473 turnip plant +n11877646 turnip, white turnip, Brassica rapa +n11877860 rutabaga, turnip cabbage, swede, Swedish turnip, rutabaga plant, Brassica napus napobrassica +n11878101 broccoli raab, broccoli rabe, Brassica rapa ruvo +n11878283 mustard +n11878633 chinese mustard, indian mustard, leaf mustard, gai choi, Brassica juncea +n11879054 bok choy, bok choi, pakchoi, pak choi, Chinese white cabbage, Brassica rapa chinensis +n11879722 rape, colza, Brassica napus +n11879895 rapeseed +n11881189 shepherd's purse, shepherd's pouch, Capsella bursa-pastoris +n11882074 lady's smock, cuckooflower, cuckoo flower, meadow cress, Cardamine pratensis +n11882237 coral-root bittercress, coralroot, coralwort, Cardamine bulbifera, Dentaria bulbifera +n11882426 crinkleroot, crinkle-root, crinkle root, pepper root, toothwort, Cardamine diphylla, Dentaria diphylla +n11882636 American watercress, mountain watercress, Cardamine rotundifolia +n11882821 spring cress, Cardamine bulbosa +n11882972 purple cress, Cardamine douglasii +n11883328 wallflower, Cheiranthus cheiri, Erysimum cheiri +n11883628 prairie rocket +n11883945 scurvy grass, common scurvy grass, Cochlearia officinalis +n11884384 sea kale, sea cole, Crambe maritima +n11884967 tansy mustard, Descurainia pinnata +n11885856 draba +n11887119 wallflower +n11887310 prairie rocket +n11887476 Siberian wall flower, Erysimum allionii, Cheiranthus allionii +n11887750 western wall flower, Erysimum asperum, Cheiranthus asperus, Erysimum arkansanum +n11888061 wormseed mustard, Erysimum cheiranthoides +n11888424 heliophila +n11888800 damask violet, Dame's violet, sweet rocket, Hesperis matronalis +n11889205 tansy-leaved rocket, Hugueninia tanacetifolia, Sisymbrium tanacetifolia +n11889619 candytuft +n11890022 woad +n11890150 dyer's woad, Isatis tinctoria +n11890884 bladderpod +n11891175 sweet alyssum, sweet alison, Lobularia maritima +n11892029 Malcolm stock, stock +n11892181 Virginian stock, Virginia stock, Malcolmia maritima +n11892637 stock, gillyflower +n11892817 brompton stock, Matthiola incana +n11893640 bladderpod +n11893916 chamois cress, Pritzelago alpina, Lepidium alpina +n11894327 radish plant, radish +n11894558 jointed charlock, wild radish, wild rape, runch, Raphanus raphanistrum +n11894770 radish, Raphanus sativus +n11895092 radish, daikon, Japanese radish, Raphanus sativus longipinnatus +n11895472 marsh cress, yellow watercress, Rorippa islandica +n11895714 great yellowcress, Rorippa amphibia, Nasturtium amphibium +n11896141 schizopetalon, Schizopetalon walkeri +n11896722 field mustard, wild mustard, charlock, chadlock, Brassica kaber, Sinapis arvensis +n11897116 hedge mustard, Sisymbrium officinale +n11897466 desert plume, prince's-plume, Stanleya pinnata, Cleome pinnata +n11898639 pennycress +n11898775 field pennycress, French weed, fanweed, penny grass, stinkweed, mithridate mustard, Thlaspi arvense +n11899223 fringepod, lacepod +n11899762 bladderpod +n11899921 wasabi +n11900569 poppy +n11901294 Iceland poppy, Papaver alpinum +n11901452 western poppy, Papaver californicum +n11901597 prickly poppy, Papaver argemone +n11901759 Iceland poppy, arctic poppy, Papaver nudicaule +n11901977 oriental poppy, Papaver orientale +n11902200 corn poppy, field poppy, Flanders poppy, Papaver rhoeas +n11902389 opium poppy, Papaver somniferum +n11902709 prickly poppy, argemone, white thistle, devil's fig +n11902982 Mexican poppy, Argemone mexicana +n11903333 bocconia, tree celandine, Bocconia frutescens +n11903671 celandine, greater celandine, swallowwort, swallow wort, Chelidonium majus +n11904109 corydalis +n11904274 climbing corydalis, Corydalis claviculata, Fumaria claviculata +n11905392 California poppy, Eschscholtzia californica +n11905749 horn poppy, horned poppy, yellow horned poppy, sea poppy, Glaucium flavum +n11906127 golden cup, Mexican tulip poppy, Hunnemania fumariifolia +n11906514 plume poppy, bocconia, Macleaya cordata +n11906917 blue poppy, Meconopsis betonicifolia +n11907100 Welsh poppy, Meconopsis cambrica +n11907405 creamcups, Platystemon californicus +n11907689 matilija poppy, California tree poppy, Romneya coulteri +n11908549 wind poppy, flaming poppy, Stylomecon heterophyllum, Papaver heterophyllum +n11908846 celandine poppy, wood poppy, Stylophorum diphyllum +n11909864 climbing fumitory, Allegheny vine, Adlumia fungosa, Fumaria fungosa +n11910271 bleeding heart, lyreflower, lyre-flower, Dicentra spectabilis +n11910460 Dutchman's breeches, Dicentra cucullaria +n11910666 squirrel corn, Dicentra canadensis +n11915214 composite, composite plant +n11915658 compass plant, compass flower +n11915899 everlasting, everlasting flower +n11916467 achillea +n11916696 yarrow, milfoil, Achillea millefolium +n11917407 pink-and-white everlasting, pink paper daisy, Acroclinium roseum +n11917835 white snakeroot, white sanicle, Ageratina altissima, Eupatorium rugosum +n11918286 ageratum +n11918473 common ageratum, Ageratum houstonianum +n11918808 sweet sultan, Amberboa moschata, Centaurea moschata +n11919447 ragweed, ambrosia, bitterweed +n11919761 common ragweed, Ambrosia artemisiifolia +n11919975 great ragweed, Ambrosia trifida +n11920133 western ragweed, perennial ragweed, Ambrosia psilostachya +n11920498 ammobium +n11920663 winged everlasting, Ammobium alatum +n11920998 pellitory, pellitory-of-Spain, Anacyclus pyrethrum +n11921395 pearly everlasting, cottonweed, Anaphalis margaritacea +n11921792 andryala +n11922661 plantain-leaved pussytoes +n11922755 field pussytoes +n11922839 solitary pussytoes +n11922926 mountain everlasting +n11923174 mayweed, dog fennel, stinking mayweed, stinking chamomile, Anthemis cotula +n11923397 yellow chamomile, golden marguerite, dyers' chamomile, Anthemis tinctoria +n11923637 corn chamomile, field chamomile, corn mayweed, Anthemis arvensis +n11924014 woolly daisy, dwarf daisy, Antheropeas wallacei, Eriophyllum wallacei +n11924445 burdock, clotbur +n11924849 great burdock, greater burdock, cocklebur, Arctium lappa +n11925303 African daisy +n11925450 blue-eyed African daisy, Arctotis stoechadifolia, Arctotis venusta +n11925898 marguerite, marguerite daisy, Paris daisy, Chrysanthemum frutescens, Argyranthemum frutescens +n11926365 silversword, Argyroxiphium sandwicense +n11926833 arnica +n11926976 heartleaf arnica, Arnica cordifolia +n11927215 Arnica montana +n11927740 lamb succory, dwarf nipplewort, Arnoseris minima +n11928352 artemisia +n11928858 mugwort +n11929743 sweet wormwood, Artemisia annua +n11930038 field wormwood, Artemisia campestris +n11930203 tarragon, estragon, Artemisia dracunculus +n11930353 sand sage, silvery wormwood, Artemisia filifolia +n11930571 wormwood sage, prairie sagewort, Artemisia frigida +n11930788 western mugwort, white sage, cudweed, prairie sage, Artemisia ludoviciana, Artemisia gnaphalodes +n11930994 Roman wormwood, Artemis pontica +n11931135 bud brush, bud sagebrush, Artemis spinescens +n11931540 common mugwort, Artemisia vulgaris +n11931918 aster +n11932745 wood aster +n11932927 whorled aster, Aster acuminatus +n11933099 heath aster, Aster arenosus +n11933257 heart-leaved aster, Aster cordifolius +n11933387 white wood aster, Aster divaricatus +n11933546 bushy aster, Aster dumosus +n11933728 heath aster, Aster ericoides +n11933903 white prairie aster, Aster falcatus +n11934041 stiff aster, Aster linarifolius +n11934239 goldilocks, goldilocks aster, Aster linosyris, Linosyris vulgaris +n11934463 large-leaved aster, Aster macrophyllus +n11934616 New England aster, Aster novae-angliae +n11934807 Michaelmas daisy, New York aster, Aster novi-belgii +n11935027 upland white aster, Aster ptarmicoides +n11935187 Short's aster, Aster shortii +n11935330 sea aster, sea starwort, Aster tripolium +n11935469 prairie aster, Aster turbinellis +n11935627 annual salt-marsh aster +n11935715 aromatic aster +n11935794 arrow leaved aster +n11935877 azure aster +n11935953 bog aster +n11936027 crooked-stemmed aster +n11936113 Eastern silvery aster +n11936199 flat-topped white aster +n11936287 late purple aster +n11936369 panicled aster +n11936448 perennial salt marsh aster +n11936539 purple-stemmed aster +n11936624 rough-leaved aster +n11936707 rush aster +n11936782 Schreiber's aster +n11936864 small white aster +n11936946 smooth aster +n11937023 southern aster +n11937102 starved aster, calico aster +n11937195 tradescant's aster +n11937278 wavy-leaved aster +n11937360 Western silvery aster +n11937446 willow aster +n11937692 ayapana, Ayapana triplinervis, Eupatorium aya-pana +n11938556 mule fat, Baccharis viminea +n11939180 balsamroot +n11939491 daisy +n11939699 common daisy, English daisy, Bellis perennis +n11940006 bur marigold, burr marigold, beggar-ticks, beggar's-ticks, sticktight +n11940349 Spanish needles, Bidens bipinnata +n11940599 tickseed sunflower, Bidens coronata, Bidens trichosperma +n11940750 European beggar-ticks, trifid beggar-ticks, trifid bur marigold, Bidens tripartita +n11941094 slender knapweed +n11941478 false chamomile +n11941924 Swan River daisy, Brachycome Iberidifolia +n11942659 woodland oxeye, Buphthalmum salicifolium +n11943133 Indian plantain +n11943407 calendula +n11943660 common marigold, pot marigold, ruddles, Scotch marigold, Calendula officinalis +n11943992 China aster, Callistephus chinensis +n11944196 thistle +n11944751 welted thistle, Carduus crispus +n11944954 musk thistle, nodding thistle, Carduus nutans +n11945367 carline thistle +n11945514 stemless carline thistle, Carlina acaulis +n11945783 common carline thistle, Carlina vulgaris +n11946051 safflower, false saffron, Carthamus tinctorius +n11946313 safflower seed +n11946727 catananche +n11946918 blue succory, cupid's dart, Catananche caerulea +n11947251 centaury +n11947629 dusty miller, Centaurea cineraria, Centaurea gymnocarpa +n11947802 cornflower, bachelor's button, bluebottle, Centaurea cyanus +n11948044 star-thistle, caltrop, Centauria calcitrapa +n11948264 knapweed +n11948469 sweet sultan, Centaurea imperialis +n11948864 great knapweed, greater knapweed, Centaurea scabiosa +n11949015 Barnaby's thistle, yellow star-thistle, Centaurea solstitialis +n11949402 chamomile, camomile, Chamaemelum nobilis, Anthemis nobilis +n11949857 chaenactis +n11950345 chrysanthemum +n11950686 corn marigold, field marigold, Chrysanthemum segetum +n11950877 crown daisy, Chrysanthemum coronarium +n11951052 chop-suey greens, tong ho, shun giku, Chrysanthemum coronarium spatiosum +n11951511 golden aster +n11951820 Maryland golden aster, Chrysopsis mariana +n11952346 goldenbush +n11952541 rabbit brush, rabbit bush, Chrysothamnus nauseosus +n11953038 chicory, succory, chicory plant, Cichorium intybus +n11953339 endive, witloof, Cichorium endivia +n11953610 chicory, chicory root +n11953884 plume thistle, plumed thistle +n11954161 Canada thistle, creeping thistle, Cirsium arvense +n11954345 field thistle, Cirsium discolor +n11954484 woolly thistle, Cirsium flodmanii +n11954642 European woolly thistle, Cirsium eriophorum +n11954798 melancholy thistle, Cirsium heterophylum, Cirsium helenioides +n11955040 brook thistle, Cirsium rivulare +n11955153 bull thistle, boar thistle, spear thistle, Cirsium vulgare, Cirsium lanceolatum +n11955532 blessed thistle, sweet sultan, Cnicus benedictus +n11955896 mistflower, mist-flower, ageratum, Conoclinium coelestinum, Eupatorium coelestinum +n11956348 horseweed, Canadian fleabane, fleabane, Conyza canadensis, Erigeron canadensis +n11956850 coreopsis, tickseed, tickweed, tick-weed +n11957317 giant coreopsis, Coreopsis gigantea +n11957514 sea dahlia, Coreopsis maritima +n11957678 calliopsis, Coreopsis tinctoria +n11958080 cosmos, cosmea +n11958499 brass buttons, Cotula coronopifolia +n11958888 billy buttons +n11959259 hawk's-beard, hawk's-beards +n11959632 artichoke, globe artichoke, artichoke plant, Cynara scolymus +n11959862 cardoon, Cynara cardunculus +n11960245 dahlia, Dahlia pinnata +n11960673 German ivy, Delairea odorata, Senecio milkanioides +n11961100 florist's chrysanthemum, florists' chrysanthemum, mum, Dendranthema grandifloruom, Chrysanthemum morifolium +n11961446 cape marigold, sun marigold, star of the veldt +n11961871 leopard's-bane, leopardbane +n11962272 coneflower +n11962667 globe thistle +n11962994 elephant's-foot +n11963572 tassel flower, Emilia sagitta +n11963932 brittlebush, brittle bush, incienso, Encelia farinosa +n11964446 sunray, Enceliopsis nudicaulis +n11964848 engelmannia +n11965218 fireweed, Erechtites hieracifolia +n11965627 fleabane +n11965962 blue fleabane, Erigeron acer +n11966083 daisy fleabane, Erigeron annuus +n11966215 orange daisy, orange fleabane, Erigeron aurantiacus +n11966385 spreading fleabane, Erigeron divergens +n11966617 seaside daisy, beach aster, Erigeron glaucous +n11966896 Philadelphia fleabane, Erigeron philadelphicus +n11967142 robin's plantain, Erigeron pulchellus +n11967315 showy daisy, Erigeron speciosus +n11967744 woolly sunflower +n11967878 golden yarrow, Eriophyllum lanatum +n11968519 dog fennel, Eupatorium capillifolium +n11968704 Joe-Pye weed, spotted Joe-Pye weed, Eupatorium maculatum +n11968931 boneset, agueweed, thoroughwort, Eupatorium perfoliatum +n11969166 Joe-Pye weed, purple boneset, trumpet weed, marsh milkweed, Eupatorium purpureum +n11969607 blue daisy, blue marguerite, Felicia amelloides +n11969806 kingfisher daisy, Felicia bergeriana +n11970101 cotton rose, cudweed, filago +n11970298 herba impia, Filago germanica +n11970586 gaillardia +n11971248 gazania +n11971406 treasure flower, Gazania rigens +n11971783 African daisy +n11971927 Barberton daisy, Transvaal daisy, Gerbera jamesonii +n11972291 desert sunflower, Gerea canescens +n11972759 cudweed +n11972959 chafeweed, wood cudweed, Gnaphalium sylvaticum +n11973341 gumweed, gum plant, tarweed, rosinweed +n11973634 Grindelia robusta +n11973749 curlycup gumweed, Grindelia squarrosa +n11974373 little-head snakeweed, Gutierrezia microcephala +n11974557 rabbitweed, rabbit-weed, snakeweed, broom snakeweed, broom snakeroot, turpentine weed, Gutierrezia sarothrae +n11974888 broomweed, broom-weed, Gutierrezia texana +n11975254 velvet plant, purple velvet plant, royal velvet plant, Gynura aurantiaca +n11976170 goldenbush +n11976314 camphor daisy, Haplopappus phyllocephalus +n11976511 yellow spiny daisy, Haplopappus spinulosus +n11976933 hoary golden bush, Hazardia cana +n11977303 sneezeweed +n11977660 orange sneezeweed, owlclaws, Helenium hoopesii +n11977887 rosilla, Helenium puberulum +n11978233 sunflower, helianthus +n11978551 swamp sunflower, Helianthus angustifolius +n11978713 common sunflower, mirasol, Helianthus annuus +n11978961 giant sunflower, tall sunflower, Indian potato, Helianthus giganteus +n11979187 showy sunflower, Helianthus laetiflorus +n11979354 Maximilian's sunflower, Helianthus maximilianii +n11979527 prairie sunflower, Helianthus petiolaris +n11979715 Jerusalem artichoke, girasol, Jerusalem artichoke sunflower, Helianthus tuberosus +n11979964 Jerusalem artichoke +n11980318 strawflower, golden everlasting, yellow paper daisy, Helichrysum bracteatum +n11980682 heliopsis, oxeye +n11981192 strawflower +n11981475 hairy golden aster, prairie golden aster, Heterotheca villosa, Chrysopsis villosa +n11982115 hawkweed +n11982545 rattlesnake weed, Hieracium venosum +n11982939 alpine coltsfoot, Homogyne alpina, Tussilago alpina +n11983375 alpine gold, alpine hulsea, Hulsea algida +n11983606 dwarf hulsea, Hulsea nana +n11984144 cat's-ear, California dandelion, capeweed, gosmore, Hypochaeris radicata +n11984542 inula +n11985053 marsh elder, iva +n11985321 burweed marsh elder, false ragweed, Iva xanthifolia +n11985739 krigia +n11985903 dwarf dandelion, Krigia dandelion, Krigia bulbosa +n11986511 garden lettuce, common lettuce, Lactuca sativa +n11986729 cos lettuce, romaine lettuce, Lactuca sativa longifolia +n11987126 leaf lettuce, Lactuca sativa crispa +n11987349 celtuce, stem lettuce, Lactuca sativa asparagina +n11987511 prickly lettuce, horse thistle, Lactuca serriola, Lactuca scariola +n11988132 goldfields, Lasthenia chrysostoma +n11988596 tidytips, tidy tips, Layia platyglossa +n11988893 hawkbit +n11989087 fall dandelion, arnica bud, Leontodon autumnalis +n11989393 edelweiss, Leontopodium alpinum +n11989869 oxeye daisy, ox-eyed daisy, marguerite, moon daisy, white daisy, Leucanthemum vulgare, Chrysanthemum leucanthemum +n11990167 oxeye daisy, Leucanthemum maximum, Chrysanthemum maximum +n11990313 shasta daisy, Leucanthemum superbum, Chrysanthemum maximum maximum +n11990627 Pyrenees daisy, Leucanthemum lacustre, Chrysanthemum lacustre +n11990920 north island edelweiss, Leucogenes leontopodium +n11991263 blazing star, button snakeroot, gayfeather, gay-feather, snakeroot +n11991549 dotted gayfeather, Liatris punctata +n11991777 dense blazing star, Liatris pycnostachya +n11992479 Texas star, Lindheimera texana +n11992806 African daisy, yellow ageratum, Lonas inodora, Lonas annua +n11993203 tahoka daisy, tansy leaf aster, Machaeranthera tanacetifolia +n11993444 sticky aster, Machaeranthera bigelovii +n11993675 Mojave aster, Machaeranthera tortifoloia +n11994150 tarweed +n11995092 sweet false chamomile, wild chamomile, German chamomile, Matricaria recutita, Matricaria chamomilla +n11995396 pineapple weed, rayless chamomile, Matricaria matricarioides +n11996251 climbing hempweed, climbing boneset, wild climbing hempweed, climbing hemp-vine, Mikania scandens +n11996677 mutisia +n11997032 rattlesnake root +n11997160 white lettuce, cankerweed, Nabalus alba, Prenanthes alba +n11997969 daisybush, daisy-bush, daisy bush +n11998492 New Zealand daisybush, Olearia haastii +n11998888 cotton thistle, woolly thistle, Scotch thistle, Onopordum acanthium, Onopordon acanthium +n11999278 othonna +n11999656 cascade everlasting, Ozothamnus secundiflorus, Helichrysum secundiflorum +n12000191 butterweed +n12001294 American feverfew, wild quinine, prairie dock, Parthenium integrifolium +n12001707 cineraria, Pericallis cruenta, Senecio cruentus +n12001924 florest's cineraria, Pericallis hybrida +n12002428 butterbur, bog rhubarb, Petasites hybridus, Petasites vulgaris +n12002651 winter heliotrope, sweet coltsfoot, Petasites fragrans +n12002826 sweet coltsfoot, Petasites sagitattus +n12003167 oxtongue, bristly oxtongue, bitterweed, bugloss, Picris echioides +n12003696 hawkweed +n12004120 mouse-ear hawkweed, Pilosella officinarum, Hieracium pilocella +n12004547 stevia +n12004987 rattlesnake root, Prenanthes purpurea +n12005656 fleabane, feabane mullet, Pulicaria dysenterica +n12006306 sheep plant, vegetable sheep, Raoulia lutescens, Raoulia australis +n12006766 coneflower +n12006930 Mexican hat, Ratibida columnaris +n12007196 long-head coneflower, prairie coneflower, Ratibida columnifera +n12007406 prairie coneflower, Ratibida tagetes +n12007766 Swan River everlasting, rhodanthe, Rhodanthe manglesii, Helipterum manglesii +n12008252 coneflower +n12008487 black-eyed Susan, Rudbeckia hirta, Rudbeckia serotina +n12008749 cutleaved coneflower, Rudbeckia laciniata +n12009047 golden glow, double gold, hortensia, Rudbeckia laciniata hortensia +n12009420 lavender cotton, Santolina chamaecyparissus +n12009792 creeping zinnia, Sanvitalia procumbens +n12010628 golden thistle +n12010815 Spanish oyster plant, Scolymus hispanicus +n12011370 nodding groundsel, Senecio bigelovii +n12011620 dusty miller, Senecio cineraria, Cineraria maritima +n12012111 butterweed, ragwort, Senecio glabellus +n12012253 ragwort, tansy ragwort, ragweed, benweed, Senecio jacobaea +n12012510 arrowleaf groundsel, Senecio triangularis +n12013035 black salsify, viper's grass, scorzonera, Scorzonera hispanica +n12013511 white-topped aster +n12013701 narrow-leaved white-topped aster +n12014085 silver sage, silver sagebrush, grey sage, gray sage, Seriphidium canum, Artemisia cana +n12014355 sea wormwood, Seriphidium maritimum, Artemisia maritima +n12014923 sawwort, Serratula tinctoria +n12015221 rosinweed, Silphium laciniatum +n12015525 milk thistle, lady's thistle, Our Lady's mild thistle, holy thistle, blessed thistle, Silybum marianum +n12015959 goldenrod +n12016434 silverrod, Solidago bicolor +n12016567 meadow goldenrod, Canadian goldenrod, Solidago canadensis +n12016777 Missouri goldenrod, Solidago missouriensis +n12016914 alpine goldenrod, Solidago multiradiata +n12017127 grey goldenrod, gray goldenrod, Solidago nemoralis +n12017326 Blue Mountain tea, sweet goldenrod, Solidago odora +n12017511 dyer's weed, Solidago rugosa +n12017664 seaside goldenrod, beach goldenrod, Solidago sempervirens +n12017853 narrow goldenrod, Solidago spathulata +n12018014 Boott's goldenrod +n12018100 Elliott's goldenrod +n12018188 Ohio goldenrod +n12018271 rough-stemmed goldenrod +n12018363 showy goldenrod +n12018447 tall goldenrod +n12018530 zigzag goldenrod, broad leaved goldenrod +n12018760 sow thistle, milk thistle +n12019035 milkweed, Sonchus oleraceus +n12019827 stevia +n12020184 stokes' aster, cornflower aster, Stokesia laevis +n12020507 marigold +n12020736 African marigold, big marigold, Aztec marigold, Tagetes erecta +n12020941 French marigold, Tagetes patula +n12022054 painted daisy, pyrethrum, Tanacetum coccineum, Chrysanthemum coccineum +n12022382 pyrethrum, Dalmatian pyrethrum, Dalmatia pyrethrum, Tanacetum cinerariifolium, Chrysanthemum cinerariifolium +n12022821 northern dune tansy, Tanacetum douglasii +n12023108 feverfew, Tanacetum parthenium, Chrysanthemum parthenium +n12023407 dusty miller, silver-lace, silver lace, Tanacetum ptarmiciflorum, Chrysanthemum ptarmiciflorum +n12023726 tansy, golden buttons, scented fern, Tanacetum vulgare +n12024176 dandelion, blowball +n12024445 common dandelion, Taraxacum ruderalia, Taraxacum officinale +n12024690 dandelion green +n12024805 Russian dandelion, kok-saghyz, kok-sagyz, Taraxacum kok-saghyz +n12025220 stemless hymenoxys, Tetraneuris acaulis, Hymenoxys acaulis +n12026018 Mexican sunflower, tithonia +n12026476 Easter daisy, stemless daisy, Townsendia Exscapa +n12026981 yellow salsify, Tragopogon dubius +n12027222 salsify, oyster plant, vegetable oyster, Tragopogon porrifolius +n12027658 meadow salsify, goatsbeard, shepherd's clock, Tragopogon pratensis +n12028424 scentless camomile, scentless false camomile, scentless mayweed, scentless hayweed, corn mayweed, Tripleurospermum inodorum, Matricaria inodorum +n12029039 turfing daisy, Tripleurospermum tchihatchewii, Matricaria tchihatchewii +n12029635 coltsfoot, Tussilago farfara +n12030092 ursinia +n12030654 crownbeard, crown-beard, crown beard +n12030908 wingstem, golden ironweed, yellow ironweed, golden honey plant, Verbesina alternifolia, Actinomeris alternifolia +n12031139 cowpen daisy, golden crownbeard, golden crown beard, butter daisy, Verbesina encelioides, Ximenesia encelioides +n12031388 gravelweed, Verbesina helianthoides +n12031547 Virginia crownbeard, frostweed, frost-weed, Verbesina virginica +n12031927 ironweed, vernonia +n12032429 mule's ears, Wyethia amplexicaulis +n12032686 white-rayed mule's ears, Wyethia helianthoides +n12033139 cocklebur, cockle-bur, cockleburr, cockle-burr +n12033504 xeranthemum +n12033709 immortelle, Xeranthemum annuum +n12034141 zinnia, old maid, old maid flower +n12034384 white zinnia, Zinnia acerosa +n12034594 little golden zinnia, Zinnia grandiflora +n12035631 blazing star, Mentzelia livicaulis, Mentzelia laevicaulis +n12035907 bartonia, Mentzelia lindleyi +n12036067 achene +n12036226 samara, key fruit, key +n12036939 campanula, bellflower +n12037499 creeping bellflower, Campanula rapunculoides +n12037691 Canterbury bell, cup and saucer, Campanula medium +n12038038 tall bellflower, Campanula americana +n12038208 marsh bellflower, Campanula aparinoides +n12038406 clustered bellflower, Campanula glomerata +n12038585 peach bells, peach bell, willow bell, Campanula persicifolia +n12038760 chimney plant, chimney bellflower, Campanula pyramidalis +n12038898 rampion, rampion bellflower, Campanula rapunculus +n12039317 tussock bellflower, spreading bellflower, Campanula carpatica +n12041446 orchid, orchidaceous plant +n12043444 orchis +n12043673 male orchis, early purple orchid, Orchis mascula +n12043836 butterfly orchid, butterfly orchis, Orchis papilionaceae +n12044041 showy orchis, purple orchis, purple-hooded orchis, Orchis spectabilis +n12044467 aerides +n12044784 angrecum +n12045157 jewel orchid +n12045514 puttyroot, adam-and-eve, Aplectrum hyemale +n12045860 arethusa +n12046028 bog rose, wild pink, dragon's mouth, Arethusa bulbosa +n12046428 bletia +n12046815 Bletilla striata, Bletia striata +n12047345 brassavola +n12047884 spider orchid, Brassia lawrenceana +n12048056 spider orchid, Brassia verrucosa +n12048399 caladenia +n12048928 calanthe +n12049282 grass pink, Calopogon pulchellum, Calopogon tuberosum +n12049562 calypso, fairy-slipper, Calypso bulbosa +n12050533 cattleya +n12050959 helleborine +n12051103 red helleborine, Cephalanthera rubra +n12051514 spreading pogonia, funnel-crest rosebud orchid, Cleistes divaricata, Pogonia divaricata +n12051792 rosebud orchid, Cleistes rosea, Pogonia rosea +n12052267 satyr orchid, Coeloglossum bracteatum +n12052447 frog orchid, Coeloglossum viride +n12052787 coelogyne +n12053405 coral root +n12053690 spotted coral root, Corallorhiza maculata +n12053962 striped coral root, Corallorhiza striata +n12054195 early coral root, pale coral root, Corallorhiza trifida +n12055073 swan orchid, swanflower, swan-flower, swanneck, swan-neck +n12055516 cymbid, cymbidium +n12056099 cypripedia +n12056217 lady's slipper, lady-slipper, ladies' slipper, slipper orchid +n12056601 moccasin flower, nerveroot, Cypripedium acaule +n12056758 common lady's-slipper, showy lady's-slipper, showy lady slipper, Cypripedium reginae, Cypripedium album +n12056990 ram's-head, ram's-head lady's slipper, Cypripedium arietinum +n12057211 yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum +n12057447 large yellow lady's slipper, Cypripedium calceolus pubescens +n12057660 California lady's slipper, Cypripedium californicum +n12057895 clustered lady's slipper, Cypripedium fasciculatum +n12058192 mountain lady's slipper, Cypripedium montanum +n12058630 marsh orchid +n12058822 common spotted orchid, Dactylorhiza fuchsii, Dactylorhiza maculata fuchsii +n12059314 dendrobium +n12059625 disa +n12060546 phantom orchid, snow orchid, Eburophyton austinae +n12061104 tulip orchid, Encyclia citrina, Cattleya citrina +n12061380 butterfly orchid, Encyclia tampensis, Epidendrum tampense +n12061614 butterfly orchid, butterfly orchis, Epidendrum venosum, Encyclia venosa +n12062105 epidendron +n12062468 helleborine +n12062626 Epipactis helleborine +n12062781 stream orchid, chatterbox, giant helleborine, Epipactis gigantea +n12063211 tongueflower, tongue-flower +n12063639 rattlesnake plantain, helleborine +n12064389 fragrant orchid, Gymnadenia conopsea +n12064591 short-spurred fragrant orchid, Gymnadenia odoratissima +n12065316 fringed orchis, fringed orchid +n12065649 frog orchid +n12065777 rein orchid, rein orchis +n12066018 bog rein orchid, bog candles, Habenaria dilatata +n12066261 white fringed orchis, white fringed orchid, Habenaria albiflora +n12066451 elegant Habenaria, Habenaria elegans +n12066630 purple-fringed orchid, purple-fringed orchis, Habenaria fimbriata +n12066821 coastal rein orchid, Habenaria greenei +n12067029 Hooker's orchid, Habenaria hookeri +n12067193 ragged orchid, ragged orchis, ragged-fringed orchid, green fringed orchis, Habenaria lacera +n12067433 prairie orchid, prairie white-fringed orchis, Habenaria leucophaea +n12067672 snowy orchid, Habenaria nivea +n12067817 round-leaved rein orchid, Habenaria orbiculata +n12068138 purple fringeless orchid, purple fringeless orchis, Habenaria peramoena +n12068432 purple-fringed orchid, purple-fringed orchis, Habenaria psycodes +n12068615 Alaska rein orchid, Habenaria unalascensis +n12069009 crested coral root, Hexalectris spicata +n12069217 Texas purple spike, Hexalectris warnockii +n12069679 lizard orchid, Himantoglossum hircinum +n12070016 laelia +n12070381 liparis +n12070583 twayblade +n12070712 fen orchid, fen orchis, Liparis loeselii +n12071259 broad-leaved twayblade, Listera convallarioides +n12071477 lesser twayblade, Listera cordata +n12071744 twayblade, Listera ovata +n12072210 green adder's mouth, Malaxis-unifolia, Malaxis ophioglossoides +n12072722 masdevallia +n12073217 maxillaria +n12073554 pansy orchid +n12073991 odontoglossum +n12074408 oncidium, dancing lady orchid, butterfly plant, butterfly orchid +n12074867 bee orchid, Ophrys apifera +n12075010 fly orchid, Ophrys insectifera, Ophrys muscifera +n12075151 spider orchid +n12075299 early spider orchid, Ophrys sphegodes +n12075830 Venus' slipper, Venus's slipper, Venus's shoe +n12076223 phaius +n12076577 moth orchid, moth plant +n12076852 butterfly plant, Phalaenopsis amabilis +n12077244 rattlesnake orchid +n12077944 lesser butterfly orchid, Platanthera bifolia, Habenaria bifolia +n12078172 greater butterfly orchid, Platanthera chlorantha, Habenaria chlorantha +n12078451 prairie white-fringed orchid, Platanthera leucophea +n12078747 tangle orchid +n12079120 Indian crocus +n12079523 pleurothallis +n12079963 pogonia +n12080395 butterfly orchid +n12080588 Psychopsis krameriana, Oncidium papilio kramerianum +n12080820 Psychopsis papilio, Oncidium papilio +n12081215 helmet orchid, greenhood +n12081649 foxtail orchid +n12082131 orange-blossom orchid, Sarcochilus falcatus +n12083113 sobralia +n12083591 ladies' tresses, lady's tresses +n12083847 screw augur, Spiranthes cernua +n12084158 hooded ladies' tresses, Spiranthes romanzoffiana +n12084400 western ladies' tresses, Spiranthes porrifolia +n12084555 European ladies' tresses, Spiranthes spiralis +n12084890 stanhopea +n12085267 stelis +n12085664 fly orchid +n12086012 vanda +n12086192 blue orchid, Vanda caerulea +n12086539 vanilla +n12086778 vanilla orchid, Vanilla planifolia +n12087961 yam, yam plant +n12088223 yam +n12088327 white yam, water yam, Dioscorea alata +n12088495 cinnamon vine, Chinese yam, Dioscorea batata +n12088909 elephant's-foot, tortoise plant, Hottentot bread vine, Hottentot's bread vine, Dioscorea elephantipes +n12089320 wild yam, Dioscorea paniculata +n12089496 cush-cush, Dioscorea trifida +n12089846 black bryony, black bindweed, Tamus communis +n12090890 primrose, primula +n12091213 English primrose, Primula vulgaris +n12091377 cowslip, paigle, Primula veris +n12091550 oxlip, paigle, Primula elatior +n12091697 Chinese primrose, Primula sinensis +n12091953 polyanthus, Primula polyantha +n12092262 pimpernel +n12092417 scarlet pimpernel, red pimpernel, poor man's weatherglass, Anagallis arvensis +n12092629 bog pimpernel, Anagallis tenella +n12092930 chaffweed, bastard pimpernel, false pimpernel +n12093329 cyclamen, Cyclamen purpurascens +n12093600 sowbread, Cyclamen hederifolium, Cyclamen neopolitanum +n12093885 sea milkwort, sea trifoly, black saltwort, Glaux maritima +n12094244 featherfoil, feather-foil +n12094401 water gillyflower, American featherfoil, Hottonia inflata +n12094612 water violet, Hottonia palustris +n12095020 loosestrife +n12095281 gooseneck loosestrife, Lysimachia clethroides Duby +n12095412 yellow pimpernel, Lysimachia nemorum +n12095543 fringed loosestrife, Lysimachia ciliatum +n12095647 moneywort, creeping Jenny, creeping Charlie, Lysimachia nummularia +n12095934 swamp candles, Lysimachia terrestris +n12096089 whorled loosestrife, Lysimachia quadrifolia +n12096395 water pimpernel +n12096563 brookweed, Samolus valerandii +n12096674 brookweed, Samolus parviflorus, Samolus floribundus +n12097396 coralberry, spiceberry, Ardisia crenata +n12097556 marlberry, Ardisia escallonoides, Ardisia paniculata +n12098403 plumbago +n12098524 leadwort, Plumbago europaea +n12098827 thrift +n12099342 sea lavender, marsh rosemary, statice +n12100187 barbasco, joewood, Jacquinia keyensis +n12101870 gramineous plant, graminaceous plant +n12102133 grass +n12103680 midgrass +n12103894 shortgrass, short-grass +n12104104 sword grass +n12104238 tallgrass, tall-grass +n12104501 herbage, pasturage +n12104734 goat grass, Aegilops triuncalis +n12105125 wheatgrass, wheat-grass +n12105353 crested wheatgrass, crested wheat grass, fairway crested wheat grass, Agropyron cristatum +n12105828 bearded wheatgrass, Agropyron subsecundum +n12105981 western wheatgrass, bluestem wheatgrass, Agropyron smithii +n12106134 intermediate wheatgrass, Agropyron intermedium, Elymus hispidus +n12106323 slender wheatgrass, Agropyron trachycaulum, Agropyron pauciflorum, Elymus trachycaulos +n12107002 velvet bent, velvet bent grass, brown bent, Rhode Island bent, dog bent, Agrostis canina +n12107191 cloud grass, Agrostis nebulosa +n12107710 meadow foxtail, Alopecurus pratensis +n12107970 foxtail, foxtail grass +n12108432 broom grass +n12108613 broom sedge, Andropogon virginicus +n12108871 tall oat grass, tall meadow grass, evergreen grass, false oat, French rye, Arrhenatherum elatius +n12109365 toetoe, toitoi, Arundo conspicua, Chionochloa conspicua +n12109827 oat +n12110085 cereal oat, Avena sativa +n12110236 wild oat, wild oat grass, Avena fatua +n12110352 slender wild oat, Avena barbata +n12110475 wild red oat, animated oat, Avene sterilis +n12110778 brome, bromegrass +n12111238 chess, cheat, Bromus secalinus +n12111627 field brome, Bromus arvensis +n12112008 grama, grama grass, gramma, gramma grass +n12112337 black grama, Bouteloua eriopoda +n12112609 buffalo grass, Buchloe dactyloides +n12112918 reed grass +n12113195 feather reed grass, feathertop, Calamagrostis acutiflora +n12113323 Australian reed grass, Calamagrostic quadriseta +n12113657 burgrass, bur grass +n12114010 buffel grass, Cenchrus ciliaris, Pennisetum cenchroides +n12114590 Rhodes grass, Chloris gayana +n12115180 pampas grass, Cortaderia selloana +n12116058 giant star grass, Cynodon plectostachyum +n12116429 orchard grass, cocksfoot, cockspur, Dactylis glomerata +n12116734 Egyptian grass, crowfoot grass, Dactyloctenium aegypticum +n12117017 crabgrass, crab grass, finger grass +n12117235 smooth crabgrass, Digitaria ischaemum +n12117326 large crabgrass, hairy finger grass, Digitaria sanguinalis +n12117695 barnyard grass, barn grass, barn millet, Echinochloa crusgalli +n12117912 Japanese millet, billion-dollar grass, Japanese barnyard millet, sanwa millet, Echinochloa frumentacea +n12118414 yardgrass, yard grass, wire grass, goose grass, Eleusine indica +n12118661 finger millet, ragi, ragee, African millet, coracan, corakan, kurakkan, Eleusine coracana +n12119099 lyme grass +n12119238 wild rye +n12119390 giant ryegrass, Elymus condensatus, Leymus condensatus +n12119539 sea lyme grass, European dune grass, Elymus arenarius, Leymus arenaria +n12119717 Canada wild rye, Elymus canadensis +n12120347 teff, teff grass, Eragrostis tef, Eragrostic abyssinica +n12120578 weeping love grass, African love grass, Eragrostis curvula +n12121033 plume grass +n12121187 Ravenna grass, wool grass, Erianthus ravennae +n12121610 fescue, fescue grass, meadow fescue, Festuca elatior +n12122442 reed meadow grass, Glyceria grandis +n12122725 velvet grass, Yorkshire fog, Holcus lanatus +n12122918 creeping soft grass, Holcus mollis +n12123648 barleycorn +n12123741 barley grass, wall barley, Hordeum murinum +n12124172 little barley, Hordeum pusillum +n12124627 rye grass, ryegrass +n12124818 perennial ryegrass, English ryegrass, Lolium perenne +n12125001 Italian ryegrass, Italian rye, Lolium multiflorum +n12125183 darnel, tare, bearded darnel, cheat, Lolium temulentum +n12125584 nimblewill, nimble Will, Muhlenbergia schreberi +n12126084 cultivated rice, Oryza sativa +n12126360 ricegrass, rice grass +n12126736 smilo, smilo grass, Oryzopsis miliacea +n12127460 switch grass, Panicum virgatum +n12127575 broomcorn millet, hog millet, Panicum miliaceum +n12127768 goose grass, Texas millet, Panicum Texanum +n12128071 dallisgrass, dallis grass, paspalum, Paspalum dilatatum +n12128306 Bahia grass, Paspalum notatum +n12128490 knotgrass, Paspalum distichum +n12129134 fountain grass, Pennisetum ruppelii, Pennisetum setaceum +n12129738 reed canary grass, gardener's garters, lady's laces, ribbon grass, Phalaris arundinacea +n12129986 canary grass, birdseed grass, Phalaris canariensis +n12130549 timothy, herd's grass, Phleum pratense +n12131405 bluegrass, blue grass +n12131550 meadowgrass, meadow grass +n12132092 wood meadowgrass, Poa nemoralis, Agrostis alba +n12132956 noble cane +n12133151 munj, munja, Saccharum bengalense, Saccharum munja +n12133462 broom beard grass, prairie grass, wire grass, Andropogon scoparius, Schizachyrium scoparium +n12133682 bluestem, blue stem, Andropogon furcatus, Andropogon gerardii +n12134025 rye, Secale cereale +n12134486 bristlegrass, bristle grass +n12134695 giant foxtail +n12134836 yellow bristlegrass, yellow bristle grass, yellow foxtail, glaucous bristlegrass, Setaria glauca +n12135049 green bristlegrass, green foxtail, rough bristlegrass, bottle-grass, bottle grass, Setaria viridis +n12135576 Siberian millet, Setaria italica rubrofructa +n12135729 German millet, golden wonder millet, Setaria italica stramineofructa +n12135898 millet +n12136392 rattan, rattan cane +n12136581 malacca +n12136720 reed +n12137120 sorghum +n12137569 grain sorghum +n12137791 durra, doura, dourah, Egyptian corn, Indian millet, Guinea corn +n12137954 feterita, federita, Sorghum vulgare caudatum +n12138110 hegari +n12138248 kaoliang +n12138444 milo, milo maize +n12138578 shallu, Sorghum vulgare rosburghii +n12139196 broomcorn, Sorghum vulgare technicum +n12139575 cordgrass, cord grass +n12139793 salt reed grass, Spartina cynosuroides +n12139921 prairie cordgrass, freshwater cordgrass, slough grass, Spartina pectinmata +n12140511 smut grass, blackseed, carpet grass, Sporobolus poiretii +n12140759 sand dropseed, Sporobolus cryptandrus +n12140903 rush grass, rush-grass +n12141167 St. Augustine grass, Stenotaphrum secundatum, buffalo grass +n12141385 grain +n12141495 cereal, cereal grass +n12142085 wheat +n12142357 wheat berry +n12142450 durum, durum wheat, hard wheat, Triticum durum, Triticum turgidum, macaroni wheat +n12143065 spelt, Triticum spelta, Triticum aestivum spelta +n12143215 emmer, starch wheat, two-grain spelt, Triticum dicoccum +n12143405 wild wheat, wild emmer, Triticum dicoccum dicoccoides +n12143676 corn, maize, Indian corn, Zea mays +n12144313 mealie +n12144580 corn +n12144987 dent corn, Zea mays indentata +n12145148 flint corn, flint maize, Yankee corn, Zea mays indurata +n12145477 popcorn, Zea mays everta +n12146311 zoysia +n12146488 Manila grass, Japanese carpet grass, Zoysia matrella +n12146654 Korean lawn grass, Japanese lawn grass, Zoysia japonica +n12147226 bamboo +n12147835 common bamboo, Bambusa vulgaris +n12148757 giant bamboo, kyo-chiku, Dendrocalamus giganteus +n12150722 umbrella plant, umbrella sedge, Cyperus alternifolius +n12150969 chufa, yellow nutgrass, earth almond, ground almond, rush nut, Cyperus esculentus +n12151170 galingale, galangal, Cyperus longus +n12151615 nutgrass, nut grass, nutsedge, nut sedge, Cyperus rotundus +n12152031 sand sedge, sand reed, Carex arenaria +n12152251 cypress sedge, Carex pseudocyperus +n12152532 cotton grass, cotton rush +n12152722 common cotton grass, Eriophorum angustifolium +n12153033 hardstem bulrush, hardstemmed bulrush, Scirpus acutus +n12153224 wool grass, Scirpus cyperinus +n12153580 spike rush +n12153741 water chestnut, Chinese water chestnut, Eleocharis dulcis +n12153914 needle spike rush, needle rush, slender spike rush, hair grass, Eleocharis acicularis +n12154114 creeping spike rush, Eleocharis palustris +n12154773 pandanus, screw pine +n12155009 textile screw pine, lauhala, Pandanus tectorius +n12155583 cattail +n12155773 cat's-tail, bullrush, bulrush, nailrod, reed mace, reedmace, Typha latifolia +n12156679 bur reed +n12156819 grain, caryopsis +n12157056 kernel +n12157179 rye +n12157769 gourd, gourd vine +n12158031 gourd +n12158443 pumpkin, pumpkin vine, autumn pumpkin, Cucurbita pepo +n12158798 squash, squash vine +n12159055 summer squash, summer squash vine, Cucurbita pepo melopepo +n12159388 yellow squash +n12159555 marrow, marrow squash, vegetable marrow +n12159804 zucchini, courgette +n12159942 cocozelle, Italian vegetable marrow +n12160125 cymling, pattypan squash +n12160303 spaghetti squash +n12160490 winter squash, winter squash plant +n12160857 acorn squash +n12161056 hubbard squash, Cucurbita maxima +n12161285 turban squash, Cucurbita maxima turbaniformis +n12161577 buttercup squash +n12161744 butternut squash, Cucurbita maxima +n12161969 winter crookneck, winter crookneck squash, Cucurbita moschata +n12162181 cushaw, Cucurbita mixta, Cucurbita argyrosperma +n12162425 prairie gourd, prairie gourd vine, Missouri gourd, wild pumpkin, buffalo gourd, calabazilla, Cucurbita foetidissima +n12162758 prairie gourd +n12163035 bryony, briony +n12163279 white bryony, devil's turnip, Bryonia alba +n12164363 sweet melon, muskmelon, sweet melon vine, Cucumis melo +n12164656 cantaloupe, cantaloup, cantaloupe vine, cantaloup vine, Cucumis melo cantalupensis +n12164881 winter melon, Persian melon, honeydew melon, winter melon vine, Cucumis melo inodorus +n12165170 net melon, netted melon, nutmeg melon, Cucumis melo reticulatus +n12165384 cucumber, cucumber vine, Cucumis sativus +n12165758 squirting cucumber, exploding cucumber, touch-me-not, Ecballium elaterium +n12166128 bottle gourd, calabash, Lagenaria siceraria +n12166424 luffa, dishcloth gourd, sponge gourd, rag gourd, strainer vine +n12166793 loofah, vegetable sponge, Luffa cylindrica +n12166929 angled loofah, sing-kwa, Luffa acutangula +n12167075 loofa, loofah, luffa, loufah sponge +n12167436 balsam apple, Momordica balsamina +n12167602 balsam pear, Momordica charantia +n12168565 lobelia +n12169099 water lobelia, Lobelia dortmanna +n12170585 mallow +n12171098 musk mallow, mus rose, Malva moschata +n12171316 common mallow, Malva neglecta +n12171966 okra, gumbo, okra plant, lady's-finger, Abelmoschus esculentus, Hibiscus esculentus +n12172364 okra +n12172481 abelmosk, musk mallow, Abelmoschus moschatus, Hibiscus moschatus +n12172906 flowering maple +n12173069 velvetleaf, velvet-leaf, velvetweed, Indian mallow, butter-print, China jute, Abutilon theophrasti +n12173664 hollyhock +n12173912 rose mallow, Alcea rosea, Althea rosea +n12174311 althea, althaea, hollyhock +n12174521 marsh mallow, white mallow, Althea officinalis +n12174926 poppy mallow +n12175181 fringed poppy mallow, Callirhoe digitata +n12175370 purple poppy mallow, Callirhoe involucrata +n12175598 clustered poppy mallow, Callirhoe triangulata +n12176453 sea island cotton, tree cotton, Gossypium barbadense +n12176709 Levant cotton, Gossypium herbaceum +n12176953 upland cotton, Gossypium hirsutum +n12177129 Peruvian cotton, Gossypium peruvianum +n12177455 wild cotton, Arizona wild cotton, Gossypium thurberi +n12178129 kenaf, kanaf, deccan hemp, bimli, bimli hemp, Indian hemp, Bombay hemp, Hibiscus cannabinus +n12178780 sorrel tree, Hibiscus heterophyllus +n12178896 rose mallow, swamp mallow, common rose mallow, swamp rose mallow, Hibiscus moscheutos +n12179122 cotton rose, Confederate rose, Confederate rose mallow, Hibiscus mutabilis +n12179632 roselle, rozelle, sorrel, red sorrel, Jamaica sorrel, Hibiscus sabdariffa +n12180168 mahoe, majagua, mahagua, balibago, purau, Hibiscus tiliaceus +n12180456 flower-of-an-hour, flowers-of-an-hour, bladder ketmia, black-eyed Susan, Hibiscus trionum +n12180885 lacebark, ribbonwood, houhere, Hoheria populnea +n12181352 wild hollyhock, Iliamna remota, Sphaeralcea remota +n12181612 mountain hollyhock, Iliamna ruvularis, Iliamna acerifolia +n12182049 seashore mallow +n12182276 salt marsh mallow, Kosteletzya virginica +n12183026 chaparral mallow, Malacothamnus fasciculatus, Sphaeralcea fasciculata +n12183452 malope, Malope trifida +n12183816 false mallow +n12184095 waxmallow, wax mallow, sleeping hibiscus +n12184468 glade mallow, Napaea dioica +n12184912 pavonia +n12185254 ribbon tree, ribbonwood, Plagianthus regius, Plagianthus betulinus +n12185859 bush hibiscus, Radyera farragei, Hibiscus farragei +n12186352 Virginia mallow, Sida hermaphrodita +n12186554 Queensland hemp, jellyleaf, Sida rhombifolia +n12186839 Indian mallow, Sida spinosa +n12187247 checkerbloom, wild hollyhock, Sidalcea malviflora +n12187663 globe mallow, false mallow +n12187891 prairie mallow, red false mallow, Sphaeralcea coccinea, Malvastrum coccineum +n12188289 tulipwood tree +n12188635 portia tree, bendy tree, seaside mahoe, Thespesia populnea +n12189429 red silk-cotton tree, simal, Bombax ceiba, Bombax malabarica +n12189779 cream-of-tartar tree, sour gourd, Adansonia gregorii +n12189987 baobab, monkey-bread tree, Adansonia digitata +n12190410 kapok, ceiba tree, silk-cotton tree, white silk-cotton tree, Bombay ceiba, God tree, Ceiba pentandra +n12190869 durian, durion, durian tree, Durio zibethinus +n12191240 Montezuma +n12192132 shaving-brush tree, Pseudobombax ellipticum +n12192877 quandong, quandong tree, Brisbane quandong, silver quandong tree, blue fig, Elaeocarpus grandis +n12193334 quandong, blue fig +n12193665 makomako, New Zealand wine berry, wineberry, Aristotelia serrata, Aristotelia racemosa +n12194147 Jamaican cherry, calabur tree, calabura, silk wood, silkwood, Muntingia calabura +n12194613 breakax, breakaxe, break-axe, Sloanea jamaicensis +n12195391 sterculia +n12195533 Panama tree, Sterculia apetala +n12195734 kalumpang, Java olives, Sterculia foetida +n12196129 bottle-tree, bottle tree +n12196336 flame tree, flame durrajong, Brachychiton acerifolius, Sterculia acerifolia +n12196527 flame tree, broad-leaved bottletree, Brachychiton australis +n12196694 kurrajong, currajong, Brachychiton populneus +n12196954 Queensland bottletree, narrow-leaved bottletree, Brachychiton rupestris, Sterculia rupestris +n12197359 kola, kola nut, kola nut tree, goora nut, Cola acuminata +n12197601 kola nut, cola nut +n12198286 Chinese parasol tree, Chinese parasol, Japanese varnish tree, phoenix tree, Firmiana simplex +n12198793 flannelbush, flannel bush, California beauty +n12199266 screw tree +n12199399 nut-leaved screw tree, Helicteres isora +n12199790 red beech, brown oak, booyong, crow's foot, stave wood, silky elm, Heritiera trifoliolata, Terrietia trifoliolata +n12199982 looking glass tree, Heritiera macrophylla +n12200143 looking-glass plant, Heritiera littoralis +n12200504 honey bell, honeybells, Hermannia verticillata, Mahernia verticillata +n12200905 mayeng, maple-leaved bayur, Pterospermum acerifolium +n12201331 silver tree, Tarrietia argyrodendron +n12201580 cacao, cacao tree, chocolate tree, Theobroma cacao +n12201938 obeche, obechi, arere, samba, Triplochiton scleroxcylon +n12202936 linden, linden tree, basswood, lime, lime tree +n12203529 American basswood, American lime, Tilia americana +n12203699 small-leaved linden, small-leaved lime, Tilia cordata +n12203896 white basswood, cottonwood, Tilia heterophylla +n12204032 Japanese linden, Japanese lime, Tilia japonica +n12204175 silver lime, silver linden, Tilia tomentosa +n12204730 corchorus +n12205460 African hemp, Sparmannia africana +n12205694 herb, herbaceous plant +n12214789 protea +n12215022 honeypot, king protea, Protea cynaroides +n12215210 honeyflower, honey-flower, Protea mellifera +n12215579 banksia +n12215824 honeysuckle, Australian honeysuckle, coast banksia, Banksia integrifolia +n12216215 smoke bush +n12216628 Chilean firebush, Chilean flameflower, Embothrium coccineum +n12216968 Chilean nut, Chile nut, Chile hazel, Chilean hazelnut, Guevina heterophylla, Guevina avellana +n12217453 grevillea +n12217851 red-flowered silky oak, Grevillea banksii +n12218274 silky oak, Grevillea robusta +n12218490 beefwood, Grevillea striata +n12218868 cushion flower, pincushion hakea, Hakea laurina +n12219668 rewa-rewa, New Zealand honeysuckle +n12220019 honeyflower, honey-flower, mountain devil, Lambertia formosa +n12220496 silver tree, Leucadendron argenteum +n12220829 lomatia +n12221191 macadamia, macadamia tree +n12221368 Macadamia integrifolia +n12221522 macadamia nut, macadamia nut tree, Macadamia ternifolia +n12221801 Queensland nut, Macadamia tetraphylla +n12222090 prickly ash, Orites excelsa +n12222493 geebung +n12222900 wheel tree, firewheel tree, Stenocarpus sinuatus +n12223160 scrub beefwood, beefwood, Stenocarpus salignus +n12223569 waratah, Telopea Oreades +n12223764 waratah, Telopea speciosissima +n12224978 casuarina +n12225222 she-oak +n12225349 beefwood +n12225563 Australian pine, Casuarina equisetfolia +n12226932 heath +n12227658 tree heath, briar, brier, Erica arborea +n12227909 briarroot +n12228229 winter heath, spring heath, Erica carnea +n12228387 bell heather, heather bell, fine-leaved heath, Erica cinerea +n12228689 Cornish heath, Erica vagans +n12228886 Spanish heath, Portuguese heath, Erica lusitanica +n12229111 Prince-of-Wales'-heath, Prince of Wales heath, Erica perspicua +n12229651 bog rosemary, moorwort, Andromeda glaucophylla +n12229887 marsh andromeda, common bog rosemary, Andromeda polifolia +n12230540 madrona, madrono, manzanita, Arbutus menziesii +n12230794 strawberry tree, Irish strawberry, Arbutus unedo +n12231192 bearberry +n12231709 alpine bearberry, black bearberry, Arctostaphylos alpina +n12232114 heartleaf manzanita, Arctostaphylos andersonii +n12232280 Parry manzanita, Arctostaphylos manzanita +n12232851 spike heath, Bruckenthalia spiculifolia +n12233249 bryanthus +n12234318 leatherleaf, Chamaedaphne calyculata +n12234669 Connemara heath, St. Dabeoc's heath, Daboecia cantabrica +n12235051 trailing arbutus, mayflower, Epigaea repens +n12235479 creeping snowberry, moxie plum, maidenhair berry, Gaultheria hispidula +n12236160 salal, shallon, Gaultheria shallon +n12236546 huckleberry +n12236768 black huckleberry, Gaylussacia baccata +n12236977 dangleberry, dangle-berry, Gaylussacia frondosa +n12237152 box huckleberry, Gaylussacia brachycera +n12237486 kalmia +n12237641 mountain laurel, wood laurel, American laurel, calico bush, Kalmia latifolia +n12237855 swamp laurel, bog laurel, bog kalmia, Kalmia polifolia +n12238756 trapper's tea, glandular Labrador tea +n12238913 wild rosemary, marsh tea, Ledum palustre +n12239240 sand myrtle, Leiophyllum buxifolium +n12239647 leucothoe +n12239880 dog laurel, dog hobble, switch-ivy, Leucothoe fontanesiana, Leucothoe editorum +n12240150 sweet bells, Leucothoe racemosa +n12240477 alpine azalea, mountain azalea, Loiseleuria procumbens +n12240965 staggerbush, stagger bush, Lyonia mariana +n12241192 maleberry, male berry, privet andromeda, he-huckleberry, Lyonia ligustrina +n12241426 fetterbush, fetter bush, shiny lyonia, Lyonia lucida +n12241880 false azalea, fool's huckleberry, Menziesia ferruginea +n12242123 minniebush, minnie bush, Menziesia pilosa +n12242409 sorrel tree, sourwood, titi, Oxydendrum arboreum +n12242850 mountain heath, Phyllodoce caerulea, Bryanthus taxifolius +n12243109 purple heather, Brewer's mountain heather, Phyllodoce breweri +n12243693 fetterbush, mountain fetterbush, mountain andromeda, Pieris floribunda +n12244153 rhododendron +n12244458 coast rhododendron, Rhododendron californicum +n12244650 rosebay, Rhododendron maxima +n12244819 swamp azalea, swamp honeysuckle, white honeysuckle, Rhododendron viscosum +n12245319 azalea +n12245695 cranberry +n12245885 American cranberry, large cranberry, Vaccinium macrocarpon +n12246037 European cranberry, small cranberry, Vaccinium oxycoccus +n12246232 blueberry, blueberry bush +n12246773 farkleberry, sparkleberry, Vaccinium arboreum +n12246941 low-bush blueberry, low blueberry, Vaccinium angustifolium, Vaccinium pennsylvanicum +n12247202 rabbiteye blueberry, rabbit-eye blueberry, rabbiteye, Vaccinium ashei +n12247407 dwarf bilberry, dwarf blueberry, Vaccinium caespitosum +n12247963 evergreen blueberry, Vaccinium myrsinites +n12248141 evergreen huckleberry, Vaccinium ovatum +n12248359 bilberry, thin-leaved bilberry, mountain blue berry, Viccinium membranaceum +n12248574 bilberry, whortleberry, whinberry, blaeberry, Viccinium myrtillus +n12248780 bog bilberry, bog whortleberry, moor berry, Vaccinium uliginosum alpinum +n12248941 dryland blueberry, dryland berry, Vaccinium pallidum +n12249122 grouseberry, grouse-berry, grouse whortleberry, Vaccinium scoparium +n12249294 deerberry, squaw huckleberry, Vaccinium stamineum +n12249542 cowberry, mountain cranberry, lingonberry, lingenberry, lingberry, foxberry, Vaccinium vitis-idaea +n12251001 diapensia +n12251278 galax, galaxy, wandflower, beetleweed, coltsfoot, Galax urceolata +n12251740 pyxie, pixie, pixy, Pyxidanthera barbulata +n12252168 shortia +n12252383 oconee bells, Shortia galacifolia +n12252866 Australian heath +n12253229 epacris +n12253487 common heath, Epacris impressa +n12253664 common heath, blunt-leaf heath, Epacris obtusifolia +n12253835 Port Jackson heath, Epacris purpurascens +n12254168 native cranberry, groundberry, ground-berry, cranberry heath, Astroloma humifusum, Styphelia humifusum +n12255225 pink fivecorner, Styphelia triflora +n12256112 wintergreen, pyrola +n12256325 false wintergreen, Pyrola americana, Pyrola rotundifolia americana +n12256522 lesser wintergreen, Pyrola minor +n12256708 wild lily of the valley, shinleaf, Pyrola elliptica +n12256920 wild lily of the valley, Pyrola rotundifolia +n12257570 pipsissewa, prince's pine +n12257725 love-in-winter, western prince's pine, Chimaphila umbellata, Chimaphila corymbosa +n12258101 one-flowered wintergreen, one-flowered pyrola, Moneses uniflora, Pyrola uniflora +n12258885 Indian pipe, waxflower, Monotropa uniflora +n12259316 pinesap, false beachdrops, Monotropa hypopithys +n12260799 beech, beech tree +n12261359 common beech, European beech, Fagus sylvatica +n12261571 copper beech, purple beech, Fagus sylvatica atropunicea, Fagus purpurea, Fagus sylvatica purpurea +n12261808 American beech, white beech, red beech, Fagus grandifolia, Fagus americana +n12262018 weeping beech, Fagus pendula, Fagus sylvatica pendula +n12262185 Japanese beech +n12262553 chestnut, chestnut tree +n12263038 American chestnut, American sweet chestnut, Castanea dentata +n12263204 European chestnut, sweet chestnut, Spanish chestnut, Castanea sativa +n12263410 Chinese chestnut, Castanea mollissima +n12263588 Japanese chestnut, Castanea crenata +n12263738 Allegheny chinkapin, eastern chinquapin, chinquapin, dwarf chestnut, Castanea pumila +n12263987 Ozark chinkapin, Ozark chinquapin, chinquapin, Castanea ozarkensis +n12264512 oak chestnut +n12264786 giant chinkapin, golden chinkapin, Chrysolepis chrysophylla, Castanea chrysophylla, Castanopsis chrysophylla +n12265083 dwarf golden chinkapin, Chrysolepis sempervirens +n12265394 tanbark oak, Lithocarpus densiflorus +n12265600 Japanese oak, Lithocarpus glabra, Lithocarpus glaber +n12266217 southern beech, evergreen beech +n12266528 myrtle beech, Nothofagus cuninghamii +n12266644 Coigue, Nothofagus dombeyi +n12266796 New Zealand beech +n12266984 silver beech, Nothofagus menziesii +n12267133 roble beech, Nothofagus obliqua +n12267265 rauli beech, Nothofagus procera +n12267411 black beech, Nothofagus solanderi +n12267534 hard beech, Nothofagus truncata +n12267677 acorn +n12267931 cupule, acorn cup +n12268246 oak, oak tree +n12269241 live oak +n12269406 coast live oak, California live oak, Quercus agrifolia +n12269652 white oak +n12270027 American white oak, Quercus alba +n12270278 Arizona white oak, Quercus arizonica +n12270460 swamp white oak, swamp oak, Quercus bicolor +n12270741 European turkey oak, turkey oak, Quercus cerris +n12270946 canyon oak, canyon live oak, maul oak, iron oak, Quercus chrysolepis +n12271187 scarlet oak, Quercus coccinea +n12271451 jack oak, northern pin oak, Quercus ellipsoidalis +n12271643 red oak +n12271933 southern red oak, swamp red oak, turkey oak, Quercus falcata +n12272239 Oregon white oak, Oregon oak, Garry oak, Quercus garryana +n12272432 holm oak, holm tree, holly-leaved oak, evergreen oak, Quercus ilex +n12272735 bear oak, Quercus ilicifolia +n12272883 shingle oak, laurel oak, Quercus imbricaria +n12273114 bluejack oak, turkey oak, Quercus incana +n12273344 California black oak, Quercus kelloggii +n12273515 American turkey oak, turkey oak, Quercus laevis +n12273768 laurel oak, pin oak, Quercus laurifolia +n12273939 California white oak, valley oak, valley white oak, roble, Quercus lobata +n12274151 overcup oak, Quercus lyrata +n12274358 bur oak, burr oak, mossy-cup oak, mossycup oak, Quercus macrocarpa +n12274630 scrub oak +n12274863 blackjack oak, blackjack, jack oak, Quercus marilandica +n12275131 swamp chestnut oak, Quercus michauxii +n12275317 Japanese oak, Quercus mongolica, Quercus grosseserrata +n12275489 chestnut oak +n12275675 chinquapin oak, chinkapin oak, yellow chestnut oak, Quercus muehlenbergii +n12275888 myrtle oak, seaside scrub oak, Quercus myrtifolia +n12276110 water oak, possum oak, Quercus nigra +n12276314 Nuttall oak, Nuttall's oak, Quercus nuttalli +n12276477 durmast, Quercus petraea, Quercus sessiliflora +n12276628 basket oak, cow oak, Quercus prinus, Quercus montana +n12276872 pin oak, swamp oak, Quercus palustris +n12277150 willow oak, Quercus phellos +n12277334 dwarf chinkapin oak, dwarf chinquapin oak, dwarf oak, Quercus prinoides +n12277578 common oak, English oak, pedunculate oak, Quercus robur +n12277800 northern red oak, Quercus rubra, Quercus borealis +n12278107 Shumard oak, Shumard red oak, Quercus shumardii +n12278371 post oak, box white oak, brash oak, iron oak, Quercus stellata +n12278650 cork oak, Quercus suber +n12278865 Spanish oak, Quercus texana +n12279060 huckleberry oak, Quercus vaccinifolia +n12279293 Chinese cork oak, Quercus variabilis +n12279458 black oak, yellow oak, quercitron, quercitron oak, Quercus velutina +n12279772 southern live oak, Quercus virginiana +n12280060 interior live oak, Quercus wislizenii, Quercus wizlizenii +n12280364 mast +n12281241 birch, birch tree +n12281788 yellow birch, Betula alleghaniensis, Betula leutea +n12281974 American white birch, paper birch, paperbark birch, canoe birch, Betula cordifolia, Betula papyrifera +n12282235 grey birch, gray birch, American grey birch, American gray birch, Betula populifolia +n12282527 silver birch, common birch, European white birch, Betula pendula +n12282737 downy birch, white birch, Betula pubescens +n12282933 black birch, river birch, red birch, Betula nigra +n12283147 sweet birch, cherry birch, black birch, Betula lenta +n12283395 Yukon white birch, Betula neoalaskana +n12283542 swamp birch, water birch, mountain birch, Western paper birch, Western birch, Betula fontinalis +n12283790 Newfoundland dwarf birch, American dwarf birch, Betula glandulosa +n12284262 alder, alder tree +n12284821 common alder, European black alder, Alnus glutinosa, Alnus vulgaris +n12285049 grey alder, gray alder, Alnus incana +n12285195 seaside alder, Alnus maritima +n12285369 white alder, mountain alder, Alnus rhombifolia +n12285512 red alder, Oregon alder, Alnus rubra +n12285705 speckled alder, Alnus rugosa +n12285900 smooth alder, hazel alder, Alnus serrulata +n12286068 green alder, Alnus veridis +n12286197 green alder, Alnus veridis crispa, Alnus crispa +n12286826 hornbeam +n12286988 European hornbeam, Carpinus betulus +n12287195 American hornbeam, Carpinus caroliniana +n12287642 hop hornbeam +n12287836 Old World hop hornbeam, Ostrya carpinifolia +n12288005 Eastern hop hornbeam, ironwood, ironwood tree, Ostrya virginiana +n12288823 hazelnut, hazel, hazelnut tree +n12289310 American hazel, Corylus americana +n12289433 cobnut, filbert, Corylus avellana, Corylus avellana grandis +n12289585 beaked hazelnut, Corylus cornuta +n12290748 centaury +n12290975 rosita, Centaurium calycosum +n12291143 lesser centaury, Centaurium minus +n12291459 seaside centaury +n12291671 slender centaury +n12291959 prairie gentian, tulip gentian, bluebell, Eustoma grandiflorum +n12292463 Persian violet, Exacum affine +n12292877 columbo, American columbo, deer's-ear, deer's-ears, pyramid plant, American gentian +n12293723 gentian +n12294124 gentianella, Gentiana acaulis +n12294331 closed gentian, blind gentian, bottle gentian, Gentiana andrewsii +n12294542 explorer's gentian, Gentiana calycosa +n12294723 closed gentian, blind gentian, Gentiana clausa +n12294871 great yellow gentian, Gentiana lutea +n12295033 marsh gentian, calathian violet, Gentiana pneumonanthe +n12295237 soapwort gentian, Gentiana saponaria +n12295429 striped gentian, Gentiana villosa +n12295796 agueweed, ague weed, five-flowered gentian, stiff gentian, Gentianella quinquefolia, Gentiana quinquefolia +n12296045 felwort, gentianella amarella +n12296432 fringed gentian +n12296735 Gentianopsis crinita, Gentiana crinita +n12296929 Gentianopsis detonsa, Gentiana detonsa +n12297110 Gentianopsid procera, Gentiana procera +n12297280 Gentianopsis thermalis, Gentiana thermalis +n12297507 tufted gentian, Gentianopsis holopetala, Gentiana holopetala +n12297846 spurred gentian +n12298165 sabbatia +n12299640 toothbrush tree, mustard tree, Salvadora persica +n12300840 olive tree +n12301180 olive, European olive tree, Olea europaea +n12301445 olive +n12301613 black maire, Olea cunninghamii +n12301766 white maire, Olea lanceolata +n12302071 fringe tree +n12302248 fringe bush, Chionanthus virginicus +n12302565 forestiera +n12303083 forsythia +n12303462 ash, ash tree +n12304115 white ash, Fraxinus Americana +n12304286 swamp ash, Fraxinus caroliniana +n12304420 flowering ash, Fraxinus cuspidata +n12304703 European ash, common European ash, Fraxinus excelsior +n12304899 Oregon ash, Fraxinus latifolia, Fraxinus oregona +n12305089 black ash, basket ash, brown ash, hoop ash, Fraxinus nigra +n12305293 manna ash, flowering ash, Fraxinus ornus +n12305475 red ash, downy ash, Fraxinus pennsylvanica +n12305654 green ash, Fraxinus pennsylvanica subintegerrima +n12305819 blue ash, Fraxinus quadrangulata +n12305986 mountain ash, Fraxinus texensis +n12306089 pumpkin ash, Fraxinus tomentosa +n12306270 Arizona ash, Fraxinus velutina +n12306717 jasmine +n12306938 primrose jasmine, Jasminum mesnyi +n12307076 winter jasmine, Jasminum nudiflorum +n12307240 common jasmine, true jasmine, jessamine, Jasminum officinale +n12307756 privet +n12308112 Amur privet, Ligustrum amurense +n12308447 Japanese privet, Ligustrum japonicum +n12308907 Ligustrum obtusifolium +n12309277 common privet, Ligustrum vulgare +n12309630 devilwood, American olive, Osmanthus americanus +n12310021 mock privet +n12310349 lilac +n12310638 Himalayan lilac, Syringa emodi +n12311045 Persian lilac, Syringa persica +n12311224 Japanese tree lilac, Syringa reticulata, Syringa amurensis japonica +n12311413 Japanese lilac, Syringa villosa +n12311579 common lilac, Syringa vulgaris +n12312110 bloodwort +n12312728 kangaroo paw, kangaroo's paw, kangaroo's-foot, kangaroo-foot plant, Australian sword lily, Anigozanthus manglesii +n12315060 Virginian witch hazel, Hamamelis virginiana +n12315245 vernal witch hazel, Hamamelis vernalis +n12315598 winter hazel, flowering hazel +n12315999 fothergilla, witch alder +n12316444 liquidambar +n12316572 sweet gum, sweet gum tree, bilsted, red gum, American sweet gum, Liquidambar styraciflua +n12317296 iron tree, iron-tree, ironwood, ironwood tree +n12318378 walnut, walnut tree +n12318782 California black walnut, Juglans californica +n12318965 butternut, butternut tree, white walnut, Juglans cinerea +n12319204 black walnut, black walnut tree, black hickory, Juglans nigra +n12319414 English walnut, English walnut tree, Circassian walnut, Persian walnut, Juglans regia +n12320010 hickory, hickory tree +n12320414 water hickory, bitter pecan, water bitternut, Carya aquatica +n12320627 pignut, pignut hickory, brown hickory, black hickory, Carya glabra +n12320806 bitternut, bitternut hickory, bitter hickory, bitter pignut, swamp hickory, Carya cordiformis +n12321077 pecan, pecan tree, Carya illinoensis, Carya illinoinsis +n12321395 big shellbark, big shellbark hickory, big shagbark, king nut, king nut hickory, Carya laciniosa +n12321669 nutmeg hickory, Carya myristicaeformis, Carya myristiciformis +n12321873 shagbark, shagbark hickory, shellbark, shellbark hickory, Carya ovata +n12322099 mockernut, mockernut hickory, black hickory, white-heart hickory, big-bud hickory, Carya tomentosa +n12322501 wing nut, wing-nut +n12322699 Caucasian walnut, Pterocarya fraxinifolia +n12323665 dhawa, dhava +n12324056 combretum +n12324222 hiccup nut, hiccough nut, Combretum bracteosum +n12324388 bush willow, Combretum appiculatum +n12324558 bush willow, Combretum erythrophyllum +n12324906 button tree, button mangrove, Conocarpus erectus +n12325234 white mangrove, Laguncularia racemosa +n12325787 oleaster +n12327022 water milfoil +n12327528 anchovy pear, anchovy pear tree, Grias cauliflora +n12327846 brazil nut, brazil-nut tree, Bertholletia excelsa +n12328398 loosestrife +n12328567 purple loosestrife, spiked loosestrife, Lythrum salicaria +n12328801 grass poly, hyssop loosestrife, Lythrum hyssopifolia +n12329260 crape myrtle, crepe myrtle, crepe flower, Lagerstroemia indica +n12329473 Queen's crape myrtle, pride-of-India, Lagerstroemia speciosa +n12330239 myrtaceous tree +n12330469 myrtle +n12330587 common myrtle, Myrtus communis +n12330891 bayberry, bay-rum tree, Jamaica bayberry, wild cinnamon, Pimenta acris +n12331066 allspice, allspice tree, pimento tree, Pimenta dioica +n12331263 allspice tree, Pimenta officinalis +n12331655 sour cherry, Eugenia corynantha +n12331788 nakedwood, Eugenia dicrana +n12332030 Surinam cherry, pitanga, Eugenia uniflora +n12332218 rose apple, rose-apple tree, jambosa, Eugenia jambos +n12332555 feijoa, feijoa bush +n12333053 jaboticaba, jaboticaba tree, Myrciaria cauliflora +n12333530 guava, true guava, guava bush, Psidium guajava +n12333771 guava, strawberry guava, yellow cattley guava, Psidium littorale +n12333961 cattley guava, purple strawberry guava, Psidium cattleianum, Psidium littorale longipes +n12334153 Brazilian guava, Psidium guineense +n12334293 gum tree, gum +n12334891 eucalyptus, eucalypt, eucalyptus tree +n12335483 flooded gum +n12335664 mallee +n12335800 stringybark +n12335937 smoothbark +n12336092 red gum, peppermint, peppermint gum, Eucalyptus amygdalina +n12336224 red gum, marri, Eucalyptus calophylla +n12336333 river red gum, river gum, Eucalyptus camaldulensis, Eucalyptus rostrata +n12336586 mountain swamp gum, Eucalyptus camphora +n12336727 snow gum, ghost gum, white ash, Eucalyptus coriacea, Eucalyptus pauciflora +n12336973 alpine ash, mountain oak, Eucalyptus delegatensis +n12337131 white mallee, congoo mallee, Eucalyptus dumosa +n12337246 white stringybark, thin-leaved stringybark, Eucalyptusd eugenioides +n12337391 white mountain ash, Eucalyptus fraxinoides +n12337617 blue gum, fever tree, Eucalyptus globulus +n12337800 rose gum, Eucalypt grandis +n12337922 cider gum, Eucalypt gunnii +n12338034 swamp gum, Eucalypt ovata +n12338146 spotted gum, Eucalyptus maculata +n12338258 lemon-scented gum, Eucalyptus citriodora, Eucalyptus maculata citriodora +n12338454 black mallee, black sally, black gum, Eucalytus stellulata +n12338655 forest red gum, Eucalypt tereticornis +n12338796 mountain ash, Eucalyptus regnans +n12338979 manna gum, Eucalyptus viminalis +n12339526 clove, clove tree, Syzygium aromaticum, Eugenia aromaticum, Eugenia caryophyllatum +n12339831 clove +n12340383 tupelo, tupelo tree +n12340581 water gum, Nyssa aquatica +n12340755 sour gum, black gum, pepperidge, Nyssa sylvatica +n12341542 enchanter's nightshade +n12341931 Circaea lutetiana +n12342299 willowherb +n12342498 fireweed, giant willowherb, rosebay willowherb, wickup, Epilobium angustifolium +n12342852 California fuchsia, humming bird's trumpet, Epilobium canum canum, Zauschneria californica +n12343480 fuchsia +n12343753 lady's-eardrop, ladies'-eardrop, lady's-eardrops, ladies'-eardrops, Fuchsia coccinea +n12344283 evening primrose +n12344483 common evening primrose, German rampion, Oenothera biennis +n12344700 sundrops, Oenothera fruticosa +n12344837 Missouri primrose, Ozark sundrops, Oenothera macrocarpa +n12345280 pomegranate, pomegranate tree, Punica granatum +n12345899 mangrove, Rhizophora mangle +n12346578 daphne +n12346813 garland flower, Daphne cneorum +n12346986 spurge laurel, wood laurel, Daphne laureola +n12347158 mezereon, February daphne, Daphne mezereum +n12349315 Indian rhododendron, Melastoma malabathricum +n12349711 Medinilla magnifica +n12350032 deer grass, meadow beauty +n12350758 canna +n12351091 achira, indian shot, arrowroot, Canna indica, Canna edulis +n12351790 arrowroot, American arrowroot, obedience plant, Maranta arundinaceae +n12352287 banana, banana tree +n12352639 dwarf banana, Musa acuminata +n12352844 Japanese banana, Musa basjoo +n12352990 plantain, plantain tree, Musa paradisiaca +n12353203 edible banana, Musa paradisiaca sapientum +n12353431 abaca, Manila hemp, Musa textilis +n12353754 Abyssinian banana, Ethiopian banana, Ensete ventricosum, Musa ensete +n12355760 ginger +n12356023 common ginger, Canton ginger, stem ginger, Zingiber officinale +n12356395 turmeric, Curcuma longa, Curcuma domestica +n12356960 galangal, Alpinia galanga +n12357485 shellflower, shall-flower, shell ginger, Alpinia Zerumbet, Alpinia speciosa, Languas speciosa +n12357968 grains of paradise, Guinea grains, Guinea pepper, melagueta pepper, Aframomum melegueta +n12358293 cardamom, cardamon, Elettaria cardamomum +n12360108 begonia +n12360534 fibrous-rooted begonia +n12360684 tuberous begonia +n12360817 rhizomatous begonia +n12360958 Christmas begonia, blooming-fool begonia, Begonia cheimantha +n12361135 angel-wing begonia, Begonia cocchinea +n12361560 beefsteak begonia, kidney begonia, Begonia erythrophylla, Begonia feastii +n12361754 star begonia, star-leaf begonia, Begonia heracleifolia +n12361946 rex begonia, king begonia, painted-leaf begonia, beefsteak geranium, Begonia rex +n12362274 wax begonia, Begonia semperflorens +n12362514 Socotra begonia, Begonia socotrana +n12362668 hybrid tuberous begonia, Begonia tuberhybrida +n12363301 dillenia +n12363768 guinea gold vine, guinea flower +n12364604 poon +n12364940 calaba, Santa Maria tree, Calophyllum calaba +n12365158 Maria, Calophyllum longifolium +n12365285 laurelwood, lancewood tree, Calophyllum candidissimum +n12365462 Alexandrian laurel, Calophyllum inophyllum +n12365900 clusia +n12366053 wild fig, Clusia flava +n12366186 waxflower, Clusia insignis +n12366313 pitch apple, strangler fig, Clusia rosea, Clusia major +n12366675 mangosteen, mangosteen tree, Garcinia mangostana +n12366870 gamboge tree, Garcinia hanburyi, Garcinia cambogia, Garcinia gummi-gutta +n12367611 St John's wort +n12368028 common St John's wort, tutsan, Hypericum androsaemum +n12368257 great St John's wort, Hypericum ascyron, Hypericum pyramidatum +n12368451 creeping St John's wort, Hypericum calycinum +n12369066 low St Andrew's cross, Hypericum hypericoides +n12369309 klammath weed, Hypericum perforatum +n12369476 shrubby St John's wort, Hypericum prolificum, Hypericum spathulatum +n12369665 St Peter's wort, Hypericum tetrapterum, Hypericum maculatum +n12369845 marsh St-John's wort, Hypericum virginianum +n12370174 mammee apple, mammee, mamey, mammee tree, Mammea americana +n12370549 rose chestnut, ironwood, ironwood tree, Mesua ferrea +n12371202 bower actinidia, tara vine, Actinidia arguta +n12371439 Chinese gooseberry, kiwi, kiwi vine, Actinidia chinensis, Actinidia deliciosa +n12371704 silvervine, silver vine, Actinidia polygama +n12372233 wild cinnamon, white cinnamon tree, Canella winterana, Canella-alba +n12373100 papaya, papaia, pawpaw, papaya tree, melon tree, Carica papaya +n12373739 souari, souari nut, souari tree, Caryocar nuciferum +n12374418 rockrose, rock rose +n12374705 white-leaved rockrose, Cistus albidus +n12374862 common gum cistus, Cistus ladanifer, Cistus ladanum +n12375769 frostweed, frost-weed, frostwort, Helianthemum canadense, Crocanthemum canadense +n12377198 dipterocarp +n12377494 red lauan, red lauan tree, Shorea teysmanniana +n12378249 governor's plum, governor plum, Madagascar plum, ramontchi, batoko palm, Flacourtia indica +n12378753 kei apple, kei apple bush, Dovyalis caffra +n12378963 ketembilla, kitembilla, kitambilla, ketembilla tree, Ceylon gooseberry, Dovyalis hebecarpa +n12379531 chaulmoogra, chaulmoogra tree, chaulmugra, Hydnocarpus kurzii, Taraktagenos kurzii, Taraktogenos kurzii +n12380761 wild peach, Kiggelaria africana +n12381511 candlewood +n12382233 boojum tree, cirio, Fouquieria columnaris, Idria columnaris +n12382875 bird's-eye bush, Ochna serrulata +n12383737 granadilla, purple granadillo, Passiflora edulis +n12383894 granadilla, sweet granadilla, Passiflora ligularis +n12384037 granadilla, giant granadilla, Passiflora quadrangularis +n12384227 maypop, Passiflora incarnata +n12384375 Jamaica honeysuckle, yellow granadilla, Passiflora laurifolia +n12384569 banana passion fruit, Passiflora mollissima +n12384680 sweet calabash, Passiflora maliformis +n12384839 love-in-a-mist, running pop, wild water lemon, Passiflora foetida +n12385429 reseda +n12385566 mignonette, sweet reseda, Reseda odorata +n12385830 dyer's rocket, dyer's mignonette, weld, Reseda luteola +n12386945 false tamarisk, German tamarisk, Myricaria germanica +n12387103 halophyte +n12387633 viola +n12387839 violet +n12388143 field pansy, heartsease, Viola arvensis +n12388293 American dog violet, Viola conspersa +n12388858 dog violet, heath violet, Viola canina +n12388989 horned violet, tufted pansy, Viola cornuta +n12389130 two-eyed violet, heartsease, Viola ocellata +n12389501 bird's-foot violet, pansy violet, Johnny-jump-up, wood violet, Viola pedata +n12389727 downy yellow violet, Viola pubescens +n12389932 long-spurred violet, Viola rostrata +n12390099 pale violet, striped violet, cream violet, Viola striata +n12390314 hedge violet, wood violet, Viola sylvatica, Viola reichenbachiana +n12392070 nettle +n12392549 stinging nettle, Urtica dioica +n12392765 Roman nettle, Urtica pipulifera +n12393269 ramie, ramee, Chinese silk plant, China grass, Boehmeria nivea +n12394118 wood nettle, Laportea canadensis +n12394328 Australian nettle, Australian nettle tree +n12394638 pellitory-of-the-wall, wall pellitory, pellitory, Parietaria difussa +n12395068 richweed, clearweed, dead nettle, Pilea pumilla +n12395289 artillery plant, Pilea microphylla +n12395463 friendship plant, panamica, panamiga, Pilea involucrata +n12395906 Queensland grass-cloth plant, Pipturus argenteus +n12396091 Pipturus albidus +n12396924 cannabis, hemp +n12397431 Indian hemp, Cannabis indica +n12399132 mulberry, mulberry tree +n12399384 white mulberry, Morus alba +n12399534 black mulberry, Morus nigra +n12399656 red mulberry, Morus rubra +n12399899 osage orange, bow wood, mock orange, Maclura pomifera +n12400489 breadfruit, breadfruit tree, Artocarpus communis, Artocarpus altilis +n12400720 jackfruit, jackfruit tree, Artocarpus heterophyllus +n12400924 marang, marang tree, Artocarpus odoratissima +n12401335 fig tree +n12401684 fig, common fig, common fig tree, Ficus carica +n12401893 caprifig, Ficus carica sylvestris +n12402051 golden fig, Florida strangler fig, strangler fig, wild fig, Ficus aurea +n12402348 banyan, banyan tree, banian, banian tree, Indian banyan, East Indian fig tree, Ficus bengalensis +n12402596 pipal, pipal tree, pipul, peepul, sacred fig, bo tree, Ficus religiosa +n12402840 India-rubber tree, India-rubber plant, India-rubber fig, rubber plant, Assam rubber, Ficus elastica +n12403075 mistletoe fig, mistletoe rubber plant, Ficus diversifolia, Ficus deltoidea +n12403276 Port Jackson fig, rusty rig, little-leaf fig, Botany Bay fig, Ficus rubiginosa +n12403513 sycamore, sycamore fig, mulberry fig, Ficus sycomorus +n12403994 paper mulberry, Broussonetia papyrifera +n12404729 trumpetwood, trumpet-wood, trumpet tree, snake wood, imbauba, Cecropia peltata +n12405714 elm, elm tree +n12406304 winged elm, wing elm, Ulmus alata +n12406488 American elm, white elm, water elm, rock elm, Ulmus americana +n12406715 smooth-leaved elm, European field elm, Ulmus carpinifolia +n12406902 cedar elm, Ulmus crassifolia +n12407079 witch elm, wych elm, Ulmus glabra +n12407222 Dutch elm, Ulmus hollandica +n12407396 Huntingdon elm, Ulmus hollandica vegetata +n12407545 water elm, Ulmus laevis +n12407715 Chinese elm, Ulmus parvifolia +n12407890 English elm, European elm, Ulmus procera +n12408077 Siberian elm, Chinese elm, dwarf elm, Ulmus pumila +n12408280 slippery elm, red elm, Ulmus rubra +n12408466 Jersey elm, guernsey elm, wheately elm, Ulmus sarniensis, Ulmus campestris sarniensis, Ulmus campestris wheatleyi +n12408717 September elm, red elm, Ulmus serotina +n12408873 rock elm, Ulmus thomasii +n12409231 hackberry, nettle tree +n12409470 European hackberry, Mediterranean hackberry, Celtis australis +n12409651 American hackberry, Celtis occidentalis +n12409840 sugarberry, Celtis laevigata +n12411461 iridaceous plant +n12412355 bearded iris +n12412606 beardless iris +n12412987 orrisroot, orris +n12413165 dwarf iris, Iris cristata +n12413301 Dutch iris, Iris filifolia +n12413419 Florentine iris, orris, Iris germanica florentina, Iris florentina +n12413642 stinking iris, gladdon, gladdon iris, stinking gladwyn, roast beef plant, Iris foetidissima +n12413880 German iris, Iris germanica +n12414035 Japanese iris, Iris kaempferi +n12414159 German iris, Iris kochii +n12414329 Dalmatian iris, Iris pallida +n12414449 Persian iris, Iris persica +n12414818 Dutch iris, Iris tingitana +n12414932 dwarf iris, vernal iris, Iris verna +n12415595 Spanish iris, xiphium iris, Iris xiphium +n12416073 blackberry-lily, leopard lily, Belamcanda chinensis +n12416423 crocus +n12416703 saffron, saffron crocus, Crocus sativus +n12417836 corn lily +n12418221 blue-eyed grass +n12418507 wandflower, Sparaxis tricolor +n12419037 amaryllis +n12419878 salsilla, Bomarea edulis +n12420124 salsilla, Bomarea salsilla +n12420535 blood lily +n12420722 Cape tulip, Haemanthus coccineus +n12421137 hippeastrum, Hippeastrum puniceum +n12421467 narcissus +n12421683 daffodil, Narcissus pseudonarcissus +n12421917 jonquil, Narcissus jonquilla +n12422129 jonquil +n12422559 Jacobean lily, Aztec lily, Strekelia formosissima +n12425281 liliaceous plant +n12426623 mountain lily, Lilium auratum +n12426749 Canada lily, wild yellow lily, meadow lily, wild meadow lily, Lilium canadense +n12427184 tiger lily, leopard lily, pine lily, Lilium catesbaei +n12427391 Columbia tiger lily, Oregon lily, Lilium columbianum +n12427566 tiger lily, devil lily, kentan, Lilium lancifolium +n12427757 Easter lily, Bermuda lily, white trumpet lily, Lilium longiflorum +n12427946 coast lily, Lilium maritinum +n12428076 Turk's-cap, martagon, Lilium martagon +n12428242 Michigan lily, Lilium michiganense +n12428412 leopard lily, panther lily, Lilium pardalinum +n12428747 Turk's-cap, Turk's cap-lily, Lilium superbum +n12429352 African lily, African tulip, blue African lily, Agapanthus africanus +n12430198 colicroot, colic root, crow corn, star grass, unicorn root +n12430471 ague root, ague grass, Aletris farinosa +n12430675 yellow colicroot, Aletris aurea +n12431434 alliaceous plant +n12432069 Hooker's onion, Allium acuminatum +n12432356 wild leek, Levant garlic, kurrat, Allium ampeloprasum +n12432574 Canada garlic, meadow leek, rose leek, Allium canadense +n12432707 keeled garlic, Allium carinatum +n12433081 onion +n12433178 shallot, eschalot, multiplier onion, Allium cepa aggregatum, Allium ascalonicum +n12433769 nodding onion, nodding wild onion, lady's leek, Allium cernuum +n12433952 Welsh onion, Japanese leek, Allium fistulosum +n12434106 red-skinned onion, Allium haematochiton +n12434483 daffodil garlic, flowering onion, Naples garlic, Allium neopolitanum +n12434634 few-flowered leek, Allium paradoxum +n12434775 garlic, Allium sativum +n12434985 sand leek, giant garlic, Spanish garlic, rocambole, Allium scorodoprasum +n12435152 chives, chive, cive, schnittlaugh, Allium schoenoprasum +n12435486 crow garlic, false garlic, field garlic, stag's garlic, wild garlic, Allium vineale +n12435649 wild garlic, wood garlic, Ramsons, Allium ursinum +n12435777 garlic chive, Chinese chive, Oriental garlic, Allium tuberosum +n12435965 round-headed leek, Allium sphaerocephalum +n12436090 three-cornered leek, triquetrous leek, Allium triquetrum +n12436907 cape aloe, Aloe ferox +n12437513 kniphofia, tritoma, flame flower, flame-flower, flameflower +n12437769 poker plant, Kniphofia uvaria +n12437930 red-hot poker, Kniphofia praecox +n12439154 fly poison, Amianthum muscaetoxicum, Amianthum muscitoxicum +n12439830 amber lily, Anthericum torreyi +n12441183 asparagus, edible asparagus, Asparagus officinales +n12441390 asparagus fern, Asparagus setaceous, Asparagus plumosus +n12441552 smilax, Asparagus asparagoides +n12441958 asphodel +n12442548 Jacob's rod +n12443323 aspidistra, cast-iron plant, bar-room plant, Aspidistra elatio +n12443736 coral drops, Bessera elegans +n12444095 Christmas bells +n12444898 climbing onion, Bowiea volubilis +n12446200 mariposa, mariposa tulip, mariposa lily +n12446519 globe lily, fairy lantern +n12446737 cat's-ear +n12446908 white globe lily, white fairy lantern, Calochortus albus +n12447121 yellow globe lily, golden fairy lantern, Calochortus amabilis +n12447346 rose globe lily, Calochortus amoenus +n12447581 star tulip, elegant cat's ears, Calochortus elegans +n12447891 desert mariposa tulip, Calochortus kennedyi +n12448136 yellow mariposa tulip, Calochortus luteus +n12448361 sagebrush mariposa tulip, Calochortus macrocarpus +n12448700 sego lily, Calochortus nuttallii +n12449296 camas, camass, quamash, camosh, camash +n12449526 common camas, Camassia quamash +n12449784 Leichtlin's camas, Camassia leichtlinii +n12449934 wild hyacinth, indigo squill, Camassia scilloides +n12450344 dogtooth violet, dogtooth, dog's-tooth violet +n12450607 white dogtooth violet, white dog's-tooth violet, blonde lilian, Erythronium albidum +n12450840 yellow adder's tongue, trout lily, amberbell, Erythronium americanum +n12451070 European dogtooth, Erythronium dens-canis +n12451240 fawn lily, Erythronium californicum +n12451399 glacier lily, snow lily, Erythronium grandiflorum +n12451566 avalanche lily, Erythronium montanum +n12451915 fritillary, checkered lily +n12452256 mission bells, rice-grain fritillary, Fritillaria affinis, Fritillaria lanceolata, Fritillaria mutica +n12452480 mission bells, black fritillary, Fritillaria biflora +n12452673 stink bell, Fritillaria agrestis +n12452836 crown imperial, Fritillaria imperialis +n12453018 white fritillary, Fritillaria liliaceae +n12453186 snake's head fritillary, guinea-hen flower, checkered daffodil, leper lily, Fritillaria meleagris +n12453714 adobe lily, pink fritillary, Fritillaria pluriflora +n12453857 scarlet fritillary, Fritillaria recurva +n12454159 tulip +n12454436 dwarf tulip, Tulipa armena, Tulipa suaveolens +n12454556 lady tulip, candlestick tulip, Tulipa clusiana +n12454705 Tulipa gesneriana +n12454793 cottage tulip +n12454949 Darwin tulip +n12455950 gloriosa, glory lily, climbing lily, creeping lily, Gloriosa superba +n12457091 lemon lily, Hemerocallis lilio-asphodelus, Hemerocallis flava +n12458550 common hyacinth, Hyacinthus orientalis +n12458713 Roman hyacinth, Hyacinthus orientalis albulus +n12458874 summer hyacinth, cape hyacinth, Hyacinthus candicans, Galtonia candicans +n12459629 star-of-Bethlehem +n12460146 bath asparagus, Prussian asparagus, Ornithogalum pyrenaicum +n12460697 grape hyacinth +n12460957 common grape hyacinth, Muscari neglectum +n12461109 tassel hyacinth, Muscari comosum +n12461466 scilla, squill +n12461673 spring squill, Scilla verna, sea onion +n12462032 false asphodel +n12462221 Scotch asphodel, Tofieldia pusilla +n12462582 sea squill, sea onion, squill, Urginea maritima +n12462805 squill +n12463134 butcher's broom, Ruscus aculeatus +n12463743 bog asphodel +n12463975 European bog asphodel, Narthecium ossifragum +n12464128 American bog asphodel, Narthecium americanum +n12464476 hellebore, false hellebore +n12464649 white hellebore, American hellebore, Indian poke, bugbane, Veratrum viride +n12465557 squaw grass, bear grass, Xerophyllum tenax +n12466727 death camas, zigadene +n12467018 alkali grass, Zigadenus elegans +n12467197 white camas, Zigadenus glaucus +n12467433 poison camas, Zigadenus nuttalli +n12467592 grassy death camas, Zigadenus venenosus, Zigadenus venenosus gramineus +n12468545 prairie wake-robin, prairie trillium, Trillium recurvatum +n12468719 dwarf-white trillium, snow trillium, early wake-robin +n12469517 herb Paris, Paris quadrifolia +n12470092 sarsaparilla +n12470512 bullbrier, greenbrier, catbrier, horse brier, horse-brier, brier, briar, Smilax rotundifolia +n12470907 rough bindweed, Smilax aspera +n12472024 clintonia, Clinton's lily +n12473608 false lily of the valley, Maianthemum canadense +n12473840 false lily of the valley, Maianthemum bifolium +n12474167 Solomon's-seal +n12474418 great Solomon's-seal, Polygonatum biflorum, Polygonatum commutatum +n12475035 bellwort, merry bells, wild oats +n12475242 strawflower, cornflower, Uvularia grandiflora +n12475774 pia, Indian arrowroot, Tacca leontopetaloides, Tacca pinnatifida +n12476510 agave, century plant, American aloe +n12477163 American agave, Agave americana +n12477401 sisal, Agave sisalana +n12477583 maguey, cantala, Agave cantala +n12477747 maguey, Agave atrovirens +n12477983 Agave tequilana +n12478768 cabbage tree, grass tree, Cordyline australis +n12479537 dracaena +n12480456 tuberose, Polianthes tuberosa +n12480895 sansevieria, bowstring hemp +n12481150 African bowstring hemp, African hemp, Sansevieria guineensis +n12481289 Ceylon bowstring hemp, Sansevieria zeylanica +n12481458 mother-in-law's tongue, snake plant, Sansevieria trifasciata +n12482437 Spanish bayonet, Yucca aloifolia +n12482668 Spanish bayonet, Yucca baccata +n12482893 Joshua tree, Yucca brevifolia +n12483282 soapweed, soap-weed, soap tree, Yucca elata +n12483427 Adam's needle, Adam's needle-and-thread, spoonleaf yucca, needle palm, Yucca filamentosa +n12483625 bear grass, Yucca glauca +n12483841 Spanish dagger, Yucca gloriosa +n12484244 Our Lord's candle, Yucca whipplei +n12484784 water shamrock, buckbean, bogbean, bog myrtle, marsh trefoil, Menyanthes trifoliata +n12485653 butterfly bush, buddleia +n12485981 yellow jasmine, yellow jessamine, Carolina jasmine, evening trumpet flower, Gelsemium sempervirens +n12486574 flax +n12487058 calabar bean, ordeal bean +n12488454 bonduc, bonduc tree, Caesalpinia bonduc, Caesalpinia bonducella +n12488709 divi-divi, Caesalpinia coriaria +n12489046 Mysore thorn, Caesalpinia decapetala, Caesalpinia sepiaria +n12489676 brazilian ironwood, Caesalpinia ferrea +n12489815 bird of paradise, poinciana, Caesalpinia gilliesii, Poinciana gilliesii +n12490490 shingle tree, Acrocarpus fraxinifolius +n12491017 mountain ebony, orchid tree, Bauhinia variegata +n12491435 msasa, Brachystegia speciformis +n12491826 cassia +n12492106 golden shower tree, drumstick tree, purging cassia, pudding pipe tree, canafistola, canafistula, Cassia fistula +n12492460 pink shower, pink shower tree, horse cassia, Cassia grandis +n12492682 rainbow shower, Cassia javonica +n12492900 horse cassia, Cassia roxburghii, Cassia marginata +n12493208 carob, carob tree, carob bean tree, algarroba, Ceratonia siliqua +n12493426 carob, carob bean, algarroba bean, algarroba, locust bean, locust pod +n12493868 paloverde +n12494794 royal poinciana, flamboyant, flame tree, peacock flower, Delonix regia, Poinciana regia +n12495146 locust tree, locust +n12495670 water locust, swamp locust, Gleditsia aquatica +n12495895 honey locust, Gleditsia triacanthos +n12496427 Kentucky coffee tree, bonduc, chicot, Gymnocladus dioica +n12496949 logwood, logwood tree, campeachy, bloodwood tree, Haematoxylum campechianum +n12497669 Jerusalem thorn, horsebean, Parkinsonia aculeata +n12498055 palo verde, Parkinsonia florida, Cercidium floridum +n12498457 Dalmatian laburnum, Petteria ramentacea, Cytisus ramentaceus +n12499163 senna +n12499757 avaram, tanner's cassia, Senna auriculata, Cassia auriculata +n12499979 Alexandria senna, Alexandrian senna, true senna, tinnevelly senna, Indian senna, Senna alexandrina, Cassia acutifolia, Cassia augustifolia +n12500309 wild senna, Senna marilandica, Cassia marilandica +n12500518 sicklepod, Senna obtusifolia, Cassia tora +n12500751 coffee senna, mogdad coffee, styptic weed, stinking weed, Senna occidentalis, Cassia occidentalis +n12501202 tamarind, tamarind tree, tamarindo, Tamarindus indica +n12504570 false indigo, bastard indigo, Amorpha californica +n12504783 false indigo, bastard indigo, Amorpha fruticosa +n12505253 hog peanut, wild peanut, Amphicarpaea bracteata, Amphicarpa bracteata +n12506181 angelim, andelmin +n12506341 cabbage bark, cabbage-bark tree, cabbage tree, Andira inermis +n12506991 kidney vetch, Anthyllis vulneraria +n12507379 groundnut, groundnut vine, Indian potato, potato bean, wild bean, Apios americana, Apios tuberosa +n12507823 rooibos, Aspalathus linearis, Aspalathus cedcarbergensis +n12508309 milk vetch, milk-vetch +n12508618 alpine milk vetch, Astragalus alpinus +n12508762 purple milk vetch, Astragalus danicus +n12509109 camwood, African sandalwood, Baphia nitida +n12509476 wild indigo, false indigo +n12509665 blue false indigo, Baptisia australis +n12509821 white false indigo, Baptisia lactea +n12509993 indigo broom, horsefly weed, rattle weed, Baptisia tinctoria +n12510343 dhak, dak, palas, Butea frondosa, Butea monosperma +n12510774 pigeon pea, pigeon-pea plant, cajan pea, catjang pea, red gram, dhal, dahl, Cajanus cajan +n12511488 sword bean, Canavalia gladiata +n12511856 pea tree, caragana +n12512095 Siberian pea tree, Caragana arborescens +n12512294 Chinese pea tree, Caragana sinica +n12512674 Moreton Bay chestnut, Australian chestnut +n12513172 butterfly pea, Centrosema virginianum +n12513613 Judas tree, love tree, Circis siliquastrum +n12513933 redbud, Cercis canadensis +n12514138 western redbud, California redbud, Cercis occidentalis +n12514592 tagasaste, Chamaecytisus palmensis, Cytesis proliferus +n12514992 weeping tree broom +n12515393 flame pea +n12515711 chickpea, chickpea plant, Egyptian pea, Cicer arietinum +n12515925 chickpea, garbanzo +n12516165 Kentucky yellowwood, gopherwood, Cladrastis lutea, Cladrastis kentukea +n12516584 glory pea, clianthus +n12516828 desert pea, Sturt pea, Sturt's desert pea, Clianthus formosus, Clianthus speciosus +n12517077 parrot's beak, parrot's bill, Clianthus puniceus +n12517445 butterfly pea, Clitoria mariana +n12517642 blue pea, butterfly pea, Clitoria turnatea +n12518013 telegraph plant, semaphore plant, Codariocalyx motorius, Desmodium motorium, Desmodium gyrans +n12518481 bladder senna, Colutea arborescens +n12519089 axseed, crown vetch, Coronilla varia +n12519563 crotalaria, rattlebox +n12520406 guar, cluster bean, Cyamopsis tetragonolobus, Cyamopsis psoraloides +n12521186 white broom, white Spanish broom, Cytisus albus, Cytisus multiflorus +n12521394 common broom, Scotch broom, green broom, Cytisus scoparius +n12522188 rosewood, rosewood tree +n12522678 Indian blackwood, East Indian rosewood, East India rosewood, Indian rosewood, Dalbergia latifolia +n12522894 sissoo, sissu, sisham, Dalbergia sissoo +n12523141 kingwood, kingwood tree, Dalbergia cearensis +n12523475 Brazilian rosewood, caviuna wood, jacaranda, Dalbergia nigra +n12523850 cocobolo, Dalbergia retusa +n12524188 blackwood, blackwood tree +n12525168 bitter pea +n12525513 derris +n12525753 derris root, tuba root, Derris elliptica +n12526178 prairie mimosa, prickle-weed, Desmanthus ilinoensis +n12526516 tick trefoil, beggar lice, beggar's lice +n12526754 beggarweed, Desmodium tortuosum, Desmodium purpureum +n12527081 Australian pea, Dipogon lignosus, Dolichos lignosus +n12527738 coral tree, erythrina +n12528109 kaffir boom, Cape kafferboom, Erythrina caffra +n12528382 coral bean tree, Erythrina corallodendrum +n12528549 ceibo, crybaby tree, cry-baby tree, common coral tree, Erythrina crista-galli +n12528768 kaffir boom, Transvaal kafferboom, Erythrina lysistemon +n12528974 Indian coral tree, Erythrina variegata, Erythrina Indica +n12529220 cork tree, Erythrina vespertilio +n12529500 goat's rue, goat rue, Galega officinalis +n12529905 poison bush, poison pea, gastrolobium +n12530629 Spanish broom, Spanish gorse, Genista hispanica +n12530818 woodwaxen, dyer's greenweed, dyer's-broom, dyeweed, greenweed, whin, woadwaxen, Genista tinctoria +n12531328 chanar, chanal, Geoffroea decorticans +n12531727 gliricidia +n12532564 soy, soybean, soya bean +n12532886 licorice, liquorice, Glycyrrhiza glabra +n12533190 wild licorice, wild liquorice, American licorice, American liquorice, Glycyrrhiza lepidota +n12533437 licorice root +n12534208 Western Australia coral pea, Hardenbergia comnptoniana +n12534625 sweet vetch, Hedysarum boreale +n12534862 French honeysuckle, sulla, Hedysarum coronarium +n12536291 anil, Indigofera suffruticosa, Indigofera anil +n12537253 scarlet runner, running postman, Kennedia prostrata +n12537569 hyacinth bean, bonavist, Indian bean, Egyptian bean, Lablab purpureus, Dolichos lablab +n12538209 Scotch laburnum, Alpine golden chain, Laburnum alpinum +n12539074 vetchling +n12539306 wild pea +n12539832 everlasting pea +n12540250 beach pea, sea pea, Lathyrus maritimus, Lathyrus japonicus +n12540647 grass vetch, grass vetchling, Lathyrus nissolia +n12540966 marsh pea, Lathyrus palustris +n12541157 common vetchling, meadow pea, yellow vetchling, Lathyrus pratensis +n12541403 grass pea, Indian pea, khesari, Lathyrus sativus +n12542043 Tangier pea, Tangier peavine, Lalthyrus tingitanus +n12542240 heath pea, earth-nut pea, earthnut pea, tuberous vetch, Lathyrus tuberosus +n12543186 bicolor lespediza, ezo-yama-hagi, Lespedeza bicolor +n12543455 japanese clover, japan clover, jap clover, Lespedeza striata +n12543639 Korean lespedeza, Lespedeza stipulacea +n12543826 sericea lespedeza, Lespedeza sericea, Lespedeza cuneata +n12544240 lentil, lentil plant, Lens culinaris +n12544539 lentil +n12545232 prairie bird's-foot trefoil, compass plant, prairie lotus, prairie trefoil, Lotus americanus +n12545635 bird's foot trefoil, bird's foot clover, babies' slippers, bacon and eggs, Lotus corniculatus +n12545865 winged pea, asparagus pea, Lotus tetragonolobus +n12546183 lupine, lupin +n12546420 white lupine, field lupine, wolf bean, Egyptian lupine, Lupinus albus +n12546617 tree lupine, Lupinus arboreus +n12546962 wild lupine, sundial lupine, Indian beet, old-maid's bonnet, Lupinus perennis +n12547215 bluebonnet, buffalo clover, Texas bluebonnet, Lupinus subcarnosus +n12547503 Texas bluebonnet, Lupinus texensis +n12548280 medic, medick, trefoil +n12548564 moon trefoil, Medicago arborea +n12548804 sickle alfalfa, sickle lucerne, sickle medick, Medicago falcata +n12549005 Calvary clover, Medicago intertexta, Medicago echinus +n12549192 black medick, hop clover, yellow trefoil, nonesuch clover, Medicago lupulina +n12549420 alfalfa, lucerne, Medicago sativa +n12549799 millettia +n12550210 mucuna +n12550408 cowage, velvet bean, Bengal bean, Benghal bean, Florida bean, Mucuna pruriens utilis, Mucuna deeringiana, Mucuna aterrima, Stizolobium deeringiana +n12551173 tolu tree, tolu balsam tree, Myroxylon balsamum, Myroxylon toluiferum +n12551457 Peruvian balsam, Myroxylon pereirae, Myroxylon balsamum pereirae +n12552309 sainfoin, sanfoin, holy clover, esparcet, Onobrychis viciifolia, Onobrychis viciaefolia +n12552893 restharrow, rest-harrow, Ononis repens +n12553742 bead tree, jumby bean, jumby tree, Ormosia monosperma +n12554029 jumby bead, jumbie bead, Ormosia coarctata +n12554526 locoweed, crazyweed, crazy weed +n12554729 purple locoweed, purple loco, Oxytropis lambertii +n12554911 tumbleweed +n12555255 yam bean, Pachyrhizus erosus +n12555859 shamrock pea, Parochetus communis +n12556656 pole bean +n12557064 kidney bean, frijol, frijole +n12557438 haricot +n12557556 wax bean +n12557681 scarlet runner, scarlet runner bean, Dutch case-knife bean, runner bean, Phaseolus coccineus, Phaseolus multiflorus +n12558230 lima bean, lima bean plant, Phaseolus limensis +n12558425 sieva bean, butter bean, butter-bean plant, lima bean, Phaseolus lunatus +n12558680 tepary bean, Phaseolus acutifolius latifolius +n12559044 chaparral pea, stingaree-bush, Pickeringia montana +n12559518 Jamaica dogwood, fish fuddle, Piscidia piscipula, Piscidia erythrina +n12560282 pea +n12560621 garden pea +n12560775 edible-pod pea, edible-podded pea, Pisum sativum macrocarpon +n12561169 sugar snap pea, snap pea +n12561309 field pea, field-pea plant, Austrian winter pea, Pisum sativum arvense, Pisum arvense +n12561594 field pea +n12562141 common flat pea, native holly, Playlobium obtusangulum +n12562577 quira +n12562785 roble, Platymiscium trinitatis +n12563045 Panama redwood tree, Panama redwood, Platymiscium pinnatum +n12563702 Indian beech, Pongamia glabra +n12564083 winged bean, winged pea, goa bean, goa bean vine, Manila bean, Psophocarpus tetragonolobus +n12564613 breadroot, Indian breadroot, pomme blanche, pomme de prairie, Psoralea esculenta +n12565102 bloodwood tree, kiaat, Pterocarpus angolensis +n12565912 kino, Pterocarpus marsupium +n12566331 red sandalwood, red sanders, red sanderswood, red saunders, Pterocarpus santalinus +n12566954 kudzu, kudzu vine, Pueraria lobata +n12567950 bristly locust, rose acacia, moss locust, Robinia hispida +n12568186 black locust, yellow locust, Robinia pseudoacacia +n12568649 clammy locust, Robinia viscosa +n12569037 carib wood, Sabinea carinalis +n12569616 Colorado River hemp, Sesbania exaltata +n12569851 scarlet wisteria tree, vegetable hummingbird, Sesbania grandiflora +n12570394 Japanese pagoda tree, Chinese scholartree, Chinese scholar tree, Sophora japonica, Sophora sinensis +n12570703 mescal bean, coral bean, frijolito, frijolillo, Sophora secundiflora +n12570972 kowhai, Sophora tetraptera +n12571781 jade vine, emerald creeper, Strongylodon macrobotrys +n12572546 hoary pea +n12572759 bastard indigo, Tephrosia purpurea +n12572858 catgut, goat's rue, wild sweet pea, Tephrosia virginiana +n12573256 bush pea +n12573474 false lupine, golden pea, yellow pea, Thermopsis macrophylla +n12573647 Carolina lupine, Thermopsis villosa +n12573911 tipu, tipu tree, yellow jacaranda, pride of Bolivia +n12574320 bird's foot trefoil, Trigonella ornithopodioides +n12574470 fenugreek, Greek clover, Trigonella foenumgraecum +n12574866 gorse, furze, whin, Irish gorse, Ulex europaeus +n12575322 vetch +n12575812 tufted vetch, bird vetch, Calnada pea, Vicia cracca +n12576323 broad bean, fava bean, horsebean +n12576451 bitter betch, Vicia orobus +n12576695 bush vetch, Vicia sepium +n12577362 moth bean, Vigna aconitifolia, Phaseolus aconitifolius +n12577895 snailflower, snail-flower, snail flower, snail bean, corkscrew flower, Vigna caracalla, Phaseolus caracalla +n12578255 mung, mung bean, green gram, golden gram, Vigna radiata, Phaseolus aureus +n12578626 cowpea, cowpea plant, black-eyed pea, Vigna unguiculata, Vigna sinensis +n12578916 cowpea, black-eyed pea +n12579038 asparagus bean, yard-long bean, Vigna unguiculata sesquipedalis, Vigna sesquipedalis +n12579404 swamp oak, Viminaria juncea, Viminaria denudata +n12579822 keurboom, Virgilia capensis, Virgilia oroboides +n12580012 keurboom, Virgilia divaricata +n12580654 Japanese wistaria, Wisteria floribunda +n12580786 Chinese wistaria, Wisteria chinensis +n12580896 American wistaria, American wisteria, Wisteria frutescens +n12581110 silky wisteria, Wisteria venusta +n12582231 palm, palm tree +n12582665 sago palm +n12582846 feather palm +n12583126 fan palm +n12583401 palmetto +n12583681 coyol, coyol palm, Acrocomia vinifera +n12583855 grugru, gri-gri, grugru palm, macamba, Acrocomia aculeata +n12584191 areca +n12584365 betel palm, Areca catechu +n12584715 sugar palm, gomuti, gomuti palm, Arenga pinnata +n12585137 piassava palm, pissaba palm, Bahia piassava, bahia coquilla, Attalea funifera +n12585373 coquilla nut +n12585629 palmyra, palmyra palm, toddy palm, wine palm, lontar, longar palm, Borassus flabellifer +n12586298 calamus +n12586499 rattan, rattan palm, Calamus rotang +n12586725 lawyer cane, Calamus australis +n12586989 fishtail palm +n12587132 wine palm, jaggery palm, kitul, kittul, kitul tree, toddy palm, Caryota urens +n12587487 wax palm, Ceroxylon andicola, Ceroxylon alpinum +n12587803 coconut, coconut palm, coco palm, coco, cocoa palm, coconut tree, Cocos nucifera +n12588320 carnauba, carnauba palm, wax palm, Copernicia prunifera, Copernicia cerifera +n12588780 caranday, caranda, caranda palm, wax palm, Copernicia australis, Copernicia alba +n12589142 corozo, corozo palm +n12589458 gebang palm, Corypha utan, Corypha gebanga +n12589687 latanier, latanier palm +n12589841 talipot, talipot palm, Corypha umbraculifera +n12590232 oil palm +n12590499 African oil palm, Elaeis guineensis +n12590600 American oil palm, Elaeis oleifera +n12590715 palm nut, palm kernel +n12591017 cabbage palm, Euterpe oleracea +n12591351 cabbage palm, cabbage tree, Livistona australis +n12591702 true sago palm, Metroxylon sagu +n12592058 nipa palm, Nipa fruticans +n12592544 babassu, babassu palm, coco de macao, Orbignya phalerata, Orbignya spesiosa, Orbignya martiana +n12592839 babassu nut +n12593122 cohune palm, Orbignya cohune, cohune +n12593341 cohune nut +n12593994 date palm, Phoenix dactylifera +n12594324 ivory palm, ivory-nut palm, ivory plant, Phytelephas macrocarpa +n12594989 raffia palm, Raffia farinifera, Raffia ruffia +n12595699 bamboo palm, Raffia vinifera +n12595964 lady palm +n12596148 miniature fan palm, bamboo palm, fern rhapis, Rhapis excelsa +n12596345 reed rhapis, slender lady palm, Rhapis humilis +n12596709 royal palm, Roystonea regia +n12596849 cabbage palm, Roystonea oleracea +n12597134 cabbage palmetto, cabbage palm, Sabal palmetto +n12597466 saw palmetto, scrub palmetto, Serenoa repens +n12597798 thatch palm, thatch tree, silver thatch, broom palm, Thrinax parviflora +n12598027 key palm, silvertop palmetto, silver thatch, Thrinax microcarpa, Thrinax morrisii, Thrinax keyensis +n12599185 English plantain, narrow-leaved plantain, ribgrass, ribwort, ripple-grass, buckthorn, Plantago lanceolata +n12599435 broad-leaved plantain, common plantain, white-man's foot, whiteman's foot, cart-track plant, Plantago major +n12599661 hoary plantain, Plantago media +n12599874 fleawort, psyllium, Spanish psyllium, Plantago psyllium +n12600095 rugel's plantain, broad-leaved plantain, Plantago rugelii +n12600267 hoary plantain, Plantago virginica +n12601494 buckwheat, Polygonum fagopyrum, Fagopyrum esculentum +n12601805 prince's-feather, princess feather, kiss-me-over-the-garden-gate, prince's-plume, Polygonum orientale +n12602262 eriogonum +n12602434 umbrella plant, Eriogonum allenii +n12602612 wild buckwheat, California buckwheat, Erigonum fasciculatum +n12602980 rhubarb, rhubarb plant +n12603273 Himalayan rhubarb, Indian rhubarb, red-veined pie plant, Rheum australe, Rheum emodi +n12603449 pie plant, garden rhubarb, Rheum cultorum, Rheum rhabarbarum, Rheum rhaponticum +n12603672 Chinese rhubarb, Rheum palmatum +n12604228 sour dock, garden sorrel, Rumex acetosa +n12604460 sheep sorrel, sheep's sorrel, Rumex acetosella +n12604639 bitter dock, broad-leaved dock, yellow dock, Rumex obtusifolius +n12604845 French sorrel, garden sorrel, Rumex scutatus +n12605683 yellow-eyed grass +n12606438 commelina +n12606545 spiderwort, dayflower +n12607456 pineapple, pineapple plant, Ananas comosus +n12609379 pipewort, Eriocaulon aquaticum +n12610328 water hyacinth, water orchid, Eichhornia crassipes, Eichhornia spesiosa +n12610740 water star grass, mud plantain, Heteranthera dubia +n12611640 naiad, water nymph +n12612170 water plantain, Alisma plantago-aquatica +n12612811 narrow-leaved water plantain +n12613706 hydrilla, Hydrilla verticillata +n12614096 American frogbit, Limnodium spongia +n12614477 waterweed +n12614625 Canadian pondweed, Elodea canadensis +n12615232 tape grass, eelgrass, wild celery, Vallisneria spiralis +n12615710 pondweed +n12616248 curled leaf pondweed, curly pondweed, Potamogeton crispus +n12616630 loddon pondweed, Potamogeton nodosus, Potamogeton americanus +n12616996 frog's lettuce +n12617559 arrow grass, Triglochin maritima +n12618146 horned pondweed, Zannichellia palustris +n12618727 eelgrass, grass wrack, sea wrack, Zostera marina +n12620196 rose, rosebush +n12620546 hip, rose hip, rosehip +n12620969 banksia rose, Rosa banksia +n12621410 damask rose, summer damask rose, Rosa damascena +n12621619 sweetbrier, sweetbriar, brier, briar, eglantine, Rosa eglanteria +n12621945 Cherokee rose, Rosa laevigata +n12622297 musk rose, Rosa moschata +n12622875 agrimonia, agrimony +n12623077 harvest-lice, Agrimonia eupatoria +n12623211 fragrant agrimony, Agrimonia procera +n12623818 alderleaf Juneberry, alder-leaved serviceberry, Amelanchier alnifolia +n12624381 flowering quince +n12624568 japonica, maule's quince, Chaenomeles japonica +n12625003 coco plum, coco plum tree, cocoa plum, icaco, Chrysobalanus icaco +n12625383 cotoneaster +n12625670 Cotoneaster dammeri +n12625823 Cotoneaster horizontalis +n12626674 parsley haw, parsley-leaved thorn, Crataegus apiifolia, Crataegus marshallii +n12626878 scarlet haw, Crataegus biltmoreana +n12627119 blackthorn, pear haw, pear hawthorn, Crataegus calpodendron, Crataegus tomentosa +n12627347 cockspur thorn, cockspur hawthorn, Crataegus crus-galli +n12627526 mayhaw, summer haw, Crataegus aestivalis +n12628356 red haw, downy haw, Crataegus mollis, Crataegus coccinea mollis +n12628705 red haw, Crataegus pedicellata, Crataegus coccinea +n12628986 quince, quince bush, Cydonia oblonga +n12629305 mountain avens, Dryas octopetala +n12629666 loquat, loquat tree, Japanese medlar, Japanese plum, Eriobotrya japonica +n12630763 beach strawberry, Chilean strawberry, Fragaria chiloensis +n12630999 Virginia strawberry, scarlet strawberry, Fragaria virginiana +n12631331 avens +n12631637 yellow avens, Geum alleppicum strictum, Geum strictum +n12631932 yellow avens, Geum macrophyllum +n12632335 prairie smoke, purple avens, Geum triflorum +n12632733 bennet, white avens, Geum virginianum +n12633061 toyon, tollon, Christmasberry, Christmas berry, Heteromeles arbutifolia, Photinia arbutifolia +n12633638 apple tree +n12633994 apple, orchard apple tree, Malus pumila +n12634211 wild apple, crab apple, crabapple +n12634429 crab apple, crabapple, cultivated crab apple +n12634734 Siberian crab, Siberian crab apple, cherry apple, cherry crab, Malus baccata +n12634986 wild crab, Malus sylvestris +n12635151 American crab apple, garland crab, Malus coronaria +n12635359 Oregon crab apple, Malus fusca +n12635532 Southern crab apple, flowering crab, Malus angustifolia +n12635744 Iowa crab, Iowa crab apple, prairie crab, western crab apple, Malus ioensis +n12635955 Bechtel crab, flowering crab +n12636224 medlar, medlar tree, Mespilus germanica +n12636885 cinquefoil, five-finger +n12637123 silverweed, goose-tansy, goose grass, Potentilla anserina +n12637485 salad burnet, burnet bloodwort, pimpernel, Poterium sanguisorba +n12638218 plum, plum tree +n12638556 wild plum, wild plum tree +n12638753 Allegheny plum, Alleghany plum, sloe, Prunus alleghaniensis +n12638964 American red plum, August plum, goose plum, Prunus americana +n12639168 chickasaw plum, hog plum, hog plum bush, Prunus angustifolia +n12639376 beach plum, beach plum bush, Prunus maritima +n12639584 common plum, Prunus domestica +n12639736 bullace, Prunus insititia +n12639910 damson plum, damson plum tree, Prunus domestica insititia +n12640081 big-tree plum, Prunus mexicana +n12640284 Canada plum, Prunus nigra +n12640435 plumcot, plumcot tree +n12640607 apricot, apricot tree +n12640839 Japanese apricot, mei, Prunus mume +n12641007 common apricot, Prunus armeniaca +n12641180 purple apricot, black apricot, Prunus dasycarpa +n12641413 cherry, cherry tree +n12641931 wild cherry, wild cherry tree +n12642090 wild cherry +n12642200 sweet cherry, Prunus avium +n12642435 heart cherry, oxheart, oxheart cherry +n12642600 gean, mazzard, mazzard cherry +n12642964 capulin, capulin tree, Prunus capuli +n12643113 cherry laurel, laurel cherry, mock orange, wild orange, Prunus caroliniana +n12643313 cherry plum, myrobalan, myrobalan plum, Prunus cerasifera +n12643473 sour cherry, sour cherry tree, Prunus cerasus +n12643688 amarelle, Prunus cerasus caproniana +n12643877 morello, Prunus cerasus austera +n12644283 marasca +n12644902 almond tree +n12645174 almond, sweet almond, Prunus dulcis, Prunus amygdalus, Amygdalus communis +n12645530 bitter almond, Prunus dulcis amara, Amygdalus communis amara +n12646072 jordan almond +n12646197 dwarf flowering almond, Prunus glandulosa +n12646397 holly-leaved cherry, holly-leaf cherry, evergreen cherry, islay, Prunus ilicifolia +n12646605 fuji, fuji cherry, Prunus incisa +n12646740 flowering almond, oriental bush cherry, Prunus japonica +n12646950 cherry laurel, laurel cherry, Prunus laurocerasus +n12647231 Catalina cherry, Prunus lyonii +n12647376 bird cherry, bird cherry tree +n12647560 hagberry tree, European bird cherry, common bird cherry, Prunus padus +n12647787 hagberry +n12647893 pin cherry, Prunus pensylvanica +n12648045 peach, peach tree, Prunus persica +n12648196 nectarine, nectarine tree, Prunus persica nectarina +n12648424 sand cherry, Prunus pumila, Prunus pumilla susquehanae, Prunus susquehanae, Prunus cuneata +n12648693 Japanese plum, Prunus salicina +n12648888 black cherry, black cherry tree, rum cherry, Prunus serotina +n12649065 flowering cherry +n12649317 oriental cherry, Japanese cherry, Japanese flowering cherry, Prunus serrulata +n12649539 Japanese flowering cherry, Prunus sieboldii +n12649866 Sierra plum, Pacific plum, Prunus subcordata +n12650038 rosebud cherry, winter flowering cherry, Prunus subhirtella +n12650229 Russian almond, dwarf Russian almond, Prunus tenella +n12650379 flowering almond, Prunus triloba +n12650556 chokecherry, chokecherry tree, Prunus virginiana +n12650805 chokecherry +n12650915 western chokecherry, Prunus virginiana demissa, Prunus demissa +n12651229 Pyracantha, pyracanth, fire thorn, firethorn +n12651611 pear, pear tree, Pyrus communis +n12651821 fruit tree +n12653218 bramble bush +n12653436 lawyerbush, lawyer bush, bush lawyer, Rubus cissoides, Rubus australis +n12653633 stone bramble, Rubus saxatilis +n12654227 sand blackberry, Rubus cuneifolius +n12654857 boysenberry, boysenberry bush +n12655062 loganberry, Rubus loganobaccus, Rubus ursinus loganobaccus +n12655245 American dewberry, Rubus canadensis +n12655351 Northern dewberry, American dewberry, Rubus flagellaris +n12655498 Southern dewberry, Rubus trivialis +n12655605 swamp dewberry, swamp blackberry, Rubus hispidus +n12655726 European dewberry, Rubus caesius +n12655869 raspberry, raspberry bush +n12656369 wild raspberry, European raspberry, framboise, Rubus idaeus +n12656528 American raspberry, Rubus strigosus, Rubus idaeus strigosus +n12656685 black raspberry, blackcap, blackcap raspberry, thimbleberry, Rubus occidentalis +n12656909 salmonberry, Rubus spectabilis +n12657082 salmonberry, salmon berry, thimbleberry, Rubus parviflorus +n12657755 wineberry, Rubus phoenicolasius +n12658118 mountain ash +n12658308 rowan, rowan tree, European mountain ash, Sorbus aucuparia +n12658481 rowanberry +n12658603 American mountain ash, Sorbus americana +n12658715 Western mountain ash, Sorbus sitchensis +n12658846 service tree, sorb apple, sorb apple tree, Sorbus domestica +n12659064 wild service tree, Sorbus torminalis +n12659356 spirea, spiraea +n12659539 bridal wreath, bridal-wreath, Saint Peter's wreath, St. Peter's wreath, Spiraea prunifolia +n12660601 madderwort, rubiaceous plant +n12661045 Indian madder, munjeet, Rubia cordifolia +n12661227 madder, Rubia tinctorum +n12661538 woodruff +n12662074 dagame, lemonwood tree, Calycophyllum candidissimum +n12662379 blolly, West Indian snowberry, Chiococca alba +n12662772 coffee, coffee tree +n12663023 Arabian coffee, Coffea arabica +n12663254 Liberian coffee, Coffea liberica +n12663359 robusta coffee, Rio Nunez coffee, Coffea robusta, Coffea canephora +n12663804 cinchona, chinchona +n12664005 Cartagena bark, Cinchona cordifolia, Cinchona lancifolia +n12664187 calisaya, Cinchona officinalis, Cinchona ledgeriana, Cinchona calisaya +n12664469 cinchona tree, Cinchona pubescens +n12664710 cinchona, cinchona bark, Peruvian bark, Jesuit's bark +n12665048 bedstraw +n12665271 sweet woodruff, waldmeister, woodruff, fragrant bedstraw, Galium odoratum, Asperula odorata +n12665659 Northern bedstraw, Northern snow bedstraw, Galium boreale +n12665857 yellow bedstraw, yellow cleavers, Our Lady's bedstraw, Galium verum +n12666050 wild licorice, Galium lanceolatum +n12666159 cleavers, clivers, goose grass, catchweed, spring cleavers, Galium aparine +n12666369 wild madder, white madder, white bedstraw, infant's-breath, false baby's breath, Galium mollugo +n12666965 cape jasmine, cape jessamine, Gardenia jasminoides, Gardenia augusta +n12667406 genipa +n12667582 genipap fruit, jagua, marmalade box, Genipa Americana +n12667964 hamelia +n12668131 scarlet bush, scarlet hamelia, coloradillo, Hamelia patens, Hamelia erecta +n12669803 lemonwood, lemon-wood, lemonwood tree, lemon-wood tree, Psychotria capensis +n12670334 negro peach, Sarcocephalus latifolius, Sarcocephalus esculentus +n12670758 wild medlar, wild medlar tree, medlar, Vangueria infausta +n12670962 Spanish tamarind, Vangueria madagascariensis +n12671651 abelia +n12672289 bush honeysuckle, Diervilla sessilifolia +n12673588 American twinflower, Linnaea borealis americana +n12674120 honeysuckle +n12674685 American fly honeysuckle, fly honeysuckle, Lonicera canadensis +n12674895 Italian honeysuckle, Italian woodbine, Lonicera caprifolium +n12675299 yellow honeysuckle, Lonicera flava +n12675515 hairy honeysuckle, Lonicera hirsuta +n12675876 Japanese honeysuckle, Lonicera japonica +n12676134 Hall's honeysuckle, Lonicera japonica halliana +n12676370 Morrow's honeysuckle, Lonicera morrowii +n12676534 woodbine, Lonicera periclymenum +n12676703 trumpet honeysuckle, coral honeysuckle, trumpet flower, trumpet vine, Lonicera sempervirens +n12677120 European fly honeysuckle, European honeysuckle, Lonicera xylosteum +n12677331 swamp fly honeysuckle +n12677612 snowberry, common snowberry, waxberry, Symphoricarpos alba +n12677841 coralberry, Indian currant, Symphoricarpos orbiculatus +n12678794 blue elder, blue elderberry, Sambucus caerulea +n12679023 dwarf elder, danewort, Sambucus ebulus +n12679432 American red elder, red-berried elder, stinking elder, Sambucus pubens +n12679593 European red elder, red-berried elder, Sambucus racemosa +n12679876 feverroot, horse gentian, tinker's root, wild coffee, Triostium perfoliatum +n12680402 cranberry bush, cranberry tree, American cranberry bush, highbush cranberry, Viburnum trilobum +n12680652 wayfaring tree, twist wood, twistwood, Viburnum lantana +n12680864 guelder rose, European cranberrybush, European cranberry bush, crampbark, cranberry tree, Viburnum opulus +n12681376 arrow wood, Viburnum recognitum +n12681579 black haw, Viburnum prunifolium +n12681893 weigela, Weigela florida +n12682411 teasel, teazel, teasle +n12682668 common teasel, Dipsacus fullonum +n12682882 fuller's teasel, Dipsacus sativus +n12683096 wild teasel, Dipsacus sylvestris +n12683407 scabious, scabiosa +n12683571 sweet scabious, pincushion flower, mournful widow, Scabiosa atropurpurea +n12683791 field scabious, Scabiosa arvensis +n12684379 jewelweed, lady's earrings, orange balsam, celandine, touch-me-not, Impatiens capensis +n12685431 geranium +n12685831 cranesbill, crane's bill +n12686077 wild geranium, spotted cranesbill, Geranium maculatum +n12686274 meadow cranesbill, Geranium pratense +n12686496 Richardson's geranium, Geranium richardsonii +n12686676 herb robert, herbs robert, herb roberts, Geranium robertianum +n12686877 sticky geranium, Geranium viscosissimum +n12687044 dove's foot geranium, Geranium molle +n12687462 rose geranium, sweet-scented geranium, Pelargonium graveolens +n12687698 fish geranium, bedding geranium, zonal pelargonium, Pelargonium hortorum +n12687957 ivy geranium, ivy-leaved geranium, hanging geranium, Pelargonium peltatum +n12688187 apple geranium, nutmeg geranium, Pelargonium odoratissimum +n12688372 lemon geranium, Pelargonium limoneum +n12688716 storksbill, heron's bill +n12689305 musk clover, muskus grass, white-stemmed filaree, Erodium moschatum +n12690653 incense tree +n12691428 elephant tree, Bursera microphylla +n12691661 gumbo-limbo, Bursera simaruba +n12692024 Boswellia carteri +n12692160 salai, Boswellia serrata +n12692521 balm of gilead, Commiphora meccanensis +n12692714 myrrh tree, Commiphora myrrha +n12693244 Protium heptaphyllum +n12693352 Protium guianense +n12693865 water starwort +n12694486 barbados cherry, acerola, Surinam cherry, West Indian cherry, Malpighia glabra +n12695144 mahogany, mahogany tree +n12695975 chinaberry, chinaberry tree, China tree, Persian lilac, pride-of-India, azederach, azedarach, Melia azederach, Melia azedarach +n12696492 neem, neem tree, nim tree, margosa, arishth, Azadirachta indica, Melia Azadirachta +n12696830 neem seed +n12697152 Spanish cedar, Spanish cedar tree, Cedrela odorata +n12697514 satinwood, satinwood tree, Chloroxylon swietenia +n12698027 African scented mahogany, cedar mahogany, sapele mahogany, Entandrophragma cylindricum +n12698435 silver ash +n12698598 native beech, flindosa, flindosy, Flindersia australis +n12698774 bunji-bunji, Flindersia schottiana +n12699031 African mahogany +n12699301 lanseh tree, langsat, langset, Lansium domesticum +n12699922 true mahogany, Cuban mahogany, Dominican mahogany, Swietinia mahogani +n12700088 Honduras mahogany, Swietinia macrophylla +n12700357 Philippine mahogany, Philippine cedar, kalantas, Toona calantas, Cedrela calantas +n12702124 caracolito, Ruptiliocarpon caracolito +n12703190 common wood sorrel, cuckoo bread, shamrock, Oxalis acetosella +n12703383 Bermuda buttercup, English-weed, Oxalis pes-caprae, Oxalis cernua +n12703557 creeping oxalis, creeping wood sorrel, Oxalis corniculata +n12703716 goatsfoot, goat's foot, Oxalis caprina +n12703856 violet wood sorrel, Oxalis violacea +n12704041 oca, oka, Oxalis tuberosa, Oxalis crenata +n12704343 carambola, carambola tree, Averrhoa carambola +n12704513 bilimbi, Averrhoa bilimbi +n12705013 milkwort +n12705220 senega, Polygala alba +n12705458 orange milkwort, yellow milkwort, candyweed, yellow bachelor's button, Polygala lutea +n12705698 flowering wintergreen, gaywings, bird-on-the-wing, fringed polygala, Polygala paucifolia +n12705978 Seneca snakeroot, Seneka snakeroot, senga root, senega root, senega snakeroot, Polygala senega +n12706410 common milkwort, gand flower, Polygala vulgaris +n12707199 rue, herb of grace, Ruta graveolens +n12707781 citrus, citrus tree +n12708293 orange, orange tree +n12708654 sour orange, Seville orange, bitter orange, bitter orange tree, bigarade, marmalade orange, Citrus aurantium +n12708941 bergamot, bergamot orange, Citrus bergamia +n12709103 pomelo, pomelo tree, pummelo, shaddock, Citrus maxima, Citrus grandis, Citrus decumana +n12709349 citron, citron tree, Citrus medica +n12709688 grapefruit, Citrus paradisi +n12709901 mandarin, mandarin orange, mandarin orange tree, Citrus reticulata +n12710295 tangerine, tangerine tree +n12710415 clementine, clementine tree +n12710577 satsuma, satsuma tree +n12710693 sweet orange, sweet orange tree, Citrus sinensis +n12710917 temple orange, temple orange tree, tangor, king orange, Citrus nobilis +n12711182 tangelo, tangelo tree, ugli fruit, Citrus tangelo +n12711398 rangpur, rangpur lime, lemanderin, Citrus limonia +n12711596 lemon, lemon tree, Citrus limon +n12711817 sweet lemon, sweet lime, Citrus limetta +n12711984 lime, lime tree, Citrus aurantifolia +n12712320 citrange, citrange tree, Citroncirus webberi +n12712626 fraxinella, dittany, burning bush, gas plant, Dictamnus alba +n12713063 kumquat, cumquat, kumquat tree +n12713358 marumi, marumi kumquat, round kumquat, Fortunella japonica +n12713521 nagami, nagami kumquat, oval kumquat, Fortunella margarita +n12713866 cork tree, Phellodendron amurense +n12714254 trifoliate orange, trifoliata, wild orange, Poncirus trifoliata +n12714755 prickly ash +n12714949 toothache tree, sea ash, Zanthoxylum americanum, Zanthoxylum fraxineum +n12715195 Hercules'-club, Hercules'-clubs, Hercules-club, Zanthoxylum clava-herculis +n12715914 bitterwood tree +n12716400 marupa, Simarouba amara +n12716594 paradise tree, bitterwood, Simarouba glauca +n12717072 ailanthus +n12717224 tree of heaven, tree of the gods, Ailanthus altissima +n12717644 wild mango, dika, wild mango tree, Irvingia gabonensis +n12718074 pepper tree, Kirkia wilmsii +n12718483 Jamaica quassia, bitterwood, Picrasma excelsa, Picrasma excelsum +n12718995 quassia, bitterwood, Quassia amara +n12719684 nasturtium +n12719944 garden nasturtium, Indian cress, Tropaeolum majus +n12720200 bush nasturtium, Tropaeolum minus +n12720354 canarybird flower, canarybird vine, canary creeper, Tropaeolum peregrinum +n12721122 bean caper, Syrian bean caper, Zygophyllum fabago +n12721477 palo santo, Bulnesia sarmienti +n12722071 lignum vitae, Guaiacum officinale +n12723062 creosote bush, coville, hediondilla, Larrea tridentata +n12723610 caltrop, devil's weed, Tribulus terestris +n12724942 willow, willow tree +n12725521 osier +n12725738 white willow, Huntingdon willow, Salix alba +n12725940 silver willow, silky willow, Salix alba sericea, Salix sericea +n12726159 golden willow, Salix alba vitellina, Salix vitellina +n12726357 cricket-bat willow, Salix alba caerulea +n12726528 arctic willow, Salix arctica +n12726670 weeping willow, Babylonian weeping willow, Salix babylonica +n12726902 Wisconsin weeping willow, Salix pendulina, Salix blanda, Salix pendulina blanda +n12727101 pussy willow, Salix discolor +n12727301 sallow +n12727518 goat willow, florist's willow, pussy willow, Salix caprea +n12727729 peachleaf willow, peach-leaved willow, almond-leaves willow, Salix amygdaloides +n12727960 almond willow, black Hollander, Salix triandra, Salix amygdalina +n12728164 hoary willow, sage willow, Salix candida +n12728322 crack willow, brittle willow, snap willow, Salix fragilis +n12728508 prairie willow, Salix humilis +n12728656 dwarf willow, Salix herbacea +n12728864 grey willow, gray willow, Salix cinerea +n12729023 arroyo willow, Salix lasiolepis +n12729164 shining willow, Salix lucida +n12729315 swamp willow, black willow, Salix nigra +n12729521 bay willow, laurel willow, Salix pentandra +n12729729 purple willow, red willow, red osier, basket willow, purple osier, Salix purpurea +n12729950 balsam willow, Salix pyrifolia +n12730143 creeping willow, Salix repens +n12730370 Sitka willow, silky willow, Salix sitchensis +n12730544 dwarf grey willow, dwarf gray willow, sage willow, Salix tristis +n12730776 bearberry willow, Salix uva-ursi +n12731029 common osier, hemp willow, velvet osier, Salix viminalis +n12731401 poplar, poplar tree +n12731835 balsam poplar, hackmatack, tacamahac, Populus balsamifera +n12732009 white poplar, white aspen, abele, aspen poplar, silver-leaved poplar, Populus alba +n12732252 grey poplar, gray poplar, Populus canescens +n12732491 black poplar, Populus nigra +n12732605 Lombardy poplar, Populus nigra italica +n12732756 cottonwood +n12732966 Eastern cottonwood, necklace poplar, Populus deltoides +n12733218 black cottonwood, Western balsam poplar, Populus trichocarpa +n12733428 swamp cottonwood, black cottonwood, downy poplar, swamp poplar, Populus heterophylla +n12733647 aspen +n12733870 quaking aspen, European quaking aspen, Populus tremula +n12734070 American quaking aspen, American aspen, Populus tremuloides +n12734215 Canadian aspen, bigtooth aspen, bigtoothed aspen, big-toothed aspen, large-toothed aspen, large tooth aspen, Populus grandidentata +n12735160 sandalwood tree, true sandalwood, Santalum album +n12736603 quandong, quandang, quandong tree, Eucarya acuminata, Fusanus acuminatus +n12736999 rabbitwood, buffalo nut, Pyrularia pubera +n12737383 Loranthaceae, family Loranthaceae, mistletoe family +n12737898 mistletoe, Loranthus europaeus +n12738259 American mistletoe, Arceuthobium pusillum +n12739332 mistletoe, Viscum album, Old World mistletoe +n12739966 American mistletoe, Phoradendron serotinum, Phoradendron flavescens +n12740967 aalii +n12741222 soapberry, soapberry tree +n12741586 wild China tree, Sapindus drumondii, Sapindus marginatus +n12741792 China tree, false dogwood, jaboncillo, chinaberry, Sapindus saponaria +n12742290 akee, akee tree, Blighia sapida +n12742741 soapberry vine +n12742878 heartseed, Cardiospermum grandiflorum +n12743009 balloon vine, heart pea, Cardiospermum halicacabum +n12743352 longan, lungen, longanberry, Dimocarpus longan, Euphorbia litchi, Nephelium longana +n12743823 harpullia +n12743976 harpulla, Harpullia cupanioides +n12744142 Moreton Bay tulipwood, Harpullia pendula +n12744387 litchi, lichee, litchi tree, Litchi chinensis, Nephelium litchi +n12744850 Spanish lime, Spanish lime tree, honey berry, mamoncillo, genip, ginep, Melicocca bijuga, Melicocca bijugatus +n12745386 rambutan, rambotan, rambutan tree, Nephelium lappaceum +n12745564 pulasan, pulassan, pulasan tree, Nephelium mutabile +n12746884 pachysandra +n12747120 Allegheny spurge, Allegheny mountain spurge, Pachysandra procumbens +n12748248 bittersweet, American bittersweet, climbing bittersweet, false bittersweet, staff vine, waxwork, shrubby bittersweet, Celastrus scandens +n12749049 spindle tree, spindleberry, spindleberry tree +n12749456 winged spindle tree, Euonymous alatus +n12749679 wahoo, burning bush, Euonymus atropurpureus +n12749852 strawberry bush, wahoo, Euonymus americanus +n12750076 evergreen bittersweet, Euonymus fortunei radicans, Euonymus radicans vegetus +n12750767 cyrilla, leatherwood, white titi, Cyrilla racemiflora +n12751172 titi, buckwheat tree, Cliftonia monophylla +n12751675 crowberry +n12752205 maple +n12753007 silver maple, Acer saccharinum +n12753245 sugar maple, rock maple, Acer saccharum +n12753573 red maple, scarlet maple, swamp maple, Acer rubrum +n12753762 moosewood, moose-wood, striped maple, striped dogwood, goosefoot maple, Acer pennsylvanicum +n12754003 Oregon maple, big-leaf maple, Acer macrophyllum +n12754174 dwarf maple, Rocky-mountain maple, Acer glabrum +n12754311 mountain maple, mountain alder, Acer spicatum +n12754468 vine maple, Acer circinatum +n12754648 hedge maple, field maple, Acer campestre +n12754781 Norway maple, Acer platanoides +n12754981 sycamore, great maple, scottish maple, Acer pseudoplatanus +n12755225 box elder, ash-leaved maple, Acer negundo +n12755387 California box elder, Acer negundo Californicum +n12755559 pointed-leaf maple, Acer argutum +n12755727 Japanese maple, full moon maple, Acer japonicum +n12755876 Japanese maple, Acer palmatum +n12756457 holly +n12757115 Chinese holly, Ilex cornuta +n12757303 bearberry, possum haw, winterberry, Ilex decidua +n12757458 inkberry, gallberry, gall-berry, evergreen winterberry, Ilex glabra +n12757668 mate, Paraguay tea, Ilex paraguariensis +n12757816 American holly, Christmas holly +n12757930 low gallberry holly +n12758014 tall gallberry holly +n12758099 yaupon holly +n12758176 deciduous holly +n12758250 juneberry holly +n12758325 largeleaf holly +n12758399 Geogia holly +n12758471 common winterberry holly +n12758555 smooth winterberry holly +n12759273 cashew, cashew tree, Anacardium occidentale +n12759668 goncalo alves, Astronium fraxinifolium +n12760539 Venetian sumac, wig tree, Cotinus coggygria +n12760875 laurel sumac, Malosma laurina, Rhus laurina +n12761284 mango, mango tree, Mangifera indica +n12761702 pistachio, Pistacia vera, pistachio tree +n12761905 terebinth, Pistacia terebinthus +n12762049 mastic, mastic tree, lentisk, Pistacia lentiscus +n12762405 Australian sumac, Rhodosphaera rhodanthema, Rhus rhodanthema +n12762896 sumac, sumach, shumac +n12763529 smooth sumac, scarlet sumac, vinegar tree, Rhus glabra +n12764008 sugar-bush, sugar sumac, Rhus ovata +n12764202 staghorn sumac, velvet sumac, Virginian sumac, vinegar tree, Rhus typhina +n12764507 squawbush, squaw-bush, skunkbush, Rhus trilobata +n12764978 aroeira blanca, Schinus chichita +n12765115 pepper tree, molle, Peruvian mastic tree, Schinus molle +n12765402 Brazilian pepper tree, Schinus terebinthifolius +n12765846 hog plum, yellow mombin, yellow mombin tree, Spondias mombin +n12766043 mombin, mombin tree, jocote, Spondias purpurea +n12766595 poison ash, poison dogwood, poison sumac, Toxicodendron vernix, Rhus vernix +n12766869 poison ivy, markweed, poison mercury, poison oak, Toxicodendron radicans, Rhus radicans +n12767208 western poison oak, Toxicodendron diversilobum, Rhus diversiloba +n12767423 eastern poison oak, Toxicodendron quercifolium, Rhus quercifolia, Rhus toxicodenedron +n12767648 varnish tree, lacquer tree, Chinese lacquer tree, Japanese lacquer tree, Japanese varnish tree, Japanese sumac, Toxicodendron vernicifluum, Rhus verniciflua +n12768369 horse chestnut, buckeye, Aesculus hippocastanum +n12768682 buckeye, horse chestnut, conker +n12768809 sweet buckeye +n12768933 Ohio buckeye +n12769065 dwarf buckeye, bottlebrush buckeye +n12769219 red buckeye +n12769318 particolored buckeye +n12770529 ebony, ebony tree, Diospyros ebenum +n12770892 marblewood, marble-wood, Andaman marble, Diospyros kurzii +n12771085 marblewood, marble-wood +n12771192 persimmon, persimmon tree +n12771390 Japanese persimmon, kaki, Diospyros kaki +n12771597 American persimmon, possumwood, Diospyros virginiana +n12771890 date plum, Diospyros lotus +n12772753 buckthorn +n12772908 southern buckthorn, shittimwood, shittim, mock orange, Bumelia lycioides +n12773142 false buckthorn, chittamwood, chittimwood, shittimwood, black haw, Bumelia lanuginosa +n12773651 star apple, caimito, Chrysophyllum cainito +n12773917 satinleaf, satin leaf, caimitillo, damson plum, Chrysophyllum oliviforme +n12774299 balata, balata tree, beefwood, bully tree, Manilkara bidentata +n12774641 sapodilla, sapodilla tree, Manilkara zapota, Achras zapota +n12775070 gutta-percha tree, Palaquium gutta +n12775393 gutta-percha tree +n12775717 canistel, canistel tree, Pouteria campechiana nervosa +n12775919 marmalade tree, mammee, sapote, Pouteria zapota, Calocarpum zapota +n12776558 sweetleaf, Symplocus tinctoria +n12776774 Asiatic sweetleaf, sapphire berry, Symplocus paniculata +n12777436 styrax +n12777680 snowbell, Styrax obassia +n12777778 Japanese snowbell, Styrax japonicum +n12777892 Texas snowbell, Texas snowbells, Styrax texana +n12778398 silver-bell tree, silverbell tree, snowdrop tree, opossum wood, Halesia carolina, Halesia tetraptera +n12778605 carnivorous plant +n12779603 pitcher plant +n12779851 common pitcher plant, huntsman's cup, huntsman's cups, Sarracenia purpurea +n12780325 hooded pitcher plant, Sarracenia minor +n12780563 huntsman's horn, huntsman's horns, yellow trumpet, yellow pitcher plant, trumpets, Sarracenia flava +n12781940 tropical pitcher plant +n12782530 sundew, sundew plant, daily dew +n12782915 Venus's flytrap, Venus's flytraps, Dionaea muscipula +n12783316 waterwheel plant, Aldrovanda vesiculosa +n12783730 Drosophyllum lusitanicum +n12784371 roridula +n12784889 Australian pitcher plant, Cephalotus follicularis +n12785724 sedum +n12785889 stonecrop +n12786273 rose-root, midsummer-men, Sedum rosea +n12786464 orpine, orpin, livelong, live-forever, Sedum telephium +n12786836 pinwheel, Aeonium haworthii +n12787364 Christmas bush, Christmas tree, Ceratopetalum gummiferum +n12788854 hortensia, Hydrangea macrophylla hortensis +n12789054 fall-blooming hydrangea, Hydrangea paniculata +n12789554 carpenteria, Carpenteria californica +n12789977 decumary, Decumaria barbata, Decumaria barbara +n12790430 deutzia +n12791064 philadelphus +n12791329 mock orange, syringa, Philadelphus coronarius +n12793015 saxifrage, breakstone, rockfoil +n12793284 yellow mountain saxifrage, Saxifraga aizoides +n12793494 meadow saxifrage, fair-maids-of-France, Saxifraga granulata +n12793695 mossy saxifrage, Saxifraga hypnoides +n12793886 western saxifrage, Saxifraga occidentalis +n12794135 purple saxifrage, Saxifraga oppositifolia +n12794367 star saxifrage, starry saxifrage, Saxifraga stellaris +n12794568 strawberry geranium, strawberry saxifrage, mother-of-thousands, Saxifraga stolonifera, Saxifraga sarmentosam +n12794985 astilbe +n12795209 false goatsbeard, Astilbe biternata +n12795352 dwarf astilbe, Astilbe chinensis pumila +n12795555 spirea, spiraea, Astilbe japonica +n12796022 bergenia +n12796385 coast boykinia, Boykinia elata, Boykinia occidentalis +n12796849 golden saxifrage, golden spleen +n12797368 umbrella plant, Indian rhubarb, Darmera peltata, Peltiphyllum peltatum +n12797860 bridal wreath, bridal-wreath, Francoa ramosa +n12798284 alumroot, alumbloom +n12798910 coralbells, Heuchera sanguinea +n12799269 leatherleaf saxifrage, Leptarrhena pyrolifolia +n12799776 woodland star, Lithophragma affine, Lithophragma affinis, Tellima affinis +n12800049 prairie star, Lithophragma parviflorum +n12800586 miterwort, mitrewort, bishop's cap +n12801072 five-point bishop's cap, Mitella pentandra +n12801520 parnassia, grass-of-Parnassus +n12801781 bog star, Parnassia palustris +n12801966 fringed grass of Parnassus, Parnassia fimbriata +n12803226 false alumroot, fringe cups, Tellima grandiflora +n12803754 foamflower, coolwart, false miterwort, false mitrewort, Tiarella cordifolia +n12803958 false miterwort, false mitrewort, Tiarella unifoliata +n12804352 pickaback plant, piggyback plant, youth-on-age, Tolmiea menziesii +n12805146 currant, currant bush +n12805561 black currant, European black currant, Ribes nigrum +n12805762 white currant, Ribes sativum +n12806015 gooseberry, gooseberry bush, Ribes uva-crispa, Ribes grossularia +n12806732 plane tree, sycamore, platan +n12807251 London plane, Platanus acerifolia +n12807409 American sycamore, American plane, buttonwood, Platanus occidentalis +n12807624 oriental plane, Platanus orientalis +n12807773 California sycamore, Platanus racemosa +n12808007 Arizona sycamore, Platanus wrightii +n12809868 Greek valerian, Polemonium reptans +n12810007 northern Jacob's ladder, Polemonium boreale +n12810151 skunkweed, skunk-weed, Polemonium viscosum +n12810595 phlox +n12811027 moss pink, mountain phlox, moss phlox, dwarf phlox, Phlox subulata +n12811713 evening-snow, Linanthus dichotomus +n12812235 acanthus +n12812478 bear's breech, bear's breeches, sea holly, Acanthus mollis +n12812801 caricature plant, Graptophyllum pictum +n12813189 black-eyed Susan, black-eyed Susan vine, Thunbergia alata +n12814643 catalpa, Indian bean +n12814857 Catalpa bignioides +n12814960 Catalpa speciosa +n12815198 desert willow, Chilopsis linearis +n12815668 calabash, calabash tree, Crescentia cujete +n12815838 calabash +n12816508 borage, tailwort, Borago officinalis +n12816942 common amsinckia, Amsinckia intermedia +n12817464 anchusa +n12817694 bugloss, alkanet, Anchusa officinalis +n12817855 cape forget-me-not, Anchusa capensis +n12818004 cape forget-me-not, Anchusa riparia +n12818346 Spanish elm, Equador laurel, salmwood, cypre, princewood, Cordia alliodora +n12818601 princewood, Spanish elm, Cordia gerascanthus +n12818966 Chinese forget-me-not, Cynoglossum amabile +n12819141 hound's-tongue, Cynoglossum officinale +n12819354 hound's-tongue, Cynoglossum virginaticum +n12819728 blueweed, blue devil, blue thistle, viper's bugloss, Echium vulgare +n12820113 beggar's lice, beggar lice +n12820669 gromwell, Lithospermum officinale +n12820853 puccoon, Lithospermum caroliniense +n12821505 Virginia bluebell, Virginia cowslip, Mertensia virginica +n12821895 garden forget-me-not, Myosotis sylvatica +n12822115 forget-me-not, mouse ear, Myosotis scorpiodes +n12822466 false gromwell +n12822769 comfrey, cumfrey +n12822955 common comfrey, boneset, Symphytum officinale +n12823717 convolvulus +n12823859 bindweed +n12824053 field bindweed, wild morning-glory, Convolvulus arvensis +n12824289 scammony, Convolvulus scammonia +n12824735 silverweed +n12825497 dodder +n12826143 dichondra, Dichondra micrantha +n12827270 cypress vine, star-glory, Indian pink, Ipomoea quamoclit, Quamoclit pennata +n12827537 moonflower, belle de nuit, Ipomoea alba +n12827907 wild potato vine, wild sweet potato vine, man-of-the-earth, manroot, scammonyroot, Ipomoea panurata, Ipomoea fastigiata +n12828220 red morning-glory, star ipomoea, Ipomoea coccinea +n12828379 man-of-the-earth, Ipomoea leptophylla +n12828520 scammony, Ipomoea orizabensis +n12828791 Japanese morning glory, Ipomoea nil +n12828977 imperial Japanese morning glory, Ipomoea imperialis +n12829582 gesneriad +n12829975 gesneria +n12830222 achimenes, hot water plant +n12830568 aeschynanthus +n12831141 lace-flower vine, Alsobia dianthiflora, Episcia dianthiflora +n12831535 columnea +n12831932 episcia +n12832315 gloxinia +n12832538 Canterbury bell, Gloxinia perennis +n12832822 kohleria +n12833149 African violet, Saintpaulia ionantha +n12833985 streptocarpus +n12834190 Cape primrose +n12834798 waterleaf +n12834938 Virginia waterleaf, Shawnee salad, shawny, Indian salad, John's cabbage, Hydrophyllum virginianum +n12835331 yellow bells, California yellow bells, whispering bells, Emmanthe penduliflora +n12835766 yerba santa, Eriodictyon californicum +n12836212 nemophila +n12836337 baby blue-eyes, Nemophila menziesii +n12836508 five-spot, Nemophila maculata +n12836862 scorpionweed, scorpion weed, phacelia +n12837052 California bluebell, Phacelia campanularia +n12837259 California bluebell, whitlavia, Phacelia minor, Phacelia whitlavia +n12837466 fiddleneck, Phacelia tanacetifolia +n12837803 fiesta flower, Pholistoma auritum, Nemophila aurita +n12839574 basil thyme, basil balm, mother of thyme, Acinos arvensis, Satureja acinos +n12839979 giant hyssop +n12840168 yellow giant hyssop, Agastache nepetoides +n12840362 anise hyssop, Agastache foeniculum +n12840502 Mexican hyssop, Agastache mexicana +n12840749 bugle, bugleweed +n12841007 creeping bugle, Ajuga reptans +n12841193 erect bugle, blue bugle, Ajuga genevensis +n12841354 pyramid bugle, Ajuga pyramidalis +n12842302 wood mint +n12842519 hairy wood mint, Blephilia hirsuta +n12842642 downy wood mint, Blephilia celiata +n12842887 calamint +n12843144 common calamint, Calamintha sylvatica, Satureja calamintha officinalis +n12843316 large-flowered calamint, Calamintha grandiflora, Clinopodium grandiflorum, Satureja grandiflora +n12843557 lesser calamint, field balm, Calamintha nepeta, Calamintha nepeta glantulosa, Satureja nepeta, Satureja calamintha glandulosa +n12843970 wild basil, cushion calamint, Clinopodium vulgare, Satureja vulgaris +n12844409 horse balm, horseweed, stoneroot, stone-root, richweed, stone root, Collinsonia canadensis +n12844939 coleus, flame nettle +n12845187 country borage, Coleus aromaticus, Coleus amboinicus, Plectranthus amboinicus +n12845413 painted nettle, Joseph's coat, Coleus blumei, Solenostemon blumei, Solenostemon scutellarioides +n12845908 Apalachicola rosemary, Conradina glabra +n12846335 dragonhead, dragon's head, Dracocephalum parviflorum +n12846690 elsholtzia +n12847008 hemp nettle, dead nettle, Galeopsis tetrahit +n12847374 ground ivy, alehoof, field balm, gill-over-the-ground, runaway robin, Glechoma hederaceae, Nepeta hederaceae +n12847927 pennyroyal, American pennyroyal, Hedeoma pulegioides +n12848499 hyssop, Hyssopus officinalis +n12849061 dead nettle +n12849279 white dead nettle, Lamium album +n12849416 henbit, Lamium amplexicaule +n12849952 English lavender, Lavandula angustifolia, Lavandula officinalis +n12850168 French lavender, Lavandula stoechas +n12850336 spike lavender, French lavender, Lavandula latifolia +n12850906 dagga, Cape dagga, red dagga, wilde dagga, Leonotis leonurus +n12851094 lion's-ear, Leonotis nepetaefolia, Leonotis nepetifolia +n12851469 motherwort, Leonurus cardiaca +n12851860 pitcher sage, Lepechinia calycina, Sphacele calycina +n12852234 bugleweed, Lycopus virginicus +n12852428 water horehound, Lycopus americanus +n12852570 gipsywort, gypsywort, Lycopus europaeus +n12853080 origanum +n12853287 oregano, marjoram, pot marjoram, wild marjoram, winter sweet, Origanum vulgare +n12853482 sweet marjoram, knotted marjoram, Origanum majorana, Majorana hortensis +n12854048 horehound +n12854193 common horehound, white horehound, Marrubium vulgare +n12854600 lemon balm, garden balm, sweet balm, bee balm, beebalm, Melissa officinalis +n12855365 corn mint, field mint, Mentha arvensis +n12855494 water-mint, water mint, Mentha aquatica +n12855710 bergamot mint, lemon mint, eau de cologne mint, Mentha citrata +n12855886 horsemint, Mentha longifolia +n12856091 peppermint, Mentha piperita +n12856287 spearmint, Mentha spicata +n12856479 apple mint, applemint, Mentha rotundifolia, Mentha suaveolens +n12856680 pennyroyal, Mentha pulegium +n12857204 yerba buena, Micromeria chamissonis, Micromeria douglasii, Satureja douglasii +n12857779 molucca balm, bells of Ireland, Molucella laevis +n12858150 monarda, wild bergamot +n12858397 bee balm, beebalm, bergamot mint, oswego tea, Monarda didyma +n12858618 horsemint, Monarda punctata +n12858871 bee balm, beebalm, Monarda fistulosa +n12858987 lemon mint, horsemint, Monarda citriodora +n12859153 plains lemon monarda, Monarda pectinata +n12859272 basil balm, Monarda clinopodia +n12859679 mustang mint, Monardella lanceolata +n12859986 catmint, catnip, Nepeta cataria +n12860365 basil +n12860978 beefsteak plant, Perilla frutescens crispa +n12861345 phlomis +n12861541 Jerusalem sage, Phlomis fruticosa +n12861892 physostegia +n12862512 plectranthus +n12862828 patchouli, patchouly, pachouli, Pogostemon cablin +n12863234 self-heal, heal all, Prunella vulgaris +n12863624 mountain mint +n12864160 rosemary, Rosmarinus officinalis +n12865037 clary sage, Salvia clarea +n12865562 purple sage, chaparral sage, Salvia leucophylla +n12865708 cancerweed, cancer weed, Salvia lyrata +n12865824 common sage, ramona, Salvia officinalis +n12866002 meadow clary, Salvia pratensis +n12866162 clary, Salvia sclarea +n12866333 pitcher sage, Salvia spathacea +n12866459 Mexican mint, Salvia divinorum +n12866635 wild sage, wild clary, vervain sage, Salvia verbenaca +n12866968 savory +n12867184 summer savory, Satureja hortensis, Satureia hortensis +n12867449 winter savory, Satureja montana, Satureia montana +n12867826 skullcap, helmetflower +n12868019 blue pimpernel, blue skullcap, mad-dog skullcap, mad-dog weed, Scutellaria lateriflora +n12868880 hedge nettle, dead nettle, Stachys sylvatica +n12869061 hedge nettle, Stachys palustris +n12869478 germander +n12869668 American germander, wood sage, Teucrium canadense +n12870048 cat thyme, marum, Teucrium marum +n12870225 wood sage, Teucrium scorodonia +n12870535 thyme +n12870682 common thyme, Thymus vulgaris +n12870891 wild thyme, creeping thyme, Thymus serpyllum +n12871272 blue curls +n12871696 turpentine camphor weed, camphorweed, vinegarweed, Trichostema lanceolatum +n12871859 bastard pennyroyal, Trichostema dichotomum +n12872458 bladderwort +n12872914 butterwort +n12873341 genlisea +n12873984 martynia, Martynia annua +n12875269 common unicorn plant, devil's claw, common devil's claw, elephant-tusk, proboscis flower, ram's horn, Proboscidea louisianica +n12875697 sand devil's claw, Proboscidea arenaria, Martynia arenaria +n12875861 sweet unicorn plant, Proboscidea fragrans, Martynia fragrans +n12876899 figwort +n12877244 snapdragon +n12877493 white snapdragon, Antirrhinum coulterianum +n12877637 yellow twining snapdragon, Antirrhinum filipes +n12877838 Mediterranean snapdragon, Antirrhinum majus +n12878169 kitten-tails +n12878325 Alpine besseya, Besseya alpina +n12878784 false foxglove, Aureolaria pedicularia, Gerardia pedicularia +n12879068 false foxglove, Aureolaria virginica, Gerardia virginica +n12879527 calceolaria, slipperwort +n12879963 Indian paintbrush, painted cup +n12880244 desert paintbrush, Castilleja chromosa +n12880462 giant red paintbrush, Castilleja miniata +n12880638 great plains paintbrush, Castilleja sessiliflora +n12880799 sulfur paintbrush, Castilleja sulphurea +n12881105 shellflower, shell-flower, turtlehead, snakehead, snake-head, Chelone glabra +n12881913 maiden blue-eyed Mary, Collinsia parviflora +n12882158 blue-eyed Mary, Collinsia verna +n12882779 foxglove, digitalis +n12882945 common foxglove, fairy bell, fingerflower, finger-flower, fingerroot, finger-root, Digitalis purpurea +n12883265 yellow foxglove, straw foxglove, Digitalis lutea +n12883628 gerardia +n12884100 blue toadflax, old-field toadflax, Linaria canadensis +n12884260 toadflax, butter-and-eggs, wild snapdragon, devil's flax, Linaria vulgaris +n12885045 golden-beard penstemon, Penstemon barbatus +n12885265 scarlet bugler, Penstemon centranthifolius +n12885510 red shrubby penstemon, redwood penstemon +n12885754 Platte River penstemon, Penstemon cyananthus +n12886185 hot-rock penstemon, Penstemon deustus +n12886402 Jones' penstemon, Penstemon dolius +n12886600 shrubby penstemon, lowbush penstemon, Penstemon fruticosus +n12886831 narrow-leaf penstemon, Penstemon linarioides +n12887293 balloon flower, scented penstemon, Penstemon palmeri +n12887532 Parry's penstemon, Penstemon parryi +n12887713 rock penstemon, cliff penstemon, Penstemon rupicola +n12888016 Rydberg's penstemon, Penstemon rydbergii +n12888234 cascade penstemon, Penstemon serrulatus +n12888457 Whipple's penstemon, Penstemon whippleanus +n12889219 moth mullein, Verbascum blattaria +n12889412 white mullein, Verbascum lychnitis +n12889579 purple mullein, Verbascum phoeniceum +n12889713 common mullein, great mullein, Aaron's rod, flannel mullein, woolly mullein, torch, Verbascum thapsus +n12890265 veronica, speedwell +n12890490 field speedwell, Veronica agrestis +n12890685 brooklime, American brooklime, Veronica americana +n12890928 corn speedwell, Veronica arvensis +n12891093 brooklime, European brooklime, Veronica beccabunga +n12891305 germander speedwell, bird's eye, Veronica chamaedrys +n12891469 water speedwell, Veronica michauxii, Veronica anagallis-aquatica +n12891643 common speedwell, gypsyweed, Veronica officinalis +n12891824 purslane speedwell, Veronica peregrina +n12892013 thyme-leaved speedwell, Veronica serpyllifolia +n12893463 nightshade +n12893993 horse nettle, ball nettle, bull nettle, ball nightshade, Solanum carolinense +n12895298 African holly, Solanum giganteum +n12895811 potato vine, Solanum jasmoides +n12896615 garden huckleberry, wonderberry, sunberry, Solanum nigrum guineese, Solanum melanocerasum, Solanum burbankii +n12897118 naranjilla, Solanum quitoense +n12897788 potato vine, giant potato creeper, Solanum wendlandii +n12897999 potato tree, Brazilian potato tree, Solanum wrightii, Solanum macranthum +n12898342 belladonna, belladonna plant, deadly nightshade, Atropa belladonna +n12898774 bush violet, browallia +n12899166 lady-of-the-night, Brunfelsia americana +n12899537 angel's trumpet, maikoa, Brugmansia arborea, Datura arborea +n12899752 angel's trumpet, Brugmansia suaveolens, Datura suaveolens +n12899971 red angel's trumpet, Brugmansia sanguinea, Datura sanguinea +n12900783 cone pepper, Capsicum annuum conoides +n12901724 bird pepper, Capsicum frutescens baccatum, Capsicum baccatum +n12902466 day jessamine, Cestrum diurnum +n12902662 night jasmine, night jessamine, Cestrum nocturnum +n12903014 tree tomato, tamarillo +n12903367 thorn apple +n12903503 jimsonweed, jimson weed, Jamestown weed, common thorn apple, apple of Peru, Datura stramonium +n12903964 pichi, Fabiana imbricata +n12904314 henbane, black henbane, stinking nightshade, Hyoscyamus niger +n12904562 Egyptian henbane, Hyoscyamus muticus +n12904938 matrimony vine, boxthorn +n12905135 common matrimony vine, Duke of Argyll's tea tree, Lycium barbarum, Lycium halimifolium +n12905412 Christmasberry, Christmas berry, Lycium carolinianum +n12906214 plum tomato +n12906498 mandrake, devil's apples, Mandragora officinarum +n12906771 mandrake root, mandrake +n12907057 apple of Peru, shoo fly, Nicandra physaloides +n12907671 flowering tobacco, Jasmine tobacco, Nicotiana alata +n12907857 common tobacco, Nicotiana tabacum +n12908093 wild tobacco, Indian tobacco, Nicotiana rustica +n12908645 cupflower, nierembergia +n12908854 whitecup, Nierembergia repens, Nierembergia rivularis +n12909421 petunia +n12909614 large white petunia, Petunia axillaris +n12909759 violet-flowered petunia, Petunia integrifolia +n12909917 hybrid petunia, Petunia hybrida +n12911079 cape gooseberry, purple ground cherry, Physalis peruviana +n12911264 strawberry tomato, dwarf cape gooseberry, Physalis pruinosa +n12911440 tomatillo, jamberry, Mexican husk tomato, Physalis ixocarpa +n12911673 tomatillo, miltomate, purple ground cherry, jamberry, Physalis philadelphica +n12911914 yellow henbane, Physalis viscosa +n12912274 cock's eggs, Salpichroa organifolia, Salpichroa rhomboidea +n12912670 salpiglossis +n12912801 painted tongue, Salpiglossis sinuata +n12913144 butterfly flower, poor man's orchid, schizanthus +n12913524 Scopolia carniolica +n12913791 chalice vine, trumpet flower, cupflower, Solandra guttata +n12914923 verbena, vervain +n12915140 lantana +n12915568 black mangrove, Avicennia marina +n12915811 white mangrove, Avicennia officinalis +n12916179 black mangrove, Aegiceras majus +n12916511 teak, Tectona grandis +n12917901 spurge +n12918609 sun spurge, wartweed, wartwort, devil's milk, Euphorbia helioscopia +n12918810 petty spurge, devil's milk, Euphorbia peplus +n12918991 medusa's head, Euphorbia medusae, Euphorbia caput-medusae +n12919195 wild spurge, flowering spurge, tramp's spurge, Euphorbia corollata +n12919403 snow-on-the-mountain, snow-in-summer, ghost weed, Euphorbia marginata +n12919646 cypress spurge, Euphorbia cyparissias +n12919847 leafy spurge, wolf's milk, Euphorbia esula +n12920043 hairy spurge, Euphorbia hirsuta +n12920204 poinsettia, Christmas star, Christmas flower, lobster plant, Mexican flameleaf, painted leaf, Euphorbia pulcherrima +n12920521 Japanese poinsettia, mole plant, paint leaf, Euphorbia heterophylla +n12920719 fire-on-the-mountain, painted leaf, Mexican fire plant, Euphorbia cyathophora +n12920955 wood spurge, Euphorbia amygdaloides +n12921315 dwarf spurge, Euphorbia exigua +n12921499 scarlet plume, Euphorbia fulgens +n12921660 naboom, cactus euphorbia, Euphorbia ingens +n12921868 crown of thorns, Christ thorn, Christ plant, Euphorbia milii +n12922119 toothed spurge, Euphorbia dentata +n12922458 three-seeded mercury, Acalypha virginica +n12922763 croton, Croton tiglium +n12923108 cascarilla, Croton eluteria +n12923257 cascarilla bark, eleuthera bark, sweetwood bark +n12924623 castor-oil plant, castor bean plant, palma christi, palma christ, Ricinus communis +n12925179 spurge nettle, tread-softly, devil nettle, pica-pica, Cnidoscolus urens, Jatropha urens, Jatropha stimulosus +n12925583 physic nut, Jatropha curcus +n12926039 Para rubber tree, caoutchouc tree, Hevea brasiliensis +n12926480 cassava, casava +n12926689 bitter cassava, manioc, mandioc, mandioca, tapioca plant, gari, Manihot esculenta, Manihot utilissima +n12927013 cassava, manioc +n12927194 sweet cassava, Manihot dulcis +n12927494 candlenut, varnish tree, Aleurites moluccana +n12927758 tung tree, tung, tung-oil tree, Aleurites fordii +n12928071 slipper spurge, slipper plant +n12928307 candelilla, Pedilanthus bracteatus, Pedilanthus pavonis +n12928491 Jewbush, Jew-bush, Jew bush, redbird cactus, redbird flower, Pedilanthus tithymaloides +n12928819 jumping bean, jumping seed, Mexican jumping bean +n12929403 camellia, camelia +n12929600 japonica, Camellia japonica +n12930778 umbellifer, umbelliferous plant +n12930951 wild parsley +n12931231 fool's parsley, lesser hemlock, Aethusa cynapium +n12931542 dill, Anethum graveolens +n12931906 angelica, angelique +n12932173 garden angelica, archangel, Angelica Archangelica +n12932365 wild angelica, Angelica sylvestris +n12932706 chervil, beaked parsley, Anthriscus cereifolium +n12932966 cow parsley, wild chervil, Anthriscus sylvestris +n12933274 wild celery, Apium graveolens +n12934036 astrantia, masterwort +n12934174 greater masterwort, Astrantia major +n12934479 caraway, Carum carvi +n12934685 whorled caraway +n12934985 water hemlock, Cicuta verosa +n12935166 spotted cowbane, spotted hemlock, spotted water hemlock +n12935609 hemlock, poison hemlock, poison parsley, California fern, Nebraska fern, winter fern, Conium maculatum +n12936155 earthnut, Conopodium denudatum +n12936826 cumin, Cuminum cyminum +n12937130 wild carrot, Queen Anne's lace, Daucus carota +n12938081 eryngo, eringo +n12938193 sea holly, sea holm, sea eryngium, Eryngium maritimum +n12938445 button snakeroot, Eryngium aquaticum +n12938667 rattlesnake master, rattlesnake's master, button snakeroot, Eryngium yuccifolium +n12939104 fennel +n12939282 common fennel, Foeniculum vulgare +n12939479 Florence fennel, Foeniculum dulce, Foeniculum vulgare dulce +n12939874 cow parsnip, hogweed, Heracleum sphondylium +n12940226 lovage, Levisticum officinale +n12940609 sweet cicely, Myrrhis odorata +n12941220 water fennel, Oenanthe aquatica +n12941536 parsnip, Pastinaca sativa +n12941717 cultivated parsnip +n12942025 wild parsnip, madnep +n12942395 parsley, Petroselinum crispum +n12942572 Italian parsley, flat-leaf parsley, Petroselinum crispum neapolitanum +n12942729 Hamburg parsley, turnip-rooted parsley, Petroselinum crispum tuberosum +n12943049 anise, anise plant, Pimpinella anisum +n12943443 sanicle, snakeroot +n12943912 purple sanicle, Sanicula bipinnatifida +n12944095 European sanicle, Sanicula Europaea +n12945177 water parsnip, Sium suave +n12945366 greater water parsnip, Sium latifolium +n12945549 skirret, Sium sisarum +n12946849 dogwood, dogwood tree, cornel +n12947313 common white dogwood, eastern flowering dogwood, Cornus florida +n12947544 red osier, red osier dogwood, red dogwood, American dogwood, redbrush, Cornus stolonifera +n12947756 silky dogwood, Cornus obliqua +n12947895 silky cornel, silky dogwood, Cornus amomum +n12948053 common European dogwood, red dogwood, blood-twig, pedwood, Cornus sanguinea +n12948251 bunchberry, dwarf cornel, crackerberry, pudding berry, Cornus canadensis +n12948495 cornelian cherry, Cornus mas +n12949160 puka, Griselinia lucida +n12949361 kapuka, Griselinia littoralis +n12950126 valerian +n12950314 common valerian, garden heliotrope, Valeriana officinalis +n12950796 common corn salad, lamb's lettuce, Valerianella olitoria, Valerianella locusta +n12951146 red valerian, French honeysuckle, Centranthus ruber +n12951835 filmy fern, film fern +n12952165 bristle fern, filmy fern +n12952469 hare's-foot bristle fern, Trichomanes boschianum +n12952590 Killarney fern, Trichomanes speciosum +n12952717 kidney fern, Trichomanes reniforme +n12953206 flowering fern, osmund +n12953484 royal fern, royal osmund, king fern, ditch fern, French bracken, Osmunda regalis +n12953712 interrupted fern, Osmunda clatonia +n12954353 crape fern, Prince-of-Wales fern, Prince-of-Wales feather, Prince-of-Wales plume, Leptopteris superba, Todea superba +n12954799 crepe fern, king fern, Todea barbara +n12955414 curly grass, curly grass fern, Schizaea pusilla +n12955840 pine fern, Anemia adiantifolia +n12956170 climbing fern +n12956367 creeping fern, Hartford fern, Lygodium palmatum +n12956588 climbing maidenhair, climbing maidenhair fern, snake fern, Lygodium microphyllum +n12956922 scented fern, Mohria caffrorum +n12957608 clover fern, pepperwort +n12957803 nardoo, nardo, common nardoo, Marsilea drummondii +n12957924 water clover, Marsilea quadrifolia +n12958261 pillwort, Pilularia globulifera +n12958615 regnellidium, Regnellidium diphyllum +n12959074 floating-moss, Salvinia rotundifolia, Salvinia auriculata +n12959538 mosquito fern, floating fern, Carolina pond fern, Azolla caroliniana +n12960378 adder's tongue, adder's tongue fern +n12960552 ribbon fern, Ophioglossum pendulum +n12960863 grape fern +n12961242 daisyleaf grape fern, daisy-leaved grape fern, Botrychium matricariifolium +n12961393 leathery grape fern, Botrychium multifidum +n12961536 rattlesnake fern, Botrychium virginianum +n12961879 flowering fern, Helminthostachys zeylanica +n12963628 powdery mildew +n12964920 Dutch elm fungus, Ceratostomella ulmi +n12965626 ergot, Claviceps purpurea +n12965951 rye ergot +n12966804 black root rot fungus, Xylaria mali +n12966945 dead-man's-fingers, dead-men's-fingers, Xylaria polymorpha +n12968136 sclerotinia +n12968309 brown cup +n12969131 earthball, false truffle, puffball, hard-skinned puffball +n12969425 Scleroderma citrinum, Scleroderma aurantium +n12969670 Scleroderma flavidium, star earthball +n12969927 Scleroderma bovista, smooth earthball +n12970193 Podaxaceae +n12970293 stalked puffball +n12970733 stalked puffball +n12971400 false truffle +n12971804 Rhizopogon idahoensis +n12972136 Truncocolumella citrina +n12973443 mucor +n12973791 rhizopus +n12973937 bread mold, Rhizopus nigricans +n12974987 slime mold, slime mould +n12975804 true slime mold, acellular slime mold, plasmodial slime mold, myxomycete +n12976198 cellular slime mold +n12976554 dictostylium +n12978076 pond-scum parasite +n12979316 potato wart fungus, Synchytrium endobioticum +n12979829 white fungus, Saprolegnia ferax +n12980080 water mold +n12980840 downy mildew, false mildew +n12981086 blue mold fungus, Peronospora tabacina +n12981301 onion mildew, Peronospora destructor +n12981443 tobacco mildew, Peronospora hyoscyami +n12981954 white rust +n12982468 pythium +n12982590 damping off fungus, Pythium debaryanum +n12982915 Phytophthora citrophthora +n12983048 Phytophthora infestans +n12983654 clubroot fungus, Plasmodiophora brassicae +n12983873 Geglossaceae +n12983961 Sarcosomataceae +n12984267 Rufous rubber cup +n12984489 devil's cigar +n12984595 devil's urn +n12985420 truffle, earthnut, earth-ball +n12985773 club fungus +n12985857 coral fungus +n12986227 tooth fungus +n12987056 lichen +n12987423 ascolichen +n12987535 basidiolichen +n12988158 lecanora +n12988341 manna lichen +n12988572 archil, orchil +n12989007 roccella, Roccella tinctoria +n12989938 beard lichen, beard moss, Usnea barbata +n12990597 horsehair lichen, horsetail lichen +n12991184 reindeer moss, reindeer lichen, arctic moss, Cladonia rangiferina +n12991837 crottle, crottal, crotal +n12992177 Iceland moss, Iceland lichen, Cetraria islandica +n12992868 fungus +n12994892 promycelium +n12995601 true fungus +n12997654 basidiomycete, basidiomycetous fungi +n12997919 mushroom +n12998815 agaric +n13000891 mushroom +n13001041 mushroom +n13001206 toadstool +n13001366 horse mushroom, Agaricus arvensis +n13001529 meadow mushroom, field mushroom, Agaricus campestris +n13001930 shiitake, shiitake mushroom, Chinese black mushroom, golden oak mushroom, Oriental black mushroom, Lentinus edodes +n13002209 scaly lentinus, Lentinus lepideus +n13002750 royal agaric, Caesar's agaric, Amanita caesarea +n13002925 false deathcap, Amanita mappa +n13003061 fly agaric, Amanita muscaria +n13003254 death cap, death cup, death angel, destroying angel, Amanita phalloides +n13003522 blushing mushroom, blusher, Amanita rubescens +n13003712 destroying angel, Amanita verna +n13004423 chanterelle, chantarelle, Cantharellus cibarius +n13004640 floccose chanterelle, Cantharellus floccosus +n13004826 pig's ears, Cantharellus clavatus +n13004992 cinnabar chanterelle, Cantharellus cinnabarinus +n13005329 jack-o-lantern fungus, jack-o-lantern, jack-a-lantern, Omphalotus illudens +n13005984 inky cap, inky-cap mushroom, Coprinus atramentarius +n13006171 shaggymane, shaggy cap, shaggymane mushroom, Coprinus comatus +n13006631 milkcap, Lactarius delicioso +n13006894 fairy-ring mushroom, Marasmius oreades +n13007034 fairy ring, fairy circle +n13007417 oyster mushroom, oyster fungus, oyster agaric, Pleurotus ostreatus +n13007629 olive-tree agaric, Pleurotus phosphoreus +n13008157 Pholiota astragalina +n13008315 Pholiota aurea, golden pholiota +n13008485 Pholiota destruens +n13008689 Pholiota flammans +n13008839 Pholiota flavida +n13009085 nameko, viscid mushroom, Pholiota nameko +n13009244 Pholiota squarrosa-adiposa +n13009429 Pholiota squarrosa, scaly pholiota +n13009656 Pholiota squarrosoides +n13010694 Stropharia ambigua +n13010951 Stropharia hornemannii +n13011221 Stropharia rugoso-annulata +n13011595 gill fungus +n13012253 Entoloma lividum, Entoloma sinuatum +n13012469 Entoloma aprile +n13012973 Chlorophyllum molybdites +n13013534 lepiota +n13013764 parasol mushroom, Lepiota procera +n13013965 poisonous parasol, Lepiota morgani +n13014097 Lepiota naucina +n13014265 Lepiota rhacodes +n13014409 American parasol, Lepiota americana +n13014581 Lepiota rubrotincta +n13014741 Lepiota clypeolaria +n13014879 onion stem, Lepiota cepaestipes +n13015509 pink disease fungus, Corticium salmonicolor +n13015688 bottom rot fungus, Corticium solani +n13016076 potato fungus, Pellicularia filamentosa, Rhizoctinia solani +n13016289 coffee fungus, Pellicularia koleroga +n13017102 blewits, Clitocybe nuda +n13017240 sandy mushroom, Tricholoma populinum +n13017439 Tricholoma pessundatum +n13017610 Tricholoma sejunctum +n13017789 man-on-a-horse, Tricholoma flavovirens +n13017979 Tricholoma venenata +n13018088 Tricholoma pardinum +n13018232 Tricholoma vaccinum +n13018407 Tricholoma aurantium +n13018906 Volvaria bombycina +n13019496 Pluteus aurantiorugosus +n13019643 Pluteus magnus, sawdust mushroom +n13019835 deer mushroom, Pluteus cervinus +n13020191 straw mushroom, Chinese mushroom, Volvariella volvacea +n13020481 Volvariella bombycina +n13020964 Clitocybe clavipes +n13021166 Clitocybe dealbata +n13021332 Clitocybe inornata +n13021543 Clitocybe robusta, Clytocybe alba +n13021689 Clitocybe irina, Tricholoma irinum, Lepista irina +n13021867 Clitocybe subconnexa +n13022210 winter mushroom, Flammulina velutipes +n13022709 mycelium +n13022903 sclerotium +n13023134 sac fungus +n13024012 ascomycete, ascomycetous fungus +n13024500 Clavicipitaceae, grainy club mushrooms +n13024653 grainy club +n13025647 yeast +n13025854 baker's yeast, brewer's yeast, Saccharomyces cerevisiae +n13026015 wine-maker's yeast, Saccharomyces ellipsoides +n13027557 Aspergillus fumigatus +n13027879 brown root rot fungus, Thielavia basicola +n13028611 discomycete, cup fungus +n13028937 Leotia lubrica +n13029122 Mitrula elegans +n13029326 Sarcoscypha coccinea, scarlet cup +n13029610 Caloscypha fulgens +n13029760 Aleuria aurantia, orange peel fungus +n13030337 elf cup +n13030616 Peziza domicilina +n13030852 blood cup, fairy cup, Peziza coccinea +n13031193 Urnula craterium, urn fungus +n13031323 Galiella rufa +n13031474 Jafnea semitosta +n13032115 morel +n13032381 common morel, Morchella esculenta, sponge mushroom, sponge morel +n13032618 Disciotis venosa, cup morel +n13032923 Verpa, bell morel +n13033134 Verpa bohemica, early morel +n13033396 Verpa conica, conic Verpa +n13033577 black morel, Morchella conica, conic morel, Morchella angusticeps, narrowhead morel +n13033879 Morchella crassipes, thick-footed morel +n13034062 Morchella semilibera, half-free morel, cow's head +n13034555 Wynnea americana +n13034788 Wynnea sparassoides +n13035241 false morel +n13035389 lorchel +n13035707 helvella +n13035925 Helvella crispa, miter mushroom +n13036116 Helvella acetabulum +n13036312 Helvella sulcata +n13036804 discina +n13037406 gyromitra +n13037585 Gyromitra californica, California false morel +n13037805 Gyromitra sphaerospora, round-spored gyromitra +n13038068 Gyromitra esculenta, brain mushroom, beefsteak morel +n13038376 Gyromitra infula, saddled-shaped false morel +n13038577 Gyromitra fastigiata, Gyromitra brunnea +n13038744 Gyromitra gigas +n13039349 gasteromycete, gastromycete +n13040303 stinkhorn, carrion fungus +n13040629 common stinkhorn, Phallus impudicus +n13040796 Phallus ravenelii +n13041312 dog stinkhorn, Mutinus caninus +n13041943 Calostoma lutescens +n13042134 Calostoma cinnabarina +n13042316 Calostoma ravenelii +n13042982 stinky squid, Pseudocolus fusiformis +n13043926 puffball, true puffball +n13044375 giant puffball, Calvatia gigantea +n13044778 earthstar +n13045210 Geastrum coronatum +n13045594 Radiigera fuscogleba +n13045975 Astreus pteridis +n13046130 Astreus hygrometricus +n13046669 bird's-nest fungus +n13047862 Gastrocybe lateritia +n13048447 Macowanites americanus +n13049953 polypore, pore fungus, pore mushroom +n13050397 bracket fungus, shelf fungus +n13050705 Albatrellus dispansus +n13050940 Albatrellus ovinus, sheep polypore +n13051346 Neolentinus ponderosus +n13052014 Oligoporus leucospongia +n13052248 Polyporus tenuiculus +n13052670 hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa +n13052931 Polyporus squamosus, scaly polypore +n13053608 beefsteak fungus, Fistulina hepatica +n13054073 agaric, Fomes igniarius +n13054560 bolete +n13055423 Boletus chrysenteron +n13055577 Boletus edulis +n13055792 Frost's bolete, Boletus frostii +n13055949 Boletus luridus +n13056135 Boletus mirabilis +n13056349 Boletus pallidus +n13056607 Boletus pulcherrimus +n13056799 Boletus pulverulentus +n13057054 Boletus roxanae +n13057242 Boletus subvelutipes +n13057422 Boletus variipes +n13057639 Boletus zelleri +n13058037 Fuscoboletinus paluster +n13058272 Fuscoboletinus serotinus +n13058608 Leccinum fibrillosum +n13059298 Suillus albivelatus +n13059657 old-man-of-the-woods, Strobilomyces floccopus +n13060017 Boletellus russellii +n13060190 jelly fungus +n13061172 snow mushroom, Tremella fuciformis +n13061348 witches' butter, Tremella lutescens +n13061471 Tremella foliacea +n13061704 Tremella reticulata +n13062421 Jew's-ear, Jew's-ears, ear fungus, Auricularia auricula +n13063269 rust, rust fungus +n13063514 aecium +n13064111 flax rust, flax rust fungus, Melampsora lini +n13064457 blister rust, Cronartium ribicola +n13065089 wheat rust, Puccinia graminis +n13065514 apple rust, cedar-apple rust, Gymnosporangium juniperi-virginianae +n13066129 smut, smut fungus +n13066448 covered smut +n13066979 loose smut +n13067191 cornsmut, corn smut +n13067330 boil smut, Ustilago maydis +n13067532 Sphacelotheca, genus Sphacelotheca +n13067672 head smut, Sphacelotheca reiliana +n13068255 bunt, Tilletia caries +n13068434 bunt, stinking smut, Tilletia foetida +n13068735 onion smut, Urocystis cepulae +n13068917 flag smut fungus +n13069224 wheat flag smut, Urocystis tritici +n13069773 felt fungus, Septobasidium pseudopedicellatum +n13070308 waxycap +n13070875 Hygrocybe acutoconica, conic waxycap +n13071371 Hygrophorus borealis +n13071553 Hygrophorus caeruleus +n13071815 Hygrophorus inocybiformis +n13072031 Hygrophorus kauffmanii +n13072209 Hygrophorus marzuolus +n13072350 Hygrophorus purpurascens +n13072528 Hygrophorus russula +n13072706 Hygrophorus sordidus +n13072863 Hygrophorus tennesseensis +n13073055 Hygrophorus turundus +n13073703 Neohygrophorus angelesianus +n13074619 Cortinarius armillatus +n13074814 Cortinarius atkinsonianus +n13075020 Cortinarius corrugatus +n13075272 Cortinarius gentilis +n13075441 Cortinarius mutabilis, purple-staining Cortinarius +n13075684 Cortinarius semisanguineus +n13075847 Cortinarius subfoetidus +n13076041 Cortinarius violaceus +n13076405 Gymnopilus spectabilis +n13076643 Gymnopilus validipes +n13076831 Gymnopilus ventricosus +n13077033 mold, mould +n13077295 mildew +n13078021 verticillium +n13079073 monilia +n13079419 candida +n13079567 Candida albicans, Monilia albicans +n13080306 blastomycete +n13080866 yellow spot fungus, Cercospora kopkei +n13081229 green smut fungus, Ustilaginoidea virens +n13081999 dry rot +n13082568 rhizoctinia +n13083023 houseplant +n13083461 bedder, bedding plant +n13084184 succulent +n13084834 cultivar +n13085113 weed +n13085747 wort +n13090018 brier +n13090871 aril +n13091620 sporophyll, sporophyl +n13091774 sporangium, spore case, spore sac +n13091982 sporangiophore +n13092078 ascus +n13092240 ascospore +n13092385 arthrospore +n13092987 eusporangium +n13093275 tetrasporangium +n13093629 gametangium +n13094145 sorus +n13094273 sorus +n13095013 partial veil +n13096779 lignum +n13098515 vascular ray, medullary ray +n13098962 phloem, bast +n13099833 evergreen, evergreen plant +n13099999 deciduous plant +n13100156 poisonous plant +n13100677 vine +n13102648 creeper +n13102775 tendril +n13103023 root climber +n13103660 lignosae +n13103750 arborescent plant +n13103877 snag +n13104059 tree +n13107694 timber tree +n13107807 treelet +n13107891 arbor +n13108131 bean tree +n13108323 pollard +n13108481 sapling +n13108545 shade tree +n13108662 gymnospermous tree +n13108841 conifer, coniferous tree +n13109733 angiospermous tree, flowering tree +n13110915 nut tree +n13111174 spice tree +n13111340 fever tree +n13111504 stump, tree stump +n13111881 bonsai +n13112035 ming tree +n13112201 ming tree +n13118330 undershrub +n13118707 subshrub, suffrutex +n13119870 bramble +n13120211 liana +n13120958 geophyte +n13121104 desert plant, xerophyte, xerophytic plant, xerophile, xerophilous plant +n13121349 mesophyte, mesophytic plant +n13122364 marsh plant, bog plant, swamp plant +n13123309 hemiepiphyte, semiepiphyte +n13123431 strangler, strangler tree +n13123841 lithophyte, lithophytic plant +n13124358 saprobe +n13124654 autophyte, autophytic plant, autotroph, autotrophic organism +n13125117 root +n13126050 taproot +n13126856 prop root +n13127001 prophyll +n13127303 rootstock +n13127666 quickset +n13127843 stolon, runner, offset +n13128278 tuberous plant +n13128582 rhizome, rootstock, rootstalk +n13128976 rachis +n13129078 caudex +n13130014 cladode, cladophyll, phylloclad, phylloclade +n13130161 receptacle +n13130726 scape, flower stalk +n13131028 umbel +n13131618 petiole, leafstalk +n13132034 peduncle +n13132156 pedicel, pedicle +n13132338 flower cluster +n13132486 raceme +n13132656 panicle +n13132756 thyrse, thyrsus +n13132940 cyme +n13133140 cymule +n13133233 glomerule +n13133316 scorpioid cyme +n13133613 ear, spike, capitulum +n13133932 spadix +n13134302 bulbous plant +n13134531 bulbil, bulblet +n13134844 cormous plant +n13134947 fruit +n13135692 fruitlet +n13135832 seed +n13136316 bean +n13136556 nut +n13136781 nutlet +n13137010 kernel, meat +n13137225 syconium +n13137409 berry +n13137672 aggregate fruit, multiple fruit, syncarp +n13137951 simple fruit, bacca +n13138155 acinus +n13138308 drupe, stone fruit +n13138658 drupelet +n13138842 pome, false fruit +n13139055 pod, seedpod +n13139321 loment +n13139482 pyxidium, pyxis +n13139647 husk +n13139837 cornhusk +n13140049 pod, cod, seedcase +n13140367 accessory fruit, pseudocarp +n13141141 buckthorn +n13141415 buckthorn berry, yellow berry +n13141564 cascara buckthorn, bearberry, bearwood, chittamwood, chittimwood, Rhamnus purshianus +n13141797 cascara, cascara sagrada, chittam bark, chittem bark +n13141972 Carolina buckthorn, indian cherry, Rhamnus carolinianus +n13142182 coffeeberry, California buckthorn, California coffee, Rhamnus californicus +n13142504 redberry, red-berry, Rhamnus croceus +n13142907 nakedwood +n13143285 jujube, jujube bush, Christ's-thorn, Jerusalem thorn, Ziziphus jujuba +n13143758 Christ's-thorn, Jerusalem thorn, Paliurus spina-christi +n13144084 hazel, hazel tree, Pomaderris apetala +n13145040 fox grape, Vitis labrusca +n13145250 muscadine, Vitis rotundifolia +n13145444 vinifera, vinifera grape, common grape vine, Vitis vinifera +n13146403 Pinot blanc +n13146583 Sauvignon grape +n13146928 Sauvignon blanc +n13147153 Muscadet +n13147270 Riesling +n13147386 Zinfandel +n13147532 Chenin blanc +n13147689 malvasia +n13147918 Verdicchio +n13148208 Boston ivy, Japanese ivy, Parthenocissus tricuspidata +n13148384 Virginia creeper, American ivy, woodbine, Parthenocissus quinquefolia +n13149296 true pepper, pepper vine +n13149970 betel, betel pepper, Piper betel +n13150378 cubeb +n13150592 schizocarp +n13150894 peperomia +n13151082 watermelon begonia, Peperomia argyreia, Peperomia sandersii +n13152339 yerba mansa, Anemopsis californica +n13154388 pinna, pinnule +n13154494 frond +n13154841 bract +n13155095 bracteole, bractlet +n13155305 involucre +n13155611 glume +n13156986 palmate leaf +n13157137 pinnate leaf +n13157346 bijugate leaf, bijugous leaf, twice-pinnate +n13157481 decompound leaf +n13157684 acuminate leaf +n13157971 deltoid leaf +n13158167 ensiform leaf +n13158512 linear leaf, elongate leaf +n13158605 lyrate leaf +n13158714 obtuse leaf +n13158815 oblanceolate leaf +n13159357 pandurate leaf, panduriform leaf +n13159691 reniform leaf +n13159890 spatulate leaf +n13160116 even-pinnate leaf, abruptly-pinnate leaf +n13160254 odd-pinnate leaf +n13160365 pedate leaf +n13160604 crenate leaf +n13160831 dentate leaf +n13160938 denticulate leaf +n13161151 erose leaf +n13161254 runcinate leaf +n13161904 prickly-edged leaf +n13163553 deadwood +n13163649 haulm, halm +n13163991 branchlet, twig, sprig +n13164501 osier +n13170840 giant scrambling fern, Diplopterygium longissimum +n13171210 umbrella fern, fan fern, Sticherus flabellatus, Gleichenia flabellata +n13171797 floating fern, water sprite, Ceratopteris pteridioides +n13172923 polypody +n13173132 licorice fern, Polypodium glycyrrhiza +n13173259 grey polypody, gray polypody, resurrection fern, Polypodium polypodioides +n13173488 leatherleaf, leathery polypody, coast polypody, Polypodium scouleri +n13173697 rock polypody, rock brake, American wall fern, Polypodium virgianum +n13173882 common polypody, adder's fern, wall fern, golden maidenhair, golden polypody, sweet fern, Polypodium vulgare +n13174354 bear's-paw fern, Aglaomorpha meyeniana +n13174670 strap fern +n13174823 Florida strap fern, cow-tongue fern, hart's-tongue fern +n13175682 basket fern, Drynaria rigidula +n13176363 snake polypody, Microgramma-piloselloides +n13176714 climbing bird's nest fern, Microsorium punctatum +n13177048 golden polypody, serpent fern, rabbit's-foot fern, Phlebodium aureum, Polypodium aureum +n13177529 staghorn fern +n13177768 South American staghorn, Platycerium andinum +n13177884 common staghorn fern, elkhorn fern, Platycerium bifurcatum, Platycerium alcicorne +n13178284 felt fern, tongue fern, Pyrrosia lingua, Cyclophorus lingua +n13178707 potato fern, Solanopteris bifrons +n13179056 myrmecophyte +n13179804 grass fern, ribbon fern, Vittaria lineata +n13180534 spleenwort +n13180875 black spleenwort, Asplenium adiantum-nigrum +n13181055 bird's nest fern, Asplenium nidus +n13181244 ebony spleenwort, Scott's Spleenwort, Asplenium platyneuron +n13181406 black-stem spleenwort, black-stemmed spleenwort, little ebony spleenwort +n13181811 walking fern, walking leaf, Asplenium rhizophyllum, Camptosorus rhizophyllus +n13182164 green spleenwort, Asplenium viride +n13182338 mountain spleenwort, Asplenium montanum +n13182799 lobed spleenwort, Asplenium pinnatifidum +n13182937 lanceolate spleenwort, Asplenium billotii +n13183056 hart's-tongue, hart's-tongue fern, Asplenium scolopendrium, Phyllitis scolopendrium +n13183489 scale fern, scaly fern, Asplenium ceterach, Ceterach officinarum +n13184394 scolopendrium +n13185269 deer fern, Blechnum spicant +n13185658 doodia, rasp fern +n13186388 chain fern +n13186546 Virginia chain fern, Woodwardia virginica +n13187367 silver tree fern, sago fern, black tree fern, Cyathea medullaris +n13188096 davallia +n13188268 hare's-foot fern +n13188462 Canary Island hare's foot fern, Davallia canariensis +n13188767 squirrel's-foot fern, ball fern, Davalia bullata, Davalia bullata mariesii, Davallia Mariesii +n13190060 bracken, Pteridium esculentum +n13190747 soft tree fern, Dicksonia antarctica +n13191148 Scythian lamb, Cibotium barometz +n13191620 false bracken, Culcita dubia +n13191884 thyrsopteris, Thyrsopteris elegans +n13192625 shield fern, buckler fern +n13193143 broad buckler-fern, Dryopteris dilatata +n13193269 fragrant cliff fern, fragrant shield fern, fragrant wood fern, Dryopteris fragrans +n13193466 Goldie's fern, Goldie's shield fern, goldie's wood fern, Dryopteris goldiana +n13193642 wood fern, wood-fern, woodfern +n13193856 male fern, Dryopteris filix-mas +n13194036 marginal wood fern, evergreen wood fern, leatherleaf wood fern, Dryopteris marginalis +n13194212 mountain male fern, Dryopteris oreades +n13194572 lady fern, Athyrium filix-femina +n13194758 Alpine lady fern, Athyrium distentifolium +n13194918 silvery spleenwort, glade fern, narrow-leaved spleenwort, Athyrium pycnocarpon, Diplazium pycnocarpon +n13195341 holly fern, Cyrtomium aculeatum, Polystichum aculeatum +n13195761 bladder fern +n13196003 brittle bladder fern, brittle fern, fragile fern, Cystopteris fragilis +n13196234 mountain bladder fern, Cystopteris montana +n13196369 bulblet fern, bulblet bladder fern, berry fern, Cystopteris bulbifera +n13196738 silvery spleenwort, Deparia acrostichoides, Athyrium thelypteroides +n13197274 oak fern, Gymnocarpium dryopteris, Thelypteris dryopteris +n13197507 limestone fern, northern oak fern, Gymnocarpium robertianum +n13198054 ostrich fern, shuttlecock fern, fiddlehead, Matteuccia struthiopteris, Pteretis struthiopteris, Onoclea struthiopteris +n13198482 hart's-tongue, hart's-tongue fern, Olfersia cervina, Polybotrya cervina, Polybotria cervina +n13198914 sensitive fern, bead fern, Onoclea sensibilis +n13199717 Christmas fern, canker brake, dagger fern, evergreen wood fern, Polystichum acrostichoides +n13199970 holly fern +n13200193 Braun's holly fern, prickly shield fern, Polystichum braunii +n13200542 western holly fern, Polystichum scopulinum +n13200651 soft shield fern, Polystichum setiferum +n13200986 leather fern, leatherleaf fern, ten-day fern, Rumohra adiantiformis, Polystichum adiantiformis +n13201423 button fern, Tectaria cicutaria +n13201566 Indian button fern, Tectaria macrodonta +n13201969 woodsia +n13202125 rusty woodsia, fragrant woodsia, oblong woodsia, Woodsia ilvensis +n13202355 Alpine woodsia, northern woodsia, flower-cup fern, Woodsia alpina +n13202602 smooth woodsia, Woodsia glabella +n13205058 Boston fern, Nephrolepis exaltata, Nephrolepis exaltata bostoniensis +n13205249 basket fern, toothed sword fern, Nephrolepis pectinata +n13206178 golden fern, leather fern, Acrostichum aureum +n13206817 maidenhair, maidenhair fern +n13207094 common maidenhair, Venushair, Venus'-hair fern, southern maidenhair, Venus maidenhair, Adiantum capillus-veneris +n13207335 American maidenhair fern, five-fingered maidenhair fern, Adiantum pedatum +n13207572 Bermuda maidenhair, Bermuda maidenhair fern, Adiantum bellum +n13207736 brittle maidenhair, brittle maidenhair fern, Adiantum tenerum +n13207923 Farley maidenhair, Farley maidenhair fern, Barbados maidenhair, glory fern, Adiantum tenerum farleyense +n13208302 annual fern, Jersey fern, Anogramma leptophylla +n13208705 lip fern, lipfern +n13208965 smooth lip fern, Alabama lip fern, Cheilanthes alabamensis +n13209129 lace fern, Cheilanthes gracillima +n13209270 wooly lip fern, hairy lip fern, Cheilanthes lanosa +n13209460 southwestern lip fern, Cheilanthes eatonii +n13209808 bamboo fern, Coniogramme japonica +n13210350 American rock brake, American parsley fern, Cryptogramma acrostichoides +n13210597 European parsley fern, mountain parsley fern, Cryptogramma crispa +n13211020 hand fern, Doryopteris pedata +n13211790 cliff brake, cliff-brake, rock brake +n13212025 coffee fern, Pellaea andromedifolia +n13212175 purple rock brake, Pellaea atropurpurea +n13212379 bird's-foot fern, Pellaea mucronata, Pellaea ornithopus +n13212559 button fern, Pellaea rotundifolia +n13213066 silver fern, Pityrogramma argentea +n13213397 golden fern, Pityrogramma calomelanos aureoflava +n13213577 gold fern, Pityrogramma chrysophylla +n13214217 Pteris cretica +n13214340 spider brake, spider fern, Pteris multifida +n13214485 ribbon fern, spider fern, Pteris serrulata +n13215258 potato fern, Marattia salicina +n13215586 angiopteris, giant fern, Angiopteris evecta +n13217005 skeleton fork fern, Psilotum nudum +n13219422 horsetail +n13219833 common horsetail, field horsetail, Equisetum arvense +n13219976 swamp horsetail, water horsetail, Equisetum fluviatile +n13220122 scouring rush, rough horsetail, Equisetum hyemale, Equisetum hyemale robustum, Equisetum robustum +n13220355 marsh horsetail, Equisetum palustre +n13220525 wood horsetail, Equisetum Sylvaticum +n13220663 variegated horsetail, variegated scouring rush, Equisetum variegatum +n13221529 club moss, club-moss, lycopod +n13222877 shining clubmoss, Lycopodium lucidulum +n13222985 alpine clubmoss, Lycopodium alpinum +n13223090 fir clubmoss, mountain clubmoss, little clubmoss, Lycopodium selago +n13223588 ground cedar, staghorn moss, Lycopodium complanatum +n13223710 ground fir, princess pine, tree clubmoss, Lycopodium obscurum +n13223843 foxtail grass, Lycopodium alopecuroides +n13224673 spikemoss, spike moss, little club moss +n13224922 meadow spikemoss, basket spikemoss, Selaginella apoda +n13225244 desert selaginella, Selaginella eremophila +n13225365 resurrection plant, rose of Jericho, Selaginella lepidophylla +n13225617 florida selaginella, Selaginella eatonii +n13226320 quillwort +n13226871 earthtongue, earth-tongue +n13228017 snuffbox fern, meadow fern, Thelypteris palustris pubescens, Dryopteris thelypteris pubescens +n13228536 christella +n13229543 mountain fern, Oreopteris limbosperma, Dryopteris oreopteris +n13229951 New York fern, Parathelypteris novae-boracensis, Dryopteris noveboracensis +n13230190 Massachusetts fern, Parathelypteris simulata, Thelypteris simulata +n13230662 beech fern +n13230843 broad beech fern, southern beech fern, Phegopteris hexagonoptera, Dryopteris hexagonoptera, Thelypteris hexagonoptera +n13231078 long beech fern, narrow beech fern, northern beech fern, Phegopteris connectilis, Dryopteris phegopteris, Thelypteris phegopteris +n13231678 shoestring fungus +n13231919 Armillaria caligata, booted armillaria +n13232106 Armillaria ponderosa, white matsutake +n13232363 Armillaria zelleri +n13232779 honey mushroom, honey fungus, Armillariella mellea +n13233727 milkweed, silkweed +n13234114 white milkweed, Asclepias albicans +n13234519 poke milkweed, Asclepias exaltata +n13234678 swamp milkweed, Asclepias incarnata +n13234857 Mead's milkweed, Asclepias meadii, Asclepia meadii +n13235011 purple silkweed, Asclepias purpurascens +n13235159 showy milkweed, Asclepias speciosa +n13235319 poison milkweed, horsetail milkweed, Asclepias subverticillata +n13235503 butterfly weed, orange milkweed, chigger flower, chiggerflower, pleurisy root, tuber root, Indian paintbrush, Asclepias tuberosa +n13235766 whorled milkweed, Asclepias verticillata +n13236100 cruel plant, Araujia sericofera +n13237188 wax plant, Hoya carnosa +n13237508 silk vine, Periploca graeca +n13238375 stapelia, carrion flower, starfish flower +n13238654 Stapelias asterias +n13238988 stephanotis +n13239177 Madagascar jasmine, waxflower, Stephanotis floribunda +n13239736 negro vine, Vincetoxicum hirsutum, Vincetoxicum negrum +n13239921 zygospore +n13240362 tree of knowledge +n13252672 orangery +n13354021 pocketbook +n13555775 shit, dump +n13579829 cordage +n13650447 yard, pace +n13653902 extremum, peak +n13862407 leaf shape, leaf form +n13862552 equilateral +n13862780 figure +n13863020 pencil +n13863186 plane figure, two-dimensional figure +n13863473 solid figure, three-dimensional figure +n13863771 line +n13864035 bulb +n13864153 convex shape, convexity +n13864965 concave shape, concavity, incurvation, incurvature +n13865298 cylinder +n13865483 round shape +n13865904 heart +n13866144 polygon, polygonal shape +n13866626 convex polygon +n13866827 concave polygon +n13867005 reentrant polygon, reentering polygon +n13867492 amorphous shape +n13868248 closed curve +n13868371 simple closed curve, Jordan curve +n13868515 S-shape +n13868944 wave, undulation +n13869045 extrados +n13869547 hook, crotchet +n13869788 envelope +n13869896 bight +n13871717 diameter +n13872592 cone, conoid, cone shape +n13872822 funnel, funnel shape +n13873361 oblong +n13873502 circle +n13873917 circle +n13874073 equator +n13874558 scallop, crenation, crenature, crenel, crenelle +n13875392 ring, halo, annulus, doughnut, anchor ring +n13875571 loop +n13875884 bight +n13876561 helix, spiral +n13877547 element of a cone +n13877667 element of a cylinder +n13878306 ellipse, oval +n13879049 quadrate +n13879320 triangle, trigon, trilateral +n13879816 acute triangle, acute-angled triangle +n13880199 isosceles triangle +n13880415 obtuse triangle, obtuse-angled triangle +n13880551 right triangle, right-angled triangle +n13880704 scalene triangle +n13880994 parallel +n13881512 trapezoid +n13881644 star +n13882201 pentagon +n13882276 hexagon +n13882487 heptagon +n13882563 octagon +n13882639 nonagon +n13882713 decagon +n13882961 rhombus, rhomb, diamond +n13883603 spherical polygon +n13883763 spherical triangle +n13884261 convex polyhedron +n13884384 concave polyhedron +n13884930 cuboid +n13885011 quadrangular prism +n13886260 bell, bell shape, campana +n13888491 angular distance +n13889066 true anomaly +n13889331 spherical angle +n13891547 angle of refraction +n13891937 acute angle +n13893786 groove, channel +n13894154 rut +n13894434 bulge, bump, hump, swelling, gibbosity, gibbousness, jut, prominence, protuberance, protrusion, extrusion, excrescence +n13895262 belly +n13896100 bow, arc +n13896217 crescent +n13897198 ellipsoid +n13897528 hypotenuse +n13897996 balance, equilibrium, equipoise, counterbalance +n13898207 conformation +n13898315 symmetry, proportion +n13898645 spheroid, ellipsoid of revolution +n13899735 spherule +n13900287 toroid +n13900422 column, tower, pillar +n13901211 barrel, drum +n13901321 pipe, tube +n13901423 pellet +n13901490 bolus +n13901858 dewdrop +n13902048 ridge +n13902336 rim +n13902793 taper +n13903079 boundary, edge, bound +n13905121 incisure, incisura +n13905275 notch +n13905792 wrinkle, furrow, crease, crinkle, seam, line +n13906484 dermatoglyphic +n13906669 frown line +n13906767 line of life, life line, lifeline +n13906936 line of heart, heart line, love line, mensal line +n13907272 crevice, cranny, crack, fissure, chap +n13908201 cleft +n13908580 roulette, line roulette +n13911045 node +n13912260 tree, tree diagram +n13912540 stemma +n13914141 brachium +n13914265 fork, crotch +n13914608 block, cube +n13915023 ovoid +n13915113 tetrahedron +n13915209 pentahedron +n13915305 hexahedron +n13915999 regular polyhedron, regular convex solid, regular convex polyhedron, Platonic body, Platonic solid, ideal solid +n13916363 polyhedral angle +n13916721 cube, regular hexahedron +n13917690 truncated pyramid +n13917785 truncated cone +n13918274 tail, tail end +n13918387 tongue, knife +n13918717 trapezohedron +n13919547 wedge, wedge shape, cuneus +n13919919 keel +n13926786 place, shoes +n14131950 herpes +n14175579 chlamydia +n14564779 wall +n14582716 micronutrient +n14583400 chyme +n14585392 ragweed pollen +n14592309 pina cloth +n14603798 chlorobenzylidenemalononitrile, CS gas +n14633206 carbon, C, atomic number 6 +n14685296 charcoal, wood coal +n14696793 rock, stone +n14698884 gravel, crushed rock +n14714645 aflatoxin +n14720833 alpha-tocopheral +n14765422 leopard +n14785065 bricks and mortar +n14786943 lagging +n14804958 hydraulic cement, Portland cement +n14810561 choline +n14820180 concrete +n14821852 glass wool +n14844693 soil, dirt +n14853210 high explosive +n14858292 litter +n14867545 fish meal +n14891255 Greek fire +n14899328 culture medium, medium +n14900184 agar, nutrient agar +n14900342 blood agar +n14908027 hip tile, hipped tile +n14909584 hyacinth, jacinth +n14914945 hydroxide ion, hydroxyl ion +n14915184 ice, water ice +n14919819 inositol +n14938389 linoleum, lino +n14941787 lithia water +n14942411 lodestone, loadstone +n14973585 pantothenic acid, pantothen +n14974264 paper +n14975598 papyrus +n14976759 pantile +n14976871 blacktop, blacktopping +n14977188 tarmacadam, tarmac +n14977504 paving, pavement, paving material +n14992287 plaster +n14993378 poison gas +n15005577 ridge tile +n15006012 roughcast +n15019030 sand +n15048888 spackle, spackling compound +n15060326 render +n15060688 wattle and daub +n15062057 stucco +n15067877 tear gas, teargas, lacrimator, lachrymator +n15075141 toilet tissue, toilet paper, bathroom tissue +n15086247 linseed, flaxseed +n15089258 vitamin +n15089472 fat-soluble vitamin +n15089645 water-soluble vitamin +n15089803 vitamin A, antiophthalmic factor, axerophthol, A +n15090065 vitamin A1, retinol +n15090238 vitamin A2, dehydroretinol +n15090742 B-complex vitamin, B complex, vitamin B complex, vitamin B, B vitamin, B +n15091129 vitamin B1, thiamine, thiamin, aneurin, antiberiberi factor +n15091304 vitamin B12, cobalamin, cyanocobalamin, antipernicious anemia factor +n15091473 vitamin B2, vitamin G, riboflavin, lactoflavin, ovoflavin, hepatoflavin +n15091669 vitamin B6, pyridoxine, pyridoxal, pyridoxamine, adermin +n15091846 vitamin Bc, vitamin M, folate, folic acid, folacin, pteroylglutamic acid, pteroylmonoglutamic acid +n15092059 niacin, nicotinic acid +n15092227 vitamin D, calciferol, viosterol, ergocalciferol, cholecalciferol, D +n15092409 vitamin E, tocopherol, E +n15092650 biotin, vitamin H +n15092751 vitamin K, naphthoquinone, antihemorrhagic factor +n15092942 vitamin K1, phylloquinone, phytonadione +n15093049 vitamin K3, menadione +n15093137 vitamin P, bioflavinoid, citrin +n15093298 vitamin C, C, ascorbic acid +n15102359 planking +n15102455 chipboard, hardboard +n15102894 knothole diff --git a/pytorch-image-models/timm/data/_info/imagenet_synsets.txt b/pytorch-image-models/timm/data/_info/imagenet_synsets.txt new file mode 100644 index 0000000000000000000000000000000000000000..88aa58f966b3c4b7264a52bb71dcb25e856f6c1f --- /dev/null +++ b/pytorch-image-models/timm/data/_info/imagenet_synsets.txt @@ -0,0 +1,1000 @@ +n01440764 +n01443537 +n01484850 +n01491361 +n01494475 +n01496331 +n01498041 +n01514668 +n01514859 +n01518878 +n01530575 +n01531178 +n01532829 +n01534433 +n01537544 +n01558993 +n01560419 +n01580077 +n01582220 +n01592084 +n01601694 +n01608432 +n01614925 +n01616318 +n01622779 +n01629819 +n01630670 +n01631663 +n01632458 +n01632777 +n01641577 +n01644373 +n01644900 +n01664065 +n01665541 +n01667114 +n01667778 +n01669191 +n01675722 +n01677366 +n01682714 +n01685808 +n01687978 +n01688243 +n01689811 +n01692333 +n01693334 +n01694178 +n01695060 +n01697457 +n01698640 +n01704323 +n01728572 +n01728920 +n01729322 +n01729977 +n01734418 +n01735189 +n01737021 +n01739381 +n01740131 +n01742172 +n01744401 +n01748264 +n01749939 +n01751748 +n01753488 +n01755581 +n01756291 +n01768244 +n01770081 +n01770393 +n01773157 +n01773549 +n01773797 +n01774384 +n01774750 +n01775062 +n01776313 +n01784675 +n01795545 +n01796340 +n01797886 +n01798484 +n01806143 +n01806567 +n01807496 +n01817953 +n01818515 +n01819313 +n01820546 +n01824575 +n01828970 +n01829413 +n01833805 +n01843065 +n01843383 +n01847000 +n01855032 +n01855672 +n01860187 +n01871265 +n01872401 +n01873310 +n01877812 +n01882714 +n01883070 +n01910747 +n01914609 +n01917289 +n01924916 +n01930112 +n01943899 +n01944390 +n01945685 +n01950731 +n01955084 +n01968897 +n01978287 +n01978455 +n01980166 +n01981276 +n01983481 +n01984695 +n01985128 +n01986214 +n01990800 +n02002556 +n02002724 +n02006656 +n02007558 +n02009229 +n02009912 +n02011460 +n02012849 +n02013706 +n02017213 +n02018207 +n02018795 +n02025239 +n02027492 +n02028035 +n02033041 +n02037110 +n02051845 +n02056570 +n02058221 +n02066245 +n02071294 +n02074367 +n02077923 +n02085620 +n02085782 +n02085936 +n02086079 +n02086240 +n02086646 +n02086910 +n02087046 +n02087394 +n02088094 +n02088238 +n02088364 +n02088466 +n02088632 +n02089078 +n02089867 +n02089973 +n02090379 +n02090622 +n02090721 +n02091032 +n02091134 +n02091244 +n02091467 +n02091635 +n02091831 +n02092002 +n02092339 +n02093256 +n02093428 +n02093647 +n02093754 +n02093859 +n02093991 +n02094114 +n02094258 +n02094433 +n02095314 +n02095570 +n02095889 +n02096051 +n02096177 +n02096294 +n02096437 +n02096585 +n02097047 +n02097130 +n02097209 +n02097298 +n02097474 +n02097658 +n02098105 +n02098286 +n02098413 +n02099267 +n02099429 +n02099601 +n02099712 +n02099849 +n02100236 +n02100583 +n02100735 +n02100877 +n02101006 +n02101388 +n02101556 +n02102040 +n02102177 +n02102318 +n02102480 +n02102973 +n02104029 +n02104365 +n02105056 +n02105162 +n02105251 +n02105412 +n02105505 +n02105641 +n02105855 +n02106030 +n02106166 +n02106382 +n02106550 +n02106662 +n02107142 +n02107312 +n02107574 +n02107683 +n02107908 +n02108000 +n02108089 +n02108422 +n02108551 +n02108915 +n02109047 +n02109525 +n02109961 +n02110063 +n02110185 +n02110341 +n02110627 +n02110806 +n02110958 +n02111129 +n02111277 +n02111500 +n02111889 +n02112018 +n02112137 +n02112350 +n02112706 +n02113023 +n02113186 +n02113624 +n02113712 +n02113799 +n02113978 +n02114367 +n02114548 +n02114712 +n02114855 +n02115641 +n02115913 +n02116738 +n02117135 +n02119022 +n02119789 +n02120079 +n02120505 +n02123045 +n02123159 +n02123394 +n02123597 +n02124075 +n02125311 +n02127052 +n02128385 +n02128757 +n02128925 +n02129165 +n02129604 +n02130308 +n02132136 +n02133161 +n02134084 +n02134418 +n02137549 +n02138441 +n02165105 +n02165456 +n02167151 +n02168699 +n02169497 +n02172182 +n02174001 +n02177972 +n02190166 +n02206856 +n02219486 +n02226429 +n02229544 +n02231487 +n02233338 +n02236044 +n02256656 +n02259212 +n02264363 +n02268443 +n02268853 +n02276258 +n02277742 +n02279972 +n02280649 +n02281406 +n02281787 +n02317335 +n02319095 +n02321529 +n02325366 +n02326432 +n02328150 +n02342885 +n02346627 +n02356798 +n02361337 +n02363005 +n02364673 +n02389026 +n02391049 +n02395406 +n02396427 +n02397096 +n02398521 +n02403003 +n02408429 +n02410509 +n02412080 +n02415577 +n02417914 +n02422106 +n02422699 +n02423022 +n02437312 +n02437616 +n02441942 +n02442845 +n02443114 +n02443484 +n02444819 +n02445715 +n02447366 +n02454379 +n02457408 +n02480495 +n02480855 +n02481823 +n02483362 +n02483708 +n02484975 +n02486261 +n02486410 +n02487347 +n02488291 +n02488702 +n02489166 +n02490219 +n02492035 +n02492660 +n02493509 +n02493793 +n02494079 +n02497673 +n02500267 +n02504013 +n02504458 +n02509815 +n02510455 +n02514041 +n02526121 +n02536864 +n02606052 +n02607072 +n02640242 +n02641379 +n02643566 +n02655020 +n02666196 +n02667093 +n02669723 +n02672831 +n02676566 +n02687172 +n02690373 +n02692877 +n02699494 +n02701002 +n02704792 +n02708093 +n02727426 +n02730930 +n02747177 +n02749479 +n02769748 +n02776631 +n02777292 +n02782093 +n02783161 +n02786058 +n02787622 +n02788148 +n02790996 +n02791124 +n02791270 +n02793495 +n02794156 +n02795169 +n02797295 +n02799071 +n02802426 +n02804414 +n02804610 +n02807133 +n02808304 +n02808440 +n02814533 +n02814860 +n02815834 +n02817516 +n02823428 +n02823750 +n02825657 +n02834397 +n02835271 +n02837789 +n02840245 +n02841315 +n02843684 +n02859443 +n02860847 +n02865351 +n02869837 +n02870880 +n02871525 +n02877765 +n02879718 +n02883205 +n02892201 +n02892767 +n02894605 +n02895154 +n02906734 +n02909870 +n02910353 +n02916936 +n02917067 +n02927161 +n02930766 +n02939185 +n02948072 +n02950826 +n02951358 +n02951585 +n02963159 +n02965783 +n02966193 +n02966687 +n02971356 +n02974003 +n02977058 +n02978881 +n02979186 +n02980441 +n02981792 +n02988304 +n02992211 +n02992529 +n02999410 +n03000134 +n03000247 +n03000684 +n03014705 +n03016953 +n03017168 +n03018349 +n03026506 +n03028079 +n03032252 +n03041632 +n03042490 +n03045698 +n03047690 +n03062245 +n03063599 +n03063689 +n03065424 +n03075370 +n03085013 +n03089624 +n03095699 +n03100240 +n03109150 +n03110669 +n03124043 +n03124170 +n03125729 +n03126707 +n03127747 +n03127925 +n03131574 +n03133878 +n03134739 +n03141823 +n03146219 +n03160309 +n03179701 +n03180011 +n03187595 +n03188531 +n03196217 +n03197337 +n03201208 +n03207743 +n03207941 +n03208938 +n03216828 +n03218198 +n03220513 +n03223299 +n03240683 +n03249569 +n03250847 +n03255030 +n03259280 +n03271574 +n03272010 +n03272562 +n03290653 +n03291819 +n03297495 +n03314780 +n03325584 +n03337140 +n03344393 +n03345487 +n03347037 +n03355925 +n03372029 +n03376595 +n03379051 +n03384352 +n03388043 +n03388183 +n03388549 +n03393912 +n03394916 +n03400231 +n03404251 +n03417042 +n03424325 +n03425413 +n03443371 +n03444034 +n03445777 +n03445924 +n03447447 +n03447721 +n03450230 +n03452741 +n03457902 +n03459775 +n03461385 +n03467068 +n03476684 +n03476991 +n03478589 +n03481172 +n03482405 +n03483316 +n03485407 +n03485794 +n03492542 +n03494278 +n03495258 +n03496892 +n03498962 +n03527444 +n03529860 +n03530642 +n03532672 +n03534580 +n03535780 +n03538406 +n03544143 +n03584254 +n03584829 +n03590841 +n03594734 +n03594945 +n03595614 +n03598930 +n03599486 +n03602883 +n03617480 +n03623198 +n03627232 +n03630383 +n03633091 +n03637318 +n03642806 +n03649909 +n03657121 +n03658185 +n03661043 +n03662601 +n03666591 +n03670208 +n03673027 +n03676483 +n03680355 +n03690938 +n03691459 +n03692522 +n03697007 +n03706229 +n03709823 +n03710193 +n03710637 +n03710721 +n03717622 +n03720891 +n03721384 +n03724870 +n03729826 +n03733131 +n03733281 +n03733805 +n03742115 +n03743016 +n03759954 +n03761084 +n03763968 +n03764736 +n03769881 +n03770439 +n03770679 +n03773504 +n03775071 +n03775546 +n03776460 +n03777568 +n03777754 +n03781244 +n03782006 +n03785016 +n03786901 +n03787032 +n03788195 +n03788365 +n03791053 +n03792782 +n03792972 +n03793489 +n03794056 +n03796401 +n03803284 +n03804744 +n03814639 +n03814906 +n03825788 +n03832673 +n03837869 +n03838899 +n03840681 +n03841143 +n03843555 +n03854065 +n03857828 +n03866082 +n03868242 +n03868863 +n03871628 +n03873416 +n03874293 +n03874599 +n03876231 +n03877472 +n03877845 +n03884397 +n03887697 +n03888257 +n03888605 +n03891251 +n03891332 +n03895866 +n03899768 +n03902125 +n03903868 +n03908618 +n03908714 +n03916031 +n03920288 +n03924679 +n03929660 +n03929855 +n03930313 +n03930630 +n03933933 +n03935335 +n03937543 +n03938244 +n03942813 +n03944341 +n03947888 +n03950228 +n03954731 +n03956157 +n03958227 +n03961711 +n03967562 +n03970156 +n03976467 +n03976657 +n03977966 +n03980874 +n03982430 +n03983396 +n03991062 +n03992509 +n03995372 +n03998194 +n04004767 +n04005630 +n04008634 +n04009552 +n04019541 +n04023962 +n04026417 +n04033901 +n04033995 +n04037443 +n04039381 +n04040759 +n04041544 +n04044716 +n04049303 +n04065272 +n04067472 +n04069434 +n04070727 +n04074963 +n04081281 +n04086273 +n04090263 +n04099969 +n04111531 +n04116512 +n04118538 +n04118776 +n04120489 +n04125021 +n04127249 +n04131690 +n04133789 +n04136333 +n04141076 +n04141327 +n04141975 +n04146614 +n04147183 +n04149813 +n04152593 +n04153751 +n04154565 +n04162706 +n04179913 +n04192698 +n04200800 +n04201297 +n04204238 +n04204347 +n04208210 +n04209133 +n04209239 +n04228054 +n04229816 +n04235860 +n04238763 +n04239074 +n04243546 +n04251144 +n04252077 +n04252225 +n04254120 +n04254680 +n04254777 +n04258138 +n04259630 +n04263257 +n04264628 +n04265275 +n04266014 +n04270147 +n04273569 +n04275548 +n04277352 +n04285008 +n04286575 +n04296562 +n04310018 +n04311004 +n04311174 +n04317175 +n04325704 +n04326547 +n04328186 +n04330267 +n04332243 +n04335435 +n04336792 +n04344873 +n04346328 +n04347754 +n04350905 +n04355338 +n04355933 +n04356056 +n04357314 +n04366367 +n04367480 +n04370456 +n04371430 +n04371774 +n04372370 +n04376876 +n04380533 +n04389033 +n04392985 +n04398044 +n04399382 +n04404412 +n04409515 +n04417672 +n04418357 +n04423845 +n04428191 +n04429376 +n04435653 +n04442312 +n04443257 +n04447861 +n04456115 +n04458633 +n04461696 +n04462240 +n04465501 +n04467665 +n04476259 +n04479046 +n04482393 +n04483307 +n04485082 +n04486054 +n04487081 +n04487394 +n04493381 +n04501370 +n04505470 +n04507155 +n04509417 +n04515003 +n04517823 +n04522168 +n04523525 +n04525038 +n04525305 +n04532106 +n04532670 +n04536866 +n04540053 +n04542943 +n04548280 +n04548362 +n04550184 +n04552348 +n04553703 +n04554684 +n04557648 +n04560804 +n04562935 +n04579145 +n04579432 +n04584207 +n04589890 +n04590129 +n04591157 +n04591713 +n04592741 +n04596742 +n04597913 +n04599235 +n04604644 +n04606251 +n04612504 +n04613696 +n06359193 +n06596364 +n06785654 +n06794110 +n06874185 +n07248320 +n07565083 +n07579787 +n07583066 +n07584110 +n07590611 +n07613480 +n07614500 +n07615774 +n07684084 +n07693725 +n07695742 +n07697313 +n07697537 +n07711569 +n07714571 +n07714990 +n07715103 +n07716358 +n07716906 +n07717410 +n07717556 +n07718472 +n07718747 +n07720875 +n07730033 +n07734744 +n07742313 +n07745940 +n07747607 +n07749582 +n07753113 +n07753275 +n07753592 +n07754684 +n07760859 +n07768694 +n07802026 +n07831146 +n07836838 +n07860988 +n07871810 +n07873807 +n07875152 +n07880968 +n07892512 +n07920052 +n07930864 +n07932039 +n09193705 +n09229709 +n09246464 +n09256479 +n09288635 +n09332890 +n09399592 +n09421951 +n09428293 +n09468604 +n09472597 +n09835506 +n10148035 +n10565667 +n11879895 +n11939491 +n12057211 +n12144580 +n12267677 +n12620546 +n12768682 +n12985857 +n12998815 +n13037406 +n13040303 +n13044778 +n13052670 +n13054560 +n13133613 +n15075141 diff --git a/pytorch-image-models/timm/data/_info/mini_imagenet_indices.txt b/pytorch-image-models/timm/data/_info/mini_imagenet_indices.txt new file mode 100644 index 0000000000000000000000000000000000000000..175a7324bb440e4339f1ee33f5c3dc292cae4d5d --- /dev/null +++ b/pytorch-image-models/timm/data/_info/mini_imagenet_indices.txt @@ -0,0 +1,100 @@ +12 +15 +51 +64 +70 +96 +99 +107 +111 +121 +149 +166 +173 +176 +207 +214 +228 +242 +244 +245 +249 +251 +256 +266 +270 +275 +279 +291 +299 +301 +306 +310 +359 +364 +392 +403 +412 +427 +440 +454 +471 +476 +478 +484 +494 +502 +503 +507 +519 +524 +533 +538 +546 +553 +556 +567 +569 +584 +597 +602 +604 +605 +629 +655 +657 +659 +683 +687 +702 +709 +713 +735 +741 +758 +779 +781 +800 +801 +807 +815 +819 +847 +854 +858 +860 +880 +881 +883 +909 +912 +914 +919 +925 +927 +934 +950 +972 +973 +997 +998 diff --git a/pytorch-image-models/timm/data/_info/mini_imagenet_synsets.txt b/pytorch-image-models/timm/data/_info/mini_imagenet_synsets.txt new file mode 100644 index 0000000000000000000000000000000000000000..2f7a88a776d9ba6888f0aed1d1213d7629df4f08 --- /dev/null +++ b/pytorch-image-models/timm/data/_info/mini_imagenet_synsets.txt @@ -0,0 +1,100 @@ +n01532829 +n01558993 +n01704323 +n01749939 +n01770081 +n01843383 +n01855672 +n01910747 +n01930112 +n01981276 +n02074367 +n02089867 +n02091244 +n02091831 +n02099601 +n02101006 +n02105505 +n02108089 +n02108551 +n02108915 +n02110063 +n02110341 +n02111277 +n02113712 +n02114548 +n02116738 +n02120079 +n02129165 +n02138441 +n02165456 +n02174001 +n02219486 +n02443484 +n02457408 +n02606052 +n02687172 +n02747177 +n02795169 +n02823428 +n02871525 +n02950826 +n02966193 +n02971356 +n02981792 +n03017168 +n03047690 +n03062245 +n03075370 +n03127925 +n03146219 +n03207743 +n03220513 +n03272010 +n03337140 +n03347037 +n03400231 +n03417042 +n03476684 +n03527444 +n03535780 +n03544143 +n03584254 +n03676483 +n03770439 +n03773504 +n03775546 +n03838899 +n03854065 +n03888605 +n03908618 +n03924679 +n03980874 +n03998194 +n04067472 +n04146614 +n04149813 +n04243546 +n04251144 +n04258138 +n04275548 +n04296562 +n04389033 +n04418357 +n04435653 +n04443257 +n04509417 +n04515003 +n04522168 +n04596742 +n04604644 +n04612504 +n06794110 +n07584110 +n07613480 +n07697537 +n07747607 +n09246464 +n09256479 +n13054560 +n13133613 diff --git a/pytorch-image-models/timm/data/auto_augment.py b/pytorch-image-models/timm/data/auto_augment.py new file mode 100644 index 0000000000000000000000000000000000000000..94438a0e06cf0b2289089d0f2793b4f08046fee8 --- /dev/null +++ b/pytorch-image-models/timm/data/auto_augment.py @@ -0,0 +1,1000 @@ +""" AutoAugment, RandAugment, AugMix, and 3-Augment for PyTorch + +This code implements the searched ImageNet policies with various tweaks and improvements and +does not include any of the search code. + +AA and RA Implementation adapted from: + https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py + +AugMix adapted from: + https://github.com/google-research/augmix + +3-Augment based on: https://github.com/facebookresearch/deit/blob/main/README_revenge.md + +Papers: + AutoAugment: Learning Augmentation Policies from Data - https://arxiv.org/abs/1805.09501 + Learning Data Augmentation Strategies for Object Detection - https://arxiv.org/abs/1906.11172 + RandAugment: Practical automated data augmentation... - https://arxiv.org/abs/1909.13719 + AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty - https://arxiv.org/abs/1912.02781 + 3-Augment: DeiT III: Revenge of the ViT - https://arxiv.org/abs/2204.07118 + +Hacked together by / Copyright 2019, Ross Wightman +""" +import random +import math +import re +from functools import partial +from typing import Dict, List, Optional, Union + +from PIL import Image, ImageOps, ImageEnhance, ImageChops, ImageFilter +import PIL +import numpy as np + + +_PIL_VER = tuple([int(x) for x in PIL.__version__.split('.')[:2]]) + +_FILL = (128, 128, 128) + +_LEVEL_DENOM = 10. # denominator for conversion from 'Mx' magnitude scale to fractional aug level for op arguments + +_HPARAMS_DEFAULT = dict( + translate_const=250, + img_mean=_FILL, +) + +if hasattr(Image, "Resampling"): + _RANDOM_INTERPOLATION = (Image.Resampling.BILINEAR, Image.Resampling.BICUBIC) + _DEFAULT_INTERPOLATION = Image.Resampling.BICUBIC +else: + _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC) + _DEFAULT_INTERPOLATION = Image.BICUBIC + + +def _interpolation(kwargs): + interpolation = kwargs.pop('resample', _DEFAULT_INTERPOLATION) + if isinstance(interpolation, (list, tuple)): + return random.choice(interpolation) + return interpolation + + +def _check_args_tf(kwargs): + if 'fillcolor' in kwargs and _PIL_VER < (5, 0): + kwargs.pop('fillcolor') + kwargs['resample'] = _interpolation(kwargs) + + +def shear_x(img, factor, **kwargs): + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, factor, 0, 0, 1, 0), **kwargs) + + +def shear_y(img, factor, **kwargs): + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, 0, 0, factor, 1, 0), **kwargs) + + +def translate_x_rel(img, pct, **kwargs): + pixels = pct * img.size[0] + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs) + + +def translate_y_rel(img, pct, **kwargs): + pixels = pct * img.size[1] + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs) + + +def translate_x_abs(img, pixels, **kwargs): + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs) + + +def translate_y_abs(img, pixels, **kwargs): + _check_args_tf(kwargs) + return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs) + + +def rotate(img, degrees, **kwargs): + _check_args_tf(kwargs) + if _PIL_VER >= (5, 2): + return img.rotate(degrees, **kwargs) + if _PIL_VER >= (5, 0): + w, h = img.size + post_trans = (0, 0) + rotn_center = (w / 2.0, h / 2.0) + angle = -math.radians(degrees) + matrix = [ + round(math.cos(angle), 15), + round(math.sin(angle), 15), + 0.0, + round(-math.sin(angle), 15), + round(math.cos(angle), 15), + 0.0, + ] + + def transform(x, y, matrix): + (a, b, c, d, e, f) = matrix + return a * x + b * y + c, d * x + e * y + f + + matrix[2], matrix[5] = transform( + -rotn_center[0] - post_trans[0], -rotn_center[1] - post_trans[1], matrix + ) + matrix[2] += rotn_center[0] + matrix[5] += rotn_center[1] + return img.transform(img.size, Image.AFFINE, matrix, **kwargs) + return img.rotate(degrees, resample=kwargs['resample']) + + +def auto_contrast(img, **__): + return ImageOps.autocontrast(img) + + +def invert(img, **__): + return ImageOps.invert(img) + + +def equalize(img, **__): + return ImageOps.equalize(img) + + +def solarize(img, thresh, **__): + return ImageOps.solarize(img, thresh) + + +def solarize_add(img, add, thresh=128, **__): + lut = [] + for i in range(256): + if i < thresh: + lut.append(min(255, i + add)) + else: + lut.append(i) + + if img.mode in ("L", "RGB"): + if img.mode == "RGB" and len(lut) == 256: + lut = lut + lut + lut + return img.point(lut) + + return img + + +def posterize(img, bits_to_keep, **__): + if bits_to_keep >= 8: + return img + return ImageOps.posterize(img, bits_to_keep) + + +def contrast(img, factor, **__): + return ImageEnhance.Contrast(img).enhance(factor) + + +def color(img, factor, **__): + return ImageEnhance.Color(img).enhance(factor) + + +def brightness(img, factor, **__): + return ImageEnhance.Brightness(img).enhance(factor) + + +def sharpness(img, factor, **__): + return ImageEnhance.Sharpness(img).enhance(factor) + + +def gaussian_blur(img, factor, **__): + img = img.filter(ImageFilter.GaussianBlur(radius=factor)) + return img + + +def gaussian_blur_rand(img, factor, **__): + radius_min = 0.1 + radius_max = 2.0 + img = img.filter(ImageFilter.GaussianBlur(radius=random.uniform(radius_min, radius_max * factor))) + return img + + +def desaturate(img, factor, **_): + factor = min(1., max(0., 1. - factor)) + # enhance factor 0 = grayscale, 1.0 = no-change + return ImageEnhance.Color(img).enhance(factor) + + +def _randomly_negate(v): + """With 50% prob, negate the value""" + return -v if random.random() > 0.5 else v + + +def _rotate_level_to_arg(level, _hparams): + # range [-30, 30] + level = (level / _LEVEL_DENOM) * 30. + level = _randomly_negate(level) + return level, + + +def _enhance_level_to_arg(level, _hparams): + # range [0.1, 1.9] + return (level / _LEVEL_DENOM) * 1.8 + 0.1, + + +def _enhance_increasing_level_to_arg(level, _hparams): + # the 'no change' level is 1.0, moving away from that towards 0. or 2.0 increases the enhancement blend + # range [0.1, 1.9] if level <= _LEVEL_DENOM + level = (level / _LEVEL_DENOM) * .9 + level = max(0.1, 1.0 + _randomly_negate(level)) # keep it >= 0.1 + return level, + + +def _minmax_level_to_arg(level, _hparams, min_val=0., max_val=1.0, clamp=True): + level = (level / _LEVEL_DENOM) + level = min_val + (max_val - min_val) * level + if clamp: + level = max(min_val, min(max_val, level)) + return level, + + +def _shear_level_to_arg(level, _hparams): + # range [-0.3, 0.3] + level = (level / _LEVEL_DENOM) * 0.3 + level = _randomly_negate(level) + return level, + + +def _translate_abs_level_to_arg(level, hparams): + translate_const = hparams['translate_const'] + level = (level / _LEVEL_DENOM) * float(translate_const) + level = _randomly_negate(level) + return level, + + +def _translate_rel_level_to_arg(level, hparams): + # default range [-0.45, 0.45] + translate_pct = hparams.get('translate_pct', 0.45) + level = (level / _LEVEL_DENOM) * translate_pct + level = _randomly_negate(level) + return level, + + +def _posterize_level_to_arg(level, _hparams): + # As per Tensorflow TPU EfficientNet impl + # range [0, 4], 'keep 0 up to 4 MSB of original image' + # intensity/severity of augmentation decreases with level + return int((level / _LEVEL_DENOM) * 4), + + +def _posterize_increasing_level_to_arg(level, hparams): + # As per Tensorflow models research and UDA impl + # range [4, 0], 'keep 4 down to 0 MSB of original image', + # intensity/severity of augmentation increases with level + return 4 - _posterize_level_to_arg(level, hparams)[0], + + +def _posterize_original_level_to_arg(level, _hparams): + # As per original AutoAugment paper description + # range [4, 8], 'keep 4 up to 8 MSB of image' + # intensity/severity of augmentation decreases with level + return int((level / _LEVEL_DENOM) * 4) + 4, + + +def _solarize_level_to_arg(level, _hparams): + # range [0, 256] + # intensity/severity of augmentation decreases with level + return min(256, int((level / _LEVEL_DENOM) * 256)), + + +def _solarize_increasing_level_to_arg(level, _hparams): + # range [0, 256] + # intensity/severity of augmentation increases with level + return 256 - _solarize_level_to_arg(level, _hparams)[0], + + +def _solarize_add_level_to_arg(level, _hparams): + # range [0, 110] + return min(128, int((level / _LEVEL_DENOM) * 110)), + + +LEVEL_TO_ARG = { + 'AutoContrast': None, + 'Equalize': None, + 'Invert': None, + 'Rotate': _rotate_level_to_arg, + # There are several variations of the posterize level scaling in various Tensorflow/Google repositories/papers + 'Posterize': _posterize_level_to_arg, + 'PosterizeIncreasing': _posterize_increasing_level_to_arg, + 'PosterizeOriginal': _posterize_original_level_to_arg, + 'Solarize': _solarize_level_to_arg, + 'SolarizeIncreasing': _solarize_increasing_level_to_arg, + 'SolarizeAdd': _solarize_add_level_to_arg, + 'Color': _enhance_level_to_arg, + 'ColorIncreasing': _enhance_increasing_level_to_arg, + 'Contrast': _enhance_level_to_arg, + 'ContrastIncreasing': _enhance_increasing_level_to_arg, + 'Brightness': _enhance_level_to_arg, + 'BrightnessIncreasing': _enhance_increasing_level_to_arg, + 'Sharpness': _enhance_level_to_arg, + 'SharpnessIncreasing': _enhance_increasing_level_to_arg, + 'ShearX': _shear_level_to_arg, + 'ShearY': _shear_level_to_arg, + 'TranslateX': _translate_abs_level_to_arg, + 'TranslateY': _translate_abs_level_to_arg, + 'TranslateXRel': _translate_rel_level_to_arg, + 'TranslateYRel': _translate_rel_level_to_arg, + 'Desaturate': partial(_minmax_level_to_arg, min_val=0.5, max_val=1.0), + 'GaussianBlur': partial(_minmax_level_to_arg, min_val=0.1, max_val=2.0), + 'GaussianBlurRand': _minmax_level_to_arg, +} + + +NAME_TO_OP = { + 'AutoContrast': auto_contrast, + 'Equalize': equalize, + 'Invert': invert, + 'Rotate': rotate, + 'Posterize': posterize, + 'PosterizeIncreasing': posterize, + 'PosterizeOriginal': posterize, + 'Solarize': solarize, + 'SolarizeIncreasing': solarize, + 'SolarizeAdd': solarize_add, + 'Color': color, + 'ColorIncreasing': color, + 'Contrast': contrast, + 'ContrastIncreasing': contrast, + 'Brightness': brightness, + 'BrightnessIncreasing': brightness, + 'Sharpness': sharpness, + 'SharpnessIncreasing': sharpness, + 'ShearX': shear_x, + 'ShearY': shear_y, + 'TranslateX': translate_x_abs, + 'TranslateY': translate_y_abs, + 'TranslateXRel': translate_x_rel, + 'TranslateYRel': translate_y_rel, + 'Desaturate': desaturate, + 'GaussianBlur': gaussian_blur, + 'GaussianBlurRand': gaussian_blur_rand, +} + + +class AugmentOp: + + def __init__(self, name, prob=0.5, magnitude=10, hparams=None): + hparams = hparams or _HPARAMS_DEFAULT + self.name = name + self.aug_fn = NAME_TO_OP[name] + self.level_fn = LEVEL_TO_ARG[name] + self.prob = prob + self.magnitude = magnitude + self.hparams = hparams.copy() + self.kwargs = dict( + fillcolor=hparams['img_mean'] if 'img_mean' in hparams else _FILL, + resample=hparams['interpolation'] if 'interpolation' in hparams else _RANDOM_INTERPOLATION, + ) + + # If magnitude_std is > 0, we introduce some randomness + # in the usually fixed policy and sample magnitude from a normal distribution + # with mean `magnitude` and std-dev of `magnitude_std`. + # NOTE This is my own hack, being tested, not in papers or reference impls. + # If magnitude_std is inf, we sample magnitude from a uniform distribution + self.magnitude_std = self.hparams.get('magnitude_std', 0) + self.magnitude_max = self.hparams.get('magnitude_max', None) + + def __call__(self, img): + if self.prob < 1.0 and random.random() > self.prob: + return img + magnitude = self.magnitude + if self.magnitude_std > 0: + # magnitude randomization enabled + if self.magnitude_std == float('inf'): + # inf == uniform sampling + magnitude = random.uniform(0, magnitude) + elif self.magnitude_std > 0: + magnitude = random.gauss(magnitude, self.magnitude_std) + # default upper_bound for the timm RA impl is _LEVEL_DENOM (10) + # setting magnitude_max overrides this to allow M > 10 (behaviour closer to Google TF RA impl) + upper_bound = self.magnitude_max or _LEVEL_DENOM + magnitude = max(0., min(magnitude, upper_bound)) + level_args = self.level_fn(magnitude, self.hparams) if self.level_fn is not None else tuple() + return self.aug_fn(img, *level_args, **self.kwargs) + + def __repr__(self): + fs = self.__class__.__name__ + f'(name={self.name}, p={self.prob}' + fs += f', m={self.magnitude}, mstd={self.magnitude_std}' + if self.magnitude_max is not None: + fs += f', mmax={self.magnitude_max}' + fs += ')' + return fs + + +def auto_augment_policy_v0(hparams): + # ImageNet v0 policy from TPU EfficientNet impl, cannot find a paper reference. + policy = [ + [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)], + [('Color', 0.4, 9), ('Equalize', 0.6, 3)], + [('Color', 0.4, 1), ('Rotate', 0.6, 8)], + [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)], + [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)], + [('Color', 0.2, 0), ('Equalize', 0.8, 8)], + [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)], + [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)], + [('Color', 0.6, 1), ('Equalize', 1.0, 2)], + [('Invert', 0.4, 9), ('Rotate', 0.6, 0)], + [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)], + [('Color', 0.4, 7), ('Equalize', 0.6, 0)], + [('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)], + [('Solarize', 0.6, 8), ('Color', 0.6, 9)], + [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)], + [('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)], + [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)], + [('ShearY', 0.8, 0), ('Color', 0.6, 4)], + [('Color', 1.0, 0), ('Rotate', 0.6, 2)], + [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)], + [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)], + [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)], + [('Posterize', 0.8, 2), ('Solarize', 0.6, 10)], # This results in black image with Tpu posterize + [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)], + [('Color', 0.8, 6), ('Rotate', 0.4, 5)], + ] + pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy] + return pc + + +def auto_augment_policy_v0r(hparams): + # ImageNet v0 policy from TPU EfficientNet impl, with variation of Posterize used + # in Google research implementation (number of bits discarded increases with magnitude) + policy = [ + [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)], + [('Color', 0.4, 9), ('Equalize', 0.6, 3)], + [('Color', 0.4, 1), ('Rotate', 0.6, 8)], + [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)], + [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)], + [('Color', 0.2, 0), ('Equalize', 0.8, 8)], + [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)], + [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)], + [('Color', 0.6, 1), ('Equalize', 1.0, 2)], + [('Invert', 0.4, 9), ('Rotate', 0.6, 0)], + [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)], + [('Color', 0.4, 7), ('Equalize', 0.6, 0)], + [('PosterizeIncreasing', 0.4, 6), ('AutoContrast', 0.4, 7)], + [('Solarize', 0.6, 8), ('Color', 0.6, 9)], + [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)], + [('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)], + [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)], + [('ShearY', 0.8, 0), ('Color', 0.6, 4)], + [('Color', 1.0, 0), ('Rotate', 0.6, 2)], + [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)], + [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)], + [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)], + [('PosterizeIncreasing', 0.8, 2), ('Solarize', 0.6, 10)], + [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)], + [('Color', 0.8, 6), ('Rotate', 0.4, 5)], + ] + pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy] + return pc + + +def auto_augment_policy_original(hparams): + # ImageNet policy from https://arxiv.org/abs/1805.09501 + policy = [ + [('PosterizeOriginal', 0.4, 8), ('Rotate', 0.6, 9)], + [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)], + [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)], + [('PosterizeOriginal', 0.6, 7), ('PosterizeOriginal', 0.6, 6)], + [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)], + [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)], + [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)], + [('PosterizeOriginal', 0.8, 5), ('Equalize', 1.0, 2)], + [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)], + [('Equalize', 0.6, 8), ('PosterizeOriginal', 0.4, 6)], + [('Rotate', 0.8, 8), ('Color', 0.4, 0)], + [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)], + [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)], + [('Invert', 0.6, 4), ('Equalize', 1.0, 8)], + [('Color', 0.6, 4), ('Contrast', 1.0, 8)], + [('Rotate', 0.8, 8), ('Color', 1.0, 2)], + [('Color', 0.8, 8), ('Solarize', 0.8, 7)], + [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)], + [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)], + [('Color', 0.4, 0), ('Equalize', 0.6, 3)], + [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)], + [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)], + [('Invert', 0.6, 4), ('Equalize', 1.0, 8)], + [('Color', 0.6, 4), ('Contrast', 1.0, 8)], + [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)], + ] + pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy] + return pc + + +def auto_augment_policy_originalr(hparams): + # ImageNet policy from https://arxiv.org/abs/1805.09501 with research posterize variation + policy = [ + [('PosterizeIncreasing', 0.4, 8), ('Rotate', 0.6, 9)], + [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)], + [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)], + [('PosterizeIncreasing', 0.6, 7), ('PosterizeIncreasing', 0.6, 6)], + [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)], + [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)], + [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)], + [('PosterizeIncreasing', 0.8, 5), ('Equalize', 1.0, 2)], + [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)], + [('Equalize', 0.6, 8), ('PosterizeIncreasing', 0.4, 6)], + [('Rotate', 0.8, 8), ('Color', 0.4, 0)], + [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)], + [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)], + [('Invert', 0.6, 4), ('Equalize', 1.0, 8)], + [('Color', 0.6, 4), ('Contrast', 1.0, 8)], + [('Rotate', 0.8, 8), ('Color', 1.0, 2)], + [('Color', 0.8, 8), ('Solarize', 0.8, 7)], + [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)], + [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)], + [('Color', 0.4, 0), ('Equalize', 0.6, 3)], + [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)], + [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)], + [('Invert', 0.6, 4), ('Equalize', 1.0, 8)], + [('Color', 0.6, 4), ('Contrast', 1.0, 8)], + [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)], + ] + pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy] + return pc + + +def auto_augment_policy_3a(hparams): + policy = [ + [('Solarize', 1.0, 5)], # 128 solarize threshold @ 5 magnitude + [('Desaturate', 1.0, 10)], # grayscale at 10 magnitude + [('GaussianBlurRand', 1.0, 10)], + ] + pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy] + return pc + + +def auto_augment_policy(name='v0', hparams=None): + hparams = hparams or _HPARAMS_DEFAULT + if name == 'original': + return auto_augment_policy_original(hparams) + if name == 'originalr': + return auto_augment_policy_originalr(hparams) + if name == 'v0': + return auto_augment_policy_v0(hparams) + if name == 'v0r': + return auto_augment_policy_v0r(hparams) + if name == '3a': + return auto_augment_policy_3a(hparams) + assert False, f'Unknown AA policy {name}' + + +class AutoAugment: + + def __init__(self, policy): + self.policy = policy + + def __call__(self, img): + sub_policy = random.choice(self.policy) + for op in sub_policy: + img = op(img) + return img + + def __repr__(self): + fs = self.__class__.__name__ + '(policy=' + for p in self.policy: + fs += '\n\t[' + fs += ', '.join([str(op) for op in p]) + fs += ']' + fs += ')' + return fs + + +def auto_augment_transform(config_str: str, hparams: Optional[Dict] = None): + """ Create a AutoAugment transform + + Args: + config_str: String defining configuration of auto augmentation. Consists of multiple sections separated by + dashes ('-'). + The first section defines the AutoAugment policy (one of 'v0', 'v0r', 'original', 'originalr'). + While the remaining sections define other arguments + * 'mstd' - float std deviation of magnitude noise applied + hparams: Other hparams (kwargs) for the AutoAugmentation scheme + + Returns: + A PyTorch compatible Transform + + Examples:: + + 'original-mstd0.5' results in AutoAugment with original policy, magnitude_std 0.5 + """ + config = config_str.split('-') + policy_name = config[0] + config = config[1:] + for c in config: + cs = re.split(r'(\d.*)', c) + if len(cs) < 2: + continue + key, val = cs[:2] + if key == 'mstd': + # noise param injected via hparams for now + hparams.setdefault('magnitude_std', float(val)) + else: + assert False, 'Unknown AutoAugment config section' + aa_policy = auto_augment_policy(policy_name, hparams=hparams) + return AutoAugment(aa_policy) + + +_RAND_TRANSFORMS = [ + 'AutoContrast', + 'Equalize', + 'Invert', + 'Rotate', + 'Posterize', + 'Solarize', + 'SolarizeAdd', + 'Color', + 'Contrast', + 'Brightness', + 'Sharpness', + 'ShearX', + 'ShearY', + 'TranslateXRel', + 'TranslateYRel', + # 'Cutout' # NOTE I've implement this as random erasing separately +] + + +_RAND_INCREASING_TRANSFORMS = [ + 'AutoContrast', + 'Equalize', + 'Invert', + 'Rotate', + 'PosterizeIncreasing', + 'SolarizeIncreasing', + 'SolarizeAdd', + 'ColorIncreasing', + 'ContrastIncreasing', + 'BrightnessIncreasing', + 'SharpnessIncreasing', + 'ShearX', + 'ShearY', + 'TranslateXRel', + 'TranslateYRel', + # 'Cutout' # NOTE I've implement this as random erasing separately +] + + +_RAND_3A = [ + 'SolarizeIncreasing', + 'Desaturate', + 'GaussianBlur', +] + + +_RAND_WEIGHTED_3A = { + 'SolarizeIncreasing': 6, + 'Desaturate': 6, + 'GaussianBlur': 6, + 'Rotate': 3, + 'ShearX': 2, + 'ShearY': 2, + 'PosterizeIncreasing': 1, + 'AutoContrast': 1, + 'ColorIncreasing': 1, + 'SharpnessIncreasing': 1, + 'ContrastIncreasing': 1, + 'BrightnessIncreasing': 1, + 'Equalize': 1, + 'Invert': 1, +} + + +# These experimental weights are based loosely on the relative improvements mentioned in paper. +# They may not result in increased performance, but could likely be tuned to so. +_RAND_WEIGHTED_0 = { + 'Rotate': 3, + 'ShearX': 2, + 'ShearY': 2, + 'TranslateXRel': 1, + 'TranslateYRel': 1, + 'ColorIncreasing': .25, + 'SharpnessIncreasing': 0.25, + 'AutoContrast': 0.25, + 'SolarizeIncreasing': .05, + 'SolarizeAdd': .05, + 'ContrastIncreasing': .05, + 'BrightnessIncreasing': .05, + 'Equalize': .05, + 'PosterizeIncreasing': 0.05, + 'Invert': 0.05, +} + + +def _get_weighted_transforms(transforms: Dict): + transforms, probs = list(zip(*transforms.items())) + probs = np.array(probs) + probs = probs / np.sum(probs) + return transforms, probs + + +def rand_augment_choices(name: str, increasing=True): + if name == 'weights': + return _RAND_WEIGHTED_0 + if name == '3aw': + return _RAND_WEIGHTED_3A + if name == '3a': + return _RAND_3A + return _RAND_INCREASING_TRANSFORMS if increasing else _RAND_TRANSFORMS + + +def rand_augment_ops( + magnitude: Union[int, float] = 10, + prob: float = 0.5, + hparams: Optional[Dict] = None, + transforms: Optional[Union[Dict, List]] = None, +): + hparams = hparams or _HPARAMS_DEFAULT + transforms = transforms or _RAND_TRANSFORMS + return [AugmentOp( + name, prob=prob, magnitude=magnitude, hparams=hparams) for name in transforms] + + +class RandAugment: + def __init__(self, ops, num_layers=2, choice_weights=None): + self.ops = ops + self.num_layers = num_layers + self.choice_weights = choice_weights + + def __call__(self, img): + # no replacement when using weighted choice + ops = np.random.choice( + self.ops, + self.num_layers, + replace=self.choice_weights is None, + p=self.choice_weights, + ) + for op in ops: + img = op(img) + return img + + def __repr__(self): + fs = self.__class__.__name__ + f'(n={self.num_layers}, ops=' + for op in self.ops: + fs += f'\n\t{op}' + fs += ')' + return fs + + +def rand_augment_transform( + config_str: str, + hparams: Optional[Dict] = None, + transforms: Optional[Union[str, Dict, List]] = None, +): + """ Create a RandAugment transform + + Args: + config_str (str): String defining configuration of random augmentation. Consists of multiple sections separated + by dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand'). + The remaining sections, not order specific determine + * 'm' - integer magnitude of rand augment + * 'n' - integer num layers (number of transform ops selected per image) + * 'p' - float probability of applying each layer (default 0.5) + * 'mstd' - float std deviation of magnitude noise applied, or uniform sampling if infinity (or > 100) + * 'mmax' - set upper bound for magnitude to something other than default of _LEVEL_DENOM (10) + * 'inc' - integer (bool), use augmentations that increase in severity with magnitude (default: 0) + * 't' - str name of transform set to use + hparams (dict): Other hparams (kwargs) for the RandAugmentation scheme + + Returns: + A PyTorch compatible Transform + + Examples:: + + 'rand-m9-n3-mstd0.5' results in RandAugment with magnitude 9, num_layers 3, magnitude_std 0.5 + + 'rand-mstd1-tweights' results in mag std 1.0, weighted transforms, default mag of 10 and num_layers 2 + + """ + magnitude = _LEVEL_DENOM # default to _LEVEL_DENOM for magnitude (currently 10) + num_layers = 2 # default to 2 ops per image + increasing = False + prob = 0.5 + config = config_str.split('-') + assert config[0] == 'rand' + config = config[1:] + for c in config: + if c.startswith('t'): + # NOTE old 'w' key was removed, 'w0' is not equivalent to 'tweights' + val = str(c[1:]) + if transforms is None: + transforms = val + else: + # numeric options + cs = re.split(r'(\d.*)', c) + if len(cs) < 2: + continue + key, val = cs[:2] + if key == 'mstd': + # noise param / randomization of magnitude values + mstd = float(val) + if mstd > 100: + # use uniform sampling in 0 to magnitude if mstd is > 100 + mstd = float('inf') + hparams.setdefault('magnitude_std', mstd) + elif key == 'mmax': + # clip magnitude between [0, mmax] instead of default [0, _LEVEL_DENOM] + hparams.setdefault('magnitude_max', int(val)) + elif key == 'inc': + if bool(val): + increasing = True + elif key == 'm': + magnitude = int(val) + elif key == 'n': + num_layers = int(val) + elif key == 'p': + prob = float(val) + else: + assert False, 'Unknown RandAugment config section' + + if isinstance(transforms, str): + transforms = rand_augment_choices(transforms, increasing=increasing) + elif transforms is None: + transforms = _RAND_INCREASING_TRANSFORMS if increasing else _RAND_TRANSFORMS + + choice_weights = None + if isinstance(transforms, Dict): + transforms, choice_weights = _get_weighted_transforms(transforms) + + ra_ops = rand_augment_ops(magnitude=magnitude, prob=prob, hparams=hparams, transforms=transforms) + return RandAugment(ra_ops, num_layers, choice_weights=choice_weights) + + +_AUGMIX_TRANSFORMS = [ + 'AutoContrast', + 'ColorIncreasing', # not in paper + 'ContrastIncreasing', # not in paper + 'BrightnessIncreasing', # not in paper + 'SharpnessIncreasing', # not in paper + 'Equalize', + 'Rotate', + 'PosterizeIncreasing', + 'SolarizeIncreasing', + 'ShearX', + 'ShearY', + 'TranslateXRel', + 'TranslateYRel', +] + + +def augmix_ops( + magnitude: Union[int, float] = 10, + hparams: Optional[Dict] = None, + transforms: Optional[Union[str, Dict, List]] = None, +): + hparams = hparams or _HPARAMS_DEFAULT + transforms = transforms or _AUGMIX_TRANSFORMS + return [AugmentOp( + name, + prob=1.0, + magnitude=magnitude, + hparams=hparams + ) for name in transforms] + + +class AugMixAugment: + """ AugMix Transform + Adapted and improved from impl here: https://github.com/google-research/augmix/blob/master/imagenet.py + From paper: 'AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty - + https://arxiv.org/abs/1912.02781 + """ + def __init__(self, ops, alpha=1., width=3, depth=-1, blended=False): + self.ops = ops + self.alpha = alpha + self.width = width + self.depth = depth + self.blended = blended # blended mode is faster but not well tested + + def _calc_blended_weights(self, ws, m): + ws = ws * m + cump = 1. + rws = [] + for w in ws[::-1]: + alpha = w / cump + cump *= (1 - alpha) + rws.append(alpha) + return np.array(rws[::-1], dtype=np.float32) + + def _apply_blended(self, img, mixing_weights, m): + # This is my first crack and implementing a slightly faster mixed augmentation. Instead + # of accumulating the mix for each chain in a Numpy array and then blending with original, + # it recomputes the blending coefficients and applies one PIL image blend per chain. + # TODO the results appear in the right ballpark but they differ by more than rounding. + img_orig = img.copy() + ws = self._calc_blended_weights(mixing_weights, m) + for w in ws: + depth = self.depth if self.depth > 0 else np.random.randint(1, 4) + ops = np.random.choice(self.ops, depth, replace=True) + img_aug = img_orig # no ops are in-place, deep copy not necessary + for op in ops: + img_aug = op(img_aug) + img = Image.blend(img, img_aug, w) + return img + + def _apply_basic(self, img, mixing_weights, m): + # This is a literal adaptation of the paper/official implementation without normalizations and + # PIL <-> Numpy conversions between every op. It is still quite CPU compute heavy compared to the + # typical augmentation transforms, could use a GPU / Kornia implementation. + img_shape = img.size[0], img.size[1], len(img.getbands()) + mixed = np.zeros(img_shape, dtype=np.float32) + for mw in mixing_weights: + depth = self.depth if self.depth > 0 else np.random.randint(1, 4) + ops = np.random.choice(self.ops, depth, replace=True) + img_aug = img # no ops are in-place, deep copy not necessary + for op in ops: + img_aug = op(img_aug) + mixed += mw * np.asarray(img_aug, dtype=np.float32) + np.clip(mixed, 0, 255., out=mixed) + mixed = Image.fromarray(mixed.astype(np.uint8)) + return Image.blend(img, mixed, m) + + def __call__(self, img): + mixing_weights = np.float32(np.random.dirichlet([self.alpha] * self.width)) + m = np.float32(np.random.beta(self.alpha, self.alpha)) + if self.blended: + mixed = self._apply_blended(img, mixing_weights, m) + else: + mixed = self._apply_basic(img, mixing_weights, m) + return mixed + + def __repr__(self): + fs = self.__class__.__name__ + f'(alpha={self.alpha}, width={self.width}, depth={self.depth}, ops=' + for op in self.ops: + fs += f'\n\t{op}' + fs += ')' + return fs + + +def augment_and_mix_transform(config_str: str, hparams: Optional[Dict] = None): + """ Create AugMix PyTorch transform + + Args: + config_str (str): String defining configuration of random augmentation. Consists of multiple sections separated + by dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand'). + The remaining sections, not order sepecific determine + 'm' - integer magnitude (severity) of augmentation mix (default: 3) + 'w' - integer width of augmentation chain (default: 3) + 'd' - integer depth of augmentation chain (-1 is random [1, 3], default: -1) + 'b' - integer (bool), blend each branch of chain into end result without a final blend, less CPU (default: 0) + 'mstd' - float std deviation of magnitude noise applied (default: 0) + Ex 'augmix-m5-w4-d2' results in AugMix with severity 5, chain width 4, chain depth 2 + + hparams: Other hparams (kwargs) for the Augmentation transforms + + Returns: + A PyTorch compatible Transform + """ + magnitude = 3 + width = 3 + depth = -1 + alpha = 1. + blended = False + config = config_str.split('-') + assert config[0] == 'augmix' + config = config[1:] + for c in config: + cs = re.split(r'(\d.*)', c) + if len(cs) < 2: + continue + key, val = cs[:2] + if key == 'mstd': + # noise param injected via hparams for now + hparams.setdefault('magnitude_std', float(val)) + elif key == 'm': + magnitude = int(val) + elif key == 'w': + width = int(val) + elif key == 'd': + depth = int(val) + elif key == 'a': + alpha = float(val) + elif key == 'b': + blended = bool(val) + else: + assert False, 'Unknown AugMix config section' + hparams.setdefault('magnitude_std', float('inf')) # default to uniform sampling (if not set via mstd arg) + ops = augmix_ops(magnitude=magnitude, hparams=hparams) + return AugMixAugment(ops, alpha=alpha, width=width, depth=depth, blended=blended) diff --git a/pytorch-image-models/timm/data/config.py b/pytorch-image-models/timm/data/config.py new file mode 100644 index 0000000000000000000000000000000000000000..da433baf653a4dff6c6cc89b04861c52104af64b --- /dev/null +++ b/pytorch-image-models/timm/data/config.py @@ -0,0 +1,129 @@ +import logging +from .constants import * + + +_logger = logging.getLogger(__name__) + + +def resolve_data_config( + args=None, + pretrained_cfg=None, + model=None, + use_test_size=False, + verbose=False +): + assert model or args or pretrained_cfg, "At least one of model, args, or pretrained_cfg required for data config." + args = args or {} + pretrained_cfg = pretrained_cfg or {} + if not pretrained_cfg and model is not None and hasattr(model, 'pretrained_cfg'): + pretrained_cfg = model.pretrained_cfg + data_config = {} + + # Resolve input/image size + in_chans = 3 + if args.get('in_chans', None) is not None: + in_chans = args['in_chans'] + elif args.get('chans', None) is not None: + in_chans = args['chans'] + + input_size = (in_chans, 224, 224) + if args.get('input_size', None) is not None: + assert isinstance(args['input_size'], (tuple, list)) + assert len(args['input_size']) == 3 + input_size = tuple(args['input_size']) + in_chans = input_size[0] # input_size overrides in_chans + elif args.get('img_size', None) is not None: + assert isinstance(args['img_size'], int) + input_size = (in_chans, args['img_size'], args['img_size']) + else: + if use_test_size and pretrained_cfg.get('test_input_size', None) is not None: + input_size = pretrained_cfg['test_input_size'] + elif pretrained_cfg.get('input_size', None) is not None: + input_size = pretrained_cfg['input_size'] + data_config['input_size'] = input_size + + # resolve interpolation method + data_config['interpolation'] = 'bicubic' + if args.get('interpolation', None): + data_config['interpolation'] = args['interpolation'] + elif pretrained_cfg.get('interpolation', None): + data_config['interpolation'] = pretrained_cfg['interpolation'] + + # resolve dataset + model mean for normalization + data_config['mean'] = IMAGENET_DEFAULT_MEAN + if args.get('mean', None) is not None: + mean = tuple(args['mean']) + if len(mean) == 1: + mean = tuple(list(mean) * in_chans) + else: + assert len(mean) == in_chans + data_config['mean'] = mean + elif pretrained_cfg.get('mean', None): + data_config['mean'] = pretrained_cfg['mean'] + + # resolve dataset + model std deviation for normalization + data_config['std'] = IMAGENET_DEFAULT_STD + if args.get('std', None) is not None: + std = tuple(args['std']) + if len(std) == 1: + std = tuple(list(std) * in_chans) + else: + assert len(std) == in_chans + data_config['std'] = std + elif pretrained_cfg.get('std', None): + data_config['std'] = pretrained_cfg['std'] + + # resolve default inference crop + crop_pct = DEFAULT_CROP_PCT + if args.get('crop_pct', None): + crop_pct = args['crop_pct'] + else: + if use_test_size and pretrained_cfg.get('test_crop_pct', None): + crop_pct = pretrained_cfg['test_crop_pct'] + elif pretrained_cfg.get('crop_pct', None): + crop_pct = pretrained_cfg['crop_pct'] + data_config['crop_pct'] = crop_pct + + # resolve default crop percentage + crop_mode = DEFAULT_CROP_MODE + if args.get('crop_mode', None): + crop_mode = args['crop_mode'] + elif pretrained_cfg.get('crop_mode', None): + crop_mode = pretrained_cfg['crop_mode'] + data_config['crop_mode'] = crop_mode + + if verbose: + _logger.info('Data processing configuration for current model + dataset:') + for n, v in data_config.items(): + _logger.info('\t%s: %s' % (n, str(v))) + + return data_config + + +def resolve_model_data_config( + model, + args=None, + pretrained_cfg=None, + use_test_size=False, + verbose=False, +): + """ Resolve Model Data Config + This is equivalent to resolve_data_config() but with arguments re-ordered to put model first. + + Args: + model (nn.Module): the model instance + args (dict): command line arguments / configuration in dict form (overrides pretrained_cfg) + pretrained_cfg (dict): pretrained model config (overrides pretrained_cfg attached to model) + use_test_size (bool): use the test time input resolution (if one exists) instead of default train resolution + verbose (bool): enable extra logging of resolved values + + Returns: + dictionary of config + """ + return resolve_data_config( + args=args, + pretrained_cfg=pretrained_cfg, + model=model, + use_test_size=use_test_size, + verbose=verbose, + ) diff --git a/pytorch-image-models/timm/data/constants.py b/pytorch-image-models/timm/data/constants.py new file mode 100644 index 0000000000000000000000000000000000000000..7d4683214f694053bc392f0e29d28a56c2eca752 --- /dev/null +++ b/pytorch-image-models/timm/data/constants.py @@ -0,0 +1,10 @@ +DEFAULT_CROP_PCT = 0.875 +DEFAULT_CROP_MODE = 'center' +IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) +IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) +IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) +IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) +IMAGENET_DPN_MEAN = (124 / 255, 117 / 255, 104 / 255) +IMAGENET_DPN_STD = tuple([1 / (.0167 * 255)] * 3) +OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073) +OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711) diff --git a/pytorch-image-models/timm/data/dataset.py b/pytorch-image-models/timm/data/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..14d484ba9f4cb23ff3e9ef4508f3d8924f9f3bed --- /dev/null +++ b/pytorch-image-models/timm/data/dataset.py @@ -0,0 +1,204 @@ +""" Quick n Simple Image Folder, Tarfile based DataSet + +Hacked together by / Copyright 2019, Ross Wightman +""" +import io +import logging +from typing import Optional + +import torch +import torch.utils.data as data +from PIL import Image + +from .readers import create_reader + +_logger = logging.getLogger(__name__) + + +_ERROR_RETRY = 50 + + +class ImageDataset(data.Dataset): + + def __init__( + self, + root, + reader=None, + split='train', + class_map=None, + load_bytes=False, + input_img_mode='RGB', + transform=None, + target_transform=None, + **kwargs, + ): + if reader is None or isinstance(reader, str): + reader = create_reader( + reader or '', + root=root, + split=split, + class_map=class_map, + **kwargs, + ) + self.reader = reader + self.load_bytes = load_bytes + self.input_img_mode = input_img_mode + self.transform = transform + self.target_transform = target_transform + self._consecutive_errors = 0 + + def __getitem__(self, index): + img, target = self.reader[index] + + try: + img = img.read() if self.load_bytes else Image.open(img) + except Exception as e: + _logger.warning(f'Skipped sample (index {index}, file {self.reader.filename(index)}). {str(e)}') + self._consecutive_errors += 1 + if self._consecutive_errors < _ERROR_RETRY: + return self.__getitem__((index + 1) % len(self.reader)) + else: + raise e + self._consecutive_errors = 0 + + if self.input_img_mode and not self.load_bytes: + img = img.convert(self.input_img_mode) + if self.transform is not None: + img = self.transform(img) + + if target is None: + target = -1 + elif self.target_transform is not None: + target = self.target_transform(target) + + return img, target + + def __len__(self): + return len(self.reader) + + def filename(self, index, basename=False, absolute=False): + return self.reader.filename(index, basename, absolute) + + def filenames(self, basename=False, absolute=False): + return self.reader.filenames(basename, absolute) + + +class IterableImageDataset(data.IterableDataset): + + def __init__( + self, + root, + reader=None, + split='train', + class_map=None, + is_training=False, + batch_size=1, + num_samples=None, + seed=42, + repeats=0, + download=False, + input_img_mode='RGB', + input_key=None, + target_key=None, + transform=None, + target_transform=None, + max_steps=None, + **kwargs, + ): + assert reader is not None + if isinstance(reader, str): + self.reader = create_reader( + reader, + root=root, + split=split, + class_map=class_map, + is_training=is_training, + batch_size=batch_size, + num_samples=num_samples, + seed=seed, + repeats=repeats, + download=download, + input_img_mode=input_img_mode, + input_key=input_key, + target_key=target_key, + max_steps=max_steps, + **kwargs, + ) + else: + self.reader = reader + self.transform = transform + self.target_transform = target_transform + self._consecutive_errors = 0 + + def __iter__(self): + for img, target in self.reader: + if self.transform is not None: + img = self.transform(img) + if self.target_transform is not None: + target = self.target_transform(target) + yield img, target + + def __len__(self): + if hasattr(self.reader, '__len__'): + return len(self.reader) + else: + return 0 + + def set_epoch(self, count): + # TFDS and WDS need external epoch count for deterministic cross process shuffle + if hasattr(self.reader, 'set_epoch'): + self.reader.set_epoch(count) + + def set_loader_cfg( + self, + num_workers: Optional[int] = None, + ): + # TFDS and WDS readers need # workers for correct # samples estimate before loader processes created + if hasattr(self.reader, 'set_loader_cfg'): + self.reader.set_loader_cfg(num_workers=num_workers) + + def filename(self, index, basename=False, absolute=False): + assert False, 'Filename lookup by index not supported, use filenames().' + + def filenames(self, basename=False, absolute=False): + return self.reader.filenames(basename, absolute) + + +class AugMixDataset(torch.utils.data.Dataset): + """Dataset wrapper to perform AugMix or other clean/augmentation mixes""" + + def __init__(self, dataset, num_splits=2): + self.augmentation = None + self.normalize = None + self.dataset = dataset + if self.dataset.transform is not None: + self._set_transforms(self.dataset.transform) + self.num_splits = num_splits + + def _set_transforms(self, x): + assert isinstance(x, (list, tuple)) and len(x) == 3, 'Expecting a tuple/list of 3 transforms' + self.dataset.transform = x[0] + self.augmentation = x[1] + self.normalize = x[2] + + @property + def transform(self): + return self.dataset.transform + + @transform.setter + def transform(self, x): + self._set_transforms(x) + + def _normalize(self, x): + return x if self.normalize is None else self.normalize(x) + + def __getitem__(self, i): + x, y = self.dataset[i] # all splits share the same dataset base transform + x_list = [self._normalize(x)] # first split only normalizes (this is the 'clean' split) + # run the full augmentation on the remaining splits + for _ in range(self.num_splits - 1): + x_list.append(self._normalize(self.augmentation(x))) + return tuple(x_list), y + + def __len__(self): + return len(self.dataset) diff --git a/pytorch-image-models/timm/data/dataset_factory.py b/pytorch-image-models/timm/data/dataset_factory.py new file mode 100644 index 0000000000000000000000000000000000000000..021d50be1c58f178a62bb117378b8f575c6a0258 --- /dev/null +++ b/pytorch-image-models/timm/data/dataset_factory.py @@ -0,0 +1,229 @@ +""" Dataset Factory + +Hacked together by / Copyright 2021, Ross Wightman +""" +import os +from typing import Optional + +from torchvision.datasets import CIFAR100, CIFAR10, MNIST, KMNIST, FashionMNIST, ImageFolder +try: + from torchvision.datasets import Places365 + has_places365 = True +except ImportError: + has_places365 = False +try: + from torchvision.datasets import INaturalist + has_inaturalist = True +except ImportError: + has_inaturalist = False +try: + from torchvision.datasets import QMNIST + has_qmnist = True +except ImportError: + has_qmnist = False +try: + from torchvision.datasets import ImageNet + has_imagenet = True +except ImportError: + has_imagenet = False + +from .dataset import IterableImageDataset, ImageDataset + +_TORCH_BASIC_DS = dict( + cifar10=CIFAR10, + cifar100=CIFAR100, + mnist=MNIST, + kmnist=KMNIST, + fashion_mnist=FashionMNIST, +) +_TRAIN_SYNONYM = dict(train=None, training=None) +_EVAL_SYNONYM = dict(val=None, valid=None, validation=None, eval=None, evaluation=None) + + +def _search_split(root, split): + # look for sub-folder with name of split in root and use that if it exists + split_name = split.split('[')[0] + try_root = os.path.join(root, split_name) + if os.path.exists(try_root): + return try_root + + def _try(syn): + for s in syn: + try_root = os.path.join(root, s) + if os.path.exists(try_root): + return try_root + return root + if split_name in _TRAIN_SYNONYM: + root = _try(_TRAIN_SYNONYM) + elif split_name in _EVAL_SYNONYM: + root = _try(_EVAL_SYNONYM) + return root + + +def create_dataset( + name: str, + root: Optional[str] = None, + split: str = 'validation', + search_split: bool = True, + class_map: dict = None, + load_bytes: bool = False, + is_training: bool = False, + download: bool = False, + batch_size: int = 1, + num_samples: Optional[int] = None, + seed: int = 42, + repeats: int = 0, + input_img_mode: str = 'RGB', + trust_remote_code: bool = False, + **kwargs, +): + """ Dataset factory method + + In parentheses after each arg are the type of dataset supported for each arg, one of: + * Folder - default, timm folder (or tar) based ImageDataset + * Torch - torchvision based datasets + * HFDS - Hugging Face Datasets + * HFIDS - Hugging Face Datasets Iterable (streaming mode, with IterableDataset) + * TFDS - Tensorflow-datasets wrapper in IterabeDataset interface via IterableImageDataset + * WDS - Webdataset + * All - any of the above + + Args: + name: Dataset name, empty is okay for folder based datasets + root: Root folder of dataset (All) + split: Dataset split (All) + search_split: Search for split specific child fold from root so one can specify + `imagenet/` instead of `/imagenet/val`, etc on cmd line / config. (Folder, Torch) + class_map: Specify class -> index mapping via text file or dict (Folder) + load_bytes: Load data, return images as undecoded bytes (Folder) + download: Download dataset if not present and supported (HFIDS, TFDS, Torch) + is_training: Create dataset in train mode, this is different from the split. + For Iterable / TDFS it enables shuffle, ignored for other datasets. (TFDS, WDS, HFIDS) + batch_size: Batch size hint for iterable datasets (TFDS, WDS, HFIDS) + seed: Seed for iterable datasets (TFDS, WDS, HFIDS) + repeats: Dataset repeats per iteration i.e. epoch (TFDS, WDS, HFIDS) + input_img_mode: Input image color conversion mode e.g. 'RGB', 'L' (folder, TFDS, WDS, HFDS, HFIDS) + trust_remote_code: Trust remote code in Hugging Face Datasets if True (HFDS, HFIDS) + **kwargs: Other args to pass through to underlying Dataset and/or Reader classes + + Returns: + Dataset object + """ + kwargs = {k: v for k, v in kwargs.items() if v is not None} + name = name.lower() + if name.startswith('torch/'): + name = name.split('/', 2)[-1] + torch_kwargs = dict(root=root, download=download, **kwargs) + if name in _TORCH_BASIC_DS: + ds_class = _TORCH_BASIC_DS[name] + use_train = split in _TRAIN_SYNONYM + ds = ds_class(train=use_train, **torch_kwargs) + elif name == 'inaturalist' or name == 'inat': + assert has_inaturalist, 'Please update to PyTorch 1.10, torchvision 0.11+ for Inaturalist' + target_type = 'full' + split_split = split.split('/') + if len(split_split) > 1: + target_type = split_split[0].split('_') + if len(target_type) == 1: + target_type = target_type[0] + split = split_split[-1] + if split in _TRAIN_SYNONYM: + split = '2021_train' + elif split in _EVAL_SYNONYM: + split = '2021_valid' + ds = INaturalist(version=split, target_type=target_type, **torch_kwargs) + elif name == 'places365': + assert has_places365, 'Please update to a newer PyTorch and torchvision for Places365 dataset.' + if split in _TRAIN_SYNONYM: + split = 'train-standard' + elif split in _EVAL_SYNONYM: + split = 'val' + ds = Places365(split=split, **torch_kwargs) + elif name == 'qmnist': + assert has_qmnist, 'Please update to a newer PyTorch and torchvision for QMNIST dataset.' + use_train = split in _TRAIN_SYNONYM + ds = QMNIST(train=use_train, **torch_kwargs) + elif name == 'imagenet': + assert has_imagenet, 'Please update to a newer PyTorch and torchvision for ImageNet dataset.' + if split in _EVAL_SYNONYM: + split = 'val' + ds = ImageNet(split=split, **torch_kwargs) + elif name == 'image_folder' or name == 'folder': + # in case torchvision ImageFolder is preferred over timm ImageDataset for some reason + if search_split and os.path.isdir(root): + # look for split specific sub-folder in root + root = _search_split(root, split) + ds = ImageFolder(root, **kwargs) + else: + assert False, f"Unknown torchvision dataset {name}" + elif name.startswith('hfds/'): + # NOTE right now, HF datasets default arrow format is a random-access Dataset, + # There will be a IterableDataset variant too, TBD + ds = ImageDataset( + root, + reader=name, + split=split, + class_map=class_map, + input_img_mode=input_img_mode, + trust_remote_code=trust_remote_code, + **kwargs, + ) + elif name.startswith('hfids/'): + ds = IterableImageDataset( + root, + reader=name, + split=split, + class_map=class_map, + is_training=is_training, + download=download, + batch_size=batch_size, + num_samples=num_samples, + repeats=repeats, + seed=seed, + input_img_mode=input_img_mode, + trust_remote_code=trust_remote_code, + **kwargs, + ) + elif name.startswith('tfds/'): + ds = IterableImageDataset( + root, + reader=name, + split=split, + class_map=class_map, + is_training=is_training, + download=download, + batch_size=batch_size, + num_samples=num_samples, + repeats=repeats, + seed=seed, + input_img_mode=input_img_mode, + **kwargs + ) + elif name.startswith('wds/'): + ds = IterableImageDataset( + root, + reader=name, + split=split, + class_map=class_map, + is_training=is_training, + batch_size=batch_size, + num_samples=num_samples, + repeats=repeats, + seed=seed, + input_img_mode=input_img_mode, + **kwargs + ) + else: + # FIXME support more advance split cfg for ImageFolder/Tar datasets in the future + if search_split and os.path.isdir(root): + # look for split specific sub-folder in root + root = _search_split(root, split) + ds = ImageDataset( + root, + reader=name, + class_map=class_map, + load_bytes=load_bytes, + input_img_mode=input_img_mode, + **kwargs, + ) + return ds diff --git a/pytorch-image-models/timm/data/dataset_info.py b/pytorch-image-models/timm/data/dataset_info.py new file mode 100644 index 0000000000000000000000000000000000000000..58e461961853ecf7f3eaabf54f6d086068214da5 --- /dev/null +++ b/pytorch-image-models/timm/data/dataset_info.py @@ -0,0 +1,73 @@ +from abc import ABC, abstractmethod +from typing import Dict, List, Optional, Union + + +class DatasetInfo(ABC): + + def __init__(self): + pass + + @abstractmethod + def num_classes(self): + pass + + @abstractmethod + def label_names(self): + pass + + @abstractmethod + def label_descriptions(self, detailed: bool = False, as_dict: bool = False) -> Union[List[str], Dict[str, str]]: + pass + + @abstractmethod + def index_to_label_name(self, index) -> str: + pass + + @abstractmethod + def index_to_description(self, index: int, detailed: bool = False) -> str: + pass + + @abstractmethod + def label_name_to_description(self, label: str, detailed: bool = False) -> str: + pass + + +class CustomDatasetInfo(DatasetInfo): + """ DatasetInfo that wraps passed values for custom datasets.""" + + def __init__( + self, + label_names: Union[List[str], Dict[int, str]], + label_descriptions: Optional[Dict[str, str]] = None + ): + super().__init__() + assert len(label_names) > 0 + self._label_names = label_names # label index => label name mapping + self._label_descriptions = label_descriptions # label name => label description mapping + if self._label_descriptions is not None: + # validate descriptions (label names required) + assert isinstance(self._label_descriptions, dict) + for n in self._label_names: + assert n in self._label_descriptions + + def num_classes(self): + return len(self._label_names) + + def label_names(self): + return self._label_names + + def label_descriptions(self, detailed: bool = False, as_dict: bool = False) -> Union[List[str], Dict[str, str]]: + return self._label_descriptions + + def label_name_to_description(self, label: str, detailed: bool = False) -> str: + if self._label_descriptions: + return self._label_descriptions[label] + return label # return label name itself if a descriptions is not present + + def index_to_label_name(self, index) -> str: + assert 0 <= index < len(self._label_names) + return self._label_names[index] + + def index_to_description(self, index: int, detailed: bool = False) -> str: + label = self.index_to_label_name(index) + return self.label_name_to_description(label, detailed=detailed) diff --git a/pytorch-image-models/timm/data/distributed_sampler.py b/pytorch-image-models/timm/data/distributed_sampler.py new file mode 100644 index 0000000000000000000000000000000000000000..54ff0459504a7f952d701720727ebd50d07e9c7a --- /dev/null +++ b/pytorch-image-models/timm/data/distributed_sampler.py @@ -0,0 +1,135 @@ +import math +import torch +from torch.utils.data import Sampler +import torch.distributed as dist + + +class OrderedDistributedSampler(Sampler): + """Sampler that restricts data loading to a subset of the dataset. + It is especially useful in conjunction with + :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each + process can pass a DistributedSampler instance as a DataLoader sampler, + and load a subset of the original dataset that is exclusive to it. + .. note:: + Dataset is assumed to be of constant size. + Arguments: + dataset: Dataset used for sampling. + num_replicas (optional): Number of processes participating in + distributed training. + rank (optional): Rank of the current process within num_replicas. + """ + + def __init__(self, dataset, num_replicas=None, rank=None): + if num_replicas is None: + if not dist.is_available(): + raise RuntimeError("Requires distributed package to be available") + num_replicas = dist.get_world_size() + if rank is None: + if not dist.is_available(): + raise RuntimeError("Requires distributed package to be available") + rank = dist.get_rank() + self.dataset = dataset + self.num_replicas = num_replicas + self.rank = rank + self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) + self.total_size = self.num_samples * self.num_replicas + + def __iter__(self): + indices = list(range(len(self.dataset))) + + # add extra samples to make it evenly divisible + indices += indices[:(self.total_size - len(indices))] + assert len(indices) == self.total_size + + # subsample + indices = indices[self.rank:self.total_size:self.num_replicas] + assert len(indices) == self.num_samples + + return iter(indices) + + def __len__(self): + return self.num_samples + + +class RepeatAugSampler(Sampler): + """Sampler that restricts data loading to a subset of the dataset for distributed, + with repeated augmentation. + It ensures that different each augmented version of a sample will be visible to a + different process (GPU). Heavily based on torch.utils.data.DistributedSampler + + This sampler was taken from https://github.com/facebookresearch/deit/blob/0c4b8f60/samplers.py + Used in + Copyright (c) 2015-present, Facebook, Inc. + """ + + def __init__( + self, + dataset, + num_replicas=None, + rank=None, + shuffle=True, + num_repeats=3, + selected_round=256, + selected_ratio=0, + ): + if num_replicas is None: + if not dist.is_available(): + raise RuntimeError("Requires distributed package to be available") + num_replicas = dist.get_world_size() + if rank is None: + if not dist.is_available(): + raise RuntimeError("Requires distributed package to be available") + rank = dist.get_rank() + self.dataset = dataset + self.num_replicas = num_replicas + self.rank = rank + self.shuffle = shuffle + self.num_repeats = num_repeats + self.epoch = 0 + self.num_samples = int(math.ceil(len(self.dataset) * num_repeats / self.num_replicas)) + self.total_size = self.num_samples * self.num_replicas + # Determine the number of samples to select per epoch for each rank. + # num_selected logic defaults to be the same as original RASampler impl, but this one can be tweaked + # via selected_ratio and selected_round args. + selected_ratio = selected_ratio or num_replicas # ratio to reduce selected samples by, num_replicas if 0 + if selected_round: + self.num_selected_samples = int(math.floor( + len(self.dataset) // selected_round * selected_round / selected_ratio)) + else: + self.num_selected_samples = int(math.ceil(len(self.dataset) / selected_ratio)) + + def __iter__(self): + # deterministically shuffle based on epoch + g = torch.Generator() + g.manual_seed(self.epoch) + if self.shuffle: + indices = torch.randperm(len(self.dataset), generator=g) + else: + indices = torch.arange(start=0, end=len(self.dataset)) + + # produce repeats e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2....] + if isinstance(self.num_repeats, float) and not self.num_repeats.is_integer(): + # resample for repeats w/ non-integer ratio + repeat_size = math.ceil(self.num_repeats * len(self.dataset)) + indices = indices[torch.tensor([int(i // self.num_repeats) for i in range(repeat_size)])] + else: + indices = torch.repeat_interleave(indices, repeats=int(self.num_repeats), dim=0) + indices = indices.tolist() # leaving as tensor thrashes dataloader memory + # add extra samples to make it evenly divisible + padding_size = self.total_size - len(indices) + if padding_size > 0: + indices += indices[:padding_size] + assert len(indices) == self.total_size + + # subsample per rank + indices = indices[self.rank:self.total_size:self.num_replicas] + assert len(indices) == self.num_samples + + # return up to num selected samples + return iter(indices[:self.num_selected_samples]) + + def __len__(self): + return self.num_selected_samples + + def set_epoch(self, epoch): + self.epoch = epoch diff --git a/pytorch-image-models/timm/data/imagenet_info.py b/pytorch-image-models/timm/data/imagenet_info.py new file mode 100644 index 0000000000000000000000000000000000000000..2a2e6910dc0a9b6a4ea36817da59af0b0cd0caf3 --- /dev/null +++ b/pytorch-image-models/timm/data/imagenet_info.py @@ -0,0 +1,95 @@ +import csv +import os +import pkgutil +import re +from typing import Dict, List, Optional, Union + +from .dataset_info import DatasetInfo + + +# NOTE no ambiguity wrt to mapping from # classes to ImageNet subset so far, but likely to change +_NUM_CLASSES_TO_SUBSET = { + 1000: 'imagenet-1k', + 11221: 'imagenet-21k-miil', # miil subset of fall11 + 11821: 'imagenet-12k', # timm specific 12k subset of fall11 + 21841: 'imagenet-22k', # as in fall11.tar + 21842: 'imagenet-22k-ms', # a Microsoft (for FocalNet) remapping of 22k w/ moves ImageNet-1k classes to first 1000 + 21843: 'imagenet-21k-goog', # Google's ImageNet full has two classes not in fall11 +} + +_SUBSETS = { + 'imagenet1k': 'imagenet_synsets.txt', + 'imagenet12k': 'imagenet12k_synsets.txt', + 'imagenet22k': 'imagenet22k_synsets.txt', + 'imagenet21k': 'imagenet21k_goog_synsets.txt', + 'imagenet21kgoog': 'imagenet21k_goog_synsets.txt', + 'imagenet21kmiil': 'imagenet21k_miil_synsets.txt', + 'imagenet22kms': 'imagenet22k_ms_synsets.txt', +} +_LEMMA_FILE = 'imagenet_synset_to_lemma.txt' +_DEFINITION_FILE = 'imagenet_synset_to_definition.txt' + + +def infer_imagenet_subset(model_or_cfg) -> Optional[str]: + if isinstance(model_or_cfg, dict): + num_classes = model_or_cfg.get('num_classes', None) + else: + num_classes = getattr(model_or_cfg, 'num_classes', None) + if not num_classes: + pretrained_cfg = getattr(model_or_cfg, 'pretrained_cfg', {}) + # FIXME at some point pretrained_cfg should include dataset-tag, + # which will be more robust than a guess based on num_classes + num_classes = pretrained_cfg.get('num_classes', None) + if not num_classes or num_classes not in _NUM_CLASSES_TO_SUBSET: + return None + return _NUM_CLASSES_TO_SUBSET[num_classes] + + +class ImageNetInfo(DatasetInfo): + + def __init__(self, subset: str = 'imagenet-1k'): + super().__init__() + subset = re.sub(r'[-_\s]', '', subset.lower()) + assert subset in _SUBSETS, f'Unknown imagenet subset {subset}.' + + # WordNet synsets (part-of-speach + offset) are the unique class label names for ImageNet classifiers + synset_file = _SUBSETS[subset] + synset_data = pkgutil.get_data(__name__, os.path.join('_info', synset_file)) + self._synsets = synset_data.decode('utf-8').splitlines() + + # WordNet lemmas (canonical dictionary form of word) and definitions are used to build + # the class descriptions. If detailed=True both are used, otherwise just the lemmas. + lemma_data = pkgutil.get_data(__name__, os.path.join('_info', _LEMMA_FILE)) + reader = csv.reader(lemma_data.decode('utf-8').splitlines(), delimiter='\t') + self._lemmas = dict(reader) + definition_data = pkgutil.get_data(__name__, os.path.join('_info', _DEFINITION_FILE)) + reader = csv.reader(definition_data.decode('utf-8').splitlines(), delimiter='\t') + self._definitions = dict(reader) + + def num_classes(self): + return len(self._synsets) + + def label_names(self): + return self._synsets + + def label_descriptions(self, detailed: bool = False, as_dict: bool = False) -> Union[List[str], Dict[str, str]]: + if as_dict: + return {label: self.label_name_to_description(label, detailed=detailed) for label in self._synsets} + else: + return [self.label_name_to_description(label, detailed=detailed) for label in self._synsets] + + def index_to_label_name(self, index) -> str: + assert 0 <= index < len(self._synsets), \ + f'Index ({index}) out of range for dataset with {len(self._synsets)} classes.' + return self._synsets[index] + + def index_to_description(self, index: int, detailed: bool = False) -> str: + label = self.index_to_label_name(index) + return self.label_name_to_description(label, detailed=detailed) + + def label_name_to_description(self, label: str, detailed: bool = False) -> str: + if detailed: + description = f'{self._lemmas[label]}: {self._definitions[label]}' + else: + description = f'{self._lemmas[label]}' + return description diff --git a/pytorch-image-models/timm/data/loader.py b/pytorch-image-models/timm/data/loader.py new file mode 100644 index 0000000000000000000000000000000000000000..3b4a6d0ed67679491dc1edc33bdf6bc25f57975d --- /dev/null +++ b/pytorch-image-models/timm/data/loader.py @@ -0,0 +1,409 @@ +""" Loader Factory, Fast Collate, CUDA Prefetcher + +Prefetcher and Fast Collate inspired by NVIDIA APEX example at +https://github.com/NVIDIA/apex/commit/d5e2bb4bdeedd27b1dfaf5bb2b24d6c000dee9be#diff-cf86c282ff7fba81fad27a559379d5bf + +Hacked together by / Copyright 2019, Ross Wightman +""" +import logging +import random +from contextlib import suppress +from functools import partial +from itertools import repeat +from typing import Callable, Optional, Tuple, Union + +import torch +import torch.utils.data +import numpy as np + +from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from .dataset import IterableImageDataset, ImageDataset +from .distributed_sampler import OrderedDistributedSampler, RepeatAugSampler +from .random_erasing import RandomErasing +from .mixup import FastCollateMixup +from .transforms_factory import create_transform + +_logger = logging.getLogger(__name__) + + +def fast_collate(batch): + """ A fast collation function optimized for uint8 images (np array or torch) and int64 targets (labels)""" + assert isinstance(batch[0], tuple) + batch_size = len(batch) + if isinstance(batch[0][0], tuple): + # This branch 'deinterleaves' and flattens tuples of input tensors into one tensor ordered by position + # such that all tuple of position n will end up in a torch.split(tensor, batch_size) in nth position + inner_tuple_size = len(batch[0][0]) + flattened_batch_size = batch_size * inner_tuple_size + targets = torch.zeros(flattened_batch_size, dtype=torch.int64) + tensor = torch.zeros((flattened_batch_size, *batch[0][0][0].shape), dtype=torch.uint8) + for i in range(batch_size): + assert len(batch[i][0]) == inner_tuple_size # all input tensor tuples must be same length + for j in range(inner_tuple_size): + targets[i + j * batch_size] = batch[i][1] + tensor[i + j * batch_size] += torch.from_numpy(batch[i][0][j]) + return tensor, targets + elif isinstance(batch[0][0], np.ndarray): + targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) + assert len(targets) == batch_size + tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) + for i in range(batch_size): + tensor[i] += torch.from_numpy(batch[i][0]) + return tensor, targets + elif isinstance(batch[0][0], torch.Tensor): + targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) + assert len(targets) == batch_size + tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) + for i in range(batch_size): + tensor[i].copy_(batch[i][0]) + return tensor, targets + else: + assert False + + +def adapt_to_chs(x, n): + if not isinstance(x, (tuple, list)): + x = tuple(repeat(x, n)) + elif len(x) != n: + x_mean = np.mean(x).item() + x = (x_mean,) * n + _logger.warning(f'Pretrained mean/std different shape than model, using avg value {x}.') + else: + assert len(x) == n, 'normalization stats must match image channels' + return x + + +class PrefetchLoader: + + def __init__( + self, + loader, + mean=IMAGENET_DEFAULT_MEAN, + std=IMAGENET_DEFAULT_STD, + channels=3, + device=torch.device('cuda'), + img_dtype=torch.float32, + fp16=False, + re_prob=0., + re_mode='const', + re_count=1, + re_num_splits=0): + + mean = adapt_to_chs(mean, channels) + std = adapt_to_chs(std, channels) + normalization_shape = (1, channels, 1, 1) + + self.loader = loader + self.device = device + if fp16: + # fp16 arg is deprecated, but will override dtype arg if set for bwd compat + img_dtype = torch.float16 + self.img_dtype = img_dtype + self.mean = torch.tensor( + [x * 255 for x in mean], device=device, dtype=img_dtype).view(normalization_shape) + self.std = torch.tensor( + [x * 255 for x in std], device=device, dtype=img_dtype).view(normalization_shape) + if re_prob > 0.: + self.random_erasing = RandomErasing( + probability=re_prob, + mode=re_mode, + max_count=re_count, + num_splits=re_num_splits, + device=device, + ) + else: + self.random_erasing = None + self.is_cuda = device.type == 'cuda' and torch.cuda.is_available() + self.is_npu = device.type == 'npu' and torch.npu.is_available() + + def __iter__(self): + first = True + if self.is_cuda: + stream = torch.cuda.Stream() + stream_context = partial(torch.cuda.stream, stream=stream) + elif self.is_npu: + stream = torch.npu.Stream() + stream_context = partial(torch.npu.stream, stream=stream) + else: + stream = None + stream_context = suppress + + for next_input, next_target in self.loader: + + with stream_context(): + next_input = next_input.to(device=self.device, non_blocking=True) + next_target = next_target.to(device=self.device, non_blocking=True) + next_input = next_input.to(self.img_dtype).sub_(self.mean).div_(self.std) + if self.random_erasing is not None: + next_input = self.random_erasing(next_input) + + if not first: + yield input, target + else: + first = False + + if stream is not None: + if self.is_cuda: + torch.cuda.current_stream().wait_stream(stream) + elif self.is_npu: + torch.npu.current_stream().wait_stream(stream) + + input = next_input + target = next_target + + yield input, target + + def __len__(self): + return len(self.loader) + + @property + def sampler(self): + return self.loader.sampler + + @property + def dataset(self): + return self.loader.dataset + + @property + def mixup_enabled(self): + if isinstance(self.loader.collate_fn, FastCollateMixup): + return self.loader.collate_fn.mixup_enabled + else: + return False + + @mixup_enabled.setter + def mixup_enabled(self, x): + if isinstance(self.loader.collate_fn, FastCollateMixup): + self.loader.collate_fn.mixup_enabled = x + + +def _worker_init(worker_id, worker_seeding='all'): + worker_info = torch.utils.data.get_worker_info() + assert worker_info.id == worker_id + if isinstance(worker_seeding, Callable): + seed = worker_seeding(worker_info) + random.seed(seed) + torch.manual_seed(seed) + np.random.seed(seed % (2 ** 32 - 1)) + else: + assert worker_seeding in ('all', 'part') + # random / torch seed already called in dataloader iter class w/ worker_info.seed + # to reproduce some old results (same seed + hparam combo), partial seeding is required (skip numpy re-seed) + if worker_seeding == 'all': + np.random.seed(worker_info.seed % (2 ** 32 - 1)) + + +def create_loader( + dataset: Union[ImageDataset, IterableImageDataset], + input_size: Union[int, Tuple[int, int], Tuple[int, int, int]], + batch_size: int, + is_training: bool = False, + no_aug: bool = False, + re_prob: float = 0., + re_mode: str = 'const', + re_count: int = 1, + re_split: bool = False, + train_crop_mode: Optional[str] = None, + scale: Optional[Tuple[float, float]] = None, + ratio: Optional[Tuple[float, float]] = None, + hflip: float = 0.5, + vflip: float = 0., + color_jitter: float = 0.4, + color_jitter_prob: Optional[float] = None, + grayscale_prob: float = 0., + gaussian_blur_prob: float = 0., + auto_augment: Optional[str] = None, + num_aug_repeats: int = 0, + num_aug_splits: int = 0, + interpolation: str = 'bilinear', + mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, + std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, + num_workers: int = 1, + distributed: bool = False, + crop_pct: Optional[float] = None, + crop_mode: Optional[str] = None, + crop_border_pixels: Optional[int] = None, + collate_fn: Optional[Callable] = None, + pin_memory: bool = False, + fp16: bool = False, # deprecated, use img_dtype + img_dtype: torch.dtype = torch.float32, + device: torch.device = torch.device('cuda'), + use_prefetcher: bool = True, + use_multi_epochs_loader: bool = False, + persistent_workers: bool = True, + worker_seeding: str = 'all', + tf_preprocessing: bool = False, +): + """ + + Args: + dataset: The image dataset to load. + input_size: Target input size (channels, height, width) tuple or size scalar. + batch_size: Number of samples in a batch. + is_training: Return training (random) transforms. + no_aug: Disable augmentation for training (useful for debug). + re_prob: Random erasing probability. + re_mode: Random erasing fill mode. + re_count: Number of random erasing regions. + re_split: Control split of random erasing across batch size. + scale: Random resize scale range (crop area, < 1.0 => zoom in). + ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR). + hflip: Horizontal flip probability. + vflip: Vertical flip probability. + color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue). + Scalar is applied as (scalar,) * 3 (no hue). + color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug + grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug). + gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug). + auto_augment: Auto augment configuration string (see auto_augment.py). + num_aug_repeats: Enable special sampler to repeat same augmentation across distributed GPUs. + num_aug_splits: Enable mode where augmentations can be split across the batch. + interpolation: Image interpolation mode. + mean: Image normalization mean. + std: Image normalization standard deviation. + num_workers: Num worker processes per DataLoader. + distributed: Enable dataloading for distributed training. + crop_pct: Inference crop percentage (output size / resize size). + crop_mode: Inference crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None. + crop_border_pixels: Inference crop border of specified # pixels around edge of original image. + collate_fn: Override default collate_fn. + pin_memory: Pin memory for device transfer. + fp16: Deprecated argument for half-precision input dtype. Use img_dtype. + img_dtype: Data type for input image. + device: Device to transfer inputs and targets to. + use_prefetcher: Use efficient pre-fetcher to load samples onto device. + use_multi_epochs_loader: + persistent_workers: Enable persistent worker processes. + worker_seeding: Control worker random seeding at init. + tf_preprocessing: Use TF 1.0 inference preprocessing for testing model ports. + + Returns: + DataLoader + """ + re_num_splits = 0 + if re_split: + # apply RE to second half of batch if no aug split otherwise line up with aug split + re_num_splits = num_aug_splits or 2 + dataset.transform = create_transform( + input_size, + is_training=is_training, + no_aug=no_aug, + train_crop_mode=train_crop_mode, + scale=scale, + ratio=ratio, + hflip=hflip, + vflip=vflip, + color_jitter=color_jitter, + color_jitter_prob=color_jitter_prob, + grayscale_prob=grayscale_prob, + gaussian_blur_prob=gaussian_blur_prob, + auto_augment=auto_augment, + interpolation=interpolation, + mean=mean, + std=std, + crop_pct=crop_pct, + crop_mode=crop_mode, + crop_border_pixels=crop_border_pixels, + re_prob=re_prob, + re_mode=re_mode, + re_count=re_count, + re_num_splits=re_num_splits, + tf_preprocessing=tf_preprocessing, + use_prefetcher=use_prefetcher, + separate=num_aug_splits > 0, + ) + + if isinstance(dataset, IterableImageDataset): + # give Iterable datasets early knowledge of num_workers so that sample estimates + # are correct before worker processes are launched + dataset.set_loader_cfg(num_workers=num_workers) + + sampler = None + if distributed and not isinstance(dataset, torch.utils.data.IterableDataset): + if is_training: + if num_aug_repeats: + sampler = RepeatAugSampler(dataset, num_repeats=num_aug_repeats) + else: + sampler = torch.utils.data.distributed.DistributedSampler(dataset) + else: + # This will add extra duplicate entries to result in equal num + # of samples per-process, will slightly alter validation results + sampler = OrderedDistributedSampler(dataset) + else: + assert num_aug_repeats == 0, "RepeatAugment not currently supported in non-distributed or IterableDataset use" + + if collate_fn is None: + collate_fn = fast_collate if use_prefetcher else torch.utils.data.dataloader.default_collate + + loader_class = torch.utils.data.DataLoader + if use_multi_epochs_loader: + loader_class = MultiEpochsDataLoader + + loader_args = dict( + batch_size=batch_size, + shuffle=not isinstance(dataset, torch.utils.data.IterableDataset) and sampler is None and is_training, + num_workers=num_workers, + sampler=sampler, + collate_fn=collate_fn, + pin_memory=pin_memory, + drop_last=is_training, + worker_init_fn=partial(_worker_init, worker_seeding=worker_seeding), + persistent_workers=persistent_workers + ) + try: + loader = loader_class(dataset, **loader_args) + except TypeError as e: + loader_args.pop('persistent_workers') # only in Pytorch 1.7+ + loader = loader_class(dataset, **loader_args) + if use_prefetcher: + prefetch_re_prob = re_prob if is_training and not no_aug else 0. + loader = PrefetchLoader( + loader, + mean=mean, + std=std, + channels=input_size[0], + device=device, + fp16=fp16, # deprecated, use img_dtype + img_dtype=img_dtype, + re_prob=prefetch_re_prob, + re_mode=re_mode, + re_count=re_count, + re_num_splits=re_num_splits + ) + + return loader + + +class MultiEpochsDataLoader(torch.utils.data.DataLoader): + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self._DataLoader__initialized = False + if self.batch_sampler is None: + self.sampler = _RepeatSampler(self.sampler) + else: + self.batch_sampler = _RepeatSampler(self.batch_sampler) + self._DataLoader__initialized = True + self.iterator = super().__iter__() + + def __len__(self): + return len(self.sampler) if self.batch_sampler is None else len(self.batch_sampler.sampler) + + def __iter__(self): + for i in range(len(self)): + yield next(self.iterator) + + +class _RepeatSampler(object): + """ Sampler that repeats forever. + + Args: + sampler (Sampler) + """ + + def __init__(self, sampler): + self.sampler = sampler + + def __iter__(self): + while True: + yield from iter(self.sampler) diff --git a/pytorch-image-models/timm/data/mixup.py b/pytorch-image-models/timm/data/mixup.py new file mode 100644 index 0000000000000000000000000000000000000000..26dc23915232156608cca38b66a678f4f3dacf8e --- /dev/null +++ b/pytorch-image-models/timm/data/mixup.py @@ -0,0 +1,316 @@ +""" Mixup and Cutmix + +Papers: +mixup: Beyond Empirical Risk Minimization (https://arxiv.org/abs/1710.09412) + +CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (https://arxiv.org/abs/1905.04899) + +Code Reference: +CutMix: https://github.com/clovaai/CutMix-PyTorch + +Hacked together by / Copyright 2019, Ross Wightman +""" +import numpy as np +import torch + + +def one_hot(x, num_classes, on_value=1., off_value=0.): + x = x.long().view(-1, 1) + return torch.full((x.size()[0], num_classes), off_value, device=x.device).scatter_(1, x, on_value) + + +def mixup_target(target, num_classes, lam=1., smoothing=0.0): + off_value = smoothing / num_classes + on_value = 1. - smoothing + off_value + y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value) + y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value) + return y1 * lam + y2 * (1. - lam) + + +def rand_bbox(img_shape, lam, margin=0., count=None): + """ Standard CutMix bounding-box + Generates a random square bbox based on lambda value. This impl includes + support for enforcing a border margin as percent of bbox dimensions. + + Args: + img_shape (tuple): Image shape as tuple + lam (float): Cutmix lambda value + margin (float): Percentage of bbox dimension to enforce as margin (reduce amount of box outside image) + count (int): Number of bbox to generate + """ + ratio = np.sqrt(1 - lam) + img_h, img_w = img_shape[-2:] + cut_h, cut_w = int(img_h * ratio), int(img_w * ratio) + margin_y, margin_x = int(margin * cut_h), int(margin * cut_w) + cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count) + cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count) + yl = np.clip(cy - cut_h // 2, 0, img_h) + yh = np.clip(cy + cut_h // 2, 0, img_h) + xl = np.clip(cx - cut_w // 2, 0, img_w) + xh = np.clip(cx + cut_w // 2, 0, img_w) + return yl, yh, xl, xh + + +def rand_bbox_minmax(img_shape, minmax, count=None): + """ Min-Max CutMix bounding-box + Inspired by Darknet cutmix impl, generates a random rectangular bbox + based on min/max percent values applied to each dimension of the input image. + + Typical defaults for minmax are usually in the .2-.3 for min and .8-.9 range for max. + + Args: + img_shape (tuple): Image shape as tuple + minmax (tuple or list): Min and max bbox ratios (as percent of image size) + count (int): Number of bbox to generate + """ + assert len(minmax) == 2 + img_h, img_w = img_shape[-2:] + cut_h = np.random.randint(int(img_h * minmax[0]), int(img_h * minmax[1]), size=count) + cut_w = np.random.randint(int(img_w * minmax[0]), int(img_w * minmax[1]), size=count) + yl = np.random.randint(0, img_h - cut_h, size=count) + xl = np.random.randint(0, img_w - cut_w, size=count) + yu = yl + cut_h + xu = xl + cut_w + return yl, yu, xl, xu + + +def cutmix_bbox_and_lam(img_shape, lam, ratio_minmax=None, correct_lam=True, count=None): + """ Generate bbox and apply lambda correction. + """ + if ratio_minmax is not None: + yl, yu, xl, xu = rand_bbox_minmax(img_shape, ratio_minmax, count=count) + else: + yl, yu, xl, xu = rand_bbox(img_shape, lam, count=count) + if correct_lam or ratio_minmax is not None: + bbox_area = (yu - yl) * (xu - xl) + lam = 1. - bbox_area / float(img_shape[-2] * img_shape[-1]) + return (yl, yu, xl, xu), lam + + +class Mixup: + """ Mixup/Cutmix that applies different params to each element or whole batch + + Args: + mixup_alpha (float): mixup alpha value, mixup is active if > 0. + cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0. + cutmix_minmax (List[float]): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None. + prob (float): probability of applying mixup or cutmix per batch or element + switch_prob (float): probability of switching to cutmix instead of mixup when both are active + mode (str): how to apply mixup/cutmix params (per 'batch', 'pair' (pair of elements), 'elem' (element) + correct_lam (bool): apply lambda correction when cutmix bbox clipped by image borders + label_smoothing (float): apply label smoothing to the mixed target tensor + num_classes (int): number of classes for target + """ + def __init__(self, mixup_alpha=1., cutmix_alpha=0., cutmix_minmax=None, prob=1.0, switch_prob=0.5, + mode='batch', correct_lam=True, label_smoothing=0.1, num_classes=1000): + self.mixup_alpha = mixup_alpha + self.cutmix_alpha = cutmix_alpha + self.cutmix_minmax = cutmix_minmax + if self.cutmix_minmax is not None: + assert len(self.cutmix_minmax) == 2 + # force cutmix alpha == 1.0 when minmax active to keep logic simple & safe + self.cutmix_alpha = 1.0 + self.mix_prob = prob + self.switch_prob = switch_prob + self.label_smoothing = label_smoothing + self.num_classes = num_classes + self.mode = mode + self.correct_lam = correct_lam # correct lambda based on clipped area for cutmix + self.mixup_enabled = True # set to false to disable mixing (intended tp be set by train loop) + + def _params_per_elem(self, batch_size): + lam = np.ones(batch_size, dtype=np.float32) + use_cutmix = np.zeros(batch_size, dtype=bool) + if self.mixup_enabled: + if self.mixup_alpha > 0. and self.cutmix_alpha > 0.: + use_cutmix = np.random.rand(batch_size) < self.switch_prob + lam_mix = np.where( + use_cutmix, + np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size), + np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size)) + elif self.mixup_alpha > 0.: + lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size) + elif self.cutmix_alpha > 0.: + use_cutmix = np.ones(batch_size, dtype=bool) + lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size) + else: + assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true." + lam = np.where(np.random.rand(batch_size) < self.mix_prob, lam_mix.astype(np.float32), lam) + return lam, use_cutmix + + def _params_per_batch(self): + lam = 1. + use_cutmix = False + if self.mixup_enabled and np.random.rand() < self.mix_prob: + if self.mixup_alpha > 0. and self.cutmix_alpha > 0.: + use_cutmix = np.random.rand() < self.switch_prob + lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) if use_cutmix else \ + np.random.beta(self.mixup_alpha, self.mixup_alpha) + elif self.mixup_alpha > 0.: + lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha) + elif self.cutmix_alpha > 0.: + use_cutmix = True + lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) + else: + assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true." + lam = float(lam_mix) + return lam, use_cutmix + + def _mix_elem(self, x): + batch_size = len(x) + lam_batch, use_cutmix = self._params_per_elem(batch_size) + x_orig = x.clone() # need to keep an unmodified original for mixing source + for i in range(batch_size): + j = batch_size - i - 1 + lam = lam_batch[i] + if lam != 1.: + if use_cutmix[i]: + (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( + x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] + lam_batch[i] = lam + else: + x[i] = x[i] * lam + x_orig[j] * (1 - lam) + return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) + + def _mix_pair(self, x): + batch_size = len(x) + lam_batch, use_cutmix = self._params_per_elem(batch_size // 2) + x_orig = x.clone() # need to keep an unmodified original for mixing source + for i in range(batch_size // 2): + j = batch_size - i - 1 + lam = lam_batch[i] + if lam != 1.: + if use_cutmix[i]: + (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( + x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] + x[j][:, yl:yh, xl:xh] = x_orig[i][:, yl:yh, xl:xh] + lam_batch[i] = lam + else: + x[i] = x[i] * lam + x_orig[j] * (1 - lam) + x[j] = x[j] * lam + x_orig[i] * (1 - lam) + lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) + return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) + + def _mix_batch(self, x): + lam, use_cutmix = self._params_per_batch() + if lam == 1.: + return 1. + if use_cutmix: + (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( + x.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + x[:, :, yl:yh, xl:xh] = x.flip(0)[:, :, yl:yh, xl:xh] + else: + x_flipped = x.flip(0).mul_(1. - lam) + x.mul_(lam).add_(x_flipped) + return lam + + def __call__(self, x, target): + assert len(x) % 2 == 0, 'Batch size should be even when using this' + if self.mode == 'elem': + lam = self._mix_elem(x) + elif self.mode == 'pair': + lam = self._mix_pair(x) + else: + lam = self._mix_batch(x) + target = mixup_target(target, self.num_classes, lam, self.label_smoothing) + return x, target + + +class FastCollateMixup(Mixup): + """ Fast Collate w/ Mixup/Cutmix that applies different params to each element or whole batch + + A Mixup impl that's performed while collating the batches. + """ + + def _mix_elem_collate(self, output, batch, half=False): + batch_size = len(batch) + num_elem = batch_size // 2 if half else batch_size + assert len(output) == num_elem + lam_batch, use_cutmix = self._params_per_elem(num_elem) + for i in range(num_elem): + j = batch_size - i - 1 + lam = lam_batch[i] + mixed = batch[i][0] + if lam != 1.: + if use_cutmix[i]: + if not half: + mixed = mixed.copy() + (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( + output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] + lam_batch[i] = lam + else: + mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam) + np.rint(mixed, out=mixed) + output[i] += torch.from_numpy(mixed.astype(np.uint8)) + if half: + lam_batch = np.concatenate((lam_batch, np.ones(num_elem))) + return torch.tensor(lam_batch).unsqueeze(1) + + def _mix_pair_collate(self, output, batch): + batch_size = len(batch) + lam_batch, use_cutmix = self._params_per_elem(batch_size // 2) + for i in range(batch_size // 2): + j = batch_size - i - 1 + lam = lam_batch[i] + mixed_i = batch[i][0] + mixed_j = batch[j][0] + assert 0 <= lam <= 1.0 + if lam < 1.: + if use_cutmix[i]: + (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( + output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + patch_i = mixed_i[:, yl:yh, xl:xh].copy() + mixed_i[:, yl:yh, xl:xh] = mixed_j[:, yl:yh, xl:xh] + mixed_j[:, yl:yh, xl:xh] = patch_i + lam_batch[i] = lam + else: + mixed_temp = mixed_i.astype(np.float32) * lam + mixed_j.astype(np.float32) * (1 - lam) + mixed_j = mixed_j.astype(np.float32) * lam + mixed_i.astype(np.float32) * (1 - lam) + mixed_i = mixed_temp + np.rint(mixed_j, out=mixed_j) + np.rint(mixed_i, out=mixed_i) + output[i] += torch.from_numpy(mixed_i.astype(np.uint8)) + output[j] += torch.from_numpy(mixed_j.astype(np.uint8)) + lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) + return torch.tensor(lam_batch).unsqueeze(1) + + def _mix_batch_collate(self, output, batch): + batch_size = len(batch) + lam, use_cutmix = self._params_per_batch() + if use_cutmix: + (yl, yh, xl, xh), lam = cutmix_bbox_and_lam( + output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) + for i in range(batch_size): + j = batch_size - i - 1 + mixed = batch[i][0] + if lam != 1.: + if use_cutmix: + mixed = mixed.copy() # don't want to modify the original while iterating + mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] + else: + mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam) + np.rint(mixed, out=mixed) + output[i] += torch.from_numpy(mixed.astype(np.uint8)) + return lam + + def __call__(self, batch, _=None): + batch_size = len(batch) + assert batch_size % 2 == 0, 'Batch size should be even when using this' + half = 'half' in self.mode + if half: + batch_size //= 2 + output = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) + if self.mode == 'elem' or self.mode == 'half': + lam = self._mix_elem_collate(output, batch, half=half) + elif self.mode == 'pair': + lam = self._mix_pair_collate(output, batch) + else: + lam = self._mix_batch_collate(output, batch) + target = torch.tensor([b[1] for b in batch], dtype=torch.int64) + target = mixup_target(target, self.num_classes, lam, self.label_smoothing) + target = target[:batch_size] + return output, target + diff --git a/pytorch-image-models/timm/data/random_erasing.py b/pytorch-image-models/timm/data/random_erasing.py new file mode 100644 index 0000000000000000000000000000000000000000..1dee5f86a2e40d3582001fdba1c49b6d61a4e31b --- /dev/null +++ b/pytorch-image-models/timm/data/random_erasing.py @@ -0,0 +1,117 @@ +""" Random Erasing (Cutout) + +Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0 +Copyright Zhun Zhong & Liang Zheng + +Hacked together by / Copyright 2019, Ross Wightman +""" +import random +import math + +import torch + + +def _get_pixels(per_pixel, rand_color, patch_size, dtype=torch.float32, device='cuda'): + # NOTE I've seen CUDA illegal memory access errors being caused by the normal_() + # paths, flip the order so normal is run on CPU if this becomes a problem + # Issue has been fixed in master https://github.com/pytorch/pytorch/issues/19508 + if per_pixel: + return torch.empty(patch_size, dtype=dtype, device=device).normal_() + elif rand_color: + return torch.empty((patch_size[0], 1, 1), dtype=dtype, device=device).normal_() + else: + return torch.zeros((patch_size[0], 1, 1), dtype=dtype, device=device) + + +class RandomErasing: + """ Randomly selects a rectangle region in an image and erases its pixels. + 'Random Erasing Data Augmentation' by Zhong et al. + See https://arxiv.org/pdf/1708.04896.pdf + + This variant of RandomErasing is intended to be applied to either a batch + or single image tensor after it has been normalized by dataset mean and std. + Args: + probability: Probability that the Random Erasing operation will be performed. + min_area: Minimum percentage of erased area wrt input image area. + max_area: Maximum percentage of erased area wrt input image area. + min_aspect: Minimum aspect ratio of erased area. + mode: pixel color mode, one of 'const', 'rand', or 'pixel' + 'const' - erase block is constant color of 0 for all channels + 'rand' - erase block is same per-channel random (normal) color + 'pixel' - erase block is per-pixel random (normal) color + max_count: maximum number of erasing blocks per image, area per box is scaled by count. + per-image count is randomly chosen between 1 and this value. + """ + + def __init__( + self, + probability=0.5, + min_area=0.02, + max_area=1/3, + min_aspect=0.3, + max_aspect=None, + mode='const', + min_count=1, + max_count=None, + num_splits=0, + device='cuda', + ): + self.probability = probability + self.min_area = min_area + self.max_area = max_area + max_aspect = max_aspect or 1 / min_aspect + self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) + self.min_count = min_count + self.max_count = max_count or min_count + self.num_splits = num_splits + self.mode = mode.lower() + self.rand_color = False + self.per_pixel = False + if self.mode == 'rand': + self.rand_color = True # per block random normal + elif self.mode == 'pixel': + self.per_pixel = True # per pixel random normal + else: + assert not self.mode or self.mode == 'const' + self.device = device + + def _erase(self, img, chan, img_h, img_w, dtype): + if random.random() > self.probability: + return + area = img_h * img_w + count = self.min_count if self.min_count == self.max_count else \ + random.randint(self.min_count, self.max_count) + for _ in range(count): + for attempt in range(10): + target_area = random.uniform(self.min_area, self.max_area) * area / count + aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) + h = int(round(math.sqrt(target_area * aspect_ratio))) + w = int(round(math.sqrt(target_area / aspect_ratio))) + if w < img_w and h < img_h: + top = random.randint(0, img_h - h) + left = random.randint(0, img_w - w) + img[:, top:top + h, left:left + w] = _get_pixels( + self.per_pixel, + self.rand_color, + (chan, h, w), + dtype=dtype, + device=self.device, + ) + break + + def __call__(self, input): + if len(input.size()) == 3: + self._erase(input, *input.size(), input.dtype) + else: + batch_size, chan, img_h, img_w = input.size() + # skip first slice of batch if num_splits is set (for clean portion of samples) + batch_start = batch_size // self.num_splits if self.num_splits > 1 else 0 + for i in range(batch_start, batch_size): + self._erase(input[i], chan, img_h, img_w, input.dtype) + return input + + def __repr__(self): + # NOTE simplified state for repr + fs = self.__class__.__name__ + f'(p={self.probability}, mode={self.mode}' + fs += f', count=({self.min_count}, {self.max_count}))' + return fs diff --git a/pytorch-image-models/timm/data/readers/__init__.py b/pytorch-image-models/timm/data/readers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..63e4e6492800b7fd2aaf72d9db88ac0eae23c63a --- /dev/null +++ b/pytorch-image-models/timm/data/readers/__init__.py @@ -0,0 +1,2 @@ +from .reader_factory import create_reader +from .img_extensions import * diff --git a/pytorch-image-models/timm/data/readers/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1d6ab8c852adbf3115616bc8ba8ceaa328ea2594 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/class_map.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/class_map.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8fca7c3ea56cd43cd63019f1f09f0fd0018df131 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/class_map.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/img_extensions.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/img_extensions.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a877b4e50670e1db58dd6e80e5367a985c976d8a Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/img_extensions.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..712ba829b5bbf622a213889192de20b60d074aef Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_factory.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..861887f0c87ed21bac7ca0bf08eedcc398361e00 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_hfds.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_hfds.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e3e1589862c452b98e12e70471d314221f8360af Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_hfds.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_image_folder.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_folder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ab08faff099dcd698c308105e01d3f4145efde0d Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_folder.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_image_in_tar.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_in_tar.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..06c451095fde9c090e1068a29e1dd1e1be27474c Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_in_tar.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/class_map.py b/pytorch-image-models/timm/data/readers/class_map.py new file mode 100644 index 0000000000000000000000000000000000000000..885be6e278425db32b623327be6f083ef2266941 --- /dev/null +++ b/pytorch-image-models/timm/data/readers/class_map.py @@ -0,0 +1,23 @@ +import os +import pickle + + +def load_class_map(map_or_filename, root=''): + if isinstance(map_or_filename, dict): + assert dict, 'class_map dict must be non-empty' + return map_or_filename + class_map_path = map_or_filename + if not os.path.exists(class_map_path): + class_map_path = os.path.join(root, class_map_path) + assert os.path.exists(class_map_path), 'Cannot locate specified class map file (%s)' % map_or_filename + class_map_ext = os.path.splitext(map_or_filename)[-1].lower() + if class_map_ext == '.txt': + with open(class_map_path) as f: + class_to_idx = {v.strip(): k for k, v in enumerate(f)} + elif class_map_ext == '.pkl': + with open(class_map_path, 'rb') as f: + class_to_idx = pickle.load(f) + else: + assert False, f'Unsupported class map file extension ({class_map_ext}).' + return class_to_idx + diff --git a/pytorch-image-models/timm/data/readers/img_extensions.py b/pytorch-image-models/timm/data/readers/img_extensions.py new file mode 100644 index 0000000000000000000000000000000000000000..45c85aabd00ca5ebf7bd6fa85c674570fe60f9c8 --- /dev/null +++ b/pytorch-image-models/timm/data/readers/img_extensions.py @@ -0,0 +1,50 @@ +from copy import deepcopy + +__all__ = ['get_img_extensions', 'is_img_extension', 'set_img_extensions', 'add_img_extensions', 'del_img_extensions'] + + +IMG_EXTENSIONS = ('.png', '.jpg', '.jpeg') # singleton, kept public for bwd compat use +_IMG_EXTENSIONS_SET = set(IMG_EXTENSIONS) # set version, private, kept in sync + + +def _set_extensions(extensions): + global IMG_EXTENSIONS + global _IMG_EXTENSIONS_SET + dedupe = set() # NOTE de-duping tuple while keeping original order + IMG_EXTENSIONS = tuple(x for x in extensions if x not in dedupe and not dedupe.add(x)) + _IMG_EXTENSIONS_SET = set(extensions) + + +def _valid_extension(x: str): + return x and isinstance(x, str) and len(x) >= 2 and x.startswith('.') + + +def is_img_extension(ext): + return ext in _IMG_EXTENSIONS_SET + + +def get_img_extensions(as_set=False): + return deepcopy(_IMG_EXTENSIONS_SET if as_set else IMG_EXTENSIONS) + + +def set_img_extensions(extensions): + assert len(extensions) + for x in extensions: + assert _valid_extension(x) + _set_extensions(extensions) + + +def add_img_extensions(ext): + if not isinstance(ext, (list, tuple, set)): + ext = (ext,) + for x in ext: + assert _valid_extension(x) + extensions = IMG_EXTENSIONS + tuple(ext) + _set_extensions(extensions) + + +def del_img_extensions(ext): + if not isinstance(ext, (list, tuple, set)): + ext = (ext,) + extensions = tuple(x for x in IMG_EXTENSIONS if x not in ext) + _set_extensions(extensions) diff --git a/pytorch-image-models/timm/data/readers/reader.py b/pytorch-image-models/timm/data/readers/reader.py new file mode 100644 index 0000000000000000000000000000000000000000..fe55d3135f19f7315150d5e52bbb186735096a85 --- /dev/null +++ b/pytorch-image-models/timm/data/readers/reader.py @@ -0,0 +1,17 @@ +from abc import abstractmethod + + +class Reader: + def __init__(self): + pass + + @abstractmethod + def _filename(self, index, basename=False, absolute=False): + pass + + def filename(self, index, basename=False, absolute=False): + return self._filename(index, basename=basename, absolute=absolute) + + def filenames(self, basename=False, absolute=False): + return [self._filename(index, basename=basename, absolute=absolute) for index in range(len(self))] + diff --git a/pytorch-image-models/timm/data/readers/reader_factory.py b/pytorch-image-models/timm/data/readers/reader_factory.py new file mode 100644 index 0000000000000000000000000000000000000000..cfe1910f5a68179b24ecaabecb1b57c6566bd840 --- /dev/null +++ b/pytorch-image-models/timm/data/readers/reader_factory.py @@ -0,0 +1,45 @@ +import os +from typing import Optional + +from .reader_image_folder import ReaderImageFolder +from .reader_image_in_tar import ReaderImageInTar + + +def create_reader( + name: str, + root: Optional[str] = None, + split: str = 'train', + **kwargs, +): + kwargs = {k: v for k, v in kwargs.items() if v is not None} + name = name.lower() + name = name.split('/', 1) + prefix = '' + if len(name) > 1: + prefix = name[0] + name = name[-1] + + # FIXME improve the selection right now just tfds prefix or fallback path, will need options to + # explicitly select other options shortly + if prefix == 'hfds': + from .reader_hfds import ReaderHfds # defer Hf datasets import + reader = ReaderHfds(name=name, root=root, split=split, **kwargs) + elif prefix == 'hfids': + from .reader_hfids import ReaderHfids # defer HF datasets import + reader = ReaderHfids(name=name, root=root, split=split, **kwargs) + elif prefix == 'tfds': + from .reader_tfds import ReaderTfds # defer tensorflow import + reader = ReaderTfds(name=name, root=root, split=split, **kwargs) + elif prefix == 'wds': + from .reader_wds import ReaderWds + kwargs.pop('download', False) + reader = ReaderWds(root=root, name=name, split=split, **kwargs) + else: + assert os.path.exists(root) + # default fallback path (backwards compat), use image tar if root is a .tar file, otherwise image folder + # FIXME support split here or in reader? + if os.path.isfile(root) and os.path.splitext(root)[1] == '.tar': + reader = ReaderImageInTar(root, **kwargs) + else: + reader = ReaderImageFolder(root, **kwargs) + return reader diff --git a/pytorch-image-models/timm/data/readers/reader_hfds.py b/pytorch-image-models/timm/data/readers/reader_hfds.py new file mode 100644 index 0000000000000000000000000000000000000000..13f8e24488d1ffc10a24d501cd1d686f8e4578a0 --- /dev/null +++ b/pytorch-image-models/timm/data/readers/reader_hfds.py @@ -0,0 +1,86 @@ +""" Dataset reader that wraps Hugging Face datasets + +Hacked together by / Copyright 2022 Ross Wightman +""" +import io +import math +from typing import Optional + +import torch +import torch.distributed as dist +from PIL import Image + +try: + import datasets +except ImportError as e: + print("Please install Hugging Face datasets package `pip install datasets`.") + raise e +from .class_map import load_class_map +from .reader import Reader + + +def get_class_labels(info, label_key='label'): + if 'label' not in info.features: + return {} + class_label = info.features[label_key] + class_to_idx = {n: class_label.str2int(n) for n in class_label.names} + return class_to_idx + + +class ReaderHfds(Reader): + + def __init__( + self, + name: str, + root: Optional[str] = None, + split: str = 'train', + class_map: dict = None, + input_key: str = 'image', + target_key: str = 'label', + download: bool = False, + trust_remote_code: bool = False + ): + """ + """ + super().__init__() + self.root = root + self.split = split + self.dataset = datasets.load_dataset( + name, # 'name' maps to path arg in hf datasets + split=split, + cache_dir=self.root, # timm doesn't expect hidden cache dir for datasets, specify a path if root set + trust_remote_code=trust_remote_code + ) + # leave decode for caller, plus we want easy access to original path names... + self.dataset = self.dataset.cast_column(input_key, datasets.Image(decode=False)) + + self.image_key = input_key + self.label_key = target_key + self.remap_class = False + if class_map: + self.class_to_idx = load_class_map(class_map) + self.remap_class = True + else: + self.class_to_idx = get_class_labels(self.dataset.info, self.label_key) + self.split_info = self.dataset.info.splits[split] + self.num_samples = self.split_info.num_examples + + def __getitem__(self, index): + item = self.dataset[index] + image = item[self.image_key] + if 'bytes' in image and image['bytes']: + image = io.BytesIO(image['bytes']) + else: + assert 'path' in image and image['path'] + image = open(image['path'], 'rb') + label = item[self.label_key] + if self.remap_class: + label = self.class_to_idx[label] + return image, label + + def __len__(self): + return len(self.dataset) + + def _filename(self, index, basename=False, absolute=False): + item = self.dataset[index] + return item[self.image_key]['path'] diff --git a/pytorch-image-models/timm/data/readers/reader_hfids.py b/pytorch-image-models/timm/data/readers/reader_hfids.py new file mode 100644 index 0000000000000000000000000000000000000000..943ce2158bf7f61f2843dd9e79f2ba9af4a68541 --- /dev/null +++ b/pytorch-image-models/timm/data/readers/reader_hfids.py @@ -0,0 +1,220 @@ +""" Dataset reader for HF IterableDataset +""" +import math +import os +from itertools import repeat, chain +from typing import Optional + +import torch +import torch.distributed as dist +from PIL import Image + +try: + import datasets + from datasets.distributed import split_dataset_by_node + from datasets.splits import SplitInfo +except ImportError as e: + print("Please install Hugging Face datasets package `pip install datasets`.") + raise e + + +from .class_map import load_class_map +from .reader import Reader +from .shared_count import SharedCount + + +SHUFFLE_SIZE = int(os.environ.get('HFIDS_SHUFFLE_SIZE', 4096)) + + +class ReaderHfids(Reader): + def __init__( + self, + name: str, + root: Optional[str] = None, + split: str = 'train', + is_training: bool = False, + batch_size: int = 1, + download: bool = False, + repeats: int = 0, + seed: int = 42, + class_map: Optional[dict] = None, + input_key: str = 'image', + input_img_mode: str = 'RGB', + target_key: str = 'label', + target_img_mode: str = '', + shuffle_size: Optional[int] = None, + num_samples: Optional[int] = None, + trust_remote_code: bool = False + ): + super().__init__() + self.root = root + self.split = split + self.is_training = is_training + self.batch_size = batch_size + self.download = download + self.repeats = repeats + self.common_seed = seed # a seed that's fixed across all worker / distributed instances + self.shuffle_size = shuffle_size or SHUFFLE_SIZE + + self.input_key = input_key + self.input_img_mode = input_img_mode + self.target_key = target_key + self.target_img_mode = target_img_mode + + self.builder = datasets.load_dataset_builder( + name, + cache_dir=root, + trust_remote_code=trust_remote_code, + ) + if download: + self.builder.download_and_prepare() + + split_info: Optional[SplitInfo] = None + if self.builder.info.splits and split in self.builder.info.splits: + if isinstance(self.builder.info.splits[split], SplitInfo): + split_info: Optional[SplitInfo] = self.builder.info.splits[split] + + if num_samples: + self.num_samples = num_samples + elif split_info and split_info.num_examples: + self.num_samples = split_info.num_examples + else: + raise ValueError( + "Dataset length is unknown, please pass `num_samples` explicitely. " + "The number of steps needs to be known in advance for the learning rate scheduler." + ) + + self.remap_class = False + if class_map: + self.class_to_idx = load_class_map(class_map) + self.remap_class = True + else: + self.class_to_idx = {} + + # Distributed world state + self.dist_rank = 0 + self.dist_num_replicas = 1 + if dist.is_available() and dist.is_initialized() and dist.get_world_size() > 1: + self.dist_rank = dist.get_rank() + self.dist_num_replicas = dist.get_world_size() + + # Attributes that are updated in _lazy_init + self.worker_info = None + self.worker_id = 0 + self.num_workers = 1 + self.global_worker_id = 0 + self.global_num_workers = 1 + + # Initialized lazily on each dataloader worker process + self.ds: Optional[datasets.IterableDataset] = None + self.epoch = SharedCount() + + def set_epoch(self, count): + # to update the shuffling effective_seed = seed + epoch + self.epoch.value = count + + def set_loader_cfg( + self, + num_workers: Optional[int] = None, + ): + if self.ds is not None: + return + if num_workers is not None: + self.num_workers = num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + + def _lazy_init(self): + """ Lazily initialize worker (in worker processes) + """ + if self.worker_info is None: + worker_info = torch.utils.data.get_worker_info() + if worker_info is not None: + self.worker_info = worker_info + self.worker_id = worker_info.id + self.num_workers = worker_info.num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + self.global_worker_id = self.dist_rank * self.num_workers + self.worker_id + + if self.download: + dataset = self.builder.as_dataset(split=self.split) + # to distribute evenly to workers + ds = dataset.to_iterable_dataset(num_shards=self.global_num_workers) + else: + # in this case the number of shard is determined by the number of remote files + ds = self.builder.as_streaming_dataset(split=self.split) + + if self.is_training: + # will shuffle the list of shards and use a shuffle buffer + ds = ds.shuffle(seed=self.common_seed, buffer_size=self.shuffle_size) + + # Distributed: + # The dataset has a number of shards that is a factor of `dist_num_replicas` (i.e. if `ds.n_shards % dist_num_replicas == 0`), + # so the shards are evenly assigned across the nodes. + # If it's not the case for dataset streaming, each node keeps 1 example out of `dist_num_replicas`, skipping the other examples. + + # Workers: + # In a node, datasets.IterableDataset assigns the shards assigned to the node as evenly as possible to workers. + self.ds = split_dataset_by_node(ds, rank=self.dist_rank, world_size=self.dist_num_replicas) + + def _num_samples_per_worker(self): + num_worker_samples = \ + max(1, self.repeats) * self.num_samples / max(self.global_num_workers, self.dist_num_replicas) + if self.is_training or self.dist_num_replicas > 1: + num_worker_samples = math.ceil(num_worker_samples) + if self.is_training and self.batch_size is not None: + num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size + return int(num_worker_samples) + + def __iter__(self): + if self.ds is None: + self._lazy_init() + self.ds.set_epoch(self.epoch.value) + + target_sample_count = self._num_samples_per_worker() + sample_count = 0 + + if self.is_training: + ds_iter = chain.from_iterable(repeat(self.ds)) + else: + ds_iter = iter(self.ds) + for sample in ds_iter: + input_data: Image.Image = sample[self.input_key] + if self.input_img_mode and input_data.mode != self.input_img_mode: + input_data = input_data.convert(self.input_img_mode) + target_data = sample[self.target_key] + if self.target_img_mode: + assert isinstance(target_data, Image.Image), "target_img_mode is specified but target is not an image" + if target_data.mode != self.target_img_mode: + target_data = target_data.convert(self.target_img_mode) + elif self.remap_class: + target_data = self.class_to_idx[target_data] + yield input_data, target_data + sample_count += 1 + if self.is_training and sample_count >= target_sample_count: + break + + def __len__(self): + num_samples = self._num_samples_per_worker() * self.num_workers + return num_samples + + def _filename(self, index, basename=False, absolute=False): + assert False, "Not supported" # no random access to examples + + def filenames(self, basename=False, absolute=False): + """ Return all filenames in dataset, overrides base""" + if self.ds is None: + self._lazy_init() + names = [] + for sample in self.ds: + if 'file_name' in sample: + name = sample['file_name'] + elif 'filename' in sample: + name = sample['filename'] + elif 'id' in sample: + name = sample['id'] + elif 'image_id' in sample: + name = sample['image_id'] + else: + assert False, "No supported name field present" + names.append(name) + return names \ No newline at end of file diff --git a/pytorch-image-models/timm/data/readers/reader_image_folder.py b/pytorch-image-models/timm/data/readers/reader_image_folder.py new file mode 100644 index 0000000000000000000000000000000000000000..06fbb7e768467f0ccbdfe3ecfdd71436fffdeac5 --- /dev/null +++ b/pytorch-image-models/timm/data/readers/reader_image_folder.py @@ -0,0 +1,99 @@ +""" A dataset reader that extracts images from folders + +Folders are scanned recursively to find image files. Labels are based +on the folder hierarchy, just leaf folders by default. + +Hacked together by / Copyright 2020 Ross Wightman +""" +import os +from typing import Dict, List, Optional, Set, Tuple, Union + +from timm.utils.misc import natural_key + +from .class_map import load_class_map +from .img_extensions import get_img_extensions +from .reader import Reader + + +def find_images_and_targets( + folder: str, + types: Optional[Union[List, Tuple, Set]] = None, + class_to_idx: Optional[Dict] = None, + leaf_name_only: bool = True, + sort: bool = True +): + """ Walk folder recursively to discover images and map them to classes by folder names. + + Args: + folder: root of folder to recrusively search + types: types (file extensions) to search for in path + class_to_idx: specify mapping for class (folder name) to class index if set + leaf_name_only: use only leaf-name of folder walk for class names + sort: re-sort found images by name (for consistent ordering) + + Returns: + A list of image and target tuples, class_to_idx mapping + """ + types = get_img_extensions(as_set=True) if not types else set(types) + labels = [] + filenames = [] + for root, subdirs, files in os.walk(folder, topdown=False, followlinks=True): + rel_path = os.path.relpath(root, folder) if (root != folder) else '' + label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_') + for f in files: + base, ext = os.path.splitext(f) + if ext.lower() in types: + filenames.append(os.path.join(root, f)) + labels.append(label) + if class_to_idx is None: + # building class index + unique_labels = set(labels) + sorted_labels = list(sorted(unique_labels, key=natural_key)) + class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)} + images_and_targets = [(f, class_to_idx[l]) for f, l in zip(filenames, labels) if l in class_to_idx] + if sort: + images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0])) + return images_and_targets, class_to_idx + + +class ReaderImageFolder(Reader): + + def __init__( + self, + root, + class_map='', + input_key=None, + ): + super().__init__() + + self.root = root + class_to_idx = None + if class_map: + class_to_idx = load_class_map(class_map, root) + find_types = None + if input_key: + find_types = input_key.split(';') + self.samples, self.class_to_idx = find_images_and_targets( + root, + class_to_idx=class_to_idx, + types=find_types, + ) + if len(self.samples) == 0: + raise RuntimeError( + f'Found 0 images in subfolders of {root}. ' + f'Supported image extensions are {", ".join(get_img_extensions())}') + + def __getitem__(self, index): + path, target = self.samples[index] + return open(path, 'rb'), target + + def __len__(self): + return len(self.samples) + + def _filename(self, index, basename=False, absolute=False): + filename = self.samples[index][0] + if basename: + filename = os.path.basename(filename) + elif not absolute: + filename = os.path.relpath(filename, self.root) + return filename diff --git a/pytorch-image-models/timm/data/readers/reader_image_in_tar.py b/pytorch-image-models/timm/data/readers/reader_image_in_tar.py new file mode 100644 index 0000000000000000000000000000000000000000..001c9f4e4a1afcfdadf40f1ee8f96b7de803d04a --- /dev/null +++ b/pytorch-image-models/timm/data/readers/reader_image_in_tar.py @@ -0,0 +1,229 @@ +""" A dataset reader that reads tarfile based datasets + +This reader can extract image samples from: +* a single tar of image files +* a folder of multiple tarfiles containing imagefiles +* a tar of tars containing image files + +Labels are based on the combined folder and/or tar name structure. + +Hacked together by / Copyright 2020 Ross Wightman +""" +import logging +import os +import pickle +import tarfile +from glob import glob +from typing import List, Tuple, Dict, Set, Optional, Union + +import numpy as np + +from timm.utils.misc import natural_key + +from .class_map import load_class_map +from .img_extensions import get_img_extensions +from .reader import Reader + +_logger = logging.getLogger(__name__) +CACHE_FILENAME_SUFFIX = '_tarinfos.pickle' + + +class TarState: + + def __init__(self, tf: tarfile.TarFile = None, ti: tarfile.TarInfo = None): + self.tf: tarfile.TarFile = tf + self.ti: tarfile.TarInfo = ti + self.children: Dict[str, TarState] = {} # child states (tars within tars) + + def reset(self): + self.tf = None + + +def _extract_tarinfo(tf: tarfile.TarFile, parent_info: Dict, extensions: Set[str]): + sample_count = 0 + for i, ti in enumerate(tf): + if not ti.isfile(): + continue + dirname, basename = os.path.split(ti.path) + name, ext = os.path.splitext(basename) + ext = ext.lower() + if ext == '.tar': + with tarfile.open(fileobj=tf.extractfile(ti), mode='r|') as ctf: + child_info = dict( + name=ti.name, path=os.path.join(parent_info['path'], name), ti=ti, children=[], samples=[]) + sample_count += _extract_tarinfo(ctf, child_info, extensions=extensions) + _logger.debug(f'{i}/?. Extracted child tarinfos from {ti.name}. {len(child_info["samples"])} images.') + parent_info['children'].append(child_info) + elif ext in extensions: + parent_info['samples'].append(ti) + sample_count += 1 + return sample_count + + +def extract_tarinfos( + root, + class_name_to_idx: Optional[Dict] = None, + cache_tarinfo: Optional[bool] = None, + extensions: Optional[Union[List, Tuple, Set]] = None, + sort: bool = True +): + extensions = get_img_extensions(as_set=True) if not extensions else set(extensions) + root_is_tar = False + if os.path.isfile(root): + assert os.path.splitext(root)[-1].lower() == '.tar' + tar_filenames = [root] + root, root_name = os.path.split(root) + root_name = os.path.splitext(root_name)[0] + root_is_tar = True + else: + root_name = root.strip(os.path.sep).split(os.path.sep)[-1] + tar_filenames = glob(os.path.join(root, '*.tar'), recursive=True) + num_tars = len(tar_filenames) + tar_bytes = sum([os.path.getsize(f) for f in tar_filenames]) + assert num_tars, f'No .tar files found at specified path ({root}).' + + _logger.info(f'Scanning {tar_bytes/1024**2:.2f}MB of tar files...') + info = dict(tartrees=[]) + cache_path = '' + if cache_tarinfo is None: + cache_tarinfo = True if tar_bytes > 10*1024**3 else False # FIXME magic number, 10GB + if cache_tarinfo: + cache_filename = '_' + root_name + CACHE_FILENAME_SUFFIX + cache_path = os.path.join(root, cache_filename) + if os.path.exists(cache_path): + _logger.info(f'Reading tar info from cache file {cache_path}.') + with open(cache_path, 'rb') as pf: + info = pickle.load(pf) + assert len(info['tartrees']) == num_tars, "Cached tartree len doesn't match number of tarfiles" + else: + for i, fn in enumerate(tar_filenames): + path = '' if root_is_tar else os.path.splitext(os.path.basename(fn))[0] + with tarfile.open(fn, mode='r|') as tf: # tarinfo scans done in streaming mode + parent_info = dict(name=os.path.relpath(fn, root), path=path, ti=None, children=[], samples=[]) + num_samples = _extract_tarinfo(tf, parent_info, extensions=extensions) + num_children = len(parent_info["children"]) + _logger.debug( + f'{i}/{num_tars}. Extracted tarinfos from {fn}. {num_children} children, {num_samples} samples.') + info['tartrees'].append(parent_info) + if cache_path: + _logger.info(f'Writing tar info to cache file {cache_path}.') + with open(cache_path, 'wb') as pf: + pickle.dump(info, pf) + + samples = [] + labels = [] + build_class_map = False + if class_name_to_idx is None: + build_class_map = True + + # Flatten tartree info into lists of samples and targets w/ targets based on label id via + # class map arg or from unique paths. + # NOTE: currently only flattening up to two-levels, filesystem .tars and then one level of sub-tar children + # this covers my current use cases and keeps things a little easier to test for now. + tarfiles = [] + + def _label_from_paths(*path, leaf_only=True): + path = os.path.join(*path).strip(os.path.sep) + return path.split(os.path.sep)[-1] if leaf_only else path.replace(os.path.sep, '_') + + def _add_samples(info, fn): + added = 0 + for s in info['samples']: + label = _label_from_paths(info['path'], os.path.dirname(s.path)) + if not build_class_map and label not in class_name_to_idx: + continue + samples.append((s, fn, info['ti'])) + labels.append(label) + added += 1 + return added + + _logger.info(f'Collecting samples and building tar states.') + for parent_info in info['tartrees']: + # if tartree has children, we assume all samples are at the child level + tar_name = None if root_is_tar else parent_info['name'] + tar_state = TarState() + parent_added = 0 + for child_info in parent_info['children']: + child_added = _add_samples(child_info, fn=tar_name) + if child_added: + tar_state.children[child_info['name']] = TarState(ti=child_info['ti']) + parent_added += child_added + parent_added += _add_samples(parent_info, fn=tar_name) + if parent_added: + tarfiles.append((tar_name, tar_state)) + del info + + if build_class_map: + # build class index + sorted_labels = list(sorted(set(labels), key=natural_key)) + class_name_to_idx = {c: idx for idx, c in enumerate(sorted_labels)} + + _logger.info(f'Mapping targets and sorting samples.') + samples_and_targets = [(s, class_name_to_idx[l]) for s, l in zip(samples, labels) if l in class_name_to_idx] + if sort: + samples_and_targets = sorted(samples_and_targets, key=lambda k: natural_key(k[0][0].path)) + samples, targets = zip(*samples_and_targets) + samples = np.array(samples) + targets = np.array(targets) + _logger.info(f'Finished processing {len(samples)} samples across {len(tarfiles)} tar files.') + return samples, targets, class_name_to_idx, tarfiles + + +class ReaderImageInTar(Reader): + """ Multi-tarfile dataset reader where there is one .tar file per class + """ + + def __init__(self, root, class_map='', cache_tarfiles=True, cache_tarinfo=None): + super().__init__() + + class_name_to_idx = None + if class_map: + class_name_to_idx = load_class_map(class_map, root) + self.root = root + self.samples, self.targets, self.class_name_to_idx, tarfiles = extract_tarinfos( + self.root, + class_name_to_idx=class_name_to_idx, + cache_tarinfo=cache_tarinfo + ) + self.class_idx_to_name = {v: k for k, v in self.class_name_to_idx.items()} + if len(tarfiles) == 1 and tarfiles[0][0] is None: + self.root_is_tar = True + self.tar_state = tarfiles[0][1] + else: + self.root_is_tar = False + self.tar_state = dict(tarfiles) + self.cache_tarfiles = cache_tarfiles + + def __len__(self): + return len(self.samples) + + def __getitem__(self, index): + sample = self.samples[index] + target = self.targets[index] + sample_ti, parent_fn, child_ti = sample + parent_abs = os.path.join(self.root, parent_fn) if parent_fn else self.root + + tf = None + cache_state = None + if self.cache_tarfiles: + cache_state = self.tar_state if self.root_is_tar else self.tar_state[parent_fn] + tf = cache_state.tf + if tf is None: + tf = tarfile.open(parent_abs) + if self.cache_tarfiles: + cache_state.tf = tf + if child_ti is not None: + ctf = cache_state.children[child_ti.name].tf if self.cache_tarfiles else None + if ctf is None: + ctf = tarfile.open(fileobj=tf.extractfile(child_ti)) + if self.cache_tarfiles: + cache_state.children[child_ti.name].tf = ctf + tf = ctf + + return tf.extractfile(sample_ti), target + + def _filename(self, index, basename=False, absolute=False): + filename = self.samples[index][0].name + if basename: + filename = os.path.basename(filename) + return filename diff --git a/pytorch-image-models/timm/data/readers/reader_image_tar.py b/pytorch-image-models/timm/data/readers/reader_image_tar.py new file mode 100644 index 0000000000000000000000000000000000000000..6051f26dd10bdd6013eed001379b299f1d6581a2 --- /dev/null +++ b/pytorch-image-models/timm/data/readers/reader_image_tar.py @@ -0,0 +1,74 @@ +""" A dataset reader that reads single tarfile based datasets + +This reader can read datasets consisting if a single tarfile containing images. +I am planning to deprecated it in favour of ParerImageInTar. + +Hacked together by / Copyright 2020 Ross Wightman +""" +import os +import tarfile + +from timm.utils.misc import natural_key + +from .class_map import load_class_map +from .img_extensions import get_img_extensions +from .reader import Reader + + +def extract_tarinfo(tarfile, class_to_idx=None, sort=True): + extensions = get_img_extensions(as_set=True) + files = [] + labels = [] + for ti in tarfile.getmembers(): + if not ti.isfile(): + continue + dirname, basename = os.path.split(ti.path) + label = os.path.basename(dirname) + ext = os.path.splitext(basename)[1] + if ext.lower() in extensions: + files.append(ti) + labels.append(label) + if class_to_idx is None: + unique_labels = set(labels) + sorted_labels = list(sorted(unique_labels, key=natural_key)) + class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)} + tarinfo_and_targets = [(f, class_to_idx[l]) for f, l in zip(files, labels) if l in class_to_idx] + if sort: + tarinfo_and_targets = sorted(tarinfo_and_targets, key=lambda k: natural_key(k[0].path)) + return tarinfo_and_targets, class_to_idx + + +class ReaderImageTar(Reader): + """ Single tarfile dataset where classes are mapped to folders within tar + NOTE: This class is being deprecated in favour of the more capable ReaderImageInTar that can + operate on folders of tars or tars in tars. + """ + def __init__(self, root, class_map=''): + super().__init__() + + class_to_idx = None + if class_map: + class_to_idx = load_class_map(class_map, root) + assert os.path.isfile(root) + self.root = root + + with tarfile.open(root) as tf: # cannot keep this open across processes, reopen later + self.samples, self.class_to_idx = extract_tarinfo(tf, class_to_idx) + self.imgs = self.samples + self.tarfile = None # lazy init in __getitem__ + + def __getitem__(self, index): + if self.tarfile is None: + self.tarfile = tarfile.open(self.root) + tarinfo, target = self.samples[index] + fileobj = self.tarfile.extractfile(tarinfo) + return fileobj, target + + def __len__(self): + return len(self.samples) + + def _filename(self, index, basename=False, absolute=False): + filename = self.samples[index][0].name + if basename: + filename = os.path.basename(filename) + return filename diff --git a/pytorch-image-models/timm/data/readers/reader_tfds.py b/pytorch-image-models/timm/data/readers/reader_tfds.py new file mode 100644 index 0000000000000000000000000000000000000000..a33bd5059a9b0f29232d81d5abfc61d97f5aca41 --- /dev/null +++ b/pytorch-image-models/timm/data/readers/reader_tfds.py @@ -0,0 +1,355 @@ +""" Dataset reader that wraps TFDS datasets + +Wraps many (most?) TFDS image-classification datasets +from https://github.com/tensorflow/datasets +https://www.tensorflow.org/datasets/catalog/overview#image_classification + +Hacked together by / Copyright 2020 Ross Wightman +""" +import math +import os +import sys +from typing import Optional + +import torch +import torch.distributed as dist +from PIL import Image + +try: + import tensorflow as tf + tf.config.set_visible_devices([], 'GPU') # Hands off my GPU! (or pip install tensorflow-cpu) + import tensorflow_datasets as tfds + try: + tfds.even_splits('', 1, drop_remainder=False) # non-buggy even_splits has drop_remainder arg + has_buggy_even_splits = False + except TypeError: + print("Warning: This version of tfds doesn't have the latest even_splits impl. " + "Please update or use tfds-nightly for better fine-grained split behaviour.") + has_buggy_even_splits = True + # NOTE uncomment below if having file limit issues on dataset build (or alter your OS defaults) + # import resource + # low, high = resource.getrlimit(resource.RLIMIT_NOFILE) + # resource.setrlimit(resource.RLIMIT_NOFILE, (high, high)) +except ImportError as e: + print(e) + print("Please install tensorflow_datasets package `pip install tensorflow-datasets`.") + raise e + +from .class_map import load_class_map +from .reader import Reader +from .shared_count import SharedCount + + +MAX_TP_SIZE = int(os.environ.get('TFDS_TP_SIZE', 8)) # maximum TF threadpool size, for jpeg decodes and queuing activities +SHUFFLE_SIZE = int(os.environ.get('TFDS_SHUFFLE_SIZE', 8192)) # samples to shuffle in DS queue +PREFETCH_SIZE = int(os.environ.get('TFDS_PREFETCH_SIZE', 2048)) # samples to prefetch + + +@tfds.decode.make_decoder() +def decode_example(serialized_image, feature, dct_method='INTEGER_ACCURATE', channels=3): + return tf.image.decode_jpeg( + serialized_image, + channels=channels, + dct_method=dct_method, + ) + + +def even_split_indices(split, n, num_samples): + partitions = [round(i * num_samples / n) for i in range(n + 1)] + return [f"{split}[{partitions[i]}:{partitions[i + 1]}]" for i in range(n)] + + +def get_class_labels(info): + if 'label' not in info.features: + return {} + class_label = info.features['label'] + class_to_idx = {n: class_label.str2int(n) for n in class_label.names} + return class_to_idx + + +class ReaderTfds(Reader): + """ Wrap Tensorflow Datasets for use in PyTorch + + There several things to be aware of: + * To prevent excessive samples being dropped per epoch w/ distributed training or multiplicity of + dataloader workers, the train iterator wraps to avoid returning partial batches that trigger drop_last + https://github.com/pytorch/pytorch/issues/33413 + * With PyTorch IterableDatasets, each worker in each replica operates in isolation, the final batch + from each worker could be a different size. For training this is worked around by option above, for + validation extra samples are inserted iff distributed mode is enabled so that the batches being reduced + across replicas are of same size. This will slightly alter the results, distributed validation will not be + 100% correct. This is similar to common handling in DistributedSampler for normal Datasets but a bit worse + since there are up to N * J extra samples with IterableDatasets. + * The sharding (splitting of dataset into TFRecord) files imposes limitations on the number of + replicas and dataloader workers you can use. For really small datasets that only contain a few shards + you may have to train non-distributed w/ 1-2 dataloader workers. This is likely not a huge concern as the + benefit of distributed training or fast dataloading should be much less for small datasets. + * This wrapper is currently configured to return individual, decompressed image samples from the TFDS + dataset. The augmentation (transforms) and batching is still done in PyTorch. It would be possible + to specify TF augmentation fn and return augmented batches w/ some modifications to other downstream + components. + + """ + + def __init__( + self, + name, + root=None, + split='train', + class_map=None, + is_training=False, + batch_size=1, + download=False, + repeats=0, + seed=42, + input_key='image', + input_img_mode='RGB', + target_key='label', + target_img_mode='', + prefetch_size=None, + shuffle_size=None, + max_threadpool_size=None + ): + """ Tensorflow-datasets Wrapper + + Args: + root: root data dir (ie your TFDS_DATA_DIR. not dataset specific sub-dir) + name: tfds dataset name (eg `imagenet2012`) + split: tfds dataset split (can use all TFDS split strings eg `train[:10%]`) + is_training: training mode, shuffle enabled, dataset len rounded by batch_size + batch_size: batch_size to use to unsure total samples % batch_size == 0 in training across all dis nodes + download: download and build TFDS dataset if set, otherwise must use tfds CLI + repeats: iterate through (repeat) the dataset this many times per iteration (once if 0 or 1) + seed: common seed for shard shuffle across all distributed/worker instances + input_key: name of Feature to return as data (input) + input_img_mode: image mode if input is an image (currently PIL mode string) + target_key: name of Feature to return as target (label) + target_img_mode: image mode if target is an image (currently PIL mode string) + prefetch_size: override default tf.data prefetch buffer size + shuffle_size: override default tf.data shuffle buffer size + max_threadpool_size: override default threadpool size for tf.data + """ + super().__init__() + self.root = root + self.split = split + self.is_training = is_training + self.batch_size = batch_size + self.repeats = repeats + self.common_seed = seed # a seed that's fixed across all worker / distributed instances + + # performance settings + self.prefetch_size = prefetch_size or PREFETCH_SIZE + self.shuffle_size = shuffle_size or SHUFFLE_SIZE + self.max_threadpool_size = max_threadpool_size or MAX_TP_SIZE + + # TFDS builder and split information + self.input_key = input_key # FIXME support tuples / lists of inputs and targets and full range of Feature + self.input_img_mode = input_img_mode + self.target_key = target_key + self.target_img_mode = target_img_mode # for dense pixel targets + self.builder = tfds.builder(name, data_dir=root) + # NOTE: the tfds command line app can be used download & prepare datasets if you don't enable download flag + if download: + self.builder.download_and_prepare() + self.remap_class = False + if class_map: + self.class_to_idx = load_class_map(class_map) + self.remap_class = True + else: + self.class_to_idx = get_class_labels(self.builder.info) if self.target_key == 'label' else {} + self.split_info = self.builder.info.splits[split] + self.num_samples = self.split_info.num_examples + + # Distributed world state + self.dist_rank = 0 + self.dist_num_replicas = 1 + if dist.is_available() and dist.is_initialized() and dist.get_world_size() > 1: + self.dist_rank = dist.get_rank() + self.dist_num_replicas = dist.get_world_size() + + # Attributes that are updated in _lazy_init, including the tf.data pipeline itself + self.global_num_workers = 1 + self.num_workers = 1 + self.worker_info = None + self.worker_seed = 0 # seed unique to each work instance + self.subsplit = None # set when data is distributed across workers using sub-splits + self.ds = None # initialized lazily on each dataloader worker process + self.init_count = 0 # number of ds TF data pipeline initializations + self.epoch_count = SharedCount() + # FIXME need to determine if reinit_each_iter is necessary. I'm don't completely trust behaviour + # of `shuffle_reshuffle_each_iteration` when there are multiple workers / nodes across epochs + self.reinit_each_iter = self.is_training + + def set_epoch(self, count): + self.epoch_count.value = count + + def set_loader_cfg( + self, + num_workers: Optional[int] = None, + ): + if self.ds is not None: + return + if num_workers is not None: + self.num_workers = num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + + def _lazy_init(self): + """ Lazily initialize the dataset. + + This is necessary to init the Tensorflow dataset pipeline in the (dataloader) process that + will be using the dataset instance. The __init__ method is called on the main process, + this will be called in a dataloader worker process. + + NOTE: There will be problems if you try to re-use this dataset across different loader/worker + instances once it has been initialized. Do not call any dataset methods that can call _lazy_init + before it is passed to dataloader. + """ + worker_info = torch.utils.data.get_worker_info() + + # setup input context to split dataset across distributed processes + num_workers = 1 + global_worker_id = 0 + if worker_info is not None: + self.worker_info = worker_info + self.worker_seed = worker_info.seed + self.num_workers = worker_info.num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + global_worker_id = self.dist_rank * self.num_workers + worker_info.id + + """ Data sharding + InputContext will assign subset of underlying TFRecord files to each 'pipeline' if used. + My understanding is that using split, the underling TFRecord files will shuffle (shuffle_files=True) + between the splits each iteration, but that understanding could be wrong. + + I am currently using a mix of InputContext shard assignment and fine-grained sub-splits for distributing + the data across workers. For training InputContext is used to assign shards to nodes unless num_shards + in dataset < total number of workers. Otherwise sub-split API is used for datasets without enough shards or + for validation where we can't drop samples and need to avoid minimize uneven splits to avoid padding. + """ + should_subsplit = self.global_num_workers > 1 and ( + self.split_info.num_shards < self.global_num_workers or not self.is_training) + if should_subsplit: + # split the dataset w/o using sharding for more even samples / worker, can result in less optimal + # read patterns for distributed training (overlap across shards) so better to use InputContext there + if has_buggy_even_splits: + # my even_split workaround doesn't work on subsplits, upgrade tfds! + if not isinstance(self.split_info, tfds.core.splits.SubSplitInfo): + subsplits = even_split_indices(self.split, self.global_num_workers, self.num_samples) + self.subsplit = subsplits[global_worker_id] + else: + subsplits = tfds.even_splits(self.split, self.global_num_workers) + self.subsplit = subsplits[global_worker_id] + + input_context = None + if self.global_num_workers > 1 and self.subsplit is None: + # set input context to divide shards among distributed replicas + input_context = tf.distribute.InputContext( + num_input_pipelines=self.global_num_workers, + input_pipeline_id=global_worker_id, + num_replicas_in_sync=self.dist_num_replicas # FIXME does this arg have any impact? + ) + read_config = tfds.ReadConfig( + shuffle_seed=self.common_seed + self.epoch_count.value, + shuffle_reshuffle_each_iteration=True, + input_context=input_context, + ) + ds = self.builder.as_dataset( + split=self.subsplit or self.split, + shuffle_files=self.is_training, + decoders=dict(image=decode_example(channels=1 if self.input_img_mode == 'L' else 3)), + read_config=read_config, + ) + # avoid overloading threading w/ combo of TF ds threads + PyTorch workers + options = tf.data.Options() + thread_member = 'threading' if hasattr(options, 'threading') else 'experimental_threading' + getattr(options, thread_member).private_threadpool_size = max(1, self.max_threadpool_size // self.num_workers) + getattr(options, thread_member).max_intra_op_parallelism = 1 + ds = ds.with_options(options) + if self.is_training or self.repeats > 1: + # to prevent excessive drop_last batch behaviour w/ IterableDatasets + # see warnings at https://pytorch.org/docs/stable/data.html#multi-process-data-loading + ds = ds.repeat() # allow wrap around and break iteration manually + if self.is_training: + ds = ds.shuffle(min(self.num_samples, self.shuffle_size) // self.global_num_workers, seed=self.worker_seed) + ds = ds.prefetch(min(self.num_samples // self.global_num_workers, self.prefetch_size)) + self.ds = tfds.as_numpy(ds) + self.init_count += 1 + + def _num_samples_per_worker(self): + num_worker_samples = \ + max(1, self.repeats) * self.num_samples / max(self.global_num_workers, self.dist_num_replicas) + if self.is_training or self.dist_num_replicas > 1: + num_worker_samples = math.ceil(num_worker_samples) + if self.is_training: + num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size + return int(num_worker_samples) + + def __iter__(self): + if self.ds is None or self.reinit_each_iter: + self._lazy_init() + + # Compute a rounded up sample count that is used to: + # 1. make batches even cross workers & replicas in distributed validation. + # This adds extra samples and will slightly alter validation results. + # 2. determine loop ending condition in training w/ repeat enabled so that only full batch_size + # batches are produced (underlying tfds iter wraps around) + target_sample_count = self._num_samples_per_worker() + + # Iterate until exhausted or sample count hits target when training (ds.repeat enabled) + sample_count = 0 + for sample in self.ds: + input_data = sample[self.input_key] + if self.input_img_mode: + if self.input_img_mode == 'L' and input_data.ndim == 3: + input_data = input_data[:, :, 0] + input_data = Image.fromarray(input_data, mode=self.input_img_mode) + target_data = sample[self.target_key] + if self.target_img_mode: + # dense pixel target + target_data = Image.fromarray(target_data, mode=self.target_img_mode) + elif self.remap_class: + target_data = self.class_to_idx[target_data] + yield input_data, target_data + sample_count += 1 + if self.is_training and sample_count >= target_sample_count: + # Need to break out of loop when repeat() is enabled for training w/ oversampling + # this results in extra samples per epoch but seems more desirable than dropping + # up to N*J batches per epoch (where N = num distributed processes, and J = num worker processes) + break + + # Pad across distributed nodes (make counts equal by adding samples) + if not self.is_training and self.dist_num_replicas > 1 and self.subsplit is not None and \ + 0 < sample_count < target_sample_count: + # Validation batch padding only done for distributed training where results are reduced across nodes. + # For single process case, it won't matter if workers return different batch sizes. + # If using input_context or % based splits, sample count can vary significantly across workers and this + # approach should not be used (hence disabled if self.subsplit isn't set). + while sample_count < target_sample_count: + yield input_data, target_data # yield prev sample again + sample_count += 1 + + def __len__(self): + num_samples = self._num_samples_per_worker() * self.num_workers + return num_samples + + def _filename(self, index, basename=False, absolute=False): + assert False, "Not supported" # no random access to samples + + def filenames(self, basename=False, absolute=False): + """ Return all filenames in dataset, overrides base""" + if self.ds is None: + self._lazy_init() + names = [] + for sample in self.ds: + if len(names) > self.num_samples: + break # safety for ds.repeat() case + if 'file_name' in sample: + name = sample['file_name'] + elif 'filename' in sample: + name = sample['filename'] + elif 'id' in sample: + name = sample['id'] + else: + assert False, "No supported name field present" + names.append(name) + return names diff --git a/pytorch-image-models/timm/data/readers/reader_wds.py b/pytorch-image-models/timm/data/readers/reader_wds.py new file mode 100644 index 0000000000000000000000000000000000000000..7b014992e7cc4b979263b9c57fcd155493709ee2 --- /dev/null +++ b/pytorch-image-models/timm/data/readers/reader_wds.py @@ -0,0 +1,466 @@ +""" Dataset reader for webdataset + +Hacked together by / Copyright 2022 Ross Wightman +""" +import io +import json +import logging +import math +import os +import random +import sys +from dataclasses import dataclass +from functools import partial +from itertools import islice +from typing import Any, Callable, Dict, List, Optional, Tuple + +import torch +import torch.distributed as dist +import yaml +from PIL import Image +from torch.utils.data import Dataset, IterableDataset, get_worker_info + +try: + import webdataset as wds + from webdataset.filters import _shuffle, getfirst + from webdataset.shardlists import expand_urls + from webdataset.tariterators import base_plus_ext, url_opener, tar_file_expander, valid_sample +except ImportError: + wds = None + expand_urls = None + +from .class_map import load_class_map +from .reader import Reader +from .shared_count import SharedCount + +_logger = logging.getLogger(__name__) + +SAMPLE_SHUFFLE_SIZE = int(os.environ.get('WDS_SHUFFLE_SIZE', 8192)) +SAMPLE_INITIAL_SIZE = int(os.environ.get('WDS_INITIAL_SIZE', 2048)) + + +def _load_info(root, names=('_info.json', 'info.json')): + if isinstance(names, str): + names = (names,) + tried = [] + err_str = '' + for n in names: + full_path = os.path.join(root, n) + try: + tried.append(full_path) + with wds.gopen(full_path) as f: + if n.endswith('.json'): + info_dict = json.load(f) + else: + info_dict = yaml.safe_load(f) + return info_dict + except Exception as e: + err_str = str(e) + + _logger.warning( + f'Dataset info file not found at {tried}. Error: {err_str}. ' + 'Falling back to provided split and size arg.') + return {} + + +@dataclass +class SplitInfo: + num_samples: int + filenames: Tuple[str] + shard_lengths: Tuple[int] = () + alt_label: str = '' + name: str = '' + + +def _parse_split_info(split: str, info: Dict): + def _info_convert(dict_info): + return SplitInfo( + num_samples=dict_info['num_samples'], + filenames=tuple(dict_info['filenames']), + shard_lengths=tuple(dict_info['shard_lengths']), + alt_label=dict_info.get('alt_label', ''), + name=dict_info['name'], + ) + + if 'tar' in split or '..' in split: + # split in WDS string braceexpand format, sample count can be included with a | separator + # ex: `dataset-split-{0000..9999}.tar|100000` for 9999 shards, covering 100,000 samples + split = split.split('|') + num_samples = 0 + split_name = '' + if len(split) > 1: + num_samples = int(split[1]) + split = split[0] + if '::' not in split: + split_parts = split.split('-', 3) + split_idx = len(split_parts) - 1 + if split_idx and 'splits' in info and split_parts[split_idx] in info['splits']: + split_name = split_parts[split_idx] + + split_filenames = expand_urls(split) + if split_name: + split_info = info['splits'][split_name] + if not num_samples: + _fc = {f: c for f, c in zip(split_info['filenames'], split_info['shard_lengths'])} + num_samples = sum(_fc[f] for f in split_filenames) + split_info['filenames'] = tuple(_fc.keys()) + split_info['shard_lengths'] = tuple(_fc.values()) + split_info['num_samples'] = num_samples + split_info = _info_convert(split_info) + else: + split_info = SplitInfo( + name=split_name, + num_samples=num_samples, + filenames=split_filenames, + ) + else: + if 'splits' not in info or split not in info['splits']: + raise RuntimeError(f"split {split} not found in info ({info.get('splits', {}).keys()})") + split = split + split_info = info['splits'][split] + split_info = _info_convert(split_info) + + return split_info + + +def log_and_continue(exn): + """Call in an exception handler to ignore exceptions, isssue a warning, and continue.""" + _logger.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.') + # NOTE: try force an exit on errors that are clearly code / config and not transient + if isinstance(exn, TypeError): + raise exn + return True + + +def _decode( + sample, + image_key='jpg', + image_mode='RGB', + target_key='cls', + alt_label='' +): + """ Custom sample decode + * decode and convert PIL Image + * cls byte string label to int + * pass through JSON byte string (if it exists) without parse + """ + # decode class label, skip if alternate label not valid + if alt_label: + # alternative labels are encoded in json metadata + meta = json.loads(sample['json']) + class_label = int(meta[alt_label]) + if class_label < 0: + # skipped labels currently encoded as -1, may change to a null/None value + return None + else: + class_label = int(sample[target_key]) + + # decode image + img = getfirst(sample, image_key) + with io.BytesIO(img) as b: + img = Image.open(b) + img.load() + if image_mode: + img = img.convert(image_mode) + + # json passed through in undecoded state + decoded = dict(jpg=img, cls=class_label, json=sample.get('json', None)) + return decoded + + +def pytorch_worker_seed(): + """get dataloader worker seed from pytorch""" + worker_info = get_worker_info() + if worker_info is not None: + # favour the seed already created for pytorch dataloader workers if it exists + return worker_info.seed + # fallback to wds rank based seed + return wds.utils.pytorch_worker_seed() + + +if wds is not None: + # conditional to avoid mandatory wds import (via inheritance of wds.PipelineStage) + + class detshuffle2(wds.PipelineStage): + def __init__( + self, + bufsize=1000, + initial=100, + seed=0, + epoch=-1, + ): + self.bufsize = bufsize + self.initial = initial + self.seed = seed + self.epoch = epoch + + def run(self, src): + if isinstance(self.epoch, SharedCount): + epoch = self.epoch.value + else: + # NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train) + # situation as different workers may wrap at different times (or not at all). + self.epoch += 1 + epoch = self.epoch + + if self.seed < 0: + seed = pytorch_worker_seed() + epoch + else: + seed = self.seed + epoch + # _logger.info(f'shuffle seed: {self.seed}, {seed}, epoch: {epoch}') # FIXME temporary + rng = random.Random(seed) + return _shuffle(src, self.bufsize, self.initial, rng) + +else: + detshuffle2 = None + + +class ResampledShards2(IterableDataset): + """An iterable dataset yielding a list of urls.""" + + def __init__( + self, + urls, + nshards=sys.maxsize, + worker_seed=None, + deterministic=True, + epoch=-1, + ): + """Sample shards from the shard list with replacement. + + :param urls: a list of URLs as a Python list or brace notation string + """ + super().__init__() + urls = wds.shardlists.expand_urls(urls) + self.urls = urls + assert isinstance(self.urls[0], str) + self.nshards = nshards + self.rng = random.Random() + self.worker_seed = pytorch_worker_seed if worker_seed is None else worker_seed + self.deterministic = deterministic + self.epoch = epoch + + def __iter__(self): + """Return an iterator over the shards.""" + if isinstance(self.epoch, SharedCount): + epoch = self.epoch.value + else: + # NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train) + # situation as different workers may wrap at different times (or not at all). + self.epoch += 1 + epoch = self.epoch + + if self.deterministic: + # reset seed w/ epoch if deterministic, worker seed should be deterministic due to arg.seed + self.rng = random.Random(self.worker_seed() + epoch) + + for _ in range(self.nshards): + index = self.rng.randint(0, len(self.urls) - 1) + yield dict(url=self.urls[index]) + + +class ReaderWds(Reader): + def __init__( + self, + root: str, + name: Optional[str] = None, + split: str = 'train', + is_training: bool = False, + num_samples: Optional[int] = None, + batch_size: int = 1, + repeats: int = 0, + seed: int = 42, + class_map: Optional[dict] = None, + input_key: str = 'jpg;png;webp', + input_img_mode: str = 'RGB', + target_key: str = 'cls', + target_img_mode: str = '', + filename_key: str = 'filename', + sample_shuffle_size: Optional[int] = None, + smaple_initial_size: Optional[int] = None, + ): + super().__init__() + if wds is None: + raise RuntimeError( + 'Please install webdataset 0.2.x package `pip install git+https://github.com/webdataset/webdataset`.') + self.root = root + self.is_training = is_training + self.batch_size = batch_size + self.repeats = repeats + self.common_seed = seed # a seed that's fixed across all worker / distributed instances + self.shard_shuffle_size = 500 + self.sample_shuffle_size = sample_shuffle_size or SAMPLE_SHUFFLE_SIZE + self.sample_initial_size = smaple_initial_size or SAMPLE_INITIAL_SIZE + + self.input_key = input_key + self.input_img_mode = input_img_mode + self.target_key = target_key + self.filename_key = filename_key + self.key_ext = '.JPEG' # extension to add to key for original filenames (DS specific, default ImageNet) + + self.info = _load_info(self.root) + self.split_info = _parse_split_info(split, self.info) + if num_samples is not None: + self.num_samples = num_samples + else: + self.num_samples = self.split_info.num_samples + if is_training and not self.num_samples: + raise RuntimeError(f'Invalid split definition, num_samples not specified in train mode.') + self.remap_class = False + if class_map: + self.class_to_idx = load_class_map(class_map) + self.remap_class = True + else: + self.class_to_idx = {} + + # Distributed world state + self.dist_rank = 0 + self.dist_num_replicas = 1 + if dist.is_available() and dist.is_initialized() and dist.get_world_size() > 1: + self.dist_rank = dist.get_rank() + self.dist_num_replicas = dist.get_world_size() + + # Attributes that are updated in _lazy_init + self.worker_info = None + self.worker_id = 0 + self.worker_seed = seed # seed unique to each worker instance + self.num_workers = 1 + self.global_worker_id = 0 + self.global_num_workers = 1 + self.init_count = 0 + self.epoch_count = SharedCount() + + # DataPipeline is lazy init, the majority of WDS DataPipeline could be init here, BUT, shuffle seed + # is not handled in manner where it can be deterministic for each worker AND initialized up front + self.ds = None + + def set_epoch(self, count): + self.epoch_count.value = count + + def set_loader_cfg( + self, + num_workers: Optional[int] = None, + ): + if self.ds is not None: + return + if num_workers is not None: + self.num_workers = num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + + def _lazy_init(self): + """ Lazily initialize worker (in worker processes) + """ + if self.worker_info is None: + worker_info = torch.utils.data.get_worker_info() + if worker_info is not None: + self.worker_info = worker_info + self.worker_id = worker_info.id + self.worker_seed = worker_info.seed + self.num_workers = worker_info.num_workers + self.global_num_workers = self.dist_num_replicas * self.num_workers + self.global_worker_id = self.dist_rank * self.num_workers + self.worker_id + + # init data pipeline + abs_shard_filenames = [os.path.join(self.root, f) for f in self.split_info.filenames] + pipeline = [wds.SimpleShardList(abs_shard_filenames)] + # at this point we have an iterator over all the shards + if self.is_training: + pipeline.extend([ + detshuffle2( + self.shard_shuffle_size, + seed=self.common_seed, + epoch=self.epoch_count, + ), + self._split_by_node_and_worker, + # at this point, we have an iterator over the shards assigned to each worker + wds.tarfile_to_samples(handler=log_and_continue), + wds.shuffle( + bufsize=self.sample_shuffle_size, + initial=self.sample_initial_size, + rng=random.Random(self.worker_seed) # this is why we lazy-init whole DataPipeline + ), + ]) + else: + pipeline.extend([ + self._split_by_node_and_worker, + # at this point, we have an iterator over the shards assigned to each worker + wds.tarfile_to_samples(handler=log_and_continue), + ]) + pipeline.extend([ + wds.map( + partial( + _decode, + image_key=self.input_key, + image_mode=self.input_img_mode, + alt_label=self.split_info.alt_label, + ), + handler=log_and_continue, + ), + wds.rename(image=self.input_key, target=self.target_key) + ]) + self.ds = wds.DataPipeline(*pipeline) + + def _split_by_node_and_worker(self, src): + if self.global_num_workers > 1: + for s in islice(src, self.global_worker_id, None, self.global_num_workers): + yield s + else: + for s in src: + yield s + + def _num_samples_per_worker(self): + num_worker_samples = self.num_samples / max(self.global_num_workers, self.dist_num_replicas) + if self.is_training or self.dist_num_replicas > 1: + num_worker_samples = math.ceil(num_worker_samples) + if self.is_training: + num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size + return int(num_worker_samples) + + def __iter__(self): + if self.ds is None: + self._lazy_init() + + num_worker_samples = self._num_samples_per_worker() + if self.is_training or self.dist_num_replicas > 1: + # NOTE: doing distributed validation w/ WDS is messy, hard to meet constraints that + # same # of batches needed across all replicas w/ seeing each sample once. + # with_epoch() is simple but could miss a shard's worth of samples in some workers, + # and duplicate in others. Best to keep num DL workers low and a divisor of #val shards. + ds = self.ds.with_epoch(num_worker_samples) + else: + ds = self.ds + + i = 0 + # _logger.info(f'start {i}, {self.worker_id}') # FIXME temporary debug + for sample in ds: + target = sample['target'] + if self.remap_class: + target = self.class_to_idx[target] + yield sample['image'], target + i += 1 + # _logger.info(f'end {i}, {self.worker_id}') # FIXME temporary debug + + def __len__(self): + num_samples = self._num_samples_per_worker() * self.num_workers + return num_samples + + def _filename(self, index, basename=False, absolute=False): + assert False, "Not supported" # no random access to examples + + def filenames(self, basename=False, absolute=False): + """ Return all filenames in dataset, overrides base""" + if self.ds is None: + self._lazy_init() + + names = [] + for sample in self.ds: + if self.filename_key in sample: + name = sample[self.filename_key] + elif '__key__' in sample: + name = sample['__key__'] + self.key_ext + else: + assert False, "No supported name field present" + names.append(name) + if len(names) >= self.num_samples: + break # safety for ds.repeat() case + return names diff --git a/pytorch-image-models/timm/data/readers/shared_count.py b/pytorch-image-models/timm/data/readers/shared_count.py new file mode 100644 index 0000000000000000000000000000000000000000..fe4e85b4bc0fcc821d2ac670d514d2629ca66060 --- /dev/null +++ b/pytorch-image-models/timm/data/readers/shared_count.py @@ -0,0 +1,14 @@ +from multiprocessing import Value + + +class SharedCount: + def __init__(self, epoch: int = 0): + self.shared_epoch = Value('i', epoch) + + @property + def value(self): + return self.shared_epoch.value + + @value.setter + def value(self, epoch): + self.shared_epoch.value = epoch diff --git a/pytorch-image-models/timm/data/real_labels.py b/pytorch-image-models/timm/data/real_labels.py new file mode 100644 index 0000000000000000000000000000000000000000..20f1b319a54ff2f9017fe4bbfb8a053a995f83fc --- /dev/null +++ b/pytorch-image-models/timm/data/real_labels.py @@ -0,0 +1,47 @@ +""" Real labels evaluator for ImageNet +Paper: `Are we done with ImageNet?` - https://arxiv.org/abs/2006.07159 +Based on Numpy example at https://github.com/google-research/reassessed-imagenet + +Hacked together by / Copyright 2020 Ross Wightman +""" +import os +import json +import numpy as np +import pkgutil + + +class RealLabelsImagenet: + + def __init__(self, filenames, real_json=None, topk=(1, 5)): + if real_json is not None: + with open(real_json) as real_labels: + real_labels = json.load(real_labels) + else: + real_labels = json.loads( + pkgutil.get_data(__name__, os.path.join('_info', 'imagenet_real_labels.json')).decode('utf-8')) + real_labels = {f'ILSVRC2012_val_{i + 1:08d}.JPEG': labels for i, labels in enumerate(real_labels)} + self.real_labels = real_labels + self.filenames = filenames + assert len(self.filenames) == len(self.real_labels) + self.topk = topk + self.is_correct = {k: [] for k in topk} + self.sample_idx = 0 + + def add_result(self, output): + maxk = max(self.topk) + _, pred_batch = output.topk(maxk, 1, True, True) + pred_batch = pred_batch.cpu().numpy() + for pred in pred_batch: + filename = self.filenames[self.sample_idx] + filename = os.path.basename(filename) + if self.real_labels[filename]: + for k in self.topk: + self.is_correct[k].append( + any([p in self.real_labels[filename] for p in pred[:k]])) + self.sample_idx += 1 + + def get_accuracy(self, k=None): + if k is None: + return {k: float(np.mean(self.is_correct[k])) * 100 for k in self.topk} + else: + return float(np.mean(self.is_correct[k])) * 100 diff --git a/pytorch-image-models/timm/data/tf_preprocessing.py b/pytorch-image-models/timm/data/tf_preprocessing.py new file mode 100644 index 0000000000000000000000000000000000000000..b58e0cf3cb5ac3be75fd76a0058892c8edd39703 --- /dev/null +++ b/pytorch-image-models/timm/data/tf_preprocessing.py @@ -0,0 +1,233 @@ +""" Tensorflow Preprocessing Adapter + +Allows use of Tensorflow preprocessing pipeline in PyTorch Transform + +Copyright of original Tensorflow code below. + +Hacked together by / Copyright 2020 Ross Wightman +""" + +# Copyright 2018 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""ImageNet preprocessing for MnasNet.""" +import tensorflow.compat.v1 as tf +import numpy as np + +IMAGE_SIZE = 224 +CROP_PADDING = 32 + +tf.compat.v1.disable_eager_execution() + +def distorted_bounding_box_crop(image_bytes, + bbox, + min_object_covered=0.1, + aspect_ratio_range=(0.75, 1.33), + area_range=(0.05, 1.0), + max_attempts=100, + scope=None): + """Generates cropped_image using one of the bboxes randomly distorted. + + See `tf.image.sample_distorted_bounding_box` for more documentation. + + Args: + image_bytes: `Tensor` of binary image data. + bbox: `Tensor` of bounding boxes arranged `[1, num_boxes, coords]` + where each coordinate is [0, 1) and the coordinates are arranged + as `[ymin, xmin, ymax, xmax]`. If num_boxes is 0 then use the whole + image. + min_object_covered: An optional `float`. Defaults to `0.1`. The cropped + area of the image must contain at least this fraction of any bounding + box supplied. + aspect_ratio_range: An optional list of `float`s. The cropped area of the + image must have an aspect ratio = width / height within this range. + area_range: An optional list of `float`s. The cropped area of the image + must contain a fraction of the supplied image within in this range. + max_attempts: An optional `int`. Number of attempts at generating a cropped + region of the image of the specified constraints. After `max_attempts` + failures, return the entire image. + scope: Optional `str` for name scope. + Returns: + cropped image `Tensor` + """ + with tf.name_scope(scope, 'distorted_bounding_box_crop', [image_bytes, bbox]): + shape = tf.image.extract_jpeg_shape(image_bytes) + sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( + shape, + bounding_boxes=bbox, + min_object_covered=min_object_covered, + aspect_ratio_range=aspect_ratio_range, + area_range=area_range, + max_attempts=max_attempts, + use_image_if_no_bounding_boxes=True) + bbox_begin, bbox_size, _ = sample_distorted_bounding_box + + # Crop the image to the specified bounding box. + offset_y, offset_x, _ = tf.unstack(bbox_begin) + target_height, target_width, _ = tf.unstack(bbox_size) + crop_window = tf.stack([offset_y, offset_x, target_height, target_width]) + image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) + + return image + + +def _at_least_x_are_equal(a, b, x): + """At least `x` of `a` and `b` `Tensors` are equal.""" + match = tf.equal(a, b) + match = tf.cast(match, tf.int32) + return tf.greater_equal(tf.reduce_sum(match), x) + + +def _decode_and_random_crop(image_bytes, image_size, resize_method): + """Make a random crop of image_size.""" + bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) + image = distorted_bounding_box_crop( + image_bytes, + bbox, + min_object_covered=0.1, + aspect_ratio_range=(3. / 4, 4. / 3.), + area_range=(0.08, 1.0), + max_attempts=10, + scope=None) + original_shape = tf.image.extract_jpeg_shape(image_bytes) + bad = _at_least_x_are_equal(original_shape, tf.shape(image), 3) + + image = tf.cond( + bad, + lambda: _decode_and_center_crop(image_bytes, image_size), + lambda: tf.image.resize([image], [image_size, image_size], resize_method)[0]) + + return image + + +def _decode_and_center_crop(image_bytes, image_size, resize_method): + """Crops to center of image with padding then scales image_size.""" + shape = tf.image.extract_jpeg_shape(image_bytes) + image_height = shape[0] + image_width = shape[1] + + padded_center_crop_size = tf.cast( + ((image_size / (image_size + CROP_PADDING)) * + tf.cast(tf.minimum(image_height, image_width), tf.float32)), + tf.int32) + + offset_height = ((image_height - padded_center_crop_size) + 1) // 2 + offset_width = ((image_width - padded_center_crop_size) + 1) // 2 + crop_window = tf.stack([offset_height, offset_width, + padded_center_crop_size, padded_center_crop_size]) + image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) + image = tf.image.resize([image], [image_size, image_size], resize_method)[0] + + return image + + +def _flip(image): + """Random horizontal image flip.""" + image = tf.image.random_flip_left_right(image) + return image + + +def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'): + """Preprocesses the given image for evaluation. + + Args: + image_bytes: `Tensor` representing an image binary of arbitrary size. + use_bfloat16: `bool` for whether to use bfloat16. + image_size: image size. + interpolation: image interpolation method + + Returns: + A preprocessed image `Tensor`. + """ + resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR + image = _decode_and_random_crop(image_bytes, image_size, resize_method) + image = _flip(image) + image = tf.reshape(image, [image_size, image_size, 3]) + image = tf.image.convert_image_dtype( + image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) + return image + + +def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'): + """Preprocesses the given image for evaluation. + + Args: + image_bytes: `Tensor` representing an image binary of arbitrary size. + use_bfloat16: `bool` for whether to use bfloat16. + image_size: image size. + interpolation: image interpolation method + + Returns: + A preprocessed image `Tensor`. + """ + resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR + image = _decode_and_center_crop(image_bytes, image_size, resize_method) + image = tf.reshape(image, [image_size, image_size, 3]) + image = tf.image.convert_image_dtype( + image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) + return image + + +def preprocess_image(image_bytes, + is_training=False, + use_bfloat16=False, + image_size=IMAGE_SIZE, + interpolation='bicubic'): + """Preprocesses the given image. + + Args: + image_bytes: `Tensor` representing an image binary of arbitrary size. + is_training: `bool` for whether the preprocessing is for training. + use_bfloat16: `bool` for whether to use bfloat16. + image_size: image size. + interpolation: image interpolation method + + Returns: + A preprocessed image `Tensor` with value range of [0, 255]. + """ + if is_training: + return preprocess_for_train(image_bytes, use_bfloat16, image_size, interpolation) + else: + return preprocess_for_eval(image_bytes, use_bfloat16, image_size, interpolation) + + +class TfPreprocessTransform: + + def __init__(self, is_training=False, size=224, interpolation='bicubic'): + self.is_training = is_training + self.size = size[0] if isinstance(size, tuple) else size + self.interpolation = interpolation + self._image_bytes = None + self.process_image = self._build_tf_graph() + self.sess = None + + def _build_tf_graph(self): + with tf.device('/cpu:0'): + self._image_bytes = tf.placeholder( + shape=[], + dtype=tf.string, + ) + img = preprocess_image( + self._image_bytes, self.is_training, False, self.size, self.interpolation) + return img + + def __call__(self, image_bytes): + if self.sess is None: + self.sess = tf.Session() + img = self.sess.run(self.process_image, feed_dict={self._image_bytes: image_bytes}) + img = img.round().clip(0, 255).astype(np.uint8) + if img.ndim < 3: + img = np.expand_dims(img, axis=-1) + img = np.rollaxis(img, 2) # HWC to CHW + return img diff --git a/pytorch-image-models/timm/data/transforms.py b/pytorch-image-models/timm/data/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..215b7b5b61723d854761903b03a25f7e5b0c0567 --- /dev/null +++ b/pytorch-image-models/timm/data/transforms.py @@ -0,0 +1,583 @@ +import math +import numbers +import random +import warnings +from typing import List, Sequence, Tuple, Union + +import torch +import torchvision.transforms as transforms +import torchvision.transforms.functional as F +try: + from torchvision.transforms.functional import InterpolationMode + has_interpolation_mode = True +except ImportError: + has_interpolation_mode = False +from PIL import Image +import numpy as np + +__all__ = [ + "ToNumpy", "ToTensor", "str_to_interp_mode", "str_to_pil_interp", "interp_mode_to_str", + "RandomResizedCropAndInterpolation", "CenterCropOrPad", "center_crop_or_pad", "crop_or_pad", + "RandomCropOrPad", "RandomPad", "ResizeKeepRatio", "TrimBorder", "MaybeToTensor", "MaybePILToTensor" +] + + +class ToNumpy: + + def __call__(self, pil_img): + np_img = np.array(pil_img, dtype=np.uint8) + if np_img.ndim < 3: + np_img = np.expand_dims(np_img, axis=-1) + np_img = np.rollaxis(np_img, 2) # HWC to CHW + return np_img + + +class ToTensor: + """ ToTensor with no rescaling of values""" + def __init__(self, dtype=torch.float32): + self.dtype = dtype + + def __call__(self, pil_img): + return F.pil_to_tensor(pil_img).to(dtype=self.dtype) + + +class MaybeToTensor(transforms.ToTensor): + """Convert a PIL Image or ndarray to tensor if it's not already one. + """ + + def __init__(self) -> None: + super().__init__() + + def __call__(self, pic) -> torch.Tensor: + """ + Args: + pic (PIL Image or numpy.ndarray): Image to be converted to tensor. + + Returns: + Tensor: Converted image. + """ + if isinstance(pic, torch.Tensor): + return pic + return F.to_tensor(pic) + + def __repr__(self) -> str: + return f"{self.__class__.__name__}()" + + +class MaybePILToTensor: + """Convert a PIL Image to a tensor of the same type - this does not scale values. + """ + + def __init__(self) -> None: + super().__init__() + + def __call__(self, pic): + """ + Note: A deep copy of the underlying array is performed. + + Args: + pic (PIL Image): Image to be converted to tensor. + + Returns: + Tensor: Converted image. + """ + if isinstance(pic, torch.Tensor): + return pic + return F.pil_to_tensor(pic) + + def __repr__(self) -> str: + return f"{self.__class__.__name__}()" + + +# Pillow is deprecating the top-level resampling attributes (e.g., Image.BILINEAR) in +# favor of the Image.Resampling enum. The top-level resampling attributes will be +# removed in Pillow 10. +if hasattr(Image, "Resampling"): + _pil_interpolation_to_str = { + Image.Resampling.NEAREST: 'nearest', + Image.Resampling.BILINEAR: 'bilinear', + Image.Resampling.BICUBIC: 'bicubic', + Image.Resampling.BOX: 'box', + Image.Resampling.HAMMING: 'hamming', + Image.Resampling.LANCZOS: 'lanczos', + } +else: + _pil_interpolation_to_str = { + Image.NEAREST: 'nearest', + Image.BILINEAR: 'bilinear', + Image.BICUBIC: 'bicubic', + Image.BOX: 'box', + Image.HAMMING: 'hamming', + Image.LANCZOS: 'lanczos', + } + +_str_to_pil_interpolation = {b: a for a, b in _pil_interpolation_to_str.items()} + + +if has_interpolation_mode: + _torch_interpolation_to_str = { + InterpolationMode.NEAREST: 'nearest', + InterpolationMode.BILINEAR: 'bilinear', + InterpolationMode.BICUBIC: 'bicubic', + InterpolationMode.BOX: 'box', + InterpolationMode.HAMMING: 'hamming', + InterpolationMode.LANCZOS: 'lanczos', + } + _str_to_torch_interpolation = {b: a for a, b in _torch_interpolation_to_str.items()} +else: + _pil_interpolation_to_torch = {} + _torch_interpolation_to_str = {} + + +def str_to_pil_interp(mode_str): + return _str_to_pil_interpolation[mode_str] + + +def str_to_interp_mode(mode_str): + if has_interpolation_mode: + return _str_to_torch_interpolation[mode_str] + else: + return _str_to_pil_interpolation[mode_str] + + +def interp_mode_to_str(mode): + if has_interpolation_mode: + return _torch_interpolation_to_str[mode] + else: + return _pil_interpolation_to_str[mode] + + +_RANDOM_INTERPOLATION = (str_to_interp_mode('bilinear'), str_to_interp_mode('bicubic')) + + +def _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."): + if isinstance(size, numbers.Number): + return int(size), int(size) + + if isinstance(size, Sequence) and len(size) == 1: + return size[0], size[0] + + if len(size) != 2: + raise ValueError(error_msg) + + return size + + +class RandomResizedCropAndInterpolation: + """Crop the given PIL Image to random size and aspect ratio with random interpolation. + + A crop of random size (default: of 0.08 to 1.0) of the original size and a random + aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop + is finally resized to given size. + This is popularly used to train the Inception networks. + + Args: + size: expected output size of each edge + scale: range of size of the origin size cropped + ratio: range of aspect ratio of the origin aspect ratio cropped + interpolation: Default: PIL.Image.BILINEAR + """ + + def __init__( + self, + size, + scale=(0.08, 1.0), + ratio=(3. / 4., 4. / 3.), + interpolation='bilinear', + ): + if isinstance(size, (list, tuple)): + self.size = tuple(size) + else: + self.size = (size, size) + if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): + warnings.warn("range should be of kind (min, max)") + + if interpolation == 'random': + self.interpolation = _RANDOM_INTERPOLATION + else: + self.interpolation = str_to_interp_mode(interpolation) + self.scale = scale + self.ratio = ratio + + @staticmethod + def get_params(img, scale, ratio): + """Get parameters for ``crop`` for a random sized crop. + + Args: + img (PIL Image): Image to be cropped. + scale (tuple): range of size of the origin size cropped + ratio (tuple): range of aspect ratio of the origin aspect ratio cropped + + Returns: + tuple: params (i, j, h, w) to be passed to ``crop`` for a random + sized crop. + """ + img_w, img_h = F.get_image_size(img) + area = img_w * img_h + + for attempt in range(10): + target_area = random.uniform(*scale) * area + log_ratio = (math.log(ratio[0]), math.log(ratio[1])) + aspect_ratio = math.exp(random.uniform(*log_ratio)) + + target_w = int(round(math.sqrt(target_area * aspect_ratio))) + target_h = int(round(math.sqrt(target_area / aspect_ratio))) + if target_w <= img_w and target_h <= img_h: + i = random.randint(0, img_h - target_h) + j = random.randint(0, img_w - target_w) + return i, j, target_h, target_w + + # Fallback to central crop + in_ratio = img_w / img_h + if in_ratio < min(ratio): + target_w = img_w + target_h = int(round(target_w / min(ratio))) + elif in_ratio > max(ratio): + target_h = img_h + target_w = int(round(target_h * max(ratio))) + else: # whole image + target_w = img_w + target_h = img_h + i = (img_h - target_h) // 2 + j = (img_w - target_w) // 2 + return i, j, target_h, target_w + + def __call__(self, img): + """ + Args: + img (PIL Image): Image to be cropped and resized. + + Returns: + PIL Image: Randomly cropped and resized image. + """ + i, j, h, w = self.get_params(img, self.scale, self.ratio) + if isinstance(self.interpolation, (tuple, list)): + interpolation = random.choice(self.interpolation) + else: + interpolation = self.interpolation + return F.resized_crop(img, i, j, h, w, self.size, interpolation) + + def __repr__(self): + if isinstance(self.interpolation, (tuple, list)): + interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) + else: + interpolate_str = interp_mode_to_str(self.interpolation) + format_string = self.__class__.__name__ + '(size={0}'.format(self.size) + format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) + format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) + format_string += ', interpolation={0})'.format(interpolate_str) + return format_string + + +def center_crop_or_pad( + img: torch.Tensor, + output_size: Union[int, List[int]], + fill: Union[int, Tuple[int, int, int]] = 0, + padding_mode: str = 'constant', +) -> torch.Tensor: + """Center crops and/or pads the given image. + + If the image is torch Tensor, it is expected + to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. + If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. + + Args: + img (PIL Image or Tensor): Image to be cropped. + output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int, + it is used for both directions. + fill (int, Tuple[int]): Padding color + + Returns: + PIL Image or Tensor: Cropped image. + """ + output_size = _setup_size(output_size) + crop_height, crop_width = output_size + _, image_height, image_width = F.get_dimensions(img) + + if crop_width > image_width or crop_height > image_height: + padding_ltrb = [ + (crop_width - image_width) // 2 if crop_width > image_width else 0, + (crop_height - image_height) // 2 if crop_height > image_height else 0, + (crop_width - image_width + 1) // 2 if crop_width > image_width else 0, + (crop_height - image_height + 1) // 2 if crop_height > image_height else 0, + ] + img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode) + _, image_height, image_width = F.get_dimensions(img) + if crop_width == image_width and crop_height == image_height: + return img + + crop_top = int(round((image_height - crop_height) / 2.0)) + crop_left = int(round((image_width - crop_width) / 2.0)) + return F.crop(img, crop_top, crop_left, crop_height, crop_width) + + +class CenterCropOrPad(torch.nn.Module): + """Crops the given image at the center. + If the image is torch Tensor, it is expected + to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions. + If image size is smaller than output size along any edge, image is padded with 0 and then center cropped. + + Args: + size (sequence or int): Desired output size of the crop. If size is an + int instead of sequence like (h, w), a square crop (size, size) is + made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]). + """ + + def __init__( + self, + size: Union[int, List[int]], + fill: Union[int, Tuple[int, int, int]] = 0, + padding_mode: str = 'constant', + ): + super().__init__() + self.size = _setup_size(size) + self.fill = fill + self.padding_mode = padding_mode + + def forward(self, img): + """ + Args: + img (PIL Image or Tensor): Image to be cropped. + + Returns: + PIL Image or Tensor: Cropped image. + """ + return center_crop_or_pad(img, self.size, fill=self.fill, padding_mode=self.padding_mode) + + def __repr__(self) -> str: + return f"{self.__class__.__name__}(size={self.size})" + + +def crop_or_pad( + img: torch.Tensor, + top: int, + left: int, + height: int, + width: int, + fill: Union[int, Tuple[int, int, int]] = 0, + padding_mode: str = 'constant', +) -> torch.Tensor: + """ Crops and/or pads image to meet target size, with control over fill and padding_mode. + """ + _, image_height, image_width = F.get_dimensions(img) + right = left + width + bottom = top + height + if left < 0 or top < 0 or right > image_width or bottom > image_height: + padding_ltrb = [ + max(-left + min(0, right), 0), + max(-top + min(0, bottom), 0), + max(right - max(image_width, left), 0), + max(bottom - max(image_height, top), 0), + ] + img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode) + + top = max(top, 0) + left = max(left, 0) + return F.crop(img, top, left, height, width) + + +class RandomCropOrPad(torch.nn.Module): + """ Crop and/or pad image with random placement within the crop or pad margin. + """ + + def __init__( + self, + size: Union[int, List[int]], + fill: Union[int, Tuple[int, int, int]] = 0, + padding_mode: str = 'constant', + ): + super().__init__() + self.size = _setup_size(size) + self.fill = fill + self.padding_mode = padding_mode + + @staticmethod + def get_params(img, size): + _, image_height, image_width = F.get_dimensions(img) + delta_height = image_height - size[0] + delta_width = image_width - size[1] + top = int(math.copysign(random.randint(0, abs(delta_height)), delta_height)) + left = int(math.copysign(random.randint(0, abs(delta_width)), delta_width)) + return top, left + + def forward(self, img): + """ + Args: + img (PIL Image or Tensor): Image to be cropped. + + Returns: + PIL Image or Tensor: Cropped image. + """ + top, left = self.get_params(img, self.size) + return crop_or_pad( + img, + top=top, + left=left, + height=self.size[0], + width=self.size[1], + fill=self.fill, + padding_mode=self.padding_mode, + ) + + def __repr__(self) -> str: + return f"{self.__class__.__name__}(size={self.size})" + + +class RandomPad: + def __init__(self, input_size, fill=0): + self.input_size = input_size + self.fill = fill + + @staticmethod + def get_params(img, input_size): + width, height = F.get_image_size(img) + delta_width = max(input_size[1] - width, 0) + delta_height = max(input_size[0] - height, 0) + pad_left = random.randint(0, delta_width) + pad_top = random.randint(0, delta_height) + pad_right = delta_width - pad_left + pad_bottom = delta_height - pad_top + return pad_left, pad_top, pad_right, pad_bottom + + def __call__(self, img): + padding = self.get_params(img, self.input_size) + img = F.pad(img, padding, self.fill) + return img + + +class ResizeKeepRatio: + """ Resize and Keep Aspect Ratio + """ + + def __init__( + self, + size, + longest=0., + interpolation='bilinear', + random_scale_prob=0., + random_scale_range=(0.85, 1.05), + random_scale_area=False, + random_aspect_prob=0., + random_aspect_range=(0.9, 1.11), + ): + """ + + Args: + size: + longest: + interpolation: + random_scale_prob: + random_scale_range: + random_scale_area: + random_aspect_prob: + random_aspect_range: + """ + if isinstance(size, (list, tuple)): + self.size = tuple(size) + else: + self.size = (size, size) + if interpolation == 'random': + self.interpolation = _RANDOM_INTERPOLATION + else: + self.interpolation = str_to_interp_mode(interpolation) + self.longest = float(longest) + self.random_scale_prob = random_scale_prob + self.random_scale_range = random_scale_range + self.random_scale_area = random_scale_area + self.random_aspect_prob = random_aspect_prob + self.random_aspect_range = random_aspect_range + + @staticmethod + def get_params( + img, + target_size, + longest, + random_scale_prob=0., + random_scale_range=(1.0, 1.33), + random_scale_area=False, + random_aspect_prob=0., + random_aspect_range=(0.9, 1.11) + ): + """Get parameters + """ + img_h, img_w = img_size = F.get_dimensions(img)[1:] + target_h, target_w = target_size + ratio_h = img_h / target_h + ratio_w = img_w / target_w + ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest) + + if random_scale_prob > 0 and random.random() < random_scale_prob: + ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1]) + if random_scale_area: + # make ratio factor equivalent to RRC area crop where < 1.0 = area zoom, + # otherwise like affine scale where < 1.0 = linear zoom out + ratio_factor = 1. / math.sqrt(ratio_factor) + ratio_factor = (ratio_factor, ratio_factor) + else: + ratio_factor = (1., 1.) + + if random_aspect_prob > 0 and random.random() < random_aspect_prob: + log_aspect = (math.log(random_aspect_range[0]), math.log(random_aspect_range[1])) + aspect_factor = math.exp(random.uniform(*log_aspect)) + aspect_factor = math.sqrt(aspect_factor) + # currently applying random aspect adjustment equally to both dims, + # could change to keep output sizes above their target where possible + ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor) + + size = [round(x * f / ratio) for x, f in zip(img_size, ratio_factor)] + return size + + def __call__(self, img): + """ + Args: + img (PIL Image): Image to be cropped and resized. + + Returns: + PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size + """ + size = self.get_params( + img, self.size, self.longest, + self.random_scale_prob, self.random_scale_range, self.random_scale_area, + self.random_aspect_prob, self.random_aspect_range + ) + if isinstance(self.interpolation, (tuple, list)): + interpolation = random.choice(self.interpolation) + else: + interpolation = self.interpolation + img = F.resize(img, size, interpolation) + return img + + def __repr__(self): + if isinstance(self.interpolation, (tuple, list)): + interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) + else: + interpolate_str = interp_mode_to_str(self.interpolation) + format_string = self.__class__.__name__ + '(size={0}'.format(self.size) + format_string += f', interpolation={interpolate_str}' + format_string += f', longest={self.longest:.3f}' + format_string += f', random_scale_prob={self.random_scale_prob:.3f}' + format_string += f', random_scale_range=(' \ + f'{self.random_scale_range[0]:.3f}, {self.random_aspect_range[1]:.3f})' + format_string += f', random_aspect_prob={self.random_aspect_prob:.3f}' + format_string += f', random_aspect_range=(' \ + f'{self.random_aspect_range[0]:.3f}, {self.random_aspect_range[1]:.3f}))' + return format_string + + +class TrimBorder(torch.nn.Module): + + def __init__( + self, + border_size: int, + ): + super().__init__() + self.border_size = border_size + + def forward(self, img): + w, h = F.get_image_size(img) + top = left = self.border_size + top = min(top, h) + left = min(left, h) + height = max(0, h - 2 * self.border_size) + width = max(0, w - 2 * self.border_size) + return F.crop(img, top, left, height, width) \ No newline at end of file diff --git a/pytorch-image-models/timm/data/transforms_factory.py b/pytorch-image-models/timm/data/transforms_factory.py new file mode 100644 index 0000000000000000000000000000000000000000..9be0e3bf3ce2cc12690f9ecd52dcb586cd87983c --- /dev/null +++ b/pytorch-image-models/timm/data/transforms_factory.py @@ -0,0 +1,460 @@ +""" Transforms Factory +Factory methods for building image transforms for use with TIMM (PyTorch Image Models) + +Hacked together by / Copyright 2019, Ross Wightman +""" +import math +from typing import Optional, Tuple, Union + +import torch +from torchvision import transforms + +from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT +from timm.data.auto_augment import rand_augment_transform, augment_and_mix_transform, auto_augment_transform +from timm.data.transforms import str_to_interp_mode, str_to_pil_interp, RandomResizedCropAndInterpolation, \ + ResizeKeepRatio, CenterCropOrPad, RandomCropOrPad, TrimBorder, ToNumpy, MaybeToTensor, MaybePILToTensor +from timm.data.random_erasing import RandomErasing + + +def transforms_noaug_train( + img_size: Union[int, Tuple[int, int]] = 224, + interpolation: str = 'bilinear', + mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, + std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, + use_prefetcher: bool = False, + normalize: bool = True, +): + """ No-augmentation image transforms for training. + + Args: + img_size: Target image size. + interpolation: Image interpolation mode. + mean: Image normalization mean. + std: Image normalization standard deviation. + use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. + normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used). + + Returns: + + """ + if interpolation == 'random': + # random interpolation not supported with no-aug + interpolation = 'bilinear' + tfl = [ + transforms.Resize(img_size, interpolation=str_to_interp_mode(interpolation)), + transforms.CenterCrop(img_size) + ] + if use_prefetcher: + # prefetcher and collate will handle tensor conversion and norm + tfl += [ToNumpy()] + elif not normalize: + # when normalize disabled, converted to tensor without scaling, keep original dtype + tfl += [MaybePILToTensor()] + else: + tfl += [ + MaybeToTensor(), + transforms.Normalize( + mean=torch.tensor(mean), + std=torch.tensor(std) + ) + ] + return transforms.Compose(tfl) + + +def transforms_imagenet_train( + img_size: Union[int, Tuple[int, int]] = 224, + scale: Optional[Tuple[float, float]] = None, + ratio: Optional[Tuple[float, float]] = None, + train_crop_mode: Optional[str] = None, + hflip: float = 0.5, + vflip: float = 0., + color_jitter: Union[float, Tuple[float, ...]] = 0.4, + color_jitter_prob: Optional[float] = None, + force_color_jitter: bool = False, + grayscale_prob: float = 0., + gaussian_blur_prob: float = 0., + auto_augment: Optional[str] = None, + interpolation: str = 'random', + mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, + std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, + re_prob: float = 0., + re_mode: str = 'const', + re_count: int = 1, + re_num_splits: int = 0, + use_prefetcher: bool = False, + normalize: bool = True, + separate: bool = False, +): + """ ImageNet-oriented image transforms for training. + + Args: + img_size: Target image size. + train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr'). + scale: Random resize scale range (crop area, < 1.0 => zoom in). + ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR). + hflip: Horizontal flip probability. + vflip: Vertical flip probability. + color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue). + Scalar is applied as (scalar,) * 3 (no hue). + color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug). + force_color_jitter: Force color jitter where it is normally disabled (ie with RandAugment on). + grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug). + gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug). + auto_augment: Auto augment configuration string (see auto_augment.py). + interpolation: Image interpolation mode. + mean: Image normalization mean. + std: Image normalization standard deviation. + re_prob: Random erasing probability. + re_mode: Random erasing fill mode. + re_count: Number of random erasing regions. + re_num_splits: Control split of random erasing across batch size. + use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. + normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used). + separate: Output transforms in 3-stage tuple. + + Returns: + If separate==True, the transforms are returned as a tuple of 3 separate transforms + for use in a mixing dataset that passes + * all data through the first (primary) transform, called the 'clean' data + * a portion of the data through the secondary transform + * normalizes and converts the branches above with the third, final transform + """ + train_crop_mode = train_crop_mode or 'rrc' + assert train_crop_mode in {'rrc', 'rkrc', 'rkrr'} + if train_crop_mode in ('rkrc', 'rkrr'): + # FIXME integration of RKR is a WIP + scale = tuple(scale or (0.8, 1.00)) + ratio = tuple(ratio or (0.9, 1/.9)) + primary_tfl = [ + ResizeKeepRatio( + img_size, + interpolation=interpolation, + random_scale_prob=0.5, + random_scale_range=scale, + random_scale_area=True, # scale compatible with RRC + random_aspect_prob=0.5, + random_aspect_range=ratio, + ), + CenterCropOrPad(img_size, padding_mode='reflect') + if train_crop_mode == 'rkrc' else + RandomCropOrPad(img_size, padding_mode='reflect') + ] + else: + scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range + ratio = tuple(ratio or (3. / 4., 4. / 3.)) # default imagenet ratio range + primary_tfl = [ + RandomResizedCropAndInterpolation( + img_size, + scale=scale, + ratio=ratio, + interpolation=interpolation, + ) + ] + if hflip > 0.: + primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)] + if vflip > 0.: + primary_tfl += [transforms.RandomVerticalFlip(p=vflip)] + + secondary_tfl = [] + disable_color_jitter = False + if auto_augment: + assert isinstance(auto_augment, str) + # color jitter is typically disabled if AA/RA on, + # this allows override without breaking old hparm cfgs + disable_color_jitter = not (force_color_jitter or '3a' in auto_augment) + if isinstance(img_size, (tuple, list)): + img_size_min = min(img_size) + else: + img_size_min = img_size + aa_params = dict( + translate_const=int(img_size_min * 0.45), + img_mean=tuple([min(255, round(255 * x)) for x in mean]), + ) + if interpolation and interpolation != 'random': + aa_params['interpolation'] = str_to_pil_interp(interpolation) + if auto_augment.startswith('rand'): + secondary_tfl += [rand_augment_transform(auto_augment, aa_params)] + elif auto_augment.startswith('augmix'): + aa_params['translate_pct'] = 0.3 + secondary_tfl += [augment_and_mix_transform(auto_augment, aa_params)] + else: + secondary_tfl += [auto_augment_transform(auto_augment, aa_params)] + + if color_jitter is not None and not disable_color_jitter: + # color jitter is enabled when not using AA or when forced + if isinstance(color_jitter, (list, tuple)): + # color jitter should be a 3-tuple/list if spec brightness/contrast/saturation + # or 4 if also augmenting hue + assert len(color_jitter) in (3, 4) + else: + # if it's a scalar, duplicate for brightness, contrast, and saturation, no hue + color_jitter = (float(color_jitter),) * 3 + if color_jitter_prob is not None: + secondary_tfl += [ + transforms.RandomApply([ + transforms.ColorJitter(*color_jitter), + ], + p=color_jitter_prob + ) + ] + else: + secondary_tfl += [transforms.ColorJitter(*color_jitter)] + + if grayscale_prob: + secondary_tfl += [transforms.RandomGrayscale(p=grayscale_prob)] + + if gaussian_blur_prob: + secondary_tfl += [ + transforms.RandomApply([ + transforms.GaussianBlur(kernel_size=23), # hardcoded for now + ], + p=gaussian_blur_prob, + ) + ] + + final_tfl = [] + if use_prefetcher: + # prefetcher and collate will handle tensor conversion and norm + final_tfl += [ToNumpy()] + elif not normalize: + # when normalize disable, converted to tensor without scaling, keeps original dtype + final_tfl += [MaybePILToTensor()] + else: + final_tfl += [ + MaybeToTensor(), + transforms.Normalize( + mean=torch.tensor(mean), + std=torch.tensor(std), + ), + ] + if re_prob > 0.: + final_tfl += [ + RandomErasing( + re_prob, + mode=re_mode, + max_count=re_count, + num_splits=re_num_splits, + device='cpu', + ) + ] + + if separate: + return transforms.Compose(primary_tfl), transforms.Compose(secondary_tfl), transforms.Compose(final_tfl) + else: + return transforms.Compose(primary_tfl + secondary_tfl + final_tfl) + + +def transforms_imagenet_eval( + img_size: Union[int, Tuple[int, int]] = 224, + crop_pct: Optional[float] = None, + crop_mode: Optional[str] = None, + crop_border_pixels: Optional[int] = None, + interpolation: str = 'bilinear', + mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, + std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, + use_prefetcher: bool = False, + normalize: bool = True, +): + """ ImageNet-oriented image transform for evaluation and inference. + + Args: + img_size: Target image size. + crop_pct: Crop percentage. Defaults to 0.875 when None. + crop_mode: Crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None. + crop_border_pixels: Trim a border of specified # pixels around edge of original image. + interpolation: Image interpolation mode. + mean: Image normalization mean. + std: Image normalization standard deviation. + use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. + normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used). + + Returns: + Composed transform pipeline + """ + crop_pct = crop_pct or DEFAULT_CROP_PCT + + if isinstance(img_size, (tuple, list)): + assert len(img_size) == 2 + scale_size = tuple([math.floor(x / crop_pct) for x in img_size]) + else: + scale_size = math.floor(img_size / crop_pct) + scale_size = (scale_size, scale_size) + + tfl = [] + + if crop_border_pixels: + tfl += [TrimBorder(crop_border_pixels)] + + if crop_mode == 'squash': + # squash mode scales each edge to 1/pct of target, then crops + # aspect ratio is not preserved, no img lost if crop_pct == 1.0 + tfl += [ + transforms.Resize(scale_size, interpolation=str_to_interp_mode(interpolation)), + transforms.CenterCrop(img_size), + ] + elif crop_mode == 'border': + # scale the longest edge of image to 1/pct of target edge, add borders to pad, then crop + # no image lost if crop_pct == 1.0 + fill = [round(255 * v) for v in mean] + tfl += [ + ResizeKeepRatio(scale_size, interpolation=interpolation, longest=1.0), + CenterCropOrPad(img_size, fill=fill), + ] + else: + # default crop model is center + # aspect ratio is preserved, crops center within image, no borders are added, image is lost + if scale_size[0] == scale_size[1]: + # simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg) + tfl += [ + transforms.Resize(scale_size[0], interpolation=str_to_interp_mode(interpolation)) + ] + else: + # resize the shortest edge to matching target dim for non-square target + tfl += [ResizeKeepRatio(scale_size)] + tfl += [transforms.CenterCrop(img_size)] + + if use_prefetcher: + # prefetcher and collate will handle tensor conversion and norm + tfl += [ToNumpy()] + elif not normalize: + # when normalize disabled, converted to tensor without scaling, keeps original dtype + tfl += [MaybePILToTensor()] + else: + tfl += [ + MaybeToTensor(), + transforms.Normalize( + mean=torch.tensor(mean), + std=torch.tensor(std), + ), + ] + + return transforms.Compose(tfl) + + +def create_transform( + input_size: Union[int, Tuple[int, int], Tuple[int, int, int]] = 224, + is_training: bool = False, + no_aug: bool = False, + train_crop_mode: Optional[str] = None, + scale: Optional[Tuple[float, float]] = None, + ratio: Optional[Tuple[float, float]] = None, + hflip: float = 0.5, + vflip: float = 0., + color_jitter: Union[float, Tuple[float, ...]] = 0.4, + color_jitter_prob: Optional[float] = None, + grayscale_prob: float = 0., + gaussian_blur_prob: float = 0., + auto_augment: Optional[str] = None, + interpolation: str = 'bilinear', + mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, + std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, + re_prob: float = 0., + re_mode: str = 'const', + re_count: int = 1, + re_num_splits: int = 0, + crop_pct: Optional[float] = None, + crop_mode: Optional[str] = None, + crop_border_pixels: Optional[int] = None, + tf_preprocessing: bool = False, + use_prefetcher: bool = False, + normalize: bool = True, + separate: bool = False, +): + """ + + Args: + input_size: Target input size (channels, height, width) tuple or size scalar. + is_training: Return training (random) transforms. + no_aug: Disable augmentation for training (useful for debug). + train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr'). + scale: Random resize scale range (crop area, < 1.0 => zoom in). + ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR). + hflip: Horizontal flip probability. + vflip: Vertical flip probability. + color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue). + Scalar is applied as (scalar,) * 3 (no hue). + color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug). + grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug). + gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug). + auto_augment: Auto augment configuration string (see auto_augment.py). + interpolation: Image interpolation mode. + mean: Image normalization mean. + std: Image normalization standard deviation. + re_prob: Random erasing probability. + re_mode: Random erasing fill mode. + re_count: Number of random erasing regions. + re_num_splits: Control split of random erasing across batch size. + crop_pct: Inference crop percentage (output size / resize size). + crop_mode: Inference crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None. + crop_border_pixels: Inference crop border of specified # pixels around edge of original image. + tf_preprocessing: Use TF 1.0 inference preprocessing for testing model ports + use_prefetcher: Pre-fetcher enabled. Do not convert image to tensor or normalize. + normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used). + separate: Output transforms in 3-stage tuple. + + Returns: + Composed transforms or tuple thereof + """ + if isinstance(input_size, (tuple, list)): + img_size = input_size[-2:] + else: + img_size = input_size + + if tf_preprocessing and use_prefetcher: + assert not separate, "Separate transforms not supported for TF preprocessing" + from timm.data.tf_preprocessing import TfPreprocessTransform + transform = TfPreprocessTransform( + is_training=is_training, + size=img_size, + interpolation=interpolation, + ) + else: + if is_training and no_aug: + assert not separate, "Cannot perform split augmentation with no_aug" + transform = transforms_noaug_train( + img_size, + interpolation=interpolation, + mean=mean, + std=std, + use_prefetcher=use_prefetcher, + normalize=normalize, + ) + elif is_training: + transform = transforms_imagenet_train( + img_size, + train_crop_mode=train_crop_mode, + scale=scale, + ratio=ratio, + hflip=hflip, + vflip=vflip, + color_jitter=color_jitter, + color_jitter_prob=color_jitter_prob, + grayscale_prob=grayscale_prob, + gaussian_blur_prob=gaussian_blur_prob, + auto_augment=auto_augment, + interpolation=interpolation, + mean=mean, + std=std, + re_prob=re_prob, + re_mode=re_mode, + re_count=re_count, + re_num_splits=re_num_splits, + use_prefetcher=use_prefetcher, + normalize=normalize, + separate=separate, + ) + else: + assert not separate, "Separate transforms not supported for validation preprocessing" + transform = transforms_imagenet_eval( + img_size, + interpolation=interpolation, + mean=mean, + std=std, + crop_pct=crop_pct, + crop_mode=crop_mode, + crop_border_pixels=crop_border_pixels, + use_prefetcher=use_prefetcher, + normalize=normalize, + ) + + return transform diff --git a/pytorch-image-models/timm/layers/__init__.py b/pytorch-image-models/timm/layers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f631e868312368f3d3150767c5549eab83bb973a --- /dev/null +++ b/pytorch-image-models/timm/layers/__init__.py @@ -0,0 +1,61 @@ +from .activations import * +from .adaptive_avgmax_pool import \ + adaptive_avgmax_pool2d, select_adaptive_pool2d, AdaptiveAvgMaxPool2d, SelectAdaptivePool2d +from .attention2d import MultiQueryAttention2d, Attention2d, MultiQueryAttentionV2 +from .attention_pool import AttentionPoolLatent +from .attention_pool2d import AttentionPool2d, RotAttentionPool2d, RotaryEmbedding +from .blur_pool import BlurPool2d, create_aa +from .classifier import create_classifier, ClassifierHead, NormMlpClassifierHead, ClNormMlpClassifierHead +from .cond_conv2d import CondConv2d, get_condconv_initializer +from .config import is_exportable, is_scriptable, is_no_jit, use_fused_attn, \ + set_exportable, set_scriptable, set_no_jit, set_layer_config, set_fused_attn +from .conv2d_same import Conv2dSame, conv2d_same +from .conv_bn_act import ConvNormAct, ConvNormActAa, ConvBnAct +from .create_act import create_act_layer, get_act_layer, get_act_fn +from .create_attn import get_attn, create_attn +from .create_conv2d import create_conv2d +from .create_norm import get_norm_layer, create_norm_layer +from .create_norm_act import get_norm_act_layer, create_norm_act_layer, get_norm_act_layer +from .drop import DropBlock2d, DropPath, drop_block_2d, drop_path +from .eca import EcaModule, CecaModule, EfficientChannelAttn, CircularEfficientChannelAttn +from .evo_norm import EvoNorm2dB0, EvoNorm2dB1, EvoNorm2dB2,\ + EvoNorm2dS0, EvoNorm2dS0a, EvoNorm2dS1, EvoNorm2dS1a, EvoNorm2dS2, EvoNorm2dS2a +from .fast_norm import is_fast_norm, set_fast_norm, fast_group_norm, fast_layer_norm +from .filter_response_norm import FilterResponseNormTlu2d, FilterResponseNormAct2d +from .format import Format, get_channel_dim, get_spatial_dim, nchw_to, nhwc_to +from .gather_excite import GatherExcite +from .global_context import GlobalContext +from .grid import ndgrid, meshgrid +from .helpers import to_ntuple, to_2tuple, to_3tuple, to_4tuple, make_divisible, extend_tuple +from .hybrid_embed import HybridEmbed, HybridEmbedWithSize +from .inplace_abn import InplaceAbn +from .layer_scale import LayerScale, LayerScale2d +from .linear import Linear +from .mixed_conv2d import MixedConv2d +from .mlp import Mlp, GluMlp, GatedMlp, SwiGLU, SwiGLUPacked, ConvMlp, GlobalResponseNormMlp +from .non_local_attn import NonLocalAttn, BatNonLocalAttn +from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm, RmsNorm2d +from .norm_act import BatchNormAct2d, GroupNormAct, GroupNorm1Act, LayerNormAct, LayerNormAct2d,\ + SyncBatchNormAct, convert_sync_batchnorm, FrozenBatchNormAct2d, freeze_batch_norm_2d, unfreeze_batch_norm_2d +from .padding import get_padding, get_same_padding, pad_same +from .patch_dropout import PatchDropout +from .patch_embed import PatchEmbed, PatchEmbedWithSize, resample_patch_embed +from .pool2d_same import AvgPool2dSame, create_pool2d +from .pos_embed import resample_abs_pos_embed, resample_abs_pos_embed_nhwc +from .pos_embed_rel import RelPosMlp, RelPosBias, RelPosBiasTf, gen_relative_position_index, gen_relative_log_coords, \ + resize_rel_pos_bias_table, resize_rel_pos_bias_table_simple, resize_rel_pos_bias_table_levit +from .pos_embed_sincos import pixel_freq_bands, freq_bands, build_sincos2d_pos_embed, build_fourier_pos_embed, \ + build_rotary_pos_embed, apply_rot_embed, apply_rot_embed_cat, apply_rot_embed_list, apply_keep_indices_nlc, \ + FourierEmbed, RotaryEmbedding, RotaryEmbeddingCat +from .squeeze_excite import SEModule, SqueezeExcite, EffectiveSEModule, EffectiveSqueezeExcite +from .selective_kernel import SelectiveKernel +from .separable_conv import SeparableConv2d, SeparableConvNormAct +from .space_to_depth import SpaceToDepth, DepthToSpace +from .split_attn import SplitAttn +from .split_batchnorm import SplitBatchNorm2d, convert_splitbn_model +from .std_conv import StdConv2d, StdConv2dSame, ScaledStdConv2d, ScaledStdConv2dSame +from .test_time_pool import TestTimePoolHead, apply_test_time_pool +from .trace_utils import _assert, _float_to_int +from .typing import LayerType, PadType +from .weight_init import trunc_normal_, trunc_normal_tf_, variance_scaling_, lecun_normal_, \ + init_weight_jax, init_weight_vit diff --git a/pytorch-image-models/timm/layers/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1acc41137b68b03dc21122168f6235f1f260f504 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/activations.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/activations.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..72a9d8a57331c33d451a58da8c27732dfb1fcc43 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/activations.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/activations_me.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/activations_me.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4c374899f59e7b7be71ccf99c7786ef1b5d0541f Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/activations_me.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/adaptive_avgmax_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/adaptive_avgmax_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..03ce7b5cb13122bda0893045b24195eafc014814 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/adaptive_avgmax_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/attention2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/attention2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..94f9a4c73f3b93cf295297d09f109648f7904189 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/attention2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/attention_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/attention_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c718c74440dcfba6b7937d5b9cccfa5d0345753 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/attention_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/attention_pool2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/attention_pool2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6c8242a96338838a953f2131441e55fa25927e38 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/attention_pool2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/blur_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/blur_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c6ca9c548ae883a69043ff8ae26438fe560d63d1 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/blur_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/bottleneck_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/bottleneck_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1e3f9d71f842ee941dc3c174c38965c27427aa60 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/bottleneck_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/cbam.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/cbam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..02cfd7a799a164d17d9e167961c5ffcbc67cfe36 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/cbam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/classifier.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/classifier.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..837ccc97de926573c584d01c4b0c50c9fe67f3a4 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/classifier.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/cond_conv2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/cond_conv2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7ca4ffb0a737729fcf18f02a330215bf2deb9c7f Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/cond_conv2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/config.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/config.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d90c1f562b329d914e252a1fd321506315e48022 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/config.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/conv2d_same.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/conv2d_same.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f1d8f039e2038074ca9ab751ba4d453125bdfef2 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/conv2d_same.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/conv_bn_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/conv_bn_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..feadc930c44d08c0883a4ccf0b971a561f2e576b Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/conv_bn_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ab1f4b9ed8f8a71e9043d82518c74520acb7777b Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8b8f3400c8d55f8a570e42fde556df0fff2d5c02 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_conv2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_conv2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..693ac2dfa5b5dfb727cbfa17ed1b1bb826ce60e5 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_conv2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f1f9b24e515db8e6616487e75025d998c263c059 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_norm_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_norm_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..22874d4761b6f4531167c5d0ae04188e51d98996 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_norm_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/drop.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/drop.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..130976a712573acc03eb1dd57d8a46f4fb8fd23a Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/drop.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/eca.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/eca.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e3d2899962edad379b25c9b747c7cddb85d40b6a Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/eca.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/evo_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/evo_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..870faaf1a90355eca7bbc038ecb0e394d6a1531d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/evo_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/fast_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/fast_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..03767d967608b7ffc3944297711badc2aa30bb44 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/fast_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/filter_response_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/filter_response_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..acc5bb8f3fcf2cfafebd17117d87ded25530b33f Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/filter_response_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/format.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/format.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4bc7d5da361888836ece0aae6704e365250c34f0 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/format.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/gather_excite.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/gather_excite.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ae6495f34a2880d3c50465eed444d63c2967a50d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/gather_excite.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/global_context.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/global_context.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b908ee70888a9f2618def94656d3b2c0596c25e4 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/global_context.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/grid.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/grid.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..064f7afb08137405e20033caed69b5c7ccd4e950 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/grid.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/grn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/grn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea7d5014c680764ae157f133f43c9d8fd5c5cd66 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/grn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/halo_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/halo_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5abe653231da2dafc8fa8191128ed5380e315291 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/halo_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/helpers.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/helpers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8011ecdab1e0addc63651bdc894a4d4c2d80e3d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/helpers.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/hybrid_embed.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/hybrid_embed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..10c4013c17d2175b72a1065998a63770e694c7f3 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/hybrid_embed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/inplace_abn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/inplace_abn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f3be05314b14898749483cb43de3de3ec142f8a2 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/inplace_abn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/interpolate.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/interpolate.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..24092e718f736ef8cf0ba4321eb83e21e6502dc0 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/interpolate.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/lambda_layer.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/lambda_layer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..11c5034b593dfb142cb12899317a15e3dd232d48 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/lambda_layer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/layer_scale.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/layer_scale.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..81ac5ca197029921f9b8ed170190dc8d7db7310a Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/layer_scale.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/linear.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/linear.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0d24f434c20969f2e454f0b426a8bd03634d6205 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/linear.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/mixed_conv2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/mixed_conv2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ff7eeec81dc9e5a5a1c1a2633d50bcdf7a272e3 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/mixed_conv2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/mlp.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/mlp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..96b3856267248485a448881934ef89e353b80d44 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/mlp.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/non_local_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/non_local_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..112a69aee1438bb5a78f70a3f5236f715e3cd735 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/non_local_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..89e04f5893680f8ac02ae0982911f3f9ad5bf7dc Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/norm_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/norm_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..23a9d142d9060f76531b8205d258fc384acc2406 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/norm_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/padding.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/padding.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1e8836a575b3588b545b79506263dd6f53120f95 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/padding.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/patch_dropout.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/patch_dropout.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1a4874f5b0ea3ecf675db45e70267c77c6f433ce Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/patch_dropout.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/patch_embed.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/patch_embed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..08bad1f8ab20ed6c3cfd992c6767d3b804f81b84 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/patch_embed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pool2d_same.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pool2d_same.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..759b4f69cce50fbfd4fcf26f259ca4421bb21ab7 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pool2d_same.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pos_embed.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pos_embed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d03c44961ab04dbab21c4ec093393edb185c9126 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pos_embed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pos_embed_rel.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pos_embed_rel.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..951b58999699e5cb363fce353628e4b43915753d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pos_embed_rel.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pos_embed_sincos.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pos_embed_sincos.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ba77d62d5d007ced69397497c2b86ffaba437786 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pos_embed_sincos.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/selective_kernel.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/selective_kernel.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..19aa851487aec4ef1bb2ce6c87aab50c1fc8a00e Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/selective_kernel.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/separable_conv.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/separable_conv.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d0dd27d4b44b9320f24ed0aa00a90f3b3a31040a Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/separable_conv.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/space_to_depth.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/space_to_depth.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5bfa50ac4ff5ba2eb9b4a19cba7757790ec88a97 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/space_to_depth.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/split_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/split_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..226bba2714f9f4e6db5b1431a2380ad18c3bad96 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/split_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/split_batchnorm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/split_batchnorm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5bf71e3adfc13244444a7c8025d6428e32342348 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/split_batchnorm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/squeeze_excite.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/squeeze_excite.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b91e917c861b9347286f9acc76c81d12d32c0af7 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/squeeze_excite.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/std_conv.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/std_conv.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b83ed79a130a3ff5755bfb15de09cb2412000520 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/std_conv.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/test_time_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/test_time_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b60a7d0e7c36e6df567979b25b519b8681a2f810 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/test_time_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/trace_utils.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/trace_utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..847628845a342f77b12f1a135f65ef0b6c38493e Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/trace_utils.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/typing.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/typing.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a54eae63fa9f10665778e89bbdb75e27d08e9202 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/typing.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/weight_init.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/weight_init.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1d00d6d7ac148a742e41499f9a44435ab03ee48c Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/weight_init.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/activations.py b/pytorch-image-models/timm/layers/activations.py new file mode 100644 index 0000000000000000000000000000000000000000..ee67df40181e26d2a085d6d072d946159d900f3f --- /dev/null +++ b/pytorch-image-models/timm/layers/activations.py @@ -0,0 +1,173 @@ +""" Activations + +A collection of activations fn and modules with a common interface so that they can +easily be swapped. All have an `inplace` arg even if not used. + +Hacked together by / Copyright 2020 Ross Wightman +""" + +import torch +from torch import nn as nn +from torch.nn import functional as F + + +def swish(x, inplace: bool = False): + """Swish - Described in: https://arxiv.org/abs/1710.05941 + """ + return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid()) + + +class Swish(nn.Module): + def __init__(self, inplace: bool = False): + super(Swish, self).__init__() + self.inplace = inplace + + def forward(self, x): + return swish(x, self.inplace) + + +def mish(x, inplace: bool = False): + """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 + NOTE: I don't have a working inplace variant + """ + return x.mul(F.softplus(x).tanh()) + + +class Mish(nn.Module): + """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 + """ + def __init__(self, inplace: bool = False): + super(Mish, self).__init__() + + def forward(self, x): + return mish(x) + + +def sigmoid(x, inplace: bool = False): + return x.sigmoid_() if inplace else x.sigmoid() + + +# PyTorch has this, but not with a consistent inplace argmument interface +class Sigmoid(nn.Module): + def __init__(self, inplace: bool = False): + super(Sigmoid, self).__init__() + self.inplace = inplace + + def forward(self, x): + return x.sigmoid_() if self.inplace else x.sigmoid() + + +def tanh(x, inplace: bool = False): + return x.tanh_() if inplace else x.tanh() + + +# PyTorch has this, but not with a consistent inplace argmument interface +class Tanh(nn.Module): + def __init__(self, inplace: bool = False): + super(Tanh, self).__init__() + self.inplace = inplace + + def forward(self, x): + return x.tanh_() if self.inplace else x.tanh() + + +def hard_swish(x, inplace: bool = False): + inner = F.relu6(x + 3.).div_(6.) + return x.mul_(inner) if inplace else x.mul(inner) + + +class HardSwish(nn.Module): + def __init__(self, inplace: bool = False): + super(HardSwish, self).__init__() + self.inplace = inplace + + def forward(self, x): + return hard_swish(x, self.inplace) + + +def hard_sigmoid(x, inplace: bool = False): + if inplace: + return x.add_(3.).clamp_(0., 6.).div_(6.) + else: + return F.relu6(x + 3.) / 6. + + +class HardSigmoid(nn.Module): + def __init__(self, inplace: bool = False): + super(HardSigmoid, self).__init__() + self.inplace = inplace + + def forward(self, x): + return hard_sigmoid(x, self.inplace) + + +def hard_mish(x, inplace: bool = False): + """ Hard Mish + Experimental, based on notes by Mish author Diganta Misra at + https://github.com/digantamisra98/H-Mish/blob/0da20d4bc58e696b6803f2523c58d3c8a82782d0/README.md + """ + if inplace: + return x.mul_(0.5 * (x + 2).clamp(min=0, max=2)) + else: + return 0.5 * x * (x + 2).clamp(min=0, max=2) + + +class HardMish(nn.Module): + def __init__(self, inplace: bool = False): + super(HardMish, self).__init__() + self.inplace = inplace + + def forward(self, x): + return hard_mish(x, self.inplace) + + +class PReLU(nn.PReLU): + """Applies PReLU (w/ dummy inplace arg) + """ + def __init__(self, num_parameters: int = 1, init: float = 0.25, inplace: bool = False) -> None: + super(PReLU, self).__init__(num_parameters=num_parameters, init=init) + + def forward(self, input: torch.Tensor) -> torch.Tensor: + return F.prelu(input, self.weight) + + +def gelu(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: + return F.gelu(x) + + +class GELU(nn.Module): + """Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) + """ + def __init__(self, inplace: bool = False): + super(GELU, self).__init__() + + def forward(self, input: torch.Tensor) -> torch.Tensor: + return F.gelu(input) + + +def gelu_tanh(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: + return F.gelu(x, approximate='tanh') + + +class GELUTanh(nn.Module): + """Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) + """ + def __init__(self, inplace: bool = False): + super(GELUTanh, self).__init__() + + def forward(self, input: torch.Tensor) -> torch.Tensor: + return F.gelu(input, approximate='tanh') + + +def quick_gelu(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: + return x * torch.sigmoid(1.702 * x) + + +class QuickGELU(nn.Module): + """Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) + """ + def __init__(self, inplace: bool = False): + super(QuickGELU, self).__init__() + + def forward(self, input: torch.Tensor) -> torch.Tensor: + return quick_gelu(input) diff --git a/pytorch-image-models/timm/layers/activations_me.py b/pytorch-image-models/timm/layers/activations_me.py new file mode 100644 index 0000000000000000000000000000000000000000..b0ddd5cb0da0ec2daa1a16a596b5bcfa5618baf6 --- /dev/null +++ b/pytorch-image-models/timm/layers/activations_me.py @@ -0,0 +1,208 @@ +""" Activations (memory-efficient w/ custom autograd) + +A collection of activations fn and modules with a common interface so that they can +easily be swapped. All have an `inplace` arg even if not used. + +These activations are not compatible with jit scripting or ONNX export of the model, please use +basic versions of the activations. + +Hacked together by / Copyright 2020 Ross Wightman +""" + +import torch +from torch import nn as nn +from torch.nn import functional as F + + +def swish_fwd(x): + return x.mul(torch.sigmoid(x)) + + +def swish_bwd(x, grad_output): + x_sigmoid = torch.sigmoid(x) + return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid))) + + +class SwishAutoFn(torch.autograd.Function): + """ optimised Swish w/ memory-efficient checkpoint + Inspired by conversation btw Jeremy Howard & Adam Pazske + https://twitter.com/jeremyphoward/status/1188251041835315200 + """ + @staticmethod + def symbolic(g, x): + return g.op("Mul", x, g.op("Sigmoid", x)) + + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return swish_fwd(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + return swish_bwd(x, grad_output) + + +def swish_me(x, inplace=False): + return SwishAutoFn.apply(x) + + +class SwishMe(nn.Module): + def __init__(self, inplace: bool = False): + super(SwishMe, self).__init__() + + def forward(self, x): + return SwishAutoFn.apply(x) + + +def mish_fwd(x): + return x.mul(torch.tanh(F.softplus(x))) + + +def mish_bwd(x, grad_output): + x_sigmoid = torch.sigmoid(x) + x_tanh_sp = F.softplus(x).tanh() + return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp)) + + +class MishAutoFn(torch.autograd.Function): + """ Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 + A memory efficient variant of Mish + """ + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return mish_fwd(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + return mish_bwd(x, grad_output) + + +def mish_me(x, inplace=False): + return MishAutoFn.apply(x) + + +class MishMe(nn.Module): + def __init__(self, inplace: bool = False): + super(MishMe, self).__init__() + + def forward(self, x): + return MishAutoFn.apply(x) + + +def hard_sigmoid_fwd(x, inplace: bool = False): + return (x + 3).clamp(min=0, max=6).div(6.) + + +def hard_sigmoid_bwd(x, grad_output): + m = torch.ones_like(x) * ((x >= -3.) & (x <= 3.)) / 6. + return grad_output * m + + +class HardSigmoidAutoFn(torch.autograd.Function): + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return hard_sigmoid_fwd(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + return hard_sigmoid_bwd(x, grad_output) + + +def hard_sigmoid_me(x, inplace: bool = False): + return HardSigmoidAutoFn.apply(x) + + +class HardSigmoidMe(nn.Module): + def __init__(self, inplace: bool = False): + super(HardSigmoidMe, self).__init__() + + def forward(self, x): + return HardSigmoidAutoFn.apply(x) + + +def hard_swish_fwd(x): + return x * (x + 3).clamp(min=0, max=6).div(6.) + + +def hard_swish_bwd(x, grad_output): + m = torch.ones_like(x) * (x >= 3.) + m = torch.where((x >= -3.) & (x <= 3.), x / 3. + .5, m) + return grad_output * m + + +class HardSwishAutoFn(torch.autograd.Function): + """A memory efficient HardSwish activation""" + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return hard_swish_fwd(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + return hard_swish_bwd(x, grad_output) + + @staticmethod + def symbolic(g, self): + input = g.op("Add", self, g.op('Constant', value_t=torch.tensor(3, dtype=torch.float))) + hardtanh_ = g.op("Clip", input, g.op('Constant', value_t=torch.tensor(0, dtype=torch.float)), g.op('Constant', value_t=torch.tensor(6, dtype=torch.float))) + hardtanh_ = g.op("Div", hardtanh_, g.op('Constant', value_t=torch.tensor(6, dtype=torch.float))) + return g.op("Mul", self, hardtanh_) + + +def hard_swish_me(x, inplace=False): + return HardSwishAutoFn.apply(x) + + +class HardSwishMe(nn.Module): + def __init__(self, inplace: bool = False): + super(HardSwishMe, self).__init__() + + def forward(self, x): + return HardSwishAutoFn.apply(x) + + +def hard_mish_fwd(x): + return 0.5 * x * (x + 2).clamp(min=0, max=2) + + +def hard_mish_bwd(x, grad_output): + m = torch.ones_like(x) * (x >= -2.) + m = torch.where((x >= -2.) & (x <= 0.), x + 1., m) + return grad_output * m + + +class HardMishAutoFn(torch.autograd.Function): + """ A memory efficient variant of Hard Mish + Experimental, based on notes by Mish author Diganta Misra at + https://github.com/digantamisra98/H-Mish/blob/0da20d4bc58e696b6803f2523c58d3c8a82782d0/README.md + """ + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return hard_mish_fwd(x) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + return hard_mish_bwd(x, grad_output) + + +def hard_mish_me(x, inplace: bool = False): + return HardMishAutoFn.apply(x) + + +class HardMishMe(nn.Module): + def __init__(self, inplace: bool = False): + super(HardMishMe, self).__init__() + + def forward(self, x): + return HardMishAutoFn.apply(x) + + + diff --git a/pytorch-image-models/timm/layers/adaptive_avgmax_pool.py b/pytorch-image-models/timm/layers/adaptive_avgmax_pool.py new file mode 100644 index 0000000000000000000000000000000000000000..d0dd58d986643de5bcfb54f50eb3aad17fae00b9 --- /dev/null +++ b/pytorch-image-models/timm/layers/adaptive_avgmax_pool.py @@ -0,0 +1,183 @@ +""" PyTorch selectable adaptive pooling +Adaptive pooling with the ability to select the type of pooling from: + * 'avg' - Average pooling + * 'max' - Max pooling + * 'avgmax' - Sum of average and max pooling re-scaled by 0.5 + * 'avgmaxc' - Concatenation of average and max pooling along feature dim, doubles feature dim + +Both a functional and a nn.Module version of the pooling is provided. + +Hacked together by / Copyright 2020 Ross Wightman +""" +from typing import Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .format import get_spatial_dim, get_channel_dim + +_int_tuple_2_t = Union[int, Tuple[int, int]] + + +def adaptive_pool_feat_mult(pool_type='avg'): + if pool_type.endswith('catavgmax'): + return 2 + else: + return 1 + + +def adaptive_avgmax_pool2d(x, output_size: _int_tuple_2_t = 1): + x_avg = F.adaptive_avg_pool2d(x, output_size) + x_max = F.adaptive_max_pool2d(x, output_size) + return 0.5 * (x_avg + x_max) + + +def adaptive_catavgmax_pool2d(x, output_size: _int_tuple_2_t = 1): + x_avg = F.adaptive_avg_pool2d(x, output_size) + x_max = F.adaptive_max_pool2d(x, output_size) + return torch.cat((x_avg, x_max), 1) + + +def select_adaptive_pool2d(x, pool_type='avg', output_size: _int_tuple_2_t = 1): + """Selectable global pooling function with dynamic input kernel size + """ + if pool_type == 'avg': + x = F.adaptive_avg_pool2d(x, output_size) + elif pool_type == 'avgmax': + x = adaptive_avgmax_pool2d(x, output_size) + elif pool_type == 'catavgmax': + x = adaptive_catavgmax_pool2d(x, output_size) + elif pool_type == 'max': + x = F.adaptive_max_pool2d(x, output_size) + else: + assert False, 'Invalid pool type: %s' % pool_type + return x + + +class FastAdaptiveAvgPool(nn.Module): + def __init__(self, flatten: bool = False, input_fmt: F = 'NCHW'): + super(FastAdaptiveAvgPool, self).__init__() + self.flatten = flatten + self.dim = get_spatial_dim(input_fmt) + + def forward(self, x): + return x.mean(self.dim, keepdim=not self.flatten) + + +class FastAdaptiveMaxPool(nn.Module): + def __init__(self, flatten: bool = False, input_fmt: str = 'NCHW'): + super(FastAdaptiveMaxPool, self).__init__() + self.flatten = flatten + self.dim = get_spatial_dim(input_fmt) + + def forward(self, x): + return x.amax(self.dim, keepdim=not self.flatten) + + +class FastAdaptiveAvgMaxPool(nn.Module): + def __init__(self, flatten: bool = False, input_fmt: str = 'NCHW'): + super(FastAdaptiveAvgMaxPool, self).__init__() + self.flatten = flatten + self.dim = get_spatial_dim(input_fmt) + + def forward(self, x): + x_avg = x.mean(self.dim, keepdim=not self.flatten) + x_max = x.amax(self.dim, keepdim=not self.flatten) + return 0.5 * x_avg + 0.5 * x_max + + +class FastAdaptiveCatAvgMaxPool(nn.Module): + def __init__(self, flatten: bool = False, input_fmt: str = 'NCHW'): + super(FastAdaptiveCatAvgMaxPool, self).__init__() + self.flatten = flatten + self.dim_reduce = get_spatial_dim(input_fmt) + if flatten: + self.dim_cat = 1 + else: + self.dim_cat = get_channel_dim(input_fmt) + + def forward(self, x): + x_avg = x.mean(self.dim_reduce, keepdim=not self.flatten) + x_max = x.amax(self.dim_reduce, keepdim=not self.flatten) + return torch.cat((x_avg, x_max), self.dim_cat) + + +class AdaptiveAvgMaxPool2d(nn.Module): + def __init__(self, output_size: _int_tuple_2_t = 1): + super(AdaptiveAvgMaxPool2d, self).__init__() + self.output_size = output_size + + def forward(self, x): + return adaptive_avgmax_pool2d(x, self.output_size) + + +class AdaptiveCatAvgMaxPool2d(nn.Module): + def __init__(self, output_size: _int_tuple_2_t = 1): + super(AdaptiveCatAvgMaxPool2d, self).__init__() + self.output_size = output_size + + def forward(self, x): + return adaptive_catavgmax_pool2d(x, self.output_size) + + +class SelectAdaptivePool2d(nn.Module): + """Selectable global pooling layer with dynamic input kernel size + """ + def __init__( + self, + output_size: _int_tuple_2_t = 1, + pool_type: str = 'fast', + flatten: bool = False, + input_fmt: str = 'NCHW', + ): + super(SelectAdaptivePool2d, self).__init__() + assert input_fmt in ('NCHW', 'NHWC') + self.pool_type = pool_type or '' # convert other falsy values to empty string for consistent TS typing + pool_type = pool_type.lower() + if not pool_type: + self.pool = nn.Identity() # pass through + self.flatten = nn.Flatten(1) if flatten else nn.Identity() + elif pool_type.startswith('fast') or input_fmt != 'NCHW': + assert output_size == 1, 'Fast pooling and non NCHW input formats require output_size == 1.' + if pool_type.endswith('catavgmax'): + self.pool = FastAdaptiveCatAvgMaxPool(flatten, input_fmt=input_fmt) + elif pool_type.endswith('avgmax'): + self.pool = FastAdaptiveAvgMaxPool(flatten, input_fmt=input_fmt) + elif pool_type.endswith('max'): + self.pool = FastAdaptiveMaxPool(flatten, input_fmt=input_fmt) + elif pool_type == 'fast' or pool_type.endswith('avg'): + self.pool = FastAdaptiveAvgPool(flatten, input_fmt=input_fmt) + else: + assert False, 'Invalid pool type: %s' % pool_type + self.flatten = nn.Identity() + else: + assert input_fmt == 'NCHW' + if pool_type == 'avgmax': + self.pool = AdaptiveAvgMaxPool2d(output_size) + elif pool_type == 'catavgmax': + self.pool = AdaptiveCatAvgMaxPool2d(output_size) + elif pool_type == 'max': + self.pool = nn.AdaptiveMaxPool2d(output_size) + elif pool_type == 'avg': + self.pool = nn.AdaptiveAvgPool2d(output_size) + else: + assert False, 'Invalid pool type: %s' % pool_type + self.flatten = nn.Flatten(1) if flatten else nn.Identity() + + def is_identity(self): + return not self.pool_type + + def forward(self, x): + x = self.pool(x) + x = self.flatten(x) + return x + + def feat_mult(self): + return adaptive_pool_feat_mult(self.pool_type) + + def __repr__(self): + return self.__class__.__name__ + '(' \ + + 'pool_type=' + self.pool_type \ + + ', flatten=' + str(self.flatten) + ')' + diff --git a/pytorch-image-models/timm/layers/attention2d.py b/pytorch-image-models/timm/layers/attention2d.py new file mode 100644 index 0000000000000000000000000000000000000000..31200adf7670df815483500115f5e735a27ed11f --- /dev/null +++ b/pytorch-image-models/timm/layers/attention2d.py @@ -0,0 +1,351 @@ +from typing import List, Optional, Union + +import torch +from torch import nn as nn +from torch.nn import functional as F + +from .config import use_fused_attn +from .create_conv2d import create_conv2d +from .helpers import to_2tuple +from .pool2d_same import create_pool2d + + +class MultiQueryAttentionV2(nn.Module): + """Multi Query Attention. + + Fast Transformer Decoding: One Write-Head is All You Need + https://arxiv.org/pdf/1911.02150.pdf + + This is an acceletor optimized version - removing multiple unneccessary + tensor transpose by re-arranging indices according to the following rules: 1) + contracted indices are at the end, 2) other indices have the same order in the + input and output tensores. + + Compared to V1, this gives 3x speed up. + """ + + def __init__( + self, + dim: int, + dim_out: Optional[int] = None, + num_heads: int = 8, + key_dim: int = 64, + value_dim: int = 64, + attn_drop: float = 0., + proj_drop: float = 0., + ): + """Initializer.""" + super().__init__() + dim_out = dim_out or dim + self.num_heads = num_heads + self.key_dim = key_dim + self.value_dim = value_dim + self.scale = key_dim ** -0.5 + + self.query_proj = nn.Parameter(torch.randn([self.num_heads, self.key_dim, dim])) + self.key_proj = nn.Parameter(torch.randn([dim, self.key_dim])) + self.value_proj = nn.Parameter(torch.randn([dim, self.value_dim])) + self.attn_drop = nn.Dropout(attn_drop) + self.out_proj = nn.Parameter(torch.randn([dim_out, self.num_heads, self.value_dim])) + self.proj_drop = nn.Dropout(proj_drop) + + def _reshape_input(self, t): + """Reshapes a tensor to three dimensions, keeping the first and last.""" + s = t.shape + # Propagate the shape statically where possible. + #num = t.shape[1:-1].numel() + #return t.reshape(s[0], num, s[-1]) + return t.reshape(s[0], s[1], -1).transpose(1, 2) + + def forward(self, x, m: Optional[torch.Tensor] = None): + """Run layer computation.""" + s = x.shape + m = m or x + + reshaped_x = self._reshape_input(x) + reshaped_m = self._reshape_input(m) + + q = torch.einsum('bnd,hkd->bnhk', reshaped_x, self.query_proj) + k = torch.einsum('bmd,dk->bmk', reshaped_m, self.key_proj) + + attn = torch.einsum('bnhk,bmk->bnhm', q, k) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + v = torch.einsum('bmd,dv->bmv', reshaped_m, self.value_proj) + o = torch.einsum('bnhm,bmv->bnhv', attn, v) + result = torch.einsum('bnhv,dhv->bnd', o, self.out_proj) + result = self.proj_drop(result) + return result.reshape(s) + + +class MultiQueryAttention2d(nn.Module): + """Multi Query Attention with spatial downsampling. + + 3 parameters are introduced for the spatial downsampling: + 1. kv_stride: downsampling factor on Key and Values only. + 2. query_strides: horizontal & vertical strides on Query only. + + This is an optimized version. + 1. Projections in Attention is explict written out as 1x1 Conv2D. + 2. Additional reshapes are introduced to bring a up to 3x speed up. + """ + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + dim: int, + dim_out: Optional[int] = None, + num_heads: int = 8, + key_dim: Optional[int] = None, + value_dim: Optional[int] = None, + query_strides: int = 1, + kv_stride: int = 1, + dw_kernel_size: int = 3, + dilation: int = 1, + padding: Union[str, int, List[int]] = '', + attn_drop: float = 0., + proj_drop: float = 0., + norm_layer: nn.Module = nn.BatchNorm2d, + use_bias: bool = False, + ): + """Initializer. + + Args: + num_heads: Number of attention heads. + key_dim: Size of the attention key dimension. + value_dim: Size of the attention value dimension. + query_strides: Vertical stride size for query only. + kv_stride: Key and value stride size. + dw_kernel_size: Spatial dimension of the depthwise kernel. + """ + super().__init__() + dim_out = dim_out or dim + self.num_heads = num_heads + self.key_dim = key_dim or dim // num_heads + self.value_dim = value_dim or dim // num_heads + self.query_strides = to_2tuple(query_strides) + self.kv_stride = kv_stride + self.has_query_strides = any([s > 1 for s in self.query_strides]) + self.scale = self.key_dim ** -0.5 + self.fused_attn = use_fused_attn() + self.drop = attn_drop + + self.query = nn.Sequential() + if self.has_query_strides: + # FIXME dilation + if padding == 'same': + self.query.add_module('down_pool', create_pool2d( + 'avg', + kernel_size=self.query_strides, + padding='same', + )) + else: + # no pad if not 'same' as kern=stride=even + self.query.add_module('down_pool', nn.AvgPool2d(kernel_size=query_strides)) + self.query.add_module('norm', norm_layer(dim)) + self.query.add_module('proj', create_conv2d( + dim, + self.num_heads * self.key_dim, + kernel_size=1, + bias=use_bias, + )) + + self.key = nn.Sequential() + if kv_stride > 1: + self.key.add_module('down_conv', create_conv2d( + dim, + dim, + kernel_size=dw_kernel_size, + stride=kv_stride, + dilation=dilation, + padding=padding, + depthwise=True, + )) + self.key.add_module('norm', norm_layer(dim)) + self.key.add_module('proj', create_conv2d( + dim, + self.key_dim, + kernel_size=1, + padding=padding, + bias=use_bias, + )) + + self.value = nn.Sequential() + if kv_stride > 1: + self.value.add_module('down_conv', create_conv2d( + dim, + dim, + kernel_size=dw_kernel_size, + stride=kv_stride, + dilation=dilation, + padding=padding, + depthwise=True, + )) + self.value.add_module('norm', norm_layer(dim)) + self.value.add_module('proj', create_conv2d( + dim, + self.value_dim, + kernel_size=1, + bias=use_bias, + )) + + self.attn_drop = nn.Dropout(attn_drop) + + self.output = nn.Sequential() + if self.has_query_strides: + self.output.add_module('upsample', nn.Upsample(scale_factor=self.query_strides, mode='bilinear', align_corners=False)) + self.output.add_module('proj', create_conv2d( + self.value_dim * self.num_heads, + dim_out, + kernel_size=1, + bias=use_bias, + )) + self.output.add_module('drop', nn.Dropout(proj_drop)) + + self.einsum = False + + def init_weights(self): + # using xavier appeared to improve stability for mobilenetv4 hybrid w/ this layer + nn.init.xavier_uniform_(self.query.proj.weight) + nn.init.xavier_uniform_(self.key.proj.weight) + nn.init.xavier_uniform_(self.value.proj.weight) + if self.kv_stride > 1: + nn.init.xavier_uniform_(self.key.down_conv.weight) + nn.init.xavier_uniform_(self.value.down_conv.weight) + nn.init.xavier_uniform_(self.output.proj.weight) + + def _reshape_input(self, t: torch.Tensor): + """Reshapes a tensor to three dimensions, keeping the batch and channels.""" + s = t.shape + t = t.reshape(s[0], s[1], -1).transpose(1, 2) + if self.einsum: + return t + else: + return t.unsqueeze(1).contiguous() + + def _reshape_projected_query(self, t: torch.Tensor, num_heads: int, key_dim: int): + """Reshapes projected query: [b, n, n, h x k] -> [b, n x n, h, k].""" + s = t.shape + t = t.reshape(s[0], num_heads, key_dim, -1) + if self.einsum: + return t.permute(0, 3, 1, 2).contiguous() + else: + return t.transpose(-1, -2).contiguous() + + def _reshape_output(self, t: torch.Tensor, num_heads: int, h_px: int, w_px: int): + """Reshape output:[b, n x n x h, k] -> [b, n, n, hk].""" + s = t.shape + feat_dim = s[-1] * num_heads + if not self.einsum: + t = t.transpose(1, 2) + return t.reshape(s[0], h_px, w_px, feat_dim).permute(0, 3, 1, 2).contiguous() + + def forward(self, x, attn_mask: Optional[torch.Tensor] = None): + """Run layer computation.""" + B, C, H, W = s = x.shape + + q = self.query(x) + # desired q shape: [b, h, k, n x n] - [b, l, h, k] + q = self._reshape_projected_query(q, self.num_heads, self.key_dim) + + k = self.key(x) + # output shape of k: [b, k, p], p = m x m + k = self._reshape_input(k) + + v = self.value(x) + # output shape of v: [ b, p, k], p = m x m + v = self._reshape_input(v) + + # desired q shape: [b, n x n, h, k] + # desired k shape: [b, m x m, k] + # desired logits shape: [b, n x n, h, m x m] + if self.einsum: + attn = torch.einsum('blhk,bpk->blhp', q, k) * self.scale + if attn_mask is not None: + # NOTE: assumes mask is float and in correct shape + attn = attn + attn_mask + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + o = torch.einsum('blhp,bpk->blhk', attn, v) + else: + if self.fused_attn: + o = F.scaled_dot_product_attention( + q, k, v, + attn_mask=attn_mask, + dropout_p=self.attn_drop.p if self.training else 0. + ) + else: + q = q * self.scale + attn = q @ k.transpose(-1, -2) + if attn_mask is not None: + # NOTE: assumes mask is float and in correct shape + attn = attn + attn_mask + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + o = attn @ v + + # reshape o into [b, hk, n, n,] + o = self._reshape_output(o, self.num_heads, H // self.query_strides[0], W // self.query_strides[1]) + x = self.output(o) + return x + + +class Attention2d(nn.Module): + fused_attn: torch.jit.Final[bool] + + """ multi-head attention for 2D NCHW tensors""" + def __init__( + self, + dim: int, + dim_out: Optional[int] = None, + num_heads: int = 32, + bias: bool = True, + expand_first: bool = False, + head_first: bool = False, + attn_drop: float = 0., + proj_drop: float = 0. + ): + super().__init__() + dim_out = dim_out or dim + dim_attn = dim_out if expand_first else dim + self.num_heads = num_heads + self.dim_head = dim_attn // num_heads + self.head_first = head_first + self.scale = num_heads ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, attn_mask: Optional[torch.Tensor] = None): + B, C, H, W = x.shape + + if self.head_first: + q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2) + else: + q, k, v = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1) + + if self.fused_attn: + x = torch.nn.functional.scaled_dot_product_attention( + q.transpose(-1, -2).contiguous(), + k.transpose(-1, -2).contiguous(), + v.transpose(-1, -2).contiguous(), + attn_mask=attn_mask, + dropout_p=self.attn_drop.p if self.training else 0., + ).transpose(-1, -2).reshape(B, -1, H, W) + else: + q = q * self.scale + attn = q.transpose(-2, -1) @ k + if attn_mask is not None: + # NOTE: assumes mask is float and in correct shape + attn = attn + attn_mask + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) + + x = self.proj(x) + x = self.proj_drop(x) + return x diff --git a/pytorch-image-models/timm/layers/attention_pool.py b/pytorch-image-models/timm/layers/attention_pool.py new file mode 100644 index 0000000000000000000000000000000000000000..da5585b363a4254ddc53f495eb92417ed6ed9f71 --- /dev/null +++ b/pytorch-image-models/timm/layers/attention_pool.py @@ -0,0 +1,105 @@ +from typing import Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .config import use_fused_attn +from .mlp import Mlp +from .weight_init import trunc_normal_tf_ + + +class AttentionPoolLatent(nn.Module): + """ Attention pooling w/ latent query + """ + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + in_features: int, + out_features: int = None, + embed_dim: int = None, + num_heads: int = 8, + feat_size: Optional[int] = None, + mlp_ratio: float = 4.0, + qkv_bias: bool = True, + qk_norm: bool = False, + latent_len: int = 1, + latent_dim: int = None, + pos_embed: str = '', + pool_type: str = 'token', + norm_layer: Optional[nn.Module] = None, + drop: float = 0.0, + ): + super().__init__() + embed_dim = embed_dim or in_features + out_features = out_features or in_features + assert embed_dim % num_heads == 0 + self.num_heads = num_heads + self.head_dim = embed_dim // num_heads + self.feat_size = feat_size + self.scale = self.head_dim ** -0.5 + self.pool = pool_type + self.fused_attn = use_fused_attn() + + if pos_embed == 'abs': + assert feat_size is not None + self.pos_embed = nn.Parameter(torch.zeros(feat_size, in_features)) + else: + self.pos_embed = None + + self.latent_dim = latent_dim or embed_dim + self.latent_len = latent_len + self.latent = nn.Parameter(torch.zeros(1, self.latent_len, embed_dim)) + + self.q = nn.Linear(embed_dim, embed_dim, bias=qkv_bias) + self.kv = nn.Linear(embed_dim, embed_dim * 2, bias=qkv_bias) + self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.proj = nn.Linear(embed_dim, embed_dim) + self.proj_drop = nn.Dropout(drop) + + self.norm = norm_layer(out_features) if norm_layer is not None else nn.Identity() + self.mlp = Mlp(embed_dim, int(embed_dim * mlp_ratio)) + + self.init_weights() + + def init_weights(self): + if self.pos_embed is not None: + trunc_normal_tf_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5) + trunc_normal_tf_(self.latent, std=self.latent_dim ** -0.5) + + def forward(self, x): + B, N, C = x.shape + + if self.pos_embed is not None: + # FIXME interpolate + x = x + self.pos_embed.unsqueeze(0).to(x.dtype) + + q_latent = self.latent.expand(B, -1, -1) + q = self.q(q_latent).reshape(B, self.latent_len, self.num_heads, self.head_dim).transpose(1, 2) + + kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + k, v = kv.unbind(0) + + q, k = self.q_norm(q), self.k_norm(k) + + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + x = attn @ v + x = x.transpose(1, 2).reshape(B, self.latent_len, C) + x = self.proj(x) + x = self.proj_drop(x) + + x = x + self.mlp(self.norm(x)) + + # optional pool if latent seq_len > 1 and pooled output is desired + if self.pool == 'token': + x = x[:, 0] + elif self.pool == 'avg': + x = x.mean(1) + return x \ No newline at end of file diff --git a/pytorch-image-models/timm/layers/attention_pool2d.py b/pytorch-image-models/timm/layers/attention_pool2d.py new file mode 100644 index 0000000000000000000000000000000000000000..e6c70417600b2bd12f655ed3946580807d7abef9 --- /dev/null +++ b/pytorch-image-models/timm/layers/attention_pool2d.py @@ -0,0 +1,278 @@ +""" Attention Pool 2D + +Implementations of 2D spatial feature pooling using multi-head attention instead of average pool. + +Based on idea in CLIP by OpenAI, licensed Apache 2.0 +https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py + +Hacked together by / Copyright 2021 Ross Wightman +""" +from typing import Optional, Union, Tuple + +import torch +import torch.nn as nn + +from. config import use_fused_attn +from .helpers import to_2tuple +from .pos_embed import resample_abs_pos_embed +from .pos_embed_sincos import apply_rot_embed, RotaryEmbedding +from .weight_init import trunc_normal_ + + +class RotAttentionPool2d(nn.Module): + """ Attention based 2D feature pooling w/ rotary (relative) pos embedding. + This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. + + Adapted from the AttentionPool2d in CLIP w/ rotary embedding instead of learned embed. + https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py + + NOTE: While this impl does not require a fixed feature size, performance at differeing resolutions from + train varies widely and falls off dramatically. I'm not sure if there is a way around this... -RW + """ + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + in_features: int, + out_features: Optional[int] = None, + ref_feat_size: Union[int, Tuple[int, int]] = 7, + embed_dim: Optional[int] = None, + head_dim: Optional[int] = 64, + num_heads: Optional[int] = None, + qkv_bias: bool = True, + qkv_separate: bool = False, + pool_type: str = 'token', + class_token: bool = False, + drop_rate: float = 0., + ): + super().__init__() + assert pool_type in ('', 'token') + self.embed_dim = embed_dim = embed_dim or in_features + self.in_features = in_features + self.out_features = out_features or in_features + ref_feat_size = to_2tuple(ref_feat_size) + if num_heads is not None: + assert embed_dim % num_heads == 0 + head_dim = embed_dim // num_heads + else: + assert embed_dim % head_dim == 0 + num_heads = embed_dim // head_dim + self.num_heads = num_heads + self.head_dim = head_dim + self.pool_type = pool_type.lower() + self.scale = self.head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + if class_token: + self.cls_token = nn.Parameter(torch.zeros(1, embed_dim)) + else: + self.cls_token = None + + if qkv_separate: + self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.qkv = None + else: + self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) + self.drop = nn.Dropout(drop_rate) + self.proj = nn.Linear(embed_dim, self.out_features) + self.pos_embed = RotaryEmbedding(self.head_dim, in_pixels=False, ref_feat_shape=ref_feat_size) + + def init_weights(self, zero_init_last: bool = False): + if self.qkv is None: + in_features = self.q.in_features + trunc_normal_(self.q.weight, std=in_features ** -0.5) + nn.init.zeros_(self.q.bias) + trunc_normal_(self.k.weight, std=in_features ** -0.5) + nn.init.zeros_(self.k.bias) + trunc_normal_(self.v.weight, std=in_features ** -0.5) + nn.init.zeros_(self.v.bias) + else: + in_features = self.qkv.in_features + trunc_normal_(self.qkv.weight, std=in_features ** -0.5) + nn.init.zeros_(self.qkv.bias) + + def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None): + # NOTE: this module is being used as a head, so need compatible reset() + if pool_type is not None: + assert pool_type in ('', 'token') + self.pool_type = pool_type + if num_classes is not None: + self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity() + self.out_features = num_classes if num_classes > 0 else self.embed_dim + + def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor: + if self.pool_type == 'token': + x = x[:, 0] + else: + # if not pooled, return spatial output without token + x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2) + return x + + def forward(self, x, pre_logits: bool = False): + B, _, H, W = x.shape + N = H * W + x = x.flatten(2).transpose(1, 2) + if self.cls_token is None: + x = torch.cat([x.mean(1, keepdim=True), x], dim=1) + else: + x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1) + if self.qkv is None: + q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + else: + x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + q, k, v = x.unbind(0) + + rse, rce = self.pos_embed.get_embed((H, W)) + q = torch.cat([q[:, :, :1, :], apply_rot_embed(q[:, :, 1:, :], rse, rce)], dim=2).type_as(v) + k = torch.cat([k[:, :, :1, :], apply_rot_embed(k[:, :, 1:, :], rse, rce)], dim=2).type_as(v) + + if self.fused_attn: + x = nn.functional.scaled_dot_product_attention(q, k, v) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N + 1, -1) + x = self.drop(x) + if pre_logits: + x = self._pool(x, H, W) + return x + x = self.proj(x) + x = self._pool(x, H, W) + return x + + +class AttentionPool2d(nn.Module): + """ Attention based 2D feature pooling w/ learned (absolute) pos embedding. + This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. + + It was based on impl in CLIP by OpenAI + https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py + + NOTE: This requires feature size upon construction and well prevent adaptive sizing of the network. + """ + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + in_features: int, + feat_size: Union[int, Tuple[int, int]] = 7, + out_features: Optional[int] = None, + embed_dim: Optional[int] = None, + head_dim: Optional[int] = 64, + num_heads: Optional[int] = None, + qkv_bias: bool = True, + qkv_separate: bool = False, + pool_type: str = 'token', + class_token: bool = False, + drop_rate: float = 0., + ): + super().__init__() + assert pool_type in ('', 'token') + self.embed_dim = embed_dim = embed_dim or in_features + self.in_features = in_features + self.out_features = out_features or in_features + if num_heads is not None: + assert embed_dim % num_heads == 0 + head_dim = embed_dim // num_heads + else: + assert embed_dim % head_dim == 0 + num_heads = embed_dim // head_dim + self.feat_size = to_2tuple(feat_size) + self.seq_len = self.feat_size[0] * self.feat_size[1] + self.num_heads = num_heads + self.head_dim = head_dim + self.pool_type = pool_type + self.scale = self.head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + if class_token: + self.cls_token = nn.Parameter(torch.zeros(1, embed_dim)) + else: + self.cls_token = None + + if qkv_separate: + self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias) + self.qkv = None + else: + self.q = self.k = self.v = None + self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) + self.drop = nn.Dropout(drop_rate) + self.proj = nn.Linear(embed_dim, self.out_features) + self.pos_embed = nn.Parameter(torch.zeros(self.seq_len + 1, in_features)) + + self.init_weights() + + def init_weights(self, zero_init_last: bool = False): + if self.qkv is None: + in_features = self.q.in_features + trunc_normal_(self.q.weight, std=in_features ** -0.5) + nn.init.zeros_(self.q.bias) + trunc_normal_(self.k.weight, std=in_features ** -0.5) + nn.init.zeros_(self.k.bias) + trunc_normal_(self.v.weight, std=in_features ** -0.5) + nn.init.zeros_(self.v.bias) + else: + in_features = self.qkv.in_features + trunc_normal_(self.qkv.weight, std=in_features ** -0.5) + nn.init.zeros_(self.qkv.bias) + trunc_normal_(self.pos_embed, std=in_features ** -0.5) + + def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None): + # NOTE: this module is being used as a head, so need compatible reset() + if pool_type is not None: + assert pool_type in ('', 'token') + self.pool_type = pool_type + if num_classes is not None: + self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity() + self.out_features = num_classes if num_classes > 0 else self.embed_dim + + def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor: + if self.pool_type == 'token': + x = x[:, 0] + else: + # if not pooled, return spatial output without token + x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2) + return x + + def forward(self, x, pre_logits: bool = False): + B, _, H, W = x.shape + N = H * W + x = x.flatten(2).transpose(1, 2) + if self.cls_token is None: + x = torch.cat([x.mean(1, keepdim=True), x], dim=1) + else: + x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1) + pos_embed = resample_abs_pos_embed(self.pos_embed.unsqueeze(0), (H, W), num_prefix_tokens=1) + x = x + pos_embed + + if self.qkv is None: + q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) + else: + x = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + q, k, v = x.unbind(0) + + if self.fused_attn: + x = nn.functional.scaled_dot_product_attention(q, k, v) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N + 1, -1) + x = self.drop(x) + if pre_logits: + x = self._pool(x, H, W) + return x + x = self.proj(x) + x = self._pool(x, H, W) + return x diff --git a/pytorch-image-models/timm/layers/blur_pool.py b/pytorch-image-models/timm/layers/blur_pool.py new file mode 100644 index 0000000000000000000000000000000000000000..6a4b668c1f364cc3feb348fe1f43718baba1df8d --- /dev/null +++ b/pytorch-image-models/timm/layers/blur_pool.py @@ -0,0 +1,91 @@ +""" +BlurPool layer inspired by + - Kornia's Max_BlurPool2d + - Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar` + +Hacked together by Chris Ha and Ross Wightman +""" +from functools import partial +from typing import Optional, Type + +import torch +import torch.nn as nn +import torch.nn.functional as F +import numpy as np + +from .padding import get_padding +from .typing import LayerType + + +class BlurPool2d(nn.Module): + r"""Creates a module that computes blurs and downsample a given feature map. + See :cite:`zhang2019shiftinvar` for more details. + Corresponds to the Downsample class, which does blurring and subsampling + + Args: + channels = Number of input channels + filt_size (int): binomial filter size for blurring. currently supports 3 (default) and 5. + stride (int): downsampling filter stride + + Returns: + torch.Tensor: the transformed tensor. + """ + def __init__( + self, + channels: Optional[int] = None, + filt_size: int = 3, + stride: int = 2, + pad_mode: str = 'reflect', + ) -> None: + super(BlurPool2d, self).__init__() + assert filt_size > 1 + self.channels = channels + self.filt_size = filt_size + self.stride = stride + self.pad_mode = pad_mode + self.padding = [get_padding(filt_size, stride, dilation=1)] * 4 + + coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs.astype(np.float32)) + blur_filter = (coeffs[:, None] * coeffs[None, :])[None, None, :, :] + if channels is not None: + blur_filter = blur_filter.repeat(self.channels, 1, 1, 1) + self.register_buffer('filt', blur_filter, persistent=False) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = F.pad(x, self.padding, mode=self.pad_mode) + if self.channels is None: + channels = x.shape[1] + weight = self.filt.expand(channels, 1, self.filt_size, self.filt_size) + else: + channels = self.channels + weight = self.filt + return F.conv2d(x, weight, stride=self.stride, groups=channels) + + +def create_aa( + aa_layer: LayerType, + channels: Optional[int] = None, + stride: int = 2, + enable: bool = True, + noop: Optional[Type[nn.Module]] = nn.Identity +) -> nn.Module: + """ Anti-aliasing """ + if not aa_layer or not enable: + return noop() if noop is not None else None + + if isinstance(aa_layer, str): + aa_layer = aa_layer.lower().replace('_', '').replace('-', '') + if aa_layer == 'avg' or aa_layer == 'avgpool': + aa_layer = nn.AvgPool2d + elif aa_layer == 'blur' or aa_layer == 'blurpool': + aa_layer = BlurPool2d + elif aa_layer == 'blurpc': + aa_layer = partial(BlurPool2d, pad_mode='constant') + + else: + assert False, f"Unknown anti-aliasing layer ({aa_layer})." + + try: + return aa_layer(channels=channels, stride=stride) + except TypeError as e: + return aa_layer(stride) diff --git a/pytorch-image-models/timm/layers/bottleneck_attn.py b/pytorch-image-models/timm/layers/bottleneck_attn.py new file mode 100644 index 0000000000000000000000000000000000000000..c3db464e5ab4f2d3478293034e90a0939dadb628 --- /dev/null +++ b/pytorch-image-models/timm/layers/bottleneck_attn.py @@ -0,0 +1,157 @@ +""" Bottleneck Self Attention (Bottleneck Transformers) + +Paper: `Bottleneck Transformers for Visual Recognition` - https://arxiv.org/abs/2101.11605 + +@misc{2101.11605, +Author = {Aravind Srinivas and Tsung-Yi Lin and Niki Parmar and Jonathon Shlens and Pieter Abbeel and Ashish Vaswani}, +Title = {Bottleneck Transformers for Visual Recognition}, +Year = {2021}, +} + +Based on ref gist at: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 + +This impl is a WIP but given that it is based on the ref gist likely not too far off. + +Hacked together by / Copyright 2021 Ross Wightman +""" +from typing import List + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .helpers import to_2tuple, make_divisible +from .weight_init import trunc_normal_ +from .trace_utils import _assert + + +def rel_logits_1d(q, rel_k, permute_mask: List[int]): + """ Compute relative logits along one dimension + + As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 + Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 + + Args: + q: (batch, heads, height, width, dim) + rel_k: (2 * width - 1, dim) + permute_mask: permute output dim according to this + """ + B, H, W, dim = q.shape + x = (q @ rel_k.transpose(-1, -2)) + x = x.reshape(-1, W, 2 * W -1) + + # pad to shift from relative to absolute indexing + x_pad = F.pad(x, [0, 1]).flatten(1) + x_pad = F.pad(x_pad, [0, W - 1]) + + # reshape and slice out the padded elements + x_pad = x_pad.reshape(-1, W + 1, 2 * W - 1) + x = x_pad[:, :W, W - 1:] + + # reshape and tile + x = x.reshape(B, H, 1, W, W).expand(-1, -1, H, -1, -1) + return x.permute(permute_mask) + + +class PosEmbedRel(nn.Module): + """ Relative Position Embedding + As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 + Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 + """ + def __init__(self, feat_size, dim_head, scale): + super().__init__() + self.height, self.width = to_2tuple(feat_size) + self.dim_head = dim_head + self.height_rel = nn.Parameter(torch.randn(self.height * 2 - 1, dim_head) * scale) + self.width_rel = nn.Parameter(torch.randn(self.width * 2 - 1, dim_head) * scale) + + def forward(self, q): + B, HW, _ = q.shape + + # relative logits in width dimension. + q = q.reshape(B, self.height, self.width, -1) + rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4)) + + # relative logits in height dimension. + q = q.transpose(1, 2) + rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2)) + + rel_logits = rel_logits_h + rel_logits_w + rel_logits = rel_logits.reshape(B, HW, HW) + return rel_logits + + +class BottleneckAttn(nn.Module): + """ Bottleneck Attention + Paper: `Bottleneck Transformers for Visual Recognition` - https://arxiv.org/abs/2101.11605 + + The internal dimensions of the attention module are controlled by the interaction of several arguments. + * the output dimension of the module is specified by dim_out, which falls back to input dim if not set + * the value (v) dimension is set to dim_out // num_heads, the v projection determines the output dim + * the query and key (qk) dimensions are determined by + * num_heads * dim_head if dim_head is not None + * num_heads * (dim_out * attn_ratio // num_heads) if dim_head is None + * as seen above, attn_ratio determines the ratio of q and k relative to the output if dim_head not used + + Args: + dim (int): input dimension to the module + dim_out (int): output dimension of the module, same as dim if not set + stride (int): output stride of the module, avg pool used if stride == 2 (default: 1). + num_heads (int): parallel attention heads (default: 4) + dim_head (int): dimension of query and key heads, calculated from dim_out * attn_ratio // num_heads if not set + qk_ratio (float): ratio of q and k dimensions to output dimension when dim_head not set. (default: 1.0) + qkv_bias (bool): add bias to q, k, and v projections + scale_pos_embed (bool): scale the position embedding as well as Q @ K + """ + def __init__( + self, dim, dim_out=None, feat_size=None, stride=1, num_heads=4, dim_head=None, + qk_ratio=1.0, qkv_bias=False, scale_pos_embed=False): + super().__init__() + assert feat_size is not None, 'A concrete feature size matching expected input (H, W) is required' + dim_out = dim_out or dim + assert dim_out % num_heads == 0 + self.num_heads = num_heads + self.dim_head_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads + self.dim_head_v = dim_out // self.num_heads + self.dim_out_qk = num_heads * self.dim_head_qk + self.dim_out_v = num_heads * self.dim_head_v + self.scale = self.dim_head_qk ** -0.5 + self.scale_pos_embed = scale_pos_embed + + self.qkv = nn.Conv2d(dim, self.dim_out_qk * 2 + self.dim_out_v, 1, bias=qkv_bias) + + # NOTE I'm only supporting relative pos embedding for now + self.pos_embed = PosEmbedRel(feat_size, dim_head=self.dim_head_qk, scale=self.scale) + + self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity() + + self.reset_parameters() + + def reset_parameters(self): + trunc_normal_(self.qkv.weight, std=self.qkv.weight.shape[1] ** -0.5) # fan-in + trunc_normal_(self.pos_embed.height_rel, std=self.scale) + trunc_normal_(self.pos_embed.width_rel, std=self.scale) + + def forward(self, x): + B, C, H, W = x.shape + _assert(H == self.pos_embed.height, '') + _assert(W == self.pos_embed.width, '') + + x = self.qkv(x) # B, (2 * dim_head_qk + dim_head_v) * num_heads, H, W + + # NOTE head vs channel split ordering in qkv projection was decided before I allowed qk to differ from v + # So, this is more verbose than if heads were before qkv splits, but throughput is not impacted. + q, k, v = torch.split(x, [self.dim_out_qk, self.dim_out_qk, self.dim_out_v], dim=1) + q = q.reshape(B * self.num_heads, self.dim_head_qk, -1).transpose(-1, -2) + k = k.reshape(B * self.num_heads, self.dim_head_qk, -1) # no transpose, for q @ k + v = v.reshape(B * self.num_heads, self.dim_head_v, -1).transpose(-1, -2) + + if self.scale_pos_embed: + attn = (q @ k + self.pos_embed(q)) * self.scale # B * num_heads, H * W, H * W + else: + attn = (q @ k) * self.scale + self.pos_embed(q) + attn = attn.softmax(dim=-1) + + out = (attn @ v).transpose(-1, -2).reshape(B, self.dim_out_v, H, W) # B, dim_out, H, W + out = self.pool(out) + return out diff --git a/pytorch-image-models/timm/layers/cbam.py b/pytorch-image-models/timm/layers/cbam.py new file mode 100644 index 0000000000000000000000000000000000000000..576a8306d979c3d93215253eba3affd7efd87bfe --- /dev/null +++ b/pytorch-image-models/timm/layers/cbam.py @@ -0,0 +1,112 @@ +""" CBAM (sort-of) Attention + +Experimental impl of CBAM: Convolutional Block Attention Module: https://arxiv.org/abs/1807.06521 + +WARNING: Results with these attention layers have been mixed. They can significantly reduce performance on +some tasks, especially fine-grained it seems. I may end up removing this impl. + +Hacked together by / Copyright 2020 Ross Wightman +""" +import torch +from torch import nn as nn +import torch.nn.functional as F + +from .conv_bn_act import ConvNormAct +from .create_act import create_act_layer, get_act_layer +from .helpers import make_divisible + + +class ChannelAttn(nn.Module): + """ Original CBAM channel attention module, currently avg + max pool variant only. + """ + def __init__( + self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1, + act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): + super(ChannelAttn, self).__init__() + if not rd_channels: + rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) + self.fc1 = nn.Conv2d(channels, rd_channels, 1, bias=mlp_bias) + self.act = act_layer(inplace=True) + self.fc2 = nn.Conv2d(rd_channels, channels, 1, bias=mlp_bias) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_avg = self.fc2(self.act(self.fc1(x.mean((2, 3), keepdim=True)))) + x_max = self.fc2(self.act(self.fc1(x.amax((2, 3), keepdim=True)))) + return x * self.gate(x_avg + x_max) + + +class LightChannelAttn(ChannelAttn): + """An experimental 'lightweight' that sums avg + max pool first + """ + def __init__( + self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1, + act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): + super(LightChannelAttn, self).__init__( + channels, rd_ratio, rd_channels, rd_divisor, act_layer, gate_layer, mlp_bias) + + def forward(self, x): + x_pool = 0.5 * x.mean((2, 3), keepdim=True) + 0.5 * x.amax((2, 3), keepdim=True) + x_attn = self.fc2(self.act(self.fc1(x_pool))) + return x * F.sigmoid(x_attn) + + +class SpatialAttn(nn.Module): + """ Original CBAM spatial attention module + """ + def __init__(self, kernel_size=7, gate_layer='sigmoid'): + super(SpatialAttn, self).__init__() + self.conv = ConvNormAct(2, 1, kernel_size, apply_act=False) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_attn = torch.cat([x.mean(dim=1, keepdim=True), x.amax(dim=1, keepdim=True)], dim=1) + x_attn = self.conv(x_attn) + return x * self.gate(x_attn) + + +class LightSpatialAttn(nn.Module): + """An experimental 'lightweight' variant that sums avg_pool and max_pool results. + """ + def __init__(self, kernel_size=7, gate_layer='sigmoid'): + super(LightSpatialAttn, self).__init__() + self.conv = ConvNormAct(1, 1, kernel_size, apply_act=False) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_attn = 0.5 * x.mean(dim=1, keepdim=True) + 0.5 * x.amax(dim=1, keepdim=True) + x_attn = self.conv(x_attn) + return x * self.gate(x_attn) + + +class CbamModule(nn.Module): + def __init__( + self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1, + spatial_kernel_size=7, act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): + super(CbamModule, self).__init__() + self.channel = ChannelAttn( + channels, rd_ratio=rd_ratio, rd_channels=rd_channels, + rd_divisor=rd_divisor, act_layer=act_layer, gate_layer=gate_layer, mlp_bias=mlp_bias) + self.spatial = SpatialAttn(spatial_kernel_size, gate_layer=gate_layer) + + def forward(self, x): + x = self.channel(x) + x = self.spatial(x) + return x + + +class LightCbamModule(nn.Module): + def __init__( + self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1, + spatial_kernel_size=7, act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): + super(LightCbamModule, self).__init__() + self.channel = LightChannelAttn( + channels, rd_ratio=rd_ratio, rd_channels=rd_channels, + rd_divisor=rd_divisor, act_layer=act_layer, gate_layer=gate_layer, mlp_bias=mlp_bias) + self.spatial = LightSpatialAttn(spatial_kernel_size) + + def forward(self, x): + x = self.channel(x) + x = self.spatial(x) + return x + diff --git a/pytorch-image-models/timm/layers/classifier.py b/pytorch-image-models/timm/layers/classifier.py new file mode 100644 index 0000000000000000000000000000000000000000..5e425fe6c80783396f336d1bbe38a6370a7662f4 --- /dev/null +++ b/pytorch-image-models/timm/layers/classifier.py @@ -0,0 +1,283 @@ +""" Classifier head and layer factory + +Hacked together by / Copyright 2020 Ross Wightman +""" +from collections import OrderedDict +from functools import partial +from typing import Optional, Union, Callable + +import torch +import torch.nn as nn +from torch.nn import functional as F + +from .adaptive_avgmax_pool import SelectAdaptivePool2d +from .create_act import get_act_layer +from .create_norm import get_norm_layer + + +def _create_pool( + num_features: int, + num_classes: int, + pool_type: str = 'avg', + use_conv: bool = False, + input_fmt: Optional[str] = None, +): + flatten_in_pool = not use_conv # flatten when we use a Linear layer after pooling + if not pool_type: + flatten_in_pool = False # disable flattening if pooling is pass-through (no pooling) + global_pool = SelectAdaptivePool2d( + pool_type=pool_type, + flatten=flatten_in_pool, + input_fmt=input_fmt, + ) + num_pooled_features = num_features * global_pool.feat_mult() + return global_pool, num_pooled_features + + +def _create_fc(num_features, num_classes, use_conv=False): + if num_classes <= 0: + fc = nn.Identity() # pass-through (no classifier) + elif use_conv: + fc = nn.Conv2d(num_features, num_classes, 1, bias=True) + else: + fc = nn.Linear(num_features, num_classes, bias=True) + return fc + + +def create_classifier( + num_features: int, + num_classes: int, + pool_type: str = 'avg', + use_conv: bool = False, + input_fmt: str = 'NCHW', + drop_rate: Optional[float] = None, +): + global_pool, num_pooled_features = _create_pool( + num_features, + num_classes, + pool_type, + use_conv=use_conv, + input_fmt=input_fmt, + ) + fc = _create_fc( + num_pooled_features, + num_classes, + use_conv=use_conv, + ) + if drop_rate is not None: + dropout = nn.Dropout(drop_rate) + return global_pool, dropout, fc + return global_pool, fc + + +class ClassifierHead(nn.Module): + """Classifier head w/ configurable global pooling and dropout.""" + + def __init__( + self, + in_features: int, + num_classes: int, + pool_type: str = 'avg', + drop_rate: float = 0., + use_conv: bool = False, + input_fmt: str = 'NCHW', + ): + """ + Args: + in_features: The number of input features. + num_classes: The number of classes for the final classifier layer (output). + pool_type: Global pooling type, pooling disabled if empty string (''). + drop_rate: Pre-classifier dropout rate. + """ + super(ClassifierHead, self).__init__() + self.in_features = in_features + self.use_conv = use_conv + self.input_fmt = input_fmt + + global_pool, fc = create_classifier( + in_features, + num_classes, + pool_type, + use_conv=use_conv, + input_fmt=input_fmt, + ) + self.global_pool = global_pool + self.drop = nn.Dropout(drop_rate) + self.fc = fc + self.flatten = nn.Flatten(1) if use_conv and pool_type else nn.Identity() + + def reset(self, num_classes: int, pool_type: Optional[str] = None): + if pool_type is not None and pool_type != self.global_pool.pool_type: + self.global_pool, self.fc = create_classifier( + self.in_features, + num_classes, + pool_type=pool_type, + use_conv=self.use_conv, + input_fmt=self.input_fmt, + ) + self.flatten = nn.Flatten(1) if self.use_conv and pool_type else nn.Identity() + else: + num_pooled_features = self.in_features * self.global_pool.feat_mult() + self.fc = _create_fc( + num_pooled_features, + num_classes, + use_conv=self.use_conv, + ) + + def forward(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.drop(x) + if pre_logits: + return self.flatten(x) + x = self.fc(x) + return self.flatten(x) + + +class NormMlpClassifierHead(nn.Module): + """ A Pool -> Norm -> Mlp Classifier Head for '2D' NCHW tensors + """ + def __init__( + self, + in_features: int, + num_classes: int, + hidden_size: Optional[int] = None, + pool_type: str = 'avg', + drop_rate: float = 0., + norm_layer: Union[str, Callable] = 'layernorm2d', + act_layer: Union[str, Callable] = 'tanh', + ): + """ + Args: + in_features: The number of input features. + num_classes: The number of classes for the final classifier layer (output). + hidden_size: The hidden size of the MLP (pre-logits FC layer) if not None. + pool_type: Global pooling type, pooling disabled if empty string (''). + drop_rate: Pre-classifier dropout rate. + norm_layer: Normalization layer type. + act_layer: MLP activation layer type (only used if hidden_size is not None). + """ + super().__init__() + self.in_features = in_features + self.hidden_size = hidden_size + self.num_features = in_features + self.use_conv = not pool_type + norm_layer = get_norm_layer(norm_layer) + act_layer = get_act_layer(act_layer) + linear_layer = partial(nn.Conv2d, kernel_size=1) if self.use_conv else nn.Linear + + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) + self.norm = norm_layer(in_features) + self.flatten = nn.Flatten(1) if pool_type else nn.Identity() + if hidden_size: + self.pre_logits = nn.Sequential(OrderedDict([ + ('fc', linear_layer(in_features, hidden_size)), + ('act', act_layer()), + ])) + self.num_features = hidden_size + else: + self.pre_logits = nn.Identity() + self.drop = nn.Dropout(drop_rate) + self.fc = linear_layer(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def reset(self, num_classes: int, pool_type: Optional[str] = None): + if pool_type is not None: + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) + self.flatten = nn.Flatten(1) if pool_type else nn.Identity() + self.use_conv = self.global_pool.is_identity() + linear_layer = partial(nn.Conv2d, kernel_size=1) if self.use_conv else nn.Linear + if self.hidden_size: + if ((isinstance(self.pre_logits.fc, nn.Conv2d) and not self.use_conv) or + (isinstance(self.pre_logits.fc, nn.Linear) and self.use_conv)): + with torch.no_grad(): + new_fc = linear_layer(self.in_features, self.hidden_size) + new_fc.weight.copy_(self.pre_logits.fc.weight.reshape(new_fc.weight.shape)) + new_fc.bias.copy_(self.pre_logits.fc.bias) + self.pre_logits.fc = new_fc + self.fc = linear_layer(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.norm(x) + x = self.flatten(x) + x = self.pre_logits(x) + x = self.drop(x) + if pre_logits: + return x + x = self.fc(x) + return x + + +class ClNormMlpClassifierHead(nn.Module): + """ A Pool -> Norm -> Mlp Classifier Head for n-D NxxC tensors + """ + def __init__( + self, + in_features: int, + num_classes: int, + hidden_size: Optional[int] = None, + pool_type: str = 'avg', + drop_rate: float = 0., + norm_layer: Union[str, Callable] = 'layernorm', + act_layer: Union[str, Callable] = 'gelu', + input_fmt: str = 'NHWC', + ): + """ + Args: + in_features: The number of input features. + num_classes: The number of classes for the final classifier layer (output). + hidden_size: The hidden size of the MLP (pre-logits FC layer) if not None. + pool_type: Global pooling type, pooling disabled if empty string (''). + drop_rate: Pre-classifier dropout rate. + norm_layer: Normalization layer type. + act_layer: MLP activation layer type (only used if hidden_size is not None). + """ + super().__init__() + self.in_features = in_features + self.hidden_size = hidden_size + self.num_features = in_features + assert pool_type in ('', 'avg', 'max', 'avgmax') + self.pool_type = pool_type + assert input_fmt in ('NHWC', 'NLC') + self.pool_dim = 1 if input_fmt == 'NLC' else (1, 2) + norm_layer = get_norm_layer(norm_layer) + act_layer = get_act_layer(act_layer) + + self.norm = norm_layer(in_features) + if hidden_size: + self.pre_logits = nn.Sequential(OrderedDict([ + ('fc', nn.Linear(in_features, hidden_size)), + ('act', act_layer()), + ])) + self.num_features = hidden_size + else: + self.pre_logits = nn.Identity() + self.drop = nn.Dropout(drop_rate) + self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def reset(self, num_classes: int, pool_type: Optional[str] = None, reset_other: bool = False): + if pool_type is not None: + self.pool_type = pool_type + if reset_other: + self.pre_logits = nn.Identity() + self.norm = nn.Identity() + self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def _global_pool(self, x): + if self.pool_type: + if self.pool_type == 'avg': + x = x.mean(dim=self.pool_dim) + elif self.pool_type == 'max': + x = x.amax(dim=self.pool_dim) + elif self.pool_type == 'avgmax': + x = 0.5 * (x.amax(dim=self.pool_dim) + x.mean(dim=self.pool_dim)) + return x + + def forward(self, x, pre_logits: bool = False): + x = self._global_pool(x) + x = self.norm(x) + x = self.pre_logits(x) + x = self.drop(x) + if pre_logits: + return x + x = self.fc(x) + return x diff --git a/pytorch-image-models/timm/layers/cond_conv2d.py b/pytorch-image-models/timm/layers/cond_conv2d.py new file mode 100644 index 0000000000000000000000000000000000000000..43654c5972167cab0224bfe720d78bae1227eb7d --- /dev/null +++ b/pytorch-image-models/timm/layers/cond_conv2d.py @@ -0,0 +1,123 @@ +""" PyTorch Conditionally Parameterized Convolution (CondConv) + +Paper: CondConv: Conditionally Parameterized Convolutions for Efficient Inference +(https://arxiv.org/abs/1904.04971) + +Hacked together by / Copyright 2020 Ross Wightman +""" + +import math +from functools import partial +import numpy as np +import torch +from torch import nn as nn +from torch.nn import functional as F + +from .helpers import to_2tuple +from .conv2d_same import conv2d_same +from .padding import get_padding_value + + +def get_condconv_initializer(initializer, num_experts, expert_shape): + def condconv_initializer(weight): + """CondConv initializer function.""" + num_params = np.prod(expert_shape) + if (len(weight.shape) != 2 or weight.shape[0] != num_experts or + weight.shape[1] != num_params): + raise (ValueError( + 'CondConv variables must have shape [num_experts, num_params]')) + for i in range(num_experts): + initializer(weight[i].view(expert_shape)) + return condconv_initializer + + +class CondConv2d(nn.Module): + """ Conditionally Parameterized Convolution + Inspired by: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/condconv/condconv_layers.py + + Grouped convolution hackery for parallel execution of the per-sample kernel filters inspired by this discussion: + https://github.com/pytorch/pytorch/issues/17983 + """ + __constants__ = ['in_channels', 'out_channels', 'dynamic_padding'] + + def __init__(self, in_channels, out_channels, kernel_size=3, + stride=1, padding='', dilation=1, groups=1, bias=False, num_experts=4): + super(CondConv2d, self).__init__() + + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = to_2tuple(kernel_size) + self.stride = to_2tuple(stride) + padding_val, is_padding_dynamic = get_padding_value( + padding, kernel_size, stride=stride, dilation=dilation) + self.dynamic_padding = is_padding_dynamic # if in forward to work with torchscript + self.padding = to_2tuple(padding_val) + self.dilation = to_2tuple(dilation) + self.groups = groups + self.num_experts = num_experts + + self.weight_shape = (self.out_channels, self.in_channels // self.groups) + self.kernel_size + weight_num_param = 1 + for wd in self.weight_shape: + weight_num_param *= wd + self.weight = torch.nn.Parameter(torch.Tensor(self.num_experts, weight_num_param)) + + if bias: + self.bias_shape = (self.out_channels,) + self.bias = torch.nn.Parameter(torch.Tensor(self.num_experts, self.out_channels)) + else: + self.register_parameter('bias', None) + + self.reset_parameters() + + def reset_parameters(self): + init_weight = get_condconv_initializer( + partial(nn.init.kaiming_uniform_, a=math.sqrt(5)), self.num_experts, self.weight_shape) + init_weight(self.weight) + if self.bias is not None: + fan_in = np.prod(self.weight_shape[1:]) + bound = 1 / math.sqrt(fan_in) + init_bias = get_condconv_initializer( + partial(nn.init.uniform_, a=-bound, b=bound), self.num_experts, self.bias_shape) + init_bias(self.bias) + + def forward(self, x, routing_weights): + B, C, H, W = x.shape + weight = torch.matmul(routing_weights, self.weight) + new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size + weight = weight.view(new_weight_shape) + bias = None + if self.bias is not None: + bias = torch.matmul(routing_weights, self.bias) + bias = bias.view(B * self.out_channels) + # move batch elements with channels so each batch element can be efficiently convolved with separate kernel + # reshape instead of view to work with channels_last input + x = x.reshape(1, B * C, H, W) + if self.dynamic_padding: + out = conv2d_same( + x, weight, bias, stride=self.stride, padding=self.padding, + dilation=self.dilation, groups=self.groups * B) + else: + out = F.conv2d( + x, weight, bias, stride=self.stride, padding=self.padding, + dilation=self.dilation, groups=self.groups * B) + out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1]) + + # Literal port (from TF definition) + # x = torch.split(x, 1, 0) + # weight = torch.split(weight, 1, 0) + # if self.bias is not None: + # bias = torch.matmul(routing_weights, self.bias) + # bias = torch.split(bias, 1, 0) + # else: + # bias = [None] * B + # out = [] + # for xi, wi, bi in zip(x, weight, bias): + # wi = wi.view(*self.weight_shape) + # if bi is not None: + # bi = bi.view(*self.bias_shape) + # out.append(self.conv_fn( + # xi, wi, bi, stride=self.stride, padding=self.padding, + # dilation=self.dilation, groups=self.groups)) + # out = torch.cat(out, 0) + return out diff --git a/pytorch-image-models/timm/layers/config.py b/pytorch-image-models/timm/layers/config.py new file mode 100644 index 0000000000000000000000000000000000000000..47d5d0a341f8968e801c803c6f439370b5511e04 --- /dev/null +++ b/pytorch-image-models/timm/layers/config.py @@ -0,0 +1,149 @@ +""" Model / Layer Config singleton state +""" +import os +import warnings +from typing import Any, Optional + +import torch + +__all__ = [ + 'is_exportable', 'is_scriptable', 'is_no_jit', 'use_fused_attn', + 'set_exportable', 'set_scriptable', 'set_no_jit', 'set_layer_config', 'set_fused_attn' +] + +# Set to True if prefer to have layers with no jit optimization (includes activations) +_NO_JIT = False + +# Set to True if prefer to have activation layers with no jit optimization +# NOTE not currently used as no difference between no_jit and no_activation jit as only layers obeying +# the jit flags so far are activations. This will change as more layers are updated and/or added. +_NO_ACTIVATION_JIT = False + +# Set to True if exporting a model with Same padding via ONNX +_EXPORTABLE = False + +# Set to True if wanting to use torch.jit.script on a model +_SCRIPTABLE = False + + +# use torch.scaled_dot_product_attention where possible +_HAS_FUSED_ATTN = hasattr(torch.nn.functional, 'scaled_dot_product_attention') +if 'TIMM_FUSED_ATTN' in os.environ: + _USE_FUSED_ATTN = int(os.environ['TIMM_FUSED_ATTN']) +else: + _USE_FUSED_ATTN = 1 # 0 == off, 1 == on (for tested use), 2 == on (for experimental use) + + +def is_no_jit(): + return _NO_JIT + + +class set_no_jit: + def __init__(self, mode: bool) -> None: + global _NO_JIT + self.prev = _NO_JIT + _NO_JIT = mode + + def __enter__(self) -> None: + pass + + def __exit__(self, *args: Any) -> bool: + global _NO_JIT + _NO_JIT = self.prev + return False + + +def is_exportable(): + return _EXPORTABLE + + +class set_exportable: + def __init__(self, mode: bool) -> None: + global _EXPORTABLE + self.prev = _EXPORTABLE + _EXPORTABLE = mode + + def __enter__(self) -> None: + pass + + def __exit__(self, *args: Any) -> bool: + global _EXPORTABLE + _EXPORTABLE = self.prev + return False + + +def is_scriptable(): + return _SCRIPTABLE + + +class set_scriptable: + def __init__(self, mode: bool) -> None: + global _SCRIPTABLE + self.prev = _SCRIPTABLE + _SCRIPTABLE = mode + + def __enter__(self) -> None: + pass + + def __exit__(self, *args: Any) -> bool: + global _SCRIPTABLE + _SCRIPTABLE = self.prev + return False + + +class set_layer_config: + """ Layer config context manager that allows setting all layer config flags at once. + If a flag arg is None, it will not change the current value. + """ + def __init__( + self, + scriptable: Optional[bool] = None, + exportable: Optional[bool] = None, + no_jit: Optional[bool] = None, + no_activation_jit: Optional[bool] = None): + global _SCRIPTABLE + global _EXPORTABLE + global _NO_JIT + global _NO_ACTIVATION_JIT + self.prev = _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT + if scriptable is not None: + _SCRIPTABLE = scriptable + if exportable is not None: + _EXPORTABLE = exportable + if no_jit is not None: + _NO_JIT = no_jit + if no_activation_jit is not None: + _NO_ACTIVATION_JIT = no_activation_jit + + def __enter__(self) -> None: + pass + + def __exit__(self, *args: Any) -> bool: + global _SCRIPTABLE + global _EXPORTABLE + global _NO_JIT + global _NO_ACTIVATION_JIT + _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT = self.prev + return False + + +def use_fused_attn(experimental: bool = False) -> bool: + # NOTE: ONNX export cannot handle F.scaled_dot_product_attention as of pytorch 2.0 + if not _HAS_FUSED_ATTN or _EXPORTABLE: + return False + if experimental: + return _USE_FUSED_ATTN > 1 + return _USE_FUSED_ATTN > 0 + + +def set_fused_attn(enable: bool = True, experimental: bool = False): + global _USE_FUSED_ATTN + if not _HAS_FUSED_ATTN: + warnings.warn('This version of pytorch does not have F.scaled_dot_product_attention, fused_attn flag ignored.') + return + if experimental and enable: + _USE_FUSED_ATTN = 2 + elif enable: + _USE_FUSED_ATTN = 1 + else: + _USE_FUSED_ATTN = 0 diff --git a/pytorch-image-models/timm/layers/conv2d_same.py b/pytorch-image-models/timm/layers/conv2d_same.py new file mode 100644 index 0000000000000000000000000000000000000000..7ac85b793891ce3d793671abfecfa0a4db5b389c --- /dev/null +++ b/pytorch-image-models/timm/layers/conv2d_same.py @@ -0,0 +1,110 @@ +""" Conv2d w/ Same Padding + +Hacked together by / Copyright 2020 Ross Wightman +""" +import torch +import torch.nn as nn +import torch.nn.functional as F +from typing import Tuple, Optional + +from .config import is_exportable, is_scriptable +from .padding import pad_same, pad_same_arg, get_padding_value + + +_USE_EXPORT_CONV = False + + +def conv2d_same( + x, + weight: torch.Tensor, + bias: Optional[torch.Tensor] = None, + stride: Tuple[int, int] = (1, 1), + padding: Tuple[int, int] = (0, 0), + dilation: Tuple[int, int] = (1, 1), + groups: int = 1, +): + x = pad_same(x, weight.shape[-2:], stride, dilation) + return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups) + + +class Conv2dSame(nn.Conv2d): + """ Tensorflow like 'SAME' convolution wrapper for 2D convolutions + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + padding=0, + dilation=1, + groups=1, + bias=True, + ): + super(Conv2dSame, self).__init__( + in_channels, out_channels, kernel_size, + stride, 0, dilation, groups, bias, + ) + + def forward(self, x): + return conv2d_same( + x, self.weight, self.bias, + self.stride, self.padding, self.dilation, self.groups, + ) + + +class Conv2dSameExport(nn.Conv2d): + """ ONNX export friendly Tensorflow like 'SAME' convolution wrapper for 2D convolutions + + NOTE: This does not currently work with torch.jit.script + """ + + # pylint: disable=unused-argument + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + padding=0, + dilation=1, + groups=1, + bias=True, + ): + super(Conv2dSameExport, self).__init__( + in_channels, out_channels, kernel_size, + stride, 0, dilation, groups, bias, + ) + self.pad = None + self.pad_input_size = (0, 0) + + def forward(self, x): + input_size = x.size()[-2:] + if self.pad is None: + pad_arg = pad_same_arg(input_size, self.weight.size()[-2:], self.stride, self.dilation) + self.pad = nn.ZeroPad2d(pad_arg) + self.pad_input_size = input_size + + x = self.pad(x) + return F.conv2d( + x, self.weight, self.bias, + self.stride, self.padding, self.dilation, self.groups, + ) + + +def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs): + padding = kwargs.pop('padding', '') + kwargs.setdefault('bias', False) + padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs) + if is_dynamic: + if _USE_EXPORT_CONV and is_exportable(): + # older PyTorch ver needed this to export same padding reasonably + assert not is_scriptable() # Conv2DSameExport does not work with jit + return Conv2dSameExport(in_chs, out_chs, kernel_size, **kwargs) + else: + return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs) + else: + return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs) + + diff --git a/pytorch-image-models/timm/layers/conv_bn_act.py b/pytorch-image-models/timm/layers/conv_bn_act.py new file mode 100644 index 0000000000000000000000000000000000000000..64edf54a3c85142c750e5eda717c58cd381191af --- /dev/null +++ b/pytorch-image-models/timm/layers/conv_bn_act.py @@ -0,0 +1,92 @@ +""" Conv2d + BN + Act + +Hacked together by / Copyright 2020 Ross Wightman +""" +from typing import Any, Dict, Optional, Type + +from torch import nn as nn + +from .typing import LayerType, PadType +from .blur_pool import create_aa +from .create_conv2d import create_conv2d +from .create_norm_act import get_norm_act_layer + + +class ConvNormAct(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: int = 1, + stride: int = 1, + padding: PadType = '', + dilation: int = 1, + groups: int = 1, + bias: bool = False, + apply_norm: bool = True, + apply_act: bool = True, + norm_layer: LayerType = nn.BatchNorm2d, + act_layer: Optional[LayerType] = nn.ReLU, + aa_layer: Optional[LayerType] = None, + drop_layer: Optional[Type[nn.Module]] = None, + conv_kwargs: Optional[Dict[str, Any]] = None, + norm_kwargs: Optional[Dict[str, Any]] = None, + act_kwargs: Optional[Dict[str, Any]] = None, + ): + super(ConvNormAct, self).__init__() + conv_kwargs = conv_kwargs or {} + norm_kwargs = norm_kwargs or {} + act_kwargs = act_kwargs or {} + use_aa = aa_layer is not None and stride > 1 + + self.conv = create_conv2d( + in_channels, + out_channels, + kernel_size, + stride=1 if use_aa else stride, + padding=padding, + dilation=dilation, + groups=groups, + bias=bias, + **conv_kwargs, + ) + + if apply_norm: + # NOTE for backwards compatibility with models that use separate norm and act layer definitions + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + # NOTE for backwards (weight) compatibility, norm layer name remains `.bn` + if drop_layer: + norm_kwargs['drop_layer'] = drop_layer + self.bn = norm_act_layer( + out_channels, + apply_act=apply_act, + act_kwargs=act_kwargs, + **norm_kwargs, + ) + else: + self.bn = nn.Sequential() + if drop_layer: + norm_kwargs['drop_layer'] = drop_layer + self.bn.add_module('drop', drop_layer()) + + self.aa = create_aa(aa_layer, out_channels, stride=stride, enable=use_aa, noop=None) + + @property + def in_channels(self): + return self.conv.in_channels + + @property + def out_channels(self): + return self.conv.out_channels + + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + aa = getattr(self, 'aa', None) + if aa is not None: + x = self.aa(x) + return x + + +ConvBnAct = ConvNormAct +ConvNormActAa = ConvNormAct # backwards compat, when they were separate diff --git a/pytorch-image-models/timm/layers/create_act.py b/pytorch-image-models/timm/layers/create_act.py new file mode 100644 index 0000000000000000000000000000000000000000..c734785d138642172155574f28e6470bd476e1c9 --- /dev/null +++ b/pytorch-image-models/timm/layers/create_act.py @@ -0,0 +1,138 @@ +""" Activation Factory +Hacked together by / Copyright 2020 Ross Wightman +""" +from typing import Union, Callable, Type + +from .activations import * +from .activations_me import * +from .config import is_exportable, is_scriptable + +# PyTorch has an optimized, native 'silu' (aka 'swish') operator as of PyTorch 1.7. +# Also hardsigmoid, hardswish, and soon mish. This code will use native version if present. +# Eventually, the custom SiLU, Mish, Hard*, layers will be removed and only native variants will be used. +_has_silu = 'silu' in dir(torch.nn.functional) +_has_hardswish = 'hardswish' in dir(torch.nn.functional) +_has_hardsigmoid = 'hardsigmoid' in dir(torch.nn.functional) +_has_mish = 'mish' in dir(torch.nn.functional) + + +_ACT_FN_DEFAULT = dict( + silu=F.silu if _has_silu else swish, + swish=F.silu if _has_silu else swish, + mish=F.mish if _has_mish else mish, + relu=F.relu, + relu6=F.relu6, + leaky_relu=F.leaky_relu, + elu=F.elu, + celu=F.celu, + selu=F.selu, + gelu=gelu, + gelu_tanh=gelu_tanh, + quick_gelu=quick_gelu, + sigmoid=sigmoid, + tanh=tanh, + hard_sigmoid=F.hardsigmoid if _has_hardsigmoid else hard_sigmoid, + hard_swish=F.hardswish if _has_hardswish else hard_swish, + hard_mish=hard_mish, +) + +_ACT_FN_ME = dict( + silu=F.silu if _has_silu else swish_me, + swish=F.silu if _has_silu else swish_me, + mish=F.mish if _has_mish else mish_me, + hard_sigmoid=F.hardsigmoid if _has_hardsigmoid else hard_sigmoid_me, + hard_swish=F.hardswish if _has_hardswish else hard_swish_me, + hard_mish=hard_mish_me, +) + +_ACT_FNS = (_ACT_FN_ME, _ACT_FN_DEFAULT) +for a in _ACT_FNS: + a.setdefault('hardsigmoid', a.get('hard_sigmoid')) + a.setdefault('hardswish', a.get('hard_swish')) + + +_ACT_LAYER_DEFAULT = dict( + silu=nn.SiLU if _has_silu else Swish, + swish=nn.SiLU if _has_silu else Swish, + mish=nn.Mish if _has_mish else Mish, + relu=nn.ReLU, + relu6=nn.ReLU6, + leaky_relu=nn.LeakyReLU, + elu=nn.ELU, + prelu=PReLU, + celu=nn.CELU, + selu=nn.SELU, + gelu=GELU, + gelu_tanh=GELUTanh, + quick_gelu=QuickGELU, + sigmoid=Sigmoid, + tanh=Tanh, + hard_sigmoid=nn.Hardsigmoid if _has_hardsigmoid else HardSigmoid, + hard_swish=nn.Hardswish if _has_hardswish else HardSwish, + hard_mish=HardMish, + identity=nn.Identity, +) + +_ACT_LAYER_ME = dict( + silu=nn.SiLU if _has_silu else SwishMe, + swish=nn.SiLU if _has_silu else SwishMe, + mish=nn.Mish if _has_mish else MishMe, + hard_sigmoid=nn.Hardsigmoid if _has_hardsigmoid else HardSigmoidMe, + hard_swish=nn.Hardswish if _has_hardswish else HardSwishMe, + hard_mish=HardMishMe, +) + +_ACT_LAYERS = (_ACT_LAYER_ME, _ACT_LAYER_DEFAULT) +for a in _ACT_LAYERS: + a.setdefault('hardsigmoid', a.get('hard_sigmoid')) + a.setdefault('hardswish', a.get('hard_swish')) + + +def get_act_fn(name: Union[Callable, str] = 'relu'): + """ Activation Function Factory + Fetching activation fns by name with this function allows export or torch script friendly + functions to be returned dynamically based on current config. + """ + if not name: + return None + if isinstance(name, Callable): + return name + name = name.lower() + if not (is_exportable() or is_scriptable()): + # If not exporting or scripting the model, first look for a memory-efficient version with + # custom autograd, then fallback + if name in _ACT_FN_ME: + return _ACT_FN_ME[name] + return _ACT_FN_DEFAULT[name] + + +def get_act_layer(name: Union[Type[nn.Module], str] = 'relu'): + """ Activation Layer Factory + Fetching activation layers by name with this function allows export or torch script friendly + functions to be returned dynamically based on current config. + """ + if name is None: + return None + if not isinstance(name, str): + # callable, module, etc + return name + if not name: + return None + name = name.lower() + if not (is_exportable() or is_scriptable()): + if name in _ACT_LAYER_ME: + return _ACT_LAYER_ME[name] + return _ACT_LAYER_DEFAULT[name] + + +def create_act_layer(name: Union[Type[nn.Module], str], inplace=None, **kwargs): + act_layer = get_act_layer(name) + if act_layer is None: + return None + if inplace is None: + return act_layer(**kwargs) + try: + return act_layer(inplace=inplace, **kwargs) + except TypeError: + # recover if act layer doesn't have inplace arg + return act_layer(**kwargs) diff --git a/pytorch-image-models/timm/layers/create_attn.py b/pytorch-image-models/timm/layers/create_attn.py new file mode 100644 index 0000000000000000000000000000000000000000..cc7e91ea9af2e853fd659973c72ba5e86025a1b3 --- /dev/null +++ b/pytorch-image-models/timm/layers/create_attn.py @@ -0,0 +1,89 @@ +""" Attention Factory + +Hacked together by / Copyright 2021 Ross Wightman +""" +import torch +from functools import partial + +from .bottleneck_attn import BottleneckAttn +from .cbam import CbamModule, LightCbamModule +from .eca import EcaModule, CecaModule +from .gather_excite import GatherExcite +from .global_context import GlobalContext +from .halo_attn import HaloAttn +from .lambda_layer import LambdaLayer +from .non_local_attn import NonLocalAttn, BatNonLocalAttn +from .selective_kernel import SelectiveKernel +from .split_attn import SplitAttn +from .squeeze_excite import SEModule, EffectiveSEModule + + +def get_attn(attn_type): + if isinstance(attn_type, torch.nn.Module): + return attn_type + module_cls = None + if attn_type: + if isinstance(attn_type, str): + attn_type = attn_type.lower() + # Lightweight attention modules (channel and/or coarse spatial). + # Typically added to existing network architecture blocks in addition to existing convolutions. + if attn_type == 'se': + module_cls = SEModule + elif attn_type == 'ese': + module_cls = EffectiveSEModule + elif attn_type == 'eca': + module_cls = EcaModule + elif attn_type == 'ecam': + module_cls = partial(EcaModule, use_mlp=True) + elif attn_type == 'ceca': + module_cls = CecaModule + elif attn_type == 'ge': + module_cls = GatherExcite + elif attn_type == 'gc': + module_cls = GlobalContext + elif attn_type == 'gca': + module_cls = partial(GlobalContext, fuse_add=True, fuse_scale=False) + elif attn_type == 'cbam': + module_cls = CbamModule + elif attn_type == 'lcbam': + module_cls = LightCbamModule + + # Attention / attention-like modules w/ significant params + # Typically replace some of the existing workhorse convs in a network architecture. + # All of these accept a stride argument and can spatially downsample the input. + elif attn_type == 'sk': + module_cls = SelectiveKernel + elif attn_type == 'splat': + module_cls = SplitAttn + + # Self-attention / attention-like modules w/ significant compute and/or params + # Typically replace some of the existing workhorse convs in a network architecture. + # All of these accept a stride argument and can spatially downsample the input. + elif attn_type == 'lambda': + return LambdaLayer + elif attn_type == 'bottleneck': + return BottleneckAttn + elif attn_type == 'halo': + return HaloAttn + elif attn_type == 'nl': + module_cls = NonLocalAttn + elif attn_type == 'bat': + module_cls = BatNonLocalAttn + + # Woops! + else: + assert False, "Invalid attn module (%s)" % attn_type + elif isinstance(attn_type, bool): + if attn_type: + module_cls = SEModule + else: + module_cls = attn_type + return module_cls + + +def create_attn(attn_type, channels, **kwargs): + module_cls = get_attn(attn_type) + if module_cls is not None: + # NOTE: it's expected the first (positional) argument of all attention layers is the # input channels + return module_cls(channels, **kwargs) + return None diff --git a/pytorch-image-models/timm/layers/create_conv2d.py b/pytorch-image-models/timm/layers/create_conv2d.py new file mode 100644 index 0000000000000000000000000000000000000000..ac9489ce492d0f768c1ae8892163fa986bac8fd8 --- /dev/null +++ b/pytorch-image-models/timm/layers/create_conv2d.py @@ -0,0 +1,36 @@ +""" Create Conv2d Factory Method + +Hacked together by / Copyright 2020 Ross Wightman +""" + +from .mixed_conv2d import MixedConv2d +from .cond_conv2d import CondConv2d +from .conv2d_same import create_conv2d_pad + + +def create_conv2d(in_channels, out_channels, kernel_size, **kwargs): + """ Select a 2d convolution implementation based on arguments + Creates and returns one of torch.nn.Conv2d, Conv2dSame, MixedConv2d, or CondConv2d. + + Used extensively by EfficientNet, MobileNetv3 and related networks. + """ + if isinstance(kernel_size, list): + assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently + if 'groups' in kwargs: + groups = kwargs.pop('groups') + if groups == in_channels: + kwargs['depthwise'] = True + else: + assert groups == 1 + # We're going to use only lists for defining the MixedConv2d kernel groups, + # ints, tuples, other iterables will continue to pass to normal conv and specify h, w. + m = MixedConv2d(in_channels, out_channels, kernel_size, **kwargs) + else: + depthwise = kwargs.pop('depthwise', False) + # for DW out_channels must be multiple of in_channels as must have out_channels % groups == 0 + groups = in_channels if depthwise else kwargs.pop('groups', 1) + if 'num_experts' in kwargs and kwargs['num_experts'] > 0: + m = CondConv2d(in_channels, out_channels, kernel_size, groups=groups, **kwargs) + else: + m = create_conv2d_pad(in_channels, out_channels, kernel_size, groups=groups, **kwargs) + return m diff --git a/pytorch-image-models/timm/layers/create_norm.py b/pytorch-image-models/timm/layers/create_norm.py new file mode 100644 index 0000000000000000000000000000000000000000..74e893d8fc57a894d8c8b2014b6a6cd3568f8fb1 --- /dev/null +++ b/pytorch-image-models/timm/layers/create_norm.py @@ -0,0 +1,58 @@ +""" Norm Layer Factory + +Create norm modules by string (to mirror create_act and creat_norm-act fns) + +Copyright 2022 Ross Wightman +""" +import functools +import types +from typing import Type + +import torch.nn as nn + +from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm, RmsNorm2d +from torchvision.ops.misc import FrozenBatchNorm2d + +_NORM_MAP = dict( + batchnorm=nn.BatchNorm2d, + batchnorm2d=nn.BatchNorm2d, + batchnorm1d=nn.BatchNorm1d, + groupnorm=GroupNorm, + groupnorm1=GroupNorm1, + layernorm=LayerNorm, + layernorm2d=LayerNorm2d, + rmsnorm=RmsNorm, + rmsnorm2d=RmsNorm2d, + frozenbatchnorm2d=FrozenBatchNorm2d, +) +_NORM_TYPES = {m for n, m in _NORM_MAP.items()} + + +def create_norm_layer(layer_name, num_features, **kwargs): + layer = get_norm_layer(layer_name) + layer_instance = layer(num_features, **kwargs) + return layer_instance + + +def get_norm_layer(norm_layer): + if norm_layer is None: + return None + assert isinstance(norm_layer, (type, str, types.FunctionType, functools.partial)) + norm_kwargs = {} + + # unbind partial fn, so args can be rebound later + if isinstance(norm_layer, functools.partial): + norm_kwargs.update(norm_layer.keywords) + norm_layer = norm_layer.func + + if isinstance(norm_layer, str): + if not norm_layer: + return None + layer_name = norm_layer.replace('_', '').lower() + norm_layer = _NORM_MAP[layer_name] + else: + norm_layer = norm_layer + + if norm_kwargs: + norm_layer = functools.partial(norm_layer, **norm_kwargs) # bind/rebind args + return norm_layer diff --git a/pytorch-image-models/timm/layers/create_norm_act.py b/pytorch-image-models/timm/layers/create_norm_act.py new file mode 100644 index 0000000000000000000000000000000000000000..f053a7e0aedc97a7450cf9d9ea22c9ebf59dd88a --- /dev/null +++ b/pytorch-image-models/timm/layers/create_norm_act.py @@ -0,0 +1,95 @@ +""" NormAct (Normalizaiton + Activation Layer) Factory + +Create norm + act combo modules that attempt to be backwards compatible with separate norm + act +isntances in models. Where these are used it will be possible to swap separate BN + act layers with +combined modules like IABN or EvoNorms. + +Hacked together by / Copyright 2020 Ross Wightman +""" +import types +import functools + +from .evo_norm import * +from .filter_response_norm import FilterResponseNormAct2d, FilterResponseNormTlu2d +from .norm_act import BatchNormAct2d, GroupNormAct, LayerNormAct, LayerNormAct2d +from .inplace_abn import InplaceAbn + +_NORM_ACT_MAP = dict( + batchnorm=BatchNormAct2d, + batchnorm2d=BatchNormAct2d, + groupnorm=GroupNormAct, + groupnorm1=functools.partial(GroupNormAct, num_groups=1), + layernorm=LayerNormAct, + layernorm2d=LayerNormAct2d, + evonormb0=EvoNorm2dB0, + evonormb1=EvoNorm2dB1, + evonormb2=EvoNorm2dB2, + evonorms0=EvoNorm2dS0, + evonorms0a=EvoNorm2dS0a, + evonorms1=EvoNorm2dS1, + evonorms1a=EvoNorm2dS1a, + evonorms2=EvoNorm2dS2, + evonorms2a=EvoNorm2dS2a, + frn=FilterResponseNormAct2d, + frntlu=FilterResponseNormTlu2d, + inplaceabn=InplaceAbn, + iabn=InplaceAbn, +) +_NORM_ACT_TYPES = {m for n, m in _NORM_ACT_MAP.items()} +# has act_layer arg to define act type +_NORM_ACT_REQUIRES_ARG = { + BatchNormAct2d, GroupNormAct, LayerNormAct, LayerNormAct2d, FilterResponseNormAct2d, InplaceAbn} + + +def create_norm_act_layer(layer_name, num_features, act_layer=None, apply_act=True, jit=False, **kwargs): + layer = get_norm_act_layer(layer_name, act_layer=act_layer) + layer_instance = layer(num_features, apply_act=apply_act, **kwargs) + if jit: + layer_instance = torch.jit.script(layer_instance) + return layer_instance + + +def get_norm_act_layer(norm_layer, act_layer=None): + if norm_layer is None: + return None + assert isinstance(norm_layer, (type, str, types.FunctionType, functools.partial)) + assert act_layer is None or isinstance(act_layer, (type, str, types.FunctionType, functools.partial)) + norm_act_kwargs = {} + + # unbind partial fn, so args can be rebound later + if isinstance(norm_layer, functools.partial): + norm_act_kwargs.update(norm_layer.keywords) + norm_layer = norm_layer.func + + if isinstance(norm_layer, str): + if not norm_layer: + return None + layer_name = norm_layer.replace('_', '').lower().split('-')[0] + norm_act_layer = _NORM_ACT_MAP[layer_name] + elif norm_layer in _NORM_ACT_TYPES: + norm_act_layer = norm_layer + elif isinstance(norm_layer, types.FunctionType): + # if function type, must be a lambda/fn that creates a norm_act layer + norm_act_layer = norm_layer + else: + type_name = norm_layer.__name__.lower() + if type_name.startswith('batchnorm'): + norm_act_layer = BatchNormAct2d + elif type_name.startswith('groupnorm'): + norm_act_layer = GroupNormAct + elif type_name.startswith('groupnorm1'): + norm_act_layer = functools.partial(GroupNormAct, num_groups=1) + elif type_name.startswith('layernorm2d'): + norm_act_layer = LayerNormAct2d + elif type_name.startswith('layernorm'): + norm_act_layer = LayerNormAct + else: + assert False, f"No equivalent norm_act layer for {type_name}" + + if norm_act_layer in _NORM_ACT_REQUIRES_ARG: + # pass `act_layer` through for backwards compat where `act_layer=None` implies no activation. + # In the future, may force use of `apply_act` with `act_layer` arg bound to relevant NormAct types + norm_act_kwargs.setdefault('act_layer', act_layer) + if norm_act_kwargs: + norm_act_layer = functools.partial(norm_act_layer, **norm_act_kwargs) # bind/rebind args + return norm_act_layer diff --git a/pytorch-image-models/timm/layers/drop.py b/pytorch-image-models/timm/layers/drop.py new file mode 100644 index 0000000000000000000000000000000000000000..289245f5adab275ffc38de3b01fdb23f9e491593 --- /dev/null +++ b/pytorch-image-models/timm/layers/drop.py @@ -0,0 +1,182 @@ +""" DropBlock, DropPath + +PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers. + +Papers: +DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890) + +Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382) + +Code: +DropBlock impl inspired by two Tensorflow impl that I liked: + - https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74 + - https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py + +Hacked together by / Copyright 2020 Ross Wightman +""" +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .grid import ndgrid + + +def drop_block_2d( + x, + drop_prob: float = 0.1, + block_size: int = 7, + gamma_scale: float = 1.0, + with_noise: bool = False, + inplace: bool = False, + batchwise: bool = False +): + """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf + + DropBlock with an experimental gaussian noise option. This layer has been tested on a few training + runs with success, but needs further validation and possibly optimization for lower runtime impact. + """ + B, C, H, W = x.shape + total_size = W * H + clipped_block_size = min(block_size, min(W, H)) + # seed_drop_rate, the gamma parameter + gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( + (W - block_size + 1) * (H - block_size + 1)) + + # Forces the block to be inside the feature map. + w_i, h_i = ndgrid(torch.arange(W, device=x.device), torch.arange(H, device=x.device)) + valid_block = ((w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)) & \ + ((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2)) + valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype) + + if batchwise: + # one mask for whole batch, quite a bit faster + uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) + else: + uniform_noise = torch.rand_like(x) + block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype) + block_mask = -F.max_pool2d( + -block_mask, + kernel_size=clipped_block_size, # block_size, + stride=1, + padding=clipped_block_size // 2) + + if with_noise: + normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) + if inplace: + x.mul_(block_mask).add_(normal_noise * (1 - block_mask)) + else: + x = x * block_mask + normal_noise * (1 - block_mask) + else: + normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(x.dtype) + if inplace: + x.mul_(block_mask * normalize_scale) + else: + x = x * block_mask * normalize_scale + return x + + +def drop_block_fast_2d( + x: torch.Tensor, + drop_prob: float = 0.1, + block_size: int = 7, + gamma_scale: float = 1.0, + with_noise: bool = False, + inplace: bool = False, +): + """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf + + DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid + block mask at edges. + """ + B, C, H, W = x.shape + total_size = W * H + clipped_block_size = min(block_size, min(W, H)) + gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( + (W - block_size + 1) * (H - block_size + 1)) + + block_mask = torch.empty_like(x).bernoulli_(gamma) + block_mask = F.max_pool2d( + block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2) + + if with_noise: + normal_noise = torch.empty_like(x).normal_() + if inplace: + x.mul_(1. - block_mask).add_(normal_noise * block_mask) + else: + x = x * (1. - block_mask) + normal_noise * block_mask + else: + block_mask = 1 - block_mask + normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-6)).to(dtype=x.dtype) + if inplace: + x.mul_(block_mask * normalize_scale) + else: + x = x * block_mask * normalize_scale + return x + + +class DropBlock2d(nn.Module): + """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf + """ + + def __init__( + self, + drop_prob: float = 0.1, + block_size: int = 7, + gamma_scale: float = 1.0, + with_noise: bool = False, + inplace: bool = False, + batchwise: bool = False, + fast: bool = True): + super(DropBlock2d, self).__init__() + self.drop_prob = drop_prob + self.gamma_scale = gamma_scale + self.block_size = block_size + self.with_noise = with_noise + self.inplace = inplace + self.batchwise = batchwise + self.fast = fast # FIXME finish comparisons of fast vs not + + def forward(self, x): + if not self.training or not self.drop_prob: + return x + if self.fast: + return drop_block_fast_2d( + x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace) + else: + return drop_block_2d( + x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) + + +def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, + the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for + changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use + 'survival rate' as the argument. + + """ + if drop_prob == 0. or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0 and scale_by_keep: + random_tensor.div_(keep_prob) + return x * random_tensor + + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + self.scale_by_keep = scale_by_keep + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) + + def extra_repr(self): + return f'drop_prob={round(self.drop_prob,3):0.3f}' diff --git a/pytorch-image-models/timm/layers/eca.py b/pytorch-image-models/timm/layers/eca.py new file mode 100644 index 0000000000000000000000000000000000000000..e29be6ac3c95bb61229cdcdd659ec89d541f1a53 --- /dev/null +++ b/pytorch-image-models/timm/layers/eca.py @@ -0,0 +1,145 @@ +""" +ECA module from ECAnet + +paper: ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks +https://arxiv.org/abs/1910.03151 + +Original ECA model borrowed from https://github.com/BangguWu/ECANet + +Modified circular ECA implementation and adaption for use in timm package +by Chris Ha https://github.com/VRandme + +Original License: + +MIT License + +Copyright (c) 2019 BangguWu, Qilong Wang + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +""" +import math +from torch import nn +import torch.nn.functional as F + + +from .create_act import create_act_layer +from .helpers import make_divisible + + +class EcaModule(nn.Module): + """Constructs an ECA module. + + Args: + channels: Number of channels of the input feature map for use in adaptive kernel sizes + for actual calculations according to channel. + gamma, beta: when channel is given parameters of mapping function + refer to original paper https://arxiv.org/pdf/1910.03151.pdf + (default=None. if channel size not given, use k_size given for kernel size.) + kernel_size: Adaptive selection of kernel size (default=3) + gamm: used in kernel_size calc, see above + beta: used in kernel_size calc, see above + act_layer: optional non-linearity after conv, enables conv bias, this is an experiment + gate_layer: gating non-linearity to use + """ + def __init__( + self, channels=None, kernel_size=3, gamma=2, beta=1, act_layer=None, gate_layer='sigmoid', + rd_ratio=1/8, rd_channels=None, rd_divisor=8, use_mlp=False): + super(EcaModule, self).__init__() + if channels is not None: + t = int(abs(math.log(channels, 2) + beta) / gamma) + kernel_size = max(t if t % 2 else t + 1, 3) + assert kernel_size % 2 == 1 + padding = (kernel_size - 1) // 2 + if use_mlp: + # NOTE 'mlp' mode is a timm experiment, not in paper + assert channels is not None + if rd_channels is None: + rd_channels = make_divisible(channels * rd_ratio, divisor=rd_divisor) + act_layer = act_layer or nn.ReLU + self.conv = nn.Conv1d(1, rd_channels, kernel_size=1, padding=0, bias=True) + self.act = create_act_layer(act_layer) + self.conv2 = nn.Conv1d(rd_channels, 1, kernel_size=kernel_size, padding=padding, bias=True) + else: + self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=padding, bias=False) + self.act = None + self.conv2 = None + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + y = x.mean((2, 3)).view(x.shape[0], 1, -1) # view for 1d conv + y = self.conv(y) + if self.conv2 is not None: + y = self.act(y) + y = self.conv2(y) + y = self.gate(y).view(x.shape[0], -1, 1, 1) + return x * y.expand_as(x) + + +EfficientChannelAttn = EcaModule # alias + + +class CecaModule(nn.Module): + """Constructs a circular ECA module. + + ECA module where the conv uses circular padding rather than zero padding. + Unlike the spatial dimension, the channels do not have inherent ordering nor + locality. Although this module in essence, applies such an assumption, it is unnecessary + to limit the channels on either "edge" from being circularly adapted to each other. + This will fundamentally increase connectivity and possibly increase performance metrics + (accuracy, robustness), without significantly impacting resource metrics + (parameter size, throughput,latency, etc) + + Args: + channels: Number of channels of the input feature map for use in adaptive kernel sizes + for actual calculations according to channel. + gamma, beta: when channel is given parameters of mapping function + refer to original paper https://arxiv.org/pdf/1910.03151.pdf + (default=None. if channel size not given, use k_size given for kernel size.) + kernel_size: Adaptive selection of kernel size (default=3) + gamm: used in kernel_size calc, see above + beta: used in kernel_size calc, see above + act_layer: optional non-linearity after conv, enables conv bias, this is an experiment + gate_layer: gating non-linearity to use + """ + + def __init__(self, channels=None, kernel_size=3, gamma=2, beta=1, act_layer=None, gate_layer='sigmoid'): + super(CecaModule, self).__init__() + if channels is not None: + t = int(abs(math.log(channels, 2) + beta) / gamma) + kernel_size = max(t if t % 2 else t + 1, 3) + has_act = act_layer is not None + assert kernel_size % 2 == 1 + + # PyTorch circular padding mode is buggy as of pytorch 1.4 + # see https://github.com/pytorch/pytorch/pull/17240 + # implement manual circular padding + self.padding = (kernel_size - 1) // 2 + self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=0, bias=has_act) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + y = x.mean((2, 3)).view(x.shape[0], 1, -1) + # Manually implement circular padding, F.pad does not seemed to be bugged + y = F.pad(y, (self.padding, self.padding), mode='circular') + y = self.conv(y) + y = self.gate(y).view(x.shape[0], -1, 1, 1) + return x * y.expand_as(x) + + +CircularEfficientChannelAttn = CecaModule diff --git a/pytorch-image-models/timm/layers/evo_norm.py b/pytorch-image-models/timm/layers/evo_norm.py new file mode 100644 index 0000000000000000000000000000000000000000..ea77620712c80a54d943ef0b920556cbafc1f9f6 --- /dev/null +++ b/pytorch-image-models/timm/layers/evo_norm.py @@ -0,0 +1,352 @@ +""" EvoNorm in PyTorch + +Based on `Evolving Normalization-Activation Layers` - https://arxiv.org/abs/2004.02967 +@inproceedings{NEURIPS2020, + author = {Liu, Hanxiao and Brock, Andy and Simonyan, Karen and Le, Quoc}, + booktitle = {Advances in Neural Information Processing Systems}, + editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin}, + pages = {13539--13550}, + publisher = {Curran Associates, Inc.}, + title = {Evolving Normalization-Activation Layers}, + url = {https://proceedings.neurips.cc/paper/2020/file/9d4c03631b8b0c85ae08bf05eda37d0f-Paper.pdf}, + volume = {33}, + year = {2020} +} + +An attempt at getting decent performing EvoNorms running in PyTorch. +While faster than other PyTorch impl, still quite a ways off the built-in BatchNorm +in terms of memory usage and throughput on GPUs. + +I'm testing these modules on TPU w/ PyTorch XLA. Promising start but +currently working around some issues with builtin torch/tensor.var/std. Unlike +GPU, similar train speeds for EvoNormS variants and BatchNorm. + +Hacked together by / Copyright 2020 Ross Wightman +""" +from typing import Sequence, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .create_act import create_act_layer +from .trace_utils import _assert + + +def instance_std(x, eps: float = 1e-5): + std = x.float().var(dim=(2, 3), unbiased=False, keepdim=True).add(eps).sqrt().to(x.dtype) + return std.expand(x.shape) + + +def instance_std_tpu(x, eps: float = 1e-5): + std = manual_var(x, dim=(2, 3)).add(eps).sqrt() + return std.expand(x.shape) +# instance_std = instance_std_tpu + + +def instance_rms(x, eps: float = 1e-5): + rms = x.float().square().mean(dim=(2, 3), keepdim=True).add(eps).sqrt().to(x.dtype) + return rms.expand(x.shape) + + +def manual_var(x, dim: Union[int, Sequence[int]], diff_sqm: bool = False): + xm = x.mean(dim=dim, keepdim=True) + if diff_sqm: + # difference of squared mean and mean squared, faster on TPU can be less stable + var = ((x * x).mean(dim=dim, keepdim=True) - (xm * xm)).clamp(0) + else: + var = ((x - xm) * (x - xm)).mean(dim=dim, keepdim=True) + return var + + +def group_std(x, groups: int = 32, eps: float = 1e-5, flatten: bool = False): + B, C, H, W = x.shape + x_dtype = x.dtype + _assert(C % groups == 0, '') + if flatten: + x = x.reshape(B, groups, -1) # FIXME simpler shape causing TPU / XLA issues + std = x.float().var(dim=2, unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype) + else: + x = x.reshape(B, groups, C // groups, H, W) + std = x.float().var(dim=(2, 3, 4), unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype) + return std.expand(x.shape).reshape(B, C, H, W) + + +def group_std_tpu(x, groups: int = 32, eps: float = 1e-5, diff_sqm: bool = False, flatten: bool = False): + # This is a workaround for some stability / odd behaviour of .var and .std + # running on PyTorch XLA w/ TPUs. These manual var impl are producing much better results + B, C, H, W = x.shape + _assert(C % groups == 0, '') + if flatten: + x = x.reshape(B, groups, -1) # FIXME simpler shape causing TPU / XLA issues + var = manual_var(x, dim=-1, diff_sqm=diff_sqm) + else: + x = x.reshape(B, groups, C // groups, H, W) + var = manual_var(x, dim=(2, 3, 4), diff_sqm=diff_sqm) + return var.add(eps).sqrt().expand(x.shape).reshape(B, C, H, W) +#group_std = group_std_tpu # FIXME TPU temporary + + +def group_rms(x, groups: int = 32, eps: float = 1e-5): + B, C, H, W = x.shape + _assert(C % groups == 0, '') + x_dtype = x.dtype + x = x.reshape(B, groups, C // groups, H, W) + rms = x.float().square().mean(dim=(2, 3, 4), keepdim=True).add(eps).sqrt_().to(x_dtype) + return rms.expand(x.shape).reshape(B, C, H, W) + + +class EvoNorm2dB0(nn.Module): + def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-3, **_): + super().__init__() + self.apply_act = apply_act # apply activation (non-linearity) + self.momentum = momentum + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.v = nn.Parameter(torch.ones(num_features)) if apply_act else None + self.register_buffer('running_var', torch.ones(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + if self.v is not None: + nn.init.ones_(self.v) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.v is not None: + if self.training: + var = x.float().var(dim=(0, 2, 3), unbiased=False) + # var = manual_var(x, dim=(0, 2, 3)).squeeze() + n = x.numel() / x.shape[1] + self.running_var.copy_( + self.running_var * (1 - self.momentum) + + var.detach() * self.momentum * (n / (n - 1))) + else: + var = self.running_var + left = var.add(self.eps).sqrt_().to(x_dtype).view(v_shape).expand_as(x) + v = self.v.to(x_dtype).view(v_shape) + right = x * v + instance_std(x, self.eps) + x = x / left.max(right) + return x * self.weight.to(x_dtype).view(v_shape) + self.bias.to(x_dtype).view(v_shape) + + +class EvoNorm2dB1(nn.Module): + def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-5, **_): + super().__init__() + self.apply_act = apply_act # apply activation (non-linearity) + self.momentum = momentum + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.register_buffer('running_var', torch.ones(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.apply_act: + if self.training: + var = x.float().var(dim=(0, 2, 3), unbiased=False) + n = x.numel() / x.shape[1] + self.running_var.copy_( + self.running_var * (1 - self.momentum) + + var.detach().to(self.running_var.dtype) * self.momentum * (n / (n - 1))) + else: + var = self.running_var + var = var.to(x_dtype).view(v_shape) + left = var.add(self.eps).sqrt_() + right = (x + 1) * instance_rms(x, self.eps) + x = x / left.max(right) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + + +class EvoNorm2dB2(nn.Module): + def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-5, **_): + super().__init__() + self.apply_act = apply_act # apply activation (non-linearity) + self.momentum = momentum + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.register_buffer('running_var', torch.ones(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.apply_act: + if self.training: + var = x.float().var(dim=(0, 2, 3), unbiased=False) + n = x.numel() / x.shape[1] + self.running_var.copy_( + self.running_var * (1 - self.momentum) + + var.detach().to(self.running_var.dtype) * self.momentum * (n / (n - 1))) + else: + var = self.running_var + var = var.to(x_dtype).view(v_shape) + left = var.add(self.eps).sqrt_() + right = instance_rms(x, self.eps) - x + x = x / left.max(right) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + + +class EvoNorm2dS0(nn.Module): + def __init__(self, num_features, groups=32, group_size=None, apply_act=True, eps=1e-5, **_): + super().__init__() + self.apply_act = apply_act # apply activation (non-linearity) + if group_size: + assert num_features % group_size == 0 + self.groups = num_features // group_size + else: + self.groups = groups + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.v = nn.Parameter(torch.ones(num_features)) if apply_act else None + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + if self.v is not None: + nn.init.ones_(self.v) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.v is not None: + v = self.v.view(v_shape).to(x_dtype) + x = x * (x * v).sigmoid() / group_std(x, self.groups, self.eps) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + + +class EvoNorm2dS0a(EvoNorm2dS0): + def __init__(self, num_features, groups=32, group_size=None, apply_act=True, eps=1e-3, **_): + super().__init__( + num_features, groups=groups, group_size=group_size, apply_act=apply_act, eps=eps) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + d = group_std(x, self.groups, self.eps) + if self.v is not None: + v = self.v.view(v_shape).to(x_dtype) + x = x * (x * v).sigmoid() + x = x / d + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + + +class EvoNorm2dS1(nn.Module): + def __init__( + self, num_features, groups=32, group_size=None, + apply_act=True, act_layer=None, eps=1e-5, **_): + super().__init__() + act_layer = act_layer or nn.SiLU + self.apply_act = apply_act # apply activation (non-linearity) + if act_layer is not None and apply_act: + self.act = create_act_layer(act_layer) + else: + self.act = nn.Identity() + if group_size: + assert num_features % group_size == 0 + self.groups = num_features // group_size + else: + self.groups = groups + self.eps = eps + self.pre_act_norm = False + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.apply_act: + x = self.act(x) / group_std(x, self.groups, self.eps) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + + +class EvoNorm2dS1a(EvoNorm2dS1): + def __init__( + self, num_features, groups=32, group_size=None, + apply_act=True, act_layer=None, eps=1e-3, **_): + super().__init__( + num_features, groups=groups, group_size=group_size, apply_act=apply_act, act_layer=act_layer, eps=eps) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + x = self.act(x) / group_std(x, self.groups, self.eps) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + + +class EvoNorm2dS2(nn.Module): + def __init__( + self, num_features, groups=32, group_size=None, + apply_act=True, act_layer=None, eps=1e-5, **_): + super().__init__() + act_layer = act_layer or nn.SiLU + self.apply_act = apply_act # apply activation (non-linearity) + if act_layer is not None and apply_act: + self.act = create_act_layer(act_layer) + else: + self.act = nn.Identity() + if group_size: + assert num_features % group_size == 0 + self.groups = num_features // group_size + else: + self.groups = groups + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + if self.apply_act: + x = self.act(x) / group_rms(x, self.groups, self.eps) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) + + +class EvoNorm2dS2a(EvoNorm2dS2): + def __init__( + self, num_features, groups=32, group_size=None, + apply_act=True, act_layer=None, eps=1e-3, **_): + super().__init__( + num_features, groups=groups, group_size=group_size, apply_act=apply_act, act_layer=act_layer, eps=eps) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + x = self.act(x) / group_rms(x, self.groups, self.eps) + return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype) diff --git a/pytorch-image-models/timm/layers/fast_norm.py b/pytorch-image-models/timm/layers/fast_norm.py new file mode 100644 index 0000000000000000000000000000000000000000..3bbb0b4f6171dcb9ae69c77216361fd8cddd03a5 --- /dev/null +++ b/pytorch-image-models/timm/layers/fast_norm.py @@ -0,0 +1,150 @@ +""" 'Fast' Normalization Functions + +For GroupNorm and LayerNorm these functions bypass typical AMP upcast to float32. + +Additionally, for LayerNorm, the APEX fused LN is used if available (which also does not upcast) + +Hacked together by / Copyright 2022 Ross Wightman +""" +from typing import List, Optional + +import torch +from torch.nn import functional as F + +try: + from apex.normalization.fused_layer_norm import fused_layer_norm_affine + has_apex = True +except ImportError: + has_apex = False + +try: + from apex.normalization.fused_layer_norm import fused_rms_norm_affine, fused_rms_norm + has_apex_rmsnorm = True +except ImportError: + has_apex_rmsnorm = False + + +# fast (ie lower precision LN) can be disabled with this flag if issues crop up +_USE_FAST_NORM = False # defaulting to False for now + + +def get_autocast_dtype(device: str = 'cuda'): + try: + return torch.get_autocast_dtype(device) + except (AttributeError, TypeError): + # dispatch to older device specific fns, only covering cuda/cpu devices here + if device == 'cpu': + return torch.get_autocast_cpu_dtype() + else: + assert device == 'cuda' + return torch.get_autocast_gpu_dtype() + + +def is_autocast_enabled(device: str = 'cuda'): + try: + return torch.is_autocast_enabled(device) + except TypeError: + # dispatch to older device specific fns, only covering cuda/cpu devices here + if device == 'cpu': + return torch.is_autocast_cpu_enabled() + else: + assert device == 'cuda' + return torch.is_autocast_enabled() # defaults cuda (only cuda on older pytorch) + + +def is_fast_norm(): + return _USE_FAST_NORM + + +def set_fast_norm(enable=True): + global _USE_FAST_NORM + _USE_FAST_NORM = enable + + +def fast_group_norm( + x: torch.Tensor, + num_groups: int, + weight: Optional[torch.Tensor] = None, + bias: Optional[torch.Tensor] = None, + eps: float = 1e-5 +) -> torch.Tensor: + if torch.jit.is_scripting(): + # currently cannot use is_autocast_enabled within torchscript + return F.group_norm(x, num_groups, weight, bias, eps) + + if is_autocast_enabled(x.device.type): + # normally native AMP casts GN inputs to float32 + # here we use the low precision autocast dtype + # FIXME what to do re CPU autocast? + dt = get_autocast_dtype(x.device.type) + x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None + + with torch.amp.autocast(device_type=x.device.type, enabled=False): + return F.group_norm(x, num_groups, weight, bias, eps) + + +def fast_layer_norm( + x: torch.Tensor, + normalized_shape: List[int], + weight: Optional[torch.Tensor] = None, + bias: Optional[torch.Tensor] = None, + eps: float = 1e-5 +) -> torch.Tensor: + if torch.jit.is_scripting(): + # currently cannot use is_autocast_enabled within torchscript + return F.layer_norm(x, normalized_shape, weight, bias, eps) + + if has_apex: + return fused_layer_norm_affine(x, weight, bias, normalized_shape, eps) + + if is_autocast_enabled(x.device.type): + # normally native AMP casts LN inputs to float32 + # apex LN does not, this is behaving like Apex + dt = get_autocast_dtype(x.device.type) + # FIXME what to do re CPU autocast? + x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None + + with torch.amp.autocast(device_type=x.device.type, enabled=False): + return F.layer_norm(x, normalized_shape, weight, bias, eps) + + +def rms_norm( + x: torch.Tensor, + normalized_shape: List[int], + weight: Optional[torch.Tensor] = None, + eps: float = 1e-5, +): + norm_ndim = len(normalized_shape) + if torch.jit.is_scripting(): + # ndim = len(x.shape) + # dims = list(range(ndim - norm_ndim, ndim)) # this doesn't work on pytorch <= 1.13.x + # NOTE -ve dims cause torchscript to crash in some cases, out of options to work around + assert norm_ndim == 1 + v = torch.var(x, dim=-1).unsqueeze(-1) # ts crashes with -ve dim + keepdim=True + else: + dims = tuple(range(-1, -norm_ndim - 1, -1)) + v = torch.var(x, dim=dims, keepdim=True) + x = x * torch.rsqrt(v + eps) + if weight is not None: + x = x * weight + return x + + +def fast_rms_norm( + x: torch.Tensor, + normalized_shape: List[int], + weight: Optional[torch.Tensor] = None, + eps: float = 1e-5, +) -> torch.Tensor: + if torch.jit.is_scripting(): + # this must be by itself, cannot merge with has_apex_rmsnorm + return rms_norm(x, normalized_shape, weight, eps) + + if has_apex_rmsnorm: + if weight is None: + return fused_rms_norm(x, normalized_shape, eps) + else: + return fused_rms_norm_affine(x, weight, normalized_shape, eps) + + # fallback + return rms_norm(x, normalized_shape, weight, eps) diff --git a/pytorch-image-models/timm/layers/filter_response_norm.py b/pytorch-image-models/timm/layers/filter_response_norm.py new file mode 100644 index 0000000000000000000000000000000000000000..a66a1cd493e4cecec27419925a6a2045bb05f25f --- /dev/null +++ b/pytorch-image-models/timm/layers/filter_response_norm.py @@ -0,0 +1,68 @@ +""" Filter Response Norm in PyTorch + +Based on `Filter Response Normalization Layer` - https://arxiv.org/abs/1911.09737 + +Hacked together by / Copyright 2021 Ross Wightman +""" +import torch +import torch.nn as nn + +from .create_act import create_act_layer +from .trace_utils import _assert + + +def inv_instance_rms(x, eps: float = 1e-5): + rms = x.square().float().mean(dim=(2, 3), keepdim=True).add(eps).rsqrt().to(x.dtype) + return rms.expand(x.shape) + + +class FilterResponseNormTlu2d(nn.Module): + def __init__(self, num_features, apply_act=True, eps=1e-5, rms=True, **_): + super(FilterResponseNormTlu2d, self).__init__() + self.apply_act = apply_act # apply activation (non-linearity) + self.rms = rms + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.tau = nn.Parameter(torch.zeros(num_features)) if apply_act else None + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + if self.tau is not None: + nn.init.zeros_(self.tau) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + x = x * inv_instance_rms(x, self.eps) + x = x * self.weight.view(v_shape).to(dtype=x_dtype) + self.bias.view(v_shape).to(dtype=x_dtype) + return torch.maximum(x, self.tau.reshape(v_shape).to(dtype=x_dtype)) if self.tau is not None else x + + +class FilterResponseNormAct2d(nn.Module): + def __init__(self, num_features, apply_act=True, act_layer=nn.ReLU, inplace=None, rms=True, eps=1e-5, **_): + super(FilterResponseNormAct2d, self).__init__() + if act_layer is not None and apply_act: + self.act = create_act_layer(act_layer, inplace=inplace) + else: + self.act = nn.Identity() + self.rms = rms + self.eps = eps + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.ones_(self.weight) + nn.init.zeros_(self.bias) + + def forward(self, x): + _assert(x.dim() == 4, 'expected 4D input') + x_dtype = x.dtype + v_shape = (1, -1, 1, 1) + x = x * inv_instance_rms(x, self.eps) + x = x * self.weight.view(v_shape).to(dtype=x_dtype) + self.bias.view(v_shape).to(dtype=x_dtype) + return self.act(x) diff --git a/pytorch-image-models/timm/layers/format.py b/pytorch-image-models/timm/layers/format.py new file mode 100644 index 0000000000000000000000000000000000000000..7eadc1af832aa593451fd32f9697b0e498fcc6de --- /dev/null +++ b/pytorch-image-models/timm/layers/format.py @@ -0,0 +1,58 @@ +from enum import Enum +from typing import Union + +import torch + + +class Format(str, Enum): + NCHW = 'NCHW' + NHWC = 'NHWC' + NCL = 'NCL' + NLC = 'NLC' + + +FormatT = Union[str, Format] + + +def get_spatial_dim(fmt: FormatT): + fmt = Format(fmt) + if fmt is Format.NLC: + dim = (1,) + elif fmt is Format.NCL: + dim = (2,) + elif fmt is Format.NHWC: + dim = (1, 2) + else: + dim = (2, 3) + return dim + + +def get_channel_dim(fmt: FormatT): + fmt = Format(fmt) + if fmt is Format.NHWC: + dim = 3 + elif fmt is Format.NLC: + dim = 2 + else: + dim = 1 + return dim + + +def nchw_to(x: torch.Tensor, fmt: Format): + if fmt == Format.NHWC: + x = x.permute(0, 2, 3, 1) + elif fmt == Format.NLC: + x = x.flatten(2).transpose(1, 2) + elif fmt == Format.NCL: + x = x.flatten(2) + return x + + +def nhwc_to(x: torch.Tensor, fmt: Format): + if fmt == Format.NCHW: + x = x.permute(0, 3, 1, 2) + elif fmt == Format.NLC: + x = x.flatten(1, 2) + elif fmt == Format.NCL: + x = x.flatten(1, 2).transpose(1, 2) + return x diff --git a/pytorch-image-models/timm/layers/gather_excite.py b/pytorch-image-models/timm/layers/gather_excite.py new file mode 100644 index 0000000000000000000000000000000000000000..2d60dc961e2b5e135d38e290b8fa5820ef0fe18f --- /dev/null +++ b/pytorch-image-models/timm/layers/gather_excite.py @@ -0,0 +1,90 @@ +""" Gather-Excite Attention Block + +Paper: `Gather-Excite: Exploiting Feature Context in CNNs` - https://arxiv.org/abs/1810.12348 + +Official code here, but it's only partial impl in Caffe: https://github.com/hujie-frank/GENet + +I've tried to support all of the extent both w/ and w/o params. I don't believe I've seen another +impl that covers all of the cases. + +NOTE: extent=0 + extra_params=False is equivalent to Squeeze-and-Excitation + +Hacked together by / Copyright 2021 Ross Wightman +""" +import math + +from torch import nn as nn +import torch.nn.functional as F + +from .create_act import create_act_layer, get_act_layer +from .create_conv2d import create_conv2d +from .helpers import make_divisible +from .mlp import ConvMlp + + +class GatherExcite(nn.Module): + """ Gather-Excite Attention Module + """ + def __init__( + self, channels, feat_size=None, extra_params=False, extent=0, use_mlp=True, + rd_ratio=1./16, rd_channels=None, rd_divisor=1, add_maxpool=False, + act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, gate_layer='sigmoid'): + super(GatherExcite, self).__init__() + self.add_maxpool = add_maxpool + act_layer = get_act_layer(act_layer) + self.extent = extent + if extra_params: + self.gather = nn.Sequential() + if extent == 0: + assert feat_size is not None, 'spatial feature size must be specified for global extent w/ params' + self.gather.add_module( + 'conv1', create_conv2d(channels, channels, kernel_size=feat_size, stride=1, depthwise=True)) + if norm_layer: + self.gather.add_module(f'norm1', nn.BatchNorm2d(channels)) + else: + assert extent % 2 == 0 + num_conv = int(math.log2(extent)) + for i in range(num_conv): + self.gather.add_module( + f'conv{i + 1}', + create_conv2d(channels, channels, kernel_size=3, stride=2, depthwise=True)) + if norm_layer: + self.gather.add_module(f'norm{i + 1}', nn.BatchNorm2d(channels)) + if i != num_conv - 1: + self.gather.add_module(f'act{i + 1}', act_layer(inplace=True)) + else: + self.gather = None + if self.extent == 0: + self.gk = 0 + self.gs = 0 + else: + assert extent % 2 == 0 + self.gk = self.extent * 2 - 1 + self.gs = self.extent + + if not rd_channels: + rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) + self.mlp = ConvMlp(channels, rd_channels, act_layer=act_layer) if use_mlp else nn.Identity() + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + size = x.shape[-2:] + if self.gather is not None: + x_ge = self.gather(x) + else: + if self.extent == 0: + # global extent + x_ge = x.mean(dim=(2, 3), keepdims=True) + if self.add_maxpool: + # experimental codepath, may remove or change + x_ge = 0.5 * x_ge + 0.5 * x.amax((2, 3), keepdim=True) + else: + x_ge = F.avg_pool2d( + x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2, count_include_pad=False) + if self.add_maxpool: + # experimental codepath, may remove or change + x_ge = 0.5 * x_ge + 0.5 * F.max_pool2d(x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2) + x_ge = self.mlp(x_ge) + if x_ge.shape[-1] != 1 or x_ge.shape[-2] != 1: + x_ge = F.interpolate(x_ge, size=size) + return x * self.gate(x_ge) diff --git a/pytorch-image-models/timm/layers/global_context.py b/pytorch-image-models/timm/layers/global_context.py new file mode 100644 index 0000000000000000000000000000000000000000..de7fb5c15f08a5c2fe42cb7c174fff92d6b0d3bf --- /dev/null +++ b/pytorch-image-models/timm/layers/global_context.py @@ -0,0 +1,67 @@ +""" Global Context Attention Block + +Paper: `GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond` + - https://arxiv.org/abs/1904.11492 + +Official code consulted as reference: https://github.com/xvjiarui/GCNet + +Hacked together by / Copyright 2021 Ross Wightman +""" +from torch import nn as nn +import torch.nn.functional as F + +from .create_act import create_act_layer, get_act_layer +from .helpers import make_divisible +from .mlp import ConvMlp +from .norm import LayerNorm2d + + +class GlobalContext(nn.Module): + + def __init__(self, channels, use_attn=True, fuse_add=False, fuse_scale=True, init_last_zero=False, + rd_ratio=1./8, rd_channels=None, rd_divisor=1, act_layer=nn.ReLU, gate_layer='sigmoid'): + super(GlobalContext, self).__init__() + act_layer = get_act_layer(act_layer) + + self.conv_attn = nn.Conv2d(channels, 1, kernel_size=1, bias=True) if use_attn else None + + if rd_channels is None: + rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) + if fuse_add: + self.mlp_add = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) + else: + self.mlp_add = None + if fuse_scale: + self.mlp_scale = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) + else: + self.mlp_scale = None + + self.gate = create_act_layer(gate_layer) + self.init_last_zero = init_last_zero + self.reset_parameters() + + def reset_parameters(self): + if self.conv_attn is not None: + nn.init.kaiming_normal_(self.conv_attn.weight, mode='fan_in', nonlinearity='relu') + if self.mlp_add is not None: + nn.init.zeros_(self.mlp_add.fc2.weight) + + def forward(self, x): + B, C, H, W = x.shape + + if self.conv_attn is not None: + attn = self.conv_attn(x).reshape(B, 1, H * W) # (B, 1, H * W) + attn = F.softmax(attn, dim=-1).unsqueeze(3) # (B, 1, H * W, 1) + context = x.reshape(B, C, H * W).unsqueeze(1) @ attn + context = context.view(B, C, 1, 1) + else: + context = x.mean(dim=(2, 3), keepdim=True) + + if self.mlp_scale is not None: + mlp_x = self.mlp_scale(context) + x = x * self.gate(mlp_x) + if self.mlp_add is not None: + mlp_x = self.mlp_add(context) + x = x + mlp_x + + return x diff --git a/pytorch-image-models/timm/layers/grid.py b/pytorch-image-models/timm/layers/grid.py new file mode 100644 index 0000000000000000000000000000000000000000..f760d761fd8188fe9d979027c988d6ce8ec90169 --- /dev/null +++ b/pytorch-image-models/timm/layers/grid.py @@ -0,0 +1,49 @@ +from typing import Tuple + +import torch + + +def ndgrid(*tensors) -> Tuple[torch.Tensor, ...]: + """generate N-D grid in dimension order. + + The ndgrid function is like meshgrid except that the order of the first two input arguments are switched. + + That is, the statement + [X1,X2,X3] = ndgrid(x1,x2,x3) + + produces the same result as + + [X2,X1,X3] = meshgrid(x2,x1,x3) + + This naming is based on MATLAB, the purpose is to avoid confusion due to torch's change to make + torch.meshgrid behaviour move from matching ndgrid ('ij') indexing to numpy meshgrid defaults of ('xy'). + + """ + try: + return torch.meshgrid(*tensors, indexing='ij') + except TypeError: + # old PyTorch < 1.10 will follow this path as it does not have indexing arg, + # the old behaviour of meshgrid was 'ij' + return torch.meshgrid(*tensors) + + +def meshgrid(*tensors) -> Tuple[torch.Tensor, ...]: + """generate N-D grid in spatial dim order. + + The meshgrid function is similar to ndgrid except that the order of the + first two input and output arguments is switched. + + That is, the statement + + [X,Y,Z] = meshgrid(x,y,z) + produces the same result as + + [Y,X,Z] = ndgrid(y,x,z) + Because of this, meshgrid is better suited to problems in two- or three-dimensional Cartesian space, + while ndgrid is better suited to multidimensional problems that aren't spatially based. + """ + + # NOTE: this will throw in PyTorch < 1.10 as meshgrid did not support indexing arg or have + # capability of generating grid in xy order before then. + return torch.meshgrid(*tensors, indexing='xy') + diff --git a/pytorch-image-models/timm/layers/grn.py b/pytorch-image-models/timm/layers/grn.py new file mode 100644 index 0000000000000000000000000000000000000000..ae71e013fc97bbdb4bcfcc522b9a9b36920b4efa --- /dev/null +++ b/pytorch-image-models/timm/layers/grn.py @@ -0,0 +1,39 @@ +""" Global Response Normalization Module + +Based on the GRN layer presented in +`ConvNeXt-V2 - Co-designing and Scaling ConvNets with Masked Autoencoders` - https://arxiv.org/abs/2301.00808 + +This implementation +* works for both NCHW and NHWC tensor layouts +* uses affine param names matching existing torch norm layers +* slightly improves eager mode performance via fused addcmul + +Hacked together by / Copyright 2023 Ross Wightman +""" + +import torch +from torch import nn as nn + + +class GlobalResponseNorm(nn.Module): + """ Global Response Normalization layer + """ + def __init__(self, dim, eps=1e-6, channels_last=True): + super().__init__() + self.eps = eps + if channels_last: + self.spatial_dim = (1, 2) + self.channel_dim = -1 + self.wb_shape = (1, 1, 1, -1) + else: + self.spatial_dim = (2, 3) + self.channel_dim = 1 + self.wb_shape = (1, -1, 1, 1) + + self.weight = nn.Parameter(torch.zeros(dim)) + self.bias = nn.Parameter(torch.zeros(dim)) + + def forward(self, x): + x_g = x.norm(p=2, dim=self.spatial_dim, keepdim=True) + x_n = x_g / (x_g.mean(dim=self.channel_dim, keepdim=True) + self.eps) + return x + torch.addcmul(self.bias.view(self.wb_shape), self.weight.view(self.wb_shape), x * x_n) diff --git a/pytorch-image-models/timm/layers/halo_attn.py b/pytorch-image-models/timm/layers/halo_attn.py new file mode 100644 index 0000000000000000000000000000000000000000..f2ac64f85e08a24646434fc0a995afa0fd9b9ee7 --- /dev/null +++ b/pytorch-image-models/timm/layers/halo_attn.py @@ -0,0 +1,233 @@ +""" Halo Self Attention + +Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones` + - https://arxiv.org/abs/2103.12731 + +@misc{2103.12731, +Author = {Ashish Vaswani and Prajit Ramachandran and Aravind Srinivas and Niki Parmar and Blake Hechtman and + Jonathon Shlens}, +Title = {Scaling Local Self-Attention for Parameter Efficient Visual Backbones}, +Year = {2021}, +} + +Status: +This impl is a WIP, there is no official ref impl and some details in paper weren't clear to me. +The attention mechanism works but it's slow as implemented. + +Hacked together by / Copyright 2021 Ross Wightman +""" +from typing import List + +import torch +from torch import nn +import torch.nn.functional as F + +from .helpers import make_divisible +from .weight_init import trunc_normal_ +from .trace_utils import _assert + + +def rel_logits_1d(q, rel_k, permute_mask: List[int]): + """ Compute relative logits along one dimension + + As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 + Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 + + Args: + q: (batch, height, width, dim) + rel_k: (2 * window - 1, dim) + permute_mask: permute output dim according to this + """ + B, H, W, dim = q.shape + rel_size = rel_k.shape[0] + win_size = (rel_size + 1) // 2 + + x = (q @ rel_k.transpose(-1, -2)) + x = x.reshape(-1, W, rel_size) + + # pad to shift from relative to absolute indexing + x_pad = F.pad(x, [0, 1]).flatten(1) + x_pad = F.pad(x_pad, [0, rel_size - W]) + + # reshape and slice out the padded elements + x_pad = x_pad.reshape(-1, W + 1, rel_size) + x = x_pad[:, :W, win_size - 1:] + + # reshape and tile + x = x.reshape(B, H, 1, W, win_size).expand(-1, -1, win_size, -1, -1) + return x.permute(permute_mask) + + +class PosEmbedRel(nn.Module): + """ Relative Position Embedding + As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 + Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 + + """ + def __init__(self, block_size, win_size, dim_head, scale): + """ + Args: + block_size (int): block size + win_size (int): neighbourhood window size + dim_head (int): attention head dim + scale (float): scale factor (for init) + """ + super().__init__() + self.block_size = block_size + self.dim_head = dim_head + self.height_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * scale) + self.width_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * scale) + + def forward(self, q): + B, BB, HW, _ = q.shape + + # relative logits in width dimension. + q = q.reshape(-1, self.block_size, self.block_size, self.dim_head) + rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4)) + + # relative logits in height dimension. + q = q.transpose(1, 2) + rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2)) + + rel_logits = rel_logits_h + rel_logits_w + rel_logits = rel_logits.reshape(B, BB, HW, -1) + return rel_logits + + +class HaloAttn(nn.Module): + """ Halo Attention + + Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones` + - https://arxiv.org/abs/2103.12731 + + The internal dimensions of the attention module are controlled by the interaction of several arguments. + * the output dimension of the module is specified by dim_out, which falls back to input dim if not set + * the value (v) dimension is set to dim_out // num_heads, the v projection determines the output dim + * the query and key (qk) dimensions are determined by + * num_heads * dim_head if dim_head is not None + * num_heads * (dim_out * attn_ratio // num_heads) if dim_head is None + * as seen above, attn_ratio determines the ratio of q and k relative to the output if dim_head not used + + Args: + dim (int): input dimension to the module + dim_out (int): output dimension of the module, same as dim if not set + feat_size (Tuple[int, int]): size of input feature_map (not used, for arg compat with bottle/lambda) + stride: output stride of the module, query downscaled if > 1 (default: 1). + num_heads: parallel attention heads (default: 8). + dim_head: dimension of query and key heads, calculated from dim_out * attn_ratio // num_heads if not set + block_size (int): size of blocks. (default: 8) + halo_size (int): size of halo overlap. (default: 3) + qk_ratio (float): ratio of q and k dimensions to output dimension when dim_head not set. (default: 1.0) + qkv_bias (bool) : add bias to q, k, and v projections + avg_down (bool): use average pool downsample instead of strided query blocks + scale_pos_embed (bool): scale the position embedding as well as Q @ K + """ + def __init__( + self, dim, dim_out=None, feat_size=None, stride=1, num_heads=8, dim_head=None, block_size=8, halo_size=3, + qk_ratio=1.0, qkv_bias=False, avg_down=False, scale_pos_embed=False): + super().__init__() + dim_out = dim_out or dim + assert dim_out % num_heads == 0 + assert stride in (1, 2) + self.num_heads = num_heads + self.dim_head_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads + self.dim_head_v = dim_out // self.num_heads + self.dim_out_qk = num_heads * self.dim_head_qk + self.dim_out_v = num_heads * self.dim_head_v + self.scale = self.dim_head_qk ** -0.5 + self.scale_pos_embed = scale_pos_embed + self.block_size = self.block_size_ds = block_size + self.halo_size = halo_size + self.win_size = block_size + halo_size * 2 # neighbourhood window size + self.block_stride = 1 + use_avg_pool = False + if stride > 1: + use_avg_pool = avg_down or block_size % stride != 0 + self.block_stride = 1 if use_avg_pool else stride + self.block_size_ds = self.block_size // self.block_stride + + # FIXME not clear if this stride behaviour is what the paper intended + # Also, the paper mentions using a 3D conv for dealing with the blocking/gather, and leaving + # data in unfolded block form. I haven't wrapped my head around how that'd look. + self.q = nn.Conv2d(dim, self.dim_out_qk, 1, stride=self.block_stride, bias=qkv_bias) + self.kv = nn.Conv2d(dim, self.dim_out_qk + self.dim_out_v, 1, bias=qkv_bias) + + self.pos_embed = PosEmbedRel( + block_size=self.block_size_ds, win_size=self.win_size, dim_head=self.dim_head_qk, scale=self.scale) + + self.pool = nn.AvgPool2d(2, 2) if use_avg_pool else nn.Identity() + + self.reset_parameters() + + def reset_parameters(self): + std = self.q.weight.shape[1] ** -0.5 # fan-in + trunc_normal_(self.q.weight, std=std) + trunc_normal_(self.kv.weight, std=std) + trunc_normal_(self.pos_embed.height_rel, std=self.scale) + trunc_normal_(self.pos_embed.width_rel, std=self.scale) + + def forward(self, x): + B, C, H, W = x.shape + _assert(H % self.block_size == 0, '') + _assert(W % self.block_size == 0, '') + num_h_blocks = H // self.block_size + num_w_blocks = W // self.block_size + num_blocks = num_h_blocks * num_w_blocks + + q = self.q(x) + # unfold + q = q.reshape( + -1, self.dim_head_qk, + num_h_blocks, self.block_size_ds, num_w_blocks, self.block_size_ds).permute(0, 1, 3, 5, 2, 4) + # B, num_heads * dim_head * block_size ** 2, num_blocks + q = q.reshape(B * self.num_heads, self.dim_head_qk, -1, num_blocks).transpose(1, 3) + # B * num_heads, num_blocks, block_size ** 2, dim_head + + kv = self.kv(x) + # Generate overlapping windows for kv. This approach is good for GPU and CPU. However, unfold() is not + # lowered for PyTorch XLA so it will be very slow. See code at bottom of file for XLA friendly approach. + # FIXME figure out how to switch impl between this and conv2d if XLA being used. + kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size]) + kv = kv.unfold(2, self.win_size, self.block_size).unfold(3, self.win_size, self.block_size).reshape( + B * self.num_heads, self.dim_head_qk + self.dim_head_v, num_blocks, -1).permute(0, 2, 3, 1) + k, v = torch.split(kv, [self.dim_head_qk, self.dim_head_v], dim=-1) + # B * num_heads, num_blocks, win_size ** 2, dim_head_qk or dim_head_v + + if self.scale_pos_embed: + attn = (q @ k.transpose(-1, -2) + self.pos_embed(q)) * self.scale + else: + attn = (q @ k.transpose(-1, -2)) * self.scale + self.pos_embed(q) + # B * num_heads, num_blocks, block_size ** 2, win_size ** 2 + attn = attn.softmax(dim=-1) + + out = (attn @ v).transpose(1, 3) # B * num_heads, dim_head_v, block_size ** 2, num_blocks + # fold + out = out.reshape(-1, self.block_size_ds, self.block_size_ds, num_h_blocks, num_w_blocks) + out = out.permute(0, 3, 1, 4, 2).contiguous().view( + B, self.dim_out_v, H // self.block_stride, W // self.block_stride) + # B, dim_out, H // block_stride, W // block_stride + out = self.pool(out) + return out + + +""" Three alternatives for overlapping windows. + +`.unfold().unfold()` is same speed as stride tricks with similar clarity as F.unfold() + + if is_xla: + # This code achieves haloing on PyTorch XLA with reasonable runtime trade-off, it is + # EXTREMELY slow for backward on a GPU though so I need a way of selecting based on environment. + WW = self.win_size ** 2 + pw = torch.eye(WW, dtype=x.dtype, device=x.device).reshape(WW, 1, self.win_size, self.win_size) + kv = F.conv2d(kv.reshape(-1, 1, H, W), pw, stride=self.block_size, padding=self.halo_size) + elif self.stride_tricks: + kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size]).contiguous() + kv = kv.as_strided(( + B, self.dim_out_qk + self.dim_out_v, self.win_size, self.win_size, num_h_blocks, num_w_blocks), + stride=(kv.stride(0), kv.stride(1), kv.shape[-1], 1, self.block_size * kv.shape[-1], self.block_size)) + else: + kv = F.unfold(kv, kernel_size=self.win_size, stride=self.block_size, padding=self.halo_size) + + kv = kv.reshape( + B * self.num_heads, self.dim_head_qk + self.dim_head_v, -1, num_blocks).transpose(1, 3) +""" diff --git a/pytorch-image-models/timm/layers/helpers.py b/pytorch-image-models/timm/layers/helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..b003f48d845761fbed4230b3af4092ae48bfe6b9 --- /dev/null +++ b/pytorch-image-models/timm/layers/helpers.py @@ -0,0 +1,43 @@ +""" Layer/Module Helpers + +Hacked together by / Copyright 2020 Ross Wightman +""" +from itertools import repeat +import collections.abc + + +# From PyTorch internals +def _ntuple(n): + def parse(x): + if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): + return tuple(x) + return tuple(repeat(x, n)) + return parse + + +to_1tuple = _ntuple(1) +to_2tuple = _ntuple(2) +to_3tuple = _ntuple(3) +to_4tuple = _ntuple(4) +to_ntuple = _ntuple + + +def make_divisible(v, divisor=8, min_value=None, round_limit=.9): + min_value = min_value or divisor + new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than 10%. + if new_v < round_limit * v: + new_v += divisor + return new_v + + +def extend_tuple(x, n): + # pads a tuple to specified n by padding with last value + if not isinstance(x, (tuple, list)): + x = (x,) + else: + x = tuple(x) + pad_n = n - len(x) + if pad_n <= 0: + return x[:n] + return x + (x[-1],) * pad_n diff --git a/pytorch-image-models/timm/layers/hybrid_embed.py b/pytorch-image-models/timm/layers/hybrid_embed.py new file mode 100644 index 0000000000000000000000000000000000000000..de57a2e9da4ebcd9f282dc0cf44eb1358219bff4 --- /dev/null +++ b/pytorch-image-models/timm/layers/hybrid_embed.py @@ -0,0 +1,253 @@ +""" Image to Patch Hybird Embedding Layer + +Hacked together by / Copyright 2020 Ross Wightman +""" +import logging +import math +from typing import List, Optional, Tuple, Union + +import torch +from torch import nn as nn +import torch.nn.functional as F + +from .format import Format, nchw_to +from .helpers import to_2tuple +from .patch_embed import resample_patch_embed + + +_logger = logging.getLogger(__name__) + + +class HybridEmbed(nn.Module): + """ CNN Feature Map Embedding + Extract feature map from CNN, flatten, project to embedding dim. + """ + output_fmt: Format + dynamic_img_pad: torch.jit.Final[bool] + + def __init__( + self, + backbone: nn.Module, + img_size: Union[int, Tuple[int, int]] = 224, + patch_size: Union[int, Tuple[int, int]] = 1, + feature_size: Optional[Union[int, Tuple[int, int]]] = None, + feature_ratio: Optional[Union[int, Tuple[int, int]]] = None, + in_chans: int = 3, + embed_dim: int = 768, + bias: bool = True, + proj: bool = True, + flatten: bool = True, + output_fmt: Optional[str] = None, + strict_img_size: bool = True, + dynamic_img_pad: bool = False, + ): + super().__init__() + assert isinstance(backbone, nn.Module) + self.backbone = backbone + self.in_chans = in_chans + ( + self.img_size, + self.patch_size, + self.feature_size, + self.feature_ratio, + self.feature_dim, + self.grid_size, + self.num_patches, + ) = self._init_backbone( + img_size=img_size, + patch_size=patch_size, + feature_size=feature_size, + feature_ratio=feature_ratio, + ) + + if output_fmt is not None: + self.flatten = False + self.output_fmt = Format(output_fmt) + else: + # flatten spatial dim and transpose to channels last, kept for bwd compat + self.flatten = flatten + self.output_fmt = Format.NCHW + self.strict_img_size = strict_img_size + self.dynamic_img_pad = dynamic_img_pad + if not dynamic_img_pad: + assert self.feature_size[0] % self.patch_size[0] == 0 and self.feature_size[1] % self.patch_size[1] == 0 + + if proj: + self.proj = nn.Conv2d( + self.feature_dim, + embed_dim, + kernel_size=patch_size, + stride=patch_size, + bias=bias, + ) + else: + assert self.feature_dim == embed_dim, \ + f'The feature dim ({self.feature_dim} must match embed dim ({embed_dim}) when projection disabled.' + self.proj = nn.Identity() + + def _init_backbone( + self, + img_size: Union[int, Tuple[int, int]] = 224, + patch_size: Union[int, Tuple[int, int]] = 1, + feature_size: Optional[Union[int, Tuple[int, int]]] = None, + feature_ratio: Optional[Union[int, Tuple[int, int]]] = None, + feature_dim: Optional[int] = None, + ): + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + if feature_size is None: + with torch.no_grad(): + # NOTE Most reliable way of determining output dims is to run forward pass + training = self.backbone.training + if training: + self.backbone.eval() + o = self.backbone(torch.zeros(1, self.in_chans, img_size[0], img_size[1])) + if isinstance(o, (list, tuple)): + o = o[-1] # last feature if backbone outputs list/tuple of features + feature_size = o.shape[-2:] + feature_dim = o.shape[1] + self.backbone.train(training) + feature_ratio = tuple([s // f for s, f in zip(img_size, feature_size)]) + else: + feature_size = to_2tuple(feature_size) + feature_ratio = to_2tuple(feature_ratio or 16) + if feature_dim is None: + if hasattr(self.backbone, 'feature_info'): + feature_dim = self.backbone.feature_info.channels()[-1] + else: + feature_dim = self.backbone.num_features + grid_size = tuple([f // p for f, p in zip(feature_size, patch_size)]) + num_patches = grid_size[0] * grid_size[1] + return img_size, patch_size, feature_size, feature_ratio, feature_dim, grid_size, num_patches + + def set_input_size( + self, + img_size: Optional[Union[int, Tuple[int, int]]] = None, + patch_size: Optional[Union[int, Tuple[int, int]]] = None, + feature_size: Optional[Union[int, Tuple[int, int]]] = None, + feature_ratio: Optional[Union[int, Tuple[int, int]]] = None, + feature_dim: Optional[int] = None, + ): + assert img_size is not None or patch_size is not None + img_size = img_size or self.img_size + new_patch_size = None + if patch_size is not None: + new_patch_size = to_2tuple(patch_size) + if new_patch_size is not None and new_patch_size != self.patch_size: + assert isinstance(self.proj, nn.Conv2d), 'HybridEmbed must have a projection layer to change patch size.' + with torch.no_grad(): + new_proj = nn.Conv2d( + self.proj.in_channels, + self.proj.out_channels, + kernel_size=new_patch_size, + stride=new_patch_size, + bias=self.proj.bias is not None, + ) + new_proj.weight.copy_(resample_patch_embed(self.proj.weight, new_patch_size, verbose=True)) + if self.proj.bias is not None: + new_proj.bias.copy_(self.proj.bias) + self.proj = new_proj + patch_size = new_patch_size + patch_size = patch_size or self.patch_size + + if img_size != self.img_size or patch_size != self.patch_size: + ( + self.img_size, + self.patch_size, + self.feature_size, + self.feature_ratio, + self.feature_dim, + self.grid_size, + self.num_patches, + ) = self._init_backbone( + img_size=img_size, + patch_size=patch_size, + feature_size=feature_size, + feature_ratio=feature_ratio, + feature_dim=feature_dim, + ) + + def feat_ratio(self, as_scalar=True) -> Union[Tuple[int, int], int]: + total_reduction = ( + self.feature_ratio[0] * self.patch_size[0], + self.feature_ratio[1] * self.patch_size[1] + ) + if as_scalar: + return max(total_reduction) + else: + return total_reduction + + def dynamic_feat_size(self, img_size: Tuple[int, int]) -> Tuple[int, int]: + """ Get feature grid size taking account dynamic padding and backbone network feat reduction + """ + feat_size = (img_size[0] // self.feature_ratio[0], img_size[1] // self.feature_ratio[1]) + if self.dynamic_img_pad: + return math.ceil(feat_size[0] / self.patch_size[0]), math.ceil(feat_size[1] / self.patch_size[1]) + else: + return feat_size[0] // self.patch_size[0], feat_size[1] // self.patch_size[1] + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool = True): + if hasattr(self.backbone, 'set_grad_checkpointing'): + self.backbone.set_grad_checkpointing(enable=enable) + elif hasattr(self.backbone, 'grad_checkpointing'): + self.backbone.grad_checkpointing = enable + + def forward(self, x): + x = self.backbone(x) + if isinstance(x, (list, tuple)): + x = x[-1] # last feature if backbone outputs list/tuple of features + _, _, H, W = x.shape + if self.dynamic_img_pad: + pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] + pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] + x = F.pad(x, (0, pad_w, 0, pad_h)) + x = self.proj(x) + if self.flatten: + x = x.flatten(2).transpose(1, 2) # NCHW -> NLC + elif self.output_fmt != Format.NCHW: + x = nchw_to(x, self.output_fmt) + return x + + +class HybridEmbedWithSize(HybridEmbed): + """ CNN Feature Map Embedding + Extract feature map from CNN, flatten, project to embedding dim. + """ + def __init__( + self, + backbone: nn.Module, + img_size: Union[int, Tuple[int, int]] = 224, + patch_size: Union[int, Tuple[int, int]] = 1, + feature_size: Optional[Union[int, Tuple[int, int]]] = None, + feature_ratio: Optional[Union[int, Tuple[int, int]]] = None, + in_chans: int = 3, + embed_dim: int = 768, + bias=True, + proj=True, + ): + super().__init__( + backbone=backbone, + img_size=img_size, + patch_size=patch_size, + feature_size=feature_size, + feature_ratio=feature_ratio, + in_chans=in_chans, + embed_dim=embed_dim, + bias=bias, + proj=proj, + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool = True): + if hasattr(self.backbone, 'set_grad_checkpointing'): + self.backbone.set_grad_checkpointing(enable=enable) + elif hasattr(self.backbone, 'grad_checkpointing'): + self.backbone.grad_checkpointing = enable + + def forward(self, x) -> Tuple[torch.Tensor, List[int]]: + x = self.backbone(x) + if isinstance(x, (list, tuple)): + x = x[-1] # last feature if backbone outputs list/tuple of features + x = self.proj(x) + return x.flatten(2).transpose(1, 2), x.shape[-2:] \ No newline at end of file diff --git a/pytorch-image-models/timm/layers/inplace_abn.py b/pytorch-image-models/timm/layers/inplace_abn.py new file mode 100644 index 0000000000000000000000000000000000000000..a80889339ebb992c11f84a286c3fd7a627776faa --- /dev/null +++ b/pytorch-image-models/timm/layers/inplace_abn.py @@ -0,0 +1,87 @@ +import torch +from torch import nn as nn + +try: + from inplace_abn.functions import inplace_abn, inplace_abn_sync + has_iabn = True +except ImportError: + has_iabn = False + + def inplace_abn(x, weight, bias, running_mean, running_var, + training=True, momentum=0.1, eps=1e-05, activation="leaky_relu", activation_param=0.01): + raise ImportError( + "Please install InplaceABN:'pip install git+https://github.com/mapillary/inplace_abn.git@v1.0.12'") + + def inplace_abn_sync(**kwargs): + inplace_abn(**kwargs) + + +class InplaceAbn(nn.Module): + """Activated Batch Normalization + + This gathers a BatchNorm and an activation function in a single module + + Parameters + ---------- + num_features : int + Number of feature channels in the input and output. + eps : float + Small constant to prevent numerical issues. + momentum : float + Momentum factor applied to compute running statistics. + affine : bool + If `True` apply learned scale and shift transformation after normalization. + act_layer : str or nn.Module type + Name or type of the activation functions, one of: `leaky_relu`, `elu` + act_param : float + Negative slope for the `leaky_relu` activation. + """ + + def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, apply_act=True, + act_layer="leaky_relu", act_param=0.01, drop_layer=None): + super(InplaceAbn, self).__init__() + self.num_features = num_features + self.affine = affine + self.eps = eps + self.momentum = momentum + if apply_act: + if isinstance(act_layer, str): + assert act_layer in ('leaky_relu', 'elu', 'identity', '') + self.act_name = act_layer if act_layer else 'identity' + else: + # convert act layer passed as type to string + if act_layer == nn.ELU: + self.act_name = 'elu' + elif act_layer == nn.LeakyReLU: + self.act_name = 'leaky_relu' + elif act_layer is None or act_layer == nn.Identity: + self.act_name = 'identity' + else: + assert False, f'Invalid act layer {act_layer.__name__} for IABN' + else: + self.act_name = 'identity' + self.act_param = act_param + if self.affine: + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + else: + self.register_parameter('weight', None) + self.register_parameter('bias', None) + self.register_buffer('running_mean', torch.zeros(num_features)) + self.register_buffer('running_var', torch.ones(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.constant_(self.running_mean, 0) + nn.init.constant_(self.running_var, 1) + if self.affine: + nn.init.constant_(self.weight, 1) + nn.init.constant_(self.bias, 0) + + def forward(self, x): + output = inplace_abn( + x, self.weight, self.bias, self.running_mean, self.running_var, + self.training, self.momentum, self.eps, self.act_name, self.act_param) + if isinstance(output, tuple): + output = output[0] + return output diff --git a/pytorch-image-models/timm/layers/interpolate.py b/pytorch-image-models/timm/layers/interpolate.py new file mode 100644 index 0000000000000000000000000000000000000000..adba9342ec03a9fd9ad3186f73133325892ad1d9 --- /dev/null +++ b/pytorch-image-models/timm/layers/interpolate.py @@ -0,0 +1,68 @@ +""" Interpolation helpers for timm layers + +RegularGridInterpolator from https://github.com/sbarratt/torch_interpolations +Copyright Shane Barratt, Apache 2.0 license +""" +import torch +from itertools import product + + +class RegularGridInterpolator: + """ Interpolate data defined on a rectilinear grid with even or uneven spacing. + Produces similar results to scipy RegularGridInterpolator or interp2d + in 'linear' mode. + + Taken from https://github.com/sbarratt/torch_interpolations + """ + + def __init__(self, points, values): + self.points = points + self.values = values + + assert isinstance(self.points, tuple) or isinstance(self.points, list) + assert isinstance(self.values, torch.Tensor) + + self.ms = list(self.values.shape) + self.n = len(self.points) + + assert len(self.ms) == self.n + + for i, p in enumerate(self.points): + assert isinstance(p, torch.Tensor) + assert p.shape[0] == self.values.shape[i] + + def __call__(self, points_to_interp): + assert self.points is not None + assert self.values is not None + + assert len(points_to_interp) == len(self.points) + K = points_to_interp[0].shape[0] + for x in points_to_interp: + assert x.shape[0] == K + + idxs = [] + dists = [] + overalls = [] + for p, x in zip(self.points, points_to_interp): + idx_right = torch.bucketize(x, p) + idx_right[idx_right >= p.shape[0]] = p.shape[0] - 1 + idx_left = (idx_right - 1).clamp(0, p.shape[0] - 1) + dist_left = x - p[idx_left] + dist_right = p[idx_right] - x + dist_left[dist_left < 0] = 0. + dist_right[dist_right < 0] = 0. + both_zero = (dist_left == 0) & (dist_right == 0) + dist_left[both_zero] = dist_right[both_zero] = 1. + + idxs.append((idx_left, idx_right)) + dists.append((dist_left, dist_right)) + overalls.append(dist_left + dist_right) + + numerator = 0. + for indexer in product([0, 1], repeat=self.n): + as_s = [idx[onoff] for onoff, idx in zip(indexer, idxs)] + bs_s = [dist[1 - onoff] for onoff, dist in zip(indexer, dists)] + numerator += self.values[as_s] * \ + torch.prod(torch.stack(bs_s), dim=0) + denominator = torch.prod(torch.stack(overalls), dim=0) + return numerator / denominator diff --git a/pytorch-image-models/timm/layers/lambda_layer.py b/pytorch-image-models/timm/layers/lambda_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..9192e266e622dcd26babb8dd050fc42f877e901d --- /dev/null +++ b/pytorch-image-models/timm/layers/lambda_layer.py @@ -0,0 +1,134 @@ +""" Lambda Layer + +Paper: `LambdaNetworks: Modeling Long-Range Interactions Without Attention` + - https://arxiv.org/abs/2102.08602 + +@misc{2102.08602, +Author = {Irwan Bello}, +Title = {LambdaNetworks: Modeling Long-Range Interactions Without Attention}, +Year = {2021}, +} + +Status: +This impl is a WIP. Code snippets in the paper were used as reference but +good chance some details are missing/wrong. + +I've only implemented local lambda conv based pos embeddings. + +For a PyTorch impl that includes other embedding options checkout +https://github.com/lucidrains/lambda-networks + +Hacked together by / Copyright 2021 Ross Wightman +""" +import torch +from torch import nn +import torch.nn.functional as F + +from .grid import ndgrid +from .helpers import to_2tuple, make_divisible +from .weight_init import trunc_normal_ + + +def rel_pos_indices(size): + size = to_2tuple(size) + pos = torch.stack(ndgrid(torch.arange(size[0]), torch.arange(size[1]))).flatten(1) + rel_pos = pos[:, None, :] - pos[:, :, None] + rel_pos[0] += size[0] - 1 + rel_pos[1] += size[1] - 1 + return rel_pos # 2, H * W, H * W + + +class LambdaLayer(nn.Module): + """Lambda Layer + + Paper: `LambdaNetworks: Modeling Long-Range Interactions Without Attention` + - https://arxiv.org/abs/2102.08602 + + NOTE: intra-depth parameter 'u' is fixed at 1. It did not appear worth the complexity to add. + + The internal dimensions of the lambda module are controlled via the interaction of several arguments. + * the output dimension of the module is specified by dim_out, which falls back to input dim if not set + * the value (v) dimension is set to dim_out // num_heads, the v projection determines the output dim + * the query (q) and key (k) dimension are determined by + * dim_head = (dim_out * attn_ratio // num_heads) if dim_head is None + * q = num_heads * dim_head, k = dim_head + * as seen above, attn_ratio determines the ratio of q and k relative to the output if dim_head not set + + Args: + dim (int): input dimension to the module + dim_out (int): output dimension of the module, same as dim if not set + feat_size (Tuple[int, int]): size of input feature_map for relative pos variant H, W + stride (int): output stride of the module, avg pool used if stride == 2 + num_heads (int): parallel attention heads. + dim_head (int): dimension of query and key heads, calculated from dim_out * attn_ratio // num_heads if not set + r (int): local lambda convolution radius. Use lambda conv if set, else relative pos if not. (default: 9) + qk_ratio (float): ratio of q and k dimensions to output dimension when dim_head not set. (default: 1.0) + qkv_bias (bool): add bias to q, k, and v projections + """ + def __init__( + self, dim, dim_out=None, feat_size=None, stride=1, num_heads=4, dim_head=16, r=9, + qk_ratio=1.0, qkv_bias=False): + super().__init__() + dim_out = dim_out or dim + assert dim_out % num_heads == 0, ' should be divided by num_heads' + self.dim_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads + self.num_heads = num_heads + self.dim_v = dim_out // num_heads + + self.qkv = nn.Conv2d( + dim, + num_heads * self.dim_qk + self.dim_qk + self.dim_v, + kernel_size=1, bias=qkv_bias) + self.norm_q = nn.BatchNorm2d(num_heads * self.dim_qk) + self.norm_v = nn.BatchNorm2d(self.dim_v) + + if r is not None: + # local lambda convolution for pos + self.conv_lambda = nn.Conv3d(1, self.dim_qk, (r, r, 1), padding=(r // 2, r // 2, 0)) + self.pos_emb = None + self.rel_pos_indices = None + else: + # relative pos embedding + assert feat_size is not None + feat_size = to_2tuple(feat_size) + rel_size = [2 * s - 1 for s in feat_size] + self.conv_lambda = None + self.pos_emb = nn.Parameter(torch.zeros(rel_size[0], rel_size[1], self.dim_qk)) + self.register_buffer('rel_pos_indices', rel_pos_indices(feat_size), persistent=False) + + self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity() + + self.reset_parameters() + + def reset_parameters(self): + trunc_normal_(self.qkv.weight, std=self.qkv.weight.shape[1] ** -0.5) # fan-in + if self.conv_lambda is not None: + trunc_normal_(self.conv_lambda.weight, std=self.dim_qk ** -0.5) + if self.pos_emb is not None: + trunc_normal_(self.pos_emb, std=.02) + + def forward(self, x): + B, C, H, W = x.shape + M = H * W + qkv = self.qkv(x) + q, k, v = torch.split(qkv, [ + self.num_heads * self.dim_qk, self.dim_qk, self.dim_v], dim=1) + q = self.norm_q(q).reshape(B, self.num_heads, self.dim_qk, M).transpose(-1, -2) # B, num_heads, M, K + v = self.norm_v(v).reshape(B, self.dim_v, M).transpose(-1, -2) # B, M, V + k = F.softmax(k.reshape(B, self.dim_qk, M), dim=-1) # B, K, M + + content_lam = k @ v # B, K, V + content_out = q @ content_lam.unsqueeze(1) # B, num_heads, M, V + + if self.pos_emb is None: + position_lam = self.conv_lambda(v.reshape(B, 1, H, W, self.dim_v)) # B, H, W, V, K + position_lam = position_lam.reshape(B, 1, self.dim_qk, H * W, self.dim_v).transpose(2, 3) # B, 1, M, K, V + else: + # FIXME relative pos embedding path not fully verified + pos_emb = self.pos_emb[self.rel_pos_indices[0], self.rel_pos_indices[1]].expand(B, -1, -1, -1) + position_lam = (pos_emb.transpose(-1, -2) @ v.unsqueeze(1)).unsqueeze(1) # B, 1, M, K, V + position_out = (q.unsqueeze(-2) @ position_lam).squeeze(-2) # B, num_heads, M, V + + out = (content_out + position_out).transpose(-1, -2).reshape(B, C, H, W) # B, C (num_heads * V), H, W + out = self.pool(out) + return out diff --git a/pytorch-image-models/timm/layers/layer_scale.py b/pytorch-image-models/timm/layers/layer_scale.py new file mode 100644 index 0000000000000000000000000000000000000000..08566b2bd1e16697c3806b0e03ae568179291889 --- /dev/null +++ b/pytorch-image-models/timm/layers/layer_scale.py @@ -0,0 +1,38 @@ +import torch +from torch import nn + + +class LayerScale(nn.Module): + """ LayerScale on tensors with channels in last-dim. + """ + def __init__( + self, + dim: int, + init_values: float = 1e-5, + inplace: bool = False, + ) -> None: + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return x.mul_(self.gamma) if self.inplace else x * self.gamma + + +class LayerScale2d(nn.Module): + """ LayerScale for tensors with torch 2D NCHW layout. + """ + def __init__( + self, + dim: int, + init_values: float = 1e-5, + inplace: bool = False, + ): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + diff --git a/pytorch-image-models/timm/layers/linear.py b/pytorch-image-models/timm/layers/linear.py new file mode 100644 index 0000000000000000000000000000000000000000..38fe3380b067ea0b275c45ffd689afdeb4598f3c --- /dev/null +++ b/pytorch-image-models/timm/layers/linear.py @@ -0,0 +1,19 @@ +""" Linear layer (alternate definition) +""" +import torch +import torch.nn.functional as F +from torch import nn as nn + + +class Linear(nn.Linear): + r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b` + + Wraps torch.nn.Linear to support AMP + torchscript usage by manually casting + weight & bias to input.dtype to work around an issue w/ torch.addmm in this use case. + """ + def forward(self, input: torch.Tensor) -> torch.Tensor: + if torch.jit.is_scripting(): + bias = self.bias.to(dtype=input.dtype) if self.bias is not None else None + return F.linear(input, self.weight.to(dtype=input.dtype), bias=bias) + else: + return F.linear(input, self.weight, self.bias) diff --git a/pytorch-image-models/timm/layers/median_pool.py b/pytorch-image-models/timm/layers/median_pool.py new file mode 100644 index 0000000000000000000000000000000000000000..40bd71a7a3840aaebefd2af0a99605b845054cd7 --- /dev/null +++ b/pytorch-image-models/timm/layers/median_pool.py @@ -0,0 +1,49 @@ +""" Median Pool +Hacked together by / Copyright 2020 Ross Wightman +""" +import torch.nn as nn +import torch.nn.functional as F +from .helpers import to_2tuple, to_4tuple + + +class MedianPool2d(nn.Module): + """ Median pool (usable as median filter when stride=1) module. + + Args: + kernel_size: size of pooling kernel, int or 2-tuple + stride: pool stride, int or 2-tuple + padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad + same: override padding and enforce same padding, boolean + """ + def __init__(self, kernel_size=3, stride=1, padding=0, same=False): + super(MedianPool2d, self).__init__() + self.k = to_2tuple(kernel_size) + self.stride = to_2tuple(stride) + self.padding = to_4tuple(padding) # convert to l, r, t, b + self.same = same + + def _padding(self, x): + if self.same: + ih, iw = x.size()[2:] + if ih % self.stride[0] == 0: + ph = max(self.k[0] - self.stride[0], 0) + else: + ph = max(self.k[0] - (ih % self.stride[0]), 0) + if iw % self.stride[1] == 0: + pw = max(self.k[1] - self.stride[1], 0) + else: + pw = max(self.k[1] - (iw % self.stride[1]), 0) + pl = pw // 2 + pr = pw - pl + pt = ph // 2 + pb = ph - pt + padding = (pl, pr, pt, pb) + else: + padding = self.padding + return padding + + def forward(self, x): + x = F.pad(x, self._padding(x), mode='reflect') + x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1]) + x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0] + return x diff --git a/pytorch-image-models/timm/layers/mixed_conv2d.py b/pytorch-image-models/timm/layers/mixed_conv2d.py new file mode 100644 index 0000000000000000000000000000000000000000..fa0ce565c0a9d348d4e68165960fa77fcf7f70d7 --- /dev/null +++ b/pytorch-image-models/timm/layers/mixed_conv2d.py @@ -0,0 +1,51 @@ +""" PyTorch Mixed Convolution + +Paper: MixConv: Mixed Depthwise Convolutional Kernels (https://arxiv.org/abs/1907.09595) + +Hacked together by / Copyright 2020 Ross Wightman +""" + +import torch +from torch import nn as nn + +from .conv2d_same import create_conv2d_pad + + +def _split_channels(num_chan, num_groups): + split = [num_chan // num_groups for _ in range(num_groups)] + split[0] += num_chan - sum(split) + return split + + +class MixedConv2d(nn.ModuleDict): + """ Mixed Grouped Convolution + + Based on MDConv and GroupedConv in MixNet impl: + https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mixnet/custom_layers.py + """ + def __init__(self, in_channels, out_channels, kernel_size=3, + stride=1, padding='', dilation=1, depthwise=False, **kwargs): + super(MixedConv2d, self).__init__() + + kernel_size = kernel_size if isinstance(kernel_size, list) else [kernel_size] + num_groups = len(kernel_size) + in_splits = _split_channels(in_channels, num_groups) + out_splits = _split_channels(out_channels, num_groups) + self.in_channels = sum(in_splits) + self.out_channels = sum(out_splits) + for idx, (k, in_ch, out_ch) in enumerate(zip(kernel_size, in_splits, out_splits)): + conv_groups = in_ch if depthwise else 1 + # use add_module to keep key space clean + self.add_module( + str(idx), + create_conv2d_pad( + in_ch, out_ch, k, stride=stride, + padding=padding, dilation=dilation, groups=conv_groups, **kwargs) + ) + self.splits = in_splits + + def forward(self, x): + x_split = torch.split(x, self.splits, 1) + x_out = [c(x_split[i]) for i, c in enumerate(self.values())] + x = torch.cat(x_out, 1) + return x diff --git a/pytorch-image-models/timm/layers/ml_decoder.py b/pytorch-image-models/timm/layers/ml_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..cd7d506207d1f9e99efcd16f056ccfd9e767eb27 --- /dev/null +++ b/pytorch-image-models/timm/layers/ml_decoder.py @@ -0,0 +1,146 @@ +from typing import Optional + +import torch +from torch import nn +from torch import nn, Tensor +from torch.nn.modules.transformer import _get_activation_fn + + +def add_ml_decoder_head(model): + if hasattr(model, 'global_pool') and hasattr(model, 'fc'): # most CNN models, like Resnet50 + model.global_pool = nn.Identity() + del model.fc + num_classes = model.num_classes + num_features = model.num_features + model.fc = MLDecoder(num_classes=num_classes, initial_num_features=num_features) + elif hasattr(model, 'global_pool') and hasattr(model, 'classifier'): # EfficientNet + model.global_pool = nn.Identity() + del model.classifier + num_classes = model.num_classes + num_features = model.num_features + model.classifier = MLDecoder(num_classes=num_classes, initial_num_features=num_features) + elif 'RegNet' in model._get_name() or 'TResNet' in model._get_name(): # hasattr(model, 'head') + del model.head + num_classes = model.num_classes + num_features = model.num_features + model.head = MLDecoder(num_classes=num_classes, initial_num_features=num_features) + else: + print("Model code-writing is not aligned currently with ml-decoder") + exit(-1) + if hasattr(model, 'drop_rate'): # Ml-Decoder has inner dropout + model.drop_rate = 0 + return model + + +class TransformerDecoderLayerOptimal(nn.Module): + def __init__(self, d_model, nhead=8, dim_feedforward=2048, dropout=0.1, activation="relu", + layer_norm_eps=1e-5) -> None: + super(TransformerDecoderLayerOptimal, self).__init__() + self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps) + self.dropout = nn.Dropout(dropout) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + self.dropout3 = nn.Dropout(dropout) + + self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) + + # Implementation of Feedforward model + self.linear1 = nn.Linear(d_model, dim_feedforward) + self.linear2 = nn.Linear(dim_feedforward, d_model) + + self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps) + self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps) + + self.activation = _get_activation_fn(activation) + + def __setstate__(self, state): + if 'activation' not in state: + state['activation'] = torch.nn.functional.relu + super(TransformerDecoderLayerOptimal, self).__setstate__(state) + + def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None, + memory_mask: Optional[Tensor] = None, + tgt_key_padding_mask: Optional[Tensor] = None, + memory_key_padding_mask: Optional[Tensor] = None) -> Tensor: + tgt = tgt + self.dropout1(tgt) + tgt = self.norm1(tgt) + tgt2 = self.multihead_attn(tgt, memory, memory)[0] + tgt = tgt + self.dropout2(tgt2) + tgt = self.norm2(tgt) + tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) + tgt = tgt + self.dropout3(tgt2) + tgt = self.norm3(tgt) + return tgt + + +# class ExtrapClasses(object): +# def __init__(self, num_queries: int, group_size: int): +# self.num_queries = num_queries +# self.group_size = group_size +# +# def __call__(self, h: torch.Tensor, class_embed_w: torch.Tensor, class_embed_b: torch.Tensor, out_extrap: +# torch.Tensor): +# # h = h.unsqueeze(-1).expand(-1, -1, -1, self.group_size) +# h = h[..., None].repeat(1, 1, 1, self.group_size) # torch.Size([bs, 5, 768, groups]) +# w = class_embed_w.view((self.num_queries, h.shape[2], self.group_size)) +# out = (h * w).sum(dim=2) + class_embed_b +# out = out.view((h.shape[0], self.group_size * self.num_queries)) +# return out + +class MLDecoder(nn.Module): + def __init__(self, num_classes, num_of_groups=-1, decoder_embedding=768, initial_num_features=2048): + super(MLDecoder, self).__init__() + embed_len_decoder = 100 if num_of_groups < 0 else num_of_groups + if embed_len_decoder > num_classes: + embed_len_decoder = num_classes + self.embed_len_decoder = embed_len_decoder + + # switching to 768 initial embeddings + decoder_embedding = 768 if decoder_embedding < 0 else decoder_embedding + self.embed_standart = nn.Linear(initial_num_features, decoder_embedding) + + # decoder + decoder_dropout = 0.1 + num_layers_decoder = 1 + dim_feedforward = 2048 + layer_decode = TransformerDecoderLayerOptimal(d_model=decoder_embedding, + dim_feedforward=dim_feedforward, dropout=decoder_dropout) + self.decoder = nn.TransformerDecoder(layer_decode, num_layers=num_layers_decoder) + + # non-learnable queries + self.query_embed = nn.Embedding(embed_len_decoder, decoder_embedding) + self.query_embed.requires_grad_(False) + + # group fully-connected + self.num_classes = num_classes + self.duplicate_factor = int(num_classes / embed_len_decoder + 0.999) + self.duplicate_pooling = torch.nn.Parameter( + torch.Tensor(embed_len_decoder, decoder_embedding, self.duplicate_factor)) + self.duplicate_pooling_bias = torch.nn.Parameter(torch.Tensor(num_classes)) + torch.nn.init.xavier_normal_(self.duplicate_pooling) + torch.nn.init.constant_(self.duplicate_pooling_bias, 0) + + def forward(self, x): + if len(x.shape) == 4: # [bs,2048, 7,7] + embedding_spatial = x.flatten(2).transpose(1, 2) + else: # [bs, 197,468] + embedding_spatial = x + embedding_spatial_786 = self.embed_standart(embedding_spatial) + embedding_spatial_786 = torch.nn.functional.relu(embedding_spatial_786, inplace=True) + + bs = embedding_spatial_786.shape[0] + query_embed = self.query_embed.weight + # tgt = query_embed.unsqueeze(1).repeat(1, bs, 1) + tgt = query_embed.unsqueeze(1).expand(-1, bs, -1) # no allocation of memory with expand + h = self.decoder(tgt, embedding_spatial_786.transpose(0, 1)) # [embed_len_decoder, batch, 768] + h = h.transpose(0, 1) + + out_extrap = torch.zeros(h.shape[0], h.shape[1], self.duplicate_factor, device=h.device, dtype=h.dtype) + for i in range(self.embed_len_decoder): # group FC + h_i = h[:, i, :] + w_i = self.duplicate_pooling[i, :, :] + out_extrap[:, i, :] = torch.matmul(h_i, w_i) + h_out = out_extrap.flatten(1)[:, :self.num_classes] + h_out += self.duplicate_pooling_bias + logits = h_out + return logits diff --git a/pytorch-image-models/timm/layers/mlp.py b/pytorch-image-models/timm/layers/mlp.py new file mode 100644 index 0000000000000000000000000000000000000000..11d9eeca3286f199d91ce317b9512eeebf0873a4 --- /dev/null +++ b/pytorch-image-models/timm/layers/mlp.py @@ -0,0 +1,260 @@ +""" MLP module w/ dropout and configurable activation layer + +Hacked together by / Copyright 2020 Ross Wightman +""" +from functools import partial + +from torch import nn as nn + +from .grn import GlobalResponseNorm +from .helpers import to_2tuple + + +class Mlp(nn.Module): + """ MLP as used in Vision Transformer, MLP-Mixer and related networks + """ + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + norm_layer=None, + bias=True, + drop=0., + use_conv=False, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear + + self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() + self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.norm(x) + x = self.fc2(x) + x = self.drop2(x) + return x + + +class GluMlp(nn.Module): + """ MLP w/ GLU style gating + See: https://arxiv.org/abs/1612.08083, https://arxiv.org/abs/2002.05202 + """ + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.Sigmoid, + norm_layer=None, + bias=True, + drop=0., + use_conv=False, + gate_last=True, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + assert hidden_features % 2 == 0 + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear + self.chunk_dim = 1 if use_conv else -1 + self.gate_last = gate_last # use second half of width for gate + + self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.norm = norm_layer(hidden_features // 2) if norm_layer is not None else nn.Identity() + self.fc2 = linear_layer(hidden_features // 2, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def init_weights(self): + # override init of fc1 w/ gate portion set to weight near zero, bias=1 + fc1_mid = self.fc1.bias.shape[0] // 2 + nn.init.ones_(self.fc1.bias[fc1_mid:]) + nn.init.normal_(self.fc1.weight[fc1_mid:], std=1e-6) + + def forward(self, x): + x = self.fc1(x) + x1, x2 = x.chunk(2, dim=self.chunk_dim) + x = x1 * self.act(x2) if self.gate_last else self.act(x1) * x2 + x = self.drop1(x) + x = self.norm(x) + x = self.fc2(x) + x = self.drop2(x) + return x + + +SwiGLUPacked = partial(GluMlp, act_layer=nn.SiLU, gate_last=False) + + +class SwiGLU(nn.Module): + """ SwiGLU + NOTE: GluMLP above can implement SwiGLU, but this impl has split fc1 and + better matches some other common impl which makes mapping checkpoints simpler. + """ + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.SiLU, + norm_layer=None, + bias=True, + drop=0., + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + + self.fc1_g = nn.Linear(in_features, hidden_features, bias=bias[0]) + self.fc1_x = nn.Linear(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() + self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def init_weights(self): + # override init of fc1 w/ gate portion set to weight near zero, bias=1 + nn.init.ones_(self.fc1_g.bias) + nn.init.normal_(self.fc1_g.weight, std=1e-6) + + def forward(self, x): + x_gate = self.fc1_g(x) + x = self.fc1_x(x) + x = self.act(x_gate) * x + x = self.drop1(x) + x = self.norm(x) + x = self.fc2(x) + x = self.drop2(x) + return x + + +class GatedMlp(nn.Module): + """ MLP as used in gMLP + """ + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + norm_layer=None, + gate_layer=None, + bias=True, + drop=0., + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + + self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + if gate_layer is not None: + assert hidden_features % 2 == 0 + self.gate = gate_layer(hidden_features) + hidden_features = hidden_features // 2 # FIXME base reduction on gate property? + else: + self.gate = nn.Identity() + self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() + self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.gate(x) + x = self.norm(x) + x = self.fc2(x) + x = self.drop2(x) + return x + + +class ConvMlp(nn.Module): + """ MLP using 1x1 convs that keeps spatial dims + """ + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.ReLU, + norm_layer=None, + bias=True, + drop=0., + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + + self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0]) + self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity() + self.act = act_layer() + self.drop = nn.Dropout(drop) + self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.norm(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + return x + + +class GlobalResponseNormMlp(nn.Module): + """ MLP w/ Global Response Norm (see grn.py), nn.Linear or 1x1 Conv2d + """ + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + bias=True, + drop=0., + use_conv=False, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear + + self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.grn = GlobalResponseNorm(hidden_features, channels_last=not use_conv) + self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.grn(x) + x = self.fc2(x) + x = self.drop2(x) + return x diff --git a/pytorch-image-models/timm/layers/non_local_attn.py b/pytorch-image-models/timm/layers/non_local_attn.py new file mode 100644 index 0000000000000000000000000000000000000000..670e8f2475374b1f31741f75f1dedf617e0e6546 --- /dev/null +++ b/pytorch-image-models/timm/layers/non_local_attn.py @@ -0,0 +1,145 @@ +""" Bilinear-Attention-Transform and Non-Local Attention + +Paper: `Non-Local Neural Networks With Grouped Bilinear Attentional Transforms` + - https://openaccess.thecvf.com/content_CVPR_2020/html/Chi_Non-Local_Neural_Networks_With_Grouped_Bilinear_Attentional_Transforms_CVPR_2020_paper.html +Adapted from original code: https://github.com/BA-Transform/BAT-Image-Classification +""" +import torch +from torch import nn +from torch.nn import functional as F + +from .conv_bn_act import ConvNormAct +from .helpers import make_divisible +from .trace_utils import _assert + + +class NonLocalAttn(nn.Module): + """Spatial NL block for image classification. + + This was adapted from https://github.com/BA-Transform/BAT-Image-Classification + Their NonLocal impl inspired by https://github.com/facebookresearch/video-nonlocal-net. + """ + + def __init__(self, in_channels, use_scale=True, rd_ratio=1/8, rd_channels=None, rd_divisor=8, **kwargs): + super(NonLocalAttn, self).__init__() + if rd_channels is None: + rd_channels = make_divisible(in_channels * rd_ratio, divisor=rd_divisor) + self.scale = in_channels ** -0.5 if use_scale else 1.0 + self.t = nn.Conv2d(in_channels, rd_channels, kernel_size=1, stride=1, bias=True) + self.p = nn.Conv2d(in_channels, rd_channels, kernel_size=1, stride=1, bias=True) + self.g = nn.Conv2d(in_channels, rd_channels, kernel_size=1, stride=1, bias=True) + self.z = nn.Conv2d(rd_channels, in_channels, kernel_size=1, stride=1, bias=True) + self.norm = nn.BatchNorm2d(in_channels) + self.reset_parameters() + + def forward(self, x): + shortcut = x + + t = self.t(x) + p = self.p(x) + g = self.g(x) + + B, C, H, W = t.size() + t = t.view(B, C, -1).permute(0, 2, 1) + p = p.view(B, C, -1) + g = g.view(B, C, -1).permute(0, 2, 1) + + att = torch.bmm(t, p) * self.scale + att = F.softmax(att, dim=2) + x = torch.bmm(att, g) + + x = x.permute(0, 2, 1).reshape(B, C, H, W) + x = self.z(x) + x = self.norm(x) + shortcut + + return x + + def reset_parameters(self): + for name, m in self.named_modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_( + m.weight, mode='fan_out', nonlinearity='relu') + if len(list(m.parameters())) > 1: + nn.init.constant_(m.bias, 0.0) + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 0) + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.GroupNorm): + nn.init.constant_(m.weight, 0) + nn.init.constant_(m.bias, 0) + + +class BilinearAttnTransform(nn.Module): + + def __init__(self, in_channels, block_size, groups, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): + super(BilinearAttnTransform, self).__init__() + + self.conv1 = ConvNormAct(in_channels, groups, 1, act_layer=act_layer, norm_layer=norm_layer) + self.conv_p = nn.Conv2d(groups, block_size * block_size * groups, kernel_size=(block_size, 1)) + self.conv_q = nn.Conv2d(groups, block_size * block_size * groups, kernel_size=(1, block_size)) + self.conv2 = ConvNormAct(in_channels, in_channels, 1, act_layer=act_layer, norm_layer=norm_layer) + self.block_size = block_size + self.groups = groups + self.in_channels = in_channels + + def resize_mat(self, x, t: int): + B, C, block_size, block_size1 = x.shape + _assert(block_size == block_size1, '') + if t <= 1: + return x + x = x.view(B * C, -1, 1, 1) + x = x * torch.eye(t, t, dtype=x.dtype, device=x.device) + x = x.view(B * C, block_size, block_size, t, t) + x = torch.cat(torch.split(x, 1, dim=1), dim=3) + x = torch.cat(torch.split(x, 1, dim=2), dim=4) + x = x.view(B, C, block_size * t, block_size * t) + return x + + def forward(self, x): + _assert(x.shape[-1] % self.block_size == 0, '') + _assert(x.shape[-2] % self.block_size == 0, '') + B, C, H, W = x.shape + out = self.conv1(x) + rp = F.adaptive_max_pool2d(out, (self.block_size, 1)) + cp = F.adaptive_max_pool2d(out, (1, self.block_size)) + p = self.conv_p(rp).view(B, self.groups, self.block_size, self.block_size).sigmoid() + q = self.conv_q(cp).view(B, self.groups, self.block_size, self.block_size).sigmoid() + p = p / p.sum(dim=3, keepdim=True) + q = q / q.sum(dim=2, keepdim=True) + p = p.view(B, self.groups, 1, self.block_size, self.block_size).expand(x.size( + 0), self.groups, C // self.groups, self.block_size, self.block_size).contiguous() + p = p.view(B, C, self.block_size, self.block_size) + q = q.view(B, self.groups, 1, self.block_size, self.block_size).expand(x.size( + 0), self.groups, C // self.groups, self.block_size, self.block_size).contiguous() + q = q.view(B, C, self.block_size, self.block_size) + p = self.resize_mat(p, H // self.block_size) + q = self.resize_mat(q, W // self.block_size) + y = p.matmul(x) + y = y.matmul(q) + + y = self.conv2(y) + return y + + +class BatNonLocalAttn(nn.Module): + """ BAT + Adapted from: https://github.com/BA-Transform/BAT-Image-Classification + """ + + def __init__( + self, in_channels, block_size=7, groups=2, rd_ratio=0.25, rd_channels=None, rd_divisor=8, + drop_rate=0.2, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, **_): + super().__init__() + if rd_channels is None: + rd_channels = make_divisible(in_channels * rd_ratio, divisor=rd_divisor) + self.conv1 = ConvNormAct(in_channels, rd_channels, 1, act_layer=act_layer, norm_layer=norm_layer) + self.ba = BilinearAttnTransform(rd_channels, block_size, groups, act_layer=act_layer, norm_layer=norm_layer) + self.conv2 = ConvNormAct(rd_channels, in_channels, 1, act_layer=act_layer, norm_layer=norm_layer) + self.dropout = nn.Dropout2d(p=drop_rate) + + def forward(self, x): + xl = self.conv1(x) + y = self.ba(xl) + y = self.conv2(y) + y = self.dropout(y) + return y + x diff --git a/pytorch-image-models/timm/layers/norm.py b/pytorch-image-models/timm/layers/norm.py new file mode 100644 index 0000000000000000000000000000000000000000..e9f9c27d8c35195891e065177cfe3ec7be42000d --- /dev/null +++ b/pytorch-image-models/timm/layers/norm.py @@ -0,0 +1,192 @@ +""" Normalization layers and wrappers + +Norm layer definitions that support fast norm and consistent channel arg order (always first arg). + +Hacked together by / Copyright 2022 Ross Wightman +""" +import numbers +from typing import Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .fast_norm import is_fast_norm, fast_group_norm, fast_layer_norm, fast_rms_norm + + +class GroupNorm(nn.GroupNorm): + def __init__(self, num_channels, num_groups=32, eps=1e-5, affine=True): + # NOTE num_channels is swapped to first arg for consistency in swapping norm layers with BN + super().__init__(num_groups, num_channels, eps=eps, affine=affine) + self.fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) + + def forward(self, x): + if self.fast_norm: + return fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + else: + return F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + + +class GroupNorm1(nn.GroupNorm): + """ Group Normalization with 1 group. + Input: tensor in shape [B, C, *] + """ + + def __init__(self, num_channels, **kwargs): + super().__init__(1, num_channels, **kwargs) + self.fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.fast_norm: + return fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + else: + return F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + + +class LayerNorm(nn.LayerNorm): + """ LayerNorm w/ fast norm option + """ + def __init__(self, num_channels, eps=1e-6, affine=True): + super().__init__(num_channels, eps=eps, elementwise_affine=affine) + self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self._fast_norm: + x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + else: + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + return x + + +class LayerNorm2d(nn.LayerNorm): + """ LayerNorm for channels of '2D' spatial NCHW tensors """ + def __init__(self, num_channels, eps=1e-6, affine=True): + super().__init__(num_channels, eps=eps, elementwise_affine=affine) + self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = x.permute(0, 2, 3, 1) + if self._fast_norm: + x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + else: + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + x = x.permute(0, 3, 1, 2) + return x + + +def _is_contiguous(tensor: torch.Tensor) -> bool: + # jit is oh so lovely :/ + if torch.jit.is_scripting(): + return tensor.is_contiguous() + else: + return tensor.is_contiguous(memory_format=torch.contiguous_format) + + +def _layer_norm_cf(x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, eps: float): + s, u = torch.var_mean(x, dim=1, unbiased=False, keepdim=True) + x = (x - u) * torch.rsqrt(s + eps) + x = x * weight[:, None, None] + bias[:, None, None] + return x + + +def _layer_norm_cf_sqm(x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, eps: float): + u = x.mean(dim=1, keepdim=True) + s = ((x * x).mean(dim=1, keepdim=True) - (u * u)).clamp(0) + x = (x - u) * torch.rsqrt(s + eps) + x = x * weight.view(1, -1, 1, 1) + bias.view(1, -1, 1, 1) + return x + + +class LayerNormExp2d(nn.LayerNorm): + """ LayerNorm for channels_first tensors with 2d spatial dimensions (ie N, C, H, W). + + Experimental implementation w/ manual norm for tensors non-contiguous tensors. + + This improves throughput in some scenarios (tested on Ampere GPU), esp w/ channels_last + layout. However, benefits are not always clear and can perform worse on other GPUs. + """ + + def __init__(self, num_channels, eps=1e-6): + super().__init__(num_channels, eps=eps) + + def forward(self, x) -> torch.Tensor: + if _is_contiguous(x): + x = F.layer_norm( + x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2) + else: + x = _layer_norm_cf(x, self.weight, self.bias, self.eps) + return x + + +class RmsNorm(nn.Module): + """ RmsNorm w/ fast (apex) norm if available + """ + __constants__ = ['normalized_shape', 'eps', 'elementwise_affine'] + normalized_shape: Tuple[int, ...] + eps: float + elementwise_affine: bool + + def __init__(self, channels, eps=1e-6, affine=True, device=None, dtype=None) -> None: + factory_kwargs = {'device': device, 'dtype': dtype} + super().__init__() + normalized_shape = channels + if isinstance(normalized_shape, numbers.Integral): + # mypy error: incompatible types in assignment + normalized_shape = (normalized_shape,) # type: ignore[assignment] + self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] + self.eps = eps + self.elementwise_affine = affine + if self.elementwise_affine: + self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) + else: + self.register_parameter('weight', None) + + self.reset_parameters() + + def reset_parameters(self) -> None: + if self.elementwise_affine: + nn.init.ones_(self.weight) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + # NOTE fast norm fallback needs our rms norm impl, so both paths through here. + # Since there is no built-in PyTorch impl, always use APEX RmsNorm if is installed. + x = fast_rms_norm(x, self.normalized_shape, self.weight, self.eps) + return x + + +class RmsNorm2d(nn.Module): + """ RmsNorm w/ fast (apex) norm if available + """ + __constants__ = ['normalized_shape', 'eps', 'elementwise_affine'] + normalized_shape: Tuple[int, ...] + eps: float + elementwise_affine: bool + + def __init__(self, channels, eps=1e-6, affine=True, device=None, dtype=None) -> None: + factory_kwargs = {'device': device, 'dtype': dtype} + super().__init__() + normalized_shape = channels + if isinstance(normalized_shape, numbers.Integral): + # mypy error: incompatible types in assignment + normalized_shape = (normalized_shape,) # type: ignore[assignment] + self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] + self.eps = eps + self.elementwise_affine = affine + if self.elementwise_affine: + self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) + else: + self.register_parameter('weight', None) + + self.reset_parameters() + + def reset_parameters(self) -> None: + if self.elementwise_affine: + nn.init.ones_(self.weight) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = x.permute(0, 2, 3, 1) + # NOTE fast norm fallback needs our rms norm impl, so both paths through here. + # Since there is no built-in PyTorch impl, always use APEX RmsNorm if is installed. + x = fast_rms_norm(x, self.normalized_shape, self.weight, self.eps) + x = x.permute(0, 3, 1, 2) + return x diff --git a/pytorch-image-models/timm/layers/norm_act.py b/pytorch-image-models/timm/layers/norm_act.py new file mode 100644 index 0000000000000000000000000000000000000000..496efcfd143a5d6fa2e537cf3ac11c609953d618 --- /dev/null +++ b/pytorch-image-models/timm/layers/norm_act.py @@ -0,0 +1,461 @@ +""" Normalization + Activation Layers + +Provides Norm+Act fns for standard PyTorch norm layers such as +* BatchNorm +* GroupNorm +* LayerNorm + +This allows swapping with alternative layers that are natively both norm + act such as +* EvoNorm (evo_norm.py) +* FilterResponseNorm (filter_response_norm.py) +* InplaceABN (inplace_abn.py) + +Hacked together by / Copyright 2022 Ross Wightman +""" +from typing import Union, List, Optional, Any + +import torch +from torch import nn as nn +from torch.nn import functional as F +from torchvision.ops.misc import FrozenBatchNorm2d + +from .create_act import create_act_layer +from .fast_norm import is_fast_norm, fast_group_norm, fast_layer_norm +from .trace_utils import _assert + + +def _create_act(act_layer, act_kwargs=None, inplace=False, apply_act=True): + act_kwargs = act_kwargs or {} + act_kwargs.setdefault('inplace', inplace) + act = None + if apply_act: + act = create_act_layer(act_layer, **act_kwargs) + return nn.Identity() if act is None else act + + +class BatchNormAct2d(nn.BatchNorm2d): + """BatchNorm + Activation + + This module performs BatchNorm + Activation in a manner that will remain backwards + compatible with weights trained with separate bn, act. This is why we inherit from BN + instead of composing it as a .bn member. + """ + def __init__( + self, + num_features, + eps=1e-5, + momentum=0.1, + affine=True, + track_running_stats=True, + apply_act=True, + act_layer=nn.ReLU, + act_kwargs=None, + inplace=True, + drop_layer=None, + device=None, + dtype=None, + ): + try: + factory_kwargs = {'device': device, 'dtype': dtype} + super(BatchNormAct2d, self).__init__( + num_features, + eps=eps, + momentum=momentum, + affine=affine, + track_running_stats=track_running_stats, + **factory_kwargs, + ) + except TypeError: + # NOTE for backwards compat with old PyTorch w/o factory device/dtype support + super(BatchNormAct2d, self).__init__( + num_features, + eps=eps, + momentum=momentum, + affine=affine, + track_running_stats=track_running_stats, + ) + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + + def forward(self, x): + # cut & paste of torch.nn.BatchNorm2d.forward impl to avoid issues with torchscript and tracing + _assert(x.ndim == 4, f'expected 4D input (got {x.ndim}D input)') + + # exponential_average_factor is set to self.momentum + # (when it is available) only so that it gets updated + # in ONNX graph when this node is exported to ONNX. + if self.momentum is None: + exponential_average_factor = 0.0 + else: + exponential_average_factor = self.momentum + + if self.training and self.track_running_stats: + # TODO: if statement only here to tell the jit to skip emitting this when it is None + if self.num_batches_tracked is not None: # type: ignore[has-type] + self.num_batches_tracked.add_(1) # type: ignore[has-type] + if self.momentum is None: # use cumulative moving average + exponential_average_factor = 1.0 / float(self.num_batches_tracked) + else: # use exponential moving average + exponential_average_factor = self.momentum + + r""" + Decide whether the mini-batch stats should be used for normalization rather than the buffers. + Mini-batch stats are used in training mode, and in eval mode when buffers are None. + """ + if self.training: + bn_training = True + else: + bn_training = (self.running_mean is None) and (self.running_var is None) + + r""" + Buffers are only updated if they are to be tracked and we are in training mode. Thus they only need to be + passed when the update should occur (i.e. in training mode when they are tracked), or when buffer stats are + used for normalization (i.e. in eval mode when buffers are not None). + """ + x = F.batch_norm( + x, + # If buffers are not to be tracked, ensure that they won't be updated + self.running_mean if not self.training or self.track_running_stats else None, + self.running_var if not self.training or self.track_running_stats else None, + self.weight, + self.bias, + bn_training, + exponential_average_factor, + self.eps, + ) + x = self.drop(x) + x = self.act(x) + return x + + +class SyncBatchNormAct(nn.SyncBatchNorm): + # Thanks to Selim Seferbekov (https://github.com/rwightman/pytorch-image-models/issues/1254) + # This is a quick workaround to support SyncBatchNorm for timm BatchNormAct2d layers + # but ONLY when used in conjunction with the timm conversion function below. + # Do not create this module directly or use the PyTorch conversion function. + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = super().forward(x) # SyncBN doesn't work with torchscript anyways, so this is fine + if hasattr(self, "drop"): + x = self.drop(x) + if hasattr(self, "act"): + x = self.act(x) + return x + + +def convert_sync_batchnorm(module, process_group=None): + # convert both BatchNorm and BatchNormAct layers to Synchronized variants + module_output = module + if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): + if isinstance(module, BatchNormAct2d): + # convert timm norm + act layer + module_output = SyncBatchNormAct( + module.num_features, + module.eps, + module.momentum, + module.affine, + module.track_running_stats, + process_group=process_group, + ) + # set act and drop attr from the original module + module_output.act = module.act + module_output.drop = module.drop + else: + # convert standard BatchNorm layers + module_output = torch.nn.SyncBatchNorm( + module.num_features, + module.eps, + module.momentum, + module.affine, + module.track_running_stats, + process_group, + ) + if module.affine: + with torch.no_grad(): + module_output.weight = module.weight + module_output.bias = module.bias + module_output.running_mean = module.running_mean + module_output.running_var = module.running_var + module_output.num_batches_tracked = module.num_batches_tracked + if hasattr(module, "qconfig"): + module_output.qconfig = module.qconfig + for name, child in module.named_children(): + module_output.add_module(name, convert_sync_batchnorm(child, process_group)) + del module + return module_output + + +class FrozenBatchNormAct2d(torch.nn.Module): + """ + BatchNormAct2d where the batch statistics and the affine parameters are fixed + + Args: + num_features (int): Number of features ``C`` from an expected input of size ``(N, C, H, W)`` + eps (float): a value added to the denominator for numerical stability. Default: 1e-5 + """ + + def __init__( + self, + num_features: int, + eps: float = 1e-5, + apply_act=True, + act_layer=nn.ReLU, + act_kwargs=None, + inplace=True, + drop_layer=None, + ): + super().__init__() + self.eps = eps + self.register_buffer("weight", torch.ones(num_features)) + self.register_buffer("bias", torch.zeros(num_features)) + self.register_buffer("running_mean", torch.zeros(num_features)) + self.register_buffer("running_var", torch.ones(num_features)) + + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + + def _load_from_state_dict( + self, + state_dict: dict, + prefix: str, + local_metadata: dict, + strict: bool, + missing_keys: List[str], + unexpected_keys: List[str], + error_msgs: List[str], + ): + num_batches_tracked_key = prefix + "num_batches_tracked" + if num_batches_tracked_key in state_dict: + del state_dict[num_batches_tracked_key] + + super()._load_from_state_dict( + state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + # move reshapes to the beginning + # to make it fuser-friendly + w = self.weight.reshape(1, -1, 1, 1) + b = self.bias.reshape(1, -1, 1, 1) + rv = self.running_var.reshape(1, -1, 1, 1) + rm = self.running_mean.reshape(1, -1, 1, 1) + scale = w * (rv + self.eps).rsqrt() + bias = b - rm * scale + x = x * scale + bias + x = self.act(self.drop(x)) + return x + + def __repr__(self) -> str: + return f"{self.__class__.__name__}({self.weight.shape[0]}, eps={self.eps}, act={self.act})" + + +def freeze_batch_norm_2d(module): + """ + Converts all `BatchNorm2d` and `SyncBatchNorm` or `BatchNormAct2d` and `SyncBatchNormAct2d` layers + of provided module into `FrozenBatchNorm2d` or `FrozenBatchNormAct2d` respectively. + + Args: + module (torch.nn.Module): Any PyTorch module. + + Returns: + torch.nn.Module: Resulting module + + Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 + """ + res = module + if isinstance(module, (BatchNormAct2d, SyncBatchNormAct)): + res = FrozenBatchNormAct2d(module.num_features) + res.num_features = module.num_features + res.affine = module.affine + if module.affine: + res.weight.data = module.weight.data.clone().detach() + res.bias.data = module.bias.data.clone().detach() + res.running_mean.data = module.running_mean.data + res.running_var.data = module.running_var.data + res.eps = module.eps + res.drop = module.drop + res.act = module.act + elif isinstance(module, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)): + res = FrozenBatchNorm2d(module.num_features) + res.num_features = module.num_features + res.affine = module.affine + if module.affine: + res.weight.data = module.weight.data.clone().detach() + res.bias.data = module.bias.data.clone().detach() + res.running_mean.data = module.running_mean.data + res.running_var.data = module.running_var.data + res.eps = module.eps + else: + for name, child in module.named_children(): + new_child = freeze_batch_norm_2d(child) + if new_child is not child: + res.add_module(name, new_child) + return res + + +def unfreeze_batch_norm_2d(module): + """ + Converts all `FrozenBatchNorm2d` layers of provided module into `BatchNorm2d`. If `module` is itself and instance + of `FrozenBatchNorm2d`, it is converted into `BatchNorm2d` and returned. Otherwise, the module is walked + recursively and submodules are converted in place. + + Args: + module (torch.nn.Module): Any PyTorch module. + + Returns: + torch.nn.Module: Resulting module + + Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 + """ + res = module + if isinstance(module, FrozenBatchNormAct2d): + res = BatchNormAct2d(module.num_features) + if module.affine: + res.weight.data = module.weight.data.clone().detach() + res.bias.data = module.bias.data.clone().detach() + res.running_mean.data = module.running_mean.data + res.running_var.data = module.running_var.data + res.eps = module.eps + res.drop = module.drop + res.act = module.act + elif isinstance(module, FrozenBatchNorm2d): + res = torch.nn.BatchNorm2d(module.num_features) + if module.affine: + res.weight.data = module.weight.data.clone().detach() + res.bias.data = module.bias.data.clone().detach() + res.running_mean.data = module.running_mean.data + res.running_var.data = module.running_var.data + res.eps = module.eps + else: + for name, child in module.named_children(): + new_child = unfreeze_batch_norm_2d(child) + if new_child is not child: + res.add_module(name, new_child) + return res + + +def _num_groups(num_channels, num_groups, group_size): + if group_size: + assert num_channels % group_size == 0 + return num_channels // group_size + return num_groups + + +class GroupNormAct(nn.GroupNorm): + # NOTE num_channel and num_groups order flipped for easier layer swaps / binding of fixed args + def __init__( + self, + num_channels, + num_groups=32, + eps=1e-5, + affine=True, + group_size=None, + apply_act=True, + act_layer=nn.ReLU, + act_kwargs=None, + inplace=True, + drop_layer=None, + ): + super(GroupNormAct, self).__init__( + _num_groups(num_channels, num_groups, group_size), + num_channels, + eps=eps, + affine=affine, + ) + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + + self._fast_norm = is_fast_norm() + + def forward(self, x): + if self._fast_norm: + x = fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + else: + x = F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + x = self.drop(x) + x = self.act(x) + return x + + +class GroupNorm1Act(nn.GroupNorm): + def __init__( + self, + num_channels, + eps=1e-5, + affine=True, + apply_act=True, + act_layer=nn.ReLU, + act_kwargs=None, + inplace=True, + drop_layer=None, + ): + super(GroupNorm1Act, self).__init__(1, num_channels, eps=eps, affine=affine) + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + + self._fast_norm = is_fast_norm() + + def forward(self, x): + if self._fast_norm: + x = fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + else: + x = F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) + x = self.drop(x) + x = self.act(x) + return x + + +class LayerNormAct(nn.LayerNorm): + def __init__( + self, + normalization_shape: Union[int, List[int], torch.Size], + eps=1e-5, + affine=True, + apply_act=True, + act_layer=nn.ReLU, + act_kwargs=None, + inplace=True, + drop_layer=None, + ): + super(LayerNormAct, self).__init__(normalization_shape, eps=eps, elementwise_affine=affine) + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + + self._fast_norm = is_fast_norm() + + def forward(self, x): + if self._fast_norm: + x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + else: + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + x = self.drop(x) + x = self.act(x) + return x + + +class LayerNormAct2d(nn.LayerNorm): + def __init__( + self, + num_channels, + eps=1e-5, + affine=True, + apply_act=True, + act_layer=nn.ReLU, + act_kwargs=None, + inplace=True, + drop_layer=None, + ): + super(LayerNormAct2d, self).__init__(num_channels, eps=eps, elementwise_affine=affine) + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act = _create_act(act_layer, act_kwargs=act_kwargs, inplace=inplace, apply_act=apply_act) + self._fast_norm = is_fast_norm() + + def forward(self, x): + x = x.permute(0, 2, 3, 1) + if self._fast_norm: + x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + else: + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + x = x.permute(0, 3, 1, 2) + x = self.drop(x) + x = self.act(x) + return x diff --git a/pytorch-image-models/timm/layers/padding.py b/pytorch-image-models/timm/layers/padding.py new file mode 100644 index 0000000000000000000000000000000000000000..4b85d747cb1c6ed33dfdbe76d3e0d4fd1191e36d --- /dev/null +++ b/pytorch-image-models/timm/layers/padding.py @@ -0,0 +1,87 @@ +""" Padding Helpers + +Hacked together by / Copyright 2020 Ross Wightman +""" +import math +from typing import List, Tuple, Union + +import torch +import torch.nn.functional as F + +from .helpers import to_2tuple + + +# Calculate symmetric padding for a convolution +def get_padding(kernel_size: int, stride: int = 1, dilation: int = 1, **_) -> Union[int, List[int]]: + if any([isinstance(v, (tuple, list)) for v in [kernel_size, stride, dilation]]): + kernel_size, stride, dilation = to_2tuple(kernel_size), to_2tuple(stride), to_2tuple(dilation) + return [get_padding(*a) for a in zip(kernel_size, stride, dilation)] + padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 + return padding + + +# Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution +def get_same_padding(x: int, kernel_size: int, stride: int, dilation: int): + if isinstance(x, torch.Tensor): + return torch.clamp(((x / stride).ceil() - 1) * stride + (kernel_size - 1) * dilation + 1 - x, min=0) + else: + return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0) + + +# Can SAME padding for given args be done statically? +def is_static_pad(kernel_size: int, stride: int = 1, dilation: int = 1, **_): + if any([isinstance(v, (tuple, list)) for v in [kernel_size, stride, dilation]]): + kernel_size, stride, dilation = to_2tuple(kernel_size), to_2tuple(stride), to_2tuple(dilation) + return all([is_static_pad(*a) for a in zip(kernel_size, stride, dilation)]) + return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0 + + +def pad_same_arg( + input_size: List[int], + kernel_size: List[int], + stride: List[int], + dilation: List[int] = (1, 1), +) -> List[int]: + ih, iw = input_size + kh, kw = kernel_size + pad_h = get_same_padding(ih, kh, stride[0], dilation[0]) + pad_w = get_same_padding(iw, kw, stride[1], dilation[1]) + return [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2] + + +# Dynamically pad input x with 'SAME' padding for conv with specified args +def pad_same( + x, + kernel_size: List[int], + stride: List[int], + dilation: List[int] = (1, 1), + value: float = 0, +): + ih, iw = x.size()[-2:] + pad_h = get_same_padding(ih, kernel_size[0], stride[0], dilation[0]) + pad_w = get_same_padding(iw, kernel_size[1], stride[1], dilation[1]) + x = F.pad(x, (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2), value=value) + return x + + +def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]: + dynamic = False + if isinstance(padding, str): + # for any string padding, the padding will be calculated for you, one of three ways + padding = padding.lower() + if padding == 'same': + # TF compatible 'SAME' padding, has a performance and GPU memory allocation impact + if is_static_pad(kernel_size, **kwargs): + # static case, no extra overhead + padding = get_padding(kernel_size, **kwargs) + else: + # dynamic 'SAME' padding, has runtime/GPU memory overhead + padding = 0 + dynamic = True + elif padding == 'valid': + # 'VALID' padding, same as padding=0 + padding = 0 + else: + # Default to PyTorch style 'same'-ish symmetric padding + padding = get_padding(kernel_size, **kwargs) + return padding, dynamic diff --git a/pytorch-image-models/timm/layers/patch_dropout.py b/pytorch-image-models/timm/layers/patch_dropout.py new file mode 100644 index 0000000000000000000000000000000000000000..4428fe042fd0110e45390bb3feba851f2d650cb2 --- /dev/null +++ b/pytorch-image-models/timm/layers/patch_dropout.py @@ -0,0 +1,53 @@ +from typing import Optional, Tuple, Union + +import torch +import torch.nn as nn + + +class PatchDropout(nn.Module): + """ + https://arxiv.org/abs/2212.00794 and https://arxiv.org/pdf/2208.07220 + """ + return_indices: torch.jit.Final[bool] + + def __init__( + self, + prob: float = 0.5, + num_prefix_tokens: int = 1, + ordered: bool = False, + return_indices: bool = False, + ): + super().__init__() + assert 0 <= prob < 1. + self.prob = prob + self.num_prefix_tokens = num_prefix_tokens # exclude CLS token (or other prefix tokens) + self.ordered = ordered + self.return_indices = return_indices + + def forward(self, x) -> Union[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]]]: + if not self.training or self.prob == 0.: + if self.return_indices: + return x, None + return x + + if self.num_prefix_tokens: + prefix_tokens, x = x[:, :self.num_prefix_tokens], x[:, self.num_prefix_tokens:] + else: + prefix_tokens = None + + B = x.shape[0] + L = x.shape[1] + num_keep = max(1, int(L * (1. - self.prob))) + keep_indices = torch.argsort(torch.randn(B, L, device=x.device), dim=-1)[:, :num_keep] + if self.ordered: + # NOTE does not need to maintain patch order in typical transformer use, + # but possibly useful for debug / visualization + keep_indices = keep_indices.sort(dim=-1)[0] + x = x.gather(1, keep_indices.unsqueeze(-1).expand((-1, -1) + x.shape[2:])) + + if prefix_tokens is not None: + x = torch.cat((prefix_tokens, x), dim=1) + + if self.return_indices: + return x, keep_indices + return x diff --git a/pytorch-image-models/timm/layers/patch_embed.py b/pytorch-image-models/timm/layers/patch_embed.py new file mode 100644 index 0000000000000000000000000000000000000000..c739291b327e38f046107598e03ed49dee027e66 --- /dev/null +++ b/pytorch-image-models/timm/layers/patch_embed.py @@ -0,0 +1,307 @@ +""" Image to Patch Embedding using Conv2d + +A convolution based approach to patchifying a 2D image w/ embedding projection. + +Based on code in: + * https://github.com/google-research/vision_transformer + * https://github.com/google-research/big_vision/tree/main/big_vision + +Hacked together by / Copyright 2020 Ross Wightman +""" +import logging +import math +from typing import Callable, List, Optional, Tuple, Union + +import torch +from torch import nn as nn +import torch.nn.functional as F + +from .format import Format, nchw_to +from .helpers import to_2tuple +from .trace_utils import _assert + +_logger = logging.getLogger(__name__) + + +class PatchEmbed(nn.Module): + """ 2D Image to Patch Embedding + """ + output_fmt: Format + dynamic_img_pad: torch.jit.Final[bool] + + def __init__( + self, + img_size: Optional[int] = 224, + patch_size: int = 16, + in_chans: int = 3, + embed_dim: int = 768, + norm_layer: Optional[Callable] = None, + flatten: bool = True, + output_fmt: Optional[str] = None, + bias: bool = True, + strict_img_size: bool = True, + dynamic_img_pad: bool = False, + ): + super().__init__() + self.patch_size = to_2tuple(patch_size) + self.img_size, self.grid_size, self.num_patches = self._init_img_size(img_size) + + if output_fmt is not None: + self.flatten = False + self.output_fmt = Format(output_fmt) + else: + # flatten spatial dim and transpose to channels last, kept for bwd compat + self.flatten = flatten + self.output_fmt = Format.NCHW + self.strict_img_size = strict_img_size + self.dynamic_img_pad = dynamic_img_pad + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + def _init_img_size(self, img_size: Union[int, Tuple[int, int]]): + assert self.patch_size + if img_size is None: + return None, None, None + img_size = to_2tuple(img_size) + grid_size = tuple([s // p for s, p in zip(img_size, self.patch_size)]) + num_patches = grid_size[0] * grid_size[1] + return img_size, grid_size, num_patches + + def set_input_size( + self, + img_size: Optional[Union[int, Tuple[int, int]]] = None, + patch_size: Optional[Union[int, Tuple[int, int]]] = None, + ): + new_patch_size = None + if patch_size is not None: + new_patch_size = to_2tuple(patch_size) + if new_patch_size is not None and new_patch_size != self.patch_size: + with torch.no_grad(): + new_proj = nn.Conv2d( + self.proj.in_channels, + self.proj.out_channels, + kernel_size=new_patch_size, + stride=new_patch_size, + bias=self.proj.bias is not None, + ) + new_proj.weight.copy_(resample_patch_embed(self.proj.weight, new_patch_size, verbose=True)) + if self.proj.bias is not None: + new_proj.bias.copy_(self.proj.bias) + self.proj = new_proj + self.patch_size = new_patch_size + img_size = img_size or self.img_size + if img_size != self.img_size or new_patch_size is not None: + self.img_size, self.grid_size, self.num_patches = self._init_img_size(img_size) + + def feat_ratio(self, as_scalar=True) -> Union[Tuple[int, int], int]: + if as_scalar: + return max(self.patch_size) + else: + return self.patch_size + + def dynamic_feat_size(self, img_size: Tuple[int, int]) -> Tuple[int, int]: + """ Get grid (feature) size for given image size taking account of dynamic padding. + NOTE: must be torchscript compatible so using fixed tuple indexing + """ + if self.dynamic_img_pad: + return math.ceil(img_size[0] / self.patch_size[0]), math.ceil(img_size[1] / self.patch_size[1]) + else: + return img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1] + + def forward(self, x): + B, C, H, W = x.shape + if self.img_size is not None: + if self.strict_img_size: + _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).") + _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).") + elif not self.dynamic_img_pad: + _assert( + H % self.patch_size[0] == 0, + f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})." + ) + _assert( + W % self.patch_size[1] == 0, + f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})." + ) + if self.dynamic_img_pad: + pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] + pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] + x = F.pad(x, (0, pad_w, 0, pad_h)) + x = self.proj(x) + if self.flatten: + x = x.flatten(2).transpose(1, 2) # NCHW -> NLC + elif self.output_fmt != Format.NCHW: + x = nchw_to(x, self.output_fmt) + x = self.norm(x) + return x + + +class PatchEmbedWithSize(PatchEmbed): + """ 2D Image to Patch Embedding + """ + output_fmt: Format + + def __init__( + self, + img_size: Optional[int] = 224, + patch_size: int = 16, + in_chans: int = 3, + embed_dim: int = 768, + norm_layer: Optional[Callable] = None, + flatten: bool = True, + output_fmt: Optional[str] = None, + bias: bool = True, + ): + super().__init__( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + norm_layer=norm_layer, + flatten=flatten, + output_fmt=output_fmt, + bias=bias, + ) + + def forward(self, x) -> Tuple[torch.Tensor, List[int]]: + B, C, H, W = x.shape + if self.img_size is not None: + _assert(H % self.patch_size[0] == 0, f"Input image height ({H}) must be divisible by patch size ({self.patch_size[0]}).") + _assert(W % self.patch_size[1] == 0, f"Input image width ({W}) must be divisible by patch size ({self.patch_size[1]}).") + + x = self.proj(x) + feat_size = x.shape[-2:] + if self.flatten: + x = x.flatten(2).transpose(1, 2) # NCHW -> NLC + elif self.output_fmt != Format.NCHW: + x = nchw_to(x, self.output_fmt) + x = self.norm(x) + return x, feat_size + + +def resample_patch_embed( + patch_embed, + new_size: List[int], + interpolation: str = 'bicubic', + antialias: bool = True, + verbose: bool = False, +): + """Resample the weights of the patch embedding kernel to target resolution. + We resample the patch embedding kernel by approximately inverting the effect + of patch resizing. + + Code based on: + https://github.com/google-research/big_vision/blob/b00544b81f8694488d5f36295aeb7972f3755ffe/big_vision/models/proj/flexi/vit.py + + With this resizing, we can for example load a B/8 filter into a B/16 model + and, on 2x larger input image, the result will match. + + Args: + patch_embed: original parameter to be resized. + new_size (tuple(int, int): target shape (height, width)-only. + interpolation (str): interpolation for resize + antialias (bool): use anti-aliasing filter in resize + verbose (bool): log operation + Returns: + Resized patch embedding kernel. + """ + import numpy as np + try: + from torch import vmap + except ImportError: + from functorch import vmap + + assert len(patch_embed.shape) == 4, "Four dimensions expected" + assert len(new_size) == 2, "New shape should only be hw" + old_size = patch_embed.shape[-2:] + if tuple(old_size) == tuple(new_size): + return patch_embed + + if verbose: + _logger.info(f"Resize patch embedding {patch_embed.shape} to {new_size}, w/ {interpolation} interpolation.") + + def resize(x_np, _new_size): + x_tf = torch.Tensor(x_np)[None, None, ...] + x_upsampled = F.interpolate( + x_tf, size=_new_size, mode=interpolation, antialias=antialias)[0, 0, ...].numpy() + return x_upsampled + + def get_resize_mat(_old_size, _new_size): + mat = [] + for i in range(np.prod(_old_size)): + basis_vec = np.zeros(_old_size) + basis_vec[np.unravel_index(i, _old_size)] = 1. + mat.append(resize(basis_vec, _new_size).reshape(-1)) + return np.stack(mat).T + + resize_mat = get_resize_mat(old_size, new_size) + resize_mat_pinv = torch.tensor(np.linalg.pinv(resize_mat.T), device=patch_embed.device) + + def resample_kernel(kernel): + resampled_kernel = resize_mat_pinv @ kernel.reshape(-1) + return resampled_kernel.reshape(new_size) + + v_resample_kernel = vmap(vmap(resample_kernel, 0, 0), 1, 1) + orig_dtype = patch_embed.dtype + patch_embed = patch_embed.float() + patch_embed = v_resample_kernel(patch_embed) + patch_embed = patch_embed.to(orig_dtype) + return patch_embed + + +# def divs(n, m=None): +# m = m or n // 2 +# if m == 1: +# return [1] +# if n % m == 0: +# return [m] + divs(n, m - 1) +# return divs(n, m - 1) +# +# +# class FlexiPatchEmbed(nn.Module): +# """ 2D Image to Patch Embedding w/ Flexible Patch sizes (FlexiViT) +# FIXME WIP +# """ +# def __init__( +# self, +# img_size=240, +# patch_size=16, +# in_chans=3, +# embed_dim=768, +# base_img_size=240, +# base_patch_size=32, +# norm_layer=None, +# flatten=True, +# bias=True, +# ): +# super().__init__() +# self.img_size = to_2tuple(img_size) +# self.patch_size = to_2tuple(patch_size) +# self.num_patches = 0 +# +# # full range for 240 = (5, 6, 8, 10, 12, 14, 15, 16, 20, 24, 30, 40, 48) +# self.seqhw = (6, 8, 10, 12, 14, 15, 16, 20, 24, 30) +# +# self.base_img_size = to_2tuple(base_img_size) +# self.base_patch_size = to_2tuple(base_patch_size) +# self.base_grid_size = tuple([i // p for i, p in zip(self.base_img_size, self.base_patch_size)]) +# self.base_num_patches = self.base_grid_size[0] * self.base_grid_size[1] +# +# self.flatten = flatten +# self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=bias) +# self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() +# +# def forward(self, x): +# B, C, H, W = x.shape +# +# if self.patch_size == self.base_patch_size: +# weight = self.proj.weight +# else: +# weight = resample_patch_embed(self.proj.weight, self.patch_size) +# patch_size = self.patch_size +# x = F.conv2d(x, weight, bias=self.proj.bias, stride=patch_size) +# if self.flatten: +# x = x.flatten(2).transpose(1, 2) # BCHW -> BNC +# x = self.norm(x) +# return x diff --git a/pytorch-image-models/timm/layers/pool2d_same.py b/pytorch-image-models/timm/layers/pool2d_same.py new file mode 100644 index 0000000000000000000000000000000000000000..4c2a1c44713e552be850865ada9623a1c3b1d836 --- /dev/null +++ b/pytorch-image-models/timm/layers/pool2d_same.py @@ -0,0 +1,73 @@ +""" AvgPool2d w/ Same Padding + +Hacked together by / Copyright 2020 Ross Wightman +""" +import torch +import torch.nn as nn +import torch.nn.functional as F +from typing import List, Tuple, Optional + +from .helpers import to_2tuple +from .padding import pad_same, get_padding_value + + +def avg_pool2d_same(x, kernel_size: List[int], stride: List[int], padding: List[int] = (0, 0), + ceil_mode: bool = False, count_include_pad: bool = True): + # FIXME how to deal with count_include_pad vs not for external padding? + x = pad_same(x, kernel_size, stride) + return F.avg_pool2d(x, kernel_size, stride, (0, 0), ceil_mode, count_include_pad) + + +class AvgPool2dSame(nn.AvgPool2d): + """ Tensorflow like 'SAME' wrapper for 2D average pooling + """ + def __init__(self, kernel_size: int, stride=None, padding=0, ceil_mode=False, count_include_pad=True): + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + super(AvgPool2dSame, self).__init__(kernel_size, stride, (0, 0), ceil_mode, count_include_pad) + + def forward(self, x): + x = pad_same(x, self.kernel_size, self.stride) + return F.avg_pool2d( + x, self.kernel_size, self.stride, self.padding, self.ceil_mode, self.count_include_pad) + + +def max_pool2d_same( + x, kernel_size: List[int], stride: List[int], padding: List[int] = (0, 0), + dilation: List[int] = (1, 1), ceil_mode: bool = False): + x = pad_same(x, kernel_size, stride, value=-float('inf')) + return F.max_pool2d(x, kernel_size, stride, (0, 0), dilation, ceil_mode) + + +class MaxPool2dSame(nn.MaxPool2d): + """ Tensorflow like 'SAME' wrapper for 2D max pooling + """ + def __init__(self, kernel_size: int, stride=None, padding=0, dilation=1, ceil_mode=False): + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + dilation = to_2tuple(dilation) + super(MaxPool2dSame, self).__init__(kernel_size, stride, (0, 0), dilation, ceil_mode) + + def forward(self, x): + x = pad_same(x, self.kernel_size, self.stride, value=-float('inf')) + return F.max_pool2d(x, self.kernel_size, self.stride, (0, 0), self.dilation, self.ceil_mode) + + +def create_pool2d(pool_type, kernel_size, stride=None, **kwargs): + stride = stride or kernel_size + padding = kwargs.pop('padding', '') + padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, **kwargs) + if is_dynamic: + if pool_type == 'avg': + return AvgPool2dSame(kernel_size, stride=stride, **kwargs) + elif pool_type == 'max': + return MaxPool2dSame(kernel_size, stride=stride, **kwargs) + else: + assert False, f'Unsupported pool type {pool_type}' + else: + if pool_type == 'avg': + return nn.AvgPool2d(kernel_size, stride=stride, padding=padding, **kwargs) + elif pool_type == 'max': + return nn.MaxPool2d(kernel_size, stride=stride, padding=padding, **kwargs) + else: + assert False, f'Unsupported pool type {pool_type}' diff --git a/pytorch-image-models/timm/layers/pos_embed.py b/pytorch-image-models/timm/layers/pos_embed.py new file mode 100644 index 0000000000000000000000000000000000000000..0d50207dd8f16669b155553c1778e9a83893f26d --- /dev/null +++ b/pytorch-image-models/timm/layers/pos_embed.py @@ -0,0 +1,79 @@ +""" Position Embedding Utilities + +Hacked together by / Copyright 2022 Ross Wightman +""" +import logging +import math +from typing import List, Tuple, Optional, Union + +import torch +import torch.nn.functional as F + +from .helpers import to_2tuple + +_logger = logging.getLogger(__name__) + + +def resample_abs_pos_embed( + posemb: torch.Tensor, + new_size: List[int], + old_size: Optional[List[int]] = None, + num_prefix_tokens: int = 1, + interpolation: str = 'bicubic', + antialias: bool = True, + verbose: bool = False, +): + # sort out sizes, assume square if old size not provided + num_pos_tokens = posemb.shape[1] + num_new_tokens = new_size[0] * new_size[1] + num_prefix_tokens + if num_new_tokens == num_pos_tokens and new_size[0] == new_size[1]: + return posemb + + if old_size is None: + hw = int(math.sqrt(num_pos_tokens - num_prefix_tokens)) + old_size = hw, hw + + if num_prefix_tokens: + posemb_prefix, posemb = posemb[:, :num_prefix_tokens], posemb[:, num_prefix_tokens:] + else: + posemb_prefix, posemb = None, posemb + + # do the interpolation + embed_dim = posemb.shape[-1] + orig_dtype = posemb.dtype + posemb = posemb.float() # interpolate needs float32 + posemb = posemb.reshape(1, old_size[0], old_size[1], -1).permute(0, 3, 1, 2) + posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias) + posemb = posemb.permute(0, 2, 3, 1).reshape(1, -1, embed_dim) + posemb = posemb.to(orig_dtype) + + # add back extra (class, etc) prefix tokens + if posemb_prefix is not None: + posemb = torch.cat([posemb_prefix, posemb], dim=1) + + if not torch.jit.is_scripting() and verbose: + _logger.info(f'Resized position embedding: {old_size} to {new_size}.') + + return posemb + + +def resample_abs_pos_embed_nhwc( + posemb: torch.Tensor, + new_size: List[int], + interpolation: str = 'bicubic', + antialias: bool = True, + verbose: bool = False, +): + if new_size[0] == posemb.shape[-3] and new_size[1] == posemb.shape[-2]: + return posemb + + orig_dtype = posemb.dtype + posemb = posemb.float() + posemb = posemb.reshape(1, posemb.shape[-3], posemb.shape[-2], posemb.shape[-1]).permute(0, 3, 1, 2) + posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias) + posemb = posemb.permute(0, 2, 3, 1).to(orig_dtype) + + if not torch.jit.is_scripting() and verbose: + _logger.info(f'Resized position embedding: {posemb.shape[-3:-1]} to {new_size}.') + + return posemb diff --git a/pytorch-image-models/timm/layers/pos_embed_rel.py b/pytorch-image-models/timm/layers/pos_embed_rel.py new file mode 100644 index 0000000000000000000000000000000000000000..4fcb111e99670c15f263aab5f2217bb5ab4d445a --- /dev/null +++ b/pytorch-image-models/timm/layers/pos_embed_rel.py @@ -0,0 +1,491 @@ +""" Relative position embedding modules and functions + +Hacked together by / Copyright 2022 Ross Wightman +""" +import math +import os +from typing import Optional, Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .grid import ndgrid +from .interpolate import RegularGridInterpolator +from .mlp import Mlp +from .weight_init import trunc_normal_ + +_USE_SCIPY = int(os.environ.get('TIMM_USE_SCIPY_INTERP', 0)) > 0 + + +def gen_relative_position_index( + q_size: Tuple[int, int], + k_size: Optional[Tuple[int, int]] = None, + class_token: bool = False, +) -> torch.Tensor: + # Adapted with significant modifications from Swin / BeiT codebases + # get pair-wise relative position index for each token inside the window + assert k_size is None, 'Different q & k sizes not currently supported' # FIXME + + coords = torch.stack(ndgrid(torch.arange(q_size[0]), torch.arange(q_size[1]))).flatten(1) # 2, Wh, Ww + relative_coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0) # Qh*Qw, Kh*Kw, 2 + relative_coords[:, :, 0] += q_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += q_size[1] - 1 + relative_coords[:, :, 0] *= 2 * q_size[1] - 1 + num_relative_distance = (2 * q_size[0] - 1) * (2 * q_size[1] - 1) + + # else: + # # FIXME different q vs k sizes is a WIP, need to better offset the two grids? + # q_coords = torch.stack( + # ndgrid( + # torch.arange(q_size[0]), + # torch.arange(q_size[1]) + # ) + # ).flatten(1) # 2, Wh, Ww + # k_coords = torch.stack( + # ndgrid( + # torch.arange(k_size[0]), + # torch.arange(k_size[1]) + # ) + # ).flatten(1) + # relative_coords = q_coords[:, :, None] - k_coords[:, None, :] # 2, Wh*Ww, Wh*Ww + # relative_coords = relative_coords.permute(1, 2, 0) # Qh*Qw, Kh*Kw, 2 + # relative_coords[:, :, 0] += max(q_size[0], k_size[0]) - 1 # shift to start from 0 + # relative_coords[:, :, 1] += max(q_size[1], k_size[1]) - 1 + # relative_coords[:, :, 0] *= k_size[1] + q_size[1] - 1 + # relative_position_index = relative_coords.sum(-1) # Qh*Qw, Kh*Kw + # num_relative_distance = (q_size[0] + k_size[0] - 1) * (q_size[1] + k_size[1] - 1) + 3 + + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + + if class_token: + # handle cls to token & token 2 cls & cls to cls as per beit for rel pos bias + # NOTE not intended or tested with MLP log-coords + relative_position_index = F.pad(relative_position_index, [1, 0, 1, 0]) + relative_position_index[0, 0:] = num_relative_distance + relative_position_index[0:, 0] = num_relative_distance + 1 + relative_position_index[0, 0] = num_relative_distance + 2 + + return relative_position_index.contiguous() + + +def resize_rel_pos_bias_table_simple( + rel_pos_bias, + new_window_size: Tuple[int, int], + new_bias_shape: Tuple[int, ...], +): + dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1) + if rel_pos_bias.ndim == 3: + # TF maxvit style (num_heads, H, W) bias shape, no extra tokens currently supported + _, dst_h, dst_w = new_bias_shape + num_attn_heads, src_h, src_w = rel_pos_bias.shape + assert dst_h == dst_size[0] and dst_w == dst_size[1] + if src_h != dst_h or src_w != dst_w: + rel_pos_bias = torch.nn.functional.interpolate( + rel_pos_bias.unsqueeze(0), + size=dst_size, + mode="bicubic", + align_corners=False, + ).squeeze(0) + else: + assert rel_pos_bias.ndim == 2 + # (num_pos, num_heads) (aka flat) bias shape + dst_num_pos, _ = new_bias_shape + src_num_pos, num_attn_heads = rel_pos_bias.shape + num_extra_tokens = dst_num_pos - (dst_size[0] * dst_size[1]) + src_size = int((src_num_pos - num_extra_tokens) ** 0.5) + src_size = (src_size, src_size) # FIXME could support non-equal src if argument passed + + if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]: + if num_extra_tokens: + extra_tokens = rel_pos_bias[-num_extra_tokens:, :] + rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] + else: + extra_tokens = None + + rel_pos_bias = torch.nn.functional.interpolate( + rel_pos_bias.transpose(1, 0).reshape((1, -1, src_size[0], src_size[1])), + size=dst_size, + mode="bicubic", + align_corners=False, + ).view(-1, dst_num_pos - num_extra_tokens).transpose(0, 1) + + if extra_tokens is not None: + rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) + + return rel_pos_bias + + +def resize_rel_pos_bias_table_levit( + position_bias_table, + new_size, + interpolation: str = 'bicubic', + antialias: bool = True, +): + """ + Resample relative position bias table suggested in LeVit + Adapted from: https://github.com/microsoft/Cream/blob/main/TinyViT/utils.py + """ + L1, nH1 = position_bias_table.size() + L2, nH2 = new_size + assert nH1 == nH2 + if L1 != L2: + orig_dtype = position_bias_table.dtype + position_bias_table = position_bias_table.float() + # bicubic interpolate relative_position_bias_table if not match + S1 = int(L1 ** 0.5) + S2 = int(L2 ** 0.5) + relative_position_bias_table_resized = F.interpolate( + position_bias_table.permute(1, 0).view(1, nH1, S1, S1), + size=(S2, S2), + mode=interpolation, + antialias=antialias) + relative_position_bias_table_resized = \ + relative_position_bias_table_resized.view(nH2, L2).permute(1, 0) + relative_position_bias_table_resized.to(orig_dtype) + return relative_position_bias_table_resized + else: + return position_bias_table + + +def resize_rel_pos_bias_table( + rel_pos_bias, + new_window_size: Tuple[int, int], + new_bias_shape: Tuple[int, ...], +): + """ Resize relative position bias table using more advanced interpolation. + + Modified from code in Microsoft Unilm (https://github.com/microsoft/unilm) repo (BeiT, BeiT-v2, etc). + + https://github.com/microsoft/unilm/blob/5255d52de86dad642810f5849dd357769346c1d7/beit/run_class_finetuning.py#L351 + + Args: + rel_pos_bias: + new_window_size: + new_bias_shape: + + Returns: + + """ + if _USE_SCIPY: + from scipy import interpolate + + dst_size = (new_window_size[0] * 2 - 1, new_window_size[1] * 2 - 1) + if rel_pos_bias.ndim == 3: + # TF maxvit style (num_heads, H, W) bias shape, no extra tokens currently supported + num_extra_tokens = 0 + _, dst_h, dst_w = new_bias_shape + assert dst_h == dst_size[0] and dst_w == dst_size[1] + num_attn_heads, src_h, src_w = rel_pos_bias.shape + src_size = (src_h, src_w) + has_flat_shape = False + else: + assert rel_pos_bias.ndim == 2 + # (num_pos, num_heads) (aka flat) bias shape + dst_num_pos, _ = new_bias_shape + src_num_pos, num_attn_heads = rel_pos_bias.shape + num_extra_tokens = dst_num_pos - (dst_size[0] * dst_size[1]) + src_size = int((src_num_pos - num_extra_tokens) ** 0.5) + src_size = (src_size, src_size) + has_flat_shape = True + + if src_size[0] != dst_size[0] or src_size[1] != dst_size[1]: + # print("Interpolating position from %dx%d to %dx%d" % (src_size[0], src_size[1], dst_size[0], dst_size[1])) + if num_extra_tokens: + extra_tokens = rel_pos_bias[-num_extra_tokens:, :] + rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] + else: + extra_tokens = None + + def geometric_progression(a, r, n): + return a * (1.0 - r ** n) / (1.0 - r) + + def _calc(src, dst): + left, right = 1.01, 1.5 + while right - left > 1e-6: + q = (left + right) / 2.0 + gp = geometric_progression(1, q, src // 2) + if gp > dst // 2: + right = q + else: + left = q + + dis = [] + cur = 1 + for i in range(src // 2): + dis.append(cur) + cur += q ** (i + 1) + r_ids = [-_ for _ in reversed(dis)] + return r_ids + [0] + dis + + y = _calc(src_size[0], dst_size[0]) + x = _calc(src_size[1], dst_size[1]) + yx = [torch.tensor(y), torch.tensor(x)] + # print("Original positions = %s" % str(x)) + + ty = dst_size[0] // 2.0 + tx = dst_size[1] // 2.0 + dy = torch.arange(-ty, ty + 0.1, 1.0) + dx = torch.arange(-tx, tx + 0.1, 1.0) + dyx = ndgrid(dy, dx) + # print("Target positions = %s" % str(dx)) + + all_rel_pos_bias = [] + for i in range(num_attn_heads): + if has_flat_shape: + z = rel_pos_bias[:, i].view(src_size[0], src_size[1]).float() + else: + z = rel_pos_bias[i, :, :].float() + + if _USE_SCIPY: + # Original beit code uses scipy w/ cubic interpolation + f = interpolate.interp2d(x, y, z.numpy(), kind='cubic') + r = torch.Tensor(f(dx, dy)).contiguous().to(rel_pos_bias.device) + else: + # Without scipy dependency, I've found a reasonably simple impl + # that supports uneven spaced interpolation pts with 'linear' interp. + # Results are comparable to scipy for model accuracy in most cases. + f = RegularGridInterpolator(yx, z) + r = f(dyx).contiguous().to(rel_pos_bias.device) + + if has_flat_shape: + r = r.view(-1, 1) + all_rel_pos_bias.append(r) + + if has_flat_shape: + rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) + else: + rel_pos_bias = torch.cat(all_rel_pos_bias, dim=0) + + if extra_tokens is not None: + assert has_flat_shape + rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) + + return rel_pos_bias + + +class RelPosBias(nn.Module): + """ Relative Position Bias + Adapted from Swin-V1 relative position bias impl, modularized. + """ + + def __init__(self, window_size, num_heads, prefix_tokens=0): + super().__init__() + assert prefix_tokens <= 1 + self.window_size = window_size + self.window_area = window_size[0] * window_size[1] + self.bias_shape = (self.window_area + prefix_tokens,) * 2 + (num_heads,) + + num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 * prefix_tokens + self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads)) + self.register_buffer( + "relative_position_index", + gen_relative_position_index(self.window_size, class_token=prefix_tokens > 0).view(-1), + persistent=False, + ) + + self.init_weights() + + def init_weights(self): + trunc_normal_(self.relative_position_bias_table, std=.02) + + def get_bias(self) -> torch.Tensor: + relative_position_bias = self.relative_position_bias_table[self.relative_position_index] + # win_h * win_w, win_h * win_w, num_heads + relative_position_bias = relative_position_bias.view(self.bias_shape).permute(2, 0, 1) + return relative_position_bias.unsqueeze(0).contiguous() + + def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): + return attn + self.get_bias() + + +def gen_relative_log_coords( + win_size: Tuple[int, int], + pretrained_win_size: Tuple[int, int] = (0, 0), + mode='swin', +): + assert mode in ('swin', 'cr') + # as per official swin-v2 impl, supporting timm specific 'cr' log coords as well + relative_coords_h = torch.arange(-(win_size[0] - 1), win_size[0]).to(torch.float32) + relative_coords_w = torch.arange(-(win_size[1] - 1), win_size[1]).to(torch.float32) + relative_coords_table = torch.stack(ndgrid(relative_coords_h, relative_coords_w)) + relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous() # 2*Wh-1, 2*Ww-1, 2 + if mode == 'swin': + if pretrained_win_size[0] > 0: + relative_coords_table[:, :, 0] /= (pretrained_win_size[0] - 1) + relative_coords_table[:, :, 1] /= (pretrained_win_size[1] - 1) + else: + relative_coords_table[:, :, 0] /= (win_size[0] - 1) + relative_coords_table[:, :, 1] /= (win_size[1] - 1) + relative_coords_table *= 8 # normalize to -8, 8 + relative_coords_table = torch.sign(relative_coords_table) * torch.log2( + 1.0 + relative_coords_table.abs()) / math.log2(8) + else: + # mode == 'cr' + relative_coords_table = torch.sign(relative_coords_table) * torch.log( + 1.0 + relative_coords_table.abs()) + + return relative_coords_table + + +class RelPosMlp(nn.Module): + """ Log-Coordinate Relative Position MLP + Based on ideas presented in Swin-V2 paper (https://arxiv.org/abs/2111.09883) + + This impl covers the 'swin' implementation as well as two timm specific modes ('cr', and 'rw') + """ + def __init__( + self, + window_size, + num_heads=8, + hidden_dim=128, + prefix_tokens=0, + mode='cr', + pretrained_window_size=(0, 0) + ): + super().__init__() + self.window_size = window_size + self.window_area = self.window_size[0] * self.window_size[1] + self.prefix_tokens = prefix_tokens + self.num_heads = num_heads + self.bias_shape = (self.window_area,) * 2 + (num_heads,) + if mode == 'swin': + self.bias_act = nn.Sigmoid() + self.bias_gain = 16 + mlp_bias = (True, False) + else: + self.bias_act = nn.Identity() + self.bias_gain = None + mlp_bias = True + + self.mlp = Mlp( + 2, # x, y + hidden_features=hidden_dim, + out_features=num_heads, + act_layer=nn.ReLU, + bias=mlp_bias, + drop=(0.125, 0.) + ) + + self.register_buffer( + "relative_position_index", + gen_relative_position_index(window_size).view(-1), + persistent=False) + + # get relative_coords_table + self.register_buffer( + "rel_coords_log", + gen_relative_log_coords(window_size, pretrained_window_size, mode=mode), + persistent=False) + + def get_bias(self) -> torch.Tensor: + relative_position_bias = self.mlp(self.rel_coords_log) + if self.relative_position_index is not None: + relative_position_bias = relative_position_bias.view(-1, self.num_heads)[self.relative_position_index] + relative_position_bias = relative_position_bias.view(self.bias_shape) + relative_position_bias = relative_position_bias.permute(2, 0, 1) + relative_position_bias = self.bias_act(relative_position_bias) + if self.bias_gain is not None: + relative_position_bias = self.bias_gain * relative_position_bias + if self.prefix_tokens: + relative_position_bias = F.pad(relative_position_bias, [self.prefix_tokens, 0, self.prefix_tokens, 0]) + return relative_position_bias.unsqueeze(0).contiguous() + + def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): + return attn + self.get_bias() + + +def generate_lookup_tensor( + length: int, + max_relative_position: Optional[int] = None, +): + """Generate a one_hot lookup tensor to reindex embeddings along one dimension. + + Args: + length: the length to reindex to. + max_relative_position: the maximum relative position to consider. + Relative position embeddings for distances above this threshold + are zeroed out. + Returns: + a lookup Tensor of size [length, length, vocab_size] that satisfies + ret[n,m,v] = 1{m - n + max_relative_position = v}. + """ + if max_relative_position is None: + max_relative_position = length - 1 + # Return the cached lookup tensor, otherwise compute it and cache it. + vocab_size = 2 * max_relative_position + 1 + ret = torch.zeros(length, length, vocab_size) + for i in range(length): + for x in range(length): + v = x - i + max_relative_position + if abs(x - i) > max_relative_position: + continue + ret[i, x, v] = 1 + return ret + + +def reindex_2d_einsum_lookup( + relative_position_tensor, + height: int, + width: int, + height_lookup: torch.Tensor, + width_lookup: torch.Tensor, +) -> torch.Tensor: + """Reindex 2d relative position bias with 2 independent einsum lookups. + + Adapted from: + https://github.com/google-research/maxvit/blob/2e06a7f1f70c76e64cd3dabe5cd1b8c1a23c9fb7/maxvit/models/attention_utils.py + + Args: + relative_position_tensor: tensor of shape + [..., vocab_height, vocab_width, ...]. + height: height to reindex to. + width: width to reindex to. + height_lookup: one-hot height lookup + width_lookup: one-hot width lookup + Returns: + reindexed_tensor: a Tensor of shape + [..., height * width, height * width, ...] + """ + reindexed_tensor = torch.einsum('nhw,ixh->nixw', relative_position_tensor, height_lookup) + reindexed_tensor = torch.einsum('nixw,jyw->nijxy', reindexed_tensor, width_lookup) + area = height * width + return reindexed_tensor.reshape(relative_position_tensor.shape[0], area, area) + + +class RelPosBiasTf(nn.Module): + """ Relative Position Bias Impl (Compatible with Tensorflow MaxViT models) + Adapted from: + https://github.com/google-research/maxvit/blob/2e06a7f1f70c76e64cd3dabe5cd1b8c1a23c9fb7/maxvit/models/attention_utils.py + """ + def __init__(self, window_size, num_heads, prefix_tokens=0): + super().__init__() + assert prefix_tokens <= 1 + self.window_size = window_size + self.window_area = window_size[0] * window_size[1] + self.num_heads = num_heads + + vocab_height = 2 * window_size[0] - 1 + vocab_width = 2 * window_size[1] - 1 + self.bias_shape = (self.num_heads, vocab_height, vocab_width) + self.relative_position_bias_table = nn.Parameter(torch.zeros(self.bias_shape)) + self.register_buffer('height_lookup', generate_lookup_tensor(window_size[0]), persistent=False) + self.register_buffer('width_lookup', generate_lookup_tensor(window_size[1]), persistent=False) + self.init_weights() + + def init_weights(self): + nn.init.normal_(self.relative_position_bias_table, std=.02) + + def get_bias(self) -> torch.Tensor: + # FIXME change to not use one-hot/einsum? + return reindex_2d_einsum_lookup( + self.relative_position_bias_table, + self.window_size[0], + self.window_size[1], + self.height_lookup, + self.width_lookup + ) + + def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): + return attn + self.get_bias() diff --git a/pytorch-image-models/timm/layers/pos_embed_sincos.py b/pytorch-image-models/timm/layers/pos_embed_sincos.py new file mode 100644 index 0000000000000000000000000000000000000000..5bb31af59b65d06186b51b079cc21b53ff2d2fb9 --- /dev/null +++ b/pytorch-image-models/timm/layers/pos_embed_sincos.py @@ -0,0 +1,443 @@ +""" Sin-cos, fourier, rotary position embedding modules and functions + +Hacked together by / Copyright 2022 Ross Wightman +""" +import math +from typing import List, Tuple, Optional, Union + +import torch +from torch import nn as nn + +from .grid import ndgrid +from .trace_utils import _assert + + +def pixel_freq_bands( + num_bands: int, + max_freq: float = 224., + linear_bands: bool = True, + device: Optional[torch.device] = None, +): + if linear_bands: + bands = torch.linspace(1.0, max_freq / 2, num_bands, dtype=torch.float32, device=device) + else: + bands = 2 ** torch.linspace(0, math.log(max_freq, 2) - 1, num_bands, dtype=torch.float32, device=device) + return bands * torch.pi + + +def freq_bands( + num_bands: int, + temperature: float = 10000., + step: int = 2, + device: Optional[torch.device] = None, +) -> torch.Tensor: + exp = torch.arange(0, num_bands, step, dtype=torch.int64, device=device).to(torch.float32) / num_bands + bands = 1. / (temperature ** exp) + return bands + + +def build_sincos2d_pos_embed( + feat_shape: List[int], + dim: int = 64, + temperature: float = 10000., + reverse_coord: bool = False, + interleave_sin_cos: bool = False, + dtype: torch.dtype = torch.float32, + device: Optional[torch.device] = None +) -> torch.Tensor: + """ + + Args: + feat_shape: + dim: + temperature: + reverse_coord: stack grid order W, H instead of H, W + interleave_sin_cos: sin, cos, sin, cos stack instead of sin, sin, cos, cos + dtype: + device: + + Returns: + + """ + assert dim % 4 == 0, 'Embed dimension must be divisible by 4 for sin-cos 2D position embedding' + pos_dim = dim // 4 + bands = freq_bands(pos_dim, temperature=temperature, step=1, device=device) + + if reverse_coord: + feat_shape = feat_shape[::-1] # stack W, H instead of H, W + grid = torch.stack(ndgrid([ + torch.arange(s, device=device, dtype=torch.int64).to(torch.float32) + for s in feat_shape + ])).flatten(1).transpose(0, 1) + pos2 = grid.unsqueeze(-1) * bands.unsqueeze(0) + # FIXME add support for unflattened spatial dim? + + stack_dim = 2 if interleave_sin_cos else 1 # stack sin, cos, sin, cos instead of sin sin cos cos + pos_emb = torch.stack([torch.sin(pos2), torch.cos(pos2)], dim=stack_dim).flatten(1) + return pos_emb.to(dtype=dtype) + + +def build_fourier_pos_embed( + feat_shape: List[int], + bands: Optional[torch.Tensor] = None, + num_bands: int = 64, + max_res: int = 224, + temperature: float = 10000., + linear_bands: bool = False, + include_grid: bool = False, + in_pixels: bool = True, + ref_feat_shape: Optional[List[int]] = None, + dtype: torch.dtype = torch.float32, + device: Optional[torch.device] = None, +) -> List[torch.Tensor]: + """ + + Args: + feat_shape: Feature shape for embedding. + bands: Pre-calculated frequency bands. + num_bands: Number of frequency bands (determines output dim). + max_res: Maximum resolution for pixel based freq. + temperature: Temperature for non-pixel freq. + linear_bands: Linear band spacing for pixel based freq. + include_grid: Include the spatial grid in output. + in_pixels: Output in pixel freq. + ref_feat_shape: Reference feature shape for resize / fine-tune. + dtype: Output dtype. + device: Output device. + + Returns: + + """ + if bands is None: + if in_pixels: + bands = pixel_freq_bands( + num_bands, + float(max_res), + linear_bands=linear_bands, + device=device, + ) + else: + bands = freq_bands( + num_bands, + temperature=temperature, + step=1, + device=device, + ) + else: + if device is None: + device = bands.device + if dtype is None: + dtype = bands.dtype + + if in_pixels: + t = [torch.linspace(-1., 1., steps=s, device=device, dtype=torch.float32) for s in feat_shape] + else: + t = [torch.arange(s, device=device, dtype=torch.int64).to(torch.float32) for s in feat_shape] + + if ref_feat_shape is not None: + # eva's scheme for resizing rope embeddings (ref shape = pretrain) + t = [x / f * r for x, f, r in zip(t, feat_shape, ref_feat_shape)] + + grid = torch.stack(ndgrid(t), dim=-1) + grid = grid.unsqueeze(-1) + pos = grid * bands + + pos_sin, pos_cos = pos.sin().to(dtype=dtype), pos.cos().to(dtype) + out = [grid, pos_sin, pos_cos] if include_grid else [pos_sin, pos_cos] + return out + + +class FourierEmbed(nn.Module): + + def __init__( + self, + max_res: int = 224, + num_bands: int = 64, + concat_grid=True, + keep_spatial=False, + ): + super().__init__() + self.max_res = max_res + self.num_bands = num_bands + self.concat_grid = concat_grid + self.keep_spatial = keep_spatial + self.register_buffer( + 'bands', + pixel_freq_bands(max_res, num_bands), + persistent=False, + ) + + def forward(self, x): + B, C = x.shape[:2] + feat_shape = x.shape[2:] + emb = build_fourier_pos_embed( + feat_shape, + self.bands, + include_grid=self.concat_grid, + dtype=x.dtype, + device=x.device, + ) + emb = torch.cat(emb, dim=-1) + emb = emb.transpose(-1, -2).flatten(len(feat_shape)) + batch_expand = (B,) + (-1,) * (x.ndim - 1) + + # FIXME support nD + if self.keep_spatial: + x = torch.cat([x, emb.unsqueeze(0).expand(batch_expand).permute(0, 3, 1, 2)], dim=1) + else: + x = torch.cat([x.permute(0, 2, 3, 1), emb.unsqueeze(0).expand(batch_expand)], dim=-1) + x = x.reshape(B, feat_shape.numel(), -1) + + return x + + +def rot(x): + return torch.stack([-x[..., 1::2], x[..., ::2]], -1).reshape(x.shape) + + +def apply_rot_embed(x: torch.Tensor, sin_emb, cos_emb): + if sin_emb.ndim == 3: + return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x) + return x * cos_emb + rot(x) * sin_emb + + +def apply_rot_embed_list(x: List[torch.Tensor], sin_emb, cos_emb): + if isinstance(x, torch.Tensor): + x = [x] + return [t * cos_emb + rot(t) * sin_emb for t in x] + + +def apply_rot_embed_cat(x: torch.Tensor, emb): + sin_emb, cos_emb = emb.tensor_split(2, -1) + if sin_emb.ndim == 3: + return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x) + return x * cos_emb + rot(x) * sin_emb + + +def apply_keep_indices_nlc(x, pos_embed, keep_indices): + pos_embed = pos_embed.unsqueeze(0).expand(x.shape[0], -1, -1) + pos_embed = pos_embed.gather(1, keep_indices.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1])) + return pos_embed + + +def build_rotary_pos_embed( + feat_shape: List[int], + bands: Optional[torch.Tensor] = None, + dim: int = 64, + max_res: int = 224, + temperature: float = 10000., + linear_bands: bool = False, + in_pixels: bool = True, + ref_feat_shape: Optional[List[int]] = None, + dtype: torch.dtype = torch.float32, + device: Optional[torch.device] = None, +): + """ + + Args: + feat_shape: Spatial shape of the target tensor for embedding. + bands: Optional pre-generated frequency bands + dim: Output dimension of embedding tensor. + max_res: Maximum resolution for pixel mode. + temperature: Temperature (inv freq) for non-pixel mode + linear_bands: Linearly (instead of log) spaced bands for pixel mode + in_pixels: Pixel vs language (inv freq) mode. + dtype: Output dtype. + device: Output device. + + Returns: + + """ + sin_emb, cos_emb = build_fourier_pos_embed( + feat_shape, + bands=bands, + num_bands=dim // 4, + max_res=max_res, + temperature=temperature, + linear_bands=linear_bands, + in_pixels=in_pixels, + ref_feat_shape=ref_feat_shape, + device=device, + dtype=dtype, + ) + num_spatial_dim = 1 + # this would be much nicer as a .numel() call to torch.Size(), but torchscript sucks + for x in feat_shape: + num_spatial_dim *= x + sin_emb = sin_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1) + cos_emb = cos_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1) + return sin_emb, cos_emb + + +class RotaryEmbedding(nn.Module): + """ Rotary position embedding + + NOTE: This is my initial attempt at impl rotary embedding for spatial use, it has not + been well tested, and will likely change. It will be moved to its own file. + + The following impl/resources were referenced for this impl: + * https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py + * https://blog.eleuther.ai/rotary-embeddings/ + """ + + def __init__( + self, + dim, + max_res=224, + temperature=10000, + in_pixels=True, + linear_bands: bool = False, + feat_shape: Optional[List[int]] = None, + ref_feat_shape: Optional[List[int]] = None, + ): + super().__init__() + self.dim = dim + self.max_res = max_res + self.temperature = temperature + self.in_pixels = in_pixels + self.feat_shape = feat_shape + self.ref_feat_shape = ref_feat_shape + + if feat_shape is None: + # only cache bands + if in_pixels: + bands = pixel_freq_bands( + dim // 4, + float(max_res), + linear_bands=linear_bands, + ) + else: + bands = freq_bands( + dim // 4, + temperature=temperature, + step=1, + ) + self.register_buffer( + 'bands', + bands, + persistent=False, + ) + self.pos_embed_sin = None + self.pos_embed_cos = None + else: + # cache full sin/cos embeddings if shape provided up front + emb_sin, emb_cos = build_rotary_pos_embed( + feat_shape=feat_shape, + dim=dim, + max_res=max_res, + linear_bands=linear_bands, + in_pixels=in_pixels, + ref_feat_shape=self.ref_feat_shape, + ) + self.bands = None + self.register_buffer( + 'pos_embed_sin', + emb_sin, + persistent=False, + ) + self.register_buffer( + 'pos_embed_cos', + emb_cos, + persistent=False, + ) + + def get_embed(self, shape: Optional[List[int]] = None): + if self.bands is not None: + # rebuild embeddings every call, use if target shape changes + assert shape is not None + return build_rotary_pos_embed( + shape, + self.bands, + in_pixels=self.in_pixels, + ) + else: + return self.pos_embed_sin, self.pos_embed_cos + + def forward(self, x): + # assuming channel-first tensor where spatial dim are >= 2 + sin_emb, cos_emb = self.get_embed(x.shape[2:]) + return apply_rot_embed(x, sin_emb, cos_emb) + + +class RotaryEmbeddingCat(nn.Module): + """ Rotary position embedding w/ concatenatd sin & cos + + The following impl/resources were referenced for this impl: + * https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py + * https://blog.eleuther.ai/rotary-embeddings/ + """ + + def __init__( + self, + dim, + max_res=224, + temperature=10000, + in_pixels=True, + linear_bands: bool = False, + feat_shape: Optional[List[int]] = None, + ref_feat_shape: Optional[List[int]] = None, + ): + super().__init__() + self.dim = dim + self.max_res = max_res + self.temperature = temperature + self.in_pixels = in_pixels + self.feat_shape = feat_shape + self.ref_feat_shape = ref_feat_shape + + if feat_shape is None: + # only cache bands + if in_pixels: + bands = pixel_freq_bands( + dim // 4, + float(max_res), + linear_bands=linear_bands, + ) + else: + bands = freq_bands( + dim // 4, + temperature=temperature, + step=1, + ) + self.register_buffer( + 'bands', + bands, + persistent=False, + ) + self.pos_embed = None + else: + # cache full sin/cos embeddings if shape provided up front + embeds = build_rotary_pos_embed( + feat_shape=feat_shape, + dim=dim, + max_res=max_res, + linear_bands=linear_bands, + in_pixels=in_pixels, + ref_feat_shape=self.ref_feat_shape, + ) + self.bands = None + self.register_buffer( + 'pos_embed', + torch.cat(embeds, -1), + persistent=False, + ) + + def get_embed(self, shape: Optional[List[int]] = None): + if self.bands is not None and shape is not None: + # rebuild embeddings every call, use if target shape changes + embeds = build_rotary_pos_embed( + shape, + self.bands, + in_pixels=self.in_pixels, + ref_feat_shape=self.ref_feat_shape, + ) + return torch.cat(embeds, -1) + elif self.pos_embed is not None: + return self.pos_embed + else: + assert False, "get_embed() requires pre-computed pos_embed or valid shape w/ pre-computed bands" + + def forward(self, x): + # assuming channel-first tensor where spatial dim are >= 2 + pos_embed = self.get_embed(x.shape[2:]) + return apply_rot_embed_cat(x, pos_embed) diff --git a/pytorch-image-models/timm/layers/selective_kernel.py b/pytorch-image-models/timm/layers/selective_kernel.py new file mode 100644 index 0000000000000000000000000000000000000000..ec8ee6ce27058dd76e60277a8ca62f2d446af3bb --- /dev/null +++ b/pytorch-image-models/timm/layers/selective_kernel.py @@ -0,0 +1,119 @@ +""" Selective Kernel Convolution/Attention + +Paper: Selective Kernel Networks (https://arxiv.org/abs/1903.06586) + +Hacked together by / Copyright 2020 Ross Wightman +""" +import torch +from torch import nn as nn + +from .conv_bn_act import ConvNormAct +from .helpers import make_divisible +from .trace_utils import _assert + + +def _kernel_valid(k): + if isinstance(k, (list, tuple)): + for ki in k: + return _kernel_valid(ki) + assert k >= 3 and k % 2 + + +class SelectiveKernelAttn(nn.Module): + def __init__(self, channels, num_paths=2, attn_channels=32, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): + """ Selective Kernel Attention Module + + Selective Kernel attention mechanism factored out into its own module. + + """ + super(SelectiveKernelAttn, self).__init__() + self.num_paths = num_paths + self.fc_reduce = nn.Conv2d(channels, attn_channels, kernel_size=1, bias=False) + self.bn = norm_layer(attn_channels) + self.act = act_layer(inplace=True) + self.fc_select = nn.Conv2d(attn_channels, channels * num_paths, kernel_size=1, bias=False) + + def forward(self, x): + _assert(x.shape[1] == self.num_paths, '') + x = x.sum(1).mean((2, 3), keepdim=True) + x = self.fc_reduce(x) + x = self.bn(x) + x = self.act(x) + x = self.fc_select(x) + B, C, H, W = x.shape + x = x.view(B, self.num_paths, C // self.num_paths, H, W) + x = torch.softmax(x, dim=1) + return x + + +class SelectiveKernel(nn.Module): + + def __init__(self, in_channels, out_channels=None, kernel_size=None, stride=1, dilation=1, groups=1, + rd_ratio=1./16, rd_channels=None, rd_divisor=8, keep_3x3=True, split_input=True, + act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_layer=None): + """ Selective Kernel Convolution Module + + As described in Selective Kernel Networks (https://arxiv.org/abs/1903.06586) with some modifications. + + Largest change is the input split, which divides the input channels across each convolution path, this can + be viewed as a grouping of sorts, but the output channel counts expand to the module level value. This keeps + the parameter count from ballooning when the convolutions themselves don't have groups, but still provides + a noteworthy increase in performance over similar param count models without this attention layer. -Ross W + + Args: + in_channels (int): module input (feature) channel count + out_channels (int): module output (feature) channel count + kernel_size (int, list): kernel size for each convolution branch + stride (int): stride for convolutions + dilation (int): dilation for module as a whole, impacts dilation of each branch + groups (int): number of groups for each branch + rd_ratio (int, float): reduction factor for attention features + keep_3x3 (bool): keep all branch convolution kernels as 3x3, changing larger kernels for dilations + split_input (bool): split input channels evenly across each convolution branch, keeps param count lower, + can be viewed as grouping by path, output expands to module out_channels count + act_layer (nn.Module): activation layer to use + norm_layer (nn.Module): batchnorm/norm layer to use + aa_layer (nn.Module): anti-aliasing module + drop_layer (nn.Module): spatial drop module in convs (drop block, etc) + """ + super(SelectiveKernel, self).__init__() + out_channels = out_channels or in_channels + kernel_size = kernel_size or [3, 5] # default to one 3x3 and one 5x5 branch. 5x5 -> 3x3 + dilation + _kernel_valid(kernel_size) + if not isinstance(kernel_size, list): + kernel_size = [kernel_size] * 2 + if keep_3x3: + dilation = [dilation * (k - 1) // 2 for k in kernel_size] + kernel_size = [3] * len(kernel_size) + else: + dilation = [dilation] * len(kernel_size) + self.num_paths = len(kernel_size) + self.in_channels = in_channels + self.out_channels = out_channels + self.split_input = split_input + if self.split_input: + assert in_channels % self.num_paths == 0 + in_channels = in_channels // self.num_paths + groups = min(out_channels, groups) + + conv_kwargs = dict( + stride=stride, groups=groups, act_layer=act_layer, norm_layer=norm_layer, + aa_layer=aa_layer, drop_layer=drop_layer) + self.paths = nn.ModuleList([ + ConvNormAct(in_channels, out_channels, kernel_size=k, dilation=d, **conv_kwargs) + for k, d in zip(kernel_size, dilation)]) + + attn_channels = rd_channels or make_divisible(out_channels * rd_ratio, divisor=rd_divisor) + self.attn = SelectiveKernelAttn(out_channels, self.num_paths, attn_channels) + + def forward(self, x): + if self.split_input: + x_split = torch.split(x, self.in_channels // self.num_paths, 1) + x_paths = [op(x_split[i]) for i, op in enumerate(self.paths)] + else: + x_paths = [op(x) for op in self.paths] + x = torch.stack(x_paths, dim=1) + x_attn = self.attn(x) + x = x * x_attn + x = torch.sum(x, dim=1) + return x diff --git a/pytorch-image-models/timm/layers/separable_conv.py b/pytorch-image-models/timm/layers/separable_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..c081e02bc45900a7220bc7ffbb709eedbb1cc4df --- /dev/null +++ b/pytorch-image-models/timm/layers/separable_conv.py @@ -0,0 +1,76 @@ +""" Depthwise Separable Conv Modules + +Basic DWS convs. Other variations of DWS exist with batch norm or activations between the +DW and PW convs such as the Depthwise modules in MobileNetV2 / EfficientNet and Xception. + +Hacked together by / Copyright 2020 Ross Wightman +""" +from torch import nn as nn + +from .create_conv2d import create_conv2d +from .create_norm_act import get_norm_act_layer + + +class SeparableConvNormAct(nn.Module): + """ Separable Conv w/ trailing Norm and Activation + """ + def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False, + channel_multiplier=1.0, pw_kernel_size=1, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, + apply_act=True, drop_layer=None): + super(SeparableConvNormAct, self).__init__() + + self.conv_dw = create_conv2d( + in_channels, int(in_channels * channel_multiplier), kernel_size, + stride=stride, dilation=dilation, padding=padding, depthwise=True) + + self.conv_pw = create_conv2d( + int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias) + + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + norm_kwargs = dict(drop_layer=drop_layer) if drop_layer is not None else {} + self.bn = norm_act_layer(out_channels, apply_act=apply_act, **norm_kwargs) + + @property + def in_channels(self): + return self.conv_dw.in_channels + + @property + def out_channels(self): + return self.conv_pw.out_channels + + def forward(self, x): + x = self.conv_dw(x) + x = self.conv_pw(x) + x = self.bn(x) + return x + + +SeparableConvBnAct = SeparableConvNormAct + + +class SeparableConv2d(nn.Module): + """ Separable Conv + """ + def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False, + channel_multiplier=1.0, pw_kernel_size=1): + super(SeparableConv2d, self).__init__() + + self.conv_dw = create_conv2d( + in_channels, int(in_channels * channel_multiplier), kernel_size, + stride=stride, dilation=dilation, padding=padding, depthwise=True) + + self.conv_pw = create_conv2d( + int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias) + + @property + def in_channels(self): + return self.conv_dw.in_channels + + @property + def out_channels(self): + return self.conv_pw.out_channels + + def forward(self, x): + x = self.conv_dw(x) + x = self.conv_pw(x) + return x diff --git a/pytorch-image-models/timm/layers/space_to_depth.py b/pytorch-image-models/timm/layers/space_to_depth.py new file mode 100644 index 0000000000000000000000000000000000000000..452681544feaf58c0f7d084d4f9098834157b528 --- /dev/null +++ b/pytorch-image-models/timm/layers/space_to_depth.py @@ -0,0 +1,32 @@ +import torch +import torch.nn as nn + + +class SpaceToDepth(nn.Module): + bs: torch.jit.Final[int] + + def __init__(self, block_size=4): + super().__init__() + assert block_size == 4 + self.bs = block_size + + def forward(self, x): + N, C, H, W = x.size() + x = x.view(N, C, H // self.bs, self.bs, W // self.bs, self.bs) # (N, C, H//bs, bs, W//bs, bs) + x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs) + x = x.view(N, C * self.bs * self.bs, H // self.bs, W // self.bs) # (N, C*bs^2, H//bs, W//bs) + return x + + +class DepthToSpace(nn.Module): + + def __init__(self, block_size): + super().__init__() + self.bs = block_size + + def forward(self, x): + N, C, H, W = x.size() + x = x.view(N, self.bs, self.bs, C // (self.bs ** 2), H, W) # (N, bs, bs, C//bs^2, H, W) + x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # (N, C//bs^2, H, bs, W, bs) + x = x.view(N, C // (self.bs ** 2), H * self.bs, W * self.bs) # (N, C//bs^2, H * bs, W * bs) + return x diff --git a/pytorch-image-models/timm/layers/split_attn.py b/pytorch-image-models/timm/layers/split_attn.py new file mode 100644 index 0000000000000000000000000000000000000000..ac54f8988ac6bdc9e852585692248875a016b7fb --- /dev/null +++ b/pytorch-image-models/timm/layers/split_attn.py @@ -0,0 +1,84 @@ +""" Split Attention Conv2d (for ResNeSt Models) + +Paper: `ResNeSt: Split-Attention Networks` - /https://arxiv.org/abs/2004.08955 + +Adapted from original PyTorch impl at https://github.com/zhanghang1989/ResNeSt + +Modified for torchscript compat, performance, and consistency with timm by Ross Wightman +""" +import torch +import torch.nn.functional as F +from torch import nn + +from .helpers import make_divisible + + +class RadixSoftmax(nn.Module): + def __init__(self, radix, cardinality): + super(RadixSoftmax, self).__init__() + self.radix = radix + self.cardinality = cardinality + + def forward(self, x): + batch = x.size(0) + if self.radix > 1: + x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2) + x = F.softmax(x, dim=1) + x = x.reshape(batch, -1) + else: + x = torch.sigmoid(x) + return x + + +class SplitAttn(nn.Module): + """Split-Attention (aka Splat) + """ + def __init__(self, in_channels, out_channels=None, kernel_size=3, stride=1, padding=None, + dilation=1, groups=1, bias=False, radix=2, rd_ratio=0.25, rd_channels=None, rd_divisor=8, + act_layer=nn.ReLU, norm_layer=None, drop_layer=None, **kwargs): + super(SplitAttn, self).__init__() + out_channels = out_channels or in_channels + self.radix = radix + mid_chs = out_channels * radix + if rd_channels is None: + attn_chs = make_divisible(in_channels * radix * rd_ratio, min_value=32, divisor=rd_divisor) + else: + attn_chs = rd_channels * radix + + padding = kernel_size // 2 if padding is None else padding + self.conv = nn.Conv2d( + in_channels, mid_chs, kernel_size, stride, padding, dilation, + groups=groups * radix, bias=bias, **kwargs) + self.bn0 = norm_layer(mid_chs) if norm_layer else nn.Identity() + self.drop = drop_layer() if drop_layer is not None else nn.Identity() + self.act0 = act_layer(inplace=True) + self.fc1 = nn.Conv2d(out_channels, attn_chs, 1, groups=groups) + self.bn1 = norm_layer(attn_chs) if norm_layer else nn.Identity() + self.act1 = act_layer(inplace=True) + self.fc2 = nn.Conv2d(attn_chs, mid_chs, 1, groups=groups) + self.rsoftmax = RadixSoftmax(radix, groups) + + def forward(self, x): + x = self.conv(x) + x = self.bn0(x) + x = self.drop(x) + x = self.act0(x) + + B, RC, H, W = x.shape + if self.radix > 1: + x = x.reshape((B, self.radix, RC // self.radix, H, W)) + x_gap = x.sum(dim=1) + else: + x_gap = x + x_gap = x_gap.mean((2, 3), keepdim=True) + x_gap = self.fc1(x_gap) + x_gap = self.bn1(x_gap) + x_gap = self.act1(x_gap) + x_attn = self.fc2(x_gap) + + x_attn = self.rsoftmax(x_attn).view(B, -1, 1, 1) + if self.radix > 1: + out = (x * x_attn.reshape((B, self.radix, RC // self.radix, 1, 1))).sum(dim=1) + else: + out = x * x_attn + return out.contiguous() diff --git a/pytorch-image-models/timm/layers/split_batchnorm.py b/pytorch-image-models/timm/layers/split_batchnorm.py new file mode 100644 index 0000000000000000000000000000000000000000..830781b335161f8d6dd74c9458070bb1fa88a918 --- /dev/null +++ b/pytorch-image-models/timm/layers/split_batchnorm.py @@ -0,0 +1,75 @@ +""" Split BatchNorm + +A PyTorch BatchNorm layer that splits input batch into N equal parts and passes each through +a separate BN layer. The first split is passed through the parent BN layers with weight/bias +keys the same as the original BN. All other splits pass through BN sub-layers under the '.aux_bn' +namespace. + +This allows easily removing the auxiliary BN layers after training to efficiently +achieve the 'Auxiliary BatchNorm' as described in the AdvProp Paper, section 4.2, +'Disentangled Learning via An Auxiliary BN' + +Hacked together by / Copyright 2020 Ross Wightman +""" +import torch +import torch.nn as nn + + +class SplitBatchNorm2d(torch.nn.BatchNorm2d): + + def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, + track_running_stats=True, num_splits=2): + super().__init__(num_features, eps, momentum, affine, track_running_stats) + assert num_splits > 1, 'Should have at least one aux BN layer (num_splits at least 2)' + self.num_splits = num_splits + self.aux_bn = nn.ModuleList([ + nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats) for _ in range(num_splits - 1)]) + + def forward(self, input: torch.Tensor): + if self.training: # aux BN only relevant while training + split_size = input.shape[0] // self.num_splits + assert input.shape[0] == split_size * self.num_splits, "batch size must be evenly divisible by num_splits" + split_input = input.split(split_size) + x = [super().forward(split_input[0])] + for i, a in enumerate(self.aux_bn): + x.append(a(split_input[i + 1])) + return torch.cat(x, dim=0) + else: + return super().forward(input) + + +def convert_splitbn_model(module, num_splits=2): + """ + Recursively traverse module and its children to replace all instances of + ``torch.nn.modules.batchnorm._BatchNorm`` with `SplitBatchnorm2d`. + Args: + module (torch.nn.Module): input module + num_splits: number of separate batchnorm layers to split input across + Example:: + >>> # model is an instance of torch.nn.Module + >>> model = timm.models.convert_splitbn_model(model, num_splits=2) + """ + mod = module + if isinstance(module, torch.nn.modules.instancenorm._InstanceNorm): + return module + if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): + mod = SplitBatchNorm2d( + module.num_features, module.eps, module.momentum, module.affine, + module.track_running_stats, num_splits=num_splits) + mod.running_mean = module.running_mean + mod.running_var = module.running_var + mod.num_batches_tracked = module.num_batches_tracked + if module.affine: + mod.weight.data = module.weight.data.clone().detach() + mod.bias.data = module.bias.data.clone().detach() + for aux in mod.aux_bn: + aux.running_mean = module.running_mean.clone() + aux.running_var = module.running_var.clone() + aux.num_batches_tracked = module.num_batches_tracked.clone() + if module.affine: + aux.weight.data = module.weight.data.clone().detach() + aux.bias.data = module.bias.data.clone().detach() + for name, child in module.named_children(): + mod.add_module(name, convert_splitbn_model(child, num_splits=num_splits)) + del module + return mod diff --git a/pytorch-image-models/timm/layers/squeeze_excite.py b/pytorch-image-models/timm/layers/squeeze_excite.py new file mode 100644 index 0000000000000000000000000000000000000000..4fe568fe8f39db79b0985874e9305e4ee143995c --- /dev/null +++ b/pytorch-image-models/timm/layers/squeeze_excite.py @@ -0,0 +1,102 @@ +""" Squeeze-and-Excitation Channel Attention + +An SE implementation originally based on PyTorch SE-Net impl. +Has since evolved with additional functionality / configuration. + +Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507 + +Also included is Effective Squeeze-Excitation (ESE). +Paper: `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 + +Hacked together by / Copyright 2021 Ross Wightman +""" +from torch import nn as nn + +from .create_act import create_act_layer +from .helpers import make_divisible + + +class SEModule(nn.Module): + """ SE Module as defined in original SE-Nets with a few additions + Additions include: + * divisor can be specified to keep channels % div == 0 (default: 8) + * reduction channels can be specified directly by arg (if rd_channels is set) + * reduction channels can be specified by float rd_ratio (default: 1/16) + * global max pooling can be added to the squeeze aggregation + * customizable activation, normalization, and gate layer + """ + def __init__( + self, channels, rd_ratio=1. / 16, rd_channels=None, rd_divisor=8, add_maxpool=False, + bias=True, act_layer=nn.ReLU, norm_layer=None, gate_layer='sigmoid'): + super(SEModule, self).__init__() + self.add_maxpool = add_maxpool + if not rd_channels: + rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) + self.fc1 = nn.Conv2d(channels, rd_channels, kernel_size=1, bias=bias) + self.bn = norm_layer(rd_channels) if norm_layer else nn.Identity() + self.act = create_act_layer(act_layer, inplace=True) + self.fc2 = nn.Conv2d(rd_channels, channels, kernel_size=1, bias=bias) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_se = x.mean((2, 3), keepdim=True) + if self.add_maxpool: + # experimental codepath, may remove or change + x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True) + x_se = self.fc1(x_se) + x_se = self.act(self.bn(x_se)) + x_se = self.fc2(x_se) + return x * self.gate(x_se) + + +SqueezeExcite = SEModule # alias + + +class EffectiveSEModule(nn.Module): + """ 'Effective Squeeze-Excitation + From `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 + """ + def __init__(self, channels, add_maxpool=False, gate_layer='hard_sigmoid', **_): + super(EffectiveSEModule, self).__init__() + self.add_maxpool = add_maxpool + self.fc = nn.Conv2d(channels, channels, kernel_size=1, padding=0) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_se = x.mean((2, 3), keepdim=True) + if self.add_maxpool: + # experimental codepath, may remove or change + x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True) + x_se = self.fc(x_se) + return x * self.gate(x_se) + + +EffectiveSqueezeExcite = EffectiveSEModule # alias + + +class SqueezeExciteCl(nn.Module): + """ SE Module as defined in original SE-Nets with a few additions + Additions include: + * divisor can be specified to keep channels % div == 0 (default: 8) + * reduction channels can be specified directly by arg (if rd_channels is set) + * reduction channels can be specified by float rd_ratio (default: 1/16) + * global max pooling can be added to the squeeze aggregation + * customizable activation, normalization, and gate layer + """ + def __init__( + self, channels, rd_ratio=1. / 16, rd_channels=None, rd_divisor=8, + bias=True, act_layer=nn.ReLU, gate_layer='sigmoid'): + super().__init__() + if not rd_channels: + rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) + self.fc1 = nn.Linear(channels, rd_channels, bias=bias) + self.act = create_act_layer(act_layer, inplace=True) + self.fc2 = nn.Linear(rd_channels, channels, bias=bias) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_se = x.mean((1, 2), keepdims=True) # FIXME avg dim [1:n-1], don't assume 2D NHWC + x_se = self.fc1(x_se) + x_se = self.act(x_se) + x_se = self.fc2(x_se) + return x * self.gate(x_se) \ No newline at end of file diff --git a/pytorch-image-models/timm/layers/std_conv.py b/pytorch-image-models/timm/layers/std_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..d896ba5c2f7f517d6ce0508d789a516e7bfb4cf1 --- /dev/null +++ b/pytorch-image-models/timm/layers/std_conv.py @@ -0,0 +1,133 @@ +""" Convolution with Weight Standardization (StdConv and ScaledStdConv) + +StdConv: +@article{weightstandardization, + author = {Siyuan Qiao and Huiyu Wang and Chenxi Liu and Wei Shen and Alan Yuille}, + title = {Weight Standardization}, + journal = {arXiv preprint arXiv:1903.10520}, + year = {2019}, +} +Code: https://github.com/joe-siyuan-qiao/WeightStandardization + +ScaledStdConv: +Paper: `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 +Official Deepmind JAX code: https://github.com/deepmind/deepmind-research/tree/master/nfnets + +Hacked together by / copyright Ross Wightman, 2021. +""" +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .padding import get_padding, get_padding_value, pad_same + + +class StdConv2d(nn.Conv2d): + """Conv2d with Weight Standardization. Used for BiT ResNet-V2 models. + + Paper: `Micro-Batch Training with Batch-Channel Normalization and Weight Standardization` - + https://arxiv.org/abs/1903.10520v2 + """ + def __init__( + self, in_channel, out_channels, kernel_size, stride=1, padding=None, + dilation=1, groups=1, bias=False, eps=1e-6): + if padding is None: + padding = get_padding(kernel_size, stride, dilation) + super().__init__( + in_channel, out_channels, kernel_size, stride=stride, + padding=padding, dilation=dilation, groups=groups, bias=bias) + self.eps = eps + + def forward(self, x): + weight = F.batch_norm( + self.weight.reshape(1, self.out_channels, -1), None, None, + training=True, momentum=0., eps=self.eps).reshape_as(self.weight) + x = F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + return x + + +class StdConv2dSame(nn.Conv2d): + """Conv2d with Weight Standardization. TF compatible SAME padding. Used for ViT Hybrid model. + + Paper: `Micro-Batch Training with Batch-Channel Normalization and Weight Standardization` - + https://arxiv.org/abs/1903.10520v2 + """ + def __init__( + self, in_channel, out_channels, kernel_size, stride=1, padding='SAME', + dilation=1, groups=1, bias=False, eps=1e-6): + padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation) + super().__init__( + in_channel, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, + groups=groups, bias=bias) + self.same_pad = is_dynamic + self.eps = eps + + def forward(self, x): + if self.same_pad: + x = pad_same(x, self.kernel_size, self.stride, self.dilation) + weight = F.batch_norm( + self.weight.reshape(1, self.out_channels, -1), None, None, + training=True, momentum=0., eps=self.eps).reshape_as(self.weight) + x = F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + return x + + +class ScaledStdConv2d(nn.Conv2d): + """Conv2d layer with Scaled Weight Standardization. + + Paper: `Characterizing signal propagation to close the performance gap in unnormalized ResNets` - + https://arxiv.org/abs/2101.08692 + + NOTE: the operations used in this impl differ slightly from the DeepMind Haiku impl. The impact is minor. + """ + + def __init__( + self, in_channels, out_channels, kernel_size, stride=1, padding=None, + dilation=1, groups=1, bias=True, gamma=1.0, eps=1e-6, gain_init=1.0): + if padding is None: + padding = get_padding(kernel_size, stride, dilation) + super().__init__( + in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, + groups=groups, bias=bias) + self.gain = nn.Parameter(torch.full((self.out_channels, 1, 1, 1), gain_init)) + self.scale = gamma * self.weight[0].numel() ** -0.5 # gamma * 1 / sqrt(fan-in) + self.eps = eps + + def forward(self, x): + weight = F.batch_norm( + self.weight.reshape(1, self.out_channels, -1), None, None, + weight=(self.gain * self.scale).view(-1), + training=True, momentum=0., eps=self.eps).reshape_as(self.weight) + return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) + + +class ScaledStdConv2dSame(nn.Conv2d): + """Conv2d layer with Scaled Weight Standardization and Tensorflow-like SAME padding support + + Paper: `Characterizing signal propagation to close the performance gap in unnormalized ResNets` - + https://arxiv.org/abs/2101.08692 + + NOTE: the operations used in this impl differ slightly from the DeepMind Haiku impl. The impact is minor. + """ + + def __init__( + self, in_channels, out_channels, kernel_size, stride=1, padding='SAME', + dilation=1, groups=1, bias=True, gamma=1.0, eps=1e-6, gain_init=1.0): + padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation) + super().__init__( + in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, + groups=groups, bias=bias) + self.gain = nn.Parameter(torch.full((self.out_channels, 1, 1, 1), gain_init)) + self.scale = gamma * self.weight[0].numel() ** -0.5 + self.same_pad = is_dynamic + self.eps = eps + + def forward(self, x): + if self.same_pad: + x = pad_same(x, self.kernel_size, self.stride, self.dilation) + weight = F.batch_norm( + self.weight.reshape(1, self.out_channels, -1), None, None, + weight=(self.gain * self.scale).view(-1), + training=True, momentum=0., eps=self.eps).reshape_as(self.weight) + return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) diff --git a/pytorch-image-models/timm/layers/test_time_pool.py b/pytorch-image-models/timm/layers/test_time_pool.py new file mode 100644 index 0000000000000000000000000000000000000000..5826d8c966d7bffa62f5f5fdd224f3f691276ce6 --- /dev/null +++ b/pytorch-image-models/timm/layers/test_time_pool.py @@ -0,0 +1,52 @@ +""" Test Time Pooling (Average-Max Pool) + +Hacked together by / Copyright 2020 Ross Wightman +""" + +import logging +from torch import nn +import torch.nn.functional as F + +from .adaptive_avgmax_pool import adaptive_avgmax_pool2d + + +_logger = logging.getLogger(__name__) + + +class TestTimePoolHead(nn.Module): + def __init__(self, base, original_pool=7): + super(TestTimePoolHead, self).__init__() + self.base = base + self.original_pool = original_pool + base_fc = self.base.get_classifier() + if isinstance(base_fc, nn.Conv2d): + self.fc = base_fc + else: + self.fc = nn.Conv2d( + self.base.num_features, self.base.num_classes, kernel_size=1, bias=True) + self.fc.weight.data.copy_(base_fc.weight.data.view(self.fc.weight.size())) + self.fc.bias.data.copy_(base_fc.bias.data.view(self.fc.bias.size())) + self.base.reset_classifier(0) # delete original fc layer + + def forward(self, x): + x = self.base.forward_features(x) + x = F.avg_pool2d(x, kernel_size=self.original_pool, stride=1) + x = self.fc(x) + x = adaptive_avgmax_pool2d(x, 1) + return x.view(x.size(0), -1) + + +def apply_test_time_pool(model, config, use_test_size=False): + test_time_pool = False + if not hasattr(model, 'default_cfg') or not model.default_cfg: + return model, False + if use_test_size and 'test_input_size' in model.default_cfg: + df_input_size = model.default_cfg['test_input_size'] + else: + df_input_size = model.default_cfg['input_size'] + if config['input_size'][-1] > df_input_size[-1] and config['input_size'][-2] > df_input_size[-2]: + _logger.info('Target input size %s > pretrained default %s, using test time pooling' % + (str(config['input_size'][-2:]), str(df_input_size[-2:]))) + model = TestTimePoolHead(model, original_pool=model.default_cfg['pool_size']) + test_time_pool = True + return model, test_time_pool diff --git a/pytorch-image-models/timm/layers/trace_utils.py b/pytorch-image-models/timm/layers/trace_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..83970729e628b525d24162f5df37ee5bc253438f --- /dev/null +++ b/pytorch-image-models/timm/layers/trace_utils.py @@ -0,0 +1,13 @@ +try: + from torch import _assert +except ImportError: + def _assert(condition: bool, message: str): + assert condition, message + + +def _float_to_int(x: float) -> int: + """ + Symbolic tracing helper to substitute for inbuilt `int`. + Hint: Inbuilt `int` can't accept an argument of type `Proxy` + """ + return int(x) diff --git a/pytorch-image-models/timm/layers/typing.py b/pytorch-image-models/timm/layers/typing.py new file mode 100644 index 0000000000000000000000000000000000000000..593fa5cc8bef281c3ce495f3b178ee346fcbde5d --- /dev/null +++ b/pytorch-image-models/timm/layers/typing.py @@ -0,0 +1,7 @@ +from typing import Callable, Tuple, Type, Union + +import torch + + +LayerType = Union[str, Callable, Type[torch.nn.Module]] +PadType = Union[str, int, Tuple[int, int]] diff --git a/pytorch-image-models/timm/layers/weight_init.py b/pytorch-image-models/timm/layers/weight_init.py new file mode 100644 index 0000000000000000000000000000000000000000..d1127ecbdbfb6cfab3d0b8d473591b08f75ba94f --- /dev/null +++ b/pytorch-image-models/timm/layers/weight_init.py @@ -0,0 +1,167 @@ +import torch +import math +import warnings +from torch import nn +from torch.nn.init import _calculate_fan_in_and_fan_out + + +def _trunc_normal_(tensor, mean, std, a, b): + # Cut & paste from PyTorch official master until it's in a few official releases - RW + # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf + def norm_cdf(x): + # Computes standard normal cumulative distribution function + return (1. + math.erf(x / math.sqrt(2.))) / 2. + + if (mean < a - 2 * std) or (mean > b + 2 * std): + warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " + "The distribution of values may be incorrect.", + stacklevel=2) + + # Values are generated by using a truncated uniform distribution and + # then using the inverse CDF for the normal distribution. + # Get upper and lower cdf values + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + + # Uniformly fill tensor with values from [l, u], then translate to + # [2l-1, 2u-1]. + tensor.uniform_(2 * l - 1, 2 * u - 1) + + # Use inverse cdf transform for normal distribution to get truncated + # standard normal + tensor.erfinv_() + + # Transform to proper mean, std + tensor.mul_(std * math.sqrt(2.)) + tensor.add_(mean) + + # Clamp to ensure it's in the proper range + tensor.clamp_(min=a, max=b) + return tensor + + +def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): + # type: (Tensor, float, float, float, float) -> Tensor + r"""Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \leq \text{mean} \leq b`. + + NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are + applied while sampling the normal with mean/std applied, therefore a, b args + should be adjusted to match the range of mean, std args. + + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + Examples: + >>> w = torch.empty(3, 5) + >>> nn.init.trunc_normal_(w) + """ + with torch.no_grad(): + return _trunc_normal_(tensor, mean, std, a, b) + + +def trunc_normal_tf_(tensor, mean=0., std=1., a=-2., b=2.): + # type: (Tensor, float, float, float, float) -> Tensor + r"""Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \leq \text{mean} \leq b`. + + NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the + bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 + and the result is subsquently scaled and shifted by the mean and std args. + + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + Examples: + >>> w = torch.empty(3, 5) + >>> nn.init.trunc_normal_(w) + """ + with torch.no_grad(): + _trunc_normal_(tensor, 0, 1.0, a, b) + tensor.mul_(std).add_(mean) + return tensor + + +def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'): + fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) + if mode == 'fan_in': + denom = fan_in + elif mode == 'fan_out': + denom = fan_out + elif mode == 'fan_avg': + denom = (fan_in + fan_out) / 2 + + variance = scale / denom + + if distribution == "truncated_normal": + # constant is stddev of standard normal truncated to (-2, 2) + trunc_normal_tf_(tensor, std=math.sqrt(variance) / .87962566103423978) + elif distribution == "normal": + with torch.no_grad(): + tensor.normal_(std=math.sqrt(variance)) + elif distribution == "uniform": + bound = math.sqrt(3 * variance) + with torch.no_grad(): + tensor.uniform_(-bound, bound) + else: + raise ValueError(f"invalid distribution {distribution}") + + +def lecun_normal_(tensor): + variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal') + + +def init_weight_vit( + module: nn.Module, + name: str, + init_bias: float = 0.02, + head_bias: float = 0., + classifier_name: str = 'head' +): + if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)): + if name.startswith(classifier_name): + nn.init.zeros_(module.weight) + nn.init.constant_(module.bias, head_bias) + else: + nn.init.trunc_normal_(module.weight, std=0.02) + if isinstance(module, nn.Linear) and module.bias is not None: + nn.init.constant_(module.bias, init_bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + + +def init_weight_jax( + module: nn.Module, + name: str, + head_bias: float = 0., + classifier_name: str = 'head', +): + if isinstance(module, nn.Linear): + if name.startswith(classifier_name): + nn.init.zeros_(module.weight) + nn.init.constant_(module.bias, head_bias) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + nn.init.normal_(module.bias, std=1e-6) if 'mlp' in name else nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + diff --git a/pytorch-image-models/timm/loss/__init__.py b/pytorch-image-models/timm/loss/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ea7f15f2f79673c962f68d6d4b06898e73ac1df6 --- /dev/null +++ b/pytorch-image-models/timm/loss/__init__.py @@ -0,0 +1,4 @@ +from .asymmetric_loss import AsymmetricLossMultiLabel, AsymmetricLossSingleLabel +from .binary_cross_entropy import BinaryCrossEntropy +from .cross_entropy import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy +from .jsd import JsdCrossEntropy diff --git a/pytorch-image-models/timm/loss/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..10238d0a06899aa64cb4702f9cd88efe32ca9e58 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/asymmetric_loss.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/asymmetric_loss.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8f5408c632b6b5172aedc75847c95c390e6fe66 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/asymmetric_loss.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/binary_cross_entropy.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/binary_cross_entropy.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..349fc03502e977f925462e258622d8f2cc77a458 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/binary_cross_entropy.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/cross_entropy.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/cross_entropy.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f69ec312635bf8e71a791a9d830c1bc7e7de9173 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/cross_entropy.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/jsd.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/jsd.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ccdd341e417d7de0b48cf880d16b8b73d8b54a00 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/jsd.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/asymmetric_loss.py b/pytorch-image-models/timm/loss/asymmetric_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..6c1962b7249b8b87795162814ef383d5fa7c1b66 --- /dev/null +++ b/pytorch-image-models/timm/loss/asymmetric_loss.py @@ -0,0 +1,97 @@ +import torch +import torch.nn as nn + + +class AsymmetricLossMultiLabel(nn.Module): + def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False): + super(AsymmetricLossMultiLabel, self).__init__() + + self.gamma_neg = gamma_neg + self.gamma_pos = gamma_pos + self.clip = clip + self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss + self.eps = eps + + def forward(self, x, y): + """" + Parameters + ---------- + x: input logits + y: targets (multi-label binarized vector) + """ + + # Calculating Probabilities + x_sigmoid = torch.sigmoid(x) + xs_pos = x_sigmoid + xs_neg = 1 - x_sigmoid + + # Asymmetric Clipping + if self.clip is not None and self.clip > 0: + xs_neg = (xs_neg + self.clip).clamp(max=1) + + # Basic CE calculation + los_pos = y * torch.log(xs_pos.clamp(min=self.eps)) + los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps)) + loss = los_pos + los_neg + + # Asymmetric Focusing + if self.gamma_neg > 0 or self.gamma_pos > 0: + if self.disable_torch_grad_focal_loss: + torch.set_grad_enabled(False) + pt0 = xs_pos * y + pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p + pt = pt0 + pt1 + one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y) + one_sided_w = torch.pow(1 - pt, one_sided_gamma) + if self.disable_torch_grad_focal_loss: + torch.set_grad_enabled(True) + loss *= one_sided_w + + return -loss.sum() + + +class AsymmetricLossSingleLabel(nn.Module): + def __init__(self, gamma_pos=1, gamma_neg=4, eps: float = 0.1, reduction='mean'): + super(AsymmetricLossSingleLabel, self).__init__() + + self.eps = eps + self.logsoftmax = nn.LogSoftmax(dim=-1) + self.targets_classes = [] # prevent gpu repeated memory allocation + self.gamma_pos = gamma_pos + self.gamma_neg = gamma_neg + self.reduction = reduction + + def forward(self, inputs, target, reduction=None): + """" + Parameters + ---------- + x: input logits + y: targets (1-hot vector) + """ + + num_classes = inputs.size()[-1] + log_preds = self.logsoftmax(inputs) + self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1) + + # ASL weights + targets = self.targets_classes + anti_targets = 1 - targets + xs_pos = torch.exp(log_preds) + xs_neg = 1 - xs_pos + xs_pos = xs_pos * targets + xs_neg = xs_neg * anti_targets + asymmetric_w = torch.pow(1 - xs_pos - xs_neg, + self.gamma_pos * targets + self.gamma_neg * anti_targets) + log_preds = log_preds * asymmetric_w + + if self.eps > 0: # label smoothing + self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes) + + # loss calculation + loss = - self.targets_classes.mul(log_preds) + + loss = loss.sum(dim=-1) + if self.reduction == 'mean': + loss = loss.mean() + + return loss diff --git a/pytorch-image-models/timm/loss/binary_cross_entropy.py b/pytorch-image-models/timm/loss/binary_cross_entropy.py new file mode 100644 index 0000000000000000000000000000000000000000..4e0d685b76ba80f31e6d2768c5d6c52733767fe8 --- /dev/null +++ b/pytorch-image-models/timm/loss/binary_cross_entropy.py @@ -0,0 +1,65 @@ +""" Binary Cross Entropy w/ a few extras + +Hacked together by / Copyright 2021 Ross Wightman +""" +from typing import Optional, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class BinaryCrossEntropy(nn.Module): + """ BCE with optional one-hot from dense targets, label smoothing, thresholding + NOTE for experiments comparing CE to BCE /w label smoothing, may remove + """ + def __init__( + self, + smoothing=0.1, + target_threshold: Optional[float] = None, + weight: Optional[torch.Tensor] = None, + reduction: str = 'mean', + sum_classes: bool = False, + pos_weight: Optional[Union[torch.Tensor, float]] = None, + ): + super(BinaryCrossEntropy, self).__init__() + assert 0. <= smoothing < 1.0 + if pos_weight is not None: + if not isinstance(pos_weight, torch.Tensor): + pos_weight = torch.tensor(pos_weight) + self.smoothing = smoothing + self.target_threshold = target_threshold + self.reduction = 'none' if sum_classes else reduction + self.sum_classes = sum_classes + self.register_buffer('weight', weight) + self.register_buffer('pos_weight', pos_weight) + + def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + batch_size = x.shape[0] + assert batch_size == target.shape[0] + + if target.shape != x.shape: + # NOTE currently assume smoothing or other label softening is applied upstream if targets are already sparse + num_classes = x.shape[-1] + # FIXME should off/on be different for smoothing w/ BCE? Other impl out there differ + off_value = self.smoothing / num_classes + on_value = 1. - self.smoothing + off_value + target = target.long().view(-1, 1) + target = torch.full( + (batch_size, num_classes), + off_value, + device=x.device, dtype=x.dtype).scatter_(1, target, on_value) + + if self.target_threshold is not None: + # Make target 0, or 1 if threshold set + target = target.gt(self.target_threshold).to(dtype=target.dtype) + + loss = F.binary_cross_entropy_with_logits( + x, target, + self.weight, + pos_weight=self.pos_weight, + reduction=self.reduction, + ) + if self.sum_classes: + loss = loss.sum(-1).mean() + return loss diff --git a/pytorch-image-models/timm/loss/cross_entropy.py b/pytorch-image-models/timm/loss/cross_entropy.py new file mode 100644 index 0000000000000000000000000000000000000000..85198107f3ad2a1ff775a677d77c03569ff5d04d --- /dev/null +++ b/pytorch-image-models/timm/loss/cross_entropy.py @@ -0,0 +1,36 @@ +""" Cross Entropy w/ smoothing or soft targets + +Hacked together by / Copyright 2021 Ross Wightman +""" + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class LabelSmoothingCrossEntropy(nn.Module): + """ NLL loss with label smoothing. + """ + def __init__(self, smoothing=0.1): + super(LabelSmoothingCrossEntropy, self).__init__() + assert smoothing < 1.0 + self.smoothing = smoothing + self.confidence = 1. - smoothing + + def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + logprobs = F.log_softmax(x, dim=-1) + nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1)) + nll_loss = nll_loss.squeeze(1) + smooth_loss = -logprobs.mean(dim=-1) + loss = self.confidence * nll_loss + self.smoothing * smooth_loss + return loss.mean() + + +class SoftTargetCrossEntropy(nn.Module): + + def __init__(self): + super(SoftTargetCrossEntropy, self).__init__() + + def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + loss = torch.sum(-target * F.log_softmax(x, dim=-1), dim=-1) + return loss.mean() diff --git a/pytorch-image-models/timm/loss/jsd.py b/pytorch-image-models/timm/loss/jsd.py new file mode 100644 index 0000000000000000000000000000000000000000..dd64e156c23d27aa03817a587ae367e8175fc126 --- /dev/null +++ b/pytorch-image-models/timm/loss/jsd.py @@ -0,0 +1,39 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .cross_entropy import LabelSmoothingCrossEntropy + + +class JsdCrossEntropy(nn.Module): + """ Jensen-Shannon Divergence + Cross-Entropy Loss + + Based on impl here: https://github.com/google-research/augmix/blob/master/imagenet.py + From paper: 'AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty - + https://arxiv.org/abs/1912.02781 + + Hacked together by / Copyright 2020 Ross Wightman + """ + def __init__(self, num_splits=3, alpha=12, smoothing=0.1): + super().__init__() + self.num_splits = num_splits + self.alpha = alpha + if smoothing is not None and smoothing > 0: + self.cross_entropy_loss = LabelSmoothingCrossEntropy(smoothing) + else: + self.cross_entropy_loss = torch.nn.CrossEntropyLoss() + + def __call__(self, output, target): + split_size = output.shape[0] // self.num_splits + assert split_size * self.num_splits == output.shape[0] + logits_split = torch.split(output, split_size) + + # Cross-entropy is only computed on clean images + loss = self.cross_entropy_loss(logits_split[0], target[:split_size]) + probs = [F.softmax(logits, dim=1) for logits in logits_split] + + # Clamp mixture distribution to avoid exploding KL divergence + logp_mixture = torch.clamp(torch.stack(probs).mean(axis=0), 1e-7, 1).log() + loss += self.alpha * sum([F.kl_div( + logp_mixture, p_split, reduction='batchmean') for p_split in probs]) / len(probs) + return loss diff --git a/pytorch-image-models/timm/models/__init__.py b/pytorch-image-models/timm/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c5b1984f20a7bf9a144c885df7e59304908c8276 --- /dev/null +++ b/pytorch-image-models/timm/models/__init__.py @@ -0,0 +1,100 @@ +from .beit import * +from .byoanet import * +from .byobnet import * +from .cait import * +from .coat import * +from .convit import * +from .convmixer import * +from .convnext import * +from .crossvit import * +from .cspnet import * +from .davit import * +from .deit import * +from .densenet import * +from .dla import * +from .dpn import * +from .edgenext import * +from .efficientformer import * +from .efficientformer_v2 import * +from .efficientnet import * +from .efficientvit_mit import * +from .efficientvit_msra import * +from .eva import * +from .fastvit import * +from .focalnet import * +from .gcvit import * +from .ghostnet import * +from .hardcorenas import * +from .hgnet import * +from .hiera import * +from .hieradet_sam2 import * +from .hrnet import * +from .inception_next import * +from .inception_resnet_v2 import * +from .inception_v3 import * +from .inception_v4 import * +from .levit import * +from .maxxvit import * +from .mambaout import * +from .metaformer import * +from .mlp_mixer import * +from .mobilenetv3 import * +from .mobilevit import * +from .mvitv2 import * +from .nasnet import * +from .nest import * +from .nextvit import * +from .nfnet import * +from .pit import * +from .pnasnet import * +from .pvt_v2 import * +from .rdnet import * +from .regnet import * +from .repghost import * +from .repvit import * +from .res2net import * +from .resnest import * +from .resnet import * +from .resnetv2 import * +from .rexnet import * +from .selecsls import * +from .senet import * +from .sequencer import * +from .sknet import * +from .swin_transformer import * +from .swin_transformer_v2 import * +from .swin_transformer_v2_cr import * +from .tiny_vit import * +from .tnt import * +from .tresnet import * +from .twins import * +from .vgg import * +from .visformer import * +from .vision_transformer import * +from .vision_transformer_hybrid import * +from .vision_transformer_relpos import * +from .vision_transformer_sam import * +from .vitamin import * +from .volo import * +from .vovnet import * +from .xception import * +from .xception_aligned import * +from .xcit import * + +from ._builder import build_model_with_cfg, load_pretrained, load_custom_pretrained, resolve_pretrained_cfg, \ + set_pretrained_download_progress, set_pretrained_check_hash +from ._factory import create_model, parse_model_name, safe_model_name +from ._features import FeatureInfo, FeatureHooks, FeatureHookNet, FeatureListNet, FeatureDictNet +from ._features_fx import FeatureGraphNet, GraphExtractNet, create_feature_extractor, get_graph_node_names, \ + register_notrace_module, is_notrace_module, get_notrace_modules, \ + register_notrace_function, is_notrace_function, get_notrace_functions +from ._helpers import clean_state_dict, load_state_dict, load_checkpoint, remap_state_dict, resume_checkpoint +from ._hub import load_model_config_from_hf, load_state_dict_from_hf, push_to_hf_hub +from ._manipulate import model_parameters, named_apply, named_modules, named_modules_with_params, \ + group_modules, group_parameters, checkpoint_seq, adapt_input_conv +from ._pretrained import PretrainedCfg, DefaultCfg, filter_pretrained_cfg +from ._prune import adapt_model_from_string +from ._registry import split_model_name_tag, get_arch_name, generate_default_cfgs, register_model, \ + register_model_deprecations, model_entrypoint, list_models, list_pretrained, get_deprecated_models, \ + is_model, list_modules, is_model_in_modules, is_model_pretrained, get_pretrained_cfg, get_pretrained_cfg_value, \ + get_arch_pretrained_cfgs diff --git a/pytorch-image-models/timm/models/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b0aa86ae9d00e64d9a5966fb4526c23322186657 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_builder.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_builder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c0842a52c32dfe6831965b3269e8471ef150d167 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_builder.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_efficientnet_blocks.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_efficientnet_blocks.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a2ca3f6e5ed5c4d4173d3a76490d3eb3aef02476 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_efficientnet_blocks.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_efficientnet_builder.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_efficientnet_builder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..675cb2ec5a4e5aa1ad36d588a54a7326fe313483 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_efficientnet_builder.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_factory.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a826e83ea4daf1ca71755fcd3a307b77612f346f Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_features.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_features.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e6943c8102f00ceea9a3f9d169cc702e2a04865f Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_features.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_features_fx.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_features_fx.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e88f1d41a564a51dddc818c84ae865a165f090fe Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_features_fx.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_helpers.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_helpers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9628bb68aa5aa306b452142a104aa5c64cf84c8d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_helpers.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_hub.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_hub.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a836be344afd8cc2fde1d44dad097d648dddd003 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_hub.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_manipulate.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_manipulate.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..03bfdb2024551ea5160592c39639508c65bfe0ed Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_manipulate.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_pretrained.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_pretrained.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..128b1b2c5dcef52d9576ee82cae5f5ec7cf8fd7b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_pretrained.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_prune.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_prune.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4766ec1a790c655d25f88ec16d827975a4896ac0 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_prune.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_registry.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_registry.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..57c451d641ec8db4dd1675c2d24786e0bacaf77b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_registry.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/beit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/beit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..25ac806cdbae3f46e977810b08004adff4248ee0 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/beit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/byoanet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/byoanet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a2339d6a171e0d5d282f66a5bb2045d6cc90597d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/byoanet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/byobnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/byobnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..888f880d4bcde2d8a3869e52eb59d7c789476963 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/byobnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/cait.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/cait.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..53d63d01d959293ba38df88bdb7498aec35424d9 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/cait.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/coat.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/coat.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..435810c3f179ac7974f578ddc521ffd3e6763728 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/coat.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/convit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/convit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..177e8c97527d5ed9f4af481aad1ef52452d1f248 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/convit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/convmixer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/convmixer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..28ae1a410188dcf0fef5b3c422e5bca84e38c32f Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/convmixer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/convnext.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/convnext.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7ab53eb7ce8f32b565b9d92a9e5eb5e5182907ef Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/convnext.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/crossvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/crossvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ac7aeb164981b10fe74542791e6855b3cdf6107a Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/crossvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/cspnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/cspnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5d26f85986c6f47fca4135598e71725c3b2b05f7 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/cspnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/davit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/davit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea919252d5088c1fd449a22ae6e21ad50011d931 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/davit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/deit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/deit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..77fbf7de018706eee92396c9dfd0b1cd4ad1d2a3 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/deit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/densenet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/densenet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..81bf939fa4d5df1e65b1243cfa8b35295f04e7af Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/densenet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/dla.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/dla.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..edb39626f44acecf64d508b4d2f1322fdf2809be Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/dla.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/dpn.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/dpn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b116e14380490380a86c99e2ef9b0a91521ec26 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/dpn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/edgenext.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/edgenext.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5a6bf725ff6a9d17e17955edc75ed33610765712 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/edgenext.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d1ad7c48fcfd347546238ed16959ff9d172f7158 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientformer_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientformer_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..43d015c851698d107d1bfbd6a0176afa81a0ec25 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientformer_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ddf1d77ac2ff011260d8ea9a2e0a8c1a3430316 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientvit_mit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientvit_mit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e075a41567c585a06c229d246403760ede9ae4bf Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientvit_mit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientvit_msra.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientvit_msra.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fe90018c30f31a8df922d9d5e2a355b3807e6fe0 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientvit_msra.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/eva.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/eva.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..51d73f762e070442b88820ba345eec36545d0248 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/eva.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/fastvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/fastvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..58a55c0f739da080478d23db9c465a505e41b7e7 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/fastvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/focalnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/focalnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..737ad85780822219155451deed684dc931a0589b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/focalnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/gcvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/gcvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4c8df58e7d30dcd93409fcf2c5ccf65b69034467 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/gcvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/ghostnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/ghostnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..abadb705999d5e829088727ec56d8bacf4557d74 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/ghostnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hardcorenas.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hardcorenas.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..79c8bf04a8e69b92ca227d0d94b612cdfae8a77d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hardcorenas.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hgnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hgnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d58cced976cc4a1ebda0a03d3ba8ac12c4c90fa6 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hgnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hiera.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hiera.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..63eb905c796f7e1897858fce12706f4e3e78dc03 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hiera.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hieradet_sam2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hieradet_sam2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..950f5ea1d2b2fbce2ff035a6c0684f3f5223868e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hieradet_sam2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hrnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hrnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..39d83129685ad1fe77d2f85312b6d5285997082c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hrnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_next.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_next.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d0358ed59c4b3f5460f2dbfd0c664861117ab80b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_next.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_resnet_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_resnet_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3c1cd6505060f3d7479ca40334945d0b16758cbf Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_resnet_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_v3.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_v3.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6a924bba914ee4618aa551cea70c5babc490a185 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_v3.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_v4.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_v4.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e0906792b8c73bb134b0ad66733d98c379ebbc65 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_v4.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/levit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/levit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7eb6d8799de3e3fb43e2511f4c2883a1dd3726f6 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/levit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mambaout.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mambaout.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c112e4566edad1c93471228f2bb8d925430baa34 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mambaout.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/maxxvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/maxxvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b9c04f894c7987b6b39141d5177d18055851010 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/maxxvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/metaformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/metaformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..34e826554142268a139c260ad2152898891b7b2c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/metaformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mlp_mixer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mlp_mixer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6284cf60875c08a9965bfb293750ea113f98f8c3 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mlp_mixer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mobilenetv3.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mobilenetv3.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8b129e15698c2181967c292dae73e69d1696aabe Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mobilenetv3.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mobilevit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mobilevit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..02e6353d8335429b2a5812f925b00ae82ffe48d2 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mobilevit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mvitv2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mvitv2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b1865e626085b72252f21fe0ebdb9b3c400e0e87 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mvitv2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nasnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nasnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c3ca50958ff6f4ac9095dcceb6617bb3d4f528c5 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nasnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nest.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nest.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0488e70bf0360c15553c34f754f2398f4b5d33f0 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nest.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nextvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nextvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4b9324623ace7c7730606db76a0ed631b7eeef10 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nextvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nfnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nfnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..91323fc285e2688a0453502206b5f5ace4f11d99 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nfnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/pit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/pit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a28b284b6d93980b20a4b34c792e3008d6835166 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/pit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/pnasnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/pnasnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e891df8f9ef37557762abb150923e06cbdc47761 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/pnasnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/pvt_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/pvt_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7bf0eb6d3fad51ecc107adb6249bd4c0e5b9d68e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/pvt_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/rdnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/rdnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..64474721fc303e610be66607a4ac169d1b1d5f26 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/rdnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/regnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/regnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7031a6d71ab8ec3017f94aa1def1def573ccf956 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/regnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/repghost.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/repghost.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..15f512834cf85f0980718d93f95fe40dfcb22384 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/repghost.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/repvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/repvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..976fc101f861ec4bb01c8527780e9d1d313ab08f Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/repvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/res2net.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/res2net.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b36cbcb7533c72f824ff805da4b30a0991f880c2 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/res2net.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/resnest.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/resnest.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a7a82d5f904dce3e168e1df0e904d0d7f8eda209 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/resnest.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/resnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/resnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8b89d2f00e665933a72ded2b599363eb794ea4f1 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/resnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/resnetv2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/resnetv2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d794889b37e75c2f020dfca510a4ae641d12cef Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/resnetv2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/rexnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/rexnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c5076d1e941c5bc1fd1b4d345da26b3cc021a90 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/rexnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/selecsls.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/selecsls.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4354da3b430ef6d0a575f188674e52b2da69fa98 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/selecsls.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/senet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/senet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..552bfe78c1cca39d87ce659dc715b2c351665bd3 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/senet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/sequencer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/sequencer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dca4fdcacd12917db0a1c00c1bd2d38b4db337ad Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/sequencer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/sknet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/sknet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8a66b8548a41818232d9aa6b2ca416fc81bed44 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/sknet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/swin_transformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/swin_transformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..75b5c0dd5ded34aba31d5f02b38d60f0f96c9688 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/swin_transformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fbb6193cb87feafe342947f7bcff8bc6a61dbd27 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2_cr.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2_cr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7f9b025adca0ed82a2d0e3f4734686d03e56aba3 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2_cr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/tiny_vit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/tiny_vit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..42e9a41cd4356f5ae942e0f67a88b339db4228bf Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/tiny_vit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/tnt.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/tnt.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3b4eba5c7d06cfee477fceb1e1af0665fe066871 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/tnt.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/tresnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/tresnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c2492cd1b6e9b5f7efc971b5717d44a30e8a5dae Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/tresnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/twins.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/twins.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..801dac38b235a1fb9cc0fa28cba248b49349d2e1 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/twins.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vgg.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vgg.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a6838c026b289032b4a628b6e4667ed8968d9c2a Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vgg.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/visformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/visformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..99a70356263a8bcaac24c1b67405e5633cfce5bf Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/visformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..28502203d9eea3e80e537964adf5e0c522da0263 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer_hybrid.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer_hybrid.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fa6a47715add38f6160a9c5186141bed22a9bef6 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vision_transformer_hybrid.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer_relpos.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer_relpos.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..13ad67f72c096f9cd1734299445b253a9b4578cc Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vision_transformer_relpos.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer_sam.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer_sam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e8d02b78ab9d88dcc53db6e26a8d1c5e7a8c4645 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vision_transformer_sam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vitamin.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vitamin.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ad1bbc019007130dc6d51e8934329613a5a7e137 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vitamin.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/volo.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/volo.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..08d325b5eefacc97647d09cffb575404089059a0 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/volo.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vovnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vovnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d4d28aaa376e93407a29d55b14b4d987ab4a6398 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vovnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/xception.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/xception.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..afad92a5cb9e41eccaccf7f75a914827d06bfc41 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/xception.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/xception_aligned.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/xception_aligned.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1a20d90e154fd03677c4671009d7550aa99d2d4f Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/xception_aligned.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/xcit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/xcit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0382c17986f7a072cece8c51f4ca66627c174432 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/xcit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/_builder.py b/pytorch-image-models/timm/models/_builder.py new file mode 100644 index 0000000000000000000000000000000000000000..482d370a945cb25bd53400ad547103070db037e9 --- /dev/null +++ b/pytorch-image-models/timm/models/_builder.py @@ -0,0 +1,482 @@ +import dataclasses +import logging +import os +from copy import deepcopy +from pathlib import Path +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +from torch import nn as nn +from torch.hub import load_state_dict_from_url + +from timm.models._features import FeatureListNet, FeatureDictNet, FeatureHookNet, FeatureGetterNet +from timm.models._features_fx import FeatureGraphNet +from timm.models._helpers import load_state_dict +from timm.models._hub import has_hf_hub, download_cached_file, check_cached_file, load_state_dict_from_hf,\ + load_custom_from_hf +from timm.models._manipulate import adapt_input_conv +from timm.models._pretrained import PretrainedCfg +from timm.models._prune import adapt_model_from_file +from timm.models._registry import get_pretrained_cfg + +_logger = logging.getLogger(__name__) + +# Global variables for rarely used pretrained checkpoint download progress and hash check. +# Use set_pretrained_download_progress / set_pretrained_check_hash functions to toggle. +_DOWNLOAD_PROGRESS = False +_CHECK_HASH = False +_USE_OLD_CACHE = int(os.environ.get('TIMM_USE_OLD_CACHE', 0)) > 0 + +__all__ = ['set_pretrained_download_progress', 'set_pretrained_check_hash', 'load_custom_pretrained', 'load_pretrained', + 'pretrained_cfg_for_features', 'resolve_pretrained_cfg', 'build_model_with_cfg'] + + +def _resolve_pretrained_source(pretrained_cfg): + cfg_source = pretrained_cfg.get('source', '') + pretrained_url = pretrained_cfg.get('url', None) + pretrained_file = pretrained_cfg.get('file', None) + pretrained_sd = pretrained_cfg.get('state_dict', None) + hf_hub_id = pretrained_cfg.get('hf_hub_id', None) + + # resolve where to load pretrained weights from + load_from = '' + pretrained_loc = '' + if cfg_source == 'hf-hub' and has_hf_hub(necessary=True): + # hf-hub specified as source via model identifier + load_from = 'hf-hub' + assert hf_hub_id + pretrained_loc = hf_hub_id + else: + # default source == timm or unspecified + if pretrained_sd: + # direct state_dict pass through is the highest priority + load_from = 'state_dict' + pretrained_loc = pretrained_sd + assert isinstance(pretrained_loc, dict) + elif pretrained_file: + # file load override is the second-highest priority if set + load_from = 'file' + pretrained_loc = pretrained_file + else: + old_cache_valid = False + if _USE_OLD_CACHE: + # prioritized old cached weights if exists and env var enabled + old_cache_valid = check_cached_file(pretrained_url) if pretrained_url else False + if not old_cache_valid and hf_hub_id and has_hf_hub(necessary=True): + # hf-hub available as alternate weight source in default_cfg + load_from = 'hf-hub' + pretrained_loc = hf_hub_id + elif pretrained_url: + load_from = 'url' + pretrained_loc = pretrained_url + + if load_from == 'hf-hub' and pretrained_cfg.get('hf_hub_filename', None): + # if a filename override is set, return tuple for location w/ (hub_id, filename) + pretrained_loc = pretrained_loc, pretrained_cfg['hf_hub_filename'] + return load_from, pretrained_loc + + +def set_pretrained_download_progress(enable=True): + """ Set download progress for pretrained weights on/off (globally). """ + global _DOWNLOAD_PROGRESS + _DOWNLOAD_PROGRESS = enable + + +def set_pretrained_check_hash(enable=True): + """ Set hash checking for pretrained weights on/off (globally). """ + global _CHECK_HASH + _CHECK_HASH = enable + + +def load_custom_pretrained( + model: nn.Module, + pretrained_cfg: Optional[Dict] = None, + load_fn: Optional[Callable] = None, + cache_dir: Optional[Union[str, Path]] = None, +): + r"""Loads a custom (read non .pth) weight file + + Downloads checkpoint file into cache-dir like torch.hub based loaders, but calls + a passed in custom load fun, or the `load_pretrained` model member fn. + + If the object is already present in `model_dir`, it's deserialized and returned. + The default value of `model_dir` is ``/checkpoints`` where + `hub_dir` is the directory returned by :func:`~torch.hub.get_dir`. + + Args: + model: The instantiated model to load weights into + pretrained_cfg: Default pretrained model cfg + load_fn: An external standalone fn that loads weights into provided model, otherwise a fn named + 'load_pretrained' on the model will be called if it exists + cache_dir: Override model checkpoint cache dir for this load + """ + pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None) + if not pretrained_cfg: + _logger.warning("Invalid pretrained config, cannot load weights.") + return + + load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg) + if not load_from: + _logger.warning("No pretrained weights exist for this model. Using random initialization.") + return + if load_from == 'hf-hub': + _logger.warning("Hugging Face hub not currently supported for custom load pretrained models.") + elif load_from == 'url': + pretrained_loc = download_cached_file( + pretrained_loc, + check_hash=_CHECK_HASH, + progress=_DOWNLOAD_PROGRESS, + cache_dir=cache_dir, + ) + + if load_fn is not None: + load_fn(model, pretrained_loc) + elif hasattr(model, 'load_pretrained'): + model.load_pretrained(pretrained_loc) + else: + _logger.warning("Valid function to load pretrained weights is not available, using random initialization.") + + +def load_pretrained( + model: nn.Module, + pretrained_cfg: Optional[Dict] = None, + num_classes: int = 1000, + in_chans: int = 3, + filter_fn: Optional[Callable] = None, + strict: bool = True, + cache_dir: Optional[Union[str, Path]] = None, +): + """ Load pretrained checkpoint + + Args: + model: PyTorch module + pretrained_cfg: Configuration for pretrained weights / target dataset + num_classes: Number of classes for target model. Will adapt pretrained if different. + in_chans: Number of input chans for target model. Will adapt pretrained if different. + filter_fn: state_dict filter fn for load (takes state_dict, model as args) + strict: Strict load of checkpoint + cache_dir: Override model checkpoint cache dir for this load + """ + pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None) + if not pretrained_cfg: + raise RuntimeError("Invalid pretrained config, cannot load weights. Use `pretrained=False` for random init.") + + load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg) + if load_from == 'state_dict': + _logger.info(f'Loading pretrained weights from state dict') + state_dict = pretrained_loc # pretrained_loc is the actual state dict for this override + elif load_from == 'file': + _logger.info(f'Loading pretrained weights from file ({pretrained_loc})') + if pretrained_cfg.get('custom_load', False): + model.load_pretrained(pretrained_loc) + return + else: + state_dict = load_state_dict(pretrained_loc) + elif load_from == 'url': + _logger.info(f'Loading pretrained weights from url ({pretrained_loc})') + if pretrained_cfg.get('custom_load', False): + pretrained_loc = download_cached_file( + pretrained_loc, + progress=_DOWNLOAD_PROGRESS, + check_hash=_CHECK_HASH, + cache_dir=cache_dir, + ) + model.load_pretrained(pretrained_loc) + return + else: + try: + state_dict = load_state_dict_from_url( + pretrained_loc, + map_location='cpu', + progress=_DOWNLOAD_PROGRESS, + check_hash=_CHECK_HASH, + weights_only=True, + model_dir=cache_dir, + ) + except TypeError: + state_dict = load_state_dict_from_url( + pretrained_loc, + map_location='cpu', + progress=_DOWNLOAD_PROGRESS, + check_hash=_CHECK_HASH, + model_dir=cache_dir, + ) + elif load_from == 'hf-hub': + _logger.info(f'Loading pretrained weights from Hugging Face hub ({pretrained_loc})') + if isinstance(pretrained_loc, (list, tuple)): + custom_load = pretrained_cfg.get('custom_load', False) + if isinstance(custom_load, str) and custom_load == 'hf': + load_custom_from_hf(*pretrained_loc, model, cache_dir=cache_dir) + return + else: + state_dict = load_state_dict_from_hf(*pretrained_loc, cache_dir=cache_dir) + else: + state_dict = load_state_dict_from_hf(pretrained_loc, weights_only=True, cache_dir=cache_dir) + else: + model_name = pretrained_cfg.get('architecture', 'this model') + raise RuntimeError(f"No pretrained weights exist for {model_name}. Use `pretrained=False` for random init.") + + if filter_fn is not None: + try: + state_dict = filter_fn(state_dict, model) + except TypeError as e: + # for backwards compat with filter fn that take one arg + state_dict = filter_fn(state_dict) + + input_convs = pretrained_cfg.get('first_conv', None) + if input_convs is not None and in_chans != 3: + if isinstance(input_convs, str): + input_convs = (input_convs,) + for input_conv_name in input_convs: + weight_name = input_conv_name + '.weight' + try: + state_dict[weight_name] = adapt_input_conv(in_chans, state_dict[weight_name]) + _logger.info( + f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)') + except NotImplementedError as e: + del state_dict[weight_name] + strict = False + _logger.warning( + f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.') + + classifiers = pretrained_cfg.get('classifier', None) + label_offset = pretrained_cfg.get('label_offset', 0) + if classifiers is not None: + if isinstance(classifiers, str): + classifiers = (classifiers,) + if num_classes != pretrained_cfg['num_classes']: + for classifier_name in classifiers: + # completely discard fully connected if model num_classes doesn't match pretrained weights + state_dict.pop(classifier_name + '.weight', None) + state_dict.pop(classifier_name + '.bias', None) + strict = False + elif label_offset > 0: + for classifier_name in classifiers: + # special case for pretrained weights with an extra background class in pretrained weights + classifier_weight = state_dict[classifier_name + '.weight'] + state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:] + classifier_bias = state_dict[classifier_name + '.bias'] + state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:] + + load_result = model.load_state_dict(state_dict, strict=strict) + if load_result.missing_keys: + _logger.info( + f'Missing keys ({", ".join(load_result.missing_keys)}) discovered while loading pretrained weights.' + f' This is expected if model is being adapted.') + if load_result.unexpected_keys: + _logger.warning( + f'Unexpected keys ({", ".join(load_result.unexpected_keys)}) found while loading pretrained weights.' + f' This may be expected if model is being adapted.') + + +def pretrained_cfg_for_features(pretrained_cfg): + pretrained_cfg = deepcopy(pretrained_cfg) + # remove default pretrained cfg fields that don't have much relevance for feature backbone + to_remove = ('num_classes', 'classifier', 'global_pool') # add default final pool size? + for tr in to_remove: + pretrained_cfg.pop(tr, None) + return pretrained_cfg + + +def _filter_kwargs(kwargs, names): + if not kwargs or not names: + return + for n in names: + kwargs.pop(n, None) + + +def _update_default_model_kwargs(pretrained_cfg, kwargs, kwargs_filter): + """ Update the default_cfg and kwargs before passing to model + + Args: + pretrained_cfg: input pretrained cfg (updated in-place) + kwargs: keyword args passed to model build fn (updated in-place) + kwargs_filter: keyword arg keys that must be removed before model __init__ + """ + # Set model __init__ args that can be determined by default_cfg (if not already passed as kwargs) + default_kwarg_names = ('num_classes', 'global_pool', 'in_chans') + if pretrained_cfg.get('fixed_input_size', False): + # if fixed_input_size exists and is True, model takes an img_size arg that fixes its input size + default_kwarg_names += ('img_size',) + + for n in default_kwarg_names: + # for legacy reasons, model __init__args uses img_size + in_chans as separate args while + # pretrained_cfg has one input_size=(C, H ,W) entry + if n == 'img_size': + input_size = pretrained_cfg.get('input_size', None) + if input_size is not None: + assert len(input_size) == 3 + kwargs.setdefault(n, input_size[-2:]) + elif n == 'in_chans': + input_size = pretrained_cfg.get('input_size', None) + if input_size is not None: + assert len(input_size) == 3 + kwargs.setdefault(n, input_size[0]) + elif n == 'num_classes': + default_val = pretrained_cfg.get(n, None) + # if default is < 0, don't pass through to model + if default_val is not None and default_val >= 0: + kwargs.setdefault(n, pretrained_cfg[n]) + else: + default_val = pretrained_cfg.get(n, None) + if default_val is not None: + kwargs.setdefault(n, pretrained_cfg[n]) + + # Filter keyword args for task specific model variants (some 'features only' models, etc.) + _filter_kwargs(kwargs, names=kwargs_filter) + + +def resolve_pretrained_cfg( + variant: str, + pretrained_cfg: Optional[Union[str, Dict[str, Any]]] = None, + pretrained_cfg_overlay: Optional[Dict[str, Any]] = None, +) -> PretrainedCfg: + model_with_tag = variant + pretrained_tag = None + if pretrained_cfg: + if isinstance(pretrained_cfg, dict): + # pretrained_cfg dict passed as arg, validate by converting to PretrainedCfg + pretrained_cfg = PretrainedCfg(**pretrained_cfg) + elif isinstance(pretrained_cfg, str): + pretrained_tag = pretrained_cfg + pretrained_cfg = None + + # fallback to looking up pretrained cfg in model registry by variant identifier + if not pretrained_cfg: + if pretrained_tag: + model_with_tag = '.'.join([variant, pretrained_tag]) + pretrained_cfg = get_pretrained_cfg(model_with_tag) + + if not pretrained_cfg: + _logger.warning( + f"No pretrained configuration specified for {model_with_tag} model. Using a default." + f" Please add a config to the model pretrained_cfg registry or pass explicitly.") + pretrained_cfg = PretrainedCfg() # instance with defaults + + pretrained_cfg_overlay = pretrained_cfg_overlay or {} + if not pretrained_cfg.architecture: + pretrained_cfg_overlay.setdefault('architecture', variant) + pretrained_cfg = dataclasses.replace(pretrained_cfg, **pretrained_cfg_overlay) + + return pretrained_cfg + + +def build_model_with_cfg( + model_cls: Callable, + variant: str, + pretrained: bool, + pretrained_cfg: Optional[Dict] = None, + pretrained_cfg_overlay: Optional[Dict] = None, + model_cfg: Optional[Any] = None, + feature_cfg: Optional[Dict] = None, + pretrained_strict: bool = True, + pretrained_filter_fn: Optional[Callable] = None, + cache_dir: Optional[Union[str, Path]] = None, + kwargs_filter: Optional[Tuple[str]] = None, + **kwargs, +): + """ Build model with specified default_cfg and optional model_cfg + + This helper fn aids in the construction of a model including: + * handling default_cfg and associated pretrained weight loading + * passing through optional model_cfg for models with config based arch spec + * features_only model adaptation + * pruning config / model adaptation + + Args: + model_cls: Model class + variant: Model variant name + pretrained: Load the pretrained weights + pretrained_cfg: Model's pretrained weight/task config + pretrained_cfg_overlay: Entries that will override those in pretrained_cfg + model_cfg: Model's architecture config + feature_cfg: Feature extraction adapter config + pretrained_strict: Load pretrained weights strictly + pretrained_filter_fn: Filter callable for pretrained weights + cache_dir: Override model cache dir for Hugging Face Hub and Torch checkpoints + kwargs_filter: Kwargs keys to filter (remove) before passing to model + **kwargs: Model args passed through to model __init__ + """ + pruned = kwargs.pop('pruned', False) + features = False + feature_cfg = feature_cfg or {} + + # resolve and update model pretrained config and model kwargs + pretrained_cfg = resolve_pretrained_cfg( + variant, + pretrained_cfg=pretrained_cfg, + pretrained_cfg_overlay=pretrained_cfg_overlay + ) + pretrained_cfg = pretrained_cfg.to_dict() + + _update_default_model_kwargs(pretrained_cfg, kwargs, kwargs_filter) + + # Setup for feature extraction wrapper done at end of this fn + if kwargs.pop('features_only', False): + features = True + feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4)) + if 'out_indices' in kwargs: + feature_cfg['out_indices'] = kwargs.pop('out_indices') + if 'feature_cls' in kwargs: + feature_cfg['feature_cls'] = kwargs.pop('feature_cls') + + # Instantiate the model + if model_cfg is None: + model = model_cls(**kwargs) + else: + model = model_cls(cfg=model_cfg, **kwargs) + model.pretrained_cfg = pretrained_cfg + model.default_cfg = model.pretrained_cfg # alias for backwards compat + + if pruned: + model = adapt_model_from_file(model, variant) + + # For classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats + num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000)) + if pretrained: + load_pretrained( + model, + pretrained_cfg=pretrained_cfg, + num_classes=num_classes_pretrained, + in_chans=kwargs.get('in_chans', 3), + filter_fn=pretrained_filter_fn, + strict=pretrained_strict, + cache_dir=cache_dir, + ) + + # Wrap the model in a feature extraction module if enabled + if features: + use_getter = False + if 'feature_cls' in feature_cfg: + feature_cls = feature_cfg.pop('feature_cls') + if isinstance(feature_cls, str): + feature_cls = feature_cls.lower() + + # flatten_sequential only valid for some feature extractors + if feature_cls not in ('dict', 'list', 'hook'): + feature_cfg.pop('flatten_sequential', None) + + if 'hook' in feature_cls: + feature_cls = FeatureHookNet + elif feature_cls == 'list': + feature_cls = FeatureListNet + elif feature_cls == 'dict': + feature_cls = FeatureDictNet + elif feature_cls == 'fx': + feature_cls = FeatureGraphNet + elif feature_cls == 'getter': + use_getter = True + feature_cls = FeatureGetterNet + else: + assert False, f'Unknown feature class {feature_cls}' + else: + feature_cls = FeatureListNet + + output_fmt = getattr(model, 'output_fmt', None) + if output_fmt is not None and not use_getter: # don't set default for intermediate feat getter + feature_cfg.setdefault('output_fmt', output_fmt) + + model = feature_cls(model, **feature_cfg) + model.pretrained_cfg = pretrained_cfg_for_features(pretrained_cfg) # add back pretrained cfg + model.default_cfg = model.pretrained_cfg # alias for rename backwards compat (default_cfg -> pretrained_cfg) + + return model diff --git a/pytorch-image-models/timm/models/_efficientnet_blocks.py b/pytorch-image-models/timm/models/_efficientnet_blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..c90d001a870cce57bb91e5f27e127f7bd9e95167 --- /dev/null +++ b/pytorch-image-models/timm/models/_efficientnet_blocks.py @@ -0,0 +1,702 @@ +""" EfficientNet, MobileNetV3, etc Blocks + +Hacked together by / Copyright 2019, Ross Wightman +""" +from typing import Callable, Dict, Optional, Type + +import torch +import torch.nn as nn +from torch.nn import functional as F + +from timm.layers import create_conv2d, DropPath, make_divisible, create_act_layer, create_aa, to_2tuple, LayerType,\ + ConvNormAct, get_norm_act_layer, MultiQueryAttention2d, Attention2d + +__all__ = [ + 'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv', 'InvertedResidual', 'CondConvResidual', 'EdgeResidual', + 'UniversalInvertedResidual', 'MobileAttention' +] + +ModuleType = Type[nn.Module] + + +def num_groups(group_size: Optional[int], channels: int): + if not group_size: # 0 or None + return 1 # normal conv with 1 group + else: + # NOTE group_size == 1 -> depthwise conv + assert channels % group_size == 0 + return channels // group_size + + +class SqueezeExcite(nn.Module): + """ Squeeze-and-Excitation w/ specific features for EfficientNet/MobileNet family + + Args: + in_chs (int): input channels to layer + rd_ratio (float): ratio of squeeze reduction + act_layer (nn.Module): activation layer of containing block + gate_layer (Callable): attention gate function + force_act_layer (nn.Module): override block's activation fn if this is set/bound + rd_round_fn (Callable): specify a fn to calculate rounding of reduced chs + """ + + def __init__( + self, + in_chs: int, + rd_ratio: float = 0.25, + rd_channels: Optional[int] = None, + act_layer: LayerType = nn.ReLU, + gate_layer: LayerType = nn.Sigmoid, + force_act_layer: Optional[LayerType] = None, + rd_round_fn: Optional[Callable] = None, + ): + super(SqueezeExcite, self).__init__() + if rd_channels is None: + rd_round_fn = rd_round_fn or round + rd_channels = rd_round_fn(in_chs * rd_ratio) + act_layer = force_act_layer or act_layer + self.conv_reduce = nn.Conv2d(in_chs, rd_channels, 1, bias=True) + self.act1 = create_act_layer(act_layer, inplace=True) + self.conv_expand = nn.Conv2d(rd_channels, in_chs, 1, bias=True) + self.gate = create_act_layer(gate_layer) + + def forward(self, x): + x_se = x.mean((2, 3), keepdim=True) + x_se = self.conv_reduce(x_se) + x_se = self.act1(x_se) + x_se = self.conv_expand(x_se) + return x * self.gate(x_se) + + +class ConvBnAct(nn.Module): + """ Conv + Norm Layer + Activation w/ optional skip connection + """ + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int, + stride: int = 1, + dilation: int = 1, + group_size: int = 0, + pad_type: str = '', + skip: bool = False, + act_layer: LayerType = nn.ReLU, + norm_layer: LayerType = nn.BatchNorm2d, + aa_layer: Optional[LayerType] = None, + drop_path_rate: float = 0., + ): + super(ConvBnAct, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + groups = num_groups(group_size, in_chs) + self.has_skip = skip and stride == 1 and in_chs == out_chs + use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation + + self.conv = create_conv2d( + in_chs, out_chs, kernel_size, + stride=1 if use_aa else stride, + dilation=dilation, groups=groups, padding=pad_type) + self.bn1 = norm_act_layer(out_chs, inplace=True) + self.aa = create_aa(aa_layer, channels=out_chs, stride=stride, enable=use_aa) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': # output of conv after act, same as block coutput + return dict(module='bn1', hook_type='forward', num_chs=self.conv.out_channels) + else: # location == 'bottleneck', block output + return dict(module='', num_chs=self.conv.out_channels) + + def forward(self, x): + shortcut = x + x = self.conv(x) + x = self.bn1(x) + x = self.aa(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + + +class DepthwiseSeparableConv(nn.Module): + """ Depthwise-separable block + Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion + (factor of 1.0). This is an alternative to having a IR with an optional first pw conv. + """ + def __init__( + self, + in_chs: int, + out_chs: int, + dw_kernel_size: int = 3, + stride: int = 1, + dilation: int = 1, + group_size: int = 1, + pad_type: str = '', + noskip: bool = False, + pw_kernel_size: int = 1, + pw_act: bool = False, + s2d: int = 0, + act_layer: LayerType = nn.ReLU, + norm_layer: LayerType = nn.BatchNorm2d, + aa_layer: Optional[LayerType] = None, + se_layer: Optional[ModuleType] = None, + drop_path_rate: float = 0., + ): + super(DepthwiseSeparableConv, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip + self.has_pw_act = pw_act # activation after point-wise conv + use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation + + # Space to depth + if s2d == 1: + sd_chs = int(in_chs * 4) + self.conv_s2d = create_conv2d(in_chs, sd_chs, kernel_size=2, stride=2, padding='same') + self.bn_s2d = norm_act_layer(sd_chs, sd_chs) + dw_kernel_size = (dw_kernel_size + 1) // 2 + dw_pad_type = 'same' if dw_kernel_size == 2 else pad_type + in_chs = sd_chs + use_aa = False # disable AA + else: + self.conv_s2d = None + self.bn_s2d = None + dw_pad_type = pad_type + + groups = num_groups(group_size, in_chs) + + self.conv_dw = create_conv2d( + in_chs, in_chs, dw_kernel_size, + stride=1 if use_aa else stride, + dilation=dilation, padding=dw_pad_type, groups=groups) + self.bn1 = norm_act_layer(in_chs, inplace=True) + self.aa = create_aa(aa_layer, channels=out_chs, stride=stride, enable=use_aa) + + # Squeeze-and-excitation + self.se = se_layer(in_chs, act_layer=act_layer) if se_layer else nn.Identity() + + self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type) + self.bn2 = norm_act_layer(out_chs, inplace=True, apply_act=self.has_pw_act) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': # after SE, input to PW + return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) + else: # location == 'bottleneck', block output + return dict(module='', num_chs=self.conv_pw.out_channels) + + def forward(self, x): + shortcut = x + if self.conv_s2d is not None: + x = self.conv_s2d(x) + x = self.bn_s2d(x) + x = self.conv_dw(x) + x = self.bn1(x) + x = self.aa(x) + x = self.se(x) + x = self.conv_pw(x) + x = self.bn2(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + + +class InvertedResidual(nn.Module): + """ Inverted residual block w/ optional SE + + Originally used in MobileNet-V2 - https://arxiv.org/abs/1801.04381v4, this layer is often + referred to as 'MBConv' for (Mobile inverted bottleneck conv) and is also used in + * MNasNet - https://arxiv.org/abs/1807.11626 + * EfficientNet - https://arxiv.org/abs/1905.11946 + * MobileNet-V3 - https://arxiv.org/abs/1905.02244 + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + dw_kernel_size: int = 3, + stride: int = 1, + dilation: int = 1, + group_size: int = 1, + pad_type: str = '', + noskip: bool = False, + exp_ratio: float = 1.0, + exp_kernel_size: int = 1, + pw_kernel_size: int = 1, + s2d: int = 0, + act_layer: LayerType = nn.ReLU, + norm_layer: LayerType = nn.BatchNorm2d, + aa_layer: Optional[LayerType] = None, + se_layer: Optional[ModuleType] = None, + conv_kwargs: Optional[Dict] = None, + drop_path_rate: float = 0., + ): + super(InvertedResidual, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + conv_kwargs = conv_kwargs or {} + self.has_skip = (in_chs == out_chs and stride == 1) and not noskip + use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation + + # Space to depth + if s2d == 1: + sd_chs = int(in_chs * 4) + self.conv_s2d = create_conv2d(in_chs, sd_chs, kernel_size=2, stride=2, padding='same') + self.bn_s2d = norm_act_layer(sd_chs, sd_chs) + dw_kernel_size = (dw_kernel_size + 1) // 2 + dw_pad_type = 'same' if dw_kernel_size == 2 else pad_type + in_chs = sd_chs + use_aa = False # disable AA + else: + self.conv_s2d = None + self.bn_s2d = None + dw_pad_type = pad_type + + mid_chs = make_divisible(in_chs * exp_ratio) + groups = num_groups(group_size, mid_chs) + + # Point-wise expansion + self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs) + self.bn1 = norm_act_layer(mid_chs, inplace=True) + + # Depth-wise convolution + self.conv_dw = create_conv2d( + mid_chs, mid_chs, dw_kernel_size, + stride=1 if use_aa else stride, + dilation=dilation, groups=groups, padding=dw_pad_type, **conv_kwargs) + self.bn2 = norm_act_layer(mid_chs, inplace=True) + self.aa = create_aa(aa_layer, channels=mid_chs, stride=stride, enable=use_aa) + + # Squeeze-and-excitation + self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() + + # Point-wise linear projection + self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) + self.bn3 = norm_act_layer(out_chs, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': # after SE, input to PWL + return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) + else: # location == 'bottleneck', block output + return dict(module='', num_chs=self.conv_pwl.out_channels) + + def forward(self, x): + shortcut = x + if self.conv_s2d is not None: + x = self.conv_s2d(x) + x = self.bn_s2d(x) + x = self.conv_pw(x) + x = self.bn1(x) + x = self.conv_dw(x) + x = self.bn2(x) + x = self.aa(x) + x = self.se(x) + x = self.conv_pwl(x) + x = self.bn3(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + + +class LayerScale2d(nn.Module): + def __init__(self, dim: int, init_values: float = 1e-5, inplace: bool = False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + + +class UniversalInvertedResidual(nn.Module): + """ Universal Inverted Residual Block (aka Universal Inverted Bottleneck, UIB) + + For MobileNetV4 - https://arxiv.org/abs/, referenced from + https://github.com/tensorflow/models/blob/d93c7e932de27522b2fa3b115f58d06d6f640537/official/vision/modeling/layers/nn_blocks.py#L778 + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + dw_kernel_size_start: int = 0, + dw_kernel_size_mid: int = 3, + dw_kernel_size_end: int = 0, + stride: int = 1, + dilation: int = 1, + group_size: int = 1, + pad_type: str = '', + noskip: bool = False, + exp_ratio: float = 1.0, + act_layer: LayerType = nn.ReLU, + norm_layer: LayerType = nn.BatchNorm2d, + aa_layer: Optional[LayerType] = None, + se_layer: Optional[ModuleType] = None, + conv_kwargs: Optional[Dict] = None, + drop_path_rate: float = 0., + layer_scale_init_value: Optional[float] = 1e-5, + ): + super(UniversalInvertedResidual, self).__init__() + conv_kwargs = conv_kwargs or {} + self.has_skip = (in_chs == out_chs and stride == 1) and not noskip + if stride > 1: + assert dw_kernel_size_start or dw_kernel_size_mid or dw_kernel_size_end + + # FIXME dilation isn't right w/ extra ks > 1 convs + if dw_kernel_size_start: + dw_start_stride = stride if not dw_kernel_size_mid else 1 + dw_start_groups = num_groups(group_size, in_chs) + self.dw_start = ConvNormAct( + in_chs, in_chs, dw_kernel_size_start, + stride=dw_start_stride, + dilation=dilation, # FIXME + groups=dw_start_groups, + padding=pad_type, + apply_act=False, + act_layer=act_layer, + norm_layer=norm_layer, + aa_layer=aa_layer, + **conv_kwargs, + ) + else: + self.dw_start = nn.Identity() + + # Point-wise expansion + mid_chs = make_divisible(in_chs * exp_ratio) + self.pw_exp = ConvNormAct( + in_chs, mid_chs, 1, + padding=pad_type, + act_layer=act_layer, + norm_layer=norm_layer, + **conv_kwargs, + ) + + # Middle depth-wise convolution + if dw_kernel_size_mid: + groups = num_groups(group_size, mid_chs) + self.dw_mid = ConvNormAct( + mid_chs, mid_chs, dw_kernel_size_mid, + stride=stride, + dilation=dilation, # FIXME + groups=groups, + padding=pad_type, + act_layer=act_layer, + norm_layer=norm_layer, + aa_layer=aa_layer, + **conv_kwargs, + ) + else: + # keeping mid as identity so it can be hooked more easily for features + self.dw_mid = nn.Identity() + + # Squeeze-and-excitation + self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() + + # Point-wise linear projection + self.pw_proj = ConvNormAct( + mid_chs, out_chs, 1, + padding=pad_type, + apply_act=False, + act_layer=act_layer, + norm_layer=norm_layer, + **conv_kwargs, + ) + + if dw_kernel_size_end: + dw_end_stride = stride if not dw_kernel_size_start and not dw_kernel_size_mid else 1 + dw_end_groups = num_groups(group_size, out_chs) + if dw_end_stride > 1: + assert not aa_layer + self.dw_end = ConvNormAct( + out_chs, out_chs, dw_kernel_size_end, + stride=dw_end_stride, + dilation=dilation, + groups=dw_end_groups, + padding=pad_type, + apply_act=False, + act_layer=act_layer, + norm_layer=norm_layer, + **conv_kwargs, + ) + else: + self.dw_end = nn.Identity() + + if layer_scale_init_value is not None: + self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value) + else: + self.layer_scale = nn.Identity() + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': # after SE, input to PWL + return dict(module='pw_proj.conv', hook_type='forward_pre', num_chs=self.pw_proj.conv.in_channels) + else: # location == 'bottleneck', block output + return dict(module='', num_chs=self.pw_proj.conv.out_channels) + + def forward(self, x): + shortcut = x + x = self.dw_start(x) + x = self.pw_exp(x) + x = self.dw_mid(x) + x = self.se(x) + x = self.pw_proj(x) + x = self.dw_end(x) + x = self.layer_scale(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + + +class MobileAttention(nn.Module): + """ Mobile Attention Block + + For MobileNetV4 - https://arxiv.org/abs/, referenced from + https://github.com/tensorflow/models/blob/d93c7e932de27522b2fa3b115f58d06d6f640537/official/vision/modeling/layers/nn_blocks.py#L1504 + """ + def __init__( + self, + in_chs: int, + out_chs: int, + stride: int = 1, + dw_kernel_size: int = 3, + dilation: int = 1, + group_size: int = 1, + pad_type: str = '', + num_heads: int = 8, + key_dim: int = 64, + value_dim: int = 64, + use_multi_query: bool = False, + query_strides: int = (1, 1), + kv_stride: int = 1, + cpe_dw_kernel_size: int = 3, + noskip: bool = False, + act_layer: LayerType = nn.ReLU, + norm_layer: LayerType = nn.BatchNorm2d, + aa_layer: Optional[LayerType] = None, + drop_path_rate: float = 0., + attn_drop: float = 0.0, + proj_drop: float = 0.0, + layer_scale_init_value: Optional[float] = 1e-5, + use_bias: bool = False, + use_cpe: bool = False, + ): + super(MobileAttention, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip + self.query_strides = to_2tuple(query_strides) + self.kv_stride = kv_stride + self.has_query_stride = any([s > 1 for s in self.query_strides]) + + # This CPE is different than the one suggested in the original paper. + # https://arxiv.org/abs/2102.10882 + # 1. Rather than adding one CPE before the attention blocks, we add a CPE + # into every attention block. + # 2. We replace the expensive Conv2D by a Seperable DW Conv. + if use_cpe: + self.conv_cpe_dw = create_conv2d( + in_chs, in_chs, + kernel_size=cpe_dw_kernel_size, + dilation=dilation, + depthwise=True, + bias=True, + ) + else: + self.conv_cpe_dw = None + + self.norm = norm_act_layer(in_chs, apply_act=False) + + if num_heads is None: + assert in_chs % key_dim == 0 + num_heads = in_chs // key_dim + + if use_multi_query: + self.attn = MultiQueryAttention2d( + in_chs, + dim_out=out_chs, + num_heads=num_heads, + key_dim=key_dim, + value_dim=value_dim, + query_strides=query_strides, + kv_stride=kv_stride, + dilation=dilation, + padding=pad_type, + dw_kernel_size=dw_kernel_size, + attn_drop=attn_drop, + proj_drop=proj_drop, + #bias=use_bias, # why not here if used w/ mhsa? + ) + else: + self.attn = Attention2d( + in_chs, + dim_out=out_chs, + num_heads=num_heads, + attn_drop=attn_drop, + proj_drop=proj_drop, + bias=use_bias, + ) + + if layer_scale_init_value is not None: + self.layer_scale = LayerScale2d(out_chs, layer_scale_init_value) + else: + self.layer_scale = nn.Identity() + + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': # after SE, input to PW + return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) + else: # location == 'bottleneck', block output + return dict(module='', num_chs=self.conv_pw.out_channels) + + def forward(self, x): + if self.conv_cpe_dw is not None: + x_cpe = self.conv_cpe_dw(x) + x = x + x_cpe + + shortcut = x + x = self.norm(x) + x = self.attn(x) + x = self.layer_scale(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + + return x + + +class CondConvResidual(InvertedResidual): + """ Inverted residual block w/ CondConv routing""" + + def __init__( + self, + in_chs: int, + out_chs: int, + dw_kernel_size: int = 3, + stride: int = 1, + dilation: int = 1, + group_size: int = 1, + pad_type: str = '', + noskip: bool = False, + exp_ratio: float = 1.0, + exp_kernel_size: int = 1, + pw_kernel_size: int = 1, + act_layer: LayerType = nn.ReLU, + norm_layer: LayerType = nn.BatchNorm2d, + aa_layer: Optional[LayerType] = None, + se_layer: Optional[ModuleType] = None, + num_experts: int = 0, + drop_path_rate: float = 0., + ): + + self.num_experts = num_experts + conv_kwargs = dict(num_experts=self.num_experts) + super(CondConvResidual, self).__init__( + in_chs, + out_chs, + dw_kernel_size=dw_kernel_size, + stride=stride, + dilation=dilation, + group_size=group_size, + pad_type=pad_type, + noskip=noskip, + exp_ratio=exp_ratio, + exp_kernel_size=exp_kernel_size, + pw_kernel_size=pw_kernel_size, + act_layer=act_layer, + norm_layer=norm_layer, + aa_layer=aa_layer, + se_layer=se_layer, + conv_kwargs=conv_kwargs, + drop_path_rate=drop_path_rate, + ) + self.routing_fn = nn.Linear(in_chs, self.num_experts) + + def forward(self, x): + shortcut = x + pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1) # CondConv routing + routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs)) + x = self.conv_pw(x, routing_weights) + x = self.bn1(x) + x = self.conv_dw(x, routing_weights) + x = self.bn2(x) + x = self.se(x) + x = self.conv_pwl(x, routing_weights) + x = self.bn3(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x + + +class EdgeResidual(nn.Module): + """ Residual block with expansion convolution followed by pointwise-linear w/ stride + + Originally introduced in `EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML` + - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html + + This layer is also called FusedMBConv in the MobileDet, EfficientNet-X, and EfficientNet-V2 papers + * MobileDet - https://arxiv.org/abs/2004.14525 + * EfficientNet-X - https://arxiv.org/abs/2102.05610 + * EfficientNet-V2 - https://arxiv.org/abs/2104.00298 + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + exp_kernel_size: int = 3, + stride: int = 1, + dilation: int = 1, + group_size: int = 0, + pad_type: str = '', + force_in_chs: int = 0, + noskip: bool = False, + exp_ratio: float = 1.0, + pw_kernel_size: int = 1, + act_layer: LayerType = nn.ReLU, + norm_layer: LayerType = nn.BatchNorm2d, + aa_layer: Optional[LayerType] = None, + se_layer: Optional[ModuleType] = None, + drop_path_rate: float = 0., + ): + super(EdgeResidual, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + if force_in_chs > 0: + mid_chs = make_divisible(force_in_chs * exp_ratio) + else: + mid_chs = make_divisible(in_chs * exp_ratio) + groups = num_groups(group_size, mid_chs) # NOTE: Using out_chs of conv_exp for groups calc + self.has_skip = (in_chs == out_chs and stride == 1) and not noskip + use_aa = aa_layer is not None and stride > 1 # FIXME handle dilation + + # Expansion convolution + self.conv_exp = create_conv2d( + in_chs, mid_chs, exp_kernel_size, + stride=1 if use_aa else stride, + dilation=dilation, groups=groups, padding=pad_type) + self.bn1 = norm_act_layer(mid_chs, inplace=True) + + self.aa = create_aa(aa_layer, channels=mid_chs, stride=stride, enable=use_aa) + + # Squeeze-and-excitation + self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() + + # Point-wise linear projection + self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type) + self.bn2 = norm_act_layer(out_chs, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() + + def feature_info(self, location): + if location == 'expansion': # after SE, before PWL + return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) + else: # location == 'bottleneck', block output + return dict(module='', num_chs=self.conv_pwl.out_channels) + + def forward(self, x): + shortcut = x + x = self.conv_exp(x) + x = self.bn1(x) + x = self.aa(x) + x = self.se(x) + x = self.conv_pwl(x) + x = self.bn2(x) + if self.has_skip: + x = self.drop_path(x) + shortcut + return x diff --git a/pytorch-image-models/timm/models/_efficientnet_builder.py b/pytorch-image-models/timm/models/_efficientnet_builder.py new file mode 100644 index 0000000000000000000000000000000000000000..24e47e847741a5258ee4674d7fa1798c60c62cc7 --- /dev/null +++ b/pytorch-image-models/timm/models/_efficientnet_builder.py @@ -0,0 +1,576 @@ +""" EfficientNet, MobileNetV3, etc Builder + +Assembles EfficieNet and related network feature blocks from string definitions. +Handles stride, dilation calculations, and selects feature extraction points. + +Hacked together by / Copyright 2019, Ross Wightman +""" +from typing import Callable, Optional + +import logging +import math +import re +from copy import deepcopy +from functools import partial +from typing import Any, Dict, List + +import torch.nn as nn + +from timm.layers import CondConv2d, get_condconv_initializer, get_act_layer, get_attn, make_divisible, LayerType +from ._efficientnet_blocks import * +from ._manipulate import named_modules + +__all__ = ["EfficientNetBuilder", "BlockArgs", "decode_arch_def", "efficientnet_init_weights", + 'resolve_bn_args', 'resolve_act_layer', 'round_channels', 'BN_MOMENTUM_TF_DEFAULT', 'BN_EPS_TF_DEFAULT'] + +_logger = logging.getLogger(__name__) + + +_DEBUG_BUILDER = False + +# Defaults used for Google/Tensorflow training of mobile networks /w RMSprop as per +# papers and TF reference implementations. PT momentum equiv for TF decay is (1 - TF decay) +# NOTE: momentum varies btw .99 and .9997 depending on source +# .99 in official TF TPU impl +# .9997 (/w .999 in search space) for paper +BN_MOMENTUM_TF_DEFAULT = 1 - 0.99 +BN_EPS_TF_DEFAULT = 1e-3 +_BN_ARGS_TF = dict(momentum=BN_MOMENTUM_TF_DEFAULT, eps=BN_EPS_TF_DEFAULT) + +BlockArgs = List[List[Dict[str, Any]]] + + +def get_bn_args_tf(): + return _BN_ARGS_TF.copy() + + +def resolve_bn_args(kwargs): + bn_args = {} + bn_momentum = kwargs.pop('bn_momentum', None) + if bn_momentum is not None: + bn_args['momentum'] = bn_momentum + bn_eps = kwargs.pop('bn_eps', None) + if bn_eps is not None: + bn_args['eps'] = bn_eps + return bn_args + + +def resolve_act_layer(kwargs, default='relu'): + return get_act_layer(kwargs.pop('act_layer', default)) + + +def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None, round_limit=0.9): + """Round number of filters based on depth multiplier.""" + if not multiplier: + return channels + return make_divisible(channels * multiplier, divisor, channel_min, round_limit=round_limit) + + +def _log_info_if(msg, condition): + if condition: + _logger.info(msg) + + +def _parse_ksize(ss): + if ss.isdigit(): + return int(ss) + else: + return [int(k) for k in ss.split('.')] + + +def _decode_block_str(block_str): + """ Decode block definition string + + Gets a list of block arg (dicts) through a string notation of arguments. + E.g. ir_r2_k3_s2_e1_i32_o16_se0.25_noskip + + All args can exist in any order with the exception of the leading string which + is assumed to indicate the block type. + + leading string - block type ( + ir = InvertedResidual, ds = DepthwiseSep, dsa = DeptwhiseSep with pw act, cn = ConvBnAct) + r - number of repeat blocks, + k - kernel size, + s - strides (1-9), + e - expansion ratio, + c - output channels, + se - squeeze/excitation ratio + n - activation fn ('re', 'r6', 'hs', or 'sw') + Args: + block_str: a string representation of block arguments. + Returns: + A list of block args (dicts) + Raises: + ValueError: if the string def not properly specified (TODO) + """ + assert isinstance(block_str, str) + ops = block_str.split('_') + block_type = ops[0] # take the block type off the front + ops = ops[1:] + options = {} + skip = None + for op in ops: + # string options being checked on individual basis, combine if they grow + if op == 'noskip': + skip = False # force no skip connection + elif op == 'skip': + skip = True # force a skip connection + elif op.startswith('n'): + # activation fn + key = op[0] + v = op[1:] + if v == 're': + value = get_act_layer('relu') + elif v == 'r6': + value = get_act_layer('relu6') + elif v == 'hs': + value = get_act_layer('hard_swish') + elif v == 'sw': + value = get_act_layer('swish') # aka SiLU + elif v == 'mi': + value = get_act_layer('mish') + else: + continue + options[key] = value + else: + # all numeric options + splits = re.split(r'(\d.*)', op) + if len(splits) >= 2: + key, value = splits[:2] + options[key] = value + + # if act_layer is None, the model default (passed to model init) will be used + act_layer = options['n'] if 'n' in options else None + start_kernel_size = _parse_ksize(options['a']) if 'a' in options else 1 + end_kernel_size = _parse_ksize(options['p']) if 'p' in options else 1 + force_in_chs = int(options['fc']) if 'fc' in options else 0 # FIXME hack to deal with in_chs issue in TPU def + num_repeat = int(options['r']) + + # each type of block has different valid arguments, fill accordingly + block_args = dict( + block_type=block_type, + out_chs=int(options['c']), + stride=int(options['s']), + act_layer=act_layer, + ) + if block_type == 'ir': + block_args.update(dict( + dw_kernel_size=_parse_ksize(options['k']), + exp_kernel_size=start_kernel_size, + pw_kernel_size=end_kernel_size, + exp_ratio=float(options['e']), + se_ratio=float(options.get('se', 0.)), + noskip=skip is False, + s2d=int(options.get('d', 0)) > 0, + )) + if 'cc' in options: + block_args['num_experts'] = int(options['cc']) + elif block_type == 'ds' or block_type == 'dsa': + block_args.update(dict( + dw_kernel_size=_parse_ksize(options['k']), + pw_kernel_size=end_kernel_size, + se_ratio=float(options.get('se', 0.)), + pw_act=block_type == 'dsa', + noskip=block_type == 'dsa' or skip is False, + s2d=int(options.get('d', 0)) > 0, + )) + elif block_type == 'er': + block_args.update(dict( + exp_kernel_size=_parse_ksize(options['k']), + pw_kernel_size=end_kernel_size, + exp_ratio=float(options['e']), + force_in_chs=force_in_chs, + se_ratio=float(options.get('se', 0.)), + noskip=skip is False, + )) + elif block_type == 'cn': + block_args.update(dict( + kernel_size=int(options['k']), + skip=skip is True, + )) + elif block_type == 'uir': + # override exp / proj kernels for start/end in uir block + start_kernel_size = _parse_ksize(options['a']) if 'a' in options else 0 + end_kernel_size = _parse_ksize(options['p']) if 'p' in options else 0 + block_args.update(dict( + dw_kernel_size_start=start_kernel_size, # overload exp ks arg for dw start + dw_kernel_size_mid=_parse_ksize(options['k']), + dw_kernel_size_end=end_kernel_size, # overload pw ks arg for dw end + exp_ratio=float(options['e']), + se_ratio=float(options.get('se', 0.)), + noskip=skip is False, + )) + elif block_type == 'mha': + kv_dim = int(options['d']) + block_args.update(dict( + dw_kernel_size=_parse_ksize(options['k']), + num_heads=int(options['h']), + key_dim=kv_dim, + value_dim=kv_dim, + kv_stride=int(options.get('v', 1)), + noskip=skip is False, + )) + elif block_type == 'mqa': + kv_dim = int(options['d']) + block_args.update(dict( + dw_kernel_size=_parse_ksize(options['k']), + num_heads=int(options['h']), + key_dim=kv_dim, + value_dim=kv_dim, + kv_stride=int(options.get('v', 1)), + noskip=skip is False, + )) + else: + assert False, 'Unknown block type (%s)' % block_type + + if 'gs' in options: + block_args['group_size'] = int(options['gs']) + + return block_args, num_repeat + + +def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='ceil'): + """ Per-stage depth scaling + Scales the block repeats in each stage. This depth scaling impl maintains + compatibility with the EfficientNet scaling method, while allowing sensible + scaling for other models that may have multiple block arg definitions in each stage. + """ + + # We scale the total repeat count for each stage, there may be multiple + # block arg defs per stage so we need to sum. + num_repeat = sum(repeats) + if depth_trunc == 'round': + # Truncating to int by rounding allows stages with few repeats to remain + # proportionally smaller for longer. This is a good choice when stage definitions + # include single repeat stages that we'd prefer to keep that way as long as possible + num_repeat_scaled = max(1, round(num_repeat * depth_multiplier)) + else: + # The default for EfficientNet truncates repeats to int via 'ceil'. + # Any multiplier > 1.0 will result in an increased depth for every stage. + num_repeat_scaled = int(math.ceil(num_repeat * depth_multiplier)) + + # Proportionally distribute repeat count scaling to each block definition in the stage. + # Allocation is done in reverse as it results in the first block being less likely to be scaled. + # The first block makes less sense to repeat in most of the arch definitions. + repeats_scaled = [] + for r in repeats[::-1]: + rs = max(1, round((r / num_repeat * num_repeat_scaled))) + repeats_scaled.append(rs) + num_repeat -= r + num_repeat_scaled -= rs + repeats_scaled = repeats_scaled[::-1] + + # Apply the calculated scaling to each block arg in the stage + sa_scaled = [] + for ba, rep in zip(stack_args, repeats_scaled): + sa_scaled.extend([deepcopy(ba) for _ in range(rep)]) + return sa_scaled + + +def decode_arch_def( + arch_def, + depth_multiplier=1.0, + depth_trunc='ceil', + experts_multiplier=1, + fix_first_last=False, + group_size=None, +): + """ Decode block architecture definition strings -> block kwargs + + Args: + arch_def: architecture definition strings, list of list of strings + depth_multiplier: network depth multiplier + depth_trunc: networ depth truncation mode when applying multiplier + experts_multiplier: CondConv experts multiplier + fix_first_last: fix first and last block depths when multiplier is applied + group_size: group size override for all blocks that weren't explicitly set in arch string + + Returns: + list of list of block kwargs + """ + arch_args = [] + if isinstance(depth_multiplier, tuple): + assert len(depth_multiplier) == len(arch_def) + else: + depth_multiplier = (depth_multiplier,) * len(arch_def) + for stack_idx, (block_strings, multiplier) in enumerate(zip(arch_def, depth_multiplier)): + assert isinstance(block_strings, list) + stack_args = [] + repeats = [] + for block_str in block_strings: + assert isinstance(block_str, str) + ba, rep = _decode_block_str(block_str) + if ba.get('num_experts', 0) > 0 and experts_multiplier > 1: + ba['num_experts'] *= experts_multiplier + if group_size is not None: + ba.setdefault('group_size', group_size) + stack_args.append(ba) + repeats.append(rep) + if fix_first_last and (stack_idx == 0 or stack_idx == len(arch_def) - 1): + arch_args.append(_scale_stage_depth(stack_args, repeats, 1.0, depth_trunc)) + else: + arch_args.append(_scale_stage_depth(stack_args, repeats, multiplier, depth_trunc)) + return arch_args + + +class EfficientNetBuilder: + """ Build Trunk Blocks + + This ended up being somewhat of a cross between + https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py + and + https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_builder.py + + """ + def __init__( + self, + output_stride: int = 32, + pad_type: str = '', + round_chs_fn: Callable = round_channels, + se_from_exp: bool = False, + act_layer: Optional[LayerType] = None, + norm_layer: Optional[LayerType] = None, + aa_layer: Optional[LayerType] = None, + se_layer: Optional[LayerType] = None, + drop_path_rate: float = 0., + layer_scale_init_value: Optional[float] = None, + feature_location: str = '', + ): + self.output_stride = output_stride + self.pad_type = pad_type + self.round_chs_fn = round_chs_fn + self.se_from_exp = se_from_exp # calculate se channel reduction from expanded (mid) chs + self.act_layer = act_layer + self.norm_layer = norm_layer + self.aa_layer = aa_layer + self.se_layer = get_attn(se_layer) + try: + self.se_layer(8, rd_ratio=1.0) # test if attn layer accepts rd_ratio arg + self.se_has_ratio = True + except TypeError: + self.se_has_ratio = False + self.drop_path_rate = drop_path_rate + self.layer_scale_init_value = layer_scale_init_value + if feature_location == 'depthwise': + # old 'depthwise' mode renamed 'expansion' to match TF impl, old expansion mode didn't make sense + _logger.warning("feature_location=='depthwise' is deprecated, using 'expansion'") + feature_location = 'expansion' + self.feature_location = feature_location + assert feature_location in ('bottleneck', 'expansion', '') + self.verbose = _DEBUG_BUILDER + + # state updated during build, consumed by model + self.in_chs = None + self.features = [] + + def _make_block(self, ba, block_idx, block_count): + drop_path_rate = self.drop_path_rate * block_idx / block_count + bt = ba.pop('block_type') + ba['in_chs'] = self.in_chs + ba['out_chs'] = self.round_chs_fn(ba['out_chs']) + s2d = ba.get('s2d', 0) + if s2d > 0: + # adjust while space2depth active + ba['out_chs'] *= 4 + if 'force_in_chs' in ba and ba['force_in_chs']: + # NOTE this is a hack to work around mismatch in TF EdgeEffNet impl + ba['force_in_chs'] = self.round_chs_fn(ba['force_in_chs']) + ba['pad_type'] = self.pad_type + # block act fn overrides the model default + ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer + assert ba['act_layer'] is not None + ba['norm_layer'] = self.norm_layer + ba['drop_path_rate'] = drop_path_rate + + if self.aa_layer is not None: + ba['aa_layer'] = self.aa_layer + + se_ratio = ba.pop('se_ratio', None) + if se_ratio and self.se_layer is not None: + if not self.se_from_exp: + # adjust se_ratio by expansion ratio if calculating se channels from block input + se_ratio /= ba.get('exp_ratio', 1.0) + if s2d == 1: + # adjust for start of space2depth + se_ratio /= 4 + if self.se_has_ratio: + ba['se_layer'] = partial(self.se_layer, rd_ratio=se_ratio) + else: + ba['se_layer'] = self.se_layer + + if bt == 'ir': + _log_info_if(' InvertedResidual {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = CondConvResidual(**ba) if ba.get('num_experts', 0) else InvertedResidual(**ba) + elif bt == 'ds' or bt == 'dsa': + _log_info_if(' DepthwiseSeparable {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = DepthwiseSeparableConv(**ba) + elif bt == 'er': + _log_info_if(' EdgeResidual {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = EdgeResidual(**ba) + elif bt == 'cn': + _log_info_if(' ConvBnAct {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = ConvBnAct(**ba) + elif bt == 'uir': + _log_info_if(' UniversalInvertedResidual {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = UniversalInvertedResidual(**ba, layer_scale_init_value=self.layer_scale_init_value) + elif bt == 'mqa': + _log_info_if(' MobileMultiQueryAttention {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = MobileAttention(**ba, use_multi_query=True, layer_scale_init_value=self.layer_scale_init_value) + elif bt == 'mha': + _log_info_if(' MobileMultiHeadAttention {}, Args: {}'.format(block_idx, str(ba)), self.verbose) + block = MobileAttention(**ba, layer_scale_init_value=self.layer_scale_init_value) + else: + assert False, 'Unknown block type (%s) while building model.' % bt + + self.in_chs = ba['out_chs'] # update in_chs for arg of next block + return block + + def __call__(self, in_chs, model_block_args): + """ Build the blocks + Args: + in_chs: Number of input-channels passed to first block + model_block_args: A list of lists, outer list defines stages, inner + list contains strings defining block configuration(s) + Return: + List of block stacks (each stack wrapped in nn.Sequential) + """ + _log_info_if('Building model trunk with %d stages...' % len(model_block_args), self.verbose) + self.in_chs = in_chs + total_block_count = sum([len(x) for x in model_block_args]) + total_block_idx = 0 + current_stride = 2 + current_dilation = 1 + stages = [] + if model_block_args[0][0]['stride'] > 1: + # if the first block starts with a stride, we need to extract first level feat from stem + feature_info = dict(module='bn1', num_chs=in_chs, stage=0, reduction=current_stride) + self.features.append(feature_info) + + # outer list of block_args defines the stacks + space2depth = 0 + for stack_idx, stack_args in enumerate(model_block_args): + last_stack = stack_idx + 1 == len(model_block_args) + _log_info_if('Stack: {}'.format(stack_idx), self.verbose) + assert isinstance(stack_args, list) + + blocks = [] + # each stack (stage of blocks) contains a list of block arguments + for block_idx, block_args in enumerate(stack_args): + last_block = block_idx + 1 == len(stack_args) + _log_info_if(' Block: {}'.format(block_idx), self.verbose) + + assert block_args['stride'] in (1, 2) + if block_idx >= 1: # only the first block in any stack can have a stride > 1 + block_args['stride'] = 1 + + if not space2depth and block_args.pop('s2d', False): + assert block_args['stride'] == 1 + space2depth = 1 + + if space2depth > 0: + # FIXME s2d is a WIP + if space2depth == 2 and block_args['stride'] == 2: + block_args['stride'] = 1 + # to end s2d region, need to correct expansion and se ratio relative to input + block_args['exp_ratio'] /= 4 + space2depth = 0 + else: + block_args['s2d'] = space2depth + + extract_features = False + if last_block: + next_stack_idx = stack_idx + 1 + extract_features = next_stack_idx >= len(model_block_args) or \ + model_block_args[next_stack_idx][0]['stride'] > 1 + + next_dilation = current_dilation + if block_args['stride'] > 1: + next_output_stride = current_stride * block_args['stride'] + if next_output_stride > self.output_stride: + next_dilation = current_dilation * block_args['stride'] + block_args['stride'] = 1 + _log_info_if(' Converting stride to dilation to maintain output_stride=={}'.format( + self.output_stride), self.verbose) + else: + current_stride = next_output_stride + block_args['dilation'] = current_dilation + if next_dilation != current_dilation: + current_dilation = next_dilation + + # create the block + block = self._make_block(block_args, total_block_idx, total_block_count) + blocks.append(block) + + if space2depth == 1: + space2depth = 2 + + # stash feature module name and channel info for model feature extraction + if extract_features: + feature_info = dict( + stage=stack_idx + 1, + reduction=current_stride, + **block.feature_info(self.feature_location), + ) + leaf_name = feature_info.get('module', '') + if leaf_name: + feature_info['module'] = '.'.join([f'blocks.{stack_idx}.{block_idx}', leaf_name]) + else: + assert last_block + feature_info['module'] = f'blocks.{stack_idx}' + self.features.append(feature_info) + + total_block_idx += 1 # incr global block idx (across all stacks) + stages.append(nn.Sequential(*blocks)) + return stages + + +def _init_weight_goog(m, n='', fix_group_fanout=True): + """ Weight initialization as per Tensorflow official implementations. + + Args: + m (nn.Module): module to init + n (str): module name + fix_group_fanout (bool): enable correct (matching Tensorflow TPU impl) fanout calculation w/ group convs + + Handles layers in EfficientNet, EfficientNet-CondConv, MixNet, MnasNet, MobileNetV3, etc: + * https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_model.py + * https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py + """ + if isinstance(m, CondConv2d): + fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + if fix_group_fanout: + fan_out //= m.groups + init_weight_fn = get_condconv_initializer( + lambda w: nn.init.normal_(w, 0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape) + init_weight_fn(m.weight) + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Conv2d): + fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + if fix_group_fanout: + fan_out //= m.groups + nn.init.normal_(m.weight, 0, math.sqrt(2.0 / fan_out)) + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.BatchNorm2d): + nn.init.ones_(m.weight) + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Linear): + fan_out = m.weight.size(0) # fan-out + fan_in = 0 + if 'routing_fn' in n: + fan_in = m.weight.size(1) + init_range = 1.0 / math.sqrt(fan_in + fan_out) + nn.init.uniform_(m.weight, -init_range, init_range) + nn.init.zeros_(m.bias) + + +def efficientnet_init_weights(model: nn.Module, init_fn=None): + init_fn = init_fn or _init_weight_goog + for n, m in model.named_modules(): + init_fn(m, n) + + # iterate and call any module.init_weights() fn, children first + for n, m in named_modules(model): + if hasattr(m, 'init_weights'): + m.init_weights() diff --git a/pytorch-image-models/timm/models/_factory.py b/pytorch-image-models/timm/models/_factory.py new file mode 100644 index 0000000000000000000000000000000000000000..b347bc4deff2a3131cba34b607bace1e1d6d456d --- /dev/null +++ b/pytorch-image-models/timm/models/_factory.py @@ -0,0 +1,137 @@ +import os +from pathlib import Path +from typing import Any, Dict, Optional, Union +from urllib.parse import urlsplit + +from timm.layers import set_layer_config +from ._helpers import load_checkpoint +from ._hub import load_model_config_from_hf +from ._pretrained import PretrainedCfg +from ._registry import is_model, model_entrypoint, split_model_name_tag + + +__all__ = ['parse_model_name', 'safe_model_name', 'create_model'] + + +def parse_model_name(model_name: str): + if model_name.startswith('hf_hub'): + # NOTE for backwards compat, deprecate hf_hub use + model_name = model_name.replace('hf_hub', 'hf-hub') + parsed = urlsplit(model_name) + assert parsed.scheme in ('', 'timm', 'hf-hub') + if parsed.scheme == 'hf-hub': + # FIXME may use fragment as revision, currently `@` in URI path + return parsed.scheme, parsed.path + else: + model_name = os.path.split(parsed.path)[-1] + return 'timm', model_name + + +def safe_model_name(model_name: str, remove_source: bool = True): + # return a filename / path safe model name + def make_safe(name): + return ''.join(c if c.isalnum() else '_' for c in name).rstrip('_') + if remove_source: + model_name = parse_model_name(model_name)[-1] + return make_safe(model_name) + + +def create_model( + model_name: str, + pretrained: bool = False, + pretrained_cfg: Optional[Union[str, Dict[str, Any], PretrainedCfg]] = None, + pretrained_cfg_overlay: Optional[Dict[str, Any]] = None, + checkpoint_path: Optional[Union[str, Path]] = None, + cache_dir: Optional[Union[str, Path]] = None, + scriptable: Optional[bool] = None, + exportable: Optional[bool] = None, + no_jit: Optional[bool] = None, + **kwargs, +): + """Create a model. + + Lookup model's entrypoint function and pass relevant args to create a new model. + + Tip: + **kwargs will be passed through entrypoint fn to ``timm.models.build_model_with_cfg()`` + and then the model class __init__(). kwargs values set to None are pruned before passing. + + Args: + model_name: Name of model to instantiate. + pretrained: If set to `True`, load pretrained ImageNet-1k weights. + pretrained_cfg: Pass in an external pretrained_cfg for model. + pretrained_cfg_overlay: Replace key-values in base pretrained_cfg with these. + checkpoint_path: Path of checkpoint to load _after_ the model is initialized. + cache_dir: Override model cache dir for Hugging Face Hub and Torch checkpoints. + scriptable: Set layer config so that model is jit scriptable (not working for all models yet). + exportable: Set layer config so that model is traceable / ONNX exportable (not fully impl/obeyed yet). + no_jit: Set layer config so that model doesn't utilize jit scripted layers (so far activations only). + + Keyword Args: + drop_rate (float): Classifier dropout rate for training. + drop_path_rate (float): Stochastic depth drop rate for training. + global_pool (str): Classifier global pooling type. + + Example: + + ```py + >>> from timm import create_model + + >>> # Create a MobileNetV3-Large model with no pretrained weights. + >>> model = create_model('mobilenetv3_large_100') + + >>> # Create a MobileNetV3-Large model with pretrained weights. + >>> model = create_model('mobilenetv3_large_100', pretrained=True) + >>> model.num_classes + 1000 + + >>> # Create a MobileNetV3-Large model with pretrained weights and a new head with 10 classes. + >>> model = create_model('mobilenetv3_large_100', pretrained=True, num_classes=10) + >>> model.num_classes + 10 + + >>> # Create a Dinov2 small model with pretrained weights and save weights in a custom directory. + >>> model = create_model('vit_small_patch14_dinov2.lvd142m', pretrained=True, cache_dir="/data/my-models") + >>> # Data will be stored at `/data/my-models/models--timm--vit_small_patch14_dinov2.lvd142m/` + ``` + """ + # Parameters that aren't supported by all models or are intended to only override model defaults if set + # should default to None in command line args/cfg. Remove them if they are present and not set so that + # non-supporting models don't break and default args remain in effect. + kwargs = {k: v for k, v in kwargs.items() if v is not None} + + model_source, model_name = parse_model_name(model_name) + if model_source == 'hf-hub': + assert not pretrained_cfg, 'pretrained_cfg should not be set when sourcing model from Hugging Face Hub.' + # For model names specified in the form `hf-hub:path/architecture_name@revision`, + # load model weights + pretrained_cfg from Hugging Face hub. + pretrained_cfg, model_name, model_args = load_model_config_from_hf( + model_name, + cache_dir=cache_dir, + ) + if model_args: + for k, v in model_args.items(): + kwargs.setdefault(k, v) + else: + model_name, pretrained_tag = split_model_name_tag(model_name) + if pretrained_tag and not pretrained_cfg: + # a valid pretrained_cfg argument takes priority over tag in model name + pretrained_cfg = pretrained_tag + + if not is_model(model_name): + raise RuntimeError('Unknown model (%s)' % model_name) + + create_fn = model_entrypoint(model_name) + with set_layer_config(scriptable=scriptable, exportable=exportable, no_jit=no_jit): + model = create_fn( + pretrained=pretrained, + pretrained_cfg=pretrained_cfg, + pretrained_cfg_overlay=pretrained_cfg_overlay, + cache_dir=cache_dir, + **kwargs, + ) + + if checkpoint_path: + load_checkpoint(model, checkpoint_path) + + return model diff --git a/pytorch-image-models/timm/models/_features.py b/pytorch-image-models/timm/models/_features.py new file mode 100644 index 0000000000000000000000000000000000000000..14d174f5d4ee4fef71bd1c29d00fe40e91794b04 --- /dev/null +++ b/pytorch-image-models/timm/models/_features.py @@ -0,0 +1,484 @@ +""" PyTorch Feature Extraction Helpers + +A collection of classes, functions, modules to help extract features from models +and provide a common interface for describing them. + +The return_layers, module re-writing idea inspired by torchvision IntermediateLayerGetter +https://github.com/pytorch/vision/blob/d88d8961ae51507d0cb680329d985b1488b1b76b/torchvision/models/_utils.py + +Hacked together by / Copyright 2020 Ross Wightman +""" +from collections import OrderedDict, defaultdict +from copy import deepcopy +from functools import partial +from typing import Dict, List, Optional, Sequence, Tuple, Union + +import torch +import torch.nn as nn +from torch.utils.checkpoint import checkpoint + +from timm.layers import Format, _assert + + +__all__ = [ + 'FeatureInfo', 'FeatureHooks', 'FeatureDictNet', 'FeatureListNet', 'FeatureHookNet', 'FeatureGetterNet', + 'feature_take_indices' +] + + +def feature_take_indices( + num_features: int, + indices: Optional[Union[int, List[int]]] = None, + as_set: bool = False, +) -> Tuple[List[int], int]: + """ Determine the absolute feature indices to 'take' from. + + Note: This function can be called in forwar() so must be torchscript compatible, + which requires some incomplete typing and workaround hacks. + + Args: + num_features: total number of features to select from + indices: indices to select, + None -> select all + int -> select last n + list/tuple of int -> return specified (-ve indices specify from end) + as_set: return as a set + + Returns: + List (or set) of absolute (from beginning) indices, Maximum index + """ + if indices is None: + indices = num_features # all features if None + + if isinstance(indices, int): + # convert int -> last n indices + _assert(0 < indices <= num_features, f'last-n ({indices}) is out of range (1 to {num_features})') + take_indices = [num_features - indices + i for i in range(indices)] + else: + take_indices: List[int] = [] + for i in indices: + idx = num_features + i if i < 0 else i + _assert(0 <= idx < num_features, f'feature index {idx} is out of range (0 to {num_features - 1})') + take_indices.append(idx) + + if not torch.jit.is_scripting() and as_set: + return set(take_indices), max(take_indices) + + return take_indices, max(take_indices) + + +def _out_indices_as_tuple(x: Union[int, Tuple[int, ...]]) -> Tuple[int, ...]: + if isinstance(x, int): + # if indices is an int, take last N features + return tuple(range(-x, 0)) + return tuple(x) + + +OutIndicesT = Union[int, Tuple[int, ...]] + + +class FeatureInfo: + + def __init__( + self, + feature_info: List[Dict], + out_indices: OutIndicesT, + ): + out_indices = _out_indices_as_tuple(out_indices) + prev_reduction = 1 + for i, fi in enumerate(feature_info): + # sanity check the mandatory fields, there may be additional fields depending on the model + assert 'num_chs' in fi and fi['num_chs'] > 0 + assert 'reduction' in fi and fi['reduction'] >= prev_reduction + prev_reduction = fi['reduction'] + assert 'module' in fi + fi.setdefault('index', i) + self.out_indices = out_indices + self.info = feature_info + + def from_other(self, out_indices: OutIndicesT): + out_indices = _out_indices_as_tuple(out_indices) + return FeatureInfo(deepcopy(self.info), out_indices) + + def get(self, key: str, idx: Optional[Union[int, List[int]]] = None): + """ Get value by key at specified index (indices) + if idx == None, returns value for key at each output index + if idx is an integer, return value for that feature module index (ignoring output indices) + if idx is a list/tuple, return value for each module index (ignoring output indices) + """ + if idx is None: + return [self.info[i][key] for i in self.out_indices] + if isinstance(idx, (tuple, list)): + return [self.info[i][key] for i in idx] + else: + return self.info[idx][key] + + def get_dicts(self, keys: Optional[List[str]] = None, idx: Optional[Union[int, List[int]]] = None): + """ return info dicts for specified keys (or all if None) at specified indices (or out_indices if None) + """ + if idx is None: + if keys is None: + return [self.info[i] for i in self.out_indices] + else: + return [{k: self.info[i][k] for k in keys} for i in self.out_indices] + if isinstance(idx, (tuple, list)): + return [self.info[i] if keys is None else {k: self.info[i][k] for k in keys} for i in idx] + else: + return self.info[idx] if keys is None else {k: self.info[idx][k] for k in keys} + + def channels(self, idx: Optional[Union[int, List[int]]] = None): + """ feature channels accessor + """ + return self.get('num_chs', idx) + + def reduction(self, idx: Optional[Union[int, List[int]]] = None): + """ feature reduction (output stride) accessor + """ + return self.get('reduction', idx) + + def module_name(self, idx: Optional[Union[int, List[int]]] = None): + """ feature module name accessor + """ + return self.get('module', idx) + + def __getitem__(self, item): + return self.info[item] + + def __len__(self): + return len(self.info) + + +class FeatureHooks: + """ Feature Hook Helper + + This module helps with the setup and extraction of hooks for extracting features from + internal nodes in a model by node name. + + FIXME This works well in eager Python but needs redesign for torchscript. + """ + + def __init__( + self, + hooks: Sequence[Union[str, Dict]], + named_modules: dict, + out_map: Sequence[Union[int, str]] = None, + default_hook_type: str = 'forward', + ): + # setup feature hooks + self._feature_outputs = defaultdict(OrderedDict) + self._handles = [] + modules = {k: v for k, v in named_modules} + for i, h in enumerate(hooks): + hook_name = h if isinstance(h, str) else h['module'] + m = modules[hook_name] + hook_id = out_map[i] if out_map else hook_name + hook_fn = partial(self._collect_output_hook, hook_id) + hook_type = default_hook_type + if isinstance(h, dict): + hook_type = h.get('hook_type', default_hook_type) + if hook_type == 'forward_pre': + handle = m.register_forward_pre_hook(hook_fn) + elif hook_type == 'forward': + handle = m.register_forward_hook(hook_fn) + else: + assert False, "Unsupported hook type" + self._handles.append(handle) + + def _collect_output_hook(self, hook_id, *args): + x = args[-1] # tensor we want is last argument, output for fwd, input for fwd_pre + if isinstance(x, tuple): + x = x[0] # unwrap input tuple + self._feature_outputs[x.device][hook_id] = x + + def get_output(self, device) -> Dict[str, torch.tensor]: + output = self._feature_outputs[device] + self._feature_outputs[device] = OrderedDict() # clear after reading + return output + + +def _module_list(module, flatten_sequential=False): + # a yield/iter would be better for this but wouldn't be compatible with torchscript + ml = [] + for name, module in module.named_children(): + if flatten_sequential and isinstance(module, nn.Sequential): + # first level of Sequential containers is flattened into containing model + for child_name, child_module in module.named_children(): + combined = [name, child_name] + ml.append(('_'.join(combined), '.'.join(combined), child_module)) + else: + ml.append((name, name, module)) + return ml + + +def _get_feature_info(net, out_indices: OutIndicesT): + feature_info = getattr(net, 'feature_info') + if isinstance(feature_info, FeatureInfo): + return feature_info.from_other(out_indices) + elif isinstance(feature_info, (list, tuple)): + return FeatureInfo(net.feature_info, out_indices) + else: + assert False, "Provided feature_info is not valid" + + +def _get_return_layers(feature_info, out_map): + module_names = feature_info.module_name() + return_layers = {} + for i, name in enumerate(module_names): + return_layers[name] = out_map[i] if out_map is not None else feature_info.out_indices[i] + return return_layers + + +class FeatureDictNet(nn.ModuleDict): + """ Feature extractor with OrderedDict return + + Wrap a model and extract features as specified by the out indices, the network is + partially re-built from contained modules. + + There is a strong assumption that the modules have been registered into the model in the same + order as they are used. There should be no reuse of the same nn.Module more than once, including + trivial modules like `self.relu = nn.ReLU`. + + Only submodules that are directly assigned to the model class (`model.feature1`) or at most + one Sequential container deep (`model.features.1`, with flatten_sequent=True) can be captured. + All Sequential containers that are directly assigned to the original model will have their + modules assigned to this module with the name `model.features.1` being changed to `model.features_1` + """ + def __init__( + self, + model: nn.Module, + out_indices: OutIndicesT = (0, 1, 2, 3, 4), + out_map: Sequence[Union[int, str]] = None, + output_fmt: str = 'NCHW', + feature_concat: bool = False, + flatten_sequential: bool = False, + ): + """ + Args: + model: Model from which to extract features. + out_indices: Output indices of the model features to extract. + out_map: Return id mapping for each output index, otherwise str(index) is used. + feature_concat: Concatenate intermediate features that are lists or tuples instead of selecting + first element e.g. `x[0]` + flatten_sequential: Flatten first two-levels of sequential modules in model (re-writes model modules) + """ + super(FeatureDictNet, self).__init__() + self.feature_info = _get_feature_info(model, out_indices) + self.output_fmt = Format(output_fmt) + self.concat = feature_concat + self.grad_checkpointing = False + self.return_layers = {} + + return_layers = _get_return_layers(self.feature_info, out_map) + modules = _module_list(model, flatten_sequential=flatten_sequential) + remaining = set(return_layers.keys()) + layers = OrderedDict() + for new_name, old_name, module in modules: + layers[new_name] = module + if old_name in remaining: + # return id has to be consistently str type for torchscript + self.return_layers[new_name] = str(return_layers[old_name]) + remaining.remove(old_name) + if not remaining: + break + assert not remaining and len(self.return_layers) == len(return_layers), \ + f'Return layers ({remaining}) are not present in model' + self.update(layers) + + def set_grad_checkpointing(self, enable: bool = True): + self.grad_checkpointing = enable + + def _collect(self, x) -> (Dict[str, torch.Tensor]): + out = OrderedDict() + for i, (name, module) in enumerate(self.items()): + if self.grad_checkpointing and not torch.jit.is_scripting(): + # Skipping checkpoint of first module because need a gradient at input + # Skipping last because networks with in-place ops might fail w/ checkpointing enabled + # NOTE: first_or_last module could be static, but recalc in is_scripting guard to avoid jit issues + first_or_last_module = i == 0 or i == max(len(self) - 1, 0) + x = module(x) if first_or_last_module else checkpoint(module, x) + else: + x = module(x) + + if name in self.return_layers: + out_id = self.return_layers[name] + if isinstance(x, (tuple, list)): + # If model tap is a tuple or list, concat or select first element + # FIXME this may need to be more generic / flexible for some nets + out[out_id] = torch.cat(x, 1) if self.concat else x[0] + else: + out[out_id] = x + return out + + def forward(self, x) -> Dict[str, torch.Tensor]: + return self._collect(x) + + +class FeatureListNet(FeatureDictNet): + """ Feature extractor with list return + + A specialization of FeatureDictNet that always returns features as a list (values() of dict). + """ + def __init__( + self, + model: nn.Module, + out_indices: OutIndicesT = (0, 1, 2, 3, 4), + output_fmt: str = 'NCHW', + feature_concat: bool = False, + flatten_sequential: bool = False, + ): + """ + Args: + model: Model from which to extract features. + out_indices: Output indices of the model features to extract. + feature_concat: Concatenate intermediate features that are lists or tuples instead of selecting + first element e.g. `x[0]` + flatten_sequential: Flatten first two-levels of sequential modules in model (re-writes model modules) + """ + super().__init__( + model, + out_indices=out_indices, + output_fmt=output_fmt, + feature_concat=feature_concat, + flatten_sequential=flatten_sequential, + ) + + def forward(self, x) -> (List[torch.Tensor]): + return list(self._collect(x).values()) + + +class FeatureHookNet(nn.ModuleDict): + """ FeatureHookNet + + Wrap a model and extract features specified by the out indices using forward/forward-pre hooks. + + If `no_rewrite` is True, features are extracted via hooks without modifying the underlying + network in any way. + + If `no_rewrite` is False, the model will be re-written as in the + FeatureList/FeatureDict case by folding first to second (Sequential only) level modules into this one. + + FIXME this does not currently work with Torchscript, see FeatureHooks class + """ + def __init__( + self, + model: nn.Module, + out_indices: OutIndicesT = (0, 1, 2, 3, 4), + out_map: Optional[Sequence[Union[int, str]]] = None, + return_dict: bool = False, + output_fmt: str = 'NCHW', + no_rewrite: Optional[bool] = None, + flatten_sequential: bool = False, + default_hook_type: str = 'forward', + ): + """ + + Args: + model: Model from which to extract features. + out_indices: Output indices of the model features to extract. + out_map: Return id mapping for each output index, otherwise str(index) is used. + return_dict: Output features as a dict. + no_rewrite: Enforce that model is not re-written if True, ie no modules are removed / changed. + flatten_sequential arg must also be False if this is set True. + flatten_sequential: Re-write modules by flattening first two levels of nn.Sequential containers. + default_hook_type: The default hook type to use if not specified in model.feature_info. + """ + super().__init__() + assert not torch.jit.is_scripting() + self.feature_info = _get_feature_info(model, out_indices) + self.return_dict = return_dict + self.output_fmt = Format(output_fmt) + self.grad_checkpointing = False + if no_rewrite is None: + no_rewrite = not flatten_sequential + layers = OrderedDict() + hooks = [] + if no_rewrite: + assert not flatten_sequential + if hasattr(model, 'reset_classifier'): # make sure classifier is removed? + model.reset_classifier(0) + layers['body'] = model + hooks.extend(self.feature_info.get_dicts()) + else: + modules = _module_list(model, flatten_sequential=flatten_sequential) + remaining = { + f['module']: f['hook_type'] if 'hook_type' in f else default_hook_type + for f in self.feature_info.get_dicts() + } + for new_name, old_name, module in modules: + layers[new_name] = module + for fn, fm in module.named_modules(prefix=old_name): + if fn in remaining: + hooks.append(dict(module=fn, hook_type=remaining[fn])) + del remaining[fn] + if not remaining: + break + assert not remaining, f'Return layers ({remaining}) are not present in model' + self.update(layers) + self.hooks = FeatureHooks(hooks, model.named_modules(), out_map=out_map) + + def set_grad_checkpointing(self, enable: bool = True): + self.grad_checkpointing = enable + + def forward(self, x): + for i, (name, module) in enumerate(self.items()): + if self.grad_checkpointing and not torch.jit.is_scripting(): + # Skipping checkpoint of first module because need a gradient at input + # Skipping last because networks with in-place ops might fail w/ checkpointing enabled + # NOTE: first_or_last module could be static, but recalc in is_scripting guard to avoid jit issues + first_or_last_module = i == 0 or i == max(len(self) - 1, 0) + x = module(x) if first_or_last_module else checkpoint(module, x) + else: + x = module(x) + out = self.hooks.get_output(x.device) + return out if self.return_dict else list(out.values()) + + +class FeatureGetterNet(nn.ModuleDict): + """ FeatureGetterNet + + Wrap models with a feature getter method, like 'get_intermediate_layers' + + """ + def __init__( + self, + model: nn.Module, + out_indices: OutIndicesT = 4, + out_map: Optional[Sequence[Union[int, str]]] = None, + return_dict: bool = False, + output_fmt: str = 'NCHW', + norm: bool = False, + prune: bool = True, + ): + """ + + Args: + model: Model to wrap. + out_indices: Indices of features to extract. + out_map: Remap feature names for dict output (WIP, not supported). + return_dict: Return features as dictionary instead of list (WIP, not supported). + norm: Apply final model norm to all output features (if possible). + """ + super().__init__() + if prune and hasattr(model, 'prune_intermediate_layers'): + # replace out_indices after they've been normalized, -ve indices will be invalid after prune + out_indices = model.prune_intermediate_layers( + out_indices, + prune_norm=not norm, + ) + self.feature_info = _get_feature_info(model, out_indices) + self.model = model + self.out_indices = out_indices + self.out_map = out_map + self.return_dict = return_dict + self.output_fmt = Format(output_fmt) + self.norm = norm + + def forward(self, x): + features = self.model.forward_intermediates( + x, + indices=self.out_indices, + norm=self.norm, + output_fmt=self.output_fmt, + intermediates_only=True, + ) + return features diff --git a/pytorch-image-models/timm/models/_features_fx.py b/pytorch-image-models/timm/models/_features_fx.py new file mode 100644 index 0000000000000000000000000000000000000000..6679b38b463e2316256f43a028f13562dddbacf3 --- /dev/null +++ b/pytorch-image-models/timm/models/_features_fx.py @@ -0,0 +1,179 @@ +""" PyTorch FX Based Feature Extraction Helpers +Using https://pytorch.org/vision/stable/feature_extraction.html +""" +from typing import Callable, Dict, List, Optional, Union, Tuple, Type + +import torch +from torch import nn + +from ._features import _get_feature_info, _get_return_layers + +try: + # NOTE we wrap torchvision fns to use timm leaf / no trace definitions + from torchvision.models.feature_extraction import create_feature_extractor as _create_feature_extractor + from torchvision.models.feature_extraction import get_graph_node_names as _get_graph_node_names + has_fx_feature_extraction = True +except ImportError: + has_fx_feature_extraction = False + +# Layers we went to treat as leaf modules +from timm.layers import Conv2dSame, ScaledStdConv2dSame, CondConv2d, StdConv2dSame, Format +from timm.layers import resample_abs_pos_embed, resample_abs_pos_embed_nhwc +from timm.layers.non_local_attn import BilinearAttnTransform +from timm.layers.pool2d_same import MaxPool2dSame, AvgPool2dSame +from timm.layers.norm_act import ( + BatchNormAct2d, + SyncBatchNormAct, + FrozenBatchNormAct2d, + GroupNormAct, + GroupNorm1Act, + LayerNormAct, + LayerNormAct2d +) + +__all__ = ['register_notrace_module', 'is_notrace_module', 'get_notrace_modules', + 'register_notrace_function', 'is_notrace_function', 'get_notrace_functions', + 'create_feature_extractor', 'get_graph_node_names', 'FeatureGraphNet', 'GraphExtractNet'] + + +# NOTE: By default, any modules from timm.models.layers that we want to treat as leaf modules go here +# BUT modules from timm.models should use the registration mechanism below +_leaf_modules = { + BilinearAttnTransform, # reason: flow control t <= 1 + # Reason: get_same_padding has a max which raises a control flow error + Conv2dSame, MaxPool2dSame, ScaledStdConv2dSame, StdConv2dSame, AvgPool2dSame, + CondConv2d, # reason: TypeError: F.conv2d received Proxy in groups=self.groups * B (because B = x.shape[0]), + BatchNormAct2d, + SyncBatchNormAct, + FrozenBatchNormAct2d, + GroupNormAct, + GroupNorm1Act, + LayerNormAct, + LayerNormAct2d, +} + +try: + from timm.layers import InplaceAbn + _leaf_modules.add(InplaceAbn) +except ImportError: + pass + + +def register_notrace_module(module: Type[nn.Module]): + """ + Any module not under timm.models.layers should get this decorator if we don't want to trace through it. + """ + _leaf_modules.add(module) + return module + + +def is_notrace_module(module: Type[nn.Module]): + return module in _leaf_modules + + +def get_notrace_modules(): + return list(_leaf_modules) + + +# Functions we want to autowrap (treat them as leaves) +_autowrap_functions = { + resample_abs_pos_embed, + resample_abs_pos_embed_nhwc, +} + + +def register_notrace_function(func: Callable): + """ + Decorator for functions which ought not to be traced through + """ + _autowrap_functions.add(func) + return func + + +def is_notrace_function(func: Callable): + return func in _autowrap_functions + + +def get_notrace_functions(): + return list(_autowrap_functions) + + +def get_graph_node_names(model: nn.Module) -> Tuple[List[str], List[str]]: + return _get_graph_node_names( + model, + tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)} + ) + + +def create_feature_extractor(model: nn.Module, return_nodes: Union[Dict[str, str], List[str]]): + assert has_fx_feature_extraction, 'Please update to PyTorch 1.10+, torchvision 0.11+ for FX feature extraction' + return _create_feature_extractor( + model, return_nodes, + tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)} + ) + + +class FeatureGraphNet(nn.Module): + """ A FX Graph based feature extractor that works with the model feature_info metadata + """ + return_dict: torch.jit.Final[bool] + + def __init__( + self, + model: nn.Module, + out_indices: Tuple[int, ...], + out_map: Optional[Dict] = None, + output_fmt: str = 'NCHW', + return_dict: bool = False, + ): + super().__init__() + assert has_fx_feature_extraction, 'Please update to PyTorch 1.10+, torchvision 0.11+ for FX feature extraction' + self.feature_info = _get_feature_info(model, out_indices) + if out_map is not None: + assert len(out_map) == len(out_indices) + self.output_fmt = Format(output_fmt) + return_nodes = _get_return_layers(self.feature_info, out_map) + self.graph_module = create_feature_extractor(model, return_nodes) + self.return_dict = return_dict + + def forward(self, x): + out = self.graph_module(x) + if self.return_dict: + return out + return list(out.values()) + + +class GraphExtractNet(nn.Module): + """ A standalone feature extraction wrapper that maps dict -> list or single tensor + NOTE: + * one can use feature_extractor directly if dictionary output is desired + * unlike FeatureGraphNet, this is intended to be used standalone and not with model feature_info + metadata for builtin feature extraction mode + * create_feature_extractor can be used directly if dictionary output is acceptable + + Args: + model: model to extract features from + return_nodes: node names to return features from (dict or list) + squeeze_out: if only one output, and output in list format, flatten to single tensor + return_dict: return as dictionary from extractor with node names as keys, ignores squeeze_out arg + """ + return_dict: torch.jit.Final[bool] + + def __init__( + self, + model: nn.Module, + return_nodes: Union[Dict[str, str], List[str]], + squeeze_out: bool = True, + return_dict: bool = False, + ): + super().__init__() + self.squeeze_out = squeeze_out + self.graph_module = create_feature_extractor(model, return_nodes) + self.return_dict = return_dict + + def forward(self, x) -> Union[List[torch.Tensor], torch.Tensor]: + out = self.graph_module(x) + if self.return_dict: + return out + out = list(out.values()) + return out[0] if self.squeeze_out and len(out) == 1 else out diff --git a/pytorch-image-models/timm/models/_helpers.py b/pytorch-image-models/timm/models/_helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..ca5dc2445e0249e1c3f2893264cf53f573e4d0b0 --- /dev/null +++ b/pytorch-image-models/timm/models/_helpers.py @@ -0,0 +1,166 @@ +""" Model creation / weight loading / state_dict helpers + +Hacked together by / Copyright 2020 Ross Wightman +""" +import logging +import os +from typing import Any, Callable, Dict, Optional, Union + +import torch +try: + import safetensors.torch + _has_safetensors = True +except ImportError: + _has_safetensors = False + +_logger = logging.getLogger(__name__) + +__all__ = ['clean_state_dict', 'load_state_dict', 'load_checkpoint', 'remap_state_dict', 'resume_checkpoint'] + + +def _remove_prefix(text, prefix): + # FIXME replace with 3.9 stdlib fn when min at 3.9 + if text.startswith(prefix): + return text[len(prefix):] + return text + + +def clean_state_dict(state_dict: Dict[str, Any]) -> Dict[str, Any]: + # 'clean' checkpoint by removing .module prefix from state dict if it exists from parallel training + cleaned_state_dict = {} + to_remove = ( + 'module.', # DDP wrapper + '_orig_mod.', # torchcompile dynamo wrapper + ) + for k, v in state_dict.items(): + for r in to_remove: + k = _remove_prefix(k, r) + cleaned_state_dict[k] = v + return cleaned_state_dict + + +def load_state_dict( + checkpoint_path: str, + use_ema: bool = True, + device: Union[str, torch.device] = 'cpu', + weights_only: bool = False, +) -> Dict[str, Any]: + if checkpoint_path and os.path.isfile(checkpoint_path): + # Check if safetensors or not and load weights accordingly + if str(checkpoint_path).endswith(".safetensors"): + assert _has_safetensors, "`pip install safetensors` to use .safetensors" + checkpoint = safetensors.torch.load_file(checkpoint_path, device=device) + else: + try: + checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=weights_only) + except TypeError: + checkpoint = torch.load(checkpoint_path, map_location=device) + + state_dict_key = '' + if isinstance(checkpoint, dict): + if use_ema and checkpoint.get('state_dict_ema', None) is not None: + state_dict_key = 'state_dict_ema' + elif use_ema and checkpoint.get('model_ema', None) is not None: + state_dict_key = 'model_ema' + elif 'state_dict' in checkpoint: + state_dict_key = 'state_dict' + elif 'model' in checkpoint: + state_dict_key = 'model' + state_dict = clean_state_dict(checkpoint[state_dict_key] if state_dict_key else checkpoint) + _logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path)) + return state_dict + else: + _logger.error("No checkpoint found at '{}'".format(checkpoint_path)) + raise FileNotFoundError() + + +def load_checkpoint( + model: torch.nn.Module, + checkpoint_path: str, + use_ema: bool = True, + device: Union[str, torch.device] = 'cpu', + strict: bool = True, + remap: bool = False, + filter_fn: Optional[Callable] = None, + weights_only: bool = False, +): + if os.path.splitext(checkpoint_path)[-1].lower() in ('.npz', '.npy'): + # numpy checkpoint, try to load via model specific load_pretrained fn + if hasattr(model, 'load_pretrained'): + model.load_pretrained(checkpoint_path) + else: + raise NotImplementedError('Model cannot load numpy checkpoint') + return + + state_dict = load_state_dict(checkpoint_path, use_ema, device=device, weights_only=weights_only) + if remap: + state_dict = remap_state_dict(state_dict, model) + elif filter_fn: + state_dict = filter_fn(state_dict, model) + incompatible_keys = model.load_state_dict(state_dict, strict=strict) + return incompatible_keys + + +def remap_state_dict( + state_dict: Dict[str, Any], + model: torch.nn.Module, + allow_reshape: bool = True +): + """ remap checkpoint by iterating over state dicts in order (ignoring original keys). + This assumes models (and originating state dict) were created with params registered in same order. + """ + out_dict = {} + for (ka, va), (kb, vb) in zip(model.state_dict().items(), state_dict.items()): + assert va.numel() == vb.numel(), f'Tensor size mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.' + if va.shape != vb.shape: + if allow_reshape: + vb = vb.reshape(va.shape) + else: + assert False, f'Tensor shape mismatch {ka}: {va.shape} vs {kb}: {vb.shape}. Remap failed.' + out_dict[ka] = vb + return out_dict + + +def resume_checkpoint( + model: torch.nn.Module, + checkpoint_path: str, + optimizer: torch.optim.Optimizer = None, + loss_scaler: Any = None, + log_info: bool = True, +): + resume_epoch = None + if os.path.isfile(checkpoint_path): + checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=False) + if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: + if log_info: + _logger.info('Restoring model state from checkpoint...') + state_dict = clean_state_dict(checkpoint['state_dict']) + model.load_state_dict(state_dict) + + if optimizer is not None and 'optimizer' in checkpoint: + if log_info: + _logger.info('Restoring optimizer state from checkpoint...') + optimizer.load_state_dict(checkpoint['optimizer']) + + if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint: + if log_info: + _logger.info('Restoring AMP loss scaler state from checkpoint...') + loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key]) + + if 'epoch' in checkpoint: + resume_epoch = checkpoint['epoch'] + if 'version' in checkpoint and checkpoint['version'] > 1: + resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save + + if log_info: + _logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch'])) + else: + model.load_state_dict(checkpoint) + if log_info: + _logger.info("Loaded checkpoint '{}'".format(checkpoint_path)) + return resume_epoch + else: + _logger.error("No checkpoint found at '{}'".format(checkpoint_path)) + raise FileNotFoundError() + + diff --git a/pytorch-image-models/timm/models/_hub.py b/pytorch-image-models/timm/models/_hub.py new file mode 100644 index 0000000000000000000000000000000000000000..4922dfc09a3368153d6372950be99acda7b806de --- /dev/null +++ b/pytorch-image-models/timm/models/_hub.py @@ -0,0 +1,465 @@ +import hashlib +import json +import logging +import os +from functools import partial +from pathlib import Path +from tempfile import TemporaryDirectory +from typing import Iterable, List, Optional, Tuple, Union + +import torch +from torch.hub import HASH_REGEX, download_url_to_file, urlparse + +try: + from torch.hub import get_dir +except ImportError: + from torch.hub import _get_torch_home as get_dir + +try: + import safetensors.torch + _has_safetensors = True +except ImportError: + _has_safetensors = False + +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal + +from timm import __version__ +from timm.models._pretrained import filter_pretrained_cfg + +try: + from huggingface_hub import ( + create_repo, get_hf_file_metadata, + hf_hub_download, hf_hub_url, + repo_type_and_id_from_hf_id, upload_folder) + from huggingface_hub.utils import EntryNotFoundError + hf_hub_download = partial(hf_hub_download, library_name="timm", library_version=__version__) + _has_hf_hub = True +except ImportError: + hf_hub_download = None + _has_hf_hub = False + +_logger = logging.getLogger(__name__) + +__all__ = ['get_cache_dir', 'download_cached_file', 'has_hf_hub', 'hf_split', 'load_model_config_from_hf', + 'load_state_dict_from_hf', 'save_for_hf', 'push_to_hf_hub'] + +# Default name for a weights file hosted on the Huggingface Hub. +HF_WEIGHTS_NAME = "pytorch_model.bin" # default pytorch pkl +HF_SAFE_WEIGHTS_NAME = "model.safetensors" # safetensors version +HF_OPEN_CLIP_WEIGHTS_NAME = "open_clip_pytorch_model.bin" # default pytorch pkl +HF_OPEN_CLIP_SAFE_WEIGHTS_NAME = "open_clip_model.safetensors" # safetensors version + + +def get_cache_dir(child_dir: str = ''): + """ + Returns the location of the directory where models are cached (and creates it if necessary). + """ + # Issue warning to move data if old env is set + if os.getenv('TORCH_MODEL_ZOO'): + _logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead') + + hub_dir = get_dir() + child_dir = () if not child_dir else (child_dir,) + model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir) + os.makedirs(model_dir, exist_ok=True) + return model_dir + + +def download_cached_file( + url: Union[str, List[str], Tuple[str, str]], + check_hash: bool = True, + progress: bool = False, + cache_dir: Optional[Union[str, Path]] = None, +): + if isinstance(url, (list, tuple)): + url, filename = url + else: + parts = urlparse(url) + filename = os.path.basename(parts.path) + if cache_dir: + os.makedirs(cache_dir, exist_ok=True) + else: + cache_dir = get_cache_dir() + cached_file = os.path.join(cache_dir, filename) + if not os.path.exists(cached_file): + _logger.info('Downloading: "{}" to {}\n'.format(url, cached_file)) + hash_prefix = None + if check_hash: + r = HASH_REGEX.search(filename) # r is Optional[Match[str]] + hash_prefix = r.group(1) if r else None + download_url_to_file(url, cached_file, hash_prefix, progress=progress) + return cached_file + + +def check_cached_file( + url: Union[str, List[str], Tuple[str, str]], + check_hash: bool = True, + cache_dir: Optional[Union[str, Path]] = None, +): + if isinstance(url, (list, tuple)): + url, filename = url + else: + parts = urlparse(url) + filename = os.path.basename(parts.path) + if not cache_dir: + cache_dir = get_cache_dir() + cached_file = os.path.join(cache_dir, filename) + if os.path.exists(cached_file): + if check_hash: + r = HASH_REGEX.search(filename) # r is Optional[Match[str]] + hash_prefix = r.group(1) if r else None + if hash_prefix: + with open(cached_file, 'rb') as f: + hd = hashlib.sha256(f.read()).hexdigest() + if hd[:len(hash_prefix)] != hash_prefix: + return False + return True + return False + + +def has_hf_hub(necessary: bool = False): + if not _has_hf_hub and necessary: + # if no HF Hub module installed, and it is necessary to continue, raise error + raise RuntimeError( + 'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.') + return _has_hf_hub + + +def hf_split(hf_id: str): + # FIXME I may change @ -> # and be parsed as fragment in a URI model name scheme + rev_split = hf_id.split('@') + assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.' + hf_model_id = rev_split[0] + hf_revision = rev_split[-1] if len(rev_split) > 1 else None + return hf_model_id, hf_revision + + +def load_cfg_from_json(json_file: Union[str, Path]): + with open(json_file, "r", encoding="utf-8") as reader: + text = reader.read() + return json.loads(text) + + +def download_from_hf( + model_id: str, + filename: str, + cache_dir: Optional[Union[str, Path]] = None, +): + hf_model_id, hf_revision = hf_split(model_id) + return hf_hub_download( + hf_model_id, + filename, + revision=hf_revision, + cache_dir=cache_dir, + ) + + +def load_model_config_from_hf( + model_id: str, + cache_dir: Optional[Union[str, Path]] = None, +): + assert has_hf_hub(True) + cached_file = download_from_hf(model_id, 'config.json', cache_dir=cache_dir) + + hf_config = load_cfg_from_json(cached_file) + if 'pretrained_cfg' not in hf_config: + # old form, pull pretrain_cfg out of the base dict + pretrained_cfg = hf_config + hf_config = {} + hf_config['architecture'] = pretrained_cfg.pop('architecture') + hf_config['num_features'] = pretrained_cfg.pop('num_features', None) + if 'labels' in pretrained_cfg: # deprecated name for 'label_names' + pretrained_cfg['label_names'] = pretrained_cfg.pop('labels') + hf_config['pretrained_cfg'] = pretrained_cfg + + # NOTE currently discarding parent config as only arch name and pretrained_cfg used in timm right now + pretrained_cfg = hf_config['pretrained_cfg'] + pretrained_cfg['hf_hub_id'] = model_id # insert hf_hub id for pretrained weight load during model creation + pretrained_cfg['source'] = 'hf-hub' + + # model should be created with base config num_classes if its exist + if 'num_classes' in hf_config: + pretrained_cfg['num_classes'] = hf_config['num_classes'] + + # label meta-data in base config overrides saved pretrained_cfg on load + if 'label_names' in hf_config: + pretrained_cfg['label_names'] = hf_config.pop('label_names') + if 'label_descriptions' in hf_config: + pretrained_cfg['label_descriptions'] = hf_config.pop('label_descriptions') + + model_args = hf_config.get('model_args', {}) + model_name = hf_config['architecture'] + return pretrained_cfg, model_name, model_args + + +def load_state_dict_from_hf( + model_id: str, + filename: str = HF_WEIGHTS_NAME, + weights_only: bool = False, + cache_dir: Optional[Union[str, Path]] = None, +): + assert has_hf_hub(True) + hf_model_id, hf_revision = hf_split(model_id) + + # Look for .safetensors alternatives and load from it if it exists + if _has_safetensors: + for safe_filename in _get_safe_alternatives(filename): + try: + cached_safe_file = hf_hub_download( + repo_id=hf_model_id, + filename=safe_filename, + revision=hf_revision, + cache_dir=cache_dir, + ) + _logger.info( + f"[{model_id}] Safe alternative available for '{filename}' " + f"(as '{safe_filename}'). Loading weights using safetensors.") + return safetensors.torch.load_file(cached_safe_file, device="cpu") + except EntryNotFoundError: + pass + + # Otherwise, load using pytorch.load + cached_file = hf_hub_download( + hf_model_id, + filename=filename, + revision=hf_revision, + cache_dir=cache_dir, + ) + _logger.debug(f"[{model_id}] Safe alternative not found for '{filename}'. Loading weights using default pytorch.") + try: + state_dict = torch.load(cached_file, map_location='cpu', weights_only=weights_only) + except TypeError: + state_dict = torch.load(cached_file, map_location='cpu') + return state_dict + + +def load_custom_from_hf( + model_id: str, + filename: str, + model: torch.nn.Module, + cache_dir: Optional[Union[str, Path]] = None, +): + assert has_hf_hub(True) + hf_model_id, hf_revision = hf_split(model_id) + cached_file = hf_hub_download( + hf_model_id, + filename=filename, + revision=hf_revision, + cache_dir=cache_dir, + ) + return model.load_pretrained(cached_file) + + +def save_config_for_hf( + model: torch.nn.Module, + config_path: str, + model_config: Optional[dict] = None, + model_args: Optional[dict] = None +): + model_config = model_config or {} + hf_config = {} + pretrained_cfg = filter_pretrained_cfg(model.pretrained_cfg, remove_source=True, remove_null=True) + # set some values at root config level + hf_config['architecture'] = pretrained_cfg.pop('architecture') + hf_config['num_classes'] = model_config.pop('num_classes', model.num_classes) + + # NOTE these attr saved for informational purposes, do not impact model build + hf_config['num_features'] = model_config.pop('num_features', model.num_features) + global_pool_type = model_config.pop('global_pool', getattr(model, 'global_pool', None)) + if isinstance(global_pool_type, str) and global_pool_type: + hf_config['global_pool'] = global_pool_type + + # Save class label info + if 'labels' in model_config: + _logger.warning( + "'labels' as a config field for is deprecated. Please use 'label_names' and 'label_descriptions'." + " Renaming provided 'labels' field to 'label_names'.") + model_config.setdefault('label_names', model_config.pop('labels')) + + label_names = model_config.pop('label_names', None) + if label_names: + assert isinstance(label_names, (dict, list, tuple)) + # map label id (classifier index) -> unique label name (ie synset for ImageNet, MID for OpenImages) + # can be a dict id: name if there are id gaps, or tuple/list if no gaps. + hf_config['label_names'] = label_names + + label_descriptions = model_config.pop('label_descriptions', None) + if label_descriptions: + assert isinstance(label_descriptions, dict) + # maps label names -> descriptions + hf_config['label_descriptions'] = label_descriptions + + if model_args: + hf_config['model_args'] = model_args + + hf_config['pretrained_cfg'] = pretrained_cfg + hf_config.update(model_config) + + with config_path.open('w') as f: + json.dump(hf_config, f, indent=2) + + +def save_for_hf( + model: torch.nn.Module, + save_directory: str, + model_config: Optional[dict] = None, + model_args: Optional[dict] = None, + safe_serialization: Union[bool, Literal["both"]] = False, +): + assert has_hf_hub(True) + save_directory = Path(save_directory) + save_directory.mkdir(exist_ok=True, parents=True) + + # Save model weights, either safely (using safetensors), or using legacy pytorch approach or both. + tensors = model.state_dict() + if safe_serialization is True or safe_serialization == "both": + assert _has_safetensors, "`pip install safetensors` to use .safetensors" + safetensors.torch.save_file(tensors, save_directory / HF_SAFE_WEIGHTS_NAME) + if safe_serialization is False or safe_serialization == "both": + torch.save(tensors, save_directory / HF_WEIGHTS_NAME) + + config_path = save_directory / 'config.json' + save_config_for_hf( + model, + config_path, + model_config=model_config, + model_args=model_args, + ) + + +def push_to_hf_hub( + model: torch.nn.Module, + repo_id: str, + commit_message: str = 'Add model', + token: Optional[str] = None, + revision: Optional[str] = None, + private: bool = False, + create_pr: bool = False, + model_config: Optional[dict] = None, + model_card: Optional[dict] = None, + model_args: Optional[dict] = None, + safe_serialization: Union[bool, Literal["both"]] = 'both', +): + """ + Arguments: + (...) + safe_serialization (`bool` or `"both"`, *optional*, defaults to `False`): + Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + Can be set to `"both"` in order to push both safe and unsafe weights. + """ + # Create repo if it doesn't exist yet + repo_url = create_repo(repo_id, token=token, private=private, exist_ok=True) + + # Infer complete repo_id from repo_url + # Can be different from the input `repo_id` if repo_owner was implicit + _, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url) + repo_id = f"{repo_owner}/{repo_name}" + + # Check if README file already exist in repo + try: + get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision)) + has_readme = True + except EntryNotFoundError: + has_readme = False + + # Dump model and push to Hub + with TemporaryDirectory() as tmpdir: + # Save model weights and config. + save_for_hf( + model, + tmpdir, + model_config=model_config, + model_args=model_args, + safe_serialization=safe_serialization, + ) + + # Add readme if it does not exist + if not has_readme: + model_card = model_card or {} + model_name = repo_id.split('/')[-1] + readme_path = Path(tmpdir) / "README.md" + readme_text = generate_readme(model_card, model_name) + readme_path.write_text(readme_text) + + # Upload model and return + return upload_folder( + repo_id=repo_id, + folder_path=tmpdir, + revision=revision, + create_pr=create_pr, + commit_message=commit_message, + ) + + +def generate_readme(model_card: dict, model_name: str): + readme_text = "---\n" + readme_text += "tags:\n- image-classification\n- timm\n" + readme_text += "library_name: timm\n" + readme_text += f"license: {model_card.get('license', 'apache-2.0')}\n" + if 'details' in model_card and 'Dataset' in model_card['details']: + readme_text += 'datasets:\n' + if isinstance(model_card['details']['Dataset'], (tuple, list)): + for d in model_card['details']['Dataset']: + readme_text += f"- {d.lower()}\n" + else: + readme_text += f"- {model_card['details']['Dataset'].lower()}\n" + if 'Pretrain Dataset' in model_card['details']: + if isinstance(model_card['details']['Pretrain Dataset'], (tuple, list)): + for d in model_card['details']['Pretrain Dataset']: + readme_text += f"- {d.lower()}\n" + else: + readme_text += f"- {model_card['details']['Pretrain Dataset'].lower()}\n" + readme_text += "---\n" + readme_text += f"# Model card for {model_name}\n" + if 'description' in model_card: + readme_text += f"\n{model_card['description']}\n" + if 'details' in model_card: + readme_text += f"\n## Model Details\n" + for k, v in model_card['details'].items(): + if isinstance(v, (list, tuple)): + readme_text += f"- **{k}:**\n" + for vi in v: + readme_text += f" - {vi}\n" + elif isinstance(v, dict): + readme_text += f"- **{k}:**\n" + for ki, vi in v.items(): + readme_text += f" - {ki}: {vi}\n" + else: + readme_text += f"- **{k}:** {v}\n" + if 'usage' in model_card: + readme_text += f"\n## Model Usage\n" + readme_text += model_card['usage'] + readme_text += '\n' + + if 'comparison' in model_card: + readme_text += f"\n## Model Comparison\n" + readme_text += model_card['comparison'] + readme_text += '\n' + + if 'citation' in model_card: + readme_text += f"\n## Citation\n" + if not isinstance(model_card['citation'], (list, tuple)): + citations = [model_card['citation']] + else: + citations = model_card['citation'] + for c in citations: + readme_text += f"```bibtex\n{c}\n```\n" + return readme_text + + +def _get_safe_alternatives(filename: str) -> Iterable[str]: + """Returns potential safetensors alternatives for a given filename. + + Use case: + When downloading a model from the Huggingface Hub, we first look if a .safetensors file exists and if yes, we use it. + Main use case is filename "pytorch_model.bin" => check for "model.safetensors" or "pytorch_model.safetensors". + """ + if filename == HF_WEIGHTS_NAME: + yield HF_SAFE_WEIGHTS_NAME + if filename == HF_OPEN_CLIP_WEIGHTS_NAME: + yield HF_OPEN_CLIP_SAFE_WEIGHTS_NAME + if filename not in (HF_WEIGHTS_NAME, HF_OPEN_CLIP_WEIGHTS_NAME) and filename.endswith(".bin"): + yield filename[:-4] + ".safetensors" diff --git a/pytorch-image-models/timm/models/_manipulate.py b/pytorch-image-models/timm/models/_manipulate.py new file mode 100644 index 0000000000000000000000000000000000000000..e689b39276650b3de9d6e8e2395a6057f6873074 --- /dev/null +++ b/pytorch-image-models/timm/models/_manipulate.py @@ -0,0 +1,278 @@ +import collections.abc +import math +import re +from collections import defaultdict +from itertools import chain +from typing import Any, Callable, Dict, Iterator, Tuple, Type, Union + +import torch +from torch import nn as nn +from torch.utils.checkpoint import checkpoint + +__all__ = ['model_parameters', 'named_apply', 'named_modules', 'named_modules_with_params', 'adapt_input_conv', + 'group_with_matcher', 'group_modules', 'group_parameters', 'flatten_modules', 'checkpoint_seq'] + + +def model_parameters(model: nn.Module, exclude_head: bool = False): + if exclude_head: + # FIXME this a bit of a quick and dirty hack to skip classifier head params based on ordering + return [p for p in model.parameters()][:-2] + else: + return model.parameters() + + +def named_apply( + fn: Callable, + module: nn.Module, name='', + depth_first: bool = True, + include_root: bool = False, +) -> nn.Module: + if not depth_first and include_root: + fn(module=module, name=name) + for child_name, child_module in module.named_children(): + child_name = '.'.join((name, child_name)) if name else child_name + named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) + if depth_first and include_root: + fn(module=module, name=name) + return module + + +def named_modules( + module: nn.Module, + name: str = '', + depth_first: bool = True, + include_root: bool = False, +): + if not depth_first and include_root: + yield name, module + for child_name, child_module in module.named_children(): + child_name = '.'.join((name, child_name)) if name else child_name + yield from named_modules( + module=child_module, name=child_name, depth_first=depth_first, include_root=True) + if depth_first and include_root: + yield name, module + + +def named_modules_with_params( + module: nn.Module, + name: str = '', + depth_first: bool = True, + include_root: bool = False, +): + if module._parameters and not depth_first and include_root: + yield name, module + for child_name, child_module in module.named_children(): + child_name = '.'.join((name, child_name)) if name else child_name + yield from named_modules_with_params( + module=child_module, name=child_name, depth_first=depth_first, include_root=True) + if module._parameters and depth_first and include_root: + yield name, module + + +MATCH_PREV_GROUP = (99999,) + + +def group_with_matcher( + named_objects: Iterator[Tuple[str, Any]], + group_matcher: Union[Dict, Callable], + return_values: bool = False, + reverse: bool = False +): + if isinstance(group_matcher, dict): + # dictionary matcher contains a dict of raw-string regex expr that must be compiled + compiled = [] + for group_ordinal, (group_name, mspec) in enumerate(group_matcher.items()): + if mspec is None: + continue + # map all matching specifications into 3-tuple (compiled re, prefix, suffix) + if isinstance(mspec, (tuple, list)): + # multi-entry match specifications require each sub-spec to be a 2-tuple (re, suffix) + for sspec in mspec: + compiled += [(re.compile(sspec[0]), (group_ordinal,), sspec[1])] + else: + compiled += [(re.compile(mspec), (group_ordinal,), None)] + group_matcher = compiled + + def _get_grouping(name): + if isinstance(group_matcher, (list, tuple)): + for match_fn, prefix, suffix in group_matcher: + r = match_fn.match(name) + if r: + parts = (prefix, r.groups(), suffix) + # map all tuple elem to int for numeric sort, filter out None entries + return tuple(map(float, chain.from_iterable(filter(None, parts)))) + return float('inf'), # un-matched layers (neck, head) mapped to largest ordinal + else: + ord = group_matcher(name) + if not isinstance(ord, collections.abc.Iterable): + return ord, + return tuple(ord) + + # map layers into groups via ordinals (ints or tuples of ints) from matcher + grouping = defaultdict(list) + for k, v in named_objects: + grouping[_get_grouping(k)].append(v if return_values else k) + + # remap to integers + layer_id_to_param = defaultdict(list) + lid = -1 + for k in sorted(filter(lambda x: x is not None, grouping.keys())): + if lid < 0 or k[-1] != MATCH_PREV_GROUP[0]: + lid += 1 + layer_id_to_param[lid].extend(grouping[k]) + + if reverse: + assert not return_values, "reverse mapping only sensible for name output" + # output reverse mapping + param_to_layer_id = {} + for lid, lm in layer_id_to_param.items(): + for n in lm: + param_to_layer_id[n] = lid + return param_to_layer_id + + return layer_id_to_param + + +def group_parameters( + module: nn.Module, + group_matcher, + return_values: bool = False, + reverse: bool = False, +): + return group_with_matcher( + module.named_parameters(), group_matcher, return_values=return_values, reverse=reverse) + + +def group_modules( + module: nn.Module, + group_matcher, + return_values: bool = False, + reverse: bool = False, +): + return group_with_matcher( + named_modules_with_params(module), group_matcher, return_values=return_values, reverse=reverse) + + +def flatten_modules( + named_modules: Iterator[Tuple[str, nn.Module]], + depth: int = 1, + prefix: Union[str, Tuple[str, ...]] = '', + module_types: Union[str, Tuple[Type[nn.Module]]] = 'sequential', +): + prefix_is_tuple = isinstance(prefix, tuple) + if isinstance(module_types, str): + if module_types == 'container': + module_types = (nn.Sequential, nn.ModuleList, nn.ModuleDict) + else: + module_types = (nn.Sequential,) + for name, module in named_modules: + if depth and isinstance(module, module_types): + yield from flatten_modules( + module.named_children(), + depth - 1, + prefix=(name,) if prefix_is_tuple else name, + module_types=module_types, + ) + else: + if prefix_is_tuple: + name = prefix + (name,) + yield name, module + else: + if prefix: + name = '.'.join([prefix, name]) + yield name, module + + +def checkpoint_seq( + functions, + x, + every=1, + flatten=False, + skip_last=False, + preserve_rng_state=True +): + r"""A helper function for checkpointing sequential models. + + Sequential models execute a list of modules/functions in order + (sequentially). Therefore, we can divide such a sequence into segments + and checkpoint each segment. All segments except run in :func:`torch.no_grad` + manner, i.e., not storing the intermediate activations. The inputs of each + checkpointed segment will be saved for re-running the segment in the backward pass. + + See :func:`~torch.utils.checkpoint.checkpoint` on how checkpointing works. + + .. warning:: + Checkpointing currently only supports :func:`torch.autograd.backward` + and only if its `inputs` argument is not passed. :func:`torch.autograd.grad` + is not supported. + + .. warning: + At least one of the inputs needs to have :code:`requires_grad=True` if + grads are needed for model inputs, otherwise the checkpointed part of the + model won't have gradients. + + Args: + functions: A :class:`torch.nn.Sequential` or the list of modules or functions to run sequentially. + x: A Tensor that is input to :attr:`functions` + every: checkpoint every-n functions (default: 1) + flatten (bool): flatten nn.Sequential of nn.Sequentials + skip_last (bool): skip checkpointing the last function in the sequence if True + preserve_rng_state (bool, optional, default=True): Omit stashing and restoring + the RNG state during each checkpoint. + + Returns: + Output of running :attr:`functions` sequentially on :attr:`*inputs` + + Example: + >>> model = nn.Sequential(...) + >>> input_var = checkpoint_seq(model, input_var, every=2) + """ + def run_function(start, end, functions): + def forward(_x): + for j in range(start, end + 1): + _x = functions[j](_x) + return _x + return forward + + if isinstance(functions, torch.nn.Sequential): + functions = functions.children() + if flatten: + functions = chain.from_iterable(functions) + if not isinstance(functions, (tuple, list)): + functions = tuple(functions) + + num_checkpointed = len(functions) + if skip_last: + num_checkpointed -= 1 + end = -1 + for start in range(0, num_checkpointed, every): + end = min(start + every - 1, num_checkpointed - 1) + x = checkpoint(run_function(start, end, functions), x, preserve_rng_state=preserve_rng_state) + if skip_last: + return run_function(end + 1, len(functions) - 1, functions)(x) + return x + + +def adapt_input_conv(in_chans, conv_weight): + conv_type = conv_weight.dtype + conv_weight = conv_weight.float() # Some weights are in torch.half, ensure it's float for sum on CPU + O, I, J, K = conv_weight.shape + if in_chans == 1: + if I > 3: + assert conv_weight.shape[1] % 3 == 0 + # For models with space2depth stems + conv_weight = conv_weight.reshape(O, I // 3, 3, J, K) + conv_weight = conv_weight.sum(dim=2, keepdim=False) + else: + conv_weight = conv_weight.sum(dim=1, keepdim=True) + elif in_chans != 3: + if I != 3: + raise NotImplementedError('Weight format not supported by conversion.') + else: + # NOTE this strategy should be better than random init, but there could be other combinations of + # the original RGB input layer weights that'd work better for specific cases. + repeat = int(math.ceil(in_chans / 3)) + conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] + conv_weight *= (3 / float(in_chans)) + conv_weight = conv_weight.to(conv_type) + return conv_weight diff --git a/pytorch-image-models/timm/models/_pretrained.py b/pytorch-image-models/timm/models/_pretrained.py new file mode 100644 index 0000000000000000000000000000000000000000..2938f8fe714d9bcfe5477b6f083defc31ee8e66a --- /dev/null +++ b/pytorch-image-models/timm/models/_pretrained.py @@ -0,0 +1,94 @@ +import copy +from collections import deque, defaultdict +from dataclasses import dataclass, field, replace, asdict +from typing import Any, Deque, Dict, Tuple, Optional, Union + + +__all__ = ['PretrainedCfg', 'filter_pretrained_cfg', 'DefaultCfg'] + + +@dataclass +class PretrainedCfg: + """ + """ + # weight source locations + url: Optional[Union[str, Tuple[str, str]]] = None # remote URL + file: Optional[str] = None # local / shared filesystem path + state_dict: Optional[Dict[str, Any]] = None # in-memory state dict + hf_hub_id: Optional[str] = None # Hugging Face Hub model id ('organization/model') + hf_hub_filename: Optional[str] = None # Hugging Face Hub filename (overrides default) + + source: Optional[str] = None # source of cfg / weight location used (url, file, hf-hub) + architecture: Optional[str] = None # architecture variant can be set when not implicit + tag: Optional[str] = None # pretrained tag of source + custom_load: bool = False # use custom model specific model.load_pretrained() (ie for npz files) + + # input / data config + input_size: Tuple[int, int, int] = (3, 224, 224) + test_input_size: Optional[Tuple[int, int, int]] = None + min_input_size: Optional[Tuple[int, int, int]] = None + fixed_input_size: bool = False + interpolation: str = 'bicubic' + crop_pct: float = 0.875 + test_crop_pct: Optional[float] = None + crop_mode: str = 'center' + mean: Tuple[float, ...] = (0.485, 0.456, 0.406) + std: Tuple[float, ...] = (0.229, 0.224, 0.225) + + # head / classifier config and meta-data + num_classes: int = 1000 + label_offset: Optional[int] = None + label_names: Optional[Tuple[str]] = None + label_descriptions: Optional[Dict[str, str]] = None + + # model attributes that vary with above or required for pretrained adaptation + pool_size: Optional[Tuple[int, ...]] = None + test_pool_size: Optional[Tuple[int, ...]] = None + first_conv: Optional[str] = None + classifier: Optional[str] = None + + license: Optional[str] = None + description: Optional[str] = None + origin_url: Optional[str] = None + paper_name: Optional[str] = None + paper_ids: Optional[Union[str, Tuple[str]]] = None + notes: Optional[Tuple[str]] = None + + @property + def has_weights(self): + return self.url or self.file or self.hf_hub_id + + def to_dict(self, remove_source=False, remove_null=True): + return filter_pretrained_cfg( + asdict(self), + remove_source=remove_source, + remove_null=remove_null + ) + + +def filter_pretrained_cfg(cfg, remove_source=False, remove_null=True): + filtered_cfg = {} + keep_null = {'pool_size', 'first_conv', 'classifier'} # always keep these keys, even if none + for k, v in cfg.items(): + if remove_source and k in {'url', 'file', 'hf_hub_id', 'hf_hub_id', 'hf_hub_filename', 'source'}: + continue + if remove_null and v is None and k not in keep_null: + continue + filtered_cfg[k] = v + return filtered_cfg + + +@dataclass +class DefaultCfg: + tags: Deque[str] = field(default_factory=deque) # priority queue of tags (first is default) + cfgs: Dict[str, PretrainedCfg] = field(default_factory=dict) # pretrained cfgs by tag + is_pretrained: bool = False # at least one of the configs has a pretrained source set + + @property + def default(self): + return self.cfgs[self.tags[0]] + + @property + def default_with_tag(self): + tag = self.tags[0] + return tag, self.cfgs[tag] diff --git a/pytorch-image-models/timm/models/_prune.py b/pytorch-image-models/timm/models/_prune.py new file mode 100644 index 0000000000000000000000000000000000000000..370b911f462470b38ad896887a91791c94944031 --- /dev/null +++ b/pytorch-image-models/timm/models/_prune.py @@ -0,0 +1,116 @@ +import os +import pkgutil +from copy import deepcopy + +from torch import nn as nn + +from timm.layers import Conv2dSame, BatchNormAct2d, Linear + +__all__ = ['extract_layer', 'set_layer', 'adapt_model_from_string', 'adapt_model_from_file'] + + +def extract_layer(model, layer): + layer = layer.split('.') + module = model + if hasattr(model, 'module') and layer[0] != 'module': + module = model.module + if not hasattr(model, 'module') and layer[0] == 'module': + layer = layer[1:] + for l in layer: + if hasattr(module, l): + if not l.isdigit(): + module = getattr(module, l) + else: + module = module[int(l)] + else: + return module + return module + + +def set_layer(model, layer, val): + layer = layer.split('.') + module = model + if hasattr(model, 'module') and layer[0] != 'module': + module = model.module + lst_index = 0 + module2 = module + for l in layer: + if hasattr(module2, l): + if not l.isdigit(): + module2 = getattr(module2, l) + else: + module2 = module2[int(l)] + lst_index += 1 + lst_index -= 1 + for l in layer[:lst_index]: + if not l.isdigit(): + module = getattr(module, l) + else: + module = module[int(l)] + l = layer[lst_index] + setattr(module, l, val) + + +def adapt_model_from_string(parent_module, model_string): + separator = '***' + state_dict = {} + lst_shape = model_string.split(separator) + for k in lst_shape: + k = k.split(':') + key = k[0] + shape = k[1][1:-1].split(',') + if shape[0] != '': + state_dict[key] = [int(i) for i in shape] + + new_module = deepcopy(parent_module) + for n, m in parent_module.named_modules(): + old_module = extract_layer(parent_module, n) + if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame): + if isinstance(old_module, Conv2dSame): + conv = Conv2dSame + else: + conv = nn.Conv2d + s = state_dict[n + '.weight'] + in_channels = s[1] + out_channels = s[0] + g = 1 + if old_module.groups > 1: + in_channels = out_channels + g = in_channels + new_conv = conv( + in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size, + bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation, + groups=g, stride=old_module.stride) + set_layer(new_module, n, new_conv) + elif isinstance(old_module, BatchNormAct2d): + new_bn = BatchNormAct2d( + state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, + affine=old_module.affine, track_running_stats=True) + new_bn.drop = old_module.drop + new_bn.act = old_module.act + set_layer(new_module, n, new_bn) + elif isinstance(old_module, nn.BatchNorm2d): + new_bn = nn.BatchNorm2d( + num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, + affine=old_module.affine, track_running_stats=True) + set_layer(new_module, n, new_bn) + elif isinstance(old_module, nn.Linear): + # FIXME extra checks to ensure this is actually the FC classifier layer and not a diff Linear layer? + num_features = state_dict[n + '.weight'][1] + new_fc = Linear( + in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None) + set_layer(new_module, n, new_fc) + if hasattr(new_module, 'num_features'): + if getattr(new_module, 'head_hidden_size', 0) == new_module.num_features: + new_module.head_hidden_size = num_features + new_module.num_features = num_features + + new_module.eval() + parent_module.eval() + + return new_module + + +def adapt_model_from_file(parent_module, model_variant): + adapt_data = pkgutil.get_data(__name__, os.path.join('_pruned', model_variant + '.txt')) + return adapt_model_from_string(parent_module, adapt_data.decode('utf-8').strip()) diff --git a/pytorch-image-models/timm/models/_pruned/ecaresnet101d_pruned.txt b/pytorch-image-models/timm/models/_pruned/ecaresnet101d_pruned.txt new file mode 100644 index 0000000000000000000000000000000000000000..2589b2f9dd3f0d1e02e1d5ddc1fbcd5c143e02c6 --- /dev/null +++ b/pytorch-image-models/timm/models/_pruned/ecaresnet101d_pruned.txt @@ -0,0 +1 @@ +conv1.0.weight:[32, 3, 3, 3]***conv1.1.weight:[32]***conv1.3.weight:[32, 32, 3, 3]***conv1.4.weight:[32]***conv1.6.weight:[64, 32, 3, 3]***bn1.weight:[64]***layer1.0.conv1.weight:[45, 64, 1, 1]***layer1.0.bn1.weight:[45]***layer1.0.conv2.weight:[25, 45, 3, 3]***layer1.0.bn2.weight:[25]***layer1.0.conv3.weight:[26, 25, 1, 1]***layer1.0.bn3.weight:[26]***layer1.0.se.conv.weight:[1, 1, 5]***layer1.0.downsample.1.weight:[26, 64, 1, 1]***layer1.0.downsample.2.weight:[26]***layer1.1.conv1.weight:[53, 26, 1, 1]***layer1.1.bn1.weight:[53]***layer1.1.conv2.weight:[20, 53, 3, 3]***layer1.1.bn2.weight:[20]***layer1.1.conv3.weight:[26, 20, 1, 1]***layer1.1.bn3.weight:[26]***layer1.1.se.conv.weight:[1, 1, 5]***layer1.2.conv1.weight:[60, 26, 1, 1]***layer1.2.bn1.weight:[60]***layer1.2.conv2.weight:[27, 60, 3, 3]***layer1.2.bn2.weight:[27]***layer1.2.conv3.weight:[26, 27, 1, 1]***layer1.2.bn3.weight:[26]***layer1.2.se.conv.weight:[1, 1, 5]***layer2.0.conv1.weight:[81, 26, 1, 1]***layer2.0.bn1.weight:[81]***layer2.0.conv2.weight:[24, 81, 3, 3]***layer2.0.bn2.weight:[24]***layer2.0.conv3.weight:[142, 24, 1, 1]***layer2.0.bn3.weight:[142]***layer2.0.se.conv.weight:[1, 1, 5]***layer2.0.downsample.1.weight:[142, 26, 1, 1]***layer2.0.downsample.2.weight:[142]***layer2.1.conv1.weight:[93, 142, 1, 1]***layer2.1.bn1.weight:[93]***layer2.1.conv2.weight:[49, 93, 3, 3]***layer2.1.bn2.weight:[49]***layer2.1.conv3.weight:[142, 49, 1, 1]***layer2.1.bn3.weight:[142]***layer2.1.se.conv.weight:[1, 1, 5]***layer2.2.conv1.weight:[102, 142, 1, 1]***layer2.2.bn1.weight:[102]***layer2.2.conv2.weight:[54, 102, 3, 3]***layer2.2.bn2.weight:[54]***layer2.2.conv3.weight:[142, 54, 1, 1]***layer2.2.bn3.weight:[142]***layer2.2.se.conv.weight:[1, 1, 5]***layer2.3.conv1.weight:[122, 142, 1, 1]***layer2.3.bn1.weight:[122]***layer2.3.conv2.weight:[78, 122, 3, 3]***layer2.3.bn2.weight:[78]***layer2.3.conv3.weight:[142, 78, 1, 1]***layer2.3.bn3.weight:[142]***layer2.3.se.conv.weight:[1, 1, 5]***layer3.0.conv1.weight:[101, 142, 1, 1]***layer3.0.bn1.weight:[101]***layer3.0.conv2.weight:[25, 101, 3, 3]***layer3.0.bn2.weight:[25]***layer3.0.conv3.weight:[278, 25, 1, 1]***layer3.0.bn3.weight:[278]***layer3.0.se.conv.weight:[1, 1, 5]***layer3.0.downsample.1.weight:[278, 142, 1, 1]***layer3.0.downsample.2.weight:[278]***layer3.1.conv1.weight:[239, 278, 1, 1]***layer3.1.bn1.weight:[239]***layer3.1.conv2.weight:[160, 239, 3, 3]***layer3.1.bn2.weight:[160]***layer3.1.conv3.weight:[278, 160, 1, 1]***layer3.1.bn3.weight:[278]***layer3.1.se.conv.weight:[1, 1, 5]***layer3.2.conv1.weight:[234, 278, 1, 1]***layer3.2.bn1.weight:[234]***layer3.2.conv2.weight:[156, 234, 3, 3]***layer3.2.bn2.weight:[156]***layer3.2.conv3.weight:[278, 156, 1, 1]***layer3.2.bn3.weight:[278]***layer3.2.se.conv.weight:[1, 1, 5]***layer3.3.conv1.weight:[250, 278, 1, 1]***layer3.3.bn1.weight:[250]***layer3.3.conv2.weight:[176, 250, 3, 3]***layer3.3.bn2.weight:[176]***layer3.3.conv3.weight:[278, 176, 1, 1]***layer3.3.bn3.weight:[278]***layer3.3.se.conv.weight:[1, 1, 5]***layer3.4.conv1.weight:[253, 278, 1, 1]***layer3.4.bn1.weight:[253]***layer3.4.conv2.weight:[191, 253, 3, 3]***layer3.4.bn2.weight:[191]***layer3.4.conv3.weight:[278, 191, 1, 1]***layer3.4.bn3.weight:[278]***layer3.4.se.conv.weight:[1, 1, 5]***layer3.5.conv1.weight:[251, 278, 1, 1]***layer3.5.bn1.weight:[251]***layer3.5.conv2.weight:[175, 251, 3, 3]***layer3.5.bn2.weight:[175]***layer3.5.conv3.weight:[278, 175, 1, 1]***layer3.5.bn3.weight:[278]***layer3.5.se.conv.weight:[1, 1, 5]***layer3.6.conv1.weight:[230, 278, 1, 1]***layer3.6.bn1.weight:[230]***layer3.6.conv2.weight:[128, 230, 3, 3]***layer3.6.bn2.weight:[128]***layer3.6.conv3.weight:[278, 128, 1, 1]***layer3.6.bn3.weight:[278]***layer3.6.se.conv.weight:[1, 1, 5]***layer3.7.conv1.weight:[244, 278, 1, 1]***layer3.7.bn1.weight:[244]***layer3.7.conv2.weight:[154, 244, 3, 3]***layer3.7.bn2.weight:[154]***layer3.7.conv3.weight:[278, 154, 1, 1]***layer3.7.bn3.weight:[278]***layer3.7.se.conv.weight:[1, 1, 5]***layer3.8.conv1.weight:[244, 278, 1, 1]***layer3.8.bn1.weight:[244]***layer3.8.conv2.weight:[159, 244, 3, 3]***layer3.8.bn2.weight:[159]***layer3.8.conv3.weight:[278, 159, 1, 1]***layer3.8.bn3.weight:[278]***layer3.8.se.conv.weight:[1, 1, 5]***layer3.9.conv1.weight:[238, 278, 1, 1]***layer3.9.bn1.weight:[238]***layer3.9.conv2.weight:[97, 238, 3, 3]***layer3.9.bn2.weight:[97]***layer3.9.conv3.weight:[278, 97, 1, 1]***layer3.9.bn3.weight:[278]***layer3.9.se.conv.weight:[1, 1, 5]***layer3.10.conv1.weight:[244, 278, 1, 1]***layer3.10.bn1.weight:[244]***layer3.10.conv2.weight:[149, 244, 3, 3]***layer3.10.bn2.weight:[149]***layer3.10.conv3.weight:[278, 149, 1, 1]***layer3.10.bn3.weight:[278]***layer3.10.se.conv.weight:[1, 1, 5]***layer3.11.conv1.weight:[253, 278, 1, 1]***layer3.11.bn1.weight:[253]***layer3.11.conv2.weight:[181, 253, 3, 3]***layer3.11.bn2.weight:[181]***layer3.11.conv3.weight:[278, 181, 1, 1]***layer3.11.bn3.weight:[278]***layer3.11.se.conv.weight:[1, 1, 5]***layer3.12.conv1.weight:[245, 278, 1, 1]***layer3.12.bn1.weight:[245]***layer3.12.conv2.weight:[119, 245, 3, 3]***layer3.12.bn2.weight:[119]***layer3.12.conv3.weight:[278, 119, 1, 1]***layer3.12.bn3.weight:[278]***layer3.12.se.conv.weight:[1, 1, 5]***layer3.13.conv1.weight:[255, 278, 1, 1]***layer3.13.bn1.weight:[255]***layer3.13.conv2.weight:[216, 255, 3, 3]***layer3.13.bn2.weight:[216]***layer3.13.conv3.weight:[278, 216, 1, 1]***layer3.13.bn3.weight:[278]***layer3.13.se.conv.weight:[1, 1, 5]***layer3.14.conv1.weight:[256, 278, 1, 1]***layer3.14.bn1.weight:[256]***layer3.14.conv2.weight:[201, 256, 3, 3]***layer3.14.bn2.weight:[201]***layer3.14.conv3.weight:[278, 201, 1, 1]***layer3.14.bn3.weight:[278]***layer3.14.se.conv.weight:[1, 1, 5]***layer3.15.conv1.weight:[253, 278, 1, 1]***layer3.15.bn1.weight:[253]***layer3.15.conv2.weight:[149, 253, 3, 3]***layer3.15.bn2.weight:[149]***layer3.15.conv3.weight:[278, 149, 1, 1]***layer3.15.bn3.weight:[278]***layer3.15.se.conv.weight:[1, 1, 5]***layer3.16.conv1.weight:[254, 278, 1, 1]***layer3.16.bn1.weight:[254]***layer3.16.conv2.weight:[141, 254, 3, 3]***layer3.16.bn2.weight:[141]***layer3.16.conv3.weight:[278, 141, 1, 1]***layer3.16.bn3.weight:[278]***layer3.16.se.conv.weight:[1, 1, 5]***layer3.17.conv1.weight:[256, 278, 1, 1]***layer3.17.bn1.weight:[256]***layer3.17.conv2.weight:[190, 256, 3, 3]***layer3.17.bn2.weight:[190]***layer3.17.conv3.weight:[278, 190, 1, 1]***layer3.17.bn3.weight:[278]***layer3.17.se.conv.weight:[1, 1, 5]***layer3.18.conv1.weight:[256, 278, 1, 1]***layer3.18.bn1.weight:[256]***layer3.18.conv2.weight:[217, 256, 3, 3]***layer3.18.bn2.weight:[217]***layer3.18.conv3.weight:[278, 217, 1, 1]***layer3.18.bn3.weight:[278]***layer3.18.se.conv.weight:[1, 1, 5]***layer3.19.conv1.weight:[255, 278, 1, 1]***layer3.19.bn1.weight:[255]***layer3.19.conv2.weight:[156, 255, 3, 3]***layer3.19.bn2.weight:[156]***layer3.19.conv3.weight:[278, 156, 1, 1]***layer3.19.bn3.weight:[278]***layer3.19.se.conv.weight:[1, 1, 5]***layer3.20.conv1.weight:[256, 278, 1, 1]***layer3.20.bn1.weight:[256]***layer3.20.conv2.weight:[155, 256, 3, 3]***layer3.20.bn2.weight:[155]***layer3.20.conv3.weight:[278, 155, 1, 1]***layer3.20.bn3.weight:[278]***layer3.20.se.conv.weight:[1, 1, 5]***layer3.21.conv1.weight:[256, 278, 1, 1]***layer3.21.bn1.weight:[256]***layer3.21.conv2.weight:[232, 256, 3, 3]***layer3.21.bn2.weight:[232]***layer3.21.conv3.weight:[278, 232, 1, 1]***layer3.21.bn3.weight:[278]***layer3.21.se.conv.weight:[1, 1, 5]***layer3.22.conv1.weight:[256, 278, 1, 1]***layer3.22.bn1.weight:[256]***layer3.22.conv2.weight:[214, 256, 3, 3]***layer3.22.bn2.weight:[214]***layer3.22.conv3.weight:[278, 214, 1, 1]***layer3.22.bn3.weight:[278]***layer3.22.se.conv.weight:[1, 1, 5]***layer4.0.conv1.weight:[499, 278, 1, 1]***layer4.0.bn1.weight:[499]***layer4.0.conv2.weight:[289, 499, 3, 3]***layer4.0.bn2.weight:[289]***layer4.0.conv3.weight:[2042, 289, 1, 1]***layer4.0.bn3.weight:[2042]***layer4.0.se.conv.weight:[1, 1, 7]***layer4.0.downsample.1.weight:[2042, 278, 1, 1]***layer4.0.downsample.2.weight:[2042]***layer4.1.conv1.weight:[512, 2042, 1, 1]***layer4.1.bn1.weight:[512]***layer4.1.conv2.weight:[512, 512, 3, 3]***layer4.1.bn2.weight:[512]***layer4.1.conv3.weight:[2042, 512, 1, 1]***layer4.1.bn3.weight:[2042]***layer4.1.se.conv.weight:[1, 1, 7]***layer4.2.conv1.weight:[512, 2042, 1, 1]***layer4.2.bn1.weight:[512]***layer4.2.conv2.weight:[502, 512, 3, 3]***layer4.2.bn2.weight:[502]***layer4.2.conv3.weight:[2042, 502, 1, 1]***layer4.2.bn3.weight:[2042]***layer4.2.se.conv.weight:[1, 1, 7]***fc.weight:[1000, 2042]***layer1_2_conv3_M.weight:[256, 26]***layer2_3_conv3_M.weight:[512, 142]***layer3_22_conv3_M.weight:[1024, 278]***layer4_2_conv3_M.weight:[2048, 2042] \ No newline at end of file diff --git a/pytorch-image-models/timm/models/_pruned/ecaresnet50d_pruned.txt b/pytorch-image-models/timm/models/_pruned/ecaresnet50d_pruned.txt new file mode 100644 index 0000000000000000000000000000000000000000..9a8b2bf50e0631dce74d66a1a98e26cae10572a7 --- /dev/null +++ b/pytorch-image-models/timm/models/_pruned/ecaresnet50d_pruned.txt @@ -0,0 +1 @@ +conv1.0.weight:[32, 3, 3, 3]***conv1.1.weight:[32]***conv1.3.weight:[32, 32, 3, 3]***conv1.4.weight:[32]***conv1.6.weight:[64, 32, 3, 3]***bn1.weight:[64]***layer1.0.conv1.weight:[47, 64, 1, 1]***layer1.0.bn1.weight:[47]***layer1.0.conv2.weight:[18, 47, 3, 3]***layer1.0.bn2.weight:[18]***layer1.0.conv3.weight:[19, 18, 1, 1]***layer1.0.bn3.weight:[19]***layer1.0.se.conv.weight:[1, 1, 5]***layer1.0.downsample.1.weight:[19, 64, 1, 1]***layer1.0.downsample.2.weight:[19]***layer1.1.conv1.weight:[52, 19, 1, 1]***layer1.1.bn1.weight:[52]***layer1.1.conv2.weight:[22, 52, 3, 3]***layer1.1.bn2.weight:[22]***layer1.1.conv3.weight:[19, 22, 1, 1]***layer1.1.bn3.weight:[19]***layer1.1.se.conv.weight:[1, 1, 5]***layer1.2.conv1.weight:[64, 19, 1, 1]***layer1.2.bn1.weight:[64]***layer1.2.conv2.weight:[35, 64, 3, 3]***layer1.2.bn2.weight:[35]***layer1.2.conv3.weight:[19, 35, 1, 1]***layer1.2.bn3.weight:[19]***layer1.2.se.conv.weight:[1, 1, 5]***layer2.0.conv1.weight:[85, 19, 1, 1]***layer2.0.bn1.weight:[85]***layer2.0.conv2.weight:[37, 85, 3, 3]***layer2.0.bn2.weight:[37]***layer2.0.conv3.weight:[171, 37, 1, 1]***layer2.0.bn3.weight:[171]***layer2.0.se.conv.weight:[1, 1, 5]***layer2.0.downsample.1.weight:[171, 19, 1, 1]***layer2.0.downsample.2.weight:[171]***layer2.1.conv1.weight:[107, 171, 1, 1]***layer2.1.bn1.weight:[107]***layer2.1.conv2.weight:[80, 107, 3, 3]***layer2.1.bn2.weight:[80]***layer2.1.conv3.weight:[171, 80, 1, 1]***layer2.1.bn3.weight:[171]***layer2.1.se.conv.weight:[1, 1, 5]***layer2.2.conv1.weight:[120, 171, 1, 1]***layer2.2.bn1.weight:[120]***layer2.2.conv2.weight:[85, 120, 3, 3]***layer2.2.bn2.weight:[85]***layer2.2.conv3.weight:[171, 85, 1, 1]***layer2.2.bn3.weight:[171]***layer2.2.se.conv.weight:[1, 1, 5]***layer2.3.conv1.weight:[125, 171, 1, 1]***layer2.3.bn1.weight:[125]***layer2.3.conv2.weight:[87, 125, 3, 3]***layer2.3.bn2.weight:[87]***layer2.3.conv3.weight:[171, 87, 1, 1]***layer2.3.bn3.weight:[171]***layer2.3.se.conv.weight:[1, 1, 5]***layer3.0.conv1.weight:[198, 171, 1, 1]***layer3.0.bn1.weight:[198]***layer3.0.conv2.weight:[126, 198, 3, 3]***layer3.0.bn2.weight:[126]***layer3.0.conv3.weight:[818, 126, 1, 1]***layer3.0.bn3.weight:[818]***layer3.0.se.conv.weight:[1, 1, 5]***layer3.0.downsample.1.weight:[818, 171, 1, 1]***layer3.0.downsample.2.weight:[818]***layer3.1.conv1.weight:[255, 818, 1, 1]***layer3.1.bn1.weight:[255]***layer3.1.conv2.weight:[232, 255, 3, 3]***layer3.1.bn2.weight:[232]***layer3.1.conv3.weight:[818, 232, 1, 1]***layer3.1.bn3.weight:[818]***layer3.1.se.conv.weight:[1, 1, 5]***layer3.2.conv1.weight:[256, 818, 1, 1]***layer3.2.bn1.weight:[256]***layer3.2.conv2.weight:[233, 256, 3, 3]***layer3.2.bn2.weight:[233]***layer3.2.conv3.weight:[818, 233, 1, 1]***layer3.2.bn3.weight:[818]***layer3.2.se.conv.weight:[1, 1, 5]***layer3.3.conv1.weight:[253, 818, 1, 1]***layer3.3.bn1.weight:[253]***layer3.3.conv2.weight:[235, 253, 3, 3]***layer3.3.bn2.weight:[235]***layer3.3.conv3.weight:[818, 235, 1, 1]***layer3.3.bn3.weight:[818]***layer3.3.se.conv.weight:[1, 1, 5]***layer3.4.conv1.weight:[256, 818, 1, 1]***layer3.4.bn1.weight:[256]***layer3.4.conv2.weight:[225, 256, 3, 3]***layer3.4.bn2.weight:[225]***layer3.4.conv3.weight:[818, 225, 1, 1]***layer3.4.bn3.weight:[818]***layer3.4.se.conv.weight:[1, 1, 5]***layer3.5.conv1.weight:[256, 818, 1, 1]***layer3.5.bn1.weight:[256]***layer3.5.conv2.weight:[239, 256, 3, 3]***layer3.5.bn2.weight:[239]***layer3.5.conv3.weight:[818, 239, 1, 1]***layer3.5.bn3.weight:[818]***layer3.5.se.conv.weight:[1, 1, 5]***layer4.0.conv1.weight:[492, 818, 1, 1]***layer4.0.bn1.weight:[492]***layer4.0.conv2.weight:[237, 492, 3, 3]***layer4.0.bn2.weight:[237]***layer4.0.conv3.weight:[2022, 237, 1, 1]***layer4.0.bn3.weight:[2022]***layer4.0.se.conv.weight:[1, 1, 7]***layer4.0.downsample.1.weight:[2022, 818, 1, 1]***layer4.0.downsample.2.weight:[2022]***layer4.1.conv1.weight:[512, 2022, 1, 1]***layer4.1.bn1.weight:[512]***layer4.1.conv2.weight:[500, 512, 3, 3]***layer4.1.bn2.weight:[500]***layer4.1.conv3.weight:[2022, 500, 1, 1]***layer4.1.bn3.weight:[2022]***layer4.1.se.conv.weight:[1, 1, 7]***layer4.2.conv1.weight:[512, 2022, 1, 1]***layer4.2.bn1.weight:[512]***layer4.2.conv2.weight:[490, 512, 3, 3]***layer4.2.bn2.weight:[490]***layer4.2.conv3.weight:[2022, 490, 1, 1]***layer4.2.bn3.weight:[2022]***layer4.2.se.conv.weight:[1, 1, 7]***fc.weight:[1000, 2022]***layer1_2_conv3_M.weight:[256, 19]***layer2_3_conv3_M.weight:[512, 171]***layer3_5_conv3_M.weight:[1024, 818]***layer4_2_conv3_M.weight:[2048, 2022] \ No newline at end of file diff --git a/pytorch-image-models/timm/models/_pruned/efficientnet_b1_pruned.txt b/pytorch-image-models/timm/models/_pruned/efficientnet_b1_pruned.txt new file mode 100644 index 0000000000000000000000000000000000000000..0972b527612b283fd242cc5eaeb6e767ea106c66 --- /dev/null +++ b/pytorch-image-models/timm/models/_pruned/efficientnet_b1_pruned.txt @@ -0,0 +1 @@ +conv_stem.weight:[32, 3, 3, 3]***bn1.weight:[32]***bn1.bias:[32]***bn1.running_mean:[32]***bn1.running_var:[32]***bn1.num_batches_tracked:[]***blocks.0.0.conv_dw.weight:[32, 1, 3, 3]***blocks.0.0.bn1.weight:[32]***blocks.0.0.bn1.bias:[32]***blocks.0.0.bn1.running_mean:[32]***blocks.0.0.bn1.running_var:[32]***blocks.0.0.bn1.num_batches_tracked:[]***blocks.0.0.se.conv_reduce.weight:[8, 32, 1, 1]***blocks.0.0.se.conv_reduce.bias:[8]***blocks.0.0.se.conv_expand.weight:[32, 8, 1, 1]***blocks.0.0.se.conv_expand.bias:[32]***blocks.0.0.conv_pw.weight:[16, 32, 1, 1]***blocks.0.0.bn2.weight:[16]***blocks.0.0.bn2.bias:[16]***blocks.0.0.bn2.running_mean:[16]***blocks.0.0.bn2.running_var:[16]***blocks.0.0.bn2.num_batches_tracked:[]***blocks.0.1.conv_dw.weight:[16, 1, 3, 3]***blocks.0.1.bn1.weight:[16]***blocks.0.1.bn1.bias:[16]***blocks.0.1.bn1.running_mean:[16]***blocks.0.1.bn1.running_var:[16]***blocks.0.1.bn1.num_batches_tracked:[]***blocks.0.1.se.conv_reduce.weight:[4, 16, 1, 1]***blocks.0.1.se.conv_reduce.bias:[4]***blocks.0.1.se.conv_expand.weight:[16, 4, 1, 1]***blocks.0.1.se.conv_expand.bias:[16]***blocks.0.1.conv_pw.weight:[16, 16, 1, 1]***blocks.0.1.bn2.weight:[16]***blocks.0.1.bn2.bias:[16]***blocks.0.1.bn2.running_mean:[16]***blocks.0.1.bn2.running_var:[16]***blocks.0.1.bn2.num_batches_tracked:[]***blocks.1.0.conv_pw.weight:[48, 16, 1, 1]***blocks.1.0.bn1.weight:[48]***blocks.1.0.bn1.bias:[48]***blocks.1.0.bn1.running_mean:[48]***blocks.1.0.bn1.running_var:[48]***blocks.1.0.bn1.num_batches_tracked:[]***blocks.1.0.conv_dw.weight:[48, 1, 3, 3]***blocks.1.0.bn2.weight:[48]***blocks.1.0.bn2.bias:[48]***blocks.1.0.bn2.running_mean:[48]***blocks.1.0.bn2.running_var:[48]***blocks.1.0.bn2.num_batches_tracked:[]***blocks.1.0.se.conv_reduce.weight:[4, 48, 1, 1]***blocks.1.0.se.conv_reduce.bias:[4]***blocks.1.0.se.conv_expand.weight:[48, 4, 1, 1]***blocks.1.0.se.conv_expand.bias:[48]***blocks.1.0.conv_pwl.weight:[12, 48, 1, 1]***blocks.1.0.bn3.weight:[12]***blocks.1.0.bn3.bias:[12]***blocks.1.0.bn3.running_mean:[12]***blocks.1.0.bn3.running_var:[12]***blocks.1.0.bn3.num_batches_tracked:[]***blocks.1.1.conv_pw.weight:[62, 12, 1, 1]***blocks.1.1.bn1.weight:[62]***blocks.1.1.bn1.bias:[62]***blocks.1.1.bn1.running_mean:[62]***blocks.1.1.bn1.running_var:[62]***blocks.1.1.bn1.num_batches_tracked:[]***blocks.1.1.conv_dw.weight:[62, 1, 3, 3]***blocks.1.1.bn2.weight:[62]***blocks.1.1.bn2.bias:[62]***blocks.1.1.bn2.running_mean:[62]***blocks.1.1.bn2.running_var:[62]***blocks.1.1.bn2.num_batches_tracked:[]***blocks.1.1.se.conv_reduce.weight:[6, 62, 1, 1]***blocks.1.1.se.conv_reduce.bias:[6]***blocks.1.1.se.conv_expand.weight:[62, 6, 1, 1]***blocks.1.1.se.conv_expand.bias:[62]***blocks.1.1.conv_pwl.weight:[12, 62, 1, 1]***blocks.1.1.bn3.weight:[12]***blocks.1.1.bn3.bias:[12]***blocks.1.1.bn3.running_mean:[12]***blocks.1.1.bn3.running_var:[12]***blocks.1.1.bn3.num_batches_tracked:[]***blocks.1.2.conv_pw.weight:[48, 12, 1, 1]***blocks.1.2.bn1.weight:[48]***blocks.1.2.bn1.bias:[48]***blocks.1.2.bn1.running_mean:[48]***blocks.1.2.bn1.running_var:[48]***blocks.1.2.bn1.num_batches_tracked:[]***blocks.1.2.conv_dw.weight:[48, 1, 3, 3]***blocks.1.2.bn2.weight:[48]***blocks.1.2.bn2.bias:[48]***blocks.1.2.bn2.running_mean:[48]***blocks.1.2.bn2.running_var:[48]***blocks.1.2.bn2.num_batches_tracked:[]***blocks.1.2.se.conv_reduce.weight:[6, 48, 1, 1]***blocks.1.2.se.conv_reduce.bias:[6]***blocks.1.2.se.conv_expand.weight:[48, 6, 1, 1]***blocks.1.2.se.conv_expand.bias:[48]***blocks.1.2.conv_pwl.weight:[12, 48, 1, 1]***blocks.1.2.bn3.weight:[12]***blocks.1.2.bn3.bias:[12]***blocks.1.2.bn3.running_mean:[12]***blocks.1.2.bn3.running_var:[12]***blocks.1.2.bn3.num_batches_tracked:[]***blocks.2.0.conv_pw.weight:[70, 12, 1, 1]***blocks.2.0.bn1.weight:[70]***blocks.2.0.bn1.bias:[70]***blocks.2.0.bn1.running_mean:[70]***blocks.2.0.bn1.running_var:[70]***blocks.2.0.bn1.num_batches_tracked:[]***blocks.2.0.conv_dw.weight:[70, 1, 5, 5]***blocks.2.0.bn2.weight:[70]***blocks.2.0.bn2.bias:[70]***blocks.2.0.bn2.running_mean:[70]***blocks.2.0.bn2.running_var:[70]***blocks.2.0.bn2.num_batches_tracked:[]***blocks.2.0.se.conv_reduce.weight:[6, 70, 1, 1]***blocks.2.0.se.conv_reduce.bias:[6]***blocks.2.0.se.conv_expand.weight:[70, 6, 1, 1]***blocks.2.0.se.conv_expand.bias:[70]***blocks.2.0.conv_pwl.weight:[35, 70, 1, 1]***blocks.2.0.bn3.weight:[35]***blocks.2.0.bn3.bias:[35]***blocks.2.0.bn3.running_mean:[35]***blocks.2.0.bn3.running_var:[35]***blocks.2.0.bn3.num_batches_tracked:[]***blocks.2.1.conv_pw.weight:[61, 35, 1, 1]***blocks.2.1.bn1.weight:[61]***blocks.2.1.bn1.bias:[61]***blocks.2.1.bn1.running_mean:[61]***blocks.2.1.bn1.running_var:[61]***blocks.2.1.bn1.num_batches_tracked:[]***blocks.2.1.conv_dw.weight:[61, 1, 5, 5]***blocks.2.1.bn2.weight:[61]***blocks.2.1.bn2.bias:[61]***blocks.2.1.bn2.running_mean:[61]***blocks.2.1.bn2.running_var:[61]***blocks.2.1.bn2.num_batches_tracked:[]***blocks.2.1.se.conv_reduce.weight:[10, 61, 1, 1]***blocks.2.1.se.conv_reduce.bias:[10]***blocks.2.1.se.conv_expand.weight:[61, 10, 1, 1]***blocks.2.1.se.conv_expand.bias:[61]***blocks.2.1.conv_pwl.weight:[35, 61, 1, 1]***blocks.2.1.bn3.weight:[35]***blocks.2.1.bn3.bias:[35]***blocks.2.1.bn3.running_mean:[35]***blocks.2.1.bn3.running_var:[35]***blocks.2.1.bn3.num_batches_tracked:[]***blocks.2.2.conv_pw.weight:[51, 35, 1, 1]***blocks.2.2.bn1.weight:[51]***blocks.2.2.bn1.bias:[51]***blocks.2.2.bn1.running_mean:[51]***blocks.2.2.bn1.running_var:[51]***blocks.2.2.bn1.num_batches_tracked:[]***blocks.2.2.conv_dw.weight:[51, 1, 5, 5]***blocks.2.2.bn2.weight:[51]***blocks.2.2.bn2.bias:[51]***blocks.2.2.bn2.running_mean:[51]***blocks.2.2.bn2.running_var:[51]***blocks.2.2.bn2.num_batches_tracked:[]***blocks.2.2.se.conv_reduce.weight:[10, 51, 1, 1]***blocks.2.2.se.conv_reduce.bias:[10]***blocks.2.2.se.conv_expand.weight:[51, 10, 1, 1]***blocks.2.2.se.conv_expand.bias:[51]***blocks.2.2.conv_pwl.weight:[35, 51, 1, 1]***blocks.2.2.bn3.weight:[35]***blocks.2.2.bn3.bias:[35]***blocks.2.2.bn3.running_mean:[35]***blocks.2.2.bn3.running_var:[35]***blocks.2.2.bn3.num_batches_tracked:[]***blocks.3.0.conv_pw.weight:[175, 35, 1, 1]***blocks.3.0.bn1.weight:[175]***blocks.3.0.bn1.bias:[175]***blocks.3.0.bn1.running_mean:[175]***blocks.3.0.bn1.running_var:[175]***blocks.3.0.bn1.num_batches_tracked:[]***blocks.3.0.conv_dw.weight:[175, 1, 3, 3]***blocks.3.0.bn2.weight:[175]***blocks.3.0.bn2.bias:[175]***blocks.3.0.bn2.running_mean:[175]***blocks.3.0.bn2.running_var:[175]***blocks.3.0.bn2.num_batches_tracked:[]***blocks.3.0.se.conv_reduce.weight:[10, 175, 1, 1]***blocks.3.0.se.conv_reduce.bias:[10]***blocks.3.0.se.conv_expand.weight:[175, 10, 1, 1]***blocks.3.0.se.conv_expand.bias:[175]***blocks.3.0.conv_pwl.weight:[74, 175, 1, 1]***blocks.3.0.bn3.weight:[74]***blocks.3.0.bn3.bias:[74]***blocks.3.0.bn3.running_mean:[74]***blocks.3.0.bn3.running_var:[74]***blocks.3.0.bn3.num_batches_tracked:[]***blocks.3.1.conv_pw.weight:[188, 74, 1, 1]***blocks.3.1.bn1.weight:[188]***blocks.3.1.bn1.bias:[188]***blocks.3.1.bn1.running_mean:[188]***blocks.3.1.bn1.running_var:[188]***blocks.3.1.bn1.num_batches_tracked:[]***blocks.3.1.conv_dw.weight:[188, 1, 3, 3]***blocks.3.1.bn2.weight:[188]***blocks.3.1.bn2.bias:[188]***blocks.3.1.bn2.running_mean:[188]***blocks.3.1.bn2.running_var:[188]***blocks.3.1.bn2.num_batches_tracked:[]***blocks.3.1.se.conv_reduce.weight:[20, 188, 1, 1]***blocks.3.1.se.conv_reduce.bias:[20]***blocks.3.1.se.conv_expand.weight:[188, 20, 1, 1]***blocks.3.1.se.conv_expand.bias:[188]***blocks.3.1.conv_pwl.weight:[74, 188, 1, 1]***blocks.3.1.bn3.weight:[74]***blocks.3.1.bn3.bias:[74]***blocks.3.1.bn3.running_mean:[74]***blocks.3.1.bn3.running_var:[74]***blocks.3.1.bn3.num_batches_tracked:[]***blocks.3.2.conv_pw.weight:[137, 74, 1, 1]***blocks.3.2.bn1.weight:[137]***blocks.3.2.bn1.bias:[137]***blocks.3.2.bn1.running_mean:[137]***blocks.3.2.bn1.running_var:[137]***blocks.3.2.bn1.num_batches_tracked:[]***blocks.3.2.conv_dw.weight:[137, 1, 3, 3]***blocks.3.2.bn2.weight:[137]***blocks.3.2.bn2.bias:[137]***blocks.3.2.bn2.running_mean:[137]***blocks.3.2.bn2.running_var:[137]***blocks.3.2.bn2.num_batches_tracked:[]***blocks.3.2.se.conv_reduce.weight:[20, 137, 1, 1]***blocks.3.2.se.conv_reduce.bias:[20]***blocks.3.2.se.conv_expand.weight:[137, 20, 1, 1]***blocks.3.2.se.conv_expand.bias:[137]***blocks.3.2.conv_pwl.weight:[74, 137, 1, 1]***blocks.3.2.bn3.weight:[74]***blocks.3.2.bn3.bias:[74]***blocks.3.2.bn3.running_mean:[74]***blocks.3.2.bn3.running_var:[74]***blocks.3.2.bn3.num_batches_tracked:[]***blocks.3.3.conv_pw.weight:[164, 74, 1, 1]***blocks.3.3.bn1.weight:[164]***blocks.3.3.bn1.bias:[164]***blocks.3.3.bn1.running_mean:[164]***blocks.3.3.bn1.running_var:[164]***blocks.3.3.bn1.num_batches_tracked:[]***blocks.3.3.conv_dw.weight:[164, 1, 3, 3]***blocks.3.3.bn2.weight:[164]***blocks.3.3.bn2.bias:[164]***blocks.3.3.bn2.running_mean:[164]***blocks.3.3.bn2.running_var:[164]***blocks.3.3.bn2.num_batches_tracked:[]***blocks.3.3.se.conv_reduce.weight:[20, 164, 1, 1]***blocks.3.3.se.conv_reduce.bias:[20]***blocks.3.3.se.conv_expand.weight:[164, 20, 1, 1]***blocks.3.3.se.conv_expand.bias:[164]***blocks.3.3.conv_pwl.weight:[74, 164, 1, 1]***blocks.3.3.bn3.weight:[74]***blocks.3.3.bn3.bias:[74]***blocks.3.3.bn3.running_mean:[74]***blocks.3.3.bn3.running_var:[74]***blocks.3.3.bn3.num_batches_tracked:[]***blocks.4.0.conv_pw.weight:[399, 74, 1, 1]***blocks.4.0.bn1.weight:[399]***blocks.4.0.bn1.bias:[399]***blocks.4.0.bn1.running_mean:[399]***blocks.4.0.bn1.running_var:[399]***blocks.4.0.bn1.num_batches_tracked:[]***blocks.4.0.conv_dw.weight:[399, 1, 5, 5]***blocks.4.0.bn2.weight:[399]***blocks.4.0.bn2.bias:[399]***blocks.4.0.bn2.running_mean:[399]***blocks.4.0.bn2.running_var:[399]***blocks.4.0.bn2.num_batches_tracked:[]***blocks.4.0.se.conv_reduce.weight:[20, 399, 1, 1]***blocks.4.0.se.conv_reduce.bias:[20]***blocks.4.0.se.conv_expand.weight:[399, 20, 1, 1]***blocks.4.0.se.conv_expand.bias:[399]***blocks.4.0.conv_pwl.weight:[67, 399, 1, 1]***blocks.4.0.bn3.weight:[67]***blocks.4.0.bn3.bias:[67]***blocks.4.0.bn3.running_mean:[67]***blocks.4.0.bn3.running_var:[67]***blocks.4.0.bn3.num_batches_tracked:[]***blocks.4.1.conv_pw.weight:[201, 67, 1, 1]***blocks.4.1.bn1.weight:[201]***blocks.4.1.bn1.bias:[201]***blocks.4.1.bn1.running_mean:[201]***blocks.4.1.bn1.running_var:[201]***blocks.4.1.bn1.num_batches_tracked:[]***blocks.4.1.conv_dw.weight:[201, 1, 5, 5]***blocks.4.1.bn2.weight:[201]***blocks.4.1.bn2.bias:[201]***blocks.4.1.bn2.running_mean:[201]***blocks.4.1.bn2.running_var:[201]***blocks.4.1.bn2.num_batches_tracked:[]***blocks.4.1.se.conv_reduce.weight:[28, 201, 1, 1]***blocks.4.1.se.conv_reduce.bias:[28]***blocks.4.1.se.conv_expand.weight:[201, 28, 1, 1]***blocks.4.1.se.conv_expand.bias:[201]***blocks.4.1.conv_pwl.weight:[67, 201, 1, 1]***blocks.4.1.bn3.weight:[67]***blocks.4.1.bn3.bias:[67]***blocks.4.1.bn3.running_mean:[67]***blocks.4.1.bn3.running_var:[67]***blocks.4.1.bn3.num_batches_tracked:[]***blocks.4.2.conv_pw.weight:[160, 67, 1, 1]***blocks.4.2.bn1.weight:[160]***blocks.4.2.bn1.bias:[160]***blocks.4.2.bn1.running_mean:[160]***blocks.4.2.bn1.running_var:[160]***blocks.4.2.bn1.num_batches_tracked:[]***blocks.4.2.conv_dw.weight:[160, 1, 5, 5]***blocks.4.2.bn2.weight:[160]***blocks.4.2.bn2.bias:[160]***blocks.4.2.bn2.running_mean:[160]***blocks.4.2.bn2.running_var:[160]***blocks.4.2.bn2.num_batches_tracked:[]***blocks.4.2.se.conv_reduce.weight:[28, 160, 1, 1]***blocks.4.2.se.conv_reduce.bias:[28]***blocks.4.2.se.conv_expand.weight:[160, 28, 1, 1]***blocks.4.2.se.conv_expand.bias:[160]***blocks.4.2.conv_pwl.weight:[67, 160, 1, 1]***blocks.4.2.bn3.weight:[67]***blocks.4.2.bn3.bias:[67]***blocks.4.2.bn3.running_mean:[67]***blocks.4.2.bn3.running_var:[67]***blocks.4.2.bn3.num_batches_tracked:[]***blocks.4.3.conv_pw.weight:[213, 67, 1, 1]***blocks.4.3.bn1.weight:[213]***blocks.4.3.bn1.bias:[213]***blocks.4.3.bn1.running_mean:[213]***blocks.4.3.bn1.running_var:[213]***blocks.4.3.bn1.num_batches_tracked:[]***blocks.4.3.conv_dw.weight:[213, 1, 5, 5]***blocks.4.3.bn2.weight:[213]***blocks.4.3.bn2.bias:[213]***blocks.4.3.bn2.running_mean:[213]***blocks.4.3.bn2.running_var:[213]***blocks.4.3.bn2.num_batches_tracked:[]***blocks.4.3.se.conv_reduce.weight:[28, 213, 1, 1]***blocks.4.3.se.conv_reduce.bias:[28]***blocks.4.3.se.conv_expand.weight:[213, 28, 1, 1]***blocks.4.3.se.conv_expand.bias:[213]***blocks.4.3.conv_pwl.weight:[67, 213, 1, 1]***blocks.4.3.bn3.weight:[67]***blocks.4.3.bn3.bias:[67]***blocks.4.3.bn3.running_mean:[67]***blocks.4.3.bn3.running_var:[67]***blocks.4.3.bn3.num_batches_tracked:[]***blocks.5.0.conv_pw.weight:[637, 67, 1, 1]***blocks.5.0.bn1.weight:[637]***blocks.5.0.bn1.bias:[637]***blocks.5.0.bn1.running_mean:[637]***blocks.5.0.bn1.running_var:[637]***blocks.5.0.bn1.num_batches_tracked:[]***blocks.5.0.conv_dw.weight:[637, 1, 5, 5]***blocks.5.0.bn2.weight:[637]***blocks.5.0.bn2.bias:[637]***blocks.5.0.bn2.running_mean:[637]***blocks.5.0.bn2.running_var:[637]***blocks.5.0.bn2.num_batches_tracked:[]***blocks.5.0.se.conv_reduce.weight:[27, 637, 1, 1]***blocks.5.0.se.conv_reduce.bias:[27]***blocks.5.0.se.conv_expand.weight:[637, 27, 1, 1]***blocks.5.0.se.conv_expand.bias:[637]***blocks.5.0.conv_pwl.weight:[192, 637, 1, 1]***blocks.5.0.bn3.weight:[192]***blocks.5.0.bn3.bias:[192]***blocks.5.0.bn3.running_mean:[192]***blocks.5.0.bn3.running_var:[192]***blocks.5.0.bn3.num_batches_tracked:[]***blocks.5.1.conv_pw.weight:[806, 192, 1, 1]***blocks.5.1.bn1.weight:[806]***blocks.5.1.bn1.bias:[806]***blocks.5.1.bn1.running_mean:[806]***blocks.5.1.bn1.running_var:[806]***blocks.5.1.bn1.num_batches_tracked:[]***blocks.5.1.conv_dw.weight:[806, 1, 5, 5]***blocks.5.1.bn2.weight:[806]***blocks.5.1.bn2.bias:[806]***blocks.5.1.bn2.running_mean:[806]***blocks.5.1.bn2.running_var:[806]***blocks.5.1.bn2.num_batches_tracked:[]***blocks.5.1.se.conv_reduce.weight:[48, 806, 1, 1]***blocks.5.1.se.conv_reduce.bias:[48]***blocks.5.1.se.conv_expand.weight:[806, 48, 1, 1]***blocks.5.1.se.conv_expand.bias:[806]***blocks.5.1.conv_pwl.weight:[192, 806, 1, 1]***blocks.5.1.bn3.weight:[192]***blocks.5.1.bn3.bias:[192]***blocks.5.1.bn3.running_mean:[192]***blocks.5.1.bn3.running_var:[192]***blocks.5.1.bn3.num_batches_tracked:[]***blocks.5.2.conv_pw.weight:[798, 192, 1, 1]***blocks.5.2.bn1.weight:[798]***blocks.5.2.bn1.bias:[798]***blocks.5.2.bn1.running_mean:[798]***blocks.5.2.bn1.running_var:[798]***blocks.5.2.bn1.num_batches_tracked:[]***blocks.5.2.conv_dw.weight:[798, 1, 5, 5]***blocks.5.2.bn2.weight:[798]***blocks.5.2.bn2.bias:[798]***blocks.5.2.bn2.running_mean:[798]***blocks.5.2.bn2.running_var:[798]***blocks.5.2.bn2.num_batches_tracked:[]***blocks.5.2.se.conv_reduce.weight:[48, 798, 1, 1]***blocks.5.2.se.conv_reduce.bias:[48]***blocks.5.2.se.conv_expand.weight:[798, 48, 1, 1]***blocks.5.2.se.conv_expand.bias:[798]***blocks.5.2.conv_pwl.weight:[192, 798, 1, 1]***blocks.5.2.bn3.weight:[192]***blocks.5.2.bn3.bias:[192]***blocks.5.2.bn3.running_mean:[192]***blocks.5.2.bn3.running_var:[192]***blocks.5.2.bn3.num_batches_tracked:[]***blocks.5.3.conv_pw.weight:[891, 192, 1, 1]***blocks.5.3.bn1.weight:[891]***blocks.5.3.bn1.bias:[891]***blocks.5.3.bn1.running_mean:[891]***blocks.5.3.bn1.running_var:[891]***blocks.5.3.bn1.num_batches_tracked:[]***blocks.5.3.conv_dw.weight:[891, 1, 5, 5]***blocks.5.3.bn2.weight:[891]***blocks.5.3.bn2.bias:[891]***blocks.5.3.bn2.running_mean:[891]***blocks.5.3.bn2.running_var:[891]***blocks.5.3.bn2.num_batches_tracked:[]***blocks.5.3.se.conv_reduce.weight:[48, 891, 1, 1]***blocks.5.3.se.conv_reduce.bias:[48]***blocks.5.3.se.conv_expand.weight:[891, 48, 1, 1]***blocks.5.3.se.conv_expand.bias:[891]***blocks.5.3.conv_pwl.weight:[192, 891, 1, 1]***blocks.5.3.bn3.weight:[192]***blocks.5.3.bn3.bias:[192]***blocks.5.3.bn3.running_mean:[192]***blocks.5.3.bn3.running_var:[192]***blocks.5.3.bn3.num_batches_tracked:[]***blocks.5.4.conv_pw.weight:[990, 192, 1, 1]***blocks.5.4.bn1.weight:[990]***blocks.5.4.bn1.bias:[990]***blocks.5.4.bn1.running_mean:[990]***blocks.5.4.bn1.running_var:[990]***blocks.5.4.bn1.num_batches_tracked:[]***blocks.5.4.conv_dw.weight:[990, 1, 5, 5]***blocks.5.4.bn2.weight:[990]***blocks.5.4.bn2.bias:[990]***blocks.5.4.bn2.running_mean:[990]***blocks.5.4.bn2.running_var:[990]***blocks.5.4.bn2.num_batches_tracked:[]***blocks.5.4.se.conv_reduce.weight:[48, 990, 1, 1]***blocks.5.4.se.conv_reduce.bias:[48]***blocks.5.4.se.conv_expand.weight:[990, 48, 1, 1]***blocks.5.4.se.conv_expand.bias:[990]***blocks.5.4.conv_pwl.weight:[192, 990, 1, 1]***blocks.5.4.bn3.weight:[192]***blocks.5.4.bn3.bias:[192]***blocks.5.4.bn3.running_mean:[192]***blocks.5.4.bn3.running_var:[192]***blocks.5.4.bn3.num_batches_tracked:[]***blocks.6.0.conv_pw.weight:[1152, 192, 1, 1]***blocks.6.0.bn1.weight:[1152]***blocks.6.0.bn1.bias:[1152]***blocks.6.0.bn1.running_mean:[1152]***blocks.6.0.bn1.running_var:[1152]***blocks.6.0.bn1.num_batches_tracked:[]***blocks.6.0.conv_dw.weight:[1152, 1, 3, 3]***blocks.6.0.bn2.weight:[1152]***blocks.6.0.bn2.bias:[1152]***blocks.6.0.bn2.running_mean:[1152]***blocks.6.0.bn2.running_var:[1152]***blocks.6.0.bn2.num_batches_tracked:[]***blocks.6.0.se.conv_reduce.weight:[48, 1152, 1, 1]***blocks.6.0.se.conv_reduce.bias:[48]***blocks.6.0.se.conv_expand.weight:[1152, 48, 1, 1]***blocks.6.0.se.conv_expand.bias:[1152]***blocks.6.0.conv_pwl.weight:[320, 1152, 1, 1]***blocks.6.0.bn3.weight:[320]***blocks.6.0.bn3.bias:[320]***blocks.6.0.bn3.running_mean:[320]***blocks.6.0.bn3.running_var:[320]***blocks.6.0.bn3.num_batches_tracked:[]***blocks.6.1.conv_pw.weight:[1912, 320, 1, 1]***blocks.6.1.bn1.weight:[1912]***blocks.6.1.bn1.bias:[1912]***blocks.6.1.bn1.running_mean:[1912]***blocks.6.1.bn1.running_var:[1912]***blocks.6.1.bn1.num_batches_tracked:[]***blocks.6.1.conv_dw.weight:[1912, 1, 3, 3]***blocks.6.1.bn2.weight:[1912]***blocks.6.1.bn2.bias:[1912]***blocks.6.1.bn2.running_mean:[1912]***blocks.6.1.bn2.running_var:[1912]***blocks.6.1.bn2.num_batches_tracked:[]***blocks.6.1.se.conv_reduce.weight:[80, 1912, 1, 1]***blocks.6.1.se.conv_reduce.bias:[80]***blocks.6.1.se.conv_expand.weight:[1912, 80, 1, 1]***blocks.6.1.se.conv_expand.bias:[1912]***blocks.6.1.conv_pwl.weight:[320, 1912, 1, 1]***blocks.6.1.bn3.weight:[320]***blocks.6.1.bn3.bias:[320]***blocks.6.1.bn3.running_mean:[320]***blocks.6.1.bn3.running_var:[320]***blocks.6.1.bn3.num_batches_tracked:[]***conv_head.weight:[1280, 320, 1, 1]***bn2.weight:[1280]***bn2.bias:[1280]***bn2.running_mean:[1280]***bn2.running_var:[1280]***bn2.num_batches_tracked:[]***classifier.weight:[1000, 1280]***classifier.bias:[1000] \ No newline at end of file diff --git a/pytorch-image-models/timm/models/_pruned/efficientnet_b2_pruned.txt b/pytorch-image-models/timm/models/_pruned/efficientnet_b2_pruned.txt new file mode 100644 index 0000000000000000000000000000000000000000..6e3fadee3e9f92eaade96afd8691a5e4437551ee --- /dev/null +++ b/pytorch-image-models/timm/models/_pruned/efficientnet_b2_pruned.txt @@ -0,0 +1 @@ +conv_stem.weight:[32, 3, 3, 3]***bn1.weight:[32]***bn1.bias:[32]***bn1.running_mean:[32]***bn1.running_var:[32]***bn1.num_batches_tracked:[]***blocks.0.0.conv_dw.weight:[32, 1, 3, 3]***blocks.0.0.bn1.weight:[32]***blocks.0.0.bn1.bias:[32]***blocks.0.0.bn1.running_mean:[32]***blocks.0.0.bn1.running_var:[32]***blocks.0.0.bn1.num_batches_tracked:[]***blocks.0.0.se.conv_reduce.weight:[8, 32, 1, 1]***blocks.0.0.se.conv_reduce.bias:[8]***blocks.0.0.se.conv_expand.weight:[32, 8, 1, 1]***blocks.0.0.se.conv_expand.bias:[32]***blocks.0.0.conv_pw.weight:[16, 32, 1, 1]***blocks.0.0.bn2.weight:[16]***blocks.0.0.bn2.bias:[16]***blocks.0.0.bn2.running_mean:[16]***blocks.0.0.bn2.running_var:[16]***blocks.0.0.bn2.num_batches_tracked:[]***blocks.0.1.conv_dw.weight:[16, 1, 3, 3]***blocks.0.1.bn1.weight:[16]***blocks.0.1.bn1.bias:[16]***blocks.0.1.bn1.running_mean:[16]***blocks.0.1.bn1.running_var:[16]***blocks.0.1.bn1.num_batches_tracked:[]***blocks.0.1.se.conv_reduce.weight:[4, 16, 1, 1]***blocks.0.1.se.conv_reduce.bias:[4]***blocks.0.1.se.conv_expand.weight:[16, 4, 1, 1]***blocks.0.1.se.conv_expand.bias:[16]***blocks.0.1.conv_pw.weight:[16, 16, 1, 1]***blocks.0.1.bn2.weight:[16]***blocks.0.1.bn2.bias:[16]***blocks.0.1.bn2.running_mean:[16]***blocks.0.1.bn2.running_var:[16]***blocks.0.1.bn2.num_batches_tracked:[]***blocks.1.0.conv_pw.weight:[54, 16, 1, 1]***blocks.1.0.bn1.weight:[54]***blocks.1.0.bn1.bias:[54]***blocks.1.0.bn1.running_mean:[54]***blocks.1.0.bn1.running_var:[54]***blocks.1.0.bn1.num_batches_tracked:[]***blocks.1.0.conv_dw.weight:[54, 1, 3, 3]***blocks.1.0.bn2.weight:[54]***blocks.1.0.bn2.bias:[54]***blocks.1.0.bn2.running_mean:[54]***blocks.1.0.bn2.running_var:[54]***blocks.1.0.bn2.num_batches_tracked:[]***blocks.1.0.se.conv_reduce.weight:[4, 54, 1, 1]***blocks.1.0.se.conv_reduce.bias:[4]***blocks.1.0.se.conv_expand.weight:[54, 4, 1, 1]***blocks.1.0.se.conv_expand.bias:[54]***blocks.1.0.conv_pwl.weight:[17, 54, 1, 1]***blocks.1.0.bn3.weight:[17]***blocks.1.0.bn3.bias:[17]***blocks.1.0.bn3.running_mean:[17]***blocks.1.0.bn3.running_var:[17]***blocks.1.0.bn3.num_batches_tracked:[]***blocks.1.1.conv_pw.weight:[69, 17, 1, 1]***blocks.1.1.bn1.weight:[69]***blocks.1.1.bn1.bias:[69]***blocks.1.1.bn1.running_mean:[69]***blocks.1.1.bn1.running_var:[69]***blocks.1.1.bn1.num_batches_tracked:[]***blocks.1.1.conv_dw.weight:[69, 1, 3, 3]***blocks.1.1.bn2.weight:[69]***blocks.1.1.bn2.bias:[69]***blocks.1.1.bn2.running_mean:[69]***blocks.1.1.bn2.running_var:[69]***blocks.1.1.bn2.num_batches_tracked:[]***blocks.1.1.se.conv_reduce.weight:[6, 69, 1, 1]***blocks.1.1.se.conv_reduce.bias:[6]***blocks.1.1.se.conv_expand.weight:[69, 6, 1, 1]***blocks.1.1.se.conv_expand.bias:[69]***blocks.1.1.conv_pwl.weight:[17, 69, 1, 1]***blocks.1.1.bn3.weight:[17]***blocks.1.1.bn3.bias:[17]***blocks.1.1.bn3.running_mean:[17]***blocks.1.1.bn3.running_var:[17]***blocks.1.1.bn3.num_batches_tracked:[]***blocks.1.2.conv_pw.weight:[61, 17, 1, 1]***blocks.1.2.bn1.weight:[61]***blocks.1.2.bn1.bias:[61]***blocks.1.2.bn1.running_mean:[61]***blocks.1.2.bn1.running_var:[61]***blocks.1.2.bn1.num_batches_tracked:[]***blocks.1.2.conv_dw.weight:[61, 1, 3, 3]***blocks.1.2.bn2.weight:[61]***blocks.1.2.bn2.bias:[61]***blocks.1.2.bn2.running_mean:[61]***blocks.1.2.bn2.running_var:[61]***blocks.1.2.bn2.num_batches_tracked:[]***blocks.1.2.se.conv_reduce.weight:[6, 61, 1, 1]***blocks.1.2.se.conv_reduce.bias:[6]***blocks.1.2.se.conv_expand.weight:[61, 6, 1, 1]***blocks.1.2.se.conv_expand.bias:[61]***blocks.1.2.conv_pwl.weight:[17, 61, 1, 1]***blocks.1.2.bn3.weight:[17]***blocks.1.2.bn3.bias:[17]***blocks.1.2.bn3.running_mean:[17]***blocks.1.2.bn3.running_var:[17]***blocks.1.2.bn3.num_batches_tracked:[]***blocks.2.0.conv_pw.weight:[86, 17, 1, 1]***blocks.2.0.bn1.weight:[86]***blocks.2.0.bn1.bias:[86]***blocks.2.0.bn1.running_mean:[86]***blocks.2.0.bn1.running_var:[86]***blocks.2.0.bn1.num_batches_tracked:[]***blocks.2.0.conv_dw.weight:[86, 1, 5, 5]***blocks.2.0.bn2.weight:[86]***blocks.2.0.bn2.bias:[86]***blocks.2.0.bn2.running_mean:[86]***blocks.2.0.bn2.running_var:[86]***blocks.2.0.bn2.num_batches_tracked:[]***blocks.2.0.se.conv_reduce.weight:[6, 86, 1, 1]***blocks.2.0.se.conv_reduce.bias:[6]***blocks.2.0.se.conv_expand.weight:[86, 6, 1, 1]***blocks.2.0.se.conv_expand.bias:[86]***blocks.2.0.conv_pwl.weight:[42, 86, 1, 1]***blocks.2.0.bn3.weight:[42]***blocks.2.0.bn3.bias:[42]***blocks.2.0.bn3.running_mean:[42]***blocks.2.0.bn3.running_var:[42]***blocks.2.0.bn3.num_batches_tracked:[]***blocks.2.1.conv_pw.weight:[72, 42, 1, 1]***blocks.2.1.bn1.weight:[72]***blocks.2.1.bn1.bias:[72]***blocks.2.1.bn1.running_mean:[72]***blocks.2.1.bn1.running_var:[72]***blocks.2.1.bn1.num_batches_tracked:[]***blocks.2.1.conv_dw.weight:[72, 1, 5, 5]***blocks.2.1.bn2.weight:[72]***blocks.2.1.bn2.bias:[72]***blocks.2.1.bn2.running_mean:[72]***blocks.2.1.bn2.running_var:[72]***blocks.2.1.bn2.num_batches_tracked:[]***blocks.2.1.se.conv_reduce.weight:[12, 72, 1, 1]***blocks.2.1.se.conv_reduce.bias:[12]***blocks.2.1.se.conv_expand.weight:[72, 12, 1, 1]***blocks.2.1.se.conv_expand.bias:[72]***blocks.2.1.conv_pwl.weight:[42, 72, 1, 1]***blocks.2.1.bn3.weight:[42]***blocks.2.1.bn3.bias:[42]***blocks.2.1.bn3.running_mean:[42]***blocks.2.1.bn3.running_var:[42]***blocks.2.1.bn3.num_batches_tracked:[]***blocks.2.2.conv_pw.weight:[98, 42, 1, 1]***blocks.2.2.bn1.weight:[98]***blocks.2.2.bn1.bias:[98]***blocks.2.2.bn1.running_mean:[98]***blocks.2.2.bn1.running_var:[98]***blocks.2.2.bn1.num_batches_tracked:[]***blocks.2.2.conv_dw.weight:[98, 1, 5, 5]***blocks.2.2.bn2.weight:[98]***blocks.2.2.bn2.bias:[98]***blocks.2.2.bn2.running_mean:[98]***blocks.2.2.bn2.running_var:[98]***blocks.2.2.bn2.num_batches_tracked:[]***blocks.2.2.se.conv_reduce.weight:[12, 98, 1, 1]***blocks.2.2.se.conv_reduce.bias:[12]***blocks.2.2.se.conv_expand.weight:[98, 12, 1, 1]***blocks.2.2.se.conv_expand.bias:[98]***blocks.2.2.conv_pwl.weight:[42, 98, 1, 1]***blocks.2.2.bn3.weight:[42]***blocks.2.2.bn3.bias:[42]***blocks.2.2.bn3.running_mean:[42]***blocks.2.2.bn3.running_var:[42]***blocks.2.2.bn3.num_batches_tracked:[]***blocks.3.0.conv_pw.weight:[245, 42, 1, 1]***blocks.3.0.bn1.weight:[245]***blocks.3.0.bn1.bias:[245]***blocks.3.0.bn1.running_mean:[245]***blocks.3.0.bn1.running_var:[245]***blocks.3.0.bn1.num_batches_tracked:[]***blocks.3.0.conv_dw.weight:[245, 1, 3, 3]***blocks.3.0.bn2.weight:[245]***blocks.3.0.bn2.bias:[245]***blocks.3.0.bn2.running_mean:[245]***blocks.3.0.bn2.running_var:[245]***blocks.3.0.bn2.num_batches_tracked:[]***blocks.3.0.se.conv_reduce.weight:[12, 245, 1, 1]***blocks.3.0.se.conv_reduce.bias:[12]***blocks.3.0.se.conv_expand.weight:[245, 12, 1, 1]***blocks.3.0.se.conv_expand.bias:[245]***blocks.3.0.conv_pwl.weight:[85, 245, 1, 1]***blocks.3.0.bn3.weight:[85]***blocks.3.0.bn3.bias:[85]***blocks.3.0.bn3.running_mean:[85]***blocks.3.0.bn3.running_var:[85]***blocks.3.0.bn3.num_batches_tracked:[]***blocks.3.1.conv_pw.weight:[274, 85, 1, 1]***blocks.3.1.bn1.weight:[274]***blocks.3.1.bn1.bias:[274]***blocks.3.1.bn1.running_mean:[274]***blocks.3.1.bn1.running_var:[274]***blocks.3.1.bn1.num_batches_tracked:[]***blocks.3.1.conv_dw.weight:[274, 1, 3, 3]***blocks.3.1.bn2.weight:[274]***blocks.3.1.bn2.bias:[274]***blocks.3.1.bn2.running_mean:[274]***blocks.3.1.bn2.running_var:[274]***blocks.3.1.bn2.num_batches_tracked:[]***blocks.3.1.se.conv_reduce.weight:[22, 274, 1, 1]***blocks.3.1.se.conv_reduce.bias:[22]***blocks.3.1.se.conv_expand.weight:[274, 22, 1, 1]***blocks.3.1.se.conv_expand.bias:[274]***blocks.3.1.conv_pwl.weight:[85, 274, 1, 1]***blocks.3.1.bn3.weight:[85]***blocks.3.1.bn3.bias:[85]***blocks.3.1.bn3.running_mean:[85]***blocks.3.1.bn3.running_var:[85]***blocks.3.1.bn3.num_batches_tracked:[]***blocks.3.2.conv_pw.weight:[254, 85, 1, 1]***blocks.3.2.bn1.weight:[254]***blocks.3.2.bn1.bias:[254]***blocks.3.2.bn1.running_mean:[254]***blocks.3.2.bn1.running_var:[254]***blocks.3.2.bn1.num_batches_tracked:[]***blocks.3.2.conv_dw.weight:[254, 1, 3, 3]***blocks.3.2.bn2.weight:[254]***blocks.3.2.bn2.bias:[254]***blocks.3.2.bn2.running_mean:[254]***blocks.3.2.bn2.running_var:[254]***blocks.3.2.bn2.num_batches_tracked:[]***blocks.3.2.se.conv_reduce.weight:[22, 254, 1, 1]***blocks.3.2.se.conv_reduce.bias:[22]***blocks.3.2.se.conv_expand.weight:[254, 22, 1, 1]***blocks.3.2.se.conv_expand.bias:[254]***blocks.3.2.conv_pwl.weight:[85, 254, 1, 1]***blocks.3.2.bn3.weight:[85]***blocks.3.2.bn3.bias:[85]***blocks.3.2.bn3.running_mean:[85]***blocks.3.2.bn3.running_var:[85]***blocks.3.2.bn3.num_batches_tracked:[]***blocks.3.3.conv_pw.weight:[292, 85, 1, 1]***blocks.3.3.bn1.weight:[292]***blocks.3.3.bn1.bias:[292]***blocks.3.3.bn1.running_mean:[292]***blocks.3.3.bn1.running_var:[292]***blocks.3.3.bn1.num_batches_tracked:[]***blocks.3.3.conv_dw.weight:[292, 1, 3, 3]***blocks.3.3.bn2.weight:[292]***blocks.3.3.bn2.bias:[292]***blocks.3.3.bn2.running_mean:[292]***blocks.3.3.bn2.running_var:[292]***blocks.3.3.bn2.num_batches_tracked:[]***blocks.3.3.se.conv_reduce.weight:[22, 292, 1, 1]***blocks.3.3.se.conv_reduce.bias:[22]***blocks.3.3.se.conv_expand.weight:[292, 22, 1, 1]***blocks.3.3.se.conv_expand.bias:[292]***blocks.3.3.conv_pwl.weight:[85, 292, 1, 1]***blocks.3.3.bn3.weight:[85]***blocks.3.3.bn3.bias:[85]***blocks.3.3.bn3.running_mean:[85]***blocks.3.3.bn3.running_var:[85]***blocks.3.3.bn3.num_batches_tracked:[]***blocks.4.0.conv_pw.weight:[502, 85, 1, 1]***blocks.4.0.bn1.weight:[502]***blocks.4.0.bn1.bias:[502]***blocks.4.0.bn1.running_mean:[502]***blocks.4.0.bn1.running_var:[502]***blocks.4.0.bn1.num_batches_tracked:[]***blocks.4.0.conv_dw.weight:[502, 1, 5, 5]***blocks.4.0.bn2.weight:[502]***blocks.4.0.bn2.bias:[502]***blocks.4.0.bn2.running_mean:[502]***blocks.4.0.bn2.running_var:[502]***blocks.4.0.bn2.num_batches_tracked:[]***blocks.4.0.se.conv_reduce.weight:[22, 502, 1, 1]***blocks.4.0.se.conv_reduce.bias:[22]***blocks.4.0.se.conv_expand.weight:[502, 22, 1, 1]***blocks.4.0.se.conv_expand.bias:[502]***blocks.4.0.conv_pwl.weight:[116, 502, 1, 1]***blocks.4.0.bn3.weight:[116]***blocks.4.0.bn3.bias:[116]***blocks.4.0.bn3.running_mean:[116]***blocks.4.0.bn3.running_var:[116]***blocks.4.0.bn3.num_batches_tracked:[]***blocks.4.1.conv_pw.weight:[315, 116, 1, 1]***blocks.4.1.bn1.weight:[315]***blocks.4.1.bn1.bias:[315]***blocks.4.1.bn1.running_mean:[315]***blocks.4.1.bn1.running_var:[315]***blocks.4.1.bn1.num_batches_tracked:[]***blocks.4.1.conv_dw.weight:[315, 1, 5, 5]***blocks.4.1.bn2.weight:[315]***blocks.4.1.bn2.bias:[315]***blocks.4.1.bn2.running_mean:[315]***blocks.4.1.bn2.running_var:[315]***blocks.4.1.bn2.num_batches_tracked:[]***blocks.4.1.se.conv_reduce.weight:[30, 315, 1, 1]***blocks.4.1.se.conv_reduce.bias:[30]***blocks.4.1.se.conv_expand.weight:[315, 30, 1, 1]***blocks.4.1.se.conv_expand.bias:[315]***blocks.4.1.conv_pwl.weight:[116, 315, 1, 1]***blocks.4.1.bn3.weight:[116]***blocks.4.1.bn3.bias:[116]***blocks.4.1.bn3.running_mean:[116]***blocks.4.1.bn3.running_var:[116]***blocks.4.1.bn3.num_batches_tracked:[]***blocks.4.2.conv_pw.weight:[354, 116, 1, 1]***blocks.4.2.bn1.weight:[354]***blocks.4.2.bn1.bias:[354]***blocks.4.2.bn1.running_mean:[354]***blocks.4.2.bn1.running_var:[354]***blocks.4.2.bn1.num_batches_tracked:[]***blocks.4.2.conv_dw.weight:[354, 1, 5, 5]***blocks.4.2.bn2.weight:[354]***blocks.4.2.bn2.bias:[354]***blocks.4.2.bn2.running_mean:[354]***blocks.4.2.bn2.running_var:[354]***blocks.4.2.bn2.num_batches_tracked:[]***blocks.4.2.se.conv_reduce.weight:[30, 354, 1, 1]***blocks.4.2.se.conv_reduce.bias:[30]***blocks.4.2.se.conv_expand.weight:[354, 30, 1, 1]***blocks.4.2.se.conv_expand.bias:[354]***blocks.4.2.conv_pwl.weight:[116, 354, 1, 1]***blocks.4.2.bn3.weight:[116]***blocks.4.2.bn3.bias:[116]***blocks.4.2.bn3.running_mean:[116]***blocks.4.2.bn3.running_var:[116]***blocks.4.2.bn3.num_batches_tracked:[]***blocks.4.3.conv_pw.weight:[443, 116, 1, 1]***blocks.4.3.bn1.weight:[443]***blocks.4.3.bn1.bias:[443]***blocks.4.3.bn1.running_mean:[443]***blocks.4.3.bn1.running_var:[443]***blocks.4.3.bn1.num_batches_tracked:[]***blocks.4.3.conv_dw.weight:[443, 1, 5, 5]***blocks.4.3.bn2.weight:[443]***blocks.4.3.bn2.bias:[443]***blocks.4.3.bn2.running_mean:[443]***blocks.4.3.bn2.running_var:[443]***blocks.4.3.bn2.num_batches_tracked:[]***blocks.4.3.se.conv_reduce.weight:[30, 443, 1, 1]***blocks.4.3.se.conv_reduce.bias:[30]***blocks.4.3.se.conv_expand.weight:[443, 30, 1, 1]***blocks.4.3.se.conv_expand.bias:[443]***blocks.4.3.conv_pwl.weight:[116, 443, 1, 1]***blocks.4.3.bn3.weight:[116]***blocks.4.3.bn3.bias:[116]***blocks.4.3.bn3.running_mean:[116]***blocks.4.3.bn3.running_var:[116]***blocks.4.3.bn3.num_batches_tracked:[]***blocks.5.0.conv_pw.weight:[719, 116, 1, 1]***blocks.5.0.bn1.weight:[719]***blocks.5.0.bn1.bias:[719]***blocks.5.0.bn1.running_mean:[719]***blocks.5.0.bn1.running_var:[719]***blocks.5.0.bn1.num_batches_tracked:[]***blocks.5.0.conv_dw.weight:[719, 1, 5, 5]***blocks.5.0.bn2.weight:[719]***blocks.5.0.bn2.bias:[719]***blocks.5.0.bn2.running_mean:[719]***blocks.5.0.bn2.running_var:[719]***blocks.5.0.bn2.num_batches_tracked:[]***blocks.5.0.se.conv_reduce.weight:[30, 719, 1, 1]***blocks.5.0.se.conv_reduce.bias:[30]***blocks.5.0.se.conv_expand.weight:[719, 30, 1, 1]***blocks.5.0.se.conv_expand.bias:[719]***blocks.5.0.conv_pwl.weight:[208, 719, 1, 1]***blocks.5.0.bn3.weight:[208]***blocks.5.0.bn3.bias:[208]***blocks.5.0.bn3.running_mean:[208]***blocks.5.0.bn3.running_var:[208]***blocks.5.0.bn3.num_batches_tracked:[]***blocks.5.1.conv_pw.weight:[1148, 208, 1, 1]***blocks.5.1.bn1.weight:[1148]***blocks.5.1.bn1.bias:[1148]***blocks.5.1.bn1.running_mean:[1148]***blocks.5.1.bn1.running_var:[1148]***blocks.5.1.bn1.num_batches_tracked:[]***blocks.5.1.conv_dw.weight:[1148, 1, 5, 5]***blocks.5.1.bn2.weight:[1148]***blocks.5.1.bn2.bias:[1148]***blocks.5.1.bn2.running_mean:[1148]***blocks.5.1.bn2.running_var:[1148]***blocks.5.1.bn2.num_batches_tracked:[]***blocks.5.1.se.conv_reduce.weight:[52, 1148, 1, 1]***blocks.5.1.se.conv_reduce.bias:[52]***blocks.5.1.se.conv_expand.weight:[1148, 52, 1, 1]***blocks.5.1.se.conv_expand.bias:[1148]***blocks.5.1.conv_pwl.weight:[208, 1148, 1, 1]***blocks.5.1.bn3.weight:[208]***blocks.5.1.bn3.bias:[208]***blocks.5.1.bn3.running_mean:[208]***blocks.5.1.bn3.running_var:[208]***blocks.5.1.bn3.num_batches_tracked:[]***blocks.5.2.conv_pw.weight:[1160, 208, 1, 1]***blocks.5.2.bn1.weight:[1160]***blocks.5.2.bn1.bias:[1160]***blocks.5.2.bn1.running_mean:[1160]***blocks.5.2.bn1.running_var:[1160]***blocks.5.2.bn1.num_batches_tracked:[]***blocks.5.2.conv_dw.weight:[1160, 1, 5, 5]***blocks.5.2.bn2.weight:[1160]***blocks.5.2.bn2.bias:[1160]***blocks.5.2.bn2.running_mean:[1160]***blocks.5.2.bn2.running_var:[1160]***blocks.5.2.bn2.num_batches_tracked:[]***blocks.5.2.se.conv_reduce.weight:[52, 1160, 1, 1]***blocks.5.2.se.conv_reduce.bias:[52]***blocks.5.2.se.conv_expand.weight:[1160, 52, 1, 1]***blocks.5.2.se.conv_expand.bias:[1160]***blocks.5.2.conv_pwl.weight:[208, 1160, 1, 1]***blocks.5.2.bn3.weight:[208]***blocks.5.2.bn3.bias:[208]***blocks.5.2.bn3.running_mean:[208]***blocks.5.2.bn3.running_var:[208]***blocks.5.2.bn3.num_batches_tracked:[]***blocks.5.3.conv_pw.weight:[1182, 208, 1, 1]***blocks.5.3.bn1.weight:[1182]***blocks.5.3.bn1.bias:[1182]***blocks.5.3.bn1.running_mean:[1182]***blocks.5.3.bn1.running_var:[1182]***blocks.5.3.bn1.num_batches_tracked:[]***blocks.5.3.conv_dw.weight:[1182, 1, 5, 5]***blocks.5.3.bn2.weight:[1182]***blocks.5.3.bn2.bias:[1182]***blocks.5.3.bn2.running_mean:[1182]***blocks.5.3.bn2.running_var:[1182]***blocks.5.3.bn2.num_batches_tracked:[]***blocks.5.3.se.conv_reduce.weight:[52, 1182, 1, 1]***blocks.5.3.se.conv_reduce.bias:[52]***blocks.5.3.se.conv_expand.weight:[1182, 52, 1, 1]***blocks.5.3.se.conv_expand.bias:[1182]***blocks.5.3.conv_pwl.weight:[208, 1182, 1, 1]***blocks.5.3.bn3.weight:[208]***blocks.5.3.bn3.bias:[208]***blocks.5.3.bn3.running_mean:[208]***blocks.5.3.bn3.running_var:[208]***blocks.5.3.bn3.num_batches_tracked:[]***blocks.5.4.conv_pw.weight:[1228, 208, 1, 1]***blocks.5.4.bn1.weight:[1228]***blocks.5.4.bn1.bias:[1228]***blocks.5.4.bn1.running_mean:[1228]***blocks.5.4.bn1.running_var:[1228]***blocks.5.4.bn1.num_batches_tracked:[]***blocks.5.4.conv_dw.weight:[1228, 1, 5, 5]***blocks.5.4.bn2.weight:[1228]***blocks.5.4.bn2.bias:[1228]***blocks.5.4.bn2.running_mean:[1228]***blocks.5.4.bn2.running_var:[1228]***blocks.5.4.bn2.num_batches_tracked:[]***blocks.5.4.se.conv_reduce.weight:[52, 1228, 1, 1]***blocks.5.4.se.conv_reduce.bias:[52]***blocks.5.4.se.conv_expand.weight:[1228, 52, 1, 1]***blocks.5.4.se.conv_expand.bias:[1228]***blocks.5.4.conv_pwl.weight:[208, 1228, 1, 1]***blocks.5.4.bn3.weight:[208]***blocks.5.4.bn3.bias:[208]***blocks.5.4.bn3.running_mean:[208]***blocks.5.4.bn3.running_var:[208]***blocks.5.4.bn3.num_batches_tracked:[]***blocks.6.0.conv_pw.weight:[1248, 208, 1, 1]***blocks.6.0.bn1.weight:[1248]***blocks.6.0.bn1.bias:[1248]***blocks.6.0.bn1.running_mean:[1248]***blocks.6.0.bn1.running_var:[1248]***blocks.6.0.bn1.num_batches_tracked:[]***blocks.6.0.conv_dw.weight:[1248, 1, 3, 3]***blocks.6.0.bn2.weight:[1248]***blocks.6.0.bn2.bias:[1248]***blocks.6.0.bn2.running_mean:[1248]***blocks.6.0.bn2.running_var:[1248]***blocks.6.0.bn2.num_batches_tracked:[]***blocks.6.0.se.conv_reduce.weight:[52, 1248, 1, 1]***blocks.6.0.se.conv_reduce.bias:[52]***blocks.6.0.se.conv_expand.weight:[1248, 52, 1, 1]***blocks.6.0.se.conv_expand.bias:[1248]***blocks.6.0.conv_pwl.weight:[352, 1248, 1, 1]***blocks.6.0.bn3.weight:[352]***blocks.6.0.bn3.bias:[352]***blocks.6.0.bn3.running_mean:[352]***blocks.6.0.bn3.running_var:[352]***blocks.6.0.bn3.num_batches_tracked:[]***blocks.6.1.conv_pw.weight:[2112, 352, 1, 1]***blocks.6.1.bn1.weight:[2112]***blocks.6.1.bn1.bias:[2112]***blocks.6.1.bn1.running_mean:[2112]***blocks.6.1.bn1.running_var:[2112]***blocks.6.1.bn1.num_batches_tracked:[]***blocks.6.1.conv_dw.weight:[2112, 1, 3, 3]***blocks.6.1.bn2.weight:[2112]***blocks.6.1.bn2.bias:[2112]***blocks.6.1.bn2.running_mean:[2112]***blocks.6.1.bn2.running_var:[2112]***blocks.6.1.bn2.num_batches_tracked:[]***blocks.6.1.se.conv_reduce.weight:[88, 2112, 1, 1]***blocks.6.1.se.conv_reduce.bias:[88]***blocks.6.1.se.conv_expand.weight:[2112, 88, 1, 1]***blocks.6.1.se.conv_expand.bias:[2112]***blocks.6.1.conv_pwl.weight:[352, 2112, 1, 1]***blocks.6.1.bn3.weight:[352]***blocks.6.1.bn3.bias:[352]***blocks.6.1.bn3.running_mean:[352]***blocks.6.1.bn3.running_var:[352]***blocks.6.1.bn3.num_batches_tracked:[]***conv_head.weight:[1408, 352, 1, 1]***bn2.weight:[1408]***bn2.bias:[1408]***bn2.running_mean:[1408]***bn2.running_var:[1408]***bn2.num_batches_tracked:[]***classifier.weight:[1000, 1408]***classifier.bias:[1000] \ No newline at end of file diff --git a/pytorch-image-models/timm/models/_pruned/efficientnet_b3_pruned.txt b/pytorch-image-models/timm/models/_pruned/efficientnet_b3_pruned.txt new file mode 100644 index 0000000000000000000000000000000000000000..489781736de08e5cf40bf76528a735fff4a3f61c --- /dev/null +++ b/pytorch-image-models/timm/models/_pruned/efficientnet_b3_pruned.txt @@ -0,0 +1 @@ +conv_stem.weight:[40, 3, 3, 3]***bn1.weight:[40]***bn1.bias:[40]***bn1.running_mean:[40]***bn1.running_var:[40]***bn1.num_batches_tracked:[]***blocks.0.0.conv_dw.weight:[40, 1, 3, 3]***blocks.0.0.bn1.weight:[40]***blocks.0.0.bn1.bias:[40]***blocks.0.0.bn1.running_mean:[40]***blocks.0.0.bn1.running_var:[40]***blocks.0.0.bn1.num_batches_tracked:[]***blocks.0.0.se.conv_reduce.weight:[10, 40, 1, 1]***blocks.0.0.se.conv_reduce.bias:[10]***blocks.0.0.se.conv_expand.weight:[40, 10, 1, 1]***blocks.0.0.se.conv_expand.bias:[40]***blocks.0.0.conv_pw.weight:[24, 40, 1, 1]***blocks.0.0.bn2.weight:[24]***blocks.0.0.bn2.bias:[24]***blocks.0.0.bn2.running_mean:[24]***blocks.0.0.bn2.running_var:[24]***blocks.0.0.bn2.num_batches_tracked:[]***blocks.0.1.conv_dw.weight:[24, 1, 3, 3]***blocks.0.1.bn1.weight:[24]***blocks.0.1.bn1.bias:[24]***blocks.0.1.bn1.running_mean:[24]***blocks.0.1.bn1.running_var:[24]***blocks.0.1.bn1.num_batches_tracked:[]***blocks.0.1.se.conv_reduce.weight:[6, 24, 1, 1]***blocks.0.1.se.conv_reduce.bias:[6]***blocks.0.1.se.conv_expand.weight:[24, 6, 1, 1]***blocks.0.1.se.conv_expand.bias:[24]***blocks.0.1.conv_pw.weight:[24, 24, 1, 1]***blocks.0.1.bn2.weight:[24]***blocks.0.1.bn2.bias:[24]***blocks.0.1.bn2.running_mean:[24]***blocks.0.1.bn2.running_var:[24]***blocks.0.1.bn2.num_batches_tracked:[]***blocks.1.0.conv_pw.weight:[27, 24, 1, 1]***blocks.1.0.bn1.weight:[27]***blocks.1.0.bn1.bias:[27]***blocks.1.0.bn1.running_mean:[27]***blocks.1.0.bn1.running_var:[27]***blocks.1.0.bn1.num_batches_tracked:[]***blocks.1.0.conv_dw.weight:[27, 1, 3, 3]***blocks.1.0.bn2.weight:[27]***blocks.1.0.bn2.bias:[27]***blocks.1.0.bn2.running_mean:[27]***blocks.1.0.bn2.running_var:[27]***blocks.1.0.bn2.num_batches_tracked:[]***blocks.1.0.se.conv_reduce.weight:[6, 27, 1, 1]***blocks.1.0.se.conv_reduce.bias:[6]***blocks.1.0.se.conv_expand.weight:[27, 6, 1, 1]***blocks.1.0.se.conv_expand.bias:[27]***blocks.1.0.conv_pwl.weight:[12, 27, 1, 1]***blocks.1.0.bn3.weight:[12]***blocks.1.0.bn3.bias:[12]***blocks.1.0.bn3.running_mean:[12]***blocks.1.0.bn3.running_var:[12]***blocks.1.0.bn3.num_batches_tracked:[]***blocks.1.1.conv_pw.weight:[49, 12, 1, 1]***blocks.1.1.bn1.weight:[49]***blocks.1.1.bn1.bias:[49]***blocks.1.1.bn1.running_mean:[49]***blocks.1.1.bn1.running_var:[49]***blocks.1.1.bn1.num_batches_tracked:[]***blocks.1.1.conv_dw.weight:[49, 1, 3, 3]***blocks.1.1.bn2.weight:[49]***blocks.1.1.bn2.bias:[49]***blocks.1.1.bn2.running_mean:[49]***blocks.1.1.bn2.running_var:[49]***blocks.1.1.bn2.num_batches_tracked:[]***blocks.1.1.se.conv_reduce.weight:[8, 49, 1, 1]***blocks.1.1.se.conv_reduce.bias:[8]***blocks.1.1.se.conv_expand.weight:[49, 8, 1, 1]***blocks.1.1.se.conv_expand.bias:[49]***blocks.1.1.conv_pwl.weight:[12, 49, 1, 1]***blocks.1.1.bn3.weight:[12]***blocks.1.1.bn3.bias:[12]***blocks.1.1.bn3.running_mean:[12]***blocks.1.1.bn3.running_var:[12]***blocks.1.1.bn3.num_batches_tracked:[]***blocks.1.2.conv_pw.weight:[48, 12, 1, 1]***blocks.1.2.bn1.weight:[48]***blocks.1.2.bn1.bias:[48]***blocks.1.2.bn1.running_mean:[48]***blocks.1.2.bn1.running_var:[48]***blocks.1.2.bn1.num_batches_tracked:[]***blocks.1.2.conv_dw.weight:[48, 1, 3, 3]***blocks.1.2.bn2.weight:[48]***blocks.1.2.bn2.bias:[48]***blocks.1.2.bn2.running_mean:[48]***blocks.1.2.bn2.running_var:[48]***blocks.1.2.bn2.num_batches_tracked:[]***blocks.1.2.se.conv_reduce.weight:[8, 48, 1, 1]***blocks.1.2.se.conv_reduce.bias:[8]***blocks.1.2.se.conv_expand.weight:[48, 8, 1, 1]***blocks.1.2.se.conv_expand.bias:[48]***blocks.1.2.conv_pwl.weight:[12, 48, 1, 1]***blocks.1.2.bn3.weight:[12]***blocks.1.2.bn3.bias:[12]***blocks.1.2.bn3.running_mean:[12]***blocks.1.2.bn3.running_var:[12]***blocks.1.2.bn3.num_batches_tracked:[]***blocks.2.0.conv_pw.weight:[83, 12, 1, 1]***blocks.2.0.bn1.weight:[83]***blocks.2.0.bn1.bias:[83]***blocks.2.0.bn1.running_mean:[83]***blocks.2.0.bn1.running_var:[83]***blocks.2.0.bn1.num_batches_tracked:[]***blocks.2.0.conv_dw.weight:[83, 1, 5, 5]***blocks.2.0.bn2.weight:[83]***blocks.2.0.bn2.bias:[83]***blocks.2.0.bn2.running_mean:[83]***blocks.2.0.bn2.running_var:[83]***blocks.2.0.bn2.num_batches_tracked:[]***blocks.2.0.se.conv_reduce.weight:[8, 83, 1, 1]***blocks.2.0.se.conv_reduce.bias:[8]***blocks.2.0.se.conv_expand.weight:[83, 8, 1, 1]***blocks.2.0.se.conv_expand.bias:[83]***blocks.2.0.conv_pwl.weight:[40, 83, 1, 1]***blocks.2.0.bn3.weight:[40]***blocks.2.0.bn3.bias:[40]***blocks.2.0.bn3.running_mean:[40]***blocks.2.0.bn3.running_var:[40]***blocks.2.0.bn3.num_batches_tracked:[]***blocks.2.1.conv_pw.weight:[90, 40, 1, 1]***blocks.2.1.bn1.weight:[90]***blocks.2.1.bn1.bias:[90]***blocks.2.1.bn1.running_mean:[90]***blocks.2.1.bn1.running_var:[90]***blocks.2.1.bn1.num_batches_tracked:[]***blocks.2.1.conv_dw.weight:[90, 1, 5, 5]***blocks.2.1.bn2.weight:[90]***blocks.2.1.bn2.bias:[90]***blocks.2.1.bn2.running_mean:[90]***blocks.2.1.bn2.running_var:[90]***blocks.2.1.bn2.num_batches_tracked:[]***blocks.2.1.se.conv_reduce.weight:[12, 90, 1, 1]***blocks.2.1.se.conv_reduce.bias:[12]***blocks.2.1.se.conv_expand.weight:[90, 12, 1, 1]***blocks.2.1.se.conv_expand.bias:[90]***blocks.2.1.conv_pwl.weight:[40, 90, 1, 1]***blocks.2.1.bn3.weight:[40]***blocks.2.1.bn3.bias:[40]***blocks.2.1.bn3.running_mean:[40]***blocks.2.1.bn3.running_var:[40]***blocks.2.1.bn3.num_batches_tracked:[]***blocks.2.2.conv_pw.weight:[85, 40, 1, 1]***blocks.2.2.bn1.weight:[85]***blocks.2.2.bn1.bias:[85]***blocks.2.2.bn1.running_mean:[85]***blocks.2.2.bn1.running_var:[85]***blocks.2.2.bn1.num_batches_tracked:[]***blocks.2.2.conv_dw.weight:[85, 1, 5, 5]***blocks.2.2.bn2.weight:[85]***blocks.2.2.bn2.bias:[85]***blocks.2.2.bn2.running_mean:[85]***blocks.2.2.bn2.running_var:[85]***blocks.2.2.bn2.num_batches_tracked:[]***blocks.2.2.se.conv_reduce.weight:[12, 85, 1, 1]***blocks.2.2.se.conv_reduce.bias:[12]***blocks.2.2.se.conv_expand.weight:[85, 12, 1, 1]***blocks.2.2.se.conv_expand.bias:[85]***blocks.2.2.conv_pwl.weight:[40, 85, 1, 1]***blocks.2.2.bn3.weight:[40]***blocks.2.2.bn3.bias:[40]***blocks.2.2.bn3.running_mean:[40]***blocks.2.2.bn3.running_var:[40]***blocks.2.2.bn3.num_batches_tracked:[]***blocks.3.0.conv_pw.weight:[215, 40, 1, 1]***blocks.3.0.bn1.weight:[215]***blocks.3.0.bn1.bias:[215]***blocks.3.0.bn1.running_mean:[215]***blocks.3.0.bn1.running_var:[215]***blocks.3.0.bn1.num_batches_tracked:[]***blocks.3.0.conv_dw.weight:[215, 1, 3, 3]***blocks.3.0.bn2.weight:[215]***blocks.3.0.bn2.bias:[215]***blocks.3.0.bn2.running_mean:[215]***blocks.3.0.bn2.running_var:[215]***blocks.3.0.bn2.num_batches_tracked:[]***blocks.3.0.se.conv_reduce.weight:[12, 215, 1, 1]***blocks.3.0.se.conv_reduce.bias:[12]***blocks.3.0.se.conv_expand.weight:[215, 12, 1, 1]***blocks.3.0.se.conv_expand.bias:[215]***blocks.3.0.conv_pwl.weight:[93, 215, 1, 1]***blocks.3.0.bn3.weight:[93]***blocks.3.0.bn3.bias:[93]***blocks.3.0.bn3.running_mean:[93]***blocks.3.0.bn3.running_var:[93]***blocks.3.0.bn3.num_batches_tracked:[]***blocks.3.1.conv_pw.weight:[261, 93, 1, 1]***blocks.3.1.bn1.weight:[261]***blocks.3.1.bn1.bias:[261]***blocks.3.1.bn1.running_mean:[261]***blocks.3.1.bn1.running_var:[261]***blocks.3.1.bn1.num_batches_tracked:[]***blocks.3.1.conv_dw.weight:[261, 1, 3, 3]***blocks.3.1.bn2.weight:[261]***blocks.3.1.bn2.bias:[261]***blocks.3.1.bn2.running_mean:[261]***blocks.3.1.bn2.running_var:[261]***blocks.3.1.bn2.num_batches_tracked:[]***blocks.3.1.se.conv_reduce.weight:[24, 261, 1, 1]***blocks.3.1.se.conv_reduce.bias:[24]***blocks.3.1.se.conv_expand.weight:[261, 24, 1, 1]***blocks.3.1.se.conv_expand.bias:[261]***blocks.3.1.conv_pwl.weight:[93, 261, 1, 1]***blocks.3.1.bn3.weight:[93]***blocks.3.1.bn3.bias:[93]***blocks.3.1.bn3.running_mean:[93]***blocks.3.1.bn3.running_var:[93]***blocks.3.1.bn3.num_batches_tracked:[]***blocks.3.2.conv_pw.weight:[219, 93, 1, 1]***blocks.3.2.bn1.weight:[219]***blocks.3.2.bn1.bias:[219]***blocks.3.2.bn1.running_mean:[219]***blocks.3.2.bn1.running_var:[219]***blocks.3.2.bn1.num_batches_tracked:[]***blocks.3.2.conv_dw.weight:[219, 1, 3, 3]***blocks.3.2.bn2.weight:[219]***blocks.3.2.bn2.bias:[219]***blocks.3.2.bn2.running_mean:[219]***blocks.3.2.bn2.running_var:[219]***blocks.3.2.bn2.num_batches_tracked:[]***blocks.3.2.se.conv_reduce.weight:[24, 219, 1, 1]***blocks.3.2.se.conv_reduce.bias:[24]***blocks.3.2.se.conv_expand.weight:[219, 24, 1, 1]***blocks.3.2.se.conv_expand.bias:[219]***blocks.3.2.conv_pwl.weight:[93, 219, 1, 1]***blocks.3.2.bn3.weight:[93]***blocks.3.2.bn3.bias:[93]***blocks.3.2.bn3.running_mean:[93]***blocks.3.2.bn3.running_var:[93]***blocks.3.2.bn3.num_batches_tracked:[]***blocks.3.3.conv_pw.weight:[254, 93, 1, 1]***blocks.3.3.bn1.weight:[254]***blocks.3.3.bn1.bias:[254]***blocks.3.3.bn1.running_mean:[254]***blocks.3.3.bn1.running_var:[254]***blocks.3.3.bn1.num_batches_tracked:[]***blocks.3.3.conv_dw.weight:[254, 1, 3, 3]***blocks.3.3.bn2.weight:[254]***blocks.3.3.bn2.bias:[254]***blocks.3.3.bn2.running_mean:[254]***blocks.3.3.bn2.running_var:[254]***blocks.3.3.bn2.num_batches_tracked:[]***blocks.3.3.se.conv_reduce.weight:[24, 254, 1, 1]***blocks.3.3.se.conv_reduce.bias:[24]***blocks.3.3.se.conv_expand.weight:[254, 24, 1, 1]***blocks.3.3.se.conv_expand.bias:[254]***blocks.3.3.conv_pwl.weight:[93, 254, 1, 1]***blocks.3.3.bn3.weight:[93]***blocks.3.3.bn3.bias:[93]***blocks.3.3.bn3.running_mean:[93]***blocks.3.3.bn3.running_var:[93]***blocks.3.3.bn3.num_batches_tracked:[]***blocks.3.4.conv_pw.weight:[236, 93, 1, 1]***blocks.3.4.bn1.weight:[236]***blocks.3.4.bn1.bias:[236]***blocks.3.4.bn1.running_mean:[236]***blocks.3.4.bn1.running_var:[236]***blocks.3.4.bn1.num_batches_tracked:[]***blocks.3.4.conv_dw.weight:[236, 1, 3, 3]***blocks.3.4.bn2.weight:[236]***blocks.3.4.bn2.bias:[236]***blocks.3.4.bn2.running_mean:[236]***blocks.3.4.bn2.running_var:[236]***blocks.3.4.bn2.num_batches_tracked:[]***blocks.3.4.se.conv_reduce.weight:[24, 236, 1, 1]***blocks.3.4.se.conv_reduce.bias:[24]***blocks.3.4.se.conv_expand.weight:[236, 24, 1, 1]***blocks.3.4.se.conv_expand.bias:[236]***blocks.3.4.conv_pwl.weight:[93, 236, 1, 1]***blocks.3.4.bn3.weight:[93]***blocks.3.4.bn3.bias:[93]***blocks.3.4.bn3.running_mean:[93]***blocks.3.4.bn3.running_var:[93]***blocks.3.4.bn3.num_batches_tracked:[]***blocks.4.0.conv_pw.weight:[480, 93, 1, 1]***blocks.4.0.bn1.weight:[480]***blocks.4.0.bn1.bias:[480]***blocks.4.0.bn1.running_mean:[480]***blocks.4.0.bn1.running_var:[480]***blocks.4.0.bn1.num_batches_tracked:[]***blocks.4.0.conv_dw.weight:[480, 1, 5, 5]***blocks.4.0.bn2.weight:[480]***blocks.4.0.bn2.bias:[480]***blocks.4.0.bn2.running_mean:[480]***blocks.4.0.bn2.running_var:[480]***blocks.4.0.bn2.num_batches_tracked:[]***blocks.4.0.se.conv_reduce.weight:[24, 480, 1, 1]***blocks.4.0.se.conv_reduce.bias:[24]***blocks.4.0.se.conv_expand.weight:[480, 24, 1, 1]***blocks.4.0.se.conv_expand.bias:[480]***blocks.4.0.conv_pwl.weight:[120, 480, 1, 1]***blocks.4.0.bn3.weight:[120]***blocks.4.0.bn3.bias:[120]***blocks.4.0.bn3.running_mean:[120]***blocks.4.0.bn3.running_var:[120]***blocks.4.0.bn3.num_batches_tracked:[]***blocks.4.1.conv_pw.weight:[235, 120, 1, 1]***blocks.4.1.bn1.weight:[235]***blocks.4.1.bn1.bias:[235]***blocks.4.1.bn1.running_mean:[235]***blocks.4.1.bn1.running_var:[235]***blocks.4.1.bn1.num_batches_tracked:[]***blocks.4.1.conv_dw.weight:[235, 1, 5, 5]***blocks.4.1.bn2.weight:[235]***blocks.4.1.bn2.bias:[235]***blocks.4.1.bn2.running_mean:[235]***blocks.4.1.bn2.running_var:[235]***blocks.4.1.bn2.num_batches_tracked:[]***blocks.4.1.se.conv_reduce.weight:[34, 235, 1, 1]***blocks.4.1.se.conv_reduce.bias:[34]***blocks.4.1.se.conv_expand.weight:[235, 34, 1, 1]***blocks.4.1.se.conv_expand.bias:[235]***blocks.4.1.conv_pwl.weight:[120, 235, 1, 1]***blocks.4.1.bn3.weight:[120]***blocks.4.1.bn3.bias:[120]***blocks.4.1.bn3.running_mean:[120]***blocks.4.1.bn3.running_var:[120]***blocks.4.1.bn3.num_batches_tracked:[]***blocks.4.2.conv_pw.weight:[217, 120, 1, 1]***blocks.4.2.bn1.weight:[217]***blocks.4.2.bn1.bias:[217]***blocks.4.2.bn1.running_mean:[217]***blocks.4.2.bn1.running_var:[217]***blocks.4.2.bn1.num_batches_tracked:[]***blocks.4.2.conv_dw.weight:[217, 1, 5, 5]***blocks.4.2.bn2.weight:[217]***blocks.4.2.bn2.bias:[217]***blocks.4.2.bn2.running_mean:[217]***blocks.4.2.bn2.running_var:[217]***blocks.4.2.bn2.num_batches_tracked:[]***blocks.4.2.se.conv_reduce.weight:[34, 217, 1, 1]***blocks.4.2.se.conv_reduce.bias:[34]***blocks.4.2.se.conv_expand.weight:[217, 34, 1, 1]***blocks.4.2.se.conv_expand.bias:[217]***blocks.4.2.conv_pwl.weight:[120, 217, 1, 1]***blocks.4.2.bn3.weight:[120]***blocks.4.2.bn3.bias:[120]***blocks.4.2.bn3.running_mean:[120]***blocks.4.2.bn3.running_var:[120]***blocks.4.2.bn3.num_batches_tracked:[]***blocks.4.3.conv_pw.weight:[226, 120, 1, 1]***blocks.4.3.bn1.weight:[226]***blocks.4.3.bn1.bias:[226]***blocks.4.3.bn1.running_mean:[226]***blocks.4.3.bn1.running_var:[226]***blocks.4.3.bn1.num_batches_tracked:[]***blocks.4.3.conv_dw.weight:[226, 1, 5, 5]***blocks.4.3.bn2.weight:[226]***blocks.4.3.bn2.bias:[226]***blocks.4.3.bn2.running_mean:[226]***blocks.4.3.bn2.running_var:[226]***blocks.4.3.bn2.num_batches_tracked:[]***blocks.4.3.se.conv_reduce.weight:[33, 226, 1, 1]***blocks.4.3.se.conv_reduce.bias:[33]***blocks.4.3.se.conv_expand.weight:[226, 33, 1, 1]***blocks.4.3.se.conv_expand.bias:[226]***blocks.4.3.conv_pwl.weight:[120, 226, 1, 1]***blocks.4.3.bn3.weight:[120]***blocks.4.3.bn3.bias:[120]***blocks.4.3.bn3.running_mean:[120]***blocks.4.3.bn3.running_var:[120]***blocks.4.3.bn3.num_batches_tracked:[]***blocks.4.4.conv_pw.weight:[340, 120, 1, 1]***blocks.4.4.bn1.weight:[340]***blocks.4.4.bn1.bias:[340]***blocks.4.4.bn1.running_mean:[340]***blocks.4.4.bn1.running_var:[340]***blocks.4.4.bn1.num_batches_tracked:[]***blocks.4.4.conv_dw.weight:[340, 1, 5, 5]***blocks.4.4.bn2.weight:[340]***blocks.4.4.bn2.bias:[340]***blocks.4.4.bn2.running_mean:[340]***blocks.4.4.bn2.running_var:[340]***blocks.4.4.bn2.num_batches_tracked:[]***blocks.4.4.se.conv_reduce.weight:[34, 340, 1, 1]***blocks.4.4.se.conv_reduce.bias:[34]***blocks.4.4.se.conv_expand.weight:[340, 34, 1, 1]***blocks.4.4.se.conv_expand.bias:[340]***blocks.4.4.conv_pwl.weight:[120, 340, 1, 1]***blocks.4.4.bn3.weight:[120]***blocks.4.4.bn3.bias:[120]***blocks.4.4.bn3.running_mean:[120]***blocks.4.4.bn3.running_var:[120]***blocks.4.4.bn3.num_batches_tracked:[]***blocks.5.0.conv_pw.weight:[802, 120, 1, 1]***blocks.5.0.bn1.weight:[802]***blocks.5.0.bn1.bias:[802]***blocks.5.0.bn1.running_mean:[802]***blocks.5.0.bn1.running_var:[802]***blocks.5.0.bn1.num_batches_tracked:[]***blocks.5.0.conv_dw.weight:[802, 1, 5, 5]***blocks.5.0.bn2.weight:[802]***blocks.5.0.bn2.bias:[802]***blocks.5.0.bn2.running_mean:[802]***blocks.5.0.bn2.running_var:[802]***blocks.5.0.bn2.num_batches_tracked:[]***blocks.5.0.se.conv_reduce.weight:[34, 802, 1, 1]***blocks.5.0.se.conv_reduce.bias:[34]***blocks.5.0.se.conv_expand.weight:[802, 34, 1, 1]***blocks.5.0.se.conv_expand.bias:[802]***blocks.5.0.conv_pwl.weight:[232, 802, 1, 1]***blocks.5.0.bn3.weight:[232]***blocks.5.0.bn3.bias:[232]***blocks.5.0.bn3.running_mean:[232]***blocks.5.0.bn3.running_var:[232]***blocks.5.0.bn3.num_batches_tracked:[]***blocks.5.1.conv_pw.weight:[1030, 232, 1, 1]***blocks.5.1.bn1.weight:[1030]***blocks.5.1.bn1.bias:[1030]***blocks.5.1.bn1.running_mean:[1030]***blocks.5.1.bn1.running_var:[1030]***blocks.5.1.bn1.num_batches_tracked:[]***blocks.5.1.conv_dw.weight:[1030, 1, 5, 5]***blocks.5.1.bn2.weight:[1030]***blocks.5.1.bn2.bias:[1030]***blocks.5.1.bn2.running_mean:[1030]***blocks.5.1.bn2.running_var:[1030]***blocks.5.1.bn2.num_batches_tracked:[]***blocks.5.1.se.conv_reduce.weight:[58, 1030, 1, 1]***blocks.5.1.se.conv_reduce.bias:[58]***blocks.5.1.se.conv_expand.weight:[1030, 58, 1, 1]***blocks.5.1.se.conv_expand.bias:[1030]***blocks.5.1.conv_pwl.weight:[232, 1030, 1, 1]***blocks.5.1.bn3.weight:[232]***blocks.5.1.bn3.bias:[232]***blocks.5.1.bn3.running_mean:[232]***blocks.5.1.bn3.running_var:[232]***blocks.5.1.bn3.num_batches_tracked:[]***blocks.5.2.conv_pw.weight:[924, 232, 1, 1]***blocks.5.2.bn1.weight:[924]***blocks.5.2.bn1.bias:[924]***blocks.5.2.bn1.running_mean:[924]***blocks.5.2.bn1.running_var:[924]***blocks.5.2.bn1.num_batches_tracked:[]***blocks.5.2.conv_dw.weight:[924, 1, 5, 5]***blocks.5.2.bn2.weight:[924]***blocks.5.2.bn2.bias:[924]***blocks.5.2.bn2.running_mean:[924]***blocks.5.2.bn2.running_var:[924]***blocks.5.2.bn2.num_batches_tracked:[]***blocks.5.2.se.conv_reduce.weight:[58, 924, 1, 1]***blocks.5.2.se.conv_reduce.bias:[58]***blocks.5.2.se.conv_expand.weight:[924, 58, 1, 1]***blocks.5.2.se.conv_expand.bias:[924]***blocks.5.2.conv_pwl.weight:[232, 924, 1, 1]***blocks.5.2.bn3.weight:[232]***blocks.5.2.bn3.bias:[232]***blocks.5.2.bn3.running_mean:[232]***blocks.5.2.bn3.running_var:[232]***blocks.5.2.bn3.num_batches_tracked:[]***blocks.5.3.conv_pw.weight:[1016, 232, 1, 1]***blocks.5.3.bn1.weight:[1016]***blocks.5.3.bn1.bias:[1016]***blocks.5.3.bn1.running_mean:[1016]***blocks.5.3.bn1.running_var:[1016]***blocks.5.3.bn1.num_batches_tracked:[]***blocks.5.3.conv_dw.weight:[1016, 1, 5, 5]***blocks.5.3.bn2.weight:[1016]***blocks.5.3.bn2.bias:[1016]***blocks.5.3.bn2.running_mean:[1016]***blocks.5.3.bn2.running_var:[1016]***blocks.5.3.bn2.num_batches_tracked:[]***blocks.5.3.se.conv_reduce.weight:[58, 1016, 1, 1]***blocks.5.3.se.conv_reduce.bias:[58]***blocks.5.3.se.conv_expand.weight:[1016, 58, 1, 1]***blocks.5.3.se.conv_expand.bias:[1016]***blocks.5.3.conv_pwl.weight:[232, 1016, 1, 1]***blocks.5.3.bn3.weight:[232]***blocks.5.3.bn3.bias:[232]***blocks.5.3.bn3.running_mean:[232]***blocks.5.3.bn3.running_var:[232]***blocks.5.3.bn3.num_batches_tracked:[]***blocks.5.4.conv_pw.weight:[1130, 232, 1, 1]***blocks.5.4.bn1.weight:[1130]***blocks.5.4.bn1.bias:[1130]***blocks.5.4.bn1.running_mean:[1130]***blocks.5.4.bn1.running_var:[1130]***blocks.5.4.bn1.num_batches_tracked:[]***blocks.5.4.conv_dw.weight:[1130, 1, 5, 5]***blocks.5.4.bn2.weight:[1130]***blocks.5.4.bn2.bias:[1130]***blocks.5.4.bn2.running_mean:[1130]***blocks.5.4.bn2.running_var:[1130]***blocks.5.4.bn2.num_batches_tracked:[]***blocks.5.4.se.conv_reduce.weight:[58, 1130, 1, 1]***blocks.5.4.se.conv_reduce.bias:[58]***blocks.5.4.se.conv_expand.weight:[1130, 58, 1, 1]***blocks.5.4.se.conv_expand.bias:[1130]***blocks.5.4.conv_pwl.weight:[232, 1130, 1, 1]***blocks.5.4.bn3.weight:[232]***blocks.5.4.bn3.bias:[232]***blocks.5.4.bn3.running_mean:[232]***blocks.5.4.bn3.running_var:[232]***blocks.5.4.bn3.num_batches_tracked:[]***blocks.5.5.conv_pw.weight:[1266, 232, 1, 1]***blocks.5.5.bn1.weight:[1266]***blocks.5.5.bn1.bias:[1266]***blocks.5.5.bn1.running_mean:[1266]***blocks.5.5.bn1.running_var:[1266]***blocks.5.5.bn1.num_batches_tracked:[]***blocks.5.5.conv_dw.weight:[1266, 1, 5, 5]***blocks.5.5.bn2.weight:[1266]***blocks.5.5.bn2.bias:[1266]***blocks.5.5.bn2.running_mean:[1266]***blocks.5.5.bn2.running_var:[1266]***blocks.5.5.bn2.num_batches_tracked:[]***blocks.5.5.se.conv_reduce.weight:[58, 1266, 1, 1]***blocks.5.5.se.conv_reduce.bias:[58]***blocks.5.5.se.conv_expand.weight:[1266, 58, 1, 1]***blocks.5.5.se.conv_expand.bias:[1266]***blocks.5.5.conv_pwl.weight:[232, 1266, 1, 1]***blocks.5.5.bn3.weight:[232]***blocks.5.5.bn3.bias:[232]***blocks.5.5.bn3.running_mean:[232]***blocks.5.5.bn3.running_var:[232]***blocks.5.5.bn3.num_batches_tracked:[]***blocks.6.0.conv_pw.weight:[1392, 232, 1, 1]***blocks.6.0.bn1.weight:[1392]***blocks.6.0.bn1.bias:[1392]***blocks.6.0.bn1.running_mean:[1392]***blocks.6.0.bn1.running_var:[1392]***blocks.6.0.bn1.num_batches_tracked:[]***blocks.6.0.conv_dw.weight:[1392, 1, 3, 3]***blocks.6.0.bn2.weight:[1392]***blocks.6.0.bn2.bias:[1392]***blocks.6.0.bn2.running_mean:[1392]***blocks.6.0.bn2.running_var:[1392]***blocks.6.0.bn2.num_batches_tracked:[]***blocks.6.0.se.conv_reduce.weight:[58, 1392, 1, 1]***blocks.6.0.se.conv_reduce.bias:[58]***blocks.6.0.se.conv_expand.weight:[1392, 58, 1, 1]***blocks.6.0.se.conv_expand.bias:[1392]***blocks.6.0.conv_pwl.weight:[384, 1392, 1, 1]***blocks.6.0.bn3.weight:[384]***blocks.6.0.bn3.bias:[384]***blocks.6.0.bn3.running_mean:[384]***blocks.6.0.bn3.running_var:[384]***blocks.6.0.bn3.num_batches_tracked:[]***blocks.6.1.conv_pw.weight:[2301, 384, 1, 1]***blocks.6.1.bn1.weight:[2301]***blocks.6.1.bn1.bias:[2301]***blocks.6.1.bn1.running_mean:[2301]***blocks.6.1.bn1.running_var:[2301]***blocks.6.1.bn1.num_batches_tracked:[]***blocks.6.1.conv_dw.weight:[2301, 1, 3, 3]***blocks.6.1.bn2.weight:[2301]***blocks.6.1.bn2.bias:[2301]***blocks.6.1.bn2.running_mean:[2301]***blocks.6.1.bn2.running_var:[2301]***blocks.6.1.bn2.num_batches_tracked:[]***blocks.6.1.se.conv_reduce.weight:[96, 2301, 1, 1]***blocks.6.1.se.conv_reduce.bias:[96]***blocks.6.1.se.conv_expand.weight:[2301, 96, 1, 1]***blocks.6.1.se.conv_expand.bias:[2301]***blocks.6.1.conv_pwl.weight:[384, 2301, 1, 1]***blocks.6.1.bn3.weight:[384]***blocks.6.1.bn3.bias:[384]***blocks.6.1.bn3.running_mean:[384]***blocks.6.1.bn3.running_var:[384]***blocks.6.1.bn3.num_batches_tracked:[]***conv_head.weight:[1536, 384, 1, 1]***bn2.weight:[1536]***bn2.bias:[1536]***bn2.running_mean:[1536]***bn2.running_var:[1536]***bn2.num_batches_tracked:[]***classifier.weight:[1000, 1536]***classifier.bias:[1000] \ No newline at end of file diff --git a/pytorch-image-models/timm/models/_registry.py b/pytorch-image-models/timm/models/_registry.py new file mode 100644 index 0000000000000000000000000000000000000000..d8ec2f6439b6652eef72f7a271c1cfa8c4da6bdb --- /dev/null +++ b/pytorch-image-models/timm/models/_registry.py @@ -0,0 +1,352 @@ +""" Model Registry +Hacked together by / Copyright 2020 Ross Wightman +""" + +import fnmatch +import re +import sys +import warnings +from collections import defaultdict, deque +from copy import deepcopy +from dataclasses import replace +from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Sequence, Union, Tuple + +from ._pretrained import PretrainedCfg, DefaultCfg + +__all__ = [ + 'split_model_name_tag', 'get_arch_name', 'register_model', 'generate_default_cfgs', + 'list_models', 'list_pretrained', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules', + 'get_pretrained_cfg_value', 'is_model_pretrained', 'get_arch_pretrained_cfgs' +] + +_module_to_models: Dict[str, Set[str]] = defaultdict(set) # dict of sets to check membership of model in module +_model_to_module: Dict[str, str] = {} # mapping of model names to module names +_model_entrypoints: Dict[str, Callable[..., Any]] = {} # mapping of model names to architecture entrypoint fns +_model_has_pretrained: Set[str] = set() # set of model names that have pretrained weight url present +_model_default_cfgs: Dict[str, PretrainedCfg] = {} # central repo for model arch -> default cfg objects +_model_pretrained_cfgs: Dict[str, PretrainedCfg] = {} # central repo for model arch.tag -> pretrained cfgs +_model_with_tags: Dict[str, List[str]] = defaultdict(list) # shortcut to map each model arch to all model + tag names +_module_to_deprecated_models: Dict[str, Dict[str, Optional[str]]] = defaultdict(dict) +_deprecated_models: Dict[str, Optional[str]] = {} + + +def split_model_name_tag(model_name: str, no_tag: str = '') -> Tuple[str, str]: + model_name, *tag_list = model_name.split('.', 1) + tag = tag_list[0] if tag_list else no_tag + return model_name, tag + + +def get_arch_name(model_name: str) -> str: + return split_model_name_tag(model_name)[0] + + +def generate_default_cfgs(cfgs: Dict[str, Union[Dict[str, Any], PretrainedCfg]]): + out = defaultdict(DefaultCfg) + default_set = set() # no tag and tags ending with * are prioritized as default + + for k, v in cfgs.items(): + if isinstance(v, dict): + v = PretrainedCfg(**v) + has_weights = v.has_weights + + model, tag = split_model_name_tag(k) + is_default_set = model in default_set + priority = (has_weights and not tag) or (tag.endswith('*') and not is_default_set) + tag = tag.strip('*') + + default_cfg = out[model] + + if priority: + default_cfg.tags.appendleft(tag) + default_set.add(model) + elif has_weights and not default_cfg.is_pretrained: + default_cfg.tags.appendleft(tag) + else: + default_cfg.tags.append(tag) + + if has_weights: + default_cfg.is_pretrained = True + + default_cfg.cfgs[tag] = v + + return out + + +def register_model(fn: Callable[..., Any]) -> Callable[..., Any]: + # lookup containing module + mod = sys.modules[fn.__module__] + module_name_split = fn.__module__.split('.') + module_name = module_name_split[-1] if len(module_name_split) else '' + + # add model to __all__ in module + model_name = fn.__name__ + if hasattr(mod, '__all__'): + mod.__all__.append(model_name) + else: + mod.__all__ = [model_name] # type: ignore + + # add entries to registry dict/sets + if model_name in _model_entrypoints: + warnings.warn( + f'Overwriting {model_name} in registry with {fn.__module__}.{model_name}. This is because the name being ' + 'registered conflicts with an existing name. Please check if this is not expected.', + stacklevel=2, + ) + _model_entrypoints[model_name] = fn + _model_to_module[model_name] = module_name + _module_to_models[module_name].add(model_name) + if hasattr(mod, 'default_cfgs') and model_name in mod.default_cfgs: + # this will catch all models that have entrypoint matching cfg key, but miss any aliasing + # entrypoints or non-matching combos + default_cfg = mod.default_cfgs[model_name] + if not isinstance(default_cfg, DefaultCfg): + # new style default cfg dataclass w/ multiple entries per model-arch + assert isinstance(default_cfg, dict) + # old style cfg dict per model-arch + pretrained_cfg = PretrainedCfg(**default_cfg) + default_cfg = DefaultCfg(tags=deque(['']), cfgs={'': pretrained_cfg}) + + for tag_idx, tag in enumerate(default_cfg.tags): + is_default = tag_idx == 0 + pretrained_cfg = default_cfg.cfgs[tag] + model_name_tag = '.'.join([model_name, tag]) if tag else model_name + replace_items = dict(architecture=model_name, tag=tag if tag else None) + if pretrained_cfg.hf_hub_id and pretrained_cfg.hf_hub_id == 'timm/': + # auto-complete hub name w/ architecture.tag + replace_items['hf_hub_id'] = pretrained_cfg.hf_hub_id + model_name_tag + pretrained_cfg = replace(pretrained_cfg, **replace_items) + + if is_default: + _model_pretrained_cfgs[model_name] = pretrained_cfg + if pretrained_cfg.has_weights: + # add tagless entry if it's default and has weights + _model_has_pretrained.add(model_name) + + if tag: + _model_pretrained_cfgs[model_name_tag] = pretrained_cfg + if pretrained_cfg.has_weights: + # add model w/ tag if tag is valid + _model_has_pretrained.add(model_name_tag) + _model_with_tags[model_name].append(model_name_tag) + else: + _model_with_tags[model_name].append(model_name) # has empty tag (to slowly remove these instances) + + _model_default_cfgs[model_name] = default_cfg + + return fn + + +def _deprecated_model_shim(deprecated_name: str, current_fn: Callable = None, current_tag: str = ''): + def _fn(pretrained=False, **kwargs): + assert current_fn is not None, f'Model {deprecated_name} has been removed with no replacement.' + current_name = '.'.join([current_fn.__name__, current_tag]) if current_tag else current_fn.__name__ + warnings.warn(f'Mapping deprecated model name {deprecated_name} to current {current_name}.', stacklevel=2) + pretrained_cfg = kwargs.pop('pretrained_cfg', None) + return current_fn(pretrained=pretrained, pretrained_cfg=pretrained_cfg or current_tag, **kwargs) + return _fn + + +def register_model_deprecations(module_name: str, deprecation_map: Dict[str, Optional[str]]): + mod = sys.modules[module_name] + module_name_split = module_name.split('.') + module_name = module_name_split[-1] if len(module_name_split) else '' + + for deprecated, current in deprecation_map.items(): + if hasattr(mod, '__all__'): + mod.__all__.append(deprecated) + current_fn = None + current_tag = '' + if current: + current_name, current_tag = split_model_name_tag(current) + current_fn = getattr(mod, current_name) + deprecated_entrypoint_fn = _deprecated_model_shim(deprecated, current_fn, current_tag) + setattr(mod, deprecated, deprecated_entrypoint_fn) + _model_entrypoints[deprecated] = deprecated_entrypoint_fn + _model_to_module[deprecated] = module_name + _module_to_models[module_name].add(deprecated) + _deprecated_models[deprecated] = current + _module_to_deprecated_models[module_name][deprecated] = current + + +def _natural_key(string_: str) -> List[Union[int, str]]: + """See https://blog.codinghorror.com/sorting-for-humans-natural-sort-order/""" + return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] + + +def _expand_filter(filter: str): + """ expand a 'base_filter' to 'base_filter.*' if no tag portion""" + filter_base, filter_tag = split_model_name_tag(filter) + if not filter_tag: + return ['.'.join([filter_base, '*']), filter] + else: + return [filter] + + +def list_models( + filter: Union[str, List[str]] = '', + module: Union[str, List[str]] = '', + pretrained: bool = False, + exclude_filters: Union[str, List[str]] = '', + name_matches_cfg: bool = False, + include_tags: Optional[bool] = None, +) -> List[str]: + """ Return list of available model names, sorted alphabetically + + Args: + filter - Wildcard filter string that works with fnmatch + module - Limit model selection to a specific submodule (ie 'vision_transformer') + pretrained - Include only models with valid pretrained weights if True + exclude_filters - Wildcard filters to exclude models after including them with filter + name_matches_cfg - Include only models w/ model_name matching default_cfg name (excludes some aliases) + include_tags - Include pretrained tags in model names (model.tag). If None, defaults + set to True when pretrained=True else False (default: None) + + Returns: + models - The sorted list of models + + Example: + model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet' + model_list('*resnext*, 'resnet') -- returns all models with 'resnext' in 'resnet' module + """ + if filter: + include_filters = filter if isinstance(filter, (tuple, list)) else [filter] + else: + include_filters = [] + + if include_tags is None: + # FIXME should this be default behaviour? or default to include_tags=True? + include_tags = pretrained + + if not module: + all_models: Set[str] = set(_model_entrypoints.keys()) + else: + if isinstance(module, str): + all_models: Set[str] = _module_to_models[module] + else: + assert isinstance(module, Sequence) + all_models: Set[str] = set() + for m in module: + all_models.update(_module_to_models[m]) + all_models = all_models - _deprecated_models.keys() # remove deprecated models from listings + + if include_tags: + # expand model names to include names w/ pretrained tags + models_with_tags: Set[str] = set() + for m in all_models: + models_with_tags.update(_model_with_tags[m]) + all_models = models_with_tags + # expand include and exclude filters to include a '.*' for proper match if no tags in filter + include_filters = [ef for f in include_filters for ef in _expand_filter(f)] + exclude_filters = [ef for f in exclude_filters for ef in _expand_filter(f)] + + if include_filters: + models: Set[str] = set() + for f in include_filters: + include_models = fnmatch.filter(all_models, f) # include these models + if len(include_models): + models = models.union(include_models) + else: + models = all_models + + if exclude_filters: + if not isinstance(exclude_filters, (tuple, list)): + exclude_filters = [exclude_filters] + for xf in exclude_filters: + exclude_models = fnmatch.filter(models, xf) # exclude these models + if len(exclude_models): + models = models.difference(exclude_models) + + if pretrained: + models = _model_has_pretrained.intersection(models) + + if name_matches_cfg: + models = set(_model_pretrained_cfgs).intersection(models) + + return sorted(models, key=_natural_key) + + +def list_pretrained( + filter: Union[str, List[str]] = '', + exclude_filters: str = '', +) -> List[str]: + return list_models( + filter=filter, + pretrained=True, + exclude_filters=exclude_filters, + include_tags=True, + ) + + +def get_deprecated_models(module: str = '') -> Dict[str, str]: + all_deprecated = _module_to_deprecated_models[module] if module else _deprecated_models + return deepcopy(all_deprecated) + + +def is_model(model_name: str) -> bool: + """ Check if a model name exists + """ + arch_name = get_arch_name(model_name) + return arch_name in _model_entrypoints + + +def model_entrypoint(model_name: str, module_filter: Optional[str] = None) -> Callable[..., Any]: + """Fetch a model entrypoint for specified model name + """ + arch_name = get_arch_name(model_name) + if module_filter and arch_name not in _module_to_models.get(module_filter, {}): + raise RuntimeError(f'Model ({model_name} not found in module {module_filter}.') + return _model_entrypoints[arch_name] + + +def list_modules() -> List[str]: + """ Return list of module names that contain models / model entrypoints + """ + modules = _module_to_models.keys() + return sorted(modules) + + +def is_model_in_modules( + model_name: str, module_names: Union[Tuple[str, ...], List[str], Set[str]] +) -> bool: + """Check if a model exists within a subset of modules + + Args: + model_name - name of model to check + module_names - names of modules to search in + """ + arch_name = get_arch_name(model_name) + assert isinstance(module_names, (tuple, list, set)) + return any(arch_name in _module_to_models[n] for n in module_names) + + +def is_model_pretrained(model_name: str) -> bool: + return model_name in _model_has_pretrained + + +def get_pretrained_cfg(model_name: str, allow_unregistered: bool = True) -> Optional[PretrainedCfg]: + if model_name in _model_pretrained_cfgs: + return deepcopy(_model_pretrained_cfgs[model_name]) + arch_name, tag = split_model_name_tag(model_name) + if arch_name in _model_default_cfgs: + # if model arch exists, but the tag is wrong, error out + raise RuntimeError(f'Invalid pretrained tag ({tag}) for {arch_name}.') + if allow_unregistered: + # if model arch doesn't exist, it has no pretrained_cfg registered, allow a default to be created + return None + raise RuntimeError(f'Model architecture ({arch_name}) has no pretrained cfg registered.') + + +def get_pretrained_cfg_value(model_name: str, cfg_key: str) -> Optional[Any]: + """ Get a specific model default_cfg value by key. None if key doesn't exist. + """ + cfg = get_pretrained_cfg(model_name, allow_unregistered=False) + return getattr(cfg, cfg_key, None) + + +def get_arch_pretrained_cfgs(model_name: str) -> Dict[str, PretrainedCfg]: + """ Get all pretrained cfgs for a given architecture. + """ + arch_name, _ = split_model_name_tag(model_name) + model_names = _model_with_tags[arch_name] + cfgs = {m: _model_pretrained_cfgs[m] for m in model_names} + return cfgs diff --git a/pytorch-image-models/timm/models/beit.py b/pytorch-image-models/timm/models/beit.py new file mode 100644 index 0000000000000000000000000000000000000000..c47ea395e845038632909c84b8a433fc4fb0c04a --- /dev/null +++ b/pytorch-image-models/timm/models/beit.py @@ -0,0 +1,716 @@ +""" BEiT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) + +Model from official source: https://github.com/microsoft/unilm/tree/master/beit + +@inproceedings{beit, +title={{BEiT}: {BERT} Pre-Training of Image Transformers}, +author={Hangbo Bao and Li Dong and Songhao Piao and Furu Wei}, +booktitle={International Conference on Learning Representations}, +year={2022}, +url={https://openreview.net/forum?id=p-BhZSz59o4} +} + +BEiT-v2 from https://github.com/microsoft/unilm/tree/master/beit2 + +@article{beitv2, +title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers}, +author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei}, +year={2022}, +eprint={2208.06366}, +archivePrefix={arXiv}, +primaryClass={cs.CV} +} + +At this point only the 1k fine-tuned classification weights and model configs have been added, +see original source above for pre-training models and procedure. + +Modifications by / Copyright 2021 Ross Wightman, original copyrights below +""" +# -------------------------------------------------------- +# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) +# Github source: https://github.com/microsoft/unilm/tree/master/beit +# Copyright (c) 2021 Microsoft +# Licensed under The MIT License [see LICENSE for details] +# By Hangbo Bao +# Based on timm and DeiT code bases +# https://github.com/rwightman/pytorch-image-models/tree/master/timm +# https://github.com/facebookresearch/deit/ +# https://github.com/facebookresearch/dino +# --------------------------------------------------------' + +import math +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, SwiGLU, LayerNorm, DropPath, trunc_normal_, use_fused_attn +from timm.layers import resample_patch_embed, resample_abs_pos_embed, resize_rel_pos_bias_table, ndgrid + + +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._registry import generate_default_cfgs, register_model + +__all__ = ['Beit'] + + +def gen_relative_position_index(window_size: Tuple[int, int]) -> torch.Tensor: + num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + # cls to token & token 2 cls & cls to cls + # get pair-wise relative position index for each token inside the window + window_area = window_size[0] * window_size[1] + coords = torch.stack(ndgrid(torch.arange(window_size[0]), torch.arange(window_size[1]))) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = num_relative_distance - 3 + relative_position_index[0:, 0] = num_relative_distance - 2 + relative_position_index[0, 0] = num_relative_distance - 1 + return relative_position_index + + +class Attention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = False, + qkv_bias_separate: bool = False, + attn_drop: float = 0., + proj_drop: float = 0., + window_size: Optional[Tuple[int, int]] = None, + attn_head_dim: Optional[int] = None, + ): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + if attn_head_dim is not None: + head_dim = attn_head_dim + all_head_dim = head_dim * self.num_heads + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn() + self.qkv_bias_separate = qkv_bias_separate + + self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) + self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False) + self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) + else: + self.q_bias = None + self.k_bias = None + self.v_bias = None + + if window_size: + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter( + torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH + self.register_buffer("relative_position_index", gen_relative_position_index(window_size), persistent=False) + else: + self.window_size = None + self.relative_position_bias_table = None + self.relative_position_index = None + + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(all_head_dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def _get_rel_pos_bias(self): + relative_position_bias = self.relative_position_bias_table[ + self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, + self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + return relative_position_bias.unsqueeze(0) + + def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None): + B, N, C = x.shape + + if self.q_bias is None: + qkv = self.qkv(x) + else: + qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) + if self.qkv_bias_separate: + qkv = self.qkv(x) + qkv += qkv_bias + else: + qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) # B, num_heads, N, head_dim + + if self.fused_attn: + rel_pos_bias = None + if self.relative_position_bias_table is not None: + rel_pos_bias = self._get_rel_pos_bias() + if shared_rel_pos_bias is not None: + rel_pos_bias = rel_pos_bias + shared_rel_pos_bias + elif shared_rel_pos_bias is not None: + rel_pos_bias = shared_rel_pos_bias + + x = F.scaled_dot_product_attention( + q, k, v, + attn_mask=rel_pos_bias, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + if self.relative_position_bias_table is not None: + attn = attn + self._get_rel_pos_bias() + if shared_rel_pos_bias is not None: + attn = attn + shared_rel_pos_bias + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + + def __init__( + self, + dim: int, + num_heads: int, + qkv_bias: bool = False, + mlp_ratio: float = 4., + scale_mlp: bool = False, + swiglu_mlp: bool = False, + proj_drop: float = 0., + attn_drop: float = 0., + drop_path: float = 0., + init_values: Optional[float] = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + window_size: Optional[Tuple[int, int]] = None, + attn_head_dim: Optional[int] = None, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + window_size=window_size, + attn_head_dim=attn_head_dim, + ) + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + if swiglu_mlp: + self.mlp = SwiGLU( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + norm_layer=norm_layer if scale_mlp else None, + drop=proj_drop, + ) + else: + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + norm_layer=norm_layer if scale_mlp else None, + drop=proj_drop, + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + if init_values: + self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) + self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) + else: + self.gamma_1, self.gamma_2 = None, None + + def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None): + if self.gamma_1 is None: + x = x + self.drop_path1(self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias)) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + else: + x = x + self.drop_path1(self.gamma_1 * self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias)) + x = x + self.drop_path2(self.gamma_2 * self.mlp(self.norm2(x))) + return x + + +class RelativePositionBias(nn.Module): + + def __init__(self, window_size, num_heads): + super().__init__() + self.window_size = window_size + self.window_area = window_size[0] * window_size[1] + num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads)) + # trunc_normal_(self.relative_position_bias_table, std=.02) + self.register_buffer("relative_position_index", gen_relative_position_index(window_size)) + + def forward(self): + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_area + 1, self.window_area + 1, -1) # Wh*Ww,Wh*Ww,nH + return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + + +class Beit(nn.Module): + """ Vision Transformer with support for patch or hybrid CNN input stage + """ + + def __init__( + self, + img_size: Union[int, Tuple[int, int]] = 224, + patch_size: Union[int, Tuple[int, int]] = 16, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: str = 'avg', + embed_dim: int = 768, + depth: int = 12, + num_heads: int = 12, + qkv_bias: bool = True, + mlp_ratio: float = 4., + swiglu_mlp: bool = False, + scale_mlp: bool = False, + drop_rate: float = 0., + pos_drop_rate: float = 0., + proj_drop_rate: float = 0., + attn_drop_rate: float = 0., + drop_path_rate: float = 0., + norm_layer: Callable = LayerNorm, + init_values: Optional[float] = None, + use_abs_pos_emb: bool = True, + use_rel_pos_bias: bool = False, + use_shared_rel_pos_bias: bool = False, + head_init_scale: float = 0.001, + ): + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models + self.num_prefix_tokens = 1 + self.grad_checkpointing = False + + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + ) + num_patches = self.patch_embed.num_patches + r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if use_abs_pos_emb else None + self.pos_drop = nn.Dropout(p=pos_drop_rate) + + if use_shared_rel_pos_bias: + self.rel_pos_bias = RelativePositionBias( + window_size=self.patch_embed.grid_size, + num_heads=num_heads, + ) + else: + self.rel_pos_bias = None + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.blocks = nn.ModuleList([ + Block( + dim=embed_dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + mlp_ratio=mlp_ratio, + scale_mlp=scale_mlp, + swiglu_mlp=swiglu_mlp, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + init_values=init_values, + window_size=self.patch_embed.grid_size if use_rel_pos_bias else None, + ) + for i in range(depth)]) + self.feature_info = [ + dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] + + use_fc_norm = self.global_pool == 'avg' + self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim) + self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + self.apply(self._init_weights) + if self.pos_embed is not None: + trunc_normal_(self.pos_embed, std=.02) + trunc_normal_(self.cls_token, std=.02) + + self.fix_init_weight() + if isinstance(self.head, nn.Linear): + trunc_normal_(self.head.weight, std=.02) + self.head.weight.data.mul_(head_init_scale) + self.head.bias.data.mul_(head_init_scale) + + def fix_init_weight(self): + def rescale(param, layer_id): + param.div_(math.sqrt(2.0 * layer_id)) + + for layer_id, layer in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + nwd = {'pos_embed', 'cls_token'} + for n, _ in self.named_parameters(): + if 'relative_position_bias_table' in n: + nwd.add(n) + return nwd + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^cls_token|pos_embed|patch_embed|rel_pos_bias', # stem and embed + blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))], + ) + return matcher + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + return_prefix_tokens: bool = False, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if an int, if is a sequence, select by matching indices + return_prefix_tokens: Return both prefix and spatial intermediate tokens + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + + # forward pass + B, _, height, width = x.shape + x = self.patch_embed(x) + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + if self.pos_embed is not None: + x = x + self.pos_embed + x = self.pos_drop(x) + + rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for i, blk in enumerate(blocks): + x = blk(x, shared_rel_pos_bias=rel_pos_bias) + if i in take_indices: + # normalize intermediates with final norm layer if enabled + intermediates.append(self.norm(x) if norm else x) + + # process intermediates + if self.num_prefix_tokens: + # split prefix (e.g. class, distill) and spatial feature tokens + prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] + intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] + if reshape: + # reshape to BCHW output format + H, W = self.patch_embed.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + if not torch.jit.is_scripting() and return_prefix_tokens: + # return_prefix not support in torchscript due to poor type handling + intermediates = list(zip(intermediates, prefix_tokens)) + + if intermediates_only: + return intermediates + + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] # truncate blocks + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.fc_norm = nn.Identity() + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + if self.pos_embed is not None: + x = x + self.pos_embed + x = self.pos_drop(x) + + rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None + for blk in self.blocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias) + else: + x = blk(x, shared_rel_pos_bias=rel_pos_bias) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool: + x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.fc_norm(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), + 'first_conv': 'patch_embed.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'beit_base_patch16_224.in22k_ft_in22k_in1k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth', + hf_hub_id='timm/'), + 'beit_base_patch16_384.in22k_ft_in22k_in1k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_384_pt22k_ft22kto1k.pth', + hf_hub_id='timm/', + input_size=(3, 384, 384), crop_pct=1.0, + ), + 'beit_base_patch16_224.in22k_ft_in22k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth', + hf_hub_id='timm/', + num_classes=21841, + ), + 'beit_large_patch16_224.in22k_ft_in22k_in1k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22kto1k.pth', + hf_hub_id='timm/'), + 'beit_large_patch16_384.in22k_ft_in22k_in1k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_384_pt22k_ft22kto1k.pth', + hf_hub_id='timm/', + input_size=(3, 384, 384), crop_pct=1.0, + ), + 'beit_large_patch16_512.in22k_ft_in22k_in1k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_512_pt22k_ft22kto1k.pth', + hf_hub_id='timm/', + input_size=(3, 512, 512), crop_pct=1.0, + ), + 'beit_large_patch16_224.in22k_ft_in22k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth', + hf_hub_id='timm/', + num_classes=21841, + ), + + 'beitv2_base_patch16_224.in1k_ft_in22k_in1k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth', + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD + ), + 'beitv2_base_patch16_224.in1k_ft_in1k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft1k.pth', + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD + ), + 'beitv2_base_patch16_224.in1k_ft_in22k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth', + hf_hub_id='timm/', + num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD + ), + 'beitv2_large_patch16_224.in1k_ft_in22k_in1k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21kto1k.pth', + hf_hub_id='timm/', + crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD + ), + 'beitv2_large_patch16_224.in1k_ft_in1k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft1k.pth', + hf_hub_id='timm/', + crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD + ), + 'beitv2_large_patch16_224.in1k_ft_in22k': _cfg( + #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth', + hf_hub_id='timm/', + num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD + ), +}) + + +def checkpoint_filter_fn(state_dict, model, interpolation='bicubic', antialias=True): + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('module', state_dict) + # beit v2 didn't strip module + + out_dict = {} + for k, v in state_dict.items(): + if 'relative_position_index' in k: + continue + if 'patch_embed.proj.weight' in k: + O, I, H, W = model.patch_embed.proj.weight.shape + if v.shape[-1] != W or v.shape[-2] != H: + v = resample_patch_embed( + v, + (H, W), + interpolation=interpolation, + antialias=antialias, + verbose=True, + ) + elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: + # To resize pos embedding when using model at different size from pretrained weights + num_prefix_tokens = 1 + v = resample_abs_pos_embed( + v, + new_size=model.patch_embed.grid_size, + num_prefix_tokens=num_prefix_tokens, + interpolation=interpolation, + antialias=antialias, + verbose=True, + ) + elif k.endswith('relative_position_bias_table'): + m = model.get_submodule(k[:-29]) + if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]: + v = resize_rel_pos_bias_table( + v, + new_window_size=m.window_size, + new_bias_shape=m.relative_position_bias_table.shape, + ) + out_dict[k] = v + return out_dict + + +def _create_beit(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg( + Beit, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + return model + + +@register_model +def beit_base_patch16_224(pretrained=False, **kwargs) -> Beit: + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1) + model = _create_beit('beit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def beit_base_patch16_384(pretrained=False, **kwargs) -> Beit: + model_args = dict( + img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1) + model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def beit_large_patch16_224(pretrained=False, **kwargs) -> Beit: + model_args = dict( + patch_size=16, embed_dim=1024, depth=24, num_heads=16, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) + model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def beit_large_patch16_384(pretrained=False, **kwargs) -> Beit: + model_args = dict( + img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) + model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def beit_large_patch16_512(pretrained=False, **kwargs) -> Beit: + model_args = dict( + img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) + model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def beitv2_base_patch16_224(pretrained=False, **kwargs) -> Beit: + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) + model = _create_beit('beitv2_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def beitv2_large_patch16_224(pretrained=False, **kwargs) -> Beit: + model_args = dict( + patch_size=16, embed_dim=1024, depth=24, num_heads=16, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) + model = _create_beit('beitv2_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model diff --git a/pytorch-image-models/timm/models/byoanet.py b/pytorch-image-models/timm/models/byoanet.py new file mode 100644 index 0000000000000000000000000000000000000000..683ed0ca0177fbb4afa4913856bb638b212ad6e0 --- /dev/null +++ b/pytorch-image-models/timm/models/byoanet.py @@ -0,0 +1,455 @@ +""" Bring-Your-Own-Attention Network + +A flexible network w/ dataclass based config for stacking NN blocks including +self-attention (or similar) layers. + +Currently used to implement experimental variants of: + * Bottleneck Transformers + * Lambda ResNets + * HaloNets + +Consider all of the models definitions here as experimental WIP and likely to change. + +Hacked together by / copyright Ross Wightman, 2021. +""" +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from .byobnet import ByoBlockCfg, ByoModelCfg, ByobNet, interleave_blocks + +__all__ = [] + + +model_cfgs = dict( + + botnet26t=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), + ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + fixed_input_size=True, + self_attn_layer='bottleneck', + self_attn_kwargs=dict() + ), + sebotnet33ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25), + ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + act_layer='silu', + num_features=1280, + attn_layer='se', + self_attn_layer='bottleneck', + self_attn_kwargs=dict() + ), + botnet50ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + act_layer='silu', + fixed_input_size=True, + self_attn_layer='bottleneck', + self_attn_kwargs=dict() + ), + eca_botnext26ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=16, br=0.25), + ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + fixed_input_size=True, + act_layer='silu', + attn_layer='eca', + self_attn_layer='bottleneck', + self_attn_kwargs=dict(dim_head=16) + ), + + halonet_h1=ByoModelCfg( + blocks=( + ByoBlockCfg(type='self_attn', d=3, c=64, s=1, gs=0, br=1.0), + ByoBlockCfg(type='self_attn', d=3, c=128, s=2, gs=0, br=1.0), + ByoBlockCfg(type='self_attn', d=10, c=256, s=2, gs=0, br=1.0), + ByoBlockCfg(type='self_attn', d=3, c=512, s=2, gs=0, br=1.0), + ), + stem_chs=64, + stem_type='7x7', + stem_pool='maxpool', + + self_attn_layer='halo', + self_attn_kwargs=dict(block_size=8, halo_size=3), + ), + halonet26t=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), + ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + self_attn_layer='halo', + self_attn_kwargs=dict(block_size=8, halo_size=2) + ), + sehalonet33ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25), + ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + act_layer='silu', + num_features=1280, + attn_layer='se', + self_attn_layer='halo', + self_attn_kwargs=dict(block_size=8, halo_size=3) + ), + halonet50ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), + interleave_blocks( + types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25, + self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=3, num_heads=4)), + interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + act_layer='silu', + self_attn_layer='halo', + self_attn_kwargs=dict(block_size=8, halo_size=3) + ), + eca_halonext26ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=16, br=0.25), + ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + act_layer='silu', + attn_layer='eca', + self_attn_layer='halo', + self_attn_kwargs=dict(block_size=8, halo_size=2, dim_head=16) + ), + + lambda_resnet26t=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), + ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + self_attn_layer='lambda', + self_attn_kwargs=dict(r=9) + ), + lambda_resnet50ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + act_layer='silu', + self_attn_layer='lambda', + self_attn_kwargs=dict(r=9) + ), + lambda_resnet26rpt_256=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), + interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), + ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + self_attn_layer='lambda', + self_attn_kwargs=dict(r=None) + ), + + # experimental + haloregnetz_b=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), + ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), + interleave_blocks(types=('bottle', 'self_attn'), every=3, d=12, c=192, s=2, gs=16, br=3), + ByoBlockCfg('self_attn', d=2, c=288, s=2, gs=16, br=3), + ), + stem_chs=32, + stem_pool='', + downsample='', + num_features=1536, + act_layer='silu', + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.25), + block_kwargs=dict(bottle_in=True, linear_out=True), + self_attn_layer='halo', + self_attn_kwargs=dict(block_size=7, halo_size=2, qk_ratio=0.33) + ), + + # experimental + lamhalobotnet50ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), + interleave_blocks( + types=('bottle', 'self_attn'), d=4, c=512, s=2, gs=0, br=0.25, + self_attn_layer='lambda', self_attn_kwargs=dict(r=13)), + interleave_blocks( + types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25, + self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), + interleave_blocks( + types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25, + self_attn_layer='bottleneck', self_attn_kwargs=dict()), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + act_layer='silu', + ), + halo2botnet50ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), + interleave_blocks( + types=('bottle', 'self_attn'), d=4, c=512, s=2, gs=0, br=0.25, + self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), + interleave_blocks( + types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25, + self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), + interleave_blocks( + types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25, + self_attn_layer='bottleneck', self_attn_kwargs=dict()), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + act_layer='silu', + ), +) + + +def _create_byoanet(variant, cfg_variant=None, pretrained=False, **kwargs): + return build_model_with_cfg( + ByobNet, variant, pretrained, + model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], + feature_cfg=dict(flatten_sequential=True), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.95, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', + 'fixed_input_size': False, 'min_input_size': (3, 224, 224), + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # GPU-Efficient (ResNet) weights + 'botnet26t_256.c1_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/botnet26t_c1_256-167a0e9f.pth', + hf_hub_id='timm/', + fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), + 'sebotnet33ts_256.a1h_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sebotnet33ts_a1h2_256-957e3c3e.pth', + hf_hub_id='timm/', + fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), + 'botnet50ts_256.untrained': _cfg( + fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), + 'eca_botnext26ts_256.c1_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_botnext26ts_c_256-95a898f6.pth', + hf_hub_id='timm/', + fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), + + 'halonet_h1.untrained': _cfg(input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), + 'halonet26t.a1h_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet26t_a1h_256-3083328c.pth', + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), + 'sehalonet33ts.ra2_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sehalonet33ts_256-87e053f9.pth', + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), + 'halonet50ts.a1h_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet50ts_a1h2_256-f3a3daee.pth', + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), + 'eca_halonext26ts.c1_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_halonext26ts_c_256-06906299.pth', + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), + + 'lambda_resnet26t.c1_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet26t_c_256-e5a5c857.pth', + hf_hub_id='timm/', + min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), + 'lambda_resnet50ts.a1h_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet50ts_a1h_256-b87370f7.pth', + hf_hub_id='timm/', + min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8)), + 'lambda_resnet26rpt_256.c1_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet26rpt_c_256-ab00292d.pth', + hf_hub_id='timm/', + fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), + + 'haloregnetz_b.ra3_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/haloregnetz_c_raa_256-c8ad7616.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + first_conv='stem.conv', input_size=(3, 224, 224), pool_size=(7, 7), min_input_size=(3, 224, 224), crop_pct=0.94), + + 'lamhalobotnet50ts_256.a1h_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lamhalobotnet50ts_a1h2_256-fe3d9445.pth', + hf_hub_id='timm/', + fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), + 'halo2botnet50ts_256.a1h_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halo2botnet50ts_a1h2_256-fd9c11a3.pth', + hf_hub_id='timm/', + fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), +}) + + +@register_model +def botnet26t_256(pretrained=False, **kwargs) -> ByobNet: + """ Bottleneck Transformer w/ ResNet26-T backbone. + """ + kwargs.setdefault('img_size', 256) + return _create_byoanet('botnet26t_256', 'botnet26t', pretrained=pretrained, **kwargs) + + +@register_model +def sebotnet33ts_256(pretrained=False, **kwargs) -> ByobNet: + """ Bottleneck Transformer w/ a ResNet33-t backbone, SE attn for non Halo blocks, SiLU, + """ + return _create_byoanet('sebotnet33ts_256', 'sebotnet33ts', pretrained=pretrained, **kwargs) + + +@register_model +def botnet50ts_256(pretrained=False, **kwargs) -> ByobNet: + """ Bottleneck Transformer w/ ResNet50-T backbone, silu act. + """ + kwargs.setdefault('img_size', 256) + return _create_byoanet('botnet50ts_256', 'botnet50ts', pretrained=pretrained, **kwargs) + + +@register_model +def eca_botnext26ts_256(pretrained=False, **kwargs) -> ByobNet: + """ Bottleneck Transformer w/ ResNet26-T backbone, silu act. + """ + kwargs.setdefault('img_size', 256) + return _create_byoanet('eca_botnext26ts_256', 'eca_botnext26ts', pretrained=pretrained, **kwargs) + + +@register_model +def halonet_h1(pretrained=False, **kwargs) -> ByobNet: + """ HaloNet-H1. Halo attention in all stages as per the paper. + NOTE: This runs very slowly! + """ + return _create_byoanet('halonet_h1', pretrained=pretrained, **kwargs) + + +@register_model +def halonet26t(pretrained=False, **kwargs) -> ByobNet: + """ HaloNet w/ a ResNet26-t backbone. Halo attention in final two stages + """ + return _create_byoanet('halonet26t', pretrained=pretrained, **kwargs) + + +@register_model +def sehalonet33ts(pretrained=False, **kwargs) -> ByobNet: + """ HaloNet w/ a ResNet33-t backbone, SE attn for non Halo blocks, SiLU, 1-2 Halo in stage 2,3,4. + """ + return _create_byoanet('sehalonet33ts', pretrained=pretrained, **kwargs) + + +@register_model +def halonet50ts(pretrained=False, **kwargs) -> ByobNet: + """ HaloNet w/ a ResNet50-t backbone, silu act. Halo attention in final two stages + """ + return _create_byoanet('halonet50ts', pretrained=pretrained, **kwargs) + + +@register_model +def eca_halonext26ts(pretrained=False, **kwargs) -> ByobNet: + """ HaloNet w/ a ResNet26-t backbone, silu act. Halo attention in final two stages + """ + return _create_byoanet('eca_halonext26ts', pretrained=pretrained, **kwargs) + + +@register_model +def lambda_resnet26t(pretrained=False, **kwargs) -> ByobNet: + """ Lambda-ResNet-26-T. Lambda layers w/ conv pos in last two stages. + """ + return _create_byoanet('lambda_resnet26t', pretrained=pretrained, **kwargs) + + +@register_model +def lambda_resnet50ts(pretrained=False, **kwargs) -> ByobNet: + """ Lambda-ResNet-50-TS. SiLU act. Lambda layers w/ conv pos in last two stages. + """ + return _create_byoanet('lambda_resnet50ts', pretrained=pretrained, **kwargs) + + +@register_model +def lambda_resnet26rpt_256(pretrained=False, **kwargs) -> ByobNet: + """ Lambda-ResNet-26-R-T. Lambda layers w/ rel pos embed in last two stages. + """ + kwargs.setdefault('img_size', 256) + return _create_byoanet('lambda_resnet26rpt_256', pretrained=pretrained, **kwargs) + + +@register_model +def haloregnetz_b(pretrained=False, **kwargs) -> ByobNet: + """ Halo + RegNetZ + """ + return _create_byoanet('haloregnetz_b', pretrained=pretrained, **kwargs) + + +@register_model +def lamhalobotnet50ts_256(pretrained=False, **kwargs) -> ByobNet: + """ Combo Attention (Lambda + Halo + Bot) Network + """ + return _create_byoanet('lamhalobotnet50ts_256', 'lamhalobotnet50ts', pretrained=pretrained, **kwargs) + + +@register_model +def halo2botnet50ts_256(pretrained=False, **kwargs) -> ByobNet: + """ Combo Attention (Halo + Halo + Bot) Network + """ + return _create_byoanet('halo2botnet50ts_256', 'halo2botnet50ts', pretrained=pretrained, **kwargs) diff --git a/pytorch-image-models/timm/models/byobnet.py b/pytorch-image-models/timm/models/byobnet.py new file mode 100644 index 0000000000000000000000000000000000000000..93ca5e72c913780f1ec2972c5a920839d4d40dc2 --- /dev/null +++ b/pytorch-image-models/timm/models/byobnet.py @@ -0,0 +1,2784 @@ +""" Bring-Your-Own-Blocks Network + +A flexible network w/ dataclass based config for stacking those NN blocks. + +This model is currently used to implement the following networks: + +GPU Efficient (ResNets) - gernet_l/m/s (original versions called genet, but this was already used (by SENet author)). +Paper: `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 +Code and weights: https://github.com/idstcv/GPU-Efficient-Networks, licensed Apache 2.0 + +RepVGG - repvgg_* +Paper: `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 +Code and weights: https://github.com/DingXiaoH/RepVGG, licensed MIT + +MobileOne - mobileone_* +Paper: `MobileOne: An Improved One millisecond Mobile Backbone` - https://arxiv.org/abs/2206.04040 +Code and weights: https://github.com/apple/ml-mobileone, licensed MIT + +In all cases the models have been modified to fit within the design of ByobNet. I've remapped +the original weights and verified accuracies. + +For GPU Efficient nets, I used the original names for the blocks since they were for the most part +the same as original residual blocks in ResNe(X)t, DarkNet, and other existing models. Note also some +changes introduced in RegNet were also present in the stem and bottleneck blocks for this model. + +A significant number of different network archs can be implemented here, including variants of the +above nets that include attention. + +Hacked together by / copyright Ross Wightman, 2021. +""" +import math +from dataclasses import dataclass, field, replace +from functools import partial +from typing import Tuple, List, Dict, Optional, Union, Any, Callable, Sequence + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD +from timm.layers import ( + ClassifierHead, NormMlpClassifierHead, ConvNormAct, BatchNormAct2d, EvoNorm2dS0a, + AttentionPool2d, RotAttentionPool2d, DropPath, AvgPool2dSame, + create_conv2d, get_act_layer, get_norm_act_layer, get_attn, make_divisible, to_2tuple, +) +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply, checkpoint_seq +from ._registry import generate_default_cfgs, register_model + +__all__ = ['ByobNet', 'ByoModelCfg', 'ByoBlockCfg', 'create_byob_stem', 'create_block'] + + +@dataclass +class ByoBlockCfg: + type: Union[str, nn.Module] + d: int # block depth (number of block repeats in stage) + c: int # number of output channels for each block in stage + s: int = 2 # stride of stage (first block) + gs: Optional[Union[int, Callable]] = None # group-size of blocks in stage, conv is depthwise if gs == 1 + br: float = 1. # bottleneck-ratio of blocks in stage + + # NOTE: these config items override the model cfgs that are applied to all blocks by default + attn_layer: Optional[str] = None + attn_kwargs: Optional[Dict[str, Any]] = None + self_attn_layer: Optional[str] = None + self_attn_kwargs: Optional[Dict[str, Any]] = None + block_kwargs: Optional[Dict[str, Any]] = None + + +@dataclass +class ByoModelCfg: + blocks: Tuple[Union[ByoBlockCfg, Tuple[ByoBlockCfg, ...]], ...] + downsample: str = 'conv1x1' + stem_type: str = '3x3' + stem_pool: Optional[str] = 'maxpool' + stem_chs: Union[int, List[int], Tuple[int, ...]] = 32 + width_factor: float = 1.0 + num_features: int = 0 # num out_channels for final conv, no final 1x1 conv if 0 + zero_init_last: bool = True # zero init last weight (usually bn) in residual path + fixed_input_size: bool = False # model constrained to a fixed-input size / img_size must be provided on creation + + # layer config + act_layer: str = 'relu' + norm_layer: str = 'batchnorm' + aa_layer: str = '' + + # Head config + head_hidden_size: Optional[int] = None # feat dim of MLP head or AttentionPool output + head_type: str = 'classifier' + + # Block config + # NOTE: these config items will be overridden by the block cfg (per-block) if they are set there + attn_layer: Optional[str] = None + attn_kwargs: dict = field(default_factory=lambda: dict()) + self_attn_layer: Optional[str] = None + self_attn_kwargs: dict = field(default_factory=lambda: dict()) + block_kwargs: Dict[str, Any] = field(default_factory=lambda: dict()) + + +def _rep_vgg_bcfg(d=(4, 6, 16, 1), wf=(1., 1., 1., 1.), groups=0): + c = (64, 128, 256, 512) + group_size = 0 + if groups > 0: + group_size = lambda chs, idx: chs // groups if (idx + 1) % 2 == 0 else 0 + bcfg = tuple([ByoBlockCfg(type='rep', d=d, c=c * wf, gs=group_size) for d, c, wf in zip(d, c, wf)]) + return bcfg + + +def _mobileone_bcfg(d=(2, 8, 10, 1), wf=(1., 1., 1., 1.), se_blocks=(), num_conv_branches=1): + c = (64, 128, 256, 512) + prev_c = min(64, c[0] * wf[0]) + se_blocks = se_blocks or (0,) * len(d) + bcfg = [] + for d, c, w, se in zip(d, c, wf, se_blocks): + scfg = [] + for i in range(d): + out_c = c * w + bk = dict(num_conv_branches=num_conv_branches) + ak = {} + if i >= d - se: + ak['attn_layer'] = 'se' + scfg += [ByoBlockCfg(type='one', d=1, c=prev_c, gs=1, block_kwargs=bk, **ak)] # depthwise block + scfg += [ByoBlockCfg( + type='one', d=1, c=out_c, gs=0, block_kwargs=dict(kernel_size=1, **bk), **ak)] # pointwise block + prev_c = out_c + bcfg += [scfg] + return bcfg + + +def interleave_blocks( + types: Tuple[str, str], d, + every: Union[int, List[int]] = 1, + first: bool = False, + **kwargs, +) -> Tuple[ByoBlockCfg]: + """ interleave 2 block types in stack + """ + assert len(types) == 2 + if isinstance(every, int): + every = list(range(0 if first else every, d, every + 1)) + if not every: + every = [d - 1] + set(every) + blocks = [] + for i in range(d): + block_type = types[1] if i in every else types[0] + blocks += [ByoBlockCfg(type=block_type, d=1, **kwargs)] + return tuple(blocks) + + +def expand_blocks_cfg(stage_blocks_cfg: Union[ByoBlockCfg, Sequence[ByoBlockCfg]]) -> List[ByoBlockCfg]: + if not isinstance(stage_blocks_cfg, Sequence): + stage_blocks_cfg = (stage_blocks_cfg,) + block_cfgs = [] + for i, cfg in enumerate(stage_blocks_cfg): + block_cfgs += [replace(cfg, d=1) for _ in range(cfg.d)] + return block_cfgs + + +def num_groups(group_size, channels): + if not group_size: # 0 or None + return 1 # normal conv with 1 group + else: + # NOTE group_size == 1 -> depthwise conv + assert channels % group_size == 0 + return channels // group_size + + +@dataclass +class LayerFn: + conv_norm_act: Callable = ConvNormAct + norm_act: Callable = BatchNormAct2d + act: Callable = nn.ReLU + attn: Optional[Callable] = None + self_attn: Optional[Callable] = None + + +class DownsampleAvg(nn.Module): + def __init__( + self, + in_chs: int, + out_chs: int, + stride: int = 1, + dilation: int = 1, + apply_act: bool = False, + layers: LayerFn = None, + ): + """ AvgPool Downsampling as in 'D' ResNet variants.""" + super(DownsampleAvg, self).__init__() + layers = layers or LayerFn() + avg_stride = stride if dilation == 1 else 1 + if stride > 1 or dilation > 1: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + else: + self.pool = nn.Identity() + self.conv = layers.conv_norm_act(in_chs, out_chs, 1, apply_act=apply_act) + + def forward(self, x): + return self.conv(self.pool(x)) + + +def create_shortcut( + downsample_type: str, + in_chs: int, + out_chs: int, + stride: int, + dilation: Tuple[int, int], + layers: LayerFn, + **kwargs, +): + assert downsample_type in ('avg', 'conv1x1', '') + if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: + if not downsample_type: + return None # no shortcut + elif downsample_type == 'avg': + return DownsampleAvg(in_chs, out_chs, stride=stride, dilation=dilation[0], **kwargs) + else: + return layers.conv_norm_act(in_chs, out_chs, kernel_size=1, stride=stride, dilation=dilation[0], **kwargs) + else: + return nn.Identity() # identity shortcut + + +class BasicBlock(nn.Module): + """ ResNet Basic Block - kxk + kxk + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int = 3, + stride: int = 1, + dilation: Tuple[int, int] = (1, 1), + group_size: Optional[int] = None, + bottle_ratio: float = 1.0, + downsample: str = 'avg', + attn_last: bool = True, + linear_out: bool = False, + layers: LayerFn = None, + drop_block: Callable = None, + drop_path_rate: float = 0., + ): + super(BasicBlock, self).__init__() + layers = layers or LayerFn() + mid_chs = make_divisible(out_chs * bottle_ratio) + groups = num_groups(group_size, mid_chs) + + self.shortcut = create_shortcut( + downsample, in_chs, out_chs, + stride=stride, dilation=dilation, apply_act=False, layers=layers, + ) + + self.conv1_kxk = layers.conv_norm_act(in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0]) + self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) + self.conv2_kxk = layers.conv_norm_act( + mid_chs, out_chs, kernel_size, + dilation=dilation[1], groups=groups, drop_layer=drop_block, apply_act=False, + ) + self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() + self.act = nn.Identity() if linear_out else layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool = False): + if zero_init_last and self.shortcut is not None and getattr(self.conv2_kxk.bn, 'weight', None) is not None: + nn.init.zeros_(self.conv2_kxk.bn.weight) + for attn in (self.attn, self.attn_last): + if hasattr(attn, 'reset_parameters'): + attn.reset_parameters() + + def forward(self, x): + shortcut = x + x = self.conv1_kxk(x) + x = self.attn(x) + x = self.conv2_kxk(x) + x = self.attn_last(x) + x = self.drop_path(x) + if self.shortcut is not None: + x = x + self.shortcut(shortcut) + return self.act(x) + + +class BottleneckBlock(nn.Module): + """ ResNet-like Bottleneck Block - 1x1 - kxk - 1x1 + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int = 3, + stride: int = 1, + dilation: Tuple[int, int] = (1, 1), + bottle_ratio: float = 1., + group_size: Optional[int] = None, + downsample: str = 'avg', + attn_last: bool = False, + linear_out: bool = False, + extra_conv: bool = False, + bottle_in: bool = False, + layers: LayerFn = None, + drop_block: Callable = None, + drop_path_rate: float = 0., + ): + super(BottleneckBlock, self).__init__() + layers = layers or LayerFn() + mid_chs = make_divisible((in_chs if bottle_in else out_chs) * bottle_ratio) + groups = num_groups(group_size, mid_chs) + + self.shortcut = create_shortcut( + downsample, in_chs, out_chs, + stride=stride, dilation=dilation, apply_act=False, layers=layers, + ) + + self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) + self.conv2_kxk = layers.conv_norm_act( + mid_chs, mid_chs, kernel_size, + stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, + ) + if extra_conv: + self.conv2b_kxk = layers.conv_norm_act( + mid_chs, mid_chs, kernel_size, dilation=dilation[1], groups=groups) + else: + self.conv2b_kxk = nn.Identity() + self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) + self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) + self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() + self.act = nn.Identity() if linear_out else layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool = False): + if zero_init_last and self.shortcut is not None and getattr(self.conv3_1x1.bn, 'weight', None) is not None: + nn.init.zeros_(self.conv3_1x1.bn.weight) + for attn in (self.attn, self.attn_last): + if hasattr(attn, 'reset_parameters'): + attn.reset_parameters() + + def forward(self, x): + shortcut = x + x = self.conv1_1x1(x) + x = self.conv2_kxk(x) + x = self.conv2b_kxk(x) + x = self.attn(x) + x = self.conv3_1x1(x) + x = self.attn_last(x) + x = self.drop_path(x) + if self.shortcut is not None: + x = x + self.shortcut(shortcut) + return self.act(x) + + +class DarkBlock(nn.Module): + """ DarkNet-like (1x1 + 3x3 w/ stride) block + + The GE-Net impl included a 1x1 + 3x3 block in their search space. It was not used in the feature models. + This block is pretty much a DarkNet block (also DenseNet) hence the name. Neither DarkNet or DenseNet + uses strides within the block (external 3x3 or maxpool downsampling is done in front of the block repeats). + + If one does want to use a lot of these blocks w/ stride, I'd recommend using the EdgeBlock (3x3 /w stride + 1x1) + for more optimal compute. + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int = 3, + stride: int = 1, + dilation: Tuple[int, int] = (1, 1), + bottle_ratio: float = 1.0, + group_size: Optional[int] = None, + downsample: str = 'avg', + attn_last: bool = True, + linear_out: bool = False, + layers: LayerFn = None, + drop_block: Callable = None, + drop_path_rate: float = 0., + ): + super(DarkBlock, self).__init__() + layers = layers or LayerFn() + mid_chs = make_divisible(out_chs * bottle_ratio) + groups = num_groups(group_size, mid_chs) + + self.shortcut = create_shortcut( + downsample, in_chs, out_chs, + stride=stride, dilation=dilation, apply_act=False, layers=layers, + ) + + self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) + self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) + self.conv2_kxk = layers.conv_norm_act( + mid_chs, out_chs, kernel_size, + stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, apply_act=False, + ) + self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() + self.act = nn.Identity() if linear_out else layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool = False): + if zero_init_last and self.shortcut is not None and getattr(self.conv2_kxk.bn, 'weight', None) is not None: + nn.init.zeros_(self.conv2_kxk.bn.weight) + for attn in (self.attn, self.attn_last): + if hasattr(attn, 'reset_parameters'): + attn.reset_parameters() + + def forward(self, x): + shortcut = x + x = self.conv1_1x1(x) + x = self.attn(x) + x = self.conv2_kxk(x) + x = self.attn_last(x) + x = self.drop_path(x) + if self.shortcut is not None: + x = x + self.shortcut(shortcut) + return self.act(x) + + +class EdgeBlock(nn.Module): + """ EdgeResidual-like (3x3 + 1x1) block + + A two layer block like DarkBlock, but with the order of the 3x3 and 1x1 convs reversed. + Very similar to the EfficientNet Edge-Residual block but this block it ends with activations, is + intended to be used with either expansion or bottleneck contraction, and can use DW/group/non-grouped convs. + + FIXME is there a more common 3x3 + 1x1 conv block to name this after? + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int = 3, + stride: int = 1, + dilation: Tuple[int, int] = (1, 1), + bottle_ratio: float = 1.0, + group_size: Optional[int] = None, + downsample: str = 'avg', + attn_last: bool = False, + linear_out: bool = False, + layers: LayerFn = None, + drop_block: Callable = None, + drop_path_rate: float = 0., + ): + super(EdgeBlock, self).__init__() + layers = layers or LayerFn() + mid_chs = make_divisible(out_chs * bottle_ratio) + groups = num_groups(group_size, mid_chs) + + self.shortcut = create_shortcut( + downsample, in_chs, out_chs, + stride=stride, dilation=dilation, apply_act=False, layers=layers, + ) + self.conv1_kxk = layers.conv_norm_act( + in_chs, mid_chs, kernel_size, + stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, + ) + self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) + self.conv2_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) + self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() + self.act = nn.Identity() if linear_out else layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool = False): + if zero_init_last and self.shortcut is not None and getattr(self.conv2_1x1.bn, 'weight', None) is not None: + nn.init.zeros_(self.conv2_1x1.bn.weight) + for attn in (self.attn, self.attn_last): + if hasattr(attn, 'reset_parameters'): + attn.reset_parameters() + + def forward(self, x): + shortcut = x + x = self.conv1_kxk(x) + x = self.attn(x) + x = self.conv2_1x1(x) + x = self.attn_last(x) + x = self.drop_path(x) + if self.shortcut is not None: + x = x + self.shortcut(shortcut) + return self.act(x) + + +class RepVggBlock(nn.Module): + """ RepVGG Block. + + Adapted from impl at https://github.com/DingXiaoH/RepVGG + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int = 3, + stride: int = 1, + dilation: Tuple[int, int] = (1, 1), + bottle_ratio: float = 1.0, + group_size: Optional[int] = None, + downsample: str = '', + layers: LayerFn = None, + drop_block: Callable = None, + drop_path_rate: float = 0., + inference_mode: bool = False + ): + super(RepVggBlock, self).__init__() + self.groups = groups = num_groups(group_size, in_chs) + layers = layers or LayerFn() + + if inference_mode: + self.reparam_conv = nn.Conv2d( + in_channels=in_chs, + out_channels=out_chs, + kernel_size=kernel_size, + stride=stride, + dilation=dilation, + groups=groups, + bias=True, + ) + else: + self.reparam_conv = None + use_ident = in_chs == out_chs and stride == 1 and dilation[0] == dilation[1] + self.identity = layers.norm_act(out_chs, apply_act=False) if use_ident else None + self.conv_kxk = layers.conv_norm_act( + in_chs, out_chs, kernel_size, + stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, apply_act=False, + ) + self.conv_1x1 = layers.conv_norm_act(in_chs, out_chs, 1, stride=stride, groups=groups, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. and use_ident else nn.Identity() + + self.attn = nn.Identity() if layers.attn is None else layers.attn(out_chs) + self.act = layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool = False): + # NOTE this init overrides that base model init with specific changes for the block type + for m in self.modules(): + if isinstance(m, nn.BatchNorm2d): + nn.init.normal_(m.weight, .1, .1) + nn.init.normal_(m.bias, 0, .1) + if hasattr(self.attn, 'reset_parameters'): + self.attn.reset_parameters() + + def forward(self, x): + if self.reparam_conv is not None: + return self.act(self.attn(self.reparam_conv(x))) + + if self.identity is None: + x = self.conv_1x1(x) + self.conv_kxk(x) + else: + identity = self.identity(x) + x = self.conv_1x1(x) + self.conv_kxk(x) + x = self.drop_path(x) # not in the paper / official impl, experimental + x += identity + x = self.attn(x) # no attn in the paper / official impl, experimental + return self.act(x) + + def reparameterize(self): + """ Following works like `RepVGG: Making VGG-style ConvNets Great Again` - + https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched + architecture used at training time to obtain a plain CNN-like structure + for inference. + """ + if self.reparam_conv is not None: + return + + kernel, bias = self._get_kernel_bias() + self.reparam_conv = nn.Conv2d( + in_channels=self.conv_kxk.conv.in_channels, + out_channels=self.conv_kxk.conv.out_channels, + kernel_size=self.conv_kxk.conv.kernel_size, + stride=self.conv_kxk.conv.stride, + padding=self.conv_kxk.conv.padding, + dilation=self.conv_kxk.conv.dilation, + groups=self.conv_kxk.conv.groups, + bias=True, + ) + self.reparam_conv.weight.data = kernel + self.reparam_conv.bias.data = bias + + # Delete un-used branches + for name, para in self.named_parameters(): + if 'reparam_conv' in name: + continue + para.detach_() + self.__delattr__('conv_kxk') + self.__delattr__('conv_1x1') + self.__delattr__('identity') + self.__delattr__('drop_path') + + def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: + """ Method to obtain re-parameterized kernel and bias. + Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83 + """ + # get weights and bias of scale branch + kernel_1x1 = 0 + bias_1x1 = 0 + if self.conv_1x1 is not None: + kernel_1x1, bias_1x1 = self._fuse_bn_tensor(self.conv_1x1) + # Pad scale branch kernel to match conv branch kernel size. + pad = self.conv_kxk.conv.kernel_size[0] // 2 + kernel_1x1 = torch.nn.functional.pad(kernel_1x1, [pad, pad, pad, pad]) + + # get weights and bias of skip branch + kernel_identity = 0 + bias_identity = 0 + if self.identity is not None: + kernel_identity, bias_identity = self._fuse_bn_tensor(self.identity) + + # get weights and bias of conv branches + kernel_conv, bias_conv = self._fuse_bn_tensor(self.conv_kxk) + + kernel_final = kernel_conv + kernel_1x1 + kernel_identity + bias_final = bias_conv + bias_1x1 + bias_identity + return kernel_final, bias_final + + def _fuse_bn_tensor(self, branch) -> Tuple[torch.Tensor, torch.Tensor]: + """ Method to fuse batchnorm layer with preceeding conv layer. + Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95 + """ + if isinstance(branch, ConvNormAct): + kernel = branch.conv.weight + running_mean = branch.bn.running_mean + running_var = branch.bn.running_var + gamma = branch.bn.weight + beta = branch.bn.bias + eps = branch.bn.eps + else: + assert isinstance(branch, nn.BatchNorm2d) + if not hasattr(self, 'id_tensor'): + in_chs = self.conv_kxk.conv.in_channels + input_dim = in_chs // self.groups + kernel_size = self.conv_kxk.conv.kernel_size + kernel_value = torch.zeros_like(self.conv_kxk.conv.weight) + for i in range(in_chs): + kernel_value[i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2] = 1 + self.id_tensor = kernel_value + kernel = self.id_tensor + running_mean = branch.running_mean + running_var = branch.running_var + gamma = branch.weight + beta = branch.bias + eps = branch.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return kernel * t, beta - running_mean * gamma / std + + +class MobileOneBlock(nn.Module): + """ MobileOne building block. + + This block has a multi-branched architecture at train-time + and plain-CNN style architecture at inference time + For more details, please refer to our paper: + `An Improved One millisecond Mobile Backbone` - + https://arxiv.org/pdf/2206.04040.pdf + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int = 3, + stride: int = 1, + dilation: Tuple[int, int] = (1, 1), + bottle_ratio: float = 1.0, # unused + group_size: Optional[int] = None, + downsample: str = '', # unused + inference_mode: bool = False, + num_conv_branches: int = 1, + layers: LayerFn = None, + drop_block: Callable = None, + drop_path_rate: float = 0., + ) -> None: + """ Construct a MobileOneBlock module. + """ + super(MobileOneBlock, self).__init__() + self.num_conv_branches = num_conv_branches + self.groups = groups = num_groups(group_size, in_chs) + layers = layers or LayerFn() + + if inference_mode: + self.reparam_conv = nn.Conv2d( + in_channels=in_chs, + out_channels=out_chs, + kernel_size=kernel_size, + stride=stride, + dilation=dilation, + groups=groups, + bias=True) + else: + self.reparam_conv = None + + # Re-parameterizable skip connection + use_ident = in_chs == out_chs and stride == 1 and dilation[0] == dilation[1] + self.identity = layers.norm_act(out_chs, apply_act=False) if use_ident else None + + # Re-parameterizable conv branches + convs = [] + for _ in range(self.num_conv_branches): + convs.append(layers.conv_norm_act( + in_chs, out_chs, kernel_size=kernel_size, + stride=stride, groups=groups, apply_act=False)) + self.conv_kxk = nn.ModuleList(convs) + + # Re-parameterizable scale branch + self.conv_scale = None + if kernel_size > 1: + self.conv_scale = layers.conv_norm_act( + in_chs, out_chs, kernel_size=1, + stride=stride, groups=groups, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. and use_ident else nn.Identity() + + self.attn = nn.Identity() if layers.attn is None else layers.attn(out_chs) + self.act = layers.act(inplace=True) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ Apply forward pass. """ + # Inference mode forward pass. + if self.reparam_conv is not None: + return self.act(self.attn(self.reparam_conv(x))) + + # Multi-branched train-time forward pass. + # Skip branch output + identity_out = 0 + if self.identity is not None: + identity_out = self.identity(x) + + # Scale branch output + scale_out = 0 + if self.conv_scale is not None: + scale_out = self.conv_scale(x) + + # Other branches + out = scale_out + for ck in self.conv_kxk: + out += ck(x) + out = self.drop_path(out) + out += identity_out + + return self.act(self.attn(out)) + + def reparameterize(self): + """ Following works like `RepVGG: Making VGG-style ConvNets Great Again` - + https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched + architecture used at training time to obtain a plain CNN-like structure + for inference. + """ + if self.reparam_conv is not None: + return + + kernel, bias = self._get_kernel_bias() + self.reparam_conv = nn.Conv2d( + in_channels=self.conv_kxk[0].conv.in_channels, + out_channels=self.conv_kxk[0].conv.out_channels, + kernel_size=self.conv_kxk[0].conv.kernel_size, + stride=self.conv_kxk[0].conv.stride, + padding=self.conv_kxk[0].conv.padding, + dilation=self.conv_kxk[0].conv.dilation, + groups=self.conv_kxk[0].conv.groups, + bias=True) + self.reparam_conv.weight.data = kernel + self.reparam_conv.bias.data = bias + + # Delete un-used branches + for name, para in self.named_parameters(): + if 'reparam_conv' in name: + continue + para.detach_() + self.__delattr__('conv_kxk') + self.__delattr__('conv_scale') + self.__delattr__('identity') + self.__delattr__('drop_path') + + def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: + """ Method to obtain re-parameterized kernel and bias. + Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83 + """ + # get weights and bias of scale branch + kernel_scale = 0 + bias_scale = 0 + if self.conv_scale is not None: + kernel_scale, bias_scale = self._fuse_bn_tensor(self.conv_scale) + # Pad scale branch kernel to match conv branch kernel size. + pad = self.conv_kxk[0].conv.kernel_size[0] // 2 + kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad]) + + # get weights and bias of skip branch + kernel_identity = 0 + bias_identity = 0 + if self.identity is not None: + kernel_identity, bias_identity = self._fuse_bn_tensor(self.identity) + + # get weights and bias of conv branches + kernel_conv = 0 + bias_conv = 0 + for ix in range(self.num_conv_branches): + _kernel, _bias = self._fuse_bn_tensor(self.conv_kxk[ix]) + kernel_conv += _kernel + bias_conv += _bias + + kernel_final = kernel_conv + kernel_scale + kernel_identity + bias_final = bias_conv + bias_scale + bias_identity + return kernel_final, bias_final + + def _fuse_bn_tensor(self, branch) -> Tuple[torch.Tensor, torch.Tensor]: + """ Method to fuse batchnorm layer with preceeding conv layer. + Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95 + """ + if isinstance(branch, ConvNormAct): + kernel = branch.conv.weight + running_mean = branch.bn.running_mean + running_var = branch.bn.running_var + gamma = branch.bn.weight + beta = branch.bn.bias + eps = branch.bn.eps + else: + assert isinstance(branch, nn.BatchNorm2d) + if not hasattr(self, 'id_tensor'): + in_chs = self.conv_kxk[0].conv.in_channels + input_dim = in_chs // self.groups + kernel_size = self.conv_kxk[0].conv.kernel_size + kernel_value = torch.zeros_like(self.conv_kxk[0].conv.weight) + for i in range(in_chs): + kernel_value[i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2] = 1 + self.id_tensor = kernel_value + kernel = self.id_tensor + running_mean = branch.running_mean + running_var = branch.running_var + gamma = branch.weight + beta = branch.bias + eps = branch.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return kernel * t, beta - running_mean * gamma / std + + +class SelfAttnBlock(nn.Module): + """ ResNet-like Bottleneck Block - 1x1 - optional kxk - self attn - 1x1 + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int = 3, + stride: int = 1, + dilation: Tuple[int, int] = (1, 1), + bottle_ratio: float = 1., + group_size: Optional[int] = None, + downsample: str = 'avg', + extra_conv: bool = False, + linear_out: bool = False, + bottle_in: bool = False, + post_attn_na: bool = True, + feat_size: Optional[Tuple[int, int]] = None, + layers: LayerFn = None, + drop_block: Callable = None, + drop_path_rate: float = 0., + ): + super(SelfAttnBlock, self).__init__() + assert layers is not None + mid_chs = make_divisible((in_chs if bottle_in else out_chs) * bottle_ratio) + groups = num_groups(group_size, mid_chs) + + self.shortcut = create_shortcut( + downsample, in_chs, out_chs, + stride=stride, dilation=dilation, apply_act=False, layers=layers, + ) + + self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) + if extra_conv: + self.conv2_kxk = layers.conv_norm_act( + mid_chs, mid_chs, kernel_size, + stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, + ) + stride = 1 # striding done via conv if enabled + else: + self.conv2_kxk = nn.Identity() + opt_kwargs = {} if feat_size is None else dict(feat_size=feat_size) + # FIXME need to dilate self attn to have dilated network support, moop moop + self.self_attn = layers.self_attn(mid_chs, stride=stride, **opt_kwargs) + self.post_attn = layers.norm_act(mid_chs) if post_attn_na else nn.Identity() + self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() + self.act = nn.Identity() if linear_out else layers.act(inplace=True) + + def init_weights(self, zero_init_last: bool = False): + if zero_init_last and self.shortcut is not None and getattr(self.conv3_1x1.bn, 'weight', None) is not None: + nn.init.zeros_(self.conv3_1x1.bn.weight) + if hasattr(self.self_attn, 'reset_parameters'): + self.self_attn.reset_parameters() + + def forward(self, x): + shortcut = x + x = self.conv1_1x1(x) + x = self.conv2_kxk(x) + x = self.self_attn(x) + x = self.post_attn(x) + x = self.conv3_1x1(x) + x = self.drop_path(x) + if self.shortcut is not None: + x = x + self.shortcut(shortcut) + return self.act(x) + + +_block_registry = dict( + basic=BasicBlock, + bottle=BottleneckBlock, + dark=DarkBlock, + edge=EdgeBlock, + rep=RepVggBlock, + one=MobileOneBlock, + self_attn=SelfAttnBlock, +) + + +def register_block(block_type:str, block_fn: nn.Module): + _block_registry[block_type] = block_fn + + +def create_block(block: Union[str, nn.Module], **kwargs): + if isinstance(block, (nn.Module, partial)): + return block(**kwargs) + assert block in _block_registry, f'Unknown block type ({block}' + return _block_registry[block](**kwargs) + + +class Stem(nn.Sequential): + + def __init__( + self, + in_chs: int, + out_chs: Union[int, List[int], Tuple[int, ...]], + kernel_size: int = 3, + stride: int = 4, + pool: str = 'maxpool', + num_rep: int = 3, + num_act: Optional[int] = None, + chs_decay: float = 0.5, + layers: LayerFn = None, + ): + super().__init__() + assert stride in (2, 4) + layers = layers or LayerFn() + + if isinstance(out_chs, (list, tuple)): + num_rep = len(out_chs) + stem_chs = out_chs + else: + stem_chs = [round(out_chs * chs_decay ** i) for i in range(num_rep)][::-1] + + self.stride = stride + self.feature_info = [] # track intermediate features + prev_feat = '' + stem_strides = [2] + [1] * (num_rep - 1) + if stride == 4 and not pool: + # set last conv in stack to be strided if stride == 4 and no pooling layer + stem_strides[-1] = 2 + + num_act = num_rep if num_act is None else num_act + # if num_act < num_rep, first convs in stack won't have bn + act + stem_norm_acts = [False] * (num_rep - num_act) + [True] * num_act + prev_chs = in_chs + curr_stride = 1 + last_feat_idx = -1 + for i, (ch, s, na) in enumerate(zip(stem_chs, stem_strides, stem_norm_acts)): + layer_fn = layers.conv_norm_act if na else create_conv2d + conv_name = f'conv{i + 1}' + if i > 0 and s > 1: + last_feat_idx = i - 1 + self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat, stage=0)) + self.add_module(conv_name, layer_fn(prev_chs, ch, kernel_size=kernel_size, stride=s)) + prev_chs = ch + curr_stride *= s + prev_feat = conv_name + + if pool: + pool = pool.lower() + assert pool in ('max', 'maxpool', 'avg', 'avgpool', 'max2', 'avg2') + last_feat_idx = i + self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat, stage=0)) + if pool == 'max2': + self.add_module('pool', nn.MaxPool2d(2)) + elif pool == 'avg2': + self.add_module('pool', nn.AvgPool2d(2)) + elif 'max' in pool: + self.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) + elif 'avg' in pool: + self.add_module('pool', nn.AvgPool2d(kernel_size=3, stride=2, padding=1, count_include_pad=False)) + curr_stride *= 2 + prev_feat = 'pool' + + self.last_feat_idx = last_feat_idx if last_feat_idx >= 0 else None + self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat, stage=0)) + assert curr_stride == stride + + def forward_intermediates(self, x) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + intermediate: Optional[torch.Tensor] = None + for i, m in enumerate(self): + x = m(x) + if self.last_feat_idx is not None and i == self.last_feat_idx: + intermediate = x + return x, intermediate + + +def create_byob_stem( + in_chs: int, + out_chs: int, + stem_type: str = '', + pool_type: str = '', + feat_prefix: str = 'stem', + layers: LayerFn = None, +): + layers = layers or LayerFn() + assert stem_type in ('', 'quad', 'quad2', 'tiered', 'deep', 'rep', 'one', '7x7', '3x3') + if 'quad' in stem_type: + # based on NFNet stem, stack of 4 3x3 convs + num_act = 2 if 'quad2' in stem_type else None + stem = Stem(in_chs, out_chs, num_rep=4, num_act=num_act, pool=pool_type, layers=layers) + elif 'tiered' in stem_type: + # 3x3 stack of 3 convs as in my ResNet-T + stem = Stem(in_chs, (3 * out_chs // 8, out_chs // 2, out_chs), pool=pool_type, layers=layers) + elif 'deep' in stem_type: + # 3x3 stack of 3 convs as in ResNet-D + stem = Stem(in_chs, out_chs, num_rep=3, chs_decay=1.0, pool=pool_type, layers=layers) + elif 'rep' in stem_type: + stem = RepVggBlock(in_chs, out_chs, stride=2, layers=layers) + elif 'one' in stem_type: + stem = MobileOneBlock(in_chs, out_chs, kernel_size=3, stride=2, layers=layers) + elif '7x7' in stem_type: + # 7x7 stem conv as in ResNet + if pool_type: + stem = Stem(in_chs, out_chs, 7, num_rep=1, pool=pool_type, layers=layers) + else: + stem = layers.conv_norm_act(in_chs, out_chs, 7, stride=2) + else: + if isinstance(out_chs, (tuple, list)): + stem = Stem(in_chs, out_chs, 3, pool=pool_type, layers=layers) + else: + # 3x3 stem conv as in RegNet is the default + if pool_type: + stem = Stem(in_chs, out_chs, 3, num_rep=1, pool=pool_type, layers=layers) + else: + stem = layers.conv_norm_act(in_chs, out_chs, 3, stride=2) + + if isinstance(stem, Stem): + feature_info = [dict(f, module='.'.join([feat_prefix, f['module']])) for f in stem.feature_info] + else: + feature_info = [dict(num_chs=out_chs, reduction=2, module=feat_prefix, stage=0)] + return stem, feature_info + + +def reduce_feat_size(feat_size, stride=2): + return None if feat_size is None else tuple([s // stride for s in feat_size]) + + +def override_kwargs(block_kwargs, model_kwargs): + """ Override model level attn/self-attn/block kwargs w/ block level + + NOTE: kwargs are NOT merged across levels, block_kwargs will fully replace model_kwargs + for the block if set to anything that isn't None. + + i.e. an empty block_kwargs dict will remove kwargs set at model level for that block + """ + out_kwargs = block_kwargs if block_kwargs is not None else model_kwargs + return out_kwargs or {} # make sure None isn't returned + + +def update_block_kwargs(block_kwargs: Dict[str, Any], block_cfg: ByoBlockCfg, model_cfg: ByoModelCfg, ): + layer_fns = block_kwargs['layers'] + + # override attn layer / args with block local config + attn_set = block_cfg.attn_layer is not None + if attn_set or block_cfg.attn_kwargs is not None: + # override attn layer config + if attn_set and not block_cfg.attn_layer: + # empty string for attn_layer type will disable attn for this block + attn_layer = None + else: + attn_kwargs = override_kwargs(block_cfg.attn_kwargs, model_cfg.attn_kwargs) + attn_layer = block_cfg.attn_layer or model_cfg.attn_layer + attn_layer = partial(get_attn(attn_layer), **attn_kwargs) if attn_layer is not None else None + layer_fns = replace(layer_fns, attn=attn_layer) + + # override self-attn layer / args with block local cfg + self_attn_set = block_cfg.self_attn_layer is not None + if self_attn_set or block_cfg.self_attn_kwargs is not None: + # override attn layer config + if self_attn_set and not block_cfg.self_attn_layer: # attn_layer == '' + # empty string for self_attn_layer type will disable attn for this block + self_attn_layer = None + else: + self_attn_kwargs = override_kwargs(block_cfg.self_attn_kwargs, model_cfg.self_attn_kwargs) + self_attn_layer = block_cfg.self_attn_layer or model_cfg.self_attn_layer + self_attn_layer = partial(get_attn(self_attn_layer), **self_attn_kwargs) \ + if self_attn_layer is not None else None + layer_fns = replace(layer_fns, self_attn=self_attn_layer) + + block_kwargs['layers'] = layer_fns + + # add additional block_kwargs specified in block_cfg or model_cfg, precedence to block if set + block_kwargs.update(override_kwargs(block_cfg.block_kwargs, model_cfg.block_kwargs)) + + +def create_byob_stages( + cfg: ByoModelCfg, + drop_path_rate: float, + output_stride: int, + stem_feat: Dict[str, Any], + feat_size: Optional[int] = None, + layers: Optional[LayerFn] = None, + block_kwargs_fn: Optional[Callable] = update_block_kwargs, +): + + layers = layers or LayerFn() + feature_info = [] + block_cfgs = [expand_blocks_cfg(s) for s in cfg.blocks] + depths = [sum([bc.d for bc in stage_bcs]) for stage_bcs in block_cfgs] + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + dilation = 1 + net_stride = stem_feat['reduction'] + prev_chs = stem_feat['num_chs'] + prev_feat = stem_feat + stages = [] + for stage_idx, stage_block_cfgs in enumerate(block_cfgs): + stride = stage_block_cfgs[0].s + if stride != 1 and prev_feat: + feature_info.append(prev_feat) + if net_stride >= output_stride and stride > 1: + dilation *= stride + stride = 1 + net_stride *= stride + first_dilation = 1 if dilation in (1, 2) else 2 + + blocks = [] + for block_idx, block_cfg in enumerate(stage_block_cfgs): + out_chs = make_divisible(block_cfg.c * cfg.width_factor) + group_size = block_cfg.gs + if isinstance(group_size, Callable): + group_size = group_size(out_chs, block_idx) + block_kwargs = dict( # Blocks used in this model must accept these arguments + in_chs=prev_chs, + out_chs=out_chs, + stride=stride if block_idx == 0 else 1, + dilation=(first_dilation, dilation), + group_size=group_size, + bottle_ratio=block_cfg.br, + downsample=cfg.downsample, + drop_path_rate=dpr[stage_idx][block_idx], + layers=layers, + ) + if block_cfg.type in ('self_attn',): + # add feat_size arg for blocks that support/need it + block_kwargs['feat_size'] = feat_size + block_kwargs_fn(block_kwargs, block_cfg=block_cfg, model_cfg=cfg) + blocks += [create_block(block_cfg.type, **block_kwargs)] + first_dilation = dilation + prev_chs = out_chs + if stride > 1 and block_idx == 0: + feat_size = reduce_feat_size(feat_size, stride) + + stages += [nn.Sequential(*blocks)] + prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}', stage=stage_idx + 1) + + feature_info.append(prev_feat) + return nn.Sequential(*stages), feature_info, feat_size + + +def get_layer_fns(cfg: ByoModelCfg, allow_aa: bool = True): + act = get_act_layer(cfg.act_layer) + norm_act = get_norm_act_layer(norm_layer=cfg.norm_layer, act_layer=act) + if cfg.aa_layer and allow_aa: + conv_norm_act = partial(ConvNormAct, norm_layer=cfg.norm_layer, act_layer=act, aa_layer=cfg.aa_layer) + else: + conv_norm_act = partial(ConvNormAct, norm_layer=cfg.norm_layer, act_layer=act) + attn = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None + self_attn = partial(get_attn(cfg.self_attn_layer), **cfg.self_attn_kwargs) if cfg.self_attn_layer else None + layer_fn = LayerFn(conv_norm_act=conv_norm_act, norm_act=norm_act, act=act, attn=attn, self_attn=self_attn) + return layer_fn + + +class ByobNet(nn.Module): + """ 'Bring-your-own-blocks' Net + + A flexible network backbone that allows building model stem + blocks via + dataclass cfg definition w/ factory functions for module instantiation. + + Current assumption is that both stem and blocks are in conv-bn-act order (w/ block ending in act). + """ + def __init__( + self, + cfg: ByoModelCfg, + num_classes: int = 1000, + in_chans: int = 3, + global_pool: Optional[str] = None, + output_stride: int = 32, + img_size: Optional[Union[int, Tuple[int, int]]] = None, + drop_rate: float = 0., + drop_path_rate: float =0., + zero_init_last: bool = True, + **kwargs, + ): + """ + Args: + cfg: Model architecture configuration. + num_classes: Number of classifier classes. + in_chans: Number of input channels. + global_pool: Global pooling type. + output_stride: Output stride of network, one of (8, 16, 32). + img_size: Image size for fixed image size models (i.e. self-attn). + drop_rate: Classifier dropout rate. + drop_path_rate: Stochastic depth drop-path rate. + zero_init_last: Zero-init last weight of residual path. + **kwargs: Extra kwargs overlayed onto cfg. + """ + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + + cfg = replace(cfg, **kwargs) # overlay kwargs onto cfg + stem_layers = get_layer_fns(cfg, allow_aa=False) # keep aa off for stem-layers + stage_layers = get_layer_fns(cfg) + if cfg.fixed_input_size: + assert img_size is not None, 'img_size argument is required for fixed input size model' + feat_size = to_2tuple(img_size) if img_size is not None else None + + self.feature_info = [] + if isinstance(cfg.stem_chs, (list, tuple)): + stem_chs = [int(round(c * cfg.width_factor)) for c in cfg.stem_chs] + else: + stem_chs = int(round((cfg.stem_chs or cfg.blocks[0].c) * cfg.width_factor)) + self.stem, stem_feat = create_byob_stem( + in_chs=in_chans, + out_chs=stem_chs, + stem_type=cfg.stem_type, + pool_type=cfg.stem_pool, + layers=stem_layers, + ) + self.feature_info.extend(stem_feat[:-1]) + feat_size = reduce_feat_size(feat_size, stride=stem_feat[-1]['reduction']) + + self.stages, stage_feat, feat_size = create_byob_stages( + cfg, + drop_path_rate, + output_stride, + stem_feat[-1], + layers=stage_layers, + feat_size=feat_size, + ) + self.feature_info.extend(stage_feat[:-1]) + reduction = stage_feat[-1]['reduction'] + + prev_chs = stage_feat[-1]['num_chs'] + if cfg.num_features: + self.num_features = int(round(cfg.width_factor * cfg.num_features)) + self.final_conv = stage_layers.conv_norm_act(prev_chs, self.num_features, 1) + else: + self.num_features = prev_chs + self.final_conv = nn.Identity() + self.feature_info += [ + dict(num_chs=self.num_features, reduction=reduction, module='final_conv', stage=len(self.stages))] + self.stage_ends = [f['stage'] for f in self.feature_info] + + self.head_hidden_size = self.num_features + assert cfg.head_type in ('', 'classifier', 'mlp', 'attn_abs', 'attn_rot') + if cfg.head_type == 'mlp': + if global_pool is None: + global_pool = 'avg' + self.head = NormMlpClassifierHead( + self.num_features, + num_classes, + hidden_size=cfg.head_hidden_size, + pool_type=global_pool, + norm_layer=cfg.norm_layer, + act_layer=cfg.act_layer, + drop_rate=self.drop_rate, + ) + self.head_hidden_size = self.head.hidden_size + elif cfg.head_type == 'attn_abs': + if global_pool is None: + global_pool = 'token' + assert global_pool in ('', 'token') + self.head = AttentionPool2d( + self.num_features, + embed_dim=cfg.head_hidden_size, + out_features=num_classes, + feat_size=feat_size, + pool_type=global_pool, + drop_rate=self.drop_rate, + qkv_separate=True, + ) + self.head_hidden_size = self.head.embed_dim + elif cfg.head_type =='attn_rot': + if global_pool is None: + global_pool = 'token' + assert global_pool in ('', 'token') + self.head = RotAttentionPool2d( + self.num_features, + embed_dim=cfg.head_hidden_size, + out_features=num_classes, + ref_feat_size=feat_size, + pool_type=global_pool, + drop_rate=self.drop_rate, + qkv_separate=True, + ) + self.head_hidden_size = self.head.embed_dim + else: + if global_pool is None: + global_pool = 'avg' + assert cfg.head_hidden_size is None + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=self.drop_rate, + ) + self.global_pool = global_pool + + # init weights + named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^stem', + blocks=[ + (r'^stages\.(\d+)' if coarse else r'^stages\.(\d+)\.(\d+)', None), + (r'^final_conv', (99999,)) + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + exclude_final_conv: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + exclude_final_conv: Exclude final_conv from last intermediate + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + # forward pass + feat_idx = 0 # stem is index 0 + if hasattr(self.stem, 'forward_intermediates'): + # returns last intermediate features in stem (before final stride in stride > 2 stems) + x, x_inter = self.stem.forward_intermediates(x) + else: + x, x_inter = self.stem(x), None + if feat_idx in take_indices: + intermediates.append(x if x_inter is None else x_inter) + last_idx = self.stage_ends[-1] + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + stages = self.stages + else: + stages = self.stages[:max_index] + for stage in stages: + feat_idx += 1 + x = stage(x) + if not exclude_final_conv and feat_idx == last_idx: + # default feature_info for this model uses final_conv as the last feature output (if present) + x = self.final_conv(x) + if feat_idx in take_indices: + intermediates.append(x) + + if intermediates_only: + return intermediates + + if exclude_final_conv and feat_idx == last_idx: + x = self.final_conv(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0 + if max_index < self.stage_ends[-1]: + self.final_conv = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + x = self.final_conv(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _init_weights(module, name='', zero_init_last=False): + if isinstance(module, nn.Conv2d): + fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels + fan_out //= module.groups + module.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Linear): + nn.init.normal_(module.weight, mean=0.0, std=0.01) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.BatchNorm2d): + nn.init.ones_(module.weight) + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights(zero_init_last=zero_init_last) + + +model_cfgs = dict( + gernet_l=ByoModelCfg( + blocks=( + ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.), + ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.), + ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4), + ByoBlockCfg(type='bottle', d=5, c=640, s=2, gs=1, br=3.), + ByoBlockCfg(type='bottle', d=4, c=640, s=1, gs=1, br=3.), + ), + stem_chs=32, + stem_pool=None, + num_features=2560, + ), + gernet_m=ByoModelCfg( + blocks=( + ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.), + ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.), + ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4), + ByoBlockCfg(type='bottle', d=4, c=640, s=2, gs=1, br=3.), + ByoBlockCfg(type='bottle', d=1, c=640, s=1, gs=1, br=3.), + ), + stem_chs=32, + stem_pool=None, + num_features=2560, + ), + gernet_s=ByoModelCfg( + blocks=( + ByoBlockCfg(type='basic', d=1, c=48, s=2, gs=0, br=1.), + ByoBlockCfg(type='basic', d=3, c=48, s=2, gs=0, br=1.), + ByoBlockCfg(type='bottle', d=7, c=384, s=2, gs=0, br=1 / 4), + ByoBlockCfg(type='bottle', d=2, c=560, s=2, gs=1, br=3.), + ByoBlockCfg(type='bottle', d=1, c=256, s=1, gs=1, br=3.), + ), + stem_chs=13, + stem_pool=None, + num_features=1920, + ), + + repvgg_a0=ByoModelCfg( + blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(0.75, 0.75, 0.75, 2.5)), + stem_type='rep', + stem_chs=48, + ), + repvgg_a1=ByoModelCfg( + blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(1, 1, 1, 2.5)), + stem_type='rep', + stem_chs=64, + ), + repvgg_a2=ByoModelCfg( + blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(1.5, 1.5, 1.5, 2.75)), + stem_type='rep', + stem_chs=64, + ), + repvgg_b0=ByoModelCfg( + blocks=_rep_vgg_bcfg(wf=(1., 1., 1., 2.5)), + stem_type='rep', + stem_chs=64, + ), + repvgg_b1=ByoModelCfg( + blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.)), + stem_type='rep', + stem_chs=64, + ), + repvgg_b1g4=ByoModelCfg( + blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.), groups=4), + stem_type='rep', + stem_chs=64, + ), + repvgg_b2=ByoModelCfg( + blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.)), + stem_type='rep', + stem_chs=64, + ), + repvgg_b2g4=ByoModelCfg( + blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.), groups=4), + stem_type='rep', + stem_chs=64, + ), + repvgg_b3=ByoModelCfg( + blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.)), + stem_type='rep', + stem_chs=64, + ), + repvgg_b3g4=ByoModelCfg( + blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.), groups=4), + stem_type='rep', + stem_chs=64, + ), + repvgg_d2se=ByoModelCfg( + blocks=_rep_vgg_bcfg(d=(8, 14, 24, 1), wf=(2.5, 2.5, 2.5, 5.)), + stem_type='rep', + stem_chs=64, + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.0625, rd_divisor=1), + ), + + # 4 x conv stem w/ 2 act, no maxpool, 2,4,6,4 repeats, group size 32 in first 3 blocks + # DW convs in last block, 2048 pre-FC, silu act + resnet51q=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0), + ), + stem_chs=128, + stem_type='quad2', + stem_pool=None, + num_features=2048, + act_layer='silu', + ), + + # 4 x conv stem w/ 4 act, no maxpool, 1,4,6,4 repeats, edge block first, group size 32 in next 2 blocks + # DW convs in last block, 4 conv for each bottle block, 2048 pre-FC, silu act + resnet61q=ByoModelCfg( + blocks=( + ByoBlockCfg(type='edge', d=1, c=256, s=1, gs=0, br=1.0, block_kwargs=dict()), + ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0), + ), + stem_chs=128, + stem_type='quad', + stem_pool=None, + num_features=2048, + act_layer='silu', + block_kwargs=dict(extra_conv=True), + ), + + # A series of ResNeXt-26 models w/ one of none, GC, SE, ECA, BAT attn, group size 32, SiLU act, + # and a tiered stem w/ maxpool + resnext26ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + act_layer='silu', + ), + gcresnext26ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + act_layer='silu', + attn_layer='gca', + ), + seresnext26ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + act_layer='silu', + attn_layer='se', + ), + eca_resnext26ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + act_layer='silu', + attn_layer='eca', + ), + bat_resnext26ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + act_layer='silu', + attn_layer='bat', + attn_kwargs=dict(block_size=8) + ), + + # ResNet-32 (2, 3, 3, 2) models w/ no attn, no groups, SiLU act, no pre-fc feat layer, tiered stem w/o maxpool + resnet32ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + num_features=0, + act_layer='silu', + ), + + # ResNet-33 (2, 3, 3, 2) models w/ no attn, no groups, SiLU act, 1280 pre-FC feat, tiered stem w/o maxpool + resnet33ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + num_features=1280, + act_layer='silu', + ), + + # A series of ResNet-33 (2, 3, 3, 2) models w/ one of GC, SE, ECA attn, no groups, SiLU act, 1280 pre-FC feat + # and a tiered stem w/ no maxpool + gcresnet33ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + num_features=1280, + act_layer='silu', + attn_layer='gca', + ), + seresnet33ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + num_features=1280, + act_layer='silu', + attn_layer='se', + ), + eca_resnet33ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), + ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + num_features=1280, + act_layer='silu', + attn_layer='eca', + ), + + gcresnet50t=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), + ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + attn_layer='gca', + ), + + gcresnext50ts=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=6, c=1024, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=2048, s=2, gs=32, br=0.25), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='maxpool', + act_layer='silu', + attn_layer='gca', + ), + + # experimental models, closer to a RegNetZ than a ResNet. Similar to EfficientNets but w/ groups instead of DW + regnetz_b16=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), + ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), + ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=3), + ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=3), + ), + stem_chs=32, + stem_pool='', + downsample='', + num_features=1536, + act_layer='silu', + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.25), + block_kwargs=dict(bottle_in=True, linear_out=True), + ), + regnetz_c16=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=4), + ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=4), + ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=4), + ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=4), + ), + stem_chs=32, + stem_pool='', + downsample='', + num_features=1536, + act_layer='silu', + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.25), + block_kwargs=dict(bottle_in=True, linear_out=True), + ), + regnetz_d32=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=32, br=4), + ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=32, br=4), + ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=32, br=4), + ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=32, br=4), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + downsample='', + num_features=1792, + act_layer='silu', + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.25), + block_kwargs=dict(bottle_in=True, linear_out=True), + ), + regnetz_d8=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4), + ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4), + ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4), + ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + downsample='', + num_features=1792, + act_layer='silu', + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.25), + block_kwargs=dict(bottle_in=True, linear_out=True), + ), + regnetz_e8=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=96, s=1, gs=8, br=4), + ByoBlockCfg(type='bottle', d=8, c=192, s=2, gs=8, br=4), + ByoBlockCfg(type='bottle', d=16, c=384, s=2, gs=8, br=4), + ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=8, br=4), + ), + stem_chs=64, + stem_type='tiered', + stem_pool='', + downsample='', + num_features=2048, + act_layer='silu', + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.25), + block_kwargs=dict(bottle_in=True, linear_out=True), + ), + + # experimental EvoNorm configs + regnetz_b16_evos=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), + ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), + ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=3), + ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=3), + ), + stem_chs=32, + stem_pool='', + downsample='', + num_features=1536, + act_layer='silu', + norm_layer=partial(EvoNorm2dS0a, group_size=16), + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.25), + block_kwargs=dict(bottle_in=True, linear_out=True), + ), + regnetz_c16_evos=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=4), + ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=4), + ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=4), + ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=4), + ), + stem_chs=32, + stem_pool='', + downsample='', + num_features=1536, + act_layer='silu', + norm_layer=partial(EvoNorm2dS0a, group_size=16), + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.25), + block_kwargs=dict(bottle_in=True, linear_out=True), + ), + regnetz_d8_evos=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4), + ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4), + ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4), + ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4), + ), + stem_chs=64, + stem_type='deep', + stem_pool='', + downsample='', + num_features=1792, + act_layer='silu', + norm_layer=partial(EvoNorm2dS0a, group_size=16), + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.25), + block_kwargs=dict(bottle_in=True, linear_out=True), + ), + + mobileone_s0=ByoModelCfg( + blocks=_mobileone_bcfg(wf=(0.75, 1.0, 1.0, 2.), num_conv_branches=4), + stem_type='one', + stem_chs=48, + ), + mobileone_s1=ByoModelCfg( + blocks=_mobileone_bcfg(wf=(1.5, 1.5, 2.0, 2.5)), + stem_type='one', + stem_chs=64, + ), + mobileone_s2=ByoModelCfg( + blocks=_mobileone_bcfg(wf=(1.5, 2.0, 2.5, 4.0)), + stem_type='one', + stem_chs=64, + ), + mobileone_s3=ByoModelCfg( + blocks=_mobileone_bcfg(wf=(2.0, 2.5, 3.0, 4.0)), + stem_type='one', + stem_chs=64, + ), + mobileone_s4=ByoModelCfg( + blocks=_mobileone_bcfg(wf=(3.0, 3.5, 3.5, 4.0), se_blocks=(0, 0, 5, 1)), + stem_type='one', + stem_chs=64, + ), + + resnet50_clip=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), + ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25), + ), + stem_chs=(32, 32, 64), + stem_type='', + stem_pool='avg2', + downsample='avg', + aa_layer='avg', + head_type='attn_abs', + ), + resnet101_clip=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), + ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=23, c=1024, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25), + ), + stem_chs=(32, 32, 64), + stem_type='', + stem_pool='avg2', + downsample='avg', + aa_layer='avg', + head_type='attn_abs', + ), + resnet50x4_clip=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=4, c=256, s=1, br=0.25), + ByoBlockCfg(type='bottle', d=6, c=512, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=10, c=1024, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=6, c=2048, s=2, br=0.25), + ), + width_factor=1.25, + stem_chs=(32, 32, 64), + stem_type='', + stem_pool='avg2', + downsample='avg', + aa_layer='avg', + head_type='attn_abs', + ), + resnet50x16_clip=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=6, c=256, s=1, br=0.25), + ByoBlockCfg(type='bottle', d=8, c=512, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=18, c=1024, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=8, c=2048, s=2, br=0.25), + ), + width_factor=1.5, + stem_chs=(32, 32, 64), + stem_type='', + stem_pool='avg2', + downsample='avg', + aa_layer='avg', + head_type='attn_abs', + ), + resnet50x64_clip=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), + ByoBlockCfg(type='bottle', d=15, c=512, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=36, c=1024, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=10, c=2048, s=2, br=0.25), + ), + width_factor=2.0, + stem_chs=(32, 32, 64), + stem_type='', + stem_pool='avg2', + downsample='avg', + aa_layer='avg', + head_type='attn_abs', + ), + + resnet50_mlp=ByoModelCfg( + blocks=( + ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), + ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25), + ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25), + ), + stem_chs=(32, 32, 64), + stem_type='', + stem_pool='avg2', + downsample='avg', + aa_layer='avg', + head_hidden_size=1024, + head_type='mlp', + ), + + test_byobnet=ByoModelCfg( + blocks=( + ByoBlockCfg(type='edge', d=1, c=32, s=2, gs=0, br=0.5), + ByoBlockCfg(type='dark', d=1, c=64, s=2, gs=0, br=0.5), + ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=32, br=0.25), + ByoBlockCfg(type='bottle', d=1, c=256, s=2, gs=64, br=0.25), + ), + stem_chs=24, + downsample='avg', + stem_pool='', + act_layer='relu', + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.25), + ), +) +for k in ('resnet50_clip', 'resnet101_clip', 'resnet50x4_clip', 'resnet50x16_clip', 'resnet50x64_clip'): + model_cfgs[k + '_gap'] = replace(model_cfgs[k], head_type='classifier') + + +def _convert_openai_clip( + state_dict: Dict[str, torch.Tensor], + model: ByobNet, + prefix: str = 'visual.', +) -> Dict[str, torch.Tensor]: + model_has_attn_pool = isinstance(model.head, (RotAttentionPool2d, AttentionPool2d)) + import re + + def _stage_sub(m): + stage_idx = int(m.group(1)) - 1 + layer_idx, layer_type, layer_id = int(m.group(2)), m.group(3), int(m.group(4)) + prefix_str = f'stages.{stage_idx}.{layer_idx}.' + id_map = {1: 'conv1_1x1.', 2: 'conv2_kxk.', 3: 'conv3_1x1.'} + suffix_str = id_map[layer_id] + layer_type + return prefix_str + suffix_str + + def _down_sub(m): + stage_idx = int(m.group(1)) - 1 + layer_idx, layer_id = int(m.group(2)), int(m.group(3)) + return f'stages.{stage_idx}.{layer_idx}.shortcut.' + ('conv.conv' if layer_id == 0 else 'conv.bn') + + out_dict = {} + for k, v in state_dict.items(): + if not k.startswith(prefix): + continue + k = re.sub(rf'{prefix}conv([0-9])', r'stem.conv\1.conv', k) + k = re.sub(rf'{prefix}bn([0-9])', r'stem.conv\1.bn', k) + k = re.sub(rf'{prefix}layer([0-9])\.([0-9]+)\.([a-z]+)([0-9])', _stage_sub, k) + k = re.sub(rf'{prefix}layer([0-9])\.([0-9]+)\.downsample\.([0-9])', _down_sub, k) + if k.startswith(f'{prefix}attnpool'): + if not model_has_attn_pool: + continue + k = k.replace(prefix + 'attnpool', 'head') #'attn_pool') + k = k.replace('positional_embedding', 'pos_embed') + k = k.replace('q_proj', 'q') + k = k.replace('k_proj', 'k') + k = k.replace('v_proj', 'v') + k = k.replace('c_proj', 'proj') + out_dict[k] = v + + return out_dict + + +def checkpoint_filter_fn( + state_dict: Dict[str, torch.Tensor], + model: ByobNet +): + if 'visual.conv1.weight' in state_dict: + state_dict = _convert_openai_clip(state_dict, model) + return state_dict + + +def _create_byobnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + ByobNet, variant, pretrained, + model_cfg=model_cfgs[variant], + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv', 'classifier': 'head.fc', + **kwargs + } + + +def _cfgr(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), + 'crop_pct': 0.9, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # GPU-Efficient (ResNet) weights + 'gernet_s.idstcv_in1k': _cfg(hf_hub_id='timm/'), + 'gernet_m.idstcv_in1k': _cfg(hf_hub_id='timm/'), + 'gernet_l.idstcv_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8)), + + # RepVGG weights + 'repvgg_a0.rvgg_in1k': _cfg( + hf_hub_id='timm/', + first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), + 'repvgg_a1.rvgg_in1k': _cfg( + hf_hub_id='timm/', + first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), + 'repvgg_a2.rvgg_in1k': _cfg( + hf_hub_id='timm/', + first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), + 'repvgg_b0.rvgg_in1k': _cfg( + hf_hub_id='timm/', + first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), + 'repvgg_b1.rvgg_in1k': _cfg( + hf_hub_id='timm/', + first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), + 'repvgg_b1g4.rvgg_in1k': _cfg( + hf_hub_id='timm/', + first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), + 'repvgg_b2.rvgg_in1k': _cfg( + hf_hub_id='timm/', + first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), + 'repvgg_b2g4.rvgg_in1k': _cfg( + hf_hub_id='timm/', + first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), + 'repvgg_b3.rvgg_in1k': _cfg( + hf_hub_id='timm/', + first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), + 'repvgg_b3g4.rvgg_in1k': _cfg( + hf_hub_id='timm/', + first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), + 'repvgg_d2se.rvgg_in1k': _cfg( + hf_hub_id='timm/', + first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit', + input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, + ), + + # experimental ResNet configs + 'resnet51q.ra2_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet51q_ra2-d47dcc76.pth', + first_conv='stem.conv1', input_size=(3, 256, 256), pool_size=(8, 8), + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'resnet61q.ra2_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet61q_ra2-6afc536c.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + + # ResNeXt-26 models with different attention in Bottleneck blocks + 'resnext26ts.ra2_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnext26ts_256_ra2-8bbd9106.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'seresnext26ts.ch_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnext26ts_256-6f0d74a3.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'gcresnext26ts.ch_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext26ts_256-e414378b.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'eca_resnext26ts.ch_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnext26ts_256-5a1d030f.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'bat_resnext26ts.ch_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/bat_resnext26ts_256-fa6fd595.pth', + min_input_size=(3, 256, 256)), + + # ResNet-32 / 33 models with different attention in Bottleneck blocks + 'resnet32ts.ra2_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet32ts_256-aacf5250.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'resnet33ts.ra2_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet33ts_256-e91b09a4.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'gcresnet33ts.ra2_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet33ts_256-0e0cd345.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'seresnet33ts.ra2_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnet33ts_256-f8ad44d9.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'eca_resnet33ts.ra2_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnet33ts_256-8f98face.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + + 'gcresnet50t.ra2_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet50t_256-96374d1c.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + + 'gcresnext50ts.ch_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext50ts_256-3e0f515e.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + + # custom `timm` specific RegNetZ inspired models w/ different sizing from paper + 'regnetz_b16.ra3_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_b_raa-677d9606.pth', + first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.94, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'regnetz_c16.ra3_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_c_rab2_256-a54bf36a.pth', + first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0), + 'regnetz_d32.ra3_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d_rab_256-b8073a89.pth', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, test_input_size=(3, 320, 320)), + 'regnetz_d8.ra3_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d8_bh-afc03c55.pth', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0), + 'regnetz_e8.ra3_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_e8_bh-aace8e6e.pth', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0), + + 'regnetz_b16_evos.untrained': _cfgr( + first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.95, test_input_size=(3, 288, 288)), + 'regnetz_c16_evos.ch_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_c16_evos_ch-d8311942.pth', + first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + crop_pct=0.95, test_input_size=(3, 320, 320)), + 'regnetz_d8_evos.ch_in1k': _cfgr( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_d8_evos_ch-2bc12646.pth', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0), + + 'mobileone_s0.apple_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.875, + first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), + ), + 'mobileone_s1.apple_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.9, + first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), + ), + 'mobileone_s2.apple_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.9, + first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), + ), + 'mobileone_s3.apple_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.9, + first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), + ), + 'mobileone_s4.apple_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.9, + first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), + ), + + # original attention pool head variants + 'resnet50_clip.openai': _cfgr( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=1024, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + fixed_input_size=True, input_size=(3, 224, 224), pool_size=(7, 7), + classifier='head.proj', + ), + 'resnet101_clip.openai': _cfgr( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=512, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + fixed_input_size=True, input_size=(3, 224, 224), pool_size=(7, 7), + classifier='head.proj', + ), + 'resnet50x4_clip.openai': _cfgr( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=640, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + fixed_input_size=True, input_size=(3, 288, 288), pool_size=(9, 9), + classifier='head.proj', + ), + 'resnet50x16_clip.openai': _cfgr( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=768, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + fixed_input_size=True, input_size=(3, 384, 384), pool_size=(12, 12), + classifier='head.proj', + ), + 'resnet50x64_clip.openai': _cfgr( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=1024, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + fixed_input_size=True, input_size=(3, 448, 448), pool_size=(14, 14), + classifier='head.proj', + ), + 'resnet50_clip.cc12m': _cfgr( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=1024, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + fixed_input_size=True, input_size=(3, 224, 224), pool_size=(7, 7), + classifier='head.proj', + ), + 'resnet50_clip.yfcc15m': _cfgr( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=1024, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + fixed_input_size=True, input_size=(3, 224, 224), pool_size=(7, 7), + classifier='head.proj', + ), + 'resnet101_clip.yfcc15m': _cfgr( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=512, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + fixed_input_size=True, input_size=(3, 224, 224), pool_size=(7, 7), + classifier='head.proj', + ), + + # avg-pool w/ optional standard classifier head variants + 'resnet50_clip_gap.openai': _cfgr( + hf_hub_id='timm/resnet50_clip.openai', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 224, 224), pool_size=(7, 7), + ), + 'resnet101_clip_gap.openai': _cfgr( + hf_hub_id='timm/resnet101_clip.openai', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 224, 224), pool_size=(7, 7), + ), + 'resnet50x4_clip_gap.openai': _cfgr( + hf_hub_id='timm/resnet50x4_clip.openai', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 288, 288), pool_size=(9, 9), + ), + 'resnet50x16_clip_gap.openai': _cfgr( + hf_hub_id='timm/resnet50x16_clip.openai', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 384, 384), pool_size=(12, 12), + ), + 'resnet50x64_clip_gap.openai': _cfgr( + hf_hub_id='timm/resnet50x64_clip.openai', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 448, 448), pool_size=(14, 14), + ), + 'resnet50_clip_gap.cc12m': _cfgr( + hf_hub_id='timm/resnet50_clip.cc12m', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 224, 224), pool_size=(7, 7), + ), + 'resnet50_clip_gap.yfcc15m': _cfgr( + hf_hub_id='timm/resnet50_clip.yfcc15m', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 224, 224), pool_size=(7, 7), + ), + 'resnet101_clip_gap.yfcc15m': _cfgr( + hf_hub_id='timm/resnet101_clip.yfcc15m', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0, mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 224, 224), pool_size=(7, 7), + ), + + 'resnet50_mlp.untrained': _cfgr( + input_size=(3, 256, 256), pool_size=(8, 8), + ), + + 'test_byobnet.r160_in1k': _cfgr( + hf_hub_id='timm/', + first_conv='stem.conv', + input_size=(3, 160, 160), crop_pct=0.95, pool_size=(5, 5), + ), +}) + + +@register_model +def gernet_l(pretrained=False, **kwargs) -> ByobNet: + """ GEResNet-Large (GENet-Large from official impl) + `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 + """ + return _create_byobnet('gernet_l', pretrained=pretrained, **kwargs) + + +@register_model +def gernet_m(pretrained=False, **kwargs) -> ByobNet: + """ GEResNet-Medium (GENet-Normal from official impl) + `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 + """ + return _create_byobnet('gernet_m', pretrained=pretrained, **kwargs) + + +@register_model +def gernet_s(pretrained=False, **kwargs) -> ByobNet: + """ EResNet-Small (GENet-Small from official impl) + `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 + """ + return _create_byobnet('gernet_s', pretrained=pretrained, **kwargs) + + +@register_model +def repvgg_a0(pretrained=False, **kwargs) -> ByobNet: + """ RepVGG-A0 + `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 + """ + return _create_byobnet('repvgg_a0', pretrained=pretrained, **kwargs) + + +@register_model +def repvgg_a1(pretrained=False, **kwargs) -> ByobNet: + """ RepVGG-A1 + `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 + """ + return _create_byobnet('repvgg_a1', pretrained=pretrained, **kwargs) + + +@register_model +def repvgg_a2(pretrained=False, **kwargs) -> ByobNet: + """ RepVGG-A2 + `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 + """ + return _create_byobnet('repvgg_a2', pretrained=pretrained, **kwargs) + + +@register_model +def repvgg_b0(pretrained=False, **kwargs) -> ByobNet: + """ RepVGG-B0 + `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 + """ + return _create_byobnet('repvgg_b0', pretrained=pretrained, **kwargs) + + +@register_model +def repvgg_b1(pretrained=False, **kwargs) -> ByobNet: + """ RepVGG-B1 + `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 + """ + return _create_byobnet('repvgg_b1', pretrained=pretrained, **kwargs) + + +@register_model +def repvgg_b1g4(pretrained=False, **kwargs) -> ByobNet: + """ RepVGG-B1g4 + `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 + """ + return _create_byobnet('repvgg_b1g4', pretrained=pretrained, **kwargs) + + +@register_model +def repvgg_b2(pretrained=False, **kwargs) -> ByobNet: + """ RepVGG-B2 + `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 + """ + return _create_byobnet('repvgg_b2', pretrained=pretrained, **kwargs) + + +@register_model +def repvgg_b2g4(pretrained=False, **kwargs) -> ByobNet: + """ RepVGG-B2g4 + `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 + """ + return _create_byobnet('repvgg_b2g4', pretrained=pretrained, **kwargs) + + +@register_model +def repvgg_b3(pretrained=False, **kwargs) -> ByobNet: + """ RepVGG-B3 + `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 + """ + return _create_byobnet('repvgg_b3', pretrained=pretrained, **kwargs) + + +@register_model +def repvgg_b3g4(pretrained=False, **kwargs) -> ByobNet: + """ RepVGG-B3g4 + `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 + """ + return _create_byobnet('repvgg_b3g4', pretrained=pretrained, **kwargs) + + +@register_model +def repvgg_d2se(pretrained=False, **kwargs) -> ByobNet: + """ RepVGG-D2se + `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 + """ + return _create_byobnet('repvgg_d2se', pretrained=pretrained, **kwargs) + + +@register_model +def resnet51q(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('resnet51q', pretrained=pretrained, **kwargs) + + +@register_model +def resnet61q(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('resnet61q', pretrained=pretrained, **kwargs) + + +@register_model +def resnext26ts(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('resnext26ts', pretrained=pretrained, **kwargs) + + +@register_model +def gcresnext26ts(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('gcresnext26ts', pretrained=pretrained, **kwargs) + + +@register_model +def seresnext26ts(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('seresnext26ts', pretrained=pretrained, **kwargs) + + +@register_model +def eca_resnext26ts(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('eca_resnext26ts', pretrained=pretrained, **kwargs) + + +@register_model +def bat_resnext26ts(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('bat_resnext26ts', pretrained=pretrained, **kwargs) + + +@register_model +def resnet32ts(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('resnet32ts', pretrained=pretrained, **kwargs) + + +@register_model +def resnet33ts(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('resnet33ts', pretrained=pretrained, **kwargs) + + +@register_model +def gcresnet33ts(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('gcresnet33ts', pretrained=pretrained, **kwargs) + + +@register_model +def seresnet33ts(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('seresnet33ts', pretrained=pretrained, **kwargs) + + +@register_model +def eca_resnet33ts(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('eca_resnet33ts', pretrained=pretrained, **kwargs) + + +@register_model +def gcresnet50t(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('gcresnet50t', pretrained=pretrained, **kwargs) + + +@register_model +def gcresnext50ts(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('gcresnext50ts', pretrained=pretrained, **kwargs) + + +@register_model +def regnetz_b16(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('regnetz_b16', pretrained=pretrained, **kwargs) + + +@register_model +def regnetz_c16(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('regnetz_c16', pretrained=pretrained, **kwargs) + + +@register_model +def regnetz_d32(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('regnetz_d32', pretrained=pretrained, **kwargs) + + +@register_model +def regnetz_d8(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('regnetz_d8', pretrained=pretrained, **kwargs) + + +@register_model +def regnetz_e8(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('regnetz_e8', pretrained=pretrained, **kwargs) + + +@register_model +def regnetz_b16_evos(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('regnetz_b16_evos', pretrained=pretrained, **kwargs) + + +@register_model +def regnetz_c16_evos(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('regnetz_c16_evos', pretrained=pretrained, **kwargs) + + +@register_model +def regnetz_d8_evos(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('regnetz_d8_evos', pretrained=pretrained, **kwargs) + + +@register_model +def mobileone_s0(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('mobileone_s0', pretrained=pretrained, **kwargs) + + +@register_model +def mobileone_s1(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('mobileone_s1', pretrained=pretrained, **kwargs) + + +@register_model +def mobileone_s2(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('mobileone_s2', pretrained=pretrained, **kwargs) + + +@register_model +def mobileone_s3(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('mobileone_s3', pretrained=pretrained, **kwargs) + + +@register_model +def mobileone_s4(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('mobileone_s4', pretrained=pretrained, **kwargs) + + +@register_model +def resnet50_clip(pretrained=False, **kwargs) -> ByobNet: + """ OpenAI Modified ResNet-50 CLIP image tower + """ + return _create_byobnet('resnet50_clip', pretrained=pretrained, **kwargs) + + +@register_model +def resnet101_clip(pretrained=False, **kwargs) -> ByobNet: + """ OpenAI Modified ResNet-101 CLIP image tower + """ + return _create_byobnet('resnet101_clip', pretrained=pretrained, **kwargs) + + +@register_model +def resnet50x4_clip(pretrained=False, **kwargs) -> ByobNet: + """ OpenAI Modified ResNet-50x4 CLIP image tower + """ + return _create_byobnet('resnet50x4_clip', pretrained=pretrained, **kwargs) + + +@register_model +def resnet50x16_clip(pretrained=False, **kwargs) -> ByobNet: + """ OpenAI Modified ResNet-50x16 CLIP image tower + """ + return _create_byobnet('resnet50x16_clip', pretrained=pretrained, **kwargs) + + +@register_model +def resnet50x64_clip(pretrained=False, **kwargs) -> ByobNet: + """ OpenAI Modified ResNet-50x64 CLIP image tower + """ + return _create_byobnet('resnet50x64_clip', pretrained=pretrained, **kwargs) + + +@register_model +def resnet50_clip_gap(pretrained=False, **kwargs) -> ByobNet: + """ OpenAI Modified ResNet-50 CLIP image tower w/ avg pool (no attention pool) + """ + return _create_byobnet('resnet50_clip_gap', pretrained=pretrained, **kwargs) + + +@register_model +def resnet101_clip_gap(pretrained=False, **kwargs) -> ByobNet: + """ OpenAI Modified ResNet-101 CLIP image tower w/ avg pool (no attention pool) + """ + return _create_byobnet('resnet101_clip_gap', pretrained=pretrained, **kwargs) + + +@register_model +def resnet50x4_clip_gap(pretrained=False, **kwargs) -> ByobNet: + """ OpenAI Modified ResNet-50x4 CLIP image tower w/ avg pool (no attention pool) + """ + return _create_byobnet('resnet50x4_clip_gap', pretrained=pretrained, **kwargs) + + +@register_model +def resnet50x16_clip_gap(pretrained=False, **kwargs) -> ByobNet: + """ OpenAI Modified ResNet-50x16 CLIP image tower w/ avg pool (no attention pool) + """ + return _create_byobnet('resnet50x16_clip_gap', pretrained=pretrained, **kwargs) + + +@register_model +def resnet50x64_clip_gap(pretrained=False, **kwargs) -> ByobNet: + """ OpenAI Modified ResNet-50x64 CLIP image tower w/ avg pool (no attention pool) + """ + return _create_byobnet('resnet50x64_clip_gap', pretrained=pretrained, **kwargs) + + +@register_model +def resnet50_mlp(pretrained=False, **kwargs) -> ByobNet: + """ + """ + return _create_byobnet('resnet50_mlp', pretrained=pretrained, **kwargs) + + +@register_model +def test_byobnet(pretrained=False, **kwargs) -> ByobNet: + """ Minimal test ResNet (BYOB based) model. + """ + return _create_byobnet('test_byobnet', pretrained=pretrained, **kwargs) diff --git a/pytorch-image-models/timm/models/cait.py b/pytorch-image-models/timm/models/cait.py new file mode 100644 index 0000000000000000000000000000000000000000..28e14ec75604fcd1eafac8fdcc616cb55e9bb7ed --- /dev/null +++ b/pytorch-image-models/timm/models/cait.py @@ -0,0 +1,591 @@ +""" Class-Attention in Image Transformers (CaiT) + +Paper: 'Going deeper with Image Transformers' - https://arxiv.org/abs/2103.17239 + +Original code and weights from https://github.com/facebookresearch/deit, copyright below + +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman +""" +# Copyright (c) 2015-present, Facebook, Inc. +# All rights reserved. +from functools import partial +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, use_fused_attn +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +__all__ = ['Cait', 'ClassAttn', 'LayerScaleBlockClassAttn', 'LayerScaleBlock', 'TalkingHeadAttn'] + + +class ClassAttn(nn.Module): + # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py + # with slight modifications to do CA + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.q = nn.Linear(dim, dim, bias=qkv_bias) + self.k = nn.Linear(dim, dim, bias=qkv_bias) + self.v = nn.Linear(dim, dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + B, N, C = x.shape + q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + + if self.fused_attn: + x_cls = torch.nn.functional.scaled_dot_product_attention( + q, k, v, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x_cls = attn @ v + + x_cls = x_cls.transpose(1, 2).reshape(B, 1, C) + x_cls = self.proj(x_cls) + x_cls = self.proj_drop(x_cls) + + return x_cls + + +class LayerScaleBlockClassAttn(nn.Module): + # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py + # with slight modifications to add CA and LayerScale + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + attn_block=ClassAttn, + mlp_block=Mlp, + init_values=1e-4, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = attn_block( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = mlp_block( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=proj_drop, + ) + self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) + self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x, x_cls): + u = torch.cat((x_cls, x), dim=1) + x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u))) + x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls))) + return x_cls + + +class TalkingHeadAttn(nn.Module): + # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py + # with slight modifications to add Talking Heads Attention (https://arxiv.org/pdf/2003.02436v1.pdf) + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): + super().__init__() + + self.num_heads = num_heads + + head_dim = dim // num_heads + + self.scale = head_dim ** -0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + + self.proj = nn.Linear(dim, dim) + + self.proj_l = nn.Linear(num_heads, num_heads) + self.proj_w = nn.Linear(num_heads, num_heads) + + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] + + attn = q @ k.transpose(-2, -1) + + attn = self.proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + + attn = attn.softmax(dim=-1) + + attn = self.proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class LayerScaleBlock(nn.Module): + # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py + # with slight modifications to add layerScale + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + attn_block=TalkingHeadAttn, + mlp_block=Mlp, + init_values=1e-4, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = attn_block( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = mlp_block( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=proj_drop, + ) + self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) + self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) + x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) + return x + + +class Cait(nn.Module): + # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py + # with slight modifications to adapt to our cait models + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + num_classes=1000, + global_pool='token', + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4., + qkv_bias=True, + drop_rate=0., + pos_drop_rate=0., + proj_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + block_layers=LayerScaleBlock, + block_layers_token=LayerScaleBlockClassAttn, + patch_layer=PatchEmbed, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + act_layer=nn.GELU, + attn_block=TalkingHeadAttn, + mlp_block=Mlp, + init_values=1e-4, + attn_block_token_only=ClassAttn, + mlp_block_token_only=Mlp, + depth_token_only=2, + mlp_ratio_token_only=4.0 + ): + super().__init__() + assert global_pool in ('', 'token', 'avg') + + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.grad_checkpointing = False + + self.patch_embed = patch_layer( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + ) + num_patches = self.patch_embed.num_patches + r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + + dpr = [drop_path_rate for i in range(depth)] + self.blocks = nn.Sequential(*[block_layers( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + act_layer=act_layer, + attn_block=attn_block, + mlp_block=mlp_block, + init_values=init_values, + ) for i in range(depth)]) + self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)] + + self.blocks_token_only = nn.ModuleList([block_layers_token( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio_token_only, + qkv_bias=qkv_bias, + norm_layer=norm_layer, + act_layer=act_layer, + attn_block=attn_block_token_only, + mlp_block=mlp_block_token_only, + init_values=init_values, + ) for _ in range(depth_token_only)]) + + self.norm = norm_layer(embed_dim) + + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + trunc_normal_(self.pos_embed, std=.02) + trunc_normal_(self.cls_token, std=.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def group_matcher(self, coarse=False): + def _matcher(name): + if any([name.startswith(n) for n in ('cls_token', 'pos_embed', 'patch_embed')]): + return 0 + elif name.startswith('blocks.'): + return int(name.split('.')[1]) + 1 + elif name.startswith('blocks_token_only.'): + # overlap token only blocks with last blocks + to_offset = len(self.blocks) - len(self.blocks_token_only) + 1 + return int(name.split('.')[1]) + to_offset + elif name.startswith('norm.'): + return len(self.blocks) + else: + return float('inf') + return _matcher + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'token', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + """ + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + + # forward pass + B, _, height, width = x.shape + x = self.patch_embed(x) + x = x + self.pos_embed + x = self.pos_drop(x) + + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for i, blk in enumerate(blocks): + x = blk(x) + if i in take_indices: + # normalize intermediates with final norm layer if enabled + intermediates.append(self.norm(x) if norm else x) + + # process intermediates + if reshape: + # reshape to BCHW output format + H, W = self.patch_embed.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + + if intermediates_only: + return intermediates + + # NOTE not supporting return of class tokens + cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) + for i, blk in enumerate(self.blocks_token_only): + cls_tokens = blk(x, cls_tokens) + x = torch.cat((cls_tokens, x), dim=1) + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] # truncate blocks + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.blocks_token_only = nn.ModuleList() # prune token blocks with head + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + x = x + self.pos_embed + x = self.pos_drop(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) + for i, blk in enumerate(self.blocks_token_only): + cls_tokens = blk(x, cls_tokens) + x = torch.cat((cls_tokens, x), dim=1) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool: + x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model=None): + if 'model' in state_dict: + state_dict = state_dict['model'] + checkpoint_no_module = {} + for k, v in state_dict.items(): + checkpoint_no_module[k.replace('module.', '')] = v + return checkpoint_no_module + + +def _create_cait(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg( + Cait, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 384, 384), 'pool_size': None, + 'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'cait_xxs24_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/XXS24_224.pth', + input_size=(3, 224, 224), + ), + 'cait_xxs24_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/XXS24_384.pth', + ), + 'cait_xxs36_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/XXS36_224.pth', + input_size=(3, 224, 224), + ), + 'cait_xxs36_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/XXS36_384.pth', + ), + 'cait_xs24_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/XS24_384.pth', + ), + 'cait_s24_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/S24_224.pth', + input_size=(3, 224, 224), + ), + 'cait_s24_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/S24_384.pth', + ), + 'cait_s36_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/S36_384.pth', + ), + 'cait_m36_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/M36_384.pth', + ), + 'cait_m48_448.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/M48_448.pth', + input_size=(3, 448, 448), + ), +}) + + +@register_model +def cait_xxs24_224(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5) + model = _create_cait('cait_xxs24_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def cait_xxs24_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5) + model = _create_cait('cait_xxs24_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def cait_xxs36_224(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5) + model = _create_cait('cait_xxs36_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def cait_xxs36_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5) + model = _create_cait('cait_xxs36_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def cait_xs24_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=288, depth=24, num_heads=6, init_values=1e-5) + model = _create_cait('cait_xs24_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def cait_s24_224(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5) + model = _create_cait('cait_s24_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def cait_s24_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5) + model = _create_cait('cait_s24_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def cait_s36_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=8, init_values=1e-6) + model = _create_cait('cait_s36_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def cait_m36_384(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=768, depth=36, num_heads=16, init_values=1e-6) + model = _create_cait('cait_m36_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def cait_m48_448(pretrained=False, **kwargs) -> Cait: + model_args = dict(patch_size=16, embed_dim=768, depth=48, num_heads=16, init_values=1e-6) + model = _create_cait('cait_m48_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model diff --git a/pytorch-image-models/timm/models/coat.py b/pytorch-image-models/timm/models/coat.py new file mode 100644 index 0000000000000000000000000000000000000000..906ecb90836bbdd860ef26a961348f6fd10006e1 --- /dev/null +++ b/pytorch-image-models/timm/models/coat.py @@ -0,0 +1,803 @@ +""" +CoaT architecture. + +Paper: Co-Scale Conv-Attentional Image Transformers - https://arxiv.org/abs/2104.06399 + +Official CoaT code at: https://github.com/mlpc-ucsd/CoaT + +Modified from timm/models/vision_transformer.py +""" +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert, LayerNorm +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs + +__all__ = ['CoaT'] + + +class ConvRelPosEnc(nn.Module): + """ Convolutional relative position encoding. """ + def __init__(self, head_chs, num_heads, window): + """ + Initialization. + Ch: Channels per head. + h: Number of heads. + window: Window size(s) in convolutional relative positional encoding. It can have two forms: + 1. An integer of window size, which assigns all attention heads with the same window s + size in ConvRelPosEnc. + 2. A dict mapping window size to #attention head splits ( + e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2}) + It will apply different window size to the attention head splits. + """ + super().__init__() + + if isinstance(window, int): + # Set the same window size for all attention heads. + window = {window: num_heads} + self.window = window + elif isinstance(window, dict): + self.window = window + else: + raise ValueError() + + self.conv_list = nn.ModuleList() + self.head_splits = [] + for cur_window, cur_head_split in window.items(): + dilation = 1 + # Determine padding size. + # Ref: https://discuss.pytorch.org/t/how-to-keep-the-shape-of-input-and-output-same-when-dilation-conv/14338 + padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2 + cur_conv = nn.Conv2d( + cur_head_split * head_chs, + cur_head_split * head_chs, + kernel_size=(cur_window, cur_window), + padding=(padding_size, padding_size), + dilation=(dilation, dilation), + groups=cur_head_split * head_chs, + ) + self.conv_list.append(cur_conv) + self.head_splits.append(cur_head_split) + self.channel_splits = [x * head_chs for x in self.head_splits] + + def forward(self, q, v, size: Tuple[int, int]): + B, num_heads, N, C = q.shape + H, W = size + _assert(N == 1 + H * W, '') + + # Convolutional relative position encoding. + q_img = q[:, :, 1:, :] # [B, h, H*W, Ch] + v_img = v[:, :, 1:, :] # [B, h, H*W, Ch] + + v_img = v_img.transpose(-1, -2).reshape(B, num_heads * C, H, W) + v_img_list = torch.split(v_img, self.channel_splits, dim=1) # Split according to channels + conv_v_img_list = [] + for i, conv in enumerate(self.conv_list): + conv_v_img_list.append(conv(v_img_list[i])) + conv_v_img = torch.cat(conv_v_img_list, dim=1) + conv_v_img = conv_v_img.reshape(B, num_heads, C, H * W).transpose(-1, -2) + + EV_hat = q_img * conv_v_img + EV_hat = F.pad(EV_hat, (0, 0, 1, 0, 0, 0)) # [B, h, N, Ch]. + return EV_hat + + +class FactorAttnConvRelPosEnc(nn.Module): + """ Factorized attention with convolutional relative position encoding class. """ + def __init__( + self, + dim, + num_heads=8, + qkv_bias=False, + attn_drop=0., + proj_drop=0., + shared_crpe=None, + ): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) # Note: attn_drop is actually not used. + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + # Shared convolutional relative position encoding. + self.crpe = shared_crpe + + def forward(self, x, size: Tuple[int, int]): + B, N, C = x.shape + + # Generate Q, K, V. + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) # [B, h, N, Ch] + + # Factorized attention. + k_softmax = k.softmax(dim=2) + factor_att = k_softmax.transpose(-1, -2) @ v + factor_att = q @ factor_att + + # Convolutional relative position encoding. + crpe = self.crpe(q, v, size=size) # [B, h, N, Ch] + + # Merge and reshape. + x = self.scale * factor_att + crpe + x = x.transpose(1, 2).reshape(B, N, C) # [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C] + + # Output projection. + x = self.proj(x) + x = self.proj_drop(x) + + return x + + +class ConvPosEnc(nn.Module): + """ Convolutional Position Encoding. + Note: This module is similar to the conditional position encoding in CPVT. + """ + def __init__(self, dim, k=3): + super(ConvPosEnc, self).__init__() + self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim) + + def forward(self, x, size: Tuple[int, int]): + B, N, C = x.shape + H, W = size + _assert(N == 1 + H * W, '') + + # Extract CLS token and image tokens. + cls_token, img_tokens = x[:, :1], x[:, 1:] # [B, 1, C], [B, H*W, C] + + # Depthwise convolution. + feat = img_tokens.transpose(1, 2).view(B, C, H, W) + x = self.proj(feat) + feat + x = x.flatten(2).transpose(1, 2) + + # Combine with CLS token. + x = torch.cat((cls_token, x), dim=1) + + return x + + +class SerialBlock(nn.Module): + """ Serial block class. + Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """ + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + shared_cpe=None, + shared_crpe=None, + ): + super().__init__() + + # Conv-Attention. + self.cpe = shared_cpe + + self.norm1 = norm_layer(dim) + self.factoratt_crpe = FactorAttnConvRelPosEnc( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + shared_crpe=shared_crpe, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + # MLP. + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=proj_drop, + ) + + def forward(self, x, size: Tuple[int, int]): + # Conv-Attention. + x = self.cpe(x, size) + cur = self.norm1(x) + cur = self.factoratt_crpe(cur, size) + x = x + self.drop_path(cur) + + # MLP. + cur = self.norm2(x) + cur = self.mlp(cur) + x = x + self.drop_path(cur) + + return x + + +class ParallelBlock(nn.Module): + """ Parallel block class. """ + def __init__( + self, + dims, + num_heads, + mlp_ratios=[], + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + shared_crpes=None, + ): + super().__init__() + + # Conv-Attention. + self.norm12 = norm_layer(dims[1]) + self.norm13 = norm_layer(dims[2]) + self.norm14 = norm_layer(dims[3]) + self.factoratt_crpe2 = FactorAttnConvRelPosEnc( + dims[1], + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + shared_crpe=shared_crpes[1], + ) + self.factoratt_crpe3 = FactorAttnConvRelPosEnc( + dims[2], + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + shared_crpe=shared_crpes[2], + ) + self.factoratt_crpe4 = FactorAttnConvRelPosEnc( + dims[3], + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + shared_crpe=shared_crpes[3], + ) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + # MLP. + self.norm22 = norm_layer(dims[1]) + self.norm23 = norm_layer(dims[2]) + self.norm24 = norm_layer(dims[3]) + # In parallel block, we assume dimensions are the same and share the linear transformation. + assert dims[1] == dims[2] == dims[3] + assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3] + mlp_hidden_dim = int(dims[1] * mlp_ratios[1]) + self.mlp2 = self.mlp3 = self.mlp4 = Mlp( + in_features=dims[1], + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=proj_drop, + ) + + def upsample(self, x, factor: float, size: Tuple[int, int]): + """ Feature map up-sampling. """ + return self.interpolate(x, scale_factor=factor, size=size) + + def downsample(self, x, factor: float, size: Tuple[int, int]): + """ Feature map down-sampling. """ + return self.interpolate(x, scale_factor=1.0/factor, size=size) + + def interpolate(self, x, scale_factor: float, size: Tuple[int, int]): + """ Feature map interpolation. """ + B, N, C = x.shape + H, W = size + _assert(N == 1 + H * W, '') + + cls_token = x[:, :1, :] + img_tokens = x[:, 1:, :] + + img_tokens = img_tokens.transpose(1, 2).reshape(B, C, H, W) + img_tokens = F.interpolate( + img_tokens, + scale_factor=scale_factor, + recompute_scale_factor=False, + mode='bilinear', + align_corners=False, + ) + img_tokens = img_tokens.reshape(B, C, -1).transpose(1, 2) + + out = torch.cat((cls_token, img_tokens), dim=1) + + return out + + def forward(self, x1, x2, x3, x4, sizes: List[Tuple[int, int]]): + _, S2, S3, S4 = sizes + cur2 = self.norm12(x2) + cur3 = self.norm13(x3) + cur4 = self.norm14(x4) + cur2 = self.factoratt_crpe2(cur2, size=S2) + cur3 = self.factoratt_crpe3(cur3, size=S3) + cur4 = self.factoratt_crpe4(cur4, size=S4) + upsample3_2 = self.upsample(cur3, factor=2., size=S3) + upsample4_3 = self.upsample(cur4, factor=2., size=S4) + upsample4_2 = self.upsample(cur4, factor=4., size=S4) + downsample2_3 = self.downsample(cur2, factor=2., size=S2) + downsample3_4 = self.downsample(cur3, factor=2., size=S3) + downsample2_4 = self.downsample(cur2, factor=4., size=S2) + cur2 = cur2 + upsample3_2 + upsample4_2 + cur3 = cur3 + upsample4_3 + downsample2_3 + cur4 = cur4 + downsample3_4 + downsample2_4 + x2 = x2 + self.drop_path(cur2) + x3 = x3 + self.drop_path(cur3) + x4 = x4 + self.drop_path(cur4) + + # MLP. + cur2 = self.norm22(x2) + cur3 = self.norm23(x3) + cur4 = self.norm24(x4) + cur2 = self.mlp2(cur2) + cur3 = self.mlp3(cur3) + cur4 = self.mlp4(cur4) + x2 = x2 + self.drop_path(cur2) + x3 = x3 + self.drop_path(cur3) + x4 = x4 + self.drop_path(cur4) + + return x1, x2, x3, x4 + + +class CoaT(nn.Module): + """ CoaT class. """ + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + num_classes=1000, + embed_dims=(64, 128, 320, 512), + serial_depths=(3, 4, 6, 3), + parallel_depth=0, + num_heads=8, + mlp_ratios=(4, 4, 4, 4), + qkv_bias=True, + drop_rate=0., + proj_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + norm_layer=LayerNorm, + return_interm_layers=False, + out_features=None, + crpe_window=None, + global_pool='token', + ): + super().__init__() + assert global_pool in ('token', 'avg') + crpe_window = crpe_window or {3: 2, 5: 3, 7: 3} + self.return_interm_layers = return_interm_layers + self.out_features = out_features + self.embed_dims = embed_dims + self.num_features = self.head_hidden_size = embed_dims[-1] + self.num_classes = num_classes + self.global_pool = global_pool + + # Patch embeddings. + img_size = to_2tuple(img_size) + self.patch_embed1 = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=in_chans, + embed_dim=embed_dims[0], norm_layer=nn.LayerNorm) + self.patch_embed2 = PatchEmbed( + img_size=[x // 4 for x in img_size], patch_size=2, in_chans=embed_dims[0], + embed_dim=embed_dims[1], norm_layer=nn.LayerNorm) + self.patch_embed3 = PatchEmbed( + img_size=[x // 8 for x in img_size], patch_size=2, in_chans=embed_dims[1], + embed_dim=embed_dims[2], norm_layer=nn.LayerNorm) + self.patch_embed4 = PatchEmbed( + img_size=[x // 16 for x in img_size], patch_size=2, in_chans=embed_dims[2], + embed_dim=embed_dims[3], norm_layer=nn.LayerNorm) + + # Class tokens. + self.cls_token1 = nn.Parameter(torch.zeros(1, 1, embed_dims[0])) + self.cls_token2 = nn.Parameter(torch.zeros(1, 1, embed_dims[1])) + self.cls_token3 = nn.Parameter(torch.zeros(1, 1, embed_dims[2])) + self.cls_token4 = nn.Parameter(torch.zeros(1, 1, embed_dims[3])) + + # Convolutional position encodings. + self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3) + self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3) + self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3) + self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3) + + # Convolutional relative position encodings. + self.crpe1 = ConvRelPosEnc(head_chs=embed_dims[0] // num_heads, num_heads=num_heads, window=crpe_window) + self.crpe2 = ConvRelPosEnc(head_chs=embed_dims[1] // num_heads, num_heads=num_heads, window=crpe_window) + self.crpe3 = ConvRelPosEnc(head_chs=embed_dims[2] // num_heads, num_heads=num_heads, window=crpe_window) + self.crpe4 = ConvRelPosEnc(head_chs=embed_dims[3] // num_heads, num_heads=num_heads, window=crpe_window) + + # Disable stochastic depth. + dpr = drop_path_rate + assert dpr == 0.0 + skwargs = dict( + num_heads=num_heads, + qkv_bias=qkv_bias, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr, + norm_layer=norm_layer, + ) + + # Serial blocks 1. + self.serial_blocks1 = nn.ModuleList([ + SerialBlock( + dim=embed_dims[0], + mlp_ratio=mlp_ratios[0], + shared_cpe=self.cpe1, + shared_crpe=self.crpe1, + **skwargs, + ) + for _ in range(serial_depths[0])] + ) + + # Serial blocks 2. + self.serial_blocks2 = nn.ModuleList([ + SerialBlock( + dim=embed_dims[1], + mlp_ratio=mlp_ratios[1], + shared_cpe=self.cpe2, + shared_crpe=self.crpe2, + **skwargs, + ) + for _ in range(serial_depths[1])] + ) + + # Serial blocks 3. + self.serial_blocks3 = nn.ModuleList([ + SerialBlock( + dim=embed_dims[2], + mlp_ratio=mlp_ratios[2], + shared_cpe=self.cpe3, + shared_crpe=self.crpe3, + **skwargs, + ) + for _ in range(serial_depths[2])] + ) + + # Serial blocks 4. + self.serial_blocks4 = nn.ModuleList([ + SerialBlock( + dim=embed_dims[3], + mlp_ratio=mlp_ratios[3], + shared_cpe=self.cpe4, + shared_crpe=self.crpe4, + **skwargs, + ) + for _ in range(serial_depths[3])] + ) + + # Parallel blocks. + self.parallel_depth = parallel_depth + if self.parallel_depth > 0: + self.parallel_blocks = nn.ModuleList([ + ParallelBlock( + dims=embed_dims, + mlp_ratios=mlp_ratios, + shared_crpes=(self.crpe1, self.crpe2, self.crpe3, self.crpe4), + **skwargs, + ) + for _ in range(parallel_depth)] + ) + else: + self.parallel_blocks = None + + # Classification head(s). + if not self.return_interm_layers: + if self.parallel_blocks is not None: + self.norm2 = norm_layer(embed_dims[1]) + self.norm3 = norm_layer(embed_dims[2]) + else: + self.norm2 = self.norm3 = None + self.norm4 = norm_layer(embed_dims[3]) + + if self.parallel_depth > 0: + # CoaT series: Aggregate features of last three scales for classification. + assert embed_dims[1] == embed_dims[2] == embed_dims[3] + self.aggregate = torch.nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + else: + # CoaT-Lite series: Use feature of last scale for classification. + self.aggregate = None + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + # Initialize weights. + trunc_normal_(self.cls_token1, std=.02) + trunc_normal_(self.cls_token2, std=.02) + trunc_normal_(self.cls_token3, std=.02) + trunc_normal_(self.cls_token4, std=.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'cls_token1', 'cls_token2', 'cls_token3', 'cls_token4'} + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem1=r'^cls_token1|patch_embed1|crpe1|cpe1', + serial_blocks1=r'^serial_blocks1\.(\d+)', + stem2=r'^cls_token2|patch_embed2|crpe2|cpe2', + serial_blocks2=r'^serial_blocks2\.(\d+)', + stem3=r'^cls_token3|patch_embed3|crpe3|cpe3', + serial_blocks3=r'^serial_blocks3\.(\d+)', + stem4=r'^cls_token4|patch_embed4|crpe4|cpe4', + serial_blocks4=r'^serial_blocks4\.(\d+)', + parallel_blocks=[ # FIXME (partially?) overlap parallel w/ serial blocks?? + (r'^parallel_blocks\.(\d+)', None), + (r'^norm|aggregate', (99999,)), + ] + ) + return matcher + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('token', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x0): + B = x0.shape[0] + + # Serial blocks 1. + x1 = self.patch_embed1(x0) + H1, W1 = self.patch_embed1.grid_size + x1 = insert_cls(x1, self.cls_token1) + for blk in self.serial_blocks1: + x1 = blk(x1, size=(H1, W1)) + x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() + + # Serial blocks 2. + x2 = self.patch_embed2(x1_nocls) + H2, W2 = self.patch_embed2.grid_size + x2 = insert_cls(x2, self.cls_token2) + for blk in self.serial_blocks2: + x2 = blk(x2, size=(H2, W2)) + x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() + + # Serial blocks 3. + x3 = self.patch_embed3(x2_nocls) + H3, W3 = self.patch_embed3.grid_size + x3 = insert_cls(x3, self.cls_token3) + for blk in self.serial_blocks3: + x3 = blk(x3, size=(H3, W3)) + x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() + + # Serial blocks 4. + x4 = self.patch_embed4(x3_nocls) + H4, W4 = self.patch_embed4.grid_size + x4 = insert_cls(x4, self.cls_token4) + for blk in self.serial_blocks4: + x4 = blk(x4, size=(H4, W4)) + x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() + + # Only serial blocks: Early return. + if self.parallel_blocks is None: + if not torch.jit.is_scripting() and self.return_interm_layers: + # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2). + feat_out = {} + if 'x1_nocls' in self.out_features: + feat_out['x1_nocls'] = x1_nocls + if 'x2_nocls' in self.out_features: + feat_out['x2_nocls'] = x2_nocls + if 'x3_nocls' in self.out_features: + feat_out['x3_nocls'] = x3_nocls + if 'x4_nocls' in self.out_features: + feat_out['x4_nocls'] = x4_nocls + return feat_out + else: + # Return features for classification. + x4 = self.norm4(x4) + return x4 + + # Parallel blocks. + for blk in self.parallel_blocks: + x2, x3, x4 = self.cpe2(x2, (H2, W2)), self.cpe3(x3, (H3, W3)), self.cpe4(x4, (H4, W4)) + x1, x2, x3, x4 = blk(x1, x2, x3, x4, sizes=[(H1, W1), (H2, W2), (H3, W3), (H4, W4)]) + + if not torch.jit.is_scripting() and self.return_interm_layers: + # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2). + feat_out = {} + if 'x1_nocls' in self.out_features: + x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() + feat_out['x1_nocls'] = x1_nocls + if 'x2_nocls' in self.out_features: + x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() + feat_out['x2_nocls'] = x2_nocls + if 'x3_nocls' in self.out_features: + x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() + feat_out['x3_nocls'] = x3_nocls + if 'x4_nocls' in self.out_features: + x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() + feat_out['x4_nocls'] = x4_nocls + return feat_out + else: + x2 = self.norm2(x2) + x3 = self.norm3(x3) + x4 = self.norm4(x4) + return [x2, x3, x4] + + def forward_head(self, x_feat: Union[torch.Tensor, List[torch.Tensor]], pre_logits: bool = False): + if isinstance(x_feat, list): + assert self.aggregate is not None + if self.global_pool == 'avg': + x = torch.cat([xl[:, 1:].mean(dim=1, keepdim=True) for xl in x_feat], dim=1) # [B, 3, C] + else: + x = torch.stack([xl[:, 0] for xl in x_feat], dim=1) # [B, 3, C] + x = self.aggregate(x).squeeze(dim=1) # Shape: [B, C] + else: + x = x_feat[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x_feat[:, 0] + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x) -> torch.Tensor: + if not torch.jit.is_scripting() and self.return_interm_layers: + # Return intermediate features (for down-stream tasks). + return self.forward_features(x) + else: + # Return features for classification. + x_feat = self.forward_features(x) + x = self.forward_head(x_feat) + return x + + +def insert_cls(x, cls_token): + """ Insert CLS token. """ + cls_tokens = cls_token.expand(x.shape[0], -1, -1) + x = torch.cat((cls_tokens, x), dim=1) + return x + + +def remove_cls(x): + """ Remove CLS token. """ + return x[:, 1:, :] + + +def checkpoint_filter_fn(state_dict, model): + out_dict = {} + state_dict = state_dict.get('model', state_dict) + for k, v in state_dict.items(): + # original model had unused norm layers, removing them requires filtering pretrained checkpoints + if k.startswith('norm1') or \ + (k.startswith('norm2') and getattr(model, 'norm2', None) is None) or \ + (k.startswith('norm3') and getattr(model, 'norm3', None) is None) or \ + (k.startswith('norm4') and getattr(model, 'norm4', None) is None) or \ + (k.startswith('aggregate') and getattr(model, 'aggregate', None) is None) or \ + (k.startswith('head') and getattr(model, 'head', None) is None): + continue + out_dict[k] = v + return out_dict + + +def _create_coat(variant, pretrained=False, default_cfg=None, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + + model = build_model_with_cfg( + CoaT, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + **kwargs, + ) + return model + + +def _cfg_coat(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed1.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'coat_tiny.in1k': _cfg_coat(hf_hub_id='timm/'), + 'coat_mini.in1k': _cfg_coat(hf_hub_id='timm/'), + 'coat_small.in1k': _cfg_coat(hf_hub_id='timm/'), + 'coat_lite_tiny.in1k': _cfg_coat(hf_hub_id='timm/'), + 'coat_lite_mini.in1k': _cfg_coat(hf_hub_id='timm/'), + 'coat_lite_small.in1k': _cfg_coat(hf_hub_id='timm/'), + 'coat_lite_medium.in1k': _cfg_coat(hf_hub_id='timm/'), + 'coat_lite_medium_384.in1k': _cfg_coat( + hf_hub_id='timm/', + input_size=(3, 384, 384), crop_pct=1.0, crop_mode='squash', + ), +}) + + +@register_model +def coat_tiny(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict( + patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6) + model = _create_coat('coat_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + + +@register_model +def coat_mini(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict( + patch_size=4, embed_dims=[152, 216, 216, 216], serial_depths=[2, 2, 2, 2], parallel_depth=6) + model = _create_coat('coat_mini', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + + +@register_model +def coat_small(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict( + patch_size=4, embed_dims=[152, 320, 320, 320], serial_depths=[2, 2, 2, 2], parallel_depth=6, **kwargs) + model = _create_coat('coat_small', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + + +@register_model +def coat_lite_tiny(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict( + patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4]) + model = _create_coat('coat_lite_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + + +@register_model +def coat_lite_mini(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict( + patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4]) + model = _create_coat('coat_lite_mini', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + + +@register_model +def coat_lite_small(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict( + patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], mlp_ratios=[8, 8, 4, 4]) + model = _create_coat('coat_lite_small', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + + +@register_model +def coat_lite_medium(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict( + patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8]) + model = _create_coat('coat_lite_medium', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + + +@register_model +def coat_lite_medium_384(pretrained=False, **kwargs) -> CoaT: + model_cfg = dict( + img_size=384, patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8]) + model = _create_coat('coat_lite_medium_384', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model \ No newline at end of file diff --git a/pytorch-image-models/timm/models/convit.py b/pytorch-image-models/timm/models/convit.py new file mode 100644 index 0000000000000000000000000000000000000000..cbe3b51ecea5180d12fa437e07767d0f2ea21577 --- /dev/null +++ b/pytorch-image-models/timm/models/convit.py @@ -0,0 +1,428 @@ +""" ConViT Model + +@article{d2021convit, + title={ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases}, + author={d'Ascoli, St{\'e}phane and Touvron, Hugo and Leavitt, Matthew and Morcos, Ari and Biroli, Giulio and Sagun, Levent}, + journal={arXiv preprint arXiv:2103.10697}, + year={2021} +} + +Paper link: https://arxiv.org/abs/2103.10697 +Original code: https://github.com/facebookresearch/convit, original copyright below + +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman +""" +# Copyright (c) 2015-present, Facebook, Inc. +# All rights reserved. +# +# This source code is licensed under the CC-by-NC license found in the +# LICENSE file in the root directory of this source tree. +# +'''These modules are adapted from those of timm, see +https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py +''' +from typing import Optional + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, trunc_normal_, PatchEmbed, Mlp, LayerNorm, HybridEmbed +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._registry import register_model, generate_default_cfgs + + +__all__ = ['ConVit'] + + +@register_notrace_module # reason: FX can't symbolically trace control flow in forward method +class GPSA(nn.Module): + def __init__( + self, + dim, + num_heads=8, + qkv_bias=False, + attn_drop=0., + proj_drop=0., + locality_strength=1., + ): + super().__init__() + self.num_heads = num_heads + self.dim = dim + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + self.locality_strength = locality_strength + + self.qk = nn.Linear(dim, dim * 2, bias=qkv_bias) + self.v = nn.Linear(dim, dim, bias=qkv_bias) + + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.pos_proj = nn.Linear(3, num_heads) + self.proj_drop = nn.Dropout(proj_drop) + self.gating_param = nn.Parameter(torch.ones(self.num_heads)) + self.rel_indices: torch.Tensor = torch.zeros(1, 1, 1, 3) # silly torchscript hack, won't work with None + + def forward(self, x): + B, N, C = x.shape + if self.rel_indices is None or self.rel_indices.shape[1] != N: + self.rel_indices = self.get_rel_indices(N) + attn = self.get_attention(x) + v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + def get_attention(self, x): + B, N, C = x.shape + qk = self.qk(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k = qk[0], qk[1] + pos_score = self.rel_indices.expand(B, -1, -1, -1) + pos_score = self.pos_proj(pos_score).permute(0, 3, 1, 2) + patch_score = (q @ k.transpose(-2, -1)) * self.scale + patch_score = patch_score.softmax(dim=-1) + pos_score = pos_score.softmax(dim=-1) + + gating = self.gating_param.view(1, -1, 1, 1) + attn = (1. - torch.sigmoid(gating)) * patch_score + torch.sigmoid(gating) * pos_score + attn /= attn.sum(dim=-1).unsqueeze(-1) + attn = self.attn_drop(attn) + return attn + + def get_attention_map(self, x, return_map=False): + attn_map = self.get_attention(x).mean(0) # average over batch + distances = self.rel_indices.squeeze()[:, :, -1] ** .5 + dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / distances.size(0) + if return_map: + return dist, attn_map + else: + return dist + + def local_init(self): + self.v.weight.data.copy_(torch.eye(self.dim)) + locality_distance = 1 # max(1,1/locality_strength**.5) + + kernel_size = int(self.num_heads ** .5) + center = (kernel_size - 1) / 2 if kernel_size % 2 == 0 else kernel_size // 2 + for h1 in range(kernel_size): + for h2 in range(kernel_size): + position = h1 + kernel_size * h2 + self.pos_proj.weight.data[position, 2] = -1 + self.pos_proj.weight.data[position, 1] = 2 * (h1 - center) * locality_distance + self.pos_proj.weight.data[position, 0] = 2 * (h2 - center) * locality_distance + self.pos_proj.weight.data *= self.locality_strength + + def get_rel_indices(self, num_patches: int) -> torch.Tensor: + img_size = int(num_patches ** .5) + rel_indices = torch.zeros(1, num_patches, num_patches, 3) + ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1) + indx = ind.repeat(img_size, img_size) + indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1) + indd = indx ** 2 + indy ** 2 + rel_indices[:, :, :, 2] = indd.unsqueeze(0) + rel_indices[:, :, :, 1] = indy.unsqueeze(0) + rel_indices[:, :, :, 0] = indx.unsqueeze(0) + device = self.qk.weight.device + return rel_indices.to(device) + + +class MHSA(nn.Module): + def __init__( + self, + dim, + num_heads=8, + qkv_bias=False, + attn_drop=0., + proj_drop=0., + ): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def get_attention_map(self, x, return_map=False): + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] + attn_map = (q @ k.transpose(-2, -1)) * self.scale + attn_map = attn_map.softmax(dim=-1).mean(0) + + img_size = int(N ** .5) + ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1) + indx = ind.repeat(img_size, img_size) + indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1) + indd = indx ** 2 + indy ** 2 + distances = indd ** .5 + distances = distances.to(x.device) + + dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / N + if return_map: + return dist, attn_map + else: + return dist + + def forward(self, x): + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=LayerNorm, + use_gpsa=True, + locality_strength=1., + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.use_gpsa = use_gpsa + if self.use_gpsa: + self.attn = GPSA( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + locality_strength=locality_strength, + ) + else: + self.attn = MHSA( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=proj_drop, + ) + + def forward(self, x): + x = x + self.drop_path(self.attn(self.norm1(x))) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class ConVit(nn.Module): + """ Vision Transformer with support for patch or hybrid CNN input stage + """ + + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + num_classes=1000, + global_pool='token', + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4., + qkv_bias=False, + drop_rate=0., + pos_drop_rate=0., + proj_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + hybrid_backbone=None, + norm_layer=LayerNorm, + local_up_to_layer=3, + locality_strength=1., + use_pos_embed=True, + ): + super().__init__() + assert global_pool in ('', 'avg', 'token') + embed_dim *= num_heads + self.num_classes = num_classes + self.global_pool = global_pool + self.local_up_to_layer = local_up_to_layer + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models + self.locality_strength = locality_strength + self.use_pos_embed = use_pos_embed + + if hybrid_backbone is not None: + self.patch_embed = HybridEmbed( + hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) + else: + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + ) + num_patches = self.patch_embed.num_patches + self.num_patches = num_patches + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + + if self.use_pos_embed: + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) + trunc_normal_(self.pos_embed, std=.02) + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.blocks = nn.ModuleList([ + Block( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + use_gpsa=i < local_up_to_layer, + locality_strength=locality_strength, + ) for i in range(depth)]) + self.norm = norm_layer(embed_dim) + + # Classifier head + self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')] + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + trunc_normal_(self.cls_token, std=.02) + self.apply(self._init_weights) + for n, m in self.named_modules(): + if hasattr(m, 'local_init'): + m.local_init() + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^cls_token|pos_embed|patch_embed', # stem and embed + blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'token', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.patch_embed(x) + if self.use_pos_embed: + x = x + self.pos_embed + x = self.pos_drop(x) + cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) + for u, blk in enumerate(self.blocks): + if u == self.local_up_to_layer: + x = torch.cat((cls_tokens, x), dim=1) + x = blk(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool: + x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_convit(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + + return build_model_with_cfg(ConVit, variant, pretrained, **kwargs) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True, + 'first_conv': 'patch_embed.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # ConViT + 'convit_tiny.fb_in1k': _cfg(hf_hub_id='timm/'), + 'convit_small.fb_in1k': _cfg(hf_hub_id='timm/'), + 'convit_base.fb_in1k': _cfg(hf_hub_id='timm/') +}) + + +@register_model +def convit_tiny(pretrained=False, **kwargs) -> ConVit: + model_args = dict( + local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=4) + model = _create_convit(variant='convit_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convit_small(pretrained=False, **kwargs) -> ConVit: + model_args = dict( + local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=9) + model = _create_convit(variant='convit_small', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convit_base(pretrained=False, **kwargs) -> ConVit: + model_args = dict( + local_up_to_layer=10, locality_strength=1.0, embed_dim=48, num_heads=16) + model = _create_convit(variant='convit_base', pretrained=pretrained, **dict(model_args, **kwargs)) + return model diff --git a/pytorch-image-models/timm/models/convmixer.py b/pytorch-image-models/timm/models/convmixer.py new file mode 100644 index 0000000000000000000000000000000000000000..c7a250776ac67deda4f3c745b2d3544ccb20e352 --- /dev/null +++ b/pytorch-image-models/timm/models/convmixer.py @@ -0,0 +1,146 @@ +""" ConvMixer + +""" +from typing import Optional + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectAdaptivePool2d +from ._registry import register_model, generate_default_cfgs +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq + +__all__ = ['ConvMixer'] + + +class Residual(nn.Module): + def __init__(self, fn): + super().__init__() + self.fn = fn + + def forward(self, x): + return self.fn(x) + x + + +class ConvMixer(nn.Module): + def __init__( + self, + dim, + depth, + kernel_size=9, + patch_size=7, + in_chans=3, + num_classes=1000, + global_pool='avg', + drop_rate=0., + act_layer=nn.GELU, + **kwargs, + ): + super().__init__() + self.num_classes = num_classes + self.num_features = self.head_hidden_size = dim + self.grad_checkpointing = False + + self.stem = nn.Sequential( + nn.Conv2d(in_chans, dim, kernel_size=patch_size, stride=patch_size), + act_layer(), + nn.BatchNorm2d(dim) + ) + self.blocks = nn.Sequential( + *[nn.Sequential( + Residual(nn.Sequential( + nn.Conv2d(dim, dim, kernel_size, groups=dim, padding="same"), + act_layer(), + nn.BatchNorm2d(dim) + )), + nn.Conv2d(dim, dim, kernel_size=1), + act_layer(), + nn.BatchNorm2d(dim) + ) for i in range(depth)] + ) + self.pooling = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(dim, num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem=r'^stem', blocks=r'^blocks\.(\d+)') + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + self.pooling = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.pooling(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_convmixer(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for ConvMixer models.') + + return build_model_with_cfg(ConvMixer, variant, pretrained, **kwargs) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .96, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head', + 'first_conv': 'stem.0', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'convmixer_1536_20.in1k': _cfg(hf_hub_id='timm/'), + 'convmixer_768_32.in1k': _cfg(hf_hub_id='timm/'), + 'convmixer_1024_20_ks9_p14.in1k': _cfg(hf_hub_id='timm/') +}) + + + +@register_model +def convmixer_1536_20(pretrained=False, **kwargs) -> ConvMixer: + model_args = dict(dim=1536, depth=20, kernel_size=9, patch_size=7, **kwargs) + return _create_convmixer('convmixer_1536_20', pretrained, **model_args) + + +@register_model +def convmixer_768_32(pretrained=False, **kwargs) -> ConvMixer: + model_args = dict(dim=768, depth=32, kernel_size=7, patch_size=7, act_layer=nn.ReLU, **kwargs) + return _create_convmixer('convmixer_768_32', pretrained, **model_args) + + +@register_model +def convmixer_1024_20_ks9_p14(pretrained=False, **kwargs) -> ConvMixer: + model_args = dict(dim=1024, depth=20, kernel_size=9, patch_size=14, **kwargs) + return _create_convmixer('convmixer_1024_20_ks9_p14', pretrained, **model_args) \ No newline at end of file diff --git a/pytorch-image-models/timm/models/convnext.py b/pytorch-image-models/timm/models/convnext.py new file mode 100644 index 0000000000000000000000000000000000000000..e682379f64db0a2326343283bcc9486ba371fa48 --- /dev/null +++ b/pytorch-image-models/timm/models/convnext.py @@ -0,0 +1,1241 @@ +""" ConvNeXt + +Papers: +* `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf +@Article{liu2022convnet, + author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, + title = {A ConvNet for the 2020s}, + journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, + year = {2022}, +} + +* `ConvNeXt-V2 - Co-designing and Scaling ConvNets with Masked Autoencoders` - https://arxiv.org/abs/2301.00808 +@article{Woo2023ConvNeXtV2, + title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders}, + author={Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon and Saining Xie}, + year={2023}, + journal={arXiv preprint arXiv:2301.00808}, +} + +Original code and weights from: +* https://github.com/facebookresearch/ConvNeXt, original copyright below +* https://github.com/facebookresearch/ConvNeXt-V2, original copyright below + +Model defs atto, femto, pico, nano and _ols / _hnf variants are timm originals. + +Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman +""" +# ConvNeXt +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# This source code is licensed under the MIT license + +# ConvNeXt-V2 +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree (Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)) +# No code was used directly from ConvNeXt-V2, however the weights are CC BY-NC 4.0 so beware if using commercially. + +from functools import partial +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD +from timm.layers import trunc_normal_, AvgPool2dSame, DropPath, Mlp, GlobalResponseNormMlp, \ + LayerNorm2d, LayerNorm, RmsNorm2d, RmsNorm, create_conv2d, get_act_layer, get_norm_layer, make_divisible, to_ntuple +from timm.layers import NormMlpClassifierHead, ClassifierHead +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply, checkpoint_seq +from ._registry import generate_default_cfgs, register_model, register_model_deprecations + +__all__ = ['ConvNeXt'] # model_registry will add each entrypoint fn to this + + +class Downsample(nn.Module): + + def __init__(self, in_chs, out_chs, stride=1, dilation=1): + super().__init__() + avg_stride = stride if dilation == 1 else 1 + if stride > 1 or dilation > 1: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + else: + self.pool = nn.Identity() + + if in_chs != out_chs: + self.conv = create_conv2d(in_chs, out_chs, 1, stride=1) + else: + self.conv = nn.Identity() + + def forward(self, x): + x = self.pool(x) + x = self.conv(x) + return x + + +class ConvNeXtBlock(nn.Module): + """ ConvNeXt Block + There are two equivalent implementations: + (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) + (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back + + Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate + choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear + is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW. + """ + + def __init__( + self, + in_chs: int, + out_chs: Optional[int] = None, + kernel_size: int = 7, + stride: int = 1, + dilation: Union[int, Tuple[int, int]] = (1, 1), + mlp_ratio: float = 4, + conv_mlp: bool = False, + conv_bias: bool = True, + use_grn: bool = False, + ls_init_value: Optional[float] = 1e-6, + act_layer: Union[str, Callable] = 'gelu', + norm_layer: Optional[Callable] = None, + drop_path: float = 0., + ): + """ + + Args: + in_chs: Block input channels. + out_chs: Block output channels (same as in_chs if None). + kernel_size: Depthwise convolution kernel size. + stride: Stride of depthwise convolution. + dilation: Tuple specifying input and output dilation of block. + mlp_ratio: MLP expansion ratio. + conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True. + conv_bias: Apply bias for all convolution (linear) layers. + use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2) + ls_init_value: Layer-scale init values, layer-scale applied if not None. + act_layer: Activation layer. + norm_layer: Normalization layer (defaults to LN if not specified). + drop_path: Stochastic depth probability. + """ + super().__init__() + out_chs = out_chs or in_chs + dilation = to_ntuple(2)(dilation) + act_layer = get_act_layer(act_layer) + if not norm_layer: + norm_layer = LayerNorm2d if conv_mlp else LayerNorm + mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp) + self.use_conv_mlp = conv_mlp + self.conv_dw = create_conv2d( + in_chs, + out_chs, + kernel_size=kernel_size, + stride=stride, + dilation=dilation[0], + depthwise=True, + bias=conv_bias, + ) + self.norm = norm_layer(out_chs) + self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer) + self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None + if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: + self.shortcut = Downsample(in_chs, out_chs, stride=stride, dilation=dilation[0]) + else: + self.shortcut = nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + shortcut = x + x = self.conv_dw(x) + if self.use_conv_mlp: + x = self.norm(x) + x = self.mlp(x) + else: + x = x.permute(0, 2, 3, 1) + x = self.norm(x) + x = self.mlp(x) + x = x.permute(0, 3, 1, 2) + if self.gamma is not None: + x = x.mul(self.gamma.reshape(1, -1, 1, 1)) + + x = self.drop_path(x) + self.shortcut(shortcut) + return x + + +class ConvNeXtStage(nn.Module): + + def __init__( + self, + in_chs, + out_chs, + kernel_size=7, + stride=2, + depth=2, + dilation=(1, 1), + drop_path_rates=None, + ls_init_value=1.0, + conv_mlp=False, + conv_bias=True, + use_grn=False, + act_layer='gelu', + norm_layer=None, + norm_layer_cl=None + ): + super().__init__() + self.grad_checkpointing = False + + if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]: + ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1 + pad = 'same' if dilation[1] > 1 else 0 # same padding needed if dilation used + self.downsample = nn.Sequential( + norm_layer(in_chs), + create_conv2d( + in_chs, + out_chs, + kernel_size=ds_ks, + stride=stride, + dilation=dilation[0], + padding=pad, + bias=conv_bias, + ), + ) + in_chs = out_chs + else: + self.downsample = nn.Identity() + + drop_path_rates = drop_path_rates or [0.] * depth + stage_blocks = [] + for i in range(depth): + stage_blocks.append(ConvNeXtBlock( + in_chs=in_chs, + out_chs=out_chs, + kernel_size=kernel_size, + dilation=dilation[1], + drop_path=drop_path_rates[i], + ls_init_value=ls_init_value, + conv_mlp=conv_mlp, + conv_bias=conv_bias, + use_grn=use_grn, + act_layer=act_layer, + norm_layer=norm_layer if conv_mlp else norm_layer_cl, + )) + in_chs = out_chs + self.blocks = nn.Sequential(*stage_blocks) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class ConvNeXt(nn.Module): + r""" ConvNeXt + A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf + """ + + def __init__( + self, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: str = 'avg', + output_stride: int = 32, + depths: Tuple[int, ...] = (3, 3, 9, 3), + dims: Tuple[int, ...] = (96, 192, 384, 768), + kernel_sizes: Union[int, Tuple[int, ...]] = 7, + ls_init_value: Optional[float] = 1e-6, + stem_type: str = 'patch', + patch_size: int = 4, + head_init_scale: float = 1., + head_norm_first: bool = False, + head_hidden_size: Optional[int] = None, + conv_mlp: bool = False, + conv_bias: bool = True, + use_grn: bool = False, + act_layer: Union[str, Callable] = 'gelu', + norm_layer: Optional[Union[str, Callable]] = None, + norm_eps: Optional[float] = None, + drop_rate: float = 0., + drop_path_rate: float = 0., + ): + """ + Args: + in_chans: Number of input image channels. + num_classes: Number of classes for classification head. + global_pool: Global pooling type. + output_stride: Output stride of network, one of (8, 16, 32). + depths: Number of blocks at each stage. + dims: Feature dimension at each stage. + kernel_sizes: Depthwise convolution kernel-sizes for each stage. + ls_init_value: Init value for Layer Scale, disabled if None. + stem_type: Type of stem. + patch_size: Stem patch size for patch stem. + head_init_scale: Init scaling value for classifier weights and biases. + head_norm_first: Apply normalization before global pool + head. + head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False. + conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last. + conv_bias: Use bias layers w/ all convolutions. + use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP. + act_layer: Activation layer type. + norm_layer: Normalization layer type. + drop_rate: Head pre-classifier dropout rate. + drop_path_rate: Stochastic depth drop rate. + """ + super().__init__() + assert output_stride in (8, 16, 32) + kernel_sizes = to_ntuple(4)(kernel_sizes) + use_rms = isinstance(norm_layer, str) and norm_layer.startswith('rmsnorm') + if norm_layer is None or use_rms: + norm_layer = RmsNorm2d if use_rms else LayerNorm2d + norm_layer_cl = norm_layer if conv_mlp else (RmsNorm if use_rms else LayerNorm) + if norm_eps is not None: + norm_layer = partial(norm_layer, eps=norm_eps) + norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) + else: + assert conv_mlp,\ + 'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input' + norm_layer = get_norm_layer(norm_layer) + norm_layer_cl = norm_layer + if norm_eps is not None: + norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) + act_layer = get_act_layer(act_layer) + + self.num_classes = num_classes + self.drop_rate = drop_rate + self.feature_info = [] + + assert stem_type in ('patch', 'overlap', 'overlap_tiered', 'overlap_act') + if stem_type == 'patch': + # NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4 + self.stem = nn.Sequential( + nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias), + norm_layer(dims[0]), + ) + stem_stride = patch_size + else: + mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0] + self.stem = nn.Sequential(*filter(None, [ + nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias), + act_layer() if 'act' in stem_type else None, + nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias), + norm_layer(dims[0]), + ])) + stem_stride = 4 + + self.stages = nn.Sequential() + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + stages = [] + prev_chs = dims[0] + curr_stride = stem_stride + dilation = 1 + # 4 feature resolution stages, each consisting of multiple residual blocks + for i in range(4): + stride = 2 if curr_stride == 2 or i > 0 else 1 + if curr_stride >= output_stride and stride > 1: + dilation *= stride + stride = 1 + curr_stride *= stride + first_dilation = 1 if dilation in (1, 2) else 2 + out_chs = dims[i] + stages.append(ConvNeXtStage( + prev_chs, + out_chs, + kernel_size=kernel_sizes[i], + stride=stride, + dilation=(first_dilation, dilation), + depth=depths[i], + drop_path_rates=dp_rates[i], + ls_init_value=ls_init_value, + conv_mlp=conv_mlp, + conv_bias=conv_bias, + use_grn=use_grn, + act_layer=act_layer, + norm_layer=norm_layer, + norm_layer_cl=norm_layer_cl, + )) + prev_chs = out_chs + # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 + self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + self.num_features = self.head_hidden_size = prev_chs + + # if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets + # otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights) + if head_norm_first: + assert not head_hidden_size + self.norm_pre = norm_layer(self.num_features) + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=self.drop_rate, + ) + else: + self.norm_pre = nn.Identity() + self.head = NormMlpClassifierHead( + self.num_features, + num_classes, + hidden_size=head_hidden_size, + pool_type=global_pool, + drop_rate=self.drop_rate, + norm_layer=norm_layer, + act_layer='gelu', + ) + self.head_hidden_size = self.head.num_features + named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+)\.downsample', (0,)), # blocks + (r'^stages\.(\d+)\.blocks\.(\d+)', None), + (r'^norm_pre', (99999,)) + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) + + # forward pass + feat_idx = 0 # stem is index 0 + x = self.stem(x) + if feat_idx in take_indices: + intermediates.append(x) + + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + stages = self.stages + else: + stages = self.stages[:max_index] + for stage in stages: + feat_idx += 1 + x = stage(x) + if feat_idx in take_indices: + # NOTE not bothering to apply norm_pre when norm=True as almost no models have it enabled + intermediates.append(x) + + if intermediates_only: + return intermediates + + x = self.norm_pre(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) + self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0 + if prune_norm: + self.norm_pre = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm_pre(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _init_weights(module, name=None, head_init_scale=1.0): + if isinstance(module, nn.Conv2d): + trunc_normal_(module.weight, std=.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Linear): + trunc_normal_(module.weight, std=.02) + nn.init.zeros_(module.bias) + if name and 'head.' in name: + module.weight.data.mul_(head_init_scale) + module.bias.data.mul_(head_init_scale) + + +def checkpoint_filter_fn(state_dict, model): + """ Remap FB checkpoints -> timm """ + if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict: + return state_dict # non-FB checkpoint + if 'model' in state_dict: + state_dict = state_dict['model'] + + out_dict = {} + if 'visual.trunk.stem.0.weight' in state_dict: + out_dict = {k.replace('visual.trunk.', ''): v for k, v in state_dict.items() if k.startswith('visual.trunk.')} + if 'visual.head.proj.weight' in state_dict: + out_dict['head.fc.weight'] = state_dict['visual.head.proj.weight'] + out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0]) + elif 'visual.head.mlp.fc1.weight' in state_dict: + out_dict['head.pre_logits.fc.weight'] = state_dict['visual.head.mlp.fc1.weight'] + out_dict['head.pre_logits.fc.bias'] = state_dict['visual.head.mlp.fc1.bias'] + out_dict['head.fc.weight'] = state_dict['visual.head.mlp.fc2.weight'] + out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.mlp.fc2.weight'].shape[0]) + return out_dict + + import re + for k, v in state_dict.items(): + k = k.replace('downsample_layers.0.', 'stem.') + k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) + k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k) + k = k.replace('dwconv', 'conv_dw') + k = k.replace('pwconv', 'mlp.fc') + if 'grn' in k: + k = k.replace('grn.beta', 'mlp.grn.bias') + k = k.replace('grn.gamma', 'mlp.grn.weight') + v = v.reshape(v.shape[-1]) + k = k.replace('head.', 'head.fc.') + if k.startswith('norm.'): + k = k.replace('norm', 'head.norm') + if v.ndim == 2 and 'head' not in k: + model_shape = model.state_dict()[k].shape + v = v.reshape(model_shape) + out_dict[k] = v + + return out_dict + + +def _create_convnext(variant, pretrained=False, **kwargs): + if kwargs.get('pretrained_cfg', '') == 'fcmae': + # NOTE fcmae pretrained weights have no classifier or final norm-layer (`head.norm`) + # This is workaround loading with num_classes=0 w/o removing norm-layer. + kwargs.setdefault('pretrained_strict', False) + + model = build_model_with_cfg( + ConvNeXt, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), + **kwargs) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.0', 'classifier': 'head.fc', + **kwargs + } + + +def _cfgv2(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.0', 'classifier': 'head.fc', + 'license': 'cc-by-nc-4.0', 'paper_ids': 'arXiv:2301.00808', + 'paper_name': 'ConvNeXt-V2: Co-designing and Scaling ConvNets with Masked Autoencoders', + 'origin_url': 'https://github.com/facebookresearch/ConvNeXt-V2', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # timm specific variants + 'convnext_tiny.in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_small.in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + + 'convnext_zepto_rms.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), + 'convnext_zepto_rms_ols.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + crop_pct=0.9), + 'convnext_atto.d2_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_d2-01bb0f51.pth', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'convnext_atto_ols.a2_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_ols_a2-78d1c8f3.pth', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'convnext_atto_rms.untrained': _cfg( + #hf_hub_id='timm/', + test_input_size=(3, 256, 256), test_crop_pct=0.95), + 'convnext_femto.d1_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_d1-d71d5b4c.pth', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'convnext_femto_ols.d1_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_ols_d1-246bf2ed.pth', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'convnext_pico.d1_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_d1-10ad7f0d.pth', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'convnext_pico_ols.d1_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_ols_d1-611f0ca7.pth', + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_nano.in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_nano.d1h_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_d1h-7eb4bdea.pth', + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_nano_ols.d1h_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_ols_d1h-ae424a9a.pth', + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_tiny_hnf.a2h_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_tiny_hnf_a2h-ab7e9df2.pth', + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + + 'convnext_tiny.in12k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnext_small.in12k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + + 'convnext_nano.in12k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, num_classes=11821), + 'convnext_tiny.in12k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, num_classes=11821), + 'convnext_small.in12k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, num_classes=11821), + + 'convnext_tiny.fb_in22k_ft_in1k': _cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_224.pth', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_small.fb_in22k_ft_in1k': _cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_224.pth', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_base.fb_in22k_ft_in1k': _cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_large.fb_in22k_ft_in1k': _cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_xlarge.fb_in22k_ft_in1k': _cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + + 'convnext_tiny.fb_in1k': _cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_small.fb_in1k': _cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth", + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_base.fb_in1k': _cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth", + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnext_large.fb_in1k': _cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth", + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + + 'convnext_tiny.fb_in22k_ft_in1k_384': _cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_384.pth', + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnext_small.fb_in22k_ft_in1k_384': _cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_384.pth', + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnext_base.fb_in22k_ft_in1k_384': _cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth', + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnext_large.fb_in22k_ft_in1k_384': _cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth', + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnext_xlarge.fb_in22k_ft_in1k_384': _cfg( + url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth', + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + + 'convnext_tiny.fb_in22k': _cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth", + hf_hub_id='timm/', + num_classes=21841), + 'convnext_small.fb_in22k': _cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth", + hf_hub_id='timm/', + num_classes=21841), + 'convnext_base.fb_in22k': _cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", + hf_hub_id='timm/', + num_classes=21841), + 'convnext_large.fb_in22k': _cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", + hf_hub_id='timm/', + num_classes=21841), + 'convnext_xlarge.fb_in22k': _cfg( + url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", + hf_hub_id='timm/', + num_classes=21841), + + 'convnextv2_nano.fcmae_ft_in22k_in1k': _cfgv2( + url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnextv2_nano.fcmae_ft_in22k_in1k_384': _cfgv2( + url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt', + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnextv2_tiny.fcmae_ft_in22k_in1k': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt", + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnextv2_tiny.fcmae_ft_in22k_in1k_384': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt", + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnextv2_base.fcmae_ft_in22k_in1k': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt", + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnextv2_base.fcmae_ft_in22k_in1k_384': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt", + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnextv2_large.fcmae_ft_in22k_in1k': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt", + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnextv2_large.fcmae_ft_in22k_in1k_384': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt", + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnextv2_huge.fcmae_ft_in22k_in1k_384': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt", + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnextv2_huge.fcmae_ft_in22k_in1k_512': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt", + hf_hub_id='timm/', + input_size=(3, 512, 512), pool_size=(15, 15), crop_pct=1.0, crop_mode='squash'), + + 'convnextv2_atto.fcmae_ft_in1k': _cfgv2( + url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'convnextv2_femto.fcmae_ft_in1k': _cfgv2( + url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'convnextv2_pico.fcmae_ft_in1k': _cfgv2( + url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'convnextv2_nano.fcmae_ft_in1k': _cfgv2( + url='https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt', + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnextv2_tiny.fcmae_ft_in1k': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt", + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnextv2_base.fcmae_ft_in1k': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt", + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnextv2_large.fcmae_ft_in1k': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt", + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'convnextv2_huge.fcmae_ft_in1k': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt", + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + + 'convnextv2_atto.fcmae': _cfgv2( + url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_atto_1k_224_fcmae.pt', + hf_hub_id='timm/', + num_classes=0), + 'convnextv2_femto.fcmae': _cfgv2( + url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_femto_1k_224_fcmae.pt', + hf_hub_id='timm/', + num_classes=0), + 'convnextv2_pico.fcmae': _cfgv2( + url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_pico_1k_224_fcmae.pt', + hf_hub_id='timm/', + num_classes=0), + 'convnextv2_nano.fcmae': _cfgv2( + url='https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_nano_1k_224_fcmae.pt', + hf_hub_id='timm/', + num_classes=0), + 'convnextv2_tiny.fcmae': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_tiny_1k_224_fcmae.pt", + hf_hub_id='timm/', + num_classes=0), + 'convnextv2_base.fcmae': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_base_1k_224_fcmae.pt", + hf_hub_id='timm/', + num_classes=0), + 'convnextv2_large.fcmae': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt", + hf_hub_id='timm/', + num_classes=0), + 'convnextv2_huge.fcmae': _cfgv2( + url="https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_huge_1k_224_fcmae.pt", + hf_hub_id='timm/', + num_classes=0), + + 'convnextv2_small.untrained': _cfg(), + + # CLIP weights, fine-tuned on in1k or in12k + in1k + 'convnext_base.clip_laion2b_augreg_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), + 'convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), + 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + + 'convnext_base.clip_laion2b_augreg_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), + 'convnext_base.clip_laiona_augreg_ft_in1k_384': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + 'convnext_large_mlp.clip_laion2b_augreg_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0 + ), + 'convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash' + ), + 'convnext_xxlarge.clip_laion2b_soup_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), + + 'convnext_base.clip_laion2b_augreg_ft_in12k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), + 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_320': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, + input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0), + 'convnext_large_mlp.clip_laion2b_augreg_ft_in12k_384': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnext_large_mlp.clip_laion2b_soup_ft_in12k_384': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'convnext_xxlarge.clip_laion2b_soup_ft_in12k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0), + + # CLIP original image tower weights + 'convnext_base.clip_laion2b': _cfg( + hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), + 'convnext_base.clip_laion2b_augreg': _cfg( + hf_hub_id='laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), + 'convnext_base.clip_laiona': _cfg( + hf_hub_id='laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=640), + 'convnext_base.clip_laiona_320': _cfg( + hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640), + 'convnext_base.clip_laiona_augreg_320': _cfg( + hf_hub_id='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=640), + 'convnext_large_mlp.clip_laion2b_augreg': _cfg( + hf_hub_id='laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=768), + 'convnext_large_mlp.clip_laion2b_ft_320': _cfg( + hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768), + 'convnext_large_mlp.clip_laion2b_ft_soup_320': _cfg( + hf_hub_id='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, num_classes=768), + 'convnext_xxlarge.clip_laion2b_soup': _cfg( + hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024), + 'convnext_xxlarge.clip_laion2b_rewind': _cfg( + hf_hub_id='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-rewind', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, num_classes=1024), + + "test_convnext.r160_in1k": _cfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), + "test_convnext2.r160_in1k": _cfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), + "test_convnext3.r160_in1k": _cfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), + +}) + + +@register_model +def convnext_zepto_rms(pretrained=False, **kwargs) -> ConvNeXt: + # timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M + model_args = dict(depths=(2, 2, 4, 2), dims=(32, 64, 128, 256), conv_mlp=True, norm_layer='rmsnorm2d') + model = _create_convnext('convnext_zepto_rms', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_zepto_rms_ols(pretrained=False, **kwargs) -> ConvNeXt: + # timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M + model_args = dict( + depths=(2, 2, 4, 2), dims=(32, 64, 128, 256), conv_mlp=True, norm_layer='rmsnorm2d', stem_type='overlap_act') + model = _create_convnext('convnext_zepto_rms_ols', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_atto(pretrained=False, **kwargs) -> ConvNeXt: + # timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M + model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True) + model = _create_convnext('convnext_atto', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_atto_ols(pretrained=False, **kwargs) -> ConvNeXt: + # timm femto variant with overlapping 3x3 conv stem, wider than non-ols femto above, current param count 3.7M + model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, stem_type='overlap_tiered') + model = _create_convnext('convnext_atto_ols', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_atto_rms(pretrained=False, **kwargs) -> ConvNeXt: + # timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M + model_args = dict(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, norm_layer='rmsnorm2d') + model = _create_convnext('convnext_atto_rms', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_femto(pretrained=False, **kwargs) -> ConvNeXt: + # timm femto variant + model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True) + model = _create_convnext('convnext_femto', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_femto_ols(pretrained=False, **kwargs) -> ConvNeXt: + # timm femto variant + model_args = dict(depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True, stem_type='overlap_tiered') + model = _create_convnext('convnext_femto_ols', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_pico(pretrained=False, **kwargs) -> ConvNeXt: + # timm pico variant + model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True) + model = _create_convnext('convnext_pico', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_pico_ols(pretrained=False, **kwargs) -> ConvNeXt: + # timm nano variant with overlapping 3x3 conv stem + model_args = dict(depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True, stem_type='overlap_tiered') + model = _create_convnext('convnext_pico_ols', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_nano(pretrained=False, **kwargs) -> ConvNeXt: + # timm nano variant with standard stem and head + model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True) + model = _create_convnext('convnext_nano', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_nano_ols(pretrained=False, **kwargs) -> ConvNeXt: + # experimental nano variant with overlapping conv stem + model_args = dict(depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True, stem_type='overlap') + model = _create_convnext('convnext_nano_ols', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_tiny_hnf(pretrained=False, **kwargs) -> ConvNeXt: + # experimental tiny variant with norm before pooling in head (head norm first) + model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, conv_mlp=True) + model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_tiny(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768)) + model = _create_convnext('convnext_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_small(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768]) + model = _create_convnext('convnext_small', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_base(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024]) + model = _create_convnext('convnext_base', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_large(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536]) + model = _create_convnext('convnext_large', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_large_mlp(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], head_hidden_size=1536) + model = _create_convnext('convnext_large_mlp', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_xlarge(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048]) + model = _create_convnext('convnext_xlarge', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnext_xxlarge(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 4, 30, 3], dims=[384, 768, 1536, 3072], norm_eps=kwargs.pop('norm_eps', 1e-5)) + model = _create_convnext('convnext_xxlarge', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnextv2_atto(pretrained=False, **kwargs) -> ConvNeXt: + # timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M + model_args = dict( + depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), use_grn=True, ls_init_value=None, conv_mlp=True) + model = _create_convnext('convnextv2_atto', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnextv2_femto(pretrained=False, **kwargs) -> ConvNeXt: + # timm femto variant + model_args = dict( + depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), use_grn=True, ls_init_value=None, conv_mlp=True) + model = _create_convnext('convnextv2_femto', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnextv2_pico(pretrained=False, **kwargs) -> ConvNeXt: + # timm pico variant + model_args = dict( + depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), use_grn=True, ls_init_value=None, conv_mlp=True) + model = _create_convnext('convnextv2_pico', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnextv2_nano(pretrained=False, **kwargs) -> ConvNeXt: + # timm nano variant with standard stem and head + model_args = dict( + depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), use_grn=True, ls_init_value=None, conv_mlp=True) + model = _create_convnext('convnextv2_nano', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnextv2_tiny(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), use_grn=True, ls_init_value=None) + model = _create_convnext('convnextv2_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnextv2_small(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], use_grn=True, ls_init_value=None) + model = _create_convnext('convnextv2_small', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnextv2_base(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], use_grn=True, ls_init_value=None) + model = _create_convnext('convnextv2_base', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnextv2_large(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], use_grn=True, ls_init_value=None) + model = _create_convnext('convnextv2_large', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def convnextv2_huge(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], use_grn=True, ls_init_value=None) + model = _create_convnext('convnextv2_huge', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def test_convnext(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[1, 2, 4, 2], dims=[24, 32, 48, 64], norm_eps=kwargs.pop('norm_eps', 1e-5), act_layer='gelu_tanh') + model = _create_convnext('test_convnext', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def test_convnext2(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict(depths=[1, 1, 1, 1], dims=[32, 64, 96, 128], norm_eps=kwargs.pop('norm_eps', 1e-5), act_layer='gelu_tanh') + model = _create_convnext('test_convnext2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def test_convnext3(pretrained=False, **kwargs) -> ConvNeXt: + model_args = dict( + depths=[1, 1, 1, 1], dims=[32, 64, 96, 128], norm_eps=kwargs.pop('norm_eps', 1e-5), kernel_sizes=(7, 5, 5, 3), act_layer='silu') + model = _create_convnext('test_convnext3', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + + +register_model_deprecations(__name__, { + 'convnext_tiny_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k', + 'convnext_small_in22ft1k': 'convnext_small.fb_in22k_ft_in1k', + 'convnext_base_in22ft1k': 'convnext_base.fb_in22k_ft_in1k', + 'convnext_large_in22ft1k': 'convnext_large.fb_in22k_ft_in1k', + 'convnext_xlarge_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k', + 'convnext_tiny_384_in22ft1k': 'convnext_tiny.fb_in22k_ft_in1k_384', + 'convnext_small_384_in22ft1k': 'convnext_small.fb_in22k_ft_in1k_384', + 'convnext_base_384_in22ft1k': 'convnext_base.fb_in22k_ft_in1k_384', + 'convnext_large_384_in22ft1k': 'convnext_large.fb_in22k_ft_in1k_384', + 'convnext_xlarge_384_in22ft1k': 'convnext_xlarge.fb_in22k_ft_in1k_384', + 'convnext_tiny_in22k': 'convnext_tiny.fb_in22k', + 'convnext_small_in22k': 'convnext_small.fb_in22k', + 'convnext_base_in22k': 'convnext_base.fb_in22k', + 'convnext_large_in22k': 'convnext_large.fb_in22k', + 'convnext_xlarge_in22k': 'convnext_xlarge.fb_in22k', +}) diff --git a/pytorch-image-models/timm/models/crossvit.py b/pytorch-image-models/timm/models/crossvit.py new file mode 100644 index 0000000000000000000000000000000000000000..ff78395ecf64df68b4df86b491109e528335a959 --- /dev/null +++ b/pytorch-image-models/timm/models/crossvit.py @@ -0,0 +1,627 @@ +""" CrossViT Model + +@inproceedings{ + chen2021crossvit, + title={{CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification}}, + author={Chun-Fu (Richard) Chen and Quanfu Fan and Rameswar Panda}, + booktitle={International Conference on Computer Vision (ICCV)}, + year={2021} +} + +Paper link: https://arxiv.org/abs/2103.14899 +Original code: https://github.com/IBM/CrossViT/blob/main/models/crossvit.py + +NOTE: model names have been renamed from originals to represent actual input res all *_224 -> *_240 and *_384 -> *_408 + +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman +""" + +# Copyright IBM All Rights Reserved. +# SPDX-License-Identifier: Apache-2.0 + + +""" +Modifed from Timm. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py + +""" +from functools import partial +from typing import List, Optional, Tuple + +import torch +import torch.hub +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, to_2tuple, trunc_normal_, _assert +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_function +from ._registry import register_model, generate_default_cfgs +from .vision_transformer import Block + +__all__ = ['CrossVit'] # model_registry will add each entrypoint fn to this + + +class PatchEmbed(nn.Module): + """ Image to Patch Embedding + """ + + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, multi_conv=False): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) + self.img_size = img_size + self.patch_size = patch_size + self.num_patches = num_patches + if multi_conv: + if patch_size[0] == 12: + self.proj = nn.Sequential( + nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3), + nn.ReLU(inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=3, padding=0), + nn.ReLU(inplace=True), + nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1), + ) + elif patch_size[0] == 16: + self.proj = nn.Sequential( + nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3), + nn.ReLU(inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=2, padding=1), + nn.ReLU(inplace=True), + nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=2, padding=1), + ) + else: + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + + def forward(self, x): + B, C, H, W = x.shape + # FIXME look at relaxing size constraints + _assert(H == self.img_size[0], + f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") + _assert(W == self.img_size[1], + f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") + x = self.proj(x).flatten(2).transpose(1, 2) + return x + + +class CrossAttention(nn.Module): + def __init__( + self, + dim, + num_heads=8, + qkv_bias=False, + attn_drop=0., + proj_drop=0., + ): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights + self.scale = head_dim ** -0.5 + + self.wq = nn.Linear(dim, dim, bias=qkv_bias) + self.wk = nn.Linear(dim, dim, bias=qkv_bias) + self.wv = nn.Linear(dim, dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + B, N, C = x.shape + # B1C -> B1H(C/H) -> BH1(C/H) + q = self.wq(x[:, 0:1, ...]).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + # BNC -> BNH(C/H) -> BHN(C/H) + k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + # BNC -> BNH(C/H) -> BHN(C/H) + v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + + attn = (q @ k.transpose(-2, -1)) * self.scale # BH1(C/H) @ BH(C/H)N -> BH1N + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, 1, C) # (BH1N @ BHN(C/H)) -> BH1(C/H) -> B1H(C/H) -> B1C + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class CrossAttentionBlock(nn.Module): + + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = CrossAttention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + x = x[:, 0:1, ...] + self.drop_path(self.attn(self.norm1(x))) + return x + + +class MultiScaleBlock(nn.Module): + + def __init__( + self, + dim, + patches, + depth, + num_heads, + mlp_ratio, + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ): + super().__init__() + + num_branches = len(dim) + self.num_branches = num_branches + # different branch could have different embedding size, the first one is the base + self.blocks = nn.ModuleList() + for d in range(num_branches): + tmp = [] + for i in range(depth[d]): + tmp.append(Block( + dim=dim[d], + num_heads=num_heads[d], + mlp_ratio=mlp_ratio[d], + qkv_bias=qkv_bias, + proj_drop=proj_drop, + attn_drop=attn_drop, + drop_path=drop_path[i], + norm_layer=norm_layer, + )) + if len(tmp) != 0: + self.blocks.append(nn.Sequential(*tmp)) + + if len(self.blocks) == 0: + self.blocks = None + + self.projs = nn.ModuleList() + for d in range(num_branches): + if dim[d] == dim[(d + 1) % num_branches] and False: + tmp = [nn.Identity()] + else: + tmp = [norm_layer(dim[d]), act_layer(), nn.Linear(dim[d], dim[(d + 1) % num_branches])] + self.projs.append(nn.Sequential(*tmp)) + + self.fusion = nn.ModuleList() + for d in range(num_branches): + d_ = (d + 1) % num_branches + nh = num_heads[d_] + if depth[-1] == 0: # backward capability: + self.fusion.append( + CrossAttentionBlock( + dim=dim[d_], + num_heads=nh, + mlp_ratio=mlp_ratio[d], + qkv_bias=qkv_bias, + proj_drop=proj_drop, + attn_drop=attn_drop, + drop_path=drop_path[-1], + norm_layer=norm_layer, + )) + else: + tmp = [] + for _ in range(depth[-1]): + tmp.append(CrossAttentionBlock( + dim=dim[d_], + num_heads=nh, + mlp_ratio=mlp_ratio[d], + qkv_bias=qkv_bias, + proj_drop=proj_drop, + attn_drop=attn_drop, + drop_path=drop_path[-1], + norm_layer=norm_layer, + )) + self.fusion.append(nn.Sequential(*tmp)) + + self.revert_projs = nn.ModuleList() + for d in range(num_branches): + if dim[(d + 1) % num_branches] == dim[d] and False: + tmp = [nn.Identity()] + else: + tmp = [norm_layer(dim[(d + 1) % num_branches]), act_layer(), + nn.Linear(dim[(d + 1) % num_branches], dim[d])] + self.revert_projs.append(nn.Sequential(*tmp)) + + def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: + + outs_b = [] + for i, block in enumerate(self.blocks): + outs_b.append(block(x[i])) + + # only take the cls token out + proj_cls_token = torch.jit.annotate(List[torch.Tensor], []) + for i, proj in enumerate(self.projs): + proj_cls_token.append(proj(outs_b[i][:, 0:1, ...])) + + # cross attention + outs = [] + for i, (fusion, revert_proj) in enumerate(zip(self.fusion, self.revert_projs)): + tmp = torch.cat((proj_cls_token[i], outs_b[(i + 1) % self.num_branches][:, 1:, ...]), dim=1) + tmp = fusion(tmp) + reverted_proj_cls_token = revert_proj(tmp[:, 0:1, ...]) + tmp = torch.cat((reverted_proj_cls_token, outs_b[i][:, 1:, ...]), dim=1) + outs.append(tmp) + return outs + + +def _compute_num_patches(img_size, patches): + return [i[0] // p * i[1] // p for i, p in zip(img_size, patches)] + + +@register_notrace_function +def scale_image(x, ss: Tuple[int, int], crop_scale: bool = False): # annotations for torchscript + """ + Pulled out of CrossViT.forward_features to bury conditional logic in a leaf node for FX tracing. + Args: + x (Tensor): input image + ss (tuple[int, int]): height and width to scale to + crop_scale (bool): whether to crop instead of interpolate to achieve the desired scale. Defaults to False + Returns: + Tensor: the "scaled" image batch tensor + """ + H, W = x.shape[-2:] + if H != ss[0] or W != ss[1]: + if crop_scale and ss[0] <= H and ss[1] <= W: + cu, cl = int(round((H - ss[0]) / 2.)), int(round((W - ss[1]) / 2.)) + x = x[:, :, cu:cu + ss[0], cl:cl + ss[1]] + else: + x = torch.nn.functional.interpolate(x, size=ss, mode='bicubic', align_corners=False) + return x + + +class CrossVit(nn.Module): + """ Vision Transformer with support for patch or hybrid CNN input stage + """ + + def __init__( + self, + img_size=224, + img_scale=(1.0, 1.0), + patch_size=(8, 16), + in_chans=3, + num_classes=1000, + embed_dim=(192, 384), + depth=((1, 3, 1), (1, 3, 1), (1, 3, 1)), + num_heads=(6, 12), + mlp_ratio=(2., 2., 4.), + multi_conv=False, + crop_scale=False, + qkv_bias=True, + drop_rate=0., + pos_drop_rate=0., + proj_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + norm_layer=partial(nn.LayerNorm, eps=1e-6), + global_pool='token', + ): + super().__init__() + assert global_pool in ('token', 'avg') + + self.num_classes = num_classes + self.global_pool = global_pool + self.img_size = to_2tuple(img_size) + img_scale = to_2tuple(img_scale) + self.img_size_scaled = [tuple([int(sj * si) for sj in self.img_size]) for si in img_scale] + self.crop_scale = crop_scale # crop instead of interpolate for scale + num_patches = _compute_num_patches(self.img_size_scaled, patch_size) + self.num_branches = len(patch_size) + self.embed_dim = embed_dim + self.num_features = self.head_hidden_size = sum(embed_dim) + self.patch_embed = nn.ModuleList() + + # hard-coded for torch jit script + for i in range(self.num_branches): + setattr(self, f'pos_embed_{i}', nn.Parameter(torch.zeros(1, 1 + num_patches[i], embed_dim[i]))) + setattr(self, f'cls_token_{i}', nn.Parameter(torch.zeros(1, 1, embed_dim[i]))) + + for im_s, p, d in zip(self.img_size_scaled, patch_size, embed_dim): + self.patch_embed.append( + PatchEmbed( + img_size=im_s, + patch_size=p, + in_chans=in_chans, + embed_dim=d, + multi_conv=multi_conv, + )) + + self.pos_drop = nn.Dropout(p=pos_drop_rate) + + total_depth = sum([sum(x[-2:]) for x in depth]) + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, total_depth)] # stochastic depth decay rule + dpr_ptr = 0 + self.blocks = nn.ModuleList() + for idx, block_cfg in enumerate(depth): + curr_depth = max(block_cfg[:-1]) + block_cfg[-1] + dpr_ = dpr[dpr_ptr:dpr_ptr + curr_depth] + blk = MultiScaleBlock( + embed_dim, + num_patches, + block_cfg, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr_, + norm_layer=norm_layer, + ) + dpr_ptr += curr_depth + self.blocks.append(blk) + + self.norm = nn.ModuleList([norm_layer(embed_dim[i]) for i in range(self.num_branches)]) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.ModuleList([ + nn.Linear(embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() + for i in range(self.num_branches)]) + + for i in range(self.num_branches): + trunc_normal_(getattr(self, f'pos_embed_{i}'), std=.02) + trunc_normal_(getattr(self, f'cls_token_{i}'), std=.02) + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + out = set() + for i in range(self.num_branches): + out.add(f'cls_token_{i}') + pe = getattr(self, f'pos_embed_{i}', None) + if pe is not None and pe.requires_grad: + out.add(f'pos_embed_{i}') + return out + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^cls_token|pos_embed|patch_embed', # stem and embed + blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('token', 'avg') + self.global_pool = global_pool + self.head = nn.ModuleList([ + nn.Linear(self.embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() + for i in range(self.num_branches) + ]) + + def forward_features(self, x) -> List[torch.Tensor]: + B = x.shape[0] + xs = [] + for i, patch_embed in enumerate(self.patch_embed): + x_ = x + ss = self.img_size_scaled[i] + x_ = scale_image(x_, ss, self.crop_scale) + x_ = patch_embed(x_) + cls_tokens = self.cls_token_0 if i == 0 else self.cls_token_1 # hard-coded for torch jit script + cls_tokens = cls_tokens.expand(B, -1, -1) + x_ = torch.cat((cls_tokens, x_), dim=1) + pos_embed = self.pos_embed_0 if i == 0 else self.pos_embed_1 # hard-coded for torch jit script + x_ = x_ + pos_embed + x_ = self.pos_drop(x_) + xs.append(x_) + + for i, blk in enumerate(self.blocks): + xs = blk(xs) + + # NOTE: was before branch token section, move to here to assure all branch token are before layer norm + xs = [norm(xs[i]) for i, norm in enumerate(self.norm)] + return xs + + def forward_head(self, xs: List[torch.Tensor], pre_logits: bool = False) -> torch.Tensor: + xs = [x[:, 1:].mean(dim=1) for x in xs] if self.global_pool == 'avg' else [x[:, 0] for x in xs] + xs = [self.head_drop(x) for x in xs] + if pre_logits or isinstance(self.head[0], nn.Identity): + return torch.cat([x for x in xs], dim=1) + return torch.mean(torch.stack([head(xs[i]) for i, head in enumerate(self.head)], dim=0), dim=0) + + def forward(self, x): + xs = self.forward_features(x) + x = self.forward_head(xs) + return x + + +def _create_crossvit(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + + def pretrained_filter_fn(state_dict): + new_state_dict = {} + for key in state_dict.keys(): + if 'pos_embed' in key or 'cls_token' in key: + new_key = key.replace(".", "_") + else: + new_key = key + new_state_dict[new_key] = state_dict[key] + return new_state_dict + + return build_model_with_cfg( + CrossVit, + variant, + pretrained, + pretrained_filter_fn=pretrained_filter_fn, + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 240, 240), 'pool_size': None, 'crop_pct': 0.875, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True, + 'first_conv': ('patch_embed.0.proj', 'patch_embed.1.proj'), + 'classifier': ('head.0', 'head.1'), + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'crossvit_15_240.in1k': _cfg(hf_hub_id='timm/'), + 'crossvit_15_dagger_240.in1k': _cfg( + hf_hub_id='timm/', + first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), + ), + 'crossvit_15_dagger_408.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0, + ), + 'crossvit_18_240.in1k': _cfg(hf_hub_id='timm/'), + 'crossvit_18_dagger_240.in1k': _cfg( + hf_hub_id='timm/', + first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), + ), + 'crossvit_18_dagger_408.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0, + ), + 'crossvit_9_240.in1k': _cfg(hf_hub_id='timm/'), + 'crossvit_9_dagger_240.in1k': _cfg( + hf_hub_id='timm/', + first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), + ), + 'crossvit_base_240.in1k': _cfg(hf_hub_id='timm/'), + 'crossvit_small_240.in1k': _cfg(hf_hub_id='timm/'), + 'crossvit_tiny_240.in1k': _cfg(hf_hub_id='timm/'), +}) + + +@register_model +def crossvit_tiny_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict( + img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[96, 192], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], + num_heads=[3, 3], mlp_ratio=[4, 4, 1]) + model = _create_crossvit(variant='crossvit_tiny_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def crossvit_small_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict( + img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], + num_heads=[6, 6], mlp_ratio=[4, 4, 1]) + model = _create_crossvit(variant='crossvit_small_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def crossvit_base_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict( + img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[384, 768], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], + num_heads=[12, 12], mlp_ratio=[4, 4, 1]) + model = _create_crossvit(variant='crossvit_base_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def crossvit_9_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict( + img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]], + num_heads=[4, 4], mlp_ratio=[3, 3, 1]) + model = _create_crossvit(variant='crossvit_9_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def crossvit_15_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict( + img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], + num_heads=[6, 6], mlp_ratio=[3, 3, 1]) + model = _create_crossvit(variant='crossvit_15_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def crossvit_18_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict( + img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], + num_heads=[7, 7], mlp_ratio=[3, 3, 1], **kwargs) + model = _create_crossvit(variant='crossvit_18_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def crossvit_9_dagger_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict( + img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]], + num_heads=[4, 4], mlp_ratio=[3, 3, 1], multi_conv=True) + model = _create_crossvit(variant='crossvit_9_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def crossvit_15_dagger_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict( + img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], + num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True) + model = _create_crossvit(variant='crossvit_15_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def crossvit_15_dagger_408(pretrained=False, **kwargs) -> CrossVit: + model_args = dict( + img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], + num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True) + model = _create_crossvit(variant='crossvit_15_dagger_408', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def crossvit_18_dagger_240(pretrained=False, **kwargs) -> CrossVit: + model_args = dict( + img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], + num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True) + model = _create_crossvit(variant='crossvit_18_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def crossvit_18_dagger_408(pretrained=False, **kwargs) -> CrossVit: + model_args = dict( + img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], + num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True) + model = _create_crossvit(variant='crossvit_18_dagger_408', pretrained=pretrained, **dict(model_args, **kwargs)) + return model diff --git a/pytorch-image-models/timm/models/cspnet.py b/pytorch-image-models/timm/models/cspnet.py new file mode 100644 index 0000000000000000000000000000000000000000..81d11a06546d95af547e3e45631219c9d6d130f9 --- /dev/null +++ b/pytorch-image-models/timm/models/cspnet.py @@ -0,0 +1,1114 @@ +"""PyTorch CspNet + +A PyTorch implementation of Cross Stage Partial Networks including: +* CSPResNet50 +* CSPResNeXt50 +* CSPDarkNet53 +* and DarkNet53 for good measure + +Based on paper `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 + +Reference impl via darknet cfg files at https://github.com/WongKinYiu/CrossStagePartialNetworks + +Hacked together by / Copyright 2020 Ross Wightman +""" +from dataclasses import dataclass, asdict, replace +from functools import partial +from typing import Any, Dict, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ClassifierHead, ConvNormAct, DropPath, get_attn, create_act_layer, make_divisible +from ._builder import build_model_with_cfg +from ._manipulate import named_apply, MATCH_PREV_GROUP +from ._registry import register_model, generate_default_cfgs + +__all__ = ['CspNet'] # model_registry will add each entrypoint fn to this + + +@dataclass +class CspStemCfg: + out_chs: Union[int, Tuple[int, ...]] = 32 + stride: Union[int, Tuple[int, ...]] = 2 + kernel_size: int = 3 + padding: Union[int, str] = '' + pool: Optional[str] = '' + + +def _pad_arg(x, n): + # pads an argument tuple to specified n by padding with last value + if not isinstance(x, (tuple, list)): + x = (x,) + curr_n = len(x) + pad_n = n - curr_n + if pad_n <= 0: + return x[:n] + return tuple(x + (x[-1],) * pad_n) + + +@dataclass +class CspStagesCfg: + depth: Tuple[int, ...] = (3, 3, 5, 2) # block depth (number of block repeats in stages) + out_chs: Tuple[int, ...] = (128, 256, 512, 1024) # number of output channels for blocks in stage + stride: Union[int, Tuple[int, ...]] = 2 # stride of stage + groups: Union[int, Tuple[int, ...]] = 1 # num kxk conv groups + block_ratio: Union[float, Tuple[float, ...]] = 1.0 + bottle_ratio: Union[float, Tuple[float, ...]] = 1. # bottleneck-ratio of blocks in stage + avg_down: Union[bool, Tuple[bool, ...]] = False + attn_layer: Optional[Union[str, Tuple[str, ...]]] = None + attn_kwargs: Optional[Union[Dict, Tuple[Dict]]] = None + stage_type: Union[str, Tuple[str]] = 'csp' # stage type ('csp', 'cs2', 'dark') + block_type: Union[str, Tuple[str]] = 'bottle' # blocks type for stages ('bottle', 'dark') + + # cross-stage only + expand_ratio: Union[float, Tuple[float, ...]] = 1.0 + cross_linear: Union[bool, Tuple[bool, ...]] = False + down_growth: Union[bool, Tuple[bool, ...]] = False + + def __post_init__(self): + n = len(self.depth) + assert len(self.out_chs) == n + self.stride = _pad_arg(self.stride, n) + self.groups = _pad_arg(self.groups, n) + self.block_ratio = _pad_arg(self.block_ratio, n) + self.bottle_ratio = _pad_arg(self.bottle_ratio, n) + self.avg_down = _pad_arg(self.avg_down, n) + self.attn_layer = _pad_arg(self.attn_layer, n) + self.attn_kwargs = _pad_arg(self.attn_kwargs, n) + self.stage_type = _pad_arg(self.stage_type, n) + self.block_type = _pad_arg(self.block_type, n) + + self.expand_ratio = _pad_arg(self.expand_ratio, n) + self.cross_linear = _pad_arg(self.cross_linear, n) + self.down_growth = _pad_arg(self.down_growth, n) + + +@dataclass +class CspModelCfg: + stem: CspStemCfg + stages: CspStagesCfg + zero_init_last: bool = True # zero init last weight (usually bn) in residual path + act_layer: str = 'leaky_relu' + norm_layer: str = 'batchnorm' + aa_layer: Optional[str] = None # FIXME support string factory for this + + +def _cs3_cfg( + width_multiplier=1.0, + depth_multiplier=1.0, + avg_down=False, + act_layer='silu', + focus=False, + attn_layer=None, + attn_kwargs=None, + bottle_ratio=1.0, + block_type='dark', +): + if focus: + stem_cfg = CspStemCfg( + out_chs=make_divisible(64 * width_multiplier), + kernel_size=6, stride=2, padding=2, pool='') + else: + stem_cfg = CspStemCfg( + out_chs=tuple([make_divisible(c * width_multiplier) for c in (32, 64)]), + kernel_size=3, stride=2, pool='') + return CspModelCfg( + stem=stem_cfg, + stages=CspStagesCfg( + out_chs=tuple([make_divisible(c * width_multiplier) for c in (128, 256, 512, 1024)]), + depth=tuple([int(d * depth_multiplier) for d in (3, 6, 9, 3)]), + stride=2, + bottle_ratio=bottle_ratio, + block_ratio=0.5, + avg_down=avg_down, + attn_layer=attn_layer, + attn_kwargs=attn_kwargs, + stage_type='cs3', + block_type=block_type, + ), + act_layer=act_layer, + ) + + +class BottleneckBlock(nn.Module): + """ ResNe(X)t Bottleneck Block + """ + + def __init__( + self, + in_chs, + out_chs, + dilation=1, + bottle_ratio=0.25, + groups=1, + act_layer=nn.ReLU, + norm_layer=nn.BatchNorm2d, + attn_last=False, + attn_layer=None, + drop_block=None, + drop_path=0. + ): + super(BottleneckBlock, self).__init__() + mid_chs = int(round(out_chs * bottle_ratio)) + ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) + attn_last = attn_layer is not None and attn_last + attn_first = attn_layer is not None and not attn_last + + self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs) + self.conv2 = ConvNormAct( + mid_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, + drop_layer=drop_block, **ckwargs) + self.attn2 = attn_layer(mid_chs, act_layer=act_layer) if attn_first else nn.Identity() + self.conv3 = ConvNormAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs) + self.attn3 = attn_layer(out_chs, act_layer=act_layer) if attn_last else nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() + self.act3 = create_act_layer(act_layer) + + def zero_init_last(self): + nn.init.zeros_(self.conv3.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.conv2(x) + x = self.attn2(x) + x = self.conv3(x) + x = self.attn3(x) + x = self.drop_path(x) + shortcut + # FIXME partial shortcut needed if first block handled as per original, not used for my current impl + #x[:, :shortcut.size(1)] += shortcut + x = self.act3(x) + return x + + +class DarkBlock(nn.Module): + """ DarkNet Block + """ + + def __init__( + self, + in_chs, + out_chs, + dilation=1, + bottle_ratio=0.5, + groups=1, + act_layer=nn.ReLU, + norm_layer=nn.BatchNorm2d, + attn_layer=None, + drop_block=None, + drop_path=0. + ): + super(DarkBlock, self).__init__() + mid_chs = int(round(out_chs * bottle_ratio)) + ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) + + self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs) + self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity() + self.conv2 = ConvNormAct( + mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups, + drop_layer=drop_block, **ckwargs) + self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() + + def zero_init_last(self): + nn.init.zeros_(self.conv2.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.attn(x) + x = self.conv2(x) + x = self.drop_path(x) + shortcut + return x + + +class EdgeBlock(nn.Module): + """ EdgeResidual / Fused-MBConv / MobileNetV1-like 3x3 + 1x1 block (w/ activated output) + """ + + def __init__( + self, + in_chs, + out_chs, + dilation=1, + bottle_ratio=0.5, + groups=1, + act_layer=nn.ReLU, + norm_layer=nn.BatchNorm2d, + attn_layer=None, + drop_block=None, + drop_path=0. + ): + super(EdgeBlock, self).__init__() + mid_chs = int(round(out_chs * bottle_ratio)) + ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) + + self.conv1 = ConvNormAct( + in_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, + drop_layer=drop_block, **ckwargs) + self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity() + self.conv2 = ConvNormAct(mid_chs, out_chs, kernel_size=1, **ckwargs) + self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() + + def zero_init_last(self): + nn.init.zeros_(self.conv2.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.attn(x) + x = self.conv2(x) + x = self.drop_path(x) + shortcut + return x + + +class CrossStage(nn.Module): + """Cross Stage.""" + def __init__( + self, + in_chs, + out_chs, + stride, + dilation, + depth, + block_ratio=1., + bottle_ratio=1., + expand_ratio=1., + groups=1, + first_dilation=None, + avg_down=False, + down_growth=False, + cross_linear=False, + block_dpr=None, + block_fn=BottleneckBlock, + **block_kwargs, + ): + super(CrossStage, self).__init__() + first_dilation = first_dilation or dilation + down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels + self.expand_chs = exp_chs = int(round(out_chs * expand_ratio)) + block_out_chs = int(round(out_chs * block_ratio)) + conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) + aa_layer = block_kwargs.pop('aa_layer', None) + + if stride != 1 or first_dilation != dilation: + if avg_down: + self.conv_down = nn.Sequential( + nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling + ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) + ) + else: + self.conv_down = ConvNormAct( + in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, + aa_layer=aa_layer, **conv_kwargs) + prev_chs = down_chs + else: + self.conv_down = nn.Identity() + prev_chs = in_chs + + # FIXME this 1x1 expansion is pushed down into the cross and block paths in the darknet cfgs. Also, + # there is also special case for the first stage for some of the model that results in uneven split + # across the two paths. I did it this way for simplicity for now. + self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs) + prev_chs = exp_chs // 2 # output of conv_exp is always split in two + + self.blocks = nn.Sequential() + for i in range(depth): + self.blocks.add_module(str(i), block_fn( + in_chs=prev_chs, + out_chs=block_out_chs, + dilation=dilation, + bottle_ratio=bottle_ratio, + groups=groups, + drop_path=block_dpr[i] if block_dpr is not None else 0., + **block_kwargs, + )) + prev_chs = block_out_chs + + # transition convs + self.conv_transition_b = ConvNormAct(prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs) + self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) + + def forward(self, x): + x = self.conv_down(x) + x = self.conv_exp(x) + xs, xb = x.split(self.expand_chs // 2, dim=1) + xb = self.blocks(xb) + xb = self.conv_transition_b(xb).contiguous() + out = self.conv_transition(torch.cat([xs, xb], dim=1)) + return out + + +class CrossStage3(nn.Module): + """Cross Stage 3. + Similar to CrossStage, but with only one transition conv for the output. + """ + def __init__( + self, + in_chs, + out_chs, + stride, + dilation, + depth, + block_ratio=1., + bottle_ratio=1., + expand_ratio=1., + groups=1, + first_dilation=None, + avg_down=False, + down_growth=False, + cross_linear=False, + block_dpr=None, + block_fn=BottleneckBlock, + **block_kwargs, + ): + super(CrossStage3, self).__init__() + first_dilation = first_dilation or dilation + down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels + self.expand_chs = exp_chs = int(round(out_chs * expand_ratio)) + block_out_chs = int(round(out_chs * block_ratio)) + conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) + aa_layer = block_kwargs.pop('aa_layer', None) + + if stride != 1 or first_dilation != dilation: + if avg_down: + self.conv_down = nn.Sequential( + nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling + ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) + ) + else: + self.conv_down = ConvNormAct( + in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, + aa_layer=aa_layer, **conv_kwargs) + prev_chs = down_chs + else: + self.conv_down = None + prev_chs = in_chs + + # expansion conv + self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs) + prev_chs = exp_chs // 2 # expanded output is split in 2 for blocks and cross stage + + self.blocks = nn.Sequential() + for i in range(depth): + self.blocks.add_module(str(i), block_fn( + in_chs=prev_chs, + out_chs=block_out_chs, + dilation=dilation, + bottle_ratio=bottle_ratio, + groups=groups, + drop_path=block_dpr[i] if block_dpr is not None else 0., + **block_kwargs, + )) + prev_chs = block_out_chs + + # transition convs + self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) + + def forward(self, x): + x = self.conv_down(x) + x = self.conv_exp(x) + x1, x2 = x.split(self.expand_chs // 2, dim=1) + x1 = self.blocks(x1) + out = self.conv_transition(torch.cat([x1, x2], dim=1)) + return out + + +class DarkStage(nn.Module): + """DarkNet stage.""" + + def __init__( + self, + in_chs, + out_chs, + stride, + dilation, + depth, + block_ratio=1., + bottle_ratio=1., + groups=1, + first_dilation=None, + avg_down=False, + block_fn=BottleneckBlock, + block_dpr=None, + **block_kwargs, + ): + super(DarkStage, self).__init__() + first_dilation = first_dilation or dilation + conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) + aa_layer = block_kwargs.pop('aa_layer', None) + + if avg_down: + self.conv_down = nn.Sequential( + nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling + ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) + ) + else: + self.conv_down = ConvNormAct( + in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, + aa_layer=aa_layer, **conv_kwargs) + + prev_chs = out_chs + block_out_chs = int(round(out_chs * block_ratio)) + self.blocks = nn.Sequential() + for i in range(depth): + self.blocks.add_module(str(i), block_fn( + in_chs=prev_chs, + out_chs=block_out_chs, + dilation=dilation, + bottle_ratio=bottle_ratio, + groups=groups, + drop_path=block_dpr[i] if block_dpr is not None else 0., + **block_kwargs + )) + prev_chs = block_out_chs + + def forward(self, x): + x = self.conv_down(x) + x = self.blocks(x) + return x + + +def create_csp_stem( + in_chans=3, + out_chs=32, + kernel_size=3, + stride=2, + pool='', + padding='', + act_layer=nn.ReLU, + norm_layer=nn.BatchNorm2d, + aa_layer=None, +): + stem = nn.Sequential() + feature_info = [] + if not isinstance(out_chs, (tuple, list)): + out_chs = [out_chs] + stem_depth = len(out_chs) + assert stem_depth + assert stride in (1, 2, 4) + prev_feat = None + prev_chs = in_chans + last_idx = stem_depth - 1 + stem_stride = 1 + for i, chs in enumerate(out_chs): + conv_name = f'conv{i + 1}' + conv_stride = 2 if (i == 0 and stride > 1) or (i == last_idx and stride > 2 and not pool) else 1 + if conv_stride > 1 and prev_feat is not None: + feature_info.append(prev_feat) + stem.add_module(conv_name, ConvNormAct( + prev_chs, chs, kernel_size, + stride=conv_stride, + padding=padding if i == 0 else '', + act_layer=act_layer, + norm_layer=norm_layer, + )) + stem_stride *= conv_stride + prev_chs = chs + prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', conv_name])) + if pool: + assert stride > 2 + if prev_feat is not None: + feature_info.append(prev_feat) + if aa_layer is not None: + stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=1, padding=1)) + stem.add_module('aa', aa_layer(channels=prev_chs, stride=2)) + pool_name = 'aa' + else: + stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) + pool_name = 'pool' + stem_stride *= 2 + prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', pool_name])) + feature_info.append(prev_feat) + return stem, feature_info + + +def _get_stage_fn(stage_args): + stage_type = stage_args.pop('stage_type') + assert stage_type in ('dark', 'csp', 'cs3') + if stage_type == 'dark': + stage_args.pop('expand_ratio', None) + stage_args.pop('cross_linear', None) + stage_args.pop('down_growth', None) + stage_fn = DarkStage + elif stage_type == 'csp': + stage_fn = CrossStage + else: + stage_fn = CrossStage3 + return stage_fn, stage_args + + +def _get_block_fn(stage_args): + block_type = stage_args.pop('block_type') + assert block_type in ('dark', 'edge', 'bottle') + if block_type == 'dark': + return DarkBlock, stage_args + elif block_type == 'edge': + return EdgeBlock, stage_args + else: + return BottleneckBlock, stage_args + + +def _get_attn_fn(stage_args): + attn_layer = stage_args.pop('attn_layer') + attn_kwargs = stage_args.pop('attn_kwargs', None) or {} + if attn_layer is not None: + attn_layer = get_attn(attn_layer) + if attn_kwargs: + attn_layer = partial(attn_layer, **attn_kwargs) + return attn_layer, stage_args + + +def create_csp_stages( + cfg: CspModelCfg, + drop_path_rate: float, + output_stride: int, + stem_feat: Dict[str, Any], +): + cfg_dict = asdict(cfg.stages) + num_stages = len(cfg.stages.depth) + cfg_dict['block_dpr'] = [None] * num_stages if not drop_path_rate else \ + [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.stages.depth)).split(cfg.stages.depth)] + stage_args = [dict(zip(cfg_dict.keys(), values)) for values in zip(*cfg_dict.values())] + block_kwargs = dict( + act_layer=cfg.act_layer, + norm_layer=cfg.norm_layer, + ) + + dilation = 1 + net_stride = stem_feat['reduction'] + prev_chs = stem_feat['num_chs'] + prev_feat = stem_feat + feature_info = [] + stages = [] + for stage_idx, stage_args in enumerate(stage_args): + stage_fn, stage_args = _get_stage_fn(stage_args) + block_fn, stage_args = _get_block_fn(stage_args) + attn_fn, stage_args = _get_attn_fn(stage_args) + stride = stage_args.pop('stride') + if stride != 1 and prev_feat: + feature_info.append(prev_feat) + if net_stride >= output_stride and stride > 1: + dilation *= stride + stride = 1 + net_stride *= stride + first_dilation = 1 if dilation in (1, 2) else 2 + + stages += [stage_fn( + prev_chs, + **stage_args, + stride=stride, + first_dilation=first_dilation, + dilation=dilation, + block_fn=block_fn, + aa_layer=cfg.aa_layer, + attn_layer=attn_fn, # will be passed through stage as block_kwargs + **block_kwargs, + )] + prev_chs = stage_args['out_chs'] + prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}') + + feature_info.append(prev_feat) + return nn.Sequential(*stages), feature_info + + +class CspNet(nn.Module): + """Cross Stage Partial base model. + + Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 + Ref Impl: https://github.com/WongKinYiu/CrossStagePartialNetworks + + NOTE: There are differences in the way I handle the 1x1 'expansion' conv in this impl vs the + darknet impl. I did it this way for simplicity and less special cases. + """ + + def __init__( + self, + cfg: CspModelCfg, + in_chans=3, + num_classes=1000, + output_stride=32, + global_pool='avg', + drop_rate=0., + drop_path_rate=0., + zero_init_last=True, + **kwargs, + ): + """ + Args: + cfg (CspModelCfg): Model architecture configuration + in_chans (int): Number of input channels (default: 3) + num_classes (int): Number of classifier classes (default: 1000) + output_stride (int): Output stride of network, one of (8, 16, 32) (default: 32) + global_pool (str): Global pooling type (default: 'avg') + drop_rate (float): Dropout rate (default: 0.) + drop_path_rate (float): Stochastic depth drop-path rate (default: 0.) + zero_init_last (bool): Zero-init last weight of residual path + kwargs (dict): Extra kwargs overlayed onto cfg + """ + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + assert output_stride in (8, 16, 32) + + cfg = replace(cfg, **kwargs) # overlay kwargs onto cfg + layer_args = dict( + act_layer=cfg.act_layer, + norm_layer=cfg.norm_layer, + aa_layer=cfg.aa_layer + ) + self.feature_info = [] + + # Construct the stem + self.stem, stem_feat_info = create_csp_stem(in_chans, **asdict(cfg.stem), **layer_args) + self.feature_info.extend(stem_feat_info[:-1]) + + # Construct the stages + self.stages, stage_feat_info = create_csp_stages( + cfg, + drop_path_rate=drop_path_rate, + output_stride=output_stride, + stem_feat=stem_feat_info[-1], + ) + prev_chs = stage_feat_info[-1]['num_chs'] + self.feature_info.extend(stage_feat_info) + + # Construct the head + self.num_features = self.head_hidden_size = prev_chs + self.head = ClassifierHead( + in_features=prev_chs, + num_classes=num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + ) + + named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^stem', + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+)\.blocks\.(\d+)', None), + (r'^stages\.(\d+)\..*transition', MATCH_PREV_GROUP), # map to last block in stage + (r'^stages\.(\d+)', (0,)), + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _init_weights(module, name, zero_init_last=False): + if isinstance(module, nn.Conv2d): + nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Linear): + nn.init.normal_(module.weight, mean=0.0, std=0.01) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif zero_init_last and hasattr(module, 'zero_init_last'): + module.zero_init_last() + + +model_cfgs = dict( + cspresnet50=CspModelCfg( + stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'), + stages=CspStagesCfg( + depth=(3, 3, 5, 2), + out_chs=(128, 256, 512, 1024), + stride=(1, 2), + expand_ratio=2., + bottle_ratio=0.5, + cross_linear=True, + ), + ), + cspresnet50d=CspModelCfg( + stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'), + stages=CspStagesCfg( + depth=(3, 3, 5, 2), + out_chs=(128, 256, 512, 1024), + stride=(1,) + (2,), + expand_ratio=2., + bottle_ratio=0.5, + block_ratio=1., + cross_linear=True, + ), + ), + cspresnet50w=CspModelCfg( + stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'), + stages=CspStagesCfg( + depth=(3, 3, 5, 2), + out_chs=(256, 512, 1024, 2048), + stride=(1,) + (2,), + expand_ratio=1., + bottle_ratio=0.25, + block_ratio=0.5, + cross_linear=True, + ), + ), + cspresnext50=CspModelCfg( + stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'), + stages=CspStagesCfg( + depth=(3, 3, 5, 2), + out_chs=(256, 512, 1024, 2048), + stride=(1,) + (2,), + groups=32, + expand_ratio=1., + bottle_ratio=1., + block_ratio=0.5, + cross_linear=True, + ), + ), + cspdarknet53=CspModelCfg( + stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), + stages=CspStagesCfg( + depth=(1, 2, 8, 8, 4), + out_chs=(64, 128, 256, 512, 1024), + stride=2, + expand_ratio=(2.,) + (1.,), + bottle_ratio=(0.5,) + (1.,), + block_ratio=(1.,) + (0.5,), + down_growth=True, + block_type='dark', + ), + ), + darknet17=CspModelCfg( + stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), + stages=CspStagesCfg( + depth=(1,) * 5, + out_chs=(64, 128, 256, 512, 1024), + stride=(2,), + bottle_ratio=(0.5,), + block_ratio=(1.,), + stage_type='dark', + block_type='dark', + ), + ), + darknet21=CspModelCfg( + stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), + stages=CspStagesCfg( + depth=(1, 1, 1, 2, 2), + out_chs=(64, 128, 256, 512, 1024), + stride=(2,), + bottle_ratio=(0.5,), + block_ratio=(1.,), + stage_type='dark', + block_type='dark', + + ), + ), + sedarknet21=CspModelCfg( + stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), + stages=CspStagesCfg( + depth=(1, 1, 1, 2, 2), + out_chs=(64, 128, 256, 512, 1024), + stride=2, + bottle_ratio=0.5, + block_ratio=1., + attn_layer='se', + stage_type='dark', + block_type='dark', + + ), + ), + darknet53=CspModelCfg( + stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), + stages=CspStagesCfg( + depth=(1, 2, 8, 8, 4), + out_chs=(64, 128, 256, 512, 1024), + stride=2, + bottle_ratio=0.5, + block_ratio=1., + stage_type='dark', + block_type='dark', + ), + ), + darknetaa53=CspModelCfg( + stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), + stages=CspStagesCfg( + depth=(1, 2, 8, 8, 4), + out_chs=(64, 128, 256, 512, 1024), + stride=2, + bottle_ratio=0.5, + block_ratio=1., + avg_down=True, + stage_type='dark', + block_type='dark', + ), + ), + + cs3darknet_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5), + cs3darknet_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67), + cs3darknet_l=_cs3_cfg(), + cs3darknet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33), + + cs3darknet_focus_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5, focus=True), + cs3darknet_focus_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67, focus=True), + cs3darknet_focus_l=_cs3_cfg(focus=True), + cs3darknet_focus_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, focus=True), + + cs3sedarknet_l=_cs3_cfg(attn_layer='se', attn_kwargs=dict(rd_ratio=.25)), + cs3sedarknet_x=_cs3_cfg(attn_layer='se', width_multiplier=1.25, depth_multiplier=1.33), + + cs3sedarknet_xdw=CspModelCfg( + stem=CspStemCfg(out_chs=(32, 64), kernel_size=3, stride=2, pool=''), + stages=CspStagesCfg( + depth=(3, 6, 12, 4), + out_chs=(256, 512, 1024, 2048), + stride=2, + groups=(1, 1, 256, 512), + bottle_ratio=0.5, + block_ratio=0.5, + attn_layer='se', + ), + act_layer='silu', + ), + + cs3edgenet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge'), + cs3se_edgenet_x=_cs3_cfg( + width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge', + attn_layer='se', attn_kwargs=dict(rd_ratio=.25)), +) + + +def _create_cspnet(variant, pretrained=False, **kwargs): + if variant.startswith('darknet') or variant.startswith('cspdarknet'): + # NOTE: DarkNet is one of few models with stride==1 features w/ 6 out_indices [0..5] + default_out_indices = (0, 1, 2, 3, 4, 5) + else: + default_out_indices = (0, 1, 2, 3, 4) + out_indices = kwargs.pop('out_indices', default_out_indices) + return build_model_with_cfg( + CspNet, variant, pretrained, + model_cfg=model_cfgs[variant], + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), + 'crop_pct': 0.887, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'cspresnet50.ra_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth'), + 'cspresnet50d.untrained': _cfg(), + 'cspresnet50w.untrained': _cfg(), + 'cspresnext50.ra_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth', + ), + 'cspdarknet53.ra_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'), + + 'darknet17.untrained': _cfg(), + 'darknet21.untrained': _cfg(), + 'sedarknet21.untrained': _cfg(), + 'darknet53.c2ns_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknet53_256_c2ns-3aeff817.pth', + interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'darknetaa53.c2ns_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknetaa53_c2ns-5c28ec8a.pth', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + + 'cs3darknet_s.untrained': _cfg(interpolation='bicubic'), + 'cs3darknet_m.c2ns_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_m_c2ns-43f06604.pth', + interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95, + ), + 'cs3darknet_l.c2ns_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_l_c2ns-16220c5d.pth', + interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'cs3darknet_x.c2ns_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_x_c2ns-4e4490aa.pth', + interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + + 'cs3darknet_focus_s.ra4_e3600_r256_in1k': _cfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + interpolation='bicubic', test_input_size=(3, 320, 320), test_crop_pct=1.0), + 'cs3darknet_focus_m.c2ns_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_m_c2ns-e23bed41.pth', + interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'cs3darknet_focus_l.c2ns_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_l_c2ns-65ef8888.pth', + interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'cs3darknet_focus_x.untrained': _cfg(interpolation='bicubic'), + + 'cs3sedarknet_l.c2ns_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_l_c2ns-e8d1dc13.pth', + interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'cs3sedarknet_x.c2ns_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_x_c2ns-b4d0abc0.pth', + interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), + + 'cs3sedarknet_xdw.untrained': _cfg(interpolation='bicubic'), + + 'cs3edgenet_x.c2_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3edgenet_x_c2-2e1610a9.pth', + interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'cs3se_edgenet_x.c2ns_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3se_edgenet_x_c2ns-76f8e3ac.pth', + interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0), +}) + + +@register_model +def cspresnet50(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cspresnet50', pretrained=pretrained, **kwargs) + + +@register_model +def cspresnet50d(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cspresnet50d', pretrained=pretrained, **kwargs) + + +@register_model +def cspresnet50w(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cspresnet50w', pretrained=pretrained, **kwargs) + + +@register_model +def cspresnext50(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cspresnext50', pretrained=pretrained, **kwargs) + + +@register_model +def cspdarknet53(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cspdarknet53', pretrained=pretrained, **kwargs) + + +@register_model +def darknet17(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('darknet17', pretrained=pretrained, **kwargs) + + +@register_model +def darknet21(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('darknet21', pretrained=pretrained, **kwargs) + + +@register_model +def sedarknet21(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('sedarknet21', pretrained=pretrained, **kwargs) + + +@register_model +def darknet53(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('darknet53', pretrained=pretrained, **kwargs) + + +@register_model +def darknetaa53(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('darknetaa53', pretrained=pretrained, **kwargs) + + +@register_model +def cs3darknet_s(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_s', pretrained=pretrained, **kwargs) + + +@register_model +def cs3darknet_m(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_m', pretrained=pretrained, **kwargs) + + +@register_model +def cs3darknet_l(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_l', pretrained=pretrained, **kwargs) + + +@register_model +def cs3darknet_x(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_x', pretrained=pretrained, **kwargs) + + +@register_model +def cs3darknet_focus_s(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_focus_s', pretrained=pretrained, **kwargs) + + +@register_model +def cs3darknet_focus_m(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_focus_m', pretrained=pretrained, **kwargs) + + +@register_model +def cs3darknet_focus_l(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_focus_l', pretrained=pretrained, **kwargs) + + +@register_model +def cs3darknet_focus_x(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3darknet_focus_x', pretrained=pretrained, **kwargs) + + +@register_model +def cs3sedarknet_l(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3sedarknet_l', pretrained=pretrained, **kwargs) + + +@register_model +def cs3sedarknet_x(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3sedarknet_x', pretrained=pretrained, **kwargs) + + +@register_model +def cs3sedarknet_xdw(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3sedarknet_xdw', pretrained=pretrained, **kwargs) + + +@register_model +def cs3edgenet_x(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3edgenet_x', pretrained=pretrained, **kwargs) + + +@register_model +def cs3se_edgenet_x(pretrained=False, **kwargs) -> CspNet: + return _create_cspnet('cs3se_edgenet_x', pretrained=pretrained, **kwargs) \ No newline at end of file diff --git a/pytorch-image-models/timm/models/davit.py b/pytorch-image-models/timm/models/davit.py new file mode 100644 index 0000000000000000000000000000000000000000..5bda6610613a79e804c30fd10deabfea2231b052 --- /dev/null +++ b/pytorch-image-models/timm/models/davit.py @@ -0,0 +1,816 @@ +""" DaViT: Dual Attention Vision Transformers + +As described in https://arxiv.org/abs/2204.03645 + +Input size invariant transformer architecture that combines channel and spacial +attention in each block. The attention mechanisms used are linear in complexity. + +DaViT model defs and weights adapted from https://github.com/dingmyu/davit, original copyright below + +""" +# Copyright (c) 2022 Mingyu Ding +# All rights reserved. +# This source code is licensed under the MIT license +from functools import partial +from typing import Optional, Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import Tensor + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, to_2tuple, trunc_normal_, Mlp, LayerNorm2d, get_norm_layer, use_fused_attn +from timm.layers import NormMlpClassifierHead, ClassifierHead +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_function +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model + +__all__ = ['DaVit'] + + +class ConvPosEnc(nn.Module): + def __init__(self, dim: int, k: int = 3, act: bool = False): + super(ConvPosEnc, self).__init__() + + self.proj = nn.Conv2d( + dim, + dim, + kernel_size=k, + stride=1, + padding=k // 2, + groups=dim, + ) + self.act = nn.GELU() if act else nn.Identity() + + def forward(self, x: Tensor): + feat = self.proj(x) + x = x + self.act(feat) + return x + + +class Stem(nn.Module): + """ Size-agnostic implementation of 2D image to patch embedding, + allowing input size to be adjusted during model forward operation + """ + + def __init__( + self, + in_chs=3, + out_chs=96, + stride=4, + norm_layer=LayerNorm2d, + ): + super().__init__() + stride = to_2tuple(stride) + self.stride = stride + self.in_chs = in_chs + self.out_chs = out_chs + assert stride[0] == 4 # only setup for stride==4 + self.conv = nn.Conv2d( + in_chs, + out_chs, + kernel_size=7, + stride=stride, + padding=3, + ) + self.norm = norm_layer(out_chs) + + def forward(self, x: Tensor): + B, C, H, W = x.shape + pad_r = (self.stride[1] - W % self.stride[1]) % self.stride[1] + pad_b = (self.stride[0] - H % self.stride[0]) % self.stride[0] + x = F.pad(x, (0, pad_r, 0, pad_b)) + x = self.conv(x) + x = self.norm(x) + return x + + +class Downsample(nn.Module): + def __init__( + self, + in_chs, + out_chs, + kernel_size=3, + norm_layer=LayerNorm2d, + ): + super().__init__() + self.in_chs = in_chs + self.out_chs = out_chs + + self.norm = norm_layer(in_chs) + self.even_k = kernel_size % 2 == 0 + self.conv = nn.Conv2d( + in_chs, + out_chs, + kernel_size=kernel_size, + stride=2, + padding=0 if self.even_k else kernel_size // 2, + ) + + def forward(self, x: Tensor): + B, C, H, W = x.shape + x = self.norm(x) + if self.even_k: + k_h, k_w = self.conv.kernel_size + pad_r = (k_w - W % k_w) % k_w + pad_b = (k_h - H % k_h) % k_h + x = F.pad(x, (0, pad_r , 0, pad_b)) + x = self.conv(x) + return x + + +class ChannelAttentionV2(nn.Module): + + def __init__(self, dim, num_heads=8, qkv_bias=True, dynamic_scale=True): + super().__init__() + self.groups = num_heads + self.head_dim = dim // num_heads + self.dynamic_scale = dynamic_scale + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + def forward(self, x): + B, N, C = x.shape + + qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + + if self.dynamic_scale: + q = q * N ** -0.5 + else: + q = q * self.head_dim ** -0.5 + attn = q.transpose(-1, -2) @ k + attn = attn.softmax(dim=-1) + x = (attn @ v.transpose(-1, -2)).transpose(-1, -2) + + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + return x + + + +class ChannelAttention(nn.Module): + + def __init__(self, dim, num_heads=8, qkv_bias=False): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + def forward(self, x: Tensor): + B, N, C = x.shape + + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + + k = k * self.scale + attn = k.transpose(-1, -2) @ v + attn = attn.softmax(dim=-1) + x = (attn @ q.transpose(-1, -2)).transpose(-1, -2) + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + return x + + +class ChannelBlock(nn.Module): + + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ffn=True, + cpe_act=False, + v2=False, + ): + super().__init__() + + self.cpe1 = ConvPosEnc(dim=dim, k=3, act=cpe_act) + self.ffn = ffn + self.norm1 = norm_layer(dim) + attn_layer = ChannelAttentionV2 if v2 else ChannelAttention + self.attn = attn_layer( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + ) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.cpe2 = ConvPosEnc(dim=dim, k=3, act=cpe_act) + + if self.ffn: + self.norm2 = norm_layer(dim) + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + else: + self.norm2 = None + self.mlp = None + self.drop_path2 = None + + def forward(self, x: Tensor): + B, C, H, W = x.shape + + x = self.cpe1(x).flatten(2).transpose(1, 2) + + cur = self.norm1(x) + cur = self.attn(cur) + x = x + self.drop_path1(cur) + + x = self.cpe2(x.transpose(1, 2).view(B, C, H, W)) + + if self.mlp is not None: + x = x.flatten(2).transpose(1, 2) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + x = x.transpose(1, 2).view(B, C, H, W) + + return x + + +def window_partition(x: Tensor, window_size: Tuple[int, int]): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + + +@register_notrace_function # reason: int argument is a Proxy +def window_reverse(windows: Tensor, window_size: Tuple[int, int], H: int, W: int): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + Returns: + x: (B, H, W, C) + """ + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + + +class WindowAttention(nn.Module): + r""" Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + """ + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, window_size, num_heads, qkv_bias=True): + super().__init__() + self.dim = dim + self.window_size = window_size + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x: Tensor): + B_, N, C = x.shape + + qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v) + else: + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + attn = self.softmax(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + return x + + +class SpatialBlock(nn.Module): + r""" Windows Block. + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. + window_size (int): Window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__( + self, + dim, + num_heads, + window_size=7, + mlp_ratio=4., + qkv_bias=True, + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ffn=True, + cpe_act=False, + ): + super().__init__() + self.dim = dim + self.ffn = ffn + self.num_heads = num_heads + self.window_size = to_2tuple(window_size) + self.mlp_ratio = mlp_ratio + + self.cpe1 = ConvPosEnc(dim=dim, k=3, act=cpe_act) + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, + self.window_size, + num_heads=num_heads, + qkv_bias=qkv_bias, + ) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.cpe2 = ConvPosEnc(dim=dim, k=3, act=cpe_act) + if self.ffn: + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + else: + self.norm2 = None + self.mlp = None + self.drop_path1 = None + + def forward(self, x: Tensor): + B, C, H, W = x.shape + + shortcut = self.cpe1(x).flatten(2).transpose(1, 2) + + x = self.norm1(shortcut) + x = x.view(B, H, W, C) + + pad_l = pad_t = 0 + pad_r = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] + pad_b = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] + x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) + _, Hp, Wp, _ = x.shape + + x_windows = window_partition(x, self.window_size) + x_windows = x_windows.view(-1, self.window_size[0] * self.window_size[1], C) + + # W-MSA/SW-MSA + attn_windows = self.attn(x_windows) + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) + x = window_reverse(attn_windows, self.window_size, Hp, Wp) + + # if pad_r > 0 or pad_b > 0: + x = x[:, :H, :W, :].contiguous() + + x = x.view(B, H * W, C) + x = shortcut + self.drop_path1(x) + + x = self.cpe2(x.transpose(1, 2).view(B, C, H, W)) + + if self.mlp is not None: + x = x.flatten(2).transpose(1, 2) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + x = x.transpose(1, 2).view(B, C, H, W) + + return x + + +class DaVitStage(nn.Module): + def __init__( + self, + in_chs, + out_chs, + depth=1, + downsample=True, + attn_types=('spatial', 'channel'), + num_heads=3, + window_size=7, + mlp_ratio=4., + qkv_bias=True, + drop_path_rates=(0, 0), + norm_layer=LayerNorm2d, + norm_layer_cl=nn.LayerNorm, + ffn=True, + cpe_act=False, + down_kernel_size=2, + named_blocks=False, + channel_attn_v2=False, + ): + super().__init__() + + self.grad_checkpointing = False + + # downsample embedding layer at the beginning of each stage + if downsample: + self.downsample = Downsample(in_chs, out_chs, kernel_size=down_kernel_size, norm_layer=norm_layer) + else: + self.downsample = nn.Identity() + + ''' + repeating alternating attention blocks in each stage + default: (spatial -> channel) x depth + + potential opportunity to integrate with a more general version of ByobNet/ByoaNet + since the logic is similar + ''' + stage_blocks = [] + for block_idx in range(depth): + from collections import OrderedDict + dual_attention_block = [] + for attn_idx, attn_type in enumerate(attn_types): + if attn_type == 'spatial': + dual_attention_block.append(('spatial_block', SpatialBlock( + dim=out_chs, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + drop_path=drop_path_rates[block_idx], + norm_layer=norm_layer_cl, + ffn=ffn, + cpe_act=cpe_act, + window_size=window_size, + ))) + elif attn_type == 'channel': + dual_attention_block.append(('channel_block', ChannelBlock( + dim=out_chs, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + drop_path=drop_path_rates[block_idx], + norm_layer=norm_layer_cl, + ffn=ffn, + cpe_act=cpe_act, + v2=channel_attn_v2, + ))) + if named_blocks: + stage_blocks.append(nn.Sequential(OrderedDict(dual_attention_block))) + else: + stage_blocks.append(nn.Sequential(*[b[1] for b in dual_attention_block])) + self.blocks = nn.Sequential(*stage_blocks) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + def forward(self, x: Tensor): + x = self.downsample(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class DaVit(nn.Module): + r""" DaViT + A PyTorch implementation of `DaViT: Dual Attention Vision Transformers` - https://arxiv.org/abs/2204.03645 + Supports arbitrary input sizes and pyramid feature extraction + + Args: + in_chans (int): Number of input image channels. Default: 3 + num_classes (int): Number of classes for classification head. Default: 1000 + depths (tuple(int)): Number of blocks in each stage. Default: (1, 1, 3, 1) + embed_dims (tuple(int)): Patch embedding dimension. Default: (96, 192, 384, 768) + num_heads (tuple(int)): Number of attention heads in different layers. Default: (3, 6, 12, 24) + window_size (int): Window size. Default: 7 + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + """ + + def __init__( + self, + in_chans=3, + depths=(1, 1, 3, 1), + embed_dims=(96, 192, 384, 768), + num_heads=(3, 6, 12, 24), + window_size=7, + mlp_ratio=4, + qkv_bias=True, + norm_layer='layernorm2d', + norm_layer_cl='layernorm', + norm_eps=1e-5, + attn_types=('spatial', 'channel'), + ffn=True, + cpe_act=False, + down_kernel_size=2, + channel_attn_v2=False, + named_blocks=False, + drop_rate=0., + drop_path_rate=0., + num_classes=1000, + global_pool='avg', + head_norm_first=False, + ): + super().__init__() + num_stages = len(embed_dims) + assert num_stages == len(num_heads) == len(depths) + norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps) + norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps) + self.num_classes = num_classes + self.num_features = self.head_hidden_size = embed_dims[-1] + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.feature_info = [] + + self.stem = Stem(in_chans, embed_dims[0], norm_layer=norm_layer) + in_chs = embed_dims[0] + + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + stages = [] + for stage_idx in range(num_stages): + out_chs = embed_dims[stage_idx] + stage = DaVitStage( + in_chs, + out_chs, + depth=depths[stage_idx], + downsample=stage_idx > 0, + attn_types=attn_types, + num_heads=num_heads[stage_idx], + window_size=window_size, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + drop_path_rates=dpr[stage_idx], + norm_layer=norm_layer, + norm_layer_cl=norm_layer_cl, + ffn=ffn, + cpe_act=cpe_act, + down_kernel_size=down_kernel_size, + channel_attn_v2=channel_attn_v2, + named_blocks=named_blocks, + ) + in_chs = out_chs + stages.append(stage) + self.feature_info += [dict(num_chs=out_chs, reduction=2, module=f'stages.{stage_idx}')] + + self.stages = nn.Sequential(*stages) + + # if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets + # otherwise pool -> norm -> fc, the default DaViT order, similar to ConvNeXt + # FIXME generalize this structure to ClassifierHead + if head_norm_first: + self.norm_pre = norm_layer(self.num_features) + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=self.drop_rate, + ) + else: + self.norm_pre = nn.Identity() + self.head = NormMlpClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=self.drop_rate, + norm_layer=norm_layer, + ) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', # stem and embed + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+).downsample', (0,)), + (r'^stages\.(\d+)\.blocks\.(\d+)', None), + (r'^norm_pre', (99999,)), + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + for stage in self.stages: + stage.set_grad_checkpointing(enable=enable) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + x = self.norm_pre(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _convert_florence2(state_dict, model, prefix='vision_tower.'): + import re + out_dict = {} + + for k, v in state_dict.items(): + if k.startswith(prefix): + k = k.replace(prefix, '') + else: + continue + k = re.sub(r'convs.([0-9]+)', r'stages.\1.downsample', k) + k = re.sub(r'blocks.([0-9]+)', r'stages.\1.blocks', k) + k = k.replace('downsample.proj', 'downsample.conv') + k = k.replace('stages.0.downsample', 'stem') + #k = k.replace('head.', 'head.fc.') + #k = k.replace('norms.', 'head.norm.') + k = k.replace('window_attn.norm.', 'norm1.') + k = k.replace('window_attn.fn.', 'attn.') + k = k.replace('channel_attn.norm.', 'norm1.') + k = k.replace('channel_attn.fn.', 'attn.') + k = k.replace('ffn.norm.', 'norm2.') + k = k.replace('ffn.fn.net.', 'mlp.') + k = k.replace('conv1.fn.dw', 'cpe1.proj') + k = k.replace('conv2.fn.dw', 'cpe2.proj') + out_dict[k] = v + + return out_dict + + +def checkpoint_filter_fn(state_dict, model): + """ Remap MSFT checkpoints -> timm """ + if 'head.fc.weight' in state_dict: + return state_dict # non-MSFT checkpoint + + if 'state_dict' in state_dict: + state_dict = state_dict['state_dict'] + + if 'vision_tower.convs.0.proj.weight' in state_dict: + return _convert_florence2(state_dict, model) + + import re + out_dict = {} + for k, v in state_dict.items(): + k = re.sub(r'patch_embeds.([0-9]+)', r'stages.\1.downsample', k) + k = re.sub(r'main_blocks.([0-9]+)', r'stages.\1.blocks', k) + k = k.replace('downsample.proj', 'downsample.conv') + k = k.replace('stages.0.downsample', 'stem') + k = k.replace('head.', 'head.fc.') + k = k.replace('norms.', 'head.norm.') + k = k.replace('cpe.0', 'cpe1') + k = k.replace('cpe.1', 'cpe2') + out_dict[k] = v + return out_dict + + +def _create_davit(variant, pretrained=False, **kwargs): + default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1)))) + out_indices = kwargs.pop('out_indices', default_out_indices) + + strict = kwargs.pop('pretrained_strict', True) + if variant.endswith('_fl'): + # FIXME cleaner approach to missing head norm? + strict = False + + model = build_model_with_cfg( + DaVit, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + pretrained_strict=strict, + **kwargs) + + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.95, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv', 'classifier': 'head.fc', + **kwargs + } + + +# TODO contact authors to get larger pretrained models +default_cfgs = generate_default_cfgs({ + # official microsoft weights from https://github.com/dingmyu/davit + 'davit_tiny.msft_in1k': _cfg( + hf_hub_id='timm/'), + 'davit_small.msft_in1k': _cfg( + hf_hub_id='timm/'), + 'davit_base.msft_in1k': _cfg( + hf_hub_id='timm/'), + 'davit_large': _cfg(), + 'davit_huge': _cfg(), + 'davit_giant': _cfg(), + 'davit_base_fl.msft_florence2': _cfg( + hf_hub_id='microsoft/Florence-2-base', + num_classes=0, input_size=(3, 768, 768)), + 'davit_huge_fl.msft_florence2': _cfg( + hf_hub_id='microsoft/Florence-2-large', + num_classes=0, input_size=(3, 768, 768)), +}) + + +@register_model +def davit_tiny(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 3, 1), embed_dims=(96, 192, 384, 768), num_heads=(3, 6, 12, 24)) + return _create_davit('davit_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def davit_small(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 9, 1), embed_dims=(96, 192, 384, 768), num_heads=(3, 6, 12, 24)) + return _create_davit('davit_small', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def davit_base(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 9, 1), embed_dims=(128, 256, 512, 1024), num_heads=(4, 8, 16, 32)) + return _create_davit('davit_base', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def davit_large(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 9, 1), embed_dims=(192, 384, 768, 1536), num_heads=(6, 12, 24, 48)) + return _create_davit('davit_large', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def davit_huge(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 9, 1), embed_dims=(256, 512, 1024, 2048), num_heads=(8, 16, 32, 64)) + return _create_davit('davit_huge', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def davit_giant(pretrained=False, **kwargs) -> DaVit: + model_args = dict(depths=(1, 1, 12, 3), embed_dims=(384, 768, 1536, 3072), num_heads=(12, 24, 48, 96)) + return _create_davit('davit_giant', pretrained=pretrained, **dict(model_args, **kwargs)) + + + +@register_model +def davit_base_fl(pretrained=False, **kwargs) -> DaVit: + model_args = dict( + depths=(1, 1, 9, 1), embed_dims=(128, 256, 512, 1024), num_heads=(4, 8, 16, 32), + window_size=12, down_kernel_size=3, channel_attn_v2=True, named_blocks=True, + ) + return _create_davit('davit_base_fl', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def davit_huge_fl(pretrained=False, **kwargs) -> DaVit: + # NOTE: huge image tower used in 'large' Florence2 model + model_args = dict( + depths=(1, 1, 9, 1), embed_dims=(256, 512, 1024, 2048), num_heads=(8, 16, 32, 64), + window_size=12, down_kernel_size=3, channel_attn_v2=True, named_blocks=True, + ) + return _create_davit('davit_huge_fl', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/deit.py b/pytorch-image-models/timm/models/deit.py new file mode 100644 index 0000000000000000000000000000000000000000..0072013bf63ce7d529672f8d6678571f196eddf3 --- /dev/null +++ b/pytorch-image-models/timm/models/deit.py @@ -0,0 +1,417 @@ +""" DeiT - Data-efficient Image Transformers + +DeiT model defs and weights from https://github.com/facebookresearch/deit, original copyright below + +paper: `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 + +paper: `DeiT III: Revenge of the ViT` - https://arxiv.org/abs/2204.07118 + +Modifications copyright 2021, Ross Wightman +""" +# Copyright (c) 2015-present, Facebook, Inc. +# All rights reserved. +from functools import partial +from typing import Optional + +import torch +from torch import nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import resample_abs_pos_embed +from timm.models.vision_transformer import VisionTransformer, trunc_normal_, checkpoint_filter_fn +from ._builder import build_model_with_cfg +from ._registry import generate_default_cfgs, register_model, register_model_deprecations + +__all__ = ['VisionTransformerDistilled'] # model_registry will add each entrypoint fn to this + + +class VisionTransformerDistilled(VisionTransformer): + """ Vision Transformer w/ Distillation Token and Head + + Distillation token & head support for `DeiT: Data-efficient Image Transformers` + - https://arxiv.org/abs/2012.12877 + """ + + def __init__(self, *args, **kwargs): + weight_init = kwargs.pop('weight_init', '') + super().__init__(*args, **kwargs, weight_init='skip') + assert self.global_pool in ('token',) + + self.num_prefix_tokens = 2 + self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) + self.pos_embed = nn.Parameter( + torch.zeros(1, self.patch_embed.num_patches + self.num_prefix_tokens, self.embed_dim)) + self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity() + self.distilled_training = False # must set this True to train w/ distillation token + + self.init_weights(weight_init) + + def init_weights(self, mode=''): + trunc_normal_(self.dist_token, std=.02) + super().init_weights(mode=mode) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^cls_token|pos_embed|patch_embed|dist_token', + blocks=[ + (r'^blocks\.(\d+)', None), + (r'^norm', (99999,))] # final norm w/ last block + ) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head, self.head_dist + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.distilled_training = enable + + def _pos_embed(self, x): + if self.dynamic_img_size: + B, H, W, C = x.shape + prev_grid_size = self.patch_embed.grid_size + pos_embed = resample_abs_pos_embed( + self.pos_embed, + new_size=(H, W), + old_size=prev_grid_size, + num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens, + ) + x = x.view(B, -1, C) + else: + pos_embed = self.pos_embed + if self.no_embed_class: + # deit-3, updated JAX (big vision) + # position embedding does not overlap with class token, add then concat + x = x + pos_embed + x = torch.cat(( + self.cls_token.expand(x.shape[0], -1, -1), + self.dist_token.expand(x.shape[0], -1, -1), + x), + dim=1) + else: + # original timm, JAX, and deit vit impl + # pos_embed has entry for class token, concat then add + x = torch.cat(( + self.cls_token.expand(x.shape[0], -1, -1), + self.dist_token.expand(x.shape[0], -1, -1), + x), + dim=1) + x = x + pos_embed + return self.pos_drop(x) + + def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: + x, x_dist = x[:, 0], x[:, 1] + if pre_logits: + return (x + x_dist) / 2 + x = self.head(x) + x_dist = self.head_dist(x_dist) + if self.distilled_training and self.training and not torch.jit.is_scripting(): + # only return separate classification predictions when training in distilled mode + return x, x_dist + else: + # during standard train / finetune, inference average the classifier predictions + return (x + x_dist) / 2 + + +def _create_deit(variant, pretrained=False, distilled=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model_cls = VisionTransformerDistilled if distilled else VisionTransformer + model = build_model_with_cfg( + model_cls, + variant, + pretrained, + pretrained_filter_fn=partial(checkpoint_filter_fn, adapt_layer_scale=True), + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # deit models (FB weights) + 'deit_tiny_patch16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'), + 'deit_small_patch16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'), + 'deit_base_patch16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth'), + 'deit_base_patch16_384.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth', + input_size=(3, 384, 384), crop_pct=1.0), + + 'deit_tiny_distilled_patch16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth', + classifier=('head', 'head_dist')), + 'deit_small_distilled_patch16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth', + classifier=('head', 'head_dist')), + 'deit_base_distilled_patch16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', + classifier=('head', 'head_dist')), + 'deit_base_distilled_patch16_384.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', + input_size=(3, 384, 384), crop_pct=1.0, + classifier=('head', 'head_dist')), + + 'deit3_small_patch16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_1k.pth'), + 'deit3_small_patch16_384.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_1k.pth', + input_size=(3, 384, 384), crop_pct=1.0), + 'deit3_medium_patch16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_1k.pth'), + 'deit3_base_patch16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_1k.pth'), + 'deit3_base_patch16_384.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_1k.pth', + input_size=(3, 384, 384), crop_pct=1.0), + 'deit3_large_patch16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_1k.pth'), + 'deit3_large_patch16_384.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_1k.pth', + input_size=(3, 384, 384), crop_pct=1.0), + 'deit3_huge_patch14_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_1k.pth'), + + 'deit3_small_patch16_224.fb_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_21k.pth', + crop_pct=1.0), + 'deit3_small_patch16_384.fb_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_21k.pth', + input_size=(3, 384, 384), crop_pct=1.0), + 'deit3_medium_patch16_224.fb_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_21k.pth', + crop_pct=1.0), + 'deit3_base_patch16_224.fb_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_21k.pth', + crop_pct=1.0), + 'deit3_base_patch16_384.fb_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_21k.pth', + input_size=(3, 384, 384), crop_pct=1.0), + 'deit3_large_patch16_224.fb_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_21k.pth', + crop_pct=1.0), + 'deit3_large_patch16_384.fb_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_21k.pth', + input_size=(3, 384, 384), crop_pct=1.0), + 'deit3_huge_patch14_224.fb_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_21k_v1.pth', + crop_pct=1.0), +}) + + +@register_model +def deit_tiny_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) + model = _create_deit('deit_tiny_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) + model = _create_deit('deit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_deit('deit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_deit('deit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: + """ DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) + model = _create_deit( + 'deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit_small_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: + """ DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) + model = _create_deit( + 'deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit_base_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: + """ DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_deit( + 'deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit_base_distilled_patch16_384(pretrained=False, **kwargs) -> VisionTransformerDistilled: + """ DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_deit( + 'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit3_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT-3 small model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6) + model = _create_deit('deit3_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit3_small_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT-3 small model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6) + model = _create_deit('deit3_small_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit3_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT-3 medium model @ 224x224 (https://arxiv.org/abs/2012.12877). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, no_embed_class=True, init_values=1e-6) + model = _create_deit('deit3_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit3_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT-3 base model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6) + model = _create_deit('deit3_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit3_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6) + model = _create_deit('deit3_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit3_large_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT-3 large model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6) + model = _create_deit('deit3_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit3_large_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT-3 large model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6) + model = _create_deit('deit3_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def deit3_huge_patch14_224(pretrained=False, **kwargs) -> VisionTransformer: + """ DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). + ImageNet-1k weights from https://github.com/facebookresearch/deit. + """ + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, no_embed_class=True, init_values=1e-6) + model = _create_deit('deit3_huge_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +register_model_deprecations(__name__, { + 'deit3_small_patch16_224_in21ft1k': 'deit3_small_patch16_224.fb_in22k_ft_in1k', + 'deit3_small_patch16_384_in21ft1k': 'deit3_small_patch16_384.fb_in22k_ft_in1k', + 'deit3_medium_patch16_224_in21ft1k': 'deit3_medium_patch16_224.fb_in22k_ft_in1k', + 'deit3_base_patch16_224_in21ft1k': 'deit3_base_patch16_224.fb_in22k_ft_in1k', + 'deit3_base_patch16_384_in21ft1k': 'deit3_base_patch16_384.fb_in22k_ft_in1k', + 'deit3_large_patch16_224_in21ft1k': 'deit3_large_patch16_224.fb_in22k_ft_in1k', + 'deit3_large_patch16_384_in21ft1k': 'deit3_large_patch16_384.fb_in22k_ft_in1k', + 'deit3_huge_patch14_224_in21ft1k': 'deit3_huge_patch14_224.fb_in22k_ft_in1k' +}) diff --git a/pytorch-image-models/timm/models/densenet.py b/pytorch-image-models/timm/models/densenet.py new file mode 100644 index 0000000000000000000000000000000000000000..31d1f73f9ccfc8d9cf839544791417adccd9fe8f --- /dev/null +++ b/pytorch-image-models/timm/models/densenet.py @@ -0,0 +1,424 @@ +"""Pytorch Densenet implementation w/ tweaks +This file is a copy of https://github.com/pytorch/vision 'densenet.py' (BSD-3-Clause) with +fixed kwargs passthrough and addition of dynamic global avg/max pool. +""" +import re +from collections import OrderedDict + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as cp +from torch.jit.annotations import List + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import BatchNormAct2d, get_norm_act_layer, BlurPool2d, create_classifier +from ._builder import build_model_with_cfg +from ._manipulate import MATCH_PREV_GROUP +from ._registry import register_model, generate_default_cfgs, register_model_deprecations + +__all__ = ['DenseNet'] + + +class DenseLayer(nn.Module): + def __init__( + self, + num_input_features, + growth_rate, + bn_size, + norm_layer=BatchNormAct2d, + drop_rate=0., + grad_checkpointing=False, + ): + super(DenseLayer, self).__init__() + self.add_module('norm1', norm_layer(num_input_features)), + self.add_module('conv1', nn.Conv2d( + num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), + self.add_module('norm2', norm_layer(bn_size * growth_rate)), + self.add_module('conv2', nn.Conv2d( + bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), + self.drop_rate = float(drop_rate) + self.grad_checkpointing = grad_checkpointing + + def bottleneck_fn(self, xs): + # type: (List[torch.Tensor]) -> torch.Tensor + concated_features = torch.cat(xs, 1) + bottleneck_output = self.conv1(self.norm1(concated_features)) # noqa: T484 + return bottleneck_output + + # todo: rewrite when torchscript supports any + def any_requires_grad(self, x): + # type: (List[torch.Tensor]) -> bool + for tensor in x: + if tensor.requires_grad: + return True + return False + + @torch.jit.unused # noqa: T484 + def call_checkpoint_bottleneck(self, x): + # type: (List[torch.Tensor]) -> torch.Tensor + def closure(*xs): + return self.bottleneck_fn(xs) + + return cp.checkpoint(closure, *x) + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (List[torch.Tensor]) -> (torch.Tensor) + pass + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (torch.Tensor) -> (torch.Tensor) + pass + + # torchscript does not yet support *args, so we overload method + # allowing it to take either a List[Tensor] or single Tensor + def forward(self, x): # noqa: F811 + if isinstance(x, torch.Tensor): + prev_features = [x] + else: + prev_features = x + + if self.grad_checkpointing and self.any_requires_grad(prev_features): + if torch.jit.is_scripting(): + raise Exception("Memory Efficient not supported in JIT") + bottleneck_output = self.call_checkpoint_bottleneck(prev_features) + else: + bottleneck_output = self.bottleneck_fn(prev_features) + + new_features = self.conv2(self.norm2(bottleneck_output)) + if self.drop_rate > 0: + new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) + return new_features + + +class DenseBlock(nn.ModuleDict): + _version = 2 + + def __init__( + self, + num_layers, + num_input_features, + bn_size, + growth_rate, + norm_layer=BatchNormAct2d, + drop_rate=0., + grad_checkpointing=False, + ): + super(DenseBlock, self).__init__() + for i in range(num_layers): + layer = DenseLayer( + num_input_features + i * growth_rate, + growth_rate=growth_rate, + bn_size=bn_size, + norm_layer=norm_layer, + drop_rate=drop_rate, + grad_checkpointing=grad_checkpointing, + ) + self.add_module('denselayer%d' % (i + 1), layer) + + def forward(self, init_features): + features = [init_features] + for name, layer in self.items(): + new_features = layer(features) + features.append(new_features) + return torch.cat(features, 1) + + +class DenseTransition(nn.Sequential): + def __init__( + self, + num_input_features, + num_output_features, + norm_layer=BatchNormAct2d, + aa_layer=None, + ): + super(DenseTransition, self).__init__() + self.add_module('norm', norm_layer(num_input_features)) + self.add_module('conv', nn.Conv2d( + num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) + if aa_layer is not None: + self.add_module('pool', aa_layer(num_output_features, stride=2)) + else: + self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) + + +class DenseNet(nn.Module): + r"""Densenet-BC model class, based on + `"Densely Connected Convolutional Networks" `_ + + Args: + growth_rate (int) - how many filters to add each layer (`k` in paper) + block_config (list of 4 ints) - how many layers in each pooling block + bn_size (int) - multiplicative factor for number of bottle neck layers + (i.e. bn_size * k features in the bottleneck layer) + drop_rate (float) - dropout rate before classifier layer + proj_drop_rate (float) - dropout rate after each dense layer + num_classes (int) - number of classification classes + memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, + but slower. Default: *False*. See `"paper" `_ + """ + + def __init__( + self, + growth_rate=32, + block_config=(6, 12, 24, 16), + num_classes=1000, + in_chans=3, + global_pool='avg', + bn_size=4, + stem_type='', + act_layer='relu', + norm_layer='batchnorm2d', + aa_layer=None, + drop_rate=0., + proj_drop_rate=0., + memory_efficient=False, + aa_stem_only=True, + ): + self.num_classes = num_classes + super(DenseNet, self).__init__() + norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) + + # Stem + deep_stem = 'deep' in stem_type # 3x3 deep stem + num_init_features = growth_rate * 2 + if aa_layer is None: + stem_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + else: + stem_pool = nn.Sequential(*[ + nn.MaxPool2d(kernel_size=3, stride=1, padding=1), + aa_layer(channels=num_init_features, stride=2)]) + if deep_stem: + stem_chs_1 = stem_chs_2 = growth_rate + if 'tiered' in stem_type: + stem_chs_1 = 3 * (growth_rate // 4) + stem_chs_2 = num_init_features if 'narrow' in stem_type else 6 * (growth_rate // 4) + self.features = nn.Sequential(OrderedDict([ + ('conv0', nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False)), + ('norm0', norm_layer(stem_chs_1)), + ('conv1', nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False)), + ('norm1', norm_layer(stem_chs_2)), + ('conv2', nn.Conv2d(stem_chs_2, num_init_features, 3, stride=1, padding=1, bias=False)), + ('norm2', norm_layer(num_init_features)), + ('pool0', stem_pool), + ])) + else: + self.features = nn.Sequential(OrderedDict([ + ('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), + ('norm0', norm_layer(num_init_features)), + ('pool0', stem_pool), + ])) + self.feature_info = [ + dict(num_chs=num_init_features, reduction=2, module=f'features.norm{2 if deep_stem else 0}')] + current_stride = 4 + + # DenseBlocks + num_features = num_init_features + for i, num_layers in enumerate(block_config): + block = DenseBlock( + num_layers=num_layers, + num_input_features=num_features, + bn_size=bn_size, + growth_rate=growth_rate, + norm_layer=norm_layer, + drop_rate=proj_drop_rate, + grad_checkpointing=memory_efficient, + ) + module_name = f'denseblock{(i + 1)}' + self.features.add_module(module_name, block) + num_features = num_features + num_layers * growth_rate + transition_aa_layer = None if aa_stem_only else aa_layer + if i != len(block_config) - 1: + self.feature_info += [ + dict(num_chs=num_features, reduction=current_stride, module='features.' + module_name)] + current_stride *= 2 + trans = DenseTransition( + num_input_features=num_features, + num_output_features=num_features // 2, + norm_layer=norm_layer, + aa_layer=transition_aa_layer, + ) + self.features.add_module(f'transition{i + 1}', trans) + num_features = num_features // 2 + + # Final batch norm + self.features.add_module('norm5', norm_layer(num_features)) + + self.feature_info += [dict(num_chs=num_features, reduction=current_stride, module='features.norm5')] + self.num_features = self.head_hidden_size = num_features + + # Linear layer + global_pool, classifier = create_classifier( + self.num_features, + self.num_classes, + pool_type=global_pool, + ) + self.global_pool = global_pool + self.head_drop = nn.Dropout(drop_rate) + self.classifier = classifier + + # Official init from torch repo. + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight) + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Linear): + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^features\.conv[012]|features\.norm[012]|features\.pool[012]', + blocks=r'^features\.(?:denseblock|transition)(\d+)' if coarse else [ + (r'^features\.denseblock(\d+)\.denselayer(\d+)', None), + (r'^features\.transition(\d+)', MATCH_PREV_GROUP) # FIXME combine with previous denselayer + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for b in self.features.modules(): + if isinstance(b, DenseLayer): + b.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.classifier = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + return self.features(x) + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.classifier(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _filter_torchvision_pretrained(state_dict): + pattern = re.compile( + r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') + + for key in list(state_dict.keys()): + res = pattern.match(key) + if res: + new_key = res.group(1) + res.group(2) + state_dict[new_key] = state_dict[key] + del state_dict[key] + return state_dict + + +def _create_densenet(variant, growth_rate, block_config, pretrained, **kwargs): + kwargs['growth_rate'] = growth_rate + kwargs['block_config'] = block_config + return build_model_with_cfg( + DenseNet, + variant, + pretrained, + feature_cfg=dict(flatten_sequential=True), + pretrained_filter_fn=_filter_torchvision_pretrained, + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'features.conv0', 'classifier': 'classifier', **kwargs, + } + + +default_cfgs = generate_default_cfgs({ + 'densenet121.ra_in1k': _cfg( + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'densenetblur121d.ra_in1k': _cfg( + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'densenet264d.untrained': _cfg(), + 'densenet121.tv_in1k': _cfg(hf_hub_id='timm/'), + 'densenet169.tv_in1k': _cfg(hf_hub_id='timm/'), + 'densenet201.tv_in1k': _cfg(hf_hub_id='timm/'), + 'densenet161.tv_in1k': _cfg(hf_hub_id='timm/'), +}) + + +@register_model +def densenet121(pretrained=False, **kwargs) -> DenseNet: + r"""Densenet-121 model from + `"Densely Connected Convolutional Networks" ` + """ + model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16)) + model = _create_densenet('densenet121', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def densenetblur121d(pretrained=False, **kwargs) -> DenseNet: + r"""Densenet-121 w/ blur-pooling & 3-layer 3x3 stem + `"Densely Connected Convolutional Networks" ` + """ + model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep', aa_layer=BlurPool2d) + model = _create_densenet('densenetblur121d', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def densenet169(pretrained=False, **kwargs) -> DenseNet: + r"""Densenet-169 model from + `"Densely Connected Convolutional Networks" ` + """ + model_args = dict(growth_rate=32, block_config=(6, 12, 32, 32)) + model = _create_densenet('densenet169', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def densenet201(pretrained=False, **kwargs) -> DenseNet: + r"""Densenet-201 model from + `"Densely Connected Convolutional Networks" ` + """ + model_args = dict(growth_rate=32, block_config=(6, 12, 48, 32)) + model = _create_densenet('densenet201', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def densenet161(pretrained=False, **kwargs) -> DenseNet: + r"""Densenet-161 model from + `"Densely Connected Convolutional Networks" ` + """ + model_args = dict(growth_rate=48, block_config=(6, 12, 36, 24)) + model = _create_densenet('densenet161', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def densenet264d(pretrained=False, **kwargs) -> DenseNet: + r"""Densenet-264 model from + `"Densely Connected Convolutional Networks" ` + """ + model_args = dict(growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep') + model = _create_densenet('densenet264d', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +register_model_deprecations(__name__, { + 'tv_densenet121': 'densenet121.tv_in1k', +}) diff --git a/pytorch-image-models/timm/models/dla.py b/pytorch-image-models/timm/models/dla.py new file mode 100644 index 0000000000000000000000000000000000000000..666acd9d9ca8186f5e7b19a3e71beb551e6be8e1 --- /dev/null +++ b/pytorch-image-models/timm/models/dla.py @@ -0,0 +1,515 @@ +""" Deep Layer Aggregation and DLA w/ Res2Net +DLA original adapted from Official Pytorch impl at: https://github.com/ucbdrive/dla +DLA Paper: `Deep Layer Aggregation` - https://arxiv.org/abs/1707.06484 + +Res2Net additions from: https://github.com/gasvn/Res2Net/ +Res2Net Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169 +""" +import math +from typing import List, Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs + +__all__ = ['DLA'] + + +class DlaBasic(nn.Module): + """DLA Basic""" + + def __init__(self, inplanes, planes, stride=1, dilation=1, **_): + super(DlaBasic, self).__init__() + self.conv1 = nn.Conv2d( + inplanes, planes, kernel_size=3, + stride=stride, padding=dilation, bias=False, dilation=dilation) + self.bn1 = nn.BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = nn.Conv2d( + planes, planes, kernel_size=3, + stride=1, padding=dilation, bias=False, dilation=dilation) + self.bn2 = nn.BatchNorm2d(planes) + self.stride = stride + + def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None): + if shortcut is None: + shortcut = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + out += shortcut + out = self.relu(out) + + return out + + +class DlaBottleneck(nn.Module): + """DLA/DLA-X Bottleneck""" + expansion = 2 + + def __init__(self, inplanes, outplanes, stride=1, dilation=1, cardinality=1, base_width=64): + super(DlaBottleneck, self).__init__() + self.stride = stride + mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality) + mid_planes = mid_planes // self.expansion + + self.conv1 = nn.Conv2d(inplanes, mid_planes, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(mid_planes) + self.conv2 = nn.Conv2d( + mid_planes, mid_planes, kernel_size=3, + stride=stride, padding=dilation, bias=False, dilation=dilation, groups=cardinality) + self.bn2 = nn.BatchNorm2d(mid_planes) + self.conv3 = nn.Conv2d(mid_planes, outplanes, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(outplanes) + self.relu = nn.ReLU(inplace=True) + + def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None): + if shortcut is None: + shortcut = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + out += shortcut + out = self.relu(out) + + return out + + +class DlaBottle2neck(nn.Module): + """ Res2Net/Res2NeXT DLA Bottleneck + Adapted from https://github.com/gasvn/Res2Net/blob/master/dla.py + """ + expansion = 2 + + def __init__(self, inplanes, outplanes, stride=1, dilation=1, scale=4, cardinality=8, base_width=4): + super(DlaBottle2neck, self).__init__() + self.is_first = stride > 1 + self.scale = scale + mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality) + mid_planes = mid_planes // self.expansion + self.width = mid_planes + + self.conv1 = nn.Conv2d(inplanes, mid_planes * scale, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(mid_planes * scale) + + num_scale_convs = max(1, scale - 1) + convs = [] + bns = [] + for _ in range(num_scale_convs): + convs.append(nn.Conv2d( + mid_planes, mid_planes, kernel_size=3, + stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False)) + bns.append(nn.BatchNorm2d(mid_planes)) + self.convs = nn.ModuleList(convs) + self.bns = nn.ModuleList(bns) + self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1) if self.is_first else None + + self.conv3 = nn.Conv2d(mid_planes * scale, outplanes, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(outplanes) + self.relu = nn.ReLU(inplace=True) + + def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None): + if shortcut is None: + shortcut = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + spx = torch.split(out, self.width, 1) + spo = [] + sp = spx[0] # redundant, for torchscript + for i, (conv, bn) in enumerate(zip(self.convs, self.bns)): + if i == 0 or self.is_first: + sp = spx[i] + else: + sp = sp + spx[i] + sp = conv(sp) + sp = bn(sp) + sp = self.relu(sp) + spo.append(sp) + if self.scale > 1: + if self.pool is not None: # self.is_first == True, None check for torchscript + spo.append(self.pool(spx[-1])) + else: + spo.append(spx[-1]) + out = torch.cat(spo, 1) + + out = self.conv3(out) + out = self.bn3(out) + + out += shortcut + out = self.relu(out) + + return out + + +class DlaRoot(nn.Module): + def __init__(self, in_channels, out_channels, kernel_size, shortcut): + super(DlaRoot, self).__init__() + self.conv = nn.Conv2d( + in_channels, out_channels, 1, stride=1, bias=False, padding=(kernel_size - 1) // 2) + self.bn = nn.BatchNorm2d(out_channels) + self.relu = nn.ReLU(inplace=True) + self.shortcut = shortcut + + def forward(self, x_children: List[torch.Tensor]): + x = self.conv(torch.cat(x_children, 1)) + x = self.bn(x) + if self.shortcut: + x += x_children[0] + x = self.relu(x) + + return x + + +class DlaTree(nn.Module): + def __init__( + self, + levels, + block, + in_channels, + out_channels, + stride=1, + dilation=1, + cardinality=1, + base_width=64, + level_root=False, + root_dim=0, + root_kernel_size=1, + root_shortcut=False, + ): + super(DlaTree, self).__init__() + if root_dim == 0: + root_dim = 2 * out_channels + if level_root: + root_dim += in_channels + self.downsample = nn.MaxPool2d(stride, stride=stride) if stride > 1 else nn.Identity() + self.project = nn.Identity() + cargs = dict(dilation=dilation, cardinality=cardinality, base_width=base_width) + if levels == 1: + self.tree1 = block(in_channels, out_channels, stride, **cargs) + self.tree2 = block(out_channels, out_channels, 1, **cargs) + if in_channels != out_channels: + # NOTE the official impl/weights have project layers in levels > 1 case that are never + # used, I've moved the project layer here to avoid wasted params but old checkpoints will + # need strict=False while loading. + self.project = nn.Sequential( + nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False), + nn.BatchNorm2d(out_channels)) + self.root = DlaRoot(root_dim, out_channels, root_kernel_size, root_shortcut) + else: + cargs.update(dict(root_kernel_size=root_kernel_size, root_shortcut=root_shortcut)) + self.tree1 = DlaTree( + levels - 1, + block, + in_channels, + out_channels, + stride, + root_dim=0, + **cargs, + ) + self.tree2 = DlaTree( + levels - 1, + block, + out_channels, + out_channels, + root_dim=root_dim + out_channels, + **cargs, + ) + self.root = None + self.level_root = level_root + self.root_dim = root_dim + self.levels = levels + + def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None): + if children is None: + children = [] + bottom = self.downsample(x) + shortcut = self.project(bottom) + if self.level_root: + children.append(bottom) + x1 = self.tree1(x, shortcut) + if self.root is not None: # levels == 1 + x2 = self.tree2(x1) + x = self.root([x2, x1] + children) + else: + children.append(x1) + x = self.tree2(x1, None, children) + return x + + +class DLA(nn.Module): + def __init__( + self, + levels, + channels, + output_stride=32, + num_classes=1000, + in_chans=3, + global_pool='avg', + cardinality=1, + base_width=64, + block=DlaBottle2neck, + shortcut_root=False, + drop_rate=0.0, + ): + super(DLA, self).__init__() + self.channels = channels + self.num_classes = num_classes + self.cardinality = cardinality + self.base_width = base_width + assert output_stride == 32 # FIXME support dilation + + self.base_layer = nn.Sequential( + nn.Conv2d(in_chans, channels[0], kernel_size=7, stride=1, padding=3, bias=False), + nn.BatchNorm2d(channels[0]), + nn.ReLU(inplace=True), + ) + self.level0 = self._make_conv_level(channels[0], channels[0], levels[0]) + self.level1 = self._make_conv_level(channels[0], channels[1], levels[1], stride=2) + cargs = dict(cardinality=cardinality, base_width=base_width, root_shortcut=shortcut_root) + self.level2 = DlaTree(levels[2], block, channels[1], channels[2], 2, level_root=False, **cargs) + self.level3 = DlaTree(levels[3], block, channels[2], channels[3], 2, level_root=True, **cargs) + self.level4 = DlaTree(levels[4], block, channels[3], channels[4], 2, level_root=True, **cargs) + self.level5 = DlaTree(levels[5], block, channels[4], channels[5], 2, level_root=True, **cargs) + self.feature_info = [ + dict(num_chs=channels[0], reduction=1, module='level0'), # rare to have a meaningful stride 1 level + dict(num_chs=channels[1], reduction=2, module='level1'), + dict(num_chs=channels[2], reduction=4, module='level2'), + dict(num_chs=channels[3], reduction=8, module='level3'), + dict(num_chs=channels[4], reduction=16, module='level4'), + dict(num_chs=channels[5], reduction=32, module='level5'), + ] + + self.num_features = self.head_hidden_size = channels[-1] + self.global_pool, self.head_drop, self.fc = create_classifier( + self.num_features, + self.num_classes, + pool_type=global_pool, + use_conv=True, + drop_rate=drop_rate, + ) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1): + modules = [] + for i in range(convs): + modules.extend([ + nn.Conv2d( + inplanes, planes, kernel_size=3, + stride=stride if i == 0 else 1, + padding=dilation, bias=False, dilation=dilation), + nn.BatchNorm2d(planes), + nn.ReLU(inplace=True)]) + inplanes = planes + return nn.Sequential(*modules) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^base_layer', + blocks=r'^level(\d+)' if coarse else [ + # an unusual arch, this achieves somewhat more granularity without getting super messy + (r'^level(\d+)\.tree(\d+)', None), + (r'^level(\d+)\.root', (2,)), + (r'^level(\d+)', (1,)) + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.fc + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.fc = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + + def forward_features(self, x): + x = self.base_layer(x) + x = self.level0(x) + x = self.level1(x) + x = self.level2(x) + x = self.level3(x) + x = self.level4(x) + x = self.level5(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.head_drop(x) + if pre_logits: + return self.flatten(x) + x = self.fc(x) + return self.flatten(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_dla(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + DLA, + variant, + pretrained, + pretrained_strict=False, + feature_cfg=dict(out_indices=(1, 2, 3, 4, 5)), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'base_layer.0', 'classifier': 'fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'dla34.in1k': _cfg(hf_hub_id='timm/'), + 'dla46_c.in1k': _cfg(hf_hub_id='timm/'), + 'dla46x_c.in1k': _cfg(hf_hub_id='timm/'), + 'dla60x_c.in1k': _cfg(hf_hub_id='timm/'), + 'dla60.in1k': _cfg(hf_hub_id='timm/'), + 'dla60x.in1k': _cfg(hf_hub_id='timm/'), + 'dla102.in1k': _cfg(hf_hub_id='timm/'), + 'dla102x.in1k': _cfg(hf_hub_id='timm/'), + 'dla102x2.in1k': _cfg(hf_hub_id='timm/'), + 'dla169.in1k': _cfg(hf_hub_id='timm/'), + 'dla60_res2net.in1k': _cfg(hf_hub_id='timm/'), + 'dla60_res2next.in1k': _cfg(hf_hub_id='timm/'), +}) + + +@register_model +def dla60_res2net(pretrained=False, **kwargs) -> DLA: + model_args = dict( + levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024), + block=DlaBottle2neck, cardinality=1, base_width=28) + return _create_dla('dla60_res2net', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dla60_res2next(pretrained=False,**kwargs): + model_args = dict( + levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024), + block=DlaBottle2neck, cardinality=8, base_width=4) + return _create_dla('dla60_res2next', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dla34(pretrained=False, **kwargs) -> DLA: # DLA-34 + model_args = dict( + levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 128, 256, 512], block=DlaBasic) + return _create_dla('dla34', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dla46_c(pretrained=False, **kwargs) -> DLA: # DLA-46-C + model_args = dict( + levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256], block=DlaBottleneck) + return _create_dla('dla46_c', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dla46x_c(pretrained=False, **kwargs) -> DLA: # DLA-X-46-C + model_args = dict( + levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256], + block=DlaBottleneck, cardinality=32, base_width=4) + return _create_dla('dla46x_c', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dla60x_c(pretrained=False, **kwargs) -> DLA: # DLA-X-60-C + model_args = dict( + levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 64, 64, 128, 256], + block=DlaBottleneck, cardinality=32, base_width=4) + return _create_dla('dla60x_c', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dla60(pretrained=False, **kwargs) -> DLA: # DLA-60 + model_args = dict( + levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024], + block=DlaBottleneck) + return _create_dla('dla60', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dla60x(pretrained=False, **kwargs) -> DLA: # DLA-X-60 + model_args = dict( + levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024], + block=DlaBottleneck, cardinality=32, base_width=4) + return _create_dla('dla60x', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dla102(pretrained=False, **kwargs) -> DLA: # DLA-102 + model_args = dict( + levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024], + block=DlaBottleneck, shortcut_root=True) + return _create_dla('dla102', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dla102x(pretrained=False, **kwargs) -> DLA: # DLA-X-102 + model_args = dict( + levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024], + block=DlaBottleneck, cardinality=32, base_width=4, shortcut_root=True) + return _create_dla('dla102x', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dla102x2(pretrained=False, **kwargs) -> DLA: # DLA-X-102 64 + model_args = dict( + levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024], + block=DlaBottleneck, cardinality=64, base_width=4, shortcut_root=True) + return _create_dla('dla102x2', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dla169(pretrained=False, **kwargs) -> DLA: # DLA-169 + model_args = dict( + levels=[1, 1, 2, 3, 5, 1], channels=[16, 32, 128, 256, 512, 1024], + block=DlaBottleneck, shortcut_root=True) + return _create_dla('dla169', pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/dpn.py b/pytorch-image-models/timm/models/dpn.py new file mode 100644 index 0000000000000000000000000000000000000000..c03e5fe1a14e37021b8da200c442161e380a3d2a --- /dev/null +++ b/pytorch-image-models/timm/models/dpn.py @@ -0,0 +1,371 @@ +""" PyTorch implementation of DualPathNetworks +Based on original MXNet implementation https://github.com/cypw/DPNs with +many ideas from another PyTorch implementation https://github.com/oyam/pytorch-DPNs. + +This implementation is compatible with the pretrained weights from cypw's MXNet implementation. + +Hacked together by / Copyright 2020 Ross Wightman +""" +from collections import OrderedDict +from functools import partial +from typing import Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DPN_MEAN, IMAGENET_DPN_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import BatchNormAct2d, ConvNormAct, create_conv2d, create_classifier, get_norm_act_layer +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs + +__all__ = ['DPN'] + + +class CatBnAct(nn.Module): + def __init__(self, in_chs, norm_layer=BatchNormAct2d): + super(CatBnAct, self).__init__() + self.bn = norm_layer(in_chs, eps=0.001) + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (Tuple[torch.Tensor, torch.Tensor]) -> (torch.Tensor) + pass + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (torch.Tensor) -> (torch.Tensor) + pass + + def forward(self, x): + if isinstance(x, tuple): + x = torch.cat(x, dim=1) + return self.bn(x) + + +class BnActConv2d(nn.Module): + def __init__(self, in_chs, out_chs, kernel_size, stride, groups=1, norm_layer=BatchNormAct2d): + super(BnActConv2d, self).__init__() + self.bn = norm_layer(in_chs, eps=0.001) + self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, groups=groups) + + def forward(self, x): + return self.conv(self.bn(x)) + + +class DualPathBlock(nn.Module): + def __init__( + self, + in_chs, + num_1x1_a, + num_3x3_b, + num_1x1_c, + inc, + groups, + block_type='normal', + b=False, + ): + super(DualPathBlock, self).__init__() + self.num_1x1_c = num_1x1_c + self.inc = inc + self.b = b + if block_type == 'proj': + self.key_stride = 1 + self.has_proj = True + elif block_type == 'down': + self.key_stride = 2 + self.has_proj = True + else: + assert block_type == 'normal' + self.key_stride = 1 + self.has_proj = False + + self.c1x1_w_s1 = None + self.c1x1_w_s2 = None + if self.has_proj: + # Using different member names here to allow easier parameter key matching for conversion + if self.key_stride == 2: + self.c1x1_w_s2 = BnActConv2d( + in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=2) + else: + self.c1x1_w_s1 = BnActConv2d( + in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=1) + + self.c1x1_a = BnActConv2d(in_chs=in_chs, out_chs=num_1x1_a, kernel_size=1, stride=1) + self.c3x3_b = BnActConv2d( + in_chs=num_1x1_a, out_chs=num_3x3_b, kernel_size=3, stride=self.key_stride, groups=groups) + if b: + self.c1x1_c = CatBnAct(in_chs=num_3x3_b) + self.c1x1_c1 = create_conv2d(num_3x3_b, num_1x1_c, kernel_size=1) + self.c1x1_c2 = create_conv2d(num_3x3_b, inc, kernel_size=1) + else: + self.c1x1_c = BnActConv2d(in_chs=num_3x3_b, out_chs=num_1x1_c + inc, kernel_size=1, stride=1) + self.c1x1_c1 = None + self.c1x1_c2 = None + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor] + pass + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor] + pass + + def forward(self, x) -> Tuple[torch.Tensor, torch.Tensor]: + if isinstance(x, tuple): + x_in = torch.cat(x, dim=1) + else: + x_in = x + if self.c1x1_w_s1 is None and self.c1x1_w_s2 is None: + # self.has_proj == False, torchscript requires condition on module == None + x_s1 = x[0] + x_s2 = x[1] + else: + # self.has_proj == True + if self.c1x1_w_s1 is not None: + # self.key_stride = 1 + x_s = self.c1x1_w_s1(x_in) + else: + # self.key_stride = 2 + x_s = self.c1x1_w_s2(x_in) + x_s1 = x_s[:, :self.num_1x1_c, :, :] + x_s2 = x_s[:, self.num_1x1_c:, :, :] + x_in = self.c1x1_a(x_in) + x_in = self.c3x3_b(x_in) + x_in = self.c1x1_c(x_in) + if self.c1x1_c1 is not None: + # self.b == True, using None check for torchscript compat + out1 = self.c1x1_c1(x_in) + out2 = self.c1x1_c2(x_in) + else: + out1 = x_in[:, :self.num_1x1_c, :, :] + out2 = x_in[:, self.num_1x1_c:, :, :] + resid = x_s1 + out1 + dense = torch.cat([x_s2, out2], dim=1) + return resid, dense + + +class DPN(nn.Module): + def __init__( + self, + k_sec=(3, 4, 20, 3), + inc_sec=(16, 32, 24, 128), + k_r=96, + groups=32, + num_classes=1000, + in_chans=3, + output_stride=32, + global_pool='avg', + small=False, + num_init_features=64, + b=False, + drop_rate=0., + norm_layer='batchnorm2d', + act_layer='relu', + fc_act_layer='elu', + ): + super(DPN, self).__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + self.b = b + assert output_stride == 32 # FIXME look into dilation support + + norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=act_layer), eps=.001) + fc_norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=fc_act_layer), eps=.001, inplace=False) + bw_factor = 1 if small else 4 + blocks = OrderedDict() + + # conv1 + blocks['conv1_1'] = ConvNormAct( + in_chans, num_init_features, kernel_size=3 if small else 7, stride=2, norm_layer=norm_layer) + blocks['conv1_pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.feature_info = [dict(num_chs=num_init_features, reduction=2, module='features.conv1_1')] + + # conv2 + bw = 64 * bw_factor + inc = inc_sec[0] + r = (k_r * bw) // (64 * bw_factor) + blocks['conv2_1'] = DualPathBlock(num_init_features, r, r, bw, inc, groups, 'proj', b) + in_chs = bw + 3 * inc + for i in range(2, k_sec[0] + 1): + blocks['conv2_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) + in_chs += inc + self.feature_info += [dict(num_chs=in_chs, reduction=4, module=f'features.conv2_{k_sec[0]}')] + + # conv3 + bw = 128 * bw_factor + inc = inc_sec[1] + r = (k_r * bw) // (64 * bw_factor) + blocks['conv3_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) + in_chs = bw + 3 * inc + for i in range(2, k_sec[1] + 1): + blocks['conv3_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) + in_chs += inc + self.feature_info += [dict(num_chs=in_chs, reduction=8, module=f'features.conv3_{k_sec[1]}')] + + # conv4 + bw = 256 * bw_factor + inc = inc_sec[2] + r = (k_r * bw) // (64 * bw_factor) + blocks['conv4_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) + in_chs = bw + 3 * inc + for i in range(2, k_sec[2] + 1): + blocks['conv4_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) + in_chs += inc + self.feature_info += [dict(num_chs=in_chs, reduction=16, module=f'features.conv4_{k_sec[2]}')] + + # conv5 + bw = 512 * bw_factor + inc = inc_sec[3] + r = (k_r * bw) // (64 * bw_factor) + blocks['conv5_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) + in_chs = bw + 3 * inc + for i in range(2, k_sec[3] + 1): + blocks['conv5_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) + in_chs += inc + self.feature_info += [dict(num_chs=in_chs, reduction=32, module=f'features.conv5_{k_sec[3]}')] + + blocks['conv5_bn_ac'] = CatBnAct(in_chs, norm_layer=fc_norm_layer) + + self.num_features = self.head_hidden_size = in_chs + self.features = nn.Sequential(blocks) + + # Using 1x1 conv for the FC layer to allow the extra pooling scheme + self.global_pool, self.classifier = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^features\.conv1', + blocks=[ + (r'^features\.conv(\d+)' if coarse else r'^features\.conv(\d+)_(\d+)', None), + (r'^features\.conv5_bn_ac', (99999,)) + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.classifier = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() + + def forward_features(self, x): + return self.features(x) + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + if self.drop_rate > 0.: + x = F.dropout(x, p=self.drop_rate, training=self.training) + if pre_logits: + return self.flatten(x) + x = self.classifier(x) + return self.flatten(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_dpn(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + DPN, + variant, + pretrained, + feature_cfg=dict(feature_concat=True, flatten_sequential=True), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DPN_MEAN, 'std': IMAGENET_DPN_STD, + 'first_conv': 'features.conv1_1.conv', 'classifier': 'classifier', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'dpn48b.untrained': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'dpn68.mx_in1k': _cfg(hf_hub_id='timm/'), + 'dpn68b.ra_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, + crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'dpn68b.mx_in1k': _cfg(hf_hub_id='timm/'), + 'dpn92.mx_in1k': _cfg(hf_hub_id='timm/'), + 'dpn98.mx_in1k': _cfg(hf_hub_id='timm/'), + 'dpn131.mx_in1k': _cfg(hf_hub_id='timm/'), + 'dpn107.mx_in1k': _cfg(hf_hub_id='timm/') +}) + + +@register_model +def dpn48b(pretrained=False, **kwargs) -> DPN: + model_args = dict( + small=True, num_init_features=10, k_r=128, groups=32, + b=True, k_sec=(3, 4, 6, 3), inc_sec=(16, 32, 32, 64), act_layer='silu') + return _create_dpn('dpn48b', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dpn68(pretrained=False, **kwargs) -> DPN: + model_args = dict( + small=True, num_init_features=10, k_r=128, groups=32, + k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64)) + return _create_dpn('dpn68', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dpn68b(pretrained=False, **kwargs) -> DPN: + model_args = dict( + small=True, num_init_features=10, k_r=128, groups=32, + b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64)) + return _create_dpn('dpn68b', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dpn92(pretrained=False, **kwargs) -> DPN: + model_args = dict( + num_init_features=64, k_r=96, groups=32, + k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128)) + return _create_dpn('dpn92', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dpn98(pretrained=False, **kwargs) -> DPN: + model_args = dict( + num_init_features=96, k_r=160, groups=40, + k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128)) + return _create_dpn('dpn98', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dpn131(pretrained=False, **kwargs) -> DPN: + model_args = dict( + num_init_features=128, k_r=160, groups=40, + k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128)) + return _create_dpn('dpn131', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def dpn107(pretrained=False, **kwargs) -> DPN: + model_args = dict( + num_init_features=128, k_r=200, groups=50, + k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128)) + return _create_dpn('dpn107', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/edgenext.py b/pytorch-image-models/timm/models/edgenext.py new file mode 100644 index 0000000000000000000000000000000000000000..d768b1dc331789f52310fc97c6d169b82fb56b27 --- /dev/null +++ b/pytorch-image-models/timm/models/edgenext.py @@ -0,0 +1,576 @@ +""" EdgeNeXt + +Paper: `EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications` + - https://arxiv.org/abs/2206.10589 + +Original code and weights from https://github.com/mmaaz60/EdgeNeXt + +Modifications and additions for timm by / Copyright 2022, Ross Wightman +""" +import math +from functools import partial +from typing import Optional, Tuple + +import torch +import torch.nn.functional as F +from torch import nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import trunc_normal_tf_, DropPath, LayerNorm2d, Mlp, create_conv2d, \ + NormMlpClassifierHead, ClassifierHead +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._manipulate import named_apply, checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +__all__ = ['EdgeNeXt'] # model_registry will add each entrypoint fn to this + + +@register_notrace_module # reason: FX can't symbolically trace torch.arange in forward method +class PositionalEncodingFourier(nn.Module): + def __init__(self, hidden_dim=32, dim=768, temperature=10000): + super().__init__() + self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1) + self.scale = 2 * math.pi + self.temperature = temperature + self.hidden_dim = hidden_dim + self.dim = dim + + def forward(self, shape: Tuple[int, int, int]): + device = self.token_projection.weight.device + dtype = self.token_projection.weight.dtype + inv_mask = ~torch.zeros(shape).to(device=device, dtype=torch.bool) + y_embed = inv_mask.cumsum(1, dtype=torch.float32) + x_embed = inv_mask.cumsum(2, dtype=torch.float32) + eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_t = torch.arange(self.hidden_dim, dtype=torch.int64, device=device).to(torch.float32) + dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack( + (pos_x[:, :, :, 0::2].sin(), + pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos_y = torch.stack( + (pos_y[:, :, :, 0::2].sin(), + pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + pos = self.token_projection(pos.to(dtype)) + + return pos + + +class ConvBlock(nn.Module): + def __init__( + self, + dim, + dim_out=None, + kernel_size=7, + stride=1, + conv_bias=True, + expand_ratio=4, + ls_init_value=1e-6, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + act_layer=nn.GELU, drop_path=0., + ): + super().__init__() + dim_out = dim_out or dim + self.shortcut_after_dw = stride > 1 or dim != dim_out + + self.conv_dw = create_conv2d( + dim, dim_out, kernel_size=kernel_size, stride=stride, depthwise=True, bias=conv_bias) + self.norm = norm_layer(dim_out) + self.mlp = Mlp(dim_out, int(expand_ratio * dim_out), act_layer=act_layer) + self.gamma = nn.Parameter(ls_init_value * torch.ones(dim_out)) if ls_init_value > 0 else None + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + shortcut = x + x = self.conv_dw(x) + if self.shortcut_after_dw: + shortcut = x + + x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) + x = self.norm(x) + x = self.mlp(x) + if self.gamma is not None: + x = self.gamma * x + x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) + + x = shortcut + self.drop_path(x) + return x + + +class CrossCovarianceAttn(nn.Module): + def __init__( + self, + dim, + num_heads=8, + qkv_bias=False, + attn_drop=0., + proj_drop=0. + ): + super().__init__() + self.num_heads = num_heads + self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 4, 1) + q, k, v = qkv.unbind(0) + + # NOTE, this is NOT spatial attn, q, k, v are B, num_heads, C, L --> C x C attn map + attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) * self.temperature + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (attn @ v) + + x = x.permute(0, 3, 1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + @torch.jit.ignore + def no_weight_decay(self): + return {'temperature'} + + +class SplitTransposeBlock(nn.Module): + def __init__( + self, + dim, + num_scales=1, + num_heads=8, + expand_ratio=4, + use_pos_emb=True, + conv_bias=True, + qkv_bias=True, + ls_init_value=1e-6, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + act_layer=nn.GELU, + drop_path=0., + attn_drop=0., + proj_drop=0. + ): + super().__init__() + width = max(int(math.ceil(dim / num_scales)), int(math.floor(dim // num_scales))) + self.width = width + self.num_scales = max(1, num_scales - 1) + + convs = [] + for i in range(self.num_scales): + convs.append(create_conv2d(width, width, kernel_size=3, depthwise=True, bias=conv_bias)) + self.convs = nn.ModuleList(convs) + + self.pos_embd = None + if use_pos_emb: + self.pos_embd = PositionalEncodingFourier(dim=dim) + self.norm_xca = norm_layer(dim) + self.gamma_xca = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None + self.xca = CrossCovarianceAttn( + dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + + self.norm = norm_layer(dim, eps=1e-6) + self.mlp = Mlp(dim, int(expand_ratio * dim), act_layer=act_layer) + self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + shortcut = x + + # scales code re-written for torchscript as per my res2net fixes -rw + # NOTE torch.split(x, self.width, 1) causing issues with ONNX export + spx = x.chunk(len(self.convs) + 1, dim=1) + spo = [] + sp = spx[0] + for i, conv in enumerate(self.convs): + if i > 0: + sp = sp + spx[i] + sp = conv(sp) + spo.append(sp) + spo.append(spx[-1]) + x = torch.cat(spo, 1) + + # XCA + B, C, H, W = x.shape + x = x.reshape(B, C, H * W).permute(0, 2, 1) + if self.pos_embd is not None: + pos_encoding = self.pos_embd((B, H, W)).reshape(B, -1, x.shape[1]).permute(0, 2, 1) + x = x + pos_encoding + x = x + self.drop_path(self.gamma_xca * self.xca(self.norm_xca(x))) + x = x.reshape(B, H, W, C) + + # Inverted Bottleneck + x = self.norm(x) + x = self.mlp(x) + if self.gamma is not None: + x = self.gamma * x + x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) + + x = shortcut + self.drop_path(x) + return x + + +class EdgeNeXtStage(nn.Module): + def __init__( + self, + in_chs, + out_chs, + stride=2, + depth=2, + num_global_blocks=1, + num_heads=4, + scales=2, + kernel_size=7, + expand_ratio=4, + use_pos_emb=False, + downsample_block=False, + conv_bias=True, + ls_init_value=1.0, + drop_path_rates=None, + norm_layer=LayerNorm2d, + norm_layer_cl=partial(nn.LayerNorm, eps=1e-6), + act_layer=nn.GELU + ): + super().__init__() + self.grad_checkpointing = False + + if downsample_block or stride == 1: + self.downsample = nn.Identity() + else: + self.downsample = nn.Sequential( + norm_layer(in_chs), + nn.Conv2d(in_chs, out_chs, kernel_size=2, stride=2, bias=conv_bias) + ) + in_chs = out_chs + + stage_blocks = [] + for i in range(depth): + if i < depth - num_global_blocks: + stage_blocks.append( + ConvBlock( + dim=in_chs, + dim_out=out_chs, + stride=stride if downsample_block and i == 0 else 1, + conv_bias=conv_bias, + kernel_size=kernel_size, + expand_ratio=expand_ratio, + ls_init_value=ls_init_value, + drop_path=drop_path_rates[i], + norm_layer=norm_layer_cl, + act_layer=act_layer, + ) + ) + else: + stage_blocks.append( + SplitTransposeBlock( + dim=in_chs, + num_scales=scales, + num_heads=num_heads, + expand_ratio=expand_ratio, + use_pos_emb=use_pos_emb, + conv_bias=conv_bias, + ls_init_value=ls_init_value, + drop_path=drop_path_rates[i], + norm_layer=norm_layer_cl, + act_layer=act_layer, + ) + ) + in_chs = out_chs + self.blocks = nn.Sequential(*stage_blocks) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class EdgeNeXt(nn.Module): + def __init__( + self, + in_chans=3, + num_classes=1000, + global_pool='avg', + dims=(24, 48, 88, 168), + depths=(3, 3, 9, 3), + global_block_counts=(0, 1, 1, 1), + kernel_sizes=(3, 5, 7, 9), + heads=(8, 8, 8, 8), + d2_scales=(2, 2, 3, 4), + use_pos_emb=(False, True, False, False), + ls_init_value=1e-6, + head_init_scale=1., + expand_ratio=4, + downsample_block=False, + conv_bias=True, + stem_type='patch', + head_norm_first=False, + act_layer=nn.GELU, + drop_path_rate=0., + drop_rate=0., + ): + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + self.drop_rate = drop_rate + norm_layer = partial(LayerNorm2d, eps=1e-6) + norm_layer_cl = partial(nn.LayerNorm, eps=1e-6) + self.feature_info = [] + + assert stem_type in ('patch', 'overlap') + if stem_type == 'patch': + self.stem = nn.Sequential( + nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4, bias=conv_bias), + norm_layer(dims[0]), + ) + else: + self.stem = nn.Sequential( + nn.Conv2d(in_chans, dims[0], kernel_size=9, stride=4, padding=9 // 2, bias=conv_bias), + norm_layer(dims[0]), + ) + + curr_stride = 4 + stages = [] + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + in_chs = dims[0] + for i in range(4): + stride = 2 if curr_stride == 2 or i > 0 else 1 + # FIXME support dilation / output_stride + curr_stride *= stride + stages.append(EdgeNeXtStage( + in_chs=in_chs, + out_chs=dims[i], + stride=stride, + depth=depths[i], + num_global_blocks=global_block_counts[i], + num_heads=heads[i], + drop_path_rates=dp_rates[i], + scales=d2_scales[i], + expand_ratio=expand_ratio, + kernel_size=kernel_sizes[i], + use_pos_emb=use_pos_emb[i], + ls_init_value=ls_init_value, + downsample_block=downsample_block, + conv_bias=conv_bias, + norm_layer=norm_layer, + norm_layer_cl=norm_layer_cl, + act_layer=act_layer, + )) + # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 + in_chs = dims[i] + self.feature_info += [dict(num_chs=in_chs, reduction=curr_stride, module=f'stages.{i}')] + + self.stages = nn.Sequential(*stages) + + self.num_features = self.head_hidden_size = dims[-1] + if head_norm_first: + self.norm_pre = norm_layer(self.num_features) + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=self.drop_rate, + ) + else: + self.norm_pre = nn.Identity() + self.head = NormMlpClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=self.drop_rate, + norm_layer=norm_layer, + ) + + named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+)\.downsample', (0,)), # blocks + (r'^stages\.(\d+)\.blocks\.(\d+)', None), + (r'^norm_pre', (99999,)) + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm_pre(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _init_weights(module, name=None, head_init_scale=1.0): + if isinstance(module, nn.Conv2d): + trunc_normal_tf_(module.weight, std=.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Linear): + trunc_normal_tf_(module.weight, std=.02) + nn.init.zeros_(module.bias) + if name and 'head.' in name: + module.weight.data.mul_(head_init_scale) + module.bias.data.mul_(head_init_scale) + + +def checkpoint_filter_fn(state_dict, model): + """ Remap FB checkpoints -> timm """ + if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict: + return state_dict # non-FB checkpoint + + # models were released as train checkpoints... :/ + if 'model_ema' in state_dict: + state_dict = state_dict['model_ema'] + elif 'model' in state_dict: + state_dict = state_dict['model'] + elif 'state_dict' in state_dict: + state_dict = state_dict['state_dict'] + + out_dict = {} + import re + for k, v in state_dict.items(): + k = k.replace('downsample_layers.0.', 'stem.') + k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) + k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k) + k = k.replace('dwconv', 'conv_dw') + k = k.replace('pwconv', 'mlp.fc') + k = k.replace('head.', 'head.fc.') + if k.startswith('norm.'): + k = k.replace('norm', 'head.norm') + if v.ndim == 2 and 'head' not in k: + model_shape = model.state_dict()[k].shape + v = v.reshape(model_shape) + out_dict[k] = v + return out_dict + + +def _create_edgenext(variant, pretrained=False, **kwargs): + model = build_model_with_cfg( + EdgeNeXt, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), + **kwargs) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), + 'crop_pct': 0.9, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.0', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'edgenext_xx_small.in1k': _cfg( + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'edgenext_x_small.in1k': _cfg( + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'edgenext_small.usi_in1k': _cfg( # USI weights + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, + ), + 'edgenext_base.usi_in1k': _cfg( # USI weights + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, + ), + 'edgenext_base.in21k_ft_in1k': _cfg( # USI weights + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, + ), + 'edgenext_small_rw.sw_in1k': _cfg( + hf_hub_id='timm/', + test_input_size=(3, 320, 320), test_crop_pct=1.0, + ), +}) + + +@register_model +def edgenext_xx_small(pretrained=False, **kwargs) -> EdgeNeXt: + # 1.33M & 260.58M @ 256 resolution + # 71.23% Top-1 accuracy + # No AA, Color Jitter=0.4, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler + # Jetson FPS=51.66 versus 47.67 for MobileViT_XXS + # For A100: FPS @ BS=1: 212.13 & @ BS=256: 7042.06 versus FPS @ BS=1: 96.68 & @ BS=256: 4624.71 for MobileViT_XXS + model_args = dict(depths=(2, 2, 6, 2), dims=(24, 48, 88, 168), heads=(4, 4, 4, 4)) + return _create_edgenext('edgenext_xx_small', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def edgenext_x_small(pretrained=False, **kwargs) -> EdgeNeXt: + # 2.34M & 538.0M @ 256 resolution + # 75.00% Top-1 accuracy + # No AA, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler + # Jetson FPS=31.61 versus 28.49 for MobileViT_XS + # For A100: FPS @ BS=1: 179.55 & @ BS=256: 4404.95 versus FPS @ BS=1: 94.55 & @ BS=256: 2361.53 for MobileViT_XS + model_args = dict(depths=(3, 3, 9, 3), dims=(32, 64, 100, 192), heads=(4, 4, 4, 4)) + return _create_edgenext('edgenext_x_small', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def edgenext_small(pretrained=False, **kwargs) -> EdgeNeXt: + # 5.59M & 1260.59M @ 256 resolution + # 79.43% Top-1 accuracy + # AA=True, No Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler + # Jetson FPS=20.47 versus 18.86 for MobileViT_S + # For A100: FPS @ BS=1: 172.33 & @ BS=256: 3010.25 versus FPS @ BS=1: 93.84 & @ BS=256: 1785.92 for MobileViT_S + model_args = dict(depths=(3, 3, 9, 3), dims=(48, 96, 160, 304)) + return _create_edgenext('edgenext_small', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def edgenext_base(pretrained=False, **kwargs) -> EdgeNeXt: + # 18.51M & 3840.93M @ 256 resolution + # 82.5% (normal) 83.7% (USI) Top-1 accuracy + # AA=True, Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler + # Jetson FPS=xx.xx versus xx.xx for MobileViT_S + # For A100: FPS @ BS=1: xxx.xx & @ BS=256: xxxx.xx + model_args = dict(depths=[3, 3, 9, 3], dims=[80, 160, 288, 584]) + return _create_edgenext('edgenext_base', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def edgenext_small_rw(pretrained=False, **kwargs) -> EdgeNeXt: + model_args = dict( + depths=(3, 3, 9, 3), dims=(48, 96, 192, 384), + downsample_block=True, conv_bias=False, stem_type='overlap') + return _create_edgenext('edgenext_small_rw', pretrained=pretrained, **dict(model_args, **kwargs)) + diff --git a/pytorch-image-models/timm/models/efficientformer.py b/pytorch-image-models/timm/models/efficientformer.py new file mode 100644 index 0000000000000000000000000000000000000000..a759dc41ed9d36120fe9b6e0ff4d8ffa586f7d67 --- /dev/null +++ b/pytorch-image-models/timm/models/efficientformer.py @@ -0,0 +1,649 @@ +""" EfficientFormer + +@article{li2022efficientformer, + title={EfficientFormer: Vision Transformers at MobileNet Speed}, + author={Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Eric and Evangelidis, Georgios and Tulyakov, + Sergey and Wang, Yanzhi and Ren, Jian}, + journal={arXiv preprint arXiv:2206.01191}, + year={2022} +} + +Based on Apache 2.0 licensed code at https://github.com/snap-research/EfficientFormer, Copyright (c) 2022 Snap Inc. + +Modifications and timm support by / Copyright 2022, Ross Wightman +""" +from typing import Dict, List, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, trunc_normal_, to_2tuple, Mlp, ndgrid +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model + +__all__ = ['EfficientFormer'] # model_registry will add each entrypoint fn to this + + +EfficientFormer_width = { + 'l1': (48, 96, 224, 448), + 'l3': (64, 128, 320, 512), + 'l7': (96, 192, 384, 768), +} + +EfficientFormer_depth = { + 'l1': (3, 2, 6, 4), + 'l3': (4, 4, 12, 6), + 'l7': (6, 6, 18, 8), +} + + +class Attention(torch.nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__( + self, + dim=384, + key_dim=32, + num_heads=8, + attn_ratio=4, + resolution=7 + ): + super().__init__() + self.num_heads = num_heads + self.scale = key_dim ** -0.5 + self.key_dim = key_dim + self.key_attn_dim = key_dim * num_heads + self.val_dim = int(attn_ratio * key_dim) + self.val_attn_dim = self.val_dim * num_heads + self.attn_ratio = attn_ratio + + self.qkv = nn.Linear(dim, self.key_attn_dim * 2 + self.val_attn_dim) + self.proj = nn.Linear(self.val_attn_dim, dim) + + resolution = to_2tuple(resolution) + pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) + rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() + rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1] + self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) + self.register_buffer('attention_bias_idxs', rel_pos) + self.attention_bias_cache = {} # per-device attention_biases cache (data-parallel compat) + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} # clear ab cache + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): # x (B,N,C) + B, N, C = x.shape + qkv = self.qkv(x) + qkv = qkv.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + q, k, v = qkv.split([self.key_dim, self.key_dim, self.val_dim], dim=3) + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn + self.get_attention_biases(x.device) + + attn = attn.softmax(dim=-1) + x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim) + x = self.proj(x) + return x + + +class Stem4(nn.Sequential): + def __init__(self, in_chs, out_chs, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d): + super().__init__() + self.stride = 4 + + self.add_module('conv1', nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1)) + self.add_module('norm1', norm_layer(out_chs // 2)) + self.add_module('act1', act_layer()) + self.add_module('conv2', nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1)) + self.add_module('norm2', norm_layer(out_chs)) + self.add_module('act2', act_layer()) + + +class Downsample(nn.Module): + """ + Downsampling via strided conv w/ norm + Input: tensor in shape [B, C, H, W] + Output: tensor in shape [B, C, H/stride, W/stride] + """ + + def __init__(self, in_chs, out_chs, kernel_size=3, stride=2, padding=None, norm_layer=nn.BatchNorm2d): + super().__init__() + if padding is None: + padding = kernel_size // 2 + self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding) + self.norm = norm_layer(out_chs) + + def forward(self, x): + x = self.conv(x) + x = self.norm(x) + return x + + +class Flat(nn.Module): + + def __init__(self, ): + super().__init__() + + def forward(self, x): + x = x.flatten(2).transpose(1, 2) + return x + + +class Pooling(nn.Module): + """ + Implementation of pooling for PoolFormer + --pool_size: pooling size + """ + + def __init__(self, pool_size=3): + super().__init__() + self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) + + def forward(self, x): + return self.pool(x) - x + + +class ConvMlpWithNorm(nn.Module): + """ + Implementation of MLP with 1*1 convolutions. + Input: tensor with shape [B, C, H, W] + """ + + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + norm_layer=nn.BatchNorm2d, + drop=0. + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Conv2d(in_features, hidden_features, 1) + self.norm1 = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() + self.act = act_layer() + self.fc2 = nn.Conv2d(hidden_features, out_features, 1) + self.norm2 = norm_layer(out_features) if norm_layer is not None else nn.Identity() + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.norm1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.norm2(x) + x = self.drop(x) + return x + + +class LayerScale(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + + +class MetaBlock1d(nn.Module): + + def __init__( + self, + dim, + mlp_ratio=4., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + proj_drop=0., + drop_path=0., + layer_scale_init_value=1e-5 + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.token_mixer = Attention(dim) + self.norm2 = norm_layer(dim) + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + ) + + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.ls1 = LayerScale(dim, layer_scale_init_value) + self.ls2 = LayerScale(dim, layer_scale_init_value) + + def forward(self, x): + x = x + self.drop_path(self.ls1(self.token_mixer(self.norm1(x)))) + x = x + self.drop_path(self.ls2(self.mlp(self.norm2(x)))) + return x + + +class LayerScale2d(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + + +class MetaBlock2d(nn.Module): + + def __init__( + self, + dim, + pool_size=3, + mlp_ratio=4., + act_layer=nn.GELU, + norm_layer=nn.BatchNorm2d, + proj_drop=0., + drop_path=0., + layer_scale_init_value=1e-5 + ): + super().__init__() + self.token_mixer = Pooling(pool_size=pool_size) + self.ls1 = LayerScale2d(dim, layer_scale_init_value) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.mlp = ConvMlpWithNorm( + dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + norm_layer=norm_layer, + drop=proj_drop, + ) + self.ls2 = LayerScale2d(dim, layer_scale_init_value) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + x = x + self.drop_path1(self.ls1(self.token_mixer(x))) + x = x + self.drop_path2(self.ls2(self.mlp(x))) + return x + + +class EfficientFormerStage(nn.Module): + + def __init__( + self, + dim, + dim_out, + depth, + downsample=True, + num_vit=1, + pool_size=3, + mlp_ratio=4., + act_layer=nn.GELU, + norm_layer=nn.BatchNorm2d, + norm_layer_cl=nn.LayerNorm, + proj_drop=.0, + drop_path=0., + layer_scale_init_value=1e-5, +): + super().__init__() + self.grad_checkpointing = False + + if downsample: + self.downsample = Downsample(in_chs=dim, out_chs=dim_out, norm_layer=norm_layer) + dim = dim_out + else: + assert dim == dim_out + self.downsample = nn.Identity() + + blocks = [] + if num_vit and num_vit >= depth: + blocks.append(Flat()) + + for block_idx in range(depth): + remain_idx = depth - block_idx - 1 + if num_vit and num_vit > remain_idx: + blocks.append( + MetaBlock1d( + dim, + mlp_ratio=mlp_ratio, + act_layer=act_layer, + norm_layer=norm_layer_cl, + proj_drop=proj_drop, + drop_path=drop_path[block_idx], + layer_scale_init_value=layer_scale_init_value, + )) + else: + blocks.append( + MetaBlock2d( + dim, + pool_size=pool_size, + mlp_ratio=mlp_ratio, + act_layer=act_layer, + norm_layer=norm_layer, + proj_drop=proj_drop, + drop_path=drop_path[block_idx], + layer_scale_init_value=layer_scale_init_value, + )) + if num_vit and num_vit == remain_idx: + blocks.append(Flat()) + + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class EfficientFormer(nn.Module): + + def __init__( + self, + depths, + embed_dims=None, + in_chans=3, + num_classes=1000, + global_pool='avg', + downsamples=None, + num_vit=0, + mlp_ratios=4, + pool_size=3, + layer_scale_init_value=1e-5, + act_layer=nn.GELU, + norm_layer=nn.BatchNorm2d, + norm_layer_cl=nn.LayerNorm, + drop_rate=0., + proj_drop_rate=0., + drop_path_rate=0., + **kwargs + ): + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + + self.stem = Stem4(in_chans, embed_dims[0], norm_layer=norm_layer) + prev_dim = embed_dims[0] + + # stochastic depth decay rule + self.num_stages = len(depths) + last_stage = self.num_stages - 1 + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + downsamples = downsamples or (False,) + (True,) * (self.num_stages - 1) + stages = [] + self.feature_info = [] + for i in range(self.num_stages): + stage = EfficientFormerStage( + prev_dim, + embed_dims[i], + depths[i], + downsample=downsamples[i], + num_vit=num_vit if i == last_stage else 0, + pool_size=pool_size, + mlp_ratio=mlp_ratios, + act_layer=act_layer, + norm_layer_cl=norm_layer_cl, + norm_layer=norm_layer, + proj_drop=proj_drop_rate, + drop_path=dpr[i], + layer_scale_init_value=layer_scale_init_value, + ) + prev_dim = embed_dims[i] + stages.append(stage) + self.feature_info += [dict(num_chs=embed_dims[i], reduction=2**(1+i), module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + + # Classifier head + self.num_features = self.head_hidden_size = embed_dims[-1] + self.norm = norm_layer_cl(self.num_features) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + # assuming model is always distilled (valid for current checkpoints, will split def if that changes) + self.head_dist = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() + self.distilled_training = False # must set this True to train w/ distillation token + + self.apply(self._init_weights) + + # init for classification + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay(self): + return {k for k, _ in self.named_parameters() if 'attention_biases' in k} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^stem', # stem and embed + blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head, self.head_dist + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + self.head_dist = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.distilled_training = enable + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.stages), indices) + + # forward pass + x = self.stem(x) + B, C, H, W = x.shape + + last_idx = self.num_stages - 1 + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + stages = self.stages + else: + stages = self.stages[:max_index + 1] + feat_idx = 0 + for feat_idx, stage in enumerate(stages): + x = stage(x) + if feat_idx < last_idx: + B, C, H, W = x.shape + if feat_idx in take_indices: + if feat_idx == last_idx: + x_inter = self.norm(x) if norm else x + intermediates.append(x_inter.reshape(B, H // 2, W // 2, -1).permute(0, 3, 1, 2)) + else: + intermediates.append(x) + + if intermediates_only: + return intermediates + + if feat_idx == last_idx: + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.stages), indices) + self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0 + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool == 'avg': + x = x.mean(dim=1) + x = self.head_drop(x) + if pre_logits: + return x + x, x_dist = self.head(x), self.head_dist(x) + if self.distilled_training and self.training and not torch.jit.is_scripting(): + # only return separate classification predictions when training in distilled mode + return x, x_dist + else: + # during standard train/finetune, inference average the classifier predictions + return (x + x_dist) / 2 + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + """ Remap original checkpoints -> timm """ + if 'stem.0.weight' in state_dict: + return state_dict # non-original checkpoint, no remapping needed + + out_dict = {} + import re + stage_idx = 0 + for k, v in state_dict.items(): + if k.startswith('patch_embed'): + k = k.replace('patch_embed.0', 'stem.conv1') + k = k.replace('patch_embed.1', 'stem.norm1') + k = k.replace('patch_embed.3', 'stem.conv2') + k = k.replace('patch_embed.4', 'stem.norm2') + + if re.match(r'network\.(\d+)\.proj\.weight', k): + stage_idx += 1 + k = re.sub(r'network.(\d+).(\d+)', f'stages.{stage_idx}.blocks.\\2', k) + k = re.sub(r'network.(\d+).proj', f'stages.{stage_idx}.downsample.conv', k) + k = re.sub(r'network.(\d+).norm', f'stages.{stage_idx}.downsample.norm', k) + + k = re.sub(r'layer_scale_([0-9])', r'ls\1.gamma', k) + k = k.replace('dist_head', 'head_dist') + out_dict[k] = v + return out_dict + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True, + 'crop_pct': .95, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv1', 'classifier': ('head', 'head_dist'), + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'efficientformer_l1.snap_dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'efficientformer_l3.snap_dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'efficientformer_l7.snap_dist_in1k': _cfg( + hf_hub_id='timm/', + ), +}) + + +def _create_efficientformer(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 4) + model = build_model_with_cfg( + EfficientFormer, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + return model + + +@register_model +def efficientformer_l1(pretrained=False, **kwargs) -> EfficientFormer: + model_args = dict( + depths=EfficientFormer_depth['l1'], + embed_dims=EfficientFormer_width['l1'], + num_vit=1, + ) + return _create_efficientformer('efficientformer_l1', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientformer_l3(pretrained=False, **kwargs) -> EfficientFormer: + model_args = dict( + depths=EfficientFormer_depth['l3'], + embed_dims=EfficientFormer_width['l3'], + num_vit=4, + ) + return _create_efficientformer('efficientformer_l3', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientformer_l7(pretrained=False, **kwargs) -> EfficientFormer: + model_args = dict( + depths=EfficientFormer_depth['l7'], + embed_dims=EfficientFormer_width['l7'], + num_vit=8, + ) + return _create_efficientformer('efficientformer_l7', pretrained=pretrained, **dict(model_args, **kwargs)) + diff --git a/pytorch-image-models/timm/models/efficientformer_v2.py b/pytorch-image-models/timm/models/efficientformer_v2.py new file mode 100644 index 0000000000000000000000000000000000000000..dcf6499537af5d707d392554f417a80e537b7c49 --- /dev/null +++ b/pytorch-image-models/timm/models/efficientformer_v2.py @@ -0,0 +1,736 @@ +""" EfficientFormer-V2 + +@article{ + li2022rethinking, + title={Rethinking Vision Transformers for MobileNet Size and Speed}, + author={Li, Yanyu and Hu, Ju and Wen, Yang and Evangelidis, Georgios and Salahi, Kamyar and Wang, Yanzhi and Tulyakov, Sergey and Ren, Jian}, + journal={arXiv preprint arXiv:2212.08059}, + year={2022} +} + +Significantly refactored and cleaned up for timm from original at: https://github.com/snap-research/EfficientFormer + +Original code licensed Apache 2.0, Copyright (c) 2022 Snap Inc. + +Modifications and timm support by / Copyright 2023, Ross Wightman +""" +import math +from functools import partial +from typing import Dict, Optional + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import create_conv2d, create_norm_layer, get_act_layer, get_norm_layer, ConvNormAct +from timm.layers import DropPath, trunc_normal_, to_2tuple, to_ntuple, ndgrid +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model + + +__all__ = ['EfficientFormerV2'] + +EfficientFormer_width = { + 'L': (40, 80, 192, 384), # 26m 83.3% 6attn + 'S2': (32, 64, 144, 288), # 12m 81.6% 4attn dp0.02 + 'S1': (32, 48, 120, 224), # 6.1m 79.0 + 'S0': (32, 48, 96, 176), # 75.0 75.7 +} + +EfficientFormer_depth = { + 'L': (5, 5, 15, 10), # 26m 83.3% + 'S2': (4, 4, 12, 8), # 12m + 'S1': (3, 3, 9, 6), # 79.0 + 'S0': (2, 2, 6, 4), # 75.7 +} + +EfficientFormer_expansion_ratios = { + 'L': (4, 4, (4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4), (4, 4, 4, 3, 3, 3, 3, 4, 4, 4)), + 'S2': (4, 4, (4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4), (4, 4, 3, 3, 3, 3, 4, 4)), + 'S1': (4, 4, (4, 4, 3, 3, 3, 3, 4, 4, 4), (4, 4, 3, 3, 4, 4)), + 'S0': (4, 4, (4, 3, 3, 3, 4, 4), (4, 3, 3, 4)), +} + + +class ConvNorm(nn.Module): + def __init__( + self, + in_channels, + out_channels, + kernel_size=1, + stride=1, + padding='', + dilation=1, + groups=1, + bias=True, + norm_layer='batchnorm2d', + norm_kwargs=None, + ): + norm_kwargs = norm_kwargs or {} + super(ConvNorm, self).__init__() + self.conv = create_conv2d( + in_channels, + out_channels, + kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + groups=groups, + bias=bias, + ) + self.bn = create_norm_layer(norm_layer, out_channels, **norm_kwargs) + + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + return x + + +class Attention2d(torch.nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__( + self, + dim=384, + key_dim=32, + num_heads=8, + attn_ratio=4, + resolution=7, + act_layer=nn.GELU, + stride=None, + ): + super().__init__() + self.num_heads = num_heads + self.scale = key_dim ** -0.5 + self.key_dim = key_dim + + resolution = to_2tuple(resolution) + if stride is not None: + resolution = tuple([math.ceil(r / stride) for r in resolution]) + self.stride_conv = ConvNorm(dim, dim, kernel_size=3, stride=stride, groups=dim) + self.upsample = nn.Upsample(scale_factor=stride, mode='bilinear') + else: + self.stride_conv = None + self.upsample = None + + self.resolution = resolution + self.N = self.resolution[0] * self.resolution[1] + self.d = int(attn_ratio * key_dim) + self.dh = int(attn_ratio * key_dim) * num_heads + self.attn_ratio = attn_ratio + kh = self.key_dim * self.num_heads + + self.q = ConvNorm(dim, kh) + self.k = ConvNorm(dim, kh) + self.v = ConvNorm(dim, self.dh) + self.v_local = ConvNorm(self.dh, self.dh, kernel_size=3, groups=self.dh) + self.talking_head1 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1) + self.talking_head2 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1) + + self.act = act_layer() + self.proj = ConvNorm(self.dh, dim, 1) + + pos = torch.stack(ndgrid(torch.arange(self.resolution[0]), torch.arange(self.resolution[1]))).flatten(1) + rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() + rel_pos = (rel_pos[0] * self.resolution[1]) + rel_pos[1] + self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, self.N)) + self.register_buffer('attention_bias_idxs', torch.LongTensor(rel_pos), persistent=False) + self.attention_bias_cache = {} # per-device attention_biases cache (data-parallel compat) + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} # clear ab cache + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + B, C, H, W = x.shape + if self.stride_conv is not None: + x = self.stride_conv(x) + + q = self.q(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2) + k = self.k(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3) + v = self.v(x) + v_local = self.v_local(v) + v = v.reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2) + + attn = (q @ k) * self.scale + attn = attn + self.get_attention_biases(x.device) + attn = self.talking_head1(attn) + attn = attn.softmax(dim=-1) + attn = self.talking_head2(attn) + + x = (attn @ v).transpose(2, 3) + x = x.reshape(B, self.dh, self.resolution[0], self.resolution[1]) + v_local + if self.upsample is not None: + x = self.upsample(x) + + x = self.act(x) + x = self.proj(x) + return x + + +class LocalGlobalQuery(torch.nn.Module): + def __init__(self, in_dim, out_dim): + super().__init__() + self.pool = nn.AvgPool2d(1, 2, 0) + self.local = nn.Conv2d(in_dim, in_dim, kernel_size=3, stride=2, padding=1, groups=in_dim) + self.proj = ConvNorm(in_dim, out_dim, 1) + + def forward(self, x): + local_q = self.local(x) + pool_q = self.pool(x) + q = local_q + pool_q + q = self.proj(q) + return q + + +class Attention2dDownsample(torch.nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__( + self, + dim=384, + key_dim=16, + num_heads=8, + attn_ratio=4, + resolution=7, + out_dim=None, + act_layer=nn.GELU, + ): + super().__init__() + + self.num_heads = num_heads + self.scale = key_dim ** -0.5 + self.key_dim = key_dim + self.resolution = to_2tuple(resolution) + self.resolution2 = tuple([math.ceil(r / 2) for r in self.resolution]) + self.N = self.resolution[0] * self.resolution[1] + self.N2 = self.resolution2[0] * self.resolution2[1] + + self.d = int(attn_ratio * key_dim) + self.dh = int(attn_ratio * key_dim) * num_heads + self.attn_ratio = attn_ratio + self.out_dim = out_dim or dim + kh = self.key_dim * self.num_heads + + self.q = LocalGlobalQuery(dim, kh) + self.k = ConvNorm(dim, kh, 1) + self.v = ConvNorm(dim, self.dh, 1) + self.v_local = ConvNorm(self.dh, self.dh, kernel_size=3, stride=2, groups=self.dh) + + self.act = act_layer() + self.proj = ConvNorm(self.dh, self.out_dim, 1) + + self.attention_biases = nn.Parameter(torch.zeros(num_heads, self.N)) + k_pos = torch.stack(ndgrid(torch.arange(self.resolution[0]), torch.arange(self.resolution[1]))).flatten(1) + q_pos = torch.stack(ndgrid( + torch.arange(0, self.resolution[0], step=2), + torch.arange(0, self.resolution[1], step=2) + )).flatten(1) + rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs() + rel_pos = (rel_pos[0] * self.resolution[1]) + rel_pos[1] + self.register_buffer('attention_bias_idxs', rel_pos, persistent=False) + self.attention_bias_cache = {} # per-device attention_biases cache (data-parallel compat) + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} # clear ab cache + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + B, C, H, W = x.shape + + q = self.q(x).reshape(B, self.num_heads, -1, self.N2).permute(0, 1, 3, 2) + k = self.k(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3) + v = self.v(x) + v_local = self.v_local(v) + v = v.reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2) + + attn = (q @ k) * self.scale + attn = attn + self.get_attention_biases(x.device) + attn = attn.softmax(dim=-1) + + x = (attn @ v).transpose(2, 3) + x = x.reshape(B, self.dh, self.resolution2[0], self.resolution2[1]) + v_local + x = self.act(x) + x = self.proj(x) + return x + + +class Downsample(nn.Module): + def __init__( + self, + in_chs, + out_chs, + kernel_size=3, + stride=2, + padding=1, + resolution=7, + use_attn=False, + act_layer=nn.GELU, + norm_layer=nn.BatchNorm2d, + ): + super().__init__() + + kernel_size = to_2tuple(kernel_size) + stride = to_2tuple(stride) + padding = to_2tuple(padding) + norm_layer = norm_layer or nn.Identity() + self.conv = ConvNorm( + in_chs, + out_chs, + kernel_size=kernel_size, + stride=stride, + padding=padding, + norm_layer=norm_layer, + ) + + if use_attn: + self.attn = Attention2dDownsample( + dim=in_chs, + out_dim=out_chs, + resolution=resolution, + act_layer=act_layer, + ) + else: + self.attn = None + + def forward(self, x): + out = self.conv(x) + if self.attn is not None: + return self.attn(x) + out + return out + + +class ConvMlpWithNorm(nn.Module): + """ + Implementation of MLP with 1*1 convolutions. + Input: tensor with shape [B, C, H, W] + """ + + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + norm_layer=nn.BatchNorm2d, + drop=0., + mid_conv=False, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = ConvNormAct( + in_features, hidden_features, 1, + bias=True, norm_layer=norm_layer, act_layer=act_layer) + if mid_conv: + self.mid = ConvNormAct( + hidden_features, hidden_features, 3, + groups=hidden_features, bias=True, norm_layer=norm_layer, act_layer=act_layer) + else: + self.mid = nn.Identity() + self.drop1 = nn.Dropout(drop) + self.fc2 = ConvNorm(hidden_features, out_features, 1, norm_layer=norm_layer) + self.drop2 = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.mid(x) + x = self.drop1(x) + x = self.fc2(x) + x = self.drop2(x) + return x + + +class LayerScale2d(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + + +class EfficientFormerV2Block(nn.Module): + def __init__( + self, + dim, + mlp_ratio=4., + act_layer=nn.GELU, + norm_layer=nn.BatchNorm2d, + proj_drop=0., + drop_path=0., + layer_scale_init_value=1e-5, + resolution=7, + stride=None, + use_attn=True, + ): + super().__init__() + + if use_attn: + self.token_mixer = Attention2d( + dim, + resolution=resolution, + act_layer=act_layer, + stride=stride, + ) + self.ls1 = LayerScale2d( + dim, layer_scale_init_value) if layer_scale_init_value is not None else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + else: + self.token_mixer = None + self.ls1 = None + self.drop_path1 = None + + self.mlp = ConvMlpWithNorm( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + norm_layer=norm_layer, + drop=proj_drop, + mid_conv=True, + ) + self.ls2 = LayerScale2d( + dim, layer_scale_init_value) if layer_scale_init_value is not None else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + if self.token_mixer is not None: + x = x + self.drop_path1(self.ls1(self.token_mixer(x))) + x = x + self.drop_path2(self.ls2(self.mlp(x))) + return x + + +class Stem4(nn.Sequential): + def __init__(self, in_chs, out_chs, act_layer=nn.GELU, norm_layer=nn.BatchNorm2d): + super().__init__() + self.stride = 4 + self.conv1 = ConvNormAct( + in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1, bias=True, + norm_layer=norm_layer, act_layer=act_layer + ) + self.conv2 = ConvNormAct( + out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1, bias=True, + norm_layer=norm_layer, act_layer=act_layer + ) + + +class EfficientFormerV2Stage(nn.Module): + + def __init__( + self, + dim, + dim_out, + depth, + resolution=7, + downsample=True, + block_stride=None, + downsample_use_attn=False, + block_use_attn=False, + num_vit=1, + mlp_ratio=4., + proj_drop=.0, + drop_path=0., + layer_scale_init_value=1e-5, + act_layer=nn.GELU, + norm_layer=nn.BatchNorm2d, + + ): + super().__init__() + self.grad_checkpointing = False + mlp_ratio = to_ntuple(depth)(mlp_ratio) + resolution = to_2tuple(resolution) + + if downsample: + self.downsample = Downsample( + dim, + dim_out, + use_attn=downsample_use_attn, + resolution=resolution, + norm_layer=norm_layer, + act_layer=act_layer, + ) + dim = dim_out + resolution = tuple([math.ceil(r / 2) for r in resolution]) + else: + assert dim == dim_out + self.downsample = nn.Identity() + + blocks = [] + for block_idx in range(depth): + remain_idx = depth - num_vit - 1 + b = EfficientFormerV2Block( + dim, + resolution=resolution, + stride=block_stride, + mlp_ratio=mlp_ratio[block_idx], + use_attn=block_use_attn and block_idx > remain_idx, + proj_drop=proj_drop, + drop_path=drop_path[block_idx], + layer_scale_init_value=layer_scale_init_value, + act_layer=act_layer, + norm_layer=norm_layer, + ) + blocks += [b] + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class EfficientFormerV2(nn.Module): + def __init__( + self, + depths, + in_chans=3, + img_size=224, + global_pool='avg', + embed_dims=None, + downsamples=None, + mlp_ratios=4, + norm_layer='batchnorm2d', + norm_eps=1e-5, + act_layer='gelu', + num_classes=1000, + drop_rate=0., + proj_drop_rate=0., + drop_path_rate=0., + layer_scale_init_value=1e-5, + num_vit=0, + distillation=True, + ): + super().__init__() + assert global_pool in ('avg', '') + self.num_classes = num_classes + self.global_pool = global_pool + self.feature_info = [] + img_size = to_2tuple(img_size) + norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps) + act_layer = get_act_layer(act_layer) + + self.stem = Stem4(in_chans, embed_dims[0], act_layer=act_layer, norm_layer=norm_layer) + prev_dim = embed_dims[0] + stride = 4 + + num_stages = len(depths) + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + downsamples = downsamples or (False,) + (True,) * (len(depths) - 1) + mlp_ratios = to_ntuple(num_stages)(mlp_ratios) + stages = [] + for i in range(num_stages): + curr_resolution = tuple([math.ceil(s / stride) for s in img_size]) + stage = EfficientFormerV2Stage( + prev_dim, + embed_dims[i], + depth=depths[i], + resolution=curr_resolution, + downsample=downsamples[i], + block_stride=2 if i == 2 else None, + downsample_use_attn=i >= 3, + block_use_attn=i >= 2, + num_vit=num_vit, + mlp_ratio=mlp_ratios[i], + proj_drop=proj_drop_rate, + drop_path=dpr[i], + layer_scale_init_value=layer_scale_init_value, + act_layer=act_layer, + norm_layer=norm_layer, + ) + if downsamples[i]: + stride *= 2 + prev_dim = embed_dims[i] + self.feature_info += [dict(num_chs=prev_dim, reduction=stride, module=f'stages.{i}')] + stages.append(stage) + self.stages = nn.Sequential(*stages) + + # Classifier head + self.num_features = self.head_hidden_size = embed_dims[-1] + self.norm = norm_layer(embed_dims[-1]) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() + self.dist = distillation + if self.dist: + self.head_dist = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() + else: + self.head_dist = None + + self.apply(self.init_weights) + self.distilled_training = False + + # init for classification + def init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay(self): + return {k for k, _ in self.named_parameters() if 'attention_biases' in k} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^stem', # stem and embed + blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head, self.head_dist + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + self.head_dist = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.distilled_training = enable + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool == 'avg': + x = x.mean(dim=(2, 3)) + x = self.head_drop(x) + if pre_logits: + return x + x, x_dist = self.head(x), self.head_dist(x) + if self.distilled_training and self.training and not torch.jit.is_scripting(): + # only return separate classification predictions when training in distilled mode + return x, x_dist + else: + # during standard train/finetune, inference average the classifier predictions + return (x + x_dist) / 2 + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True, + 'crop_pct': .95, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'classifier': ('head', 'head_dist'), 'first_conv': 'stem.conv1.conv', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'efficientformerv2_s0.snap_dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'efficientformerv2_s1.snap_dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'efficientformerv2_s2.snap_dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'efficientformerv2_l.snap_dist_in1k': _cfg( + hf_hub_id='timm/', + ), +}) + + +def _create_efficientformerv2(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg( + EfficientFormerV2, variant, pretrained, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs) + return model + + +@register_model +def efficientformerv2_s0(pretrained=False, **kwargs) -> EfficientFormerV2: + model_args = dict( + depths=EfficientFormer_depth['S0'], + embed_dims=EfficientFormer_width['S0'], + num_vit=2, + drop_path_rate=0.0, + mlp_ratios=EfficientFormer_expansion_ratios['S0'], + ) + return _create_efficientformerv2('efficientformerv2_s0', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientformerv2_s1(pretrained=False, **kwargs) -> EfficientFormerV2: + model_args = dict( + depths=EfficientFormer_depth['S1'], + embed_dims=EfficientFormer_width['S1'], + num_vit=2, + drop_path_rate=0.0, + mlp_ratios=EfficientFormer_expansion_ratios['S1'], + ) + return _create_efficientformerv2('efficientformerv2_s1', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientformerv2_s2(pretrained=False, **kwargs) -> EfficientFormerV2: + model_args = dict( + depths=EfficientFormer_depth['S2'], + embed_dims=EfficientFormer_width['S2'], + num_vit=4, + drop_path_rate=0.02, + mlp_ratios=EfficientFormer_expansion_ratios['S2'], + ) + return _create_efficientformerv2('efficientformerv2_s2', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientformerv2_l(pretrained=False, **kwargs) -> EfficientFormerV2: + model_args = dict( + depths=EfficientFormer_depth['L'], + embed_dims=EfficientFormer_width['L'], + num_vit=6, + drop_path_rate=0.1, + mlp_ratios=EfficientFormer_expansion_ratios['L'], + ) + return _create_efficientformerv2('efficientformerv2_l', pretrained=pretrained, **dict(model_args, **kwargs)) + diff --git a/pytorch-image-models/timm/models/efficientnet.py b/pytorch-image-models/timm/models/efficientnet.py new file mode 100644 index 0000000000000000000000000000000000000000..07bb250c84efbce84072135c9808214da90a742b --- /dev/null +++ b/pytorch-image-models/timm/models/efficientnet.py @@ -0,0 +1,2860 @@ +""" The EfficientNet Family in PyTorch + +An implementation of EfficienNet that covers variety of related models with efficient architectures: + +* EfficientNet-V2 + - `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 + +* EfficientNet (B0-B8, L2 + Tensorflow pretrained AutoAug/RandAug/AdvProp/NoisyStudent weight ports) + - EfficientNet: Rethinking Model Scaling for CNNs - https://arxiv.org/abs/1905.11946 + - CondConv: Conditionally Parameterized Convolutions for Efficient Inference - https://arxiv.org/abs/1904.04971 + - Adversarial Examples Improve Image Recognition - https://arxiv.org/abs/1911.09665 + - Self-training with Noisy Student improves ImageNet classification - https://arxiv.org/abs/1911.04252 + +* MixNet (Small, Medium, and Large) + - MixConv: Mixed Depthwise Convolutional Kernels - https://arxiv.org/abs/1907.09595 + +* MNasNet B1, A1 (SE), Small + - MnasNet: Platform-Aware Neural Architecture Search for Mobile - https://arxiv.org/abs/1807.11626 + +* FBNet-C + - FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable NAS - https://arxiv.org/abs/1812.03443 + +* Single-Path NAS Pixel1 + - Single-Path NAS: Designing Hardware-Efficient ConvNets - https://arxiv.org/abs/1904.02877 + +* TinyNet + - Model Rubik's Cube: Twisting Resolution, Depth and Width for TinyNets - https://arxiv.org/abs/2010.14819 + - Definitions & weights borrowed from https://github.com/huawei-noah/CV-Backbones/tree/master/tinynet_pytorch + +* And likely more... + +The majority of the above models (EfficientNet*, MixNet, MnasNet) and original weights were made available +by Mingxing Tan, Quoc Le, and other members of their Google Brain team. Thanks for consistently releasing +the models and weights open source! + +Hacked together by / Copyright 2019, Ross Wightman +""" +from functools import partial +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import create_conv2d, create_classifier, get_norm_act_layer, LayerType, \ + GroupNormAct, LayerNormAct2d, EvoNorm2dS0 +from ._builder import build_model_with_cfg, pretrained_cfg_for_features +from ._efficientnet_blocks import SqueezeExcite +from ._efficientnet_builder import BlockArgs, EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, \ + round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT +from ._features import FeatureInfo, FeatureHooks, feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model, register_model_deprecations + +__all__ = ['EfficientNet', 'EfficientNetFeatures'] + + +class EfficientNet(nn.Module): + """ EfficientNet + + A flexible and performant PyTorch implementation of efficient network architectures, including: + * EfficientNet-V2 Small, Medium, Large, XL & B0-B3 + * EfficientNet B0-B8, L2 + * EfficientNet-EdgeTPU + * EfficientNet-CondConv + * MixNet S, M, L, XL + * MnasNet A1, B1, and small + * MobileNet-V2 + * FBNet C + * Single-Path NAS Pixel1 + * TinyNet + """ + + def __init__( + self, + block_args: BlockArgs, + num_classes: int = 1000, + num_features: int = 1280, + in_chans: int = 3, + stem_size: int = 32, + stem_kernel_size: int = 3, + fix_stem: bool = False, + output_stride: int = 32, + pad_type: str = '', + act_layer: Optional[LayerType] = None, + norm_layer: Optional[LayerType] = None, + aa_layer: Optional[LayerType] = None, + se_layer: Optional[LayerType] = None, + round_chs_fn: Callable = round_channels, + drop_rate: float = 0., + drop_path_rate: float = 0., + global_pool: str = 'avg' + ): + super(EfficientNet, self).__init__() + act_layer = act_layer or nn.ReLU + norm_layer = norm_layer or nn.BatchNorm2d + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + se_layer = se_layer or SqueezeExcite + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + + # Stem + if not fix_stem: + stem_size = round_chs_fn(stem_size) + self.conv_stem = create_conv2d(in_chans, stem_size, stem_kernel_size, stride=2, padding=pad_type) + self.bn1 = norm_act_layer(stem_size, inplace=True) + + # Middle stages (IR/ER/DS Blocks) + builder = EfficientNetBuilder( + output_stride=output_stride, + pad_type=pad_type, + round_chs_fn=round_chs_fn, + act_layer=act_layer, + norm_layer=norm_layer, + aa_layer=aa_layer, + se_layer=se_layer, + drop_path_rate=drop_path_rate, + ) + self.blocks = nn.Sequential(*builder(stem_size, block_args)) + self.feature_info = builder.features + self.stage_ends = [f['stage'] for f in self.feature_info] + head_chs = builder.in_chs + + # Head + Pooling + if num_features > 0: + self.conv_head = create_conv2d(head_chs, num_features, 1, padding=pad_type) + self.bn2 = norm_act_layer(num_features, inplace=True) + self.num_features = self.head_hidden_size = num_features + else: + self.conv_head = nn.Identity() + self.bn2 = nn.Identity() + self.num_features = self.head_hidden_size = head_chs + + self.global_pool, self.classifier = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool) + + efficientnet_init_weights(self) + + def as_sequential(self): + layers = [self.conv_stem, self.bn1] + layers.extend(self.blocks) + layers.extend([self.conv_head, self.bn2, self.global_pool]) + layers.extend([nn.Dropout(self.drop_rate), self.classifier]) + return nn.Sequential(*layers) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^conv_stem|bn1', + blocks=[ + (r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), + (r'conv_head|bn2', (99999,)) + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.classifier = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + extra_blocks: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + extra_blocks: Include outputs of all blocks and head conv in output, does not align with feature_info + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + if extra_blocks: + take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices) + else: + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + # forward pass + feat_idx = 0 # stem is index 0 + x = self.conv_stem(x) + x = self.bn1(x) + if feat_idx in take_indices: + intermediates.append(x) + + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index] + for blk in blocks: + feat_idx += 1 + x = blk(x) + if feat_idx in take_indices: + intermediates.append(x) + + if intermediates_only: + return intermediates + + if feat_idx == self.stage_ends[-1]: + x = self.conv_head(x) + x = self.bn2(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + extra_blocks: bool = False, + ): + """ Prune layers not required for specified intermediates. + """ + if extra_blocks: + take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices) + else: + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + self.blocks = self.blocks[:max_index] # truncate blocks w/ stem as idx 0 + if prune_norm or max_index < len(self.blocks): + self.conv_head = nn.Identity() + self.bn2 = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.conv_stem(x) + x = self.bn1(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x, flatten=True) + else: + x = self.blocks(x) + x = self.conv_head(x) + x = self.bn2(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + if self.drop_rate > 0.: + x = F.dropout(x, p=self.drop_rate, training=self.training) + return x if pre_logits else self.classifier(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +class EfficientNetFeatures(nn.Module): + """ EfficientNet Feature Extractor + + A work-in-progress feature extraction module for EfficientNet, to use as a backbone for segmentation + and object detection models. + """ + + def __init__( + self, + block_args: BlockArgs, + out_indices: Tuple[int, ...] = (0, 1, 2, 3, 4), + feature_location: str = 'bottleneck', + in_chans: int = 3, + stem_size: int = 32, + stem_kernel_size: int = 3, + fix_stem: bool = False, + output_stride: int = 32, + pad_type: str = '', + act_layer: Optional[LayerType] = None, + norm_layer: Optional[LayerType] = None, + aa_layer: Optional[LayerType] = None, + se_layer: Optional[LayerType] = None, + round_chs_fn: Callable = round_channels, + drop_rate: float = 0., + drop_path_rate: float = 0., + ): + super(EfficientNetFeatures, self).__init__() + act_layer = act_layer or nn.ReLU + norm_layer = norm_layer or nn.BatchNorm2d + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + se_layer = se_layer or SqueezeExcite + self.drop_rate = drop_rate + self.grad_checkpointing = False + + # Stem + if not fix_stem: + stem_size = round_chs_fn(stem_size) + self.conv_stem = create_conv2d(in_chans, stem_size, stem_kernel_size, stride=2, padding=pad_type) + self.bn1 = norm_act_layer(stem_size, inplace=True) + + # Middle stages (IR/ER/DS Blocks) + builder = EfficientNetBuilder( + output_stride=output_stride, + pad_type=pad_type, + round_chs_fn=round_chs_fn, + act_layer=act_layer, + norm_layer=norm_layer, + aa_layer=aa_layer, + se_layer=se_layer, + drop_path_rate=drop_path_rate, + feature_location=feature_location, + ) + self.blocks = nn.Sequential(*builder(stem_size, block_args)) + self.feature_info = FeatureInfo(builder.features, out_indices) + self._stage_out_idx = {f['stage']: f['index'] for f in self.feature_info.get_dicts()} + + efficientnet_init_weights(self) + + # Register feature extraction hooks with FeatureHooks helper + self.feature_hooks = None + if feature_location != 'bottleneck': + hooks = self.feature_info.get_dicts(keys=('module', 'hook_type')) + self.feature_hooks = FeatureHooks(hooks, self.named_modules()) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + def forward(self, x) -> List[torch.Tensor]: + x = self.conv_stem(x) + x = self.bn1(x) + if self.feature_hooks is None: + features = [] + if 0 in self._stage_out_idx: + features.append(x) # add stem out + for i, b in enumerate(self.blocks): + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(b, x) + else: + x = b(x) + if i + 1 in self._stage_out_idx: + features.append(x) + return features + else: + self.blocks(x) + out = self.feature_hooks.get_output(x.device) + return list(out.values()) + + +def _create_effnet(variant, pretrained=False, **kwargs): + features_mode = '' + model_cls = EfficientNet + kwargs_filter = None + if kwargs.pop('features_only', False): + if 'feature_cfg' in kwargs or 'feature_cls' in kwargs: + features_mode = 'cfg' + else: + kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'global_pool') + model_cls = EfficientNetFeatures + features_mode = 'cls' + + model = build_model_with_cfg( + model_cls, + variant, + pretrained, + features_only=features_mode == 'cfg', + pretrained_strict=features_mode != 'cls', + kwargs_filter=kwargs_filter, + **kwargs, + ) + if features_mode == 'cls': + model.pretrained_cfg = model.default_cfg = pretrained_cfg_for_features(model.pretrained_cfg) + return model + + +def _gen_mnasnet_a1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + """Creates a mnasnet-a1 model. + + Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet + Paper: https://arxiv.org/pdf/1807.11626.pdf. + + Args: + channel_multiplier: multiplier to number of channels per layer. + """ + arch_def = [ + # stage 0, 112x112 in + ['ds_r1_k3_s1_e1_c16_noskip'], + # stage 1, 112x112 in + ['ir_r2_k3_s2_e6_c24'], + # stage 2, 56x56 in + ['ir_r3_k5_s2_e3_c40_se0.25'], + # stage 3, 28x28 in + ['ir_r4_k3_s2_e6_c80'], + # stage 4, 14x14in + ['ir_r2_k3_s1_e6_c112_se0.25'], + # stage 5, 14x14in + ['ir_r3_k5_s2_e6_c160_se0.25'], + # stage 6, 7x7 in + ['ir_r1_k3_s1_e6_c320'], + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def), + stem_size=32, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + **kwargs + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_mnasnet_b1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + """Creates a mnasnet-b1 model. + + Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet + Paper: https://arxiv.org/pdf/1807.11626.pdf. + + Args: + channel_multiplier: multiplier to number of channels per layer. + """ + arch_def = [ + # stage 0, 112x112 in + ['ds_r1_k3_s1_c16_noskip'], + # stage 1, 112x112 in + ['ir_r3_k3_s2_e3_c24'], + # stage 2, 56x56 in + ['ir_r3_k5_s2_e3_c40'], + # stage 3, 28x28 in + ['ir_r3_k5_s2_e6_c80'], + # stage 4, 14x14in + ['ir_r2_k3_s1_e6_c96'], + # stage 5, 14x14in + ['ir_r4_k5_s2_e6_c192'], + # stage 6, 7x7 in + ['ir_r1_k3_s1_e6_c320_noskip'] + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def), + stem_size=32, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + **kwargs + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_mnasnet_small(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + """Creates a mnasnet-b1 model. + + Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet + Paper: https://arxiv.org/pdf/1807.11626.pdf. + + Args: + channel_multiplier: multiplier to number of channels per layer. + """ + arch_def = [ + ['ds_r1_k3_s1_c8'], + ['ir_r1_k3_s2_e3_c16'], + ['ir_r2_k3_s2_e6_c16'], + ['ir_r4_k5_s2_e6_c32_se0.25'], + ['ir_r3_k3_s1_e6_c32_se0.25'], + ['ir_r3_k5_s2_e6_c88_se0.25'], + ['ir_r1_k3_s1_e6_c144'] + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def), + stem_size=8, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + **kwargs + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_mobilenet_v1( + variant, channel_multiplier=1.0, depth_multiplier=1.0, + group_size=None, fix_stem_head=False, head_conv=False, pretrained=False, **kwargs +): + """ + Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py + Paper: https://arxiv.org/abs/1801.04381 + """ + arch_def = [ + ['dsa_r1_k3_s1_c64'], + ['dsa_r2_k3_s2_c128'], + ['dsa_r2_k3_s2_c256'], + ['dsa_r6_k3_s2_c512'], + ['dsa_r2_k3_s2_c1024'], + ] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier) + head_features = (1024 if fix_stem_head else max(1024, round_chs_fn(1024))) if head_conv else 0 + model_kwargs = dict( + block_args=decode_arch_def( + arch_def, + depth_multiplier=depth_multiplier, + fix_first_last=fix_stem_head, + group_size=group_size, + ), + num_features=head_features, + stem_size=32, + fix_stem=fix_stem_head, + round_chs_fn=round_chs_fn, + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'relu6'), + **kwargs + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_mobilenet_v2( + variant, channel_multiplier=1.0, depth_multiplier=1.0, + group_size=None, fix_stem_head=False, pretrained=False, **kwargs +): + """ Generate MobileNet-V2 network + Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py + Paper: https://arxiv.org/abs/1801.04381 + """ + arch_def = [ + ['ds_r1_k3_s1_c16'], + ['ir_r2_k3_s2_e6_c24'], + ['ir_r3_k3_s2_e6_c32'], + ['ir_r4_k3_s2_e6_c64'], + ['ir_r3_k3_s1_e6_c96'], + ['ir_r3_k3_s2_e6_c160'], + ['ir_r1_k3_s1_e6_c320'], + ] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier) + model_kwargs = dict( + block_args=decode_arch_def( + arch_def, + depth_multiplier=depth_multiplier, + fix_first_last=fix_stem_head, + group_size=group_size, + ), + num_features=1280 if fix_stem_head else max(1280, round_chs_fn(1280)), + stem_size=32, + fix_stem=fix_stem_head, + round_chs_fn=round_chs_fn, + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'relu6'), + **kwargs + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_fbnetc(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + """ FBNet-C + + Paper: https://arxiv.org/abs/1812.03443 + Ref Impl: https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_modeldef.py + + NOTE: the impl above does not relate to the 'C' variant here, that was derived from paper, + it was used to confirm some building block details + """ + arch_def = [ + ['ir_r1_k3_s1_e1_c16'], + ['ir_r1_k3_s2_e6_c24', 'ir_r2_k3_s1_e1_c24'], + ['ir_r1_k5_s2_e6_c32', 'ir_r1_k5_s1_e3_c32', 'ir_r1_k5_s1_e6_c32', 'ir_r1_k3_s1_e6_c32'], + ['ir_r1_k5_s2_e6_c64', 'ir_r1_k5_s1_e3_c64', 'ir_r2_k5_s1_e6_c64'], + ['ir_r3_k5_s1_e6_c112', 'ir_r1_k5_s1_e3_c112'], + ['ir_r4_k5_s2_e6_c184'], + ['ir_r1_k3_s1_e6_c352'], + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def), + stem_size=16, + num_features=1984, # paper suggests this, but is not 100% clear + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + **kwargs + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_spnasnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + """Creates the Single-Path NAS model from search targeted for Pixel1 phone. + + Paper: https://arxiv.org/abs/1904.02877 + + Args: + channel_multiplier: multiplier to number of channels per layer. + """ + arch_def = [ + # stage 0, 112x112 in + ['ds_r1_k3_s1_c16_noskip'], + # stage 1, 112x112 in + ['ir_r3_k3_s2_e3_c24'], + # stage 2, 56x56 in + ['ir_r1_k5_s2_e6_c40', 'ir_r3_k3_s1_e3_c40'], + # stage 3, 28x28 in + ['ir_r1_k5_s2_e6_c80', 'ir_r3_k3_s1_e3_c80'], + # stage 4, 14x14in + ['ir_r1_k5_s1_e6_c96', 'ir_r3_k5_s1_e3_c96'], + # stage 5, 14x14in + ['ir_r4_k5_s2_e6_c192'], + # stage 6, 7x7 in + ['ir_r1_k3_s1_e6_c320_noskip'] + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def), + stem_size=32, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + **kwargs + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_efficientnet( + variant, channel_multiplier=1.0, depth_multiplier=1.0, channel_divisor=8, + group_size=None, pretrained=False, **kwargs +): + """Creates an EfficientNet model. + + Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py + Paper: https://arxiv.org/abs/1905.11946 + + EfficientNet params + name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) + 'efficientnet-b0': (1.0, 1.0, 224, 0.2), + 'efficientnet-b1': (1.0, 1.1, 240, 0.2), + 'efficientnet-b2': (1.1, 1.2, 260, 0.3), + 'efficientnet-b3': (1.2, 1.4, 300, 0.3), + 'efficientnet-b4': (1.4, 1.8, 380, 0.4), + 'efficientnet-b5': (1.6, 2.2, 456, 0.4), + 'efficientnet-b6': (1.8, 2.6, 528, 0.5), + 'efficientnet-b7': (2.0, 3.1, 600, 0.5), + 'efficientnet-b8': (2.2, 3.6, 672, 0.5), + 'efficientnet-l2': (4.3, 5.3, 800, 0.5), + + Args: + channel_multiplier: multiplier to number of channels per layer + depth_multiplier: multiplier to number of repeats per stage + + """ + arch_def = [ + ['ds_r1_k3_s1_e1_c16_se0.25'], + ['ir_r2_k3_s2_e6_c24_se0.25'], + ['ir_r2_k5_s2_e6_c40_se0.25'], + ['ir_r3_k3_s2_e6_c80_se0.25'], + ['ir_r3_k5_s1_e6_c112_se0.25'], + ['ir_r4_k5_s2_e6_c192_se0.25'], + ['ir_r1_k3_s1_e6_c320_se0.25'], + ] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier, divisor=channel_divisor) + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), + num_features=round_chs_fn(1280), + stem_size=32, + round_chs_fn=round_chs_fn, + act_layer=resolve_act_layer(kwargs, 'swish'), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_efficientnet_edge( + variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs +): + """ Creates an EfficientNet-EdgeTPU model + + Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/edgetpu + """ + + arch_def = [ + # NOTE `fc` is present to override a mismatch between stem channels and in chs not + # present in other models + ['er_r1_k3_s1_e4_c24_fc24_noskip'], + ['er_r2_k3_s2_e8_c32'], + ['er_r4_k3_s2_e8_c48'], + ['ir_r5_k5_s2_e8_c96'], + ['ir_r4_k5_s1_e8_c144'], + ['ir_r2_k5_s2_e8_c192'], + ] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier) + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), + num_features=round_chs_fn(1280), + stem_size=32, + round_chs_fn=round_chs_fn, + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'relu'), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_efficientnet_condconv( + variant, channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=1, pretrained=False, **kwargs +): + """Creates an EfficientNet-CondConv model. + + Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv + """ + arch_def = [ + ['ds_r1_k3_s1_e1_c16_se0.25'], + ['ir_r2_k3_s2_e6_c24_se0.25'], + ['ir_r2_k5_s2_e6_c40_se0.25'], + ['ir_r3_k3_s2_e6_c80_se0.25'], + ['ir_r3_k5_s1_e6_c112_se0.25_cc4'], + ['ir_r4_k5_s2_e6_c192_se0.25_cc4'], + ['ir_r1_k3_s1_e6_c320_se0.25_cc4'], + ] + # NOTE unlike official impl, this one uses `cc` option where x is the base number of experts for each stage and + # the expert_multiplier increases that on a per-model basis as with depth/channel multipliers + round_chs_fn = partial(round_channels, multiplier=channel_multiplier) + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, experts_multiplier=experts_multiplier), + num_features=round_chs_fn(1280), + stem_size=32, + round_chs_fn=round_chs_fn, + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'swish'), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_efficientnet_lite(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): + """Creates an EfficientNet-Lite model. + + Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite + Paper: https://arxiv.org/abs/1905.11946 + + EfficientNet params + name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) + 'efficientnet-lite0': (1.0, 1.0, 224, 0.2), + 'efficientnet-lite1': (1.0, 1.1, 240, 0.2), + 'efficientnet-lite2': (1.1, 1.2, 260, 0.3), + 'efficientnet-lite3': (1.2, 1.4, 280, 0.3), + 'efficientnet-lite4': (1.4, 1.8, 300, 0.3), + + Args: + channel_multiplier: multiplier to number of channels per layer + depth_multiplier: multiplier to number of repeats per stage + """ + arch_def = [ + ['ds_r1_k3_s1_e1_c16'], + ['ir_r2_k3_s2_e6_c24'], + ['ir_r2_k5_s2_e6_c40'], + ['ir_r3_k3_s2_e6_c80'], + ['ir_r3_k5_s1_e6_c112'], + ['ir_r4_k5_s2_e6_c192'], + ['ir_r1_k3_s1_e6_c320'], + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, fix_first_last=True), + num_features=1280, + stem_size=32, + fix_stem=True, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + act_layer=resolve_act_layer(kwargs, 'relu6'), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_efficientnetv2_base( + variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs +): + """ Creates an EfficientNet-V2 base model + + Ref impl: https://github.com/google/automl/tree/master/efficientnetv2 + Paper: `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 + """ + arch_def = [ + ['cn_r1_k3_s1_e1_c16_skip'], + ['er_r2_k3_s2_e4_c32'], + ['er_r2_k3_s2_e4_c48'], + ['ir_r3_k3_s2_e4_c96_se0.25'], + ['ir_r5_k3_s1_e6_c112_se0.25'], + ['ir_r8_k3_s2_e6_c192_se0.25'], + ] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.) + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), + num_features=round_chs_fn(1280), + stem_size=32, + round_chs_fn=round_chs_fn, + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'silu'), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_efficientnetv2_s( + variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, rw=False, pretrained=False, **kwargs +): + """ Creates an EfficientNet-V2 Small model + + Ref impl: https://github.com/google/automl/tree/master/efficientnetv2 + Paper: `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 + + NOTE: `rw` flag sets up 'small' variant to behave like my initial v2 small model, + before ref the impl was released. + """ + arch_def = [ + ['cn_r2_k3_s1_e1_c24_skip'], + ['er_r4_k3_s2_e4_c48'], + ['er_r4_k3_s2_e4_c64'], + ['ir_r6_k3_s2_e4_c128_se0.25'], + ['ir_r9_k3_s1_e6_c160_se0.25'], + ['ir_r15_k3_s2_e6_c256_se0.25'], + ] + num_features = 1280 + if rw: + # my original variant, based on paper figure differs from the official release + arch_def[0] = ['er_r2_k3_s1_e1_c24'] + arch_def[-1] = ['ir_r15_k3_s2_e6_c272_se0.25'] + num_features = 1792 + + round_chs_fn = partial(round_channels, multiplier=channel_multiplier) + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), + num_features=round_chs_fn(num_features), + stem_size=24, + round_chs_fn=round_chs_fn, + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'silu'), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_efficientnetv2_m( + variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs +): + """ Creates an EfficientNet-V2 Medium model + + Ref impl: https://github.com/google/automl/tree/master/efficientnetv2 + Paper: `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 + """ + + arch_def = [ + ['cn_r3_k3_s1_e1_c24_skip'], + ['er_r5_k3_s2_e4_c48'], + ['er_r5_k3_s2_e4_c80'], + ['ir_r7_k3_s2_e4_c160_se0.25'], + ['ir_r14_k3_s1_e6_c176_se0.25'], + ['ir_r18_k3_s2_e6_c304_se0.25'], + ['ir_r5_k3_s1_e6_c512_se0.25'], + ] + + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), + num_features=1280, + stem_size=24, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'silu'), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_efficientnetv2_l( + variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs +): + """ Creates an EfficientNet-V2 Large model + + Ref impl: https://github.com/google/automl/tree/master/efficientnetv2 + Paper: `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 + """ + + arch_def = [ + ['cn_r4_k3_s1_e1_c32_skip'], + ['er_r7_k3_s2_e4_c64'], + ['er_r7_k3_s2_e4_c96'], + ['ir_r10_k3_s2_e4_c192_se0.25'], + ['ir_r19_k3_s1_e6_c224_se0.25'], + ['ir_r25_k3_s2_e6_c384_se0.25'], + ['ir_r7_k3_s1_e6_c640_se0.25'], + ] + + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), + num_features=1280, + stem_size=32, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'silu'), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_efficientnetv2_xl( + variant, channel_multiplier=1.0, depth_multiplier=1.0, group_size=None, pretrained=False, **kwargs +): + """ Creates an EfficientNet-V2 Xtra-Large model + + Ref impl: https://github.com/google/automl/tree/master/efficientnetv2 + Paper: `EfficientNetV2: Smaller Models and Faster Training` - https://arxiv.org/abs/2104.00298 + """ + + arch_def = [ + ['cn_r4_k3_s1_e1_c32_skip'], + ['er_r8_k3_s2_e4_c64'], + ['er_r8_k3_s2_e4_c96'], + ['ir_r16_k3_s2_e4_c192_se0.25'], + ['ir_r24_k3_s1_e6_c256_se0.25'], + ['ir_r32_k3_s2_e6_c512_se0.25'], + ['ir_r8_k3_s1_e6_c640_se0.25'], + ] + + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), + num_features=1280, + stem_size=32, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'silu'), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_efficientnet_x( + variant, channel_multiplier=1.0, depth_multiplier=1.0, channel_divisor=8, + group_size=None, version=1, pretrained=False, **kwargs +): + """Creates an EfficientNet model. + + Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py + Paper: https://arxiv.org/abs/1905.11946 + + EfficientNet params + name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) + 'efficientnet-x-b0': (1.0, 1.0, 224, 0.2), + 'efficientnet-x-b1': (1.0, 1.1, 240, 0.2), + 'efficientnet-x-b2': (1.1, 1.2, 260, 0.3), + 'efficientnet-x-b3': (1.2, 1.4, 300, 0.3), + 'efficientnet-x-b4': (1.4, 1.8, 380, 0.4), + 'efficientnet-x-b5': (1.6, 2.2, 456, 0.4), + 'efficientnet-x-b6': (1.8, 2.6, 528, 0.5), + 'efficientnet-x-b7': (2.0, 3.1, 600, 0.5), + 'efficientnet-x-b8': (2.2, 3.6, 672, 0.5), + 'efficientnet-l2': (4.3, 5.3, 800, 0.5), + + Args: + channel_multiplier: multiplier to number of channels per layer + depth_multiplier: multiplier to number of repeats per stage + + """ + """ + if version == 1: + blocks_args = [ + 'r1_k3_s11_e1_i32_o16_se0.25_d1_a0', + 'r2_k3_s22_e6_i16_o24_se0.25_f1_d2_a1', + 'r2_k5_s22_e6_i24_o40_se0.25_f1_a1', + 'r3_k3_s22_e6_i40_o80_se0.25_a0', + 'r3_k5_s11_e6_i80_o112_se0.25_a0', + 'r4_k5_s22_e6_i112_o192_se0.25_a0', + 'r1_k3_s11_e6_i192_o320_se0.25_a0', + ] + elif version == 2: + blocks_args = [ + 'r1_k3_s11_e1_i32_o16_se0.25_d1_a0', + 'r2_k3_s22_e4_i16_o24_se0.25_f1_d2_a1', + 'r2_k5_s22_e4_i24_o40_se0.25_f1_a1', + 'r3_k3_s22_e4_i40_o80_se0.25_a0', + 'r3_k5_s11_e6_i80_o112_se0.25_a0', + 'r4_k5_s22_e6_i112_o192_se0.25_a0', + 'r1_k3_s11_e6_i192_o320_se0.25_a0', + ] + """ + if version == 1: + arch_def = [ + ['ds_r1_k3_s1_e1_c16_se0.25_d1'], + ['er_r2_k3_s2_e6_c24_se0.25_nre'], + ['er_r2_k5_s2_e6_c40_se0.25_nre'], + ['ir_r3_k3_s2_e6_c80_se0.25'], + ['ir_r3_k5_s1_e6_c112_se0.25'], + ['ir_r4_k5_s2_e6_c192_se0.25'], + ['ir_r1_k3_s1_e6_c320_se0.25'], + ] + else: + arch_def = [ + ['ds_r1_k3_s1_e1_c16_se0.25_d1'], + ['er_r2_k3_s2_e4_c24_se0.25_nre'], + ['er_r2_k5_s2_e4_c40_se0.25_nre'], + ['ir_r3_k3_s2_e4_c80_se0.25'], + ['ir_r3_k5_s1_e6_c112_se0.25'], + ['ir_r4_k5_s2_e6_c192_se0.25'], + ['ir_r1_k3_s1_e6_c320_se0.25'], + ] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier, divisor=channel_divisor) + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, group_size=group_size), + num_features=round_chs_fn(1280), + stem_size=32, + round_chs_fn=round_chs_fn, + act_layer=resolve_act_layer(kwargs, 'silu'), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_mixnet_s(variant, channel_multiplier=1.0, pretrained=False, **kwargs): + """Creates a MixNet Small model. + + Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet + Paper: https://arxiv.org/abs/1907.09595 + """ + arch_def = [ + # stage 0, 112x112 in + ['ds_r1_k3_s1_e1_c16'], # relu + # stage 1, 112x112 in + ['ir_r1_k3_a1.1_p1.1_s2_e6_c24', 'ir_r1_k3_a1.1_p1.1_s1_e3_c24'], # relu + # stage 2, 56x56 in + ['ir_r1_k3.5.7_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], # swish + # stage 3, 28x28 in + ['ir_r1_k3.5.7_p1.1_s2_e6_c80_se0.25_nsw', 'ir_r2_k3.5_p1.1_s1_e6_c80_se0.25_nsw'], # swish + # stage 4, 14x14in + ['ir_r1_k3.5.7_a1.1_p1.1_s1_e6_c120_se0.5_nsw', 'ir_r2_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], # swish + # stage 5, 14x14in + ['ir_r1_k3.5.7.9.11_s2_e6_c200_se0.5_nsw', 'ir_r2_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], # swish + # 7x7 + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def), + num_features=1536, + stem_size=16, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + **kwargs + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_mixnet_m(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): + """Creates a MixNet Medium-Large model. + + Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet + Paper: https://arxiv.org/abs/1907.09595 + """ + arch_def = [ + # stage 0, 112x112 in + ['ds_r1_k3_s1_e1_c24'], # relu + # stage 1, 112x112 in + ['ir_r1_k3.5.7_a1.1_p1.1_s2_e6_c32', 'ir_r1_k3_a1.1_p1.1_s1_e3_c32'], # relu + # stage 2, 56x56 in + ['ir_r1_k3.5.7.9_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], # swish + # stage 3, 28x28 in + ['ir_r1_k3.5.7_s2_e6_c80_se0.25_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e6_c80_se0.25_nsw'], # swish + # stage 4, 14x14in + ['ir_r1_k3_s1_e6_c120_se0.5_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], # swish + # stage 5, 14x14in + ['ir_r1_k3.5.7.9_s2_e6_c200_se0.5_nsw', 'ir_r3_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], # swish + # 7x7 + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, depth_trunc='round'), + num_features=1536, + stem_size=24, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + **kwargs + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_tinynet(variant, model_width=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): + """Creates a TinyNet model. + """ + arch_def = [ + ['ds_r1_k3_s1_e1_c16_se0.25'], ['ir_r2_k3_s2_e6_c24_se0.25'], + ['ir_r2_k5_s2_e6_c40_se0.25'], ['ir_r3_k3_s2_e6_c80_se0.25'], + ['ir_r3_k5_s1_e6_c112_se0.25'], ['ir_r4_k5_s2_e6_c192_se0.25'], + ['ir_r1_k3_s1_e6_c320_se0.25'], + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier, depth_trunc='round'), + num_features=max(1280, round_channels(1280, model_width, 8, None)), + stem_size=32, + fix_stem=True, + round_chs_fn=partial(round_channels, multiplier=model_width), + act_layer=resolve_act_layer(kwargs, 'swish'), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_mobilenet_edgetpu(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): + """ + Based on definitions in: https://github.com/tensorflow/models/tree/d2427a562f401c9af118e47af2f030a0a5599f55/official/projects/edgetpu/vision + """ + if 'edgetpu_v2' in variant: + stem_size = 64 + stem_kernel_size = 5 + group_size = 64 + num_features = 1280 + act_layer = resolve_act_layer(kwargs, 'relu') + + def _arch_def(chs: List[int], group_size: int): + return [ + # stage 0, 112x112 in + [f'cn_r1_k1_s1_c{chs[0]}'], # NOTE with expansion==1, official impl block ends just 1x1 pwl + # stage 1, 112x112 in + [f'er_r1_k3_s2_e8_c{chs[1]}', f'er_r1_k3_s1_e4_gs{group_size}_c{chs[1]}'], + # stage 2, 56x56 in + [ + f'er_r1_k3_s2_e8_c{chs[2]}', + f'er_r1_k3_s1_e4_gs{group_size}_c{chs[2]}', + f'er_r1_k3_s1_e4_c{chs[2]}', + f'er_r1_k3_s1_e4_gs{group_size}_c{chs[2]}', + ], + # stage 3, 28x28 in + [f'er_r1_k3_s2_e8_c{chs[3]}', f'ir_r3_k3_s1_e4_c{chs[3]}'], + # stage 4, 14x14in + [f'ir_r1_k3_s1_e8_c{chs[4]}', f'ir_r3_k3_s1_e4_c{chs[4]}'], + # stage 5, 14x14in + [f'ir_r1_k3_s2_e8_c{chs[5]}', f'ir_r3_k3_s1_e4_c{chs[5]}'], + # stage 6, 7x7 in + [f'ir_r1_k3_s1_e8_c{chs[6]}'], + ] + + if 'edgetpu_v2_xs' in variant: + stem_size = 32 + stem_kernel_size = 3 + channels = [16, 32, 48, 96, 144, 160, 192] + elif 'edgetpu_v2_s' in variant: + channels = [24, 48, 64, 128, 160, 192, 256] + elif 'edgetpu_v2_m' in variant: + channels = [32, 64, 80, 160, 192, 240, 320] + num_features = 1344 + elif 'edgetpu_v2_l' in variant: + stem_kernel_size = 7 + group_size = 128 + channels = [32, 64, 96, 192, 240, 256, 384] + num_features = 1408 + else: + assert False + + arch_def = _arch_def(channels, group_size) + else: + # v1 + stem_size = 32 + stem_kernel_size = 3 + num_features = 1280 + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [ + # stage 0, 112x112 in + ['cn_r1_k1_s1_c16'], + # stage 1, 112x112 in + ['er_r1_k3_s2_e8_c32', 'er_r3_k3_s1_e4_c32'], + # stage 2, 56x56 in + ['er_r1_k3_s2_e8_c48', 'er_r3_k3_s1_e4_c48'], + # stage 3, 28x28 in + ['ir_r1_k3_s2_e8_c96', 'ir_r3_k3_s1_e4_c96'], + # stage 4, 14x14in + ['ir_r1_k3_s1_e8_c96_noskip', 'ir_r3_k3_s1_e4_c96'], + # stage 5, 14x14in + ['ir_r1_k5_s2_e8_c160', 'ir_r3_k5_s1_e4_c160'], + # stage 6, 7x7 in + ['ir_r1_k3_s1_e8_c192'], + ] + + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier), + num_features=num_features, + stem_size=stem_size, + stem_kernel_size=stem_kernel_size, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=act_layer, + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _gen_test_efficientnet(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): + """ Minimal test EfficientNet generator. + """ + arch_def = [ + ['cn_r1_k3_s1_e1_c16_skip'], + ['er_r1_k3_s2_e4_c24'], + ['er_r1_k3_s2_e4_c32'], + ['ir_r1_k3_s2_e4_c48_se0.25'], + ['ir_r1_k3_s2_e4_c64_se0.25'], + ] + round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.) + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier), + num_features=round_chs_fn(256), + stem_size=24, + round_chs_fn=round_chs_fn, + norm_layer=kwargs.pop('norm_layer', None) or partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'silu'), + **kwargs, + ) + model = _create_effnet(variant, pretrained, **model_kwargs) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'conv_stem', 'classifier': 'classifier', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'mnasnet_050.untrained': _cfg(), + 'mnasnet_075.untrained': _cfg(), + 'mnasnet_100.rmsp_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_b1-74cb7081.pth', + hf_hub_id='timm/'), + 'mnasnet_140.untrained': _cfg(), + + 'semnasnet_050.untrained': _cfg(), + 'semnasnet_075.rmsp_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/semnasnet_075-18710866.pth', + hf_hub_id='timm/'), + 'semnasnet_100.rmsp_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_a1-d9418771.pth', + hf_hub_id='timm/'), + 'semnasnet_140.untrained': _cfg(), + 'mnasnet_small.lamb_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_small_lamb-aff75073.pth', + hf_hub_id='timm/'), + + 'mobilenetv1_100.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + test_input_size=(3, 256, 256), test_crop_pct=0.95, + ), + 'mobilenetv1_100h.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + test_input_size=(3, 256, 256), test_crop_pct=0.95, + ), + 'mobilenetv1_125.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=1.0, + ), + + 'mobilenetv2_035.untrained': _cfg(), + 'mobilenetv2_050.lamb_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_050-3d30d450.pth', + hf_hub_id='timm/', + interpolation='bicubic', + ), + 'mobilenetv2_075.untrained': _cfg(), + 'mobilenetv2_100.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth', + hf_hub_id='timm/'), + 'mobilenetv2_110d.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth', + hf_hub_id='timm/'), + 'mobilenetv2_120d.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth', + hf_hub_id='timm/'), + 'mobilenetv2_140.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth', + hf_hub_id='timm/'), + + 'fbnetc_100.rmsp_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetc_100-c345b898.pth', + hf_hub_id='timm/', + interpolation='bilinear'), + 'spnasnet_100.rmsp_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/spnasnet_100-048bc3f4.pth', + hf_hub_id='timm/', + interpolation='bilinear'), + + # NOTE experimenting with alternate attention + 'efficientnet_b0.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth', + hf_hub_id='timm/'), + 'efficientnet_b0.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=1.0), + 'efficientnet_b1.ra4_e3600_r240_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 240, 240), crop_pct=0.9, pool_size=(8, 8), + test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'efficientnet_b1.ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth', + hf_hub_id='timm/', + test_input_size=(3, 256, 256), test_crop_pct=1.0), + 'efficientnet_b2.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth', + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'efficientnet_b3.ra2_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth', + hf_hub_id='timm/', + input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), test_crop_pct=1.0), + 'efficientnet_b4.ra2_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b4_ra2_320-7eb33cd5.pth', + hf_hub_id='timm/', + input_size=(3, 320, 320), pool_size=(10, 10), test_input_size=(3, 384, 384), test_crop_pct=1.0), + 'efficientnet_b5.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, crop_mode='squash'), + 'efficientnet_b5.sw_in12k': _cfg( + hf_hub_id='timm/', + input_size=(3, 416, 416), pool_size=(13, 13), crop_pct=0.95, num_classes=11821), + 'efficientnet_b6.untrained': _cfg( + url='', input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), + 'efficientnet_b7.untrained': _cfg( + url='', input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), + 'efficientnet_b8.untrained': _cfg( + url='', input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), + 'efficientnet_l2.untrained': _cfg( + url='', input_size=(3, 800, 800), pool_size=(25, 25), crop_pct=0.961), + + # FIXME experimental + 'efficientnet_b0_gn.untrained': _cfg(), + 'efficientnet_b0_g8_gn.untrained': _cfg(), + 'efficientnet_b0_g16_evos.untrained': _cfg(), + 'efficientnet_b3_gn.untrained': _cfg( + input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), crop_pct=1.0), + 'efficientnet_b3_g8_gn.untrained': _cfg( + input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), crop_pct=1.0), + 'efficientnet_blur_b0.untrained': _cfg(), + + 'efficientnet_es.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth', + hf_hub_id='timm/'), + 'efficientnet_em.ra2_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_em_ra2-66250f76.pth', + hf_hub_id='timm/', + input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), + 'efficientnet_el.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_el-3b455510.pth', + hf_hub_id='timm/', + input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), + + 'efficientnet_es_pruned.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_pruned75-1b7248cf.pth', + hf_hub_id='timm/'), + 'efficientnet_el_pruned.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_el_pruned70-ef2a2ccf.pth', + hf_hub_id='timm/', + input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), + + 'efficientnet_cc_b0_4e.untrained': _cfg(), + 'efficientnet_cc_b0_8e.untrained': _cfg(), + 'efficientnet_cc_b1_8e.untrained': _cfg(input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), + + 'efficientnet_lite0.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_lite0_ra-37913777.pth', + hf_hub_id='timm/'), + 'efficientnet_lite1.untrained': _cfg( + input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), + 'efficientnet_lite2.untrained': _cfg( + input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), + 'efficientnet_lite3.untrained': _cfg( + input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), + 'efficientnet_lite4.untrained': _cfg( + input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), + + 'efficientnet_b1_pruned.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/effnetb1_pruned-bea43a3a.pth', + hf_hub_id='timm/', + input_size=(3, 240, 240), pool_size=(8, 8), + crop_pct=0.882, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), + 'efficientnet_b2_pruned.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/effnetb2_pruned-08c1b27c.pth', + hf_hub_id='timm/', + input_size=(3, 260, 260), pool_size=(9, 9), + crop_pct=0.890, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), + 'efficientnet_b3_pruned.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/effnetb3_pruned-59ecf72d.pth', + hf_hub_id='timm/', + input_size=(3, 300, 300), pool_size=(10, 10), + crop_pct=0.904, mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), + + 'efficientnetv2_rw_t.ra2_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnetv2_t_agc-3620981a.pth', + hf_hub_id='timm/', + input_size=(3, 224, 224), test_input_size=(3, 288, 288), pool_size=(7, 7), crop_pct=1.0), + 'gc_efficientnetv2_rw_t.agc_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gc_efficientnetv2_rw_t_agc-927a0bde.pth', + hf_hub_id='timm/', + input_size=(3, 224, 224), test_input_size=(3, 288, 288), pool_size=(7, 7), crop_pct=1.0), + 'efficientnetv2_rw_s.ra2_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_v2s_ra2_288-a6477665.pth', + hf_hub_id='timm/', + input_size=(3, 288, 288), test_input_size=(3, 384, 384), pool_size=(9, 9), crop_pct=1.0), + 'efficientnetv2_rw_m.agc_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnetv2_rw_m_agc-3d90cb1e.pth', + hf_hub_id='timm/', + input_size=(3, 320, 320), test_input_size=(3, 416, 416), pool_size=(10, 10), crop_pct=1.0), + + 'efficientnetv2_s.untrained': _cfg( + input_size=(3, 288, 288), test_input_size=(3, 384, 384), pool_size=(9, 9), crop_pct=1.0), + 'efficientnetv2_m.untrained': _cfg( + input_size=(3, 320, 320), test_input_size=(3, 416, 416), pool_size=(10, 10), crop_pct=1.0), + 'efficientnetv2_l.untrained': _cfg( + input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0), + 'efficientnetv2_xl.untrained': _cfg( + input_size=(3, 384, 384), test_input_size=(3, 512, 512), pool_size=(12, 12), crop_pct=1.0), + + 'tf_efficientnet_b0.ns_jft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth', + hf_hub_id='timm/', + input_size=(3, 224, 224)), + 'tf_efficientnet_b1.ns_jft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth', + hf_hub_id='timm/', + input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), + 'tf_efficientnet_b2.ns_jft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth', + hf_hub_id='timm/', + input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), + 'tf_efficientnet_b3.ns_jft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth', + hf_hub_id='timm/', + input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), + 'tf_efficientnet_b4.ns_jft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth', + hf_hub_id='timm/', + input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), + 'tf_efficientnet_b5.ns_jft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth', + hf_hub_id='timm/', + input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), + 'tf_efficientnet_b6.ns_jft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth', + hf_hub_id='timm/', + input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), + 'tf_efficientnet_b7.ns_jft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth', + hf_hub_id='timm/', + input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), + 'tf_efficientnet_l2.ns_jft_in1k_475': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns_475-bebbd00a.pth', + hf_hub_id='timm/', + input_size=(3, 475, 475), pool_size=(15, 15), crop_pct=0.936), + 'tf_efficientnet_l2.ns_jft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth', + hf_hub_id='timm/', + input_size=(3, 800, 800), pool_size=(25, 25), crop_pct=0.96), + + 'tf_efficientnet_b0.ap_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, input_size=(3, 224, 224)), + 'tf_efficientnet_b1.ap_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), + 'tf_efficientnet_b2.ap_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), + 'tf_efficientnet_b3.ap_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), + 'tf_efficientnet_b4.ap_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), + 'tf_efficientnet_b5.ap_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), + 'tf_efficientnet_b6.ap_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), + 'tf_efficientnet_b7.ap_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), + 'tf_efficientnet_b8.ap_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), + + 'tf_efficientnet_b5.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ra-9a3e5369.pth', + hf_hub_id='timm/', + input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), + 'tf_efficientnet_b7.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth', + hf_hub_id='timm/', + input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), + 'tf_efficientnet_b8.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth', + hf_hub_id='timm/', + input_size=(3, 672, 672), pool_size=(21, 21), crop_pct=0.954), + + 'tf_efficientnet_b0.aa_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth', + hf_hub_id='timm/', + input_size=(3, 224, 224)), + 'tf_efficientnet_b1.aa_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth', + hf_hub_id='timm/', + input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), + 'tf_efficientnet_b2.aa_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth', + hf_hub_id='timm/', + input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), + 'tf_efficientnet_b3.aa_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_aa-84b4657e.pth', + hf_hub_id='timm/', + input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), + 'tf_efficientnet_b4.aa_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_aa-818f208c.pth', + hf_hub_id='timm/', + input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), + 'tf_efficientnet_b5.aa_in1k': _cfg( + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_aa-99018a74.pth', + hf_hub_id='timm/', + input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), + 'tf_efficientnet_b6.aa_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_aa-80ba17e4.pth', + hf_hub_id='timm/', + input_size=(3, 528, 528), pool_size=(17, 17), crop_pct=0.942), + 'tf_efficientnet_b7.aa_in1k': _cfg( + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_aa-076e3472.pth', + hf_hub_id='timm/', + input_size=(3, 600, 600), pool_size=(19, 19), crop_pct=0.949), + + 'tf_efficientnet_b0.in1k': _cfg( + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0-0af12548.pth', + hf_hub_id='timm/', + input_size=(3, 224, 224)), + 'tf_efficientnet_b1.in1k': _cfg( + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1-5c1377c4.pth', + hf_hub_id='timm/', + input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), + 'tf_efficientnet_b2.in1k': _cfg( + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2-e393ef04.pth', + hf_hub_id='timm/', + input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890), + 'tf_efficientnet_b3.in1k': _cfg( + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3-e3bd6955.pth', + hf_hub_id='timm/', + input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), + 'tf_efficientnet_b4.in1k': _cfg( + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4-74ee3bed.pth', + hf_hub_id='timm/', + input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.922), + 'tf_efficientnet_b5.in1k': _cfg( + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5-c6949ce9.pth', + hf_hub_id='timm/', + input_size=(3, 456, 456), pool_size=(15, 15), crop_pct=0.934), + + 'tf_efficientnet_es.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_es-ca1afbfe.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 224, 224), ), + 'tf_efficientnet_em.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_em-e78cfe58.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), + 'tf_efficientnet_el.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_el-5143854e.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904), + + 'tf_efficientnet_cc_b0_4e.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), + 'tf_efficientnet_cc_b0_8e.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), + 'tf_efficientnet_cc_b1_8e.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882), + + 'tf_efficientnet_lite0.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite0-0aa007d2.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + interpolation='bicubic', # should be bilinear but bicubic better match for TF bilinear at low res + ), + 'tf_efficientnet_lite1.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite1-bde8b488.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 240, 240), pool_size=(8, 8), crop_pct=0.882, + interpolation='bicubic', # should be bilinear but bicubic better match for TF bilinear at low res + ), + 'tf_efficientnet_lite2.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite2-dcccb7df.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 260, 260), pool_size=(9, 9), crop_pct=0.890, + interpolation='bicubic', # should be bilinear but bicubic better match for TF bilinear at low res + ), + 'tf_efficientnet_lite3.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite3-b733e338.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 300, 300), pool_size=(10, 10), crop_pct=0.904, interpolation='bilinear'), + 'tf_efficientnet_lite4.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite4-741542c3.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 380, 380), pool_size=(12, 12), crop_pct=0.920, interpolation='bilinear'), + + 'tf_efficientnetv2_s.in21k_ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21ft1k-d7dafa41.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0), + 'tf_efficientnetv2_m.in21k_ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21ft1k-bf41664a.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'tf_efficientnetv2_l.in21k_ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21ft1k-60127a9d.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'tf_efficientnetv2_xl.in21k_ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21ft1k-06c35c48.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 384, 384), test_input_size=(3, 512, 512), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + + 'tf_efficientnetv2_s.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s-eb54923e.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0), + 'tf_efficientnetv2_m.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m-cc09e0cd.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'tf_efficientnetv2_l.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l-d664b728.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + + 'tf_efficientnetv2_s.in21k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, + input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0), + 'tf_efficientnetv2_m.in21k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21k-361418a2.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, + input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'tf_efficientnetv2_l.in21k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21k-91a19ec9.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, + input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'tf_efficientnetv2_xl.in21k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_xl_in21k-fd7e8abf.pth', + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843, + input_size=(3, 384, 384), test_input_size=(3, 512, 512), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + + 'tf_efficientnetv2_b0.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b0-c7cc451f.pth', + hf_hub_id='timm/', + input_size=(3, 192, 192), test_input_size=(3, 224, 224), pool_size=(6, 6)), + 'tf_efficientnetv2_b1.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b1-be6e41b0.pth', + hf_hub_id='timm/', + input_size=(3, 192, 192), test_input_size=(3, 240, 240), pool_size=(6, 6), crop_pct=0.882), + 'tf_efficientnetv2_b2.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b2-847de54e.pth', + hf_hub_id='timm/', + input_size=(3, 208, 208), test_input_size=(3, 260, 260), pool_size=(7, 7), crop_pct=0.890), + 'tf_efficientnetv2_b3.in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 240, 240), test_input_size=(3, 300, 300), pool_size=(8, 8), crop_pct=0.9, crop_mode='squash'), + 'tf_efficientnetv2_b3.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_b3-57773f13.pth', + hf_hub_id='timm/', + input_size=(3, 240, 240), test_input_size=(3, 300, 300), pool_size=(8, 8), crop_pct=0.904), + 'tf_efficientnetv2_b3.in21k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, num_classes=21843, + input_size=(3, 240, 240), test_input_size=(3, 300, 300), pool_size=(8, 8), crop_pct=0.904), + + 'mixnet_s.ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_s-a907afbc.pth', + hf_hub_id='timm/'), + 'mixnet_m.ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_m-4647fc68.pth', + hf_hub_id='timm/'), + 'mixnet_l.ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_l-5a9a2ed8.pth', + hf_hub_id='timm/'), + 'mixnet_xl.ra_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_xl_ra-aac3c00c.pth', + hf_hub_id='timm/'), + 'mixnet_xxl.untrained': _cfg(), + + 'tf_mixnet_s.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_s-89d3354b.pth', + hf_hub_id='timm/'), + 'tf_mixnet_m.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_m-0f4d8805.pth', + hf_hub_id='timm/'), + 'tf_mixnet_l.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_l-6c92e0c8.pth', + hf_hub_id='timm/'), + + "tinynet_a.in1k": _cfg( + input_size=(3, 192, 192), pool_size=(6, 6), # int(224 * 0.86) + url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_a.pth', + hf_hub_id='timm/'), + "tinynet_b.in1k": _cfg( + input_size=(3, 188, 188), pool_size=(6, 6), # int(224 * 0.84) + url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_b.pth', + hf_hub_id='timm/'), + "tinynet_c.in1k": _cfg( + input_size=(3, 184, 184), pool_size=(6, 6), # int(224 * 0.825) + url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_c.pth', + hf_hub_id='timm/'), + "tinynet_d.in1k": _cfg( + input_size=(3, 152, 152), pool_size=(5, 5), # int(224 * 0.68) + url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_d.pth', + hf_hub_id='timm/'), + "tinynet_e.in1k": _cfg( + input_size=(3, 106, 106), pool_size=(4, 4), # int(224 * 0.475) + url='https://github.com/huawei-noah/CV-Backbones/releases/download/v1.2.0/tinynet_e.pth', + hf_hub_id='timm/'), + + 'mobilenet_edgetpu_100.untrained': _cfg( + # hf_hub_id='timm/', + input_size=(3, 224, 224), crop_pct=0.9), + 'mobilenet_edgetpu_v2_xs.untrained': _cfg( + # hf_hub_id='timm/', + input_size=(3, 224, 224), crop_pct=0.9), + 'mobilenet_edgetpu_v2_s.untrained': _cfg( + #hf_hub_id='timm/', + input_size=(3, 224, 224), crop_pct=0.9), + 'mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + crop_pct=0.9, test_input_size=(3, 256, 256), test_crop_pct=0.95, + ), + 'mobilenet_edgetpu_v2_l.untrained': _cfg( + #hf_hub_id='timm/', + input_size=(3, 224, 224), crop_pct=0.9), + + "test_efficientnet.r160_in1k": _cfg( + hf_hub_id='timm/', + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), + "test_efficientnet_ln.r160_in1k": _cfg( + hf_hub_id='timm/', + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), + "test_efficientnet_gn.r160_in1k": _cfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), + "test_efficientnet_evos.r160_in1k": _cfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.95), +}) + + +@register_model +def mnasnet_050(pretrained=False, **kwargs) -> EfficientNet: + """ MNASNet B1, depth multiplier of 0.5. """ + model = _gen_mnasnet_b1('mnasnet_050', 0.5, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mnasnet_075(pretrained=False, **kwargs) -> EfficientNet: + """ MNASNet B1, depth multiplier of 0.75. """ + model = _gen_mnasnet_b1('mnasnet_075', 0.75, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mnasnet_100(pretrained=False, **kwargs) -> EfficientNet: + """ MNASNet B1, depth multiplier of 1.0. """ + model = _gen_mnasnet_b1('mnasnet_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mnasnet_140(pretrained=False, **kwargs) -> EfficientNet: + """ MNASNet B1, depth multiplier of 1.4 """ + model = _gen_mnasnet_b1('mnasnet_140', 1.4, pretrained=pretrained, **kwargs) + return model + + +@register_model +def semnasnet_050(pretrained=False, **kwargs) -> EfficientNet: + """ MNASNet A1 (w/ SE), depth multiplier of 0.5 """ + model = _gen_mnasnet_a1('semnasnet_050', 0.5, pretrained=pretrained, **kwargs) + return model + + +@register_model +def semnasnet_075(pretrained=False, **kwargs) -> EfficientNet: + """ MNASNet A1 (w/ SE), depth multiplier of 0.75. """ + model = _gen_mnasnet_a1('semnasnet_075', 0.75, pretrained=pretrained, **kwargs) + return model + + +@register_model +def semnasnet_100(pretrained=False, **kwargs) -> EfficientNet: + """ MNASNet A1 (w/ SE), depth multiplier of 1.0. """ + model = _gen_mnasnet_a1('semnasnet_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def semnasnet_140(pretrained=False, **kwargs) -> EfficientNet: + """ MNASNet A1 (w/ SE), depth multiplier of 1.4. """ + model = _gen_mnasnet_a1('semnasnet_140', 1.4, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mnasnet_small(pretrained=False, **kwargs) -> EfficientNet: + """ MNASNet Small, depth multiplier of 1.0. """ + model = _gen_mnasnet_small('mnasnet_small', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv1_100(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet V1 """ + model = _gen_mobilenet_v1('mobilenetv1_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv1_100h(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet V1 """ + model = _gen_mobilenet_v1('mobilenetv1_100h', 1.0, head_conv=True, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv1_125(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet V1 """ + model = _gen_mobilenet_v1('mobilenetv1_125', 1.25, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv2_035(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet V2 w/ 0.35 channel multiplier """ + model = _gen_mobilenet_v2('mobilenetv2_035', 0.35, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv2_050(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet V2 w/ 0.5 channel multiplier """ + model = _gen_mobilenet_v2('mobilenetv2_050', 0.5, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv2_075(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet V2 w/ 0.75 channel multiplier """ + model = _gen_mobilenet_v2('mobilenetv2_075', 0.75, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv2_100(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet V2 w/ 1.0 channel multiplier """ + model = _gen_mobilenet_v2('mobilenetv2_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv2_140(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet V2 w/ 1.4 channel multiplier """ + model = _gen_mobilenet_v2('mobilenetv2_140', 1.4, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv2_110d(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet V2 w/ 1.1 channel, 1.2 depth multipliers""" + model = _gen_mobilenet_v2( + 'mobilenetv2_110d', 1.1, depth_multiplier=1.2, fix_stem_head=True, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv2_120d(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet V2 w/ 1.2 channel, 1.4 depth multipliers """ + model = _gen_mobilenet_v2( + 'mobilenetv2_120d', 1.2, depth_multiplier=1.4, fix_stem_head=True, pretrained=pretrained, **kwargs) + return model + + +@register_model +def fbnetc_100(pretrained=False, **kwargs) -> EfficientNet: + """ FBNet-C """ + if pretrained: + # pretrained model trained with non-default BN epsilon + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + model = _gen_fbnetc('fbnetc_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def spnasnet_100(pretrained=False, **kwargs) -> EfficientNet: + """ Single-Path NAS Pixel1""" + model = _gen_spnasnet('spnasnet_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b0(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B0 """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b1(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B1 """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b2(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B2 """ + # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b3(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B3 """ + # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b4(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B4 """ + # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b5(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B5 """ + # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b6(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B6 """ + # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b7(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B7 """ + # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b8(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B8 """ + # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_l2(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-L2.""" + # NOTE for train, drop_rate should be 0.5, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_l2', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) + return model + + +# FIXME experimental group cong / GroupNorm / EvoNorm experiments +@register_model +def efficientnet_b0_gn(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B0 + GroupNorm""" + model = _gen_efficientnet( + 'efficientnet_b0_gn', norm_layer=partial(GroupNormAct, group_size=8), pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b0_g8_gn(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B0 w/ group conv + GroupNorm""" + model = _gen_efficientnet( + 'efficientnet_b0_g8_gn', group_size=8, norm_layer=partial(GroupNormAct, group_size=8), + pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b0_g16_evos(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B0 w/ group 16 conv + EvoNorm""" + model = _gen_efficientnet( + 'efficientnet_b0_g16_evos', group_size=16, channel_divisor=16, + pretrained=pretrained, **kwargs) #norm_layer=partial(EvoNorm2dS0, group_size=16), + return model + + +@register_model +def efficientnet_b3_gn(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B3 w/ GroupNorm """ + # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_b3_gn', channel_multiplier=1.2, depth_multiplier=1.4, channel_divisor=16, + norm_layer=partial(GroupNormAct, group_size=16), pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b3_g8_gn(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B3 w/ grouped conv + BN""" + # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_b3_g8_gn', channel_multiplier=1.2, depth_multiplier=1.4, group_size=8, channel_divisor=16, + norm_layer=partial(GroupNormAct, group_size=16), pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_blur_b0(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B0 w/ BlurPool """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + model = _gen_efficientnet( + 'efficientnet_blur_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, + aa_layer='blurpc', **kwargs + ) + return model + + +@register_model +def efficientnet_es(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Edge Small. """ + model = _gen_efficientnet_edge( + 'efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_es_pruned(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Edge Small Pruned. For more info: https://github.com/DeGirum/pruned-models/releases/tag/efficientnet_v1.0""" + model = _gen_efficientnet_edge( + 'efficientnet_es_pruned', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_em(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Edge-Medium. """ + model = _gen_efficientnet_edge( + 'efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_el(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Edge-Large. """ + model = _gen_efficientnet_edge( + 'efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_el_pruned(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Edge-Large pruned. For more info: https://github.com/DeGirum/pruned-models/releases/tag/efficientnet_v1.0""" + model = _gen_efficientnet_edge( + 'efficientnet_el_pruned', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + +@register_model +def efficientnet_cc_b0_4e(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-CondConv-B0 w/ 8 Experts """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + model = _gen_efficientnet_condconv( + 'efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_cc_b0_8e(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-CondConv-B0 w/ 8 Experts """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + model = _gen_efficientnet_condconv( + 'efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, + pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_cc_b1_8e(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-CondConv-B1 w/ 8 Experts """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + model = _gen_efficientnet_condconv( + 'efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, + pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_lite0(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Lite0 """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + model = _gen_efficientnet_lite( + 'efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_lite1(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Lite1 """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + model = _gen_efficientnet_lite( + 'efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_lite2(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Lite2 """ + # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 + model = _gen_efficientnet_lite( + 'efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_lite3(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Lite3 """ + # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 + model = _gen_efficientnet_lite( + 'efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_lite4(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Lite4 """ + # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 + model = _gen_efficientnet_lite( + 'efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b1_pruned(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B1 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + variant = 'efficientnet_b1_pruned' + model = _gen_efficientnet( + variant, channel_multiplier=1.0, depth_multiplier=1.1, pruned=True, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b2_pruned(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B2 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'efficientnet_b2_pruned', channel_multiplier=1.1, depth_multiplier=1.2, pruned=True, + pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_b3_pruned(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B3 Pruned. The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'efficientnet_b3_pruned', channel_multiplier=1.2, depth_multiplier=1.4, pruned=True, + pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnetv2_rw_t(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Tiny (Custom variant, tiny not in paper). """ + model = _gen_efficientnetv2_s( + 'efficientnetv2_rw_t', channel_multiplier=0.8, depth_multiplier=0.9, rw=False, pretrained=pretrained, **kwargs) + return model + + +@register_model +def gc_efficientnetv2_rw_t(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Tiny w/ Global Context Attn (Custom variant, tiny not in paper). """ + model = _gen_efficientnetv2_s( + 'gc_efficientnetv2_rw_t', channel_multiplier=0.8, depth_multiplier=0.9, + rw=False, se_layer='gc', pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnetv2_rw_s(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Small (RW variant). + NOTE: This is my initial (pre official code release) w/ some differences. + See efficientnetv2_s and tf_efficientnetv2_s for versions that match the official w/ PyTorch vs TF padding + """ + model = _gen_efficientnetv2_s('efficientnetv2_rw_s', rw=True, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnetv2_rw_m(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Medium (RW variant). + """ + model = _gen_efficientnetv2_s( + 'efficientnetv2_rw_m', channel_multiplier=1.2, depth_multiplier=(1.2,) * 4 + (1.6,) * 2, rw=True, + pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnetv2_s(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Small. """ + model = _gen_efficientnetv2_s('efficientnetv2_s', pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnetv2_m(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Medium. """ + model = _gen_efficientnetv2_m('efficientnetv2_m', pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnetv2_l(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Large. """ + model = _gen_efficientnetv2_l('efficientnetv2_l', pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnetv2_xl(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Xtra-Large. """ + model = _gen_efficientnetv2_xl('efficientnetv2_xl', pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_b0(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B0. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'tf_efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_b1(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B1. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'tf_efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_b2(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B2. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'tf_efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_b3(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B3. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'tf_efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_b4(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B4. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'tf_efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_b5(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B5. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'tf_efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_b6(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B6. Tensorflow compatible variant """ + # NOTE for train, drop_rate should be 0.5 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'tf_efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_b7(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B7. Tensorflow compatible variant """ + # NOTE for train, drop_rate should be 0.5 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'tf_efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_b8(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B8. Tensorflow compatible variant """ + # NOTE for train, drop_rate should be 0.5 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'tf_efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_l2(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-L2 NoisyStudent. Tensorflow compatible variant """ + # NOTE for train, drop_rate should be 0.5 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet( + 'tf_efficientnet_l2', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_es(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Edge Small. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_edge( + 'tf_efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_em(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Edge-Medium. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_edge( + 'tf_efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_el(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Edge-Large. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_edge( + 'tf_efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_cc_b0_4e(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-CondConv-B0 w/ 4 Experts. Tensorflow compatible variant """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_condconv( + 'tf_efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_cc_b0_8e(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-CondConv-B0 w/ 8 Experts. Tensorflow compatible variant """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_condconv( + 'tf_efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, + pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_cc_b1_8e(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-CondConv-B1 w/ 8 Experts. Tensorflow compatible variant """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_condconv( + 'tf_efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, + pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_lite0(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Lite0 """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_lite( + 'tf_efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_lite1(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Lite1 """ + # NOTE for train, drop_rate should be 0.2, drop_path_rate should be 0.2 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_lite( + 'tf_efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_lite2(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Lite2 """ + # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_lite( + 'tf_efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_lite3(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Lite3 """ + # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_lite( + 'tf_efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnet_lite4(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-Lite4 """ + # NOTE for train, drop_rate should be 0.4, drop_path_rate should be 0.2 + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnet_lite( + 'tf_efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnetv2_s(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Small. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_s('tf_efficientnetv2_s', pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnetv2_m(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Medium. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_m('tf_efficientnetv2_m', pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnetv2_l(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Large. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_l('tf_efficientnetv2_l', pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnetv2_xl(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2 Xtra-Large. Tensorflow compatible variant + """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_xl('tf_efficientnetv2_xl', pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnetv2_b0(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2-B0. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_base('tf_efficientnetv2_b0', pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnetv2_b1(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2-B1. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_base( + 'tf_efficientnetv2_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnetv2_b2(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2-B2. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_base( + 'tf_efficientnetv2_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_efficientnetv2_b3(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-V2-B3. Tensorflow compatible variant """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_efficientnetv2_base( + 'tf_efficientnetv2_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_x_b3(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B3 """ + # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2 + model = _gen_efficientnet_x( + 'efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_x_b5(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B5 """ + model = _gen_efficientnet_x( + 'efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) + return model + + +@register_model +def efficientnet_h_b5(pretrained=False, **kwargs) -> EfficientNet: + """ EfficientNet-B5 """ + model = _gen_efficientnet_x( + 'efficientnet_b5', channel_multiplier=1.92, depth_multiplier=2.2, version=2, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mixnet_s(pretrained=False, **kwargs) -> EfficientNet: + """Creates a MixNet Small model. + """ + model = _gen_mixnet_s( + 'mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mixnet_m(pretrained=False, **kwargs) -> EfficientNet: + """Creates a MixNet Medium model. + """ + model = _gen_mixnet_m( + 'mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mixnet_l(pretrained=False, **kwargs) -> EfficientNet: + """Creates a MixNet Large model. + """ + model = _gen_mixnet_m( + 'mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mixnet_xl(pretrained=False, **kwargs) -> EfficientNet: + """Creates a MixNet Extra-Large model. + Not a paper spec, experimental def by RW w/ depth scaling. + """ + model = _gen_mixnet_m( + 'mixnet_xl', channel_multiplier=1.6, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mixnet_xxl(pretrained=False, **kwargs) -> EfficientNet: + """Creates a MixNet Double Extra Large model. + Not a paper spec, experimental def by RW w/ depth scaling. + """ + model = _gen_mixnet_m( + 'mixnet_xxl', channel_multiplier=2.4, depth_multiplier=1.3, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_mixnet_s(pretrained=False, **kwargs) -> EfficientNet: + """Creates a MixNet Small model. Tensorflow compatible variant + """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mixnet_s( + 'tf_mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_mixnet_m(pretrained=False, **kwargs) -> EfficientNet: + """Creates a MixNet Medium model. Tensorflow compatible variant + """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mixnet_m( + 'tf_mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_mixnet_l(pretrained=False, **kwargs) -> EfficientNet: + """Creates a MixNet Large model. Tensorflow compatible variant + """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mixnet_m( + 'tf_mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tinynet_a(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_tinynet('tinynet_a', 1.0, 1.2, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tinynet_b(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_tinynet('tinynet_b', 0.75, 1.1, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tinynet_c(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_tinynet('tinynet_c', 0.54, 0.85, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tinynet_d(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_tinynet('tinynet_d', 0.54, 0.695, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tinynet_e(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_tinynet('tinynet_e', 0.51, 0.6, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenet_edgetpu_100(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet-EdgeTPU-v1 100. """ + model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_100', pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenet_edgetpu_v2_xs(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet-EdgeTPU-v2 Extra Small. """ + model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_xs', pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenet_edgetpu_v2_s(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet-EdgeTPU-v2 Small. """ + model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_s', pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenet_edgetpu_v2_m(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet-EdgeTPU-v2 Medium. """ + model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_m', pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenet_edgetpu_v2_l(pretrained=False, **kwargs) -> EfficientNet: + """ MobileNet-EdgeTPU-v2 Large. """ + model = _gen_mobilenet_edgetpu('mobilenet_edgetpu_v2_l', pretrained=pretrained, **kwargs) + return model + + +@register_model +def test_efficientnet(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_test_efficientnet('test_efficientnet', pretrained=pretrained, **kwargs) + return model + + +@register_model +def test_efficientnet_gn(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_test_efficientnet( + 'test_efficientnet_gn', pretrained=pretrained, norm_layer=partial(GroupNormAct, group_size=8), **kwargs) + return model + + +@register_model +def test_efficientnet_ln(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_test_efficientnet( + 'test_efficientnet_ln', pretrained=pretrained, norm_layer=LayerNormAct2d, **kwargs) + return model + + +@register_model +def test_efficientnet_evos(pretrained=False, **kwargs) -> EfficientNet: + model = _gen_test_efficientnet( + 'test_efficientnet_evos', pretrained=pretrained, norm_layer=partial(EvoNorm2dS0, group_size=8), **kwargs) + return model + + +register_model_deprecations(__name__, { + 'tf_efficientnet_b0_ap': 'tf_efficientnet_b0.ap_in1k', + 'tf_efficientnet_b1_ap': 'tf_efficientnet_b1.ap_in1k', + 'tf_efficientnet_b2_ap': 'tf_efficientnet_b2.ap_in1k', + 'tf_efficientnet_b3_ap': 'tf_efficientnet_b3.ap_in1k', + 'tf_efficientnet_b4_ap': 'tf_efficientnet_b4.ap_in1k', + 'tf_efficientnet_b5_ap': 'tf_efficientnet_b5.ap_in1k', + 'tf_efficientnet_b6_ap': 'tf_efficientnet_b6.ap_in1k', + 'tf_efficientnet_b7_ap': 'tf_efficientnet_b7.ap_in1k', + 'tf_efficientnet_b8_ap': 'tf_efficientnet_b8.ap_in1k', + 'tf_efficientnet_b0_ns': 'tf_efficientnet_b0.ns_jft_in1k', + 'tf_efficientnet_b1_ns': 'tf_efficientnet_b1.ns_jft_in1k', + 'tf_efficientnet_b2_ns': 'tf_efficientnet_b2.ns_jft_in1k', + 'tf_efficientnet_b3_ns': 'tf_efficientnet_b3.ns_jft_in1k', + 'tf_efficientnet_b4_ns': 'tf_efficientnet_b4.ns_jft_in1k', + 'tf_efficientnet_b5_ns': 'tf_efficientnet_b5.ns_jft_in1k', + 'tf_efficientnet_b6_ns': 'tf_efficientnet_b6.ns_jft_in1k', + 'tf_efficientnet_b7_ns': 'tf_efficientnet_b7.ns_jft_in1k', + 'tf_efficientnet_l2_ns_475': 'tf_efficientnet_l2.ns_jft_in1k_475', + 'tf_efficientnet_l2_ns': 'tf_efficientnet_l2.ns_jft_in1k', + 'tf_efficientnetv2_s_in21ft1k': 'tf_efficientnetv2_s.in21k_ft_in1k', + 'tf_efficientnetv2_m_in21ft1k': 'tf_efficientnetv2_m.in21k_ft_in1k', + 'tf_efficientnetv2_l_in21ft1k': 'tf_efficientnetv2_l.in21k_ft_in1k', + 'tf_efficientnetv2_xl_in21ft1k': 'tf_efficientnetv2_xl.in21k_ft_in1k', + 'tf_efficientnetv2_s_in21k': 'tf_efficientnetv2_s.in21k', + 'tf_efficientnetv2_m_in21k': 'tf_efficientnetv2_m.in21k', + 'tf_efficientnetv2_l_in21k': 'tf_efficientnetv2_l.in21k', + 'tf_efficientnetv2_xl_in21k': 'tf_efficientnetv2_xl.in21k', + 'efficientnet_b2a': 'efficientnet_b2', + 'efficientnet_b3a': 'efficientnet_b3', + 'mnasnet_a1': 'semnasnet_100', + 'mnasnet_b1': 'mnasnet_100', +}) diff --git a/pytorch-image-models/timm/models/efficientvit_mit.py b/pytorch-image-models/timm/models/efficientvit_mit.py new file mode 100644 index 0000000000000000000000000000000000000000..34be806b1ee66559864da6902b1ce785daad5291 --- /dev/null +++ b/pytorch-image-models/timm/models/efficientvit_mit.py @@ -0,0 +1,1072 @@ +""" EfficientViT (by MIT Song Han's Lab) + +Paper: `Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition` + - https://arxiv.org/abs/2205.14756 + +Adapted from official impl at https://github.com/mit-han-lab/efficientvit +""" + +__all__ = ['EfficientVit', 'EfficientVitLarge'] +from typing import List, Optional +from functools import partial + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectAdaptivePool2d, create_conv2d, GELUTanh +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + + +def val2list(x: list or tuple or any, repeat_time=1): + if isinstance(x, (list, tuple)): + return list(x) + return [x for _ in range(repeat_time)] + + +def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1): + # repeat elements if necessary + x = val2list(x) + if len(x) > 0: + x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))] + + return tuple(x) + + +def get_same_padding(kernel_size: int or tuple[int, ...]) -> int or tuple[int, ...]: + if isinstance(kernel_size, tuple): + return tuple([get_same_padding(ks) for ks in kernel_size]) + else: + assert kernel_size % 2 > 0, "kernel size should be odd number" + return kernel_size // 2 + + +class ConvNormAct(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size=3, + stride=1, + dilation=1, + groups=1, + bias=False, + dropout=0., + norm_layer=nn.BatchNorm2d, + act_layer=nn.ReLU, + ): + super(ConvNormAct, self).__init__() + self.dropout = nn.Dropout(dropout, inplace=False) + self.conv = create_conv2d( + in_channels, + out_channels, + kernel_size=kernel_size, + stride=stride, + dilation=dilation, + groups=groups, + bias=bias, + ) + self.norm = norm_layer(num_features=out_channels) if norm_layer else nn.Identity() + self.act = act_layer(inplace=True) if act_layer is not None else nn.Identity() + + def forward(self, x): + x = self.dropout(x) + x = self.conv(x) + x = self.norm(x) + x = self.act(x) + return x + + +class DSConv(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size=3, + stride=1, + use_bias=False, + norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), + act_layer=(nn.ReLU6, None), + ): + super(DSConv, self).__init__() + use_bias = val2tuple(use_bias, 2) + norm_layer = val2tuple(norm_layer, 2) + act_layer = val2tuple(act_layer, 2) + + self.depth_conv = ConvNormAct( + in_channels, + in_channels, + kernel_size, + stride, + groups=in_channels, + norm_layer=norm_layer[0], + act_layer=act_layer[0], + bias=use_bias[0], + ) + self.point_conv = ConvNormAct( + in_channels, + out_channels, + 1, + norm_layer=norm_layer[1], + act_layer=act_layer[1], + bias=use_bias[1], + ) + + def forward(self, x): + x = self.depth_conv(x) + x = self.point_conv(x) + return x + + +class ConvBlock(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size=3, + stride=1, + mid_channels=None, + expand_ratio=1, + use_bias=False, + norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), + act_layer=(nn.ReLU6, None), + ): + super(ConvBlock, self).__init__() + use_bias = val2tuple(use_bias, 2) + norm_layer = val2tuple(norm_layer, 2) + act_layer = val2tuple(act_layer, 2) + mid_channels = mid_channels or round(in_channels * expand_ratio) + + self.conv1 = ConvNormAct( + in_channels, + mid_channels, + kernel_size, + stride, + norm_layer=norm_layer[0], + act_layer=act_layer[0], + bias=use_bias[0], + ) + self.conv2 = ConvNormAct( + mid_channels, + out_channels, + kernel_size, + 1, + norm_layer=norm_layer[1], + act_layer=act_layer[1], + bias=use_bias[1], + ) + + def forward(self, x): + x = self.conv1(x) + x = self.conv2(x) + return x + + +class MBConv(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size=3, + stride=1, + mid_channels=None, + expand_ratio=6, + use_bias=False, + norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d, nn.BatchNorm2d), + act_layer=(nn.ReLU6, nn.ReLU6, None), + ): + super(MBConv, self).__init__() + use_bias = val2tuple(use_bias, 3) + norm_layer = val2tuple(norm_layer, 3) + act_layer = val2tuple(act_layer, 3) + mid_channels = mid_channels or round(in_channels * expand_ratio) + + self.inverted_conv = ConvNormAct( + in_channels, + mid_channels, + 1, + stride=1, + norm_layer=norm_layer[0], + act_layer=act_layer[0], + bias=use_bias[0], + ) + self.depth_conv = ConvNormAct( + mid_channels, + mid_channels, + kernel_size, + stride=stride, + groups=mid_channels, + norm_layer=norm_layer[1], + act_layer=act_layer[1], + bias=use_bias[1], + ) + self.point_conv = ConvNormAct( + mid_channels, + out_channels, + 1, + norm_layer=norm_layer[2], + act_layer=act_layer[2], + bias=use_bias[2], + ) + + def forward(self, x): + x = self.inverted_conv(x) + x = self.depth_conv(x) + x = self.point_conv(x) + return x + + +class FusedMBConv(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size=3, + stride=1, + mid_channels=None, + expand_ratio=6, + groups=1, + use_bias=False, + norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), + act_layer=(nn.ReLU6, None), + ): + super(FusedMBConv, self).__init__() + use_bias = val2tuple(use_bias, 2) + norm_layer = val2tuple(norm_layer, 2) + act_layer = val2tuple(act_layer, 2) + mid_channels = mid_channels or round(in_channels * expand_ratio) + + self.spatial_conv = ConvNormAct( + in_channels, + mid_channels, + kernel_size, + stride=stride, + groups=groups, + norm_layer=norm_layer[0], + act_layer=act_layer[0], + bias=use_bias[0], + ) + self.point_conv = ConvNormAct( + mid_channels, + out_channels, + 1, + norm_layer=norm_layer[1], + act_layer=act_layer[1], + bias=use_bias[1], + ) + + def forward(self, x): + x = self.spatial_conv(x) + x = self.point_conv(x) + return x + + +class LiteMLA(nn.Module): + """Lightweight multi-scale linear attention""" + + def __init__( + self, + in_channels: int, + out_channels: int, + heads: int or None = None, + heads_ratio: float = 1.0, + dim=8, + use_bias=False, + norm_layer=(None, nn.BatchNorm2d), + act_layer=(None, None), + kernel_func=nn.ReLU, + scales=(5,), + eps=1e-5, + ): + super(LiteMLA, self).__init__() + self.eps = eps + heads = heads or int(in_channels // dim * heads_ratio) + total_dim = heads * dim + use_bias = val2tuple(use_bias, 2) + norm_layer = val2tuple(norm_layer, 2) + act_layer = val2tuple(act_layer, 2) + + self.dim = dim + self.qkv = ConvNormAct( + in_channels, + 3 * total_dim, + 1, + bias=use_bias[0], + norm_layer=norm_layer[0], + act_layer=act_layer[0], + ) + self.aggreg = nn.ModuleList([ + nn.Sequential( + nn.Conv2d( + 3 * total_dim, + 3 * total_dim, + scale, + padding=get_same_padding(scale), + groups=3 * total_dim, + bias=use_bias[0], + ), + nn.Conv2d(3 * total_dim, 3 * total_dim, 1, groups=3 * heads, bias=use_bias[0]), + ) + for scale in scales + ]) + self.kernel_func = kernel_func(inplace=False) + + self.proj = ConvNormAct( + total_dim * (1 + len(scales)), + out_channels, + 1, + bias=use_bias[1], + norm_layer=norm_layer[1], + act_layer=act_layer[1], + ) + + def _attn(self, q, k, v): + dtype = v.dtype + q, k, v = q.float(), k.float(), v.float() + kv = k.transpose(-1, -2) @ v + out = q @ kv + out = out[..., :-1] / (out[..., -1:] + self.eps) + return out.to(dtype) + + def forward(self, x): + B, _, H, W = x.shape + + # generate multi-scale q, k, v + qkv = self.qkv(x) + multi_scale_qkv = [qkv] + for op in self.aggreg: + multi_scale_qkv.append(op(qkv)) + multi_scale_qkv = torch.cat(multi_scale_qkv, dim=1) + multi_scale_qkv = multi_scale_qkv.reshape(B, -1, 3 * self.dim, H * W).transpose(-1, -2) + q, k, v = multi_scale_qkv.chunk(3, dim=-1) + + # lightweight global attention + q = self.kernel_func(q) + k = self.kernel_func(k) + v = F.pad(v, (0, 1), mode="constant", value=1.) + + if not torch.jit.is_scripting(): + with torch.autocast(device_type=v.device.type, enabled=False): + out = self._attn(q, k, v) + else: + out = self._attn(q, k, v) + + # final projection + out = out.transpose(-1, -2).reshape(B, -1, H, W) + out = self.proj(out) + return out + + +register_notrace_module(LiteMLA) + + +class EfficientVitBlock(nn.Module): + def __init__( + self, + in_channels, + heads_ratio=1.0, + head_dim=32, + expand_ratio=4, + norm_layer=nn.BatchNorm2d, + act_layer=nn.Hardswish, + ): + super(EfficientVitBlock, self).__init__() + self.context_module = ResidualBlock( + LiteMLA( + in_channels=in_channels, + out_channels=in_channels, + heads_ratio=heads_ratio, + dim=head_dim, + norm_layer=(None, norm_layer), + ), + nn.Identity(), + ) + self.local_module = ResidualBlock( + MBConv( + in_channels=in_channels, + out_channels=in_channels, + expand_ratio=expand_ratio, + use_bias=(True, True, False), + norm_layer=(None, None, norm_layer), + act_layer=(act_layer, act_layer, None), + ), + nn.Identity(), + ) + + def forward(self, x): + x = self.context_module(x) + x = self.local_module(x) + return x + + +class ResidualBlock(nn.Module): + def __init__( + self, + main: Optional[nn.Module], + shortcut: Optional[nn.Module] = None, + pre_norm: Optional[nn.Module] = None, + ): + super(ResidualBlock, self).__init__() + self.pre_norm = pre_norm if pre_norm is not None else nn.Identity() + self.main = main + self.shortcut = shortcut + + def forward(self, x): + res = self.main(self.pre_norm(x)) + if self.shortcut is not None: + res = res + self.shortcut(x) + return res + + +def build_local_block( + in_channels: int, + out_channels: int, + stride: int, + expand_ratio: float, + norm_layer: str, + act_layer: str, + fewer_norm: bool = False, + block_type: str = "default", +): + assert block_type in ["default", "large", "fused"] + if expand_ratio == 1: + if block_type == "default": + block = DSConv( + in_channels=in_channels, + out_channels=out_channels, + stride=stride, + use_bias=(True, False) if fewer_norm else False, + norm_layer=(None, norm_layer) if fewer_norm else norm_layer, + act_layer=(act_layer, None), + ) + else: + block = ConvBlock( + in_channels=in_channels, + out_channels=out_channels, + stride=stride, + use_bias=(True, False) if fewer_norm else False, + norm_layer=(None, norm_layer) if fewer_norm else norm_layer, + act_layer=(act_layer, None), + ) + else: + if block_type == "default": + block = MBConv( + in_channels=in_channels, + out_channels=out_channels, + stride=stride, + expand_ratio=expand_ratio, + use_bias=(True, True, False) if fewer_norm else False, + norm_layer=(None, None, norm_layer) if fewer_norm else norm_layer, + act_layer=(act_layer, act_layer, None), + ) + else: + block = FusedMBConv( + in_channels=in_channels, + out_channels=out_channels, + stride=stride, + expand_ratio=expand_ratio, + use_bias=(True, False) if fewer_norm else False, + norm_layer=(None, norm_layer) if fewer_norm else norm_layer, + act_layer=(act_layer, None), + ) + return block + + +class Stem(nn.Sequential): + def __init__(self, in_chs, out_chs, depth, norm_layer, act_layer, block_type='default'): + super().__init__() + self.stride = 2 + + self.add_module( + 'in_conv', + ConvNormAct( + in_chs, out_chs, + kernel_size=3, stride=2, norm_layer=norm_layer, act_layer=act_layer, + ) + ) + stem_block = 0 + for _ in range(depth): + self.add_module(f'res{stem_block}', ResidualBlock( + build_local_block( + in_channels=out_chs, + out_channels=out_chs, + stride=1, + expand_ratio=1, + norm_layer=norm_layer, + act_layer=act_layer, + block_type=block_type, + ), + nn.Identity(), + )) + stem_block += 1 + + +class EfficientVitStage(nn.Module): + def __init__( + self, + in_chs, + out_chs, + depth, + norm_layer, + act_layer, + expand_ratio, + head_dim, + vit_stage=False, + ): + super(EfficientVitStage, self).__init__() + blocks = [ResidualBlock( + build_local_block( + in_channels=in_chs, + out_channels=out_chs, + stride=2, + expand_ratio=expand_ratio, + norm_layer=norm_layer, + act_layer=act_layer, + fewer_norm=vit_stage, + ), + None, + )] + in_chs = out_chs + + if vit_stage: + # for stage 3, 4 + for _ in range(depth): + blocks.append( + EfficientVitBlock( + in_channels=in_chs, + head_dim=head_dim, + expand_ratio=expand_ratio, + norm_layer=norm_layer, + act_layer=act_layer, + ) + ) + else: + # for stage 1, 2 + for i in range(1, depth): + blocks.append(ResidualBlock( + build_local_block( + in_channels=in_chs, + out_channels=out_chs, + stride=1, + expand_ratio=expand_ratio, + norm_layer=norm_layer, + act_layer=act_layer + ), + nn.Identity(), + )) + + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + return self.blocks(x) + + +class EfficientVitLargeStage(nn.Module): + def __init__( + self, + in_chs, + out_chs, + depth, + norm_layer, + act_layer, + head_dim, + vit_stage=False, + fewer_norm=False, + ): + super(EfficientVitLargeStage, self).__init__() + blocks = [ResidualBlock( + build_local_block( + in_channels=in_chs, + out_channels=out_chs, + stride=2, + expand_ratio=24 if vit_stage else 16, + norm_layer=norm_layer, + act_layer=act_layer, + fewer_norm=vit_stage or fewer_norm, + block_type='default' if fewer_norm else 'fused', + ), + None, + )] + in_chs = out_chs + + if vit_stage: + # for stage 4 + for _ in range(depth): + blocks.append( + EfficientVitBlock( + in_channels=in_chs, + head_dim=head_dim, + expand_ratio=6, + norm_layer=norm_layer, + act_layer=act_layer, + ) + ) + else: + # for stage 1, 2, 3 + for i in range(depth): + blocks.append(ResidualBlock( + build_local_block( + in_channels=in_chs, + out_channels=out_chs, + stride=1, + expand_ratio=4, + norm_layer=norm_layer, + act_layer=act_layer, + fewer_norm=fewer_norm, + block_type='default' if fewer_norm else 'fused', + ), + nn.Identity(), + )) + + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + return self.blocks(x) + + +class ClassifierHead(nn.Module): + def __init__( + self, + in_channels: int, + widths: List[int], + num_classes: int = 1000, + dropout: float = 0., + norm_layer=nn.BatchNorm2d, + act_layer=nn.Hardswish, + pool_type: str = 'avg', + norm_eps: float = 1e-5, + ): + super(ClassifierHead, self).__init__() + self.widths = widths + self.num_features = widths[-1] + + assert pool_type, 'Cannot disable pooling' + self.in_conv = ConvNormAct(in_channels, widths[0], 1, norm_layer=norm_layer, act_layer=act_layer) + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True) + self.classifier = nn.Sequential( + nn.Linear(widths[0], widths[1], bias=False), + nn.LayerNorm(widths[1], eps=norm_eps), + act_layer(inplace=True) if act_layer is not None else nn.Identity(), + nn.Dropout(dropout, inplace=False), + nn.Linear(widths[1], num_classes, bias=True) if num_classes > 0 else nn.Identity(), + ) + + def reset(self, num_classes: int, pool_type: Optional[str] = None): + if pool_type is not None: + assert pool_type, 'Cannot disable pooling' + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True,) + if num_classes > 0: + self.classifier[-1] = nn.Linear(self.num_features, num_classes, bias=True) + else: + self.classifier[-1] = nn.Identity() + + def forward(self, x, pre_logits: bool = False): + x = self.in_conv(x) + x = self.global_pool(x) + if pre_logits: + # cannot slice or iterate with torchscript so, this + x = self.classifier[0](x) + x = self.classifier[1](x) + x = self.classifier[2](x) + x = self.classifier[3](x) + else: + x = self.classifier(x) + return x + + +class EfficientVit(nn.Module): + def __init__( + self, + in_chans=3, + widths=(), + depths=(), + head_dim=32, + expand_ratio=4, + norm_layer=nn.BatchNorm2d, + act_layer=nn.Hardswish, + global_pool='avg', + head_widths=(), + drop_rate=0.0, + num_classes=1000, + ): + super(EfficientVit, self).__init__() + self.grad_checkpointing = False + self.global_pool = global_pool + self.num_classes = num_classes + + # input stem + self.stem = Stem(in_chans, widths[0], depths[0], norm_layer, act_layer) + stride = self.stem.stride + + # stages + self.feature_info = [] + self.stages = nn.Sequential() + in_channels = widths[0] + for i, (w, d) in enumerate(zip(widths[1:], depths[1:])): + self.stages.append(EfficientVitStage( + in_channels, + w, + depth=d, + norm_layer=norm_layer, + act_layer=act_layer, + expand_ratio=expand_ratio, + head_dim=head_dim, + vit_stage=i >= 2, + )) + stride *= 2 + in_channels = w + self.feature_info += [dict(num_chs=in_channels, reduction=stride, module=f'stages.{i}')] + + self.num_features = in_channels + self.head = ClassifierHead( + self.num_features, + widths=head_widths, + num_classes=num_classes, + dropout=drop_rate, + pool_type=self.global_pool, + ) + self.head_hidden_size = self.head.num_features + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^stem', + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+).downsample', (0,)), + (r'^stages\.(\d+)\.\w+\.(\d+)', None), + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.classifier[-1] + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +class EfficientVitLarge(nn.Module): + def __init__( + self, + in_chans=3, + widths=(), + depths=(), + head_dim=32, + norm_layer=nn.BatchNorm2d, + act_layer=GELUTanh, + global_pool='avg', + head_widths=(), + drop_rate=0.0, + num_classes=1000, + norm_eps=1e-7, + ): + super(EfficientVitLarge, self).__init__() + self.grad_checkpointing = False + self.global_pool = global_pool + self.num_classes = num_classes + self.norm_eps = norm_eps + norm_layer = partial(norm_layer, eps=self.norm_eps) + + # input stem + self.stem = Stem(in_chans, widths[0], depths[0], norm_layer, act_layer, block_type='large') + stride = self.stem.stride + + # stages + self.feature_info = [] + self.stages = nn.Sequential() + in_channels = widths[0] + for i, (w, d) in enumerate(zip(widths[1:], depths[1:])): + self.stages.append(EfficientVitLargeStage( + in_channels, + w, + depth=d, + norm_layer=norm_layer, + act_layer=act_layer, + head_dim=head_dim, + vit_stage=i >= 3, + fewer_norm=i >= 2, + )) + stride *= 2 + in_channels = w + self.feature_info += [dict(num_chs=in_channels, reduction=stride, module=f'stages.{i}')] + + self.num_features = in_channels + self.head = ClassifierHead( + self.num_features, + widths=head_widths, + num_classes=num_classes, + dropout=drop_rate, + pool_type=self.global_pool, + act_layer=act_layer, + norm_eps=self.norm_eps, + ) + self.head_hidden_size = self.head.num_features + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^stem', + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+).downsample', (0,)), + (r'^stages\.(\d+)\.\w+\.(\d+)', None), + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.classifier[-1] + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, + 'mean': IMAGENET_DEFAULT_MEAN, + 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.in_conv.conv', + 'classifier': 'head.classifier.4', + 'crop_pct': 0.95, + 'input_size': (3, 224, 224), + 'pool_size': (7, 7), + **kwargs, + } + + +default_cfgs = generate_default_cfgs({ + 'efficientvit_b0.r224_in1k': _cfg( + hf_hub_id='timm/', + ), + 'efficientvit_b1.r224_in1k': _cfg( + hf_hub_id='timm/', + ), + 'efficientvit_b1.r256_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, + ), + 'efficientvit_b1.r288_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, + ), + 'efficientvit_b2.r224_in1k': _cfg( + hf_hub_id='timm/', + ), + 'efficientvit_b2.r256_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, + ), + 'efficientvit_b2.r288_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, + ), + 'efficientvit_b3.r224_in1k': _cfg( + hf_hub_id='timm/', + ), + 'efficientvit_b3.r256_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, + ), + 'efficientvit_b3.r288_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, + ), + 'efficientvit_l1.r224_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=1.0, + ), + 'efficientvit_l2.r224_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=1.0, + ), + 'efficientvit_l2.r256_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, + ), + 'efficientvit_l2.r288_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, + ), + 'efficientvit_l2.r384_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), + 'efficientvit_l3.r224_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=1.0, + ), + 'efficientvit_l3.r256_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, + ), + 'efficientvit_l3.r320_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, + ), + 'efficientvit_l3.r384_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), + # 'efficientvit_l0_sam.sam': _cfg( + # # hf_hub_id='timm/', + # input_size=(3, 512, 512), crop_pct=1.0, + # num_classes=0, + # ), + # 'efficientvit_l1_sam.sam': _cfg( + # # hf_hub_id='timm/', + # input_size=(3, 512, 512), crop_pct=1.0, + # num_classes=0, + # ), + # 'efficientvit_l2_sam.sam': _cfg( + # # hf_hub_id='timm/',f + # input_size=(3, 512, 512), crop_pct=1.0, + # num_classes=0, + # ), +}) + + +def _create_efficientvit(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg( + EfficientVit, + variant, + pretrained, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs + ) + return model + + +def _create_efficientvit_large(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg( + EfficientVitLarge, + variant, + pretrained, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs + ) + return model + + +@register_model +def efficientvit_b0(pretrained=False, **kwargs): + model_args = dict( + widths=(8, 16, 32, 64, 128), depths=(1, 2, 2, 2, 2), head_dim=16, head_widths=(1024, 1280)) + return _create_efficientvit('efficientvit_b0', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientvit_b1(pretrained=False, **kwargs): + model_args = dict( + widths=(16, 32, 64, 128, 256), depths=(1, 2, 3, 3, 4), head_dim=16, head_widths=(1536, 1600)) + return _create_efficientvit('efficientvit_b1', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientvit_b2(pretrained=False, **kwargs): + model_args = dict( + widths=(24, 48, 96, 192, 384), depths=(1, 3, 4, 4, 6), head_dim=32, head_widths=(2304, 2560)) + return _create_efficientvit('efficientvit_b2', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientvit_b3(pretrained=False, **kwargs): + model_args = dict( + widths=(32, 64, 128, 256, 512), depths=(1, 4, 6, 6, 9), head_dim=32, head_widths=(2304, 2560)) + return _create_efficientvit('efficientvit_b3', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientvit_l1(pretrained=False, **kwargs): + model_args = dict( + widths=(32, 64, 128, 256, 512), depths=(1, 1, 1, 6, 6), head_dim=32, head_widths=(3072, 3200)) + return _create_efficientvit_large('efficientvit_l1', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientvit_l2(pretrained=False, **kwargs): + model_args = dict( + widths=(32, 64, 128, 256, 512), depths=(1, 2, 2, 8, 8), head_dim=32, head_widths=(3072, 3200)) + return _create_efficientvit_large('efficientvit_l2', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientvit_l3(pretrained=False, **kwargs): + model_args = dict( + widths=(64, 128, 256, 512, 1024), depths=(1, 2, 2, 8, 8), head_dim=32, head_widths=(6144, 6400)) + return _create_efficientvit_large('efficientvit_l3', pretrained=pretrained, **dict(model_args, **kwargs)) + + +# FIXME will wait for v2 SAM models which are pending +# @register_model +# def efficientvit_l0_sam(pretrained=False, **kwargs): +# # only backbone for segment-anything-model weights +# model_args = dict( +# widths=(32, 64, 128, 256, 512), depths=(1, 1, 1, 4, 4), head_dim=32, num_classes=0, norm_eps=1e-6) +# return _create_efficientvit_large('efficientvit_l0_sam', pretrained=pretrained, **dict(model_args, **kwargs)) +# +# +# @register_model +# def efficientvit_l1_sam(pretrained=False, **kwargs): +# # only backbone for segment-anything-model weights +# model_args = dict( +# widths=(32, 64, 128, 256, 512), depths=(1, 1, 1, 6, 6), head_dim=32, num_classes=0, norm_eps=1e-6) +# return _create_efficientvit_large('efficientvit_l1_sam', pretrained=pretrained, **dict(model_args, **kwargs)) +# +# +# @register_model +# def efficientvit_l2_sam(pretrained=False, **kwargs): +# # only backbone for segment-anything-model weights +# model_args = dict( +# widths=(32, 64, 128, 256, 512), depths=(1, 2, 2, 8, 8), head_dim=32, num_classes=0, norm_eps=1e-6) +# return _create_efficientvit_large('efficientvit_l2_sam', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/efficientvit_msra.py b/pytorch-image-models/timm/models/efficientvit_msra.py new file mode 100644 index 0000000000000000000000000000000000000000..dd8ef80a85857286b475221f3cf9d2a80acd9599 --- /dev/null +++ b/pytorch-image-models/timm/models/efficientvit_msra.py @@ -0,0 +1,659 @@ +""" EfficientViT (by MSRA) + +Paper: `EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention` + - https://arxiv.org/abs/2305.07027 + +Adapted from official impl at https://github.com/microsoft/Cream/tree/main/EfficientViT +""" + +__all__ = ['EfficientVitMsra'] +import itertools +from collections import OrderedDict +from typing import Dict, Optional + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SqueezeExcite, SelectAdaptivePool2d, trunc_normal_, _assert +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + + +class ConvNorm(torch.nn.Sequential): + def __init__(self, in_chs, out_chs, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): + super().__init__() + self.conv = nn.Conv2d(in_chs, out_chs, ks, stride, pad, dilation, groups, bias=False) + self.bn = nn.BatchNorm2d(out_chs) + torch.nn.init.constant_(self.bn.weight, bn_weight_init) + torch.nn.init.constant_(self.bn.bias, 0) + + @torch.no_grad() + def fuse(self): + c, bn = self.conv, self.bn + w = bn.weight / (bn.running_var + bn.eps)**0.5 + w = c.weight * w[:, None, None, None] + b = bn.bias - bn.running_mean * bn.weight / \ + (bn.running_var + bn.eps)**0.5 + m = torch.nn.Conv2d( + w.size(1) * self.conv.groups, w.size(0), w.shape[2:], + stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + + +class NormLinear(torch.nn.Sequential): + def __init__(self, in_features, out_features, bias=True, std=0.02, drop=0.): + super().__init__() + self.bn = nn.BatchNorm1d(in_features) + self.drop = nn.Dropout(drop) + self.linear = nn.Linear(in_features, out_features, bias=bias) + + trunc_normal_(self.linear.weight, std=std) + if self.linear.bias is not None: + nn.init.constant_(self.linear.bias, 0) + + @torch.no_grad() + def fuse(self): + bn, linear = self.bn, self.linear + w = bn.weight / (bn.running_var + bn.eps)**0.5 + b = bn.bias - self.bn.running_mean * \ + self.bn.weight / (bn.running_var + bn.eps)**0.5 + w = linear.weight * w[None, :] + if linear.bias is None: + b = b @ self.linear.weight.T + else: + b = (linear.weight @ b[:, None]).view(-1) + self.linear.bias + m = torch.nn.Linear(w.size(1), w.size(0)) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + + +class PatchMerging(torch.nn.Module): + def __init__(self, dim, out_dim): + super().__init__() + hid_dim = int(dim * 4) + self.conv1 = ConvNorm(dim, hid_dim, 1, 1, 0) + self.act = torch.nn.ReLU() + self.conv2 = ConvNorm(hid_dim, hid_dim, 3, 2, 1, groups=hid_dim) + self.se = SqueezeExcite(hid_dim, .25) + self.conv3 = ConvNorm(hid_dim, out_dim, 1, 1, 0) + + def forward(self, x): + x = self.conv3(self.se(self.act(self.conv2(self.act(self.conv1(x)))))) + return x + + +class ResidualDrop(torch.nn.Module): + def __init__(self, m, drop=0.): + super().__init__() + self.m = m + self.drop = drop + + def forward(self, x): + if self.training and self.drop > 0: + return x + self.m(x) * torch.rand( + x.size(0), 1, 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach() + else: + return x + self.m(x) + + +class ConvMlp(torch.nn.Module): + def __init__(self, ed, h): + super().__init__() + self.pw1 = ConvNorm(ed, h) + self.act = torch.nn.ReLU() + self.pw2 = ConvNorm(h, ed, bn_weight_init=0) + + def forward(self, x): + x = self.pw2(self.act(self.pw1(x))) + return x + + +class CascadedGroupAttention(torch.nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + + r""" Cascaded Group Attention. + + Args: + dim (int): Number of input channels. + key_dim (int): The dimension for query and key. + num_heads (int): Number of attention heads. + attn_ratio (int): Multiplier for the query dim for value dimension. + resolution (int): Input resolution, correspond to the window size. + kernels (List[int]): The kernel size of the dw conv on query. + """ + def __init__( + self, + dim, + key_dim, + num_heads=8, + attn_ratio=4, + resolution=14, + kernels=(5, 5, 5, 5), + ): + super().__init__() + self.num_heads = num_heads + self.scale = key_dim ** -0.5 + self.key_dim = key_dim + self.val_dim = int(attn_ratio * key_dim) + self.attn_ratio = attn_ratio + + qkvs = [] + dws = [] + for i in range(num_heads): + qkvs.append(ConvNorm(dim // (num_heads), self.key_dim * 2 + self.val_dim)) + dws.append(ConvNorm(self.key_dim, self.key_dim, kernels[i], 1, kernels[i] // 2, groups=self.key_dim)) + self.qkvs = torch.nn.ModuleList(qkvs) + self.dws = torch.nn.ModuleList(dws) + self.proj = torch.nn.Sequential( + torch.nn.ReLU(), + ConvNorm(self.val_dim * num_heads, dim, bn_weight_init=0) + ) + + points = list(itertools.product(range(resolution), range(resolution))) + N = len(points) + attention_offsets = {} + idxs = [] + for p1 in points: + for p2 in points: + offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) + if offset not in attention_offsets: + attention_offsets[offset] = len(attention_offsets) + idxs.append(attention_offsets[offset]) + self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) + self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False) + self.attention_bias_cache = {} + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} # clear ab cache + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + B, C, H, W = x.shape + feats_in = x.chunk(len(self.qkvs), dim=1) + feats_out = [] + feat = feats_in[0] + attn_bias = self.get_attention_biases(x.device) + for head_idx, (qkv, dws) in enumerate(zip(self.qkvs, self.dws)): + if head_idx > 0: + feat = feat + feats_in[head_idx] + feat = qkv(feat) + q, k, v = feat.view(B, -1, H, W).split([self.key_dim, self.key_dim, self.val_dim], dim=1) + q = dws(q) + q, k, v = q.flatten(2), k.flatten(2), v.flatten(2) + q = q * self.scale + attn = q.transpose(-2, -1) @ k + attn = attn + attn_bias[head_idx] + attn = attn.softmax(dim=-1) + feat = v @ attn.transpose(-2, -1) + feat = feat.view(B, self.val_dim, H, W) + feats_out.append(feat) + x = self.proj(torch.cat(feats_out, 1)) + return x + + +class LocalWindowAttention(torch.nn.Module): + r""" Local Window Attention. + + Args: + dim (int): Number of input channels. + key_dim (int): The dimension for query and key. + num_heads (int): Number of attention heads. + attn_ratio (int): Multiplier for the query dim for value dimension. + resolution (int): Input resolution. + window_resolution (int): Local window resolution. + kernels (List[int]): The kernel size of the dw conv on query. + """ + def __init__( + self, + dim, + key_dim, + num_heads=8, + attn_ratio=4, + resolution=14, + window_resolution=7, + kernels=(5, 5, 5, 5), + ): + super().__init__() + self.dim = dim + self.num_heads = num_heads + self.resolution = resolution + assert window_resolution > 0, 'window_size must be greater than 0' + self.window_resolution = window_resolution + window_resolution = min(window_resolution, resolution) + self.attn = CascadedGroupAttention( + dim, key_dim, num_heads, + attn_ratio=attn_ratio, + resolution=window_resolution, + kernels=kernels, + ) + + def forward(self, x): + H = W = self.resolution + B, C, H_, W_ = x.shape + # Only check this for classifcation models + _assert(H == H_, f'input feature has wrong size, expect {(H, W)}, got {(H_, W_)}') + _assert(W == W_, f'input feature has wrong size, expect {(H, W)}, got {(H_, W_)}') + if H <= self.window_resolution and W <= self.window_resolution: + x = self.attn(x) + else: + x = x.permute(0, 2, 3, 1) + pad_b = (self.window_resolution - H % self.window_resolution) % self.window_resolution + pad_r = (self.window_resolution - W % self.window_resolution) % self.window_resolution + x = torch.nn.functional.pad(x, (0, 0, 0, pad_r, 0, pad_b)) + + pH, pW = H + pad_b, W + pad_r + nH = pH // self.window_resolution + nW = pW // self.window_resolution + # window partition, BHWC -> B(nHh)(nWw)C -> BnHnWhwC -> (BnHnW)hwC -> (BnHnW)Chw + x = x.view(B, nH, self.window_resolution, nW, self.window_resolution, C).transpose(2, 3) + x = x.reshape(B * nH * nW, self.window_resolution, self.window_resolution, C).permute(0, 3, 1, 2) + x = self.attn(x) + # window reverse, (BnHnW)Chw -> (BnHnW)hwC -> BnHnWhwC -> B(nHh)(nWw)C -> BHWC + x = x.permute(0, 2, 3, 1).view(B, nH, nW, self.window_resolution, self.window_resolution, C) + x = x.transpose(2, 3).reshape(B, pH, pW, C) + x = x[:, :H, :W].contiguous() + x = x.permute(0, 3, 1, 2) + return x + + +class EfficientVitBlock(torch.nn.Module): + """ A basic EfficientVit building block. + + Args: + dim (int): Number of input channels. + key_dim (int): Dimension for query and key in the token mixer. + num_heads (int): Number of attention heads. + attn_ratio (int): Multiplier for the query dim for value dimension. + resolution (int): Input resolution. + window_resolution (int): Local window resolution. + kernels (List[int]): The kernel size of the dw conv on query. + """ + def __init__( + self, + dim, + key_dim, + num_heads=8, + attn_ratio=4, + resolution=14, + window_resolution=7, + kernels=[5, 5, 5, 5], + ): + super().__init__() + + self.dw0 = ResidualDrop(ConvNorm(dim, dim, 3, 1, 1, groups=dim, bn_weight_init=0.)) + self.ffn0 = ResidualDrop(ConvMlp(dim, int(dim * 2))) + + self.mixer = ResidualDrop( + LocalWindowAttention( + dim, key_dim, num_heads, + attn_ratio=attn_ratio, + resolution=resolution, + window_resolution=window_resolution, + kernels=kernels, + ) + ) + + self.dw1 = ResidualDrop(ConvNorm(dim, dim, 3, 1, 1, groups=dim, bn_weight_init=0.)) + self.ffn1 = ResidualDrop(ConvMlp(dim, int(dim * 2))) + + def forward(self, x): + return self.ffn1(self.dw1(self.mixer(self.ffn0(self.dw0(x))))) + + +class EfficientVitStage(torch.nn.Module): + def __init__( + self, + in_dim, + out_dim, + key_dim, + downsample=('', 1), + num_heads=8, + attn_ratio=4, + resolution=14, + window_resolution=7, + kernels=[5, 5, 5, 5], + depth=1, + ): + super().__init__() + if downsample[0] == 'subsample': + self.resolution = (resolution - 1) // downsample[1] + 1 + down_blocks = [] + down_blocks.append(( + 'res1', + torch.nn.Sequential( + ResidualDrop(ConvNorm(in_dim, in_dim, 3, 1, 1, groups=in_dim)), + ResidualDrop(ConvMlp(in_dim, int(in_dim * 2))), + ) + )) + down_blocks.append(('patchmerge', PatchMerging(in_dim, out_dim))) + down_blocks.append(( + 'res2', + torch.nn.Sequential( + ResidualDrop(ConvNorm(out_dim, out_dim, 3, 1, 1, groups=out_dim)), + ResidualDrop(ConvMlp(out_dim, int(out_dim * 2))), + ) + )) + self.downsample = nn.Sequential(OrderedDict(down_blocks)) + else: + assert in_dim == out_dim + self.downsample = nn.Identity() + self.resolution = resolution + + blocks = [] + for d in range(depth): + blocks.append(EfficientVitBlock(out_dim, key_dim, num_heads, attn_ratio, self.resolution, window_resolution, kernels)) + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + x = self.blocks(x) + return x + + +class PatchEmbedding(torch.nn.Sequential): + def __init__(self, in_chans, dim): + super().__init__() + self.add_module('conv1', ConvNorm(in_chans, dim // 8, 3, 2, 1)) + self.add_module('relu1', torch.nn.ReLU()) + self.add_module('conv2', ConvNorm(dim // 8, dim // 4, 3, 2, 1)) + self.add_module('relu2', torch.nn.ReLU()) + self.add_module('conv3', ConvNorm(dim // 4, dim // 2, 3, 2, 1)) + self.add_module('relu3', torch.nn.ReLU()) + self.add_module('conv4', ConvNorm(dim // 2, dim, 3, 2, 1)) + self.patch_size = 16 + + +class EfficientVitMsra(nn.Module): + def __init__( + self, + img_size=224, + in_chans=3, + num_classes=1000, + embed_dim=(64, 128, 192), + key_dim=(16, 16, 16), + depth=(1, 2, 3), + num_heads=(4, 4, 4), + window_size=(7, 7, 7), + kernels=(5, 5, 5, 5), + down_ops=(('', 1), ('subsample', 2), ('subsample', 2)), + global_pool='avg', + drop_rate=0., + ): + super(EfficientVitMsra, self).__init__() + self.grad_checkpointing = False + self.num_classes = num_classes + self.drop_rate = drop_rate + + # Patch embedding + self.patch_embed = PatchEmbedding(in_chans, embed_dim[0]) + stride = self.patch_embed.patch_size + resolution = img_size // self.patch_embed.patch_size + attn_ratio = [embed_dim[i] / (key_dim[i] * num_heads[i]) for i in range(len(embed_dim))] + + # Build EfficientVit blocks + self.feature_info = [] + stages = [] + pre_ed = embed_dim[0] + for i, (ed, kd, dpth, nh, ar, wd, do) in enumerate( + zip(embed_dim, key_dim, depth, num_heads, attn_ratio, window_size, down_ops)): + stage = EfficientVitStage( + in_dim=pre_ed, + out_dim=ed, + key_dim=kd, + downsample=do, + num_heads=nh, + attn_ratio=ar, + resolution=resolution, + window_resolution=wd, + kernels=kernels, + depth=dpth, + ) + pre_ed = ed + if do[0] == 'subsample' and i != 0: + stride *= do[1] + resolution = stage.resolution + stages.append(stage) + self.feature_info += [dict(num_chs=ed, reduction=stride, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + + if global_pool == 'avg': + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) + else: + assert num_classes == 0 + self.global_pool = nn.Identity() + self.num_features = self.head_hidden_size = embed_dim[-1] + self.head = NormLinear( + self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else torch.nn.Identity() + + @torch.jit.ignore + def no_weight_decay(self): + return {x for x in self.state_dict().keys() if 'attention_biases' in x} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^patch_embed', + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+).downsample', (0,)), + (r'^stages\.(\d+)\.\w+\.(\d+)', None), + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.linear + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + if global_pool == 'avg': + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True) + else: + assert num_classes == 0 + self.global_pool = nn.Identity() + self.head = NormLinear( + self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else torch.nn.Identity() + + def forward_features(self, x): + x = self.patch_embed(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +# def checkpoint_filter_fn(state_dict, model): +# if 'model' in state_dict.keys(): +# state_dict = state_dict['model'] +# tmp_dict = {} +# out_dict = {} +# target_keys = model.state_dict().keys() +# target_keys = [k for k in target_keys if k.startswith('stages.')] +# +# for k, v in state_dict.items(): +# if 'attention_bias_idxs' in k: +# continue +# k = k.split('.') +# if k[-2] == 'c': +# k[-2] = 'conv' +# if k[-2] == 'l': +# k[-2] = 'linear' +# k = '.'.join(k) +# tmp_dict[k] = v +# +# for k, v in tmp_dict.items(): +# if k.startswith('patch_embed'): +# k = k.split('.') +# k[1] = 'conv' + str(int(k[1]) // 2 + 1) +# k = '.'.join(k) +# elif k.startswith('blocks'): +# kw = '.'.join(k.split('.')[2:]) +# find_kw = [a for a in list(sorted(tmp_dict.keys())) if kw in a] +# idx = find_kw.index(k) +# k = [a for a in target_keys if kw in a][idx] +# out_dict[k] = v +# +# return out_dict + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, + 'mean': IMAGENET_DEFAULT_MEAN, + 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.conv1.conv', + 'classifier': 'head.linear', + 'fixed_input_size': True, + 'pool_size': (4, 4), + **kwargs, + } + + +default_cfgs = generate_default_cfgs({ + 'efficientvit_m0.r224_in1k': _cfg( + hf_hub_id='timm/', + #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m0.pth' + ), + 'efficientvit_m1.r224_in1k': _cfg( + hf_hub_id='timm/', + #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m1.pth' + ), + 'efficientvit_m2.r224_in1k': _cfg( + hf_hub_id='timm/', + #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m2.pth' + ), + 'efficientvit_m3.r224_in1k': _cfg( + hf_hub_id='timm/', + #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m3.pth' + ), + 'efficientvit_m4.r224_in1k': _cfg( + hf_hub_id='timm/', + #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m4.pth' + ), + 'efficientvit_m5.r224_in1k': _cfg( + hf_hub_id='timm/', + #url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m5.pth' + ), +}) + + +def _create_efficientvit_msra(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2)) + model = build_model_with_cfg( + EfficientVitMsra, + variant, + pretrained, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs + ) + return model + + +@register_model +def efficientvit_m0(pretrained=False, **kwargs): + model_args = dict( + img_size=224, + embed_dim=[64, 128, 192], + depth=[1, 2, 3], + num_heads=[4, 4, 4], + window_size=[7, 7, 7], + kernels=[5, 5, 5, 5] + ) + return _create_efficientvit_msra('efficientvit_m0', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientvit_m1(pretrained=False, **kwargs): + model_args = dict( + img_size=224, + embed_dim=[128, 144, 192], + depth=[1, 2, 3], + num_heads=[2, 3, 3], + window_size=[7, 7, 7], + kernels=[7, 5, 3, 3] + ) + return _create_efficientvit_msra('efficientvit_m1', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientvit_m2(pretrained=False, **kwargs): + model_args = dict( + img_size=224, + embed_dim=[128, 192, 224], + depth=[1, 2, 3], + num_heads=[4, 3, 2], + window_size=[7, 7, 7], + kernels=[7, 5, 3, 3] + ) + return _create_efficientvit_msra('efficientvit_m2', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientvit_m3(pretrained=False, **kwargs): + model_args = dict( + img_size=224, + embed_dim=[128, 240, 320], + depth=[1, 2, 3], + num_heads=[4, 3, 4], + window_size=[7, 7, 7], + kernels=[5, 5, 5, 5] + ) + return _create_efficientvit_msra('efficientvit_m3', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientvit_m4(pretrained=False, **kwargs): + model_args = dict( + img_size=224, + embed_dim=[128, 256, 384], + depth=[1, 2, 3], + num_heads=[4, 4, 4], + window_size=[7, 7, 7], + kernels=[7, 5, 3, 3] + ) + return _create_efficientvit_msra('efficientvit_m4', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def efficientvit_m5(pretrained=False, **kwargs): + model_args = dict( + img_size=224, + embed_dim=[192, 288, 384], + depth=[1, 3, 4], + num_heads=[3, 3, 4], + window_size=[7, 7, 7], + kernels=[7, 5, 3, 3] + ) + return _create_efficientvit_msra('efficientvit_m5', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/eva.py b/pytorch-image-models/timm/models/eva.py new file mode 100644 index 0000000000000000000000000000000000000000..fe871540508530f9bd16b05e440d9d609db2998f --- /dev/null +++ b/pytorch-image-models/timm/models/eva.py @@ -0,0 +1,1325 @@ +""" EVA + +EVA from https://github.com/baaivision/EVA , paper: https://arxiv.org/abs/2211.07636 + +@article{EVA, + title={EVA: Exploring the Limits of Masked Visual Representation Learning at Scale}, + author={Fang, Yuxin and Wang, Wen and Xie, Binhui and Sun, Quan and Wu, Ledell and Wang, Xinggang and Huang, + Tiejun and Wang, Xinlong and Cao, Yue}, + journal={arXiv preprint arXiv:2211.07636}, + year={2022} +} + +EVA-02: A Visual Representation for Neon Genesis - https://arxiv.org/abs/2303.11331 +@article{EVA02, + title={EVA-02: A Visual Representation for Neon Genesis}, + author={Fang, Yuxin and Sun, Quan and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue}, + journal={arXiv preprint arXiv:2303.11331}, + year={2023} +} + +This file contains EVA & EVA02 model implementations evolved from BEiT, additional models in vision_transformer.py. + +Modifications by / Copyright 2023 Ross Wightman, original copyrights below +""" +# EVA models Copyright (c) 2022 BAAI-Vision +# EVA02 models Copyright (c) 2023 BAAI-Vision +import math +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD +from timm.layers import PatchEmbed, Mlp, GluMlp, SwiGLU, LayerNorm, DropPath, PatchDropout, RotaryEmbeddingCat, \ + apply_rot_embed_cat, apply_keep_indices_nlc, trunc_normal_, resample_patch_embed, resample_abs_pos_embed, \ + to_2tuple, use_fused_attn + +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._registry import generate_default_cfgs, register_model + +__all__ = ['Eva'] + + +class EvaAttention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = True, + qkv_fused: bool = True, + num_prefix_tokens: int = 1, + qkv_bias_separate: bool = False, + attn_drop: float = 0., + proj_drop: float = 0., + attn_head_dim: Optional[int] = None, + norm_layer: Optional[Callable] = None, + ): + """ + + Args: + dim: + num_heads: + qkv_bias: + qkv_fused: + attn_drop: + proj_drop: + attn_head_dim: + norm_layer: + """ + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + if attn_head_dim is not None: + head_dim = attn_head_dim + all_head_dim = head_dim * self.num_heads + self.scale = head_dim ** -0.5 + self.num_prefix_tokens = num_prefix_tokens + self.fused_attn = use_fused_attn() + self.qkv_bias_separate = qkv_bias_separate + + if qkv_fused: + self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) + self.q_proj = self.k_proj = self.v_proj = None + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) + self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False) + self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) + else: + self.q_bias = self.k_bias = self.v_bias = None + else: + self.q_proj = nn.Linear(dim, all_head_dim, bias=qkv_bias) + self.k_proj = nn.Linear(dim, all_head_dim, bias=False) + self.v_proj = nn.Linear(dim, all_head_dim, bias=qkv_bias) + self.qkv = None + self.q_bias = self.k_bias = self.v_bias = None + + self.attn_drop = nn.Dropout(attn_drop) + self.norm = norm_layer(all_head_dim) if norm_layer is not None else nn.Identity() + self.proj = nn.Linear(all_head_dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward( + self, + x, + rope: Optional[torch.Tensor] = None, + attn_mask: Optional[torch.Tensor] = None, + ): + B, N, C = x.shape + + if self.qkv is not None: + if self.q_bias is None: + qkv = self.qkv(x) + else: + qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) + if self.qkv_bias_separate: + qkv = self.qkv(x) + qkv += qkv_bias + else: + qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) # B, num_heads, N, head_dim + else: + q = self.q_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) # B, num_heads, N, C + k = self.k_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) + v = self.v_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) + + if rope is not None: + npt = self.num_prefix_tokens + q = torch.cat([q[:, :, :npt, :], apply_rot_embed_cat(q[:, :, npt:, :], rope)], dim=2).type_as(v) + k = torch.cat([k[:, :, :npt, :], apply_rot_embed_cat(k[:, :, npt:, :], rope)], dim=2).type_as(v) + + if self.fused_attn: + x = F.scaled_dot_product_attention( + q, k, v, + attn_mask=attn_mask, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + if attn_mask is not None: + attn_mask = attn_mask.to(torch.bool) + attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) + attn = attn.softmax(dim=-1) + + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B, N, C) + x = self.norm(x) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class EvaBlock(nn.Module): + + def __init__( + self, + dim: int, + num_heads: int, + qkv_bias: bool = True, + qkv_fused: bool = True, + mlp_ratio: float = 4., + swiglu_mlp: bool = False, + scale_mlp: bool = False, + scale_attn_inner: bool = False, + num_prefix_tokens: int = 1, + proj_drop: float = 0., + attn_drop: float = 0., + drop_path: float = 0., + init_values: Optional[float] = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + attn_head_dim: Optional[int] = None, + ): + """ + + Args: + dim: + num_heads: + qkv_bias: + qkv_fused: + mlp_ratio: + swiglu_mlp: + scale_mlp: + scale_attn_inner: + proj_drop: + attn_drop: + drop_path: + init_values: + act_layer: + norm_layer: + attn_head_dim: + """ + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = EvaAttention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + qkv_fused=qkv_fused, + num_prefix_tokens=num_prefix_tokens, + attn_drop=attn_drop, + proj_drop=proj_drop, + attn_head_dim=attn_head_dim, + norm_layer=norm_layer if scale_attn_inner else None, + ) + self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) if init_values is not None else None + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + hidden_features = int(dim * mlp_ratio) + if swiglu_mlp: + if scale_mlp: + # when norm in SwiGLU used, an impl with separate fc for gate & x is used + self.mlp = SwiGLU( + in_features=dim, + hidden_features=hidden_features, + norm_layer=norm_layer if scale_mlp else None, + drop=proj_drop, + ) + else: + # w/o any extra norm, an impl with packed weights is used, matches existing GluMLP + self.mlp = GluMlp( + in_features=dim, + hidden_features=hidden_features * 2, + norm_layer=norm_layer if scale_mlp else None, + act_layer=nn.SiLU, + gate_last=False, + drop=proj_drop, + ) + else: + self.mlp = Mlp( + in_features=dim, + hidden_features=hidden_features, + act_layer=act_layer, + norm_layer=norm_layer if scale_mlp else None, + drop=proj_drop, + ) + self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) if init_values is not None else None + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None): + if self.gamma_1 is None: + x = x + self.drop_path1(self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + else: + x = x + self.drop_path1(self.gamma_1 * self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)) + x = x + self.drop_path2(self.gamma_2 * self.mlp(self.norm2(x))) + return x + + +class EvaBlockPostNorm(nn.Module): + """ EVA block w/ post-norm and support for swiglu, MLP norm scale, ROPE. """ + def __init__( + self, + dim: int, + num_heads: int, + qkv_bias: bool = True, + qkv_fused: bool = True, + mlp_ratio: float = 4., + swiglu_mlp: bool = False, + scale_mlp: bool = False, + scale_attn_inner: bool = False, + num_prefix_tokens: int = 1, + proj_drop: float = 0., + attn_drop: float = 0., + drop_path: float = 0., + init_values: Optional[float] = None, # ignore for post-norm + act_layer: Callable = nn.GELU, + norm_layer: Callable = nn.LayerNorm, + attn_head_dim: Optional[int] = None, + ): + """ + + Args: + dim: + num_heads: + qkv_bias: + qkv_fused: + mlp_ratio: + swiglu_mlp: + scale_mlp: + scale_attn_inner: + proj_drop: + attn_drop: + drop_path: + init_values: + act_layer: + norm_layer: + attn_head_dim: + """ + super().__init__() + self.attn = EvaAttention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + qkv_fused=qkv_fused, + num_prefix_tokens=num_prefix_tokens, + attn_drop=attn_drop, + proj_drop=proj_drop, + attn_head_dim=attn_head_dim, + norm_layer=norm_layer if scale_attn_inner else None, + ) + self.norm1 = norm_layer(dim) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + hidden_features = int(dim * mlp_ratio) + if swiglu_mlp: + if scale_mlp: + # when norm in SwiGLU used, an impl with separate fc for gate & x is used + self.mlp = SwiGLU( + in_features=dim, + hidden_features=hidden_features, + norm_layer=norm_layer if scale_mlp else None, + drop=proj_drop, + ) + else: + # w/o any extra norm, an impl with packed fc1 weights is used, matches existing GluMLP + self.mlp = GluMlp( + in_features=dim, + hidden_features=hidden_features * 2, + norm_layer=norm_layer if scale_mlp else None, + act_layer=nn.SiLU, + gate_last=False, + drop=proj_drop, + ) + else: + self.mlp = Mlp( + in_features=dim, + hidden_features=hidden_features, + act_layer=act_layer, + norm_layer=norm_layer if scale_mlp else None, + drop=proj_drop, + ) + self.norm2 = norm_layer(dim) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None): + x = x + self.drop_path1(self.norm1(self.attn(x, rope=rope, attn_mask=attn_mask))) + x = x + self.drop_path2(self.norm2(self.mlp(x))) + return x + + +class Eva(nn.Module): + """ Eva Vision Transformer w/ Abs & Rotary Pos Embed + + This class implements the EVA and EVA02 models that were based on the BEiT ViT variant + * EVA - abs pos embed, global avg pool + * EVA02 - abs + rope pos embed, global avg pool, SwiGLU, scale Norm in MLP (ala normformer) + """ + + def __init__( + self, + img_size: Union[int, Tuple[int, int]] = 224, + patch_size: Union[int, Tuple[int, int]] = 16, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: str = 'avg', + embed_dim: int = 768, + depth: int = 12, + num_heads: int = 12, + qkv_bias: bool = True, + qkv_fused: bool = True, + mlp_ratio: float = 4., + swiglu_mlp: bool = False, + scale_mlp: bool = False, + scale_attn_inner: bool = False, + drop_rate: float = 0., + pos_drop_rate: float = 0., + patch_drop_rate: float = 0., + proj_drop_rate: float = 0., + attn_drop_rate: float = 0., + drop_path_rate: float = 0., + norm_layer: Callable = LayerNorm, + init_values: Optional[float] = None, + class_token: bool = True, + num_reg_tokens: int = 0, + use_abs_pos_emb: bool = True, + use_rot_pos_emb: bool = False, + use_post_norm: bool = False, + dynamic_img_size: bool = False, + dynamic_img_pad: bool = False, + ref_feat_shape: Optional[Union[Tuple[int, int], int]] = None, + head_init_scale: float = 0.001, + ): + """ + + Args: + img_size: + patch_size: + in_chans: + num_classes: + global_pool: + embed_dim: + depth: + num_heads: + qkv_bias: + qkv_fused: + mlp_ratio: + swiglu_mlp: + scale_mlp: + scale_attn_inner: + drop_rate: + pos_drop_rate: + proj_drop_rate: + attn_drop_rate: + drop_path_rate: + norm_layer: + init_values: + class_token: + use_abs_pos_emb: + use_rot_pos_emb: + use_post_norm: + ref_feat_shape: + head_init_scale: + """ + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models + self.num_prefix_tokens = (1 if class_token else 0) + num_reg_tokens + self.dynamic_img_size = dynamic_img_size + self.grad_checkpointing = False + + embed_args = {} + if dynamic_img_size: + # flatten deferred until after pos embed + embed_args.update(dict(strict_img_size=False, output_fmt='NHWC')) + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + dynamic_img_pad=dynamic_img_pad, + **embed_args, + ) + num_patches = self.patch_embed.num_patches + r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None + self.reg_token = nn.Parameter(torch.zeros(1, num_reg_tokens, embed_dim)) if num_reg_tokens else None + self.cls_embed = class_token and self.reg_token is None + + self.pos_embed = nn.Parameter( + torch.zeros(1, num_patches + self.num_prefix_tokens, embed_dim)) if use_abs_pos_emb else None + self.pos_drop = nn.Dropout(p=pos_drop_rate) + if patch_drop_rate > 0: + self.patch_drop = PatchDropout( + patch_drop_rate, + num_prefix_tokens=self.num_prefix_tokens, + return_indices=True, + ) + else: + self.patch_drop = None + + if use_rot_pos_emb: + ref_feat_shape = to_2tuple(ref_feat_shape) if ref_feat_shape is not None else None + self.rope = RotaryEmbeddingCat( + embed_dim // num_heads, + in_pixels=False, + feat_shape=None if dynamic_img_size else self.patch_embed.grid_size, + ref_feat_shape=ref_feat_shape, + ) + else: + self.rope = None + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + block_fn = EvaBlockPostNorm if use_post_norm else EvaBlock + self.blocks = nn.ModuleList([ + block_fn( + dim=embed_dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + qkv_fused=qkv_fused, + mlp_ratio=mlp_ratio, + swiglu_mlp=swiglu_mlp, + scale_mlp=scale_mlp, + scale_attn_inner=scale_attn_inner, + num_prefix_tokens=self.num_prefix_tokens, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + init_values=init_values, + ) + for i in range(depth)]) + self.feature_info = [ + dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] + + use_fc_norm = self.global_pool == 'avg' + self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim) + self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + self.apply(self._init_weights) + if self.pos_embed is not None: + trunc_normal_(self.pos_embed, std=.02) + if self.cls_token is not None: + trunc_normal_(self.cls_token, std=.02) + if self.reg_token is not None: + trunc_normal_(self.reg_token, std=.02) + + self.fix_init_weight() + if isinstance(self.head, nn.Linear): + trunc_normal_(self.head.weight, std=.02) + self.head.weight.data.mul_(head_init_scale) + self.head.bias.data.mul_(head_init_scale) + + def fix_init_weight(self): + def rescale(param, layer_id): + param.div_(math.sqrt(2.0 * layer_id)) + + for layer_id, layer in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + nn.init.zeros_(m.bias) + + @torch.jit.ignore + def no_weight_decay(self): + nwd = {'pos_embed', 'cls_token'} + return nwd + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^cls_token|pos_embed|patch_embed', # stem and embed + blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))], + ) + return matcher + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def _pos_embed(self, x) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + if self.dynamic_img_size: + B, H, W, C = x.shape + if self.pos_embed is not None: + prev_grid_size = self.patch_embed.grid_size + pos_embed = resample_abs_pos_embed( + self.pos_embed, + new_size=(H, W), + old_size=prev_grid_size, + num_prefix_tokens=self.num_prefix_tokens, + ) + else: + pos_embed = None + x = x.view(B, -1, C) + rot_pos_embed = self.rope.get_embed(shape=(H, W)) if self.rope is not None else None + else: + pos_embed = self.pos_embed + rot_pos_embed = self.rope.get_embed() if self.rope is not None else None + + if self.cls_token is not None: + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + + if pos_embed is not None: + x = x + pos_embed + + if self.reg_token is not None: + to_cat = [] + if self.cls_token is not None: + to_cat.append(self.cls_token.expand(x.shape[0], -1, -1)) + to_cat.append(self.reg_token.expand(x.shape[0], -1, -1)) + x = torch.cat(to_cat + [x], dim=1) + + x = self.pos_drop(x) + + # obtain shared rotary position embedding and apply patch dropout + if self.patch_drop is not None: + x, keep_indices = self.patch_drop(x) + if rot_pos_embed is not None and keep_indices is not None: + rot_pos_embed = apply_keep_indices_nlc(x, rot_pos_embed, keep_indices) + return x, rot_pos_embed + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + return_prefix_tokens: bool = False, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + Args: + x: Input image tensor + indices: Take last n blocks if an int, if is a sequence, select by matching indices + return_prefix_tokens: Return both prefix and spatial intermediate tokens + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + """ + assert output_fmt in ('NCHW', 'NLC'), 'Output format for EVA-ViT features must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + + # forward pass + B, _, height, width = x.shape + x = self.patch_embed(x) + x, rot_pos_embed = self._pos_embed(x) + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for i, blk in enumerate(blocks): + x = blk(x, rope=rot_pos_embed) + if i in take_indices: + intermediates.append(self.norm(x) if norm else x) + + # process intermediates + if self.num_prefix_tokens: + # split prefix (e.g. class, distill) and spatial feature tokens + prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] + intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] + if reshape: + # reshape to BCHW output format + H, W = self.patch_embed.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + if not torch.jit.is_scripting() and return_prefix_tokens: + # return_prefix not support in torchscript due to poor type handling + intermediates = list(zip(intermediates, prefix_tokens)) + + if intermediates_only: + return intermediates + + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] # truncate blocks + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.fc_norm = nn.Identity() + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + x, rot_pos_embed = self._pos_embed(x) + for blk in self.blocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(blk, x, rope=rot_pos_embed) + else: + x = blk(x, rope=rot_pos_embed) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool: + x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.fc_norm(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn( + state_dict, + model, + interpolation='bicubic', + antialias=True, +): + """ convert patch embedding weight from manual patchify + linear proj to conv""" + out_dict = {} + state_dict = state_dict.get('model_ema', state_dict) + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('module', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + # prefix for loading OpenCLIP compatible weights + if 'visual.trunk.pos_embed' in state_dict: + prefix = 'visual.trunk.' + elif 'visual.pos_embed' in state_dict: + prefix = 'visual.' + else: + prefix = '' + mim_weights = prefix + 'mask_token' in state_dict + no_qkv = prefix + 'blocks.0.attn.q_proj.weight' in state_dict + + len_prefix = len(prefix) + for k, v in state_dict.items(): + if prefix: + if k.startswith(prefix): + k = k[len_prefix:] + else: + continue + + if 'rope' in k: + # fixed embedding no need to load buffer from checkpoint + continue + + if 'patch_embed.proj.weight' in k: + _, _, H, W = model.patch_embed.proj.weight.shape + if v.shape[-1] != W or v.shape[-2] != H: + v = resample_patch_embed( + v, + (H, W), + interpolation=interpolation, + antialias=antialias, + verbose=True, + ) + elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: + # To resize pos embedding when using model at different size from pretrained weights + num_prefix_tokens = 0 if getattr(model, 'no_embed_class', False) else getattr(model, 'num_prefix_tokens', 1) + v = resample_abs_pos_embed( + v, + new_size=model.patch_embed.grid_size, + num_prefix_tokens=num_prefix_tokens, + interpolation=interpolation, + antialias=antialias, + verbose=True, + ) + + k = k.replace('mlp.ffn_ln', 'mlp.norm') + k = k.replace('attn.inner_attn_ln', 'attn.norm') + k = k.replace('mlp.w12', 'mlp.fc1') + k = k.replace('mlp.w1', 'mlp.fc1_g') + k = k.replace('mlp.w2', 'mlp.fc1_x') + k = k.replace('mlp.w3', 'mlp.fc2') + if no_qkv: + k = k.replace('q_bias', 'q_proj.bias') + k = k.replace('v_bias', 'v_proj.bias') + + if mim_weights and k in ('mask_token', 'lm_head.weight', 'lm_head.bias', 'norm.weight', 'norm.bias'): + if k == 'norm.weight' or k == 'norm.bias': + # try moving norm -> fc norm on fine-tune, probably a better starting point than new init + k = k.replace('norm', 'fc_norm') + else: + # skip pretrain mask token & head weights + continue + + out_dict[k] = v + + return out_dict + + +def _create_eva(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg( + Eva, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': OPENAI_CLIP_MEAN, 'std': OPENAI_CLIP_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head', + 'license': 'mit', **kwargs + } + + +default_cfgs = generate_default_cfgs({ + + # EVA 01 CLIP fine-tuned on imagenet-1k + 'eva_giant_patch14_224.clip_ft_in1k': _cfg( + # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_clip_vis_enc_sz224_ftcls_89p1.pt', + hf_hub_id='timm/', + ), + 'eva_giant_patch14_336.clip_ft_in1k': _cfg( + # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_clip_vis_enc_sz336_ftcls_89p4.pt', + hf_hub_id='timm/', + input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), + + # MIM EVA 01 pretrain, ft on in22k -> in1k + 'eva_giant_patch14_336.m30m_ft_in22k_in1k': _cfg( + # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_21k_1k_336px_psz14_ema_89p6.pt', + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, + input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), + 'eva_giant_patch14_560.m30m_ft_in22k_in1k': _cfg( + # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_21k_1k_560px_psz14_ema_89p7.pt', + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, + input_size=(3, 560, 560), crop_pct=1.0, crop_mode='squash'), + + # in22k or m38m MIM pretrain w/ intermediate in22k fine-tune and final in1k fine-tune + 'eva02_base_patch14_448.mim_in22k_ft_in22k_in1k': _cfg( + # hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k_to_in1k/eva02_B_pt_in21k_medft_in21k_ft_in1k_p14.pt', + hf_hub_id='timm/', + input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', + ), + 'eva02_large_patch14_448.mim_in22k_ft_in22k_in1k': _cfg( + # hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k_to_in1k/eva02_L_pt_in21k_medft_in21k_ft_in1k_p14.pt', + hf_hub_id='timm/', + input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', + ), + 'eva02_large_patch14_448.mim_m38m_ft_in22k_in1k': _cfg( + hf_hub_id='timm/', + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k_to_in1k/eva02_L_pt_m38m_medft_in21k_ft_in1k_p14.pt', + input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', + ), + + # in22k or m3m MIM pretrain w/ in1k fine-tune + 'eva02_tiny_patch14_336.mim_in22k_ft_in1k': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_Ti_pt_in21k_ft_in1k_p14.pt', + hf_hub_id='timm/', + input_size=(3, 336, 336), crop_pct=1.0, + ), + 'eva02_small_patch14_336.mim_in22k_ft_in1k': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_S_pt_in21k_ft_in1k_p14.pt', + hf_hub_id='timm/', + input_size=(3, 336, 336), crop_pct=1.0, + ), + 'eva02_base_patch14_448.mim_in22k_ft_in1k': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_B_pt_in21k_ft_in1k_p14.pt', + hf_hub_id='timm/', + input_size=(3, 448, 448), crop_pct=1.0, + ), + 'eva02_large_patch14_448.mim_in22k_ft_in1k': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_L_pt_in21k_ft_in1k_p14.pt', + hf_hub_id='timm/', + input_size=(3, 448, 448), crop_pct=1.0, + ), + 'eva02_large_patch14_448.mim_m38m_ft_in1k': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in1k/eva02_L_pt_m38m_ft_in1k_p14.pt', + hf_hub_id='timm/', + input_size=(3, 448, 448), crop_pct=1.0, + ), + + # in22k or m3m MIM pretrain w/ in22k fine-tune + 'eva02_base_patch14_448.mim_in22k_ft_in22k': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k/eva02_B_pt_in21k_medft_in21k_p14.pt', + hf_hub_id='timm/', + input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841, + ), + 'eva02_large_patch14_448.mim_in22k_ft_in22k': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k/eva02_L_pt_in21k_medft_in21k_p14.pt', + hf_hub_id='timm/', + input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841, + ), + 'eva02_large_patch14_448.mim_m38m_ft_in22k': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/cls/in21k/eva02_L_pt_m38m_medft_in21k_p14.pt', + hf_hub_id='timm/', + input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841, + ), + + # in22k or m38m MIM pretrain + 'eva02_tiny_patch14_224.mim_in22k': _cfg( + # hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_Ti_pt_in21k_p14.pt', + hf_hub_id='timm/', + num_classes=0, + ), + 'eva02_small_patch14_224.mim_in22k': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_S_pt_in21k_p14.pt', + hf_hub_id='timm/', + num_classes=0, + ), + 'eva02_base_patch14_224.mim_in22k': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_B_pt_in21k_p14.pt', + hf_hub_id='timm/', + num_classes=0, + ), + 'eva02_large_patch14_224.mim_in22k': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_L_pt_in21k_p14.pt', + hf_hub_id='timm/', + num_classes=0, + ), + 'eva02_large_patch14_224.mim_m38m': _cfg( + #hf_hub_id='Yuxin-CV/EVA-02', hf_hub_filename='eva02/pt/eva02_L_pt_m38m_p14.pt', + hf_hub_id='timm/', + num_classes=0, + ), + + # EVA01 and EVA02 CLIP image towers + 'eva_giant_patch14_clip_224.laion400m': _cfg( + # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA01_CLIP_g_14_plus_psz14_s11B.pt', + hf_hub_id='timm/eva_giant_patch14_clip_224.laion400m_s11b_b41k', # float16 weights + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=1024, + ), + 'eva_giant_patch14_clip_224.merged2b': _cfg( + # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA01_CLIP_g_14_plus_psz14_s11B.pt', + hf_hub_id='timm/eva_giant_patch14_plus_clip_224.merged2b_s11b_b114k', # float16 weights + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=1024, + ), + 'eva02_base_patch16_clip_224.merged2b': _cfg( + # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_L_psz14_s4B.pt', + hf_hub_id='timm/eva02_base_patch16_clip_224.merged2b_s8b_b131k', # float16 weights + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=512, + ), + 'eva02_large_patch14_clip_224.merged2b': _cfg( + # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_L_psz14_s4B.pt', + hf_hub_id='timm/eva02_large_patch14_clip_224.merged2b_s4b_b131k', # float16 weights + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=768, + ), + 'eva02_large_patch14_clip_336.merged2b': _cfg( + # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_L_psz14_s4B.pt', + hf_hub_id='timm/eva02_large_patch14_clip_336.merged2b_s6b_b61k', # float16 weights + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 336, 336), crop_pct=1.0, + num_classes=768, + ), + 'eva02_enormous_patch14_clip_224.laion2b': _cfg( + # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_E_psz14_plus_s9B.pt', + hf_hub_id='timm/eva02_enormous_patch14_clip_224.laion2b_s4b_b115k', # float16 weights + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=1024, + ), + 'eva02_enormous_patch14_clip_224.laion2b_plus': _cfg( + # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_CLIP_E_psz14_plus_s9B.pt', + hf_hub_id='timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k', # bfloat16 weights + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=1024, + ), + 'eva02_enormous_patch14_clip_224.pretrain': _cfg( + # hf_hub_id='QuanSun/EVA-CLIP', hf_hub_filename='EVA02_E_psz14.pt', + num_classes=0, + ), + + 'vit_medium_patch16_rope_reg1_gap_256.sbb_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95, + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) + ), + 'vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95, + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) + ), + 'vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95, + ), + 'vit_base_patch16_rope_reg1_gap_256.sbb_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95, + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) + ), +}) + + +@register_model +def eva_giant_patch14_224(pretrained=False, **kwargs) -> Eva: + """ EVA-g model https://arxiv.org/abs/2211.07636 """ + model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) + model = _create_eva('eva_giant_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva_giant_patch14_336(pretrained=False, **kwargs) -> Eva: + """ EVA-g model https://arxiv.org/abs/2211.07636 """ + model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) + model = _create_eva('eva_giant_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva_giant_patch14_560(pretrained=False, **kwargs) -> Eva: + """ EVA-g model https://arxiv.org/abs/2211.07636 """ + model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) + model = _create_eva('eva_giant_patch14_560', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_tiny_patch14_224(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=224, + patch_size=14, + embed_dim=192, + depth=12, + num_heads=3, + mlp_ratio=4 * 2 / 3, + swiglu_mlp=True, + use_rot_pos_emb=True, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('eva02_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_small_patch14_224(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=224, + patch_size=14, + embed_dim=384, + depth=12, + num_heads=6, + mlp_ratio=4 * 2 / 3, + swiglu_mlp=True, + use_rot_pos_emb=True, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('eva02_small_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_base_patch14_224(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=224, + patch_size=14, + embed_dim=768, + depth=12, + num_heads=12, + qkv_fused=False, + mlp_ratio=4 * 2 / 3, + swiglu_mlp=True, + scale_mlp=True, + use_rot_pos_emb=True, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('eva02_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_large_patch14_224(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=224, + patch_size=14, + embed_dim=1024, + depth=24, + num_heads=16, + mlp_ratio=4 * 2 / 3, + qkv_fused=False, + swiglu_mlp=True, + scale_mlp=True, + use_rot_pos_emb=True, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('eva02_large_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_tiny_patch14_336(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=336, + patch_size=14, + embed_dim=192, + depth=12, + num_heads=3, + mlp_ratio=4 * 2 / 3, + swiglu_mlp=True, + use_rot_pos_emb=True, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('eva02_tiny_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_small_patch14_336(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=336, + patch_size=14, + embed_dim=384, + depth=12, + num_heads=6, + mlp_ratio=4 * 2 / 3, + swiglu_mlp=True, + use_rot_pos_emb=True, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('eva02_small_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_base_patch14_448(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=448, + patch_size=14, + embed_dim=768, + depth=12, + num_heads=12, + qkv_fused=False, + mlp_ratio=4 * 2 / 3, + swiglu_mlp=True, + scale_mlp=True, + use_rot_pos_emb=True, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('eva02_base_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_large_patch14_448(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=448, + patch_size=14, + embed_dim=1024, + depth=24, + num_heads=16, + mlp_ratio=4 * 2 / 3, + qkv_fused=False, + swiglu_mlp=True, + scale_mlp=True, + use_rot_pos_emb=True, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('eva02_large_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva_giant_patch14_clip_224(pretrained=False, **kwargs) -> Eva: + """ EVA-g CLIP model (only difference from non-CLIP is the pooling) """ + model_args = dict( + patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408, + global_pool=kwargs.pop('global_pool', 'token')) + model = _create_eva('eva_giant_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_base_patch16_clip_224(pretrained=False, **kwargs) -> Eva: + """ A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_base """ + model_args = dict( + img_size=224, + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + qkv_fused=False, + mlp_ratio=4 * 2 / 3, + swiglu_mlp=True, + scale_mlp=True, + scale_attn_inner=True, + use_rot_pos_emb=True, + ref_feat_shape=(16, 16), # 224/14 + global_pool=kwargs.pop('global_pool', 'token'), + ) + model = _create_eva('eva02_base_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_large_patch14_clip_224(pretrained=False, **kwargs) -> Eva: + """ A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_large """ + model_args = dict( + img_size=224, + patch_size=14, + embed_dim=1024, + depth=24, + num_heads=16, + mlp_ratio=4 * 2 / 3, + qkv_fused=False, + swiglu_mlp=True, + scale_mlp=True, + scale_attn_inner=True, + use_rot_pos_emb=True, + ref_feat_shape=(16, 16), # 224/14 + global_pool=kwargs.pop('global_pool', 'token'), + ) + model = _create_eva('eva02_large_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_large_patch14_clip_336(pretrained=False, **kwargs) -> Eva: + """ A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_large """ + model_args = dict( + img_size=336, + patch_size=14, + embed_dim=1024, + depth=24, + num_heads=16, + mlp_ratio=4 * 2 / 3, + qkv_fused=False, + swiglu_mlp=True, + scale_mlp=True, + scale_attn_inner=True, + use_rot_pos_emb=True, + ref_feat_shape=(16, 16), # 224/14 + global_pool=kwargs.pop('global_pool', 'token'), + ) + model = _create_eva('eva02_large_patch14_clip_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva02_enormous_patch14_clip_224(pretrained=False, **kwargs) -> Eva: + """ A EVA-CLIP specific variant that uses residual post-norm in blocks """ + model_args = dict( + img_size=224, + patch_size=14, + embed_dim=1792, + depth=64, + num_heads=16, + mlp_ratio=15360 / 1792, + use_post_norm=True, + global_pool=kwargs.pop('global_pool', 'token'), + ) + model = _create_eva('eva02_enormous_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_medium_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=256, + patch_size=16, + embed_dim=512, + depth=12, + num_heads=8, + qkv_fused=True, + qkv_bias=True, + init_values=1e-5, + class_token=False, + num_reg_tokens=1, + use_rot_pos_emb=True, + use_abs_pos_emb=False, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('vit_medium_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_mediumd_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=256, + patch_size=16, + embed_dim=512, + depth=20, + num_heads=8, + qkv_fused=True, + qkv_bias=False, + init_values=1e-5, + class_token=False, + num_reg_tokens=1, + use_rot_pos_emb=True, + use_abs_pos_emb=False, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('vit_mediumd_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_betwixt_patch16_rope_reg4_gap_256(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=256, + patch_size=16, + embed_dim=640, + depth=12, + num_heads=10, + qkv_fused=True, + qkv_bias=True, + init_values=1e-5, + class_token=False, + num_reg_tokens=4, + use_rot_pos_emb=True, + use_abs_pos_emb=False, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('vit_betwixt_patch16_rope_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: + model_args = dict( + img_size=256, + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + qkv_fused=True, + qkv_bias=True, + init_values=1e-5, + class_token=False, + num_reg_tokens=1, + use_rot_pos_emb=True, + use_abs_pos_emb=False, + ref_feat_shape=(16, 16), # 224/14 + ) + model = _create_eva('vit_base_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model diff --git a/pytorch-image-models/timm/models/factory.py b/pytorch-image-models/timm/models/factory.py new file mode 100644 index 0000000000000000000000000000000000000000..da94e1ac19afe9dcdc783698cc4c3616ee43f805 --- /dev/null +++ b/pytorch-image-models/timm/models/factory.py @@ -0,0 +1,4 @@ +from ._factory import * + +import warnings +warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.models", FutureWarning) diff --git a/pytorch-image-models/timm/models/fastvit.py b/pytorch-image-models/timm/models/fastvit.py new file mode 100644 index 0000000000000000000000000000000000000000..ec0d064efca423b04eff6681704abf3dc0474892 --- /dev/null +++ b/pytorch-image-models/timm/models/fastvit.py @@ -0,0 +1,1634 @@ +# FastViT for PyTorch +# +# Original implementation and weights from https://github.com/apple/ml-fastvit +# +# For licensing see accompanying LICENSE file at https://github.com/apple/ml-fastvit/tree/main +# Original work is copyright (C) 2023 Apple Inc. All Rights Reserved. +# +import os +from functools import partial +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, trunc_normal_, create_conv2d, ConvNormAct, SqueezeExcite, use_fused_attn, \ + ClassifierHead +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +__all__ = ['FastVit'] + +def num_groups(group_size, channels): + if not group_size: # 0 or None + return 1 # normal conv with 1 group + else: + # NOTE group_size == 1 -> depthwise conv + assert channels % group_size == 0 + return channels // group_size + + +class MobileOneBlock(nn.Module): + """MobileOne building block. + + This block has a multi-branched architecture at train-time + and plain-CNN style architecture at inference time + For more details, please refer to our paper: + `An Improved One millisecond Mobile Backbone` - + https://arxiv.org/pdf/2206.04040.pdf + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int, + stride: int = 1, + dilation: int = 1, + group_size: int = 0, + inference_mode: bool = False, + use_se: bool = False, + use_act: bool = True, + use_scale_branch: bool = True, + num_conv_branches: int = 1, + act_layer: nn.Module = nn.GELU, + ) -> None: + """Construct a MobileOneBlock module. + + Args: + in_chs: Number of channels in the input. + out_chs: Number of channels produced by the block. + kernel_size: Size of the convolution kernel. + stride: Stride size. + dilation: Kernel dilation factor. + group_size: Convolution group size. + inference_mode: If True, instantiates model in inference mode. + use_se: Whether to use SE-ReLU activations. + use_act: Whether to use activation. Default: ``True`` + use_scale_branch: Whether to use scale branch. Default: ``True`` + num_conv_branches: Number of linear conv branches. + """ + super(MobileOneBlock, self).__init__() + self.inference_mode = inference_mode + self.groups = num_groups(group_size, in_chs) + self.stride = stride + self.dilation = dilation + self.kernel_size = kernel_size + self.in_chs = in_chs + self.out_chs = out_chs + self.num_conv_branches = num_conv_branches + + # Check if SE-ReLU is requested + self.se = SqueezeExcite(out_chs, rd_divisor=1) if use_se else nn.Identity() + + if inference_mode: + self.reparam_conv = create_conv2d( + in_chs, + out_chs, + kernel_size=kernel_size, + stride=stride, + dilation=dilation, + groups=self.groups, + bias=True, + ) + else: + # Re-parameterizable skip connection + self.reparam_conv = None + + self.identity = ( + nn.BatchNorm2d(num_features=in_chs) + if out_chs == in_chs and stride == 1 + else None + ) + + # Re-parameterizable conv branches + if num_conv_branches > 0: + self.conv_kxk = nn.ModuleList([ + ConvNormAct( + self.in_chs, + self.out_chs, + kernel_size=kernel_size, + stride=self.stride, + groups=self.groups, + apply_act=False, + ) for _ in range(self.num_conv_branches) + ]) + else: + self.conv_kxk = None + + # Re-parameterizable scale branch + self.conv_scale = None + if kernel_size > 1 and use_scale_branch: + self.conv_scale = ConvNormAct( + self.in_chs, + self.out_chs, + kernel_size=1, + stride=self.stride, + groups=self.groups, + apply_act=False + ) + + self.act = act_layer() if use_act else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """Apply forward pass.""" + # Inference mode forward pass. + if self.reparam_conv is not None: + return self.act(self.se(self.reparam_conv(x))) + + # Multi-branched train-time forward pass. + # Identity branch output + identity_out = 0 + if self.identity is not None: + identity_out = self.identity(x) + + # Scale branch output + scale_out = 0 + if self.conv_scale is not None: + scale_out = self.conv_scale(x) + + # Other kxk conv branches + out = scale_out + identity_out + if self.conv_kxk is not None: + for rc in self.conv_kxk: + out += rc(x) + + return self.act(self.se(out)) + + def reparameterize(self): + """Following works like `RepVGG: Making VGG-style ConvNets Great Again` - + https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched + architecture used at training time to obtain a plain CNN-like structure + for inference. + """ + if self.reparam_conv is not None: + return + + kernel, bias = self._get_kernel_bias() + self.reparam_conv = create_conv2d( + in_channels=self.in_chs, + out_channels=self.out_chs, + kernel_size=self.kernel_size, + stride=self.stride, + dilation=self.dilation, + groups=self.groups, + bias=True, + ) + self.reparam_conv.weight.data = kernel + self.reparam_conv.bias.data = bias + + # Delete un-used branches + for name, para in self.named_parameters(): + if 'reparam_conv' in name: + continue + para.detach_() + + self.__delattr__("conv_kxk") + self.__delattr__("conv_scale") + if hasattr(self, "identity"): + self.__delattr__("identity") + + self.inference_mode = True + + def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: + """Method to obtain re-parameterized kernel and bias. + Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83 + + Returns: + Tuple of (kernel, bias) after fusing branches. + """ + # get weights and bias of scale branch + kernel_scale = 0 + bias_scale = 0 + if self.conv_scale is not None: + kernel_scale, bias_scale = self._fuse_bn_tensor(self.conv_scale) + # Pad scale branch kernel to match conv branch kernel size. + pad = self.kernel_size // 2 + kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad]) + + # get weights and bias of skip branch + kernel_identity = 0 + bias_identity = 0 + if self.identity is not None: + kernel_identity, bias_identity = self._fuse_bn_tensor(self.identity) + + # get weights and bias of conv branches + kernel_conv = 0 + bias_conv = 0 + if self.conv_kxk is not None: + for ix in range(self.num_conv_branches): + _kernel, _bias = self._fuse_bn_tensor(self.conv_kxk[ix]) + kernel_conv += _kernel + bias_conv += _bias + + kernel_final = kernel_conv + kernel_scale + kernel_identity + bias_final = bias_conv + bias_scale + bias_identity + return kernel_final, bias_final + + def _fuse_bn_tensor( + self, branch: Union[nn.Sequential, nn.BatchNorm2d] + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Method to fuse batchnorm layer with preceeding conv layer. + Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95 + + Args: + branch: Sequence of ops to be fused. + + Returns: + Tuple of (kernel, bias) after fusing batchnorm. + """ + if isinstance(branch, ConvNormAct): + kernel = branch.conv.weight + running_mean = branch.bn.running_mean + running_var = branch.bn.running_var + gamma = branch.bn.weight + beta = branch.bn.bias + eps = branch.bn.eps + else: + assert isinstance(branch, nn.BatchNorm2d) + if not hasattr(self, "id_tensor"): + input_dim = self.in_chs // self.groups + kernel_value = torch.zeros( + (self.in_chs, input_dim, self.kernel_size, self.kernel_size), + dtype=branch.weight.dtype, + device=branch.weight.device, + ) + for i in range(self.in_chs): + kernel_value[ + i, i % input_dim, self.kernel_size // 2, self.kernel_size // 2 + ] = 1 + self.id_tensor = kernel_value + kernel = self.id_tensor + running_mean = branch.running_mean + running_var = branch.running_var + gamma = branch.weight + beta = branch.bias + eps = branch.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return kernel * t, beta - running_mean * gamma / std + + +class ReparamLargeKernelConv(nn.Module): + """Building Block of RepLKNet + + This class defines overparameterized large kernel conv block + introduced in `RepLKNet `_ + + Reference: https://github.com/DingXiaoH/RepLKNet-pytorch + """ + + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int, + stride: int, + group_size: int, + small_kernel: Optional[int] = None, + use_se: bool = False, + act_layer: Optional[nn.Module] = None, + inference_mode: bool = False, + ) -> None: + """Construct a ReparamLargeKernelConv module. + + Args: + in_chs: Number of input channels. + out_chs: Number of output channels. + kernel_size: Kernel size of the large kernel conv branch. + stride: Stride size. Default: 1 + group_size: Group size. Default: 1 + small_kernel: Kernel size of small kernel conv branch. + act_layer: Activation module. Default: ``nn.GELU`` + inference_mode: If True, instantiates model in inference mode. Default: ``False`` + """ + super(ReparamLargeKernelConv, self).__init__() + self.stride = stride + self.groups = num_groups(group_size, in_chs) + self.in_chs = in_chs + self.out_chs = out_chs + + self.kernel_size = kernel_size + self.small_kernel = small_kernel + if inference_mode: + self.reparam_conv = create_conv2d( + in_chs, + out_chs, + kernel_size=kernel_size, + stride=stride, + dilation=1, + groups=self.groups, + bias=True, + ) + else: + self.reparam_conv = None + self.large_conv = ConvNormAct( + in_chs, + out_chs, + kernel_size=kernel_size, + stride=self.stride, + groups=self.groups, + apply_act=False, + ) + if small_kernel is not None: + assert ( + small_kernel <= kernel_size + ), "The kernel size for re-param cannot be larger than the large kernel!" + self.small_conv = ConvNormAct( + in_chs, + out_chs, + kernel_size=small_kernel, + stride=self.stride, + groups=self.groups, + apply_act=False, + ) + self.se = SqueezeExcite(out_chs, rd_ratio=0.25) if use_se else nn.Identity() + # FIXME output of this act was not used in original impl, likely due to bug + self.act = act_layer() if act_layer is not None else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.reparam_conv is not None: + out = self.reparam_conv(x) + else: + out = self.large_conv(x) + if self.small_conv is not None: + out = out + self.small_conv(x) + out = self.se(out) + out = self.act(out) + return out + + def get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: + """Method to obtain re-parameterized kernel and bias. + Reference: https://github.com/DingXiaoH/RepLKNet-pytorch + + Returns: + Tuple of (kernel, bias) after fusing branches. + """ + eq_k, eq_b = self._fuse_bn(self.large_conv.conv, self.large_conv.bn) + if hasattr(self, "small_conv"): + small_k, small_b = self._fuse_bn(self.small_conv.conv, self.small_conv.bn) + eq_b += small_b + eq_k += nn.functional.pad( + small_k, [(self.kernel_size - self.small_kernel) // 2] * 4 + ) + return eq_k, eq_b + + def reparameterize(self) -> None: + """ + Following works like `RepVGG: Making VGG-style ConvNets Great Again` - + https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched + architecture used at training time to obtain a plain CNN-like structure + for inference. + """ + eq_k, eq_b = self.get_kernel_bias() + self.reparam_conv = create_conv2d( + self.in_chs, + self.out_chs, + kernel_size=self.kernel_size, + stride=self.stride, + groups=self.groups, + bias=True, + ) + + self.reparam_conv.weight.data = eq_k + self.reparam_conv.bias.data = eq_b + self.__delattr__("large_conv") + if hasattr(self, "small_conv"): + self.__delattr__("small_conv") + + @staticmethod + def _fuse_bn( + conv: nn.Conv2d, bn: nn.BatchNorm2d + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Method to fuse batchnorm layer with conv layer. + + Args: + conv: Convolutional kernel weights. + bn: Batchnorm 2d layer. + + Returns: + Tuple of (kernel, bias) after fusing batchnorm. + """ + kernel = conv.weight + running_mean = bn.running_mean + running_var = bn.running_var + gamma = bn.weight + beta = bn.bias + eps = bn.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return kernel * t, beta - running_mean * gamma / std + + +def convolutional_stem( + in_chs: int, + out_chs: int, + act_layer: nn.Module = nn.GELU, + inference_mode: bool = False +) -> nn.Sequential: + """Build convolutional stem with MobileOne blocks. + + Args: + in_chs: Number of input channels. + out_chs: Number of output channels. + inference_mode: Flag to instantiate model in inference mode. Default: ``False`` + + Returns: + nn.Sequential object with stem elements. + """ + return nn.Sequential( + MobileOneBlock( + in_chs=in_chs, + out_chs=out_chs, + kernel_size=3, + stride=2, + act_layer=act_layer, + inference_mode=inference_mode, + ), + MobileOneBlock( + in_chs=out_chs, + out_chs=out_chs, + kernel_size=3, + stride=2, + group_size=1, + act_layer=act_layer, + inference_mode=inference_mode, + ), + MobileOneBlock( + in_chs=out_chs, + out_chs=out_chs, + kernel_size=1, + stride=1, + act_layer=act_layer, + inference_mode=inference_mode, + ), + ) + + +class Attention(nn.Module): + """Multi-headed Self Attention module. + + Source modified from: + https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py + """ + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + dim: int, + head_dim: int = 32, + qkv_bias: bool = False, + attn_drop: float = 0.0, + proj_drop: float = 0.0, + ) -> None: + """Build MHSA module that can handle 3D or 4D input tensors. + + Args: + dim: Number of embedding dimensions. + head_dim: Number of hidden dimensions per head. Default: ``32`` + qkv_bias: Use bias or not. Default: ``False`` + attn_drop: Dropout rate for attention tensor. + proj_drop: Dropout rate for projection tensor. + """ + super().__init__() + assert dim % head_dim == 0, "dim should be divisible by head_dim" + self.head_dim = head_dim + self.num_heads = dim // head_dim + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, C, H, W = x.shape + N = H * W + x = x.flatten(2).transpose(-2, -1) # (B, N, C) + qkv = ( + self.qkv(x) + .reshape(B, N, 3, self.num_heads, self.head_dim) + .permute(2, 0, 3, 1, 4) + ) + q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) + + if self.fused_attn: + x = torch.nn.functional.scaled_dot_product_attention( + q, k, v, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + x = x.transpose(-2, -1).reshape(B, C, H, W) + + return x + + +class PatchEmbed(nn.Module): + """Convolutional patch embedding layer.""" + + def __init__( + self, + patch_size: int, + stride: int, + in_chs: int, + embed_dim: int, + act_layer: nn.Module = nn.GELU, + lkc_use_act: bool = False, + use_se: bool = False, + inference_mode: bool = False, + ) -> None: + """Build patch embedding layer. + + Args: + patch_size: Patch size for embedding computation. + stride: Stride for convolutional embedding layer. + in_chs: Number of channels of input tensor. + embed_dim: Number of embedding dimensions. + inference_mode: Flag to instantiate model in inference mode. Default: ``False`` + """ + super().__init__() + self.proj = nn.Sequential( + ReparamLargeKernelConv( + in_chs=in_chs, + out_chs=embed_dim, + kernel_size=patch_size, + stride=stride, + group_size=1, + small_kernel=3, + use_se=use_se, + act_layer=act_layer if lkc_use_act else None, # NOTE original weights didn't use this act + inference_mode=inference_mode, + ), + MobileOneBlock( + in_chs=embed_dim, + out_chs=embed_dim, + kernel_size=1, + stride=1, + use_se=False, + act_layer=act_layer, + inference_mode=inference_mode, + ) + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + return x + + +class LayerScale2d(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim, 1, 1)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + + +class RepMixer(nn.Module): + """Reparameterizable token mixer. + + For more details, please refer to our paper: + `FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization `_ + """ + + def __init__( + self, + dim, + kernel_size=3, + layer_scale_init_value=1e-5, + inference_mode: bool = False, + ): + """Build RepMixer Module. + + Args: + dim: Input feature map dimension. :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, H, W)`. + kernel_size: Kernel size for spatial mixing. Default: 3 + layer_scale_init_value: Initial value for layer scale. Default: 1e-5 + inference_mode: If True, instantiates model in inference mode. Default: ``False`` + """ + super().__init__() + self.dim = dim + self.kernel_size = kernel_size + self.inference_mode = inference_mode + + if inference_mode: + self.reparam_conv = nn.Conv2d( + self.dim, + self.dim, + kernel_size=self.kernel_size, + stride=1, + padding=self.kernel_size // 2, + groups=self.dim, + bias=True, + ) + else: + self.reparam_conv = None + self.norm = MobileOneBlock( + dim, + dim, + kernel_size, + group_size=1, + use_act=False, + use_scale_branch=False, + num_conv_branches=0, + ) + self.mixer = MobileOneBlock( + dim, + dim, + kernel_size, + group_size=1, + use_act=False, + ) + if layer_scale_init_value is not None: + self.layer_scale = LayerScale2d(dim, layer_scale_init_value) + else: + self.layer_scale = nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.reparam_conv is not None: + x = self.reparam_conv(x) + else: + x = x + self.layer_scale(self.mixer(x) - self.norm(x)) + return x + + def reparameterize(self) -> None: + """Reparameterize mixer and norm into a single + convolutional layer for efficient inference. + """ + if self.inference_mode: + return + + self.mixer.reparameterize() + self.norm.reparameterize() + + if isinstance(self.layer_scale, LayerScale2d): + w = self.mixer.id_tensor + self.layer_scale.gamma.unsqueeze(-1) * ( + self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight + ) + b = torch.squeeze(self.layer_scale.gamma) * ( + self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias + ) + else: + w = ( + self.mixer.id_tensor + + self.mixer.reparam_conv.weight + - self.norm.reparam_conv.weight + ) + b = self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias + + self.reparam_conv = create_conv2d( + self.dim, + self.dim, + kernel_size=self.kernel_size, + stride=1, + groups=self.dim, + bias=True, + ) + self.reparam_conv.weight.data = w + self.reparam_conv.bias.data = b + + for name, para in self.named_parameters(): + if 'reparam_conv' in name: + continue + para.detach_() + self.__delattr__("mixer") + self.__delattr__("norm") + self.__delattr__("layer_scale") + + +class ConvMlp(nn.Module): + """Convolutional FFN Module.""" + + def __init__( + self, + in_chs: int, + hidden_channels: Optional[int] = None, + out_chs: Optional[int] = None, + act_layer: nn.Module = nn.GELU, + drop: float = 0.0, + ) -> None: + """Build convolutional FFN module. + + Args: + in_chs: Number of input channels. + hidden_channels: Number of channels after expansion. Default: None + out_chs: Number of output channels. Default: None + act_layer: Activation layer. Default: ``GELU`` + drop: Dropout rate. Default: ``0.0``. + """ + super().__init__() + out_chs = out_chs or in_chs + hidden_channels = hidden_channels or in_chs + self.conv = ConvNormAct( + in_chs, + out_chs, + kernel_size=7, + groups=in_chs, + apply_act=False, + ) + self.fc1 = nn.Conv2d(in_chs, hidden_channels, kernel_size=1) + self.act = act_layer() + self.fc2 = nn.Conv2d(hidden_channels, out_chs, kernel_size=1) + self.drop = nn.Dropout(drop) + self.apply(self._init_weights) + + def _init_weights(self, m: nn.Module) -> None: + if isinstance(m, nn.Conv2d): + trunc_normal_(m.weight, std=0.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.conv(x) + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +class RepConditionalPosEnc(nn.Module): + """Implementation of conditional positional encoding. + + For more details refer to paper: + `Conditional Positional Encodings for Vision Transformers `_ + + In our implementation, we can reparameterize this module to eliminate a skip connection. + """ + + def __init__( + self, + dim: int, + dim_out: Optional[int] = None, + spatial_shape: Union[int, Tuple[int, int]] = (7, 7), + inference_mode=False, + ) -> None: + """Build reparameterizable conditional positional encoding + + Args: + dim: Number of input channels. + dim_out: Number of embedding dimensions. Default: 768 + spatial_shape: Spatial shape of kernel for positional encoding. Default: (7, 7) + inference_mode: Flag to instantiate block in inference mode. Default: ``False`` + """ + super(RepConditionalPosEnc, self).__init__() + if isinstance(spatial_shape, int): + spatial_shape = tuple([spatial_shape] * 2) + assert isinstance(spatial_shape, Tuple), ( + f'"spatial_shape" must by a sequence or int, ' + f"get {type(spatial_shape)} instead." + ) + assert len(spatial_shape) == 2, ( + f'Length of "spatial_shape" should be 2, ' + f"got {len(spatial_shape)} instead." + ) + + self.spatial_shape = spatial_shape + self.dim = dim + self.dim_out = dim_out or dim + self.groups = dim + + if inference_mode: + self.reparam_conv = nn.Conv2d( + self.dim, + self.dim_out, + kernel_size=self.spatial_shape, + stride=1, + padding=spatial_shape[0] // 2, + groups=self.groups, + bias=True, + ) + else: + self.reparam_conv = None + self.pos_enc = nn.Conv2d( + self.dim, + self.dim_out, + spatial_shape, + 1, + int(spatial_shape[0] // 2), + groups=self.groups, + bias=True, + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.reparam_conv is not None: + x = self.reparam_conv(x) + else: + x = self.pos_enc(x) + x + return x + + def reparameterize(self) -> None: + # Build equivalent Id tensor + input_dim = self.dim // self.groups + kernel_value = torch.zeros( + ( + self.dim, + input_dim, + self.spatial_shape[0], + self.spatial_shape[1], + ), + dtype=self.pos_enc.weight.dtype, + device=self.pos_enc.weight.device, + ) + for i in range(self.dim): + kernel_value[ + i, + i % input_dim, + self.spatial_shape[0] // 2, + self.spatial_shape[1] // 2, + ] = 1 + id_tensor = kernel_value + + # Reparameterize Id tensor and conv + w_final = id_tensor + self.pos_enc.weight + b_final = self.pos_enc.bias + + # Introduce reparam conv + self.reparam_conv = nn.Conv2d( + self.dim, + self.dim_out, + kernel_size=self.spatial_shape, + stride=1, + padding=int(self.spatial_shape[0] // 2), + groups=self.groups, + bias=True, + ) + self.reparam_conv.weight.data = w_final + self.reparam_conv.bias.data = b_final + + for name, para in self.named_parameters(): + if 'reparam_conv' in name: + continue + para.detach_() + self.__delattr__("pos_enc") + + +class RepMixerBlock(nn.Module): + """Implementation of Metaformer block with RepMixer as token mixer. + + For more details on Metaformer structure, please refer to: + `MetaFormer Is Actually What You Need for Vision `_ + """ + + def __init__( + self, + dim: int, + kernel_size: int = 3, + mlp_ratio: float = 4.0, + act_layer: nn.Module = nn.GELU, + proj_drop: float = 0.0, + drop_path: float = 0.0, + layer_scale_init_value: float = 1e-5, + inference_mode: bool = False, + ): + """Build RepMixer Block. + + Args: + dim: Number of embedding dimensions. + kernel_size: Kernel size for repmixer. Default: 3 + mlp_ratio: MLP expansion ratio. Default: 4.0 + act_layer: Activation layer. Default: ``nn.GELU`` + proj_drop: Dropout rate. Default: 0.0 + drop_path: Drop path rate. Default: 0.0 + layer_scale_init_value: Layer scale value at initialization. Default: 1e-5 + inference_mode: Flag to instantiate block in inference mode. Default: ``False`` + """ + + super().__init__() + + self.token_mixer = RepMixer( + dim, + kernel_size=kernel_size, + layer_scale_init_value=layer_scale_init_value, + inference_mode=inference_mode, + ) + + self.mlp = ConvMlp( + in_chs=dim, + hidden_channels=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + ) + if layer_scale_init_value is not None: + self.layer_scale = LayerScale2d(dim, layer_scale_init_value) + else: + self.layer_scale = nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + x = self.token_mixer(x) + x = x + self.drop_path(self.layer_scale(self.mlp(x))) + return x + + +class AttentionBlock(nn.Module): + """Implementation of metaformer block with MHSA as token mixer. + + For more details on Metaformer structure, please refer to: + `MetaFormer Is Actually What You Need for Vision `_ + """ + + def __init__( + self, + dim: int, + mlp_ratio: float = 4.0, + act_layer: nn.Module = nn.GELU, + norm_layer: nn.Module = nn.BatchNorm2d, + proj_drop: float = 0.0, + drop_path: float = 0.0, + layer_scale_init_value: float = 1e-5, + ): + """Build Attention Block. + + Args: + dim: Number of embedding dimensions. + mlp_ratio: MLP expansion ratio. Default: 4.0 + act_layer: Activation layer. Default: ``nn.GELU`` + norm_layer: Normalization layer. Default: ``nn.BatchNorm2d`` + proj_drop: Dropout rate. Default: 0.0 + drop_path: Drop path rate. Default: 0.0 + layer_scale_init_value: Layer scale value at initialization. Default: 1e-5 + """ + + super().__init__() + + self.norm = norm_layer(dim) + self.token_mixer = Attention(dim=dim) + if layer_scale_init_value is not None: + self.layer_scale_1 = LayerScale2d(dim, layer_scale_init_value) + else: + self.layer_scale_1 = nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + self.mlp = ConvMlp( + in_chs=dim, + hidden_channels=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + ) + if layer_scale_init_value is not None: + self.layer_scale_2 = LayerScale2d(dim, layer_scale_init_value) + else: + self.layer_scale_2 = nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + x = x + self.drop_path1(self.layer_scale_1(self.token_mixer(self.norm(x)))) + x = x + self.drop_path2(self.layer_scale_2(self.mlp(x))) + return x + + +class FastVitStage(nn.Module): + def __init__( + self, + dim: int, + dim_out: int, + depth: int, + token_mixer_type: str, + downsample: bool = True, + se_downsample: bool = False, + down_patch_size: int = 7, + down_stride: int = 2, + pos_emb_layer: Optional[nn.Module] = None, + kernel_size: int = 3, + mlp_ratio: float = 4.0, + act_layer: nn.Module = nn.GELU, + norm_layer: nn.Module = nn.BatchNorm2d, + proj_drop_rate: float = 0.0, + drop_path_rate: float = 0.0, + layer_scale_init_value: Optional[float] = 1e-5, + lkc_use_act=False, + inference_mode=False, + ): + """FastViT stage. + + Args: + dim: Number of embedding dimensions. + depth: Number of blocks in stage + token_mixer_type: Token mixer type. + kernel_size: Kernel size for repmixer. + mlp_ratio: MLP expansion ratio. + act_layer: Activation layer. + norm_layer: Normalization layer. + proj_drop_rate: Dropout rate. + drop_path_rate: Drop path rate. + layer_scale_init_value: Layer scale value at initialization. + inference_mode: Flag to instantiate block in inference mode. + """ + super().__init__() + self.grad_checkpointing = False + + if downsample: + self.downsample = PatchEmbed( + patch_size=down_patch_size, + stride=down_stride, + in_chs=dim, + embed_dim=dim_out, + use_se=se_downsample, + act_layer=act_layer, + lkc_use_act=lkc_use_act, + inference_mode=inference_mode, + ) + else: + assert dim == dim_out + self.downsample = nn.Identity() + + if pos_emb_layer is not None: + self.pos_emb = pos_emb_layer(dim_out, inference_mode=inference_mode) + else: + self.pos_emb = nn.Identity() + + blocks = [] + for block_idx in range(depth): + if token_mixer_type == "repmixer": + blocks.append(RepMixerBlock( + dim_out, + kernel_size=kernel_size, + mlp_ratio=mlp_ratio, + act_layer=act_layer, + proj_drop=proj_drop_rate, + drop_path=drop_path_rate[block_idx], + layer_scale_init_value=layer_scale_init_value, + inference_mode=inference_mode, + )) + elif token_mixer_type == "attention": + blocks.append(AttentionBlock( + dim_out, + mlp_ratio=mlp_ratio, + act_layer=act_layer, + norm_layer=norm_layer, + proj_drop=proj_drop_rate, + drop_path=drop_path_rate[block_idx], + layer_scale_init_value=layer_scale_init_value, + )) + else: + raise ValueError( + "Token mixer type: {} not supported".format(token_mixer_type) + ) + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + x = self.pos_emb(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class FastVit(nn.Module): + fork_feat: torch.jit.Final[bool] + + """ + This class implements `FastViT architecture `_ + """ + + def __init__( + self, + in_chans: int = 3, + layers: Tuple[int, ...] = (2, 2, 6, 2), + token_mixers: Tuple[str, ...] = ("repmixer", "repmixer", "repmixer", "repmixer"), + embed_dims: Tuple[int, ...] = (64, 128, 256, 512), + mlp_ratios: Tuple[float, ...] = (4,) * 4, + downsamples: Tuple[bool, ...] = (False, True, True, True), + se_downsamples: Tuple[bool, ...] = (False, False, False, False), + repmixer_kernel_size: int = 3, + num_classes: int = 1000, + pos_embs: Tuple[Optional[nn.Module], ...] = (None,) * 4, + down_patch_size: int = 7, + down_stride: int = 2, + drop_rate: float = 0.0, + proj_drop_rate: float = 0.0, + drop_path_rate: float = 0.0, + layer_scale_init_value: float = 1e-5, + lkc_use_act: bool = False, + fork_feat: bool = False, + cls_ratio: float = 2.0, + global_pool: str = 'avg', + norm_layer: nn.Module = nn.BatchNorm2d, + act_layer: nn.Module = nn.GELU, + inference_mode: bool = False, + ) -> None: + super().__init__() + self.num_classes = 0 if fork_feat else num_classes + self.fork_feat = fork_feat + self.global_pool = global_pool + self.feature_info = [] + + # Convolutional stem + self.stem = convolutional_stem( + in_chans, + embed_dims[0], + act_layer, + inference_mode, + ) + + # Build the main stages of the network architecture + prev_dim = embed_dims[0] + scale = 1 + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] + stages = [] + for i in range(len(layers)): + downsample = downsamples[i] or prev_dim != embed_dims[i] + stage = FastVitStage( + dim=prev_dim, + dim_out=embed_dims[i], + depth=layers[i], + downsample=downsample, + se_downsample=se_downsamples[i], + down_patch_size=down_patch_size, + down_stride=down_stride, + pos_emb_layer=pos_embs[i], + token_mixer_type=token_mixers[i], + kernel_size=repmixer_kernel_size, + mlp_ratio=mlp_ratios[i], + act_layer=act_layer, + norm_layer=norm_layer, + proj_drop_rate=proj_drop_rate, + drop_path_rate=dpr[i], + layer_scale_init_value=layer_scale_init_value, + lkc_use_act=lkc_use_act, + inference_mode=inference_mode, + ) + stages.append(stage) + prev_dim = embed_dims[i] + if downsample: + scale *= 2 + self.feature_info += [dict(num_chs=prev_dim, reduction=4 * scale, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + self.num_stages = len(self.stages) + self.num_features = self.head_hidden_size = prev_dim + + # For segmentation and detection, extract intermediate output + if self.fork_feat: + # Add a norm layer for each output. self.stages is slightly different than self.network + # in the original code, the PatchEmbed layer is part of self.stages in this code where + # it was part of self.network in the original code. So we do not need to skip out indices. + self.out_indices = [0, 1, 2, 3] + for i_emb, i_layer in enumerate(self.out_indices): + if i_emb == 0 and os.environ.get("FORK_LAST3", None): + """For RetinaNet, `start_level=1`. The first norm layer will not used. + cmd: `FORK_LAST3=1 python -m torch.distributed.launch ...` + """ + layer = nn.Identity() + else: + layer = norm_layer(embed_dims[i_emb]) + layer_name = f"norm{i_layer}" + self.add_module(layer_name, layer) + else: + # Classifier head + self.num_features = self.head_hidden_size = final_features = int(embed_dims[-1] * cls_ratio) + self.final_conv = MobileOneBlock( + in_chs=embed_dims[-1], + out_chs=final_features, + kernel_size=3, + stride=1, + group_size=1, + inference_mode=inference_mode, + use_se=True, + act_layer=act_layer, + num_conv_branches=1, + ) + self.head = ClassifierHead( + final_features, + num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + ) + + self.apply(self._init_weights) + + def _init_weights(self, m: nn.Module) -> None: + """Init. for classification""" + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay(self): + return set() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', # stem and embed + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+).downsample', (0,)), + (r'^stages\.(\d+).pos_emb', (0,)), + (r'^stages\.(\d+)\.\w+\.(\d+)', None), + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.stages), indices) + + # forward pass + x = self.stem(x) + last_idx = self.num_stages - 1 + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + stages = self.stages + else: + stages = self.stages[:max_index + 1] + feat_idx = 0 + for feat_idx, stage in enumerate(stages): + x = stage(x) + if feat_idx in take_indices: + intermediates.append(x) + + if intermediates_only: + return intermediates + + if feat_idx == last_idx: + x = self.final_conv(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.stages), indices) + self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0 + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + # input embedding + x = self.stem(x) + outs = [] + for idx, block in enumerate(self.stages): + x = block(x) + if self.fork_feat: + if idx in self.out_indices: + norm_layer = getattr(self, f"norm{idx}") + x_out = norm_layer(x) + outs.append(x_out) + if self.fork_feat: + # output the features of four stages for dense prediction + return outs + x = self.final_conv(x) + return x + + def forward_head(self, x: torch.Tensor, pre_logits: bool = False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + if self.fork_feat: + return x + x = self.forward_head(x) + return x + + +def _cfg(url="", **kwargs): + return { + "url": url, + "num_classes": 1000, + "input_size": (3, 256, 256), + "pool_size": (8, 8), + "crop_pct": 0.9, + "interpolation": "bicubic", + "mean": IMAGENET_DEFAULT_MEAN, + "std": IMAGENET_DEFAULT_STD, + 'first_conv': ('stem.0.conv_kxk.0.conv', 'stem.0.conv_scale.conv'), + "classifier": "head.fc", + **kwargs, + } + + +default_cfgs = generate_default_cfgs({ + "fastvit_t8.apple_in1k": _cfg( + hf_hub_id='timm/'), + "fastvit_t12.apple_in1k": _cfg( + hf_hub_id='timm/'), + + "fastvit_s12.apple_in1k": _cfg( + hf_hub_id='timm/'), + "fastvit_sa12.apple_in1k": _cfg( + hf_hub_id='timm/'), + "fastvit_sa24.apple_in1k": _cfg( + hf_hub_id='timm/'), + "fastvit_sa36.apple_in1k": _cfg( + hf_hub_id='timm/'), + + "fastvit_ma36.apple_in1k": _cfg( + hf_hub_id='timm/', + crop_pct=0.95), + + "fastvit_t8.apple_dist_in1k": _cfg( + hf_hub_id='timm/'), + "fastvit_t12.apple_dist_in1k": _cfg( + hf_hub_id='timm/'), + + "fastvit_s12.apple_dist_in1k": _cfg( + hf_hub_id='timm/',), + "fastvit_sa12.apple_dist_in1k": _cfg( + hf_hub_id='timm/',), + "fastvit_sa24.apple_dist_in1k": _cfg( + hf_hub_id='timm/',), + "fastvit_sa36.apple_dist_in1k": _cfg( + hf_hub_id='timm/',), + + "fastvit_ma36.apple_dist_in1k": _cfg( + hf_hub_id='timm/', + crop_pct=0.95 + ), + + "fastvit_mci0.apple_mclip": _cfg( + hf_hub_id='apple/mobileclip_s0_timm', + url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s0.pt', + crop_pct=0.95, + num_classes=512, # CLIP proj dim + mean=(0., 0., 0.), std=(1., 1., 1.) + ), + "fastvit_mci1.apple_mclip": _cfg( + hf_hub_id='apple/mobileclip_s1_timm', + url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s1.pt', + crop_pct=0.95, + num_classes=512, # CLIP proj dim + mean=(0., 0., 0.), std=(1., 1., 1.) + ), + "fastvit_mci2.apple_mclip": _cfg( + hf_hub_id='apple/mobileclip_s2_timm', + url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s2.pt', + crop_pct=0.95, + num_classes=512, # CLIP proj dim + mean=(0., 0., 0.), std=(1., 1., 1.) + ), +}) + + +def checkpoint_filter_fn(state_dict, model): + """ Remap original checkpoints -> timm """ + if 'stem.0.conv_kxk.0.conv.weight' in state_dict: + return state_dict # non-original checkpoint, no remapping needed + + state_dict = state_dict.get('state_dict', state_dict) + if 'image_encoder.model.patch_embed.0.rbr_conv.0.conv.weight' in state_dict: + # remap MobileCLIP checkpoints + prefix = 'image_encoder.model.' + else: + prefix = '' + + import re + import bisect + + # find stage ends by locating downsample layers + stage_ends = [] + for k, v in state_dict.items(): + match = re.match(r'^(.*?)network\.(\d+)\.proj.*', k) + if match: + stage_ends.append(int(match.group(2))) + stage_ends = list(sorted(set(stage_ends))) + + out_dict = {} + for k, v in state_dict.items(): + if prefix: + if prefix not in k: + continue + k = k.replace(prefix, '') + + # remap renamed layers + k = k.replace('patch_embed', 'stem') + k = k.replace('rbr_conv', 'conv_kxk') + k = k.replace('rbr_scale', 'conv_scale') + k = k.replace('rbr_skip', 'identity') + k = k.replace('conv_exp', 'final_conv') # to match byobnet, regnet, nfnet + k = k.replace('lkb_origin', 'large_conv') + k = k.replace('convffn', 'mlp') + k = k.replace('se.reduce', 'se.fc1') + k = k.replace('se.expand', 'se.fc2') + k = re.sub(r'layer_scale_([0-9])', r'layer_scale_\1.gamma', k) + if k.endswith('layer_scale'): + k = k.replace('layer_scale', 'layer_scale.gamma') + k = k.replace('dist_head', 'head_dist') + if k.startswith('head.'): + if k == 'head.proj' and hasattr(model.head, 'fc') and isinstance(model.head.fc, nn.Linear): + # if CLIP projection, map to head.fc w/ bias = zeros + k = k.replace('head.proj', 'head.fc.weight') + v = v.T + out_dict['head.fc.bias'] = torch.zeros(v.shape[0]) + else: + k = k.replace('head.', 'head.fc.') + + # remap flat sequential network to stages + match = re.match(r'^network\.(\d+)', k) + stage_idx, net_idx = None, None + if match: + net_idx = int(match.group(1)) + stage_idx = bisect.bisect_right(stage_ends, net_idx) + if stage_idx is not None: + net_prefix = f'network.{net_idx}' + stage_prefix = f'stages.{stage_idx}' + if net_prefix + '.proj' in k: + k = k.replace(net_prefix + '.proj', stage_prefix + '.downsample.proj') + elif net_prefix + '.pe' in k: + k = k.replace(net_prefix + '.pe', stage_prefix + '.pos_emb.pos_enc') + else: + k = k.replace(net_prefix, stage_prefix + '.blocks') + + out_dict[k] = v + return out_dict + + +def _create_fastvit(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg( + FastVit, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs + ) + return model + + +@register_model +def fastvit_t8(pretrained=False, **kwargs): + """Instantiate FastViT-T8 model variant.""" + model_args = dict( + layers=(2, 2, 4, 2), + embed_dims=(48, 96, 192, 384), + mlp_ratios=(3, 3, 3, 3), + token_mixers=("repmixer", "repmixer", "repmixer", "repmixer") + ) + return _create_fastvit('fastvit_t8', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def fastvit_t12(pretrained=False, **kwargs): + """Instantiate FastViT-T12 model variant.""" + model_args = dict( + layers=(2, 2, 6, 2), + embed_dims=(64, 128, 256, 512), + mlp_ratios=(3, 3, 3, 3), + token_mixers=("repmixer", "repmixer", "repmixer", "repmixer"), + ) + return _create_fastvit('fastvit_t12', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def fastvit_s12(pretrained=False, **kwargs): + """Instantiate FastViT-S12 model variant.""" + model_args = dict( + layers=(2, 2, 6, 2), + embed_dims=(64, 128, 256, 512), + mlp_ratios=(4, 4, 4, 4), + token_mixers=("repmixer", "repmixer", "repmixer", "repmixer"), + ) + return _create_fastvit('fastvit_s12', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def fastvit_sa12(pretrained=False, **kwargs): + """Instantiate FastViT-SA12 model variant.""" + model_args = dict( + layers=(2, 2, 6, 2), + embed_dims=(64, 128, 256, 512), + mlp_ratios=(4, 4, 4, 4), + pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), + token_mixers=("repmixer", "repmixer", "repmixer", "attention"), + ) + return _create_fastvit('fastvit_sa12', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def fastvit_sa24(pretrained=False, **kwargs): + """Instantiate FastViT-SA24 model variant.""" + model_args = dict( + layers=(4, 4, 12, 4), + embed_dims=(64, 128, 256, 512), + mlp_ratios=(4, 4, 4, 4), + pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), + token_mixers=("repmixer", "repmixer", "repmixer", "attention"), + ) + return _create_fastvit('fastvit_sa24', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def fastvit_sa36(pretrained=False, **kwargs): + """Instantiate FastViT-SA36 model variant.""" + model_args = dict( + layers=(6, 6, 18, 6), + embed_dims=(64, 128, 256, 512), + mlp_ratios=(4, 4, 4, 4), + pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), + token_mixers=("repmixer", "repmixer", "repmixer", "attention"), + ) + return _create_fastvit('fastvit_sa36', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def fastvit_ma36(pretrained=False, **kwargs): + """Instantiate FastViT-MA36 model variant.""" + model_args = dict( + layers=(6, 6, 18, 6), + embed_dims=(76, 152, 304, 608), + mlp_ratios=(4, 4, 4, 4), + pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), + token_mixers=("repmixer", "repmixer", "repmixer", "attention") + ) + return _create_fastvit('fastvit_ma36', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def fastvit_mci0(pretrained=False, **kwargs): + """Instantiate MCi0 model variant.""" + model_args = dict( + layers=(2, 6, 10, 2), + embed_dims=(64, 128, 256, 512), + mlp_ratios=(3, 3, 3, 3), + se_downsamples=(False, False, True, True), + pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), + token_mixers=("repmixer", "repmixer", "repmixer", "attention"), + lkc_use_act=True, + ) + return _create_fastvit('fastvit_mci0', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def fastvit_mci1(pretrained=False, **kwargs): + """Instantiate MCi1 model variant.""" + model_args = dict( + layers=(4, 12, 20, 4), + embed_dims=(64, 128, 256, 512), + mlp_ratios=(3, 3, 3, 3), + se_downsamples=(False, False, True, True), + pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), + token_mixers=("repmixer", "repmixer", "repmixer", "attention"), + lkc_use_act=True, + ) + return _create_fastvit('fastvit_mci1', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def fastvit_mci2(pretrained=False, **kwargs): + """Instantiate MCi2 model variant.""" + model_args = dict( + layers=(4, 12, 24, 4), + embed_dims=(80, 160, 320, 640), + mlp_ratios=(3, 3, 3, 3), + se_downsamples=(False, False, True, True), + pos_embs=(None, None, None, partial(RepConditionalPosEnc, spatial_shape=(7, 7))), + token_mixers=("repmixer", "repmixer", "repmixer", "attention"), + lkc_use_act=True, + ) + return _create_fastvit('fastvit_mci2', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/features.py b/pytorch-image-models/timm/models/features.py new file mode 100644 index 0000000000000000000000000000000000000000..f937e1626e4e83d2776bfbabb8f96af802f55802 --- /dev/null +++ b/pytorch-image-models/timm/models/features.py @@ -0,0 +1,4 @@ +from ._features import * + +import warnings +warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.models", FutureWarning) diff --git a/pytorch-image-models/timm/models/focalnet.py b/pytorch-image-models/timm/models/focalnet.py new file mode 100644 index 0000000000000000000000000000000000000000..f747001c735b95927a441e880e22a66039b70803 --- /dev/null +++ b/pytorch-image-models/timm/models/focalnet.py @@ -0,0 +1,652 @@ +""" FocalNet + +As described in `Focal Modulation Networks` - https://arxiv.org/abs/2203.11926 + +Significant modifications and refactoring from the original impl at https://github.com/microsoft/FocalNet + +This impl is/has: +* fully convolutional, NCHW tensor layout throughout, seemed to have minimal performance impact but more flexible +* re-ordered downsample / layer so that striding always at beginning of layer (stage) +* no input size constraints or input resolution/H/W tracking through the model +* torchscript fixed and a number of quirks cleaned up +* feature extraction support via `features_only=True` +""" +# -------------------------------------------------------- +# FocalNets -- Focal Modulation Networks +# Copyright (c) 2022 Microsoft +# Licensed under The MIT License [see LICENSE for details] +# Written by Jianwei Yang (jianwyan@microsoft.com) +# -------------------------------------------------------- +from functools import partial +from typing import Callable, Optional, Tuple + +import torch +import torch.nn as nn +import torch.utils.checkpoint as checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import Mlp, DropPath, LayerNorm2d, trunc_normal_, ClassifierHead, NormMlpClassifierHead +from ._builder import build_model_with_cfg +from ._manipulate import named_apply +from ._registry import generate_default_cfgs, register_model + +__all__ = ['FocalNet'] + + +class FocalModulation(nn.Module): + def __init__( + self, + dim: int, + focal_window, + focal_level: int, + focal_factor: int = 2, + bias: bool = True, + use_post_norm: bool = False, + normalize_modulator: bool = False, + proj_drop: float = 0., + norm_layer: Callable = LayerNorm2d, + ): + super().__init__() + + self.dim = dim + self.focal_window = focal_window + self.focal_level = focal_level + self.focal_factor = focal_factor + self.use_post_norm = use_post_norm + self.normalize_modulator = normalize_modulator + self.input_split = [dim, dim, self.focal_level + 1] + + self.f = nn.Conv2d(dim, 2 * dim + (self.focal_level + 1), kernel_size=1, bias=bias) + self.h = nn.Conv2d(dim, dim, kernel_size=1, bias=bias) + + self.act = nn.GELU() + self.proj = nn.Conv2d(dim, dim, kernel_size=1) + self.proj_drop = nn.Dropout(proj_drop) + self.focal_layers = nn.ModuleList() + + self.kernel_sizes = [] + for k in range(self.focal_level): + kernel_size = self.focal_factor * k + self.focal_window + self.focal_layers.append(nn.Sequential( + nn.Conv2d(dim, dim, kernel_size=kernel_size, groups=dim, padding=kernel_size // 2, bias=False), + nn.GELU(), + )) + self.kernel_sizes.append(kernel_size) + self.norm = norm_layer(dim) if self.use_post_norm else nn.Identity() + + def forward(self, x): + # pre linear projection + x = self.f(x) + q, ctx, gates = torch.split(x, self.input_split, 1) + + # context aggreation + ctx_all = 0 + for l, focal_layer in enumerate(self.focal_layers): + ctx = focal_layer(ctx) + ctx_all = ctx_all + ctx * gates[:, l:l + 1] + ctx_global = self.act(ctx.mean((2, 3), keepdim=True)) + ctx_all = ctx_all + ctx_global * gates[:, self.focal_level:] + + # normalize context + if self.normalize_modulator: + ctx_all = ctx_all / (self.focal_level + 1) + + # focal modulation + x_out = q * self.h(ctx_all) + x_out = self.norm(x_out) + + # post linear projection + x_out = self.proj(x_out) + x_out = self.proj_drop(x_out) + return x_out + + +class LayerScale2d(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + + +class FocalNetBlock(nn.Module): + """ Focal Modulation Network Block. + """ + + def __init__( + self, + dim: int, + mlp_ratio: float = 4., + focal_level: int = 1, + focal_window: int = 3, + use_post_norm: bool = False, + use_post_norm_in_modulation: bool = False, + normalize_modulator: bool = False, + layerscale_value: float = 1e-4, + proj_drop: float = 0., + drop_path: float = 0., + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm2d, + ): + """ + Args: + dim: Number of input channels. + mlp_ratio: Ratio of mlp hidden dim to embedding dim. + focal_level: Number of focal levels. + focal_window: Focal window size at first focal level. + use_post_norm: Whether to use layer norm after modulation. + use_post_norm_in_modulation: Whether to use layer norm in modulation. + layerscale_value: Initial layerscale value. + proj_drop: Dropout rate. + drop_path: Stochastic depth rate. + act_layer: Activation layer. + norm_layer: Normalization layer. + """ + super().__init__() + self.dim = dim + self.mlp_ratio = mlp_ratio + + self.focal_window = focal_window + self.focal_level = focal_level + self.use_post_norm = use_post_norm + + self.norm1 = norm_layer(dim) if not use_post_norm else nn.Identity() + self.modulation = FocalModulation( + dim, + focal_window=focal_window, + focal_level=self.focal_level, + use_post_norm=use_post_norm_in_modulation, + normalize_modulator=normalize_modulator, + proj_drop=proj_drop, + norm_layer=norm_layer, + ) + self.norm1_post = norm_layer(dim) if use_post_norm else nn.Identity() + self.ls1 = LayerScale2d(dim, layerscale_value) if layerscale_value is not None else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) if not use_post_norm else nn.Identity() + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + use_conv=True, + ) + self.norm2_post = norm_layer(dim) if use_post_norm else nn.Identity() + self.ls2 = LayerScale2d(dim, layerscale_value) if layerscale_value is not None else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + shortcut = x + + # Focal Modulation + x = self.norm1(x) + x = self.modulation(x) + x = self.norm1_post(x) + x = shortcut + self.drop_path1(self.ls1(x)) + + # FFN + x = x + self.drop_path2(self.ls2(self.norm2_post(self.mlp(self.norm2(x))))) + + return x + + +class FocalNetStage(nn.Module): + """ A basic Focal Transformer layer for one stage. + """ + + def __init__( + self, + dim: int, + out_dim: int, + depth: int, + mlp_ratio: float = 4., + downsample: bool = True, + focal_level: int = 1, + focal_window: int = 1, + use_overlap_down: bool = False, + use_post_norm: bool = False, + use_post_norm_in_modulation: bool = False, + normalize_modulator: bool = False, + layerscale_value: float = 1e-4, + proj_drop: float = 0., + drop_path: float = 0., + norm_layer: Callable = LayerNorm2d, + ): + """ + Args: + dim: Number of input channels. + out_dim: Number of output channels. + depth: Number of blocks. + mlp_ratio: Ratio of mlp hidden dim to embedding dim. + downsample: Downsample layer at start of the layer. + focal_level: Number of focal levels + focal_window: Focal window size at first focal level + use_overlap_down: User overlapped convolution in downsample layer. + use_post_norm: Whether to use layer norm after modulation. + use_post_norm_in_modulation: Whether to use layer norm in modulation. + layerscale_value: Initial layerscale value + proj_drop: Dropout rate for projections. + drop_path: Stochastic depth rate. + norm_layer: Normalization layer. + """ + super().__init__() + self.dim = dim + self.depth = depth + self.grad_checkpointing = False + + if downsample: + self.downsample = Downsample( + in_chs=dim, + out_chs=out_dim, + stride=2, + overlap=use_overlap_down, + norm_layer=norm_layer, + ) + else: + self.downsample = nn.Identity() + + # build blocks + self.blocks = nn.ModuleList([ + FocalNetBlock( + dim=out_dim, + mlp_ratio=mlp_ratio, + focal_level=focal_level, + focal_window=focal_window, + use_post_norm=use_post_norm, + use_post_norm_in_modulation=use_post_norm_in_modulation, + normalize_modulator=normalize_modulator, + layerscale_value=layerscale_value, + proj_drop=proj_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + norm_layer=norm_layer, + ) + for i in range(depth)]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + def forward(self, x): + x = self.downsample(x) + for blk in self.blocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint.checkpoint(blk, x) + else: + x = blk(x) + return x + + +class Downsample(nn.Module): + + def __init__( + self, + in_chs: int, + out_chs: int, + stride: int = 4, + overlap: bool = False, + norm_layer: Optional[Callable] = None, + ): + """ + + Args: + in_chs: Number of input image channels. + out_chs: Number of linear projection output channels. + stride: Downsample stride. + overlap: Use overlapping convolutions if True. + norm_layer: Normalization layer. + """ + super().__init__() + self.stride = stride + padding = 0 + kernel_size = stride + if overlap: + assert stride in (2, 4) + if stride == 4: + kernel_size, padding = 7, 2 + elif stride == 2: + kernel_size, padding = 3, 1 + self.proj = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding) + self.norm = norm_layer(out_chs) if norm_layer is not None else nn.Identity() + + def forward(self, x): + x = self.proj(x) + x = self.norm(x) + return x + + +class FocalNet(nn.Module): + """" Focal Modulation Networks (FocalNets) + """ + + def __init__( + self, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: str = 'avg', + embed_dim: int = 96, + depths: Tuple[int, ...] = (2, 2, 6, 2), + mlp_ratio: float = 4., + focal_levels: Tuple[int, ...] = (2, 2, 2, 2), + focal_windows: Tuple[int, ...] = (3, 3, 3, 3), + use_overlap_down: bool = False, + use_post_norm: bool = False, + use_post_norm_in_modulation: bool = False, + normalize_modulator: bool = False, + head_hidden_size: Optional[int] = None, + head_init_scale: float = 1.0, + layerscale_value: Optional[float] = None, + drop_rate: bool = 0., + proj_drop_rate: bool = 0., + drop_path_rate: bool = 0.1, + norm_layer: Callable = partial(LayerNorm2d, eps=1e-5), + ): + """ + Args: + in_chans: Number of input image channels. + num_classes: Number of classes for classification head. + embed_dim: Patch embedding dimension. + depths: Depth of each Focal Transformer layer. + mlp_ratio: Ratio of mlp hidden dim to embedding dim. + focal_levels: How many focal levels at all stages. Note that this excludes the finest-grain level. + focal_windows: The focal window size at all stages. + use_overlap_down: Whether to use convolutional embedding. + use_post_norm: Whether to use layernorm after modulation (it helps stablize training of large models) + layerscale_value: Value for layer scale. + drop_rate: Dropout rate. + drop_path_rate: Stochastic depth rate. + norm_layer: Normalization layer. + """ + super().__init__() + + self.num_layers = len(depths) + embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)] + + self.num_classes = num_classes + self.embed_dim = embed_dim + self.num_features = self.head_hidden_size = embed_dim[-1] + self.feature_info = [] + + self.stem = Downsample( + in_chs=in_chans, + out_chs=embed_dim[0], + overlap=use_overlap_down, + norm_layer=norm_layer, + ) + in_dim = embed_dim[0] + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule + layers = [] + for i_layer in range(self.num_layers): + out_dim = embed_dim[i_layer] + layer = FocalNetStage( + dim=in_dim, + out_dim=out_dim, + depth=depths[i_layer], + mlp_ratio=mlp_ratio, + downsample=i_layer > 0, + focal_level=focal_levels[i_layer], + focal_window=focal_windows[i_layer], + use_overlap_down=use_overlap_down, + use_post_norm=use_post_norm, + use_post_norm_in_modulation=use_post_norm_in_modulation, + normalize_modulator=normalize_modulator, + layerscale_value=layerscale_value, + proj_drop=proj_drop_rate, + drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], + norm_layer=norm_layer, + ) + in_dim = out_dim + layers += [layer] + self.feature_info += [dict(num_chs=out_dim, reduction=4 * 2 ** i_layer, module=f'layers.{i_layer}')] + + self.layers = nn.Sequential(*layers) + + if head_hidden_size: + self.norm = nn.Identity() + self.head_hidden_size = head_hidden_size + self.head = NormMlpClassifierHead( + self.num_features, + num_classes, + hidden_size=head_hidden_size, + pool_type=global_pool, + drop_rate=drop_rate, + norm_layer=norm_layer, + ) + else: + self.norm = norm_layer(self.num_features) + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=drop_rate + ) + + named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) + + @torch.jit.ignore + def no_weight_decay(self): + return {''} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', + blocks=[ + (r'^layers\.(\d+)', None), + (r'^norm', (99999,)) + ] if coarse else [ + (r'^layers\.(\d+).downsample', (0,)), + (r'^layers\.(\d+)\.\w+\.(\d+)', None), + (r'^norm', (99999,)), + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + for l in self.layers: + l.set_grad_checkpointing(enable=enable) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.layers(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _init_weights(module, name=None, head_init_scale=1.0): + if isinstance(module, nn.Conv2d): + trunc_normal_(module.weight, std=.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Linear): + trunc_normal_(module.weight, std=.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + if name and 'head.fc' in name: + module.weight.data.mul_(head_init_scale) + module.bias.data.mul_(head_init_scale) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': .9, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.proj', 'classifier': 'head.fc', + 'license': 'mit', **kwargs + } + + +default_cfgs = generate_default_cfgs({ + "focalnet_tiny_srf.ms_in1k": _cfg( + hf_hub_id='timm/'), + "focalnet_small_srf.ms_in1k": _cfg( + hf_hub_id='timm/'), + "focalnet_base_srf.ms_in1k": _cfg( + hf_hub_id='timm/'), + "focalnet_tiny_lrf.ms_in1k": _cfg( + hf_hub_id='timm/'), + "focalnet_small_lrf.ms_in1k": _cfg( + hf_hub_id='timm/'), + "focalnet_base_lrf.ms_in1k": _cfg( + hf_hub_id='timm/'), + + "focalnet_large_fl3.ms_in22k": _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), + "focalnet_large_fl4.ms_in22k": _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), + "focalnet_xlarge_fl3.ms_in22k": _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), + "focalnet_xlarge_fl4.ms_in22k": _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), + "focalnet_huge_fl3.ms_in22k": _cfg( + hf_hub_id='timm/', + num_classes=21842), + "focalnet_huge_fl4.ms_in22k": _cfg( + hf_hub_id='timm/', + num_classes=0), +}) + + +def checkpoint_filter_fn(state_dict, model: FocalNet): + state_dict = state_dict.get('model', state_dict) + if 'stem.proj.weight' in state_dict: + return state_dict + import re + out_dict = {} + dest_dict = model.state_dict() + for k, v in state_dict.items(): + k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k) + k = k.replace('patch_embed', 'stem') + k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k) + if 'norm' in k and k not in dest_dict: + k = re.sub(r'norm([0-9])', r'norm\1_post', k) + k = k.replace('ln.', 'norm.') + k = k.replace('head', 'head.fc') + if k in dest_dict and dest_dict[k].numel() == v.numel() and dest_dict[k].shape != v.shape: + v = v.reshape(dest_dict[k].shape) + out_dict[k] = v + return out_dict + + +def _create_focalnet(variant, pretrained=False, **kwargs): + default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1)))) + out_indices = kwargs.pop('out_indices', default_out_indices) + + model = build_model_with_cfg( + FocalNet, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs) + return model + + +@register_model +def focalnet_tiny_srf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, **kwargs) + return _create_focalnet('focalnet_tiny_srf', pretrained=pretrained, **model_kwargs) + + +@register_model +def focalnet_small_srf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, **kwargs) + return _create_focalnet('focalnet_small_srf', pretrained=pretrained, **model_kwargs) + + +@register_model +def focalnet_base_srf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, **kwargs) + return _create_focalnet('focalnet_base_srf', pretrained=pretrained, **model_kwargs) + + +@register_model +def focalnet_tiny_lrf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs) + return _create_focalnet('focalnet_tiny_lrf', pretrained=pretrained, **model_kwargs) + + +@register_model +def focalnet_small_lrf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs) + return _create_focalnet('focalnet_small_lrf', pretrained=pretrained, **model_kwargs) + + +@register_model +def focalnet_base_lrf(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs) + return _create_focalnet('focalnet_base_lrf', pretrained=pretrained, **model_kwargs) + + +# FocalNet large+ models +@register_model +def focalnet_large_fl3(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict( + depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[3, 3, 3, 3], focal_windows=[5] * 4, + use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) + return _create_focalnet('focalnet_large_fl3', pretrained=pretrained, **model_kwargs) + + +@register_model +def focalnet_large_fl4(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict( + depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[4, 4, 4, 4], + use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) + return _create_focalnet('focalnet_large_fl4', pretrained=pretrained, **model_kwargs) + + +@register_model +def focalnet_xlarge_fl3(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict( + depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[3, 3, 3, 3], focal_windows=[5] * 4, + use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) + return _create_focalnet('focalnet_xlarge_fl3', pretrained=pretrained, **model_kwargs) + + +@register_model +def focalnet_xlarge_fl4(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict( + depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[4, 4, 4, 4], + use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) + return _create_focalnet('focalnet_xlarge_fl4', pretrained=pretrained, **model_kwargs) + + +@register_model +def focalnet_huge_fl3(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict( + depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[3, 3, 3, 3], focal_windows=[3] * 4, + use_post_norm=True, use_post_norm_in_modulation=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) + return _create_focalnet('focalnet_huge_fl3', pretrained=pretrained, **model_kwargs) + + +@register_model +def focalnet_huge_fl4(pretrained=False, **kwargs) -> FocalNet: + model_kwargs = dict( + depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[4, 4, 4, 4], + use_post_norm=True, use_post_norm_in_modulation=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) + return _create_focalnet('focalnet_huge_fl4', pretrained=pretrained, **model_kwargs) + diff --git a/pytorch-image-models/timm/models/fx_features.py b/pytorch-image-models/timm/models/fx_features.py new file mode 100644 index 0000000000000000000000000000000000000000..ae6848f7d59e85678888f301b8717c9df9aa16db --- /dev/null +++ b/pytorch-image-models/timm/models/fx_features.py @@ -0,0 +1,4 @@ +from ._features_fx import * + +import warnings +warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.models", FutureWarning) diff --git a/pytorch-image-models/timm/models/gcvit.py b/pytorch-image-models/timm/models/gcvit.py new file mode 100644 index 0000000000000000000000000000000000000000..44660a3f6c08d1d4c288e17f47ecc341778f69e9 --- /dev/null +++ b/pytorch-image-models/timm/models/gcvit.py @@ -0,0 +1,592 @@ +""" Global Context ViT + +From scratch implementation of GCViT in the style of timm swin_transformer_v2_cr.py + +Global Context Vision Transformers -https://arxiv.org/abs/2206.09959 + +@article{hatamizadeh2022global, + title={Global Context Vision Transformers}, + author={Hatamizadeh, Ali and Yin, Hongxu and Kautz, Jan and Molchanov, Pavlo}, + journal={arXiv preprint arXiv:2206.09959}, + year={2022} +} + +Free of any code related to NVIDIA GCVit impl at https://github.com/NVlabs/GCVit. +The license for this code release is Apache 2.0 with no commercial restrictions. + +However, weight files adapted from NVIDIA GCVit impl ARE under a non-commercial share-alike license +(https://creativecommons.org/licenses/by-nc-sa/4.0/) until I have a chance to train new ones... + +Hacked together by / Copyright 2022, Ross Wightman +""" +import math +from functools import partial +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.utils.checkpoint as checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, to_2tuple, to_ntuple, Mlp, ClassifierHead, LayerNorm2d, \ + get_attn, get_act_layer, get_norm_layer, RelPosBias, _assert +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_function +from ._manipulate import named_apply +from ._registry import register_model, generate_default_cfgs + +__all__ = ['GlobalContextVit'] + + +class MbConvBlock(nn.Module): + """ A depthwise separable / fused mbconv style residual block with SE, `no norm. + """ + def __init__( + self, + in_chs, + out_chs=None, + expand_ratio=1.0, + attn_layer='se', + bias=False, + act_layer=nn.GELU, + ): + super().__init__() + attn_kwargs = dict(act_layer=act_layer) + if isinstance(attn_layer, str) and attn_layer == 'se' or attn_layer == 'eca': + attn_kwargs['rd_ratio'] = 0.25 + attn_kwargs['bias'] = False + attn_layer = get_attn(attn_layer) + out_chs = out_chs or in_chs + mid_chs = int(expand_ratio * in_chs) + + self.conv_dw = nn.Conv2d(in_chs, mid_chs, 3, 1, 1, groups=in_chs, bias=bias) + self.act = act_layer() + self.se = attn_layer(mid_chs, **attn_kwargs) + self.conv_pw = nn.Conv2d(mid_chs, out_chs, 1, 1, 0, bias=bias) + + def forward(self, x): + shortcut = x + x = self.conv_dw(x) + x = self.act(x) + x = self.se(x) + x = self.conv_pw(x) + x = x + shortcut + return x + + +class Downsample2d(nn.Module): + def __init__( + self, + dim, + dim_out=None, + reduction='conv', + act_layer=nn.GELU, + norm_layer=LayerNorm2d, # NOTE in NCHW + ): + super().__init__() + dim_out = dim_out or dim + + self.norm1 = norm_layer(dim) if norm_layer is not None else nn.Identity() + self.conv_block = MbConvBlock(dim, act_layer=act_layer) + assert reduction in ('conv', 'max', 'avg') + if reduction == 'conv': + self.reduction = nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False) + elif reduction == 'max': + assert dim == dim_out + self.reduction = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + else: + assert dim == dim_out + self.reduction = nn.AvgPool2d(kernel_size=2) + self.norm2 = norm_layer(dim_out) if norm_layer is not None else nn.Identity() + + def forward(self, x): + x = self.norm1(x) + x = self.conv_block(x) + x = self.reduction(x) + x = self.norm2(x) + return x + + +class FeatureBlock(nn.Module): + def __init__( + self, + dim, + levels=0, + reduction='max', + act_layer=nn.GELU, + ): + super().__init__() + reductions = levels + levels = max(1, levels) + if reduction == 'avg': + pool_fn = partial(nn.AvgPool2d, kernel_size=2) + else: + pool_fn = partial(nn.MaxPool2d, kernel_size=3, stride=2, padding=1) + self.blocks = nn.Sequential() + for i in range(levels): + self.blocks.add_module(f'conv{i+1}', MbConvBlock(dim, act_layer=act_layer)) + if reductions: + self.blocks.add_module(f'pool{i+1}', pool_fn()) + reductions -= 1 + + def forward(self, x): + return self.blocks(x) + + +class Stem(nn.Module): + def __init__( + self, + in_chs: int = 3, + out_chs: int = 96, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm2d, # NOTE stem in NCHW + ): + super().__init__() + self.conv1 = nn.Conv2d(in_chs, out_chs, kernel_size=3, stride=2, padding=1) + self.down = Downsample2d(out_chs, act_layer=act_layer, norm_layer=norm_layer) + + def forward(self, x): + x = self.conv1(x) + x = self.down(x) + return x + + +class WindowAttentionGlobal(nn.Module): + + def __init__( + self, + dim: int, + num_heads: int, + window_size: Tuple[int, int], + use_global: bool = True, + qkv_bias: bool = True, + attn_drop: float = 0., + proj_drop: float = 0., + ): + super().__init__() + window_size = to_2tuple(window_size) + self.window_size = window_size + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** -0.5 + self.use_global = use_global + + self.rel_pos = RelPosBias(window_size=window_size, num_heads=num_heads) + if self.use_global: + self.qkv = nn.Linear(dim, dim * 2, bias=qkv_bias) + else: + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, q_global: Optional[torch.Tensor] = None): + B, N, C = x.shape + if self.use_global and q_global is not None: + _assert(x.shape[-1] == q_global.shape[-1], 'x and q_global seq lengths should be equal') + + kv = self.qkv(x) + kv = kv.reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + k, v = kv.unbind(0) + + q = q_global.repeat(B // q_global.shape[0], 1, 1, 1) + q = q.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) + else: + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + q = q * self.scale + + attn = q @ k.transpose(-2, -1).contiguous() # NOTE contiguous() fixes an odd jit bug in PyTorch 2.0 + attn = self.rel_pos(attn) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +def window_partition(x, window_size: Tuple[int, int]): + B, H, W, C = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + + +@register_notrace_function # reason: int argument is a Proxy +def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]): + H, W = img_size + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + + +class LayerScale(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + + +class GlobalContextVitBlock(nn.Module): + def __init__( + self, + dim: int, + feat_size: Tuple[int, int], + num_heads: int, + window_size: int = 7, + mlp_ratio: float = 4., + use_global: bool = True, + qkv_bias: bool = True, + layer_scale: Optional[float] = None, + proj_drop: float = 0., + attn_drop: float = 0., + drop_path: float = 0., + attn_layer: Callable = WindowAttentionGlobal, + act_layer: Callable = nn.GELU, + norm_layer: Callable = nn.LayerNorm, + ): + super().__init__() + feat_size = to_2tuple(feat_size) + window_size = to_2tuple(window_size) + self.window_size = window_size + self.num_windows = int((feat_size[0] // window_size[0]) * (feat_size[1] // window_size[1])) + + self.norm1 = norm_layer(dim) + self.attn = attn_layer( + dim, + num_heads=num_heads, + window_size=window_size, + use_global=use_global, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + self.ls1 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + self.ls2 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def _window_attn(self, x, q_global: Optional[torch.Tensor] = None): + B, H, W, C = x.shape + x_win = window_partition(x, self.window_size) + x_win = x_win.view(-1, self.window_size[0] * self.window_size[1], C) + attn_win = self.attn(x_win, q_global) + x = window_reverse(attn_win, self.window_size, (H, W)) + return x + + def forward(self, x, q_global: Optional[torch.Tensor] = None): + x = x + self.drop_path1(self.ls1(self._window_attn(self.norm1(x), q_global))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + + +class GlobalContextVitStage(nn.Module): + def __init__( + self, + dim, + depth: int, + num_heads: int, + feat_size: Tuple[int, int], + window_size: Tuple[int, int], + downsample: bool = True, + global_norm: bool = False, + stage_norm: bool = False, + mlp_ratio: float = 4., + qkv_bias: bool = True, + layer_scale: Optional[float] = None, + proj_drop: float = 0., + attn_drop: float = 0., + drop_path: Union[List[float], float] = 0.0, + act_layer: Callable = nn.GELU, + norm_layer: Callable = nn.LayerNorm, + norm_layer_cl: Callable = LayerNorm2d, + ): + super().__init__() + if downsample: + self.downsample = Downsample2d( + dim=dim, + dim_out=dim * 2, + norm_layer=norm_layer, + ) + dim = dim * 2 + feat_size = (feat_size[0] // 2, feat_size[1] // 2) + else: + self.downsample = nn.Identity() + self.feat_size = feat_size + window_size = to_2tuple(window_size) + + feat_levels = int(math.log2(min(feat_size) / min(window_size))) + self.global_block = FeatureBlock(dim, feat_levels) + self.global_norm = norm_layer_cl(dim) if global_norm else nn.Identity() + + self.blocks = nn.ModuleList([ + GlobalContextVitBlock( + dim=dim, + num_heads=num_heads, + feat_size=feat_size, + window_size=window_size, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + use_global=(i % 2 != 0), + layer_scale=layer_scale, + proj_drop=proj_drop, + attn_drop=attn_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + act_layer=act_layer, + norm_layer=norm_layer_cl, + ) + for i in range(depth) + ]) + self.norm = norm_layer_cl(dim) if stage_norm else nn.Identity() + self.dim = dim + self.feat_size = feat_size + self.grad_checkpointing = False + + def forward(self, x): + # input NCHW, downsample & global block are 2d conv + pooling + x = self.downsample(x) + global_query = self.global_block(x) + + # reshape NCHW --> NHWC for transformer blocks + x = x.permute(0, 2, 3, 1) + global_query = self.global_norm(global_query.permute(0, 2, 3, 1)) + for blk in self.blocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint.checkpoint(blk, x) + else: + x = blk(x, global_query) + x = self.norm(x) + x = x.permute(0, 3, 1, 2).contiguous() # back to NCHW + return x + + +class GlobalContextVit(nn.Module): + def __init__( + self, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: str = 'avg', + img_size: Tuple[int, int] = 224, + window_ratio: Tuple[int, ...] = (32, 32, 16, 32), + window_size: Tuple[int, ...] = None, + embed_dim: int = 64, + depths: Tuple[int, ...] = (3, 4, 19, 5), + num_heads: Tuple[int, ...] = (2, 4, 8, 16), + mlp_ratio: float = 3.0, + qkv_bias: bool = True, + layer_scale: Optional[float] = None, + drop_rate: float = 0., + proj_drop_rate: float = 0., + attn_drop_rate: float = 0., + drop_path_rate: float = 0., + weight_init='', + act_layer: str = 'gelu', + norm_layer: str = 'layernorm2d', + norm_layer_cl: str = 'layernorm', + norm_eps: float = 1e-5, + ): + super().__init__() + act_layer = get_act_layer(act_layer) + norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps) + norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps) + + img_size = to_2tuple(img_size) + feat_size = tuple(d // 4 for d in img_size) # stem reduction by 4 + self.global_pool = global_pool + self.num_classes = num_classes + self.drop_rate = drop_rate + num_stages = len(depths) + self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (num_stages - 1)) + if window_size is not None: + window_size = to_ntuple(num_stages)(window_size) + else: + assert window_ratio is not None + window_size = tuple([(img_size[0] // r, img_size[1] // r) for r in to_ntuple(num_stages)(window_ratio)]) + + self.stem = Stem( + in_chs=in_chans, + out_chs=embed_dim, + act_layer=act_layer, + norm_layer=norm_layer + ) + + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + stages = [] + for i in range(num_stages): + last_stage = i == num_stages - 1 + stage_scale = 2 ** max(i - 1, 0) + stages.append(GlobalContextVitStage( + dim=embed_dim * stage_scale, + depth=depths[i], + num_heads=num_heads[i], + feat_size=(feat_size[0] // stage_scale, feat_size[1] // stage_scale), + window_size=window_size[i], + downsample=i != 0, + stage_norm=last_stage, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + layer_scale=layer_scale, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + act_layer=act_layer, + norm_layer=norm_layer, + norm_layer_cl=norm_layer_cl, + )) + self.stages = nn.Sequential(*stages) + + # Classifier head + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + + if weight_init: + named_apply(partial(self._init_weights, scheme=weight_init), self) + + def _init_weights(self, module, name, scheme='vit'): + # note Conv2d left as default init + if scheme == 'vit': + if isinstance(module, nn.Linear): + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + if 'mlp' in name: + nn.init.normal_(module.bias, std=1e-6) + else: + nn.init.zeros_(module.bias) + else: + if isinstance(module, nn.Linear): + nn.init.normal_(module.weight, std=.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + + @torch.jit.ignore + def no_weight_decay(self): + return { + k for k, _ in self.named_parameters() + if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^stem', # stem and embed + blocks=r'^stages\.(\d+)' + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is None: + global_pool = self.head.global_pool.pool_type + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.stem(x) + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_gcvit(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + model = build_model_with_cfg(GlobalContextVit, variant, pretrained, **kwargs) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv1', 'classifier': 'head.fc', + 'fixed_input_size': True, + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'gcvit_xxtiny.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xxtiny_224_nvidia-d1d86009.pth'), + 'gcvit_xtiny.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xtiny_224_nvidia-274b92b7.pth'), + 'gcvit_tiny.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_tiny_224_nvidia-ac783954.pth'), + 'gcvit_small.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_small_224_nvidia-4e98afa2.pth'), + 'gcvit_base.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_base_224_nvidia-f009139b.pth'), +}) + + +@register_model +def gcvit_xxtiny(pretrained=False, **kwargs) -> GlobalContextVit: + model_kwargs = dict( + depths=(2, 2, 6, 2), + num_heads=(2, 4, 8, 16), + **kwargs) + return _create_gcvit('gcvit_xxtiny', pretrained=pretrained, **model_kwargs) + + +@register_model +def gcvit_xtiny(pretrained=False, **kwargs) -> GlobalContextVit: + model_kwargs = dict( + depths=(3, 4, 6, 5), + num_heads=(2, 4, 8, 16), + **kwargs) + return _create_gcvit('gcvit_xtiny', pretrained=pretrained, **model_kwargs) + + +@register_model +def gcvit_tiny(pretrained=False, **kwargs) -> GlobalContextVit: + model_kwargs = dict( + depths=(3, 4, 19, 5), + num_heads=(2, 4, 8, 16), + **kwargs) + return _create_gcvit('gcvit_tiny', pretrained=pretrained, **model_kwargs) + + +@register_model +def gcvit_small(pretrained=False, **kwargs) -> GlobalContextVit: + model_kwargs = dict( + depths=(3, 4, 19, 5), + num_heads=(3, 6, 12, 24), + embed_dim=96, + mlp_ratio=2, + layer_scale=1e-5, + **kwargs) + return _create_gcvit('gcvit_small', pretrained=pretrained, **model_kwargs) + + +@register_model +def gcvit_base(pretrained=False, **kwargs) -> GlobalContextVit: + model_kwargs = dict( + depths=(3, 4, 19, 5), + num_heads=(4, 8, 16, 32), + embed_dim=128, + mlp_ratio=2, + layer_scale=1e-5, + **kwargs) + return _create_gcvit('gcvit_base', pretrained=pretrained, **model_kwargs) diff --git a/pytorch-image-models/timm/models/ghostnet.py b/pytorch-image-models/timm/models/ghostnet.py new file mode 100644 index 0000000000000000000000000000000000000000..d73276d4e4574dcb370abf734859d008746c3b2d --- /dev/null +++ b/pytorch-image-models/timm/models/ghostnet.py @@ -0,0 +1,433 @@ +""" +An implementation of GhostNet & GhostNetV2 Models as defined in: +GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907 +GhostNetV2: Enhance Cheap Operation with Long-Range Attention. https://proceedings.neurips.cc/paper_files/paper/2022/file/40b60852a4abdaa696b5a1a78da34635-Paper-Conference.pdf + +The train script & code of models at: +Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch +Original model: https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnetv2_pytorch/model/ghostnetv2_torch.py +""" +import math +from functools import partial +from typing import Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectAdaptivePool2d, Linear, make_divisible +from ._builder import build_model_with_cfg +from ._efficientnet_blocks import SqueezeExcite, ConvBnAct +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +__all__ = ['GhostNet'] + + +_SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) + + +class GhostModule(nn.Module): + def __init__( + self, + in_chs, + out_chs, + kernel_size=1, + ratio=2, + dw_size=3, + stride=1, + use_act=True, + act_layer=nn.ReLU, + ): + super(GhostModule, self).__init__() + self.out_chs = out_chs + init_chs = math.ceil(out_chs / ratio) + new_chs = init_chs * (ratio - 1) + + self.primary_conv = nn.Sequential( + nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), + nn.BatchNorm2d(init_chs), + act_layer(inplace=True) if use_act else nn.Identity(), + ) + + self.cheap_operation = nn.Sequential( + nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False), + nn.BatchNorm2d(new_chs), + act_layer(inplace=True) if use_act else nn.Identity(), + ) + + def forward(self, x): + x1 = self.primary_conv(x) + x2 = self.cheap_operation(x1) + out = torch.cat([x1, x2], dim=1) + return out[:, :self.out_chs, :, :] + + +class GhostModuleV2(nn.Module): + def __init__( + self, + in_chs, + out_chs, + kernel_size=1, + ratio=2, + dw_size=3, + stride=1, + use_act=True, + act_layer=nn.ReLU, + ): + super().__init__() + self.gate_fn = nn.Sigmoid() + self.out_chs = out_chs + init_chs = math.ceil(out_chs / ratio) + new_chs = init_chs * (ratio - 1) + self.primary_conv = nn.Sequential( + nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), + nn.BatchNorm2d(init_chs), + act_layer(inplace=True) if use_act else nn.Identity(), + ) + self.cheap_operation = nn.Sequential( + nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False), + nn.BatchNorm2d(new_chs), + act_layer(inplace=True) if use_act else nn.Identity(), + ) + self.short_conv = nn.Sequential( + nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False), + nn.BatchNorm2d(out_chs), + nn.Conv2d(out_chs, out_chs, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=out_chs, bias=False), + nn.BatchNorm2d(out_chs), + nn.Conv2d(out_chs, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=out_chs, bias=False), + nn.BatchNorm2d(out_chs), + ) + + def forward(self, x): + res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2)) + x1 = self.primary_conv(x) + x2 = self.cheap_operation(x1) + out = torch.cat([x1, x2], dim=1) + return out[:, :self.out_chs, :, :] * F.interpolate( + self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest') + + +class GhostBottleneck(nn.Module): + """ Ghost bottleneck w/ optional SE""" + + def __init__( + self, + in_chs, + mid_chs, + out_chs, + dw_kernel_size=3, + stride=1, + act_layer=nn.ReLU, + se_ratio=0., + mode='original', + ): + super(GhostBottleneck, self).__init__() + has_se = se_ratio is not None and se_ratio > 0. + self.stride = stride + + # Point-wise expansion + if mode == 'original': + self.ghost1 = GhostModule(in_chs, mid_chs, use_act=True, act_layer=act_layer) + else: + self.ghost1 = GhostModuleV2(in_chs, mid_chs, use_act=True, act_layer=act_layer) + + # Depth-wise convolution + if self.stride > 1: + self.conv_dw = nn.Conv2d( + mid_chs, mid_chs, dw_kernel_size, stride=stride, + padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) + self.bn_dw = nn.BatchNorm2d(mid_chs) + else: + self.conv_dw = None + self.bn_dw = None + + # Squeeze-and-excitation + self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None + + # Point-wise linear projection + self.ghost2 = GhostModule(mid_chs, out_chs, use_act=False) + + # shortcut + if in_chs == out_chs and self.stride == 1: + self.shortcut = nn.Sequential() + else: + self.shortcut = nn.Sequential( + nn.Conv2d( + in_chs, in_chs, dw_kernel_size, stride=stride, + padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), + nn.BatchNorm2d(in_chs), + nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), + nn.BatchNorm2d(out_chs), + ) + + def forward(self, x): + shortcut = x + + # 1st ghost bottleneck + x = self.ghost1(x) + + # Depth-wise convolution + if self.conv_dw is not None: + x = self.conv_dw(x) + x = self.bn_dw(x) + + # Squeeze-and-excitation + if self.se is not None: + x = self.se(x) + + # 2nd ghost bottleneck + x = self.ghost2(x) + + x += self.shortcut(shortcut) + return x + + +class GhostNet(nn.Module): + def __init__( + self, + cfgs, + num_classes=1000, + width=1.0, + in_chans=3, + output_stride=32, + global_pool='avg', + drop_rate=0.2, + version='v1', + ): + super(GhostNet, self).__init__() + # setting of inverted residual blocks + assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' + self.cfgs = cfgs + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.feature_info = [] + + # building first layer + stem_chs = make_divisible(16 * width, 4) + self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) + self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) + self.bn1 = nn.BatchNorm2d(stem_chs) + self.act1 = nn.ReLU(inplace=True) + prev_chs = stem_chs + + # building inverted residual blocks + stages = nn.ModuleList([]) + stage_idx = 0 + layer_idx = 0 + net_stride = 2 + for cfg in self.cfgs: + layers = [] + s = 1 + for k, exp_size, c, se_ratio, s in cfg: + out_chs = make_divisible(c * width, 4) + mid_chs = make_divisible(exp_size * width, 4) + layer_kwargs = {} + if version == 'v2' and layer_idx > 1: + layer_kwargs['mode'] = 'attn' + layers.append(GhostBottleneck(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, **layer_kwargs)) + prev_chs = out_chs + layer_idx += 1 + if s > 1: + net_stride *= 2 + self.feature_info.append(dict( + num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) + stages.append(nn.Sequential(*layers)) + stage_idx += 1 + + out_chs = make_divisible(exp_size * width, 4) + stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) + self.pool_dim = prev_chs = out_chs + + self.blocks = nn.Sequential(*stages) + + # building last several layers + self.num_features = prev_chs + self.head_hidden_size = out_chs = 1280 + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) + self.act2 = nn.ReLU(inplace=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled + self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() + + # FIXME init + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^conv_stem|bn1', + blocks=[ + (r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), + (r'conv_head', (99999,)) + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + # cannot meaningfully change pooling of efficient head after creation + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled + self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.conv_stem(x) + x = self.bn1(x) + x = self.act1(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x, flatten=True) + else: + x = self.blocks(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.conv_head(x) + x = self.act2(x) + x = self.flatten(x) + if self.drop_rate > 0.: + x = F.dropout(x, p=self.drop_rate, training=self.training) + return x if pre_logits else self.classifier(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model: nn.Module): + out_dict = {} + for k, v in state_dict.items(): + if 'total' in k: + continue + out_dict[k] = v + return out_dict + + +def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs): + """ + Constructs a GhostNet model + """ + cfgs = [ + # k, t, c, SE, s + # stage1 + [[3, 16, 16, 0, 1]], + # stage2 + [[3, 48, 24, 0, 2]], + [[3, 72, 24, 0, 1]], + # stage3 + [[5, 72, 40, 0.25, 2]], + [[5, 120, 40, 0.25, 1]], + # stage4 + [[3, 240, 80, 0, 2]], + [[3, 200, 80, 0, 1], + [3, 184, 80, 0, 1], + [3, 184, 80, 0, 1], + [3, 480, 112, 0.25, 1], + [3, 672, 112, 0.25, 1] + ], + # stage5 + [[5, 672, 160, 0.25, 2]], + [[5, 960, 160, 0, 1], + [5, 960, 160, 0.25, 1], + [5, 960, 160, 0, 1], + [5, 960, 160, 0.25, 1] + ] + ] + model_kwargs = dict( + cfgs=cfgs, + width=width, + **kwargs, + ) + return build_model_with_cfg( + GhostNet, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True), + **model_kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'conv_stem', 'classifier': 'classifier', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'ghostnet_050.untrained': _cfg(), + 'ghostnet_100.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth' + ), + 'ghostnet_130.untrained': _cfg(), + 'ghostnetv2_100.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_10.pth.tar' + ), + 'ghostnetv2_130.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_13.pth.tar' + ), + 'ghostnetv2_160.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_16.pth.tar' + ), +}) + + +@register_model +def ghostnet_050(pretrained=False, **kwargs) -> GhostNet: + """ GhostNet-0.5x """ + model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs) + return model + + +@register_model +def ghostnet_100(pretrained=False, **kwargs) -> GhostNet: + """ GhostNet-1.0x """ + model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def ghostnet_130(pretrained=False, **kwargs) -> GhostNet: + """ GhostNet-1.3x """ + model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs) + return model + + +@register_model +def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNet: + """ GhostNetV2-1.0x """ + model = _create_ghostnet('ghostnetv2_100', width=1.0, pretrained=pretrained, version='v2', **kwargs) + return model + + +@register_model +def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNet: + """ GhostNetV2-1.3x """ + model = _create_ghostnet('ghostnetv2_130', width=1.3, pretrained=pretrained, version='v2', **kwargs) + return model + + +@register_model +def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNet: + """ GhostNetV2-1.6x """ + model = _create_ghostnet('ghostnetv2_160', width=1.6, pretrained=pretrained, version='v2', **kwargs) + return model diff --git a/pytorch-image-models/timm/models/hardcorenas.py b/pytorch-image-models/timm/models/hardcorenas.py new file mode 100644 index 0000000000000000000000000000000000000000..459c1a3db845d2dc8b16c27521397687340ffe98 --- /dev/null +++ b/pytorch-image-models/timm/models/hardcorenas.py @@ -0,0 +1,156 @@ +from functools import partial + +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from ._builder import build_model_with_cfg +from ._builder import pretrained_cfg_for_features +from ._efficientnet_blocks import SqueezeExcite +from ._efficientnet_builder import decode_arch_def, resolve_act_layer, resolve_bn_args, round_channels +from ._registry import register_model, generate_default_cfgs +from .mobilenetv3 import MobileNetV3, MobileNetV3Features + +__all__ = [] # model_registry will add each entrypoint fn to this + + +def _gen_hardcorenas(pretrained, variant, arch_def, **kwargs): + """Creates a hardcorenas model + + Ref impl: https://github.com/Alibaba-MIIL/HardCoReNAS + Paper: https://arxiv.org/abs/2102.11646 + + """ + num_features = 1280 + se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels) + model_kwargs = dict( + block_args=decode_arch_def(arch_def), + num_features=num_features, + stem_size=32, + norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'hard_swish'), + se_layer=se_layer, + **kwargs, + ) + + features_only = False + model_cls = MobileNetV3 + kwargs_filter = None + if model_kwargs.pop('features_only', False): + features_only = True + kwargs_filter = ('num_classes', 'num_features', 'global_pool', 'head_conv', 'head_bias', 'global_pool') + model_cls = MobileNetV3Features + model = build_model_with_cfg( + model_cls, + variant, + pretrained, + pretrained_strict=not features_only, + kwargs_filter=kwargs_filter, + **model_kwargs, + ) + if features_only: + model.default_cfg = pretrained_cfg_for_features(model.default_cfg) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'conv_stem', 'classifier': 'classifier', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'hardcorenas_a.miil_green_in1k': _cfg(hf_hub_id='timm/'), + 'hardcorenas_b.miil_green_in1k': _cfg(hf_hub_id='timm/'), + 'hardcorenas_c.miil_green_in1k': _cfg(hf_hub_id='timm/'), + 'hardcorenas_d.miil_green_in1k': _cfg(hf_hub_id='timm/'), + 'hardcorenas_e.miil_green_in1k': _cfg(hf_hub_id='timm/'), + 'hardcorenas_f.miil_green_in1k': _cfg(hf_hub_id='timm/'), +}) + + +@register_model +def hardcorenas_a(pretrained=False, **kwargs) -> MobileNetV3: + """ hardcorenas_A """ + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], + ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e6_c40_nre_se0.25'], + ['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25'], + ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25'], + ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_a', arch_def=arch_def, **kwargs) + return model + + +@register_model +def hardcorenas_b(pretrained=False, **kwargs) -> MobileNetV3: + """ hardcorenas_B """ + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], + ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25', 'ir_r1_k3_s1_e3_c24_nre'], + ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre'], + ['ir_r1_k5_s2_e3_c80', 'ir_r1_k5_s1_e3_c80', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'], + ['ir_r1_k5_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'], + ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'], + ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_b', arch_def=arch_def, **kwargs) + return model + + +@register_model +def hardcorenas_c(pretrained=False, **kwargs) -> MobileNetV3: + """ hardcorenas_C """ + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], + ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', + 'ir_r1_k5_s1_e3_c40_nre'], + ['ir_r1_k5_s2_e4_c80', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'], + ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'], + ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'], + ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_c', arch_def=arch_def, **kwargs) + return model + + +@register_model +def hardcorenas_d(pretrained=False, **kwargs) -> MobileNetV3: + """ hardcorenas_D """ + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], + ['ir_r1_k5_s2_e3_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k3_s1_e3_c40_nre_se0.25'], + ['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', + 'ir_r1_k3_s1_e3_c80_se0.25'], + ['ir_r1_k3_s1_e4_c112_se0.25', 'ir_r1_k5_s1_e4_c112_se0.25', 'ir_r1_k3_s1_e3_c112_se0.25', + 'ir_r1_k5_s1_e3_c112_se0.25'], + ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', + 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_d', arch_def=arch_def, **kwargs) + return model + + +@register_model +def hardcorenas_e(pretrained=False, **kwargs) -> MobileNetV3: + """ hardcorenas_E """ + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], + ['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', + 'ir_r1_k3_s1_e3_c40_nre_se0.25'], ['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e6_c80_se0.25'], + ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', + 'ir_r1_k5_s1_e3_c112_se0.25'], + ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', + 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_e', arch_def=arch_def, **kwargs) + return model + + +@register_model +def hardcorenas_f(pretrained=False, **kwargs) -> MobileNetV3: + """ hardcorenas_F """ + arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'], + ['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e6_c40_nre_se0.25'], + ['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', + 'ir_r1_k3_s1_e3_c80_se0.25'], + ['ir_r1_k3_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', + 'ir_r1_k3_s1_e3_c112_se0.25'], + ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25', + 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']] + model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_f', arch_def=arch_def, **kwargs) + return model diff --git a/pytorch-image-models/timm/models/helpers.py b/pytorch-image-models/timm/models/helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..5bf6d19e7cd7a1e2f8f51270fbf1bede9e8aec6a --- /dev/null +++ b/pytorch-image-models/timm/models/helpers.py @@ -0,0 +1,7 @@ +from ._builder import * +from ._helpers import * +from ._manipulate import * +from ._prune import * + +import warnings +warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.models", FutureWarning) diff --git a/pytorch-image-models/timm/models/hgnet.py b/pytorch-image-models/timm/models/hgnet.py new file mode 100644 index 0000000000000000000000000000000000000000..ea0a92d9555a798b2f9c37443488ca7e1fcbb1d2 --- /dev/null +++ b/pytorch-image-models/timm/models/hgnet.py @@ -0,0 +1,738 @@ +""" PP-HGNet (V1 & V2) + +Reference: +https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/models/ImageNet1k/PP-HGNetV2.md +The Paddle Implement of PP-HGNet (https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/docs/en/models/PP-HGNet_en.md) +PP-HGNet: https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/ppcls/arch/backbone/legendary_models/pp_hgnet.py +PP-HGNetv2: https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/ppcls/arch/backbone/legendary_models/pp_hgnet_v2.py +""" +from typing import Dict, Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectAdaptivePool2d, DropPath, create_conv2d +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from ._manipulate import checkpoint_seq + +__all__ = ['HighPerfGpuNet'] + + +class LearnableAffineBlock(nn.Module): + def __init__( + self, + scale_value=1.0, + bias_value=0.0 + ): + super().__init__() + self.scale = nn.Parameter(torch.tensor([scale_value]), requires_grad=True) + self.bias = nn.Parameter(torch.tensor([bias_value]), requires_grad=True) + + def forward(self, x): + return self.scale * x + self.bias + + +class ConvBNAct(nn.Module): + def __init__( + self, + in_chs, + out_chs, + kernel_size, + stride=1, + groups=1, + padding='', + use_act=True, + use_lab=False + ): + super().__init__() + self.use_act = use_act + self.use_lab = use_lab + self.conv = create_conv2d( + in_chs, + out_chs, + kernel_size, + stride=stride, + padding=padding, + groups=groups, + ) + self.bn = nn.BatchNorm2d(out_chs) + if self.use_act: + self.act = nn.ReLU() + else: + self.act = nn.Identity() + if self.use_act and self.use_lab: + self.lab = LearnableAffineBlock() + else: + self.lab = nn.Identity() + + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + x = self.act(x) + x = self.lab(x) + return x + + +class LightConvBNAct(nn.Module): + def __init__( + self, + in_chs, + out_chs, + kernel_size, + groups=1, + use_lab=False + ): + super().__init__() + self.conv1 = ConvBNAct( + in_chs, + out_chs, + kernel_size=1, + use_act=False, + use_lab=use_lab, + ) + self.conv2 = ConvBNAct( + out_chs, + out_chs, + kernel_size=kernel_size, + groups=out_chs, + use_act=True, + use_lab=use_lab, + ) + + def forward(self, x): + x = self.conv1(x) + x = self.conv2(x) + return x + + +class EseModule(nn.Module): + def __init__(self, chs): + super().__init__() + self.conv = nn.Conv2d( + chs, + chs, + kernel_size=1, + stride=1, + padding=0, + ) + self.sigmoid = nn.Sigmoid() + + def forward(self, x): + identity = x + x = x.mean((2, 3), keepdim=True) + x = self.conv(x) + x = self.sigmoid(x) + return torch.mul(identity, x) + + +class StemV1(nn.Module): + # for PP-HGNet + def __init__(self, stem_chs): + super().__init__() + self.stem = nn.Sequential(*[ + ConvBNAct( + stem_chs[i], + stem_chs[i + 1], + kernel_size=3, + stride=2 if i == 0 else 1) for i in range( + len(stem_chs) - 1) + ]) + self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + def forward(self, x): + x = self.stem(x) + x = self.pool(x) + return x + + +class StemV2(nn.Module): + # for PP-HGNetv2 + def __init__(self, in_chs, mid_chs, out_chs, use_lab=False): + super().__init__() + self.stem1 = ConvBNAct( + in_chs, + mid_chs, + kernel_size=3, + stride=2, + use_lab=use_lab, + ) + self.stem2a = ConvBNAct( + mid_chs, + mid_chs // 2, + kernel_size=2, + stride=1, + use_lab=use_lab, + ) + self.stem2b = ConvBNAct( + mid_chs // 2, + mid_chs, + kernel_size=2, + stride=1, + use_lab=use_lab, + ) + self.stem3 = ConvBNAct( + mid_chs * 2, + mid_chs, + kernel_size=3, + stride=2, + use_lab=use_lab, + ) + self.stem4 = ConvBNAct( + mid_chs, + out_chs, + kernel_size=1, + stride=1, + use_lab=use_lab, + ) + self.pool = nn.MaxPool2d(kernel_size=2, stride=1, ceil_mode=True) + + def forward(self, x): + x = self.stem1(x) + x = F.pad(x, (0, 1, 0, 1)) + x2 = self.stem2a(x) + x2 = F.pad(x2, (0, 1, 0, 1)) + x2 = self.stem2b(x2) + x1 = self.pool(x) + x = torch.cat([x1, x2], dim=1) + x = self.stem3(x) + x = self.stem4(x) + return x + + +class HighPerfGpuBlock(nn.Module): + def __init__( + self, + in_chs, + mid_chs, + out_chs, + layer_num, + kernel_size=3, + residual=False, + light_block=False, + use_lab=False, + agg='ese', + drop_path=0., + ): + super().__init__() + self.residual = residual + + self.layers = nn.ModuleList() + for i in range(layer_num): + if light_block: + self.layers.append( + LightConvBNAct( + in_chs if i == 0 else mid_chs, + mid_chs, + kernel_size=kernel_size, + use_lab=use_lab, + ) + ) + else: + self.layers.append( + ConvBNAct( + in_chs if i == 0 else mid_chs, + mid_chs, + kernel_size=kernel_size, + stride=1, + use_lab=use_lab, + ) + ) + + # feature aggregation + total_chs = in_chs + layer_num * mid_chs + if agg == 'se': + aggregation_squeeze_conv = ConvBNAct( + total_chs, + out_chs // 2, + kernel_size=1, + stride=1, + use_lab=use_lab, + ) + aggregation_excitation_conv = ConvBNAct( + out_chs // 2, + out_chs, + kernel_size=1, + stride=1, + use_lab=use_lab, + ) + self.aggregation = nn.Sequential( + aggregation_squeeze_conv, + aggregation_excitation_conv, + ) + else: + aggregation_conv = ConvBNAct( + total_chs, + out_chs, + kernel_size=1, + stride=1, + use_lab=use_lab, + ) + att = EseModule(out_chs) + self.aggregation = nn.Sequential( + aggregation_conv, + att, + ) + + self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() + + def forward(self, x): + identity = x + output = [x] + for layer in self.layers: + x = layer(x) + output.append(x) + x = torch.cat(output, dim=1) + x = self.aggregation(x) + if self.residual: + x = self.drop_path(x) + identity + return x + + +class HighPerfGpuStage(nn.Module): + def __init__( + self, + in_chs, + mid_chs, + out_chs, + block_num, + layer_num, + downsample=True, + stride=2, + light_block=False, + kernel_size=3, + use_lab=False, + agg='ese', + drop_path=0., + ): + super().__init__() + self.downsample = downsample + if downsample: + self.downsample = ConvBNAct( + in_chs, + in_chs, + kernel_size=3, + stride=stride, + groups=in_chs, + use_act=False, + use_lab=use_lab, + ) + else: + self.downsample = nn.Identity() + + blocks_list = [] + for i in range(block_num): + blocks_list.append( + HighPerfGpuBlock( + in_chs if i == 0 else out_chs, + mid_chs, + out_chs, + layer_num, + residual=False if i == 0 else True, + kernel_size=kernel_size, + light_block=light_block, + use_lab=use_lab, + agg=agg, + drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path, + ) + ) + self.blocks = nn.Sequential(*blocks_list) + self.grad_checkpointing= False + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x, flatten=False) + else: + x = self.blocks(x) + return x + + +class ClassifierHead(nn.Module): + def __init__( + self, + in_features: int, + num_classes: int, + pool_type: str = 'avg', + drop_rate: float = 0., + hidden_size: Optional[int] = 2048, + use_lab: bool = False + ): + super(ClassifierHead, self).__init__() + self.num_features = in_features + if pool_type is not None: + if not pool_type: + assert num_classes == 0, 'Classifier head must be removed if pooling is disabled' + + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) + if hidden_size is not None: + self.num_features = hidden_size + last_conv = nn.Conv2d( + in_features, + hidden_size, + kernel_size=1, + stride=1, + padding=0, + bias=False, + ) + act = nn.ReLU() + if use_lab: + lab = LearnableAffineBlock() + self.last_conv = nn.Sequential(last_conv, act, lab) + else: + self.last_conv = nn.Sequential(last_conv, act) + else: + self.last_conv = nn.Identity() + + self.dropout = nn.Dropout(drop_rate) + self.flatten = nn.Flatten(1) if pool_type else nn.Identity() # don't flatten if pooling disabled + self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def reset(self, num_classes: int, pool_type: Optional[str] = None): + if pool_type is not None: + if not pool_type: + assert num_classes == 0, 'Classifier head must be removed if pooling is disabled' + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) + self.flatten = nn.Flatten(1) if pool_type else nn.Identity() # don't flatten if pooling disabled + + self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.last_conv(x) + x = self.dropout(x) + x = self.flatten(x) + if pre_logits: + return x + x = self.fc(x) + return x + + +class HighPerfGpuNet(nn.Module): + + def __init__( + self, + cfg: Dict, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: str = 'avg', + head_hidden_size: Optional[int] = 2048, + drop_rate: float = 0., + drop_path_rate: float = 0., + use_lab: bool = False, + **kwargs, + ): + super(HighPerfGpuNet, self).__init__() + stem_type = cfg["stem_type"] + stem_chs = cfg["stem_chs"] + stages_cfg = [cfg["stage1"], cfg["stage2"], cfg["stage3"], cfg["stage4"]] + self.num_classes = num_classes + self.drop_rate = drop_rate + self.use_lab = use_lab + + assert stem_type in ['v1', 'v2'] + if stem_type == 'v2': + self.stem = StemV2( + in_chs=in_chans, + mid_chs=stem_chs[0], + out_chs=stem_chs[1], + use_lab=use_lab) + else: + self.stem = StemV1([in_chans] + stem_chs) + + current_stride = 4 + + stages = [] + self.feature_info = [] + block_depths = [c[3] for c in stages_cfg] + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(block_depths)).split(block_depths)] + for i, stage_config in enumerate(stages_cfg): + in_chs, mid_chs, out_chs, block_num, downsample, light_block, kernel_size, layer_num = stage_config + stages += [HighPerfGpuStage( + in_chs=in_chs, + mid_chs=mid_chs, + out_chs=out_chs, + block_num=block_num, + layer_num=layer_num, + downsample=downsample, + light_block=light_block, + kernel_size=kernel_size, + use_lab=use_lab, + agg='ese' if stem_type == 'v1' else 'se', + drop_path=dpr[i], + )] + self.num_features = out_chs + if downsample: + current_stride *= 2 + self.feature_info += [dict(num_chs=self.num_features, reduction=current_stride, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + + self.head = ClassifierHead( + self.num_features, + num_classes=num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + hidden_size=head_hidden_size, + use_lab=use_lab + ) + self.head_hidden_size = self.head.num_features + + for n, m in self.named_modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm2d): + nn.init.ones_(m.weight) + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Linear): + nn.init.zeros_(m.bias) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', + blocks=r'^stages\.(\d+)' if coarse else r'^stages\.(\d+).blocks\.(\d+)', + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + return self.stages(x) + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +model_cfgs = dict( + # PP-HGNet + hgnet_tiny={ + "stem_type": 'v1', + "stem_chs": [48, 48, 96], + # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num + "stage1": [96, 96, 224, 1, False, False, 3, 5], + "stage2": [224, 128, 448, 1, True, False, 3, 5], + "stage3": [448, 160, 512, 2, True, False, 3, 5], + "stage4": [512, 192, 768, 1, True, False, 3, 5], + }, + hgnet_small={ + "stem_type": 'v1', + "stem_chs": [64, 64, 128], + # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num + "stage1": [128, 128, 256, 1, False, False, 3, 6], + "stage2": [256, 160, 512, 1, True, False, 3, 6], + "stage3": [512, 192, 768, 2, True, False, 3, 6], + "stage4": [768, 224, 1024, 1, True, False, 3, 6], + }, + hgnet_base={ + "stem_type": 'v1', + "stem_chs": [96, 96, 160], + # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num + "stage1": [160, 192, 320, 1, False, False, 3, 7], + "stage2": [320, 224, 640, 2, True, False, 3, 7], + "stage3": [640, 256, 960, 3, True, False, 3, 7], + "stage4": [960, 288, 1280, 2, True, False, 3, 7], + }, + # PP-HGNetv2 + hgnetv2_b0={ + "stem_type": 'v2', + "stem_chs": [16, 16], + # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num + "stage1": [16, 16, 64, 1, False, False, 3, 3], + "stage2": [64, 32, 256, 1, True, False, 3, 3], + "stage3": [256, 64, 512, 2, True, True, 5, 3], + "stage4": [512, 128, 1024, 1, True, True, 5, 3], + }, + hgnetv2_b1={ + "stem_type": 'v2', + "stem_chs": [24, 32], + # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num + "stage1": [32, 32, 64, 1, False, False, 3, 3], + "stage2": [64, 48, 256, 1, True, False, 3, 3], + "stage3": [256, 96, 512, 2, True, True, 5, 3], + "stage4": [512, 192, 1024, 1, True, True, 5, 3], + }, + hgnetv2_b2={ + "stem_type": 'v2', + "stem_chs": [24, 32], + # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num + "stage1": [32, 32, 96, 1, False, False, 3, 4], + "stage2": [96, 64, 384, 1, True, False, 3, 4], + "stage3": [384, 128, 768, 3, True, True, 5, 4], + "stage4": [768, 256, 1536, 1, True, True, 5, 4], + }, + hgnetv2_b3={ + "stem_type": 'v2', + "stem_chs": [24, 32], + # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num + "stage1": [32, 32, 128, 1, False, False, 3, 5], + "stage2": [128, 64, 512, 1, True, False, 3, 5], + "stage3": [512, 128, 1024, 3, True, True, 5, 5], + "stage4": [1024, 256, 2048, 1, True, True, 5, 5], + }, + hgnetv2_b4={ + "stem_type": 'v2', + "stem_chs": [32, 48], + # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num + "stage1": [48, 48, 128, 1, False, False, 3, 6], + "stage2": [128, 96, 512, 1, True, False, 3, 6], + "stage3": [512, 192, 1024, 3, True, True, 5, 6], + "stage4": [1024, 384, 2048, 1, True, True, 5, 6], + }, + hgnetv2_b5={ + "stem_type": 'v2', + "stem_chs": [32, 64], + # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num + "stage1": [64, 64, 128, 1, False, False, 3, 6], + "stage2": [128, 128, 512, 2, True, False, 3, 6], + "stage3": [512, 256, 1024, 5, True, True, 5, 6], + "stage4": [1024, 512, 2048, 2, True, True, 5, 6], + }, + hgnetv2_b6={ + "stem_type": 'v2', + "stem_chs": [48, 96], + # in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num + "stage1": [96, 96, 192, 2, False, False, 3, 6], + "stage2": [192, 192, 512, 3, True, False, 3, 6], + "stage3": [512, 384, 1024, 6, True, True, 5, 6], + "stage4": [1024, 768, 2048, 3, True, True, 5, 6], + }, +) + + +def _create_hgnet(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + return build_model_with_cfg( + HighPerfGpuNet, + variant, + pretrained, + model_cfg=model_cfgs[variant], + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.965, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'classifier': 'head.fc', 'first_conv': 'stem.stem1.conv', + 'test_crop_pct': 1.0, 'test_input_size': (3, 288, 288), + **kwargs, + } + + +default_cfgs = generate_default_cfgs({ + 'hgnet_tiny.paddle_in1k': _cfg( + first_conv='stem.stem.0.conv', + hf_hub_id='timm/'), + 'hgnet_tiny.ssld_in1k': _cfg( + first_conv='stem.stem.0.conv', + hf_hub_id='timm/'), + 'hgnet_small.paddle_in1k': _cfg( + first_conv='stem.stem.0.conv', + hf_hub_id='timm/'), + 'hgnet_small.ssld_in1k': _cfg( + first_conv='stem.stem.0.conv', + hf_hub_id='timm/'), + 'hgnet_base.ssld_in1k': _cfg( + first_conv='stem.stem.0.conv', + hf_hub_id='timm/'), + 'hgnetv2_b0.ssld_stage2_ft_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b0.ssld_stage1_in22k_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b1.ssld_stage2_ft_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b1.ssld_stage1_in22k_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b2.ssld_stage2_ft_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b2.ssld_stage1_in22k_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b3.ssld_stage2_ft_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b3.ssld_stage1_in22k_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b4.ssld_stage2_ft_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b4.ssld_stage1_in22k_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b5.ssld_stage2_ft_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b5.ssld_stage1_in22k_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b6.ssld_stage2_ft_in1k': _cfg( + hf_hub_id='timm/'), + 'hgnetv2_b6.ssld_stage1_in22k_in1k': _cfg( + hf_hub_id='timm/'), +}) + + +@register_model +def hgnet_tiny(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnet_tiny', pretrained=pretrained, **kwargs) + + +@register_model +def hgnet_small(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnet_small', pretrained=pretrained, **kwargs) + + +@register_model +def hgnet_base(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnet_base', pretrained=pretrained, **kwargs) + + +@register_model +def hgnetv2_b0(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b0', pretrained=pretrained, use_lab=True, **kwargs) + + +@register_model +def hgnetv2_b1(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b1', pretrained=pretrained, use_lab=True, **kwargs) + + +@register_model +def hgnetv2_b2(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b2', pretrained=pretrained, use_lab=True, **kwargs) + + +@register_model +def hgnetv2_b3(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b3', pretrained=pretrained, use_lab=True, **kwargs) + + +@register_model +def hgnetv2_b4(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b4', pretrained=pretrained, **kwargs) + + +@register_model +def hgnetv2_b5(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b5', pretrained=pretrained, **kwargs) + + +@register_model +def hgnetv2_b6(pretrained=False, **kwargs) -> HighPerfGpuNet: + return _create_hgnet('hgnetv2_b6', pretrained=pretrained, **kwargs) diff --git a/pytorch-image-models/timm/models/hiera.py b/pytorch-image-models/timm/models/hiera.py new file mode 100644 index 0000000000000000000000000000000000000000..34d6670fbef586574745fee59ef84d1c7a0babf1 --- /dev/null +++ b/pytorch-image-models/timm/models/hiera.py @@ -0,0 +1,996 @@ +""" An PyTorch implementation of Hiera + +Adapted for timm from originals at https://github.com/facebookresearch/hiera +""" + +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# +# Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles +# +# Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, +# Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, +# Judy Hoffman, Jitendra Malik, Yanghao Li, Christoph Feichtenhofer. +# +# Paper: https://arxiv.org/abs/2306.00989/ +# +# References: +# slowfast: https://github.com/facebookresearch/SlowFast +# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm +# -------------------------------------------------------- +import math +from functools import partial +from typing import Callable, Dict, List, Optional, Tuple, Type, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, Mlp, LayerScale, ClNormMlpClassifierHead, use_fused_attn, \ + _assert, get_norm_layer, to_2tuple, init_weight_vit, init_weight_jax + +from ._registry import generate_default_cfgs, register_model +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._manipulate import named_apply + + +__all__ = ['Hiera'] + + +def conv_nd(n: int) -> Type[nn.Module]: + """ + Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3. + If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises) + """ + return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n] + + +@register_notrace_function +def get_resized_mask(target_size: List[int], mask: torch.Tensor) -> torch.Tensor: + # target_size: [(T), (H), W] + # (spatial) mask: [B, C, (t), (h), w] + if mask is None: + return mask + + _assert(len(mask.shape[2:]) == len(target_size), "mask spatial shape and target_size must match.") + if mask.shape[2:] != target_size: + return F.interpolate(mask.float(), size=target_size) + return mask + + +def undo_windowing( + x: torch.Tensor, + shape: List[int], + mu_shape: List[int], +) -> torch.Tensor: + """ + Restore spatial organization by undoing windowed organization of mask units. + + Args: + x: organized by mask units windows, e.g. in 2d [B, #MUy*#MUx, MUy, MUx, C] + shape: current spatial shape, if it were not organized into mask unit + windows, e.g. in 2d [B, #MUy*MUy, #MUx*MUx, C]. + mu_shape: current mask unit shape, e.g. in 2d [MUy, MUx] + Returns: + x: e.g. in 2d, [B, #MUy*MUy, #MUx*MUx, C] + """ + D = len(shape) + B, C = x.shape[0], x.shape[-1] + # [B, #MUy*#MUx, MUy, MUx, C] -> [B, #MUy, #MUx, MUy, MUx, C] + num_MUs = [s // mu for s, mu in zip(shape, mu_shape)] + x = x.view(B, *num_MUs, *mu_shape, C) + + # [B, #MUy, #MUx, MUy, MUx, C] -> [B, #MUy*MUy, #MUx*MUx, C] + permute = ( + [0] + + sum([list(p) for p in zip(range(1, 1 + D), range(1 + D, 1 + 2 * D))], []) + + [len(x.shape) - 1] + ) + x = x.permute(permute).reshape(B, *shape, C) + + return x + + +class Unroll(nn.Module): + """ + Reorders the tokens such that patches are contiguous in memory. + E.g., given [B, (H, W), C] and stride of (Sy, Sx), this will re-order the tokens as + [B, (Sy, Sx, H // Sy, W // Sx), C] + + This allows operations like Max2d to be computed as x.view(B, Sx*Sy, -1, C).max(dim=1). + Not only is this faster, but it also makes it easy to support inputs of arbitrary + dimensions in addition to patch-wise sparsity. + + Performing this operation multiple times in sequence puts entire windows as contiguous + in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of + size 8x8 would be contiguous in memory, allowing operations like mask unit attention + computed easily and efficiently, while also allowing max to be applied sequentially. + + Note: This means that intermediate values of the model are not in HxW order, so they + need to be re-rolled if you want to use the intermediate values as a HxW feature map. + The last block of the network is fine though, since by then the strides are all consumed. + """ + + def __init__( + self, + input_size: Tuple[int, ...], + patch_stride: Tuple[int, ...], + unroll_schedule: List[Tuple[int, ...]], + ): + super().__init__() + self.size = [i // s for i, s in zip(input_size, patch_stride)] + self.schedule = unroll_schedule + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Input: Flattened patch embeddings [B, N, C] + Output: Patch embeddings [B, N, C] permuted such that [B, 4, N//4, C].max(1) etc. performs MaxPoolNd + """ + B, _, C = x.shape + cur_size = self.size + x = x.view(*([B] + cur_size + [C])) + + for strides in self.schedule: + # Move patches with the given strides to the batch dimension + + # Create a view of the tensor with the patch stride as separate dims + # For example in 2d: [B, H // Sy, Sy, W // Sx, Sx, C] + cur_size = [i // s for i, s in zip(cur_size, strides)] + new_shape = [B] + sum([[i, s] for i, s in zip(cur_size, strides)], []) + [C] + x = x.view(new_shape) + + # Move the patch stride into the batch dimension + # For example in 2d: [B, Sy, Sx, H // Sy, W // Sx, C] + L = len(new_shape) + permute = [0] + list(range(2, L - 1, 2)) + list(range(1, L - 1, 2)) + [L - 1] + x = x.permute(permute) + + # Now finally flatten the relevant dims into the batch dimension + x = x.flatten(0, len(strides)) + B *= math.prod(strides) + + x = x.reshape(-1, math.prod(self.size), C) + return x + + +class Reroll(nn.Module): + """ + Undos the "unroll" operation so that you can use intermediate features. + """ + + def __init__( + self, + input_size: Tuple[int, ...], + patch_stride: Tuple[int, ...], + unroll_schedule: List[Tuple[int, ...]], + stage_ends: List[int], + q_pool: int, + ): + super().__init__() + self.size = [i // s for i, s in zip(input_size, patch_stride)] + + # The first stage has to reverse everything + # The next stage has to reverse all but the first unroll, etc. + self.schedule = {} + size = self.size + for i in range(stage_ends[-1] + 1): + self.schedule[i] = unroll_schedule, size + # schedule unchanged if no pooling at a stage end + if i in stage_ends[:q_pool]: + if len(unroll_schedule) > 0: + size = [n // s for n, s in zip(size, unroll_schedule[0])] + unroll_schedule = unroll_schedule[1:] + + def forward( + self, + x: torch.Tensor, + block_idx: int, + mask: torch.Tensor = None + ) -> torch.Tensor: + """ + Roll the given tensor back up to spatial order assuming it's from the given block. + + If no mask is provided: + - Returns [B, H, W, C] for 2d, [B, T, H, W, C] for 3d, etc. + If a mask is provided: + - Returns [B, #MUs, MUy, MUx, C] for 2d, etc. + """ + schedule, size = self.schedule[block_idx] + B, N, C = x.shape + + D = len(size) + cur_mu_shape = [1] * D + + for strides in schedule: + # Extract the current patch from N + x = x.view(B, *strides, N // math.prod(strides), *cur_mu_shape, C) + + # Move that patch into the current MU + # Example in 2d: [B, Sy, Sx, N//(Sy*Sx), MUy, MUx, C] -> [B, N//(Sy*Sx), Sy, MUy, Sx, MUx, C] + L = len(x.shape) + permute = ( + [0, 1 + D] + + sum([list(p) for p in zip(range(1, 1 + D), range(1 + D + 1, L - 1))], []) + + [L - 1] + ) + x = x.permute(permute) + + # Reshape to [B, N//(Sy*Sx), *MU, C] + for i in range(D): + cur_mu_shape[i] *= strides[i] + x = x.reshape(B, -1, *cur_mu_shape, C) + N = x.shape[1] + + # Current shape (e.g., 2d: [B, #MUy*#MUx, MUy, MUx, C]) + x = x.view(B, N, *cur_mu_shape, C) + + # If masked, return [B, #MUs, MUy, MUx, C] + if mask is not None: + return x + + # If not masked, we can return [B, H, W, C] + x = undo_windowing(x, size, cur_mu_shape) + + return x + + +class MaskUnitAttention(nn.Module): + """ + Computes either Mask Unit or Global Attention. Also is able to perform q pooling. + + Note: this assumes the tokens have already been flattened and unrolled into mask units. + See `Unroll` for more details. + """ + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + dim: int, + dim_out: int, + heads: int, + q_stride: int = 1, + window_size: int = 0, + use_mask_unit_attn: bool = False, + ): + """ + Args: + - dim, dim_out: The input and output feature dimensions. + - heads: The number of attention heads. + - q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4). + - window_size: The current (flattened) size of a mask unit *after* pooling (if any). + - use_mask_unit_attn: Use Mask Unit or Global Attention. + """ + super().__init__() + + self.dim = dim + self.dim_out = dim_out + self.heads = heads + self.q_stride = q_stride + self.head_dim = dim_out // heads + self.scale = self.head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Linear(dim, 3 * dim_out) + self.proj = nn.Linear(dim_out, dim_out) + + self.window_size = window_size + self.use_mask_unit_attn = use_mask_unit_attn + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ Input should be of shape [batch, tokens, channels]. """ + B, N, _ = x.shape + num_windows = (N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1 + qkv = self.qkv(x).reshape(B, -1, num_windows, 3, self.heads, self.head_dim).permute(3, 0, 4, 2, 1, 5) + q, k, v = qkv.unbind(0) + + if self.q_stride > 1: + # Refer to Unroll to see how this performs a maxpool-Nd + q = q.view(B, self.heads, num_windows, self.q_stride, -1, self.head_dim).amax(dim=3) + + if self.fused_attn: + # Note: the original paper did *not* use SDPA, it's a free boost! + x = F.scaled_dot_product_attention(q, k, v) + else: + attn = (q * self.scale) @ k.transpose(-1, -2) + attn = attn.softmax(dim=-1) + x = attn @ v + + x = x.transpose(1, 3).reshape(B, -1, self.dim_out) + x = self.proj(x) + return x + + +class HieraBlock(nn.Module): + def __init__( + self, + dim: int, + dim_out: int, + heads: int, + mlp_ratio: float = 4.0, + drop_path: float = 0.0, + init_values: Optional[float] = None, + norm_layer: nn.Module = nn.LayerNorm, + act_layer: nn.Module = nn.GELU, + q_stride: int = 1, + window_size: int = 0, + use_expand_proj: bool = True, + use_mask_unit_attn: bool = False, + ): + super().__init__() + self.dim = dim + self.dim_out = dim_out + + self.norm1 = norm_layer(dim) + if dim != dim_out: + self.do_expand = True + if use_expand_proj: + self.proj = nn.Linear(dim, dim_out) + else: + assert dim_out == dim * 2 + self.proj = None + else: + self.do_expand = False + self.proj = None + self.attn = MaskUnitAttention( + dim, + dim_out, + heads, + q_stride, + window_size, + use_mask_unit_attn + ) + self.ls1 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0 else nn.Identity() + + self.norm2 = norm_layer(dim_out) + self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer) + self.ls2 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0 else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + # Attention + Q Pooling + x_norm = self.norm1(x) + if self.do_expand: + if self.proj is not None: + x = self.proj(x_norm) + x = x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1) # max-pool + else: + x = torch.cat([ + x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1), # max-pool + x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).mean(dim=1), # avg-pool + ], + dim=-1, + ) + x = x + self.drop_path1(self.ls1(self.attn(x_norm))) + + # MLP + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + + +class PatchEmbed(nn.Module): + """Patch embed that supports any number of spatial dimensions (1d, 2d, 3d).""" + + def __init__( + self, + dim_in: int, + dim_out: int, + kernel: Tuple[int, ...], + stride: Tuple[int, ...], + padding: Tuple[int, ...], + reshape: bool = True, + ): + super().__init__() + + # Support any number of spatial dimensions + self.spatial_dims = len(kernel) + self.reshape = reshape + self.proj = conv_nd(self.spatial_dims)( + dim_in, + dim_out, + kernel_size=kernel, + stride=stride, + padding=padding, + ) + + def forward( + self, + x: torch.Tensor, + mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + if mask is not None: + mask = get_resized_mask(target_size=x.shape[2:], mask=mask) + x = self.proj(x * mask.to(torch.bool)) + else: + x = self.proj(x) + if self.reshape: + x = x.reshape(x.shape[0], x.shape[1], -1).transpose(2, 1) + return x + + +class Hiera(nn.Module): + + def __init__( + self, + img_size: Tuple[int, ...] = (224, 224), + in_chans: int = 3, + embed_dim: int = 96, # initial embed dim + num_heads: int = 1, # initial number of heads + num_classes: int = 1000, + global_pool: str = 'avg', + stages: Tuple[int, ...] = (2, 3, 16, 3), + q_pool: int = 3, # number of q_pool stages + q_stride: Tuple[int, ...] = (2, 2), + mask_unit_size: Tuple[int, ...] = (8, 8), # must divide q_stride ** (#stages-1) + # mask_unit_attn: which stages use mask unit attention? + mask_unit_attn: Tuple[bool, ...] = (True, True, False, False), + use_expand_proj: bool = True, + dim_mul: float = 2.0, + head_mul: float = 2.0, + patch_kernel: Tuple[int, ...] = (7, 7), + patch_stride: Tuple[int, ...] = (4, 4), + patch_padding: Tuple[int, ...] = (3, 3), + mlp_ratio: float = 4.0, + drop_path_rate: float = 0.0, + init_values: Optional[float] = None, + fix_init: bool = True, + weight_init: str = '', + norm_layer: Union[str, nn.Module] = "LayerNorm", + drop_rate: float = 0.0, + patch_drop_rate: float = 0.0, + head_init_scale: float = 0.001, + sep_pos_embed: bool = False, + abs_win_pos_embed: bool = False, + global_pos_size: Tuple[int, int] = (14, 14), + ): + super().__init__() + self.num_classes = num_classes + self.grad_checkpointing = False + norm_layer = get_norm_layer(norm_layer) + if isinstance(img_size, int): + img_size = to_2tuple(img_size) + + self.patch_stride = patch_stride + self.tokens_spatial_shape = [i // s for i, s in zip(img_size, patch_stride)] + num_tokens = math.prod(self.tokens_spatial_shape) + flat_mu_size = math.prod(mask_unit_size) + flat_q_stride = math.prod(q_stride) + assert q_pool < len(stages) + self.q_pool, self.q_stride = q_pool, q_stride + self.mu_size, self.mask_unit_size = flat_mu_size, mask_unit_size + self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, self.mask_unit_size)] + self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] + self.patch_drop_rate = patch_drop_rate + + self.patch_embed = PatchEmbed( + in_chans, + embed_dim, + patch_kernel, + patch_stride, + patch_padding, + ) + + self.pos_embed: Optional[nn.Parameter] = None + self.pos_embed_win: Optional[nn.Parameter] = None + self.pos_embed_spatial: Optional[nn.Parameter] = None + self.pos_embed_temporal: Optional[nn.Parameter] = None + if sep_pos_embed: + self.pos_embed_spatial = nn.Parameter( + torch.zeros(1, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], embed_dim) + ) + self.pos_embed_temporal = nn.Parameter( + torch.zeros(1, self.tokens_spatial_shape[0], embed_dim) + ) + else: + if abs_win_pos_embed: + # absolute win, params NCHW to make tile & interpolate more natural before add & reshape + self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *global_pos_size)) + self.pos_embed_win = nn.Parameter(torch.zeros(1, embed_dim, *mask_unit_size)) + else: + self.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim)) + + # Setup roll and reroll modules + self.unroll = Unroll( + img_size, + patch_stride, + [q_stride] * len(self.stage_ends[:-1]) + ) + self.reroll = Reroll( + img_size, + patch_stride, + [q_stride] * len(self.stage_ends[:-1]), + self.stage_ends, + q_pool, + ) + # q_pool locations + q_pool_blocks = [x + 1 for x in self.stage_ends[:q_pool]] + + # Transformer blocks + cur_stage = 0 + depth = sum(stages) + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.blocks = nn.ModuleList() + self.feature_info = [] + for i in range(depth): + dim_out = embed_dim + # Mask unit or global attention. + # Lag by 1 block, so that global attention, + # applied post pooling on lower resolution + use_mask_unit_attn = mask_unit_attn[cur_stage] + + if i - 1 in self.stage_ends: + dim_out = int(embed_dim * dim_mul) + num_heads = int(num_heads * head_mul) + cur_stage += 1 + if i in q_pool_blocks: + flat_mu_size //= flat_q_stride + + block = HieraBlock( + dim=embed_dim, + dim_out=dim_out, + heads=num_heads, + mlp_ratio=mlp_ratio, + drop_path=dpr[i], + init_values=init_values, + norm_layer=norm_layer, + q_stride=(flat_q_stride if i in q_pool_blocks else 1), + window_size=flat_mu_size, + use_expand_proj=use_expand_proj, + use_mask_unit_attn=use_mask_unit_attn, + ) + embed_dim = dim_out + if i in self.stage_ends: + self.feature_info += [ + dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')] + self.blocks.append(block) + + self.num_features = self.head_hidden_size = embed_dim + self.head = ClNormMlpClassifierHead( + embed_dim, + num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + norm_layer=norm_layer, + input_fmt='NLC', + ) + + # Initialize everything + if sep_pos_embed: + nn.init.trunc_normal_(self.pos_embed_spatial, std=0.02) + nn.init.trunc_normal_(self.pos_embed_temporal, std=0.02) + else: + if self.pos_embed is not None: + nn.init.trunc_normal_(self.pos_embed, std=0.02) + if self.pos_embed_win is not None: + nn.init.trunc_normal_(self.pos_embed_win, std=0.02) + + if weight_init != 'skip': + init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit + init_fn = partial(init_fn, classifier_name='head.fc') + named_apply(init_fn, self) + if fix_init: + self.fix_init_weight() + if isinstance(self.head.fc, nn.Linear): + self.head.fc.weight.data.mul_(head_init_scale) + self.head.fc.bias.data.mul_(head_init_scale) + + def fix_init_weight(self): + def rescale(param, _layer_id): + param.div_(math.sqrt(2.0 * _layer_id)) + + for layer_id, layer in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + @torch.jit.ignore + def no_weight_decay(self): + if self.pos_embed is not None: + return ["pos_embed"] + elif self.pos_embed_abs is not None: + return ['pos_embed_abs', 'pos_embed_win'] + else: + return ["pos_embed_spatial", "pos_embed_temporal"] + + @torch.jit.ignore + def group_matcher(self, coarse: bool = False) -> Dict: + return dict( + stem=r'^pos_embed|pos_embed_spatial|pos_embed_temporal|pos_embed_abs|pos_embed_win|patch_embed', + blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool = True) -> None: + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self): + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool, reset_other=reset_other) + + def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor: + """ + Generates a random mask, mask_ratio fraction are dropped. + 1 is *keep*, 0 is *remove*. Useful for MAE, FLIP, etc. + """ + B = x.shape[0] + # Tokens selected for masking at mask unit level + num_windows = math.prod(self.mask_spatial_shape) # num_mask_units + len_keep = int(num_windows * (1 - mask_ratio)) + noise = torch.rand(B, num_windows, device=x.device) + + # Sort noise for each sample + ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove + ids_restore = torch.argsort(ids_shuffle, dim=1) + + # Generate the binary mask: 1 is *keep*, 0 is *remove* + # Note this is opposite to original MAE + mask = torch.zeros([B, num_windows], device=x.device) + mask[:, :len_keep] = 1 + # Unshuffle to get the binary mask + mask = torch.gather(mask, dim=1, index=ids_restore) + + return mask.bool() + + def _pos_embed(self, x) -> torch.Tensor: + if self.pos_embed_win is not None: + # absolute win position embedding, from + # Window Attention is Bugged: How not to Interpolate Position Embeddings (https://arxiv.org/abs/2311.05613) + pos_embed_win = self.pos_embed_win.tile(self.mask_spatial_shape) + pos_embed = F.interpolate( + self.pos_embed, + size=pos_embed_win.shape[-2:], + mode='bicubic', + antialias=True, + ) + pos_embed = pos_embed + pos_embed_win + pos_embed = pos_embed.flatten(2).transpose(1, 2) + elif self.pos_embed is not None: + pos_embed = self.pos_embed + else: + pos_embed = ( + self.pos_embed_spatial.repeat(1, self.tokens_spatial_shape[0], 1) + + + torch.repeat_interleave( + self.pos_embed_temporal, + self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], + dim=1, + ) + ) + x = x + pos_embed + return x + + def forward_intermediates( + self, + x: torch.Tensor, + mask: Optional[torch.Tensor] = None, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = True, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + coarse: bool = True, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert not norm, 'normalization of features not supported' + assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.' + if coarse: + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + else: + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + + if mask is not None: + patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape + else: + patch_mask = None + x = self.patch_embed(x, mask=patch_mask) + x = self._pos_embed(x) + x = self.unroll(x) + + # Discard masked tokens + if mask is not None: + x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1]) + + intermediates = [] + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for i, blk in enumerate(blocks): + x = blk(x) + if i in take_indices: + x_int = self.reroll(x, i, mask=mask) + intermediates.append(x_int.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x_int) + + if intermediates_only: + return intermediates + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + coarse: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + if coarse: + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + else: + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] # truncate blocks + if prune_head: + self.head.reset(0, reset_other=True) + return take_indices + + def forward_features( + self, + x: torch.Tensor, + mask: Optional[torch.Tensor] = None, + return_intermediates: bool = False, + ) -> torch.Tensor: + """ + mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim. + Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch. + """ + if self.training and self.patch_drop_rate > 0: + # using mask for something like 'patch dropout' via mask-units in supervised train / fine-tune + assert mask is None + mask = self.get_random_mask(x, mask_ratio=self.patch_drop_rate) + + if mask is not None: + patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape + else: + patch_mask = None + x = self.patch_embed(x, mask=patch_mask) + x = self._pos_embed(x) + x = self.unroll(x) + + # Discard masked tokens + if mask is not None: + x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1]) + + intermediates = [] + for i, blk in enumerate(self.blocks): + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(blk, x) + else: + x = blk(x) + if return_intermediates and i in self.stage_ends: + intermediates.append(self.reroll(x, i, mask=mask)) + + # x may not always be in spatial order here. + # e.g. if q_pool = 2, mask_unit_size = (8, 8), and + # q_stride = (2, 2), not all unrolls were consumed, + # intermediates[-1] is x in spatial order + if return_intermediates: + return x, intermediates + + return x + + def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: + x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + return x + + def forward( + self, + x: torch.Tensor, + mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + x = self.forward_features(x, mask=mask) + if mask is None: + x = self.forward_head(x) + return x + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + "hiera_tiny_224.mae_in1k_ft_in1k": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + ), + "hiera_tiny_224.mae": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + num_classes=0, + ), + + "hiera_small_224.mae_in1k_ft_in1k": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + ), + "hiera_small_224.mae": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + num_classes=0, + ), + + "hiera_base_224.mae_in1k_ft_in1k": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + ), + "hiera_base_224.mae": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + num_classes=0, + ), + + "hiera_base_plus_224.mae_in1k_ft_in1k": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + ), + "hiera_base_plus_224.mae": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + num_classes=0, + ), + + "hiera_large_224.mae_in1k_ft_in1k": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + ), + "hiera_large_224.mae": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + num_classes=0, + ), + + "hiera_huge_224.mae_in1k_ft_in1k": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + ), + "hiera_huge_224.mae": _cfg( + hf_hub_id='timm/', + license='cc-by-nc-4.0', + num_classes=0, + ), + + "hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k": _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95, + ), + "hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k": _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95, + ), + "hiera_small_abswin_256.sbb2_e200_in12k": _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 256, 256), crop_pct=0.95, + ), + "hiera_small_abswin_256.sbb2_pd_e200_in12k": _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 256, 256), crop_pct=0.95, + ), + "hiera_base_abswin_256.untrained": _cfg( + # hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95, + ), +}) + + +def checkpoint_filter_fn(state_dict, model=None): + state_dict = state_dict.get('model_state', state_dict) + output = {} + for k, v in state_dict.items(): + # if k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: + # # To resize pos embedding when using model at different size from pretrained weights + # from timm.layers import resample_abs_pos_embed + # v = resample_abs_pos_embed( + # v, + # new_size=(64, 64), + # num_prefix_tokens=0, + # verbose=True, + # ) + if 'head.projection.' in k: + k = k.replace('head.projection.', 'head.fc.') + if k.startswith('encoder_norm.'): + k = k.replace('encoder_norm.', 'head.norm.') + elif k.startswith('norm.'): + k = k.replace('norm.', 'head.norm.') + if k == 'pos_embed_abs': + k = 'pos_embed' + output[k] = v + return output + + +def _create_hiera(variant: str, pretrained: bool = False, **kwargs) -> Hiera: + out_indices = kwargs.pop('out_indices', 4) + + return build_model_with_cfg( + Hiera, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + + +@register_model +def hiera_tiny_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 7, 2)) + return _create_hiera('hiera_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def hiera_small_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 11, 2)) + return _create_hiera('hiera_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def hiera_base_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3)) + return _create_hiera('hiera_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def hiera_base_plus_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=112, num_heads=2, stages=(2, 3, 16, 3)) + return _create_hiera('hiera_base_plus_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def hiera_large_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=144, num_heads=2, stages=(2, 6, 36, 4)) + return _create_hiera('hiera_large_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def hiera_huge_224(pretrained=False, **kwargs): + model_args = dict(embed_dim=256, num_heads=4, stages=(2, 6, 36, 4)) + return _create_hiera('hiera_huge_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def hiera_small_abswin_256(pretrained=False, **kwargs): + model_args = dict( + embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), abs_win_pos_embed=True, global_pos_size=(16, 16), + init_values=1e-5, weight_init='jax', use_expand_proj=False, + ) + return _create_hiera('hiera_small_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def hiera_base_abswin_256(pretrained=False, **kwargs): + model_args = dict( + embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), abs_win_pos_embed=True, init_values=1e-5, weight_init='jax') + return _create_hiera('hiera_base_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/hieradet_sam2.py b/pytorch-image-models/timm/models/hieradet_sam2.py new file mode 100644 index 0000000000000000000000000000000000000000..d9585a526c6640b45a3e66094fdd618f5bad2bdc --- /dev/null +++ b/pytorch-image-models/timm/models/hieradet_sam2.py @@ -0,0 +1,635 @@ +import math +from copy import deepcopy +from functools import partial +from typing import Callable, Dict, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.jit import Final + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, ClNormMlpClassifierHead, LayerScale, \ + get_norm_layer, get_act_layer, init_weight_jax, init_weight_vit, to_2tuple, use_fused_attn + +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv +from ._registry import generate_default_cfgs, register_model, register_model_deprecations + + +def window_partition(x, window_size: Tuple[int, int]): + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + + +def window_unpartition(windows: torch.Tensor, window_size: Tuple[int, int], hw: Tuple[int, int]): + """ + Window unpartition into original sequences and removing padding. + Args: + x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + hw (Tuple): original height and width (H, W) before padding. + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + H, W = hw + B = windows.shape[0] // (H * W // window_size[0] // window_size[1]) + x = windows.view(B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + +def _calc_pad(H: int, W: int, window_size: Tuple[int, int]) -> Tuple[int, int, int, int]: + pad_h = (window_size[0] - H % window_size[0]) % window_size[0] + pad_w = (window_size[1] - W % window_size[1]) % window_size[1] + Hp, Wp = H + pad_h, W + pad_w + return Hp, Wp, pad_h, pad_w + + +class MultiScaleAttention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + dim: int, + dim_out: int, + num_heads: int, + q_pool: nn.Module = None, + ): + super().__init__() + self.dim = dim + self.dim_out = dim_out + self.num_heads = num_heads + head_dim = dim_out // num_heads + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.q_pool = q_pool + self.qkv = nn.Linear(dim, dim_out * 3) + self.proj = nn.Linear(dim_out, dim_out) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, _ = x.shape + + # qkv with shape (B, H * W, 3, nHead, C) + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) + + # q, k, v with shape (B, H * W, nheads, C) + q, k, v = torch.unbind(qkv, 2) + + # Q pooling (for downsample at stage changes) + if self.q_pool is not None: + q = q.reshape(B, H, W, -1).permute(0, 3, 1, 2) # to BCHW for pool + q = self.q_pool(q).permute(0, 2, 3, 1) + H, W = q.shape[1:3] # downsampled shape + q = q.reshape(B, H * W, self.num_heads, -1) + + # Torch's SDPA expects [B, nheads, H*W, C] so we transpose + q = q.transpose(1, 2) + k = k.transpose(1, 2) + v = v.transpose(1, 2) + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v) + else: + q = q * self.scale + attn = q @ k.transpose(-1, -2) + attn = attn.softmax(dim=-1) + x = attn @ v + + # Transpose back + x = x.transpose(1, 2).reshape(B, H, W, -1) + + x = self.proj(x) + return x + + +class MultiScaleBlock(nn.Module): + def __init__( + self, + dim: int, + dim_out: int, + num_heads: int, + mlp_ratio: float = 4.0, + q_stride: Optional[Tuple[int, int]] = None, + norm_layer: Union[nn.Module, str] = "LayerNorm", + act_layer: Union[nn.Module, str] = "GELU", + window_size: int = 0, + init_values: Optional[float] = None, + drop_path: float = 0.0, + ): + super().__init__() + norm_layer = get_norm_layer(norm_layer) + act_layer = get_act_layer(act_layer) + self.window_size = to_2tuple(window_size) + self.is_windowed = any(self.window_size) + self.dim = dim + self.dim_out = dim_out + self.q_stride = q_stride + + if dim != dim_out: + self.proj = nn.Linear(dim, dim_out) + else: + self.proj = nn.Identity() + self.pool = None + if self.q_stride: + # note make a different instance for this Module so that it's not shared with attn module + self.pool = nn.MaxPool2d( + kernel_size=q_stride, + stride=q_stride, + ceil_mode=False, + ) + + self.norm1 = norm_layer(dim) + self.attn = MultiScaleAttention( + dim, + dim_out, + num_heads=num_heads, + q_pool=deepcopy(self.pool), + ) + self.ls1 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + self.norm2 = norm_layer(dim_out) + self.mlp = Mlp( + dim_out, + int(dim_out * mlp_ratio), + act_layer=act_layer, + ) + self.ls2 = LayerScale(dim_out, init_values) if init_values is not None else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x # B, H, W, C + x = self.norm1(x) + + # Skip connection + if self.dim != self.dim_out: + shortcut = self.proj(x) + if self.pool is not None: + shortcut = shortcut.permute(0, 3, 1, 2) + shortcut = self.pool(shortcut).permute(0, 2, 3, 1) + + # Window partition + window_size = self.window_size + H, W = x.shape[1:3] + Hp, Wp = H, W # keep torchscript happy + if self.is_windowed: + Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size) + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + x = window_partition(x, window_size) + + # Window Attention + Q Pooling (if stage change) + x = self.attn(x) + if self.q_stride is not None: + # Shapes have changed due to Q pooling + window_size = (self.window_size[0] // self.q_stride[0], self.window_size[1] // self.q_stride[1]) + H, W = shortcut.shape[1:3] + Hp, Wp, pad_h, pad_w = _calc_pad(H, W, window_size) + + # Reverse window partition + if self.is_windowed: + x = window_unpartition(x, window_size, (Hp, Wp)) + x = x[:, :H, :W, :].contiguous() # unpad + + x = shortcut + self.drop_path1(self.ls1(x)) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + + +class HieraPatchEmbed(nn.Module): + """ + Image to Patch Embedding. + """ + + def __init__( + self, + kernel_size: Tuple[int, ...] = (7, 7), + stride: Tuple[int, ...] = (4, 4), + padding: Tuple[int, ...] = (3, 3), + in_chans: int = 3, + embed_dim: int = 768, + ): + """ + Args: + kernel_size (Tuple): kernel size of the projection layer. + stride (Tuple): stride of the projection layer. + padding (Tuple): padding size of the projection layer. + in_chans (int): Number of input image channels. + embed_dim (int): embed_dim (int): Patch embedding dimension. + """ + super().__init__() + self.proj = nn.Conv2d( + in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + # B C H W -> B H W C + x = x.permute(0, 2, 3, 1) + return x + + +class HieraDet(nn.Module): + """ + Reference: https://arxiv.org/abs/2306.00989 + """ + + def __init__( + self, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: str = 'avg', + embed_dim: int = 96, # initial embed dim + num_heads: int = 1, # initial number of heads + patch_kernel: Tuple[int, ...] = (7, 7), + patch_stride: Tuple[int, ...] = (4, 4), + patch_padding: Tuple[int, ...] = (3, 3), + patch_size: Optional[Tuple[int, ...]] = None, + q_pool: int = 3, # number of q_pool stages + q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages + stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage + dim_mul: float = 2.0, # dim_mul factor at stage shift + head_mul: float = 2.0, # head_mul factor at stage shift + global_pos_size: Tuple[int, int] = (7, 7), + # window size per stage, when not using global att. + window_spec: Tuple[int, ...] = ( + 8, + 4, + 14, + 7, + ), + # global attn in these blocks + global_att_blocks: Tuple[int, ...] = ( + 12, + 16, + 20, + ), + init_values: Optional[float] = None, + weight_init: str = '', + fix_init: bool = True, + head_init_scale: float = 0.001, + drop_rate: float = 0.0, + drop_path_rate: float = 0.0, # stochastic depth + norm_layer: Union[nn.Module, str] = "LayerNorm", + act_layer: Union[nn.Module, str] = "GELU", + ): + super().__init__() + norm_layer = get_norm_layer(norm_layer) + act_layer = get_act_layer(act_layer) + assert len(stages) == len(window_spec) + self.num_classes = num_classes + self.window_spec = window_spec + self.output_fmt = 'NHWC' + + depth = sum(stages) + self.q_stride = q_stride + self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] + assert 0 <= q_pool <= len(self.stage_ends[:-1]) + self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] + + if patch_size is not None: + # use a non-overlapping vit style patch embed + self.patch_embed = PatchEmbed( + img_size=None, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + output_fmt='NHWC', + dynamic_img_pad=True, + ) + else: + self.patch_embed = HieraPatchEmbed( + kernel_size=patch_kernel, + stride=patch_stride, + padding=patch_padding, + in_chans=in_chans, + embed_dim=embed_dim, + ) + # Which blocks have global att? + self.global_att_blocks = global_att_blocks + + # Windowed positional embedding (https://arxiv.org/abs/2311.05613) + self.global_pos_size = global_pos_size + self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.global_pos_size)) + self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])) + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + cur_stage = 0 + self.blocks = nn.Sequential() + self.feature_info = [] + for i in range(depth): + dim_out = embed_dim + # lags by a block, so first block of + # next stage uses an initial window size + # of previous stage and final window size of current stage + window_size = self.window_spec[cur_stage] + + if self.global_att_blocks is not None: + window_size = 0 if i in self.global_att_blocks else window_size + + if i - 1 in self.stage_ends: + dim_out = int(embed_dim * dim_mul) + num_heads = int(num_heads * head_mul) + cur_stage += 1 + + block = MultiScaleBlock( + dim=embed_dim, + dim_out=dim_out, + num_heads=num_heads, + drop_path=dpr[i], + q_stride=self.q_stride if i in self.q_pool_blocks else None, + window_size=window_size, + norm_layer=norm_layer, + act_layer=act_layer, + ) + + embed_dim = dim_out + self.blocks.append(block) + if i in self.stage_ends: + self.feature_info += [ + dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')] + + self.num_features = self.head_hidden_size = embed_dim + self.head = ClNormMlpClassifierHead( + embed_dim, + num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + norm_layer=norm_layer, + ) + + # Initialize everything + if self.pos_embed is not None: + nn.init.trunc_normal_(self.pos_embed, std=0.02) + + if self.pos_embed_window is not None: + nn.init.trunc_normal_(self.pos_embed_window, std=0.02) + + if weight_init != 'skip': + init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit + init_fn = partial(init_fn, classifier_name='head.fc') + named_apply(init_fn, self) + + if fix_init: + self.fix_init_weight() + + if isinstance(self.head, ClNormMlpClassifierHead) and isinstance(self.head.fc, nn.Linear): + self.head.fc.weight.data.mul_(head_init_scale) + self.head.fc.bias.data.mul_(head_init_scale) + + def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: + h, w = x.shape[1:3] + window_embed = self.pos_embed_window + pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") + tile_h = pos_embed.shape[-2] // window_embed.shape[-2] + tile_w = pos_embed.shape[-1] // window_embed.shape[-1] + pos_embed = pos_embed + window_embed.tile((tile_h, tile_w)) + pos_embed = pos_embed.permute(0, 2, 3, 1) + return x + pos_embed + + def fix_init_weight(self): + def rescale(param, _layer_id): + param.div_(math.sqrt(2.0 * _layer_id)) + + for layer_id, layer in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + @torch.jit.ignore + def no_weight_decay(self): + return ['pos_embed', 'pos_embed_window'] + + @torch.jit.ignore + def group_matcher(self, coarse: bool = False) -> Dict: + return dict( + stem=r'^pos_embed|pos_embed_window|patch_embed', + blocks=[(r'^blocks\.(\d+)', None)] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool = True) -> None: + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self): + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False): + self.num_classes = num_classes + self.head.reset(num_classes, pool_type=global_pool, reset_other=reset_other) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = True, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + coarse: bool = True, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + coarse: Take coarse features (stage ends) if true, otherwise all block featrures + Returns: + + """ + assert not norm, 'normalization of features not supported' + assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.' + if coarse: + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + else: + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + + x = self.patch_embed(x) + x = self._pos_embed(x) + + intermediates = [] + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for i, blk in enumerate(blocks): + x = blk(x) + if i in take_indices: + x_out = x.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x + intermediates.append(x_out) + + if intermediates_only: + return intermediates + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + coarse: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + if coarse: + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + else: + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] # truncate blocks + if prune_head: + self.head.reset(0, reset_other=prune_norm) + return take_indices + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.patch_embed(x) # BHWC + x = self._pos_embed(x) + for i, blk in enumerate(self.blocks): + x = blk(x) + return x + + def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: + x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + return x + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +# NOTE sam2 appears to use 1024x1024 for all models, but T, S, & B+ have windows that fit multiples of 224. +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 0, 'input_size': (3, 896, 896), 'pool_size': (28, 28), + 'crop_pct': 1.0, 'interpolation': 'bicubic', 'min_input_size': (3, 224, 224), + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + "sam2_hiera_tiny.r224": _cfg( + hf_hub_id='facebook/sam2-hiera-tiny', + hf_hub_filename='sam2_hiera_tiny.pt', + input_size=(3, 224, 224), pool_size=(7, 7), + ), # FIXME reduced res for testing + "sam2_hiera_tiny.r896": _cfg( + hf_hub_id='facebook/sam2-hiera-tiny', + hf_hub_filename='sam2_hiera_tiny.pt', + ), + "sam2_hiera_small": _cfg( + hf_hub_id='facebook/sam2-hiera-small', + hf_hub_filename='sam2_hiera_small.pt', + ), + "sam2_hiera_base_plus": _cfg( + hf_hub_id='facebook/sam2-hiera-base-plus', + hf_hub_filename='sam2_hiera_base_plus.pt', + ), + "sam2_hiera_large": _cfg( + hf_hub_id='facebook/sam2-hiera-large', + hf_hub_filename='sam2_hiera_large.pt', + min_input_size=(3, 256, 256), + input_size=(3, 1024, 1024), pool_size=(32, 32), + ), + "hieradet_small.untrained": _cfg( + num_classes=1000, + input_size=(3, 256, 256), pool_size=(8, 8), + ), +}) + + +def checkpoint_filter_fn(state_dict, model=None, prefix=''): + state_dict = state_dict.get('model', state_dict) + + output = {} + for k, v in state_dict.items(): + if k.startswith(prefix): + k = k.replace(prefix, '') + else: + continue + k = k.replace('mlp.layers.0', 'mlp.fc1') + k = k.replace('mlp.layers.1', 'mlp.fc2') + output[k] = v + return output + + +def _create_hiera_det(variant: str, pretrained: bool = False, **kwargs) -> HieraDet: + out_indices = kwargs.pop('out_indices', 4) + checkpoint_prefix = '' + if 'sam2' in variant: + # SAM2 pretrained weights have no classifier or final norm-layer (`head.norm`) + # This is workaround loading with num_classes=0 w/o removing norm-layer. + kwargs.setdefault('pretrained_strict', False) + checkpoint_prefix = 'image_encoder.trunk.' + return build_model_with_cfg( + HieraDet, + variant, + pretrained, + pretrained_filter_fn=partial(checkpoint_filter_fn, prefix=checkpoint_prefix), + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + + +@register_model +def sam2_hiera_tiny(pretrained=False, **kwargs): + model_args = dict(stages=(1, 2, 7, 2), global_att_blocks=(5, 7, 9)) + return _create_hiera_det('sam2_hiera_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def sam2_hiera_small(pretrained=False, **kwargs): + model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13)) + return _create_hiera_det('sam2_hiera_small', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def sam2_hiera_base_plus(pretrained=False, **kwargs): + model_args = dict(embed_dim=112, num_heads=2, global_pos_size=(14, 14)) + return _create_hiera_det('sam2_hiera_base_plus', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def sam2_hiera_large(pretrained=False, **kwargs): + model_args = dict( + embed_dim=144, + num_heads=2, + stages=(2, 6, 36, 4), + global_att_blocks=(23, 33, 43), + window_spec=(8, 4, 16, 8), + ) + return _create_hiera_det('sam2_hiera_large', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def hieradet_small(pretrained=False, **kwargs): + model_args = dict(stages=(1, 2, 11, 2), global_att_blocks=(7, 10, 13), window_spec=(8, 4, 16, 8), init_values=1e-5) + return _create_hiera_det('hieradet_small', pretrained=pretrained, **dict(model_args, **kwargs)) + + +# @register_model +# def hieradet_base(pretrained=False, **kwargs): +# model_args = dict(window_spec=(8, 4, 16, 8)) +# return _create_hiera_det('hieradet_base', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/hrnet.py b/pytorch-image-models/timm/models/hrnet.py new file mode 100644 index 0000000000000000000000000000000000000000..75b157d67d0cdd2efacc78c43cf0e498168a24b4 --- /dev/null +++ b/pytorch-image-models/timm/models/hrnet.py @@ -0,0 +1,979 @@ +""" HRNet + +Copied from https://github.com/HRNet/HRNet-Image-Classification + +Original header: + Copyright (c) Microsoft + Licensed under the MIT License. + Written by Bin Xiao (Bin.Xiao@microsoft.com) + Modified by Ke Sun (sunk@mail.ustc.edu.cn) +""" +import logging +from typing import List + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import create_classifier +from ._builder import build_model_with_cfg, pretrained_cfg_for_features +from ._features import FeatureInfo +from ._registry import register_model, generate_default_cfgs +from .resnet import BasicBlock, Bottleneck # leveraging ResNet block_types w/ additional features like SE + +__all__ = ['HighResolutionNet', 'HighResolutionNetFeatures'] # model_registry will add each entrypoint fn to this + +_BN_MOMENTUM = 0.1 +_logger = logging.getLogger(__name__) + + +cfg_cls = dict( + hrnet_w18_small=dict( + stem_width=64, + stage1=dict( + num_modules=1, + num_branches=1, + block_type='BOTTLENECK', + num_blocks=(1,), + num_channels=(32,), + fuse_method='SUM', + ), + stage2=dict( + num_modules=1, + num_branches=2, + block_type='BASIC', + num_blocks=(2, 2), + num_channels=(16, 32), + fuse_method='SUM' + ), + stage3=dict( + num_modules=1, + num_branches=3, + block_type='BASIC', + num_blocks=(2, 2, 2), + num_channels=(16, 32, 64), + fuse_method='SUM' + ), + stage4=dict( + num_modules=1, + num_branches=4, + block_type='BASIC', + num_blocks=(2, 2, 2, 2), + num_channels=(16, 32, 64, 128), + fuse_method='SUM', + ), + ), + + hrnet_w18_small_v2=dict( + stem_width=64, + stage1=dict( + num_modules=1, + num_branches=1, + block_type='BOTTLENECK', + num_blocks=(2,), + num_channels=(64,), + fuse_method='SUM', + ), + stage2=dict( + num_modules=1, + num_branches=2, + block_type='BASIC', + num_blocks=(2, 2), + num_channels=(18, 36), + fuse_method='SUM' + ), + stage3=dict( + num_modules=3, + num_branches=3, + block_type='BASIC', + num_blocks=(2, 2, 2), + num_channels=(18, 36, 72), + fuse_method='SUM' + ), + stage4=dict( + num_modules=2, + num_branches=4, + block_type='BASIC', + num_blocks=(2, 2, 2, 2), + num_channels=(18, 36, 72, 144), + fuse_method='SUM', + ), + ), + + hrnet_w18=dict( + stem_width=64, + stage1=dict( + num_modules=1, + num_branches=1, + block_type='BOTTLENECK', + num_blocks=(4,), + num_channels=(64,), + fuse_method='SUM', + ), + stage2=dict( + num_modules=1, + num_branches=2, + block_type='BASIC', + num_blocks=(4, 4), + num_channels=(18, 36), + fuse_method='SUM' + ), + stage3=dict( + num_modules=4, + num_branches=3, + block_type='BASIC', + num_blocks=(4, 4, 4), + num_channels=(18, 36, 72), + fuse_method='SUM' + ), + stage4=dict( + num_modules=3, + num_branches=4, + block_type='BASIC', + num_blocks=(4, 4, 4, 4), + num_channels=(18, 36, 72, 144), + fuse_method='SUM', + ), + ), + + hrnet_w30=dict( + stem_width=64, + stage1=dict( + num_modules=1, + num_branches=1, + block_type='BOTTLENECK', + num_blocks=(4,), + num_channels=(64,), + fuse_method='SUM', + ), + stage2=dict( + num_modules=1, + num_branches=2, + block_type='BASIC', + num_blocks=(4, 4), + num_channels=(30, 60), + fuse_method='SUM' + ), + stage3=dict( + num_modules=4, + num_branches=3, + block_type='BASIC', + num_blocks=(4, 4, 4), + num_channels=(30, 60, 120), + fuse_method='SUM' + ), + stage4=dict( + num_modules=3, + num_branches=4, + block_type='BASIC', + num_blocks=(4, 4, 4, 4), + num_channels=(30, 60, 120, 240), + fuse_method='SUM', + ), + ), + + hrnet_w32=dict( + stem_width=64, + stage1=dict( + num_modules=1, + num_branches=1, + block_type='BOTTLENECK', + num_blocks=(4,), + num_channels=(64,), + fuse_method='SUM', + ), + stage2=dict( + num_modules=1, + num_branches=2, + block_type='BASIC', + num_blocks=(4, 4), + num_channels=(32, 64), + fuse_method='SUM' + ), + stage3=dict( + num_modules=4, + num_branches=3, + block_type='BASIC', + num_blocks=(4, 4, 4), + num_channels=(32, 64, 128), + fuse_method='SUM' + ), + stage4=dict( + num_modules=3, + num_branches=4, + block_type='BASIC', + num_blocks=(4, 4, 4, 4), + num_channels=(32, 64, 128, 256), + fuse_method='SUM', + ), + ), + + hrnet_w40=dict( + stem_width=64, + stage1=dict( + num_modules=1, + num_branches=1, + block_type='BOTTLENECK', + num_blocks=(4,), + num_channels=(64,), + fuse_method='SUM', + ), + stage2=dict( + num_modules=1, + num_branches=2, + block_type='BASIC', + num_blocks=(4, 4), + num_channels=(40, 80), + fuse_method='SUM' + ), + stage3=dict( + num_modules=4, + num_branches=3, + block_type='BASIC', + num_blocks=(4, 4, 4), + num_channels=(40, 80, 160), + fuse_method='SUM' + ), + stage4=dict( + num_modules=3, + num_branches=4, + block_type='BASIC', + num_blocks=(4, 4, 4, 4), + num_channels=(40, 80, 160, 320), + fuse_method='SUM', + ), + ), + + hrnet_w44=dict( + stem_width=64, + stage1=dict( + num_modules=1, + num_branches=1, + block_type='BOTTLENECK', + num_blocks=(4,), + num_channels=(64,), + fuse_method='SUM', + ), + stage2=dict( + num_modules=1, + num_branches=2, + block_type='BASIC', + num_blocks=(4, 4), + num_channels=(44, 88), + fuse_method='SUM' + ), + stage3=dict( + num_modules=4, + num_branches=3, + block_type='BASIC', + num_blocks=(4, 4, 4), + num_channels=(44, 88, 176), + fuse_method='SUM' + ), + stage4=dict( + num_modules=3, + num_branches=4, + block_type='BASIC', + num_blocks=(4, 4, 4, 4), + num_channels=(44, 88, 176, 352), + fuse_method='SUM', + ), + ), + + hrnet_w48=dict( + stem_width=64, + stage1=dict( + num_modules=1, + num_branches=1, + block_type='BOTTLENECK', + num_blocks=(4,), + num_channels=(64,), + fuse_method='SUM', + ), + stage2=dict( + num_modules=1, + num_branches=2, + block_type='BASIC', + num_blocks=(4, 4), + num_channels=(48, 96), + fuse_method='SUM' + ), + stage3=dict( + num_modules=4, + num_branches=3, + block_type='BASIC', + num_blocks=(4, 4, 4), + num_channels=(48, 96, 192), + fuse_method='SUM' + ), + stage4=dict( + num_modules=3, + num_branches=4, + block_type='BASIC', + num_blocks=(4, 4, 4, 4), + num_channels=(48, 96, 192, 384), + fuse_method='SUM', + ), + ), + + hrnet_w64=dict( + stem_width=64, + stage1=dict( + num_modules=1, + num_branches=1, + block_type='BOTTLENECK', + num_blocks=(4,), + num_channels=(64,), + fuse_method='SUM', + ), + stage2=dict( + num_modules=1, + num_branches=2, + block_type='BASIC', + num_blocks=(4, 4), + num_channels=(64, 128), + fuse_method='SUM' + ), + stage3=dict( + num_modules=4, + num_branches=3, + block_type='BASIC', + num_blocks=(4, 4, 4), + num_channels=(64, 128, 256), + fuse_method='SUM' + ), + stage4=dict( + num_modules=3, + num_branches=4, + block_type='BASIC', + num_blocks=(4, 4, 4, 4), + num_channels=(64, 128, 256, 512), + fuse_method='SUM', + ), + ) +) + + +class HighResolutionModule(nn.Module): + def __init__( + self, + num_branches, + block_types, + num_blocks, + num_in_chs, + num_channels, + fuse_method, + multi_scale_output=True, + ): + super(HighResolutionModule, self).__init__() + self._check_branches( + num_branches, + block_types, + num_blocks, + num_in_chs, + num_channels, + ) + + self.num_in_chs = num_in_chs + self.fuse_method = fuse_method + self.num_branches = num_branches + + self.multi_scale_output = multi_scale_output + + self.branches = self._make_branches( + num_branches, + block_types, + num_blocks, + num_channels, + ) + self.fuse_layers = self._make_fuse_layers() + self.fuse_act = nn.ReLU(False) + + def _check_branches(self, num_branches, block_types, num_blocks, num_in_chs, num_channels): + error_msg = '' + if num_branches != len(num_blocks): + error_msg = 'num_branches({}) <> num_blocks({})'.format(num_branches, len(num_blocks)) + elif num_branches != len(num_channels): + error_msg = 'num_branches({}) <> num_channels({})'.format(num_branches, len(num_channels)) + elif num_branches != len(num_in_chs): + error_msg = 'num_branches({}) <> num_in_chs({})'.format(num_branches, len(num_in_chs)) + if error_msg: + _logger.error(error_msg) + raise ValueError(error_msg) + + def _make_one_branch(self, branch_index, block_type, num_blocks, num_channels, stride=1): + downsample = None + if stride != 1 or self.num_in_chs[branch_index] != num_channels[branch_index] * block_type.expansion: + downsample = nn.Sequential( + nn.Conv2d( + self.num_in_chs[branch_index], num_channels[branch_index] * block_type.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(num_channels[branch_index] * block_type.expansion, momentum=_BN_MOMENTUM), + ) + + layers = [block_type(self.num_in_chs[branch_index], num_channels[branch_index], stride, downsample)] + self.num_in_chs[branch_index] = num_channels[branch_index] * block_type.expansion + for i in range(1, num_blocks[branch_index]): + layers.append(block_type(self.num_in_chs[branch_index], num_channels[branch_index])) + + return nn.Sequential(*layers) + + def _make_branches(self, num_branches, block_type, num_blocks, num_channels): + branches = [] + for i in range(num_branches): + branches.append(self._make_one_branch(i, block_type, num_blocks, num_channels)) + + return nn.ModuleList(branches) + + def _make_fuse_layers(self): + if self.num_branches == 1: + return nn.Identity() + + num_branches = self.num_branches + num_in_chs = self.num_in_chs + fuse_layers = [] + for i in range(num_branches if self.multi_scale_output else 1): + fuse_layer = [] + for j in range(num_branches): + if j > i: + fuse_layer.append(nn.Sequential( + nn.Conv2d(num_in_chs[j], num_in_chs[i], 1, 1, 0, bias=False), + nn.BatchNorm2d(num_in_chs[i], momentum=_BN_MOMENTUM), + nn.Upsample(scale_factor=2 ** (j - i), mode='nearest'))) + elif j == i: + fuse_layer.append(nn.Identity()) + else: + conv3x3s = [] + for k in range(i - j): + if k == i - j - 1: + num_out_chs_conv3x3 = num_in_chs[i] + conv3x3s.append(nn.Sequential( + nn.Conv2d(num_in_chs[j], num_out_chs_conv3x3, 3, 2, 1, bias=False), + nn.BatchNorm2d(num_out_chs_conv3x3, momentum=_BN_MOMENTUM) + )) + else: + num_out_chs_conv3x3 = num_in_chs[j] + conv3x3s.append(nn.Sequential( + nn.Conv2d(num_in_chs[j], num_out_chs_conv3x3, 3, 2, 1, bias=False), + nn.BatchNorm2d(num_out_chs_conv3x3, momentum=_BN_MOMENTUM), + nn.ReLU(False) + )) + fuse_layer.append(nn.Sequential(*conv3x3s)) + fuse_layers.append(nn.ModuleList(fuse_layer)) + + return nn.ModuleList(fuse_layers) + + def get_num_in_chs(self): + return self.num_in_chs + + def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: + if self.num_branches == 1: + return [self.branches[0](x[0])] + + for i, branch in enumerate(self.branches): + x[i] = branch(x[i]) + + x_fuse = [] + for i, fuse_outer in enumerate(self.fuse_layers): + y = None + for j, f in enumerate(fuse_outer): + if y is None: + y = f(x[j]) + else: + y = y + f(x[j]) + x_fuse.append(self.fuse_act(y)) + return x_fuse + + +class SequentialList(nn.Sequential): + + def __init__(self, *args): + super(SequentialList, self).__init__(*args) + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (List[torch.Tensor]) -> (List[torch.Tensor]) + pass + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (torch.Tensor) -> (List[torch.Tensor]) + pass + + def forward(self, x) -> List[torch.Tensor]: + for module in self: + x = module(x) + return x + + +@torch.jit.interface +class ModuleInterface(torch.nn.Module): + def forward(self, input: torch.Tensor) -> torch.Tensor: # `input` has a same name in Sequential forward + pass + + +block_types_dict = { + 'BASIC': BasicBlock, + 'BOTTLENECK': Bottleneck +} + + +class HighResolutionNet(nn.Module): + + def __init__( + self, + cfg, + in_chans=3, + num_classes=1000, + output_stride=32, + global_pool='avg', + drop_rate=0.0, + head='classification', + **kwargs, + ): + super(HighResolutionNet, self).__init__() + self.num_classes = num_classes + assert output_stride == 32 # FIXME support dilation + + cfg.update(**kwargs) + stem_width = cfg['stem_width'] + self.conv1 = nn.Conv2d(in_chans, stem_width, kernel_size=3, stride=2, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(stem_width, momentum=_BN_MOMENTUM) + self.act1 = nn.ReLU(inplace=True) + self.conv2 = nn.Conv2d(stem_width, 64, kernel_size=3, stride=2, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(64, momentum=_BN_MOMENTUM) + self.act2 = nn.ReLU(inplace=True) + + self.stage1_cfg = cfg['stage1'] + num_channels = self.stage1_cfg['num_channels'][0] + block_type = block_types_dict[self.stage1_cfg['block_type']] + num_blocks = self.stage1_cfg['num_blocks'][0] + self.layer1 = self._make_layer(block_type, 64, num_channels, num_blocks) + stage1_out_channel = block_type.expansion * num_channels + + self.stage2_cfg = cfg['stage2'] + num_channels = self.stage2_cfg['num_channels'] + block_type = block_types_dict[self.stage2_cfg['block_type']] + num_channels = [num_channels[i] * block_type.expansion for i in range(len(num_channels))] + self.transition1 = self._make_transition_layer([stage1_out_channel], num_channels) + self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels) + + self.stage3_cfg = cfg['stage3'] + num_channels = self.stage3_cfg['num_channels'] + block_type = block_types_dict[self.stage3_cfg['block_type']] + num_channels = [num_channels[i] * block_type.expansion for i in range(len(num_channels))] + self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) + self.stage3, pre_stage_channels = self._make_stage(self.stage3_cfg, num_channels) + + self.stage4_cfg = cfg['stage4'] + num_channels = self.stage4_cfg['num_channels'] + block_type = block_types_dict[self.stage4_cfg['block_type']] + num_channels = [num_channels[i] * block_type.expansion for i in range(len(num_channels))] + self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) + self.stage4, pre_stage_channels = self._make_stage(self.stage4_cfg, num_channels, multi_scale_output=True) + + self.head = head + self.head_channels = None # set if _make_head called + head_conv_bias = cfg.pop('head_conv_bias', True) + if head == 'classification': + # Classification Head + self.num_features = self.head_hidden_size = 2048 + self.incre_modules, self.downsamp_modules, self.final_layer = self._make_head( + pre_stage_channels, + conv_bias=head_conv_bias, + ) + self.global_pool, self.head_drop, self.classifier = create_classifier( + self.num_features, + self.num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + ) + else: + if head == 'incre': + self.num_features = self.head_hidden_size = 2048 + self.incre_modules, _, _ = self._make_head(pre_stage_channels, incre_only=True) + else: + self.num_features = self.head_hidden_size = 256 + self.incre_modules = None + self.global_pool = nn.Identity() + self.head_drop = nn.Identity() + self.classifier = nn.Identity() + + curr_stride = 2 + # module names aren't actually valid here, hook or FeatureNet based extraction would not work + self.feature_info = [dict(num_chs=64, reduction=curr_stride, module='stem')] + for i, c in enumerate(self.head_channels if self.head_channels else num_channels): + curr_stride *= 2 + c = c * 4 if self.head_channels else c # head block_type expansion factor of 4 + self.feature_info += [dict(num_chs=c, reduction=curr_stride, module=f'stage{i + 1}')] + + self.init_weights() + + def _make_head(self, pre_stage_channels, incre_only=False, conv_bias=True): + head_block_type = Bottleneck + self.head_channels = [32, 64, 128, 256] + + # Increasing the #channels on each resolution + # from C, 2C, 4C, 8C to 128, 256, 512, 1024 + incre_modules = [] + for i, channels in enumerate(pre_stage_channels): + incre_modules.append(self._make_layer(head_block_type, channels, self.head_channels[i], 1, stride=1)) + incre_modules = nn.ModuleList(incre_modules) + if incre_only: + return incre_modules, None, None + + # downsampling modules + downsamp_modules = [] + for i in range(len(pre_stage_channels) - 1): + in_channels = self.head_channels[i] * head_block_type.expansion + out_channels = self.head_channels[i + 1] * head_block_type.expansion + downsamp_module = nn.Sequential( + nn.Conv2d( + in_channels=in_channels, out_channels=out_channels, + kernel_size=3, stride=2, padding=1, bias=conv_bias), + nn.BatchNorm2d(out_channels, momentum=_BN_MOMENTUM), + nn.ReLU(inplace=True) + ) + downsamp_modules.append(downsamp_module) + downsamp_modules = nn.ModuleList(downsamp_modules) + + final_layer = nn.Sequential( + nn.Conv2d( + in_channels=self.head_channels[3] * head_block_type.expansion, out_channels=self.num_features, + kernel_size=1, stride=1, padding=0, bias=conv_bias), + nn.BatchNorm2d(self.num_features, momentum=_BN_MOMENTUM), + nn.ReLU(inplace=True) + ) + + return incre_modules, downsamp_modules, final_layer + + def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): + num_branches_cur = len(num_channels_cur_layer) + num_branches_pre = len(num_channels_pre_layer) + + transition_layers = [] + for i in range(num_branches_cur): + if i < num_branches_pre: + if num_channels_cur_layer[i] != num_channels_pre_layer[i]: + transition_layers.append(nn.Sequential( + nn.Conv2d(num_channels_pre_layer[i], num_channels_cur_layer[i], 3, 1, 1, bias=False), + nn.BatchNorm2d(num_channels_cur_layer[i], momentum=_BN_MOMENTUM), + nn.ReLU(inplace=True))) + else: + transition_layers.append(nn.Identity()) + else: + conv3x3s = [] + for j in range(i + 1 - num_branches_pre): + _in_chs = num_channels_pre_layer[-1] + _out_chs = num_channels_cur_layer[i] if j == i - num_branches_pre else _in_chs + conv3x3s.append(nn.Sequential( + nn.Conv2d(_in_chs, _out_chs, 3, 2, 1, bias=False), + nn.BatchNorm2d(_out_chs, momentum=_BN_MOMENTUM), + nn.ReLU(inplace=True))) + transition_layers.append(nn.Sequential(*conv3x3s)) + + return nn.ModuleList(transition_layers) + + def _make_layer(self, block_type, inplanes, planes, block_types, stride=1): + downsample = None + if stride != 1 or inplanes != planes * block_type.expansion: + downsample = nn.Sequential( + nn.Conv2d(inplanes, planes * block_type.expansion, kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block_type.expansion, momentum=_BN_MOMENTUM), + ) + + layers = [block_type(inplanes, planes, stride, downsample)] + inplanes = planes * block_type.expansion + for i in range(1, block_types): + layers.append(block_type(inplanes, planes)) + + return nn.Sequential(*layers) + + def _make_stage(self, layer_config, num_in_chs, multi_scale_output=True): + num_modules = layer_config['num_modules'] + num_branches = layer_config['num_branches'] + num_blocks = layer_config['num_blocks'] + num_channels = layer_config['num_channels'] + block_type = block_types_dict[layer_config['block_type']] + fuse_method = layer_config['fuse_method'] + + modules = [] + for i in range(num_modules): + # multi_scale_output is only used last module + reset_multi_scale_output = multi_scale_output or i < num_modules - 1 + modules.append(HighResolutionModule( + num_branches, block_type, num_blocks, num_in_chs, num_channels, fuse_method, reset_multi_scale_output) + ) + num_in_chs = modules[-1].get_num_in_chs() + + return SequentialList(*modules), num_in_chs + + @torch.jit.ignore + def init_weights(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_( + m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^conv[12]|bn[12]', + block_types=r'^(?:layer|stage|transition)(\d+)' if coarse else [ + (r'^layer(\d+)\.(\d+)', None), + (r'^stage(\d+)\.(\d+)', None), + (r'^transition(\d+)', (99999,)), + ], + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, "gradient checkpointing not supported" + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.classifier = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool) + + def stages(self, x) -> List[torch.Tensor]: + x = self.layer1(x) + + xl = [t(x) for i, t in enumerate(self.transition1)] + yl = self.stage2(xl) + + xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for i, t in enumerate(self.transition2)] + yl = self.stage3(xl) + + xl = [t(yl[-1]) if not isinstance(t, nn.Identity) else yl[i] for i, t in enumerate(self.transition3)] + yl = self.stage4(xl) + return yl + + def forward_features(self, x): + # Stem + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + x = self.conv2(x) + x = self.bn2(x) + x = self.act2(x) + + # Stages + yl = self.stages(x) + if self.incre_modules is None or self.downsamp_modules is None: + return yl + + y = None + for i, incre in enumerate(self.incre_modules): + if y is None: + y = incre(yl[i]) + else: + down: ModuleInterface = self.downsamp_modules[i - 1] # needed for torchscript module indexing + y = incre(yl[i]) + down.forward(y) + + y = self.final_layer(y) + return y + + def forward_head(self, x, pre_logits: bool = False): + # Classification Head + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.classifier(x) + + def forward(self, x): + y = self.forward_features(x) + x = self.forward_head(y) + return x + + +class HighResolutionNetFeatures(HighResolutionNet): + """HighResolutionNet feature extraction + + The design of HRNet makes it easy to grab feature maps, this class provides a simple wrapper to do so. + It would be more complicated to use the FeatureNet helpers. + + The `feature_location=incre` allows grabbing increased channel count features using part of the + classification head. If `feature_location=''` the default HRNet features are returned. First stem + conv is used for stride 2 features. + """ + + def __init__( + self, + cfg, + in_chans=3, + num_classes=1000, + output_stride=32, + global_pool='avg', + drop_rate=0.0, + feature_location='incre', + out_indices=(0, 1, 2, 3, 4), + **kwargs, + ): + assert feature_location in ('incre', '') + super(HighResolutionNetFeatures, self).__init__( + cfg, + in_chans=in_chans, + num_classes=num_classes, + output_stride=output_stride, + global_pool=global_pool, + drop_rate=drop_rate, + head=feature_location, + **kwargs, + ) + self.feature_info = FeatureInfo(self.feature_info, out_indices) + self._out_idx = {f['index'] for f in self.feature_info.get_dicts()} + + def forward_features(self, x): + assert False, 'Not supported' + + def forward(self, x) -> List[torch.Tensor]: + out = [] + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + if 0 in self._out_idx: + out.append(x) + x = self.conv2(x) + x = self.bn2(x) + x = self.act2(x) + x = self.stages(x) + if self.incre_modules is not None: + x = [incre(f) for f, incre in zip(x, self.incre_modules)] + for i, f in enumerate(x): + if i + 1 in self._out_idx: + out.append(f) + return out + + +def _create_hrnet(variant, pretrained=False, cfg_variant=None, **model_kwargs): + model_cls = HighResolutionNet + features_only = False + kwargs_filter = None + if model_kwargs.pop('features_only', False): + model_cls = HighResolutionNetFeatures + kwargs_filter = ('num_classes', 'global_pool') + features_only = True + cfg_variant = cfg_variant or variant + + pretrained_strict = model_kwargs.pop( + 'pretrained_strict', + not features_only and model_kwargs.get('head', 'classification') == 'classification' + ) + model = build_model_with_cfg( + model_cls, + variant, + pretrained, + model_cfg=cfg_cls[cfg_variant], + pretrained_strict=pretrained_strict, + kwargs_filter=kwargs_filter, + **model_kwargs, + ) + if features_only: + model.pretrained_cfg = pretrained_cfg_for_features(model.default_cfg) + model.default_cfg = model.pretrained_cfg # backwards compat + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'conv1', 'classifier': 'classifier', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'hrnet_w18_small.gluon_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic'), + 'hrnet_w18_small.ms_in1k': _cfg(hf_hub_id='timm/'), + 'hrnet_w18_small_v2.gluon_in1k': _cfg(hf_hub_id='timm/', interpolation='bicubic'), + 'hrnet_w18_small_v2.ms_in1k': _cfg(hf_hub_id='timm/'), + 'hrnet_w18.ms_aug_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, + ), + 'hrnet_w18.ms_in1k': _cfg(hf_hub_id='timm/'), + 'hrnet_w30.ms_in1k': _cfg(hf_hub_id='timm/'), + 'hrnet_w32.ms_in1k': _cfg(hf_hub_id='timm/'), + 'hrnet_w40.ms_in1k': _cfg(hf_hub_id='timm/'), + 'hrnet_w44.ms_in1k': _cfg(hf_hub_id='timm/'), + 'hrnet_w48.ms_in1k': _cfg(hf_hub_id='timm/'), + 'hrnet_w64.ms_in1k': _cfg(hf_hub_id='timm/'), + + 'hrnet_w18_ssld.paddle_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288) + ), + 'hrnet_w48_ssld.paddle_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288) + ), +}) + + +@register_model +def hrnet_w18_small(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w18_small', pretrained, **kwargs) + + +@register_model +def hrnet_w18_small_v2(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w18_small_v2', pretrained, **kwargs) + + +@register_model +def hrnet_w18(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w18', pretrained, **kwargs) + + +@register_model +def hrnet_w30(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w30', pretrained, **kwargs) + + +@register_model +def hrnet_w32(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w32', pretrained, **kwargs) + + +@register_model +def hrnet_w40(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w40', pretrained, **kwargs) + + +@register_model +def hrnet_w44(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w44', pretrained, **kwargs) + + +@register_model +def hrnet_w48(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w48', pretrained, **kwargs) + + +@register_model +def hrnet_w64(pretrained=False, **kwargs) -> HighResolutionNet: + return _create_hrnet('hrnet_w64', pretrained, **kwargs) + + +@register_model +def hrnet_w18_ssld(pretrained=False, **kwargs) -> HighResolutionNet: + kwargs.setdefault('head_conv_bias', False) + return _create_hrnet('hrnet_w18_ssld', cfg_variant='hrnet_w18', pretrained=pretrained, **kwargs) + + +@register_model +def hrnet_w48_ssld(pretrained=False, **kwargs) -> HighResolutionNet: + kwargs.setdefault('head_conv_bias', False) + return _create_hrnet('hrnet_w48_ssld', cfg_variant='hrnet_w48', pretrained=pretrained, **kwargs) + diff --git a/pytorch-image-models/timm/models/hub.py b/pytorch-image-models/timm/models/hub.py new file mode 100644 index 0000000000000000000000000000000000000000..85abb264915b0e2696fe0a04ea3f8a5cc9fec020 --- /dev/null +++ b/pytorch-image-models/timm/models/hub.py @@ -0,0 +1,4 @@ +from ._hub import * + +import warnings +warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.models", FutureWarning) diff --git a/pytorch-image-models/timm/models/inception_next.py b/pytorch-image-models/timm/models/inception_next.py new file mode 100644 index 0000000000000000000000000000000000000000..3c4906aa05d1af9eeaef8a9c68626d5a20deb0fc --- /dev/null +++ b/pytorch-image-models/timm/models/inception_next.py @@ -0,0 +1,445 @@ +""" +InceptionNeXt paper: https://arxiv.org/abs/2303.16900 +Original implementation & weights from: https://github.com/sail-sg/inceptionnext +""" + +from functools import partial +from typing import Optional + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import trunc_normal_, DropPath, to_2tuple, get_padding, SelectAdaptivePool2d +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +__all__ = ['MetaNeXt'] + + +class InceptionDWConv2d(nn.Module): + """ Inception depthwise convolution + """ + + def __init__( + self, + in_chs, + square_kernel_size=3, + band_kernel_size=11, + branch_ratio=0.125, + dilation=1, + ): + super().__init__() + + gc = int(in_chs * branch_ratio) # channel numbers of a convolution branch + square_padding = get_padding(square_kernel_size, dilation=dilation) + band_padding = get_padding(band_kernel_size, dilation=dilation) + self.dwconv_hw = nn.Conv2d( + gc, gc, square_kernel_size, + padding=square_padding, dilation=dilation, groups=gc) + self.dwconv_w = nn.Conv2d( + gc, gc, (1, band_kernel_size), + padding=(0, band_padding), dilation=(1, dilation), groups=gc) + self.dwconv_h = nn.Conv2d( + gc, gc, (band_kernel_size, 1), + padding=(band_padding, 0), dilation=(dilation, 1), groups=gc) + self.split_indexes = (in_chs - 3 * gc, gc, gc, gc) + + def forward(self, x): + x_id, x_hw, x_w, x_h = torch.split(x, self.split_indexes, dim=1) + return torch.cat(( + x_id, + self.dwconv_hw(x_hw), + self.dwconv_w(x_w), + self.dwconv_h(x_h) + ), dim=1, + ) + + +class ConvMlp(nn.Module): + """ MLP using 1x1 convs that keeps spatial dims + copied from timm: https://github.com/huggingface/pytorch-image-models/blob/v0.6.11/timm/models/layers/mlp.py + """ + + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.ReLU, + norm_layer=None, + bias=True, + drop=0., + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + + self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0]) + self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity() + self.act = act_layer() + self.drop = nn.Dropout(drop) + self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.norm(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + return x + + +class MlpClassifierHead(nn.Module): + """ MLP classification head + """ + + def __init__( + self, + in_features, + num_classes=1000, + pool_type='avg', + mlp_ratio=3, + act_layer=nn.GELU, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + drop=0., + bias=True + ): + super().__init__() + self.use_conv = False + self.in_features = in_features + self.num_features = hidden_features = int(mlp_ratio * in_features) + + assert pool_type, 'Cannot disable pooling' + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True) + + self.fc1 = nn.Linear(in_features * self.global_pool.feat_mult(), hidden_features, bias=bias) + self.act = act_layer() + self.norm = norm_layer(hidden_features) + self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias) + self.drop = nn.Dropout(drop) + + def reset(self, num_classes: int, pool_type: Optional[str] = None): + if pool_type is not None: + assert pool_type, 'Cannot disable pooling' + self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True) + + self.fc2 = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.fc1(x) + x = self.act(x) + x = self.norm(x) + x = self.drop(x) + return x if pre_logits else self.fc2(x) + + +class MetaNeXtBlock(nn.Module): + """ MetaNeXtBlock Block + Args: + dim (int): Number of input channels. + drop_path (float): Stochastic depth rate. Default: 0.0 + ls_init_value (float): Init value for Layer Scale. Default: 1e-6. + """ + + def __init__( + self, + dim, + dilation=1, + token_mixer=InceptionDWConv2d, + norm_layer=nn.BatchNorm2d, + mlp_layer=ConvMlp, + mlp_ratio=4, + act_layer=nn.GELU, + ls_init_value=1e-6, + drop_path=0., + + ): + super().__init__() + self.token_mixer = token_mixer(dim, dilation=dilation) + self.norm = norm_layer(dim) + self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=act_layer) + self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value else None + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + shortcut = x + x = self.token_mixer(x) + x = self.norm(x) + x = self.mlp(x) + if self.gamma is not None: + x = x.mul(self.gamma.reshape(1, -1, 1, 1)) + x = self.drop_path(x) + shortcut + return x + + +class MetaNeXtStage(nn.Module): + def __init__( + self, + in_chs, + out_chs, + stride=2, + depth=2, + dilation=(1, 1), + drop_path_rates=None, + ls_init_value=1.0, + token_mixer=InceptionDWConv2d, + act_layer=nn.GELU, + norm_layer=None, + mlp_ratio=4, + ): + super().__init__() + self.grad_checkpointing = False + if stride > 1 or dilation[0] != dilation[1]: + self.downsample = nn.Sequential( + norm_layer(in_chs), + nn.Conv2d( + in_chs, + out_chs, + kernel_size=2, + stride=stride, + dilation=dilation[0], + ), + ) + else: + self.downsample = nn.Identity() + + drop_path_rates = drop_path_rates or [0.] * depth + stage_blocks = [] + for i in range(depth): + stage_blocks.append(MetaNeXtBlock( + dim=out_chs, + dilation=dilation[1], + drop_path=drop_path_rates[i], + ls_init_value=ls_init_value, + token_mixer=token_mixer, + act_layer=act_layer, + norm_layer=norm_layer, + mlp_ratio=mlp_ratio, + )) + self.blocks = nn.Sequential(*stage_blocks) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class MetaNeXt(nn.Module): + r""" MetaNeXt + A PyTorch impl of : `InceptionNeXt: When Inception Meets ConvNeXt` - https://arxiv.org/abs/2303.16900 + + Args: + in_chans (int): Number of input image channels. Default: 3 + num_classes (int): Number of classes for classification head. Default: 1000 + depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 9, 3) + dims (tuple(int)): Feature dimension at each stage. Default: (96, 192, 384, 768) + token_mixers: Token mixer function. Default: nn.Identity + norm_layer: Normalization layer. Default: nn.BatchNorm2d + act_layer: Activation function for MLP. Default: nn.GELU + mlp_ratios (int or tuple(int)): MLP ratios. Default: (4, 4, 4, 3) + drop_rate (float): Head dropout rate + drop_path_rate (float): Stochastic depth rate. Default: 0. + ls_init_value (float): Init value for Layer Scale. Default: 1e-6. + """ + + def __init__( + self, + in_chans=3, + num_classes=1000, + global_pool='avg', + output_stride=32, + depths=(3, 3, 9, 3), + dims=(96, 192, 384, 768), + token_mixers=InceptionDWConv2d, + norm_layer=nn.BatchNorm2d, + act_layer=nn.GELU, + mlp_ratios=(4, 4, 4, 3), + drop_rate=0., + drop_path_rate=0., + ls_init_value=1e-6, + ): + super().__init__() + + num_stage = len(depths) + if not isinstance(token_mixers, (list, tuple)): + token_mixers = [token_mixers] * num_stage + if not isinstance(mlp_ratios, (list, tuple)): + mlp_ratios = [mlp_ratios] * num_stage + self.num_classes = num_classes + self.global_pool = global_pool + self.drop_rate = drop_rate + self.feature_info = [] + + self.stem = nn.Sequential( + nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), + norm_layer(dims[0]) + ) + + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + prev_chs = dims[0] + curr_stride = 4 + dilation = 1 + # feature resolution stages, each consisting of multiple residual blocks + self.stages = nn.Sequential() + for i in range(num_stage): + stride = 2 if curr_stride == 2 or i > 0 else 1 + if curr_stride >= output_stride and stride > 1: + dilation *= stride + stride = 1 + curr_stride *= stride + first_dilation = 1 if dilation in (1, 2) else 2 + out_chs = dims[i] + self.stages.append(MetaNeXtStage( + prev_chs, + out_chs, + stride=stride if i > 0 else 1, + dilation=(first_dilation, dilation), + depth=depths[i], + drop_path_rates=dp_rates[i], + ls_init_value=ls_init_value, + act_layer=act_layer, + token_mixer=token_mixers[i], + norm_layer=norm_layer, + mlp_ratio=mlp_ratios[i], + )) + prev_chs = out_chs + self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')] + self.num_features = prev_chs + self.head = MlpClassifierHead(self.num_features, num_classes, pool_type=self.global_pool, drop=drop_rate) + self.head_hidden_size = self.head.num_features + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, (nn.Conv2d, nn.Linear)): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+)\.downsample', (0,)), # blocks + (r'^stages\.(\d+)\.blocks\.(\d+)', None), + ] + ) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc2 + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def no_weight_decay(self): + return set() + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.0', 'classifier': 'head.fc2', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'inception_next_atto.sail_in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_atto.pth', + ), + 'inception_next_tiny.sail_in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_tiny.pth', + ), + 'inception_next_small.sail_in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_small.pth', + ), + 'inception_next_base.sail_in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base.pth', + crop_pct=0.95, + ), + 'inception_next_base.sail_in1k_384': _cfg( + hf_hub_id='timm/', + # url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base_384.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), +}) + + +def _create_inception_next(variant, pretrained=False, **kwargs): + model = build_model_with_cfg( + MetaNeXt, variant, pretrained, + feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), + **kwargs, + ) + return model + + +@register_model +def inception_next_atto(pretrained=False, **kwargs): + model_args = dict( + depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), + token_mixers=partial(InceptionDWConv2d, band_kernel_size=9, branch_ratio=0.25) + ) + return _create_inception_next('inception_next_atto', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def inception_next_tiny(pretrained=False, **kwargs): + model_args = dict( + depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), + token_mixers=InceptionDWConv2d, + ) + return _create_inception_next('inception_next_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def inception_next_small(pretrained=False, **kwargs): + model_args = dict( + depths=(3, 3, 27, 3), dims=(96, 192, 384, 768), + token_mixers=InceptionDWConv2d, + ) + return _create_inception_next('inception_next_small', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def inception_next_base(pretrained=False, **kwargs): + model_args = dict( + depths=(3, 3, 27, 3), dims=(128, 256, 512, 1024), + token_mixers=InceptionDWConv2d, + ) + return _create_inception_next('inception_next_base', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/inception_resnet_v2.py b/pytorch-image-models/timm/models/inception_resnet_v2.py new file mode 100644 index 0000000000000000000000000000000000000000..7fdfee41edb0c691b43030ec42dbd50674a3cbfe --- /dev/null +++ b/pytorch-image-models/timm/models/inception_resnet_v2.py @@ -0,0 +1,341 @@ +""" Pytorch Inception-Resnet-V2 implementation +Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is +based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License) +""" +from functools import partial +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import create_classifier, ConvNormAct +from ._builder import build_model_with_cfg +from ._manipulate import flatten_modules +from ._registry import register_model, generate_default_cfgs, register_model_deprecations + +__all__ = ['InceptionResnetV2'] + + +class Mixed_5b(nn.Module): + def __init__(self, conv_block=None): + super(Mixed_5b, self).__init__() + conv_block = conv_block or ConvNormAct + + self.branch0 = conv_block(192, 96, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + conv_block(192, 48, kernel_size=1, stride=1), + conv_block(48, 64, kernel_size=5, stride=1, padding=2) + ) + + self.branch2 = nn.Sequential( + conv_block(192, 64, kernel_size=1, stride=1), + conv_block(64, 96, kernel_size=3, stride=1, padding=1), + conv_block(96, 96, kernel_size=3, stride=1, padding=1) + ) + + self.branch3 = nn.Sequential( + nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), + conv_block(192, 64, kernel_size=1, stride=1) + ) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class Block35(nn.Module): + def __init__(self, scale=1.0, conv_block=None): + super(Block35, self).__init__() + self.scale = scale + conv_block = conv_block or ConvNormAct + + self.branch0 = conv_block(320, 32, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + conv_block(320, 32, kernel_size=1, stride=1), + conv_block(32, 32, kernel_size=3, stride=1, padding=1) + ) + + self.branch2 = nn.Sequential( + conv_block(320, 32, kernel_size=1, stride=1), + conv_block(32, 48, kernel_size=3, stride=1, padding=1), + conv_block(48, 64, kernel_size=3, stride=1, padding=1) + ) + + self.conv2d = nn.Conv2d(128, 320, kernel_size=1, stride=1) + self.act = nn.ReLU() + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + out = self.conv2d(out) + out = out * self.scale + x + out = self.act(out) + return out + + +class Mixed_6a(nn.Module): + def __init__(self, conv_block=None): + super(Mixed_6a, self).__init__() + conv_block = conv_block or ConvNormAct + + self.branch0 = conv_block(320, 384, kernel_size=3, stride=2) + + self.branch1 = nn.Sequential( + conv_block(320, 256, kernel_size=1, stride=1), + conv_block(256, 256, kernel_size=3, stride=1, padding=1), + conv_block(256, 384, kernel_size=3, stride=2) + ) + + self.branch2 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + return out + + +class Block17(nn.Module): + def __init__(self, scale=1.0, conv_block=None): + super(Block17, self).__init__() + self.scale = scale + conv_block = conv_block or ConvNormAct + + self.branch0 = conv_block(1088, 192, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + conv_block(1088, 128, kernel_size=1, stride=1), + conv_block(128, 160, kernel_size=(1, 7), stride=1, padding=(0, 3)), + conv_block(160, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)) + ) + + self.conv2d = nn.Conv2d(384, 1088, kernel_size=1, stride=1) + self.act = nn.ReLU() + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + out = self.conv2d(out) + out = out * self.scale + x + out = self.act(out) + return out + + +class Mixed_7a(nn.Module): + def __init__(self, conv_block=None): + super(Mixed_7a, self).__init__() + conv_block = conv_block or ConvNormAct + + self.branch0 = nn.Sequential( + conv_block(1088, 256, kernel_size=1, stride=1), + conv_block(256, 384, kernel_size=3, stride=2) + ) + + self.branch1 = nn.Sequential( + conv_block(1088, 256, kernel_size=1, stride=1), + conv_block(256, 288, kernel_size=3, stride=2) + ) + + self.branch2 = nn.Sequential( + conv_block(1088, 256, kernel_size=1, stride=1), + conv_block(256, 288, kernel_size=3, stride=1, padding=1), + conv_block(288, 320, kernel_size=3, stride=2) + ) + + self.branch3 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class Block8(nn.Module): + + def __init__(self, scale=1.0, no_relu=False, conv_block=None): + super(Block8, self).__init__() + self.scale = scale + conv_block = conv_block or ConvNormAct + + self.branch0 = conv_block(2080, 192, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + conv_block(2080, 192, kernel_size=1, stride=1), + conv_block(192, 224, kernel_size=(1, 3), stride=1, padding=(0, 1)), + conv_block(224, 256, kernel_size=(3, 1), stride=1, padding=(1, 0)) + ) + + self.conv2d = nn.Conv2d(448, 2080, kernel_size=1, stride=1) + self.relu = None if no_relu else nn.ReLU() + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + out = self.conv2d(out) + out = out * self.scale + x + if self.relu is not None: + out = self.relu(out) + return out + + +class InceptionResnetV2(nn.Module): + def __init__( + self, + num_classes=1000, + in_chans=3, + drop_rate=0., + output_stride=32, + global_pool='avg', + norm_layer='batchnorm2d', + norm_eps=1e-3, + act_layer='relu', + ): + super(InceptionResnetV2, self).__init__() + self.num_classes = num_classes + self.num_features = self.head_hidden_size = 1536 + assert output_stride == 32 + conv_block = partial( + ConvNormAct, + padding=0, + norm_layer=norm_layer, + act_layer=act_layer, + norm_kwargs=dict(eps=norm_eps), + act_kwargs=dict(inplace=True), + ) + + self.conv2d_1a = conv_block(in_chans, 32, kernel_size=3, stride=2) + self.conv2d_2a = conv_block(32, 32, kernel_size=3, stride=1) + self.conv2d_2b = conv_block(32, 64, kernel_size=3, stride=1, padding=1) + self.feature_info = [dict(num_chs=64, reduction=2, module='conv2d_2b')] + + self.maxpool_3a = nn.MaxPool2d(3, stride=2) + self.conv2d_3b = conv_block(64, 80, kernel_size=1, stride=1) + self.conv2d_4a = conv_block(80, 192, kernel_size=3, stride=1) + self.feature_info += [dict(num_chs=192, reduction=4, module='conv2d_4a')] + + self.maxpool_5a = nn.MaxPool2d(3, stride=2) + self.mixed_5b = Mixed_5b(conv_block=conv_block) + self.repeat = nn.Sequential(*[Block35(scale=0.17, conv_block=conv_block) for _ in range(10)]) + self.feature_info += [dict(num_chs=320, reduction=8, module='repeat')] + + self.mixed_6a = Mixed_6a(conv_block=conv_block) + self.repeat_1 = nn.Sequential(*[Block17(scale=0.10, conv_block=conv_block) for _ in range(20)]) + self.feature_info += [dict(num_chs=1088, reduction=16, module='repeat_1')] + + self.mixed_7a = Mixed_7a(conv_block=conv_block) + self.repeat_2 = nn.Sequential(*[Block8(scale=0.20, conv_block=conv_block) for _ in range(9)]) + + self.block8 = Block8(no_relu=True, conv_block=conv_block) + self.conv2d_7b = conv_block(2080, self.num_features, kernel_size=1, stride=1) + self.feature_info += [dict(num_chs=self.num_features, reduction=32, module='conv2d_7b')] + + self.global_pool, self.head_drop, self.classif = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + module_map = {k: i for i, (k, _) in enumerate(flatten_modules(self.named_children(), prefix=()))} + module_map.pop(('classif',)) + + def _matcher(name): + if any([name.startswith(n) for n in ('conv2d_1', 'conv2d_2')]): + return 0 + elif any([name.startswith(n) for n in ('conv2d_3', 'conv2d_4')]): + return 1 + elif any([name.startswith(n) for n in ('block8', 'conv2d_7')]): + return len(module_map) + 1 + else: + for k in module_map.keys(): + if k == tuple(name.split('.')[:len(k)]): + return module_map[k] + return float('inf') + return _matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, "checkpointing not supported" + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classif + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.classif = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.conv2d_1a(x) + x = self.conv2d_2a(x) + x = self.conv2d_2b(x) + x = self.maxpool_3a(x) + x = self.conv2d_3b(x) + x = self.conv2d_4a(x) + x = self.maxpool_5a(x) + x = self.mixed_5b(x) + x = self.repeat(x) + x = self.mixed_6a(x) + x = self.repeat_1(x) + x = self.mixed_7a(x) + x = self.repeat_2(x) + x = self.block8(x) + x = self.conv2d_7b(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.classif(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_inception_resnet_v2(variant, pretrained=False, **kwargs): + return build_model_with_cfg(InceptionResnetV2, variant, pretrained, **kwargs) + + +default_cfgs = generate_default_cfgs({ + # ported from http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz + 'inception_resnet_v2.tf_in1k': { + 'hf_hub_id': 'timm/', + 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), + 'crop_pct': 0.8975, 'interpolation': 'bicubic', + 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, + 'first_conv': 'conv2d_1a.conv', 'classifier': 'classif', + }, + # As per https://arxiv.org/abs/1705.07204 and + # ported from http://download.tensorflow.org/models/ens_adv_inception_resnet_v2_2017_08_18.tar.gz + 'inception_resnet_v2.tf_ens_adv_in1k': { + 'hf_hub_id': 'timm/', + 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), + 'crop_pct': 0.8975, 'interpolation': 'bicubic', + 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, + 'first_conv': 'conv2d_1a.conv', 'classifier': 'classif', + } +}) + + +@register_model +def inception_resnet_v2(pretrained=False, **kwargs) -> InceptionResnetV2: + return _create_inception_resnet_v2('inception_resnet_v2', pretrained=pretrained, **kwargs) + + +register_model_deprecations(__name__, { + 'ens_adv_inception_resnet_v2': 'inception_resnet_v2.tf_ens_adv_in1k', +}) \ No newline at end of file diff --git a/pytorch-image-models/timm/models/inception_v3.py b/pytorch-image-models/timm/models/inception_v3.py new file mode 100644 index 0000000000000000000000000000000000000000..8cb1a151dffaea77e449eaf1d1fde742a4243805 --- /dev/null +++ b/pytorch-image-models/timm/models/inception_v3.py @@ -0,0 +1,458 @@ +""" Inception-V3 + +Originally from torchvision Inception3 model +Licensed BSD-Clause 3 https://github.com/pytorch/vision/blob/master/LICENSE +""" +from functools import partial +from typing import Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import trunc_normal_, create_classifier, Linear, ConvNormAct +from ._builder import build_model_with_cfg +from ._builder import resolve_pretrained_cfg +from ._manipulate import flatten_modules +from ._registry import register_model, generate_default_cfgs, register_model_deprecations + +__all__ = ['InceptionV3'] # model_registry will add each entrypoint fn to this + + +class InceptionA(nn.Module): + + def __init__(self, in_channels, pool_features, conv_block=None): + super(InceptionA, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch1x1 = conv_block(in_channels, 64, kernel_size=1) + + self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1) + self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2) + + self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) + self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) + self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1) + + self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1) + + def _forward(self, x): + branch1x1 = self.branch1x1(x) + + branch5x5 = self.branch5x5_1(x) + branch5x5 = self.branch5x5_2(branch5x5) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) + + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) + branch_pool = self.branch_pool(branch_pool) + + outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] + return outputs + + def forward(self, x): + outputs = self._forward(x) + return torch.cat(outputs, 1) + + +class InceptionB(nn.Module): + + def __init__(self, in_channels, conv_block=None): + super(InceptionB, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2) + + self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1) + self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) + self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2) + + def _forward(self, x): + branch3x3 = self.branch3x3(x) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) + + branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) + + outputs = [branch3x3, branch3x3dbl, branch_pool] + return outputs + + def forward(self, x): + outputs = self._forward(x) + return torch.cat(outputs, 1) + + +class InceptionC(nn.Module): + + def __init__(self, in_channels, channels_7x7, conv_block=None): + super(InceptionC, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch1x1 = conv_block(in_channels, 192, kernel_size=1) + + c7 = channels_7x7 + self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1) + self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) + self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0)) + + self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1) + self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) + self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) + self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) + self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3)) + + self.branch_pool = conv_block(in_channels, 192, kernel_size=1) + + def _forward(self, x): + branch1x1 = self.branch1x1(x) + + branch7x7 = self.branch7x7_1(x) + branch7x7 = self.branch7x7_2(branch7x7) + branch7x7 = self.branch7x7_3(branch7x7) + + branch7x7dbl = self.branch7x7dbl_1(x) + branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) + + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) + branch_pool = self.branch_pool(branch_pool) + + outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] + return outputs + + def forward(self, x): + outputs = self._forward(x) + return torch.cat(outputs, 1) + + +class InceptionD(nn.Module): + + def __init__(self, in_channels, conv_block=None): + super(InceptionD, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1) + self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2) + + self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1) + self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3)) + self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0)) + self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2) + + def _forward(self, x): + branch3x3 = self.branch3x3_1(x) + branch3x3 = self.branch3x3_2(branch3x3) + + branch7x7x3 = self.branch7x7x3_1(x) + branch7x7x3 = self.branch7x7x3_2(branch7x7x3) + branch7x7x3 = self.branch7x7x3_3(branch7x7x3) + branch7x7x3 = self.branch7x7x3_4(branch7x7x3) + + branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) + outputs = [branch3x3, branch7x7x3, branch_pool] + return outputs + + def forward(self, x): + outputs = self._forward(x) + return torch.cat(outputs, 1) + + +class InceptionE(nn.Module): + + def __init__(self, in_channels, conv_block=None): + super(InceptionE, self).__init__() + conv_block = conv_block or ConvNormAct + self.branch1x1 = conv_block(in_channels, 320, kernel_size=1) + + self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1) + self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) + self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) + + self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1) + self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1) + self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1)) + self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0)) + + self.branch_pool = conv_block(in_channels, 192, kernel_size=1) + + def _forward(self, x): + branch1x1 = self.branch1x1(x) + + branch3x3 = self.branch3x3_1(x) + branch3x3 = [ + self.branch3x3_2a(branch3x3), + self.branch3x3_2b(branch3x3), + ] + branch3x3 = torch.cat(branch3x3, 1) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = [ + self.branch3x3dbl_3a(branch3x3dbl), + self.branch3x3dbl_3b(branch3x3dbl), + ] + branch3x3dbl = torch.cat(branch3x3dbl, 1) + + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) + branch_pool = self.branch_pool(branch_pool) + + outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] + return outputs + + def forward(self, x): + outputs = self._forward(x) + return torch.cat(outputs, 1) + + +class InceptionAux(nn.Module): + + def __init__(self, in_channels, num_classes, conv_block=None): + super(InceptionAux, self).__init__() + conv_block = conv_block or ConvNormAct + self.conv0 = conv_block(in_channels, 128, kernel_size=1) + self.conv1 = conv_block(128, 768, kernel_size=5) + self.conv1.stddev = 0.01 + self.fc = Linear(768, num_classes) + self.fc.stddev = 0.001 + + def forward(self, x): + # N x 768 x 17 x 17 + x = F.avg_pool2d(x, kernel_size=5, stride=3) + # N x 768 x 5 x 5 + x = self.conv0(x) + # N x 128 x 5 x 5 + x = self.conv1(x) + # N x 768 x 1 x 1 + # Adaptive average pooling + x = F.adaptive_avg_pool2d(x, (1, 1)) + # N x 768 x 1 x 1 + x = torch.flatten(x, 1) + # N x 768 + x = self.fc(x) + # N x 1000 + return x + + +class InceptionV3(nn.Module): + """Inception-V3 + """ + aux_logits: torch.jit.Final[bool] + + def __init__( + self, + num_classes=1000, + in_chans=3, + drop_rate=0., + global_pool='avg', + aux_logits=False, + norm_layer='batchnorm2d', + norm_eps=1e-3, + act_layer='relu', + ): + super(InceptionV3, self).__init__() + self.num_classes = num_classes + self.aux_logits = aux_logits + conv_block = partial( + ConvNormAct, + padding=0, + norm_layer=norm_layer, + act_layer=act_layer, + norm_kwargs=dict(eps=norm_eps), + act_kwargs=dict(inplace=True), + ) + + self.Conv2d_1a_3x3 = conv_block(in_chans, 32, kernel_size=3, stride=2) + self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3) + self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1) + self.Pool1 = nn.MaxPool2d(kernel_size=3, stride=2) + self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1) + self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3) + self.Pool2 = nn.MaxPool2d(kernel_size=3, stride=2) + self.Mixed_5b = InceptionA(192, pool_features=32, conv_block=conv_block) + self.Mixed_5c = InceptionA(256, pool_features=64, conv_block=conv_block) + self.Mixed_5d = InceptionA(288, pool_features=64, conv_block=conv_block) + self.Mixed_6a = InceptionB(288, conv_block=conv_block) + self.Mixed_6b = InceptionC(768, channels_7x7=128, conv_block=conv_block) + self.Mixed_6c = InceptionC(768, channels_7x7=160, conv_block=conv_block) + self.Mixed_6d = InceptionC(768, channels_7x7=160, conv_block=conv_block) + self.Mixed_6e = InceptionC(768, channels_7x7=192, conv_block=conv_block) + if aux_logits: + self.AuxLogits = InceptionAux(768, num_classes, conv_block=conv_block) + else: + self.AuxLogits = None + self.Mixed_7a = InceptionD(768, conv_block=conv_block) + self.Mixed_7b = InceptionE(1280, conv_block=conv_block) + self.Mixed_7c = InceptionE(2048, conv_block=conv_block) + self.feature_info = [ + dict(num_chs=64, reduction=2, module='Conv2d_2b_3x3'), + dict(num_chs=192, reduction=4, module='Conv2d_4a_3x3'), + dict(num_chs=288, reduction=8, module='Mixed_5d'), + dict(num_chs=768, reduction=16, module='Mixed_6e'), + dict(num_chs=2048, reduction=32, module='Mixed_7c'), + ] + + self.num_features = self.head_hidden_size = 2048 + self.global_pool, self.head_drop, self.fc = create_classifier( + self.num_features, + self.num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + ) + + for m in self.modules(): + if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): + stddev = m.stddev if hasattr(m, 'stddev') else 0.1 + trunc_normal_(m.weight, std=stddev) + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + module_map = {k: i for i, (k, _) in enumerate(flatten_modules(self.named_children(), prefix=()))} + module_map.pop(('fc',)) + + def _matcher(name): + if any([name.startswith(n) for n in ('Conv2d_1', 'Conv2d_2')]): + return 0 + elif any([name.startswith(n) for n in ('Conv2d_3', 'Conv2d_4')]): + return 1 + else: + for k in module_map.keys(): + if k == tuple(name.split('.')[:len(k)]): + return module_map[k] + return float('inf') + return _matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.fc + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_preaux(self, x): + x = self.Conv2d_1a_3x3(x) # N x 32 x 149 x 149 + x = self.Conv2d_2a_3x3(x) # N x 32 x 147 x 147 + x = self.Conv2d_2b_3x3(x) # N x 64 x 147 x 147 + x = self.Pool1(x) # N x 64 x 73 x 73 + x = self.Conv2d_3b_1x1(x) # N x 80 x 73 x 73 + x = self.Conv2d_4a_3x3(x) # N x 192 x 71 x 71 + x = self.Pool2(x) # N x 192 x 35 x 35 + x = self.Mixed_5b(x) # N x 256 x 35 x 35 + x = self.Mixed_5c(x) # N x 288 x 35 x 35 + x = self.Mixed_5d(x) # N x 288 x 35 x 35 + x = self.Mixed_6a(x) # N x 768 x 17 x 17 + x = self.Mixed_6b(x) # N x 768 x 17 x 17 + x = self.Mixed_6c(x) # N x 768 x 17 x 17 + x = self.Mixed_6d(x) # N x 768 x 17 x 17 + x = self.Mixed_6e(x) # N x 768 x 17 x 17 + return x + + def forward_postaux(self, x): + x = self.Mixed_7a(x) # N x 1280 x 8 x 8 + x = self.Mixed_7b(x) # N x 2048 x 8 x 8 + x = self.Mixed_7c(x) # N x 2048 x 8 x 8 + return x + + def forward_features(self, x): + x = self.forward_preaux(x) + if self.aux_logits: + aux = self.AuxLogits(x) + x = self.forward_postaux(x) + return x, aux + x = self.forward_postaux(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.head_drop(x) + if pre_logits: + return x + x = self.fc(x) + return x + + def forward(self, x): + if self.aux_logits: + x, aux = self.forward_features(x) + x = self.forward_head(x) + return x, aux + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_inception_v3(variant, pretrained=False, **kwargs): + pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=kwargs.pop('pretrained_cfg', None)) + aux_logits = kwargs.get('aux_logits', False) + has_aux_logits = False + if pretrained_cfg: + # only torchvision pretrained weights have aux logits + has_aux_logits = pretrained_cfg.tag == 'tv_in1k' + if aux_logits: + assert not kwargs.pop('features_only', False) + load_strict = has_aux_logits + else: + load_strict = not has_aux_logits + + return build_model_with_cfg( + InceptionV3, + variant, + pretrained, + pretrained_cfg=pretrained_cfg, + pretrained_strict=load_strict, + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, + 'first_conv': 'Conv2d_1a_3x3.conv', 'classifier': 'fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # original PyTorch weights, ported from Tensorflow but modified + 'inception_v3.tv_in1k': _cfg( + # NOTE checkpoint has aux logit layer weights + hf_hub_id='timm/', + url='https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth'), + # my port of Tensorflow SLIM weights (http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz) + 'inception_v3.tf_in1k': _cfg(hf_hub_id='timm/'), + # my port of Tensorflow adversarially trained Inception V3 from + # http://download.tensorflow.org/models/adv_inception_v3_2017_08_18.tar.gz + 'inception_v3.tf_adv_in1k': _cfg(hf_hub_id='timm/'), + # from gluon pretrained models, best performing in terms of accuracy/loss metrics + # https://gluon-cv.mxnet.io/model_zoo/classification.html + 'inception_v3.gluon_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, # also works well with inception defaults + std=IMAGENET_DEFAULT_STD, # also works well with inception defaults + ) +}) + + +@register_model +def inception_v3(pretrained=False, **kwargs) -> InceptionV3: + model = _create_inception_v3('inception_v3', pretrained=pretrained, **kwargs) + return model + + +register_model_deprecations(__name__, { + 'tf_inception_v3': 'inception_v3.tf_in1k', + 'adv_inception_v3': 'inception_v3.tf_adv_in1k', + 'gluon_inception_v3': 'inception_v3.gluon_in1k', +}) \ No newline at end of file diff --git a/pytorch-image-models/timm/models/inception_v4.py b/pytorch-image-models/timm/models/inception_v4.py new file mode 100644 index 0000000000000000000000000000000000000000..a435533fd45172d3ef568443daa2b8062e76ba65 --- /dev/null +++ b/pytorch-image-models/timm/models/inception_v4.py @@ -0,0 +1,325 @@ +""" Pytorch Inception-V4 implementation +Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is +based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License) +""" +from functools import partial + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import create_classifier, ConvNormAct +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs + +__all__ = ['InceptionV4'] + + +class Mixed3a(nn.Module): + def __init__(self, conv_block=ConvNormAct): + super(Mixed3a, self).__init__() + self.maxpool = nn.MaxPool2d(3, stride=2) + self.conv = conv_block(64, 96, kernel_size=3, stride=2) + + def forward(self, x): + x0 = self.maxpool(x) + x1 = self.conv(x) + out = torch.cat((x0, x1), 1) + return out + + +class Mixed4a(nn.Module): + def __init__(self, conv_block=ConvNormAct): + super(Mixed4a, self).__init__() + + self.branch0 = nn.Sequential( + conv_block(160, 64, kernel_size=1, stride=1), + conv_block(64, 96, kernel_size=3, stride=1) + ) + + self.branch1 = nn.Sequential( + conv_block(160, 64, kernel_size=1, stride=1), + conv_block(64, 64, kernel_size=(1, 7), stride=1, padding=(0, 3)), + conv_block(64, 64, kernel_size=(7, 1), stride=1, padding=(3, 0)), + conv_block(64, 96, kernel_size=(3, 3), stride=1) + ) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + return out + + +class Mixed5a(nn.Module): + def __init__(self, conv_block=ConvNormAct): + super(Mixed5a, self).__init__() + self.conv = conv_block(192, 192, kernel_size=3, stride=2) + self.maxpool = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.conv(x) + x1 = self.maxpool(x) + out = torch.cat((x0, x1), 1) + return out + + +class InceptionA(nn.Module): + def __init__(self, conv_block=ConvNormAct): + super(InceptionA, self).__init__() + self.branch0 = conv_block(384, 96, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + conv_block(384, 64, kernel_size=1, stride=1), + conv_block(64, 96, kernel_size=3, stride=1, padding=1) + ) + + self.branch2 = nn.Sequential( + conv_block(384, 64, kernel_size=1, stride=1), + conv_block(64, 96, kernel_size=3, stride=1, padding=1), + conv_block(96, 96, kernel_size=3, stride=1, padding=1) + ) + + self.branch3 = nn.Sequential( + nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), + conv_block(384, 96, kernel_size=1, stride=1) + ) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class ReductionA(nn.Module): + def __init__(self, conv_block=ConvNormAct): + super(ReductionA, self).__init__() + self.branch0 = conv_block(384, 384, kernel_size=3, stride=2) + + self.branch1 = nn.Sequential( + conv_block(384, 192, kernel_size=1, stride=1), + conv_block(192, 224, kernel_size=3, stride=1, padding=1), + conv_block(224, 256, kernel_size=3, stride=2) + ) + + self.branch2 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + return out + + +class InceptionB(nn.Module): + def __init__(self, conv_block=ConvNormAct): + super(InceptionB, self).__init__() + self.branch0 = conv_block(1024, 384, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + conv_block(1024, 192, kernel_size=1, stride=1), + conv_block(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)), + conv_block(224, 256, kernel_size=(7, 1), stride=1, padding=(3, 0)) + ) + + self.branch2 = nn.Sequential( + conv_block(1024, 192, kernel_size=1, stride=1), + conv_block(192, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)), + conv_block(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)), + conv_block(224, 224, kernel_size=(7, 1), stride=1, padding=(3, 0)), + conv_block(224, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)) + ) + + self.branch3 = nn.Sequential( + nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), + conv_block(1024, 128, kernel_size=1, stride=1) + ) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class ReductionB(nn.Module): + def __init__(self, conv_block=ConvNormAct): + super(ReductionB, self).__init__() + + self.branch0 = nn.Sequential( + conv_block(1024, 192, kernel_size=1, stride=1), + conv_block(192, 192, kernel_size=3, stride=2) + ) + + self.branch1 = nn.Sequential( + conv_block(1024, 256, kernel_size=1, stride=1), + conv_block(256, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)), + conv_block(256, 320, kernel_size=(7, 1), stride=1, padding=(3, 0)), + conv_block(320, 320, kernel_size=3, stride=2) + ) + + self.branch2 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + return out + + +class InceptionC(nn.Module): + def __init__(self, conv_block=ConvNormAct): + super(InceptionC, self).__init__() + + self.branch0 = conv_block(1536, 256, kernel_size=1, stride=1) + + self.branch1_0 = conv_block(1536, 384, kernel_size=1, stride=1) + self.branch1_1a = conv_block(384, 256, kernel_size=(1, 3), stride=1, padding=(0, 1)) + self.branch1_1b = conv_block(384, 256, kernel_size=(3, 1), stride=1, padding=(1, 0)) + + self.branch2_0 = conv_block(1536, 384, kernel_size=1, stride=1) + self.branch2_1 = conv_block(384, 448, kernel_size=(3, 1), stride=1, padding=(1, 0)) + self.branch2_2 = conv_block(448, 512, kernel_size=(1, 3), stride=1, padding=(0, 1)) + self.branch2_3a = conv_block(512, 256, kernel_size=(1, 3), stride=1, padding=(0, 1)) + self.branch2_3b = conv_block(512, 256, kernel_size=(3, 1), stride=1, padding=(1, 0)) + + self.branch3 = nn.Sequential( + nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), + conv_block(1536, 256, kernel_size=1, stride=1) + ) + + def forward(self, x): + x0 = self.branch0(x) + + x1_0 = self.branch1_0(x) + x1_1a = self.branch1_1a(x1_0) + x1_1b = self.branch1_1b(x1_0) + x1 = torch.cat((x1_1a, x1_1b), 1) + + x2_0 = self.branch2_0(x) + x2_1 = self.branch2_1(x2_0) + x2_2 = self.branch2_2(x2_1) + x2_3a = self.branch2_3a(x2_2) + x2_3b = self.branch2_3b(x2_2) + x2 = torch.cat((x2_3a, x2_3b), 1) + + x3 = self.branch3(x) + + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class InceptionV4(nn.Module): + def __init__( + self, + num_classes=1000, + in_chans=3, + output_stride=32, + drop_rate=0., + global_pool='avg', + norm_layer='batchnorm2d', + norm_eps=1e-3, + act_layer='relu', + ): + super(InceptionV4, self).__init__() + assert output_stride == 32 + self.num_classes = num_classes + self.num_features = self.head_hidden_size = 1536 + conv_block = partial( + ConvNormAct, + padding=0, + norm_layer=norm_layer, + act_layer=act_layer, + norm_kwargs=dict(eps=norm_eps), + act_kwargs=dict(inplace=True), + ) + + features = [ + conv_block(in_chans, 32, kernel_size=3, stride=2), + conv_block(32, 32, kernel_size=3, stride=1), + conv_block(32, 64, kernel_size=3, stride=1, padding=1), + Mixed3a(conv_block), + Mixed4a(conv_block), + Mixed5a(conv_block), + ] + features += [InceptionA(conv_block) for _ in range(4)] + features += [ReductionA(conv_block)] # Mixed6a + features += [InceptionB(conv_block) for _ in range(7)] + features += [ReductionB(conv_block)] # Mixed7a + features += [InceptionC(conv_block) for _ in range(3)] + self.features = nn.Sequential(*features) + self.feature_info = [ + dict(num_chs=64, reduction=2, module='features.2'), + dict(num_chs=160, reduction=4, module='features.3'), + dict(num_chs=384, reduction=8, module='features.9'), + dict(num_chs=1024, reduction=16, module='features.17'), + dict(num_chs=1536, reduction=32, module='features.21'), + ] + self.global_pool, self.head_drop, self.last_linear = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^features\.[012]\.', + blocks=r'^features\.(\d+)' + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.last_linear + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.last_linear = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + return self.features(x) + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.last_linear(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_inception_v4(variant, pretrained=False, **kwargs) -> InceptionV4: + return build_model_with_cfg( + InceptionV4, + variant, + pretrained, + feature_cfg=dict(flatten_sequential=True), + **kwargs, + ) + + +default_cfgs = generate_default_cfgs({ + 'inception_v4.tf_in1k': { + 'hf_hub_id': 'timm/', + 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, + 'first_conv': 'features.0.conv', 'classifier': 'last_linear', + } +}) + + +@register_model +def inception_v4(pretrained=False, **kwargs): + return _create_inception_v4('inception_v4', pretrained, **kwargs) diff --git a/pytorch-image-models/timm/models/layers/__init__.py b/pytorch-image-models/timm/models/layers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..956f39aa59d8a272386afac213051ee884397903 --- /dev/null +++ b/pytorch-image-models/timm/models/layers/__init__.py @@ -0,0 +1,48 @@ +# NOTE timm.models.layers is DEPRECATED, please use timm.layers, this is here to reduce breakages in transition +from timm.layers.activations import * +from timm.layers.adaptive_avgmax_pool import \ + adaptive_avgmax_pool2d, select_adaptive_pool2d, AdaptiveAvgMaxPool2d, SelectAdaptivePool2d +from timm.layers.attention_pool2d import AttentionPool2d, RotAttentionPool2d, RotaryEmbedding +from timm.layers.blur_pool import BlurPool2d +from timm.layers.classifier import ClassifierHead, create_classifier +from timm.layers.cond_conv2d import CondConv2d, get_condconv_initializer +from timm.layers.config import is_exportable, is_scriptable, is_no_jit, set_exportable, set_scriptable, set_no_jit,\ + set_layer_config +from timm.layers.conv2d_same import Conv2dSame, conv2d_same +from timm.layers.conv_bn_act import ConvNormAct, ConvNormActAa, ConvBnAct +from timm.layers.create_act import create_act_layer, get_act_layer, get_act_fn +from timm.layers.create_attn import get_attn, create_attn +from timm.layers.create_conv2d import create_conv2d +from timm.layers.create_norm import get_norm_layer, create_norm_layer +from timm.layers.create_norm_act import get_norm_act_layer, create_norm_act_layer, get_norm_act_layer +from timm.layers.drop import DropBlock2d, DropPath, drop_block_2d, drop_path +from timm.layers.eca import EcaModule, CecaModule, EfficientChannelAttn, CircularEfficientChannelAttn +from timm.layers.evo_norm import EvoNorm2dB0, EvoNorm2dB1, EvoNorm2dB2,\ + EvoNorm2dS0, EvoNorm2dS0a, EvoNorm2dS1, EvoNorm2dS1a, EvoNorm2dS2, EvoNorm2dS2a +from timm.layers.fast_norm import is_fast_norm, set_fast_norm, fast_group_norm, fast_layer_norm +from timm.layers.filter_response_norm import FilterResponseNormTlu2d, FilterResponseNormAct2d +from timm.layers.gather_excite import GatherExcite +from timm.layers.global_context import GlobalContext +from timm.layers.helpers import to_ntuple, to_2tuple, to_3tuple, to_4tuple, make_divisible, extend_tuple +from timm.layers.inplace_abn import InplaceAbn +from timm.layers.linear import Linear +from timm.layers.mixed_conv2d import MixedConv2d +from timm.layers.mlp import Mlp, GluMlp, GatedMlp, ConvMlp +from timm.layers.non_local_attn import NonLocalAttn, BatNonLocalAttn +from timm.layers.norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d +from timm.layers.norm_act import BatchNormAct2d, GroupNormAct, convert_sync_batchnorm +from timm.layers.padding import get_padding, get_same_padding, pad_same +from timm.layers.patch_embed import PatchEmbed +from timm.layers.pool2d_same import AvgPool2dSame, create_pool2d +from timm.layers.squeeze_excite import SEModule, SqueezeExcite, EffectiveSEModule, EffectiveSqueezeExcite +from timm.layers.selective_kernel import SelectiveKernel +from timm.layers.separable_conv import SeparableConv2d, SeparableConvNormAct +from timm.layers.split_attn import SplitAttn +from timm.layers.split_batchnorm import SplitBatchNorm2d, convert_splitbn_model +from timm.layers.std_conv import StdConv2d, StdConv2dSame, ScaledStdConv2d, ScaledStdConv2dSame +from timm.layers.test_time_pool import TestTimePoolHead, apply_test_time_pool +from timm.layers.trace_utils import _assert, _float_to_int +from timm.layers.weight_init import trunc_normal_, trunc_normal_tf_, variance_scaling_, lecun_normal_ + +import warnings +warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) diff --git a/pytorch-image-models/timm/models/levit.py b/pytorch-image-models/timm/models/levit.py new file mode 100644 index 0000000000000000000000000000000000000000..16186cae7aab97539258f757f5a5f3ca033345bc --- /dev/null +++ b/pytorch-image-models/timm/models/levit.py @@ -0,0 +1,997 @@ +""" LeViT + +Paper: `LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference` + - https://arxiv.org/abs/2104.01136 + +@article{graham2021levit, + title={LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference}, + author={Benjamin Graham and Alaaeldin El-Nouby and Hugo Touvron and Pierre Stock and Armand Joulin and Herv\'e J\'egou and Matthijs Douze}, + journal={arXiv preprint arXiv:22104.01136}, + year={2021} +} + +Adapted from official impl at https://github.com/facebookresearch/LeViT, original copyright bellow. + +This version combines both conv/linear models and fixes torchscript compatibility. + +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman +""" + +# Copyright (c) 2015-present, Facebook, Inc. +# All rights reserved. + +# Modified from +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py +# Copyright 2020 Ross Wightman, Apache-2.0 License +from collections import OrderedDict +from functools import partial +from typing import Dict, List, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN +from timm.layers import to_ntuple, to_2tuple, get_act_layer, DropPath, trunc_normal_, ndgrid +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model + +__all__ = ['Levit'] + + +class ConvNorm(nn.Module): + def __init__( + self, in_chs, out_chs, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1): + super().__init__() + self.linear = nn.Conv2d(in_chs, out_chs, kernel_size, stride, padding, dilation, groups, bias=False) + self.bn = nn.BatchNorm2d(out_chs) + + nn.init.constant_(self.bn.weight, bn_weight_init) + + @torch.no_grad() + def fuse(self): + c, bn = self.linear, self.bn + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = c.weight * w[:, None, None, None] + b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 + m = nn.Conv2d( + w.size(1), w.size(0), w.shape[2:], stride=self.linear.stride, + padding=self.linear.padding, dilation=self.linear.dilation, groups=self.linear.groups) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + + def forward(self, x): + return self.bn(self.linear(x)) + + +class LinearNorm(nn.Module): + def __init__(self, in_features, out_features, bn_weight_init=1): + super().__init__() + self.linear = nn.Linear(in_features, out_features, bias=False) + self.bn = nn.BatchNorm1d(out_features) + + nn.init.constant_(self.bn.weight, bn_weight_init) + + @torch.no_grad() + def fuse(self): + l, bn = self.linear, self.bn + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = l.weight * w[:, None] + b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 + m = nn.Linear(w.size(1), w.size(0)) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + + def forward(self, x): + x = self.linear(x) + return self.bn(x.flatten(0, 1)).reshape_as(x) + + +class NormLinear(nn.Module): + def __init__(self, in_features, out_features, bias=True, std=0.02, drop=0.): + super().__init__() + self.bn = nn.BatchNorm1d(in_features) + self.drop = nn.Dropout(drop) + self.linear = nn.Linear(in_features, out_features, bias=bias) + + trunc_normal_(self.linear.weight, std=std) + if self.linear.bias is not None: + nn.init.constant_(self.linear.bias, 0) + + @torch.no_grad() + def fuse(self): + bn, l = self.bn, self.linear + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = l.weight * w[None, :] + if l.bias is None: + b = b @ self.linear.weight.T + else: + b = (l.weight @ b[:, None]).view(-1) + self.linear.bias + m = nn.Linear(w.size(1), w.size(0)) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + + def forward(self, x): + return self.linear(self.drop(self.bn(x))) + + +class Stem8(nn.Sequential): + def __init__(self, in_chs, out_chs, act_layer): + super().__init__() + self.stride = 8 + + self.add_module('conv1', ConvNorm(in_chs, out_chs // 4, 3, stride=2, padding=1)) + self.add_module('act1', act_layer()) + self.add_module('conv2', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1)) + self.add_module('act2', act_layer()) + self.add_module('conv3', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1)) + + +class Stem16(nn.Sequential): + def __init__(self, in_chs, out_chs, act_layer): + super().__init__() + self.stride = 16 + + self.add_module('conv1', ConvNorm(in_chs, out_chs // 8, 3, stride=2, padding=1)) + self.add_module('act1', act_layer()) + self.add_module('conv2', ConvNorm(out_chs // 8, out_chs // 4, 3, stride=2, padding=1)) + self.add_module('act2', act_layer()) + self.add_module('conv3', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1)) + self.add_module('act3', act_layer()) + self.add_module('conv4', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1)) + + +class Downsample(nn.Module): + def __init__(self, stride, resolution, use_pool=False): + super().__init__() + self.stride = stride + self.resolution = to_2tuple(resolution) + self.pool = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) if use_pool else None + + def forward(self, x): + B, N, C = x.shape + x = x.view(B, self.resolution[0], self.resolution[1], C) + if self.pool is not None: + x = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) + else: + x = x[:, ::self.stride, ::self.stride] + return x.reshape(B, -1, C) + + +class Attention(nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__( + self, + dim, + key_dim, + num_heads=8, + attn_ratio=4., + resolution=14, + use_conv=False, + act_layer=nn.SiLU, + ): + super().__init__() + ln_layer = ConvNorm if use_conv else LinearNorm + resolution = to_2tuple(resolution) + + self.use_conv = use_conv + self.num_heads = num_heads + self.scale = key_dim ** -0.5 + self.key_dim = key_dim + self.key_attn_dim = key_dim * num_heads + self.val_dim = int(attn_ratio * key_dim) + self.val_attn_dim = int(attn_ratio * key_dim) * num_heads + + self.qkv = ln_layer(dim, self.val_attn_dim + self.key_attn_dim * 2) + self.proj = nn.Sequential(OrderedDict([ + ('act', act_layer()), + ('ln', ln_layer(self.val_attn_dim, dim, bn_weight_init=0)) + ])) + + self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) + pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) + rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() + rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1] + self.register_buffer('attention_bias_idxs', rel_pos, persistent=False) + self.attention_bias_cache = {} + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} # clear ab cache + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): # x (B,C,H,W) + if self.use_conv: + B, C, H, W = x.shape + q, k, v = self.qkv(x).view( + B, self.num_heads, -1, H * W).split([self.key_dim, self.key_dim, self.val_dim], dim=2) + + attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) + attn = attn.softmax(dim=-1) + + x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) + else: + B, N, C = x.shape + q, k, v = self.qkv(x).view( + B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3) + q = q.permute(0, 2, 1, 3) + k = k.permute(0, 2, 3, 1) + v = v.permute(0, 2, 1, 3) + + attn = q @ k * self.scale + self.get_attention_biases(x.device) + attn = attn.softmax(dim=-1) + + x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim) + x = self.proj(x) + return x + + +class AttentionDownsample(nn.Module): + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__( + self, + in_dim, + out_dim, + key_dim, + num_heads=8, + attn_ratio=2.0, + stride=2, + resolution=14, + use_conv=False, + use_pool=False, + act_layer=nn.SiLU, + ): + super().__init__() + resolution = to_2tuple(resolution) + + self.stride = stride + self.resolution = resolution + self.num_heads = num_heads + self.key_dim = key_dim + self.key_attn_dim = key_dim * num_heads + self.val_dim = int(attn_ratio * key_dim) + self.val_attn_dim = self.val_dim * self.num_heads + self.scale = key_dim ** -0.5 + self.use_conv = use_conv + + if self.use_conv: + ln_layer = ConvNorm + sub_layer = partial( + nn.AvgPool2d, + kernel_size=3 if use_pool else 1, padding=1 if use_pool else 0, count_include_pad=False) + else: + ln_layer = LinearNorm + sub_layer = partial(Downsample, resolution=resolution, use_pool=use_pool) + + self.kv = ln_layer(in_dim, self.val_attn_dim + self.key_attn_dim) + self.q = nn.Sequential(OrderedDict([ + ('down', sub_layer(stride=stride)), + ('ln', ln_layer(in_dim, self.key_attn_dim)) + ])) + self.proj = nn.Sequential(OrderedDict([ + ('act', act_layer()), + ('ln', ln_layer(self.val_attn_dim, out_dim)) + ])) + + self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) + k_pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) + q_pos = torch.stack(ndgrid( + torch.arange(0, resolution[0], step=stride), + torch.arange(0, resolution[1], step=stride) + )).flatten(1) + rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs() + rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1] + self.register_buffer('attention_bias_idxs', rel_pos, persistent=False) + + self.attention_bias_cache = {} # per-device attention_biases cache + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} # clear ab cache + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + if self.use_conv: + B, C, H, W = x.shape + HH, WW = (H - 1) // self.stride + 1, (W - 1) // self.stride + 1 + k, v = self.kv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.val_dim], dim=2) + q = self.q(x).view(B, self.num_heads, self.key_dim, -1) + + attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) + attn = attn.softmax(dim=-1) + + x = (v @ attn.transpose(-2, -1)).reshape(B, self.val_attn_dim, HH, WW) + else: + B, N, C = x.shape + k, v = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.val_dim], dim=3) + k = k.permute(0, 2, 3, 1) # BHCN + v = v.permute(0, 2, 1, 3) # BHNC + q = self.q(x).view(B, -1, self.num_heads, self.key_dim).permute(0, 2, 1, 3) + + attn = q @ k * self.scale + self.get_attention_biases(x.device) + attn = attn.softmax(dim=-1) + + x = (attn @ v).transpose(1, 2).reshape(B, -1, self.val_attn_dim) + x = self.proj(x) + return x + + +class LevitMlp(nn.Module): + """ MLP for Levit w/ normalization + ability to switch btw conv and linear + """ + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + use_conv=False, + act_layer=nn.SiLU, + drop=0. + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + ln_layer = ConvNorm if use_conv else LinearNorm + + self.ln1 = ln_layer(in_features, hidden_features) + self.act = act_layer() + self.drop = nn.Dropout(drop) + self.ln2 = ln_layer(hidden_features, out_features, bn_weight_init=0) + + def forward(self, x): + x = self.ln1(x) + x = self.act(x) + x = self.drop(x) + x = self.ln2(x) + return x + + +class LevitDownsample(nn.Module): + def __init__( + self, + in_dim, + out_dim, + key_dim, + num_heads=8, + attn_ratio=4., + mlp_ratio=2., + act_layer=nn.SiLU, + attn_act_layer=None, + resolution=14, + use_conv=False, + use_pool=False, + drop_path=0., + ): + super().__init__() + attn_act_layer = attn_act_layer or act_layer + + self.attn_downsample = AttentionDownsample( + in_dim=in_dim, + out_dim=out_dim, + key_dim=key_dim, + num_heads=num_heads, + attn_ratio=attn_ratio, + act_layer=attn_act_layer, + resolution=resolution, + use_conv=use_conv, + use_pool=use_pool, + ) + + self.mlp = LevitMlp( + out_dim, + int(out_dim * mlp_ratio), + use_conv=use_conv, + act_layer=act_layer + ) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + x = self.attn_downsample(x) + x = x + self.drop_path(self.mlp(x)) + return x + + +class LevitBlock(nn.Module): + def __init__( + self, + dim, + key_dim, + num_heads=8, + attn_ratio=4., + mlp_ratio=2., + resolution=14, + use_conv=False, + act_layer=nn.SiLU, + attn_act_layer=None, + drop_path=0., + ): + super().__init__() + attn_act_layer = attn_act_layer or act_layer + + self.attn = Attention( + dim=dim, + key_dim=key_dim, + num_heads=num_heads, + attn_ratio=attn_ratio, + resolution=resolution, + use_conv=use_conv, + act_layer=attn_act_layer, + ) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.mlp = LevitMlp( + dim, + int(dim * mlp_ratio), + use_conv=use_conv, + act_layer=act_layer + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + x = x + self.drop_path1(self.attn(x)) + x = x + self.drop_path2(self.mlp(x)) + return x + + +class LevitStage(nn.Module): + def __init__( + self, + in_dim, + out_dim, + key_dim, + depth=4, + num_heads=8, + attn_ratio=4.0, + mlp_ratio=4.0, + act_layer=nn.SiLU, + attn_act_layer=None, + resolution=14, + downsample='', + use_conv=False, + drop_path=0., + ): + super().__init__() + resolution = to_2tuple(resolution) + + if downsample: + self.downsample = LevitDownsample( + in_dim, + out_dim, + key_dim=key_dim, + num_heads=in_dim // key_dim, + attn_ratio=4., + mlp_ratio=2., + act_layer=act_layer, + attn_act_layer=attn_act_layer, + resolution=resolution, + use_conv=use_conv, + drop_path=drop_path, + ) + resolution = [(r - 1) // 2 + 1 for r in resolution] + else: + assert in_dim == out_dim + self.downsample = nn.Identity() + + blocks = [] + for _ in range(depth): + blocks += [LevitBlock( + out_dim, + key_dim, + num_heads=num_heads, + attn_ratio=attn_ratio, + mlp_ratio=mlp_ratio, + act_layer=act_layer, + attn_act_layer=attn_act_layer, + resolution=resolution, + use_conv=use_conv, + drop_path=drop_path, + )] + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + x = self.blocks(x) + return x + + +class Levit(nn.Module): + """ Vision Transformer with support for patch or hybrid CNN input stage + + NOTE: distillation is defaulted to True since pretrained weights use it, will cause problems + w/ train scripts that don't take tuple outputs, + """ + + def __init__( + self, + img_size=224, + in_chans=3, + num_classes=1000, + embed_dim=(192,), + key_dim=64, + depth=(12,), + num_heads=(3,), + attn_ratio=2., + mlp_ratio=2., + stem_backbone=None, + stem_stride=None, + stem_type='s16', + down_op='subsample', + act_layer='hard_swish', + attn_act_layer=None, + use_conv=False, + global_pool='avg', + drop_rate=0., + drop_path_rate=0.): + super().__init__() + act_layer = get_act_layer(act_layer) + attn_act_layer = get_act_layer(attn_act_layer or act_layer) + self.use_conv = use_conv + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = embed_dim[-1] + self.embed_dim = embed_dim + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.feature_info = [] + + num_stages = len(embed_dim) + assert len(depth) == num_stages + num_heads = to_ntuple(num_stages)(num_heads) + attn_ratio = to_ntuple(num_stages)(attn_ratio) + mlp_ratio = to_ntuple(num_stages)(mlp_ratio) + + if stem_backbone is not None: + assert stem_stride >= 2 + self.stem = stem_backbone + stride = stem_stride + else: + assert stem_type in ('s16', 's8') + if stem_type == 's16': + self.stem = Stem16(in_chans, embed_dim[0], act_layer=act_layer) + else: + self.stem = Stem8(in_chans, embed_dim[0], act_layer=act_layer) + stride = self.stem.stride + resolution = tuple([i // p for i, p in zip(to_2tuple(img_size), to_2tuple(stride))]) + + in_dim = embed_dim[0] + stages = [] + for i in range(num_stages): + stage_stride = 2 if i > 0 else 1 + stages += [LevitStage( + in_dim, + embed_dim[i], + key_dim, + depth=depth[i], + num_heads=num_heads[i], + attn_ratio=attn_ratio[i], + mlp_ratio=mlp_ratio[i], + act_layer=act_layer, + attn_act_layer=attn_act_layer, + resolution=resolution, + use_conv=use_conv, + downsample=down_op if stage_stride == 2 else '', + drop_path=drop_path_rate + )] + stride *= stage_stride + resolution = tuple([(r - 1) // stage_stride + 1 for r in resolution]) + self.feature_info += [dict(num_chs=embed_dim[i], reduction=stride, module=f'stages.{i}')] + in_dim = embed_dim[i] + self.stages = nn.Sequential(*stages) + + # Classifier head + self.head = NormLinear(embed_dim[-1], num_classes, drop=drop_rate) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def no_weight_decay(self): + return {x for x in self.state_dict().keys() if 'attention_biases' in x} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^cls_token|pos_embed|patch_embed', # stem and embed + blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int , global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = NormLinear( + self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity() + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.stages), indices) + + # forward pass + x = self.stem(x) + B, C, H, W = x.shape + if not self.use_conv: + x = x.flatten(2).transpose(1, 2) + + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + stages = self.stages + else: + stages = self.stages[:max_index + 1] + for feat_idx, stage in enumerate(stages): + x = stage(x) + if feat_idx in take_indices: + if self.use_conv: + intermediates.append(x) + else: + intermediates.append(x.reshape(B, H, W, -1).permute(0, 3, 1, 2)) + H = (H + 2 - 1) // 2 + W = (W + 2 - 1) // 2 + + if intermediates_only: + return intermediates + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.stages), indices) + self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0 + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + if not self.use_conv: + x = x.flatten(2).transpose(1, 2) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool == 'avg': + x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +class LevitDistilled(Levit): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.head_dist = NormLinear(self.num_features, self.num_classes) if self.num_classes > 0 else nn.Identity() + self.distilled_training = False # must set this True to train w/ distillation token + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head, self.head_dist + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = NormLinear( + self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity() + self.head_dist = NormLinear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.distilled_training = enable + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool == 'avg': + x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) + if pre_logits: + return x + x, x_dist = self.head(x), self.head_dist(x) + if self.distilled_training and self.training and not torch.jit.is_scripting(): + # only return separate classification predictions when training in distilled mode + return x, x_dist + else: + # during standard train/finetune, inference average the classifier predictions + return (x + x_dist) / 2 + + +def checkpoint_filter_fn(state_dict, model): + if 'model' in state_dict: + state_dict = state_dict['model'] + + # filter out attn biases, should not have been persistent + state_dict = {k: v for k, v in state_dict.items() if 'attention_bias_idxs' not in k} + + D = model.state_dict() + out_dict = {} + for ka, kb, va, vb in zip(D.keys(), state_dict.keys(), D.values(), state_dict.values()): + if va.ndim == 4 and vb.ndim == 2: + vb = vb[:, :, None, None] + if va.shape != vb.shape: + # head or first-conv shapes may change for fine-tune + assert 'head' in ka or 'stem.conv1.linear' in ka + out_dict[ka] = vb + + return out_dict + + +model_cfgs = dict( + levit_128s=dict( + embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 6, 8), depth=(2, 3, 4)), + levit_128=dict( + embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 8, 12), depth=(4, 4, 4)), + levit_192=dict( + embed_dim=(192, 288, 384), key_dim=32, num_heads=(3, 5, 6), depth=(4, 4, 4)), + levit_256=dict( + embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 4, 4)), + levit_384=dict( + embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4)), + + # stride-8 stem experiments + levit_384_s8=dict( + embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4), + act_layer='silu', stem_type='s8'), + levit_512_s8=dict( + embed_dim=(512, 640, 896), key_dim=64, num_heads=(8, 10, 14), depth=(4, 4, 4), + act_layer='silu', stem_type='s8'), + + # wider experiments + levit_512=dict( + embed_dim=(512, 768, 1024), key_dim=64, num_heads=(8, 12, 16), depth=(4, 4, 4), act_layer='silu'), + + # deeper experiments + levit_256d=dict( + embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 8, 6), act_layer='silu'), + levit_512d=dict( + embed_dim=(512, 640, 768), key_dim=64, num_heads=(8, 10, 12), depth=(4, 8, 6), act_layer='silu'), +) + + +def create_levit(variant, cfg_variant=None, pretrained=False, distilled=True, **kwargs): + is_conv = '_conv' in variant + out_indices = kwargs.pop('out_indices', (0, 1, 2)) + if kwargs.get('features_only', False) and not is_conv: + kwargs.setdefault('feature_cls', 'getter') + if cfg_variant is None: + if variant in model_cfgs: + cfg_variant = variant + elif is_conv: + cfg_variant = variant.replace('_conv', '') + + model_cfg = dict(model_cfgs[cfg_variant], **kwargs) + model = build_model_with_cfg( + LevitDistilled if distilled else Levit, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **model_cfg, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv1.linear', 'classifier': ('head.linear', 'head_dist.linear'), + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # weights in nn.Linear mode + 'levit_128s.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'levit_128.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'levit_192.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'levit_256.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'levit_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + ), + + # weights in nn.Conv2d mode + 'levit_conv_128s.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + pool_size=(4, 4), + ), + 'levit_conv_128.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + pool_size=(4, 4), + ), + 'levit_conv_192.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + pool_size=(4, 4), + ), + 'levit_conv_256.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + pool_size=(4, 4), + ), + 'levit_conv_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + pool_size=(4, 4), + ), + + 'levit_384_s8.untrained': _cfg(classifier='head.linear'), + 'levit_512_s8.untrained': _cfg(classifier='head.linear'), + 'levit_512.untrained': _cfg(classifier='head.linear'), + 'levit_256d.untrained': _cfg(classifier='head.linear'), + 'levit_512d.untrained': _cfg(classifier='head.linear'), + + 'levit_conv_384_s8.untrained': _cfg(classifier='head.linear'), + 'levit_conv_512_s8.untrained': _cfg(classifier='head.linear'), + 'levit_conv_512.untrained': _cfg(classifier='head.linear'), + 'levit_conv_256d.untrained': _cfg(classifier='head.linear'), + 'levit_conv_512d.untrained': _cfg(classifier='head.linear'), +}) + + +@register_model +def levit_128s(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_128s', pretrained=pretrained, **kwargs) + + +@register_model +def levit_128(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_128', pretrained=pretrained, **kwargs) + + +@register_model +def levit_192(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_192', pretrained=pretrained, **kwargs) + + +@register_model +def levit_256(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_256', pretrained=pretrained, **kwargs) + + +@register_model +def levit_384(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_384', pretrained=pretrained, **kwargs) + + +@register_model +def levit_384_s8(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_384_s8', pretrained=pretrained, **kwargs) + + +@register_model +def levit_512_s8(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_512_s8', pretrained=pretrained, distilled=False, **kwargs) + + +@register_model +def levit_512(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_512', pretrained=pretrained, distilled=False, **kwargs) + + +@register_model +def levit_256d(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_256d', pretrained=pretrained, distilled=False, **kwargs) + + +@register_model +def levit_512d(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_512d', pretrained=pretrained, distilled=False, **kwargs) + + +@register_model +def levit_conv_128s(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_128s', pretrained=pretrained, use_conv=True, **kwargs) + + +@register_model +def levit_conv_128(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_128', pretrained=pretrained, use_conv=True, **kwargs) + + +@register_model +def levit_conv_192(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_192', pretrained=pretrained, use_conv=True, **kwargs) + + +@register_model +def levit_conv_256(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_256', pretrained=pretrained, use_conv=True, **kwargs) + + +@register_model +def levit_conv_384(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_384', pretrained=pretrained, use_conv=True, **kwargs) + + +@register_model +def levit_conv_384_s8(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_384_s8', pretrained=pretrained, use_conv=True, **kwargs) + + +@register_model +def levit_conv_512_s8(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_512_s8', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) + + +@register_model +def levit_conv_512(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_512', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) + + +@register_model +def levit_conv_256d(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_256d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) + + +@register_model +def levit_conv_512d(pretrained=False, **kwargs) -> Levit: + return create_levit('levit_conv_512d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) + diff --git a/pytorch-image-models/timm/models/mambaout.py b/pytorch-image-models/timm/models/mambaout.py new file mode 100644 index 0000000000000000000000000000000000000000..f53a9cdfc2766d6a4ecba86f26acc7803880a2b3 --- /dev/null +++ b/pytorch-image-models/timm/models/mambaout.py @@ -0,0 +1,642 @@ +""" +MambaOut models for image classification. +Some implementations are modified from: +timm (https://github.com/rwightman/pytorch-image-models), +MetaFormer (https://github.com/sail-sg/metaformer), +InceptionNeXt (https://github.com/sail-sg/inceptionnext) +""" +from collections import OrderedDict +from typing import Optional + +import torch +from torch import nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import trunc_normal_, DropPath, LayerNorm, LayerScale, ClNormMlpClassifierHead, get_act_layer +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + + +class Stem(nn.Module): + r""" Code modified from InternImage: + https://github.com/OpenGVLab/InternImage + """ + + def __init__( + self, + in_chs=3, + out_chs=96, + mid_norm: bool = True, + act_layer=nn.GELU, + norm_layer=LayerNorm, + ): + super().__init__() + self.conv1 = nn.Conv2d( + in_chs, + out_chs // 2, + kernel_size=3, + stride=2, + padding=1 + ) + self.norm1 = norm_layer(out_chs // 2) if mid_norm else None + self.act = act_layer() + self.conv2 = nn.Conv2d( + out_chs // 2, + out_chs, + kernel_size=3, + stride=2, + padding=1 + ) + self.norm2 = norm_layer(out_chs) + + def forward(self, x): + x = self.conv1(x) + if self.norm1 is not None: + x = x.permute(0, 2, 3, 1) + x = self.norm1(x) + x = x.permute(0, 3, 1, 2) + x = self.act(x) + x = self.conv2(x) + x = x.permute(0, 2, 3, 1) + x = self.norm2(x) + return x + + +class DownsampleNormFirst(nn.Module): + + def __init__( + self, + in_chs=96, + out_chs=198, + norm_layer=LayerNorm, + ): + super().__init__() + self.norm = norm_layer(in_chs) + self.conv = nn.Conv2d( + in_chs, + out_chs, + kernel_size=3, + stride=2, + padding=1 + ) + + def forward(self, x): + x = self.norm(x) + x = x.permute(0, 3, 1, 2) + x = self.conv(x) + x = x.permute(0, 2, 3, 1) + return x + + +class Downsample(nn.Module): + + def __init__( + self, + in_chs=96, + out_chs=198, + norm_layer=LayerNorm, + ): + super().__init__() + self.conv = nn.Conv2d( + in_chs, + out_chs, + kernel_size=3, + stride=2, + padding=1 + ) + self.norm = norm_layer(out_chs) + + def forward(self, x): + x = x.permute(0, 3, 1, 2) + x = self.conv(x) + x = x.permute(0, 2, 3, 1) + x = self.norm(x) + return x + + +class MlpHead(nn.Module): + """ MLP classification head + """ + + def __init__( + self, + in_features, + num_classes=1000, + pool_type='avg', + act_layer=nn.GELU, + mlp_ratio=4, + norm_layer=LayerNorm, + drop_rate=0., + bias=True, + ): + super().__init__() + if mlp_ratio is not None: + hidden_size = int(mlp_ratio * in_features) + else: + hidden_size = None + self.pool_type = pool_type + self.in_features = in_features + self.hidden_size = hidden_size or in_features + + self.norm = norm_layer(in_features) + if hidden_size: + self.pre_logits = nn.Sequential(OrderedDict([ + ('fc', nn.Linear(in_features, hidden_size)), + ('act', act_layer()), + ('norm', norm_layer(hidden_size)) + ])) + self.num_features = hidden_size + else: + self.num_features = in_features + self.pre_logits = nn.Identity() + + self.fc = nn.Linear(self.num_features, num_classes, bias=bias) if num_classes > 0 else nn.Identity() + self.head_dropout = nn.Dropout(drop_rate) + + def reset(self, num_classes: int, pool_type: Optional[str] = None, reset_other: bool = False): + if pool_type is not None: + self.pool_type = pool_type + if reset_other: + self.norm = nn.Identity() + self.pre_logits = nn.Identity() + self.num_features = self.in_features + self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward(self, x, pre_logits: bool = False): + if self.pool_type == 'avg': + x = x.mean((1, 2)) + x = self.norm(x) + x = self.pre_logits(x) + x = self.head_dropout(x) + if pre_logits: + return x + x = self.fc(x) + return x + + +class GatedConvBlock(nn.Module): + r""" Our implementation of Gated CNN Block: https://arxiv.org/pdf/1612.08083 + Args: + conv_ratio: control the number of channels to conduct depthwise convolution. + Conduct convolution on partial channels can improve paraitcal efficiency. + The idea of partial channels is from ShuffleNet V2 (https://arxiv.org/abs/1807.11164) and + also used by InceptionNeXt (https://arxiv.org/abs/2303.16900) and FasterNet (https://arxiv.org/abs/2303.03667) + """ + + def __init__( + self, + dim, + expansion_ratio=8 / 3, + kernel_size=7, + conv_ratio=1.0, + ls_init_value=None, + norm_layer=LayerNorm, + act_layer=nn.GELU, + drop_path=0., + **kwargs + ): + super().__init__() + self.norm = norm_layer(dim) + hidden = int(expansion_ratio * dim) + self.fc1 = nn.Linear(dim, hidden * 2) + self.act = act_layer() + conv_channels = int(conv_ratio * dim) + self.split_indices = (hidden, hidden - conv_channels, conv_channels) + self.conv = nn.Conv2d( + conv_channels, + conv_channels, + kernel_size=kernel_size, + padding=kernel_size // 2, + groups=conv_channels + ) + self.fc2 = nn.Linear(hidden, dim) + self.ls = LayerScale(dim) if ls_init_value is not None else nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + shortcut = x # [B, H, W, C] + x = self.norm(x) + x = self.fc1(x) + g, i, c = torch.split(x, self.split_indices, dim=-1) + c = c.permute(0, 3, 1, 2) # [B, H, W, C] -> [B, C, H, W] + c = self.conv(c) + c = c.permute(0, 2, 3, 1) # [B, C, H, W] -> [B, H, W, C] + x = self.fc2(self.act(g) * torch.cat((i, c), dim=-1)) + x = self.ls(x) + x = self.drop_path(x) + return x + shortcut + + +class MambaOutStage(nn.Module): + + def __init__( + self, + dim, + dim_out: Optional[int] = None, + depth: int = 4, + expansion_ratio=8 / 3, + kernel_size=7, + conv_ratio=1.0, + downsample: str = '', + ls_init_value: Optional[float] = None, + norm_layer=LayerNorm, + act_layer=nn.GELU, + drop_path=0., + ): + super().__init__() + dim_out = dim_out or dim + self.grad_checkpointing = False + + if downsample == 'conv': + self.downsample = Downsample(dim, dim_out, norm_layer=norm_layer) + elif downsample == 'conv_nf': + self.downsample = DownsampleNormFirst(dim, dim_out, norm_layer=norm_layer) + else: + assert dim == dim_out + self.downsample = nn.Identity() + + self.blocks = nn.Sequential(*[ + GatedConvBlock( + dim=dim_out, + expansion_ratio=expansion_ratio, + kernel_size=kernel_size, + conv_ratio=conv_ratio, + ls_init_value=ls_init_value, + norm_layer=norm_layer, + act_layer=act_layer, + drop_path=drop_path[j] if isinstance(drop_path, (list, tuple)) else drop_path, + ) + for j in range(depth) + ]) + + def forward(self, x): + x = self.downsample(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class MambaOut(nn.Module): + r""" MetaFormer + A PyTorch impl of : `MetaFormer Baselines for Vision` - + https://arxiv.org/abs/2210.13452 + + Args: + in_chans (int): Number of input image channels. Default: 3. + num_classes (int): Number of classes for classification head. Default: 1000. + depths (list or tuple): Number of blocks at each stage. Default: [3, 3, 9, 3]. + dims (int): Feature dimension at each stage. Default: [96, 192, 384, 576]. + downsample_layers: (list or tuple): Downsampling layers before each stage. + drop_path_rate (float): Stochastic depth rate. Default: 0. + output_norm: norm before classifier head. Default: partial(nn.LayerNorm, eps=1e-6). + head_fn: classification head. Default: nn.Linear. + head_dropout (float): dropout for MLP classifier. Default: 0. + """ + + def __init__( + self, + in_chans=3, + num_classes=1000, + global_pool='avg', + depths=(3, 3, 9, 3), + dims=(96, 192, 384, 576), + norm_layer=LayerNorm, + act_layer=nn.GELU, + conv_ratio=1.0, + expansion_ratio=8/3, + kernel_size=7, + stem_mid_norm=True, + ls_init_value=None, + downsample='conv', + drop_path_rate=0., + drop_rate=0., + head_fn='default', + ): + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + self.output_fmt = 'NHWC' + if not isinstance(depths, (list, tuple)): + depths = [depths] # it means the model has only one stage + if not isinstance(dims, (list, tuple)): + dims = [dims] + act_layer = get_act_layer(act_layer) + + num_stage = len(depths) + self.num_stage = num_stage + self.feature_info = [] + + self.stem = Stem( + in_chans, + dims[0], + mid_norm=stem_mid_norm, + act_layer=act_layer, + norm_layer=norm_layer, + ) + prev_dim = dims[0] + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + cur = 0 + curr_stride = 4 + self.stages = nn.Sequential() + for i in range(num_stage): + dim = dims[i] + stride = 2 if curr_stride == 2 or i > 0 else 1 + curr_stride *= stride + stage = MambaOutStage( + dim=prev_dim, + dim_out=dim, + depth=depths[i], + kernel_size=kernel_size, + conv_ratio=conv_ratio, + expansion_ratio=expansion_ratio, + downsample=downsample if i > 0 else '', + ls_init_value=ls_init_value, + norm_layer=norm_layer, + act_layer=act_layer, + drop_path=dp_rates[i], + ) + self.stages.append(stage) + prev_dim = dim + # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 + self.feature_info += [dict(num_chs=prev_dim, reduction=curr_stride, module=f'stages.{i}')] + cur += depths[i] + + if head_fn == 'default': + # specific to this model, unusual norm -> pool -> fc -> act -> norm -> fc combo + self.head = MlpHead( + prev_dim, + num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + norm_layer=norm_layer, + ) + else: + # more typical norm -> pool -> fc -> act -> fc + self.head = ClNormMlpClassifierHead( + prev_dim, + num_classes, + hidden_size=int(prev_dim * 4), + pool_type=global_pool, + norm_layer=norm_layer, + drop_rate=drop_rate, + ) + self.num_features = prev_dim + self.head_hidden_size = self.head.num_features + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, (nn.Conv2d, nn.Linear)): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+)\.downsample', (0,)), # blocks + (r'^stages\.(\d+)\.blocks\.(\d+)', None), + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + return x + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + if 'model' in state_dict: + state_dict = state_dict['model'] + if 'stem.conv1.weight' in state_dict: + return state_dict + + import re + out_dict = {} + for k, v in state_dict.items(): + k = k.replace('downsample_layers.0.', 'stem.') + k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) + k = re.sub(r'downsample_layers.([0-9]+)', r'stages.\1.downsample', k) + # remap head names + if k.startswith('norm.'): + # this is moving to head since it's after the pooling + k = k.replace('norm.', 'head.norm.') + elif k.startswith('head.'): + k = k.replace('head.fc1.', 'head.pre_logits.fc.') + k = k.replace('head.norm.', 'head.pre_logits.norm.') + k = k.replace('head.fc2.', 'head.fc.') + out_dict[k] = v + + return out_dict + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'test_input_size': (3, 288, 288), + 'pool_size': (7, 7), 'crop_pct': 1.0, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv1', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # original weights + 'mambaout_femto.in1k': _cfg( + hf_hub_id='timm/'), + 'mambaout_kobe.in1k': _cfg( + hf_hub_id='timm/'), + 'mambaout_tiny.in1k': _cfg( + hf_hub_id='timm/'), + 'mambaout_small.in1k': _cfg( + hf_hub_id='timm/'), + 'mambaout_base.in1k': _cfg( + hf_hub_id='timm/'), + + # timm experiments below + 'mambaout_small_rw.sw_e450_in1k': _cfg( + hf_hub_id='timm/', + ), + 'mambaout_base_short_rw.sw_e500_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_crop_pct=1.0, + ), + 'mambaout_base_tall_rw.sw_e500_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_crop_pct=1.0, + ), + 'mambaout_base_wide_rw.sw_e500_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_crop_pct=1.0, + ), + 'mambaout_base_plus_rw.sw_e150_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + ), + 'mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), test_input_size=(3, 384, 384), crop_mode='squash', pool_size=(12, 12), + ), + 'mambaout_base_plus_rw.sw_e150_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + ), + 'test_mambaout': _cfg(input_size=(3, 160, 160), test_input_size=(3, 192, 192), pool_size=(5, 5)), +}) + + +def _create_mambaout(variant, pretrained=False, **kwargs): + model = build_model_with_cfg( + MambaOut, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), + **kwargs, + ) + return model + + +# a series of MambaOut models +@register_model +def mambaout_femto(pretrained=False, **kwargs): + model_args = dict(depths=(3, 3, 9, 3), dims=(48, 96, 192, 288)) + return _create_mambaout('mambaout_femto', pretrained=pretrained, **dict(model_args, **kwargs)) + +# Kobe Memorial Version with 24 Gated CNN blocks +@register_model +def mambaout_kobe(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 15, 3], dims=[48, 96, 192, 288]) + return _create_mambaout('mambaout_kobe', pretrained=pretrained, **dict(model_args, **kwargs)) + +@register_model +def mambaout_tiny(pretrained=False, **kwargs): + model_args = dict(depths=[3, 3, 9, 3], dims=[96, 192, 384, 576]) + return _create_mambaout('mambaout_tiny', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def mambaout_small(pretrained=False, **kwargs): + model_args = dict(depths=[3, 4, 27, 3], dims=[96, 192, 384, 576]) + return _create_mambaout('mambaout_small', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def mambaout_base(pretrained=False, **kwargs): + model_args = dict(depths=[3, 4, 27, 3], dims=[128, 256, 512, 768]) + return _create_mambaout('mambaout_base', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def mambaout_small_rw(pretrained=False, **kwargs): + model_args = dict( + depths=[3, 4, 27, 3], + dims=[96, 192, 384, 576], + stem_mid_norm=False, + downsample='conv_nf', + ls_init_value=1e-6, + head_fn='norm_mlp', + ) + return _create_mambaout('mambaout_small_rw', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def mambaout_base_short_rw(pretrained=False, **kwargs): + model_args = dict( + depths=(3, 3, 25, 3), + dims=(128, 256, 512, 768), + expansion_ratio=3.0, + conv_ratio=1.25, + stem_mid_norm=False, + downsample='conv_nf', + ls_init_value=1e-6, + head_fn='norm_mlp', + ) + return _create_mambaout('mambaout_base_short_rw', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def mambaout_base_tall_rw(pretrained=False, **kwargs): + model_args = dict( + depths=(3, 4, 30, 3), + dims=(128, 256, 512, 768), + expansion_ratio=2.5, + conv_ratio=1.25, + stem_mid_norm=False, + downsample='conv_nf', + ls_init_value=1e-6, + head_fn='norm_mlp', + ) + return _create_mambaout('mambaout_base_tall_rw', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def mambaout_base_wide_rw(pretrained=False, **kwargs): + model_args = dict( + depths=(3, 4, 27, 3), + dims=(128, 256, 512, 768), + expansion_ratio=3.0, + conv_ratio=1.5, + stem_mid_norm=False, + downsample='conv_nf', + ls_init_value=1e-6, + act_layer='silu', + head_fn='norm_mlp', + ) + return _create_mambaout('mambaout_base_wide_rw', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def mambaout_base_plus_rw(pretrained=False, **kwargs): + model_args = dict( + depths=(3, 4, 30, 3), + dims=(128, 256, 512, 768), + expansion_ratio=3.0, + conv_ratio=1.5, + stem_mid_norm=False, + downsample='conv_nf', + ls_init_value=1e-6, + act_layer='silu', + head_fn='norm_mlp', + ) + return _create_mambaout('mambaout_base_plus_rw', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def test_mambaout(pretrained=False, **kwargs): + model_args = dict( + depths=(1, 1, 3, 1), + dims=(16, 32, 48, 64), + expansion_ratio=3, + stem_mid_norm=False, + downsample='conv_nf', + ls_init_value=1e-4, + act_layer='silu', + head_fn='norm_mlp', + ) + return _create_mambaout('test_mambaout', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/maxxvit.py b/pytorch-image-models/timm/models/maxxvit.py new file mode 100644 index 0000000000000000000000000000000000000000..e4375b34e5f6daf018c5bde64c00c9d120c6880d --- /dev/null +++ b/pytorch-image-models/timm/models/maxxvit.py @@ -0,0 +1,2402 @@ +""" MaxVit and CoAtNet Vision Transformer - CNN Hybrids in PyTorch + +This is a from-scratch implementation of both CoAtNet and MaxVit in PyTorch. + +99% of the implementation was done from papers, however last minute some adjustments were made +based on the (as yet unfinished?) public code release https://github.com/google-research/maxvit + +There are multiple sets of models defined for both architectures. Typically, names with a + `_rw` suffix are my own original configs prior to referencing https://github.com/google-research/maxvit. +These configs work well and appear to be a bit faster / lower resource than the paper. + +The models without extra prefix / suffix' (coatnet_0_224, maxvit_tiny_224, etc), are intended to +match paper, BUT, without any official pretrained weights it's difficult to confirm a 100% match. + +Papers: + +MaxViT: Multi-Axis Vision Transformer - https://arxiv.org/abs/2204.01697 +@article{tu2022maxvit, + title={MaxViT: Multi-Axis Vision Transformer}, + author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao}, + journal={ECCV}, + year={2022}, +} + +CoAtNet: Marrying Convolution and Attention for All Data Sizes - https://arxiv.org/abs/2106.04803 +@article{DBLP:journals/corr/abs-2106-04803, + author = {Zihang Dai and Hanxiao Liu and Quoc V. Le and Mingxing Tan}, + title = {CoAtNet: Marrying Convolution and Attention for All Data Sizes}, + journal = {CoRR}, + volume = {abs/2106.04803}, + year = {2021} +} + +Hacked together by / Copyright 2022, Ross Wightman +""" + +import math +from collections import OrderedDict +from dataclasses import dataclass, replace, field +from functools import partial +from typing import Callable, Optional, Union, Tuple, List + +import torch +from torch import nn +from torch.jit import Final + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import Mlp, ConvMlp, DropPath, LayerNorm, ClassifierHead, NormMlpClassifierHead +from timm.layers import create_attn, get_act_layer, get_norm_layer, get_norm_act_layer, create_conv2d, create_pool2d +from timm.layers import trunc_normal_tf_, to_2tuple, extend_tuple, make_divisible, _assert +from timm.layers import RelPosMlp, RelPosBias, RelPosBiasTf, use_fused_attn, resize_rel_pos_bias_table +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._manipulate import named_apply, checkpoint_seq +from ._registry import generate_default_cfgs, register_model + +__all__ = ['MaxxVitCfg', 'MaxxVitConvCfg', 'MaxxVitTransformerCfg', 'MaxxVit'] + + +@dataclass +class MaxxVitTransformerCfg: + dim_head: int = 32 + head_first: bool = True # head ordering in qkv channel dim + expand_ratio: float = 4.0 + expand_first: bool = True + shortcut_bias: bool = True + attn_bias: bool = True + attn_drop: float = 0. + proj_drop: float = 0. + pool_type: str = 'avg2' + rel_pos_type: str = 'bias' + rel_pos_dim: int = 512 # for relative position types w/ MLP + partition_ratio: int = 32 + window_size: Optional[Tuple[int, int]] = None + grid_size: Optional[Tuple[int, int]] = None + no_block_attn: bool = False # disable window block attention for maxvit (ie only grid) + use_nchw_attn: bool = False # for MaxViT variants (not used for CoAt), keep tensors in NCHW order + init_values: Optional[float] = None + act_layer: str = 'gelu' + norm_layer: str = 'layernorm2d' + norm_layer_cl: str = 'layernorm' + norm_eps: float = 1e-6 + + def __post_init__(self): + if self.grid_size is not None: + self.grid_size = to_2tuple(self.grid_size) + if self.window_size is not None: + self.window_size = to_2tuple(self.window_size) + if self.grid_size is None: + self.grid_size = self.window_size + + +@dataclass +class MaxxVitConvCfg: + block_type: str = 'mbconv' + expand_ratio: float = 4.0 + expand_output: bool = True # calculate expansion channels from output (vs input chs) + kernel_size: int = 3 + group_size: int = 1 # 1 == depthwise + pre_norm_act: bool = False # activation after pre-norm + output_bias: bool = True # bias for shortcut + final 1x1 projection conv + stride_mode: str = 'dw' # stride done via one of 'pool', '1x1', 'dw' + pool_type: str = 'avg2' + downsample_pool_type: str = 'avg2' + padding: str = '' + attn_early: bool = False # apply attn between conv2 and norm2, instead of after norm2 + attn_layer: str = 'se' + attn_act_layer: str = 'silu' + attn_ratio: float = 0.25 + init_values: Optional[float] = 1e-6 # for ConvNeXt block, ignored by MBConv + act_layer: str = 'gelu' + norm_layer: str = '' + norm_layer_cl: str = '' + norm_eps: Optional[float] = None + + def __post_init__(self): + # mbconv vs convnext blocks have different defaults, set in post_init to avoid explicit config args + assert self.block_type in ('mbconv', 'convnext') + use_mbconv = self.block_type == 'mbconv' + if not self.norm_layer: + self.norm_layer = 'batchnorm2d' if use_mbconv else 'layernorm2d' + if not self.norm_layer_cl and not use_mbconv: + self.norm_layer_cl = 'layernorm' + if self.norm_eps is None: + self.norm_eps = 1e-5 if use_mbconv else 1e-6 + self.downsample_pool_type = self.downsample_pool_type or self.pool_type + + +@dataclass +class MaxxVitCfg: + embed_dim: Tuple[int, ...] = (96, 192, 384, 768) + depths: Tuple[int, ...] = (2, 3, 5, 2) + block_type: Tuple[Union[str, Tuple[str, ...]], ...] = ('C', 'C', 'T', 'T') + stem_width: Union[int, Tuple[int, int]] = 64 + stem_bias: bool = False + conv_cfg: MaxxVitConvCfg = field(default_factory=MaxxVitConvCfg) + transformer_cfg: MaxxVitTransformerCfg = field(default_factory=MaxxVitTransformerCfg) + head_hidden_size: int = None + weight_init: str = 'vit_eff' + + +class Attention2d(nn.Module): + fused_attn: Final[bool] + + """ multi-head attention for 2D NCHW tensors""" + def __init__( + self, + dim: int, + dim_out: Optional[int] = None, + dim_head: int = 32, + bias: bool = True, + expand_first: bool = True, + head_first: bool = True, + rel_pos_cls: Callable = None, + attn_drop: float = 0., + proj_drop: float = 0. + ): + super().__init__() + dim_out = dim_out or dim + dim_attn = dim_out if expand_first else dim + self.num_heads = dim_attn // dim_head + self.dim_head = dim_head + self.head_first = head_first + self.scale = dim_head ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias) + self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): + B, C, H, W = x.shape + + if self.head_first: + q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2) + else: + q, k, v = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1) + + if self.fused_attn: + attn_bias = None + if self.rel_pos is not None: + attn_bias = self.rel_pos.get_bias() + elif shared_rel_pos is not None: + attn_bias = shared_rel_pos + + x = torch.nn.functional.scaled_dot_product_attention( + q.transpose(-1, -2).contiguous(), + k.transpose(-1, -2).contiguous(), + v.transpose(-1, -2).contiguous(), + attn_mask=attn_bias, + dropout_p=self.attn_drop.p if self.training else 0., + ).transpose(-1, -2).reshape(B, -1, H, W) + else: + q = q * self.scale + attn = q.transpose(-2, -1) @ k + if self.rel_pos is not None: + attn = self.rel_pos(attn) + elif shared_rel_pos is not None: + attn = attn + shared_rel_pos + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) + + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class AttentionCl(nn.Module): + """ Channels-last multi-head attention (B, ..., C) """ + fused_attn: Final[bool] + + def __init__( + self, + dim: int, + dim_out: Optional[int] = None, + dim_head: int = 32, + bias: bool = True, + expand_first: bool = True, + head_first: bool = True, + rel_pos_cls: Callable = None, + attn_drop: float = 0., + proj_drop: float = 0. + ): + super().__init__() + dim_out = dim_out or dim + dim_attn = dim_out if expand_first and dim_out > dim else dim + assert dim_attn % dim_head == 0, 'attn dim should be divisible by head_dim' + self.num_heads = dim_attn // dim_head + self.dim_head = dim_head + self.head_first = head_first + self.scale = dim_head ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Linear(dim, dim_attn * 3, bias=bias) + self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim_attn, dim_out, bias=bias) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): + B = x.shape[0] + restore_shape = x.shape[:-1] + + if self.head_first: + q, k, v = self.qkv(x).view(B, -1, self.num_heads, self.dim_head * 3).transpose(1, 2).chunk(3, dim=3) + else: + q, k, v = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.dim_head).transpose(1, 3).unbind(2) + + if self.fused_attn: + attn_bias = None + if self.rel_pos is not None: + attn_bias = self.rel_pos.get_bias() + elif shared_rel_pos is not None: + attn_bias = shared_rel_pos + + x = torch.nn.functional.scaled_dot_product_attention( + q, k, v, + attn_mask=attn_bias, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + if self.rel_pos is not None: + attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos) + elif shared_rel_pos is not None: + attn = attn + shared_rel_pos + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(restore_shape + (-1,)) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class LayerScale(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma + return x.mul_(gamma) if self.inplace else x * gamma + + +class LayerScale2d(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + gamma = self.gamma.view(1, -1, 1, 1) + return x.mul_(gamma) if self.inplace else x * gamma + + +class Downsample2d(nn.Module): + """ A downsample pooling module supporting several maxpool and avgpool modes + * 'max' - MaxPool2d w/ kernel_size 3, stride 2, padding 1 + * 'max2' - MaxPool2d w/ kernel_size = stride = 2 + * 'avg' - AvgPool2d w/ kernel_size 3, stride 2, padding 1 + * 'avg2' - AvgPool2d w/ kernel_size = stride = 2 + """ + + def __init__( + self, + dim: int, + dim_out: int, + pool_type: str = 'avg2', + padding: str = '', + bias: bool = True, + ): + super().__init__() + assert pool_type in ('max', 'max2', 'avg', 'avg2') + if pool_type == 'max': + self.pool = create_pool2d('max', kernel_size=3, stride=2, padding=padding or 1) + elif pool_type == 'max2': + self.pool = create_pool2d('max', 2, padding=padding or 0) # kernel_size == stride == 2 + elif pool_type == 'avg': + self.pool = create_pool2d( + 'avg', kernel_size=3, stride=2, count_include_pad=False, padding=padding or 1) + else: + self.pool = create_pool2d('avg', 2, padding=padding or 0) + + if dim != dim_out: + self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias) + else: + self.expand = nn.Identity() + + def forward(self, x): + x = self.pool(x) # spatial downsample + x = self.expand(x) # expand chs + return x + + +def _init_transformer(module, name, scheme=''): + if isinstance(module, (nn.Conv2d, nn.Linear)): + if scheme == 'normal': + nn.init.normal_(module.weight, std=.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif scheme == 'trunc_normal': + trunc_normal_tf_(module.weight, std=.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif scheme == 'xavier_normal': + nn.init.xavier_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + else: + # vit like + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + if 'mlp' in name: + nn.init.normal_(module.bias, std=1e-6) + else: + nn.init.zeros_(module.bias) + + +class TransformerBlock2d(nn.Module): + """ Transformer block with 2D downsampling + '2D' NCHW tensor layout + + Some gains can be seen on GPU using a 1D / CL block, BUT w/ the need to switch back/forth to NCHW + for spatial pooling, the benefit is minimal so ended up using just this variant for CoAt configs. + + This impl was faster on TPU w/ PT XLA than the 1D experiment. + """ + + def __init__( + self, + dim: int, + dim_out: int, + stride: int = 1, + rel_pos_cls: Callable = None, + cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), + drop_path: float = 0., + ): + super().__init__() + norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) + act_layer = get_act_layer(cfg.act_layer) + + if stride == 2: + self.shortcut = Downsample2d(dim, dim_out, pool_type=cfg.pool_type, bias=cfg.shortcut_bias) + self.norm1 = nn.Sequential(OrderedDict([ + ('norm', norm_layer(dim)), + ('down', Downsample2d(dim, dim, pool_type=cfg.pool_type)), + ])) + else: + assert dim == dim_out + self.shortcut = nn.Identity() + self.norm1 = norm_layer(dim) + + self.attn = Attention2d( + dim, + dim_out, + dim_head=cfg.dim_head, + expand_first=cfg.expand_first, + bias=cfg.attn_bias, + rel_pos_cls=rel_pos_cls, + attn_drop=cfg.attn_drop, + proj_drop=cfg.proj_drop + ) + self.ls1 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim_out) + self.mlp = ConvMlp( + in_features=dim_out, + hidden_features=int(dim_out * cfg.expand_ratio), + act_layer=act_layer, + drop=cfg.proj_drop) + self.ls2 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def init_weights(self, scheme=''): + named_apply(partial(_init_transformer, scheme=scheme), self) + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): + x = self.shortcut(x) + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + + +def _init_conv(module, name, scheme=''): + if isinstance(module, nn.Conv2d): + if scheme == 'normal': + nn.init.normal_(module.weight, std=.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif scheme == 'trunc_normal': + trunc_normal_tf_(module.weight, std=.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif scheme == 'xavier_normal': + nn.init.xavier_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + else: + # efficientnet like + fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels + fan_out //= module.groups + nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out)) + if module.bias is not None: + nn.init.zeros_(module.bias) + + +def num_groups(group_size, channels): + if not group_size: # 0 or None + return 1 # normal conv with 1 group + else: + # NOTE group_size == 1 -> depthwise conv + assert channels % group_size == 0 + return channels // group_size + + +class MbConvBlock(nn.Module): + """ Pre-Norm Conv Block - 1x1 - kxk - 1x1, w/ inverted bottleneck (expand) + """ + def __init__( + self, + in_chs: int, + out_chs: int, + stride: int = 1, + dilation: Tuple[int, int] = (1, 1), + cfg: MaxxVitConvCfg = MaxxVitConvCfg(), + drop_path: float = 0. + ): + super(MbConvBlock, self).__init__() + norm_act_layer = partial(get_norm_act_layer(cfg.norm_layer, cfg.act_layer), eps=cfg.norm_eps) + mid_chs = make_divisible((out_chs if cfg.expand_output else in_chs) * cfg.expand_ratio) + groups = num_groups(cfg.group_size, mid_chs) + + if stride == 2: + self.shortcut = Downsample2d( + in_chs, out_chs, pool_type=cfg.pool_type, bias=cfg.output_bias, padding=cfg.padding) + else: + self.shortcut = nn.Identity() + + assert cfg.stride_mode in ('pool', '1x1', 'dw') + stride_pool, stride_1, stride_2 = 1, 1, 1 + if cfg.stride_mode == 'pool': + # NOTE this is not described in paper, experiment to find faster option that doesn't stride in 1x1 + stride_pool, dilation_2 = stride, dilation[1] + # FIXME handle dilation of avg pool + elif cfg.stride_mode == '1x1': + # NOTE I don't like this option described in paper, 1x1 w/ stride throws info away + stride_1, dilation_2 = stride, dilation[1] + else: + stride_2, dilation_2 = stride, dilation[0] + + self.pre_norm = norm_act_layer(in_chs, apply_act=cfg.pre_norm_act) + if stride_pool > 1: + self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type, padding=cfg.padding) + else: + self.down = nn.Identity() + self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=stride_1) + self.norm1 = norm_act_layer(mid_chs) + + self.conv2_kxk = create_conv2d( + mid_chs, mid_chs, cfg.kernel_size, + stride=stride_2, dilation=dilation_2, groups=groups, padding=cfg.padding) + + attn_kwargs = {} + if isinstance(cfg.attn_layer, str): + if cfg.attn_layer == 'se' or cfg.attn_layer == 'eca': + attn_kwargs['act_layer'] = cfg.attn_act_layer + attn_kwargs['rd_channels'] = int(cfg.attn_ratio * (out_chs if cfg.expand_output else mid_chs)) + + # two different orderings for SE and norm2 (due to some weights and trials using SE before norm2) + if cfg.attn_early: + self.se_early = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs) + self.norm2 = norm_act_layer(mid_chs) + self.se = None + else: + self.se_early = None + self.norm2 = norm_act_layer(mid_chs) + self.se = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs) + + self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=cfg.output_bias) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def init_weights(self, scheme=''): + named_apply(partial(_init_conv, scheme=scheme), self) + + def forward(self, x): + shortcut = self.shortcut(x) + x = self.pre_norm(x) + x = self.down(x) + + # 1x1 expansion conv & norm-act + x = self.conv1_1x1(x) + x = self.norm1(x) + + # depthwise / grouped 3x3 conv w/ SE (or other) channel attention & norm-act + x = self.conv2_kxk(x) + if self.se_early is not None: + x = self.se_early(x) + x = self.norm2(x) + if self.se is not None: + x = self.se(x) + + # 1x1 linear projection to output width + x = self.conv3_1x1(x) + x = self.drop_path(x) + shortcut + return x + + +class ConvNeXtBlock(nn.Module): + """ ConvNeXt Block + """ + + def __init__( + self, + in_chs: int, + out_chs: Optional[int] = None, + kernel_size: int = 7, + stride: int = 1, + dilation: Tuple[int, int] = (1, 1), + cfg: MaxxVitConvCfg = MaxxVitConvCfg(), + conv_mlp: bool = True, + drop_path: float = 0. + ): + super().__init__() + out_chs = out_chs or in_chs + act_layer = get_act_layer(cfg.act_layer) + if conv_mlp: + norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) + mlp_layer = ConvMlp + else: + assert 'layernorm' in cfg.norm_layer + norm_layer = LayerNorm + mlp_layer = Mlp + self.use_conv_mlp = conv_mlp + + if stride == 2: + self.shortcut = Downsample2d(in_chs, out_chs) + elif in_chs != out_chs: + self.shortcut = nn.Conv2d(in_chs, out_chs, kernel_size=1, bias=cfg.output_bias) + else: + self.shortcut = nn.Identity() + + assert cfg.stride_mode in ('pool', 'dw') + stride_pool, stride_dw = 1, 1 + # FIXME handle dilation? + if cfg.stride_mode == 'pool': + stride_pool = stride + else: + stride_dw = stride + + if stride_pool == 2: + self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type) + else: + self.down = nn.Identity() + + self.conv_dw = create_conv2d( + in_chs, out_chs, kernel_size=kernel_size, stride=stride_dw, dilation=dilation[1], + depthwise=True, bias=cfg.output_bias) + self.norm = norm_layer(out_chs) + self.mlp = mlp_layer(out_chs, int(cfg.expand_ratio * out_chs), bias=cfg.output_bias, act_layer=act_layer) + if conv_mlp: + self.ls = LayerScale2d(out_chs, cfg.init_values) if cfg.init_values else nn.Identity() + else: + self.ls = LayerScale(out_chs, cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + shortcut = self.shortcut(x) + x = self.down(x) + x = self.conv_dw(x) + if self.use_conv_mlp: + x = self.norm(x) + x = self.mlp(x) + x = self.ls(x) + else: + x = x.permute(0, 2, 3, 1) + x = self.norm(x) + x = self.mlp(x) + x = self.ls(x) + x = x.permute(0, 3, 1, 2) + + x = self.drop_path(x) + shortcut + return x + + +def window_partition(x, window_size: List[int]): + B, H, W, C = x.shape + _assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})') + _assert(W % window_size[1] == 0, f'width ({W}) must be divisible by window ({window_size[1]})') + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + + +@register_notrace_function # reason: int argument is a Proxy +def window_reverse(windows, window_size: List[int], img_size: List[int]): + H, W = img_size + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + + +def grid_partition(x, grid_size: List[int]): + B, H, W, C = x.shape + _assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}') + _assert(W % grid_size[1] == 0, f'width {W} must be divisible by grid {grid_size[1]}') + x = x.view(B, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1], C) + windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, grid_size[0], grid_size[1], C) + return windows + + +@register_notrace_function # reason: int argument is a Proxy +def grid_reverse(windows, grid_size: List[int], img_size: List[int]): + H, W = img_size + C = windows.shape[-1] + x = windows.view(-1, H // grid_size[0], W // grid_size[1], grid_size[0], grid_size[1], C) + x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, H, W, C) + return x + + +def get_rel_pos_cls(cfg: MaxxVitTransformerCfg, window_size): + rel_pos_cls = None + if cfg.rel_pos_type == 'mlp': + rel_pos_cls = partial(RelPosMlp, window_size=window_size, hidden_dim=cfg.rel_pos_dim) + elif cfg.rel_pos_type == 'bias': + rel_pos_cls = partial(RelPosBias, window_size=window_size) + elif cfg.rel_pos_type == 'bias_tf': + rel_pos_cls = partial(RelPosBiasTf, window_size=window_size) + return rel_pos_cls + + +class PartitionAttentionCl(nn.Module): + """ Grid or Block partition + Attn + FFN. + NxC 'channels last' tensor layout. + """ + + def __init__( + self, + dim: int, + partition_type: str = 'block', + cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), + drop_path: float = 0., + ): + super().__init__() + norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) # NOTE this block is channels-last + act_layer = get_act_layer(cfg.act_layer) + + self.partition_block = partition_type == 'block' + self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size) + rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) + + self.norm1 = norm_layer(dim) + self.attn = AttentionCl( + dim, + dim, + dim_head=cfg.dim_head, + bias=cfg.attn_bias, + head_first=cfg.head_first, + rel_pos_cls=rel_pos_cls, + attn_drop=cfg.attn_drop, + proj_drop=cfg.proj_drop, + ) + self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * cfg.expand_ratio), + act_layer=act_layer, + drop=cfg.proj_drop) + self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def _partition_attn(self, x): + img_size = x.shape[1:3] + if self.partition_block: + partitioned = window_partition(x, self.partition_size) + else: + partitioned = grid_partition(x, self.partition_size) + + partitioned = self.attn(partitioned) + + if self.partition_block: + x = window_reverse(partitioned, self.partition_size, img_size) + else: + x = grid_reverse(partitioned, self.partition_size, img_size) + return x + + def forward(self, x): + x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + + +class ParallelPartitionAttention(nn.Module): + """ Experimental. Grid and Block partition + single FFN + NxC tensor layout. + """ + + def __init__( + self, + dim: int, + cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), + drop_path: float = 0., + ): + super().__init__() + assert dim % 2 == 0 + norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) # NOTE this block is channels-last + act_layer = get_act_layer(cfg.act_layer) + + assert cfg.window_size == cfg.grid_size + self.partition_size = to_2tuple(cfg.window_size) + rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) + + self.norm1 = norm_layer(dim) + self.attn_block = AttentionCl( + dim, + dim // 2, + dim_head=cfg.dim_head, + bias=cfg.attn_bias, + head_first=cfg.head_first, + rel_pos_cls=rel_pos_cls, + attn_drop=cfg.attn_drop, + proj_drop=cfg.proj_drop, + ) + self.attn_grid = AttentionCl( + dim, + dim // 2, + dim_head=cfg.dim_head, + bias=cfg.attn_bias, + head_first=cfg.head_first, + rel_pos_cls=rel_pos_cls, + attn_drop=cfg.attn_drop, + proj_drop=cfg.proj_drop, + ) + self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * cfg.expand_ratio), + out_features=dim, + act_layer=act_layer, + drop=cfg.proj_drop) + self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def _partition_attn(self, x): + img_size = x.shape[1:3] + + partitioned_block = window_partition(x, self.partition_size) + partitioned_block = self.attn_block(partitioned_block) + x_window = window_reverse(partitioned_block, self.partition_size, img_size) + + partitioned_grid = grid_partition(x, self.partition_size) + partitioned_grid = self.attn_grid(partitioned_grid) + x_grid = grid_reverse(partitioned_grid, self.partition_size, img_size) + + return torch.cat([x_window, x_grid], dim=-1) + + def forward(self, x): + x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + + +def window_partition_nchw(x, window_size: List[int]): + B, C, H, W = x.shape + _assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})') + _assert(W % window_size[1] == 0, f'width ({W}) must be divisible by window ({window_size[1]})') + x = x.view(B, C, H // window_size[0], window_size[0], W // window_size[1], window_size[1]) + windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, C, window_size[0], window_size[1]) + return windows + + +@register_notrace_function # reason: int argument is a Proxy +def window_reverse_nchw(windows, window_size: List[int], img_size: List[int]): + H, W = img_size + C = windows.shape[1] + x = windows.view(-1, H // window_size[0], W // window_size[1], C, window_size[0], window_size[1]) + x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, C, H, W) + return x + + +def grid_partition_nchw(x, grid_size: List[int]): + B, C, H, W = x.shape + _assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}') + _assert(W % grid_size[1] == 0, f'width {W} must be divisible by grid {grid_size[1]}') + x = x.view(B, C, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1]) + windows = x.permute(0, 3, 5, 1, 2, 4).contiguous().view(-1, C, grid_size[0], grid_size[1]) + return windows + + +@register_notrace_function # reason: int argument is a Proxy +def grid_reverse_nchw(windows, grid_size: List[int], img_size: List[int]): + H, W = img_size + C = windows.shape[1] + x = windows.view(-1, H // grid_size[0], W // grid_size[1], C, grid_size[0], grid_size[1]) + x = x.permute(0, 3, 4, 1, 5, 2).contiguous().view(-1, C, H, W) + return x + + +class PartitionAttention2d(nn.Module): + """ Grid or Block partition + Attn + FFN + + '2D' NCHW tensor layout. + """ + + def __init__( + self, + dim: int, + partition_type: str = 'block', + cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), + drop_path: float = 0., + ): + super().__init__() + norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) # NOTE this block is channels-last + act_layer = get_act_layer(cfg.act_layer) + + self.partition_block = partition_type == 'block' + self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size) + rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) + + self.norm1 = norm_layer(dim) + self.attn = Attention2d( + dim, + dim, + dim_head=cfg.dim_head, + bias=cfg.attn_bias, + head_first=cfg.head_first, + rel_pos_cls=rel_pos_cls, + attn_drop=cfg.attn_drop, + proj_drop=cfg.proj_drop, + ) + self.ls1 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = ConvMlp( + in_features=dim, + hidden_features=int(dim * cfg.expand_ratio), + act_layer=act_layer, + drop=cfg.proj_drop) + self.ls2 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def _partition_attn(self, x): + img_size = x.shape[-2:] + if self.partition_block: + partitioned = window_partition_nchw(x, self.partition_size) + else: + partitioned = grid_partition_nchw(x, self.partition_size) + + partitioned = self.attn(partitioned) + + if self.partition_block: + x = window_reverse_nchw(partitioned, self.partition_size, img_size) + else: + x = grid_reverse_nchw(partitioned, self.partition_size, img_size) + return x + + def forward(self, x): + x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + + +class MaxxVitBlock(nn.Module): + """ MaxVit conv, window partition + FFN , grid partition + FFN + """ + + def __init__( + self, + dim: int, + dim_out: int, + stride: int = 1, + conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(), + transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), + drop_path: float = 0., + ): + super().__init__() + self.nchw_attn = transformer_cfg.use_nchw_attn + + conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock + self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path) + + attn_kwargs = dict(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path) + partition_layer = PartitionAttention2d if self.nchw_attn else PartitionAttentionCl + self.attn_block = None if transformer_cfg.no_block_attn else partition_layer(**attn_kwargs) + self.attn_grid = partition_layer(partition_type='grid', **attn_kwargs) + + def init_weights(self, scheme=''): + if self.attn_block is not None: + named_apply(partial(_init_transformer, scheme=scheme), self.attn_block) + named_apply(partial(_init_transformer, scheme=scheme), self.attn_grid) + named_apply(partial(_init_conv, scheme=scheme), self.conv) + + def forward(self, x): + # NCHW format + x = self.conv(x) + + if not self.nchw_attn: + x = x.permute(0, 2, 3, 1) # to NHWC (channels-last) + if self.attn_block is not None: + x = self.attn_block(x) + x = self.attn_grid(x) + if not self.nchw_attn: + x = x.permute(0, 3, 1, 2) # back to NCHW + return x + + +class ParallelMaxxVitBlock(nn.Module): + """ MaxVit block with parallel cat(window + grid), one FF + Experimental timm block. + """ + + def __init__( + self, + dim, + dim_out, + stride=1, + num_conv=2, + conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(), + transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), + drop_path=0., + ): + super().__init__() + + conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock + if num_conv > 1: + convs = [conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path)] + convs += [conv_cls(dim_out, dim_out, cfg=conv_cfg, drop_path=drop_path)] * (num_conv - 1) + self.conv = nn.Sequential(*convs) + else: + self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path) + self.attn = ParallelPartitionAttention(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path) + + def init_weights(self, scheme=''): + named_apply(partial(_init_transformer, scheme=scheme), self.attn) + named_apply(partial(_init_conv, scheme=scheme), self.conv) + + def forward(self, x): + x = self.conv(x) + x = x.permute(0, 2, 3, 1) + x = self.attn(x) + x = x.permute(0, 3, 1, 2) + return x + + +class MaxxVitStage(nn.Module): + def __init__( + self, + in_chs: int, + out_chs: int, + stride: int = 2, + depth: int = 4, + feat_size: Tuple[int, int] = (14, 14), + block_types: Union[str, Tuple[str]] = 'C', + transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), + conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(), + drop_path: Union[float, List[float]] = 0., + ): + super().__init__() + self.grad_checkpointing = False + + block_types = extend_tuple(block_types, depth) + blocks = [] + for i, t in enumerate(block_types): + block_stride = stride if i == 0 else 1 + assert t in ('C', 'T', 'M', 'PM') + if t == 'C': + conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock + blocks += [conv_cls( + in_chs, + out_chs, + stride=block_stride, + cfg=conv_cfg, + drop_path=drop_path[i], + )] + elif t == 'T': + rel_pos_cls = get_rel_pos_cls(transformer_cfg, feat_size) + blocks += [TransformerBlock2d( + in_chs, + out_chs, + stride=block_stride, + rel_pos_cls=rel_pos_cls, + cfg=transformer_cfg, + drop_path=drop_path[i], + )] + elif t == 'M': + blocks += [MaxxVitBlock( + in_chs, + out_chs, + stride=block_stride, + conv_cfg=conv_cfg, + transformer_cfg=transformer_cfg, + drop_path=drop_path[i], + )] + elif t == 'PM': + blocks += [ParallelMaxxVitBlock( + in_chs, + out_chs, + stride=block_stride, + conv_cfg=conv_cfg, + transformer_cfg=transformer_cfg, + drop_path=drop_path[i], + )] + in_chs = out_chs + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class Stem(nn.Module): + + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int = 3, + padding: str = '', + bias: bool = False, + act_layer: str = 'gelu', + norm_layer: str = 'batchnorm2d', + norm_eps: float = 1e-5, + ): + super().__init__() + if not isinstance(out_chs, (list, tuple)): + out_chs = to_2tuple(out_chs) + + norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps) + self.out_chs = out_chs[-1] + self.stride = 2 + + self.conv1 = create_conv2d(in_chs, out_chs[0], kernel_size, stride=2, padding=padding, bias=bias) + self.norm1 = norm_act_layer(out_chs[0]) + self.conv2 = create_conv2d(out_chs[0], out_chs[1], kernel_size, stride=1, padding=padding, bias=bias) + + def init_weights(self, scheme=''): + named_apply(partial(_init_conv, scheme=scheme), self) + + def forward(self, x): + x = self.conv1(x) + x = self.norm1(x) + x = self.conv2(x) + return x + + +def cfg_window_size(cfg: MaxxVitTransformerCfg, img_size: Tuple[int, int]): + if cfg.window_size is not None: + assert cfg.grid_size + return cfg + partition_size = img_size[0] // cfg.partition_ratio, img_size[1] // cfg.partition_ratio + cfg = replace(cfg, window_size=partition_size, grid_size=partition_size) + return cfg + + +def _overlay_kwargs(cfg: MaxxVitCfg, **kwargs): + transformer_kwargs = {} + conv_kwargs = {} + base_kwargs = {} + for k, v in kwargs.items(): + if k.startswith('transformer_'): + transformer_kwargs[k.replace('transformer_', '')] = v + elif k.startswith('conv_'): + conv_kwargs[k.replace('conv_', '')] = v + else: + base_kwargs[k] = v + cfg = replace( + cfg, + transformer_cfg=replace(cfg.transformer_cfg, **transformer_kwargs), + conv_cfg=replace(cfg.conv_cfg, **conv_kwargs), + **base_kwargs + ) + return cfg + + +class MaxxVit(nn.Module): + """ CoaTNet + MaxVit base model. + + Highly configurable for different block compositions, tensor layouts, pooling types. + """ + + def __init__( + self, + cfg: MaxxVitCfg, + img_size: Union[int, Tuple[int, int]] = 224, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: str = 'avg', + drop_rate: float = 0., + drop_path_rate: float = 0., + **kwargs, + ): + super().__init__() + img_size = to_2tuple(img_size) + if kwargs: + cfg = _overlay_kwargs(cfg, **kwargs) + transformer_cfg = cfg_window_size(cfg.transformer_cfg, img_size) + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.embed_dim = cfg.embed_dim[-1] + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.feature_info = [] + + self.stem = Stem( + in_chs=in_chans, + out_chs=cfg.stem_width, + padding=cfg.conv_cfg.padding, + bias=cfg.stem_bias, + act_layer=cfg.conv_cfg.act_layer, + norm_layer=cfg.conv_cfg.norm_layer, + norm_eps=cfg.conv_cfg.norm_eps, + ) + stride = self.stem.stride + self.feature_info += [dict(num_chs=self.stem.out_chs, reduction=2, module='stem')] + feat_size = tuple([i // s for i, s in zip(img_size, to_2tuple(stride))]) + + num_stages = len(cfg.embed_dim) + assert len(cfg.depths) == num_stages + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] + in_chs = self.stem.out_chs + stages = [] + for i in range(num_stages): + stage_stride = 2 + out_chs = cfg.embed_dim[i] + feat_size = tuple([(r - 1) // stage_stride + 1 for r in feat_size]) + stages += [MaxxVitStage( + in_chs, + out_chs, + depth=cfg.depths[i], + block_types=cfg.block_type[i], + conv_cfg=cfg.conv_cfg, + transformer_cfg=transformer_cfg, + feat_size=feat_size, + drop_path=dpr[i], + )] + stride *= stage_stride + in_chs = out_chs + self.feature_info += [dict(num_chs=out_chs, reduction=stride, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + + final_norm_layer = partial(get_norm_layer(cfg.transformer_cfg.norm_layer), eps=cfg.transformer_cfg.norm_eps) + if cfg.head_hidden_size: + self.norm = nn.Identity() + self.head_hidden_size = cfg.head_hidden_size + self.head = NormMlpClassifierHead( + self.num_features, + num_classes, + hidden_size=self.head_hidden_size, + pool_type=global_pool, + drop_rate=drop_rate, + norm_layer=final_norm_layer, + ) + else: + # standard classifier head w/ norm, pooling, fc classifier + self.head_hidden_size = self.num_features + self.norm = final_norm_layer(self.num_features) + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + + # Weight init (default PyTorch init works well for AdamW if scheme not set) + assert cfg.weight_init in ('', 'normal', 'trunc_normal', 'xavier_normal', 'vit_eff') + if cfg.weight_init: + named_apply(partial(self._init_weights, scheme=cfg.weight_init), self) + + def _init_weights(self, module, name, scheme=''): + if hasattr(module, 'init_weights'): + try: + module.init_weights(scheme=scheme) + except TypeError: + module.init_weights() + + @torch.jit.ignore + def no_weight_decay(self): + return { + k for k, _ in self.named_parameters() + if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^stem', # stem and embed + blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) + + # forward pass + feat_idx = 0 # stem is index 0 + x = self.stem(x) + if feat_idx in take_indices: + intermediates.append(x) + + last_idx = len(self.stages) + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + stages = self.stages + else: + stages = self.stages[:max_index] + for stage in stages: + feat_idx += 1 + x = stage(x) + if feat_idx in take_indices: + if norm and feat_idx == last_idx: + x_inter = self.norm(x) # applying final norm to last intermediate + else: + x_inter = x + intermediates.append(x_inter) + + if intermediates_only: + return intermediates + + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) + self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0 + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.head = self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _rw_coat_cfg( + stride_mode='pool', + pool_type='avg2', + conv_output_bias=False, + conv_attn_early=False, + conv_attn_act_layer='relu', + conv_norm_layer='', + transformer_shortcut_bias=True, + transformer_norm_layer='layernorm2d', + transformer_norm_layer_cl='layernorm', + init_values=None, + rel_pos_type='bias', + rel_pos_dim=512, +): + # 'RW' timm variant models were created and trained before seeing https://github.com/google-research/maxvit + # Common differences for initial timm models: + # - pre-norm layer in MZBConv included an activation after norm + # - mbconv expansion calculated from input instead of output chs + # - mbconv shortcut and final 1x1 conv did not have a bias + # - SE act layer was relu, not silu + # - mbconv uses silu in timm, not gelu + # - expansion in attention block done via output proj, not input proj + # Variable differences (evolved over training initial models): + # - avg pool with kernel_size=2 favoured downsampling (instead of maxpool for coat) + # - SE attention was between conv2 and norm/act + # - default to avg pool for mbconv downsample instead of 1x1 or dw conv + # - transformer block shortcut has no bias + return dict( + conv_cfg=MaxxVitConvCfg( + stride_mode=stride_mode, + pool_type=pool_type, + pre_norm_act=True, + expand_output=False, + output_bias=conv_output_bias, + attn_early=conv_attn_early, + attn_act_layer=conv_attn_act_layer, + act_layer='silu', + norm_layer=conv_norm_layer, + ), + transformer_cfg=MaxxVitTransformerCfg( + expand_first=False, + shortcut_bias=transformer_shortcut_bias, + pool_type=pool_type, + init_values=init_values, + norm_layer=transformer_norm_layer, + norm_layer_cl=transformer_norm_layer_cl, + rel_pos_type=rel_pos_type, + rel_pos_dim=rel_pos_dim, + ), + ) + + +def _rw_max_cfg( + stride_mode='dw', + pool_type='avg2', + conv_output_bias=False, + conv_attn_ratio=1 / 16, + conv_norm_layer='', + transformer_norm_layer='layernorm2d', + transformer_norm_layer_cl='layernorm', + window_size=None, + dim_head=32, + init_values=None, + rel_pos_type='bias', + rel_pos_dim=512, +): + # 'RW' timm variant models were created and trained before seeing https://github.com/google-research/maxvit + # Differences of initial timm models: + # - mbconv expansion calculated from input instead of output chs + # - mbconv shortcut and final 1x1 conv did not have a bias + # - mbconv uses silu in timm, not gelu + # - expansion in attention block done via output proj, not input proj + return dict( + conv_cfg=MaxxVitConvCfg( + stride_mode=stride_mode, + pool_type=pool_type, + expand_output=False, + output_bias=conv_output_bias, + attn_ratio=conv_attn_ratio, + act_layer='silu', + norm_layer=conv_norm_layer, + ), + transformer_cfg=MaxxVitTransformerCfg( + expand_first=False, + pool_type=pool_type, + dim_head=dim_head, + window_size=window_size, + init_values=init_values, + norm_layer=transformer_norm_layer, + norm_layer_cl=transformer_norm_layer_cl, + rel_pos_type=rel_pos_type, + rel_pos_dim=rel_pos_dim, + ), + ) + + +def _next_cfg( + stride_mode='dw', + pool_type='avg2', + conv_norm_layer='layernorm2d', + conv_norm_layer_cl='layernorm', + transformer_norm_layer='layernorm2d', + transformer_norm_layer_cl='layernorm', + window_size=None, + no_block_attn=False, + init_values=1e-6, + rel_pos_type='mlp', # MLP by default for maxxvit + rel_pos_dim=512, +): + # For experimental models with convnext instead of mbconv + init_values = to_2tuple(init_values) + return dict( + conv_cfg=MaxxVitConvCfg( + block_type='convnext', + stride_mode=stride_mode, + pool_type=pool_type, + expand_output=False, + init_values=init_values[0], + norm_layer=conv_norm_layer, + norm_layer_cl=conv_norm_layer_cl, + ), + transformer_cfg=MaxxVitTransformerCfg( + expand_first=False, + pool_type=pool_type, + window_size=window_size, + no_block_attn=no_block_attn, # enabled for MaxxViT-V2 + init_values=init_values[1], + norm_layer=transformer_norm_layer, + norm_layer_cl=transformer_norm_layer_cl, + rel_pos_type=rel_pos_type, + rel_pos_dim=rel_pos_dim, + ), + ) + + +def _tf_cfg(): + return dict( + conv_cfg=MaxxVitConvCfg( + norm_eps=1e-3, + act_layer='gelu_tanh', + padding='same', + ), + transformer_cfg=MaxxVitTransformerCfg( + norm_eps=1e-5, + act_layer='gelu_tanh', + head_first=False, # heads are interleaved (q_nh, q_hdim, k_nh, q_hdim, ....) + rel_pos_type='bias_tf', + ), + ) + + +model_cfgs = dict( + # timm specific CoAtNet configs + coatnet_pico_rw=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(2, 3, 5, 2), + stem_width=(32, 64), + **_rw_max_cfg( # using newer max defaults here + conv_output_bias=True, + conv_attn_ratio=0.25, + ), + ), + coatnet_nano_rw=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(3, 4, 6, 3), + stem_width=(32, 64), + **_rw_max_cfg( # using newer max defaults here + stride_mode='pool', + conv_output_bias=True, + conv_attn_ratio=0.25, + ), + ), + coatnet_0_rw=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 3, 7, 2), # deeper than paper '0' model + stem_width=(32, 64), + **_rw_coat_cfg( + conv_attn_early=True, + transformer_shortcut_bias=False, + ), + ), + coatnet_1_rw=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 6, 14, 2), + stem_width=(32, 64), + **_rw_coat_cfg( + stride_mode='dw', + conv_attn_early=True, + transformer_shortcut_bias=False, + ) + ), + coatnet_2_rw=MaxxVitCfg( + embed_dim=(128, 256, 512, 1024), + depths=(2, 6, 14, 2), + stem_width=(64, 128), + **_rw_coat_cfg( + stride_mode='dw', + conv_attn_act_layer='silu', + #init_values=1e-6, + ), + ), + coatnet_3_rw=MaxxVitCfg( + embed_dim=(192, 384, 768, 1536), + depths=(2, 6, 14, 2), + stem_width=(96, 192), + **_rw_coat_cfg( + stride_mode='dw', + conv_attn_act_layer='silu', + init_values=1e-6, + ), + ), + + # Experimental CoAtNet configs w/ ImageNet-1k train (different norm layers, MLP rel-pos) + coatnet_bn_0_rw=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 3, 7, 2), # deeper than paper '0' model + stem_width=(32, 64), + **_rw_coat_cfg( + stride_mode='dw', + conv_attn_early=True, + transformer_shortcut_bias=False, + transformer_norm_layer='batchnorm2d', + ) + ), + coatnet_rmlp_nano_rw=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(3, 4, 6, 3), + stem_width=(32, 64), + **_rw_max_cfg( + conv_output_bias=True, + conv_attn_ratio=0.25, + rel_pos_type='mlp', + rel_pos_dim=384, + ), + ), + coatnet_rmlp_0_rw=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 3, 7, 2), # deeper than paper '0' model + stem_width=(32, 64), + **_rw_coat_cfg( + stride_mode='dw', + rel_pos_type='mlp', + ), + ), + coatnet_rmlp_1_rw=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 6, 14, 2), + stem_width=(32, 64), + **_rw_coat_cfg( + pool_type='max', + conv_attn_early=True, + transformer_shortcut_bias=False, + rel_pos_type='mlp', + rel_pos_dim=384, # was supposed to be 512, woops + ), + ), + coatnet_rmlp_1_rw2=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 6, 14, 2), + stem_width=(32, 64), + **_rw_coat_cfg( + stride_mode='dw', + rel_pos_type='mlp', + rel_pos_dim=512, # was supposed to be 512, woops + ), + ), + coatnet_rmlp_2_rw=MaxxVitCfg( + embed_dim=(128, 256, 512, 1024), + depths=(2, 6, 14, 2), + stem_width=(64, 128), + **_rw_coat_cfg( + stride_mode='dw', + conv_attn_act_layer='silu', + init_values=1e-6, + rel_pos_type='mlp' + ), + ), + coatnet_rmlp_3_rw=MaxxVitCfg( + embed_dim=(192, 384, 768, 1536), + depths=(2, 6, 14, 2), + stem_width=(96, 192), + **_rw_coat_cfg( + stride_mode='dw', + conv_attn_act_layer='silu', + init_values=1e-6, + rel_pos_type='mlp' + ), + ), + + coatnet_nano_cc=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(3, 4, 6, 3), + stem_width=(32, 64), + block_type=('C', 'C', ('C', 'T'), ('C', 'T')), + **_rw_coat_cfg(), + ), + coatnext_nano_rw=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(3, 4, 6, 3), + stem_width=(32, 64), + weight_init='normal', + **_next_cfg( + rel_pos_type='bias', + init_values=(1e-5, None) + ), + ), + + # Trying to be like the CoAtNet paper configs + coatnet_0=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 3, 5, 2), + stem_width=64, + head_hidden_size=768, + ), + coatnet_1=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 6, 14, 2), + stem_width=64, + head_hidden_size=768, + ), + coatnet_2=MaxxVitCfg( + embed_dim=(128, 256, 512, 1024), + depths=(2, 6, 14, 2), + stem_width=128, + head_hidden_size=1024, + ), + coatnet_3=MaxxVitCfg( + embed_dim=(192, 384, 768, 1536), + depths=(2, 6, 14, 2), + stem_width=192, + head_hidden_size=1536, + ), + coatnet_4=MaxxVitCfg( + embed_dim=(192, 384, 768, 1536), + depths=(2, 12, 28, 2), + stem_width=192, + head_hidden_size=1536, + ), + coatnet_5=MaxxVitCfg( + embed_dim=(256, 512, 1280, 2048), + depths=(2, 12, 28, 2), + stem_width=192, + head_hidden_size=2048, + ), + + # Experimental MaxVit configs + maxvit_pico_rw=MaxxVitCfg( + embed_dim=(32, 64, 128, 256), + depths=(2, 2, 5, 2), + block_type=('M',) * 4, + stem_width=(24, 32), + **_rw_max_cfg(), + ), + maxvit_nano_rw=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(1, 2, 3, 1), + block_type=('M',) * 4, + stem_width=(32, 64), + **_rw_max_cfg(), + ), + maxvit_tiny_rw=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(2, 2, 5, 2), + block_type=('M',) * 4, + stem_width=(32, 64), + **_rw_max_cfg(), + ), + maxvit_tiny_pm=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(2, 2, 5, 2), + block_type=('PM',) * 4, + stem_width=(32, 64), + **_rw_max_cfg(), + ), + + maxvit_rmlp_pico_rw=MaxxVitCfg( + embed_dim=(32, 64, 128, 256), + depths=(2, 2, 5, 2), + block_type=('M',) * 4, + stem_width=(24, 32), + **_rw_max_cfg(rel_pos_type='mlp'), + ), + maxvit_rmlp_nano_rw=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(1, 2, 3, 1), + block_type=('M',) * 4, + stem_width=(32, 64), + **_rw_max_cfg(rel_pos_type='mlp'), + ), + maxvit_rmlp_tiny_rw=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(2, 2, 5, 2), + block_type=('M',) * 4, + stem_width=(32, 64), + **_rw_max_cfg(rel_pos_type='mlp'), + ), + maxvit_rmlp_small_rw=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 2, 5, 2), + block_type=('M',) * 4, + stem_width=(32, 64), + **_rw_max_cfg( + rel_pos_type='mlp', + init_values=1e-6, + ), + ), + maxvit_rmlp_base_rw=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 6, 14, 2), + block_type=('M',) * 4, + stem_width=(32, 64), + head_hidden_size=768, + **_rw_max_cfg( + rel_pos_type='mlp', + ), + ), + + maxxvit_rmlp_nano_rw=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(1, 2, 3, 1), + block_type=('M',) * 4, + stem_width=(32, 64), + weight_init='normal', + **_next_cfg(), + ), + maxxvit_rmlp_tiny_rw=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(2, 2, 5, 2), + block_type=('M',) * 4, + stem_width=(32, 64), + **_next_cfg(), + ), + maxxvit_rmlp_small_rw=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 2, 5, 2), + block_type=('M',) * 4, + stem_width=(48, 96), + **_next_cfg(), + ), + + maxxvitv2_nano_rw=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(1, 2, 3, 1), + block_type=('M',) * 4, + stem_width=(48, 96), + weight_init='normal', + **_next_cfg( + no_block_attn=True, + rel_pos_type='bias', + ), + ), + maxxvitv2_rmlp_base_rw=MaxxVitCfg( + embed_dim=(128, 256, 512, 1024), + depths=(2, 6, 12, 2), + block_type=('M',) * 4, + stem_width=(64, 128), + **_next_cfg( + no_block_attn=True, + ), + ), + maxxvitv2_rmlp_large_rw=MaxxVitCfg( + embed_dim=(160, 320, 640, 1280), + depths=(2, 6, 16, 2), + block_type=('M',) * 4, + stem_width=(80, 160), + head_hidden_size=1280, + **_next_cfg( + no_block_attn=True, + ), + ), + + # Trying to be like the MaxViT paper configs + maxvit_tiny_tf=MaxxVitCfg( + embed_dim=(64, 128, 256, 512), + depths=(2, 2, 5, 2), + block_type=('M',) * 4, + stem_width=64, + stem_bias=True, + head_hidden_size=512, + **_tf_cfg(), + ), + maxvit_small_tf=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 2, 5, 2), + block_type=('M',) * 4, + stem_width=64, + stem_bias=True, + head_hidden_size=768, + **_tf_cfg(), + ), + maxvit_base_tf=MaxxVitCfg( + embed_dim=(96, 192, 384, 768), + depths=(2, 6, 14, 2), + block_type=('M',) * 4, + stem_width=64, + stem_bias=True, + head_hidden_size=768, + **_tf_cfg(), + ), + maxvit_large_tf=MaxxVitCfg( + embed_dim=(128, 256, 512, 1024), + depths=(2, 6, 14, 2), + block_type=('M',) * 4, + stem_width=128, + stem_bias=True, + head_hidden_size=1024, + **_tf_cfg(), + ), + maxvit_xlarge_tf=MaxxVitCfg( + embed_dim=(192, 384, 768, 1536), + depths=(2, 6, 14, 2), + block_type=('M',) * 4, + stem_width=192, + stem_bias=True, + head_hidden_size=1536, + **_tf_cfg(), + ), +) + + +def checkpoint_filter_fn(state_dict, model: nn.Module): + model_state_dict = model.state_dict() + out_dict = {} + for k, v in state_dict.items(): + if k.endswith('relative_position_bias_table'): + m = model.get_submodule(k[:-29]) + if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]: + v = resize_rel_pos_bias_table( + v, + new_window_size=m.window_size, + new_bias_shape=m.relative_position_bias_table.shape, + ) + + if k in model_state_dict and v.ndim != model_state_dict[k].ndim and v.numel() == model_state_dict[k].numel(): + # adapt between conv2d / linear layers + assert v.ndim in (2, 4) + v = v.reshape(model_state_dict[k].shape) + out_dict[k] = v + return out_dict + + +def _create_maxxvit(variant, cfg_variant=None, pretrained=False, **kwargs): + if cfg_variant is None: + if variant in model_cfgs: + cfg_variant = variant + else: + cfg_variant = '_'.join(variant.split('_')[:-1]) + return build_model_with_cfg( + MaxxVit, variant, pretrained, + model_cfg=model_cfgs[cfg_variant], + feature_cfg=dict(flatten_sequential=True), + pretrained_filter_fn=checkpoint_filter_fn, + **kwargs) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.95, 'interpolation': 'bicubic', + 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), + 'first_conv': 'stem.conv1', 'classifier': 'head.fc', + 'fixed_input_size': True, + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # timm specific CoAtNet configs, ImageNet-1k pretrain, fixed rel-pos + 'coatnet_pico_rw_224.untrained': _cfg(url=''), + 'coatnet_nano_rw_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_nano_rw_224_sw-f53093b4.pth', + crop_pct=0.9), + 'coatnet_0_rw_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_0_rw_224_sw-a6439706.pth'), + 'coatnet_1_rw_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_1_rw_224_sw-5cae1ea8.pth' + ), + + # timm specific CoAtNet configs, ImageNet-12k pretrain w/ 1k fine-tune, fixed rel-pos + 'coatnet_2_rw_224.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/'), + #'coatnet_3_rw_224.untrained': _cfg(url=''), + + # Experimental CoAtNet configs w/ ImageNet-12k pretrain -> 1k fine-tune (different norm layers, MLP rel-pos) + 'coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/'), + 'coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/'), + 'coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + + # Experimental CoAtNet configs w/ ImageNet-1k train (different norm layers, MLP rel-pos) + 'coatnet_bn_0_rw_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_bn_0_rw_224_sw-c228e218.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, + crop_pct=0.95), + 'coatnet_rmlp_nano_rw_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_nano_rw_224_sw-bd1d51b3.pth', + crop_pct=0.9), + 'coatnet_rmlp_0_rw_224.untrained': _cfg(url=''), + 'coatnet_rmlp_1_rw_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_1_rw_224_sw-9051e6c3.pth'), + 'coatnet_rmlp_2_rw_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_2_rw_224_sw-5ccfac55.pth'), + 'coatnet_rmlp_3_rw_224.untrained': _cfg(url=''), + 'coatnet_nano_cc_224.untrained': _cfg(url=''), + 'coatnext_nano_rw_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnext_nano_rw_224_ad-22cb71c2.pth', + crop_pct=0.9), + + # ImagenNet-12k pretrain CoAtNet + 'coatnet_2_rw_224.sw_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821), + 'coatnet_3_rw_224.sw_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821), + 'coatnet_rmlp_1_rw2_224.sw_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821), + 'coatnet_rmlp_2_rw_224.sw_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821), + + # Trying to be like the CoAtNet paper configs (will adapt if 'tf' weights are ever released) + 'coatnet_0_224.untrained': _cfg(url=''), + 'coatnet_1_224.untrained': _cfg(url=''), + 'coatnet_2_224.untrained': _cfg(url=''), + 'coatnet_3_224.untrained': _cfg(url=''), + 'coatnet_4_224.untrained': _cfg(url=''), + 'coatnet_5_224.untrained': _cfg(url=''), + + # timm specific MaxVit configs, ImageNet-1k pretrain or untrained + 'maxvit_pico_rw_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), + 'maxvit_nano_rw_256.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_nano_rw_256_sw-fb127241.pth', + input_size=(3, 256, 256), pool_size=(8, 8)), + 'maxvit_tiny_rw_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_tiny_rw_224_sw-7d0dffeb.pth'), + 'maxvit_tiny_rw_256.untrained': _cfg( + url='', + input_size=(3, 256, 256), pool_size=(8, 8)), + 'maxvit_tiny_pm_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), + + # timm specific MaxVit w/ MLP rel-pos, ImageNet-1k pretrain + 'maxvit_rmlp_pico_rw_256.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_pico_rw_256_sw-8d82f2c6.pth', + input_size=(3, 256, 256), pool_size=(8, 8)), + 'maxvit_rmlp_nano_rw_256.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_nano_rw_256_sw-c17bb0d6.pth', + input_size=(3, 256, 256), pool_size=(8, 8)), + 'maxvit_rmlp_tiny_rw_256.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_tiny_rw_256_sw-bbef0ff5.pth', + input_size=(3, 256, 256), pool_size=(8, 8)), + 'maxvit_rmlp_small_rw_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_small_rw_224_sw-6ef0ae4f.pth', + crop_pct=0.9, + ), + 'maxvit_rmlp_small_rw_256.untrained': _cfg( + url='', + input_size=(3, 256, 256), pool_size=(8, 8)), + + # timm specific MaxVit w/ ImageNet-12k pretrain and 1k fine-tune + 'maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + ), + 'maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + + # timm specific MaxVit w/ ImageNet-12k pretrain + 'maxvit_rmlp_base_rw_224.sw_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + ), + + # timm MaxxViT configs (ConvNeXt conv blocks mixed with MaxVit transformer blocks) + 'maxxvit_rmlp_nano_rw_256.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_nano_rw_256_sw-0325d459.pth', + input_size=(3, 256, 256), pool_size=(8, 8)), + 'maxxvit_rmlp_tiny_rw_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), + 'maxxvit_rmlp_small_rw_256.sw_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_small_rw_256_sw-37e217ff.pth', + input_size=(3, 256, 256), pool_size=(8, 8)), + + # timm MaxxViT-V2 configs (ConvNeXt conv blocks mixed with MaxVit transformer blocks, more width, no block attn) + 'maxxvitv2_nano_rw_256.sw_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8)), + 'maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/'), + 'maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'maxxvitv2_rmlp_large_rw_224.untrained': _cfg(url=''), + + 'maxxvitv2_rmlp_base_rw_224.sw_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821), + + # MaxViT models ported from official Tensorflow impl + 'maxvit_tiny_tf_224.in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'maxvit_tiny_tf_384.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'maxvit_tiny_tf_512.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), + 'maxvit_small_tf_224.in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'maxvit_small_tf_384.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'maxvit_small_tf_512.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), + 'maxvit_base_tf_224.in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'maxvit_base_tf_384.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'maxvit_base_tf_512.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), + 'maxvit_large_tf_224.in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'maxvit_large_tf_384.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'maxvit_large_tf_512.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), + + 'maxvit_base_tf_224.in21k': _cfg( + hf_hub_id='timm/', + num_classes=21843), + 'maxvit_base_tf_384.in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'maxvit_base_tf_512.in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), + 'maxvit_large_tf_224.in21k': _cfg( + hf_hub_id='timm/', + num_classes=21843), + 'maxvit_large_tf_384.in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'maxvit_large_tf_512.in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 512, 512), crop_pct=1.0, crop_mode='squash'), + 'maxvit_xlarge_tf_224.in21k': _cfg( + hf_hub_id='timm/', + num_classes=21843), + 'maxvit_xlarge_tf_384.in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), + 'maxvit_xlarge_tf_512.in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), +}) + + +@register_model +def coatnet_pico_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_pico_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_nano_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_nano_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_0_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_0_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_1_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_1_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_2_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_2_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_3_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_3_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_bn_0_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_bn_0_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_rmlp_nano_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_nano_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_rmlp_0_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_0_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_rmlp_1_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_1_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_rmlp_1_rw2_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_1_rw2_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_rmlp_2_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_2_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_rmlp_2_rw_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_2_rw_384', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_rmlp_3_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_rmlp_3_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_nano_cc_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_nano_cc_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnext_nano_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnext_nano_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_0_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_0_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_1_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_1_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_2_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_2_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_3_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_3_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_4_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_4_224', pretrained=pretrained, **kwargs) + + +@register_model +def coatnet_5_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('coatnet_5_224', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_pico_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_pico_rw_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_nano_rw_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_tiny_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_tiny_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_rw_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_rmlp_pico_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_pico_rw_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_rmlp_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_rmlp_small_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_small_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_rmlp_small_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_rmlp_base_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_base_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_rmlp_base_rw_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_rmlp_base_rw_384', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_tiny_pm_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_pm_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxxvit_rmlp_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxxvit_rmlp_small_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxxvitv2_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvitv2_nano_rw_256', pretrained=pretrained, **kwargs) + + +@register_model +def maxxvitv2_rmlp_base_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvitv2_rmlp_base_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def maxxvitv2_rmlp_base_rw_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvitv2_rmlp_base_rw_384', pretrained=pretrained, **kwargs) + + +@register_model +def maxxvitv2_rmlp_large_rw_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxxvitv2_rmlp_large_rw_224', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_tiny_tf_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_tf_224', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_tiny_tf_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_tf_384', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_tiny_tf_512(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_tiny_tf_512', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_small_tf_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_small_tf_224', 'maxvit_small_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_small_tf_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_small_tf_384', 'maxvit_small_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_small_tf_512(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_small_tf_512', 'maxvit_small_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_base_tf_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_base_tf_224', 'maxvit_base_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_base_tf_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_base_tf_384', 'maxvit_base_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_base_tf_512(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_base_tf_512', 'maxvit_base_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_large_tf_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_large_tf_224', 'maxvit_large_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_large_tf_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_large_tf_384', 'maxvit_large_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_large_tf_512(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_large_tf_512', 'maxvit_large_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_xlarge_tf_224(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_xlarge_tf_224', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_xlarge_tf_384(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_xlarge_tf_384', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs) + + +@register_model +def maxvit_xlarge_tf_512(pretrained=False, **kwargs) -> MaxxVit: + return _create_maxxvit('maxvit_xlarge_tf_512', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs) diff --git a/pytorch-image-models/timm/models/metaformer.py b/pytorch-image-models/timm/models/metaformer.py new file mode 100644 index 0000000000000000000000000000000000000000..9a568ff0752c63ac7582ded2d2b40e71d9ac98ef --- /dev/null +++ b/pytorch-image-models/timm/models/metaformer.py @@ -0,0 +1,1059 @@ +""" +Poolformer from MetaFormer is Actually What You Need for Vision https://arxiv.org/abs/2111.11418 + +IdentityFormer, RandFormer, PoolFormerV2, ConvFormer, and CAFormer +from MetaFormer Baselines for Vision https://arxiv.org/abs/2210.13452 + +All implemented models support feature extraction and variable input resolution. + +Original implementation by Weihao Yu et al., +adapted for timm by Fredo Guan and Ross Wightman. + +Adapted from https://github.com/sail-sg/metaformer, original copyright below +""" + +# Copyright 2022 Garena Online Private Limited +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from collections import OrderedDict +from functools import partial +from typing import Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import Tensor +from torch.jit import Final + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import trunc_normal_, DropPath, SelectAdaptivePool2d, GroupNorm1, LayerNorm, LayerNorm2d, Mlp, \ + use_fused_attn +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model + +__all__ = ['MetaFormer'] + + +class Stem(nn.Module): + """ + Stem implemented by a layer of convolution. + Conv2d params constant across all models. + """ + + def __init__( + self, + in_channels, + out_channels, + norm_layer=None, + ): + super().__init__() + self.conv = nn.Conv2d( + in_channels, + out_channels, + kernel_size=7, + stride=4, + padding=2 + ) + self.norm = norm_layer(out_channels) if norm_layer else nn.Identity() + + def forward(self, x): + x = self.conv(x) + x = self.norm(x) + return x + + +class Downsampling(nn.Module): + """ + Downsampling implemented by a layer of convolution. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + padding=0, + norm_layer=None, + ): + super().__init__() + self.norm = norm_layer(in_channels) if norm_layer else nn.Identity() + self.conv = nn.Conv2d( + in_channels, + out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding + ) + + def forward(self, x): + x = self.norm(x) + x = self.conv(x) + return x + + +class Scale(nn.Module): + """ + Scale vector by element multiplications. + """ + + def __init__(self, dim, init_value=1.0, trainable=True, use_nchw=True): + super().__init__() + self.shape = (dim, 1, 1) if use_nchw else (dim,) + self.scale = nn.Parameter(init_value * torch.ones(dim), requires_grad=trainable) + + def forward(self, x): + return x * self.scale.view(self.shape) + + +class SquaredReLU(nn.Module): + """ + Squared ReLU: https://arxiv.org/abs/2109.08668 + """ + + def __init__(self, inplace=False): + super().__init__() + self.relu = nn.ReLU(inplace=inplace) + + def forward(self, x): + return torch.square(self.relu(x)) + + +class StarReLU(nn.Module): + """ + StarReLU: s * relu(x) ** 2 + b + """ + + def __init__( + self, + scale_value=1.0, + bias_value=0.0, + scale_learnable=True, + bias_learnable=True, + mode=None, + inplace=False + ): + super().__init__() + self.inplace = inplace + self.relu = nn.ReLU(inplace=inplace) + self.scale = nn.Parameter(scale_value * torch.ones(1), requires_grad=scale_learnable) + self.bias = nn.Parameter(bias_value * torch.ones(1), requires_grad=bias_learnable) + + def forward(self, x): + return self.scale * self.relu(x) ** 2 + self.bias + + +class Attention(nn.Module): + """ + Vanilla self-attention from Transformer: https://arxiv.org/abs/1706.03762. + Modified from timm. + """ + fused_attn: Final[bool] + + def __init__( + self, + dim, + head_dim=32, + num_heads=None, + qkv_bias=False, + attn_drop=0., + proj_drop=0., + proj_bias=False, + **kwargs + ): + super().__init__() + + self.head_dim = head_dim + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.num_heads = num_heads if num_heads else dim // head_dim + if self.num_heads == 0: + self.num_heads = 1 + + self.attention_dim = self.num_heads * self.head_dim + + self.qkv = nn.Linear(dim, self.attention_dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(self.attention_dim, dim, bias=proj_bias) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + + if self.fused_attn: + x = F.scaled_dot_product_attention( + q, k, v, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +# custom norm modules that disable the bias term, since the original models defs +# used a custom norm with a weight term but no bias term. + +class GroupNorm1NoBias(GroupNorm1): + def __init__(self, num_channels, **kwargs): + super().__init__(num_channels, **kwargs) + self.eps = kwargs.get('eps', 1e-6) + self.bias = None + + +class LayerNorm2dNoBias(LayerNorm2d): + def __init__(self, num_channels, **kwargs): + super().__init__(num_channels, **kwargs) + self.eps = kwargs.get('eps', 1e-6) + self.bias = None + + +class LayerNormNoBias(nn.LayerNorm): + def __init__(self, num_channels, **kwargs): + super().__init__(num_channels, **kwargs) + self.eps = kwargs.get('eps', 1e-6) + self.bias = None + + +class SepConv(nn.Module): + r""" + Inverted separable convolution from MobileNetV2: https://arxiv.org/abs/1801.04381. + """ + + def __init__( + self, + dim, + expansion_ratio=2, + act1_layer=StarReLU, + act2_layer=nn.Identity, + bias=False, + kernel_size=7, + padding=3, + **kwargs + ): + super().__init__() + mid_channels = int(expansion_ratio * dim) + self.pwconv1 = nn.Conv2d(dim, mid_channels, kernel_size=1, bias=bias) + self.act1 = act1_layer() + self.dwconv = nn.Conv2d( + mid_channels, mid_channels, kernel_size=kernel_size, + padding=padding, groups=mid_channels, bias=bias) # depthwise conv + self.act2 = act2_layer() + self.pwconv2 = nn.Conv2d(mid_channels, dim, kernel_size=1, bias=bias) + + def forward(self, x): + x = self.pwconv1(x) + x = self.act1(x) + x = self.dwconv(x) + x = self.act2(x) + x = self.pwconv2(x) + return x + + +class Pooling(nn.Module): + """ + Implementation of pooling for PoolFormer: https://arxiv.org/abs/2111.11418 + """ + + def __init__(self, pool_size=3, **kwargs): + super().__init__() + self.pool = nn.AvgPool2d( + pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) + + def forward(self, x): + y = self.pool(x) + return y - x + + +class MlpHead(nn.Module): + """ MLP classification head + """ + + def __init__( + self, + dim, + num_classes=1000, + mlp_ratio=4, + act_layer=SquaredReLU, + norm_layer=LayerNorm, + drop_rate=0., + bias=True + ): + super().__init__() + hidden_features = int(mlp_ratio * dim) + self.fc1 = nn.Linear(dim, hidden_features, bias=bias) + self.act = act_layer() + self.norm = norm_layer(hidden_features) + self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias) + self.head_drop = nn.Dropout(drop_rate) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.norm(x) + x = self.head_drop(x) + x = self.fc2(x) + return x + + +class MetaFormerBlock(nn.Module): + """ + Implementation of one MetaFormer block. + """ + + def __init__( + self, + dim, + token_mixer=Pooling, + mlp_act=StarReLU, + mlp_bias=False, + norm_layer=LayerNorm2d, + proj_drop=0., + drop_path=0., + use_nchw=True, + layer_scale_init_value=None, + res_scale_init_value=None, + **kwargs + ): + super().__init__() + ls_layer = partial(Scale, dim=dim, init_value=layer_scale_init_value, use_nchw=use_nchw) + rs_layer = partial(Scale, dim=dim, init_value=res_scale_init_value, use_nchw=use_nchw) + + self.norm1 = norm_layer(dim) + self.token_mixer = token_mixer(dim=dim, proj_drop=proj_drop, **kwargs) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.layer_scale1 = ls_layer() if layer_scale_init_value is not None else nn.Identity() + self.res_scale1 = rs_layer() if res_scale_init_value is not None else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = Mlp( + dim, + int(4 * dim), + act_layer=mlp_act, + bias=mlp_bias, + drop=proj_drop, + use_conv=use_nchw, + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.layer_scale2 = ls_layer() if layer_scale_init_value is not None else nn.Identity() + self.res_scale2 = rs_layer() if res_scale_init_value is not None else nn.Identity() + + def forward(self, x): + x = self.res_scale1(x) + \ + self.layer_scale1( + self.drop_path1( + self.token_mixer(self.norm1(x)) + ) + ) + x = self.res_scale2(x) + \ + self.layer_scale2( + self.drop_path2( + self.mlp(self.norm2(x)) + ) + ) + return x + + +class MetaFormerStage(nn.Module): + + def __init__( + self, + in_chs, + out_chs, + depth=2, + token_mixer=nn.Identity, + mlp_act=StarReLU, + mlp_bias=False, + downsample_norm=LayerNorm2d, + norm_layer=LayerNorm2d, + proj_drop=0., + dp_rates=[0.] * 2, + layer_scale_init_value=None, + res_scale_init_value=None, + **kwargs, + ): + super().__init__() + + self.grad_checkpointing = False + self.use_nchw = not issubclass(token_mixer, Attention) + + # don't downsample if in_chs and out_chs are the same + self.downsample = nn.Identity() if in_chs == out_chs else Downsampling( + in_chs, + out_chs, + kernel_size=3, + stride=2, + padding=1, + norm_layer=downsample_norm, + ) + + self.blocks = nn.Sequential(*[MetaFormerBlock( + dim=out_chs, + token_mixer=token_mixer, + mlp_act=mlp_act, + mlp_bias=mlp_bias, + norm_layer=norm_layer, + proj_drop=proj_drop, + drop_path=dp_rates[i], + layer_scale_init_value=layer_scale_init_value, + res_scale_init_value=res_scale_init_value, + use_nchw=self.use_nchw, + **kwargs, + ) for i in range(depth)]) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + def forward(self, x: Tensor): + x = self.downsample(x) + B, C, H, W = x.shape + + if not self.use_nchw: + x = x.reshape(B, C, -1).transpose(1, 2) + + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + + if not self.use_nchw: + x = x.transpose(1, 2).reshape(B, C, H, W) + + return x + + +class MetaFormer(nn.Module): + r""" MetaFormer + A PyTorch impl of : `MetaFormer Baselines for Vision` - + https://arxiv.org/abs/2210.13452 + + Args: + in_chans (int): Number of input image channels. + num_classes (int): Number of classes for classification head. + global_pool: Pooling for classifier head. + depths (list or tuple): Number of blocks at each stage. + dims (list or tuple): Feature dimension at each stage. + token_mixers (list, tuple or token_fcn): Token mixer for each stage. + mlp_act: Activation layer for MLP. + mlp_bias (boolean): Enable or disable mlp bias term. + drop_path_rate (float): Stochastic depth rate. + drop_rate (float): Dropout rate. + layer_scale_init_values (list, tuple, float or None): Init value for Layer Scale. + None means not use the layer scale. Form: https://arxiv.org/abs/2103.17239. + res_scale_init_values (list, tuple, float or None): Init value for res Scale on residual connections. + None means not use the res scale. From: https://arxiv.org/abs/2110.09456. + downsample_norm (nn.Module): Norm layer used in stem and downsampling layers. + norm_layers (list, tuple or norm_fcn): Norm layers for each stage. + output_norm: Norm layer before classifier head. + use_mlp_head: Use MLP classification head. + """ + + def __init__( + self, + in_chans=3, + num_classes=1000, + global_pool='avg', + depths=(2, 2, 6, 2), + dims=(64, 128, 320, 512), + token_mixers=Pooling, + mlp_act=StarReLU, + mlp_bias=False, + drop_path_rate=0., + proj_drop_rate=0., + drop_rate=0.0, + layer_scale_init_values=None, + res_scale_init_values=(None, None, 1.0, 1.0), + downsample_norm=LayerNorm2dNoBias, + norm_layers=LayerNorm2dNoBias, + output_norm=LayerNorm2d, + use_mlp_head=True, + **kwargs, + ): + super().__init__() + self.num_classes = num_classes + self.num_features = dims[-1] + self.drop_rate = drop_rate + self.use_mlp_head = use_mlp_head + self.num_stages = len(depths) + + # convert everything to lists if they aren't indexable + if not isinstance(depths, (list, tuple)): + depths = [depths] # it means the model has only one stage + if not isinstance(dims, (list, tuple)): + dims = [dims] + if not isinstance(token_mixers, (list, tuple)): + token_mixers = [token_mixers] * self.num_stages + if not isinstance(norm_layers, (list, tuple)): + norm_layers = [norm_layers] * self.num_stages + if not isinstance(layer_scale_init_values, (list, tuple)): + layer_scale_init_values = [layer_scale_init_values] * self.num_stages + if not isinstance(res_scale_init_values, (list, tuple)): + res_scale_init_values = [res_scale_init_values] * self.num_stages + + self.grad_checkpointing = False + self.feature_info = [] + + self.stem = Stem( + in_chans, + dims[0], + norm_layer=downsample_norm + ) + + stages = [] + prev_dim = dims[0] + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + for i in range(self.num_stages): + stages += [MetaFormerStage( + prev_dim, + dims[i], + depth=depths[i], + token_mixer=token_mixers[i], + mlp_act=mlp_act, + mlp_bias=mlp_bias, + proj_drop=proj_drop_rate, + dp_rates=dp_rates[i], + layer_scale_init_value=layer_scale_init_values[i], + res_scale_init_value=res_scale_init_values[i], + downsample_norm=downsample_norm, + norm_layer=norm_layers[i], + **kwargs, + )] + prev_dim = dims[i] + self.feature_info += [dict(num_chs=dims[i], reduction=2, module=f'stages.{i}')] + + self.stages = nn.Sequential(*stages) + + # if using MlpHead, dropout is handled by MlpHead + if num_classes > 0: + if self.use_mlp_head: + # FIXME not actually returning mlp hidden state right now as pre-logits. + final = MlpHead(self.num_features, num_classes, drop_rate=self.drop_rate) + self.head_hidden_size = self.num_features + else: + final = nn.Linear(self.num_features, num_classes) + self.head_hidden_size = self.num_features + else: + final = nn.Identity() + + self.head = nn.Sequential(OrderedDict([ + ('global_pool', SelectAdaptivePool2d(pool_type=global_pool)), + ('norm', output_norm(self.num_features)), + ('flatten', nn.Flatten(1) if global_pool else nn.Identity()), + ('drop', nn.Dropout(drop_rate) if self.use_mlp_head else nn.Identity()), + ('fc', final) + ])) + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, (nn.Conv2d, nn.Linear)): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + for stage in self.stages: + stage.set_grad_checkpointing(enable=enable) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + if global_pool is not None: + self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity() + if num_classes > 0: + if self.use_mlp_head: + final = MlpHead(self.num_features, num_classes, drop_rate=self.drop_rate) + else: + final = nn.Linear(self.num_features, num_classes) + else: + final = nn.Identity() + self.head.fc = final + + def forward_head(self, x: Tensor, pre_logits: bool = False): + # NOTE nn.Sequential in head broken down since can't call head[:-1](x) in torchscript :( + x = self.head.global_pool(x) + x = self.head.norm(x) + x = self.head.flatten(x) + x = self.head.drop(x) + return x if pre_logits else self.head.fc(x) + + def forward_features(self, x: Tensor): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward(self, x: Tensor): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +# this works but it's long and breaks backwards compatability with weights from the poolformer-only impl +def checkpoint_filter_fn(state_dict, model): + if 'stem.conv.weight' in state_dict: + return state_dict + + import re + out_dict = {} + is_poolformerv1 = 'network.0.0.mlp.fc1.weight' in state_dict + model_state_dict = model.state_dict() + for k, v in state_dict.items(): + if is_poolformerv1: + k = re.sub(r'layer_scale_([0-9]+)', r'layer_scale\1.scale', k) + k = k.replace('network.1', 'downsample_layers.1') + k = k.replace('network.3', 'downsample_layers.2') + k = k.replace('network.5', 'downsample_layers.3') + k = k.replace('network.2', 'network.1') + k = k.replace('network.4', 'network.2') + k = k.replace('network.6', 'network.3') + k = k.replace('network', 'stages') + + k = re.sub(r'downsample_layers.([0-9]+)', r'stages.\1.downsample', k) + k = k.replace('downsample.proj', 'downsample.conv') + k = k.replace('patch_embed.proj', 'patch_embed.conv') + k = re.sub(r'([0-9]+).([0-9]+)', r'\1.blocks.\2', k) + k = k.replace('stages.0.downsample', 'patch_embed') + k = k.replace('patch_embed', 'stem') + k = k.replace('post_norm', 'norm') + k = k.replace('pre_norm', 'norm') + k = re.sub(r'^head', 'head.fc', k) + k = re.sub(r'^norm', 'head.norm', k) + + if v.shape != model_state_dict[k] and v.numel() == model_state_dict[k].numel(): + v = v.reshape(model_state_dict[k].shape) + + out_dict[k] = v + return out_dict + + +def _create_metaformer(variant, pretrained=False, **kwargs): + default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (2, 2, 6, 2)))) + out_indices = kwargs.pop('out_indices', default_out_indices) + + model = build_model_with_cfg( + MetaFormer, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs, + ) + + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 1.0, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'classifier': 'head.fc', 'first_conv': 'stem.conv', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'poolformer_s12.sail_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.9), + 'poolformer_s24.sail_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.9), + 'poolformer_s36.sail_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.9), + 'poolformer_m36.sail_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95), + 'poolformer_m48.sail_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95), + + 'poolformerv2_s12.sail_in1k': _cfg(hf_hub_id='timm/'), + 'poolformerv2_s24.sail_in1k': _cfg(hf_hub_id='timm/'), + 'poolformerv2_s36.sail_in1k': _cfg(hf_hub_id='timm/'), + 'poolformerv2_m36.sail_in1k': _cfg(hf_hub_id='timm/'), + 'poolformerv2_m48.sail_in1k': _cfg(hf_hub_id='timm/'), + + 'convformer_s18.sail_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'convformer_s18.sail_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'convformer_s18.sail_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'convformer_s18.sail_in22k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'convformer_s18.sail_in22k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', num_classes=21841), + + 'convformer_s36.sail_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'convformer_s36.sail_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'convformer_s36.sail_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'convformer_s36.sail_in22k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'convformer_s36.sail_in22k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', num_classes=21841), + + 'convformer_m36.sail_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'convformer_m36.sail_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'convformer_m36.sail_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'convformer_m36.sail_in22k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'convformer_m36.sail_in22k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', num_classes=21841), + + 'convformer_b36.sail_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'convformer_b36.sail_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'convformer_b36.sail_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'convformer_b36.sail_in22k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'convformer_b36.sail_in22k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', num_classes=21841), + + 'caformer_s18.sail_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'caformer_s18.sail_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'caformer_s18.sail_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'caformer_s18.sail_in22k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'caformer_s18.sail_in22k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', num_classes=21841), + + 'caformer_s36.sail_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'caformer_s36.sail_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'caformer_s36.sail_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'caformer_s36.sail_in22k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'caformer_s36.sail_in22k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', num_classes=21841), + + 'caformer_m36.sail_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'caformer_m36.sail_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'caformer_m36.sail_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'caformer_m36.sail_in22k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'caformer_m36.sail_in22k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', num_classes=21841), + + 'caformer_b36.sail_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'caformer_b36.sail_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'caformer_b36.sail_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2'), + 'caformer_b36.sail_in22k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), + 'caformer_b36.sail_in22k': _cfg( + hf_hub_id='timm/', + classifier='head.fc.fc2', num_classes=21841), +}) + + +@register_model +def poolformer_s12(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[2, 2, 6, 2], + dims=[64, 128, 320, 512], + downsample_norm=None, + mlp_act=nn.GELU, + mlp_bias=True, + norm_layers=GroupNorm1, + layer_scale_init_values=1e-5, + res_scale_init_values=None, + use_mlp_head=False, + **kwargs) + return _create_metaformer('poolformer_s12', pretrained=pretrained, **model_kwargs) + + +@register_model +def poolformer_s24(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[4, 4, 12, 4], + dims=[64, 128, 320, 512], + downsample_norm=None, + mlp_act=nn.GELU, + mlp_bias=True, + norm_layers=GroupNorm1, + layer_scale_init_values=1e-5, + res_scale_init_values=None, + use_mlp_head=False, + **kwargs) + return _create_metaformer('poolformer_s24', pretrained=pretrained, **model_kwargs) + + +@register_model +def poolformer_s36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[6, 6, 18, 6], + dims=[64, 128, 320, 512], + downsample_norm=None, + mlp_act=nn.GELU, + mlp_bias=True, + norm_layers=GroupNorm1, + layer_scale_init_values=1e-6, + res_scale_init_values=None, + use_mlp_head=False, + **kwargs) + return _create_metaformer('poolformer_s36', pretrained=pretrained, **model_kwargs) + + +@register_model +def poolformer_m36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[6, 6, 18, 6], + dims=[96, 192, 384, 768], + downsample_norm=None, + mlp_act=nn.GELU, + mlp_bias=True, + norm_layers=GroupNorm1, + layer_scale_init_values=1e-6, + res_scale_init_values=None, + use_mlp_head=False, + **kwargs) + return _create_metaformer('poolformer_m36', pretrained=pretrained, **model_kwargs) + + +@register_model +def poolformer_m48(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[8, 8, 24, 8], + dims=[96, 192, 384, 768], + downsample_norm=None, + mlp_act=nn.GELU, + mlp_bias=True, + norm_layers=GroupNorm1, + layer_scale_init_values=1e-6, + res_scale_init_values=None, + use_mlp_head=False, + **kwargs) + return _create_metaformer('poolformer_m48', pretrained=pretrained, **model_kwargs) + + +@register_model +def poolformerv2_s12(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[2, 2, 6, 2], + dims=[64, 128, 320, 512], + norm_layers=GroupNorm1NoBias, + use_mlp_head=False, + **kwargs) + return _create_metaformer('poolformerv2_s12', pretrained=pretrained, **model_kwargs) + + +@register_model +def poolformerv2_s24(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[4, 4, 12, 4], + dims=[64, 128, 320, 512], + norm_layers=GroupNorm1NoBias, + use_mlp_head=False, + **kwargs) + return _create_metaformer('poolformerv2_s24', pretrained=pretrained, **model_kwargs) + + +@register_model +def poolformerv2_s36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[6, 6, 18, 6], + dims=[64, 128, 320, 512], + norm_layers=GroupNorm1NoBias, + use_mlp_head=False, + **kwargs) + return _create_metaformer('poolformerv2_s36', pretrained=pretrained, **model_kwargs) + + +@register_model +def poolformerv2_m36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[6, 6, 18, 6], + dims=[96, 192, 384, 768], + norm_layers=GroupNorm1NoBias, + use_mlp_head=False, + **kwargs) + return _create_metaformer('poolformerv2_m36', pretrained=pretrained, **model_kwargs) + + +@register_model +def poolformerv2_m48(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[8, 8, 24, 8], + dims=[96, 192, 384, 768], + norm_layers=GroupNorm1NoBias, + use_mlp_head=False, + **kwargs) + return _create_metaformer('poolformerv2_m48', pretrained=pretrained, **model_kwargs) + + +@register_model +def convformer_s18(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[3, 3, 9, 3], + dims=[64, 128, 320, 512], + token_mixers=SepConv, + norm_layers=LayerNorm2dNoBias, + **kwargs) + return _create_metaformer('convformer_s18', pretrained=pretrained, **model_kwargs) + + +@register_model +def convformer_s36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[3, 12, 18, 3], + dims=[64, 128, 320, 512], + token_mixers=SepConv, + norm_layers=LayerNorm2dNoBias, + **kwargs) + return _create_metaformer('convformer_s36', pretrained=pretrained, **model_kwargs) + + +@register_model +def convformer_m36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[3, 12, 18, 3], + dims=[96, 192, 384, 576], + token_mixers=SepConv, + norm_layers=LayerNorm2dNoBias, + **kwargs) + return _create_metaformer('convformer_m36', pretrained=pretrained, **model_kwargs) + + +@register_model +def convformer_b36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[3, 12, 18, 3], + dims=[128, 256, 512, 768], + token_mixers=SepConv, + norm_layers=LayerNorm2dNoBias, + **kwargs) + return _create_metaformer('convformer_b36', pretrained=pretrained, **model_kwargs) + + +@register_model +def caformer_s18(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[3, 3, 9, 3], + dims=[64, 128, 320, 512], + token_mixers=[SepConv, SepConv, Attention, Attention], + norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, + **kwargs) + return _create_metaformer('caformer_s18', pretrained=pretrained, **model_kwargs) + + +@register_model +def caformer_s36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[3, 12, 18, 3], + dims=[64, 128, 320, 512], + token_mixers=[SepConv, SepConv, Attention, Attention], + norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, + **kwargs) + return _create_metaformer('caformer_s36', pretrained=pretrained, **model_kwargs) + + +@register_model +def caformer_m36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[3, 12, 18, 3], + dims=[96, 192, 384, 576], + token_mixers=[SepConv, SepConv, Attention, Attention], + norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, + **kwargs) + return _create_metaformer('caformer_m36', pretrained=pretrained, **model_kwargs) + + +@register_model +def caformer_b36(pretrained=False, **kwargs) -> MetaFormer: + model_kwargs = dict( + depths=[3, 12, 18, 3], + dims=[128, 256, 512, 768], + token_mixers=[SepConv, SepConv, Attention, Attention], + norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, + **kwargs) + return _create_metaformer('caformer_b36', pretrained=pretrained, **model_kwargs) diff --git a/pytorch-image-models/timm/models/mlp_mixer.py b/pytorch-image-models/timm/models/mlp_mixer.py new file mode 100644 index 0000000000000000000000000000000000000000..25cde6a67c86ec8a434789b43752955906093168 --- /dev/null +++ b/pytorch-image-models/timm/models/mlp_mixer.py @@ -0,0 +1,710 @@ +""" MLP-Mixer, ResMLP, and gMLP in PyTorch + +This impl originally based on MLP-Mixer paper. + +Official JAX impl: https://github.com/google-research/vision_transformer/blob/linen/vit_jax/models_mixer.py + +Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 + +@article{tolstikhin2021, + title={MLP-Mixer: An all-MLP Architecture for Vision}, + author={Tolstikhin, Ilya and Houlsby, Neil and Kolesnikov, Alexander and Beyer, Lucas and Zhai, Xiaohua and Unterthiner, + Thomas and Yung, Jessica and Keysers, Daniel and Uszkoreit, Jakob and Lucic, Mario and Dosovitskiy, Alexey}, + journal={arXiv preprint arXiv:2105.01601}, + year={2021} +} + +Also supporting ResMlp, and a preliminary (not verified) implementations of gMLP + +Code: https://github.com/facebookresearch/deit +Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 +@misc{touvron2021resmlp, + title={ResMLP: Feedforward networks for image classification with data-efficient training}, + author={Hugo Touvron and Piotr Bojanowski and Mathilde Caron and Matthieu Cord and Alaaeldin El-Nouby and + Edouard Grave and Armand Joulin and Gabriel Synnaeve and Jakob Verbeek and Hervé Jégou}, + year={2021}, + eprint={2105.03404}, +} + +Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 +@misc{liu2021pay, + title={Pay Attention to MLPs}, + author={Hanxiao Liu and Zihang Dai and David R. So and Quoc V. Le}, + year={2021}, + eprint={2105.08050}, +} + +A thank you to paper authors for releasing code and weights. + +Hacked together by / Copyright 2021 Ross Wightman +""" +import math +from functools import partial +from typing import List, Optional, Union, Tuple + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, GluMlp, GatedMlp, DropPath, lecun_normal_, to_2tuple +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply, checkpoint_seq +from ._registry import generate_default_cfgs, register_model, register_model_deprecations + +__all__ = ['MixerBlock', 'MlpMixer'] # model_registry will add each entrypoint fn to this + + +class MixerBlock(nn.Module): + """ Residual Block w/ token mixing and channel MLPs + Based on: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 + """ + def __init__( + self, + dim, + seq_len, + mlp_ratio=(0.5, 4.0), + mlp_layer=Mlp, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + act_layer=nn.GELU, + drop=0., + drop_path=0., + ): + super().__init__() + tokens_dim, channels_dim = [int(x * dim) for x in to_2tuple(mlp_ratio)] + self.norm1 = norm_layer(dim) + self.mlp_tokens = mlp_layer(seq_len, tokens_dim, act_layer=act_layer, drop=drop) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp_channels = mlp_layer(dim, channels_dim, act_layer=act_layer, drop=drop) + + def forward(self, x): + x = x + self.drop_path(self.mlp_tokens(self.norm1(x).transpose(1, 2)).transpose(1, 2)) + x = x + self.drop_path(self.mlp_channels(self.norm2(x))) + return x + + +class Affine(nn.Module): + def __init__(self, dim): + super().__init__() + self.alpha = nn.Parameter(torch.ones((1, 1, dim))) + self.beta = nn.Parameter(torch.zeros((1, 1, dim))) + + def forward(self, x): + return torch.addcmul(self.beta, self.alpha, x) + + +class ResBlock(nn.Module): + """ Residual MLP block w/ LayerScale and Affine 'norm' + + Based on: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 + """ + def __init__( + self, + dim, + seq_len, + mlp_ratio=4, + mlp_layer=Mlp, + norm_layer=Affine, + act_layer=nn.GELU, + init_values=1e-4, + drop=0., + drop_path=0., + ): + super().__init__() + channel_dim = int(dim * mlp_ratio) + self.norm1 = norm_layer(dim) + self.linear_tokens = nn.Linear(seq_len, seq_len) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp_channels = mlp_layer(dim, channel_dim, act_layer=act_layer, drop=drop) + self.ls1 = nn.Parameter(init_values * torch.ones(dim)) + self.ls2 = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + x = x + self.drop_path(self.ls1 * self.linear_tokens(self.norm1(x).transpose(1, 2)).transpose(1, 2)) + x = x + self.drop_path(self.ls2 * self.mlp_channels(self.norm2(x))) + return x + + +class SpatialGatingUnit(nn.Module): + """ Spatial Gating Unit + + Based on: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 + """ + def __init__(self, dim, seq_len, norm_layer=nn.LayerNorm): + super().__init__() + gate_dim = dim // 2 + self.norm = norm_layer(gate_dim) + self.proj = nn.Linear(seq_len, seq_len) + + def init_weights(self): + # special init for the projection gate, called as override by base model init + nn.init.normal_(self.proj.weight, std=1e-6) + nn.init.ones_(self.proj.bias) + + def forward(self, x): + u, v = x.chunk(2, dim=-1) + v = self.norm(v) + v = self.proj(v.transpose(-1, -2)) + return u * v.transpose(-1, -2) + + +class SpatialGatingBlock(nn.Module): + """ Residual Block w/ Spatial Gating + + Based on: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 + """ + def __init__( + self, + dim, + seq_len, + mlp_ratio=4, + mlp_layer=GatedMlp, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + act_layer=nn.GELU, + drop=0., + drop_path=0., + ): + super().__init__() + channel_dim = int(dim * mlp_ratio) + self.norm = norm_layer(dim) + sgu = partial(SpatialGatingUnit, seq_len=seq_len) + self.mlp_channels = mlp_layer(dim, channel_dim, act_layer=act_layer, gate_layer=sgu, drop=drop) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + x = x + self.drop_path(self.mlp_channels(self.norm(x))) + return x + + +class MlpMixer(nn.Module): + + def __init__( + self, + num_classes=1000, + img_size=224, + in_chans=3, + patch_size=16, + num_blocks=8, + embed_dim=512, + mlp_ratio=(0.5, 4.0), + block_layer=MixerBlock, + mlp_layer=Mlp, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + act_layer=nn.GELU, + drop_rate=0., + proj_drop_rate=0., + drop_path_rate=0., + nlhb=False, + stem_norm=False, + global_pool='avg', + ): + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models + self.grad_checkpointing = False + + self.stem = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + norm_layer=norm_layer if stem_norm else None, + ) + reduction = self.stem.feat_ratio() if hasattr(self.stem, 'feat_ratio') else patch_size + # FIXME drop_path (stochastic depth scaling rule or all the same?) + self.blocks = nn.Sequential(*[ + block_layer( + embed_dim, + self.stem.num_patches, + mlp_ratio, + mlp_layer=mlp_layer, + norm_layer=norm_layer, + act_layer=act_layer, + drop=proj_drop_rate, + drop_path=drop_path_rate, + ) + for _ in range(num_blocks)]) + self.feature_info = [ + dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=reduction) for i in range(num_blocks)] + self.norm = norm_layer(embed_dim) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() + + self.init_weights(nlhb=nlhb) + + @torch.jit.ignore + def init_weights(self, nlhb=False): + head_bias = -math.log(self.num_classes) if nlhb else 0. + named_apply(partial(_init_weights, head_bias=head_bias), module=self) # depth-first + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', # stem and embed + blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + return_prefix_tokens: Return both prefix and spatial intermediate tokens + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + + # forward pass + B, _, height, width = x.shape + x = self.stem(x) + + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for i, blk in enumerate(blocks): + x = blk(x) + if i in take_indices: + # normalize intermediates with final norm layer if enabled + intermediates.append(self.norm(x) if norm else x) + + # process intermediates + if reshape: + # reshape to BCHW output format + H, W = self.stem.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + + if intermediates_only: + return intermediates + + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] # truncate blocks + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool == 'avg': + x = x.mean(dim=1) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _init_weights(module: nn.Module, name: str, head_bias: float = 0., flax=False): + """ Mixer weight initialization (trying to match Flax defaults) + """ + if isinstance(module, nn.Linear): + if name.startswith('head'): + nn.init.zeros_(module.weight) + nn.init.constant_(module.bias, head_bias) + else: + if flax: + # Flax defaults + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + else: + # like MLP init in vit (my original init) + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + if 'mlp' in name: + nn.init.normal_(module.bias, std=1e-6) + else: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm)): + nn.init.ones_(module.weight) + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + # NOTE if a parent module contains init_weights method, it can override the init of the + # child modules as this will be called in depth-first order. + module.init_weights() + + +def checkpoint_filter_fn(state_dict, model): + """ Remap checkpoints if needed """ + if 'patch_embed.proj.weight' in state_dict: + # Remap FB ResMlp models -> timm + out_dict = {} + for k, v in state_dict.items(): + k = k.replace('patch_embed.', 'stem.') + k = k.replace('attn.', 'linear_tokens.') + k = k.replace('mlp.', 'mlp_channels.') + k = k.replace('gamma_', 'ls') + if k.endswith('.alpha') or k.endswith('.beta'): + v = v.reshape(1, 1, -1) + out_dict[k] = v + return out_dict + return state_dict + + +def _create_mixer(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg( + MlpMixer, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': 0.875, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), + 'first_conv': 'stem.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'mixer_s32_224.untrained': _cfg(), + 'mixer_s16_224.untrained': _cfg(), + 'mixer_b32_224.untrained': _cfg(), + 'mixer_b16_224.goog_in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_b16_224-76587d61.pth', + ), + 'mixer_b16_224.goog_in21k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_b16_224_in21k-617b3de2.pth', + num_classes=21843 + ), + 'mixer_l32_224.untrained': _cfg(), + 'mixer_l16_224.goog_in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_l16_224-92f9adc4.pth', + ), + 'mixer_l16_224.goog_in21k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_l16_224_in21k-846aa33c.pth', + num_classes=21843 + ), + + # Mixer ImageNet-21K-P pretraining + 'mixer_b16_224.miil_in21k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mixer_b16_224_miil_in21k-2a558a71.pth', + mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear', num_classes=11221, + ), + 'mixer_b16_224.miil_in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mixer_b16_224_miil-9229a591.pth', + mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear', + ), + + 'gmixer_12_224.untrained': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'gmixer_24_224.ra3_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gmixer_24_224_raa-7daf7ae6.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + + 'resmlp_12_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/resmlp_12_no_dist.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'resmlp_24_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/resmlp_24_no_dist.pth', + #url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resmlp_24_224_raa-a8256759.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'resmlp_36_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/resmlp_36_no_dist.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'resmlp_big_24_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/resmlpB_24_no_dist.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + + 'resmlp_12_224.fb_distilled_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/resmlp_12_dist.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'resmlp_24_224.fb_distilled_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/resmlp_24_dist.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'resmlp_36_224.fb_distilled_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/resmlp_36_dist.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'resmlp_big_24_224.fb_distilled_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/resmlpB_24_dist.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + + 'resmlp_big_24_224.fb_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/resmlpB_24_22k.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + + 'resmlp_12_224.fb_dino': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/resmlp_12_dino.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + 'resmlp_24_224.fb_dino': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/deit/resmlp_24_dino.pth', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), + + 'gmlp_ti16_224.untrained': _cfg(), + 'gmlp_s16_224.ra3_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gmlp_s16_224_raa-10536d42.pth', + ), + 'gmlp_b16_224.untrained': _cfg(), +}) + + +@register_model +def mixer_s32_224(pretrained=False, **kwargs) -> MlpMixer: + """ Mixer-S/32 224x224 + Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 + """ + model_args = dict(patch_size=32, num_blocks=8, embed_dim=512, **kwargs) + model = _create_mixer('mixer_s32_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def mixer_s16_224(pretrained=False, **kwargs) -> MlpMixer: + """ Mixer-S/16 224x224 + Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 + """ + model_args = dict(patch_size=16, num_blocks=8, embed_dim=512, **kwargs) + model = _create_mixer('mixer_s16_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def mixer_b32_224(pretrained=False, **kwargs) -> MlpMixer: + """ Mixer-B/32 224x224 + Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 + """ + model_args = dict(patch_size=32, num_blocks=12, embed_dim=768, **kwargs) + model = _create_mixer('mixer_b32_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def mixer_b16_224(pretrained=False, **kwargs) -> MlpMixer: + """ Mixer-B/16 224x224. ImageNet-1k pretrained weights. + Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 + """ + model_args = dict(patch_size=16, num_blocks=12, embed_dim=768, **kwargs) + model = _create_mixer('mixer_b16_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def mixer_l32_224(pretrained=False, **kwargs) -> MlpMixer: + """ Mixer-L/32 224x224. + Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 + """ + model_args = dict(patch_size=32, num_blocks=24, embed_dim=1024, **kwargs) + model = _create_mixer('mixer_l32_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def mixer_l16_224(pretrained=False, **kwargs) -> MlpMixer: + """ Mixer-L/16 224x224. ImageNet-1k pretrained weights. + Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 + """ + model_args = dict(patch_size=16, num_blocks=24, embed_dim=1024, **kwargs) + model = _create_mixer('mixer_l16_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def gmixer_12_224(pretrained=False, **kwargs) -> MlpMixer: + """ Glu-Mixer-12 224x224 + Experiment by Ross Wightman, adding SwiGLU to MLP-Mixer + """ + model_args = dict( + patch_size=16, num_blocks=12, embed_dim=384, mlp_ratio=(1.0, 4.0), + mlp_layer=GluMlp, act_layer=nn.SiLU, **kwargs) + model = _create_mixer('gmixer_12_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def gmixer_24_224(pretrained=False, **kwargs) -> MlpMixer: + """ Glu-Mixer-24 224x224 + Experiment by Ross Wightman, adding SwiGLU to MLP-Mixer + """ + model_args = dict( + patch_size=16, num_blocks=24, embed_dim=384, mlp_ratio=(1.0, 4.0), + mlp_layer=GluMlp, act_layer=nn.SiLU, **kwargs) + model = _create_mixer('gmixer_24_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def resmlp_12_224(pretrained=False, **kwargs) -> MlpMixer: + """ ResMLP-12 + Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 + """ + model_args = dict( + patch_size=16, num_blocks=12, embed_dim=384, mlp_ratio=4, block_layer=ResBlock, norm_layer=Affine, **kwargs) + model = _create_mixer('resmlp_12_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def resmlp_24_224(pretrained=False, **kwargs) -> MlpMixer: + """ ResMLP-24 + Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 + """ + model_args = dict( + patch_size=16, num_blocks=24, embed_dim=384, mlp_ratio=4, + block_layer=partial(ResBlock, init_values=1e-5), norm_layer=Affine, **kwargs) + model = _create_mixer('resmlp_24_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def resmlp_36_224(pretrained=False, **kwargs) -> MlpMixer: + """ ResMLP-36 + Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 + """ + model_args = dict( + patch_size=16, num_blocks=36, embed_dim=384, mlp_ratio=4, + block_layer=partial(ResBlock, init_values=1e-6), norm_layer=Affine, **kwargs) + model = _create_mixer('resmlp_36_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def resmlp_big_24_224(pretrained=False, **kwargs) -> MlpMixer: + """ ResMLP-B-24 + Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 + """ + model_args = dict( + patch_size=8, num_blocks=24, embed_dim=768, mlp_ratio=4, + block_layer=partial(ResBlock, init_values=1e-6), norm_layer=Affine, **kwargs) + model = _create_mixer('resmlp_big_24_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def gmlp_ti16_224(pretrained=False, **kwargs) -> MlpMixer: + """ gMLP-Tiny + Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 + """ + model_args = dict( + patch_size=16, num_blocks=30, embed_dim=128, mlp_ratio=6, block_layer=SpatialGatingBlock, + mlp_layer=GatedMlp, **kwargs) + model = _create_mixer('gmlp_ti16_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def gmlp_s16_224(pretrained=False, **kwargs) -> MlpMixer: + """ gMLP-Small + Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 + """ + model_args = dict( + patch_size=16, num_blocks=30, embed_dim=256, mlp_ratio=6, block_layer=SpatialGatingBlock, + mlp_layer=GatedMlp, **kwargs) + model = _create_mixer('gmlp_s16_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def gmlp_b16_224(pretrained=False, **kwargs) -> MlpMixer: + """ gMLP-Base + Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 + """ + model_args = dict( + patch_size=16, num_blocks=30, embed_dim=512, mlp_ratio=6, block_layer=SpatialGatingBlock, + mlp_layer=GatedMlp, **kwargs) + model = _create_mixer('gmlp_b16_224', pretrained=pretrained, **model_args) + return model + + +register_model_deprecations(__name__, { + 'mixer_b16_224_in21k': 'mixer_b16_224.goog_in21k_ft_in1k', + 'mixer_l16_224_in21k': 'mixer_l16_224.goog_in21k_ft_in1k', + 'mixer_b16_224_miil': 'mixer_b16_224.miil_in21k_ft_in1k', + 'mixer_b16_224_miil_in21k': 'mixer_b16_224.miil_in21k', + 'resmlp_12_distilled_224': 'resmlp_12_224.fb_distilled_in1k', + 'resmlp_24_distilled_224': 'resmlp_24_224.fb_distilled_in1k', + 'resmlp_36_distilled_224': 'resmlp_36_224.fb_distilled_in1k', + 'resmlp_big_24_distilled_224': 'resmlp_big_24_224.fb_distilled_in1k', + 'resmlp_big_24_224_in22ft1k': 'resmlp_big_24_224.fb_in22k_ft_in1k', + 'resmlp_12_224_dino': 'resmlp_12_224', + 'resmlp_24_224_dino': 'resmlp_24_224', +}) diff --git a/pytorch-image-models/timm/models/mobilenetv3.py b/pytorch-image-models/timm/models/mobilenetv3.py new file mode 100644 index 0000000000000000000000000000000000000000..79a51f7729b0ecdc085b9c39f016616eec5b87e1 --- /dev/null +++ b/pytorch-image-models/timm/models/mobilenetv3.py @@ -0,0 +1,1376 @@ +""" MobileNet V3 + +A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl. + +Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244 + +Hacked together by / Copyright 2019, Ross Wightman +""" +from functools import partial +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import SelectAdaptivePool2d, Linear, LayerType, PadType, create_conv2d, get_norm_act_layer +from ._builder import build_model_with_cfg, pretrained_cfg_for_features +from ._efficientnet_blocks import SqueezeExcite +from ._efficientnet_builder import BlockArgs, EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, \ + round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT +from ._features import FeatureInfo, FeatureHooks, feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model, register_model_deprecations + +__all__ = ['MobileNetV3', 'MobileNetV3Features'] + + +class MobileNetV3(nn.Module): + """ MobiletNet-V3 + + Based on my EfficientNet implementation and building blocks, this model utilizes the MobileNet-v3 specific + 'efficient head', where global pooling is done before the head convolution without a final batch-norm + layer before the classifier. + + Paper: `Searching for MobileNetV3` - https://arxiv.org/abs/1905.02244 + + Other architectures utilizing MobileNet-V3 efficient head that are supported by this impl include: + * HardCoRe-NAS - https://arxiv.org/abs/2102.11646 (defn in hardcorenas.py uses this class) + * FBNet-V3 - https://arxiv.org/abs/2006.02049 + * LCNet - https://arxiv.org/abs/2109.15099 + * MobileNet-V4 - https://arxiv.org/abs/2404.10518 + """ + + def __init__( + self, + block_args: BlockArgs, + num_classes: int = 1000, + in_chans: int = 3, + stem_size: int = 16, + fix_stem: bool = False, + num_features: int = 1280, + head_bias: bool = True, + head_norm: bool = False, + pad_type: str = '', + act_layer: Optional[LayerType] = None, + norm_layer: Optional[LayerType] = None, + aa_layer: Optional[LayerType] = None, + se_layer: Optional[LayerType] = None, + se_from_exp: bool = True, + round_chs_fn: Callable = round_channels, + drop_rate: float = 0., + drop_path_rate: float = 0., + layer_scale_init_value: Optional[float] = None, + global_pool: str = 'avg', + ): + """ + Args: + block_args: Arguments for blocks of the network. + num_classes: Number of classes for classification head. + in_chans: Number of input image channels. + stem_size: Number of output channels of the initial stem convolution. + fix_stem: If True, don't scale stem by round_chs_fn. + num_features: Number of output channels of the conv head layer. + head_bias: If True, add a learnable bias to the conv head layer. + pad_type: Type of padding to use for convolution layers. + act_layer: Type of activation layer. + norm_layer: Type of normalization layer. + aa_layer: Type of anti-aliasing layer. + se_layer: Type of Squeeze-and-Excite layer. + se_from_exp: If True, calculate SE channel reduction from expanded mid channels. + round_chs_fn: Callable to round number of filters based on depth multiplier. + drop_rate: Dropout rate. + drop_path_rate: Stochastic depth rate. + layer_scale_init_value: Enable layer scale on compatible blocks if not None. + global_pool: Type of pooling to use for global pooling features of the FC head. + """ + super(MobileNetV3, self).__init__() + act_layer = act_layer or nn.ReLU + norm_layer = norm_layer or nn.BatchNorm2d + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + se_layer = se_layer or SqueezeExcite + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + + # Stem + if not fix_stem: + stem_size = round_chs_fn(stem_size) + self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) + self.bn1 = norm_act_layer(stem_size, inplace=True) + + # Middle stages (IR/ER/DS Blocks) + builder = EfficientNetBuilder( + output_stride=32, + pad_type=pad_type, + round_chs_fn=round_chs_fn, + se_from_exp=se_from_exp, + act_layer=act_layer, + norm_layer=norm_layer, + aa_layer=aa_layer, + se_layer=se_layer, + drop_path_rate=drop_path_rate, + layer_scale_init_value=layer_scale_init_value, + ) + self.blocks = nn.Sequential(*builder(stem_size, block_args)) + self.feature_info = builder.features + self.stage_ends = [f['stage'] for f in self.feature_info] + self.num_features = builder.in_chs # features of last stage, output of forward_features() + self.head_hidden_size = num_features # features of conv_head, pre_logits output + + # Head + Pooling + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + num_pooled_chs = self.num_features * self.global_pool.feat_mult() + if head_norm: + # mobilenet-v4 post-pooling PW conv is followed by a norm+act layer + self.conv_head = create_conv2d(num_pooled_chs, self.head_hidden_size, 1, padding=pad_type) # never bias + self.norm_head = norm_act_layer(self.head_hidden_size) + self.act2 = nn.Identity() + else: + # mobilenet-v3 and others only have an activation after final PW conv + self.conv_head = create_conv2d(num_pooled_chs, self.head_hidden_size, 1, padding=pad_type, bias=head_bias) + self.norm_head = nn.Identity() + self.act2 = act_layer(inplace=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled + self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() + + efficientnet_init_weights(self) + + def as_sequential(self): + layers = [self.conv_stem, self.bn1] + layers.extend(self.blocks) + layers.extend([self.global_pool, self.conv_head, self.norm_head, self.act2]) + layers.extend([nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier]) + return nn.Sequential(*layers) + + @torch.jit.ignore + def group_matcher(self, coarse: bool = False): + return dict( + stem=r'^conv_stem|bn1', + blocks=r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)' + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool = True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + # NOTE: cannot meaningfully change pooling of efficient head after creation + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled + self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + extra_blocks: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + extra_blocks: Include outputs of all blocks and head conv in output, does not align with feature_info + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + if stop_early: + assert intermediates_only, 'Must use intermediates_only for early stopping.' + intermediates = [] + if extra_blocks: + take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices) + else: + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + + # forward pass + feat_idx = 0 # stem is index 0 + x = self.conv_stem(x) + x = self.bn1(x) + if feat_idx in take_indices: + intermediates.append(x) + + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index] + for blk in blocks: + feat_idx += 1 + x = blk(x) + if feat_idx in take_indices: + intermediates.append(x) + + if intermediates_only: + return intermediates + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + extra_blocks: bool = False, + ): + """ Prune layers not required for specified intermediates. + """ + if extra_blocks: + take_indices, max_index = feature_take_indices(len(self.blocks) + 1, indices) + else: + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + self.blocks = self.blocks[:max_index] # truncate blocks w/ stem as idx 0 + if max_index < len(self.blocks): + self.conv_head = nn.Identity() + self.norm_head = nn.Identity() + if prune_head: + self.conv_head = nn.Identity() + self.norm_head = nn.Identity() + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.conv_stem(x) + x = self.bn1(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x, flatten=True) + else: + x = self.blocks(x) + return x + + def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor: + x = self.global_pool(x) + x = self.conv_head(x) + x = self.norm_head(x) + x = self.act2(x) + x = self.flatten(x) + if self.drop_rate > 0.: + x = F.dropout(x, p=self.drop_rate, training=self.training) + if pre_logits: + return x + return self.classifier(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +class MobileNetV3Features(nn.Module): + """ MobileNetV3 Feature Extractor + + A work-in-progress feature extraction module for MobileNet-V3 to use as a backbone for segmentation + and object detection models. + """ + + def __init__( + self, + block_args: BlockArgs, + out_indices: Tuple[int, ...] = (0, 1, 2, 3, 4), + feature_location: str = 'bottleneck', + in_chans: int = 3, + stem_size: int = 16, + fix_stem: bool = False, + output_stride: int = 32, + pad_type: PadType = '', + round_chs_fn: Callable = round_channels, + se_from_exp: bool = True, + act_layer: Optional[LayerType] = None, + norm_layer: Optional[LayerType] = None, + aa_layer: Optional[LayerType] = None, + se_layer: Optional[LayerType] = None, + drop_rate: float = 0., + drop_path_rate: float = 0., + layer_scale_init_value: Optional[float] = None, + ): + """ + Args: + block_args: Arguments for blocks of the network. + out_indices: Output from stages at indices. + feature_location: Location of feature before/after each block, must be in ['bottleneck', 'expansion'] + in_chans: Number of input image channels. + stem_size: Number of output channels of the initial stem convolution. + fix_stem: If True, don't scale stem by round_chs_fn. + output_stride: Output stride of the network. + pad_type: Type of padding to use for convolution layers. + round_chs_fn: Callable to round number of filters based on depth multiplier. + se_from_exp: If True, calculate SE channel reduction from expanded mid channels. + act_layer: Type of activation layer. + norm_layer: Type of normalization layer. + se_layer: Type of Squeeze-and-Excite layer. + drop_rate: Dropout rate. + drop_path_rate: Stochastic depth rate. + layer_scale_init_value: Enable layer scale on compatible blocks if not None. + """ + super(MobileNetV3Features, self).__init__() + act_layer = act_layer or nn.ReLU + norm_layer = norm_layer or nn.BatchNorm2d + se_layer = se_layer or SqueezeExcite + self.drop_rate = drop_rate + self.grad_checkpointing = False + + # Stem + if not fix_stem: + stem_size = round_chs_fn(stem_size) + self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) + self.bn1 = norm_layer(stem_size) + self.act1 = act_layer(inplace=True) + + # Middle stages (IR/ER/DS Blocks) + builder = EfficientNetBuilder( + output_stride=output_stride, + pad_type=pad_type, + round_chs_fn=round_chs_fn, + se_from_exp=se_from_exp, + act_layer=act_layer, + norm_layer=norm_layer, + aa_layer=aa_layer, + se_layer=se_layer, + drop_path_rate=drop_path_rate, + layer_scale_init_value=layer_scale_init_value, + feature_location=feature_location, + ) + self.blocks = nn.Sequential(*builder(stem_size, block_args)) + self.feature_info = FeatureInfo(builder.features, out_indices) + self._stage_out_idx = {f['stage']: f['index'] for f in self.feature_info.get_dicts()} + + efficientnet_init_weights(self) + + # Register feature extraction hooks with FeatureHooks helper + self.feature_hooks = None + if feature_location != 'bottleneck': + hooks = self.feature_info.get_dicts(keys=('module', 'hook_type')) + self.feature_hooks = FeatureHooks(hooks, self.named_modules()) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool = True): + self.grad_checkpointing = enable + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + x = self.conv_stem(x) + x = self.bn1(x) + x = self.act1(x) + if self.feature_hooks is None: + features = [] + if 0 in self._stage_out_idx: + features.append(x) # add stem out + for i, b in enumerate(self.blocks): + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(b, x) + else: + x = b(x) + if i + 1 in self._stage_out_idx: + features.append(x) + return features + else: + self.blocks(x) + out = self.feature_hooks.get_output(x.device) + return list(out.values()) + + +def _create_mnv3(variant: str, pretrained: bool = False, **kwargs) -> MobileNetV3: + features_mode = '' + model_cls = MobileNetV3 + kwargs_filter = None + if kwargs.pop('features_only', False): + if 'feature_cfg' in kwargs or 'feature_cls' in kwargs: + features_mode = 'cfg' + else: + kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'head_bias', 'head_norm', 'global_pool') + model_cls = MobileNetV3Features + features_mode = 'cls' + + model = build_model_with_cfg( + model_cls, + variant, + pretrained, + features_only=features_mode == 'cfg', + pretrained_strict=features_mode != 'cls', + kwargs_filter=kwargs_filter, + **kwargs, + ) + if features_mode == 'cls': + model.default_cfg = pretrained_cfg_for_features(model.default_cfg) + return model + + +def _gen_mobilenet_v3_rw( + variant: str, channel_multiplier: float = 1.0, pretrained: bool = False, **kwargs +) -> MobileNetV3: + """Creates a MobileNet-V3 model. + + Ref impl: ? + Paper: https://arxiv.org/abs/1905.02244 + + Args: + channel_multiplier: multiplier to number of channels per layer. + """ + arch_def = [ + # stage 0, 112x112 in + ['ds_r1_k3_s1_e1_c16_nre_noskip'], # relu + # stage 1, 112x112 in + ['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu + # stage 2, 56x56 in + ['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu + # stage 3, 28x28 in + ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish + # stage 4, 14x14in + ['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish + # stage 5, 14x14in + ['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish + # stage 6, 7x7 in + ['cn_r1_k1_s1_c960'], # hard-swish + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def), + head_bias=False, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'hard_swish'), + se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid'), + **kwargs, + ) + model = _create_mnv3(variant, pretrained, **model_kwargs) + return model + + +def _gen_mobilenet_v3( + variant: str, channel_multiplier: float = 1.0, depth_multiplier: float = 1.0, + group_size=None, pretrained: bool = False, **kwargs +) -> MobileNetV3: + """Creates a MobileNet-V3 model. + + Ref impl: ? + Paper: https://arxiv.org/abs/1905.02244 + + Args: + channel_multiplier: multiplier to number of channels per layer. + """ + if 'small' in variant: + num_features = 1024 + if 'minimal' in variant: + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [ + # stage 0, 112x112 in + ['ds_r1_k3_s2_e1_c16'], + # stage 1, 56x56 in + ['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'], + # stage 2, 28x28 in + ['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'], + # stage 3, 14x14 in + ['ir_r2_k3_s1_e3_c48'], + # stage 4, 14x14in + ['ir_r3_k3_s2_e6_c96'], + # stage 6, 7x7 in + ['cn_r1_k1_s1_c576'], + ] + else: + act_layer = resolve_act_layer(kwargs, 'hard_swish') + arch_def = [ + # stage 0, 112x112 in + ['ds_r1_k3_s2_e1_c16_se0.25_nre'], # relu + # stage 1, 56x56 in + ['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], # relu + # stage 2, 28x28 in + ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'], # hard-swish + # stage 3, 14x14 in + ['ir_r2_k5_s1_e3_c48_se0.25'], # hard-swish + # stage 4, 14x14in + ['ir_r3_k5_s2_e6_c96_se0.25'], # hard-swish + # stage 6, 7x7 in + ['cn_r1_k1_s1_c576'], # hard-swish + ] + else: + num_features = 1280 + if 'minimal' in variant: + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [ + # stage 0, 112x112 in + ['ds_r1_k3_s1_e1_c16'], + # stage 1, 112x112 in + ['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'], + # stage 2, 56x56 in + ['ir_r3_k3_s2_e3_c40'], + # stage 3, 28x28 in + ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], + # stage 4, 14x14in + ['ir_r2_k3_s1_e6_c112'], + # stage 5, 14x14in + ['ir_r3_k3_s2_e6_c160'], + # stage 6, 7x7 in + ['cn_r1_k1_s1_c960'], + ] + else: + act_layer = resolve_act_layer(kwargs, 'hard_swish') + arch_def = [ + # stage 0, 112x112 in + ['ds_r1_k3_s1_e1_c16_nre'], # relu + # stage 1, 112x112 in + ['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu + # stage 2, 56x56 in + ['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu + # stage 3, 28x28 in + ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish + # stage 4, 14x14in + ['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish + # stage 5, 14x14in + ['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish + # stage 6, 7x7 in + ['cn_r1_k1_s1_c960'], # hard-swish + ] + se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels) + model_kwargs = dict( + block_args=decode_arch_def(arch_def, depth_multiplier=depth_multiplier, group_size=group_size), + num_features=num_features, + stem_size=16, + fix_stem=channel_multiplier < 0.75, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=act_layer, + se_layer=se_layer, + **kwargs, + ) + model = _create_mnv3(variant, pretrained, **model_kwargs) + return model + + +def _gen_fbnetv3(variant: str, channel_multiplier: float = 1.0, pretrained: bool = False, **kwargs): + """ FBNetV3 + Paper: `FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining` + - https://arxiv.org/abs/2006.02049 + FIXME untested, this is a preliminary impl of some FBNet-V3 variants. + """ + vl = variant.split('_')[-1] + if vl in ('a', 'b'): + stem_size = 16 + arch_def = [ + ['ds_r2_k3_s1_e1_c16'], + ['ir_r1_k5_s2_e4_c24', 'ir_r3_k5_s1_e2_c24'], + ['ir_r1_k5_s2_e5_c40_se0.25', 'ir_r4_k5_s1_e3_c40_se0.25'], + ['ir_r1_k5_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'], + ['ir_r1_k3_s1_e5_c120_se0.25', 'ir_r5_k5_s1_e3_c120_se0.25'], + ['ir_r1_k3_s2_e6_c184_se0.25', 'ir_r5_k5_s1_e4_c184_se0.25', 'ir_r1_k5_s1_e6_c224_se0.25'], + ['cn_r1_k1_s1_c1344'], + ] + elif vl == 'd': + stem_size = 24 + arch_def = [ + ['ds_r2_k3_s1_e1_c16'], + ['ir_r1_k3_s2_e5_c24', 'ir_r5_k3_s1_e2_c24'], + ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r4_k3_s1_e3_c40_se0.25'], + ['ir_r1_k3_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'], + ['ir_r1_k3_s1_e5_c128_se0.25', 'ir_r6_k5_s1_e3_c128_se0.25'], + ['ir_r1_k3_s2_e6_c208_se0.25', 'ir_r5_k5_s1_e5_c208_se0.25', 'ir_r1_k5_s1_e6_c240_se0.25'], + ['cn_r1_k1_s1_c1440'], + ] + elif vl == 'g': + stem_size = 32 + arch_def = [ + ['ds_r3_k3_s1_e1_c24'], + ['ir_r1_k5_s2_e4_c40', 'ir_r4_k5_s1_e2_c40'], + ['ir_r1_k5_s2_e4_c56_se0.25', 'ir_r4_k5_s1_e3_c56_se0.25'], + ['ir_r1_k5_s2_e5_c104', 'ir_r4_k3_s1_e3_c104'], + ['ir_r1_k3_s1_e5_c160_se0.25', 'ir_r8_k5_s1_e3_c160_se0.25'], + ['ir_r1_k3_s2_e6_c264_se0.25', 'ir_r6_k5_s1_e5_c264_se0.25', 'ir_r2_k5_s1_e6_c288_se0.25'], + ['cn_r1_k1_s1_c1728'], + ] + else: + raise NotImplemented + round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.95) + se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=round_chs_fn) + act_layer = resolve_act_layer(kwargs, 'hard_swish') + model_kwargs = dict( + block_args=decode_arch_def(arch_def), + num_features=1984, + head_bias=False, + stem_size=stem_size, + round_chs_fn=round_chs_fn, + se_from_exp=False, + norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=act_layer, + se_layer=se_layer, + **kwargs, + ) + model = _create_mnv3(variant, pretrained, **model_kwargs) + return model + + +def _gen_lcnet(variant: str, channel_multiplier: float = 1.0, pretrained: bool = False, **kwargs): + """ LCNet + Essentially a MobileNet-V3 crossed with a MobileNet-V1 + + Paper: `PP-LCNet: A Lightweight CPU Convolutional Neural Network` - https://arxiv.org/abs/2109.15099 + + Args: + channel_multiplier: multiplier to number of channels per layer. + """ + arch_def = [ + # stage 0, 112x112 in + ['dsa_r1_k3_s1_c32'], + # stage 1, 112x112 in + ['dsa_r2_k3_s2_c64'], + # stage 2, 56x56 in + ['dsa_r2_k3_s2_c128'], + # stage 3, 28x28 in + ['dsa_r1_k3_s2_c256', 'dsa_r1_k5_s1_c256'], + # stage 4, 14x14in + ['dsa_r4_k5_s1_c256'], + # stage 5, 14x14in + ['dsa_r2_k5_s2_c512_se0.25'], + # 7x7 + ] + model_kwargs = dict( + block_args=decode_arch_def(arch_def), + stem_size=16, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=resolve_act_layer(kwargs, 'hard_swish'), + se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU), + num_features=1280, + **kwargs, + ) + model = _create_mnv3(variant, pretrained, **model_kwargs) + return model + + +def _gen_mobilenet_v4( + variant: str, channel_multiplier: float = 1.0, group_size=None, pretrained: bool = False, **kwargs, +) -> MobileNetV3: + """Creates a MobileNet-V4 model. + + Ref impl: ? + Paper: https://arxiv.org/abs/1905.02244 + + Args: + channel_multiplier: multiplier to number of channels per layer. + """ + num_features = 1280 + if 'hybrid' in variant: + layer_scale_init_value = 1e-5 + if 'medium' in variant: + stem_size = 32 + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [ + # stage 0, 112x112 in + [ + 'er_r1_k3_s2_e4_c48' # FusedIB (EdgeResidual) + ], + # stage 1, 56x56 in + [ + 'uir_r1_a3_k5_s2_e4_c80', # ExtraDW + 'uir_r1_a3_k3_s1_e2_c80', # ExtraDW + ], + # stage 2, 28x28 in + [ + 'uir_r1_a3_k5_s2_e6_c160', # ExtraDW + 'uir_r1_a0_k0_s1_e2_c160', # FFN + 'uir_r1_a3_k3_s1_e4_c160', # ExtraDW + 'uir_r1_a3_k5_s1_e4_c160', # ExtraDW + 'mqa_r1_k3_h4_s1_v2_d64_c160', # MQA w/ KV downsample + 'uir_r1_a3_k3_s1_e4_c160', # ExtraDW + 'mqa_r1_k3_h4_s1_v2_d64_c160', # MQA w/ KV downsample + 'uir_r1_a3_k0_s1_e4_c160', # ConvNeXt + 'mqa_r1_k3_h4_s1_v2_d64_c160', # MQA w/ KV downsample + 'uir_r1_a3_k3_s1_e4_c160', # ExtraDW + 'mqa_r1_k3_h4_s1_v2_d64_c160', # MQA w/ KV downsample + 'uir_r1_a3_k0_s1_e4_c160', # ConvNeXt + ], + # stage 3, 14x14in + [ + 'uir_r1_a5_k5_s2_e6_c256', # ExtraDW + 'uir_r1_a5_k5_s1_e4_c256', # ExtraDW + 'uir_r2_a3_k5_s1_e4_c256', # ExtraDW + 'uir_r1_a0_k0_s1_e2_c256', # FFN + 'uir_r1_a3_k5_s1_e2_c256', # ExtraDW + 'uir_r1_a0_k0_s1_e2_c256', # FFN + 'uir_r1_a0_k0_s1_e4_c256', # FFN + 'mqa_r1_k3_h4_s1_d64_c256', # MQA + 'uir_r1_a3_k0_s1_e4_c256', # ConvNeXt + 'mqa_r1_k3_h4_s1_d64_c256', # MQA + 'uir_r1_a5_k5_s1_e4_c256', # ExtraDW + 'mqa_r1_k3_h4_s1_d64_c256', # MQA + 'uir_r1_a5_k0_s1_e4_c256', # ConvNeXt + 'mqa_r1_k3_h4_s1_d64_c256', # MQA + 'uir_r1_a5_k0_s1_e4_c256', # ConvNeXt + ], + # stage 4, 7x7 in + [ + 'cn_r1_k1_s1_c960' # Conv + ], + ] + elif 'large' in variant: + stem_size = 24 + act_layer = resolve_act_layer(kwargs, 'gelu') + arch_def = [ + # stage 0, 112x112 in + [ + 'er_r1_k3_s2_e4_c48', # FusedIB (EdgeResidual) + ], + # stage 1, 56x56 in + [ + 'uir_r1_a3_k5_s2_e4_c96', # ExtraDW + 'uir_r1_a3_k3_s1_e4_c96', # ExtraDW + ], + # stage 2, 28x28 in + [ + 'uir_r1_a3_k5_s2_e4_c192', # ExtraDW + 'uir_r3_a3_k3_s1_e4_c192', # ExtraDW + 'uir_r1_a3_k5_s1_e4_c192', # ExtraDW + 'uir_r2_a5_k3_s1_e4_c192', # ExtraDW + 'mqa_r1_k3_h8_s1_v2_d48_c192', # MQA w/ KV downsample + 'uir_r1_a5_k3_s1_e4_c192', # ExtraDW + 'mqa_r1_k3_h8_s1_v2_d48_c192', # MQA w/ KV downsample + 'uir_r1_a5_k3_s1_e4_c192', # ExtraDW + 'mqa_r1_k3_h8_s1_v2_d48_c192', # MQA w/ KV downsample + 'uir_r1_a5_k3_s1_e4_c192', # ExtraDW + 'mqa_r1_k3_h8_s1_v2_d48_c192', # MQA w/ KV downsample + 'uir_r1_a3_k0_s1_e4_c192', # ConvNeXt + ], + # stage 3, 14x14in + [ + 'uir_r4_a5_k5_s2_e4_c512', # ExtraDW + 'uir_r1_a5_k0_s1_e4_c512', # ConvNeXt + 'uir_r1_a5_k3_s1_e4_c512', # ExtraDW + 'uir_r2_a5_k0_s1_e4_c512', # ConvNeXt + 'uir_r1_a5_k3_s1_e4_c512', # ExtraDW + 'uir_r1_a5_k5_s1_e4_c512', # ExtraDW + 'mqa_r1_k3_h8_s1_d64_c512', # MQA + 'uir_r1_a5_k0_s1_e4_c512', # ConvNeXt + 'mqa_r1_k3_h8_s1_d64_c512', # MQA + 'uir_r1_a5_k0_s1_e4_c512', # ConvNeXt + 'mqa_r1_k3_h8_s1_d64_c512', # MQA + 'uir_r1_a5_k0_s1_e4_c512', # ConvNeXt + 'mqa_r1_k3_h8_s1_d64_c512', # MQA + 'uir_r1_a5_k0_s1_e4_c512', # ConvNeXt + ], + # stage 4, 7x7 in + [ + 'cn_r1_k1_s1_c960', # Conv + ], + ] + else: + assert False, f'Unknown variant {variant}.' + else: + layer_scale_init_value = None + if 'small' in variant: + stem_size = 32 + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [ + # stage 0, 112x112 in + [ + 'cn_r1_k3_s2_e1_c32', # Conv + 'cn_r1_k1_s1_e1_c32', # Conv + ], + # stage 1, 56x56 in + [ + 'cn_r1_k3_s2_e1_c96', # Conv + 'cn_r1_k1_s1_e1_c64', # Conv + ], + # stage 2, 28x28 in + [ + 'uir_r1_a5_k5_s2_e3_c96', # ExtraDW + 'uir_r4_a0_k3_s1_e2_c96', # IR + 'uir_r1_a3_k0_s1_e4_c96', # ConvNeXt + ], + # stage 3, 14x14 in + [ + 'uir_r1_a3_k3_s2_e6_c128', # ExtraDW + 'uir_r1_a5_k5_s1_e4_c128', # ExtraDW + 'uir_r1_a0_k5_s1_e4_c128', # IR + 'uir_r1_a0_k5_s1_e3_c128', # IR + 'uir_r2_a0_k3_s1_e4_c128', # IR + ], + # stage 4, 7x7 in + [ + 'cn_r1_k1_s1_c960', # Conv + ], + ] + elif 'medium' in variant: + stem_size = 32 + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [ + # stage 0, 112x112 in + [ + 'er_r1_k3_s2_e4_c48', # FusedIB (EdgeResidual) + ], + # stage 1, 56x56 in + [ + 'uir_r1_a3_k5_s2_e4_c80', # ExtraDW + 'uir_r1_a3_k3_s1_e2_c80', # ExtraDW + ], + # stage 2, 28x28 in + [ + 'uir_r1_a3_k5_s2_e6_c160', # ExtraDW + 'uir_r2_a3_k3_s1_e4_c160', # ExtraDW + 'uir_r1_a3_k5_s1_e4_c160', # ExtraDW + 'uir_r1_a3_k3_s1_e4_c160', # ExtraDW + 'uir_r1_a3_k0_s1_e4_c160', # ConvNeXt + 'uir_r1_a0_k0_s1_e2_c160', # ExtraDW + 'uir_r1_a3_k0_s1_e4_c160', # ConvNeXt + ], + # stage 3, 14x14in + [ + 'uir_r1_a5_k5_s2_e6_c256', # ExtraDW + 'uir_r1_a5_k5_s1_e4_c256', # ExtraDW + 'uir_r2_a3_k5_s1_e4_c256', # ExtraDW + 'uir_r1_a0_k0_s1_e4_c256', # FFN + 'uir_r1_a3_k0_s1_e4_c256', # ConvNeXt + 'uir_r1_a3_k5_s1_e2_c256', # ExtraDW + 'uir_r1_a5_k5_s1_e4_c256', # ExtraDW + 'uir_r2_a0_k0_s1_e4_c256', # FFN + 'uir_r1_a5_k0_s1_e2_c256', # ConvNeXt + ], + # stage 4, 7x7 in + [ + 'cn_r1_k1_s1_c960', # Conv + ], + ] + elif 'large' in variant: + stem_size = 24 + act_layer = resolve_act_layer(kwargs, 'relu') + arch_def = [ + # stage 0, 112x112 in + [ + 'er_r1_k3_s2_e4_c48', # FusedIB (EdgeResidual) + ], + # stage 1, 56x56 in + [ + 'uir_r1_a3_k5_s2_e4_c96', # ExtraDW + 'uir_r1_a3_k3_s1_e4_c96', # ExtraDW + ], + # stage 2, 28x28 in + [ + 'uir_r1_a3_k5_s2_e4_c192', # ExtraDW + 'uir_r3_a3_k3_s1_e4_c192', # ExtraDW + 'uir_r1_a3_k5_s1_e4_c192', # ExtraDW + 'uir_r5_a5_k3_s1_e4_c192', # ExtraDW + 'uir_r1_a3_k0_s1_e4_c192', # ConvNeXt + ], + # stage 3, 14x14in + [ + 'uir_r4_a5_k5_s2_e4_c512', # ExtraDW + 'uir_r1_a5_k0_s1_e4_c512', # ConvNeXt + 'uir_r1_a5_k3_s1_e4_c512', # ExtraDW + 'uir_r2_a5_k0_s1_e4_c512', # ConvNeXt + 'uir_r1_a5_k3_s1_e4_c512', # ExtraDW + 'uir_r1_a5_k5_s1_e4_c512', # ExtraDW + 'uir_r3_a5_k0_s1_e4_c512', # ConvNeXt + + ], + # stage 4, 7x7 in + [ + 'cn_r1_k1_s1_c960', # Conv + ], + ] + else: + assert False, f'Unknown variant {variant}.' + + model_kwargs = dict( + block_args=decode_arch_def(arch_def, group_size=group_size), + head_bias=False, + head_norm=True, + num_features=num_features, + stem_size=stem_size, + fix_stem=channel_multiplier < 1.0, + round_chs_fn=partial(round_channels, multiplier=channel_multiplier), + norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), + act_layer=act_layer, + layer_scale_init_value=layer_scale_init_value, + **kwargs, + ) + model = _create_mnv3(variant, pretrained, **model_kwargs) + return model + + +def _cfg(url: str = '', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'conv_stem', 'classifier': 'classifier', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'mobilenetv3_large_075.untrained': _cfg(url=''), + 'mobilenetv3_large_100.ra_in1k': _cfg( + interpolation='bicubic', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth', + hf_hub_id='timm/'), + 'mobilenetv3_large_100.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0), + 'mobilenetv3_large_100.miil_in21k_ft_in1k': _cfg( + interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.), + origin_url='https://github.com/Alibaba-MIIL/ImageNet21K', + paper_ids='arXiv:2104.10972v4', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_1k_miil_78_0-66471c13.pth', + hf_hub_id='timm/'), + 'mobilenetv3_large_100.miil_in21k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_in21k_miil-d71cc17b.pth', + hf_hub_id='timm/', + origin_url='https://github.com/Alibaba-MIIL/ImageNet21K', + paper_ids='arXiv:2104.10972v4', + interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.), num_classes=11221), + 'mobilenetv3_large_150d.ra4_e3600_r256_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 256, 256), crop_pct=0.95, pool_size=(8, 8), test_input_size=(3, 320, 320), test_crop_pct=1.0), + + 'mobilenetv3_small_050.lamb_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_050_lambc-4b7bbe87.pth', + hf_hub_id='timm/', + interpolation='bicubic'), + 'mobilenetv3_small_075.lamb_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_075_lambc-384766db.pth', + hf_hub_id='timm/', + interpolation='bicubic'), + 'mobilenetv3_small_100.lamb_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_100_lamb-266a294c.pth', + hf_hub_id='timm/', + interpolation='bicubic'), + + 'mobilenetv3_rw.rmsp_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth', + hf_hub_id='timm/', + interpolation='bicubic'), + + 'tf_mobilenetv3_large_075.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), + 'tf_mobilenetv3_large_100.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), + 'tf_mobilenetv3_large_minimal_100.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), + 'tf_mobilenetv3_small_075.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), + 'tf_mobilenetv3_small_100.in1k': _cfg( + url= 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), + 'tf_mobilenetv3_small_minimal_100.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth', + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), + + 'fbnetv3_b.ra2_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_b_224-ead5d2a1.pth', + hf_hub_id='timm/', + test_input_size=(3, 256, 256), crop_pct=0.95), + 'fbnetv3_d.ra2_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_d_224-c98bce42.pth', + hf_hub_id='timm/', + test_input_size=(3, 256, 256), crop_pct=0.95), + 'fbnetv3_g.ra2_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_g_240-0b1df83b.pth', + hf_hub_id='timm/', + input_size=(3, 240, 240), test_input_size=(3, 288, 288), crop_pct=0.95, pool_size=(8, 8)), + + "lcnet_035.untrained": _cfg(), + "lcnet_050.ra2_in1k": _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_050-f447553b.pth', + hf_hub_id='timm/', + interpolation='bicubic', + ), + "lcnet_075.ra2_in1k": _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_075-318cad2c.pth', + hf_hub_id='timm/', + interpolation='bicubic', + ), + "lcnet_100.ra2_in1k": _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_100-a929038c.pth', + hf_hub_id='timm/', + interpolation='bicubic', + ), + "lcnet_150.untrained": _cfg(), + + 'mobilenetv4_conv_small_035.untrained': _cfg( + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + test_input_size=(3, 256, 256), test_crop_pct=0.95, interpolation='bicubic'), + 'mobilenetv4_conv_small_050.e3000_r224_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + test_input_size=(3, 256, 256), test_crop_pct=0.95, interpolation='bicubic'), + 'mobilenetv4_conv_small.e2400_r224_in1k': _cfg( + hf_hub_id='timm/', + test_input_size=(3, 256, 256), test_crop_pct=0.95, interpolation='bicubic'), + 'mobilenetv4_conv_small.e1200_r224_in1k': _cfg( + hf_hub_id='timm/', + test_input_size=(3, 256, 256), test_crop_pct=0.95, interpolation='bicubic'), + 'mobilenetv4_conv_small.e3600_r256_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, + test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_medium.e500_r256_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), + crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_medium.e500_r224_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0, interpolation='bicubic'), + + 'mobilenetv4_conv_medium.e250_r384_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=0.95, interpolation='bicubic'), + 'mobilenetv4_conv_medium.e180_r384_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_medium.e180_ad_r384_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_medium.e250_r384_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=1.0, interpolation='bicubic'), + + 'mobilenetv4_conv_large.e600_r384_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_large.e500_r256_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), + crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), + + 'mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), + crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_hybrid_medium.ix_e550_r256_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), + crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_hybrid_medium.ix_e550_r384_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_hybrid_medium.e500_r224_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_hybrid_medium.e200_r256_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 256, 256), pool_size=(8, 8), + crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_hybrid_large.ix_e600_r384_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_hybrid_large.e600_r384_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), + + # experimental + 'mobilenetv4_conv_aa_medium.untrained': _cfg( + # hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, interpolation='bicubic'), + 'mobilenetv4_conv_blur_medium.e500_r224_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_input_size=(3, 256, 256), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 448, 448), pool_size=(14, 14), + crop_pct=0.95, test_input_size=(3, 544, 544), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=0.95, test_input_size=(3, 480, 480), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_aa_large.e600_r384_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=0.95, test_input_size=(3, 480, 480), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_conv_aa_large.e230_r384_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 384, 384), pool_size=(12, 12), + crop_pct=0.95, test_input_size=(3, 448, 448), test_crop_pct=1.0, interpolation='bicubic'), + 'mobilenetv4_hybrid_medium_075.untrained': _cfg( + # hf_hub_id='timm/', + crop_pct=0.95, interpolation='bicubic'), + 'mobilenetv4_hybrid_large_075.untrained': _cfg( + # hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, interpolation='bicubic'), +}) + + +@register_model +def mobilenetv3_large_075(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv3_large_100(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv3_large_150d(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + model = _gen_mobilenet_v3('mobilenetv3_large_150d', 1.5, depth_multiplier=1.2, pretrained=pretrained, **kwargs) + return model + +@register_model +def mobilenetv3_small_050(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + model = _gen_mobilenet_v3('mobilenetv3_small_050', 0.50, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv3_small_075(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv3_small_100(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv3_rw(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_mobilenetv3_large_075(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_mobilenetv3_large_100(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_mobilenetv3_large_minimal_100(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_mobilenetv3_small_075(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_mobilenetv3_small_100(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def tf_mobilenetv3_small_minimal_100(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V3 """ + kwargs.setdefault('bn_eps', BN_EPS_TF_DEFAULT) + kwargs.setdefault('pad_type', 'same') + model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def fbnetv3_b(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ FBNetV3-B """ + model = _gen_fbnetv3('fbnetv3_b', pretrained=pretrained, **kwargs) + return model + + +@register_model +def fbnetv3_d(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ FBNetV3-D """ + model = _gen_fbnetv3('fbnetv3_d', pretrained=pretrained, **kwargs) + return model + + +@register_model +def fbnetv3_g(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ FBNetV3-G """ + model = _gen_fbnetv3('fbnetv3_g', pretrained=pretrained, **kwargs) + return model + + +@register_model +def lcnet_035(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ PP-LCNet 0.35""" + model = _gen_lcnet('lcnet_035', 0.35, pretrained=pretrained, **kwargs) + return model + + +@register_model +def lcnet_050(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ PP-LCNet 0.5""" + model = _gen_lcnet('lcnet_050', 0.5, pretrained=pretrained, **kwargs) + return model + + +@register_model +def lcnet_075(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ PP-LCNet 1.0""" + model = _gen_lcnet('lcnet_075', 0.75, pretrained=pretrained, **kwargs) + return model + + +@register_model +def lcnet_100(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ PP-LCNet 1.0""" + model = _gen_lcnet('lcnet_100', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def lcnet_150(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ PP-LCNet 1.5""" + model = _gen_lcnet('lcnet_150', 1.5, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv4_conv_small_035(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 """ + model = _gen_mobilenet_v4('mobilenetv4_conv_small_035', 0.35, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv4_conv_small_050(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 """ + model = _gen_mobilenet_v4('mobilenetv4_conv_small_050', 0.50, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv4_conv_small(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 """ + model = _gen_mobilenet_v4('mobilenetv4_conv_small', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv4_conv_medium(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 """ + model = _gen_mobilenet_v4('mobilenetv4_conv_medium', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv4_conv_large(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 """ + model = _gen_mobilenet_v4('mobilenetv4_conv_large', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv4_hybrid_medium(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 Hybrid """ + model = _gen_mobilenet_v4('mobilenetv4_hybrid_medium', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv4_hybrid_large(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 Hybrid""" + model = _gen_mobilenet_v4('mobilenetv4_hybrid_large', 1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv4_conv_aa_medium(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 w/ AvgPool AA """ + model = _gen_mobilenet_v4('mobilenetv4_conv_aa_medium', 1.0, pretrained=pretrained, aa_layer='avg', **kwargs) + return model + + +@register_model +def mobilenetv4_conv_blur_medium(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 Conv w/ Blur AA """ + model = _gen_mobilenet_v4('mobilenetv4_conv_blur_medium', 1.0, pretrained=pretrained, aa_layer='blurpc', **kwargs) + return model + + +@register_model +def mobilenetv4_conv_aa_large(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 w/ AvgPool AA """ + model = _gen_mobilenet_v4('mobilenetv4_conv_aa_large', 1.0, pretrained=pretrained, aa_layer='avg', **kwargs) + return model + + +@register_model +def mobilenetv4_hybrid_medium_075(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 Hybrid """ + model = _gen_mobilenet_v4('mobilenetv4_hybrid_medium_075', 0.75, pretrained=pretrained, **kwargs) + return model + + +@register_model +def mobilenetv4_hybrid_large_075(pretrained: bool = False, **kwargs) -> MobileNetV3: + """ MobileNet V4 Hybrid""" + model = _gen_mobilenet_v4('mobilenetv4_hybrid_large_075', 0.75, pretrained=pretrained, **kwargs) + return model + + +register_model_deprecations(__name__, { + 'mobilenetv3_large_100_miil': 'mobilenetv3_large_100.miil_in21k_ft_in1k', + 'mobilenetv3_large_100_miil_in21k': 'mobilenetv3_large_100.miil_in21k', +}) diff --git a/pytorch-image-models/timm/models/mobilevit.py b/pytorch-image-models/timm/models/mobilevit.py new file mode 100644 index 0000000000000000000000000000000000000000..9c84871e6daeca044865574437f9e0294a6f3e7d --- /dev/null +++ b/pytorch-image-models/timm/models/mobilevit.py @@ -0,0 +1,681 @@ +""" MobileViT + +Paper: +V1: `MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer` - https://arxiv.org/abs/2110.02178 +V2: `Separable Self-attention for Mobile Vision Transformers` - https://arxiv.org/abs/2206.02680 + +MobileVitBlock and checkpoints adapted from https://github.com/apple/ml-cvnets (original copyright below) +License: https://github.com/apple/ml-cvnets/blob/main/LICENSE (Apple open source) + +Rest of code, ByobNet, and Transformer block hacked together by / Copyright 2022, Ross Wightman +""" +# +# For licensing see accompanying LICENSE file. +# Copyright (C) 2020 Apple Inc. All Rights Reserved. +# +import math +from typing import Callable, Tuple, Optional + +import torch +import torch.nn.functional as F +from torch import nn + +from timm.layers import to_2tuple, make_divisible, GroupNorm1, ConvMlp, DropPath, is_exportable +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._registry import register_model, generate_default_cfgs, register_model_deprecations +from .byobnet import register_block, ByoBlockCfg, ByoModelCfg, ByobNet, LayerFn, num_groups +from .vision_transformer import Block as TransformerBlock + +__all__ = [] + + +def _inverted_residual_block(d, c, s, br=4.0): + # inverted residual is a bottleneck block with bottle_ratio > 1 applied to in_chs, linear output, gs=1 (depthwise) + return ByoBlockCfg( + type='bottle', d=d, c=c, s=s, gs=1, br=br, + block_kwargs=dict(bottle_in=True, linear_out=True)) + + +def _mobilevit_block(d, c, s, transformer_dim, transformer_depth, patch_size=4, br=4.0): + # inverted residual + mobilevit blocks as per MobileViT network + return ( + _inverted_residual_block(d=d, c=c, s=s, br=br), + ByoBlockCfg( + type='mobilevit', d=1, c=c, s=1, + block_kwargs=dict( + transformer_dim=transformer_dim, + transformer_depth=transformer_depth, + patch_size=patch_size) + ) + ) + + +def _mobilevitv2_block(d, c, s, transformer_depth, patch_size=2, br=2.0, transformer_br=0.5): + # inverted residual + mobilevit blocks as per MobileViT network + return ( + _inverted_residual_block(d=d, c=c, s=s, br=br), + ByoBlockCfg( + type='mobilevit2', d=1, c=c, s=1, br=transformer_br, gs=1, + block_kwargs=dict( + transformer_depth=transformer_depth, + patch_size=patch_size) + ) + ) + + +def _mobilevitv2_cfg(multiplier=1.0): + chs = (64, 128, 256, 384, 512) + if multiplier != 1.0: + chs = tuple([int(c * multiplier) for c in chs]) + cfg = ByoModelCfg( + blocks=( + _inverted_residual_block(d=1, c=chs[0], s=1, br=2.0), + _inverted_residual_block(d=2, c=chs[1], s=2, br=2.0), + _mobilevitv2_block(d=1, c=chs[2], s=2, transformer_depth=2), + _mobilevitv2_block(d=1, c=chs[3], s=2, transformer_depth=4), + _mobilevitv2_block(d=1, c=chs[4], s=2, transformer_depth=3), + ), + stem_chs=int(32 * multiplier), + stem_type='3x3', + stem_pool='', + downsample='', + act_layer='silu', + ) + return cfg + + +model_cfgs = dict( + mobilevit_xxs=ByoModelCfg( + blocks=( + _inverted_residual_block(d=1, c=16, s=1, br=2.0), + _inverted_residual_block(d=3, c=24, s=2, br=2.0), + _mobilevit_block(d=1, c=48, s=2, transformer_dim=64, transformer_depth=2, patch_size=2, br=2.0), + _mobilevit_block(d=1, c=64, s=2, transformer_dim=80, transformer_depth=4, patch_size=2, br=2.0), + _mobilevit_block(d=1, c=80, s=2, transformer_dim=96, transformer_depth=3, patch_size=2, br=2.0), + ), + stem_chs=16, + stem_type='3x3', + stem_pool='', + downsample='', + act_layer='silu', + num_features=320, + ), + + mobilevit_xs=ByoModelCfg( + blocks=( + _inverted_residual_block(d=1, c=32, s=1), + _inverted_residual_block(d=3, c=48, s=2), + _mobilevit_block(d=1, c=64, s=2, transformer_dim=96, transformer_depth=2, patch_size=2), + _mobilevit_block(d=1, c=80, s=2, transformer_dim=120, transformer_depth=4, patch_size=2), + _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=3, patch_size=2), + ), + stem_chs=16, + stem_type='3x3', + stem_pool='', + downsample='', + act_layer='silu', + num_features=384, + ), + + mobilevit_s=ByoModelCfg( + blocks=( + _inverted_residual_block(d=1, c=32, s=1), + _inverted_residual_block(d=3, c=64, s=2), + _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2), + _mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2), + _mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2), + ), + stem_chs=16, + stem_type='3x3', + stem_pool='', + downsample='', + act_layer='silu', + num_features=640, + ), + + semobilevit_s=ByoModelCfg( + blocks=( + _inverted_residual_block(d=1, c=32, s=1), + _inverted_residual_block(d=3, c=64, s=2), + _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2), + _mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2), + _mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2), + ), + stem_chs=16, + stem_type='3x3', + stem_pool='', + downsample='', + attn_layer='se', + attn_kwargs=dict(rd_ratio=1/8), + num_features=640, + ), + + mobilevitv2_050=_mobilevitv2_cfg(.50), + mobilevitv2_075=_mobilevitv2_cfg(.75), + mobilevitv2_125=_mobilevitv2_cfg(1.25), + mobilevitv2_100=_mobilevitv2_cfg(1.0), + mobilevitv2_150=_mobilevitv2_cfg(1.5), + mobilevitv2_175=_mobilevitv2_cfg(1.75), + mobilevitv2_200=_mobilevitv2_cfg(2.0), +) + + +@register_notrace_module +class MobileVitBlock(nn.Module): + """ MobileViT block + Paper: https://arxiv.org/abs/2110.02178?context=cs.LG + """ + def __init__( + self, + in_chs: int, + out_chs: Optional[int] = None, + kernel_size: int = 3, + stride: int = 1, + bottle_ratio: float = 1.0, + group_size: Optional[int] = None, + dilation: Tuple[int, int] = (1, 1), + mlp_ratio: float = 2.0, + transformer_dim: Optional[int] = None, + transformer_depth: int = 2, + patch_size: int = 8, + num_heads: int = 4, + attn_drop: float = 0., + drop: int = 0., + no_fusion: bool = False, + drop_path_rate: float = 0., + layers: LayerFn = None, + transformer_norm_layer: Callable = nn.LayerNorm, + **kwargs, # eat unused args + ): + super(MobileVitBlock, self).__init__() + + layers = layers or LayerFn() + groups = num_groups(group_size, in_chs) + out_chs = out_chs or in_chs + transformer_dim = transformer_dim or make_divisible(bottle_ratio * in_chs) + + self.conv_kxk = layers.conv_norm_act( + in_chs, in_chs, kernel_size=kernel_size, + stride=stride, groups=groups, dilation=dilation[0]) + self.conv_1x1 = nn.Conv2d(in_chs, transformer_dim, kernel_size=1, bias=False) + + self.transformer = nn.Sequential(*[ + TransformerBlock( + transformer_dim, + mlp_ratio=mlp_ratio, + num_heads=num_heads, + qkv_bias=True, + attn_drop=attn_drop, + proj_drop=drop, + drop_path=drop_path_rate, + act_layer=layers.act, + norm_layer=transformer_norm_layer, + ) + for _ in range(transformer_depth) + ]) + self.norm = transformer_norm_layer(transformer_dim) + + self.conv_proj = layers.conv_norm_act(transformer_dim, out_chs, kernel_size=1, stride=1) + + if no_fusion: + self.conv_fusion = None + else: + self.conv_fusion = layers.conv_norm_act(in_chs + out_chs, out_chs, kernel_size=kernel_size, stride=1) + + self.patch_size = to_2tuple(patch_size) + self.patch_area = self.patch_size[0] * self.patch_size[1] + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + + # Local representation + x = self.conv_kxk(x) + x = self.conv_1x1(x) + + # Unfold (feature map -> patches) + patch_h, patch_w = self.patch_size + B, C, H, W = x.shape + new_h, new_w = math.ceil(H / patch_h) * patch_h, math.ceil(W / patch_w) * patch_w + num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w # n_h, n_w + num_patches = num_patch_h * num_patch_w # N + interpolate = False + if new_h != H or new_w != W: + # Note: Padding can be done, but then it needs to be handled in attention function. + x = F.interpolate(x, size=(new_h, new_w), mode="bilinear", align_corners=False) + interpolate = True + + # [B, C, H, W] --> [B * C * n_h, n_w, p_h, p_w] + x = x.reshape(B * C * num_patch_h, patch_h, num_patch_w, patch_w).transpose(1, 2) + # [B * C * n_h, n_w, p_h, p_w] --> [BP, N, C] where P = p_h * p_w and N = n_h * n_w + x = x.reshape(B, C, num_patches, self.patch_area).transpose(1, 3).reshape(B * self.patch_area, num_patches, -1) + + # Global representations + x = self.transformer(x) + x = self.norm(x) + + # Fold (patch -> feature map) + # [B, P, N, C] --> [B*C*n_h, n_w, p_h, p_w] + x = x.contiguous().view(B, self.patch_area, num_patches, -1) + x = x.transpose(1, 3).reshape(B * C * num_patch_h, num_patch_w, patch_h, patch_w) + # [B*C*n_h, n_w, p_h, p_w] --> [B*C*n_h, p_h, n_w, p_w] --> [B, C, H, W] + x = x.transpose(1, 2).reshape(B, C, num_patch_h * patch_h, num_patch_w * patch_w) + if interpolate: + x = F.interpolate(x, size=(H, W), mode="bilinear", align_corners=False) + + x = self.conv_proj(x) + if self.conv_fusion is not None: + x = self.conv_fusion(torch.cat((shortcut, x), dim=1)) + return x + + +class LinearSelfAttention(nn.Module): + """ + This layer applies a self-attention with linear complexity, as described in `https://arxiv.org/abs/2206.02680` + This layer can be used for self- as well as cross-attention. + Args: + embed_dim (int): :math:`C` from an expected input of size :math:`(N, C, H, W)` + attn_drop (float): Dropout value for context scores. Default: 0.0 + bias (bool): Use bias in learnable layers. Default: True + Shape: + - Input: :math:`(N, C, P, N)` where :math:`N` is the batch size, :math:`C` is the input channels, + :math:`P` is the number of pixels in the patch, and :math:`N` is the number of patches + - Output: same as the input + .. note:: + For MobileViTv2, we unfold the feature map [B, C, H, W] into [B, C, P, N] where P is the number of pixels + in a patch and N is the number of patches. Because channel is the first dimension in this unfolded tensor, + we use point-wise convolution (instead of a linear layer). This avoids a transpose operation (which may be + expensive on resource-constrained devices) that may be required to convert the unfolded tensor from + channel-first to channel-last format in case of a linear layer. + """ + + def __init__( + self, + embed_dim: int, + attn_drop: float = 0.0, + proj_drop: float = 0.0, + bias: bool = True, + ) -> None: + super().__init__() + self.embed_dim = embed_dim + + self.qkv_proj = nn.Conv2d( + in_channels=embed_dim, + out_channels=1 + (2 * embed_dim), + bias=bias, + kernel_size=1, + ) + self.attn_drop = nn.Dropout(attn_drop) + self.out_proj = nn.Conv2d( + in_channels=embed_dim, + out_channels=embed_dim, + bias=bias, + kernel_size=1, + ) + self.out_drop = nn.Dropout(proj_drop) + + def _forward_self_attn(self, x: torch.Tensor) -> torch.Tensor: + # [B, C, P, N] --> [B, h + 2d, P, N] + qkv = self.qkv_proj(x) + + # Project x into query, key and value + # Query --> [B, 1, P, N] + # value, key --> [B, d, P, N] + query, key, value = qkv.split([1, self.embed_dim, self.embed_dim], dim=1) + + # apply softmax along N dimension + context_scores = F.softmax(query, dim=-1) + context_scores = self.attn_drop(context_scores) + + # Compute context vector + # [B, d, P, N] x [B, 1, P, N] -> [B, d, P, N] --> [B, d, P, 1] + context_vector = (key * context_scores).sum(dim=-1, keepdim=True) + + # combine context vector with values + # [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N] + out = F.relu(value) * context_vector.expand_as(value) + out = self.out_proj(out) + out = self.out_drop(out) + return out + + @torch.jit.ignore() + def _forward_cross_attn(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor: + # x --> [B, C, P, N] + # x_prev = [B, C, P, M] + batch_size, in_dim, kv_patch_area, kv_num_patches = x.shape + q_patch_area, q_num_patches = x.shape[-2:] + + assert ( + kv_patch_area == q_patch_area + ), "The number of pixels in a patch for query and key_value should be the same" + + # compute query, key, and value + # [B, C, P, M] --> [B, 1 + d, P, M] + qk = F.conv2d( + x_prev, + weight=self.qkv_proj.weight[:self.embed_dim + 1], + bias=self.qkv_proj.bias[:self.embed_dim + 1], + ) + + # [B, 1 + d, P, M] --> [B, 1, P, M], [B, d, P, M] + query, key = qk.split([1, self.embed_dim], dim=1) + # [B, C, P, N] --> [B, d, P, N] + value = F.conv2d( + x, + weight=self.qkv_proj.weight[self.embed_dim + 1], + bias=self.qkv_proj.bias[self.embed_dim + 1] if self.qkv_proj.bias is not None else None, + ) + + # apply softmax along M dimension + context_scores = F.softmax(query, dim=-1) + context_scores = self.attn_drop(context_scores) + + # compute context vector + # [B, d, P, M] * [B, 1, P, M] -> [B, d, P, M] --> [B, d, P, 1] + context_vector = (key * context_scores).sum(dim=-1, keepdim=True) + + # combine context vector with values + # [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N] + out = F.relu(value) * context_vector.expand_as(value) + out = self.out_proj(out) + out = self.out_drop(out) + return out + + def forward(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor: + if x_prev is None: + return self._forward_self_attn(x) + else: + return self._forward_cross_attn(x, x_prev=x_prev) + + +class LinearTransformerBlock(nn.Module): + """ + This class defines the pre-norm transformer encoder with linear self-attention in `MobileViTv2 paper <>`_ + Args: + embed_dim (int): :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, P, N)` + mlp_ratio (float): Inner dimension ratio of the FFN relative to embed_dim + drop (float): Dropout rate. Default: 0.0 + attn_drop (float): Dropout rate for attention in multi-head attention. Default: 0.0 + drop_path (float): Stochastic depth rate Default: 0.0 + norm_layer (Callable): Normalization layer. Default: layer_norm_2d + Shape: + - Input: :math:`(B, C_{in}, P, N)` where :math:`B` is batch size, :math:`C_{in}` is input embedding dim, + :math:`P` is number of pixels in a patch, and :math:`N` is number of patches, + - Output: same shape as the input + """ + + def __init__( + self, + embed_dim: int, + mlp_ratio: float = 2.0, + drop: float = 0.0, + attn_drop: float = 0.0, + drop_path: float = 0.0, + act_layer=None, + norm_layer=None, + ) -> None: + super().__init__() + act_layer = act_layer or nn.SiLU + norm_layer = norm_layer or GroupNorm1 + + self.norm1 = norm_layer(embed_dim) + self.attn = LinearSelfAttention(embed_dim=embed_dim, attn_drop=attn_drop, proj_drop=drop) + self.drop_path1 = DropPath(drop_path) + + self.norm2 = norm_layer(embed_dim) + self.mlp = ConvMlp( + in_features=embed_dim, + hidden_features=int(embed_dim * mlp_ratio), + act_layer=act_layer, + drop=drop) + self.drop_path2 = DropPath(drop_path) + + def forward(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor: + if x_prev is None: + # self-attention + x = x + self.drop_path1(self.attn(self.norm1(x))) + else: + # cross-attention + res = x + x = self.norm1(x) # norm + x = self.attn(x, x_prev) # attn + x = self.drop_path1(x) + res # residual + + # Feed forward network + x = x + self.drop_path2(self.mlp(self.norm2(x))) + return x + + +@register_notrace_module +class MobileVitV2Block(nn.Module): + """ + This class defines the `MobileViTv2 block <>`_ + """ + + def __init__( + self, + in_chs: int, + out_chs: Optional[int] = None, + kernel_size: int = 3, + bottle_ratio: float = 1.0, + group_size: Optional[int] = 1, + dilation: Tuple[int, int] = (1, 1), + mlp_ratio: float = 2.0, + transformer_dim: Optional[int] = None, + transformer_depth: int = 2, + patch_size: int = 8, + attn_drop: float = 0., + drop: int = 0., + drop_path_rate: float = 0., + layers: LayerFn = None, + transformer_norm_layer: Callable = GroupNorm1, + **kwargs, # eat unused args + ): + super(MobileVitV2Block, self).__init__() + layers = layers or LayerFn() + groups = num_groups(group_size, in_chs) + out_chs = out_chs or in_chs + transformer_dim = transformer_dim or make_divisible(bottle_ratio * in_chs) + + self.conv_kxk = layers.conv_norm_act( + in_chs, in_chs, kernel_size=kernel_size, + stride=1, groups=groups, dilation=dilation[0]) + self.conv_1x1 = nn.Conv2d(in_chs, transformer_dim, kernel_size=1, bias=False) + + self.transformer = nn.Sequential(*[ + LinearTransformerBlock( + transformer_dim, + mlp_ratio=mlp_ratio, + attn_drop=attn_drop, + drop=drop, + drop_path=drop_path_rate, + act_layer=layers.act, + norm_layer=transformer_norm_layer + ) + for _ in range(transformer_depth) + ]) + self.norm = transformer_norm_layer(transformer_dim) + + self.conv_proj = layers.conv_norm_act(transformer_dim, out_chs, kernel_size=1, stride=1, apply_act=False) + + self.patch_size = to_2tuple(patch_size) + self.patch_area = self.patch_size[0] * self.patch_size[1] + self.coreml_exportable = is_exportable() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, C, H, W = x.shape + patch_h, patch_w = self.patch_size + new_h, new_w = math.ceil(H / patch_h) * patch_h, math.ceil(W / patch_w) * patch_w + num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w # n_h, n_w + num_patches = num_patch_h * num_patch_w # N + if new_h != H or new_w != W: + x = F.interpolate(x, size=(new_h, new_w), mode="bilinear", align_corners=True) + + # Local representation + x = self.conv_kxk(x) + x = self.conv_1x1(x) + + # Unfold (feature map -> patches), [B, C, H, W] -> [B, C, P, N] + C = x.shape[1] + if self.coreml_exportable: + x = F.unfold(x, kernel_size=(patch_h, patch_w), stride=(patch_h, patch_w)) + else: + x = x.reshape(B, C, num_patch_h, patch_h, num_patch_w, patch_w).permute(0, 1, 3, 5, 2, 4) + x = x.reshape(B, C, -1, num_patches) + + # Global representations + x = self.transformer(x) + x = self.norm(x) + + # Fold (patches -> feature map), [B, C, P, N] --> [B, C, H, W] + if self.coreml_exportable: + # adopted from https://github.com/apple/ml-cvnets/blob/main/cvnets/modules/mobilevit_block.py#L609-L624 + x = x.reshape(B, C * patch_h * patch_w, num_patch_h, num_patch_w) + x = F.pixel_shuffle(x, upscale_factor=patch_h) + else: + x = x.reshape(B, C, patch_h, patch_w, num_patch_h, num_patch_w).permute(0, 1, 4, 2, 5, 3) + x = x.reshape(B, C, num_patch_h * patch_h, num_patch_w * patch_w) + + x = self.conv_proj(x) + return x + + +register_block('mobilevit', MobileVitBlock) +register_block('mobilevit2', MobileVitV2Block) + + +def _create_mobilevit(variant, cfg_variant=None, pretrained=False, **kwargs): + return build_model_with_cfg( + ByobNet, variant, pretrained, + model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], + feature_cfg=dict(flatten_sequential=True), + **kwargs) + + +def _create_mobilevit2(variant, cfg_variant=None, pretrained=False, **kwargs): + return build_model_with_cfg( + ByobNet, variant, pretrained, + model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], + feature_cfg=dict(flatten_sequential=True), + **kwargs) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), + 'crop_pct': 0.9, 'interpolation': 'bicubic', + 'mean': (0., 0., 0.), 'std': (1., 1., 1.), + 'first_conv': 'stem.conv', 'classifier': 'head.fc', + 'fixed_input_size': False, + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'mobilevit_xxs.cvnets_in1k': _cfg(hf_hub_id='timm/'), + 'mobilevit_xs.cvnets_in1k': _cfg(hf_hub_id='timm/'), + 'mobilevit_s.cvnets_in1k': _cfg(hf_hub_id='timm/'), + + 'mobilevitv2_050.cvnets_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.888), + 'mobilevitv2_075.cvnets_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.888), + 'mobilevitv2_100.cvnets_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.888), + 'mobilevitv2_125.cvnets_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.888), + 'mobilevitv2_150.cvnets_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.888), + 'mobilevitv2_175.cvnets_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.888), + 'mobilevitv2_200.cvnets_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.888), + + 'mobilevitv2_150.cvnets_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.888), + 'mobilevitv2_175.cvnets_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.888), + 'mobilevitv2_200.cvnets_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.888), + + 'mobilevitv2_150.cvnets_in22k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + 'mobilevitv2_175.cvnets_in22k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + 'mobilevitv2_200.cvnets_in22k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), +}) + + +@register_model +def mobilevit_xxs(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevit_xxs', pretrained=pretrained, **kwargs) + + +@register_model +def mobilevit_xs(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevit_xs', pretrained=pretrained, **kwargs) + + +@register_model +def mobilevit_s(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevit_s', pretrained=pretrained, **kwargs) + + +@register_model +def mobilevitv2_050(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_050', pretrained=pretrained, **kwargs) + + +@register_model +def mobilevitv2_075(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_075', pretrained=pretrained, **kwargs) + + +@register_model +def mobilevitv2_100(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_100', pretrained=pretrained, **kwargs) + + +@register_model +def mobilevitv2_125(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_125', pretrained=pretrained, **kwargs) + + +@register_model +def mobilevitv2_150(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_150', pretrained=pretrained, **kwargs) + + +@register_model +def mobilevitv2_175(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_175', pretrained=pretrained, **kwargs) + + +@register_model +def mobilevitv2_200(pretrained=False, **kwargs) -> ByobNet: + return _create_mobilevit('mobilevitv2_200', pretrained=pretrained, **kwargs) + + +register_model_deprecations(__name__, { + 'mobilevitv2_150_in22ft1k': 'mobilevitv2_150.cvnets_in22k_ft_in1k', + 'mobilevitv2_175_in22ft1k': 'mobilevitv2_175.cvnets_in22k_ft_in1k', + 'mobilevitv2_200_in22ft1k': 'mobilevitv2_200.cvnets_in22k_ft_in1k', + + 'mobilevitv2_150_384_in22ft1k': 'mobilevitv2_150.cvnets_in22k_ft_in1k_384', + 'mobilevitv2_175_384_in22ft1k': 'mobilevitv2_175.cvnets_in22k_ft_in1k_384', + 'mobilevitv2_200_384_in22ft1k': 'mobilevitv2_200.cvnets_in22k_ft_in1k_384', +}) \ No newline at end of file diff --git a/pytorch-image-models/timm/models/mvitv2.py b/pytorch-image-models/timm/models/mvitv2.py new file mode 100644 index 0000000000000000000000000000000000000000..167ebb9e823b52f0a76d63f99dd8fc89d1ef9d5f --- /dev/null +++ b/pytorch-image-models/timm/models/mvitv2.py @@ -0,0 +1,1120 @@ +""" Multi-Scale Vision Transformer v2 + +@inproceedings{li2021improved, + title={MViTv2: Improved multiscale vision transformers for classification and detection}, + author={Li, Yanghao and Wu, Chao-Yuan and Fan, Haoqi and Mangalam, Karttikeya and Xiong, Bo and Malik, Jitendra and Feichtenhofer, Christoph}, + booktitle={CVPR}, + year={2022} +} + +Code adapted from original Apache 2.0 licensed impl at https://github.com/facebookresearch/mvit +Original copyright below. + +Modifications and timm support by / Copyright 2022, Ross Wightman +""" +# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. All Rights Reserved. +import operator +from collections import OrderedDict +from dataclasses import dataclass +from functools import partial, reduce +from typing import Union, List, Tuple, Optional + +import torch +import torch.utils.checkpoint as checkpoint +from torch import nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import Mlp, DropPath, trunc_normal_tf_, get_norm_layer, to_2tuple +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._registry import register_model, register_model_deprecations, generate_default_cfgs + +__all__ = ['MultiScaleVit', 'MultiScaleVitCfg'] # model_registry will add each entrypoint fn to this + + +@dataclass +class MultiScaleVitCfg: + depths: Tuple[int, ...] = (2, 3, 16, 3) + embed_dim: Union[int, Tuple[int, ...]] = 96 + num_heads: Union[int, Tuple[int, ...]] = 1 + mlp_ratio: float = 4. + pool_first: bool = False + expand_attn: bool = True + qkv_bias: bool = True + use_cls_token: bool = False + use_abs_pos: bool = False + residual_pooling: bool = True + mode: str = 'conv' + kernel_qkv: Tuple[int, int] = (3, 3) + stride_q: Optional[Tuple[Tuple[int, int]]] = ((1, 1), (2, 2), (2, 2), (2, 2)) + stride_kv: Optional[Tuple[Tuple[int, int]]] = None + stride_kv_adaptive: Optional[Tuple[int, int]] = (4, 4) + patch_kernel: Tuple[int, int] = (7, 7) + patch_stride: Tuple[int, int] = (4, 4) + patch_padding: Tuple[int, int] = (3, 3) + pool_type: str = 'max' + rel_pos_type: str = 'spatial' + act_layer: Union[str, Tuple[str, str]] = 'gelu' + norm_layer: Union[str, Tuple[str, str]] = 'layernorm' + norm_eps: float = 1e-6 + + def __post_init__(self): + num_stages = len(self.depths) + if not isinstance(self.embed_dim, (tuple, list)): + self.embed_dim = tuple(self.embed_dim * 2 ** i for i in range(num_stages)) + assert len(self.embed_dim) == num_stages + + if not isinstance(self.num_heads, (tuple, list)): + self.num_heads = tuple(self.num_heads * 2 ** i for i in range(num_stages)) + assert len(self.num_heads) == num_stages + + if self.stride_kv_adaptive is not None and self.stride_kv is None: + _stride_kv = self.stride_kv_adaptive + pool_kv_stride = [] + for i in range(num_stages): + if min(self.stride_q[i]) > 1: + _stride_kv = [ + max(_stride_kv[d] // self.stride_q[i][d], 1) + for d in range(len(_stride_kv)) + ] + pool_kv_stride.append(tuple(_stride_kv)) + self.stride_kv = tuple(pool_kv_stride) + + +def prod(iterable): + return reduce(operator.mul, iterable, 1) + + +class PatchEmbed(nn.Module): + """ + PatchEmbed. + """ + + def __init__( + self, + dim_in=3, + dim_out=768, + kernel=(7, 7), + stride=(4, 4), + padding=(3, 3), + ): + super().__init__() + + self.proj = nn.Conv2d( + dim_in, + dim_out, + kernel_size=kernel, + stride=stride, + padding=padding, + ) + + def forward(self, x) -> Tuple[torch.Tensor, List[int]]: + x = self.proj(x) + # B C H W -> B HW C + return x.flatten(2).transpose(1, 2), x.shape[-2:] + + +@register_notrace_function +def reshape_pre_pool( + x, + feat_size: List[int], + has_cls_token: bool = True +) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + H, W = feat_size + if has_cls_token: + cls_tok, x = x[:, :, :1, :], x[:, :, 1:, :] + else: + cls_tok = None + x = x.reshape(-1, H, W, x.shape[-1]).permute(0, 3, 1, 2).contiguous() + return x, cls_tok + + +@register_notrace_function +def reshape_post_pool( + x, + num_heads: int, + cls_tok: Optional[torch.Tensor] = None +) -> Tuple[torch.Tensor, List[int]]: + feat_size = [x.shape[2], x.shape[3]] + L_pooled = x.shape[2] * x.shape[3] + x = x.reshape(-1, num_heads, x.shape[1], L_pooled).transpose(2, 3) + if cls_tok is not None: + x = torch.cat((cls_tok, x), dim=2) + return x, feat_size + + +@register_notrace_function +def cal_rel_pos_type( + attn: torch.Tensor, + q: torch.Tensor, + has_cls_token: bool, + q_size: List[int], + k_size: List[int], + rel_pos_h: torch.Tensor, + rel_pos_w: torch.Tensor, +): + """ + Spatial Relative Positional Embeddings. + """ + sp_idx = 1 if has_cls_token else 0 + q_h, q_w = q_size + k_h, k_w = k_size + + # Scale up rel pos if shapes for q and k are different. + q_h_ratio = max(k_h / q_h, 1.0) + k_h_ratio = max(q_h / k_h, 1.0) + dist_h = ( + torch.arange(q_h, device=q.device).unsqueeze(-1) * q_h_ratio - + torch.arange(k_h, device=q.device).unsqueeze(0) * k_h_ratio + ) + dist_h += (k_h - 1) * k_h_ratio + q_w_ratio = max(k_w / q_w, 1.0) + k_w_ratio = max(q_w / k_w, 1.0) + dist_w = ( + torch.arange(q_w, device=q.device).unsqueeze(-1) * q_w_ratio - + torch.arange(k_w, device=q.device).unsqueeze(0) * k_w_ratio + ) + dist_w += (k_w - 1) * k_w_ratio + + rel_h = rel_pos_h[dist_h.long()] + rel_w = rel_pos_w[dist_w.long()] + + B, n_head, q_N, dim = q.shape + + r_q = q[:, :, sp_idx:].reshape(B, n_head, q_h, q_w, dim) + rel_h = torch.einsum("byhwc,hkc->byhwk", r_q, rel_h) + rel_w = torch.einsum("byhwc,wkc->byhwk", r_q, rel_w) + + attn[:, :, sp_idx:, sp_idx:] = ( + attn[:, :, sp_idx:, sp_idx:].view(B, -1, q_h, q_w, k_h, k_w) + + rel_h.unsqueeze(-1) + + rel_w.unsqueeze(-2) + ).view(B, -1, q_h * q_w, k_h * k_w) + + return attn + + +class MultiScaleAttentionPoolFirst(nn.Module): + def __init__( + self, + dim, + dim_out, + feat_size, + num_heads=8, + qkv_bias=True, + mode="conv", + kernel_q=(1, 1), + kernel_kv=(1, 1), + stride_q=(1, 1), + stride_kv=(1, 1), + has_cls_token=True, + rel_pos_type='spatial', + residual_pooling=True, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.num_heads = num_heads + self.dim_out = dim_out + self.head_dim = dim_out // num_heads + self.scale = self.head_dim ** -0.5 + self.has_cls_token = has_cls_token + padding_q = tuple([int(q // 2) for q in kernel_q]) + padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) + + self.q = nn.Linear(dim, dim_out, bias=qkv_bias) + self.k = nn.Linear(dim, dim_out, bias=qkv_bias) + self.v = nn.Linear(dim, dim_out, bias=qkv_bias) + self.proj = nn.Linear(dim_out, dim_out) + + # Skip pooling with kernel and stride size of (1, 1, 1). + if prod(kernel_q) == 1 and prod(stride_q) == 1: + kernel_q = None + if prod(kernel_kv) == 1 and prod(stride_kv) == 1: + kernel_kv = None + self.mode = mode + self.unshared = mode == 'conv_unshared' + self.pool_q, self.pool_k, self.pool_v = None, None, None + self.norm_q, self.norm_k, self.norm_v = None, None, None + if mode in ("avg", "max"): + pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d + if kernel_q: + self.pool_q = pool_op(kernel_q, stride_q, padding_q) + if kernel_kv: + self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) + self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) + elif mode == "conv" or mode == "conv_unshared": + dim_conv = dim // num_heads if mode == "conv" else dim + if kernel_q: + self.pool_q = nn.Conv2d( + dim_conv, + dim_conv, + kernel_q, + stride=stride_q, + padding=padding_q, + groups=dim_conv, + bias=False, + ) + self.norm_q = norm_layer(dim_conv) + if kernel_kv: + self.pool_k = nn.Conv2d( + dim_conv, + dim_conv, + kernel_kv, + stride=stride_kv, + padding=padding_kv, + groups=dim_conv, + bias=False, + ) + self.norm_k = norm_layer(dim_conv) + self.pool_v = nn.Conv2d( + dim_conv, + dim_conv, + kernel_kv, + stride=stride_kv, + padding=padding_kv, + groups=dim_conv, + bias=False, + ) + self.norm_v = norm_layer(dim_conv) + else: + raise NotImplementedError(f"Unsupported model {mode}") + + # relative pos embedding + self.rel_pos_type = rel_pos_type + if self.rel_pos_type == 'spatial': + assert feat_size[0] == feat_size[1] + size = feat_size[0] + q_size = size // stride_q[1] if len(stride_q) > 0 else size + kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size + rel_sp_dim = 2 * max(q_size, kv_size) - 1 + + self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) + trunc_normal_tf_(self.rel_pos_h, std=0.02) + trunc_normal_tf_(self.rel_pos_w, std=0.02) + + self.residual_pooling = residual_pooling + + def forward(self, x, feat_size: List[int]): + B, N, _ = x.shape + + fold_dim = 1 if self.unshared else self.num_heads + x = x.reshape(B, N, fold_dim, -1).permute(0, 2, 1, 3) + q = k = v = x + + if self.pool_q is not None: + q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token) + q = self.pool_q(q) + q, q_size = reshape_post_pool(q, self.num_heads, q_tok) + else: + q_size = feat_size + if self.norm_q is not None: + q = self.norm_q(q) + + if self.pool_k is not None: + k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token) + k = self.pool_k(k) + k, k_size = reshape_post_pool(k, self.num_heads, k_tok) + else: + k_size = feat_size + if self.norm_k is not None: + k = self.norm_k(k) + + if self.pool_v is not None: + v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token) + v = self.pool_v(v) + v, v_size = reshape_post_pool(v, self.num_heads, v_tok) + else: + v_size = feat_size + if self.norm_v is not None: + v = self.norm_v(v) + + q_N = q_size[0] * q_size[1] + int(self.has_cls_token) + q = q.transpose(1, 2).reshape(B, q_N, -1) + q = self.q(q).reshape(B, q_N, self.num_heads, -1).transpose(1, 2) + + k_N = k_size[0] * k_size[1] + int(self.has_cls_token) + k = k.transpose(1, 2).reshape(B, k_N, -1) + k = self.k(k).reshape(B, k_N, self.num_heads, -1) + + v_N = v_size[0] * v_size[1] + int(self.has_cls_token) + v = v.transpose(1, 2).reshape(B, v_N, -1) + v = self.v(v).reshape(B, v_N, self.num_heads, -1).transpose(1, 2) + + attn = (q * self.scale) @ k + if self.rel_pos_type == 'spatial': + attn = cal_rel_pos_type( + attn, + q, + self.has_cls_token, + q_size, + k_size, + self.rel_pos_h, + self.rel_pos_w, + ) + attn = attn.softmax(dim=-1) + x = attn @ v + + if self.residual_pooling: + x = x + q + + x = x.transpose(1, 2).reshape(B, -1, self.dim_out) + x = self.proj(x) + + return x, q_size + + +class MultiScaleAttention(nn.Module): + def __init__( + self, + dim, + dim_out, + feat_size, + num_heads=8, + qkv_bias=True, + mode="conv", + kernel_q=(1, 1), + kernel_kv=(1, 1), + stride_q=(1, 1), + stride_kv=(1, 1), + has_cls_token=True, + rel_pos_type='spatial', + residual_pooling=True, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.num_heads = num_heads + self.dim_out = dim_out + self.head_dim = dim_out // num_heads + self.scale = self.head_dim ** -0.5 + self.has_cls_token = has_cls_token + padding_q = tuple([int(q // 2) for q in kernel_q]) + padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) + + self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias) + self.proj = nn.Linear(dim_out, dim_out) + + # Skip pooling with kernel and stride size of (1, 1, 1). + if prod(kernel_q) == 1 and prod(stride_q) == 1: + kernel_q = None + if prod(kernel_kv) == 1 and prod(stride_kv) == 1: + kernel_kv = None + self.mode = mode + self.unshared = mode == 'conv_unshared' + self.norm_q, self.norm_k, self.norm_v = None, None, None + self.pool_q, self.pool_k, self.pool_v = None, None, None + if mode in ("avg", "max"): + pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d + if kernel_q: + self.pool_q = pool_op(kernel_q, stride_q, padding_q) + if kernel_kv: + self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) + self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) + elif mode == "conv" or mode == "conv_unshared": + dim_conv = dim_out // num_heads if mode == "conv" else dim_out + if kernel_q: + self.pool_q = nn.Conv2d( + dim_conv, + dim_conv, + kernel_q, + stride=stride_q, + padding=padding_q, + groups=dim_conv, + bias=False, + ) + self.norm_q = norm_layer(dim_conv) + if kernel_kv: + self.pool_k = nn.Conv2d( + dim_conv, + dim_conv, + kernel_kv, + stride=stride_kv, + padding=padding_kv, + groups=dim_conv, + bias=False, + ) + self.norm_k = norm_layer(dim_conv) + self.pool_v = nn.Conv2d( + dim_conv, + dim_conv, + kernel_kv, + stride=stride_kv, + padding=padding_kv, + groups=dim_conv, + bias=False, + ) + self.norm_v = norm_layer(dim_conv) + else: + raise NotImplementedError(f"Unsupported model {mode}") + + # relative pos embedding + self.rel_pos_type = rel_pos_type + if self.rel_pos_type == 'spatial': + assert feat_size[0] == feat_size[1] + size = feat_size[0] + q_size = size // stride_q[1] if len(stride_q) > 0 else size + kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size + rel_sp_dim = 2 * max(q_size, kv_size) - 1 + + self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) + trunc_normal_tf_(self.rel_pos_h, std=0.02) + trunc_normal_tf_(self.rel_pos_w, std=0.02) + + self.residual_pooling = residual_pooling + + def forward(self, x, feat_size: List[int]): + B, N, _ = x.shape + + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(dim=0) + + if self.pool_q is not None: + q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token) + q = self.pool_q(q) + q, q_size = reshape_post_pool(q, self.num_heads, q_tok) + else: + q_size = feat_size + if self.norm_q is not None: + q = self.norm_q(q) + + if self.pool_k is not None: + k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token) + k = self.pool_k(k) + k, k_size = reshape_post_pool(k, self.num_heads, k_tok) + else: + k_size = feat_size + if self.norm_k is not None: + k = self.norm_k(k) + + if self.pool_v is not None: + v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token) + v = self.pool_v(v) + v, _ = reshape_post_pool(v, self.num_heads, v_tok) + if self.norm_v is not None: + v = self.norm_v(v) + + attn = (q * self.scale) @ k.transpose(-2, -1) + if self.rel_pos_type == 'spatial': + attn = cal_rel_pos_type( + attn, + q, + self.has_cls_token, + q_size, + k_size, + self.rel_pos_h, + self.rel_pos_w, + ) + attn = attn.softmax(dim=-1) + x = attn @ v + + if self.residual_pooling: + x = x + q + + x = x.transpose(1, 2).reshape(B, -1, self.dim_out) + x = self.proj(x) + + return x, q_size + + +class MultiScaleBlock(nn.Module): + def __init__( + self, + dim, + dim_out, + num_heads, + feat_size, + mlp_ratio=4.0, + qkv_bias=True, + drop_path=0.0, + norm_layer=nn.LayerNorm, + kernel_q=(1, 1), + kernel_kv=(1, 1), + stride_q=(1, 1), + stride_kv=(1, 1), + mode="conv", + has_cls_token=True, + expand_attn=False, + pool_first=False, + rel_pos_type='spatial', + residual_pooling=True, + ): + super().__init__() + proj_needed = dim != dim_out + self.dim = dim + self.dim_out = dim_out + self.has_cls_token = has_cls_token + + self.norm1 = norm_layer(dim) + + self.shortcut_proj_attn = nn.Linear(dim, dim_out) if proj_needed and expand_attn else None + if stride_q and prod(stride_q) > 1: + kernel_skip = [s + 1 if s > 1 else s for s in stride_q] + stride_skip = stride_q + padding_skip = [int(skip // 2) for skip in kernel_skip] + self.shortcut_pool_attn = nn.MaxPool2d(kernel_skip, stride_skip, padding_skip) + else: + self.shortcut_pool_attn = None + + att_dim = dim_out if expand_attn else dim + attn_layer = MultiScaleAttentionPoolFirst if pool_first else MultiScaleAttention + self.attn = attn_layer( + dim, + att_dim, + num_heads=num_heads, + feat_size=feat_size, + qkv_bias=qkv_bias, + kernel_q=kernel_q, + kernel_kv=kernel_kv, + stride_q=stride_q, + stride_kv=stride_kv, + norm_layer=norm_layer, + has_cls_token=has_cls_token, + mode=mode, + rel_pos_type=rel_pos_type, + residual_pooling=residual_pooling, + ) + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + self.norm2 = norm_layer(att_dim) + mlp_dim_out = dim_out + self.shortcut_proj_mlp = nn.Linear(dim, dim_out) if proj_needed and not expand_attn else None + self.mlp = Mlp( + in_features=att_dim, + hidden_features=int(att_dim * mlp_ratio), + out_features=mlp_dim_out, + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def _shortcut_pool(self, x, feat_size: List[int]): + if self.shortcut_pool_attn is None: + return x + if self.has_cls_token: + cls_tok, x = x[:, :1, :], x[:, 1:, :] + else: + cls_tok = None + B, L, C = x.shape + H, W = feat_size + x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous() + x = self.shortcut_pool_attn(x) + x = x.reshape(B, C, -1).transpose(1, 2) + if cls_tok is not None: + x = torch.cat((cls_tok, x), dim=1) + return x + + def forward(self, x, feat_size: List[int]): + x_norm = self.norm1(x) + # NOTE as per the original impl, this seems odd, but shortcut uses un-normalized input if no proj + x_shortcut = x if self.shortcut_proj_attn is None else self.shortcut_proj_attn(x_norm) + x_shortcut = self._shortcut_pool(x_shortcut, feat_size) + x, feat_size_new = self.attn(x_norm, feat_size) + x = x_shortcut + self.drop_path1(x) + + x_norm = self.norm2(x) + x_shortcut = x if self.shortcut_proj_mlp is None else self.shortcut_proj_mlp(x_norm) + x = x_shortcut + self.drop_path2(self.mlp(x_norm)) + return x, feat_size_new + + +class MultiScaleVitStage(nn.Module): + + def __init__( + self, + dim, + dim_out, + depth, + num_heads, + feat_size, + mlp_ratio=4.0, + qkv_bias=True, + mode="conv", + kernel_q=(1, 1), + kernel_kv=(1, 1), + stride_q=(1, 1), + stride_kv=(1, 1), + has_cls_token=True, + expand_attn=False, + pool_first=False, + rel_pos_type='spatial', + residual_pooling=True, + norm_layer=nn.LayerNorm, + drop_path=0.0, + ): + super().__init__() + self.grad_checkpointing = False + + self.blocks = nn.ModuleList() + if expand_attn: + out_dims = (dim_out,) * depth + else: + out_dims = (dim,) * (depth - 1) + (dim_out,) + + for i in range(depth): + attention_block = MultiScaleBlock( + dim=dim, + dim_out=out_dims[i], + num_heads=num_heads, + feat_size=feat_size, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + kernel_q=kernel_q, + kernel_kv=kernel_kv, + stride_q=stride_q if i == 0 else (1, 1), + stride_kv=stride_kv, + mode=mode, + has_cls_token=has_cls_token, + pool_first=pool_first, + rel_pos_type=rel_pos_type, + residual_pooling=residual_pooling, + expand_attn=expand_attn, + norm_layer=norm_layer, + drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path, + ) + dim = out_dims[i] + self.blocks.append(attention_block) + if i == 0: + feat_size = tuple([size // stride for size, stride in zip(feat_size, stride_q)]) + + self.feat_size = feat_size + + def forward(self, x, feat_size: List[int]): + for blk in self.blocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x, feat_size = checkpoint.checkpoint(blk, x, feat_size) + else: + x, feat_size = blk(x, feat_size) + return x, feat_size + + +class MultiScaleVit(nn.Module): + """ + Improved Multiscale Vision Transformers for Classification and Detection + Yanghao Li*, Chao-Yuan Wu*, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, + Christoph Feichtenhofer* + https://arxiv.org/abs/2112.01526 + + Multiscale Vision Transformers + Haoqi Fan*, Bo Xiong*, Karttikeya Mangalam*, Yanghao Li*, Zhicheng Yan, Jitendra Malik, + Christoph Feichtenhofer* + https://arxiv.org/abs/2104.11227 + """ + + def __init__( + self, + cfg: MultiScaleVitCfg, + img_size: Tuple[int, int] = (224, 224), + in_chans: int = 3, + global_pool: Optional[str] = None, + num_classes: int = 1000, + drop_path_rate: float = 0., + drop_rate: float = 0., + ): + super().__init__() + img_size = to_2tuple(img_size) + norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) + self.num_classes = num_classes + self.drop_rate = drop_rate + if global_pool is None: + global_pool = 'token' if cfg.use_cls_token else 'avg' + self.global_pool = global_pool + self.depths = tuple(cfg.depths) + self.expand_attn = cfg.expand_attn + + embed_dim = cfg.embed_dim[0] + self.patch_embed = PatchEmbed( + dim_in=in_chans, + dim_out=embed_dim, + kernel=cfg.patch_kernel, + stride=cfg.patch_stride, + padding=cfg.patch_padding, + ) + patch_dims = (img_size[0] // cfg.patch_stride[0], img_size[1] // cfg.patch_stride[1]) + num_patches = prod(patch_dims) + + if cfg.use_cls_token: + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.num_prefix_tokens = 1 + pos_embed_dim = num_patches + 1 + else: + self.num_prefix_tokens = 0 + self.cls_token = None + pos_embed_dim = num_patches + + if cfg.use_abs_pos: + self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_dim, embed_dim)) + else: + self.pos_embed = None + + num_stages = len(cfg.embed_dim) + feat_size = patch_dims + curr_stride = max(cfg.patch_stride) + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] + self.stages = nn.ModuleList() + self.feature_info = [] + for i in range(num_stages): + if cfg.expand_attn: + dim_out = cfg.embed_dim[i] + else: + dim_out = cfg.embed_dim[min(i + 1, num_stages - 1)] + stage = MultiScaleVitStage( + dim=embed_dim, + dim_out=dim_out, + depth=cfg.depths[i], + num_heads=cfg.num_heads[i], + feat_size=feat_size, + mlp_ratio=cfg.mlp_ratio, + qkv_bias=cfg.qkv_bias, + mode=cfg.mode, + pool_first=cfg.pool_first, + expand_attn=cfg.expand_attn, + kernel_q=cfg.kernel_qkv, + kernel_kv=cfg.kernel_qkv, + stride_q=cfg.stride_q[i], + stride_kv=cfg.stride_kv[i], + has_cls_token=cfg.use_cls_token, + rel_pos_type=cfg.rel_pos_type, + residual_pooling=cfg.residual_pooling, + norm_layer=norm_layer, + drop_path=dpr[i], + ) + curr_stride *= max(cfg.stride_q[i]) + self.feature_info += [dict(module=f'block.{i}', num_chs=dim_out, reduction=curr_stride)] + embed_dim = dim_out + feat_size = stage.feat_size + self.stages.append(stage) + + self.num_features = self.head_hidden_size = embed_dim + self.norm = norm_layer(embed_dim) + self.head = nn.Sequential(OrderedDict([ + ('drop', nn.Dropout(self.drop_rate)), + ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) + ])) + + if self.pos_embed is not None: + trunc_normal_tf_(self.pos_embed, std=0.02) + if self.cls_token is not None: + trunc_normal_tf_(self.cls_token, std=0.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_tf_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {k for k, _ in self.named_parameters() + if any(n in k for n in ["pos_embed", "rel_pos_h", "rel_pos_w", "cls_token"])} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^patch_embed', # stem and embed + blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Sequential(OrderedDict([ + ('drop', nn.Dropout(self.drop_rate)), + ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) + ])) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW', 'NLC'), 'Output shape must be NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.stages), indices) + + # FIXME slice block/pos_block if < max + # forward pass + x, feat_size = self.patch_embed(x) + B = x.shape[0] + if self.cls_token is not None: + cls_tokens = self.cls_token.expand(B, -1, -1) + x = torch.cat((cls_tokens, x), dim=1) + if self.pos_embed is not None: + x = x + self.pos_embed + + for i, stage in enumerate(self.stages): + x, feat_size = stage(x, feat_size) + if i in take_indices: + if norm and i == (len(self.stages) - 1): + x_inter = self.norm(x) # applying final norm last intermediate + else: + x_inter = x + if reshape: + if self.cls_token is not None: + # possible to allow return of class tokens, TBD + x_inter = x_inter[:, 1:] + x_inter = x_inter.reshape(B, feat_size[0], feat_size[1], -1).permute(0, 3, 1, 2) + intermediates.append(x_inter) + + if intermediates_only: + return intermediates + + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.stages), indices) + # FIXME add stage pruning + # self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0 + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x, feat_size = self.patch_embed(x) + B, N, C = x.shape + + if self.cls_token is not None: + cls_tokens = self.cls_token.expand(B, -1, -1) + x = torch.cat((cls_tokens, x), dim=1) + + if self.pos_embed is not None: + x = x + self.pos_embed + + for stage in self.stages: + x, feat_size = stage(x, feat_size) + + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool: + if self.global_pool == 'avg': + x = x[:, self.num_prefix_tokens:].mean(1) + else: + x = x[:, 0] + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + if 'stages.0.blocks.0.norm1.weight' in state_dict: + # native checkpoint, look for rel_pos interpolations + for k in state_dict.keys(): + if 'rel_pos' in k: + rel_pos = state_dict[k] + dest_rel_pos_shape = model.state_dict()[k].shape + if rel_pos.shape[0] != dest_rel_pos_shape[0]: + rel_pos_resized = torch.nn.functional.interpolate( + rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), + size=dest_rel_pos_shape[0], + mode="linear", + ) + state_dict[k] = rel_pos_resized.reshape(-1, dest_rel_pos_shape[0]).permute(1, 0) + return state_dict + + import re + if 'model_state' in state_dict: + state_dict = state_dict['model_state'] + + depths = getattr(model, 'depths', None) + expand_attn = getattr(model, 'expand_attn', True) + assert depths is not None, 'model requires depth attribute to remap checkpoints' + depth_map = {} + block_idx = 0 + for stage_idx, d in enumerate(depths): + depth_map.update({i: (stage_idx, i - block_idx) for i in range(block_idx, block_idx + d)}) + block_idx += d + + out_dict = {} + for k, v in state_dict.items(): + k = re.sub( + r'blocks\.(\d+)', + lambda x: f'stages.{depth_map[int(x.group(1))][0]}.blocks.{depth_map[int(x.group(1))][1]}', + k) + + if expand_attn: + k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_attn', k) + else: + k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_mlp', k) + if 'head' in k: + k = k.replace('head.projection', 'head.fc') + out_dict[k] = v + + return out_dict + + +model_cfgs = dict( + mvitv2_tiny=MultiScaleVitCfg( + depths=(1, 2, 5, 2), + ), + mvitv2_small=MultiScaleVitCfg( + depths=(1, 2, 11, 2), + ), + mvitv2_base=MultiScaleVitCfg( + depths=(2, 3, 16, 3), + ), + mvitv2_large=MultiScaleVitCfg( + depths=(2, 6, 36, 4), + embed_dim=144, + num_heads=2, + expand_attn=False, + ), + + mvitv2_small_cls=MultiScaleVitCfg( + depths=(1, 2, 11, 2), + use_cls_token=True, + ), + mvitv2_base_cls=MultiScaleVitCfg( + depths=(2, 3, 16, 3), + use_cls_token=True, + ), + mvitv2_large_cls=MultiScaleVitCfg( + depths=(2, 6, 36, 4), + embed_dim=144, + num_heads=2, + use_cls_token=True, + expand_attn=True, + ), + mvitv2_huge_cls=MultiScaleVitCfg( + depths=(4, 8, 60, 8), + embed_dim=192, + num_heads=3, + use_cls_token=True, + expand_attn=True, + ), +) + + +def _create_mvitv2(variant, cfg_variant=None, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 4) + return build_model_with_cfg( + MultiScaleVit, + variant, + pretrained, + model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', + 'fixed_input_size': True, + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'mvitv2_tiny.fb_in1k': _cfg( + url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_T_in1k.pyth', + hf_hub_id='timm/'), + 'mvitv2_small.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_S_in1k.pyth', + hf_hub_id='timm/'), + 'mvitv2_base.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in1k.pyth', + hf_hub_id='timm/'), + 'mvitv2_large.fb_in1k': _cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in1k.pyth', + hf_hub_id='timm/'), + + 'mvitv2_small_cls': _cfg(url=''), + 'mvitv2_base_cls.fb_inw21k': _cfg( + url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in21k.pyth', + hf_hub_id='timm/', + num_classes=19168), + 'mvitv2_large_cls.fb_inw21k': _cfg( + url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in21k.pyth', + hf_hub_id='timm/', + num_classes=19168), + 'mvitv2_huge_cls.fb_inw21k': _cfg( + url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_H_in21k.pyth', + hf_hub_id='timm/', + num_classes=19168), +}) + + +@register_model +def mvitv2_tiny(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_tiny', pretrained=pretrained, **kwargs) + + +@register_model +def mvitv2_small(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_small', pretrained=pretrained, **kwargs) + + +@register_model +def mvitv2_base(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_base', pretrained=pretrained, **kwargs) + + +@register_model +def mvitv2_large(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_large', pretrained=pretrained, **kwargs) + + +@register_model +def mvitv2_small_cls(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_small_cls', pretrained=pretrained, **kwargs) + + +@register_model +def mvitv2_base_cls(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_base_cls', pretrained=pretrained, **kwargs) + + +@register_model +def mvitv2_large_cls(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_large_cls', pretrained=pretrained, **kwargs) + + +@register_model +def mvitv2_huge_cls(pretrained=False, **kwargs) -> MultiScaleVit: + return _create_mvitv2('mvitv2_huge_cls', pretrained=pretrained, **kwargs) diff --git a/pytorch-image-models/timm/models/nasnet.py b/pytorch-image-models/timm/models/nasnet.py new file mode 100644 index 0000000000000000000000000000000000000000..0bcc0485682e329e35a4a4f56bae0614bb54a91b --- /dev/null +++ b/pytorch-image-models/timm/models/nasnet.py @@ -0,0 +1,600 @@ +""" NasNet-A (Large) + nasnetalarge implementation grabbed from Cadene's pretrained models + https://github.com/Cadene/pretrained-models.pytorch +""" +from functools import partial +from typing import Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.layers import ConvNormAct, create_conv2d, create_pool2d, create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs + +__all__ = ['NASNetALarge'] + + + +class ActConvBn(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=''): + super(ActConvBn, self).__init__() + self.act = nn.ReLU() + self.conv = create_conv2d( + in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) + self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.1) + + def forward(self, x): + x = self.act(x) + x = self.conv(x) + x = self.bn(x) + return x + + +class SeparableConv2d(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride, padding=''): + super(SeparableConv2d, self).__init__() + self.depthwise_conv2d = create_conv2d( + in_channels, in_channels, kernel_size=kernel_size, + stride=stride, padding=padding, groups=in_channels) + self.pointwise_conv2d = create_conv2d( + in_channels, out_channels, kernel_size=1, padding=0) + + def forward(self, x): + x = self.depthwise_conv2d(x) + x = self.pointwise_conv2d(x) + return x + + +class BranchSeparables(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, pad_type='', stem_cell=False): + super(BranchSeparables, self).__init__() + middle_channels = out_channels if stem_cell else in_channels + self.act_1 = nn.ReLU() + self.separable_1 = SeparableConv2d( + in_channels, middle_channels, kernel_size, stride=stride, padding=pad_type) + self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001, momentum=0.1) + self.act_2 = nn.ReLU(inplace=True) + self.separable_2 = SeparableConv2d( + middle_channels, out_channels, kernel_size, stride=1, padding=pad_type) + self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.1) + + def forward(self, x): + x = self.act_1(x) + x = self.separable_1(x) + x = self.bn_sep_1(x) + x = self.act_2(x) + x = self.separable_2(x) + x = self.bn_sep_2(x) + return x + + +class CellStem0(nn.Module): + def __init__(self, stem_size, num_channels=42, pad_type=''): + super(CellStem0, self).__init__() + self.num_channels = num_channels + self.stem_size = stem_size + self.conv_1x1 = ActConvBn(self.stem_size, self.num_channels, 1, stride=1) + + self.comb_iter_0_left = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type) + self.comb_iter_0_right = BranchSeparables(self.stem_size, self.num_channels, 7, 2, pad_type, stem_cell=True) + + self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) + self.comb_iter_1_right = BranchSeparables(self.stem_size, self.num_channels, 7, 2, pad_type, stem_cell=True) + + self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) + self.comb_iter_2_right = BranchSeparables(self.stem_size, self.num_channels, 5, 2, pad_type, stem_cell=True) + + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + + self.comb_iter_4_left = BranchSeparables(self.num_channels, self.num_channels, 3, 1, pad_type) + self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) + + def forward(self, x): + x1 = self.conv_1x1(x) + + x_comb_iter_0_left = self.comb_iter_0_left(x1) + x_comb_iter_0_right = self.comb_iter_0_right(x) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + + x_comb_iter_1_left = self.comb_iter_1_left(x1) + x_comb_iter_1_right = self.comb_iter_1_right(x) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + + x_comb_iter_2_left = self.comb_iter_2_left(x1) + x_comb_iter_2_right = self.comb_iter_2_right(x) + x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right + + x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) + x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 + + x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) + x_comb_iter_4_right = self.comb_iter_4_right(x1) + x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right + + x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + + +class CellStem1(nn.Module): + + def __init__(self, stem_size, num_channels, pad_type=''): + super(CellStem1, self).__init__() + self.num_channels = num_channels + self.stem_size = stem_size + self.conv_1x1 = ActConvBn(2 * self.num_channels, self.num_channels, 1, stride=1) + + self.act = nn.ReLU() + self.path_1 = nn.Sequential() + self.path_1.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) + self.path_1.add_module('conv', nn.Conv2d(self.stem_size, self.num_channels // 2, 1, stride=1, bias=False)) + + self.path_2 = nn.Sequential() + self.path_2.add_module('pad', nn.ZeroPad2d((-1, 1, -1, 1))) + self.path_2.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) + self.path_2.add_module('conv', nn.Conv2d(self.stem_size, self.num_channels // 2, 1, stride=1, bias=False)) + + self.final_path_bn = nn.BatchNorm2d(self.num_channels, eps=0.001, momentum=0.1) + + self.comb_iter_0_left = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type) + self.comb_iter_0_right = BranchSeparables(self.num_channels, self.num_channels, 7, 2, pad_type) + + self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) + self.comb_iter_1_right = BranchSeparables(self.num_channels, self.num_channels, 7, 2, pad_type) + + self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) + self.comb_iter_2_right = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type) + + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + + self.comb_iter_4_left = BranchSeparables(self.num_channels, self.num_channels, 3, 1, pad_type) + self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) + + def forward(self, x_conv0, x_stem_0): + x_left = self.conv_1x1(x_stem_0) + + x_relu = self.act(x_conv0) + # path 1 + x_path1 = self.path_1(x_relu) + # path 2 + x_path2 = self.path_2(x_relu) + # final path + x_right = self.final_path_bn(torch.cat([x_path1, x_path2], 1)) + + x_comb_iter_0_left = self.comb_iter_0_left(x_left) + x_comb_iter_0_right = self.comb_iter_0_right(x_right) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + + x_comb_iter_1_left = self.comb_iter_1_left(x_left) + x_comb_iter_1_right = self.comb_iter_1_right(x_right) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + + x_comb_iter_2_left = self.comb_iter_2_left(x_left) + x_comb_iter_2_right = self.comb_iter_2_right(x_right) + x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right + + x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) + x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 + + x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) + x_comb_iter_4_right = self.comb_iter_4_right(x_left) + x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right + + x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + + +class FirstCell(nn.Module): + + def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): + super(FirstCell, self).__init__() + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1) + + self.act = nn.ReLU() + self.path_1 = nn.Sequential() + self.path_1.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) + self.path_1.add_module('conv', nn.Conv2d(in_chs_left, out_chs_left, 1, stride=1, bias=False)) + + self.path_2 = nn.Sequential() + self.path_2.add_module('pad', nn.ZeroPad2d((-1, 1, -1, 1))) + self.path_2.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)) + self.path_2.add_module('conv', nn.Conv2d(in_chs_left, out_chs_left, 1, stride=1, bias=False)) + + self.final_path_bn = nn.BatchNorm2d(out_chs_left * 2, eps=0.001, momentum=0.1) + + self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type) + self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + + self.comb_iter_1_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type) + self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + + self.comb_iter_2_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + + self.comb_iter_3_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + + self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + + def forward(self, x, x_prev): + x_relu = self.act(x_prev) + x_path1 = self.path_1(x_relu) + x_path2 = self.path_2(x_relu) + x_left = self.final_path_bn(torch.cat([x_path1, x_path2], 1)) + x_right = self.conv_1x1(x) + + x_comb_iter_0_left = self.comb_iter_0_left(x_right) + x_comb_iter_0_right = self.comb_iter_0_right(x_left) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + + x_comb_iter_1_left = self.comb_iter_1_left(x_left) + x_comb_iter_1_right = self.comb_iter_1_right(x_left) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + + x_comb_iter_2_left = self.comb_iter_2_left(x_right) + x_comb_iter_2 = x_comb_iter_2_left + x_left + + x_comb_iter_3_left = self.comb_iter_3_left(x_left) + x_comb_iter_3_right = self.comb_iter_3_right(x_left) + x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right + + x_comb_iter_4_left = self.comb_iter_4_left(x_right) + x_comb_iter_4 = x_comb_iter_4_left + x_right + + x_out = torch.cat([x_left, x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + + +class NormalCell(nn.Module): + + def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): + super(NormalCell, self).__init__() + self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type) + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type) + + self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type) + self.comb_iter_0_right = BranchSeparables(out_chs_left, out_chs_left, 3, 1, pad_type) + + self.comb_iter_1_left = BranchSeparables(out_chs_left, out_chs_left, 5, 1, pad_type) + self.comb_iter_1_right = BranchSeparables(out_chs_left, out_chs_left, 3, 1, pad_type) + + self.comb_iter_2_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + + self.comb_iter_3_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + + self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + + def forward(self, x, x_prev): + x_left = self.conv_prev_1x1(x_prev) + x_right = self.conv_1x1(x) + + x_comb_iter_0_left = self.comb_iter_0_left(x_right) + x_comb_iter_0_right = self.comb_iter_0_right(x_left) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + + x_comb_iter_1_left = self.comb_iter_1_left(x_left) + x_comb_iter_1_right = self.comb_iter_1_right(x_left) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + + x_comb_iter_2_left = self.comb_iter_2_left(x_right) + x_comb_iter_2 = x_comb_iter_2_left + x_left + + x_comb_iter_3_left = self.comb_iter_3_left(x_left) + x_comb_iter_3_right = self.comb_iter_3_right(x_left) + x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right + + x_comb_iter_4_left = self.comb_iter_4_left(x_right) + x_comb_iter_4 = x_comb_iter_4_left + x_right + + x_out = torch.cat([x_left, x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + + +class ReductionCell0(nn.Module): + + def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): + super(ReductionCell0, self).__init__() + self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type) + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type) + + self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) + self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) + + self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) + self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) + + self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) + self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) + + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + + self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) + + def forward(self, x, x_prev): + x_left = self.conv_prev_1x1(x_prev) + x_right = self.conv_1x1(x) + + x_comb_iter_0_left = self.comb_iter_0_left(x_right) + x_comb_iter_0_right = self.comb_iter_0_right(x_left) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + + x_comb_iter_1_left = self.comb_iter_1_left(x_right) + x_comb_iter_1_right = self.comb_iter_1_right(x_left) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + + x_comb_iter_2_left = self.comb_iter_2_left(x_right) + x_comb_iter_2_right = self.comb_iter_2_right(x_left) + x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right + + x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) + x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 + + x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) + x_comb_iter_4_right = self.comb_iter_4_right(x_right) + x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right + + x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + + +class ReductionCell1(nn.Module): + + def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): + super(ReductionCell1, self).__init__() + self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type) + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type) + + self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) + self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) + + self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type) + self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type) + + self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type) + self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type) + + self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type) + + self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type) + self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type) + + def forward(self, x, x_prev): + x_left = self.conv_prev_1x1(x_prev) + x_right = self.conv_1x1(x) + + x_comb_iter_0_left = self.comb_iter_0_left(x_right) + x_comb_iter_0_right = self.comb_iter_0_right(x_left) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + + x_comb_iter_1_left = self.comb_iter_1_left(x_right) + x_comb_iter_1_right = self.comb_iter_1_right(x_left) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + + x_comb_iter_2_left = self.comb_iter_2_left(x_right) + x_comb_iter_2_right = self.comb_iter_2_right(x_left) + x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right + + x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0) + x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1 + + x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0) + x_comb_iter_4_right = self.comb_iter_4_right(x_right) + x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right + + x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + + +class NASNetALarge(nn.Module): + """NASNetALarge (6 @ 4032) """ + + def __init__( + self, + num_classes=1000, + in_chans=3, + stem_size=96, + channel_multiplier=2, + num_features=4032, + output_stride=32, + drop_rate=0., + global_pool='avg', + pad_type='same', + ): + super(NASNetALarge, self).__init__() + self.num_classes = num_classes + self.stem_size = stem_size + self.num_features = self.head_hidden_size = num_features + self.channel_multiplier = channel_multiplier + assert output_stride == 32 + + channels = self.num_features // 24 + # 24 is default value for the architecture + + self.conv0 = ConvNormAct( + in_channels=in_chans, out_channels=self.stem_size, kernel_size=3, padding=0, stride=2, + norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1), apply_act=False) + + self.cell_stem_0 = CellStem0( + self.stem_size, num_channels=channels // (channel_multiplier ** 2), pad_type=pad_type) + self.cell_stem_1 = CellStem1( + self.stem_size, num_channels=channels // channel_multiplier, pad_type=pad_type) + + self.cell_0 = FirstCell( + in_chs_left=channels, out_chs_left=channels // 2, + in_chs_right=2 * channels, out_chs_right=channels, pad_type=pad_type) + self.cell_1 = NormalCell( + in_chs_left=2 * channels, out_chs_left=channels, + in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) + self.cell_2 = NormalCell( + in_chs_left=6 * channels, out_chs_left=channels, + in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) + self.cell_3 = NormalCell( + in_chs_left=6 * channels, out_chs_left=channels, + in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) + self.cell_4 = NormalCell( + in_chs_left=6 * channels, out_chs_left=channels, + in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) + self.cell_5 = NormalCell( + in_chs_left=6 * channels, out_chs_left=channels, + in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type) + + self.reduction_cell_0 = ReductionCell0( + in_chs_left=6 * channels, out_chs_left=2 * channels, + in_chs_right=6 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_6 = FirstCell( + in_chs_left=6 * channels, out_chs_left=channels, + in_chs_right=8 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_7 = NormalCell( + in_chs_left=8 * channels, out_chs_left=2 * channels, + in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_8 = NormalCell( + in_chs_left=12 * channels, out_chs_left=2 * channels, + in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_9 = NormalCell( + in_chs_left=12 * channels, out_chs_left=2 * channels, + in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_10 = NormalCell( + in_chs_left=12 * channels, out_chs_left=2 * channels, + in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) + self.cell_11 = NormalCell( + in_chs_left=12 * channels, out_chs_left=2 * channels, + in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type) + + self.reduction_cell_1 = ReductionCell1( + in_chs_left=12 * channels, out_chs_left=4 * channels, + in_chs_right=12 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_12 = FirstCell( + in_chs_left=12 * channels, out_chs_left=2 * channels, + in_chs_right=16 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_13 = NormalCell( + in_chs_left=16 * channels, out_chs_left=4 * channels, + in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_14 = NormalCell( + in_chs_left=24 * channels, out_chs_left=4 * channels, + in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_15 = NormalCell( + in_chs_left=24 * channels, out_chs_left=4 * channels, + in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_16 = NormalCell( + in_chs_left=24 * channels, out_chs_left=4 * channels, + in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.cell_17 = NormalCell( + in_chs_left=24 * channels, out_chs_left=4 * channels, + in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type) + self.act = nn.ReLU(inplace=True) + self.feature_info = [ + dict(num_chs=96, reduction=2, module='conv0'), + dict(num_chs=168, reduction=4, module='cell_stem_1.conv_1x1.act'), + dict(num_chs=1008, reduction=8, module='reduction_cell_0.conv_1x1.act'), + dict(num_chs=2016, reduction=16, module='reduction_cell_1.conv_1x1.act'), + dict(num_chs=4032, reduction=32, module='act'), + ] + + self.global_pool, self.head_drop, self.last_linear = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^conv0|cell_stem_[01]', + blocks=[ + (r'^cell_(\d+)', None), + (r'^reduction_cell_0', (6,)), + (r'^reduction_cell_1', (12,)), + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.last_linear + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.last_linear = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x_conv0 = self.conv0(x) + + x_stem_0 = self.cell_stem_0(x_conv0) + x_stem_1 = self.cell_stem_1(x_conv0, x_stem_0) + + x_cell_0 = self.cell_0(x_stem_1, x_stem_0) + x_cell_1 = self.cell_1(x_cell_0, x_stem_1) + x_cell_2 = self.cell_2(x_cell_1, x_cell_0) + x_cell_3 = self.cell_3(x_cell_2, x_cell_1) + x_cell_4 = self.cell_4(x_cell_3, x_cell_2) + x_cell_5 = self.cell_5(x_cell_4, x_cell_3) + + x_reduction_cell_0 = self.reduction_cell_0(x_cell_5, x_cell_4) + x_cell_6 = self.cell_6(x_reduction_cell_0, x_cell_4) + x_cell_7 = self.cell_7(x_cell_6, x_reduction_cell_0) + x_cell_8 = self.cell_8(x_cell_7, x_cell_6) + x_cell_9 = self.cell_9(x_cell_8, x_cell_7) + x_cell_10 = self.cell_10(x_cell_9, x_cell_8) + x_cell_11 = self.cell_11(x_cell_10, x_cell_9) + + x_reduction_cell_1 = self.reduction_cell_1(x_cell_11, x_cell_10) + x_cell_12 = self.cell_12(x_reduction_cell_1, x_cell_10) + x_cell_13 = self.cell_13(x_cell_12, x_reduction_cell_1) + x_cell_14 = self.cell_14(x_cell_13, x_cell_12) + x_cell_15 = self.cell_15(x_cell_14, x_cell_13) + x_cell_16 = self.cell_16(x_cell_15, x_cell_14) + x_cell_17 = self.cell_17(x_cell_16, x_cell_15) + x = self.act(x_cell_17) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.last_linear(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_nasnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + NASNetALarge, + variant, + pretrained, + feature_cfg=dict(feature_cls='hook', no_rewrite=True), # not possible to re-write this model + **kwargs, + ) + + +default_cfgs = generate_default_cfgs({ + 'nasnetalarge.tf_in1k': { + 'hf_hub_id': 'timm/', + 'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nasnetalarge-dc4a7b8b.pth', + 'input_size': (3, 331, 331), + 'pool_size': (11, 11), + 'crop_pct': 0.911, + 'interpolation': 'bicubic', + 'mean': (0.5, 0.5, 0.5), + 'std': (0.5, 0.5, 0.5), + 'num_classes': 1000, + 'first_conv': 'conv0.conv', + 'classifier': 'last_linear', + }, +}) + + +@register_model +def nasnetalarge(pretrained=False, **kwargs) -> NASNetALarge: + """NASNet-A large model architecture. + """ + model_kwargs = dict(pad_type='same', **kwargs) + return _create_nasnet('nasnetalarge', pretrained, **model_kwargs) diff --git a/pytorch-image-models/timm/models/nest.py b/pytorch-image-models/timm/models/nest.py new file mode 100644 index 0000000000000000000000000000000000000000..1d9c75210566c1420779aceeec7c719bc8fbe2b3 --- /dev/null +++ b/pytorch-image-models/timm/models/nest.py @@ -0,0 +1,583 @@ +""" Nested Transformer (NesT) in PyTorch + +A PyTorch implement of Aggregating Nested Transformers as described in: + +'Aggregating Nested Transformers' + - https://arxiv.org/abs/2105.12723 + +The official Jax code is released and available at https://github.com/google-research/nested-transformer. The weights +have been converted with convert/convert_nest_flax.py + +Acknowledgments: +* The paper authors for sharing their research, code, and model weights +* Ross Wightman's existing code off which I based this + +Copyright 2021 Alexander Soare +""" + +import collections.abc +import logging +import math +from functools import partial + +import torch +import torch.nn.functional as F +from torch import nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, create_classifier, trunc_normal_, _assert +from timm.layers import create_conv2d, create_pool2d, to_ntuple, use_fused_attn, LayerNorm +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_function +from ._manipulate import checkpoint_seq, named_apply +from ._registry import register_model, generate_default_cfgs, register_model_deprecations + +__all__ = ['Nest'] # model_registry will add each entrypoint fn to this + +_logger = logging.getLogger(__name__) + + +class Attention(nn.Module): + """ + This is much like `.vision_transformer.Attention` but uses *localised* self attention by accepting an input with + an extra "image block" dim + """ + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Linear(dim, 3*dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + """ + x is shape: B (batch_size), T (image blocks), N (seq length per image block), C (embed dim) + """ + B, T, N, C = x.shape + # result of next line is (qkv, B, num (H)eads, T, N, (C')hannels per head) + qkv = self.qkv(x).reshape(B, T, N, 3, self.num_heads, C // self.num_heads).permute(3, 0, 4, 1, 2, 5) + q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) + + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) # (B, H, T, N, N) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + # (B, H, T, N, C'), permute -> (B, T, N, C', H) + x = x.permute(0, 2, 3, 4, 1).reshape(B, T, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x # (B, T, N, C) + + +class TransformerLayer(nn.Module): + """ + This is much like `.vision_transformer.Block` but: + - Called TransformerLayer here to allow for "block" as defined in the paper ("non-overlapping image blocks") + - Uses modified Attention layer that handles the "block" dimension + """ + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=proj_drop, + ) + + def forward(self, x): + y = self.norm1(x) + x = x + self.drop_path(self.attn(y)) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class ConvPool(nn.Module): + def __init__(self, in_channels, out_channels, norm_layer, pad_type=''): + super().__init__() + self.conv = create_conv2d(in_channels, out_channels, kernel_size=3, padding=pad_type, bias=True) + self.norm = norm_layer(out_channels) + self.pool = create_pool2d('max', kernel_size=3, stride=2, padding=pad_type) + + def forward(self, x): + """ + x is expected to have shape (B, C, H, W) + """ + _assert(x.shape[-2] % 2 == 0, 'BlockAggregation requires even input spatial dims') + _assert(x.shape[-1] % 2 == 0, 'BlockAggregation requires even input spatial dims') + x = self.conv(x) + # Layer norm done over channel dim only + x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + x = self.pool(x) + return x # (B, C, H//2, W//2) + + +def blockify(x, block_size: int): + """image to blocks + Args: + x (Tensor): with shape (B, H, W, C) + block_size (int): edge length of a single square block in units of H, W + """ + B, H, W, C = x.shape + _assert(H % block_size == 0, '`block_size` must divide input height evenly') + _assert(W % block_size == 0, '`block_size` must divide input width evenly') + grid_height = H // block_size + grid_width = W // block_size + x = x.reshape(B, grid_height, block_size, grid_width, block_size, C) + x = x.transpose(2, 3).reshape(B, grid_height * grid_width, -1, C) + return x # (B, T, N, C) + + +@register_notrace_function # reason: int receives Proxy +def deblockify(x, block_size: int): + """blocks to image + Args: + x (Tensor): with shape (B, T, N, C) where T is number of blocks and N is sequence size per block + block_size (int): edge length of a single square block in units of desired H, W + """ + B, T, _, C = x.shape + grid_size = int(math.sqrt(T)) + height = width = grid_size * block_size + x = x.reshape(B, grid_size, grid_size, block_size, block_size, C) + x = x.transpose(2, 3).reshape(B, height, width, C) + return x # (B, H, W, C) + + +class NestLevel(nn.Module): + """ Single hierarchical level of a Nested Transformer + """ + def __init__( + self, + num_blocks, + block_size, + seq_length, + num_heads, + depth, + embed_dim, + prev_embed_dim=None, + mlp_ratio=4., + qkv_bias=True, + proj_drop=0., + attn_drop=0., + drop_path=[], + norm_layer=None, + act_layer=None, + pad_type='', + ): + super().__init__() + self.block_size = block_size + self.grad_checkpointing = False + + self.pos_embed = nn.Parameter(torch.zeros(1, num_blocks, seq_length, embed_dim)) + + if prev_embed_dim is not None: + self.pool = ConvPool(prev_embed_dim, embed_dim, norm_layer=norm_layer, pad_type=pad_type) + else: + self.pool = nn.Identity() + + # Transformer encoder + if len(drop_path): + assert len(drop_path) == depth, 'Must provide as many drop path rates as there are transformer layers' + self.transformer_encoder = nn.Sequential(*[ + TransformerLayer( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=proj_drop, + attn_drop=attn_drop, + drop_path=drop_path[i], + norm_layer=norm_layer, + act_layer=act_layer, + ) + for i in range(depth)]) + + def forward(self, x): + """ + expects x as (B, C, H, W) + """ + x = self.pool(x) + x = x.permute(0, 2, 3, 1) # (B, H', W', C), switch to channels last for transformer + x = blockify(x, self.block_size) # (B, T, N, C') + x = x + self.pos_embed + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.transformer_encoder, x) + else: + x = self.transformer_encoder(x) # (B, T, N, C') + x = deblockify(x, self.block_size) # (B, H', W', C') + # Channel-first for block aggregation, and generally to replicate convnet feature map at each stage + return x.permute(0, 3, 1, 2) # (B, C, H', W') + + +class Nest(nn.Module): + """ Nested Transformer (NesT) + + A PyTorch impl of : `Aggregating Nested Transformers` + - https://arxiv.org/abs/2105.12723 + """ + + def __init__( + self, + img_size=224, + in_chans=3, + patch_size=4, + num_levels=3, + embed_dims=(128, 256, 512), + num_heads=(4, 8, 16), + depths=(2, 2, 20), + num_classes=1000, + mlp_ratio=4., + qkv_bias=True, + drop_rate=0., + proj_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0.5, + norm_layer=None, + act_layer=None, + pad_type='', + weight_init='', + global_pool='avg', + ): + """ + Args: + img_size (int, tuple): input image size + in_chans (int): number of input channels + patch_size (int): patch size + num_levels (int): number of block hierarchies (T_d in the paper) + embed_dims (int, tuple): embedding dimensions of each level + num_heads (int, tuple): number of attention heads for each level + depths (int, tuple): number of transformer layers for each level + num_classes (int): number of classes for classification head + mlp_ratio (int): ratio of mlp hidden dim to embedding dim for MLP of transformer layers + qkv_bias (bool): enable bias for qkv if True + drop_rate (float): dropout rate for MLP of transformer layers, MSA final projection layer, and classifier + attn_drop_rate (float): attention dropout rate + drop_path_rate (float): stochastic depth rate + norm_layer: (nn.Module): normalization layer for transformer layers + act_layer: (nn.Module): activation layer in MLP of transformer layers + pad_type: str: Type of padding to use '' for PyTorch symmetric, 'same' for TF SAME + weight_init: (str): weight init scheme + global_pool: (str): type of pooling operation to apply to final feature map + + Notes: + - Default values follow NesT-B from the original Jax code. + - `embed_dims`, `num_heads`, `depths` should be ints or tuples with length `num_levels`. + - For those following the paper, Table A1 may have errors! + - https://github.com/google-research/nested-transformer/issues/2 + """ + super().__init__() + + for param_name in ['embed_dims', 'num_heads', 'depths']: + param_value = locals()[param_name] + if isinstance(param_value, collections.abc.Sequence): + assert len(param_value) == num_levels, f'Require `len({param_name}) == num_levels`' + + embed_dims = to_ntuple(num_levels)(embed_dims) + num_heads = to_ntuple(num_levels)(num_heads) + depths = to_ntuple(num_levels)(depths) + self.num_classes = num_classes + self.num_features = self.head_hidden_size = embed_dims[-1] + self.feature_info = [] + norm_layer = norm_layer or LayerNorm + act_layer = act_layer or nn.GELU + self.drop_rate = drop_rate + self.num_levels = num_levels + if isinstance(img_size, collections.abc.Sequence): + assert img_size[0] == img_size[1], 'Model only handles square inputs' + img_size = img_size[0] + assert img_size % patch_size == 0, '`patch_size` must divide `img_size` evenly' + self.patch_size = patch_size + + # Number of blocks at each level + self.num_blocks = (4 ** torch.arange(num_levels)).flip(0).tolist() + assert (img_size // patch_size) % math.sqrt(self.num_blocks[0]) == 0, \ + 'First level blocks don\'t fit evenly. Check `img_size`, `patch_size`, and `num_levels`' + + # Block edge size in units of patches + # Hint: (img_size // patch_size) gives number of patches along edge of image. sqrt(self.num_blocks[0]) is the + # number of blocks along edge of image + self.block_size = int((img_size // patch_size) // math.sqrt(self.num_blocks[0])) + + # Patch embedding + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dims[0], + flatten=False, + ) + self.num_patches = self.patch_embed.num_patches + self.seq_length = self.num_patches // self.num_blocks[0] + + # Build up each hierarchical level + levels = [] + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + prev_dim = None + curr_stride = 4 + for i in range(len(self.num_blocks)): + dim = embed_dims[i] + levels.append(NestLevel( + self.num_blocks[i], + self.block_size, + self.seq_length, + num_heads[i], + depths[i], + dim, + prev_dim, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dp_rates[i], + norm_layer=norm_layer, + act_layer=act_layer, + pad_type=pad_type, + )) + self.feature_info += [dict(num_chs=dim, reduction=curr_stride, module=f'levels.{i}')] + prev_dim = dim + curr_stride *= 2 + self.levels = nn.Sequential(*levels) + + # Final normalization layer + self.norm = norm_layer(embed_dims[-1]) + + # Classifier + global_pool, head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + self.global_pool = global_pool + self.head_drop = nn.Dropout(drop_rate) + self.head = head + + self.init_weights(weight_init) + + @torch.jit.ignore + def init_weights(self, mode=''): + assert mode in ('nlhb', '') + head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. + for level in self.levels: + trunc_normal_(level.pos_embed, std=.02, a=-2, b=2) + named_apply(partial(_init_nest_weights, head_bias=head_bias), self) + + @torch.jit.ignore + def no_weight_decay(self): + return {f'level.{i}.pos_embed' for i in range(len(self.levels))} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^patch_embed', # stem and embed + blocks=[ + (r'^levels\.(\d+)' if coarse else r'^levels\.(\d+)\.transformer_encoder\.(\d+)', None), + (r'^levels\.(\d+)\.(?:pool|pos_embed)', (0,)), + (r'^norm', (99999,)) + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for l in self.levels: + l.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.head = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.patch_embed(x) + x = self.levels(x) + # Layer norm done over channel dim only (to NHWC and back) + x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _init_nest_weights(module: nn.Module, name: str = '', head_bias: float = 0.): + """ NesT weight initialization + Can replicate Jax implementation. Otherwise follows vision_transformer.py + """ + if isinstance(module, nn.Linear): + if name.startswith('head'): + trunc_normal_(module.weight, std=.02, a=-2, b=2) + nn.init.constant_(module.bias, head_bias) + else: + trunc_normal_(module.weight, std=.02, a=-2, b=2) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + trunc_normal_(module.weight, std=.02, a=-2, b=2) + if module.bias is not None: + nn.init.zeros_(module.bias) + + +def resize_pos_embed(posemb, posemb_new): + """ + Rescale the grid of position embeddings when loading from state_dict + Expected shape of position embeddings is (1, T, N, C), and considers only square images + """ + _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) + seq_length_old = posemb.shape[2] + num_blocks_new, seq_length_new = posemb_new.shape[1:3] + size_new = int(math.sqrt(num_blocks_new*seq_length_new)) + # First change to (1, C, H, W) + posemb = deblockify(posemb, int(math.sqrt(seq_length_old))).permute(0, 3, 1, 2) + posemb = F.interpolate(posemb, size=[size_new, size_new], mode='bicubic', align_corners=False) + # Now change to new (1, T, N, C) + posemb = blockify(posemb.permute(0, 2, 3, 1), int(math.sqrt(seq_length_new))) + return posemb + + +def checkpoint_filter_fn(state_dict, model): + """ resize positional embeddings of pretrained weights """ + pos_embed_keys = [k for k in state_dict.keys() if k.startswith('pos_embed_')] + for k in pos_embed_keys: + if state_dict[k].shape != getattr(model, k).shape: + state_dict[k] = resize_pos_embed(state_dict[k], getattr(model, k)) + return state_dict + + +def _create_nest(variant, pretrained=False, **kwargs): + model = build_model_with_cfg( + Nest, + variant, + pretrained, + feature_cfg=dict(out_indices=(0, 1, 2), flatten_sequential=True), + pretrained_filter_fn=checkpoint_filter_fn, + **kwargs, + ) + + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': [14, 14], + 'crop_pct': .875, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'nest_base.untrained': _cfg(), + 'nest_small.untrained': _cfg(), + 'nest_tiny.untrained': _cfg(), + # (weights from official Google JAX impl, require 'SAME' padding) + 'nest_base_jx.goog_in1k': _cfg(hf_hub_id='timm/'), + 'nest_small_jx.goog_in1k': _cfg(hf_hub_id='timm/'), + 'nest_tiny_jx.goog_in1k': _cfg(hf_hub_id='timm/'), +}) + + +@register_model +def nest_base(pretrained=False, **kwargs) -> Nest: + """ Nest-B @ 224x224 + """ + model_kwargs = dict( + embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), **kwargs) + model = _create_nest('nest_base', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def nest_small(pretrained=False, **kwargs) -> Nest: + """ Nest-S @ 224x224 + """ + model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 20), **kwargs) + model = _create_nest('nest_small', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def nest_tiny(pretrained=False, **kwargs) -> Nest: + """ Nest-T @ 224x224 + """ + model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 8), **kwargs) + model = _create_nest('nest_tiny', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def nest_base_jx(pretrained=False, **kwargs) -> Nest: + """ Nest-B @ 224x224 + """ + kwargs.setdefault('pad_type', 'same') + model_kwargs = dict( + embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), **kwargs) + model = _create_nest('nest_base_jx', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def nest_small_jx(pretrained=False, **kwargs) -> Nest: + """ Nest-S @ 224x224 + """ + kwargs.setdefault('pad_type', 'same') + model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 20), **kwargs) + model = _create_nest('nest_small_jx', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def nest_tiny_jx(pretrained=False, **kwargs) -> Nest: + """ Nest-T @ 224x224 + """ + kwargs.setdefault('pad_type', 'same') + model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 8), **kwargs) + model = _create_nest('nest_tiny_jx', pretrained=pretrained, **model_kwargs) + return model + + +register_model_deprecations(__name__, { + 'jx_nest_base': 'nest_base_jx', + 'jx_nest_small': 'nest_small_jx', + 'jx_nest_tiny': 'nest_tiny_jx', +}) \ No newline at end of file diff --git a/pytorch-image-models/timm/models/nextvit.py b/pytorch-image-models/timm/models/nextvit.py new file mode 100644 index 0000000000000000000000000000000000000000..e05bb8b5f1cb92234da8b8f4fdba196be014e905 --- /dev/null +++ b/pytorch-image-models/timm/models/nextvit.py @@ -0,0 +1,688 @@ +""" Next-ViT + +As described in https://arxiv.org/abs/2207.05501 + +Next-ViT model defs and weights adapted from https://github.com/bytedance/Next-ViT, original copyright below +""" +# Copyright (c) ByteDance Inc. All rights reserved. +from functools import partial +from typing import Optional + +import torch +import torch.nn.functional as F +from torch import nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, trunc_normal_, ConvMlp, get_norm_layer, get_act_layer, use_fused_attn +from timm.layers import ClassifierHead +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_function +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model + +__all__ = ['NextViT'] + + +def merge_pre_bn(module, pre_bn_1, pre_bn_2=None): + """ Merge pre BN to reduce inference runtime. + """ + weight = module.weight.data + if module.bias is None: + zeros = torch.zeros(module.out_chs, device=weight.device).type(weight.type()) + module.bias = nn.Parameter(zeros) + bias = module.bias.data + if pre_bn_2 is None: + assert pre_bn_1.track_running_stats is True, "Unsupported bn_module.track_running_stats is False" + assert pre_bn_1.affine is True, "Unsupported bn_module.affine is False" + + scale_invstd = pre_bn_1.running_var.add(pre_bn_1.eps).pow(-0.5) + extra_weight = scale_invstd * pre_bn_1.weight + extra_bias = pre_bn_1.bias - pre_bn_1.weight * pre_bn_1.running_mean * scale_invstd + else: + assert pre_bn_1.track_running_stats is True, "Unsupported bn_module.track_running_stats is False" + assert pre_bn_1.affine is True, "Unsupported bn_module.affine is False" + + assert pre_bn_2.track_running_stats is True, "Unsupported bn_module.track_running_stats is False" + assert pre_bn_2.affine is True, "Unsupported bn_module.affine is False" + + scale_invstd_1 = pre_bn_1.running_var.add(pre_bn_1.eps).pow(-0.5) + scale_invstd_2 = pre_bn_2.running_var.add(pre_bn_2.eps).pow(-0.5) + + extra_weight = scale_invstd_1 * pre_bn_1.weight * scale_invstd_2 * pre_bn_2.weight + extra_bias = ( + scale_invstd_2 * pre_bn_2.weight + * (pre_bn_1.bias - pre_bn_1.weight * pre_bn_1.running_mean * scale_invstd_1 - pre_bn_2.running_mean) + + pre_bn_2.bias + ) + + if isinstance(module, nn.Linear): + extra_bias = weight @ extra_bias + weight.mul_(extra_weight.view(1, weight.size(1)).expand_as(weight)) + elif isinstance(module, nn.Conv2d): + assert weight.shape[2] == 1 and weight.shape[3] == 1 + weight = weight.reshape(weight.shape[0], weight.shape[1]) + extra_bias = weight @ extra_bias + weight.mul_(extra_weight.view(1, weight.size(1)).expand_as(weight)) + weight = weight.reshape(weight.shape[0], weight.shape[1], 1, 1) + bias.add_(extra_bias) + + module.weight.data = weight + module.bias.data = bias + + +class ConvNormAct(nn.Module): + def __init__( + self, + in_chs, + out_chs, + kernel_size=3, + stride=1, + groups=1, + norm_layer=nn.BatchNorm2d, + act_layer=nn.ReLU, + ): + super(ConvNormAct, self).__init__() + self.conv = nn.Conv2d( + in_chs, out_chs, kernel_size=kernel_size, stride=stride, + padding=1, groups=groups, bias=False) + self.norm = norm_layer(out_chs) + self.act = act_layer() + + def forward(self, x): + x = self.conv(x) + x = self.norm(x) + x = self.act(x) + return x + + +def _make_divisible(v, divisor, min_value=None): + if min_value is None: + min_value = divisor + new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than 10%. + if new_v < 0.9 * v: + new_v += divisor + return new_v + + +class PatchEmbed(nn.Module): + def __init__(self, + in_chs, + out_chs, + stride=1, + norm_layer = nn.BatchNorm2d, + ): + super(PatchEmbed, self).__init__() + + if stride == 2: + self.pool = nn.AvgPool2d((2, 2), stride=2, ceil_mode=True, count_include_pad=False) + self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=1, stride=1, bias=False) + self.norm = norm_layer(out_chs) + elif in_chs != out_chs: + self.pool = nn.Identity() + self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=1, stride=1, bias=False) + self.norm = norm_layer(out_chs) + else: + self.pool = nn.Identity() + self.conv = nn.Identity() + self.norm = nn.Identity() + + def forward(self, x): + return self.norm(self.conv(self.pool(x))) + + +class ConvAttention(nn.Module): + """ + Multi-Head Convolutional Attention + """ + + def __init__(self, out_chs, head_dim, norm_layer = nn.BatchNorm2d, act_layer = nn.ReLU): + super(ConvAttention, self).__init__() + self.group_conv3x3 = nn.Conv2d( + out_chs, out_chs, + kernel_size=3, stride=1, padding=1, groups=out_chs // head_dim, bias=False + ) + self.norm = norm_layer(out_chs) + self.act = act_layer() + self.projection = nn.Conv2d(out_chs, out_chs, kernel_size=1, bias=False) + + def forward(self, x): + out = self.group_conv3x3(x) + out = self.norm(out) + out = self.act(out) + out = self.projection(out) + return out + +class NextConvBlock(nn.Module): + """ + Next Convolution Block + """ + + def __init__( + self, + in_chs, + out_chs, + stride=1, + drop_path=0., + drop=0., + head_dim=32, + mlp_ratio=3., + norm_layer=nn.BatchNorm2d, + act_layer=nn.ReLU + ): + super(NextConvBlock, self).__init__() + self.in_chs = in_chs + self.out_chs = out_chs + assert out_chs % head_dim == 0 + + self.patch_embed = PatchEmbed(in_chs, out_chs, stride, norm_layer=norm_layer) + self.mhca = ConvAttention( + out_chs, + head_dim, + norm_layer=norm_layer, + act_layer=act_layer, + ) + self.attn_drop_path = DropPath(drop_path) + + self.norm = norm_layer(out_chs) + self.mlp = ConvMlp( + out_chs, + hidden_features=int(out_chs * mlp_ratio), + drop=drop, + bias=True, + act_layer=act_layer, + ) + self.mlp_drop_path = DropPath(drop_path) + self.is_fused = False + + @torch.no_grad() + def reparameterize(self): + if not self.is_fused: + merge_pre_bn(self.mlp.fc1, self.norm) + self.norm = nn.Identity() + self.is_fused = True + + def forward(self, x): + x = self.patch_embed(x) + x = x + self.attn_drop_path(self.mhca(x)) + + out = self.norm(x) + x = x + self.mlp_drop_path(self.mlp(out)) + return x + + +class EfficientAttention(nn.Module): + """ + Efficient Multi-Head Self Attention + """ + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + dim, + out_dim=None, + head_dim=32, + qkv_bias=True, + attn_drop=0., + proj_drop=0., + sr_ratio=1, + norm_layer=nn.BatchNorm1d, + ): + super().__init__() + self.dim = dim + self.out_dim = out_dim if out_dim is not None else dim + self.num_heads = self.dim // head_dim + self.head_dim = head_dim + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.q = nn.Linear(dim, self.dim, bias=qkv_bias) + self.k = nn.Linear(dim, self.dim, bias=qkv_bias) + self.v = nn.Linear(dim, self.dim, bias=qkv_bias) + self.proj = nn.Linear(self.dim, self.out_dim) + self.attn_drop = nn.Dropout(attn_drop) + self.proj_drop = nn.Dropout(proj_drop) + + self.sr_ratio = sr_ratio + self.N_ratio = sr_ratio ** 2 + if sr_ratio > 1: + self.sr = nn.AvgPool1d(kernel_size=self.N_ratio, stride=self.N_ratio) + self.norm = norm_layer(dim) + else: + self.sr = None + self.norm = None + + def forward(self, x): + B, N, C = x.shape + q = self.q(x).reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) + + if self.sr is not None: + x = self.sr(x.transpose(1, 2)) + x = self.norm(x).transpose(1, 2) + + k = self.k(x).reshape(B, -1, self.num_heads, self.head_dim).transpose(1, 2) + v = self.v(x).reshape(B, -1, self.num_heads, self.head_dim).transpose(1, 2) + + if self.fused_attn: + x = F.scaled_dot_product_attention( + q, k, v, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-1, -2) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class NextTransformerBlock(nn.Module): + """ + Next Transformer Block + """ + + def __init__( + self, + in_chs, + out_chs, + drop_path, + stride=1, + sr_ratio=1, + mlp_ratio=2, + head_dim=32, + mix_block_ratio=0.75, + attn_drop=0., + drop=0., + norm_layer=nn.BatchNorm2d, + act_layer=nn.ReLU, + ): + super(NextTransformerBlock, self).__init__() + self.in_chs = in_chs + self.out_chs = out_chs + self.mix_block_ratio = mix_block_ratio + + self.mhsa_out_chs = _make_divisible(int(out_chs * mix_block_ratio), 32) + self.mhca_out_chs = out_chs - self.mhsa_out_chs + + self.patch_embed = PatchEmbed(in_chs, self.mhsa_out_chs, stride) + self.norm1 = norm_layer(self.mhsa_out_chs) + self.e_mhsa = EfficientAttention( + self.mhsa_out_chs, + head_dim=head_dim, + sr_ratio=sr_ratio, + attn_drop=attn_drop, + proj_drop=drop, + ) + self.mhsa_drop_path = DropPath(drop_path * mix_block_ratio) + + self.projection = PatchEmbed(self.mhsa_out_chs, self.mhca_out_chs, stride=1, norm_layer=norm_layer) + self.mhca = ConvAttention( + self.mhca_out_chs, + head_dim=head_dim, + norm_layer=norm_layer, + act_layer=act_layer, + ) + self.mhca_drop_path = DropPath(drop_path * (1 - mix_block_ratio)) + + self.norm2 = norm_layer(out_chs) + self.mlp = ConvMlp( + out_chs, + hidden_features=int(out_chs * mlp_ratio), + act_layer=act_layer, + drop=drop, + ) + self.mlp_drop_path = DropPath(drop_path) + self.is_fused = False + + @torch.no_grad() + def reparameterize(self): + if not self.is_fused: + merge_pre_bn(self.e_mhsa.q, self.norm1) + if self.e_mhsa.norm is not None: + merge_pre_bn(self.e_mhsa.k, self.norm1, self.e_mhsa.norm) + merge_pre_bn(self.e_mhsa.v, self.norm1, self.e_mhsa.norm) + self.e_mhsa.norm = nn.Identity() + else: + merge_pre_bn(self.e_mhsa.k, self.norm1) + merge_pre_bn(self.e_mhsa.v, self.norm1) + self.norm1 = nn.Identity() + + merge_pre_bn(self.mlp.fc1, self.norm2) + self.norm2 = nn.Identity() + self.is_fused = True + + def forward(self, x): + x = self.patch_embed(x) + B, C, H, W = x.shape + + out = self.norm1(x) + out = out.reshape(B, C, -1).transpose(-1, -2) + out = self.mhsa_drop_path(self.e_mhsa(out)) + x = x + out.transpose(-1, -2).reshape(B, C, H, W) + + out = self.projection(x) + out = out + self.mhca_drop_path(self.mhca(out)) + x = torch.cat([x, out], dim=1) + + out = self.norm2(x) + x = x + self.mlp_drop_path(self.mlp(out)) + return x + + +class NextStage(nn.Module): + + def __init__( + self, + in_chs, + block_chs, + block_types, + stride=2, + sr_ratio=1, + mix_block_ratio=1.0, + drop=0., + attn_drop=0., + drop_path=0., + head_dim=32, + norm_layer=nn.BatchNorm2d, + act_layer=nn.ReLU, + ): + super().__init__() + self.grad_checkpointing = False + + blocks = [] + for block_idx, block_type in enumerate(block_types): + stride = stride if block_idx == 0 else 1 + out_chs = block_chs[block_idx] + block_type = block_types[block_idx] + dpr = drop_path[block_idx] if isinstance(drop_path, (list, tuple)) else drop_path + if block_type is NextConvBlock: + layer = NextConvBlock( + in_chs, + out_chs, + stride=stride, + drop_path=dpr, + drop=drop, + head_dim=head_dim, + norm_layer=norm_layer, + act_layer=act_layer, + ) + blocks.append(layer) + elif block_type is NextTransformerBlock: + layer = NextTransformerBlock( + in_chs, + out_chs, + drop_path=dpr, + stride=stride, + sr_ratio=sr_ratio, + head_dim=head_dim, + mix_block_ratio=mix_block_ratio, + attn_drop=attn_drop, + drop=drop, + norm_layer=norm_layer, + act_layer=act_layer, + ) + blocks.append(layer) + in_chs = out_chs + + self.blocks = nn.Sequential(*blocks) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + def forward(self, x): + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class NextViT(nn.Module): + def __init__( + self, + in_chans, + num_classes=1000, + global_pool='avg', + stem_chs=(64, 32, 64), + depths=(3, 4, 10, 3), + strides=(1, 2, 2, 2), + sr_ratios=(8, 4, 2, 1), + drop_path_rate=0.1, + attn_drop_rate=0., + drop_rate=0., + head_dim=32, + mix_block_ratio=0.75, + norm_layer=nn.BatchNorm2d, + act_layer=None, + ): + super(NextViT, self).__init__() + self.grad_checkpointing = False + self.num_classes = num_classes + norm_layer = get_norm_layer(norm_layer) + if act_layer is None: + act_layer = partial(nn.ReLU, inplace=True) + else: + act_layer = get_act_layer(act_layer) + + self.stage_out_chs = [ + [96] * (depths[0]), + [192] * (depths[1] - 1) + [256], + [384, 384, 384, 384, 512] * (depths[2] // 5), + [768] * (depths[3] - 1) + [1024] + ] + self.feature_info = [dict( + num_chs=sc[-1], + reduction=2**(i + 2), + module=f'stages.{i}' + ) for i, sc in enumerate(self.stage_out_chs)] + + # Next Hybrid Strategy + self.stage_block_types = [ + [NextConvBlock] * depths[0], + [NextConvBlock] * (depths[1] - 1) + [NextTransformerBlock], + [NextConvBlock, NextConvBlock, NextConvBlock, NextConvBlock, NextTransformerBlock] * (depths[2] // 5), + [NextConvBlock] * (depths[3] - 1) + [NextTransformerBlock]] + + self.stem = nn.Sequential( + ConvNormAct(in_chans, stem_chs[0], kernel_size=3, stride=2, norm_layer=norm_layer, act_layer=act_layer), + ConvNormAct(stem_chs[0], stem_chs[1], kernel_size=3, stride=1, norm_layer=norm_layer, act_layer=act_layer), + ConvNormAct(stem_chs[1], stem_chs[2], kernel_size=3, stride=1, norm_layer=norm_layer, act_layer=act_layer), + ConvNormAct(stem_chs[2], stem_chs[2], kernel_size=3, stride=2, norm_layer=norm_layer, act_layer=act_layer), + ) + in_chs = out_chs = stem_chs[-1] + stages = [] + idx = 0 + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + for stage_idx in range(len(depths)): + stage = NextStage( + in_chs=in_chs, + block_chs=self.stage_out_chs[stage_idx], + block_types=self.stage_block_types[stage_idx], + stride=strides[stage_idx], + sr_ratio=sr_ratios[stage_idx], + mix_block_ratio=mix_block_ratio, + head_dim=head_dim, + drop=drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[stage_idx], + norm_layer=norm_layer, + act_layer=act_layer, + ) + in_chs = out_chs = self.stage_out_chs[stage_idx][-1] + stages += [stage] + idx += depths[stage_idx] + self.num_features = self.head_hidden_size = out_chs + self.stages = nn.Sequential(*stages) + self.norm = norm_layer(out_chs) + self.head = ClassifierHead(pool_type=global_pool, in_features=out_chs, num_classes=num_classes) + + self.stage_out_idx = [sum(depths[:idx + 1]) - 1 for idx in range(len(depths))] + self._initialize_weights() + + def _initialize_weights(self): + for n, m in self.named_modules(): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if hasattr(m, 'bias') and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Conv2d): + trunc_normal_(m.weight, std=.02) + if hasattr(m, 'bias') and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', # stem and embed + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+)\.blocks\.(\d+)', None), + (r'^norm', (99999,)), + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + for stage in self.stages: + stage.set_grad_checkpointing(enable=enable) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + """ Remap original checkpoints -> timm """ + if 'head.fc.weight' in state_dict: + return state_dict # non-original + + D = model.state_dict() + out_dict = {} + # remap originals based on order + for ka, kb, va, vb in zip(D.keys(), state_dict.keys(), D.values(), state_dict.values()): + out_dict[ka] = vb + + return out_dict + + +def _create_nextvit(variant, pretrained=False, **kwargs): + default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1)))) + out_indices = kwargs.pop('out_indices', default_out_indices) + + model = build_model_with_cfg( + NextViT, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs) + + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.95, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.0.conv', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'nextvit_small.bd_in1k': _cfg( + hf_hub_id='timm/', + ), + 'nextvit_base.bd_in1k': _cfg( + hf_hub_id='timm/', + ), + 'nextvit_large.bd_in1k': _cfg( + hf_hub_id='timm/', + ), + 'nextvit_small.bd_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), + 'nextvit_base.bd_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), + 'nextvit_large.bd_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), + + 'nextvit_small.bd_ssld_6m_in1k': _cfg( + hf_hub_id='timm/', + ), + 'nextvit_base.bd_ssld_6m_in1k': _cfg( + hf_hub_id='timm/', + ), + 'nextvit_large.bd_ssld_6m_in1k': _cfg( + hf_hub_id='timm/', + ), + 'nextvit_small.bd_ssld_6m_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), + 'nextvit_base.bd_ssld_6m_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), + 'nextvit_large.bd_ssld_6m_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), +}) + + +@register_model +def nextvit_small(pretrained=False, **kwargs): + model_args = dict(depths=(3, 4, 10, 3), drop_path_rate=0.1) + model = _create_nextvit( + 'nextvit_small', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def nextvit_base(pretrained=False, **kwargs): + model_args = dict(depths=(3, 4, 20, 3), drop_path_rate=0.2) + model = _create_nextvit( + 'nextvit_base', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def nextvit_large(pretrained=False, **kwargs): + model_args = dict(depths=(3, 4, 30, 3), drop_path_rate=0.2) + model = _create_nextvit( + 'nextvit_large', pretrained=pretrained, **dict(model_args, **kwargs)) + return model diff --git a/pytorch-image-models/timm/models/nfnet.py b/pytorch-image-models/timm/models/nfnet.py new file mode 100644 index 0000000000000000000000000000000000000000..2aa275645e7a9d8b3b923a3be25ffb7df7037bc6 --- /dev/null +++ b/pytorch-image-models/timm/models/nfnet.py @@ -0,0 +1,1045 @@ +""" Normalization Free Nets. NFNet, NF-RegNet, NF-ResNet (pre-activation) Models + +Paper: `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 + +Paper: `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + +Official Deepmind JAX code: https://github.com/deepmind/deepmind-research/tree/master/nfnets + +Status: +* These models are a work in progress, experiments ongoing. +* Pretrained weights for two models so far, more to come. +* Model details updated to closer match official JAX code now that it's released +* NF-ResNet, NF-RegNet-B, and NFNet-F models supported + +Hacked together by / copyright Ross Wightman, 2021. +""" +from collections import OrderedDict +from dataclasses import dataclass, replace +from functools import partial +from typing import Callable, Tuple, Optional + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ClassifierHead, DropPath, AvgPool2dSame, ScaledStdConv2d, ScaledStdConv2dSame, \ + get_act_layer, get_act_fn, get_attn, make_divisible +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model + +__all__ = ['NormFreeNet', 'NfCfg'] # model_registry will add each entrypoint fn to this + + +@dataclass +class NfCfg: + depths: Tuple[int, int, int, int] + channels: Tuple[int, int, int, int] + alpha: float = 0.2 + stem_type: str = '3x3' + stem_chs: Optional[int] = None + group_size: Optional[int] = None + attn_layer: Optional[str] = None + attn_kwargs: dict = None + attn_gain: float = 2.0 # NF correction gain to apply if attn layer is used + width_factor: float = 1.0 + bottle_ratio: float = 0.5 + num_features: int = 0 # num out_channels for final conv, no final_conv if 0 + ch_div: int = 8 # round channels % 8 == 0 to keep tensor-core use optimal + reg: bool = False # enables EfficientNet-like options used in RegNet variants, expand from in_chs, se in middle + extra_conv: bool = False # extra 3x3 bottleneck convolution for NFNet models + gamma_in_act: bool = False + same_padding: bool = False + std_conv_eps: float = 1e-5 + skipinit: bool = False # disabled by default, non-trivial performance impact + zero_init_fc: bool = False + act_layer: str = 'silu' + + +class GammaAct(nn.Module): + def __init__(self, act_type='relu', gamma: float = 1.0, inplace=False): + super().__init__() + self.act_fn = get_act_fn(act_type) + self.gamma = gamma + self.inplace = inplace + + def forward(self, x): + return self.act_fn(x, inplace=self.inplace).mul_(self.gamma) + + +def act_with_gamma(act_type, gamma: float = 1.): + def _create(inplace=False): + return GammaAct(act_type, gamma=gamma, inplace=inplace) + return _create + + +class DownsampleAvg(nn.Module): + def __init__( + self, + in_chs: int, + out_chs: int, + stride: int = 1, + dilation: int = 1, + first_dilation: Optional[int] = None, + conv_layer: Callable = ScaledStdConv2d, + ): + """ AvgPool Downsampling as in 'D' ResNet variants. Support for dilation.""" + super(DownsampleAvg, self).__init__() + avg_stride = stride if dilation == 1 else 1 + if stride > 1 or dilation > 1: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + else: + self.pool = nn.Identity() + self.conv = conv_layer(in_chs, out_chs, 1, stride=1) + + def forward(self, x): + return self.conv(self.pool(x)) + + +@register_notrace_module # reason: mul_ causes FX to drop a relevant node. https://github.com/pytorch/pytorch/issues/68301 +class NormFreeBlock(nn.Module): + """Normalization-Free pre-activation block. + """ + + def __init__( + self, + in_chs: int, + out_chs: Optional[int] = None, + stride: int = 1, + dilation: int = 1, + first_dilation: Optional[int] = None, + alpha: float = 1.0, + beta: float = 1.0, + bottle_ratio: float = 0.25, + group_size: Optional[int] = None, + ch_div: int = 1, + reg: bool = True, + extra_conv: bool = False, + skipinit: bool = False, + attn_layer: Optional[Callable] = None, + attn_gain: bool = 2.0, + act_layer: Optional[Callable] = None, + conv_layer: Callable = ScaledStdConv2d, + drop_path_rate: float = 0., + ): + super().__init__() + first_dilation = first_dilation or dilation + out_chs = out_chs or in_chs + # RegNet variants scale bottleneck from in_chs, otherwise scale from out_chs like ResNet + mid_chs = make_divisible(in_chs * bottle_ratio if reg else out_chs * bottle_ratio, ch_div) + groups = 1 if not group_size else mid_chs // group_size + if group_size and group_size % ch_div == 0: + mid_chs = group_size * groups # correct mid_chs if group_size divisible by ch_div, otherwise error + self.alpha = alpha + self.beta = beta + self.attn_gain = attn_gain + + if in_chs != out_chs or stride != 1 or dilation != first_dilation: + self.downsample = DownsampleAvg( + in_chs, + out_chs, + stride=stride, + dilation=dilation, + first_dilation=first_dilation, + conv_layer=conv_layer, + ) + else: + self.downsample = None + + self.act1 = act_layer() + self.conv1 = conv_layer(in_chs, mid_chs, 1) + self.act2 = act_layer(inplace=True) + self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) + if extra_conv: + self.act2b = act_layer(inplace=True) + self.conv2b = conv_layer(mid_chs, mid_chs, 3, stride=1, dilation=dilation, groups=groups) + else: + self.act2b = None + self.conv2b = None + if reg and attn_layer is not None: + self.attn = attn_layer(mid_chs) # RegNet blocks apply attn btw conv2 & 3 + else: + self.attn = None + self.act3 = act_layer() + self.conv3 = conv_layer(mid_chs, out_chs, 1, gain_init=1. if skipinit else 0.) + if not reg and attn_layer is not None: + self.attn_last = attn_layer(out_chs) # ResNet blocks apply attn after conv3 + else: + self.attn_last = None + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + self.skipinit_gain = nn.Parameter(torch.tensor(0.)) if skipinit else None + + def forward(self, x): + out = self.act1(x) * self.beta + + # shortcut branch + shortcut = x + if self.downsample is not None: + shortcut = self.downsample(out) + + # residual branch + out = self.conv1(out) + out = self.conv2(self.act2(out)) + if self.conv2b is not None: + out = self.conv2b(self.act2b(out)) + if self.attn is not None: + out = self.attn_gain * self.attn(out) + out = self.conv3(self.act3(out)) + if self.attn_last is not None: + out = self.attn_gain * self.attn_last(out) + out = self.drop_path(out) + + if self.skipinit_gain is not None: + out.mul_(self.skipinit_gain) + out = out * self.alpha + shortcut + return out + + +def create_stem( + in_chs: int, + out_chs: int, + stem_type: str = '', + conv_layer: Optional[Callable] = None, + act_layer: Optional[Callable] = None, + preact_feature: bool = True, +): + stem_stride = 2 + stem_feature = dict(num_chs=out_chs, reduction=2, module='stem.conv') + stem = OrderedDict() + assert stem_type in ('', 'deep', 'deep_tiered', 'deep_quad', '3x3', '7x7', 'deep_pool', '3x3_pool', '7x7_pool') + if 'deep' in stem_type: + if 'quad' in stem_type: + # 4 deep conv stack as in NFNet-F models + assert not 'pool' in stem_type + stem_chs = (out_chs // 8, out_chs // 4, out_chs // 2, out_chs) + strides = (2, 1, 1, 2) + stem_stride = 4 + stem_feature = dict(num_chs=out_chs // 2, reduction=2, module='stem.conv3') + else: + if 'tiered' in stem_type: + stem_chs = (3 * out_chs // 8, out_chs // 2, out_chs) # 'T' resnets in resnet.py + else: + stem_chs = (out_chs // 2, out_chs // 2, out_chs) # 'D' ResNets + strides = (2, 1, 1) + stem_feature = dict(num_chs=out_chs // 2, reduction=2, module='stem.conv2') + last_idx = len(stem_chs) - 1 + for i, (c, s) in enumerate(zip(stem_chs, strides)): + stem[f'conv{i + 1}'] = conv_layer(in_chs, c, kernel_size=3, stride=s) + if i != last_idx: + stem[f'act{i + 2}'] = act_layer(inplace=True) + in_chs = c + elif '3x3' in stem_type: + # 3x3 stem conv as in RegNet + stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=3, stride=2) + else: + # 7x7 stem conv as in ResNet + stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2) + + if 'pool' in stem_type: + stem['pool'] = nn.MaxPool2d(3, stride=2, padding=1) + stem_stride = 4 + + return nn.Sequential(stem), stem_stride, stem_feature + + +# from https://github.com/deepmind/deepmind-research/tree/master/nfnets +_nonlin_gamma = dict( + identity=1.0, + celu=1.270926833152771, + elu=1.2716004848480225, + gelu=1.7015043497085571, + leaky_relu=1.70590341091156, + log_sigmoid=1.9193484783172607, + log_softmax=1.0002083778381348, + relu=1.7139588594436646, + relu6=1.7131484746932983, + selu=1.0008515119552612, + sigmoid=4.803835391998291, + silu=1.7881293296813965, + softsign=2.338853120803833, + softplus=1.9203323125839233, + tanh=1.5939117670059204, +) + + +class NormFreeNet(nn.Module): + """ Normalization-Free Network + + As described in : + `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 + and + `High-Performance Large-Scale Image Recognition Without Normalization` - https://arxiv.org/abs/2102.06171 + + This model aims to cover both the NFRegNet-Bx models as detailed in the paper's code snippets and + the (preact) ResNet models described earlier in the paper. + + There are a few differences: + * channels are rounded to be divisible by 8 by default (keep tensor core kernels happy), + this changes channel dim and param counts slightly from the paper models + * activation correcting gamma constants are moved into the ScaledStdConv as it has less performance + impact in PyTorch when done with the weight scaling there. This likely wasn't a concern in the JAX impl. + * a config option `gamma_in_act` can be enabled to not apply gamma in StdConv as described above, but + apply it in each activation. This is slightly slower, numerically different, but matches official impl. + * skipinit is disabled by default, it seems to have a rather drastic impact on GPU memory use and throughput + for what it is/does. Approx 8-10% throughput loss. + """ + def __init__( + self, + cfg: NfCfg, + num_classes: int = 1000, + in_chans: int = 3, + global_pool: str = 'avg', + output_stride: int = 32, + drop_rate: float = 0., + drop_path_rate: float = 0., + **kwargs, + ): + """ + Args: + cfg: Model architecture configuration. + num_classes: Number of classifier classes. + in_chans: Number of input channels. + global_pool: Global pooling type. + output_stride: Output stride of network, one of (8, 16, 32). + drop_rate: Dropout rate. + drop_path_rate: Stochastic depth drop-path rate. + **kwargs: Extra kwargs overlayed onto cfg. + """ + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + + cfg = replace(cfg, **kwargs) + assert cfg.act_layer in _nonlin_gamma, f"Please add non-linearity constants for activation ({cfg.act_layer})." + conv_layer = ScaledStdConv2dSame if cfg.same_padding else ScaledStdConv2d + if cfg.gamma_in_act: + act_layer = act_with_gamma(cfg.act_layer, gamma=_nonlin_gamma[cfg.act_layer]) + conv_layer = partial(conv_layer, eps=cfg.std_conv_eps) + else: + act_layer = get_act_layer(cfg.act_layer) + conv_layer = partial(conv_layer, gamma=_nonlin_gamma[cfg.act_layer], eps=cfg.std_conv_eps) + attn_layer = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None + + stem_chs = make_divisible((cfg.stem_chs or cfg.channels[0]) * cfg.width_factor, cfg.ch_div) + self.stem, stem_stride, stem_feat = create_stem( + in_chans, + stem_chs, + cfg.stem_type, + conv_layer=conv_layer, + act_layer=act_layer, + ) + + self.feature_info = [stem_feat] + drop_path_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] + prev_chs = stem_chs + net_stride = stem_stride + dilation = 1 + expected_var = 1.0 + stages = [] + for stage_idx, stage_depth in enumerate(cfg.depths): + stride = 1 if stage_idx == 0 and stem_stride > 2 else 2 + if net_stride >= output_stride and stride > 1: + dilation *= stride + stride = 1 + net_stride *= stride + first_dilation = 1 if dilation in (1, 2) else 2 + + blocks = [] + for block_idx in range(cfg.depths[stage_idx]): + first_block = block_idx == 0 and stage_idx == 0 + out_chs = make_divisible(cfg.channels[stage_idx] * cfg.width_factor, cfg.ch_div) + blocks += [NormFreeBlock( + in_chs=prev_chs, out_chs=out_chs, + alpha=cfg.alpha, + beta=1. / expected_var ** 0.5, + stride=stride if block_idx == 0 else 1, + dilation=dilation, + first_dilation=first_dilation, + group_size=cfg.group_size, + bottle_ratio=1. if cfg.reg and first_block else cfg.bottle_ratio, + ch_div=cfg.ch_div, + reg=cfg.reg, + extra_conv=cfg.extra_conv, + skipinit=cfg.skipinit, + attn_layer=attn_layer, + attn_gain=cfg.attn_gain, + act_layer=act_layer, + conv_layer=conv_layer, + drop_path_rate=drop_path_rates[stage_idx][block_idx], + )] + if block_idx == 0: + expected_var = 1. # expected var is reset after first block of each stage + expected_var += cfg.alpha ** 2 # Even if reset occurs, increment expected variance + first_dilation = dilation + prev_chs = out_chs + self.feature_info += [dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}')] + stages += [nn.Sequential(*blocks)] + self.stages = nn.Sequential(*stages) + + if cfg.num_features: + # The paper NFRegNet models have an EfficientNet-like final head convolution. + self.num_features = make_divisible(cfg.width_factor * cfg.num_features, cfg.ch_div) + self.final_conv = conv_layer(prev_chs, self.num_features, 1) + self.feature_info[-1] = dict(num_chs=self.num_features, reduction=net_stride, module=f'final_conv') + else: + self.num_features = prev_chs + self.final_conv = nn.Identity() + self.final_act = act_layer(inplace=cfg.num_features > 0) + + self.head_hidden_size = self.num_features + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=self.drop_rate, + ) + + for n, m in self.named_modules(): + if 'fc' in n and isinstance(m, nn.Linear): + if cfg.zero_init_fc: + nn.init.zeros_(m.weight) + else: + nn.init.normal_(m.weight, 0., .01) + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='linear') + if m.bias is not None: + nn.init.zeros_(m.bias) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^stem', + blocks=[ + (r'^stages\.(\d+)' if coarse else r'^stages\.(\d+)\.(\d+)', None), + (r'^final_conv', (99999,)) + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + x = self.final_conv(x) + x = self.final_act(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _nfres_cfg( + depths, + channels=(256, 512, 1024, 2048), + group_size=None, + act_layer='relu', + attn_layer=None, + attn_kwargs=None, +): + attn_kwargs = attn_kwargs or {} + cfg = NfCfg( + depths=depths, + channels=channels, + stem_type='7x7_pool', + stem_chs=64, + bottle_ratio=0.25, + group_size=group_size, + act_layer=act_layer, + attn_layer=attn_layer, + attn_kwargs=attn_kwargs, + ) + return cfg + + +def _nfreg_cfg(depths, channels=(48, 104, 208, 440)): + num_features = 1280 * channels[-1] // 440 + attn_kwargs = dict(rd_ratio=0.5) + cfg = NfCfg( + depths=depths, + channels=channels, + stem_type='3x3', + group_size=8, + width_factor=0.75, + bottle_ratio=2.25, + num_features=num_features, + reg=True, + attn_layer='se', + attn_kwargs=attn_kwargs, + ) + return cfg + + +def _nfnet_cfg( + depths, + channels=(256, 512, 1536, 1536), + group_size=128, + bottle_ratio=0.5, + feat_mult=2., + act_layer='gelu', + attn_layer='se', + attn_kwargs=None, +): + num_features = int(channels[-1] * feat_mult) + attn_kwargs = attn_kwargs if attn_kwargs is not None else dict(rd_ratio=0.5) + cfg = NfCfg( + depths=depths, + channels=channels, + stem_type='deep_quad', + stem_chs=128, + group_size=group_size, + bottle_ratio=bottle_ratio, + extra_conv=True, + num_features=num_features, + act_layer=act_layer, + attn_layer=attn_layer, + attn_kwargs=attn_kwargs, + ) + return cfg + + +def _dm_nfnet_cfg( + depths, + channels=(256, 512, 1536, 1536), + act_layer='gelu', + skipinit=True, +): + cfg = NfCfg( + depths=depths, + channels=channels, + stem_type='deep_quad', + stem_chs=128, + group_size=128, + bottle_ratio=0.5, + extra_conv=True, + gamma_in_act=True, + same_padding=True, + skipinit=skipinit, + num_features=int(channels[-1] * 2.0), + act_layer=act_layer, + attn_layer='se', + attn_kwargs=dict(rd_ratio=0.5), + ) + return cfg + + +model_cfgs = dict( + # NFNet-F models w/ GELU compatible with DeepMind weights + dm_nfnet_f0=_dm_nfnet_cfg(depths=(1, 2, 6, 3)), + dm_nfnet_f1=_dm_nfnet_cfg(depths=(2, 4, 12, 6)), + dm_nfnet_f2=_dm_nfnet_cfg(depths=(3, 6, 18, 9)), + dm_nfnet_f3=_dm_nfnet_cfg(depths=(4, 8, 24, 12)), + dm_nfnet_f4=_dm_nfnet_cfg(depths=(5, 10, 30, 15)), + dm_nfnet_f5=_dm_nfnet_cfg(depths=(6, 12, 36, 18)), + dm_nfnet_f6=_dm_nfnet_cfg(depths=(7, 14, 42, 21)), + + # NFNet-F models w/ GELU + nfnet_f0=_nfnet_cfg(depths=(1, 2, 6, 3)), + nfnet_f1=_nfnet_cfg(depths=(2, 4, 12, 6)), + nfnet_f2=_nfnet_cfg(depths=(3, 6, 18, 9)), + nfnet_f3=_nfnet_cfg(depths=(4, 8, 24, 12)), + nfnet_f4=_nfnet_cfg(depths=(5, 10, 30, 15)), + nfnet_f5=_nfnet_cfg(depths=(6, 12, 36, 18)), + nfnet_f6=_nfnet_cfg(depths=(7, 14, 42, 21)), + nfnet_f7=_nfnet_cfg(depths=(8, 16, 48, 24)), + + # Experimental 'light' versions of NFNet-F that are little leaner, w/ SiLU act + nfnet_l0=_nfnet_cfg( + depths=(1, 2, 6, 3), feat_mult=1.5, group_size=64, bottle_ratio=0.25, + attn_kwargs=dict(rd_ratio=0.25, rd_divisor=8), act_layer='silu'), + eca_nfnet_l0=_nfnet_cfg( + depths=(1, 2, 6, 3), feat_mult=1.5, group_size=64, bottle_ratio=0.25, + attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), + eca_nfnet_l1=_nfnet_cfg( + depths=(2, 4, 12, 6), feat_mult=2, group_size=64, bottle_ratio=0.25, + attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), + eca_nfnet_l2=_nfnet_cfg( + depths=(3, 6, 18, 9), feat_mult=2, group_size=64, bottle_ratio=0.25, + attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), + eca_nfnet_l3=_nfnet_cfg( + depths=(4, 8, 24, 12), feat_mult=2, group_size=64, bottle_ratio=0.25, + attn_layer='eca', attn_kwargs=dict(), act_layer='silu'), + + # EffNet influenced RegNet defs. + # NOTE: These aren't quite the official ver, ch_div=1 must be set for exact ch counts. I round to ch_div=8. + nf_regnet_b0=_nfreg_cfg(depths=(1, 3, 6, 6)), + nf_regnet_b1=_nfreg_cfg(depths=(2, 4, 7, 7)), + nf_regnet_b2=_nfreg_cfg(depths=(2, 4, 8, 8), channels=(56, 112, 232, 488)), + nf_regnet_b3=_nfreg_cfg(depths=(2, 5, 9, 9), channels=(56, 128, 248, 528)), + nf_regnet_b4=_nfreg_cfg(depths=(2, 6, 11, 11), channels=(64, 144, 288, 616)), + nf_regnet_b5=_nfreg_cfg(depths=(3, 7, 14, 14), channels=(80, 168, 336, 704)), + + # ResNet (preact, D style deep stem/avg down) defs + nf_resnet26=_nfres_cfg(depths=(2, 2, 2, 2)), + nf_resnet50=_nfres_cfg(depths=(3, 4, 6, 3)), + nf_resnet101=_nfres_cfg(depths=(3, 4, 23, 3)), + + nf_seresnet26=_nfres_cfg(depths=(2, 2, 2, 2), attn_layer='se', attn_kwargs=dict(rd_ratio=1/16)), + nf_seresnet50=_nfres_cfg(depths=(3, 4, 6, 3), attn_layer='se', attn_kwargs=dict(rd_ratio=1/16)), + nf_seresnet101=_nfres_cfg(depths=(3, 4, 23, 3), attn_layer='se', attn_kwargs=dict(rd_ratio=1/16)), + + nf_ecaresnet26=_nfres_cfg(depths=(2, 2, 2, 2), attn_layer='eca', attn_kwargs=dict()), + nf_ecaresnet50=_nfres_cfg(depths=(3, 4, 6, 3), attn_layer='eca', attn_kwargs=dict()), + nf_ecaresnet101=_nfres_cfg(depths=(3, 4, 23, 3), attn_layer='eca', attn_kwargs=dict()), + + test_nfnet=_nfnet_cfg( + depths=(1, 1, 1, 1), channels=(32, 64, 96, 128), feat_mult=1.5, group_size=8, bottle_ratio=0.25, + attn_kwargs=dict(rd_ratio=0.25, rd_divisor=8), act_layer='silu'), +) + + +def _create_normfreenet(variant, pretrained=False, **kwargs): + model_cfg = model_cfgs[variant] + feature_cfg = dict(flatten_sequential=True) + return build_model_with_cfg( + NormFreeNet, + variant, + pretrained, + model_cfg=model_cfg, + feature_cfg=feature_cfg, + **kwargs, + ) + + +def _dcfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.9, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv1', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'dm_nfnet_f0.dm_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f0-604f9c3a.pth', + pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256), crop_pct=.9, crop_mode='squash'), + 'dm_nfnet_f1.dm_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f1-fc540f82.pth', + pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 320, 320), crop_pct=0.91, crop_mode='squash'), + 'dm_nfnet_f2.dm_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f2-89875923.pth', + pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 352, 352), crop_pct=0.92, crop_mode='squash'), + 'dm_nfnet_f3.dm_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f3-d74ab3aa.pth', + pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 416, 416), crop_pct=0.94, crop_mode='squash'), + 'dm_nfnet_f4.dm_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f4-0ac5b10b.pth', + pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 512, 512), crop_pct=0.951, crop_mode='squash'), + 'dm_nfnet_f5.dm_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f5-ecb20ab1.pth', + pool_size=(13, 13), input_size=(3, 416, 416), test_input_size=(3, 544, 544), crop_pct=0.954, crop_mode='squash'), + 'dm_nfnet_f6.dm_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f6-e0f12116.pth', + pool_size=(14, 14), input_size=(3, 448, 448), test_input_size=(3, 576, 576), crop_pct=0.956, crop_mode='squash'), + + 'nfnet_f0': _dcfg( + url='', pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256)), + 'nfnet_f1': _dcfg( + url='', pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 320, 320)), + 'nfnet_f2': _dcfg( + url='', pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 352, 352)), + 'nfnet_f3': _dcfg( + url='', pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 416, 416)), + 'nfnet_f4': _dcfg( + url='', pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 512, 512)), + 'nfnet_f5': _dcfg( + url='', pool_size=(13, 13), input_size=(3, 416, 416), test_input_size=(3, 544, 544)), + 'nfnet_f6': _dcfg( + url='', pool_size=(14, 14), input_size=(3, 448, 448), test_input_size=(3, 576, 576)), + 'nfnet_f7': _dcfg( + url='', pool_size=(15, 15), input_size=(3, 480, 480), test_input_size=(3, 608, 608)), + + 'nfnet_l0.ra2_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nfnet_l0_ra2-45c6688d.pth', + pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'eca_nfnet_l0.ra2_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l0_ra2-e3e9ac50.pth', + pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'eca_nfnet_l1.ra2_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l1_ra2-7dce93cd.pth', + pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 320, 320), test_crop_pct=1.0), + 'eca_nfnet_l2.ra3_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l2_ra3-da781a61.pth', + pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 384, 384), test_crop_pct=1.0), + 'eca_nfnet_l3': _dcfg( + url='', + pool_size=(11, 11), input_size=(3, 352, 352), test_input_size=(3, 448, 448), test_crop_pct=1.0), + + 'nf_regnet_b0': _dcfg( + url='', pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256), first_conv='stem.conv'), + 'nf_regnet_b1.ra2_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nf_regnet_b1_256_ra2-ad85cfef.pth', + pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 288, 288), first_conv='stem.conv'), # NOT to paper spec + 'nf_regnet_b2': _dcfg( + url='', pool_size=(8, 8), input_size=(3, 240, 240), test_input_size=(3, 272, 272), first_conv='stem.conv'), + 'nf_regnet_b3': _dcfg( + url='', pool_size=(9, 9), input_size=(3, 288, 288), test_input_size=(3, 320, 320), first_conv='stem.conv'), + 'nf_regnet_b4': _dcfg( + url='', pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 384, 384), first_conv='stem.conv'), + 'nf_regnet_b5': _dcfg( + url='', pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 456, 456), first_conv='stem.conv'), + + 'nf_resnet26': _dcfg(url='', first_conv='stem.conv'), + 'nf_resnet50.ra2_in1k': _dcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nf_resnet50_ra2-9f236009.pth', + pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 288, 288), crop_pct=0.94, first_conv='stem.conv'), + 'nf_resnet101': _dcfg(url='', first_conv='stem.conv'), + + 'nf_seresnet26': _dcfg(url='', first_conv='stem.conv'), + 'nf_seresnet50': _dcfg(url='', first_conv='stem.conv'), + 'nf_seresnet101': _dcfg(url='', first_conv='stem.conv'), + + 'nf_ecaresnet26': _dcfg(url='', first_conv='stem.conv'), + 'nf_ecaresnet50': _dcfg(url='', first_conv='stem.conv'), + 'nf_ecaresnet101': _dcfg(url='', first_conv='stem.conv'), + + 'test_nfnet.r160_in1k': _dcfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + crop_pct=0.95, input_size=(3, 160, 160), pool_size=(5, 5)), +}) + + +@register_model +def dm_nfnet_f0(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F0 (DeepMind weight compatible) + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('dm_nfnet_f0', pretrained=pretrained, **kwargs) + + +@register_model +def dm_nfnet_f1(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F1 (DeepMind weight compatible) + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('dm_nfnet_f1', pretrained=pretrained, **kwargs) + + +@register_model +def dm_nfnet_f2(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F2 (DeepMind weight compatible) + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('dm_nfnet_f2', pretrained=pretrained, **kwargs) + + +@register_model +def dm_nfnet_f3(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F3 (DeepMind weight compatible) + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('dm_nfnet_f3', pretrained=pretrained, **kwargs) + + +@register_model +def dm_nfnet_f4(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F4 (DeepMind weight compatible) + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('dm_nfnet_f4', pretrained=pretrained, **kwargs) + + +@register_model +def dm_nfnet_f5(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F5 (DeepMind weight compatible) + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('dm_nfnet_f5', pretrained=pretrained, **kwargs) + + +@register_model +def dm_nfnet_f6(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F6 (DeepMind weight compatible) + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('dm_nfnet_f6', pretrained=pretrained, **kwargs) + + +@register_model +def nfnet_f0(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F0 + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('nfnet_f0', pretrained=pretrained, **kwargs) + + +@register_model +def nfnet_f1(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F1 + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('nfnet_f1', pretrained=pretrained, **kwargs) + + +@register_model +def nfnet_f2(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F2 + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('nfnet_f2', pretrained=pretrained, **kwargs) + + +@register_model +def nfnet_f3(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F3 + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('nfnet_f3', pretrained=pretrained, **kwargs) + + +@register_model +def nfnet_f4(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F4 + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('nfnet_f4', pretrained=pretrained, **kwargs) + + +@register_model +def nfnet_f5(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F5 + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('nfnet_f5', pretrained=pretrained, **kwargs) + + +@register_model +def nfnet_f6(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F6 + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('nfnet_f6', pretrained=pretrained, **kwargs) + + +@register_model +def nfnet_f7(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-F7 + `High-Performance Large-Scale Image Recognition Without Normalization` + - https://arxiv.org/abs/2102.06171 + """ + return _create_normfreenet('nfnet_f7', pretrained=pretrained, **kwargs) + + +@register_model +def nfnet_l0(pretrained=False, **kwargs) -> NormFreeNet: + """ NFNet-L0b w/ SiLU + My experimental 'light' model w/ F0 repeats, 1.5x final_conv mult, 64 group_size, .25 bottleneck & SE ratio + """ + return _create_normfreenet('nfnet_l0', pretrained=pretrained, **kwargs) + + +@register_model +def eca_nfnet_l0(pretrained=False, **kwargs) -> NormFreeNet: + """ ECA-NFNet-L0 w/ SiLU + My experimental 'light' model w/ F0 repeats, 1.5x final_conv mult, 64 group_size, .25 bottleneck & ECA attn + """ + return _create_normfreenet('eca_nfnet_l0', pretrained=pretrained, **kwargs) + + +@register_model +def eca_nfnet_l1(pretrained=False, **kwargs) -> NormFreeNet: + """ ECA-NFNet-L1 w/ SiLU + My experimental 'light' model w/ F1 repeats, 2.0x final_conv mult, 64 group_size, .25 bottleneck & ECA attn + """ + return _create_normfreenet('eca_nfnet_l1', pretrained=pretrained, **kwargs) + + +@register_model +def eca_nfnet_l2(pretrained=False, **kwargs) -> NormFreeNet: + """ ECA-NFNet-L2 w/ SiLU + My experimental 'light' model w/ F2 repeats, 2.0x final_conv mult, 64 group_size, .25 bottleneck & ECA attn + """ + return _create_normfreenet('eca_nfnet_l2', pretrained=pretrained, **kwargs) + + +@register_model +def eca_nfnet_l3(pretrained=False, **kwargs) -> NormFreeNet: + """ ECA-NFNet-L3 w/ SiLU + My experimental 'light' model w/ F3 repeats, 2.0x final_conv mult, 64 group_size, .25 bottleneck & ECA attn + """ + return _create_normfreenet('eca_nfnet_l3', pretrained=pretrained, **kwargs) + + +@register_model +def nf_regnet_b0(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free RegNet-B0 + `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 + """ + return _create_normfreenet('nf_regnet_b0', pretrained=pretrained, **kwargs) + + +@register_model +def nf_regnet_b1(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free RegNet-B1 + `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 + """ + return _create_normfreenet('nf_regnet_b1', pretrained=pretrained, **kwargs) + + +@register_model +def nf_regnet_b2(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free RegNet-B2 + `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 + """ + return _create_normfreenet('nf_regnet_b2', pretrained=pretrained, **kwargs) + + +@register_model +def nf_regnet_b3(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free RegNet-B3 + `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 + """ + return _create_normfreenet('nf_regnet_b3', pretrained=pretrained, **kwargs) + + +@register_model +def nf_regnet_b4(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free RegNet-B4 + `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 + """ + return _create_normfreenet('nf_regnet_b4', pretrained=pretrained, **kwargs) + + +@register_model +def nf_regnet_b5(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free RegNet-B5 + `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 + """ + return _create_normfreenet('nf_regnet_b5', pretrained=pretrained, **kwargs) + + +@register_model +def nf_resnet26(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free ResNet-26 + `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 + """ + return _create_normfreenet('nf_resnet26', pretrained=pretrained, **kwargs) + + +@register_model +def nf_resnet50(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free ResNet-50 + `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 + """ + return _create_normfreenet('nf_resnet50', pretrained=pretrained, **kwargs) + + +@register_model +def nf_resnet101(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free ResNet-101 + `Characterizing signal propagation to close the performance gap in unnormalized ResNets` + - https://arxiv.org/abs/2101.08692 + """ + return _create_normfreenet('nf_resnet101', pretrained=pretrained, **kwargs) + + +@register_model +def nf_seresnet26(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free SE-ResNet26 + """ + return _create_normfreenet('nf_seresnet26', pretrained=pretrained, **kwargs) + + +@register_model +def nf_seresnet50(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free SE-ResNet50 + """ + return _create_normfreenet('nf_seresnet50', pretrained=pretrained, **kwargs) + + +@register_model +def nf_seresnet101(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free SE-ResNet101 + """ + return _create_normfreenet('nf_seresnet101', pretrained=pretrained, **kwargs) + + +@register_model +def nf_ecaresnet26(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free ECA-ResNet26 + """ + return _create_normfreenet('nf_ecaresnet26', pretrained=pretrained, **kwargs) + + +@register_model +def nf_ecaresnet50(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free ECA-ResNet50 + """ + return _create_normfreenet('nf_ecaresnet50', pretrained=pretrained, **kwargs) + + +@register_model +def nf_ecaresnet101(pretrained=False, **kwargs) -> NormFreeNet: + """ Normalization-Free ECA-ResNet101 + """ + return _create_normfreenet('nf_ecaresnet101', pretrained=pretrained, **kwargs) + + +@register_model +def test_nfnet(pretrained=False, **kwargs) -> NormFreeNet: + return _create_normfreenet('test_nfnet', pretrained=pretrained, **kwargs) \ No newline at end of file diff --git a/pytorch-image-models/timm/models/pit.py b/pytorch-image-models/timm/models/pit.py new file mode 100644 index 0000000000000000000000000000000000000000..3a1090b89f3febad91648e4009e3a0a11363baad --- /dev/null +++ b/pytorch-image-models/timm/models/pit.py @@ -0,0 +1,460 @@ +""" Pooling-based Vision Transformer (PiT) in PyTorch + +A PyTorch implement of Pooling-based Vision Transformers as described in +'Rethinking Spatial Dimensions of Vision Transformers' - https://arxiv.org/abs/2103.16302 + +This code was adapted from the original version at https://github.com/naver-ai/pit, original copyright below. + +Modifications for timm by / Copyright 2020 Ross Wightman +""" +# PiT +# Copyright 2021-present NAVER Corp. +# Apache License v2.0 + +import math +import re +from functools import partial +from typing import Optional, Sequence, Tuple + +import torch +from torch import nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import trunc_normal_, to_2tuple +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from .vision_transformer import Block + + +__all__ = ['PoolingVisionTransformer'] # model_registry will add each entrypoint fn to this + + +class SequentialTuple(nn.Sequential): + """ This module exists to work around torchscript typing issues list -> list""" + def __init__(self, *args): + super(SequentialTuple, self).__init__(*args) + + def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: + for module in self: + x = module(x) + return x + + +class Transformer(nn.Module): + def __init__( + self, + base_dim, + depth, + heads, + mlp_ratio, + pool=None, + proj_drop=.0, + attn_drop=.0, + drop_path_prob=None, + norm_layer=None, + ): + super(Transformer, self).__init__() + embed_dim = base_dim * heads + + self.pool = pool + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + self.blocks = nn.Sequential(*[ + Block( + dim=embed_dim, + num_heads=heads, + mlp_ratio=mlp_ratio, + qkv_bias=True, + proj_drop=proj_drop, + attn_drop=attn_drop, + drop_path=drop_path_prob[i], + norm_layer=partial(nn.LayerNorm, eps=1e-6) + ) + for i in range(depth)]) + + def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: + x, cls_tokens = x + token_length = cls_tokens.shape[1] + if self.pool is not None: + x, cls_tokens = self.pool(x, cls_tokens) + + B, C, H, W = x.shape + x = x.flatten(2).transpose(1, 2) + x = torch.cat((cls_tokens, x), dim=1) + + x = self.norm(x) + x = self.blocks(x) + + cls_tokens = x[:, :token_length] + x = x[:, token_length:] + x = x.transpose(1, 2).reshape(B, C, H, W) + + return x, cls_tokens + + +class Pooling(nn.Module): + def __init__(self, in_feature, out_feature, stride, padding_mode='zeros'): + super(Pooling, self).__init__() + + self.conv = nn.Conv2d( + in_feature, + out_feature, + kernel_size=stride + 1, + padding=stride // 2, + stride=stride, + padding_mode=padding_mode, + groups=in_feature, + ) + self.fc = nn.Linear(in_feature, out_feature) + + def forward(self, x, cls_token) -> Tuple[torch.Tensor, torch.Tensor]: + x = self.conv(x) + cls_token = self.fc(cls_token) + return x, cls_token + + +class ConvEmbedding(nn.Module): + def __init__( + self, + in_channels, + out_channels, + img_size: int = 224, + patch_size: int = 16, + stride: int = 8, + padding: int = 0, + ): + super(ConvEmbedding, self).__init__() + padding = padding + self.img_size = to_2tuple(img_size) + self.patch_size = to_2tuple(patch_size) + self.height = math.floor((self.img_size[0] + 2 * padding - self.patch_size[0]) / stride + 1) + self.width = math.floor((self.img_size[1] + 2 * padding - self.patch_size[1]) / stride + 1) + self.grid_size = (self.height, self.width) + + self.conv = nn.Conv2d( + in_channels, out_channels, kernel_size=patch_size, + stride=stride, padding=padding, bias=True) + + def forward(self, x): + x = self.conv(x) + return x + + +class PoolingVisionTransformer(nn.Module): + """ Pooling-based Vision Transformer + + A PyTorch implement of 'Rethinking Spatial Dimensions of Vision Transformers' + - https://arxiv.org/abs/2103.16302 + """ + def __init__( + self, + img_size: int = 224, + patch_size: int = 16, + stride: int = 8, + stem_type: str = 'overlap', + base_dims: Sequence[int] = (48, 48, 48), + depth: Sequence[int] = (2, 6, 4), + heads: Sequence[int] = (2, 4, 8), + mlp_ratio: float = 4, + num_classes=1000, + in_chans=3, + global_pool='token', + distilled=False, + drop_rate=0., + pos_drop_drate=0., + proj_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + ): + super(PoolingVisionTransformer, self).__init__() + assert global_pool in ('token',) + + self.base_dims = base_dims + self.heads = heads + embed_dim = base_dims[0] * heads[0] + self.num_classes = num_classes + self.global_pool = global_pool + self.num_tokens = 2 if distilled else 1 + self.feature_info = [] + + self.patch_embed = ConvEmbedding(in_chans, embed_dim, img_size, patch_size, stride) + self.pos_embed = nn.Parameter(torch.randn(1, embed_dim, self.patch_embed.height, self.patch_embed.width)) + self.cls_token = nn.Parameter(torch.randn(1, self.num_tokens, embed_dim)) + self.pos_drop = nn.Dropout(p=pos_drop_drate) + + transformers = [] + # stochastic depth decay rule + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depth)).split(depth)] + prev_dim = embed_dim + for i in range(len(depth)): + pool = None + embed_dim = base_dims[i] * heads[i] + if i > 0: + pool = Pooling( + prev_dim, + embed_dim, + stride=2, + ) + transformers += [Transformer( + base_dims[i], + depth[i], + heads[i], + mlp_ratio, + pool=pool, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path_prob=dpr[i], + )] + prev_dim = embed_dim + self.feature_info += [dict(num_chs=prev_dim, reduction=(stride - 1) * 2**i, module=f'transformers.{i}')] + + self.transformers = SequentialTuple(*transformers) + self.norm = nn.LayerNorm(base_dims[-1] * heads[-1], eps=1e-6) + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + + # Classifier head + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + self.head_dist = None + if distilled: + self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() + self.distilled_training = False # must set this True to train w/ distillation token + + trunc_normal_(self.pos_embed, std=.02) + trunc_normal_(self.cls_token, std=.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.distilled_training = enable + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + def get_classifier(self) -> nn.Module: + if self.head_dist is not None: + return self.head, self.head_dist + else: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + if self.head_dist is not None: + self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.patch_embed(x) + x = self.pos_drop(x + self.pos_embed) + cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) + x, cls_tokens = self.transformers((x, cls_tokens)) + cls_tokens = self.norm(cls_tokens) + return cls_tokens + + def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: + if self.head_dist is not None: + assert self.global_pool == 'token' + x, x_dist = x[:, 0], x[:, 1] + x = self.head_drop(x) + x_dist = self.head_drop(x) + if not pre_logits: + x = self.head(x) + x_dist = self.head_dist(x_dist) + if self.distilled_training and self.training and not torch.jit.is_scripting(): + # only return separate classification predictions when training in distilled mode + return x, x_dist + else: + # during standard train / finetune, inference average the classifier predictions + return (x + x_dist) / 2 + else: + if self.global_pool == 'token': + x = x[:, 0] + x = self.head_drop(x) + if not pre_logits: + x = self.head(x) + return x + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + """ preprocess checkpoints """ + out_dict = {} + p_blocks = re.compile(r'pools\.(\d)\.') + for k, v in state_dict.items(): + # FIXME need to update resize for PiT impl + # if k == 'pos_embed' and v.shape != model.pos_embed.shape: + # # To resize pos embedding when using model at different size from pretrained weights + # v = resize_pos_embed(v, model.pos_embed) + k = p_blocks.sub(lambda exp: f'transformers.{int(exp.group(1)) + 1}.pool.', k) + out_dict[k] = v + return out_dict + + +def _create_pit(variant, pretrained=False, **kwargs): + default_out_indices = tuple(range(3)) + out_indices = kwargs.pop('out_indices', default_out_indices) + + model = build_model_with_cfg( + PoolingVisionTransformer, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(feature_cls='hook', no_rewrite=True, out_indices=out_indices), + **kwargs, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.conv', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # deit models (FB weights) + 'pit_ti_224.in1k': _cfg(hf_hub_id='timm/'), + 'pit_xs_224.in1k': _cfg(hf_hub_id='timm/'), + 'pit_s_224.in1k': _cfg(hf_hub_id='timm/'), + 'pit_b_224.in1k': _cfg(hf_hub_id='timm/'), + 'pit_ti_distilled_224.in1k': _cfg( + hf_hub_id='timm/', + classifier=('head', 'head_dist')), + 'pit_xs_distilled_224.in1k': _cfg( + hf_hub_id='timm/', + classifier=('head', 'head_dist')), + 'pit_s_distilled_224.in1k': _cfg( + hf_hub_id='timm/', + classifier=('head', 'head_dist')), + 'pit_b_distilled_224.in1k': _cfg( + hf_hub_id='timm/', + classifier=('head', 'head_dist')), +}) + + +@register_model +def pit_b_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict( + patch_size=14, + stride=7, + base_dims=[64, 64, 64], + depth=[3, 6, 4], + heads=[4, 8, 16], + mlp_ratio=4, + ) + return _create_pit('pit_b_224', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pit_s_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict( + patch_size=16, + stride=8, + base_dims=[48, 48, 48], + depth=[2, 6, 4], + heads=[3, 6, 12], + mlp_ratio=4, + ) + return _create_pit('pit_s_224', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pit_xs_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict( + patch_size=16, + stride=8, + base_dims=[48, 48, 48], + depth=[2, 6, 4], + heads=[2, 4, 8], + mlp_ratio=4, + ) + return _create_pit('pit_xs_224', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pit_ti_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict( + patch_size=16, + stride=8, + base_dims=[32, 32, 32], + depth=[2, 6, 4], + heads=[2, 4, 8], + mlp_ratio=4, + ) + return _create_pit('pit_ti_224', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pit_b_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict( + patch_size=14, + stride=7, + base_dims=[64, 64, 64], + depth=[3, 6, 4], + heads=[4, 8, 16], + mlp_ratio=4, + distilled=True, + ) + return _create_pit('pit_b_distilled_224', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pit_s_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict( + patch_size=16, + stride=8, + base_dims=[48, 48, 48], + depth=[2, 6, 4], + heads=[3, 6, 12], + mlp_ratio=4, + distilled=True, + ) + return _create_pit('pit_s_distilled_224', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pit_xs_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict( + patch_size=16, + stride=8, + base_dims=[48, 48, 48], + depth=[2, 6, 4], + heads=[2, 4, 8], + mlp_ratio=4, + distilled=True, + ) + return _create_pit('pit_xs_distilled_224', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pit_ti_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: + model_args = dict( + patch_size=16, + stride=8, + base_dims=[32, 32, 32], + depth=[2, 6, 4], + heads=[2, 4, 8], + mlp_ratio=4, + distilled=True, + ) + return _create_pit('pit_ti_distilled_224', pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/pnasnet.py b/pytorch-image-models/timm/models/pnasnet.py new file mode 100644 index 0000000000000000000000000000000000000000..20d17945b5a34eb0d748992106cfdf6a510a0a91 --- /dev/null +++ b/pytorch-image-models/timm/models/pnasnet.py @@ -0,0 +1,378 @@ +""" + pnasnet5large implementation grabbed from Cadene's pretrained models + Additional credit to https://github.com/creafz + + https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/pnasnet.py + +""" +from collections import OrderedDict +from functools import partial + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.layers import ConvNormAct, create_conv2d, create_pool2d, create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs + +__all__ = ['PNASNet5Large'] + + +class SeparableConv2d(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride, padding=''): + super(SeparableConv2d, self).__init__() + self.depthwise_conv2d = create_conv2d( + in_channels, in_channels, kernel_size=kernel_size, + stride=stride, padding=padding, groups=in_channels) + self.pointwise_conv2d = create_conv2d( + in_channels, out_channels, kernel_size=1, padding=padding) + + def forward(self, x): + x = self.depthwise_conv2d(x) + x = self.pointwise_conv2d(x) + return x + + +class BranchSeparables(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, stem_cell=False, padding=''): + super(BranchSeparables, self).__init__() + middle_channels = out_channels if stem_cell else in_channels + self.act_1 = nn.ReLU() + self.separable_1 = SeparableConv2d( + in_channels, middle_channels, kernel_size, stride=stride, padding=padding) + self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001) + self.act_2 = nn.ReLU() + self.separable_2 = SeparableConv2d( + middle_channels, out_channels, kernel_size, stride=1, padding=padding) + self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001) + + def forward(self, x): + x = self.act_1(x) + x = self.separable_1(x) + x = self.bn_sep_1(x) + x = self.act_2(x) + x = self.separable_2(x) + x = self.bn_sep_2(x) + return x + + +class ActConvBn(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=''): + super(ActConvBn, self).__init__() + self.act = nn.ReLU() + self.conv = create_conv2d( + in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) + self.bn = nn.BatchNorm2d(out_channels, eps=0.001) + + def forward(self, x): + x = self.act(x) + x = self.conv(x) + x = self.bn(x) + return x + + +class FactorizedReduction(nn.Module): + + def __init__(self, in_channels, out_channels, padding=''): + super(FactorizedReduction, self).__init__() + self.act = nn.ReLU() + self.path_1 = nn.Sequential(OrderedDict([ + ('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)), + ('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding)), + ])) + self.path_2 = nn.Sequential(OrderedDict([ + ('pad', nn.ZeroPad2d((-1, 1, -1, 1))), # shift + ('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)), + ('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding)), + ])) + self.final_path_bn = nn.BatchNorm2d(out_channels, eps=0.001) + + def forward(self, x): + x = self.act(x) + x_path1 = self.path_1(x) + x_path2 = self.path_2(x) + out = self.final_path_bn(torch.cat([x_path1, x_path2], 1)) + return out + + +class CellBase(nn.Module): + + def cell_forward(self, x_left, x_right): + x_comb_iter_0_left = self.comb_iter_0_left(x_left) + x_comb_iter_0_right = self.comb_iter_0_right(x_left) + x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right + + x_comb_iter_1_left = self.comb_iter_1_left(x_right) + x_comb_iter_1_right = self.comb_iter_1_right(x_right) + x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right + + x_comb_iter_2_left = self.comb_iter_2_left(x_right) + x_comb_iter_2_right = self.comb_iter_2_right(x_right) + x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right + + x_comb_iter_3_left = self.comb_iter_3_left(x_comb_iter_2) + x_comb_iter_3_right = self.comb_iter_3_right(x_right) + x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right + + x_comb_iter_4_left = self.comb_iter_4_left(x_left) + if self.comb_iter_4_right is not None: + x_comb_iter_4_right = self.comb_iter_4_right(x_right) + else: + x_comb_iter_4_right = x_right + x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right + + x_out = torch.cat([x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1) + return x_out + + +class CellStem0(CellBase): + + def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''): + super(CellStem0, self).__init__() + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type) + + self.comb_iter_0_left = BranchSeparables( + in_chs_left, out_chs_left, kernel_size=5, stride=2, stem_cell=True, padding=pad_type) + self.comb_iter_0_right = nn.Sequential(OrderedDict([ + ('max_pool', create_pool2d('max', 3, stride=2, padding=pad_type)), + ('conv', create_conv2d(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type)), + ('bn', nn.BatchNorm2d(out_chs_left, eps=0.001)), + ])) + + self.comb_iter_1_left = BranchSeparables( + out_chs_right, out_chs_right, kernel_size=7, stride=2, padding=pad_type) + self.comb_iter_1_right = create_pool2d('max', 3, stride=2, padding=pad_type) + + self.comb_iter_2_left = BranchSeparables( + out_chs_right, out_chs_right, kernel_size=5, stride=2, padding=pad_type) + self.comb_iter_2_right = BranchSeparables( + out_chs_right, out_chs_right, kernel_size=3, stride=2, padding=pad_type) + + self.comb_iter_3_left = BranchSeparables( + out_chs_right, out_chs_right, kernel_size=3, padding=pad_type) + self.comb_iter_3_right = create_pool2d('max', 3, stride=2, padding=pad_type) + + self.comb_iter_4_left = BranchSeparables( + in_chs_right, out_chs_right, kernel_size=3, stride=2, stem_cell=True, padding=pad_type) + self.comb_iter_4_right = ActConvBn( + out_chs_right, out_chs_right, kernel_size=1, stride=2, padding=pad_type) + + def forward(self, x_left): + x_right = self.conv_1x1(x_left) + x_out = self.cell_forward(x_left, x_right) + return x_out + + +class Cell(CellBase): + + def __init__( + self, + in_chs_left, + out_chs_left, + in_chs_right, + out_chs_right, + pad_type='', + is_reduction=False, + match_prev_layer_dims=False, + ): + super(Cell, self).__init__() + + # If `is_reduction` is set to `True` stride 2 is used for + # convolution and pooling layers to reduce the spatial size of + # the output of a cell approximately by a factor of 2. + stride = 2 if is_reduction else 1 + + # If `match_prev_layer_dimensions` is set to `True` + # `FactorizedReduction` is used to reduce the spatial size + # of the left input of a cell approximately by a factor of 2. + self.match_prev_layer_dimensions = match_prev_layer_dims + if match_prev_layer_dims: + self.conv_prev_1x1 = FactorizedReduction(in_chs_left, out_chs_left, padding=pad_type) + else: + self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type) + self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type) + + self.comb_iter_0_left = BranchSeparables( + out_chs_left, out_chs_left, kernel_size=5, stride=stride, padding=pad_type) + self.comb_iter_0_right = create_pool2d('max', 3, stride=stride, padding=pad_type) + + self.comb_iter_1_left = BranchSeparables( + out_chs_right, out_chs_right, kernel_size=7, stride=stride, padding=pad_type) + self.comb_iter_1_right = create_pool2d('max', 3, stride=stride, padding=pad_type) + + self.comb_iter_2_left = BranchSeparables( + out_chs_right, out_chs_right, kernel_size=5, stride=stride, padding=pad_type) + self.comb_iter_2_right = BranchSeparables( + out_chs_right, out_chs_right, kernel_size=3, stride=stride, padding=pad_type) + + self.comb_iter_3_left = BranchSeparables(out_chs_right, out_chs_right, kernel_size=3) + self.comb_iter_3_right = create_pool2d('max', 3, stride=stride, padding=pad_type) + + self.comb_iter_4_left = BranchSeparables( + out_chs_left, out_chs_left, kernel_size=3, stride=stride, padding=pad_type) + if is_reduction: + self.comb_iter_4_right = ActConvBn( + out_chs_right, out_chs_right, kernel_size=1, stride=stride, padding=pad_type) + else: + self.comb_iter_4_right = None + + def forward(self, x_left, x_right): + x_left = self.conv_prev_1x1(x_left) + x_right = self.conv_1x1(x_right) + x_out = self.cell_forward(x_left, x_right) + return x_out + + +class PNASNet5Large(nn.Module): + def __init__( + self, + num_classes=1000, + in_chans=3, + output_stride=32, + drop_rate=0., + global_pool='avg', + pad_type='', + ): + super(PNASNet5Large, self).__init__() + self.num_classes = num_classes + self.num_features = self.head_hidden_size = 4320 + assert output_stride == 32 + + self.conv_0 = ConvNormAct( + in_chans, 96, kernel_size=3, stride=2, padding=0, + norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1), apply_act=False) + + self.cell_stem_0 = CellStem0( + in_chs_left=96, out_chs_left=54, in_chs_right=96, out_chs_right=54, pad_type=pad_type) + + self.cell_stem_1 = Cell( + in_chs_left=96, out_chs_left=108, in_chs_right=270, out_chs_right=108, pad_type=pad_type, + match_prev_layer_dims=True, is_reduction=True) + self.cell_0 = Cell( + in_chs_left=270, out_chs_left=216, in_chs_right=540, out_chs_right=216, pad_type=pad_type, + match_prev_layer_dims=True) + self.cell_1 = Cell( + in_chs_left=540, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type) + self.cell_2 = Cell( + in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type) + self.cell_3 = Cell( + in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type) + + self.cell_4 = Cell( + in_chs_left=1080, out_chs_left=432, in_chs_right=1080, out_chs_right=432, pad_type=pad_type, + is_reduction=True) + self.cell_5 = Cell( + in_chs_left=1080, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type, + match_prev_layer_dims=True) + self.cell_6 = Cell( + in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type) + self.cell_7 = Cell( + in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type) + + self.cell_8 = Cell( + in_chs_left=2160, out_chs_left=864, in_chs_right=2160, out_chs_right=864, pad_type=pad_type, + is_reduction=True) + self.cell_9 = Cell( + in_chs_left=2160, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type, + match_prev_layer_dims=True) + self.cell_10 = Cell( + in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type) + self.cell_11 = Cell( + in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type) + self.act = nn.ReLU() + self.feature_info = [ + dict(num_chs=96, reduction=2, module='conv_0'), + dict(num_chs=270, reduction=4, module='cell_stem_1.conv_1x1.act'), + dict(num_chs=1080, reduction=8, module='cell_4.conv_1x1.act'), + dict(num_chs=2160, reduction=16, module='cell_8.conv_1x1.act'), + dict(num_chs=4320, reduction=32, module='act'), + ] + + self.global_pool, self.head_drop, self.last_linear = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict(stem=r'^conv_0|cell_stem_[01]', blocks=r'^cell_(\d+)') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.last_linear + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.last_linear = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x_conv_0 = self.conv_0(x) + x_stem_0 = self.cell_stem_0(x_conv_0) + x_stem_1 = self.cell_stem_1(x_conv_0, x_stem_0) + x_cell_0 = self.cell_0(x_stem_0, x_stem_1) + x_cell_1 = self.cell_1(x_stem_1, x_cell_0) + x_cell_2 = self.cell_2(x_cell_0, x_cell_1) + x_cell_3 = self.cell_3(x_cell_1, x_cell_2) + x_cell_4 = self.cell_4(x_cell_2, x_cell_3) + x_cell_5 = self.cell_5(x_cell_3, x_cell_4) + x_cell_6 = self.cell_6(x_cell_4, x_cell_5) + x_cell_7 = self.cell_7(x_cell_5, x_cell_6) + x_cell_8 = self.cell_8(x_cell_6, x_cell_7) + x_cell_9 = self.cell_9(x_cell_7, x_cell_8) + x_cell_10 = self.cell_10(x_cell_8, x_cell_9) + x_cell_11 = self.cell_11(x_cell_9, x_cell_10) + x = self.act(x_cell_11) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.last_linear(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_pnasnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + PNASNet5Large, + variant, + pretrained, + feature_cfg=dict(feature_cls='hook', no_rewrite=True), # not possible to re-write this model + **kwargs, + ) + + +default_cfgs = generate_default_cfgs({ + 'pnasnet5large.tf_in1k': { + 'hf_hub_id': 'timm/', + 'input_size': (3, 331, 331), + 'pool_size': (11, 11), + 'crop_pct': 0.911, + 'interpolation': 'bicubic', + 'mean': (0.5, 0.5, 0.5), + 'std': (0.5, 0.5, 0.5), + 'num_classes': 1000, + 'first_conv': 'conv_0.conv', + 'classifier': 'last_linear', + }, +}) + + +@register_model +def pnasnet5large(pretrained=False, **kwargs) -> PNASNet5Large: + r"""PNASNet-5 model architecture from the + `"Progressive Neural Architecture Search" + `_ paper. + """ + model_kwargs = dict(pad_type='same', **kwargs) + return _create_pnasnet('pnasnet5large', pretrained, **model_kwargs) diff --git a/pytorch-image-models/timm/models/pvt_v2.py b/pytorch-image-models/timm/models/pvt_v2.py new file mode 100644 index 0000000000000000000000000000000000000000..9200bbd45151e8ca6cf7a6ac15c0ef2ea891f9ab --- /dev/null +++ b/pytorch-image-models/timm/models/pvt_v2.py @@ -0,0 +1,503 @@ +""" Pyramid Vision Transformer v2 + +@misc{wang2021pvtv2, + title={PVTv2: Improved Baselines with Pyramid Vision Transformer}, + author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and + Tong Lu and Ping Luo and Ling Shao}, + year={2021}, + eprint={2106.13797}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} + +Based on Apache 2.0 licensed code at https://github.com/whai362/PVT + +Modifications and timm support by / Copyright 2022, Ross Wightman +""" + +import math +from typing import Callable, List, Optional, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, to_2tuple, to_ntuple, trunc_normal_, LayerNorm, use_fused_attn +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs + +__all__ = ['PyramidVisionTransformerV2'] + + +class MlpWithDepthwiseConv(nn.Module): + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + drop=0., + extra_relu=False, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.relu = nn.ReLU() if extra_relu else nn.Identity() + self.dwconv = nn.Conv2d(hidden_features, hidden_features, 3, 1, 1, bias=True, groups=hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x, feat_size: List[int]): + x = self.fc1(x) + B, N, C = x.shape + x = x.transpose(1, 2).view(B, C, feat_size[0], feat_size[1]) + x = self.relu(x) + x = self.dwconv(x) + x = x.flatten(2).transpose(1, 2) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +class Attention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + dim, + num_heads=8, + sr_ratio=1, + linear_attn=False, + qkv_bias=True, + attn_drop=0., + proj_drop=0. + ): + super().__init__() + assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." + + self.dim = dim + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.q = nn.Linear(dim, dim, bias=qkv_bias) + self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + if not linear_attn: + self.pool = None + if sr_ratio > 1: + self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) + self.norm = nn.LayerNorm(dim) + else: + self.sr = None + self.norm = None + self.act = None + else: + self.pool = nn.AdaptiveAvgPool2d(7) + self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1) + self.norm = nn.LayerNorm(dim) + self.act = nn.GELU() + + def forward(self, x, feat_size: List[int]): + B, N, C = x.shape + H, W = feat_size + q = self.q(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + + if self.pool is not None: + x = x.permute(0, 2, 1).reshape(B, C, H, W) + x = self.sr(self.pool(x)).reshape(B, C, -1).permute(0, 2, 1) + x = self.norm(x) + x = self.act(x) + kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + else: + if self.sr is not None: + x = x.permute(0, 2, 1).reshape(B, C, H, W) + x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1) + x = self.norm(x) + kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + else: + kv = self.kv(x).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + k, v = kv.unbind(0) + + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + sr_ratio=1, + linear_attn=False, + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=LayerNorm, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + sr_ratio=sr_ratio, + linear_attn=linear_attn, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = MlpWithDepthwiseConv( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + extra_relu=linear_attn, + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x, feat_size: List[int]): + x = x + self.drop_path1(self.attn(self.norm1(x), feat_size)) + x = x + self.drop_path2(self.mlp(self.norm2(x), feat_size)) + + return x + + +class OverlapPatchEmbed(nn.Module): + """ Image to Patch Embedding + """ + def __init__(self, patch_size=7, stride=4, in_chans=3, embed_dim=768): + super().__init__() + patch_size = to_2tuple(patch_size) + assert max(patch_size) > stride, "Set larger patch_size than stride" + self.patch_size = patch_size + self.proj = nn.Conv2d( + in_chans, embed_dim, patch_size, + stride=stride, padding=(patch_size[0] // 2, patch_size[1] // 2)) + self.norm = nn.LayerNorm(embed_dim) + + def forward(self, x): + x = self.proj(x) + x = x.permute(0, 2, 3, 1) + x = self.norm(x) + return x + + +class PyramidVisionTransformerStage(nn.Module): + def __init__( + self, + dim: int, + dim_out: int, + depth: int, + downsample: bool = True, + num_heads: int = 8, + sr_ratio: int = 1, + linear_attn: bool = False, + mlp_ratio: float = 4.0, + qkv_bias: bool = True, + proj_drop: float = 0., + attn_drop: float = 0., + drop_path: Union[List[float], float] = 0.0, + norm_layer: Callable = LayerNorm, + ): + super().__init__() + self.grad_checkpointing = False + + if downsample: + self.downsample = OverlapPatchEmbed( + patch_size=3, + stride=2, + in_chans=dim, + embed_dim=dim_out, + ) + else: + assert dim == dim_out + self.downsample = None + + self.blocks = nn.ModuleList([Block( + dim=dim_out, + num_heads=num_heads, + sr_ratio=sr_ratio, + linear_attn=linear_attn, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=proj_drop, + attn_drop=attn_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + norm_layer=norm_layer, + ) for i in range(depth)]) + + self.norm = norm_layer(dim_out) + + def forward(self, x): + # x is either B, C, H, W (if downsample) or B, H, W, C if not + if self.downsample is not None: + # input to downsample is B, C, H, W + x = self.downsample(x) # output B, H, W, C + B, H, W, C = x.shape + feat_size = (H, W) + x = x.reshape(B, -1, C) + for blk in self.blocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint.checkpoint(blk, x, feat_size) + else: + x = blk(x, feat_size) + x = self.norm(x) + x = x.reshape(B, feat_size[0], feat_size[1], -1).permute(0, 3, 1, 2).contiguous() + return x + + +class PyramidVisionTransformerV2(nn.Module): + def __init__( + self, + in_chans=3, + num_classes=1000, + global_pool='avg', + depths=(3, 4, 6, 3), + embed_dims=(64, 128, 256, 512), + num_heads=(1, 2, 4, 8), + sr_ratios=(8, 4, 2, 1), + mlp_ratios=(8., 8., 4., 4.), + qkv_bias=True, + linear=False, + drop_rate=0., + proj_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + norm_layer=LayerNorm, + ): + super().__init__() + self.num_classes = num_classes + assert global_pool in ('avg', '') + self.global_pool = global_pool + self.depths = depths + num_stages = len(depths) + mlp_ratios = to_ntuple(num_stages)(mlp_ratios) + num_heads = to_ntuple(num_stages)(num_heads) + sr_ratios = to_ntuple(num_stages)(sr_ratios) + assert(len(embed_dims)) == num_stages + self.feature_info = [] + + self.patch_embed = OverlapPatchEmbed( + patch_size=7, + stride=4, + in_chans=in_chans, + embed_dim=embed_dims[0], + ) + + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + cur = 0 + prev_dim = embed_dims[0] + stages = [] + for i in range(num_stages): + stages += [PyramidVisionTransformerStage( + dim=prev_dim, + dim_out=embed_dims[i], + depth=depths[i], + downsample=i > 0, + num_heads=num_heads[i], + sr_ratio=sr_ratios[i], + mlp_ratio=mlp_ratios[i], + linear_attn=linear, + qkv_bias=qkv_bias, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + )] + prev_dim = embed_dims[i] + cur += depths[i] + self.feature_info += [dict(num_chs=prev_dim, reduction=4 * 2**i, module=f'stages.{i}')] + self.stages = nn.Sequential(*stages) + + # classification head + self.num_features = self.head_hidden_size = embed_dims[-1] + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Conv2d): + fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + fan_out //= m.groups + m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) + if m.bias is not None: + m.bias.data.zero_() + + def freeze_patch_emb(self): + self.patch_embed.requires_grad = False + + @torch.jit.ignore + def no_weight_decay(self): + return {} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^patch_embed', # stem and embed + blocks=r'^stages\.(\d+)' + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('avg', '') + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.patch_embed(x) + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool: + x = x.mean(dim=(-1, -2)) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + """ Remap original checkpoints -> timm """ + if 'patch_embed.proj.weight' in state_dict: + return state_dict # non-original checkpoint, no remapping needed + + out_dict = {} + import re + for k, v in state_dict.items(): + if k.startswith('patch_embed'): + k = k.replace('patch_embed1', 'patch_embed') + k = k.replace('patch_embed2', 'stages.1.downsample') + k = k.replace('patch_embed3', 'stages.2.downsample') + k = k.replace('patch_embed4', 'stages.3.downsample') + k = k.replace('dwconv.dwconv', 'dwconv') + k = re.sub(r'block(\d+).(\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.blocks.{x.group(2)}', k) + k = re.sub(r'^norm(\d+)', lambda x: f'stages.{int(x.group(1)) - 1}.norm', k) + out_dict[k] = v + return out_dict + + +def _create_pvt2(variant, pretrained=False, **kwargs): + default_out_indices = tuple(range(4)) + out_indices = kwargs.pop('out_indices', default_out_indices) + model = build_model_with_cfg( + PyramidVisionTransformerV2, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.9, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head', 'fixed_input_size': False, + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'pvt_v2_b0.in1k': _cfg(hf_hub_id='timm/'), + 'pvt_v2_b1.in1k': _cfg(hf_hub_id='timm/'), + 'pvt_v2_b2.in1k': _cfg(hf_hub_id='timm/'), + 'pvt_v2_b3.in1k': _cfg(hf_hub_id='timm/'), + 'pvt_v2_b4.in1k': _cfg(hf_hub_id='timm/'), + 'pvt_v2_b5.in1k': _cfg(hf_hub_id='timm/'), + 'pvt_v2_b2_li.in1k': _cfg(hf_hub_id='timm/'), +}) + + +@register_model +def pvt_v2_b0(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(2, 2, 2, 2), embed_dims=(32, 64, 160, 256), num_heads=(1, 2, 5, 8)) + return _create_pvt2('pvt_v2_b0', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pvt_v2_b1(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(2, 2, 2, 2), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) + return _create_pvt2('pvt_v2_b1', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pvt_v2_b2(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) + return _create_pvt2('pvt_v2_b2', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pvt_v2_b3(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(3, 4, 18, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) + return _create_pvt2('pvt_v2_b3', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pvt_v2_b4(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict(depths=(3, 8, 27, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8)) + return _create_pvt2('pvt_v2_b4', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pvt_v2_b5(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict( + depths=(3, 6, 40, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), mlp_ratios=(4, 4, 4, 4)) + return _create_pvt2('pvt_v2_b5', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def pvt_v2_b2_li(pretrained=False, **kwargs) -> PyramidVisionTransformerV2: + model_args = dict( + depths=(3, 4, 6, 3), embed_dims=(64, 128, 320, 512), num_heads=(1, 2, 5, 8), linear=True) + return _create_pvt2('pvt_v2_b2_li', pretrained=pretrained, **dict(model_args, **kwargs)) + diff --git a/pytorch-image-models/timm/models/rdnet.py b/pytorch-image-models/timm/models/rdnet.py new file mode 100644 index 0000000000000000000000000000000000000000..af00548c6dc7d493d8f57799a209b9a86dd309c2 --- /dev/null +++ b/pytorch-image-models/timm/models/rdnet.py @@ -0,0 +1,505 @@ +""" +RDNet +Copyright (c) 2024-present NAVER Cloud Corp. +Apache-2.0 +""" + +from functools import partial +from typing import List, Optional, Tuple, Union, Callable + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, NormMlpClassifierHead, ClassifierHead, EffectiveSEModule, \ + make_divisible, get_act_layer, get_norm_layer +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply +from ._registry import register_model, generate_default_cfgs + +__all__ = ["RDNet"] + + +class Block(nn.Module): + def __init__(self, in_chs, inter_chs, out_chs, norm_layer, act_layer): + super().__init__() + self.layers = nn.Sequential( + nn.Conv2d(in_chs, in_chs, groups=in_chs, kernel_size=7, stride=1, padding=3), + norm_layer(in_chs), + nn.Conv2d(in_chs, inter_chs, kernel_size=1, stride=1, padding=0), + act_layer(), + nn.Conv2d(inter_chs, out_chs, kernel_size=1, stride=1, padding=0), + ) + + def forward(self, x): + return self.layers(x) + + +class BlockESE(nn.Module): + def __init__(self, in_chs, inter_chs, out_chs, norm_layer, act_layer): + super().__init__() + self.layers = nn.Sequential( + nn.Conv2d(in_chs, in_chs, groups=in_chs, kernel_size=7, stride=1, padding=3), + norm_layer(in_chs), + nn.Conv2d(in_chs, inter_chs, kernel_size=1, stride=1, padding=0), + act_layer(), + nn.Conv2d(inter_chs, out_chs, kernel_size=1, stride=1, padding=0), + EffectiveSEModule(out_chs), + ) + + def forward(self, x): + return self.layers(x) + + +def _get_block_type(block: str): + block = block.lower().strip() + if block == "block": + return Block + elif block == "blockese": + return BlockESE + else: + assert False, f"Unknown block type ({block})." + + +class DenseBlock(nn.Module): + def __init__( + self, + num_input_features: int = 64, + growth_rate: int = 64, + bottleneck_width_ratio: float = 4.0, + drop_path_rate: float = 0.0, + drop_rate: float = 0.0, + rand_gather_step_prob: float = 0.0, + block_idx: int = 0, + block_type: str = "Block", + ls_init_value: float = 1e-6, + norm_layer: str = "layernorm2d", + act_layer: str = "gelu", + ): + super().__init__() + self.drop_rate = drop_rate + self.drop_path_rate = drop_path_rate + self.rand_gather_step_prob = rand_gather_step_prob + self.block_idx = block_idx + self.growth_rate = growth_rate + + self.gamma = nn.Parameter(ls_init_value * torch.ones(growth_rate)) if ls_init_value > 0 else None + growth_rate = int(growth_rate) + inter_chs = int(num_input_features * bottleneck_width_ratio / 8) * 8 + + self.drop_path = DropPath(drop_path_rate) + + self.layers = _get_block_type(block_type)( + in_chs=num_input_features, + inter_chs=inter_chs, + out_chs=growth_rate, + norm_layer=norm_layer, + act_layer=act_layer, + ) + + def forward(self, x: List[torch.Tensor]) -> torch.Tensor: + x = torch.cat(x, 1) + x = self.layers(x) + + if self.gamma is not None: + x = x.mul(self.gamma.reshape(1, -1, 1, 1)) + + x = self.drop_path(x) + return x + + +class DenseStage(nn.Sequential): + def __init__(self, num_block, num_input_features, drop_path_rates, growth_rate, **kwargs): + super().__init__() + for i in range(num_block): + layer = DenseBlock( + num_input_features=num_input_features, + growth_rate=growth_rate, + drop_path_rate=drop_path_rates[i], + block_idx=i, + **kwargs, + ) + num_input_features += growth_rate + self.add_module(f"dense_block{i}", layer) + self.num_out_features = num_input_features + + def forward(self, init_feature: torch.Tensor) -> torch.Tensor: + features = [init_feature] + for module in self: + new_feature = module(features) + features.append(new_feature) + return torch.cat(features, 1) + + +class RDNet(nn.Module): + def __init__( + self, + in_chans: int = 3, # timm option [--in-chans] + num_classes: int = 1000, # timm option [--num-classes] + global_pool: str = 'avg', # timm option [--gp] + growth_rates: Union[List[int], Tuple[int]] = (64, 104, 128, 128, 128, 128, 224), + num_blocks_list: Union[List[int], Tuple[int]] = (3, 3, 3, 3, 3, 3, 3), + block_type: Union[List[int], Tuple[int]] = ("Block",) * 2 + ("BlockESE",) * 5, + is_downsample_block: Union[List[bool], Tuple[bool]] = (None, True, True, False, False, False, True), + bottleneck_width_ratio: float = 4.0, + transition_compression_ratio: float = 0.5, + ls_init_value: float = 1e-6, + stem_type: str = 'patch', + patch_size: int = 4, + num_init_features: int = 64, + head_init_scale: float = 1., + head_norm_first: bool = False, + conv_bias: bool = True, + act_layer: Union[str, Callable] = 'gelu', + norm_layer: str = "layernorm2d", + norm_eps: Optional[float] = None, + drop_rate: float = 0.0, # timm option [--drop: dropout ratio] + drop_path_rate: float = 0.0, # timm option [--drop-path: drop-path ratio] + ): + """ + Args: + in_chans: Number of input image channels. + num_classes: Number of classes for classification head. + global_pool: Global pooling type. + growth_rates: Growth rate at each stage. + num_blocks_list: Number of blocks at each stage. + is_downsample_block: Whether to downsample at each stage. + bottleneck_width_ratio: Bottleneck width ratio (similar to mlp expansion ratio). + transition_compression_ratio: Channel compression ratio of transition layers. + ls_init_value: Init value for Layer Scale, disabled if None. + stem_type: Type of stem. + patch_size: Stem patch size for patch stem. + num_init_features: Number of features of stem. + head_init_scale: Init scaling value for classifier weights and biases. + head_norm_first: Apply normalization before global pool + head. + conv_bias: Use bias layers w/ all convolutions. + act_layer: Activation layer type. + norm_layer: Normalization layer type. + norm_eps: Small value to avoid division by zero in normalization. + drop_rate: Head pre-classifier dropout rate. + drop_path_rate: Stochastic depth drop rate. + """ + super().__init__() + assert len(growth_rates) == len(num_blocks_list) == len(is_downsample_block) + act_layer = get_act_layer(act_layer) + norm_layer = get_norm_layer(norm_layer) + if norm_eps is not None: + norm_layer = partial(norm_layer, eps=norm_eps) + + self.num_classes = num_classes + self.drop_rate = drop_rate + + # stem + assert stem_type in ('patch', 'overlap', 'overlap_tiered') + if stem_type == 'patch': + # NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4 + self.stem = nn.Sequential( + nn.Conv2d(in_chans, num_init_features, kernel_size=patch_size, stride=patch_size, bias=conv_bias), + norm_layer(num_init_features), + ) + stem_stride = patch_size + else: + mid_chs = make_divisible(num_init_features // 2) if 'tiered' in stem_type else num_init_features + self.stem = nn.Sequential( + nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias), + nn.Conv2d(mid_chs, num_init_features, kernel_size=3, stride=2, padding=1, bias=conv_bias), + norm_layer(num_init_features), + ) + stem_stride = 4 + + # features + self.feature_info = [] + self.num_stages = len(growth_rates) + curr_stride = stem_stride + num_features = num_init_features + dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(num_blocks_list)).split(num_blocks_list)] + + dense_stages = [] + for i in range(self.num_stages): + dense_stage_layers = [] + if i != 0: + compressed_num_features = int(num_features * transition_compression_ratio / 8) * 8 + k_size = stride = 1 + if is_downsample_block[i]: + curr_stride *= 2 + k_size = stride = 2 + + dense_stage_layers.append(norm_layer(num_features)) + dense_stage_layers.append( + nn.Conv2d(num_features, compressed_num_features, kernel_size=k_size, stride=stride, padding=0) + ) + num_features = compressed_num_features + + stage = DenseStage( + num_block=num_blocks_list[i], + num_input_features=num_features, + growth_rate=growth_rates[i], + bottleneck_width_ratio=bottleneck_width_ratio, + drop_rate=drop_rate, + drop_path_rates=dp_rates[i], + ls_init_value=ls_init_value, + block_type=block_type[i], + norm_layer=norm_layer, + act_layer=act_layer, + ) + dense_stage_layers.append(stage) + num_features += num_blocks_list[i] * growth_rates[i] + + if i + 1 == self.num_stages or (i + 1 != self.num_stages and is_downsample_block[i + 1]): + self.feature_info += [ + dict( + num_chs=num_features, + reduction=curr_stride, + module=f'dense_stages.{i}', + growth_rate=growth_rates[i], + ) + ] + dense_stages.append(nn.Sequential(*dense_stage_layers)) + self.dense_stages = nn.Sequential(*dense_stages) + self.num_features = self.head_hidden_size = num_features + + # if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets + # otherwise pool -> norm -> fc, the default RDNet ordering (pretrained NV weights) + if head_norm_first: + self.norm_pre = norm_layer(self.num_features) + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=self.drop_rate, + ) + else: + self.norm_pre = nn.Identity() + self.head = NormMlpClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=self.drop_rate, + norm_layer=norm_layer, + ) + + named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.dense_stages) + 1, indices) + + # forward pass + feat_idx = 0 # stem is index 0 + x = self.stem(x) + if feat_idx in take_indices: + intermediates.append(x) + + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + dense_stages = self.dense_stages + else: + dense_stages = self.dense_stages[:max_index] + for stage in dense_stages: + feat_idx += 1 + x = stage(x) + if feat_idx in take_indices: + # NOTE not bothering to apply norm_pre when norm=True as almost no models have it enabled + intermediates.append(x) + + if intermediates_only: + return intermediates + + x = self.norm_pre(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.dense_stages) + 1, indices) + self.dense_stages = self.dense_stages[:max_index] # truncate blocks w/ stem as idx 0 + if prune_norm: + self.norm_pre = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.dense_stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.head(x) + return x + + @torch.jit.ignore + def group_matcher(self, coarse=False): + assert not coarse, "coarse grouping is not implemented for RDNet" + return dict( + stem=r'^stem', + blocks=r'^dense_stages\.(\d+)', + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.dense_stages: + s.grad_checkpointing = enable + + +def _init_weights(module, name=None, head_init_scale=1.0): + if isinstance(module, nn.Conv2d): + nn.init.kaiming_normal_(module.weight) + elif isinstance(module, nn.BatchNorm2d): + nn.init.constant_(module.weight, 1) + nn.init.constant_(module.bias, 0) + elif isinstance(module, nn.Linear): + nn.init.constant_(module.bias, 0) + if name and 'head.' in name: + module.weight.data.mul_(head_init_scale) + module.bias.data.mul_(head_init_scale) + + +def checkpoint_filter_fn(state_dict, model): + """ Remap NV checkpoints -> timm """ + if 'stem.0.weight' in state_dict: + return state_dict # non-NV checkpoint + if 'model' in state_dict: + state_dict = state_dict['model'] + + out_dict = {} + + for k, v in state_dict.items(): + k = k.replace('stem.stem.', 'stem.') + out_dict[k] = v + + return out_dict + + +def _create_rdnet(variant, pretrained=False, **kwargs): + model = build_model_with_cfg( + RDNet, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), + **kwargs) + return model + + +def _cfg(url='', **kwargs): + return { + "url": url, + "num_classes": 1000, "input_size": (3, 224, 224), "pool_size": (7, 7), + "crop_pct": 0.9, "interpolation": "bicubic", + "mean": IMAGENET_DEFAULT_MEAN, "std": IMAGENET_DEFAULT_STD, + "first_conv": "stem.0", "classifier": "head.fc", + "paper_ids": "arXiv:2403.19588", + "paper_name": "DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs", + "origin_url": "https://github.com/naver-ai/rdnet", + **kwargs, + } + + +default_cfgs = generate_default_cfgs({ + 'rdnet_tiny.nv_in1k': _cfg( + hf_hub_id='naver-ai/rdnet_tiny.nv_in1k'), + 'rdnet_small.nv_in1k': _cfg( + hf_hub_id='naver-ai/rdnet_small.nv_in1k'), + 'rdnet_base.nv_in1k': _cfg( + hf_hub_id='naver-ai/rdnet_base.nv_in1k'), + 'rdnet_large.nv_in1k': _cfg( + hf_hub_id='naver-ai/rdnet_large.nv_in1k'), + 'rdnet_large.nv_in1k_ft_in1k_384': _cfg( + hf_hub_id='naver-ai/rdnet_large.nv_in1k_ft_in1k_384', + input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), +}) + + +@register_model +def rdnet_tiny(pretrained=False, **kwargs): + n_layer = 7 + model_args = { + "num_init_features": 64, + "growth_rates": [64] + [104] + [128] * 4 + [224], + "num_blocks_list": [3] * n_layer, + "is_downsample_block": (None, True, True, False, False, False, True), + "transition_compression_ratio": 0.5, + "block_type": ["Block"] + ["Block"] + ["BlockESE"] * 4 + ["BlockESE"], + } + model = _create_rdnet("rdnet_tiny", pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def rdnet_small(pretrained=False, **kwargs): + n_layer = 11 + model_args = { + "num_init_features": 72, + "growth_rates": [64] + [128] + [128] * (n_layer - 4) + [240] * 2, + "num_blocks_list": [3] * n_layer, + "is_downsample_block": (None, True, True, False, False, False, False, False, False, True, False), + "transition_compression_ratio": 0.5, + "block_type": ["Block"] + ["Block"] + ["BlockESE"] * (n_layer - 4) + ["BlockESE"] * 2, + } + model = _create_rdnet("rdnet_small", pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def rdnet_base(pretrained=False, **kwargs): + n_layer = 11 + model_args = { + "num_init_features": 120, + "growth_rates": [96] + [128] + [168] * (n_layer - 4) + [336] * 2, + "num_blocks_list": [3] * n_layer, + "is_downsample_block": (None, True, True, False, False, False, False, False, False, True, False), + "transition_compression_ratio": 0.5, + "block_type": ["Block"] + ["Block"] + ["BlockESE"] * (n_layer - 4) + ["BlockESE"] * 2, + } + model = _create_rdnet("rdnet_base", pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def rdnet_large(pretrained=False, **kwargs): + n_layer = 12 + model_args = { + "num_init_features": 144, + "growth_rates": [128] + [192] + [256] * (n_layer - 4) + [360] * 2, + "num_blocks_list": [3] * n_layer, + "is_downsample_block": (None, True, True, False, False, False, False, False, False, False, True, False), + "transition_compression_ratio": 0.5, + "block_type": ["Block"] + ["Block"] + ["BlockESE"] * (n_layer - 4) + ["BlockESE"] * 2, + } + model = _create_rdnet("rdnet_large", pretrained=pretrained, **dict(model_args, **kwargs)) + return model diff --git a/pytorch-image-models/timm/models/registry.py b/pytorch-image-models/timm/models/registry.py new file mode 100644 index 0000000000000000000000000000000000000000..5b68a91e0c471f62af0b46c3bc98e7922b3dff66 --- /dev/null +++ b/pytorch-image-models/timm/models/registry.py @@ -0,0 +1,4 @@ +from ._registry import * + +import warnings +warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.models", FutureWarning) diff --git a/pytorch-image-models/timm/models/regnet.py b/pytorch-image-models/timm/models/regnet.py new file mode 100644 index 0000000000000000000000000000000000000000..1e741bec7b360a38d753f0d32e5dec066a734562 --- /dev/null +++ b/pytorch-image-models/timm/models/regnet.py @@ -0,0 +1,1191 @@ +"""RegNet X, Y, Z, and more + +Paper: `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678 +Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py + +Paper: `Fast and Accurate Model Scaling` - https://arxiv.org/abs/2103.06877 +Original Impl: None + +Based on original PyTorch impl linked above, but re-wrote to use my own blocks (adapted from ResNet here) +and cleaned up with more descriptive variable names. + +Weights from original pycls impl have been modified: +* first layer from BGR -> RGB as most PyTorch models are +* removed training specific dict entries from checkpoints and keep model state_dict only +* remap names to match the ones here + +Supports weight loading from torchvision and classy-vision (incl VISSL SEER) + +A number of custom timm model definitions additions including: +* stochastic depth, gradient checkpointing, layer-decay, configurable dilation +* a pre-activation 'V' variant +* only known RegNet-Z model definitions with pretrained weights + +Hacked together by / Copyright 2020 Ross Wightman +""" +import math +from dataclasses import dataclass, replace +from functools import partial +from typing import Callable, List, Optional, Union, Tuple + +import numpy as np +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ClassifierHead, AvgPool2dSame, ConvNormAct, SEModule, DropPath, GroupNormAct +from timm.layers import get_act_layer, get_norm_act_layer, create_conv2d, make_divisible +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq, named_apply +from ._registry import generate_default_cfgs, register_model, register_model_deprecations + +__all__ = ['RegNet', 'RegNetCfg'] # model_registry will add each entrypoint fn to this + + +@dataclass +class RegNetCfg: + depth: int = 21 + w0: int = 80 + wa: float = 42.63 + wm: float = 2.66 + group_size: int = 24 + bottle_ratio: float = 1. + se_ratio: float = 0. + group_min_ratio: float = 0. + stem_width: int = 32 + downsample: Optional[str] = 'conv1x1' + linear_out: bool = False + preact: bool = False + num_features: int = 0 + act_layer: Union[str, Callable] = 'relu' + norm_layer: Union[str, Callable] = 'batchnorm' + + +def quantize_float(f, q): + """Converts a float to the closest non-zero int divisible by q.""" + return int(round(f / q) * q) + + +def adjust_widths_groups_comp(widths, bottle_ratios, groups, min_ratio=0.): + """Adjusts the compatibility of widths and groups.""" + bottleneck_widths = [int(w * b) for w, b in zip(widths, bottle_ratios)] + groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_widths)] + if min_ratio: + # torchvision uses a different rounding scheme for ensuring bottleneck widths divisible by group widths + bottleneck_widths = [make_divisible(w_bot, g, min_ratio) for w_bot, g in zip(bottleneck_widths, groups)] + else: + bottleneck_widths = [quantize_float(w_bot, g) for w_bot, g in zip(bottleneck_widths, groups)] + widths = [int(w_bot / b) for w_bot, b in zip(bottleneck_widths, bottle_ratios)] + return widths, groups + + +def generate_regnet(width_slope, width_initial, width_mult, depth, group_size, quant=8): + """Generates per block widths from RegNet parameters.""" + assert width_slope >= 0 and width_initial > 0 and width_mult > 1 and width_initial % quant == 0 + # TODO dWr scaling? + # depth = int(depth * (scale ** 0.1)) + # width_scale = scale ** 0.4 # dWr scale, exp 0.8 / 2, applied to both group and layer widths + widths_cont = np.arange(depth) * width_slope + width_initial + width_exps = np.round(np.log(widths_cont / width_initial) / np.log(width_mult)) + widths = np.round(np.divide(width_initial * np.power(width_mult, width_exps), quant)) * quant + num_stages, max_stage = len(np.unique(widths)), width_exps.max() + 1 + groups = np.array([group_size for _ in range(num_stages)]) + return widths.astype(int).tolist(), num_stages, groups.astype(int).tolist() + + +def downsample_conv( + in_chs, + out_chs, + kernel_size=1, + stride=1, + dilation=1, + norm_layer=None, + preact=False, +): + norm_layer = norm_layer or nn.BatchNorm2d + kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size + dilation = dilation if kernel_size > 1 else 1 + if preact: + return create_conv2d( + in_chs, + out_chs, + kernel_size, + stride=stride, + dilation=dilation, + ) + else: + return ConvNormAct( + in_chs, + out_chs, + kernel_size, + stride=stride, + dilation=dilation, + norm_layer=norm_layer, + apply_act=False, + ) + + +def downsample_avg( + in_chs, + out_chs, + kernel_size=1, + stride=1, + dilation=1, + norm_layer=None, + preact=False, +): + """ AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment.""" + norm_layer = norm_layer or nn.BatchNorm2d + avg_stride = stride if dilation == 1 else 1 + pool = nn.Identity() + if stride > 1 or dilation > 1: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + if preact: + conv = create_conv2d(in_chs, out_chs, 1, stride=1) + else: + conv = ConvNormAct(in_chs, out_chs, 1, stride=1, norm_layer=norm_layer, apply_act=False) + return nn.Sequential(*[pool, conv]) + + +def create_shortcut( + downsample_type, + in_chs, + out_chs, + kernel_size, + stride, + dilation=(1, 1), + norm_layer=None, + preact=False, +): + assert downsample_type in ('avg', 'conv1x1', '', None) + if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: + dargs = dict(stride=stride, dilation=dilation[0], norm_layer=norm_layer, preact=preact) + if not downsample_type: + return None # no shortcut, no downsample + elif downsample_type == 'avg': + return downsample_avg(in_chs, out_chs, **dargs) + else: + return downsample_conv(in_chs, out_chs, kernel_size=kernel_size, **dargs) + else: + return nn.Identity() # identity shortcut (no downsample) + + +class Bottleneck(nn.Module): + """ RegNet Bottleneck + + This is almost exactly the same as a ResNet Bottlneck. The main difference is the SE block is moved from + after conv3 to after conv2. Otherwise, it's just redefining the arguments for groups/bottleneck channels. + """ + + def __init__( + self, + in_chs, + out_chs, + stride=1, + dilation=(1, 1), + bottle_ratio=1, + group_size=1, + se_ratio=0.25, + downsample='conv1x1', + linear_out=False, + act_layer=nn.ReLU, + norm_layer=nn.BatchNorm2d, + drop_block=None, + drop_path_rate=0., + ): + super(Bottleneck, self).__init__() + act_layer = get_act_layer(act_layer) + bottleneck_chs = int(round(out_chs * bottle_ratio)) + groups = bottleneck_chs // group_size + + cargs = dict(act_layer=act_layer, norm_layer=norm_layer) + self.conv1 = ConvNormAct(in_chs, bottleneck_chs, kernel_size=1, **cargs) + self.conv2 = ConvNormAct( + bottleneck_chs, + bottleneck_chs, + kernel_size=3, + stride=stride, + dilation=dilation[0], + groups=groups, + drop_layer=drop_block, + **cargs, + ) + if se_ratio: + se_channels = int(round(in_chs * se_ratio)) + self.se = SEModule(bottleneck_chs, rd_channels=se_channels, act_layer=act_layer) + else: + self.se = nn.Identity() + self.conv3 = ConvNormAct(bottleneck_chs, out_chs, kernel_size=1, apply_act=False, **cargs) + self.act3 = nn.Identity() if linear_out else act_layer() + self.downsample = create_shortcut( + downsample, + in_chs, + out_chs, + kernel_size=1, + stride=stride, + dilation=dilation, + norm_layer=norm_layer, + ) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + + def zero_init_last(self): + nn.init.zeros_(self.conv3.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.conv2(x) + x = self.se(x) + x = self.conv3(x) + if self.downsample is not None: + # NOTE stuck with downsample as the attr name due to weight compatibility + # now represents the shortcut, no shortcut if None, and non-downsample shortcut == nn.Identity() + x = self.drop_path(x) + self.downsample(shortcut) + x = self.act3(x) + return x + + +class PreBottleneck(nn.Module): + """ RegNet Bottleneck + + This is almost exactly the same as a ResNet Bottlneck. The main difference is the SE block is moved from + after conv3 to after conv2. Otherwise, it's just redefining the arguments for groups/bottleneck channels. + """ + + def __init__( + self, + in_chs, + out_chs, + stride=1, + dilation=(1, 1), + bottle_ratio=1, + group_size=1, + se_ratio=0.25, + downsample='conv1x1', + linear_out=False, + act_layer=nn.ReLU, + norm_layer=nn.BatchNorm2d, + drop_block=None, + drop_path_rate=0., + ): + super(PreBottleneck, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer) + bottleneck_chs = int(round(out_chs * bottle_ratio)) + groups = bottleneck_chs // group_size + + self.norm1 = norm_act_layer(in_chs) + self.conv1 = create_conv2d(in_chs, bottleneck_chs, kernel_size=1) + self.norm2 = norm_act_layer(bottleneck_chs) + self.conv2 = create_conv2d( + bottleneck_chs, + bottleneck_chs, + kernel_size=3, + stride=stride, + dilation=dilation[0], + groups=groups, + ) + if se_ratio: + se_channels = int(round(in_chs * se_ratio)) + self.se = SEModule(bottleneck_chs, rd_channels=se_channels, act_layer=act_layer) + else: + self.se = nn.Identity() + self.norm3 = norm_act_layer(bottleneck_chs) + self.conv3 = create_conv2d(bottleneck_chs, out_chs, kernel_size=1) + self.downsample = create_shortcut( + downsample, + in_chs, + out_chs, + kernel_size=1, + stride=stride, + dilation=dilation, + preact=True, + ) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + + def zero_init_last(self): + pass + + def forward(self, x): + x = self.norm1(x) + shortcut = x + x = self.conv1(x) + x = self.norm2(x) + x = self.conv2(x) + x = self.se(x) + x = self.norm3(x) + x = self.conv3(x) + if self.downsample is not None: + # NOTE stuck with downsample as the attr name due to weight compatibility + # now represents the shortcut, no shortcut if None, and non-downsample shortcut == nn.Identity() + x = self.drop_path(x) + self.downsample(shortcut) + return x + + +class RegStage(nn.Module): + """Stage (sequence of blocks w/ the same output shape).""" + + def __init__( + self, + depth, + in_chs, + out_chs, + stride, + dilation, + drop_path_rates=None, + block_fn=Bottleneck, + **block_kwargs, + ): + super(RegStage, self).__init__() + self.grad_checkpointing = False + + first_dilation = 1 if dilation in (1, 2) else 2 + for i in range(depth): + block_stride = stride if i == 0 else 1 + block_in_chs = in_chs if i == 0 else out_chs + block_dilation = (first_dilation, dilation) + dpr = drop_path_rates[i] if drop_path_rates is not None else 0. + name = "b{}".format(i + 1) + self.add_module( + name, + block_fn( + block_in_chs, + out_chs, + stride=block_stride, + dilation=block_dilation, + drop_path_rate=dpr, + **block_kwargs, + ) + ) + first_dilation = dilation + + def forward(self, x): + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.children(), x) + else: + for block in self.children(): + x = block(x) + return x + + +class RegNet(nn.Module): + """RegNet-X, Y, and Z Models + + Paper: https://arxiv.org/abs/2003.13678 + Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py + """ + + def __init__( + self, + cfg: RegNetCfg, + in_chans=3, + num_classes=1000, + output_stride=32, + global_pool='avg', + drop_rate=0., + drop_path_rate=0., + zero_init_last=True, + **kwargs, + ): + """ + + Args: + cfg (RegNetCfg): Model architecture configuration + in_chans (int): Number of input channels (default: 3) + num_classes (int): Number of classifier classes (default: 1000) + output_stride (int): Output stride of network, one of (8, 16, 32) (default: 32) + global_pool (str): Global pooling type (default: 'avg') + drop_rate (float): Dropout rate (default: 0.) + drop_path_rate (float): Stochastic depth drop-path rate (default: 0.) + zero_init_last (bool): Zero-init last weight of residual path + kwargs (dict): Extra kwargs overlayed onto cfg + """ + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + assert output_stride in (8, 16, 32) + cfg = replace(cfg, **kwargs) # update cfg with extra passed kwargs + + # Construct the stem + stem_width = cfg.stem_width + na_args = dict(act_layer=cfg.act_layer, norm_layer=cfg.norm_layer) + if cfg.preact: + self.stem = create_conv2d(in_chans, stem_width, 3, stride=2) + else: + self.stem = ConvNormAct(in_chans, stem_width, 3, stride=2, **na_args) + self.feature_info = [dict(num_chs=stem_width, reduction=2, module='stem')] + + # Construct the stages + prev_width = stem_width + curr_stride = 2 + per_stage_args, common_args = self._get_stage_args( + cfg, + output_stride=output_stride, + drop_path_rate=drop_path_rate, + ) + assert len(per_stage_args) == 4 + block_fn = PreBottleneck if cfg.preact else Bottleneck + for i, stage_args in enumerate(per_stage_args): + stage_name = "s{}".format(i + 1) + self.add_module( + stage_name, + RegStage( + in_chs=prev_width, + block_fn=block_fn, + **stage_args, + **common_args, + ) + ) + prev_width = stage_args['out_chs'] + curr_stride *= stage_args['stride'] + self.feature_info += [dict(num_chs=prev_width, reduction=curr_stride, module=stage_name)] + + # Construct the head + if cfg.num_features: + self.final_conv = ConvNormAct(prev_width, cfg.num_features, kernel_size=1, **na_args) + self.num_features = cfg.num_features + else: + final_act = cfg.linear_out or cfg.preact + self.final_conv = get_act_layer(cfg.act_layer)() if final_act else nn.Identity() + self.num_features = prev_width + self.head_hidden_size = self.num_features + self.head = ClassifierHead( + in_features=self.num_features, + num_classes=num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + ) + + named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) + + def _get_stage_args(self, cfg: RegNetCfg, default_stride=2, output_stride=32, drop_path_rate=0.): + # Generate RegNet ws per block + widths, num_stages, stage_gs = generate_regnet(cfg.wa, cfg.w0, cfg.wm, cfg.depth, cfg.group_size) + + # Convert to per stage format + stage_widths, stage_depths = np.unique(widths, return_counts=True) + stage_br = [cfg.bottle_ratio for _ in range(num_stages)] + stage_strides = [] + stage_dilations = [] + net_stride = 2 + dilation = 1 + for _ in range(num_stages): + if net_stride >= output_stride: + dilation *= default_stride + stride = 1 + else: + stride = default_stride + net_stride *= stride + stage_strides.append(stride) + stage_dilations.append(dilation) + stage_dpr = np.split(np.linspace(0, drop_path_rate, sum(stage_depths)), np.cumsum(stage_depths[:-1])) + + # Adjust the compatibility of ws and gws + stage_widths, stage_gs = adjust_widths_groups_comp( + stage_widths, stage_br, stage_gs, min_ratio=cfg.group_min_ratio) + arg_names = ['out_chs', 'stride', 'dilation', 'depth', 'bottle_ratio', 'group_size', 'drop_path_rates'] + per_stage_args = [ + dict(zip(arg_names, params)) for params in + zip(stage_widths, stage_strides, stage_dilations, stage_depths, stage_br, stage_gs, stage_dpr) + ] + common_args = dict( + downsample=cfg.downsample, + se_ratio=cfg.se_ratio, + linear_out=cfg.linear_out, + act_layer=cfg.act_layer, + norm_layer=cfg.norm_layer, + ) + return per_stage_args, common_args + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', + blocks=r'^s(\d+)' if coarse else r'^s(\d+)\.b(\d+)', + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in list(self.children())[1:-1]: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.head.reset(num_classes, pool_type=global_pool) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(5, indices) + + # forward pass + feat_idx = 0 + x = self.stem(x) + if feat_idx in take_indices: + intermediates.append(x) + + layer_names = ('s1', 's2', 's3', 's4') + if stop_early: + layer_names = layer_names[:max_index] + for n in layer_names: + feat_idx += 1 + x = getattr(self, n)(x) # won't work with torchscript, but keeps code reasonable, FML + if feat_idx in take_indices: + intermediates.append(x) + + if intermediates_only: + return intermediates + + if feat_idx == 4: + x = self.final_conv(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(5, indices) + layer_names = ('s1', 's2', 's3', 's4') + layer_names = layer_names[max_index:] + for n in layer_names: + setattr(self, n, nn.Identity()) + if max_index < 4: + self.final_conv = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.stem(x) + x = self.s1(x) + x = self.s2(x) + x = self.s3(x) + x = self.s4(x) + x = self.final_conv(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _init_weights(module, name='', zero_init_last=False): + if isinstance(module, nn.Conv2d): + fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels + fan_out //= module.groups + module.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Linear): + nn.init.normal_(module.weight, mean=0.0, std=0.01) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif zero_init_last and hasattr(module, 'zero_init_last'): + module.zero_init_last() + + +def _filter_fn(state_dict): + state_dict = state_dict.get('model', state_dict) + replaces = [ + ('f.a.0', 'conv1.conv'), + ('f.a.1', 'conv1.bn'), + ('f.b.0', 'conv2.conv'), + ('f.b.1', 'conv2.bn'), + ('f.final_bn', 'conv3.bn'), + ('f.se.excitation.0', 'se.fc1'), + ('f.se.excitation.2', 'se.fc2'), + ('f.se', 'se'), + ('f.c.0', 'conv3.conv'), + ('f.c.1', 'conv3.bn'), + ('f.c', 'conv3.conv'), + ('proj.0', 'downsample.conv'), + ('proj.1', 'downsample.bn'), + ('proj', 'downsample.conv'), + ] + if 'classy_state_dict' in state_dict: + # classy-vision & vissl (SEER) weights + import re + state_dict = state_dict['classy_state_dict']['base_model']['model'] + out = {} + for k, v in state_dict['trunk'].items(): + k = k.replace('_feature_blocks.conv1.stem.0', 'stem.conv') + k = k.replace('_feature_blocks.conv1.stem.1', 'stem.bn') + k = re.sub( + r'^_feature_blocks.res\d.block(\d)-(\d+)', + lambda x: f's{int(x.group(1))}.b{int(x.group(2)) + 1}', k) + k = re.sub(r's(\d)\.b(\d+)\.bn', r's\1.b\2.downsample.bn', k) + for s, r in replaces: + k = k.replace(s, r) + out[k] = v + for k, v in state_dict['heads'].items(): + if 'projection_head' in k or 'prototypes' in k: + continue + k = k.replace('0.clf.0', 'head.fc') + out[k] = v + return out + if 'stem.0.weight' in state_dict: + # torchvision weights + import re + out = {} + for k, v in state_dict.items(): + k = k.replace('stem.0', 'stem.conv') + k = k.replace('stem.1', 'stem.bn') + k = re.sub( + r'trunk_output.block(\d)\.block(\d+)\-(\d+)', + lambda x: f's{int(x.group(1))}.b{int(x.group(3)) + 1}', k) + for s, r in replaces: + k = k.replace(s, r) + k = k.replace('fc.', 'head.fc.') + out[k] = v + return out + return state_dict + + +# Model FLOPS = three trailing digits * 10^8 +model_cfgs = dict( + # RegNet-X + regnetx_002=RegNetCfg(w0=24, wa=36.44, wm=2.49, group_size=8, depth=13), + regnetx_004=RegNetCfg(w0=24, wa=24.48, wm=2.54, group_size=16, depth=22), + regnetx_004_tv=RegNetCfg(w0=24, wa=24.48, wm=2.54, group_size=16, depth=22, group_min_ratio=0.9), + regnetx_006=RegNetCfg(w0=48, wa=36.97, wm=2.24, group_size=24, depth=16), + regnetx_008=RegNetCfg(w0=56, wa=35.73, wm=2.28, group_size=16, depth=16), + regnetx_016=RegNetCfg(w0=80, wa=34.01, wm=2.25, group_size=24, depth=18), + regnetx_032=RegNetCfg(w0=88, wa=26.31, wm=2.25, group_size=48, depth=25), + regnetx_040=RegNetCfg(w0=96, wa=38.65, wm=2.43, group_size=40, depth=23), + regnetx_064=RegNetCfg(w0=184, wa=60.83, wm=2.07, group_size=56, depth=17), + regnetx_080=RegNetCfg(w0=80, wa=49.56, wm=2.88, group_size=120, depth=23), + regnetx_120=RegNetCfg(w0=168, wa=73.36, wm=2.37, group_size=112, depth=19), + regnetx_160=RegNetCfg(w0=216, wa=55.59, wm=2.1, group_size=128, depth=22), + regnetx_320=RegNetCfg(w0=320, wa=69.86, wm=2.0, group_size=168, depth=23), + + # RegNet-Y + regnety_002=RegNetCfg(w0=24, wa=36.44, wm=2.49, group_size=8, depth=13, se_ratio=0.25), + regnety_004=RegNetCfg(w0=48, wa=27.89, wm=2.09, group_size=8, depth=16, se_ratio=0.25), + regnety_006=RegNetCfg(w0=48, wa=32.54, wm=2.32, group_size=16, depth=15, se_ratio=0.25), + regnety_008=RegNetCfg(w0=56, wa=38.84, wm=2.4, group_size=16, depth=14, se_ratio=0.25), + regnety_008_tv=RegNetCfg(w0=56, wa=38.84, wm=2.4, group_size=16, depth=14, se_ratio=0.25, group_min_ratio=0.9), + regnety_016=RegNetCfg(w0=48, wa=20.71, wm=2.65, group_size=24, depth=27, se_ratio=0.25), + regnety_032=RegNetCfg(w0=80, wa=42.63, wm=2.66, group_size=24, depth=21, se_ratio=0.25), + regnety_040=RegNetCfg(w0=96, wa=31.41, wm=2.24, group_size=64, depth=22, se_ratio=0.25), + regnety_064=RegNetCfg(w0=112, wa=33.22, wm=2.27, group_size=72, depth=25, se_ratio=0.25), + regnety_080=RegNetCfg(w0=192, wa=76.82, wm=2.19, group_size=56, depth=17, se_ratio=0.25), + regnety_080_tv=RegNetCfg(w0=192, wa=76.82, wm=2.19, group_size=56, depth=17, se_ratio=0.25, group_min_ratio=0.9), + regnety_120=RegNetCfg(w0=168, wa=73.36, wm=2.37, group_size=112, depth=19, se_ratio=0.25), + regnety_160=RegNetCfg(w0=200, wa=106.23, wm=2.48, group_size=112, depth=18, se_ratio=0.25), + regnety_320=RegNetCfg(w0=232, wa=115.89, wm=2.53, group_size=232, depth=20, se_ratio=0.25), + regnety_640=RegNetCfg(w0=352, wa=147.48, wm=2.4, group_size=328, depth=20, se_ratio=0.25), + regnety_1280=RegNetCfg(w0=456, wa=160.83, wm=2.52, group_size=264, depth=27, se_ratio=0.25), + regnety_2560=RegNetCfg(w0=640, wa=230.83, wm=2.53, group_size=373, depth=27, se_ratio=0.25), + #regnety_2560=RegNetCfg(w0=640, wa=124.47, wm=2.04, group_size=848, depth=27, se_ratio=0.25), + + # Experimental + regnety_040_sgn=RegNetCfg( + w0=96, wa=31.41, wm=2.24, group_size=64, depth=22, se_ratio=0.25, + act_layer='silu', norm_layer=partial(GroupNormAct, group_size=16)), + + # regnetv = 'preact regnet y' + regnetv_040=RegNetCfg( + depth=22, w0=96, wa=31.41, wm=2.24, group_size=64, se_ratio=0.25, preact=True, act_layer='silu'), + regnetv_064=RegNetCfg( + depth=25, w0=112, wa=33.22, wm=2.27, group_size=72, se_ratio=0.25, preact=True, act_layer='silu', + downsample='avg'), + + # RegNet-Z (unverified) + regnetz_005=RegNetCfg( + depth=21, w0=16, wa=10.7, wm=2.51, group_size=4, bottle_ratio=4.0, se_ratio=0.25, + downsample=None, linear_out=True, num_features=1024, act_layer='silu', + ), + regnetz_040=RegNetCfg( + depth=28, w0=48, wa=14.5, wm=2.226, group_size=8, bottle_ratio=4.0, se_ratio=0.25, + downsample=None, linear_out=True, num_features=0, act_layer='silu', + ), + regnetz_040_h=RegNetCfg( + depth=28, w0=48, wa=14.5, wm=2.226, group_size=8, bottle_ratio=4.0, se_ratio=0.25, + downsample=None, linear_out=True, num_features=1536, act_layer='silu', + ), +) + + +def _create_regnet(variant, pretrained, **kwargs): + return build_model_with_cfg( + RegNet, variant, pretrained, + model_cfg=model_cfgs[variant], + pretrained_filter_fn=_filter_fn, + **kwargs) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'test_input_size': (3, 288, 288), 'crop_pct': 0.95, 'test_crop_pct': 1.0, + 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv', 'classifier': 'head.fc', + **kwargs + } + + +def _cfgpyc(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv', 'classifier': 'head.fc', + 'license': 'mit', 'origin_url': 'https://github.com/facebookresearch/pycls', **kwargs + } + + +def _cfgtv2(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.965, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv', 'classifier': 'head.fc', + 'license': 'bsd-3-clause', 'origin_url': 'https://github.com/pytorch/vision', **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # timm trained models + 'regnety_032.ra_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth'), + 'regnety_040.ra3_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnety_040_ra3-670e1166.pth'), + 'regnety_064.ra3_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnety_064_ra3-aa26dc7d.pth'), + 'regnety_080.ra3_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnety_080_ra3-1fdc4344.pth'), + 'regnety_120.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/'), + 'regnety_160.sw_in12k_ft_in1k': _cfg(hf_hub_id='timm/'), + 'regnety_160.lion_in12k_ft_in1k': _cfg(hf_hub_id='timm/'), + + # timm in12k pretrain + 'regnety_120.sw_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821), + 'regnety_160.sw_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821), + + # timm custom arch (v and z guess) + trained models + 'regnety_040_sgn.untrained': _cfg(url=''), + 'regnetv_040.ra3_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetv_040_ra3-c248f51f.pth', + first_conv='stem'), + 'regnetv_064.ra3_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetv_064_ra3-530616c2.pth', + first_conv='stem'), + + 'regnetz_005.untrained': _cfg(url=''), + 'regnetz_040.ra3_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_040_ra3-9007edf5.pth', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320)), + 'regnetz_040_h.ra3_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_040h_ra3-f594343b.pth', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320)), + + # used in DeiT for distillation (from Facebook DeiT GitHub repository) + 'regnety_160.deit_in1k': _cfg( + hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/regnety_160-a5fe301d.pth'), + + 'regnetx_004_tv.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_x_400mf-62229a5f.pth'), + 'regnetx_008.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_x_800mf-94a99ebd.pth'), + 'regnetx_016.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_x_1_6gf-a12f2b72.pth'), + 'regnetx_032.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_x_3_2gf-7071aa85.pth'), + 'regnetx_080.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_x_8gf-2b70d774.pth'), + 'regnetx_160.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_x_16gf-ba3796d7.pth'), + 'regnetx_320.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_x_32gf-6eb8fdc6.pth'), + + 'regnety_004.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_400mf-e6988f5f.pth'), + 'regnety_008_tv.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_800mf-58fc7688.pth'), + 'regnety_016.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_1_6gf-0d7bc02a.pth'), + 'regnety_032.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_3_2gf-9180c971.pth'), + 'regnety_080_tv.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_8gf-dc2b1b54.pth'), + 'regnety_160.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_16gf-3e4a00f9.pth'), + 'regnety_320.tv2_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_32gf-8db6d4b5.pth'), + + 'regnety_160.swag_ft_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_16gf_swag-43afe44d.pth', license='cc-by-nc-4.0', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + 'regnety_320.swag_ft_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_32gf_swag-04fdfa75.pth', license='cc-by-nc-4.0', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + 'regnety_1280.swag_ft_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_128gf_swag-c8ce3e52.pth', license='cc-by-nc-4.0', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + + 'regnety_160.swag_lc_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_16gf_lc_swag-f3ec0043.pth', license='cc-by-nc-4.0'), + 'regnety_320.swag_lc_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_32gf_lc_swag-e1583746.pth', license='cc-by-nc-4.0'), + 'regnety_1280.swag_lc_in1k': _cfgtv2( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/regnet_y_128gf_lc_swag-cbe8ce12.pth', license='cc-by-nc-4.0'), + + 'regnety_320.seer_ft_in1k': _cfgtv2( + hf_hub_id='timm/', + license='other', origin_url='https://github.com/facebookresearch/vissl', + url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + 'regnety_640.seer_ft_in1k': _cfgtv2( + hf_hub_id='timm/', + license='other', origin_url='https://github.com/facebookresearch/vissl', + url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + 'regnety_1280.seer_ft_in1k': _cfgtv2( + hf_hub_id='timm/', + license='other', origin_url='https://github.com/facebookresearch/vissl', + url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + 'regnety_2560.seer_ft_in1k': _cfgtv2( + hf_hub_id='timm/', + license='other', origin_url='https://github.com/facebookresearch/vissl', + url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet256_finetuned_in1k_model_final_checkpoint_phase38.torch', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + + 'regnety_320.seer': _cfgtv2( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', + num_classes=0, license='other', origin_url='https://github.com/facebookresearch/vissl'), + 'regnety_640.seer': _cfgtv2( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', + num_classes=0, license='other', origin_url='https://github.com/facebookresearch/vissl'), + 'regnety_1280.seer': _cfgtv2( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', + num_classes=0, license='other', origin_url='https://github.com/facebookresearch/vissl'), + # FIXME invalid weight <-> model match, mistake on their end + #'regnety_2560.seer': _cfgtv2( + # url='https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_cosine_rg256gf_noBNhead_wd1e5_fairstore_bs16_node64_sinkhorn10_proto16k_apex_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', + # num_classes=0, license='other', origin_url='https://github.com/facebookresearch/vissl'), + + 'regnetx_002.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnetx_004.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnetx_006.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnetx_008.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnetx_016.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnetx_032.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnetx_040.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnetx_064.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnetx_080.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnetx_120.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnetx_160.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnetx_320.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + + 'regnety_002.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnety_004.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnety_006.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnety_008.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnety_016.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnety_032.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnety_040.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnety_064.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnety_080.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnety_120.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnety_160.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), + 'regnety_320.pycls_in1k': _cfgpyc(hf_hub_id='timm/'), +}) + + +@register_model +def regnetx_002(pretrained=False, **kwargs) -> RegNet: + """RegNetX-200MF""" + return _create_regnet('regnetx_002', pretrained, **kwargs) + + +@register_model +def regnetx_004(pretrained=False, **kwargs) -> RegNet: + """RegNetX-400MF""" + return _create_regnet('regnetx_004', pretrained, **kwargs) + + +@register_model +def regnetx_004_tv(pretrained=False, **kwargs) -> RegNet: + """RegNetX-400MF w/ torchvision group rounding""" + return _create_regnet('regnetx_004_tv', pretrained, **kwargs) + + +@register_model +def regnetx_006(pretrained=False, **kwargs) -> RegNet: + """RegNetX-600MF""" + return _create_regnet('regnetx_006', pretrained, **kwargs) + + +@register_model +def regnetx_008(pretrained=False, **kwargs) -> RegNet: + """RegNetX-800MF""" + return _create_regnet('regnetx_008', pretrained, **kwargs) + + +@register_model +def regnetx_016(pretrained=False, **kwargs) -> RegNet: + """RegNetX-1.6GF""" + return _create_regnet('regnetx_016', pretrained, **kwargs) + + +@register_model +def regnetx_032(pretrained=False, **kwargs) -> RegNet: + """RegNetX-3.2GF""" + return _create_regnet('regnetx_032', pretrained, **kwargs) + + +@register_model +def regnetx_040(pretrained=False, **kwargs) -> RegNet: + """RegNetX-4.0GF""" + return _create_regnet('regnetx_040', pretrained, **kwargs) + + +@register_model +def regnetx_064(pretrained=False, **kwargs) -> RegNet: + """RegNetX-6.4GF""" + return _create_regnet('regnetx_064', pretrained, **kwargs) + + +@register_model +def regnetx_080(pretrained=False, **kwargs) -> RegNet: + """RegNetX-8.0GF""" + return _create_regnet('regnetx_080', pretrained, **kwargs) + + +@register_model +def regnetx_120(pretrained=False, **kwargs) -> RegNet: + """RegNetX-12GF""" + return _create_regnet('regnetx_120', pretrained, **kwargs) + + +@register_model +def regnetx_160(pretrained=False, **kwargs) -> RegNet: + """RegNetX-16GF""" + return _create_regnet('regnetx_160', pretrained, **kwargs) + + +@register_model +def regnetx_320(pretrained=False, **kwargs) -> RegNet: + """RegNetX-32GF""" + return _create_regnet('regnetx_320', pretrained, **kwargs) + + +@register_model +def regnety_002(pretrained=False, **kwargs) -> RegNet: + """RegNetY-200MF""" + return _create_regnet('regnety_002', pretrained, **kwargs) + + +@register_model +def regnety_004(pretrained=False, **kwargs) -> RegNet: + """RegNetY-400MF""" + return _create_regnet('regnety_004', pretrained, **kwargs) + + +@register_model +def regnety_006(pretrained=False, **kwargs) -> RegNet: + """RegNetY-600MF""" + return _create_regnet('regnety_006', pretrained, **kwargs) + + +@register_model +def regnety_008(pretrained=False, **kwargs) -> RegNet: + """RegNetY-800MF""" + return _create_regnet('regnety_008', pretrained, **kwargs) + + +@register_model +def regnety_008_tv(pretrained=False, **kwargs) -> RegNet: + """RegNetY-800MF w/ torchvision group rounding""" + return _create_regnet('regnety_008_tv', pretrained, **kwargs) + + +@register_model +def regnety_016(pretrained=False, **kwargs) -> RegNet: + """RegNetY-1.6GF""" + return _create_regnet('regnety_016', pretrained, **kwargs) + + +@register_model +def regnety_032(pretrained=False, **kwargs) -> RegNet: + """RegNetY-3.2GF""" + return _create_regnet('regnety_032', pretrained, **kwargs) + + +@register_model +def regnety_040(pretrained=False, **kwargs) -> RegNet: + """RegNetY-4.0GF""" + return _create_regnet('regnety_040', pretrained, **kwargs) + + +@register_model +def regnety_064(pretrained=False, **kwargs) -> RegNet: + """RegNetY-6.4GF""" + return _create_regnet('regnety_064', pretrained, **kwargs) + + +@register_model +def regnety_080(pretrained=False, **kwargs) -> RegNet: + """RegNetY-8.0GF""" + return _create_regnet('regnety_080', pretrained, **kwargs) + + +@register_model +def regnety_080_tv(pretrained=False, **kwargs) -> RegNet: + """RegNetY-8.0GF w/ torchvision group rounding""" + return _create_regnet('regnety_080_tv', pretrained, **kwargs) + + +@register_model +def regnety_120(pretrained=False, **kwargs) -> RegNet: + """RegNetY-12GF""" + return _create_regnet('regnety_120', pretrained, **kwargs) + + +@register_model +def regnety_160(pretrained=False, **kwargs) -> RegNet: + """RegNetY-16GF""" + return _create_regnet('regnety_160', pretrained, **kwargs) + + +@register_model +def regnety_320(pretrained=False, **kwargs) -> RegNet: + """RegNetY-32GF""" + return _create_regnet('regnety_320', pretrained, **kwargs) + + +@register_model +def regnety_640(pretrained=False, **kwargs) -> RegNet: + """RegNetY-64GF""" + return _create_regnet('regnety_640', pretrained, **kwargs) + + +@register_model +def regnety_1280(pretrained=False, **kwargs) -> RegNet: + """RegNetY-128GF""" + return _create_regnet('regnety_1280', pretrained, **kwargs) + + +@register_model +def regnety_2560(pretrained=False, **kwargs) -> RegNet: + """RegNetY-256GF""" + return _create_regnet('regnety_2560', pretrained, **kwargs) + + +@register_model +def regnety_040_sgn(pretrained=False, **kwargs) -> RegNet: + """RegNetY-4.0GF w/ GroupNorm """ + return _create_regnet('regnety_040_sgn', pretrained, **kwargs) + + +@register_model +def regnetv_040(pretrained=False, **kwargs) -> RegNet: + """RegNetV-4.0GF (pre-activation)""" + return _create_regnet('regnetv_040', pretrained, **kwargs) + + +@register_model +def regnetv_064(pretrained=False, **kwargs) -> RegNet: + """RegNetV-6.4GF (pre-activation)""" + return _create_regnet('regnetv_064', pretrained, **kwargs) + + +@register_model +def regnetz_005(pretrained=False, **kwargs) -> RegNet: + """RegNetZ-500MF + NOTE: config found in https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/regnet.py + but it's not clear it is equivalent to paper model as not detailed in the paper. + """ + return _create_regnet('regnetz_005', pretrained, zero_init_last=False, **kwargs) + + +@register_model +def regnetz_040(pretrained=False, **kwargs) -> RegNet: + """RegNetZ-4.0GF + NOTE: config found in https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/regnet.py + but it's not clear it is equivalent to paper model as not detailed in the paper. + """ + return _create_regnet('regnetz_040', pretrained, zero_init_last=False, **kwargs) + + +@register_model +def regnetz_040_h(pretrained=False, **kwargs) -> RegNet: + """RegNetZ-4.0GF + NOTE: config found in https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/regnet.py + but it's not clear it is equivalent to paper model as not detailed in the paper. + """ + return _create_regnet('regnetz_040_h', pretrained, zero_init_last=False, **kwargs) + + +register_model_deprecations(__name__, { + 'regnetz_040h': 'regnetz_040_h', +}) \ No newline at end of file diff --git a/pytorch-image-models/timm/models/repghost.py b/pytorch-image-models/timm/models/repghost.py new file mode 100644 index 0000000000000000000000000000000000000000..4b802d79b6aad8ae40555698e2abba4ecc43ce36 --- /dev/null +++ b/pytorch-image-models/timm/models/repghost.py @@ -0,0 +1,481 @@ +""" +An implementation of RepGhostNet Model as defined in: +RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization. https://arxiv.org/abs/2211.06088 + +Original implementation: https://github.com/ChengpengChen/RepGhost +""" +import copy +from functools import partial +from typing import Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectAdaptivePool2d, Linear, make_divisible +from ._builder import build_model_with_cfg +from ._efficientnet_blocks import SqueezeExcite, ConvBnAct +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +__all__ = ['RepGhostNet'] + + +_SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) + + +class RepGhostModule(nn.Module): + def __init__( + self, + in_chs, + out_chs, + kernel_size=1, + dw_size=3, + stride=1, + relu=True, + reparam=True, + ): + super(RepGhostModule, self).__init__() + self.out_chs = out_chs + init_chs = out_chs + new_chs = out_chs + + self.primary_conv = nn.Sequential( + nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), + nn.BatchNorm2d(init_chs), + nn.ReLU(inplace=True) if relu else nn.Identity(), + ) + + fusion_conv = [] + fusion_bn = [] + if reparam: + fusion_conv.append(nn.Identity()) + fusion_bn.append(nn.BatchNorm2d(init_chs)) + + self.fusion_conv = nn.Sequential(*fusion_conv) + self.fusion_bn = nn.Sequential(*fusion_bn) + + self.cheap_operation = nn.Sequential( + nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False), + nn.BatchNorm2d(new_chs), + # nn.ReLU(inplace=True) if relu else nn.Identity(), + ) + self.relu = nn.ReLU(inplace=False) if relu else nn.Identity() + + def forward(self, x): + x1 = self.primary_conv(x) + x2 = self.cheap_operation(x1) + for conv, bn in zip(self.fusion_conv, self.fusion_bn): + x2 = x2 + bn(conv(x1)) + return self.relu(x2) + + def get_equivalent_kernel_bias(self): + kernel3x3, bias3x3 = self._fuse_bn_tensor(self.cheap_operation[0], self.cheap_operation[1]) + for conv, bn in zip(self.fusion_conv, self.fusion_bn): + kernel, bias = self._fuse_bn_tensor(conv, bn, kernel3x3.shape[0], kernel3x3.device) + kernel3x3 += self._pad_1x1_to_3x3_tensor(kernel) + bias3x3 += bias + return kernel3x3, bias3x3 + + @staticmethod + def _pad_1x1_to_3x3_tensor(kernel1x1): + if kernel1x1 is None: + return 0 + else: + return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) + + @staticmethod + def _fuse_bn_tensor(conv, bn, in_channels=None, device=None): + in_channels = in_channels if in_channels else bn.running_mean.shape[0] + device = device if device else bn.weight.device + if isinstance(conv, nn.Conv2d): + kernel = conv.weight + assert conv.bias is None + else: + assert isinstance(conv, nn.Identity) + kernel = torch.ones(in_channels, 1, 1, 1, device=device) + + if isinstance(bn, nn.BatchNorm2d): + running_mean = bn.running_mean + running_var = bn.running_var + gamma = bn.weight + beta = bn.bias + eps = bn.eps + std = (running_var + eps).sqrt() + t = (gamma / std).reshape(-1, 1, 1, 1) + return kernel * t, beta - running_mean * gamma / std + assert isinstance(bn, nn.Identity) + return kernel, torch.zeros(in_channels).to(kernel.device) + + def switch_to_deploy(self): + if len(self.fusion_conv) == 0 and len(self.fusion_bn) == 0: + return + kernel, bias = self.get_equivalent_kernel_bias() + self.cheap_operation = nn.Conv2d( + in_channels=self.cheap_operation[0].in_channels, + out_channels=self.cheap_operation[0].out_channels, + kernel_size=self.cheap_operation[0].kernel_size, + padding=self.cheap_operation[0].padding, + dilation=self.cheap_operation[0].dilation, + groups=self.cheap_operation[0].groups, + bias=True) + self.cheap_operation.weight.data = kernel + self.cheap_operation.bias.data = bias + self.__delattr__('fusion_conv') + self.__delattr__('fusion_bn') + self.fusion_conv = [] + self.fusion_bn = [] + + def reparameterize(self): + self.switch_to_deploy() + + +class RepGhostBottleneck(nn.Module): + """ RepGhost bottleneck w/ optional SE""" + + def __init__( + self, + in_chs, + mid_chs, + out_chs, + dw_kernel_size=3, + stride=1, + act_layer=nn.ReLU, + se_ratio=0., + reparam=True, + ): + super(RepGhostBottleneck, self).__init__() + has_se = se_ratio is not None and se_ratio > 0. + self.stride = stride + + # Point-wise expansion + self.ghost1 = RepGhostModule(in_chs, mid_chs, relu=True, reparam=reparam) + + # Depth-wise convolution + if self.stride > 1: + self.conv_dw = nn.Conv2d( + mid_chs, mid_chs, dw_kernel_size, stride=stride, + padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) + self.bn_dw = nn.BatchNorm2d(mid_chs) + else: + self.conv_dw = None + self.bn_dw = None + + # Squeeze-and-excitation + self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None + + # Point-wise linear projection + self.ghost2 = RepGhostModule(mid_chs, out_chs, relu=False, reparam=reparam) + + # shortcut + if in_chs == out_chs and self.stride == 1: + self.shortcut = nn.Sequential() + else: + self.shortcut = nn.Sequential( + nn.Conv2d( + in_chs, in_chs, dw_kernel_size, stride=stride, + padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), + nn.BatchNorm2d(in_chs), + nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), + nn.BatchNorm2d(out_chs), + ) + + def forward(self, x): + shortcut = x + + # 1st ghost bottleneck + x = self.ghost1(x) + + # Depth-wise convolution + if self.conv_dw is not None: + x = self.conv_dw(x) + x = self.bn_dw(x) + + # Squeeze-and-excitation + if self.se is not None: + x = self.se(x) + + # 2nd ghost bottleneck + x = self.ghost2(x) + + x += self.shortcut(shortcut) + return x + + +class RepGhostNet(nn.Module): + def __init__( + self, + cfgs, + num_classes=1000, + width=1.0, + in_chans=3, + output_stride=32, + global_pool='avg', + drop_rate=0.2, + reparam=True, + ): + super(RepGhostNet, self).__init__() + # setting of inverted residual blocks + assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' + self.cfgs = cfgs + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.feature_info = [] + + # building first layer + stem_chs = make_divisible(16 * width, 4) + self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) + self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) + self.bn1 = nn.BatchNorm2d(stem_chs) + self.act1 = nn.ReLU(inplace=True) + prev_chs = stem_chs + + # building inverted residual blocks + stages = nn.ModuleList([]) + block = RepGhostBottleneck + stage_idx = 0 + net_stride = 2 + for cfg in self.cfgs: + layers = [] + s = 1 + for k, exp_size, c, se_ratio, s in cfg: + out_chs = make_divisible(c * width, 4) + mid_chs = make_divisible(exp_size * width, 4) + layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, reparam=reparam)) + prev_chs = out_chs + if s > 1: + net_stride *= 2 + self.feature_info.append(dict( + num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) + stages.append(nn.Sequential(*layers)) + stage_idx += 1 + + out_chs = make_divisible(exp_size * width * 2, 4) + stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) + self.pool_dim = prev_chs = out_chs + + self.blocks = nn.Sequential(*stages) + + # building last several layers + self.num_features = prev_chs + self.head_hidden_size = out_chs = 1280 + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) + self.act2 = nn.ReLU(inplace=True) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled + self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^conv_stem|bn1', + blocks=[ + (r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), + (r'conv_head', (99999,)) + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.classifier + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + # NOTE: cannot meaningfully change pooling of efficient head after creation + self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) + self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled + self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.conv_stem(x) + x = self.bn1(x) + x = self.act1(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x, flatten=True) + else: + x = self.blocks(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.conv_head(x) + x = self.act2(x) + x = self.flatten(x) + if self.drop_rate > 0.: + x = F.dropout(x, p=self.drop_rate, training=self.training) + return x if pre_logits else self.classifier(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + def convert_to_deploy(self): + repghost_model_convert(self, do_copy=False) + + +def repghost_model_convert(model: torch.nn.Module, save_path=None, do_copy=True): + """ + taken from from https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py + """ + if do_copy: + model = copy.deepcopy(model) + for module in model.modules(): + if hasattr(module, 'switch_to_deploy'): + module.switch_to_deploy() + if save_path is not None: + torch.save(model.state_dict(), save_path) + return model + + +def _create_repghostnet(variant, width=1.0, pretrained=False, **kwargs): + """ + Constructs a RepGhostNet model + """ + cfgs = [ + # k, t, c, SE, s + # stage1 + [[3, 8, 16, 0, 1]], + # stage2 + [[3, 24, 24, 0, 2]], + [[3, 36, 24, 0, 1]], + # stage3 + [[5, 36, 40, 0.25, 2]], + [[5, 60, 40, 0.25, 1]], + # stage4 + [[3, 120, 80, 0, 2]], + [[3, 100, 80, 0, 1], + [3, 120, 80, 0, 1], + [3, 120, 80, 0, 1], + [3, 240, 112, 0.25, 1], + [3, 336, 112, 0.25, 1] + ], + # stage5 + [[5, 336, 160, 0.25, 2]], + [[5, 480, 160, 0, 1], + [5, 480, 160, 0.25, 1], + [5, 480, 160, 0, 1], + [5, 480, 160, 0.25, 1] + ] + ] + model_kwargs = dict( + cfgs=cfgs, + width=width, + **kwargs, + ) + return build_model_with_cfg( + RepGhostNet, + variant, + pretrained, + feature_cfg=dict(flatten_sequential=True), + **model_kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'conv_stem', 'classifier': 'classifier', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'repghostnet_050.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_5x_43M_66.95.pth.tar' + ), + 'repghostnet_058.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_58x_60M_68.94.pth.tar' + ), + 'repghostnet_080.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_8x_96M_72.24.pth.tar' + ), + 'repghostnet_100.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_0x_142M_74.22.pth.tar' + ), + 'repghostnet_111.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_11x_170M_75.07.pth.tar' + ), + 'repghostnet_130.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_3x_231M_76.37.pth.tar' + ), + 'repghostnet_150.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_5x_301M_77.45.pth.tar' + ), + 'repghostnet_200.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_2_0x_516M_78.81.pth.tar' + ), +}) + + +@register_model +def repghostnet_050(pretrained=False, **kwargs) -> RepGhostNet: + """ RepGhostNet-0.5x """ + model = _create_repghostnet('repghostnet_050', width=0.5, pretrained=pretrained, **kwargs) + return model + + +@register_model +def repghostnet_058(pretrained=False, **kwargs) -> RepGhostNet: + """ RepGhostNet-0.58x """ + model = _create_repghostnet('repghostnet_058', width=0.58, pretrained=pretrained, **kwargs) + return model + + +@register_model +def repghostnet_080(pretrained=False, **kwargs) -> RepGhostNet: + """ RepGhostNet-0.8x """ + model = _create_repghostnet('repghostnet_080', width=0.8, pretrained=pretrained, **kwargs) + return model + + +@register_model +def repghostnet_100(pretrained=False, **kwargs) -> RepGhostNet: + """ RepGhostNet-1.0x """ + model = _create_repghostnet('repghostnet_100', width=1.0, pretrained=pretrained, **kwargs) + return model + + +@register_model +def repghostnet_111(pretrained=False, **kwargs) -> RepGhostNet: + """ RepGhostNet-1.11x """ + model = _create_repghostnet('repghostnet_111', width=1.11, pretrained=pretrained, **kwargs) + return model + +@register_model +def repghostnet_130(pretrained=False, **kwargs) -> RepGhostNet: + """ RepGhostNet-1.3x """ + model = _create_repghostnet('repghostnet_130', width=1.3, pretrained=pretrained, **kwargs) + return model + + +@register_model +def repghostnet_150(pretrained=False, **kwargs) -> RepGhostNet: + """ RepGhostNet-1.5x """ + model = _create_repghostnet('repghostnet_150', width=1.5, pretrained=pretrained, **kwargs) + return model + + +@register_model +def repghostnet_200(pretrained=False, **kwargs) -> RepGhostNet: + """ RepGhostNet-2.0x """ + model = _create_repghostnet('repghostnet_200', width=2.0, pretrained=pretrained, **kwargs) + return model diff --git a/pytorch-image-models/timm/models/repvit.py b/pytorch-image-models/timm/models/repvit.py new file mode 100644 index 0000000000000000000000000000000000000000..7dcb2cd939f47e7f3ae3553844f5ff5f95a147e4 --- /dev/null +++ b/pytorch-image-models/timm/models/repvit.py @@ -0,0 +1,513 @@ +""" RepViT + +Paper: `RepViT: Revisiting Mobile CNN From ViT Perspective` + - https://arxiv.org/abs/2307.09283 + +@misc{wang2023repvit, + title={RepViT: Revisiting Mobile CNN From ViT Perspective}, + author={Ao Wang and Hui Chen and Zijia Lin and Hengjun Pu and Guiguang Ding}, + year={2023}, + eprint={2307.09283}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} + +Adapted from official impl at https://github.com/jameslahm/RepViT +""" + +__all__ = ['RepVit'] +from typing import Optional + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SqueezeExcite, trunc_normal_, to_ntuple, to_2tuple +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + + +class ConvNorm(nn.Sequential): + def __init__(self, in_dim, out_dim, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): + super().__init__() + self.add_module('c', nn.Conv2d(in_dim, out_dim, ks, stride, pad, dilation, groups, bias=False)) + self.add_module('bn', nn.BatchNorm2d(out_dim)) + nn.init.constant_(self.bn.weight, bn_weight_init) + nn.init.constant_(self.bn.bias, 0) + + @torch.no_grad() + def fuse(self): + c, bn = self._modules.values() + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = c.weight * w[:, None, None, None] + b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 + m = nn.Conv2d( + w.size(1) * self.c.groups, + w.size(0), + w.shape[2:], + stride=self.c.stride, + padding=self.c.padding, + dilation=self.c.dilation, + groups=self.c.groups, + device=c.weight.device, + ) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + + +class NormLinear(nn.Sequential): + def __init__(self, in_dim, out_dim, bias=True, std=0.02): + super().__init__() + self.add_module('bn', nn.BatchNorm1d(in_dim)) + self.add_module('l', nn.Linear(in_dim, out_dim, bias=bias)) + trunc_normal_(self.l.weight, std=std) + if bias: + nn.init.constant_(self.l.bias, 0) + + @torch.no_grad() + def fuse(self): + bn, l = self._modules.values() + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = l.weight * w[None, :] + if l.bias is None: + b = b @ self.l.weight.T + else: + b = (l.weight @ b[:, None]).view(-1) + self.l.bias + m = nn.Linear(w.size(1), w.size(0), device=l.weight.device) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + + +class RepVggDw(nn.Module): + def __init__(self, ed, kernel_size, legacy=False): + super().__init__() + self.conv = ConvNorm(ed, ed, kernel_size, 1, (kernel_size - 1) // 2, groups=ed) + if legacy: + self.conv1 = ConvNorm(ed, ed, 1, 1, 0, groups=ed) + # Make torchscript happy. + self.bn = nn.Identity() + else: + self.conv1 = nn.Conv2d(ed, ed, 1, 1, 0, groups=ed) + self.bn = nn.BatchNorm2d(ed) + self.dim = ed + self.legacy = legacy + + def forward(self, x): + return self.bn(self.conv(x) + self.conv1(x) + x) + + @torch.no_grad() + def fuse(self): + conv = self.conv.fuse() + + if self.legacy: + conv1 = self.conv1.fuse() + else: + conv1 = self.conv1 + + conv_w = conv.weight + conv_b = conv.bias + conv1_w = conv1.weight + conv1_b = conv1.bias + + conv1_w = nn.functional.pad(conv1_w, [1, 1, 1, 1]) + + identity = nn.functional.pad( + torch.ones(conv1_w.shape[0], conv1_w.shape[1], 1, 1, device=conv1_w.device), [1, 1, 1, 1] + ) + + final_conv_w = conv_w + conv1_w + identity + final_conv_b = conv_b + conv1_b + + conv.weight.data.copy_(final_conv_w) + conv.bias.data.copy_(final_conv_b) + + if not self.legacy: + bn = self.bn + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = conv.weight * w[:, None, None, None] + b = bn.bias + (conv.bias - bn.running_mean) * bn.weight / (bn.running_var + bn.eps) ** 0.5 + conv.weight.data.copy_(w) + conv.bias.data.copy_(b) + return conv + + +class RepVitMlp(nn.Module): + def __init__(self, in_dim, hidden_dim, act_layer): + super().__init__() + self.conv1 = ConvNorm(in_dim, hidden_dim, 1, 1, 0) + self.act = act_layer() + self.conv2 = ConvNorm(hidden_dim, in_dim, 1, 1, 0, bn_weight_init=0) + + def forward(self, x): + return self.conv2(self.act(self.conv1(x))) + + +class RepViTBlock(nn.Module): + def __init__(self, in_dim, mlp_ratio, kernel_size, use_se, act_layer, legacy=False): + super(RepViTBlock, self).__init__() + + self.token_mixer = RepVggDw(in_dim, kernel_size, legacy) + self.se = SqueezeExcite(in_dim, 0.25) if use_se else nn.Identity() + self.channel_mixer = RepVitMlp(in_dim, in_dim * mlp_ratio, act_layer) + + def forward(self, x): + x = self.token_mixer(x) + x = self.se(x) + identity = x + x = self.channel_mixer(x) + return identity + x + + +class RepVitStem(nn.Module): + def __init__(self, in_chs, out_chs, act_layer): + super().__init__() + self.conv1 = ConvNorm(in_chs, out_chs // 2, 3, 2, 1) + self.act1 = act_layer() + self.conv2 = ConvNorm(out_chs // 2, out_chs, 3, 2, 1) + self.stride = 4 + + def forward(self, x): + return self.conv2(self.act1(self.conv1(x))) + + +class RepVitDownsample(nn.Module): + def __init__(self, in_dim, mlp_ratio, out_dim, kernel_size, act_layer, legacy=False): + super().__init__() + self.pre_block = RepViTBlock(in_dim, mlp_ratio, kernel_size, use_se=False, act_layer=act_layer, legacy=legacy) + self.spatial_downsample = ConvNorm(in_dim, in_dim, kernel_size, 2, (kernel_size - 1) // 2, groups=in_dim) + self.channel_downsample = ConvNorm(in_dim, out_dim, 1, 1) + self.ffn = RepVitMlp(out_dim, out_dim * mlp_ratio, act_layer) + + def forward(self, x): + x = self.pre_block(x) + x = self.spatial_downsample(x) + x = self.channel_downsample(x) + identity = x + x = self.ffn(x) + return x + identity + + +class RepVitClassifier(nn.Module): + def __init__(self, dim, num_classes, distillation=False, drop=0.0): + super().__init__() + self.head_drop = nn.Dropout(drop) + self.head = NormLinear(dim, num_classes) if num_classes > 0 else nn.Identity() + self.distillation = distillation + self.distilled_training = False + self.num_classes = num_classes + if distillation: + self.head_dist = NormLinear(dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward(self, x): + x = self.head_drop(x) + if self.distillation: + x1, x2 = self.head(x), self.head_dist(x) + if self.training and self.distilled_training and not torch.jit.is_scripting(): + return x1, x2 + else: + return (x1 + x2) / 2 + else: + x = self.head(x) + return x + + @torch.no_grad() + def fuse(self): + if not self.num_classes > 0: + return nn.Identity() + head = self.head.fuse() + if self.distillation: + head_dist = self.head_dist.fuse() + head.weight += head_dist.weight + head.bias += head_dist.bias + head.weight /= 2 + head.bias /= 2 + return head + else: + return head + + +class RepVitStage(nn.Module): + def __init__(self, in_dim, out_dim, depth, mlp_ratio, act_layer, kernel_size=3, downsample=True, legacy=False): + super().__init__() + if downsample: + self.downsample = RepVitDownsample(in_dim, mlp_ratio, out_dim, kernel_size, act_layer, legacy) + else: + assert in_dim == out_dim + self.downsample = nn.Identity() + + blocks = [] + use_se = True + for _ in range(depth): + blocks.append(RepViTBlock(out_dim, mlp_ratio, kernel_size, use_se, act_layer, legacy)) + use_se = not use_se + + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + x = self.blocks(x) + return x + + +class RepVit(nn.Module): + def __init__( + self, + in_chans=3, + img_size=224, + embed_dim=(48,), + depth=(2,), + mlp_ratio=2, + global_pool='avg', + kernel_size=3, + num_classes=1000, + act_layer=nn.GELU, + distillation=True, + drop_rate=0.0, + legacy=False, + ): + super(RepVit, self).__init__() + self.grad_checkpointing = False + self.global_pool = global_pool + self.embed_dim = embed_dim + self.num_classes = num_classes + + in_dim = embed_dim[0] + self.stem = RepVitStem(in_chans, in_dim, act_layer) + stride = self.stem.stride + resolution = tuple([i // p for i, p in zip(to_2tuple(img_size), to_2tuple(stride))]) + + num_stages = len(embed_dim) + mlp_ratios = to_ntuple(num_stages)(mlp_ratio) + + self.feature_info = [] + stages = [] + for i in range(num_stages): + downsample = True if i != 0 else False + stages.append( + RepVitStage( + in_dim, + embed_dim[i], + depth[i], + mlp_ratio=mlp_ratios[i], + act_layer=act_layer, + kernel_size=kernel_size, + downsample=downsample, + legacy=legacy, + ) + ) + stage_stride = 2 if downsample else 1 + stride *= stage_stride + resolution = tuple([(r - 1) // stage_stride + 1 for r in resolution]) + self.feature_info += [dict(num_chs=embed_dim[i], reduction=stride, module=f'stages.{i}')] + in_dim = embed_dim[i] + self.stages = nn.Sequential(*stages) + + self.num_features = self.head_hidden_size = embed_dim[-1] + self.head_drop = nn.Dropout(drop_rate) + self.head = RepVitClassifier(embed_dim[-1], num_classes, distillation) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem=r'^stem', blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]) # stem and embed + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, distillation: bool = False): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = RepVitClassifier(self.embed_dim[-1], num_classes, distillation) + + @torch.jit.ignore + def set_distilled_training(self, enable=True): + self.head.distilled_training = enable + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool == 'avg': + x = x.mean((2, 3), keepdim=False) + x = self.head_drop(x) + if pre_logits: + return x + return self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + @torch.no_grad() + def fuse(self): + def fuse_children(net): + for child_name, child in net.named_children(): + if hasattr(child, 'fuse'): + fused = child.fuse() + setattr(net, child_name, fused) + fuse_children(fused) + else: + fuse_children(child) + + fuse_children(self) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, + 'input_size': (3, 224, 224), + 'pool_size': (7, 7), + 'crop_pct': 0.95, + 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, + 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv1.c', + 'classifier': ('head.head.l', 'head.head_dist.l'), + **kwargs, + } + + +default_cfgs = generate_default_cfgs( + { + 'repvit_m1.dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m2.dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m3.dist_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m0_9.dist_300e_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m0_9.dist_450e_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m1_0.dist_300e_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m1_0.dist_450e_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m1_1.dist_300e_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m1_1.dist_450e_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m1_5.dist_300e_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m1_5.dist_450e_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m2_3.dist_300e_in1k': _cfg( + hf_hub_id='timm/', + ), + 'repvit_m2_3.dist_450e_in1k': _cfg( + hf_hub_id='timm/', + ), + } +) + + +def _create_repvit(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg( + RepVit, + variant, + pretrained, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs, + ) + return model + + +@register_model +def repvit_m1(pretrained=False, **kwargs): + """ + Constructs a RepViT-M1 model + """ + model_args = dict(embed_dim=(48, 96, 192, 384), depth=(2, 2, 14, 2), legacy=True) + return _create_repvit('repvit_m1', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def repvit_m2(pretrained=False, **kwargs): + """ + Constructs a RepViT-M2 model + """ + model_args = dict(embed_dim=(64, 128, 256, 512), depth=(2, 2, 12, 2), legacy=True) + return _create_repvit('repvit_m2', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def repvit_m3(pretrained=False, **kwargs): + """ + Constructs a RepViT-M3 model + """ + model_args = dict(embed_dim=(64, 128, 256, 512), depth=(4, 4, 18, 2), legacy=True) + return _create_repvit('repvit_m3', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def repvit_m0_9(pretrained=False, **kwargs): + """ + Constructs a RepViT-M0.9 model + """ + model_args = dict(embed_dim=(48, 96, 192, 384), depth=(2, 2, 14, 2)) + return _create_repvit('repvit_m0_9', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def repvit_m1_0(pretrained=False, **kwargs): + """ + Constructs a RepViT-M1.0 model + """ + model_args = dict(embed_dim=(56, 112, 224, 448), depth=(2, 2, 14, 2)) + return _create_repvit('repvit_m1_0', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def repvit_m1_1(pretrained=False, **kwargs): + """ + Constructs a RepViT-M1.1 model + """ + model_args = dict(embed_dim=(64, 128, 256, 512), depth=(2, 2, 12, 2)) + return _create_repvit('repvit_m1_1', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def repvit_m1_5(pretrained=False, **kwargs): + """ + Constructs a RepViT-M1.5 model + """ + model_args = dict(embed_dim=(64, 128, 256, 512), depth=(4, 4, 24, 4)) + return _create_repvit('repvit_m1_5', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def repvit_m2_3(pretrained=False, **kwargs): + """ + Constructs a RepViT-M2.3 model + """ + model_args = dict(embed_dim=(80, 160, 320, 640), depth=(6, 6, 34, 2)) + return _create_repvit('repvit_m2_3', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/res2net.py b/pytorch-image-models/timm/models/res2net.py new file mode 100644 index 0000000000000000000000000000000000000000..691f929b91db626f09f30e28a48b1cc5c8ab200e --- /dev/null +++ b/pytorch-image-models/timm/models/res2net.py @@ -0,0 +1,227 @@ +""" Res2Net and Res2NeXt +Adapted from Official Pytorch impl at: https://github.com/gasvn/Res2Net/ +Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169 +""" +import math + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from .resnet import ResNet + +__all__ = [] + + +class Bottle2neck(nn.Module): + """ Res2Net/Res2NeXT Bottleneck + Adapted from https://github.com/gasvn/Res2Net/blob/master/res2net.py + """ + expansion = 4 + + def __init__( + self, + inplanes, + planes, + stride=1, + downsample=None, + cardinality=1, + base_width=26, + scale=4, + dilation=1, + first_dilation=None, + act_layer=nn.ReLU, + norm_layer=None, + attn_layer=None, + **_, + ): + super(Bottle2neck, self).__init__() + self.scale = scale + self.is_first = stride > 1 or downsample is not None + self.num_scales = max(1, scale - 1) + width = int(math.floor(planes * (base_width / 64.0))) * cardinality + self.width = width + outplanes = planes * self.expansion + first_dilation = first_dilation or dilation + + self.conv1 = nn.Conv2d(inplanes, width * scale, kernel_size=1, bias=False) + self.bn1 = norm_layer(width * scale) + + convs = [] + bns = [] + for i in range(self.num_scales): + convs.append(nn.Conv2d( + width, width, kernel_size=3, stride=stride, padding=first_dilation, + dilation=first_dilation, groups=cardinality, bias=False)) + bns.append(norm_layer(width)) + self.convs = nn.ModuleList(convs) + self.bns = nn.ModuleList(bns) + if self.is_first: + # FIXME this should probably have count_include_pad=False, but hurts original weights + self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1) + else: + self.pool = None + + self.conv3 = nn.Conv2d(width * scale, outplanes, kernel_size=1, bias=False) + self.bn3 = norm_layer(outplanes) + self.se = attn_layer(outplanes) if attn_layer is not None else None + + self.relu = act_layer(inplace=True) + self.downsample = downsample + + def zero_init_last(self): + if getattr(self.bn3, 'weight', None) is not None: + nn.init.zeros_(self.bn3.weight) + + def forward(self, x): + shortcut = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + spx = torch.split(out, self.width, 1) + spo = [] + sp = spx[0] # redundant, for torchscript + for i, (conv, bn) in enumerate(zip(self.convs, self.bns)): + if i == 0 or self.is_first: + sp = spx[i] + else: + sp = sp + spx[i] + sp = conv(sp) + sp = bn(sp) + sp = self.relu(sp) + spo.append(sp) + if self.scale > 1: + if self.pool is not None: # self.is_first == True, None check for torchscript + spo.append(self.pool(spx[-1])) + else: + spo.append(spx[-1]) + out = torch.cat(spo, 1) + + out = self.conv3(out) + out = self.bn3(out) + + if self.se is not None: + out = self.se(out) + + if self.downsample is not None: + shortcut = self.downsample(x) + + out += shortcut + out = self.relu(out) + + return out + + +def _create_res2net(variant, pretrained=False, **kwargs): + return build_model_with_cfg(ResNet, variant, pretrained, **kwargs) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'conv1', 'classifier': 'fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'res2net50_26w_4s.in1k': _cfg(hf_hub_id='timm/'), + 'res2net50_48w_2s.in1k': _cfg(hf_hub_id='timm/'), + 'res2net50_14w_8s.in1k': _cfg(hf_hub_id='timm/'), + 'res2net50_26w_6s.in1k': _cfg(hf_hub_id='timm/'), + 'res2net50_26w_8s.in1k': _cfg(hf_hub_id='timm/'), + 'res2net101_26w_4s.in1k': _cfg(hf_hub_id='timm/'), + 'res2next50.in1k': _cfg(hf_hub_id='timm/'), + 'res2net50d.in1k': _cfg(hf_hub_id='timm/', first_conv='conv1.0'), + 'res2net101d.in1k': _cfg(hf_hub_id='timm/', first_conv='conv1.0'), +}) + + +@register_model +def res2net50_26w_4s(pretrained=False, **kwargs) -> ResNet: + """Constructs a Res2Net-50 26w4s model. + """ + model_args = dict( + block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=4)) + return _create_res2net('res2net50_26w_4s', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def res2net101_26w_4s(pretrained=False, **kwargs) -> ResNet: + """Constructs a Res2Net-101 26w4s model. + """ + model_args = dict( + block=Bottle2neck, layers=[3, 4, 23, 3], base_width=26, block_args=dict(scale=4)) + return _create_res2net('res2net101_26w_4s', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def res2net50_26w_6s(pretrained=False, **kwargs) -> ResNet: + """Constructs a Res2Net-50 26w6s model. + """ + model_args = dict( + block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=6)) + return _create_res2net('res2net50_26w_6s', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def res2net50_26w_8s(pretrained=False, **kwargs) -> ResNet: + """Constructs a Res2Net-50 26w8s model. + """ + model_args = dict( + block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, block_args=dict(scale=8)) + return _create_res2net('res2net50_26w_8s', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def res2net50_48w_2s(pretrained=False, **kwargs) -> ResNet: + """Constructs a Res2Net-50 48w2s model. + """ + model_args = dict( + block=Bottle2neck, layers=[3, 4, 6, 3], base_width=48, block_args=dict(scale=2)) + return _create_res2net('res2net50_48w_2s', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def res2net50_14w_8s(pretrained=False, **kwargs) -> ResNet: + """Constructs a Res2Net-50 14w8s model. + """ + model_args = dict( + block=Bottle2neck, layers=[3, 4, 6, 3], base_width=14, block_args=dict(scale=8)) + return _create_res2net('res2net50_14w_8s', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def res2next50(pretrained=False, **kwargs) -> ResNet: + """Construct Res2NeXt-50 4s + """ + model_args = dict( + block=Bottle2neck, layers=[3, 4, 6, 3], base_width=4, cardinality=8, block_args=dict(scale=4)) + return _create_res2net('res2next50', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def res2net50d(pretrained=False, **kwargs) -> ResNet: + """Construct Res2Net-50 + """ + model_args = dict( + block=Bottle2neck, layers=[3, 4, 6, 3], base_width=26, stem_type='deep', + avg_down=True, stem_width=32, block_args=dict(scale=4)) + return _create_res2net('res2net50d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def res2net101d(pretrained=False, **kwargs) -> ResNet: + """Construct Res2Net-50 + """ + model_args = dict( + block=Bottle2neck, layers=[3, 4, 23, 3], base_width=26, stem_type='deep', + avg_down=True, stem_width=32, block_args=dict(scale=4)) + return _create_res2net('res2net101d', pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/resnest.py b/pytorch-image-models/timm/models/resnest.py new file mode 100644 index 0000000000000000000000000000000000000000..5b1438017ea11dbd98968e07f64120bcb66a6aac --- /dev/null +++ b/pytorch-image-models/timm/models/resnest.py @@ -0,0 +1,251 @@ +""" ResNeSt Models + +Paper: `ResNeSt: Split-Attention Networks` - https://arxiv.org/abs/2004.08955 + +Adapted from original PyTorch impl w/ weights at https://github.com/zhanghang1989/ResNeSt by Hang Zhang + +Modified for torchscript compat, and consistency with timm by Ross Wightman +""" +from torch import nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SplitAttn +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from .resnet import ResNet + + +class ResNestBottleneck(nn.Module): + """ResNet Bottleneck + """ + # pylint: disable=unused-argument + expansion = 4 + + def __init__( + self, + inplanes, + planes, + stride=1, + downsample=None, + radix=1, + cardinality=1, + base_width=64, + avd=False, + avd_first=False, + is_first=False, + reduce_first=1, + dilation=1, + first_dilation=None, + act_layer=nn.ReLU, + norm_layer=nn.BatchNorm2d, + attn_layer=None, + aa_layer=None, + drop_block=None, + drop_path=None, + ): + super(ResNestBottleneck, self).__init__() + assert reduce_first == 1 # not supported + assert attn_layer is None # not supported + assert aa_layer is None # TODO not yet supported + assert drop_path is None # TODO not yet supported + + group_width = int(planes * (base_width / 64.)) * cardinality + first_dilation = first_dilation or dilation + if avd and (stride > 1 or is_first): + avd_stride = stride + stride = 1 + else: + avd_stride = 0 + self.radix = radix + + self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False) + self.bn1 = norm_layer(group_width) + self.act1 = act_layer(inplace=True) + self.avd_first = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and avd_first else None + + if self.radix >= 1: + self.conv2 = SplitAttn( + group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation, + dilation=first_dilation, groups=cardinality, radix=radix, norm_layer=norm_layer, drop_layer=drop_block) + self.bn2 = nn.Identity() + self.drop_block = nn.Identity() + self.act2 = nn.Identity() + else: + self.conv2 = nn.Conv2d( + group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation, + dilation=first_dilation, groups=cardinality, bias=False) + self.bn2 = norm_layer(group_width) + self.drop_block = drop_block() if drop_block is not None else nn.Identity() + self.act2 = act_layer(inplace=True) + self.avd_last = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and not avd_first else None + + self.conv3 = nn.Conv2d(group_width, planes * 4, kernel_size=1, bias=False) + self.bn3 = norm_layer(planes*4) + self.act3 = act_layer(inplace=True) + self.downsample = downsample + + def zero_init_last(self): + if getattr(self.bn3, 'weight', None) is not None: + nn.init.zeros_(self.bn3.weight) + + def forward(self, x): + shortcut = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.act1(out) + + if self.avd_first is not None: + out = self.avd_first(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.drop_block(out) + out = self.act2(out) + + if self.avd_last is not None: + out = self.avd_last(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + shortcut = self.downsample(x) + + out += shortcut + out = self.act3(out) + return out + + +def _create_resnest(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + ResNet, + variant, + pretrained, + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'conv1.0', 'classifier': 'fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'resnest14d.gluon_in1k': _cfg(hf_hub_id='timm/'), + 'resnest26d.gluon_in1k': _cfg(hf_hub_id='timm/'), + 'resnest50d.in1k': _cfg(hf_hub_id='timm/'), + 'resnest101e.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), pool_size=(8, 8)), + 'resnest200e.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=0.909, interpolation='bicubic'), + 'resnest269e.in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 416, 416), pool_size=(13, 13), crop_pct=0.928, interpolation='bicubic'), + 'resnest50d_4s2x40d.in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic'), + 'resnest50d_1s4x24d.in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic') +}) + + +@register_model +def resnest14d(pretrained=False, **kwargs) -> ResNet: + """ ResNeSt-14d model. Weights ported from GluonCV. + """ + model_kwargs = dict( + block=ResNestBottleneck, layers=[1, 1, 1, 1], + stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, + block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest14d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + + +@register_model +def resnest26d(pretrained=False, **kwargs) -> ResNet: + """ ResNeSt-26d model. Weights ported from GluonCV. + """ + model_kwargs = dict( + block=ResNestBottleneck, layers=[2, 2, 2, 2], + stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, + block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest26d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + + +@register_model +def resnest50d(pretrained=False, **kwargs) -> ResNet: + """ ResNeSt-50d model. Matches paper ResNeSt-50 model, https://arxiv.org/abs/2004.08955 + Since this codebase supports all possible variations, 'd' for deep stem, stem_width 32, avg in downsample. + """ + model_kwargs = dict( + block=ResNestBottleneck, layers=[3, 4, 6, 3], + stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, + block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest50d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + + +@register_model +def resnest101e(pretrained=False, **kwargs) -> ResNet: + """ ResNeSt-101e model. Matches paper ResNeSt-101 model, https://arxiv.org/abs/2004.08955 + Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. + """ + model_kwargs = dict( + block=ResNestBottleneck, layers=[3, 4, 23, 3], + stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, + block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest101e', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + + +@register_model +def resnest200e(pretrained=False, **kwargs) -> ResNet: + """ ResNeSt-200e model. Matches paper ResNeSt-200 model, https://arxiv.org/abs/2004.08955 + Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. + """ + model_kwargs = dict( + block=ResNestBottleneck, layers=[3, 24, 36, 3], + stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, + block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest200e', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + + +@register_model +def resnest269e(pretrained=False, **kwargs) -> ResNet: + """ ResNeSt-269e model. Matches paper ResNeSt-269 model, https://arxiv.org/abs/2004.08955 + Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. + """ + model_kwargs = dict( + block=ResNestBottleneck, layers=[3, 30, 48, 8], + stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, + block_args=dict(radix=2, avd=True, avd_first=False)) + return _create_resnest('resnest269e', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + + +@register_model +def resnest50d_4s2x40d(pretrained=False, **kwargs) -> ResNet: + """ResNeSt-50 4s2x40d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md + """ + model_kwargs = dict( + block=ResNestBottleneck, layers=[3, 4, 6, 3], + stem_type='deep', stem_width=32, avg_down=True, base_width=40, cardinality=2, + block_args=dict(radix=4, avd=True, avd_first=True)) + return _create_resnest('resnest50d_4s2x40d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) + + +@register_model +def resnest50d_1s4x24d(pretrained=False, **kwargs) -> ResNet: + """ResNeSt-50 1s4x24d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md + """ + model_kwargs = dict( + block=ResNestBottleneck, layers=[3, 4, 6, 3], + stem_type='deep', stem_width=32, avg_down=True, base_width=24, cardinality=4, + block_args=dict(radix=1, avd=True, avd_first=True)) + return _create_resnest('resnest50d_1s4x24d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) diff --git a/pytorch-image-models/timm/models/resnet.py b/pytorch-image-models/timm/models/resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..dd6aa1e8b20085ca9b36a0e3389879bfe083021a --- /dev/null +++ b/pytorch-image-models/timm/models/resnet.py @@ -0,0 +1,2109 @@ +"""PyTorch ResNet + +This started as a copy of https://github.com/pytorch/vision 'resnet.py' (BSD-3-Clause) with +additional dropout and dynamic global avg/max pool. + +ResNeXt, SE-ResNeXt, SENet, and MXNet Gluon stem/downsample variants, tiered stems added by Ross Wightman + +Copyright 2019, Ross Wightman +""" +import math +from functools import partial +from typing import Any, Dict, List, Optional, Tuple, Type, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropBlock2d, DropPath, AvgPool2dSame, BlurPool2d, LayerType, create_attn, \ + get_attn, get_act_layer, get_norm_layer, create_classifier, create_aa, to_ntuple +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs, register_model_deprecations + +__all__ = ['ResNet', 'BasicBlock', 'Bottleneck'] # model_registry will add each entrypoint fn to this + + +def get_padding(kernel_size: int, stride: int, dilation: int = 1) -> int: + padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 + return padding + + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__( + self, + inplanes: int, + planes: int, + stride: int = 1, + downsample: Optional[nn.Module] = None, + cardinality: int = 1, + base_width: int = 64, + reduce_first: int = 1, + dilation: int = 1, + first_dilation: Optional[int] = None, + act_layer: Type[nn.Module] = nn.ReLU, + norm_layer: Type[nn.Module] = nn.BatchNorm2d, + attn_layer: Optional[Type[nn.Module]] = None, + aa_layer: Optional[Type[nn.Module]] = None, + drop_block: Optional[Type[nn.Module]] = None, + drop_path: Optional[nn.Module] = None, + ): + """ + Args: + inplanes: Input channel dimensionality. + planes: Used to determine output channel dimensionalities. + stride: Stride used in convolution layers. + downsample: Optional downsample layer for residual path. + cardinality: Number of convolution groups. + base_width: Base width used to determine output channel dimensionality. + reduce_first: Reduction factor for first convolution output width of residual blocks. + dilation: Dilation rate for convolution layers. + first_dilation: Dilation rate for first convolution layer. + act_layer: Activation layer. + norm_layer: Normalization layer. + attn_layer: Attention layer. + aa_layer: Anti-aliasing layer. + drop_block: Class for DropBlock layer. + drop_path: Optional DropPath layer. + """ + super(BasicBlock, self).__init__() + + assert cardinality == 1, 'BasicBlock only supports cardinality of 1' + assert base_width == 64, 'BasicBlock does not support changing base width' + first_planes = planes // reduce_first + outplanes = planes * self.expansion + first_dilation = first_dilation or dilation + use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation) + + self.conv1 = nn.Conv2d( + inplanes, first_planes, kernel_size=3, stride=1 if use_aa else stride, padding=first_dilation, + dilation=first_dilation, bias=False) + self.bn1 = norm_layer(first_planes) + self.drop_block = drop_block() if drop_block is not None else nn.Identity() + self.act1 = act_layer(inplace=True) + self.aa = create_aa(aa_layer, channels=first_planes, stride=stride, enable=use_aa) + + self.conv2 = nn.Conv2d( + first_planes, outplanes, kernel_size=3, padding=dilation, dilation=dilation, bias=False) + self.bn2 = norm_layer(outplanes) + + self.se = create_attn(attn_layer, outplanes) + + self.act2 = act_layer(inplace=True) + self.downsample = downsample + self.stride = stride + self.dilation = dilation + self.drop_path = drop_path + + def zero_init_last(self): + if getattr(self.bn2, 'weight', None) is not None: + nn.init.zeros_(self.bn2.weight) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + + x = self.conv1(x) + x = self.bn1(x) + x = self.drop_block(x) + x = self.act1(x) + x = self.aa(x) + + x = self.conv2(x) + x = self.bn2(x) + + if self.se is not None: + x = self.se(x) + + if self.drop_path is not None: + x = self.drop_path(x) + + if self.downsample is not None: + shortcut = self.downsample(shortcut) + x += shortcut + x = self.act2(x) + + return x + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__( + self, + inplanes: int, + planes: int, + stride: int = 1, + downsample: Optional[nn.Module] = None, + cardinality: int = 1, + base_width: int = 64, + reduce_first: int = 1, + dilation: int = 1, + first_dilation: Optional[int] = None, + act_layer: Type[nn.Module] = nn.ReLU, + norm_layer: Type[nn.Module] = nn.BatchNorm2d, + attn_layer: Optional[Type[nn.Module]] = None, + aa_layer: Optional[Type[nn.Module]] = None, + drop_block: Optional[Type[nn.Module]] = None, + drop_path: Optional[nn.Module] = None, + ): + """ + Args: + inplanes: Input channel dimensionality. + planes: Used to determine output channel dimensionalities. + stride: Stride used in convolution layers. + downsample: Optional downsample layer for residual path. + cardinality: Number of convolution groups. + base_width: Base width used to determine output channel dimensionality. + reduce_first: Reduction factor for first convolution output width of residual blocks. + dilation: Dilation rate for convolution layers. + first_dilation: Dilation rate for first convolution layer. + act_layer: Activation layer. + norm_layer: Normalization layer. + attn_layer: Attention layer. + aa_layer: Anti-aliasing layer. + drop_block: Class for DropBlock layer. + drop_path: Optional DropPath layer. + """ + super(Bottleneck, self).__init__() + + width = int(math.floor(planes * (base_width / 64)) * cardinality) + first_planes = width // reduce_first + outplanes = planes * self.expansion + first_dilation = first_dilation or dilation + use_aa = aa_layer is not None and (stride == 2 or first_dilation != dilation) + + self.conv1 = nn.Conv2d(inplanes, first_planes, kernel_size=1, bias=False) + self.bn1 = norm_layer(first_planes) + self.act1 = act_layer(inplace=True) + + self.conv2 = nn.Conv2d( + first_planes, width, kernel_size=3, stride=1 if use_aa else stride, + padding=first_dilation, dilation=first_dilation, groups=cardinality, bias=False) + self.bn2 = norm_layer(width) + self.drop_block = drop_block() if drop_block is not None else nn.Identity() + self.act2 = act_layer(inplace=True) + self.aa = create_aa(aa_layer, channels=width, stride=stride, enable=use_aa) + + self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False) + self.bn3 = norm_layer(outplanes) + + self.se = create_attn(attn_layer, outplanes) + + self.act3 = act_layer(inplace=True) + self.downsample = downsample + self.stride = stride + self.dilation = dilation + self.drop_path = drop_path + + def zero_init_last(self): + if getattr(self.bn3, 'weight', None) is not None: + nn.init.zeros_(self.bn3.weight) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + + x = self.conv2(x) + x = self.bn2(x) + x = self.drop_block(x) + x = self.act2(x) + x = self.aa(x) + + x = self.conv3(x) + x = self.bn3(x) + + if self.se is not None: + x = self.se(x) + + if self.drop_path is not None: + x = self.drop_path(x) + + if self.downsample is not None: + shortcut = self.downsample(shortcut) + x += shortcut + x = self.act3(x) + + return x + + +def downsample_conv( + in_channels: int, + out_channels: int, + kernel_size: int, + stride: int = 1, + dilation: int = 1, + first_dilation: Optional[int] = None, + norm_layer: Optional[Type[nn.Module]] = None, +) -> nn.Module: + norm_layer = norm_layer or nn.BatchNorm2d + kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size + first_dilation = (first_dilation or dilation) if kernel_size > 1 else 1 + p = get_padding(kernel_size, stride, first_dilation) + + return nn.Sequential(*[ + nn.Conv2d( + in_channels, out_channels, kernel_size, stride=stride, padding=p, dilation=first_dilation, bias=False), + norm_layer(out_channels) + ]) + + +def downsample_avg( + in_channels: int, + out_channels: int, + kernel_size: int, + stride: int = 1, + dilation: int = 1, + first_dilation: Optional[int] = None, + norm_layer: Optional[Type[nn.Module]] = None, +) -> nn.Module: + norm_layer = norm_layer or nn.BatchNorm2d + avg_stride = stride if dilation == 1 else 1 + if stride == 1 and dilation == 1: + pool = nn.Identity() + else: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + + return nn.Sequential(*[ + pool, + nn.Conv2d(in_channels, out_channels, 1, stride=1, padding=0, bias=False), + norm_layer(out_channels) + ]) + + +def drop_blocks(drop_prob: float = 0.): + return [ + None, None, + partial(DropBlock2d, drop_prob=drop_prob, block_size=5, gamma_scale=0.25) if drop_prob else None, + partial(DropBlock2d, drop_prob=drop_prob, block_size=3, gamma_scale=1.00) if drop_prob else None] + + +def make_blocks( + block_fns: Tuple[Union[BasicBlock, Bottleneck]], + channels: Tuple[int, ...], + block_repeats: Tuple[int, ...], + inplanes: int, + reduce_first: int = 1, + output_stride: int = 32, + down_kernel_size: int = 1, + avg_down: bool = False, + drop_block_rate: float = 0., + drop_path_rate: float = 0., + **kwargs, +) -> Tuple[List[Tuple[str, nn.Module]], List[Dict[str, Any]]]: + stages = [] + feature_info = [] + net_num_blocks = sum(block_repeats) + net_block_idx = 0 + net_stride = 4 + dilation = prev_dilation = 1 + for stage_idx, (block_fn, planes, num_blocks, db) in enumerate(zip(block_fns, channels, block_repeats, drop_blocks(drop_block_rate))): + stage_name = f'layer{stage_idx + 1}' # never liked this name, but weight compat requires it + stride = 1 if stage_idx == 0 else 2 + if net_stride >= output_stride: + dilation *= stride + stride = 1 + else: + net_stride *= stride + + downsample = None + if stride != 1 or inplanes != planes * block_fn.expansion: + down_kwargs = dict( + in_channels=inplanes, + out_channels=planes * block_fn.expansion, + kernel_size=down_kernel_size, + stride=stride, + dilation=dilation, + first_dilation=prev_dilation, + norm_layer=kwargs.get('norm_layer'), + ) + downsample = downsample_avg(**down_kwargs) if avg_down else downsample_conv(**down_kwargs) + + block_kwargs = dict(reduce_first=reduce_first, dilation=dilation, drop_block=db, **kwargs) + blocks = [] + for block_idx in range(num_blocks): + downsample = downsample if block_idx == 0 else None + stride = stride if block_idx == 0 else 1 + block_dpr = drop_path_rate * net_block_idx / (net_num_blocks - 1) # stochastic depth linear decay rule + blocks.append(block_fn( + inplanes, + planes, + stride, + downsample, + first_dilation=prev_dilation, + drop_path=DropPath(block_dpr) if block_dpr > 0. else None, + **block_kwargs, + )) + prev_dilation = dilation + inplanes = planes * block_fn.expansion + net_block_idx += 1 + + stages.append((stage_name, nn.Sequential(*blocks))) + feature_info.append(dict(num_chs=inplanes, reduction=net_stride, module=stage_name)) + + return stages, feature_info + + +class ResNet(nn.Module): + """ResNet / ResNeXt / SE-ResNeXt / SE-Net + + This class implements all variants of ResNet, ResNeXt, SE-ResNeXt, and SENet that + * have > 1 stride in the 3x3 conv layer of bottleneck + * have conv-bn-act ordering + + This ResNet impl supports a number of stem and downsample options based on the v1c, v1d, v1e, and v1s + variants included in the MXNet Gluon ResNetV1b model. The C and D variants are also discussed in the + 'Bag of Tricks' paper: https://arxiv.org/pdf/1812.01187. The B variant is equivalent to torchvision default. + + ResNet variants (the same modifications can be used in SE/ResNeXt models as well): + * normal, b - 7x7 stem, stem_width = 64, same as torchvision ResNet, NVIDIA ResNet 'v1.5', Gluon v1b + * c - 3 layer deep 3x3 stem, stem_width = 32 (32, 32, 64) + * d - 3 layer deep 3x3 stem, stem_width = 32 (32, 32, 64), average pool in downsample + * e - 3 layer deep 3x3 stem, stem_width = 64 (64, 64, 128), average pool in downsample + * s - 3 layer deep 3x3 stem, stem_width = 64 (64, 64, 128) + * t - 3 layer deep 3x3 stem, stem width = 32 (24, 48, 64), average pool in downsample + * tn - 3 layer deep 3x3 stem, stem width = 32 (24, 32, 64), average pool in downsample + + ResNeXt + * normal - 7x7 stem, stem_width = 64, standard cardinality and base widths + * same c,d, e, s variants as ResNet can be enabled + + SE-ResNeXt + * normal - 7x7 stem, stem_width = 64 + * same c, d, e, s variants as ResNet can be enabled + + SENet-154 - 3 layer deep 3x3 stem (same as v1c-v1s), stem_width = 64, cardinality=64, + reduction by 2 on width of first bottleneck convolution, 3x3 downsample convs after first block + """ + + def __init__( + self, + block: Union[BasicBlock, Bottleneck], + layers: Tuple[int, ...], + num_classes: int = 1000, + in_chans: int = 3, + output_stride: int = 32, + global_pool: str = 'avg', + cardinality: int = 1, + base_width: int = 64, + stem_width: int = 64, + stem_type: str = '', + replace_stem_pool: bool = False, + block_reduce_first: int = 1, + down_kernel_size: int = 1, + avg_down: bool = False, + channels: Optional[Tuple[int, ...]] = (64, 128, 256, 512), + act_layer: LayerType = nn.ReLU, + norm_layer: LayerType = nn.BatchNorm2d, + aa_layer: Optional[Type[nn.Module]] = None, + drop_rate: float = 0.0, + drop_path_rate: float = 0., + drop_block_rate: float = 0., + zero_init_last: bool = True, + block_args: Optional[Dict[str, Any]] = None, + ): + """ + Args: + block (nn.Module): class for the residual block. Options are BasicBlock, Bottleneck. + layers (List[int]) : number of layers in each block + num_classes (int): number of classification classes (default 1000) + in_chans (int): number of input (color) channels. (default 3) + output_stride (int): output stride of the network, 32, 16, or 8. (default 32) + global_pool (str): Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' (default 'avg') + cardinality (int): number of convolution groups for 3x3 conv in Bottleneck. (default 1) + base_width (int): bottleneck channels factor. `planes * base_width / 64 * cardinality` (default 64) + stem_width (int): number of channels in stem convolutions (default 64) + stem_type (str): The type of stem (default ''): + * '', default - a single 7x7 conv with a width of stem_width + * 'deep' - three 3x3 convolution layers of widths stem_width, stem_width, stem_width * 2 + * 'deep_tiered' - three 3x3 conv layers of widths stem_width//4 * 3, stem_width, stem_width * 2 + replace_stem_pool (bool): replace stem max-pooling layer with a 3x3 stride-2 convolution + block_reduce_first (int): Reduction factor for first convolution output width of residual blocks, + 1 for all archs except senets, where 2 (default 1) + down_kernel_size (int): kernel size of residual block downsample path, + 1x1 for most, 3x3 for senets (default: 1) + avg_down (bool): use avg pooling for projection skip connection between stages/downsample (default False) + act_layer (str, nn.Module): activation layer + norm_layer (str, nn.Module): normalization layer + aa_layer (nn.Module): anti-aliasing layer + drop_rate (float): Dropout probability before classifier, for training (default 0.) + drop_path_rate (float): Stochastic depth drop-path rate (default 0.) + drop_block_rate (float): Drop block rate (default 0.) + zero_init_last (bool): zero-init the last weight in residual path (usually last BN affine weight) + block_args (dict): Extra kwargs to pass through to block module + """ + super(ResNet, self).__init__() + block_args = block_args or dict() + assert output_stride in (8, 16, 32) + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + + act_layer = get_act_layer(act_layer) + norm_layer = get_norm_layer(norm_layer) + + # Stem + deep_stem = 'deep' in stem_type + inplanes = stem_width * 2 if deep_stem else 64 + if deep_stem: + stem_chs = (stem_width, stem_width) + if 'tiered' in stem_type: + stem_chs = (3 * (stem_width // 4), stem_width) + self.conv1 = nn.Sequential(*[ + nn.Conv2d(in_chans, stem_chs[0], 3, stride=2, padding=1, bias=False), + norm_layer(stem_chs[0]), + act_layer(inplace=True), + nn.Conv2d(stem_chs[0], stem_chs[1], 3, stride=1, padding=1, bias=False), + norm_layer(stem_chs[1]), + act_layer(inplace=True), + nn.Conv2d(stem_chs[1], inplanes, 3, stride=1, padding=1, bias=False)]) + else: + self.conv1 = nn.Conv2d(in_chans, inplanes, kernel_size=7, stride=2, padding=3, bias=False) + self.bn1 = norm_layer(inplanes) + self.act1 = act_layer(inplace=True) + self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')] + + # Stem pooling. The name 'maxpool' remains for weight compatibility. + if replace_stem_pool: + self.maxpool = nn.Sequential(*filter(None, [ + nn.Conv2d(inplanes, inplanes, 3, stride=1 if aa_layer else 2, padding=1, bias=False), + create_aa(aa_layer, channels=inplanes, stride=2) if aa_layer is not None else None, + norm_layer(inplanes), + act_layer(inplace=True), + ])) + else: + if aa_layer is not None: + if issubclass(aa_layer, nn.AvgPool2d): + self.maxpool = aa_layer(2) + else: + self.maxpool = nn.Sequential(*[ + nn.MaxPool2d(kernel_size=3, stride=1, padding=1), + aa_layer(channels=inplanes, stride=2)]) + else: + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + # Feature Blocks + block_fns = to_ntuple(len(channels))(block) + stage_modules, stage_feature_info = make_blocks( + block_fns, + channels, + layers, + inplanes, + cardinality=cardinality, + base_width=base_width, + output_stride=output_stride, + reduce_first=block_reduce_first, + avg_down=avg_down, + down_kernel_size=down_kernel_size, + act_layer=act_layer, + norm_layer=norm_layer, + aa_layer=aa_layer, + drop_block_rate=drop_block_rate, + drop_path_rate=drop_path_rate, + **block_args, + ) + for stage in stage_modules: + self.add_module(*stage) # layer1, layer2, etc + self.feature_info.extend(stage_feature_info) + + # Head (Pooling and Classifier) + self.num_features = self.head_hidden_size = channels[-1] * block_fns[-1].expansion + self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + self.init_weights(zero_init_last=zero_init_last) + + @torch.jit.ignore + def init_weights(self, zero_init_last: bool = True): + for n, m in self.named_modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + if zero_init_last: + for m in self.modules(): + if hasattr(m, 'zero_init_last'): + m.zero_init_last() + + @torch.jit.ignore + def group_matcher(self, coarse: bool = False): + matcher = dict(stem=r'^conv1|bn1|maxpool', blocks=r'^layer(\d+)' if coarse else r'^layer(\d+)\.(\d+)') + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool = True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self, name_only: bool = False): + return 'fc' if name_only else self.fc + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(5, indices) + + # forward pass + feat_idx = 0 + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + if feat_idx in take_indices: + intermediates.append(x) + x = self.maxpool(x) + + layer_names = ('layer1', 'layer2', 'layer3', 'layer4') + if stop_early: + layer_names = layer_names[:max_index] + for n in layer_names: + feat_idx += 1 + x = getattr(self, n)(x) # won't work with torchscript, but keeps code reasonable, FML + if feat_idx in take_indices: + intermediates.append(x) + + if intermediates_only: + return intermediates + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(5, indices) + layer_names = ('layer1', 'layer2', 'layer3', 'layer4') + layer_names = layer_names[max_index:] + for n in layer_names: + setattr(self, n, nn.Identity()) + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + x = self.maxpool(x) + + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq([self.layer1, self.layer2, self.layer3, self.layer4], x, flatten=True) + else: + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + return x + + def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor: + x = self.global_pool(x) + if self.drop_rate: + x = F.dropout(x, p=float(self.drop_rate), training=self.training) + return x if pre_logits else self.fc(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_resnet(variant, pretrained: bool = False, **kwargs) -> ResNet: + return build_model_with_cfg(ResNet, variant, pretrained, **kwargs) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'conv1', 'classifier': 'fc', + **kwargs + } + + +def _tcfg(url='', **kwargs): + return _cfg(url=url, **dict({'interpolation': 'bicubic'}, **kwargs)) + + +def _ttcfg(url='', **kwargs): + return _cfg(url=url, **dict({ + 'interpolation': 'bicubic', 'test_input_size': (3, 288, 288), 'test_crop_pct': 0.95, + 'origin_url': 'https://github.com/huggingface/pytorch-image-models', + }, **kwargs)) + + +def _rcfg(url='', **kwargs): + return _cfg(url=url, **dict({ + 'interpolation': 'bicubic', 'crop_pct': 0.95, 'test_input_size': (3, 288, 288), 'test_crop_pct': 1.0, + 'origin_url': 'https://github.com/huggingface/pytorch-image-models', 'paper_ids': 'arXiv:2110.00476' + }, **kwargs)) + + +def _r3cfg(url='', **kwargs): + return _cfg(url=url, **dict({ + 'interpolation': 'bicubic', 'input_size': (3, 160, 160), 'pool_size': (5, 5), + 'crop_pct': 0.95, 'test_input_size': (3, 224, 224), 'test_crop_pct': 0.95, + 'origin_url': 'https://github.com/huggingface/pytorch-image-models', 'paper_ids': 'arXiv:2110.00476', + }, **kwargs)) + + +def _gcfg(url='', **kwargs): + return _cfg(url=url, **dict({ + 'interpolation': 'bicubic', + 'origin_url': 'https://cv.gluon.ai/model_zoo/classification.html', + }, **kwargs)) + + +default_cfgs = generate_default_cfgs({ + # ResNet and Wide ResNet trained w/ timm (RSB paper and others) + 'resnet10t.c3_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet10t_176_c3-f3215ab1.pth', + input_size=(3, 176, 176), pool_size=(6, 6), test_crop_pct=0.95, test_input_size=(3, 224, 224), + first_conv='conv1.0'), + 'resnet14t.c3_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet14t_176_c3-c4ed2c37.pth', + input_size=(3, 176, 176), pool_size=(6, 6), test_crop_pct=0.95, test_input_size=(3, 224, 224), + first_conv='conv1.0'), + 'resnet18.a1_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet18_a1_0-d63eafa0.pth'), + 'resnet18.a2_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet18_a2_0-b61bd467.pth'), + 'resnet18.a3_in1k': _r3cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet18_a3_0-40c531c8.pth'), + 'resnet18d.ra2_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet18d_ra2-48a79e06.pth', + first_conv='conv1.0'), + 'resnet18d.ra4_e3600_r224_in1k': _rcfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9, first_conv='conv1.0'), + 'resnet34.a1_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet34_a1_0-46f8f793.pth'), + 'resnet34.a2_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet34_a2_0-82d47d71.pth'), + 'resnet34.a3_in1k': _r3cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet34_a3_0-a20cabb6.pth', + crop_pct=0.95), + 'resnet34.bt_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth'), + 'resnet34.ra4_e3600_r224_in1k': _rcfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9), + 'resnet34d.ra2_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34d_ra2-f8dcfcaf.pth', + first_conv='conv1.0'), + 'resnet26.bt_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth'), + 'resnet26d.bt_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth', + first_conv='conv1.0'), + 'resnet26t.ra2_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet26t_256_ra2-6f6fa748.pth', + first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), + crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0), + 'resnet50.a1_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth'), + 'resnet50.a1h_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1h2_176-001a1197.pth', + input_size=(3, 176, 176), pool_size=(6, 6), crop_pct=0.9, test_input_size=(3, 224, 224), test_crop_pct=1.0), + 'resnet50.a2_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a2_0-a2746f79.pth'), + 'resnet50.a3_in1k': _r3cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a3_0-59cae1ef.pth'), + 'resnet50.b1k_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_b1k-532a802a.pth'), + 'resnet50.b2k_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_b2k-1ba180c1.pth'), + 'resnet50.c1_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_c1-5ba5e060.pth'), + 'resnet50.c2_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_c2-d01e05b2.pth'), + 'resnet50.d_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_d-f39db8af.pth'), + 'resnet50.ram_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth'), + 'resnet50.am_in1k': _tcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/resnet50_am-6c502b37.pth'), + 'resnet50.ra_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/resnet50_ra-85ebb6e5.pth'), + 'resnet50.bt_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/rw_resnet50-86acaeed.pth'), + 'resnet50d.ra2_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth', + first_conv='conv1.0'), + 'resnet50d.ra4_e3600_r224_in1k': _rcfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0, + first_conv='conv1.0'), + 'resnet50d.a1_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50d_a1_0-e20cff14.pth', + first_conv='conv1.0'), + 'resnet50d.a2_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50d_a2_0-a3adc64d.pth', + first_conv='conv1.0'), + 'resnet50d.a3_in1k': _r3cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50d_a3_0-403fdfad.pth', + first_conv='conv1.0'), + 'resnet50t.untrained': _ttcfg(first_conv='conv1.0'), + 'resnet101.a1h_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1h-36d3f2aa.pth'), + 'resnet101.a1_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1_0-cdcb52a9.pth'), + 'resnet101.a2_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a2_0-6edb36c7.pth'), + 'resnet101.a3_in1k': _r3cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a3_0-1db14157.pth'), + 'resnet101d.ra2_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth', + first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, + test_crop_pct=1.0, test_input_size=(3, 320, 320)), + 'resnet152.a1h_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet152_a1h-dc400468.pth'), + 'resnet152.a1_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet152_a1_0-2eee8a7a.pth'), + 'resnet152.a2_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet152_a2_0-b4c6978f.pth'), + 'resnet152.a3_in1k': _r3cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet152_a3_0-134d4688.pth'), + 'resnet152d.ra2_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth', + first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, + test_crop_pct=1.0, test_input_size=(3, 320, 320)), + 'resnet200.untrained': _ttcfg(), + 'resnet200d.ra2_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth', + first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, + test_crop_pct=1.0, test_input_size=(3, 320, 320)), + 'wide_resnet50_2.racm_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/wide_resnet50_racm-8234f177.pth'), + + # torchvision resnet weights + 'resnet18.tv_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnet18-f37072fd.pth', + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'resnet34.tv_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnet34-b627a593.pth', + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'resnet50.tv_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnet50-0676ba61.pth', + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'resnet50.tv2_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnet50-11ad3fa6.pth', + input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'resnet101.tv_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnet101-63fe2227.pth', + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'resnet101.tv2_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnet101-cd907fc2.pth', + input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'resnet152.tv_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnet152-394f9c45.pth', + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'resnet152.tv2_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnet152-f82ba261.pth', + input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'wide_resnet50_2.tv_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'wide_resnet50_2.tv2_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth', + input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'wide_resnet101_2.tv_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'wide_resnet101_2.tv2_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth', + input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + + # ResNets w/ alternative norm layers + 'resnet50_gn.a1h_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_gn_a1h2-8fe6c4d0.pth', + crop_pct=0.94), + + # ResNeXt trained in timm (RSB paper and others) + 'resnext50_32x4d.a1h_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnext50_32x4d_a1h-0146ab0a.pth'), + 'resnext50_32x4d.a1_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnext50_32x4d_a1_0-b5a91a1d.pth'), + 'resnext50_32x4d.a2_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnext50_32x4d_a2_0-efc76add.pth'), + 'resnext50_32x4d.a3_in1k': _r3cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/resnext50_32x4d_a3_0-3e450271.pth'), + 'resnext50_32x4d.ra_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/resnext50_32x4d_ra-d733960d.pth'), + 'resnext50d_32x4d.bt_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth', + first_conv='conv1.0'), + 'resnext101_32x4d.untrained': _ttcfg(), + 'resnext101_64x4d.c1_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/resnext101_64x4d_c-0d0e0cc0.pth'), + + # torchvision ResNeXt weights + 'resnext50_32x4d.tv_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'resnext101_32x8d.tv_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'resnext101_64x4d.tv_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth', + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'resnext50_32x4d.tv2_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth', + input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + 'resnext101_32x8d.tv2_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth', + input_size=(3, 176, 176), pool_size=(6, 6), test_input_size=(3, 224, 224), test_crop_pct=0.965, + license='bsd-3-clause', origin_url='https://github.com/pytorch/vision'), + + # ResNeXt models - Weakly Supervised Pretraining on Instagram Hashtags + # from https://github.com/facebookresearch/WSL-Images + # Please note the CC-BY-NC 4.0 license on these weights, non-commercial use only. + 'resnext101_32x8d.fb_wsl_ig1b_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/WSL-Images'), + 'resnext101_32x16d.fb_wsl_ig1b_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/WSL-Images'), + 'resnext101_32x32d.fb_wsl_ig1b_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/WSL-Images'), + 'resnext101_32x48d.fb_wsl_ig1b_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/WSL-Images'), + + # Semi-Supervised ResNe*t models from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models + # Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. + 'resnet18.fb_ssl_yfcc100m_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + 'resnet50.fb_ssl_yfcc100m_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + 'resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + 'resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + 'resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + 'resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + + # Semi-Weakly Supervised ResNe*t models from https://github.com/facebookresearch/semi-supervised-ImageNet1K-models + # Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. + 'resnet18.fb_swsl_ig1b_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + 'resnet50.fb_swsl_ig1b_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + 'resnext50_32x4d.fb_swsl_ig1b_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + 'resnext101_32x4d.fb_swsl_ig1b_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + 'resnext101_32x8d.fb_swsl_ig1b_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + 'resnext101_32x16d.fb_swsl_ig1b_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth', + license='cc-by-nc-4.0', origin_url='https://github.com/facebookresearch/semi-supervised-ImageNet1K-models'), + + # Efficient Channel Attention ResNets + 'ecaresnet26t.ra2_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet26t_ra2-46609757.pth', + first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), + test_crop_pct=0.95, test_input_size=(3, 320, 320)), + 'ecaresnetlight.miil_in1k': _tcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnetlight-75a9c627.pth', + test_crop_pct=0.95, test_input_size=(3, 288, 288)), + 'ecaresnet50d.miil_in1k': _tcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet50d-93c81e3b.pth', + first_conv='conv1.0', test_crop_pct=0.95, test_input_size=(3, 288, 288)), + 'ecaresnet50d_pruned.miil_in1k': _tcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet50d_p-e4fa23c2.pth', + first_conv='conv1.0', test_crop_pct=0.95, test_input_size=(3, 288, 288)), + 'ecaresnet50t.ra2_in1k': _tcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet50t_ra2-f7ac63c4.pth', + first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), + test_crop_pct=0.95, test_input_size=(3, 320, 320)), + 'ecaresnet50t.a1_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/ecaresnet50t_a1_0-99bd76a8.pth', + first_conv='conv1.0'), + 'ecaresnet50t.a2_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/ecaresnet50t_a2_0-b1c7b745.pth', + first_conv='conv1.0'), + 'ecaresnet50t.a3_in1k': _r3cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/ecaresnet50t_a3_0-8cc311f1.pth', + first_conv='conv1.0'), + 'ecaresnet101d.miil_in1k': _tcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet101d-153dad65.pth', + first_conv='conv1.0', test_crop_pct=0.95, test_input_size=(3, 288, 288)), + 'ecaresnet101d_pruned.miil_in1k': _tcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/ecaresnet101d_p-9e74cb91.pth', + first_conv='conv1.0', test_crop_pct=0.95, test_input_size=(3, 288, 288)), + 'ecaresnet200d.untrained': _ttcfg( + first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.95, pool_size=(8, 8)), + 'ecaresnet269d.ra2_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecaresnet269d_320_ra2-7baa55cb.pth', + first_conv='conv1.0', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=0.95, + test_crop_pct=1.0, test_input_size=(3, 352, 352)), + + # Efficient Channel Attention ResNeXts + 'ecaresnext26t_32x4d.untrained': _tcfg(first_conv='conv1.0'), + 'ecaresnext50t_32x4d.untrained': _tcfg(first_conv='conv1.0'), + + # Squeeze-Excitation ResNets, to eventually replace the models in senet.py + 'seresnet18.untrained': _ttcfg(), + 'seresnet34.untrained': _ttcfg(), + 'seresnet50.a1_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/seresnet50_a1_0-ffa00869.pth', + crop_pct=0.95), + 'seresnet50.a2_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/seresnet50_a2_0-850de0d9.pth', + crop_pct=0.95), + 'seresnet50.a3_in1k': _r3cfg( + hf_hub_id='timm/', + url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-rsb-weights/seresnet50_a3_0-317ecd56.pth', + crop_pct=0.95), + 'seresnet50.ra2_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet50_ra_224-8efdb4bb.pth'), + 'seresnet50t.untrained': _ttcfg( + first_conv='conv1.0'), + 'seresnet101.untrained': _ttcfg(), + 'seresnet152.untrained': _ttcfg(), + 'seresnet152d.ra2_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet152d_ra2-04464dd2.pth', + first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.95, + test_crop_pct=1.0, test_input_size=(3, 320, 320) + ), + 'seresnet200d.untrained': _ttcfg( + first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8)), + 'seresnet269d.untrained': _ttcfg( + first_conv='conv1.0', input_size=(3, 256, 256), pool_size=(8, 8)), + + # Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py + 'seresnext26d_32x4d.bt_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26d_32x4d-80fa48a3.pth', + first_conv='conv1.0'), + 'seresnext26t_32x4d.bt_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26tn_32x4d-569cb627.pth', + first_conv='conv1.0'), + 'seresnext50_32x4d.racm_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext50_32x4d_racm-a304a460.pth'), + 'seresnext101_32x4d.untrained': _ttcfg(), + 'seresnext101_32x8d.ah_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnext101_32x8d_ah-e6bc4c0a.pth'), + 'seresnext101d_32x8d.ah_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnext101d_32x8d_ah-191d7b94.pth', + first_conv='conv1.0'), + + # ResNets with anti-aliasing / blur pool + 'resnetaa50d.sw_in12k_ft_in1k': _ttcfg( + hf_hub_id='timm/', + first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), + 'resnetaa101d.sw_in12k_ft_in1k': _ttcfg( + hf_hub_id='timm/', + first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), + 'seresnextaa101d_32x8d.sw_in12k_ft_in1k_288': _ttcfg( + hf_hub_id='timm/', + crop_pct=0.95, input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), test_crop_pct=1.0, + first_conv='conv1.0'), + 'seresnextaa101d_32x8d.sw_in12k_ft_in1k': _ttcfg( + hf_hub_id='timm/', + first_conv='conv1.0', test_crop_pct=1.0), + 'seresnextaa201d_32x8d.sw_in12k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', first_conv='conv1.0', pool_size=(12, 12), input_size=(3, 384, 384), crop_pct=1.0), + 'seresnextaa201d_32x8d.sw_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, interpolation='bicubic', first_conv='conv1.0', + crop_pct=0.95, input_size=(3, 320, 320), pool_size=(10, 10), test_input_size=(3, 384, 384), test_crop_pct=1.0), + + 'resnetaa50d.sw_in12k': _ttcfg( + hf_hub_id='timm/', + num_classes=11821, first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), + 'resnetaa50d.d_in12k': _ttcfg( + hf_hub_id='timm/', + num_classes=11821, first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), + 'resnetaa101d.sw_in12k': _ttcfg( + hf_hub_id='timm/', + num_classes=11821, first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), + 'seresnextaa101d_32x8d.sw_in12k': _ttcfg( + hf_hub_id='timm/', + num_classes=11821, first_conv='conv1.0', crop_pct=0.95, test_crop_pct=1.0), + + 'resnetblur18.untrained': _ttcfg(), + 'resnetblur50.bt_in1k': _ttcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth'), + 'resnetblur50d.untrained': _ttcfg(first_conv='conv1.0'), + 'resnetblur101d.untrained': _ttcfg(first_conv='conv1.0'), + 'resnetaa34d.untrained': _ttcfg(first_conv='conv1.0'), + 'resnetaa50.a1h_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnetaa50_a1h-4cf422b3.pth'), + + 'seresnetaa50d.untrained': _ttcfg(first_conv='conv1.0'), + 'seresnextaa101d_32x8d.ah_in1k': _rcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/seresnextaa101d_32x8d_ah-83c8ae12.pth', + first_conv='conv1.0'), + + # ResNet-RS models + 'resnetrs50.tf_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs50_ema-6b53758b.pth', + input_size=(3, 160, 160), pool_size=(5, 5), crop_pct=0.91, test_input_size=(3, 224, 224), + interpolation='bicubic', first_conv='conv1.0'), + 'resnetrs101.tf_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs101_i192_ema-1509bbf6.pth', + input_size=(3, 192, 192), pool_size=(6, 6), crop_pct=0.94, test_input_size=(3, 288, 288), + interpolation='bicubic', first_conv='conv1.0'), + 'resnetrs152.tf_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs152_i256_ema-a9aff7f9.pth', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320), + interpolation='bicubic', first_conv='conv1.0'), + 'resnetrs200.tf_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/resnetrs200_c-6b698b88.pth', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 320, 320), + interpolation='bicubic', first_conv='conv1.0'), + 'resnetrs270.tf_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs270_ema-b40e674c.pth', + input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, test_input_size=(3, 352, 352), + interpolation='bicubic', first_conv='conv1.0'), + 'resnetrs350.tf_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs350_i256_ema-5a1aa8f1.pth', + input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, test_input_size=(3, 384, 384), + interpolation='bicubic', first_conv='conv1.0'), + 'resnetrs420.tf_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rs-weights/resnetrs420_ema-972dee69.pth', + input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, test_input_size=(3, 416, 416), + interpolation='bicubic', first_conv='conv1.0'), + + # gluon resnet weights + 'resnet18.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet18_v1b-0757602b.pth'), + 'resnet34.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet34_v1b-c6d82d59.pth'), + 'resnet50.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1b-0ebe02e2.pth'), + 'resnet101.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1b-3b017079.pth'), + 'resnet152.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1b-c1edb0dd.pth'), + 'resnet50c.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1c-48092f55.pth', + first_conv='conv1.0'), + 'resnet101c.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1c-1f26822a.pth', + first_conv='conv1.0'), + 'resnet152c.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1c-a3bb0b98.pth', + first_conv='conv1.0'), + 'resnet50d.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1d-818a1b1b.pth', + first_conv='conv1.0'), + 'resnet101d.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1d-0f9c8644.pth', + first_conv='conv1.0'), + 'resnet152d.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1d-bd354e12.pth', + first_conv='conv1.0'), + 'resnet50s.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1s-1762acc0.pth', + first_conv='conv1.0'), + 'resnet101s.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1s-60fe0cc1.pth', + first_conv='conv1.0'), + 'resnet152s.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1s-dcc41b81.pth', + first_conv='conv1.0'), + 'resnext50_32x4d.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext50_32x4d-e6a097c1.pth'), + 'resnext101_32x4d.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_32x4d-b253c8c4.pth'), + 'resnext101_64x4d.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_64x4d-f9a8e184.pth'), + 'seresnext50_32x4d.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext50_32x4d-90cf2d6e.pth'), + 'seresnext101_32x4d.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_32x4d-cf52900d.pth'), + 'seresnext101_64x4d.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_64x4d-f9926f93.pth'), + 'senet154.gluon_in1k': _gcfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_senet154-70a1a3c0.pth', + first_conv='conv1.0'), + + 'test_resnet.r160_in1k': _cfg( + hf_hub_id='timm/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, + input_size=(3, 160, 160), pool_size=(5, 5), first_conv='conv1.0'), +}) + + +@register_model +def resnet10t(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-10-T model. + """ + model_args = dict(block=BasicBlock, layers=(1, 1, 1, 1), stem_width=32, stem_type='deep_tiered', avg_down=True) + return _create_resnet('resnet10t', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet14t(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-14-T model. + """ + model_args = dict(block=Bottleneck, layers=(1, 1, 1, 1), stem_width=32, stem_type='deep_tiered', avg_down=True) + return _create_resnet('resnet14t', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet18(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-18 model. + """ + model_args = dict(block=BasicBlock, layers=(2, 2, 2, 2)) + return _create_resnet('resnet18', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet18d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-18-D model. + """ + model_args = dict(block=BasicBlock, layers=(2, 2, 2, 2), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet18d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet34(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-34 model. + """ + model_args = dict(block=BasicBlock, layers=(3, 4, 6, 3)) + return _create_resnet('resnet34', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet34d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-34-D model. + """ + model_args = dict(block=BasicBlock, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet34d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet26(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-26 model. + """ + model_args = dict(block=Bottleneck, layers=(2, 2, 2, 2)) + return _create_resnet('resnet26', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet26t(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-26-T model. + """ + model_args = dict(block=Bottleneck, layers=(2, 2, 2, 2), stem_width=32, stem_type='deep_tiered', avg_down=True) + return _create_resnet('resnet26t', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet26d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-26-D model. + """ + model_args = dict(block=Bottleneck, layers=(2, 2, 2, 2), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet26d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet50(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50 model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3)) + return _create_resnet('resnet50', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet50c(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50-C model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep') + return _create_resnet('resnet50c', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet50d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50-D model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet50d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet50s(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50-S model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=64, stem_type='deep') + return _create_resnet('resnet50s', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet50t(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50-T model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep_tiered', avg_down=True) + return _create_resnet('resnet50t', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet101(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-101 model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3)) + return _create_resnet('resnet101', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet101c(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-101-C model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), stem_width=32, stem_type='deep') + return _create_resnet('resnet101c', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet101d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-101-D model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet101d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet101s(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-101-S model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), stem_width=64, stem_type='deep') + return _create_resnet('resnet101s', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet152(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-152 model. + """ + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3)) + return _create_resnet('resnet152', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet152c(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-152-C model. + """ + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3), stem_width=32, stem_type='deep') + return _create_resnet('resnet152c', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet152d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-152-D model. + """ + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet152d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet152s(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-152-S model. + """ + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3), stem_width=64, stem_type='deep') + return _create_resnet('resnet152s', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet200(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-200 model. + """ + model_args = dict(block=Bottleneck, layers=(3, 24, 36, 3)) + return _create_resnet('resnet200', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet200d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-200-D model. + """ + model_args = dict(block=Bottleneck, layers=(3, 24, 36, 3), stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnet200d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def wide_resnet50_2(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a Wide ResNet-50-2 model. + The model is the same as ResNet except for the bottleneck number of channels + which is twice larger in every block. The number of channels in outer 1x1 + convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 + channels, and in Wide ResNet-50-2 has 2048-1024-2048. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), base_width=128) + return _create_resnet('wide_resnet50_2', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def wide_resnet101_2(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a Wide ResNet-101-2 model. + The model is the same as ResNet except for the bottleneck number of channels + which is twice larger in every block. The number of channels in outer 1x1 + convolutions is the same. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), base_width=128) + return _create_resnet('wide_resnet101_2', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnet50_gn(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50 model w/ GroupNorm + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), norm_layer='groupnorm') + return _create_resnet('resnet50_gn', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnext50_32x4d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNeXt50-32x4d model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), cardinality=32, base_width=4) + return _create_resnet('resnext50_32x4d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnext50d_32x4d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNeXt50d-32x4d model. ResNext50 w/ deep stem & avg pool downsample + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 6, 3), cardinality=32, base_width=4, + stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnext50d_32x4d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnext101_32x4d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNeXt-101 32x4d model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=4) + return _create_resnet('resnext101_32x4d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnext101_32x8d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNeXt-101 32x8d model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=8) + return _create_resnet('resnext101_32x8d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnext101_32x16d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNeXt-101 32x16d model + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=16) + return _create_resnet('resnext101_32x16d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnext101_32x32d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNeXt-101 32x32d model + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=32) + return _create_resnet('resnext101_32x32d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnext101_64x4d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNeXt101-64x4d model. + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), cardinality=64, base_width=4) + return _create_resnet('resnext101_64x4d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def ecaresnet26t(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs an ECA-ResNeXt-26-T model. + This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels + in the deep stem and ECA attn. + """ + model_args = dict( + block=Bottleneck, layers=(2, 2, 2, 2), stem_width=32, + stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet26t', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def ecaresnet50d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50-D model with eca. + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep', avg_down=True, + block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet50d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def ecaresnet50d_pruned(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50-D model pruned with eca. + The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep', avg_down=True, + block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet50d_pruned', pretrained, pruned=True, **dict(model_args, **kwargs)) + + +@register_model +def ecaresnet50t(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs an ECA-ResNet-50-T model. + Like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels in the deep stem and ECA attn. + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, + stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet50t', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def ecaresnetlight(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50-D light model with eca. + """ + model_args = dict( + block=Bottleneck, layers=(1, 1, 11, 3), stem_width=32, avg_down=True, + block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnetlight', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def ecaresnet101d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-101-D model with eca. + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 23, 3), stem_width=32, stem_type='deep', avg_down=True, + block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet101d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def ecaresnet101d_pruned(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-101-D model pruned with eca. + The pruning has been obtained using https://arxiv.org/pdf/2002.08258.pdf + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 23, 3), stem_width=32, stem_type='deep', avg_down=True, + block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet101d_pruned', pretrained, pruned=True, **dict(model_args, **kwargs)) + + +@register_model +def ecaresnet200d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-200-D model with ECA. + """ + model_args = dict( + block=Bottleneck, layers=(3, 24, 36, 3), stem_width=32, stem_type='deep', avg_down=True, + block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet200d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def ecaresnet269d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-269-D model with ECA. + """ + model_args = dict( + block=Bottleneck, layers=(3, 30, 48, 8), stem_width=32, stem_type='deep', avg_down=True, + block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnet269d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def ecaresnext26t_32x4d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs an ECA-ResNeXt-26-T model. + This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels + in the deep stem. This model replaces SE module with the ECA module + """ + model_args = dict( + block=Bottleneck, layers=(2, 2, 2, 2), cardinality=32, base_width=4, stem_width=32, + stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnext26t_32x4d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def ecaresnext50t_32x4d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs an ECA-ResNeXt-50-T model. + This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels + in the deep stem. This model replaces SE module with the ECA module + """ + model_args = dict( + block=Bottleneck, layers=(2, 2, 2, 2), cardinality=32, base_width=4, stem_width=32, + stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='eca')) + return _create_resnet('ecaresnext50t_32x4d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnet18(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict(block=BasicBlock, layers=(2, 2, 2, 2), block_args=dict(attn_layer='se')) + return _create_resnet('seresnet18', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnet34(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict(block=BasicBlock, layers=(3, 4, 6, 3), block_args=dict(attn_layer='se')) + return _create_resnet('seresnet34', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnet50(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), block_args=dict(attn_layer='se')) + return _create_resnet('seresnet50', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnet50t(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict( + block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep_tiered', + avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnet50t', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnet101(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 4, 23, 3), block_args=dict(attn_layer='se')) + return _create_resnet('seresnet101', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnet152(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict(block=Bottleneck, layers=(3, 8, 36, 3), block_args=dict(attn_layer='se')) + return _create_resnet('seresnet152', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnet152d(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict( + block=Bottleneck, layers=(3, 8, 36, 3), stem_width=32, stem_type='deep', + avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnet152d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnet200d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-200-D model with SE attn. + """ + model_args = dict( + block=Bottleneck, layers=(3, 24, 36, 3), stem_width=32, stem_type='deep', + avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnet200d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnet269d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-269-D model with SE attn. + """ + model_args = dict( + block=Bottleneck, layers=(3, 30, 48, 8), stem_width=32, stem_type='deep', + avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnet269d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnext26d_32x4d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a SE-ResNeXt-26-D model.` + This is technically a 28 layer ResNet, using the 'D' modifier from Gluon / bag-of-tricks for + combination of deep stem and avg_pool in downsample. + """ + model_args = dict( + block=Bottleneck, layers=(2, 2, 2, 2), cardinality=32, base_width=4, stem_width=32, + stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnext26d_32x4d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnext26t_32x4d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a SE-ResNet-26-T model. + This is technically a 28 layer ResNet, like a 'D' bag-of-tricks model but with tiered 24, 32, 64 channels + in the deep stem. + """ + model_args = dict( + block=Bottleneck, layers=(2, 2, 2, 2), cardinality=32, base_width=4, stem_width=32, + stem_type='deep_tiered', avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnext26t_32x4d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnext50_32x4d(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict( + block=Bottleneck, layers=(3, 4, 6, 3), cardinality=32, base_width=4, + block_args=dict(attn_layer='se')) + return _create_resnet('seresnext50_32x4d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnext101_32x4d(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict( + block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=4, + block_args=dict(attn_layer='se')) + return _create_resnet('seresnext101_32x4d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnext101_32x8d(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict( + block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=8, + block_args=dict(attn_layer='se')) + return _create_resnet('seresnext101_32x8d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnext101d_32x8d(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict( + block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=8, + stem_width=32, stem_type='deep', avg_down=True, + block_args=dict(attn_layer='se')) + return _create_resnet('seresnext101d_32x8d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnext101_64x4d(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict( + block=Bottleneck, layers=(3, 4, 23, 3), cardinality=64, base_width=4, + block_args=dict(attn_layer='se')) + return _create_resnet('seresnext101_64x4d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def senet154(pretrained: bool = False, **kwargs) -> ResNet: + model_args = dict( + block=Bottleneck, layers=(3, 8, 36, 3), cardinality=64, base_width=4, stem_type='deep', + down_kernel_size=3, block_reduce_first=2, block_args=dict(attn_layer='se')) + return _create_resnet('senet154', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetblur18(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-18 model with blur anti-aliasing + """ + model_args = dict(block=BasicBlock, layers=(2, 2, 2, 2), aa_layer=BlurPool2d) + return _create_resnet('resnetblur18', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetblur50(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50 model with blur anti-aliasing + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), aa_layer=BlurPool2d) + return _create_resnet('resnetblur50', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetblur50d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50-D model with blur anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 6, 3), aa_layer=BlurPool2d, + stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnetblur50d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetblur101d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-101-D model with blur anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 23, 3), aa_layer=BlurPool2d, + stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnetblur101d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetaa34d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-34-D model w/ avgpool anti-aliasing + """ + model_args = dict( + block=BasicBlock, layers=(3, 4, 6, 3), aa_layer=nn.AvgPool2d, stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnetaa34d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetaa50(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50 model with avgpool anti-aliasing + """ + model_args = dict(block=Bottleneck, layers=(3, 4, 6, 3), aa_layer=nn.AvgPool2d) + return _create_resnet('resnetaa50', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetaa50d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-50-D model with avgpool anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 6, 3), aa_layer=nn.AvgPool2d, + stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnetaa50d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetaa101d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-101-D model with avgpool anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 23, 3), aa_layer=nn.AvgPool2d, + stem_width=32, stem_type='deep', avg_down=True) + return _create_resnet('resnetaa101d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnetaa50d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a SE=ResNet-50-D model with avgpool anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 6, 3), aa_layer=nn.AvgPool2d, + stem_width=32, stem_type='deep', avg_down=True, block_args=dict(attn_layer='se')) + return _create_resnet('seresnetaa50d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnextaa101d_32x8d(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a SE=ResNeXt-101-D 32x8d model with avgpool anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=(3, 4, 23, 3), cardinality=32, base_width=8, + stem_width=32, stem_type='deep', avg_down=True, aa_layer=nn.AvgPool2d, + block_args=dict(attn_layer='se')) + return _create_resnet('seresnextaa101d_32x8d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def seresnextaa201d_32x8d(pretrained: bool = False, **kwargs): + """Constructs a SE=ResNeXt-101-D 32x8d model with avgpool anti-aliasing + """ + model_args = dict( + block=Bottleneck, layers=(3, 24, 36, 4), cardinality=32, base_width=8, + stem_width=64, stem_type='deep', avg_down=True, aa_layer=nn.AvgPool2d, + block_args=dict(attn_layer='se')) + return _create_resnet('seresnextaa201d_32x8d', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetrs50(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-RS-50 model. + Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 + Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs + """ + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict( + block=Bottleneck, layers=(3, 4, 6, 3), stem_width=32, stem_type='deep', replace_stem_pool=True, + avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs50', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetrs101(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-RS-101 model. + Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 + Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs + """ + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict( + block=Bottleneck, layers=(3, 4, 23, 3), stem_width=32, stem_type='deep', replace_stem_pool=True, + avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs101', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetrs152(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-RS-152 model. + Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 + Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs + """ + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict( + block=Bottleneck, layers=(3, 8, 36, 3), stem_width=32, stem_type='deep', replace_stem_pool=True, + avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs152', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetrs200(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-RS-200 model. + Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 + Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs + """ + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict( + block=Bottleneck, layers=(3, 24, 36, 3), stem_width=32, stem_type='deep', replace_stem_pool=True, + avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs200', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetrs270(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-RS-270 model. + Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 + Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs + """ + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict( + block=Bottleneck, layers=(4, 29, 53, 4), stem_width=32, stem_type='deep', replace_stem_pool=True, + avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs270', pretrained, **dict(model_args, **kwargs)) + + + +@register_model +def resnetrs350(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-RS-350 model. + Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 + Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs + """ + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict( + block=Bottleneck, layers=(4, 36, 72, 4), stem_width=32, stem_type='deep', replace_stem_pool=True, + avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs350', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetrs420(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a ResNet-RS-420 model + Paper: Revisiting ResNets - https://arxiv.org/abs/2103.07579 + Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs + """ + attn_layer = partial(get_attn('se'), rd_ratio=0.25) + model_args = dict( + block=Bottleneck, layers=(4, 44, 87, 4), stem_width=32, stem_type='deep', replace_stem_pool=True, + avg_down=True, block_args=dict(attn_layer=attn_layer)) + return _create_resnet('resnetrs420', pretrained, **dict(model_args, **kwargs)) + + +@register_model +def test_resnet(pretrained: bool = False, **kwargs) -> ResNet: + """Constructs a tiny ResNet test model. + """ + model_args = dict( + block=[BasicBlock, BasicBlock, Bottleneck, BasicBlock], layers=(1, 1, 1, 1), + stem_width=16, stem_type='deep', avg_down=True, channels=(32, 48, 48, 96)) + return _create_resnet('test_resnet', pretrained, **dict(model_args, **kwargs)) + + +register_model_deprecations(__name__, { + 'tv_resnet34': 'resnet34.tv_in1k', + 'tv_resnet50': 'resnet50.tv_in1k', + 'tv_resnet101': 'resnet101.tv_in1k', + 'tv_resnet152': 'resnet152.tv_in1k', + 'tv_resnext50_32x4d' : 'resnext50_32x4d.tv_in1k', + 'ig_resnext101_32x8d': 'resnext101_32x8d.fb_wsl_ig1b_ft_in1k', + 'ig_resnext101_32x16d': 'resnext101_32x8d.fb_wsl_ig1b_ft_in1k', + 'ig_resnext101_32x32d': 'resnext101_32x8d.fb_wsl_ig1b_ft_in1k', + 'ig_resnext101_32x48d': 'resnext101_32x8d.fb_wsl_ig1b_ft_in1k', + 'ssl_resnet18': 'resnet18.fb_ssl_yfcc100m_ft_in1k', + 'ssl_resnet50': 'resnet50.fb_ssl_yfcc100m_ft_in1k', + 'ssl_resnext50_32x4d': 'resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k', + 'ssl_resnext101_32x4d': 'resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k', + 'ssl_resnext101_32x8d': 'resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k', + 'ssl_resnext101_32x16d': 'resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k', + 'swsl_resnet18': 'resnet18.fb_swsl_ig1b_ft_in1k', + 'swsl_resnet50': 'resnet50.fb_swsl_ig1b_ft_in1k', + 'swsl_resnext50_32x4d': 'resnext50_32x4d.fb_swsl_ig1b_ft_in1k', + 'swsl_resnext101_32x4d': 'resnext101_32x4d.fb_swsl_ig1b_ft_in1k', + 'swsl_resnext101_32x8d': 'resnext101_32x8d.fb_swsl_ig1b_ft_in1k', + 'swsl_resnext101_32x16d': 'resnext101_32x16d.fb_swsl_ig1b_ft_in1k', + 'gluon_resnet18_v1b': 'resnet18.gluon_in1k', + 'gluon_resnet34_v1b': 'resnet34.gluon_in1k', + 'gluon_resnet50_v1b': 'resnet50.gluon_in1k', + 'gluon_resnet101_v1b': 'resnet101.gluon_in1k', + 'gluon_resnet152_v1b': 'resnet152.gluon_in1k', + 'gluon_resnet50_v1c': 'resnet50c.gluon_in1k', + 'gluon_resnet101_v1c': 'resnet101c.gluon_in1k', + 'gluon_resnet152_v1c': 'resnet152c.gluon_in1k', + 'gluon_resnet50_v1d': 'resnet50d.gluon_in1k', + 'gluon_resnet101_v1d': 'resnet101d.gluon_in1k', + 'gluon_resnet152_v1d': 'resnet152d.gluon_in1k', + 'gluon_resnet50_v1s': 'resnet50s.gluon_in1k', + 'gluon_resnet101_v1s': 'resnet101s.gluon_in1k', + 'gluon_resnet152_v1s': 'resnet152s.gluon_in1k', + 'gluon_resnext50_32x4d': 'resnext50_32x4d.gluon_in1k', + 'gluon_resnext101_32x4d': 'resnext101_32x4d.gluon_in1k', + 'gluon_resnext101_64x4d': 'resnext101_64x4d.gluon_in1k', + 'gluon_seresnext50_32x4d': 'seresnext50_32x4d.gluon_in1k', + 'gluon_seresnext101_32x4d': 'seresnext101_32x4d.gluon_in1k', + 'gluon_seresnext101_64x4d': 'seresnext101_64x4d.gluon_in1k', + 'gluon_senet154': 'senet154.gluon_in1k', + 'seresnext26tn_32x4d': 'seresnext26t_32x4d', +}) diff --git a/pytorch-image-models/timm/models/resnetv2.py b/pytorch-image-models/timm/models/resnetv2.py new file mode 100644 index 0000000000000000000000000000000000000000..ee7d6bcabd5678dcc40fcf4df623ab0db9163fa6 --- /dev/null +++ b/pytorch-image-models/timm/models/resnetv2.py @@ -0,0 +1,911 @@ +"""Pre-Activation ResNet v2 with GroupNorm and Weight Standardization. + +A PyTorch implementation of ResNetV2 adapted from the Google Big-Transfer (BiT) source code +at https://github.com/google-research/big_transfer to match timm interfaces. The BiT weights have +been included here as pretrained models from their original .NPZ checkpoints. + +Additionally, supports non pre-activation bottleneck for use as a backbone for Vision Transfomers (ViT) and +extra padding support to allow porting of official Hybrid ResNet pretrained weights from +https://github.com/google-research/vision_transformer + +Thanks to the Google team for the above two repositories and associated papers: +* Big Transfer (BiT): General Visual Representation Learning - https://arxiv.org/abs/1912.11370 +* An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale - https://arxiv.org/abs/2010.11929 +* Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237 + +Original copyright of Google code below, modifications by Ross Wightman, Copyright 2020. +""" +# Copyright 2020 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from collections import OrderedDict # pylint: disable=g-importing-member +from functools import partial +from typing import Optional + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import GroupNormAct, BatchNormAct2d, EvoNorm2dS0, FilterResponseNormTlu2d, ClassifierHead, \ + DropPath, AvgPool2dSame, create_pool2d, StdConv2d, create_conv2d, get_act_layer, get_norm_act_layer, make_divisible +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq, named_apply, adapt_input_conv +from ._registry import generate_default_cfgs, register_model, register_model_deprecations + +__all__ = ['ResNetV2'] # model_registry will add each entrypoint fn to this + + +class PreActBasic(nn.Module): + """ Pre-activation basic block (not in typical 'v2' implementations) + """ + + def __init__( + self, + in_chs, + out_chs=None, + bottle_ratio=1.0, + stride=1, + dilation=1, + first_dilation=None, + groups=1, + act_layer=None, + conv_layer=None, + norm_layer=None, + proj_layer=None, + drop_path_rate=0., + ): + super().__init__() + first_dilation = first_dilation or dilation + conv_layer = conv_layer or StdConv2d + norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) + out_chs = out_chs or in_chs + mid_chs = make_divisible(out_chs * bottle_ratio) + + if proj_layer is not None and (stride != 1 or first_dilation != dilation or in_chs != out_chs): + self.downsample = proj_layer( + in_chs, + out_chs, + stride=stride, + dilation=dilation, + first_dilation=first_dilation, + preact=True, + conv_layer=conv_layer, + norm_layer=norm_layer, + ) + else: + self.downsample = None + + self.norm1 = norm_layer(in_chs) + self.conv1 = conv_layer(in_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) + self.norm2 = norm_layer(mid_chs) + self.conv2 = conv_layer(mid_chs, out_chs, 3, dilation=dilation, groups=groups) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + + def zero_init_last(self): + nn.init.zeros_(self.conv3.weight) + + def forward(self, x): + x_preact = self.norm1(x) + + # shortcut branch + shortcut = x + if self.downsample is not None: + shortcut = self.downsample(x_preact) + + # residual branch + x = self.conv1(x_preact) + x = self.conv2(self.norm2(x)) + x = self.drop_path(x) + return x + shortcut + + +class PreActBottleneck(nn.Module): + """Pre-activation (v2) bottleneck block. + + Follows the implementation of "Identity Mappings in Deep Residual Networks": + https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua + + Except it puts the stride on 3x3 conv when available. + """ + + def __init__( + self, + in_chs, + out_chs=None, + bottle_ratio=0.25, + stride=1, + dilation=1, + first_dilation=None, + groups=1, + act_layer=None, + conv_layer=None, + norm_layer=None, + proj_layer=None, + drop_path_rate=0., + ): + super().__init__() + first_dilation = first_dilation or dilation + conv_layer = conv_layer or StdConv2d + norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) + out_chs = out_chs or in_chs + mid_chs = make_divisible(out_chs * bottle_ratio) + + if proj_layer is not None: + self.downsample = proj_layer( + in_chs, + out_chs, + stride=stride, + dilation=dilation, + first_dilation=first_dilation, + preact=True, + conv_layer=conv_layer, + norm_layer=norm_layer, + ) + else: + self.downsample = None + + self.norm1 = norm_layer(in_chs) + self.conv1 = conv_layer(in_chs, mid_chs, 1) + self.norm2 = norm_layer(mid_chs) + self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) + self.norm3 = norm_layer(mid_chs) + self.conv3 = conv_layer(mid_chs, out_chs, 1) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + + def zero_init_last(self): + nn.init.zeros_(self.conv3.weight) + + def forward(self, x): + x_preact = self.norm1(x) + + # shortcut branch + shortcut = x + if self.downsample is not None: + shortcut = self.downsample(x_preact) + + # residual branch + x = self.conv1(x_preact) + x = self.conv2(self.norm2(x)) + x = self.conv3(self.norm3(x)) + x = self.drop_path(x) + return x + shortcut + + +class Bottleneck(nn.Module): + """Non Pre-activation bottleneck block, equiv to V1.5/V1b Bottleneck. Used for ViT. + """ + def __init__( + self, + in_chs, + out_chs=None, + bottle_ratio=0.25, + stride=1, + dilation=1, + first_dilation=None, + groups=1, + act_layer=None, + conv_layer=None, + norm_layer=None, + proj_layer=None, + drop_path_rate=0., + ): + super().__init__() + first_dilation = first_dilation or dilation + act_layer = act_layer or nn.ReLU + conv_layer = conv_layer or StdConv2d + norm_layer = norm_layer or partial(GroupNormAct, num_groups=32) + out_chs = out_chs or in_chs + mid_chs = make_divisible(out_chs * bottle_ratio) + + if proj_layer is not None: + self.downsample = proj_layer( + in_chs, + out_chs, + stride=stride, + dilation=dilation, + preact=False, + conv_layer=conv_layer, + norm_layer=norm_layer, + ) + else: + self.downsample = None + + self.conv1 = conv_layer(in_chs, mid_chs, 1) + self.norm1 = norm_layer(mid_chs) + self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups) + self.norm2 = norm_layer(mid_chs) + self.conv3 = conv_layer(mid_chs, out_chs, 1) + self.norm3 = norm_layer(out_chs, apply_act=False) + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + self.act3 = act_layer(inplace=True) + + def zero_init_last(self): + if getattr(self.norm3, 'weight', None) is not None: + nn.init.zeros_(self.norm3.weight) + + def forward(self, x): + # shortcut branch + shortcut = x + if self.downsample is not None: + shortcut = self.downsample(x) + + # residual + x = self.conv1(x) + x = self.norm1(x) + x = self.conv2(x) + x = self.norm2(x) + x = self.conv3(x) + x = self.norm3(x) + x = self.drop_path(x) + x = self.act3(x + shortcut) + return x + + +class DownsampleConv(nn.Module): + def __init__( + self, + in_chs, + out_chs, + stride=1, + dilation=1, + first_dilation=None, + preact=True, + conv_layer=None, + norm_layer=None, + ): + super(DownsampleConv, self).__init__() + self.conv = conv_layer(in_chs, out_chs, 1, stride=stride) + self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False) + + def forward(self, x): + return self.norm(self.conv(x)) + + +class DownsampleAvg(nn.Module): + def __init__( + self, + in_chs, + out_chs, + stride=1, + dilation=1, + first_dilation=None, + preact=True, + conv_layer=None, + norm_layer=None, + ): + """ AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment.""" + super(DownsampleAvg, self).__init__() + avg_stride = stride if dilation == 1 else 1 + if stride > 1 or dilation > 1: + avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d + self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) + else: + self.pool = nn.Identity() + self.conv = conv_layer(in_chs, out_chs, 1, stride=1) + self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False) + + def forward(self, x): + return self.norm(self.conv(self.pool(x))) + + +class ResNetStage(nn.Module): + """ResNet Stage.""" + def __init__( + self, + in_chs, + out_chs, + stride, + dilation, + depth, + bottle_ratio=0.25, + groups=1, + avg_down=False, + block_dpr=None, + block_fn=PreActBottleneck, + act_layer=None, + conv_layer=None, + norm_layer=None, + **block_kwargs, + ): + super(ResNetStage, self).__init__() + first_dilation = 1 if dilation in (1, 2) else 2 + layer_kwargs = dict(act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer) + proj_layer = DownsampleAvg if avg_down else DownsampleConv + prev_chs = in_chs + self.blocks = nn.Sequential() + for block_idx in range(depth): + drop_path_rate = block_dpr[block_idx] if block_dpr else 0. + stride = stride if block_idx == 0 else 1 + self.blocks.add_module(str(block_idx), block_fn( + prev_chs, + out_chs, + stride=stride, + dilation=dilation, + bottle_ratio=bottle_ratio, + groups=groups, + first_dilation=first_dilation, + proj_layer=proj_layer, + drop_path_rate=drop_path_rate, + **layer_kwargs, + **block_kwargs, + )) + prev_chs = out_chs + first_dilation = dilation + proj_layer = None + + def forward(self, x): + x = self.blocks(x) + return x + + +def is_stem_deep(stem_type): + return any([s in stem_type for s in ('deep', 'tiered')]) + + +def create_resnetv2_stem( + in_chs, + out_chs=64, + stem_type='', + preact=True, + conv_layer=StdConv2d, + norm_layer=partial(GroupNormAct, num_groups=32), +): + stem = OrderedDict() + assert stem_type in ('', 'fixed', 'same', 'deep', 'deep_fixed', 'deep_same', 'tiered') + + # NOTE conv padding mode can be changed by overriding the conv_layer def + if is_stem_deep(stem_type): + # A 3 deep 3x3 conv stack as in ResNet V1D models + if 'tiered' in stem_type: + stem_chs = (3 * out_chs // 8, out_chs // 2) # 'T' resnets in resnet.py + else: + stem_chs = (out_chs // 2, out_chs // 2) # 'D' ResNets + stem['conv1'] = conv_layer(in_chs, stem_chs[0], kernel_size=3, stride=2) + stem['norm1'] = norm_layer(stem_chs[0]) + stem['conv2'] = conv_layer(stem_chs[0], stem_chs[1], kernel_size=3, stride=1) + stem['norm2'] = norm_layer(stem_chs[1]) + stem['conv3'] = conv_layer(stem_chs[1], out_chs, kernel_size=3, stride=1) + if not preact: + stem['norm3'] = norm_layer(out_chs) + else: + # The usual 7x7 stem conv + stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2) + if not preact: + stem['norm'] = norm_layer(out_chs) + + if 'fixed' in stem_type: + # 'fixed' SAME padding approximation that is used in BiT models + stem['pad'] = nn.ConstantPad2d(1, 0.) + stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=0) + elif 'same' in stem_type: + # full, input size based 'SAME' padding, used in ViT Hybrid model + stem['pool'] = create_pool2d('max', kernel_size=3, stride=2, padding='same') + else: + # the usual PyTorch symmetric padding + stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + return nn.Sequential(stem) + + +class ResNetV2(nn.Module): + """Implementation of Pre-activation (v2) ResNet mode. + """ + + def __init__( + self, + layers, + channels=(256, 512, 1024, 2048), + num_classes=1000, + in_chans=3, + global_pool='avg', + output_stride=32, + width_factor=1, + stem_chs=64, + stem_type='', + avg_down=False, + preact=True, + basic=False, + bottle_ratio=0.25, + act_layer=nn.ReLU, + norm_layer=partial(GroupNormAct, num_groups=32), + conv_layer=StdConv2d, + drop_rate=0., + drop_path_rate=0., + zero_init_last=False, + ): + """ + Args: + layers (List[int]) : number of layers in each block + channels (List[int]) : number of channels in each block: + num_classes (int): number of classification classes (default 1000) + in_chans (int): number of input (color) channels. (default 3) + global_pool (str): Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' (default 'avg') + output_stride (int): output stride of the network, 32, 16, or 8. (default 32) + width_factor (int): channel (width) multiplication factor + stem_chs (int): stem width (default: 64) + stem_type (str): stem type (default: '' == 7x7) + avg_down (bool): average pooling in residual downsampling (default: False) + preact (bool): pre-activiation (default: True) + act_layer (Union[str, nn.Module]): activation layer + norm_layer (Union[str, nn.Module]): normalization layer + conv_layer (nn.Module): convolution module + drop_rate: classifier dropout rate (default: 0.) + drop_path_rate: stochastic depth rate (default: 0.) + zero_init_last: zero-init last weight in residual path (default: False) + """ + super().__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + wf = width_factor + norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) + act_layer = get_act_layer(act_layer) + + self.feature_info = [] + stem_chs = make_divisible(stem_chs * wf) + self.stem = create_resnetv2_stem( + in_chans, + stem_chs, + stem_type, + preact, + conv_layer=conv_layer, + norm_layer=norm_layer, + ) + stem_feat = ('stem.conv3' if is_stem_deep(stem_type) else 'stem.conv') if preact else 'stem.norm' + self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=stem_feat)) + + prev_chs = stem_chs + curr_stride = 4 + dilation = 1 + block_dprs = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] + if preact: + block_fn = PreActBasic if basic else PreActBottleneck + else: + assert not basic + block_fn = Bottleneck + self.stages = nn.Sequential() + for stage_idx, (d, c, bdpr) in enumerate(zip(layers, channels, block_dprs)): + out_chs = make_divisible(c * wf) + stride = 1 if stage_idx == 0 else 2 + if curr_stride >= output_stride: + dilation *= stride + stride = 1 + stage = ResNetStage( + prev_chs, + out_chs, + stride=stride, + dilation=dilation, + depth=d, + bottle_ratio=bottle_ratio, + avg_down=avg_down, + act_layer=act_layer, + conv_layer=conv_layer, + norm_layer=norm_layer, + block_dpr=bdpr, + block_fn=block_fn, + ) + prev_chs = out_chs + curr_stride *= stride + self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{stage_idx}')] + self.stages.add_module(str(stage_idx), stage) + + self.num_features = self.head_hidden_size = prev_chs + self.norm = norm_layer(self.num_features) if preact else nn.Identity() + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=self.drop_rate, + use_conv=True, + ) + + self.init_weights(zero_init_last=zero_init_last) + self.grad_checkpointing = False + + @torch.jit.ignore + def init_weights(self, zero_init_last=True): + named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) + + @torch.jit.ignore() + def load_pretrained(self, checkpoint_path, prefix='resnet/'): + _load_weights(self, checkpoint_path, prefix) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^stem', + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+)\.blocks\.(\d+)', None), + (r'^norm', (99999,)) + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x, flatten=True) + else: + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _init_weights(module: nn.Module, name: str = '', zero_init_last=True): + if isinstance(module, nn.Linear) or ('head.fc' in name and isinstance(module, nn.Conv2d)): + nn.init.normal_(module.weight, mean=0.0, std=0.01) + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, (nn.BatchNorm2d, nn.LayerNorm, nn.GroupNorm)): + nn.init.ones_(module.weight) + nn.init.zeros_(module.bias) + elif zero_init_last and hasattr(module, 'zero_init_last'): + module.zero_init_last() + + +@torch.no_grad() +def _load_weights(model: nn.Module, checkpoint_path: str, prefix: str = 'resnet/'): + import numpy as np + + def t2p(conv_weights): + """Possibly convert HWIO to OIHW.""" + if conv_weights.ndim == 4: + conv_weights = conv_weights.transpose([3, 2, 0, 1]) + return torch.from_numpy(conv_weights) + + weights = np.load(checkpoint_path) + stem_conv_w = adapt_input_conv( + model.stem.conv.weight.shape[1], t2p(weights[f'{prefix}root_block/standardized_conv2d/kernel'])) + model.stem.conv.weight.copy_(stem_conv_w) + model.norm.weight.copy_(t2p(weights[f'{prefix}group_norm/gamma'])) + model.norm.bias.copy_(t2p(weights[f'{prefix}group_norm/beta'])) + if isinstance(getattr(model.head, 'fc', None), nn.Conv2d) and \ + model.head.fc.weight.shape[0] == weights[f'{prefix}head/conv2d/kernel'].shape[-1]: + model.head.fc.weight.copy_(t2p(weights[f'{prefix}head/conv2d/kernel'])) + model.head.fc.bias.copy_(t2p(weights[f'{prefix}head/conv2d/bias'])) + for i, (sname, stage) in enumerate(model.stages.named_children()): + for j, (bname, block) in enumerate(stage.blocks.named_children()): + cname = 'standardized_conv2d' + block_prefix = f'{prefix}block{i + 1}/unit{j + 1:02d}/' + block.conv1.weight.copy_(t2p(weights[f'{block_prefix}a/{cname}/kernel'])) + block.conv2.weight.copy_(t2p(weights[f'{block_prefix}b/{cname}/kernel'])) + block.conv3.weight.copy_(t2p(weights[f'{block_prefix}c/{cname}/kernel'])) + block.norm1.weight.copy_(t2p(weights[f'{block_prefix}a/group_norm/gamma'])) + block.norm2.weight.copy_(t2p(weights[f'{block_prefix}b/group_norm/gamma'])) + block.norm3.weight.copy_(t2p(weights[f'{block_prefix}c/group_norm/gamma'])) + block.norm1.bias.copy_(t2p(weights[f'{block_prefix}a/group_norm/beta'])) + block.norm2.bias.copy_(t2p(weights[f'{block_prefix}b/group_norm/beta'])) + block.norm3.bias.copy_(t2p(weights[f'{block_prefix}c/group_norm/beta'])) + if block.downsample is not None: + w = weights[f'{block_prefix}a/proj/{cname}/kernel'] + block.downsample.conv.weight.copy_(t2p(w)) + + +def _create_resnetv2(variant, pretrained=False, **kwargs): + feature_cfg = dict(flatten_sequential=True) + return build_model_with_cfg( + ResNetV2, variant, pretrained, + feature_cfg=feature_cfg, + **kwargs, + ) + + +def _create_resnetv2_bit(variant, pretrained=False, **kwargs): + return _create_resnetv2( + variant, + pretrained=pretrained, + stem_type='fixed', + conv_layer=partial(StdConv2d, eps=1e-8), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, + 'first_conv': 'stem.conv', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237 + 'resnetv2_50x1_bit.goog_distilled_in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', custom_load=True), + 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', custom_load=True), + 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, interpolation='bicubic', custom_load=True), + + # pretrained on imagenet21k, finetuned on imagenet1k + 'resnetv2_50x1_bit.goog_in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), + 'resnetv2_50x3_bit.goog_in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), + 'resnetv2_101x1_bit.goog_in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), + 'resnetv2_101x3_bit.goog_in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), + 'resnetv2_152x2_bit.goog_in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, custom_load=True), + 'resnetv2_152x4_bit.goog_in21k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 480, 480), pool_size=(15, 15), crop_pct=1.0, custom_load=True), # only one at 480x480? + + # trained on imagenet-21k + 'resnetv2_50x1_bit.goog_in21k': _cfg( + hf_hub_id='timm/', + num_classes=21843, custom_load=True), + 'resnetv2_50x3_bit.goog_in21k': _cfg( + hf_hub_id='timm/', + num_classes=21843, custom_load=True), + 'resnetv2_101x1_bit.goog_in21k': _cfg( + hf_hub_id='timm/', + num_classes=21843, custom_load=True), + 'resnetv2_101x3_bit.goog_in21k': _cfg( + hf_hub_id='timm/', + num_classes=21843, custom_load=True), + 'resnetv2_152x2_bit.goog_in21k': _cfg( + hf_hub_id='timm/', + num_classes=21843, custom_load=True), + 'resnetv2_152x4_bit.goog_in21k': _cfg( + hf_hub_id='timm/', + num_classes=21843, custom_load=True), + + 'resnetv2_18.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'resnetv2_18d.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0, + first_conv='stem.conv1'), + 'resnetv2_34.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'resnetv2_34d.ra4_e3600_r224_in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', crop_pct=0.9, test_input_size=(3, 288, 288), test_crop_pct=1.0, + first_conv='stem.conv1'), + 'resnetv2_34d.ra4_e3600_r384_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=1.0, input_size=(3, 384, 384), pool_size=(12, 12), test_input_size=(3, 448, 448), + interpolation='bicubic', first_conv='stem.conv1'), + 'resnetv2_50.a1h_in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'resnetv2_50d.untrained': _cfg( + interpolation='bicubic', first_conv='stem.conv1'), + 'resnetv2_50t.untrained': _cfg( + interpolation='bicubic', first_conv='stem.conv1'), + 'resnetv2_101.a1h_in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'resnetv2_101d.untrained': _cfg( + interpolation='bicubic', first_conv='stem.conv1'), + 'resnetv2_152.untrained': _cfg( + interpolation='bicubic'), + 'resnetv2_152d.untrained': _cfg( + interpolation='bicubic', first_conv='stem.conv1'), + + 'resnetv2_50d_gn.ah_in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', first_conv='stem.conv1', + crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'resnetv2_50d_evos.ah_in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic', first_conv='stem.conv1', + crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), + 'resnetv2_50d_frn.untrained': _cfg( + interpolation='bicubic', first_conv='stem.conv1'), +}) + + +@register_model +def resnetv2_50x1_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit( + 'resnetv2_50x1_bit', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=1, **kwargs) + + +@register_model +def resnetv2_50x3_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit( + 'resnetv2_50x3_bit', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=3, **kwargs) + + +@register_model +def resnetv2_101x1_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit( + 'resnetv2_101x1_bit', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=1, **kwargs) + + +@register_model +def resnetv2_101x3_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit( + 'resnetv2_101x3_bit', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=3, **kwargs) + + +@register_model +def resnetv2_152x2_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit( + 'resnetv2_152x2_bit', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs) + + +@register_model +def resnetv2_152x4_bit(pretrained=False, **kwargs) -> ResNetV2: + return _create_resnetv2_bit( + 'resnetv2_152x4_bit', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=4, **kwargs) + + +@register_model +def resnetv2_18(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict( + layers=[2, 2, 2, 2], channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0, + conv_layer=create_conv2d, norm_layer=BatchNormAct2d + ) + return _create_resnetv2('resnetv2_18', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_18d(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict( + layers=[2, 2, 2, 2], channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0, + conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True + ) + return _create_resnetv2('resnetv2_18d', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_34(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict( + layers=(3, 4, 6, 3), channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0, + conv_layer=create_conv2d, norm_layer=BatchNormAct2d + ) + return _create_resnetv2('resnetv2_34', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_34d(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict( + layers=(3, 4, 6, 3), channels=(64, 128, 256, 512), basic=True, bottle_ratio=1.0, + conv_layer=create_conv2d, norm_layer=BatchNormAct2d, stem_type='deep', avg_down=True + ) + return _create_resnetv2('resnetv2_34d', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_50(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) + return _create_resnetv2('resnetv2_50', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_50d(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict( + layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, + stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_50d', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_50t(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict( + layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, + stem_type='tiered', avg_down=True) + return _create_resnetv2('resnetv2_50t', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_101(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) + return _create_resnetv2('resnetv2_101', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_101d(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict( + layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, + stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_101d', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_152(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict(layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d) + return _create_resnetv2('resnetv2_152', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_152d(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict( + layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, + stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_152d', pretrained=pretrained, **dict(model_args, **kwargs)) + + +# Experimental configs (may change / be removed) + +@register_model +def resnetv2_50d_gn(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict( + layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=GroupNormAct, + stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_50d_gn', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_50d_evos(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict( + layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=EvoNorm2dS0, + stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_50d_evos', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def resnetv2_50d_frn(pretrained=False, **kwargs) -> ResNetV2: + model_args = dict( + layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=FilterResponseNormTlu2d, + stem_type='deep', avg_down=True) + return _create_resnetv2('resnetv2_50d_frn', pretrained=pretrained, **dict(model_args, **kwargs)) + + +register_model_deprecations(__name__, { + 'resnetv2_50x1_bitm': 'resnetv2_50x1_bit.goog_in21k_ft_in1k', + 'resnetv2_50x3_bitm': 'resnetv2_50x3_bit.goog_in21k_ft_in1k', + 'resnetv2_101x1_bitm': 'resnetv2_101x1_bit.goog_in21k_ft_in1k', + 'resnetv2_101x3_bitm': 'resnetv2_101x3_bit.goog_in21k_ft_in1k', + 'resnetv2_152x2_bitm': 'resnetv2_152x2_bit.goog_in21k_ft_in1k', + 'resnetv2_152x4_bitm': 'resnetv2_152x4_bit.goog_in21k_ft_in1k', + 'resnetv2_50x1_bitm_in21k': 'resnetv2_50x1_bit.goog_in21k', + 'resnetv2_50x3_bitm_in21k': 'resnetv2_50x3_bit.goog_in21k', + 'resnetv2_101x1_bitm_in21k': 'resnetv2_101x1_bit.goog_in21k', + 'resnetv2_101x3_bitm_in21k': 'resnetv2_101x3_bit.goog_in21k', + 'resnetv2_152x2_bitm_in21k': 'resnetv2_152x2_bit.goog_in21k', + 'resnetv2_152x4_bitm_in21k': 'resnetv2_152x4_bit.goog_in21k', + 'resnetv2_50x1_bit_distilled': 'resnetv2_50x1_bit.goog_distilled_in1k', + 'resnetv2_152x2_bit_teacher': 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k', + 'resnetv2_152x2_bit_teacher_384': 'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384', +}) diff --git a/pytorch-image-models/timm/models/rexnet.py b/pytorch-image-models/timm/models/rexnet.py new file mode 100644 index 0000000000000000000000000000000000000000..9971728c242f9faa74a92d4c4297be265fa72270 --- /dev/null +++ b/pytorch-image-models/timm/models/rexnet.py @@ -0,0 +1,358 @@ +""" ReXNet + +A PyTorch impl of `ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network` - +https://arxiv.org/abs/2007.00992 + +Adapted from original impl at https://github.com/clovaai/rexnet +Copyright (c) 2020-present NAVER Corp. MIT license + +Changes for timm, feature extraction, and rounded channel variant hacked together by Ross Wightman +Copyright 2020 Ross Wightman +""" + +from functools import partial +from math import ceil +from typing import Optional + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ClassifierHead, create_act_layer, ConvNormAct, DropPath, make_divisible, SEModule +from ._builder import build_model_with_cfg +from ._efficientnet_builder import efficientnet_init_weights +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model + +__all__ = ['RexNet'] # model_registry will add each entrypoint fn to this + + +SEWithNorm = partial(SEModule, norm_layer=nn.BatchNorm2d) + + +class LinearBottleneck(nn.Module): + def __init__( + self, + in_chs, + out_chs, + stride, + dilation=(1, 1), + exp_ratio=1.0, + se_ratio=0., + ch_div=1, + act_layer='swish', + dw_act_layer='relu6', + drop_path=None, + ): + super(LinearBottleneck, self).__init__() + self.use_shortcut = stride == 1 and dilation[0] == dilation[1] and in_chs <= out_chs + self.in_channels = in_chs + self.out_channels = out_chs + + if exp_ratio != 1.: + dw_chs = make_divisible(round(in_chs * exp_ratio), divisor=ch_div) + self.conv_exp = ConvNormAct(in_chs, dw_chs, act_layer=act_layer) + else: + dw_chs = in_chs + self.conv_exp = None + + self.conv_dw = ConvNormAct( + dw_chs, + dw_chs, + kernel_size=3, + stride=stride, + dilation=dilation[0], + groups=dw_chs, + apply_act=False, + ) + if se_ratio > 0: + self.se = SEWithNorm(dw_chs, rd_channels=make_divisible(int(dw_chs * se_ratio), ch_div)) + else: + self.se = None + self.act_dw = create_act_layer(dw_act_layer) + + self.conv_pwl = ConvNormAct(dw_chs, out_chs, 1, apply_act=False) + self.drop_path = drop_path + + def feat_channels(self, exp=False): + return self.conv_dw.out_channels if exp else self.out_channels + + def forward(self, x): + shortcut = x + if self.conv_exp is not None: + x = self.conv_exp(x) + x = self.conv_dw(x) + if self.se is not None: + x = self.se(x) + x = self.act_dw(x) + x = self.conv_pwl(x) + if self.use_shortcut: + if self.drop_path is not None: + x = self.drop_path(x) + x = torch.cat([x[:, 0:self.in_channels] + shortcut, x[:, self.in_channels:]], dim=1) + return x + + +def _block_cfg( + width_mult=1.0, + depth_mult=1.0, + initial_chs=16, + final_chs=180, + se_ratio=0., + ch_div=1, +): + layers = [1, 2, 2, 3, 3, 5] + strides = [1, 2, 2, 2, 1, 2] + layers = [ceil(element * depth_mult) for element in layers] + strides = sum([[element] + [1] * (layers[idx] - 1) for idx, element in enumerate(strides)], []) + exp_ratios = [1] * layers[0] + [6] * sum(layers[1:]) + depth = sum(layers[:]) * 3 + base_chs = initial_chs / width_mult if width_mult < 1.0 else initial_chs + + # The following channel configuration is a simple instance to make each layer become an expand layer. + out_chs_list = [] + for i in range(depth // 3): + out_chs_list.append(make_divisible(round(base_chs * width_mult), divisor=ch_div)) + base_chs += final_chs / (depth // 3 * 1.0) + + se_ratios = [0.] * (layers[0] + layers[1]) + [se_ratio] * sum(layers[2:]) + + return list(zip(out_chs_list, exp_ratios, strides, se_ratios)) + + +def _build_blocks( + block_cfg, + prev_chs, + width_mult, + ch_div=1, + output_stride=32, + act_layer='swish', + dw_act_layer='relu6', + drop_path_rate=0., +): + feat_chs = [prev_chs] + feature_info = [] + curr_stride = 2 + dilation = 1 + features = [] + num_blocks = len(block_cfg) + for block_idx, (chs, exp_ratio, stride, se_ratio) in enumerate(block_cfg): + next_dilation = dilation + if stride > 1: + fname = 'stem' if block_idx == 0 else f'features.{block_idx - 1}' + feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=fname)] + if curr_stride >= output_stride: + next_dilation = dilation * stride + stride = 1 + block_dpr = drop_path_rate * block_idx / (num_blocks - 1) # stochastic depth linear decay rule + drop_path = DropPath(block_dpr) if block_dpr > 0. else None + features.append(LinearBottleneck( + in_chs=prev_chs, + out_chs=chs, + exp_ratio=exp_ratio, + stride=stride, + dilation=(dilation, next_dilation), + se_ratio=se_ratio, + ch_div=ch_div, + act_layer=act_layer, + dw_act_layer=dw_act_layer, + drop_path=drop_path, + )) + curr_stride *= stride + dilation = next_dilation + prev_chs = chs + feat_chs += [features[-1].feat_channels()] + pen_chs = make_divisible(1280 * width_mult, divisor=ch_div) + feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=f'features.{len(features) - 1}')] + features.append(ConvNormAct(prev_chs, pen_chs, act_layer=act_layer)) + return features, feature_info + + +class RexNet(nn.Module): + def __init__( + self, + in_chans=3, + num_classes=1000, + global_pool='avg', + output_stride=32, + initial_chs=16, + final_chs=180, + width_mult=1.0, + depth_mult=1.0, + se_ratio=1/12., + ch_div=1, + act_layer='swish', + dw_act_layer='relu6', + drop_rate=0.2, + drop_path_rate=0., + ): + super(RexNet, self).__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + + assert output_stride in (32, 16, 8) + stem_base_chs = 32 / width_mult if width_mult < 1.0 else 32 + stem_chs = make_divisible(round(stem_base_chs * width_mult), divisor=ch_div) + self.stem = ConvNormAct(in_chans, stem_chs, 3, stride=2, act_layer=act_layer) + + block_cfg = _block_cfg(width_mult, depth_mult, initial_chs, final_chs, se_ratio, ch_div) + features, self.feature_info = _build_blocks( + block_cfg, + stem_chs, + width_mult, + ch_div, + output_stride, + act_layer, + dw_act_layer, + drop_path_rate, + ) + self.num_features = self.head_hidden_size = features[-1].out_channels + self.features = nn.Sequential(*features) + + self.head = ClassifierHead(self.num_features, num_classes, global_pool, drop_rate) + + efficientnet_init_weights(self) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^stem', + blocks=r'^features\.(\d+)', + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.features, x, flatten=True) + else: + x = self.features(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_rexnet(variant, pretrained, **kwargs): + feature_cfg = dict(flatten_sequential=True) + return build_model_with_cfg( + RexNet, + variant, + pretrained, + feature_cfg=feature_cfg, + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.conv', 'classifier': 'head.fc', + 'license': 'mit', **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'rexnet_100.nav_in1k': _cfg(hf_hub_id='timm/'), + 'rexnet_130.nav_in1k': _cfg(hf_hub_id='timm/'), + 'rexnet_150.nav_in1k': _cfg(hf_hub_id='timm/'), + 'rexnet_200.nav_in1k': _cfg(hf_hub_id='timm/'), + 'rexnet_300.nav_in1k': _cfg(hf_hub_id='timm/'), + 'rexnetr_100.untrained': _cfg(), + 'rexnetr_130.untrained': _cfg(), + 'rexnetr_150.untrained': _cfg(), + 'rexnetr_200.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'), + 'rexnetr_300.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'), + 'rexnetr_200.sw_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'), + 'rexnetr_300.sw_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + crop_pct=0.95, test_crop_pct=1.0, test_input_size=(3, 288, 288), license='apache-2.0'), +}) + + +@register_model +def rexnet_100(pretrained=False, **kwargs) -> RexNet: + """ReXNet V1 1.0x""" + return _create_rexnet('rexnet_100', pretrained, **kwargs) + + +@register_model +def rexnet_130(pretrained=False, **kwargs) -> RexNet: + """ReXNet V1 1.3x""" + return _create_rexnet('rexnet_130', pretrained, width_mult=1.3, **kwargs) + + +@register_model +def rexnet_150(pretrained=False, **kwargs) -> RexNet: + """ReXNet V1 1.5x""" + return _create_rexnet('rexnet_150', pretrained, width_mult=1.5, **kwargs) + + +@register_model +def rexnet_200(pretrained=False, **kwargs) -> RexNet: + """ReXNet V1 2.0x""" + return _create_rexnet('rexnet_200', pretrained, width_mult=2.0, **kwargs) + + +@register_model +def rexnet_300(pretrained=False, **kwargs) -> RexNet: + """ReXNet V1 3.0x""" + return _create_rexnet('rexnet_300', pretrained, width_mult=3.0, **kwargs) + + +@register_model +def rexnetr_100(pretrained=False, **kwargs) -> RexNet: + """ReXNet V1 1.0x w/ rounded (mod 8) channels""" + return _create_rexnet('rexnetr_100', pretrained, ch_div=8, **kwargs) + + +@register_model +def rexnetr_130(pretrained=False, **kwargs) -> RexNet: + """ReXNet V1 1.3x w/ rounded (mod 8) channels""" + return _create_rexnet('rexnetr_130', pretrained, width_mult=1.3, ch_div=8, **kwargs) + + +@register_model +def rexnetr_150(pretrained=False, **kwargs) -> RexNet: + """ReXNet V1 1.5x w/ rounded (mod 8) channels""" + return _create_rexnet('rexnetr_150', pretrained, width_mult=1.5, ch_div=8, **kwargs) + + +@register_model +def rexnetr_200(pretrained=False, **kwargs) -> RexNet: + """ReXNet V1 2.0x w/ rounded (mod 8) channels""" + return _create_rexnet('rexnetr_200', pretrained, width_mult=2.0, ch_div=8, **kwargs) + + +@register_model +def rexnetr_300(pretrained=False, **kwargs) -> RexNet: + """ReXNet V1 3.0x w/ rounded (mod 16) channels""" + return _create_rexnet('rexnetr_300', pretrained, width_mult=3.0, ch_div=16, **kwargs) diff --git a/pytorch-image-models/timm/models/selecsls.py b/pytorch-image-models/timm/models/selecsls.py new file mode 100644 index 0000000000000000000000000000000000000000..fdfa16c3186b4fa3f1d434c50232019f361fc56b --- /dev/null +++ b/pytorch-image-models/timm/models/selecsls.py @@ -0,0 +1,378 @@ +"""PyTorch SelecSLS Net example for ImageNet Classification +License: CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode) +Author: Dushyant Mehta (@mehtadushy) + +SelecSLS (core) Network Architecture as proposed in "XNect: Real-time Multi-person 3D +Human Pose Estimation with a Single RGB Camera, Mehta et al." +https://arxiv.org/abs/1907.00837 + +Based on ResNet implementation in https://github.com/rwightman/pytorch-image-models +and SelecSLS Net implementation in https://github.com/mehtadushy/SelecSLS-Pytorch +""" +from typing import List + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs + +__all__ = ['SelecSls'] # model_registry will add each entrypoint fn to this + + +class SequentialList(nn.Sequential): + + def __init__(self, *args): + super(SequentialList, self).__init__(*args) + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (List[torch.Tensor]) -> (List[torch.Tensor]) + pass + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (torch.Tensor) -> (List[torch.Tensor]) + pass + + def forward(self, x) -> List[torch.Tensor]: + for module in self: + x = module(x) + return x + + +class SelectSeq(nn.Module): + def __init__(self, mode='index', index=0): + super(SelectSeq, self).__init__() + self.mode = mode + self.index = index + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (List[torch.Tensor]) -> (torch.Tensor) + pass + + @torch.jit._overload_method # noqa: F811 + def forward(self, x): + # type: (Tuple[torch.Tensor]) -> (torch.Tensor) + pass + + def forward(self, x) -> torch.Tensor: + if self.mode == 'index': + return x[self.index] + else: + return torch.cat(x, dim=1) + + +def conv_bn(in_chs, out_chs, k=3, stride=1, padding=None, dilation=1): + if padding is None: + padding = ((stride - 1) + dilation * (k - 1)) // 2 + return nn.Sequential( + nn.Conv2d(in_chs, out_chs, k, stride, padding=padding, dilation=dilation, bias=False), + nn.BatchNorm2d(out_chs), + nn.ReLU(inplace=True) + ) + + +class SelecSlsBlock(nn.Module): + def __init__(self, in_chs, skip_chs, mid_chs, out_chs, is_first, stride, dilation=1): + super(SelecSlsBlock, self).__init__() + self.stride = stride + self.is_first = is_first + assert stride in [1, 2] + + # Process input with 4 conv blocks with the same number of input and output channels + self.conv1 = conv_bn(in_chs, mid_chs, 3, stride, dilation=dilation) + self.conv2 = conv_bn(mid_chs, mid_chs, 1) + self.conv3 = conv_bn(mid_chs, mid_chs // 2, 3) + self.conv4 = conv_bn(mid_chs // 2, mid_chs, 1) + self.conv5 = conv_bn(mid_chs, mid_chs // 2, 3) + self.conv6 = conv_bn(2 * mid_chs + (0 if is_first else skip_chs), out_chs, 1) + + def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: + if not isinstance(x, list): + x = [x] + assert len(x) in [1, 2] + + d1 = self.conv1(x[0]) + d2 = self.conv3(self.conv2(d1)) + d3 = self.conv5(self.conv4(d2)) + if self.is_first: + out = self.conv6(torch.cat([d1, d2, d3], 1)) + return [out, out] + else: + return [self.conv6(torch.cat([d1, d2, d3, x[1]], 1)), x[1]] + + +class SelecSls(nn.Module): + """SelecSls42 / SelecSls60 / SelecSls84 + + Parameters + ---------- + cfg : network config dictionary specifying block type, feature, and head args + num_classes : int, default 1000 + Number of classification classes. + in_chans : int, default 3 + Number of input (color) channels. + drop_rate : float, default 0. + Dropout probability before classifier, for training + global_pool : str, default 'avg' + Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax' + """ + + def __init__(self, cfg, num_classes=1000, in_chans=3, drop_rate=0.0, global_pool='avg'): + self.num_classes = num_classes + super(SelecSls, self).__init__() + + self.stem = conv_bn(in_chans, 32, stride=2) + self.features = SequentialList(*[cfg['block'](*block_args) for block_args in cfg['features']]) + self.from_seq = SelectSeq() # from List[tensor] -> Tensor in module compatible way + self.head = nn.Sequential(*[conv_bn(*conv_args) for conv_args in cfg['head']]) + self.num_features = self.head_hidden_size = cfg['num_features'] + self.feature_info = cfg['feature_info'] + + self.global_pool, self.head_drop, self.fc = create_classifier( + self.num_features, + self.num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + ) + + for n, m in self.named_modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', + blocks=r'^features\.(\d+)', + blocks_head=r'^head' + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.fc + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.features(x) + x = self.head(self.from_seq(x)) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.fc(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_selecsls(variant, pretrained, **kwargs): + cfg = {} + feature_info = [dict(num_chs=32, reduction=2, module='stem.2')] + if variant.startswith('selecsls42'): + cfg['block'] = SelecSlsBlock + # Define configuration of the network after the initial neck + cfg['features'] = [ + # in_chs, skip_chs, mid_chs, out_chs, is_first, stride + (32, 0, 64, 64, True, 2), + (64, 64, 64, 128, False, 1), + (128, 0, 144, 144, True, 2), + (144, 144, 144, 288, False, 1), + (288, 0, 304, 304, True, 2), + (304, 304, 304, 480, False, 1), + ] + feature_info.extend([ + dict(num_chs=128, reduction=4, module='features.1'), + dict(num_chs=288, reduction=8, module='features.3'), + dict(num_chs=480, reduction=16, module='features.5'), + ]) + # Head can be replaced with alternative configurations depending on the problem + feature_info.append(dict(num_chs=1024, reduction=32, module='head.1')) + if variant == 'selecsls42b': + cfg['head'] = [ + (480, 960, 3, 2), + (960, 1024, 3, 1), + (1024, 1280, 3, 2), + (1280, 1024, 1, 1), + ] + feature_info.append(dict(num_chs=1024, reduction=64, module='head.3')) + cfg['num_features'] = 1024 + else: + cfg['head'] = [ + (480, 960, 3, 2), + (960, 1024, 3, 1), + (1024, 1024, 3, 2), + (1024, 1280, 1, 1), + ] + feature_info.append(dict(num_chs=1280, reduction=64, module='head.3')) + cfg['num_features'] = 1280 + + elif variant.startswith('selecsls60'): + cfg['block'] = SelecSlsBlock + # Define configuration of the network after the initial neck + cfg['features'] = [ + # in_chs, skip_chs, mid_chs, out_chs, is_first, stride + (32, 0, 64, 64, True, 2), + (64, 64, 64, 128, False, 1), + (128, 0, 128, 128, True, 2), + (128, 128, 128, 128, False, 1), + (128, 128, 128, 288, False, 1), + (288, 0, 288, 288, True, 2), + (288, 288, 288, 288, False, 1), + (288, 288, 288, 288, False, 1), + (288, 288, 288, 416, False, 1), + ] + feature_info.extend([ + dict(num_chs=128, reduction=4, module='features.1'), + dict(num_chs=288, reduction=8, module='features.4'), + dict(num_chs=416, reduction=16, module='features.8'), + ]) + # Head can be replaced with alternative configurations depending on the problem + feature_info.append(dict(num_chs=1024, reduction=32, module='head.1')) + if variant == 'selecsls60b': + cfg['head'] = [ + (416, 756, 3, 2), + (756, 1024, 3, 1), + (1024, 1280, 3, 2), + (1280, 1024, 1, 1), + ] + feature_info.append(dict(num_chs=1024, reduction=64, module='head.3')) + cfg['num_features'] = 1024 + else: + cfg['head'] = [ + (416, 756, 3, 2), + (756, 1024, 3, 1), + (1024, 1024, 3, 2), + (1024, 1280, 1, 1), + ] + feature_info.append(dict(num_chs=1280, reduction=64, module='head.3')) + cfg['num_features'] = 1280 + + elif variant == 'selecsls84': + cfg['block'] = SelecSlsBlock + # Define configuration of the network after the initial neck + cfg['features'] = [ + # in_chs, skip_chs, mid_chs, out_chs, is_first, stride + (32, 0, 64, 64, True, 2), + (64, 64, 64, 144, False, 1), + (144, 0, 144, 144, True, 2), + (144, 144, 144, 144, False, 1), + (144, 144, 144, 144, False, 1), + (144, 144, 144, 144, False, 1), + (144, 144, 144, 304, False, 1), + (304, 0, 304, 304, True, 2), + (304, 304, 304, 304, False, 1), + (304, 304, 304, 304, False, 1), + (304, 304, 304, 304, False, 1), + (304, 304, 304, 304, False, 1), + (304, 304, 304, 512, False, 1), + ] + feature_info.extend([ + dict(num_chs=144, reduction=4, module='features.1'), + dict(num_chs=304, reduction=8, module='features.6'), + dict(num_chs=512, reduction=16, module='features.12'), + ]) + # Head can be replaced with alternative configurations depending on the problem + cfg['head'] = [ + (512, 960, 3, 2), + (960, 1024, 3, 1), + (1024, 1024, 3, 2), + (1024, 1280, 3, 1), + ] + cfg['num_features'] = 1280 + feature_info.extend([ + dict(num_chs=1024, reduction=32, module='head.1'), + dict(num_chs=1280, reduction=64, module='head.3') + ]) + else: + raise ValueError('Invalid net configuration ' + variant + ' !!!') + cfg['feature_info'] = feature_info + + # this model can do 6 feature levels by default, unlike most others, leave as 0-4 to avoid surprises? + return build_model_with_cfg( + SelecSls, + variant, + pretrained, + model_cfg=cfg, + feature_cfg=dict(out_indices=(0, 1, 2, 3, 4), flatten_sequential=True), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (4, 4), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.0', 'classifier': 'fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'selecsls42.untrained': _cfg( + interpolation='bicubic'), + 'selecsls42b.in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic'), + 'selecsls60.in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic'), + 'selecsls60b.in1k': _cfg( + hf_hub_id='timm/', + interpolation='bicubic'), + 'selecsls84.untrained': _cfg( + interpolation='bicubic'), +}) + + +@register_model +def selecsls42(pretrained=False, **kwargs) -> SelecSls: + """Constructs a SelecSls42 model. + """ + return _create_selecsls('selecsls42', pretrained, **kwargs) + + +@register_model +def selecsls42b(pretrained=False, **kwargs) -> SelecSls: + """Constructs a SelecSls42_B model. + """ + return _create_selecsls('selecsls42b', pretrained, **kwargs) + + +@register_model +def selecsls60(pretrained=False, **kwargs) -> SelecSls: + """Constructs a SelecSls60 model. + """ + return _create_selecsls('selecsls60', pretrained, **kwargs) + + +@register_model +def selecsls60b(pretrained=False, **kwargs) -> SelecSls: + """Constructs a SelecSls60_B model. + """ + return _create_selecsls('selecsls60b', pretrained, **kwargs) + + +@register_model +def selecsls84(pretrained=False, **kwargs) -> SelecSls: + """Constructs a SelecSls84 model. + """ + return _create_selecsls('selecsls84', pretrained, **kwargs) diff --git a/pytorch-image-models/timm/models/senet.py b/pytorch-image-models/timm/models/senet.py new file mode 100644 index 0000000000000000000000000000000000000000..dd9b149b3d7f1d98344ab554e06d56fbb39596c9 --- /dev/null +++ b/pytorch-image-models/timm/models/senet.py @@ -0,0 +1,465 @@ +""" +SEResNet implementation from Cadene's pretrained models +https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/senet.py +Additional credit to https://github.com/creafz + +Original model: https://github.com/hujie-frank/SENet + +ResNet code gently borrowed from +https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py + +FIXME I'm deprecating this model and moving them to ResNet as I don't want to maintain duplicate +support for extras like dilation, switchable BN/activations, feature extraction, etc that don't exist here. +""" +import math +from collections import OrderedDict + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs + +__all__ = ['SENet'] + + +def _weight_init(m): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1.) + nn.init.constant_(m.bias, 0.) + + +class SEModule(nn.Module): + + def __init__(self, channels, reduction): + super(SEModule, self).__init__() + self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1) + self.relu = nn.ReLU(inplace=True) + self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1) + self.sigmoid = nn.Sigmoid() + + def forward(self, x): + module_input = x + x = x.mean((2, 3), keepdim=True) + x = self.fc1(x) + x = self.relu(x) + x = self.fc2(x) + x = self.sigmoid(x) + return module_input * x + + +class Bottleneck(nn.Module): + """ + Base class for bottlenecks that implements `forward()` method. + """ + + def forward(self, x): + shortcut = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + shortcut = self.downsample(x) + + out = self.se_module(out) + shortcut + out = self.relu(out) + + return out + + +class SEBottleneck(Bottleneck): + """ + Bottleneck for SENet154. + """ + expansion = 4 + + def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): + super(SEBottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(planes * 2) + self.conv2 = nn.Conv2d( + planes * 2, planes * 4, kernel_size=3, stride=stride, + padding=1, groups=groups, bias=False) + self.bn2 = nn.BatchNorm2d(planes * 4) + self.conv3 = nn.Conv2d(planes * 4, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.se_module = SEModule(planes * 4, reduction=reduction) + self.downsample = downsample + self.stride = stride + + +class SEResNetBottleneck(Bottleneck): + """ + ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe + implementation and uses `stride=stride` in `conv1` and not in `conv2` + (the latter is used in the torchvision implementation of ResNet). + """ + expansion = 4 + + def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): + super(SEResNetBottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False, stride=stride) + self.bn1 = nn.BatchNorm2d(planes) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, groups=groups, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.se_module = SEModule(planes * 4, reduction=reduction) + self.downsample = downsample + self.stride = stride + + +class SEResNeXtBottleneck(Bottleneck): + """ + ResNeXt bottleneck type C with a Squeeze-and-Excitation module. + """ + expansion = 4 + + def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None, base_width=4): + super(SEResNeXtBottleneck, self).__init__() + width = math.floor(planes * (base_width / 64)) * groups + self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False, stride=1) + self.bn1 = nn.BatchNorm2d(width) + self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) + self.bn2 = nn.BatchNorm2d(width) + self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.se_module = SEModule(planes * 4, reduction=reduction) + self.downsample = downsample + self.stride = stride + + +class SEResNetBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): + super(SEResNetBlock, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, padding=1, stride=stride, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, groups=groups, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.se_module = SEModule(planes, reduction=reduction) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + shortcut = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + if self.downsample is not None: + shortcut = self.downsample(x) + + out = self.se_module(out) + shortcut + out = self.relu(out) + + return out + + +class SENet(nn.Module): + + def __init__( + self, block, layers, groups, reduction, drop_rate=0.2, + in_chans=3, inplanes=64, input_3x3=False, downsample_kernel_size=1, + downsample_padding=0, num_classes=1000, global_pool='avg'): + """ + Parameters + ---------- + block (nn.Module): Bottleneck class. + - For SENet154: SEBottleneck + - For SE-ResNet models: SEResNetBottleneck + - For SE-ResNeXt models: SEResNeXtBottleneck + layers (list of ints): Number of residual blocks for 4 layers of the + network (layer1...layer4). + groups (int): Number of groups for the 3x3 convolution in each + bottleneck block. + - For SENet154: 64 + - For SE-ResNet models: 1 + - For SE-ResNeXt models: 32 + reduction (int): Reduction ratio for Squeeze-and-Excitation modules. + - For all models: 16 + dropout_p (float or None): Drop probability for the Dropout layer. + If `None` the Dropout layer is not used. + - For SENet154: 0.2 + - For SE-ResNet models: None + - For SE-ResNeXt models: None + inplanes (int): Number of input channels for layer1. + - For SENet154: 128 + - For SE-ResNet models: 64 + - For SE-ResNeXt models: 64 + input_3x3 (bool): If `True`, use three 3x3 convolutions instead of + a single 7x7 convolution in layer0. + - For SENet154: True + - For SE-ResNet models: False + - For SE-ResNeXt models: False + downsample_kernel_size (int): Kernel size for downsampling convolutions + in layer2, layer3 and layer4. + - For SENet154: 3 + - For SE-ResNet models: 1 + - For SE-ResNeXt models: 1 + downsample_padding (int): Padding for downsampling convolutions in + layer2, layer3 and layer4. + - For SENet154: 1 + - For SE-ResNet models: 0 + - For SE-ResNeXt models: 0 + num_classes (int): Number of outputs in `last_linear` layer. + - For all models: 1000 + """ + super(SENet, self).__init__() + self.inplanes = inplanes + self.num_classes = num_classes + self.drop_rate = drop_rate + if input_3x3: + layer0_modules = [ + ('conv1', nn.Conv2d(in_chans, 64, 3, stride=2, padding=1, bias=False)), + ('bn1', nn.BatchNorm2d(64)), + ('relu1', nn.ReLU(inplace=True)), + ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)), + ('bn2', nn.BatchNorm2d(64)), + ('relu2', nn.ReLU(inplace=True)), + ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)), + ('bn3', nn.BatchNorm2d(inplanes)), + ('relu3', nn.ReLU(inplace=True)), + ] + else: + layer0_modules = [ + ('conv1', nn.Conv2d( + in_chans, inplanes, kernel_size=7, stride=2, padding=3, bias=False)), + ('bn1', nn.BatchNorm2d(inplanes)), + ('relu1', nn.ReLU(inplace=True)), + ] + self.layer0 = nn.Sequential(OrderedDict(layer0_modules)) + # To preserve compatibility with Caffe weights `ceil_mode=True` is used instead of `padding=1`. + self.pool0 = nn.MaxPool2d(3, stride=2, ceil_mode=True) + self.feature_info = [dict(num_chs=inplanes, reduction=2, module='layer0')] + self.layer1 = self._make_layer( + block, + planes=64, + blocks=layers[0], + groups=groups, + reduction=reduction, + downsample_kernel_size=1, + downsample_padding=0 + ) + self.feature_info += [dict(num_chs=64 * block.expansion, reduction=4, module='layer1')] + self.layer2 = self._make_layer( + block, + planes=128, + blocks=layers[1], + stride=2, + groups=groups, + reduction=reduction, + downsample_kernel_size=downsample_kernel_size, + downsample_padding=downsample_padding + ) + self.feature_info += [dict(num_chs=128 * block.expansion, reduction=8, module='layer2')] + self.layer3 = self._make_layer( + block, + planes=256, + blocks=layers[2], + stride=2, + groups=groups, + reduction=reduction, + downsample_kernel_size=downsample_kernel_size, + downsample_padding=downsample_padding + ) + self.feature_info += [dict(num_chs=256 * block.expansion, reduction=16, module='layer3')] + self.layer4 = self._make_layer( + block, + planes=512, + blocks=layers[3], + stride=2, + groups=groups, + reduction=reduction, + downsample_kernel_size=downsample_kernel_size, + downsample_padding=downsample_padding + ) + self.feature_info += [dict(num_chs=512 * block.expansion, reduction=32, module='layer4')] + self.num_features = self.head_hidden_size = 512 * block.expansion + self.global_pool, self.last_linear = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool) + + for m in self.modules(): + _weight_init(m) + + def _make_layer(self, block, planes, blocks, groups, reduction, stride=1, + downsample_kernel_size=1, downsample_padding=0): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d( + self.inplanes, planes * block.expansion, kernel_size=downsample_kernel_size, + stride=stride, padding=downsample_padding, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [block(self.inplanes, planes, groups, reduction, stride, downsample)] + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes, groups, reduction)) + + return nn.Sequential(*layers) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem=r'^layer0', blocks=r'^layer(\d+)' if coarse else r'^layer(\d+)\.(\d+)') + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.last_linear + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.last_linear = create_classifier( + self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.layer0(x) + x = self.pool0(x) + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + if self.drop_rate > 0.: + x = F.dropout(x, p=self.drop_rate, training=self.training) + return x if pre_logits else self.last_linear(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_senet(variant, pretrained=False, **kwargs): + return build_model_with_cfg(SENet, variant, pretrained, **kwargs) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'layer0.conv1', 'classifier': 'last_linear', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'legacy_senet154.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/legacy_senet154-e9eb9fe6.pth'), + 'legacy_seresnet18.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet18-4bb0ce65.pth', + interpolation='bicubic'), + 'legacy_seresnet34.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet34-a4004e63.pth'), + 'legacy_seresnet50.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet50-ce0d4300.pth'), + 'legacy_seresnet101.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet101-7e38fcc6.pth'), + 'legacy_seresnet152.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet152-d17c99b7.pth'), + 'legacy_seresnext26_32x4d.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26_32x4d-65ebdb501.pth', + interpolation='bicubic'), + 'legacy_seresnext50_32x4d.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/legacy_se_resnext50_32x4d-f3651bad.pth'), + 'legacy_seresnext101_32x4d.in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/legacy_se_resnext101_32x4d-37725eac.pth'), +}) + + +@register_model +def legacy_seresnet18(pretrained=False, **kwargs) -> SENet: + model_args = dict( + block=SEResNetBlock, layers=[2, 2, 2, 2], groups=1, reduction=16, **kwargs) + return _create_senet('legacy_seresnet18', pretrained, **model_args) + + +@register_model +def legacy_seresnet34(pretrained=False, **kwargs) -> SENet: + model_args = dict( + block=SEResNetBlock, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs) + return _create_senet('legacy_seresnet34', pretrained, **model_args) + + +@register_model +def legacy_seresnet50(pretrained=False, **kwargs) -> SENet: + model_args = dict( + block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16, **kwargs) + return _create_senet('legacy_seresnet50', pretrained, **model_args) + + +@register_model +def legacy_seresnet101(pretrained=False, **kwargs) -> SENet: + model_args = dict( + block=SEResNetBottleneck, layers=[3, 4, 23, 3], groups=1, reduction=16, **kwargs) + return _create_senet('legacy_seresnet101', pretrained, **model_args) + + +@register_model +def legacy_seresnet152(pretrained=False, **kwargs) -> SENet: + model_args = dict( + block=SEResNetBottleneck, layers=[3, 8, 36, 3], groups=1, reduction=16, **kwargs) + return _create_senet('legacy_seresnet152', pretrained, **model_args) + + +@register_model +def legacy_senet154(pretrained=False, **kwargs) -> SENet: + model_args = dict( + block=SEBottleneck, layers=[3, 8, 36, 3], groups=64, reduction=16, + downsample_kernel_size=3, downsample_padding=1, inplanes=128, input_3x3=True, **kwargs) + return _create_senet('legacy_senet154', pretrained, **model_args) + + +@register_model +def legacy_seresnext26_32x4d(pretrained=False, **kwargs) -> SENet: + model_args = dict( + block=SEResNeXtBottleneck, layers=[2, 2, 2, 2], groups=32, reduction=16, **kwargs) + return _create_senet('legacy_seresnext26_32x4d', pretrained, **model_args) + + +@register_model +def legacy_seresnext50_32x4d(pretrained=False, **kwargs) -> SENet: + model_args = dict( + block=SEResNeXtBottleneck, layers=[3, 4, 6, 3], groups=32, reduction=16, **kwargs) + return _create_senet('legacy_seresnext50_32x4d', pretrained, **model_args) + + +@register_model +def legacy_seresnext101_32x4d(pretrained=False, **kwargs) -> SENet: + model_args = dict( + block=SEResNeXtBottleneck, layers=[3, 4, 23, 3], groups=32, reduction=16, **kwargs) + return _create_senet('legacy_seresnext101_32x4d', pretrained, **model_args) diff --git a/pytorch-image-models/timm/models/sequencer.py b/pytorch-image-models/timm/models/sequencer.py new file mode 100644 index 0000000000000000000000000000000000000000..86c4b1df4d1180f83bea257de2c3009f5ae9e932 --- /dev/null +++ b/pytorch-image-models/timm/models/sequencer.py @@ -0,0 +1,540 @@ +""" Sequencer + +Paper: `Sequencer: Deep LSTM for Image Classification` - https://arxiv.org/pdf/2205.01972.pdf + +""" +# Copyright (c) 2022. Yuki Tatsunami +# Licensed under the Apache License, Version 2.0 (the "License"); + +import math +from functools import partial +from itertools import accumulate +from typing import Optional, Tuple + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT +from timm.layers import lecun_normal_, DropPath, Mlp, PatchEmbed, ClassifierHead +from ._builder import build_model_with_cfg +from ._manipulate import named_apply +from ._registry import register_model, generate_default_cfgs + +__all__ = ['Sequencer2d'] # model_registry will add each entrypoint fn to this + + +def _init_weights(module: nn.Module, name: str, head_bias: float = 0., flax=False): + if isinstance(module, nn.Linear): + if name.startswith('head'): + nn.init.zeros_(module.weight) + nn.init.constant_(module.bias, head_bias) + else: + if flax: + # Flax defaults + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + if 'mlp' in name: + nn.init.normal_(module.bias, std=1e-6) + else: + nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm)): + nn.init.ones_(module.weight) + nn.init.zeros_(module.bias) + elif isinstance(module, (nn.RNN, nn.GRU, nn.LSTM)): + stdv = 1.0 / math.sqrt(module.hidden_size) + for weight in module.parameters(): + nn.init.uniform_(weight, -stdv, stdv) + elif hasattr(module, 'init_weights'): + module.init_weights() + + +class RNNIdentity(nn.Module): + def __init__(self, *args, **kwargs): + super(RNNIdentity, self).__init__() + + def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, None]: + return x, None + + +class RNN2dBase(nn.Module): + + def __init__( + self, + input_size: int, + hidden_size: int, + num_layers: int = 1, + bias: bool = True, + bidirectional: bool = True, + union="cat", + with_fc=True, + ): + super().__init__() + + self.input_size = input_size + self.hidden_size = hidden_size + self.output_size = 2 * hidden_size if bidirectional else hidden_size + self.union = union + + self.with_vertical = True + self.with_horizontal = True + self.with_fc = with_fc + + self.fc = None + if with_fc: + if union == "cat": + self.fc = nn.Linear(2 * self.output_size, input_size) + elif union == "add": + self.fc = nn.Linear(self.output_size, input_size) + elif union == "vertical": + self.fc = nn.Linear(self.output_size, input_size) + self.with_horizontal = False + elif union == "horizontal": + self.fc = nn.Linear(self.output_size, input_size) + self.with_vertical = False + else: + raise ValueError("Unrecognized union: " + union) + elif union == "cat": + pass + if 2 * self.output_size != input_size: + raise ValueError(f"The output channel {2 * self.output_size} is different from the input channel {input_size}.") + elif union == "add": + pass + if self.output_size != input_size: + raise ValueError(f"The output channel {self.output_size} is different from the input channel {input_size}.") + elif union == "vertical": + if self.output_size != input_size: + raise ValueError(f"The output channel {self.output_size} is different from the input channel {input_size}.") + self.with_horizontal = False + elif union == "horizontal": + if self.output_size != input_size: + raise ValueError(f"The output channel {self.output_size} is different from the input channel {input_size}.") + self.with_vertical = False + else: + raise ValueError("Unrecognized union: " + union) + + self.rnn_v = RNNIdentity() + self.rnn_h = RNNIdentity() + + def forward(self, x): + B, H, W, C = x.shape + + if self.with_vertical: + v = x.permute(0, 2, 1, 3) + v = v.reshape(-1, H, C) + v, _ = self.rnn_v(v) + v = v.reshape(B, W, H, -1) + v = v.permute(0, 2, 1, 3) + else: + v = None + + if self.with_horizontal: + h = x.reshape(-1, W, C) + h, _ = self.rnn_h(h) + h = h.reshape(B, H, W, -1) + else: + h = None + + if v is not None and h is not None: + if self.union == "cat": + x = torch.cat([v, h], dim=-1) + else: + x = v + h + elif v is not None: + x = v + elif h is not None: + x = h + + if self.fc is not None: + x = self.fc(x) + + return x + + +class LSTM2d(RNN2dBase): + + def __init__( + self, + input_size: int, + hidden_size: int, + num_layers: int = 1, + bias: bool = True, + bidirectional: bool = True, + union="cat", + with_fc=True, + ): + super().__init__(input_size, hidden_size, num_layers, bias, bidirectional, union, with_fc) + if self.with_vertical: + self.rnn_v = nn.LSTM( + input_size, + hidden_size, + num_layers, + batch_first=True, + bias=bias, + bidirectional=bidirectional, + ) + if self.with_horizontal: + self.rnn_h = nn.LSTM( + input_size, + hidden_size, + num_layers, + batch_first=True, + bias=bias, + bidirectional=bidirectional, + ) + + +class Sequencer2dBlock(nn.Module): + def __init__( + self, + dim, + hidden_size, + mlp_ratio=3.0, + rnn_layer=LSTM2d, + mlp_layer=Mlp, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + act_layer=nn.GELU, + num_layers=1, + bidirectional=True, + union="cat", + with_fc=True, + drop=0., + drop_path=0., + ): + super().__init__() + channels_dim = int(mlp_ratio * dim) + self.norm1 = norm_layer(dim) + self.rnn_tokens = rnn_layer( + dim, + hidden_size, + num_layers=num_layers, + bidirectional=bidirectional, + union=union, + with_fc=with_fc, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp_channels = mlp_layer(dim, channels_dim, act_layer=act_layer, drop=drop) + + def forward(self, x): + x = x + self.drop_path(self.rnn_tokens(self.norm1(x))) + x = x + self.drop_path(self.mlp_channels(self.norm2(x))) + return x + + +class Shuffle(nn.Module): + def __init__(self): + super().__init__() + + def forward(self, x): + if self.training: + B, H, W, C = x.shape + r = torch.randperm(H * W) + x = x.reshape(B, -1, C) + x = x[:, r, :].reshape(B, H, W, -1) + return x + + +class Downsample2d(nn.Module): + def __init__(self, input_dim, output_dim, patch_size): + super().__init__() + self.down = nn.Conv2d(input_dim, output_dim, kernel_size=patch_size, stride=patch_size) + + def forward(self, x): + x = x.permute(0, 3, 1, 2) + x = self.down(x) + x = x.permute(0, 2, 3, 1) + return x + + +class Sequencer2dStage(nn.Module): + def __init__( + self, + dim, + dim_out, + depth, + patch_size, + hidden_size, + mlp_ratio, + downsample=False, + block_layer=Sequencer2dBlock, + rnn_layer=LSTM2d, + mlp_layer=Mlp, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + act_layer=nn.GELU, + num_layers=1, + bidirectional=True, + union="cat", + with_fc=True, + drop=0., + drop_path=0., + ): + super().__init__() + if downsample: + self.downsample = Downsample2d(dim, dim_out, patch_size) + else: + assert dim == dim_out + self.downsample = nn.Identity() + + blocks = [] + for block_idx in range(depth): + blocks.append(block_layer( + dim_out, + hidden_size, + mlp_ratio=mlp_ratio, + rnn_layer=rnn_layer, + mlp_layer=mlp_layer, + norm_layer=norm_layer, + act_layer=act_layer, + num_layers=num_layers, + bidirectional=bidirectional, + union=union, + with_fc=with_fc, + drop=drop, + drop_path=drop_path[block_idx] if isinstance(drop_path, (list, tuple)) else drop_path, + )) + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + x = self.downsample(x) + x = self.blocks(x) + return x + + +class Sequencer2d(nn.Module): + def __init__( + self, + num_classes=1000, + img_size=224, + in_chans=3, + global_pool='avg', + layers=(4, 3, 8, 3), + patch_sizes=(7, 2, 2, 1), + embed_dims=(192, 384, 384, 384), + hidden_sizes=(48, 96, 96, 96), + mlp_ratios=(3.0, 3.0, 3.0, 3.0), + block_layer=Sequencer2dBlock, + rnn_layer=LSTM2d, + mlp_layer=Mlp, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + act_layer=nn.GELU, + num_rnn_layers=1, + bidirectional=True, + union="cat", + with_fc=True, + drop_rate=0., + drop_path_rate=0., + nlhb=False, + stem_norm=False, + ): + super().__init__() + assert global_pool in ('', 'avg') + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = embed_dims[-1] # for consistency with other models + self.feature_dim = -1 # channel dim index for feature outputs (rank 4, NHWC) + self.output_fmt = 'NHWC' + self.feature_info = [] + + self.stem = PatchEmbed( + img_size=None, + patch_size=patch_sizes[0], + in_chans=in_chans, + embed_dim=embed_dims[0], + norm_layer=norm_layer if stem_norm else None, + flatten=False, + output_fmt='NHWC', + ) + + assert len(layers) == len(patch_sizes) == len(embed_dims) == len(hidden_sizes) == len(mlp_ratios) + reductions = list(accumulate(patch_sizes, lambda x, y: x * y)) + stages = [] + prev_dim = embed_dims[0] + for i, _ in enumerate(embed_dims): + stages += [Sequencer2dStage( + prev_dim, + embed_dims[i], + depth=layers[i], + downsample=i > 0, + patch_size=patch_sizes[i], + hidden_size=hidden_sizes[i], + mlp_ratio=mlp_ratios[i], + block_layer=block_layer, + rnn_layer=rnn_layer, + mlp_layer=mlp_layer, + norm_layer=norm_layer, + act_layer=act_layer, + num_layers=num_rnn_layers, + bidirectional=bidirectional, + union=union, + with_fc=with_fc, + drop=drop_rate, + drop_path=drop_path_rate, + )] + prev_dim = embed_dims[i] + self.feature_info += [dict(num_chs=prev_dim, reduction=reductions[i], module=f'stages.{i}')] + + self.stages = nn.Sequential(*stages) + self.norm = norm_layer(embed_dims[-1]) + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + input_fmt=self.output_fmt, + ) + + self.init_weights(nlhb=nlhb) + + def init_weights(self, nlhb=False): + head_bias = -math.log(self.num_classes) if nlhb else 0. + named_apply(partial(_init_weights, head_bias=head_bias), module=self) # depth-first + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', + blocks=[ + (r'^stages\.(\d+)', None), + (r'^norm', (99999,)) + ] if coarse else [ + (r'^stages\.(\d+)\.blocks\.(\d+)', None), + (r'^stages\.(\d+)\.downsample', (0,)), + (r'^norm', (99999,)) + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.stem(x) + x = self.stages(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + """ Remap original checkpoints -> timm """ + if 'stages.0.blocks.0.norm1.weight' in state_dict: + return state_dict # already translated checkpoint + if 'model' in state_dict: + state_dict = state_dict['model'] + + import re + out_dict = {} + for k, v in state_dict.items(): + k = re.sub(r'blocks.([0-9]+).([0-9]+).down', lambda x: f'stages.{int(x.group(1)) + 1}.downsample.down', k) + k = re.sub(r'blocks.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) + k = k.replace('head.', 'head.fc.') + out_dict[k] = v + + return out_dict + + +def _create_sequencer2d(variant, pretrained=False, **kwargs): + default_out_indices = tuple(range(3)) + out_indices = kwargs.pop('out_indices', default_out_indices) + + model = build_model_with_cfg( + Sequencer2d, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': DEFAULT_CROP_PCT, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.proj', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'sequencer2d_s.in1k': _cfg(hf_hub_id='timm/'), + 'sequencer2d_m.in1k': _cfg(hf_hub_id='timm/'), + 'sequencer2d_l.in1k': _cfg(hf_hub_id='timm/'), +}) + + +@register_model +def sequencer2d_s(pretrained=False, **kwargs) -> Sequencer2d: + model_args = dict( + layers=[4, 3, 8, 3], + patch_sizes=[7, 2, 1, 1], + embed_dims=[192, 384, 384, 384], + hidden_sizes=[48, 96, 96, 96], + mlp_ratios=[3.0, 3.0, 3.0, 3.0], + rnn_layer=LSTM2d, + bidirectional=True, + union="cat", + with_fc=True, + ) + model = _create_sequencer2d('sequencer2d_s', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def sequencer2d_m(pretrained=False, **kwargs) -> Sequencer2d: + model_args = dict( + layers=[4, 3, 14, 3], + patch_sizes=[7, 2, 1, 1], + embed_dims=[192, 384, 384, 384], + hidden_sizes=[48, 96, 96, 96], + mlp_ratios=[3.0, 3.0, 3.0, 3.0], + rnn_layer=LSTM2d, + bidirectional=True, + union="cat", + with_fc=True, + **kwargs) + model = _create_sequencer2d('sequencer2d_m', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def sequencer2d_l(pretrained=False, **kwargs) -> Sequencer2d: + model_args = dict( + layers=[8, 8, 16, 4], + patch_sizes=[7, 2, 1, 1], + embed_dims=[192, 384, 384, 384], + hidden_sizes=[48, 96, 96, 96], + mlp_ratios=[3.0, 3.0, 3.0, 3.0], + rnn_layer=LSTM2d, + bidirectional=True, + union="cat", + with_fc=True, + **kwargs) + model = _create_sequencer2d('sequencer2d_l', pretrained=pretrained, **dict(model_args, **kwargs)) + return model diff --git a/pytorch-image-models/timm/models/sknet.py b/pytorch-image-models/timm/models/sknet.py new file mode 100644 index 0000000000000000000000000000000000000000..01565875cb5a6284c04b57ab557169bfe6ea8a60 --- /dev/null +++ b/pytorch-image-models/timm/models/sknet.py @@ -0,0 +1,240 @@ +""" Selective Kernel Networks (ResNet base) + +Paper: Selective Kernel Networks (https://arxiv.org/abs/1903.06586) + +This was inspired by reading 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268) +and a streamlined impl at https://github.com/clovaai/assembled-cnn but I ended up building something closer +to the original paper with some modifications of my own to better balance param count vs accuracy. + +Hacked together by / Copyright 2020 Ross Wightman +""" +import math + +from torch import nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import SelectiveKernel, ConvNormAct, create_attn +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs +from .resnet import ResNet + + +class SelectiveKernelBasic(nn.Module): + expansion = 1 + + def __init__( + self, + inplanes, + planes, + stride=1, + downsample=None, + cardinality=1, + base_width=64, + sk_kwargs=None, + reduce_first=1, + dilation=1, + first_dilation=None, + act_layer=nn.ReLU, + norm_layer=nn.BatchNorm2d, + attn_layer=None, + aa_layer=None, + drop_block=None, + drop_path=None, + ): + super(SelectiveKernelBasic, self).__init__() + + sk_kwargs = sk_kwargs or {} + conv_kwargs = dict(act_layer=act_layer, norm_layer=norm_layer) + assert cardinality == 1, 'BasicBlock only supports cardinality of 1' + assert base_width == 64, 'BasicBlock doest not support changing base width' + first_planes = planes // reduce_first + outplanes = planes * self.expansion + first_dilation = first_dilation or dilation + + self.conv1 = SelectiveKernel( + inplanes, first_planes, stride=stride, dilation=first_dilation, + aa_layer=aa_layer, drop_layer=drop_block, **conv_kwargs, **sk_kwargs) + self.conv2 = ConvNormAct( + first_planes, outplanes, kernel_size=3, dilation=dilation, apply_act=False, **conv_kwargs) + self.se = create_attn(attn_layer, outplanes) + self.act = act_layer(inplace=True) + self.downsample = downsample + self.drop_path = drop_path + + def zero_init_last(self): + if getattr(self.conv2.bn, 'weight', None) is not None: + nn.init.zeros_(self.conv2.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.conv2(x) + if self.se is not None: + x = self.se(x) + if self.drop_path is not None: + x = self.drop_path(x) + if self.downsample is not None: + shortcut = self.downsample(shortcut) + x += shortcut + x = self.act(x) + return x + + +class SelectiveKernelBottleneck(nn.Module): + expansion = 4 + + def __init__( + self, + inplanes, + planes, + stride=1, + downsample=None, + cardinality=1, + base_width=64, + sk_kwargs=None, + reduce_first=1, + dilation=1, + first_dilation=None, + act_layer=nn.ReLU, + norm_layer=nn.BatchNorm2d, + attn_layer=None, + aa_layer=None, + drop_block=None, + drop_path=None, + ): + super(SelectiveKernelBottleneck, self).__init__() + + sk_kwargs = sk_kwargs or {} + conv_kwargs = dict(act_layer=act_layer, norm_layer=norm_layer) + width = int(math.floor(planes * (base_width / 64)) * cardinality) + first_planes = width // reduce_first + outplanes = planes * self.expansion + first_dilation = first_dilation or dilation + + self.conv1 = ConvNormAct(inplanes, first_planes, kernel_size=1, **conv_kwargs) + self.conv2 = SelectiveKernel( + first_planes, width, stride=stride, dilation=first_dilation, groups=cardinality, + aa_layer=aa_layer, drop_layer=drop_block, **conv_kwargs, **sk_kwargs) + self.conv3 = ConvNormAct(width, outplanes, kernel_size=1, apply_act=False, **conv_kwargs) + self.se = create_attn(attn_layer, outplanes) + self.act = act_layer(inplace=True) + self.downsample = downsample + self.drop_path = drop_path + + def zero_init_last(self): + if getattr(self.conv3.bn, 'weight', None) is not None: + nn.init.zeros_(self.conv3.bn.weight) + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.conv2(x) + x = self.conv3(x) + if self.se is not None: + x = self.se(x) + if self.drop_path is not None: + x = self.drop_path(x) + if self.downsample is not None: + shortcut = self.downsample(shortcut) + x += shortcut + x = self.act(x) + return x + + +def _create_skresnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + ResNet, + variant, + pretrained, + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'conv1', 'classifier': 'fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'skresnet18.ra_in1k': _cfg(hf_hub_id='timm/'), + 'skresnet34.ra_in1k': _cfg(hf_hub_id='timm/'), + 'skresnet50.untrained': _cfg(), + 'skresnet50d.untrained': _cfg( + first_conv='conv1.0'), + 'skresnext50_32x4d.ra_in1k': _cfg(hf_hub_id='timm/'), +}) + + +@register_model +def skresnet18(pretrained=False, **kwargs) -> ResNet: + """Constructs a Selective Kernel ResNet-18 model. + + Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this + variation splits the input channels to the selective convolutions to keep param count down. + """ + sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True) + model_args = dict( + block=SelectiveKernelBasic, layers=[2, 2, 2, 2], block_args=dict(sk_kwargs=sk_kwargs), + zero_init_last=False, **kwargs) + return _create_skresnet('skresnet18', pretrained, **model_args) + + +@register_model +def skresnet34(pretrained=False, **kwargs) -> ResNet: + """Constructs a Selective Kernel ResNet-34 model. + + Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this + variation splits the input channels to the selective convolutions to keep param count down. + """ + sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True) + model_args = dict( + block=SelectiveKernelBasic, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs), + zero_init_last=False, **kwargs) + return _create_skresnet('skresnet34', pretrained, **model_args) + + +@register_model +def skresnet50(pretrained=False, **kwargs) -> ResNet: + """Constructs a Select Kernel ResNet-50 model. + + Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this + variation splits the input channels to the selective convolutions to keep param count down. + """ + sk_kwargs = dict(split_input=True) + model_args = dict( + block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs), + zero_init_last=False, **kwargs) + return _create_skresnet('skresnet50', pretrained, **model_args) + + +@register_model +def skresnet50d(pretrained=False, **kwargs) -> ResNet: + """Constructs a Select Kernel ResNet-50-D model. + + Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this + variation splits the input channels to the selective convolutions to keep param count down. + """ + sk_kwargs = dict(split_input=True) + model_args = dict( + block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, + block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs) + return _create_skresnet('skresnet50d', pretrained, **model_args) + + +@register_model +def skresnext50_32x4d(pretrained=False, **kwargs) -> ResNet: + """Constructs a Select Kernel ResNeXt50-32x4d model. This should be equivalent to + the SKNet-50 model in the Select Kernel Paper + """ + sk_kwargs = dict(rd_ratio=1/16, rd_divisor=32, split_input=False) + model_args = dict( + block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, + block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs) + return _create_skresnet('skresnext50_32x4d', pretrained, **model_args) + diff --git a/pytorch-image-models/timm/models/swin_transformer.py b/pytorch-image-models/timm/models/swin_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..54d57f81489780cc196b15c90ac004703d9b8e9a --- /dev/null +++ b/pytorch-image-models/timm/models/swin_transformer.py @@ -0,0 +1,1069 @@ +""" Swin Transformer +A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` + - https://arxiv.org/pdf/2103.14030 + +Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below + +S3 (AutoFormerV2, https://arxiv.org/abs/2111.14725) Swin weights from + - https://github.com/microsoft/Cream/tree/main/AutoFormerV2 + +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman +""" +# -------------------------------------------------------- +# Swin Transformer +# Copyright (c) 2021 Microsoft +# Licensed under The MIT License [see LICENSE for details] +# Written by Ze Liu +# -------------------------------------------------------- +import logging +import math +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, ClassifierHead, to_2tuple, to_ntuple, trunc_normal_, \ + _assert, use_fused_attn, resize_rel_pos_bias_table, resample_patch_embed, ndgrid +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._manipulate import checkpoint_seq, named_apply +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +from .vision_transformer import get_init_weights_vit + +__all__ = ['SwinTransformer'] # model_registry will add each entrypoint fn to this + +_logger = logging.getLogger(__name__) + +_int_or_tuple_2_t = Union[int, Tuple[int, int]] + + +def window_partition( + x: torch.Tensor, + window_size: Tuple[int, int], +) -> torch.Tensor: + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + + +@register_notrace_function # reason: int argument is a Proxy +def window_reverse(windows, window_size: Tuple[int, int], H: int, W: int): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + + Returns: + x: (B, H, W, C) + """ + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + + +def get_relative_position_index(win_h: int, win_w: int): + # get pair-wise relative position index for each token inside the window + coords = torch.stack(ndgrid(torch.arange(win_h), torch.arange(win_w))) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += win_h - 1 # shift to start from 0 + relative_coords[:, :, 1] += win_w - 1 + relative_coords[:, :, 0] *= 2 * win_w - 1 + return relative_coords.sum(-1) # Wh*Ww, Wh*Ww + + +class WindowAttention(nn.Module): + """ Window based multi-head self attention (W-MSA) module with relative position bias. + It supports shifted and non-shifted windows. + """ + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + dim: int, + num_heads: int, + head_dim: Optional[int] = None, + window_size: _int_or_tuple_2_t = 7, + qkv_bias: bool = True, + attn_drop: float = 0., + proj_drop: float = 0., + ): + """ + Args: + dim: Number of input channels. + num_heads: Number of attention heads. + head_dim: Number of channels per head (dim // num_heads if not set) + window_size: The height and width of the window. + qkv_bias: If True, add a learnable bias to query, key, value. + attn_drop: Dropout ratio of attention weight. + proj_drop: Dropout ratio of output. + """ + super().__init__() + self.dim = dim + self.window_size = to_2tuple(window_size) # Wh, Ww + win_h, win_w = self.window_size + self.window_area = win_h * win_w + self.num_heads = num_heads + head_dim = head_dim or dim // num_heads + attn_dim = head_dim * num_heads + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn(experimental=True) # NOTE not tested for prime-time yet + + # define a parameter table of relative position bias, shape: 2*Wh-1 * 2*Ww-1, nH + self.relative_position_bias_table = nn.Parameter(torch.zeros((2 * win_h - 1) * (2 * win_w - 1), num_heads)) + + # get pair-wise relative position index for each token inside the window + self.register_buffer("relative_position_index", get_relative_position_index(win_h, win_w), persistent=False) + + self.qkv = nn.Linear(dim, attn_dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(attn_dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + trunc_normal_(self.relative_position_bias_table, std=.02) + self.softmax = nn.Softmax(dim=-1) + + def set_window_size(self, window_size: Tuple[int, int]) -> None: + """Update window size & interpolate position embeddings + Args: + window_size (int): New window size + """ + window_size = to_2tuple(window_size) + if window_size == self.window_size: + return + self.window_size = window_size + win_h, win_w = self.window_size + self.window_area = win_h * win_w + with torch.no_grad(): + new_bias_shape = (2 * win_h - 1) * (2 * win_w - 1), self.num_heads + self.relative_position_bias_table = nn.Parameter( + resize_rel_pos_bias_table( + self.relative_position_bias_table, + new_window_size=self.window_size, + new_bias_shape=new_bias_shape, + )) + self.register_buffer("relative_position_index", get_relative_position_index(win_h, win_w), persistent=False) + + def _get_rel_pos_bias(self) -> torch.Tensor: + relative_position_bias = self.relative_position_bias_table[ + self.relative_position_index.view(-1)].view(self.window_area, self.window_area, -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + return relative_position_bias.unsqueeze(0) + + def forward(self, x, mask: Optional[torch.Tensor] = None): + """ + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + + if self.fused_attn: + attn_mask = self._get_rel_pos_bias() + if mask is not None: + num_win = mask.shape[0] + mask = mask.view(1, num_win, 1, N, N).expand(B_ // num_win, -1, self.num_heads, -1, -1) + attn_mask = attn_mask + mask.reshape(-1, self.num_heads, N, N) + x = torch.nn.functional.scaled_dot_product_attention( + q, k, v, + attn_mask=attn_mask, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn + self._get_rel_pos_bias() + if mask is not None: + num_win = mask.shape[0] + attn = attn.view(-1, num_win, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B_, N, -1) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class SwinTransformerBlock(nn.Module): + """ Swin Transformer Block. + """ + + def __init__( + self, + dim: int, + input_resolution: _int_or_tuple_2_t, + num_heads: int = 4, + head_dim: Optional[int] = None, + window_size: _int_or_tuple_2_t = 7, + shift_size: int = 0, + always_partition: bool = False, + dynamic_mask: bool = False, + mlp_ratio: float = 4., + qkv_bias: bool = True, + proj_drop: float = 0., + attn_drop: float = 0., + drop_path: float = 0., + act_layer: Callable = nn.GELU, + norm_layer: Callable = nn.LayerNorm, + ): + """ + Args: + dim: Number of input channels. + input_resolution: Input resolution. + window_size: Window size. + num_heads: Number of attention heads. + head_dim: Enforce the number of channels per head + shift_size: Shift size for SW-MSA. + always_partition: Always partition into full windows and shift + mlp_ratio: Ratio of mlp hidden dim to embedding dim. + qkv_bias: If True, add a learnable bias to query, key, value. + proj_drop: Dropout rate. + attn_drop: Attention dropout rate. + drop_path: Stochastic depth rate. + act_layer: Activation layer. + norm_layer: Normalization layer. + """ + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.target_shift_size = to_2tuple(shift_size) # store for later resize + self.always_partition = always_partition + self.dynamic_mask = dynamic_mask + self.window_size, self.shift_size = self._calc_window_shift(window_size, shift_size) + self.window_area = self.window_size[0] * self.window_size[1] + self.mlp_ratio = mlp_ratio + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, + num_heads=num_heads, + head_dim=head_dim, + window_size=self.window_size, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.register_buffer( + "attn_mask", + None if self.dynamic_mask else self.get_attn_mask(), + persistent=False, + ) + + def get_attn_mask(self, x: Optional[torch.Tensor] = None) -> Optional[torch.Tensor]: + if any(self.shift_size): + # calculate attention mask for SW-MSA + if x is not None: + H, W = x.shape[1], x.shape[2] + device = x.device + dtype = x.dtype + else: + H, W = self.input_resolution + device = None + dtype = None + H = math.ceil(H / self.window_size[0]) * self.window_size[0] + W = math.ceil(W / self.window_size[1]) * self.window_size[1] + img_mask = torch.zeros((1, H, W, 1), dtype=dtype, device=device) # 1 H W 1 + cnt = 0 + for h in ( + (0, -self.window_size[0]), + (-self.window_size[0], -self.shift_size[0]), + (-self.shift_size[0], None), + ): + for w in ( + (0, -self.window_size[1]), + (-self.window_size[1], -self.shift_size[1]), + (-self.shift_size[1], None), + ): + img_mask[:, h[0]:h[1], w[0]:w[1], :] = cnt + cnt += 1 + mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_area) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + return attn_mask + + def _calc_window_shift( + self, + target_window_size: Union[int, Tuple[int, int]], + target_shift_size: Optional[Union[int, Tuple[int, int]]] = None, + ) -> Tuple[Tuple[int, int], Tuple[int, int]]: + target_window_size = to_2tuple(target_window_size) + if target_shift_size is None: + # if passed value is None, recalculate from default window_size // 2 if it was previously non-zero + target_shift_size = self.target_shift_size + if any(target_shift_size): + target_shift_size = (target_window_size[0] // 2, target_window_size[1] // 2) + else: + target_shift_size = to_2tuple(target_shift_size) + + if self.always_partition: + return target_window_size, target_shift_size + + window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)] + shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)] + return tuple(window_size), tuple(shift_size) + + def set_input_size( + self, + feat_size: Tuple[int, int], + window_size: Tuple[int, int], + always_partition: Optional[bool] = None, + ): + """ + Args: + feat_size: New input resolution + window_size: New window size + always_partition: Change always_partition attribute if not None + """ + self.input_resolution = feat_size + if always_partition is not None: + self.always_partition = always_partition + self.window_size, self.shift_size = self._calc_window_shift(window_size) + self.window_area = self.window_size[0] * self.window_size[1] + self.attn.set_window_size(self.window_size) + self.register_buffer( + "attn_mask", + None if self.dynamic_mask else self.get_attn_mask(), + persistent=False, + ) + + def _attn(self, x): + B, H, W, C = x.shape + + # cyclic shift + has_shift = any(self.shift_size) + if has_shift: + shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) + else: + shifted_x = x + + # pad for resolution not divisible by window size + pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] + pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] + shifted_x = torch.nn.functional.pad(shifted_x, (0, 0, 0, pad_w, 0, pad_h)) + _, Hp, Wp, _ = shifted_x.shape + + # partition windows + x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C + x_windows = x_windows.view(-1, self.window_area, C) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA + if getattr(self, 'dynamic_mask', False): + attn_mask = self.get_attn_mask(shifted_x) + else: + attn_mask = self.attn_mask + attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) + shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C + shifted_x = shifted_x[:, :H, :W, :].contiguous() + + # reverse cyclic shift + if has_shift: + x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2)) + else: + x = shifted_x + return x + + def forward(self, x): + B, H, W, C = x.shape + x = x + self.drop_path1(self._attn(self.norm1(x))) + x = x.reshape(B, -1, C) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + x = x.reshape(B, H, W, C) + return x + + +class PatchMerging(nn.Module): + """ Patch Merging Layer. + """ + + def __init__( + self, + dim: int, + out_dim: Optional[int] = None, + norm_layer: Callable = nn.LayerNorm, + ): + """ + Args: + dim: Number of input channels. + out_dim: Number of output channels (or 2 * dim if None) + norm_layer: Normalization layer. + """ + super().__init__() + self.dim = dim + self.out_dim = out_dim or 2 * dim + self.norm = norm_layer(4 * dim) + self.reduction = nn.Linear(4 * dim, self.out_dim, bias=False) + + def forward(self, x): + B, H, W, C = x.shape + + pad_values = (0, 0, 0, W % 2, 0, H % 2) + x = nn.functional.pad(x, pad_values) + _, H, W, _ = x.shape + + x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3) + x = self.norm(x) + x = self.reduction(x) + return x + + +class SwinTransformerStage(nn.Module): + """ A basic Swin Transformer layer for one stage. + """ + + def __init__( + self, + dim: int, + out_dim: int, + input_resolution: Tuple[int, int], + depth: int, + downsample: bool = True, + num_heads: int = 4, + head_dim: Optional[int] = None, + window_size: _int_or_tuple_2_t = 7, + always_partition: bool = False, + dynamic_mask: bool = False, + mlp_ratio: float = 4., + qkv_bias: bool = True, + proj_drop: float = 0., + attn_drop: float = 0., + drop_path: Union[List[float], float] = 0., + norm_layer: Callable = nn.LayerNorm, + ): + """ + Args: + dim: Number of input channels. + out_dim: Number of output channels. + input_resolution: Input resolution. + depth: Number of blocks. + downsample: Downsample layer at the end of the layer. + num_heads: Number of attention heads. + head_dim: Channels per head (dim // num_heads if not set) + window_size: Local window size. + mlp_ratio: Ratio of mlp hidden dim to embedding dim. + qkv_bias: If True, add a learnable bias to query, key, value. + proj_drop: Projection dropout rate. + attn_drop: Attention dropout rate. + drop_path: Stochastic depth rate. + norm_layer: Normalization layer. + """ + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.output_resolution = tuple(i // 2 for i in input_resolution) if downsample else input_resolution + self.depth = depth + self.grad_checkpointing = False + window_size = to_2tuple(window_size) + shift_size = tuple([w // 2 for w in window_size]) + + # patch merging layer + if downsample: + self.downsample = PatchMerging( + dim=dim, + out_dim=out_dim, + norm_layer=norm_layer, + ) + else: + assert dim == out_dim + self.downsample = nn.Identity() + + # build blocks + self.blocks = nn.Sequential(*[ + SwinTransformerBlock( + dim=out_dim, + input_resolution=self.output_resolution, + num_heads=num_heads, + head_dim=head_dim, + window_size=window_size, + shift_size=0 if (i % 2 == 0) else shift_size, + always_partition=always_partition, + dynamic_mask=dynamic_mask, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=proj_drop, + attn_drop=attn_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + norm_layer=norm_layer, + ) + for i in range(depth)]) + + def set_input_size( + self, + feat_size: Tuple[int, int], + window_size: int, + always_partition: Optional[bool] = None, + ): + """ Updates the resolution, window size and so the pair-wise relative positions. + + Args: + feat_size: New input (feature) resolution + window_size: New window size + always_partition: Always partition / shift the window + """ + self.input_resolution = feat_size + if isinstance(self.downsample, nn.Identity): + self.output_resolution = feat_size + else: + self.output_resolution = tuple(i // 2 for i in feat_size) + for block in self.blocks: + block.set_input_size( + feat_size=self.output_resolution, + window_size=window_size, + always_partition=always_partition, + ) + + def forward(self, x): + x = self.downsample(x) + + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class SwinTransformer(nn.Module): + """ Swin Transformer + + A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - + https://arxiv.org/pdf/2103.14030 + """ + + def __init__( + self, + img_size: _int_or_tuple_2_t = 224, + patch_size: int = 4, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: str = 'avg', + embed_dim: int = 96, + depths: Tuple[int, ...] = (2, 2, 6, 2), + num_heads: Tuple[int, ...] = (3, 6, 12, 24), + head_dim: Optional[int] = None, + window_size: _int_or_tuple_2_t = 7, + always_partition: bool = False, + strict_img_size: bool = True, + mlp_ratio: float = 4., + qkv_bias: bool = True, + drop_rate: float = 0., + proj_drop_rate: float = 0., + attn_drop_rate: float = 0., + drop_path_rate: float = 0.1, + embed_layer: Callable = PatchEmbed, + norm_layer: Union[str, Callable] = nn.LayerNorm, + weight_init: str = '', + **kwargs, + ): + """ + Args: + img_size: Input image size. + patch_size: Patch size. + in_chans: Number of input image channels. + num_classes: Number of classes for classification head. + embed_dim: Patch embedding dimension. + depths: Depth of each Swin Transformer layer. + num_heads: Number of attention heads in different layers. + head_dim: Dimension of self-attention heads. + window_size: Window size. + mlp_ratio: Ratio of mlp hidden dim to embedding dim. + qkv_bias: If True, add a learnable bias to query, key, value. + drop_rate: Dropout rate. + attn_drop_rate (float): Attention dropout rate. + drop_path_rate (float): Stochastic depth rate. + embed_layer: Patch embedding layer. + norm_layer (nn.Module): Normalization layer. + """ + super().__init__() + assert global_pool in ('', 'avg') + self.num_classes = num_classes + self.global_pool = global_pool + self.output_fmt = 'NHWC' + + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (self.num_layers - 1)) + self.feature_info = [] + + if not isinstance(embed_dim, (tuple, list)): + embed_dim = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] + + # split image into non-overlapping patches + self.patch_embed = embed_layer( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim[0], + norm_layer=norm_layer, + strict_img_size=strict_img_size, + output_fmt='NHWC', + ) + patch_grid = self.patch_embed.grid_size + + # build layers + head_dim = to_ntuple(self.num_layers)(head_dim) + if not isinstance(window_size, (list, tuple)): + window_size = to_ntuple(self.num_layers)(window_size) + elif len(window_size) == 2: + window_size = (window_size,) * self.num_layers + assert len(window_size) == self.num_layers + mlp_ratio = to_ntuple(self.num_layers)(mlp_ratio) + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + layers = [] + in_dim = embed_dim[0] + scale = 1 + for i in range(self.num_layers): + out_dim = embed_dim[i] + layers += [SwinTransformerStage( + dim=in_dim, + out_dim=out_dim, + input_resolution=( + patch_grid[0] // scale, + patch_grid[1] // scale + ), + depth=depths[i], + downsample=i > 0, + num_heads=num_heads[i], + head_dim=head_dim[i], + window_size=window_size[i], + always_partition=always_partition, + dynamic_mask=not strict_img_size, + mlp_ratio=mlp_ratio[i], + qkv_bias=qkv_bias, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + )] + in_dim = out_dim + if i > 0: + scale *= 2 + self.feature_info += [dict(num_chs=out_dim, reduction=patch_size * scale, module=f'layers.{i}')] + self.layers = nn.Sequential(*layers) + + self.norm = norm_layer(self.num_features) + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + input_fmt=self.output_fmt, + ) + if weight_init != 'skip': + self.init_weights(weight_init) + + @torch.jit.ignore + def init_weights(self, mode=''): + assert mode in ('jax', 'jax_nlhb', 'moco', '') + head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. + named_apply(get_init_weights_vit(mode, head_bias=head_bias), self) + + @torch.jit.ignore + def no_weight_decay(self): + nwd = set() + for n, _ in self.named_parameters(): + if 'relative_position_bias_table' in n: + nwd.add(n) + return nwd + + def set_input_size( + self, + img_size: Optional[Tuple[int, int]] = None, + patch_size: Optional[Tuple[int, int]] = None, + window_size: Optional[Tuple[int, int]] = None, + window_ratio: int = 8, + always_partition: Optional[bool] = None, + ) -> None: + """ Updates the image resolution and window size. + + Args: + img_size: New input resolution, if None current resolution is used + patch_size (Optional[Tuple[int, int]): New patch size, if None use current patch size + window_size: New window size, if None based on new_img_size // window_div + window_ratio: divisor for calculating window size from grid size + always_partition: always partition into windows and shift (even if window size < feat size) + """ + if img_size is not None or patch_size is not None: + self.patch_embed.set_input_size(img_size=img_size, patch_size=patch_size) + patch_grid = self.patch_embed.grid_size + + if window_size is None: + window_size = tuple([pg // window_ratio for pg in patch_grid]) + + for index, stage in enumerate(self.layers): + stage_scale = 2 ** max(index - 1, 0) + stage.set_input_size( + feat_size=(patch_grid[0] // stage_scale, patch_grid[1] // stage_scale), + window_size=window_size, + always_partition=always_partition, + ) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^patch_embed', # stem and embed + blocks=r'^layers\.(\d+)' if coarse else [ + (r'^layers\.(\d+).downsample', (0,)), + (r'^layers\.(\d+)\.\w+\.(\d+)', None), + (r'^norm', (99999,)), + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for l in self.layers: + l.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, pool_type=global_pool) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.layers), indices) + + # forward pass + x = self.patch_embed(x) + + num_stages = len(self.layers) + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + stages = self.layers + else: + stages = self.layers[:max_index + 1] + for i, stage in enumerate(stages): + x = stage(x) + if i in take_indices: + if norm and i == num_stages - 1: + x_inter = self.norm(x) # applying final norm last intermediate + else: + x_inter = x + x_inter = x_inter.permute(0, 3, 1, 2).contiguous() + intermediates.append(x_inter) + + if intermediates_only: + return intermediates + + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.layers), indices) + self.layers = self.layers[:max_index + 1] # truncate blocks + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + x = self.layers(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + """ convert patch embedding weight from manual patchify + linear proj to conv""" + old_weights = True + if 'head.fc.weight' in state_dict: + old_weights = False + import re + out_dict = {} + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + for k, v in state_dict.items(): + if any([n in k for n in ('relative_position_index', 'attn_mask')]): + continue # skip buffers that should not be persistent + + if 'patch_embed.proj.weight' in k: + _, _, H, W = model.patch_embed.proj.weight.shape + if v.shape[-2] != H or v.shape[-1] != W: + v = resample_patch_embed( + v, + (H, W), + interpolation='bicubic', + antialias=True, + verbose=True, + ) + + if k.endswith('relative_position_bias_table'): + m = model.get_submodule(k[:-29]) + if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]: + v = resize_rel_pos_bias_table( + v, + new_window_size=m.window_size, + new_bias_shape=m.relative_position_bias_table.shape, + ) + + if old_weights: + k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k) + k = k.replace('head.', 'head.fc.') + + out_dict[k] = v + return out_dict + + +def _create_swin_transformer(variant, pretrained=False, **kwargs): + default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1)))) + out_indices = kwargs.pop('out_indices', default_out_indices) + + model = build_model_with_cfg( + SwinTransformer, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs) + + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', + 'license': 'mit', **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'swin_small_patch4_window7_224.ms_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_small_patch4_window7_224_22kto1k_finetune.pth', ), + 'swin_base_patch4_window7_224.ms_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22kto1k.pth',), + 'swin_base_patch4_window12_384.ms_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22kto1k.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + 'swin_large_patch4_window7_224.ms_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22kto1k.pth',), + 'swin_large_patch4_window12_384.ms_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22kto1k.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + + 'swin_tiny_patch4_window7_224.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth',), + 'swin_small_patch4_window7_224.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth',), + 'swin_base_patch4_window7_224.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth',), + 'swin_base_patch4_window12_384.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0), + + # tiny 22k pretrain is worse than 1k, so moved after (untagged priority is based on order) + 'swin_tiny_patch4_window7_224.ms_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22kto1k_finetune.pth',), + + 'swin_tiny_patch4_window7_224.ms_in22k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22k.pth', + num_classes=21841), + 'swin_small_patch4_window7_224.ms_in22k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_small_patch4_window7_224_22k.pth', + num_classes=21841), + 'swin_base_patch4_window7_224.ms_in22k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth', + num_classes=21841), + 'swin_base_patch4_window12_384.ms_in22k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21841), + 'swin_large_patch4_window7_224.ms_in22k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth', + num_classes=21841), + 'swin_large_patch4_window12_384.ms_in22k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21841), + + 'swin_s3_tiny_224.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_t-1d53f6a8.pth'), + 'swin_s3_small_224.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_s-3bb4c69d.pth'), + 'swin_s3_base_224.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/s3_b-a1e95db4.pth'), +}) + + +@register_model +def swin_tiny_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: + """ Swin-T @ 224x224, trained ImageNet-1k + """ + model_args = dict(patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer( + 'swin_tiny_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swin_small_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: + """ Swin-S @ 224x224 + """ + model_args = dict(patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer( + 'swin_small_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swin_base_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: + """ Swin-B @ 224x224 + """ + model_args = dict(patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer( + 'swin_base_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swin_base_patch4_window12_384(pretrained=False, **kwargs) -> SwinTransformer: + """ Swin-B @ 384x384 + """ + model_args = dict(patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer( + 'swin_base_patch4_window12_384', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swin_large_patch4_window7_224(pretrained=False, **kwargs) -> SwinTransformer: + """ Swin-L @ 224x224 + """ + model_args = dict(patch_size=4, window_size=7, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) + return _create_swin_transformer( + 'swin_large_patch4_window7_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swin_large_patch4_window12_384(pretrained=False, **kwargs) -> SwinTransformer: + """ Swin-L @ 384x384 + """ + model_args = dict(patch_size=4, window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) + return _create_swin_transformer( + 'swin_large_patch4_window12_384', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swin_s3_tiny_224(pretrained=False, **kwargs) -> SwinTransformer: + """ Swin-S3-T @ 224x224, https://arxiv.org/abs/2111.14725 + """ + model_args = dict( + patch_size=4, window_size=(7, 7, 14, 7), embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer('swin_s3_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swin_s3_small_224(pretrained=False, **kwargs) -> SwinTransformer: + """ Swin-S3-S @ 224x224, https://arxiv.org/abs/2111.14725 + """ + model_args = dict( + patch_size=4, window_size=(14, 14, 14, 7), embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer('swin_s3_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swin_s3_base_224(pretrained=False, **kwargs) -> SwinTransformer: + """ Swin-S3-B @ 224x224, https://arxiv.org/abs/2111.14725 + """ + model_args = dict( + patch_size=4, window_size=(7, 7, 14, 7), embed_dim=96, depths=(2, 2, 30, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer('swin_s3_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +register_model_deprecations(__name__, { + 'swin_base_patch4_window7_224_in22k': 'swin_base_patch4_window7_224.ms_in22k', + 'swin_base_patch4_window12_384_in22k': 'swin_base_patch4_window12_384.ms_in22k', + 'swin_large_patch4_window7_224_in22k': 'swin_large_patch4_window7_224.ms_in22k', + 'swin_large_patch4_window12_384_in22k': 'swin_large_patch4_window12_384.ms_in22k', +}) diff --git a/pytorch-image-models/timm/models/swin_transformer_v2.py b/pytorch-image-models/timm/models/swin_transformer_v2.py new file mode 100644 index 0000000000000000000000000000000000000000..2174b4840f23069cb8b993e9f3d670e9185fad40 --- /dev/null +++ b/pytorch-image-models/timm/models/swin_transformer_v2.py @@ -0,0 +1,1088 @@ +""" Swin Transformer V2 +A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` + - https://arxiv.org/abs/2111.09883 + +Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below + +Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman +""" +# -------------------------------------------------------- +# Swin Transformer V2 +# Copyright (c) 2022 Microsoft +# Licensed under The MIT License [see LICENSE for details] +# Written by Ze Liu +# -------------------------------------------------------- +import math +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert, ClassifierHead,\ + resample_patch_embed, ndgrid, get_act_layer, LayerType +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._registry import generate_default_cfgs, register_model, register_model_deprecations + +__all__ = ['SwinTransformerV2'] # model_registry will add each entrypoint fn to this + +_int_or_tuple_2_t = Union[int, Tuple[int, int]] + + +def window_partition(x: torch.Tensor, window_size: Tuple[int, int]) -> torch.Tensor: + """ + Args: + x: (B, H, W, C) + window_size (int): window size + + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + + +@register_notrace_function # reason: int argument is a Proxy +def window_reverse(windows: torch.Tensor, window_size: Tuple[int, int], img_size: Tuple[int, int]) -> torch.Tensor: + """ + Args: + windows: (num_windows * B, window_size[0], window_size[1], C) + window_size (Tuple[int, int]): Window size + img_size (Tuple[int, int]): Image size + + Returns: + x: (B, H, W, C) + """ + H, W = img_size + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + + +class WindowAttention(nn.Module): + r""" Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + pretrained_window_size (tuple[int]): The height and width of the window in pre-training. + """ + + def __init__( + self, + dim: int, + window_size: Tuple[int, int], + num_heads: int, + qkv_bias: bool = True, + qkv_bias_separate: bool = False, + attn_drop: float = 0., + proj_drop: float = 0., + pretrained_window_size: Tuple[int, int] = (0, 0), + ) -> None: + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.pretrained_window_size = to_2tuple(pretrained_window_size) + self.num_heads = num_heads + self.qkv_bias_separate = qkv_bias_separate + + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) + + # mlp to generate continuous relative position bias + self.cpb_mlp = nn.Sequential( + nn.Linear(2, 512, bias=True), + nn.ReLU(inplace=True), + nn.Linear(512, num_heads, bias=False) + ) + + self.qkv = nn.Linear(dim, dim * 3, bias=False) + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(dim)) + self.register_buffer('k_bias', torch.zeros(dim), persistent=False) + self.v_bias = nn.Parameter(torch.zeros(dim)) + else: + self.q_bias = None + self.k_bias = None + self.v_bias = None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.softmax = nn.Softmax(dim=-1) + + self._make_pair_wise_relative_positions() + + def _make_pair_wise_relative_positions(self): + # get relative_coords_table + relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0]).to(torch.float32) + relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1]).to(torch.float32) + relative_coords_table = torch.stack(ndgrid(relative_coords_h, relative_coords_w)) + relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2 + if self.pretrained_window_size[0] > 0: + relative_coords_table[:, :, :, 0] /= (self.pretrained_window_size[0] - 1) + relative_coords_table[:, :, :, 1] /= (self.pretrained_window_size[1] - 1) + else: + relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) + relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) + relative_coords_table *= 8 # normalize to -8, 8 + relative_coords_table = torch.sign(relative_coords_table) * torch.log2( + torch.abs(relative_coords_table) + 1.0) / math.log2(8) + self.register_buffer("relative_coords_table", relative_coords_table, persistent=False) + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(ndgrid(coords_h, coords_w)) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + self.register_buffer("relative_position_index", relative_position_index, persistent=False) + + def set_window_size(self, window_size: Tuple[int, int]) -> None: + """Update window size & interpolate position embeddings + Args: + window_size (int): New window size + """ + window_size = to_2tuple(window_size) + if window_size != self.window_size: + self.window_size = window_size + self._make_pair_wise_relative_positions() + + def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: + """ + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + + if self.q_bias is None: + qkv = self.qkv(x) + else: + qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) + if self.qkv_bias_separate: + qkv = self.qkv(x) + qkv += qkv_bias + else: + qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + + # cosine attention + attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) + logit_scale = torch.clamp(self.logit_scale, max=math.log(1. / 0.01)).exp() + attn = attn * logit_scale + + relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) + relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + relative_position_bias = 16 * torch.sigmoid(relative_position_bias) + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + num_win = mask.shape[0] + attn = attn.view(-1, num_win, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class SwinTransformerV2Block(nn.Module): + """ Swin Transformer Block. + """ + + def __init__( + self, + dim: int, + input_resolution: _int_or_tuple_2_t, + num_heads: int, + window_size: _int_or_tuple_2_t = 7, + shift_size: _int_or_tuple_2_t = 0, + always_partition: bool = False, + dynamic_mask: bool = False, + mlp_ratio: float = 4., + qkv_bias: bool = True, + proj_drop: float = 0., + attn_drop: float = 0., + drop_path: float = 0., + act_layer: LayerType = "gelu", + norm_layer: nn.Module = nn.LayerNorm, + pretrained_window_size: _int_or_tuple_2_t = 0, + ): + """ + Args: + dim: Number of input channels. + input_resolution: Input resolution. + num_heads: Number of attention heads. + window_size: Window size. + shift_size: Shift size for SW-MSA. + always_partition: Always partition into full windows and shift + mlp_ratio: Ratio of mlp hidden dim to embedding dim. + qkv_bias: If True, add a learnable bias to query, key, value. + proj_drop: Dropout rate. + attn_drop: Attention dropout rate. + drop_path: Stochastic depth rate. + act_layer: Activation layer. + norm_layer: Normalization layer. + pretrained_window_size: Window size in pretraining. + """ + super().__init__() + self.dim = dim + self.input_resolution = to_2tuple(input_resolution) + self.num_heads = num_heads + self.target_shift_size = to_2tuple(shift_size) # store for later resize + self.always_partition = always_partition + self.dynamic_mask = dynamic_mask + self.window_size, self.shift_size = self._calc_window_shift(window_size, shift_size) + self.window_area = self.window_size[0] * self.window_size[1] + self.mlp_ratio = mlp_ratio + act_layer = get_act_layer(act_layer) + + self.attn = WindowAttention( + dim, + window_size=to_2tuple(self.window_size), + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + pretrained_window_size=to_2tuple(pretrained_window_size), + ) + self.norm1 = norm_layer(dim) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + ) + self.norm2 = norm_layer(dim) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.register_buffer( + "attn_mask", + None if self.dynamic_mask else self.get_attn_mask(), + persistent=False, + ) + + def get_attn_mask(self, x: Optional[torch.Tensor] = None) -> Optional[torch.Tensor]: + if any(self.shift_size): + # calculate attention mask for SW-MSA + if x is None: + img_mask = torch.zeros((1, *self.input_resolution, 1)) # 1 H W 1 + else: + img_mask = torch.zeros((1, x.shape[1], x.shape[2], 1), dtype=x.dtype, device=x.device) # 1 H W 1 + cnt = 0 + for h in ( + (0, -self.window_size[0]), + (-self.window_size[0], -self.shift_size[0]), + (-self.shift_size[0], None), + ): + for w in ( + (0, -self.window_size[1]), + (-self.window_size[1], -self.shift_size[1]), + (-self.shift_size[1], None), + ): + img_mask[:, h[0]:h[1], w[0]:w[1], :] = cnt + cnt += 1 + mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_area) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + return attn_mask + + def _calc_window_shift( + self, + target_window_size: _int_or_tuple_2_t, + target_shift_size: Optional[_int_or_tuple_2_t] = None, + ) -> Tuple[Tuple[int, int], Tuple[int, int]]: + target_window_size = to_2tuple(target_window_size) + if target_shift_size is None: + # if passed value is None, recalculate from default window_size // 2 if it was active + target_shift_size = self.target_shift_size + if any(target_shift_size): + # if there was previously a non-zero shift, recalculate based on current window_size + target_shift_size = (target_window_size[0] // 2, target_window_size[1] // 2) + else: + target_shift_size = to_2tuple(target_shift_size) + + if self.always_partition: + return target_window_size, target_shift_size + + target_window_size = to_2tuple(target_window_size) + target_shift_size = to_2tuple(target_shift_size) + window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)] + shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)] + return tuple(window_size), tuple(shift_size) + + def set_input_size( + self, + feat_size: Tuple[int, int], + window_size: Tuple[int, int], + always_partition: Optional[bool] = None, + ): + """ Updates the input resolution, window size. + + Args: + feat_size (Tuple[int, int]): New input resolution + window_size (int): New window size + always_partition: Change always_partition attribute if not None + """ + # Update input resolution + self.input_resolution = feat_size + if always_partition is not None: + self.always_partition = always_partition + self.window_size, self.shift_size = self._calc_window_shift(to_2tuple(window_size)) + self.window_area = self.window_size[0] * self.window_size[1] + self.attn.set_window_size(self.window_size) + self.register_buffer( + "attn_mask", + None if self.dynamic_mask else self.get_attn_mask(), + persistent=False, + ) + + def _attn(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, C = x.shape + + # cyclic shift + has_shift = any(self.shift_size) + if has_shift: + shifted_x = torch.roll(x, shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(1, 2)) + else: + shifted_x = x + + pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] + pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] + shifted_x = torch.nn.functional.pad(shifted_x, (0, 0, 0, pad_w, 0, pad_h)) + _, Hp, Wp, _ = shifted_x.shape + + # partition windows + x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C + x_windows = x_windows.view(-1, self.window_area, C) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA + if getattr(self, 'dynamic_mask', False): + attn_mask = self.get_attn_mask(shifted_x) + else: + attn_mask = self.attn_mask + attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) + shifted_x = window_reverse(attn_windows, self.window_size, (Hp, Wp)) # B H' W' C + shifted_x = shifted_x[:, :H, :W, :].contiguous() + + # reverse cyclic shift + if has_shift: + x = torch.roll(shifted_x, shifts=self.shift_size, dims=(1, 2)) + else: + x = shifted_x + return x + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, C = x.shape + x = x + self.drop_path1(self.norm1(self._attn(x))) + x = x.reshape(B, -1, C) + x = x + self.drop_path2(self.norm2(self.mlp(x))) + x = x.reshape(B, H, W, C) + return x + + +class PatchMerging(nn.Module): + """ Patch Merging Layer. + """ + + def __init__( + self, + dim: int, + out_dim: Optional[int] = None, + norm_layer: nn.Module = nn.LayerNorm + ): + """ + Args: + dim (int): Number of input channels. + out_dim (int): Number of output channels (or 2 * dim if None) + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + super().__init__() + self.dim = dim + self.out_dim = out_dim or 2 * dim + self.reduction = nn.Linear(4 * dim, self.out_dim, bias=False) + self.norm = norm_layer(self.out_dim) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, C = x.shape + + pad_values = (0, 0, 0, W % 2, 0, H % 2) + x = nn.functional.pad(x, pad_values) + _, H, W, _ = x.shape + + x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3) + x = self.reduction(x) + x = self.norm(x) + return x + + +class SwinTransformerV2Stage(nn.Module): + """ A Swin Transformer V2 Stage. + """ + + def __init__( + self, + dim: int, + out_dim: int, + input_resolution: _int_or_tuple_2_t, + depth: int, + num_heads: int, + window_size: _int_or_tuple_2_t, + always_partition: bool = False, + dynamic_mask: bool = False, + downsample: bool = False, + mlp_ratio: float = 4., + qkv_bias: bool = True, + proj_drop: float = 0., + attn_drop: float = 0., + drop_path: float = 0., + act_layer: Union[str, Callable] = 'gelu', + norm_layer: nn.Module = nn.LayerNorm, + pretrained_window_size: _int_or_tuple_2_t = 0, + output_nchw: bool = False, + ) -> None: + """ + Args: + dim: Number of input channels. + out_dim: Number of output channels. + input_resolution: Input resolution. + depth: Number of blocks. + num_heads: Number of attention heads. + window_size: Local window size. + always_partition: Always partition into full windows and shift + dynamic_mask: Create attention mask in forward based on current input size + downsample: Use downsample layer at start of the block. + mlp_ratio: Ratio of mlp hidden dim to embedding dim. + qkv_bias: If True, add a learnable bias to query, key, value. + proj_drop: Projection dropout rate + attn_drop: Attention dropout rate. + drop_path: Stochastic depth rate. + act_layer: Activation layer type. + norm_layer: Normalization layer. + pretrained_window_size: Local window size in pretraining. + output_nchw: Output tensors on NCHW format instead of NHWC. + """ + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.output_resolution = tuple(i // 2 for i in input_resolution) if downsample else input_resolution + self.depth = depth + self.output_nchw = output_nchw + self.grad_checkpointing = False + window_size = to_2tuple(window_size) + shift_size = tuple([w // 2 for w in window_size]) + + # patch merging / downsample layer + if downsample: + self.downsample = PatchMerging(dim=dim, out_dim=out_dim, norm_layer=norm_layer) + else: + assert dim == out_dim + self.downsample = nn.Identity() + + # build blocks + self.blocks = nn.ModuleList([ + SwinTransformerV2Block( + dim=out_dim, + input_resolution=self.output_resolution, + num_heads=num_heads, + window_size=window_size, + shift_size=0 if (i % 2 == 0) else shift_size, + always_partition=always_partition, + dynamic_mask=dynamic_mask, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=proj_drop, + attn_drop=attn_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + act_layer=act_layer, + norm_layer=norm_layer, + pretrained_window_size=pretrained_window_size, + ) + for i in range(depth)]) + + def set_input_size( + self, + feat_size: Tuple[int, int], + window_size: int, + always_partition: Optional[bool] = None, + ): + """ Updates the resolution, window size and so the pair-wise relative positions. + + Args: + feat_size: New input (feature) resolution + window_size: New window size + always_partition: Always partition / shift the window + """ + self.input_resolution = feat_size + if isinstance(self.downsample, nn.Identity): + self.output_resolution = feat_size + else: + assert isinstance(self.downsample, PatchMerging) + self.output_resolution = tuple(i // 2 for i in feat_size) + for block in self.blocks: + block.set_input_size( + feat_size=self.output_resolution, + window_size=window_size, + always_partition=always_partition, + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.downsample(x) + + for blk in self.blocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint.checkpoint(blk, x) + else: + x = blk(x) + return x + + def _init_respostnorm(self) -> None: + for blk in self.blocks: + nn.init.constant_(blk.norm1.bias, 0) + nn.init.constant_(blk.norm1.weight, 0) + nn.init.constant_(blk.norm2.bias, 0) + nn.init.constant_(blk.norm2.weight, 0) + + +class SwinTransformerV2(nn.Module): + """ Swin Transformer V2 + + A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` + - https://arxiv.org/abs/2111.09883 + """ + + def __init__( + self, + img_size: _int_or_tuple_2_t = 224, + patch_size: int = 4, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: str = 'avg', + embed_dim: int = 96, + depths: Tuple[int, ...] = (2, 2, 6, 2), + num_heads: Tuple[int, ...] = (3, 6, 12, 24), + window_size: _int_or_tuple_2_t = 7, + always_partition: bool = False, + strict_img_size: bool = True, + mlp_ratio: float = 4., + qkv_bias: bool = True, + drop_rate: float = 0., + proj_drop_rate: float = 0., + attn_drop_rate: float = 0., + drop_path_rate: float = 0.1, + act_layer: Union[str, Callable] = 'gelu', + norm_layer: Callable = nn.LayerNorm, + pretrained_window_sizes: Tuple[int, ...] = (0, 0, 0, 0), + **kwargs, + ): + """ + Args: + img_size: Input image size. + patch_size: Patch size. + in_chans: Number of input image channels. + num_classes: Number of classes for classification head. + embed_dim: Patch embedding dimension. + depths: Depth of each Swin Transformer stage (layer). + num_heads: Number of attention heads in different layers. + window_size: Window size. + mlp_ratio: Ratio of mlp hidden dim to embedding dim. + qkv_bias: If True, add a learnable bias to query, key, value. + drop_rate: Head dropout rate. + proj_drop_rate: Projection dropout rate. + attn_drop_rate: Attention dropout rate. + drop_path_rate: Stochastic depth rate. + norm_layer: Normalization layer. + act_layer: Activation layer type. + patch_norm: If True, add normalization after patch embedding. + pretrained_window_sizes: Pretrained window sizes of each layer. + output_fmt: Output tensor format if not None, otherwise output 'NHWC' by default. + """ + super().__init__() + + self.num_classes = num_classes + assert global_pool in ('', 'avg') + self.global_pool = global_pool + self.output_fmt = 'NHWC' + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (self.num_layers - 1)) + self.feature_info = [] + + if not isinstance(embed_dim, (tuple, list)): + embed_dim = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] + + # split image into non-overlapping patches + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim[0], + norm_layer=norm_layer, + strict_img_size=strict_img_size, + output_fmt='NHWC', + ) + grid_size = self.patch_embed.grid_size + + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + layers = [] + in_dim = embed_dim[0] + scale = 1 + for i in range(self.num_layers): + out_dim = embed_dim[i] + layers += [SwinTransformerV2Stage( + dim=in_dim, + out_dim=out_dim, + input_resolution=(grid_size[0] // scale, grid_size[1] // scale), + depth=depths[i], + downsample=i > 0, + num_heads=num_heads[i], + window_size=window_size, + always_partition=always_partition, + dynamic_mask=not strict_img_size, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + act_layer=act_layer, + norm_layer=norm_layer, + pretrained_window_size=pretrained_window_sizes[i], + )] + in_dim = out_dim + if i > 0: + scale *= 2 + self.feature_info += [dict(num_chs=out_dim, reduction=4 * scale, module=f'layers.{i}')] + + self.layers = nn.Sequential(*layers) + self.norm = norm_layer(self.num_features) + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + input_fmt=self.output_fmt, + ) + + self.apply(self._init_weights) + for bly in self.layers: + bly._init_respostnorm() + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + def set_input_size( + self, + img_size: Optional[Tuple[int, int]] = None, + patch_size: Optional[Tuple[int, int]] = None, + window_size: Optional[Tuple[int, int]] = None, + window_ratio: Optional[int] = 8, + always_partition: Optional[bool] = None, + ): + """Updates the image resolution, window size, and so the pair-wise relative positions. + + Args: + img_size (Optional[Tuple[int, int]]): New input resolution, if None current resolution is used + patch_size (Optional[Tuple[int, int]): New patch size, if None use current patch size + window_size (Optional[int]): New window size, if None based on new_img_size // window_div + window_ratio (int): divisor for calculating window size from patch grid size + always_partition: always partition / shift windows even if feat size is < window + """ + if img_size is not None or patch_size is not None: + self.patch_embed.set_input_size(img_size=img_size, patch_size=patch_size) + grid_size = self.patch_embed.grid_size + + if window_size is None and window_ratio is not None: + window_size = tuple([s // window_ratio for s in grid_size]) + + for index, stage in enumerate(self.layers): + stage_scale = 2 ** max(index - 1, 0) + stage.set_input_size( + feat_size=(grid_size[0] // stage_scale, grid_size[1] // stage_scale), + window_size=window_size, + always_partition=always_partition, + ) + + @torch.jit.ignore + def no_weight_decay(self): + nod = set() + for n, m in self.named_modules(): + if any([kw in n for kw in ("cpb_mlp", "logit_scale")]): + nod.add(n) + return nod + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^absolute_pos_embed|patch_embed', # stem and embed + blocks=r'^layers\.(\d+)' if coarse else [ + (r'^layers\.(\d+).downsample', (0,)), + (r'^layers\.(\d+)\.\w+\.(\d+)', None), + (r'^norm', (99999,)), + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for l in self.layers: + l.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.layers), indices) + + # forward pass + x = self.patch_embed(x) + + num_stages = len(self.layers) + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + stages = self.layers + else: + stages = self.layers[:max_index + 1] + for i, stage in enumerate(stages): + x = stage(x) + if i in take_indices: + if norm and i == num_stages - 1: + x_inter = self.norm(x) # applying final norm last intermediate + else: + x_inter = x + x_inter = x_inter.permute(0, 3, 1, 2).contiguous() + intermediates.append(x_inter) + + if intermediates_only: + return intermediates + + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.layers), indices) + self.layers = self.layers[:max_index + 1] # truncate blocks + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + x = self.layers(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + native_checkpoint = 'head.fc.weight' in state_dict + out_dict = {} + import re + for k, v in state_dict.items(): + if any([n in k for n in ('relative_position_index', 'relative_coords_table', 'attn_mask')]): + continue # skip buffers that should not be persistent + + if 'patch_embed.proj.weight' in k: + _, _, H, W = model.patch_embed.proj.weight.shape + if v.shape[-2] != H or v.shape[-1] != W: + v = resample_patch_embed( + v, + (H, W), + interpolation='bicubic', + antialias=True, + verbose=True, + ) + + if not native_checkpoint: + # skip layer remapping for updated checkpoints + k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k) + k = k.replace('head.', 'head.fc.') + out_dict[k] = v + + return out_dict + + +def _create_swin_transformer_v2(variant, pretrained=False, **kwargs): + default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 1, 1)))) + out_indices = kwargs.pop('out_indices', default_out_indices) + + model = build_model_with_cfg( + SwinTransformerV2, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', + 'license': 'mit', **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'swinv2_base_window12to16_192to256.ms_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to16_192to256_22kto1k_ft.pth', + ), + 'swinv2_base_window12to24_192to384.ms_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12to24_192to384_22kto1k_ft.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), + 'swinv2_large_window12to16_192to256.ms_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to16_192to256_22kto1k_ft.pth', + ), + 'swinv2_large_window12to24_192to384.ms_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12to24_192to384_22kto1k_ft.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), + + 'swinv2_tiny_window8_256.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window8_256.pth', + ), + 'swinv2_tiny_window16_256.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_tiny_patch4_window16_256.pth', + ), + 'swinv2_small_window8_256.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window8_256.pth', + ), + 'swinv2_small_window16_256.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_small_patch4_window16_256.pth', + ), + 'swinv2_base_window8_256.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window8_256.pth', + ), + 'swinv2_base_window16_256.ms_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window16_256.pth', + ), + + 'swinv2_base_window12_192.ms_in22k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_base_patch4_window12_192_22k.pth', + num_classes=21841, input_size=(3, 192, 192), pool_size=(6, 6) + ), + 'swinv2_large_window12_192.ms_in22k': _cfg( + hf_hub_id='timm/', + url='https://github.com/SwinTransformer/storage/releases/download/v2.0.0/swinv2_large_patch4_window12_192_22k.pth', + num_classes=21841, input_size=(3, 192, 192), pool_size=(6, 6) + ), +}) + + +@register_model +def swinv2_tiny_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict(window_size=16, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2( + 'swinv2_tiny_window16_256', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_tiny_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict(window_size=8, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2( + 'swinv2_tiny_window8_256', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_small_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict(window_size=16, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2( + 'swinv2_small_window16_256', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_small_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict(window_size=8, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24)) + return _create_swin_transformer_v2( + 'swinv2_small_window8_256', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_base_window16_256(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict(window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer_v2( + 'swinv2_base_window16_256', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_base_window8_256(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict(window_size=8, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer_v2( + 'swinv2_base_window8_256', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_base_window12_192(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict(window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32)) + return _create_swin_transformer_v2( + 'swinv2_base_window12_192', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_base_window12to16_192to256(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict( + window_size=16, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), + pretrained_window_sizes=(12, 12, 12, 6)) + return _create_swin_transformer_v2( + 'swinv2_base_window12to16_192to256', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_base_window12to24_192to384(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict( + window_size=24, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), + pretrained_window_sizes=(12, 12, 12, 6)) + return _create_swin_transformer_v2( + 'swinv2_base_window12to24_192to384', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_large_window12_192(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict(window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48)) + return _create_swin_transformer_v2( + 'swinv2_large_window12_192', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_large_window12to16_192to256(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict( + window_size=16, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), + pretrained_window_sizes=(12, 12, 12, 6)) + return _create_swin_transformer_v2( + 'swinv2_large_window12to16_192to256', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_large_window12to24_192to384(pretrained=False, **kwargs) -> SwinTransformerV2: + """ + """ + model_args = dict( + window_size=24, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), + pretrained_window_sizes=(12, 12, 12, 6)) + return _create_swin_transformer_v2( + 'swinv2_large_window12to24_192to384', pretrained=pretrained, **dict(model_args, **kwargs)) + + +register_model_deprecations(__name__, { + 'swinv2_base_window12_192_22k': 'swinv2_base_window12_192.ms_in22k', + 'swinv2_base_window12to16_192to256_22kft1k': 'swinv2_base_window12to16_192to256.ms_in22k_ft_in1k', + 'swinv2_base_window12to24_192to384_22kft1k': 'swinv2_base_window12to24_192to384.ms_in22k_ft_in1k', + 'swinv2_large_window12_192_22k': 'swinv2_large_window12_192.ms_in22k', + 'swinv2_large_window12to16_192to256_22kft1k': 'swinv2_large_window12to16_192to256.ms_in22k_ft_in1k', + 'swinv2_large_window12to24_192to384_22kft1k': 'swinv2_large_window12to24_192to384.ms_in22k_ft_in1k', +}) diff --git a/pytorch-image-models/timm/models/swin_transformer_v2_cr.py b/pytorch-image-models/timm/models/swin_transformer_v2_cr.py new file mode 100644 index 0000000000000000000000000000000000000000..dceb3d50401766588b8416eaadc8c7b924ebb49e --- /dev/null +++ b/pytorch-image-models/timm/models/swin_transformer_v2_cr.py @@ -0,0 +1,1153 @@ +""" Swin Transformer V2 + +A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` + - https://arxiv.org/pdf/2111.09883 + +Code adapted from https://github.com/ChristophReich1996/Swin-Transformer-V2, original copyright/license info below + +This implementation is experimental and subject to change in manners that will break weight compat: +* Size of the pos embed MLP are not spelled out in paper in terms of dim, fixed for all models? vary with num_heads? + * currently dim is fixed, I feel it may make sense to scale with num_heads (dim per head) +* The specifics of the memory saving 'sequential attention' are not detailed, Christoph Reich has an impl at + GitHub link above. It needs further investigation as throughput vs mem tradeoff doesn't appear beneficial. +* num_heads per stage is not detailed for Huge and Giant model variants +* 'Giant' is 3B params in paper but ~2.6B here despite matching paper dim + block counts +* experiments are ongoing wrt to 'main branch' norm layer use and weight init scheme + +Noteworthy additions over official Swin v1: +* MLP relative position embedding is looking promising and adapts to different image/window sizes +* This impl has been designed to allow easy change of image size with matching window size changes +* Non-square image size and window size are supported + +Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman +""" +# -------------------------------------------------------- +# Swin Transformer V2 reimplementation +# Copyright (c) 2021 Christoph Reich +# Licensed under The MIT License [see LICENSE for details] +# Written by Christoph Reich +# -------------------------------------------------------- +import logging +import math +from typing import Tuple, Optional, List, Union, Any, Type + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, Mlp, ClassifierHead, to_2tuple, _assert, ndgrid +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._manipulate import named_apply +from ._registry import generate_default_cfgs, register_model + +__all__ = ['SwinTransformerV2Cr'] # model_registry will add each entrypoint fn to this + +_logger = logging.getLogger(__name__) + + +def bchw_to_bhwc(x: torch.Tensor) -> torch.Tensor: + """Permutes a tensor from the shape (B, C, H, W) to (B, H, W, C). """ + return x.permute(0, 2, 3, 1) + + +def bhwc_to_bchw(x: torch.Tensor) -> torch.Tensor: + """Permutes a tensor from the shape (B, H, W, C) to (B, C, H, W). """ + return x.permute(0, 3, 1, 2) + + +def window_partition(x, window_size: Tuple[int, int]): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) + return windows + + +@register_notrace_function # reason: int argument is a Proxy +def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]): + """ + Args: + windows: (num_windows * B, window_size[0], window_size[1], C) + window_size (Tuple[int, int]): Window size + img_size (Tuple[int, int]): Image size + + Returns: + x: (B, H, W, C) + """ + H, W = img_size + C = windows.shape[-1] + x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) + return x + + +class WindowMultiHeadAttention(nn.Module): + r"""This class implements window-based Multi-Head-Attention with log-spaced continuous position bias. + + Args: + dim (int): Number of input features + window_size (int): Window size + num_heads (int): Number of attention heads + drop_attn (float): Dropout rate of attention map + drop_proj (float): Dropout rate after projection + meta_hidden_dim (int): Number of hidden features in the two layer MLP meta network + sequential_attn (bool): If true sequential self-attention is performed + """ + + def __init__( + self, + dim: int, + num_heads: int, + window_size: Tuple[int, int], + drop_attn: float = 0.0, + drop_proj: float = 0.0, + meta_hidden_dim: int = 384, # FIXME what's the optimal value? + sequential_attn: bool = False, + ) -> None: + super(WindowMultiHeadAttention, self).__init__() + assert dim % num_heads == 0, \ + "The number of input features (in_features) are not divisible by the number of heads (num_heads)." + self.in_features: int = dim + self.window_size: Tuple[int, int] = to_2tuple(window_size) + self.num_heads: int = num_heads + self.sequential_attn: bool = sequential_attn + + self.qkv = nn.Linear(in_features=dim, out_features=dim * 3, bias=True) + self.attn_drop = nn.Dropout(drop_attn) + self.proj = nn.Linear(in_features=dim, out_features=dim, bias=True) + self.proj_drop = nn.Dropout(drop_proj) + # meta network for positional encodings + self.meta_mlp = Mlp( + 2, # x, y + hidden_features=meta_hidden_dim, + out_features=num_heads, + act_layer=nn.ReLU, + drop=(0.125, 0.) # FIXME should there be stochasticity, appears to 'overfit' without? + ) + # NOTE old checkpoints used inverse of logit_scale ('tau') following the paper, see conversion fn + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones(num_heads))) + self._make_pair_wise_relative_positions() + + def _make_pair_wise_relative_positions(self) -> None: + """Method initializes the pair-wise relative positions to compute the positional biases.""" + device = self.logit_scale.device + coordinates = torch.stack(ndgrid( + torch.arange(self.window_size[0], device=device), + torch.arange(self.window_size[1], device=device) + ), dim=0).flatten(1) + relative_coordinates = coordinates[:, :, None] - coordinates[:, None, :] + relative_coordinates = relative_coordinates.permute(1, 2, 0).reshape(-1, 2).float() + relative_coordinates_log = torch.sign(relative_coordinates) * torch.log( + 1.0 + relative_coordinates.abs()) + self.register_buffer("relative_coordinates_log", relative_coordinates_log, persistent=False) + + def set_window_size(self, window_size: Tuple[int, int]) -> None: + """Update window size & interpolate position embeddings + Args: + window_size (int): New window size + """ + window_size = to_2tuple(window_size) + if window_size != self.window_size: + self.window_size = window_size + self._make_pair_wise_relative_positions() + + def _relative_positional_encodings(self) -> torch.Tensor: + """Method computes the relative positional encodings + + Returns: + relative_position_bias (torch.Tensor): Relative positional encodings + (1, number of heads, window size ** 2, window size ** 2) + """ + window_area = self.window_size[0] * self.window_size[1] + relative_position_bias = self.meta_mlp(self.relative_coordinates_log) + relative_position_bias = relative_position_bias.transpose(1, 0).reshape( + self.num_heads, window_area, window_area + ) + relative_position_bias = relative_position_bias.unsqueeze(0) + return relative_position_bias + + def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: + """ Forward pass. + Args: + x (torch.Tensor): Input tensor of the shape (B * windows, N, C) + mask (Optional[torch.Tensor]): Attention mask for the shift case + + Returns: + Output tensor of the shape [B * windows, N, C] + """ + Bw, L, C = x.shape + + qkv = self.qkv(x).view(Bw, L, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + query, key, value = qkv.unbind(0) + + # compute attention map with scaled cosine attention + attn = (F.normalize(query, dim=-1) @ F.normalize(key, dim=-1).transpose(-2, -1)) + logit_scale = torch.clamp(self.logit_scale.reshape(1, self.num_heads, 1, 1), max=math.log(1. / 0.01)).exp() + attn = attn * logit_scale + attn = attn + self._relative_positional_encodings() + + if mask is not None: + # Apply mask if utilized + num_win: int = mask.shape[0] + attn = attn.view(Bw // num_win, num_win, self.num_heads, L, L) + attn = attn + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, L, L) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ value).transpose(1, 2).reshape(Bw, L, -1) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class SwinTransformerV2CrBlock(nn.Module): + r"""This class implements the Swin transformer block. + + Args: + dim (int): Number of input channels + num_heads (int): Number of attention heads to be utilized + feat_size (Tuple[int, int]): Input resolution + window_size (Tuple[int, int]): Window size to be utilized + shift_size (int): Shifting size to be used + mlp_ratio (int): Ratio of the hidden dimension in the FFN to the input channels + proj_drop (float): Dropout in input mapping + drop_attn (float): Dropout rate of attention map + drop_path (float): Dropout in main path + extra_norm (bool): Insert extra norm on 'main' branch if True + sequential_attn (bool): If true sequential self-attention is performed + norm_layer (Type[nn.Module]): Type of normalization layer to be utilized + """ + + def __init__( + self, + dim: int, + num_heads: int, + feat_size: Tuple[int, int], + window_size: Tuple[int, int], + shift_size: Tuple[int, int] = (0, 0), + always_partition: bool = False, + dynamic_mask: bool = False, + mlp_ratio: float = 4.0, + init_values: Optional[float] = 0, + proj_drop: float = 0.0, + drop_attn: float = 0.0, + drop_path: float = 0.0, + extra_norm: bool = False, + sequential_attn: bool = False, + norm_layer: Type[nn.Module] = nn.LayerNorm, + ): + super(SwinTransformerV2CrBlock, self).__init__() + self.dim: int = dim + self.feat_size: Tuple[int, int] = feat_size + self.target_shift_size: Tuple[int, int] = to_2tuple(shift_size) + self.always_partition = always_partition + self.dynamic_mask = dynamic_mask + self.window_size, self.shift_size = self._calc_window_shift(window_size) + self.window_area = self.window_size[0] * self.window_size[1] + self.init_values: Optional[float] = init_values + + # attn branch + self.attn = WindowMultiHeadAttention( + dim=dim, + num_heads=num_heads, + window_size=self.window_size, + drop_attn=drop_attn, + drop_proj=proj_drop, + sequential_attn=sequential_attn, + ) + self.norm1 = norm_layer(dim) + self.drop_path1 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity() + + # mlp branch + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + drop=proj_drop, + out_features=dim, + ) + self.norm2 = norm_layer(dim) + self.drop_path2 = DropPath(drop_prob=drop_path) if drop_path > 0.0 else nn.Identity() + + # Extra main branch norm layer mentioned for Huge/Giant models in V2 paper. + # Also being used as final network norm and optional stage ending norm while still in a C-last format. + self.norm3 = norm_layer(dim) if extra_norm else nn.Identity() + + self.register_buffer( + "attn_mask", + None if self.dynamic_mask else self.get_attn_mask(), + persistent=False, + ) + self.init_weights() + + def _calc_window_shift( + self, + target_window_size: Tuple[int, int], + ) -> Tuple[Tuple[int, int], Tuple[int, int]]: + target_window_size = to_2tuple(target_window_size) + target_shift_size = self.target_shift_size + if any(target_shift_size): + # if non-zero, recalculate shift from current window size in case window size has changed + target_shift_size = (target_window_size[0] // 2, target_window_size[1] // 2) + + if self.always_partition: + return target_window_size, target_shift_size + + window_size = [f if f <= w else w for f, w in zip(self.feat_size, target_window_size)] + shift_size = [0 if f <= w else s for f, w, s in zip(self.feat_size, window_size, target_shift_size)] + return tuple(window_size), tuple(shift_size) + + def get_attn_mask(self, x: Optional[torch.Tensor] = None) -> Optional[torch.Tensor]: + """Method generates the attention mask used in shift case.""" + # Make masks for shift case + if any(self.shift_size): + # calculate attention mask for SW-MSA + if x is None: + img_mask = torch.zeros((1, *self.feat_size, 1)) # 1 H W 1 + else: + img_mask = torch.zeros((1, x.shape[1], x.shape[2], 1), dtype=x.dtype, device=x.device) # 1 H W 1 + cnt = 0 + for h in ( + (0, -self.window_size[0]), + (-self.window_size[0], -self.shift_size[0]), + (-self.shift_size[0], None), + ): + for w in ( + (0, -self.window_size[1]), + (-self.window_size[1], -self.shift_size[1]), + (-self.shift_size[1], None), + ): + img_mask[:, h[0]:h[1], w[0]:w[1], :] = cnt + cnt += 1 + mask_windows = window_partition(img_mask, self.window_size) # num_windows, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_area) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + return attn_mask + + def init_weights(self): + # extra, module specific weight init + if self.init_values is not None: + nn.init.constant_(self.norm1.weight, self.init_values) + nn.init.constant_(self.norm2.weight, self.init_values) + + def set_input_size(self, feat_size: Tuple[int, int], window_size: Tuple[int, int]) -> None: + """Method updates the image resolution to be processed and window size and so the pair-wise relative positions. + + Args: + feat_size (Tuple[int, int]): New input resolution + window_size (int): New window size + """ + # Update input resolution + self.feat_size: Tuple[int, int] = feat_size + self.window_size, self.shift_size = self._calc_window_shift(to_2tuple(window_size)) + self.window_area = self.window_size[0] * self.window_size[1] + self.attn.set_window_size(self.window_size) + self.register_buffer( + "attn_mask", + None if self.dynamic_mask else self.get_attn_mask(), + persistent=False, + ) + + def _shifted_window_attn(self, x): + B, H, W, C = x.shape + + # cyclic shift + sh, sw = self.shift_size + do_shift: bool = any(self.shift_size) + if do_shift: + # FIXME PyTorch XLA needs cat impl, roll not lowered + # x = torch.cat([x[:, sh:], x[:, :sh]], dim=1) + # x = torch.cat([x[:, :, sw:], x[:, :, :sw]], dim=2) + x = torch.roll(x, shifts=(-sh, -sw), dims=(1, 2)) + + pad_h = (self.window_size[0] - H % self.window_size[0]) % self.window_size[0] + pad_w = (self.window_size[1] - W % self.window_size[1]) % self.window_size[1] + x = torch.nn.functional.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + _, Hp, Wp, _ = x.shape + + # partition windows + x_windows = window_partition(x, self.window_size) # num_windows * B, window_size, window_size, C + x_windows = x_windows.view(-1, self.window_size[0] * self.window_size[1], C) + + # W-MSA/SW-MSA + if getattr(self, 'dynamic_mask', False): + attn_mask = self.get_attn_mask(x) + else: + attn_mask = self.attn_mask + attn_windows = self.attn(x_windows, mask=attn_mask) # num_windows * B, window_size * window_size, C + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size[0], self.window_size[1], C) + x = window_reverse(attn_windows, self.window_size, (Hp, Wp)) # B H' W' C + x = x[:, :H, :W, :].contiguous() + + # reverse cyclic shift + if do_shift: + # FIXME PyTorch XLA needs cat impl, roll not lowered + # x = torch.cat([x[:, -sh:], x[:, :-sh]], dim=1) + # x = torch.cat([x[:, :, -sw:], x[:, :, :-sw]], dim=2) + x = torch.roll(x, shifts=(sh, sw), dims=(1, 2)) + + return x + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """Forward pass. + + Args: + x (torch.Tensor): Input tensor of the shape [B, C, H, W] + + Returns: + output (torch.Tensor): Output tensor of the shape [B, C, H, W] + """ + # post-norm branches (op -> norm -> drop) + x = x + self.drop_path1(self.norm1(self._shifted_window_attn(x))) + + B, H, W, C = x.shape + x = x.reshape(B, -1, C) + x = x + self.drop_path2(self.norm2(self.mlp(x))) + x = self.norm3(x) # main-branch norm enabled for some blocks / stages (every 6 for Huge/Giant) + x = x.reshape(B, H, W, C) + return x + + +class PatchMerging(nn.Module): + """ This class implements the patch merging as a strided convolution with a normalization before. + Args: + dim (int): Number of input channels + norm_layer (Type[nn.Module]): Type of normalization layer to be utilized. + """ + + def __init__(self, dim: int, norm_layer: Type[nn.Module] = nn.LayerNorm) -> None: + super(PatchMerging, self).__init__() + self.norm = norm_layer(4 * dim) + self.reduction = nn.Linear(in_features=4 * dim, out_features=2 * dim, bias=False) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ Forward pass. + Args: + x (torch.Tensor): Input tensor of the shape [B, C, H, W] + Returns: + output (torch.Tensor): Output tensor of the shape [B, 2 * C, H // 2, W // 2] + """ + B, H, W, C = x.shape + + pad_values = (0, 0, 0, W % 2, 0, H % 2) + x = nn.functional.pad(x, pad_values) + _, H, W, _ = x.shape + + x = x.reshape(B, H // 2, 2, W // 2, 2, C).permute(0, 1, 3, 4, 2, 5).flatten(3) + x = self.norm(x) + x = self.reduction(x) + return x + + +class PatchEmbed(nn.Module): + """ 2D Image to Patch Embedding """ + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + embed_dim=768, + norm_layer=None, + strict_img_size=True, + ): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + self.img_size = img_size + self.patch_size = patch_size + self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + self.strict_img_size = strict_img_size + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + def set_input_size(self, img_size: Tuple[int, int]): + img_size = to_2tuple(img_size) + if img_size != self.img_size: + self.img_size = img_size + self.grid_size = (img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + + def forward(self, x): + B, C, H, W = x.shape + if self.strict_img_size: + _assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") + _assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") + x = self.proj(x) + x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + return x + + +class SwinTransformerV2CrStage(nn.Module): + r"""This class implements a stage of the Swin transformer including multiple layers. + + Args: + embed_dim (int): Number of input channels + depth (int): Depth of the stage (number of layers) + downscale (bool): If true input is downsampled (see Fig. 3 or V1 paper) + feat_size (Tuple[int, int]): input feature map size (H, W) + num_heads (int): Number of attention heads to be utilized + window_size (int): Window size to be utilized + mlp_ratio (int): Ratio of the hidden dimension in the FFN to the input channels + proj_drop (float): Dropout in input mapping + drop_attn (float): Dropout rate of attention map + drop_path (float): Dropout in main path + norm_layer (Type[nn.Module]): Type of normalization layer to be utilized. Default: nn.LayerNorm + extra_norm_period (int): Insert extra norm layer on main branch every N (period) blocks + extra_norm_stage (bool): End each stage with an extra norm layer in main branch + sequential_attn (bool): If true sequential self-attention is performed + """ + + def __init__( + self, + embed_dim: int, + depth: int, + downscale: bool, + num_heads: int, + feat_size: Tuple[int, int], + window_size: Tuple[int, int], + always_partition: bool = False, + dynamic_mask: bool = False, + mlp_ratio: float = 4.0, + init_values: Optional[float] = 0.0, + proj_drop: float = 0.0, + drop_attn: float = 0.0, + drop_path: Union[List[float], float] = 0.0, + norm_layer: Type[nn.Module] = nn.LayerNorm, + extra_norm_period: int = 0, + extra_norm_stage: bool = False, + sequential_attn: bool = False, + ): + super(SwinTransformerV2CrStage, self).__init__() + self.downscale: bool = downscale + self.grad_checkpointing: bool = False + self.feat_size: Tuple[int, int] = (feat_size[0] // 2, feat_size[1] // 2) if downscale else feat_size + + if downscale: + self.downsample = PatchMerging(embed_dim, norm_layer=norm_layer) + embed_dim = embed_dim * 2 + else: + self.downsample = nn.Identity() + + def _extra_norm(index): + i = index + 1 + if extra_norm_period and i % extra_norm_period == 0: + return True + return i == depth if extra_norm_stage else False + + self.blocks = nn.Sequential(*[ + SwinTransformerV2CrBlock( + dim=embed_dim, + num_heads=num_heads, + feat_size=self.feat_size, + window_size=window_size, + always_partition=always_partition, + dynamic_mask=dynamic_mask, + shift_size=tuple([0 if ((index % 2) == 0) else w // 2 for w in window_size]), + mlp_ratio=mlp_ratio, + init_values=init_values, + proj_drop=proj_drop, + drop_attn=drop_attn, + drop_path=drop_path[index] if isinstance(drop_path, list) else drop_path, + extra_norm=_extra_norm(index), + sequential_attn=sequential_attn, + norm_layer=norm_layer, + ) + for index in range(depth)] + ) + + def set_input_size( + self, + feat_size: Tuple[int, int], + window_size: int, + always_partition: Optional[bool] = None, + ): + """ Updates the resolution to utilize and the window size and so the pair-wise relative positions. + + Args: + window_size (int): New window size + feat_size (Tuple[int, int]): New input resolution + """ + self.feat_size = (feat_size[0] // 2, feat_size[1] // 2) if self.downscale else feat_size + for block in self.blocks: + block.set_input_size( + feat_size=self.feat_size, + window_size=window_size, + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """Forward pass. + Args: + x (torch.Tensor): Input tensor of the shape [B, C, H, W] or [B, L, C] + Returns: + output (torch.Tensor): Output tensor of the shape [B, 2 * C, H // 2, W // 2] + """ + x = bchw_to_bhwc(x) + x = self.downsample(x) + for block in self.blocks: + # Perform checkpointing if utilized + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint.checkpoint(block, x) + else: + x = block(x) + x = bhwc_to_bchw(x) + return x + + +class SwinTransformerV2Cr(nn.Module): + r""" Swin Transformer V2 + A PyTorch impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` - + https://arxiv.org/pdf/2111.09883 + + Args: + img_size: Input resolution. + window_size: Window size. If None, grid_size // window_div + window_ratio: Window size to patch grid ratio. + patch_size: Patch size. + in_chans: Number of input channels. + depths: Depth of the stage (number of layers). + num_heads: Number of attention heads to be utilized. + embed_dim: Patch embedding dimension. + num_classes: Number of output classes. + mlp_ratio: Ratio of the hidden dimension in the FFN to the input channels. + drop_rate: Dropout rate. + proj_drop_rate: Projection dropout rate. + attn_drop_rate: Dropout rate of attention map. + drop_path_rate: Stochastic depth rate. + norm_layer: Type of normalization layer to be utilized. + extra_norm_period: Insert extra norm layer on main branch every N (period) blocks in stage + extra_norm_stage: End each stage with an extra norm layer in main branch + sequential_attn: If true sequential self-attention is performed. + """ + + def __init__( + self, + img_size: Tuple[int, int] = (224, 224), + patch_size: int = 4, + window_size: Optional[int] = None, + window_ratio: int = 8, + always_partition: bool = False, + strict_img_size: bool = True, + in_chans: int = 3, + num_classes: int = 1000, + embed_dim: int = 96, + depths: Tuple[int, ...] = (2, 2, 6, 2), + num_heads: Tuple[int, ...] = (3, 6, 12, 24), + mlp_ratio: float = 4.0, + init_values: Optional[float] = 0., + drop_rate: float = 0.0, + proj_drop_rate: float = 0.0, + attn_drop_rate: float = 0.0, + drop_path_rate: float = 0.0, + norm_layer: Type[nn.Module] = nn.LayerNorm, + extra_norm_period: int = 0, + extra_norm_stage: bool = False, + sequential_attn: bool = False, + global_pool: str = 'avg', + weight_init='skip', + **kwargs: Any + ) -> None: + super(SwinTransformerV2Cr, self).__init__() + img_size = to_2tuple(img_size) + self.num_classes: int = num_classes + self.patch_size: int = patch_size + self.img_size: Tuple[int, int] = img_size + self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (len(depths) - 1)) + self.feature_info = [] + + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + norm_layer=norm_layer, + strict_img_size=strict_img_size, + ) + grid_size = self.patch_embed.grid_size + if window_size is None: + self.window_size = tuple([s // window_ratio for s in grid_size]) + else: + self.window_size = to_2tuple(window_size) + + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] + stages = [] + in_dim = embed_dim + in_scale = 1 + for stage_idx, (depth, num_heads) in enumerate(zip(depths, num_heads)): + stages += [SwinTransformerV2CrStage( + embed_dim=in_dim, + depth=depth, + downscale=stage_idx != 0, + feat_size=(grid_size[0] // in_scale, grid_size[1] // in_scale), + num_heads=num_heads, + window_size=self.window_size, + always_partition=always_partition, + dynamic_mask=not strict_img_size, + mlp_ratio=mlp_ratio, + init_values=init_values, + proj_drop=proj_drop_rate, + drop_attn=attn_drop_rate, + drop_path=dpr[stage_idx], + extra_norm_period=extra_norm_period, + extra_norm_stage=extra_norm_stage or (stage_idx + 1) == len(depths), # last stage ends w/ norm + sequential_attn=sequential_attn, + norm_layer=norm_layer, + )] + if stage_idx != 0: + in_dim *= 2 + in_scale *= 2 + self.feature_info += [dict(num_chs=in_dim, reduction=4 * in_scale, module=f'stages.{stage_idx}')] + self.stages = nn.Sequential(*stages) + + self.head = ClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + ) + + # current weight init skips custom init and uses pytorch layer defaults, seems to work well + # FIXME more experiments needed + if weight_init != 'skip': + named_apply(init_weights, self) + + def set_input_size( + self, + img_size: Optional[Tuple[int, int]] = None, + window_size: Optional[Tuple[int, int]] = None, + window_ratio: int = 8, + always_partition: Optional[bool] = None, + ) -> None: + """Updates the image resolution, window size and so the pair-wise relative positions. + + Args: + img_size (Optional[Tuple[int, int]]): New input resolution, if None current resolution is used + window_size (Optional[int]): New window size, if None based on new_img_size // window_div + window_ratio (int): divisor for calculating window size from patch grid size + always_partition: always partition / shift windows even if feat size is < window + """ + if img_size is not None: + self.patch_embed.set_input_size(img_size=img_size) + grid_size = self.patch_embed.grid_size + + if window_size is None and window_ratio is not None: + window_size = tuple([s // window_ratio for s in grid_size]) + + for index, stage in enumerate(self.stages): + stage_scale = 2 ** max(index - 1, 0) + stage.set_input_size( + feat_size=(grid_size[0] // stage_scale, grid_size[1] // stage_scale), + window_size=window_size, + always_partition=always_partition, + ) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^patch_embed', # stem and embed + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+).downsample', (0,)), + (r'^stages\.(\d+)\.\w+\.(\d+)', None), + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore() + def get_classifier(self) -> nn.Module: + """Method returns the classification head of the model. + Returns: + head (nn.Module): Current classification head + """ + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None) -> None: + """Method results the classification head + + Args: + num_classes (int): Number of classes to be predicted + global_pool (str): Unused + """ + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to compatible intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.stages), indices) + + # forward pass + x = self.patch_embed(x) + + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + stages = self.stages + else: + stages = self.stages[:max_index + 1] + for i, stage in enumerate(stages): + x = stage(x) + if i in take_indices: + intermediates.append(x) + + if intermediates_only: + return intermediates + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.stages), indices) + self.stages = self.stages[:max_index + 1] # truncate blocks + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.patch_embed(x) + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def init_weights(module: nn.Module, name: str = ''): + # FIXME WIP determining if there's a better weight init + if isinstance(module, nn.Linear): + if 'qkv' in name: + # treat the weights of Q, K, V separately + val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1])) + nn.init.uniform_(module.weight, -val, val) + elif 'head' in name: + nn.init.zeros_(module.weight) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + + +def checkpoint_filter_fn(state_dict, model): + """ convert patch embedding weight from manual patchify + linear proj to conv""" + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + if 'head.fc.weight' in state_dict: + return state_dict + out_dict = {} + for k, v in state_dict.items(): + if 'tau' in k: + # convert old tau based checkpoints -> logit_scale (inverse) + v = torch.log(1 / v) + k = k.replace('tau', 'logit_scale') + k = k.replace('head.', 'head.fc.') + out_dict[k] = v + return out_dict + + +def _create_swin_transformer_v2_cr(variant, pretrained=False, **kwargs): + default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 1, 1)))) + out_indices = kwargs.pop('out_indices', default_out_indices) + + model = build_model_with_cfg( + SwinTransformerV2Cr, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + **kwargs + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, + 'input_size': (3, 224, 224), + 'pool_size': (7, 7), + 'crop_pct': 0.9, + 'interpolation': 'bicubic', + 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, + 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj', + 'classifier': 'head.fc', + **kwargs, + } + + +default_cfgs = generate_default_cfgs({ + 'swinv2_cr_tiny_384.untrained': _cfg( + url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), + 'swinv2_cr_tiny_224.untrained': _cfg( + url="", input_size=(3, 224, 224), crop_pct=0.9), + 'swinv2_cr_tiny_ns_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_tiny_ns_224-ba8166c6.pth", + input_size=(3, 224, 224), crop_pct=0.9), + 'swinv2_cr_small_384.untrained': _cfg( + url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), + 'swinv2_cr_small_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_224-0813c165.pth", + input_size=(3, 224, 224), crop_pct=0.9), + 'swinv2_cr_small_ns_224.sw_in1k': _cfg( + hf_hub_id='timm/', + url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-swinv2/swin_v2_cr_small_ns_224_iv-2ce90f8e.pth", + input_size=(3, 224, 224), crop_pct=0.9), + 'swinv2_cr_small_ns_256.untrained': _cfg( + url="", input_size=(3, 256, 256), crop_pct=1.0, pool_size=(8, 8)), + 'swinv2_cr_base_384.untrained': _cfg( + url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), + 'swinv2_cr_base_224.untrained': _cfg( + url="", input_size=(3, 224, 224), crop_pct=0.9), + 'swinv2_cr_base_ns_224.untrained': _cfg( + url="", input_size=(3, 224, 224), crop_pct=0.9), + 'swinv2_cr_large_384.untrained': _cfg( + url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), + 'swinv2_cr_large_224.untrained': _cfg( + url="", input_size=(3, 224, 224), crop_pct=0.9), + 'swinv2_cr_huge_384.untrained': _cfg( + url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), + 'swinv2_cr_huge_224.untrained': _cfg( + url="", input_size=(3, 224, 224), crop_pct=0.9), + 'swinv2_cr_giant_384.untrained': _cfg( + url="", input_size=(3, 384, 384), crop_pct=1.0, pool_size=(12, 12)), + 'swinv2_cr_giant_224.untrained': _cfg( + url="", input_size=(3, 224, 224), crop_pct=0.9), +}) + + +@register_model +def swinv2_cr_tiny_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-T V2 CR @ 384x384, trained ImageNet-1k""" + model_args = dict( + embed_dim=96, + depths=(2, 2, 6, 2), + num_heads=(3, 6, 12, 24), + ) + return _create_swin_transformer_v2_cr('swinv2_cr_tiny_384', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_tiny_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-T V2 CR @ 224x224, trained ImageNet-1k""" + model_args = dict( + embed_dim=96, + depths=(2, 2, 6, 2), + num_heads=(3, 6, 12, 24), + ) + return _create_swin_transformer_v2_cr('swinv2_cr_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_tiny_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-T V2 CR @ 224x224, trained ImageNet-1k w/ extra stage norms. + ** Experimental, may make default if results are improved. ** + """ + model_args = dict( + embed_dim=96, + depths=(2, 2, 6, 2), + num_heads=(3, 6, 12, 24), + extra_norm_stage=True, + ) + return _create_swin_transformer_v2_cr('swinv2_cr_tiny_ns_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_small_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-S V2 CR @ 384x384, trained ImageNet-1k""" + model_args = dict( + embed_dim=96, + depths=(2, 2, 18, 2), + num_heads=(3, 6, 12, 24), + ) + return _create_swin_transformer_v2_cr('swinv2_cr_small_384', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_small_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-S V2 CR @ 224x224, trained ImageNet-1k""" + model_args = dict( + embed_dim=96, + depths=(2, 2, 18, 2), + num_heads=(3, 6, 12, 24), + ) + return _create_swin_transformer_v2_cr('swinv2_cr_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_small_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-S V2 CR @ 224x224, trained ImageNet-1k""" + model_args = dict( + embed_dim=96, + depths=(2, 2, 18, 2), + num_heads=(3, 6, 12, 24), + extra_norm_stage=True, + ) + return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_small_ns_256(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-S V2 CR @ 256x256, trained ImageNet-1k""" + model_args = dict( + embed_dim=96, + depths=(2, 2, 18, 2), + num_heads=(3, 6, 12, 24), + extra_norm_stage=True, + ) + return _create_swin_transformer_v2_cr('swinv2_cr_small_ns_256', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_base_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-B V2 CR @ 384x384, trained ImageNet-1k""" + model_args = dict( + embed_dim=128, + depths=(2, 2, 18, 2), + num_heads=(4, 8, 16, 32), + ) + return _create_swin_transformer_v2_cr('swinv2_cr_base_384', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_base_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-B V2 CR @ 224x224, trained ImageNet-1k""" + model_args = dict( + embed_dim=128, + depths=(2, 2, 18, 2), + num_heads=(4, 8, 16, 32), + ) + return _create_swin_transformer_v2_cr('swinv2_cr_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_base_ns_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-B V2 CR @ 224x224, trained ImageNet-1k""" + model_args = dict( + embed_dim=128, + depths=(2, 2, 18, 2), + num_heads=(4, 8, 16, 32), + extra_norm_stage=True, + ) + return _create_swin_transformer_v2_cr('swinv2_cr_base_ns_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_large_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-L V2 CR @ 384x384, trained ImageNet-1k""" + model_args = dict( + embed_dim=192, + depths=(2, 2, 18, 2), + num_heads=(6, 12, 24, 48), + ) + return _create_swin_transformer_v2_cr('swinv2_cr_large_384', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_large_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-L V2 CR @ 224x224, trained ImageNet-1k""" + model_args = dict( + embed_dim=192, + depths=(2, 2, 18, 2), + num_heads=(6, 12, 24, 48), + ) + return _create_swin_transformer_v2_cr('swinv2_cr_large_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_huge_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-H V2 CR @ 384x384, trained ImageNet-1k""" + model_args = dict( + embed_dim=352, + depths=(2, 2, 18, 2), + num_heads=(11, 22, 44, 88), # head count not certain for Huge, 384 & 224 trying diff values + extra_norm_period=6, + ) + return _create_swin_transformer_v2_cr('swinv2_cr_huge_384', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_huge_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-H V2 CR @ 224x224, trained ImageNet-1k""" + model_args = dict( + embed_dim=352, + depths=(2, 2, 18, 2), + num_heads=(8, 16, 32, 64), # head count not certain for Huge, 384 & 224 trying diff values + extra_norm_period=6, + ) + return _create_swin_transformer_v2_cr('swinv2_cr_huge_224', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_giant_384(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-G V2 CR @ 384x384, trained ImageNet-1k""" + model_args = dict( + embed_dim=512, + depths=(2, 2, 42, 2), + num_heads=(16, 32, 64, 128), + extra_norm_period=6, + ) + return _create_swin_transformer_v2_cr('swinv2_cr_giant_384', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def swinv2_cr_giant_224(pretrained=False, **kwargs) -> SwinTransformerV2Cr: + """Swin-G V2 CR @ 224x224, trained ImageNet-1k""" + model_args = dict( + embed_dim=512, + depths=(2, 2, 42, 2), + num_heads=(16, 32, 64, 128), + extra_norm_period=6, + ) + return _create_swin_transformer_v2_cr('swinv2_cr_giant_224', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/tiny_vit.py b/pytorch-image-models/timm/models/tiny_vit.py new file mode 100644 index 0000000000000000000000000000000000000000..12a5ef2f166c65ece628b95fc72445b410fec3fb --- /dev/null +++ b/pytorch-image-models/timm/models/tiny_vit.py @@ -0,0 +1,715 @@ +""" TinyViT + +Paper: `TinyViT: Fast Pretraining Distillation for Small Vision Transformers` + - https://arxiv.org/abs/2207.10666 + +Adapted from official impl at https://github.com/microsoft/Cream/tree/main/TinyViT +""" + +__all__ = ['TinyVit'] + +import itertools +from functools import partial +from typing import Dict, Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import LayerNorm2d, NormMlpClassifierHead, DropPath,\ + trunc_normal_, resize_rel_pos_bias_table_levit, use_fused_attn +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + + +class ConvNorm(torch.nn.Sequential): + def __init__(self, in_chs, out_chs, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): + super().__init__() + self.conv = nn.Conv2d(in_chs, out_chs, ks, stride, pad, dilation, groups, bias=False) + self.bn = nn.BatchNorm2d(out_chs) + torch.nn.init.constant_(self.bn.weight, bn_weight_init) + torch.nn.init.constant_(self.bn.bias, 0) + + @torch.no_grad() + def fuse(self): + c, bn = self.conv, self.bn + w = bn.weight / (bn.running_var + bn.eps) ** 0.5 + w = c.weight * w[:, None, None, None] + b = bn.bias - bn.running_mean * bn.weight / \ + (bn.running_var + bn.eps) ** 0.5 + m = torch.nn.Conv2d( + w.size(1) * self.conv.groups, w.size(0), w.shape[2:], + stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups) + m.weight.data.copy_(w) + m.bias.data.copy_(b) + return m + + +class PatchEmbed(nn.Module): + def __init__(self, in_chs, out_chs, act_layer): + super().__init__() + self.stride = 4 + self.conv1 = ConvNorm(in_chs, out_chs // 2, 3, 2, 1) + self.act = act_layer() + self.conv2 = ConvNorm(out_chs // 2, out_chs, 3, 2, 1) + + def forward(self, x): + x = self.conv1(x) + x = self.act(x) + x = self.conv2(x) + return x + + +class MBConv(nn.Module): + def __init__(self, in_chs, out_chs, expand_ratio, act_layer, drop_path): + super().__init__() + mid_chs = int(in_chs * expand_ratio) + self.conv1 = ConvNorm(in_chs, mid_chs, ks=1) + self.act1 = act_layer() + self.conv2 = ConvNorm(mid_chs, mid_chs, ks=3, stride=1, pad=1, groups=mid_chs) + self.act2 = act_layer() + self.conv3 = ConvNorm(mid_chs, out_chs, ks=1, bn_weight_init=0.0) + self.act3 = act_layer() + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + shortcut = x + x = self.conv1(x) + x = self.act1(x) + x = self.conv2(x) + x = self.act2(x) + x = self.conv3(x) + x = self.drop_path(x) + x += shortcut + x = self.act3(x) + return x + + +class PatchMerging(nn.Module): + def __init__(self, dim, out_dim, act_layer): + super().__init__() + self.conv1 = ConvNorm(dim, out_dim, 1, 1, 0) + self.act1 = act_layer() + self.conv2 = ConvNorm(out_dim, out_dim, 3, 2, 1, groups=out_dim) + self.act2 = act_layer() + self.conv3 = ConvNorm(out_dim, out_dim, 1, 1, 0) + + def forward(self, x): + x = self.conv1(x) + x = self.act1(x) + x = self.conv2(x) + x = self.act2(x) + x = self.conv3(x) + return x + + +class ConvLayer(nn.Module): + def __init__( + self, + dim, + depth, + act_layer, + drop_path=0., + conv_expand_ratio=4., + ): + super().__init__() + self.dim = dim + self.depth = depth + self.blocks = nn.Sequential(*[ + MBConv( + dim, dim, conv_expand_ratio, act_layer, + drop_path[i] if isinstance(drop_path, list) else drop_path, + ) + for i in range(depth) + ]) + + def forward(self, x): + x = self.blocks(x) + return x + + +class NormMlp(nn.Module): + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + norm_layer=nn.LayerNorm, + act_layer=nn.GELU, + drop=0., + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.norm = norm_layer(in_features) + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.drop1 = nn.Dropout(drop) + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop2 = nn.Dropout(drop) + + def forward(self, x): + x = self.norm(x) + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.fc2(x) + x = self.drop2(x) + return x + + +class Attention(torch.nn.Module): + fused_attn: torch.jit.Final[bool] + attention_bias_cache: Dict[str, torch.Tensor] + + def __init__( + self, + dim, + key_dim, + num_heads=8, + attn_ratio=4, + resolution=(14, 14), + ): + super().__init__() + assert isinstance(resolution, tuple) and len(resolution) == 2 + self.num_heads = num_heads + self.scale = key_dim ** -0.5 + self.key_dim = key_dim + self.val_dim = int(attn_ratio * key_dim) + self.out_dim = self.val_dim * num_heads + self.attn_ratio = attn_ratio + self.resolution = resolution + self.fused_attn = use_fused_attn() + + self.norm = nn.LayerNorm(dim) + self.qkv = nn.Linear(dim, num_heads * (self.val_dim + 2 * key_dim)) + self.proj = nn.Linear(self.out_dim, dim) + + points = list(itertools.product(range(resolution[0]), range(resolution[1]))) + N = len(points) + attention_offsets = {} + idxs = [] + for p1 in points: + for p2 in points: + offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) + if offset not in attention_offsets: + attention_offsets[offset] = len(attention_offsets) + idxs.append(attention_offsets[offset]) + self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) + self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False) + self.attention_bias_cache = {} + + @torch.no_grad() + def train(self, mode=True): + super().train(mode) + if mode and self.attention_bias_cache: + self.attention_bias_cache = {} # clear ab cache + + def get_attention_biases(self, device: torch.device) -> torch.Tensor: + if torch.jit.is_tracing() or self.training: + return self.attention_biases[:, self.attention_bias_idxs] + else: + device_key = str(device) + if device_key not in self.attention_bias_cache: + self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] + return self.attention_bias_cache[device_key] + + def forward(self, x): + attn_bias = self.get_attention_biases(x.device) + B, N, _ = x.shape + # Normalization + x = self.norm(x) + qkv = self.qkv(x) + # (B, N, num_heads, d) + q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3) + # (B, num_heads, N, d) + q = q.permute(0, 2, 1, 3) + k = k.permute(0, 2, 1, 3) + v = v.permute(0, 2, 1, 3) + + if self.fused_attn: + x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn + attn_bias + attn = attn.softmax(dim=-1) + x = attn @ v + x = x.transpose(1, 2).reshape(B, N, self.out_dim) + x = self.proj(x) + return x + + +class TinyVitBlock(nn.Module): + """ TinyViT Block. + + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. + window_size (int): Window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + drop (float, optional): Dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + local_conv_size (int): the kernel size of the convolution between + Attention and MLP. Default: 3 + act_layer: the activation function. Default: nn.GELU + """ + + def __init__( + self, + dim, + num_heads, + window_size=7, + mlp_ratio=4., + drop=0., + drop_path=0., + local_conv_size=3, + act_layer=nn.GELU + ): + super().__init__() + self.dim = dim + self.num_heads = num_heads + assert window_size > 0, 'window_size must be greater than 0' + self.window_size = window_size + self.mlp_ratio = mlp_ratio + + assert dim % num_heads == 0, 'dim must be divisible by num_heads' + head_dim = dim // num_heads + + window_resolution = (window_size, window_size) + self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + + self.mlp = NormMlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=drop, + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + pad = local_conv_size // 2 + self.local_conv = ConvNorm(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim) + + def forward(self, x): + B, H, W, C = x.shape + L = H * W + + shortcut = x + if H == self.window_size and W == self.window_size: + x = x.reshape(B, L, C) + x = self.attn(x) + x = x.view(B, H, W, C) + else: + pad_b = (self.window_size - H % self.window_size) % self.window_size + pad_r = (self.window_size - W % self.window_size) % self.window_size + padding = pad_b > 0 or pad_r > 0 + if padding: + x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) + + # window partition + pH, pW = H + pad_b, W + pad_r + nH = pH // self.window_size + nW = pW // self.window_size + x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape( + B * nH * nW, self.window_size * self.window_size, C + ) + + x = self.attn(x) + + # window reverse + x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C) + + if padding: + x = x[:, :H, :W].contiguous() + x = shortcut + self.drop_path1(x) + + x = x.permute(0, 3, 1, 2) + x = self.local_conv(x) + x = x.reshape(B, C, L).transpose(1, 2) + + x = x + self.drop_path2(self.mlp(x)) + return x.view(B, H, W, C) + + def extra_repr(self) -> str: + return f"dim={self.dim}, num_heads={self.num_heads}, " \ + f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}" + + +register_notrace_module(TinyVitBlock) + + +class TinyVitStage(nn.Module): + """ A basic TinyViT layer for one stage. + + Args: + dim (int): Number of input channels. + out_dim: the output dimension of the layer + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + drop (float, optional): Dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3 + act_layer: the activation function. Default: nn.GELU + """ + + def __init__( + self, + dim, + out_dim, + depth, + num_heads, + window_size, + mlp_ratio=4., + drop=0., + drop_path=0., + downsample=None, + local_conv_size=3, + act_layer=nn.GELU, + ): + + super().__init__() + self.depth = depth + self.out_dim = out_dim + + # patch merging layer + if downsample is not None: + self.downsample = downsample( + dim=dim, + out_dim=out_dim, + act_layer=act_layer, + ) + else: + self.downsample = nn.Identity() + assert dim == out_dim + + # build blocks + self.blocks = nn.Sequential(*[ + TinyVitBlock( + dim=out_dim, + num_heads=num_heads, + window_size=window_size, + mlp_ratio=mlp_ratio, + drop=drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + local_conv_size=local_conv_size, + act_layer=act_layer, + ) + for i in range(depth)]) + + def forward(self, x): + x = self.downsample(x) + x = x.permute(0, 2, 3, 1) # BCHW -> BHWC + x = self.blocks(x) + x = x.permute(0, 3, 1, 2) # BHWC -> BCHW + return x + + def extra_repr(self) -> str: + return f"dim={self.out_dim}, depth={self.depth}" + + +class TinyVit(nn.Module): + def __init__( + self, + in_chans=3, + num_classes=1000, + global_pool='avg', + embed_dims=(96, 192, 384, 768), + depths=(2, 2, 6, 2), + num_heads=(3, 6, 12, 24), + window_sizes=(7, 7, 14, 7), + mlp_ratio=4., + drop_rate=0., + drop_path_rate=0.1, + use_checkpoint=False, + mbconv_expand_ratio=4.0, + local_conv_size=3, + act_layer=nn.GELU, + ): + super().__init__() + + self.num_classes = num_classes + self.depths = depths + self.num_stages = len(depths) + self.mlp_ratio = mlp_ratio + self.grad_checkpointing = use_checkpoint + + self.patch_embed = PatchEmbed( + in_chs=in_chans, + out_chs=embed_dims[0], + act_layer=act_layer, + ) + + # stochastic depth rate rule + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] + + # build stages + self.stages = nn.Sequential() + stride = self.patch_embed.stride + prev_dim = embed_dims[0] + self.feature_info = [] + for stage_idx in range(self.num_stages): + if stage_idx == 0: + stage = ConvLayer( + dim=prev_dim, + depth=depths[stage_idx], + act_layer=act_layer, + drop_path=dpr[:depths[stage_idx]], + conv_expand_ratio=mbconv_expand_ratio, + ) + else: + out_dim = embed_dims[stage_idx] + drop_path_rate = dpr[sum(depths[:stage_idx]):sum(depths[:stage_idx + 1])] + stage = TinyVitStage( + dim=embed_dims[stage_idx - 1], + out_dim=out_dim, + depth=depths[stage_idx], + num_heads=num_heads[stage_idx], + window_size=window_sizes[stage_idx], + mlp_ratio=self.mlp_ratio, + drop=drop_rate, + local_conv_size=local_conv_size, + drop_path=drop_path_rate, + downsample=PatchMerging, + act_layer=act_layer, + ) + prev_dim = out_dim + stride *= 2 + self.stages.append(stage) + self.feature_info += [dict(num_chs=prev_dim, reduction=stride, module=f'stages.{stage_idx}')] + + # Classifier head + self.num_features = self.head_hidden_size = embed_dims[-1] + + norm_layer_cf = partial(LayerNorm2d, eps=1e-5) + self.head = NormMlpClassifierHead( + self.num_features, + num_classes, + pool_type=global_pool, + norm_layer=norm_layer_cf, + ) + + # init weights + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay_keywords(self): + return {'attention_biases'} + + @torch.jit.ignore + def no_weight_decay(self): + return {x for x in self.state_dict().keys() if 'attention_biases' in x} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^patch_embed', + blocks=r'^stages\.(\d+)' if coarse else [ + (r'^stages\.(\d+).downsample', (0,)), + (r'^stages\.(\d+)\.\w+\.(\d+)', None), + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.patch_embed(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + return x + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + if 'model' in state_dict.keys(): + state_dict = state_dict['model'] + target_sd = model.state_dict() + out_dict = {} + for k, v in state_dict.items(): + if k.endswith('attention_bias_idxs'): + continue + if 'attention_biases' in k: + # TODO: whether move this func into model for dynamic input resolution? (high risk) + v = resize_rel_pos_bias_table_levit(v.T, target_sd[k].shape[::-1]).T + out_dict[k] = v + return out_dict + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, + 'mean': IMAGENET_DEFAULT_MEAN, + 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.conv1.conv', + 'classifier': 'head.fc', + 'pool_size': (7, 7), + 'input_size': (3, 224, 224), + 'crop_pct': 0.95, + **kwargs, + } + + +default_cfgs = generate_default_cfgs({ + 'tiny_vit_5m_224.dist_in22k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_22k_distill.pth', + num_classes=21841 + ), + 'tiny_vit_5m_224.dist_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_22kto1k_distill.pth' + ), + 'tiny_vit_5m_224.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_1k.pth' + ), + 'tiny_vit_11m_224.dist_in22k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_22k_distill.pth', + num_classes=21841 + ), + 'tiny_vit_11m_224.dist_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_22kto1k_distill.pth' + ), + 'tiny_vit_11m_224.in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_1k.pth' + ), + 'tiny_vit_21m_224.dist_in22k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22k_distill.pth', + num_classes=21841 + ), + 'tiny_vit_21m_224.dist_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_distill.pth' + ), + 'tiny_vit_21m_224.in1k': _cfg( + hf_hub_id='timm/', + #url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_1k.pth' + ), + 'tiny_vit_21m_384.dist_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_384_distill.pth', + input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, + ), + 'tiny_vit_21m_512.dist_in22k_ft_in1k': _cfg( + hf_hub_id='timm/', + # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_512_distill.pth', + input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash', + ), +}) + + +def _create_tiny_vit(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) + model = build_model_with_cfg( + TinyVit, + variant, + pretrained, + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + pretrained_filter_fn=checkpoint_filter_fn, + **kwargs + ) + return model + + +@register_model +def tiny_vit_5m_224(pretrained=False, **kwargs): + model_kwargs = dict( + embed_dims=[64, 128, 160, 320], + depths=[2, 2, 6, 2], + num_heads=[2, 4, 5, 10], + window_sizes=[7, 7, 14, 7], + drop_path_rate=0.0, + ) + model_kwargs.update(kwargs) + return _create_tiny_vit('tiny_vit_5m_224', pretrained, **model_kwargs) + + +@register_model +def tiny_vit_11m_224(pretrained=False, **kwargs): + model_kwargs = dict( + embed_dims=[64, 128, 256, 448], + depths=[2, 2, 6, 2], + num_heads=[2, 4, 8, 14], + window_sizes=[7, 7, 14, 7], + drop_path_rate=0.1, + ) + model_kwargs.update(kwargs) + return _create_tiny_vit('tiny_vit_11m_224', pretrained, **model_kwargs) + + +@register_model +def tiny_vit_21m_224(pretrained=False, **kwargs): + model_kwargs = dict( + embed_dims=[96, 192, 384, 576], + depths=[2, 2, 6, 2], + num_heads=[3, 6, 12, 18], + window_sizes=[7, 7, 14, 7], + drop_path_rate=0.2, + ) + model_kwargs.update(kwargs) + return _create_tiny_vit('tiny_vit_21m_224', pretrained, **model_kwargs) + + +@register_model +def tiny_vit_21m_384(pretrained=False, **kwargs): + model_kwargs = dict( + embed_dims=[96, 192, 384, 576], + depths=[2, 2, 6, 2], + num_heads=[3, 6, 12, 18], + window_sizes=[12, 12, 24, 12], + drop_path_rate=0.1, + ) + model_kwargs.update(kwargs) + return _create_tiny_vit('tiny_vit_21m_384', pretrained, **model_kwargs) + + +@register_model +def tiny_vit_21m_512(pretrained=False, **kwargs): + model_kwargs = dict( + embed_dims=[96, 192, 384, 576], + depths=[2, 2, 6, 2], + num_heads=[3, 6, 12, 18], + window_sizes=[16, 16, 32, 16], + drop_path_rate=0.1, + ) + model_kwargs.update(kwargs) + return _create_tiny_vit('tiny_vit_21m_512', pretrained, **model_kwargs) diff --git a/pytorch-image-models/timm/models/tnt.py b/pytorch-image-models/timm/models/tnt.py new file mode 100644 index 0000000000000000000000000000000000000000..9e37770ac7adecb697ce3a7f53b3664da5c743ef --- /dev/null +++ b/pytorch-image-models/timm/models/tnt.py @@ -0,0 +1,374 @@ +""" Transformer in Transformer (TNT) in PyTorch + +A PyTorch implement of TNT as described in +'Transformer in Transformer' - https://arxiv.org/abs/2103.00112 + +The official mindspore code is released and available at +https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT +""" +import math +from typing import Optional + +import torch +import torch.nn as nn +from torch.utils.checkpoint import checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import Mlp, DropPath, trunc_normal_, _assert, to_2tuple +from ._builder import build_model_with_cfg +from ._registry import register_model +from .vision_transformer import resize_pos_embed + +__all__ = ['TNT'] # model_registry will add each entrypoint fn to this + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'pixel_embed.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = { + 'tnt_s_patch16_224': _cfg( + url='https://github.com/contrastive/pytorch-image-models/releases/download/TNT/tnt_s_patch16_224.pth.tar', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + ), + 'tnt_b_patch16_224': _cfg( + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), + ), +} + + +class Attention(nn.Module): + """ Multi-Head Attention + """ + def __init__(self, dim, hidden_dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): + super().__init__() + self.hidden_dim = hidden_dim + self.num_heads = num_heads + head_dim = hidden_dim // num_heads + self.head_dim = head_dim + self.scale = head_dim ** -0.5 + + self.qk = nn.Linear(dim, hidden_dim * 2, bias=qkv_bias) + self.v = nn.Linear(dim, dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop, inplace=True) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop, inplace=True) + + def forward(self, x): + B, N, C = x.shape + qk = self.qk(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + q, k = qk.unbind(0) # make torchscript happy (cannot use tensor as tuple) + v = self.v(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, -1) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + """ TNT Block + """ + def __init__( + self, + dim, + dim_out, + num_pixel, + num_heads_in=4, + num_heads_out=12, + mlp_ratio=4., + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ): + super().__init__() + # Inner transformer + self.norm_in = norm_layer(dim) + self.attn_in = Attention( + dim, + dim, + num_heads=num_heads_in, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + + self.norm_mlp_in = norm_layer(dim) + self.mlp_in = Mlp( + in_features=dim, + hidden_features=int(dim * 4), + out_features=dim, + act_layer=act_layer, + drop=proj_drop, + ) + + self.norm1_proj = norm_layer(dim) + self.proj = nn.Linear(dim * num_pixel, dim_out, bias=True) + + # Outer transformer + self.norm_out = norm_layer(dim_out) + self.attn_out = Attention( + dim_out, + dim_out, + num_heads=num_heads_out, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm_mlp = norm_layer(dim_out) + self.mlp = Mlp( + in_features=dim_out, + hidden_features=int(dim_out * mlp_ratio), + out_features=dim_out, + act_layer=act_layer, + drop=proj_drop, + ) + + def forward(self, pixel_embed, patch_embed): + # inner + pixel_embed = pixel_embed + self.drop_path(self.attn_in(self.norm_in(pixel_embed))) + pixel_embed = pixel_embed + self.drop_path(self.mlp_in(self.norm_mlp_in(pixel_embed))) + # outer + B, N, C = patch_embed.size() + patch_embed = torch.cat( + [patch_embed[:, 0:1], patch_embed[:, 1:] + self.proj(self.norm1_proj(pixel_embed).reshape(B, N - 1, -1))], + dim=1) + patch_embed = patch_embed + self.drop_path(self.attn_out(self.norm_out(patch_embed))) + patch_embed = patch_embed + self.drop_path(self.mlp(self.norm_mlp(patch_embed))) + return pixel_embed, patch_embed + + +class PixelEmbed(nn.Module): + """ Image to Pixel Embedding + """ + def __init__(self, img_size=224, patch_size=16, in_chans=3, in_dim=48, stride=4): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + # grid_size property necessary for resizing positional embedding + self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + num_patches = (self.grid_size[0]) * (self.grid_size[1]) + self.img_size = img_size + self.num_patches = num_patches + self.in_dim = in_dim + new_patch_size = [math.ceil(ps / stride) for ps in patch_size] + self.new_patch_size = new_patch_size + + self.proj = nn.Conv2d(in_chans, self.in_dim, kernel_size=7, padding=3, stride=stride) + self.unfold = nn.Unfold(kernel_size=new_patch_size, stride=new_patch_size) + + def forward(self, x, pixel_pos): + B, C, H, W = x.shape + _assert(H == self.img_size[0], + f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") + _assert(W == self.img_size[1], + f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") + x = self.proj(x) + x = self.unfold(x) + x = x.transpose(1, 2).reshape(B * self.num_patches, self.in_dim, self.new_patch_size[0], self.new_patch_size[1]) + x = x + pixel_pos + x = x.reshape(B * self.num_patches, self.in_dim, -1).transpose(1, 2) + return x + + +class TNT(nn.Module): + """ Transformer in Transformer - https://arxiv.org/abs/2103.00112 + """ + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + num_classes=1000, + global_pool='token', + embed_dim=768, + inner_dim=48, + depth=12, + num_heads_inner=4, + num_heads_outer=12, + mlp_ratio=4., + qkv_bias=False, + drop_rate=0., + pos_drop_rate=0., + proj_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + norm_layer=nn.LayerNorm, + first_stride=4, + ): + super().__init__() + assert global_pool in ('', 'token', 'avg') + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models + self.grad_checkpointing = False + + self.pixel_embed = PixelEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + in_dim=inner_dim, + stride=first_stride, + ) + num_patches = self.pixel_embed.num_patches + self.num_patches = num_patches + new_patch_size = self.pixel_embed.new_patch_size + num_pixel = new_patch_size[0] * new_patch_size[1] + + self.norm1_proj = norm_layer(num_pixel * inner_dim) + self.proj = nn.Linear(num_pixel * inner_dim, embed_dim) + self.norm2_proj = norm_layer(embed_dim) + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.patch_pos = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) + self.pixel_pos = nn.Parameter(torch.zeros(1, inner_dim, new_patch_size[0], new_patch_size[1])) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + blocks = [] + for i in range(depth): + blocks.append(Block( + dim=inner_dim, + dim_out=embed_dim, + num_pixel=num_pixel, + num_heads_in=num_heads_inner, + num_heads_out=num_heads_outer, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + )) + self.blocks = nn.ModuleList(blocks) + self.norm = norm_layer(embed_dim) + + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + trunc_normal_(self.cls_token, std=.02) + trunc_normal_(self.patch_pos, std=.02) + trunc_normal_(self.pixel_pos, std=.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'patch_pos', 'pixel_pos', 'cls_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^cls_token|patch_pos|pixel_pos|pixel_embed|norm[12]_proj|proj', # stem and embed / pos + blocks=[ + (r'^blocks\.(\d+)', None), + (r'^norm', (99999,)), + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'token', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + B = x.shape[0] + pixel_embed = self.pixel_embed(x, self.pixel_pos) + + patch_embed = self.norm2_proj(self.proj(self.norm1_proj(pixel_embed.reshape(B, self.num_patches, -1)))) + patch_embed = torch.cat((self.cls_token.expand(B, -1, -1), patch_embed), dim=1) + patch_embed = patch_embed + self.patch_pos + patch_embed = self.pos_drop(patch_embed) + + if self.grad_checkpointing and not torch.jit.is_scripting(): + for blk in self.blocks: + pixel_embed, patch_embed = checkpoint(blk, pixel_embed, patch_embed) + else: + for blk in self.blocks: + pixel_embed, patch_embed = blk(pixel_embed, patch_embed) + + patch_embed = self.norm(patch_embed) + return patch_embed + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool: + x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + """ convert patch embedding weight from manual patchify + linear proj to conv""" + if state_dict['patch_pos'].shape != model.patch_pos.shape: + state_dict['patch_pos'] = resize_pos_embed(state_dict['patch_pos'], + model.patch_pos, getattr(model, 'num_tokens', 1), model.pixel_embed.grid_size) + return state_dict + + +def _create_tnt(variant, pretrained=False, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + + model = build_model_with_cfg( + TNT, variant, pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + **kwargs) + return model + + +@register_model +def tnt_s_patch16_224(pretrained=False, **kwargs) -> TNT: + model_cfg = dict( + patch_size=16, embed_dim=384, inner_dim=24, depth=12, num_heads_outer=6, + qkv_bias=False) + model = _create_tnt('tnt_s_patch16_224', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + + +@register_model +def tnt_b_patch16_224(pretrained=False, **kwargs) -> TNT: + model_cfg = dict( + patch_size=16, embed_dim=640, inner_dim=40, depth=12, num_heads_outer=10, + qkv_bias=False) + model = _create_tnt('tnt_b_patch16_224', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model diff --git a/pytorch-image-models/timm/models/tresnet.py b/pytorch-image-models/timm/models/tresnet.py new file mode 100644 index 0000000000000000000000000000000000000000..dec24c1f879744d9cb4f59c87ffde02d4c85437d --- /dev/null +++ b/pytorch-image-models/timm/models/tresnet.py @@ -0,0 +1,346 @@ +""" +TResNet: High Performance GPU-Dedicated Architecture +https://arxiv.org/pdf/2003.13630.pdf + +Original model: https://github.com/mrT23/TResNet + +""" +from collections import OrderedDict +from functools import partial +from typing import Optional + +import torch +import torch.nn as nn + +from timm.layers import SpaceToDepth, BlurPool2d, ClassifierHead, SEModule, ConvNormAct, DropPath +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs, register_model_deprecations + +__all__ = ['TResNet'] # model_registry will add each entrypoint fn to this + + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__( + self, + inplanes, + planes, + stride=1, + downsample=None, + use_se=True, + aa_layer=None, + drop_path_rate=0. + ): + super(BasicBlock, self).__init__() + self.downsample = downsample + self.stride = stride + act_layer = partial(nn.LeakyReLU, negative_slope=1e-3) + + self.conv1 = ConvNormAct(inplanes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer) + self.conv2 = ConvNormAct(planes, planes, kernel_size=3, stride=1, apply_act=False) + self.act = nn.ReLU(inplace=True) + + rd_chs = max(planes * self.expansion // 4, 64) + self.se = SEModule(planes * self.expansion, rd_channels=rd_chs) if use_se else None + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + + def forward(self, x): + if self.downsample is not None: + shortcut = self.downsample(x) + else: + shortcut = x + out = self.conv1(x) + out = self.conv2(out) + if self.se is not None: + out = self.se(out) + out = self.drop_path(out) + shortcut + out = self.act(out) + return out + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__( + self, + inplanes, + planes, + stride=1, + downsample=None, + use_se=True, + act_layer=None, + aa_layer=None, + drop_path_rate=0., + ): + super(Bottleneck, self).__init__() + self.downsample = downsample + self.stride = stride + act_layer = act_layer or partial(nn.LeakyReLU, negative_slope=1e-3) + + self.conv1 = ConvNormAct( + inplanes, planes, kernel_size=1, stride=1, act_layer=act_layer) + self.conv2 = ConvNormAct( + planes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer) + + reduction_chs = max(planes * self.expansion // 8, 64) + self.se = SEModule(planes, rd_channels=reduction_chs) if use_se else None + + self.conv3 = ConvNormAct( + planes, planes * self.expansion, kernel_size=1, stride=1, apply_act=False) + + self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() + self.act = nn.ReLU(inplace=True) + + def forward(self, x): + if self.downsample is not None: + shortcut = self.downsample(x) + else: + shortcut = x + out = self.conv1(x) + out = self.conv2(out) + if self.se is not None: + out = self.se(out) + out = self.conv3(out) + out = self.drop_path(out) + shortcut + out = self.act(out) + return out + + +class TResNet(nn.Module): + def __init__( + self, + layers, + in_chans=3, + num_classes=1000, + width_factor=1.0, + v2=False, + global_pool='fast', + drop_rate=0., + drop_path_rate=0., + ): + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + super(TResNet, self).__init__() + + aa_layer = BlurPool2d + act_layer = nn.LeakyReLU + + # TResnet stages + self.inplanes = int(64 * width_factor) + self.planes = int(64 * width_factor) + if v2: + self.inplanes = self.inplanes // 8 * 8 + self.planes = self.planes // 8 * 8 + + dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] + conv1 = ConvNormAct(in_chans * 16, self.planes, stride=1, kernel_size=3, act_layer=act_layer) + layer1 = self._make_layer( + Bottleneck if v2 else BasicBlock, + self.planes, layers[0], stride=1, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[0]) + layer2 = self._make_layer( + Bottleneck if v2 else BasicBlock, + self.planes * 2, layers[1], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[1]) + layer3 = self._make_layer( + Bottleneck, + self.planes * 4, layers[2], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[2]) + layer4 = self._make_layer( + Bottleneck, + self.planes * 8, layers[3], stride=2, use_se=False, aa_layer=aa_layer, drop_path_rate=dpr[3]) + + # body + self.body = nn.Sequential(OrderedDict([ + ('s2d', SpaceToDepth()), + ('conv1', conv1), + ('layer1', layer1), + ('layer2', layer2), + ('layer3', layer3), + ('layer4', layer4), + ])) + + self.feature_info = [ + dict(num_chs=self.planes, reduction=2, module=''), # Not with S2D? + dict(num_chs=self.planes * (Bottleneck.expansion if v2 else 1), reduction=4, module='body.layer1'), + dict(num_chs=self.planes * 2 * (Bottleneck.expansion if v2 else 1), reduction=8, module='body.layer2'), + dict(num_chs=self.planes * 4 * Bottleneck.expansion, reduction=16, module='body.layer3'), + dict(num_chs=self.planes * 8 * Bottleneck.expansion, reduction=32, module='body.layer4'), + ] + + # head + self.num_features = self.head_hidden_size = (self.planes * 8) * Bottleneck.expansion + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + + # model initialization + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') + if isinstance(m, nn.Linear): + m.weight.data.normal_(0, 0.01) + + # residual connections special initialization + for m in self.modules(): + if isinstance(m, BasicBlock): + nn.init.zeros_(m.conv2.bn.weight) + if isinstance(m, Bottleneck): + nn.init.zeros_(m.conv3.bn.weight) + + def _make_layer(self, block, planes, blocks, stride=1, use_se=True, aa_layer=None, drop_path_rate=0.): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + layers = [] + if stride == 2: + # avg pooling before 1x1 conv + layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) + layers += [ConvNormAct( + self.inplanes, planes * block.expansion, kernel_size=1, stride=1, apply_act=False)] + downsample = nn.Sequential(*layers) + + layers = [] + for i in range(blocks): + layers.append(block( + self.inplanes, + planes, + stride=stride if i == 0 else 1, + downsample=downsample if i == 0 else None, + use_se=use_se, + aa_layer=aa_layer, + drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate, + )) + self.inplanes = planes * block.expansion + return nn.Sequential(*layers) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict(stem=r'^body\.conv1', blocks=r'^body\.layer(\d+)' if coarse else r'^body\.layer(\d+)\.(\d+)') + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = self.body.s2d(x) + x = self.body.conv1(x) + x = checkpoint_seq([ + self.body.layer1, + self.body.layer2, + self.body.layer3, + self.body.layer4], + x, flatten=True) + else: + x = self.body(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + if 'body.conv1.conv.weight' in state_dict: + return state_dict + + import re + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + out_dict = {} + for k, v in state_dict.items(): + k = re.sub(r'conv(\d+)\.0.0', lambda x: f'conv{int(x.group(1))}.conv', k) + k = re.sub(r'conv(\d+)\.0.1', lambda x: f'conv{int(x.group(1))}.bn', k) + k = re.sub(r'conv(\d+)\.0', lambda x: f'conv{int(x.group(1))}.conv', k) + k = re.sub(r'conv(\d+)\.1', lambda x: f'conv{int(x.group(1))}.bn', k) + k = re.sub(r'downsample\.(\d+)\.0', lambda x: f'downsample.{int(x.group(1))}.conv', k) + k = re.sub(r'downsample\.(\d+)\.1', lambda x: f'downsample.{int(x.group(1))}.bn', k) + if k.endswith('bn.weight'): + # convert weight from inplace_abn to batchnorm + v = v.abs().add(1e-5) + out_dict[k] = v + return out_dict + + +def _create_tresnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + TResNet, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=(1, 2, 3, 4), flatten_sequential=True), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': (0., 0., 0.), 'std': (1., 1., 1.), + 'first_conv': 'body.conv1.conv', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'tresnet_m.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), + 'tresnet_m.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221), + 'tresnet_m.miil_in1k': _cfg(hf_hub_id='timm/'), + 'tresnet_l.miil_in1k': _cfg(hf_hub_id='timm/'), + 'tresnet_xl.miil_in1k': _cfg(hf_hub_id='timm/'), + 'tresnet_m.miil_in1k_448': _cfg( + input_size=(3, 448, 448), pool_size=(14, 14), + hf_hub_id='timm/'), + 'tresnet_l.miil_in1k_448': _cfg( + input_size=(3, 448, 448), pool_size=(14, 14), + hf_hub_id='timm/'), + 'tresnet_xl.miil_in1k_448': _cfg( + input_size=(3, 448, 448), pool_size=(14, 14), + hf_hub_id='timm/'), + + 'tresnet_v2_l.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), + 'tresnet_v2_l.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221), +}) + + +@register_model +def tresnet_m(pretrained=False, **kwargs) -> TResNet: + model_args = dict(layers=[3, 4, 11, 3]) + return _create_tresnet('tresnet_m', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def tresnet_l(pretrained=False, **kwargs) -> TResNet: + model_args = dict(layers=[4, 5, 18, 3], width_factor=1.2) + return _create_tresnet('tresnet_l', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def tresnet_xl(pretrained=False, **kwargs) -> TResNet: + model_args = dict(layers=[4, 5, 24, 3], width_factor=1.3) + return _create_tresnet('tresnet_xl', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def tresnet_v2_l(pretrained=False, **kwargs) -> TResNet: + model_args = dict(layers=[3, 4, 23, 3], width_factor=1.0, v2=True) + return _create_tresnet('tresnet_v2_l', pretrained=pretrained, **dict(model_args, **kwargs)) + + +register_model_deprecations(__name__, { + 'tresnet_m_miil_in21k': 'tresnet_m.miil_in21k', + 'tresnet_m_448': 'tresnet_m.miil_in1k_448', + 'tresnet_l_448': 'tresnet_l.miil_in1k_448', + 'tresnet_xl_448': 'tresnet_xl.miil_in1k_448', +}) \ No newline at end of file diff --git a/pytorch-image-models/timm/models/twins.py b/pytorch-image-models/timm/models/twins.py new file mode 100644 index 0000000000000000000000000000000000000000..62029b94993df5fa86901cbf3c553f3444bb024a --- /dev/null +++ b/pytorch-image-models/timm/models/twins.py @@ -0,0 +1,581 @@ +""" Twins +A PyTorch impl of : `Twins: Revisiting the Design of Spatial Attention in Vision Transformers` + - https://arxiv.org/pdf/2104.13840.pdf + +Code/weights from https://github.com/Meituan-AutoML/Twins, original copyright/license info below + +""" +# -------------------------------------------------------- +# Twins +# Copyright (c) 2021 Meituan +# Licensed under The Apache 2.0 License [see LICENSE for details] +# Written by Xinjie Li, Xiangxiang Chu +# -------------------------------------------------------- +import math +from functools import partial +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import Mlp, DropPath, to_2tuple, trunc_normal_, use_fused_attn +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_module +from ._registry import register_model, generate_default_cfgs +from .vision_transformer import Attention + +__all__ = ['Twins'] # model_registry will add each entrypoint fn to this + +Size_ = Tuple[int, int] + + +@register_notrace_module # reason: FX can't symbolically trace control flow in forward method +class LocallyGroupedAttn(nn.Module): + """ LSA: self attention within a group + """ + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1): + assert ws != 1 + super(LocallyGroupedAttn, self).__init__() + assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." + + self.dim = dim + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Linear(dim, dim * 3, bias=True) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.ws = ws + + def forward(self, x, size: Size_): + # There are two implementations for this function, zero padding or mask. We don't observe obvious difference for + # both. You can choose any one, we recommend forward_padding because it's neat. However, + # the masking implementation is more reasonable and accurate. + B, N, C = x.shape + H, W = size + x = x.view(B, H, W, C) + pad_l = pad_t = 0 + pad_r = (self.ws - W % self.ws) % self.ws + pad_b = (self.ws - H % self.ws) % self.ws + x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) + _, Hp, Wp, _ = x.shape + _h, _w = Hp // self.ws, Wp // self.ws + x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) + qkv = self.qkv(x).reshape( + B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5) + q, k, v = qkv.unbind(0) + + if self.fused_attn: + x = F.scaled_dot_product_attention( + q, k, v, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C) + x = x.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C) + if pad_r > 0 or pad_b > 0: + x = x[:, :H, :W, :].contiguous() + x = x.reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + # def forward_mask(self, x, size: Size_): + # B, N, C = x.shape + # H, W = size + # x = x.view(B, H, W, C) + # pad_l = pad_t = 0 + # pad_r = (self.ws - W % self.ws) % self.ws + # pad_b = (self.ws - H % self.ws) % self.ws + # x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) + # _, Hp, Wp, _ = x.shape + # _h, _w = Hp // self.ws, Wp // self.ws + # mask = torch.zeros((1, Hp, Wp), device=x.device) + # mask[:, -pad_b:, :].fill_(1) + # mask[:, :, -pad_r:].fill_(1) + # + # x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) # B, _h, _w, ws, ws, C + # mask = mask.reshape(1, _h, self.ws, _w, self.ws).transpose(2, 3).reshape(1, _h * _w, self.ws * self.ws) + # attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3) # 1, _h*_w, ws*ws, ws*ws + # attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-1000.0)).masked_fill(attn_mask == 0, float(0.0)) + # qkv = self.qkv(x).reshape( + # B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5) + # # n_h, B, _w*_h, nhead, ws*ws, dim + # q, k, v = qkv[0], qkv[1], qkv[2] # B, _h*_w, n_head, ws*ws, dim_head + # attn = (q @ k.transpose(-2, -1)) * self.scale # B, _h*_w, n_head, ws*ws, ws*ws + # attn = attn + attn_mask.unsqueeze(2) + # attn = attn.softmax(dim=-1) + # attn = self.attn_drop(attn) # attn @v -> B, _h*_w, n_head, ws*ws, dim_head + # attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C) + # x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C) + # if pad_r > 0 or pad_b > 0: + # x = x[:, :H, :W, :].contiguous() + # x = x.reshape(B, N, C) + # x = self.proj(x) + # x = self.proj_drop(x) + # return x + + +class GlobalSubSampleAttn(nn.Module): + """ GSA: using a key to summarize the information for a group to be efficient. + """ + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1): + super().__init__() + assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." + + self.dim = dim + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.q = nn.Linear(dim, dim, bias=True) + self.kv = nn.Linear(dim, dim * 2, bias=True) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + self.sr_ratio = sr_ratio + if sr_ratio > 1: + self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) + self.norm = nn.LayerNorm(dim) + else: + self.sr = None + self.norm = None + + def forward(self, x, size: Size_): + B, N, C = x.shape + q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) + + if self.sr is not None: + x = x.permute(0, 2, 1).reshape(B, C, *size) + x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1) + x = self.norm(x) + kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + k, v = kv.unbind(0) + + if self.fused_attn: + x = torch.nn.functional.scaled_dot_product_attention( + q, k, v, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + + return x + + +class Block(nn.Module): + + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + sr_ratio=1, + ws=None, + ): + super().__init__() + self.norm1 = norm_layer(dim) + if ws is None: + self.attn = Attention(dim, num_heads, False, None, attn_drop, proj_drop) + elif ws == 1: + self.attn = GlobalSubSampleAttn(dim, num_heads, attn_drop, proj_drop, sr_ratio) + else: + self.attn = LocallyGroupedAttn(dim, num_heads, attn_drop, proj_drop, ws) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x, size: Size_): + x = x + self.drop_path1(self.attn(self.norm1(x), size)) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + return x + + +class PosConv(nn.Module): + # PEG from https://arxiv.org/abs/2102.10882 + def __init__(self, in_chans, embed_dim=768, stride=1): + super(PosConv, self).__init__() + self.proj = nn.Sequential( + nn.Conv2d(in_chans, embed_dim, 3, stride, 1, bias=True, groups=embed_dim), + ) + self.stride = stride + + def forward(self, x, size: Size_): + B, N, C = x.shape + cnn_feat_token = x.transpose(1, 2).view(B, C, *size) + x = self.proj(cnn_feat_token) + if self.stride == 1: + x += cnn_feat_token + x = x.flatten(2).transpose(1, 2) + return x + + def no_weight_decay(self): + return ['proj.%d.weight' % i for i in range(4)] + + +class PatchEmbed(nn.Module): + """ Image to Patch Embedding + """ + + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + + self.img_size = img_size + self.patch_size = patch_size + assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \ + f"img_size {img_size} should be divided by patch_size {patch_size}." + self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] + self.num_patches = self.H * self.W + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + self.norm = nn.LayerNorm(embed_dim) + + def forward(self, x) -> Tuple[torch.Tensor, Size_]: + B, C, H, W = x.shape + + x = self.proj(x).flatten(2).transpose(1, 2) + x = self.norm(x) + out_size = (H // self.patch_size[0], W // self.patch_size[1]) + + return x, out_size + + +class Twins(nn.Module): + """ Twins Vision Transfomer (Revisiting Spatial Attention) + + Adapted from PVT (PyramidVisionTransformer) class at https://github.com/whai362/PVT.git + """ + def __init__( + self, + img_size=224, + patch_size=4, + in_chans=3, + num_classes=1000, + global_pool='avg', + embed_dims=(64, 128, 256, 512), + num_heads=(1, 2, 4, 8), + mlp_ratios=(4, 4, 4, 4), + depths=(3, 4, 6, 3), + sr_ratios=(8, 4, 2, 1), + wss=None, + drop_rate=0., + pos_drop_rate=0., + proj_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + norm_layer=partial(nn.LayerNorm, eps=1e-6), + block_cls=Block, + ): + super().__init__() + self.num_classes = num_classes + self.global_pool = global_pool + self.depths = depths + self.embed_dims = embed_dims + self.num_features = self.head_hidden_size = embed_dims[-1] + self.grad_checkpointing = False + + img_size = to_2tuple(img_size) + prev_chs = in_chans + self.patch_embeds = nn.ModuleList() + self.pos_drops = nn.ModuleList() + for i in range(len(depths)): + self.patch_embeds.append(PatchEmbed(img_size, patch_size, prev_chs, embed_dims[i])) + self.pos_drops.append(nn.Dropout(p=pos_drop_rate)) + prev_chs = embed_dims[i] + img_size = tuple(t // patch_size for t in img_size) + patch_size = 2 + + self.blocks = nn.ModuleList() + self.feature_info = [] + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule + cur = 0 + for k in range(len(depths)): + _block = nn.ModuleList([block_cls( + dim=embed_dims[k], + num_heads=num_heads[k], + mlp_ratio=mlp_ratios[k], + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[cur + i], + norm_layer=norm_layer, + sr_ratio=sr_ratios[k], + ws=1 if wss is None or i % 2 == 1 else wss[k]) for i in range(depths[k])], + ) + self.blocks.append(_block) + self.feature_info += [dict(module=f'block.{k}', num_chs=embed_dims[k], reduction=2**(2+k))] + cur += depths[k] + + self.pos_block = nn.ModuleList([PosConv(embed_dim, embed_dim) for embed_dim in embed_dims]) + + self.norm = norm_layer(self.num_features) + + # classification head + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + # init weights + self.apply(self._init_weights) + + @torch.jit.ignore + def no_weight_decay(self): + return set(['pos_block.' + n for n, p in self.pos_block.named_parameters()]) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + matcher = dict( + stem=r'^patch_embeds.0', # stem and embed + blocks=[ + (r'^(?:blocks|patch_embeds|pos_block)\.(\d+)', None), + ('^norm', (99999,)) + ] if coarse else [ + (r'^blocks\.(\d+)\.(\d+)', None), + (r'^(?:patch_embeds|pos_block)\.(\d+)', (0,)), + (r'^norm', (99999,)) + ] + ) + return matcher + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'avg') + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + elif isinstance(m, nn.Conv2d): + fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + fan_out //= m.groups + m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) + if m.bias is not None: + m.bias.data.zero_() + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt == 'NCHW', 'Output shape for Twins must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + + # FIXME slice block/pos_block if < max + + # forward pass + B, _, height, width = x.shape + for i, (embed, drop, blocks, pos_blk) in enumerate(zip( + self.patch_embeds, self.pos_drops, self.blocks, self.pos_block) + ): + x, size = embed(x) + x = drop(x) + for j, blk in enumerate(blocks): + x = blk(x, size) + if j == 0: + x = pos_blk(x, size) # PEG here + + if i < len(self.depths) - 1: + x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous() + if i in take_indices: + intermediates.append(x) + else: + if i in take_indices: + # only last feature can be normed + x_feat = self.norm(x) if norm else x + intermediates.append(x_feat.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous()) + + if intermediates_only: + return intermediates + + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + # FIXME add block pruning + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + B = x.shape[0] + for i, (embed, drop, blocks, pos_blk) in enumerate( + zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)): + x, size = embed(x) + x = drop(x) + for j, blk in enumerate(blocks): + x = blk(x, size) + if j == 0: + x = pos_blk(x, size) # PEG here + if i < len(self.depths) - 1: + x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous() + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool == 'avg': + x = x.mean(dim=1) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_twins(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 4) + model = build_model_with_cfg( + Twins, variant, pretrained, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embeds.0.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'twins_pcpvt_small.in1k': _cfg(hf_hub_id='timm/'), + 'twins_pcpvt_base.in1k': _cfg(hf_hub_id='timm/'), + 'twins_pcpvt_large.in1k': _cfg(hf_hub_id='timm/'), + 'twins_svt_small.in1k': _cfg(hf_hub_id='timm/'), + 'twins_svt_base.in1k': _cfg(hf_hub_id='timm/'), + 'twins_svt_large.in1k': _cfg(hf_hub_id='timm/'), +}) + + +@register_model +def twins_pcpvt_small(pretrained=False, **kwargs) -> Twins: + model_args = dict( + patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], + depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_pcpvt_small', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def twins_pcpvt_base(pretrained=False, **kwargs) -> Twins: + model_args = dict( + patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], + depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_pcpvt_base', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def twins_pcpvt_large(pretrained=False, **kwargs) -> Twins: + model_args = dict( + patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], + depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_pcpvt_large', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def twins_svt_small(pretrained=False, **kwargs) -> Twins: + model_args = dict( + patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4], + depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_svt_small', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def twins_svt_base(pretrained=False, **kwargs) -> Twins: + model_args = dict( + patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4], + depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_svt_base', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def twins_svt_large(pretrained=False, **kwargs) -> Twins: + model_args = dict( + patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4], + depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1]) + return _create_twins('twins_svt_large', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/vgg.py b/pytorch-image-models/timm/models/vgg.py new file mode 100644 index 0000000000000000000000000000000000000000..4136b12c7c116bc3edf84df4d6f17a4011e301f0 --- /dev/null +++ b/pytorch-image-models/timm/models/vgg.py @@ -0,0 +1,298 @@ +"""VGG + +Adapted from https://github.com/pytorch/vision 'vgg.py' (BSD-3-Clause) with a few changes for +timm functionality. + +Copyright 2021 Ross Wightman +""" +from typing import Any, Dict, List, Optional, Union, cast + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ClassifierHead +from ._builder import build_model_with_cfg +from ._features_fx import register_notrace_module +from ._registry import register_model, generate_default_cfgs + +__all__ = ['VGG'] + + +cfgs: Dict[str, List[Union[str, int]]] = { + 'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], + 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], + 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], + 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], +} + + +@register_notrace_module # reason: FX can't symbolically trace control flow in forward method +class ConvMlp(nn.Module): + + def __init__( + self, + in_features=512, + out_features=4096, + kernel_size=7, + mlp_ratio=1.0, + drop_rate: float = 0.2, + act_layer: nn.Module = None, + conv_layer: nn.Module = None, + ): + super(ConvMlp, self).__init__() + self.input_kernel_size = kernel_size + mid_features = int(out_features * mlp_ratio) + self.fc1 = conv_layer(in_features, mid_features, kernel_size, bias=True) + self.act1 = act_layer(True) + self.drop = nn.Dropout(drop_rate) + self.fc2 = conv_layer(mid_features, out_features, 1, bias=True) + self.act2 = act_layer(True) + + def forward(self, x): + if x.shape[-2] < self.input_kernel_size or x.shape[-1] < self.input_kernel_size: + # keep the input size >= 7x7 + output_size = (max(self.input_kernel_size, x.shape[-2]), max(self.input_kernel_size, x.shape[-1])) + x = F.adaptive_avg_pool2d(x, output_size) + x = self.fc1(x) + x = self.act1(x) + x = self.drop(x) + x = self.fc2(x) + x = self.act2(x) + return x + + +class VGG(nn.Module): + + def __init__( + self, + cfg: List[Any], + num_classes: int = 1000, + in_chans: int = 3, + output_stride: int = 32, + mlp_ratio: float = 1.0, + act_layer: nn.Module = nn.ReLU, + conv_layer: nn.Module = nn.Conv2d, + norm_layer: nn.Module = None, + global_pool: str = 'avg', + drop_rate: float = 0., + ) -> None: + super(VGG, self).__init__() + assert output_stride == 32 + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + self.use_norm = norm_layer is not None + self.feature_info = [] + + prev_chs = in_chans + net_stride = 1 + pool_layer = nn.MaxPool2d + layers: List[nn.Module] = [] + for v in cfg: + last_idx = len(layers) - 1 + if v == 'M': + self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{last_idx}')) + layers += [pool_layer(kernel_size=2, stride=2)] + net_stride *= 2 + else: + v = cast(int, v) + conv2d = conv_layer(prev_chs, v, kernel_size=3, padding=1) + if norm_layer is not None: + layers += [conv2d, norm_layer(v), act_layer(inplace=True)] + else: + layers += [conv2d, act_layer(inplace=True)] + prev_chs = v + self.features = nn.Sequential(*layers) + self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{len(layers) - 1}')) + + self.num_features = prev_chs + self.head_hidden_size = 4096 + self.pre_logits = ConvMlp( + prev_chs, + self.head_hidden_size, + 7, + mlp_ratio=mlp_ratio, + drop_rate=drop_rate, + act_layer=act_layer, + conv_layer=conv_layer, + ) + self.head = ClassifierHead( + self.head_hidden_size, + num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + ) + + self._initialize_weights() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + # this treats BN layers as separate groups for bn variants, a lot of effort to fix that + return dict(stem=r'^features\.0', blocks=r'^features\.(\d+)') + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, 'gradient checkpointing not supported' + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.features(x) + return x + + def forward_head(self, x: torch.Tensor, pre_logits: bool = False): + x = self.pre_logits(x) + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + + def _initialize_weights(self) -> None: + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.BatchNorm2d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Linear): + nn.init.normal_(m.weight, 0, 0.01) + nn.init.constant_(m.bias, 0) + + +def _filter_fn(state_dict): + """ convert patch embedding weight from manual patchify + linear proj to conv""" + out_dict = {} + for k, v in state_dict.items(): + k_r = k + k_r = k_r.replace('classifier.0', 'pre_logits.fc1') + k_r = k_r.replace('classifier.3', 'pre_logits.fc2') + k_r = k_r.replace('classifier.6', 'head.fc') + if 'classifier.0.weight' in k: + v = v.reshape(-1, 512, 7, 7) + if 'classifier.3.weight' in k: + v = v.reshape(-1, 4096, 1, 1) + out_dict[k_r] = v + return out_dict + + +def _create_vgg(variant: str, pretrained: bool, **kwargs: Any) -> VGG: + cfg = variant.split('_')[0] + # NOTE: VGG is one of few models with stride==1 features w/ 6 out_indices [0..5] + out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4, 5)) + model = build_model_with_cfg( + VGG, + variant, + pretrained, + model_cfg=cfgs[cfg], + feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), + pretrained_filter_fn=_filter_fn, + **kwargs, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bilinear', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'features.0', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'vgg11.tv_in1k': _cfg(hf_hub_id='timm/'), + 'vgg13.tv_in1k': _cfg(hf_hub_id='timm/'), + 'vgg16.tv_in1k': _cfg(hf_hub_id='timm/'), + 'vgg19.tv_in1k': _cfg(hf_hub_id='timm/'), + 'vgg11_bn.tv_in1k': _cfg(hf_hub_id='timm/'), + 'vgg13_bn.tv_in1k': _cfg(hf_hub_id='timm/'), + 'vgg16_bn.tv_in1k': _cfg(hf_hub_id='timm/'), + 'vgg19_bn.tv_in1k': _cfg(hf_hub_id='timm/'), +}) + + +@register_model +def vgg11(pretrained: bool = False, **kwargs: Any) -> VGG: + r"""VGG 11-layer model (configuration "A") from + `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ + """ + model_args = dict(**kwargs) + return _create_vgg('vgg11', pretrained=pretrained, **model_args) + + +@register_model +def vgg11_bn(pretrained: bool = False, **kwargs: Any) -> VGG: + r"""VGG 11-layer model (configuration "A") with batch normalization + `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ + """ + model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) + return _create_vgg('vgg11_bn', pretrained=pretrained, **model_args) + + +@register_model +def vgg13(pretrained: bool = False, **kwargs: Any) -> VGG: + r"""VGG 13-layer model (configuration "B") + `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ + """ + model_args = dict(**kwargs) + return _create_vgg('vgg13', pretrained=pretrained, **model_args) + + +@register_model +def vgg13_bn(pretrained: bool = False, **kwargs: Any) -> VGG: + r"""VGG 13-layer model (configuration "B") with batch normalization + `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ + """ + model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) + return _create_vgg('vgg13_bn', pretrained=pretrained, **model_args) + + +@register_model +def vgg16(pretrained: bool = False, **kwargs: Any) -> VGG: + r"""VGG 16-layer model (configuration "D") + `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ + """ + model_args = dict(**kwargs) + return _create_vgg('vgg16', pretrained=pretrained, **model_args) + + +@register_model +def vgg16_bn(pretrained: bool = False, **kwargs: Any) -> VGG: + r"""VGG 16-layer model (configuration "D") with batch normalization + `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ + """ + model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) + return _create_vgg('vgg16_bn', pretrained=pretrained, **model_args) + + +@register_model +def vgg19(pretrained: bool = False, **kwargs: Any) -> VGG: + r"""VGG 19-layer model (configuration "E") + `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ + """ + model_args = dict(**kwargs) + return _create_vgg('vgg19', pretrained=pretrained, **model_args) + + +@register_model +def vgg19_bn(pretrained: bool = False, **kwargs: Any) -> VGG: + r"""VGG 19-layer model (configuration 'E') with batch normalization + `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ + """ + model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs) + return _create_vgg('vgg19_bn', pretrained=pretrained, **model_args) \ No newline at end of file diff --git a/pytorch-image-models/timm/models/visformer.py b/pytorch-image-models/timm/models/visformer.py new file mode 100644 index 0000000000000000000000000000000000000000..2ed3be5da86107feac6e760343b2c57e97b651b3 --- /dev/null +++ b/pytorch-image-models/timm/models/visformer.py @@ -0,0 +1,549 @@ +""" Visformer + +Paper: Visformer: The Vision-friendly Transformer - https://arxiv.org/abs/2104.12533 + +From original at https://github.com/danczs/Visformer + +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman +""" + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import to_2tuple, trunc_normal_, DropPath, PatchEmbed, LayerNorm2d, create_classifier, use_fused_attn +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +__all__ = ['Visformer'] + + +class SpatialMlp(nn.Module): + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + drop=0., + group=8, + spatial_conv=False, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + drop_probs = to_2tuple(drop) + + self.in_features = in_features + self.out_features = out_features + self.spatial_conv = spatial_conv + if self.spatial_conv: + if group < 2: # net setting + hidden_features = in_features * 5 // 6 + else: + hidden_features = in_features * 2 + self.hidden_features = hidden_features + self.group = group + self.conv1 = nn.Conv2d(in_features, hidden_features, 1, stride=1, padding=0, bias=False) + self.act1 = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + if self.spatial_conv: + self.conv2 = nn.Conv2d( + hidden_features, hidden_features, 3, stride=1, padding=1, groups=self.group, bias=False) + self.act2 = act_layer() + else: + self.conv2 = None + self.act2 = None + self.conv3 = nn.Conv2d(hidden_features, out_features, 1, stride=1, padding=0, bias=False) + self.drop3 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.conv1(x) + x = self.act1(x) + x = self.drop1(x) + if self.conv2 is not None: + x = self.conv2(x) + x = self.act2(x) + x = self.conv3(x) + x = self.drop3(x) + return x + + +class Attention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__(self, dim, num_heads=8, head_dim_ratio=1., attn_drop=0., proj_drop=0.): + super().__init__() + self.dim = dim + self.num_heads = num_heads + head_dim = round(dim // num_heads * head_dim_ratio) + self.head_dim = head_dim + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn(experimental=True) + + self.qkv = nn.Conv2d(dim, head_dim * num_heads * 3, 1, stride=1, padding=0, bias=False) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Conv2d(self.head_dim * self.num_heads, dim, 1, stride=1, padding=0, bias=False) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + B, C, H, W = x.shape + x = self.qkv(x).reshape(B, 3, self.num_heads, self.head_dim, -1).permute(1, 0, 2, 4, 3) + q, k, v = x.unbind(0) + + if self.fused_attn: + x = torch.nn.functional.scaled_dot_product_attention( + q.contiguous(), k.contiguous(), v.contiguous(), + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.permute(0, 1, 3, 2).reshape(B, -1, H, W) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + def __init__( + self, + dim, + num_heads, + head_dim_ratio=1., + mlp_ratio=4., + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=LayerNorm2d, + group=8, + attn_disabled=False, + spatial_conv=False, + ): + super().__init__() + self.spatial_conv = spatial_conv + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + if attn_disabled: + self.norm1 = None + self.attn = None + else: + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + head_dim_ratio=head_dim_ratio, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + + self.norm2 = norm_layer(dim) + self.mlp = SpatialMlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + group=group, + spatial_conv=spatial_conv, + ) + + def forward(self, x): + if self.attn is not None: + x = x + self.drop_path(self.attn(self.norm1(x))) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class Visformer(nn.Module): + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + num_classes=1000, + init_channels=32, + embed_dim=384, + depth=12, + num_heads=6, + mlp_ratio=4., + drop_rate=0., + pos_drop_rate=0., + proj_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + norm_layer=LayerNorm2d, + attn_stage='111', + use_pos_embed=True, + spatial_conv='111', + vit_stem=False, + group=8, + global_pool='avg', + conv_init=False, + embed_norm=None, + ): + super().__init__() + img_size = to_2tuple(img_size) + self.num_classes = num_classes + self.embed_dim = embed_dim + self.init_channels = init_channels + self.img_size = img_size + self.vit_stem = vit_stem + self.conv_init = conv_init + if isinstance(depth, (list, tuple)): + self.stage_num1, self.stage_num2, self.stage_num3 = depth + depth = sum(depth) + else: + self.stage_num1 = self.stage_num3 = depth // 3 + self.stage_num2 = depth - self.stage_num1 - self.stage_num3 + self.use_pos_embed = use_pos_embed + self.grad_checkpointing = False + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + # stage 1 + if self.vit_stem: + self.stem = None + self.patch_embed1 = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + norm_layer=embed_norm, + flatten=False, + ) + img_size = [x // patch_size for x in img_size] + else: + if self.init_channels is None: + self.stem = None + self.patch_embed1 = PatchEmbed( + img_size=img_size, + patch_size=patch_size // 2, + in_chans=in_chans, + embed_dim=embed_dim // 2, + norm_layer=embed_norm, + flatten=False, + ) + img_size = [x // (patch_size // 2) for x in img_size] + else: + self.stem = nn.Sequential( + nn.Conv2d(in_chans, self.init_channels, 7, stride=2, padding=3, bias=False), + nn.BatchNorm2d(self.init_channels), + nn.ReLU(inplace=True) + ) + img_size = [x // 2 for x in img_size] + self.patch_embed1 = PatchEmbed( + img_size=img_size, + patch_size=patch_size // 4, + in_chans=self.init_channels, + embed_dim=embed_dim // 2, + norm_layer=embed_norm, + flatten=False, + ) + img_size = [x // (patch_size // 4) for x in img_size] + + if self.use_pos_embed: + if self.vit_stem: + self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim, *img_size)) + else: + self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim//2, *img_size)) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + else: + self.pos_embed1 = None + + self.stage1 = nn.Sequential(*[ + Block( + dim=embed_dim//2, + num_heads=num_heads, + head_dim_ratio=0.5, + mlp_ratio=mlp_ratio, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + group=group, + attn_disabled=(attn_stage[0] == '0'), + spatial_conv=(spatial_conv[0] == '1'), + ) + for i in range(self.stage_num1) + ]) + + # stage2 + if not self.vit_stem: + self.patch_embed2 = PatchEmbed( + img_size=img_size, + patch_size=patch_size // 8, + in_chans=embed_dim // 2, + embed_dim=embed_dim, + norm_layer=embed_norm, + flatten=False, + ) + img_size = [x // (patch_size // 8) for x in img_size] + if self.use_pos_embed: + self.pos_embed2 = nn.Parameter(torch.zeros(1, embed_dim, *img_size)) + else: + self.pos_embed2 = None + else: + self.patch_embed2 = None + self.stage2 = nn.Sequential(*[ + Block( + dim=embed_dim, + num_heads=num_heads, + head_dim_ratio=1.0, + mlp_ratio=mlp_ratio, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + group=group, + attn_disabled=(attn_stage[1] == '0'), + spatial_conv=(spatial_conv[1] == '1'), + ) + for i in range(self.stage_num1, self.stage_num1+self.stage_num2) + ]) + + # stage 3 + if not self.vit_stem: + self.patch_embed3 = PatchEmbed( + img_size=img_size, + patch_size=patch_size // 8, + in_chans=embed_dim, + embed_dim=embed_dim * 2, + norm_layer=embed_norm, + flatten=False, + ) + img_size = [x // (patch_size // 8) for x in img_size] + if self.use_pos_embed: + self.pos_embed3 = nn.Parameter(torch.zeros(1, embed_dim*2, *img_size)) + else: + self.pos_embed3 = None + else: + self.patch_embed3 = None + self.stage3 = nn.Sequential(*[ + Block( + dim=embed_dim * 2, + num_heads=num_heads, + head_dim_ratio=1.0, + mlp_ratio=mlp_ratio, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + group=group, + attn_disabled=(attn_stage[2] == '0'), + spatial_conv=(spatial_conv[2] == '1'), + ) + for i in range(self.stage_num1+self.stage_num2, depth) + ]) + + self.num_features = self.head_hidden_size = embed_dim if self.vit_stem else embed_dim * 2 + self.norm = norm_layer(self.num_features) + + # head + global_pool, head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + self.global_pool = global_pool + self.head_drop = nn.Dropout(drop_rate) + self.head = head + + # weights init + if self.use_pos_embed: + trunc_normal_(self.pos_embed1, std=0.02) + if not self.vit_stem: + trunc_normal_(self.pos_embed2, std=0.02) + trunc_normal_(self.pos_embed3, std=0.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Conv2d): + if self.conv_init: + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + else: + trunc_normal_(m.weight, std=0.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0.) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^patch_embed1|pos_embed1|stem', # stem and embed + blocks=[ + (r'^stage(\d+)\.(\d+)' if coarse else r'^stage(\d+)\.(\d+)', None), + (r'^(?:patch_embed|pos_embed)(\d+)', (0,)), + (r'^norm', (99999,)) + ] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + if self.stem is not None: + x = self.stem(x) + + # stage 1 + x = self.patch_embed1(x) + if self.pos_embed1 is not None: + x = self.pos_drop(x + self.pos_embed1) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stage1, x) + else: + x = self.stage1(x) + + # stage 2 + if self.patch_embed2 is not None: + x = self.patch_embed2(x) + if self.pos_embed2 is not None: + x = self.pos_drop(x + self.pos_embed2) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stage2, x) + else: + x = self.stage2(x) + + # stage3 + if self.patch_embed3 is not None: + x = self.patch_embed3(x) + if self.pos_embed3 is not None: + x = self.pos_drop(x + self.pos_embed3) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stage3, x) + else: + x = self.stage3(x) + + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_visformer(variant, pretrained=False, default_cfg=None, **kwargs): + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Vision Transformer models.') + model = build_model_with_cfg(Visformer, variant, pretrained, **kwargs) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.0', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'visformer_tiny.in1k': _cfg(hf_hub_id='timm/'), + 'visformer_small.in1k': _cfg(hf_hub_id='timm/'), +}) + + +@register_model +def visformer_tiny(pretrained=False, **kwargs) -> Visformer: + model_cfg = dict( + init_channels=16, embed_dim=192, depth=(7, 4, 4), num_heads=3, mlp_ratio=4., group=8, + attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True, + embed_norm=nn.BatchNorm2d) + model = _create_visformer('visformer_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + + +@register_model +def visformer_small(pretrained=False, **kwargs) -> Visformer: + model_cfg = dict( + init_channels=32, embed_dim=384, depth=(7, 4, 4), num_heads=6, mlp_ratio=4., group=8, + attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True, + embed_norm=nn.BatchNorm2d) + model = _create_visformer('visformer_small', pretrained=pretrained, **dict(model_cfg, **kwargs)) + return model + + +# @register_model +# def visformer_net1(pretrained=False, **kwargs): +# model = Visformer( +# init_channels=None, embed_dim=384, depth=(0, 12, 0), num_heads=6, mlp_ratio=4., attn_stage='111', +# spatial_conv='000', vit_stem=True, conv_init=True, **kwargs) +# model.default_cfg = _cfg() +# return model +# +# +# @register_model +# def visformer_net2(pretrained=False, **kwargs): +# model = Visformer( +# init_channels=32, embed_dim=384, depth=(0, 12, 0), num_heads=6, mlp_ratio=4., attn_stage='111', +# spatial_conv='000', vit_stem=False, conv_init=True, **kwargs) +# model.default_cfg = _cfg() +# return model +# +# +# @register_model +# def visformer_net3(pretrained=False, **kwargs): +# model = Visformer( +# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., attn_stage='111', +# spatial_conv='000', vit_stem=False, conv_init=True, **kwargs) +# model.default_cfg = _cfg() +# return model +# +# +# @register_model +# def visformer_net4(pretrained=False, **kwargs): +# model = Visformer( +# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., attn_stage='111', +# spatial_conv='000', vit_stem=False, conv_init=True, **kwargs) +# model.default_cfg = _cfg() +# return model +# +# +# @register_model +# def visformer_net5(pretrained=False, **kwargs): +# model = Visformer( +# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., group=1, attn_stage='111', +# spatial_conv='111', vit_stem=False, conv_init=True, **kwargs) +# model.default_cfg = _cfg() +# return model +# +# +# @register_model +# def visformer_net6(pretrained=False, **kwargs): +# model = Visformer( +# init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., group=1, attn_stage='111', +# pos_embed=False, spatial_conv='111', conv_init=True, **kwargs) +# model.default_cfg = _cfg() +# return model +# +# +# @register_model +# def visformer_net7(pretrained=False, **kwargs): +# model = Visformer( +# init_channels=32, embed_dim=384, depth=(6, 7, 7), num_heads=6, group=1, attn_stage='000', +# pos_embed=False, spatial_conv='111', conv_init=True, **kwargs) +# model.default_cfg = _cfg() +# return model + + + + diff --git a/pytorch-image-models/timm/models/vision_transformer.py b/pytorch-image-models/timm/models/vision_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..b3b0ddca0776e1a344157e5c5fb05a107a7ca13b --- /dev/null +++ b/pytorch-image-models/timm/models/vision_transformer.py @@ -0,0 +1,3420 @@ +""" Vision Transformer (ViT) in PyTorch + +A PyTorch implement of Vision Transformers as described in: + +'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' + - https://arxiv.org/abs/2010.11929 + +`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` + - https://arxiv.org/abs/2106.10270 + +`FlexiViT: One Model for All Patch Sizes` + - https://arxiv.org/abs/2212.08013 + +The official jax code is released and available at + * https://github.com/google-research/vision_transformer + * https://github.com/google-research/big_vision + +Acknowledgments: + * The paper authors for releasing code and weights, thanks! + * I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch + * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT + * Bert reference code checks against Huggingface Transformers and Tensorflow Bert + +Hacked together by / Copyright 2020, Ross Wightman +""" +import copy +import logging +import math +from collections import OrderedDict +from functools import partial +from typing import Any, Callable, Dict, Optional, Set, Tuple, Type, Union, List +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint +from torch.jit import Final + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD, \ + OPENAI_CLIP_MEAN, OPENAI_CLIP_STD +from timm.layers import PatchEmbed, Mlp, DropPath, AttentionPoolLatent, RmsNorm, PatchDropout, SwiGLUPacked, \ + trunc_normal_, lecun_normal_, resample_patch_embed, resample_abs_pos_embed, use_fused_attn, \ + get_act_layer, get_norm_layer, LayerType +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv +from ._registry import generate_default_cfgs, register_model, register_model_deprecations + +__all__ = ['VisionTransformer'] # model_registry will add each entrypoint fn to this + + +_logger = logging.getLogger(__name__) + + +class Attention(nn.Module): + fused_attn: Final[bool] + + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = False, + qk_norm: bool = False, + attn_drop: float = 0., + proj_drop: float = 0., + norm_layer: nn.Module = nn.LayerNorm, + ) -> None: + super().__init__() + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + q, k = self.q_norm(q), self.k_norm(k) + + if self.fused_attn: + x = F.scaled_dot_product_attention( + q, k, v, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class LayerScale(nn.Module): + def __init__( + self, + dim: int, + init_values: float = 1e-5, + inplace: bool = False, + ) -> None: + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return x.mul_(self.gamma) if self.inplace else x * self.gamma + + +class Block(nn.Module): + def __init__( + self, + dim: int, + num_heads: int, + mlp_ratio: float = 4., + qkv_bias: bool = False, + qk_norm: bool = False, + proj_drop: float = 0., + attn_drop: float = 0., + init_values: Optional[float] = None, + drop_path: float = 0., + act_layer: nn.Module = nn.GELU, + norm_layer: nn.Module = nn.LayerNorm, + mlp_layer: nn.Module = Mlp, + ) -> None: + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_norm=qk_norm, + attn_drop=attn_drop, + proj_drop=proj_drop, + norm_layer=norm_layer, + ) + self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = mlp_layer( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + ) + self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + + +class ResPostBlock(nn.Module): + def __init__( + self, + dim: int, + num_heads: int, + mlp_ratio: float = 4., + qkv_bias: bool = False, + qk_norm: bool = False, + proj_drop: float = 0., + attn_drop: float = 0., + init_values: Optional[float] = None, + drop_path: float = 0., + act_layer: nn.Module = nn.GELU, + norm_layer: nn.Module = nn.LayerNorm, + mlp_layer: nn.Module = Mlp, + ) -> None: + super().__init__() + self.init_values = init_values + + self.attn = Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_norm=qk_norm, + attn_drop=attn_drop, + proj_drop=proj_drop, + norm_layer=norm_layer, + ) + self.norm1 = norm_layer(dim) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.mlp = mlp_layer( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + ) + self.norm2 = norm_layer(dim) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.init_weights() + + def init_weights(self) -> None: + # NOTE this init overrides that base model init with specific changes for the block type + if self.init_values is not None: + nn.init.constant_(self.norm1.weight, self.init_values) + nn.init.constant_(self.norm2.weight, self.init_values) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = x + self.drop_path1(self.norm1(self.attn(x))) + x = x + self.drop_path2(self.norm2(self.mlp(x))) + return x + + +class ParallelScalingBlock(nn.Module): + """ Parallel ViT block (MLP & Attention in parallel) + Based on: + 'Scaling Vision Transformers to 22 Billion Parameters` - https://arxiv.org/abs/2302.05442 + """ + fused_attn: Final[bool] + + def __init__( + self, + dim: int, + num_heads: int, + mlp_ratio: float = 4., + qkv_bias: bool = False, + qk_norm: bool = False, + proj_drop: float = 0., + attn_drop: float = 0., + init_values: Optional[float] = None, + drop_path: float = 0., + act_layer: nn.Module = nn.GELU, + norm_layer: nn.Module = nn.LayerNorm, + mlp_layer: Optional[nn.Module] = None, + ) -> None: + super().__init__() + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** -0.5 + self.fused_attn = use_fused_attn() + mlp_hidden_dim = int(mlp_ratio * dim) + in_proj_out_dim = mlp_hidden_dim + 3 * dim + + self.in_norm = norm_layer(dim) + self.in_proj = nn.Linear(dim, in_proj_out_dim, bias=qkv_bias) + self.in_split = [mlp_hidden_dim] + [dim] * 3 + if qkv_bias: + self.register_buffer('qkv_bias', None) + self.register_parameter('mlp_bias', None) + else: + self.register_buffer('qkv_bias', torch.zeros(3 * dim), persistent=False) + self.mlp_bias = nn.Parameter(torch.zeros(mlp_hidden_dim)) + + self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.attn_drop = nn.Dropout(attn_drop) + self.attn_out_proj = nn.Linear(dim, dim) + + self.mlp_drop = nn.Dropout(proj_drop) + self.mlp_act = act_layer() + self.mlp_out_proj = nn.Linear(mlp_hidden_dim, dim) + + self.ls = LayerScale(dim, init_values=init_values) if init_values is not None else nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, N, C = x.shape + + # Combined MLP fc1 & qkv projections + y = self.in_norm(x) + if self.mlp_bias is not None: + # Concat constant zero-bias for qkv w/ trainable mlp_bias. + # Appears faster than adding to x_mlp separately + y = F.linear(y, self.in_proj.weight, torch.cat((self.qkv_bias, self.mlp_bias))) + else: + y = self.in_proj(y) + x_mlp, q, k, v = torch.split(y, self.in_split, dim=-1) + + # Dot product attention w/ qk norm + q = self.q_norm(q.view(B, N, self.num_heads, self.head_dim)).transpose(1, 2) + k = self.k_norm(k.view(B, N, self.num_heads, self.head_dim)).transpose(1, 2) + v = v.view(B, N, self.num_heads, self.head_dim).transpose(1, 2) + if self.fused_attn: + x_attn = F.scaled_dot_product_attention( + q, k, v, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x_attn = attn @ v + x_attn = x_attn.transpose(1, 2).reshape(B, N, C) + x_attn = self.attn_out_proj(x_attn) + + # MLP activation, dropout, fc2 + x_mlp = self.mlp_act(x_mlp) + x_mlp = self.mlp_drop(x_mlp) + x_mlp = self.mlp_out_proj(x_mlp) + + # Add residual w/ drop path & layer scale applied + y = self.drop_path(self.ls(x_attn + x_mlp)) + x = x + y + return x + + +class ParallelThingsBlock(nn.Module): + """ Parallel ViT block (N parallel attention followed by N parallel MLP) + Based on: + `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795 + """ + def __init__( + self, + dim: int, + num_heads: int, + num_parallel: int = 2, + mlp_ratio: float = 4., + qkv_bias: bool = False, + qk_norm: bool = False, + init_values: Optional[float] = None, + proj_drop: float = 0., + attn_drop: float = 0., + drop_path: float = 0., + act_layer: nn.Module = nn.GELU, + norm_layer: nn.Module = nn.LayerNorm, + mlp_layer: nn.Module = Mlp, + ) -> None: + super().__init__() + self.num_parallel = num_parallel + self.attns = nn.ModuleList() + self.ffns = nn.ModuleList() + for _ in range(num_parallel): + self.attns.append(nn.Sequential(OrderedDict([ + ('norm', norm_layer(dim)), + ('attn', Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_norm=qk_norm, + attn_drop=attn_drop, + proj_drop=proj_drop, + norm_layer=norm_layer, + )), + ('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()), + ('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity()) + ]))) + self.ffns.append(nn.Sequential(OrderedDict([ + ('norm', norm_layer(dim)), + ('mlp', mlp_layer( + dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + )), + ('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()), + ('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity()) + ]))) + + def _forward_jit(self, x: torch.Tensor) -> torch.Tensor: + x = x + torch.stack([attn(x) for attn in self.attns]).sum(dim=0) + x = x + torch.stack([ffn(x) for ffn in self.ffns]).sum(dim=0) + return x + + @torch.jit.ignore + def _forward(self, x: torch.Tensor) -> torch.Tensor: + x = x + sum(attn(x) for attn in self.attns) + x = x + sum(ffn(x) for ffn in self.ffns) + return x + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if torch.jit.is_scripting() or torch.jit.is_tracing(): + return self._forward_jit(x) + else: + return self._forward(x) + + +def global_pool_nlc( + x: torch.Tensor, + pool_type: str = 'token', + num_prefix_tokens: int = 1, + reduce_include_prefix: bool = False, +): + if not pool_type: + return x + + if pool_type == 'token': + x = x[:, 0] # class token + else: + x = x if reduce_include_prefix else x[:, num_prefix_tokens:] + if pool_type == 'avg': + x = x.mean(dim=1) + elif pool_type == 'avgmax': + x = 0.5 * (x.amax(dim=1) + x.mean(dim=1)) + elif pool_type == 'max': + x = x.amax(dim=1) + else: + assert not pool_type, f'Unknown pool type {pool_type}' + + return x + + +class VisionTransformer(nn.Module): + """ Vision Transformer + + A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` + - https://arxiv.org/abs/2010.11929 + """ + dynamic_img_size: Final[bool] + + def __init__( + self, + img_size: Union[int, Tuple[int, int]] = 224, + patch_size: Union[int, Tuple[int, int]] = 16, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: Literal['', 'avg', 'avgmax', 'max', 'token', 'map'] = 'token', + embed_dim: int = 768, + depth: int = 12, + num_heads: int = 12, + mlp_ratio: float = 4., + qkv_bias: bool = True, + qk_norm: bool = False, + init_values: Optional[float] = None, + class_token: bool = True, + pos_embed: str = 'learn', + no_embed_class: bool = False, + reg_tokens: int = 0, + pre_norm: bool = False, + final_norm: bool = True, + fc_norm: Optional[bool] = None, + dynamic_img_size: bool = False, + dynamic_img_pad: bool = False, + drop_rate: float = 0., + pos_drop_rate: float = 0., + patch_drop_rate: float = 0., + proj_drop_rate: float = 0., + attn_drop_rate: float = 0., + drop_path_rate: float = 0., + weight_init: Literal['skip', 'jax', 'jax_nlhb', 'moco', ''] = '', + fix_init: bool = False, + embed_layer: Callable = PatchEmbed, + norm_layer: Optional[LayerType] = None, + act_layer: Optional[LayerType] = None, + block_fn: Type[nn.Module] = Block, + mlp_layer: Type[nn.Module] = Mlp, + ) -> None: + """ + Args: + img_size: Input image size. + patch_size: Patch size. + in_chans: Number of image input channels. + num_classes: Number of classes for classification head. + global_pool: Type of global pooling for final sequence (default: 'token'). + embed_dim: Transformer embedding dimension. + depth: Depth of transformer. + num_heads: Number of attention heads. + mlp_ratio: Ratio of mlp hidden dim to embedding dim. + qkv_bias: Enable bias for qkv projections if True. + init_values: Layer-scale init values (layer-scale enabled if not None). + class_token: Use class token. + no_embed_class: Don't include position embeddings for class (or reg) tokens. + reg_tokens: Number of register tokens. + pre_norm: Enable norm after embeddings, before transformer blocks (standard in CLIP ViT). + final_norm: Enable norm after transformer blocks, before head (standard in most ViT). + fc_norm: Move final norm after pool (instead of before), if None, enabled when global_pool == 'avg'. + drop_rate: Head dropout rate. + pos_drop_rate: Position embedding dropout rate. + attn_drop_rate: Attention dropout rate. + drop_path_rate: Stochastic depth rate. + weight_init: Weight initialization scheme. + fix_init: Apply weight initialization fix (scaling w/ layer index). + embed_layer: Patch embedding layer. + norm_layer: Normalization layer. + act_layer: MLP activation layer. + block_fn: Transformer block layer. + """ + super().__init__() + assert global_pool in ('', 'avg', 'avgmax', 'max', 'token', 'map') + assert class_token or global_pool != 'token' + assert pos_embed in ('', 'none', 'learn') + use_fc_norm = global_pool in ('avg', 'avgmax', 'max') if fc_norm is None else fc_norm + norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-6) + act_layer = get_act_layer(act_layer) or nn.GELU + + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models + self.num_prefix_tokens = 1 if class_token else 0 + self.num_prefix_tokens += reg_tokens + self.num_reg_tokens = reg_tokens + self.has_class_token = class_token + self.no_embed_class = no_embed_class # don't embed prefix positions (includes reg) + self.dynamic_img_size = dynamic_img_size + self.grad_checkpointing = False + + embed_args = {} + if dynamic_img_size: + # flatten deferred until after pos embed + embed_args.update(dict(strict_img_size=False, output_fmt='NHWC')) + self.patch_embed = embed_layer( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP) + dynamic_img_pad=dynamic_img_pad, + **embed_args, + ) + num_patches = self.patch_embed.num_patches + reduction = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None + self.reg_token = nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None + embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens + if not pos_embed or pos_embed == 'none': + self.pos_embed = None + else: + self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + if patch_drop_rate > 0: + self.patch_drop = PatchDropout( + patch_drop_rate, + num_prefix_tokens=self.num_prefix_tokens, + ) + else: + self.patch_drop = nn.Identity() + self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.blocks = nn.Sequential(*[ + block_fn( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_norm=qk_norm, + init_values=init_values, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + act_layer=act_layer, + mlp_layer=mlp_layer, + ) + for i in range(depth)]) + self.feature_info = [ + dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=reduction) for i in range(depth)] + self.norm = norm_layer(embed_dim) if final_norm and not use_fc_norm else nn.Identity() + + # Classifier Head + if global_pool == 'map': + self.attn_pool = AttentionPoolLatent( + self.embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + norm_layer=norm_layer, + ) + else: + self.attn_pool = None + self.fc_norm = norm_layer(embed_dim) if final_norm and use_fc_norm else nn.Identity() + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + if weight_init != 'skip': + self.init_weights(weight_init) + if fix_init: + self.fix_init_weight() + + def fix_init_weight(self): + def rescale(param, _layer_id): + param.div_(math.sqrt(2.0 * _layer_id)) + + for layer_id, layer in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + def init_weights(self, mode: str = '') -> None: + assert mode in ('jax', 'jax_nlhb', 'moco', '') + head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. + if self.pos_embed is not None: + trunc_normal_(self.pos_embed, std=.02) + if self.cls_token is not None: + nn.init.normal_(self.cls_token, std=1e-6) + if self.reg_token is not None: + nn.init.normal_(self.reg_token, std=1e-6) + named_apply(get_init_weights_vit(mode, head_bias), self) + + def _init_weights(self, m: nn.Module) -> None: + # this fn left here for compat with downstream users + init_weights_vit_timm(m) + + @torch.jit.ignore() + def load_pretrained(self, checkpoint_path: str, prefix: str = '') -> None: + _load_weights(self, checkpoint_path, prefix) + + @torch.jit.ignore + def no_weight_decay(self) -> Set: + return {'pos_embed', 'cls_token', 'dist_token'} + + @torch.jit.ignore + def group_matcher(self, coarse: bool = False) -> Dict: + return dict( + stem=r'^cls_token|pos_embed|patch_embed', # stem and embed + blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable: bool = True) -> None: + self.grad_checkpointing = enable + if hasattr(self.patch_embed, 'set_grad_checkpointing'): + self.patch_embed.set_grad_checkpointing(enable) + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'avg', 'avgmax', 'max', 'token', 'map') + if global_pool == 'map' and self.attn_pool is None: + assert False, "Cannot currently add attention pooling in reset_classifier()." + elif global_pool != 'map' and self.attn_pool is not None: + self.attn_pool = None # remove attention pooling + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def set_input_size( + self, + img_size: Optional[Tuple[int, int]] = None, + patch_size: Optional[Tuple[int, int]] = None, + ): + """Method updates the input image resolution, patch size + + Args: + img_size: New input resolution, if None current resolution is used + patch_size: New patch size, if None existing patch size is used + """ + prev_grid_size = self.patch_embed.grid_size + self.patch_embed.set_input_size(img_size=img_size, patch_size=patch_size) + if self.pos_embed is not None: + num_prefix_tokens = 0 if self.no_embed_class else self.num_prefix_tokens + num_new_tokens = self.patch_embed.num_patches + num_prefix_tokens + if num_new_tokens != self.pos_embed.shape[1]: + self.pos_embed = nn.Parameter(resample_abs_pos_embed( + self.pos_embed, + new_size=self.patch_embed.grid_size, + old_size=prev_grid_size, + num_prefix_tokens=num_prefix_tokens, + verbose=True, + )) + + def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: + if self.pos_embed is None: + return x.view(x.shape[0], -1, x.shape[-1]) + + if self.dynamic_img_size: + B, H, W, C = x.shape + prev_grid_size = self.patch_embed.grid_size + pos_embed = resample_abs_pos_embed( + self.pos_embed, + new_size=(H, W), + old_size=prev_grid_size, + num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens, + ) + x = x.view(B, -1, C) + else: + pos_embed = self.pos_embed + + to_cat = [] + if self.cls_token is not None: + to_cat.append(self.cls_token.expand(x.shape[0], -1, -1)) + if self.reg_token is not None: + to_cat.append(self.reg_token.expand(x.shape[0], -1, -1)) + + if self.no_embed_class: + # deit-3, updated JAX (big vision) + # position embedding does not overlap with class token, add then concat + x = x + pos_embed + if to_cat: + x = torch.cat(to_cat + [x], dim=1) + else: + # original timm, JAX, and deit vit impl + # pos_embed has entry for class token, concat then add + if to_cat: + x = torch.cat(to_cat + [x], dim=1) + x = x + pos_embed + + return self.pos_drop(x) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + return_prefix_tokens: bool = False, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + return_prefix_tokens: Return both prefix and spatial intermediate tokens + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + + # forward pass + B, _, height, width = x.shape + x = self.patch_embed(x) + x = self._pos_embed(x) + x = self.patch_drop(x) + x = self.norm_pre(x) + + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for i, blk in enumerate(blocks): + x = blk(x) + if i in take_indices: + # normalize intermediates with final norm layer if enabled + intermediates.append(self.norm(x) if norm else x) + + # process intermediates + if self.num_prefix_tokens: + # split prefix (e.g. class, distill) and spatial feature tokens + prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] + intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] + if reshape: + # reshape to BCHW output format + H, W = self.patch_embed.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + if not torch.jit.is_scripting() and return_prefix_tokens: + # return_prefix not support in torchscript due to poor type handling + intermediates = list(zip(intermediates, prefix_tokens)) + + if intermediates_only: + return intermediates + + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] # truncate blocks + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.fc_norm = nn.Identity() + self.reset_classifier(0, '') + return take_indices + + def get_intermediate_layers( + self, + x: torch.Tensor, + n: Union[int, List[int], Tuple[int]] = 1, + reshape: bool = False, + return_prefix_tokens: bool = False, + norm: bool = False, + ) -> List[torch.Tensor]: + """ Intermediate layer accessor inspired by DINO / DINOv2 interface. + NOTE: This API is for backwards compat, favour using forward_intermediates() directly. + """ + return self.forward_intermediates( + x, n, + return_prefix_tokens=return_prefix_tokens, + norm=norm, + output_fmt='NCHW' if reshape else 'NLC', + intermediates_only=True, + ) + + def forward_features(self, x: torch.Tensor) -> torch.Tensor: + x = self.patch_embed(x) + x = self._pos_embed(x) + x = self.patch_drop(x) + x = self.norm_pre(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + x = self.norm(x) + return x + + def pool(self, x: torch.Tensor, pool_type: Optional[str] = None) -> torch.Tensor: + if self.attn_pool is not None: + x = self.attn_pool(x) + return x + pool_type = self.global_pool if pool_type is None else pool_type + x = global_pool_nlc(x, pool_type=pool_type, num_prefix_tokens=self.num_prefix_tokens) + return x + + def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor: + x = self.pool(x) + x = self.fc_norm(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def init_weights_vit_timm(module: nn.Module, name: str = '') -> None: + """ ViT weight initialization, original timm impl (for reproducibility) """ + if isinstance(module, nn.Linear): + trunc_normal_(module.weight, std=.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + + +def init_weights_vit_jax(module: nn.Module, name: str = '', head_bias: float = 0.0) -> None: + """ ViT weight initialization, matching JAX (Flax) impl """ + if isinstance(module, nn.Linear): + if name.startswith('head'): + nn.init.zeros_(module.weight) + nn.init.constant_(module.bias, head_bias) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + nn.init.normal_(module.bias, std=1e-6) if 'mlp' in name else nn.init.zeros_(module.bias) + elif isinstance(module, nn.Conv2d): + lecun_normal_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + + +def init_weights_vit_moco(module: nn.Module, name: str = '') -> None: + """ ViT weight initialization, matching moco-v3 impl minus fixed PatchEmbed """ + if isinstance(module, nn.Linear): + if 'qkv' in name: + # treat the weights of Q, K, V separately + val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1])) + nn.init.uniform_(module.weight, -val, val) + else: + nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + nn.init.zeros_(module.bias) + elif hasattr(module, 'init_weights'): + module.init_weights() + + +def get_init_weights_vit(mode: str = 'jax', head_bias: float = 0.0) -> Callable: + if 'jax' in mode: + return partial(init_weights_vit_jax, head_bias=head_bias) + elif 'moco' in mode: + return init_weights_vit_moco + else: + return init_weights_vit_timm + + +def resize_pos_embed( + posemb: torch.Tensor, + posemb_new: torch.Tensor, + num_prefix_tokens: int = 1, + gs_new: Tuple[int, int] = (), + interpolation: str = 'bicubic', + antialias: bool = False, +) -> torch.Tensor: + """ Rescale the grid of position embeddings when loading from state_dict. + *DEPRECATED* This function is being deprecated in favour of using resample_abs_pos_embed + """ + ntok_new = posemb_new.shape[1] - num_prefix_tokens + ntok_old = posemb.shape[1] - num_prefix_tokens + gs_old = [int(math.sqrt(ntok_old))] * 2 + if not len(gs_new): # backwards compatibility + gs_new = [int(math.sqrt(ntok_new))] * 2 + return resample_abs_pos_embed( + posemb, gs_new, gs_old, + num_prefix_tokens=num_prefix_tokens, + interpolation=interpolation, + antialias=antialias, + verbose=True, + ) + + +@torch.no_grad() +def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = '') -> None: + """ Load weights from .npz checkpoints for official Google Brain Flax implementation + """ + import numpy as np + + def _n2p(w, t=True, idx=None): + if idx is not None: + w = w[idx] + if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: + w = w.flatten() + if t: + if w.ndim == 4: + w = w.transpose([3, 2, 0, 1]) + elif w.ndim == 3: + w = w.transpose([2, 0, 1]) + elif w.ndim == 2: + w = w.transpose([1, 0]) + return torch.from_numpy(w) + + w = np.load(checkpoint_path) + interpolation = 'bilinear' + antialias = False + big_vision = False + if not prefix: + if 'opt/target/embedding/kernel' in w: + prefix = 'opt/target/' + elif 'params/embedding/kernel' in w: + prefix = 'params/' + big_vision = True + elif 'params/img/embedding/kernel' in w: + prefix = 'params/img/' + big_vision = True + + if hasattr(model.patch_embed, 'backbone'): + # hybrid + backbone = model.patch_embed.backbone + stem_only = not hasattr(backbone, 'stem') + stem = backbone if stem_only else backbone.stem + stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) + stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) + stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) + if not stem_only: + for i, stage in enumerate(backbone.stages): + for j, block in enumerate(stage.blocks): + bp = f'{prefix}block{i + 1}/unit{j + 1}/' + for r in range(3): + getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) + getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) + getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) + if block.downsample is not None: + block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) + block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) + block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) + embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) + else: + embed_conv_w = adapt_input_conv( + model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) + if embed_conv_w.shape[-2:] != model.patch_embed.proj.weight.shape[-2:]: + embed_conv_w = resample_patch_embed( + embed_conv_w, + model.patch_embed.proj.weight.shape[-2:], + interpolation=interpolation, + antialias=antialias, + verbose=True, + ) + + model.patch_embed.proj.weight.copy_(embed_conv_w) + model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) + if model.cls_token is not None: + model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) + if big_vision: + pos_embed_w = _n2p(w[f'{prefix}pos_embedding'], t=False) + else: + pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) + if pos_embed_w.shape != model.pos_embed.shape: + old_shape = pos_embed_w.shape + num_prefix_tokens = 0 if getattr(model, 'no_embed_class', False) else getattr(model, 'num_prefix_tokens', 1) + pos_embed_w = resample_abs_pos_embed( # resize pos embedding when different size from pretrained weights + pos_embed_w, + new_size=model.patch_embed.grid_size, + num_prefix_tokens=num_prefix_tokens, + interpolation=interpolation, + antialias=antialias, + verbose=True, + ) + model.pos_embed.copy_(pos_embed_w) + model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) + model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) + if (isinstance(model.head, nn.Linear) and + f'{prefix}head/bias' in w and + model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]): + model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel'])) + model.head.bias.copy_(_n2p(w[f'{prefix}head/bias'])) + # NOTE representation layer has been removed, not used in latest 21k/1k pretrained weights + # if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w: + # model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel'])) + # model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias'])) + if model.attn_pool is not None: + block_prefix = f'{prefix}MAPHead_0/' + mha_prefix = block_prefix + f'MultiHeadDotProductAttention_0/' + model.attn_pool.latent.copy_(_n2p(w[f'{block_prefix}probe'], t=False)) + model.attn_pool.kv.weight.copy_(torch.cat([ + _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('key', 'value')])) + model.attn_pool.kv.bias.copy_(torch.cat([ + _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('key', 'value')])) + model.attn_pool.q.weight.copy_(_n2p(w[f'{mha_prefix}query/kernel'], t=False).flatten(1).T) + model.attn_pool.q.bias.copy_(_n2p(w[f'{mha_prefix}query/bias'], t=False).reshape(-1)) + model.attn_pool.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) + model.attn_pool.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) + model.attn_pool.norm.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) + model.attn_pool.norm.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) + for r in range(2): + getattr(model.attn_pool.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_{r}/kernel'])) + getattr(model.attn_pool.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_{r}/bias'])) + + mha_sub, b_sub, ln1_sub = (0, 0, 1) if big_vision else (1, 3, 2) + for i, block in enumerate(model.blocks.children()): + if f'{prefix}Transformer/encoderblock/LayerNorm_0/scale' in w: + block_prefix = f'{prefix}Transformer/encoderblock/' + idx = i + else: + block_prefix = f'{prefix}Transformer/encoderblock_{i}/' + idx = None + mha_prefix = block_prefix + f'MultiHeadDotProductAttention_{mha_sub}/' + block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'], idx=idx)) + block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'], idx=idx)) + block.attn.qkv.weight.copy_(torch.cat([ + _n2p(w[f'{mha_prefix}{n}/kernel'], t=False, idx=idx).flatten(1).T for n in ('query', 'key', 'value')])) + block.attn.qkv.bias.copy_(torch.cat([ + _n2p(w[f'{mha_prefix}{n}/bias'], t=False, idx=idx).reshape(-1) for n in ('query', 'key', 'value')])) + block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel'], idx=idx).flatten(1)) + block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'], idx=idx)) + block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_{ln1_sub}/scale'], idx=idx)) + block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_{ln1_sub}/bias'], idx=idx)) + for r in range(2): + getattr(block.mlp, f'fc{r + 1}').weight.copy_( + _n2p(w[f'{block_prefix}MlpBlock_{b_sub}/Dense_{r}/kernel'], idx=idx)) + getattr(block.mlp, f'fc{r + 1}').bias.copy_( + _n2p(w[f'{block_prefix}MlpBlock_{b_sub}/Dense_{r}/bias'], idx=idx)) + + +def _convert_openai_clip( + state_dict: Dict[str, torch.Tensor], + model: VisionTransformer, + prefix: str = 'visual.', +) -> Dict[str, torch.Tensor]: + out_dict = {} + swaps = [ + ('conv1', 'patch_embed.proj'), + ('positional_embedding', 'pos_embed'), + ('transformer.resblocks.', 'blocks.'), + ('ln_pre', 'norm_pre'), + ('ln_post', 'norm'), + ('ln_', 'norm'), + ('in_proj_', 'qkv.'), + ('out_proj', 'proj'), + ('mlp.c_fc', 'mlp.fc1'), + ('mlp.c_proj', 'mlp.fc2'), + ] + for k, v in state_dict.items(): + if not k.startswith(prefix): + continue + k = k.replace(prefix, '') + for sp in swaps: + k = k.replace(sp[0], sp[1]) + + if k == 'proj': + k = 'head.weight' + v = v.transpose(0, 1) + out_dict['head.bias'] = torch.zeros(v.shape[0]) + elif k == 'class_embedding': + k = 'cls_token' + v = v.unsqueeze(0).unsqueeze(1) + elif k == 'pos_embed': + v = v.unsqueeze(0) + out_dict[k] = v + return out_dict + + +def _convert_dinov2( + state_dict: Dict[str, torch.Tensor], + model: VisionTransformer, +) -> Dict[str, torch.Tensor]: + import re + out_dict = {} + state_dict.pop("mask_token", None) + if 'register_tokens' in state_dict: + # convert dinov2 w/ registers to no_embed_class timm model (neither cls or reg tokens overlap pos embed) + out_dict['reg_token'] = state_dict.pop('register_tokens') + out_dict['cls_token'] = state_dict.pop('cls_token') + state_dict['pos_embed'][:, 0] + out_dict['pos_embed'] = state_dict.pop('pos_embed')[:, 1:] + for k, v in state_dict.items(): + if re.match(r"blocks\.(\d+)\.mlp\.w12\.(?:weight|bias)", k): + out_dict[k.replace("w12", "fc1")] = v + continue + elif re.match(r"blocks\.(\d+)\.mlp\.w3\.(?:weight|bias)", k): + out_dict[k.replace("w3", "fc2")] = v + continue + out_dict[k] = v + return out_dict + + +def checkpoint_filter_fn( + state_dict: Dict[str, torch.Tensor], + model: VisionTransformer, + adapt_layer_scale: bool = False, + interpolation: str = 'bicubic', + antialias: bool = True, +) -> Dict[str, torch.Tensor]: + """ convert patch embedding weight from manual patchify + linear proj to conv""" + import re + out_dict = {} + state_dict = state_dict.get('model', state_dict) + state_dict = state_dict.get('state_dict', state_dict) + prefix = '' + + if 'visual.class_embedding' in state_dict: + state_dict = _convert_openai_clip(state_dict, model) + elif 'module.visual.class_embedding' in state_dict: + state_dict = _convert_openai_clip(state_dict, model, prefix='module.visual.') + elif "mask_token" in state_dict: + state_dict = _convert_dinov2(state_dict, model) + elif "encoder" in state_dict: + # IJEPA, vit in an 'encoder' submodule + state_dict = state_dict['encoder'] + prefix = 'module.' + elif 'visual.trunk.pos_embed' in state_dict or 'visual.trunk.blocks.0.norm1.weight' in state_dict: + # OpenCLIP model with timm vision encoder + prefix = 'visual.trunk.' + if 'visual.head.proj.weight' in state_dict and isinstance(model.head, nn.Linear): + # remap final nn.Linear if it exists outside of the timm .trunk (ie in visual.head.proj) + out_dict['head.weight'] = state_dict['visual.head.proj.weight'] + out_dict['head.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0]) + + if prefix: + # filter on & remove prefix string from keys + state_dict = {k[len(prefix):]: v for k, v in state_dict.items() if k.startswith(prefix)} + + for k, v in state_dict.items(): + if 'patch_embed.proj.weight' in k: + O, I, H, W = model.patch_embed.proj.weight.shape + if len(v.shape) < 4: + # For old models that I trained prior to conv based patchification + O, I, H, W = model.patch_embed.proj.weight.shape + v = v.reshape(O, -1, H, W) + if v.shape[-1] != W or v.shape[-2] != H: + v = resample_patch_embed( + v, + (H, W), + interpolation=interpolation, + antialias=antialias, + verbose=True, + ) + elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: + # To resize pos embedding when using model at different size from pretrained weights + num_prefix_tokens = 0 if getattr(model, 'no_embed_class', False) else getattr(model, 'num_prefix_tokens', 1) + v = resample_abs_pos_embed( + v, + new_size=model.patch_embed.grid_size, + num_prefix_tokens=num_prefix_tokens, + interpolation=interpolation, + antialias=antialias, + verbose=True, + ) + elif adapt_layer_scale and 'gamma_' in k: + # remap layer-scale gamma into sub-module (deit3 models) + k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k) + elif 'pre_logits' in k: + # NOTE representation layer removed as not used in latest 21k/1k pretrained weights + continue + out_dict[k] = v + return out_dict + + +def _cfg(url: str = '', **kwargs) -> Dict[str, Any]: + return { + 'url': url, + 'num_classes': 1000, + 'input_size': (3, 224, 224), + 'pool_size': None, + 'crop_pct': 0.9, + 'interpolation': 'bicubic', + 'fixed_input_size': True, + 'mean': IMAGENET_INCEPTION_MEAN, + 'std': IMAGENET_INCEPTION_STD, + 'first_conv': 'patch_embed.proj', + 'classifier': 'head', + **kwargs, + } + +default_cfgs = { + + # re-finetuned augreg 21k FT on in1k weights + 'vit_base_patch16_224.augreg2_in21k_ft_in1k': _cfg( + hf_hub_id='timm/'), + 'vit_base_patch16_384.augreg2_in21k_ft_in1k': _cfg(), + 'vit_base_patch8_224.augreg2_in21k_ft_in1k': _cfg( + hf_hub_id='timm/'), + + # How to train your ViT (augreg) weights, pretrained on 21k FT on in1k + 'vit_tiny_patch16_224.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', + hf_hub_id='timm/', + custom_load=True), + 'vit_tiny_patch16_384.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', + hf_hub_id='timm/', + custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), + 'vit_small_patch32_224.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', + hf_hub_id='timm/', + custom_load=True), + 'vit_small_patch32_384.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', + hf_hub_id='timm/', + custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), + 'vit_small_patch16_224.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', + hf_hub_id='timm/', + custom_load=True), + 'vit_small_patch16_384.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', + hf_hub_id='timm/', + custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), + 'vit_base_patch32_224.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', + hf_hub_id='timm/', + custom_load=True), + 'vit_base_patch32_384.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', + hf_hub_id='timm/', + custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), + 'vit_base_patch16_224.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz', + hf_hub_id='timm/', + custom_load=True), + 'vit_base_patch16_384.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', + hf_hub_id='timm/', + custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), + 'vit_base_patch8_224.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz', + hf_hub_id='timm/', + custom_load=True), + 'vit_large_patch16_224.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz', + hf_hub_id='timm/', + custom_load=True), + 'vit_large_patch16_384.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz', + hf_hub_id='timm/', + custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), + + # patch models (weights from official Google JAX impl) pretrained on in21k FT on in1k + 'vit_base_patch16_224.orig_in21k_ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', + hf_hub_id='timm/'), + 'vit_base_patch16_384.orig_in21k_ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth', + hf_hub_id='timm/', + input_size=(3, 384, 384), crop_pct=1.0), + 'vit_large_patch32_384.orig_in21k_ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth', + hf_hub_id='timm/', + input_size=(3, 384, 384), crop_pct=1.0), + + # How to train your ViT (augreg) weights trained on in1k only + 'vit_small_patch16_224.augreg_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/S_16-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz', + hf_hub_id='timm/', + custom_load=True), + 'vit_small_patch16_384.augreg_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/S_16-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', + hf_hub_id='timm/', + custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), + 'vit_base_patch32_224.augreg_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_32-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz', + hf_hub_id='timm/', + custom_load=True), + 'vit_base_patch32_384.augreg_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_32-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz', + hf_hub_id='timm/', + custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), + 'vit_base_patch16_224.augreg_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_16-i1k-300ep-lr_0.001-aug_strong2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz', + hf_hub_id='timm/', + custom_load=True), + 'vit_base_patch16_384.augreg_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_16-i1k-300ep-lr_0.001-aug_strong2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz', + hf_hub_id='timm/', + custom_load=True, input_size=(3, 384, 384), crop_pct=1.0), + + 'vit_large_patch14_224.untrained': _cfg(url=''), + 'vit_huge_patch14_224.untrained': _cfg(url=''), + 'vit_giant_patch14_224.untrained': _cfg(url=''), + 'vit_gigantic_patch14_224.untrained': _cfg(url=''), + + # patch models, imagenet21k (weights from official Google JAX impl), classifier not valid + 'vit_base_patch32_224.orig_in21k': _cfg( + #url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth', + hf_hub_id='timm/', + num_classes=0), + 'vit_base_patch16_224.orig_in21k': _cfg( + #url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth', + hf_hub_id='timm/', + num_classes=0), + 'vit_large_patch32_224.orig_in21k': _cfg( + #url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth', + hf_hub_id='timm/', + num_classes=0), + 'vit_large_patch16_224.orig_in21k': _cfg( + #url='https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth', + hf_hub_id='timm/', + num_classes=0), + 'vit_huge_patch14_224.orig_in21k': _cfg( + hf_hub_id='timm/', + num_classes=0), + + # How to train your ViT (augreg) weights, pretrained on in21k + 'vit_tiny_patch16_224.augreg_in21k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', + hf_hub_id='timm/', + custom_load=True, num_classes=21843), + 'vit_small_patch32_224.augreg_in21k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', + hf_hub_id='timm/', + custom_load=True, num_classes=21843), + 'vit_small_patch16_224.augreg_in21k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz', + hf_hub_id='timm/', + custom_load=True, num_classes=21843), + 'vit_base_patch32_224.augreg_in21k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz', + hf_hub_id='timm/', + custom_load=True, num_classes=21843), + 'vit_base_patch16_224.augreg_in21k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz', + hf_hub_id='timm/', + custom_load=True, num_classes=21843), + 'vit_base_patch8_224.augreg_in21k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz', + hf_hub_id='timm/', + custom_load=True, num_classes=21843), + 'vit_large_patch16_224.augreg_in21k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz', + hf_hub_id='timm/', + custom_load=True, num_classes=21843), + + # SAM trained models (https://arxiv.org/abs/2106.01548) + 'vit_base_patch32_224.sam_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz', custom_load=True, + hf_hub_id='timm/'), + 'vit_base_patch16_224.sam_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz', custom_load=True, + hf_hub_id='timm/'), + + # DINO pretrained - https://arxiv.org/abs/2104.14294 (no classifier head, for fine-tune only) + 'vit_small_patch16_224.dino': _cfg( + url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth', + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + 'vit_small_patch8_224.dino': _cfg( + url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth', + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + 'vit_base_patch16_224.dino': _cfg( + url='https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth', + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + 'vit_base_patch8_224.dino': _cfg( + url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth', + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + + # DINOv2 pretrained - https://arxiv.org/abs/2304.07193 (no classifier head, for fine-tune/features only) + 'vit_small_patch14_dinov2.lvd142m': _cfg( + url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_pretrain.pth', + hf_hub_id='timm/', + license='apache-2.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, + input_size=(3, 518, 518), crop_pct=1.0), + 'vit_base_patch14_dinov2.lvd142m': _cfg( + url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_pretrain.pth', + hf_hub_id='timm/', + license='apache-2.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, + input_size=(3, 518, 518), crop_pct=1.0), + 'vit_large_patch14_dinov2.lvd142m': _cfg( + url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth', + hf_hub_id='timm/', + license='apache-2.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, + input_size=(3, 518, 518), crop_pct=1.0), + 'vit_giant_patch14_dinov2.lvd142m': _cfg( + url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth', + hf_hub_id='timm/', + license='apache-2.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, + input_size=(3, 518, 518), crop_pct=1.0), + + # DINOv2 pretrained w/ registers - https://arxiv.org/abs/2309.16588 (no classifier head, for fine-tune/features only) + 'vit_small_patch14_reg4_dinov2.lvd142m': _cfg( + url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_reg4_pretrain.pth', + hf_hub_id='timm/', + license='apache-2.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, + input_size=(3, 518, 518), crop_pct=1.0), + 'vit_base_patch14_reg4_dinov2.lvd142m': _cfg( + url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_reg4_pretrain.pth', + hf_hub_id='timm/', + license='apache-2.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, + input_size=(3, 518, 518), crop_pct=1.0), + 'vit_large_patch14_reg4_dinov2.lvd142m': _cfg( + url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_reg4_pretrain.pth', + hf_hub_id='timm/', + license='apache-2.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, + input_size=(3, 518, 518), crop_pct=1.0), + 'vit_giant_patch14_reg4_dinov2.lvd142m': _cfg( + url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_reg4_pretrain.pth', + hf_hub_id='timm/', + license='apache-2.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, + input_size=(3, 518, 518), crop_pct=1.0), + + # ViT ImageNet-21K-P pretraining by MILL + 'vit_base_patch16_224_miil.in21k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_in21k_miil-887286df.pth', + hf_hub_id='timm/', + mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear', num_classes=11221), + 'vit_base_patch16_224_miil.in21k_ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_1k_miil_84_4-2deb18e3.pth', + hf_hub_id='timm/', + mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear'), + + # Custom timm variants + 'vit_base_patch16_rpn_224.sw_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_base_patch16_rpn_224-sw-3b07e89d.pth', + hf_hub_id='timm/'), + 'vit_medium_patch16_gap_240.sw_in12k': _cfg( + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95, num_classes=11821), + 'vit_medium_patch16_gap_256.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_medium_patch16_gap_384.sw_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), crop_pct=0.95, crop_mode='squash'), + 'vit_base_patch16_gap_224': _cfg(), + + # CLIP pretrained image tower and related fine-tuned weights + 'vit_base_patch32_clip_224.laion2b_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD), + 'vit_base_patch32_clip_384.laion2b_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 384, 384)), + 'vit_base_patch32_clip_448.laion2b_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 448, 448)), + 'vit_base_patch16_clip_224.laion2b_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=0.95), + 'vit_base_patch16_clip_384.laion2b_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'), + 'vit_large_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0), + 'vit_large_patch14_clip_336.laion2b_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'), + 'vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0), + 'vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'), + + 'vit_base_patch32_clip_224.openai_ft_in12k_in1k': _cfg( + # hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in12k_in1k', # FIXME weight exists, need to push + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD), + 'vit_base_patch32_clip_384.openai_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + crop_pct=0.95, input_size=(3, 384, 384), crop_mode='squash'), + 'vit_base_patch16_clip_224.openai_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=0.95), + 'vit_base_patch16_clip_384.openai_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + crop_pct=0.95, input_size=(3, 384, 384), crop_mode='squash'), + 'vit_large_patch14_clip_224.openai_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0), + 'vit_large_patch14_clip_336.openai_ft_in12k_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'), + + 'vit_base_patch32_clip_224.laion2b_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD), + 'vit_base_patch16_clip_224.laion2b_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0), + 'vit_base_patch16_clip_384.laion2b_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'), + 'vit_large_patch14_clip_224.laion2b_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0), + 'vit_large_patch14_clip_336.laion2b_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, + crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'), + 'vit_huge_patch14_clip_224.laion2b_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0), + 'vit_huge_patch14_clip_336.laion2b_ft_in1k': _cfg( + hf_hub_id='', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'), + + 'vit_base_patch32_clip_224.openai_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD), + 'vit_base_patch16_clip_224.openai_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD), + 'vit_base_patch16_clip_384.openai_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'), + 'vit_large_patch14_clip_224.openai_ft_in1k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0), + + 'vit_base_patch32_clip_224.laion2b_ft_in12k': _cfg( + #hf_hub_id='timm/vit_base_patch32_clip_224.laion2b_ft_in12k', # FIXME weight exists, need to push + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821), + 'vit_base_patch16_clip_224.laion2b_ft_in12k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821), + 'vit_large_patch14_clip_224.laion2b_ft_in12k': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, num_classes=11821), + 'vit_huge_patch14_clip_224.laion2b_ft_in12k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=11821), + + 'vit_base_patch32_clip_224.openai_ft_in12k': _cfg( + # hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in12k', # FIXME weight exists, need to push + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821), + 'vit_base_patch16_clip_224.openai_ft_in12k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821), + 'vit_large_patch14_clip_224.openai_ft_in12k': _cfg( + hf_hub_id='timm/', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=11821), + + 'vit_base_patch32_clip_224.laion2b': _cfg( + hf_hub_id='laion/CLIP-ViT-B-32-laion2B-s34B-b79K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), + 'vit_base_patch16_clip_224.laion2b': _cfg( + hf_hub_id='laion/CLIP-ViT-B-16-laion2B-s34B-b88K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), + 'vit_large_patch14_clip_224.laion2b': _cfg( + hf_hub_id='laion/CLIP-ViT-L-14-laion2B-s32B-b82K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, num_classes=768), + 'vit_huge_patch14_clip_224.laion2b': _cfg( + hf_hub_id='laion/CLIP-ViT-H-14-laion2B-s32B-b79K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024), + 'vit_giant_patch14_clip_224.laion2b': _cfg( + hf_hub_id='laion/CLIP-ViT-g-14-laion2B-s12B-b42K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024), + 'vit_gigantic_patch14_clip_224.laion2b': _cfg( + hf_hub_id='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1280), + + 'vit_base_patch32_clip_224.laion400m_e32': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), + 'vit_base_patch16_clip_224.laion400m_e32': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), + 'vit_base_patch16_plus_clip_240.laion400m_e32': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 240, 240), crop_pct=1.0, num_classes=512), + 'vit_large_patch14_clip_224.laion400m_e32': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768), + + 'vit_base_patch32_clip_224.datacompxl': _cfg( + hf_hub_id='laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), + 'vit_base_patch32_clip_256.datacompxl': _cfg( + hf_hub_id='laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + crop_pct=1.0, input_size=(3, 256, 256), num_classes=512), + 'vit_base_patch16_clip_224.datacompxl': _cfg( + hf_hub_id='laion/CLIP-ViT-B-16-DataComp.XL-s13B-b90K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), + 'vit_large_patch14_clip_224.datacompxl': _cfg( + hf_hub_id='laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768), + + 'vit_base_patch16_clip_224.dfn2b': _cfg( + hf_hub_id='apple/DFN2B-CLIP-ViT-B-16', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), + 'vit_large_patch14_clip_224.dfn2b': _cfg( + hf_hub_id='apple/DFN2B-CLIP-ViT-L-14', + hf_hub_filename='open_clip_pytorch_model.bin', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768), + 'vit_huge_patch14_clip_224.dfn5b': _cfg( + hf_hub_id='apple/DFN5B-CLIP-ViT-H-14', + hf_hub_filename='open_clip_pytorch_model.bin', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024), + 'vit_huge_patch14_clip_378.dfn5b': _cfg( + hf_hub_id='apple/DFN5B-CLIP-ViT-H-14-378', + hf_hub_filename='open_clip_pytorch_model.bin', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + notes=('natively QuickGELU, use quickgelu model variant for original results',), + crop_pct=1.0, input_size=(3, 378, 378), num_classes=1024), + + 'vit_base_patch32_clip_224.metaclip_2pt5b': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + license='cc-by-nc-4.0', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), + 'vit_base_patch16_clip_224.metaclip_2pt5b': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + license='cc-by-nc-4.0', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), + 'vit_large_patch14_clip_224.metaclip_2pt5b': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + license='cc-by-nc-4.0', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768), + 'vit_huge_patch14_clip_224.metaclip_2pt5b': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + license='cc-by-nc-4.0', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024), + 'vit_gigantic_patch14_clip_224.metaclip_2pt5b': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + license='cc-by-nc-4.0', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1280), + 'vit_base_patch32_clip_224.metaclip_400m': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + license='cc-by-nc-4.0', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), + 'vit_base_patch16_clip_224.metaclip_400m': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + license='cc-by-nc-4.0', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512), + 'vit_large_patch14_clip_224.metaclip_400m': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + license='cc-by-nc-4.0', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768), + + 'vit_base_patch32_clip_224.openai': _cfg( + hf_hub_id='timm/', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), + 'vit_base_patch16_clip_224.openai': _cfg( + hf_hub_id='timm/', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), + 'vit_large_patch14_clip_224.openai': _cfg( + hf_hub_id='timm/', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768), + 'vit_large_patch14_clip_336.openai': _cfg( + hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin', + notes=('natively QuickGELU, use quickgelu model variant for original results',), + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + crop_pct=1.0, input_size=(3, 336, 336), num_classes=768), + + # experimental (may be removed) + 'vit_base_patch32_plus_256.untrained': _cfg(url='', input_size=(3, 256, 256), crop_pct=0.95), + 'vit_base_patch16_plus_240.untrained': _cfg(url='', input_size=(3, 240, 240), crop_pct=0.95), + 'vit_small_patch16_36x1_224.untrained': _cfg(url=''), + 'vit_small_patch16_18x2_224.untrained': _cfg(url=''), + 'vit_base_patch16_18x2_224.untrained': _cfg(url=''), + + # EVA fine-tuned weights from MAE style MIM - EVA-CLIP target pretrain + # https://github.com/baaivision/EVA/blob/7ecf2c0a370d97967e86d047d7af9188f78d2df3/eva/README.md#eva-l-learning-better-mim-representations-from-eva-clip + 'eva_large_patch14_196.in22k_ft_in22k_in1k': _cfg( + # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_196px_21k_to_1k_ft_88p6.pt', + hf_hub_id='timm/', license='mit', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 196, 196), crop_pct=1.0), + 'eva_large_patch14_336.in22k_ft_in22k_in1k': _cfg( + # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_336px_21k_to_1k_ft_89p2.pt', + hf_hub_id='timm/', license='mit', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), + 'eva_large_patch14_196.in22k_ft_in1k': _cfg( + # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_196px_1k_ft_88p0.pt', + hf_hub_id='timm/', license='mit', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 196, 196), crop_pct=1.0), + 'eva_large_patch14_336.in22k_ft_in1k': _cfg( + # hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_336px_1k_ft_88p65.pt', + hf_hub_id='timm/', license='mit', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, + input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), + + 'flexivit_small.1200ep_in1k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/flexivit_s_i1k.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95), + 'flexivit_small.600ep_in1k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/flexivit_s_i1k_600ep.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95), + 'flexivit_small.300ep_in1k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/flexivit_s_i1k_300ep.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95), + + 'flexivit_base.1200ep_in1k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i1k.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95), + 'flexivit_base.600ep_in1k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i1k_600ep.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95), + 'flexivit_base.300ep_in1k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i1k_300ep.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95), + 'flexivit_base.1000ep_in21k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i21k_1000ep.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843), + 'flexivit_base.300ep_in21k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i21k_300ep.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843), + + 'flexivit_large.1200ep_in1k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/flexivit_l_i1k.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95), + 'flexivit_large.600ep_in1k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/flexivit_l_i1k_600ep.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95), + 'flexivit_large.300ep_in1k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/flexivit_l_i1k_300ep.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95), + + 'flexivit_base.patch16_in21k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/vit_b16_i21k_300ep.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843), + 'flexivit_base.patch30_in21k': _cfg( + url='https://storage.googleapis.com/big_vision/flexivit/vit_b30_i21k_300ep.npz', custom_load=True, + hf_hub_id='timm/', + input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843), + + 'vit_base_patch16_xp_224.untrained': _cfg(url=''), + 'vit_large_patch14_xp_224.untrained': _cfg(url=''), + 'vit_huge_patch14_xp_224.untrained': _cfg(url=''), + + 'vit_base_patch16_224.mae': _cfg( + url='https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth', + hf_hub_id='timm/', + license='cc-by-nc-4.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + 'vit_large_patch16_224.mae': _cfg( + url='https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_large.pth', + hf_hub_id='timm/', + license='cc-by-nc-4.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + 'vit_huge_patch14_224.mae': _cfg( + url='https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_huge.pth', + hf_hub_id='timm/', + license='cc-by-nc-4.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + + 'vit_huge_patch14_gap_224.in1k_ijepa': _cfg( + url='https://dl.fbaipublicfiles.com/ijepa/IN1K-vit.h.14-300e.pth.tar', + # hf_hub_id='timm/', + license='cc-by-nc-4.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + 'vit_huge_patch14_gap_224.in22k_ijepa': _cfg( + url='https://dl.fbaipublicfiles.com/ijepa/IN22K-vit.h.14-900e.pth.tar', + # hf_hub_id='timm/', + license='cc-by-nc-4.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + 'vit_huge_patch16_gap_448.in1k_ijepa': _cfg( + url='https://dl.fbaipublicfiles.com/ijepa/IN1K-vit.h.16-448px-300e.pth.tar', + # hf_hub_id='timm/', + license='cc-by-nc-4.0', + input_size=(3, 448, 448), crop_pct=1.0, + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + 'vit_giant_patch16_gap_224.in22k_ijepa': _cfg( + url='https://dl.fbaipublicfiles.com/ijepa/IN22K-vit.g.16-600e.pth.tar', + # hf_hub_id='timm/', + license='cc-by-nc-4.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0), + + 'vit_base_patch16_siglip_224.webli': _cfg( + hf_hub_id='timm/ViT-B-16-SigLIP', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0), + 'vit_base_patch16_siglip_256.webli': _cfg( + hf_hub_id='timm/ViT-B-16-SigLIP-256', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 256, 256), + num_classes=0), + 'vit_base_patch16_siglip_256.webli_i18n': _cfg( + hf_hub_id='timm/ViT-B-16-SigLIP-i18n-256', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 256, 256), + num_classes=0), + 'vit_base_patch16_siglip_384.webli': _cfg( + hf_hub_id='timm/ViT-B-16-SigLIP-384', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 384, 384), + num_classes=0), + 'vit_base_patch16_siglip_512.webli': _cfg( + hf_hub_id='timm/ViT-B-16-SigLIP-512', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 512, 512), + num_classes=0), + 'vit_large_patch16_siglip_256.webli': _cfg( + hf_hub_id='timm/ViT-L-16-SigLIP-256', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 256, 256), + num_classes=0), + 'vit_large_patch16_siglip_384.webli': _cfg( + hf_hub_id='timm/ViT-L-16-SigLIP-384', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 384, 384), + num_classes=0), + 'vit_so400m_patch14_siglip_224.webli': _cfg( + hf_hub_id='timm/ViT-SO400M-14-SigLIP', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0), + 'vit_so400m_patch16_siglip_256.webli_i18n': _cfg( + hf_hub_id='timm/ViT-SO400M-16-SigLIP-i18n-256', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 256, 256), + num_classes=0), + 'vit_so400m_patch14_siglip_378.webli': _cfg( + hf_hub_id='timm/ViT-SO400M-14-SigLIP-384', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 378, 378), + num_classes=0), + 'vit_so400m_patch14_siglip_384.webli': _cfg( + hf_hub_id='timm/ViT-SO400M-14-SigLIP-384', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 384, 384), + num_classes=0), + + 'vit_base_patch16_siglip_gap_224.webli': _cfg( + hf_hub_id='timm/ViT-B-16-SigLIP', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0), + 'vit_base_patch16_siglip_gap_256.webli': _cfg( + hf_hub_id='timm/ViT-B-16-SigLIP-256', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 256, 256), + num_classes=0), + 'vit_base_patch16_siglip_gap_256.webli_i18n': _cfg( + hf_hub_id='timm/ViT-B-16-SigLIP-i18n-256', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 256, 256), + num_classes=0), + 'vit_base_patch16_siglip_gap_384.webli': _cfg( + hf_hub_id='timm/ViT-B-16-SigLIP-384', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 384, 384), + num_classes=0), + 'vit_base_patch16_siglip_gap_512.webli': _cfg( + hf_hub_id='timm/ViT-B-16-SigLIP-512', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 512, 512), + num_classes=0), + 'vit_large_patch16_siglip_gap_256.webli': _cfg( + hf_hub_id='timm/ViT-L-16-SigLIP-256', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 256, 256), + num_classes=0), + 'vit_large_patch16_siglip_gap_384.webli': _cfg( + hf_hub_id='timm/ViT-L-16-SigLIP-384', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 384, 384), + num_classes=0), + 'vit_so400m_patch14_siglip_gap_224.webli': _cfg( + hf_hub_id='timm/ViT-SO400M-14-SigLIP', + hf_hub_filename='open_clip_pytorch_model.bin', + num_classes=0), + 'vit_so400m_patch14_siglip_gap_224.pali_mix': _cfg( + hf_hub_id='google/paligemma-3b-mix-224-jax', + hf_hub_filename='paligemma-3b-mix-224.npz', + custom_load='hf', + num_classes=0), + 'vit_so400m_patch14_siglip_gap_224.pali_pt': _cfg( + hf_hub_id='google/paligemma-3b-pt-224-jax', + hf_hub_filename='paligemma-3b-pt-224.npz', + custom_load='hf', + num_classes=0), + 'vit_so400m_patch16_siglip_gap_256.webli_i18n': _cfg( + hf_hub_id='timm/ViT-SO400M-16-SigLIP-i18n-256', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 256, 256), + num_classes=0), + 'vit_so400m_patch14_siglip_gap_378.webli': _cfg( + hf_hub_id='timm/ViT-SO400M-14-SigLIP-384', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 378, 378), crop_pct=1.0, + num_classes=0), + 'vit_so400m_patch14_siglip_gap_384.webli': _cfg( + hf_hub_id='timm/ViT-SO400M-14-SigLIP-384', + hf_hub_filename='open_clip_pytorch_model.bin', + input_size=(3, 384, 384), crop_pct=1.0, + num_classes=0), + 'vit_so400m_patch14_siglip_gap_448.pali_mix': _cfg( + hf_hub_id='google/paligemma-3b-mix-448-jax', + hf_hub_filename='paligemma-3b-mix-448.npz', + custom_load='hf', + input_size=(3, 448, 448), crop_pct=1.0, + num_classes=0), + 'vit_so400m_patch14_siglip_gap_448.pali_pt': _cfg( + hf_hub_id='google/paligemma-3b-pt-448-jax', + hf_hub_filename='paligemma-3b-pt-448.npz', + custom_load='hf', + input_size=(3, 448, 448), crop_pct=1.0, + num_classes=0), + 'vit_so400m_patch14_siglip_gap_896.pali_pt': _cfg( + hf_hub_id='google/paligemma-3b-pt-896-jax', + hf_hub_filename='paligemma-3b-pt-896.npz', + custom_load='hf', + input_size=(3, 896, 896), crop_pct=1.0, + num_classes=0), + + 'vit_so400m_patch14_siglip_378.webli_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 378, 378), crop_pct=1.0, crop_mode='squash', + ), + 'vit_so400m_patch14_siglip_gap_378.webli_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 378, 378), crop_pct=1.0, crop_mode='squash', + ), + + 'vit_xsmall_patch16_clip_224.tinyclip_yfcc15m': _cfg( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + license='mit', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), + 'vit_medium_patch32_clip_224.tinyclip_laion400m': _cfg( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + license='mit', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), + 'vit_medium_patch16_clip_224.tinyclip_yfcc15m': _cfg( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + license='mit', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), + 'vit_betwixt_patch32_clip_224.tinyclip_laion400m': _cfg( + hf_hub_id='timm/', + hf_hub_filename='open_clip_pytorch_model.bin', + license='mit', + mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512), + + 'vit_wee_patch16_reg1_gap_256.sbb_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_pwee_patch16_reg1_gap_256.sbb_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_little_patch16_reg1_gap_256.sbb_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_little_patch16_reg4_gap_256.sbb_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_medium_patch16_reg1_gap_256.sbb_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_medium_patch16_reg4_gap_256.sbb_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_medium_patch16_reg4_gap_256.sbb_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_mediumd_patch16_reg4_gap_256.sbb_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), crop_pct=1.0), + 'vit_betwixt_patch16_reg1_gap_256.sbb_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_betwixt_patch16_reg4_gap_256.sbb_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_betwixt_patch16_reg4_gap_256.sbb_in12k': _cfg( + hf_hub_id='timm/', + num_classes=11821, + input_size=(3, 256, 256), crop_pct=0.95), + 'vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 384, 384), crop_pct=1.0), + 'vit_base_patch16_reg4_gap_256.untrained': _cfg( + input_size=(3, 256, 256)), + + 'vit_so150m_patch16_reg4_gap_256.untrained': _cfg( + input_size=(3, 256, 256)), + 'vit_so150m_patch16_reg4_map_256.untrained': _cfg( + input_size=(3, 256, 256)), + + 'vit_intern300m_patch14_448.ogvl_dist': _cfg( + hf_hub_id='timm/', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, + input_size=(3, 448, 448), crop_pct=1.0, num_classes=0, + ), + + 'test_vit.r160_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 160, 160), crop_pct=0.95), + 'test_vit2.r160_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 160, 160), crop_pct=0.95), + 'test_vit3.r160_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 160, 160), crop_pct=0.95), +} + +_quick_gelu_cfgs = [n for n, c in default_cfgs.items() if c.get('notes', ()) and 'quickgelu' in c['notes'][0]] +for n in _quick_gelu_cfgs: + # generate quickgelu default cfgs based on contents of notes field + c = copy.deepcopy(default_cfgs[n]) + if c['hf_hub_id'] == 'timm/': + c['hf_hub_id'] = 'timm/' + n # need to use non-quickgelu model name for hub id + default_cfgs[n.replace('_clip_', '_clip_quickgelu_')] = c +default_cfgs = generate_default_cfgs(default_cfgs) + + +def _create_vision_transformer(variant: str, pretrained: bool = False, **kwargs) -> VisionTransformer: + out_indices = kwargs.pop('out_indices', 3) + if 'flexi' in variant: + # FIXME Google FlexiViT pretrained models have a strong preference for bilinear patch / embed + # interpolation, other pretrained models resize better w/ anti-aliased bicubic interpolation. + _filter_fn = partial(checkpoint_filter_fn, interpolation='bilinear', antialias=False) + else: + _filter_fn = checkpoint_filter_fn + + # FIXME attn pool (currently only in siglip) params removed if pool disabled, is there a better soln? + strict = kwargs.pop('pretrained_strict', True) + if 'siglip' in variant and kwargs.get('global_pool', None) != 'map': + strict = False + + return build_model_with_cfg( + VisionTransformer, + variant, + pretrained, + pretrained_filter_fn=_filter_fn, + pretrained_strict=strict, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + + +@register_model +def vit_tiny_patch16_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Tiny (Vit-Ti/16) + """ + model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) + model = _create_vision_transformer('vit_tiny_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_tiny_patch16_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Tiny (Vit-Ti/16) @ 384x384. + """ + model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) + model = _create_vision_transformer('vit_tiny_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_patch32_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Small (ViT-S/32) + """ + model_args = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer('vit_small_patch32_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_patch32_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Small (ViT-S/32) at 384x384. + """ + model_args = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer('vit_small_patch32_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_patch16_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Small (ViT-S/16) + """ + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_patch16_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Small (ViT-S/16) + """ + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer('vit_small_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_patch8_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Small (ViT-S/8) + """ + model_args = dict(patch_size=8, embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer('vit_small_patch8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch32_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). + ImageNet-1k weights fine-tuned from in21k, source https://github.com/google-research/vision_transformer. + """ + model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch32_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). + ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. + """ + model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). + ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). + ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch8_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929). + ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. + """ + model_args = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer('vit_base_patch8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch32_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights. + """ + model_args = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch32_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). + ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. + """ + model_args = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch16_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). + ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. + """ + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch16_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). + ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. + """ + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch14_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Large model (ViT-L/14) + """ + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer('vit_large_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_huge_patch14_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). + """ + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16) + model = _create_vision_transformer('vit_huge_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_giant_patch14_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Giant (little-g) model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 + """ + model_args = dict(patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16) + model = _create_vision_transformer('vit_giant_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_gigantic_patch14_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Gigantic (big-G) model (ViT-G/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 + """ + model_args = dict(patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16) + model = _create_vision_transformer( + 'vit_gigantic_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_224_miil(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). + Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False) + model = _create_vision_transformer( + 'vit_base_patch16_224_miil', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_medium_patch16_gap_240(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Medium (ViT-M/16) w/o class token, w/ avg-pool @ 240x240 + """ + model_args = dict( + patch_size=16, embed_dim=512, depth=12, num_heads=8, class_token=False, + global_pool='avg', qkv_bias=False, init_values=1e-6, fc_norm=False) + model = _create_vision_transformer( + 'vit_medium_patch16_gap_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_medium_patch16_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Medium (ViT-M/16) w/o class token, w/ avg-pool @ 256x256 + """ + model_args = dict( + patch_size=16, embed_dim=512, depth=12, num_heads=8, class_token=False, + global_pool='avg', qkv_bias=False, init_values=1e-6, fc_norm=False) + model = _create_vision_transformer( + 'vit_medium_patch16_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_medium_patch16_gap_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Medium (ViT-M/16) w/o class token, w/ avg-pool @ 384x384 + """ + model_args = dict( + patch_size=16, embed_dim=512, depth=12, num_heads=8, class_token=False, + global_pool='avg', qkv_bias=False, init_values=1e-6, fc_norm=False) + model = _create_vision_transformer( + 'vit_medium_patch16_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_betwixt_patch16_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Betwixt (ViT-b/16) w/o class token, w/ avg-pool @ 256x256 + """ + model_args = dict( + patch_size=16, embed_dim=640, depth=12, num_heads=10, class_token=False, + global_pool='avg', qkv_bias=False, init_values=1e-6, fc_norm=False) + model = _create_vision_transformer( + 'vit_medium_patch16_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_gap_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base (ViT-B/16) w/o class token, w/ avg-pool @ 224x224 + """ + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=16, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer( + 'vit_base_patch16_gap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_huge_patch14_gap_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Huge model (ViT-H/14) w/ no class token, avg pool + """ + model_args = dict( + patch_size=14, embed_dim=1280, depth=32, num_heads=16, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer( + 'vit_huge_patch14_gap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_huge_patch16_gap_448(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Huge model (ViT-H/16) w/ no class token, avg pool @ 448x448 + """ + model_args = dict( + patch_size=16, embed_dim=1280, depth=32, num_heads=16, class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer( + 'vit_huge_patch16_gap_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_giant_patch16_gap_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Giant (little-gg) model (ViT-g/16) w/ no class token, avg pool + """ + model_args = dict( + patch_size=16, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11, + class_token=False, global_pool='avg', fc_norm=False) + model = _create_vision_transformer( + 'vit_giant_patch16_gap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_xsmall_patch16_clip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + # TinyCLIP 8M + model_args = dict(embed_dim=256, depth=10, num_heads=4, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_xsmall_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_medium_patch32_clip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + # TinyCLIP 40M + model_args = dict( + patch_size=32, embed_dim=512, depth=12, num_heads=8, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_medium_patch32_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_medium_patch16_clip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + # TinyCLIP 39M + model_args = dict(embed_dim=512, depth=12, num_heads=8, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_medium_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_betwixt_patch32_clip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + # TinyCLIP 61M + model_args = dict( + patch_size=32, embed_dim=640, depth=12, num_heads=10, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_betwixt_patch32_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch32_clip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-B/32 CLIP image tower @ 224x224 + """ + model_args = dict( + patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_base_patch32_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch32_clip_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-B/32 CLIP image tower @ 256x256 + """ + model_args = dict( + patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_base_patch32_clip_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch32_clip_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-B/32 CLIP image tower @ 384x384 + """ + model_args = dict( + patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_base_patch32_clip_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch32_clip_448(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-B/32 CLIP image tower @ 448x448 + """ + model_args = dict( + patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_base_patch32_clip_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_clip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-B/16 CLIP image tower + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_base_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_clip_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-B/16 CLIP image tower @ 384x384 + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_base_patch16_clip_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_plus_clip_240(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base (ViT-B/16+) CLIP image tower @ 240x240 + """ + model_args = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_base_patch16_plus_clip_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch14_clip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Large model (ViT-L/14) CLIP image tower + """ + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_large_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch14_clip_336(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Large model (ViT-L/14) CLIP image tower @ 336x336 + """ + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_large_patch14_clip_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_huge_patch14_clip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Huge model (ViT-H/14) CLIP image tower. + """ + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_huge_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_huge_patch14_clip_336(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Huge model (ViT-H/14) CLIP image tower @ 336x336 + """ + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_huge_patch14_clip_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_huge_patch14_clip_378(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Huge model (ViT-H/14) CLIP image tower @ 378x378 + """ + model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_huge_patch14_clip_378', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_giant_patch14_clip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Giant (little-g) model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 + Pretrained weights from CLIP image tower. + """ + model_args = dict( + patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_giant_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_gigantic_patch14_clip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-bigG model (ViT-G/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560 + Pretrained weights from CLIP image tower. + """ + model_args = dict( + patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm) + model = _create_vision_transformer( + 'vit_gigantic_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch32_clip_quickgelu_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-B/32 CLIP image tower @ 224x224 + """ + model_args = dict( + patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, + norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer( + 'vit_base_patch32_clip_quickgelu_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_clip_quickgelu_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-B/16 CLIP image tower w/ QuickGELU act + """ + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, + norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer( + 'vit_base_patch16_clip_quickgelu_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch14_clip_quickgelu_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Large model (ViT-L/14) CLIP image tower w/ QuickGELU act + """ + model_args = dict( + patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, + norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer( + 'vit_large_patch14_clip_quickgelu_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch14_clip_quickgelu_336(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Large model (ViT-L/14) CLIP image tower @ 336x336 w/ QuickGELU act + """ + model_args = dict( + patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, + norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer( + 'vit_large_patch14_clip_quickgelu_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_huge_patch14_clip_quickgelu_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Huge model (ViT-H/14) CLIP image tower w/ QuickGELU act. + """ + model_args = dict( + patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, + norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer( + 'vit_huge_patch14_clip_quickgelu_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_huge_patch14_clip_quickgelu_378(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Huge model (ViT-H/14) CLIP image tower @ 378x378 w/ QuickGELU act + """ + model_args = dict( + patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, + norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer( + 'vit_huge_patch14_clip_quickgelu_378', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_gigantic_patch14_clip_quickgelu_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-bigG model (ViT-G/14) w/ QuickGELU act + """ + model_args = dict( + patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16, pre_norm=True, + norm_layer=nn.LayerNorm, act_layer='quick_gelu') + model = _create_vision_transformer( + 'vit_gigantic_patch14_clip_quickgelu_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +# Experimental models below + +@register_model +def vit_base_patch32_plus_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base (ViT-B/32+) + """ + model_args = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, init_values=1e-5) + model = _create_vision_transformer( + 'vit_base_patch32_plus_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_plus_240(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base (ViT-B/16+) + """ + model_args = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14, init_values=1e-5) + model = _create_vision_transformer( + 'vit_base_patch16_plus_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_rpn_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base (ViT-B/16) w/ residual post-norm + """ + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, init_values=1e-5, + class_token=False, block_fn=ResPostBlock, global_pool='avg') + model = _create_vision_transformer( + 'vit_base_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_patch16_36x1_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base w/ LayerScale + 36 x 1 (36 block serial) config. Experimental, may remove. + Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795 + Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow. + """ + model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=6, init_values=1e-5) + model = _create_vision_transformer( + 'vit_small_patch16_36x1_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_patch16_18x2_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Small w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove. + Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795 + Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow. + """ + model_args = dict( + patch_size=16, embed_dim=384, depth=18, num_heads=6, init_values=1e-5, block_fn=ParallelThingsBlock) + model = _create_vision_transformer( + 'vit_small_patch16_18x2_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_18x2_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Base w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove. + Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795 + """ + model_args = dict( + patch_size=16, embed_dim=768, depth=18, num_heads=12, init_values=1e-5, block_fn=ParallelThingsBlock) + model = _create_vision_transformer( + 'vit_base_patch16_18x2_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva_large_patch14_196(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ EVA-large model https://arxiv.org/abs/2211.07636 /via MAE MIM pretrain""" + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, global_pool='avg') + model = _create_vision_transformer( + 'eva_large_patch14_196', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def eva_large_patch14_336(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ EVA-large model https://arxiv.org/abs/2211.07636 via MAE MIM pretrain""" + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, global_pool='avg') + model = _create_vision_transformer('eva_large_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def flexivit_small(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ FlexiViT-Small + """ + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True) + model = _create_vision_transformer('flexivit_small', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def flexivit_base(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ FlexiViT-Base + """ + model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True) + model = _create_vision_transformer('flexivit_base', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def flexivit_large(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ FlexiViT-Large + """ + model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True) + model = _create_vision_transformer('flexivit_large', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_xp_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Large model (ViT-L/14) w/ parallel blocks and qk norm enabled. + """ + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, no_embed_class=True, + norm_layer=RmsNorm, block_fn=ParallelScalingBlock, qkv_bias=False, qk_norm=True, + ) + model = _create_vision_transformer( + 'vit_base_patch16_xp_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch14_xp_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Large model (ViT-L/14) w/ parallel blocks and qk norm enabled. + """ + model_args = dict( + patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, no_embed_class=True, + norm_layer=RmsNorm, block_fn=ParallelScalingBlock, qkv_bias=False, qk_norm=True, + ) + model = _create_vision_transformer( + 'vit_large_patch14_xp_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_huge_patch14_xp_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-Huge model (ViT-H/14) w/ parallel blocks and qk norm enabled. + """ + model_args = dict( + patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, no_embed_class=True, + norm_layer=RmsNorm, block_fn=ParallelScalingBlock, qkv_bias=False, qk_norm=True, + ) + model = _create_vision_transformer( + 'vit_huge_patch14_xp_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_patch14_dinov2(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-S/14 for DINOv2 + """ + model_args = dict(patch_size=14, embed_dim=384, depth=12, num_heads=6, init_values=1e-5) + model = _create_vision_transformer( + 'vit_small_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch14_dinov2(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-B/14 for DINOv2 + """ + model_args = dict(patch_size=14, embed_dim=768, depth=12, num_heads=12, init_values=1e-5) + model = _create_vision_transformer( + 'vit_base_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch14_dinov2(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-L/14 for DINOv2 + """ + model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, init_values=1e-5) + model = _create_vision_transformer( + 'vit_large_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_giant_patch14_dinov2(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-G/14 for DINOv2 + """ + # The hidden_features of SwiGLU is calculated by: + # hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 + # When embed_dim=1536, hidden_features=4096 + # With SwiGLUPacked, we need to set hidden_features = 2 * 4096 = 8192 + model_args = dict( + patch_size=14, embed_dim=1536, depth=40, num_heads=24, init_values=1e-5, + mlp_ratio=2.66667 * 2, mlp_layer=SwiGLUPacked, act_layer=nn.SiLU + ) + model = _create_vision_transformer( + 'vit_giant_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_patch14_reg4_dinov2(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-S/14 for DINOv2 w/ 4 registers + """ + model_args = dict( + patch_size=14, embed_dim=384, depth=12, num_heads=6, init_values=1e-5, + reg_tokens=4, no_embed_class=True, + ) + model = _create_vision_transformer( + 'vit_small_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch14_reg4_dinov2(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-B/14 for DINOv2 w/ 4 registers + """ + model_args = dict( + patch_size=14, embed_dim=768, depth=12, num_heads=12, init_values=1e-5, + reg_tokens=4, no_embed_class=True, + ) + model = _create_vision_transformer( + 'vit_base_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch14_reg4_dinov2(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-L/14 for DINOv2 w/ 4 registers + """ + model_args = dict( + patch_size=14, embed_dim=1024, depth=24, num_heads=16, init_values=1e-5, + reg_tokens=4, no_embed_class=True, + ) + model = _create_vision_transformer( + 'vit_large_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_giant_patch14_reg4_dinov2(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT-G/14 for DINOv2 + """ + # The hidden_features of SwiGLU is calculated by: + # hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 + # When embed_dim=1536, hidden_features=4096 + # With SwiGLUPacked, we need to set hidden_features = 2 * 4096 = 8192 + model_args = dict( + patch_size=14, embed_dim=1536, depth=40, num_heads=24, init_values=1e-5, mlp_ratio=2.66667 * 2, + mlp_layer=SwiGLUPacked, act_layer=nn.SiLU, reg_tokens=4, no_embed_class=True, + ) + model = _create_vision_transformer( + 'vit_giant_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_siglip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='map', + ) + model = _create_vision_transformer( + 'vit_base_patch16_siglip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_siglip_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='map', + ) + model = _create_vision_transformer( + 'vit_base_patch16_siglip_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_siglip_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='map', + ) + model = _create_vision_transformer( + 'vit_base_patch16_siglip_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_siglip_512(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='map', + ) + model = _create_vision_transformer( + 'vit_base_patch16_siglip_512', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch16_siglip_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=1024, depth=24, num_heads=16, class_token=False, global_pool='map', + ) + model = _create_vision_transformer( + 'vit_large_patch16_siglip_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch16_siglip_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=1024, depth=24, num_heads=16, class_token=False, global_pool='map', + ) + model = _create_vision_transformer( + 'vit_large_patch16_siglip_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so400m_patch14_siglip_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, class_token=False, global_pool='map', + ) + model = _create_vision_transformer( + 'vit_so400m_patch14_siglip_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so400m_patch16_siglip_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + # this is a corrected variant of the 384 with a res properly divisible by patch size (no padding/truncation) + model_args = dict( + patch_size=16, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, class_token=False, global_pool='map', + ) + model = _create_vision_transformer( + 'vit_so400m_patch16_siglip_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so400m_patch14_siglip_378(pretrained: bool = False, **kwargs) -> VisionTransformer: + # this is a corrected variant of the 384 with a res properly divisible by patch size (no padding/truncation) + model_args = dict( + patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, class_token=False, global_pool='map', + ) + model = _create_vision_transformer( + 'vit_so400m_patch14_siglip_378', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so400m_patch14_siglip_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, class_token=False, global_pool='map', + ) + model = _create_vision_transformer( + 'vit_so400m_patch14_siglip_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_siglip_gap_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_base_patch16_siglip_gap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_siglip_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_base_patch16_siglip_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_siglip_gap_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_base_patch16_siglip_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_siglip_gap_512(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_base_patch16_siglip_gap_512', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch16_siglip_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=16, embed_dim=1024, depth=24, num_heads=16, class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_large_patch16_siglip_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_patch16_siglip_gap_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=16, embed_dim=1024, depth=24, num_heads=16, class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_large_patch16_siglip_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so400m_patch14_siglip_gap_224(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, + class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_so400m_patch14_siglip_gap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so400m_patch16_siglip_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=16, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, + class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_so400m_patch16_siglip_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so400m_patch14_siglip_gap_378(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, + class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_so400m_patch14_siglip_gap_378', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so400m_patch14_siglip_gap_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, + class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_so400m_patch14_siglip_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so400m_patch14_siglip_gap_448(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, + class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_so400m_patch14_siglip_gap_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so400m_patch14_siglip_gap_896(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ A SigLIP variant of ViT with global average pooling (GAP) instead of attention pooling (MAP).""" + model_args = dict( + patch_size=14, embed_dim=1152, depth=27, num_heads=16, mlp_ratio=3.7362, + class_token=False, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_so400m_patch14_siglip_gap_896', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_wee_patch16_reg1_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=256, depth=14, num_heads=4, init_values=1e-5, mlp_ratio=5, + class_token=False, no_embed_class=True, reg_tokens=1, global_pool='avg', + ) + model = _create_vision_transformer( + 'vit_wee_patch16_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_pwee_patch16_reg1_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=256, depth=16, num_heads=4, init_values=1e-5, mlp_ratio=5, + class_token=False, no_embed_class=True, reg_tokens=1, global_pool='avg', block_fn=ParallelScalingBlock, + ) + model = _create_vision_transformer( + 'vit_pwee_patch16_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_little_patch16_reg1_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=320, depth=14, num_heads=5, init_values=1e-5, mlp_ratio=5.6, + class_token=False, no_embed_class=True, reg_tokens=1, global_pool='avg', + ) + model = _create_vision_transformer( + 'vit_little_patch16_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_little_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=320, depth=14, num_heads=5, init_values=1e-5, mlp_ratio=5.6, + class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg', + ) + model = _create_vision_transformer( + 'vit_little_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_medium_patch16_reg1_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=512, depth=12, num_heads=8, init_values=1e-5, + class_token=False, no_embed_class=True, reg_tokens=1, global_pool='avg', + ) + model = _create_vision_transformer( + 'vit_medium_patch16_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_medium_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=512, depth=12, num_heads=8, init_values=1e-5, + class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg', + ) + model = _create_vision_transformer( + 'vit_medium_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_mediumd_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=512, depth=20, num_heads=8, init_values=1e-5, + class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg', + ) + model = _create_vision_transformer( + 'vit_mediumd_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_mediumd_patch16_reg4_gap_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=512, depth=20, num_heads=8, init_values=1e-5, + class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg', + ) + model = _create_vision_transformer( + 'vit_mediumd_patch16_reg4_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_betwixt_patch16_reg1_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=640, depth=12, num_heads=10, init_values=1e-5, + class_token=False, no_embed_class=True, reg_tokens=1, global_pool='avg', + ) + model = _create_vision_transformer( + 'vit_betwixt_patch16_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_betwixt_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=640, depth=12, num_heads=10, init_values=1e-5, + class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg', + ) + model = _create_vision_transformer( + 'vit_betwixt_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_betwixt_patch16_reg4_gap_384(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=640, depth=12, num_heads=10, init_values=1e-5, + class_token=False, no_embed_class=True, reg_tokens=4, global_pool='avg', + ) + model = _create_vision_transformer( + 'vit_betwixt_patch16_reg4_gap_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, class_token=False, + no_embed_class=True, global_pool='avg', reg_tokens=4, + ) + model = _create_vision_transformer( + 'vit_base_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so150m_patch16_reg4_map_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=896, depth=18, num_heads=14, mlp_ratio=2.572, + class_token=False, reg_tokens=4, global_pool='map', + ) + model = _create_vision_transformer( + 'vit_so150m_patch16_reg4_map_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_so150m_patch16_reg4_gap_256(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=16, embed_dim=896, depth=18, num_heads=14, mlp_ratio=2.572, + class_token=False, reg_tokens=4, global_pool='avg', fc_norm=False, + ) + model = _create_vision_transformer( + 'vit_so150m_patch16_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_intern300m_patch14_448(pretrained: bool = False, **kwargs) -> VisionTransformer: + model_args = dict( + patch_size=14, embed_dim=1024, depth=24, num_heads=16, + init_values=0.1, final_norm=False, dynamic_img_size=True, + ) + model = _create_vision_transformer( + 'vit_intern300m_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def test_vit(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT Test + """ + model_args = dict(patch_size=16, embed_dim=64, depth=6, num_heads=2, mlp_ratio=3, dynamic_img_size=True) + model = _create_vision_transformer('test_vit', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def test_vit2(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT Test + """ + model_args = dict( + patch_size=16, embed_dim=64, depth=8, num_heads=2, mlp_ratio=3, + class_token=False, reg_tokens=1, global_pool='avg', init_values=1e-5, dynamic_img_size=True) + model = _create_vision_transformer('test_vit2', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def test_vit3(pretrained: bool = False, **kwargs) -> VisionTransformer: + """ ViT Test + """ + model_args = dict( + patch_size=16, embed_dim=96, depth=9, num_heads=3, mlp_ratio=2, + class_token=False, reg_tokens=1, global_pool='map', init_values=1e-5) + model = _create_vision_transformer('test_vit3', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +register_model_deprecations(__name__, { + 'vit_tiny_patch16_224_in21k': 'vit_tiny_patch16_224.augreg_in21k', + 'vit_small_patch32_224_in21k': 'vit_small_patch32_224.augreg_in21k', + 'vit_small_patch16_224_in21k': 'vit_small_patch16_224.augreg_in21k', + 'vit_base_patch32_224_in21k': 'vit_base_patch32_224.augreg_in21k', + 'vit_base_patch16_224_in21k': 'vit_base_patch16_224.augreg_in21k', + 'vit_base_patch8_224_in21k': 'vit_base_patch8_224.augreg_in21k', + 'vit_large_patch32_224_in21k': 'vit_large_patch32_224.orig_in21k', + 'vit_large_patch16_224_in21k': 'vit_large_patch16_224.augreg_in21k', + 'vit_huge_patch14_224_in21k': 'vit_huge_patch14_224.orig_in21k', + 'vit_base_patch32_224_sam': 'vit_base_patch32_224.sam', + 'vit_base_patch16_224_sam': 'vit_base_patch16_224.sam', + 'vit_small_patch16_224_dino': 'vit_small_patch16_224.dino', + 'vit_small_patch8_224_dino': 'vit_small_patch8_224.dino', + 'vit_base_patch16_224_dino': 'vit_base_patch16_224.dino', + 'vit_base_patch8_224_dino': 'vit_base_patch8_224.dino', + 'vit_base_patch16_224_miil_in21k': 'vit_base_patch16_224_miil.in21k', + 'vit_base_patch32_224_clip_laion2b': 'vit_base_patch32_clip_224.laion2b', + 'vit_large_patch14_224_clip_laion2b': 'vit_large_patch14_clip_224.laion2b', + 'vit_huge_patch14_224_clip_laion2b': 'vit_huge_patch14_clip_224.laion2b', + 'vit_giant_patch14_224_clip_laion2b': 'vit_giant_patch14_clip_224.laion2b', +}) diff --git a/pytorch-image-models/timm/models/vision_transformer_hybrid.py b/pytorch-image-models/timm/models/vision_transformer_hybrid.py new file mode 100644 index 0000000000000000000000000000000000000000..4cf3a7664b29f88c369b2667d4c8c49a90f5b6ef --- /dev/null +++ b/pytorch-image-models/timm/models/vision_transformer_hybrid.py @@ -0,0 +1,408 @@ +""" Hybrid Vision Transformer (ViT) in PyTorch + +A PyTorch implement of the Hybrid Vision Transformers as described in: + +'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' + - https://arxiv.org/abs/2010.11929 + +`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` + - https://arxiv.org/abs/2106.10270 + +NOTE These hybrid model definitions depend on code in vision_transformer.py. +They were moved here to keep file sizes sane. + +Hacked together by / Copyright 2020, Ross Wightman +""" +import math +from functools import partial +from typing import Dict, List, Optional, Tuple, Type, Union + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import StdConv2dSame, StdConv2d, ConvNormAct, to_2tuple, to_ntuple, HybridEmbed + +from ._builder import build_model_with_cfg +from ._registry import generate_default_cfgs, register_model, register_model_deprecations +from .resnet import resnet26d, resnet50d +from .resnetv2 import ResNetV2, create_resnetv2_stem +from .vision_transformer import VisionTransformer + + +class ConvStem(nn.Sequential): + def __init__( + self, + in_chans: int = 3, + depth: int = 3, + channels: Union[int, Tuple[int, ...]] = 64, + kernel_size: Union[int, Tuple[int, ...]] = 3, + stride: Union[int, Tuple[int, ...]] = (2, 2, 2), + padding: Union[str, int, Tuple[int, ...]] = "", + norm_layer: Type[nn.Module] = nn.BatchNorm2d, + act_layer: Type[nn.Module] = nn.ReLU, + ): + super().__init__() + if isinstance(channels, int): + # a default tiered channel strategy + channels = tuple([channels // 2**i for i in range(depth)][::-1]) + + kernel_size = to_ntuple(depth)(kernel_size) + padding = to_ntuple(depth)(padding) + assert depth == len(stride) == len(kernel_size) == len(channels) + + in_chs = in_chans + for i in range(len(channels)): + last_conv = i == len(channels) - 1 + self.add_module(f'{i}', ConvNormAct( + in_chs, + channels[i], + kernel_size=kernel_size[i], + stride=stride[i], + padding=padding[i], + bias=last_conv, + apply_norm=not last_conv, + apply_act=not last_conv, + norm_layer=norm_layer, + act_layer=act_layer, + )) + in_chs = channels[i] + + +def _resnetv2(layers=(3, 4, 9), **kwargs): + """ ResNet-V2 backbone helper""" + padding_same = kwargs.get('padding_same', True) + stem_type = 'same' if padding_same else '' + conv_layer = partial(StdConv2dSame, eps=1e-8) if padding_same else partial(StdConv2d, eps=1e-8) + if len(layers): + backbone = ResNetV2( + layers=layers, num_classes=0, global_pool='', in_chans=kwargs.get('in_chans', 3), + preact=False, stem_type=stem_type, conv_layer=conv_layer) + else: + backbone = create_resnetv2_stem( + kwargs.get('in_chans', 3), stem_type=stem_type, preact=False, conv_layer=conv_layer) + return backbone + + +def _convert_mobileclip(state_dict, model, prefix='image_encoder.model.'): + out = {} + for k, v in state_dict.items(): + if not k.startswith(prefix): + continue + k = k.replace(prefix, '') + k = k.replace('patch_emb.', 'patch_embed.backbone.') + k = k.replace('block.conv', 'conv') + k = k.replace('block.norm', 'bn') + k = k.replace('post_transformer_norm.', 'norm.') + k = k.replace('pre_norm_mha.0', 'norm1') + k = k.replace('pre_norm_mha.1', 'attn') + k = k.replace('pre_norm_ffn.0', 'norm2') + k = k.replace('pre_norm_ffn.1', 'mlp.fc1') + k = k.replace('pre_norm_ffn.4', 'mlp.fc2') + k = k.replace('qkv_proj.', 'qkv.') + k = k.replace('out_proj.', 'proj.') + k = k.replace('transformer.', 'blocks.') + if k == 'pos_embed.pos_embed.pos_embed': + k = 'pos_embed' + v = v.squeeze(0) + if 'classifier.proj' in k: + bias_k = k.replace('classifier.proj', 'head.bias') + k = k.replace('classifier.proj', 'head.weight') + v = v.T + out[bias_k] = torch.zeros(v.shape[0]) + out[k] = v + return out + + +def checkpoint_filter_fn( + state_dict: Dict[str, torch.Tensor], + model: VisionTransformer, + interpolation: str = 'bicubic', + antialias: bool = True, +) -> Dict[str, torch.Tensor]: + from .vision_transformer import checkpoint_filter_fn as _filter_fn + + if 'image_encoder.model.patch_emb.0.block.conv.weight' in state_dict: + state_dict = _convert_mobileclip(state_dict, model) + + return _filter_fn(state_dict, model, interpolation=interpolation, antialias=antialias) + + +def _create_vision_transformer_hybrid(variant, backbone, embed_args=None, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + embed_args = embed_args or {} + embed_layer = partial(HybridEmbed, backbone=backbone, **embed_args) + kwargs.setdefault('embed_layer', embed_layer) + kwargs.setdefault('patch_size', 1) # default patch size for hybrid models if not set + return build_model_with_cfg( + VisionTransformer, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), + 'first_conv': 'patch_embed.backbone.stem.conv', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # hybrid in-1k models (weights from official JAX impl where they exist) + 'vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz', + hf_hub_id='timm/', + custom_load=True, + first_conv='patch_embed.backbone.conv'), + 'vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', + hf_hub_id='timm/', + first_conv='patch_embed.backbone.conv', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True), + 'vit_small_r26_s32_224.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_light0-wd_0.03-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.03-res_224.npz', + hf_hub_id='timm/', + custom_load=True, + ), + 'vit_small_r26_s32_384.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz', + hf_hub_id='timm/', + input_size=(3, 384, 384), crop_pct=1.0, custom_load=True), + 'vit_base_r26_s32_224.untrained': _cfg(), + 'vit_base_r50_s16_384.orig_in21k_ft_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth', + hf_hub_id='timm/', + input_size=(3, 384, 384), crop_pct=1.0), + 'vit_large_r50_s32_224.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz', + hf_hub_id='timm/', + custom_load=True, + ), + 'vit_large_r50_s32_384.augreg_in21k_ft_in1k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz', + hf_hub_id='timm/', + input_size=(3, 384, 384), crop_pct=1.0, custom_load=True, + ), + + # hybrid in-21k models (weights from official Google JAX impl where they exist) + 'vit_tiny_r_s16_p8_224.augreg_in21k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz', + hf_hub_id='timm/', + num_classes=21843, crop_pct=0.9, first_conv='patch_embed.backbone.conv', custom_load=True), + 'vit_small_r26_s32_224.augreg_in21k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0.npz', + hf_hub_id='timm/', + num_classes=21843, crop_pct=0.9, custom_load=True), + 'vit_base_r50_s16_224.orig_in21k': _cfg( + #url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth', + hf_hub_id='timm/', + num_classes=0, crop_pct=0.9), + 'vit_large_r50_s32_224.augreg_in21k': _cfg( + url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0.npz', + hf_hub_id='timm/', + num_classes=21843, crop_pct=0.9, custom_load=True), + + # hybrid models (using timm resnet backbones) + 'vit_small_resnet26d_224.untrained': _cfg( + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), + 'vit_small_resnet50d_s16_224.untrained': _cfg( + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), + 'vit_base_resnet26d_224.untrained': _cfg( + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), + 'vit_base_resnet50d_224.untrained': _cfg( + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'), + + 'vit_base_mci_224.apple_mclip_lt': _cfg( + hf_hub_id='apple/mobileclip_b_lt_timm', + url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_blt.pt', + num_classes=512, + mean=(0., 0., 0.), std=(1., 1., 1.), first_conv='patch_embed.backbone.0.conv', + ), + 'vit_base_mci_224.apple_mclip': _cfg( + hf_hub_id='apple/mobileclip_b_timm', + url='https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_b.pt', + num_classes=512, + mean=(0., 0., 0.), std=(1., 1., 1.), first_conv='patch_embed.backbone.0.conv', + ), +}) + + +@register_model +def vit_tiny_r_s16_p8_224(pretrained=False, **kwargs) -> VisionTransformer: + """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 224 x 224. + """ + backbone = _resnetv2(layers=(), **kwargs) + model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3) + model = _create_vision_transformer_hybrid( + 'vit_tiny_r_s16_p8_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_tiny_r_s16_p8_384(pretrained=False, **kwargs) -> VisionTransformer: + """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 384 x 384. + """ + backbone = _resnetv2(layers=(), **kwargs) + model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3) + model = _create_vision_transformer_hybrid( + 'vit_tiny_r_s16_p8_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer: + """ R26+ViT-S/S32 hybrid. + """ + backbone = _resnetv2((2, 2, 2, 2), **kwargs) + model_args = dict(embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer_hybrid( + 'vit_small_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_r26_s32_384(pretrained=False, **kwargs) -> VisionTransformer: + """ R26+ViT-S/S32 hybrid. + """ + backbone = _resnetv2((2, 2, 2, 2), **kwargs) + model_args = dict(embed_dim=384, depth=12, num_heads=6) + model = _create_vision_transformer_hybrid( + 'vit_small_r26_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer: + """ R26+ViT-B/S32 hybrid. + """ + backbone = _resnetv2((2, 2, 2, 2), **kwargs) + model_args = dict(embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer_hybrid( + 'vit_base_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_r50_s16_224(pretrained=False, **kwargs) -> VisionTransformer: + """ R50+ViT-B/S16 hybrid from original paper (https://arxiv.org/abs/2010.11929). + """ + backbone = _resnetv2((3, 4, 9), **kwargs) + model_args = dict(embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer_hybrid( + 'vit_base_r50_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_r50_s16_384(pretrained=False, **kwargs) -> VisionTransformer: + """ R50+ViT-B/16 hybrid from original paper (https://arxiv.org/abs/2010.11929). + ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. + """ + backbone = _resnetv2((3, 4, 9), **kwargs) + model_args = dict(embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer_hybrid( + 'vit_base_r50_s16_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_r50_s32_224(pretrained=False, **kwargs) -> VisionTransformer: + """ R50+ViT-L/S32 hybrid. + """ + backbone = _resnetv2((3, 4, 6, 3), **kwargs) + model_args = dict(embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer_hybrid( + 'vit_large_r50_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_large_r50_s32_384(pretrained=False, **kwargs) -> VisionTransformer: + """ R50+ViT-L/S32 hybrid. + """ + backbone = _resnetv2((3, 4, 6, 3), **kwargs) + model_args = dict(embed_dim=1024, depth=24, num_heads=16) + model = _create_vision_transformer_hybrid( + 'vit_large_r50_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer: + """ Custom ViT small hybrid w/ ResNet26D stride 32. No pretrained weights. + """ + backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) + model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3) + model = _create_vision_transformer_hybrid( + 'vit_small_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_small_resnet50d_s16_224(pretrained=False, **kwargs) -> VisionTransformer: + """ Custom ViT small hybrid w/ ResNet50D 3-stages, stride 16. No pretrained weights. + """ + backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[3]) + model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3) + model = _create_vision_transformer_hybrid( + 'vit_small_resnet50d_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer: + """ Custom ViT base hybrid w/ ResNet26D stride 32. No pretrained weights. + """ + backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) + model_args = dict(embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer_hybrid( + 'vit_base_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_resnet50d_224(pretrained=False, **kwargs) -> VisionTransformer: + """ Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights. + """ + backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4]) + model_args = dict(embed_dim=768, depth=12, num_heads=12) + model = _create_vision_transformer_hybrid( + 'vit_base_resnet50d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_base_mci_224(pretrained=False, **kwargs) -> VisionTransformer: + """ Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights. + """ + backbone = ConvStem( + channels=(768//4, 768//4, 768), + stride=(4, 2, 2), + kernel_size=(4, 2, 2), + padding=0, + in_chans=kwargs.get('in_chans', 3), + act_layer=nn.GELU, + ) + model_args = dict(embed_dim=768, depth=12, num_heads=12, no_embed_class=True) + model = _create_vision_transformer_hybrid( + 'vit_base_mci_224', backbone=backbone, embed_args=dict(proj=False), + pretrained=pretrained, **dict(model_args, **kwargs) + ) + return model + + +register_model_deprecations(__name__, { + 'vit_tiny_r_s16_p8_224_in21k': 'vit_tiny_r_s16_p8_224.augreg_in21k', + 'vit_small_r26_s32_224_in21k': 'vit_small_r26_s32_224.augreg_in21k', + 'vit_base_r50_s16_224_in21k': 'vit_base_r50_s16_224.orig_in21k', + 'vit_base_resnet50_224_in21k': 'vit_base_r50_s16_224.orig_in21k', + 'vit_large_r50_s32_224_in21k': 'vit_large_r50_s32_224.augreg_in21k', + 'vit_base_resnet50_384': 'vit_base_r50_s16_384.orig_in21k_ft_in1k' +}) diff --git a/pytorch-image-models/timm/models/vision_transformer_relpos.py b/pytorch-image-models/timm/models/vision_transformer_relpos.py new file mode 100644 index 0000000000000000000000000000000000000000..234195973f784654579c063ed3511ec129bdd78f --- /dev/null +++ b/pytorch-image-models/timm/models/vision_transformer_relpos.py @@ -0,0 +1,703 @@ +""" Relative Position Vision Transformer (ViT) in PyTorch + +NOTE: these models are experimental / WIP, expect changes + +Hacked together by / Copyright 2022, Ross Wightman +""" +import logging +import math +from functools import partial +from typing import List, Optional, Tuple, Type, Union + +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal + +import torch +import torch.nn as nn +from torch.jit import Final +from torch.utils.checkpoint import checkpoint + +from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import PatchEmbed, Mlp, DropPath, RelPosMlp, RelPosBias, use_fused_attn, LayerType +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._manipulate import named_apply +from ._registry import generate_default_cfgs, register_model +from .vision_transformer import get_init_weights_vit + +__all__ = ['VisionTransformerRelPos'] # model_registry will add each entrypoint fn to this + +_logger = logging.getLogger(__name__) + + +class RelPosAttention(nn.Module): + fused_attn: Final[bool] + + def __init__( + self, + dim, + num_heads=8, + qkv_bias=False, + qk_norm=False, + rel_pos_cls=None, + attn_drop=0., + proj_drop=0., + norm_layer=nn.LayerNorm, + ): + super().__init__() + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.rel_pos = rel_pos_cls(num_heads=num_heads) if rel_pos_cls else None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + q = self.q_norm(q) + k = self.k_norm(k) + + if self.fused_attn: + if self.rel_pos is not None: + attn_bias = self.rel_pos.get_bias() + elif shared_rel_pos is not None: + attn_bias = shared_rel_pos + else: + attn_bias = None + + x = torch.nn.functional.scaled_dot_product_attention( + q, k, v, + attn_mask=attn_bias, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + if self.rel_pos is not None: + attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos) + elif shared_rel_pos is not None: + attn = attn + shared_rel_pos + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class LayerScale(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + + +class RelPosBlock(nn.Module): + + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + qk_norm=False, + rel_pos_cls=None, + init_values=None, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = RelPosAttention( + dim, + num_heads, + qkv_bias=qkv_bias, + qk_norm=qk_norm, + rel_pos_cls=rel_pos_cls, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + ) + self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): + x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos))) + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + return x + + +class ResPostRelPosBlock(nn.Module): + + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + qk_norm=False, + rel_pos_cls=None, + init_values=None, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.init_values = init_values + + self.attn = RelPosAttention( + dim, + num_heads, + qkv_bias=qkv_bias, + qk_norm=qk_norm, + rel_pos_cls=rel_pos_cls, + attn_drop=attn_drop, + proj_drop=proj_drop, + ) + self.norm1 = norm_layer(dim) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + ) + self.norm2 = norm_layer(dim) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.init_weights() + + def init_weights(self): + # NOTE this init overrides that base model init with specific changes for the block type + if self.init_values is not None: + nn.init.constant_(self.norm1.weight, self.init_values) + nn.init.constant_(self.norm2.weight, self.init_values) + + def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): + x = x + self.drop_path1(self.norm1(self.attn(x, shared_rel_pos=shared_rel_pos))) + x = x + self.drop_path2(self.norm2(self.mlp(x))) + return x + + +class VisionTransformerRelPos(nn.Module): + """ Vision Transformer w/ Relative Position Bias + + Differing from classic vit, this impl + * uses relative position index (swin v1 / beit) or relative log coord + mlp (swin v2) pos embed + * defaults to no class token (can be enabled) + * defaults to global avg pool for head (can be changed) + * layer-scale (residual branch gain) enabled + """ + + def __init__( + self, + img_size: Union[int, Tuple[int, int]] = 224, + patch_size: Union[int, Tuple[int, int]] = 16, + in_chans: int = 3, + num_classes: int = 1000, + global_pool: Literal['', 'avg', 'token', 'map'] = 'avg', + embed_dim: int = 768, + depth: int = 12, + num_heads: int = 12, + mlp_ratio: float = 4., + qkv_bias: bool = True, + qk_norm: bool = False, + init_values: Optional[float] = 1e-6, + class_token: bool = False, + fc_norm: bool = False, + rel_pos_type: str = 'mlp', + rel_pos_dim: Optional[int] = None, + shared_rel_pos: bool = False, + drop_rate: float = 0., + proj_drop_rate: float = 0., + attn_drop_rate: float = 0., + drop_path_rate: float = 0., + weight_init: Literal['skip', 'jax', 'moco', ''] = 'skip', + fix_init: bool = False, + embed_layer: Type[nn.Module] = PatchEmbed, + norm_layer: Optional[LayerType] = None, + act_layer: Optional[LayerType] = None, + block_fn: Type[nn.Module] = RelPosBlock + ): + """ + Args: + img_size: input image size + patch_size: patch size + in_chans: number of input channels + num_classes: number of classes for classification head + global_pool: type of global pooling for final sequence (default: 'avg') + embed_dim: embedding dimension + depth: depth of transformer + num_heads: number of attention heads + mlp_ratio: ratio of mlp hidden dim to embedding dim + qkv_bias: enable bias for qkv if True + qk_norm: Enable normalization of query and key in attention + init_values: layer-scale init values + class_token: use class token (default: False) + fc_norm: use pre classifier norm instead of pre-pool + rel_pos_type: type of relative position + shared_rel_pos: share relative pos across all blocks + drop_rate: dropout rate + proj_drop_rate: projection dropout rate + attn_drop_rate: attention dropout rate + drop_path_rate: stochastic depth rate + weight_init: weight init scheme + fix_init: apply weight initialization fix (scaling w/ layer index) + embed_layer: patch embedding layer + norm_layer: normalization layer + act_layer: MLP activation layer + """ + super().__init__() + assert global_pool in ('', 'avg', 'token') + assert class_token or global_pool != 'token' + norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) + act_layer = act_layer or nn.GELU + + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models + self.num_prefix_tokens = 1 if class_token else 0 + self.grad_checkpointing = False + + self.patch_embed = embed_layer( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + ) + feat_size = self.patch_embed.grid_size + r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + + rel_pos_args = dict(window_size=feat_size, prefix_tokens=self.num_prefix_tokens) + if rel_pos_type.startswith('mlp'): + if rel_pos_dim: + rel_pos_args['hidden_dim'] = rel_pos_dim + if 'swin' in rel_pos_type: + rel_pos_args['mode'] = 'swin' + rel_pos_cls = partial(RelPosMlp, **rel_pos_args) + else: + rel_pos_cls = partial(RelPosBias, **rel_pos_args) + self.shared_rel_pos = None + if shared_rel_pos: + self.shared_rel_pos = rel_pos_cls(num_heads=num_heads) + # NOTE shared rel pos currently mutually exclusive w/ per-block, but could support both... + rel_pos_cls = None + + self.cls_token = nn.Parameter(torch.zeros(1, self.num_prefix_tokens, embed_dim)) if class_token else None + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.blocks = nn.ModuleList([ + block_fn( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_norm=qk_norm, + rel_pos_cls=rel_pos_cls, + init_values=init_values, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + act_layer=act_layer, + ) + for i in range(depth)]) + self.feature_info = [ + dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] + self.norm = norm_layer(embed_dim) if not fc_norm else nn.Identity() + + # Classifier Head + self.fc_norm = norm_layer(embed_dim) if fc_norm else nn.Identity() + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + if weight_init != 'skip': + self.init_weights(weight_init) + if fix_init: + self.fix_init_weight() + + def init_weights(self, mode=''): + assert mode in ('jax', 'moco', '') + if self.cls_token is not None: + nn.init.normal_(self.cls_token, std=1e-6) + named_apply(get_init_weights_vit(mode), self) + + def fix_init_weight(self): + def rescale(param, _layer_id): + param.div_(math.sqrt(2.0 * _layer_id)) + + for layer_id, layer in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + @torch.jit.ignore + def no_weight_decay(self): + return {'cls_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^cls_token|patch_embed', # stem and embed + blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'avg', 'token') + self.global_pool = global_pool + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + return_prefix_tokens: bool = False, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + return_prefix_tokens: Return both prefix and spatial intermediate tokens + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + + # forward pass + B, _, height, width = x.shape + x = self.patch_embed(x) + if self.cls_token is not None: + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + + shared_rel_pos = self.shared_rel_pos.get_bias() if self.shared_rel_pos is not None else None + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for i, blk in enumerate(blocks): + x = blk(x, shared_rel_pos=shared_rel_pos) + if i in take_indices: + # normalize intermediates with final norm layer if enabled + intermediates.append(self.norm(x) if norm else x) + + # process intermediates + if self.num_prefix_tokens: + # split prefix (e.g. class, distill) and spatial feature tokens + prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] + intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] + if reshape: + # reshape to BCHW output format + H, W = self.patch_embed.dynamic_feat_size((height, width)) + intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + if not torch.jit.is_scripting() and return_prefix_tokens: + # return_prefix not support in torchscript due to poor type handling + intermediates = list(zip(intermediates, prefix_tokens)) + + if intermediates_only: + return intermediates + + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] # truncate blocks + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.fc_norm = nn.Identity() + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + if self.cls_token is not None: + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + + shared_rel_pos = self.shared_rel_pos.get_bias() if self.shared_rel_pos is not None else None + for blk in self.blocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(blk, x, shared_rel_pos=shared_rel_pos) + else: + x = blk(x, shared_rel_pos=shared_rel_pos) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool: + x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.fc_norm(x) + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_vision_transformer_relpos(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg( + VisionTransformerRelPos, variant, pretrained, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'vit_relpos_base_patch32_plus_rpn_256.sw_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_replos_base_patch32_plus_rpn_256-sw-dd486f51.pth', + hf_hub_id='timm/', + input_size=(3, 256, 256)), + 'vit_relpos_base_patch16_plus_240.untrained': _cfg(url='', input_size=(3, 240, 240)), + + 'vit_relpos_small_patch16_224.sw_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_small_patch16_224-sw-ec2778b4.pth', + hf_hub_id='timm/'), + 'vit_relpos_medium_patch16_224.sw_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_224-sw-11c174af.pth', + hf_hub_id='timm/'), + 'vit_relpos_base_patch16_224.sw_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_224-sw-49049aed.pth', + hf_hub_id='timm/'), + + 'vit_srelpos_small_patch16_224.sw_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_small_patch16_224-sw-6cdb8849.pth', + hf_hub_id='timm/'), + 'vit_srelpos_medium_patch16_224.sw_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_medium_patch16_224-sw-ad702b8c.pth', + hf_hub_id='timm/'), + + 'vit_relpos_medium_patch16_cls_224.sw_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_cls_224-sw-cfe8e259.pth', + hf_hub_id='timm/'), + 'vit_relpos_base_patch16_cls_224.untrained': _cfg(), + 'vit_relpos_base_patch16_clsgap_224.sw_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_gapcls_224-sw-1a341d6c.pth', + hf_hub_id='timm/'), + + 'vit_relpos_small_patch16_rpn_224.untrained': _cfg(), + 'vit_relpos_medium_patch16_rpn_224.sw_in1k': _cfg( + url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_rpn_224-sw-5d2befd8.pth', + hf_hub_id='timm/'), + 'vit_relpos_base_patch16_rpn_224.untrained': _cfg(), +}) + + +@register_model +def vit_relpos_base_patch32_plus_rpn_256(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/32+) w/ relative log-coord position and residual post-norm, no class token + """ + model_args = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, block_fn=ResPostRelPosBlock) + model = _create_vision_transformer_relpos( + 'vit_relpos_base_patch32_plus_rpn_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_relpos_base_patch16_plus_240(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/16+) w/ relative log-coord position, no class token + """ + model_args = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14) + model = _create_vision_transformer_relpos( + 'vit_relpos_base_patch16_plus_240', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_relpos_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/16) w/ relative log-coord position, no class token + """ + model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=True) + model = _create_vision_transformer_relpos( + 'vit_relpos_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_relpos_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/16) w/ relative log-coord position, no class token + """ + model_args = dict( + patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=True) + model = _create_vision_transformer_relpos( + 'vit_relpos_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_relpos_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/16) w/ relative log-coord position, no class token + """ + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True) + model = _create_vision_transformer_relpos( + 'vit_relpos_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_srelpos_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token + """ + model_args = dict( + patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=False, + rel_pos_dim=384, shared_rel_pos=True) + model = _create_vision_transformer_relpos( + 'vit_srelpos_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_srelpos_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token + """ + model_args = dict( + patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False, + rel_pos_dim=512, shared_rel_pos=True) + model = _create_vision_transformer_relpos( + 'vit_srelpos_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_relpos_medium_patch16_cls_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-M/16) w/ relative log-coord position, class token present + """ + model_args = dict( + patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False, + rel_pos_dim=256, class_token=True, global_pool='token') + model = _create_vision_transformer_relpos( + 'vit_relpos_medium_patch16_cls_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_relpos_base_patch16_cls_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/16) w/ relative log-coord position, class token present + """ + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, class_token=True, global_pool='token') + model = _create_vision_transformer_relpos( + 'vit_relpos_base_patch16_cls_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_relpos_base_patch16_clsgap_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/16) w/ relative log-coord position, class token present + NOTE this config is a bit of a mistake, class token was enabled but global avg-pool w/ fc-norm was not disabled + Leaving here for comparisons w/ a future re-train as it performs quite well. + """ + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True, class_token=True) + model = _create_vision_transformer_relpos( + 'vit_relpos_base_patch16_clsgap_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_relpos_small_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token + """ + model_args = dict( + patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, block_fn=ResPostRelPosBlock) + model = _create_vision_transformer_relpos( + 'vit_relpos_small_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_relpos_medium_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token + """ + model_args = dict( + patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, block_fn=ResPostRelPosBlock) + model = _create_vision_transformer_relpos( + 'vit_relpos_medium_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vit_relpos_base_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos: + """ ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token + """ + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, block_fn=ResPostRelPosBlock) + model = _create_vision_transformer_relpos( + 'vit_relpos_base_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model diff --git a/pytorch-image-models/timm/models/vision_transformer_sam.py b/pytorch-image-models/timm/models/vision_transformer_sam.py new file mode 100644 index 0000000000000000000000000000000000000000..a57c166d750820135819ea01a7d2e9fdd9113b93 --- /dev/null +++ b/pytorch-image-models/timm/models/vision_transformer_sam.py @@ -0,0 +1,759 @@ +""" Vision Transformer (ViT) in PyTorch + +A PyTorch implement of Vision Transformers as described in: + +'Exploring Plain Vision Transformer Backbones for Object Detection' + - https://arxiv.org/abs/2203.16527 + +'Segment Anything Model (SAM)' + - https://github.com/facebookresearch/segment-anything/ + +""" +import logging +from functools import partial +from typing import Callable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import PatchEmbed, Mlp, DropPath, PatchDropout, LayerNorm2d, ClassifierHead, NormMlpClassifierHead, \ + Format, resample_abs_pos_embed_nhwc, RotaryEmbeddingCat, apply_rot_embed_cat, to_2tuple, use_fused_attn +from torch.jit import Final + +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_function +from ._manipulate import checkpoint_seq +from ._registry import generate_default_cfgs, register_model + +# model_registry will add each entrypoint fn to this +__all__ = ['VisionTransformerSAM'] + + +_logger = logging.getLogger(__name__) + + +def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: + """ + Get relative positional embeddings according to the relative positions of + query and key sizes. + Args: + q_size (int): size of query q. + k_size (int): size of key k. + rel_pos (Tensor): relative position embeddings (L, C). + + Returns: + Extracted positional embeddings according to relative positions. + """ + max_rel_dist = int(2 * max(q_size, k_size) - 1) + # Interpolate rel pos if needed. + if rel_pos.shape[0] != max_rel_dist: + # Interpolate rel pos. + rel_pos_resized = F.interpolate( + rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), + size=max_rel_dist, + mode="linear", + ) + rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) + else: + rel_pos_resized = rel_pos + + # Scale the coords with short length if shapes for q and k are different. + q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) + k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) + relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) + + return rel_pos_resized[relative_coords.long()] + +register_notrace_function(get_rel_pos) + + +def get_decomposed_rel_pos_bias( + q: torch.Tensor, + rel_pos_h: torch.Tensor, + rel_pos_w: torch.Tensor, + q_size: Tuple[int, int], + k_size: Tuple[int, int], +) -> torch.Tensor: + """ + Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. + https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py + Args: + q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). + rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. + rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. + q_size (Tuple): spatial sequence size of query q with (q_h, q_w). + k_size (Tuple): spatial sequence size of key k with (k_h, k_w). + + Returns: + bias (Tensor): attention bias to add to attention map + """ + q_h, q_w = q_size + k_h, k_w = k_size + Rh = get_rel_pos(q_h, k_h, rel_pos_h) + Rw = get_rel_pos(q_w, k_w, rel_pos_w) + + B, _, dim = q.shape + r_q = q.reshape(B, q_h, q_w, dim) + rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) + rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) + + attn_bias = rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] + return attn_bias.reshape(-1, q_h * q_w, k_h * k_w) + + +class Attention(nn.Module): + fused_attn: Final[bool] + + def __init__( + self, + dim, + num_heads=8, + qkv_bias=True, + qk_norm=False, + attn_drop=0., + proj_drop=0., + norm_layer=nn.LayerNorm, + use_rel_pos: bool = False, + input_size: Optional[Tuple[int, int]] = None, + rope: Optional[nn.Module] = None, + ): + super().__init__() + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.use_rel_pos = use_rel_pos + if self.use_rel_pos: + assert rope is None + assert ( + input_size is not None + ), "Input size must be provided if using relative positional encoding." + # initialize relative positional embeddings + self.rel_pos_h = nn.Parameter(torch.zeros( + 2 * input_size[0] - 1, self.head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros( + 2 * input_size[1] - 1, self.head_dim)) + self.rope = rope + + def forward(self, x): + B, H, W, _ = x.shape + N = H * W + x = x.reshape(B, N, -1) + qkv = self.qkv(x).view(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + # qkv with shape (3, B, nHead, H * W, C) + q, k, v = qkv.reshape(3, B * self.num_heads, N, -1).unbind(0) + # q, k, v with shape (B * nHead, H * W, C) + q, k = self.q_norm(q), self.k_norm(k) + + if self.use_rel_pos: + attn_bias = get_decomposed_rel_pos_bias(q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) + else: + attn_bias = None + if self.rope is not None: + rope = self.rope.get_embed() + q = apply_rot_embed_cat(q, rope).type_as(v) + k = apply_rot_embed_cat(k, rope).type_as(v) + + if self.fused_attn: + x = torch.nn.functional.scaled_dot_product_attention( + q, k, v, + attn_mask=attn_bias, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + if attn_bias is not None: + attn = attn + attn_bias + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.view(B, self.num_heads, N, -1).transpose(1, 2).reshape(B, N, -1) + x = self.proj(x) + x = self.proj_drop(x) + x = x.view(B, H, W, -1) + return x + + +class LayerScale(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + + +class Block(nn.Module): + + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=True, + qk_norm=False, + proj_drop=0., + attn_drop=0., + init_values=None, + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + mlp_layer=Mlp, + use_rel_pos=False, + window_size=0, + input_size=None, + rope=None, + ): + super().__init__() + self.window_size = window_size + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_norm=qk_norm, + attn_drop=attn_drop, + proj_drop=proj_drop, + norm_layer=norm_layer, + use_rel_pos=use_rel_pos, + input_size=input_size if window_size == 0 else (window_size, window_size), + rope=rope, + ) + self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = mlp_layer( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=proj_drop, + ) + self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + B, H, W, _ = x.shape + + shortcut = x + x = self.norm1(x) + # Window partition + pad_hw: Optional[Tuple[int, int]] = None + if self.window_size > 0: + x, pad_hw = window_partition(x, self.window_size) + + x = self.drop_path1(self.ls1(self.attn(x))) + + # Reverse window partition + if self.window_size > 0: + x = window_unpartition(x, self.window_size, (H, W), pad_hw) + + x = shortcut + x + + x = x.reshape(B, H * W, -1) # MLP is faster for N, L, C tensor + x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) + x = x.reshape(B, H, W, -1) + + return x + + +def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + Hp, Wp = H + pad_h, W + pad_w + + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows, (Hp, Wp) + + +def window_unpartition( + windows: torch.Tensor, window_size: int, hw: Tuple[int, int], pad_hw: Optional[Tuple[int, int]] = None, +) -> torch.Tensor: + """ + Window unpartition into original sequences and removing padding. + Args: + windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + pad_hw (Tuple): padded height and width (Hp, Wp). + hw (Tuple): original height and width (H, W) before padding. + + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + Hp, Wp = pad_hw if pad_hw is not None else hw + H, W = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + x = x[:, :H, :W, :].contiguous() + return x + + +class VisionTransformerSAM(nn.Module): + """ Vision Transformer for Segment-Anything Model(SAM) + + A PyTorch impl of : `Exploring Plain Vision Transformer Backbones for Object Detection` or `Segment Anything Model (SAM)` + - https://arxiv.org/abs/2010.11929 + """ + + def __init__( + self, + img_size: int = 1024, + patch_size: int = 16, + in_chans: int = 3, + num_classes: int = 768, + embed_dim: int = 768, + depth: int = 12, + num_heads: int = 12, + mlp_ratio: float = 4., + qkv_bias: bool = True, + qk_norm: bool = False, + init_values: Optional[float] = None, + pre_norm: bool = False, + drop_rate: float = 0., + pos_drop_rate: float = 0., + patch_drop_rate: float = 0., + proj_drop_rate: float = 0., + attn_drop_rate: float = 0., + drop_path_rate: float = 0., + weight_init: str = '', + embed_layer: Callable = partial(PatchEmbed, output_fmt=Format.NHWC, strict_img_size=False), + norm_layer: Optional[Callable] = nn.LayerNorm, + act_layer: Optional[Callable] = nn.GELU, + block_fn: Callable = Block, + mlp_layer: Callable = Mlp, + use_abs_pos: bool = True, + use_rel_pos: bool = False, + use_rope: bool = False, + window_size: int = 14, + global_attn_indexes: Tuple[int, ...] = (), + neck_chans: int = 256, + global_pool: str = 'avg', + head_hidden_size: Optional[int] = None, + ref_feat_shape: Optional[Tuple[Tuple[int, int], Tuple[int, int]]] = None + ): + """ + Args: + img_size: Input image size. + patch_size: Patch size. + in_chans: Number of image input channels. + num_classes: Mumber of classes for classification head. + global_pool: Type of global pooling for final sequence (default: 'token'). + embed_dim: Transformer embedding dimension. + depth: Depth of transformer. + num_heads: Number of attention heads. + mlp_ratio: Ratio of mlp hidden dim to embedding dim. + qkv_bias: Enable bias for qkv projections if True. + init_values: Layer-scale init values (layer-scale enabled if not None). + drop_rate: Head dropout rate. + pos_drop_rate: Position embedding dropout rate. + attn_drop_rate: Attention dropout rate. + drop_path_rate: Stochastic depth rate. + weight_init: Weight initialization scheme. + embed_layer: Patch embedding layer. + norm_layer: Normalization layer. + act_layer: MLP activation layer. + block_fn: Transformer block layer. + use_abs_pos: If True, use absolute positional embeddings. + use_rel_pos: If True, add relative positional embeddings to the attention map. + use_rope: If True, add rotary position embeddings to q/k in attention block. + window_size: Window size for window attention blocks. If 0, not use window attention. + global_attn_indexes: Indexes for blocks using global attention. Used when window_size > 0. + global_pool: Global pooling type. + head_hidden_size: If set, use NormMlpHead + ref_feat_shape: Tuple of reference feature shapes for ROPE, (global, local) + """ + super().__init__() + norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) + act_layer = act_layer or nn.GELU + + self.num_classes = num_classes + self.global_pool = global_pool + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models + self.grad_checkpointing = False + + self.patch_embed = embed_layer( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + bias=not pre_norm, # disable bias if pre-norm is used + ) + grid_size = self.patch_embed.grid_size + r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size + + if use_abs_pos: + # Initialize absolute positional embedding with pretrain image size. + self.pos_embed = nn.Parameter(torch.zeros(1, grid_size[0], grid_size[1], embed_dim)) + else: + self.pos_embed = None + self.pos_drop = nn.Dropout(p=pos_drop_rate) + if patch_drop_rate > 0: + self.patch_drop = PatchDropout( + patch_drop_rate, + num_prefix_tokens=0, + ) + else: + self.patch_drop = nn.Identity() + self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() + + if use_rope: + assert not use_rel_pos, "ROPE and relative pos embeddings should not be enabled at same time" + if ref_feat_shape is not None: + assert len(ref_feat_shape) == 2 + ref_feat_shape_global = to_2tuple(ref_feat_shape[0]) + ref_feat_shape_window = to_2tuple(ref_feat_shape[1]) + else: + ref_feat_shape_global = ref_feat_shape_window = None + self.rope_global = RotaryEmbeddingCat( + embed_dim // num_heads, + in_pixels=False, + feat_shape=grid_size, + ref_feat_shape=ref_feat_shape_global, + ) + self.rope_window = RotaryEmbeddingCat( + embed_dim // num_heads, + in_pixels=False, + feat_shape=to_2tuple(window_size), + ref_feat_shape=ref_feat_shape_window, + ) + else: + self.rope_global = None + self.rope_window = None + + # stochastic depth decay rule + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] + self.blocks = nn.Sequential(*[ + block_fn( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_norm=qk_norm, + init_values=init_values, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + act_layer=act_layer, + mlp_layer=mlp_layer, + use_rel_pos=use_rel_pos, + window_size=window_size if i not in global_attn_indexes else 0, + input_size=grid_size, + rope=self.rope_window if i not in global_attn_indexes else self.rope_global, + ) + for i in range(depth)]) + self.feature_info = [ + dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] + + if neck_chans: + self.neck = nn.Sequential( + nn.Conv2d( + embed_dim, + neck_chans, + kernel_size=1, + bias=False, + ), + LayerNorm2d(neck_chans), + nn.Conv2d( + neck_chans, + neck_chans, + kernel_size=3, + padding=1, + bias=False, + ), + LayerNorm2d(neck_chans), + ) + self.num_features = neck_chans + else: + if head_hidden_size: + self.neck = nn.Identity() + else: + # should have a final norm with standard ClassifierHead + self.neck = LayerNorm2d(embed_dim) + neck_chans = embed_dim + + # Classifier Head + if head_hidden_size: + self.head = NormMlpClassifierHead( + neck_chans, + num_classes, + hidden_size=head_hidden_size, + pool_type=global_pool, + drop_rate=drop_rate, + ) + else: + self.head = ClassifierHead( + neck_chans, + num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + ) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'dist_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^pos_embed|patch_embed', # stem and embed + blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.head.reset(num_classes, global_pool) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt == 'NCHW', 'Output shape for ViT-SAM must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + + # forward pass, collect intermediates + x = self.patch_embed(x) + if self.pos_embed is not None: + # dynamically resize abs pos embedding if needed + x = x + resample_abs_pos_embed_nhwc(self.pos_embed, x.shape[1:3]) + x = self.pos_drop(x) + x = self.patch_drop(x) + x = self.norm_pre(x) + + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for i, blk in enumerate(blocks): + x = blk(x) + if i in take_indices: + # make output BCHW + if norm: + # norm is intertwined with neck convs so apply both, changes the dim + # FIXME only apply to final? Need experiments + intermediates.append(self.neck(x.permute(0, 3, 1, 2))) + else: + intermediates.append(x.permute(0, 3, 1, 2)) + + if intermediates_only: + return intermediates + + x = self.neck(x.permute(0, 3, 1, 2)) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Optional[Union[int, List[int]]] = None, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] # truncate blocks + if prune_norm: + # neck is being treated as equivalent to final norm here + self.neck = nn.Identity() + if prune_head: + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x) + if self.pos_embed is not None: + # dynamically resize abs pos embedding if needed + x = x + resample_abs_pos_embed_nhwc(self.pos_embed, x.shape[1:3]) + x = self.pos_drop(x) + x = self.patch_drop(x) + x = self.norm_pre(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + x = self.neck(x.permute(0, 3, 1, 2)) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=True) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn( + state_dict, + model, +): + """ Remap SAM checkpoints -> timm """ + sam_checkpoint = 'image_encoder.patch_embed.proj.weight' in state_dict + out_dict = {} + for k, v in state_dict.items(): + if k.startswith('image_encoder.'): + k = k[14:] + k = k.replace('mlp.lin', 'mlp.fc') + else: + if sam_checkpoint: + continue + out_dict[k] = v + return out_dict + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 1024, 1024), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, + 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + + # Segment-Anyhing Model (SAM) pretrained - https://github.com/facebookresearch/segment-anything (no classifier head, for fine-tune/features only) + 'samvit_base_patch16.sa1b': _cfg( + url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth', + hf_hub_id='timm/', + license='apache-2.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, + input_size=(3, 1024, 1024), crop_pct=1.0), + 'samvit_large_patch16.sa1b': _cfg( + url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth', + hf_hub_id='timm/', + license='apache-2.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, + input_size=(3, 1024, 1024), crop_pct=1.0), + 'samvit_huge_patch16.sa1b': _cfg( + url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth', + hf_hub_id='timm/', + license='apache-2.0', + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0, + input_size=(3, 1024, 1024), crop_pct=1.0), + + 'samvit_base_patch16_224': _cfg( + mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=1000, + input_size=(3, 224, 224), crop_pct=0.9), +}) + + +def _create_vision_transformer(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + return build_model_with_cfg( + VisionTransformerSAM, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + + +@register_model +def samvit_base_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM: + """ ViT-B/16 for Segment-Anything + """ + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, global_attn_indexes=[2, 5, 8, 11], + window_size=14, use_rel_pos=True, img_size=1024, + ) + model = _create_vision_transformer( + 'samvit_base_patch16', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def samvit_large_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM: + """ ViT-L/16 for Segment-Anything + """ + model_args = dict( + patch_size=16, embed_dim=1024, depth=24, num_heads=16, global_attn_indexes=[5, 11, 17, 23], + window_size=14, use_rel_pos=True, img_size=1024, + ) + model = _create_vision_transformer( + 'samvit_large_patch16', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def samvit_huge_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM: + """ ViT-H/16 for Segment-Anything + """ + model_args = dict( + patch_size=16, embed_dim=1280, depth=32, num_heads=16, global_attn_indexes=[7, 15, 23, 31], + window_size=14, use_rel_pos=True, img_size=1024, + ) + model = _create_vision_transformer( + 'samvit_huge_patch16', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def samvit_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformerSAM: + """ ViT-B/16 based on samvit arch + """ + model_args = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, global_attn_indexes=[2, 5, 8, 11], + window_size=14, use_rel_pos=True, use_abs_pos=False, img_size=224, neck_chans=None, + ) + model = _create_vision_transformer( + 'samvit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + diff --git a/pytorch-image-models/timm/models/vitamin.py b/pytorch-image-models/timm/models/vitamin.py new file mode 100644 index 0000000000000000000000000000000000000000..18635f60389b8e3a9d727ec41bf6ab3e4722db24 --- /dev/null +++ b/pytorch-image-models/timm/models/vitamin.py @@ -0,0 +1,602 @@ +""" ViTamin + +Paper: Designing Scalable Vison Models in the Vision-Language Era +A family of model weights on Huggingface: https://huggingface.co/collections/jienengchen/vitamin-family-661048126b72debdaca060bf + +@inproceedings{chen2024vitamin, + title={ViTamin: Designing Scalable Vision Models in the Vision-language Era}, + author={Chen, Jieneng and Yu, Qihang and Shen, Xiaohui and Yuille, Alan and Chen, Liang-Chieh}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + year={2024} +} + +Based on Apache 2.0 licensed code at https://github.com/ViTamin/ViTamin + +Modifications and timm support by Jieneng Chen 2024 + +Reference: +https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py +https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer_hybrid.py +""" + +import math +from dataclasses import dataclass, field +from functools import partial +from typing import Optional, Union, Tuple + +import torch +import torch.nn as nn + +from timm.data import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD +from timm.layers import create_act_layer, get_norm_layer, get_norm_act_layer, create_conv2d, \ + make_divisible, DropPath, HybridEmbed +from ._builder import build_model_with_cfg +from ._manipulate import named_apply, checkpoint_seq +from ._registry import register_model, generate_default_cfgs +from .vision_transformer import VisionTransformer, checkpoint_filter_fn + + +@dataclass +class VitConvCfg: + expand_ratio: float = 4.0 + expand_output: bool = True # calculate expansion channels from output (vs input chs) + kernel_size: int = 3 + group_size: int = 1 # 1 == depthwise + pre_norm_act: bool = False # activation after pre-norm + stride_mode: str = 'dw' # stride done via one of 'pool', '1x1', 'dw' + pool_type: str = 'avg2' + downsample_pool_type: str = 'avg2' + act_layer: str = 'gelu' # stem & stage 1234 + norm_layer: str = '' + norm_eps: float = 1e-5 + down_shortcut: Optional[bool] = True + mlp: str = 'mlp' + + +@dataclass +class VitCfg: + embed_dim: Tuple[Union[int, Tuple[int, ...]], ...] = (96, 192, 384, 768) + depths: Tuple[Union[int, Tuple[int, ...]], ...] = (2, 3, 5, 2) + stem_width: int = 64 + conv_cfg: VitConvCfg = field(default_factory=VitConvCfg) + head_type: str = "" + + +def _init_conv(module, name, scheme=''): + if isinstance(module, nn.Conv2d): + fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels + fan_out //= module.groups + nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out)) + if module.bias is not None: + nn.init.zeros_(module.bias) + + +class Stem(nn.Module): + def __init__( + self, + in_chs: int, + out_chs: int, + act_layer: str = 'gelu', + norm_layer: str = 'layernorm2d', + norm_eps: float = 1e-6, + bias: bool = True, + ): + super().__init__() + norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps) + self.out_chs = out_chs + + self.conv1 = create_conv2d(in_chs, out_chs, 3, stride=2, bias=bias) + self.norm1 = norm_act_layer(out_chs) + self.conv2 = create_conv2d(out_chs, out_chs, 3, stride=1, bias=bias) + + named_apply(_init_conv, self) + + def forward(self, x): + x = self.conv1(x) + x = self.norm1(x) + x = self.conv2(x) + return x + + +class Downsample2d(nn.Module): + def __init__( + self, + dim: int, + dim_out: int, + pool_type: str = 'avg2', + bias: bool = True, + ): + super().__init__() + self.pool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, count_include_pad=False) + + if dim != dim_out: + self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias) # 1x1 conv + else: + self.expand = nn.Identity() + + def forward(self, x): + x = self.pool(x) # spatial downsample + x = self.expand(x) # expand chs + return x + + +class StridedConv(nn.Module): + """ downsample 2d as well + """ + def __init__( + self, + kernel_size=3, + stride=2, + padding=1, + in_chans=3, + embed_dim=768 + ): + super().__init__() + norm_layer = partial(get_norm_layer('layernorm2d'), eps=1e-6) + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) + self.norm = norm_layer(in_chans) # affine over C + + def forward(self, x): + x = self.norm(x) + x = self.proj(x) + return x + + +class MbConvLNBlock(nn.Module): + """ Pre-Norm Conv Block - 1x1 - kxk - 1x1, w/ inverted bottleneck (expand) + """ + def __init__( + self, + in_chs: int, + out_chs: int, + stride: int = 1, + drop_path: float = 0., + kernel_size: int = 3, + norm_layer: str = 'layernorm2d', + norm_eps: float = 1e-6, + act_layer: str = 'gelu', + expand_ratio: float = 4.0, + ): + super(MbConvLNBlock, self).__init__() + self.stride, self.in_chs, self.out_chs = stride, in_chs, out_chs + mid_chs = make_divisible(out_chs * expand_ratio) + prenorm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps) + + if stride == 2: + self.shortcut = Downsample2d(in_chs, out_chs, pool_type='avg', bias=True) + elif in_chs != out_chs: + self.shortcut = nn.Conv2d(in_chs, out_chs, 1, bias=True) + else: + self.shortcut = nn.Identity() + + self.pre_norm = prenorm_act_layer(in_chs, apply_act=False) + self.down = nn.Identity() + self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=1, bias=True) + self.act1 = create_act_layer(act_layer, inplace=True) + self.conv2_kxk = create_conv2d( + mid_chs, mid_chs, kernel_size, stride=stride, dilation=1, groups=mid_chs, bias=True) + self.act2 = create_act_layer(act_layer, inplace=True) + self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=True) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + + def init_weights(self, scheme=''): + named_apply(partial(_init_conv, scheme=scheme), self) + + def forward(self, x): + shortcut = self.shortcut(x) + + x = self.pre_norm(x) + x = self.down(x) # nn.Identity() + + # 1x1 expansion conv & act + x = self.conv1_1x1(x) + x = self.act1(x) + + # (strided) depthwise 3x3 conv & act + x = self.conv2_kxk(x) + x = self.act2(x) + + # 1x1 linear projection to output width + x = self.conv3_1x1(x) + x = self.drop_path(x) + shortcut + + return x + + +class MbConvStages(nn.Module): + """ MobileConv for stage 1 and stage 2 of ViTamin + """ + def __init__( + self, + cfg: VitCfg, + img_size: Union[int, Tuple[int, int]] = 224, # place holder + in_chans: int = 3, + ): + super().__init__() + self.grad_checkpointing = False + + self.stem = Stem( + in_chs=in_chans, + out_chs=cfg.stem_width, + ) + + stages = [] + self.num_stages = len(cfg.embed_dim) + for s, dim in enumerate(cfg.embed_dim[:2]): # stage + stage_in_chs = cfg.embed_dim[s-1] if s>0 else cfg.stem_width + blocks = [ + MbConvLNBlock( + in_chs = stage_in_chs if d==0 else dim, + out_chs = dim, + stride = 2 if d == 0 else 1, + ) + for d in range(cfg.depths[s]) + ] + stages += [nn.Sequential(*blocks)] + self.stages = nn.Sequential(*stages) + + self.pool = StridedConv( + stride=2, + in_chans=cfg.embed_dim[1], + embed_dim=cfg.embed_dim[2] + ) + + def forward(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.stages, x) + else: + x = self.stages(x) + x = self.pool(x) + return x + + +class GeGluMlp(nn.Module): + def __init__( + self, + in_features, + hidden_features, + act_layer = 'gelu', + drop = 0.0, + ): + super().__init__() + norm_layer = partial(get_norm_layer('layernorm'), eps=1e-6) + + self.norm = norm_layer(in_features) + self.w0 = nn.Linear(in_features, hidden_features) + self.act = create_act_layer(act_layer) + self.w1 = nn.Linear(in_features, hidden_features) + self.w2 = nn.Linear(hidden_features, in_features) + + def forward(self, x): + x = self.norm(x) + x = self.act(self.w0(x)) * self.w1(x) + x = self.w2(x) + return x + + +def _create_vitamin(variant, pretrained=False, embed_cfg=None, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + assert embed_cfg is not None + backbone = MbConvStages(cfg=embed_cfg, in_chans=kwargs.get('in_chans', 3)) + kwargs['embed_layer'] = partial(HybridEmbed, backbone=backbone, proj=False) + kwargs.setdefault('patch_size', 1) # default patch size for hybrid models if not set + + return build_model_with_cfg( + VisionTransformer, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': OPENAI_CLIP_MEAN, 'std': OPENAI_CLIP_STD, + 'first_conv': 'patch_embed.backbone.stem.conv1', + 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'vitamin_small_224.datacomp1b_clip_ltt': _cfg( + hf_hub_id='jienengchen/ViTamin-S-LTT', num_classes=384), + 'vitamin_small_224.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-S', num_classes=384), + 'vitamin_base_224.datacomp1b_clip_ltt': _cfg( + hf_hub_id='jienengchen/ViTamin-B-LTT', num_classes=768), + 'vitamin_base_224.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-B', num_classes=768), + 'vitamin_large_224.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-L-224px', num_classes=768), + 'vitamin_large_256.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-L-256px', num_classes=768, + input_size=(3, 256, 256), crop_pct=1.0), + 'vitamin_large_336.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-L-336px', num_classes=768, + input_size=(3, 336, 336), crop_pct=1.0), + 'vitamin_large_384.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-L-384px', num_classes=768, + input_size=(3, 384, 384), crop_pct=1.0), + 'vitamin_large2_224.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-L2-224px', num_classes=1024), + 'vitamin_large2_256.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-L2-256px', num_classes=1024, + input_size=(3, 256, 256), crop_pct=1.0), + 'vitamin_large2_336.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-L2-336px', num_classes=1024, + input_size=(3, 336, 336), crop_pct=1.0), + 'vitamin_large2_384.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-L2-384px', num_classes=1024, + input_size=(3, 384, 384), crop_pct=1.0), + 'vitamin_xlarge_256.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-XL-256px', num_classes=1152, + input_size=(3, 256, 256), crop_pct=1.0), + 'vitamin_xlarge_336.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-XL-336px', num_classes=1152, + input_size=(3, 336, 336), crop_pct=1.0), + 'vitamin_xlarge_384.datacomp1b_clip': _cfg( + hf_hub_id='jienengchen/ViTamin-XL-384px', num_classes=1152, + input_size=(3, 384, 384), crop_pct=1.0), +}) + + +@register_model +def vitamin_small_224(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(64, 128, 384), + depths=(2, 4, 1), + stem_width=64, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + embed_dim=384, depth=14, num_heads=6, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', embed_cfg=embed_cfg + ) + model = _create_vitamin('vitamin_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_base_224(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(128, 256, 768), + depths=(2, 4, 1), + stem_width=128, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + embed_dim=768, depth=14, num_heads=12, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_large_224(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(160, 320, 1024), + depths=(2, 4, 1), + stem_width=160, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', embed_cfg=embed_cfg, + ) + model = _create_vitamin('vitamin_large_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_large_256(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(160, 320, 1024), + depths=(2, 4, 1), + stem_width=160, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + img_size=256, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_large_336(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(160, 320, 1024), + depths=(2, 4, 1), + stem_width=160, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + img_size=336, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', embed_cfg=embed_cfg + ) + model = _create_vitamin('vitamin_large_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_large_384(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(160, 320, 1024), + depths=(2, 4, 1), + stem_width=160, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + img_size=384, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_large2_224(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(160, 320, 1024), + depths=(2, 4, 1), + stem_width=160, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', embed_cfg=embed_cfg, + ) + model = _create_vitamin('vitamin_large2_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_large2_256(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(160, 320, 1024), + depths=(2, 4, 1), + stem_width=160, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + img_size=256, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large2_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_large2_336(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(160, 320, 1024), + depths=(2, 4, 1), + stem_width=160, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + img_size=336, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', embed_cfg=embed_cfg + ) + model = _create_vitamin('vitamin_large2_336', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_large2_384(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(160, 320, 1024), + depths=(2, 4, 1), + stem_width=160, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + img_size=384, embed_dim=1024, depth=31, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_large2_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_xlarge_256(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg=VitCfg( + embed_dim=(192, 384, 1152), + depths=(2, 4, 1), + stem_width=192, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + img_size=256, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg) + model = _create_vitamin( + 'vitamin_xlarge_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_xlarge_336(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(192, 384, 1152), + depths=(2, 4, 1), + stem_width=192, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + img_size=336, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_xlarge_256', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def vitamin_xlarge_384(pretrained=False, **kwargs) -> VisionTransformer: + embed_cfg = VitCfg( + embed_dim=(192, 384, 1152), + depths=(2, 4, 1), + stem_width=192, + conv_cfg=VitConvCfg( + norm_layer='layernorm2d', + norm_eps=1e-6, + ), + head_type='1d', + ) + model_args = dict( + img_size=384, embed_dim=1152, depth=32, num_heads=16, mlp_layer=GeGluMlp, mlp_ratio=2., + class_token=False, global_pool='avg', pos_embed='none', embed_cfg=embed_cfg) + model = _create_vitamin('vitamin_xlarge_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model \ No newline at end of file diff --git a/pytorch-image-models/timm/models/volo.py b/pytorch-image-models/timm/models/volo.py new file mode 100644 index 0000000000000000000000000000000000000000..0d273180fb0fc8b044dcf10b41f480456b4fce55 --- /dev/null +++ b/pytorch-image-models/timm/models/volo.py @@ -0,0 +1,994 @@ +""" Vision OutLOoker (VOLO) implementation + +Paper: `VOLO: Vision Outlooker for Visual Recognition` - https://arxiv.org/abs/2106.13112 + +Code adapted from official impl at https://github.com/sail-sg/volo, original copyright in comment below + +Modifications and additions for timm by / Copyright 2022, Ross Wightman +""" +# Copyright 2021 Sea Limited. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import math +from typing import List, Optional, Tuple, Union + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.checkpoint import checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, Mlp, to_2tuple, to_ntuple, trunc_normal_, use_fused_attn +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._registry import register_model, generate_default_cfgs + +__all__ = ['VOLO'] # model_registry will add each entrypoint fn to this + + +class OutlookAttention(nn.Module): + + def __init__( + self, + dim, + num_heads, + kernel_size=3, + padding=1, + stride=1, + qkv_bias=False, + attn_drop=0., + proj_drop=0., + ): + super().__init__() + head_dim = dim // num_heads + self.num_heads = num_heads + self.kernel_size = kernel_size + self.padding = padding + self.stride = stride + self.scale = head_dim ** -0.5 + + self.v = nn.Linear(dim, dim, bias=qkv_bias) + self.attn = nn.Linear(dim, kernel_size ** 4 * num_heads) + + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + self.unfold = nn.Unfold(kernel_size=kernel_size, padding=padding, stride=stride) + self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True) + + def forward(self, x): + B, H, W, C = x.shape + + v = self.v(x).permute(0, 3, 1, 2) # B, C, H, W + + h, w = math.ceil(H / self.stride), math.ceil(W / self.stride) + v = self.unfold(v).reshape( + B, self.num_heads, C // self.num_heads, + self.kernel_size * self.kernel_size, h * w).permute(0, 1, 4, 3, 2) # B,H,N,kxk,C/H + + attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) + attn = self.attn(attn).reshape( + B, h * w, self.num_heads, self.kernel_size * self.kernel_size, + self.kernel_size * self.kernel_size).permute(0, 2, 1, 3, 4) # B,H,N,kxk,kxk + attn = attn * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).permute(0, 1, 4, 3, 2).reshape(B, C * self.kernel_size * self.kernel_size, h * w) + x = F.fold(x, output_size=(H, W), kernel_size=self.kernel_size, padding=self.padding, stride=self.stride) + + x = self.proj(x.permute(0, 2, 3, 1)) + x = self.proj_drop(x) + + return x + + +class Outlooker(nn.Module): + def __init__( + self, + dim, + kernel_size, + padding, + stride=1, + num_heads=1, + mlp_ratio=3., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + qkv_bias=False, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = OutlookAttention( + dim, + num_heads, + kernel_size=kernel_size, + padding=padding, + stride=stride, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + ) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + x = x + self.drop_path1(self.attn(self.norm1(x))) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + return x + + +class Attention(nn.Module): + fused_attn: torch.jit.Final[bool] + + def __init__( + self, + dim, + num_heads=8, + qkv_bias=False, + attn_drop=0., + proj_drop=0., + ): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim ** -0.5 + self.fused_attn = use_fused_attn() + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + B, H, W, C = x.shape + + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv.unbind(0) + + if self.fused_attn: + x = F.scaled_dot_product_attention( + q, k, v, + dropout_p=self.attn_drop.p if self.training else 0., + ) + else: + q = q * self.scale + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.transpose(1, 2).reshape(B, H, W, C) + x = self.proj(x) + x = self.proj_drop(x) + + return x + + +class Transformer(nn.Module): + + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + x = x + self.drop_path1(self.attn(self.norm1(x))) + x = x + self.drop_path2(self.mlp(self.norm2(x))) + return x + + +class ClassAttention(nn.Module): + + def __init__( + self, + dim, + num_heads=8, + head_dim=None, + qkv_bias=False, + attn_drop=0., + proj_drop=0., + ): + super().__init__() + self.num_heads = num_heads + if head_dim is not None: + self.head_dim = head_dim + else: + head_dim = dim // num_heads + self.head_dim = head_dim + self.scale = head_dim ** -0.5 + + self.kv = nn.Linear(dim, self.head_dim * self.num_heads * 2, bias=qkv_bias) + self.q = nn.Linear(dim, self.head_dim * self.num_heads, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(self.head_dim * self.num_heads, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + B, N, C = x.shape + + kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) + k, v = kv.unbind(0) + q = self.q(x[:, :1, :]).reshape(B, self.num_heads, 1, self.head_dim) * self.scale + + attn = q @ k.transpose(-2, -1) + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + cls_embed = (attn @ v).transpose(1, 2).reshape(B, 1, self.head_dim * self.num_heads) + cls_embed = self.proj(cls_embed) + cls_embed = self.proj_drop(cls_embed) + return cls_embed + + +class ClassBlock(nn.Module): + + def __init__( + self, + dim, + num_heads, + head_dim=None, + mlp_ratio=4., + qkv_bias=False, + drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = ClassAttention( + dim, + num_heads=num_heads, + head_dim=head_dim, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=drop, + ) + self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm2 = norm_layer(dim) + self.mlp = Mlp( + in_features=dim, + hidden_features=int(dim * mlp_ratio), + act_layer=act_layer, + drop=drop, + ) + self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + def forward(self, x): + cls_embed = x[:, :1] + cls_embed = cls_embed + self.drop_path1(self.attn(self.norm1(x))) + cls_embed = cls_embed + self.drop_path2(self.mlp(self.norm2(cls_embed))) + return torch.cat([cls_embed, x[:, 1:]], dim=1) + + +def get_block(block_type, **kargs): + if block_type == 'ca': + return ClassBlock(**kargs) + + +def rand_bbox(size, lam, scale=1): + """ + get bounding box as token labeling (https://github.com/zihangJiang/TokenLabeling) + return: bounding box + """ + W = size[1] // scale + H = size[2] // scale + cut_rat = np.sqrt(1. - lam) + cut_w = (W * cut_rat).astype(int) + cut_h = (H * cut_rat).astype(int) + + # uniform + cx = np.random.randint(W) + cy = np.random.randint(H) + + bbx1 = np.clip(cx - cut_w // 2, 0, W) + bby1 = np.clip(cy - cut_h // 2, 0, H) + bbx2 = np.clip(cx + cut_w // 2, 0, W) + bby2 = np.clip(cy + cut_h // 2, 0, H) + + return bbx1, bby1, bbx2, bby2 + + +class PatchEmbed(nn.Module): + """ Image to Patch Embedding. + Different with ViT use 1 conv layer, we use 4 conv layers to do patch embedding + """ + + def __init__( + self, + img_size=224, + stem_conv=False, + stem_stride=1, + patch_size=8, + in_chans=3, + hidden_dim=64, + embed_dim=384, + ): + super().__init__() + assert patch_size in [4, 8, 16] + if stem_conv: + self.conv = nn.Sequential( + nn.Conv2d(in_chans, hidden_dim, kernel_size=7, stride=stem_stride, padding=3, bias=False), # 112x112 + nn.BatchNorm2d(hidden_dim), + nn.ReLU(inplace=True), + nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), # 112x112 + nn.BatchNorm2d(hidden_dim), + nn.ReLU(inplace=True), + nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), # 112x112 + nn.BatchNorm2d(hidden_dim), + nn.ReLU(inplace=True), + ) + else: + self.conv = None + + self.proj = nn.Conv2d( + hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride) + self.num_patches = (img_size // patch_size) * (img_size // patch_size) + + def forward(self, x): + if self.conv is not None: + x = self.conv(x) + x = self.proj(x) # B, C, H, W + return x + + +class Downsample(nn.Module): + """ Image to Patch Embedding, downsampling between stage1 and stage2 + """ + + def __init__(self, in_embed_dim, out_embed_dim, patch_size=2): + super().__init__() + self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=patch_size, stride=patch_size) + + def forward(self, x): + x = x.permute(0, 3, 1, 2) + x = self.proj(x) # B, C, H, W + x = x.permute(0, 2, 3, 1) + return x + + +def outlooker_blocks( + block_fn, + index, + dim, + layers, + num_heads=1, + kernel_size=3, + padding=1, + stride=2, + mlp_ratio=3., + qkv_bias=False, + attn_drop=0, + drop_path_rate=0., + **kwargs, +): + """ + generate outlooker layer in stage1 + return: outlooker layers + """ + blocks = [] + for block_idx in range(layers[index]): + block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1) + blocks.append(block_fn( + dim, + kernel_size=kernel_size, + padding=padding, + stride=stride, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + drop_path=block_dpr, + )) + blocks = nn.Sequential(*blocks) + return blocks + + +def transformer_blocks( + block_fn, + index, + dim, + layers, + num_heads, + mlp_ratio=3., + qkv_bias=False, + attn_drop=0, + drop_path_rate=0., + **kwargs, +): + """ + generate transformer layers in stage2 + return: transformer layers + """ + blocks = [] + for block_idx in range(layers[index]): + block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1) + blocks.append(block_fn( + dim, + num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + drop_path=block_dpr, + )) + blocks = nn.Sequential(*blocks) + return blocks + + +class VOLO(nn.Module): + """ + Vision Outlooker, the main class of our model + """ + + def __init__( + self, + layers, + img_size=224, + in_chans=3, + num_classes=1000, + global_pool='token', + patch_size=8, + stem_hidden_dim=64, + embed_dims=None, + num_heads=None, + downsamples=(True, False, False, False), + outlook_attention=(True, False, False, False), + mlp_ratio=3.0, + qkv_bias=False, + drop_rate=0., + pos_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + norm_layer=nn.LayerNorm, + post_layers=('ca', 'ca'), + use_aux_head=True, + use_mix_token=False, + pooling_scale=2, + ): + super().__init__() + num_layers = len(layers) + mlp_ratio = to_ntuple(num_layers)(mlp_ratio) + img_size = to_2tuple(img_size) + + self.num_classes = num_classes + self.global_pool = global_pool + self.mix_token = use_mix_token + self.pooling_scale = pooling_scale + self.num_features = self.head_hidden_size = embed_dims[-1] + if use_mix_token: # enable token mixing, see token labeling for details. + self.beta = 1.0 + assert global_pool == 'token', "return all tokens if mix_token is enabled" + self.grad_checkpointing = False + + self.patch_embed = PatchEmbed( + stem_conv=True, + stem_stride=2, + patch_size=patch_size, + in_chans=in_chans, + hidden_dim=stem_hidden_dim, + embed_dim=embed_dims[0], + ) + r = patch_size + + # inital positional encoding, we add positional encoding after outlooker blocks + patch_grid = (img_size[0] // patch_size // pooling_scale, img_size[1] // patch_size // pooling_scale) + self.pos_embed = nn.Parameter(torch.zeros(1, patch_grid[0], patch_grid[1], embed_dims[-1])) + self.pos_drop = nn.Dropout(p=pos_drop_rate) + + # set the main block in network + self.stage_ends = [] + self.feature_info = [] + network = [] + block_idx = 0 + for i in range(len(layers)): + if outlook_attention[i]: + # stage 1 + stage = outlooker_blocks( + Outlooker, + i, + embed_dims[i], + layers, + num_heads[i], + mlp_ratio=mlp_ratio[i], + qkv_bias=qkv_bias, + attn_drop=attn_drop_rate, + norm_layer=norm_layer, + ) + else: + # stage 2 + stage = transformer_blocks( + Transformer, + i, + embed_dims[i], + layers, + num_heads[i], + mlp_ratio=mlp_ratio[i], + qkv_bias=qkv_bias, + drop_path_rate=drop_path_rate, + attn_drop=attn_drop_rate, + norm_layer=norm_layer, + ) + network.append(stage) + self.stage_ends.append(block_idx) + self.feature_info.append(dict(num_chs=embed_dims[i], reduction=r, module=f'network.{block_idx}')) + block_idx += 1 + if downsamples[i]: + # downsampling between two stages + network.append(Downsample(embed_dims[i], embed_dims[i + 1], 2)) + r *= 2 + block_idx += 1 + + self.network = nn.ModuleList(network) + + # set post block, for example, class attention layers + self.post_network = None + if post_layers is not None: + self.post_network = nn.ModuleList([ + get_block( + post_layers[i], + dim=embed_dims[-1], + num_heads=num_heads[-1], + mlp_ratio=mlp_ratio[-1], + qkv_bias=qkv_bias, + attn_drop=attn_drop_rate, + drop_path=0., + norm_layer=norm_layer) + for i in range(len(post_layers)) + ]) + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims[-1])) + trunc_normal_(self.cls_token, std=.02) + + # set output type + if use_aux_head: + self.aux_head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + else: + self.aux_head = None + self.norm = norm_layer(self.num_features) + + # Classifier head + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + trunc_normal_(self.pos_embed, std=.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^cls_token|pos_embed|patch_embed', # stem and embed + blocks=[ + (r'^network\.(\d+)\.(\d+)', None), + (r'^network\.(\d+)', (0,)), + ], + blocks2=[ + (r'^cls_token', (0,)), + (r'^post_network\.(\d+)', None), + (r'^norm', (99999,)) + ], + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + if self.aux_head is not None: + self.aux_head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward_tokens(self, x): + for idx, block in enumerate(self.network): + if idx == 2: + # add positional encoding after outlooker blocks + x = x + self.pos_embed + x = self.pos_drop(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(block, x) + else: + x = block(x) + + B, H, W, C = x.shape + x = x.reshape(B, -1, C) + return x + + def forward_cls(self, x): + B, N, C = x.shape + cls_tokens = self.cls_token.expand(B, -1, -1) + x = torch.cat([cls_tokens, x], dim=1) + for block in self.post_network: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(block, x) + else: + x = block(x) + return x + + def forward_train(self, x): + """ A separate forward fn for training with mix_token (if a train script supports). + Combining multiple modes in as single forward with different return types is torchscript hell. + """ + x = self.patch_embed(x) + x = x.permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C + + # mix token, see token labeling for details. + if self.mix_token and self.training: + lam = np.random.beta(self.beta, self.beta) + patch_h, patch_w = x.shape[1] // self.pooling_scale, x.shape[2] // self.pooling_scale + bbx1, bby1, bbx2, bby2 = rand_bbox(x.size(), lam, scale=self.pooling_scale) + temp_x = x.clone() + sbbx1, sbby1 = self.pooling_scale * bbx1, self.pooling_scale * bby1 + sbbx2, sbby2 = self.pooling_scale * bbx2, self.pooling_scale * bby2 + temp_x[:, sbbx1:sbbx2, sbby1:sbby2, :] = x.flip(0)[:, sbbx1:sbbx2, sbby1:sbby2, :] + x = temp_x + else: + bbx1, bby1, bbx2, bby2 = 0, 0, 0, 0 + + # step2: tokens learning in the two stages + x = self.forward_tokens(x) + + # step3: post network, apply class attention or not + if self.post_network is not None: + x = self.forward_cls(x) + x = self.norm(x) + + if self.global_pool == 'avg': + x_cls = x.mean(dim=1) + elif self.global_pool == 'token': + x_cls = x[:, 0] + else: + x_cls = x + + if self.aux_head is None: + return x_cls + + x_aux = self.aux_head(x[:, 1:]) # generate classes in all feature tokens, see token labeling + if not self.training: + return x_cls + 0.5 * x_aux.max(1)[0] + + if self.mix_token and self.training: # reverse "mix token", see token labeling for details. + x_aux = x_aux.reshape(x_aux.shape[0], patch_h, patch_w, x_aux.shape[-1]) + temp_x = x_aux.clone() + temp_x[:, bbx1:bbx2, bby1:bby2, :] = x_aux.flip(0)[:, bbx1:bbx2, bby1:bby2, :] + x_aux = temp_x + x_aux = x_aux.reshape(x_aux.shape[0], patch_h * patch_w, x_aux.shape[-1]) + + # return these: 1. class token, 2. classes from all feature tokens, 3. bounding box + return x_cls, x_aux, (bbx1, bby1, bbx2, bby2) + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW',), 'Output format must be NCHW.' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + take_indices = [self.stage_ends[i] for i in take_indices] + max_index = self.stage_ends[max_index] + + # forward pass + B, _, height, width = x.shape + x = self.patch_embed(x).permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C + + # step2: tokens learning in the two stages + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + network = self.network + else: + network = self.network[:max_index + 1] + for idx, block in enumerate(network): + if idx == 2: + # add positional encoding after outlooker blocks + x = x + self.pos_embed + x = self.pos_drop(x) + x = block(x) + if idx in take_indices: + if norm and idx >= 2: + x_inter = self.norm(x) + else: + x_inter = x + intermediates.append(x_inter.permute(0, 3, 1, 2)) + + if intermediates_only: + return intermediates + + # NOTE not supporting return of class tokens + # step3: post network, apply class attention or not + B, H, W, C = x.shape + x = x.reshape(B, -1, C) + if self.post_network is not None: + x = self.forward_cls(x) + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) + max_index = self.stage_ends[max_index] + self.network = self.network[:max_index + 1] # truncate blocks + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.post_network = nn.ModuleList() # prune token blocks with head + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + x = self.patch_embed(x).permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C + + # step2: tokens learning in the two stages + x = self.forward_tokens(x) + + # step3: post network, apply class attention or not + if self.post_network is not None: + x = self.forward_cls(x) + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool == 'avg': + out = x.mean(dim=1) + elif self.global_pool == 'token': + out = x[:, 0] + else: + out = x + x = self.head_drop(x) + if pre_logits: + return out + out = self.head(out) + if self.aux_head is not None: + # generate classes in all feature tokens, see token labeling + aux = self.aux_head(x[:, 1:]) + out = out + 0.5 * aux.max(1)[0] + return out + + def forward(self, x): + """ simplified forward (without mix token training) """ + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _create_volo(variant, pretrained=False, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + return build_model_with_cfg( + VOLO, + variant, + pretrained, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .96, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.conv.0', 'classifier': ('head', 'aux_head'), + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'volo_d1_224.sail_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/sail-sg/volo/releases/download/volo_1/d1_224_84.2.pth.tar', + crop_pct=0.96), + 'volo_d1_384.sail_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/sail-sg/volo/releases/download/volo_1/d1_384_85.2.pth.tar', + crop_pct=1.0, input_size=(3, 384, 384)), + 'volo_d2_224.sail_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/sail-sg/volo/releases/download/volo_1/d2_224_85.2.pth.tar', + crop_pct=0.96), + 'volo_d2_384.sail_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/sail-sg/volo/releases/download/volo_1/d2_384_86.0.pth.tar', + crop_pct=1.0, input_size=(3, 384, 384)), + 'volo_d3_224.sail_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/sail-sg/volo/releases/download/volo_1/d3_224_85.4.pth.tar', + crop_pct=0.96), + 'volo_d3_448.sail_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/sail-sg/volo/releases/download/volo_1/d3_448_86.3.pth.tar', + crop_pct=1.0, input_size=(3, 448, 448)), + 'volo_d4_224.sail_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/sail-sg/volo/releases/download/volo_1/d4_224_85.7.pth.tar', + crop_pct=0.96), + 'volo_d4_448.sail_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/sail-sg/volo/releases/download/volo_1/d4_448_86.79.pth.tar', + crop_pct=1.15, input_size=(3, 448, 448)), + 'volo_d5_224.sail_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_224_86.10.pth.tar', + crop_pct=0.96), + 'volo_d5_448.sail_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_448_87.0.pth.tar', + crop_pct=1.15, input_size=(3, 448, 448)), + 'volo_d5_512.sail_in1k': _cfg( + hf_hub_id='timm/', + url='https://github.com/sail-sg/volo/releases/download/volo_1/d5_512_87.07.pth.tar', + crop_pct=1.15, input_size=(3, 512, 512)), +}) + + +@register_model +def volo_d1_224(pretrained=False, **kwargs) -> VOLO: + """ VOLO-D1 model, Params: 27M """ + model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs) + model = _create_volo('volo_d1_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def volo_d1_384(pretrained=False, **kwargs) -> VOLO: + """ VOLO-D1 model, Params: 27M """ + model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs) + model = _create_volo('volo_d1_384', pretrained=pretrained, **model_args) + return model + + +@register_model +def volo_d2_224(pretrained=False, **kwargs) -> VOLO: + """ VOLO-D2 model, Params: 59M """ + model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) + model = _create_volo('volo_d2_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def volo_d2_384(pretrained=False, **kwargs) -> VOLO: + """ VOLO-D2 model, Params: 59M """ + model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) + model = _create_volo('volo_d2_384', pretrained=pretrained, **model_args) + return model + + +@register_model +def volo_d3_224(pretrained=False, **kwargs) -> VOLO: + """ VOLO-D3 model, Params: 86M """ + model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) + model = _create_volo('volo_d3_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def volo_d3_448(pretrained=False, **kwargs) -> VOLO: + """ VOLO-D3 model, Params: 86M """ + model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) + model = _create_volo('volo_d3_448', pretrained=pretrained, **model_args) + return model + + +@register_model +def volo_d4_224(pretrained=False, **kwargs) -> VOLO: + """ VOLO-D4 model, Params: 193M """ + model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs) + model = _create_volo('volo_d4_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def volo_d4_448(pretrained=False, **kwargs) -> VOLO: + """ VOLO-D4 model, Params: 193M """ + model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs) + model = _create_volo('volo_d4_448', pretrained=pretrained, **model_args) + return model + + +@register_model +def volo_d5_224(pretrained=False, **kwargs) -> VOLO: + """ VOLO-D5 model, Params: 296M + stem_hidden_dim=128, the dim in patch embedding is 128 for VOLO-D5 + """ + model_args = dict( + layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), + mlp_ratio=4, stem_hidden_dim=128, **kwargs) + model = _create_volo('volo_d5_224', pretrained=pretrained, **model_args) + return model + + +@register_model +def volo_d5_448(pretrained=False, **kwargs) -> VOLO: + """ VOLO-D5 model, Params: 296M + stem_hidden_dim=128, the dim in patch embedding is 128 for VOLO-D5 + """ + model_args = dict( + layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), + mlp_ratio=4, stem_hidden_dim=128, **kwargs) + model = _create_volo('volo_d5_448', pretrained=pretrained, **model_args) + return model + + +@register_model +def volo_d5_512(pretrained=False, **kwargs) -> VOLO: + """ VOLO-D5 model, Params: 296M + stem_hidden_dim=128, the dim in patch embedding is 128 for VOLO-D5 + """ + model_args = dict( + layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), + mlp_ratio=4, stem_hidden_dim=128, **kwargs) + model = _create_volo('volo_d5_512', pretrained=pretrained, **model_args) + return model diff --git a/pytorch-image-models/timm/models/vovnet.py b/pytorch-image-models/timm/models/vovnet.py new file mode 100644 index 0000000000000000000000000000000000000000..86851666a255943863a915750ebf3f6ed9ad99d7 --- /dev/null +++ b/pytorch-image-models/timm/models/vovnet.py @@ -0,0 +1,480 @@ +""" VoVNet (V1 & V2) + +Papers: +* `An Energy and GPU-Computation Efficient Backbone Network` - https://arxiv.org/abs/1904.09730 +* `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 + +Looked at https://github.com/youngwanLEE/vovnet-detectron2 & +https://github.com/stigma0617/VoVNet.pytorch/blob/master/models_vovnet/vovnet.py +for some reference, rewrote most of the code. + +Hacked together by / Copyright 2020 Ross Wightman +""" + +from typing import List, Optional + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import ConvNormAct, SeparableConvNormAct, BatchNormAct2d, ClassifierHead, DropPath, \ + create_attn, create_norm_act_layer +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +__all__ = ['VovNet'] # model_registry will add each entrypoint fn to this + + +class SequentialAppendList(nn.Sequential): + def __init__(self, *args): + super(SequentialAppendList, self).__init__(*args) + + def forward(self, x: torch.Tensor, concat_list: List[torch.Tensor]) -> torch.Tensor: + for i, module in enumerate(self): + if i == 0: + concat_list.append(module(x)) + else: + concat_list.append(module(concat_list[-1])) + x = torch.cat(concat_list, dim=1) + return x + + +class OsaBlock(nn.Module): + + def __init__( + self, + in_chs, + mid_chs, + out_chs, + layer_per_block, + residual=False, + depthwise=False, + attn='', + norm_layer=BatchNormAct2d, + act_layer=nn.ReLU, + drop_path=None, + ): + super(OsaBlock, self).__init__() + + self.residual = residual + self.depthwise = depthwise + conv_kwargs = dict(norm_layer=norm_layer, act_layer=act_layer) + + next_in_chs = in_chs + if self.depthwise and next_in_chs != mid_chs: + assert not residual + self.conv_reduction = ConvNormAct(next_in_chs, mid_chs, 1, **conv_kwargs) + else: + self.conv_reduction = None + + mid_convs = [] + for i in range(layer_per_block): + if self.depthwise: + conv = SeparableConvNormAct(mid_chs, mid_chs, **conv_kwargs) + else: + conv = ConvNormAct(next_in_chs, mid_chs, 3, **conv_kwargs) + next_in_chs = mid_chs + mid_convs.append(conv) + self.conv_mid = SequentialAppendList(*mid_convs) + + # feature aggregation + next_in_chs = in_chs + layer_per_block * mid_chs + self.conv_concat = ConvNormAct(next_in_chs, out_chs, **conv_kwargs) + + self.attn = create_attn(attn, out_chs) if attn else None + + self.drop_path = drop_path + + def forward(self, x): + output = [x] + if self.conv_reduction is not None: + x = self.conv_reduction(x) + x = self.conv_mid(x, output) + x = self.conv_concat(x) + if self.attn is not None: + x = self.attn(x) + if self.drop_path is not None: + x = self.drop_path(x) + if self.residual: + x = x + output[0] + return x + + +class OsaStage(nn.Module): + + def __init__( + self, + in_chs, + mid_chs, + out_chs, + block_per_stage, + layer_per_block, + downsample=True, + residual=True, + depthwise=False, + attn='ese', + norm_layer=BatchNormAct2d, + act_layer=nn.ReLU, + drop_path_rates=None, + ): + super(OsaStage, self).__init__() + self.grad_checkpointing = False + + if downsample: + self.pool = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) + else: + self.pool = None + + blocks = [] + for i in range(block_per_stage): + last_block = i == block_per_stage - 1 + if drop_path_rates is not None and drop_path_rates[i] > 0.: + drop_path = DropPath(drop_path_rates[i]) + else: + drop_path = None + blocks += [OsaBlock( + in_chs, + mid_chs, + out_chs, + layer_per_block, + residual=residual and i > 0, + depthwise=depthwise, + attn=attn if last_block else '', + norm_layer=norm_layer, + act_layer=act_layer, + drop_path=drop_path + )] + in_chs = out_chs + self.blocks = nn.Sequential(*blocks) + + def forward(self, x): + if self.pool is not None: + x = self.pool(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + return x + + +class VovNet(nn.Module): + + def __init__( + self, + cfg, + in_chans=3, + num_classes=1000, + global_pool='avg', + output_stride=32, + norm_layer=BatchNormAct2d, + act_layer=nn.ReLU, + drop_rate=0., + drop_path_rate=0., + **kwargs, + ): + """ + Args: + cfg (dict): Model architecture configuration + in_chans (int): Number of input channels (default: 3) + num_classes (int): Number of classifier classes (default: 1000) + global_pool (str): Global pooling type (default: 'avg') + output_stride (int): Output stride of network, one of (8, 16, 32) (default: 32) + norm_layer (Union[str, nn.Module]): normalization layer + act_layer (Union[str, nn.Module]): activation layer + drop_rate (float): Dropout rate (default: 0.) + drop_path_rate (float): Stochastic depth drop-path rate (default: 0.) + kwargs (dict): Extra kwargs overlayed onto cfg + """ + super(VovNet, self).__init__() + self.num_classes = num_classes + self.drop_rate = drop_rate + assert output_stride == 32 # FIXME support dilation + + cfg = dict(cfg, **kwargs) + stem_stride = cfg.get("stem_stride", 4) + stem_chs = cfg["stem_chs"] + stage_conv_chs = cfg["stage_conv_chs"] + stage_out_chs = cfg["stage_out_chs"] + block_per_stage = cfg["block_per_stage"] + layer_per_block = cfg["layer_per_block"] + conv_kwargs = dict(norm_layer=norm_layer, act_layer=act_layer) + + # Stem module + last_stem_stride = stem_stride // 2 + conv_type = SeparableConvNormAct if cfg["depthwise"] else ConvNormAct + self.stem = nn.Sequential(*[ + ConvNormAct(in_chans, stem_chs[0], 3, stride=2, **conv_kwargs), + conv_type(stem_chs[0], stem_chs[1], 3, stride=1, **conv_kwargs), + conv_type(stem_chs[1], stem_chs[2], 3, stride=last_stem_stride, **conv_kwargs), + ]) + self.feature_info = [dict( + num_chs=stem_chs[1], reduction=2, module=f'stem.{1 if stem_stride == 4 else 2}')] + current_stride = stem_stride + + # OSA stages + stage_dpr = torch.split(torch.linspace(0, drop_path_rate, sum(block_per_stage)), block_per_stage) + in_ch_list = stem_chs[-1:] + stage_out_chs[:-1] + stage_args = dict(residual=cfg["residual"], depthwise=cfg["depthwise"], attn=cfg["attn"], **conv_kwargs) + stages = [] + for i in range(4): # num_stages + downsample = stem_stride == 2 or i > 0 # first stage has no stride/downsample if stem_stride is 4 + stages += [OsaStage( + in_ch_list[i], + stage_conv_chs[i], + stage_out_chs[i], + block_per_stage[i], + layer_per_block, + downsample=downsample, + drop_path_rates=stage_dpr[i], + **stage_args, + )] + self.num_features = stage_out_chs[i] + current_stride *= 2 if downsample else 1 + self.feature_info += [dict(num_chs=self.num_features, reduction=current_stride, module=f'stages.{i}')] + + self.stages = nn.Sequential(*stages) + + self.head_hidden_size = self.num_features + self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) + + for n, m in self.named_modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.Linear): + nn.init.zeros_(m.bias) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', + blocks=r'^stages\.(\d+)' if coarse else r'^stages\.(\d+).blocks\.(\d+)', + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + for s in self.stages: + s.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes, global_pool: Optional[str] = None): + self.num_classes = num_classes + self.head.reset(num_classes, global_pool) + + def forward_features(self, x): + x = self.stem(x) + return self.stages(x) + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +# model cfgs adapted from https://github.com/youngwanLEE/vovnet-detectron2 & +# https://github.com/stigma0617/VoVNet.pytorch/blob/master/models_vovnet/vovnet.py +model_cfgs = dict( + vovnet39a=dict( + stem_chs=[64, 64, 128], + stage_conv_chs=[128, 160, 192, 224], + stage_out_chs=[256, 512, 768, 1024], + layer_per_block=5, + block_per_stage=[1, 1, 2, 2], + residual=False, + depthwise=False, + attn='', + ), + vovnet57a=dict( + stem_chs=[64, 64, 128], + stage_conv_chs=[128, 160, 192, 224], + stage_out_chs=[256, 512, 768, 1024], + layer_per_block=5, + block_per_stage=[1, 1, 4, 3], + residual=False, + depthwise=False, + attn='', + + ), + ese_vovnet19b_slim_dw=dict( + stem_chs=[64, 64, 64], + stage_conv_chs=[64, 80, 96, 112], + stage_out_chs=[112, 256, 384, 512], + layer_per_block=3, + block_per_stage=[1, 1, 1, 1], + residual=True, + depthwise=True, + attn='ese', + + ), + ese_vovnet19b_dw=dict( + stem_chs=[64, 64, 64], + stage_conv_chs=[128, 160, 192, 224], + stage_out_chs=[256, 512, 768, 1024], + layer_per_block=3, + block_per_stage=[1, 1, 1, 1], + residual=True, + depthwise=True, + attn='ese', + ), + ese_vovnet19b_slim=dict( + stem_chs=[64, 64, 128], + stage_conv_chs=[64, 80, 96, 112], + stage_out_chs=[112, 256, 384, 512], + layer_per_block=3, + block_per_stage=[1, 1, 1, 1], + residual=True, + depthwise=False, + attn='ese', + ), + ese_vovnet19b=dict( + stem_chs=[64, 64, 128], + stage_conv_chs=[128, 160, 192, 224], + stage_out_chs=[256, 512, 768, 1024], + layer_per_block=3, + block_per_stage=[1, 1, 1, 1], + residual=True, + depthwise=False, + attn='ese', + + ), + ese_vovnet39b=dict( + stem_chs=[64, 64, 128], + stage_conv_chs=[128, 160, 192, 224], + stage_out_chs=[256, 512, 768, 1024], + layer_per_block=5, + block_per_stage=[1, 1, 2, 2], + residual=True, + depthwise=False, + attn='ese', + ), + ese_vovnet57b=dict( + stem_chs=[64, 64, 128], + stage_conv_chs=[128, 160, 192, 224], + stage_out_chs=[256, 512, 768, 1024], + layer_per_block=5, + block_per_stage=[1, 1, 4, 3], + residual=True, + depthwise=False, + attn='ese', + + ), + ese_vovnet99b=dict( + stem_chs=[64, 64, 128], + stage_conv_chs=[128, 160, 192, 224], + stage_out_chs=[256, 512, 768, 1024], + layer_per_block=5, + block_per_stage=[1, 3, 9, 3], + residual=True, + depthwise=False, + attn='ese', + ), + eca_vovnet39b=dict( + stem_chs=[64, 64, 128], + stage_conv_chs=[128, 160, 192, 224], + stage_out_chs=[256, 512, 768, 1024], + layer_per_block=5, + block_per_stage=[1, 1, 2, 2], + residual=True, + depthwise=False, + attn='eca', + ), +) +model_cfgs['ese_vovnet39b_evos'] = model_cfgs['ese_vovnet39b'] + + +def _create_vovnet(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + VovNet, + variant, + pretrained, + model_cfg=model_cfgs[variant], + feature_cfg=dict(flatten_sequential=True), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), + 'crop_pct': 0.875, 'interpolation': 'bicubic', + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'stem.0.conv', 'classifier': 'head.fc', **kwargs, + } + + +default_cfgs = generate_default_cfgs({ + 'vovnet39a.untrained': _cfg(url=''), + 'vovnet57a.untrained': _cfg(url=''), + 'ese_vovnet19b_slim_dw.untrained': _cfg(url=''), + 'ese_vovnet19b_dw.ra_in1k': _cfg( + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'ese_vovnet19b_slim.untrained': _cfg(url=''), + 'ese_vovnet39b.ra_in1k': _cfg( + hf_hub_id='timm/', + test_input_size=(3, 288, 288), test_crop_pct=0.95), + 'ese_vovnet57b.untrained': _cfg(url=''), + 'ese_vovnet99b.untrained': _cfg(url=''), + 'eca_vovnet39b.untrained': _cfg(url=''), + 'ese_vovnet39b_evos.untrained': _cfg(url=''), +}) + + +@register_model +def vovnet39a(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('vovnet39a', pretrained=pretrained, **kwargs) + + +@register_model +def vovnet57a(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('vovnet57a', pretrained=pretrained, **kwargs) + + +@register_model +def ese_vovnet19b_slim_dw(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet19b_slim_dw', pretrained=pretrained, **kwargs) + + +@register_model +def ese_vovnet19b_dw(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet19b_dw', pretrained=pretrained, **kwargs) + + +@register_model +def ese_vovnet19b_slim(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet19b_slim', pretrained=pretrained, **kwargs) + + +@register_model +def ese_vovnet39b(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet39b', pretrained=pretrained, **kwargs) + + +@register_model +def ese_vovnet57b(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet57b', pretrained=pretrained, **kwargs) + + +@register_model +def ese_vovnet99b(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('ese_vovnet99b', pretrained=pretrained, **kwargs) + + +@register_model +def eca_vovnet39b(pretrained=False, **kwargs) -> VovNet: + return _create_vovnet('eca_vovnet39b', pretrained=pretrained, **kwargs) + + +# Experimental Models + +@register_model +def ese_vovnet39b_evos(pretrained=False, **kwargs) -> VovNet: + def norm_act_fn(num_features, **nkwargs): + return create_norm_act_layer('evonorms0', num_features, jit=False, **nkwargs) + return _create_vovnet('ese_vovnet39b_evos', pretrained=pretrained, norm_layer=norm_act_fn, **kwargs) diff --git a/pytorch-image-models/timm/models/xception.py b/pytorch-image-models/timm/models/xception.py new file mode 100644 index 0000000000000000000000000000000000000000..e1f92abfa01328b52b7feaba03afa4e7a0474495 --- /dev/null +++ b/pytorch-image-models/timm/models/xception.py @@ -0,0 +1,255 @@ +""" +Ported to pytorch thanks to [tstandley](https://github.com/tstandley/Xception-PyTorch) + +@author: tstandley +Adapted by cadene + +Creates an Xception Model as defined in: + +Francois Chollet +Xception: Deep Learning with Depthwise Separable Convolutions +https://arxiv.org/pdf/1610.02357.pdf + +This weights ported from the Keras implementation. Achieves the following performance on the validation set: + +Loss:0.9173 Prec@1:78.892 Prec@5:94.292 + +REMEMBER to set your image size to 3x299x299 for both test and validation + +normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], + std=[0.5, 0.5, 0.5]) + +The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299 +""" +import torch.jit +import torch.nn as nn +import torch.nn.functional as F + +from timm.layers import create_classifier +from ._builder import build_model_with_cfg +from ._registry import register_model, generate_default_cfgs, register_model_deprecations + +__all__ = ['Xception'] + + +class SeparableConv2d(nn.Module): + def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1): + super(SeparableConv2d, self).__init__() + + self.conv1 = nn.Conv2d( + in_channels, in_channels, kernel_size, stride, padding, dilation, groups=in_channels, bias=False) + self.pointwise = nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=False) + + def forward(self, x): + x = self.conv1(x) + x = self.pointwise(x) + return x + + +class Block(nn.Module): + def __init__(self, in_channels, out_channels, reps, strides=1, start_with_relu=True, grow_first=True): + super(Block, self).__init__() + + if out_channels != in_channels or strides != 1: + self.skip = nn.Conv2d(in_channels, out_channels, 1, stride=strides, bias=False) + self.skipbn = nn.BatchNorm2d(out_channels) + else: + self.skip = None + + rep = [] + for i in range(reps): + if grow_first: + inc = in_channels if i == 0 else out_channels + outc = out_channels + else: + inc = in_channels + outc = in_channels if i < (reps - 1) else out_channels + rep.append(nn.ReLU(inplace=True)) + rep.append(SeparableConv2d(inc, outc, 3, stride=1, padding=1)) + rep.append(nn.BatchNorm2d(outc)) + + if not start_with_relu: + rep = rep[1:] + else: + rep[0] = nn.ReLU(inplace=False) + + if strides != 1: + rep.append(nn.MaxPool2d(3, strides, 1)) + self.rep = nn.Sequential(*rep) + + def forward(self, inp): + x = self.rep(inp) + + if self.skip is not None: + skip = self.skip(inp) + skip = self.skipbn(skip) + else: + skip = inp + + x += skip + return x + + +class Xception(nn.Module): + """ + Xception optimized for the ImageNet dataset, as specified in + https://arxiv.org/pdf/1610.02357.pdf + """ + + def __init__(self, num_classes=1000, in_chans=3, drop_rate=0., global_pool='avg'): + """ Constructor + Args: + num_classes: number of classes + """ + super(Xception, self).__init__() + self.drop_rate = drop_rate + self.global_pool = global_pool + self.num_classes = num_classes + self.num_features = self.head_hidden_size = 2048 + + self.conv1 = nn.Conv2d(in_chans, 32, 3, 2, 0, bias=False) + self.bn1 = nn.BatchNorm2d(32) + self.act1 = nn.ReLU(inplace=True) + + self.conv2 = nn.Conv2d(32, 64, 3, bias=False) + self.bn2 = nn.BatchNorm2d(64) + self.act2 = nn.ReLU(inplace=True) + + self.block1 = Block(64, 128, 2, 2, start_with_relu=False) + self.block2 = Block(128, 256, 2, 2) + self.block3 = Block(256, 728, 2, 2) + + self.block4 = Block(728, 728, 3, 1) + self.block5 = Block(728, 728, 3, 1) + self.block6 = Block(728, 728, 3, 1) + self.block7 = Block(728, 728, 3, 1) + + self.block8 = Block(728, 728, 3, 1) + self.block9 = Block(728, 728, 3, 1) + self.block10 = Block(728, 728, 3, 1) + self.block11 = Block(728, 728, 3, 1) + + self.block12 = Block(728, 1024, 2, 2, grow_first=False) + + self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1) + self.bn3 = nn.BatchNorm2d(1536) + self.act3 = nn.ReLU(inplace=True) + + self.conv4 = SeparableConv2d(1536, self.num_features, 3, 1, 1) + self.bn4 = nn.BatchNorm2d(self.num_features) + self.act4 = nn.ReLU(inplace=True) + self.feature_info = [ + dict(num_chs=64, reduction=2, module='act2'), + dict(num_chs=128, reduction=4, module='block2.rep.0'), + dict(num_chs=256, reduction=8, module='block3.rep.0'), + dict(num_chs=728, reduction=16, module='block12.rep.0'), + dict(num_chs=2048, reduction=32, module='act4'), + ] + + self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + # #------- init weights -------- + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^conv[12]|bn[12]', + blocks=[ + (r'^block(\d+)', None), + (r'^conv[34]|bn[34]', (99,)), + ], + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + assert not enable, "gradient checkpointing not supported" + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.fc + + def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): + self.num_classes = num_classes + self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + + x = self.conv2(x) + x = self.bn2(x) + x = self.act2(x) + + x = self.block1(x) + x = self.block2(x) + x = self.block3(x) + x = self.block4(x) + x = self.block5(x) + x = self.block6(x) + x = self.block7(x) + x = self.block8(x) + x = self.block9(x) + x = self.block10(x) + x = self.block11(x) + x = self.block12(x) + + x = self.conv3(x) + x = self.bn3(x) + x = self.act3(x) + + x = self.conv4(x) + x = self.bn4(x) + x = self.act4(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + x = self.global_pool(x) + if self.drop_rate: + F.dropout(x, self.drop_rate, training=self.training) + return x if pre_logits else self.fc(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _xception(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + Xception, variant, pretrained, + feature_cfg=dict(feature_cls='hook'), + **kwargs) + + +default_cfgs = generate_default_cfgs({ + 'legacy_xception.tf_in1k': { + 'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/xception-43020ad28.pth', + 'input_size': (3, 299, 299), + 'pool_size': (10, 10), + 'crop_pct': 0.8975, + 'interpolation': 'bicubic', + 'mean': (0.5, 0.5, 0.5), + 'std': (0.5, 0.5, 0.5), + 'num_classes': 1000, + 'first_conv': 'conv1', + 'classifier': 'fc' + # The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299 + } +}) + + +@register_model +def legacy_xception(pretrained=False, **kwargs) -> Xception: + return _xception('legacy_xception', pretrained=pretrained, **kwargs) + + +register_model_deprecations(__name__, { + 'xception': 'legacy_xception', +}) diff --git a/pytorch-image-models/timm/models/xception_aligned.py b/pytorch-image-models/timm/models/xception_aligned.py new file mode 100644 index 0000000000000000000000000000000000000000..f9071ed3f3941487b00f2ec7caef9475ac8ebc81 --- /dev/null +++ b/pytorch-image-models/timm/models/xception_aligned.py @@ -0,0 +1,435 @@ +"""Pytorch impl of Aligned Xception 41, 65, 71 + +This is a correct, from scratch impl of Aligned Xception (Deeplab) models compatible with TF weights at +https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md + +Hacked together by / Copyright 2020 Ross Wightman +""" +from functools import partial +from typing import List, Dict, Type, Optional + +import torch +import torch.nn as nn + +from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD +from timm.layers import ClassifierHead, ConvNormAct, DropPath, PadType, create_conv2d, get_norm_act_layer +from timm.layers.helpers import to_3tuple +from ._builder import build_model_with_cfg +from ._manipulate import checkpoint_seq +from ._registry import register_model, generate_default_cfgs + +__all__ = ['XceptionAligned'] + + +class SeparableConv2d(nn.Module): + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int = 3, + stride: int = 1, + dilation: int = 1, + padding: PadType = '', + act_layer: Type[nn.Module] = nn.ReLU, + norm_layer: Type[nn.Module] = nn.BatchNorm2d, + ): + super(SeparableConv2d, self).__init__() + self.kernel_size = kernel_size + self.dilation = dilation + + # depthwise convolution + self.conv_dw = create_conv2d( + in_chs, in_chs, kernel_size, stride=stride, + padding=padding, dilation=dilation, depthwise=True) + self.bn_dw = norm_layer(in_chs) + self.act_dw = act_layer(inplace=True) if act_layer is not None else nn.Identity() + + # pointwise convolution + self.conv_pw = create_conv2d(in_chs, out_chs, kernel_size=1) + self.bn_pw = norm_layer(out_chs) + self.act_pw = act_layer(inplace=True) if act_layer is not None else nn.Identity() + + def forward(self, x): + x = self.conv_dw(x) + x = self.bn_dw(x) + x = self.act_dw(x) + x = self.conv_pw(x) + x = self.bn_pw(x) + x = self.act_pw(x) + return x + + +class PreSeparableConv2d(nn.Module): + def __init__( + self, + in_chs: int, + out_chs: int, + kernel_size: int = 3, + stride: int = 1, + dilation: int = 1, + padding: PadType = '', + act_layer: Type[nn.Module] = nn.ReLU, + norm_layer: Type[nn.Module] = nn.BatchNorm2d, + first_act: bool = True, + ): + super(PreSeparableConv2d, self).__init__() + norm_act_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) + self.kernel_size = kernel_size + self.dilation = dilation + + self.norm = norm_act_layer(in_chs, inplace=True) if first_act else nn.Identity() + # depthwise convolution + self.conv_dw = create_conv2d( + in_chs, in_chs, kernel_size, stride=stride, + padding=padding, dilation=dilation, depthwise=True) + + # pointwise convolution + self.conv_pw = create_conv2d(in_chs, out_chs, kernel_size=1) + + def forward(self, x): + x = self.norm(x) + x = self.conv_dw(x) + x = self.conv_pw(x) + return x + + +class XceptionModule(nn.Module): + def __init__( + self, + in_chs: int, + out_chs: int, + stride: int = 1, + dilation: int = 1, + pad_type: PadType = '', + start_with_relu: bool = True, + no_skip: bool = False, + act_layer: Type[nn.Module] = nn.ReLU, + norm_layer: Optional[Type[nn.Module]] = None, + drop_path: Optional[nn.Module] = None + ): + super(XceptionModule, self).__init__() + out_chs = to_3tuple(out_chs) + self.in_channels = in_chs + self.out_channels = out_chs[-1] + self.no_skip = no_skip + if not no_skip and (self.out_channels != self.in_channels or stride != 1): + self.shortcut = ConvNormAct( + in_chs, self.out_channels, 1, stride=stride, norm_layer=norm_layer, apply_act=False) + else: + self.shortcut = None + + separable_act_layer = None if start_with_relu else act_layer + self.stack = nn.Sequential() + for i in range(3): + if start_with_relu: + self.stack.add_module(f'act{i + 1}', act_layer(inplace=i > 0)) + self.stack.add_module(f'conv{i + 1}', SeparableConv2d( + in_chs, out_chs[i], 3, stride=stride if i == 2 else 1, dilation=dilation, padding=pad_type, + act_layer=separable_act_layer, norm_layer=norm_layer)) + in_chs = out_chs[i] + + self.drop_path = drop_path + + def forward(self, x): + skip = x + x = self.stack(x) + if self.shortcut is not None: + skip = self.shortcut(skip) + if not self.no_skip: + if self.drop_path is not None: + x = self.drop_path(x) + x = x + skip + return x + + +class PreXceptionModule(nn.Module): + def __init__( + self, + in_chs: int, + out_chs: int, + stride: int = 1, + dilation: int = 1, + pad_type: PadType = '', + no_skip: bool = False, + act_layer: Type[nn.Module] = nn.ReLU, + norm_layer: Optional[Type[nn.Module]] = None, + drop_path: Optional[nn.Module] = None + ): + super(PreXceptionModule, self).__init__() + out_chs = to_3tuple(out_chs) + self.in_channels = in_chs + self.out_channels = out_chs[-1] + self.no_skip = no_skip + if not no_skip and (self.out_channels != self.in_channels or stride != 1): + self.shortcut = create_conv2d(in_chs, self.out_channels, 1, stride=stride) + else: + self.shortcut = nn.Identity() + + self.norm = get_norm_act_layer(norm_layer, act_layer=act_layer)(in_chs, inplace=True) + self.stack = nn.Sequential() + for i in range(3): + self.stack.add_module(f'conv{i + 1}', PreSeparableConv2d( + in_chs, + out_chs[i], + 3, + stride=stride if i == 2 else 1, + dilation=dilation, + padding=pad_type, + act_layer=act_layer, + norm_layer=norm_layer, + first_act=i > 0, + )) + in_chs = out_chs[i] + + self.drop_path = drop_path + + def forward(self, x): + x = self.norm(x) + skip = x + x = self.stack(x) + if not self.no_skip: + if self.drop_path is not None: + x = self.drop_path(x) + x = x + self.shortcut(skip) + return x + + +class XceptionAligned(nn.Module): + """Modified Aligned Xception + """ + + def __init__( + self, + block_cfg: List[Dict], + num_classes: int = 1000, + in_chans: int = 3, + output_stride: int = 32, + preact: bool = False, + act_layer: Type[nn.Module] = nn.ReLU, + norm_layer: Type[nn.Module] = nn.BatchNorm2d, + drop_rate: float = 0., + drop_path_rate: float = 0., + global_pool: str = 'avg', + ): + super(XceptionAligned, self).__init__() + assert output_stride in (8, 16, 32) + self.num_classes = num_classes + self.drop_rate = drop_rate + self.grad_checkpointing = False + + layer_args = dict(act_layer=act_layer, norm_layer=norm_layer) + self.stem = nn.Sequential(*[ + ConvNormAct(in_chans, 32, kernel_size=3, stride=2, **layer_args), + create_conv2d(32, 64, kernel_size=3, stride=1) if preact else + ConvNormAct(32, 64, kernel_size=3, stride=1, **layer_args) + ]) + + curr_dilation = 1 + curr_stride = 2 + self.feature_info = [] + self.blocks = nn.Sequential() + module_fn = PreXceptionModule if preact else XceptionModule + net_num_blocks = len(block_cfg) + net_block_idx = 0 + for i, b in enumerate(block_cfg): + block_dpr = drop_path_rate * net_block_idx / (net_num_blocks - 1) # stochastic depth linear decay rule + b['drop_path'] = DropPath(block_dpr) if block_dpr > 0. else None + b['dilation'] = curr_dilation + if b['stride'] > 1: + name = f'blocks.{i}.stack.conv2' if preact else f'blocks.{i}.stack.act3' + self.feature_info += [dict(num_chs=to_3tuple(b['out_chs'])[-2], reduction=curr_stride, module=name)] + next_stride = curr_stride * b['stride'] + if next_stride > output_stride: + curr_dilation *= b['stride'] + b['stride'] = 1 + else: + curr_stride = next_stride + self.blocks.add_module(str(i), module_fn(**b, **layer_args)) + self.num_features = self.blocks[-1].out_channels + net_block_idx += 1 + + self.feature_info += [dict( + num_chs=self.num_features, reduction=curr_stride, module='blocks.' + str(len(self.blocks) - 1))] + self.act = act_layer(inplace=True) if preact else nn.Identity() + self.head_hidden_size = self.num_features + self.head = ClassifierHead( + in_features=self.num_features, + num_classes=num_classes, + pool_type=global_pool, + drop_rate=drop_rate, + ) + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^stem', + blocks=r'^blocks\.(\d+)', + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head.fc + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.head.reset(num_classes, pool_type=global_pool) + + def forward_features(self, x): + x = self.stem(x) + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint_seq(self.blocks, x) + else: + x = self.blocks(x) + x = self.act(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def _xception(variant, pretrained=False, **kwargs): + return build_model_with_cfg( + XceptionAligned, + variant, + pretrained, + feature_cfg=dict(flatten_sequential=True, feature_cls='hook'), + **kwargs, + ) + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (10, 10), + 'crop_pct': 0.903, 'interpolation': 'bicubic', + 'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, + 'first_conv': 'stem.0.conv', 'classifier': 'head.fc', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + 'xception65.ra3_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.94, + ), + + 'xception41.tf_in1k': _cfg(hf_hub_id='timm/'), + 'xception65.tf_in1k': _cfg(hf_hub_id='timm/'), + 'xception71.tf_in1k': _cfg(hf_hub_id='timm/'), + + 'xception41p.ra3_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.94, + ), + 'xception65p.ra3_in1k': _cfg( + hf_hub_id='timm/', + crop_pct=0.94, + ), +}) + + +@register_model +def xception41(pretrained=False, **kwargs) -> XceptionAligned: + """ Modified Aligned Xception-41 + """ + block_cfg = [ + # entry flow + dict(in_chs=64, out_chs=128, stride=2), + dict(in_chs=128, out_chs=256, stride=2), + dict(in_chs=256, out_chs=728, stride=2), + # middle flow + *([dict(in_chs=728, out_chs=728, stride=1)] * 8), + # exit flow + dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), + dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False), + ] + model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1)) + return _xception('xception41', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def xception65(pretrained=False, **kwargs) -> XceptionAligned: + """ Modified Aligned Xception-65 + """ + block_cfg = [ + # entry flow + dict(in_chs=64, out_chs=128, stride=2), + dict(in_chs=128, out_chs=256, stride=2), + dict(in_chs=256, out_chs=728, stride=2), + # middle flow + *([dict(in_chs=728, out_chs=728, stride=1)] * 16), + # exit flow + dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), + dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False), + ] + model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1)) + return _xception('xception65', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def xception71(pretrained=False, **kwargs) -> XceptionAligned: + """ Modified Aligned Xception-71 + """ + block_cfg = [ + # entry flow + dict(in_chs=64, out_chs=128, stride=2), + dict(in_chs=128, out_chs=256, stride=1), + dict(in_chs=256, out_chs=256, stride=2), + dict(in_chs=256, out_chs=728, stride=1), + dict(in_chs=728, out_chs=728, stride=2), + # middle flow + *([dict(in_chs=728, out_chs=728, stride=1)] * 16), + # exit flow + dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), + dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False), + ] + model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1)) + return _xception('xception71', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def xception41p(pretrained=False, **kwargs) -> XceptionAligned: + """ Modified Aligned Xception-41 w/ Pre-Act + """ + block_cfg = [ + # entry flow + dict(in_chs=64, out_chs=128, stride=2), + dict(in_chs=128, out_chs=256, stride=2), + dict(in_chs=256, out_chs=728, stride=2), + # middle flow + *([dict(in_chs=728, out_chs=728, stride=1)] * 8), + # exit flow + dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), + dict(in_chs=1024, out_chs=(1536, 1536, 2048), no_skip=True, stride=1), + ] + model_args = dict(block_cfg=block_cfg, preact=True, norm_layer=nn.BatchNorm2d) + return _xception('xception41p', pretrained=pretrained, **dict(model_args, **kwargs)) + + +@register_model +def xception65p(pretrained=False, **kwargs) -> XceptionAligned: + """ Modified Aligned Xception-65 w/ Pre-Act + """ + block_cfg = [ + # entry flow + dict(in_chs=64, out_chs=128, stride=2), + dict(in_chs=128, out_chs=256, stride=2), + dict(in_chs=256, out_chs=728, stride=2), + # middle flow + *([dict(in_chs=728, out_chs=728, stride=1)] * 16), + # exit flow + dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2), + dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True), + ] + model_args = dict( + block_cfg=block_cfg, preact=True, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1)) + return _xception('xception65p', pretrained=pretrained, **dict(model_args, **kwargs)) diff --git a/pytorch-image-models/timm/models/xcit.py b/pytorch-image-models/timm/models/xcit.py new file mode 100644 index 0000000000000000000000000000000000000000..1e902ac23f552ed914f36b9aa16f8cd8ff595a6a --- /dev/null +++ b/pytorch-image-models/timm/models/xcit.py @@ -0,0 +1,1003 @@ +""" Cross-Covariance Image Transformer (XCiT) in PyTorch + +Paper: + - https://arxiv.org/abs/2106.09681 + +Same as the official implementation, with some minor adaptations, original copyright below + - https://github.com/facebookresearch/xcit/blob/master/xcit.py + +Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman +""" +# Copyright (c) 2015-present, Facebook, Inc. +# All rights reserved. + +import math +from functools import partial +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +from torch.utils.checkpoint import checkpoint + +from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD +from timm.layers import DropPath, trunc_normal_, to_2tuple, use_fused_attn +from ._builder import build_model_with_cfg +from ._features import feature_take_indices +from ._features_fx import register_notrace_module +from ._registry import register_model, generate_default_cfgs, register_model_deprecations +from .cait import ClassAttn +from .vision_transformer import Mlp + +__all__ = ['Xcit'] # model_registry will add each entrypoint fn to this + + +@register_notrace_module # reason: FX can't symbolically trace torch.arange in forward method +class PositionalEncodingFourier(nn.Module): + """ + Positional encoding relying on a fourier kernel matching the one used in the "Attention is all you Need" paper. + Based on the official XCiT code + - https://github.com/facebookresearch/xcit/blob/master/xcit.py + """ + + def __init__(self, hidden_dim=32, dim=768, temperature=10000): + super().__init__() + self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1) + self.scale = 2 * math.pi + self.temperature = temperature + self.hidden_dim = hidden_dim + self.dim = dim + self.eps = 1e-6 + + def forward(self, B: int, H: int, W: int): + device = self.token_projection.weight.device + dtype = self.token_projection.weight.dtype + y_embed = torch.arange(1, H + 1, device=device).to(torch.float32).unsqueeze(1).repeat(1, 1, W) + x_embed = torch.arange(1, W + 1, device=device).to(torch.float32).repeat(1, H, 1) + y_embed = y_embed / (y_embed[:, -1:, :] + self.eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + self.eps) * self.scale + dim_t = torch.arange(self.hidden_dim, device=device).to(torch.float32) + dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim) + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack([pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()], dim=4).flatten(3) + pos_y = torch.stack([pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()], dim=4).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + pos = self.token_projection(pos.to(dtype)) + return pos.repeat(B, 1, 1, 1) # (B, C, H, W) + + +def conv3x3(in_planes, out_planes, stride=1): + """3x3 convolution + batch norm""" + return torch.nn.Sequential( + nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False), + nn.BatchNorm2d(out_planes) + ) + + +class ConvPatchEmbed(nn.Module): + """Image to Patch Embedding using multiple convolutional layers""" + + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, act_layer=nn.GELU): + super().__init__() + img_size = to_2tuple(img_size) + num_patches = (img_size[1] // patch_size) * (img_size[0] // patch_size) + self.img_size = img_size + self.patch_size = patch_size + self.num_patches = num_patches + + if patch_size == 16: + self.proj = torch.nn.Sequential( + conv3x3(in_chans, embed_dim // 8, 2), + act_layer(), + conv3x3(embed_dim // 8, embed_dim // 4, 2), + act_layer(), + conv3x3(embed_dim // 4, embed_dim // 2, 2), + act_layer(), + conv3x3(embed_dim // 2, embed_dim, 2), + ) + elif patch_size == 8: + self.proj = torch.nn.Sequential( + conv3x3(in_chans, embed_dim // 4, 2), + act_layer(), + conv3x3(embed_dim // 4, embed_dim // 2, 2), + act_layer(), + conv3x3(embed_dim // 2, embed_dim, 2), + ) + else: + raise('For convolutional projection, patch size has to be in [8, 16]') + + def forward(self, x): + x = self.proj(x) + Hp, Wp = x.shape[2], x.shape[3] + x = x.flatten(2).transpose(1, 2) # (B, N, C) + return x, (Hp, Wp) + + +class LPI(nn.Module): + """ + Local Patch Interaction module that allows explicit communication between tokens in 3x3 windows to augment the + implicit communication performed by the block diagonal scatter attention. Implemented using 2 layers of separable + 3x3 convolutions with GeLU and BatchNorm2d + """ + + def __init__(self, in_features, out_features=None, act_layer=nn.GELU, kernel_size=3): + super().__init__() + out_features = out_features or in_features + + padding = kernel_size // 2 + + self.conv1 = torch.nn.Conv2d( + in_features, in_features, kernel_size=kernel_size, padding=padding, groups=in_features) + self.act = act_layer() + self.bn = nn.BatchNorm2d(in_features) + self.conv2 = torch.nn.Conv2d( + in_features, out_features, kernel_size=kernel_size, padding=padding, groups=out_features) + + def forward(self, x, H: int, W: int): + B, N, C = x.shape + x = x.permute(0, 2, 1).reshape(B, C, H, W) + x = self.conv1(x) + x = self.act(x) + x = self.bn(x) + x = self.conv2(x) + x = x.reshape(B, C, N).permute(0, 2, 1) + return x + + +class ClassAttentionBlock(nn.Module): + """Class Attention Layer as in CaiT https://arxiv.org/abs/2103.17239""" + + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + eta=1., + tokens_norm=False, + ): + super().__init__() + self.norm1 = norm_layer(dim) + + self.attn = ClassAttn( + dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + + if eta is not None: # LayerScale Initialization (no layerscale when None) + self.gamma1 = nn.Parameter(eta * torch.ones(dim)) + self.gamma2 = nn.Parameter(eta * torch.ones(dim)) + else: + self.gamma1, self.gamma2 = 1.0, 1.0 + + # See https://github.com/rwightman/pytorch-image-models/pull/747#issuecomment-877795721 + self.tokens_norm = tokens_norm + + def forward(self, x): + x_norm1 = self.norm1(x) + x_attn = torch.cat([self.attn(x_norm1), x_norm1[:, 1:]], dim=1) + x = x + self.drop_path(self.gamma1 * x_attn) + if self.tokens_norm: + x = self.norm2(x) + else: + x = torch.cat([self.norm2(x[:, 0:1]), x[:, 1:]], dim=1) + x_res = x + cls_token = x[:, 0:1] + cls_token = self.gamma2 * self.mlp(cls_token) + x = torch.cat([cls_token, x[:, 1:]], dim=1) + x = x_res + self.drop_path(x) + return x + + +class XCA(nn.Module): + fused_attn: torch.jit.Final[bool] + """ Cross-Covariance Attention (XCA) + Operation where the channels are updated using a weighted sum. The weights are obtained from the (softmax + normalized) Cross-covariance matrix (Q^T \\cdot K \\in d_h \\times d_h) + """ + + def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): + super().__init__() + self.num_heads = num_heads + self.fused_attn = use_fused_attn(experimental=True) + self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + B, N, C = x.shape + # Result of next line is (qkv, B, num (H)eads, (C')hannels per head, N) + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 4, 1) + q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) + + if self.fused_attn: + q = torch.nn.functional.normalize(q, dim=-1) * self.temperature + k = torch.nn.functional.normalize(k, dim=-1) + x = torch.nn.functional.scaled_dot_product_attention(q, k, v, scale=1.0) + else: + # Paper section 3.2 l2-Normalization and temperature scaling + q = torch.nn.functional.normalize(q, dim=-1) + k = torch.nn.functional.normalize(k, dim=-1) + attn = (q @ k.transpose(-2, -1)) * self.temperature + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + x = attn @ v + + x = x.permute(0, 3, 1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + @torch.jit.ignore + def no_weight_decay(self): + return {'temperature'} + + +class XCABlock(nn.Module): + def __init__( + self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + proj_drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + eta=1., + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = XCA(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + + self.norm3 = norm_layer(dim) + self.local_mp = LPI(in_features=dim, act_layer=act_layer) + + self.norm2 = norm_layer(dim) + self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) + + self.gamma1 = nn.Parameter(eta * torch.ones(dim)) + self.gamma3 = nn.Parameter(eta * torch.ones(dim)) + self.gamma2 = nn.Parameter(eta * torch.ones(dim)) + + def forward(self, x, H: int, W: int): + x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x))) + # NOTE official code has 3 then 2, so keeping it the same to be consistent with loaded weights + # See https://github.com/rwightman/pytorch-image-models/pull/747#issuecomment-877795721 + x = x + self.drop_path(self.gamma3 * self.local_mp(self.norm3(x), H, W)) + x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x))) + return x + + +class Xcit(nn.Module): + """ + Based on timm and DeiT code bases + https://github.com/rwightman/pytorch-image-models/tree/master/timm + https://github.com/facebookresearch/deit/ + """ + + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + num_classes=1000, + global_pool='token', + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4., + qkv_bias=True, + drop_rate=0., + pos_drop_rate=0., + proj_drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + act_layer=None, + norm_layer=None, + cls_attn_layers=2, + use_pos_embed=True, + eta=1., + tokens_norm=False, + ): + """ + Args: + img_size (int, tuple): input image size + patch_size (int): patch size + in_chans (int): number of input channels + num_classes (int): number of classes for classification head + embed_dim (int): embedding dimension + depth (int): depth of transformer + num_heads (int): number of attention heads + mlp_ratio (int): ratio of mlp hidden dim to embedding dim + qkv_bias (bool): enable bias for qkv if True + drop_rate (float): dropout rate after positional embedding, and in XCA/CA projection + MLP + pos_drop_rate: position embedding dropout rate + proj_drop_rate (float): projection dropout rate + attn_drop_rate (float): attention dropout rate + drop_path_rate (float): stochastic depth rate (constant across all layers) + norm_layer: (nn.Module): normalization layer + cls_attn_layers: (int) Depth of Class attention layers + use_pos_embed: (bool) whether to use positional encoding + eta: (float) layerscale initialization value + tokens_norm: (bool) Whether to normalize all tokens or just the cls_token in the CA + + Notes: + - Although `layer_norm` is user specifiable, there are hard-coded `BatchNorm2d`s in the local patch + interaction (class LPI) and the patch embedding (class ConvPatchEmbed) + """ + super().__init__() + assert global_pool in ('', 'avg', 'token') + img_size = to_2tuple(img_size) + assert (img_size[0] % patch_size == 0) and (img_size[0] % patch_size == 0), \ + '`patch_size` should divide image dimensions evenly' + norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) + act_layer = act_layer or nn.GELU + + self.num_classes = num_classes + self.num_features = self.head_hidden_size = self.embed_dim = embed_dim + self.global_pool = global_pool + self.grad_checkpointing = False + + self.patch_embed = ConvPatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim, + act_layer=act_layer, + ) + r = patch_size + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + if use_pos_embed: + self.pos_embed = PositionalEncodingFourier(dim=embed_dim) + else: + self.pos_embed = None + self.pos_drop = nn.Dropout(p=pos_drop_rate) + + self.blocks = nn.ModuleList([ + XCABlock( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=proj_drop_rate, + attn_drop=attn_drop_rate, + drop_path=drop_path_rate, + act_layer=act_layer, + norm_layer=norm_layer, + eta=eta, + ) + for _ in range(depth)]) + self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)] + + self.cls_attn_blocks = nn.ModuleList([ + ClassAttentionBlock( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_drop=drop_rate, + attn_drop=attn_drop_rate, + act_layer=act_layer, + norm_layer=norm_layer, + eta=eta, + tokens_norm=tokens_norm, + ) + for _ in range(cls_attn_layers)]) + + # Classifier head + self.norm = norm_layer(embed_dim) + self.head_drop = nn.Dropout(drop_rate) + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + # Init weights + trunc_normal_(self.cls_token, std=.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + @torch.jit.ignore + def group_matcher(self, coarse=False): + return dict( + stem=r'^cls_token|pos_embed|patch_embed', # stem and embed + blocks=r'^blocks\.(\d+)', + cls_attn_blocks=[(r'^cls_attn_blocks\.(\d+)', None), (r'^norm', (99999,))] + ) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def get_classifier(self) -> nn.Module: + return self.head + + def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): + self.num_classes = num_classes + if global_pool is not None: + assert global_pool in ('', 'avg', 'token') + self.global_pool = global_pool + self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() + + def forward_intermediates( + self, + x: torch.Tensor, + indices: Optional[Union[int, List[int]]] = None, + norm: bool = False, + stop_early: bool = False, + output_fmt: str = 'NCHW', + intermediates_only: bool = False, + ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: + """ Forward features that returns intermediates. + + Args: + x: Input image tensor + indices: Take last n blocks if int, all if None, select matching indices if sequence + norm: Apply norm layer to all intermediates + stop_early: Stop iterating over blocks when last desired intermediate hit + output_fmt: Shape of intermediate feature outputs + intermediates_only: Only return intermediate features + Returns: + + """ + assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.' + reshape = output_fmt == 'NCHW' + intermediates = [] + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + + # forward pass + B, _, height, width = x.shape + x, (Hp, Wp) = self.patch_embed(x) + if self.pos_embed is not None: + # `pos_embed` (B, C, Hp, Wp), reshape -> (B, C, N), permute -> (B, N, C) + pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1) + x = x + pos_encoding + x = self.pos_drop(x) + + if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript + blocks = self.blocks + else: + blocks = self.blocks[:max_index + 1] + for i, blk in enumerate(blocks): + x = blk(x, Hp, Wp) + if i in take_indices: + # normalize intermediates with final norm layer if enabled + intermediates.append(self.norm(x) if norm else x) + + # process intermediates + if reshape: + # reshape to BCHW output format + intermediates = [y.reshape(B, Hp, Wp, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] + + if intermediates_only: + return intermediates + + # NOTE not supporting return of class tokens + x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1) + for blk in self.cls_attn_blocks: + x = blk(x) + x = self.norm(x) + + return x, intermediates + + def prune_intermediate_layers( + self, + indices: Union[int, List[int]] = 1, + prune_norm: bool = False, + prune_head: bool = True, + ): + """ Prune layers not required for specified intermediates. + """ + take_indices, max_index = feature_take_indices(len(self.blocks), indices) + self.blocks = self.blocks[:max_index + 1] # truncate blocks + if prune_norm: + self.norm = nn.Identity() + if prune_head: + self.cls_attn_blocks = nn.ModuleList() # prune token blocks with head + self.reset_classifier(0, '') + return take_indices + + def forward_features(self, x): + B = x.shape[0] + # x is (B, N, C). (Hp, Hw) is (height in units of patches, width in units of patches) + x, (Hp, Wp) = self.patch_embed(x) + + if self.pos_embed is not None: + # `pos_embed` (B, C, Hp, Wp), reshape -> (B, C, N), permute -> (B, N, C) + pos_encoding = self.pos_embed(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1) + x = x + pos_encoding + x = self.pos_drop(x) + + for blk in self.blocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(blk, x, Hp, Wp) + else: + x = blk(x, Hp, Wp) + + x = torch.cat((self.cls_token.expand(B, -1, -1), x), dim=1) + + for blk in self.cls_attn_blocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(blk, x) + else: + x = blk(x) + + x = self.norm(x) + return x + + def forward_head(self, x, pre_logits: bool = False): + if self.global_pool: + x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] + x = self.head_drop(x) + return x if pre_logits else self.head(x) + + def forward(self, x): + x = self.forward_features(x) + x = self.forward_head(x) + return x + + +def checkpoint_filter_fn(state_dict, model): + if 'model' in state_dict: + state_dict = state_dict['model'] + # For consistency with timm's transformer models while being compatible with official weights source we rename + # pos_embeder to pos_embed. Also account for use_pos_embed == False + use_pos_embed = getattr(model, 'pos_embed', None) is not None + pos_embed_keys = [k for k in state_dict if k.startswith('pos_embed')] + for k in pos_embed_keys: + if use_pos_embed: + state_dict[k.replace('pos_embeder.', 'pos_embed.')] = state_dict.pop(k) + else: + del state_dict[k] + # timm's implementation of class attention in CaiT is slightly more efficient as it does not compute query vectors + # for all tokens, just the class token. To use official weights source we must split qkv into q, k, v + if 'cls_attn_blocks.0.attn.qkv.weight' in state_dict and 'cls_attn_blocks.0.attn.q.weight' in model.state_dict(): + num_ca_blocks = len(model.cls_attn_blocks) + for i in range(num_ca_blocks): + qkv_weight = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.weight') + qkv_weight = qkv_weight.reshape(3, -1, qkv_weight.shape[-1]) + for j, subscript in enumerate('qkv'): + state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.weight'] = qkv_weight[j] + qkv_bias = state_dict.pop(f'cls_attn_blocks.{i}.attn.qkv.bias', None) + if qkv_bias is not None: + qkv_bias = qkv_bias.reshape(3, -1) + for j, subscript in enumerate('qkv'): + state_dict[f'cls_attn_blocks.{i}.attn.{subscript}.bias'] = qkv_bias[j] + return state_dict + + +def _create_xcit(variant, pretrained=False, default_cfg=None, **kwargs): + out_indices = kwargs.pop('out_indices', 3) + model = build_model_with_cfg( + Xcit, + variant, + pretrained, + pretrained_filter_fn=checkpoint_filter_fn, + feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), + **kwargs, + ) + return model + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, + 'first_conv': 'patch_embed.proj.0.0', 'classifier': 'head', + **kwargs + } + + +default_cfgs = generate_default_cfgs({ + # Patch size 16 + 'xcit_nano_12_p16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_224.pth'), + 'xcit_nano_12_p16_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_224_dist.pth'), + 'xcit_nano_12_p16_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p16_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_tiny_12_p16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_224.pth'), + 'xcit_tiny_12_p16_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_224_dist.pth'), + 'xcit_tiny_12_p16_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p16_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_tiny_24_p16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_224.pth'), + 'xcit_tiny_24_p16_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_224_dist.pth'), + 'xcit_tiny_24_p16_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p16_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_small_12_p16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224.pth'), + 'xcit_small_12_p16_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224_dist.pth'), + 'xcit_small_12_p16_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_small_24_p16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_224.pth'), + 'xcit_small_24_p16_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_224_dist.pth'), + 'xcit_small_24_p16_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p16_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_medium_24_p16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_224.pth'), + 'xcit_medium_24_p16_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_224_dist.pth'), + 'xcit_medium_24_p16_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p16_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_large_24_p16_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_224.pth'), + 'xcit_large_24_p16_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_224_dist.pth'), + 'xcit_large_24_p16_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p16_384_dist.pth', input_size=(3, 384, 384)), + + # Patch size 8 + 'xcit_nano_12_p8_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_224.pth'), + 'xcit_nano_12_p8_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_224_dist.pth'), + 'xcit_nano_12_p8_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_nano_12_p8_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_tiny_12_p8_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_224.pth'), + 'xcit_tiny_12_p8_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_224_dist.pth'), + 'xcit_tiny_12_p8_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_12_p8_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_tiny_24_p8_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_224.pth'), + 'xcit_tiny_24_p8_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_224_dist.pth'), + 'xcit_tiny_24_p8_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_tiny_24_p8_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_small_12_p8_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_224.pth'), + 'xcit_small_12_p8_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_224_dist.pth'), + 'xcit_small_12_p8_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p8_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_small_24_p8_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_224.pth'), + 'xcit_small_24_p8_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_224_dist.pth'), + 'xcit_small_24_p8_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_small_24_p8_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_medium_24_p8_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_224.pth'), + 'xcit_medium_24_p8_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_224_dist.pth'), + 'xcit_medium_24_p8_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_medium_24_p8_384_dist.pth', input_size=(3, 384, 384)), + 'xcit_large_24_p8_224.fb_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_224.pth'), + 'xcit_large_24_p8_224.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_224_dist.pth'), + 'xcit_large_24_p8_384.fb_dist_in1k': _cfg( + hf_hub_id='timm/', + url='https://dl.fbaipublicfiles.com/xcit/xcit_large_24_p8_384_dist.pth', input_size=(3, 384, 384)), +}) + + +@register_model +def xcit_nano_12_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False) + model = _create_xcit('xcit_nano_12_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_nano_12_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False, img_size=384) + model = _create_xcit('xcit_nano_12_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_tiny_12_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_tiny_12_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_tiny_12_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_tiny_12_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_small_12_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_small_12_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_small_12_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_small_12_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_tiny_24_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_tiny_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_tiny_24_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_tiny_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_small_24_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_small_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_small_24_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_small_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_medium_24_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_medium_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_medium_24_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_medium_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_large_24_p16_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_large_24_p16_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_large_24_p16_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=16, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_large_24_p16_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +# Patch size 8x8 models +@register_model +def xcit_nano_12_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False) + model = _create_xcit('xcit_nano_12_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_nano_12_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=128, depth=12, num_heads=4, eta=1.0, tokens_norm=False) + model = _create_xcit('xcit_nano_12_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_tiny_12_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_tiny_12_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_tiny_12_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=192, depth=12, num_heads=4, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_tiny_12_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_small_12_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_small_12_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_small_12_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=384, depth=12, num_heads=8, eta=1.0, tokens_norm=True) + model = _create_xcit('xcit_small_12_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_tiny_24_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_tiny_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_tiny_24_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=192, depth=24, num_heads=4, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_tiny_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_small_24_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_small_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_small_24_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=384, depth=24, num_heads=8, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_small_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_medium_24_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_medium_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_medium_24_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=512, depth=24, num_heads=8, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_medium_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_large_24_p8_224(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_large_24_p8_224', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +@register_model +def xcit_large_24_p8_384(pretrained=False, **kwargs) -> Xcit: + model_args = dict( + patch_size=8, embed_dim=768, depth=24, num_heads=16, eta=1e-5, tokens_norm=True) + model = _create_xcit('xcit_large_24_p8_384', pretrained=pretrained, **dict(model_args, **kwargs)) + return model + + +register_model_deprecations(__name__, { + # Patch size 16 + 'xcit_nano_12_p16_224_dist': 'xcit_nano_12_p16_224.fb_dist_in1k', + 'xcit_nano_12_p16_384_dist': 'xcit_nano_12_p16_384.fb_dist_in1k', + 'xcit_tiny_12_p16_224_dist': 'xcit_tiny_12_p16_224.fb_dist_in1k', + 'xcit_tiny_12_p16_384_dist': 'xcit_tiny_12_p16_384.fb_dist_in1k', + 'xcit_tiny_24_p16_224_dist': 'xcit_tiny_24_p16_224.fb_dist_in1k', + 'xcit_tiny_24_p16_384_dist': 'xcit_tiny_24_p16_384.fb_dist_in1k', + 'xcit_small_12_p16_224_dist': 'xcit_small_12_p16_224.fb_dist_in1k', + 'xcit_small_12_p16_384_dist': 'xcit_small_12_p16_384.fb_dist_in1k', + 'xcit_small_24_p16_224_dist': 'xcit_small_24_p16_224.fb_dist_in1k', + 'xcit_small_24_p16_384_dist': 'xcit_small_24_p16_384.fb_dist_in1k', + 'xcit_medium_24_p16_224_dist': 'xcit_medium_24_p16_224.fb_dist_in1k', + 'xcit_medium_24_p16_384_dist': 'xcit_medium_24_p16_384.fb_dist_in1k', + 'xcit_large_24_p16_224_dist': 'xcit_large_24_p16_224.fb_dist_in1k', + 'xcit_large_24_p16_384_dist': 'xcit_large_24_p16_384.fb_dist_in1k', + + # Patch size 8 + 'xcit_nano_12_p8_224_dist': 'xcit_nano_12_p8_224.fb_dist_in1k', + 'xcit_nano_12_p8_384_dist': 'xcit_nano_12_p8_384.fb_dist_in1k', + 'xcit_tiny_12_p8_224_dist': 'xcit_tiny_12_p8_224.fb_dist_in1k', + 'xcit_tiny_12_p8_384_dist': 'xcit_tiny_12_p8_384.fb_dist_in1k', + 'xcit_tiny_24_p8_224_dist': 'xcit_tiny_24_p8_224.fb_dist_in1k', + 'xcit_tiny_24_p8_384_dist': 'xcit_tiny_24_p8_384.fb_dist_in1k', + 'xcit_small_12_p8_224_dist': 'xcit_small_12_p8_224.fb_dist_in1k', + 'xcit_small_12_p8_384_dist': 'xcit_small_12_p8_384.fb_dist_in1k', + 'xcit_small_24_p8_224_dist': 'xcit_small_24_p8_224.fb_dist_in1k', + 'xcit_small_24_p8_384_dist': 'xcit_small_24_p8_384.fb_dist_in1k', + 'xcit_medium_24_p8_224_dist': 'xcit_medium_24_p8_224.fb_dist_in1k', + 'xcit_medium_24_p8_384_dist': 'xcit_medium_24_p8_384.fb_dist_in1k', + 'xcit_large_24_p8_224_dist': 'xcit_large_24_p8_224.fb_dist_in1k', + 'xcit_large_24_p8_384_dist': 'xcit_large_24_p8_384.fb_dist_in1k', +}) diff --git a/pytorch-image-models/timm/optim/__init__.py b/pytorch-image-models/timm/optim/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3727df1dccfc0301e160c2eae4b4669e2cd0c92c --- /dev/null +++ b/pytorch-image-models/timm/optim/__init__.py @@ -0,0 +1,34 @@ +from .adabelief import AdaBelief +from .adafactor import Adafactor +from .adafactor_bv import AdafactorBigVision +from .adahessian import Adahessian +from .adamp import AdamP +from .adamw import AdamWLegacy +from .adan import Adan +from .adopt import Adopt +from .lamb import Lamb +from .laprop import LaProp +from .lars import Lars +from .lion import Lion +from .lookahead import Lookahead +from .madgrad import MADGRAD +from .mars import Mars +from .nadam import NAdamLegacy +from .nadamw import NAdamW +from .nvnovograd import NvNovoGrad +from .radam import RAdamLegacy +from .rmsprop_tf import RMSpropTF +from .sgdp import SGDP +from .sgdw import SGDW + +# bring common torch.optim Optimizers into timm.optim namespace for consistency +from torch.optim import Adadelta, Adagrad, Adamax, Adam, AdamW, RMSprop, SGD +try: + # in case any very old torch versions being used + from torch.optim import NAdam, RAdam +except ImportError: + pass + +from ._optim_factory import list_optimizers, get_optimizer_class, get_optimizer_info, OptimInfo, OptimizerRegistry, \ + create_optimizer_v2, create_optimizer, optimizer_kwargs +from ._param_groups import param_groups_layer_decay, param_groups_weight_decay, auto_group_layers diff --git a/pytorch-image-models/timm/optim/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b883c8ddf1d187229a6be7b2ec09daa332dd428 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/_optim_factory.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/_optim_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..08856382df24af83230663fd0bfad35c51d4f98d Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/_optim_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/_param_groups.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/_param_groups.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ad6522c6c856fdf51f27ba38a2192143d18bffc0 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/_param_groups.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/_types.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/_types.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..90fa2bbbb905f5eaf5a75a0d987d5a32eeb46703 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/_types.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adabelief.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adabelief.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..31d83bfdb24327d07ede122d89a821a3c341e6d7 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adabelief.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adafactor.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adafactor.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..38e68e0287d2d30817762e1f7f84b335a0800bd1 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adafactor.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adafactor_bv.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adafactor_bv.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d3a3d5b0698e84704c82be71d0d07e7c2298b67c Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adafactor_bv.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adahessian.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adahessian.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6c39afaeafc892e7dbf440b5e0c48ec9b465f8c4 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adahessian.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adamp.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adamp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..64fc7e6e5483682f42f611fdeb3f1a8264ebc8f3 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adamp.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adamw.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adamw.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6efdea04cfdd55d0eac039dd0284dab57fdac079 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adamw.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adan.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adan.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cd4544dfafb07cc455901196b52b4c58104c606f Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adan.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adopt.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adopt.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c7f81e00bb0cc56eb44fc500fa9a274ecc266472 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adopt.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lamb.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lamb.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3f7f93e5173c3191bdbb965b42dcf914e6982895 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lamb.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/laprop.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/laprop.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..98613528448dcdf555a852b9c78f44619e555eae Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/laprop.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lars.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lars.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bbbbff2a95025eb047e74b95cba9cad8b1a2ab22 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lars.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lion.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lion.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..beeba2bdf8288ade9d226aeaa4cb715a3e8dff0b Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lion.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lookahead.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lookahead.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..941e1e6da6d4498c2d7fe71141a3df80aea3ea28 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lookahead.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/madgrad.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/madgrad.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5a60139d27af5aea855373eab5f804c101a344f8 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/madgrad.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/mars.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/mars.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..11f515e64741cbd78cafd1c4abad47fcc62581aa Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/mars.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/nadam.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/nadam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d110ea5b57587599f1133b3843f337b23498feb5 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/nadam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/nadamw.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/nadamw.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4b29a7a4a4fc128d59867e89419545da476401b9 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/nadamw.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/nvnovograd.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/nvnovograd.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..93122f733da0c94f715eed1d1cc2a84c7c990b9d Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/nvnovograd.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/radam.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/radam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..230f50aa7a427ecee171804e676ee864dddb61f5 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/radam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/rmsprop_tf.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/rmsprop_tf.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..83b51947f9ebbe559bacc26ce5f35a6925d19843 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/rmsprop_tf.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/sgdp.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/sgdp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..33ffcf22bbde2326d3663bfb921c2039e2d1b6f0 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/sgdp.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/sgdw.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/sgdw.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d443e21f3685e76473c4682ec03d915be3d0d08d Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/sgdw.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/_optim_factory.py b/pytorch-image-models/timm/optim/_optim_factory.py new file mode 100644 index 0000000000000000000000000000000000000000..1384224b798251c45f3a72431bcc8e07cf5f084e --- /dev/null +++ b/pytorch-image-models/timm/optim/_optim_factory.py @@ -0,0 +1,1081 @@ +""" Optimizer Factory w/ custom Weight Decay & Layer Decay support + +Hacked together by / Copyright 2021 Ross Wightman +""" +import logging +from dataclasses import dataclass +from functools import partial +from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type, Union +from fnmatch import fnmatch +import importlib + +import torch +import torch.nn as nn +import torch.optim + +from ._param_groups import param_groups_layer_decay, param_groups_weight_decay +from ._types import ParamsT, OptimType, OptimizerCallable +from .adabelief import AdaBelief +from .adafactor import Adafactor +from .adafactor_bv import AdafactorBigVision +from .adahessian import Adahessian +from .adamp import AdamP +from .adamw import AdamWLegacy +from .adan import Adan +from .adopt import Adopt +from .lamb import Lamb +from .laprop import LaProp +from .lars import Lars +from .lion import Lion +from .lookahead import Lookahead +from .madgrad import MADGRAD +from .mars import Mars +from .nadam import NAdamLegacy +from .nadamw import NAdamW +from .nvnovograd import NvNovoGrad +from .radam import RAdamLegacy +from .rmsprop_tf import RMSpropTF +from .sgdp import SGDP +from .sgdw import SGDW + +_logger = logging.getLogger(__name__) + + +def _import_class(class_string: str) -> Type: + """Dynamically import a class from a string.""" + try: + module_name, class_name = class_string.rsplit(".", 1) + module = importlib.import_module(module_name) + return getattr(module, class_name) + except (ImportError, AttributeError) as e: + raise ImportError(f"Could not import {class_string}: {e}") + + + +@dataclass(frozen=True) +class OptimInfo: + """Immutable configuration for an optimizer. + + Attributes: + name: Unique identifier for the optimizer + opt_class: The optimizer class + description: Brief description of the optimizer's characteristics and behavior + has_eps: Whether the optimizer accepts epsilon parameter + has_momentum: Whether the optimizer accepts momentum parameter + has_betas: Whether the optimizer accepts a tuple of beta parameters + num_betas: number of betas in tuple (valid IFF has_betas = True) + defaults: Optional default parameters for the optimizer + """ + name: str + opt_class: Union[str, OptimType] + description: str = '' + has_eps: bool = True + has_momentum: bool = False + has_betas: bool = False + num_betas: int = 2 + second_order: bool = False + defaults: Optional[Dict[str, Any]] = None + + +class OptimizerRegistry: + """Registry managing optimizer configurations and instantiation. + + This class provides a central registry for optimizer configurations and handles + their instantiation with appropriate parameter groups and settings. + """ + + def __init__(self) -> None: + self._optimizers: Dict[str, OptimInfo] = {} + self._foreach_defaults: Set[str] = {'lion'} + + def register(self, info: OptimInfo) -> None: + """Register an optimizer configuration. + + Args: + info: The OptimInfo configuration containing name, type and description + """ + name = info.name.lower() + if name in self._optimizers: + _logger.warning(f'Optimizer {name} already registered, overwriting') + self._optimizers[name] = info + + def register_alias(self, alias: str, target: str) -> None: + """Register an alias for an existing optimizer. + + Args: + alias: The alias name + target: The target optimizer name + + Raises: + KeyError: If target optimizer doesn't exist + """ + target = target.lower() + if target not in self._optimizers: + raise KeyError(f'Cannot create alias for non-existent optimizer {target}') + self._optimizers[alias.lower()] = self._optimizers[target] + + def register_foreach_default(self, name: str) -> None: + """Register an optimizer as defaulting to foreach=True.""" + self._foreach_defaults.add(name.lower()) + + def list_optimizers( + self, + filter: Union[str, List[str]] = '', + exclude_filters: Optional[List[str]] = None, + with_description: bool = False + ) -> List[Union[str, Tuple[str, str]]]: + """List available optimizer names, optionally filtered. + + Args: + filter: Wildcard style filter string (e.g., 'adam*') + exclude_filters: Optional list of wildcard patterns to exclude + with_description: If True, return tuples of (name, description) + + Returns: + List of either optimizer names or (name, description) tuples + """ + names = sorted(self._optimizers.keys()) + + if filter: + if isinstance(filter, str): + filters = [filter] + else: + filters = filter + filtered_names = set() + for f in filters: + filtered_names.update(n for n in names if fnmatch(n, f)) + names = sorted(filtered_names) + + if exclude_filters: + for exclude_filter in exclude_filters: + names = [n for n in names if not fnmatch(n, exclude_filter)] + + if with_description: + return [(name, self._optimizers[name].description) for name in names] + + return names + + def get_optimizer_info(self, name: str) -> OptimInfo: + """Get the OptimInfo for an optimizer. + + Args: + name: Name of the optimizer + + Returns: + OptimInfo configuration + + Raises: + ValueError: If optimizer is not found + """ + name = name.lower() + if name not in self._optimizers: + raise ValueError(f'Optimizer {name} not found in registry') + return self._optimizers[name] + + def get_optimizer_class( + self, + name_or_info: Union[str, OptimInfo], + bind_defaults: bool = True, + ) -> Union[OptimType, OptimizerCallable]: + """Get the optimizer class with any default arguments applied. + + This allows direct instantiation of optimizers with their default configs + without going through the full factory. + + Args: + name_or_info: Name of the optimizer + bind_defaults: Bind default arguments to optimizer class via `partial` before returning + + Returns: + Optimizer class or partial with defaults applied + + Raises: + ValueError: If optimizer not found + """ + if isinstance(name_or_info, str): + opt_info = self.get_optimizer_info(name_or_info) + else: + assert isinstance(name_or_info, OptimInfo) + opt_info = name_or_info + + if isinstance(opt_info.opt_class, str): + # Special handling for APEX and BNB optimizers + if opt_info.opt_class.startswith('apex.'): + assert torch.cuda.is_available(), 'CUDA required for APEX optimizers' + try: + opt_class = _import_class(opt_info.opt_class) + except ImportError as e: + raise ImportError('APEX optimizers require apex to be installed') from e + elif opt_info.opt_class.startswith('bitsandbytes.'): + assert torch.cuda.is_available(), 'CUDA required for bitsandbytes optimizers' + try: + opt_class = _import_class(opt_info.opt_class) + except ImportError as e: + raise ImportError('bitsandbytes optimizers require bitsandbytes to be installed') from e + else: + opt_class = _import_class(opt_info.opt_class) + else: + opt_class = opt_info.opt_class + + # Return class or partial with defaults + if bind_defaults and opt_info.defaults: + opt_class = partial(opt_class, **opt_info.defaults) + + return opt_class + + def create_optimizer( + self, + model_or_params: Union[nn.Module, ParamsT], + opt: str, + lr: Optional[float] = None, + weight_decay: float = 0., + momentum: float = 0.9, + foreach: Optional[bool] = None, + weight_decay_exclude_1d: bool = True, + layer_decay: Optional[float] = None, + param_group_fn: Optional[Callable[[nn.Module], ParamsT]] = None, + **kwargs: Any, + ) -> torch.optim.Optimizer: + """Create an optimizer instance. + + Args: + model_or_params: Model or parameters to optimize + opt: Name of optimizer to create + lr: Learning rate + weight_decay: Weight decay factor + momentum: Momentum factor for applicable optimizers + foreach: Enable/disable foreach operation + weight_decay_exclude_1d: Whether to skip weight decay for 1d params (biases and norm affine) + layer_decay: Layer-wise learning rate decay + param_group_fn: Optional custom parameter grouping function + **kwargs: Additional optimizer-specific arguments + + Returns: + Configured optimizer instance + + Raises: + ValueError: If optimizer not found or configuration invalid + """ + + # Get parameters to optimize + if isinstance(model_or_params, nn.Module): + # Extract parameters from a nn.Module, build param groups w/ weight-decay and/or layer-decay applied + no_weight_decay = getattr(model_or_params, 'no_weight_decay', lambda: set())() + + if param_group_fn: + # run custom fn to generate param groups from nn.Module + params = param_group_fn(model_or_params) + elif layer_decay is not None: + params = param_groups_layer_decay( + model_or_params, + weight_decay=weight_decay, + layer_decay=layer_decay, + no_weight_decay_list=no_weight_decay, + weight_decay_exclude_1d=weight_decay_exclude_1d, + ) + weight_decay = 0. + elif weight_decay and weight_decay_exclude_1d: + params = param_groups_weight_decay( + model_or_params, + weight_decay=weight_decay, + no_weight_decay_list=no_weight_decay, + ) + weight_decay = 0. + else: + params = model_or_params.parameters() + else: + # pass parameters / parameter groups through to optimizer + params = model_or_params + + # Parse optimizer name + opt_split = opt.lower().split('_') + opt_name = opt_split[-1] + use_lookahead = opt_split[0] == 'lookahead' if len(opt_split) > 1 else False + + opt_info = self.get_optimizer_info(opt_name) + + # Build optimizer arguments + opt_args: Dict[str, Any] = {'weight_decay': weight_decay, **kwargs} + + # Add LR to args, if None optimizer default is used, some optimizers manage LR internally if None. + if lr is not None: + opt_args['lr'] = lr + + # Apply optimizer-specific settings + if opt_info.defaults: + for k, v in opt_info.defaults.items(): + opt_args.setdefault(k, v) + + # timm has always defaulted momentum to 0.9 if optimizer supports momentum, keep for backward compat. + if opt_info.has_momentum: + opt_args.setdefault('momentum', momentum) + + # Remove commonly used kwargs that aren't always supported + if not opt_info.has_eps: + opt_args.pop('eps', None) + if not opt_info.has_betas: + opt_args.pop('betas', None) + + if foreach is not None: + # Explicitly activate or deactivate multi-tensor foreach impl. + # Not all optimizers support this, and those that do usually default to using + # multi-tensor impl if foreach is left as default 'None' and can be enabled. + opt_args.setdefault('foreach', foreach) + + # Create optimizer + opt_class = self.get_optimizer_class(opt_info, bind_defaults=False) + optimizer = opt_class(params, **opt_args) + + # Apply Lookahead if requested + if use_lookahead: + optimizer = Lookahead(optimizer) + + return optimizer + + +def _register_sgd_variants(registry: OptimizerRegistry) -> None: + """Register SGD-based optimizers""" + sgd_optimizers = [ + OptimInfo( + name='sgd', + opt_class=torch.optim.SGD, + description='torch.Optim Stochastic Gradient Descent (SGD) with Nesterov momentum', + has_eps=False, + has_momentum=True, + defaults={'nesterov': True} + ), + OptimInfo( + name='momentum', + opt_class=torch.optim.SGD, + description='torch.Optim Stochastic Gradient Descent (SGD) with classical momentum', + has_eps=False, + has_momentum=True, + defaults={'nesterov': False} + ), + OptimInfo( + name='sgdp', + opt_class=SGDP, + description='SGD with built-in projection to unit norm sphere', + has_momentum=True, + defaults={'nesterov': True} + ), + OptimInfo( + name='sgdw', + opt_class=SGDW, + description='SGD with decoupled weight decay and Nesterov momentum', + has_eps=False, + has_momentum=True, + defaults={'nesterov': True} + ), + ] + for opt in sgd_optimizers: + registry.register(opt) + + +def _register_adam_variants(registry: OptimizerRegistry) -> None: + """Register Adam-based optimizers""" + adam_optimizers = [ + OptimInfo( + name='adam', + opt_class=torch.optim.Adam, + description='torch.optim.Adam, Adaptive Moment Estimation', + has_betas=True + ), + OptimInfo( + name='adamw', + opt_class=torch.optim.AdamW, + description='torch.optim.AdamW, Adam with decoupled weight decay', + has_betas=True + ), + OptimInfo( + name='adamwlegacy', + opt_class=AdamWLegacy, + description='legacy impl of AdamW that pre-dates inclusion to torch.optim', + has_betas=True + ), + OptimInfo( + name='adamp', + opt_class=AdamP, + description='Adam with built-in projection to unit norm sphere', + has_betas=True, + defaults={'wd_ratio': 0.01, 'nesterov': True} + ), + OptimInfo( + name='nadam', + opt_class=torch.optim.NAdam, + description='torch.optim.NAdam, Adam with Nesterov momentum', + has_betas=True + ), + OptimInfo( + name='nadamlegacy', + opt_class=NAdamLegacy, + description='legacy impl of NAdam that pre-dates inclusion in torch.optim', + has_betas=True + ), + OptimInfo( + name='nadamw', + opt_class=NAdamW, + description='Adam with Nesterov momentum and decoupled weight decay, mlcommons/algorithmic-efficiency impl', + has_betas=True + ), + OptimInfo( + name='radam', + opt_class=torch.optim.RAdam, + description='torch.optim.RAdam, Rectified Adam with variance adaptation', + has_betas=True + ), + OptimInfo( + name='radamlegacy', + opt_class=RAdamLegacy, + description='legacy impl of RAdam that predates inclusion in torch.optim', + has_betas=True + ), + OptimInfo( + name='radamw', + opt_class=torch.optim.RAdam, + description='torch.optim.RAdamW, Rectified Adam with variance adaptation and decoupled weight decay', + has_betas=True, + defaults={'decoupled_weight_decay': True} + ), + OptimInfo( + name='adamax', + opt_class=torch.optim.Adamax, + description='torch.optim.Adamax, Adam with infinity norm for more stable updates', + has_betas=True + ), + OptimInfo( + name='adafactor', + opt_class=Adafactor, + description='Memory-efficient implementation of Adam with factored gradients', + ), + OptimInfo( + name='adafactorbv', + opt_class=AdafactorBigVision, + description='Big Vision variant of Adafactor with factored gradients, half precision momentum', + ), + OptimInfo( + name='adopt', + opt_class=Adopt, + description='Modified Adam that can converge with any β2 with the optimal rate', + ), + OptimInfo( + name='adoptw', + opt_class=Adopt, + description='Modified AdamW (decoupled decay) that can converge with any β2 with the optimal rate', + defaults={'decoupled': True} + ), + ] + for opt in adam_optimizers: + registry.register(opt) + + +def _register_lamb_lars(registry: OptimizerRegistry) -> None: + """Register LAMB and LARS variants""" + lamb_lars_optimizers = [ + OptimInfo( + name='lamb', + opt_class=Lamb, + description='Layer-wise Adaptive Moments for batch optimization', + has_betas=True + ), + OptimInfo( + name='lambc', + opt_class=Lamb, + description='LAMB with trust ratio clipping for stability', + has_betas=True, + defaults={'trust_clip': True} + ), + OptimInfo( + name='lars', + opt_class=Lars, + description='Layer-wise Adaptive Rate Scaling', + has_momentum=True + ), + OptimInfo( + name='larc', + opt_class=Lars, + description='LARS with trust ratio clipping for stability', + has_momentum=True, + defaults={'trust_clip': True} + ), + OptimInfo( + name='nlars', + opt_class=Lars, + description='LARS with Nesterov momentum', + has_momentum=True, + defaults={'nesterov': True} + ), + OptimInfo( + name='nlarc', + opt_class=Lars, + description='LARS with Nesterov momentum & trust ratio clipping', + has_momentum=True, + defaults={'nesterov': True, 'trust_clip': True} + ), + ] + for opt in lamb_lars_optimizers: + registry.register(opt) + + +def _register_cautious_optimizers(registry: OptimizerRegistry) -> None: + cautious_optimizers = [ + OptimInfo( + name='cadafactor', + opt_class=Adafactor, + description='Cautious Adafactor', + defaults={'caution': True} + ), + OptimInfo( + name='cadafactorbv', + opt_class=AdafactorBigVision, + description='Cautious Big Vision Adafactor', + defaults={'caution': True} + ), + OptimInfo( + name='cadamw', + opt_class=AdamWLegacy, + description='Cautious AdamW', + has_betas=True, + defaults={'caution': True} + ), + OptimInfo( + name='cadopt', + opt_class=Adopt, + description='Cautious Adopt', + defaults={'caution': True} + ), + OptimInfo( + name='cadoptw', + opt_class=Adopt, + description='Cautious AdoptW (decoupled decay)', + defaults={'decoupled': True, 'caution': True} + ), + OptimInfo( + name='clamb', + opt_class=Lamb, + description='Cautious LAMB', + has_betas=True, + defaults={'caution': True} + ), + OptimInfo( + name='claprop', + opt_class=LaProp, + description='Cautious LaProp', + has_betas=True, + defaults={'caution': True} + ), + OptimInfo( + name='clion', + opt_class=Lion, + description='Cautious Lion', + has_eps=False, + has_betas=True, + defaults = {'caution': True} + ), + OptimInfo( + name='cmars', + opt_class=Mars, + description='Cautious MARS', + has_betas=True, + defaults={'caution': True} + ), + OptimInfo( + name='cnadamw', + opt_class=NAdamW, + description='Cautious NAdamW', + has_betas=True, + defaults={'caution': True} + ), + OptimInfo( + name='crmsproptf', + opt_class=RMSpropTF, + description='Cautious TensorFlow-style RMSprop', + has_momentum=True, + defaults={'alpha': 0.9, 'caution': True} + ), + OptimInfo( + name='csgdw', + opt_class=SGDW, + description='Cautious SGD with decoupled weight decay and Nesterov momentum', + has_eps=False, + has_momentum=True, + defaults={'nesterov': True, 'caution': True} + ), + ] + for opt in cautious_optimizers: + registry.register(opt) + +def _register_other_optimizers(registry: OptimizerRegistry) -> None: + """Register miscellaneous optimizers""" + other_optimizers = [ + OptimInfo( + name='adabelief', + opt_class=AdaBelief, + description='Adapts learning rate based on gradient prediction error', + has_betas=True, + defaults={'rectify': False} + ), + OptimInfo( + name='radabelief', + opt_class=AdaBelief, + description='Rectified AdaBelief with variance adaptation', + has_betas=True, + defaults={'rectify': True} + ), + OptimInfo( + name='adadelta', + opt_class=torch.optim.Adadelta, + description='torch.optim.Adadelta, Adapts learning rates based on running windows of gradients' + ), + OptimInfo( + name='adagrad', + opt_class=torch.optim.Adagrad, + description='torch.optim.Adagrad, Adapts learning rates using cumulative squared gradients', + defaults={'eps': 1e-8} + ), + OptimInfo( + name='adan', + opt_class=Adan, + description='Adaptive Nesterov Momentum Algorithm', + defaults={'no_prox': False}, + has_betas=True, + num_betas=3 + ), + OptimInfo( + name='adanw', + opt_class=Adan, + description='Adaptive Nesterov Momentum with decoupled weight decay', + defaults={'no_prox': True}, + has_betas=True, + num_betas=3 + ), + OptimInfo( + name='adahessian', + opt_class=Adahessian, + description='An Adaptive Second Order Optimizer', + has_betas=True, + second_order=True, + ), + OptimInfo( + name='laprop', + opt_class=LaProp, + description='Separating Momentum and Adaptivity in Adam', + has_betas=True, + ), + OptimInfo( + name='lion', + opt_class=Lion, + description='Evolved Sign Momentum optimizer for improved convergence', + has_eps=False, + has_betas=True + ), + OptimInfo( + name='madgrad', + opt_class=MADGRAD, + description='Momentum-based Adaptive gradient method', + has_momentum=True + ), + OptimInfo( + name='madgradw', + opt_class=MADGRAD, + description='MADGRAD with decoupled weight decay', + has_momentum=True, + defaults={'decoupled_decay': True} + ), + OptimInfo( + name='mars', + opt_class=Mars, + description='Unleashing the Power of Variance Reduction for Training Large Models', + has_betas=True, + ), + OptimInfo( + name='novograd', + opt_class=NvNovoGrad, + description='Normalized Adam with L2 norm gradient normalization', + has_betas=True + ), + OptimInfo( + name='rmsprop', + opt_class=torch.optim.RMSprop, + description='torch.optim.RMSprop, Root Mean Square Propagation', + has_momentum=True, + defaults={'alpha': 0.9} + ), + OptimInfo( + name='rmsproptf', + opt_class=RMSpropTF, + description='TensorFlow-style RMSprop implementation, Root Mean Square Propagation', + has_momentum=True, + defaults={'alpha': 0.9} + ), + ] + for opt in other_optimizers: + registry.register(opt) + registry.register_foreach_default('lion') + + +def _register_apex_optimizers(registry: OptimizerRegistry) -> None: + """Register APEX optimizers (lazy import)""" + apex_optimizers = [ + OptimInfo( + name='fusedsgd', + opt_class='apex.optimizers.FusedSGD', + description='NVIDIA APEX fused SGD implementation for faster training', + has_eps=False, + has_momentum=True, + defaults={'nesterov': True} + ), + OptimInfo( + name='fusedadam', + opt_class='apex.optimizers.FusedAdam', + description='NVIDIA APEX fused Adam implementation', + has_betas=True, + defaults={'adam_w_mode': False} + ), + OptimInfo( + name='fusedadamw', + opt_class='apex.optimizers.FusedAdam', + description='NVIDIA APEX fused AdamW implementation', + has_betas=True, + defaults={'adam_w_mode': True} + ), + OptimInfo( + name='fusedlamb', + opt_class='apex.optimizers.FusedLAMB', + description='NVIDIA APEX fused LAMB implementation', + has_betas=True + ), + OptimInfo( + name='fusednovograd', + opt_class='apex.optimizers.FusedNovoGrad', + description='NVIDIA APEX fused NovoGrad implementation', + has_betas=True, + defaults={'betas': (0.95, 0.98)} + ), + ] + for opt in apex_optimizers: + registry.register(opt) + + +def _register_bnb_optimizers(registry: OptimizerRegistry) -> None: + """Register bitsandbytes optimizers (lazy import)""" + bnb_optimizers = [ + OptimInfo( + name='bnbsgd', + opt_class='bitsandbytes.optim.SGD', + description='bitsandbytes SGD', + has_eps=False, + has_momentum=True, + defaults={'nesterov': True} + ), + OptimInfo( + name='bnbsgd8bit', + opt_class='bitsandbytes.optim.SGD8bit', + description='bitsandbytes 8-bit SGD with dynamic quantization', + has_eps=False, + has_momentum=True, + defaults={'nesterov': True} + ), + OptimInfo( + name='bnbadam', + opt_class='bitsandbytes.optim.Adam', + description='bitsandbytes Adam', + has_betas=True + ), + OptimInfo( + name='bnbadam8bit', + opt_class='bitsandbytes.optim.Adam', + description='bitsandbytes 8-bit Adam with dynamic quantization', + has_betas=True + ), + OptimInfo( + name='bnbadamw', + opt_class='bitsandbytes.optim.AdamW', + description='bitsandbytes AdamW', + has_betas=True + ), + OptimInfo( + name='bnbadamw8bit', + opt_class='bitsandbytes.optim.AdamW', + description='bitsandbytes 8-bit AdamW with dynamic quantization', + has_betas=True + ), + OptimInfo( + 'bnblion', + 'bitsandbytes.optim.Lion', + description='bitsandbytes Lion', + has_eps=False, + has_betas=True + ), + OptimInfo( + 'bnblion8bit', + 'bitsandbytes.optim.Lion8bit', + description='bitsandbytes 8-bit Lion with dynamic quantization', + has_eps=False, + has_betas=True + ), + OptimInfo( + 'bnbademamix', + 'bitsandbytes.optim.AdEMAMix', + description='bitsandbytes AdEMAMix', + has_betas=True, + num_betas=3, + ), + OptimInfo( + 'bnbademamix8bit', + 'bitsandbytes.optim.AdEMAMix8bit', + description='bitsandbytes 8-bit AdEMAMix with dynamic quantization', + has_betas=True, + num_betas=3, + ), + ] + for opt in bnb_optimizers: + registry.register(opt) + + +default_registry = OptimizerRegistry() + +def _register_default_optimizers() -> None: + """Register all default optimizers to the global registry.""" + # Register all optimizer groups + _register_sgd_variants(default_registry) + _register_adam_variants(default_registry) + _register_lamb_lars(default_registry) + _register_other_optimizers(default_registry) + _register_apex_optimizers(default_registry) + _register_bnb_optimizers(default_registry) + _register_cautious_optimizers(default_registry) + + # Register aliases + default_registry.register_alias('nesterov', 'sgd') + default_registry.register_alias('nesterovw', 'sgdw') + + +# Initialize default registry +_register_default_optimizers() + +# Public API + +def list_optimizers( + filter: Union[str, List[str]] = '', + exclude_filters: Optional[List[str]] = None, + with_description: bool = False, +) -> List[Union[str, Tuple[str, str]]]: + """List available optimizer names, optionally filtered. + + List all registered optimizers, with optional filtering using wildcard patterns. + Optimizers can be filtered using include and exclude patterns, and can optionally + return descriptions with each optimizer name. + + Args: + filter: Wildcard style filter string or list of filter strings + (e.g., 'adam*' for all Adam variants, or ['adam*', '*8bit'] for + Adam variants and 8-bit optimizers). Empty string means no filtering. + exclude_filters: Optional list of wildcard patterns to exclude. For example, + ['*8bit', 'fused*'] would exclude 8-bit and fused implementations. + with_description: If True, returns tuples of (name, description) instead of + just names. Descriptions provide brief explanations of optimizer characteristics. + + Returns: + If with_description is False: + List of optimizer names as strings (e.g., ['adam', 'adamw', ...]) + If with_description is True: + List of tuples of (name, description) (e.g., [('adam', 'Adaptive Moment...'), ...]) + + Examples: + >>> list_optimizers() + ['adam', 'adamw', 'sgd', ...] + + >>> list_optimizers(['la*', 'nla*']) # List lamb & lars + ['lamb', 'lambc', 'larc', 'lars', 'nlarc', 'nlars'] + + >>> list_optimizers('*adam*', exclude_filters=['bnb*', 'fused*']) # Exclude bnb & apex adam optimizers + ['adam', 'adamax', 'adamp', 'adamw', 'nadam', 'nadamw', 'radam'] + + >>> list_optimizers(with_description=True) # Get descriptions + [('adabelief', 'Adapts learning rate based on gradient prediction error'), + ('adadelta', 'torch.optim Adadelta, Adapts learning rates based on running windows of gradients'), + ('adafactor', 'Memory-efficient implementation of Adam with factored gradients'), + ...] + """ + return default_registry.list_optimizers(filter, exclude_filters, with_description) + + +def get_optimizer_info(name: str) -> OptimInfo: + """Get the OptimInfo for an optimizer. + + Args: + name: Name of the optimizer + + Returns: + OptimInfo configuration + + Raises: + ValueError: If optimizer is not found + """ + return default_registry.get_optimizer_info(name) + + +def get_optimizer_class( + name: str, + bind_defaults: bool = True, +) -> Union[OptimType, OptimizerCallable]: + """Get optimizer class by name with option to bind default arguments. + + Retrieves the optimizer class or a partial function with default arguments bound. + This allows direct instantiation of optimizers with their default configurations + without going through the full factory. + + Args: + name: Name of the optimizer to retrieve (e.g., 'adam', 'sgd') + bind_defaults: If True, returns a partial function with default arguments from OptimInfo bound. + If False, returns the raw optimizer class. + + Returns: + If bind_defaults is False: + The optimizer class (e.g., torch.optim.Adam) + If bind_defaults is True: + A partial function with default arguments bound + + Raises: + ValueError: If optimizer name is not found in registry + + Examples: + >>> # Get SGD with nesterov momentum default + >>> SGD = get_optimizer_class('sgd') # nesterov=True bound + >>> opt = SGD(model.parameters(), lr=0.1, momentum=0.9) + + >>> # Get raw optimizer class + >>> SGD = get_optimizer_class('sgd') + >>> opt = SGD(model.parameters(), lr=1e-3, momentum=0.9) + + """ + return default_registry.get_optimizer_class(name, bind_defaults=bind_defaults) + + +def create_optimizer_v2( + model_or_params: Union[nn.Module, ParamsT], + opt: str = 'sgd', + lr: Optional[float] = None, + weight_decay: float = 0., + momentum: float = 0.9, + foreach: Optional[bool] = None, + filter_bias_and_bn: bool = True, + layer_decay: Optional[float] = None, + param_group_fn: Optional[Callable[[nn.Module], ParamsT]] = None, + **kwargs: Any, +) -> torch.optim.Optimizer: + """Create an optimizer instance via timm registry. + + Creates and configures an optimizer with appropriate parameter groups and settings. + Supports automatic parameter group creation for weight decay and layer-wise learning + rates, as well as custom parameter grouping. + + Args: + model_or_params: A PyTorch model or an iterable of parameters/parameter groups. + If a model is provided, parameters will be automatically extracted and grouped + based on the other arguments. + opt: Name of the optimizer to create (e.g., 'adam', 'adamw', 'sgd'). + Use list_optimizers() to see available options. + lr: Learning rate. If None, will use the optimizer's default. + weight_decay: Weight decay factor. Will be used to create param groups if model_or_params is a model. + momentum: Momentum factor for optimizers that support it. Only used if the + chosen optimizer accepts a momentum parameter. + foreach: Enable/disable foreach (multi-tensor) implementation if available. + If None, will use optimizer-specific defaults. + filter_bias_and_bn: If True, bias, norm layer parameters (all 1d params) will not have + weight decay applied. Only used when model_or_params is a model and + weight_decay > 0. + layer_decay: Optional layer-wise learning rate decay factor. If provided, + learning rates will be scaled by layer_decay^(max_depth - layer_depth). + Only used when model_or_params is a model. + param_group_fn: Optional function to create custom parameter groups. + If provided, other parameter grouping options will be ignored. + **kwargs: Additional optimizer-specific arguments (e.g., betas for Adam). + + Returns: + Configured optimizer instance. + + Examples: + >>> # Basic usage with a model + >>> optimizer = create_optimizer_v2(model, 'adamw', lr=1e-3) + + >>> # SGD with momentum and weight decay + >>> optimizer = create_optimizer_v2( + ... model, 'sgd', lr=0.1, momentum=0.9, weight_decay=1e-4 + ... ) + + >>> # Adam with layer-wise learning rate decay + >>> optimizer = create_optimizer_v2( + ... model, 'adam', lr=1e-3, layer_decay=0.7 + ... ) + + >>> # Custom parameter groups + >>> def group_fn(model): + ... return [ + ... {'params': model.backbone.parameters(), 'lr': 1e-4}, + ... {'params': model.head.parameters(), 'lr': 1e-3} + ... ] + >>> optimizer = create_optimizer_v2( + ... model, 'sgd', param_group_fn=group_fn + ... ) + + Note: + Parameter group handling precedence: + 1. If param_group_fn is provided, it will be used exclusively + 2. If layer_decay is provided, layer-wise groups will be created + 3. If weight_decay > 0 and filter_bias_and_bn is True, weight decay groups will be created + 4. Otherwise, all parameters will be in a single group + """ + + return default_registry.create_optimizer( + model_or_params, + opt=opt, + lr=lr, + weight_decay=weight_decay, + momentum=momentum, + foreach=foreach, + weight_decay_exclude_1d=filter_bias_and_bn, + layer_decay=layer_decay, + param_group_fn=param_group_fn, + **kwargs + ) + + +def optimizer_kwargs(cfg): + """ cfg/argparse to kwargs helper + Convert optimizer args in argparse args or cfg like object to keyword args for updated create fn. + """ + kwargs = dict( + opt=cfg.opt, + lr=cfg.lr, + weight_decay=cfg.weight_decay, + momentum=cfg.momentum, + ) + if getattr(cfg, 'opt_eps', None) is not None: + kwargs['eps'] = cfg.opt_eps + if getattr(cfg, 'opt_betas', None) is not None: + kwargs['betas'] = cfg.opt_betas + if getattr(cfg, 'layer_decay', None) is not None: + kwargs['layer_decay'] = cfg.layer_decay + if getattr(cfg, 'opt_args', None) is not None: + kwargs.update(cfg.opt_args) + if getattr(cfg, 'opt_foreach', None) is not None: + kwargs['foreach'] = cfg.opt_foreach + return kwargs + + +def create_optimizer( + args, + model: Union[nn.Module, ParamsT], + filter_bias_and_bn: bool = True, +) -> torch.optim.Optimizer: + """ Legacy optimizer factory for backwards compatibility. + NOTE: Use create_optimizer_v2 for new code. + """ + return create_optimizer_v2( + model, + **optimizer_kwargs(cfg=args), + filter_bias_and_bn=filter_bias_and_bn, + ) + diff --git a/pytorch-image-models/timm/optim/_param_groups.py b/pytorch-image-models/timm/optim/_param_groups.py new file mode 100644 index 0000000000000000000000000000000000000000..a756c5e0c0c8814697b21c53892270d91f398e93 --- /dev/null +++ b/pytorch-image-models/timm/optim/_param_groups.py @@ -0,0 +1,131 @@ +import logging +from itertools import islice +from typing import Collection, Optional + +from torch import nn as nn + +from timm.models import group_parameters + + +_logger = logging.getLogger(__name__) + + +def param_groups_weight_decay( + model: nn.Module, + weight_decay: float = 1e-5, + no_weight_decay_list: Collection[str] = (), +): + no_weight_decay_list = set(no_weight_decay_list) + decay = [] + no_decay = [] + for name, param in model.named_parameters(): + if not param.requires_grad: + continue + + if param.ndim <= 1 or name.endswith(".bias") or name in no_weight_decay_list: + no_decay.append(param) + else: + decay.append(param) + + return [ + {'params': no_decay, 'weight_decay': 0.}, + {'params': decay, 'weight_decay': weight_decay}] + + +def _group(it, size): + it = iter(it) + return iter(lambda: tuple(islice(it, size)), ()) + + +def auto_group_layers(model, layers_per_group=12, num_groups=None): + def _in_head(n, hp): + if not hp: + return True + elif isinstance(hp, (tuple, list)): + return any([n.startswith(hpi) for hpi in hp]) + else: + return n.startswith(hp) + + head_prefix = getattr(model, 'pretrained_cfg', {}).get('classifier', None) + names_trunk = [] + names_head = [] + for n, _ in model.named_parameters(): + names_head.append(n) if _in_head(n, head_prefix) else names_trunk.append(n) + + # group non-head layers + num_trunk_layers = len(names_trunk) + if num_groups is not None: + layers_per_group = -(num_trunk_layers // -num_groups) + names_trunk = list(_group(names_trunk, layers_per_group)) + + num_trunk_groups = len(names_trunk) + layer_map = {n: i for i, l in enumerate(names_trunk) for n in l} + layer_map.update({n: num_trunk_groups for n in names_head}) + return layer_map + +_layer_map = auto_group_layers # backward compat + + +def param_groups_layer_decay( + model: nn.Module, + weight_decay: float = 0.05, + no_weight_decay_list: Collection[str] = (), + weight_decay_exclude_1d: bool = True, + layer_decay: float = .75, + end_layer_decay: Optional[float] = None, + verbose: bool = False, +): + """ + Parameter groups for layer-wise lr decay & weight decay + Based on BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L58 + """ + no_weight_decay_list = set(no_weight_decay_list) + param_group_names = {} # NOTE for debugging + param_groups = {} + + if hasattr(model, 'group_matcher'): + # FIXME interface needs more work + layer_map = group_parameters(model, model.group_matcher(coarse=False), reverse=True) + else: + # fallback + layer_map = auto_group_layers(model) + num_layers = max(layer_map.values()) + 1 + layer_max = num_layers - 1 + layer_scales = list(layer_decay ** (layer_max - i) for i in range(num_layers)) + + for name, param in model.named_parameters(): + if not param.requires_grad: + continue + + # no decay: all 1D parameters and model specific ones + if (weight_decay_exclude_1d and param.ndim <= 1) or name in no_weight_decay_list: + g_decay = "no_decay" + this_decay = 0. + else: + g_decay = "decay" + this_decay = weight_decay + + layer_id = layer_map.get(name, layer_max) + group_name = "layer_%d_%s" % (layer_id, g_decay) + + if group_name not in param_groups: + this_scale = layer_scales[layer_id] + param_group_names[group_name] = { + "lr_scale": this_scale, + "weight_decay": this_decay, + "param_names": [], + } + param_groups[group_name] = { + "lr_scale": this_scale, + "weight_decay": this_decay, + "params": [], + } + + param_group_names[group_name]["param_names"].append(name) + param_groups[group_name]["params"].append(param) + + if verbose: + import json + _logger.info("parameter groups: \n%s" % json.dumps(param_group_names, indent=2)) + + return list(param_groups.values()) diff --git a/pytorch-image-models/timm/optim/_types.py b/pytorch-image-models/timm/optim/_types.py new file mode 100644 index 0000000000000000000000000000000000000000..c24eddd108f661327f50d27e85f993ac213152a5 --- /dev/null +++ b/pytorch-image-models/timm/optim/_types.py @@ -0,0 +1,25 @@ +from typing import Any, Dict, Iterable, Union, Protocol, Type +try: + from typing import TypeAlias, TypeVar +except ImportError: + from typing_extensions import TypeAlias, TypeVar + +import torch +import torch.optim + +try: + from torch.optim.optimizer import ParamsT +except (ImportError, TypeError): + ParamsT: TypeAlias = Union[Iterable[torch.Tensor], Iterable[Dict[str, Any]]] + + +OptimType = Type[torch.optim.Optimizer] + + +class OptimizerCallable(Protocol): + """Protocol for optimizer constructor signatures.""" + + def __call__(self, params: ParamsT, **kwargs) -> torch.optim.Optimizer: ... + + +__all__ = ['ParamsT', 'OptimType', 'OptimizerCallable'] \ No newline at end of file diff --git a/pytorch-image-models/timm/optim/adabelief.py b/pytorch-image-models/timm/optim/adabelief.py new file mode 100644 index 0000000000000000000000000000000000000000..dd2abb6ba9bc7323ce4eb5a86accbb634140e1f4 --- /dev/null +++ b/pytorch-image-models/timm/optim/adabelief.py @@ -0,0 +1,218 @@ +import math +import torch +from torch.optim.optimizer import Optimizer + + +class AdaBelief(Optimizer): + r"""Implements AdaBelief algorithm. Modified from Adam in PyTorch + + Arguments: + params (iterable): iterable of parameters to optimize or dicts defining + parameter groups + lr (float, optional): learning rate (default: 1e-3) + betas (Tuple[float, float], optional): coefficients used for computing + running averages of gradient and its square (default: (0.9, 0.999)) + eps (float, optional): term added to the denominator to improve + numerical stability (default: 1e-16) + weight_decay (float, optional): weight decay (L2 penalty) (default: 0) + amsgrad (boolean, optional): whether to use the AMSGrad variant of this + algorithm from the paper `On the Convergence of Adam and Beyond`_ + (default: False) + decoupled_decay (boolean, optional): (default: True) If set as True, then + the optimizer uses decoupled weight decay as in AdamW + fixed_decay (boolean, optional): (default: False) This is used when weight_decouple + is set as True. + When fixed_decay == True, the weight decay is performed as + $W_{new} = W_{old} - W_{old} \times decay$. + When fixed_decay == False, the weight decay is performed as + $W_{new} = W_{old} - W_{old} \times decay \times lr$. Note that in this case, the + weight decay ratio decreases with learning rate (lr). + rectify (boolean, optional): (default: True) If set as True, then perform the rectified + update similar to RAdam + degenerated_to_sgd (boolean, optional) (default:True) If set as True, then perform SGD update + when variance of gradient is high + reference: AdaBelief Optimizer, adapting stepsizes by the belief in observed gradients, NeurIPS 2020 + + For a complete table of recommended hyperparameters, see https://github.com/juntang-zhuang/Adabelief-Optimizer' + For example train/args for EfficientNet see these gists + - link to train_scipt: https://gist.github.com/juntang-zhuang/0a501dd51c02278d952cf159bc233037 + - link to args.yaml: https://gist.github.com/juntang-zhuang/517ce3c27022b908bb93f78e4f786dc3 + """ + + def __init__( + self, + params, + lr=1e-3, + betas=(0.9, 0.999), + eps=1e-16, + weight_decay=0, + amsgrad=False, + decoupled_decay=True, + fixed_decay=False, + rectify=True, + degenerated_to_sgd=True, + ): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + + if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): + for param in params: + if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): + param['buffer'] = [[None, None, None] for _ in range(10)] + + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + amsgrad=amsgrad, + degenerated_to_sgd=degenerated_to_sgd, + decoupled_decay=decoupled_decay, + rectify=rectify, + fixed_decay=fixed_decay, + buffer=[[None, None, None] for _ in range(10)] + ) + super(AdaBelief, self).__init__(params, defaults) + + def __setstate__(self, state): + super(AdaBelief, self).__setstate__(state) + for group in self.param_groups: + group.setdefault('amsgrad', False) + + @torch.no_grad() + def reset(self): + for group in self.param_groups: + for p in group['params']: + state = self.state[p] + amsgrad = group['amsgrad'] + + # State initialization + state['step'] = 0 + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p) + + # Exponential moving average of squared gradient values + state['exp_avg_var'] = torch.zeros_like(p) + if amsgrad: + # Maintains max of all exp. moving avg. of sq. grad. values + state['max_exp_avg_var'] = torch.zeros_like(p) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.dtype in {torch.float16, torch.bfloat16}: + grad = grad.float() + if grad.is_sparse: + raise RuntimeError( + 'AdaBelief does not support sparse gradients, please consider SparseAdam instead') + + p_fp32 = p + if p.dtype in {torch.float16, torch.bfloat16}: + p_fp32 = p_fp32.float() + + amsgrad = group['amsgrad'] + beta1, beta2 = group['betas'] + state = self.state[p] + # State initialization + if len(state) == 0: + state['step'] = 0 + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p_fp32) + # Exponential moving average of squared gradient values + state['exp_avg_var'] = torch.zeros_like(p_fp32) + if amsgrad: + # Maintains max of all exp. moving avg. of sq. grad. values + state['max_exp_avg_var'] = torch.zeros_like(p_fp32) + + # perform weight decay, check if decoupled weight decay + if group['decoupled_decay']: + if not group['fixed_decay']: + p_fp32.mul_(1.0 - group['lr'] * group['weight_decay']) + else: + p_fp32.mul_(1.0 - group['weight_decay']) + else: + if group['weight_decay'] != 0: + grad.add_(p_fp32, alpha=group['weight_decay']) + + # get current state variable + exp_avg, exp_avg_var = state['exp_avg'], state['exp_avg_var'] + + state['step'] += 1 + bias_correction1 = 1 - beta1 ** state['step'] + bias_correction2 = 1 - beta2 ** state['step'] + + # Update first and second moment running average + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + grad_residual = grad - exp_avg + exp_avg_var.mul_(beta2).addcmul_(grad_residual, grad_residual, value=1 - beta2) + + if amsgrad: + max_exp_avg_var = state['max_exp_avg_var'] + # Maintains the maximum of all 2nd moment running avg. till now + torch.max(max_exp_avg_var, exp_avg_var.add_(group['eps']), out=max_exp_avg_var) + + # Use the max. for normalizing running avg. of gradient + denom = (max_exp_avg_var.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + else: + denom = (exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + + # update + if not group['rectify']: + # Default update + step_size = group['lr'] / bias_correction1 + p_fp32.addcdiv_(exp_avg, denom, value=-step_size) + else: + # Rectified update, forked from RAdam + buffered = group['buffer'][int(state['step'] % 10)] + if state['step'] == buffered[0]: + num_sma, step_size = buffered[1], buffered[2] + else: + buffered[0] = state['step'] + beta2_t = beta2 ** state['step'] + num_sma_max = 2 / (1 - beta2) - 1 + num_sma = num_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) + buffered[1] = num_sma + + # more conservative since it's an approximated value + if num_sma >= 5: + step_size = math.sqrt( + (1 - beta2_t) * + (num_sma - 4) / (num_sma_max - 4) * + (num_sma - 2) / num_sma * + num_sma_max / (num_sma_max - 2)) / (1 - beta1 ** state['step']) + elif group['degenerated_to_sgd']: + step_size = 1.0 / (1 - beta1 ** state['step']) + else: + step_size = -1 + buffered[2] = step_size + + if num_sma >= 5: + denom = exp_avg_var.sqrt().add_(group['eps']) + p_fp32.addcdiv_(exp_avg, denom, value=-step_size * group['lr']) + elif step_size > 0: + p_fp32.add_(exp_avg, alpha=-step_size * group['lr']) + + if p.dtype in {torch.float16, torch.bfloat16}: + p.copy_(p_fp32) + + return loss diff --git a/pytorch-image-models/timm/optim/adafactor.py b/pytorch-image-models/timm/optim/adafactor.py new file mode 100644 index 0000000000000000000000000000000000000000..c426e30a17330c2d0b0f960dc2cb17a2362794de --- /dev/null +++ b/pytorch-image-models/timm/optim/adafactor.py @@ -0,0 +1,229 @@ +""" Adafactor Optimizer + +Lifted from https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py + +Modified by Ross Wightman to fix some issues with factorization dims for non nn.Linear layers + +Original header/copyright below. +""" +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +import math +from typing import Optional, Tuple + +import torch + +from ._types import ParamsT + + +class Adafactor(torch.optim.Optimizer): + """Implements Adafactor algorithm. + + This implementation is based on: `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost` + (see https://arxiv.org/abs/1804.04235) + + Note that this optimizer internally adjusts the learning rate depending on the + *scale_parameter*, *relative_step* and *warmup_init* options. + + To use a manual (external) learning rate schedule you should set `scale_parameter=False` and + `relative_step=False`. + + Ags: + params: iterable of parameters to optimize or dicts defining parameter groups + lr: external learning rate + eps: regularization constants for square gradient and parameter scale respectively + eps_scale: regularization constants for parameter scale respectively + clip_threshold: threshold of root-mean-square of final gradient update + decay_rate: coefficient used to compute running averages of square gradient + beta1: coefficient used for computing running averages of gradient + weight_decay: weight decay + scale_parameter: if True, learning rate is scaled by root-mean-square of parameter + warmup_init: time-dependent learning rate computation depends on whether warm-up initialization is being used + """ + + def __init__( + self, + params: ParamsT, + lr: Optional[float] = None, + eps: float = 1e-30, + eps_scale: float = 1e-3, + clip_threshold: float = 1.0, + decay_rate: float = -0.8, + betas: Optional[Tuple[float, float]] = None, + weight_decay: float = 0.0, + scale_parameter: bool = True, + warmup_init: bool = False, + min_dim_size_to_factor: int = 16, + caution: bool = False, + ): + relative_step = not lr + if warmup_init and not relative_step: + raise ValueError('warmup_init requires relative_step=True') + + beta1 = None if betas is None else betas[0] # make it compat with standard betas arg + defaults = dict( + lr=lr, + eps=eps, + eps_scale=eps_scale, + clip_threshold=clip_threshold, + decay_rate=decay_rate, + beta1=beta1, + weight_decay=weight_decay, + scale_parameter=scale_parameter, + relative_step=relative_step, + warmup_init=warmup_init, + min_dim_size_to_factor=min_dim_size_to_factor, + caution=caution, + ) + super(Adafactor, self).__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('caution', False) + group.setdefault('min_dim_size_to_factor', 16) + + @staticmethod + def _get_lr(param_group, param_state): + if param_group['relative_step']: + min_step = 1e-6 * param_state['step'] if param_group['warmup_init'] else 1e-2 + lr_t = min(min_step, 1.0 / math.sqrt(param_state['step'])) + param_scale = 1.0 + if param_group['scale_parameter']: + param_scale = max(param_group['eps_scale'], param_state['RMS']) + param_group['lr'] = lr_t * param_scale + return param_group['lr'] + + @staticmethod + def _get_options(param_group, param_shape, min_size_to_factor=16): + use_first_moment = param_group['beta1'] is not None + factored = None + ndim = len(param_shape) + # Use a simple heuristic to pick factorization row & col, note other PyTorch impl tend to + # always use -2, -1 BUT this will not pick correct dims for convolutions. This is a simple + # approach that should work in most cases, compare to the slightly more involved approach + # in AdafactorBigVision that sorts dims by size, please report if wrong dims chosen. + if ndim > 2 and param_shape[0] > min_size_to_factor and param_shape[1] > min_size_to_factor: + # nD convs in torch are ND + 2 dim weights with leading in/out chs + factored = 0, 1 + elif ndim >= 2 and param_shape[-2] > min_size_to_factor and param_shape[-1] > min_size_to_factor: + # if the criteria above didn't match, test trailing dims for eligibility as per original impl + factored = ndim - 2, ndim - 1 + + return factored, use_first_moment + + @staticmethod + def _rms(tensor): + return tensor.norm(2) / (tensor.numel() ** 0.5) + + def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col, dim_col, dim_row): + # from our dim heuristic, always dim_col < dim_row, so col reduction dim for factored row = dim_col + r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=dim_col, keepdim=True)).rsqrt_().unsqueeze(dim_row) + c_factor = exp_avg_sq_col.unsqueeze(dim_col).rsqrt() + return torch.mul(r_factor, c_factor) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + Arguments: + closure (callable, optional): A closure that reevaluates the model and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.dtype in {torch.float16, torch.bfloat16}: + grad = grad.float() + if grad.is_sparse: + raise RuntimeError('Adafactor does not support sparse gradients.') + + state = self.state[p] + + factored_dims, use_first_moment = self._get_options( + group, + grad.shape, + min_size_to_factor=group['min_dim_size_to_factor'], + ) + # State Initialization + if len(state) == 0: + state['step'] = 0 + + if use_first_moment: + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(grad) + if factored_dims is not None: + dim_col, dim_row = factored_dims + def _remove_dim(shape, dim): + return shape[:dim] + shape[dim + 1:] + state['exp_avg_sq_row'] = torch.zeros(_remove_dim(grad.shape, dim_row)).to(grad) + state['exp_avg_sq_col'] = torch.zeros(_remove_dim(grad.shape, dim_col)).to(grad) + else: + state['exp_avg_sq'] = torch.zeros_like(grad) + + state['RMS'] = 0 + else: + if use_first_moment: + state['exp_avg'] = state['exp_avg'].to(grad) + if factored_dims is not None: + state['exp_avg_sq_row'] = state['exp_avg_sq_row'].to(grad) + state['exp_avg_sq_col'] = state['exp_avg_sq_col'].to(grad) + else: + state['exp_avg_sq'] = state['exp_avg_sq'].to(grad) + + p_fp32 = p + if p.dtype in {torch.float16, torch.bfloat16}: + p_fp32 = p_fp32.float() + + state['step'] += 1 + state['RMS'] = self._rms(p_fp32) + lr_t = self._get_lr(group, state) + + beta2t = 1.0 - math.pow(state['step'], group['decay_rate']) + update = grad ** 2 + group['eps'] + if factored_dims is not None: + dim_col, dim_row = factored_dims + exp_avg_sq_row = state['exp_avg_sq_row'] + exp_avg_sq_col = state['exp_avg_sq_col'] + + exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=dim_row), alpha=1.0 - beta2t) + exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=dim_col), alpha=1.0 - beta2t) + + # Approximation of exponential moving average of square of gradient + update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col, dim_col, dim_row) + update.mul_(grad) + else: + exp_avg_sq = state['exp_avg_sq'] + + exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t) + update = exp_avg_sq.rsqrt().mul_(grad) + + update.div_((self._rms(update) / group['clip_threshold']).clamp_(min=1.0)) + update.mul_(lr_t) + + if use_first_moment: + exp_avg = state['exp_avg'] + exp_avg.mul_(group['beta1']).add_(update, alpha=1 - group['beta1']) + if group['caution']: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + mask = (exp_avg * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + update = exp_avg * mask + else: + update = exp_avg + + if group['weight_decay'] != 0: + p_fp32.add_(p_fp32, alpha=-group['weight_decay'] * lr_t) + + p_fp32.add_(-update) + if p.dtype in {torch.float16, torch.bfloat16}: + p.copy_(p_fp32) + + return loss diff --git a/pytorch-image-models/timm/optim/adafactor_bv.py b/pytorch-image-models/timm/optim/adafactor_bv.py new file mode 100644 index 0000000000000000000000000000000000000000..298d43bb7e041c0e988508afe411bec8ee95842f --- /dev/null +++ b/pytorch-image-models/timm/optim/adafactor_bv.py @@ -0,0 +1,320 @@ +""" Adafactor (Big Vision variant) for PyTorch + +Adapted from the implementation in big vision: https://github.com/google-research/big_vision + +Described in 'Scaling Vision Transformers': https://arxiv.org/abs/2106.04560 + +Adaptation and PyTorch modifications by Ross Wightman +""" +from typing import List, Optional, Tuple, Union + +import torch +from torch import Tensor +from torch.optim import Optimizer + +from ._types import ParamsT + + +def _get_scalar_dtype(): + """Get the scalar dtype that the optimizer uses for state""" + return torch.float64 + + +def _factored_dims( + shape: Tuple[int, ...], + factored: bool, + min_dim_size_to_factor: int +) -> Optional[tuple[int, int]]: + """Whether to use a factored second moment estimator. + + This function returns a tuple with the two largest axes to reduce over. + If no two dimensions have size >= min_dim_size_to_factor, return None. + + Args: + shape: an input shape + factored: whether to use factored second-moment estimator for > 2d vars. + min_dim_size_to_factor: only factor accumulator if two array dimensions have at least this size. + + Returns: + None or a tuple of ints + """ + if not factored or len(shape) < 2: + return None + sorted_dims = sorted(((x, i) for i, x in enumerate(shape))) + if shape[sorted_dims[-2][1]] < min_dim_size_to_factor: + return None + return int(sorted_dims[-2][1]), int(sorted_dims[-1][1]) + + +class AdafactorBigVision(Optimizer): + """ + PyTorch implementation of BigVision's Adafactor variant with both single and multi tensor implementations. + + Adapted from https://github.com/google-research/big_vision by Ross Wightman + """ + + def __init__( + self, + params: ParamsT, + lr: float = 1.0, + min_dim_size_to_factor: int = 16, + decay_rate: float = 0.8, + decay_offset: int = 0, + beta2_cap: float = 0.999, + momentum: Optional[float] = 0.9, + momentum_dtype: Union[str, torch.dtype] = torch.bfloat16, + eps: Optional[float] = None, + weight_decay: float = 0.0, + clipping_threshold: Optional[float] = None, + unscaled_wd: bool = False, + caution: bool = False, + *, + foreach: Optional[bool] = False, + ): + if isinstance(momentum_dtype, str): + if momentum_dtype == 'float16': + momentum_dtype = torch.float16 + elif momentum_dtype == 'bfloat16': + momentum_dtype = torch.bfloat16 + else: + assert momentum_dtype == 'float32', f'{momentum_dtype} dtype not supported' + momentum_dtype = torch.float32 + # FIXME try to check if momentum dtype is appropriate for device? Torch API not great for this. + + defaults = dict( + lr=lr, + min_dim_size_to_factor=min_dim_size_to_factor, + decay_rate=decay_rate, + decay_offset=decay_offset, + beta2_cap=beta2_cap, + momentum=momentum, + momentum_dtype=momentum_dtype, + eps=eps, + weight_decay=weight_decay, + clipping_threshold=clipping_threshold, + unscaled_wd=unscaled_wd, + caution=caution, + foreach=foreach, + ) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('caution', False) + group.setdefault('foreach', None) + for p in group['params']: + p_state = self.state.get(p, {}) + if len(p_state) != 0 and not torch.is_tensor(p_state['step']): + p_state['step'] = torch.tensor(float(p_state['step']), dtype=_get_scalar_dtype()) + + if 'exp_avg' in p_state and torch.is_tensor(p_state['exp_avg']): + # FIXME this is a bit of a hack, optimizer.load_state_dict appears to upcast + # the momentum to float32 (it's half precision in the state_dict), need to + # look into this further. Better to override _process_value_according_to_param_policy? + p_state['exp_avg'] = p_state['exp_avg'].to(dtype=self.defaults['momentum_dtype']) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad = [] + grads = [] + exp_avg_sq_rs = [] + exp_avg_sq_cs = [] + exp_avg_sqs = [] + state_steps = [] + exp_avgs = [] # For momentum + + for p in group['params']: + if p.grad is None: + continue + + if p.grad.is_sparse: + raise RuntimeError("Sparse gradients not supported") + + params_with_grad.append(p) + grads.append(p.grad) + + state = self.state[p] + + if len(state) == 0: + # NOTE step on CPU, probably need some more though to make capturable + state['step'] = torch.tensor(0.0, dtype=_get_scalar_dtype()) + + shape = p.grad.shape + factored_dims = _factored_dims( + shape, + factored=True, + min_dim_size_to_factor=self.defaults['min_dim_size_to_factor'] + ) + + if factored_dims is not None: + dc, dr = factored_dims + row_shape = list(p.grad.shape) + row_shape[dr] = 1 + col_shape = list(p.grad.shape) + col_shape[dc] = 1 + state['exp_avg_sq_r'] = p.grad.new_zeros(row_shape) + state['exp_avg_sq_c'] = p.grad.new_zeros(col_shape) + else: + state['exp_avg_sq'] = torch.zeros_like(p.grad, memory_format=torch.preserve_format) + + if self.defaults['momentum'] is not None: + state['exp_avg'] = torch.zeros_like(p.grad, dtype=self.defaults['momentum_dtype']) + + state_steps.append(state['step']) + exp_avg_sq_rs.append(state.get('exp_avg_sq_r', None)) + exp_avg_sq_cs.append(state.get('exp_avg_sq_c', None)) + exp_avg_sqs.append(state.get('exp_avg_sq', None)) + exp_avgs.append(state.get('exp_avg', None)) + + if group['foreach']: + func = _multi_tensor_adafactor + else: + func = _single_tensor_adafactor + + func( + params=params_with_grad, + grads=grads, + exp_avg_sq_rs=exp_avg_sq_rs, + exp_avg_sq_cs=exp_avg_sq_cs, + exp_avg_sqs=exp_avg_sqs, + exp_avgs=exp_avgs, + state_steps=state_steps, + beta2_decay=group['decay_rate'], + beta2_cap=group['beta2_cap'], + min_dim_size_to_factor=group['min_dim_size_to_factor'], + eps=group['eps'], + lr=group['lr'], + weight_decay=group['weight_decay'], + momentum=group['momentum'], + momentum_dtype=group['momentum_dtype'], + clipping_threshold=group['clipping_threshold'], + unscaled_wd=group['unscaled_wd'], + caution=group['caution'], + ) + + return loss + + +def _single_tensor_adafactor( + params: List[Tensor], + grads: List[Tensor], + exp_avg_sq_rs: List[Optional[Tensor]], + exp_avg_sq_cs: List[Optional[Tensor]], + exp_avg_sqs: List[Optional[Tensor]], + exp_avgs: List[Optional[Tensor]], + state_steps: List[Tensor], + *, + beta2_decay: float, + beta2_cap: float, + min_dim_size_to_factor: int, + eps: float, + lr: float, + weight_decay: float, + momentum: Optional[float], + momentum_dtype: Union[str, torch.dtype], + clipping_threshold: Optional[float], + unscaled_wd: bool, + caution: bool, +): + for i, param in enumerate(params): + grad = grads[i] + exp_avg_sq_r = exp_avg_sq_rs[i] + exp_avg_sq_c = exp_avg_sq_cs[i] + exp_avg_sq = exp_avg_sqs[i] + exp_avg = exp_avgs[i] + step_t = state_steps[i] + if eps is None: + # default eps for avoiding div by zero, diff from float type eps + eps = 1e-7 if grad.dtype == torch.float16 else 1e-30 + + # Update step + step_t += 1 + beta2_t = min(beta2_cap, 1.0 - float(step_t) ** (-beta2_decay)) + one_minus_beta2_t = 1 - beta2_t + + grad_sqr = torch.square(grad) + eps + # NOTE application of eps (epsilon1) mirrors the optax/big vision/t5x approach + if exp_avg_sq is None: + # factorized second moment + dc, dr = _factored_dims(grad.shape, True, min_dim_size_to_factor=min_dim_size_to_factor) + exp_avg_sq_r.lerp_(grad_sqr.mean(dim=dr, keepdim=True), one_minus_beta2_t) + exp_avg_sq_c.lerp_(grad_sqr.mean(dim=dc, keepdim=True), one_minus_beta2_t) + + reduce_dc = dc - 1 if dc > dr else dc + row_col_mean = exp_avg_sq_r.mean(dim=reduce_dc, keepdim=True) + row_factor = (exp_avg_sq_r / row_col_mean).rsqrt() + col_factor = exp_avg_sq_c.rsqrt() + + update = grad * row_factor * col_factor + else: + # non-factorized second moment + assert exp_avg_sq_r is None and exp_avg_sq_c is None + exp_avg_sq.lerp_(grad_sqr, one_minus_beta2_t) + update = grad * exp_avg_sq.rsqrt() + + # Clip by RMS value + if clipping_threshold is not None: + denom = (update.norm(2) / ((update.numel() ** 0.5) / clipping_threshold)).clamp_(max=1.0) + update.div_(denom) + + # Apply momentum (in different dtype) + if momentum is not None and exp_avg is not None: + if momentum_dtype != grad.dtype: + exp_avg.lerp_(update.to(momentum_dtype), 1 - momentum) # ema + update = exp_avg.to(grad.dtype) + else: + exp_avg.lerp_(update, 1 - momentum) # ema + update = exp_avg.clone() + + if caution: + # apply caution as per 'Cautious Optimizers': https://arxiv.org/abs/2411.16085 + mask = (update * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + update.mul_(mask) + + # Scale by learning rate + update.mul_(lr) + + # Perform weight decay + if weight_decay != 0: + if unscaled_wd: + # match big vision impl, 'fully decoupled' decay w/o LR scaling + param.mul_(1. - weight_decay) + else: + # match typical pytorch behaviour for decoupled decay, eg adamw where wd is scaled by LR + param.mul_(1. - lr * weight_decay) + + # Update parameters + param.add_(update, alpha=-1.0) + + +def _multi_tensor_adafactor( + params: List[Tensor], + grads: List[Tensor], + exp_avg_sq_rs: List[Optional[Tensor]], + exp_avg_sq_cs: List[Optional[Tensor]], + exp_avg_sqs: List[Optional[Tensor]], + exp_avgs: List[Optional[Tensor]], + state_steps: List[Tensor], + *, + beta2_decay: float, + beta2_cap: float, + min_dim_size_to_factor: int, + eps: float, + lr: float, + weight_decay: float, + momentum: Optional[float], + momentum_dtype: Union[str, torch.dtype], + clipping_threshold: Optional[float], + unscaled_wd: bool, + caution: bool, +): + # FIXME TODO + assert False, 'multi-tensor fn (foreach=True) not implemented yet' diff --git a/pytorch-image-models/timm/optim/adahessian.py b/pytorch-image-models/timm/optim/adahessian.py new file mode 100644 index 0000000000000000000000000000000000000000..9067cc66cf9eaf7c9b8ca1d58c332c407a759b1d --- /dev/null +++ b/pytorch-image-models/timm/optim/adahessian.py @@ -0,0 +1,172 @@ +""" AdaHessian Optimizer + +Lifted from https://github.com/davda54/ada-hessian/blob/master/ada_hessian.py +Originally licensed MIT, Copyright 2020, David Samuel +""" +import torch + + +class Adahessian(torch.optim.Optimizer): + """ + Implements the AdaHessian algorithm from "ADAHESSIAN: An Adaptive Second OrderOptimizer for Machine Learning" + + Arguments: + params (iterable): iterable of parameters to optimize or dicts defining parameter groups + lr (float, optional): learning rate (default: 0.1) + betas ((float, float), optional): coefficients used for computing running averages of gradient and the + squared hessian trace (default: (0.9, 0.999)) + eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) + weight_decay (float, optional): weight decay (L2 penalty) (default: 0.0) + hessian_power (float, optional): exponent of the hessian trace (default: 1.0) + update_each (int, optional): compute the hessian trace approximation only after *this* number of steps + (to save time) (default: 1) + n_samples (int, optional): how many times to sample `z` for the approximation of the hessian trace (default: 1) + """ + + def __init__( + self, + params, + lr=0.1, + betas=(0.9, 0.999), + eps=1e-8, + weight_decay=0.0, + hessian_power=1.0, + update_each=1, + n_samples=1, + avg_conv_kernel=False, + ): + if not 0.0 <= lr: + raise ValueError(f"Invalid learning rate: {lr}") + if not 0.0 <= eps: + raise ValueError(f"Invalid epsilon value: {eps}") + if not 0.0 <= betas[0] < 1.0: + raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") + if not 0.0 <= betas[1] < 1.0: + raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") + if not 0.0 <= hessian_power <= 1.0: + raise ValueError(f"Invalid Hessian power value: {hessian_power}") + + self.n_samples = n_samples + self.update_each = update_each + self.avg_conv_kernel = avg_conv_kernel + + # use a separate generator that deterministically generates the same `z`s across all GPUs in case of distributed training + self.seed = 2147483647 + self.generator = torch.Generator().manual_seed(self.seed) + + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + hessian_power=hessian_power, + ) + super(Adahessian, self).__init__(params, defaults) + + for p in self.get_params(): + p.hess = 0.0 + self.state[p]["hessian step"] = 0 + + @property + def is_second_order(self): + return True + + def get_params(self): + """ + Gets all parameters in all param_groups with gradients + """ + + return (p for group in self.param_groups for p in group['params'] if p.requires_grad) + + def zero_hessian(self): + """ + Zeros out the accumalated hessian traces. + """ + + for p in self.get_params(): + if not isinstance(p.hess, float) and self.state[p]["hessian step"] % self.update_each == 0: + p.hess.zero_() + + @torch.no_grad() + def set_hessian(self): + """ + Computes the Hutchinson approximation of the hessian trace and accumulates it for each trainable parameter. + """ + + params = [] + for p in filter(lambda p: p.grad is not None, self.get_params()): + if self.state[p]["hessian step"] % self.update_each == 0: # compute the trace only each `update_each` step + params.append(p) + self.state[p]["hessian step"] += 1 + + if len(params) == 0: + return + + if self.generator.device != params[0].device: # hackish way of casting the generator to the right device + self.generator = torch.Generator(params[0].device).manual_seed(self.seed) + + grads = [p.grad for p in params] + + for i in range(self.n_samples): + # Rademacher distribution {-1.0, 1.0} + zs = [torch.randint(0, 2, p.size(), generator=self.generator, device=p.device) * 2.0 - 1.0 for p in params] + h_zs = torch.autograd.grad( + grads, params, grad_outputs=zs, only_inputs=True, retain_graph=i < self.n_samples - 1) + for h_z, z, p in zip(h_zs, zs, params): + p.hess += h_z * z / self.n_samples # approximate the expected values of z*(H@z) + + @torch.no_grad() + def step(self, closure=None): + """ + Performs a single optimization step. + Arguments: + closure (callable, optional) -- a closure that reevaluates the model and returns the loss (default: None) + """ + + loss = None + if closure is not None: + loss = closure() + + self.zero_hessian() + self.set_hessian() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None or p.hess is None: + continue + + if self.avg_conv_kernel and p.dim() == 4: + p.hess = torch.abs(p.hess).mean(dim=[2, 3], keepdim=True).expand_as(p.hess).clone() + + # Perform correct stepweight decay as in AdamW + p.mul_(1 - group['lr'] * group['weight_decay']) + + state = self.state[p] + + # State initialization + if len(state) == 1: + state['step'] = 0 + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p) + # Exponential moving average of Hessian diagonal square values + state['exp_hessian_diag_sq'] = torch.zeros_like(p) + + exp_avg, exp_hessian_diag_sq = state['exp_avg'], state['exp_hessian_diag_sq'] + beta1, beta2 = group['betas'] + state['step'] += 1 + + # Decay the first and second moment running average coefficient + exp_avg.mul_(beta1).add_(p.grad, alpha=1 - beta1) + exp_hessian_diag_sq.mul_(beta2).addcmul_(p.hess, p.hess, value=1 - beta2) + + bias_correction1 = 1 - beta1 ** state['step'] + bias_correction2 = 1 - beta2 ** state['step'] + + k = group['hessian_power'] + denom = (exp_hessian_diag_sq / bias_correction2).pow_(k / 2).add_(group['eps']) + + # make update + step_size = group['lr'] / bias_correction1 + p.addcdiv_(exp_avg, denom, value=-step_size) + + return loss diff --git a/pytorch-image-models/timm/optim/adamp.py b/pytorch-image-models/timm/optim/adamp.py new file mode 100644 index 0000000000000000000000000000000000000000..5a9ac3395d233219835108da323f2c20bbd9b5f3 --- /dev/null +++ b/pytorch-image-models/timm/optim/adamp.py @@ -0,0 +1,120 @@ +""" +AdamP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/adamp.py + +Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217 +Code: https://github.com/clovaai/AdamP + +Copyright (c) 2020-present NAVER Corp. +MIT license +""" + +import torch +import torch.nn.functional as F +from torch.optim.optimizer import Optimizer +import math + + +def _channel_view(x) -> torch.Tensor: + return x.reshape(x.size(0), -1) + + +def _layer_view(x) -> torch.Tensor: + return x.reshape(1, -1) + + +def projection(p, grad, perturb, delta: float, wd_ratio: float, eps: float): + wd = 1. + expand_size = (-1,) + (1,) * (len(p.shape) - 1) + for view_func in [_channel_view, _layer_view]: + param_view = view_func(p) + grad_view = view_func(grad) + cosine_sim = F.cosine_similarity(grad_view, param_view, dim=1, eps=eps).abs_() + + # FIXME this is a problem for PyTorch XLA + if cosine_sim.max() < delta / math.sqrt(param_view.size(1)): + p_n = p / param_view.norm(p=2, dim=1).add_(eps).reshape(expand_size) + perturb -= p_n * view_func(p_n * perturb).sum(dim=1).reshape(expand_size) + wd = wd_ratio + return perturb, wd + + return perturb, wd + + +class AdamP(Optimizer): + def __init__( + self, + params, + lr=1e-3, + betas=(0.9, 0.999), + eps=1e-8, + weight_decay=0, + delta=0.1, + wd_ratio=0.1, + nesterov=False, + ): + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + delta=delta, + wd_ratio=wd_ratio, + nesterov=nesterov, + ) + super(AdamP, self).__init__(params, defaults) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + + grad = p.grad + beta1, beta2 = group['betas'] + nesterov = group['nesterov'] + + state = self.state[p] + + # State initialization + if len(state) == 0: + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p) + state['exp_avg_sq'] = torch.zeros_like(p) + + # Adam + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + + state['step'] += 1 + bias_correction1 = 1 - beta1 ** state['step'] + bias_correction2 = 1 - beta2 ** state['step'] + + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + + denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + step_size = group['lr'] / bias_correction1 + + if nesterov: + perturb = (beta1 * exp_avg + (1 - beta1) * grad) / denom + else: + perturb = exp_avg / denom + + # Projection + wd_ratio = 1. + if len(p.shape) > 1: + perturb, wd_ratio = projection(p, grad, perturb, group['delta'], group['wd_ratio'], group['eps']) + + # Weight decay + if group['weight_decay'] > 0: + p.mul_(1. - group['lr'] * group['weight_decay'] * wd_ratio) + + # Step + p.add_(perturb, alpha=-step_size) + + return loss diff --git a/pytorch-image-models/timm/optim/adamw.py b/pytorch-image-models/timm/optim/adamw.py new file mode 100644 index 0000000000000000000000000000000000000000..07299ad63ef1bc712ccad016b6f2506403d92f36 --- /dev/null +++ b/pytorch-image-models/timm/optim/adamw.py @@ -0,0 +1,140 @@ +""" AdamW Optimizer +Impl copied from PyTorch master + +NOTE: This impl has been deprecated in favour of torch.optim.AdamW and remains as a reference +""" +import math +from typing import Tuple + +import torch +from torch.optim.optimizer import Optimizer + +from ._types import ParamsT + + +class AdamWLegacy(Optimizer): + r"""Implements AdamW algorithm. + + NOTE: This impl has been deprecated in favour of torch.optim.NAdam and remains as a reference + + References: + - Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 + - Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 + - On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ + + Args: + params: iterable of parameters to optimize or dicts defining parameter groups + lr: learning rate + betas: coefficients used for computing running averages of gradient and its square + eps: term added to the denominator to improve numerical stability + weight_decay: weight decay coefficient + amsgrad: whether to use the AMSGrad variant of this algorithm + from the paper `On the Convergence of Adam and Beyond` + caution: apply caution when using AdamW + """ + + def __init__( + self, + params: ParamsT, + lr: float = 1e-3, + betas: Tuple[float, float] = (0.9, 0.999), + eps: float = 1e-8, + weight_decay: float = 1e-2, + amsgrad: bool = False, + caution: bool = False, + ): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + amsgrad=amsgrad, + caution=caution, + ) + super(AdamWLegacy, self).__init__(params, defaults) + + def __setstate__(self, state): + super(AdamWLegacy, self).__setstate__(state) + for group in self.param_groups: + group.setdefault('amsgrad', False) + group.setdefault('caution', False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + + # Perform stepweight decay + p.data.mul_(1 - group['lr'] * group['weight_decay']) + + # Perform optimization step + grad = p.grad + if grad.is_sparse: + raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') + amsgrad = group['amsgrad'] + + state = self.state[p] + + # State initialization + if len(state) == 0: + state['step'] = 0 + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p) + # Exponential moving average of squared gradient values + state['exp_avg_sq'] = torch.zeros_like(p) + if amsgrad: + # Maintains max of all exp. moving avg. of sq. grad. values + state['max_exp_avg_sq'] = torch.zeros_like(p) + + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + if amsgrad: + max_exp_avg_sq = state['max_exp_avg_sq'] + beta1, beta2 = group['betas'] + + state['step'] += 1 + bias_correction1 = 1 - beta1 ** state['step'] + bias_correction2 = 1 - beta2 ** state['step'] + + # Decay the first and second moment running average coefficient + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + if amsgrad: + # Maintains the maximum of all 2nd moment running avg. till now + torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) + # Use the max. for normalizing running avg. of gradient + denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + else: + denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + + step_size = group['lr'] / bias_correction1 + + if group['caution']: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + mask = (exp_avg * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + exp_avg = exp_avg * mask + + p.addcdiv_(exp_avg, denom, value=-step_size) + + return loss diff --git a/pytorch-image-models/timm/optim/adan.py b/pytorch-image-models/timm/optim/adan.py new file mode 100644 index 0000000000000000000000000000000000000000..94fa9ef208329317178f1e3fad58d970a2ac48c4 --- /dev/null +++ b/pytorch-image-models/timm/optim/adan.py @@ -0,0 +1,295 @@ +""" Adan Optimizer + +Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022. + https://arxiv.org/abs/2208.06677 + +Implementation adapted from https://github.com/sail-sg/Adan +""" +# Copyright 2022 Garena Online Private Limited +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import List, Tuple + +import torch +from torch import Tensor +from torch.optim.optimizer import Optimizer + + +class MultiTensorApply(object): + available = False + warned = False + + def __init__(self, chunk_size): + try: + MultiTensorApply.available = True + self.chunk_size = chunk_size + except ImportError as err: + MultiTensorApply.available = False + MultiTensorApply.import_err = err + + def __call__(self, op, noop_flag_buffer, tensor_lists, *args): + return op(self.chunk_size, noop_flag_buffer, tensor_lists, *args) + + +class Adan(Optimizer): + """ Implements a pytorch variant of Adan. + + Adan was proposed in Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models + https://arxiv.org/abs/2208.06677 + + Arguments: + params: Iterable of parameters to optimize or dicts defining parameter groups. + lr: Learning rate. + betas: Coefficients used for first- and second-order moments. + eps: Term added to the denominator to improve numerical stability. + weight_decay: Decoupled weight decay (L2 penalty) + no_prox: How to perform the weight decay + foreach: If True would use torch._foreach implementation. Faster but uses slightly more memory. + """ + + def __init__(self, + params, + lr: float = 1e-3, + betas: Tuple[float, float, float] = (0.98, 0.92, 0.99), + eps: float = 1e-8, + weight_decay: float = 0.0, + no_prox: bool = False, + foreach: bool = True, + ): + if not 0.0 <= lr: + raise ValueError('Invalid learning rate: {}'.format(lr)) + if not 0.0 <= eps: + raise ValueError('Invalid epsilon value: {}'.format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) + if not 0.0 <= betas[2] < 1.0: + raise ValueError('Invalid beta parameter at index 2: {}'.format(betas[2])) + + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + no_prox=no_prox, + foreach=foreach, + ) + super().__init__(params, defaults) + + def __setstate__(self, state): + super(Adan, self).__setstate__(state) + for group in self.param_groups: + group.setdefault('no_prox', False) + + @torch.no_grad() + def restart_opt(self): + for group in self.param_groups: + group['step'] = 0 + for p in group['params']: + if p.requires_grad: + state = self.state[p] + # State initialization + + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p) + # Exponential moving average of squared gradient values + state['exp_avg_sq'] = torch.zeros_like(p) + # Exponential moving average of gradient difference + state['exp_avg_diff'] = torch.zeros_like(p) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step.""" + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad = [] + grads = [] + exp_avgs = [] + exp_avg_sqs = [] + exp_avg_diffs = [] + neg_pre_grads = [] + + beta1, beta2, beta3 = group['betas'] + # assume same step across group now to simplify things + # per parameter step can be easily supported by making it a tensor, or pass list into kernel + if 'step' in group: + group['step'] += 1 + else: + group['step'] = 1 + + bias_correction1 = 1.0 - beta1 ** group['step'] + bias_correction2 = 1.0 - beta2 ** group['step'] + bias_correction3 = 1.0 - beta3 ** group['step'] + + for p in group['params']: + if p.grad is None: + continue + params_with_grad.append(p) + grads.append(p.grad) + + state = self.state[p] + if len(state) == 0: + state['exp_avg'] = torch.zeros_like(p) + state['exp_avg_sq'] = torch.zeros_like(p) + state['exp_avg_diff'] = torch.zeros_like(p) + + if 'neg_pre_grad' not in state or group['step'] == 1: + state['neg_pre_grad'] = -p.grad.clone() + + exp_avgs.append(state['exp_avg']) + exp_avg_sqs.append(state['exp_avg_sq']) + exp_avg_diffs.append(state['exp_avg_diff']) + neg_pre_grads.append(state['neg_pre_grad']) + + if not params_with_grad: + continue + + kwargs = dict( + params=params_with_grad, + grads=grads, + exp_avgs=exp_avgs, + exp_avg_sqs=exp_avg_sqs, + exp_avg_diffs=exp_avg_diffs, + neg_pre_grads=neg_pre_grads, + beta1=beta1, + beta2=beta2, + beta3=beta3, + bias_correction1=bias_correction1, + bias_correction2=bias_correction2, + bias_correction3_sqrt=math.sqrt(bias_correction3), + lr=group['lr'], + weight_decay=group['weight_decay'], + eps=group['eps'], + no_prox=group['no_prox'], + ) + + if group['foreach']: + _multi_tensor_adan(**kwargs) + else: + _single_tensor_adan(**kwargs) + + return loss + + +def _single_tensor_adan( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + exp_avg_diffs: List[Tensor], + neg_pre_grads: List[Tensor], + *, + beta1: float, + beta2: float, + beta3: float, + bias_correction1: float, + bias_correction2: float, + bias_correction3_sqrt: float, + lr: float, + weight_decay: float, + eps: float, + no_prox: bool, +): + for i, param in enumerate(params): + grad = grads[i] + exp_avg = exp_avgs[i] + exp_avg_sq = exp_avg_sqs[i] + exp_avg_diff = exp_avg_diffs[i] + neg_grad_or_diff = neg_pre_grads[i] + + # for memory saving, we use `neg_grad_or_diff` to get some temp variable in an inplace way + neg_grad_or_diff.add_(grad) + + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # m_t + exp_avg_diff.mul_(beta2).add_(neg_grad_or_diff, alpha=1 - beta2) # diff_t + + neg_grad_or_diff.mul_(beta2).add_(grad) + exp_avg_sq.mul_(beta3).addcmul_(neg_grad_or_diff, neg_grad_or_diff, value=1 - beta3) # n_t + + denom = (exp_avg_sq.sqrt() / bias_correction3_sqrt).add_(eps) + step_size_diff = lr * beta2 / bias_correction2 + step_size = lr / bias_correction1 + + if no_prox: + param.mul_(1 - lr * weight_decay) + param.addcdiv_(exp_avg, denom, value=-step_size) + param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff) + else: + param.addcdiv_(exp_avg, denom, value=-step_size) + param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff) + param.div_(1 + lr * weight_decay) + + neg_grad_or_diff.zero_().add_(grad, alpha=-1.0) + + +def _multi_tensor_adan( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + exp_avg_diffs: List[Tensor], + neg_pre_grads: List[Tensor], + *, + beta1: float, + beta2: float, + beta3: float, + bias_correction1: float, + bias_correction2: float, + bias_correction3_sqrt: float, + lr: float, + weight_decay: float, + eps: float, + no_prox: bool, +): + if len(params) == 0: + return + + # for memory saving, we use `neg_pre_grads` to get some temp variable in a inplace way + torch._foreach_add_(neg_pre_grads, grads) + + torch._foreach_mul_(exp_avgs, beta1) + torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) # m_t + + torch._foreach_mul_(exp_avg_diffs, beta2) + torch._foreach_add_(exp_avg_diffs, neg_pre_grads, alpha=1 - beta2) # diff_t + + torch._foreach_mul_(neg_pre_grads, beta2) + torch._foreach_add_(neg_pre_grads, grads) + torch._foreach_mul_(exp_avg_sqs, beta3) + torch._foreach_addcmul_(exp_avg_sqs, neg_pre_grads, neg_pre_grads, value=1 - beta3) # n_t + + denom = torch._foreach_sqrt(exp_avg_sqs) + torch._foreach_div_(denom, bias_correction3_sqrt) + torch._foreach_add_(denom, eps) + + step_size_diff = lr * beta2 / bias_correction2 + step_size = lr / bias_correction1 + + if no_prox: + torch._foreach_mul_(params, 1 - lr * weight_decay) + torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size) + torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff) + else: + torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size) + torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff) + torch._foreach_div_(params, 1 + lr * weight_decay) + + torch._foreach_zero_(neg_pre_grads) + torch._foreach_add_(neg_pre_grads, grads, alpha=-1.0) diff --git a/pytorch-image-models/timm/optim/adopt.py b/pytorch-image-models/timm/optim/adopt.py new file mode 100644 index 0000000000000000000000000000000000000000..6192990ed65b5c01e2a83916beb5184cd5f3cc5e --- /dev/null +++ b/pytorch-image-models/timm/optim/adopt.py @@ -0,0 +1,509 @@ +""" ADOPT PyTorch Optimizer + +ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate: https://arxiv.org/abs/2411.02853 + +Modified for reduced dependencies on PyTorch internals from original at: https://github.com/iShohei220/adopt + +@inproceedings{taniguchi2024adopt, + author={Taniguchi, Shohei and Harada, Keno and Minegishi, Gouki and Oshima, Yuta and Jeong, Seong Cheol and Nagahara, Go and Iiyama, Tomoshi and Suzuki, Masahiro and Iwasawa, Yusuke and Matsuo, Yutaka}, + booktitle = {Advances in Neural Information Processing Systems}, + title = {ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate}, + year = {2024} +} +""" +from typing import cast, List, Optional, Tuple, Union + +import torch +from torch import Tensor +from torch.optim.optimizer import Optimizer + +from ._types import ParamsT + +__all__ = ["Adopt", "adopt"] + +def _view_as_real(params, *state_and_grads): + for i, p in enumerate(params): + if torch.is_complex(p): + params[i] = torch.view_as_real(params[i]) + for s in state_and_grads: + s[i] = torch.view_as_real(s[i]) + + +def _get_scalar_dtype(is_fused=None): + if is_fused: + return torch.float32 + return ( + torch.float64 if torch.get_default_dtype() == torch.float64 else torch.float32 + ) + + +def _is_compiling(): + if hasattr(torch, 'compiler') and hasattr(torch.compiler, 'is_compiling'): + return torch.compiler.is_compiling() + else: + return False + + +def _get_value(x): + # item is significantly faster than a cpu tensor in eager mode + if not torch.jit.is_scripting() and _is_compiling(): + return x + else: + return x.item() if isinstance(x, torch.Tensor) else x + + +class Adopt(Optimizer): + """ + ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate: https://arxiv.org/abs/2411.02853 + + """ + def __init__( + self, + params: ParamsT, + lr: Union[float, Tensor] = 1e-3, + betas: Tuple[float, float] = (0.9, 0.9999), + eps: float = 1e-6, + clip_exp: Optional[float] = 0.333, + weight_decay: float = 0.0, + decoupled: bool = False, + *, + caution: bool = False, + foreach: Optional[bool] = False, + maximize: bool = False, + capturable: bool = False, + differentiable: bool = False, + ): + if isinstance(lr, Tensor): + if foreach and not capturable: + raise ValueError( + "lr as a Tensor is not supported for capturable=False and foreach=True" + ) + if lr.numel() != 1: + raise ValueError("Tensor lr must be 1-element") + if not 0.0 <= lr: + raise ValueError(f"Invalid learning rate: {lr}") + if not 0.0 <= eps: + raise ValueError(f"Invalid epsilon value: {eps}") + if not 0.0 <= betas[0] < 1.0: + raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") + if not 0.0 <= betas[1] < 1.0: + raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") + if not 0.0 <= weight_decay: + raise ValueError(f"Invalid weight_decay value: {weight_decay}") + + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + clip_exp=clip_exp, + decoupled=decoupled, + caution=caution, + maximize=maximize, + foreach=foreach, + capturable=capturable, + differentiable=differentiable, + ) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault("maximize", False) + group.setdefault("foreach", None) + group.setdefault("capturable", False) + group.setdefault("differentiable", False) + group.setdefault("clip_exp", None) + group.setdefault("caution", False) + for p in group["params"]: + p_state = self.state.get(p, []) + if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): + step_val = float(p_state["step"]) + p_state["step"] = ( + torch.tensor( + step_val, + dtype=_get_scalar_dtype(), + device=p.device, + ) + if group["capturable"] + else torch.tensor(step_val, dtype=_get_scalar_dtype()) + ) + + def _init_group( + self, + group, + params_with_grad, + grads, + exp_avgs, + exp_avg_sqs, + state_steps, + ): + has_complex = False + for p in group["params"]: + if p.grad is None: + continue + has_complex |= torch.is_complex(p) + params_with_grad.append(p) + if p.grad.is_sparse: + raise RuntimeError("ADOPT does not support sparse gradients") + grads.append(p.grad) + + state = self.state[p] + # Lazy state initialization + if len(state) == 0: + # note(crcrpar): [special device hosting for step] + # Deliberately host `step` on CPU if both capturable and fused are off. + # This is because kernel launches are costly on CUDA and XLA. + state["step"] = ( + torch.zeros((), dtype=_get_scalar_dtype(), device=p.grad.device) + if group["capturable"] + else torch.tensor(0.0, dtype=_get_scalar_dtype()) + ) + # Exponential moving average of gradient values + state["exp_avg"] = torch.zeros_like(p.grad, memory_format=torch.preserve_format) + # Exponential moving average of squared gradient values + state["exp_avg_sq"] = torch.zeros_like(p.grad, memory_format=torch.preserve_format) + + exp_avgs.append(state["exp_avg"]) + exp_avg_sqs.append(state["exp_avg_sq"]) + + if group["differentiable"] and state["step"].requires_grad: + raise RuntimeError("`requires_grad` is not supported for `step` in differentiable mode") + + # Foreach without capturable does not support a tensor lr + if group["foreach"] and torch.is_tensor(group["lr"]) and not group["capturable"]: + raise RuntimeError("lr as a Tensor is not supported for capturable=False and foreach=True") + + state_steps.append(state["step"]) + return has_complex + + #@_use_grad_for_differentiable # FIXME internal context mgr, can't use + @torch.no_grad() + def step(self, closure=None): + """Perform a single optimization step. + + Args: + closure (Callable, optional): A closure that reevaluates the model + and returns the loss. + """ + self._cuda_graph_capture_health_check() + + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad: List[Tensor] = [] + grads: List[Tensor] = [] + exp_avgs: List[Tensor] = [] + exp_avg_sqs: List[Tensor] = [] + state_steps: List[Tensor] = [] + beta1, beta2 = group["betas"] + + has_complex = self._init_group( + group, + params_with_grad, + grads, + exp_avgs, + exp_avg_sqs, + state_steps, + ) + + adopt( + params_with_grad, + grads, + exp_avgs, + exp_avg_sqs, + state_steps, + has_complex=has_complex, + beta1=beta1, + beta2=beta2, + lr=group["lr"], + weight_decay=group["weight_decay"], + clip_exp=group["clip_exp"], + decoupled=group["decoupled"], + eps=group["eps"], + caution=group["caution"], + maximize=group["maximize"], + foreach=group["foreach"], + capturable=group["capturable"], + differentiable=group["differentiable"], + grad_scale=getattr(self, "grad_scale", None), + found_inf=getattr(self, "found_inf", None), + ) + + return loss + + +def _single_tensor_adopt( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + state_steps: List[Tensor], + grad_scale: Optional[Tensor], + found_inf: Optional[Tensor], + *, + has_complex: bool, + beta1: float, + beta2: float, + lr: Union[float, Tensor], + weight_decay: float, + clip_exp: Optional[float], + decoupled: bool, + eps: float, + caution: bool, + maximize: bool, + capturable: bool, + differentiable: bool, +): + assert grad_scale is None and found_inf is None + + if torch.jit.is_scripting(): + # this assert is due to JIT being dumb and not realizing that the ops below + # have overloads to handle both float and Tensor lrs, so we just assert it's + # a float since most people using JIT are using floats + assert isinstance(lr, float) + + for i, param in enumerate(params): + grad = grads[i] if not maximize else -grads[i] + exp_avg = exp_avgs[i] + exp_avg_sq = exp_avg_sqs[i] + step_t = state_steps[i] + + # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] + if capturable and not _is_compiling(): + from torch.optim.optimizer import _get_capturable_supported_devices + capturable_supported_devices = _get_capturable_supported_devices() + assert param.device.type == step_t.device.type and param.device.type in capturable_supported_devices,\ + f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." + + # update step + step_t += 1 + + if torch.is_complex(param): + grad = torch.view_as_real(grad) + if exp_avg is not None: + exp_avg = torch.view_as_real(exp_avg) + if exp_avg_sq is not None: + exp_avg_sq = torch.view_as_real(exp_avg_sq) + param = torch.view_as_real(param) + + if weight_decay != 0 and not decoupled: + grad = grad.add(param, alpha=weight_decay) + + step = step_t if capturable or differentiable else _get_value(step_t) + if step == 1: + exp_avg_sq.addcmul_(grad, grad.conj()) + continue + + if weight_decay != 0 and decoupled: + param.add_(param, alpha=-lr * weight_decay) + + denom = torch.clamp(exp_avg_sq.sqrt(), eps) + normed_grad = grad.div(denom) + + if clip_exp is not None: + clip_val = (step - 1) ** clip_exp + normed_grad.clamp_(-clip_val, clip_val) + + exp_avg.lerp_(normed_grad, 1 - beta1) + + if caution: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + mask = (exp_avg * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + exp_avg = exp_avg * mask + + param.add_(exp_avg, alpha=-lr) + + exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2) + + +def _multi_tensor_adopt( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + state_steps: List[Tensor], + grad_scale: Optional[Tensor], + found_inf: Optional[Tensor], + *, + has_complex: bool, + beta1: float, + beta2: float, + lr: Union[float, Tensor], + weight_decay: float, + clip_exp: Optional[float], + decoupled: bool, + eps: float, + caution: bool, + maximize: bool, + capturable: bool, + differentiable: bool, +): + if len(params) == 0: + return + + if isinstance(lr, Tensor) and not capturable: + raise RuntimeError( + "lr as a Tensor is not supported for capturable=False and foreach=True" + ) + + # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] + if capturable and not _is_compiling(): + from torch.optim.optimizer import _get_capturable_supported_devices + capturable_supported_devices = _get_capturable_supported_devices( + supports_xla=False + ) + assert all( + p.device.type == step.device.type and p.device.type in capturable_supported_devices + for p, step in zip(params, state_steps) + ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." + + assert grad_scale is None and found_inf is None + + assert not differentiable, "_foreach ops don't support autograd" + + grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( + [params, grads, exp_avgs, exp_avg_sqs, state_steps] # type: ignore[list-item] + ) + for ( + device_params_, + device_grads_, + device_exp_avgs_, + device_exp_avg_sqs_, + device_state_steps_, + ), _ in grouped_tensors.values(): + device_params = cast(List[Tensor], device_params_) + device_grads = cast(List[Tensor], device_grads_) + device_exp_avgs = cast(List[Tensor], device_exp_avgs_) + device_exp_avg_sqs = cast(List[Tensor], device_exp_avg_sqs_) + device_state_steps = cast(List[Tensor], device_state_steps_) + + # Handle complex parameters + if has_complex: + _view_as_real(device_params, device_grads, device_exp_avgs, device_exp_avg_sqs) + + if maximize: + device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment] + + # Update steps + # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over + # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just + # wrapped it once now. The alpha is required to assure we go to the right overload. + if not _is_compiling() and device_state_steps[0].is_cpu: + torch._foreach_add_(device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0) + else: + torch._foreach_add_(device_state_steps, 1) + + if weight_decay != 0 and not decoupled: + # Re-use the intermediate memory (device_grads) already allocated for maximize + if maximize: + torch._foreach_add_(device_grads, device_params, alpha=weight_decay) + else: + device_grads = torch._foreach_add(device_grads, device_params, alpha=weight_decay) + + if device_state_steps[0] == 1: + torch._foreach_addcmul_(device_exp_avg_sqs, device_grads, device_grads) + continue + + if weight_decay != 0 and decoupled: + torch._foreach_add_(device_params, device_params, alpha=-lr * weight_decay) + + exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs) + torch._foreach_maximum_(exp_avg_sq_sqrt, eps) + + normed_grad = torch._foreach_div(device_grads, exp_avg_sq_sqrt) + + if clip_exp is not None: + clip_val = (device_state_steps[0] - 1) ** clip_exp + torch._foreach_maximum_(normed_grad, -clip_val) + torch._foreach_minimum_(normed_grad, clip_val) + + torch._foreach_lerp_(device_exp_avgs, normed_grad, 1 - beta1) + + if caution: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + masks = torch._foreach_mul(device_exp_avgs, device_grads) + masks = [(m > 0).to(g.dtype) for m, g in zip(masks, device_grads)] + mask_scale = [m.mean() for m in masks] + torch._foreach_maximum_(mask_scale, 1e-3) + torch._foreach_div_(masks, mask_scale) + device_exp_avgs = torch._foreach_mul(device_exp_avgs, masks) + + torch._foreach_add_(device_params, device_exp_avgs, alpha=-lr) + + torch._foreach_mul_(device_exp_avg_sqs, beta2) + torch._foreach_addcmul_(device_exp_avg_sqs, device_grads, device_grads, value=1 - beta2) + + +#@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adopt) # FIXME internal context mgr, can't use +def adopt( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + state_steps: List[Tensor], + # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 + # setting this as kwarg for now as functional API is compiled by torch/distributed/optim + foreach: Optional[bool] = None, + capturable: bool = False, + differentiable: bool = False, + grad_scale: Optional[Tensor] = None, + found_inf: Optional[Tensor] = None, + has_complex: bool = False, + *, + beta1: float, + beta2: float, + lr: Union[float, Tensor], + weight_decay: float, + clip_exp: Optional[float], + decoupled: bool, + eps: float, + caution: bool, + maximize: bool, +): + r"""Functional API that performs ADOPT algorithm computation. + + """ + if foreach is None: + foreach = False + + # this check is slow during compilation, so we skip it + # if it's strictly needed we can add this check back in dynamo + if not _is_compiling() and not all(isinstance(t, torch.Tensor) for t in state_steps): + raise RuntimeError( + "API has changed, `state_steps` argument must contain a list of singleton tensors" + ) + + if foreach and torch.jit.is_scripting(): + raise RuntimeError("torch.jit.script not supported with foreach optimizers") + + if foreach and not torch.jit.is_scripting(): + func = _multi_tensor_adopt + else: + func = _single_tensor_adopt + + func( + params, + grads, + exp_avgs, + exp_avg_sqs, + state_steps, + has_complex=has_complex, + beta1=beta1, + beta2=beta2, + lr=lr, + weight_decay=weight_decay, + clip_exp=clip_exp, + decoupled=decoupled, + eps=eps, + caution=caution, + maximize=maximize, + capturable=capturable, + differentiable=differentiable, + grad_scale=grad_scale, + found_inf=found_inf, + ) diff --git a/pytorch-image-models/timm/optim/lamb.py b/pytorch-image-models/timm/optim/lamb.py new file mode 100644 index 0000000000000000000000000000000000000000..ee89225ec6cd92457c7d9b2198aa7b250cacde3a --- /dev/null +++ b/pytorch-image-models/timm/optim/lamb.py @@ -0,0 +1,224 @@ +""" PyTorch Lamb optimizer w/ behaviour similar to NVIDIA FusedLamb + +This optimizer code was adapted from the following (starting with latest) +* https://github.com/HabanaAI/Model-References/blob/2b435114fe8e31f159b1d3063b8280ae37af7423/PyTorch/nlp/bert/pretraining/lamb.py +* https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py +* https://github.com/cybertronai/pytorch-lamb + +Use FusedLamb if you can (GPU). The reason for including this variant of Lamb is to have a version that is +similar in behaviour to APEX FusedLamb if you aren't using NVIDIA GPUs or cannot install/use APEX. + +In addition to some cleanup, this Lamb impl has been modified to support PyTorch XLA and has been tested on TPU. + +Original copyrights for above sources are below. + +Modifications Copyright 2021 Ross Wightman +""" +# Copyright (c) 2021, Habana Labs Ltd. All rights reserved. + +# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# MIT License +# +# Copyright (c) 2019 cybertronai +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +import math +from typing import Optional, Tuple + +import torch +from torch.optim import Optimizer + +from ._types import ParamsT + + +class Lamb(Optimizer): + """Implements a pure pytorch variant of FuseLAMB (NvLamb variant) optimizer from apex.optimizers.FusedLAMB + reference: https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py + + LAMB was proposed in: + - Large Batch Optimization for Deep Learning - Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 + - On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ + + Args: + params: Iterable of parameters to optimize or dicts defining parameter groups. + lr: Learning rate + betas: Coefficients used for computing running averages of gradient and its norm. + eps: Term added to the denominator to improve numerical stability. + weight_decay: Weight decay + grad_averaging: Whether apply (1-beta2) to grad when calculating running averages of gradient. + max_grad_norm: Value used to clip global grad norm. + trust_clip: Enable LAMBC trust ratio clipping. + always_adapt: Apply adaptive learning rate to 0.0 weight decay parameter. + caution: Apply caution. + """ + + def __init__( + self, + params: ParamsT, + lr: float = 1e-3, + bias_correction: bool = True, + betas: Tuple[float, float] = (0.9, 0.999), + eps: float = 1e-6, + weight_decay: float = 0.01, + grad_averaging: bool = True, + max_grad_norm: Optional[float] = 1.0, + trust_clip: bool = False, + always_adapt: bool = False, + caution: bool = False, + ): + defaults = dict( + lr=lr, + bias_correction=bias_correction, + betas=betas, + eps=eps, + weight_decay=weight_decay, + grad_averaging=grad_averaging, + max_grad_norm=max_grad_norm, + trust_clip=trust_clip, + always_adapt=always_adapt, + caution=caution, + ) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('caution', False) + + def _get_clip_grad_norm(self): + max_grad_norm = self.defaults['max_grad_norm'] + if max_grad_norm is None: + return None + + norms = [] + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.is_sparse: + raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instead.') + norms.append(torch.linalg.vector_norm(grad)) + global_norm = torch.linalg.vector_norm(torch.stack(norms)) + clip_global_norm = (global_norm / max_grad_norm).clamp_(min=1.0) + return clip_global_norm + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + clip_grad_norm = self._get_clip_grad_norm() # None if disabled + + for group in self.param_groups: + bias_correction = 1 if group['bias_correction'] else 0 + beta1, beta2 = group['betas'] + grad_averaging = 1 if group['grad_averaging'] else 0 + beta3 = 1 - beta1 if grad_averaging else 1.0 + + # assume same step across group now to simplify things + # per parameter step can be easily support by making it tensor, or pass list into kernel + if 'step' in group: + group['step'] += 1 + else: + group['step'] = 1 + + if bias_correction: + bias_correction1 = 1 - beta1 ** group['step'] + bias_correction2 = 1 - beta2 ** group['step'] + else: + bias_correction1, bias_correction2 = 1.0, 1.0 + + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + + if clip_grad_norm is not None: + grad.div_(clip_grad_norm) + + state = self.state[p] + + # State initialization + if len(state) == 0: + # Exponential moving average of gradient valuesa + state['exp_avg'] = torch.zeros_like(p) + # Exponential moving average of squared gradient values + state['exp_avg_sq'] = torch.zeros_like(p) + + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + + # Decay the first and second moment running average coefficient + exp_avg.mul_(beta1).add_(grad, alpha=beta3) # m_t + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # v_t + + denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + update = (exp_avg / bias_correction1).div_(denom) + + if group['caution']: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + mask = (update * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + update.mul_(mask) + + weight_decay = group['weight_decay'] + if weight_decay != 0: + update.add_(p, alpha=weight_decay) + + if weight_decay != 0 or group['always_adapt']: + # Layer-wise LR adaptation. By default, skip adaptation on parameters that are + # excluded from weight decay, unless always_adapt == True, then always enabled. + w_norm = p.norm(2.0) + g_norm = update.norm(2.0) + trust_ratio = w_norm / g_norm + # FIXME nested where required since logical and/or not working in PT XLA + # Set the ratio to 1.0 (no change) if either weight norm or grad norm is zero + trust_ratio = torch.where( + w_norm > 0, + torch.where(g_norm > 0, trust_ratio, 1.0), + 1.0, + ) + if group['trust_clip']: + # LAMBC trust clipping, upper bound fixed at one + trust_ratio = torch.clamp(trust_ratio, max=1.0) + update.mul_(trust_ratio) + + p.add_(update, alpha=-group['lr']) + + return loss diff --git a/pytorch-image-models/timm/optim/laprop.py b/pytorch-image-models/timm/optim/laprop.py new file mode 100644 index 0000000000000000000000000000000000000000..a17c81e6ad4c06aaaf8dc093861b80d8b1bd0d92 --- /dev/null +++ b/pytorch-image-models/timm/optim/laprop.py @@ -0,0 +1,121 @@ +""" PyTorch impl of LaProp optimizer + +Code simplified from https://github.com/Z-T-WANG/LaProp-Optimizer, MIT License + +Paper: LaProp: Separating Momentum and Adaptivity in Adam, https://arxiv.org/abs/2002.04839 + +@article{ziyin2020laprop, + title={LaProp: a Better Way to Combine Momentum with Adaptive Gradient}, + author={Ziyin, Liu and Wang, Zhikang T and Ueda, Masahito}, + journal={arXiv preprint arXiv:2002.04839}, + year={2020} +} + +""" +from typing import Tuple + +from torch.optim import Optimizer +import torch + +from ._types import ParamsT + + +class LaProp(Optimizer): + """ LaProp Optimizer + + Paper: LaProp: Separating Momentum and Adaptivity in Adam, https://arxiv.org/abs/2002.04839 + """ + def __init__( + self, + params: ParamsT, + lr: float = 4e-4, + betas: Tuple[float, float] = (0.9, 0.999), + eps: float = 1e-15, + weight_decay: float = 0., + caution: bool = False, + ): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + caution=caution, + ) + super(LaProp, self).__init__(params, defaults) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.is_sparse: + raise RuntimeError('LaProp does not support sparse gradients') + + state = self.state[p] + + # State initialization + if len(state) == 0: + state['step'] = 0 + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p) + # Exponential moving average of learning rates + state['exp_avg_lr_1'] = 0. + state['exp_avg_lr_2'] = 0. + # Exponential moving average of squared gradient values + state['exp_avg_sq'] = torch.zeros_like(p) + + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + beta1, beta2 = group['betas'] + + state['step'] += 1 + one_minus_beta2 = 1 - beta2 + one_minus_beta1 = 1 - beta1 + + # Decay the first and second moment running average coefficient + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=one_minus_beta2) + + state['exp_avg_lr_1'] = state['exp_avg_lr_1'] * beta1 + one_minus_beta1 * group['lr'] + state['exp_avg_lr_2'] = state['exp_avg_lr_2'] * beta2 + one_minus_beta2 + + # 1 - beta1 ** state['step'] + bias_correction1 = state['exp_avg_lr_1'] / group['lr'] if group['lr'] != 0. else 1. + bias_correction2 = state['exp_avg_lr_2'] + step_size = 1 / bias_correction1 + + denom = exp_avg_sq.div(bias_correction2).sqrt_().add_(group['eps']) + step_of_this_grad = grad / denom + exp_avg.mul_(beta1).add_(step_of_this_grad, alpha=group['lr'] * one_minus_beta1) + + if group['caution']: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + mask = (exp_avg * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + exp_avg = exp_avg * mask + + p.add_(exp_avg, alpha=-step_size) + + if group['weight_decay'] != 0: + p.add_(p, alpha=-(group['lr'] * group['weight_decay'])) + + return loss \ No newline at end of file diff --git a/pytorch-image-models/timm/optim/lars.py b/pytorch-image-models/timm/optim/lars.py new file mode 100644 index 0000000000000000000000000000000000000000..d49efc6d0ef6a20669f79f40696c460347b03421 --- /dev/null +++ b/pytorch-image-models/timm/optim/lars.py @@ -0,0 +1,133 @@ +""" PyTorch LARS / LARC Optimizer + +An implementation of LARS (SGD) + LARC in PyTorch + +Based on: + * PyTorch SGD: https://github.com/pytorch/pytorch/blob/1.7/torch/optim/sgd.py#L100 + * NVIDIA APEX LARC: https://github.com/NVIDIA/apex/blob/master/apex/parallel/LARC.py + +Additional cleanup and modifications to properly support PyTorch XLA. + +Copyright 2021 Ross Wightman +""" +import torch +from torch.optim.optimizer import Optimizer + + +class Lars(Optimizer): + """ LARS for PyTorch + + Paper: `Large batch training of Convolutional Networks` - https://arxiv.org/pdf/1708.03888.pdf + + Args: + params (iterable): iterable of parameters to optimize or dicts defining parameter groups. + lr (float, optional): learning rate (default: 1.0). + momentum (float, optional): momentum factor (default: 0) + weight_decay (float, optional): weight decay (L2 penalty) (default: 0) + dampening (float, optional): dampening for momentum (default: 0) + nesterov (bool, optional): enables Nesterov momentum (default: False) + trust_coeff (float): trust coefficient for computing adaptive lr / trust_ratio (default: 0.001) + eps (float): eps for division denominator (default: 1e-8) + trust_clip (bool): enable LARC trust ratio clipping (default: False) + always_adapt (bool): always apply LARS LR adapt, otherwise only when group weight_decay != 0 (default: False) + """ + + def __init__( + self, + params, + lr=1.0, + momentum=0, + dampening=0, + weight_decay=0, + nesterov=False, + trust_coeff=0.001, + eps=1e-8, + trust_clip=False, + always_adapt=False, + ): + if lr < 0.0: + raise ValueError(f"Invalid learning rate: {lr}") + if momentum < 0.0: + raise ValueError(f"Invalid momentum value: {momentum}") + if weight_decay < 0.0: + raise ValueError(f"Invalid weight_decay value: {weight_decay}") + if nesterov and (momentum <= 0 or dampening != 0): + raise ValueError("Nesterov momentum requires a momentum and zero dampening") + + defaults = dict( + lr=lr, + momentum=momentum, + dampening=dampening, + weight_decay=weight_decay, + nesterov=nesterov, + trust_coeff=trust_coeff, + eps=eps, + trust_clip=trust_clip, + always_adapt=always_adapt, + ) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault("nesterov", False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Args: + closure (callable, optional): A closure that reevaluates the model and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + weight_decay = group['weight_decay'] + momentum = group['momentum'] + dampening = group['dampening'] + nesterov = group['nesterov'] + trust_coeff = group['trust_coeff'] + eps = group['eps'] + + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + + # apply LARS LR adaptation, LARC clipping, weight decay + # ref: https://github.com/NVIDIA/apex/blob/master/apex/parallel/LARC.py + if weight_decay != 0 or group['always_adapt']: + w_norm = p.norm(2.0) + g_norm = grad.norm(2.0) + trust_ratio = trust_coeff * w_norm / (g_norm + w_norm * weight_decay + eps) + # FIXME nested where required since logical and/or not working in PT XLA + # Set the ratio to 1.0 (no change) if either weight norm or grad norm is zero + trust_ratio = torch.where( + w_norm > 0, + torch.where(g_norm > 0, trust_ratio, 1.0), + 1.0, + ) + if group['trust_clip']: + trust_ratio = torch.clamp(trust_ratio / group['lr'], max=1.0) + grad.add_(p, alpha=weight_decay) + grad.mul_(trust_ratio) + + # apply SGD update https://github.com/pytorch/pytorch/blob/1.7/torch/optim/sgd.py#L100 + if momentum != 0: + param_state = self.state[p] + if 'momentum_buffer' not in param_state: + buf = param_state['momentum_buffer'] = torch.clone(grad).detach() + else: + buf = param_state['momentum_buffer'] + buf.mul_(momentum).add_(grad, alpha=1. - dampening) + if nesterov: + grad = grad.add(buf, alpha=momentum) + else: + grad = buf + + p.add_(grad, alpha=-group['lr']) + + return loss \ No newline at end of file diff --git a/pytorch-image-models/timm/optim/lion.py b/pytorch-image-models/timm/optim/lion.py new file mode 100644 index 0000000000000000000000000000000000000000..186072320301b7855486f12c1c8f61b1b36c49cd --- /dev/null +++ b/pytorch-image-models/timm/optim/lion.py @@ -0,0 +1,253 @@ +""" Lion Optimizer +Paper: `Symbolic Discovery of Optimization Algorithms` - https://arxiv.org/abs/2302.06675 +Original Impl: https://github.com/google/automl/tree/master/lion +""" +# Copyright 2023 Google Research. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +from typing import List, Optional, Tuple + +import torch +from torch.optim.optimizer import Optimizer + +from ._types import ParamsT + + +class Lion(Optimizer): + r"""Implements Lion algorithm.""" + + def __init__( + self, + params: ParamsT, + lr: float = 1e-4, + betas: Tuple[float, float] = (0.9, 0.99), + weight_decay: float = 0.0, + caution: bool = False, + maximize: bool = False, + foreach: Optional[bool] = None, + ): + """Initialize the hyperparameters. + + Args: + params: iterable of parameters to optimize or dicts defining parameter groups + lr: learning rate + betas: coefficients used for computing running averages of gradient and its square + weight_decay: weight decay coefficient + caution: apply caution + """ + + if not 0.0 <= lr: + raise ValueError('Invalid learning rate: {}'.format(lr)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) + defaults = dict( + lr=lr, + betas=betas, + weight_decay=weight_decay, + caution=caution, + foreach=foreach, + maximize=maximize, + ) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('caution', False) + group.setdefault('maximize', False) + group.setdefault('foreach', None) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Args: + closure: A closure that reevaluates the model and returns the loss. + + Returns: + the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad = [] + grads = [] + exp_avgs = [] + beta1, beta2 = group['betas'] + + for p in group['params']: + if p.grad is None: + continue + params_with_grad.append(p) + if p.grad.is_sparse: + raise RuntimeError('Lion does not support sparse gradients') + grads.append(p.grad) + + state = self.state[p] + + # State initialization + if len(state) == 0: + state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) + + exp_avgs.append(state['exp_avg']) + + lion( + params_with_grad, + grads, + exp_avgs, + beta1=beta1, + beta2=beta2, + lr=group['lr'], + weight_decay=group['weight_decay'], + caution=group['caution'], + maximize=group['maximize'], + foreach=group['foreach'], + ) + + return loss + + +def lion( + params: List[torch.Tensor], + grads: List[torch.Tensor], + exp_avgs: List[torch.Tensor], + # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 + # setting this as kwarg for now as functional API is compiled by torch/distributed/optim + maximize: bool = False, + foreach: bool = None, + *, + beta1: float, + beta2: float, + lr: float, + weight_decay: float, + caution: bool, +): + r"""Functional API that performs Lion algorithm computation. + """ + if foreach is None: + try: + # cannot do foreach if this overload doesn't exist when caution enabled + foreach = not caution or 'Scalar' in torch.ops.aten._foreach_maximum_.overloads() + except: + foreach = False + + if foreach and torch.jit.is_scripting(): + raise RuntimeError('torch.jit.script not supported with foreach optimizers') + + if foreach and not torch.jit.is_scripting(): + func = _multi_tensor_lion + else: + func = _single_tensor_lion + + func( + params, + grads, + exp_avgs, + beta1=beta1, + beta2=beta2, + lr=lr, + weight_decay=weight_decay, + caution=caution, + maximize=maximize, + ) + + +def _single_tensor_lion( + params: List[torch.Tensor], + grads: List[torch.Tensor], + exp_avgs: List[torch.Tensor], + *, + beta1: float, + beta2: float, + lr: float, + weight_decay: float, + caution: bool, + maximize: bool, +): + for i, param in enumerate(params): + grad = grads[i] if not maximize else -grads[i] + exp_avg = exp_avgs[i] + + if torch.is_complex(param): + grad = torch.view_as_real(grad) + exp_avg = torch.view_as_real(exp_avg) + param = torch.view_as_real(param) + + # Perform stepweight decay + param.mul_(1 - lr * weight_decay) + + # Weight update + update = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1).sign_() + + if caution: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + mask = (update * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + update.mul_(mask) + + param.add_(update, alpha=-lr) + + # Decay the momentum running average coefficient + exp_avg.lerp_(grad, 1 - beta2) + + +def _multi_tensor_lion( + params: List[torch.Tensor], + grads: List[torch.Tensor], + exp_avgs: List[torch.Tensor], + *, + beta1: float, + beta2: float, + lr: float, + weight_decay: float, + caution: bool, + maximize: bool, +): + if len(params) == 0: + return + + if maximize: + grads = torch._foreach_neg(tuple(grads)) # type: ignore[assignment] + + grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads] + exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs] + params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params] + + # Perform stepweight decay + torch._foreach_mul_(params, 1 - lr * weight_decay) + + # Weight update + updates = torch._foreach_mul(exp_avgs, beta1) + torch._foreach_add_(updates, grads, alpha=1 - beta1) + updates = [u.sign_() for u in updates] + + if caution: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + masks = torch._foreach_mul(updates, grads) + masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)] + mask_scale = [m.mean() for m in masks] + torch._foreach_maximum_(mask_scale, 1e-3) + torch._foreach_div_(masks, mask_scale) + torch._foreach_mul_(updates, masks) + + torch._foreach_add_(params, updates, alpha=-lr) + + # Decay the momentum running average coefficient + torch._foreach_mul_(exp_avgs, beta2) + torch._foreach_add_(exp_avgs, grads, alpha=1 - beta2) diff --git a/pytorch-image-models/timm/optim/lookahead.py b/pytorch-image-models/timm/optim/lookahead.py new file mode 100644 index 0000000000000000000000000000000000000000..1c0f1c91d8b69f329205de68e7d8e22126c9f0e0 --- /dev/null +++ b/pytorch-image-models/timm/optim/lookahead.py @@ -0,0 +1,66 @@ +""" Lookahead Optimizer Wrapper. +Implementation modified from: https://github.com/alphadl/lookahead.pytorch +Paper: `Lookahead Optimizer: k steps forward, 1 step back` - https://arxiv.org/abs/1907.08610 + +Hacked together by / Copyright 2020 Ross Wightman +""" +from collections import OrderedDict +from typing import Callable, Dict + +import torch +from torch.optim.optimizer import Optimizer +from collections import defaultdict + + +class Lookahead(Optimizer): + def __init__(self, base_optimizer, alpha=0.5, k=6): + # NOTE super().__init__() not called on purpose + self._optimizer_step_pre_hooks: Dict[int, Callable] = OrderedDict() + self._optimizer_step_post_hooks: Dict[int, Callable] = OrderedDict() + if not 0.0 <= alpha <= 1.0: + raise ValueError(f'Invalid slow update rate: {alpha}') + if not 1 <= k: + raise ValueError(f'Invalid lookahead steps: {k}') + defaults = dict(lookahead_alpha=alpha, lookahead_k=k, lookahead_step=0) + self._base_optimizer = base_optimizer + self.param_groups = base_optimizer.param_groups + self.defaults = base_optimizer.defaults + self.defaults.update(defaults) + self.state = defaultdict(dict) + # manually add our defaults to the param groups + for name, default in defaults.items(): + for group in self._base_optimizer.param_groups: + group.setdefault(name, default) + + @torch.no_grad() + def update_slow(self, group): + for fast_p in group["params"]: + if fast_p.grad is None: + continue + param_state = self._base_optimizer.state[fast_p] + if 'lookahead_slow_buff' not in param_state: + param_state['lookahead_slow_buff'] = torch.empty_like(fast_p) + param_state['lookahead_slow_buff'].copy_(fast_p) + slow = param_state['lookahead_slow_buff'] + slow.add_(fast_p - slow, alpha=group['lookahead_alpha']) + fast_p.copy_(slow) + + def sync_lookahead(self): + for group in self._base_optimizer.param_groups: + self.update_slow(group) + + @torch.no_grad() + def step(self, closure=None): + loss = self._base_optimizer.step(closure) + for group in self._base_optimizer.param_groups: + group['lookahead_step'] += 1 + if group['lookahead_step'] % group['lookahead_k'] == 0: + self.update_slow(group) + return loss + + def state_dict(self): + return self._base_optimizer.state_dict() + + def load_state_dict(self, state_dict): + self._base_optimizer.load_state_dict(state_dict) + self.param_groups = self._base_optimizer.param_groups diff --git a/pytorch-image-models/timm/optim/madgrad.py b/pytorch-image-models/timm/optim/madgrad.py new file mode 100644 index 0000000000000000000000000000000000000000..8e449dce3d6a530a343b8448de5a640cb4e9f8d6 --- /dev/null +++ b/pytorch-image-models/timm/optim/madgrad.py @@ -0,0 +1,189 @@ +""" PyTorch MADGRAD optimizer + +MADGRAD: https://arxiv.org/abs/2101.11075 + +Code from: https://github.com/facebookresearch/madgrad +""" +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. + +import math +from typing import TYPE_CHECKING, Any, Callable, Optional + +import torch +import torch.optim + +if TYPE_CHECKING: + from torch.optim.optimizer import _params_t +else: + _params_t = Any + + +class MADGRAD(torch.optim.Optimizer): + """ + MADGRAD_: A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic + Optimization. + + .. _MADGRAD: https://arxiv.org/abs/2101.11075 + + MADGRAD is a general purpose optimizer that can be used in place of SGD or + Adam may converge faster and generalize better. Currently GPU-only. + Typically, the same learning rate schedule that is used for SGD or Adam may + be used. The overall learning rate is not comparable to either method and + should be determined by a hyper-parameter sweep. + + MADGRAD requires less weight decay than other methods, often as little as + zero. Momentum values used for SGD or Adam's beta1 should work here also. + + On sparse problems both weight_decay and momentum should be set to 0. + + Arguments: + params (iterable): + Iterable of parameters to optimize or dicts defining parameter groups. + lr (float): + Learning rate (default: 1e-2). + momentum (float): + Momentum value in the range [0,1) (default: 0.9). + weight_decay (float): + Weight decay, i.e. a L2 penalty (default: 0). + eps (float): + Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-6). + """ + + def __init__( + self, + params: _params_t, + lr: float = 1e-2, + momentum: float = 0.9, + weight_decay: float = 0, + eps: float = 1e-6, + decoupled_decay: bool = False, + ): + if momentum < 0 or momentum >= 1: + raise ValueError(f"Momentum {momentum} must be in the range [0,1]") + if lr <= 0: + raise ValueError(f"Learning rate {lr} must be positive") + if weight_decay < 0: + raise ValueError(f"Weight decay {weight_decay} must be non-negative") + if eps < 0: + raise ValueError(f"Eps must be non-negative") + + defaults = dict( + lr=lr, + eps=eps, + momentum=momentum, + weight_decay=weight_decay, + decoupled_decay=decoupled_decay, + ) + super().__init__(params, defaults) + + @property + def supports_memory_efficient_fp16(self) -> bool: + return False + + @property + def supports_flat_params(self) -> bool: + return True + + @torch.no_grad() + def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + eps = group['eps'] + lr = group['lr'] + eps + weight_decay = group['weight_decay'] + momentum = group['momentum'] + ck = 1 - momentum + + for p in group["params"]: + if p.grad is None: + continue + grad = p.grad + if momentum != 0.0 and grad.is_sparse: + raise RuntimeError("momentum != 0 is not compatible with sparse gradients") + + state = self.state[p] + if len(state) == 0: + state['step'] = 0 + state['grad_sum_sq'] = torch.zeros_like(p) + state['s'] = torch.zeros_like(p) + if momentum != 0: + state['x0'] = torch.clone(p).detach() + + state['step'] += 1 + grad_sum_sq = state['grad_sum_sq'] + s = state['s'] + lamb = lr * math.sqrt(state['step']) + + # Apply weight decay + if weight_decay != 0: + if group['decoupled_decay']: + p.mul_(1.0 - group['lr'] * weight_decay) + else: + if grad.is_sparse: + raise RuntimeError("weight_decay option is not compatible with sparse gradients") + grad.add_(p, alpha=weight_decay) + + if grad.is_sparse: + grad = grad.coalesce() + grad_val = grad._values() + + p_masked = p.sparse_mask(grad) + grad_sum_sq_masked = grad_sum_sq.sparse_mask(grad) + s_masked = s.sparse_mask(grad) + + # Compute x_0 from other known quantities + rms_masked_vals = grad_sum_sq_masked._values().pow(1 / 3).add_(eps) + x0_masked_vals = p_masked._values().addcdiv(s_masked._values(), rms_masked_vals, value=1) + + # Dense + sparse op + grad_sq = grad * grad + grad_sum_sq.add_(grad_sq, alpha=lamb) + grad_sum_sq_masked.add_(grad_sq, alpha=lamb) + + rms_masked_vals = grad_sum_sq_masked._values().pow_(1 / 3).add_(eps) + + s.add_(grad, alpha=lamb) + s_masked._values().add_(grad_val, alpha=lamb) + + # update masked copy of p + p_kp1_masked_vals = x0_masked_vals.addcdiv(s_masked._values(), rms_masked_vals, value=-1) + # Copy updated masked p to dense p using an add operation + p_masked._values().add_(p_kp1_masked_vals, alpha=-1) + p.add_(p_masked, alpha=-1) + else: + if momentum == 0: + # Compute x_0 from other known quantities + rms = grad_sum_sq.pow(1 / 3).add_(eps) + x0 = p.addcdiv(s, rms, value=1) + else: + x0 = state['x0'] + + # Accumulate second moments + grad_sum_sq.addcmul_(grad, grad, value=lamb) + rms = grad_sum_sq.pow(1 / 3).add_(eps) + + # Update s + s.add_(grad, alpha=lamb) + + # Step + if momentum == 0: + p.copy_(x0.addcdiv(s, rms, value=-1)) + else: + z = x0.addcdiv(s, rms, value=-1) + + # p is a moving average of z + p.mul_(1 - ck).add_(z, alpha=ck) + + return loss diff --git a/pytorch-image-models/timm/optim/mars.py b/pytorch-image-models/timm/optim/mars.py new file mode 100644 index 0000000000000000000000000000000000000000..11b1cf2063cee593d4636de53310cf6d2ab60634 --- /dev/null +++ b/pytorch-image-models/timm/optim/mars.py @@ -0,0 +1,204 @@ +""" PyTorch MARS Optimizer + +Code simplified from https://github.com/AGI-Arena/MARS + +Paper: MARS: Unleashing the Power of Variance Reduction for Training Large Models - https://arxiv.org/abs/2411.10438 + +@article{yuan2024mars, + title={MARS: Unleashing the Power of Variance Reduction for Training Large Models}, + author={Yuan, Huizhuo and Liu, Yifeng and Wu, Shuang and Zhou, Xun and Gu, Quanquan}, + journal={arXiv preprint arXiv:2411.10438}, + year={2024} +} +""" +# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates +# SPDX-License-Identifier: Apache-2.0 +import math +from typing import Optional, Tuple + +import torch +from torch.optim.optimizer import Optimizer + +from ._types import ParamsT + + +def _mars_single_tensor_step( + p: torch.Tensor, + grad: torch.Tensor, + exp_avg: torch.Tensor, + exp_avg_sq: torch.Tensor, + lr: float, + weight_decay: float, + beta1: float, + beta2: float, + last_grad: torch.Tensor, + eps: float, + step: int, + gamma: float, + mars_type: str, + is_grad_2d: bool, + optimize_1d: bool, + lr_1d_factor: bool, + betas_1d: Tuple[float, float], + caution: bool, +): + # optimize_1d ==> use MARS for 1d param, else use AdamW + if optimize_1d or is_grad_2d: + one_minus_beta1 = 1. - beta1 + if step == 1: + # this is a timm addition, making first step more consistent when no grad history, otherwise tests fail + c_t = grad + else: + c_t = (grad - last_grad).mul_(gamma * (beta1 / one_minus_beta1)).add_(grad) + c_t_norm = torch.norm(c_t) + if c_t_norm > 1.: + c_t = c_t / c_t_norm + exp_avg.mul_(beta1).add_(c_t, alpha=one_minus_beta1) + if caution: + mask = (exp_avg * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + exp_avg = exp_avg * mask + if mars_type == "adamw": + exp_avg_sq.mul_(beta2).addcmul_(c_t, c_t, value=1. - beta2) + bias_correction1 = 1.0 - beta1 ** step + bias_correction2 = 1.0 - beta2 ** step + denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) + update = p * weight_decay + (exp_avg / bias_correction1).div_(denom) + elif mars_type == "lion": + update = p * weight_decay + exp_avg.sign() + else: + assert False + p.add_(update, alpha=-lr) + else: + beta1_1d, beta2_1d = betas_1d + exp_avg.mul_(beta1_1d).add_(grad, alpha=1. - beta1_1d) + exp_avg_sq.mul_(beta2_1d).addcmul_(grad, grad, value=1. - beta2_1d) + bias_correction1 = 1.0 - beta1_1d ** step + bias_correction2 = 1.0 - beta2_1d ** step + denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) + if caution: + mask = (exp_avg * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + exp_avg = exp_avg * mask + update = p * weight_decay + (exp_avg / bias_correction1).div_(denom) + p.add_(update, alpha=-(lr * lr_1d_factor)) + return exp_avg, exp_avg_sq + + +class Mars(Optimizer): + """ MARS Optimizer + + Paper: MARS: Unleashing the Power of Variance Reduction for Training Large Models + https://arxiv.org/abs/2411.10438 + + """ + def __init__( + self, + params: ParamsT, + lr: float = 3e-3, + betas: Tuple[float, float] = (0.9, 0.99), + eps: float = 1e-8, + weight_decay: float = 0., + gamma: float = 0.025, + mars_type: str = "adamw", + optimize_1d: bool = False, + lr_1d_factor: float = 1.0, + betas_1d: Optional[Tuple[float, float]] = None, + caution: bool = False + ): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + assert mars_type in ["adamw", "lion"], "MARS type not supported" + + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + mars_type=mars_type, + gamma=gamma, + optimize_1d=optimize_1d, + lr_1d_factor=lr_1d_factor, + betas_1d=betas_1d or betas, + caution=caution, + ) + super(Mars, self).__init__(params, defaults) + + def __setstate__(self, state): + super(Mars, self).__setstate__(state) + for group in self.param_groups: + group.setdefault('caution', False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.is_sparse: + raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') + + state = self.state[p] + # State initialization + if len(state) <= 1: + state['step'] = 0 + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p) + # Last Gradient + state['last_grad'] = torch.zeros_like(p) + # Exponential moving average of squared gradient values + state['exp_avg_sq'] = torch.zeros_like(p) + + state['step'] += 1 + step = state['step'] + exp_avg = state['exp_avg'] + exp_avg_sq = state['exp_avg_sq'] + last_grad = state['last_grad'] + lr = group['lr'] + wd = group['weight_decay'] + beta1, beta2 = group['betas'] + is_grad_2d = grad.ndim >= 2 + + # FIXME add multi-tensor (if usage warrants), make more standard + _mars_single_tensor_step( + p, + grad, + exp_avg, + exp_avg_sq, + lr, + wd, + beta1, + beta2, + last_grad, + group['eps'], + step, + group['gamma'], + mars_type=group['mars_type'], + is_grad_2d=is_grad_2d, + optimize_1d=group['optimize_1d'], + lr_1d_factor=group['lr_1d_factor'], + betas_1d=group['betas_1d'], + caution=group['caution'], + ) + + state['last_grad'] = grad + + return loss diff --git a/pytorch-image-models/timm/optim/nadam.py b/pytorch-image-models/timm/optim/nadam.py new file mode 100644 index 0000000000000000000000000000000000000000..46f6150bcb0cbe04b8eabc524283f4e9ce60a3a0 --- /dev/null +++ b/pytorch-image-models/timm/optim/nadam.py @@ -0,0 +1,106 @@ +import math + +import torch +from torch.optim.optimizer import Optimizer + + +class NAdamLegacy(Optimizer): + """Implements Nadam algorithm (a variant of Adam based on Nesterov momentum). + + NOTE: This impl has been deprecated in favour of torch.optim.NAdam and remains as a reference + + It has been proposed in `Incorporating Nesterov Momentum into Adam`__. + + Arguments: + params (iterable): iterable of parameters to optimize or dicts defining + parameter groups + lr (float, optional): learning rate (default: 2e-3) + betas (Tuple[float, float], optional): coefficients used for computing + running averages of gradient and its square + eps (float, optional): term added to the denominator to improve + numerical stability (default: 1e-8) + weight_decay (float, optional): weight decay (L2 penalty) (default: 0) + schedule_decay (float, optional): momentum schedule decay (default: 4e-3) + + __ http://cs229.stanford.edu/proj2015/054_report.pdf + __ http://www.cs.toronto.edu/~fritz/absps/momentum.pdf + + Originally taken from: https://github.com/pytorch/pytorch/pull/1408 + NOTE: Has potential issues but does work well on some problems. + """ + + def __init__( + self, + params, + lr=2e-3, + betas=(0.9, 0.999), + eps=1e-8, + weight_decay=0, + schedule_decay=4e-3, + ): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + schedule_decay=schedule_decay, + ) + super(NAdamLegacy, self).__init__(params, defaults) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + state = self.state[p] + + # State initialization + if len(state) == 0: + state['step'] = 0 + state['m_schedule'] = 1. + state['exp_avg'] = torch.zeros_like(p) + state['exp_avg_sq'] = torch.zeros_like(p) + + # Warming momentum schedule + m_schedule = state['m_schedule'] + schedule_decay = group['schedule_decay'] + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + beta1, beta2 = group['betas'] + eps = group['eps'] + state['step'] += 1 + t = state['step'] + bias_correction2 = 1 - beta2 ** t + + if group['weight_decay'] != 0: + grad = grad.add(p, alpha=group['weight_decay']) + + momentum_cache_t = beta1 * (1. - 0.5 * (0.96 ** (t * schedule_decay))) + momentum_cache_t_1 = beta1 * (1. - 0.5 * (0.96 ** ((t + 1) * schedule_decay))) + m_schedule_new = m_schedule * momentum_cache_t + m_schedule_next = m_schedule * momentum_cache_t * momentum_cache_t_1 + state['m_schedule'] = m_schedule_new + + # Decay the first and second moment running average coefficient + exp_avg.mul_(beta1).add_(grad, alpha=1. - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1. - beta2) + + denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) + p.addcdiv_(grad, denom, value=-group['lr'] * (1. - momentum_cache_t) / (1. - m_schedule_new)) + p.addcdiv_(exp_avg, denom, value=-group['lr'] * momentum_cache_t_1 / (1. - m_schedule_next)) + + return loss diff --git a/pytorch-image-models/timm/optim/nadamw.py b/pytorch-image-models/timm/optim/nadamw.py new file mode 100644 index 0000000000000000000000000000000000000000..d9933026c698b5e24f2cce41536662076adc45f3 --- /dev/null +++ b/pytorch-image-models/timm/optim/nadamw.py @@ -0,0 +1,393 @@ +""" NAdamW Optimizer + +Based on simplified algorithm in https://github.com/mlcommons/algorithmic-efficiency/tree/main/baselines/nadamw + +Added multi-tensor (foreach) path. +""" +import math +from typing import List, Optional, Tuple + +import torch +from torch import Tensor + +from ._types import ParamsT + + +# Modified from github.com/pytorch/pytorch/blob/v1.12.1/torch/optim/adamw.py. +class NAdamW(torch.optim.Optimizer): + """ Implements NAdamW algorithm. + + See Table 1 in https://arxiv.org/abs/1910.05446 for the implementation of + the NAdam algorithm (there is also a comment in the code which highlights + the only difference of NAdamW and AdamW). + + For further details regarding the algorithm we refer to + - Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 + - On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ + + Args: + params: iterable of parameters to optimize or dicts defining parameter groups + lr: learning rate + betas: coefficients used for computing running averages of gradient and its square + eps: term added to the denominator to improve numerical stability + weight_decay: weight decay coefficient + caution: enable caution + """ + + def __init__( + self, + params: ParamsT, + lr: float = 1e-3, + betas: Tuple[float, float] = (0.9, 0.999), + eps: float = 1e-8, + weight_decay: float = 1e-2, + caution: bool = False, + maximize: bool = False, + foreach: Optional[bool] = None, + capturable: bool = False, + ): + if not 0.0 <= lr: + raise ValueError(f'Invalid learning rate: {lr}') + if not 0.0 <= eps: + raise ValueError(f'Invalid epsilon value: {eps}') + if not 0.0 <= betas[0] < 1.0: + raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') + if not 0.0 <= betas[1] < 1.0: + raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') + if not 0.0 <= weight_decay: + raise ValueError(f'Invalid weight_decay value: {weight_decay}') + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + caution=caution, + foreach=foreach, + maximize=maximize, + capturable=capturable, + ) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + state_values = list(self.state.values()) + step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step']) + if not step_is_tensor: + for s in state_values: + s['step'] = torch.tensor(float(s['step'])) + for group in self.param_groups: + group.setdefault('caution', False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Args: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + self._cuda_graph_capture_health_check() + + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad = [] + grads = [] + exp_avgs = [] + exp_avg_sqs = [] + state_steps = [] + beta1, beta2 = group['betas'] + + for p in group['params']: + if p.grad is None: + continue + params_with_grad.append(p) + if p.grad.is_sparse: + raise RuntimeError('NAdamW does not support sparse gradients') + grads.append(p.grad) + + state = self.state[p] + + # State initialization + if len(state) == 0: + state['step'] = torch.tensor(0.) + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) + # Exponential moving average of squared gradient values + state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) + + exp_avgs.append(state['exp_avg']) + exp_avg_sqs.append(state['exp_avg_sq']) + state_steps.append(state['step']) + + nadamw( + params_with_grad, + grads, + exp_avgs, + exp_avg_sqs, + state_steps, + beta1=beta1, + beta2=beta2, + lr=group['lr'], + weight_decay=group['weight_decay'], + eps=group['eps'], + caution=group['caution'], + maximize=group['maximize'], + capturable=group['capturable'], + ) + + return loss + + +def nadamw( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + state_steps: List[Tensor], + foreach: Optional[bool] = None, + capturable: bool = False, + *, + beta1: float, + beta2: float, + lr: float, + weight_decay: float, + eps: float, + caution: bool, + maximize: bool, +) -> None: + r"""Functional API that performs NAdamW algorithm computation. + See NAdamW class for details. + """ + + if not all(isinstance(t, torch.Tensor) for t in state_steps): + raise RuntimeError( + 'API has changed, `state_steps` argument must contain a list of' + + ' singleton tensors') + + if foreach is None: + try: + # cannot do foreach if this overload doesn't exist when caution enabled + foreach = not caution or 'Scalar' in torch.ops.aten._foreach_maximum_.overloads() + except: + foreach = False + + if foreach and not torch.jit.is_scripting(): + func = _multi_tensor_nadamw + else: + func = _single_tensor_nadamw + + func( + params, + grads, + exp_avgs, + exp_avg_sqs, + state_steps, + beta1=beta1, + beta2=beta2, + lr=lr, + weight_decay=weight_decay, + eps=eps, + caution=caution, + maximize=maximize, + capturable=capturable, + ) + + +def _single_tensor_nadamw( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + state_steps: List[Tensor], + *, + beta1: float, + beta2: float, + lr: float, + weight_decay: float, + eps: float, + caution: bool, + maximize: bool, + capturable: bool +): + + for i, param in enumerate(params): + grad = grads[i] if not maximize else -grads[i] + exp_avg = exp_avgs[i] + exp_avg_sq = exp_avg_sqs[i] + step_t = state_steps[i] + + # Update step. + step_t += 1 + + # Perform stepweight decay. + param.mul_(1. - lr * weight_decay) + + # Decay the first and second moment running average coefficient. + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + + if capturable: + step = step_t + + # 1 - beta1 ** step can't be captured in a CUDA graph, even if step is a CUDA tensor + # (incurs "RuntimeError: CUDA error: operation not permitted when stream is capturing") + bias_correction1 = 1 - torch.pow(beta1, step) + bias_correction2 = 1 - torch.pow(beta2, step) + + step_size = lr / bias_correction1 + step_size_neg = step_size.neg() + + bias_correction2_sqrt = bias_correction2.sqrt() + + # Only difference between NAdamW and AdamW in this implementation. + # The official PyTorch implementation of NAdam uses a different algorithm. + exp_avg = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1) + + denom = (exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg)).add_(eps / step_size_neg) + + if caution: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + # FIXME not 100% sure if this remains capturable? + mask = (exp_avg * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + exp_avg.mul_(mask) + + param.addcdiv_(exp_avg, denom) + else: + step = step_t.item() + bias_correction1 = 1 - beta1 ** step + bias_correction2 = 1 - beta2 ** step + step_size = lr / bias_correction1 + bias_correction2_sqrt = math.sqrt(bias_correction2) + + # Apply Nesterov. Only difference between NAdamW and AdamW in this implementation. + # The official PyTorch implementation of NAdam uses a different algorithm. + exp_avg = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1) + denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps) + + if caution: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + mask = (exp_avg * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + exp_avg.mul_(mask) + + param.addcdiv_(exp_avg, denom, value=-step_size) + + +def _multi_tensor_nadamw( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + state_steps: List[Tensor], + *, + beta1: float, + beta2: float, + lr: float, + weight_decay: float, + eps: float, + caution: bool, + maximize: bool, + capturable: bool, +): + if len(params) == 0: + return + + if capturable: + assert all( + p.is_cuda and step.is_cuda for p, step in zip(params, state_steps) + ), "If capturable=True, params and state_steps must be CUDA tensors." + + if maximize: + grads = torch._foreach_neg(tuple(grads)) # type: ignore[assignment] + + grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads] + exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs] + exp_avg_sqs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avg_sqs] + params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params] + + # update steps + torch._foreach_add_(state_steps, 1) + + # Perform stepweight decay + torch._foreach_mul_(params, 1 - lr * weight_decay) + + # Decay the first and second moment running average coefficient + torch._foreach_mul_(exp_avgs, beta1) + torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) + + torch._foreach_mul_(exp_avg_sqs, beta2) + torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2) + + if capturable: + # TODO: use foreach_pow if/when foreach_pow is added + bias_correction1 = [torch.pow(beta1, step) for step in state_steps] + bias_correction2 = [torch.pow(beta2, step) for step in state_steps] + # foreach_sub doesn't allow a scalar as the first arg + torch._foreach_sub_(bias_correction1, 1) + torch._foreach_sub_(bias_correction2, 1) + torch._foreach_neg_(bias_correction1) + torch._foreach_neg_(bias_correction2) + + # foreach_div doesn't allow a scalar as the first arg + step_size = torch._foreach_div(bias_correction1, lr) + torch._foreach_reciprocal_(step_size) + torch._foreach_neg_(step_size) + + bias_correction2_sqrt = torch._foreach_sqrt(bias_correction2) + + # Only difference between NAdamW and AdamW in this implementation. + # The official PyTorch implementation of NAdam uses a different algorithm. + exp_avgs = torch._foreach_mul(exp_avgs, beta1) + torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) + + exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs) + torch._foreach_div_( + exp_avg_sq_sqrt, + torch._foreach_mul(bias_correction2_sqrt, step_size) + ) + eps_over_step_size = torch._foreach_div(step_size, eps) + torch._foreach_reciprocal_(eps_over_step_size) + denom = torch._foreach_add(exp_avg_sq_sqrt, eps_over_step_size) + + if caution: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + masks = torch._foreach_mul(exp_avgs, grads) + masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)] # capturable? + mask_scale = [m.mean() for m in masks] + torch._foreach_maximum_(mask_scale, 1e-3) + torch._foreach_div_(masks, mask_scale) + torch._foreach_mul_(exp_avgs, masks) + + torch._foreach_addcdiv_(params, exp_avgs, denom) + else: + bias_correction1 = [1 - beta1 ** step.item() for step in state_steps] + bias_correction2 = [1 - beta2 ** step.item() for step in state_steps] + + step_size = [(lr / bc) * -1 for bc in bias_correction1] + + bias_correction2_sqrt = [math.sqrt(bc) for bc in bias_correction2] + + # Apply Nesterov. Only difference between NAdamW and AdamW in this implementation. + # The official PyTorch implementation of NAdam uses a different algorithm. + exp_avgs = torch._foreach_mul(exp_avgs, beta1) + torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) + + exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs) + torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt) + denom = torch._foreach_add(exp_avg_sq_sqrt, eps) + + if caution: + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + masks = torch._foreach_mul(exp_avgs, grads) + masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)] + mask_scale = [m.mean() for m in masks] + torch._foreach_maximum_(mask_scale, 1e-3) + torch._foreach_div_(masks, mask_scale) + torch._foreach_mul_(exp_avgs, masks) + + torch._foreach_addcdiv_(params, exp_avgs, denom, step_size) diff --git a/pytorch-image-models/timm/optim/nvnovograd.py b/pytorch-image-models/timm/optim/nvnovograd.py new file mode 100644 index 0000000000000000000000000000000000000000..068e5aa2c1c9e88a3dcff406591b5adab8338e24 --- /dev/null +++ b/pytorch-image-models/timm/optim/nvnovograd.py @@ -0,0 +1,132 @@ +""" Nvidia NovoGrad Optimizer. +Original impl by Nvidia from Jasper example: + - https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechRecognition/Jasper +Paper: `Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks` + - https://arxiv.org/abs/1905.11286 +""" + +import torch +from torch.optim.optimizer import Optimizer +import math + + +class NvNovoGrad(Optimizer): + """ + Implements Novograd algorithm. + + Args: + params (iterable): iterable of parameters to optimize or dicts defining + parameter groups + lr (float, optional): learning rate (default: 1e-3) + betas (Tuple[float, float], optional): coefficients used for computing + running averages of gradient and its square (default: (0.95, 0.98)) + eps (float, optional): term added to the denominator to improve + numerical stability (default: 1e-8) + weight_decay (float, optional): weight decay (L2 penalty) (default: 0) + grad_averaging: gradient averaging + amsgrad (boolean, optional): whether to use the AMSGrad variant of this + algorithm from the paper `On the Convergence of Adam and Beyond`_ + (default: False) + """ + + def __init__( + self, + params, + lr=1e-3, + betas=(0.95, 0.98), + eps=1e-8, + weight_decay=0, + grad_averaging=False, + amsgrad=False, + ): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + grad_averaging=grad_averaging, + amsgrad=amsgrad, + ) + + super(NvNovoGrad, self).__init__(params, defaults) + + def __setstate__(self, state): + super(NvNovoGrad, self).__setstate__(state) + for group in self.param_groups: + group.setdefault('amsgrad', False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.is_sparse: + raise RuntimeError('Sparse gradients are not supported.') + amsgrad = group['amsgrad'] + + state = self.state[p] + + # State initialization + if len(state) == 0: + state['step'] = 0 + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p) + # Exponential moving average of squared gradient values + state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) + if amsgrad: + # Maintains max of all exp. moving avg. of sq. grad. values + state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) + + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + if amsgrad: + max_exp_avg_sq = state['max_exp_avg_sq'] + beta1, beta2 = group['betas'] + + state['step'] += 1 + + norm = torch.sum(torch.pow(grad, 2)) + + if exp_avg_sq == 0: + exp_avg_sq.copy_(norm) + else: + exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2) + + if amsgrad: + # Maintains the maximum of all 2nd moment running avg. till now + torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) + # Use the max. for normalizing running avg. of gradient + denom = max_exp_avg_sq.sqrt().add_(group['eps']) + else: + denom = exp_avg_sq.sqrt().add_(group['eps']) + + grad.div_(denom) + if group['weight_decay'] != 0: + grad.add_(p, alpha=group['weight_decay']) + if group['grad_averaging']: + grad.mul_(1 - beta1) + exp_avg.mul_(beta1).add_(grad) + + p.add_(exp_avg, alpha=-group['lr']) + + return loss diff --git a/pytorch-image-models/timm/optim/optim_factory.py b/pytorch-image-models/timm/optim/optim_factory.py new file mode 100644 index 0000000000000000000000000000000000000000..a4227a98482c0bb04d46e8282d9194f43f7457c9 --- /dev/null +++ b/pytorch-image-models/timm/optim/optim_factory.py @@ -0,0 +1,7 @@ +# lots of uses of these functions directly, ala 'import timm.optim.optim_factory as optim_factory', fun :/ + +from ._optim_factory import create_optimizer, create_optimizer_v2, optimizer_kwargs +from ._param_groups import param_groups_layer_decay, param_groups_weight_decay, group_parameters, _layer_map, _group + +import warnings +warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.optim", FutureWarning) diff --git a/pytorch-image-models/timm/optim/radam.py b/pytorch-image-models/timm/optim/radam.py new file mode 100644 index 0000000000000000000000000000000000000000..9b12b98a59e560779c5631b397cb71b285180660 --- /dev/null +++ b/pytorch-image-models/timm/optim/radam.py @@ -0,0 +1,105 @@ +"""RAdam Optimizer. +Implementation lifted from: https://github.com/LiyuanLucasLiu/RAdam +Paper: `On the Variance of the Adaptive Learning Rate and Beyond` - https://arxiv.org/abs/1908.03265 + +NOTE: This impl has been deprecated in favour of torch.optim.RAdam and remains as a reference +""" +import math +import torch +from torch.optim.optimizer import Optimizer + + +class RAdamLegacy(Optimizer): + """ PyTorch RAdam optimizer + + NOTE: This impl has been deprecated in favour of torch.optim.AdamW and remains as a reference + """ + def __init__( + self, + params, + lr=1e-3, + betas=(0.9, 0.999), + eps=1e-8, + weight_decay=0, + ): + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + buffer=[[None, None, None] for _ in range(10)] + ) + super(RAdamLegacy, self).__init__(params, defaults) + + def __setstate__(self, state): + super(RAdamLegacy, self).__setstate__(state) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + + for p in group['params']: + if p.grad is None: + continue + grad = p.grad.float() + if grad.is_sparse: + raise RuntimeError('RAdam does not support sparse gradients') + + p_fp32 = p.float() + + state = self.state[p] + + if len(state) == 0: + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p_fp32) + state['exp_avg_sq'] = torch.zeros_like(p_fp32) + else: + state['exp_avg'] = state['exp_avg'].type_as(p_fp32) + state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_fp32) + + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + beta1, beta2 = group['betas'] + + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + + state['step'] += 1 + buffered = group['buffer'][int(state['step'] % 10)] + if state['step'] == buffered[0]: + num_sma, step_size = buffered[1], buffered[2] + else: + buffered[0] = state['step'] + beta2_t = beta2 ** state['step'] + num_sma_max = 2 / (1 - beta2) - 1 + num_sma = num_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) + buffered[1] = num_sma + + # more conservative since it's an approximated value + if num_sma >= 5: + step_size = group['lr'] * math.sqrt( + (1 - beta2_t) * + (num_sma - 4) / (num_sma_max - 4) * + (num_sma - 2) / num_sma * + num_sma_max / (num_sma_max - 2)) / (1 - beta1 ** state['step']) + else: + step_size = group['lr'] / (1 - beta1 ** state['step']) + buffered[2] = step_size + + if group['weight_decay'] != 0: + p_fp32.add_(p_fp32, alpha=-group['weight_decay'] * group['lr']) + + # more conservative since it's an approximated value + if num_sma >= 5: + denom = exp_avg_sq.sqrt().add_(group['eps']) + p_fp32.addcdiv_(exp_avg, denom, value=-step_size) + else: + p_fp32.add_(exp_avg, alpha=-step_size) + + p.copy_(p_fp32) + + return loss diff --git a/pytorch-image-models/timm/optim/rmsprop_tf.py b/pytorch-image-models/timm/optim/rmsprop_tf.py new file mode 100644 index 0000000000000000000000000000000000000000..07b0279c857e2697d5f4c445dd51ff0e6e7fce29 --- /dev/null +++ b/pytorch-image-models/timm/optim/rmsprop_tf.py @@ -0,0 +1,169 @@ +""" RMSProp modified to behave like Tensorflow impl + +Originally cut & paste from PyTorch RMSProp +https://github.com/pytorch/pytorch/blob/063946d2b3f3f1e953a2a3b54e0b34f1393de295/torch/optim/rmsprop.py +Licensed under BSD-Clause 3 (ish), https://github.com/pytorch/pytorch/blob/master/LICENSE + +Modifications Copyright 2021 Ross Wightman +""" + +import torch +from torch.optim import Optimizer + +from ._types import ParamsT + + +class RMSpropTF(Optimizer): + """Implements RMSprop algorithm (TensorFlow style epsilon) + + NOTE: This is a direct cut-and-paste of PyTorch RMSprop with eps applied before sqrt + and a few other modifications to closer match Tensorflow for matching hyper-params. + + Noteworthy changes include: + 1. Epsilon applied inside square-root + 2. square_avg initialized to ones + 3. LR scaling of update accumulated in momentum buffer + + Proposed by G. Hinton in his + `course `_. + + The centered version first appears in `Generating Sequences + With Recurrent Neural Networks `_. + + Args: + params: iterable of parameters to optimize or dicts defining parameter groups + lr: learning rate + momentum: momentum factor + alpha: smoothing (decay) constant + eps: term added to the denominator to improve numerical stability + centered: if ``True``, compute the centered RMSProp, the gradient is normalized by an estimation of its variance + weight_decay: weight decay (L2 penalty) (default: 0) + decoupled_decay: decoupled weight decay as per https://arxiv.org/abs/1711.05101 + lr_in_momentum: learning rate scaling is included in the momentum buffer update as per defaults in Tensorflow + caution: apply caution + """ + + def __init__( + self, + params: ParamsT, + lr: float = 1e-2, + alpha: float = 0.9, + eps: float = 1e-10, + weight_decay: float = 0, + momentum: float = 0., + centered: bool = False, + decoupled_decay: bool = False, + lr_in_momentum: bool = True, + caution: bool = False, + ): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= momentum: + raise ValueError("Invalid momentum value: {}".format(momentum)) + if not 0.0 <= weight_decay: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + if not 0.0 <= alpha: + raise ValueError("Invalid alpha value: {}".format(alpha)) + + defaults = dict( + lr=lr, + momentum=momentum, + alpha=alpha, + eps=eps, + centered=centered, + weight_decay=weight_decay, + decoupled_decay=decoupled_decay, + lr_in_momentum=lr_in_momentum, + caution=caution, + ) + super(RMSpropTF, self).__init__(params, defaults) + + def __setstate__(self, state): + super(RMSpropTF, self).__setstate__(state) + for group in self.param_groups: + group.setdefault('momentum', 0) + group.setdefault('centered', False) + group.setdefault('caution', False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + if grad.is_sparse: + raise RuntimeError('RMSprop does not support sparse gradients') + state = self.state[p] + + # State initialization + if len(state) == 0: + state['step'] = 0 + state['square_avg'] = torch.ones_like(p) # PyTorch inits to zero + if group['momentum'] > 0: + state['momentum_buffer'] = torch.zeros_like(p) + if group['centered']: + state['grad_avg'] = torch.zeros_like(p) + + square_avg = state['square_avg'] + one_minus_alpha = 1. - group['alpha'] + + state['step'] += 1 + + if group['weight_decay'] != 0: + if group['decoupled_decay']: + p.mul_(1. - group['lr'] * group['weight_decay']) + else: + grad = grad.add(p, alpha=group['weight_decay']) + + # Tensorflow order of ops for updating squared avg + square_avg.add_(grad.pow(2) - square_avg, alpha=one_minus_alpha) + # square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha) # PyTorch original + + if group['centered']: + grad_avg = state['grad_avg'] + grad_avg.add_(grad - grad_avg, alpha=one_minus_alpha) + avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).add(group['eps']).sqrt_() # eps in sqrt + # grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha) # PyTorch original + else: + avg = square_avg.add(group['eps']).sqrt_() # eps moved in sqrt + + if group['momentum'] > 0: + buf = state['momentum_buffer'] + buf.mul_(group['momentum']) + + def _apply_caution(_m, _g): + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + mask = (_m * _g > 0).to(_g.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + return _m * mask + + if group['lr_in_momentum']: + # Tensorflow accumulates the LR scaling in the momentum buffer + buf.addcdiv_(grad, avg, value=group['lr']) + if group['caution']: + buf = _apply_caution(buf, grad) + p.add_(-buf) + else: + # PyTorch scales the param update by LR + buf.addcdiv_(grad, avg) + if group['caution']: + buf = _apply_caution(buf, grad) + p.add_(buf, alpha=-group['lr']) + else: + p.addcdiv_(grad, avg, value=-group['lr']) + + return loss diff --git a/pytorch-image-models/timm/optim/sgdp.py b/pytorch-image-models/timm/optim/sgdp.py new file mode 100644 index 0000000000000000000000000000000000000000..87b89f6f0b1aafd29982648422995102629bc28b --- /dev/null +++ b/pytorch-image-models/timm/optim/sgdp.py @@ -0,0 +1,87 @@ +""" +SGDP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/sgdp.py + +Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217 +Code: https://github.com/clovaai/AdamP + +Copyright (c) 2020-present NAVER Corp. +MIT license +""" + +import torch +import torch.nn.functional as F +from torch.optim.optimizer import Optimizer, required +import math + +from .adamp import projection + + +class SGDP(Optimizer): + def __init__( + self, + params, + lr=required, + momentum=0, + dampening=0, + weight_decay=0, + nesterov=False, + eps=1e-8, + delta=0.1, + wd_ratio=0.1 + ): + defaults = dict( + lr=lr, + momentum=momentum, + dampening=dampening, + weight_decay=weight_decay, + nesterov=nesterov, + eps=eps, + delta=delta, + wd_ratio=wd_ratio, + ) + super(SGDP, self).__init__(params, defaults) + + @torch.no_grad() + def step(self, closure=None): + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + weight_decay = group['weight_decay'] + momentum = group['momentum'] + dampening = group['dampening'] + nesterov = group['nesterov'] + + for p in group['params']: + if p.grad is None: + continue + grad = p.grad + state = self.state[p] + + # State initialization + if len(state) == 0: + state['momentum'] = torch.zeros_like(p) + + # SGD + buf = state['momentum'] + buf.mul_(momentum).add_(grad, alpha=1. - dampening) + if nesterov: + d_p = grad + momentum * buf + else: + d_p = buf + + # Projection + wd_ratio = 1. + if len(p.shape) > 1: + d_p, wd_ratio = projection(p, grad, d_p, group['delta'], group['wd_ratio'], group['eps']) + + # Weight decay + if weight_decay != 0: + p.mul_(1. - group['lr'] * group['weight_decay'] * wd_ratio / (1-momentum)) + + # Step + p.add_(d_p, alpha=-group['lr']) + + return loss diff --git a/pytorch-image-models/timm/optim/sgdw.py b/pytorch-image-models/timm/optim/sgdw.py new file mode 100644 index 0000000000000000000000000000000000000000..b771c43c6715ec57f9bd56ec05a1630888d27b99 --- /dev/null +++ b/pytorch-image-models/timm/optim/sgdw.py @@ -0,0 +1,300 @@ +from typing import List, Optional + +import torch +from torch import Tensor +from torch.optim.optimizer import Optimizer +try: + from torch.optim.optimizer import _use_grad_for_differentiable, _default_to_fused_or_foreach + has_recent_pt = True +except ImportError: + has_recent_pt = False + +from ._types import ParamsT + +__all__ = ['SGDW', 'sgdw'] + + +class SGDW(Optimizer): + def __init__( + self, + params: ParamsT, + lr: float = 1e-3, + momentum: float = 0., + dampening: float = 0., + weight_decay: float = 0., + nesterov: bool = False, + *, + caution: bool = False, + maximize: bool = False, + foreach: Optional[bool] = None, + differentiable: bool = False, + ): + if lr < 0.0: + raise ValueError(f"Invalid learning rate: {lr}") + if momentum < 0.0: + raise ValueError(f"Invalid momentum value: {momentum}") + if weight_decay < 0.0: + raise ValueError(f"Invalid weight_decay value: {weight_decay}") + + defaults = dict( + lr=lr, + momentum=momentum, + dampening=dampening, + weight_decay=weight_decay, + nesterov=nesterov, + caution=caution, + maximize=maximize, + foreach=foreach, + differentiable=differentiable, + ) + if nesterov and (momentum <= 0 or dampening != 0): + raise ValueError("Nesterov momentum requires a momentum and zero dampening") + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('caution', False) + group.setdefault('nesterov', False) + group.setdefault('maximize', False) + group.setdefault('foreach', None) + group.setdefault('differentiable', False) + + def _init_group(self, group, params_with_grad, grads, momentum_buffer_list): + has_sparse_grad = False + + for p in group['params']: + if p.grad is not None: + params_with_grad.append(p) + grads.append(p.grad) + if p.grad.is_sparse: + has_sparse_grad = True + + state = self.state[p] + if 'momentum_buffer' not in state: + momentum_buffer_list.append(None) + else: + momentum_buffer_list.append(state['momentum_buffer']) + + return has_sparse_grad + + # FIXME figure out how to make _use_grad_for_differentiable interchangeable with no_grad decorator + # without args, for backwards compatibility with old pytorch + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Args: + closure (Callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad = [] + grads = [] + momentum_buffer_list = [] + + has_sparse_grad = self._init_group(group, params_with_grad, grads, momentum_buffer_list) + + sgdw( + params_with_grad, + grads, + momentum_buffer_list, + weight_decay=group['weight_decay'], + momentum=group['momentum'], + lr=group['lr'], + dampening=group['dampening'], + nesterov=group['nesterov'], + caution=group['caution'], + maximize=group['maximize'], + has_sparse_grad=has_sparse_grad, + foreach=group['foreach'], + ) + + # update momentum_buffers in state + for p, momentum_buffer in zip(params_with_grad, momentum_buffer_list): + state = self.state[p] + state['momentum_buffer'] = momentum_buffer + + return loss + + +def sgdw( + params: List[Tensor], + grads: List[Tensor], + momentum_buffer_list: List[Optional[Tensor]], + # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 + # setting this as kwarg for now as functional API is compiled by torch/distributed/optim + has_sparse_grad: bool = None, + foreach: Optional[bool] = None, + *, + weight_decay: float, + momentum: float, + lr: float, + dampening: float, + nesterov: bool, + caution: bool, + maximize: bool +): + r"""Functional API that performs SGD algorithm computation. + + See :class:`~torch.optim.SGD` for details. + """ + if has_recent_pt and hasattr(Optimizer, '_group_tensors_by_device_and_dtype'): + if foreach is None: + # why must we be explicit about an if statement for torch.jit.is_scripting here? + # because JIT can't handle Optionals nor fancy conditionals when scripting + if not torch.jit.is_scripting(): + _, foreach = _default_to_fused_or_foreach(params, differentiable=False, use_fused=False) + else: + foreach = False + + if foreach and torch.jit.is_scripting(): + raise RuntimeError('torch.jit.script not supported with foreach optimizers') + else: + foreach = False # disabling altogether for older pytorch, as using _group_tensors_by_device_and_dtype + + if foreach and not torch.jit.is_scripting(): + func = _multi_tensor_sgdw + else: + func = _single_tensor_sgdw + + func( + params, + grads, + momentum_buffer_list, + weight_decay=weight_decay, + momentum=momentum, + lr=lr, + dampening=dampening, + nesterov=nesterov, + caution=caution, + has_sparse_grad=has_sparse_grad, + maximize=maximize, + ) + + +def _single_tensor_sgdw( + params: List[Tensor], + grads: List[Tensor], + momentum_buffer_list: List[Optional[Tensor]], + *, + weight_decay: float, + momentum: float, + lr: float, + dampening: float, + nesterov: bool, + caution: bool, + maximize: bool, + has_sparse_grad: bool +): + for i, param in enumerate(params): + grad = grads[i] if not maximize else -grads[i] + + param.mul_(1. - lr * weight_decay) + + if momentum != 0: + buf = momentum_buffer_list[i] + + if buf is None: + buf = torch.clone(grad).detach() + momentum_buffer_list[i] = buf + else: + buf.mul_(momentum).add_(grad, alpha=1 - dampening) + + if caution: + if nesterov: + buf = grad.add(buf, alpha=momentum) + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + mask = (buf * grad > 0).to(grad.dtype) + mask.div_(mask.mean().clamp_(min=1e-3)) + grad = buf * mask + else: + if nesterov: + grad = grad.add(buf, alpha=momentum) + else: + grad = buf + + param.add_(grad, alpha=-lr) + + +def _multi_tensor_sgdw( + params: List[Tensor], + grads: List[Tensor], + momentum_buffer_list: List[Optional[Tensor]], + *, + weight_decay: float, + momentum: float, + lr: float, + dampening: float, + nesterov: bool, + caution: bool, + maximize: bool, + has_sparse_grad: bool +): + if len(params) == 0: + return + + grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( + [params, grads, momentum_buffer_list], with_indices=True) + for ((device_params, device_grads, device_momentum_buffer_list), indices) in grouped_tensors.values(): + device_has_sparse_grad = has_sparse_grad and any(grad.is_sparse for grad in device_grads) + + if maximize: + device_grads = torch._foreach_neg(device_grads) + + torch._foreach_mul_(params, 1. - lr * weight_decay) + + if momentum != 0: + bufs = [] + + all_states_with_momentum_buffer = True + for i in range(len(device_momentum_buffer_list)): + if device_momentum_buffer_list[i] is None: + all_states_with_momentum_buffer = False + break + else: + bufs.append(device_momentum_buffer_list[i]) + + if all_states_with_momentum_buffer: + torch._foreach_mul_(bufs, momentum) + torch._foreach_add_(bufs, device_grads, alpha=1 - dampening) + else: + bufs = [] + for i in range(len(device_momentum_buffer_list)): + if device_momentum_buffer_list[i] is None: + buf = device_momentum_buffer_list[i] = momentum_buffer_list[indices[i]] = \ + torch.clone(device_grads[i]).detach() + else: + buf = device_momentum_buffer_list[i] + buf.mul_(momentum).add_(device_grads[i], alpha=1 - dampening) + + bufs.append(buf) + + if caution: + if nesterov: + # Can't do nesterov in-place if we want to compare against orig grad for caution + bufs = torch._foreach_add(device_grads, bufs, alpha=momentum) + # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 + masks = torch._foreach_mul(bufs, device_grads) + masks = [(m > 0).to(g.dtype) for m, g in zip(masks, device_grads)] + mask_scale = [m.mean() for m in masks] + torch._foreach_maximum_(mask_scale, 1e-3) + torch._foreach_div_(masks, mask_scale) + device_grads = torch._foreach_mul(bufs, masks) + else: + if nesterov: + torch._foreach_add_(device_grads, bufs, alpha=momentum) + else: + device_grads = bufs + + if not device_has_sparse_grad: + torch._foreach_add_(device_params, device_grads, alpha=-lr) + else: + # foreach APIs don't support sparse + for i in range(len(device_params)): + device_params[i].add_(device_grads[i], alpha=-lr) diff --git a/pytorch-image-models/timm/py.typed b/pytorch-image-models/timm/py.typed new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/pytorch-image-models/timm/scheduler/__init__.py b/pytorch-image-models/timm/scheduler/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9f7191bb0f1c921a5e214b1414cd07269297db95 --- /dev/null +++ b/pytorch-image-models/timm/scheduler/__init__.py @@ -0,0 +1,8 @@ +from .cosine_lr import CosineLRScheduler +from .multistep_lr import MultiStepLRScheduler +from .plateau_lr import PlateauLRScheduler +from .poly_lr import PolyLRScheduler +from .step_lr import StepLRScheduler +from .tanh_lr import TanhLRScheduler + +from .scheduler_factory import create_scheduler, create_scheduler_v2, scheduler_kwargs diff --git a/pytorch-image-models/timm/scheduler/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..006701f6db1499b50a925dfc05c26bc570f80c6f Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/cosine_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/cosine_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8801d97e7b6a39daeea783054df64a64f39dbdd9 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/cosine_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/multistep_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/multistep_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6a4c069241e8d44644bccb3606c181771f30bcb6 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/multistep_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/plateau_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/plateau_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f90aefa3c84783723a210a15341b118663c2d129 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/plateau_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/poly_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/poly_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..74be61a3784352d23a813b50cbda1c44f3706e1a Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/poly_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/scheduler.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/scheduler.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..16cfd61b2579cf711564443916a9577d3edf3e5f Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/scheduler.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/scheduler_factory.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/scheduler_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1dfdb891c41c652887b12aa98a6667eb3b6a1428 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/scheduler_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/step_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/step_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f656eb34cc02fad7f5ea0ef5e83cd4a0f64dfcc4 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/step_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/tanh_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/tanh_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..56b74b8b73de07f45434f040f658af1284015aac Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/tanh_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/cosine_lr.py b/pytorch-image-models/timm/scheduler/cosine_lr.py new file mode 100644 index 0000000000000000000000000000000000000000..00dd9357d974f0781478459879cbbfe2efbeb425 --- /dev/null +++ b/pytorch-image-models/timm/scheduler/cosine_lr.py @@ -0,0 +1,117 @@ +""" Cosine Scheduler + +Cosine LR schedule with warmup, cycle/restarts, noise, k-decay. + +Hacked together by / Copyright 2021 Ross Wightman +""" +import logging +import math +import numpy as np +import torch +from typing import List + +from .scheduler import Scheduler + + +_logger = logging.getLogger(__name__) + + +class CosineLRScheduler(Scheduler): + """ + Cosine decay with restarts. + This is described in the paper https://arxiv.org/abs/1608.03983. + + Inspiration from + https://github.com/allenai/allennlp/blob/master/allennlp/training/learning_rate_schedulers/cosine.py + + k-decay option based on `k-decay: A New Method For Learning Rate Schedule` - https://arxiv.org/abs/2004.05909 + """ + + def __init__( + self, + optimizer: torch.optim.Optimizer, + t_initial: int, + lr_min: float = 0., + cycle_mul: float = 1., + cycle_decay: float = 1., + cycle_limit: int = 1, + warmup_t=0, + warmup_lr_init=0, + warmup_prefix=False, + t_in_epochs=True, + noise_range_t=None, + noise_pct=0.67, + noise_std=1.0, + noise_seed=42, + k_decay=1.0, + initialize=True, + ) -> None: + super().__init__( + optimizer, + param_group_field="lr", + t_in_epochs=t_in_epochs, + noise_range_t=noise_range_t, + noise_pct=noise_pct, + noise_std=noise_std, + noise_seed=noise_seed, + initialize=initialize, + ) + + assert t_initial > 0 + assert lr_min >= 0 + if t_initial == 1 and cycle_mul == 1 and cycle_decay == 1: + _logger.warning( + "Cosine annealing scheduler will have no effect on the learning " + "rate since t_initial = t_mul = eta_mul = 1.") + self.t_initial = t_initial + self.lr_min = lr_min + self.cycle_mul = cycle_mul + self.cycle_decay = cycle_decay + self.cycle_limit = cycle_limit + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + self.warmup_prefix = warmup_prefix + self.k_decay = k_decay + if self.warmup_t: + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + + def _get_lr(self, t: int) -> List[float]: + if t < self.warmup_t: + lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] + else: + if self.warmup_prefix: + t = t - self.warmup_t + + if self.cycle_mul != 1: + i = math.floor(math.log(1 - t / self.t_initial * (1 - self.cycle_mul), self.cycle_mul)) + t_i = self.cycle_mul ** i * self.t_initial + t_curr = t - (1 - self.cycle_mul ** i) / (1 - self.cycle_mul) * self.t_initial + else: + i = t // self.t_initial + t_i = self.t_initial + t_curr = t - (self.t_initial * i) + + gamma = self.cycle_decay ** i + lr_max_values = [v * gamma for v in self.base_values] + k = self.k_decay + + if i < self.cycle_limit: + lrs = [ + self.lr_min + 0.5 * (lr_max - self.lr_min) * (1 + math.cos(math.pi * t_curr ** k / t_i ** k)) + for lr_max in lr_max_values + ] + else: + lrs = [self.lr_min for _ in self.base_values] + + return lrs + + def get_cycle_length(self, cycles=0): + cycles = max(1, cycles or self.cycle_limit) + if self.cycle_mul == 1.0: + t = self.t_initial * cycles + else: + t = int(math.floor(-self.t_initial * (self.cycle_mul ** cycles - 1) / (1 - self.cycle_mul))) + return t + self.warmup_t if self.warmup_prefix else t \ No newline at end of file diff --git a/pytorch-image-models/timm/scheduler/multistep_lr.py b/pytorch-image-models/timm/scheduler/multistep_lr.py new file mode 100644 index 0000000000000000000000000000000000000000..e5db556d430e13c3536e43afadc32a5cfc3140f4 --- /dev/null +++ b/pytorch-image-models/timm/scheduler/multistep_lr.py @@ -0,0 +1,63 @@ +""" MultiStep LR Scheduler + +Basic multi step LR schedule with warmup, noise. +""" +import torch +import bisect +from timm.scheduler.scheduler import Scheduler +from typing import List + +class MultiStepLRScheduler(Scheduler): + """ + """ + + def __init__( + self, + optimizer: torch.optim.Optimizer, + decay_t: List[int], + decay_rate: float = 1., + warmup_t=0, + warmup_lr_init=0, + warmup_prefix=True, + t_in_epochs=True, + noise_range_t=None, + noise_pct=0.67, + noise_std=1.0, + noise_seed=42, + initialize=True, + ) -> None: + super().__init__( + optimizer, + param_group_field="lr", + t_in_epochs=t_in_epochs, + noise_range_t=noise_range_t, + noise_pct=noise_pct, + noise_std=noise_std, + noise_seed=noise_seed, + initialize=initialize, + ) + + self.decay_t = decay_t + self.decay_rate = decay_rate + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + self.warmup_prefix = warmup_prefix + if self.warmup_t: + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + + def get_curr_decay_steps(self, t): + # find where in the array t goes, + # assumes self.decay_t is sorted + return bisect.bisect_right(self.decay_t, t + 1) + + def _get_lr(self, t: int) -> List[float]: + if t < self.warmup_t: + lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] + else: + if self.warmup_prefix: + t = t - self.warmup_t + lrs = [v * (self.decay_rate ** self.get_curr_decay_steps(t)) for v in self.base_values] + return lrs diff --git a/pytorch-image-models/timm/scheduler/plateau_lr.py b/pytorch-image-models/timm/scheduler/plateau_lr.py new file mode 100644 index 0000000000000000000000000000000000000000..e868bd5e58afcc0dbf9c9ce1e89a866a125ead57 --- /dev/null +++ b/pytorch-image-models/timm/scheduler/plateau_lr.py @@ -0,0 +1,111 @@ +""" Plateau Scheduler + +Adapts PyTorch plateau scheduler and allows application of noise, warmup. + +Hacked together by / Copyright 2020 Ross Wightman +""" +import torch +from typing import List + +from .scheduler import Scheduler + + +class PlateauLRScheduler(Scheduler): + """Decay the LR by a factor every time the validation loss plateaus.""" + + def __init__( + self, + optimizer, + decay_rate=0.1, + patience_t=10, + verbose=True, + threshold=1e-4, + cooldown_t=0, + warmup_t=0, + warmup_lr_init=0, + lr_min=0, + mode='max', + noise_range_t=None, + noise_type='normal', + noise_pct=0.67, + noise_std=1.0, + noise_seed=None, + initialize=True, + ): + super().__init__( + optimizer, + 'lr', + noise_range_t=noise_range_t, + noise_type=noise_type, + noise_pct=noise_pct, + noise_std=noise_std, + noise_seed=noise_seed, + initialize=initialize, + ) + + self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( + self.optimizer, + patience=patience_t, + factor=decay_rate, + verbose=verbose, + threshold=threshold, + cooldown=cooldown_t, + mode=mode, + min_lr=lr_min + ) + + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + if self.warmup_t: + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + self.restore_lr = None + + def state_dict(self): + return { + 'best': self.lr_scheduler.best, + 'last_epoch': self.lr_scheduler.last_epoch, + } + + def load_state_dict(self, state_dict): + self.lr_scheduler.best = state_dict['best'] + if 'last_epoch' in state_dict: + self.lr_scheduler.last_epoch = state_dict['last_epoch'] + + # override the base class step fn completely + def step(self, epoch, metric=None): + if epoch <= self.warmup_t: + lrs = [self.warmup_lr_init + epoch * s for s in self.warmup_steps] + super().update_groups(lrs) + else: + if self.restore_lr is not None: + # restore actual LR from before our last noise perturbation before stepping base + for i, param_group in enumerate(self.optimizer.param_groups): + param_group['lr'] = self.restore_lr[i] + self.restore_lr = None + + self.lr_scheduler.step(metric, epoch) # step the base scheduler + + if self._is_apply_noise(epoch): + self._apply_noise(epoch) + + def step_update(self, num_updates: int, metric: float = None): + return None + + def _apply_noise(self, epoch): + noise = self._calculate_noise(epoch) + + # apply the noise on top of previous LR, cache the old value so we can restore for normal + # stepping of base scheduler + restore_lr = [] + for i, param_group in enumerate(self.optimizer.param_groups): + old_lr = float(param_group['lr']) + restore_lr.append(old_lr) + new_lr = old_lr + old_lr * noise + param_group['lr'] = new_lr + self.restore_lr = restore_lr + + def _get_lr(self, t: int) -> List[float]: + assert False, 'should not be called as step is overridden' diff --git a/pytorch-image-models/timm/scheduler/poly_lr.py b/pytorch-image-models/timm/scheduler/poly_lr.py new file mode 100644 index 0000000000000000000000000000000000000000..f7971302ed4ef5fb9a15d5bde5269bd636a6fc1d --- /dev/null +++ b/pytorch-image-models/timm/scheduler/poly_lr.py @@ -0,0 +1,113 @@ +""" Polynomial Scheduler + +Polynomial LR schedule with warmup, noise. + +Hacked together by / Copyright 2021 Ross Wightman +""" +import math +import logging +from typing import List + +import torch + +from .scheduler import Scheduler + + +_logger = logging.getLogger(__name__) + + +class PolyLRScheduler(Scheduler): + """ Polynomial LR Scheduler w/ warmup, noise, and k-decay + + k-decay option based on `k-decay: A New Method For Learning Rate Schedule` - https://arxiv.org/abs/2004.05909 + """ + + def __init__( + self, + optimizer: torch.optim.Optimizer, + t_initial: int, + power: float = 0.5, + lr_min: float = 0., + cycle_mul: float = 1., + cycle_decay: float = 1., + cycle_limit: int = 1, + warmup_t=0, + warmup_lr_init=0, + warmup_prefix=False, + t_in_epochs=True, + noise_range_t=None, + noise_pct=0.67, + noise_std=1.0, + noise_seed=42, + k_decay=1.0, + initialize=True, + ) -> None: + super().__init__( + optimizer, + param_group_field="lr", + t_in_epochs=t_in_epochs, + noise_range_t=noise_range_t, + noise_pct=noise_pct, + noise_std=noise_std, + noise_seed=noise_seed, + initialize=initialize + ) + + assert t_initial > 0 + assert lr_min >= 0 + if t_initial == 1 and cycle_mul == 1 and cycle_decay == 1: + _logger.warning("Cosine annealing scheduler will have no effect on the learning " + "rate since t_initial = t_mul = eta_mul = 1.") + self.t_initial = t_initial + self.power = power + self.lr_min = lr_min + self.cycle_mul = cycle_mul + self.cycle_decay = cycle_decay + self.cycle_limit = cycle_limit + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + self.warmup_prefix = warmup_prefix + self.k_decay = k_decay + if self.warmup_t: + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + + def _get_lr(self, t: int) -> List[float]: + if t < self.warmup_t: + lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] + else: + if self.warmup_prefix: + t = t - self.warmup_t + + if self.cycle_mul != 1: + i = math.floor(math.log(1 - t / self.t_initial * (1 - self.cycle_mul), self.cycle_mul)) + t_i = self.cycle_mul ** i * self.t_initial + t_curr = t - (1 - self.cycle_mul ** i) / (1 - self.cycle_mul) * self.t_initial + else: + i = t // self.t_initial + t_i = self.t_initial + t_curr = t - (self.t_initial * i) + + gamma = self.cycle_decay ** i + lr_max_values = [v * gamma for v in self.base_values] + k = self.k_decay + + if i < self.cycle_limit: + lrs = [ + self.lr_min + (lr_max - self.lr_min) * (1 - t_curr ** k / t_i ** k) ** self.power + for lr_max in lr_max_values + ] + else: + lrs = [self.lr_min for _ in self.base_values] + + return lrs + + def get_cycle_length(self, cycles=0): + cycles = max(1, cycles or self.cycle_limit) + if self.cycle_mul == 1.0: + t = self.t_initial * cycles + else: + t = int(math.floor(-self.t_initial * (self.cycle_mul ** cycles - 1) / (1 - self.cycle_mul))) + return t + self.warmup_t if self.warmup_prefix else t diff --git a/pytorch-image-models/timm/scheduler/scheduler.py b/pytorch-image-models/timm/scheduler/scheduler.py new file mode 100644 index 0000000000000000000000000000000000000000..583357f7c522a0ce5091e435ac04b8e468751342 --- /dev/null +++ b/pytorch-image-models/timm/scheduler/scheduler.py @@ -0,0 +1,127 @@ +import abc +from abc import ABC +from typing import Any, Dict, List, Optional + +import torch + + +class Scheduler(ABC): + """ Parameter Scheduler Base Class + A scheduler base class that can be used to schedule any optimizer parameter groups. + + Unlike the builtin PyTorch schedulers, this is intended to be consistently called + * At the END of each epoch, before incrementing the epoch count, to calculate next epoch's value + * At the END of each optimizer update, after incrementing the update count, to calculate next update's value + + The schedulers built on this should try to remain as stateless as possible (for simplicity). + + This family of schedulers is attempting to avoid the confusion of the meaning of 'last_epoch' + and -1 values for special behaviour. All epoch and update counts must be tracked in the training + code and explicitly passed in to the schedulers on the corresponding step or step_update call. + + Based on ideas from: + * https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler + * https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers + """ + + def __init__( + self, + optimizer: torch.optim.Optimizer, + param_group_field: str, + t_in_epochs: bool = True, + noise_range_t=None, + noise_type='normal', + noise_pct=0.67, + noise_std=1.0, + noise_seed=None, + initialize: bool = True, + ) -> None: + self.optimizer = optimizer + self.param_group_field = param_group_field + self._initial_param_group_field = f"initial_{param_group_field}" + if initialize: + for i, group in enumerate(self.optimizer.param_groups): + if param_group_field not in group: + raise KeyError(f"{param_group_field} missing from param_groups[{i}]") + group.setdefault(self._initial_param_group_field, group[param_group_field]) + else: + for i, group in enumerate(self.optimizer.param_groups): + if self._initial_param_group_field not in group: + raise KeyError(f"{self._initial_param_group_field} missing from param_groups[{i}]") + self.base_values = [group[self._initial_param_group_field] for group in self.optimizer.param_groups] + self.metric = None # any point to having this for all? + self.t_in_epochs = t_in_epochs + self.noise_range_t = noise_range_t + self.noise_pct = noise_pct + self.noise_type = noise_type + self.noise_std = noise_std + self.noise_seed = noise_seed if noise_seed is not None else 42 + self.update_groups(self.base_values) + + def state_dict(self) -> Dict[str, Any]: + return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} + + def load_state_dict(self, state_dict: Dict[str, Any]) -> None: + self.__dict__.update(state_dict) + + @abc.abstractmethod + def _get_lr(self, t: int) -> List[float]: + pass + + def _get_values(self, t: int, on_epoch: bool = True) -> Optional[List[float]]: + proceed = (on_epoch and self.t_in_epochs) or (not on_epoch and not self.t_in_epochs) + if not proceed: + return None + return self._get_lr(t) + + def step(self, epoch: int, metric: float = None) -> None: + self.metric = metric + values = self._get_values(epoch, on_epoch=True) + if values is not None: + values = self._add_noise(values, epoch) + self.update_groups(values) + + def step_update(self, num_updates: int, metric: float = None): + self.metric = metric + values = self._get_values(num_updates, on_epoch=False) + if values is not None: + values = self._add_noise(values, num_updates) + self.update_groups(values) + + def update_groups(self, values): + if not isinstance(values, (list, tuple)): + values = [values] * len(self.optimizer.param_groups) + for param_group, value in zip(self.optimizer.param_groups, values): + if 'lr_scale' in param_group: + param_group[self.param_group_field] = value * param_group['lr_scale'] + else: + param_group[self.param_group_field] = value + + def _add_noise(self, lrs, t): + if self._is_apply_noise(t): + noise = self._calculate_noise(t) + lrs = [v + v * noise for v in lrs] + return lrs + + def _is_apply_noise(self, t) -> bool: + """Return True if scheduler in noise range.""" + apply_noise = False + if self.noise_range_t is not None: + if isinstance(self.noise_range_t, (list, tuple)): + apply_noise = self.noise_range_t[0] <= t < self.noise_range_t[1] + else: + apply_noise = t >= self.noise_range_t + return apply_noise + + def _calculate_noise(self, t) -> float: + g = torch.Generator() + g.manual_seed(self.noise_seed + t) + if self.noise_type == 'normal': + while True: + # resample if noise out of percent limit, brute force but shouldn't spin much + noise = torch.randn(1, generator=g).item() + if abs(noise) < self.noise_pct: + return noise + else: + noise = 2 * (torch.rand(1, generator=g).item() - 0.5) * self.noise_pct + return noise diff --git a/pytorch-image-models/timm/scheduler/scheduler_factory.py b/pytorch-image-models/timm/scheduler/scheduler_factory.py new file mode 100644 index 0000000000000000000000000000000000000000..08c5e180c6447c4728384ce6eae32a5b9db4a954 --- /dev/null +++ b/pytorch-image-models/timm/scheduler/scheduler_factory.py @@ -0,0 +1,210 @@ +""" Scheduler Factory +Hacked together by / Copyright 2021 Ross Wightman +""" +from typing import List, Optional, Union + +from torch.optim import Optimizer + +from .cosine_lr import CosineLRScheduler +from .multistep_lr import MultiStepLRScheduler +from .plateau_lr import PlateauLRScheduler +from .poly_lr import PolyLRScheduler +from .step_lr import StepLRScheduler +from .tanh_lr import TanhLRScheduler + + +def scheduler_kwargs(cfg, decreasing_metric: Optional[bool] = None): + """ cfg/argparse to kwargs helper + Convert scheduler args in argparse args or cfg (.dot) like object to keyword args. + """ + eval_metric = getattr(cfg, 'eval_metric', 'top1') + if decreasing_metric is not None: + plateau_mode = 'min' if decreasing_metric else 'max' + else: + plateau_mode = 'min' if 'loss' in eval_metric else 'max' + kwargs = dict( + sched=cfg.sched, + num_epochs=getattr(cfg, 'epochs', 100), + decay_epochs=getattr(cfg, 'decay_epochs', 30), + decay_milestones=getattr(cfg, 'decay_milestones', [30, 60]), + warmup_epochs=getattr(cfg, 'warmup_epochs', 5), + cooldown_epochs=getattr(cfg, 'cooldown_epochs', 0), + patience_epochs=getattr(cfg, 'patience_epochs', 10), + decay_rate=getattr(cfg, 'decay_rate', 0.1), + min_lr=getattr(cfg, 'min_lr', 0.), + warmup_lr=getattr(cfg, 'warmup_lr', 1e-5), + warmup_prefix=getattr(cfg, 'warmup_prefix', False), + noise=getattr(cfg, 'lr_noise', None), + noise_pct=getattr(cfg, 'lr_noise_pct', 0.67), + noise_std=getattr(cfg, 'lr_noise_std', 1.), + noise_seed=getattr(cfg, 'seed', 42), + cycle_mul=getattr(cfg, 'lr_cycle_mul', 1.), + cycle_decay=getattr(cfg, 'lr_cycle_decay', 0.1), + cycle_limit=getattr(cfg, 'lr_cycle_limit', 1), + k_decay=getattr(cfg, 'lr_k_decay', 1.0), + plateau_mode=plateau_mode, + step_on_epochs=not getattr(cfg, 'sched_on_updates', False), + ) + return kwargs + + +def create_scheduler( + args, + optimizer: Optimizer, + updates_per_epoch: int = 0, +): + return create_scheduler_v2( + optimizer=optimizer, + **scheduler_kwargs(args), + updates_per_epoch=updates_per_epoch, + ) + + +def create_scheduler_v2( + optimizer: Optimizer, + sched: str = 'cosine', + num_epochs: int = 300, + decay_epochs: int = 90, + decay_milestones: List[int] = (90, 180, 270), + cooldown_epochs: int = 0, + patience_epochs: int = 10, + decay_rate: float = 0.1, + min_lr: float = 0, + warmup_lr: float = 1e-5, + warmup_epochs: int = 0, + warmup_prefix: bool = False, + noise: Union[float, List[float]] = None, + noise_pct: float = 0.67, + noise_std: float = 1., + noise_seed: int = 42, + cycle_mul: float = 1., + cycle_decay: float = 0.1, + cycle_limit: int = 1, + k_decay: float = 1.0, + plateau_mode: str = 'max', + step_on_epochs: bool = True, + updates_per_epoch: int = 0, +): + t_initial = num_epochs + warmup_t = warmup_epochs + decay_t = decay_epochs + cooldown_t = cooldown_epochs + + if not step_on_epochs: + assert updates_per_epoch > 0, 'updates_per_epoch must be set to number of dataloader batches' + t_initial = t_initial * updates_per_epoch + warmup_t = warmup_t * updates_per_epoch + decay_t = decay_t * updates_per_epoch + decay_milestones = [d * updates_per_epoch for d in decay_milestones] + cooldown_t = cooldown_t * updates_per_epoch + + # warmup args + warmup_args = dict( + warmup_lr_init=warmup_lr, + warmup_t=warmup_t, + warmup_prefix=warmup_prefix, + ) + + # setup noise args for supporting schedulers + if noise is not None: + if isinstance(noise, (list, tuple)): + noise_range = [n * t_initial for n in noise] + if len(noise_range) == 1: + noise_range = noise_range[0] + else: + noise_range = noise * t_initial + else: + noise_range = None + noise_args = dict( + noise_range_t=noise_range, + noise_pct=noise_pct, + noise_std=noise_std, + noise_seed=noise_seed, + ) + + # setup cycle args for supporting schedulers + cycle_args = dict( + cycle_mul=cycle_mul, + cycle_decay=cycle_decay, + cycle_limit=cycle_limit, + ) + + lr_scheduler = None + if sched == 'cosine': + lr_scheduler = CosineLRScheduler( + optimizer, + t_initial=t_initial, + lr_min=min_lr, + t_in_epochs=step_on_epochs, + **cycle_args, + **warmup_args, + **noise_args, + k_decay=k_decay, + ) + elif sched == 'tanh': + lr_scheduler = TanhLRScheduler( + optimizer, + t_initial=t_initial, + lr_min=min_lr, + t_in_epochs=step_on_epochs, + **cycle_args, + **warmup_args, + **noise_args, + ) + elif sched == 'step': + lr_scheduler = StepLRScheduler( + optimizer, + decay_t=decay_t, + decay_rate=decay_rate, + t_in_epochs=step_on_epochs, + **warmup_args, + **noise_args, + ) + elif sched == 'multistep': + lr_scheduler = MultiStepLRScheduler( + optimizer, + decay_t=decay_milestones, + decay_rate=decay_rate, + t_in_epochs=step_on_epochs, + **warmup_args, + **noise_args, + ) + elif sched == 'plateau': + assert step_on_epochs, 'Plateau LR only supports step per epoch.' + warmup_args.pop('warmup_prefix', False) + lr_scheduler = PlateauLRScheduler( + optimizer, + decay_rate=decay_rate, + patience_t=patience_epochs, + cooldown_t=0, + **warmup_args, + lr_min=min_lr, + mode=plateau_mode, + **noise_args, + ) + elif sched == 'poly': + lr_scheduler = PolyLRScheduler( + optimizer, + power=decay_rate, # overloading 'decay_rate' as polynomial power + t_initial=t_initial, + lr_min=min_lr, + t_in_epochs=step_on_epochs, + k_decay=k_decay, + **cycle_args, + **warmup_args, + **noise_args, + ) + + if hasattr(lr_scheduler, 'get_cycle_length'): + # For cycle based schedulers (cosine, tanh, poly) recalculate total epochs w/ cycles & cooldown + # NOTE: Warmup prefix added in get_cycle_lengths() if enabled + t_with_cycles_and_cooldown = lr_scheduler.get_cycle_length() + cooldown_t + if step_on_epochs: + num_epochs = t_with_cycles_and_cooldown + else: + num_epochs = t_with_cycles_and_cooldown // updates_per_epoch + else: + if warmup_prefix: + num_epochs += warmup_epochs + + return lr_scheduler, num_epochs diff --git a/pytorch-image-models/timm/scheduler/step_lr.py b/pytorch-image-models/timm/scheduler/step_lr.py new file mode 100644 index 0000000000000000000000000000000000000000..c205d437153f0960f864fddaa043f4028db3de3a --- /dev/null +++ b/pytorch-image-models/timm/scheduler/step_lr.py @@ -0,0 +1,63 @@ +""" Step Scheduler + +Basic step LR schedule with warmup, noise. + +Hacked together by / Copyright 2020 Ross Wightman +""" +import math +import torch +from typing import List + + +from .scheduler import Scheduler + + +class StepLRScheduler(Scheduler): + """ + """ + + def __init__( + self, + optimizer: torch.optim.Optimizer, + decay_t: float, + decay_rate: float = 1., + warmup_t=0, + warmup_lr_init=0, + warmup_prefix=True, + t_in_epochs=True, + noise_range_t=None, + noise_pct=0.67, + noise_std=1.0, + noise_seed=42, + initialize=True, + ) -> None: + super().__init__( + optimizer, + param_group_field="lr", + t_in_epochs=t_in_epochs, + noise_range_t=noise_range_t, + noise_pct=noise_pct, + noise_std=noise_std, + noise_seed=noise_seed, + initialize=initialize, + ) + + self.decay_t = decay_t + self.decay_rate = decay_rate + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + self.warmup_prefix = warmup_prefix + if self.warmup_t: + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + + def _get_lr(self, t: int) -> List[float]: + if t < self.warmup_t: + lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] + else: + if self.warmup_prefix: + t = t - self.warmup_t + lrs = [v * (self.decay_rate ** (t // self.decay_t)) for v in self.base_values] + return lrs diff --git a/pytorch-image-models/timm/scheduler/tanh_lr.py b/pytorch-image-models/timm/scheduler/tanh_lr.py new file mode 100644 index 0000000000000000000000000000000000000000..932229262e32455fe5e60537b2c3000f0c1616da --- /dev/null +++ b/pytorch-image-models/timm/scheduler/tanh_lr.py @@ -0,0 +1,114 @@ +""" TanH Scheduler + +TanH schedule with warmup, cycle/restarts, noise. + +Hacked together by / Copyright 2021 Ross Wightman +""" +import logging +import math +import numpy as np +import torch +from typing import List + +from .scheduler import Scheduler + + +_logger = logging.getLogger(__name__) + + +class TanhLRScheduler(Scheduler): + """ + Hyberbolic-Tangent decay with restarts. + This is described in the paper https://arxiv.org/abs/1806.01593 + """ + + def __init__( + self, + optimizer: torch.optim.Optimizer, + t_initial: int, + lb: float = -7., + ub: float = 3., + lr_min: float = 0., + cycle_mul: float = 1., + cycle_decay: float = 1., + cycle_limit: int = 1, + warmup_t=0, + warmup_lr_init=0, + warmup_prefix=False, + t_in_epochs=True, + noise_range_t=None, + noise_pct=0.67, + noise_std=1.0, + noise_seed=42, + initialize=True, + ) -> None: + super().__init__( + optimizer, + param_group_field="lr", + t_in_epochs=t_in_epochs, + noise_range_t=noise_range_t, + noise_pct=noise_pct, + noise_std=noise_std, + noise_seed=noise_seed, + initialize=initialize, + ) + + assert t_initial > 0 + assert lr_min >= 0 + assert lb < ub + assert cycle_limit >= 0 + assert warmup_t >= 0 + assert warmup_lr_init >= 0 + self.lb = lb + self.ub = ub + self.t_initial = t_initial + self.lr_min = lr_min + self.cycle_mul = cycle_mul + self.cycle_decay = cycle_decay + self.cycle_limit = cycle_limit + self.warmup_t = warmup_t + self.warmup_lr_init = warmup_lr_init + self.warmup_prefix = warmup_prefix + if self.warmup_t: + t_v = self.base_values if self.warmup_prefix else self._get_lr(self.warmup_t) + self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in t_v] + super().update_groups(self.warmup_lr_init) + else: + self.warmup_steps = [1 for _ in self.base_values] + + def _get_lr(self, t: int) -> List[float]: + if t < self.warmup_t: + lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] + else: + if self.warmup_prefix: + t = t - self.warmup_t + + if self.cycle_mul != 1: + i = math.floor(math.log(1 - t / self.t_initial * (1 - self.cycle_mul), self.cycle_mul)) + t_i = self.cycle_mul ** i * self.t_initial + t_curr = t - (1 - self.cycle_mul ** i) / (1 - self.cycle_mul) * self.t_initial + else: + i = t // self.t_initial + t_i = self.t_initial + t_curr = t - (self.t_initial * i) + + if i < self.cycle_limit: + gamma = self.cycle_decay ** i + lr_max_values = [v * gamma for v in self.base_values] + + tr = t_curr / t_i + lrs = [ + self.lr_min + 0.5 * (lr_max - self.lr_min) * (1 - math.tanh(self.lb * (1. - tr) + self.ub * tr)) + for lr_max in lr_max_values + ] + else: + lrs = [self.lr_min for _ in self.base_values] + return lrs + + def get_cycle_length(self, cycles=0): + cycles = max(1, cycles or self.cycle_limit) + if self.cycle_mul == 1.0: + t = self.t_initial * cycles + else: + t = int(math.floor(-self.t_initial * (self.cycle_mul ** cycles - 1) / (1 - self.cycle_mul))) + return t + self.warmup_t if self.warmup_prefix else t diff --git a/pytorch-image-models/timm/utils/__init__.py b/pytorch-image-models/timm/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9093b75a821145b055f809e01def6b9c3afce849 --- /dev/null +++ b/pytorch-image-models/timm/utils/__init__.py @@ -0,0 +1,16 @@ +from .agc import adaptive_clip_grad +from .attention_extract import AttentionExtract +from .checkpoint_saver import CheckpointSaver +from .clip_grad import dispatch_clip_grad +from .cuda import ApexScaler, NativeScaler +from .decay_batch import decay_batch_step, check_batch_size_retry +from .distributed import distribute_bn, reduce_tensor, init_distributed_device,\ + world_info_from_env, is_distributed_env, is_primary +from .jit import set_jit_legacy, set_jit_fuser +from .log import setup_default_logging, FormatterNoInfo +from .metrics import AverageMeter, accuracy +from .misc import natural_key, add_bool_arg, ParseKwargs +from .model import unwrap_model, get_state_dict, freeze, unfreeze, reparameterize_model +from .model_ema import ModelEma, ModelEmaV2, ModelEmaV3 +from .random import random_seed +from .summary import update_summary, get_outdir diff --git a/pytorch-image-models/timm/utils/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b54a7986e51453bdd8625b11919afc0f8203dd12 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/agc.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/agc.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fdc751dbf41f2f1e72ead6b0c25199c87a330ded Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/agc.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/attention_extract.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/attention_extract.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..567b383db63954f7975a32ab9baf4b4ba10f9c51 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/attention_extract.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/checkpoint_saver.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/checkpoint_saver.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..af181a6258741e280b2d7607cc68fbd45173e919 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/checkpoint_saver.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/clip_grad.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/clip_grad.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ae6d05b63a8aca1c9b5c4b656604c44ee735d22f Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/clip_grad.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/cuda.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/cuda.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6cc1c2e446415364d334b851916670134b04534e Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/cuda.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/decay_batch.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/decay_batch.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..76ef9867dc9c722a15ab2a62cd7cada950eea0cc Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/decay_batch.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/distributed.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/distributed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..55d73318a926eacca7630b2a21d70a6f74188c7a Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/distributed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/jit.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/jit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9438a0a49c8602442f790e1fc12f0e887046cb06 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/jit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/log.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/log.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7eecd50a5448a2c93e2c11579ba4c7df464c18f7 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/log.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/metrics.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/metrics.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e970ab647c36f9c59c2a3f9f797c77f6d41ac026 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/metrics.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/misc.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/misc.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea809c0ff9d94a7286dfee12bccda9312d9b17b6 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/misc.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/model.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/model.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..519429e42250160262bd4d5593af50d17c197797 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/model.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/model_ema.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/model_ema.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2886a62ec8d53220b77b2545b885722f557eddef Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/model_ema.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/random.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/random.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e097aed7489bc009e5ac56b963b0ffdd2ac5ced7 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/random.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/summary.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/summary.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4d0da8dd8b7224bdb877e5da5dc7a78a3918588a Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/summary.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/agc.py b/pytorch-image-models/timm/utils/agc.py new file mode 100644 index 0000000000000000000000000000000000000000..f51401726ff6810d97d0fa567f4e31b474325a59 --- /dev/null +++ b/pytorch-image-models/timm/utils/agc.py @@ -0,0 +1,42 @@ +""" Adaptive Gradient Clipping + +An impl of AGC, as per (https://arxiv.org/abs/2102.06171): + +@article{brock2021high, + author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan}, + title={High-Performance Large-Scale Image Recognition Without Normalization}, + journal={arXiv preprint arXiv:}, + year={2021} +} + +Code references: + * Official JAX impl (paper authors): https://github.com/deepmind/deepmind-research/tree/master/nfnets + * Phil Wang's PyTorch gist: https://gist.github.com/lucidrains/0d6560077edac419ab5d3aa29e674d5c + +Hacked together by / Copyright 2021 Ross Wightman +""" +import torch + + +def unitwise_norm(x, norm_type=2.0): + if x.ndim <= 1: + return x.norm(norm_type) + else: + # works for nn.ConvNd and nn,Linear where output dim is first in the kernel/weight tensor + # might need special cases for other weights (possibly MHA) where this may not be true + return x.norm(norm_type, dim=tuple(range(1, x.ndim)), keepdim=True) + + +def adaptive_clip_grad(parameters, clip_factor=0.01, eps=1e-3, norm_type=2.0): + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + for p in parameters: + if p.grad is None: + continue + p_data = p.detach() + g_data = p.grad.detach() + max_norm = unitwise_norm(p_data, norm_type=norm_type).clamp_(min=eps).mul_(clip_factor) + grad_norm = unitwise_norm(g_data, norm_type=norm_type) + clipped_grad = g_data * (max_norm / grad_norm.clamp(min=1e-6)) + new_grads = torch.where(grad_norm < max_norm, g_data, clipped_grad) + p.grad.detach().copy_(new_grads) diff --git a/pytorch-image-models/timm/utils/attention_extract.py b/pytorch-image-models/timm/utils/attention_extract.py new file mode 100644 index 0000000000000000000000000000000000000000..e813d42a0d3675383a9514e24d1eeeabc5924d69 --- /dev/null +++ b/pytorch-image-models/timm/utils/attention_extract.py @@ -0,0 +1,85 @@ +import fnmatch +import re +from collections import OrderedDict +from typing import Union, Optional, List + +import torch + + +class AttentionExtract(torch.nn.Module): + # defaults should cover a significant number of timm models with attention maps. + default_node_names = ['*attn.softmax'] + default_module_names = ['*attn_drop'] + + def __init__( + self, + model: Union[torch.nn.Module], + names: Optional[List[str]] = None, + mode: str = 'eval', + method: str = 'fx', + hook_type: str = 'forward', + use_regex: bool = False, + ): + """ Extract attention maps (or other activations) from a model by name. + + Args: + model: Instantiated model to extract from. + names: List of concrete or wildcard names to extract. Names are nodes for fx and modules for hooks. + mode: 'train' or 'eval' model mode. + method: 'fx' or 'hook' extraction method. + hook_type: 'forward' or 'forward_pre' hooks used. + use_regex: Use regex instead of fnmatch + """ + super().__init__() + assert mode in ('train', 'eval') + if mode == 'train': + model = model.train() + else: + model = model.eval() + + assert method in ('fx', 'hook') + if method == 'fx': + # names are activation node names + from timm.models._features_fx import get_graph_node_names, GraphExtractNet + + node_names = get_graph_node_names(model)[0 if mode == 'train' else 1] + names = names or self.default_node_names + if use_regex: + regexes = [re.compile(r) for r in names] + matched = [g for g in node_names if any([r.match(g) for r in regexes])] + else: + matched = [g for g in node_names if any([fnmatch.fnmatch(g, n) for n in names])] + if not matched: + raise RuntimeError(f'No node names found matching {names}.') + + self.model = GraphExtractNet(model, matched, return_dict=True) + self.hooks = None + else: + # names are module names + assert hook_type in ('forward', 'forward_pre') + from timm.models._features import FeatureHooks + + module_names = [n for n, m in model.named_modules()] + names = names or self.default_module_names + if use_regex: + regexes = [re.compile(r) for r in names] + matched = [m for m in module_names if any([r.match(m) for r in regexes])] + else: + matched = [m for m in module_names if any([fnmatch.fnmatch(m, n) for n in names])] + if not matched: + raise RuntimeError(f'No module names found matching {names}.') + + self.model = model + self.hooks = FeatureHooks(matched, model.named_modules(), default_hook_type=hook_type) + + self.names = matched + self.mode = mode + self.method = method + + def forward(self, x): + if self.hooks is not None: + self.model(x) + output = self.hooks.get_output(device=x.device) + else: + output = self.model(x) + return output diff --git a/pytorch-image-models/timm/utils/checkpoint_saver.py b/pytorch-image-models/timm/utils/checkpoint_saver.py new file mode 100644 index 0000000000000000000000000000000000000000..6aad74ee52655f68220f799efaffcbccdd0748ad --- /dev/null +++ b/pytorch-image-models/timm/utils/checkpoint_saver.py @@ -0,0 +1,150 @@ +""" Checkpoint Saver + +Track top-n training checkpoints and maintain recovery checkpoints on specified intervals. + +Hacked together by / Copyright 2020 Ross Wightman +""" + +import glob +import operator +import os +import logging + +import torch + +from .model import unwrap_model, get_state_dict + + +_logger = logging.getLogger(__name__) + + +class CheckpointSaver: + def __init__( + self, + model, + optimizer, + args=None, + model_ema=None, + amp_scaler=None, + checkpoint_prefix='checkpoint', + recovery_prefix='recovery', + checkpoint_dir='', + recovery_dir='', + decreasing=False, + max_history=10, + unwrap_fn=unwrap_model): + + # objects to save state_dicts of + self.model = model + self.optimizer = optimizer + self.args = args + self.model_ema = model_ema + self.amp_scaler = amp_scaler + + # state + self.checkpoint_files = [] # (filename, metric) tuples in order of decreasing betterness + self.best_epoch = None + self.best_metric = None + self.curr_recovery_file = '' + self.last_recovery_file = '' + + # config + self.checkpoint_dir = checkpoint_dir + self.recovery_dir = recovery_dir + self.save_prefix = checkpoint_prefix + self.recovery_prefix = recovery_prefix + self.extension = '.pth.tar' + self.decreasing = decreasing # a lower metric is better if True + self.cmp = operator.lt if decreasing else operator.gt # True if lhs better than rhs + self.max_history = max_history + self.unwrap_fn = unwrap_fn + assert self.max_history >= 1 + + def save_checkpoint(self, epoch, metric=None): + assert epoch >= 0 + tmp_save_path = os.path.join(self.checkpoint_dir, 'tmp' + self.extension) + last_save_path = os.path.join(self.checkpoint_dir, 'last' + self.extension) + self._save(tmp_save_path, epoch, metric) + if os.path.exists(last_save_path): + os.unlink(last_save_path) # required for Windows support. + os.rename(tmp_save_path, last_save_path) + worst_file = self.checkpoint_files[-1] if self.checkpoint_files else None + if (len(self.checkpoint_files) < self.max_history + or metric is None or self.cmp(metric, worst_file[1])): + if len(self.checkpoint_files) >= self.max_history: + self._cleanup_checkpoints(1) + filename = '-'.join([self.save_prefix, str(epoch)]) + self.extension + save_path = os.path.join(self.checkpoint_dir, filename) + os.link(last_save_path, save_path) + self.checkpoint_files.append((save_path, metric)) + self.checkpoint_files = sorted( + self.checkpoint_files, key=lambda x: x[1], + reverse=not self.decreasing) # sort in descending order if a lower metric is not better + + checkpoints_str = "Current checkpoints:\n" + for c in self.checkpoint_files: + checkpoints_str += ' {}\n'.format(c) + _logger.info(checkpoints_str) + + if metric is not None and (self.best_metric is None or self.cmp(metric, self.best_metric)): + self.best_epoch = epoch + self.best_metric = metric + best_save_path = os.path.join(self.checkpoint_dir, 'model_best' + self.extension) + if os.path.exists(best_save_path): + os.unlink(best_save_path) + os.link(last_save_path, best_save_path) + + return (None, None) if self.best_metric is None else (self.best_metric, self.best_epoch) + + def _save(self, save_path, epoch, metric=None): + save_state = { + 'epoch': epoch, + 'arch': type(self.model).__name__.lower(), + 'state_dict': get_state_dict(self.model, self.unwrap_fn), + 'optimizer': self.optimizer.state_dict(), + 'version': 2, # version < 2 increments epoch before save + } + if self.args is not None: + save_state['arch'] = self.args.model + save_state['args'] = self.args + if self.amp_scaler is not None: + save_state[self.amp_scaler.state_dict_key] = self.amp_scaler.state_dict() + if self.model_ema is not None: + save_state['state_dict_ema'] = get_state_dict(self.model_ema, self.unwrap_fn) + if metric is not None: + save_state['metric'] = metric + torch.save(save_state, save_path) + + def _cleanup_checkpoints(self, trim=0): + trim = min(len(self.checkpoint_files), trim) + delete_index = self.max_history - trim + if delete_index < 0 or len(self.checkpoint_files) <= delete_index: + return + to_delete = self.checkpoint_files[delete_index:] + for d in to_delete: + try: + _logger.debug("Cleaning checkpoint: {}".format(d)) + os.remove(d[0]) + except Exception as e: + _logger.error("Exception '{}' while deleting checkpoint".format(e)) + self.checkpoint_files = self.checkpoint_files[:delete_index] + + def save_recovery(self, epoch, batch_idx=0): + assert epoch >= 0 + filename = '-'.join([self.recovery_prefix, str(epoch), str(batch_idx)]) + self.extension + save_path = os.path.join(self.recovery_dir, filename) + self._save(save_path, epoch) + if os.path.exists(self.last_recovery_file): + try: + _logger.debug("Cleaning recovery: {}".format(self.last_recovery_file)) + os.remove(self.last_recovery_file) + except Exception as e: + _logger.error("Exception '{}' while removing {}".format(e, self.last_recovery_file)) + self.last_recovery_file = self.curr_recovery_file + self.curr_recovery_file = save_path + + def find_recovery(self): + recovery_path = os.path.join(self.recovery_dir, self.recovery_prefix) + files = glob.glob(recovery_path + '*' + self.extension) + files = sorted(files) + return files[0] if len(files) else '' diff --git a/pytorch-image-models/timm/utils/clip_grad.py b/pytorch-image-models/timm/utils/clip_grad.py new file mode 100644 index 0000000000000000000000000000000000000000..7eb40697a221edd6d8e622ff3306dad5e58afd94 --- /dev/null +++ b/pytorch-image-models/timm/utils/clip_grad.py @@ -0,0 +1,23 @@ +import torch + +from timm.utils.agc import adaptive_clip_grad + + +def dispatch_clip_grad(parameters, value: float, mode: str = 'norm', norm_type: float = 2.0): + """ Dispatch to gradient clipping method + + Args: + parameters (Iterable): model parameters to clip + value (float): clipping value/factor/norm, mode dependant + mode (str): clipping mode, one of 'norm', 'value', 'agc' + norm_type (float): p-norm, default 2.0 + """ + if mode == 'norm': + torch.nn.utils.clip_grad_norm_(parameters, value, norm_type=norm_type) + elif mode == 'value': + torch.nn.utils.clip_grad_value_(parameters, value) + elif mode == 'agc': + adaptive_clip_grad(parameters, value, norm_type=norm_type) + else: + assert False, f"Unknown clip mode ({mode})." + diff --git a/pytorch-image-models/timm/utils/cuda.py b/pytorch-image-models/timm/utils/cuda.py new file mode 100644 index 0000000000000000000000000000000000000000..a0a2770c7515ff57c3aca7d46f4ce6cf62a2e67b --- /dev/null +++ b/pytorch-image-models/timm/utils/cuda.py @@ -0,0 +1,78 @@ +""" CUDA / AMP utils + +Hacked together by / Copyright 2020 Ross Wightman +""" +import torch + +try: + from apex import amp + has_apex = True +except ImportError: + amp = None + has_apex = False + +from .clip_grad import dispatch_clip_grad + + +class ApexScaler: + state_dict_key = "amp" + + def __call__( + self, + loss, + optimizer, + clip_grad=None, + clip_mode='norm', + parameters=None, + create_graph=False, + need_update=True, + ): + with amp.scale_loss(loss, optimizer) as scaled_loss: + scaled_loss.backward(create_graph=create_graph) + if need_update: + if clip_grad is not None: + dispatch_clip_grad(amp.master_params(optimizer), clip_grad, mode=clip_mode) + optimizer.step() + + def state_dict(self): + if 'state_dict' in amp.__dict__: + return amp.state_dict() + + def load_state_dict(self, state_dict): + if 'load_state_dict' in amp.__dict__: + amp.load_state_dict(state_dict) + + +class NativeScaler: + state_dict_key = "amp_scaler" + + def __init__(self, device='cuda'): + try: + self._scaler = torch.amp.GradScaler(device=device) + except (AttributeError, TypeError) as e: + self._scaler = torch.cuda.amp.GradScaler() + + def __call__( + self, + loss, + optimizer, + clip_grad=None, + clip_mode='norm', + parameters=None, + create_graph=False, + need_update=True, + ): + self._scaler.scale(loss).backward(create_graph=create_graph) + if need_update: + if clip_grad is not None: + assert parameters is not None + self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place + dispatch_clip_grad(parameters, clip_grad, mode=clip_mode) + self._scaler.step(optimizer) + self._scaler.update() + + def state_dict(self): + return self._scaler.state_dict() + + def load_state_dict(self, state_dict): + self._scaler.load_state_dict(state_dict) diff --git a/pytorch-image-models/timm/utils/decay_batch.py b/pytorch-image-models/timm/utils/decay_batch.py new file mode 100644 index 0000000000000000000000000000000000000000..852fa4b8dc3d46932b67ed3e42170a5de92415d9 --- /dev/null +++ b/pytorch-image-models/timm/utils/decay_batch.py @@ -0,0 +1,43 @@ +""" Batch size decay and retry helpers. + +Copyright 2022 Ross Wightman +""" +import math + + +def decay_batch_step(batch_size, num_intra_steps=2, no_odd=False): + """ power of two batch-size decay with intra steps + + Decay by stepping between powers of 2: + * determine power-of-2 floor of current batch size (base batch size) + * divide above value by num_intra_steps to determine step size + * floor batch_size to nearest multiple of step_size (from base batch size) + Examples: + num_steps == 4 --> 64, 56, 48, 40, 32, 28, 24, 20, 16, 14, 12, 10, 8, 7, 6, 5, 4, 3, 2, 1 + num_steps (no_odd=True) == 4 --> 64, 56, 48, 40, 32, 28, 24, 20, 16, 14, 12, 10, 8, 6, 4, 2 + num_steps == 2 --> 64, 48, 32, 24, 16, 12, 8, 6, 4, 3, 2, 1 + num_steps == 1 --> 64, 32, 16, 8, 4, 2, 1 + """ + if batch_size <= 1: + # return 0 for stopping value so easy to use in loop + return 0 + base_batch_size = int(2 ** (math.log(batch_size - 1) // math.log(2))) + step_size = max(base_batch_size // num_intra_steps, 1) + batch_size = base_batch_size + ((batch_size - base_batch_size - 1) // step_size) * step_size + if no_odd and batch_size % 2: + batch_size -= 1 + return batch_size + + +def check_batch_size_retry(error_str): + """ check failure error string for conditions where batch decay retry should not be attempted + """ + error_str = error_str.lower() + if 'required rank' in error_str: + # Errors involving phrase 'required rank' typically happen when a conv is used that's + # not compatible with channels_last memory format. + return False + if 'illegal' in error_str: + # 'Illegal memory access' errors in CUDA typically leave process in unusable state + return False + return True diff --git a/pytorch-image-models/timm/utils/distributed.py b/pytorch-image-models/timm/utils/distributed.py new file mode 100644 index 0000000000000000000000000000000000000000..cca2cdbb891aa6210a9761866453214dcc54fedf --- /dev/null +++ b/pytorch-image-models/timm/utils/distributed.py @@ -0,0 +1,182 @@ +""" Distributed training/validation utils + +Hacked together by / Copyright 2020 Ross Wightman +""" +import logging +import os +from typing import Optional + +import torch +from torch import distributed as dist + +from .model import unwrap_model + +_logger = logging.getLogger(__name__) + + +def reduce_tensor(tensor, n): + rt = tensor.clone() + dist.all_reduce(rt, op=dist.ReduceOp.SUM) + rt /= n + return rt + + +def distribute_bn(model, world_size, reduce=False): + # ensure every node has the same running bn stats + for bn_name, bn_buf in unwrap_model(model).named_buffers(recurse=True): + if ('running_mean' in bn_name) or ('running_var' in bn_name): + if reduce: + # average bn stats across whole group + torch.distributed.all_reduce(bn_buf, op=dist.ReduceOp.SUM) + bn_buf /= float(world_size) + else: + # broadcast bn stats from rank 0 to whole group + torch.distributed.broadcast(bn_buf, 0) + + +def is_global_primary(args): + return args.rank == 0 + + +def is_local_primary(args): + return args.local_rank == 0 + + +def is_primary(args, local=False): + return is_local_primary(args) if local else is_global_primary(args) + + +def is_distributed_env(): + if 'WORLD_SIZE' in os.environ: + return int(os.environ['WORLD_SIZE']) > 1 + if 'SLURM_NTASKS' in os.environ: + return int(os.environ['SLURM_NTASKS']) > 1 + return False + + +def world_info_from_env(): + local_rank = 0 + for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'): + if v in os.environ: + local_rank = int(os.environ[v]) + break + + global_rank = 0 + for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'): + if v in os.environ: + global_rank = int(os.environ[v]) + break + + world_size = 1 + for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'): + if v in os.environ: + world_size = int(os.environ[v]) + break + + return local_rank, global_rank, world_size + + +def init_distributed_device(args): + # Distributed training = training on more than one GPU. + # Works in both single and multi-node scenarios. + args.distributed = False + args.world_size = 1 + args.rank = 0 # global rank + args.local_rank = 0 + result = init_distributed_device_so( + device=getattr(args, 'device', 'cuda'), + dist_backend=getattr(args, 'dist_backend', None), + dist_url=getattr(args, 'dist_url', None), + ) + args.device = result['device'] + args.world_size = result['world_size'] + args.rank = result['global_rank'] + args.local_rank = result['local_rank'] + args.distributed = result['distributed'] + device = torch.device(args.device) + return device + + +def init_distributed_device_so( + device: str = 'cuda', + dist_backend: Optional[str] = None, + dist_url: Optional[str] = None, +): + # Distributed training = training on more than one GPU. + # Works in both single and multi-node scenarios. + distributed = False + world_size = 1 + global_rank = 0 + local_rank = 0 + device_type, *device_idx = device.split(':', maxsplit=1) + + if dist_backend is None: + # FIXME: verify that ROCm transform nccl to rccl + dist_backends = { + "xpu": "ccl", + "hpu": "hccl", + "cuda": "nccl", + "npu": "hccl", + } + dist_backend = dist_backends.get(device_type, 'gloo') + dist_url = dist_url or 'env://' + + # TBD, support horovod? + # if args.horovod: + # import horovod.torch as hvd + # assert hvd is not None, "Horovod is not installed" + # hvd.init() + # args.local_rank = int(hvd.local_rank()) + # args.rank = hvd.rank() + # args.world_size = hvd.size() + # args.distributed = True + # os.environ['LOCAL_RANK'] = str(args.local_rank) + # os.environ['RANK'] = str(args.rank) + # os.environ['WORLD_SIZE'] = str(args.world_size) + if is_distributed_env(): + if 'SLURM_PROCID' in os.environ: + # DDP via SLURM + local_rank, global_rank, world_size = world_info_from_env() + # SLURM var -> torch.distributed vars in case needed + os.environ['LOCAL_RANK'] = str(local_rank) + os.environ['RANK'] = str(global_rank) + os.environ['WORLD_SIZE'] = str(world_size) + torch.distributed.init_process_group( + backend=dist_backend, + init_method=dist_url, + world_size=world_size, + rank=global_rank, + ) + else: + # DDP via torchrun, torch.distributed.launch + local_rank, _, _ = world_info_from_env() + torch.distributed.init_process_group( + backend=dist_backend, + init_method=dist_url, + ) + world_size = torch.distributed.get_world_size() + global_rank = torch.distributed.get_rank() + distributed = True + + if device_type == 'cuda': + assert torch.cuda.is_available(), f'CUDA is not available but {device} was specified.' + if device_type == 'npu': + assert torch.npu.is_available(), f'Ascend NPU is not available but {device} was specified.' + + if distributed and device != 'cpu': + # Ignore manually specified device index in distributed mode and + # override with resolved local rank, fewer headaches in most setups. + if device_idx: + _logger.warning(f'device index {device_idx[0]} removed from specified ({device}).') + device = f'{device_type}:{local_rank}' + + if device.startswith('cuda:'): + torch.cuda.set_device(device) + + return dict( + device=device, + global_rank=global_rank, + local_rank=local_rank, + world_size=world_size, + distributed=distributed, + ) diff --git a/pytorch-image-models/timm/utils/jit.py b/pytorch-image-models/timm/utils/jit.py new file mode 100644 index 0000000000000000000000000000000000000000..d527411fd3e1985639bb0b161bd484142a3619dd --- /dev/null +++ b/pytorch-image-models/timm/utils/jit.py @@ -0,0 +1,58 @@ +""" JIT scripting/tracing utils + +Hacked together by / Copyright 2020 Ross Wightman +""" +import os + +import torch + + +def set_jit_legacy(): + """ Set JIT executor to legacy w/ support for op fusion + This is hopefully a temporary need in 1.5/1.5.1/1.6 to restore performance due to changes + in the JIT exectutor. These API are not supported so could change. + """ + # + assert hasattr(torch._C, '_jit_set_profiling_executor'), "Old JIT behavior doesn't exist!" + torch._C._jit_set_profiling_executor(False) + torch._C._jit_set_profiling_mode(False) + torch._C._jit_override_can_fuse_on_gpu(True) + #torch._C._jit_set_texpr_fuser_enabled(True) + + +def set_jit_fuser(fuser): + if fuser == "te": + # default fuser should be == 'te' + torch._C._jit_set_profiling_executor(True) + torch._C._jit_set_profiling_mode(True) + torch._C._jit_override_can_fuse_on_cpu(False) + torch._C._jit_override_can_fuse_on_gpu(True) + torch._C._jit_set_texpr_fuser_enabled(True) + try: + torch._C._jit_set_nvfuser_enabled(False) + except Exception: + pass + elif fuser == "old" or fuser == "legacy": + torch._C._jit_set_profiling_executor(False) + torch._C._jit_set_profiling_mode(False) + torch._C._jit_override_can_fuse_on_gpu(True) + torch._C._jit_set_texpr_fuser_enabled(False) + try: + torch._C._jit_set_nvfuser_enabled(False) + except Exception: + pass + elif fuser == "nvfuser" or fuser == "nvf": + os.environ['PYTORCH_NVFUSER_DISABLE_FALLBACK'] = '1' + #os.environ['PYTORCH_NVFUSER_DISABLE_FMA'] = '1' + #os.environ['PYTORCH_NVFUSER_JIT_OPT_LEVEL'] = '0' + torch._C._jit_set_texpr_fuser_enabled(False) + torch._C._jit_set_profiling_executor(True) + torch._C._jit_set_profiling_mode(True) + torch._C._jit_can_fuse_on_cpu() + torch._C._jit_can_fuse_on_gpu() + torch._C._jit_override_can_fuse_on_cpu(False) + torch._C._jit_override_can_fuse_on_gpu(False) + torch._C._jit_set_nvfuser_guard_mode(True) + torch._C._jit_set_nvfuser_enabled(True) + else: + assert False, f"Invalid jit fuser ({fuser})" diff --git a/pytorch-image-models/timm/utils/log.py b/pytorch-image-models/timm/utils/log.py new file mode 100644 index 0000000000000000000000000000000000000000..c99469e0884f3e45905ef7c7f0d1e491092697ad --- /dev/null +++ b/pytorch-image-models/timm/utils/log.py @@ -0,0 +1,28 @@ +""" Logging helpers + +Hacked together by / Copyright 2020 Ross Wightman +""" +import logging +import logging.handlers + + +class FormatterNoInfo(logging.Formatter): + def __init__(self, fmt='%(levelname)s: %(message)s'): + logging.Formatter.__init__(self, fmt) + + def format(self, record): + if record.levelno == logging.INFO: + return str(record.getMessage()) + return logging.Formatter.format(self, record) + + +def setup_default_logging(default_level=logging.INFO, log_path=''): + console_handler = logging.StreamHandler() + console_handler.setFormatter(FormatterNoInfo()) + logging.root.addHandler(console_handler) + logging.root.setLevel(default_level) + if log_path: + file_handler = logging.handlers.RotatingFileHandler(log_path, maxBytes=(1024 ** 2 * 2), backupCount=3) + file_formatter = logging.Formatter("%(asctime)s - %(name)20s: [%(levelname)8s] - %(message)s") + file_handler.setFormatter(file_formatter) + logging.root.addHandler(file_handler) diff --git a/pytorch-image-models/timm/utils/metrics.py b/pytorch-image-models/timm/utils/metrics.py new file mode 100644 index 0000000000000000000000000000000000000000..9fdbe13ef15c541679906239374ff8a7eedf5181 --- /dev/null +++ b/pytorch-image-models/timm/utils/metrics.py @@ -0,0 +1,32 @@ +""" Eval metrics and related + +Hacked together by / Copyright 2020 Ross Wightman +""" + + +class AverageMeter: + """Computes and stores the average and current value""" + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the accuracy over the k top predictions for the specified values of k""" + maxk = min(max(topk), output.size()[1]) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + correct = pred.eq(target.reshape(1, -1).expand_as(pred)) + return [correct[:min(k, maxk)].reshape(-1).float().sum(0) * 100. / batch_size for k in topk] diff --git a/pytorch-image-models/timm/utils/misc.py b/pytorch-image-models/timm/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..326a50f7274fa6c4e25b2e00dda5a9b388aec2a0 --- /dev/null +++ b/pytorch-image-models/timm/utils/misc.py @@ -0,0 +1,32 @@ +""" Misc utils + +Hacked together by / Copyright 2020 Ross Wightman +""" +import argparse +import ast +import re + + +def natural_key(string_): + """See http://www.codinghorror.com/blog/archives/001018.html""" + return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] + + +def add_bool_arg(parser, name, default=False, help=''): + dest_name = name.replace('-', '_') + group = parser.add_mutually_exclusive_group(required=False) + group.add_argument('--' + name, dest=dest_name, action='store_true', help=help) + group.add_argument('--no-' + name, dest=dest_name, action='store_false', help=help) + parser.set_defaults(**{dest_name: default}) + + +class ParseKwargs(argparse.Action): + def __call__(self, parser, namespace, values, option_string=None): + kw = {} + for value in values: + key, value = value.split('=') + try: + kw[key] = ast.literal_eval(value) + except ValueError: + kw[key] = str(value) # fallback to string (avoid need to escape on command line) + setattr(namespace, self.dest, kw) diff --git a/pytorch-image-models/timm/utils/model.py b/pytorch-image-models/timm/utils/model.py new file mode 100644 index 0000000000000000000000000000000000000000..8c9c77345c0978a8b5920b73ed5818bf8b0db8e5 --- /dev/null +++ b/pytorch-image-models/timm/utils/model.py @@ -0,0 +1,248 @@ +""" Model / state_dict utils + +Hacked together by / Copyright 2020 Ross Wightman +""" +import fnmatch +from copy import deepcopy + +import torch +from torchvision.ops.misc import FrozenBatchNorm2d + +from timm.layers import BatchNormAct2d, SyncBatchNormAct, FrozenBatchNormAct2d,\ + freeze_batch_norm_2d, unfreeze_batch_norm_2d +from .model_ema import ModelEma + + +def unwrap_model(model): + if isinstance(model, ModelEma): + return unwrap_model(model.ema) + else: + if hasattr(model, 'module'): + return unwrap_model(model.module) + elif hasattr(model, '_orig_mod'): + return unwrap_model(model._orig_mod) + else: + return model + + +def get_state_dict(model, unwrap_fn=unwrap_model): + return unwrap_fn(model).state_dict() + + +def avg_sq_ch_mean(model, input, output): + """ calculate average channel square mean of output activations + """ + return torch.mean(output.mean(axis=[0, 2, 3]) ** 2).item() + + +def avg_ch_var(model, input, output): + """ calculate average channel variance of output activations + """ + return torch.mean(output.var(axis=[0, 2, 3])).item() + + +def avg_ch_var_residual(model, input, output): + """ calculate average channel variance of output activations + """ + return torch.mean(output.var(axis=[0, 2, 3])).item() + + +class ActivationStatsHook: + """Iterates through each of `model`'s modules and matches modules using unix pattern + matching based on `hook_fn_locs` and registers `hook_fn` to the module if there is + a match. + + Arguments: + model (nn.Module): model from which we will extract the activation stats + hook_fn_locs (List[str]): List of `hook_fn` locations based on Unix type string + matching with the name of model's modules. + hook_fns (List[Callable]): List of hook functions to be registered at every + module in `layer_names`. + + Inspiration from https://docs.fast.ai/callback.hook.html. + + Refer to https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 for an example + on how to plot Signal Propogation Plots using `ActivationStatsHook`. + """ + + def __init__(self, model, hook_fn_locs, hook_fns): + self.model = model + self.hook_fn_locs = hook_fn_locs + self.hook_fns = hook_fns + if len(hook_fn_locs) != len(hook_fns): + raise ValueError("Please provide `hook_fns` for each `hook_fn_locs`, \ + their lengths are different.") + self.stats = dict((hook_fn.__name__, []) for hook_fn in hook_fns) + for hook_fn_loc, hook_fn in zip(hook_fn_locs, hook_fns): + self.register_hook(hook_fn_loc, hook_fn) + + def _create_hook(self, hook_fn): + def append_activation_stats(module, input, output): + out = hook_fn(module, input, output) + self.stats[hook_fn.__name__].append(out) + + return append_activation_stats + + def register_hook(self, hook_fn_loc, hook_fn): + for name, module in self.model.named_modules(): + if not fnmatch.fnmatch(name, hook_fn_loc): + continue + module.register_forward_hook(self._create_hook(hook_fn)) + + +def extract_spp_stats( + model, + hook_fn_locs, + hook_fns, + input_shape=[8, 3, 224, 224]): + """Extract average square channel mean and variance of activations during + forward pass to plot Signal Propogation Plots (SPP). + + Paper: https://arxiv.org/abs/2101.08692 + + Example Usage: https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 + """ + x = torch.normal(0., 1., input_shape) + hook = ActivationStatsHook(model, hook_fn_locs=hook_fn_locs, hook_fns=hook_fns) + _ = model(x) + return hook.stats + + +def _freeze_unfreeze(root_module, submodules=[], include_bn_running_stats=True, mode='freeze'): + """ + Freeze or unfreeze parameters of the specified modules and those of all their hierarchical descendants. This is + done in place. + + Args: + root_module (nn.Module, optional): Root module relative to which the `submodules` are referenced. + submodules (list[str]): List of modules for which the parameters will be (un)frozen. They are to be provided as + named modules relative to the root module (accessible via `root_module.named_modules()`). An empty list + means that the whole root module will be (un)frozen. Defaults to [] + include_bn_running_stats (bool): Whether to also (un)freeze the running statistics of batch norm 2d layers. + Defaults to `True`. + mode (bool): Whether to freeze ("freeze") or unfreeze ("unfreeze"). Defaults to `"freeze"`. + """ + assert mode in ["freeze", "unfreeze"], '`mode` must be one of "freeze" or "unfreeze"' + + if isinstance(root_module, ( + torch.nn.modules.batchnorm.BatchNorm2d, + torch.nn.modules.batchnorm.SyncBatchNorm, + BatchNormAct2d, + SyncBatchNormAct, + )): + # Raise assertion here because we can't convert it in place + raise AssertionError( + "You have provided a batch norm layer as the `root module`. Please use " + "`timm.utils.model.freeze_batch_norm_2d` or `timm.utils.model.unfreeze_batch_norm_2d` instead.") + + if isinstance(submodules, str): + submodules = [submodules] + + named_modules = submodules + submodules = [root_module.get_submodule(m) for m in submodules] + + if not len(submodules): + named_modules, submodules = list(zip(*root_module.named_children())) + + for n, m in zip(named_modules, submodules): + # (Un)freeze parameters + for p in m.parameters(): + p.requires_grad = False if mode == 'freeze' else True + if include_bn_running_stats: + # Helper to add submodule specified as a named_module + def _add_submodule(module, name, submodule): + split = name.rsplit('.', 1) + if len(split) > 1: + module.get_submodule(split[0]).add_module(split[1], submodule) + else: + module.add_module(name, submodule) + + # Freeze batch norm + if mode == 'freeze': + res = freeze_batch_norm_2d(m) + # It's possible that `m` is a type of BatchNorm in itself, in which case `unfreeze_batch_norm_2d` won't + # convert it in place, but will return the converted result. In this case `res` holds the converted + # result and we may try to re-assign the named module + if isinstance(m, ( + torch.nn.modules.batchnorm.BatchNorm2d, + torch.nn.modules.batchnorm.SyncBatchNorm, + BatchNormAct2d, + SyncBatchNormAct, + )): + _add_submodule(root_module, n, res) + # Unfreeze batch norm + else: + res = unfreeze_batch_norm_2d(m) + # Ditto. See note above in mode == 'freeze' branch + if isinstance(m, (FrozenBatchNorm2d, FrozenBatchNormAct2d)): + _add_submodule(root_module, n, res) + + +def freeze(root_module, submodules=[], include_bn_running_stats=True): + """ + Freeze parameters of the specified modules and those of all their hierarchical descendants. This is done in place. + + Args: + root_module (nn.Module): Root module relative to which `submodules` are referenced. + submodules (list[str]): List of modules for which the parameters will be frozen. They are to be provided as + named modules relative to the root module (accessible via `root_module.named_modules()`). An empty list + means that the whole root module will be frozen. Defaults to `[]`. + include_bn_running_stats (bool): Whether to also freeze the running statistics of `BatchNorm2d` and + `SyncBatchNorm` layers. These will be converted to `FrozenBatchNorm2d` in place. Hint: During fine tuning, + it's good practice to freeze batch norm stats. And note that these are different to the affine parameters + which are just normal PyTorch parameters. Defaults to `True`. + + Hint: If you want to freeze batch norm ONLY, use `timm.utils.model.freeze_batch_norm_2d`. + + Examples:: + + >>> model = timm.create_model('resnet18') + >>> # Freeze up to and including layer2 + >>> submodules = [n for n, _ in model.named_children()] + >>> print(submodules) + ['conv1', 'bn1', 'act1', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4', 'global_pool', 'fc'] + >>> freeze(model, submodules[:submodules.index('layer2') + 1]) + >>> # Check for yourself that it works as expected + >>> print(model.layer2[0].conv1.weight.requires_grad) + False + >>> print(model.layer3[0].conv1.weight.requires_grad) + True + >>> # Unfreeze + >>> unfreeze(model) + """ + _freeze_unfreeze(root_module, submodules, include_bn_running_stats=include_bn_running_stats, mode="freeze") + + +def unfreeze(root_module, submodules=[], include_bn_running_stats=True): + """ + Unfreeze parameters of the specified modules and those of all their hierarchical descendants. This is done in place. + + Args: + root_module (nn.Module): Root module relative to which `submodules` are referenced. + submodules (list[str]): List of submodules for which the parameters will be (un)frozen. They are to be provided + as named modules relative to the root module (accessible via `root_module.named_modules()`). An empty + list means that the whole root module will be unfrozen. Defaults to `[]`. + include_bn_running_stats (bool): Whether to also unfreeze the running statistics of `FrozenBatchNorm2d` layers. + These will be converted to `BatchNorm2d` in place. Defaults to `True`. + + See example in docstring for `freeze`. + """ + _freeze_unfreeze(root_module, submodules, include_bn_running_stats=include_bn_running_stats, mode="unfreeze") + + +def reparameterize_model(model: torch.nn.Module, inplace=False) -> torch.nn.Module: + if not inplace: + model = deepcopy(model) + + def _fuse(m): + for child_name, child in m.named_children(): + if hasattr(child, 'fuse'): + setattr(m, child_name, child.fuse()) + elif hasattr(child, "reparameterize"): + child.reparameterize() + elif hasattr(child, "switch_to_deploy"): + child.switch_to_deploy() + _fuse(child) + + _fuse(model) + return model diff --git a/pytorch-image-models/timm/utils/model_ema.py b/pytorch-image-models/timm/utils/model_ema.py new file mode 100644 index 0000000000000000000000000000000000000000..3cc7e88fc2397a023ee45df164bb81216c6413c4 --- /dev/null +++ b/pytorch-image-models/timm/utils/model_ema.py @@ -0,0 +1,260 @@ +""" Exponential Moving Average (EMA) of model updates + +Hacked together by / Copyright 2020 Ross Wightman +""" +import logging +from collections import OrderedDict +from copy import deepcopy +from typing import Optional + +import torch +import torch.nn as nn + +_logger = logging.getLogger(__name__) + + +class ModelEma: + """ Model Exponential Moving Average (DEPRECATED) + + Keep a moving average of everything in the model state_dict (parameters and buffers). + This version is deprecated, it does not work with scripted models. Will be removed eventually. + + This is intended to allow functionality like + https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage + + A smoothed version of the weights is necessary for some training schemes to perform well. + E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use + RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA + smoothing of weights to match results. Pay attention to the decay constant you are using + relative to your update count per epoch. + + To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but + disable validation of the EMA weights. Validation will have to be done manually in a separate + process, or after the training stops converging. + + This class is sensitive where it is initialized in the sequence of model init, + GPU assignment and distributed training wrappers. + """ + def __init__(self, model, decay=0.9999, device='', resume=''): + # make a copy of the model for accumulating moving average of weights + self.ema = deepcopy(model) + self.ema.eval() + self.decay = decay + self.device = device # perform ema on different device from model if set + if device: + self.ema.to(device=device) + self.ema_has_module = hasattr(self.ema, 'module') + if resume: + self._load_checkpoint(resume) + for p in self.ema.parameters(): + p.requires_grad_(False) + + def _load_checkpoint(self, checkpoint_path): + checkpoint = torch.load(checkpoint_path, map_location='cpu') + assert isinstance(checkpoint, dict) + if 'state_dict_ema' in checkpoint: + new_state_dict = OrderedDict() + for k, v in checkpoint['state_dict_ema'].items(): + # ema model may have been wrapped by DataParallel, and need module prefix + if self.ema_has_module: + name = 'module.' + k if not k.startswith('module') else k + else: + name = k + new_state_dict[name] = v + self.ema.load_state_dict(new_state_dict) + _logger.info("Loaded state_dict_ema") + else: + _logger.warning("Failed to find state_dict_ema, starting from loaded model weights") + + def update(self, model): + # correct a mismatch in state dict keys + needs_module = hasattr(model, 'module') and not self.ema_has_module + with torch.no_grad(): + msd = model.state_dict() + for k, ema_v in self.ema.state_dict().items(): + if needs_module: + k = 'module.' + k + model_v = msd[k].detach() + if self.device: + model_v = model_v.to(device=self.device) + ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v) + + +class ModelEmaV2(nn.Module): + """ Model Exponential Moving Average V2 + + Keep a moving average of everything in the model state_dict (parameters and buffers). + V2 of this module is simpler, it does not match params/buffers based on name but simply + iterates in order. It works with torchscript (JIT of full model). + + This is intended to allow functionality like + https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage + + A smoothed version of the weights is necessary for some training schemes to perform well. + E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use + RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA + smoothing of weights to match results. Pay attention to the decay constant you are using + relative to your update count per epoch. + + To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but + disable validation of the EMA weights. Validation will have to be done manually in a separate + process, or after the training stops converging. + + This class is sensitive where it is initialized in the sequence of model init, + GPU assignment and distributed training wrappers. + """ + def __init__(self, model, decay=0.9999, device=None): + super().__init__() + # make a copy of the model for accumulating moving average of weights + self.module = deepcopy(model) + self.module.eval() + self.decay = decay + self.device = device # perform ema on different device from model if set + if self.device is not None: + self.module.to(device=device) + + def _update(self, model, update_fn): + with torch.no_grad(): + for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): + if self.device is not None: + model_v = model_v.to(device=self.device) + ema_v.copy_(update_fn(ema_v, model_v)) + + def update(self, model): + self._update(model, update_fn=lambda e, m: self.decay * e + (1. - self.decay) * m) + + def set(self, model): + self._update(model, update_fn=lambda e, m: m) + + def forward(self, *args, **kwargs): + return self.module(*args, **kwargs) + + +class ModelEmaV3(nn.Module): + """ Model Exponential Moving Average V3 + + Keep a moving average of everything in the model state_dict (parameters and buffers). + V3 of this module leverages for_each and in-place operations for faster performance. + + Decay warmup based on code by @crowsonkb, her comments: + If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are + good values for models you plan to train for a million or more steps (reaches decay + factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models + you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at + 215.4k steps). + + This is intended to allow functionality like + https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage + + To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but + disable validation of the EMA weights. Validation will have to be done manually in a separate + process, or after the training stops converging. + + This class is sensitive where it is initialized in the sequence of model init, + GPU assignment and distributed training wrappers. + """ + def __init__( + self, + model, + decay: float = 0.9999, + min_decay: float = 0.0, + update_after_step: int = 0, + use_warmup: bool = False, + warmup_gamma: float = 1.0, + warmup_power: float = 2/3, + device: Optional[torch.device] = None, + foreach: bool = True, + exclude_buffers: bool = False, + ): + super().__init__() + # make a copy of the model for accumulating moving average of weights + self.module = deepcopy(model) + self.module.eval() + self.decay = decay + self.min_decay = min_decay + self.update_after_step = update_after_step + self.use_warmup = use_warmup + self.warmup_gamma = warmup_gamma + self.warmup_power = warmup_power + self.foreach = foreach + self.device = device # perform ema on different device from model if set + self.exclude_buffers = exclude_buffers + if self.device is not None and device != next(model.parameters()).device: + self.foreach = False # cannot use foreach methods with different devices + self.module.to(device=device) + + def get_decay(self, step: Optional[int] = None) -> float: + """ + Compute the decay factor for the exponential moving average. + """ + if step is None: + return self.decay + + step = max(0, step - self.update_after_step - 1) + if step <= 0: + return 0.0 + + if self.use_warmup: + decay = 1 - (1 + step / self.warmup_gamma) ** -self.warmup_power + decay = max(min(decay, self.decay), self.min_decay) + else: + decay = self.decay + + return decay + + @torch.no_grad() + def update(self, model, step: Optional[int] = None): + decay = self.get_decay(step) + if self.exclude_buffers: + self.apply_update_no_buffers_(model, decay) + else: + self.apply_update_(model, decay) + + def apply_update_(self, model, decay: float): + # interpolate parameters and buffers + if self.foreach: + ema_lerp_values = [] + model_lerp_values = [] + for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): + if ema_v.is_floating_point(): + ema_lerp_values.append(ema_v) + model_lerp_values.append(model_v) + else: + ema_v.copy_(model_v) + + if hasattr(torch, '_foreach_lerp_'): + torch._foreach_lerp_(ema_lerp_values, model_lerp_values, weight=1. - decay) + else: + torch._foreach_mul_(ema_lerp_values, scalar=decay) + torch._foreach_add_(ema_lerp_values, model_lerp_values, alpha=1. - decay) + else: + for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): + if ema_v.is_floating_point(): + ema_v.lerp_(model_v.to(device=self.device), weight=1. - decay) + else: + ema_v.copy_(model_v.to(device=self.device)) + + def apply_update_no_buffers_(self, model, decay: float): + # interpolate parameters, copy buffers + ema_params = tuple(self.module.parameters()) + model_params = tuple(model.parameters()) + if self.foreach: + if hasattr(torch, '_foreach_lerp_'): + torch._foreach_lerp_(ema_params, model_params, weight=1. - decay) + else: + torch._foreach_mul_(ema_params, scalar=decay) + torch._foreach_add_(ema_params, model_params, alpha=1 - decay) + else: + for ema_p, model_p in zip(ema_params, model_params): + ema_p.lerp_(model_p.to(device=self.device), weight=1. - decay) + + for ema_b, model_b in zip(self.module.buffers(), model.buffers()): + ema_b.copy_(model_b.to(device=self.device)) + + @torch.no_grad() + def set(self, model): + for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): + ema_v.copy_(model_v.to(device=self.device)) + + def forward(self, *args, **kwargs): + return self.module(*args, **kwargs) \ No newline at end of file diff --git a/pytorch-image-models/timm/utils/onnx.py b/pytorch-image-models/timm/utils/onnx.py new file mode 100644 index 0000000000000000000000000000000000000000..932bc8f92257c528a1773e2642fef04646912c34 --- /dev/null +++ b/pytorch-image-models/timm/utils/onnx.py @@ -0,0 +1,109 @@ +from typing import Optional, Tuple, List + +import torch + + +def onnx_forward(onnx_file, example_input): + import onnxruntime + + sess_options = onnxruntime.SessionOptions() + session = onnxruntime.InferenceSession(onnx_file, sess_options) + input_name = session.get_inputs()[0].name + output = session.run([], {input_name: example_input.numpy()}) + output = output[0] + return output + + +def onnx_export( + model: torch.nn.Module, + output_file: str, + example_input: Optional[torch.Tensor] = None, + training: bool = False, + verbose: bool = False, + check: bool = True, + check_forward: bool = False, + batch_size: int = 64, + input_size: Tuple[int, int, int] = None, + opset: Optional[int] = None, + dynamic_size: bool = False, + aten_fallback: bool = False, + keep_initializers: Optional[bool] = None, + use_dynamo: bool = False, + input_names: List[str] = None, + output_names: List[str] = None, +): + import onnx + + if training: + training_mode = torch.onnx.TrainingMode.TRAINING + model.train() + else: + training_mode = torch.onnx.TrainingMode.EVAL + model.eval() + + if example_input is None: + if not input_size: + assert hasattr(model, 'default_cfg') + input_size = model.default_cfg.get('input_size') + example_input = torch.randn((batch_size,) + input_size, requires_grad=training) + + # Run model once before export trace, sets padding for models with Conv2dSameExport. This means + # that the padding for models with Conv2dSameExport (most models with tf_ prefix) is fixed for + # the input img_size specified in this script. + + # Opset >= 11 should allow for dynamic padding, however I cannot get it to work due to + # issues in the tracing of the dynamic padding or errors attempting to export the model after jit + # scripting it (an approach that should work). Perhaps in a future PyTorch or ONNX versions... + with torch.no_grad(): + original_out = model(example_input) + + input_names = input_names or ["input0"] + output_names = output_names or ["output0"] + + dynamic_axes = {'input0': {0: 'batch'}, 'output0': {0: 'batch'}} + if dynamic_size: + dynamic_axes['input0'][2] = 'height' + dynamic_axes['input0'][3] = 'width' + + if aten_fallback: + export_type = torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK + else: + export_type = torch.onnx.OperatorExportTypes.ONNX + + if use_dynamo: + export_options = torch.onnx.ExportOptions(dynamic_shapes=dynamic_size) + export_output = torch.onnx.dynamo_export( + model, + example_input, + export_options=export_options, + ) + export_output.save(output_file) + torch_out = None + else: + torch_out = torch.onnx._export( + model, + example_input, + output_file, + training=training_mode, + export_params=True, + verbose=verbose, + input_names=input_names, + output_names=output_names, + keep_initializers_as_inputs=keep_initializers, + dynamic_axes=dynamic_axes, + opset_version=opset, + operator_export_type=export_type + ) + + if check: + onnx_model = onnx.load(output_file) + onnx.checker.check_model(onnx_model, full_check=True) # assuming throw on error + if check_forward and not training: + import numpy as np + onnx_out = onnx_forward(output_file, example_input) + if torch_out is not None: + np.testing.assert_almost_equal(torch_out.numpy(), onnx_out, decimal=3) + np.testing.assert_almost_equal(original_out.numpy(), torch_out.numpy(), decimal=5) + else: + np.testing.assert_almost_equal(original_out.numpy(), onnx_out, decimal=3) + diff --git a/pytorch-image-models/timm/utils/random.py b/pytorch-image-models/timm/utils/random.py new file mode 100644 index 0000000000000000000000000000000000000000..a9679983e96a9a6634c0b77aaf7b996e70eff50b --- /dev/null +++ b/pytorch-image-models/timm/utils/random.py @@ -0,0 +1,9 @@ +import random +import numpy as np +import torch + + +def random_seed(seed=42, rank=0): + torch.manual_seed(seed + rank) + np.random.seed(seed + rank) + random.seed(seed + rank) diff --git a/pytorch-image-models/timm/utils/summary.py b/pytorch-image-models/timm/utils/summary.py new file mode 100644 index 0000000000000000000000000000000000000000..eccbb941fef37283f1819180c0d9834459a6ec14 --- /dev/null +++ b/pytorch-image-models/timm/utils/summary.py @@ -0,0 +1,51 @@ +""" Summary utilities + +Hacked together by / Copyright 2020 Ross Wightman +""" +import csv +import os +from collections import OrderedDict +try: + import wandb +except ImportError: + pass + + +def get_outdir(path, *paths, inc=False): + outdir = os.path.join(path, *paths) + if not os.path.exists(outdir): + os.makedirs(outdir) + elif inc: + count = 1 + outdir_inc = outdir + '-' + str(count) + while os.path.exists(outdir_inc): + count = count + 1 + outdir_inc = outdir + '-' + str(count) + assert count < 100 + outdir = outdir_inc + os.makedirs(outdir) + return outdir + + +def update_summary( + epoch, + train_metrics, + eval_metrics, + filename, + lr=None, + write_header=False, + log_wandb=False, +): + rowd = OrderedDict(epoch=epoch) + rowd.update([('train_' + k, v) for k, v in train_metrics.items()]) + if eval_metrics: + rowd.update([('eval_' + k, v) for k, v in eval_metrics.items()]) + if lr is not None: + rowd['lr'] = lr + if log_wandb: + wandb.log(rowd) + with open(filename, mode='a') as cf: + dw = csv.DictWriter(cf, fieldnames=rowd.keys()) + if write_header: # first iteration (epoch == 1 can't be used) + dw.writeheader() + dw.writerow(rowd) diff --git a/pytorch-image-models/timm/version.py b/pytorch-image-models/timm/version.py new file mode 100644 index 0000000000000000000000000000000000000000..21470fe17a6a35eaf0ed83f29e64e7f50c75ac40 --- /dev/null +++ b/pytorch-image-models/timm/version.py @@ -0,0 +1 @@ +__version__ = '1.0.13.dev0' diff --git a/pytorch-image-models/train.py b/pytorch-image-models/train.py new file mode 100644 index 0000000000000000000000000000000000000000..a9e63f45020f8eae6880621bacaa2cb667254b55 --- /dev/null +++ b/pytorch-image-models/train.py @@ -0,0 +1,1213 @@ +#!/usr/bin/env python3 +""" ImageNet Training Script + +This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet +training results with some of the latest networks and training techniques. It favours canonical PyTorch +and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed +and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit. + +This script was started from an early version of the PyTorch ImageNet example +(https://github.com/pytorch/examples/tree/master/imagenet) + +NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples +(https://github.com/NVIDIA/apex/tree/master/examples/imagenet) + +Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) +""" +import argparse +import copy +import importlib +import json +import logging +import os +import time +from collections import OrderedDict +from contextlib import suppress +from datetime import datetime +from functools import partial + +import torch +import torch.nn as nn +import torchvision.utils +import yaml +from torch.nn.parallel import DistributedDataParallel as NativeDDP + +from timm import utils +from timm.data import create_dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset +from timm.layers import convert_splitbn_model, convert_sync_batchnorm, set_fast_norm +from timm.loss import JsdCrossEntropy, SoftTargetCrossEntropy, BinaryCrossEntropy, LabelSmoothingCrossEntropy +from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint, model_parameters +from timm.optim import create_optimizer_v2, optimizer_kwargs +from timm.scheduler import create_scheduler_v2, scheduler_kwargs +from timm.utils import ApexScaler, NativeScaler + +try: + from apex import amp + from apex.parallel import DistributedDataParallel as ApexDDP + from apex.parallel import convert_syncbn_model + has_apex = True +except ImportError: + has_apex = False + + +try: + import wandb + has_wandb = True +except ImportError: + has_wandb = False + +try: + from functorch.compile import memory_efficient_fusion + has_functorch = True +except ImportError as e: + has_functorch = False + +has_compile = hasattr(torch, 'compile') + + +_logger = logging.getLogger('train') + +# The first arg parser parses out only the --config argument, this argument is used to +# load a yaml file containing key-values that override the defaults for the main parser below +config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False) +parser.add_argument('-c', '--config', default='', type=str, metavar='FILE', + help='YAML config file specifying default arguments') + + +parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') + +# Dataset parameters +group = parser.add_argument_group('Dataset parameters') +# Keep this argument outside the dataset group because it is positional. +parser.add_argument('data', nargs='?', metavar='DIR', const=None, + help='path to dataset (positional is *deprecated*, use --data-dir)') +parser.add_argument('--data-dir', metavar='DIR', + help='path to dataset (root dir)') +parser.add_argument('--dataset', metavar='NAME', default='', + help='dataset type + name ("/") (default: ImageFolder or ImageTar if empty)') +group.add_argument('--train-split', metavar='NAME', default='train', + help='dataset train split (default: train)') +group.add_argument('--val-split', metavar='NAME', default='validation', + help='dataset validation split (default: validation)') +parser.add_argument('--train-num-samples', default=None, type=int, + metavar='N', help='Manually specify num samples in train split, for IterableDatasets.') +parser.add_argument('--val-num-samples', default=None, type=int, + metavar='N', help='Manually specify num samples in validation split, for IterableDatasets.') +group.add_argument('--dataset-download', action='store_true', default=False, + help='Allow download of dataset for torch/ and tfds/ datasets that support it.') +group.add_argument('--class-map', default='', type=str, metavar='FILENAME', + help='path to class to idx mapping file (default: "")') +group.add_argument('--input-img-mode', default=None, type=str, + help='Dataset image conversion mode for input images.') +group.add_argument('--input-key', default=None, type=str, + help='Dataset key for input images.') +group.add_argument('--target-key', default=None, type=str, + help='Dataset key for target labels.') +group.add_argument('--dataset-trust-remote-code', action='store_true', default=False, + help='Allow huggingface dataset import to execute code downloaded from the dataset\'s repo.') + +# Model parameters +group = parser.add_argument_group('Model parameters') +group.add_argument('--model', default='resnet50', type=str, metavar='MODEL', + help='Name of model to train (default: "resnet50")') +group.add_argument('--pretrained', action='store_true', default=False, + help='Start with pretrained version of specified network (if avail)') +group.add_argument('--pretrained-path', default=None, type=str, + help='Load this checkpoint as if they were the pretrained weights (with adaptation).') +group.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH', + help='Load this checkpoint into model after initialization (default: none)') +group.add_argument('--resume', default='', type=str, metavar='PATH', + help='Resume full model and optimizer state from checkpoint (default: none)') +group.add_argument('--no-resume-opt', action='store_true', default=False, + help='prevent resume of optimizer state when resuming model') +group.add_argument('--num-classes', type=int, default=None, metavar='N', + help='number of label classes (Model default if None)') +group.add_argument('--gp', default=None, type=str, metavar='POOL', + help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') +group.add_argument('--img-size', type=int, default=None, metavar='N', + help='Image size (default: None => model default)') +group.add_argument('--in-chans', type=int, default=None, metavar='N', + help='Image input channels (default: None => 3)') +group.add_argument('--input-size', default=None, nargs=3, type=int, + metavar='N N N', + help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') +group.add_argument('--crop-pct', default=None, type=float, + metavar='N', help='Input image center crop percent (for validation only)') +group.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', + help='Override mean pixel value of dataset') +group.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', + help='Override std deviation of dataset') +group.add_argument('--interpolation', default='', type=str, metavar='NAME', + help='Image resize interpolation type (overrides model)') +group.add_argument('-b', '--batch-size', type=int, default=128, metavar='N', + help='Input batch size for training (default: 128)') +group.add_argument('-vb', '--validation-batch-size', type=int, default=None, metavar='N', + help='Validation batch size override (default: None)') +group.add_argument('--channels-last', action='store_true', default=False, + help='Use channels_last memory layout') +group.add_argument('--fuser', default='', type=str, + help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") +group.add_argument('--grad-accum-steps', type=int, default=1, metavar='N', + help='The number of steps to accumulate gradients (default: 1)') +group.add_argument('--grad-checkpointing', action='store_true', default=False, + help='Enable gradient checkpointing through model blocks/stages') +group.add_argument('--fast-norm', default=False, action='store_true', + help='enable experimental fast-norm') +group.add_argument('--model-kwargs', nargs='*', default={}, action=utils.ParseKwargs) +group.add_argument('--head-init-scale', default=None, type=float, + help='Head initialization scale') +group.add_argument('--head-init-bias', default=None, type=float, + help='Head initialization bias value') +group.add_argument('--torchcompile-mode', type=str, default=None, + help="torch.compile mode (default: None).") + +# scripting / codegen +scripting_group = group.add_mutually_exclusive_group() +scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true', + help='torch.jit.script the full model') +scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', + help="Enable compilation w/ specified backend (default: inductor).") + +# Device & distributed +group = parser.add_argument_group('Device parameters') +group.add_argument('--device', default='cuda', type=str, + help="Device (accelerator) to use.") +group.add_argument('--amp', action='store_true', default=False, + help='use NVIDIA Apex AMP or Native AMP for mixed precision training') +group.add_argument('--amp-dtype', default='float16', type=str, + help='lower precision AMP dtype (default: float16)') +group.add_argument('--amp-impl', default='native', type=str, + help='AMP impl to use, "native" or "apex" (default: native)') +group.add_argument('--no-ddp-bb', action='store_true', default=False, + help='Force broadcast buffers for native DDP to off.') +group.add_argument('--synchronize-step', action='store_true', default=False, + help='torch.cuda.synchronize() end of each step') +group.add_argument("--local_rank", default=0, type=int) +parser.add_argument('--device-modules', default=None, type=str, nargs='+', + help="Python imports for device backend modules.") + +# Optimizer parameters +group = parser.add_argument_group('Optimizer parameters') +group.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', + help='Optimizer (default: "sgd")') +group.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', + help='Optimizer Epsilon (default: None, use opt default)') +group.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', + help='Optimizer Betas (default: None, use opt default)') +group.add_argument('--momentum', type=float, default=0.9, metavar='M', + help='Optimizer momentum (default: 0.9)') +group.add_argument('--weight-decay', type=float, default=2e-5, + help='weight decay (default: 2e-5)') +group.add_argument('--clip-grad', type=float, default=None, metavar='NORM', + help='Clip gradient norm (default: None, no clipping)') +group.add_argument('--clip-mode', type=str, default='norm', + help='Gradient clipping mode. One of ("norm", "value", "agc")') +group.add_argument('--layer-decay', type=float, default=None, + help='layer-wise learning rate decay (default: None)') +group.add_argument('--opt-kwargs', nargs='*', default={}, action=utils.ParseKwargs) + +# Learning rate schedule parameters +group = parser.add_argument_group('Learning rate schedule parameters') +group.add_argument('--sched', type=str, default='cosine', metavar='SCHEDULER', + help='LR scheduler (default: "cosine"') +group.add_argument('--sched-on-updates', action='store_true', default=False, + help='Apply LR scheduler step on update instead of epoch end.') +group.add_argument('--lr', type=float, default=None, metavar='LR', + help='learning rate, overrides lr-base if set (default: None)') +group.add_argument('--lr-base', type=float, default=0.1, metavar='LR', + help='base learning rate: lr = lr_base * global_batch_size / base_size') +group.add_argument('--lr-base-size', type=int, default=256, metavar='DIV', + help='base learning rate batch size (divisor, default: 256).') +group.add_argument('--lr-base-scale', type=str, default='', metavar='SCALE', + help='base learning rate vs batch_size scaling ("linear", "sqrt", based on opt if empty)') +group.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', + help='learning rate noise on/off epoch percentages') +group.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', + help='learning rate noise limit percent (default: 0.67)') +group.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', + help='learning rate noise std-dev (default: 1.0)') +group.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT', + help='learning rate cycle len multiplier (default: 1.0)') +group.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT', + help='amount to decay each learning rate cycle (default: 0.5)') +group.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N', + help='learning rate cycle limit, cycles enabled if > 1') +group.add_argument('--lr-k-decay', type=float, default=1.0, + help='learning rate k-decay for cosine/poly (default: 1.0)') +group.add_argument('--warmup-lr', type=float, default=1e-5, metavar='LR', + help='warmup learning rate (default: 1e-5)') +group.add_argument('--min-lr', type=float, default=0, metavar='LR', + help='lower lr bound for cyclic schedulers that hit 0 (default: 0)') +group.add_argument('--epochs', type=int, default=300, metavar='N', + help='number of epochs to train (default: 300)') +group.add_argument('--epoch-repeats', type=float, default=0., metavar='N', + help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).') +group.add_argument('--start-epoch', default=None, type=int, metavar='N', + help='manual epoch number (useful on restarts)') +group.add_argument('--decay-milestones', default=[90, 180, 270], type=int, nargs='+', metavar="MILESTONES", + help='list of decay epoch indices for multistep lr. must be increasing') +group.add_argument('--decay-epochs', type=float, default=90, metavar='N', + help='epoch interval to decay LR') +group.add_argument('--warmup-epochs', type=int, default=5, metavar='N', + help='epochs to warmup LR, if scheduler supports') +group.add_argument('--warmup-prefix', action='store_true', default=False, + help='Exclude warmup period from decay schedule.'), +group.add_argument('--cooldown-epochs', type=int, default=0, metavar='N', + help='epochs to cooldown LR at min_lr, after cyclic schedule ends') +group.add_argument('--patience-epochs', type=int, default=10, metavar='N', + help='patience epochs for Plateau LR scheduler (default: 10)') +group.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', + help='LR decay rate (default: 0.1)') + +# Augmentation & regularization parameters +group = parser.add_argument_group('Augmentation and regularization parameters') +group.add_argument('--no-aug', action='store_true', default=False, + help='Disable all training augmentation, override other train aug args') +group.add_argument('--train-crop-mode', type=str, default=None, + help='Crop-mode in train'), +group.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT', + help='Random resize scale (default: 0.08 1.0)') +group.add_argument('--ratio', type=float, nargs='+', default=[3. / 4., 4. / 3.], metavar='RATIO', + help='Random resize aspect ratio (default: 0.75 1.33)') +group.add_argument('--hflip', type=float, default=0.5, + help='Horizontal flip training aug probability') +group.add_argument('--vflip', type=float, default=0., + help='Vertical flip training aug probability') +group.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', + help='Color jitter factor (default: 0.4)') +group.add_argument('--color-jitter-prob', type=float, default=None, metavar='PCT', + help='Probability of applying any color jitter.') +group.add_argument('--grayscale-prob', type=float, default=None, metavar='PCT', + help='Probability of applying random grayscale conversion.') +group.add_argument('--gaussian-blur-prob', type=float, default=None, metavar='PCT', + help='Probability of applying gaussian blur.') +group.add_argument('--aa', type=str, default=None, metavar='NAME', + help='Use AutoAugment policy. "v0" or "original". (default: None)'), +group.add_argument('--aug-repeats', type=float, default=0, + help='Number of augmentation repetitions (distributed training only) (default: 0)') +group.add_argument('--aug-splits', type=int, default=0, + help='Number of augmentation splits (default: 0, valid: 0 or >=2)') +group.add_argument('--jsd-loss', action='store_true', default=False, + help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.') +group.add_argument('--bce-loss', action='store_true', default=False, + help='Enable BCE loss w/ Mixup/CutMix use.') +group.add_argument('--bce-sum', action='store_true', default=False, + help='Sum over classes when using BCE loss.') +group.add_argument('--bce-target-thresh', type=float, default=None, + help='Threshold for binarizing softened BCE targets (default: None, disabled).') +group.add_argument('--bce-pos-weight', type=float, default=None, + help='Positive weighting for BCE loss.') +group.add_argument('--reprob', type=float, default=0., metavar='PCT', + help='Random erase prob (default: 0.)') +group.add_argument('--remode', type=str, default='pixel', + help='Random erase mode (default: "pixel")') +group.add_argument('--recount', type=int, default=1, + help='Random erase count (default: 1)') +group.add_argument('--resplit', action='store_true', default=False, + help='Do not random erase first (clean) augmentation split') +group.add_argument('--mixup', type=float, default=0.0, + help='mixup alpha, mixup enabled if > 0. (default: 0.)') +group.add_argument('--cutmix', type=float, default=0.0, + help='cutmix alpha, cutmix enabled if > 0. (default: 0.)') +group.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, + help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') +group.add_argument('--mixup-prob', type=float, default=1.0, + help='Probability of performing mixup or cutmix when either/both is enabled') +group.add_argument('--mixup-switch-prob', type=float, default=0.5, + help='Probability of switching to cutmix when both mixup and cutmix enabled') +group.add_argument('--mixup-mode', type=str, default='batch', + help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') +group.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N', + help='Turn off mixup after this epoch, disabled if 0 (default: 0)') +group.add_argument('--smoothing', type=float, default=0.1, + help='Label smoothing (default: 0.1)') +group.add_argument('--train-interpolation', type=str, default='random', + help='Training interpolation (random, bilinear, bicubic default: "random")') +group.add_argument('--drop', type=float, default=0.0, metavar='PCT', + help='Dropout rate (default: 0.)') +group.add_argument('--drop-connect', type=float, default=None, metavar='PCT', + help='Drop connect rate, DEPRECATED, use drop-path (default: None)') +group.add_argument('--drop-path', type=float, default=None, metavar='PCT', + help='Drop path rate (default: None)') +group.add_argument('--drop-block', type=float, default=None, metavar='PCT', + help='Drop block rate (default: None)') + +# Batch norm parameters (only works with gen_efficientnet based models currently) +group = parser.add_argument_group('Batch norm parameters', 'Only works with gen_efficientnet based models currently.') +group.add_argument('--bn-momentum', type=float, default=None, + help='BatchNorm momentum override (if not None)') +group.add_argument('--bn-eps', type=float, default=None, + help='BatchNorm epsilon override (if not None)') +group.add_argument('--sync-bn', action='store_true', + help='Enable NVIDIA Apex or Torch synchronized BatchNorm.') +group.add_argument('--dist-bn', type=str, default='reduce', + help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")') +group.add_argument('--split-bn', action='store_true', + help='Enable separate BN layers per augmentation split.') + +# Model Exponential Moving Average +group = parser.add_argument_group('Model exponential moving average parameters') +group.add_argument('--model-ema', action='store_true', default=False, + help='Enable tracking moving average of model weights.') +group.add_argument('--model-ema-force-cpu', action='store_true', default=False, + help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.') +group.add_argument('--model-ema-decay', type=float, default=0.9998, + help='Decay factor for model weights moving average (default: 0.9998)') +group.add_argument('--model-ema-warmup', action='store_true', + help='Enable warmup for model EMA decay.') + +# Misc +group = parser.add_argument_group('Miscellaneous parameters') +group.add_argument('--seed', type=int, default=42, metavar='S', + help='random seed (default: 42)') +group.add_argument('--worker-seeding', type=str, default='all', + help='worker seed mode (default: all)') +group.add_argument('--log-interval', type=int, default=50, metavar='N', + help='how many batches to wait before logging training status') +group.add_argument('--recovery-interval', type=int, default=0, metavar='N', + help='how many batches to wait before writing recovery checkpoint') +group.add_argument('--checkpoint-hist', type=int, default=10, metavar='N', + help='number of checkpoints to keep (default: 10)') +group.add_argument('-j', '--workers', type=int, default=4, metavar='N', + help='how many training processes to use (default: 4)') +group.add_argument('--save-images', action='store_true', default=False, + help='save images of input batches every log interval for debugging') +group.add_argument('--pin-mem', action='store_true', default=False, + help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') +group.add_argument('--no-prefetcher', action='store_true', default=False, + help='disable fast prefetcher') +group.add_argument('--output', default='', type=str, metavar='PATH', + help='path to output folder (default: none, current dir)') +group.add_argument('--experiment', default='', type=str, metavar='NAME', + help='name of train experiment, name of sub-folder for output') +group.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC', + help='Best metric (default: "top1"') +group.add_argument('--tta', type=int, default=0, metavar='N', + help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)') +group.add_argument('--use-multi-epochs-loader', action='store_true', default=False, + help='use the multi-epochs-loader to save time at the beginning of every epoch') +group.add_argument('--log-wandb', action='store_true', default=False, + help='log training and validation metrics to wandb') +group.add_argument('--wandb-tags', default=[], type=str, nargs='+', + help='wandb tags') +group.add_argument('--wandb-resume-id', default='', type=str, metavar='ID', + help='If resuming a run, the id of the run in wandb') + + +def _parse_args(): + # Do we have a config file to parse? + args_config, remaining = config_parser.parse_known_args() + if args_config.config: + with open(args_config.config, 'r') as f: + cfg = yaml.safe_load(f) + parser.set_defaults(**cfg) + + # The main arg parser parses the rest of the args, the usual + # defaults will have been overridden if config file specified. + args = parser.parse_args(remaining) + + # Cache the args as a text string to save them in the output dir later + args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) + return args, args_text + + +def main(): + utils.setup_default_logging() + args, args_text = _parse_args() + + if args.device_modules: + for module in args.device_modules: + importlib.import_module(module) + + if torch.cuda.is_available(): + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.benchmark = True + + args.prefetcher = not args.no_prefetcher + args.grad_accum_steps = max(1, args.grad_accum_steps) + device = utils.init_distributed_device(args) + if args.distributed: + _logger.info( + 'Training in distributed mode with multiple processes, 1 device per process.' + f'Process {args.rank}, total {args.world_size}, device {args.device}.') + else: + _logger.info(f'Training with a single process on 1 device ({args.device}).') + assert args.rank >= 0 + + # resolve AMP arguments based on PyTorch / Apex availability + use_amp = None + amp_dtype = torch.float16 + if args.amp: + if args.amp_impl == 'apex': + assert has_apex, 'AMP impl specified as APEX but APEX is not installed.' + use_amp = 'apex' + assert args.amp_dtype == 'float16' + else: + use_amp = 'native' + assert args.amp_dtype in ('float16', 'bfloat16') + if args.amp_dtype == 'bfloat16': + amp_dtype = torch.bfloat16 + + utils.random_seed(args.seed, args.rank) + + if args.fuser: + utils.set_jit_fuser(args.fuser) + if args.fast_norm: + set_fast_norm() + + in_chans = 3 + if args.in_chans is not None: + in_chans = args.in_chans + elif args.input_size is not None: + in_chans = args.input_size[0] + + factory_kwargs = {} + if args.pretrained_path: + # merge with pretrained_cfg of model, 'file' has priority over 'url' and 'hf_hub'. + factory_kwargs['pretrained_cfg_overlay'] = dict( + file=args.pretrained_path, + num_classes=-1, # force head adaptation + ) + + model = create_model( + args.model, + pretrained=args.pretrained, + in_chans=in_chans, + num_classes=args.num_classes, + drop_rate=args.drop, + drop_path_rate=args.drop_path, + drop_block_rate=args.drop_block, + global_pool=args.gp, + bn_momentum=args.bn_momentum, + bn_eps=args.bn_eps, + scriptable=args.torchscript, + checkpoint_path=args.initial_checkpoint, + **factory_kwargs, + **args.model_kwargs, + ) + if args.head_init_scale is not None: + with torch.no_grad(): + model.get_classifier().weight.mul_(args.head_init_scale) + model.get_classifier().bias.mul_(args.head_init_scale) + if args.head_init_bias is not None: + nn.init.constant_(model.get_classifier().bias, args.head_init_bias) + + if args.num_classes is None: + assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' + args.num_classes = model.num_classes # FIXME handle model default vs config num_classes more elegantly + + if args.grad_checkpointing: + model.set_grad_checkpointing(enable=True) + + if utils.is_primary(args): + _logger.info( + f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}') + + data_config = resolve_data_config(vars(args), model=model, verbose=utils.is_primary(args)) + + # setup augmentation batch splits for contrastive loss or split bn + num_aug_splits = 0 + if args.aug_splits > 0: + assert args.aug_splits > 1, 'A split of 1 makes no sense' + num_aug_splits = args.aug_splits + + # enable split bn (separate bn stats per batch-portion) + if args.split_bn: + assert num_aug_splits > 1 or args.resplit + model = convert_splitbn_model(model, max(num_aug_splits, 2)) + + # move model to GPU, enable channels last layout if set + model.to(device=device) + if args.channels_last: + model.to(memory_format=torch.channels_last) + + # setup synchronized BatchNorm for distributed training + if args.distributed and args.sync_bn: + args.dist_bn = '' # disable dist_bn when sync BN active + assert not args.split_bn + if has_apex and use_amp == 'apex': + # Apex SyncBN used with Apex AMP + # WARNING this won't currently work with models using BatchNormAct2d + model = convert_syncbn_model(model) + else: + model = convert_sync_batchnorm(model) + if utils.is_primary(args): + _logger.info( + 'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using ' + 'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.') + + if args.torchscript: + assert not args.torchcompile + assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model' + assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model' + model = torch.jit.script(model) + + if not args.lr: + global_batch_size = args.batch_size * args.world_size * args.grad_accum_steps + batch_ratio = global_batch_size / args.lr_base_size + if not args.lr_base_scale: + on = args.opt.lower() + args.lr_base_scale = 'sqrt' if any([o in on for o in ('ada', 'lamb')]) else 'linear' + if args.lr_base_scale == 'sqrt': + batch_ratio = batch_ratio ** 0.5 + args.lr = args.lr_base * batch_ratio + if utils.is_primary(args): + _logger.info( + f'Learning rate ({args.lr}) calculated from base learning rate ({args.lr_base}) ' + f'and effective global batch size ({global_batch_size}) with {args.lr_base_scale} scaling.') + + optimizer = create_optimizer_v2( + model, + **optimizer_kwargs(cfg=args), + **args.opt_kwargs, + ) + if utils.is_primary(args): + defaults = copy.deepcopy(optimizer.defaults) + defaults['weight_decay'] = args.weight_decay # this isn't stored in optimizer.defaults + defaults = ', '.join([f'{k}: {v}' for k, v in defaults.items()]) + logging.info( + f'Created {type(optimizer).__name__} ({args.opt}) optimizer: {defaults}' + ) + + # setup automatic mixed-precision (AMP) loss scaling and op casting + amp_autocast = suppress # do nothing + loss_scaler = None + if use_amp == 'apex': + assert device.type == 'cuda' + model, optimizer = amp.initialize(model, optimizer, opt_level='O1') + loss_scaler = ApexScaler() + if utils.is_primary(args): + _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.') + elif use_amp == 'native': + amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) + if device.type in ('cuda',) and amp_dtype == torch.float16: + # loss scaler only used for float16 (half) dtype, bfloat16 does not need it + loss_scaler = NativeScaler(device=device.type) + if utils.is_primary(args): + _logger.info('Using native Torch AMP. Training in mixed precision.') + else: + if utils.is_primary(args): + _logger.info('AMP not enabled. Training in float32.') + + # optionally resume from a checkpoint + resume_epoch = None + if args.resume: + resume_epoch = resume_checkpoint( + model, + args.resume, + optimizer=None if args.no_resume_opt else optimizer, + loss_scaler=None if args.no_resume_opt else loss_scaler, + log_info=utils.is_primary(args), + ) + + # setup exponential moving average of model weights, SWA could be used here too + model_ema = None + if args.model_ema: + # Important to create EMA model after cuda(), DP wrapper, and AMP but before DDP wrapper + model_ema = utils.ModelEmaV3( + model, + decay=args.model_ema_decay, + use_warmup=args.model_ema_warmup, + device='cpu' if args.model_ema_force_cpu else None, + ) + if args.resume: + load_checkpoint(model_ema.module, args.resume, use_ema=True) + if args.torchcompile: + model_ema = torch.compile(model_ema, backend=args.torchcompile) + + # setup distributed training + if args.distributed: + if has_apex and use_amp == 'apex': + # Apex DDP preferred unless native amp is activated + if utils.is_primary(args): + _logger.info("Using NVIDIA APEX DistributedDataParallel.") + model = ApexDDP(model, delay_allreduce=True) + else: + if utils.is_primary(args): + _logger.info("Using native Torch DistributedDataParallel.") + model = NativeDDP(model, device_ids=[device], broadcast_buffers=not args.no_ddp_bb) + # NOTE: EMA model does not need to be wrapped by DDP + + if args.torchcompile: + # torch compile should be done after DDP + assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' + model = torch.compile(model, backend=args.torchcompile, mode=args.torchcompile_mode) + + # create the train and eval datasets + if args.data and not args.data_dir: + args.data_dir = args.data + if args.input_img_mode is None: + input_img_mode = 'RGB' if data_config['input_size'][0] == 3 else 'L' + else: + input_img_mode = args.input_img_mode + + dataset_train = create_dataset( + args.dataset, + root=args.data_dir, + split=args.train_split, + is_training=True, + class_map=args.class_map, + download=args.dataset_download, + batch_size=args.batch_size, + seed=args.seed, + repeats=args.epoch_repeats, + input_img_mode=input_img_mode, + input_key=args.input_key, + target_key=args.target_key, + num_samples=args.train_num_samples, + trust_remote_code=args.dataset_trust_remote_code, + ) + + if args.val_split: + dataset_eval = create_dataset( + args.dataset, + root=args.data_dir, + split=args.val_split, + is_training=False, + class_map=args.class_map, + download=args.dataset_download, + batch_size=args.batch_size, + input_img_mode=input_img_mode, + input_key=args.input_key, + target_key=args.target_key, + num_samples=args.val_num_samples, + trust_remote_code=args.dataset_trust_remote_code, + ) + + # setup mixup / cutmix + collate_fn = None + mixup_fn = None + mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None + if mixup_active: + mixup_args = dict( + mixup_alpha=args.mixup, + cutmix_alpha=args.cutmix, + cutmix_minmax=args.cutmix_minmax, + prob=args.mixup_prob, + switch_prob=args.mixup_switch_prob, + mode=args.mixup_mode, + label_smoothing=args.smoothing, + num_classes=args.num_classes + ) + if args.prefetcher: + assert not num_aug_splits # collate conflict (need to support de-interleaving in collate mixup) + collate_fn = FastCollateMixup(**mixup_args) + else: + mixup_fn = Mixup(**mixup_args) + + # wrap dataset in AugMix helper + if num_aug_splits > 1: + dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits) + + # create data loaders w/ augmentation pipeline + train_interpolation = args.train_interpolation + if args.no_aug or not train_interpolation: + train_interpolation = data_config['interpolation'] + loader_train = create_loader( + dataset_train, + input_size=data_config['input_size'], + batch_size=args.batch_size, + is_training=True, + no_aug=args.no_aug, + re_prob=args.reprob, + re_mode=args.remode, + re_count=args.recount, + re_split=args.resplit, + train_crop_mode=args.train_crop_mode, + scale=args.scale, + ratio=args.ratio, + hflip=args.hflip, + vflip=args.vflip, + color_jitter=args.color_jitter, + color_jitter_prob=args.color_jitter_prob, + grayscale_prob=args.grayscale_prob, + gaussian_blur_prob=args.gaussian_blur_prob, + auto_augment=args.aa, + num_aug_repeats=args.aug_repeats, + num_aug_splits=num_aug_splits, + interpolation=train_interpolation, + mean=data_config['mean'], + std=data_config['std'], + num_workers=args.workers, + distributed=args.distributed, + collate_fn=collate_fn, + pin_memory=args.pin_mem, + device=device, + use_prefetcher=args.prefetcher, + use_multi_epochs_loader=args.use_multi_epochs_loader, + worker_seeding=args.worker_seeding, + ) + + loader_eval = None + if args.val_split: + eval_workers = args.workers + if args.distributed and ('tfds' in args.dataset or 'wds' in args.dataset): + # FIXME reduces validation padding issues when using TFDS, WDS w/ workers and distributed training + eval_workers = min(2, args.workers) + loader_eval = create_loader( + dataset_eval, + input_size=data_config['input_size'], + batch_size=args.validation_batch_size or args.batch_size, + is_training=False, + interpolation=data_config['interpolation'], + mean=data_config['mean'], + std=data_config['std'], + num_workers=eval_workers, + distributed=args.distributed, + crop_pct=data_config['crop_pct'], + pin_memory=args.pin_mem, + device=device, + use_prefetcher=args.prefetcher, + ) + + # setup loss function + if args.jsd_loss: + assert num_aug_splits > 1 # JSD only valid with aug splits set + train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing) + elif mixup_active: + # smoothing is handled with mixup target transform which outputs sparse, soft targets + if args.bce_loss: + train_loss_fn = BinaryCrossEntropy( + target_threshold=args.bce_target_thresh, + sum_classes=args.bce_sum, + pos_weight=args.bce_pos_weight, + ) + else: + train_loss_fn = SoftTargetCrossEntropy() + elif args.smoothing: + if args.bce_loss: + train_loss_fn = BinaryCrossEntropy( + smoothing=args.smoothing, + target_threshold=args.bce_target_thresh, + sum_classes=args.bce_sum, + pos_weight=args.bce_pos_weight, + ) + else: + train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing) + else: + train_loss_fn = nn.CrossEntropyLoss() + train_loss_fn = train_loss_fn.to(device=device) + validate_loss_fn = nn.CrossEntropyLoss().to(device=device) + + # setup checkpoint saver and eval metric tracking + eval_metric = args.eval_metric if loader_eval is not None else 'loss' + decreasing_metric = eval_metric == 'loss' + best_metric = None + best_epoch = None + saver = None + output_dir = None + if utils.is_primary(args): + if args.experiment: + exp_name = args.experiment + else: + exp_name = '-'.join([ + datetime.now().strftime("%Y%m%d-%H%M%S"), + safe_model_name(args.model), + str(data_config['input_size'][-1]) + ]) + output_dir = utils.get_outdir(args.output if args.output else './output/train', exp_name) + saver = utils.CheckpointSaver( + model=model, + optimizer=optimizer, + args=args, + model_ema=model_ema, + amp_scaler=loss_scaler, + checkpoint_dir=output_dir, + recovery_dir=output_dir, + decreasing=decreasing_metric, + max_history=args.checkpoint_hist + ) + with open(os.path.join(output_dir, 'args.yaml'), 'w') as f: + f.write(args_text) + + if utils.is_primary(args) and args.log_wandb: + if has_wandb: + assert not args.wandb_resume_id or args.resume + wandb.init(project=args.experiment, config=args, tags=args.wandb_tags, + resume='must' if args.wandb_resume_id else None, + id=args.wandb_resume_id if args.wandb_resume_id else None) + else: + _logger.warning( + "You've requested to log metrics to wandb but package not found. " + "Metrics not being logged to wandb, try `pip install wandb`") + + # setup learning rate schedule and starting epoch + updates_per_epoch = (len(loader_train) + args.grad_accum_steps - 1) // args.grad_accum_steps + lr_scheduler, num_epochs = create_scheduler_v2( + optimizer, + **scheduler_kwargs(args, decreasing_metric=decreasing_metric), + updates_per_epoch=updates_per_epoch, + ) + start_epoch = 0 + if args.start_epoch is not None: + # a specified start_epoch will always override the resume epoch + start_epoch = args.start_epoch + elif resume_epoch is not None: + start_epoch = resume_epoch + if lr_scheduler is not None and start_epoch > 0: + if args.sched_on_updates: + lr_scheduler.step_update(start_epoch * updates_per_epoch) + else: + lr_scheduler.step(start_epoch) + + if utils.is_primary(args): + if args.warmup_prefix: + sched_explain = '(warmup_epochs + epochs + cooldown_epochs). Warmup added to total when warmup_prefix=True' + else: + sched_explain = '(epochs + cooldown_epochs). Warmup within epochs when warmup_prefix=False' + _logger.info( + f'Scheduled epochs: {num_epochs} {sched_explain}. ' + f'LR stepped per {"epoch" if lr_scheduler.t_in_epochs else "update"}.') + + results = [] + try: + for epoch in range(start_epoch, num_epochs): + if hasattr(dataset_train, 'set_epoch'): + dataset_train.set_epoch(epoch) + elif args.distributed and hasattr(loader_train.sampler, 'set_epoch'): + loader_train.sampler.set_epoch(epoch) + + train_metrics = train_one_epoch( + epoch, + model, + loader_train, + optimizer, + train_loss_fn, + args, + lr_scheduler=lr_scheduler, + saver=saver, + output_dir=output_dir, + amp_autocast=amp_autocast, + loss_scaler=loss_scaler, + model_ema=model_ema, + mixup_fn=mixup_fn, + num_updates_total=num_epochs * updates_per_epoch, + ) + + if args.distributed and args.dist_bn in ('broadcast', 'reduce'): + if utils.is_primary(args): + _logger.info("Distributing BatchNorm running means and vars") + utils.distribute_bn(model, args.world_size, args.dist_bn == 'reduce') + + if loader_eval is not None: + eval_metrics = validate( + model, + loader_eval, + validate_loss_fn, + args, + device=device, + amp_autocast=amp_autocast, + ) + + if model_ema is not None and not args.model_ema_force_cpu: + if args.distributed and args.dist_bn in ('broadcast', 'reduce'): + utils.distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce') + + ema_eval_metrics = validate( + model_ema, + loader_eval, + validate_loss_fn, + args, + device=device, + amp_autocast=amp_autocast, + log_suffix=' (EMA)', + ) + eval_metrics = ema_eval_metrics + else: + eval_metrics = None + + if output_dir is not None: + lrs = [param_group['lr'] for param_group in optimizer.param_groups] + utils.update_summary( + epoch, + train_metrics, + eval_metrics, + filename=os.path.join(output_dir, 'summary.csv'), + lr=sum(lrs) / len(lrs), + write_header=best_metric is None, + log_wandb=args.log_wandb and has_wandb, + ) + + if eval_metrics is not None: + latest_metric = eval_metrics[eval_metric] + else: + latest_metric = train_metrics[eval_metric] + + if saver is not None: + # save proper checkpoint with eval metric + best_metric, best_epoch = saver.save_checkpoint(epoch, metric=latest_metric) + + if lr_scheduler is not None: + # step LR for next epoch + lr_scheduler.step(epoch + 1, latest_metric) + + latest_results = { + 'epoch': epoch, + 'train': train_metrics, + } + if eval_metrics is not None: + latest_results['validation'] = eval_metrics + results.append(latest_results) + + except KeyboardInterrupt: + pass + + if best_metric is not None: + # log best metric as tracked by checkpoint saver + _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch)) + + if utils.is_primary(args): + # for parsable results display, dump top-10 summaries to avoid excess console spam + display_results = sorted( + results, + key=lambda x: x.get('validation', x.get('train')).get(eval_metric, 0), + reverse=decreasing_metric, + ) + print(f'--result\n{json.dumps(display_results[-10:], indent=4)}') + + +def train_one_epoch( + epoch, + model, + loader, + optimizer, + loss_fn, + args, + device=torch.device('cuda'), + lr_scheduler=None, + saver=None, + output_dir=None, + amp_autocast=suppress, + loss_scaler=None, + model_ema=None, + mixup_fn=None, + num_updates_total=None, +): + if args.mixup_off_epoch and epoch >= args.mixup_off_epoch: + if args.prefetcher and loader.mixup_enabled: + loader.mixup_enabled = False + elif mixup_fn is not None: + mixup_fn.mixup_enabled = False + + second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order + has_no_sync = hasattr(model, "no_sync") + update_time_m = utils.AverageMeter() + data_time_m = utils.AverageMeter() + losses_m = utils.AverageMeter() + + model.train() + + accum_steps = args.grad_accum_steps + last_accum_steps = len(loader) % accum_steps + updates_per_epoch = (len(loader) + accum_steps - 1) // accum_steps + num_updates = epoch * updates_per_epoch + last_batch_idx = len(loader) - 1 + last_batch_idx_to_accum = len(loader) - last_accum_steps + + data_start_time = update_start_time = time.time() + optimizer.zero_grad() + update_sample_count = 0 + for batch_idx, (input, target) in enumerate(loader): + last_batch = batch_idx == last_batch_idx + need_update = last_batch or (batch_idx + 1) % accum_steps == 0 + update_idx = batch_idx // accum_steps + if batch_idx >= last_batch_idx_to_accum: + accum_steps = last_accum_steps + + if not args.prefetcher: + input, target = input.to(device), target.to(device) + if mixup_fn is not None: + input, target = mixup_fn(input, target) + if args.channels_last: + input = input.contiguous(memory_format=torch.channels_last) + + # multiply by accum steps to get equivalent for full update + data_time_m.update(accum_steps * (time.time() - data_start_time)) + + def _forward(): + with amp_autocast(): + output = model(input) + loss = loss_fn(output, target) + if accum_steps > 1: + loss /= accum_steps + return loss + + def _backward(_loss): + if loss_scaler is not None: + loss_scaler( + _loss, + optimizer, + clip_grad=args.clip_grad, + clip_mode=args.clip_mode, + parameters=model_parameters(model, exclude_head='agc' in args.clip_mode), + create_graph=second_order, + need_update=need_update, + ) + else: + _loss.backward(create_graph=second_order) + if need_update: + if args.clip_grad is not None: + utils.dispatch_clip_grad( + model_parameters(model, exclude_head='agc' in args.clip_mode), + value=args.clip_grad, + mode=args.clip_mode, + ) + optimizer.step() + + if has_no_sync and not need_update: + with model.no_sync(): + loss = _forward() + _backward(loss) + else: + loss = _forward() + _backward(loss) + + losses_m.update(loss.item() * accum_steps, input.size(0)) + update_sample_count += input.size(0) + + if not need_update: + data_start_time = time.time() + continue + + num_updates += 1 + optimizer.zero_grad() + if model_ema is not None: + model_ema.update(model, step=num_updates) + + if args.synchronize_step: + if device.type == 'cuda': + torch.cuda.synchronize() + elif device.type == 'npu': + torch.npu.synchronize() + time_now = time.time() + update_time_m.update(time.time() - update_start_time) + update_start_time = time_now + + if update_idx % args.log_interval == 0: + lrl = [param_group['lr'] for param_group in optimizer.param_groups] + lr = sum(lrl) / len(lrl) + + loss_avg, loss_now = losses_m.avg, losses_m.val + if args.distributed: + # synchronize current step and avg loss, each process keeps its own running avg + loss_avg = utils.reduce_tensor(loss.new([loss_avg]), args.world_size).item() + loss_now = utils.reduce_tensor(loss.new([loss_now]), args.world_size).item() + update_sample_count *= args.world_size + + if utils.is_primary(args): + _logger.info( + f'Train: {epoch} [{update_idx:>4d}/{updates_per_epoch} ' + f'({100. * (update_idx + 1) / updates_per_epoch:>3.0f}%)] ' + f'Loss: {loss_now:#.3g} ({loss_avg:#.3g}) ' + f'Time: {update_time_m.val:.3f}s, {update_sample_count / update_time_m.val:>7.2f}/s ' + f'({update_time_m.avg:.3f}s, {update_sample_count / update_time_m.avg:>7.2f}/s) ' + f'LR: {lr:.3e} ' + f'Data: {data_time_m.val:.3f} ({data_time_m.avg:.3f})' + ) + + if args.save_images and output_dir: + torchvision.utils.save_image( + input, + os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx), + padding=0, + normalize=True + ) + + if saver is not None and args.recovery_interval and ( + (update_idx + 1) % args.recovery_interval == 0): + saver.save_recovery(epoch, batch_idx=update_idx) + + if lr_scheduler is not None: + lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg) + + update_sample_count = 0 + data_start_time = time.time() + # end for + + if hasattr(optimizer, 'sync_lookahead'): + optimizer.sync_lookahead() + + loss_avg = losses_m.avg + if args.distributed: + # synchronize avg loss, each process keeps its own running avg + loss_avg = torch.tensor([loss_avg], device=device, dtype=torch.float32) + loss_avg = utils.reduce_tensor(loss_avg, args.world_size).item() + return OrderedDict([('loss', loss_avg)]) + + +def validate( + model, + loader, + loss_fn, + args, + device=torch.device('cuda'), + amp_autocast=suppress, + log_suffix='' +): + batch_time_m = utils.AverageMeter() + losses_m = utils.AverageMeter() + top1_m = utils.AverageMeter() + top5_m = utils.AverageMeter() + + model.eval() + + end = time.time() + last_idx = len(loader) - 1 + with torch.no_grad(): + for batch_idx, (input, target) in enumerate(loader): + last_batch = batch_idx == last_idx + if not args.prefetcher: + input = input.to(device) + target = target.to(device) + if args.channels_last: + input = input.contiguous(memory_format=torch.channels_last) + + with amp_autocast(): + output = model(input) + if isinstance(output, (tuple, list)): + output = output[0] + + # augmentation reduction + reduce_factor = args.tta + if reduce_factor > 1: + output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2) + target = target[0:target.size(0):reduce_factor] + + loss = loss_fn(output, target) + acc1, acc5 = utils.accuracy(output, target, topk=(1, 5)) + + if args.distributed: + reduced_loss = utils.reduce_tensor(loss.data, args.world_size) + acc1 = utils.reduce_tensor(acc1, args.world_size) + acc5 = utils.reduce_tensor(acc5, args.world_size) + else: + reduced_loss = loss.data + + if device.type == 'cuda': + torch.cuda.synchronize() + elif device.type == "npu": + torch.npu.synchronize() + + losses_m.update(reduced_loss.item(), input.size(0)) + top1_m.update(acc1.item(), output.size(0)) + top5_m.update(acc5.item(), output.size(0)) + + batch_time_m.update(time.time() - end) + end = time.time() + if utils.is_primary(args) and (last_batch or batch_idx % args.log_interval == 0): + log_name = 'Test' + log_suffix + _logger.info( + f'{log_name}: [{batch_idx:>4d}/{last_idx}] ' + f'Time: {batch_time_m.val:.3f} ({batch_time_m.avg:.3f}) ' + f'Loss: {losses_m.val:>7.3f} ({losses_m.avg:>6.3f}) ' + f'Acc@1: {top1_m.val:>7.3f} ({top1_m.avg:>7.3f}) ' + f'Acc@5: {top5_m.val:>7.3f} ({top5_m.avg:>7.3f})' + ) + + metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg)]) + + return metrics + + +if __name__ == '__main__': + main() diff --git a/pytorch-image-models/train.sh b/pytorch-image-models/train.sh new file mode 100644 index 0000000000000000000000000000000000000000..59dffa4eba9711a6da4409441e2f350126a960cb --- /dev/null +++ b/pytorch-image-models/train.sh @@ -0,0 +1,5 @@ +#!/bin/bash +NUM_PROC=$1 +shift +# the localhost fixes are from https://github.com/pytorch/pytorch/issues/73320 +torchrun --rdzv_backend c10d --rdzv_endpoint localhost:0 --nproc_per_node=$NUM_PROC train.py "$@" \ No newline at end of file diff --git a/pytorch-image-models/validate.py b/pytorch-image-models/validate.py new file mode 100644 index 0000000000000000000000000000000000000000..159bd0b1a1f853e0215d9c2bd41914dfe37b582e --- /dev/null +++ b/pytorch-image-models/validate.py @@ -0,0 +1,495 @@ +#!/usr/bin/env python3 +""" ImageNet Validation Script + +This is intended to be a lean and easily modifiable ImageNet validation script for evaluating pretrained +models or training checkpoints against ImageNet or similarly organized image datasets. It prioritizes +canonical PyTorch, standard Python style, and good performance. Repurpose as you see fit. + +Hacked together by Ross Wightman (https://github.com/rwightman) +""" +import argparse +import csv +import glob +import json +import logging +import os +import time +from collections import OrderedDict +from contextlib import suppress +from functools import partial + +import torch +import torch.nn as nn +import torch.nn.parallel + +from timm.data import create_dataset, create_loader, resolve_data_config, RealLabelsImagenet +from timm.layers import apply_test_time_pool, set_fast_norm +from timm.models import create_model, load_checkpoint, is_model, list_models +from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_fuser, \ + decay_batch_step, check_batch_size_retry, ParseKwargs, reparameterize_model + +try: + from apex import amp + has_apex = True +except ImportError: + has_apex = False + +try: + from functorch.compile import memory_efficient_fusion + has_functorch = True +except ImportError as e: + has_functorch = False + +has_compile = hasattr(torch, 'compile') + +_logger = logging.getLogger('validate') + + +parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') +parser.add_argument('data', nargs='?', metavar='DIR', const=None, + help='path to dataset (*deprecated*, use --data-dir)') +parser.add_argument('--data-dir', metavar='DIR', + help='path to dataset (root dir)') +parser.add_argument('--dataset', metavar='NAME', default='', + help='dataset type + name ("/") (default: ImageFolder or ImageTar if empty)') +parser.add_argument('--split', metavar='NAME', default='validation', + help='dataset split (default: validation)') +parser.add_argument('--num-samples', default=None, type=int, + metavar='N', help='Manually specify num samples in dataset split, for IterableDatasets.') +parser.add_argument('--dataset-download', action='store_true', default=False, + help='Allow download of dataset for torch/ and tfds/ datasets that support it.') +parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', + help='path to class to idx mapping file (default: "")') +parser.add_argument('--input-key', default=None, type=str, + help='Dataset key for input images.') +parser.add_argument('--input-img-mode', default=None, type=str, + help='Dataset image conversion mode for input images.') +parser.add_argument('--target-key', default=None, type=str, + help='Dataset key for target labels.') +parser.add_argument('--dataset-trust-remote-code', action='store_true', default=False, + help='Allow huggingface dataset import to execute code downloaded from the dataset\'s repo.') + +parser.add_argument('--model', '-m', metavar='NAME', default='dpn92', + help='model architecture (default: dpn92)') +parser.add_argument('--pretrained', dest='pretrained', action='store_true', + help='use pre-trained model') +parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', + help='number of data loading workers (default: 4)') +parser.add_argument('-b', '--batch-size', default=256, type=int, + metavar='N', help='mini-batch size (default: 256)') +parser.add_argument('--img-size', default=None, type=int, + metavar='N', help='Input image dimension, uses model default if empty') +parser.add_argument('--in-chans', type=int, default=None, metavar='N', + help='Image input channels (default: None => 3)') +parser.add_argument('--input-size', default=None, nargs=3, type=int, + metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') +parser.add_argument('--use-train-size', action='store_true', default=False, + help='force use of train input size, even when test size is specified in pretrained cfg') +parser.add_argument('--crop-pct', default=None, type=float, + metavar='N', help='Input image center crop pct') +parser.add_argument('--crop-mode', default=None, type=str, + metavar='N', help='Input image crop mode (squash, border, center). Model default if None.') +parser.add_argument('--crop-border-pixels', type=int, default=None, + help='Crop pixels from image border.') +parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', + help='Override mean pixel value of dataset') +parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', + help='Override std deviation of of dataset') +parser.add_argument('--interpolation', default='', type=str, metavar='NAME', + help='Image resize interpolation type (overrides model)') +parser.add_argument('--num-classes', type=int, default=None, + help='Number classes in dataset') +parser.add_argument('--gp', default=None, type=str, metavar='POOL', + help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') +parser.add_argument('--log-freq', default=10, type=int, + metavar='N', help='batch logging frequency (default: 10)') +parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', + help='path to latest checkpoint (default: none)') +parser.add_argument('--num-gpu', type=int, default=1, + help='Number of GPUS to use') +parser.add_argument('--test-pool', dest='test_pool', action='store_true', + help='enable test time pool') +parser.add_argument('--no-prefetcher', action='store_true', default=False, + help='disable fast prefetcher') +parser.add_argument('--pin-mem', action='store_true', default=False, + help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') +parser.add_argument('--channels-last', action='store_true', default=False, + help='Use channels_last memory layout') +parser.add_argument('--device', default='cuda', type=str, + help="Device (accelerator) to use.") +parser.add_argument('--amp', action='store_true', default=False, + help='use NVIDIA Apex AMP or Native AMP for mixed precision training') +parser.add_argument('--amp-dtype', default='float16', type=str, + help='lower precision AMP dtype (default: float16)') +parser.add_argument('--amp-impl', default='native', type=str, + help='AMP impl to use, "native" or "apex" (default: native)') +parser.add_argument('--tf-preprocessing', action='store_true', default=False, + help='Use Tensorflow preprocessing pipeline (require CPU TF installed') +parser.add_argument('--use-ema', dest='use_ema', action='store_true', + help='use ema version of weights if present') +parser.add_argument('--fuser', default='', type=str, + help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") +parser.add_argument('--fast-norm', default=False, action='store_true', + help='enable experimental fast-norm') +parser.add_argument('--reparam', default=False, action='store_true', + help='Reparameterize model') +parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) +parser.add_argument('--torchcompile-mode', type=str, default=None, + help="torch.compile mode (default: None).") + +scripting_group = parser.add_mutually_exclusive_group() +scripting_group.add_argument('--torchscript', default=False, action='store_true', + help='torch.jit.script the full model') +scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', + help="Enable compilation w/ specified backend (default: inductor).") +scripting_group.add_argument('--aot-autograd', default=False, action='store_true', + help="Enable AOT Autograd support.") + +parser.add_argument('--results-file', default='', type=str, metavar='FILENAME', + help='Output csv file for validation results (summary)') +parser.add_argument('--results-format', default='csv', type=str, + help='Format for results file one of (csv, json) (default: csv).') +parser.add_argument('--real-labels', default='', type=str, metavar='FILENAME', + help='Real labels JSON file for imagenet evaluation') +parser.add_argument('--valid-labels', default='', type=str, metavar='FILENAME', + help='Valid label indices txt file for validation of partial label space') +parser.add_argument('--retry', default=False, action='store_true', + help='Enable batch size decay & retry for single model validation') + + +def validate(args): + # might as well try to validate something + args.pretrained = args.pretrained or not args.checkpoint + args.prefetcher = not args.no_prefetcher + + if torch.cuda.is_available(): + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.benchmark = True + + device = torch.device(args.device) + + # resolve AMP arguments based on PyTorch / Apex availability + use_amp = None + amp_autocast = suppress + if args.amp: + if args.amp_impl == 'apex': + assert has_apex, 'AMP impl specified as APEX but APEX is not installed.' + assert args.amp_dtype == 'float16' + use_amp = 'apex' + _logger.info('Validating in mixed precision with NVIDIA APEX AMP.') + else: + assert args.amp_dtype in ('float16', 'bfloat16') + use_amp = 'native' + amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16 + amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) + _logger.info('Validating in mixed precision with native PyTorch AMP.') + else: + _logger.info('Validating in float32. AMP not enabled.') + + if args.fuser: + set_jit_fuser(args.fuser) + + if args.fast_norm: + set_fast_norm() + + # create model + in_chans = 3 + if args.in_chans is not None: + in_chans = args.in_chans + elif args.input_size is not None: + in_chans = args.input_size[0] + + model = create_model( + args.model, + pretrained=args.pretrained, + num_classes=args.num_classes, + in_chans=in_chans, + global_pool=args.gp, + scriptable=args.torchscript, + **args.model_kwargs, + ) + if args.num_classes is None: + assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' + args.num_classes = model.num_classes + + if args.checkpoint: + load_checkpoint(model, args.checkpoint, args.use_ema) + + if args.reparam: + model = reparameterize_model(model) + + param_count = sum([m.numel() for m in model.parameters()]) + _logger.info('Model %s created, param count: %d' % (args.model, param_count)) + + data_config = resolve_data_config( + vars(args), + model=model, + use_test_size=not args.use_train_size, + verbose=True, + ) + test_time_pool = False + if args.test_pool: + model, test_time_pool = apply_test_time_pool(model, data_config) + + model = model.to(device) + if args.channels_last: + model = model.to(memory_format=torch.channels_last) + + if args.torchscript: + assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model' + model = torch.jit.script(model) + elif args.torchcompile: + assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' + torch._dynamo.reset() + model = torch.compile(model, backend=args.torchcompile, mode=args.torchcompile_mode) + elif args.aot_autograd: + assert has_functorch, "functorch is needed for --aot-autograd" + model = memory_efficient_fusion(model) + + if use_amp == 'apex': + model = amp.initialize(model, opt_level='O1') + + if args.num_gpu > 1: + model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))) + + criterion = nn.CrossEntropyLoss().to(device) + + root_dir = args.data or args.data_dir + if args.input_img_mode is None: + input_img_mode = 'RGB' if data_config['input_size'][0] == 3 else 'L' + else: + input_img_mode = args.input_img_mode + dataset = create_dataset( + root=root_dir, + name=args.dataset, + split=args.split, + download=args.dataset_download, + load_bytes=args.tf_preprocessing, + class_map=args.class_map, + num_samples=args.num_samples, + input_key=args.input_key, + input_img_mode=input_img_mode, + target_key=args.target_key, + trust_remote_code=args.dataset_trust_remote_code, + ) + + if args.valid_labels: + with open(args.valid_labels, 'r') as f: + valid_labels = [int(line.rstrip()) for line in f] + else: + valid_labels = None + + if args.real_labels: + real_labels = RealLabelsImagenet(dataset.filenames(basename=True), real_json=args.real_labels) + else: + real_labels = None + + crop_pct = 1.0 if test_time_pool else data_config['crop_pct'] + loader = create_loader( + dataset, + input_size=data_config['input_size'], + batch_size=args.batch_size, + use_prefetcher=args.prefetcher, + interpolation=data_config['interpolation'], + mean=data_config['mean'], + std=data_config['std'], + num_workers=args.workers, + crop_pct=crop_pct, + crop_mode=data_config['crop_mode'], + crop_border_pixels=args.crop_border_pixels, + pin_memory=args.pin_mem, + device=device, + tf_preprocessing=args.tf_preprocessing, + ) + + batch_time = AverageMeter() + losses = AverageMeter() + top1 = AverageMeter() + top5 = AverageMeter() + + model.eval() + with torch.no_grad(): + # warmup, reduce variability of first batch time, especially for comparing torchscript vs non + input = torch.randn((args.batch_size,) + tuple(data_config['input_size'])).to(device) + if args.channels_last: + input = input.contiguous(memory_format=torch.channels_last) + with amp_autocast(): + model(input) + + end = time.time() + for batch_idx, (input, target) in enumerate(loader): + if args.no_prefetcher: + target = target.to(device) + input = input.to(device) + if args.channels_last: + input = input.contiguous(memory_format=torch.channels_last) + + # compute output + with amp_autocast(): + output = model(input) + + if valid_labels is not None: + output = output[:, valid_labels] + loss = criterion(output, target) + + if real_labels is not None: + real_labels.add_result(output) + + # measure accuracy and record loss + acc1, acc5 = accuracy(output.detach(), target, topk=(1, 5)) + losses.update(loss.item(), input.size(0)) + top1.update(acc1.item(), input.size(0)) + top5.update(acc5.item(), input.size(0)) + + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if batch_idx % args.log_freq == 0: + _logger.info( + 'Test: [{0:>4d}/{1}] ' + 'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' + 'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) ' + 'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) ' + 'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format( + batch_idx, + len(loader), + batch_time=batch_time, + rate_avg=input.size(0) / batch_time.avg, + loss=losses, + top1=top1, + top5=top5 + ) + ) + + if real_labels is not None: + # real labels mode replaces topk values at the end + top1a, top5a = real_labels.get_accuracy(k=1), real_labels.get_accuracy(k=5) + else: + top1a, top5a = top1.avg, top5.avg + results = OrderedDict( + model=args.model, + top1=round(top1a, 4), top1_err=round(100 - top1a, 4), + top5=round(top5a, 4), top5_err=round(100 - top5a, 4), + param_count=round(param_count / 1e6, 2), + img_size=data_config['input_size'][-1], + crop_pct=crop_pct, + interpolation=data_config['interpolation'], + ) + + _logger.info(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format( + results['top1'], results['top1_err'], results['top5'], results['top5_err'])) + + return results + + +def _try_run(args, initial_batch_size): + batch_size = initial_batch_size + results = OrderedDict() + error_str = 'Unknown' + while batch_size: + args.batch_size = batch_size * args.num_gpu # multiply by num-gpu for DataParallel case + try: + if 'cuda' in args.device and torch.cuda.is_available(): + torch.cuda.empty_cache() + elif "npu" in args.device and torch.npu.is_available(): + torch.npu.empty_cache() + results = validate(args) + return results + except RuntimeError as e: + error_str = str(e) + _logger.error(f'"{error_str}" while running validation.') + if not check_batch_size_retry(error_str): + break + batch_size = decay_batch_step(batch_size) + _logger.warning(f'Reducing batch size to {batch_size} for retry.') + results['error'] = error_str + _logger.error(f'{args.model} failed to validate ({error_str}).') + return results + + +_NON_IN1K_FILTERS = ['*_in21k', '*_in22k', '*in12k', '*_dino', '*fcmae', '*seer'] + + +def main(): + setup_default_logging() + args = parser.parse_args() + model_cfgs = [] + model_names = [] + if os.path.isdir(args.checkpoint): + # validate all checkpoints in a path with same model + checkpoints = glob.glob(args.checkpoint + '/*.pth.tar') + checkpoints += glob.glob(args.checkpoint + '/*.pth') + model_names = list_models(args.model) + model_cfgs = [(args.model, c) for c in sorted(checkpoints, key=natural_key)] + else: + if args.model == 'all': + # validate all models in a list of names with pretrained checkpoints + args.pretrained = True + model_names = list_models( + pretrained=True, + exclude_filters=_NON_IN1K_FILTERS, + ) + model_cfgs = [(n, '') for n in model_names] + elif not is_model(args.model): + # model name doesn't exist, try as wildcard filter + model_names = list_models( + args.model, + pretrained=True, + ) + model_cfgs = [(n, '') for n in model_names] + + if not model_cfgs and os.path.isfile(args.model): + with open(args.model) as f: + model_names = [line.rstrip() for line in f] + model_cfgs = [(n, None) for n in model_names if n] + + if len(model_cfgs): + _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) + results = [] + try: + initial_batch_size = args.batch_size + for m, c in model_cfgs: + args.model = m + args.checkpoint = c + r = _try_run(args, initial_batch_size) + if 'error' in r: + continue + if args.checkpoint: + r['checkpoint'] = args.checkpoint + results.append(r) + except KeyboardInterrupt as e: + pass + results = sorted(results, key=lambda x: x['top1'], reverse=True) + else: + if args.retry: + results = _try_run(args, args.batch_size) + else: + results = validate(args) + + if args.results_file: + write_results(args.results_file, results, format=args.results_format) + + # output results in JSON to stdout w/ delimiter for runner script + print(f'--result\n{json.dumps(results, indent=4)}') + + +def write_results(results_file, results, format='csv'): + with open(results_file, mode='w') as cf: + if format == 'json': + json.dump(results, cf, indent=4) + else: + if not isinstance(results, (list, tuple)): + results = [results] + if not results: + return + dw = csv.DictWriter(cf, fieldnames=results[0].keys()) + dw.writeheader() + for r in results: + dw.writerow(r) + cf.flush() + + + +if __name__ == '__main__': + main() diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..0a1f82701aff12223cf61502a79b8e4fafbeeedc --- /dev/null +++ b/requirements.txt @@ -0,0 +1,4 @@ +fastapi +uvicorn[standard] +datasets +wandb \ No newline at end of file diff --git a/train.sh b/train.sh new file mode 100644 index 0000000000000000000000000000000000000000..59dffa4eba9711a6da4409441e2f350126a960cb --- /dev/null +++ b/train.sh @@ -0,0 +1,5 @@ +#!/bin/bash +NUM_PROC=$1 +shift +# the localhost fixes are from https://github.com/pytorch/pytorch/issues/73320 +torchrun --rdzv_backend c10d --rdzv_endpoint localhost:0 --nproc_per_node=$NUM_PROC train.py "$@" \ No newline at end of file